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Foreword

Our planet is permanently vibrating, excited by oceans, atmosphere, earthquakes,
or man-made sources. Luckily, Earth’s physical properties are such that these vibra-
tions – elastic waves to be more specific – often propagate to large distances carrying
information on the medium they encounter along the way. The problem of making
an educated guess at the subsurface structure from observations of ground motions
is as old as instrumental seismology itself (so not that old, maybe a century or so).
Let us call the problem seismic tomography akin to CT scanning in medicine, a
field seismologists have always envied. Because of limitations in illuminating the
Earth with sufficient coverage we have never obtained the sharp and detailed internal
structures so familiar from medical imaging.

Up to now we have mostly cut corners in the way we model and fit our seismic
data. We typically reduce long, wiggly seismograms to a few bytes of information
(e.g. travel times, phase velocities) and try to explain these data with approximate
theories. This has been for a good reason. Our computers were simply not fast and
big enough to allow the calculation of complete wave fields through 3D Earth struc-
tures. Frequently the data just do not warrant the use of sophisticated physics.

The situation regarding computational power in connection with 3D wave prop-
agation has dramatically changed in the past few years. Even on a global scale the
calculation of wave fields across the complete observed frequency range is in sight.
On smaller scales (continents, basins, volcanoes, reservoirs) we are already witness-
ing the emergence of 3D wave propagation as the tool for data modelling, inversion
and parameter studies.

This was Albert Tarantola’s (and others) dream 25 years ago: just simulate the
physics correctly and let the data (i.e. the misfit to a theoretical seismogram) decide
whether the Earth model is good or not. In his world (the probabilistic approach) this
should be done using a Monte Carlo-type approach: calculate zillions of models and
use all the results to estimate parameters and uncertainties. Unfortunately, we are not
there yet. We still need to resort to linearisations around (hopefully good) starting
models and employ adjoint-type techniques to update our Earth models. Fortunately,
in many situations, good starting models can be found, making iterative waveform
inversion the preferred tool to improve our Earth models using most or all of the
observed data.
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viii Foreword

The book in your hands is the first to provide a broad overview on how to solve
the forward problem to calculate accurate seismograms in 3D Earth models, to
compare theory with observations and to iteratively update Earth models until a
satisfactory fit to observations is achieved. Many questions remain, in particular in
connection with properly assessing uncertainties. Yet, the tools described here will
be essential in the coming years to move forward in reconstructing the structure of
Earth’s interior on all scales. In that sense they will have a strong impact on many
related fields in Earth sciences such as geodynamics, earthquake physics, explo-
ration geophysics, tectonics, volcanology. The book should be essential reading for
everyone interested in getting the best out of seismic observations in terms of Earth’s
physical properties.

Munich, Germany Heiner Igel
October 2010



Preface

Full waveform inversion is a novel variant of seismic tomography that is charac-
terised by the numerical solution of the equations of motion, the exploitation of full
waveform information and the iterative improvement of the tomographic images that
accounts for non-linearity in the relation between model parameters and synthetic
data. The numerical solutions ensure the accurate modelling of seismic wave propa-
gation through realistically heterogeneous Earth models, thus making full waveform
inversion the tomographic method of choice when the medium properties are highly
variable. Thanks to the combination of numerical solutions and adjoint techniques,
any type of waveform can be exploited for the benefit of improved tomographic
resolution – without the need to identify particular waveforms in terms of classical
seismic phases such as P or S.

The purpose of this book is to present the necessary ingredients for a full wave-
form inversion applied to real data. It is intended to serve as an accessible introduc-
tion to the topic for advanced students and professionals. The level is such that it
could be used as a source of advanced teaching material for specialised seminars,
courses and schools. Throughout the text we assume basic knowledge of elastic
wave propagation in a seismological context, as it can be found, for instance, in the
works of Båth (1979), Bullen & Bolt (1985), Lay & Wallace (1995), Udías (1999),
Kennett (2001) or Aki & Richards (2002).

This book is organised in three parts that represent the major steps to be taken in
order to solve a full waveform inversion problem.

Part I is dedicated to the numerical solution of the elastic wave equation. In the
course of the past few decades many numerical methods for the discretisation of
the wave equation have been developed – each being particularly well suited for
specific applications. The choice to cover only finite-difference and spectral-element
methods in detail has therefore been particularly difficult. In addition to being most
frequently used in full waveform inversion, finite-difference and spectral-element
methods also offer the opportunity to introduce many of the concepts that are
fundamental in numerical wave propagation. Therefore, I hope that the content of
Chaps. 2, 3, and 4 may serve as a useful basis for the understanding of numerical
methods that I was not able to cover in a book that is focused on the solution of
the inverse problem. Chapter 5 is concerned with the description and the numerical
implementation of visco-elastic dissipation. Special attention is given to the concept
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x Preface

of memory variables and the construction of Q models with a specified frequency
dependence. Efficient absorbing boundaries are of outstanding importance when
the computational domain does not comprise the whole Earth. Chapter 6 therefore
describes absorbing boundary conditions and absorbing boundary layer approaches
such as the Gaussian taper method and perfectly matched layers (PML).
The subject of Part II is the solution of the full waveform tomographic inverse
problem. Chapter 7 reviews the foundations of non-linear optimisation, including
the concept of local and global minima, uniqueness, convexity, regularisation and
a selection of gradient-based minimisation algorithms. The adjoint method, treated
in Chaps. 8, 9 and 10, is one of the methodological cornerstones of full waveform
inversion because it allows us to efficiently compute the partial derivatives of seis-
mic observables that are needed in gradient-based minimisation schemes. The gen-
eral operator formulation of the adjoint method, its application to the elastic wave
equation, the extension to second derivatives and the derivation of explicit expres-
sions for Fréchet and Hessian kernels are covered with particular detail. Of outstand-
ing importance in full waveform inversion is the choice of suitable misfit functionals
that extract as much waveform information as possible while conforming to the
restrictions imposed by the data and the physics of wave propagation. Chapter 11
summarises several misfit functionals that have proven effective in applications to
real data. Regardless of any technological advances, physical intuition remains the
most important ingredient in the solution of any inverse problem. In the case of full
waveform inversion, this intuition mostly comes from the interpretation of Fréchet
kernels, a collection of which is presented in Chap. 12.

While full waveform inversion is still a comparatively young method, there is
already an important conclusion to be drawn: Its application is highly problem-
dependent! A numerical method that is efficient for the modelling of body waves
on a regional scale may be inefficient for the simulation of global surface wave
propagation. Misfit functionals that are well suited to image sharp reflectors may
not be able to recover the long-wavelength structure of the Earth. Owing to this
extreme problem dependence, Part III presents a collection of case studies where full
waveform inversion has been applied successfully. Chapter 13 is concerned with a
continental-scale problem, giving special emphasis to the numerical modelling, data
selection and misfit quantification. A local-scale problem is described in Chap. 14,
written by Florian Bleibinhaus, who used the acoustic wave equation to image the
2D velocity structure near the San Andreas fault. A highly efficient data reduction
scheme applied to a synthetic problem at the global scale is the topic of Chap. 15,
written by Yann Capdeville.

Writing a book on full seismic waveform modelling and inversion turned out to
be more challenging than I expected, because it requires to cover a large variety of
different topics without creating a monster that hardly anyone would attempt to read
from the first to the last page. I have chosen the content such that it hopefully allows
the reader to develop and apply his or her own full waveform modelling and inver-
sion methods. My writing process was marked by many tough decisions concerning
interesting topics that I was not able to present at all or not in detail. For instance, the
large variety of numerical methods for the solution of the wave equation certainly
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deserve at least one separate book. The same is true for the ample fields of non-
linear optimisation and absorbing boundary methods that I had to present in a rather
condensed form.

Utrecht, The Netherlands Andreas Fichtner
August 2010
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Chapter 1
Preliminaries

This first chapter is intended to serve as a preparation for the journey through this
book. To see full waveform inversion in the context of previous developments in
seismic tomography, we start with a brief historical overview that begins in the
early days of modern seismology. This will be followed in Sect. 1.2 by a deliberately
lax formulation of the full waveform tomographic inverse problem. Section 1.3 is
concerned with the terminological confusion that appears to be common to all young
branches of science.

1.1 A Brief Historical Overview

The development of full waveform inversion techniques has always been considered
a crucial step towards a more detailed understanding of subsurface properties. To see
the motivation for and the high expectations in full waveform inversion, we briefly
review the history of our seismologically derived knowledge of the Earth’s internal
structure.

This history probably starts in 1760 when J. Michell (1724–1793) first associated
earthquakes with waves that travel through the Earth’s crust with a speed of at least
20 miles/min, that is roughly 0.5 km/s (Michell, 1760). Michell’s observation that
waves propagate through the Earth could be explained with the theory of elasticity
that was developed in the eighteenth and nineteenth centuries. A. L. Cauchy (1789–
1857), S. D. Poisson (1781–1840), G. G. Stokes (1819–1903) and many others
studied the elastic wave equation, which still forms the basis of modern-day seismo-
logical applications. P and S waves travelling with different speeds were identified
as possible analytical solutions in homogeneous and unbounded media. Solutions
for arbitrarily heterogeneous media have not become available until recently, thanks
to advances in computational science and numerical mathematics. Between 1852
and 1858, R. Mallet (1810–1881) and his son J. W. Mallet (1832–1912) performed
what is likely to be the first active-source experiment by measuring the propaga-
tion speed of seismic waves using gun powder explosions. They linked wave speed
variations to variations of material properties, thus solving what we would clas-
sify today as a seismic inverse problem. In 1889, E. L. A. von Rebeur-Paschwitz
(1861–1895) accidentally recorded the first teleseismic earthquake in Potsdam
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2 1 Preliminaries

(von Rebeur-Paschwitz, 1889) using a horizontally swinging pendulum that was
designed for astronomical measurements. The epicentre was near Tokyo. Teleseis-
mically recorded elastic waves are today’s principal source of information on deep
Earth structure.

The theoretically predicted P and S waves were first clearly identified by R. D.
Oldham (1858–1936) in 1900 (Oldham, 1900). Six years later he discovered the
rapid decay of P wave amplitudes at epicentral distances greater than 100◦. He cor-
rectly inferred the existence of the Earth’s outer core (Oldham, 1906), the radius of
which was determined by B. Gutenberg (1889–1960) in 1913 (Gutenberg, 1913).
K. B. Zoeppritz (1881–1908) compiled travel time tables for waves observed at
teleseismic distances (Zoeppritz, 1907), and he translated them into 1D models of
the Earth’s mantle. Much of his visionary work was published by his colleagues L.
Geiger and B. Gutenberg after he died at the age of 26 (Zoeppritz & Geiger, 1909;
Zoeppritz et al., 1912). In 1909 A. Mohorovičić (1857–1936) studied regional earth-
quakes, and he observed two types of P waves (today’s Pn and Pg) and two types
of S waves (today’s Sn and Sg). He explained their travel time curves with a dis-
continuity at 54 km depth − the crust–mantle discontinuity that now bears his name
(Mohorovičić, 1910). H. Jeffreys (1891–1989) combined results from seismology
and studies of Earth tides to conclude that ‘there seems to be no reason to deny that
the Earth’s metallic core is truly fluid’ (Jeffreys, 1926). Also in 1926, B. Gutenberg
provided the first seismological evidence for a low-velocity zone around 100 km
depth − the asthenosphere (Gutenberg, 1926). In 1936, I. Lehmann (1888–1993)
observed unidentified P waves at large epicentral distances, today’s PKIKP, and
inferred the existence of the inner core (Lehmann, 1936). Another milestone in the
discovery of the Earth’s spherical structure was H. Jeffreys’ and K. Bullen’s (1906–
1976) compilation of travel time tables that were used to infer complete radially
symmetric Earth models (Jeffreys & Bullen, 1940).

The second half of the twentieth century was marked by both the refinement of
spherical Earth models (Dziewonski et al., 1975; Dziewonski & Anderson, 1981;
Kennett et al., 1995) and the discovery of 3D heterogeneities through systematic
tomographic approaches. Aki et al. (1977) were among the first to use teleseismic
data in a linearised tomography for regional 3D structure. The analysis of nearly
700,000 P wave arrival time residuals allowed Dziewonski et al. (1977) to derive
an early model of large-scale heterogeneities in the deep mantle. Tomographic
methods were also used to determine 3D variations of seismic anisotropy (e.g.
Montagner, 1985) and visco-elastic dissipation (e.g. Romanowicz, 1990). Increased
data quality and data coverage contributed to the continuously improving resolu-
tion of tomographic images that could then be linked to mantle convection (e.g.
van der Hilst et al., 1997; Ritsema & van Heijst, 2000), lithospheric deformation
(e.g. Debayle & Kennett, 2000; Montagner, 2002), chemical heterogeneities (e.g.
Jordan, 1978; van der Hilst & Kárason, 1999) and the tectonic evolution of conti-
nents (e.g. Zielhuis & Nolet, 1994; Zielhuis & van der Hilst, 1996).

Most seismological inferences concerning the structure of the Earth − includ-
ing the existence of the inner core, the asthenosphere and the major seismic dis-
continuities − are based on the simplifying assumption that seismic waves can be
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represented by rays. This concept is closely related to geometrical optics. Within the
ray-theoretical framework, the arrival times of seismic waves are sensitive to seismic
wave speeds only along a curve connecting source and receiver. The intensive use of
ray theory (e.g. Červený, 2001) stems from its simplicity, its intuitive interpretation
and from the difficulty of finding solutions of the complete elastic wave equation
for realistically heterogeneous Earth models.

The limitations of ray theory in the context of seismic tomography have become
a major concern during the past two decades (e.g. Williamson, 1991; Williamson
& Worthington, 1993; Spetzler et al., 2001). Ray theory is valid when the length
scales of 3D heterogeneities are small compared to the dominant wavelength. This
condition imposes an upper limit on the resolution of tomographic images derived
from ray theory. Efforts to overcome the limitations of ray theory − and thus to
further improve the resolution of tomographic images − include finite-frequency
tomography (e.g. Yomogida, 1992; Friederich, 1999, 2003; Dahlen et al., 2000;
Yoshizawa & Kennett, 2004, 2005; Zhou et al., 2005; Sigloch et al., 2008) and full
waveform inversion (e.g. Bamberger et al., 1982; Tarantola, 1988; Ikelle et al., 1988;
Pica et al., 1990; Igel et al., 1996; Pratt, 1999; Djikpéssé & Tarantola, 1999; Dessa
et al., 2004; Ravaut et al., 2004; Bleibinhaus et al., 2007; Choi et al., 2008; Fichtner
et al., 2009, 2010; Tape et al., 2009, 2010). Finite-frequency tomography is a modi-
fication of the ray-theoretical seismic inverse problem that correctly accounts for the
spatially extended 3D sensitivity distribution of waves with a finite-frequency con-
tent. Full waveform inversion goes one step further than finite-frequency tomogra-
phy by replacing semi-analytical solutions to the wave equation (e.g. ray-theoretical
solutions or mode summations) by fully numerical solutions. This ensures that the
propagation of seismic waves through heterogeneous media is modelled accurately.
Furthermore, numerical solutions provide complete seismic waveforms that can be
exploited for the benefit of improved tomographic resolution, without the need to
identify specific seismic phases. For an extensive review of full waveform inversion,
the reader is referred to Virieux & Operto (2009).

1.2 The Full Waveform Tomographic Inverse Problem –
Probabilistic vs. Deterministic

Full waveform inversion is one of the latest contributions to our quest for informa-
tion on the structure of the Earth. Yet, regardless of any technological advances, the
amount of independent information effectively contained in seismic data is naturally
limited, thus leading to the inherent non-uniqueness of tomographic models.

The straightforward recognition of non-uniqueness has led to the universally
accepted opinion that solving an inverse problem also means to appraise the vari-
ety of solutions that are compatible with the data. This goal can be achieved most
elegantly within the framework of probabilistic inverse theory (e.g. Keilis-Borok
& Yanovskaya, 1967; Press, 1968; Tarantola, 2005), where each Earth model m is
assigned a probability p(m) of representing the true Earth. The probability depends
on two factors: First, the degree to which m is consistent with our prior knowledge
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of the Earth’s structure and second, the misfit between the observed data u0 and the
synthetic data u(m). The probability distribution p(m) is considered the solution to
the inverse problem.

For nearly all realistic problems, p(m) is not known explicitly. It must there-
fore be approximated by sampling, that is by evaluating p for specific models m
called samples (e.g. Sambridge & Mosegaard, 2002). Each evaluation requires the
solution of the wave equation, and the number of samples needed to approximate p
sufficiently well grows roughly exponentially with the number of model parameters.
Thus, despite its unquestionable conceptual beauty, probabilistic inverse theory is
not well suited for full waveform inversion where the number of model parameters
is on the order of several thousand to several million.

The pragmatic, though less complete, alternative is deterministic inverse theory.
This is based on the definition of a misfit functional χ(m) that quantifies the discrep-
ancy between the observed data and the synthetic data corresponding to the model
m. Solving the inverse problem in the deterministic framework then means finding
an optimal model m̃ in the sense that χ(m̃) is minimal. Methods for non-linear
minimisation, treated in Chap. 7, can be used to approximate m̃ iteratively. The
iteration starts from an initial model m0 that is sufficiently close to the minimum to
ensure convergence.

The possibility to constrain a number of model parameters that is much larger
than in probabilistic inverse problems comes at the expense of having only limited
information on non-uniqueness. Synthetic inversions in the form of checkerboard or
spike tests are therefore often used as proxies for the trustworthiness of structural
features seen in tomographic images. This is despite well-known deficiencies of
synthetic inversions that may not always provide meaningful quantifications of non-
uniqueness (Lévêque et al., 1993). Estimating uncertainties and trade-offs in the
deterministic framework mostly requires plausible reasoning that is to some degree
subjective.

In this book we adopt the deterministic point of view, meaning that we are try-
ing to construct one model that explains the data optimally while being physically
reasonable. The emphasis is therefore on the reliable estimation of as many model
parameters as possible, and less importance is given to the quantification of their
uncertainties.

1.3 Terminology: Full Language Confusion

Full waveform inversion is still in its development stage, and just as many other
young branches of science it is subject to language confusion. What does ‘full’ refer
to, and what precisely is a ‘waveform’ ?

The term ‘full waveform inversion’ was probably coined by Pan et al. (1988)
who used complete plane wave seismograms to retrieve the structure of a stratified
medium. Earlier articles classify the same approach simply as waveform inversion
(e.g. Tarantola, 1984; Gauthier et al., 1986), not giving special emphasis to the
potential use of the entire seismograms – from the onset of the P wave to the



1.3 Terminology: Full Language Confusion 5

final recognisable oscillation in the surface wave train. In a very original work,
Bamberger et al. (1977) did not explicitly label their new method that would today
certainly be named ‘full waveform inversion’.

It is in practice rarely efficient to really exploit complete waveform informa-
tion in the sense that zero misfit implies data=synthetics. Surface waves are com-
monly ignored in exploration applications, and amplitudes are often disregarded
in regional- to global-scale studies. The classification ‘full waveform inversion’ is
therefore rarely fully justified.

‘Full waveform tomography’ is nearly synonymous with ‘full waveform inver-
sion’. It stresses an explicit transmission tomography component in the solution of
the inverse problem that was not present in the original full waveform inversions
based on the minimisation of the L2 distance between observed and synthetic wave-
forms (e.g. Gauthier et al., 1986; Igel et al., 1996). Brenders & Pratt (2007), for
instance, used a classical travel time transmission tomography to construct an initial
model that was sufficiently close to the optimum to ensure the convergence of the
subsequent full waveform inversion. Fichtner et al. (2008, 2009) and van Leeuwen
& Mulder (2010) designed measures of full waveform misfit that are particularly
well suited to infer the transmission properties of the Earth.

Chen et al. (2007) introduced ‘full 3D tomography’ where the initial model, the
model updates, the sensitivity kernels and the finite-difference wave field modelling
are 3D. The adjective ‘full’ mostly refers to the inversion procedure and to a lesser
extent to the exploitation of as much waveform information as possible.

Emphasising the importance of the adjoint method in tomographic inversions
based on numerical wave propagation, Tape et al. (2009, 2010) labelled their
approach ‘adjoint tomography’. This terminology is honest in the sense that it does
not suggest the practically almost impossible use of complete seismograms.

At this stage of the development, terminology still seems to be a matter of per-
sonal preference. Similar methods are named differently, depending on the subjec-
tive importance of one or the other aspect.

In this book we employ the term ‘full waveform inversion’. This is intended to
indicate the exploitation of as much information as is physically reasonable. In our
understanding, ‘full waveform inversion’ does not necessarily mean the exploitation
of all available information, regardless of the constraints imposed by the data and
the physics of the problem. ‘Full waveform tomography’ is interpreted as a variant
of full waveform inversion where a transmission tomography component appears
explicitly.



Part I
Numerical Solution of the Elastic

Wave Equation

The numerical solution of the equations of motion is one of the defining charac-
teristics of full waveform inversion and an indispensable tool in seismic ground
motion studies. Numerical solutions allow us to accurately model the propagation
of seismic waves through strongly heterogeneous media, including, for instance, the
Earth’s lithosphere on a global scale, sedimentary basins and volcanic edifices.

Seismic wave motion in the Earth is governed by the wave equation that relates
the displacement field to external forces and to the distributions of density and elas-
tic parameters. Since there are no exact analytical solutions to the wave equation in
realistically heterogeneous media, we construct approximate solutions by discretis-
ing derivatives. The spatial discretisation leads to a system of ordinary differential
equations in time that can be solved numerically either in the frequency domain or
by iterative time stepping (Chap. 2).

Several methods have been developed for the numerical solution of the wave
equation, each being particularly well suited for specific types of applications. In
the context of full waveform inversion, the finite-difference and the spectral-element
methods are most frequently used.

In the finite-difference method (Chap. 3), the spatial derivatives are approximated
by difference quotients. The approximation leads, as in any other numerical method,
to a dispersion error that depends, among other factors, on the number of grid points
per wavelength. The feasibility of finite-difference modelling in 3D rests on the
definition of a staggered grid where the field variables are evaluated at different grid
positions. While increasing the computational efficiency, the staggered grid requires
special care in the implementation of anisotropy and the free surface.

The spectral-element method (Chap. 4) is based on the weak or variational for-
mulation of the equations of motion. The computational domain is divided into
disjoint elements that are mapped onto a reference element. Within the reference
element, the dynamic fields are expressed in terms of Lagrange polynomials, col-
located at the Gauss–Lobatto–Legendre points. The integrals of the weak form
are then approximated by Gauss–Lobatto–Legendre quadrature, which leads to an
algebro-differential equation with a diagonal mass matrix.

The dissipation of seismic waves through the conversion of elastic energy into
heat is implemented by a convolution of the time-dependent elastic tensor and
the strain rate tensor (Chap. 5). The elastic tensor components are expressed as a
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superposition of standard linear solids. These are controlled by a set of relaxation
parameters that can be chosen such that the quality factor Q follows a pre-defined
frequency dependence. The time convolution of the equations of motion can be
eliminated with the help of memory variables.

To reduce numerical costs, the computational domain is often restricted to only
part of the Earth. This introduces artificial reflections that pollute the solution.
Absorbing boundaries (Chap. 6) prevent the occurrence of artificial reflections either
by imposing special boundary conditions or by modifying the original wave equa-
tion.



Chapter 2
Introduction

In this chapter we present the basic elements for the numerical modelling of seismic
wave propagation. Following a summary of notational conventions, we introduce
the elastic wave equation in its different formulations (Sect. 2.2). The acoustic wave
equation is treated as a special case in Sect. 2.3. While numerical methods differ
in the details of the spatio-temporal discretisation, they can still be treated within a
unifying framework. The approximation of the spatial derivatives generally leads to
a system of ordinary differential equations in time that is commonly referred to as
the semi-discrete form of the wave equation. The semi-discrete form can be written
in terms of mass and stiffness matrices (Sect. 2.4). Depending on the specifics of an
application, the remaining time derivatives can then be approximated using either
the Fourier transform or time-stepping algorithms such as the Newmark or leapfrog
methods (Sect. 2.5).

2.1 Notational Conventions

Throughout this book we have tried to stay close to notations commonly found in
the seismological literature. While the meaning of the different symbols is mostly
clear from the context, we start with a small collection of conventions that we shall
use consistently.

The Fourier transform of a function f is defined as

f̃ (ω) := F[ f ](ω) := 1√
2π

∫
R

f (t)e−iωt dt , i := √−1 , (2.1)

where the symbol := means that the expression to the left is defined by the expres-
sion to the right. The boldface i is intended to distinguish the imaginary unit from the
frequently occurring index variable i . The inverse Fourier transform corresponding
to (2.1) is

f (t) = F−1[ f̃ ](t) = 1√
2π

∫
R

f̃ (ω)eiωt dω . (2.2)

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
Geophysical and Environmental Mechanics and Mathematics,
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With the exception of i, we use bold-faced symbols for vectors and tensors. The
scalar product of two vectors a,b ∈ R

n is denoted by

a · b =
n∑

i=1

ai bi . (2.3)

We more generally use the dot to signify contraction over adjacent indices. Using
this notation, the i-component of a matrix–vector product is written as

(A · a)i =
n∑

i=1

Ai j a j , A ∈ R
n×n , (2.4)

and the i j-component of a matrix–matrix product is

(A · B)i j =
n∑

k=1

Aik Bk j . (2.5)

Following this scheme, a double dot denotes a contraction over two adjacent indices,
for instance

A : B =
n∑

i, j=1

Ai j Bi j , B ∈ R
n×n (2.6)

and

(B : C)kl =
n∑

i, j=1

Bi j Cijkl , C ∈ R
n×n×n×n . (2.7)

For the real part of a complex-valued variable z = x + iy, we use the fraktur symbol
Re, i.e.

Re z = x = 1

2
(z + z∗) , (2.8)

where z∗ = x − i y denotes the complex conjugate of z. The symbol Im denotes the
imaginary part of z:

Im z = y = 1

2
(z − z∗) . (2.9)

Of outstanding importance in any deterministic inverse problem is the definition of
a misfit functional χ that quantifies the difference between observed and synthetic
data. The misfit functional depends on an Earth model m ∈ M, where M is the
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model space. The functional or the Fréchet derivative of χ with respect to m in a
direction δm ∈ M is defined by

∇mχ(m) δm := lim
ε→0

1

ε

[
χ(m + ε δm)− χ(m)

]
. (2.10)

The derivative ∇mχ(m) is a linear operator acting on the differentiation direction
δm. In the special case where m is a vector, the Fréchet derivative ∇mχ(m) δm coin-
cides with the directional derivative δm · ∇mχ(m). For convenience, we will mostly
use the term ‘derivative’ instead of ‘Fréchet derivative’. The symbol ∇, without
subscript, signifies the regular gradient with respect to the position vector x.

2.2 The Elastic Wave Equation

2.2.1 Governing Equations

Full waveform inversion is founded on the solution of the forward problem, which
consists in the simulation of seismic wave propagation through an Earth model m
and the computation of synthetic seismograms. The propagation of seismic waves
in the Earth can be modelled with the elastic wave equation

ρ(x)ü(x, t)− ∇ · σ (x, t) = f(x, t) , x ∈ G ⊂ R
3 , t ∈ [t0, t1] ⊂ R (2.11)

that relates the displacement field u in the Earth G ⊂ R
3 to its mass density ρ,

the stress tensor σ and an external force density f. A truly marvellous matter of
fact! Equation (2.11) is the linearised version of Newton’s second law that balances
the momentum of particle displacement ρ(x)ü(x, t), forces resulting from internal
stresses ∇ · σ (x, t) and external forces f(x, t) that represent the sources of seismic
wave motion. For detailed derivations of Eq. (2.11) the reader is referred to Dahlen
& Tromp (1998), Kennett (2001) or Aki & Richards (2002). At the surface ∂G of
the Earth, the normal components of the stress tensor σ vanish, i.e.

σ · n|x∈∂G = 0 , (2.12)

where n is the unit normal on ∂G. Equation (2.12) is the free surface boundary
condition. Both the displacement field u and the velocity field v = u̇ are required to
satisfy the initial condition of being equal to zero prior to t = t0 when the external
force f starts to act:

u|t≤t0 = v|t≤t0 = 0 . (2.13)

For convenience we will mostly choose t0 = 0. To obtain a complete set of equa-
tions, the stress tensor σ must be related to the displacement field u. For this we
assume that σ depends linearly on the history of the strain tensor ε := 1

2 (∇u+∇uT):
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σ (x, t) =
∫ ∞

−∞
Ċ(x, t − t ′) : ε(x, t ′) dt ′ . (2.14)

Equation (2.14) defines a linear visco-elastic rheology. The 4th-order tensor C is the
elastic tensor. Since the current stress cannot depend on future strain, we require the
elastic tensor to be causal:

C(t)|t<t0 = 0 . (2.15)

The symmetry of ε, the conservation of angular momentum and the relation of C to
the internal energy (e.g. Aki & Richards, 2002) require that the components of C
satisfy the following symmetry relations:

Cijkl = Cklij = Cjikl . (2.16)

The symmetries of the elastic tensor reduce the number of its independent compo-
nents to 21, and they allow us to write (2.14) directly in terms of the displacement
gradient ∇u:

σ (x, t) =
∫ ∞

−∞
Ċ(x, t − t ′) : ∇u(x, t ′) dt ′ . (2.17)

The number of non-zero independent elastic tensor components – also referred to
as elastic parameters or elastic moduli – determines the anisotropic properties of
the medium. For instance, a triclinic crystal such as plagioclase requires all 21 inde-
pendent parameters for its complete description and 3 elastic parameters are needed
to describe crystals with cubic symmetry such as garnet (Babuska & Cara, 1991).
On a macroscopic scale the Earth can often be described sufficiently well as an
isotropic body where the elastic tensor components are linear combinations of only
two elastic moduli: the Lamé parameters λ and μ:

Cijkl = λ δi jδkl + μδikδ jl + μδilδ jk . (2.18)

The parameter μ relates strain to shear stresses and is therefore called shear modu-
lus. Since λ has no intuitive physical meaning, it is commonly replaced by the bulk
modulus κ = λ+ 2

3 that relates strain to the scalar pressure, defined as p =: −κ ∇·u.
The time dependence of the elastic tensor is responsible for visco-elastic dissi-

pation, that is the process of transforming elastic energy into heat. In the case of a
non-dissipative medium, the time dependence of C takes the form of a unit step or
Heaviside function H(t):

C(x, t) = C(x) H(t) . (2.19)
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The constitutive relation (2.17) then takes the form

σ (x, t) = C(x) : ∇u(x, t) . (2.20)

For simplicity we will assume a non-dissipative medium throughout most of this
book. This is also justified because dissipation can be incorporated easily with the
help of memory variables, as we shall see in Chap. 5. Memory variables allow us to
circumvent the numerically inconvenient convolution in Eq. (2.17).

2.2.2 Formulations of the Elastic Wave Equation

Equations (2.11) and (2.20) constitute the displacement–stress formulation of the
elastic wave equation in the absence of dissipation. Together with the initial and
boundary conditions they uniquely specify the displacement field u(x, t).
Different but fully equivalent formulations are possible and sometimes required by
a specific numerical method. We may, for instance, eliminate the stress tensor σ by
combining Eqs.(2.11) and (2.20). This results in the displacement formulation of
the elastic wave equation:

ρ(x) ü(x, t)− ∇ · [C(x) : ∇u(x, t)] = f(x, t) . (2.21)

Of particular relevance in numerical modelling is the velocity–stress formulation
where the wave equation is written as a first-order system in both time and space.
We find the velocity–stress formulation by simply differentiating Eq. (2.20) with
respect to time and then substituting v for u̇:

ρ(x) v̇(x, t)− ∇ · σ (x, t) = f(x, t) , (2.22a)

σ̇ (x, t)− C(x) : ∇v(x, t) = 0 . (2.22b)

The elastic wave equation in its different formulations has been studied extensively.
Analytical solutions exist for numerous classes of models including, for instance,
the isotropic and homogeneous half space (e.g. Lamb, 1904; de Hoop, 1958; Aki
& Richards, 2002), stratified media (e.g. Kennett, 1979, 1980, 1981) and spheri-
cally symmetric globes with radial anisotropy (e.g. Takeuchi & Saito, 1978; Wood-
house, 1988; Friederich & Dalkolmo, 1995). Ray theory (e.g. Červený, 2001) and
perturbation methods (e.g. Woodhouse & Dahlen, 1978; Maupin, 2001) can be used
to approximate solutions to the elastic wave equation for mildly heterogeneous
media. In full waveform inversion, the focus is on strongly heterogeneous regions
of the Earth where analytical or perturbation methods are not applicable. This is the
domain of numerical methods that are the subject of the first part of this book.
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2.3 The Acoustic Wave Equation

The equations of motion simplify significantly in the fluid regions of the Earth (e.g.
the outer core, oceans, and melt bodies), where the shear modulus μ is effectively
zero. Inserting μ = 0 into the isotropic constitutive relation (2.18), yields

σi j = κ δi j ∇ · u = −p δi j , (2.23)

where we introduced the scalar pressure p := −κ ∇ · u. With the help of Eq. (2.23)
the momentum balance law (2.11) reduces to

ρ ü + ∇ p = f . (2.24)

Dividing (2.24) by the density ρ and taking the divergence gives

∇ · ü + ∇ · (ρ−1∇ p) = ∇ · (ρ−1 f) . (2.25)

Using the definition of the pressure p, we can eliminate the displacement field u
from Eq. (2.25):

κ−1 p̈ − ∇ · (ρ−1 ∇ p) = −∇ · (ρ−1 f) . (2.26)

When density varies much more slowly than the pressure field p and the source f,
we can simplify (2.26) to a scalar partial differential equation, known as the acoustic
wave equation:

p̈ − v2
a �p = −v2

a ∇ · f , (2.27)

with the acoustic wave speed va :=
√
κ
ρ

. It follows from (2.27) that wave motion

in fluid media can be fully described with a single scalar field (the pressure, p), the
properties of which depend only on the source term and the spatial distribution of
the acoustic wave speed.

While being strictly valid only in fluid and gaseous media, the acoustic wave
equation is frequently used in active-source full waveform inversion (see for exam-
ple Chap. 14), because its numerical solution is computationally inexpensive com-
pared to the solution of the elastic wave equation. The consequences of this acoustic
approximation include the restriction to isotropic source radiation patterns and the
absence of Rayleigh waves and P-to-S conversions. The acoustic approximation is,
nevertheless, justifiable when the data analysis is restricted to the first-arriving P
waves and when the seismic sources radiate little S wave energy (e.g. explosions).

With the exception of Chap. 14, the focus of this book will be on elastic wave
propagation. The transition to the acoustic case is mostly straightforward.



2.4 Discretisation in Space 15

2.4 Discretisation in Space

Analytical solutions to the elastic wave equation exist only for comparatively sim-
ple models that often do not reflect the structural complexities of the Earth. This
deficiency motivates the development of numerical methods for the simulation of
seismic wave propagation through almost arbitrarily heterogeneous Earth models.
While being different in the technical details, all numerical methods have one
point in common: the discrete spatial approximation of the continuously defined
wave field u(x, t). This means that u(x, t) is approximated by a finite number
of time-dependent coefficients ū1(t), . . . , ūN (t) that can be summarised in an
N -dimensional vector ū(t). Depending on the specifics of the numerical method
used, the coefficients ūi (t) (i = 1, . . . , N ) may represent, for instance, discrete
values of u(x, t) sampled at a finite number of points, or polynomial coefficients
when u(x, t) is approximated by a polynomial.

Following spatial discretisation, the displacement formulation of the elastic wave
equation, given in (2.21), turns into an algebro-differential equation that can always
be written in the following canonical form:

M · ¨̄u(t)+ K · ū(t) = f̄(t) . (2.28)

The matrices M and K are referred to as the mass matrix and the stiffness matrix,
respectively. The vector f̄ represents a discrete version of the force density f. Both
M and K tend to be sparse. In practice, the mass and the stiffness matrices are rarely
computed explicitly because only the vector–matrix products are needed in actual
computations. They are, nevertheless, useful tools in theoretical developments, as
we will soon discover.

Depending on the numerical method, it may be more advantageous to discretise
the displacement–stress formulation Eqs. (2.11) and (2.20) or the velocity-stress for-
mulation (Eq. 2.22) of the elastic wave equation. The corresponding space-discrete
systems are then

M · ¨̄u(t)+ K1 · s̄(t) = f̄(t) , (2.29a)

s̄(t) = K2 · ū(t) (2.29b)

for the displacement–stress formulation and

M · ˙̄v(t)+ K1 · s̄(t) = f̄(t) , (2.30a)

˙̄s(t)− K2 · v̄(t) = 0 (2.30b)

for the velocity–stress formulation. The matrices K1 and K2 are stiffness matrices
in a broader sense and s̄ represents a discrete approximation to the stress tensor σ .
The transition from the continuous wave equation in its various formulations to one
of the space-discrete systems (2.28), (2.29) or (2.30) reduces the forward problem to
the solution of a large algebraic system and an ordinary differential equation in time.
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2.5 Discretisation in Time or Frequency

The ordinary differential equations in time that arise from the spatial discretisation
of the equations of motion can be solved either in the time domain or in the fre-
quency domain. Both approaches have advantages and disadvantages that must be
weighted depending on the particular application and the available computational
resources.

2.5.1 Time-Domain Modelling

The time-domain modelling of wave propagation is mostly based on the replacement
of the time derivatives in the space-discrete equations of motion by suitable finite-
difference approximations. These allow us to advance the wave field in discrete
time steps �t . The choice of a particular finite-difference scheme depends on the
formulation of the wave equation.

Throughout the following paragraphs we assume that the mass matrix M can be
inverted, noting, however, that the inversion of M may present a formidable numer-
ical challenge.

2.5.1.1 Displacement and Displacement–Stress Formulation

The space-discrete version of the displacement formulation (2.28) involves the sec-
ond time derivative of the discrete displacement field ¨̄u, which is explicitly given by

¨̄u(t) = M−1 ·
[
f̄(t)− K · ū(t)

]
. (2.31)

Approximating ¨̄u(t) by the second-order finite difference

¨̄u(t) ≈ 1

�t2

[
ū(t +�t)− 2ū(t)+ ū(t −�t)

]
(2.32)

leads to an explicit time-stepping scheme that allows us to compute the displacement
at time t +�t from the displacement at times t and t −�:

ū(t +�t) = 2ū(t)− ū(t −�t)+�t2 M−1 ·
[
f̄(t)− K · ū(t)

]
. (2.33)

For notational clarity we replaced ≈ by = in Eq. (2.33), keeping in mind that this is
an approximation.

A frequently used alternative to (2.33) is the Newmark scheme (Newmark, 1959;
Chaljub et al., 2007), defined by

ū(t +�t) = ū(t)+�t v̄(t)+�t2
[(

1

2
− β

)
¨̄u(t)+ β ¨̄u(t +�t)

]
, (2.34a)

v̄(t +�t) = v̄(t)+�t [(1 − γ ) ¨̄u(t)+ γ ¨̄u(t +�t)] , (2.34b)
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with the parameters γ ∈ [0, 1] and β ∈ [0, 1
2 ]. Second-order accuracy instead of

first-order accuracy is achieved if and only if γ = 1
2 . In the special case γ = 1

2 and
β = 0, we obtain an explicit central-difference scheme:

ū(t +�t) = ū(t)+�t v̄(t)+ 1

2
�t2 ¨̄u(t) , (2.35a)

v̄(t +�t) = v̄(t)+ 1

2
�t
[ ¨̄u(t)+ ¨̄u(t +�t)

]
. (2.35b)

The order of operations in the iterative advancement of ū is then as follows. (1)
Compute ū at time t+�t from the discrete field variables at time t , using Eq. (2.35a).
(2) With the help of Eq. (2.31), compute the acceleration ¨̄u(t +�t) from ū(t +�t).
(3) Advance the velocity v̄ from time t to t + �t , using Eq. (2.35b). (4) Go back
to (1) and repeat as often as needed. While being more complicated than (2.33), the
Newmark scheme has the advantageous property of conserving linear and angular
momentum (e.g. Kane et al., 2003).

We note that the time discretisation schemes for the displacement formulation
are immediately applicable to the displacement–stress formulation from Eq. (2.29).

2.5.1.2 Velocity–Stress Formulation

The most commonly used time discretisation scheme for the velocity–stress for-
mulation (2.30) is the leapfrog method. This is based on alternating updates of the
discrete velocity and stress fields. Starting from s̄(t − �t/2) and v̄(t), we obtain
s̄(t +�t/2) via a second-order finite-difference approximation of Eq. (2.30b):

s̄(t +�t/2) = s̄(t −�t/2)+�t K2 · v̄(t) . (2.36a)

With the help of the discrete stress field s̄(t+�t/2)we can then advance the velocity
field from time t to time t +�t , using the same second-order approximation applied
to Eq. (2.30a):

v̄(t +�t) = v̄(t)+�t M−1 · [f̄(t +�t/2)− K1 · s̄(t +�t/2)] . (2.36b)

Again, for notational convenience, we replaced ≈ by = in Eq. (2.36a) and (2.36b).

2.5.1.3 Stability

All of the above time-stepping algorithms are explicit in the sense that the dynamic
fields at time t + �t depend only on the dynamic fields at times prior to t + �t .
This implies that the algorithms are only conditionally stable. The stability crite-
rion, named CFL condition in honour of R. Courant, K. Friedrichs and H. Lewy
(R. Courant, K. Friedrichs and H. Lewy, Courant et al. 1928), typically takes the
form
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�t ≤ const.
min h

max v
, (2.37)

where h is the width of the numerical grid and v is the propagation speed of the
fastest wave, that is the P wave. The constant on the right-hand side of Eq. (2.37)
depends on the methods used for the space and time discretisation. Its order of
magnitude is 1. The CFL condition limits the maximum possible time increment
and therefore the efficiency of any explicit time stepping. In Sect. 3.1 we derive the
CFL condition for a finite-difference approximation of the 1D scalar wave equation.

2.5.1.4 Alternative Methods

The Newmark and the leapfrog schemes are by far the most frequently used meth-
ods for the time discretisation of the space-discrete equations of motion. This may
appear surprising given the availability of numerous alternatives such as predictor–
corrector variants of implicit multi-step methods or higher order Runge–Kutta meth-
ods (e.g. Quarteroni et al., 2000).

The restriction to conditionally stable methods of comparatively low order can
be explained not only by the larger computational requirements of implicit and
higher order methods but also by the good performance of the explicit second-order
schemes. Empirical studies show that the numerical error is often dominated by
the inaccuracies of the spatial discretisation. This is true even when the number of
time steps is large, that is on the order of several thousands. Whether the conven-
tional Newmark and leapfrog schemes are sufficient for future applications, such as
global-scale wave propagation at periods around 2 s, is still an open question.

2.5.2 Frequency-Domain Modelling

Frequency-domain modelling is based on the Fourier-transformed version of the
space-discrete displacement formulation (2.28):

− ω2 M · ū(ω)+ K · ū(ω) = f̄(ω) . (2.38)

Upon defining the impedance matrix L

L(ω) := −ω2 M + K , (2.39)

Eq. (2.38) simplifies to the linear system

L(ω) · ū(ω) = f̄(ω) . (2.40)

The solution of (2.40) is the discrete wave field ū at one frequency ω.
It is particularly attractive to solve the system (2.40) using direct matrix fac-

torisation methods, such as LU decomposition (e.g. Press et al., 2007). Once the
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matrix factors are known, they can be reused to solve the forward problem for any
new source f̄ at very low computational cost (e.g. Pratt et al., 1998; Pratt, 1999).
However, in realistic 3D applications, the memory requirements of direct meth-
ods can become prohibitive so that iterative solvers must be used (e.g. Quarteroni
et al., 2000).

Frequency-domain modelling is the method of choice when solutions for a few
dominant or well-chosen frequencies are needed or when the problem is 2D thus
permitting the application of direct linear system solvers.

One of the outstanding advantages of this approach is the easy implementation
of visco-elastic dissipation. This is because the convolution in Eq. (2.14) translates
to a simple product in the frequency domain. Additional memory variables as in
time-domain modelling are therefore not needed (see Chap. 5). In Chap. 14 we
present an application of frequency-domain modelling in the context of full wave-
form tomography with active-source data.

2.6 Summary of Numerical Methods

In the course of the past decades a large number of numerical methods for the solu-
tion of the seismic wave equation have been developed – often for the purposes of
ground motion prediction or waveform inversion. Each method comes with advan-
tages and disadvantages that need to be weighted carefully in the light of a specific
application.

The most significant distinction between different approaches concerns the spa-
tial discretisation, that is, the transformation of the exact spatial derivatives in the
wave equation into an algebraic system. The following is a list of some methods that
try to highlight their major similarities and differences.

Finite-difference methods: Numerical modelling in nearly all physical sciences
started with the finite-difference method, and seismology is no exception. Early
applications can be found in Alterman & Karal (1968), Boore (1970, 1972), Alford
et al. (1974) and Kelly et al. (1976). To illustrate the finite-difference concept, we
consider a generic function f (x) that represents the dynamic fields that appear in
the wave equation (e.g. stress, strain, and displacement). The fundamental idea is to
consider only a finite number of evenly spaced grid points xi (i=1, . . . , N ) and to
replace the derivative ∂x f (xi ) at grid point xi by a finite-difference approximation
that involves f evaluated at neighbouring grid points. The best-known example is
the second-order central finite-difference approximation

∂x f (xi ) = 1

2�x
[ f (xi +�x)− f (xi −�x)] + O(�x2) , (2.41)

where �x is the grid spacing. The feasibility of finite-difference modelling in three
dimensions rests on the definition of a staggered grid where the dynamic fields are
defined at different grid positions (e.g. Madariaga, 1976; Virieux, 1984, 1986, Igel
et al., 1995). This is in contrast to the conventional grid where all field variables
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are defined at coincident grid positions. The staggered grid results in a reduced
average grid spacing that greatly reduces the numerical dispersion, i.e. the artificial
dispersion introduced by the discretisation of the original equations of motion.

The popularity of finite-difference modelling is largely due to the comparatively
low computational costs and the accuracy especially in the modelling of body wave
propagation. In Chap. 3 we treat the finite-difference method in detail.

Optimal operators: The discretisation of the equations of motion introduces
numerical errors that are particularly prominent near the eigenfrequencies of the
elastic medium. This observation led Geller & Takeuchi (1995) to the construction
of optimal operators that are designed to minimise the discretisation error first of all
in the vicinity of the eigenfrequencies.

The very general criterion for an operator to be optimal is that the inner product
of an exact eigenfunction with the net error of the discrete equations of motion at
the corresponding eigenfrequency is approximately 0. This criterion is independent
of the actual space discretisation scheme. In the particular framework of finite-
difference methods, optimality means that the lowest order errors of the time and
the space discretisations cancel, thus leading to highly accurate numerical schemes
(Geller & Takeuchi, 1998; Takeuchi & Geller, 2000).

Since time-domain optimal operators are inherently implicit, predictor–corrector
algorithms must be used to avoid the solution of large algebraic systems in the time
stepping. The increased solution accuracy clearly compensates the additional com-
putational costs of the predictor–corrector scheme (Mizutani et al., 2000; Kristek &
Moczo, 2006).

Pseudospectral methods: Like finite-difference methods, pseudospectral meth-
ods directly discretise the spatial derivatives in the equations of motion (e.g. Kosloff
& Baysal, 1982; Furumura et al., 1998). The discretisation proceeds in three steps.
Firstly, the wave field sampled at a finite number of grid points is transformed to the
wave number domain using the fast Fourier transform. The transformed wave field is
then multiplied by ik, where k is the wave number. This multiplication corresponds
to a space derivative. Finally, using the inverse fast Fourier transform, the wave field
is transformed back to the space domain. Since the derivative is exact up to the
Nyquist wave number, as few as two grid points per wavelength are theoretically
sufficient for the spatial sampling of the wave field.

Kosloff et al. (1990) proposed a variant of the Fourier pseudospectral method
where a Chebyshev transform is used in the vertical direction in order to account
more accurately for the free surface condition. An extension to the 3D case with
surface topography can be found in Tessmer & Kosloff (1994). The application
of the Chebyshev pseudospectral method to wave propagation on the scale of the
mantle is presented in Igel (1999).

Pseudospectral methods outperform finite-difference methods regarding the very
small amount of numerical dispersion. However, due to the global nature of the
derivative approximation, they are restricted to comparatively smooth media (Mizu-
tani et al., 2000). Furthermore, pseudospectral methods face issues of parallelisation
because global memory access is required for the computation of the Fourier and
Chebyshev transforms.
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Finite-element methods: Finite-element methods are based on the weak or the
variational form of the wave equation that we describe in Sect. 4.1.1. The computa-
tional domain is decomposed into disjoint subdomains, called the elements. Within
each element the dynamic fields are approximated by polynomials of low order (e.g.
piecewise linear functions Bao et al., 1998), and continuity between the elements
is imposed explicitly. The elastic wave equation then reduces to a space-discrete
system for the polynomial coefficients.

Despite its capability to correctly account for irregular geometries and the free
surface, applications of the pure finite-element method to elastic wave propagation
are comparatively rare (e.g. Lysmer & Drake, 1972; Toshinawa & Ohmachi, 1992;
Bao et al., 1998). This is mostly due to the comparatively large numerical disper-
sion that results from the low-order polynomial approximations. Moreover, the mass
matrix in finite-element methods is not diagonal, which renders its inversion com-
putationally expensive.

While the pure finite-element method does not appear to be well suited for wave
propagation, hybrid schemes have been used very successfully. Moczo et al. (1997,
2007), for instance, combined the finite-element and finite-difference methods for
the simulation of wave propagation along irregular surface topography. They dis-
cretised the equations of motion in the interior of the computational domain using
finite differences. A rim of finite elements was then used to mesh the topography.

Spectral-element methods: Spectral-element methods are half way between
finite-element and pseudospectral methods, combining the advantages of both
approaches while avoiding many of their drawbacks. Like in finite-element methods,
the computational domain is subdivided into non-overlapping elements that can be
adapted to irregular geometries. Inside the elements a high-order spectral approx-
imation is used for the dynamic fields. The spectral-element method as originally
developed for fluid mechanics (Patera, 1984) and seismic wave modelling (Priolo
et al., 1994; Seriani et al., 1995; Seriani, 1998) indeed uses Chebyshev polynomials
as basis functions, thus establishing a direct link to the Chebyshev pseudospectral
methods.

In a widely used spectral-element variant the Chebyshev polynomials are
replaced by Lagrange polynomials collocated at the Gauss–Lobatto–Legendre
(GLL) points. The combination with GLL quadrature leads to a diagonal mass
matrix that can be trivially inverted. In Chap. 4 and Appendix A we provide a
detailed introduction to the spectral-element method. Applications on a variety
of scales can be found in Faccioli et al. (1997), Komatitsch (1997), Komatitsch
& Vilotte (1998), Komatitsch & Tromp (2002), Chaljub et al. (2003), Chaljub &
Valette (2004) and Nissen-Meyer et al. (2007, 2008)

Direct solution method: The direct solution method was introduced in a series
of papers by Geller & Ohminato (1994) and Cummins et al. (1994a,b). As finite-
element and spectral-element methods, it is founded on the weak form of the equa-
tions of motion. What distinguishes the direct solution method is the choice of basis
functions: linear splines in the radial direction and spherical harmonics in the hor-
izontal directions. The space-discrete equations are then solved in the frequency
domain.
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Takeuchi (2000) applied the optimal operator formalism of Geller &
Takeuchi (1995) to the direct solution method and investigated its applicability to
waveform inversion. The method was extended to radially anisotropic media by
Kawai et al. (2006) and then applied to waveform inversion for localised hetero-
geneities by Konishi et al. (2009) and Kawai & Geller (2010).

Discontinuous Galerkin methods: Discontinuous Galerkin methods for seismic
wave propagation have been developed only recently (e.g. Dumbser & Käser, 2006;
Käser et al., 2007; de la Puente et al., 2007, 2008). They represent a class of finite-
element methods where neighbouring elements are linked by numerical fluxes and
not by continuity constraints. This allows for solutions that are discontinuous across
element boundaries. Discontinuous Galerkin methods are therefore particularly well
suited for the modelling of earthquake rupture processes (de la Puente et al., 2009).
An application of a discontinuous Galerkin method in the context of full waveform
inversion can be found in Brossier et al. (2009).

In Chaps. 3 and 4 two of the above-mentioned discretisation approaches are
described in more detail: the finite-element and the spectral-element method.

Choosing two out of many possible methods was a difficult but inevitable deci-
sion. Since this book is intended to cover both the forward and the inverse problems,
I gave preference to the methods that are currently employed most frequently in the
context of waveform tomography. The finite-difference and spectral-element meth-
ods also offer the opportunity to introduce a large number of concepts that are of
general importance in numerical seismology.

A comprehensive treatise on all the different approaches to the numerical solu-
tion of the seismic wave equation is still to be written, and I offer my apologies to
colleagues whose work I was not able to present here.



Chapter 3
Finite-Difference Methods

The finite-difference method can be considered the classical and most frequently
applied method for the numerical simulation of seismic wave propagation. It is
based on the approximation of an exact derivative ∂x f (xi ) at a grid position xi

in terms of the function f evaluated at a finite number of neighbouring grid points.
Early implementations of the finite-difference method in a seismological context

used a conventional grid where all field variables (e.g. displacement, stress, and
strain) are defined at the same grid positions. Examples may be found in Alterman
& Karal (1968), Boore (1970, 1972), Alford et al. (1974) and Kelly et al. (1976).

The breakthrough in finite-difference modelling was the application of the
staggered-grid approach (Madariaga, 1976; Virieux, 1984, 1986). In the staggered
grid, field variables are defined at different grid positions, which reduces the effec-
tive grid spacing compared to the conventional grid. Further developments in finite-
difference wave propagation focused, for instance, on the modelling of the free sur-
face (e.g. Graves, 1996; Kristek et al., 2002), the incorporation of general anisotropy
(Igel et al., 1995) and the correct implementation of material discontinuities (e.g.
Moczo et al., 2002). Applications of finite-difference modelling include studies of
seismic ground motion in densely populated areas (e.g. Frankel & Vidale, 1992;
Wang et al., 2008; Moczo et al., 2007; see Fig. 3.1), the simulation of wave propa-
gation through random media (e.g. Frankel & Clayton, 1984, 1986) and full wave-
form inversion (e.g. Igel et al., 1996; Pratt, 1999; Dessa et al., 2004; Bleibinhaus
et al., 2007). For an excellent review of finite-difference methods for wave propaga-
tion, the reader is referred to Moczo et al. (2007).

To introduce the basic finite-difference concepts, we start in Sect. 3.1 with the 1D
scalar wave equation. This simple example also allows us to study the stability and
the numerical dispersion of the discretised equations. Based on the staggered-grid
approach we then make the transition to the 3D elastic case. We pay special attention
to the implementation of anisotropy, the free surface and arbitrarily located point
sources.

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-15807-0_3, C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 3.1 Left: Geometrical configuration of the Grenoble (France) sedimentary basin. The location
of a fault zone is marked by a red box. Right: Snapshot of the absolute value of the horizontal-
component particle velocity, 4.72 s after the rupture initiation. The simulation is based on a fourth-
order finite-difference discretisation of the elastic wave equation, as described in Sect. 3.2.1. The
horizontal displacement velocity is largest above the densely populated sedimentary basin. (Figure
modified from Moczo et al. (2007), with permission from the authors)

3.1 Basic Concepts in One Dimension

The 1D scalar wave equation is particularly well suited not only for an introduction
to the finite-difference method itself but also for the illustration of fundamental
concepts in numerical analysis, including stability and grid dispersion. We start
our development with the description of two methods for the construction of finite-
difference approximations. These are then used to replace the exact derivatives in
the wave equation. The result of this procedure is an iterative scheme that allows
us to advance a discrete representation of the wave field in time. Both numerical
experiments and a rigorous analysis reveal the properties of the iterative scheme in
general and its stability requirements in particular.

3.1.1 Finite-Difference Approximations

3.1.1.1 Truncated Taylor Expansions

The most straightforward procedure for the construction of finite-difference approx-
imations to the derivative ∂x f (x) of a generic function f is based on truncated
Taylor expansions. To find an approximation that is correct to second order in the
grid spacing �x , we choose the ansatz

∂x f (x) ≈ g [ f (x +�x)− f (x −�x)] (3.1)
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with a scalar coefficient g that we seek to determine such that the right-hand side of
(3.1) converges to ∂x f (x) as �x → 0. Expanding f (x +�x) and f (x −�x) into
Taylor series centred around x , yields

g [ f (x +�x)− f (x −�x)] = g

[
2 ∂x f (x)�x + 2

3! ∂
3
x f (x)�x3 + . . .

]
. (3.2)

Choosing

g = 1

2�x
(3.3)

results in the well-known second-order finite-difference stencil

∂x f (x) = 1

2�x
[ f (x +�x)− f (x −�x)] + O(�x2) . (3.4)

To derive approximations that are of arbitrary order in �x , we generalise Eq. (3.1)
such that it involves f evaluated at 2N grid points xn = x ± n�x , with n =
1, . . . , N :

∂x f (x) ≈
N∑

n=1

gn [ f (x + n�x)− f (x − n�x)] . (3.5)

To determine the finite-difference coefficients gn , we replace f (x ± n�x) by a
Taylor series

N∑
n=1

gn [ f (x + n�x)− f (x − n�x)]

=
N∑

n=1

gn

[ ∞∑
k=0

1

k!∂
k
x f (x)(n�x)k −

∞∑
n=0

1

k!∂
k
x f (x)(−n�x)k

]
. (3.6)

The terms involving even powers of �x cancel so that we are left with

N∑
n=1

gn [ f (x+n�x)− f (x−n�x)]=
N∑

n=1

gn

[ ∞∑
k=0

2

(2k + 1)! ∂
2k+1
x f (x)(n�x)2k+1

]
.

(3.7)
Isolating the summands corresponding to k = 0 yields

N∑
n=1

gn [ f (x + n�x)− f (x − n�x)] = 2�x ∂x f (x)
N∑

n=1

ngn

+
∞∑

k=1

2

(2k + 1)!∂
2k+1
x f (x)

N∑
n=1

gn (n�x)2k+1 .

(3.8)
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To ensure that the right-hand side of (3.8) converges to ∂x f (x) as �x → 0, we
impose the condition

1 = 2�x
N∑

n=1

ngn . (3.9)

Equation (3.9) leaves us with N−1 degrees of freedom for the coefficients gn that we
may now use to eliminate the monomials proportional to �x3, . . . ,�x2N−1 from
(3.8). For this we furthermore require that the finite-difference coefficients satisfy
the following system of N − 1 linear equations:

0 =
N∑

n=1

gn(n�x)2k+1 , k = 1, . . . , N − 1 . (3.10)

The resulting finite-difference approximation is then of order 2N in �x :

N∑
n=1

gn [ f (x + n�x)− f (x − n�x)] = ∂x f (x) + O(�x2N ) . (3.11)

By far the most frequently used finite-difference stencils are those of order 4–8. The
associated coefficients are the solutions of the linear system given by Eqs. (3.9) and
(3.10):

order 4: g1 = 2

3�x
, g2 = − 1

12�x
,

order 6: g1 = 3

4�x
, g2 = − 3

20�x
, g3 = 1

60�x
,

order 8: g1 = 4

5�x
, g2 = − 1

5�x
, g3 = 4

105�x
, g4 = − 1

280�x
.

(3.12)

By construction, higher order approximations converge faster to the exact derivative
as �x → 0. Also for (unavoidably) finite grid spacings �x higher order approxi-
mations generally yield more accurate solutions.

The finite-difference approximations considered so far are based on grid points
that are evenly spaced and symmetric with respect to the grid point where the deriva-
tive is approximated. While this approach appears most natural, there are useful
variations. In the staggered-grid discretisation, for instance (see Sect. 3.2.1), the first
derivative ∂x f (x) is approximated correct to fourth-order between the grid points
and not at the grid points:

∂x f (x) = 9

8�x
[ f (x +�x/2)− f (x −�x/2)]

− 1

24�x
[ f (x + 3�x/2)− f (x − 3�x/2)] + O(�x4) . (3.13)
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The effective grid spacing, that is the distance between the grid points and the posi-
tion where the derivative is approximated, is therefore ±�x/2 and ±2�x/3.
As we will see in Sect. 3.2.3.3, several asymmetric and one-sided approximations
play a crucial role in the implementation of the free surface in finite-difference
methods.

3.1.1.2 Sampling of Band-Limited Derivative Operators

An alternative way of constructing finite-difference schemes is based on the sam-
pling of a band-limited version of the derivative operator (e.g. Mora, 1986; Igel
et al., 1995). For this we note that the exact differentiation of f (x) in the space
domain corresponds to a multiplication of its Fourier transform f̃ (k) by ik, where k
denotes the spatial wave number.

The discretisation implies that any numerical derivative can be accurate only
within a limited wave number range, [−kmax, kmax]. The Nyquist wave number
kmax = π

�x is the maximum wave number that can be represented when the grid
spacing is �x . It follows that the wave number domain derivative operator in the
range [−kmax, kmax] is given by

g̃(k) = ik [H(k + kmax)− H(k − kmax)] , (3.14)

with H being the Heaviside function. The multiplication g̃(k) f̃ (k) represents a
band-limited differentiation that corresponds to a convolution in the space domain:

∂̃x f (k) ≈ g̃(k) f̃ (k) ⇐⇒ ∂x f (x) ≈ 1√
2π

∞∫

−∞
g(y) f (x − y) dy . (3.15)

The space-domain version of the approximate derivative operator g̃ is proportional
to the derivative of the sinc function:

g(x) = 2kmax√
2π

d

dx
sinc(kmaxx) = 2√

2π x2
[kmaxx cos(kmaxx)− sin(kmaxx)] .

(3.16)

To approximate the convolution in (3.15) we replace the integral by a Riemann sum
that only involves f and g sampled at a finite number of grid points:

yn = n�x , n = −N , . . . , 0, . . . , N . (3.17)

The continuous integral then turns into a discrete convolution sum:

∂x f (x) ≈ 1√
2π

N∑
n=−N

g(yn) f (x − yn)�x =
N∑

n=−N

gn f (x − n�x) . (3.18)
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The finite-difference coefficients gn are given by:

gn =
{

0 , for n = 0 ,
(−1)n

n�x , for n �= 0 .
(3.19)

The discrete convolution in Eq. (3.18) constitutes a finite-difference approximation
of the derivative ∂x f (x). The incontestable beauty of this approach lies in its abil-
ity to effortlessly generate finite-difference coefficients for any distribution of grid
points.

Our detour via the wave number domain suggests to quantify the accuracy of the
discrete convolution differentiator in terms of its spectrum. Firstly, we note that the
coefficients (3.19) are anti-symmetric with respect to the index n. The spectrum of
gn is therefore purely imaginary. As illustrated in the left panel of Fig. 3.2, the spec-
trum of the approximate differentiator approaches the spectrum of the exact differ-
entiation ik as the number of grid points N that contribute to the discrete convolution
increases. However, even for impractically large N , we observe strong oscillations
that indicate an insufficiently good approximation of the exact derivative.

The extent of this failure becomes most apparent when the discrete convolution
from Eqs. (3.18) and (3.19) is compared to the differentiators derived from trun-
cated Taylor expansions. As shown in the right panel of Fig. 3.2, the Taylor method
yields finite-difference coefficients that approximate the exact derivative very well
for wave numbers smaller than ≈ 50 % of the Nyquist wave number.

This result does not mean that the sampling of the band-limited derivative oper-
ator (3.16) fails per se, because the result depends strongly on the location of the
grid points. Sampling (3.16) at the grid points n�x leads, as we have seen, to an

Fig. 3.2 Left: Imaginary part of the wave number spectrum corresponding to the discrete convo-
lution differentiator defined by Eqs. (3.18) and (3.19) for variable numbers grid points. (4 points
↔ N = 2, 8 points ↔ N = 4, . . . .) The dashed line represents the exact differentiation operator
ik. Right: The same as on the left but for the finite-difference coefficients from Eq. (3.12) that we
obtained from the truncation of Taylor expansions
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inaccurate approximation of the continuous convolution by the discrete Riemann
sum (3.18). However, in the staggered-grid approach described in Sect. 3.2.1, the
derivative of f is evaluated halfway between the grid points. This means that we
approximate ∂x f (x) in terms of f given at the grid positions x − (n + 1/2)�x for
n = −N , . . . , 0, . . . , N − 1. The discrete convolution then takes the form

∂x f (x) ≈ 1√
2π

N−1∑
n=−N

g(yn) f (x−yn)�x =
N−1∑

n=−N

gn f [x−(n+1/2)�x] , (3.20)

and the finite-difference coefficients gn are defined through

gn = (−1)n+1

π (n + 1/2)2�x
. (3.21)

The corresponding spectrum for the four-point and eight-point convolutions is
shown in the left panel of Fig. 3.3. The coefficients from Eq. (3.21) clearly outper-
form the coefficients in (3.12) that we derived from the Taylor expansion. In fact,
the eight-point operator is hardly distinguishable from the exact derivative operator,
even for wave numbers close to the Nyquist wave number. Examples where the
remarkable properties of the discrete convolution defined in (3.20) and (3.21) have
been used for 3D elastic wave propagation on a staggered grid can, for instance, be
found in Igel et al. (1995).

An intuitive explanation for the large differences in accuracy of the discrete con-
volutions is provided in the right panel of Fig. 3.3, where we compare the sampling
of the derivative of the sinc function (3.16) on the regular grid, xn = n�x , and
the staggered grid, xn = (n + 1/2)�x . The finite-difference coefficients for the
staggered grid decay as n−2, meaning that only coefficients with small n effectively
contribute to the discrete convolution. On the regular grid, however, the coefficients

Fig. 3.3 Left: Imaginary part of the wave number spectrum corresponding to the four-point and
eight-point discrete convolution differentiator for the staggered grid. Right: The derivative of the
sinc function and the sampling points in the regular grid (�) and in the staggered grid (◦)
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decay slowly as n−1. Many more coefficients are therefore needed for an accurate
approximation of the continuous convolution by the discrete Riemann sum.

It is, in principle, possible to approximate the exact derivative arbitrarily well
with finite-difference operators that involve a large number of grid points. In prac-
tice, one hardly uses more than eight points in order to balance accuracy and com-
putational costs.

3.1.2 Discretisation of the 1D Wave Equation

To introduce the basic concepts of the finite-difference method in the context of
wave propagation, we consider the 1D wave equation

ρ(x) ü(x, t)− ∂x [μ(x) ∂x u(x, t)] = 0 (3.22)

with the line density ρ and the elastic parameter μ. In the interest of simplicity, we
disregard external forces, and we impose the non-zero initial condition

u(x, t)|t=0 = u0(x) , u̇(x, t)|t=0 = 0 (3.23)

with the initial displacement field u0. The computational domain is the interval
[−L , L], and as boundary conditions we require zero displacement at x = ±L:

u(x, t)|x=−L = u(x, t)|x=L = 0 . (3.24)

Other boundary conditions are possible, but their implementation usually requires
additional work that we avoid in this introductory example. The discretisation pro-
cess starts with the definition of 2N + 1 grid points xi that are evenly distributed
over the interval [−L , L]:

xi = i �x , i = −N , . . . , 0, . . . , N . (3.25)

The grid spacing �x is determined by the requirement N�x = L . We now approx-
imate the first derivative ∂x u evaluated at the grid point xi by the wave field eval-
uated at neighbouring grid points. Choosing, for instance, the second-order finite-
difference approximation from Eq. (3.4), we find

∂x u(xi , t) ≈ 1

2�x
[u(xi +�x, t)− u(xi −�x, t)] = 1

2�x
[ūi+1(t)− ūi−1(t)] .

(3.26)

The time-dependent scalars ūi±1 are the wave field, sampled at the grid positions
xi ± �x . Repeating this procedure for the second spatial derivative in Eq. (3.22),
yields
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∂x [μ(x) ∂x u(x, t)] ≈ 1

4�x2
{μi+1[ūi+2(t)− ūi (t)] − μi−1[ūi (t)− ūi−2(t)]} ,

(3.27)

where we introduced the variableμi := μ(xi ), which is the elastic parameterμ eval-
uated at the grid position xi . The boundary conditions (3.24) are imposed explicitly
by setting

ū−N−2 = ū−N−1 = ū−N = ūN = ūN+1 = ūN+2 = 0 . (3.28)

We can now assemble the semi-discrete version of the wave equation (3.22):

ρi ¨̄ui (t)− 1

4�x2
{μi+1[ūi+2(t)− ūi (t)] − μi−1[ūi (t)− ūi−2(t)]} = 0 , (3.29)

with ρi := ρ(xi ). It is important to note that Eq. (3.29) is meaningful only under the
assumption that both ρ and μ are continuous with variations that can be represented
reasonably well with a finite grid spacing. In the presence of material discontinu-
ities, averaging schemes must be applied to ensure accurate numerical solutions (e.g.
Moczo et al., 2002; Kristek & Moczo, 2006).

Formally, we can write Eq. (3.29) in terms of a mass matrix M and a stiffness
matrix K (see Chap. 2):

M · ¨̄u(t)+ K · ū(t) = 0 . (3.30)

The vector ū is composed of the 2N + 1 coefficients ūi . Since M is diagonal, it
can be trivially inverted. In practice, the mass and the stiffness matrices are never
computed explicitly because only the vector–matrix products M · ¨̄u and K · ū are
needed. We will nevertheless use M and K for notational convenience.

It now remains to discretise the second-time derivative in (3.30). In order to con-
struct an explicit scheme, we use the second-order finite-difference approximation

¨̄u(t) ≈ 1

�t2
[ū(t +�t)− 2ū(t)+ ū(t −�t)] , (3.31)

with a suitably chosen time increment �t which we will study later in more detail.
Inserting (3.31) into (3.30) then yields a fully discrete version of the scalar wave
equation (3.22):

ū(t +�t) = 2ū(t)− ū(t −�t)−�t2 M−1 · K · ū(t) . (3.32)

Equation (3.32) suggests the following recipe for the iterative finite-difference solu-
tion of the 1D wave equation. Starting with ū(0) and ū(−�t) determined by the
initial condition (3.23), we compute ū(�t). Then with the help of ū(0) and ū(�t)
we find ū(2�t). This is repeated as long as required.

The strategy that we followed in the derivation of (3.32) is very general. It can,
in particular, be used together with higher order finite-difference operators. The
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achieved accuracy will generally depend not only on the time increment, the grid
spacing, and the properties of the finite-difference approximations but also on the
material parameters.

To test the performance of the algorithm, we consider a homogeneous medium
where the exact analytical solution u(x, t) is well-known:

u(x, t) = 1

2
[u0(x − vt)+ u0(x + vt)] . (3.33)

The wave field consists of two wave packages propagating in opposite directions
with the velocity v = √

μ/ρ. The solution (3.33) is valid as long as the wave field
does not reach the boundaries at x = ±L . For our numerical experiment we choose
v = 5 km/s, �x = 1 km and �t = 0.2 s. The initial wave field is the derivative of a
Gaussian with variance σ :

u0(x) = d

dx
e−x2/σ 2

. (3.34)

Choosing σ = 15 km results in a dominant wavelength of approximately 30 km.
Figure 3.4 shows the results of the numerical simulation and compares them to the
analytical solution. For propagation distances up to 200 km, roughly equivalent to
7 wavelengths, the numerical solution is hardly distinguishable from the analyti-
cal reference. However, as the simulation proceeds, the numerical errors increase
steadily. Clearly, after 450 s (2,250 time steps) the numerical solution becomes
almost useless. The snapshot at 900 s (4,500 time steps) reveals that the numeri-
cal solution tends to disperse, meaning that higher frequency components appear
to propagate slower than lower frequency components. This is despite the non-

Fig. 3.4 Snapshots of the wave package travelling in positive x-direction for different times. The
analytical solution is shown for reference in the form of the dashed curves. The numerical error,
which is the discrepancy between the exact analytical solution and the numerical solution, increases
steadily with increasing propagation distance. Details of the simulation parameters are provided in
the text
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dispersive character of the analytical solution where all frequencies travel at the
same wave speed v. We refer to this undesirable phenomenon as numerical disper-
sion or grid dispersion.

To better quantify the discrepancy between analytical and numerical solutions,
we use the following measure of the numerical error:

E(t) :=
√∑N

i=−N [ūi (t)− u(i�x, t)]2

√∑N
i=−N u2(i�x, t)

. (3.35)

More elaborate measures of misfit can be defined using, for instance, wavelet trans-
forms (Kristekova et al., 2006, 2009), but E(t) as defined in (3.35) is sufficient
for our purposes. There are three major factors that control the numerical error:
the dominant wavelength relative to the grid spacing �x , the order of the finite-
difference operator and the number of iterations or time steps.

The left part of Fig. 3.5 illustrates the role played by the finite-difference order
and the dominant wavelength. Shown is the error E(t) after 1,000 iterations, that is
for t = 200 s. Clearly, the error drops rapidly as the dominant wavelength increases.
To achieve an error below 1 %, the dominant wavelength should not be less than
20 km for the fourth- and eighth-order operators, or 40 km for the second-order
operator. Increasing orders generally leads to more accurate results, but the effect is
largest when going from order 2 to 4.

The right panel of Fig. 3.5 shows the dependence of the error E(t) on the number
of iterations. It demonstrates that numerical inaccuracies are cumulative, meaning
that they increase monotonically – and in this case almost exactly linearly – with
the propagation distance of the waves.

Fig. 3.5 Left: Numerical error after 1,000 iterations as a function of the dominant wavelength and
the finite-difference order. Right: Numerical error as a function of the number of iterations and the
finite-difference order
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3.1.3 von Neumann Analysis: Stability and Numerical Dispersion

Each method used to approximate the solution of a differential equation requires a
detailed analysis in order to learn about errors and stability without relying on spe-
cific numerical experiments that may not be representative. von Neumann analysis –
first applied by Crank & Nicolson (1947) and Charney et al. (1950) – is a powerful
tool for the evaluation of finite-difference approximations to hyperbolic partial dif-
ferential equations. It allows us to study stability and the numerical dispersion that
we already observed qualitatively in the previous paragraph.

For our analysis we assume a homogeneous medium defined on the interval
[−π, π ], where the wave field u(x, t) can be represented in terms of a Fourier series

u(x, t) =
∞∑

k=−∞
ψk(t) eikx (3.36)

with time-dependent Fourier coefficients ψk(t). The corresponding representation
for the discrete approximation to the wave field is

ūn(t) =
N/2∑

k=−N/2

ψ̄k(t) eikn�x . (3.37)

Note that the spatial discretisation with grid spacing �x = 2π/N restricts the
wave number range to plus/minus the Nyquist wave number π/�x that is to
k ∈ [−π/�x, π/�x] = [−N/2, N/2]. Introducing (3.37) into the semi-discrete
wave equation (3.29) gives

¨̄un(t) = v2

4�x2

N/2∑
k=−N/2

[
e2ik�x − 2 + e−2ik�x

]
ψ̄k(t) eikn�x

= − v2

�x2

N/2∑
k=−N/2

sin2(k�x) ψ̄k(t) eikn�x . (3.38)

Replacing ¨̄un(t) by the second-order finite-difference approximation (3.31) and sub-
stituting the Fourier series (3.37) yields an equation for the coefficients ψ̄k :

ψ̄k(t +�t)− 2ψ̄k(t)+ ψ̄k(t −�t) = −v
2�t2

�x2
sin2(k�x) ψ̄k(t) . (3.39)

To eliminate the explicit dependence on ψ̄k at time t −�t , we define the auxiliary
variables

φ̄k(t +�t) := ψ̄k(t +�t)− ψ̄k(t) . (3.40)
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With the help of φ̄k we can write Eq. (3.39) in the form of a linear system of equa-
tions that depends only on coefficients at times t and t +�t :

φ̄k(t +�t)− φ̄k(t) = −v
2�t2

�x2
sin2(k�x) ψ̄k(t) ,

ψ̄k(t +�t)− ψ̄k(t) = φ̄k(t +�t) , (3.41)

or using matrix notation:

(
φ̄k(t +�t)
ψ̄k(t +�t)

)
= Ak ·

(
φ̄k(t)
ψ̄k(t)

)
. (3.42)

The 2 × 2 matrix Ak is given by

Ak =
⎛
⎝1 − v2�t2

�x2 sin2(k�x)

1 1 − v2�t2

�x2 sin2(k�x)

⎞
⎠ . (3.43)

It follows that we can advance the Fourier coefficients ψ̄k in time by the repeated
application of Ak to the initial values of the coefficients:

(
φ̄k( j�t)
ψ̄k( j�t)

)
= A j

k ·
(
φ̄k(0)
ψ̄k(0)

)
. (3.44)

The following stability and dispersion analysis is founded on the iteration defined
by Eq. (3.44).

3.1.3.1 Numerical Stability

All relevant properties of the algorithm, and its stability in particular, are now encap-
sulated in the eigenvalues λk of the matrix Ak . In fact, for the iteration to be stable,
the absolute values of the eigenvalues |λk | must be smaller than or equal to 1. Oth-
erwise, that is, for |λk | > 1, the absolute values of ψ̄k and φ̄k grow indefinitely. To
facilitate the eigenvalue analysis, we define

γk := sin2(k�x) (3.45)

and the Courant number

c := v �t

�x
. (3.46)

In terms of γk and c, the eigenvalues λk of Ak are given by

λk = 1 − 1

2
c2γ 2

k ±
√

1

4
c4γ 4

k − c2γ 2
k . (3.47)
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For c2γ 2
k > 4 the square root is always real, and we can have |λk | > 1. For the

algorithm to be stable we therefore require at least c2γ 2
k ≤ 4. In this case, the

square root becomes imaginary, and the absolute value of λk is then

|λk | =
√
λk λ

∗
k = 1 , (3.48)

which implies stability. Since γk ranges between 0 and 1, it follows that we need to
impose

v �t

�x
= c ≤ 2 (3.49)

in order to ensure the stability of the iterative solution to the 1D wave equation
discretised by second-order finite-difference approximations, as explained in the
previous paragraph. The stability condition (3.49) is commonly referred to as the
CFL condition, named after R. Courant, K. Friedrichs and H. Lewy (Courant et al.
1928). For our example from Fig. 3.4, with �x = 1 km and v = 5 km/s, the CFL
condition imposes a maximum time increment of 0.4 s. Smaller time increments are
predicted to yield stable solutions, whereas larger time increments are expected to
lead to solutions that grow indefinitely as the iteration proceeds. Figure 3.6 proves
that the prediction of the CFL condition is remarkably accurate. The solution is
stable for �x = 0.39 s, but it ‘explodes’ for �t = 0.41 s.

Our analysis was based on a specific finite-difference discretisation of the 1D
wave equation with constant parameters. More generally, CFL conditions of the
form

Fig. 3.6 Numerical
(in)stability. Top: The time
increment �t = 0.39 s is
slightly below the limit of
0.4 s imposed by the CFL
condition. The solution is
stable. Bottom: The time
increment �t = 0.41 is
slightly above the limit of
0.4, leading to instabilities.
After few iterations the
numerical solution ‘explodes’
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�t ≤ const.
min h

max v
(3.50)

with a grid spacing parameter h and a wave speed v are valid for all discretised wave
equations where the time-stepping is explicit. The constant on the right-hand side
depends on the methods used for the space and time discretisation.

The CFL condition strongly limits the efficiency of numerical methods because
it imposes an upper bound for the time increment �t . Reducing the minimum grid
spacing by a factor m in order to achieve more accurate solutions automatically
implies a reduction of the time increment from �t to �t/m.

It is, in principle, possible to circumvent the CFL condition using implicit time-
stepping schemes. However, their numerical costs usually compensate the benefit of
using a larger time increment.

3.1.3.2 Numerical Dispersion

To quantify the numerical dispersion that we observed in Fig. 3.4, we assume,
without loss of generality, that the initial state (φ̄k(0), ψ̄k(0)) from Eq. (3.44) is
an eigenvector of the matrix Ak . The iteration that advances the Fourier coefficients
in time then simplifies to

(
φ̄k( j�t)
ψ̄k( j�t)

)
= λ

j
k

(
φ̄k(0)
ψ̄k(0)

)
. (3.51)

Since λk is complex valued within the stable range of time increments �t , it can be
rewritten in Eulerian form

λk = |λk | eiαk , (3.52)

where the phase αk is generally non-zero. To attach physical meaning to the phase,
we write αk in terms of a numerical wave speed v̄k :

αk =: �t k v̄k . (3.53)

Introducing Eqs. (3.51), (3.52) and (3.53) into the Fourier series representation of
the finite-difference coefficients ūn (Eq. 3.37) gives

ūn( j�t) =
N/2∑

k=−N/2

ψ̄k(0) |λk | j ei k ( j �t v̄k+n�x) . (3.54)

Equation (3.54) reveals that v̄k indeed plays the role of a wave speed. If the numer-
ical solution were exact, v̄k would be equal to v = √

μ/ρ and independent of the
wave number k. As a result of the discretisation, however, v̄k is not generally equal to
v. Moreover, v̄k depends on k, meaning that the numerical solution is dispersive, in
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Fig. 3.7 Numerical dispersion. Shown is the numerical wave speed v̄k as a function of the wave
number, k. The wave speed of the exact solution is v = 5 km/s, independent of k. Due to numerical
dispersion, v̄k decreases with increasing wave number. Shorter wavelength components therefore
travel at reduced speed. Wavelengths corresponding to the Nyquist wave number do not propagate
at all. Only components with a wave number close to zero travel with the correct speed

contrast to the exact solution. Figure 3.7 illustrates the effect of numerical dispersion
for the setup that we already used for the example in Fig. 3.4. There we observed
qualitatively that shorter wavelength components travel at a lower speed than longer
wavelength components, and that the numerical solution in general seems to be
slower than the analytical solution. This is confirmed by our qualitative dispersion
analysis. Only components with a wave number close to zero propagate at the cor-
rect speed, v = 5 km/s. As the wave numbers approach the Nyquist wave number,
the propagation speed tends to zero.

Numerical dispersion is, of course, not a special property of our particular exam-
ple. All numerical solutions are dispersive to some degree, regardless of the method
used. In many cases, numerical dispersion analysis is not as straightforward as in the
case of low-order finite-difference methods. Its effect should therefore, if possible,
be assessed by comparison with analytical solutions.

3.2 Extension to the 3D Cartesian Case

The application of the finite-difference method to the 3D elastic wave equation is
conceptually similar to the 1D scalar case that we studied in the previous section.
Exact derivatives are replaced by finite-difference approximations, and this leads to
a discrete scheme that can be advanced in time iteratively.

Yet, the simple scheme applied in one dimension proves inefficient in three
dimensions because of the large number of grid points per wavelength needed to
achieve accurate solutions. Fortunately, a modification of the spatial discretisation –
described in Sect. 3.2.1 and referred to as the staggered grid – allows us to effec-
tively reduce the grid spacing without increasing the number of discrete field vari-
ables. In Sect. 3.2.2 we explore how the staggered-grid approach can be extended to
the anisotropic case with the help of interpolation operators.
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All finite-difference operators are non-local in the sense that the approximation
of ∂x f at a grid point xi requires f at neighbouring grid points. Non-locality has
interesting consequences for the implementation of the free surface. To compute the
strain tensor and the stress divergence at and immediately below the surface, part of
the seismic wave field needs to be known above the surface, at least when standard
finite-difference operators are used. Since the implementation of the free surface is
far from trivial, it receives special attention in Sect. 3.2.3.

Finally, we elaborate on the numerical implementation of arbitrarily located point
sources (Sect. 3.4) and discuss the accuracy and efficiency of 3D finite-difference
modelling (Sect. 3.5).

3.2.1 The Staggered Grid

To translate the finite-difference method to the 3D cartesian case, we consider the
velocity–stress formulation of the elastic wave equation in the half-space G = R

2 ×
(−∞, z0]

ρ(x) v̇(x, t)− ∇·σ (x, t) = f(x, t) , (3.55)

σ̇ (x, t) = C(x) : ε̇(x, t) (3.56)

subject to the free surface boundary condition

ez · σ |z=z0 = 0 (3.57)

and the initial conditions

u|t≤t0 = v|t≤t0 = 0 . (3.58)

The symbol ez denotes the unit vector in vertical direction. For the moment we
disregard dissipation because its description (see Chap. 5) is largely independent of
the spatial discretisation of the equations of motion. The first step towards the finite-
difference approximation of Eqs. (3.55) and (3.56) is to write the stress divergence
∇ · σ and the strain rate tensor ε̇ in explicit form:

(∇ · σ )x = ∂xσxx + ∂yσxy + ∂zσxz ,

(∇ · σ )y = ∂xσyx + ∂yσyy + ∂zσyz ,

(∇ · σ )z = ∂xσzx + ∂yσzy + ∂zσzz , (3.59)

ε̇xx = ∂xvx , ε̇yy = ∂yvy , ε̇zz = ∂zvz ,

ε̇xy = 1

2
(∂xvy + ∂yvx ) , ε̇xz = 1

2
(∂xvz + ∂zvx ) , ε̇zy = 1

2
(∂zvy + ∂yvz) .

(3.60)
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Our goal is to replace the derivatives in the above equations by finite-difference
approximations. The practicality of this approach in three dimensions rests on
the definition of a staggered grid (e.g. Virieux, 1984, 1986; Levander, 1988; Igel
et al., 1995; Graves, 1996). To illustrate the staggered-grid concept we start by
defining the discrete versions of the velocity components vx , vy and vz on three
different grids:

v̄
i, j,k
x := vx (xi +�x/2, y j , zk) , (3.61)

v̄
i, j,k
y := vy(xi , y j +�y/2, zk) , (3.62)

v̄
i, j,k
z := vz(xi , y j , zk +�z/2) , (3.63)

where xijk = (xi , y j , zk) is a generic grid point. Based on the above discretisations
we can approximate the derivatives of the velocity field, as they appear in Eq. (3.60).
For instance, the fourth-order approximation of ∂yvx (xi + �x/2, y j + �y/2, zk)

in terms of vx evaluated at the positions (xi + �x/2, y j + n�y, zk) with n =
−1, 0, 1, 2, is given by (see Eq. 3.13)

∂yvx (xi +�x/2, y j +�y/2, zk)

≈ 9

8�y

[
vx (xi +�x/2, y j +�y, zk)− vx (xi +�x/2, y j , zk)

]

− 1

24�y

[
vx (xi +�x/2, y j + 2�y, zk)− vx (xi +�x/2, y j −�y, zk)

]

= 9

8�y

[
v̄

i, j+1,k
x − v̄

i, j,k
x

]
− 1

24�y

[
v̄

i, j+2,k
x − v̄

i, j−1,k
x

]
. (3.64)

The corresponding approximation for ∂xvy is

∂xvy(xi +�x/2, y j +�y/2, zk)

≈ 9

8�x

[
v̄

i+1, j,k
y − v̄

i, j,k
y

]
− 1

24�x

[
v̄

i+2, j,k
y − v̄

i−1, j,k
y

]
. (3.65)

At this point we note that the approximations of ∂yvx and ∂xvy are available at the
same grid point, namely at (xi +�x/2, y j +�y/2, zk). We may thus combine (3.64)
and (3.65) into the fourth-order approximation of the strain rate component ε̇xy :

˙̄εi, j,k
xy = ε̇xy(xi +�x/2, y j +�y/2, zk)

= 1

2

[
∂yvx (xi +�x/2, y j +�y/2, zk)+ ∂xvy(xi +�x/2, y j +�y/2, zk)

]

≈ 9

16�x

[
v̄

i, j+1,k
x − v̄

i, j,k
x + v̄

i+1, j,k
y − v̄

i, j,k
y

]

− 1

48�y

[
v̄

i, j+2,k
x − v̄

i, j−1,k
x + v̄

i+2, j,k
y − v̄

i−1, j,k
y

]
. (3.66)
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Following this example we find the grid points where the finite-difference approxi-
mations of the remaining strain rate components are defined:

˙̄εi, j,k
xx = ε̇xx (xi , y j , zk) , ˙̄εi, j,k

yy = ε̇yy(xi , y j , zk) , ˙̄εi, j,k
zz = ε̇zz(xi , y j , zk) ,

˙̄εi, j,k
xy = ε̇xy(xi +�x/2, y j +�y/2, zk) ,

˙̄εi, j,k
xz = ε̇xz(xi +�x/2, y j , zk +�z/2) ,

˙̄εi, j,k
yz = ε̇yz(xi , y j +�y/2, zk +�z/2) . (3.67)

Assuming an isotropic medium, the stress and strain rate tensors are connected via
the constitutive relation

σi j =
3∑

k,l=1

(λ δi jδkl + μδikδ jl + μδilδ jk) εkl , (3.68)

where λ and μ are the Lamé parameters. Using (3.68) we can compute the compo-
nents of the discrete stress rate tensor:

˙̄σ i j
xx = (λ+ 2μ) ˙̄εi j

xx + λ ( ˙̄εi j
yy + ˙̄εi j

zz) ,

˙̄σ i j
yy = (λ+ 2μ) ˙̄εi j

yy + λ ( ˙̄εi j
xx + ˙̄εi j

zz) ,

˙̄σ i j
zz = (λ+ 2μ) ˙̄εi j

zz + λ ( ˙̄εi j
xx + ˙̄εi j

yy) ,

˙̄σ i j
xy = 2μ ˙̄εi j

xy , ˙̄σ i j
xz = 2μ ˙̄εi j

xz , ˙̄σ i j
yz = 2μ ˙̄εi j

yz . (3.69)

Equations (3.69) reveal that the discrete stress rate components ˙̄σ i j
mn are located at

the same grid positions as the discrete strain rate components ˙̄εi j
mn . The collocation

of stress and strain components holds only in isotropic media, as we will see in
Sect. (3.2.3). Note also that the elastic parameters λ and μ are needed at different
grid positions. We did not translate this requirement into the notation in order to
keep the treatment readable. Based on (3.69) we can advance the discrete stress
field σ̄ in time. It remains to discretise the stress divergence. For the x-component
of ∇ · σ we find the following fourth-order approximation:

[∇ · σ (xi +�x/2, y j , zk)]x = ρ v̇x (xi +�x/2, y j , zk)− fx (xi +�x/2, y j , zk)

≈ 9

8�x

[
σxx (xi +�x, y j , zk)− σxx (xi , y j , zk)

]

− 1

24�x

[
σxx (xi + 2�x, y j , zk)− σxx (xi −�x, y j , zk)

]

+ 9

8�y

[
σxy(xi +�x/2, y j +�y/2, zk)− σxy(xi +�x/2, y j −�y/2, zk)

]

− 1

24�y

[
σxy(xi +�x/2, y j + 3�y/2, zk)− σxy(xi +�x/2, y j − 3�y/2, zk)

]
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+ 9

8�z

[
σxz(xi +�x/2, y j , zk +�z/2)− σxz(xi +�x/2, y j , zk −�z/2)

]

− 1

24�z

[
σxz(xi +�x/2, y j , zk + 3�z/2)− σxz(xi +�x/2, y j , zk − 3�z/2)

]
.

(3.70)

Written in terms of the discrete field variables, Eq. (3.70) becomes

ρ ˙̄vi, j,k
x − f i, j,k

x = 9

8�x

[
σ̄

i+1, j,k
xx − σ̄

i, j,k
xx

]
− 1

24�x

[
σ̄

i+2, j,k
xx − σ

i−1, j,k
xx

]

+ 9

8�y

[
σ̄

i, j,k
xy − σ̄

i, j−1,k
xy

]
− 1

24�y

[
σ̄

i, j+1,k
xy − σ

i, j−2,k
xy

]

+ 9

8�z

[
σ̄

i, j,k
xz − σ̄

i, j,k−1
xz

]
− 1

24�z

[
σ̄

i, j,k+1
xz − σ

i, j,k−2
xz

]
.

(3.71)

Following this scheme, we find that the grid positions of v̄i, j,k
x , v̄i, j,k

y and v̄i, j,k
z

coincide with those that we originally defined in Eqs. (3.61), (3.62) and (3.63). The
staggered grid is therefore in itself consistent. Figure 3.8 summarises the positions
of the different discrete quantities.

The above development suggests a simple recipe for iteratively advancing the
discrete wave field with the help of the leapfrog time discretisation (see Sect. 2.5.1).
Starting from the zero initial conditions

Fig. 3.8 Illustration of the staggered-grid concept. The diagonal elements of the discrete stress
and strain tensors ε̄i, j,k

nn and σ̄ i, j,k
nn are located at the generic grid point xijk = (xi , y j , zk). The

remaining quantities are displaced from xijk by half a grid spacing.
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1. compute the strain rate tensor ˙̄ε(t) from the velocity v̄(t),
2. using the constitutive relation, compute the strain rate ˙̄σ (t) from ˙̄ε(t),
3. using ˙̄σ (t), compute σ̄ (t + �t/2) via a second-order finite-difference approxi-

mation,
4. from σ̄ (t +�t/2), compute the discrete version of ∇ · σ̄ (t +�t/2),
5. using ∇ · σ̄ (t +�t/2) and the discrete momentum balance, compute v̄(t +�t)

with the help of the second-order finite-difference approximation, and then

repeat as often as required. The beauty of the staggered grid is that it allows us to
decrease the effective grid spacing without increasing the number of discrete field
variables. In the conventional grid used, for instance, in our 1D example (Sect. 3.1),
the effective grid spacing in x-direction is a multiple of ±�x . This is reduced to
±�x/2 and ±2�x/3. The result is a much lower numerical dispersion that comes
without any increase in computational costs.

3.2.2 Anisotropy and Interpolation

A defining property of the staggered grid is that the diagonal and off-diagonal
elements of ˙̄σ and ˙̄ε are defined at different grid positions. In the isotropic case,
the diagonal elements of ˙̄σ are related only to the diagonal elements of ˙̄ε, and
each off-diagonal element of ˙̄σ is linked to the same off-diagonal element of ˙̄ε.
In the presence of anisotropy, however, mixing between diagonal and off-diagonal
elements occurs because the stress rate component ˙̄σi j is determined by a linear
combination of strain rate components ˙̄εkl :

˙̄σi j =
3∑

kl=1

Cijkl ˙̄εkl , (3.72)

where Cijkl are the components of the elastic tensor. Anisotropy therefore breaks the
self-consistency of the staggered grid, and interpolation becomes necessary in order
to evaluate the Hooke sum (3.72).

To interpolate, for instance, ε̇xx (xi , y j , zk) to a location halfway between the
grid points in x-direction, i.e. to ε̇xx (xi + �x/2, y j , zk), we require a discrete
interpolation operator. To derive discrete interpolation operators we proceed as in
Sect. 3.1.1.2 where we constructed finite-difference approximations by sampling
band-limited versions of the exact derivative operator. Following Igel et al. (1995),
we consider the generic function f (x) that we wish to interpolate to f (x +�x/2).
The interpolation can be expressed in terms of an inverse Fourier transform:

f (x +�x/2) = 1√
2π

∞∫

−∞
eik�x/2 f̃ (k) eikx dk . (3.73)

It follows that eik�x/2 is the exact interpolation operator in the wave number
domain. The spatial discretisation restricts the wave number range to [−kmax, kmax],
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where kmax = π/�x is, again, the Nyquist wave number. The optimal band-limited
version of the interpolation operator in the wave number domain is therefore given
by

h̃(k) = eik�x/2 [H(k + kmax)− H(k − kmax)] . (3.74)

The space-domain representation of (3.74) is

h(x) = 2kmax√
2π

sinc[kmax(x +�x/2)] . (3.75)

We may now approximate the interpolation by a convolution of f (x) with h(x):

f (x +�x/2) ≈ 1√
2π

∞∫

−∞
h(y) f (x − y) dy . (3.76)

Replacing the continuous convolution in (3.76) by a finite Riemann sum involving
the grid positions x ± n�x results in the following discrete interpolation operator:

f (x +�x/2) ≈
N∑

n=−N

hn f (x − n�x) , (3.77)

where the coefficients hn are defined by

hn := �x√
2π

h(n�x) = (−1)n

π (n + 1/2)
. (3.78)

The discrete convolutional interpolation defined by Eqs. (3.77) and (3.78) can now
be used to interpolate the components of the strain rate tensor to the positions where
they are needed for the evaluation of the Hooke sum.
Following the example from Sect. 3.1.1.2, we assess the quality of the interpolation
by comparing the wave number spectra of the exact interpolation operator eik�x/2,
and the approximate interpolation operators defined by Eqs. (3.77) and (3.78). This
comparison is shown in the left part of Fig. 3.9 for discrete convolutions with two,
four and eight points. The amplitude spectra of the two-point and four-point opera-
tors clearly indicate insufficient accuracy by being far from the amplitude spectrum
of the exact interpolation, which is equal to 1. The eight-point convolution provides
a better approximation of the exact interpolation operator, but its spectrum shows
an undesirable oscillatory behaviour. As illustrated in the right part of Fig. 3.9, the
oscillations can be suppressed by tapering the coefficients hn with a Gaussian e−αn2

,
where the parameter α is around 0.07.
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Fig. 3.9 Left: Amplitude spectra of the discrete interpolation operators defined in Eqs. (3.77) and
(3.78), for convolutions involving two, four and eight points. The amplitude spectrum of the exact
interpolation operator is shown in the form of a dash-dotted line. Right: The same as on the left

but for coefficients tapered by the Gaussian e−0.07 n2
. The tapering suppresses the undesirable

oscillations of the eight-point operator

As noted by Igel et al. (1995), the interpolation introduces an additional numeri-
cal error. The error is, however, small when the anisotropy is as weak as in the Earth
seen at macroscopic length scales.

3.2.3 Implementation of the Free Surface

We have so far limited ourselves to the spatial discretisation in the interior of the
computational domain, disregarding its boundaries. The numerical treatment of the
free surface deserves special attention because it does not follow naturally from the
staggered-grid scheme. In this sense, finite-difference methods are not holistic as
finite-element methods where the free surface condition is implicitly satisfied.
Implementing the free surface accurately is difficult due to the non-local nature of
the finite-difference approximations. It implies that velocities above the free surface
are required to compute the discrete strain rate tensor at or immediately below the
surface, as illustrated in Fig. 3.10. In fact, it follows directly from Eqs. (3.66) and
(3.67) that v̄i, j,−1

x , v̄i, j,−1
y , v̄i, j,−1

z and v̄i, j,−2
z are needed to compute the fourth-

order finite-difference approximations ˙̄εi, j,0
xz , ˙̄εi, j,0

yz and ˙̄εi, j,0
zz . Moreover, the discrete

stress tensor σ̄ above the surface is needed for the discrete momentum balance in
Eq. (3.71).

The non-trivial nature of the free surface in finite-difference modelling has
sparked the development of an impressive variety of numerical techniques. Today,
the most widely used methods for the implementation of the free surface in finite-
difference modelling fall into three categories: vacuum formulations, image methods
and interior methods.
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Fig. 3.10 Illustration of the spatial discretisation in the vicinity of the free surface at z = z0,
indicated by the horizontal double line. Left: The four-point finite-difference stencil implies that
the velocity components v̄i, j,−1

z and v̄i, j,−2
z above the surface are needed to compute the strain

rate component ˙̄εi, j,0
zz . Right: The computation of ˙̄εi, j,0

xz and ˙̄εi, j,0
yz also requires knowledge of two

velocity components above the surface, namely v̄i, j,−1
x and v̄i, j,−1

y

3.2.3.1 Vacuum Formulation

A straightforward approach to the implementation of the free surface is to set the
elastic parameters above the free surface to zero and density close to zero, to avoid
division by zero. Since this is intended to approximate a vacuum, the method is
commonly referred to as vacuum formulation. The free surface boundary condi-
tion is thus not treated explicitly. It is, instead, assumed to be implicitly fulfilled
through the distribution of elastic parameters on the grid. Applications of the vac-
uum formulation can be found, for instance, in Zahradník & Urban (1984), Zahrad-
ník et al. (1993), Ohminato & Chouet (1997) and Bohlen & Saenger (2006).

The vacuum formulation is attractive because of its trivial implementation
and the possibility to model irregular topography. Despite obvious advantages,
the vacuum formulation has received criticism. Based on numerical experiments,
Graves (1996) concluded that the method is stable only for two-point operators that
are not sufficiently accurate for realistic applications. Modifications of the method
led to stable fourth-order schemes, however, at the expense of decreased solution
quality. Bohlen & Saenger (2006) investigated the ability of the vacuum formulation
to model irregular topography and found that more than 60 grid points per minimum
wavelength are required in a second-order scheme to obtain acceptable results when
the surface is not planar.

3.2.3.2 Image Methods

Approximations to the discrete velocity components above the surface can be
deduced from the boundary condition (3.57), the component-wise version of
which is

σxz |z=z0 = σyz |z=z0 = σzz |z=z0 = 0 . (3.79)

Only σzz |z=z0 = 0 can be translated directly into a discrete condition
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σzz(xi , yi , z0) = σ̄
i, j,0
zz = 0 . (3.80a)

The discrete stress components σ̄xz and σ̄yz are not defined at z = z0. We there-
fore approximate σ̄xz |z=z0 = 0 and σ̄yz |z=z0 = 0 by the following anti-symmetry
conditions or stress imaging conditions (e.g. Levander, 1988; Graves, 1996):

σxz(xi +�x/2, y j , z0 +�z/2) = σ̄
i, j,0
xz = −σ̄ i, j,−1

xz

= −σxz(xi +�x/2, y j , z0 −�z/2) , (3.80b)

σyz(xi , y j +�y/2, z0 +�z/2) = σ̄
i, j,0
yz = −σ̄ i, j,−1

yz

= −σyz(xi , y j +�y/2, z0 −�z/2) . (3.80c)

The discrete conditions (3.80a), (3.80b) and (3.80c) provide three linear equations
for the four unknowns v̄i, j,−1

x , v̄i, j,−1
y , v̄i, j,−1

z and v̄i, j,−2
z . Thus, to uniquely deter-

mine the required velocity components, we need to impose an additional anti-
symmetry relation that approximates σzz |z=z0 = 0 in terms of σ̄ i, j,1

zz and σ̄ i, j,−1
zz :

σzz(xi , y j , z0 +�z) = σ̄
i, j,1
zz = −σ̄ i, j,−1

zz = −σzz(xi , y j , z0 −�z) . (3.80d)

Assuming an isotropic medium, we can compute v̄i, j,−1
z from Eq. (3.80a):

0 = ˙̄σ i, j,0
zz = (λ+ 2μ) ˙̄εi, j,0

zz + λ
( ˙̄εi, j,0

xx + ˙̄εi, j,0
yy

)
. (3.81)

Substituting for ˙̄εi, j,0
zz the second-order finite-difference approximation

˙̄εi, j,0
zz = 1

�z

(
v̄

i, j,0
z − v̄

i, j,−1
z

)
(3.82)

yields

v̄
i, j,−1
z = v̄

i, j,0
z + λ�z

λ+ 2μ

( ˙̄εi, j,0
xx + ˙̄εi, j,0

yy

)
. (3.83)

With the help of v̄i, j,−1
z we can approximate v̄i, j,−1

x and v̄i, j,−1
y from Eqs. (3.80b)

and (3.80c): Inserting the isotropic constitutive relation into (3.80b) gives

˙̄εi, j,0
xz = −˙̄εi, j,−1

xz . (3.84)

Using second-order approximations of the spatial derivatives ∂xvz and ∂zvx trans-
forms (3.84) into
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1

�z

(
v̄

i, j,1
x − v̄

i, j,0
x

)
+ 1

�x

(
v̄

i+1, j,0
z − v̄

i, j,0
z

)

= − 1

�z

(
v̄

i, j,0
x − v̄

i, j,−1
x

)
− 1

�x

(
v̄

i+1, j,−1
z − v̄

i, j,−1
z

)
. (3.85)

From (3.85) we can eliminate v̄i, j,−1
x :

v̄
i, j,−1
x = v̄

i, j,1
x + �z

�x

(
v̄

i+1, j,0
z − v̄

i, j,0
z + v̄

i+1, j,−1
z − v̄

i, j,−1
z

)
. (3.86)

The analogous equation for v̄i, j,−1
y is then

v̄
i, j,−1
y = v̄

i, j,1
y + �z

�y

(
v̄

i, j+1,0
z − v̄

i, j,0
z + v̄

i, j+1,−1
z − v̄

i, j,−1
z

)
. (3.87)

Finally, we can compute v̄i, j,−2
z from (3.80d):

˙̄σ i, j,1
zz =(λ+ 2μ) ˙̄εi, j,1

zz + λ
( ˙̄εi, j,1

xx + ˙̄εi, j,1
yy

)

= −(λ+ 2μ) ˙̄εi, j,−1
zz − λ

( ˙̄εi, j,−1
xx + ˙̄εi, j,−1

yy

)
= − ˙̄σ i, j,−1

zz . (3.88)

Since ˙̄εi, j,−1
xx and ˙̄εi, j,−1

yy can be approximated from v̄
i, j,−1
x and v̄i, j,−1

y , it suffices to

replace ˙̄εi, j,−1
zz by the second-order finite difference

˙̄εi, j,−1
zz = 1

�z

(
v̄

i, j,−1
z − v̄

i, j,−2
z

)
. (3.89)

The resulting formula for v̄i, j,−2
z is then

v̄
i, j,−2
z = v̄

i, j,−1
z +�z ˙̄εi, j,1

zz + λ�z

λ+ 2μ

( ˙̄εi, j,1
xx + ˙̄εi, j,1

yy + ˙̄εi, j,−1
xx + ˙̄εi, j,−1

yy

)
. (3.90)

In contrast to the finite-difference scheme in the interior of the medium, the image
method implementation of the free surface is correct only to second order. To obtain
accurate solutions despite the reduced order, the grid needs to be refined, which
automatically increases the computational costs.

The location of the free surface in the plane that coincides with the diagonal
elements of the stress and strain tensors is not as unique as it may initially seem.
As an alternative to the so-called H formulation described above, one may adopt
the W formulation where the free surface is located half a grid spacing deeper, i.e.
coincident with the shear-stress components (e.g. Gottschämmer & Olsen, 2001;
Kristek et al., 2002).

Ohminato & Chouet (1997) made constructive use of the ambiguity in the free
surface location. They implemented the W formulation along an irregular surface
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that was approximated by a staircase and set the elastic parameters outside the
medium to zero, as in the vacuum method. The W formulation ensures that the
boundary condition can be applied directly to two of the shear stresses on the
boundary. Only the normal stress then needs to be approximated by second-order
finite differences.

Robertsson (1996) proposed a very pragmatic variant of the image method.
Instead of explicitly computing the velocity components above the surface, they
are collectively set to zero. Only the discrete stresses are imaged as in Eqs. (3.80b),
(3.80c) and (3.80d). Numerical experiments indicated good agreement with analyt-
ical solutions, and the method proved to be easily extendable to staircase topogra-
phies.

The staircase approximation of an irregular but smoothly varying topography
(e.g. Robertsson, 1996; Ohminato & Chouet, 1997) results in artificial diffraction
that can pollute the numerical solution (Muir et al., 1992; Moczo et al., 1997). Hes-
tholm (1999) therefore proposed to rotate an arbitrarily oriented surface element
into a local coordinate system where the surface normal is aligned with the z-axis.
The boundary condition is then imposed in the rotated system and transformed back
to the physical coordinates.

3.2.3.3 Interior Methods

Imaging methods have been widely used for the modelling of seismic wave propa-
gation near the free surface both with and without topographic variations. Neverthe-
less, the introduction of image stresses above the surface is not a natural ingredient
of finite-difference methods, and it constitutes only a second-order approximation
of the exact free surface boundary condition. Recently developed interior methods
circumvent the need for velocities and stresses above the surface with the help of
either hybrid approaches or adjusted finite-difference approximations.

Moczo et al. (1997) proposed a hybrid method that combines a finite-difference
discretisation in the interior of the medium with a finite-element approximation
along the surface. The finite-element method – just as the spectral-element method
treated in Chap. 4 – automatically accounts for the free surface condition and it
allows for a smoothly varying irregular topography that does not suffer from the
staircase problem.

An elegant solution that remains within the finite-difference framework was pro-
posed by Kristek et al. (2002). The authors replaced the symmetric finite-difference
approximations that we used for the interior of the medium by the following set of
fourth-order asymmetric or adjusted approximations:

∂z f (z0) = 1

�z

[
−352

105
f (z0)+ 35

8
f (z0 +�z/2)− 35

24
f (z0 + 3�z/2)

+ 21

40
f (z0 + 5�z/2)− 5

56
f (z0 + 7�z/2)

]
+ O(�z4) ,

(3.91a)
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∂z f (z0 +�z/2) = 1

�z

[
−11

12
f (z0)+ 17

24
f (z0 +�z)+ 3

8
f (z0 + 5�z/2)

− 5

24
f (z0 + 7�z/2)+ 1

24
f (z0 + 9�z/2)

]
+ O(�z4) ,

(3.91b)

∂z f (z0 +�z)= 1

�z

[
−�z

22
∂z f (z0)− 577

528
f (z0 +�z/2)+ 201

176
f (z0 + 3�z/2)

− 9

176
f (z0 + 5�z/2)+ 1

528
f (z0 + 7�z/2)

]
+ O(�z4) ,

(3.91c)

∂z f (z +�z) = 1

�z

[
16

105
f (z0)− 31

24
f (z0 +�z/2)+ 29

24
f (z0 + 3�z/2)

− 3

40
f (z0 + 5�z/2)+ 1

168
f (z0 + 7�z/2)

]
+ O(�z4) .

(3.91d)

The adjusted finite-difference approximations from Eqs. (3.91) allow us to compute
the strain rate tensor and the stress divergence immediately at and below the surface
without having to introduce artificial velocities and stresses above the surface. In this
sense, adjusted approximations appear to result in the most natural finite difference
implementation of a planar free surface. Following a series of benchmark tests, Kris-
tek et al. (2002) and Moczo et al. (2004) concluded that adjusted finite-differences
near the surface lead to accurate numerical solutions that outperform the classical H
and W formulations of the stress imaging method.

3.3 The 3D Spherical Case

Finite-difference wave propagation in Cartesian coordinates is a powerful tool in
local- and regional-scale studies, where the curvature of the Earth’s surface can be
neglected. However, for epicentral distances exceeding several hundred kilometres,
the spherical shape of the globe must be taken into account. For this we consider a
spherical section where the position vector x is parameterised in terms of radius r ,
longitude φ and colatitude θ (see Fig. 3.11):

Fig. 3.11 Illustration of the
spherical section,
parameterised in terms of
radius r , longitude φ and
colatitude θ
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x = (x, y, z) = (r cosφ sin θ, r sinφ sin θ, r cos θ) . (3.92)

Following Nissen-Meyer (2001) and Igel et al. (2002), we again work with the
velocity–stress formulation of the elastic wave equation, given in Eqs. (3.55) and
(3.56). In the spherical coordinate system, the components of the stress divergence
∇ · σ and the strain rate tensor ε̇ are given by

(∇ · σ )r = ∂rσrr + 1

r sin θ
∂φσφr + 1

r
∂θσθr + 1

r
(2σrr + σθr cot θ − σφφ − σθθ )︸ ︷︷ ︸

interpolation

,

(3.93a)

(∇ · σ )φ = ∂rσφr + 1

r sin θ
∂φσφφ + 1

r
∂θσθφ + 1

r
(3σrφ + 2σθφ cot θ)︸ ︷︷ ︸

interpolation

, (3.93b)

(∇ · σ )θ = ∂rσrθ + 1

r sin θ
∂φσφθ + 1

r
∂θσθθ + 1

r
(3σrθ + σθθ cot θ − σφφ cot θ)︸ ︷︷ ︸

interpolation

(3.93c)

and

ε̇rr = ∂rvr , (3.94a)

ε̇rφ = 1

2

⎛
⎜⎝∂rvφ + 1

r sin θ
∂φvr − 1

r
vφ︸︷︷︸

interp.

⎞
⎟⎠ , (3.94b)

ε̇rθ = 1

2

⎛
⎜⎝∂rvθ + 1

r
∂θvr − 1

r
vθ︸︷︷︸

interp.

⎞
⎟⎠ , (3.94c)

ε̇φφ = 1

r

⎛
⎜⎝ 1

sin θ
∂φvφ + vr + vθ cot θ︸ ︷︷ ︸

interpolation

⎞
⎟⎠ , (3.94d)

ε̇φθ = 1

2r

⎛
⎜⎝ 1

sin θ
∂φvθ − vφ cot θ + ∂θvφ︸ ︷︷ ︸

interpolation

⎞
⎟⎠ , (3.94e)

ε̇θθ = 1

r
∂θvθ + 1

r
vr︸︷︷︸

interp.

. (3.94f)

To translate the staggered-grid approach from the Cartesian to the spherical case,
we let θ , φ and r play the roles of x , y and z, respectively. The grid spacings in the
spherical coordinate directions are �θ , �φ and �r . An additional complication is
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the appearance of non-differentiated terms in Eqs. (3.93) and (3.94). The strain rate
component ε̇θθ , for instance, is the sum of 1

r ∂θvθ and 1
r vr. While ∂θvθ is given at

the grid positions (θi , φ j , rk), the radial velocity vr is defined at (θi , φ j , rk +�r/2).
To make the non-differentiated terms available at the correct positions, interpolation
becomes necessary – just as in the case of general anisotropy (see Sect. 3.2.2).

Figure 3.12 shows a wave field snapshot in a spherical section for a 400-km-deep
source. Clearly visible are surface waves in the early stage of their development, the
direct S wave, as well as the surface-reflected phases sS and sP. Radial-component
velocity seismograms for a shallow source (30 km) and at 60◦ epicentral distance
are displayed in Fig. 3.13. The arrivals of the most prominent body wave phases
agree well with the ray-theoretical predictions.

Fig. 3.12 Snapshot of the velocity field amplitude |v̄| in the radially symmetric model PREM
(Dziewonski & Anderson), 3.5 min. after the source initiation. A filled black circle (•) marks
the hypocentre location at 400 km depth. The image is dominated by surface waves which decay
rapidly with depth. Also, the direct S wave and its surface reflections sS and sP are clearly visible.
The amplitude of the direct P wave is too small to be seen

Fig. 3.13 Synthetic radial-component velocity seismogram at an epicentral distance of 60◦ and
a source at 30 km depth. The dominant period is 15 s. The arrivals of the body wave phases P,
PP, PPP, PcP, PcS and S are clearly visible. Their travel times agree well with the ray-theoretical
predictions, indicated by vertical lines
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The finite-difference modelling in spherical coordinates is particularly efficient
for the simulation of body wave propagation on continental scales, that is for epi-
central distances of up to several tens of degrees. Limiting factors are the constant
angular increments �θ and �φ and the singularities in Eqs. (3.93) and (3.94) for
r = 0. The singularity forces us to exclude the centre of the Earth. Moreover, as
the spherical section extends further towards the poles and the centre, the grid spac-
ing tends to zero. To comply with the CFL stability condition, the time increment
�t must decrease as the grid spacing decreases, and this can lead to an inefficient
algorithm when the spherical section is too large.

3.4 Point Source Implementation

Point-localised sources of the form

f(x, t) = s(t) δ(x − xs) , (3.95)

with the vectorial source time function s and the source location xs, are of outstand-
ing importance in computational seismology. They are used as standard sources in
benchmarks and for the approximate representation of physical sources.

The implementation of point sources deserves special attention in any numerical
method. This is because the location of a point source usually does not coincide with
a grid node. Positioning the source at the nearest node can lead to unacceptably large
errors. These can be avoided by the implementation of a band-limited version of the
delta function δ(x − xs). To illustrate the concept, we consider the 1D case. The
extension to three dimensions is then straightforward.

In the wave number domain, the 1D delta function δ(x − xs) is given by

δ̃(k) = 1√
2π

e−ikxs
. (3.96)

As a result of the spatial discretisation, the wave number range is limited to
[−kmax, kmax], where kmax = π/�x is again the Nyquist wave number. It follows
that the optimal band-limited version of δ̃ is

d̃(k) = 1√
2π

[H(k + kmax)− H(k − kmax)] e−ikxs
, (3.97)

or

d(x) = kmax

π
sinc[kmax (x − xs)] , (3.98)

in the space domain. A discrete band-limited delta function can then be found by
sampling d(x) at the grid points xn = n�x . In the special case where the source
location xs coincides with a grid point, i.e. xs = s�x for some integer s, we find
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d(n�x) = 1

�x
δns . (3.99)

This means that the discrete source is non-zero only at the grid point with index s.
For any source location that does not coincide with a grid point, d(n�x) is gener-
ally non-zero so that the band-limited source is distributed through all of space, as
illustrated in the left part of Fig. 3.14.

To restrict the active numerical source region to a small volume surrounding the
true source position, d(n�x) needs to be windowed such that its spectrum is dis-
turbed as little as possible within the wave number range of interest, [−kmax, kmax].

Possible window functions are Gaussians or, as suggested by Hicks (2002),
Kaiser windows defined by

K (x) =
{

I0(β
√

1−(x/r)2)
I0(β)

, for x ∈ [−r, r ]
0 , otherwise ,

(3.100)

where I0 denotes the zero-order Bessel function of the first kind. The shape of the
Kaiser window is controlled by the half-width r and the parameter b. Two examples
are shown in the right part of Fig. 3.14. In general, there is a trade-off between the
width of the windows and the extent to which the spectrum of the discrete source
(3.98) is disturbed. Small windows lead to small source volumes but inaccurate
source spectra. Large windows preserve the source spectrum but require a large
source volume. A rule of thumb is that the source volume should extend approxi-
mately four grid points in each coordinate direction, but the optimal value needs to
be found on a case-by-case basis.

The above method can be easily generalised to moment tensor sources

Fig. 3.14 Left: Band-limited point source distribution as defined in Eq. (3.98) for kmax = π and
xs = 0.5. Circles (◦) indicate the discrete sampling locations at xn = n�x . Right: Kaiser windows
for b = 4 and 10, and a half-width r = 4
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f(x, t) = −∇ · [M(t) δ(x − xs)] , (3.101)

where M denotes the moment tensor. It suffices to replace the band-limited version
of δ(x − xs), given in Eq. (3.98), by its derivative:

d

dx
δ(x − xs) ≈ d

dx

kmax

π
sinc[kmax (x − xs)] . (3.102)

In the 3D case, the band-limited and windowed sources need to be implemented for
each of the force directions or moment tensor components.

3.5 Accuracy and Efficiency

The efficiency of numerical modelling schemes is particularly important because
their applicability is usually limited by the available computational resources. To
be efficient, a numerical method should require as few grid points as possible, to
achieve accurate solutions for the shortest spatial wavelength. The term accurate is
naturally problem specific and so is the necessary number of grid points per mini-
mum wavelength nmin. Among other factors, nmin depends on the spatio-temporal
discretisation, the types of waves to be modelled (body or surface waves), the pres-
ence of irregular topography, the distance travelled by the waves (see Fig. 3.5) and
the data to which the synthetics are to be compared. The following paragraphs pro-
vide a collection of recommendations for nmin in a variety of scenarios.

For plane body waves propagating through the fourth-order staggered grid intro-
duced in Sect. 3.2.1, Robertsson et al. (1994) and Bohlen (2002) found that nmin
should be around 4–8 in order to reduce the dispersion error below 2–5%. Moczo
et al. (2000) conclude that the group velocity error for S waves is 2.5% for nmin = 6.
Those values must be considered in the context of the heterogeneous Earth where
velocity variations on the order of 1% can be relevant. Thus, for applications in body
wave delay time tomography, nmin ≈ 20 is certainly recommendable.

In a systematic comparison of several finite-difference and finite-element
schemes, Moczo et al. (2010) analysed the dependence of the numerical error on the
P wave speed to S wave speed ratio vP/vS. While staggered-grid approaches appear
to be rather insensitive to vP/vS, the conventional grid produces excessive numerical
errors when vP/vS is larger than about 5, even when nmin is on the order of 10. This
renders the conventional grid impractical for the simulation of wave propagation
through sedimentary basins, where vP/vS can reach values of 5 and larger.

Numerous techniques aiming at the reduction of nmin can be found in the finite-
difference literature. The most intuitive approach is to increase the length of the
finite-difference operator. Based on a qualitative error analysis, Dablain (1986) sug-
gested that three grid points per minimum wavelength are sufficient when a 10th-
order finite-difference approximation is used for the 2D scalar wave equation. Hol-
berg (1987) optimised the finite-difference coefficients such that the group velocity
error is minimal. For a pre-defined maximum group velocity error, he found nmin
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to decrease roughly exponentially with increasing operator length. In the case of a
30-point operator, nmin ≈ 2.5 is theoretically sufficient to reduce the group velocity
error below 3%. Furumura & Chen (2004) and Kennett & Furumura (2008) used a
16th-order finite-difference approximation to propagate waves in a 2D model across
several thousand wavelengths.

In principle, the operator length can be increased indefinitely so that the
finite-difference method approaches the pseudo-spectral method where the discrete
derivative operator is global and where nmin is close to its theoretical minimum of 2
(see Sect. 2.6).

An interesting alternative to the increasing operator length was presented by
Cole (1994, 1997) who optimised a two-point finite-difference operator such that
it is nearly exact, at least within a narrow wave number range. Jo et al. (1996) and
Šteckl & Pratt (1998) used rotated finite-difference stencils to substantially reduce
the numerical dispersion without increasing the operator length.

The high-accuracy variants of the finite-difference method mentioned above have
been developed for the interior of the computational domain, where they have
proven efficient. However, their consistent application along the free surface is dif-
ficult. Furthermore, high-order schemes face issues of parallelisation because the
amount of data communicated between processors increases rapidly with increasing
operator length.

The finite-difference modelling of surface wave propagation can be challenging
because the discretisation scheme for the interior of the computational domain is
not directly applicable along the free surface. In a series of numerical experiments,
Kristek et al. (2002) compared the performance of the fourth-order staggered grid
(Sect. 3.2.1) combined with different implementations of a planar free surface. For a
Rayleigh wave propagating across 15 dominant wavelengths, a value of nmin = 10
was needed to reduce the average envelope misfit to below 40% when the stress
imaging technique (Levander, 1988; Graves, 1996; Sect. 3.2.3.2) was used. The
large numerical errors are expected because the stress imaging implements the free
surface boundary condition only correct to second order. The implementation of the
free surface based on the adjusted finite-difference approximations from Eqs. (3.91)
(Kristek et al., 2002) reduce the errors by a factor of 2 while using only six grid
points per minimum wavelength. To ensure that the energy misfit

E :=
∫

T [ ˙̄u(xr , t)− u̇(xr , t)]2 dt∫
T u̇2(xr , t) dt

(3.103)

is below 1% for propagation distances of around 10 wavelengths, Igel et al. (2002)
suggest nmin ≈ 20.

The required number of grid points per wavelength needed in the presence of
irregular topography depends strongly on the topography itself. Based on a visual
comparison and assuming that nmin = 5 is sufficient in the interior of the fourth-
order staggered grid, Robertsson (1996) proposed to sample the wave field with
at least nmin = 15. In a more quantitative analysis, Bohlen & Saenger (2006)
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recommend to use around 30–60 grid points per minimum wavelength to ensure
acceptable solutions in the presence of a dipping interface.

The important conclusion to be drawn is that the numerical setup in general, and
the number of grid points per wavelength in particular, is highly problem dependent.
The only rule is that the numerical grid should be chosen such that the resulting
synthetics can be compared to the data in a meaningful way. This means that the
numerical error should be much smaller than the typical differences that we expect
between data and synthetics due to undiscovered Earth structure.



Chapter 4
Spectral-Element Methods

The spectral-element method is a high-order numerical method that allows us to
solve the seismic wave equation in 3D heterogeneous Earth models. The method
enables adaptation of the mesh to the irregular surface topography and to the vari-
able wavelengths inside the Earth. Moreover, the spectral-element method yields
accurate solutions for surface waves without increasing the number of grid points
per wavelength, therefore overcoming some of the most severe deficiencies of the
finite-difference method.

Originally developed in fluid dynamics (Patera, 1984; Maday & Patera, 1989),
the spectral-element method was first applied to the elastic wave equation and
in a seismological context by Seriani et al. (1995), Faccioli et al. (1997) and
Komatitsch (1997). Numerical solutions with high accuracy have been obtained in a
large number of studies (e.g. Komatitsch & Vilotte, 1998; Seriani, 1998; Komatitsch
et al., 2004; Fichtner et al., 2009). Applications to global wave propagation in the
presence of self-gravitation, rotation and fluid regions can be found in Komatitsch
& Tromp (2002), Chaljub et al. (2003) and Chaljub & Valette (2004). For excel-
lent reviews of the spectral-element method the reader is referred to Komatitsch
et al. (2005) and Chaljub et al. (2007).

We start our development with an illustration of the basic spectral-element con-
cepts in 1D. The necessary mathematical tools, including Lagrange interpolation
and Gauss–Lobatto–Legendre quadrature, can be found in Appendix A. The exten-
sion to the 3D elastic case, treated in Sect. 4.2, is straightforward but requires a
few words on grid generation. The implementation of point sources in the spectral-
element method is the subject of Sect. 4.2.

4.1 Basic Concepts in One Dimension

We follow the classical approach and introduce the basic concepts of the spectral-
element method with an example in one dimension. For this we first introduce the
weak form of the equations of motion and then continue with a description of the
Galerkin method.

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-15807-0_4, C© Springer-Verlag Berlin Heidelberg 2011
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4.1.1 Weak Solution of the Wave Equation

We consider the 1D scalar wave equation

ρ(x) ü(x, t)− ∂x [μ(x) ∂x u(x, t)] = f (x, t) , (4.1)

with the space variable x ∈ G = [0, L] and time t ∈ [0, T ]. The displacement field
u is subject to the Neumann boundary conditions

∂x u(x, t)|x=0 = ∂x u(x, t)|x=L = 0 (4.2)

and the initial conditions

u|t=0 = u̇|t=0 = 0 . (4.3)

Equation (4.1) together with the boundary and initial conditions (4.2) and (4.3) is
referred to as the strong form of the wave equation. To derive the associated weak or
variational form, we multiply (4.1) by an arbitrary, time-independent test function,
w : G → R, and integrate over space:

∫
G
ρ w ü dx −

∫
G
w ∂x (μ ∂x u) dx =

∫
G
w f dx . (4.4)

Integrating the second term on the left-hand side by parts and inserting the boundary
condition (4.2) gives

∫
G
ρ w ü dx +

∫
G
μ∂xw ∂x u dx =

∫
G
w f dx . (4.5)

Solving the weak form of the wave equation now means finding a wave field u such
that it satisfies (4.5) for any suitable test function w and subjecting to the initial
conditions

∫
G
ρ w u|t=0 dx =

∫
G
ρ w u̇|t=0 dx = 0 . (4.6)

The weak form of the wave equation has an important advantageous property from
a numerical point of view. The boundary condition (4.2), corresponding to the free
surface condition in 3D, is implicitly satisfied. It therefore need not be treated explic-
itly as in finite-difference methods where the accurate implementation of the free
surface can be a tedious task (see Sect. 3.2.3).

4.1.2 Spatial Discretisation and the Galerkin Method

Analytical solutions of both the strong and the weak forms of the wave equation
often do not exist when the mass density ρ and the elastic parameter μ are spatially
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variable. In the Galerkin method we approximate the exact solution u(x, t) by a
finite superposition of n basis functions ψi (i = 1, . . . , n) that depend only on
space and not on time. We denote this approximation by ū(x, t):

u(x, t) ≈ ū(x, t) =
n∑

i=1

ui (t)ψi (x) , (4.7)

where ui (t) are the time-dependent expansion coefficients. The quality of this
approximation depends on the choice of the basis functions ψi , the source term
f and on the medium properties ρ and μ. Instead of trying to solve the exact weak
formulation, we limit ourselves to the requirement that ū solves the approximate
weak form

∫
G
ρ ψi ¨̄u dx +

∫
G
μ∂xψi ∂x ū dx =

∫
G
ψi f dx , (4.8)

for all basis functions ψi , with i = 1, . . . , n, and subject to the initial conditions

∫
G
ρ ψi ū|t=0 dx =

∫
G
ρ ψi ˙̄u|t=0 dx = 0 . (4.9)

The basis functions ψi are thus used in the approximation of the wave field and as
test functions in the weak formulation. Equation (4.7) together with the approximate
weak formulation transforms the exact weak formulation into the following set of
linear equations for the coefficients ui (t):

n∑
i=1

⎡
⎣üi (t)

∫

G

ρ(x) ψ j (x) ψi (x) dx

⎤
⎦+

n∑
i=1

⎡
⎣ui (t)

∫

G

μ(x) ∂xψ j (x) ∂xψi (x) dx

⎤
⎦

=
∫

G

ψ j (x) f (x, t) dx , (4.10)

for all j = 1, . . . , n. Equation (4.10) is an algebro-differential equation that can
conveniently be written in matrix notation:

M · ü(t)+ K · u(t) = f(t) , (4.11)

with the mass matrix

M ji =
∫

G

ρ(x) ψ j (x) ψi (x) dx , (4.12)
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the stiffness matrix

K ji =
∫

G

μ(x) ∂xψ j (x) ∂xψi (x) dx , (4.13)

and the right-hand side

f j (t) =
∫

G

ψ j (x) f (x, t) dx . (4.14)

The vector u – not to be confused with the vectorial displacement field in the com-
plete elastic wave equation – comprises the expansion coefficients ui . The process
of transforming the differential equation (4.1) plus the approximation (4.7) into the
algebro-differential equation (4.11) is known as Galerkin projection. Once more we
emphasise that the free surface boundary condition (4.2) is naturally contained in the
stiffness matrix (Eq. 4.13) and does not require any additional work – as is needed in
finite-difference methods. What distinguishes the spectral-element method among
other numerical methods is the choice of the basis functions ψi and the inte-
gration scheme used to solve the integrals that appear in the mass and stiffness
matrices.

In the next step we decompose the domain G into ne disjoint subdomains Ge,
called the elements. Equation (4.10) then transforms to

n∑
i=1

⎡
⎢⎣üi (t)

ne∑
e=1

∫

Ge

ρ(x) ψ j (x) ψi (x) dx

⎤
⎥⎦+

n∑
i=1

⎡
⎢⎣ui (t)

ne∑
e=1

∫

Ge

μ(x) ∂xψ j (x) ∂xψi (x) dx

⎤
⎥⎦

=
ne∑

e=1

∫

Ge

ψ j (x) f (x, t) dx . (4.15)

The disadvantage of Eq. (4.15) is that each expansion coefficient ui depends
on the integrals over all elements. We can circumvent this problem by choos-
ing local basis functions, i.e. basis functions that are supported by one element
only. The discrete equations can then be solved for each element individually.
For this we define N + 1 basis functions ψe

i (i = 1, . . . , N + 1) on each
of the ne elements Ge. The displacement field within the element Ge is then
approximated by

ū(x, t)|x∈Ge =
N+1∑
i=1

ue
i (t)ψ

e
i (x) (4.16)

so that Eq. (4.10) now holds for each element:
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N+1∑
i=1

üe
i (t)

∫

Ge

ρ(x) ψe
j (x) ψ

e
i (x) dx +

N+1∑
i=1

ue
i (t)

∫

Ge

μ(x) ∂xψ
e
j (x) ∂xψ

e
i (x) dx

=
∫

Ge

ψe
j (x) f (x, t) dx . (4.17)

Using matrix notation we write Eq. (4.17) in a more compact form:

Me · üe(t)+ Ke · ue(t) = fe(t) , e = 1, . . . , ne , (4.18)

where ue, Me and Ke are the local coefficient vector, the local mass matrix and
the local stiffness matrix, respectively. The total number of basis functions is now
ne (N + 1). Since the basis functions are locally supported by one element, the
continuity of the discrete displacement ū at the boundaries between the elements
has to be imposed explicitly. To ensure that the wavelengths are sampled nearly
uniformly, the size of the elements will usually be chosen proportional to the wave
speed

√
μ/ρ. The integrals in (4.17) can all be treated in the same way if we map

each element Ge onto the standard or reference interval [−1, 1] via an element-
specific transformation Fe:

Fe : [−1, 1] → Ge , x = Fe(ξ) , ξ = ξ(x) = F−1
e (x) , e = 1, . . . , ne .

(4.19)
This transformation is illustrated in Fig. 4.1. Introducing the transformation into
Eq. (4.17) gives

N+1∑
i=1

üe
i (t)

1∫

−1

ρ[x(ξ)]ψe
j [x(ξ)]ψe

i [x(ξ)] dx

dξ
dξ

+
N+1∑
i=1

ue
i (t)

1∫

−1

μ[x(ξ)] dψe
j [x(ξ)]
dξ

dψe
i [x(ξ)]
dξ

(
dξ

dx

)2 dx

dξ
dξ

=
1∫

−1

ψe
j [x(ξ)] f [(x(ξ)), t] dx

dξ
dξ . (4.20)

At this point of the development we specify the basis functions ψi . We choose
the N + 1 Lagrange polynomials of degree N that have the corresponding Gauss–
Lobatto–Legendre points (GLL points) as collocation points:

ψe
i [x(ξ)] = �

(N )
i (ξ) , ξ ∈ [−1, 1] . (4.21)
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This choice is motivated by a number of important results from numerical analysis.
We summarise them here and give brief derivations in Appendix A:

(1) Using the GLL points for polynomial interpolation ensures that the absolute
value of the Lagrange polynomials �(N )i is smaller than or equal to 1, for any
polynomial order (see Sect. A.2.3). This means that Runge’s phenomenon can
be suppressed.

(2) The GLL points are Fekete points, i.e. they maximise the Vandermonde deter-
minant (see Appendices A.2.1 and A.2.4). Thus, numerical errors right at the
collocation points will have the smallest possible effect on the interpolated val-
ues between the collocation points.

(3) The Lebesgue constant associated with the GLL points grows slowly − in prac-
tice logarithmically − with increasing polynomial order (see Appendix A.2.5).
This implies that the interpolation error decreases much more rapidly with
increasing polynomial order than in the case of equidistant collocation points
− at least when the interpolated function is well behaved.

(4) The GLL points are the collocation points of the GLL quadrature (Sect. A.3.2).
One can therefore apply the GLL quadrature formulas to obtain accurate
approximations of the integrals in Eq. (4.20) and a diagonal mass matrix.

In the interest of a lighter notation we will henceforth omit the superscript (N ) in
�
(N )
i . Substituting �i (ξ) for ψi [x(ξ)] in Eq. (4.20) gives

N+1∑
i=1

üe
i (t)

1∫

−1

ρ′(ξ)� j (ξ)�i (ξ)
dx

dξ
dξ

+
N+1∑
i=1

ue
i (t)

1∫

−1

μ′(ξ) �̇ j (ξ)�̇i (ξ)

(
dξ

dx

)2 dx

dξ
dξ

=
1∫

−1

� j (ξ) f ′(ξ, t)
dx

dξ
dξ , (4.22)

where �̇ denotes the derivative of � with respect to ξ . The transformed density ρ′,
the elastic modulus μ′ and external force f ′ are defined by

ρ′(ξ) := ρ[x(ξ)] , μ′(ξ) := μ[x(ξ)] , f ′(ξ) := f [x(ξ)] . (4.23)

With the GLL quadrature formula (A.74) we can approximate the integral in
Eq. (4.22):
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N+1∑
i,k=1

üe
i (t) wkρ

′(ξ) � j (ξ)�i (ξ)
dx

dξ

∣∣∣∣∣∣
ξ=ξk

+
N+1∑
i,k=1

wkue
i (t)μ

′(ξ) �̇ j (ξ)�̇i (ξ)

(
dξ

dx

)2 dx

dξ

∣∣∣∣∣∣
ξ=ξk

≈
N+1∑
k=1

wk� j (ξ) f ′(ξ, t)
dx

dξ

∣∣∣∣∣
ξ=ξk

. (4.24)

The symbols ξk and wk are the GLL points and their corresponding integration
weights, respectively (see Appendix A). The numerical integration in (4.24) is not
exact because the integrands are not polynomials of degree 2N − 1 or lower. In
the following developments we will nevertheless replace ≈ by =, keeping in mind
that this is an approximation. Recalling the cardinal interpolation property of the
Lagrange polynomials, �i (ξk) = δik , we can simplify (4.24):

N+1∑
i=1

Me
ji ü

e
i (t)+

N+1∑
i=1

K e
ji ue

i (t) = f e
j (t) , e = 1, . . . , ne , (4.25)

with

Me
ji = w jρ

′(ξ) dx

dξ
δi j

∣∣∣∣
ξ=ξ j

, (4.26)

K e
ji =

N+1∑
k=1

wkμ
′(ξ) �̇ j (ξ)�̇i (ξ)

(
dξ

dx

)2 dx

dξ

∣∣∣∣∣
ξ=ξk

, (4.27)

f e
j (t) = w j f ′(ξ, t)

dx

dξ

∣∣∣∣
ξ=ξ j

. (4.28)

Certainly the most advantageous property of the spectral-element discretisation is
the diagonality of the local mass matrix Me. Since the inversion of Me

ji is trivial and
computationally inexpensive, we easily obtain an explicit formula for the second-
time derivative üi (t) that can then be discretised.

The numerical integration of Eq. (4.20) has so far been purely local, resulting in
linear systems for each element (Eq. 4.25). Related to the individual treatment of the
elements is a local numbering that allows us to address the GLL points of an ele-
ment. Points shared between two neighbouring elements are counted twice because
they appear in the discretised versions of two integrals. To ensure the continuity of
the approximation ū across the element boundaries, we need to assemble a global
system of equations. This is done by introducing a global numbering where each
GLL point is counted once even when it is shared between elements. Associated
which the global numbering is the global displacement vector uglobal. Figure 4.1
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Fig. 4.1 Illustration of the element transformations Fe and the concepts of global and local num-
bering. The spatial domain [0, L], shown in the lowermost part of the figure, is subdivided into
ne non-overlapping elements. Each element Ge is related to the reference interval [−1, 1] via an
element-specific transformation Fe. The local numbering is used to address the node points of the
individual elements, some of which are shared between two elements. The global numbering iden-
tifies the spatial locations of the node points. This illustration is for the simplest, though unrealistic,
case where the elements have no internal node points (polynomial degree 1). Subdivisions of the
reference interval for higher polynomial degrees are shown schematically above

illustrates the concept of local and global numbering. The operation of assembling
the local mass and stiffness matrices, Me and Ke, into their global versions, Mglobal

and Kglobal, then simply consists in summing the entries of the local matrices at
coincident node points. This leads to a global system of equations,

Mglobal · üglobal(t)+ Kglobal · uglobal(t) = fglobal(t) (4.29)

that we need to solve for uglobal. We note that in practice the stiffness matrix is
rarely computed explicitly because only its product with the vector of expansion
coefficients is needed.

4.2 Extension to the 3D Case

4.2.1 Mesh Generation

The spectral-element method in more than one dimension starts with the subdi-
vision of the computational domain G into ne non-overlapping elements Ge such
that G = ⋃ne

i=1 Ge. This process is referred to as mesh generation or meshing.
The design of the elements should be such that they follow major geologic features
including sedimentary basins and faults. To ensure a spatially uniform sampling of
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Fig. 4.2 Schematic representation of a mesh in a 2D domain. Bold lines indicate structural dis-
continuities that are honoured by the elements. The seismic velocities in the top layer are small
compared to the velocities in the bottom layer where the elements are largest

the seismic waves in different parts of the model, the size of the elements should
be proportional to the seismic velocity. Moreover, the faces of the elements should
align with structural discontinuities because abrupt changes of the structure and
the wave field cannot be represented accurately by the smooth polynomials inside
the elements. A mesh is said to honour discontinuities when the boundaries of the
elements coincide with the discontinuities. A schematic meshing of a 2D domain is
shown in Fig. 4.2.

The 3D mesh in Fig. 4.3 was used to analyse near-fault and strong-motion site
effects in the Grenoble valley, France (Stupazzini, 2006; Stupazzini et al., 2009).
The study region is characterised by strong topographic variations and seismic wave
speeds that range between vP ≈ 1.5 km/s and vS ≈ 0.3 km/s at the surface of the
alluvial basin (green) and vP ≈ 5.9 km/s and vS ≈ 3.4 km/s in the deep bedrock lay-
ers (yellow). This implies that the wavelengths within the model vary by nearly one

Fig. 4.3 Hexahedral mesh of the Grenoble valley used in a seismic ground motion study (Stupazz-
ini et al., 2009). The wave speeds vary by almost one order of magnitude between the seismically
slow alluvial basin (green) and the seismically fast bedrock (yellow). This variability translates to
element sizes that range between 20 m at the surface of the basin and 900 m near the bottom of the
model. Note that the seismic discontinuity between basin material and bedrock is honoured by the
elements
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order of magnitude. The size of the elements in the seismically slow alluvial basin is
as small as 20 m and it reaches almost 900 m near the bottom of the model. The total
number of elements is 216, 972, and it allows for the propagation of frequencies up
to 3 Hz when the polynomial degree is 4.

Today, powerful mesh generation tools, known as meshers, are available (e.g.
CUBIT, developed by Sandia National Laboratories or GiD from the International
Center for Numerical Methods in Engineering). They greatly simplify the mesh
design for complex 3D models.

In order to apply the same numerical quadrature to all the elements Ge, they
need to be mapped onto the unit cube � = [−1, 1]3. Mostly, this transformation
will not be given analytically, especially in the case of complex geologic structures.
It needs to be approximated instead, and this approximation is based on the concept
of shape functions and anchor nodes. Each element Ge in the physical space is
defined by a set of na anchor nodes xa and their corresponding shape functions
N a . The eight corners of an element are always used as anchor nodes. For elements
with straight edges, eight anchor nodes are sufficient to accurately represent the
geometry. Additional anchor nodes on the edges or faces may be needed to represent
elements with curved edges. A position vector x in Ge is related to a position vector
ξ in the reference cube � via the transformation

x(ξ) = Fe(ξ) =
na∑

a=1

N a(ξ) xa , (4.30)

where the shape functions satisfy the condition

N a(ξb) = δab . (4.31)

Equations (4.30) and (4.31) uniquely relate the anchor node xa in the physical ele-
ment Ge to an anchor node ξa in the reference cube �:

x(ξa) = xa . (4.32)

The shape functions N a are most conveniently defined as products of three Lagrange
polynomials, the collocation points of which are the coordinates ξa

i of the anchor
nodes ξa in the reference cube:

N a(ξ) = �1,a(ξ1)�2,a(ξ2)�3,a(ξ3) , (4.33)

with

�i,a(ξi ) = δab . (4.34)
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Fig. 4.4 Left: The element with straight edges is defined by eight anchor nodes and linear shape
functions. Right: The element with curved edges is defined by eight anchor nodes in the corners
plus 12 anchor nodes on the edges. The corresponding shape functions are of degree 2. Additional
anchor nodes can be defined in the centre and on the faces, leading to an element with 27 anchor
nodes

The degree of the Lagrange polynomials depends on the complexity of the element
Ge. It is 1 for elements with straight edges and 2 for elements with curved edges. In
most applications, the degree of the shape functions is lower than the degree of the
polynomials used to interpolate the wave field inside the elements. The transforma-
tion Fe is therefore called subparametric (Fig. 4.4).

Mesh generation is to some degree an art that cannot be fully automated. The
principal difficulty is to design a mesh that honours the complexities of the structural
model while producing elements that are as large as possible. Very small elements
can of course honour any complexity but they result in prohibitively short time steps
because the CFL condition must always be satisfied in the numerical simulations.
The choice of tensorised Lagrange polynomials as basis functions in 3D spectral
elements furthermore imposes that only hexahedra can be used for the mesh even
when tetrahedra may sometimes be better suited from a purely geometric point of
view.

Generalisations of the spectral-element method in 2D allow for the combination
of quadrangles and triangles within the same mesh (e.g. Komatitsch et al., 2001;
Mercerat et al., 2006). In 3D, this approach can be adapted to combine hexahedra
and tetrahedra in order to allow for more geometrical flexibility.

Another possible solution of the mesh generation problem consists in the replace-
ment of the original structural model by a long-wavelength equivalent and smooth
model (see, for instance, Sect. 13.2.2). The smoothness of the long-wavelength
equivalent model alleviates many of the restrictions that complex models with
discontinuities impose on the mesh design. Different techniques are available for
the construction of long-wavelength equivalent models. Fichtner & Igel (2008)
matched dispersion curves of a discontinuous Earth model to the dispersion
curves of a smooth Earth model. A more general approach is based on the non-
periodic homogenisation of the wave equation (Capdeville et al., 2010a, b; Guillot
et al., 2010).
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Mesh generation has received much attention in recent years. In practice, how-
ever, it can be advantageous to take the proper design of a mesh not too seriously.
It is a matter of fact that the precise location and the sharpness of structural dis-
continuities inside the Earth are uncertain because our data have finite and often
insufficient resolution. The implementation of a strict discontinuity in the spectral-
element method can therefore lead to strong interface waves that are not observable
in the real Earth where the discontinuity may not be as sharp as in our simplified
models.

4.2.2 Weak Solution of the Elastic Wave Equation

As a preparatory step towards the spatial discretisation, we first derive the weak form
of the elastic wave equation. We base our development on the strong displacement–
stress variant of the equations of motion:

ρ(x) ü(x, t)− ∇·σ (x, t) = f(x, t) (4.35)

σ (x, t) = C(x) : ∇u(x, t) , (4.36)

subject to the boundary and initial conditions

n · σ |x∈∂G = 0 , u|t=0 = u̇|t=0 = 0 . (4.37)

For the moment we disregard dissipation, i.e., the time dependence of the elastic
tensor C. Multiplying Eq. (4.35) by an arbitrary, differentiable, time-independent
test function w and integrating over G gives

∫
G
ρ w · ü d3x −

∫
G

w · (∇ · σ ) d3x =
∫

G
w · f d3x . (4.38)

Invoking the identity

w · (∇ · σ ) = ∇ · (w · σ )− ∇w : σ , (4.39)

together with Gauss’ theorem, yields

∫
G
ρ w · ü d3x −

∫
∂G

w · σ · n d2x +
∫

G
∇w : σ d3x =

∫
G

w · f d3x . (4.40)

Upon inserting the free surface boundary condition, Eq. (4.40) condenses to

∫
G
ρ w · ü d3x +

∫
G

∇w : σ d3x =
∫

G
w · f d3x . (4.41)
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The same procedure is to be repeated for Eq. (4.36), but it does not require any addi-
tional transformations. Finding a weak solution to the equations of motion means to
find a displacement field u that satisfies the integral relation (4.41) and

∫
G

w · σ d3x =
∫

G
w · C : ∇u d3x (4.42)

for any test function w and subject to the initial conditions
∫

G
ρ w · u|t=0 d3x =

∫
G
ρ w · u̇|t=0 d3x = 0 . (4.43)

As in the 1D case we note that the free surface condition is implicit in the weak
formulation.

4.2.3 Discretisation of the Equations of Motion

In analogy to the Galerkin method for the 1D case (see Eq. (4.7)) we approximate
the p-component u p of the displacement field u by a superposition of basis functions

ψi jk(x) = ψi jk(x1, x2, x3) (4.44)

weighted by expansion coefficients ui jk
p :

u p(x, t) ≈ ū p(x, t) =
N+1∑

i, j,k=1

ui jk
p (t)ψi jk(x) . (4.45)

The corresponding approximation of the stress tensor components σpq is

σpq(x, t) ≈ σ̄pq(x, t) =
N+1∑

i, j,k=1

σ
i jk
pq (t) ψi jk(x) . (4.46)

Equations (4.45) and (4.46) already assume that u p and σpq are considered inside an
element Ge ⊂ R

3, where they can be represented by (N + 1)3 basis functions. We
therefore omit the superscript e that we used in Sect. 4.1 to indicate local element-
specific quantities.

To find a weak solution in the Galerkin sense, we replace the exact weak formula-
tion from Eqs. (4.41), (4.42) and (4.43) by the requirement that the approximations
ū and σ̄ satisfy

∫
Ge

ρ ψi jkep · ¨̄u d3x +
∫

Ge

∇(ψi jkep) : σ̄ d3x =
∫

Ge

ψi jkep · f d3x (4.47)

and
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∫
Ge

ψi jkep · σ̄ d3x =
∫

Ge

ψi jkep · C : ∇ū d3x , (4.48)

for all basis functions ψi jk and for all unit vectors ep with p = 1, 2, 3. The weak
initial conditions are

∫
Ge

ρ ψi jkep · ū|t=0d3x =
∫

Ge

ρ ψi jkep ˙̄u|t=0 d3x = 0 , (4.49)

again for all basis functions and unit vectors. To keep the following formulas as
readable as possible, we treat the summands in Eqs. (4.47) and (4.48) individually.
For the first term on the left-hand side of (4.47) we find

Fqrs[ρü p] :=
∫

Ge

ρ ψqrsep · ¨̄u d3x =
N+1∑

i, j,k=1

∫

Ge

ρ(x)üi jk
p (t)ψi jk(x) ψqrs(x) d3x .

(4.50)

The symbol F is intended to express that Fqrs[ρü p] is a discrete local force, averaged
over the element Ge. In the next step we relate the elements Ge (e = 1, . . . , ne) to
the reference cube � = [−1, 1]3 via invertible and element-specific transforma-
tions Fe that we already made explicit in Eqs. (4.30), (4.31), (4.32) and (4.33):

Fe : [−1, 1]3 = � → Ge , x = Fe(ξ) , ξ = ξ(x) = F−1
e (x) , e = 1, . . . , ne . (4.51)

The action of the transformations Fe is illustrated in Fig. 4.5.

Fig. 4.5 Mapping of the deformed element Ge from the physical space to the reference cube
� = [−1, 1]3. Dashed lines indicate the GLL nodal lines for different polynomial degrees
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Transforming the integral (4.50) according to the transformation (4.51) yields

Fqrs[ρü p] =
N+1∑

i, j,k=1

∫

�

ρ[x(ξ)] üi jk
p (t) ψi jk[x(ξ)]ψqrs[x(ξ)] J (ξ) d3ξ , (4.52)

where the symbol J in Eq. (4.52) denotes the Jacobian of Fe. It is understood that
the elements are chosen such that J > 0. For the basis functions ψi jk[x(ξ)] we
choose the product of three Lagrange polynomials collocated at the GLL points:

ψi jk[x(ξ)] = �i (ξ1)� j (ξ2)�k(ξ3) . (4.53)

The resulting expression for Fqrs[ρü p] is then

Fqrs[ρü p] =
N+1∑

i, j,k=1

∫

�

ρ′(ξ)üi jk
p (t)�i (ξ1)� j (ξ2)�k(ξ3)�q(ξ1)�r (ξ2)�s(ξ3) J (ξ) d3ξ ,

(4.54)
with the transformed density defined by

ρ′(ξ) := ρ[x(ξ)] . (4.55)

Applying the GLL quadrature rule to Eq. (4.54) yields the following simple expres-
sion:

Fqrs[ρü p] = wqwrws ρ
′(ξqrs)üqrs

p J (ξqrs) , (4.56)

where we need to evaluate the transformed density and the Jacobian at the GLL
points

ξqrs := (ξ
q
1 , ξ

r
2 , ξ

s
3 ) . (4.57)

Equation (4.57) is the 3D equivalent of Eq. (4.26) that specifies the mass matrix
for the 1D case. The combination of GLL quadrature and Lagrange polynomials
collocated at the GLL points again ensures that the mass matrix in three dimensions
is diagonal, meaning that the evaluation of Fqrs[ρü p] does not involve any expansion
coefficients other than uqrs

p .
We now consider the second term on the left-hand side of Eq. (4.47):

Fqrs[(∇ · σ )p] :=
∫

Ge

∇(ψqrsep) : σ̄ d3x . (4.58)

Transforming to the reference cube � then gives
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Fqrs[(∇ · σ )p] =
3∑

n,m=1

∫

�

∂ξm

∂xn

∂

∂ξm
[�q(ξ1)�r (ξ2)�s(ξ3)] σ̄ ′

np(ξ) J (ξ) d3ξ , (4.59)

where we already substituted the Lagrange polynomials for the general basis func-
tions, as proposed in Eq. (4.53). The transformed stress tensor σ̄ ′ is defined as

σ̄ ′(ξ) := σ̄ [x(ξ)] . (4.60)

Approximating the integral in Eq. (4.59) via the GLL quadrature rule results in a
rather lengthy expression:

Fqrs[(∇ · σ )p] =
3∑

n=1

N+1∑
i=1

wiwrws �̇q(ξ
i
1) σ

irs
np J (ξ irs)

∂ξ1

∂xn
(ξ irs)

+
3∑

n=1

N+1∑
i=1

wqwiws �̇r (ξ
i
2) σ

qis
np J (ξqis)

∂ξ2

∂xn
(ξqis)

+
3∑

n=1

N+1∑
i=1

wqwrwi �̇s(ξ
i
3) σ

qri
np J (ξqri )

∂ξ3

∂xn
(ξqri ) . (4.61)

Equation (4.61) involves a sum over 9(N +1) terms which makes it computationally
much more expensive than (4.56). Repeating the above procedure for the source
term f in Eq. (4.35) gives

Fqrs( f p) :=
∫

Ge

ψqrsep · f d3x = wqwrws f ′
p(ξ

qrs) J (ξqrs) , (4.62)

with the transformed force density

f ′
p(ξ) := f p[x(ξ)] . (4.63)

Equation (4.62) deserves special attention because its validity is not as obvi-
ous as it may initially appear. In fact, we must recall that

∫
Ge
ψqrsep · f d3x =

wqwrws f ′
p(ξ

qrs) J (ξqrs) is an approximation. Its accuracy is controlled by the qual-
ity of the GLL quadrature that we used to evaluate the projection integral. Since GLL
quadrature is exact only for polynomials of degree 2N − 1 and below, the spatial
dependence of the source term f should at least be smooth. In most seismologi-
cal applications, however, f is point localised, meaning that its spatial dependence
is described by a delta function that is far from being sufficiently smooth. Equa-
tion (4.62) is therefore inappropriate for point sources. However, before studying
the implementation of point sources in more detail (see Sect. 4.2.4), we continue
with the discretisation of the equations of motion.
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It remains to consider the approximate weak form of the constitutive relation as
specified by Eq. (4.48). For the Galerkin projection of the (mn)-component of the
stress tensor σ , we find

Fqrs(σmn) :=
∫

Ge

(ψqrsem · σ̄ )n d3x = wqwrws σ
qrs
mn J (ξqrs) . (4.64)

Projecting the (mn)-component of the right-hand side in the approximate weak con-
stitutive relation (4.48) gives

Fqrs[(C : ∇u)mn] =
∫

Ge

(ψqrsem · C : ∇ū)n d3x

=
3∑

a,b=1

N+1∑
i, j,k=1

ψqrs(x)Cmnab
∂

∂xa
[ui jk

b ψi jk(x)] d3x . (4.65)

Transforming Eq. (4.65) and inserting the Lagrange polynomials as basis functions
yields

Fqrs[(C : ∇u)mn] =
3∑

a,b,p=1

N+1∑
i, j,k=1

∫

�

ui jk
b �q(ξ1)�r (ξ2)�s(ξ3)

· C ′
mnab(ξ)

∂ξp

∂xa

∂

∂ξp
[�i (ξ1)� j (ξ2)�k(ξ3)] J (ξ) d3ξ ,

(4.66)

with

C′(ξ) := C[x(ξ)] . (4.67)

Then following the usual steps, we obtain the Galerkin projection

Fqrs[(C : ∇u)mn] = wqwrws J (ξqrs)

3∑
a,b=1

C ′
mnab(ξ

qrs)

·
N+1∑
i=1

[
uirs

n �̇i (ξ
q
1 )
∂ξ1

∂xm
+ uqis

n �̇i (ξ
r
2 )
∂ξ2

∂xm
+ uqri

n �̇i (ξ
s
3 )
∂ξ3

∂xm

]
.

(4.68)

At this point we can assemble the discrete equations of motions:

[wqwrws ρ
′(ξqrs) J (ξqrs)] üqrs

p = Fqrs( f p)− Fqrs[(∇ · σ )p] , (4.69)

[wqwrws J (ξqrs)] σ qrs
mn = Fqrs[(C : ∇u)mn] . (4.70)
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The above equations are of general validity. They are useful when deformed ele-
ments are needed in order to mesh a structural discontinuity or topography. Equa-
tion (4.70) gives the expansion coefficients σ qrs

mn of σ in terms of the expansion coef-
ficients uqrs

n of u. The former can then be used in Eq. (4.69) to compute the acceler-
ation üqrs

p . As a result of using GLL node points together with GLL quadrature, we
obtain σ qrs

mn and üqrs
p without inverting a large matrix. This is, as already mentioned

in Sect. 4.1, one of the principal advantages of the spectral-element method.
Since the explicit computation of the mass and stiffness matrices is unnecessary

in practice, we work directly with Eq. (4.69) which is a local, i.e. element-wise,
discrete force balance. The corresponding global force balance can be constructed
as in the 1D case.

4.2.4 Point Source Implementation

In applications that focus on the far-field properties of the seismic wave field, the
seismic source can be represented by either a single-force point source,

f(x, t) = s(t) δ(x − xs) , (4.71)

or a moment tensor point source,

f(x, t) = −∇ · [M(t) δ(x − xs)] , (4.72)

located at x = xs. The symbols s and M denote a vectorial source time function and
the moment tensor, respectively. As we already noted in the previous paragraph,
the implementation of point sources deserves special attention. This is because the
approximation of the projection integral Fqrs( f p) := ∫

Ge
ψqrsep · f d3x (Eq. 4.62) by

GLL quadrature is inappropriate when the integrand is far from being a polynomial
of degree 2N − 1. There are two possible, and in fact fully equivalent, solutions: (1)
exact integration and (2) the polynomial approximation of the delta function.

4.2.4.1 Exact Integration

The most straightforward, though physically less insightful, approach is to avoid
GLL quadrature altogether. This is possible because integrals over delta functions
can be trivially evaluated without any approximations. For the single-force point
source from Eq. (4.71), we find

Fqrs( f p) =
∫

Ge

ψqrsep · f d3x =
∫

Ge

sp(t) ψqrs(x) δ(x − xs) d3x = sp(t) ψqrs(xs) ,

(4.73)
and for the moment tensor source (4.72)



4.2 Extension to the 3D Case 77

Fqrs( f p) = −
∫

Ge

ψqrs(x) ep · ∇ · [M(t) δ(x − xs)
]

d3x = ep · M(t) · ∇ψqrs(xs) .

(4.74)
In the reference cube �, the basis functions ψqrs are Lagrange polynomials with
the GLL points as collocation points. It follows that more than one coefficient
Fqrs( f p) will be non-zero unless the source location xs coincides with a grid point.
The numerical point source is therefore potentially non-local. This is reminiscent
of the non-local point source approximations used in finite-difference modelling
(Sect. 3.4).

4.2.4.2 Polynomial Approximation of the Delta Function

An interesting alternative to the exact integration is the approximation of the delta
function by Lagrange polynomials that effectively correspond to a low-pass-filtered
version of the point source (Faccioli et al., 1997). For this we assume that δ(x−xs) in
the source-bearing element Ge can be approximated in terms of the basis functions
ψi jk(x):

δ(x − xs) ≈ δ̄(x − xs) =
N+1∑

i, j,k=1

δi jk ψi jk(x) . (4.75)

We now determine the polynomial coefficients δi jk such that δ̄ reproduces the defin-
ing property of δ:

ψ(xs) =
∫

Ge

δ̄(x − xs) ψ(x) d3x , (4.76)

for any test function ψ that can itself be represented by ψi jk(x). Transforming
Eq. (4.76) to the reference cube � and substituting Eq. (4.75) gives

ψ(xs) =
N+1∑

i, j,k=1

∫

�

δi jk ψi jk[x(ξ)]ψ[x(ξ)] J (ξ) d3ξ . (4.77)

We then insert the Lagrange polynomials as basis functions:

ψ(xs) =
N+1∑

i, j,k=1

∫

�

δi jk �i (ξ1)� j (ξ2)�k(ξ3) ψ[x(ξ)] J (ξ) d3ξ . (4.78)

As a particular test function we choose

ψ[x(ξ)] = �q(ξ1)�r (ξ2)�s(ξ3) . (4.79)
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Inserting (4.79) into (4.78) and approximating the integral with GLL quadrature
gives

�q(ξ
s
1)�r (ξ

s
2)�s(ξ

s
3) = wqwrws δ

qrs J (ξqrs) , (4.80)

where

(ξ s
1, ξ

s
2, ξ

s
3) = ξ s = Fe(xs) (4.81)

denotes the source position in the reference coordinate system. The polynomial
coefficients δi jk are thus given by

Fig. 4.6 Polynomial approximations of the δ function for different polynomial degrees and differ-
ent point source localisations inside the reference cube
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δi jk = �i (ξ
s
1)� j (ξ

s
2)�k(ξ

s
3)

wiw jwk J (ξ i j k)
. (4.82)

A graphical representation of the polynomial approximant δ̄ in two dimensions with
J = 1 is shown in Fig. 4.6. Evidently, δ̄ is a low-pass-filtered, and therefore non-
local, version of δ. The dominant wavelength of δ̄ depends on the polynomial degree
and on the location inside the reference cube. It is, in any case, much shorter than
the minimum wavelength of the seismic waves, which should be around twice the
width of an element. We note that δ̄ integrates to 1 over one element:

1 =
∫

Ge

δ̄(x − xs) d3x . (4.83)

For moment tensor point sources, it is most convenient to add the polynomial
approximation of M(t) δ(x − xs) directly to the stress tensor σ , prior to the compu-
tation of the Galerkin projection of ∇ · σ .

A direct consequence of using a low-pass-filtered version of a point source is that
the wave field is inaccurate in the immediate vicinity of the physical source location.
Based on numerical experiments, however, Faccioli et al. (1997) and Nissen-Meyer
et al. (2007a) conclude that the numerical solutions become hardly distinguishable
from the analytical one at distances of more than one element from the true point
source. Thus, in most applications, the inaccuracy caused by the low-pass filtering
will be very small compared to the error that would result from a source mislocation.

4.3 Variants of the Spectral-Element Method

Chebyshev spectral elements: The spectral-element method, as developed originally
in fluid mechanics (Patera, 1984), was based on the element-wise expansion of
the solution in terms of Chebyshev polynomials. This choice was motivated by
their good approximation properties. Applications of the Chebyshev variant of the
spectral-element method to acoustic and elastic wave propagation have been pre-
sented by Priolo et al. (1994), Seriani et al. (1995) and Seriani (1998). In contrast
to the spectral-element method based on GLL points, the Chebyshev variant does
not produce a diagonal mass matrix. The time integration of the equations of motion
therefore requires the numerical inversion of a sparse matrix.

Fluid–solid models: The fluid regions of the Earth, including the oceans and the
outer core, play an important role in numerous applications. Numerically propa-
gating waves through a fluid–solid model is problematic. Simply setting the shear
modulus to zero inside the fluid regions results in spurious oscillations because the
displacement formulation of the wave equation has too many degrees of freedom.
Therefore, several authors (Komatitsch et al., 2000; Komatitsch & Tromp, 2002;
Chaljub et al., 2003, 2007; Chaljub & Valette, 2004) proposed to employ a veloc-
ity potential formulation of the equations of motion inside the fluid regions that is
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coupled to the displacement formulation in the solid part of the Earth model. The
potential formulation naturally eliminates the excessive degrees of freedom.

An alternative to the spectral-element solution of the wave equation in the fluid
region was presented by Capdeville et al. (2003a) who coupled normal mode solu-
tions inside the spherically symmetric core to spectral-element solutions in the
potentially heterogeneous mantle. The coupling is achieved using a Dirichlet-to-
Neumann operator. Since the normal mode solution is computationally inexpensive,
the overall resource requirements are substantially reduced.

2D spectral elements for radially symmetric Earth models: The applicability of
numerical wave propagation to practically relevant problems can be seriously lim-
ited by the available computational resources. Doubling the dominant frequency
increases the computational costs at least by a factor of 16 when the spatial dimen-
sion is 3. However, the restriction to radially symmetric Earth models allows us
to work effectively with a 2D computational domain while solving the 3D wave
equation (Nissen-Meyer et al., 2007a, 2008; see Fig. 4.7). This is accomplished by
utilising analytical expressions for the azimuthal dependencies for all source types
in this spherically symmetric case. This greatly reduces the necessary resources,
and global wave propagation can easily be handled on desktop computers. It more-
over presents an efficient basis for the computation of sensitivity kernels at arbitrary
resolution (Nissen-Meyer et al., 2007b).

Fig. 4.7 Left: Elemental mesh for the 1D Earth model PREM (Dziewonski & Anderson, 1981)
that produces accurate waveforms down to periods of 15 s. Right: Snapshot of the 3D seismic
wave field after 20 min of propagation, for a full-moment tensor earthquake source at dominant
period of 10 s. This simulation has been undertaken on a desktop and took 1 h CPU time
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4.4 Accuracy and Efficiency

The accuracy of spectral-element solutions is controlled by both the size of the
elements and the degree of the Lagrange polynomials. Decreasing the size of the
elements and increasing the polynomial degree will mostly lead to higher accu-
racy. Exceptions are those cases where the numerical dispersion resulting from the
low-order time discretisation dominates over the numerical error of the spatial dis-
cretisation.

In general, the GLL quadrature is not exact even in the case of a homogeneous
medium. This is because the integrands are products of two polynomials of degree
N , and GLL quadrature is exact only for polynomials of degree (2N −1) and lower.
This deficiency can become important when the material properties vary strongly
inside an element.

To ensure that variable material properties are properly accounted for by the
mesh, one may increase the polynomial degree. However, the maximum degree
is very limited by the CFL stability condition and the available computational
resources. This is because the distance between the first two GLL points decreases
as O(N−2), i.e. quadratically with increasing degree. Thus, choosing N � 8 usually
results in unreasonably small step lengths. On the other hand, by choosing N < 4,
one sacrifices much of the accuracy of the spectral-element method. A compromise
based on experience is to use polynomial degrees between 4 and 7.

Also based on experience is the rule of thumb that one should use at least five
grid points per minimum wavelength in order to obtain accurate solutions when the
propagation distance is on the order of 10–50 wavelengths. It is important to keep
in mind that numerical dispersion is cumulative, meaning that the numerical error
grows steadily as the length of the simulation increases. Thus, a larger number of
grid points per wavelength may become necessary when the propagation distance is
significantly larger than 50 wavelengths.

Analytical estimates of numerical dispersion in spectral-element modelling have
become available only recently. Based on a plane wave analysis in 2D, De Basabe
& Sen (2007) found that the relative phase velocity error is below 0.2% when four
to five grid points per wavelength are used and when the polynomial degree is 4
or higher. These results have been confirmed by Seriani & Oliveira (2008), who
showed that numerical dispersion is negligible when five grid points per wavelength
are used together with the polynomial degree 8. Since analytical dispersion analysis
usually assumes homogeneous and unbounded media, it is important to keep in mind
that additional dispersion errors may arise from boundary conditions or structural
heterogeneities.

The term accurate solution is subjective to some degree. The required level of
accuracy always depends on the specific application. It is recommended to always
assess the quality of the synthetic seismograms for a particular application. This
can be done using either convergence tests or comparisons to analytical solutions, if
available. The commonly used rules of thumb are derived from a small number of
well-behaved examples and they need not always be valid.



Chapter 5
Visco-elastic Dissipation

Seismic waves propagating through the Earth are attenuated due to the conversion
of elastic energy into heat. While being important, we have ignored this effect in our
previous analyses, mostly in the interest of simplicity. In the following paragraphs
we show that attenuation can easily be incorporated into any time-domain solver of
the elastic wave equation with the help of memory variables.

Based on the work of Robertsson et al. (1994) and Blanch et al. (1995), we
start with a specification of the visco-elastic rheology in terms of a superposition
of standard linear solids that are controlled by a set of relaxation parameters. The
resulting constitutive relation involves a time convolution that can be transformed
into a numerically more convenient system of first-order differential equations. We
then derive a relation between the relaxation parameters and the quality factor Q
that can be inferred from seismological measurements. The chapter concludes with
the construction of Q models that are constant within a given frequency range.

5.1 Memory Variables

Under the assumption that all seismologically relevant modes of attenuation can be
modelled by linear mechanisms, we restrict ourselves to linear visco-elastic theory.
In the interest of a light notation we let the scalars σ,C and ε be representatives of
some particular components of the tensors σ ,C and ε, respectively, and we omit
all spatial dependencies. The scalar version of the linear visco-elastic stress–strain
relation (2.14) is then defined by

σ(t) = (C ∗ ε̇)(t) =
∫ t

−∞
C(t − t ′)ε̇(t ′) dt ′ . (5.1)

Many processes including thermal diffusion, grain boundary relaxation, solid-phase
transformations and partial melting contribute to the absorption of elastic energy.
The combined effect of these mechanisms can be modelled with a stress relaxation
function C(t) that is a superposition of N standard linear solids (e.g. Liu et al., 1976;
Kennett, 2001; Aki & Richards, 2002):

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-15807-0_5, C© Springer-Verlag Berlin Heidelberg 2011
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C(t) = Cr

[
1 − 1

N

N∑
n=1

(
1 − τε,n

τσ,n

)
e−t/τσ,n

]
H(t) , (5.2)

where τε,n and τσ,n are the strain and stress relaxation times of the nth stan-
dard linear solid, respectively. The symbol H(t) denotes the Heaviside function.
When the strain has the form of a unit step equal to H(t), the relaxed modulus
Cr = limt→∞ C(t) is equal to the equilibrium stress. The corresponding initial
stress C(0) = Cu is the unrelaxed modulus. Equation (5.2) is very general so that
different sets of relaxation times can give nearly identical relaxation functions C(t).
To reduce this subjectively undesirable non-uniqueness we limit the number of free
parameters by defining a dimensionless variable τ :

τ := τε,n

τσ,n
− 1 . (5.3)

This gives

C(t) = Cr

[
1 + τ

N

N∑
n=1

e−t/τn

]
H(t) , (5.4)

where we renamed τσ,n into τn for notational brevity. The new parameter τ mea-
sures the relative difference between the relaxed modulus Cr and the unrelaxed
modulus Cu:

τ = (Cu − Cr)/Cr . (5.5)

Differentiating (5.4) with respect to t and introducing the result into Eq. (5.1) yields

σ̇ (t) = Cr(1 + τ) ε̇(t)+ Crτ

N∑
n=1

Mn(t) , (5.6)

where the memory variables Mn are defined by

Mn(t) := − 1

Nτn

∫ ∞

−∞
e−(t−t ′)/τn H(t − t ′) ε̇(t ′) dt ′ . (5.7)

Equation (5.7) is computationally inconvenient because the solution of the integral
requires knowledge of the strain rate ε̇ at all times between t0 and t . This implies
that the strain field would need to be stored in iterative time-domain solutions of the
wave equation. Fortunately, the differentiation of (5.7) with respect to time allows
us to write the memory variables as solutions of the following first-order differential
equations:



5.2 Q Models 85

Ṁn = − 1

Nτn
ε̇ − 1

τn
Mn , n = 1, . . . , N . (5.8)

Visco-elastic dissipation can thus be modelled by simultaneously solving the
momentum Eq. (2.11), the modified stress–strain relation (5.6) and a set of N
ordinary differential equations for the memory variables Mn (5.8). The memory
variables are formally independent of the elastic parameter Cr . This formulation,
proposed by Moczo & Kristek (2005), gives more accurate results in the case of
strong attenuation heterogeneities than the earlier treatment by Blanch et al. (1995).

5.2 Q Models

Equations (5.6) and (5.8) are easily translate to the tensorial case where every Ci jkl

becomes time dependent. In practice, however, only dissipation related to the shear
modulusμ and the bulk modulus κ = λ+ 2

3μ can be estimated reliably using seismic
observations. These estimates are mostly based on measurements of the amplitude
reduction of seismic waves that result from the transformation of elastic into thermal
energy. For this reason, seismology has traditionally emphasised the quality factor
Q instead of particular stress relaxation functions. The definition of Q is based on
the complex modulus

C̃(ν) = i ν
∫ ∞

−∞
C(t) e−iνt dt , (5.9)

with the complex frequency ν = ω + iγ and γ < 0. Then

Q(ω) := Re C̃(ω)

Im C̃(ω)
. (5.10)

The seismologist’s interest in Q rests on its interpretation in terms of the energy
that is dissipated per oscillation cycle, Ediss, relative to the mean elastic energy in
the absence of dissipation, Emean:

Ediss

Emean
= 4π

Q
. (5.11)

For the stress relaxation function defined in Eq. (5.4) the complex modulus is
given by

C̃(ω) = Cr + iντCr

N

N∑
n=1

τn

1 + iντn
, (5.12)

and the resulting expression for Q is
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Q(ω) =
∑N

n=1

(
1 + ω2τ 2

n τ

1+ω2τ 2
n

)
∑N

n=1

(
ωτnτ

1+ω2τ 2
n

) . (5.13)

The frequency dependence of Q has been studied extensively. While seismolog-
ical observations (e.g. Flanagan & Wiens, 1998; Cheng & Kennett, 2002; Shito
et al., 2004) and laboratory experiments (e.g. Jackson, 1971, 2000) indicate that
Q can depend significantly on ω, the constant-Q approximation remains popular
because it explains many surface and body wave data sets adequately. See Anderson
& Archambeau (1964) for an early example.

It is, in any case, non-trivial to find τ as well as a suitable set of relaxation times
τn that approximate a pre-defined Q0(ω) within a relevant frequency band [ω1, ω2].
The determination of τ and τn generally involves the solution of a non-linear opti-
misation problem (e.g. Blanch et al., 1995; Bohlen, 2002; Hestholm et al., 2006).

In the special case of a large and nearly constant Q we can approximate τ ana-
lytically. For this we note that Q � 1 results from τ−1 � 1. Inserting τ−1 � 1
into Eq. (5.13) yields

Q−1(ω) ≈ τ

N

N∑
n=1

(
ωτn

1 + ω2τ 2
n

)
. (5.14)

Since Q is assumed to be approximately constant within [ω1, ω2], we furthermore
find

K (ω) :=
N∑

n=1

(
ωτn

1 + ω2τ 2
n

)
≈ const , for ω ∈ [ω1, ω2] , (5.15)

and

Q−1 ≈ τK

N
. (5.16)

Equation (5.16) approximates τ provided that the relaxation times τn are known.
This allows us to rewrite (5.4) in a physically more interpretable form:

C(t) = Cr

[
1 + 1

K Q

N∑
n=1

e−t/τn

]
H(t) . (5.17)

The problem of constructing a nearly constant Q(ω) is now reduced to finding the
relaxation times τn such that K (ω) is nearly constant. Since the optimal constant
value of K (ω) is not known a priori, we propose to find τn such that the norm of the
frequency derivative of K (ω),
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Table 5.1 Dissipation parameters τ and τn for an ideally constant Q0 of 100 in the frequency band
from 0.02 to 0.2 Hz. The right column gives the mean deviation of the constructed Q(ω) from 100

n τ τ1 [s] τ2 [s] τ3 [s] τ4 [s] τ5 [s] �Q

2 0.0334 9.11 1.02 6.86
3 0.0451 10.28 1.26 0.10 6.65
4 0.0417 29.01 7.29 1.42 0.40 1.14
5 0.0493 32.06 8.83 1.97 0.46 0.11 0.78

J2(τn) :=
∫ ω2

ω1

[
d

dω
K (ω)

]2

dω , (5.18)

is minimised. This method is robust and reliable when global search algorithms,
such as simulated annealing (Kirkpatrick et al., 1983), are used to solve the optimi-
sation problem. Once a suitable set of τn is found, τ can be approximated either by
Eq. (5.16) or by a second non-linear optimisation stage based on Eq. (5.13).

Effectively, τ determines the absolute values of Q and τn determines the fre-
quency range over which it is nearly constant. Table 5.1 lists τ and the relaxation
times τn for different numbers of relaxation mechanisms for an ideally constant Q0
of 100 in the frequency band from 0.02 to 0.2 Hz. The corresponding approxima-
tions Q(ω) are shown in Fig. 5.1.

Figure 5.1 reveals that a larger number of relaxation mechanisms gives better
constant-Q approximations, especially for frequencies higher than the actual upper
frequency limit. For frequencies lower than the lower frequency limit, the super-
position of standard linear solids performs poorly in general. As the frequency
approaches zero, Q tends to very large values, meaning that the low-frequency

Fig. 5.1 Q(ω) for different numbers of relaxation mechanisms in the frequency band from 0.0 to
0.4 Hz. The frequency band from 0.02 to 0.2 Hz, for which Q(ω) is constructed to be approxi-
mately constant, is marked by blue lines. A red line indicates the ideal constant Q value of 100
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components of the wave field are hardly affected by visco-elastic dissipation. It is a
rule of thumb to use two or three relaxation mechanisms per order of magnitude in
the frequency range in order to achieve a good constant-Q approximation.

An interesting and useful aspect of Eq. (5.13) is that the relaxation times τn

always appear in the form of a product with the frequency ω. Therefore, shift-
ing the frequency band from [ω1, ω2] to [γω1, γω2], with some γ > 0, merely
requires to change τn to τn/γ in order to achieve a constant-Q approximation within
[γω1, γω2].



Chapter 6
Absorbing Boundaries

Restricting the computational domain to only a part of the true physical domain
in the interest of computational efficiency introduces reflecting boundaries that do
not exist in the true Earth. If not treated adequately, reflections from these artificial
boundaries pollute the solution and dominate the numerical error. The most com-
mon methods used to suppress the undesired reflections fall into two categories:
absorbing boundary conditions and absorbing boundary layers.

Absorbing boundary conditions, covered in Sect. 6.1, prescribe the wave field
and its derivatives along the artificial boundary. Low-order conditions, involving
first and second derivatives of the wave field, were originally derived from paraxial
approximations of the wave equation (e.g. Engquist & Majda, 1977; Clayton &
Engquist, 1977). Their efficiency depends strongly on the angle of incidence. The
absorption is perfect only for waves propagating normal to the boundary. High-order
absorbing boundary conditions (e.g. Keys, 1985; Higdon, 1991) partly overcome
this deficiency.

Absorbing boundary layers are based on the introduction of a thin region along
the artificial boundary where the original wave equation is modified such that the
amplitudes of incident waves decay rapidly. The Gaussian taper method (Cerjan
et al., 1985), described in Sect. 6.2, is the simplest and most robust absorbing bound-
ary layer technique. It consists in the iterative multiplication of the incident wave
field by numbers smaller than 1. The perfectly matched layer (PML) method, intro-
duced by Bérenger (1994), is both more efficient and numerically more involved
than the Gaussian taper. It is based on variants of the wave equation that produce
waves with exponentially decreasing amplitude. We outline the PML approach in
Sect. 6.3.

6.1 Absorbing Boundary Conditions

Absorbing boundary conditions prescribe the space and time derivatives along the
artificial boundary. Historically, absorbing boundary conditions were derived from
paraxial approximations of the wave equation (e.g. Claerbout & Johnson, 1971).
Paraxial approximations, described in Sect. 6.1.1, only allow for propagation around

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
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DOI 10.1007/978-3-642-15807-0_6, C© Springer-Verlag Berlin Heidelberg 2011

89



90 6 Absorbing Boundaries

a pre-defined coordinate axis (e.g. Claerbout & Johnson, 1971). Imposing parax-
ial approximations along the artificial boundary leads to the absorption of incident
waves (e.g. Engquist & Majda, 1977; Clayton & Engquist, 1977; Sect. 6.1.2). While
the absorption is perfect at normal incidence, waves propagating at small angles to
the boundary are almost perfectly reflected. This deficiency motivates the design
of high-order conditions that absorb waves at nearly arbitrary angles of incidence
(e.g. Keys, 1985; Higdon, 1991; Sects. 6.1.3 and 6.1.4). Critical issues related to
absorbing boundary conditions are numerical stability, practical implementation and
efficiency in geologically relevant Earth models (Sect. 6.1.5).

6.1.1 Paraxial Approximations of the Acoustic Wave Equation

The occurrence of reflections at boundaries and interfaces rests on the existence of
waves with a propagation direction that is opposite to the propagation direction of
the incident wave. This observation motivates the derivation of paraxial approxi-
mations to the wave equation that only allow for nearly unidirectional propagation.
Paraxial approximations, frequently referred to as one-way wave equations, have
received considerable attention in the context of seismic migration (Claerbout &
Johnson, 1971; Gazdag, 1978; Stolt, 1978; Larner & Beasley, 1987) and absorbing
boundaries (e.g. Clayton & Engquist, 1977, 1980; Dai et al., 1996). To illustrate the
concept, we consider the acoustic wave equation in a homogeneous and source-free
full space:

ü − v2(∂2
x + ∂2

y + ∂2
z ) u = 0 . (6.1)

Solutions to Eq. (6.1) are weighted superpositions of plane waves

u = ei(k·x−ω t) , (6.2)

where the angular frequency ω, the wave number vector k = (kx , ky, kz) and the
acoustic wave speed v are related via the dispersion relation

ω2

v2
− k2

x − k2
y − k2

z = 0 , (6.3)

or equivalently

kz = ±ω
v

√
1 − v2

ω2
(k2

x + k2
y) . (6.4)

Positive vertical wave numbers, kz > 0, correspond to waves propagating in posi-
tive z-direction, and negative vertical wave numbers, kz < 0, correspond to waves
propagating in negative z-direction. Our goal is to modify the dispersion relation
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(6.4) such that it permits only for waves propagating towards increasing z and then
to derive the corresponding wave equation.

The obvious modification of the dispersion relation consists in the restriction to
the positive branch of the square root

kz = ω

v

√
1 − v2

ω2
(k2

x + k2
y) (6.5)

that corresponds to the wave equation

⎡
⎣∂z − i

ω

v

√
1 − v2

ω2
(k2

x + k2
y)

⎤
⎦ u(kx , ky, z, ω) = 0 . (6.6)

Equation (6.6) determines the wave field u in a mixed space–frequency–wave num-
ber domain. Its translation to the space–time domain via the inverse Fourier trans-
form results in an integro-differential equation (Engquist & Majda, 1977) that is
impractical from a computational point of view. To facilitate the transformation of
(6.6) into a numerically more convenient partial differential equation in time and
space, we expand the square root from (6.5) into a truncated Taylor series, which
results in the following approximations:

vkz

ω
= 1 + O

(∣∣∣∣ v
2

ω2
(k2

x + k2
y)

∣∣∣∣
)
, (6.7)

vkz

ω
= 1 − 1

2

[
v2

ω2
(k2

x + k2
y)

]
+ O

(∣∣∣∣ v
2

ω2
(k2

x + k2
y)

∣∣∣∣
2)

. (6.8)

Following Clayton & Engquist (1977), the approximations (6.7) and (6.8) are com-
monly referred to as the A1 and A2 paraxial approximations. Figure 6.1 illustrates
the approximations compared to the dispersion relation of the complete acoustic
wave equation. Since (6.7) and (6.8) can be written as polynomials in ω, kx , ky and
kz , we easily find the corresponding one-way wave equations:

u̇ + v ∂zu = 0 , (6.9)

ü + v ∂z u̇ − 1

2
v2 (∂2

x + ∂2
y ) u = 0 . (6.10)

We note that there are many other approximations of the square root from (6.5)
that lead to different one-way wave equations (e.g. Claerbout, 1976; Clayton &
Engquist, 1977; Zhang, 1985). Equations (6.9) and (6.10) are, however, most com-
monly used.
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Fig. 6.1 Illustration of the paraxial approximations from (6.7) and (6.8) in the (kx , kz)-plane. The
circle corresponds to the dispersion relation (6.4) of the acoustic wave equation. In the second-order
approximation (A1), the vertical wave number kz is equal to ω/v for all kx ∈ R, thus allowing only
for propagation in the positive z-direction. The fourth-order approximation (A2) reproduces the
dispersion relation of the wave equation (6.4) for small horizontal wave numbers kx

6.1.2 Paraxial Approximations as Boundary Conditions
for Acoustic Waves

Paraxial approximations of the wave equation restrict the propagation directions
of waves to a cone surrounding a pre-defined axis. This suggests to use paraxial
approximations as absorbing boundary conditions. Assuming, for instance, that the
artificial boundary is located along z = 0, we may impose the condition

⎡
⎣∂z − i

ω

v

√
1 − v2

ω2
(k2

x + k2
y)

⎤
⎦ u(kx , ky, z, ω)|z=0 = 0 (6.11)

that is motivated by Eq. (6.6). To assess the absorption efficiency of condition (6.11),
we compute the reflection coefficient R that determines the amplitude of the waves
reflected from the artificial boundary. For the solution inside the physical domain
we use the superposition of a plane wave travelling in positive z-direction, u+, and
a plane wave travelling in negative z-direction, u−:

u = u+ + R u− , (6.12)

with

u+ = ei(kx x+ky y+kz z−ωt) , (6.13)

and

u− = ei(kx x+ky y−kz z−ωt) . (6.14)
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The wave number vector is given by

k = ω

v

⎛
⎝ cosφ sin θ

sinφ sin θ
cos θ

⎞
⎠ , (6.15)

where φ ∈ [0, 2π) is the angle between k and the positive x-axis, and θ ∈ [0, π/2]
is the angle of incidence between k and the positive z-axis. Imposing (6.11) upon
(6.12) yields

R = 0 , (6.16)

meaning that the boundary is perfectly absorbing. Condition (6.11) is given in
the (kx , ky, z, ω) domain. Its inverse Fourier transform to the space–time domain
results in an integro-differential equation that is highly impractical from a computa-
tional perspective (e.g. Engquist & Majda, 1977). We therefore replace the perfectly
absorbing boundary condition (6.16) by paraxial approximations, that is either by
the A1 condition

u̇ + v ∂zu|z=0 = 0 (6.17)

or the A2 condition

ü + v ∂z u̇ − 1

2
v2 (∂2

x + ∂2
y ) u|z=0 = 0 , (6.18)

as proposed by Engquist & Majda (1977) and Clayton & Engquist (1977). While
being numerically convenient, the boundary conditions (6.17) and (6.18) result in
less optimal absorption. The corresponding reflection coefficients are

R = −1 − cos θ

1 + cos θ
(6.19)

for the A1 condition (6.17) and

R = − (1 − cos θ)2

(1 + cos θ)2
(6.20)

for the A2 condition (6.18). Figure 6.2 shows the reflection coefficients of the A1
and A2 conditions as functions of the angle of incidence. Both boundary condi-
tions are perfectly absorbing for plane waves propagating parallel to the z-axis.
The reflection coefficient for the A1 condition initially grows more rapidly. How-
ever, for angles of incidence larger than π/4, both conditions result in unacceptably
large reflections that may produce errors that are larger than the difference between
observed and synthetic seismograms. It is this deficiency that motivates the design
of higher order absorbing boundary conditions (e.g. Clayton & Engquist, 1977;
Keys, 1985; Higdon, 1991), which are the subject of Sect. 6.1.3.
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Fig. 6.2 Absolute values of the reflection coefficients of the A1 (Eq. 6.19) and the A2 (Eq. 6.20)
absorbing boundary conditions as functions of the angle of incidence θ . In both cases the absorption
is perfect for normal-incident plane waves, i.e. for θ = 0. The reflection coefficient of the A1
condition initially grows more rapidly for increasing angles of incidence. However, both conditions
generate perfect reflections (|R| ≈ 1) for angles of incidence close to π/2

6.1.3 High-Order Absorbing Boundary Conditions
for Acoustic Waves

The absorbing boundary conditions considered so far become inefficient for increas-
ing angles of incidence. To derive improved conditions we first return to the A1
condition (6.17) that can be written in the following operator form:

A1u|z=0 = (cos θ1 ∂t + v ∂z) u|z=0 = 0 , (6.21)

with θ1 = 0. Evaluating A1u for the plane wave solutions from (6.12) gives

A1u = A1u+ + R A1 u− = −iω (cos θ1 − cos θ) u+ − iω R (cos θ1 + cos θ) u− .
(6.22)

Imposing the A1 boundary condition results in a simple equation for the reflection
coefficient:

(cos θ1 − cos θ)+ R (cos θ1 + cos θ) = 0 . (6.23)

Equation (6.23) implies R = 0 for θ = θ1, not only when θ1 = 0 but also for any
choice of θ1 between 0 and π/2. The boundary condition (6.21) can thus be used to
completely annihilate waves with an angle of incidence equal to θ1.
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We now repeat the above exercise and apply a second operator, A2, to A1u:

A2 A1u = − ω2 (cos θ1 − cos θ)(cos θ2 − cos θ) u+

− ω2 R (cos θ1 + cos θ)(cos θ2 + cos θ) u− . (6.24)

Then imposing

A2 A1u|z=0 = 0 (6.25)

again gives an expression for the reflection coefficient R:

(cos θ1 − cos θ)(cos θ2 − cos θ)+ R (cos θ1 + cos θ)(cos θ2 + cos θ) = 0 . (6.26)

Since it follows that R = 0 for θ = θ1 or θ = θ2, the absorbing boundary condition
(6.25) completely annihilates waves with angles of incidence equal to either θ1 or θ2.
For the special case θ1 = θ2 = 0, we retrieve the reflection coefficient corresponding
to the A2 condition (Eq. 6.20).

The continuation of the above scheme is obvious. To prevent reflections from
waves incident at angles θ1, . . . , θN , we impose the Nth-order absorbing boundary
condition (e.g. Higdon, 1991)

N∏
i=1

Ai u|z=0 = 0 . (6.27)

The corresponding reflection coefficient is then

R =
N∏

i=1

(cos θ1 − cos θ)

(cos θ1 + cos θ)
. (6.28)

Two examples of reflection coefficients for N = 3 and 4 are shown in Fig. 6.3.
Higher order absorbing boundary conditions enlarge the range of incidence angles
for which almost perfect absorption occurs. They cannot, however, prevent strong
reflections from waves propagating nearly parallel to the boundary.

We finally note that the absorption operators Ai can easily be generalised to
arbitrarily oriented boundaries:

Ai = (cos θi ∂t + v n · ∇) , (6.29)

where n denotes the unit normal to the boundary ∂G of the computational domain
G. Each operator Ai provokes perfect absorption for waves that are incident upon
G with an angle of incidence θi measured from the normal.



96 6 Absorbing Boundaries

Fig. 6.3 Absolute values of reflection coefficients corresponding to high-order boundary condi-
tions with (θ1, θ2, θ3) = (0, π/5, π/3) and (θ1, θ2, θ3, θ4) = (0, π/7, 2π/7, 3π/7). The reflection
coefficients are close to zero for a large range of incident angles θ . However, as θ approaches π/2,
the artificial boundary becomes perfectly reflecting

6.1.4 Generalisation to the Elastic Case

To translate the high-order absorbing boundary condition (6.27) to the elastic case,
we need to account for the presence of at least two types of body waves: P waves
and S waves propagating at their respective speeds vP and vS. For instance, imposing
the boundary condition

(∂t − vP ∂z)(∂t − vS ∂z)u|z=0 = 0 (6.30)

leads to the perfect absorption of normal-incidence P and S waves. The multiplica-
tion of (6.30) by vS/vP,

(
vS

vP

∂t − vS ∂z

)
(∂t − vS ∂z)u|z=0 = 0 , (6.31)

reveals that the boundary condition (6.30) also annihilates S waves with an angle
of incidence equal to θ = acos(vS/vP). A more general and high-order version of
(6.30), reminiscent of (6.27) is

N∏
i=1

(ci ∂t − vP ∂z)u|z=0 = 0 , (6.32)
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with positive parameters ci (Higdon, 1991). Choosing ci ≈ 1 results in the absorp-
tion of normal-incidence P waves, whereas ci ≈ vP/vS leads to the absorption of
normal-incidence S waves. The crucial point is that each factor in the absorbing
boundary condition (6.32) helps to suppress reflections from both P and S waves at
different angles of incidence (Higdon, 1990).

6.1.5 Discussion

Absorbing boundary conditions are today widely used in numerical seismic wave
propagation. Despite their apparent simplicity, several issues deserve to be discussed
in more detail. These include numerical stability, absorption efficiency and the prac-
tical implementation.

Stability: Several authors reported numerical instabilities resulting from the
application of absorbing boundary conditions. In a series of numerical experiments,
Emerman & Stephen (1983) and Mahrer (1986) found that the second-order condi-
tion for elastic waves proposed by Clayton & Engquist (1977) becomes unstable for
vS/vP smaller than ≈ 0.46. Simone & Hestholm (1998) concluded that the occur-
rence of instabilities depends on the spatial discretisation used to solve the wave
equation, and Mahrer (1990) related instabilities to the size of the time increment
in time-domain finite-difference modelling. A complete stability analysis of the dif-
ferent absorbing boundary conditions is clearly beyond the scope of this book. It
is, however, important to realise that stability is an issue that can become important
depending on the numerical scheme and the Earth model.

Absorption efficiency: It is common practice to assess the efficiency of absorbing
boundary conditions in series of numerical tests that involve simple Earth models
for which analytical solutions to the wave equation are available. Similar tests for
heterogeneous and geologically more relevant models are rare. The numerical solu-
tions should therefore be inspected carefully with the experience of a computational
seismologist who is able to make the distinction between solution and artefact.

A disadvantageous characteristic of all absorbing boundary conditions is the
almost perfect reflection of waves that propagate nearly parallel to the artificial
boundary or that have a variable direction of particle motion. This is particularly
problematic in shallow models where horizontally propagating surface waves in
general and Rayleigh waves in particular may interact with the bottom boundary.
Such pollution of the wave field can be avoided by increasing the depth of the model,
which implies higher computational costs. The requirement to efficiently absorb
surface waves was one the principal motivations for the development of perfectly
matched layer (PML) techniques, that we will describe in Sect. 6.3.

Implementation of high-order conditions: High-order absorbing boundary con-
ditions, as the ones introduced in Eqs. (6.28) and (6.32), involve time and space
derivatives of the wave field that are both unavailable and undesirable in numerical
schemes. Time derivatives of order 3 and higher are related to high-frequency wave
fields that may not be representable with a given spatio-temporal discretisation.
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Space derivatives of high order are numerically expensive and their implementa-
tion leads to highly non-local discrete difference operators. Nearly all applications
therefore work with either first- or second-order absorbing boundary conditions.

An interesting alternative to the classical high-order conditions for acoustic
waves was proposed by Collino (1993). It is based on N > 0 auxiliary variables
governed by second-order differential equations defined on the boundary. The Nth-
order absorbing boundary condition then involves only the first derivatives of the
wave field and the auxiliary variables. This scheme overcomes the need to compute
high-spatial derivatives, and it is therefore referred to as local high-order absorbing
boundary condition. For a review of local boundary conditions, the reader is referred
to Givoli (2003).

6.2 Gaussian Taper Method

The Gaussian taper method was proposed by Cerjan et al. (1985) in the context of
time-domain finite-difference modelling of acoustic and elastic wave propagation.
It is the simplest and most robust absorbing boundary layer technique. The general
idea of the method is to multiply the wave field inside a narrow strip along the
artificial boundaries by a Gaussian taper

G(x) = e−(x0−x)2/γ 2
, (6.33)

Fig. 6.4 Illustration of the Gaussian taper concept. The regular computation domain is surrounded
by an absorbing layer where the wave field is multiplied in each time step by a Gaussian taper. The
amplitude of the taper, visualised in the horizontal taper profile, decreases from 1 at the interface
between the regular medium and the absorbing layer towards the boundary of the domain
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where we assumed that the absorbing layer is orthogonal to the x-direction and
that it extends from x = x0 towards increasing values of x . The value of γ is
determined empirically such that artificial reflections are minimised. Repeating the
tapering procedure in each time step attenuates waves propagating in positive x-
direction. This concept is illustrated in Fig. 6.4.

The Gaussian taper method is easily applicable to both acoustic and elastic
wave propagation. It is unconditionally stable and attenuates waves at all angles of
incidence. Moreover, it requires virtually no changes of pre-existing codes. These
advantageous properties explain the extraordinary popularity of this simple tech-
nique in the numerical wave propagation community (e.g. Igel et al., 2002; Baig
et al., 2003; Furumura & Kennett, 2005).

6.3 Perfectly Matched Layers (PML)

While the Gaussian taper method proves to be efficient for finite-difference meth-
ods, it requires unacceptably large boundary layers when high-order methods such
as the spectral-element method are used. A more efficient boundary layer technique
was introduced by Bérenger (1994), who proposed to modify the electrodynamic
wave equation inside a perfectly matched layer (PML) such that the solutions decay
exponentially without producing reflections from the boundary between the regular
medium and the PML. Since Bérenger’s original invention, the PML method has
been extended to a large variety of wave propagation phenomena. The develop-
ment of PML techniques for elastic wave propagation was largely motivated by
the requirement to efficiently absorb surface waves that propagate nearly parallel
to the bottom boundary of the computational domain. Today, reports on variants
of the PML method and their respective properties form a vast body of literature.
For contributions within a seismological context, the reader is referred to Collino
& Tsogka (2001), Komatitsch & Tromp (2003), Festa & Vilotte (2005), Festa
et al. (2005), Meza-Fajardo et al. (2008) or Kristek et al. (2009).

To illustrate the general concept, we derive the PML variant known as anisotropic
perfectly matched layers (APMLs). It was also studied, for example, by Teixeira &
Chew (1997) and Zheng & Huang (2002).

6.3.1 General Development

All variants of the PML technique are based on the definition of an absorbing
boundary layer − the PML region − where the wave equation is modified such
that incident waves decay rapidly. The modification of the wave equation inside the
PML region is designed to perfectly match the original wave equation, meaning that
no artificial reflections occur at the transition of the regular medium to the PML. To
derive the PML equations, we consider the velocity–stress formulation of the elastic
wave equation in the frequency domain:
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Fig. 6.5 Illustration of the PML concept. The regular computation domain is surrounded by an
absorbing layer within which the elastic wave equation is modified such that incident plane waves
decay rapidly as they approach the boundary

iωρv(x, ω) = ∇ · σ (x, ω) , (6.34)

iωσ (x, ω) = C(x, ω) : ∇v(x, ω) , (6.35)

iωu(x, ω) = v(x, ω) . (6.36)

For simplicity we disregard visco-elastic dissipation and we omit the external forces
because seismic sources will generally not be placed inside the absorbing layer.
To keep the treatment readable, we do not make a notational distinction between
time-domain and frequency-domain variables (Fig. 6.5).

In a homogeneous and isotropic medium and when external forces are absent,
the elastic wave equation has plane wave solutions of the form

u(x, ω) = A e−ik(ω)·x , (6.37)

with either

A || k(ω) and |k(ω)|2 = ρω2

λ+ 2μ
= ω2

v2
P

(6.38)

for the P wave or

A ⊥ k(ω) and |k(ω)|2 = ρω2

μ
= ω2

v2
S

(6.39)

for the S wave. Our goal is to modify the original equations of motion (6.34), (6.35)
and (6.36) such that they allow for plane wave solutions that decay exponentially
with distance, say for example, in increasing z-direction. For this, the Cartesian
coordinate z is transformed to a new variable z̃ := z̃(x) such that the resulting
solutions are
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u(x, ω) = A e−ik(ω)·x e− f (ω,z) z (6.40)

for z > 0 and some function f that depends on the particular choice of z̃(x). Choos-
ing the transformation such that f (ω, z)|z<0 = 0 will leave the solution in z < 0
unchanged. We use the coordinate transformation

z̃ :=
z∫

0

γz(z
′) dz′ . (6.41)

At this point of the development we do not specify the integrand γz , commonly
referred to as stretching factor. We merely require z̃ = z or equivalently γz(z) = 1
outside the PML, that is for z < 0. To obtain decaying plane waves also in the
remaining coordinate directions, the transformations x → x̃ and y → ỹ are defined
in analogy to (6.41). Replacing the derivatives ∂x , ∂y and ∂z in (6.34) by the deriva-
tives ∂x̃ , ∂ỹ and ∂z̃ gives the following set of equations:

iωρvx = γ−1
x ∂xσxx + γ−1

y ∂yσxy + γ−1
z ∂zσxz , (6.42)

iωρvy = γ−1
x ∂xσyx + γ−1

y ∂yσyy + γ−1
z ∂zσyz , (6.43)

iωρvz = γ−1
x ∂xσzx + γ−1

y ∂yσzy + γ−1
z ∂zσzz . (6.44)

Multiplication by γxγyγz yields

iωγxγyγzvx = γyγz∂xσxx + γxγz∂yσxy + γxγy∂zσxz , (6.45)

iωγxγyγzvy = γyγz∂xσyx + γxγz∂yσyy + γxγy∂zσyz , (6.46)

iωγxγyγzvz = γyγz∂xσzx + γxγz∂yσzy + γxγy∂zσzz . (6.47)

The products γiγ j on the right-hand sides of Eqs. (6.45), (6.46) and (6.47) can be
placed under the differentiation because γx depends only on x , γy only on y and γz

only on z. We may then write the new version of (6.34) as

iωγxγyγzv = ∇ · σ pml , (6.48)

with the definition of the PML stress tensor σ pml:

σ pml := γxγyγz σ · � , � :=
⎛
⎝γ

−1
x 0 0
0 γ−1

y 0
0 0 γ−1

z

⎞
⎠ . (6.49)

Since (6.34) and (6.48) are very similar, the PML can be implemented with relative
ease by slightly modifying pre-existing codes. It is noteworthy at this point that σ pml

is in general not symmetric.
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In the next step we consider the constitutive relation. Based on (6.35) and (6.36)
we find

σ
pml
i j = γxγyγzγ

−1
j σi j = γxγyγzγ

−1
j

3∑
k,l=1

Cijkl
∂uk

∂xl
. (6.50)

Again replacing ∂x , ∂y and ∂z by ∂x̃ , ∂ỹ and ∂z̃ , yields

σ
pml
i j = γxγyγzγ

−1
j

3∑
k,l=1

Cijklγ
−1
l
∂uk

∂xl
. (6.51)

For convenience we define the PML displacement gradient (∇u)pml as

(∇u)pml := γxγyγz(∇u) · � . (6.52)

We can now assemble the frequency-domain version of the modified wave equation:

iωργxγyγzv = ∇ · σ pml , (6.53)

iωσ pml · �−1 = C : (∇v)pml . (6.54)

To demonstrate that exponentially decaying plane waves are indeed solutions of
Eqs. (6.52), (6.53) and (6.54) we consider a homogeneous and isotropic medium.
For simplicity, we restrict the analysis to the case where the waves are attenuated
when travelling in positive z-direction. This requires γx = γy = 1 and γz =
const �= 1. Assuming a plane wave solution of the form

u(x, ω) = A e−i(kx x+kz z) , (6.55)

the problem reduces to finding the dispersion relation k = k(ω). In fact, introducing
the ansatz (6.55) into the modified equations of motion (6.53) and (6.54) leads to a
matrix equation for the polarisation vector A:

⎛
⎝ v

2
P k2

x + v2
S k2

z γ
−2
z − ω2 0 (v2

P − v2
S )(kx kzγ

−1
z )

0 v2
S (k

2
x + k2

z γ
−2
z )− ω2 0

(v2
P − v2

S )(kx kzγ
−1
z ) 0 v2

P k2
z γ

−2
z + v2

S k2
x − ω2

⎞
⎠
(

Ax
Ay
Az

)
= 0 .

(6.56)
Equation (6.56) is referred to as the Christoffel equation. Non-trivial solutions for

the polarisation vector A = (Ax , Ay, Az) exist only when the determinant of the
matrix on the left-hand side of Eq. (6.56) is equal to zero. This requires either

k2
x + k2

z γ
−2
z = ω2v−2

P (6.57)

for quasi-P waves or
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k2
x + k2

z γ
−2
z = ω2v−2

S (6.58)

for quasi-S waves in the PML region. Equations (6.57) and (6.58) are the dispersion
relations inside the PML. The corresponding plane wave solutions are

up(x, ω) = Ap e−iω(x sinφ+γz z cosφ)/vP , Ap || (kx , 0, kzγ
−1
z )T , (6.59)

and

us(x, ω) = As e−iω(x sinφ+γz z cosφ)/vS , As ⊥ (kx , 0, kzγ
−1
z )T . (6.60)

The variable φ denotes the angle of incidence. Equations (6.59) and (6.60) are valid
for any choice of the stretching factor γz . In particular, any γz with Im γz < 0 will
cause the incident plane wave to decay exponentially as it propagates in positive
z-direction. In the following we will consider two classical choices for the stretching
factors γi that lead to the standard PML and the filtering or convolutional PML.

6.3.2 Standard PML

For the standard PML formulation we choose the stretching factor as

γz(z) := 1 + az(z)

iω
, (6.61)

where the damping profile az is positive and real. The stretching factors γy and γx

are defined analogously in terms of damping profiles ay and az . To avoid reflections
from the interface between the regular domain and the PML, the damping profiles
are chosen to smoothly increase from zero right at the interface towards the bound-
ary of the computational domain. Inserting (6.61) into (6.59) and (6.60) yields the
plane wave solutions

u(x, ω) = A e−iω(x sinφ+z cosφ)/v e−(az z cosφ)/v , (6.62)

with v being either vP or vS, and A being either Ap or As . The exponential decay is
frequency independent in the case of incident body waves.
With the exception of the corners of the model, the absorbing layers at the x , y and
z boundaries do not overlap. We therefore find

ai a j = a2
i δi j (6.63)

and

γxγyγz = iω + ax + ay + az

iω
. (6.64)
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The resulting equations of motion in the frequency domain are then

ρ (iω + tr (a)) v = ∇ · σ pml , (6.65)

σ pml · (iω I + a) = iωC : (∇u)pml , (6.66)

iω (∇u)pml = ∇u · (iω I + I tr (a)− a) , (6.67)

where I is the 3 × 3 unit matrix and a is defined as

a :=
⎛
⎝ax 0 0

0 ay 0
0 0 az

⎞
⎠ . (6.68)

Transforming into the time domain finally yields

ρü + ρ tr (a) u̇ = ∇ · σ pml , (6.69)

σ̇ pml + σ pml · a = C : (∇u̇)pml , (6.70)

(∇u̇)pml = ∇u̇ + ∇u · (I tr (a)− a) . (6.71)

The choice of γi as inversely proportional to ω leads to relatively simple differential
equations that can be marched forward in time explicitly.

Figure 6.6 visualises the performance of the anisotropic PMLs in a spectral-
element simulation of a shallow earthquake from southern Greece. The width of the
absorbing layer is only 10 grid points, which corresponds to two elements. Within
the PML the damping profiles ai increase quadratically from 0 at the interface with
the regular medium towards the domain boundaries. The absorption inside the PMLs
leads to a continuous decrease of the elastic energy, which, however, never drops to
exactly 0. This is due to the finite width of the absorbing layers and the spatial
discretisation that causes minor reflections at the interface between the PML and
the elastic medium.

6.3.3 Convolutional PML

The construction of the standard PML equations is mostly based on the analysis
of body waves propagating in a homogeneous full space. Realistic models, how-
ever, include a free surface that allows for the existence of surface waves. To limit
the necessary computational resources, the models are usually as shallow as pos-
sible. Long-period surface waves may therefore interact with a PML layer that is
intended to prevent reflections from the bottom boundary of the domain. In con-
trast to body waves, surface waves propagate nearly parallel to the PML which
leads to their interaction with the bottom of the model (Fig. 6.7). The result of this
interaction are long-term instabilities that pollute the solution throughout the com-
plete volume (Festa et al., 2005). A possible solution (Festa & Vilotte, 2005; Festa
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Fig. 6.6 Snapshots of the vertical-component velocity field at 100 km depth taken from a spectral-
element simulation (Fichtner et al., 2009). The colour scale saturates at the maximum velocity,
the only exception being the snapshot at 1, 000 s which is scaled to the maximum amplitude at
t = 800 s. The wave field is dominated by the high-amplitude Rayleigh waves that emanate from a
shallow source in southern Greece. The width of the anisotropic perfectly matched layers, indicated
by solid black lines, is two elements, which corresponds to 10 grid points. The normalised elastic
energy contained in the model volume is shown in the lower right panel. Following the excitation
of the wave field, the energy briefly stabilises between 100 and 200 s. Around 200 s the wavefront
reaches the PML at the eastern boundary of the model, resulting in a drop of the elastic energy.
After 800 s the wavefront reaches the western boundary, which leads to a further reduction of the
elastic energy by two orders of magnitude. The remaining energy is due to the finite width of
the absorbing layers and the spatial discretisation that generates minor reflections at the interface
between the PML and the regular medium
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Fig. 6.7 Interaction of surface waves with the bottom PML. Surface waves propagate nearly par-
allel to the absorbing layer without being attenuated. The penetration of their long-period compo-
nents into the PML results in long-term instabilities (Figure reproduced from Festa et al. (2005)
with permission of the American Geophysical Union)

et al., 2005) is to replace the stretching factor of the standard PML, as defined in
Eq. (6.61), by

γz(z) := 1 + az(z)

iω + ωc
. (6.72)

The pole at ω = 0 from Eq. (6.61) is thus moved to the imaginary axis. Plane wave
solutions corresponding to the stretching factor (6.72) are

u(x, ω) = A e−iω(x sinφ+z cosφ)/v e
− iωωcaz z cosφ

v (ω2+ω2
c ) e

− ω2az z cosφ

v (ω2+ω2
c ) . (6.73)

Again, v denotes either vP or vS, and A either Ap or As. The coordinate transforma-
tion adds a frequency-dependent term proportional to

− ω

iω + ωc
= − iωωc + ω2

ω2 + ω2
c

(6.74)

to the plane wave solution inside the physical domain. The real part of (6.74), plotted
in the left panel of Fig. 6.8, controls the amplitude decay as the wave moves into the
PML region, and the imaginary part, shown to the right, introduces a phase shift.
For low frequencies the PML behaves as the regular elastic medium. This means, in
particular, that the unstable interaction of long-period surface waves with the bottom
PML can be avoided (Festa et al., 2005). For increasing frequency, i.e. as ω → ∞,
we retrieve the standard frequency-independent PML.

Introducing the stretching factor from Eq. (6.72) into Eqs. (6.52), (6.53) and
(6.54) yields the frequency-domain equations of motion inside the PML:
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Fig. 6.8 The real and imaginary parts of the decay function from Eq. (6.74). The amplitude decay,
controlled by the real part, is frequency dependent. Low-frequency waves are attenuated less than
high-frequency waves. For ω → ∞ we retrieve the standard PML medium

ρ

(
iω + iω tr (a)

iω + ωc

)
v = ∇ · σ pml , (6.75)

σ pml · [(iω + ωc) I + a] = (iω + ωc)C : (∇u)pml , (6.76)

(iω + ωc) (∇u)pml = ∇u · [(iω + ωc) I + I tr (a)− a] . (6.77)

For ωc = 0 we retrieve, as expected, the frequency-domain equations of motion in
the standard PML, given in Eqs. (6.65), (6.66) and (6.67). The return to the time
is straightforward for the PML constitutive relation (6.76) and the definition of the
PML displacement gradient (6.77):

σ̇ pml + (ωcI + a) σ pml = C : (∇u̇)pml , (6.78)

(∇u̇)pml + ωc(∇u)pml = ∇u̇ + ∇u · (ωc I + I tr (a)− a) . (6.79)

For the PML momentum balance (6.75) we can follow two different but theoretically
equivalent strategies. First we may simply multiply the equation by (iω+ ωc). This
leads to a time-domain momentum balance that involves the numerically inconve-
nient third time derivative of the displacement field u:

ρ
...
u + ρωcü + tr (a) ü = ∇ · σ pml + ωc∇ · σ pml . (6.80)

Alternatively, we can exploit that (iω+ωc)
−1 is the Fourier transform of H(t)e−ωct ,

where H denotes the Heaviside function. This allows us to write the PML momen-
tum balance in the form of an integro-differential equation that involves the convo-
lution of the acceleration ü and H(t)e−ωct :

ρü + tr (a)M(t) = ∇ · σ pml , (6.81)

where the memory variable M is defined by
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M(t) :=
∞∫

−∞
H(t − τ)e−ωc(t−τ) ü(τ ) dτ . (6.82)

Equation (6.82) is similar to the definition of the memory variables that we used in
the context of visco-elastic dissipation (Eq. 5.7). Thus, following the recipe from
Chap. 5 we can write M as the solution of an ordinary differential equation that
is numerically more convenient than the convolution in (6.82). For this we simply
differentiate the definition of M with respect to time:

Ṁ(t) = ü(t)− ωcM(t) . (6.83)

The implementation of the convolutional PML therefore requires us to solve the
equations of motion (6.78), (6.79) and (6.81), as well as the evolution equation for
the memory variable M (6.83).

6.3.4 Other Variants of the PML Method

6.3.4.1 Split-Field PML

Our formulation of the PML technique − both in its standard and convolutional
forms − is based on the definition of the PML stress tensor (Eq. 6.49) and the PML
displacement gradient (Eq. 6.52). One can avoid these definitions by introducing
split fields. The split-field variant of the PML method is the one classically used in
electro- and elasto-dynamics (e.g. Bérenger, 1994; Collino & Tsogka, 2001; Festa
& Nielsen, 2003; Festa & Vilotte, 2005). To illustrate the split-field concept, we
start with the momentum balance equation and the constitutive relation as they can
be written after replacing ∂/∂xi by γ−1

i ∂/∂xi :

iωρvi =
3∑

k=1

γ−1
k
∂σik

∂xk
, (6.84)

iωσi j =
3∑

k,l=1

Cijklγ
−1
l
∂uk

∂xl
. (6.85)

Instead of defining a PML stress and a PML displacement gradient, we split the
velocity field and the stress tensor according to the derivatives on the right-hand
sides of Eqs. (6.84) and (6.85), respectively:

v
(k)
i := γ−1

k
∂σik

∂xk
, (6.86)
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iωσ(l)i j :=
3∑

k=1

Cijklγ
−1
l
∂uk

∂xl
. (6.87)

The newly introduced variables v(k)i and σ (k)i j are the split fields. It follows directly
from Eqs. (6.86) and (6.87) that the complete dynamic fields are the sum of the split
fields:

vi =
3∑

k=1

v
(k)
i , (6.88)

σi j =
3∑

l=1

σ
(l)
i j . (6.89)

The definitions of the split fields do not involve the sums over the inverse stretching
factors γ−1

i that appear in the PML equations of motion (6.84) and (6.85). We can
therefore move the γi to the left-hand sides of (6.86) and (6.87). Then introducing
the stretching factors of the standard PML, as defined in (6.61), leads to the follow-
ing equations for the split fields:

ρ (iω + ak) v
(k)
i = ∂σik

∂xk
, (6.90)

(iω + al) σ
(l)
i j =

3∑
k=1

Cijkl
∂uk

∂xl
. (6.91)

These equations can easily be translated to the time domain. To obtain the convolu-
tional variant of the split-field PML, the standard stretching factor (6.61) needs to
be replaced by (6.72).

6.3.4.2 PML for Second-Order Systems

The PML technique, as we considered it so far, is based on the velocity–stress for-
mulation of the elastic wave equation, that is, on a system of two partial differential
equations that are of first order in time. This prevents the implementation of the PML
method in numerical solvers that are based on the displacement formulation which
is of second order in time. To overcome this limitation, Komatitsch & Tromp (2003)
proposed a split-field PML variant that is applicable to second-order equations.
Their formulation merely involves displacement split fields because stress fields are
naturally absent. The efficiency of the PML formulation for second-order systems is
comparable to the classical PML that was developed for partial differential equations
that are of first order in time.
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6.3.4.3 Multi-Axial PML

The drawback of the PML method is its long-term instability – noted as early as
1996 by Hu, shortly after Bérenger’s original publication (1994). This means that the
solutions start to grow indefinitely when the simulations become very long. While
this undesirable property of the PMLs has often been ignored in the geophysical
literature, it has been intensively studied in the applied mathematics community
(e.g. Nehrbass et al., 1996; Abarbanel & Gottlieb, 1997). In the context of elastic
wave propagation Bécache et al. (2003) noted that instabilities may be the result
of anisotropy, and they derived a set of stability conditions that may, however, not
always be met. Meza-Fajardo et al. (2008) introduced a multi-axial PML variant
where damping profiles are defined in more than one direction. Their procedure
allows the determination of damping profiles that produce stable PML solutions for
a given type of anisotropy.



Part II
Iterative Solution of the Full Waveform

Inversion Problem

Having solved the forward problem, i.e. the wave equation, it remains to exploit the
wealth of waveform information contained in seismograms for the benefit of seismic
tomography.

The first step towards this goal is the physically meaningful quantification of the
differences between observed waveforms and waveforms that have been computed
for an Earth model, m. Mathematically, this waveform difference is expressed in
terms of a misfit functional, χ , that generally depends non-linearly on m. Solving
the full waveform tomographic problem means to find an optimal Earth model, mopt,
such that χ(mopt) is the global minimum of χ . In this sense, full waveform inversion
is a special non-linear minimisation problem (Chap. 7). Owing to the large number
of model parameters (thousands to millions), the minimisation proceeds iteratively
with the help of gradient-based algorithms such as the conjugate gradient or Newton
methods.

All gradient-based minimisation algorithms critically rely on the derivative of
the misfit functional with respect to the model parameters. The adjoint method
(Chaps. 8, 9 and 10) allows us to compute the derivative of χ with optimal effi-
ciency: Starting from the wave equation we can derive the adjoint wave equation, the
solution of which is the adjoint wave field. The properties of the adjoint wave field
are determined by the adjoint source which is completely specified by the misfit, χ .
Correlating the regular and adjoint wave fields yields the derivative of χ with respect
to m. A generalisation of the adjoint method allows us to compute the Hessian of χ ,
which is the carrier of covariance information and which plays a crucial role in the
Newton method of non-linear minimisation.

A suitable misfit functional is one of the most important ingredients of a
full waveform inversion applied to real data (Chap. 11). The misfit functional
should exploit as much information as possible while conforming to the restric-
tions imposed by the data and the physics of the problem. The L2 distance between
observed and synthetic seismograms is efficient in the localisation of sharp reflectors
but often fails to detect long-wavelength Earth structure. Measurements of cross-
correlation time shifts and time–frequency misfits have been designed to overcome
this deficiency.

Physical intuition is essential for the successful solution of any inverse problem.
In the special case of full waveform inversion, our intuition is mostly based on the
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interpretation of Fréchet or sensitivity kernels, which are the volumetric densities
of Fréchet derivatives. For isolated seismic phases such as P, S, sP, etc., Fréchet
kernels are generally concentrated around the geometric ray path connecting source
and receiver. The width of the kernels is proportional to the frequency bandwidth of
the observed waveforms (Chap. 12).



Chapter 7
Introduction to Iterative Non-linear
Minimisation

The objective of full waveform inversion in the deterministic sense is to find an opti-
mal Earth model, m̃, that minimises the misfit functional, χ(m), used to quantify the
discrepancies between the observed seismograms, u0(x, t), and the synthetic seis-
mograms, u(m; x, t) (Sect. 1.2). A model m may comprise, among other quantities,
the spatial distributions of the P wave speed, vP(x), the S wave speed, vS(x), and
density, ρ(x), that is

m(x) = [m1(x),m2(x),m3(x), . . .] = [vP(x), vS(x), ρ(x), . . .] . (7.1)

Since χ is generally a complicated non-linear functional of m, we approximate
the optimum m̃ with the help of iterative minimisation algorithms: Starting from a
plausible initial model, m0, iterative minimisation successively updates the current
model, mi , to a new model, mi+1, that explains the data better than its predecessor:

mi+1 = mi + γi hi with χ(mi+1) < χ(mi ) . (7.2)

The particular choice of the descent direction, hi , and the step length, γi > 0,
depends on the minimisation scheme used to approximate m̃. The iterative proce-
dure is repeated until the synthetic data explain the observed data sufficiently well.

Following an introduction to the basic concepts in non-linear minimisation, we
discuss the uniqueness of the optimum m̃, and we review conditions that m̃ needs
to satisfy in order to be considered a minimum of χ (Sect. 7.2). Specific methods
for iterative non-linear minimisation are the topic of Sect. 7.3. We conclude with the
description of multi-scale inversions and regularisation that ensure the convergence
towards physically meaningful models (Sect. 7.4).

The present chapter offers a brief introduction to non-linear minimisation in
the specific context of full seismic waveform inversion. For a more comprehen-
sive treatise of both theory and methods the reader is referred to Gill et al. (1981),
Fletcher (1987), Polak (1997), Kelley (1999) or Quarteroni et al. (2000).

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-15807-0_7, C© Springer-Verlag Berlin Heidelberg 2011
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7.1 Basic Concepts: Minima, Convexity and Non-uniqueness

In the interest of readability we define the model space, M, as the space of all
admissible Earth models, m. Furthermore, we equip M with an L1 norm

||m||1 :=
∑

k

∫
G

|mk(x)| d3x (7.3)

and an L2 norm

||m||2 :=
√∑

k

∫
G

m2
k(x) d3x . (7.4)

Throughout this chapter we assume that the Earth models, m, have been discretised
appropriately. This means that any constituent of m, for instance, the P wave speed
distribution vP(x), is represented as a linear combination of N < ∞ orthonormal
basis functions, b j (x):

vP(x) =
N∑

j=1

vP, j b j (x) . (7.5)

Popular choices of basis functions are spherical harmonics, blocks or splines. For
notational convenience we identify m as defined in Eq. (7.1) with the vector of
expansion coefficients (vP,1, . . . , vP,N , vS,1, . . .), that is

m = [vP(x), vS(x), ρ(x), . . .] ≡ (vP,1, . . . , vP,N , vS,1, . . .) . (7.6)

This discretisation allows to use matrix notation, as introduced in Sect. 2.1.

7.1.1 Local and Global Minima

Full waveform inversion is characterised by a computationally expensive forward
problem solution and a high-dimensional model space that render the application of
probabilistic inversion schemes impractical. We are therefore limited to the deter-
ministic solution of the inverse problem, meaning that we wish to find the Earth
model m̃ ∈ M such that the misfit functional χ(m) is minimal.

We distinguish different types of minima. For this, we consider a neighbourhood
Nr (m̃) of radius r around the optimal model m̃:

Nr (m̃) := {m ∈ M | ||m − m̃||2 < r }. (7.7)
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The model m̃ ∈ M is a local minimum of χ when there exists at least a small
neighbourhood Nr (m̃), where χ(m̃) is smaller than or equal to any χ(m), that is

χ(m̃) ≤ χ(m) , for all m ∈ Nr (m̃) . (7.8)

We call m̃ a strict local minimum of χ when χ(m̃) is strictly smaller than any χ(m)
at least within a potentially small neighbourhood Nr (m̃):

χ(m̃) < χ(m) , for all m ∈ Nr (m̃) . (7.9)

A misfit functional may have many local minima, and some of them may produce
larger misfits than others. For a global minimum m̃, however, χ(m̃) is smaller or
equal to χ(m) for any m ∈ M, not only within a potentially small neighbourhood:

χ(m̃) ≤ χ(m) , for all m ∈ M. (7.10)

The model m̃ is a strict global minimum of χ when

χ(m̃) < χ(m) , for all m ∈ M. (7.11)

Figure 7.1 illustrates the different types of minima. The distinction between a min-
imum and a strict minimum is subtle but important because it directly relates to the
uniqueness or non-uniqueness of the optimal model. In the case of a strict global
minimum, the model m̃ describes the data better than any other model in M, and
the solution to the inverse problem is said to be unique. When the minimum is not
strict, then we can find many models that describe the data equally well, meaning
that the solution to the inverse problem is non-unique.

Using this terminology, we can say that we are interested in finding the strict
global minimum of χ , if it exists.

Despite being extremely important, the existence of a strict global minimum has
received very little attention in the geophysical literature; and mathematics provides
few practical tools that allow us to address this issue in realistic applications. Part of
the problem is that χ is not given explicitly, meaning that each evaluation of χ(m)

Fig. 7.1 Left: Global minimum m̃1 and local minimum m̃2. Right: Strict global minimum m̃3 and
strict local minimum m̃4
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for a specific model m requires the solution of a computationally intense forward
problem.

The existence of a global minimum – strict or not – is often conjectural, and the
conjecture is based on the assumption that the physics of the problem are modelled
sufficiently well.

7.1.2 Convexity: Global Minima and (Non)Uniqueness

The uniqueness and the local or global nature of a minimum depend on the convexity
properties of the model space M and of the misfit functional χ . We call the model
space convex when the line connecting any two models m1 and m2 in M is also in
M:

(1 − ε)m1 + εm2 ∈ M , for all ε ∈ [0, 1] and for all m1,m2 ∈ M . (7.12)

Provided that M is convex, we define convex misfit functionals χ as those satisfying
the relation

χ [(1 − ε)m1 + εm2] ≤ (1 − ε) χ(m1)+ ε χ(m2) , (7.13)

for any m1,m2 ∈ M and ε ∈ [0, 1]. A function defined on the real line is convex
when the line connecting any two points on its graph is located above or on the
graph. We call χ strictly convex when

χ [(1 − ε)m1 + εm2] < (1 − ε) χ(m1)+ ε χ(m2) , (7.14)

for any m1,m2 ∈ M and ε ∈ (0, 1). Figure 7.2 shows examples of a convex and a
strictly convex function. Now assume that m̃ is a local minimum of χ and that both
χ and M are convex. This means that there is a neighbourhood Nr (m̃) of radius r
around m̃ such that

χ(m̃) ≤ χ(m) , for all m ∈ Nr (m̃) . (7.15)

The convexity of M implies that the line m(ε) connecting m̃ to any other element
m′ ∈ M is still in M:

m(ε) = (1 − ε) m̃ + εm′ = m̃ + ε (m′ − m̃) ∈ M , (7.16)

for ε ∈ [0, 1]. By choosing εr ≤ r ||m′ − m̃||−1
2 we ensure that m(εr ) is also in

Nr (m̃), and therefore

χ(m̃) ≤ χ [m(εr )] = χ [(1 − εr ) m̃ + εr m′] ≤ (1 − εr ) χ(m̃)+ εr χ(m′) . (7.17)
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Fig. 7.2 The minimum m̃1 of the strictly convex function on the left is global and unique. The
minimum m̃2 of the convex function on the right is also global but non-unique

Rearranging terms in Eq. (7.18) yields

χ(m̃) ≤ χ(m′) . (7.18)

Since m′ was chosen arbitrarily from the model space M, relation (7.18) implies that
convexity is sufficient to guarantee that any local minimum is in fact a global mini-
mum. Nevertheless, a global minimum need not be unique. Non-uniqueness occurs,
for instance, when χ is constant within a non-empty neighbourhood surrounding m̃.

The strict convexity of χ , however, ensures that the minimum m̃ is both global
and unique. To see this we assume that m̃′ is another minimum of χ and that m̃′ �=
m̃. As we found before, the convexity of χ implies that m̃ and m̃′ are global minima,
meaning that χ(m̃) = χ(m̃′). Since the model space M is also convex, the midpoint
between m̃ and m̃′ is in M: (m̃+m̃′)/2 ∈ M. Making then use of the assumed strict
convexity of χ yields:

χ(m̃) ≤ χ

(
1

2
m̃ + 1

2
m̃′
)
<

1

2
χ(m̃)+ 1

2
χ(m̃′) . (7.19)

It follows that χ(m̃) < χ(m̃′), which contradicts the assumption that m̃′ is a mini-
mum of χ .

7.1.2.1 Characterisation of Convex Functions

Ideally, we would like the misfit functional, χ , to be strictly convex, because this
property ensures that one single Earth model, m̃, explains the data better than any
other model. So far, however, we have no practical means to decide whether χ
is strictly convex or not. Working directly with the definition of strict convexity
(Eq. 7.14) is clearly impossible because we cannot evaluate the misfit along the line
connecting any two elements in the model space. Therefore, we focus our attention
on the more handy characterisation of (strictly) convex functions in terms of their
first and second derivatives. For this we assume that χ is convex, meaning that

χ [m1 + ε (m2 − m1)] ≤ χ(m1)+ ε [χ(m2)− χ(m1)] , (7.20)
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for any two models m1,m2 ∈ M. Rearranging (7.20) gives

1

ε
{χ [m1 + ε (m2 − m1)] − χ(m1)} ≤ χ(m2)− χ(m1) , (7.21)

and in the limit ε → 0 we find

χ(m2) ≥ χ(m1)+ (m2 − m1) · ∇mχ(m1) . (7.22)

The inequality (7.22) implies that the linear approximation

χ(m2) ≈ χ(m1)+ (m2 − m1) · ∇mχ(m1) (7.23)

of χ(m2) always underestimates the actual value of χ(m2). In other words, any
tangent plane of χ is located below χ itself.

With the help of (7.22) we can relate the Hessian Hχ = ∇m∇mχ to the convexity
properties of χ : Expanding χ(m2) into a Taylor series about m1 gives

χ(m2) =χ(m1)+ (m2 − m1) · ∇mχ(m1)

+ 1

2
(m2 − m1) · Hχ (m1) · (m2 − m1)+ O(|(m2 − m1)|3) . (7.24)

Inserting (7.22) into the previous relation yields

0 ≤ 1

2
(m2 − m1) · Hχ (m1) · (m2 − m1)+ O(|(m2 − m1)|3) . (7.25)

Since (7.25) holds for any m2, it follows that

0 ≤ m · Hχ (m1) · m , for all m,m1 ∈ M. (7.26)

This means that the Hessian, Hχ (m1), of a convex function, χ , is positive semi-
definite for any element m1 from the model space. We note, without proof, that this
result can be extended: The Hessian of a strictly convex function is positive definite,
and the reverse holds as well.

The requirement of positive definiteness is certainly easier to verify than strict
convexity based on its definition (Eq. 7.14). It is, however, still impractical because
the calculation of the Hessian for any element in the model space is – at least for
realistic problems – numerically too expensive. Nevertheless, the recognition that
Hχ should ideally be positive definite is of considerable importance from a theoret-
ical point of view, as we shall see in the following paragraphs.

In most realistic applications, our physical intuition tells us that χ can impossibly
be strictly convex. In surface wave tomography, for instance, the deep parts of the
Earth cannot be resolved, meaning that structural perturbations at sufficiently great
depth will not have an influence on χ . Our minimisation problem is in this sense
non-unique.
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7.1.2.2 Non-uniqueness – An Example in One Dimension

The exploitation of as much information as possible from observed seismograms has
always been one of the strongest motivations for full waveform inversion because
it is intuitively thought to reduce the non-uniqueness of the tomographic problem
at least to some degree. However, the following example illustrates that consider-
able non-uniqueness may persist even in over-simplified problems, despite using
the complete waveform information (e.g. Bamberger et al., 1979): We consider a
1D scalar wave equation as it may be used in seismic reflection experiments:

ρ(z) ∂t u(z, t)− ∂z
[
μ(z) ∂zu(z, t)

] = 0 . (7.27)

The variables z ∈ [0,∞), ρ and μ signify depth, density and elastic modulus,
respectively. We assume that the medium is at rest before t = 0 and that a stress
σ0(t) prescribed at the surface is responsible for the excitation of waves:

μ(z) ∂zu(z, t)|z=0 = σ0(t) . (7.28)

Our measurement consists in the displacement, u0(t), recorded at the surface, z = 0,
and the corresponding synthetic is u(0, t). We now replace the depth variable, z, by
a new depth variable, z′, that is defined by

dz′

dz
= φ(z) , z′(0) = 0 , (7.29)

where φ is any positive function defined on [0,∞). Rewriting the wave equation
(7.27) in terms of z′ yields

ρ′(z′) ∂t u
′(z′, t)− ∂z′

[
μ′(z′) ∂z′u′(z′, t)

] = 0 , (7.30)

with the definitions

u′(z′, t) = u[z(z′), t] , ρ′(z′) = ρ[z(z′)]
φ[z(z′)] , μ′(z′) = φ[z(z′)]μ[z(z′)] . (7.31)

Equation (7.30) demonstrates that u′(z′, t) = u[z(z′), t] solves a wave equation with
material properties ρ′ and μ′ that can be different from ρ and μ. By construction
we have z′ = 0 at the surface and therefore

u′(z′, t)|z′=0 = u(z, t)|z=0 , (7.32)

which implies that the change in variables does not affect the solution at the surface.
This means that infinitely many models are global minima that explain our observa-
tions equally well. Thus, any misfit functional χ [u(ρ, μ)] cannot be strictly convex.
Let us choose a particular function φ(z):
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φ(z) =
√
ρ(z)

μ(z)
= 1

v(z)
, (7.33)

where v(z) is the wave propagation speed in the 1D medium. The transformed depth
variable

z′(z) =
z∫

0

dξ

v(ξ)
(7.34)

is then the travel time from z to the surface, and the new medium parameters are

ρ′ = √
ρ μ = η , μ′ = √

ρ μ = η . (7.35)

One single medium property, namely the acoustic impedance η as a function of
travel time, therefore fully determines the signal recorded at the surface. The indi-
vidual parameters ρ and μ cannot be inferred independently, and infinitely many
combinations of ρ and μ will explain the data equally well.

7.1.2.3 Local Minima and Non-uniqueness in Realistic Problems

The non-uniqueness in the previous example results from the restriction to only one
receiver at the surface. Similarly, in realistic 2D and 3D tomographic problems non-
uniqueness is related to insufficient data coverage. Seismic sources and receivers are
often irregularly distributed, especially in passive experiments on regional to global
scales. Some regions of the Earth may therefore not be sampled by the observable
wave field. Any change of the Earth model in the unsampled or poorly sampled
regions will not or hardly affect the misfit.

Trade-offs between parameters are an additional source of non-uniqueness: The
characteristics of seismic waves depend on parameters of different physical nature
such as density, wave speeds and relaxation times. Commonly, our data cannot dis-
tinguish between variations of one or the other, as it was the case already in our 1D
example where the waveforms observed at the surface depend only on the product
of ρ and μ.

The presence of multiple local minima is the result of the non-linear rela-
tion between Earth models, m, and the corresponding synthetic waveforms, u(m)
(see Deng (1997) for an extreme example). Misfit functionals should ideally be
constructed such that they compensate the non-linearity of the forward problem,
thus leading to improved convexity. Cross-correlation time shifts (Luo & Schus-
ter, 1991), generalised seismological data functionals (Gee & Jordan, 1992) and
time-frequency misfits (Fichtner et al., 2008) are examples of misfit functionals that
are designed to compensate the non-linear dependence of seismic waveforms on
long-wavelength Earth structure.
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The presence of non-uniqueness and multiple local minima requires special mea-
sures to be taken in order to ensure the convergence of iterative schemes towards a
physically meaningful global minimum. The most commonly adopted strategies are
the multi-scale approach (Sect. 7.4.1) and regularisation (Sect. 7.4.2).

7.2 Optimality Conditions

Optimality conditions that allow us to decide whether an element of the model space
is a minimum of χ are essential in the design of iterative minimisation schemes.
First-order conditions merely involve the first derivative of χ , whereas second-order
conditions are based on its second derivative.

To construct a necessary first-order optimality condition, we assume that m̃ is
indeed a local minimum of χ . This means that we can find a potentially small
neighbourhood Nr (m̃) around m̃ such that

χ(m) ≥ χ(m̃) , for all m ∈ Nr (m̃) . (7.36)

Now let m ∈ M be an arbitrary element of the model space, M. We then find

m · ∇mχ(m̃) = lim
ε→0

1

ε
[χ(m̃ + εm)− χ(m̃)] ≥ 0 , (7.37)

because εm ∈ Nr (m̃) for sufficiently small ε. Relation (7.37) must hold for any
m ∈ M and in particular for −m ∈ M. We therefore have −m · ∇mχ(m̃) ≥ 0, and
it follows that

∇mχ(m̃) = 0 (7.38)

is a necessary first-order optimality condition. The derivative of the misfit functional
χ vanishes at the local minimum m̃. This result suggests that ∇mχ should converge
to 0 as the iterative minimisation proceeds.

Equation (7.38) holds not only for minima but also for saddle points and max-
ima. To unequivocally identify a minimum, we consider the Taylor expansion of χ
around m̃:

χ(m)− χ(m̃) = 1

2
(m − m̃) · Hχ · (m − m̃)+ O(|m − m̃|3) , (7.39)

where we already used the first-order condition (7.38). It follows that m̃ is a mini-
mum only when the Hessian, Hχ (m̃), is positive definite, that is

m · Hχ (m̃) · m > 0 , for all m ∈ M . (7.40)
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While important from a theoretical point of view, the second-order necessary con-
dition (7.40) is rarely used in practice. It is mostly our physical intuition that allows
us to make the distinction between minima, saddle points and maxima.

7.3 Iterative Methods for Non-linear Minimisation

Following the introduction of basic concepts and terminology, we now focus our
attention on the description of specific methods that can be used to approximate the
optimal Earth model m̃.

7.3.1 General Descent Methods

7.3.1.1 Descent Directions

Let m0 be the initial Earth model, that is, our best guess prior to the inversion.
The general goal is to improve m0 by adding to it an update γ0 h0, where h0 is the
descent direction and γ0 > 0 is the step length:

m1 := m0 + γ0 h0 , χ(m1) < χ(m0) . (7.41)

For the construction of a suitable descent direction, we require that

χ(m1) = χ(m0 + γ0 h0) < χ(m0) , (7.42)

for all positive step lengths γ0 that are smaller than a maximum step length γmax.
Rearranging (7.42) and taking the limit γ0 → 0 yields

h0 · ∇mχ(m0) = lim
γ0→0

1

γ0
[χ(m0 + γ0 h0)− χ(m0)] < 0 . (7.43)

The condition h0 · ∇mχ(m0) < 0 can be considered the definition of a local descent
direction, that is a direction indicating where we need to go from m0 in order to
reduce the misfit. It follows immediately, that a descent direction always exists as
long as ∇mχ(m0) �= 0. To see this, we choose

h0 = −∇mχ(m0) (7.44)

and therefore

h0 · ∇mχ(m0) = −[∇mχ(m0)]2 < 0 , (7.45)

which means that h0 from (7.44) satisfies condition (7.43).



7.3 Iterative Methods for Non-linear Minimisation 123

Many other descent directions are possible. In fact, when A is a positive definite
matrix, the vector

h0 = −A · ∇mχ(m0) , (7.46)

is also a descent direction because

h0 · ∇mχ(m0) = −∇mχ(m0) · A · ∇mχ(m0) < 0 . (7.47)

In an iterative minimisation we successively update the Earth models by going from
the current model mi along a descent direction hi = −Ai · ∇mχ(mi ) towards the
improved model mi+1. The general descent algorithm can be summarised as fol-
lows:

General Descent Method

1. Choose an initial model, m0, and set i = 0.
2. Compute the descent direction

hi = −Ai · ∇mχ(mi ). (7.48)

3. Update mi according to

mi+1 = mi + γi hi ,

with a suitable step length γi that ensures χ(mi+1) < χ(mi ).

4. Set i → i + 1 and go to Step 2.

This is repeated until the misfit is as small as permitted by the errors in the
data.

A critical element of the above algorithm is the gradient ∇mχ . It can be computed
most efficiently with the help of the adjoint method, which is the topic of Chap. 8.
The choice of the positive definite matrices Ai characterises different descent meth-
ods, and it controls the speed of convergence towards the optimum m̃.

7.3.1.2 The Optimal Step Length

To complete the description of the general descent method, it remains to construct
an efficient step length for each iteration. Ideally, we would like to find an optimal
γi such that χ(mi+1) = χ(mi + γi hi ) is minimal. A necessary condition for the
optimality of γi is then
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d

dγi
χ(mi + γi hi ) = 0 . (7.49)

Evaluating the derivative in (7.49) and substituting the linear approximation of
χ(mi + γi hi ) yields

0 = hi · ∇mχ(mi )+ γi hi · Hχ (mi ) · hi . (7.50)

Solving for γi then gives

γi = − hi · ∇mχ(mi )

hi · Hχ (mi ) · hi
. (7.51)

A commonly used alternative to Eq. (7.51) that allows us to circumvent the com-
putation of the Hessian times vector, Hχ (mi ) · hi , is a line search: For this we

choose a small number of trial step lengths, γ (k)i (k = 1, . . . , n) and evaluate the

corresponding misfit functionals χ(mi + γ
(k)
i hi ). These are then used to approxi-

mate χ(mi + γi hi ) by an interpolating polynomial of degree n − 1. The minimum
of the polynomial is then an approximation to the optimal step length. Numerical
experiments reveal that χ(mi + γi hi ) is often nearly quadratic with respect to γi .
A second-order polynomial is therefore usually sufficient to obtain a good approxi-
mation.

The choice of the trial step lengths is crucial for the success of a line search. The
only obvious trial step length is γ (0)i = 0 because the corresponding misfit, χ(mi ),

is already known. Any other γ (k)i can be found most efficiently with the help of
intuition that usually provides us with a range of step lengths that lead to physically
plausible models.

In principle, the evaluation of χ for each γ (k)i requires the forward simulation of
the complete data set. To reduce the numerical costs, Tape et al. (2010) suggest to
base the step length optimisation only on a few events that are representative of the
whole data set and that sample a large part of the model volume.

7.3.1.3 Termination of the Iterative Minimisation

Given the availability of sufficient computational resources, the minimum of χ can
be approximated arbitrarily closely with the help of descent methods. However, m̃,
is likely to explain the observed waveforms so well that the remaining waveform
differences are smaller than the uncertainty in the data. The optimal model may
therefore contain structure that is not constrained by the observations. To avoid such
over-fitting, the iterative minimisation should be terminated before the misfit, χ(m),
drops below a physically plausible threshold εχ .

It is important to note that the early termination adds another level of non-
uniqueness. This is because the uncertainty in the data does not allow us to make a
quantitative distinction between all the models that satisfy χ(m) < εχ .
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7.3.2 The Method of Steepest Descent

To improve m0 as much as possible in the first iteration already, we try to find the
descent direction, h0, that leads to the maximum decrease of χ for a small fixed step
length, γ0. For this we determine h0 with ||h0||2 = 1 such that

χ(m1)− χ(m0) = χ(m0 + γ0 h0)− χ(m0) ≈ γ0 h0 · ∇mχ(m0) (7.52)

is minimal. Assuming that h0 is a descent direction yields the inequality

γ0 h0 · ∇mχ(m0) ≥ −γ0 ||∇mχ(m0)||2||h0||2 = −γ0 ||∇mχ(m0)||2 , (7.53)

meaning that the quantity that we seek to minimise, γ0 h0 · ∇mχ(m0), is always
larger than or equal to −γ0 ||∇mχ(m0)||2. The minimum of γ0 h0 · ∇mχ(m0) corre-
sponds to the direction h0 for which the equal sign holds in (7.53). This is the case
for

h0 = − ∇mχ(m0)

||∇mχ(m0)||2 , (7.54)

which is the direction of steepest descent. Our finding that h0 as defined in (7.54)
leads to the most rapid descent for a given small step length γ0, suggests to repeat
this procedure by iteratively moving from a current model mi along the local descent
direction −∇mχ(mi ) towards the updated model mi+1. This is the concept of the
steepest descent method:

Method of Steepest Descent

1. Choose an initial model, m0, and set i = 0.
2. Compute the gradient for the current model, ∇mχ(mi ).
3. Update mi according to

mi+1 = mi − γi ∇mχ(mi ) ,

with a suitable step length γi that ensures χ(mi+1) < χ(mi ).
4. Set i → i + 1, go to Step 2 and repeat until the data are explained

sufficiently well.

While being conceptually simple and attractive, the steepest descent method is
rarely used in practice because it tends to converge rather slowly towards an accept-
able model. This is because a succession of descent directions that are locally opti-
mal may not necessarily be optimal from a global perspective.
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7.3.3 Newton’s Method and Its Variants

In the steepest descent algorithm, hi is determined only from first-derivative infor-
mation at the current iterate mi . Newton’s method modifies the steepest descent
direction with the help of second-derivative information, which leads to much faster
convergence. The algorithm exploits the equivalence of finding an extremum of χ
and finding a zero of ∇mχ . Upon using the necessary condition ∇mχ(m̃) = 0, the
linear approximation of ∇mχ(m̃) around a nearby model m reads

0 = ∇mχ(m̃) ≈ ∇mχ(m)+ Hχ (m) · (m̃ − m) . (7.55)

Formally solving for m̃ gives

m̃ ≈ m − H−1
χ (m) · ∇mχ(m) . (7.56)

Equation (7.56) suggests the following scheme:

Newton’s Method

1. Choose an initial model, m0, and set i = 0.
2. Compute the gradient for the current model, ∇mχ(mi ).
3. Determine the descent direction, hi , as the solution of

Hχ (mi ) · hi = −∇mχ(mi ) . (7.57)

4. Update mi according to

mi+1 = mi + hi . (7.58)

5. Set i → i + 1, go to Step 2 and repeat as often as needed.

In each iteration, Newton’s method requires the computation of the Hessian times
vectors and the solution of the linear system (7.57) which is known as the Newton
equation. Its solution, the descent direction hi , can be found, for instance, with the
help of iterative matrix solvers (e.g. Quarteroni et al., 2000). Note that Newton’s
method corresponds to choosing the matrix Ai from Eq. (7.48) as

Ai = H−1
χ (mi ) . (7.59)

Provided that Hχ (mi ) is positive definite, −H−1
χ (mi ) · ∇mχ(mi ) is a descent direc-

tion. To reveal the power of Newton’s method, we consider the distance between the
new iterate mi+1 and the optimum m̃, that is ||mi+1 − m̃||2, relative to the previous
distance, ||mi − m̃||2: From Eqs. (7.57) and (7.58) we have
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mi+1 − m̃ = mi − m̃ − H−1
χ (mi ) · ∇mχ(mi ) . (7.60)

Inserting the second-order approximation

∇mχ(mi ) ≈ −Hχ (mi ) · (m̃ − mi )− 1

2
(m̃ − mi ) · ∇mHχ (mi ) · (m̃ − mi ) (7.61)

leads to

mi+1 − m̃ ≈ 1

2
H−1
χ (mi ) · [(m̃ − mi ) · ∇mHχ (mi ) · (m̃ − mi )] , (7.62)

and therefore

||mi+1 − m̃||2 � c ||mi − m̃||22 , (7.63)

with c := 1
2 ||H−1

χ (mi )||2||∇Hχ (mi )||2. Equation (7.63) implies that Newton’s
method converges quadratically, that is, faster than any other feasible iterative min-
imisation scheme. The high speed of convergence comes at the prize of having to
compute the Hessian times a vector (see Sect. 8.4) and the solution of the Newton
equation (7.57) in each iteration.

Newton’s method relies critically on the appropriateness of the local approxi-
mation from Eq. (7.55). When the current iterate, mi , is far from the optimum, the
Hessian, Hχ (mi ), may have negative eigenvalues and be ill-conditioned or even sin-
gular. This can result in very slow convergence, movement in non-descent directions
and heavy oscillations that diverge from the solution.

Being unsuitable in its raw form, Newton’s method has been modified in many
different ways. In the damped version of the algorithm, the update hi = −H−1

χ (mi )·
∇mχ(mi ) is multiplied by a scalar parameter α ∈ (0, 1]:

mi+1 = mi − αH−1
χ (mi ) · ∇mχ(mi ) . (7.64)

Using a conventional line search, α is chosen such that mi+1 reduces χ as much as
possible. Since Hχ (mi ) will be nearly singular in most applications, its inversion
usually requires regularisation. The regularised Newton method therefore adds a
scalar multiple of the unit matrix, I, to Hχ (mi ):

mi+1 = mi − [Hχ (mi )+ β I]−1 · ∇mχ(mi ) . (7.65)

Just as α, the parameter β may be found with the help of a line search. Note that the
regularised Newton method approaches the steepest descent method for large values
of β.

A whole class of methods aims to increase the computational efficiency by avoid-
ing the computation of the Hessian. For this we use that χ depends on m only via
the synthetic wave field u(m), that is χ = χ [u(m)]. Differentiating χ twice with
respect to m and making use of the chain rule gives
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Hχ = ∇u∇uχ(∇mu,∇mu)+ ∇uχ(∇m∇mu) . (7.66)

The first term on the right-hand side of Eq. (7.66) is the approximate Hessian,

H̄χ := ∇u∇uχ(∇mu,∇mu) . (7.67)

Since H̄χ involves first derivatives only, it can be used as a computationally less
expensive substitute for the full Hessian Hχ . This replacement is easy to justify
when u depends quasi-linearly on m so that ∇m∇mu is small compared to H̄χ . The
Newton-like method based on the approximate Hessian,

mi+1 = mi − H̄−1
χ (mi ) · ∇mχ(mi ) , (7.68)

is known as the Gauss–Newton method. Its regularised version

mi+1 = mi − [H̄χ (mi )+ β I]−1 · ∇mχ(mi ) (7.69)

is the Levenberg method (Levenberg, 1944). Marquardt (1963) suggested to replace
the identity matrix, I, in Eq. (7.69) by the diagonal of H̄χ (mi ) in order to over-
come slow convergence in the directions where the gradient is small. The resulting
algorithm

mi+1 = mi − [H̄χ (mi )+ β diag H̄χ (mi )]−1 · ∇mχ(mi ) (7.70)

is referred to as the Levenberg–Marquardt method. All modifications of the New-
ton method sacrifice the quadratic convergence locally near the optimum for an
improved global convergence.

The pure Newton method based on the full Hessian is currently not being used in
realistic full seismic waveform inversions, because the quadratic convergence does
not appear to compensate the numerical costs involved in the computation of the
Hessian. An example where Newton’s method was used for a 1D synthetic problem
can be found in Santosa & Symes (1988). Pratt et al. (1998) demonstrated the ben-
efits of the Gauss–Newton method as compared to the steepest descent method. An
application of the Gauss–Newton method for a 3D synthetic problem was presented
by Epanomeritakis et al. (2008).

7.3.4 The Conjugate-Gradient Method

To illustrate the conjugate-gradient method, we start with the quadratic misfit func-
tional

χ(m) = χ(m̃)+ 1

2
(m − m̃) · Hχ · (m − m̃) . (7.71)
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The Hessian, Hχ , is assumed to be symmetric and positive definite so that m̃ is
the unique minimum of χ . Our interest is in iterative schemes where the descent
directions satisfy the following orthogonality conditions:

0 = hi · ∇mχ(m j ) , (7.72)

0 = hi · Hχ · h j , (7.73)

for any 0 ≤ i < j ≤ n, where n is the dimension of the model space M. In the
following we will refer to descent directions that fulfil (7.72) and (7.73) as conjugate
directions.

7.3.4.1 The Benefit of Using Conjugate Descent Directions

To reveal the benefit of conjugate directions, we compute the nth iterate mn . The
repeated application of the general iterative scheme, mi+1 = mi + γi hi , yields

mn = m j+1 +
n−1∑

i= j+1

γi hi , (7.74)

for j between 0 and n − 1. Subtracting m̃ from both sides of Eq. (7.74) and multi-
plying by Hχ gives

∇mχ(mn) = ∇mχ(m j+1)+
n−1∑

i= j+1

γi Hχ · hi , (7.75)

because ∇mχ(m) = Hχ · (m − m̃). With the help of Eq. (7.72) we find

h j · ∇mχ(mn) =
n−1∑

i= j+1

γi h j · Hχ · hi . (7.76)

By choosing descent directions that are mutually orthogonal with respect to Hχ in
the sense of Eq. (7.73), we can force the right-hand side of (7.76) to zero, that is

h j · ∇mχ(mn) = 0 , (7.77)

for any j between 0 and n − 1. Since the mutually orthogonal descent directions,
h0,h1, . . . ,hn−1, form a basis of the n-dimensional model space M, it follows from
(7.77) that ∇mχ(mn) = 0. This means that the nth iterate mn is equal to the mini-
mum m̃ of the quadratic misfit functional χ . Clearly, the advantage of using an algo-
rithm that satisfies the orthogonality conditions (7.72) and (7.73) is that the solution
is reached after at most n iterations, given that numerical errors are negligible. This
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is in contrast to the steepest descent method where the minimum may not be reached
within a finite number of iterations.

7.3.4.2 The Conjugate-Gradient Method for Quadratic Misfit Functionals

Having shown their advantages, it remains to construct the conjugate directions
explicitly. Fortunately, this can be done automatically within an iterative descent
scheme that is just a slight modification of the steepest descent algorithm:

Conjugate-Gradient Method

1. Choose an initial model, m0. Set i = 0 and h0 = −∇mχ(m0).
2. Compute the optimal step length γi according to Eq. (7.51):

γi = −hi · ∇mχ(mi )

hi · Hχ · hi
.

3. Update mi via

mi+1 = mi + γi hi .

4. Compute the gradient for the next iterate, ∇mχ(mi+1).
5. Compute the descent direction for the next iteration, hi+1, according to

βi := ||∇mχ(mi+1)||22
||∇mχ(mi )||22

, (7.78)

hi+1 = −∇mχ(mi+1)+ βi hi . (7.79)

6. Set i → i + 1, go to Step 2 and repeat as often as needed.

We can proof by induction that the above procedure indeed generates conjugate
descent directions: In the interest of readability we introduce the notation gi :=
∇mχ(mi ), and we note two useful relations that are essential for the proof:

∇mχ(mi ) = gi = Hχ · (mi − m̃) (7.80)

and

gi+1 − gi = Hχ · (mi+1 − m̃)− Hχ · (mi − m̃) = γi Hχ · hi . (7.81)

The induction is with respect to the index j as used in (7.72) and (7.73). For j = 1
we find

h0 · g1 = h0 · [Hχ · (m0 + γ0h0 − m̃)] = −h0 · h0 + γ0h0 · Hχ · h0 = 0 (7.82)
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and

h0 · Hχ · h1 = h0 · Hχ · (β0h0 − g1) = γ−1
0 (g1 − g0) · (−g1 − β0g0)

= γ−1
0 (−g2

1 + β0g1 · h0 − h0 · g1 + β0g2
0) = γ−1

0 (−g2
1 + β0g2

0)

= 0 . (7.83)

Equations (7.82) and (7.83) mean that the orthogonality conditions (7.72) and (7.73)
are satisfied in the first iteration. Now assuming that (7.72) and (7.73) hold for any
0 ≤ i < j , we have

hi · g j+1 = hi · (g j + γ j Hχ · h j ) = 0 (7.84)

and

hi · Hχ · h j+1 = hi · Hχ · (−g j+1 + β j h j ) = −hi · Hχ · g j+1

= γ−1
i (gi − gi+1) · g j+1 = γ−1

i (hi+1+ βi hi − hi − βi−1hi−1) · g j+1

= 0 . (7.85)

Similarly we can show that h j · g j+1 = 0 and h j · Hχ · h j+1 = 0. This concludes
the proof.

7.3.4.3 The Conjugate-Gradient Method for General Non-linear Functionals

For purely quadratic functionals χ with positive definite Hessian, the conjugate-
gradient method is effectively a direct matrix solver that converges to the exact
solution after at most n iterations.

When χ is a general non-linear functional, the orthogonality relations do not
hold and the algorithm may need more than n iterations to reach an acceptable
result. Also, since the Hessian is mostly not available, a suitable step length γi must
be determined with the help of a line search. The conjugate-gradient algorithm as
outlined above for the quadratic case but applied to an arbitrary χ is commonly
referred to as Fletcher–Reeves method (Fletcher & Reeves, 1964). Popular variants
are the Polak–Ribière method (Polak & Ribière, 1969) that defines βi as

βi := ∇mχ(mi+1) · [∇mχ(mi+1)− ∇mχ(mi )]
∇mχ(mi ) · ∇mχ(mi )

(7.86)

and the Hestenes–Stiefel method (Hestenes & Stiefel, 1952) where βi is given by

βi := ∇mχ(mi+1) · [∇mχ(mi+1)− ∇mχ(mi )]
hi · [∇mχ(mi+1)− ∇mχ(mi )] . (7.87)

All definitions of βi are equivalent for quadratic χ . In the more general case, the
preferred formula appears to be a matter of personal preference.
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7.3.4.4 Convergence and Pre-conditioning Sensu Stricto

Usually, the model space is so large that the minimisation is terminated after a num-
ber of iterations that is much smaller than n. In this case, the convergence rate of the
algorithm becomes relevant. As a general rule, the closer Hχ is to the unit matrix
I, the faster the method converges towards m̃. In fact, when χ is quadratic with
Hχ = I, one single iteration is sufficient to reach the minimum, m̃, independent of
the initial model, m0.

Although in practice we have no control over Hχ , we can modify the iterative
scheme such that it effectively solves a minimisation problem where the Hessian is
closer to I than in the original problem. For this we note that the minimisation of the
quadratic χ(m) as defined in Eq. (7.71) is fully equivalent to the minimisation of

χ ′(m′) := χ(m̃)+ 1

2
(m′ − m̃′) · H′

χ · (m′ − m̃′) , (7.88)

with

m′ := P−1 · m , (7.89)

m̃′ := P−1 · m̃ , (7.90)

H′
χ := P · Hχ · P (7.91)

and any positive definite pre-conditioning matrix P that is designed to approach H′
χ

as closely as possible to the unit matrix. In the ideal case we have P = H−1/2
χ .

More realistic choices are mostly based on heuristics and physical intuition. The
conjugate-gradient method applied to (7.88) converges towards the minimum m̃′ of
χ ′, that is related to the minimum m̃ of χ via Eq. (7.90).

In the general non-linear case the local Hessian Hχ (mi ) is usually not known
explicitly so that its pre-conditioned version H′

χ (mi ) cannot be computed. Yet,
based on the quadratic approximations

χ(mi ) ≈ χ(m̃)+ 1

2
(mi − m̃) · Hχ (m̃) · (mi − m̃) (7.92)

and

χ ′(m′
i ) ≈ χ(m̃)+ 1

2
(m′

i − m̃′) · H′
χ (m̃

′) · (m′
i − m̃′) , (7.93)

we find

∇m′χ(m′
i ) ≈ P · ∇mχ(mi ) . (7.94)

Equation (7.94) allows us to apply the conjugate-gradient algorithm to the minimi-
sation of χ ′(m′

i ) using only the gradient of χ , that is ∇mχ(mi ):
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Pre-conditioned Conjugate–Gradient Method (Fletcher–Reeves
Variant)

1. Choose an initial model, m0. Set i = 0, m′
0 = P−1 · m0 and h0 =

−P · ∇mχ(m0).
2. Determine the optimal step length γi using a line search.
3. Update m′

i according to

m′
i+1 = m′

i + γi hi .

4. Determine mi+1 via mi+1 = P · m′
i+1.

5. Compute the gradient for the next iterate, ∇mχ(mi+1).
6. Compute the descent direction for the next iteration, hi+1, according to

βi := ||P · ∇mχ(mi+1)||22
||P · ∇mχ(mi )||22

, (7.95)

hi+1 = −P · ∇mχ(mi+1)+ βi hi . (7.96)

7. Set i → i + 1, go to Step 2 and repeat as often as needed.

7.3.4.5 Gradient Pre-conditioning

In the context of full waveform inversion, pre-conditioning is often not understood
in its strict mathematical form where a minimisation problem is replaced by an
equivalent one for the benefit of faster convergence. Instead, the conjugate-gradient
(or the steepest descent) method is used in its original form, the only difference
being that the local gradient, ∇mχ(mi ), is manipulated in a physically plausible
way. Gradient pre-conditioning in this sense is effectively a form of regularisation
that forces the solution towards desirable models that reflect our prior knowledge or
expectation.

A very common manipulation is smoothing, meaning that ∇mχ(mi ) is low-pass
filtered before it is used to compute the next descent direction. Smoothing results
in the removal of short-wavelength structure that we do not expect to be resolvable
with a given set of data. Additional pre-conditioning can be necessary because the
gradient tends to be extremely large in the immediate vicinity of the sources and
receivers (see also Chap. 12). To prevent these large contributions from becoming
dominant features in the tomographic images, the raw gradient is often cut so that
its maximum is below a reasonable threshold. A similar approach was taken by Igel
et al. (1996) who multiplied the gradient by the inverse geometric spreading.

There are, in principle, no limits to gradient pre-conditioning as long as it leads
to accelerated convergence towards physically meaningful models. Specific pre-
conditioners are usually found empirically with the help of synthetic inversions.
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The beauty of the conjugate gradient method is that it tends to converge much
faster than the steepest descent algorithm, and the accelerated convergence comes
at nearly no additional computational costs. This explains the popularity of conju-
gate gradients in full waveform inversion, where they have been used early on (e.g.
Mora, 1987, 1988). For recent applications of conjugate-gradient-type methods the
reader is referred to Fichtner et al. (2009) and Tape et al. (2010).

7.4 Convergence

Realistic inverse problems are characterised by the presence of multiple local min-
ima and the non-uniqueness of the global minimum. To avoid the convergence
towards potentially meaningless local minima, special inversion strategies, such as
the multi-scale approach and regularisation, need to be adopted.

The multi-scale approach, described in Sect. 7.4.1, helps to guide the iterative
inversion towards the basin of attraction of the global minimum. Regularisation
(Sect. 7.4.2) forces the iteration towards models that are consistent with prior knowl-
edge or personal preference.

7.4.1 The Multi-Scale Approach

By construction, descent methods march steadily downhill on the misfit surface,
approaching a minimum, m̃, of χ . This implies that all iterates, mi , are confined to
one basin of attraction that may not necessarily correspond to the global minimum.
To avoid the convergence towards a local minimum, the initial model, m0, must be
within the basin of attraction of the global minimum, the location of which is usually
not known a priori.

A very successful strategy that greatly reduces the requirements concerning the
initial model is illustrated in Fig. 7.3. It exploits the observation that the complexity
of the misfit functional is directly proportional to the dominant length scales in the
Earth model. Loosely speaking, rough Earth models generate rough misfit func-
tionals with numerous local minima. However, the misfit functionals correspond-
ing to smooth models tend to be smooth with fewer local minima. The iterative
inversion should therefore start with long-period data that are used to constrain the
long-wavelength structure. A sufficiently good initial model for this first inversion
stage can usually be obtained from classical traveltime tomography (e.g. Pratt &
Goulty, 1991; Zhou et al., 1995; Korenaga et al., 1997; Dessa & Pascal, 2003;
Bleibinhaus et al., 2007; Fichtner et al., 2010). When the low-frequency data are
well explained, the iteration is stopped and the final model is used as initial model
for the next round of iterations for shorter wavelength structure, based on shorter
period data. This procedure – sometimes referred to as multi-scale approach – is
repeated until the data with the highest frequencies have been inverted for the short-
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Fig. 7.3 Illustration of the multi-scale approach for the case of a three-stage inversion. Top: The
first stage of the inversion starts from the initial model m0 (empty circle, ◦). The iterative min-
imisation is based on long-period data and attempts to find the optimal long-wavelength model
(filled circle, •). The objective functional, χ(m), is well behaved with a wide basin of attraction
(shaded area) around the long-wavelength optimal model, m̃1. Centre: The best model from the
first stage is used as initial model in the second stage that works with intermediate-period data.
Since the admissible wavelengths in the model are decreased by relaxing the regularisation, the
misfit functional is rougher and the basin of attraction around the optimum m̃2 is narrower. Bottom:
Model m̃2 is used as initial model in the third stage where short-period data are used to retrieve the
short-wavelength components in the model. The basin of attraction around the global minimum
m̃ is particularly narrow. As the inversion proceeds from one stage to the next, increasingly many
details appear in the tomographic images (see Fig. 14.6 for an example)

wavelength structure (e.g. Pica et al., 1990; Bunks et al., 1995; Ravaut et al., 2004;
Bleibinhaus et al., 2007; Fichtner et al., 2010).

The importance of the multi-scale approach becomes apparent already in sim-
plistic synthetic inversions such as the one shown in Fig. 7.4. There we consider
the propagation of scalar waves in a 100 km by 100 km two-dimensional domain
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where all boundaries are perfectly reflecting. The target model, mt, used to generate
artificial data, u(mt , xr , t), is shown on the left. It consists of a 14 km by 14 km
positive velocity perturbation embedded within a homogeneous background. Nine
sources and the receivers are co-located at the positions xr (r = 1, . . . , 9) indicated
by the black triangles, and the misfit functional is the cumulative L2 distance

χ(m) =
9∑

r=1

∫
T
[u(mt; xr , t)− u(m; xr , t)]2 dt . (7.97)

The upper right panel shows the result of an inversion with a single frequency band
that corresponds to a dominant wavelength of λ = 14 km, which is equal to the
size of the velocity perturbation. Using a steepest descent algorithm (Sect. 7.3.2),
the iteration arrived at a model that explains the artificial data very well, but fails
to retrieve the target model. Clearly, the model shown in the upper right panel of
Fig. 7.4 is a local minimum of χ .

The multi-scale approach, visualised in the lower right panel of Fig. 7.4, can
prevent the convergence towards a potentially meaningless local minimum. The
inversion starts in the first stage with long-period waveforms that correspond to
a dominant wavelength of λ = 40 km. The final model from the first stage is used

Fig. 7.4 Illustration of the multi-scale approach in a synthetic inversion. The minimisation was
based on the method of steepest descent (Sect. 7.3.2), and the initial model was homogeneous.
Left: The target model used to generate the artificial data consists of a positive velocity perturbation
embedded within a homogeneous background. Top right: The final model after a single frequency
band inversion is a local minimum of χ that explains the artificial data very well without being
close to the target model. (Only the central part of the final model is displayed.) Bottom right:
Iterative minimisation with successively shorter periods. The dominant wavelengths of the waves
propagating through the model decrease from λ = 40 km in the first stage to λ = 14 km in the
third stage. Displayed are the central parts of the respective final models. After the third stage the
data are perfectly explained and the optimal model resembles the target model. The detailed setup
of this numerical experiment is explained in the text
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as initial model for the second stage where the dominant wavelength is reduced to
25 km. After the third stage, the shortest period data are explained slightly better
than in the single frequency band inversion, and the optimal model is close to the
target mt .
There are two important things to note: First, the success of the multi-scale approach
is empirical, meaning that there is no guarantee that it works under different circum-
stances. Second, the extent to which a single frequency band inversion fails depends
strongly on the misfit functional, and the one chosen in (7.97) is rather inappropriate
for full waveform inversion, as we will discuss in Chap. 11.

All iterative minimisation schemes described in the following paragraphs fall
into the class of descent methods, meaning that the misfit is steadily reduced by
moving within one basin of attraction along local descent directions. Each method
comes with advantages and disadvantages that need to be weighted in the light of a
particular application.

7.4.2 Regularisation

To ensure the convergence of iterative minimisation schemes towards a physically
meaningful optimum, m̃, the inverse problem needs to be regularised. Regulari-
sation means to give preference to models that reflect prior knowledge and/or a
philosophical concept such as the principle that models should be simplistic in a
certain sense (Occam’s razor).

The choice of a regularisation method depends very much on the nature of a
specific application and on the particular aspects of the Earth’s structure that one
wishes to constrain. Regularisation is therefore subjective to some degree.

In the following paragraphs we summarise regularisation approaches that are
commonly used in seismic tomography and that we consider to be of special rele-
vance in full waveform inversion:

1. Tikhonov regularisation: The idea of Tikhonov regularisation, named after its
original inventor (Tikhonov, 1963), is to base the inversion on a regularised misfit
functional, χreg, which is equal to χ plus a quadratic term:

χreg(m) := χ(m)+ γ ||R · (m − mref)||22 , (7.98)

where R and mref denote the Tikhonov matrix and a reference model, respec-
tively. Typically, mref is a laterally homogeneous or otherwise simplistic model
of the Earth. The strictly positive parameter γ balances the contributions of the
pure misfit, χ(m) and the regularisation term ||R · (m − mref)||22.

Different choices for the Tikhonov matrix are possible: When R is equal to the
identity matrix, that is R = I, the regularisation is referred to as norm damping.
Preference is then given to models that are close to mref in the sense that the
differences m − mref are small. This regularisation effect is generally strongest
in regions of the Earth where the structure is poorly constrained by the data.
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In the extreme case where χ bears no information at all on the structure of the
Earth, that is when χ(m) = const, the optimal model m̃ is equal to mref.

A common alternative to norm damping is derivative damping, where the
optimal model is forced to have smooth variations. The Tikhonov matrix is then
R = D, where D is a finite-difference operator acting on the model space.
Typically, D is a finite-difference approximation to the Laplacian operator. The
discrete derivative emphasises sharp features so that the regularisation term is
large for rough models.

Tikhonov regularisation has been studied extensively in the context of
linearised tomographic problems. For a summary the reader is referred to
Nolet (2008).

2. Total variation regularisation: Norm and derivative damping are the classic reg-
ularisation techniques in seismic tomography despite some well-known deficien-
cies. While enforcing low-amplitude model variations, norm damping still allows
for small-scale oscillations that may not be resolvable. Derivative damping elim-
inates small-scale oscillations, but it also suppresses the sharp interfaces that one
would like to image with the help of full waveform inversion.

Originally developed in the context of image processing (e.g. Vogel &
Oman, 1996), total variation regularisation combines the advantages of norm
and derivative damping while avoiding most of their drawbacks. Total variation
regularisation is particularly effective in recovering sharp material interfaces.

To illustrate the concept, we consider a scalar function y = f (x) defined on
the interval [0, 1]. Imagine a point travelling along the graph of f . The cumu-
lative distance travelled in y-direction is the total variation of f , denoted V( f ).
When f is differentiable, V( f ) can be computed explicitly via

V( f ) =
∫ 1

0
|∂x f (x)| dx = ||∂x f ||1 , (7.99)

meaning that the total variation is equal to the L1 norm of ∂x f . To understand
what V( f ) effectively measures, we look at the examples shown in Fig. 7.5.

Fig. 7.5 Exemplary scalar functions defined on the interval [0, 1]. The total variation, V( f ), of all
functions is equal to 2, despite the very different smoothness properties
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While the smoothness properties of the three functions are very different, they
share the same total variation, V( f ) = 2. This is because the point on the graph
travels the same distance in y-direction. The total variation depends on the cumu-
lative deviation from zero, but not on the presence of sharp features such as kinks
or jumps.

This example suggests to regularise χ by adding the total variation of the
model, m:

χreg(m) := χ(m)+ γ ||∇̄m||1 , (7.100)

where ∇̄ is a discrete approximation to the gradient operator ∇. The parameter γ
plays the same role as in Tikhonov regularisation. Total variation regularisation
gives preference to models that are piecewise smooth and small in the sense that
there is little cumulative deviation from zero. Unlike derivative damping, total
variation regularisation allows for the presence of sharp interfaces. This property
is referred to as edge preservation.

Despite being a promising approach, total variation regularisation has not yet
been applied to real data full waveform inversion. Synthetic examples in one and
two dimensions can be found in Askan et al. (2007), Askan & Bielak (2008) and
Burstedde & Ghattas (2009).

3. Regularisation through parameterisation: The basis functions used to discretise
the space-continuous Earth models (see Eq. 7.5) play a key role in the regulari-
sation of the inverse problem, because they pre-determine the admissible classes
of models. Choosing, for instance, a spectral basis such as spherical harmonics,
imposes smoothness constraints that do not permit models with sharp features.

Since full waveform inversion aims to recover strong contrasts in material
properties, local basis functions should be used. For optimal regularisation, the
support of the basis functions needs to be adapted to our prior estimates of
the resolving lengths. This helps to prevent the occurrence of unresolved short-
wavelength oscillations in the tomographic images.

Methods for such adaptive discretisation on a global scale have been presented
by several authors (e.g. Debayle & Sambridge, 2004; Nolet & Montelli, 2005).
On a regional scale and in the particular context of full waveform inversion,
it appears most natural to use the discretisation from the numerical modelling
also for the representation of the Earth model. Tape et al. (2010), for example,
used the Lagrange polynomial basis of their spectral-element simulations. This
approach automatically adapts the parameterisation to the wavelength of the seis-
mic waves, which roughly coincides with the expected resolution length, at least
in the sufficiently covered regions.

4. Regularisation through finite number of iterations: A very subtle and hardly
quantifiable form of regularisation is introduced by the finite number of itera-
tions used to approximate an optimum model, m̃. As the non-linear inversion
proceeds from one model to the next (see Eq. 7.2), the misfit decreases continu-
ously because more and more aspects of the data can be explained. In this pro-
cess, outliers in the data can become dominant, thus introducing large artefacts
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in the tomographic images. The iteration must therefore be stopped sufficiently
early, and it is up to the careful tomographer to decide what ‘sufficient’ means in
practice.

While often disregarded, the finite number of iterations is likely to be a major
player in the regularisation of non-linear inverse problems.



Chapter 8
The Time-Domain Continuous Adjoint Method

The adjoint method is a mathematical tool that allows us to compute the gradient of
an objective functional with respect to the model parameters very efficiently. In this
chapter we derive a general formulation of the adjoint method that is independent of
a particular physical problem. We introduce important concepts such as time rever-
sal, adjoint sources, adjoint fields and Fréchet or sensitivity kernels. An extension
of the adjoint method to second derivatives naturally leads to Hessian kernels. We
conclude this chapter with an application to the elastic wave equation including
anisotropy and attenuation.

8.1 Introduction

The derivatives of an observable with respect to the parameters of the theory used
for its prediction play a fundamental role in all physical sciences. Derivatives are
indispensable in sensitivity analysis, numerous non-linear optimisation methods
(see Sect. 7.3) and in the development of the physical intuition that is crucial for
the efficient and meaningful solution of inverse problems.

The adjoint method as a particularly efficient tool for the computation of the
partial derivatives of an objective functional seems to have originated in the field of
control theory. In control theory one considers an observable u that is the output of
a dynamical system. The behaviour of the system depends on model parameters m
that are linked to u via a physical theory symbolised by an operator L,

L(u,m) = f , (8.1)

where f represents external forces. The goal is to choose the model parameters m
as a function of the currently observed output, such that the system operates opti-
mally. In mathematical terms optimality means that a problem-specific objective
functional χ(m) = χ [u(m)] is minimal. A change of χ in response to a change from
m to m + ε δm is approximated by the derivative of χ with respect to m in the
direction δm:

∇mχ(m) δm = lim
ε→0

1

ε
[χ(m + ε δm)− χ(m)] . (8.2)
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In many applications, including seismic tomography, the number of model parame-
ters is large and the solution of the forward problem L(u,m) = f is computationally
expensive. This renders a finite-difference approximation of (8.2) for all possible
directions δm practically impossible. This is where the adjoint method comes into
play.

The adjoint state of a hyperbolic differential equation, such as the wave equation,
can be found as early as 1968 in the book by J.-L. Lions on the optimal control of
systems governed by partial differential equations. It was one of Lions students, G.
Chavent, who may have been the first to use the adjoint method for the determination
of distributed parameters. His thesis entitled Analyse Fonctionelle et Identification
de Coefficients Répartis dans les Équations aux Dérivées Partielles dates from 1971.

Probably one of the first geoscientific applications of control theory in conjunc-
tion with the adjoint method was presented by Chavent and his co-workers Dupuy
and Lemonnier (1975). In the framework of petroleum engineering they ‘determined
the permeability distribution by matching the history of pressure in a single-phase
field, given flow production data’. To highlight some of the basic concepts still found
in modern applications, we briefly expand on their approach: Chavent, Dupuy and
Lemonnier considered a reservoir � with a permeable boundary ∂� from which a
fluid was extracted at NW production wells. The pressure p as a function of time
and space was assumed to be governed by a diffusion equation and influenced by a
transmissivity coefficient b, a known storage coefficient a and the production rate
qi of the wells. The goal was to find the transmissivity of the reservoir by matching
the history of the computed pressure p at the wells to the truly observed pressure
history, denoted p0. As in optimal control theory, this was stated in the form of a
minimisation problem involving an objective functional, χ(b, p0, p), that quantifies
the misfit between data, p0, and the computed pressure estimate, p, as a function of
b. The minimisation of χ with respect to b was achieved using a steepest descent
method, and the direction of steepest descent was obtained via the adjoint method.
Finite differencing would have been prohibitively expensive even though the discre-
tised transmissivity model merely comprised 171 grid points.

Following a series of theoretical studies on the 1D seismic inverse problem
(Bamberger et al., 1977, 1979), Bamberger et al. (1982) presented what is likely
to be the first application of the adjoint method for seismic imaging purposes. The
inversion of normal incidence seismograms was indeed set as an optimal control
problem.

Since the mid-1980s, the adjoint method has been used in a variety of physical
sciences, including meteorology (e.g. Talagrand & Courtier, 1987), ground water
modelling (e.g. Sun, 1994) and geodynamics (e.g. Bunge et al., 2003). Examples of
seismological applications of the adjoint method may be found in Tarantola (1988),
Tromp et al. (2005), Fichtner et al. (2006a, b), Sieminski et al. (2007a, b), Liu &
Tromp (2008), Stich et al. (2009), Tape et al. (2009, 2010) and Fichtner et al. (2009,
2010).

There are two distinct approaches towards the practical solution of an optimi-
sation problem that are closely linked to different variants of the adjoint method.
One may first develop the optimisation scheme based on the continuous forward
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problem and then discretise the equations. This approach, known as first optimise
then discretise (OTD), is related to the continuous adjoint method, which is the topic
of this chapter. The continuous adjoint method is very general, and it involves basic
notions of functional analysis. Alternatively, one may first discretise then optimise
(DTO), which means that the development of the optimisation scheme is based on a
forward problem that has been discretised previously. Different variants of the dis-
crete adjoint method correspond to the DTO approach. They involve simple matrix
algebra and their specific form depends on the numerical method used to discretise
the forward problem. In Chap. 10 we describe the frequency-domain discrete adjoint
method. Both OTD and DTO are equivalent provided that the discretisation of the
forward problem produces sufficiently accurate solutions.

8.2 General Formulation

We consider a physical observable u that depends on the position vector x ∈
G ⊂ R

3, time t ∈ T = [t0, t1] and on model parameters m ∈ M:

u = u(m; x, t) . (8.3)

The model space M contains all admissible parameters m, and the semicolon in
Eq. (8.3) indicates that u evolves in space and in time, whereas the model parameters
are assumed to be fixed for a given realisation of u. In seismology u represents
an elastic wave field that is linked via the wave equation, symbolically written as
L(u,m) = f, to external sources f and parameters m such as the mass density ρ and
the elastic tensor C in the Earth (see Sect. 2.2).

It is commonly not u itself, but a scalar objective functional χ(m) = χ [u(m)]
that we are interested in. Objective functionals serve two closely related purposes:
First, they can represent a measurement process that translates a pure physical entity
u, such as a seismic wave, to a secondary observable, for instance, the energy at a
receiver position x = xr:

χ(m) =
∫

T

∫
G

u̇2(m; x, t) δ(x − xr) dt d3x . (8.4)

Second, when observed data u0(x, t) are available, χ can be used to quantify the
discrepancy between the observation and the theoretical prediction u(m; x, t). The
objective functional then plays the role of a misfit functional that may, for instance,
quantify the L2 distance between observed and predicted seismograms at x = xr:

χ(m) = 1

2

∫
T

∫
G
[u(m; x, t)− u0(x, t)]2 δ(x − xr) dt d3x . (8.5)

While Eqs. (8.4) and (8.5) are special cases of objective functionals, the appearance
of an integral over space and time is of surprising generality not only in seismolog-
ical applications. We therefore write χ in the form
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χ(m) =
∫

T

∫
G
χ1[u(m; x, t)] dt d3x = 〈χ1(m)〉 , (8.6)

where we introduced 〈 . 〉 as a short notation for the integral over T × G. The deriva-
tive ∇mχ δm of χ [u(m)] with respect to m in a direction δm follows from the chain
rule:

∇mχ δm = ∇uχ δu = 〈∇uχ1 δu〉 (8.7)

where

δu := ∇mu δm (8.8)

denotes the derivative of u with respect to m in the direction δm. The difficulty of
Eq. (8.7) lies in the appearance of δu which is often hard to evaluate numerically.
For a first-order finite-difference approximation of ∇mχ one needs to determine
u(m + ε δm) for each possible direction δm. This, however, becomes infeasible
in the case of numerically expensive forward problems and large model spaces.
Consequently, we may not be able to compute ∇mχ unless we manage to elimi-
nate δu from Eq. (8.7). For this purpose we differentiate the theoretical relationship
L(u,m) = f with respect to m. Again invoking the chain rule for differentiation
gives

∇mL δm + ∇uL δu = 0 . (8.9)

The right-hand side of Eq. (8.9) vanishes because the external sources f do not
depend on the model parameters m. We now multiply (8.9) by an arbitrary test
function u† and then apply the integral 〈 . 〉:

〈u† · ∇mL δm〉 + 〈u† · ∇uL δu〉 = 0 . (8.10)

Adding Eqs. (8.7) and (8.10) gives

∇mχ δm = 〈∇uχ1 δu〉 + 〈u† · ∇uL δu〉 + 〈u† · ∇mL δm〉 . (8.11)

We can rewrite Eq. (8.11) using the adjoint operators ∇uχ
†
1 and ∇uL† which are

defined by

〈∇uχ1 δu〉 = 〈δu · ∇uχ
†
1 〉 (8.12)

and

〈u† · ∇uL δu〉 = 〈δu · ∇uL† u†〉 , (8.13)

for any δu and u†. We then obtain

∇mχ δm = 〈δu · (∇uχ
†
1 + ∇uL†u†)〉 + 〈u† · ∇mL δm〉 . (8.14)
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We may now eliminate δu from Eq. (8.14) if we can determine a field u† to satisfy

∇uL†u† = −∇uχ
†
1 . (8.15)

Equation (8.15) is referred to as the adjoint equation of (8.1), and u† and −∇uχ
†
1

are the adjoint field and the adjoint source, respectively. When the solution u† of the
adjoint equation is found, then the derivative of the objective functional reduces to

∇mχ δm = 〈u† · ∇mL δm〉 . (8.16)

By construction, ∇mχ δm can now be computed for any differentiation direction δm
without the explicit knowledge of δu. This advantage comes at the price of having
to find the adjoint operator ∇uL† and a solution of the adjoint problem (8.15).

Equation (8.15) can be simplified when the operator L is linear in u. It then
follows that L† is also linear and therefore

L†(u†) = −∇uχ
†
1 . (8.17)

8.2.1 Fréchet Kernels

Much of our physical intuition is based on the interpretation of sensitivity or Fréchet
kernels which are defined as the volumetric densities of the Fréchet derivative ∇mχ :

Km := d

dV
∇mχ =

∫
T

u† · ∇mL dt . (8.18)

Using the notion of sensitivity kernels, we can recast Eq. (8.16) as follows:

∇mχ δm =
∫

G
Km(x) δm(x) d3x . (8.19)

The sensitivity kernels Km(x) reveal how the objective functional χ(m) is affected
by model parameter changes at position x in the Earth. It is the study of Km(x)
for different types of seismic waves and different objective functionals that allows
us to design efficient inversion schemes and to interpret the results in a physically
meaningful way. A collection of sensitivity kernels for different combinations of
objective functionals and Earth model parameters is presented in Chap. 12.

8.2.2 Translation to the Discretised Model Space

In most applications, the model space, M, is discretised, meaning that the compo-
nents, mi , of the space-continuous model
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m(x) = [m1(x),m2(x),m3(x), . . .] ∈ M (8.20)

are expressed as a linear combination of N < ∞ basis functions, b j (x):

mi (x) =
N∑

j=1

μi j b j (x) . (8.21)

Commonly, the basis functions are spherical harmonics, blocks, wavelets or splines.
With the representation (8.21), the model, m, and the objective functional, χ , are
fully determined by the coefficients or model parameters μi j . We are therefore
interested in the partial derivatives ∂χ/∂μi j . Using the definition of the classical
derivative, we find

∂χ

∂μi j
= lim
ε→0

1

ε

[
χ(. . . , μi j + ε, . . .)− χ(. . . , μi j , . . .)

]

= lim
ε→0

1

ε

[
χ(. . . ,mi + εb j , . . .)− χ(. . . ,mi , . . .)

]

= ∇miχ b j =
∫

G
Kmi (x) b j (x) d3x . (8.22)

It follows from Eq. (8.22) that the gradient in the classical sense, ∂χ/∂μi j , is given
by the projection of the sensitivity kernel Kmi onto the basis function, b j .

8.2.3 Summary of the Adjoint Method

Owing to the outstanding importance of the adjoint method in the context of full
waveform inversion, we briefly summarise the key equations:

Forward problem:

L(u,m) = f .

Objective functional:

χ(m) =
∫

T

∫
G
χ1[u(m; x, t)] dt d3x = 〈χ1〉 .

Adjoint equation:

∇uL†u† = −∇uχ
†
1 .
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Derivative of the objective functional:

∇mχ δm = 〈u† · ∇mL δm〉 =
∫

G
Km δm d3x .

Fréchet kernel:

Km =
∫

T
u† · ∇mL δm dt .

8.3 Derivatives with Respect to the Source

Using the method developed so far, we can compute the derivative of the objective
functional χ with respect to the model parameters m, given that the adjoint problem
can be solved. Equation (8.1) states that the observable u does depend not only on
m, x and t , but also on the right-hand side f. This is an obvious matter of fact in
seismology where the properties of the seismic wave field are strongly influenced
by the characteristics of the source. This dependence can formally be expressed as

u = u(f,m; x, t) , (8.23)

and one may ask how the augmented objective functional χ = χ(m, f) changes as
the right-hand side of (8.1) passes from f to f + εδf. Differentiating χ with respect
to f in the direction δf yields

∇ f χ δf = ∇uχ δu = 〈∇uχ1 δu〉 , (8.24)

with δu now defined by

δu = ∇ f χ δf . (8.25)

Again, we need to eliminate δu from Eq. (8.24). For this, we define

L̃(u,m, f) = L(u,m)− f . (8.26)

The equation

L̃(u,m, f) = 0 (8.27)

is now fully equivalent to L(u,m) = f. The derivative of L̃ with respect to f in the
direction δf is given by
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∇ f L̃ δf + ∇uL̃ δu = 0 . (8.28)

Following the recipe of the previous section, we multiply (8.28) by an arbitrary test
function u† and apply the integral 〈 . 〉:

〈u† · ∇ f L̃ δf〉 + 〈u† · ∇uL̃ δu〉 = 0 . (8.29)

Adding Eq. (8.29) to Eq. (8.24) then yields

∇ f χ δf = 〈∇uχ1 δu〉 + 〈u† · ∇ f L̃ δf〉 + 〈u† · ∇uL̃ δu〉
= 〈∇uχ1 δu〉 − 〈u† · δf〉 + 〈u† · ∇uL δu〉 . (8.30)

Assuming that the adjoints ∇uχ
†
1 and ∇uL† exist allows us to rearrange (8.30):

∇ f χ δf = 〈δu · (∇uχ
†
1 + ∇uL†u†)〉 − 〈u† · δf〉 . (8.31)

Again, we can eliminate δu when a field u† can be found such that the adjoint
equation

∇uL†u† = −∇uχ
†
1 (8.32)

is satisfied. The derivative ∇ f χ δf then simplifies to

∇ f χ δf = −〈u† · δf〉 . (8.33)

The adjoint equation for derivatives with respect to the right-hand side f (Eq. 8.32)
is the same as for derivatives with respect to the model parameters m (Eq. 8.15). We
can thus compute any derivative from one adjoint field: u†.

In Sect. 9.2 we present a selection of first derivatives with respect to source
parameters, including source location, initiation time and moment tensor compo-
nents. Moreover, we demonstrate the close relation between time-reverse imaging
and the adjoint method.

8.4 Second Derivatives

Following the description of the adjoint method for the first derivative, it is natural to
seek an extension to second derivatives. For this we consider the objective functional
differentiated with respect to m in a differentiation direction δm1, that is ∇mχ δm1.
Differentiating ∇mχ δm1 once more but in a direction δm2 yields

∇m(∇mχ δm1) δm2 = ∇m∇mχ(δm1, δm2) . (8.34)
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The second derivative Hχ := ∇m∇mχ , also referred to as the Hessian of χ , is linear
in both its arguments, which are the differentiation directions δm1 and δm2.

Our interest in the Hessian is largely motivated by its fundamental role in resolu-
tion analysis, the Newton method of non-linear optimisation (see Sect. 7.3.3) and the
computation of optimal step lengths in the general descent method (see Sect. 7.3.1).
Before delving into the extension of the adjoint method to the computation of second
derivatives, we briefly summarise some of the applications where knowledge of the
Hessian is crucial.

8.4.1 Motivation: The Role of Second Derivatives in Optimisation
and Resolution Analysis

8.4.1.1 Relation Between Hessian and Posterior Covariance

The physical meaning of the Hessian becomes most apparent in the context of
probabilistic inverse problems (e.g. Tarantola, 2005), where the probability of the
correctness of a model, m, is expressed in terms of a probability density, σ(m). In
the specific case of a linear forward problem and Gaussian distributions describing
prior knowledge and measurement errors, σ(m) takes the form

σ(m) = const. e−χg(m) , (8.35)

with the misfit functional

χg(m) = 1

2
C̃−1

M (m − m̃,m − m̃) . (8.36)

The operator C̃M is the posterior covariance operator, and m̃ is the maximum-
likelihood model. All information on the resolution of and trade-offs between model
parameters is contained in C̃M.

To establish a link between the posterior covariance operator and the Hes-
sian, Hχ , of a functional, χ , we approximate χ quadratically around the optimal
model m̃:

χ(m) ≈ χ(m̃)+ 1

2
Hχ (m̃) (m − m̃,m − m̃) . (8.37)

In Eq. (8.37) we used the fact that the first derivative of χ evaluated at the optimal
model m̃ is equal to zero, i.e. ∇mχ(m̃) = 0 (see Chap. 7). The comparison of
Eqs. (8.35), (8.36) and (8.37) suggests the interpretation of the Hessian, Hχ , in
terms of the inverse posterior covariance, C̃−1

M . Accepting a Gaussian model, we
can construct a probability density

σ(m) = const. e− 1
2 Hχ (m̃) (m−m̃,m−m̃) , (8.38)
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Fig. 8.1 Left: Probability density σ(m) = σ(m1,m2) for a Hessian with zero diagonal elements.
The model parameters are independent. Right: The same as on the left but for a Hessian with large
non-zero off-diagonal elements. The model parameters cannot be constrained independently

which can be used to quantify resolution and trade-offs, at least locally in the vicinity
of the optimum m̃. Large diagonal elements of the Hessian indicate that the corre-
sponding model parameters are well resolved, meaning that the misfit χ increases
substantially when one individual parameter deviates from its optimum value. In
contrast, small diagonal elements suggest low resolution of individual parameters.
The off-diagonal elements of the Hessian quantify the extent to which two different
model parameters trade off. When off-diagonal elements are large the corresponding
model parameters can hardly be constrained independently.

This concept is schematically illustrated in Fig. 8.1 for the case of a two-
dimensional model space. The figure on the left shows a probability density,
σ(m) = σ(m1,m2), that corresponds to a Hessian with zero off-diagonal elements.
The probability densities of the individual parameters, m1 and m2, are independent
of each other: They are always Gaussian with identical mean and variance. The
probability density on the right-hand side of Fig. 8.1 is for a Hessian with large
non-zero off-diagonal elements. The probability for m1 now depends on m2 and vice
versa, meaning that the two model parameters cannot be constrained independently.

A proper covariance analysis requires knowledge of the posterior covariance
operator which is the inverse Hessian. Inverting Hχ will, however, be computa-
tionally too expensive for many problems, where the model space is large and the
forward problem costly. Still, the probability density defined in Eq. (8.38) provides
invaluable information on resolution that goes beyond classical chequerboard tests.

8.4.1.2 Extremal Bounds Analysis

In contrast to probabilistic inversion, extremal bounds analysis (e.g. Meju, 2009)
addresses resolution in a deterministic sense. Assume that q̃ is the misfit associated
with the optimal model, m̃, that is χ(m̃) = q̃ . Our goal is to find an extremal model,
mextr, such that
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b mextr = extr ! , (8.39)

where the projection operator, b, can be used, for instance, to isolate specific model
parameters. We constrain the problem by the requirement that the misfit correspond-
ing to mextr is equal to a pre-defined value q: χ(mextr) = q. The difference q − q̃
is usually chosen to be the error in χ , that is due to inaccurate measurements, noise
or an incomplete theory. The Langrange function corresponding to the constrained
requirement (8.39) is

L = b m + 1

λ
[χ(m)− q] , (8.40)

with the Lagrange multiplier, λ. Inserting the quadratic approximation (8.37) into
(8.40), differentiating and setting the resulting expression to zero yields

0 = b + 1

λ
Hχ (mextr − m̃) . (8.41)

Rearranging Eq. (8.41) gives

mextr = m̃ − λ H−1
χ b , (8.42)

where the Lagrange multiplier is found to be

λ = ±
√

2 (q − q̃)

b H−1
χ b

. (8.43)

Extremal bounds analysis provides quantitative estimates of the maximum possible
model perturbations that are still consistent with the data. Its application requires
knowledge of the inverse Hessian, H−1

χ , applied to the projection operator, b. This
quantity can be computed iteratively using, for instance, conjugate-gradient type
algorithms. The need for the inverse Hessian applied to a vector reappears in the
Newton method for non-linear minimisation.

8.4.1.3 Optimal Step Length in Gradient-Based Minimisation

Gradient-based minimisation algorithms iteratively minimise the misfit functional
χ by updating the current model mi with γi hi , where hi is a descent direction
computed from ∇mχ(mi ), and γi > 0 is the step length (see Sect. 7.3.1):

mi+1 := mi + γi hi , χ(mi+1) < χ(mi ) . (8.44)

The step length γi that reduces χ as much as possible within one iteration can be
computed with the help of Hχ :
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γi = − ∇mχ(mi )hi

Hχ (mi )(hi ,hi )
. (8.45)

The Hessian therefore allows us to determine efficient step lengths in iterative min-
imisation schemes.

8.4.1.4 The Newton Method

The Newton method (see Sect. 7.3.3) is a special gradient-based algorithm that iter-
atively minimises the objective functional χ by updating the current iterate mi to
the next iterate mi+1 by adding a search direction hi ,

mi+1 = mi + hi , (8.46)

where hi is determined by the Newton equation:

Hχ hi = −∇mχ(mi ) . (8.47)

Under favourable conditions, the Newton method can be shown to converge quadrat-
ically, that is, faster than other optimisation schemes. The size of the model space
usually requires that Eq. (8.47) be solved iteratively as well, using, for instance,
the conjugate-gradient method described in Sect. 7.3.4. The iterative solution of
(8.47) for each model iterate mi defines an inner loop within the optimisation of the
objective functional χ , which is itself referred to as the outer loop.

Methods of the conjugate-gradient type for the solution of the Newton equation
involve the Hessian, Hχ , applied to a model δm1, i.e., Hχ δm1. This means that
the explicit Hessian does not need to be computed. This reduces the computational
costs of the Newton method to a feasible level. Despite being feasible, the Newton
method has so far not enjoyed much popularity in seismic waveform inversion. One
application to the 1D wave equation can be found in Santosa & Symes (1988).

8.4.2 Extension of the Adjoint Method to Second Derivatives

To compute Hχδm1 we adopt the following strategy: First, we derive an equation
that gives Hχ (δm1, δm2) in terms of the adjoint field that we already introduced in
Sect. 8.2. Then, in order to isolate δm2, we define a secondary adjoint field that is
the solution of the adjoint equation with a right-hand side determined by δm1.

We start with the explicit computation of Hχ (δm1, δm2). For this we first differ-
entiate χ with respect to m in the direction δm1,

∇mχ δm1 = 〈∇uχ1 δ1u〉 , (8.48)

with the derivative of the forward field δ1u := ∇mu δm1. Repeating this procedure
for a second direction, δm2, yields
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Hχ (δm1, δm2) = ∇m∇mχ(δm1, δm2) = 〈∇u∇uχ1(δ1u, δ2u)+ ∇uχ1 δ12u〉 ,
(8.49)

with the first derivative δ2u := ∇mu δm2 and the Hessian of the forward wave field
δ12u := ∇m∇mu(δm1, δm2). The first term on the right-hand side of Eq. (8.49),
〈∇u∇uχ1(δ1u, δ2u)〉, is the approximate Hessian of the objective functional applied
to δm1 and δm2. It merely requires first derivatives that we can already compute effi-
ciently with the help of the standard adjoint method that we described in Sect. 8.2.
The approximate Hessian is used as a computationally less expensive substitute
of the full Hessian, ∇m∇mχ , in the Gauss–Newton and the Levenberg–Marquardt
methods of non-linear optimisation (e.g. Pratt et al., 1998; Sect. 7.3.3).

Our goal is to eliminate the second derivative δ12u from Eq. (8.49) because its
computation for all possible directions would require us to solve the adjoint problem
Nm times, where Nm is the dimension of the (discretised) model space.
We proceed as in the standard adjoint method for first derivatives and differentiate
the forward problem, L(u,m) = f, with respect to m:

0 = ∇mL δm1 + ∇uL δ1u . (8.50)

Differentiating (8.50) once more with respect to m but in the direction δm2 yields

0 =∇m∇mL(δm1, δm2)+ ∇u∇mL(δm1, δ2u)

+ ∇m∇uL(δ1u, δm2)+ ∇u∇uL(δ1u, δ2u)+ ∇uLδ12u . (8.51)

In the next step we multiply Eq. (8.51) with an arbitrary test function u†
1 and inte-

grate over time and space:

0 = 〈u†
1 · ∇m∇mL(δm1, δm2)〉 + 〈u†

1 · ∇u∇mL(δm1, δ2u)〉
+ 〈u†

1 · ∇m∇uL(δ1u, δm2)〉 + 〈u†
1 · ∇u∇uL(δ1u, δ2u)〉 + 〈u†

1 · ∇uLδ12u〉 .
(8.52)

Adding (8.52) to (8.49) and rearranging terms gives

Hχ (δm1, δm2) = 〈(∇uχ1 + u†
1 · ∇uL) δ12u〉 + 〈∇u∇uχ1(δ1u, δ2u)〉

+ 〈u†
1 · ∇m∇mL(δm1, δm2)〉 + 〈u†

1 · ∇u∇mL(δm1, δ2u)〉
+ 〈u†

1 · ∇m∇uL(δ1u, δm2)〉 + 〈u†
1 · ∇u∇uL(δ1u, δ2u)〉 . (8.53)

We can now eliminate the second derivative of the forward field, δ12u, from
Eq. (8.53) by imposing that the test field u†

1 be the solution of the adjoint equation

∇uL†u†
1 = −∇uχ

†
1 . (8.54)

The adjoint equation (8.54) is identical to the adjoint equation for first derivatives
(8.15), which means that the adjoint field, u†

1, can in practice be recycled for the
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computation of the Hessian. We will henceforth refer to u†
1 as the primary adjoint

field and to (8.54) as the primary adjoint equation.
When the primary adjoint field, u†

1, satisfies the primary adjoint equation (8.54),
then Hχ (δm1, δm2) can indeed be expressed in terms of first derivatives with
respect to m:

Hχ (δm1, δm2) = 〈∇u∇uχ1(δ1u, δ2u)〉 + 〈u†
1 · ∇m∇mL(δm1, δm2)〉

+ 〈u†
1 · ∇u∇mL(δm1, δ2u)〉 + 〈u†

1 · ∇m∇uL(δ1u, δm2)〉
+ 〈u†

1 · ∇u∇uL(δ1u, δ2u)〉 . (8.55)

The last term on the right-hand side of Eq. (8.55), involving ∇u∇uL, is zero for
linear operators, including the wave equation operator. Whether the second term,
involving ∇m∇mL, is zero or not depends on the specific parameterisation of the
model space. The wave equation operator, for instance, is linear in density and
the elastic parameters, which lead to a zero second derivative, i.e. ∇m∇mL = 0.
However, when the model is parameterised in terms of density and seismic wave
speeds, quadratic terms appear, and ∇m∇mL is generally non-zero.

To apply conjugate-gradient-type methods to the solution of the Newton equa-
tion (8.47) we require the Hessian applied to a model perturbation, that is Hχ δm1
and not Hχ (δm1, δm2). Unfortunately, δm2 appears implicity via δ2u in Eq. (8.55).
The next step is therefore the isolation of δm2. For clarity we restrict the following
development to operators L(u) that are linear in u, and we omit the dependence of
L on m in the notation. This gives

∇u∇uL(u)(δ1u, δ2u) = 0 , (8.56)

∇u∇mL(u)(δm1, δ2u) = ∇mL(δ2u) δm1 , (8.57)

∇m∇uL(u)(δ1u, δm2) = ∇mL(δ1u) δm2 . (8.58)

After slight rearrangements we can now write Eq. (8.55) in the following form:

Hχ (δm1, δm2) = 〈∇u∇uχ1(δ1u, δ2u)〉 + 〈u†
1 · ∇mL(δ2u) δm1〉

+ 〈u†
1 · ∇m∇mL(u)(δm1, δm2)〉 + 〈u†

1 · ∇mL(δ1u) δm2〉 . (8.59)

Our focus is now on the first two terms on the right-hand side of Eq. (8.59) where the
direction δm2 appears implicitly via δ2u = ∇mu δm2. Invoking the adjoint ∇mL†

of ∇mL we can write

〈∇u∇uχ1(δ1u, δ2u)〉 + 〈u†
1 · ∇mL(δ2u) δm1〉

= 〈δ2u · ∇u∇uχ
†
1 (δ1u)〉 + 〈δ2u · ∇mL†(u†

1) δm1〉
= 〈δ2u · [∇u∇uχ

†
1 (δ1u)+ ∇mL†(u†

1) δm1]〉 . (8.60)

In Eq. (8.60) we have recognised that ∇u∇uχ1(δ1u, δ2u) can be interpreted
as a linear operator, ∇u∇uχ1(δ1u), acting on δ2u, i.e. ∇u∇uχ1(δ1u, δ2u) =
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∇u∇uχ1(δ1u) δ2u. At this point of the development we define the secondary adjoint
field, u†

2, as the solution of the secondary adjoint equation

L†(u†
2) := −[∇u∇uχ

†
1 (δ1u)+ ∇mL†(u†

1) δm1] . (8.61)

Substituting (8.61) into (8.60) then yields

〈∇u∇uχ1(δ1u, δ2u)〉 + 〈u†
1 · ∇mL(δ2u) δm1〉

= −〈δ2u · L†(u†
2)〉 = −〈u†

2 · L(δ2u)〉 . (8.62)

To replace L(δ2u) we note that the differentiation of the forward problem,
L(u,m) = f, with respect to m in the direction δm2 gives

∇mL(u) δm2 + L(δ2u) = 0 . (8.63)

Inserting (8.63) into (8.62) leaves us with the following expression:

〈∇u∇uχ1(δ1u, δ2u)〉 + 〈u†
1 · ∇mL(δ2u) δm1〉 = 〈u†

2 · ∇mL(u) δm2〉 , (8.64)

where the second differentiation direction, δm2, appears explicitly. We can now
assemble Hχ δm1:

Hχδm1 = Hχ (δm1, ◦) =〈u†
2 · ∇mL(u) ◦〉

+〈u†
1 · ∇mL(δ1u) ◦〉

+〈u†
1 · ∇m∇mL(u)(δm1) ◦〉 . (8.65)

The symbol ◦ represents a place holder for a second differentiation direction δm2.

8.4.2.1 Hessian Kernels

Equation (8.65) suggests a representation of Hχ (δm1, δm2) in terms of volumetric
integral kernels that are reminiscent of the Fréchet kernels introduced in Eqs. (8.18)
and (8.19):

Hχ (δm1, δm2) =
∫

G

(
K a
δm1

+ K b
δm1

+ K c
δm1

)
δm2 d3x , (8.66)

with the Hessian kernels defined by

K a
δm1

:=
∫

T
u†

2 · ∇mL(u) dt , (8.67)

K b
δm1

:=
∫

T
u†

1 · ∇mL(δ1u) dt , (8.68)

K c
δm1

:=
∫

T
u†

1 · ∇m∇mL(u)(δm1) dt . (8.69)
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Unlike Fréchet kernels, the Hessian kernels depend on the model perturbation, δm1,
either explicitly as in K c

δm1
or implicity via δ1u and u†

2. Section 9.3 provides phys-
ical interpretations of the Hessian kernels and explicit formulas for a selection of
seismologically relevant Earth model parameters.

8.4.2.2 Translation to the Discretised Model Space

In a discretised model space the components mi (x) of the space-continuous model
m(x) are expressed in terms of a linear combination of a finite number of basis
functions, b j (x), as already stated in Eqs. (8.20) and (8.21).

With the help of the Hessian operator, Hχ , we can then compute the components
of the Hessian matrix, Hχ , that we used extensively in the chapter on non-linear
minimisation (Chap. 7). The component (Hχ )i j,kl of the Hessian matrix Hχ is the
second derivative of χ with respect to the discrete model parameters, μi j and μkl ,
that is

(Hχ )i j,kl = ∂2χ

∂μi j ∂μkl
. (8.70)

Making use of Eq. (8.22) we find

(Hχ )i j,kl = ∂

∂μkl

(
∂χ

∂μi j

)
= ∂

∂μkl
(∇miχ b j ) = ∇mk ∇miχ(b j , bl) . (8.71)

The component (Hχ )i j,kl of the Hessian matrix is equal to the Hessian operator
∇mk ∇miχ applied to the basis functions b j and bl .

8.4.2.3 Summary of the Adjoint Method for Second Derivatives

We now summarise the most relevant equations for the computation of Hχδm1:

Forward problem:

L(u) = f .

Primary adjoint equation:

L†(u†
1) = −∇uχ

†
1 .

Scattered wave field:

δ1u = ∇mu δm1 .
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Secondary adjoint equation:

L†(u†
2) = −∇u∇uχ

†
1 δ1u − ∇mL†(u†

1) δm1 ,

Hessian applied to model perturbation:

Hχ δm1 = 〈u†
2 · ∇mL(u) ◦〉 + 〈u†

1 · ∇mL(δ1u) ◦〉 + 〈u†
1 · ∇m∇mL(u)(δm1) ◦〉 .

Equation (8.65) is of general validity for operators that are linear in u. One may
attach intuitive physical meaning to each of the summands that compose Hχ . This
will be the topic of Sect. 9.3.

8.5 Application to the Elastic Wave Equation

8.5.1 Derivation of the Adjoint Equations

The previous development of the adjoint method provides a simple and very general
recipe that can be applied to a large class of objective functionals, χ , and physical
theories, L(u,m) = f. In the context of seismic tomography we are interested in
the special case where L is the elastic wave equation and where m represents the
structural properties of the Earth.

In our development we closely follow Tarantola (1988) and Fichtner et al. (2006):
The elastic wave equation, as introduced in Sect. 2.2, is given by

ρ(x)ü(x, t)− ∇ · σ (x, t) = f(x, t) , x ∈ G ⊂ R
3 , t ∈ [t0,∞) ⊂ R . (8.72)

Equation (8.72) relates the elastic displacement field u in the Earth G ⊂ R
3 to

the mass density ρ, the stress tensor σ and an external force density f. Under the
assumption of a linear visco-elastic rheology, the stress tensor σ is related to the
displacement gradient ∇u via the constitutive relation

σ (x, t) =
∫ ∞

τ=t0
Ċ(x, t − τ) : ∇u(x, τ ) dτ. (8.73)

Inserting Eq. (8.73) into Eq. (8.72) allows us to express the wave equation in terms
of an operator L:

L(u, ρ,C) = f , (8.74)

L(u, ρ,C) = ρ(x) ü(x, t)− ∇ ·
∫ t

τ=t0
Ċ(x, t − τ) : ∇u(x, τ ) dτ . (8.75)
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The elastic wave operator, L, is accompanied by the initial and boundary conditions

u|t≤t0 = u̇|t≤t0 = 0 , n · σ |x∈∂G = 0 . (8.76)

To compute the derivative of an objective functional, χ , with respect to ρ and C we
need to find the adjoint operator ∇uL† of ∇uL, as defined in Eq. (8.13):

〈u · ∇uL† u†〉 = 〈u† · ∇uL u〉 . (8.77)

The explicit version of 〈u† · ∇uL u〉 is

〈u† · ∇uL u〉 =
∫

T

∫
G

u† · ∇uL u dt d3x =
∫

T

∫
G
ρ u† · ü dt d3x

−
∫

T

∫
G

u† ·
[
∇ ·

∫ t

τ=t0
Ċ(t − τ) : ∇u(τ ) dτ

]
dt d3x , (8.78)

where we have omitted all dependencies on x in the interest of clarity. Our goal is
to isolate u in Eq. (8.78) so that it is not differentiated. We start with the first term
on the right-hand side, i.e. with

〈u† · ρü〉 =
∫

T

∫
G
ρ u† · ü d3x dt . (8.79)

Repeated integration by parts yields

∫
T

∫
G
ρ u† · ü d3x dt =

∫
T

∫
G
ρ u · ü† d3x dt

+
∫

G
ρ u̇ · u† d3x

∣∣∣∣
t=t1

−
∫

G
ρ u · u̇† d3x

∣∣∣∣
t=t1

, (8.80)

where we already used the initial conditions u|t≤t0 = u̇|t≤t0 = 0. By imposing the
terminal conditions

u†|t≥t1 = u̇†|t≥t1 = 0 , (8.81)

we can obtain the first ingredient of the adjoint operator:

〈u† · ρü〉 = 〈u · ρü†〉 . (8.82)

We now turn to the spatial differentiation of u. For this, we consider the expression

ϒ := 〈u† · (∇ · σ )〉 =
∫

T

∫
G

u† ·
[
∇ ·

∫ t

τ=t0
Ċ(t − τ) : ∇u(τ ) dτ

]
d3x dt . (8.83)

Upon invoking the symmetries of the elastic tensor, C, we find the relation
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u† ·[∇ ·(Ċ : ∇u)] = ∇ ·(u† ·Ċ : ∇u)−∇·(u·Ċ : ∇u†)+u·[∇ ·(Ċ : ∇u†)] , (8.84)

which we can use to transform Eq. (8.83):

ϒ =
∫

G

∫ t1

t=t0

∫ t

τ=t0
∇ · [u†(t) · Ċ(t − τ) : ∇u(τ )] dτ dt d3x

−
∫

G

∫ t1

t=t0

∫ t

τ=t0
∇ · [u(τ ) · Ċ(t − τ) : ∇u†(t)] dτ dt d3x

+
∫

G

∫ t1

t=t0

∫ t

τ=t0
u(τ ) · [∇ · (Ċ(t − τ) : ∇u†(τ ))] dτ dt d3x . (8.85)

With the help of Gauss’ theorem and the identity

∫ t

τ=t0

∫ t1

t=t0
dt dτ =

∫ t1

t=τ

∫ t1

τ=t0
dt dτ (8.86)

we write ϒ in a form that allows us to eliminate two of the contributing integrands:

ϒ =
∫
∂G

∫ t1

t=t0
u†(t) ·

[∫ t

τ=t0
Ċ(t − τ) : ∇u(τ ) dτ

]
· n dt d2x

−
∫
∂G

∫ t1

τ=t0
u(τ ) ·

[∫ t1

t=τ
Ċ(t − τ) : ∇u†(t) dt

]
· n dτ d2x

+
∫

G

∫ t1

τ=t0
u(τ ) ·

[
∇ ·

∫ t1

t=τ
Ċ(t − τ) : ∇u†(t) dt

]
dτ d3x . (8.87)

The first term in Eq. (8.87) is equal to zero because the expression in square brackets
is the stress tensor σ , and σ · n = 0 on ∂G as a consequence of the free surface
boundary condition. Since u† is so far only constrained by the terminal conditions
(8.81) we are free to impose a boundary condition that forces the second term to
zero:

n · σ †|x∈∂G = 0 , (8.88)

with the adjoint stress tensor σ † defined by

σ †(t) =
∫ t1

τ=t
Ċ(τ − t) : ∇u†(τ ) dτ . (8.89)

The third integrand in Eq. (8.87) is already of the form that we require. It thus
remains to assemble the complete adjoint ∇uL†: Combining Eqs. (8.78), (8.82)
(8.87), (8.88) and (8.89) yields
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〈u · ∇uL†u†〉 = 〈u · ρü†〉 − ϒ = 〈u · (ρ ü† − ∇ · σ †)〉 . (8.90)

It follows that the adjoint operator ∇uL† is given by

∇uL†u† = ρ ü† − ∇ · σ † . (8.91)

Thus, to compute the derivative of the objective functional, ∇mχ , one needs to solve
the adjoint equation

ρü† − ∇ · σ † = −∇uχ
†
1 , (8.92)

subject to the terminal and boundary conditions

u†|t≥t1 = u̇†|t≥t1 = 0 , n · σ †|x∈∂G = 0 . (8.93)

In non-dissipative media the elastic wave operator L is self-adjoint, meaning that
L = L†. Since the adjoint equation (8.92) is still of the wave equation type, it can
be solved numerically using the same methods as for the solution of the regular
wave equation.

The obvious numerical difficulty in solving the adjoint equation is the occurrence
of the terminal conditions (8.93) that require that the adjoint field be zero at time
t = t1 when the observation ends. In practice, this condition can only be met by
solving the adjoint equation backwards in time, that is by reversing the time axis
from t0 → t1 to t1 → t0. The terminal conditions then act as zero initial conditions,
at least in the numerical simulation.

Time reversal appears in numerous applications including reverse time migration
(e.g. Baysal et al., 1983) and the time-reversal imaging of seismic sources (e.g. Lar-
mat et al., 2006; Sect. 9.2). Most of these are closely related to the adjoint method.

The adjoint sources are fully specified by the objective functional, that may be
used, for instance, to measure the misfit between observed and synthetic seismo-
grams. In this context the adjoint method is often classified as a back projection
technique where the waveform residuals are propagated backwards in time towards
the location from where they originated. The adjoint operator is sometimes referred
to as back projection operator.

Equation (8.89) reveals that the adjoint stress tensor σ † at time t depends on
future strain from t to t1. This results in a growth of elastic energy when the
wave field propagates in the regular time direction from t0 to t1. In reversed time,
however, the elastic energy decays, so that numerical instabilities do not occur (e.g.
Tarantola, 1988).

In our analysis we did not consider perturbations in the topography of the Earth’s
internal discontinuities. For a derivation of Fréchet kernels with respect to topo-
graphical variations the reader is referred to Liu & Tromp (2008).
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8.5.2 Practical Implementation

To compute the derivatives of χ via the time integral from Eq. (8.16), the regular
wave field – propagating forward in time – and the adjoint wave field – propagating
backwards in time – must be available simultaneously. In a medium without dissipa-
tion and without absorbing boundaries, one can solve this problem as follows: First,
the regular wave equation is solved, and its final state, that is u(x, t1) and u̇(x, t1),
is stored. Following the computation of the adjoint source, the adjoint equation is
solved backwards in time. Then, as u† propagates from t1 towards the initial time
t0, the regular wave field is propagated simultaneously in reverse time, starting from
the final stage that has been stored before. Since the regular and the adjoint fields
are known at coincident time steps, the time integral can be solved on the fly, that
is, in the course of the adjoint simulation.

This strategy works because the earlier states of the regular wave field u can be
perfectly reconstructed from the final state at t = t1 when the wave equation is
invariant with respect to a sign change of the time variable, which is equivalent to
the perfect conservation of elastic energy.

In the presence of dissipation or absorbing boundaries, however, elastic energy
is lost during the propagation of the regular wave field, so that its earlier states
cannot be reconstructed from the final state. It follows that we are forced to store u
at intermediate time steps. The stored regular wave field is then loaded during the
adjoint simulation and used to approximate the time integral.

In the extreme case, u is stored in every single time step of the forward simula-
tion. Since the resulting amount of data can easily exceed conventional capacities,
checkpointing algorithms have been developed (e.g. Griewank & Walther, 2000;
Charpentier, 2001). The idea is to store the regular wave field at a smaller number
of time steps, called checkpoints, and to solve the forward problem from there until
the current time of the adjoint calculation is reached. The storage requirements are
thus reduced at the expense of significantly increased computation time.

A less time-consuming alternative to checkpointing is data compression, in the
sense that a reduced version of the regular wave field is stored. This can often be
done in a natural way within the numerical modelling code. In the spectral-element
method, for instance (see Chap. 4), the dynamic fields are represented in terms of
Nth-order Lagrange polynomials. Since neighbouring elements share grid points,
the storage requirements are proportional to N 3. This can be reduced by storing
lower order polynomial representations of the forward dynamic fields that are then
re-converted to Nth-degree polynomials during the adjoint calculation. A reduction
of the polynomial degree from 6 to 4 results in a compression ratio of 3.4 with no
significant deterioration of the sensitivity kernels.

As it is very often the case, the numerical costs can be reduced significantly
with the help of physical insight. Following a detailed discussion of the anatomy of
Fréchet kernels in Chap. 12, we will present a time integration scheme that limits
the storage requirements to a more acceptable level (Sect. 12.4).



Chapter 9
First and Second Derivatives with Respect to
Structural and Source Parameters

This chapter provides specific examples for the first and second derivatives of an
objective functional with respect to selected structural and source parameters. We
discuss the general characteristics of Fréchet kernels in the context of single scatter-
ing from within a first-order influence zone. With the help of the adjoint method we
then derive explicit formulas for Fréchet kernels in isotropic, radially anisotropic
and visco-elastic media. First derivatives with respect to source parameters are
shown to be intimately related to the time-reverse imaging of seismic rupture pro-
cesses. A strong focus is on the interpretation of the Hessian especially in terms
of resolution and trade-off kernels. We demonstrate the relation between Hessian
kernels and several forms of second-order scattering. We give a recipe for the com-
putation of second derivatives, followed by a collection of Hessian kernels for a
variety of structural parameters.

9.1 First Derivatives with Respect to Selected Structural
Parameters

The most general expression for the derivative of an objective functional χ(m) in
the direction δm is given by Eq. (8.16) that we repeat here for convenience:

∇mχ δm = 〈u† · ∇mL δm〉 . (9.1)

Substituting the wave operator defined in Eq. (8.75) yields the explicit formula

∇mχ δm =
∫

T

∫
G

u†(t) ·
[
δρ ü(t)− ∇ ·

∫ t

τ=t0
δĊ(t − τ) : ∇u(τ ) dτ

]
dt d3x ,

(9.2)
with δm = (δρ, δC). Again, we omitted spatial dependencies in the interest of
readability. Integrating by parts provides a more symmetric and more useful version
of Eq. (9.2):

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-15807-0_9, C© Springer-Verlag Berlin Heidelberg 2011
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∇mχ δm = −
∫

T

∫
G
δρ u̇†(t) · u̇(t) dt d3x

+
∫

T

∫
G

[∫ t

τ=t0
∇u†(t) : δĊ(t − τ) : ∇u(τ ) dτ

]
dt d3x . (9.3)

The Fréchet kernels associated with (9.3) are

Kρ = −
∫

T
u̇†(t) · u̇(t) dt (9.4)

and

KC (τ ) =
∫

T
∇u†(t)⊗ ∇u(t + τ) dt , (9.5)

where ⊗ denotes the tensor or dyadic product. Both kernels are non-zero only within
the primary influence zone where the regular and adjoint wave fields interact at some
time between t0 and t1. The primary influence zone, illustrated in Fig. 9.1, is the
region where a model perturbation, δm, causes the regular wave field, u, to generate

Fig. 9.1 Illustration of the primary influence zone where the regular wave field, u, interacts with the
adjoint wave field, u†. Numbers are used to mark the regular and adjoint wavefronts at successive
points in time. As time goes on, the regular wave field propagates away from the source while the
adjoint wave field collapses into the receiver. In numerical simulations the adjoint equations are
solved backwards in time in order to satisfy the terminal conditions. On the reverse time axis, the
adjoint field propagates away from the receiver, starting at the final observation time. The primary
influence zone marks the region where a model perturbation, δm, generates a first-order scattered
wave field that affects the measurement at the receiver. Perturbations located outside the primary
influence zone have no first-order effect on the measurement
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a first-order or single scattered wave that affects the measurement at the receiver. A
perturbation located outside the primary influence zone has no first-order effect on
the measurement.

For most seismic phases, the primary influence zone is a roughly cigar-shaped
region connecting the source and the receiver. Its precise geometry depends on many
factors including the frequency content, the length of the considered time window,
the type of measurement and the reference Earth model, m. Specific examples for
common seismic phases and measurements can be found in Chap. 12.

In what follows we derive the Fréchet kernels for several widely used rheologies,
i.e. for special choices of C(t).

9.1.1 Perfectly Elastic and Isotropic Medium

The defining property of a perfectly elastic medium is that present stresses do not
depend on past deformation. This is expressed mathematically by a time dependence
of C and δC that has the form of a unit-step function:

C(x, t) = C(x) H(t) , δC(x, t) = δC(x) H(t) . (9.6)

Upon inserting (9.6) into Eq. (9.3) we obtain a simplified expression for ∇mχ :

∇mχ δm = −
∫

T

∫
G
δρ u̇†(t) · u̇(t) dt d3x

+
∫

T

∫
G

∇u†(t) : δC : ∇u(t) dt d3x . (9.7)

In an isotropic medium the components of C are given by (e.g. Aki &
Richards, 2002)

Cijkl = λδi jδkl + μδikδ jl + μδilδ jk . (9.8)

The symbols λ and μ denote the Lamé parameters. It follows that the complete
derivative of χ is composed of three terms:

∇mχ δm = ∇ρχ δρ + ∇λχ δλ+ ∇μχ δμ , (9.9)
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with

∇ρχ δρ = −
∫

T

∫
G
δρ u̇† · u̇ dt d3x , (9.10a)

∇λχ δλ =
∫

T

∫
G
δλ (∇ · u)(∇ · u†) dt d3x , (9.10b)

∇μχδμ =
∫

T

∫
G
δμ [(∇u†) : (∇u)+ (∇u†) : (∇u)T] dt d3x . (9.10c)

We obtain the corresponding sensitivity kernels by simply dropping the spatial inte-
gration:

K 0
ρ = −

∫
T

u̇† · u̇ dt , (9.11a)

K 0
λ =

∫
T
(∇ · u)(∇ · u†) dt , (9.11b)

K 0
μ =

∫
T
[(∇u†) : (∇u)+ (∇u†) : (∇u)T] dt . (9.11c)

The superscript 0 symbolises that the Fréchet kernels correspond to the funda-
mental parameterisation m = (ρ, λ, μ). Eqs. (9.11a), (9.11b) and (9.11c) confirm
the intuitive expectation that K 0

λ vanishes for pure shear waves, while both shear
and compressional waves contribute to K 0

μ. Depending on personal preference and
numerical convenience, one may rewrite some of the above equations in terms
of the regular strain tensor ε = 1

2 [(∇u) + (∇u)T] and the adjoint strain tensor
ε† = 1

2 [(∇u†)+ (∇u†)T]. For this we can use the relations

(∇ · u)(∇ · u†) = (tr ε) (tr ε†) (9.12)

and

(∇u†) : (∇u)+ (∇u†) : (∇u)T = 2(∇u†) : ε

=2(∇u†) : ε − (∇u†)T : ε + (∇u†)T : ε

=[(∇u†) : ε + (∇u†)T : ε] + [(∇u†) : ε − (∇u†)T : ε] = 2ε† : ε . (9.13)

The last equality holds because the dot product of a symmetric tensor and an anti-
symmetric tensor vanishes.

Based on Eqs. (9.11a), (9.11b) and (9.11c) we easily derive formulas for
the Fréchet kernels with respect to other parameters, such as the bulk modulus,
κ = λ + 2μ/3, the S wave speed, vS = √

μ/ρ or the P wave speed, vP =√
(λ+ 2μ)/ρ. Defining ρ, κ and μ as independent parameters, we find the fol-

lowing set of kernels:
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Kρ = K 0
ρ , (9.14a)

Kκ = K 0
λ , (9.14b)

Kμ = K 0
μ − 2

3
K 0
λ . (9.14c)

With ρ, vP and vS as independent parameters we have

Kρ = K 0
ρ + (v2

P − 2v2
S ) K 0

λ + v2
S K 0

μ , (9.15a)

KvS = 2ρvS K 0
μ − 4ρvS K 0

λ , (9.15b)

KvP = 2ρvP K 0
λ . (9.15c)

A comparison between Eqs. (9.14a) and (9.15a) makes it particularly obvious that
the sensitivity with respect to density, ρ, depends strongly on the choice of free
parameters.

9.1.2 Perfectly Elastic Medium with Radial Anisotropy

Anisotropy is the dependence of the elastic tensor on the orientation of the coor-
dinate system. Its most direct seismological expressions are the splitting of shear
waves and the dependence of seismic velocities on the propagation and polarisation
directions. Polarisation anisotropy is particularly pronounced in the Earth’s upper-
most mantle, and it leads to the readily observable Love–Rayleigh discrepancy: The
propagation speeds of Love and Rayleigh waves travelling in the same direction can
rarely be explained with an isotropic model. Pure polarisation anisotropy occurs in
elastic media with radial symmetry axis that are fully described by five independent
elastic tensor components. They can be summarised in two 3 × 3 matrices (e.g.
Babuska & Cara, 1991):

⎛
⎝ Crrrr Crrφφ Crrθθ

Cφφrr Cφφφφ Cφφθθ
Cθθrr Cθθφφ Cθθθθ

⎞
⎠ =

⎛
⎝λ+ 2μ λ+ c λ+ c
λ+ c λ+ 2μ+ a λ+ a
λ+ c λ+ a λ+ 2μ+ a

⎞
⎠ (9.16a)

⎛
⎝Cφθφθ Cφθrθ Cφθrφ

Crθφθ Crθrθ Crθrφ

Crφφθ Crφrθ Crφrφ

⎞
⎠ =

⎛
⎝μ 0 0

0 μ+ b 0
0 0 μ+ b

⎞
⎠ . (9.16b)

All components of C that do not appear in Eq. (9.16) are equal to zero. Many of the
examples given in the following chapters will be based on this type of anisotropy.
For a = b = c = 0 we retrieve the elastic tensor of an isotropic medium. In
homogeneous media we can give intuitive interpretations of λ, μ, a, b and c: The
velocity of a horizontally propagating plane S wave is



168 9 First and Second Derivatives with Respect to Structural and Source Parameters

vSV =
√
μ+ b

ρ
or vSH =

√
μ

ρ
(9.17)

depending on whether it is vertically (vSV) or horizontally (vSH) polarised. For verti-
cally and horizontally propagating P waves we find the propagation speeds vPV and
vPH, given by

vPV =
√
λ+ 2μ

ρ
and vPH =

√
λ+ 2μ+ a

ρ
, (9.18)

respectively. The parameter c can only be determined from P waves that do not
travel in exactly radial or horizontal directions. It is commonly absorbed in a new
parameter, η, defined by (e.g. Dziewonski & Anderson, 1981)

η := λ+ c

λ+ a
. (9.19)

After some tedious but straightforward algebraic manipulations we find the follow-
ing set of Fréchet kernels with respect to ρ, λ, μ, a, b and c:

K 0
ρ = −

∫
T

u̇† · u̇ dt , (9.20a)

K 0
λ =

∫
T
(tr ε†)(tr ε) dt , (9.20b)

K 0
μ = 2

∫
T

ε† : ε dt , (9.20c)

K 0
a =

∫
T
(ε

†
φφ + ε

†
θθ )(εφφ + εθθ ) dt , (9.20d)

K 0
b = 4

∫
T
(ε

†
rθ εrθ + ε

†
rφεrφ) dt , (9.20e)

K 0
c =

∫
T
[ε†

rr (εφφ + εθθ )+ εrr (ε
†
φφ + ε

†
θθ )] dt . (9.20f)

Fréchet kernels for the seismologically more relevant parameters vSV, vSH, vPV, vPH

and η can now be expressed as linear combinations of the kernels in Eqs. (9.20a),
(9.20b), (9.20c), (9.20d), (9.20e) and (9.20f):
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Kρ = K 0
ρ + v2

SH K 0
μ + (v2

PV − 2v2
SH)K

0
λ + (v2

PH − v2
PV)K

0
a

+ (v2
SV − v2

SH)K
0
b +

[
2(1 − η)v2

SH + ηv2
PH − v2

PV

]
K 0

c

= K 0
ρ + ρ−1(μ K 0

μ + λ K 0
λ + a K 0

a + b K 0
b + c K 0

c ) , (9.21a)

KvSH = 2ρvSH[K 0
μ − 2K 0

λ − K 0
b + 2(1 − η) K 0

c ] , (9.21b)

KvSV = 2ρvSV K 0
b , (9.21c)

KvPH = 2ρvPH(K
0
a + η K 0

c ) , (9.21d)

KvPV = 2ρvPV(K
0
λ − K 0

a − K 0
c ) , (9.21e)

Kη = ρ (v2
PH − 2v2

SH) K 0
c = (λ+ a) K 0

c . (9.21f)

Equations (9.21a), (9.21b), (9.21c), (9.21d), (9.21e) and (9.21f) can be simplified
in the case of an isotropic reference medium where vSH = vSV = vS, vPH = vPV = vP

and η = 1:

Kρ = K 0
ρ + v2

S K 0
μ + (v2

P − 2v2
S )K

0
λ , (9.22a)

KvSH = 2ρvS(K
0
μ − 2K 0

λ − K 0
b ) , (9.22b)

KvSV = 2ρvS K 0
b , (9.22c)

KvPH = 2ρvP(K
0
a + K 0

c ) , (9.22d)

KvPV = 2ρvP(K
0
λ − K 0

a − K 0
c ) , (9.22e)

Kη = ρ (v2
P − 2v2

S ) K 0
c . (9.22f)

The comparison of Eqs. (9.15a), (9.15b) and (9.15c) and (9.22a), (9.22b), (9.22c),
(9.22d), (9.22e) and (9.22f) yields two interesting relations between the Fréchet ker-
nels for vPV, vPH, vSV, vSH, vP and vS in the case of an isotropic background medium:

KvP = KvPH + KvPV , (9.23)

KvS = KvSH + KvSV . (9.24)

Depending on the data used, the kernels KvP and KvS can be small, in the sense that
the data are hardly affected by changes in vP or vS. The above relations, however,
imply that nearly vanishing Fréchet kernels with respect to vP and vS may in fact
be composed of significantly non-zero Fréchet kernels with respect to vPV, vPH, vSV

and vSH. Certain P and S wave sensitivities can become alive when the model is
allowed to be anisotropic. An example of this phenomenon was found by Dziewon-
ski & Anderson (1981) who noted that the P wave sensitivity of fundamental-mode
Rayleigh waves with periods around 120 s is restricted to the uppermost 100 km.
Sensitivities with respect to the PH and PV wave speeds, however, are large down
to 400 km depth but opposite in sign.
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9.1.3 Isotropic Visco-Elastic Medium: Qμ and Qκ

The conversion of elastic into thermal energy in the Earth is largely controlled by
the spatial distribution of the quality factors Qμ and Qκ associated with the shear
modulus, μ, and the bulk modulus, κ = λ + 2

3μ. To derive expressions for the
Fréchet derivatives of χ with respect to Qμ and Qκ we shall make frequent use
of the results obtained in Chap. 5 on the mathematical description of visco-elastic
dissipation. Restricting our attention to isotropic media, the time-dependent elastic
tensor components are given by

Cijkl(t) =
[
κ(t)− 2

3
μ(t)

]
δi jδkl + μ(t) δikδ jl + μ(t) δilδ jk . (9.25)

For κ(t) andμ(t)we choose a superposition of N standard linear solids, as proposed
in Eq. (5.5):

μ(t) = μr

[
1 + 1

QμK

N∑
n=1

e−t/τn

]
H(t) , (9.26)

κ(t) = κr

[
1 + 1

QκK

N∑
n=1

e−t/τn

]
H(t) . (9.27)

This rheology assumes that Qμ and Qκ are nearly constant within the frequency
band of interest, [ω1, ω2], which is determined by the set of relaxation times, τn ,
with n = 1, . . . , N . The parameter K is constant for ω ∈ [ω1, ω2], and it is practi-
cally independent of the quality factors Qμ and Qκ . Based on Eq. (9.3) we find that
the Fréchet derivative of χ with respect to Qμ is then given by

∇Qμχ δQμ =
∫

T

∫

G

t∫

τ=t0

δμ̇(t − τ)

[
2 ε†(t) : ε(τ )− 2

3
tr ε†(t) tr ε(τ )

]
dτ dt d3x ,

(9.28)
where

δμ(t) = ∇Qμμ δQμ = −μrδQμ

Q2
μK

(
N∑

n=1

e−t/τn

)
H(t) (9.29)

is the infinitesimal change of the shear modulus μ caused by an infinitesimal change
in Qμ. Substituting (9.29) into (9.28) results in a numerically inconvenient double
integral with respect to time. Fortunately, with the help of the memory variables
defined in Eq. (5.7), we can eliminate the time convolutions from (9.28):
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t∫

τ=t0

δμ̇(t − τ) ε(τ ) dτ =
t∫

τ=t0

δμ(t − τ) ε̇(τ ) dτ = μr
δQμ

Q2
μ

N

K

N∑
n=1

τnMn(t) .

(9.30)
The symbol Mn denotes the tensor of memory variables defined by

Mn(t) := − 1

N τn

t∫

τ=t0

e−(t−τ)/τn H(t − τ) ε(τ ) dτ . (9.31)

An equation similar to (9.30) holds for the term involving tr ε in Eq. (9.28). In terms
of memory variables, the Fréchet derivative ∇Qμχ δQμ is now given by

∇Qμχ δQμ =
N∑

n=1

∫

T

∫

G

μr
δQμ

Q2
μ

N

K
τn

[
2Mn : ε† − 2

3
tr Mn tr ε†

]
dt d3x . (9.32)

Omitting the spatial integration yields the Fréchet kernel K Qμ :

K Qμ = μr

Q2
μ

N

K

N∑
n=1

τn

∫

T

[
2Mn : ε† − 2

3
tr Mn tr ε†

]
dt . (9.33)

Following the same procedure, we find the Fréchet kernel for Qκ :

K Qκ = κr

Q2
κ

N

K

N∑
n=1

τn

∫

T

tr Mn tr ε† dt . (9.34)

The kernels K Qμ and K Qκ depend on Q−2
μ and Q−2

κ , respectively. This property
is disadvantageous in the context of a tomographic inversion where the initial Q
model may be poorly constrained. In fact, the kernels can lead to significant updates
of the initial Q model only in those regions where Qμ and Qκ are very small. In
regions where the initial Q values are large, the kernels are effectively zero. The
most straightforward solution is to consider the inverse parameters Q−1

μ and Q−1
κ .

The corresponding kernels,

K Q−1
μ

= −Q2
μK Qμ , K Q−1

κ
= −Q2

κK Qκ , (9.35)

are effectively independent of the initial Q model. We note that kernels for elastic
parameters and density also depend on the initial model. The effect is, however, not
as severe as in the case of Q which can vary by several orders of magnitude inside
the Earth.
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9.2 First Derivatives with Respect to Selected Source Parameters

9.2.1 Distributed Sources and the Relation to Time-Reversal
Imaging

In Sect. 8.3 we derived an expression for the derivative of the objective functional,
χ , with respect to a general source, f (Eq. 8.33):

∇ f χ δf = −〈u† · δf〉 .

The negative adjoint field, −u†, acts as a time-dependent sensitivity kernel, much
similar to the time-independent kernels for structural parameters that we considered
in the previous paragraphs. In an iterative finite-source inversion, −u† therefore
indicates how to change the current source model in order to better fit the data, that
is, to reduce the misfit, χ .

The time-reversal imaging of seismic sources is a special case of this very gen-
eral scenario, where observed waveforms are re-injected at the receiver positions
and then propagated backwards in time (e.g. Fink, 1999; Larmat et al., 2006, 2009;
Lokmer et al., 2009). The wave field propagating in reverse time plays the role of
the adjoint field, u†. Under favourable circumstances, u† collapses into the source
region, thus providing information on the location and time evolution of the seismic
source.

The original justification for the time-reversal imaging is the invariance of the
elastic wave equation with respect to a sign change of the time variable from +t to
−t , at least in the case of negligible dissipation. When the re-injected seismograms
bear sufficiently complete information on the original seismic wave field, the back-
propagated field, u†, indeed converges in the vicinity of the source region.

The adjoint method suggests an alternative interpretation of the time-reversal
technique in the context of an iterative finite-source inversion (Kawakatsu & Mon-
tagner, 2008): Starting from the zero initial source model, f = 0, the negative adjoint
field, −u†, corresponds to the direction of steepest descent towards a source model
that better explains the data. Time-reversal imaging is, in this sense, equivalent to
the first iteration in a non-linear finite-source inversion.

The time-reversal imaging concept is closely related to waveform inversion for
the Earth structure. Sub-wavelength heterogeneities in the Earth act as first-order
scatterers, i.e. as secondary sources that generate a scattered wave field. Back-
propagating the scattered field then corresponds to the imaging of the scatterers. A
regional-scale example where the back-propagation of scattered surface waves was
used for the imaging of lateral heterogeneities may be found in Stich et al. (2009).

9.2.2 Moment Tensor Point Source

Most tectonic earthquakes observed at long periods and in the far field can be
described by a moment tensor point source
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f(x, t) = −∇ · [M δ(x − xs) H(t − t s)] . (9.36)

The symbols M, xs and t s denote the moment tensor, the source location and the
source origin time, respectively. We can compute the Fréchet derivatives of the
objective functional χ with respect to the source parameters using again Eq. (8.33).
Inserting the perturbations δf corresponding to the perturbations δM, δxs and δt s

yields a set of Fréchet derivatives with respect to the parameters describing the
moment tensor point source:

∇Mχ δM = −
∫

T
δM : ε†(xs, t) dt , (9.37)

∇xsχ δxs = −δxs · ∇
∫

T
M : ε†(xs, t) dt , (9.38)

∇tsχ δt s = δt s M : ε†(xs, t s) . (9.39)

Equations (9.37), (9.38) and (9.39) only depend on the moment tensor and on the
adjoint strain field ε† at the source position xs.

9.3 Second Derivatives with Respect to Selected
Structural Parameters

As we have seen in Sect. 9.1, Fréchet kernels can be interpreted straightforwardly
in terms of first-order scattering from within a primary influence zone. The inter-
pretation of second derivatives is more involved. Therefore, we first attach physical
meaning to the Hessian, before delving into the derivation of explicit formulas for a
variety of seismologically relevant rheologies.

9.3.1 Physical Interpretation and Structure of the Hessian

9.3.1.1 Resolution and Trade-Off (RETRO) Kernels

As discussed already in Sect. 8.4.1.1, the Hessian evaluated at the optimal model,
Hχ (m̃), is the carrier of the covariance information. It can be used to quantify the
resolution of and trade-offs between model parameters. Large diagonal elements
of Hχ (m̃) indicate that the corresponding model parameters are well resolved and
vice versa. The size of the off-diagonal elements is a measure of the independence
of model parameters. Zero off-diagonal elements in one column (or row) of the
Hessian imply that the corresponding parameter can be constrained independently.
Large off-diagonal elements, however, indicate a strong dependence between model
parameters.

In this sense, the sum of the Hessian kernels introduced in Eqs. (8.66), (8.67),
(8.68) and (8.69)
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Kδm1 := K a
δm1

+ K b
δm1

+ K c
δm1

, (9.40)

can be interpreted as the resolution and trade-off (RETRO) kernel of δm1. We expect
Kδm1 to be large in the vicinity of δm1 itself and in those regions of the Earth model
where structure trades off with δm1. An exemplary RETRO kernel is presented in
Sect. 12.3.

9.3.1.2 First- and Second-Order Scattering

To understand the structure of the Hessian, Hχ = ∇m∇mχ , and the physical mean-
ing of its components, we consider the specific example of a pure perturbation in
density and the objective functional

χ(m) = 1

2

∫
T

∫
G
[u(m; x, t)− u0(x, t)]2 δ(x − xr) dt d3x (9.41)

that we already introduced in Eq. (8.5). The choice of this deliberately simplistic
and illustrative example facilitates the following discussion without affecting the
generality of the results. In Sect. 8.4 we found that the Hessian applied to the model
perturbations δm1 and δm2 can be expressed in terms of the first derivatives of the
forward field u and the primary adjoint field u†

1, which is the solution of the primary

adjoint equation ∇uL† u†
1 = L†(u†

1) = −∇uχ
†
1 :

Hχ (δm1, δm2) = 〈∇u∇uχ1(δ1u, δ2u)〉 + 〈u†
1 · ∇m∇mL(u)(δm1, δm2)〉

+ 〈u†
1 · ∇mL(δ2u) δm1〉 + 〈u†

1 · ∇mL(δ1u) δm2〉 . (9.42)

The first derivatives

δ1u = ∇mu δm1 ≈ u(m + δm1)− u(m) (9.43)

and

δ2u = ∇mu δm2 ≈ u(m + δm2)− u(m) , (9.44)

are the first-order scattered wave fields that are excited when the forward wave field
in the reference medium, u(m), impinges on the perturbations δm1 and δm2, respec-
tively.

Interaction of First-Order Scattered Fields

Our interpretation of the different contributions to the Hessian, Hχ , starts with the
first term on the right-hand side of Eq. (9.42). With the objective functional defined
in (9.41) we find that 〈∇u∇uχ1(δ1u, δ2u)〉 is the time-integrated product of the scat-
tered fields δ1u and δ2u as seen at the receiver:
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Fig. 9.2 Schematic illustration of the contributions to the Hessian as given in Eq. (9.42). Left:
Scattering of the forward wave field, u, at the perturbations δm1 and δm2 generates the first-
order scattered waves δ1u and δ2u, respectively. The contribution 〈∇u∇uχ1(δ1u, δ2u)〉 measures
the interaction of the scattered wave fields δ1u and δ2u at the receiver position, indicated by a
filled circle (•). It is largest when the traveltimes from the perturbations to the source are nearly
equal. Right: The contribution 〈u†

1 · ∇mL(δ2u) δm1〉 measures the interaction between the primary

adjoint field u†
1 that emanates from the receiver and the scattered wave field δ2u that is excited as

u impinges on the perturbation δm2. The associated Hessian kernel, Kδρ2 , defined in Eq. (9.47), is
non-zero within a secondary influence zone, indicated by the shaded region between δm2 and the
receiver. Within the secondary influence zone, a model perturbation causes the scattered field δ2u
to generate another scattered field that affects the measurement at the receiver

〈∇u∇uχ1(δ1u, δ2u)〉 =
∫

T
δ1u(xr, t) · δ2u(xr, t) dt . (9.45)

This contribution to the Hessian, illustrated in the left panel of Fig. 9.2, measures
the interaction of the scattered wave fields at the receiver position, xr. It is large
only when the traveltimes from δm1 and δm2 to the receiver are nearly equal, so
that both scattered wave fields, δ1u and δ2u, arrive within the measurement interval
T = [t0, t1]. This implies that ∇u∇uχ1 tends to be dominated by its diagonal ele-
ments.

Second-Order Scattering

We now consider the term 〈u†
1·∇mL(δ2u) δm1〉. Inserting the wave equation operator

and a pure density variation, δρ1, gives

〈u†
1 · ∇mL(δ2u) δm1〉 = −

∫
T

∫
G
δρ1(x) u̇†

1(x, t) · δ2u̇(x, t) dt d3x . (9.46)



176 9 First and Second Derivatives with Respect to Structural and Source Parameters

The integral in Eq. (9.46) measures the interaction between the scattered wave field,
δ2u, and the primary adjoint field, u†

1, at the position of the density perturbation,
δρ1. Omitting the spatial integration defines a Hessian kernel that is similar to the
ones introduced in Eqs. (8.67), (8.68) and (8.69)

Kδρ2(x) := −
∫

T
u̇†

1(x, t) · δ2u̇(x, t) dt . (9.47)

The structure of Kδρ2 is similar to the structure of the Fréchet kernels from Sect. 9.1.
In fact, we found

K 0
ρ = −

∫
T

u̇†
1(x, t) · u̇(x, t) dt , (9.48)

for the density kernel in a perfectly elastic and isotropic medium, parameterised
in terms of ρ, λ and μ (Eq. 9.11a). The Fréchet kernel K 0

ρ localises a primary
influence zone where a secondary wave field scattered off a density perturbation
affects the objective functional, χ , at the receiver position, xr. Similarly, the Hessian
kernel Kδρ2 localises a secondary influence zone where a density perturbation, δρ1,
can cause the scattered field, δ2u, to generate a secondary scattered field that is
able to affect the observation at the receiver. This is schematically shown in the
right panel of Fig. 9.2. The Hessian therefore accounts for second-order scattering,
that is the scattering of scattered waves. An interpretation similar to the one for
〈u†

1 ·∇mL(δ2u) δm1〉 holds, of course, for the contribution 〈u†
1 ·∇mL(δ1u) δm2〉 that

we alternatively expressed in terms of the Hessian kernel K b
δm1

= K b
δρ1

:

〈u†
1 · ∇mL(δ1u) δm2〉 =

∫
G

K b
δm1

δm2 d3x , (9.49)

with

K b
δρ1

= −
∫

T
u̇†

1(x, t) · δ1u̇(x, t) dt . (9.50)

Combination Term

Finally, the contribution 〈u†
1 ·∇m∇mL(u)(δm1, δm2)〉 to the Hessian from Eq. (9.42)

is similar to the expressions for first derivatives from Eq. (8.16). The only dif-
ference is that ∇m∇m(u)L(δm1, δm2) appears instead of ∇mL δm. This suggests
to interpret 〈u†

1 · ∇m∇mL(u)(δm1, δm2)〉 in terms of first-order scattering of the
regular field, u, caused by a combination of the perturbations δm1 and δm2. Note
that this is different from the scenarios that we had before, where scattering of a
wave field (regular or already scattered) was due to either δm1 or δm2. Whether
the combination term is zero or not depends strongly on the parameterisation. For
instance, L is linear with respect to the model parameters in a medium parame-
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Fig. 9.3 Physical interpretation of the contributions to the Hessian, as given in Eq. (9.42). The
second derivatives are affected by both first-order and second-order scattering effects

terised in terms of density and the elastic parameters; and therefore ∇m∇mL = 0.
Parameterisations in terms of seismic velocities generate quadratic dependencies
and ∇m∇mL �= 0. In Sects. 9.3.4, 9.3.5 and 9.3.6 we study the combination term
〈u†

1 ·∇m∇mL(u)(δm1, δm2)〉 for several seismologically relevant rheologies. There-

fore, it will become evident that 〈u†
1 · ∇m∇mL(u)(δm1, δm2)〉 accounts for the first-

order scattering that results from the combination of the two perturbations δm1 and
δm2.

Figure 9.3 summarises the role played by the different contributions to the Hes-
sian. They are due to either first-order or second-order scattering.

Interpretation of Hessian Kernels

As discussed already in Sect. 8.4, it is often desirable to compute Hχ δm1 instead of
Hχ (δm1, δm2). For this we derived an alternative version of Eq. (9.42) that allows
us to isolate the second direction, δm2 (Eq. 8.65):

Hχ (δm1, δm2) = 〈u†
2 · ∇mL(u) δm2〉 + 〈u†

1 · ∇mL(δ1u) δm2〉
+ 〈u†

1 · ∇m∇mL(u)(δm1) δm2〉
=
∫

G

(
K a
δm1

+ K b
δm1

+ K c
δm1

)
δm2 d3x , (9.51)

with the Hessian kernels, K a
δm1

, K b
δm1

and K c
δm1

defined in Eqs. (8.67), (8.68) and

(8.69). The secondary adjoint field, u†
2, is defined as the solution of the secondary

adjoint equation
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L†(u†
2) = −∇u∇uχ

†
1 δ1u − ∇mL†(u†

1) δm1 . (9.52)

We are already familiar with the second and third terms on the right-hand side of Eq.
(9.51). In order to attach physical meaning to the contribution 〈u†

2 · ∇mL(u) δm2〉
and the associated Hessian kernel K a

δm1
, we first take a closer look at the sources of

u†
2: Inserting the misfit functional defined in (9.41) and a pure density perturbation,
δρ1, transforms the secondary adjoint equation (9.52) to

L†(u†
2) = −δ1u(x, t) δ(x − xr )− δρ1(x) ü†

1(x, t) . (9.53)

The term δ1u(x, t) δ(x − xr ) represents a point source localised at the receiver posi-
tion, xr, that radiates the scattered field, δ1u, back into the medium. This is shown
schematically in the left panel of Fig. 9.4. The second source term, δρ1(x) ü†

1(x, t),

acts when the primary adjoint field, u†
1, reaches the model perturbation δm1. It radi-

ates a wave field emanating from δm1 into the medium (Fig. 9.4, right). Now we
consider the specific form of 〈u†

2 · ∇mL(u) δm2〉:

〈u†
2 · ∇mL(u) δm2〉 =

∫
T

∫
G
δρ2 u†

2 · ü dt d3x =
∫

G
K a
δρ1
δρ2 d3x . (9.54)

Since u†
2 has two sources, its interaction with the forward field, u, generates two sec-

ondary influence zones that define the support of the kernel K a
δm1

. These are shown
as shaded areas in Fig. 9.4. The secondary influence zone associated with the point
source, δ1u(x, t) δ(x − xr ), localises the region where a model perturbation gener-
ates a scattered wave that affects the measurement of δ1u at the receiver. Similarly,
the secondary influence zone corresponding to the adjoint source δρ1(x) ü†

1(x, t)
defines the region where model perturbations generate scattered waves that are then
scattered again from δm1 and finally reach the receiver such that they affect the
measurement. This is where the effect of second-order scattering on the Hessian
becomes most explicit.

9.3.2 Practical Resolution of the Secondary Adjoint Equation

The secondary adjoint equation (9.52) is inconvenient from a numerical point of
view because it involves the source term, −∇mL†(u†

1) δm1, that becomes active

when the primary adjoint field, u†
1, interacts with the model perturbation δm1. The

proper implementation of this spatially distributed source may require substantial
modifications of pre-existing codes. To avoid this complication, we propose an alter-
native to the direct solution of the secondary adjoint equation. For this, we consider
the primary adjoint equation

L†(u†
1) = −∇uχ

†
1 . (9.55)
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Fig. 9.4 Schematic illustration of the contribution 〈u†
2 · ∇mL(u) δm2〉 = ∫

G K a
δm1

δm2 d3x to the

alternative form of the Hessian given in Eq. (9.51). The secondary adjoint field, u†
2, emanates

from two sources: a point source localised at the receiver position, (•), and a distributed source
located at the perturbation δm1. These two components are shown in the form of solid circles
in the left and the right panels, respectively. Left: The first component of the secondary adjoint
field, u†

2, propagates the recorded scattered δ1u back into the medium. There it interacts with
the forward field, u. This interaction defines a secondary influence zone, shown as shaded area,
where model perturbations generate scattered fields that affect the measurement of δ1u. Right: The
second component of u†

2 is excited when the primary adjoint wave field, u†
1, impinges on the model

perturbation δm1. A secondary influence zone results from the interaction of this component with
the forward field. It localises the region where secondary scattering from some model perturbation
via δm1 can affect the measurement at the receiver

Differentiating with respect to m in the direction δm1 and rearranging terms gives

L†(δ1u†
1) = −∇u∇uχ

†
1 δ1u − ∇mL†(u†

1) δm1 . (9.56)

Equation (9.56) demonstrates that the first-order scattered adjoint field, δ1u†
1 =

∇mu†
1 δm1, solves the secondary adjoint equation (9.52). This observation suggests

a recipe for the computation of Hχ δm1 that we summarise in the following para-
graph.

9.3.3 Hessian Recipe

To practically compute the Hessian applied to a model perturbation, Hχ δm1, we
proceed as follows:
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1. Solve the forward problem, L(u) = f, and store the regular wave field, u, at
sufficiently many time steps to allow for the accurate computation of the time
integrals involved in Hχ δm1.

2. Evaluate the objective functional, χ(u) = 〈χ1(u)〉, and from it compute the
adjoint source −∇uχ

†
1 .

3. Solve the primary adjoint equation, L†(u†
1) = −∇uχ

†
1 , and store the primary

adjoint field, u†
1, at sufficiently many time steps.

4. Compute the scattered wave field, δ1u = ∇mu δm1, via either the adjoint method
or the finite-difference approximation

δ1u ≈ 1

ε
[u(m + εδm1)− u(m)] , (9.57)

with a suitably chosen ε > 0.
5. Compute the scattered primary adjoint field, δ1u†

1, using a finite-difference
approximation similar to the one in (9.57):

δ1u†
1 ≈ 1

ε
[u†

1(m + εδm1)− u†
1(m)] .

From (9.56) we infer that δ1u†
1 solves the secondary adjoint equation (9.52), i.e.

u†
2 = δ1u†

1.
6. Compute the Hessian kernels

K a
δm1

=
∫

T
u†

2 · ∇mL(u) dt ,

K b
δm1

=
∫

T
u†

1 · ∇mL(δ1u) dt ,

K c
δm1

=
∫

T
u†

1 · ∇m∇mL(u)(δm1) dt .

7. Assemble Hχ δm1 according to

Hχ δm1 =
∫

G

(
K a
δm1

+ K b
δm1

+ K c
δm1

)
◦ d3x ,

where ◦ is a place holder for a second model perturbation, δm2.

In the following paragraphs we study the Hessian kernels for several rheologies that
are of special seismological interest.
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9.3.4 Perfectly Elastic and Isotropic Medium

The components of the Hessian, Hχ (δm1, δm2), can be represented as the sum over
three terms involving the regular wave field, u, the primary adjoint wave field, u†

1,

and their scattered versions, δ1u and δ1u†
1 = u†

2 (Eq. 9.51). The first two contribu-
tions,

〈u†
2 · ∇mL(u) δm2〉 =

∫
G

K a
δm1

δm2 d3x

and

〈u†
1 · ∇mL(δ1u) δm2〉 =

∫
G

K b
δm1

δm2 d3x ,

are of a form that we already encountered in the computation of first derivatives and
Fréchet kernels. In fact, for ∇mχ1 δm, we already found (see Eq. 8.16)

∇mχ1 δm = 〈u†
1 · ∇mL(u) δm〉 =

∫
G

Km δm d3x .

We may therefore use the formulas derived in Sect. 9.1 for the Fréchet kernels to
compute the first two contributions to the Hessian. In what follows, we focus on the
combination term 〈u†

1 · ∇m∇mL(u)(δm1) δm2〉.
As a preparatory step towards explicit expressions for special rheologies, we sub-

stitute the elastic wave operator (8.75) for L:

〈u†
1 · ∇m∇mL(δm1) δm2〉 =

∫
G

K c
δm1

δm2 d3x

=
∫

T

∫
G

∇m∇mρ (δm1, δm2)u†
1(t) · ü(t) dt d3x

−
∫

T

∫
G

u†
1(t) ·

[
∇ ·

∫ t

τ=t0
∇m∇mĊ(t − τ)(δm1, δm2) : ∇u(τ )

]
dτ dt d3x .

(9.58)

In Eq. (9.58) we did not specify a particular parameterisation. This is accounted
for by the notations ∇m∇mρ and ∇m∇mĊ that allow ρ and C to depend on model
parameters, m, other than density and the elastic coefficients themselves. Integrating
Eq. (9.58) by parts and writing the resulting expression in terms of the regular and
primary adjoint strain fields, ε and ε

†
1, give
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∫
G

K c
δm1

δm2 d3x = −
∫

T

∫
G

∇m∇mρ (δm1, δm2) u̇†
1(t) · u̇(t) dt d3x

+
∫

T

∫
G

∫ t

τ=t0
ε

†
1(t) : [∇m∇mĊ(t − τ) (δm1, δm2)

] : ε(τ ) dτ dt d3x . (9.59)

We now insert the perfectly elastic and isotropic rheology described by Eqs. (9.6)
and (9.8):

∫
G

K c
δm1

δm2 d3x = −
∫

T

∫
G

∇m∇mρ (δm1, δm2) u̇†
1 · u̇ dt d3x

+
∫

T

∫
G

∇m∇mλ (δm1, δm2) tr ε
†
1 tr ε dt d3x

+
∫

T

∫
G

∇m∇mμ (δm1, δm2) ε
†
1 : ε dt d3x . (9.60)

When the isotropic medium is parameterised in terms of ρ, λ and μ or, alternatively,
ρ, κ and μ, we find

K c
δm1

= 0 , (9.61)

meaning that the combination term is identically zero. This result depends critically
on the choice of the free parameters. Changing, for instance, the set of free parame-
ters to ρ, the P wave speed, vP = √

(λ+ 2μ)/ρ, and the S wave speed, vS = √
μ/ρ,

results in

∇m∇mρ (δm1, δm2) = 0 ,

∇m∇mC(δm1, δm2) = δm1 ·
⎛
⎝ 0 2vPδi jδkl 2vSγijkl

2vPδi jδkl 2ρδi jδkl 0
2vSγijkl 0 2ργijkl

⎞
⎠ · δm2 , (9.62)

with the model vector

δmi = (δρi , δvP,i, δvS,i) , i = 1, 2 , (9.63)

and the auxiliary variable γijkl defined by

γijkl := δikδ jl + δilδ jk − 2δi jδkl . (9.64)

The combination term can now be written in a very convenient form

∫
G

K c
δm1

δm2 d3x =
∫

G
δm1 · J · δm2 d3x , (9.65)

where we defined the symmetric 3 × 3 matrix J through
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J :=
∫

T

⎛
⎜⎝

0 2vP tr ε
†
1 tr ε 4vS (ε

†
1 : ε − tr ε

†
1 tr ε)

2vPtr ε
†
1 tr ε 2ρ tr ε

†
1 tr ε 0

4vS (ε
†
1 : ε − tr ε

†
1 tr ε) 0 4ρ (ε†

1 : ε − tr ε
†
1 tr ε)

⎞
⎟⎠ dt .

(9.66)
From Eq. (9.65) we immediately infer that the Hessian kernel Hc

δm1
is explicitly

given by

K c
δm1

= J · δm1 . (9.67)

It is interesting to note that the P and S wave speed Fréchet kernels, KvP and KvS ,
from Sect. 9.1.1 reappear in the combination term. In fact, we may write J in the
following form:

J =
⎛
⎝ 0 ρ−1 KvP ρ

−1 KvS

ρ−1 KvP v
−1
P KvP 0

ρ−1 KvS 0 v−1
S KvS

⎞
⎠ (9.68)

The Fréchet kernels for the isotropic medium can thus be recycled for the computa-
tion of the combination term,

∫
G K c

δm1
δm2 d3x, that contributes to the Hessian.

Equation (9.65) is very general, and it will reappear in the following sections.
Only the Fréchet kernels composing the matrix J depend on the rheology.

The comparison of Eqs. (9.61) and (9.65) makes it particularly obvious that the
structure of the Hessian in general, and the size of its diagonal elements in particular,
depends critically on the choice of the free parameters. In the context of tomographic
problems the parameterisation should be chosen such that resolution is maximised.
This requires the diagonal elements of Hχ to be as large as possible and the off-
diagonal elements as small as possible. The Hessian therefore has the potential of
playing a key role in future experimental design problems that attempt to optimise
the resolution in tomographic inversions.

Another remarkable aspect of Eqs. (9.66) and (9.68) is the explicit dependence
of the off-diagonal elements on ρ, vP and vS. Trade-offs between different classes of
parameters may therefore depend significantly on the background model.

9.3.5 Perfectly Elastic Medium with Radial Anisotropy

To derive the equivalents of Eqs. (9.65) and (9.68) for an elastic medium with radial
anisotropy, we start from the non-dissipative version of (9.59):

∫
G

K c
δm1

δm2 d3x = −
∫

T

∫
G

∇m∇mρ (δm1, δm2) u̇†
1 · u̇ dt d3x

+
∫

T

∫
G

ε
†
1 : [∇m∇mC (δm1, δm2)] : ε dt d3x . (9.69)
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As in the case of the isotropic medium, the second derivatives ∇m∇mρ and ∇m∇mC
are equal to zero when the medium is parameterised in terms of the density, ρ, and
any linear combination of the elastic coefficients, Cijkl. We therefore consider the
practically more relevant case where a model, m, is specified by the density ρ, the
wave speeds vPV, vPH, vSV and vSH, and the parameter η (see Sect. 9.1.2):

m = (ρ, vPV, vPH, vSV, vSH, η) . (9.70)

The second derivative ∇m∇mρ is still zero because ρ is a free parameter. Inserting
the anisotropic rheology specified in Eqs. (9.16) allows us to rewrite the second
integrand on the right-hand side of (9.69):

ε
†
1 : [∇m∇mC (δm1, δm2)] : ε = ∇m∇m[ρv2

PVε
†
1,rrεrr + ηρ(v2

PH − 2v2
SH) ε

†
1,rrεφφ

+ ηρ(v2
PH − 2v2

SH) ε
†
1,rrεθθ + ηρ(v2

PH − 2v2
SH) ε

†
1,φφεrr + ρv2

PHε
†
1,φφεφφ

+ ρ(v2
PH − 2v2

SH) ε
†
1,φφεθθ + ηρ(v2

PH − 2v2
SH) ε1,θθ εrr + ρ(v2

PH − 2v2
SH) ε

†
1,θθ εφφ

+ ρv2
PHε

†
1,θθ εθθ + 4ρv2

SHε
†
1,rφεrφ + 4ρv2

SVε
†
rθ εrθ + 4ρv2

SHε
†
1,φθ εφθ ](δm1, δm2) .

(9.71)

Tedious but straightforward algebra then leads to

∫
G

K c
δm1

δm2 d3x =
∫

G
δm1 · J · δm2 d3x (9.72)

in analogy to Eq. (9.65). The components of the symmetric 6 × 6 matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

Jρρ JρvPV JρvPH JρvSV JρvSH Jρη
JvPVρ JvPVvPV JvPVvPH JvPVvSV JvPVvSH JvPVη

JvPHρ JvPHvPV JvPHvPH JvPHvSV JvPHvSH JvPHη

JvSVρ JvSVvPV JvSVvPH JvSVvSV JvSVvSH JvSVη

JvSHρ JvSHvPV JvSHvPH JvSHvSV JvSHvSH JvSHη

Jηρ JηvPV JηvPH JηvSV JηvSH Jηη

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.73)

can again be expressed in terms of the Fréchet kernels for the radially anisotropic
medium, introduced in Eqs. (9.20) and (9.22):
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Jρρ = 0 , (9.74a)

Jηη = 0 , (9.74b)

JvPVvPV = 2ρ
(

K 0
λ − K 0

c − K 0
a

)
= v−1

P KvPV , (9.74c)

JvPHvPH = 2ρ
(

K 0
a + K 0

c

)
= v−1

P KvPH , (9.74d)

JvSVvSV = 2ρ K 0
b = v−1

S KvSV , (9.74e)

JvSHvSH = 2ρ
(

K 0
μ − 2K 0

λ − K 0
b

)
= v−1

S KvSH , (9.74f)

JvPVρ = JρvPV = 2vP

(
K 0
λ − K 0

c − K 0
a

)
= ρ−1 KvPV , (9.74g)

JvPHρ = JρvPH = 2vP

(
K 0

a + K 0
c

)
= ρ−1 KvPH , (9.74h)

JvSVρ = JρvSV = 2vS K 0
b = ρ−1 KvSV, (9.74i)

JvSHρ = JρvSH = 2vS

(
K 0
μ − 2K 0

λ − K 0
b

)
= ρ−1 KvSH , (9.74j)

Jηρ = Jρη =
(
v2

P − 2v2
S

)
K 0

c = ρ−1 Kη, (9.74k)

JvPVη = JηvPV = 0 , (9.74l)

JvPHη = JηvPH = 2ρvP K 0
c = 2vP

(
v2

P − 2v2
S

)−1
Kη , (9.74m)

JvSVη = JηvSV = 0 , (9.74n)

JvSHη = JηvSH = −4ρvS K 0
c = −4vS

(
v2

P − 2v2
S

)−1
Kη , (9.74o)

JvPHvPV = JvPVvPH = 0 , (9.74p)

JvSVvPV = JvPVvSV = 0 , (9.74q)

JvSHvPV = JvPVvSH = 0 , (9.74r)

JvSVvPH = JvPHvSV = 0 , (9.74s)

JvSHvPH = JvPHvSH = 0 , (9.74t)

JvSHvSV = JvSVvSH = 0 . (9.74u)

In the interest of readability, we assumed an isotropic background medium, where
vPV = vPH = vP, vSV = vSH = vS and η = 1.

9.3.6 Isotropic Visco-Elastic Medium

We consider the combination term,
∫

G K c
δm1

δm2 d3x, for an isotropic and visco-
elastic medium parameterised in terms of the shear modulus,μ, the bulk modulus, κ ,
and the inverse quality factors Q−1

μ and Q−1
κ . The choice for Q−1

μ and Q−1
κ instead

of Qμ and Qκ is motivated by the independence of the corresponding Fréchet ker-
nels, K Q−1

μ
and K Q−1

κ
from the background Q model, that we already discussed in
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Sect. 9.1.3. The components of the isotropic elastic tensor are

Cijkl(t) =
[
κ(t)− 2

3
μ(t)

]
δi jδkl + μ(t) δikδ jl + μ(t) δilδ jk , (9.75)

with the time-dependent elastic coefficients defined as superpositions of N standard
linear solids

μ(t) = μr

[
1 + Q−1

μ

K

N∑
n=1

e−t/τn

]
H(t) , (9.76)

κ(t) = κr

[
1 + Q−1

κ

K

N∑
n=1

e−t/τn

]
H(t) (9.77)

that we already analysed in Chap. 5. Equations (9.76) and (9.77) are valid under the
assumption that Q−1

μ and Q−1
κ are small compared to 1 and approximately constant

over the frequency range of interest, [ω1, ω2]. This frequency range is determined
by the relaxation times τn , with n = 1, . . . , N . The parameter K is constant within
the frequency band [ω1, ω2], and it is the same for both κ and μ.

As free parameters we consider the inverse quality factors Q−1
μ and Q−1

κ and
their corresponding relaxed moduli μr and κr. Following the procedure from the
previous paragraphs, we arrive at a familiar expression for the combination term

∫
G

K c
δm1

δm2 d3x =
∫

G
δm1 · J · δm2 d3x , (9.78)

with the symmetric 4 × 4 matrix,

J =

⎛
⎜⎜⎜⎝

0 J
μr Q−1

μ
0 0

J
μr Q−1

μ
0 0 0

0 0 0 J
κr Q−1

κ

0 0 J
κr Q−1

κ
0

⎞
⎟⎟⎟⎠ (9.79)

and the model perturbations

δmi = (δμr,i , δQ−1
μ,i , δκ

−1
r,i , δQ−1

κ,i ) , i = 1, 2 . (9.80)

The non-zero components of J are

J
μr Q−1

μ
=
∫

T

∫ t

τ=t0

[
2ε

†
1(t) : ε(τ )− 2

3
tr ε

†
1(t) tr ε(τ )

]
Ḟ(t − τ) dτ dt , (9.81)

J
κr Q−1

κ
=
∫

T

∫ t

τ=t0
tr ε

†
1(t) tr ε(τ ) Ḟ(t − τ) dτ dt . (9.82)
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For convenience we defined the auxiliary function

F(t) := 1

K

[
N∑

n=1

e−t/τn

]
H(t) . (9.83)

To facilitate the numerical computation of (9.81) and (9.82), we express the time
convolution in terms of the memory variables defined in (5.7). For this, we note that
the following identity holds:

∫ t

τ=t0
ε(τ ) Ḟ(t − τ) dτ =

∫ t

τ=t0
F(t − τ) ε̇(τ ) dτ = − N

K

N∑
n=1

τn Mn(t) . (9.84)

Introducing (9.84) into (9.81) and (9.82), and comparing the result with the Fréchet
kernels K Q−1

μ
and K Q−1

κ
from Eqs. (9.33), (9.34) and (9.35), allows us to express J

in a condensed and numerically convenient form:

J =

⎛
⎜⎜⎜⎝

0 μ−1
r K Q−1

μ
0 0

μ−1
r K Q−1

μ
0 0 0

0 0 0 κ−1
r K Q−1

κ

0 0 κ−1
r K Q−1

κ
0

⎞
⎟⎟⎟⎠ . (9.85)

Just as the Fréchet kernels K Q−1
μ

and K Q−1
κ

, the Hessian kernel, K c
δm1

, is indepen-
dent of the background Q model. This is a very desirable property given that Q
varies by several orders of magnitude inside the Earth. It ensures that the resolu-
tion of Q−1

μ and Q−1
κ is nearly independent of the initial model in a tomographic

inversion.



Chapter 10
The Frequency-Domain Discrete
Adjoint Method

The discrete adjoint method is a special case of the more general continuous adjoint
method, applied to physical systems that are governed by algebraic equations. Either
these systems can be inherently discrete or they can be the result of a discretisation
process.

In this chapter we introduce the discrete adjoint method applied to a discretised
frequency-domain wave equation, as it is commonly used for 2D full waveform
inversion (see Sect. 2.5.2 and Chap. 14). We put special emphasis on close relations
to the continuous adjoint method and on the computation of second derivatives.

10.1 General Formulation

The time-domain continuous adjoint method presented in Chap. 8 is very general
because it is independent of the numerical methods used to solve the optimisation
problem in practice. As an alternative to the continuous adjoint method, one may
derive the adjoint equations based on the already discretised forward problem. This
approach is particularly attractive when the wave equation is solved in the frequency
domain.

To avoid duplications, our discussion of the discrete adjoint method will be brief
compared to the chapters on the continuous adjoint method. In fact, most discrete
equations have a direct correspondence in the continuous world.

To derive the frequency-domain discrete adjoint method, we consider the generic
form of the space-discretised wave equation in the frequency domain, presented
already in Sect. 2.5.2:

− ω2M · ū(ω)+ K · ū(ω) = f̄(ω) , (10.1)

where M, K and ū represent the mass matrix, the stiffness matrix and a discrete
version of the elastic displacement field. The variables ω and f̄ are the angular fre-
quency and the discrete external force, respectively. Defining the impedance matrix
L(ω) := −ω2M+K, we can rewrite Eq. (10.1) in the form of a simple matrix-vector
equation:

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-15807-0_10, C© Springer-Verlag Berlin Heidelberg 2011
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L · ū = f . (10.2)

The matrix L now contains all the structural information of the Earth model, i.e.
L = L(m). Furthermore, we assume that the model space M is finite dimensional,
so that any model m ∈ M can be written in the form of a vector with n < ∞
components:

m = (m1,m2, . . . ,mn) . (10.3)

In the following paragraphs we slightly generalise the frequency-domain discrete
adjoint method as described, for example, by Pratt et al. (1998) and Pratt (1999).

We are interested in the partial derivatives of the objective functional χ(m) =
χ [ū(m)] with respect to the model parameters mi :

∂χ

∂mi
= ∇uχ · ∂ū

∂mi
. (10.4)

To eliminate ∂ū/∂mi from Eq. (10.4) we differentiate the discrete wave Eq. (10.2)
with respect to mi :

∂L
∂mi

· ū + L · ∂ū
∂mi

= 0 ⇒ ∂ū
∂mi

= −L−1 · ∂L
∂mi

· ū . (10.5)

The appearance of the inverse L−1 in Eq. (10.5) is purely symbolic. It does not have
to be computed in practice. Substituting Eq. (10.5) into Eq. (10.4) yields

∂χ

∂mi
= −∇uχ ·

(
L−1 · ∂L

∂mi

)
· ū = −ū ·

[
∂LT

∂mi
· (L−1)T

]
· ∇uχ . (10.6)

We now define the discrete adjoint wave field ū† as the solution of the adjoint equa-
tion

LT · ū† = −∇uχ . (10.7)

Clearly, Eq. (10.7) corresponds to the adjoint equation ∇uL†ū† = −∇uχ
†
1 that we

found in the continuous case (Eq. 8.15). With the help of the discrete adjoint field
ū† we can now obtain a simple expression for ∂χ/∂mi :

∂χ

∂mi
= ū† · ∂L

∂mi
· ū . (10.8)

As in the continuous case, the computation of the partial derivatives of χ reduces
to the solution of the adjoint equation (10.7) with an adjoint source determined by
the objective functional. The continuous counterpart of Eq. (10.8) is ∇mχ δm =
〈ū† · ∇mL δm〉 (Eq. 8.16).
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10.2 Second Derivatives

Following the recipe from the previous section, we can derive an expression for
the second derivative of χ in terms of the adjoint field ū†, as defined in Eq. (10.7).
Differentiating χ first with respect to mi and then with respect to m j gives

Hi j := ∂2χ

∂mi∂m j
= H̄i j + ∇uχ · ∂2ū

∂mi∂m j
, (10.9)

where the components of the approximate Hessian are defined as

H̄i j := ∂ū
∂mi

· (∇u∇uχ) · ∂ū
∂m j

. (10.10)

In contrast to the full Hessian, Hi j , the approximate Hessian merely involves first
derivatives which makes its practical computation via the standard adjoint method
comparatively straightforward. The Gauss–Newton and Levenberg–Marquardt
methods of non-linear optimisation therefore use the approximate Hessian as a
substitute of the full Hessian (see Sect. 7.3.3). The second term in Eq. (10.9) is
often assumed to be too expensive to compute. Its neglect can be justified when the
forward problem is nearly linear and when the misfit is small (Tarantola, 1987). To

eliminate the second derivative ∂2ū
∂mi ∂m j

from Eq. (10.9), we differentiate the forward
problem (10.2) twice:

∂2L
∂mi∂m j

· ū + ∂L
∂mi

· ∂ū
∂m j

+ ∂L
∂m j

· ∂ū
∂mi

+ L · ∂2ū
∂mi∂m j

= 0 . (10.11)

A rearrangement of Eq. (10.11) provides an explicit expression for ∂2ū
∂mi ∂m j

,

∂2ū
∂mi∂m j

= −L−1 ·
(

∂2L
∂mi∂m j

· ū + ∂L
∂mi

· ∂ū
∂m j

+ ∂L
∂m j

· ∂ū
∂mi

)
, (10.12)

that we substitute into Eq. (10.9):

Hi j = H̄i j − ∇uχ ·
[

L−1 ·
(

∂2L
∂mi∂m j

· ū + ∂L
∂mi

· ∂ū
∂m j

+ ∂L
∂m j

· ∂ū
∂mi

)]

= H̄i j −
[(

∂2L
∂mi∂m j

· ū + ∂L
∂mi

· ∂ū
∂m j

+ ∂L
∂m j

· ∂ū
∂mi

)T

· (L−1)T

]
· ∇uχ .

(10.13)

Again defining the adjoint field ū† as the solution of

LT · ū† = −∇uχ (10.14)
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yields the desired formula for Hi j that is free of the explicit inverse of L and that
does not contain second derivatives of ū:

Hi j = H̄i j + ū† ·
(

∂2L
∂mi∂m j

· ū + ∂L
∂mi

· ∂ū
∂m j

+ ∂L
∂m j

· ∂ū
∂mi

)
. (10.15)

Equation (10.15) is the discrete analogue of the Hessian for time- and space-
continuous problems (Eq. 8.59). The structure of the Hessian and the physical inter-
pretation of its constituents are identical to the continuous case, treated in Sect. 9.3.
For a detailed discussion of the discrete Hessian, the reader is referred to Pratt
et al. (1998).



Chapter 11
Misfit Functionals and Adjoint Sources

The early developments of full waveform inversion for 2D acoustic problems (e.g.
Tarantola, 1984; Gauthier et al., 1986) were almost immediately followed by the
recognition that the choice of a suitable misfit functional is crucial for a successful
application to real data. In one of the first large-scale full waveform inversions, Crase
et al. (1990) proposed a series of robust misfit measures that are comparatively
insensitive to seismic noise. Their study was extended by Brossier et al. (2010).
The L2 distance between observed and synthetic seismograms is efficient for the
detection of sharp material contrasts, but the recovery of long-wavelength Earth
structure requires misfit functionals that explicitly extract phase information. In
their pioneering work, Luo & Schuster (1991) therefore proposed to measure the
cross-correlation time shift between observed and synthetic waveforms (Sect. 11.3).
This idea was extended by van Leeuwen & Mulder (2010). An alternative approach
based on the measurement of time–frequency misfits was proposed by Fichtner
et al. (2008) (Sect. 11.5). Closely related is the quantification of waveform differ-
ences based on the instantaneous phase and envelope (Bozdağ & Trampert, 2010).

In the following sections we present a selection of misfit functionals and derive
the corresponding adjoint sources. This is intended to offer both physical insight and
concrete solutions. Colourful examples for the resulting Fréchet kernels are shown
in Chap. 12. To avoid clutter, we consider measurements made at a single station.
The generalisation to measurements at multiple stations is straightforward.

As a preparatory step, we introduce the concept of the adjoint Greens function
that will play a key role in our subsequent developments. The adjoint Greens func-
tion, g†

i (ξ , τ ; x, t), is defined as the solution of the adjoint equation (8.17) with a
source that acts in i-direction at the position x = ξ and at time t = τ :

L†[g†
i (ξ , τ ; x, t)] := ei δ(x − ξ) δ(t − τ) . (11.1)

The symbol ei denotes the unit vector in i-direction. The importance of the definition
(11.1) is related to the fact that we can express the adjoint field, u†, corresponding
to an arbitrary adjoint source, f†(x, t) = ∑3

j=1 e j f †
j (x, t), in terms of g†

i (ξ , τ ; x, t).

To see this, we multiply Eq. (11.1) by f †
i (ξ , τ ) and sum over i from 1 to 3:

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-15807-0_11, C© Springer-Verlag Berlin Heidelberg 2011
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3∑
i=1

f †
i (ξ , τ )L†[g†

i (ξ , τ ; x, t)] = f†(ξ , τ ) δ(x − ξ) δ(t − τ) . (11.2)

The adjoint wave operator, L†, is linear and it does not involve derivatives with
respect to ξ and τ . We can therefore rewrite (11.2) in the form

L†

[
3∑

i=1

f †
i (ξ , τ ) g†

i (ξ , τ ; x, t)

]
= f†(ξ , τ ) δ(x − ξ) δ(t − τ) . (11.3)

Integrating Eq. (11.4) over time, τ , and space, ξ , yields

L†

[
3∑

i=1

∫
T

∫
G

f †
i (ξ , τ ) g†

i (ξ , τ ; x, t) dτ d3ξ

]
= f†(x, t) . (11.4)

This implies that the adjoint field

u†(x, t) =
3∑

i=1

∫
T

∫
G

f †
i (ξ , τ ) g†

i (ξ , τ ; x, t) dτ d3ξ (11.5)

is the solution of the adjoint equation (8.17) with the adjoint source f†(x, t).
Equation (11.5) is the representation theorem for adjoint fields. We are now set for
the study of specific misfit functionals and their adjoint sources.

11.1 Derivative of the Pure Wave Field and the Adjoint
Greens Function

The adjoint method can be used as a tool to linearise the forward problem. For this
we let χ be the i-component of the elastic displacement field, u, measured at the
receiver position x = xr and at time t = t r:

χ(m) = ui (m; xr, t r) . (11.6)

To derive the adjoint source corresponding to the objective functional defined in
Eq. (11.6), we write χ in integral form, as proposed in Eq. (8.6)

χ(m) = 〈χ1(m)〉 =
∫

T

∫

G

χ1(m) dt d3x

=
∫

T

∫

G

ei · u(m; x, t) δ(x − xr)δ(t − t r) dt d3x . (11.7)
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The symbol ei denotes the unit vector in i-direction. It follows from Eq. (11.7) that
the integrand, χ1, is given by

χ1(m) = ei · u(m; x, t) δ(x − xr)δ(t − t r) . (11.8)

Applying the recipe from Eq. (8.15) to the above expression for χ1 yields the adjoint
source, f†, that corresponds to the objective functional χ(m) = ui (m; x r, t r):

f†(x, t) = −∇uχ1 = −ei δ(x − xr) δ(t − t r) . (11.9)

The adjoint source, f†, is point-localised in both space and time. It acts at the receiver
position, xr, and at the observation time, t r. The direction of the adjoint source is
opposite to the direction in which the observation was made. Substituting (11.9)
into (8.17) yields the adjoint equation

L†(u†) = −ei δ(x − xr) δ(t − t r) . (11.10)

The comparison of (11.10) with the definition (11.1) implies that the adjoint field,
u†, is equal to the negative adjoint Greens function:

u†(x, t) = −g†
i (x

r, t r; x, t) . (11.11)

For the derivative of χ we then find

∇mχ δm = ∇mui (xr, t r) δm = −〈g†
i (x

r, t r) · ∇mL δm〉 . (11.12)

In the special case of a homogeneous and unbounded 3D medium, the adjoint
Greens function consists of spherical waves with infinitesimally short wavelength
(e.g. Aki & Richards, 2002). This scenario is shown schematically in Fig. 11.1. The
sensitivity kernels are products of the regular wave field, u, and the adjoint Greens
function g†

i . They are non-zero only within the primary influence zone where the
adjoint field and the regular field overlap at a given time between t0 and t r. The
width of the primary influence zone is proportional to the wavelength of the regular
wave u, and it tends to zero as the wavelength of u decreases.

11.2 L2 Waveform Difference

The misfit functional classically used in full waveform inversion (e.g. Bamberger
et al., 1982; Tarantola, 1984; Igel et al., 1996) is the L2 distance between the
observed seismogram, u0, and the synthetic seismogram, u, at the receiver posi-
tion xr:
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Fig. 11.1 Illustration of a sensitivity kernel that arises from the interaction of the regular wave
field u emanating from the source (�) and the negative adjoint Greens function, u† = −g†

i that
propagates from the receiver (•) towards the source. The kernel is non-zero only in the dark shaded
region where the regular and adjoint fields overlap

χ(m) = 1

2

∫

T

[u0(xr, t)− u(m; xr, t)]2 dt . (11.13)

In the hypothetical case where χ is equal to zero, the data are explained perfectly
by the Earth model. The integrand χ1 corresponding to χ is

χ1(m) = 1

2
[u0(xr, t)− u(m; xr, t)]2 δ(x − xr) . (11.14)

Invoking the recipe from Eq. (8.15) yields the adjoint source that corresponds to the
misfit functional defined in (11.13):

f†(x, t) = −∇uχ1 = [u(m; x, t)− u0(xr, t)] δ(x − xr) . (11.15)

The adjoint source is again point-localised at the receiver position, and its time evo-
lution is determined by the residual time series u(t)−u0(t). The common expression
that the adjoint method consists in propagating the residuals back in time largely
results from Eq. (11.15).

While intuitively plausible, the L2 distance can be problematic in practice. It
is, first of all, not robust, meaning that outliers in the data can become domi-
nant. Second, the numerical value of χ as defined in (11.13) is controlled by the
large-amplitude waveforms. This means that the invaluable information contained,
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for instance, in the time shifts of low-amplitude P waves is almost entirely lost.
The L2 distance furthermore emphasises the non-linearity that is already inherent in
the forward problem. This results in multiple local minima of the misfit functional,
which is a very disadvantageous property in the context of gradient-based misfit
minimisation algorithms (see Chap. 7). The existence of local minima is closely
related to the incapability of the L2 distance to detect the long-wavelength structure
of the Earth. To retrieve long-wavelength features, one must adopt a multi-scale
approach (see Sect. 7.4.1), where the inversion starts with the longest possible
periods that are then successively decreased (e.g. Dessa et al., 2004; Bleibinhaus
et al., 2007; Chap. 14). A possible alternative and complement is the combination
of full waveform inversion based on the L2 distance with classical traveltime ray
tomography (e.g. Pratt & Goulty, 1991; Zhou et al., 1995; Korenaga et al., 1997;
Dessa & Pascal. 2003).

Following the recognition that the L2 distance depends very non-linearly on
long-wavelength structure, various objective functionals have been designed that
explicitly extract traveltime information. These are the subjects of the following
paragraphs.

11.3 Cross-Correlation Time Shifts

Despite the inherent problems of the L2 waveform distance, it remains desirable to
extract as much information as possible from the difference between observed and
synthetic seismograms. A milestone towards this goal was Luo & Schuster’s (1991)
realisation that phase information needs to be included explicitly in the objective
functional. Separating the phases of seismic waveforms from their amplitudes is
required to overcome the excessive non-linearity introduced by the L2 waveform
difference as defined in (11.13). Luo & Schuster’s method is based on the estima-
tion of delay times by cross-correlating data and numerically computed synthet-
ics – a technique reminiscent of ideas expressed earlier by Dziewonski et al. (1972),
Lerner-Lam & Jordan (1983) or Cara & Lévêque (1987) in the context of surface
wave analysis. The cross-correlation approach was further formalised by Gee &
Jordan (1992) and then directly applied to data by Zhou et al. (1995) and Chen
et al. (2007). It was also used for the computation of finite-frequency delay time
kernels (Dahlen et al., 2000; Tromp et al., 2005; Liu & Tromp, 2008; Sieminski
et al., 2007a,b).

In our development we closely follow the concept introduced by Luo & Schus-
ter (1991). We consider the i-component of an observed waveform, u0

i (x
r, t), and

the corresponding synthetic, ui (m; xr, t), at a receiver position xr. It is implicitly
assumed that a specific waveform, such as the direct P or S wave, has been isolated
from both the observed and synthetic seismograms. The cross-correlation time shift
T is defined as the time where the cross-correlation function

C(u0
i , ui )(τ ) :=

∫

T

u0
i (x

r, t)ui (m; xr, t + τ) dt (11.16)



198 11 Misfit Functionals and Adjoint Sources

attains its global maximum. We therefore have T > 0 when the synthetic waveform
arrives later than the observed waveform and T < 0 when the synthetic waveform
arrives earlier than the observed waveform. It is assumed that both synthetic and
observed waveforms have been properly filtered and isolated. The misfit functional
that we now wish to minimise is

χ(m) = 1

2
T 2(m) . (11.17)

This is the misfit commonly used in traveltime tomography. The definition (11.16)
does not provide an explicit expression for T . We therefore need to derive a con-
nective function that links ui and u0

i to the secondary observable T . For this, we
note that C(u0

i , ui )(τ ) attains a maximum for τ = T , and it therefore satisfies the
necessary condition

0 = d

d τ
C(u0

i , ui )(τ )|τ=T =
∫

T

u0
i (x

r, t)u̇i (m; xr, t + T ) dt ,

= −
∫

T

u̇0
i (x

r, t − T )ui (m; xr, t) dt . (11.18)

Equation (11.18) defines T implicitly, at least when there is only one maximum.
That T corresponds indeed to the global maximum of the correlation function and
not to one of several local extrema needs to be ensured by the careful observer.
Invoking the implicit function differentiation yields the derivative of χ :

∇mχ δm = T ∇mT (m) δm = T
∫

T u̇0
i (x

r, t − T )∇mui (m; xr, t) δm dt∫
T ü0

i (x
r, t − T ) ui (m, xr, t) dt

.

(11.19)
Under the assumption that u0

i and ui are purely time shifted and not otherwise dis-
torted with respect to each other, we have u0

i (x
r, t − T ) = ui (m; xr, t), and Eq.

(11.19) reduces to

∇mχ δm = − T
||u̇i ||22

∫

T

u̇i (m; xr, t)∇mui (m; xr, t) δm dt , (11.20)

with

||u̇i ||22 =
∫

T

u̇2
i (m; xr, t) dt . (11.21)

For the term ∇mui (m; xr, t) δm in Eq. (11.20) we substitute the result from
Eq. (11.12):
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∇mχ δm = T
||u̇i ||22

∫

T

u̇i (m; xr, t) 〈g†
i (x

r, t) · ∇mL δm〉 dt

= T
||u̇i ||22

∫

T

∫

T

∫

G

u̇i (m; xr, t) g†
i (x

r, t; x, τ ) · ∇mL δm dτ dt d3x .

(11.22)

Defining the adjoint field

u†(x, τ ) := T
||u̇i ||22

∫

T

u̇i (m; xr, t) g†
i (x

r, t; x, τ ) dt (11.23)

allows us to write the derivative of χ in its canonical form (8.16)

∇mχ δm =
∫

T

∫

G

u†(x, t) · ∇mL δm dt d3x . (11.24)

Equation (11.23) has the form of the representation theorem (11.5), where the
adjoint wave field, u†, is expressed in terms of an integral over the adjoint source
times the adjoint Greens function. It therefore follows that the adjoint source corre-
sponding to χ is given by

f†(x, t) = T ei

||u̇i ||22
u̇i (m; xr, t) δ(x − xr) , (11.25)

with ei denoting the unit vector in the observation direction. As a result of the point-
wise measurement, the adjoint source is space-localised at the receiver position.
Its time evolution is determined by the synthetic displacement velocity. The factor
||u̇i ||−2

2 effectively normalises the sensitivity kernels. This ensures that their ampli-
tude does not depend on the amplitude of the regular wave field.

The geometry of the kernels is quasi-independent of the data because the adjoint
source does not contain the data, except for the factor T . This quasi-independence
rests, of course, on the assumption that the observed and synthetic waveforms are
sufficiently similar to allow for the replacement of u0

i (x
r, t − T ) by ui (m; xr, t),

which then led to Eq. (11.20). Teleseismic body waveforms often reveal the neces-
sary similarity between observation and synthetic, so that measurements of cross-
correlation time shifts are physically meaningful. Depending on the magnitude of
the events, it may become necessary to account for the source time function, using,
for instance, a matched-filter approach (e.g. Sigloch & Nolet, 2006). In the case
of surface waves, a sufficient waveform similarity is usually not present. It can,
however, be enforced by rigorous band-pass filtering (e.g. Gee & Jordan, 1992).

Several recent applications of cross-correlation time shifts (e.g. Sigloch
et al., 2008; Tape et al., 2010) were based on measurements in multiple frequency
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bands. This strategy increases the amount of useful information substantially, thus
leading to higher spatial resolution of tomographic images.

11.4 L2 Amplitudes

The amplitudes of seismic waveforms contain invaluable structural information that
can today be exploited in tomographic inversions (e.g. Tibuleac et al., 2003; Sigloch
et al., 2006, 2008). A robust measure of the amplitude of an observed waveform, u0

i ,
is the L2 norm

A0 :=
√√√√
∫

T

[u0
i (x

r, t)]2 dt . (11.26)

Again, we implicitly assumed that the waveform of interest has been properly fil-
tered and isolated. In what follows, we will refer to A as the amplitude. In analogy
to (11.26) we define the amplitude of the corresponding synthetic waveform as

A(m) :=
√√√√
∫

T

[ui (m; xr, t)]2 dt . (11.27)

The amplitude misfit that we may wish to minimise in a tomographic inversion is
then

χ(m) = 1

2

(A − A0)2

(A0)2
. (11.28)

Differentiating equation (11.28) with respect to the model parameters m gives

∇mχ δm = A − A0

(A0)2
∇mA δm

= A − A0

A (A0)2

∫

T

ui (m; xr, t)∇mui (m; xr, t) δm dt . (11.29)

We again substitute Eq. (11.12) for ∇mui (m; xr, t) δm:

∇mχ δm = −A − A0

A (A0)2

∫

T

ui (m; xr, t) 〈g†
i (x

r, t) · ∇mL δm〉 dt

= −A − A0

A (A0)2

∫

T

∫

T

∫

G

ui (m; xr, t) g†
i (x

r, t; x, τ ) · ∇mL δm dτ dt d3x .

(11.30)
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To bring Eq. (11.30) into the canonical form ∇mχ δm = 〈u† · ∇mL δm〉 we define
the adjoint field u† as follows:

u†(x, τ ) := −A − A0

A (A0)2

∫

T

ui (m; xr, t) g†
i (x

r, t; x, τ ) dt . (11.31)

We infer by comparison of (11.31) with the representation theorem (11.5) that the
adjoint source, f†, is given by

f†(x, t) = −A − A0

A (A0)2
ei ui (m; x, t) δ(xr − x) . (11.32)

The adjoint source is, as expected, point-localised at the receiver position xr. Its
time evolution is determined by the displacement waveform at the receiver, and the
amplitude of the adjoint source is proportional to the amplitude difference A − A0.
We note that the time dependence of the adjoint source (11.32) and therefore the
associated Fréchet kernels are always independent of the data. This is in contrast
to the cross-correlation time shift where a quasi-independence of the data requires
assumptions concerning waveform similarity.

11.5 Time-Frequency Misfits

Cross-correlation time shifts and L2 amplitudes are robust measurements that have
been applied successfully in seismic tomography. Their applicability, however, is
limited to scenarios where single phases are clearly separable and where observed
and synthetic waveforms are similar. In the common case where several phases
interfere, both cross-correlation time shifts and L2 amplitudes do not yield phys-
ically meaningful information. A similar effect arises when observed and synthetic
waveforms are not only time shifted and amplitude scaled but distorted with respect
to each other – a well-known phenomenon in the Earth where waveforms disperse
due to the presence of 3D heterogeneities. Potentially useful and robust information
about the Earth’s structure may therefore remain unexploited.

Time–frequency misfits have recently been developed to assess the accuracy of
numerical solutions to the wave equation (Kristekova et al., 2006, 2009) and for
waveform tomography on continental scales (Fichtner et al., 2009, 2010; Sect. 13.3).

It is the principal objective of time–frequency misfits to overcome the limitations
of cross-correlation time shift and L2 amplitude measurements. Time–frequency
misfits are specifically designed to fulfil the following requirements:

1. Complete quantification of seismic waveform misfit in the frequency range of
interest. This means that observed and synthetic waveforms are identical in the
hypothetical case of zero misfit. Note that the cross-correlation time shift does
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not satisfy this requirement, meaning that the misfit defined in Eq. (11.17) can
be zero while observed and synthetic waveforms are dissimilar.

2. Separation of phase and amplitude information. Each type of information con-
strains specific types of the Earth structure. While the phases of seismic waves
largely determine seismic velocities, amplitudes mostly depend on lateral veloc-
ity gradients and the dissipation of elastic energy. Thus, for a waveform inversion
to be efficient, phases and amplitudes should be separated.

3. Relaxation of the requirements on waveform similarity needed for the measure-
ment of pure cross-correlation time shifts. Seismic waves disperse due to the
presence of heterogeneities in the Earth, so that observed and synthetic wave-
forms are inherently dissimilar. Full waveform tomography therefore requires
misfit measures that are physically meaningful when the compared waveforms
are dissimilar to some degree.

4. Possibility to analyse complete wave trains including body waves, surface waves
and interfering phases. Especially at short epicentral distances, numerous seis-
mic phases do not yet have a clear separate identity, meaning that they interfere
with other phases. To exploit as much information as possible, the measurement
must be naturally applicable to any type of waveform, regardless of its compo-
sition of seismic phases that are independent from a ray-theoretical or normal
mode perspective.

We start our development with the definition of time–frequency envelope and phase
misfits. Much emphasis will be on the technical details of phase difference measure-
ments and the required degree of waveform similarity. Subsequently, we will derive
the adjoint sources corresponding to measurements of phase and envelope misfits.

11.5.1 Definition of Phase and Envelope Misfits

As in the previous sections we denote by u0
i (x

r, t) the i-component of an observed
waveform recorded at the position x = xr. The corresponding synthetic waveform is
ui (m; xr, t). For notational brevity we omit dependencies on the receiver position,
xr, and the Earth model, m, wherever this is possible. We can analyse how the fre-
quency content of the data evolves with time by computing the Fourier transform of
u0

i (t) multiplied by a sliding window function h(t − τ) centred around τ :

ũ0
i (t, ω) = Fh[u0

i ](t, ω) := 1√
2π ||h||2

∫
R

u0
i (τ ) h∗(τ − t) e−iωτ dτ . (11.33)

The norm ||h||2 of the window function h, defined as

||h||2 =
√∫

R

h2(t) dt , (11.34)
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is assumed to be non-zero. Using the complex conjugate h∗ instead of h is a com-
mon convention to which we shall conform throughout this chapter. The windowed
Fourier transform from Eq. (11.33) constitutes a time–frequency representation of
the data. In analogy to (11.33) we define the time–frequency representation of the
synthetics ui (t) as ũi (t, ω) = Fh[ui ](t, ω). Both ũ0

i and ũi can be written in expo-
nential form

ũ0
i (t, ω) = |ũ0

i (t, ω)| eiφ0
i (t,ω) , ũi (t, ω) = |ũi (t, ω)| eiφi (t,ω) , (11.35)

with the envelopes |ũ0
i (t, ω)| and |ũi (t, ω)| and the corresponding phases φ0

i (t, ω)
and φi (t, ω). Closely following Fichtner et al. (2008), we define the envelope mis-
fit, χe, and the phase misfit, χp, as weighted L2 norms of the envelope difference
|ũi | − |ũ0

i | and the phase difference φi − φ0
i , respectively:

χ2
e (u

0
i , ui ) :=

∫
R2

W 2
e (t, ω)[|ũi (t, ω)| − |ũ0

i (t, ω)|]2 dt dω , (11.36)

χ2
p (u

0
i , ui ) :=

∫
R2

W 2
p (t, ω)[φi (t, ω)− φ0

i (t, ω)]2 dt dω . (11.37)

The symbols We and Wp denote positive weighting functions that we will discuss
in the following sections. The envelope difference |ũ0

i | − |ũi | represents time- and
frequency-dependent discrepancies between the amplitudes of u0

i and ui . The phase
difference�φi = φi −φ0

i can be interpreted in terms of a time shift�t at frequency
ω: �φi = ω�t .

In the following paragraphs we let the window h be the Gaussian

h(t) = (πσ 2)−1/4 e−t2/2σ 2
. (11.38)

The time–frequency transform Fh is then referred to as the Gabor transform. The
Gaussian window is real, and it is easily verified that ||h||2 = 1. This choice is
both convenient and advantageous from a theoretical point of view because it max-
imises the time–frequency resolution (see, for example, Strang & Nguyen, 1996
and Appendix B). Equation (11.33) does not represent the only possible charac-
terisation of data or synthetics in time–frequency space. Alternatively, one could
employ a wavelet transform instead of a windowed Fourier transform, as suggested,
for instance, by Kristekova et al. (2006).

11.5.2 Practical Implementation of Phase Difference
Measurements

While envelope measurements are conceptually straightforward, phase difference
measurements are more complicated. This is due to the unavoidable discontinuities
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in the phases φi and φ0
i . For a given time t the discontinuities of φi and φ0

i generally
occur at different frequencies ω. Since the phase jumps from −π to π , or vice versa,
have different locations on the frequency axis, the difference �φi can reach values
of ±2π , even when the signals ui and u0

i are nearly identical.
Under the assumption that data and synthetics are approximately in phase we

can circumvent this obstacle. For this we note that for a fixed time t the time–
frequency representations ũ0

i and ũi are the Fourier transforms of the functions
f 0
t (τ ) := u0

i (τ )h(τ − t) and ft (τ ) := ui (τ )h(τ − t), respectively. Now, let the
correlation function of ft and f 0

t , denoted by C( f 0
t , ft )(τ ), be defined through

C( f 0
t , ft )(τ ) :=

∫
R

f 0
t (t

′) ft (t
′ + τ) dt ′ . (11.39)

For the regular Fourier transform of the correlation function C( f 0
t , ft ) we then find

F[C](ω) = 1√
2π

∫
R

C( f 0
t , ft )(τ ) e−iωτ dτ = √

2π ũi (t, ω) ũ0
i (t, ω)

∗

= √
2π |ũi ||ũ0

i | ei(φi −φ0
i ) = |F[C](ω)| ei(φi −φ0

i ) . (11.40)

The phase difference �φi = φi − φ0
i can therefore be expressed as

�φi = −i ln

(
F[C]

|F[C]|
)
. (11.41)

For a given time t the phase of the Fourier-transformed correlation function C coin-
cides with the phase difference between the time-frequency representations ũi and
ũ0

i . In the regions of time–frequency space where u0
i and ui are approximately in

phase, Eq. (11.41) will provide phase differences that range between −π and π .
Discontinuities, as produced by directly subtracting φi from φ0

i can thus be avoided.
When the observed and synthetic waveforms are, however, significantly out of

phase, discontinuities appear even when Eq. (11.41) is used for the computation of
�φi . The occurrence of discontinuities indicates a level of waveform dissimilarity
that needs to be tamed either by low-pass filtering ui (t) and u0

i (t) or by applying a
suitable weighting function Wp to the time–frequency representations ũi and ũ0

i .
The choice of the parameter σ in the Gaussian window h(t) = (πσ 2)−1/4

e−t2/2σ 2
influences the time–frequency representations of both data and synthetics.

The technical details of the measurement process, represented by σ in our case,
affect the outcome of the measurement. Optimising this outcome has always played
a central role in time–frequency and spectral analysis. In classical surface wave anal-
ysis, for instance, σ is usually tuned to render measurements of group arrival times
as easy as possible (Cara, 1973; Nyman & Landisman, 1977). Another example of
measurement optimisation comes from multi-taper methods, which are designed to
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provide spectral estimates that are as free as possible from the effects of windowing
functions (Thomson, 1982).

In the case of full waveform tomography the situation is slightly different from
the ones encountered in classical surface wave or multi-taper analysis. The mea-
surements, namely phase and envelope misfits, are extracted from time–frequency
representations, and those time–frequency representations have, by design, a free
parameter: σ . This parameter makes the subjectivity inherent in any measurement
rather explicit. In principle, we cannot exclude a priori a certain value for σ as long
as it results in a physically meaningful measurement and as long as we interpret the
results accordingly.

We can, however, tune σ such that it produces results that are in agreement with
our physical intuition and experience. In this sense, we suggest choosing σ such
that the mathematically defined phase difference �φi is interpretable in terms of
the intuitive meaning of a phase difference: a time shift between two associated
oscillations in the data and the synthetics. A suitable value for σ is then the domi-
nant period of the data. Choosing σ to be several times smaller than the dominant
period gives narrow Gaussian windows that cannot capture time shifts between two
cycles that span many such windows. Conversely, a value for σ that is several times
larger than the dominant period leads to Gaussian windows that are so wide that
the resulting phase difference can no longer be associated to a specific cycle. In the
case where the dominant period varies strongly with time, one may use a time- or
frequency-dependent window h.

The main purpose of the weighting function Wp is to suppress phase differences
in those regions of the time–frequency space where a physically meaningful mea-
surement is not possible. Those regions include time intervals where the signal is
either zero or below the noise level. Furthermore, Wp may be used to isolate time–
frequency windows that are found to be particularly useful in a specific application.
For instance, Wp could isolate or emphasise higher mode surface waves in order to
improve the depth resolution in tomographic inversions.

For a semi-automatic data processing we suggest to construct the weighting func-
tion as follows: (1) Estimate a noise level n(t, ω). In most applications n(t, ω) will
be independent of time, t , and frequency, ω. (2) Define

W̃p(t, ω) := 1 − e−|ũ0(t,ω)|2/n2(t,ω) . (11.42)

The filter W̃p is close to one where the data are significantly above the noise and
close to zero elsewhere.

11.5.3 An Example

To illustrate the practical measurement of phase differences, we consider the N-
S-component seismograms shown in Fig. 11.2a. The dominant period is 100 s. The
body wave phases interfere strongly, thus loosing their separate identities. The phase
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Fig. 11.2 (a) N-S-component waveforms at 100 s dominant period. Data: black, synthetics: red.
The P wave part (light gray shaded) is amplified by a factor of 5 to enhance visibility. The synthetic
surface wave is significantly early compared to the observed surface wave. Smaller differences
exist within the body wave part. (b) Phase weighting function, Wp, as defined in Eq. (11.42). (c)
Weighted phase difference in time–frequency space. The delay prior to 700 s maps into a negative
phase difference, and the advance in the surface wave train corresponds to a positive-phase dif-
ference. (d) Adjoint source time function before time reversal. The body wave part has a larger
amplitude despite the smaller phase difference, compared to the surface wave part. This is because
the adjoint source automatically compensates for the smaller amplitude of the regular body wave,
in order to make the Fréchet kernels amplitude independent

weighting function, Wp (Fig. 11.2b), was constructed using Eq. (11.42), with the
noise level set to n(t, ω) = max |ũ0|/30. In those parts of the time–frequency space
where a meaningful measurement is possible, Wp attains values around +1. Regions
where the amplitudes are too small are excluded from the computation of the phase
difference, which is shown in Fig. 11.2c. The delay of the synthetics relative to the
data in the earlier part of seismogram maps into a negative phase difference that is
located around t = 600 s and f = 8 mHz. The surface wave part of the synthetics



11.5 Time-Frequency Misfits 207

is advanced relative to the observed surface wave. This leads to a positive phase
difference, that is largest for frequencies around 15 mHz and less pronounced for
lower frequencies.

Figure 11.2d displays the adjoint source time function, the computation of which
will be the subject of the following paragraphs. Clearly visible are the two contri-
butions that correspond to the positive and negative phase differences in the time–
frequency plane. Note that the body wave part of the adjoint source time function
has a larger amplitude than the surface wave part, despite a smaller phase differ-
ence. This is because the adjoint source automatically compensates for the smaller
amplitudes of the regular waves, thus making the Fréchet kernels for phase mis-
fit measurements amplitude independent. We already observed the same effect in
the adjoint source for measurements of cross-correlation time shifts (Sect. 11.3,
Eq. 11.25).

11.5.4 Adjoint Sources

11.5.4.1 A Preparatory Step for the Derivation of the Adjoint Sources
for Envelope and Phase Misfits

To prepare the derivation of the adjoint sources for envelope and phase misfit mea-
surements, we provide some useful expressions for the Fréchet derivatives ∇mũi δm
and ∇m |ũi | δm that we will use frequently in the following paragraphs: First, we
differentiate the definition of ũi with respect to the model parameters m,

∇mũi (t, ω) δm = 1√
2π

∫
R

∇mui (τ ) δm h(τ − t) e−iωτ dτ , (11.43)

where we already assumed that h is a Gaussian window with ||h||2 = 1. Substituting
Eq. (11.12) for ∇mui (τ ) δm gives

∇mũi (t, ω) δm = − 1√
2π

∫
T

∫
G

∫
R

g†
i (x

r, τ ; x, t ′)·∇mL δm h(τ−t) e−iωτ dτ dt ′ d3x .

(11.44)
By defining the auxiliary adjoint field

ũ†(x, t ′; t, ω) := − 1√
2π

∫
R

g†
i (x

r, τ ; x, t ′) h(τ − t) e−iωτ dτ , (11.45)

we can write the derivative ∇mũi (t, ω) δm in canonical form

∇mũi (t, ω) δm =
∫

T

∫
G

ũ†(x, t ′; t, ω) · ∇mL δm dt ′ d3x . (11.46)

Next, we consider the derivative ∇m |ũi | δm that can be expressed in terms of
∇mũi δm. For this we note that the following relation holds:
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∇m |ũi |2δm = 2|ũi | ∇m |ũi | δm
= ∇m(ũi ũ

∗
i ) δm = ũi ∇mũ∗

i δm + ũ∗
i ∇ũi δm . (11.47)

Solving for ∇m |ũi | δm then yields

∇m |ũi | δm = Re

(
ũi

|ũi | ∇mũ∗
i δm

)
, (11.48)

where Re extracts the real part of the complex quantity in brackets.

11.5.4.2 Adjoint Source for the Envelope Misfit

To derive the adjoint source corresponding to measurements of the envelope misfit,
we differentiate the definition of χe (Eq. 11.36):

∇mχe δm = 1

χe

∫
R2

W 2
e (|ũi | − |ũ0

i |)∇m |ũi | δm dt dω . (11.49)

For ∇m |ũi | δm we substitute Eq. (11.48):

∇mχe δm = 1

χe
Re

∫
R2

W 2
e (|ũi | − |ũ0

i |)
ũi

|ũi | ∇mũ∗
i δm dt dω . (11.50)

In the interest of a lighter notation, we define the weighted relative envelope differ-
ence E(t, ω):

E(t, ω) := W 2
e (t, ω)

|ũi (t, ω)| − |ũ0
i (t, ω)|

|ũi (t, ω)| , (11.51)

so that we obtain a more compact expression for ∇mχe δm:

∇mχe δm = 1

χe
Re

∫
R2

E ũi ∇mũ∗
i δm dt dω . (11.52)

With the help of the auxiliary adjoint field defined in Eq. (11.45) we can eliminate
∇mũ∗

i δm from Eq. (11.50):

∇mχe δm = 1

χe
Re

∫
R2

∫
T

∫
G
E(t, ω) ũi (t, ω) ũ† ∗(x, t ′; t, ω)·∇mL δm dt ′ dt dω d3x .

(11.53)
From (11.53) we extract the adjoint field



11.5 Time-Frequency Misfits 209

u†(x, t ′) = 1

χe
Re

∫
R2

E(t, ω) ũi (t, ω) ũ† ∗(x, t ′; t, ω) dt dω

= − 1√
2π χe

Re

∫
R3

E(t, ω) ũi (t, ω) g†
i (x

r, τ ; x, t ′) h(τ − t) eiωτ dτ dt dω .

(11.54)

It now follows again from the representation theorem (11.5) that the adjoint source
f† is given by

f†(x, t) = − 1√
2π χe

Re

∫
R2

E(τ, ω) ũi (τ, ω) h(t − τ) eiωt ei δ(x − xr) dω dτ .

(11.55)
We can express f† more conveniently in terms of the inverse time–frequency trans-
form F−1

h (see Appendix B):

f†(x, t) = − 1

χe
Re F−1

h

[
E ũi

]
(t) ei δ(x − xr) . (11.56)

The time evolution of the adjoint source is determined by the inverse time–frequency
transform of the synthetic waveform, ũi , times the relative envelope difference, E .

11.5.4.3 Adjoint Source for the Phase Misfit

To derive the adjoint source corresponding to phase misfit measurements, we pro-
ceed as in the case of the envelope misfit. First, we differentiate the definition of χp
which is given by Eq. (11.37):

∇mχp δm = 1

χp

∫
R2

W 2
p (φi − φ0

i ) (∇mφi δm) dt dω . (11.57)

To eliminate the term ∇mφi δm we again use Eq. (11.48):

∇mφi δm = −i ∇m ln

(
ũi

|ũi |
)
δm = −i

(
1

ũi
∇mũi δm − 1

|ũi | ∇m |ũi | δm
)

= i
[

1

|ũi | Re

(
ũi

|ũi | ∇mũ∗
i δm

)
− 1

ũi
∇mũi δm

]

= i
(

ũi

2|ũi |2 ∇mũ∗
i δm − ũ∗

i

2|ũi |2 ∇mũi δm
)

= −Im

(
ũi

|ũi |2 ∇mũ∗
i δm

)
. (11.58)

The resulting expression for ∇mχp δm is then
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∇mχp δm = − 1

χp
Im

∫
R2

P ũi ∇mũi δm dt dω , (11.59)

where we defined the envelope-normalised phase difference, P , in analogy to the
relative envelope difference, E :

P(t, ω) := W 2
p (t, ω)

|ũi (t, ω)|2
[
φi (t, ω)− φ0

i (t, ω)
]
. (11.60)

At this point we note the similarity between Eq. (11.59) which expresses ∇mχp δm
in terms of P and Eq. (11.52) which expresses ∇mχe δm through E . Thanks to this
similarity we can skip the remaining part of the recipe that we used to derive the
adjoint source for χe, and we directly infer that the adjoint source corresponding to
the phase misfit χp is given by

f†(x, t) = 1

χp
Im F−1

h

[
P ũi

]
(t) ei δ(x − xr) . (11.61)

As expected, the adjoint source is a point-localised single force pointing in
the observation direction. Its time evolution is determined by the inverse time–
frequency transform of ũi times the envelope-normalised phase difference that we
introduced in Eq. (11.60).

We note that the misfit functionals presented above are closely related. For
instance, when the observed and synthetic waveforms are merely time shifted with-
out being otherwise distorted relative to each other, then the cross-correlation time
shift and the phase difference are nearly identical measurements. A more complete
analysis of the interrelations between misfit functionals can be found in Fichtner
et al. (2008).



Chapter 12
Fréchet and Hessian Kernel Gallery

Following several chapters replete with purely theoretical developments, we now
delve into the description of concrete Fréchet kernels for several seismologically
relevant combinations of measurements and Earth model parameters. This is, first
of all, intended to advance the intuition necessary for the meaningful solution of any
tomographic problem.

Throughout most of this chapter we will be concerned with measurements of
cross-correlation time shifts, T , and L2 amplitudes, A, as defined in Eqs. (11.16)
and (11.26), respectively. This choice is motivated by the simplicity of the corre-
sponding adjoint sources and the similarity with other time- and amplitude-like mea-
surements that are based, for instance, on time–frequency representations (Fichtner
et al., 2008) or generalised seismological data functionals (Gee & Jordan, 1992).
Furthermore, we restrict our attention to single-station measurements. The Fréchet
kernels for multi-station measurements are simply the superposition of the individ-
ual kernels.

As a preparatory step we recall the adjoint sources associated with the absolute
Fréchet derivative ∇mT and the relative Fréchet derivative A−1 ∇mA.

In Sect. 11.3 we found that the adjoint source corresponding to the measurement
of a cross-correlation time shift on the i-component of data and synthetics is given
by

f†
T = ei

||u̇i ||22
u̇i (xr, t) δ(xr − x) . (12.1)

The adjoint source, f†
T , is quasi-independent of the data because we assumed that the

observed and synthetic waveforms are merely shifted in time without being other-
wise distorted. This assumption is well justified for most body wave phases and for
surface waves filtered to a narrow frequency band. The approximate data indepen-
dence of f†

T ensures that the resulting Fréchet kernels can be interpreted in terms of
the physics of wave propagation without worrying too much about the actual data.
Nevertheless, we note that the waveform similarity assumption is paradoxical to
some degree because the numerical value of the cross-correlation function depends

A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-15807-0_12, C© Springer-Verlag Berlin Heidelberg 2011
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on waveform distortions induced by 3D Earth structure, especially when the time
shift is small.

To obtain data-independent Fréchet kernels also for amplitude measurements, we
focus on the relative derivative, A−1 ∇mA, rather than on the absolute derivative,
∇mA. The adjoint source corresponding to A−1 ∇mA is

f†
A = − ei

||ui ||22
ui (xr, t) δ(xr − x) , (12.2)

as we already found in Sect. 11.4. The resulting Fréchet kernels are genuinely
data independent, irrespective of any waveform dissimilarities.

For the exemplary kernel calculations presented in the following paragraphs, we
use a spectral-element method (Fichtner et al., 2009, Sect. 13.2.1) that solves the
elastic wave equation in a spherical section. The Earth model is the isotropic version
of PREM (Dziewonski & Anderson, 1981). For simplicity we will refer to Fréchet
kernels from cross-correlation measurements as traveltime kernels and to Fréchet
kernels from L2 amplitude measurements as amplitude kernels.

Following a brief description of the computational setup, we study the anatomy
of traveltime and amplitude kernels with respect to vP and vS for a variety of body
wave phases. Section 12.2 is devoted to the sensitivity of surface waves to both
isotropic and anisotropic perturbations. Hessian kernels and their use in the study of
resolution and trade-offs are the subject of Sect. 12.3. Based on our mostly visual
analysis, we conclude this chapter with a method for the efficient computation of
Fréchet kernels (Sect. 12.4).

12.1 Body Waves

The 3D sensitivity distributions of body waves with a finite-frequency content have
been analysed extensively during the past two decades. In a series of pioneering
studies, Yomogida (1992), Dahlen et al. (2000) and Dahlen & Baig (2002) used
the ray approximation for the computation of body wave Fréchet kernels in later-
ally homogeneous media. For an iterative waveform inversion, kernels need to be
computed also in 3D heterogeneous media, which requires the use of fully numer-
ical methods. Numerous examples of body wave sensitivity kernels computed with
the help of finite-difference and spectral-element modelling can be found in Zhao
et al. (2005), Liu & Tromp (2006, 2008) or Sieminski et al. (2007b).

For our study of body wave sensitivities we consider a geometric setup where
several body wave phases are easily observable. The synthetic source is located at
400 km depth beneath western Turkey. It radiates elastic waves recorded in western
Spain at an epicentral distance of 25.23◦. The surface projection of the ray path for
this source–receiver pair and the P wave radiation pattern are shown in Fig. 12.1.
The corresponding three-component synthetic velocity seismograms in Fig. 12.2
exhibit various prominent body wave phases, including the direct P and S waves, as
well as the surface-reflected phases sP and sS. The dominant period is 15 s.
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Fig. 12.1 Source–receiver geometry for a deep source beneath western Turkey and a receiver
located in western Spain. The epicentral distance is 25.23◦. The P wave radiation pattern is plotted
to the right

Fig. 12.2 Synthetic velocity seismograms for the source–receiver geometry shown in Fig. 12.1.
The most prominent phases, P, S, sP and sS, are indicated. The dominant period is 15 s

12.1.1 Cross-Correlation Time Shifts

Cross-correlation time shifts or variants thereof are one of the most widely used
measurement of finite-frequency waveform misfit (e.g. Luo & Schuster, 1991;
Sigloch & Nolet, 2006; Nolet, 2008). This popularity results from the robustness
of the measurement and its quasi-linear relation to the Earth structure that facilitates
the solution of the tomographic inverse problem.

The critical component of cross-correlations is the isolation of a clearly identifi-
able waveform that has its own identity. Examples include direct P and S waves or
multiply reflected body waves that do not interfere with other phases.

So far, the isolation of one specific waveform has been implicit in most of our
developments. Figure 12.3 therefore illustrates in detail the construction of the
adjoint source corresponding to the cross-correlation time shift measurement on
the vertical component of the direct P wave displacement (Eq. 12.1). The complete
vertical-component displacement seismogram, uz(t), is shown in Fig. 12.3a. It con-
tains, besides the direct P wave, a clearly distinguishable sP phase. To construct the
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adjoint source time function, the P wave is isolated from the velocity seismogram,
u̇z(t), using a standard cosine taper, W (t). The windowing produces the waveform,
W (t)u̇z(t), shown in Fig. 12.3c, which is then scaled by the inverse squared norm of
the tapered velocity seismogram, ||W u̇z ||−2. In the final step, W (t)u̇z(t) ||W u̇z||−2

is reversed in time to produce the adjoint source time function (Fig. 12.3e) that can
be used in numerical calculations of Fréchet kernels, where the adjoint equation is
solved backwards in time.

Fig. 12.3 Illustration of the different steps that lead to the construction of the adjoint source time
function for a cross-correlation time shift measurement on the 15 s P waveform. (a) The complete
vertical-component displacement seismogram, uz(t), contains clear P, sP and surface waves. (b)
The velocity seismogram, u̇z(t), is required for the computation of the adjoint source time function
in Eq. (12.1). The location of the window function, W (t), used to isolate the P waveform in the
next step, is marked by the gray-shaded area. (c) The isolated P waveform, W (t)u̇z(t), results from
the application of a window function, W (t), to the velocity seismogram. (d) Isolated P waveform
scaled by the inverse squared norm of itself, ||W u̇z ||−2. (e) Adjoint source time function, i.e. the
time-reversed version of (d)
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Cross sections through the resulting P wave speed Fréchet kernel, KvP , are pre-
sented in Fig. 12.4. The large spatial extension of the kernel is in contrast to kernels
from infinite-frequency ray theory where all sensitivity is concentrated along the
ray. To emphasise this difference, Fréchet kernels corresponding to waveforms with
a finite-frequency content are commonly referred to as finite-frequency kernels. The
kernel from Fig. 12.4 is the prime example of a sensitivity distribution that con-
tradicts our intuition that is largely founded on the visualisation of seismic waves
by rays. Along the geometric ray path, indicated by a dashed curve connecting
source and receiver, the sensitivity is exactly equal to zero, as noted already by
Yomogida (1992). It is strongest in the outer parts of the first Fresnel zone. The
negative sign is expected because increasing vP should lead to earlier-arriving P
waves and a reduction in the cross-correlation time shift, as defined in Eq. (11.16).
Marquering et al. (1999) jokingly described the shape of the sensitivity kernel
as resembling a hollow banana parallel to the ray and a doughnut perpendicular
to the ray. The expression banana–doughnut kernel has since then diffused into
the seismological literature very efficiently. As a result of the doughnut hole, an
anomaly concentrated in the outer part of the first Fresnel zone can give rise to a
larger time shift than one located directly on the ray. This result was verified by
Hung et al. (2000) with the help of numerical wave propagation. Hung et al. (2000)
also noted that a zero time shift for perturbations along the ray path would not be
present if it were measured by hand picking the onset of the arrivals. In a cross-
correlation measurement, however, the complete waveform contributes to the time
shift T . The cross-correlation time shift can thus be identically zero while the dif-
ference between the P wave onset times is not. A particularly perplexing feature is
the weak positive sensitivities within the second Fresnel zone. They can lead to an
advance of the synthetic waveform despite the presence of a negative P wave speed
anomaly.

A characteristic property shared by all Fréchet kernels – regardless of the under-
lying measurement – is the very large sensitivity in the vicinity of the source and
the receiver. In fact, we would observe singularities directly at the source and the
receiver if the numerical solution were exact. The origins of the quasi-singularities
are the point source that excites the forward wave field and the point-wise measure-
ment that implies a point-localised adjoint source.

In practice, that is in a real tomographic inversion, the effect of the quasi-
singularities is less dramatic than Fig. 12.4 may suggest. This is because the Fréchet
kernel is not used directly. What is needed instead are the partial derivatives of
the objective functional, χ , with respect to the coefficients, mi , of a discretised
Earth model (see Eq. 8.21). The partial derivative ∂χ/∂mi is equal to the integral
over the basis function, bi , times the Fréchet kernel, Km (Eq. 8.22). The integra-
tion over an extended spatial domain substantially reduces the amplitudes of the
very localised extreme contributions. It can, nevertheless, be important to further
suppress the quasi-singularities to prevent them from becoming dominant features
in tomographic images. This can be done, for instance, by pre-conditioning the
pure gradients of the misfit functional (e.g. Igel et al., 1996; Fichtner et al., 2009;
Sect. 7.3.4).
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Fig. 12.4 Traveltime kernel, KvP , corresponding to a 15 s P wave from Fig. 12.2. The dashed
curve marks the geometric ray path. Top: Vertical slice through the ray plane connecting source
and receiver. Sensitivity is exactly zero along the ray path. Bottom: Vertical slices perpendicular to
the ray plane at 0◦, 10◦E and 20◦E. Owing to its characteristic shape, the traveltime kernel is often
referred to as banana–doughnut kernel

Another notable feature in Fig. 12.4 is the asymmetry of the kernel relative to
the geometric ray path. It is most pronounced in the slice at 20◦E perpendicular
to the ray plane. The asymmetry results from the asymmetric radiation pattern of
the forward P wave. Regions of weak sensitivity correspond to nodal planes in the
radiation pattern.

A similar asymmetry is only very weakly developed in the vicinity of the receiver
where the shape of the kernel is dominated by the characteristics of the adjoint
wave field. The adjoint source is a vertical single point force that generates a more
isotropic radiation pattern that causes the kernel to be nearly symmetric with respect
to the geometric ray.

In our next example we consider the prominent S wave arriving on the E–W
component around 530 s. For the construction of the adjoint source time func-
tion we proceed as in the case of the direct P wave, the only difference being
the location of the time window, W (t), around the E–W-component S waveform.
The resulting Fréchet kernel with respect to the S wave speed, KvS , is shown in
Fig. 12.5. Its general anatomy is similar to the P wave kernel. Only the width
of the kernel is reduced. This is due to both the radiation pattern and the shorter
wavelength of S waves compared to the wavelength of P waves at the same
period.
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Fig. 12.5 Cross section through the traveltime Fréchet kernel, KvS , that corresponds to the E–W-
component S wave with a dominant period of 15 s, as shown in Fig. 12.2

The variations of this theme are numerous and replete of interesting physics.
Particularly noteworthy cases are those where an observed waveform results from
P-to-S or S-to-P conversions at material interfaces. The vertical-component sP phase
from Fig. 12.2, for instance, corresponds to an S wave that propagates from the
source to the surface where it partly converts to a P wave that travels towards the
receiver.

The two branches of sP are clearly visible in the Fréchet kernels with respect to
the P wave speed, KvP , and with respect to the S wave speed, KvS . P wave speed sen-
sitivity concentrates along the ray path that connects the surface reflection point to
the receiver. Along the path segment where sP propagates in the form of an S wave,
i.e. between the source and the surface reflection point, P wave speed sensitivity is
small. S wave speed sensitivity, KvS , is complementary to P wave speed sensitivity,
KvP . It is large between the source and the surface reflection point but nearly zero
along the P wave segment of the path.

Highly oscillatory sensitivity near the source and the receiver is clearly visible
especially in the P wave speed kernel, KvP . This is because the finite-frequency
sP wave is spatially not as isolated as an infinite-frequency sP wave in the ray-
theoretical framework. S-to-P scattered waves from the near-source region, for
instance, can arrive within the sP time window and thus affect the cross-correlation
measurement. From a practical point of view, highly oscillatory sensitivity is hardly
relevant in the solution of a tomographic problem. The projection of the Fréchet
kernels onto the basis functions (see Chap. 8 and Eq. (8.22)) usually eliminates
most of the strong oscillations and emphasises the longer wavelength structure of
the kernels (Fig. 12.6).

In our next example for cross-correlation measurements on body waves, we con-
sider the prominent sS arrival on the E–W component. The corresponding Fréchet
kernel, shown in Fig. 12.7, reveals a complex pattern of positive and negative sensi-
tivity that is not as obviously associated with the geometric ray path as the kernels
for P, S and sP. Yet, the large sensitivity near the reflection point indicates the impli-
cation of the surface in the generation of the sS phase.

All of the examples studied so far illustrate the delicate relationship between
infinite-frequency ray theory and finite-frequency kernels. Despite its limited range
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Fig. 12.6 Cross sections through traveltime Fréchet kernels for the vertical-component sP wave-
form with a dominant period of 15 s, as shown in Fig. 12.2. Top: Sensitivity with respect to the P
wave speed, vP, (KvP ) is concentrated along the P branch of the ray path. Bottom: S wave speed sen-
sitivity (KvS ) is restricted to a region around the s branch of the ray path that represents the S wave
propagating from the source to the reflection point at the surface. Highly oscillatory sensitivity
appears near the receiver, but is hardly relevant from a practical point of view

Fig. 12.7 Cross section through the traveltime Fréchet kernel, KvS , for the 15 s sS wave observed
on the E–W-component in Fig. 12.2
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Fig. 12.8 Illustration of the frequency dependence of P wave speed Fréchet kernels, KvP , for cross-
correlation measurements. Top: The dominant period is 7 s, which results in a comparatively slim
kernel. Bottom: For a dominant period of 25 s the kernel extends far from the geometric ray path
and the doughnut hole is particularly pronounced

of validity, ray theory is an indispensable aid in the interpretation of Fréchet kernels
for measurements on isolated seismic phases. Regions of non-zero sensitivity mostly
follow the infinite-frequency ray path. However, the fine structure of the kernels is
strongly affected by the frequency content, the source radiation pattern, interference
effects and the shape of the window function used to isolate a waveform.

As demonstrated by Dahlen et al. (2000), finite-frequency traveltime kernels col-
lapse into infinitely thin rays as the dominant period, Td , tends to zero. Figure 12.8
illustrates this trend. It shows traveltime kernels for the direct P wave with dominant
periods of Td ∼ 7 s (top) and Td ∼ 25 s (bottom). The width of the first Fresnel zone
is proportional to

√
Td which explains why the 25 s kernel is nearly twice as wide

as the 7 s kernel.

12.1.2 L2 Amplitudes

The procedure for the computation of Fréchet kernels for L2 amplitude measure-
ments is similar to the one outlined in the previous paragraph where we considered
measurements of cross-correlation time shifts. The only notable difference lies in the
time evolution of the adjoint sources: displacement velocity, u̇i (t), for the time shift
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Fig. 12.9 Amplitude kernel, KvP , corresponding to a 15 s P wave. The geometric ray path is
marked by the dashed curve. Top: Vertical slice through the ray plane connecting source and
receiver. Bottom: Vertical slices perpendicular to the ray plane at 0◦, 10◦E and 20◦E

(Eq. 12.1) and pure displacement, ui (t), for the amplitude measurement (Eq. 12.2).
This apparently minor distinction causes the amplitude kernel for the 15 s P wave,
shown in Fig. 12.9, to differ substantially from the traveltime kernel in Fig. 12.4.

Amplitude kernels are, in contrast to traveltime kernels, not hollow but filled,
meaning that the maximum sensitivity is located along the geometric ray path.
Dahlen & Baig (2002) noted that the positive contributions in the second Fresnel
zone are particularly pronounced – more than in traveltime kernels. This means that
a P wave speed anomaly that is constant across the kernel may cause a negligible
amplitude perturbation because the positive and negative sensitivities compensate
each other. This suggests that body wave amplitudes are more sensitive to smaller
scale perturbations that fit within the first Fresnel zone.

Still clearly visible are the very strong sensitivities in the vicinity of the source
and the receiver. These are general features of sensitivity kernels for point-wise
measurements on wave fields that were emitted by a point source.

Another persistent feature is the asymmetry relative to the ray that is particularly
visible in the cross section perpendicular to the ray at 20◦E, i.e. close to the source.
The asymmetry again results from the radiation pattern of the direct P wave. Its
existence is thus primarily controlled by the forward field and not by the specifics
of the measurements that determine the adjoint field.

The physical meaningfulness of the amplitude kernels is not as obvious as in the
case of the phase-shift kernels. This is because amplitudes can depend rather non-
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linearly on the near receiver structure instead of depending almost linearly on the
structure around the complete ray path. The best known example is strong amplifica-
tions of seismic ground motion in sedimentary basins (e.g. Frankel & Vidale, 1992).
From a purely mathematical point of view, the Fréchet kernel in Fig. 12.9 represents
a correct first derivative. However, the extent to which the first derivative indeed
represents amplitude changes resulting from finite perturbations seems to depend
on the particular type of seismic wave, the frequency content and the near receiver
geology.

12.2 Surface Waves

Following the analysis of body wave Fréchet kernels, we focus on the surface
wave part of longer period seismograms. The finite-frequency sensitivity of surface
waves has been studied extensively in recent years. Friederich (1999) calculated
3D Fréchet kernels in radially symmetric Earth models for both body and surface
waves within a normal mode framework and applied his method to the imaging of
S velocity structure in the East Asian upper mantle (Friederich, 2003). Also based
on normal mode theory, Zhou et al. (2004) derived Fréchet kernels for multi-taper
measurements on fundamental-mode surface waves. The kernels were then used to
compute a global surface wave tomographic model (Zhou et al., 2005). An exten-
sion to higher mode surface waves can be found in Zhou (2009). Working with the
potential representation of surface waves, Yoshizawa & Kennett (2005) were able
to derive surface wave kernels for laterally variable media, thus highlighting the
importance of using the proper kernels in order to account for the heterogeneity
in the real Earth. A further improvement was made by Sieminski et al. (2007b)
who computed surface wave sensitivity with respect to anisotropic parameters using
global spectral-element simulations.

The setup of our numerical modelling is the same as in the previous section (see
Fig. 12.1), the only difference being that the source is shallow (50 km depth) so
that strong fundamental-mode surface waves are excited. Figure 12.10 displays the
three-component displacement velocity recorded at an epicentral distance of 25.23◦.
The dominant period is 50 s. Rayleigh waveforms are clearly visible on both the
E–W and vertical components. The Love wave is restricted to the N–S component
because the propagation is strictly in E–W direction.

12.2.1 Isotropic Earth Models

To compute the sensitivity of the surface wave trains with respect to perturbations
in isotropic Earth structure, we isolate the Love and Rayleigh waves using a cosine
taper, the boundaries of which are displayed in the form of vertical dashed lines
in Fig. 12.10. The tapered waveforms mostly consist of fundamental-mode surface



222 12 Fréchet and Hessian Kernel Gallery

Fig. 12.10 Synthetic surface wave trains with a dominant period of 50 s. The source–receiver
geometry is the same as in Fig. 12.1, but the source depth is only 50 km, so that strong fundamental-
mode surface waves are excited. The dashed vertical lines indicate the boundaries of the tapers used
to isolate waveforms for the computation of Fréchet kernels

waves, but we do not make any special effort to eliminate higher modes using, for
instance, multi-taper techniques (e.g. Zhou et al., 2004).

Figure 12.11 shows horizontal and vertical cross sections through the S wave
speed traveltime kernel, KvS , corresponding to the isolated Love waveform in
Fig. 12.10. Sensitivity extends in a bent cigar-shaped region (or banana-shaped,
depending on personal preference) from the source to the receiver, and it is restricted
to the uppermost 200 km of the Earth model. The kernel exhibits the typical alter-
nating positive and negative sensitivity bands that are separated by zero-sensitivity
surfaces where first-order scattering has no effect on the cross-correlation measure-
ment. The characteristic doughnut hole found in the body wave traveltime kernels
(e.g. Figs. 12.4 and 12.5) is not present in the surface wave kernels. This is due to
the 2D propagation nature of surface waves (e.g. Zhou et al., 2004). The side band
structure of the kernels is most affected by the details of the measurement process,
such as the width and slope of the taper used to isolate the waveform. However,
within the first Fresnel zone the kernels are rather independent of the measurement
details.

The S wave speed sensitivity of the vertical-component Rayleigh wave is shown
in Fig. 12.12. The anatomy of the kernel parallel to the propagation direction is sim-

Fig. 12.11 Traveltime sensitivity kernel with respect to the S wave speed, vS, for the 50 s Love
wave from Fig. 12.10. Left: Horizontal slice at 50 km depth. Right: Vertical slice at 10◦E longitude



12.2 Surface Waves 223

Fig. 12.12 Traveltime sensitivity kernel with respect to the S wave speed, vS, for the 50 s vertical-
component Rayleigh wave from Fig. 12.10. Left: Horizontal slice at 50 km depth. Right: Vertical
slice at 10◦E longitude

ilar to KvS for the Love wave (Fig. 12.11). However, the sensitivity drops to exactly
zero near the surface (see also Fig. 12.14). This is in accordance with analytically
derived 1D sensitivity distributions for plane waves (e.g. Takeuchi & Saito, 1972).

As can be seen in Fig. 12.13, the vertical-component Rayleigh wave is weakly
sensitive to the P wave speed, vP, within the crustal part of the model, that is, above
50 km depth. Love waves, in contrast, exhibit no P wave sensitivity whatsoever. It is
therefore reasonable to restrict a surface wave tomography to the S wave structure
of the Earth.

The sensitivity distributions of surface waves exhibit a characteristic frequency
dependence: The depth extent of the kernels increases with increasing dominant
period. This effect is visualised in Fig. 12.14, which shows vertical profiles through
the vS kernels for Rayleigh waves at periods of 50, 100 and 200 s. A 50 s Rayleigh
wave is most sensitive to structure around 40 km depth, but is practically unaffected
by vS perturbations below 200 km. The 200 s kernel, in contrast, extends to more
than 500 km depth, with maximum sensitivity near 200 km. It is important to note
that the sharp drop in sensitivity with increasing depth is due to the dominance of
the fundamental-mode surface waves within the analysis time window. The depth
dependence of Fréchet kernels for higher mode surface waves is generally more
complex (e.g. Takeuchi & Saito, 1972; Zhou, 2009).

Fig. 12.13 Traveltime sensitivity kernel with respect to the P wave speed, vP, for the 50 s vertical-
component Rayleigh wave from Fig. 12.10. Left: Horizontal slice at 50 km depth. Right: Vertical
slice at 10◦E longitude
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Fig. 12.14 Vertical profiles through the vS kernels for Rayleigh waves at periods of 50 s (solid),
100 s (dashed) and 200 s (dash dotted). The profiles are located in the centre of the first Fresnel
zone at 10◦E longitude. To allow for easier comparison, the profiles for 100 and 200 s are amplified
by factors of 3 and 8, respectively. The vertical double line indicates the location of the Moho at
around 40 km depth

12.2.2 Radial Anisotropy

With the help of Eqs. (9.22) we can calculate the sensitivity of the surface wave
trains with respect to anisotropic perturbations, for instance, in vSH and vSV.

As expected, the vertical-component Rayleigh wave is primarily sensitive to
vSV, which is the propagation speed of a vertically polarised plane shear wave
(Fig. 12.15). Visually, KvSV and KvS from Fig. 12.12 are hardly distinguishable.
From Eq. (9.24) we know that the difference KvS − KvSV is equal to KvSH ; and
indeed, KvSH as displayed in the lower part of Fig. 12.15 is barely visible. The small

Fig. 12.15 Traveltime sensitivity kernels for the vertical-component Rayleigh wave from
Fig. 12.10. Top: Sensitivity with respect to the SV wave speed, vSV. Bottom: Sensitivity with respect
to the SV wave speed, vSH
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Fig. 12.16 Traveltime sensitivity kernels for the Love wave from Fig. 12.10. Top: Sensitivity with
respect to the SV wave speed, vSV. Bottom: Sensitivity with respect to the SH wave speed, vSH

non-zero contributions to KvSH are mostly the result of Love–Rayleigh coupling
(Sieminski et al., 2007a). A Love wave leaving the source is scattered off a δvSH

perturbation and partly converted into a vertically polarised shear wave that arrives
within the Rayleigh wave window.

In the case of Love waves we observe a similar phenomenon (Fig. 12.16):
The sensitivity with respect to vSH is largest because Love waves are horizontally
polarised. From a visual comparison of KvSH and KvS from Fig. 12.11 we find that
KvSV = KvS − KvSH should be small, which is confirmed by the slices shown in
the upper part of Fig. 12.16. The vSV kernel suggests that Rayleigh–Love coupling
occurs in the vicinity of the source and the receiver, but it is highly inefficient along
the ray path.

12.3 Hessian Kernels: Towards Quantitative Trade-Off
and Resolution Analysis

The Fréchet kernels discussed in the previous paragraphs mostly serve two pur-
poses: First, they quantify where observations are sensitive to Earth structure, and
second, they are indispensable for the computation of descent directions in gradient
methods of non-linear minimisation (see Sect. 7.3).

Hessian kernels – in addition to being equally useful in minimisation algo-
rithms – are most important as the carriers of covariance information. In the vicinity
of an optimal Earth model, m̃, we can approximate the misfit functional, χ , with the
help of the Hessian, Hχ ,
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χ(m̃ + δm) ≈ χ(m̃)+ 1

2
Hχ (m̃)(δm, δm) , (12.3)

where we used ∇mχ(m̃) = 0. The diagonal elements of Hχ specify the resolution
of individual model parameters, in the sense that the change of one single parameter
leads to a strong increase of the misfit χ when the corresponding diagonal element
is large. The off-diagonal elements of Hχ provide information on the trade-offs
between parameters. More specifically, large off-diagonal elements indicate that
changes in one parameter may be compensated by changes in another parameter,
so that the total misfit, χ , remains unaffected.

As an example, we consider a long-period full waveform tomography for the
European upper mantle that is summarised in Fig. 12.17. The data used in the inver-
sion are three-component seismograms with a dominant period of 100 s that provide
a good coverage of central and northern Europe (Fig. 12.17, left). The inversion was
based on the measurement of time- and frequency-dependent phase differences (see
Sect. 11.5; Fichtner et al., 2008). As initial model we used the 3D mantle structure
from S20RTS (Ritsema et al., 1999) combined with the crustal model by Meier
et al. (2007a, b). After three conjugate-gradient iterations we obtained the tomo-
graphic images shown in the centre and left panels of Fig. 12.17. One of the most
prominent features is the low-velocity region beneath Iceland, that is commonly
attributed to the high temperatures of a hotspot located on the Mid-Atlantic ridge.

To quantify the extent to which structure beneath Iceland is independently con-
strained, we consider an S velocity perturbation, inside a test volume, V1, that plays
the role of a basis function b1(x). The test volume is in our case a 400 km by 400 km
wide box that extends from 80 to 130 km depth (see Fig. 12.18). Then, following
the methodology introduced in Sect. 8.4, we compute the resolution and trade-off
(RETRO) kernel, Kδm1 , with

δm1(x) = [δρ(x), δvS(x), δvP(x)] = [0, b1(x), 0] . (12.4)

The result is shown in Fig. 12.19.
The RETRO kernel is a superposition of mostly positive arms that extend from

the test volume towards several source and receiver positions. The non-zero con-

Fig. 12.17 Full waveform tomography for the European upper mantle. Left: Ray coverage. Centre:
Relative S wave speed perturbations at 100 km depth. Right: Zoom on the Iceland hotspot at various
depth levels. The background model is PREM (Dziewonski & Anderson, 1981)
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Fig. 12.18 Location of the test volumes V1 and V2 beneath Iceland. Both volumes are 400 km by
400 km wide. The depth range from 80 to 130 km is occupied by V1. The test volume V2 is located
directly below, extending from 130 to 180 km depth

Fig. 12.19 Resolution and trade-off (RETRO) kernel, Kδm1 , at 100 km depth. The perturbation
δm1 is a 400 km by 400 km positive S wave speed perturbation that extends from 80 to 130 km
depth directly beneath Iceland (see Fig. 12.18)

tributions of Kδm1 outside V1 are those regions where vS structure trades off with
vS structure inside V1. It follows that the low S velocities seen between 80 and
130 km depth beneath Iceland cannot be constrained independently. In other words,
the S wave speed structure in other parts of the European upper mantle affects our
image of the Iceland hotspot. To see more specifically how S wave structure within
V1 trades off with deeper structure, we consider a second test volume, V2, located
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directly beneath V1, at 130–180 km depth (see Fig. 12.18). To V2 we associate the
basis function b2(x). Repeating the above procedure yields the RETRO kernel Kδm2 ,
with

δm2(x) = [δρ(x), δvS(x), δvP(x)] = [0, b2(x), 0] . (12.5)

From Kδm1 and Kδm2 we compute the 2 × 2 Hessian submatrix, Hχ,(1,2), that cor-
responds to the basis functions b1 and b2:

Hχ,(1,2) =
(

H1,1 H1,2
H1,2 H2,2

)
=
∫

G

(
Kδm1 b1 Kδm1 b2
Kδm2 b1 Kδm2 b2

)
d3x . (12.6)

Then returning to Eq. (12.3), we can approximate the misfit functional in the vicinity
of the global optimum (Fig. 12.17) by

χ(m̃ + δm) ≈ χ(m̃)+ 1

2

(
δvs,1
δvs,2

)
·
(

H1,1 H1,2
H1,2 H2,2

)
·
(
δvs,1
δvs,2

)
, (12.7)

with

δm(x) = [δρ(x), δvS(x), δvP(x)] = [0, δvs,1b1(x)+ δvs,2b2(x), 0] . (12.8)

The contour lines of the quadratic function (12.7), given in terms of the S veloc-
ity perturbations δvs,1 and δvs,2, are displayed in Fig. 12.20. The contour lines in

Fig. 12.20 Contour lines of the quadratic approximation to the misfit functional, χ , (Eq. 12.7) in
terms of the S wave speed perturbations δvs,1 and δvs,2. Changing δvs,1 and δvs,2 along the dashed
line has hardly any effect on the misfit, meaning that the shallow and deep S velocity structures
trade off substantially
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the direction of δvs,2 are about twice as closely spaced as the contour lines in
the direction of δvs,1. This indicates that S velocity perturbations at greater depth
(130–180 km) are better resolved than at shallower depth (80–130 km). Significant
trade-offs exists between the shallower and the deeper S velocity structure. In fact,
changing δvs,1 and δvs,2 along the dashed line in Fig. 12.20 has hardly any effect
on the misfit. The RETRO kernel approach presented above allows us to study res-
olution and trade-offs in terms of concrete formulas that relate deviations from the
optimal model to changes in the misfit. This goes far beyond chequerboard test
that are commonly used for visual resolution analysis. The principal limitation is
encapsulated in Eq. (12.3), which is valid and physically meaningful only when the
tomographic model is indeed close to the global optimum of the misfit functional χ .

12.4 Accuracy-Adaptive Time Integration

Having examined the anatomy of a variety of Fréchet kernels, Km , we return to a
topic that we already introduced in Sect. 8.5.2: the efficient computation of the time
integral

Km =
∫

T
u† · ∇mL(u) dt . (12.9)

Since (12.9) involves the regular field u and the adjoint field u†, both have to be
known simultaneously during the adjoint calculation. This implies that u needs to
be stored at sufficiently many time steps, at least when dissipation or absorbing
boundaries are present. The resulting amount of data can easily exceed conventional
storage capacities. Our goal therefore is to find the minimum number of time steps
where u needs to be stored in order to ensure the accurate representation of the
sensitivity within the first m Fresnel zones.

For this, let dm be the width of the mth Fresnel zone. We can expect the sensitivity
kernel to be accurate on length scales similar to dm when the regular wave field is
stored at least once while propagating over the distance dm . Hence, an optimistic
estimate of the maximum possible storage interval is ts = dm

vS
, where vS is a repre-

sentative S wave speed. This means that the regular wave field needs to be stored
at least every n = ts

�t = dm
�t vS

time steps, where �t is the time increment. The
maximum value of �t is dictated by the CFL stability condition, and ideally we
have�t ≈ c min h

max vP
, with a grid spacing parameter h and a constant c that is typically

on the order of 0.3 (see Sect. 2.5). An approximation of �t in terms of vS and the
dominant period Td is

�t ≈ c
min h

max vP

≈ c λd

10 max vP

≈ c vS Td

10 max vP

, (12.10)

where λd is the dominant wavelength. Equation (12.10) is based on the assump-
tion that the minimum grid spacing, min h, is approximately equal to one tenth of
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the dominant wavelength, λ. Combining (12.10) and the average width of the mth
Fresnel zone,

dm ≈ 1

4

√
vSTd�(

√
m − √

m − 1), (12.11)

yields the following estimate for n:

n ≈ 5

2

max vP

c

√
�

Td v3
S

(
√

m − √
m − 1) , (12.12)

where � denotes the length of the ray path. Using suitable parameter values
max vP = 7 km/s, c = 0.3, � = 1, 000 km, Td = 50 s, vS = 4 km/s and m = 2,
gives n ≈ 14. This means that the regular wave field should be stored at least every
14 time steps in order to ensure that the sensitivity in the first and second Fresnel
zones is computed accurately. Of course, Eq. (12.12) is a rule of thumb, derived
under simplistic assumptions. In nevertheless proves useful in most applications.



Part III
Applications

There are many variants of full waveform inversion that are characterised by their
combination of forward problem solver, misfit functional and minimisation algo-
rithm. The usefulness of a specific combination depends on the spatial scale (local,
regional, global), the type of Earth structure to be detected (reflectors, scatterers,
long-wavelength heterogeneity), the distribution of sources and receivers, data qual-
ity and the available computational resources. The extreme problem dependence of
full waveform inversion makes exemplary case studies particularly valuable.

Upper mantle tomography on regional to global scales (Chap. 13) critically relies
on accurate numerical solutions for surface waves, as they can be obtained, for
instance, with the help of the spectral-element method. A challenging problem is
the implementation of the crust, because thin crustal layers require small elements,
which lead to high computational costs. An elegant alternative is the construction of
long-wavelength equivalent crustal models that allow us to employ larger elements,
thus reducing computational costs to a more feasible level. Teleseismic waveforms
at periods above 30 s are most strongly influenced by the transmission properties
of the Earth. This requires a misfit measure that explicitly extracts traveltime infor-
mation, such as time–frequency phase misfits. To ensure the convergence of the
iterative minimisation towards the global minimum, a suitable initial model needs
to be implemented. Ideally, the initial model should represent the long-wavelength
structure of the study region.

The acquisition geometry of active-source experiments often allows us to study
a 2D problem, where the equations of motion can be solved efficiently in the fre-
quency domain. Exploiting only the phases of the first-arriving P waves further-
more justifies the acoustic approximation. The resulting computational efficiency
makes 2D acoustic full waveform inversion a powerful tool in local-scale geologic,
engineering and exploration applications (Chap. 14). Gradually increasing the fre-
quency of the observed waveforms during the iterative inversion helps to guide the
gradient-based minimisation scheme towards the global optimum. Inversion results
often agree remarkably well with independent constraints, based for instance on
sonic logs.

Full waveform inversion remains computationally expensive compared to clas-
sical tomographic techniques, despite advances in numerical mathematics. Data
reduction schemes that lower the computational costs are therefore likely to play a
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key role in future applications. An efficient way of reducing the number of forward
simulations is to add or stack at each receiver the seismograms corresponding to the
different sources. The new data set, consisting of one stacked time series per station,
can then be modelled with one single forward simulation, where all sources act at
the same time. This procedure, referred to as source stacking, has been shown to
work for long-period seismograms at a global scale (Chap. 15), and modifications
of it are now being applied to local-scale data.



Chapter 13
Full Waveform Tomography on Continental
Scales

This chapter describes the development of a technique for full seismic waveform
tomography and its application to the imaging of upper-mantle structure in the Aus-
tralasian region.

The forward problem is solved using an implementation of the spectral-element
method that operates in the natural spherical coordinate system. We pay special
attention to the construction of a long-wavelength equivalent model of the crust that
can be sampled by a comparatively coarse numerical mesh without losing solution
accuracy within a pre-defined period range. To ensure the convergence of the iter-
ative minimisation, we implement a 3D initial model that has both an elastic and
an anelastic component. After 19 iterations we obtain a radially anisotropic model
of the Australasian upper mantle that explains entire 30 s waveforms in great detail.
The estimated resolution lengths above 200 km depth are around 3◦ laterally and
40 km vertically. We discuss technical issues including the dependence on the initial
model and the effects of non-linearity on the anisotropic part of the model.

The principal advantages of the full waveform inversion are (1) the accurate
modelling of elastic wave propagation through realistically heterogeneous 3D Earth
models, (2) the incorporation of all types of seismic waves, including body waves,
surface waves and unidentified phases, (3) the iterative improvement of the tomo-
graphic images and (4) the elimination of the need for crustal corrections.

13.1 Motivation

In recent years, developments in both theoretical seismology and numerical math-
ematics have led to substantial progress in seismic tomography. It is today widely
accepted that wave propagation effects such as multi-pathing, scattering or wave-
front healing are important in the 3D Earth (Williamson, 1991; Williamson &
Worthington, 1993; Spetzler et al., 2001). Theories and methods that allow us to
account for such phenomena in seismic tomography, and to go beyond classical
ray theory, have been developed by several authors (e.g. Bamberger et al., 1982;
Tarantola, 1988; Yomogida, 1992; Marquering et al., 1998; Dahlen et al., 2000, Zhao
et al., 2000). The evidence that the results of seismic tomography do indeed improve
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when finite-frequency effects in 3D media are included is steadily increasing
(Yoshizawa & Kennett, 2004; Zhou et al., 2005; Boschi, 2006; Chen et al., 2007).
Moreover, the amount of data that we can exploit has grown immensely, thanks
to efficient numerical techniques that enable us to simulate seismic wave propaga-
tion through realistic Earth models (e.g. Seriani, 1998; Komatitsch & Tromp, 2002;
Dumbser et al., 2007; de la Puente, 2007). Some of them have been described in the
first part of this book. We could, in principle, use complete seismic waveforms for
the purpose of seismic tomography. Yet, full waveform tomography on continental
to global scales – as envisioned by Capdeville et al. (2005) – remains an exception.
This is in contrast to applications in engineering and exploration seismology where
full waveform inversion has been used, at least in 2D, since the early 1980s (Bam-
berger et al., 1982; Crase et al., 1990; Igel et al., 1996; Pratt & Shipp, 1999;
Bleibinhaus et al., 2007). While the equations of motion are scale independent, at
least within the macroscopic world, there are nevertheless fundamental differences
between local and global tomography that explain this discrepancy: (1) Engineering
and exploration problems can often be reduced to dependence on just one or two
dimensions. The computational costs are therefore comparatively moderate. (2) On
smaller scales, seismograms are strongly affected by the scattering properties of the
Earth. On larger scales, however, the transmission properties primarily determine
the character of a seismogram in general, and the phases of seismic waves in partic-
ular. This requires the development of full waveform misfits that explicitly quantify
phase differences between observed and synthetic seismograms.

The high-resolution images obtained in local-scale full waveform inversion
encourage applications on continental and global scales, where more detailed tomo-
graphic models are expected to play a major role in the resolution of outstanding
societal and geologic problems. These include, but are not limited to, the follow-
ing:

1. The seismic monitoring of the Comprehensive Nuclear Test Ban Treaty where
highly resolved models of the Earth’s crust and upper mantle are needed to
reproduce complete seismic waveforms as accurately as possible.

2. Reliable tsunami warnings based on the real-time determination of earthquake
source characteristics, the quality of which depends on the ability of the Earth
model to predict seismic waveforms.

3. Tectonic reconstructions especially in areas where geodetic observations are
sparse and where the neotectonic development is marked by the rapid subduc-
tion of micro-plates (e.g. the Banda sea region).

4. Detection and characterisation of small-scale features such as deep man-
tle plumes, lateral heterogeneities within the D′′ layer and deeply subducted
oceanic slabs.

5. Correlation of seismic velocities with independent observations and models in
order to obtain a more comprehensive picture of the Earth’s rheology. Examples
of independent observations are heat flow, gravity, isotope signatures, seismic-
ity, volcanism and the mineralogical properties of xenoliths. Models derived
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independently from seismic observations are, for instance, paleo-geotherms and
profiles of electrical conductivity.

6. Characterisation of the asthenosphere in terms of its depth and thickness. The
quantification of seismic anisotropy within the asthenosphere and its relation to
flow patterns in the vicinity of mantle plumes is crucial in order to understand
the transport of deep mantle material into the asthenosphere.

7. Quantification of seismic anisotropy in general and its relation to texture for-
mation, mantle deformation and rheologic properties.

8. Thickness of the lithosphere as a function of age and in relation to the formation
and properties of the lithospheric mantle.

9. Characterisation of Precambrian to Phanerozoic transitions (e.g. the Tasman
Line and the Tornquist Line) in terms of sharpness and depth extent.

10. Identification and location of geologic units as, for instance, Precambrian cra-
tons and micro-continents.

13.2 Solution of the Forward Problem

The numerical solution of the forward problem has two components: First, the
spatio-temporal discretisation of the underlying partial differential equations, and
second, the numerical implementation of a continuously defined structural model.
In Sect. 13.2.1 we introduce a variant of the spectral-element method that operates
in the natural spherical coordinates and that proves efficient for continental-scale
wave propagation. The emphasis in Sect. 13.2.2 is then on the discretisation of
finely layered crustal models that can be difficult to represent on a relatively coarse
numerical grid.

13.2.1 Spectral Elements in Natural Spherical Coordinates

Teleseismic waveforms at periods above 30 s are dominated by surface waves that
bare invaluable information about the structure of the upper mantle. A numerical
method that can be used in continental-scale full waveform tomography should thus
be able to produce accurate surface waveforms at the lowest possible computational
cost. This requirement argues in favour of the spectral-element method that we
described in Chap. 4.

The spectral-element method is based on the weak formulation of the equations
of motion. The free surface boundary condition is therefore implicitly fulfilled. This
ensures that surface waves can be modelled accurately. The required number of grid
points per minimum wavelength is approximately 7.

One strength of the spectral-element method is that the elements can be designed
to match topography and internal structure. The use of arbitrarily deformed elements
results, however, in a large number of summands that contribute to the Galerkin pro-
jections of the stress divergence, ∇·σ (Eq. 4.61), and the product of the elastic tensor
with the displacement gradient, C : ∇u (Eq. 4.68). The resulting computational
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costs are the prize that one needs to pay for evaluating the integrals over the ele-
ments, Ge, in Cartesian coordinates. In some local- to continental-scale applications
one may reduce the number of summands involved in the Galerkin projections by
working in the natural spherical coordinates (Fichtner et al., 2009). This means that
the elements are defined by

Ge = [θe,min, θe,min +�θ ]× [φe,min, φe,min +�φ]× [re,min, re,min +�r ] , (13.1)

for e = 1, . . . , ne, and with constant increments �θ , �φ and �r . The transforma-
tions from the reference cube, � = [−1, 1]3, to the physical domain element, Ge,
are then defined by

θ = θe,min + �θe

2
(1+ ξ1) , φ = φe,min + �φe

2
(1+ ξ2) , r = re,min + �re

2
(1+ ξ3) .

(13.2)
The geometry of the transformation Ge → � is visualised in Fig. 13.1. Note that
this transformation is possible only when the spherical section excludes both the
centre of the Earth and the poles, which is the case on regional to continental scales.

A realistic application of the spectral-element method in spherical coordinates –
henceforth referred to as SES3D – is illustrated in Figs. 13.2 and 13.3. There we
consider a source located at 90 km depth near the Solomon Islands and a station in
eastern Australia. We use the radially symmetric AK135 (Kennett et al., 1995) as
Earth model. The spectral-element synthetics can therefore be compared to semi-
analytical solutions (Friederich & Dalkolmo, 1995). The elements are 0.5◦ × 0.5◦
wide and 38 km deep, with the Lagrange polynomial degree set to 6. This setup
allows us to compute accurate waveforms with periods as low as 7 s. In general, the
agreement between the spectral-element and the semi-analytical solutions is excel-
lent (Fig. 13.3). The difference seismogram, plotted as dashed curve amplified by
a factor of 25, is smallest for the early arriving P waves. Surface waves, appearing
later in the seismograms, are more difficult to model due to their comparatively short
wavelengths. A remarkable detail is the well-modelled small-amplitude waveform
in the interval between 340 and 500 s. It partly originates from reflections at the
surface and at the discontinuities located at 410 and 660 km depth.

Fig. 13.1 Illustration of the transformation defined in Eq. (13.2). Each physical domain element,
Ge, is a small spherical section that is related to the reference cube, �, via the transformation
defined in Eqs. (13.2)
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Fig. 13.2 Left: Source–receiver configuration. The distance between the source (◦) and station
ARMA (×) is 21.1◦. Right: Radially symmetric Earth model AK135 (Kennett et al., 1995) param-
eterised in terms of ρ, vP and vS. (With permission of the Journal of Numerical Analysis, Industrial
and Applied Mathematics)

Fig. 13.3 Comparison of the semi-analytical solution (bold line) with the spectral-element solution
(thin line) for station ARMA, located at an epicentral distance of 21.1◦ from the epicentre. The
difference between the two solutions, amplified by a factor of 25 to enhance visibility, is plotted
as a dashed line below the seismograms. Also the magnified parts of the seismograms, between
340 and 500 s, agree remarkably well. (With permission of the Journal of Numerical Analysis,
Industrial and Applied Mathematics)
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13.2.2 Implementation of Long-Wavelength Equivalent
Crustal Models

All numerical methods that find approximate solutions to the wave equation rely on
the replacement of a continuously defined Earth model m by a discrete model md.
Due to this discretisation, small-scale structures from m, such as thin layers and
discontinuities, can often not be represented accurately in md, unless the grid spac-
ing is reduced. This can lead to large numerical errors, simply because the effective
medium parameters imposed by sampling the continuous model do not generally
coincide with the physically effective medium at a given wavelength.

In the specific case of the spectral-element method, material discontinuities need
to coincide with element boundaries for the solution to be correct. When a disconti-
nuity is located inside an element, the rapidly varying stress and displacement fields
cannot be represented accurately by the smooth Lagrange polynomials. The result
of such an inaccurate model discretisation is unacceptably large numerical errors. A
reduction of the grid spacing can, in principle, eliminate these errors. However, the
increasing computational costs can render this option impractical.

Thin layers present even more general difficulties than isolated discontinuities
because their width may be smaller than the smallest computationally feasible grid
spacing. Backus (1962) and Schoenberg & Muir (1989) demonstrated that a stack of
thin layers can be replaced by an equivalent slowly varying Earth model when the
widths of the individual layers are much smaller than the dominant wavelength.
The equivalent smooth, or effective, Earth model was shown to be transversely
isotropic even when the original stack of layers is isotropic. The long-wavelength
equivalence of smooth Earth models can clearly be used for the benefit of numer-
ical efficiency because modest variations of the model parameters neither require
reductions of the grid spacing nor additional algorithmic complexities. A concept
similar to the one advocated by Backus (1962) and Schoenberg & Muir (1989) is the
homogenisation of the equations of motion (e.g. Stuart & Pavliotis, 2007; Capdev-
ille & Marigo, 2007, 2008; Capdeville et al., 2010a, b). This technique explicitly
yields a smoothed model. The solution for the slowly varying model is close to the
correct solution when the length scale of the variations in m is much smaller than
the dominant wavelength.

In the following paragraphs we present an alternative approach for the con-
struction of smoothed and long-wavelength equivalent Earth models that can be
discretised through direct sampling (Fichtner & Igel, 2008). This helps to over-
come difficulties with the discrete representation of discontinuities and thin layers
as long as a pre-defined maximum frequency is not exceeded. The construction of
the smoothed Earth models is based on the matching of surface wave dispersion
curves corresponding to the original model m and a smoothed model ms. This
means that we search in a pool of smooth models for the one that best reproduces
the dispersion curves of Love and Rayleigh waves in m. The frequency band con-
sidered is the one for which a given grid can, in principle, yield accurate numerical
solutions.



13.2 Solution of the Forward Problem 239

13.2.2.1 The Importance of Accurately Implemented Crustal Models

We start by illustrating the effects of an improperly implemented crustal model on
the accuracy of numerically computed waveforms. The example is intended to serve
as a motivation for the subsequent developments. In order to establish a reference
scenario, we start with a demonstration of the accuracy achievable with SES3D. For
this, we compare the spectral-element solutions to semi-analytical solutions that
are available for spherically symmetric Earth models. Our Earth model consists of
a homogeneous single-layered crust underlain by the isotropic version of PREM
(Dziewonski & Anderson, 1981). The width of the elements is chosen such that the
crust is represented by exactly one layer of elements, as shown in Fig. 13.4. Black
dots represent the irregularly spaced Gauss–Lobatto–Legendre points which serve
as grid points in the spectral-element method.

For the simulations we use a source located at 80 km depth, and the cutoff period
of the seismograms is 15 s. We compute the semi-analytical reference seismo-
grams using the programme package GEMINI, developed and described in detail
by Friederich & Dalkolmo (1995). East-component displacement seismograms for
a receiver located at an epicentral distance of 21.3◦ are shown in Fig. 13.5. The
spectral-element and semi-analytical solutions are in excellent agreement, also for
the north and vertical components that are not displayed. This demonstrates that the
large discrepancies that we will find in the next example are not numerical errors
per se, but the result of an inaccurate numerical model representation.

We now change the Earth model so that the crust comprises two layers, as shown
in Fig. 13.6. Two discontinuities are now located inside the upper layer of elements.
It would, in this particular example, be possible to adapt the numerical grid to the
new model, though at the expense of strongly increased computational costs.

Therefore, we deliberately do not adopt this option. Instead, we use this example
to illustrate the effects of such an improper model implementation. Since the rapidly
varying wave field in the vicinity of the crustal discontinuities cannot be represented

Fig. 13.4 Details of the vertical discretisation of the homogeneous crust overlying PREM. Dots
symbolise the SES3D grid points (Gauss–Lobatto–Legendre points) obtained by sampling the con-
tinuously defined model plotted as a solid line. One layer of elements, each comprising 73 points,
is used to represent the crust. The vertical double line marks the boundary between the two upper
layers of elements



240 13 Full Waveform Tomography on Continental Scales

Fig. 13.5 Comparison of east-component synthetic displacement seismograms computed with
GEMINI (dotted curve) and SES3D (solid curve) for the homogeneous crust model from Fig. 13.4
and a station at an epicentral distance of 21.3◦. The dotted line is barely visible, thus indicating
that the two solutions are in excellent agreement

Fig. 13.6 Details of the vertical discretisation of the crust with two layers. Dots symbolise the
spectral-element grid points (Gauss–Lobatto–Legendre points). Two discontinuities are located in
the interior of the upper element layer where displacement and stress fields are represented by
smooth polynomials. The exact solution, however, varies rapidly near the discontinuities due to
reflection and refraction phenomena. The double vertical line marks the boundary between the two
upper layers of elements

by the smooth polynomials inside the elements we can expect larger discrepancies
between the GEMINI and the SES3D solutions. That they indeed occur can be seen
in Fig. 13.7. While the body waves remain largely unaffected, the errors in the sur-
face wave train become unacceptably high. Using the spectral-element synthetic
from Fig. 13.7 in a full waveform inversion would lead to meaningless tomographic
images.

13.2.2.2 Existence of Long-Wavelength Equivalent Crustal Models

We want to tackle the problem illustrated above by replacing the upper part of the
original Earth model by an equivalent smooth model. For this we exploit the fact
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Fig. 13.7 Comparison of east-component synthetic displacement seismograms computed with
GEMINI (dotted line) and SES3D (solid line) for the two-layer crust model from Fig. 13.6 and
a station at an epicentral distance of 21.3◦. While the inadequate implementation of the crust has
little effect on the body waves, the surface waves in the spectral-element solution are severely
distorted

that surface waves in a limited frequency range do not uniquely determine an Earth
model. That is, there is a non-empty set of Earth models all of which produce surface
wave solutions that differ from each other by less than a subjectively chosen small
value. From this set of models we can therefore choose one that is numerically
advantageous, i.e. smooth.

To find such a smooth model one should focus on those aspects of the surface
wave train that are most important in the real data analysis and that facilitate the
model construction. We therefore construct smooth Earth models by matching the
surface wave dispersion curves of the original model to the dispersion curves of
models where the upper part is defined in terms of low-order polynomials. In the
general case, the smoothed models will be transversely isotropic (see Backus, 1962).
The minimisation of the dispersion curve misfit is done non-linearly by simulated
annealing (SA) (Kirkpatrick et al., 1983). To improve the uniqueness of the smooth
models we impose that they be close to the original Earth model. Before delving
into the methodological details, we first justify the approach by its results shown in
Figs. 13.8, 13.9 and 13.10.

A slowly varying crustal model that reproduces almost exactly the surface wave
dispersion curves from the original model is displayed in Fig. 13.8. That the model
is mildly anisotropic inside the upper layer of elements can be seen from the dif-
ferences between the wave speeds of SH and SV waves and the wave speeds of PH
and PV waves. Moreover, the parameter η (Eq. 9.19) is different from 1. For the
fundamental modes of Love and Rayleigh waves the mean difference in the phase
velocities for the two models is less than 4 × 10−4 km/s in the period range from
17 to 67 s. Details of the dispersion curves and the associated misfits are shown in
Fig. 13.9. For both Love and Rayleigh waves the absolute phase velocity differences
rarely exceed 1 × 10−3 km/s and are mostly below 0.5 × 10−3 km/s.
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Fig. 13.8 Upper part of the original Earth model (dashed line) with two crustal layers (Fig. 13.6)
and the smoothed Earth model (solid line). The smooth model is slightly anisotropic and param-
eterised in terms of 4th-order polynomials. The corresponding dispersion curve differences are
displayed in Fig. 13.9

Fig. 13.9 Top: Dispersion curves for Love and Rayleigh waves for the original Earth model. Cir-
cles denote the respective fundamental modes and crosses (×), triangles (�) and squares (�)
represent the higher modes. Bottom: Corresponding dispersion curve errors (smoothed minus orig-
inal, multiplied by 1, 000) that are due to the smoothing of the crust
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Fig. 13.10 Comparison of synthetic seismograms computed with GEMINI (dotted line) and
SES3D (solid line) for the same station considered in Fig. 13.7. The GEMINI seismograms were
computed for the Earth model with the two-layered crust (dashed lines in Fig. 13.8) and the SES3D

seismograms were computed for the corresponding smoothed model (solid lines in Fig. 13.8). The
surface wave part is now well modelled

That the new model does indeed remove most of the discrepancies between the
semi-analytical and the spectral-element solutions can be seen in Fig. 13.10. Both
the amplitudes and the phases are now close to the ones observed in the case of
the correctly implemented single-layered crustal model. This demonstrates that the
small dispersion curve misfit shown in Fig. 13.9 is indeed a reliable proxy of sig-
nificantly smaller numerical errors. Small discrepancies between the two solutions
remain. These are, however, practically irrelevant because the differences are much
smaller than commonly observed differences between data and synthetics.

Since the construction of the slowly varying crustal model is based on a simu-
lated annealing algorithm the result is different in each run. This leads to a whole
family of models that produce essentially the same surface wave dispersion charac-
teristics within the pre-defined period range. This non-uniqueness can be reduced
significantly by requiring that the smooth model be close to the original one. This
additional constraint is also in the interest of accurately modelled amplitudes.

13.2.2.3 Methodological Details

The modification of discrete Earth models for the benefit of numerical accuracy can
be interpreted as the optimisation of a discretised differential operator. Let us denote
by Li j u j = fi a discretised version of the wave equation Lu = f, where L (Li j ) is
the (discrete) wave equation operator, u (u j ) the (discrete) displacement field and f
(fi ) the (discrete) external force density. We are interested in finding Li j such that
u j is as close as possible to the exact solution u.

Generally, the discrete operator Li j depends on both the numerical method and
the discrete version md of the continuously defined Earth model m. Since we wish
to leave the numerical method unchanged, we are left with the option of modifying
md to improve the numerical solution.
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Ideally, one would directly apply the numerical method – in our case the spectral-
element method – to a set of smoothed discrete test models. One could then choose
the discrete model that best satisfies the strong criterion that the wave fields u j (md)

and u(m) be close to each other. Yet, in practice, exact solutions u(m) are often
unavailable and solving the discrete problem sufficiently many times is computa-
tionally too expensive. We therefore replace this strong and direct criterion by a
weaker and indirect criterion: We require that m and a smooth and continuously
defined Earth model ms produce essentially identical surface wave dispersion curves
in the period range of interest. Then ms is sampled at the numerical grid points to
give the discrete model md. Since ms is by construction slowly varying, it is repre-
sented accurately by md. Consequently, the surface wave dispersion of the numerical
solution u j (md) is close to the surface wave dispersion of the exact solution u(m).
This approach is justified by our observation that merely sampling m to obtain md
leads to unacceptably large numerical errors mainly in the surface wave trains. That
dispersion curve matching indeed reduces the numerical errors significantly has
already been demonstrated by comparison with semi-analytical solutions.

In the following paragraphs we address the dispersion curve matching procedure
and the generation of random models for the simulated annealing algorithm.

Non-linear Dispersion Curve Matching by Simulated Annealing

We start with the assumption of a spherically symmetric Earth model where surface
wave dispersion can be computed analytically (e.g. Takeuchi & Saito, 1972). Let us
denote by vi

L(ω,m) and vi
R(ω,m) the frequency-dependent phase velocities of the

ith mode of the Love and Rayleigh waves in the Earth model m = (ρ, μ, λ, a, b, c).
Our aim is to find a continuously defined smooth model ms = (ρs, μs, λs, as, bs, cs)

such that

E =
n∑

i=0

αi

∫ ω2

ω=ω1

|vi
L(ω,m)− vi

L(ω,ms)| dω (13.3)

+
n∑

i=0

αi

∫ ω2

ω=ω1

|vi
R(ω,m)− vi

R(ω,ms)| dω + β ||m − ms||M

is minimised. The misfit measure E includes the dispersion curve misfits for
Rayleigh and Love waves in a pre-defined frequency interval [ω1 ω2] and the rela-
tive L1 distance between the two models m and ms. We decided to use the L1 norm
because it produced the best results in the numerical experiments. Typically, n is 3
or 4. Including higher modes hardly improves the results because they are mostly
sensitive to deeper structure. The scalars αi and β are weighting factors.

Including the term ||m − ms||M , and therefore forcing the smooth model to be
close to the original model, serves a variety of purposes. First, it reduces the non-
uniqueness of the problem. Uniqueness is in principle not required but still intu-
itively desirable. Keeping the differences between m and ms as small as possible is
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also important in the context of smoothing Earth models with lateral heterogeneities.
In the presence of sources inside the smoothed region, one would in principle have
to modify the moment tensor. This complication can be avoided when ||m − ms||M

is small.
Minimising E with respect to ms is a non-linear problem that can be solved by

a variety of standard techniques. Since the calculation of surface wave dispersion
curves in a 1D medium is computationally inexpensive we decided to employ a
simulated annealing algorithm, introduced by Kirkpatrick et al. (1983). In addition
to being easy to implement, simulated annealing also offers the possibility to impose
constraints on the solution simply by means of the random model generation.

Random Model Generation

The simulated annealing algorithm requires random test models that are compared
with the currently best model. To generate test models that serve their purpose we
use two different parameterisations: In the lower part of the model where smoothing
is unnecessary we retain the original model parameterisation. In the upper part of
the model, however, we employ low-order piecewise Lagrange polynomials defined
on the elements used for the spectral-element simulations. The collocation points
are the Gauss–Lobatto–Legendre points. Therefore, the models vary more rapidly
near the edges of the elements than near the centre of the elements. This corresponds
well to the parameterisation of the displacement and stress fields. Different sets of
collocation points may work equally well, depending on the numerical method used.
It is then natural to generate random models through the perturbation of the polyno-
mial coefficients. To ensure that the test models are physically reasonable we impose
the following conditions: (1) The smoothed model and the original model are iden-
tical at the surface. This restriction is motivated by the fact that the amplitudes
of seismic waves are very sensitive to the structure directly beneath the receiver.
(2) There are no jumps at the element boundaries. Hence, there are no additional
discontinuities that may generate undesirable reflections. (3) The smoothed mass
density distribution is strictly positive, i.e. ρs > 0.

13.2.2.4 Extension to the 3D Heterogeneous Case

The very purpose of numerical wave propagation is the computation of wave fields
in heterogeneous Earth models for which analytical solutions are mostly unavail-
able. So far, however, our analysis has been restricted to purely spherically symmet-
ric Earth models, because dispersion curves cannot be computed exactly in the pres-
ence of lateral heterogeneities. A direct application of the dispersion curve matching
to an arbitrary 3D model is, therefore, not possible.

Yet, in the case of long-wavelength lateral heterogeneities – such as those present
in the crustal model Crust2.0 (Bassin et al., 2000) – dispersion curve matching
can be applied regionally (Fichtner & Igel, 2008). For this, the crust is partitioned
into domains with similar structure. In each of the domains, we compute a new
long-wavelength equivalent model. As an additional constraint, we impose that the
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individual smooth models for the different regions be close to the long-wavelength
equivalent model for the average crust. This ensures that there are no abrupt lateral
parameter changes in the complete model. As shown by Fichtner & Igel (2008), the
regionalisation approach yields satisfactory results when the wavelength of lateral
heterogeneities are longer than the shortest wavelengths of the surface waves.

13.3 Quantification of Waveform Differences

Finding a suitable misfit functional for full waveform inversion means to find a
reasonable balance between the restrictions imposed by the physics of the problem
and the exploitation of maximum information.

To extract the wealth of information contained in complete seismograms, time-
domain full waveform inversion often attempts to minimise the objective functional∑N

r=1

∫ [u(xr , t)− u0(xr , t)]2 dt , i.e., the cumulative L2 distance between the com-
plete data u0 and the complete synthetics u recorded at N receivers denoted by xr

(e.g. Bamberger et al., 1982; Tarantola, 1984; Gauthier et al., 1986; Chap. 11).
The advantages and disadvantages of the pure L2 difference become most appar-

ent through its close relation to diffraction tomography. In diffraction tomography
(Devaney, 1984; Wu & Toksöz, 1987), the scattered wave field, i.e. the difference
�u(t) = u(t) − u0(t), is linearly related to the spectrum of the heterogeneity that
caused the incident wave field to be scattered. This relationship is reminiscent of the
well-known projection slice theorem from X-ray tomography. Diffraction tomogra-
phy yields accurate images even of small-scale structural heterogeneities when the
following two conditions are satisfied:

1. The assumed background structure is close to the true structure in the sense that
the first-order Born approximation holds. This requires the remaining differences
to be small compared to the dominant wavelength.

2. The heterogeneity is illuminated from all directions (Mora, 1989) either by direct
waves as in medical tomography or by waves reflected off major discontinuities.

Diffraction tomography is qualitatively equivalent to the first iteration in a time-
domain full waveform inversion where the misfit is quantified via the L2 wave-
form difference. This interpretation is confirmed by numerical results (Gauthier
et al., 1986; Wu & Toksöz, 1987; Mora, 1988), and it suggests that the two tomo-
graphic methods are applicable under similar conditions. However, meeting those
conditions is problematic when the Earth is studied on continental or global scales.

A sufficiently accurate reference model, that ensures the validity of the Born
approximation, is usually not available. This is due to the nature of the tomography
problem with limited data. Even 1D models of the whole Earth (Dziewonski &
Anderson, 1981; Morelli & Dziewonski, 1993; Kennett et al., 1995) can differ by
several percent, especially in the upper mantle and near discontinuities. The 1D
density structure of the Earth has rather limited constraints (Kennett, 1998). There
are three immediate consequences of this dilemma:
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1. The remaining differences between any presently available Earth model and the
true Earth can usually not be treated as scatterers. This implies that the linearisa-
tion of the L2 waveform difference is mostly not appropriate.

2. The observed waveform residuals at periods above several seconds are mostly
due to transmission and interference effects, which result in phase shifts between
observed and synthetic seismograms that can only be quantified using a misfit
measure that does not mix phase and amplitude information.

3. Time-domain full waveform inversion on continental or global scales based on
the L2 waveform difference is highly non-linear. The strong non-linearity pro-
motes non-uniqueness and requires heavy regularisation (see Chap. 7).

The data coverage necessary for diffraction tomography is not achievable in a 3D
Earth. Vast regions of the Earth’s surface are practically inaccessible, and suffi-
ciently strong sources are confined to a few seismogenic zones. Strong reflectors that
could, in principle, improve this situation (Mora, 1989) are not present in the Earth’s
mantle. As a result diffraction tomography cannot work on continental or global
scales, unless very long-period data are used (Capdeville et al. 2005; Chap. 15).

An additional complication is that some of the most important information about
the Earth’s structure is contained in the phases of waveforms with comparatively
small amplitudes; a classical example is provided by P body waves. The L2 wave-
form difference is dominated by the largest amplitudes that typically correspond
to surface waves. Thus, when surface waves are not muted artificially, tomographic
resolution is limited to the uppermost regions in the Earth where surface wave sensi-
tivity is large. On the other hand, eliminating surface waves also constitutes a major
loss of information on shallow structure.

Phase differences are known to be quasi-linearly related to structural variations
and so are well-suited for an iterative, gradient-based misfit minimisation. In con-
trast, the dependence of amplitudes on variations in the medium properties is often
highly non-linear. An iterative inversion algorithm may therefore converge slowly
or not at all; see Gauthier et al. (1986) for an example. Amplitudes depend strongly
on the local geology near receivers that may not be well controlled. Information
about the deeper Earth can thus be masked by shallow structures such as hidden
sedimentary basins.

In the frequency range used for continental- and global-scale waveform inver-
sion, seismograms are mostly affected by the transmission properties of the Earth
and only to a lesser extent by its diffraction properties. The transmission proper-
ties manifest themselves in the time- and frequency-dependent phases of seismic
waveforms.

In consequence, we conclude that phases and amplitudes need to be separated and
weighted depending on their usefulness for the solution of a particular tomographic
problem. One approach that allows us to extract full waveform information while
meeting the requirement of phase and amplitude separation consists in the construc-
tion of independent phase and envelope misfits, as proposed in Sect. 11.5 (Fichtner
et al., 2008). The phase misfit in particular introduces a transmission tomography
component that is crucial on continental and global scales where the distribution of
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sources and receivers is sparse – in contrast to exploration scenarios that are charac-
terised by spatial over-sampling. Moreover, the time–frequency misfits do not rely
on the isolation of particular phases. This property is important at short epicentral
distances where body and surface waves often do not have a clearly separate identity.
Time–frequency misfits naturally combine body and surface wave analysis.

Figure 13.11 illustrates the measurement of the phase misfit for vertical-
component waveforms from an event in the Loyalty Islands region (25 March 2007;
latitude: −20.60◦, longitude: 169.12◦, depth: 41 km) recorded at stations CAN

Fig. 13.11 Top: Vertical-component velocity seismograms from an event in the Loyalty Islands
region recorded at the stations BLDU (left; lat.: −30.61◦, lon.: 116.71◦) and CAN (right; lat.:
−35.32◦, lon.: 148.99◦). Data are plotted as solid and synthetics as dotted lines. Both are low-pass
filtered with the cutoff frequency fc = 0.02 Hz. Centre: The phase weighting function, Wp, defines
the time–frequency range that contributes to the measurement. It excludes cycle skips, waveforms
with amplitudes below the noise level and frequencies that are too high to be modelled accurately.
Bottom: Weighted phase differences, Wp(ω, t)�φ(ω, t), corresponding to the seismograms above.
Contour lines are plotted at multiples of 20% of the maximum value (figure modified from Fichtner
et al. (2008))
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Fig. 13.12 Horizontal slices at 100 km depth through the Fréchet kernels KvS (left), KvP (centre)
and Kρ (right). A yellow circle indicates the position of the epicentre in the Loyalty Islands region.
The kernels with respect to the P velocity, KvP , and density, Kρ , attain small absolute values,
compared to the kernel with respect to the S velocity, KvS . This implies that 3D P velocity and
density variations cannot be constrained in the inversion. Note that the colour scales are different
(figure modified from Fichtner et al. (2008))

(latitude: −35.32◦, longitude: 148.99◦) and BLDU (latitude: −30.61◦, longitude:
116.71◦). The positions of both stations are shown in Fig. 13.12. The advance of
the observed waveforms with respect to the synthetic waveforms at station BLDU
(Fig.13.11, top left) maps to a positive phase difference (Fig. 13.11, bottom left).
The time–frequency range of interest is determined by the phase weighting function,
Wp, (Fig. 13.11, centre left) as introduced in Eq. (11.37). The phase weighting func-
tion ensures that cycle skips are excluded and that measurements are restricted to
frequencies where the synthetic seismograms are known to be sufficiently accurate.
At station CAN, both a phase advance (positive phase difference) and a phase delay
(negative phase difference) can be observed. The bottom row of Fig. 13.11 high-
lights the fact that the phase misfit is a multi-frequency measurement. It includes, in
our case, frequencies between ∼5 × 10−3 and ∼3 × 10−2 Hz.

Horizontal slices through the sensitivity kernels corresponding to the phase misfit
measured at station BLDU (Fig. 13.11) are shown in Fig. 13.12. Since the measure-
ment is dominated by shear waves, the sensitivities with respect to the P wave speed,
vP, and density, ρ, are small compared to the sensitivity with respect to the S wave
speed, vS. Lateral variations in both vP and ρ are therefore unlikely to be resolvable.
Significant sensitivity far from the geometrical ray between source and receiver can
generally be observed. This, and the complexity of the sensitivity kernels, is due to
the length of the analysed time window and the frequency band limitation of the
waveforms.

13.4 Application to the Australasian Upper Mantle

The crust and upper mantle of the Australasian region have been the object of seis-
mological studies since the 1940s when de Jersey (1946) estimated the average
crustal thickness from Rayleigh wave dispersion and PP/P amplitude ratios. His
results were in remarkable agreement with those for continental crust of similar age
in North America (Gutenberg, 1943). Observations of P and S arrivals from nuclear
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explosions (Cleary et al., 1972) revealed early on the deep structural division of the
Australian continent: the Precambrian central and western parts are characterised by
fast seismic wave speeds, whereas the wave speeds in the Phanerozoic east are lower
than average (Bolt et al., 1958; Cleary, 1967; Cleary et al., 1972). Those results were
confirmed and extended by the analysis of surface wave dispersion (Bolt, 1957; Bolt
& Niazi, 1964; Goncz & Cleary, 1976).

The amount of seismic data increased dramatically with the installation of the
SKIPPY portable array that was operated between 1993 and 1996 by The Australian
National University (van der Hilst et al., 1994). SKIPPY enabled the construction
of tomographic images with unprecedented resolution and it motivated method-
ological developments that shaped modern seismic tomography. The discovery and
characterisation of numerous deep structural elements in the Australasian region
significantly advanced our understanding of continental formation and evolution:
Deep cratonic roots in the centre and west, a pronounced low-velocity zone around
140 km depth in the east and a sharp contrast between Precambrian and Phanero-
zoic lithosphere (Fig. 13.13) were clearly imaged using surface wave tomography

Fig. 13.13 Map of major geologic features in the study area, adapted from Myers et al. (1996).
Present hotspot locations, indicated by filled circles, are from McDougall & Duncan (1988)
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(Zielhuis & van der Hilst, 1996; Simons et al., 1999; Yoshizawa & Kennett, 2004;
Fishwick et al., 2005, 2008, Fishwick & Reading, 2008). Significant azimuthal
anisotropy has been shown to exist in the uppermost mantle under Australia by
Debayle & Kennett (2000) and Simons et al. (2002). Constraints on the locations
of seismic discontinuities and the attenuation structure were obtained through the
analysis of body wave arrivals (e.g., Gudmundsson et al., 1994; Kaiho & Kennett,
2000).

The quality of the tomographic images has improved continuously over the years
thanks to increasing data coverage and data quality, technological developments and
advances in theoretical and numerical seismology. While de Jersey (1946) analysed
seismograms from three stations, broadband data from several hundred recording
sites in the Australasian region are available today. The advent of numerical wave
propagation allows us to make optimal use of these data and to exploit full wave-
form information. This is intended to yield more detailed tomographic images that
contribute to our understanding of the Earth’s interior constitution and allow us to
predict seismic ground motion.

In the following paragraphs we elaborate on the different steps to be taken in a
successful full waveform tomography on continental scales. We pay special atten-
tion to the selection of suitable data, the construction of an initial model, and the
analysis of resolution and waveform fit.

13.4.1 Data Selection and Processing

The data selection in full waveform inversion deserves special attention because the
misfit measures tend to be rather susceptible to noise and because the computational
resources are limited. In the framework of this study, we have adopted the following
data selection criteria:

1. The estimated signal-to-noise ratio in the frequency band from 1/250 to 1/30 Hz
is required to be higher than 20. This ensures that the waveform misfit is domi-
nated by the discrepancies between the mathematical model and the Earth. The
choice of a high signal-to-noise ratio is motivated by the properties of the phase
misfit measurements, where small-amplitude waveforms contribute as much as
large-amplitude waveforms.

2. The adjoint method enables us to compute event kernels, i.e. the cumulative sen-
sitivity of all recordings corresponding to one event, with just one adjoint simu-
lation. This means that the adjoint method operates most efficiently when a large
number of recordings per event are available. We therefore accept only those
events with more than 10 high-quality recordings in the Australasian region.

3. The event magnitude is required to be smaller than Ms = 6.9; this choice allows
us to neglect finite-source effects in seismogram modelling.

4. To further reduce the influence of near-source effects we exclude data recorded
at epicentral distances of less than 5◦.
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Fig. 13.14 Ray coverage. Epicentres are plotted as green crosses and stations as red stars. The
coverage is particularly dense in central and eastern Australia and in the Tasman and Coral Seas,
east of the continent. The western part of Australia is less densely covered

5. The event distribution is chosen such that it leads to a ray coverage that is as even
as possible. We try to avoid any clustering of events that may produce artefacts
in the tomographic images (see Fig. 13.14).

6. After the first iteration, we exclude events where neither a relocation nor an addi-
tional moment tensor inversion leads to satisfactory waveform fits.

7. After each iteration we visually examine the agreement between observed and
synthetic waveforms, and we incorporate new recordings where the waveform fit
has improved sufficiently to allow for a meaningful misfit quantification. Record-
ings where the misfit is above a pre-defined threshold are excluded. This selec-
tion procedure is, at least to some degree, subjective but based on experience.

The final data set comprises 2, 137 three-component recordings from 57 earthquakes
that occurred in the Australasian region between 1993 and 2009. About 80% of
the data were recorded at permanent stations operated by Geoscience Australia,
IRIS and GEOSCOPE. The remaining 20% originate from the SKIPPY, KIMBA,
QUOLL and TASMAL experiments, undertaken by The Australian National Uni-
versity. The periods range from 30 to 250 s.

From the observed seismograms we manually select waveforms that show a
clear correspondence to synthetic waveforms, i.e. a sufficient waveform similarity.
Fundamental-mode surface waves account for nearly 60% of the selected wave-
forms. The remaining 40% are S waves and higher mode surface waves. A small
fraction of the waveforms is not clearly identifiable. The ray coverage (Fig. 13.14)
is good throughout the eastern part of the continent and decreases towards the west.

Our data set differs from those used in previous surface wave studies (e.g. Ziel-
huis & van der Hilst, 1996; Simons et al., 1999, 2002; Debayle & Kennett, 2000;
Yoshizawa & Kennett, 2004; Fishwick et al., 2005) in that it contains mostly
recordings from permanent stations, many of which were not operational prior to
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2006. The improved permanent station coverage allows us to invert a comparatively
large number of high-quality waveforms with dominant periods >60 s.

For the first iteration, all data are band-pass filtered between 150 and 250 s. In
the course of the inversion we successively decrease the lower cutoff period to 30 s.
This procedure ensures that the quasi-linearity of the waveform misfit with respect
to Earth model perturbations is maintained.

13.4.2 Initial Model

The implementation of an initial model that is close to the expected global optimum
is crucial in full waveform inversion, for a variety of reasons:

1. Full waveform inversion is a large non-linear minimisation problem that can only
be solved efficiently with iterative gradient-based minimisation schemes such as
the conjugate-gradient or Newton algorithm (see Chap. 7). All gradient-based
algorithms require an initial model that is close to the global minimum in order
to avoid convergence towards a local minimum that is potentially far from the
true Earth.

2. The convergence rate of gradient-based minimisation schemes tends to improve
for initial models that are close to the true model.

3. The amount of exploitable data is larger for initial models that already capture the
principal geologic features of the study region. This is because more synthetic
waveforms will be sufficiently similar to the observed waveforms to allow for a
meaningful misfit quantification.

In the following paragraphs we describe the construction of the mantle and crustal
parts of the initial model.

13.4.2.1 Mantle Part

The initial mantle model represents the long-wavelength features of the Australasian
upper mantle. The 3D elastic part of the model, shown in the top row of Fig. 13.15, is
isotropic. It is based on a smoothed version of the vS model by Fishwick et al. (2005).
Clearly visible are the seismically fast Precambrian lithosphere in central and west-
ern Australia, and the low seismic wave speeds beneath Phanerozoic eastern Aus-
tralia, the Coral and the Tasman Seas. We set the initial vP variations to 0.5 times the
initial vS variations, consistent with results from refracted body wave studies (Kaiho
& Kennett, 2000). As elastic 1D reference model we use the isotropic version of
PREM (Dziewonski & Anderson, 1981) with the 220 km discontinuity replaced by
a gradient, to avoid biases in the 3D tomographic images.

To minimise the effect of undiscovered 3D anelastic structure on the tomographic
images, we implement a 3D model of shear wave attenuation that was derived from
multi-frequency measurements of body wave amplitudes (Abdulah, 2007). A hori-
zontal slice through the model is shown in the bottom row of Fig. 13.15. It features a
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Fig. 13.15 Top panels: (a) 1D elastic background model of the P wave speed, vP, the S wave
speed, vS, and density, ρ. The model is derived from the isotropic version of PREM (Dziewonski
& Anderson, 1981). The discontinuity at 220 km depth is removed to avoid biases in the 3D tomo-
graphic images. (b) Horizontal slice at 100 km depth through the initial 3D vS model, derived from
the surface wave tomographic images of Fishwick et al. (2005). Bottom panels: (c) 1D background
model of shear attenuation. (d) Horizontal slice at 100 km depth through the 3D shear attenuation
model, as derived by Abdulah (2007) on the basis of multi-frequency amplitude measurements on
body waves. The anelastic model does not change during the waveform inversion. 3D variations of
P wave attenuation are not included (figure modified from Fichtner et al. (2010))

weakly attenuative continental lithosphere, strong attenuation beneath the Coral Sea
and a pronounced low-attenuation zone between 220 and 340 km depth. We disre-
gard 3D variations of P wave attenuation, because their influence on long-period
seismograms is negligible.
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13.4.2.2 Crustal Part

Our data set mostly consists of surface waveforms at periods of 30 s and above.
These are sensitive to the structure of the crust while not being able to resolve
its characteristic features: the strengths and locations of discontinuities. A realistic
crustal structure is therefore required as part of the initial model. That the impor-
tance of crustal models can hardly be overestimated was demonstrated by Bozdağ
& Trampert (2008). Inaccurate crustal models or crustal corrections can lead to
apparent anisotropy that can be as strong as mineralogic anisotropy in the upper
mantle.

The implementation of a realistic crust is, however, complicated by our insuffi-
cient knowledge concerning its thickness and elastic properties. In the Australasian
region the crust has mostly been studied on the basis of reflection/refraction pro-
files (e.g. Lambeck et al., 1988; Klingelhoefer et al., 2007) and receiver functions
(Shibutani et al., 1996; Clitheroe et al., 2000; Chevrot & van der Hilst, 2000). Three-
dimensional crustal models can therefore only be obtained by interpolation that may
not capture the strong lateral variations found along some isolated seismic lines
(Lambeck et al., 1988).

The lack of information on the 3D characteristics of the crust makes the selection
of one particular crustal model to some degree subjective. We use the model crust2.0
(Bassin et al., 2000; http://mahi.ucsd.edu/Gabi/rem.html) that is displayed in the
right panel of Fig. 13.16.

To implement a long-wavelength equivalent of crust2.0, we proceed as follows:
(1) For a set of 5◦ × 5◦ grid cells across the Australasian region we compute a
smooth long-wavelength equivalent version of the original crustal profile using the
methodology introduced in Sect. 13.2.2. We include the dispersion curves of the
fundamental and first three higher modes in the period range from 15 to 100 s. A
representative profile through a continental structure is displayed in the left panel
of Fig. 13.16. (2) To assess the quality of the smooth profiles we compare the
corresponding synthetic seismograms to the synthetic seismograms for the original
crustal profiles. The errors introduced by the smoothing are negligible for periods
longer than 25 s. (3) A smooth 3D crustal model is then constructed by laterally
interpolating the individual smooth profiles.

13.4.3 Model Parameterisation

Our elastic model is parameterised in terms of density, ρ, the speeds of vertically and
horizontally polarised S waves, vsv and vsh, the speeds of horizontally and vertically
travelling P waves, vph and vpv, and the parameter η. The data are mostly sensitive
to variations in vsv and vsh. Sensitivity with respect to vph and vpv is small, and
sensitivity with respect to ρ and η is negligible. This implies that vph, vpv, ρ and η
can hardly be resolved. We therefore set the variations of vph and vpv to 0.5 times
the variations of vsh and vsv, as is common practice in global tomographic studies
(e.g. Nettles & Dziewonski, 2008). We furthermore disregard lateral variations in ρ
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Fig. 13.16 Right: Map of the crustal thickness in the Australasian region, according to the model
crust2.0 (Bassin et al., 2000; http://mahi.ucsd.edu/Gabi/rem.html). Within the continent, the crustal
thickness varies between 25 km and more than 50 km. Left: Profiles of ρ, vSH, vPH, vSH − vSV,
vPH − vPV and the dimensionless parameter η (Eq. 9.19) from the surface to 90 km depth for a
location in NW Australia. The original profile from crust2.0 is plotted with dashed lines and the
long-wavelength equivalent model with solid lines (figure modified from Fichtner et al. (2009))

and set η = 1, consistent with the isotropic initial model (Fig. 13.15). The restric-
tions imposed on the variations of the parameters ρ, η, vph and vpv are, to some
degree, subjective. Their small sensitivities, however, ensure that they have nearly
no influence on the lateral variations of vsh and vsv.

As basis functions we use blocks that extend 1◦ × 1◦ laterally and 10 km verti-
cally. This parameterisation is chosen such that structures we expect to be resolvable
can be represented with sufficient accuracy. The expected resolution lengths are
2–5◦ laterally and 20–50 km vertically. This estimate is based on previous tomo-
graphies where similar amounts of data were used (e.g. Debayle & Kennett, 2000a;
Fishwick et al., 2005).

Our parameterisation does not include azimuthal anisotropy, because the limited
data coverage (Fig. 13.14) does not allow us to simultaneously determine source
locations and azimuthal wave speed variations.

13.4.4 Tomographic Images and Waveform Fits

We have, at this point, prepared all the necessary ingredients for a continental-
scale full waveform inversion: (1) an efficient solver of the elastic wave equation
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consisting of the spectral-element method combined with a long-wavelength equiv-
alent of the crust, (2) high-quality waveform data with a good coverage of the tar-
get region, (3) the phase misfit as a physically meaningful measure of waveform
differences that exploits as much information as possible while conforming to the
restrictions imposed by the physics of the problem, (4) an initial model that contains
the large-scale structural elements and (5) the adjoint method for the computation
of Fréchet kernels combined with a conjugate-gradient algorithm for the non-linear
misfit minimisation (see Sect. 7.3.4).

Combining all ingredients, we inverted for the radially anisotropic upper-mantle
structure in the Australasian region. The inversion procedure terminated when the
decrease of the cumulative phase misfit from one iteration to the next dropped
below 5%. This was the case after 19 iterations. The threshold of 5% was chosen
to prevent overfitting the data. The resulting 3D model, AMSAN.19, is presented
in Fig. 13.17. For a detailed interpretation of the tomographic model the reader is
referred to Fichtner et al. (2008, 2009).

A sufficiently large number of iterations are essential to obtain images that are
stable in the sense that they do not change much when additional iterations are
performed. The 19th iteration modifies the SH and SV models by less than 0.1%
of the reference isotropic S wave speed. However, the changes are mostly above
0.5% during the first 12 iterations. Differences between the SH and SV models
after one iteration and after 19 iterations locally exceed 6%. Iterative changes in the
anisotropy are nearly as large.

An exemplary collection of the final waveform fits is displayed in Fig. 13.18 for a
variety of source–receiver geometries. Model AMSAN.19 explains the waveforms
of the major seismic phases, including higher and fundamental-mode surface waves
and long-period body waves. The fit is good for periods above and including 30 s,
where the influence of crustal scattering is small. We point out that complete wave-
forms − and not only aspects of them, such as dispersion curves − can be modelled
accurately.

AMSAN.19 provides a fit of relative amplitudes that is significantly better than
for the initial model, even though no information on absolute amplitudes was used
in the inversion. This observation suggests (1) that lateral contrasts are imaged
accurately and (2) that the time–frequency phase and amplitude misfits are rather
strongly related, in agreement with recent results by Tian et al. (2009).

In the course of the iteration, the synthetic waveforms become increasingly sim-
ilar to the observed waveforms. This allows us to successively include waveforms
that were initially not usable due to excessive dissimilarities between data and syn-
thetics. The total number of exploited waveforms increases from about 2, 200 in
the first iteration to nearly 3, 000 in iteration 19. The final model can thus explain
data that were initially not included in the inversion. This is strong evidence for
the effectiveness of the inversion scheme and the physical consistency of the tomo-
graphic model.
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13.4.5 Resolution Analysis

One of the major advantages of the use of the full waveform modelling scheme for
3D varying media is that we are able to carry out resolution analysis incorporating
genuine 3D velocity structure. No approximations are required in the construction of
the artificial data. The reconstructions of the input models therefore provide realistic
estimates of the resolution capabilities of our full waveform tomographic method.
We performed a series of combined patch recovery and chequerboard tests to esti-
mate the spatial resolution in the tomographic images. For this, a set of 3D anoma-
lies in the SH and SV wave speeds was introduced into the 1D background model
and synthetic seismograms were computed using the same set of events and stations
as in the real-data inversion. To obtain conservative resolution estimates, we did not
use a 3D initial model.

In the specific test shown in Fig. 13.19, the input model consists of a high-
velocity patch located in central and western Australia at a depth of 100 ± 25 km.
This is intended to mimic the high velocities of the Precambrian lithosphere. A
chequerboard with a dominant lateral wavelength of about 3◦ is superimposed on
the high-velocity patch.

Both the long- and short-wavelength features of the input model are well recov-
ered by the full waveform tomographic method. For most of central and eastern
Australia and the adjacent Tasman and Coral Seas we estimate that the resolution
lengths are around 3◦ laterally and 40 km vertically, above 200 km depth. Additional
tests indicated that below 200 km depth the estimated resolution lengths are around
7◦ laterally and 60 km vertically. We note that structures outside the area covered by
rays can also be recovered to some degree. This is the case, for example, beneath
the South Australian Basin and north of the Solomon Islands. We nevertheless rec-
ommend not to interpret structures in such regions, because the assessment of their
reliability may require a more detailed resolution analysis.

In a longer series of resolution tests (Fichtner et al., 2009), we found that the
amplitudes of positive chequerboard anomalies generally seem to be less well recov-
ered than their neighbouring negative anomalies – a phenomenon for which we can
currently not provide a definite explanation.

There are, furthermore, clear non-linear effects in the sense that the quality of
the reconstructions improves when the amplitudes of the perturbations are increased
while keeping their geometry constant. This phenomenon, also observed in global-
scale synthetic inversions (see Chap. 15), is in contrast to linearised tomography.
An intuitive explanation is that small-amplitude perturbations essentially translate
to phase shifts only. Larger amplitude perturbations, however, lead to both phase
shifts and substantial waveform distortions. In the latter case, the waveforms seem
thus to contain more information even though the geometry of the anomalies has not
changed. This additional waveform information seems to improve the resolution.

After 19 iterations, the synthetic waveforms and the artificial data are practically
identical. This implies that the imperfections seen in the reconstructions are mostly
the result of insufficient data coverage and the frequency band limitation. Potential
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Fig. 13.19 Synthetic inversion for structure around 100 km depth. The input models are shown in
the left column and the inversion results in the right column

algorithmic problems such as an insufficient exploitation of waveform information
or slow convergence do not seem to play a significant role.

13.5 Discussion

In the previous paragraphs we presented a full waveform tomographic technique
that can operate on continental scales. We described the numerical solution of the
forward problem, the data selection procedure, the quantification of waveform mis-
fits, their iterative minimisation, the resulting tomographic images and the achieved
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waveform fit and resolution. To conclude this chapter, we return to some of the most
important technical aspects of full waveform inversion:

13.5.1 Forward Problem Solution

The correct solution of the equations of motion in realistically heterogeneous Earth
models is the most significant advantage of the full waveform tomography. The
numerical solution of the elastic wave equation ensures that the differences between
observed and synthetic seismograms are indeed the result of yet undiscovered Earth
structure. The occurrence of artefacts in the tomographic images that are due to
simplifications of the wave propagation process can thus be avoided. The advan-
tages of the full waveform method are particularly important for strongly het-
erogeneous regions of the Earth, such as the thermal boundary layers or ocean–
continent transitions.

The number of events that we have used in the inversion was limited by the avail-
able computational resources and not by the available high-quality data. However,
the comparatively small number of seismograms is in part compensated by extract-
ing as much waveform information as possible, for instance, through the application
of the time–frequency misfits (Sects. 11.5 and 13.3).

13.5.2 The Crust

Bozdağ & Trampert (2008) demonstrated that crustal corrections influence the
inferred upper-mantle anisotropy. Most previous tomographic studies on conti-
nental or global scale computed crustal corrections from either crust2.0 (Bassin
et al., 2000) or 3SMAC (Nataf & Ricard, 1995). One of the outstanding advantages
of full waveform tomography is that no crustal corrections are required. This is
because numerical solutions of the elastic wave equation are also accurate in the
presence of a laterally varying crust. In the process of the iterative misfit minimi-
sation, the crustal and the mantle parts are treated equally, meaning that both are
updated as required by the data. We can therefore expect less artificial anisotropy in
the tomographic images.

13.5.3 Time–Frequency Misfits

The time–frequency misfits as defined in Sect. 11.5 (see also Fichtner et al., 2008)
have several advantages in the context of full waveform inversion: (1) the separation
of phase and envelope information, (2) the applicability to any type of seismic wave,
(3) a quasi-linear relation to Earth structure and, most importantly, (4) the use of
complete waveform information.
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There are, however, two disadvantages that the time–frequency misfits share with
any other measure of full waveform differences, such as the classical L2 norm or
the generalised seismological data functionals (Gee & Jordan, 1992). First, the com-
paratively high susceptibility to noise, and second, the difficulty of assessing noise
effects on the misfit measures and the tomographic images. Since the amount of
data in full waveform tomography is small, we can reduce the influence of noise by
choosing data of exceptional quality.

The phase misfit is meaningful only when the observed and synthetic waveforms
are sufficiently close to avoid phase jumps. This criterion is usually satisfied when
the phase differences are less than π/2. To ensure that no phase jumps occur, useful
time windows need to be chosen in each seismogram. We currently pick and weight
the time windows manually – a process that is unavoidably subjective, but efficient
in that it allows us to incorporate a trained seismologist’s experience that can greatly
accelerate the convergence of the minimisation algorithm.

13.5.4 Dependence on the Initial Model

Tomographic images generally depend on the choice of the initial model, and the full
waveform tomography presented in the previous paragraphs is no exception. One
can, however, argue that this dependence is weaker in a non-linear iterative inversion
than in a linearised inversion: When the initial model, m0, is outside the basin of
attraction of the global optimum, then both an iterative non-linear and a linearised
inversion will produce incorrect results that depend strongly on m0. Otherwise, the
non-linear iterative inversion closely approaches the global optimum irrespective
of the actual location of m0 within the basin of attraction. In this sense, an itera-
tive inversion depends less on the initial model than a linearised inversion that can
never approach the true solution arbitrarily closely due to the non-linearity of the
problem.

13.5.5 Anisotropy

Iterative improvement strongly affects radial anisotropy. Its amplitude tends to
decrease with a growing number of iterations. Apparent anisotropy is thus increas-
ingly well explained by isotropic structure as the inversion proceeds. This effect,
also noted by Nettles & Dziewonski (2008), highlights the non-linearity of the tomo-
graphic problem.

Further methodological contributions to long-wavelength differences of the
tomographically inferred radial anisotropy include the choices of the initial model
and the parameterisation. The neglect of azimuthal anisotropy may result in discrep-
ancies, where azimuthal coverage is poor. The influence of these factors requires
further research, and the different approaches taken in this and previous studies can
all be justified.



264 13 Full Waveform Tomography on Continental Scales

13.5.6 Resolution

Thanks to the accurate modelling of seismic wave propagation in a 3D heteroge-
neous Earth, the tomographic images presented in Fig. 13.17 can be considered
more realistic than similar images obtained using more restrictive methods. The
effect of full wave field modelling on the resolution of the tomographic images
is less obvious. Concerning the comparison between ray tomography and finite-
frequency tomography, arguments both in favour (e.g. Yoshizawa & Kennett, 2004;
Montelli, 2004; Chen et al., 2007) and against (e.g. Sieminski et al., 2004; van der
Hilst & de Hoop, 2005; Trampert & Spetzler, 2006) a higher resolution of the latter
have been presented.

There are several reasons for the absence of a general consensus on this issue:
Most importantly, the resolution increase of finite-frequency and full waveform
tomography, if present, is not always visually obvious. This is a subjective but nev-
ertheless powerful impression. An objective comparison of resolution capabilities is
difficult because realistic tomographies are computationally expensive and because
there is no universally valid definition of resolution for deterministic non-linear
inverse problems. Our limited computational resources merely allow us to consider
a small number of synthetic inversions – typically chequerboard tests – that may not
be representative (Lévêque et al., 1993). A further complication is due to the fact
that ray theoretical sensitivities are distributed along infinitesimally thin rays. The
regularisation in ray tomography smears the sensitivity into a region around the ray
path. The width of this region is mostly chosen as a function of data coverage, and
it may therefore be thinner than the actual influence zone of a wave with a finite
frequency content. Thus, the apparent resolution in ray tomography may be higher
than the resolution that is physically possible. This phenomenon becomes most
apparent in the form of the central slice theorem (Cormack, 1963) which ensures
perfect resolution in the case of sufficient ray coverage.

An encouraging observation is that structure in some regions with no ray cov-
erage whatsoever can be resolved at least to some degree. This is due to the large
lateral extent of Fréchet kernels for measurements on finite-frequency waveforms.
Intuitively, however, we would not recommend to interpret such structures.

In the light of those difficulties, we can currently not make a quantitative and
objective statement concerning the comparative resolution capabilities of full wave-
form tomography. We conjecture, however, that the advantages will become more
apparent as the frequency band broadens and as the amount of exploitable informa-
tion in individual seismograms increases.

We suggest to make a clear distinction between realistic and well-resolved. Major
factors that determine the resolution of a tomographic model are the data coverage,
the data quality and the frequency bandwidth. Given a specific data set, the model
can be made more realistic by more accurately accounting for the true physics of
wave propagation.

A promising approach to resolution quantification is based on the RETRO kernel
concept introduced in Sects. 9.3.1 and 12.3. This method is, however, still in its
experimental stage.
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At this stage of its development, more realistic and physically consistent Earth
models are the principal advantage of full waveform tomography. This improve-
ment is crucial on our way towards a more quantitative interpretation of tomo-
graphic images in terms of geodynamic processes (Bunge & Davies, 2001; Schu-
berth et al., 2009a,b).



Chapter 14
Application of Full Waveform Tomography
to Active-Source Surface-Seismic Data

This chapter presents a case study of acoustic waveform tomography applied to
active-source long-offset data acquired across the San Andreas Fault near Park-
field, California. A multi-scale frequency-domain adjoint method was employed to
invert the early, forward-scattered, P wave arrivals. The inversion uses the lower
part of the available frequency spectrum to increase the resolution of a kine-
matic model about four times. The final waveform tomography model reveals the
shape of a large intrusion with unprecedented detail, and it indicates the posi-
tion of two major faults, although it falls short of resolving their structure. The
quality of the solution is controlled by the data fit and a sonic log from the
San Andreas Fault Observatory at Depth research borehole. Data pre-conditioning
and weighting, the inversion strategy and the residual reduction are presented in
detail. The discussion focuses on the implications of the signal bandwidth for the
required accuracy of the initial model and on the problem of decreasing robustness
at higher frequencies.

14.1 Introduction

The application of waveform tomography is controlled to a large extent by the com-
putational expense of the forward solution. Naturally, the first problems to be tackled
with were 2D. Active-source exploration profiles, cross-hole surveys and VSP sur-
veys provide appropriate data, if sources and receivers are densely distributed and
confined to a plane.

In order to efficiently solve the inverse problem for active-source data, an acous-
tic frequency-domain multi-scale method was developed that specifically aims at
inverting the early arrivals, i.e. the P wave and its coda (Pratt & Worthington, 1990;
Woodward, 1992). These forward-scattered waves are the most linear part of a seis-
mogram, because there is little interference from other phases at early times and
because multiple scattering is less likely. In many cases, the restriction to the early
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arrivals also allows us to work in the acoustic approximation (see Sect. 2.3). For
controlled source data this has advantages besides the computational savings: No
initial S wave velocity model is required, and the inversion can be focused on the P
wave velocities, which are much better constrained by most active sources, because
pressure pulses and vertical forces produce little shear wave energy.

The goal of multi-scale reconstruction is to mitigate the non-linearity of wave-
form inversion by inverting the lowest data frequencies first to constrain the long
wavelengths of the model, before sequentially proceeding to higher data frequencies
and shorter wavelengths (Bunks et al., 1995; Sect. 7.3). This approach is greatly
facilitated by modelling the seismic data in the frequency domain. For small models
and few frequency components, solving the Helmholtz equation, i.e. the frequency-
domain version of the acoustic wave equation, is highly efficient (Pratt, 1999). In
addition, computing the gradient of the objective function directly from frequency-
domain wave fields requires minimum storage capacities and input/output opera-
tions.

For lab data acquired in a water tank on a physical scale model, Pratt et al. (1999)
demonstrated the feasibility and the value of this method. Other groups have devel-
oped similar methods and applied them to 2D active-source cross-hole data (e.g.
Song et al., 1995; Zhou et al., 1995; Pratt & Shipp, 1999; Wang & Rao, 2006) and
surface-seismic data (e.g. Ravaut et al., 2004; Operto et al., 2006; Sheng et al., 2006;
Gao et al., 2007; Malinowski & Operto, 2008; Jaiswal et al., 2009). This chapter
presents the application of Pratt’s method to a land-seismic long-offset survey across
the San Andreas Fault in California.

14.2 Data

In 2003 a seismic survey was conducted across the San Andreas Fault (SAF) near
Parkfield, California, to provide models of the reflectivity and of the seismic velocity
at seismogenic depth for the San Andreas Fault Observatory at Depth (SAFOD). A
50-km-long seismic line was deployed from the Salinian terrane across the SAF
over the Franciscan into the Great Valley (Fig. 14.1)

The Salinian is dominated by a granite that is overlain by 1–3 km sediments. The
SAF juxtaposes this granite against the Franciscan, an accretionary wedge of folded
and faulted sediments that is famous for strong attenuation of seismic waves.

Sixty three inline dynamite shots of 30–90 kg were recorded by the full spread of
50-m-spaced receivers. To avoid a large gap in the line and also to save computation
time, the first 10 km was not considered for waveform inversion, resulting in a 37-
km-long line of 822 receivers with an average shot spacing of 650 m.

Figure 14.2 displays two exemplary shot records. They are dominated by the
direct wave (Pd) and a refraction from the Salinian granite (Pg) to the south-
west. Due to the rough topography, especially due to P–Rayleigh conversions at
the surface, the data are strongly scattered. The bandwidth of the data is 3–30 Hz
(Fig. 14.3), but only frequencies below 15 Hz were considered, for computational
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Fig. 14.1 Map of the 2003 seismic survey across the SAFOD site (white star) near Parkfield , CA.
Circles are shots; coincident black line indicates receivers. For more details on the geology and the
local fault structure see Bleibinhaus et al. (2007)

reasons, and because the inversion stops gravitating towards the global minimum.
At the dominant frequency of 8 Hz the signal-to-noise ratio (S/N) drops from 8 at
near offsets to 4 at intermediate offsets to 1.5 at long offsets. At the low frequencies
and long offsets, S/N is 1 at most.

For constructive interference of the adjoint or back-projected waveforms, the
distance between measurements should be half a wavelength at most. At a velocity
of 4 km/s, this corresponds to a maximum spacing of 0.1–0.7 km for the highest
and lowest frequency, respectively. For the receivers, this condition is met at all
frequencies, except for a 2-km-wide gap in the line at 30 km distance. In the vicinity
of this gap, imaging artefacts must be expected. For the shots, which are spaced
0.3–1.5 km, not considering the gap, this condition is never fully met. Already at the
lowest frequency, some shots are more than two times the required minimum apart.
Due to reciprocity, however, the dense receivers can compensate for spatially aliased
shot points to a large extent. In a synthetic study, Brenders & Pratt (2007) showed
that artefacts from sparse sources deteriorate the inversion significantly, only when
the spacing is larger than three times the required minimum at the lowest frequency.
This is not the case here, although for real, noisy data, the threshold might be overly
optimistic. Therefore, artefacts from the sparse sources cannot be excluded, espe-
cially not at higher frequencies.
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Fig. 14.2 (a) Elevation, three times vertically exaggerated. (b) Trace-normalised, time-reduced
display of the vertical component of shot record 34 and (c) of shot record 3. Dashed line is travel-
times computed in the model of Hole et al. (2006). Pd: direct P wave travelling through sediments,
Pg: refracted P wave travelling through granite, R: Rayleigh waves

Fig. 14.3 Average signal
spectrum at near offsets
(5–15 km, solid line),
intermediate offsets
(15–25 km, dashed) and long
offsets (>25 km, dash
dotted). Dotted line is noise
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14.3 Data Pre-conditioning and Weighting

In order to prepare the data for acoustic waveform tomography, noisy traces were
deleted, and the surface waves and any direct S waves were muted. To focus the
inversion on the early arrivals, a 1.4-s-long time window was selected, the start
time of which was computed by subtracting 0.25 s from the kinematic first-arrival
traveltimes. The length of this window was chosen to contain at least three cycles
at the lowest frequency considered for inversion (3 Hz). Traces recorded at less than
2 km offset were removed because the separation of P and S phases is insufficient
to provide a meaningful acoustic signal in the considered frequency range. To fur-
ther reduce the non-linearity, an exponential time-scaling with a half-decay time of
0.25 s was applied to the data. Later, back-scattered, or multiply scattered, arrivals
are suppressed by that means, and the forward-scattered tomography data are being
enhanced. The pre-conditioned data were then Fourier-transformed, and a few spec-
tral components were picked for the inversion. A preprocessed shot gather and the
corresponding phase of the frequency-domain data at 4 Hz is displayed in Fig. 14.4.

Due to the dense receiver spacing with respect to the wavelength, the phase vari-
ations from one receiver to the next are mostly smooth, if they are not generated
by random noise. The degree of smoothness was used to compute weighting factors
(Fig. 14.4c) (Bleibinhaus et al., 2009). Unfortunately, the sparse and irregular shot
spacing prevents the application of 2D smoothness constraints or 2D filters to further
mitigate the impact of noise.

Fig. 14.4 (a) Preprocessed shot gather 3 of Fig. 14.2c, (b) corresponding phase at 4 Hz, (c) corre-
sponding weighting factors at 4 Hz
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14.4 Misfit Functional

Before forming the residual, trace normalisation and spectral whitening were
applied to the observations and to the synthetics. This means that the amplitude of
the frequency-domain data was not used for the inversion. This phase-only inversion
is successful because it is the phase that is sensitive to the velocity, while the ampli-
tude is mostly sensitive to the spatial derivative of the velocity. In addition, ampli-
tudes are also strongly affected by attenuation, near-surface structure and receiver
coupling. Those factors vary strongly for the SAFOD data (Bleibinhaus et al., 2007)
and are poorly controlled. Moreover, two approximations are made in the forward
modelling that affect the amplitudes much, but hardly the phases. First, the mod-
elling is 2D, and it cannot reproduce 3D geometric spreading. Second, the acoustic
modelling yields pressure, which is independent of a wavefront’s angle of incidence,
while the data were recorded on the vertical component. It was therefore decided
that saving computational resources, and avoiding time-consuming true-amplitude
processing, outweighs the potential benefit of inverting amplitudes, which, accord-
ing to a study of Shin & Min (2006), is small anyway. Indeed, Brossier et al. (2009)
demonstrated with a synthetic study that for noisy data, back-projecting the phase
difference, only, yields even better results than using true amplitudes.

14.5 Initial Model

The initial model plays a crucial role in most non-linear inverse problems, especially
when higher derivatives of the misfit functional are not considered. For gradient
methods to converge, it is required that the starting point is in the same valley as
the global minimum (see Sect. 7.3). This means for waveform tomography that the
initial model must be accurate enough to match most observations within less than
half a period (T0/2) deviation. If the predicted phase at a certain frequency is off by
more than ±π , the inverse algorithm will attempt to match the wrong cycle of the
seismogram (Pratt, 1999), and the correlated forward and adjoint wave fields will
not focus at the location of the scatterer, as demonstrated, for instance, by Gauthier
et al. (1986) and Pratt et al. (1996).

For acoustic active-source full waveform inversion, ray tomography is the pre-
ferred choice to derive an initial model. It does not require additional data, the
rays cover much of the model space and the quality is generally good enough, at
least in the well-constrained, central portions of the model. For this study, starting
velocities were derived from a traveltime tomography model of Hole et al. (2006).
Some ray path artefacts in this model were reduced by a smoothing operator, and a
separate inversion for the structure below 2 km depth below sea level was performed
to improve the fit at long offsets (Bleibinhaus et al., 2007). The resulting velocity
model is displayed along with the waveform inversion results in Fig. 14.6a. It has
an RMS traveltime residual of 40 ms, or T0/8 at 3 Hz, so that the bulk of the obser-
vations is indeed matched within less than T0/2 at the lowest frequency considered
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for inversion. At long offsets, however, there is no significant low-frequency sig-
nal (Fig. 14.3), and the dominant frequency of 8 Hz should be considered to judge
whether the waveforms computed in the initial model match the observations with
T0/2, or 62.5 ms, accuracy. If one accounts for the degraded picking accuracy of
∼100 ms at the long offsets (Hole et al., 2006), then it becomes clear that a signif-
icant portion of the observations is not matched within half a cycle. Consequently,
the deeper structure may not be resolved by waveform inversion.

In order to analyse the resolving power at the low-data frequencies, monochro-
matic 4 Hz kernels were computed in the initial model for a source–receiver pair at
20 km distance (Fig. 14.5). The first Fresnel zone of the kernel, which corresponds
to a T0/2-long time range after the first arrival, is the region that is best constrained
by early arrival waveform tomography. Outer lobes correspond to back-scattered
arrivals at later times in the seismogram. The width of the first Fresnel zone (3 km)
is a rough indicator for the longest wavelengths that can be constrained by the
waveforms. Even longer wavelengths must be contained in the initial model for

Fig. 14.5 (a) Real part of the 4 Hz wave field for a shot point at 40 km. (b) Real part of the adjoint
wave field for a receiver at 20 km offset. (c) The correlation of the regular and adjoint fields yields
the 4 Hz gradient for this source–receiver pair. The arrow denotes the width of the first Fresnel
zone. (d) The total gradient is the weighted sum of the gradients of all source–receiver pairs in the
3–4 Hz range
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the waveform inversion to succeed. (This condition is essentially the wave number
correspondent of the cycle-skipping problem discussed above.) The total gradient
in Fig. 14.5d illustrates the resolving power and the subsurface coverage from the
low frequency data. Its resolution is 1–3 km in the vertical direction, and 2–20 km
in the horizontal direction, which is lower than the resolution of the initial model.
This wavelength overlap of traveltime tomography and waveform inversion at the
low frequencies compensates for potential inaccuracies of the initial model, thereby
mitigating the dependency of the solution on the starting point of the iterative inver-
sion. The limited penetration depth of the total gradient of ∼3 km depth below sea
level is mostly a result of the lower S/N at long offsets, but is also due to the velocity
structure with a shallow high-velocity body (the Salinian granite) that impedes deep
penetration.

14.6 Inversion and Results

In order to derive the model perturbations, the gradient was low-pass wave number
filtered to reduce short-wavelength artefacts that appear mostly near the sources and
receivers, and a step length was computed by a line-search method and a conjugate-
gradient algorithm (Sect. 7.3.4). After six iterations, the inversion was halted, and
the resulting model was used as initial model for the next higher set of frequen-
cies. Each group consists of three frequencies at 0.4 Hz spacing below 8 Hz and
at 0.8 Hz spacing above 8 Hz (Table 14.1). The total residual reduction for each
group amounts to ∼30%, decreasing from ∼10% at the first iteration to ∼1% at the
last iteration. As the tomography progresses from low to high frequencies, increas-
ingly finer detail is added to the model (Fig. 14.6). The long-wavelength structures,
which are also confirmed by other data (Thurber et al., 2003; Malin et al., 2006),
are not significantly changed. The inversion was terminated at 14 Hz because the
resulting model did not improve the overall match of seismograms anymore. The
preferred waveform model is obtained after the inversion of frequencies up to 12 Hz
(Fig. 14.6d). It has a resolution of 400 m in horizontal direction and of 200 m
in vertical direction (Table 14.1), and it reveals several features that are not con-

Table 14.1 Groups of simultaneously inverted frequencies, spacing used for the forward and
inverse grids, gradient regularisation in horizontal direction (half this value was used in the vertical
direction) and residual reduction achieved for the corresponding frequency range after Bleibinhaus
et al. (2007)

Frequencies (Hz) Grid spacing (m) Wavelength lowcut (m) Residual reduction (%)

3.2/3.6/4.0 100 1, 250 21.3
4.4/4.8/5.2 50 1, 000 28.6
5.6/6.0/6.4 50 800 32.3
6.8/7.2/7.6 50 700 33.8
8.0/8.8/9.6 25 500 24.6
10.4/11.2/12.0 25 400 23.7
12.8/13.6/14.4 25 250 25.9



14.6 Inversion and Results 275

Fig. 14.6 (a) Starting velocity model derived from traveltime tomography and (b) waveform
tomography model after the inversion of 4.0 Hz data, (c) 7.6 Hz data and (d) 12.0 Hz data. Note
the improvement of the resolution with increasing frequency. A gray arrow points at a ray-shaped
feature that could be a smearing artefact from the gap in the line, and hollow arrows point at the two
strongest scatterers within the sediments that correlate with vertical reflectors. The line at 25 km
is the SAFOD borehole (black – sediments, white – granite). The masked area in (a) is the ray
coverage after Hole et al. (2006), and in (b–d) it is the wave path coverage as determined from
the gradient of Fig. 14.5. SAF – San Andreas Fault, WCF – Waltham Canyon Fault. (a–c) after
Bleibinhaus et al. (2007)

strained by the traveltimes. The increased resolution generally provides a much
sharper image of the Salinian granite. A pronounced syncline of the 5 km/s contour
at 18–20 km distance correlates with a sharp decrease of RMS receiver amplitudes
(see Fig. 14.4 of Bleibinhaus et al., 2007) that are more typical for the Franciscan
than for the Salinian, suggesting that the rocks that fill this syncline might be as
strongly deformed, too. A few shallow, small anomalies near the position of the
SAF are probably caused by reflected refractions. These phases are part of the early
arrivals, and they were used for reflection imaging of the SAF zone. The anomalies
at 35 km distance at 1–2 km depth below sea level could be related to the Waltham
Canyon Fault (WCF), which was also imaged from reflected refractions (Bleibin-
haus et al., 2007). However, individual fault strands are supposed to be 50–150 m
wide (Li et al., 2004), and the reflection of 12 Hz (i.e. ∼300 m wavelength) data is
a complicated superposition of two phase-shifted signals that depend on the width
of the fault and on the properties of the fault and host rocks. This complexity could
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Fig. 14.7 Sonic log of the
SAFOD borehole (dotted
gray line), kinematic model
(dashed) and 12 Hz
waveform model (solid).
g: granite, s: sediments

cause imaging problems, particularly with spatially aliased data, and it may explain
why the shape of the anomalies does not conform to vertical faults and why the sign
of the anomalies is positive, and not negative, as expected for faults.

At the position of the SAFOD borehole, the waveform model can be com-
pared with a sonic log (Fig. 14.7). The velocities match well, particularly the sharp
increase at the top of the granite. The waveform model also shows a low-velocity
zone (LVZ) within the granite at 0.4 km depth below sea level and the transition
back to sediments near 1 km depth below sea level, although 200 m shallower than
in the sonic log. Those differences might reflect the lower lateral resolution of the
waveform model, without necessarily indicating inaccuracy. The deeper LVZs in the
sonic log of ∼100 m width are too thin for the resolution of the waveform models.

14.7 Data Fit

Figure 14.8 shows a comparison of observed and synthetic data. For offsets closer
than 20 km (distance range 25–45 km) the waveform match in the 12 Hz waveform
tomography model has significantly improved compared to the initial model. At
longer offsets, however, the initial data match is poor, and there is virtually no
improvement through waveform tomography: The major change is that the first
arrivals appear blurred, probably reflecting the poor S/N. Those observations at more
than 20 km offset are mostly sensitive to structures below ∼3 km depth below sea
level, and the mismatch confirms that this part of the model is not constrained by
the waveforms.

Comparing seismograms is crucial to control the data fit, but it is a qualitative
measure only, and it is also tedious due to the large amount of data and the great
amount of detail in the waveforms. In contrast, the residual reduction listed in
Table 14.1 is a quantitative measure, but it provides no insights into the distribu-
tion of the residual, and it is also restricted to the frequency components within
the group and thus not representative of the overall waveform fit. A more detailed
and representative statistical overview is provided by maps of the weighted RMS
phase misfit as a function of offset and frequency at different stages of the inversion
(Fig. 14.9). In the initial model, the residual at low frequencies (3–4 Hz) increases
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Fig. 14.8 (a) Synthetic seismograms for shot gather 3 computed in the initial model and (b) in
the 12 Hz waveform model. (c) Preconditioned observations. All data are 3–12 Hz band-pass fil-
tered. White arrows denote improved data fit, gray arrows denote no improvement. Note that all
corresponding arrows are at the same (x, t) position

Fig. 14.9 (a) Weighted RMS phase residual as a function of offset and frequency for the initial
model and (b) the waveform models after the inversion of 4 Hz, (c) 7.6 Hz and (d) 12 Hz. (a–c)
After Bleibinhaus et al. (2009)
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Fig. 14.10 Weighted number
of observations as a function
of offset and frequency after
Bleibinhaus et al. (2009)

from ∼45◦ (T0/8) at near offsets to over 90◦ (T0/4) at intermediate offsets. Beyond
20 km offset, the values start to fluctuate due to the small number of weighted obser-
vations (Fig. 14.10). As the inversion progresses, the overall misfit is steadily being
reduced at offsets smaller than 20 km. An improvement at longer offsets after the
inversion at 8 Hz (Fig. 14.9c) is restricted to a narrow band. This indicates cycle
skipping at those offsets, otherwise the match at lower frequencies would have to be
better.

At 12 Hz, the ability to fit waveforms is reduced to the near offsets (Fig. 14.9d).
In addition, the match at the low frequencies starts to degrade again. This is sur-
prising because the inversion of the 10–12 Hz frequency components hardly alters
the long-wavelength structure of the model as determined from the inversion of the
low frequencies. What is happening is that an increasing number of small, shallow
scatterers attenuate the low frequencies propagating in the shallow part of the model.
Low-frequency seismograms, in turn, are dominated by waves propagating in the
deeper, smoother parts of the model, where scattering attenuation is insignificant.
However, those parts of the model are poorly constrained, and the corresponding
phases are erroneous, thus decreasing the low-frequency waveform fit and prevent-
ing the inversion of higher frequencies.

14.8 Discussion

In order to better understand the reasons for the increasing growth of arte-
facts beyond 12 Hz, it is instructive to analyse the kernels at higher frequencies.
Figure 14.11 depicts a monochromatic 14 Hz wave field and kernel computed in the
14 Hz waveform model for the same source and receiver as in Fig. 14.5. At this
frequency, 20 km offset corresponds to more than 70 wavelengths. Along its path,
the wave is being scattered several times, and the complexity of the kernel reflects
that. The single, broad Fresnel zone of a low-frequency kernel in a smooth model
(Fig. 14.5c) is broken down into several Fresnel zones, which, in the high-frequency
approximation, would correspond to multiple ray paths. So while the non-linearity
has grown considerably, the ratio of data to unknown parameters is decreasing:
The maximum source spacing exceeds the aliasing limit 12 times at 14 Hz, not
accounting for the gap in the line. In addition, the size of scatterers potentially
resolved by this frequency is ∼100 m. It seems overly optimistic to believe that
at this level of detail, out-of-plane scattering in a real geologic environment would
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Fig. 14.11 (a) Monochromatic 14 Hz wave field and (b) 14 Hz wave path for a source and receiver
at 20 km offset computed in the 14 Hz waveform model. Note the impact of scatterers near promi-
nent faults on the wave field. SAF – San Andreas Fault, WCF – Waltham Canyon Fault

still be negligible. Even if it is a small effect, corresponding artefacts might become
amplified over several iterations. This means that in order to further improve the
resolution, 3D variations probably have to be accounted for by the modelling, and
3D data need to be acquired to constrain them.

There are a number of other problems related to the forward modelling, which
potentially affect the convergence of the inversion. P–S and P–Rayleigh converted
energy is part of the early arrivals, but it is not accounted for by the acoustic mod-
elling. Attenuation and anisotropy were ignored, too. Scattering from topography is
not accounted for, because receivers and shots were embedded in the medium, and
an absorbing boundary was put above the receivers. The degradation from ignoring
the free surface has been tested, and it is relatively moderate, despite the strong
topography. Most of the P–Rayleigh scattered energy remains in the data space, and
it is not projected onto the waveform model (Bleibinhaus & Rondenay, 2009).

The limited accuracy of the deeper parts of the initial model could also pose
an impediment for the waveform tomography, especially because low S/N at long
offsets and at low frequencies led to cycle skipping at long offsets that was not
fixed during the inversion. In the absence of better data, several methods have been
proposed to alleviate the dependency of the waveform inversion on the initial model,
most prominently the so-called Laplace-domain inversion (Shin & Cha, 2008),
which employs variable time damping with a series of increasing half-decay times
that progressively shift the weight to later arrivals during the inversion. In the case of
the SAFOD data, however, the S/N is not high enough at the long offsets to employ
smaller half-decay times. Instead of amplifying the first arrival, they boost the noise
before the first arrival and lead to a degradation of the overall waveform match.
Offset-dependent weights to amplify the contribution of the long offsets have also
been tried, but without improving upon the deep structure.
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In any case, the phase misfit maps (Fig. 14.9) show no indication of leakage
from the poorly resolved deep parts to the shallow structure down to ∼2 km below
sea level. To the contrary, the resolution of the shallow structure improved con-
siderably from the waveform inversion of frequencies up to 12 Hz. The resulting
model reveals several features that were not constrained by the traveltimes, and it
matches the sonic log well. The spatial correlation of strong velocity anomalies with
imaged reflectors indicates that, even at frequencies that are too low to resolve faults,
waveform models can be used to infer their position.

Resolving more details from the inversion of higher frequencies was not possi-
ble. Spatial aliasing probably contributes to this limitation, but the complexity of
high-frequency wave paths suggests that out-of-plane scattering could be a decisive
factor.

Despite these limitations, the SAFOD case study shows that applying acoustic
2D waveform tomography to surface-seismic data has significant merits. It is essen-
tially a subsequent step to traveltime tomography, it does not require additional data
or models and it is computationally feasible on a small cluster. The gain in resolution
helps considerably with the interpretation, and it allows for better predictions for
drilling or other geo-technical problems.



Chapter 15
Source Stacking Data Reduction for Full
Waveform Tomography at the Global Scale

In this chapter, we present a full waveform tomographic method based on a special
data reduction scheme. This is intended to overcome the high numerical cost of a full
waveform inversion with large data sets. Most numerical methods used to solve the
forward problem in seismology allow us to trigger several sources at the same time
within one simulation with no incremental numerical cost. Doing so, the resulting
synthetic seismograms are the sum of seismograms from each individual source
for a common receiver and a common origin time, with no possibility to separate
them afterwards. The summed synthetic seismograms are not directly comparable
to data, but using the linearity of the problem with respect to seismic sources, we
can sum all data for a common station and a common zero time, and we perform
the same operation on synthetics. Using this data reduction scheme substantially
reduces the computational requirements because we can model the complete data
set with one single forward simulation, instead of requiring as many simulations as
there are events. The optimisation scheme used to find the minimum of the objective
functional is a Gauss–Newton method, and the spectral-element method is once
again used to solve the forward modelling problem. The approximate Hessian of
the Gauss–Newton method is either computed with the spectral-element or with a
normal mode method. Several tests confirm the feasibility of the method. It appears
that this approach can work owing to the combination of two factors: the off-path
sensitivity of the long-period waveforms and the presence of multiple scattering,
which compensate for the loss of information in the summation process. We discuss
the advantages and drawbacks of such a scheme.

15.1 Introduction

In the previous chapters, full waveform tomography methods have been applied
based on the comparison of individual seismograms and their corresponding syn-
thetics. The possibility of such a comparison rests on the solution of the forward
problem for each seismic source, which can be a computationally expensive task.
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Here, we present an alternative full waveform inversion method that combines the
Gauss–Newton algorithm with a data reduction scheme that drastically reduces
numerical costs. This is based on data stacking for common receivers. The idea
of source stacking was mentioned first by Mora (1987), though it was not further
investigated at that time. For the full waveform inversion problem at the global scale,
this method was first proposed by Capdeville et al. (2005) and applied, in a slightly
different way, at the seismic exploration scale by Krebs et al. (2009) and Ben Hadj
Ali et al. (2009a, b) for 2D cases. The idea has been very successful for synthetic
tests, and the application to a global data set is work in progress (Capdeville, 2010).

The global scale is interesting because, at very long periods, the Earth is known to
be weakly inhomogeneous and 1D models already provide synthetic seismograms
that explain the data very well. It is therefore an ‘easy’ case compared to smaller
scale problems. Moreover, the data coverage at long periods is good and the numer-
ical problem is simpler for a variety of reasons: There is no absorbing boundary,
no heterogeneity outside of the inverted domain can pollute the solution and the
partial derivatives necessary for the partial Hessian can be efficiently computed with
normal mode solutions for the 1D starting model.

The numerical method used to solve the forward problem is the coupling method
of spectral elements and normal modes that we already mentioned in Sect. 4.3
(Capdeville, 2003a, b; Chaljub et al., 2003). The spectral-element solution is used
for the Earth’s mantle, and the normal mode solution is used for the core that is
assumed to be spherically symmetric.

15.2 Data Reduction

We propose to use two properties of most numerical wave equation solvers that
help us to reduce the numerical cost of a non-linear least-squares inversion: First,
because the wave field is computed at any location in the Earth, the numerical cost
of an inversion is independent of the number of receivers. Second, it is possible
to input several sources in the scheme and to trigger them simultaneously, without
increasing the numerical cost. Of course, the resulting traces on the receiver side will
be the sum of the traces due to each individual source and there is no possibility to
separate them once the computation is done. While we cannot recover the individual
synthetic seismograms after the computation, we can perform an equivalent stack of
data for common seismometers assuming a common origin time for all the events
and use this reduced data set instead of traces for individual events. The stacked data
are then directly comparable to the stacked synthetic seismograms. This operation is
possible thanks to the linearity of the wave equation with respect to seismic sources
which means that computing traces for one seismometer for each source separately
and then summing them is equivalent to computing one trace of all the sources
triggered simultaneously. Using this data reduction scheme, we can model the whole
data set with one simulation only. This is in contrast to the classical approach where
the number of simulations is equal to the number of events. Finally, we note that
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summing the traces with a common zero time is not necessary (i.e. the sources can
be staggered in time), but it is used here in the interest of simplicity. Of course,
data reduction is not without drawbacks and some information that is contained in
individual seismograms will inevitably be lost in the summation process. Our hope
is that this loss of information will be compensated by exploiting all the information
present in a long time series for each trace.

15.3 The Source Stacked Inverse Problem

Our aim is to find an Earth model with the minimum number of parameters that
explains our seismic data set, as well as data not used in the inversion but obtained
under similar conditions. By Earth model, we mean the 3D variations of elastic
parameters, anelasticity and density. We wish to solve the inverse problem using a
classical least-squares inversion (Tarantola & Valette, 1982) and with a complete
modelling theory, for instance the spectral-element method applied to the wave
equation. In classical full waveform inversion, the data u are seismograms from
Ns events, recorded by Nr three-component seismometers yielding 3 × Ns × Nr

time series. Here, u is the stack of Ns seismic time traces recorded by Nr three-
component seismometers yielding 3 × Nr time series. When L is the explicit for-
ward modelling function for the Ns sources triggered at the same time, it allows us
to model the data for a given set of model parameters: u = L(m). In our case L
represents the coupled spectral-element method, which is able to compute an accu-
rate set of synthetics for nearly arbitrary models. We wish to minimise the classical
objective function

χ(m) = [L(m)− u] · C−1
u · [L(m)− u] + (m − m0) · C−1

m · (m − m0) , (15.1)

where m0 is the a priori value of the model parameters, and Cu and Cm are the
covariance matrices of the data and the model parameters, respectively. A model m
that minimises a similar objective functional for the unstacked data also minimises
the objective functional for the stacked data. The reverse, however, is not generally
true. We nevertheless wish to demonstrate that the optimal model for the stacked
inverse problem is close to the optimal model for the unstacked inverse problem for
physically meaningful cases. In the tests presented in this chapter, we show that the
method indeed converges, under specific circumstances, towards the target model
used to generate the synthetic data set. Therefore, the optimal model for the stacked
objective functional is very close to the optimal model for the unstacked objective
functional. For the geophysical exploration scale, Krebs et al. (2009) and Ben Hadj
Ali et al. (2009b) have shown that the optimal model for the stacked case is slightly
different from the optimal model for the unstacked objective functional, but still
close enough.

As L is non-linear with respect to m, the minimum of χ needs to be approximated
by an iterative optimisation scheme such as the Gauss–Newton method (Tarantola
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& Valette, 1982). Given the model at iteration i , we can obtain the model at iteration
i + 1 as follows:

mi+1 = mi +
(

G†
i · C−1

u · Gi + C−1
m

)−1 [
G†

i · C−1
u · (u − L(mi ))− C−1

m (mi − m0)
]
,

(15.2)
where Gi is the partial derivative matrix

Gi = ∇mL|m=mi . (15.3)

Usually, the forward problem is solved using first-order approximations such as, for
example, the Born approximation within the normal mode framework (e.g. Wood-
house & Dziewonski, 1984) or arrival time Fréchet kernels (e.g. Dahlen et al., 2000).
This leads to a linear relation matrix (G0) between the set of parameters and the
synthetic data. In that case, only one iteration of (15.2) is required and the partial
derivative matrix is built within the forward at a relatively low numerical cost. Some
tomographic approaches are slightly non-linear (e.g. Li & Romanowicz, 1996) but
are still based on the Born approximation. They also have the advantage of providing
naturally the partial derivative matrix with no extra numerical cost, at least at the a
priori model stage (i = 0). When the spectral-element method is used, the partial
derivative matrix or sensitivity kernels cannot be computed naturally, but we can use
either a ‘brute force’ finite-difference formulation or the adjoint solutions. For the
simple tests here, the brute force solution is possible but is not an option for more
realistic cases. In this chapter we use both the brute force solution and the adjoint
solution, but with normal modes (Capdeville, 2005) and not with spectral elements.

15.4 Validation Tests

In this section, we present several numerical experiments to assess the robustness
of the inversion when the stack data reduction is applied. The tests are circular in
the sense that the ‘data’ to be inverted are generated with the same forward the-
ory as the one used to invert. We name the model used to generate the data to be
inverted the input model or the target model. These tests only provide information
on the ability of the process to converge towards the solution under specific cir-
cumstances (e.g. amplitude of velocity contrast, data coverage, presence of noise ).
They do not provide information on the behaviour of the inversion in the case of
an incomplete theory, like, for example, how an isotropic inversion would map an
anisotropic medium or how high-degree horizontal spherical harmonics components
(or equivalent) would leak or alias into a low-degree inversion. Nevertheless, the
tests provide valuable information on the feasibility of the process. At least if the
synthetic inversions failed, there would be little hope that it will ever succeed in
realistic cases.

In the following tests, no damping is applied (Cu = I and C−1
m = 0), so that the

least-squares inversion process from Eq. (15.2) simplifies to
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mi+1 = mi + (G†
i · Gi )

−1 · [Gi · (u − L(mi ))] . (15.4)

In order to limit the numerical cost of these experiments, only G0 will be computed
and will be used instead of Gi at iteration i . We will see that this approximation
does not hinder the convergence, at least for these tests. Note that if the starting
model is spherically symmetric, normal mode perturbation theory provides an exact
and computationally efficient solution for G0 (Woodhouse, 1983). The normal mode
method used to compute G0 is very close to the adjoint method and is presented in
Capdeville (2005). Of course, this normal mode perturbation approach is an option
only when the starting model is spherically symmetric, which may not be desirable
with the present level of sophistication in tomography. Nevertheless, an interesting
possibility for 3D starting models may be to combine the adjoint problem solution
to compute an accurate gradient of the cost function and normal mode perturbation
theory to compute the approximate Hessian (G†

i · Gi ).

15.4.1 Parameterisation

Instead of spherical harmonics or block parameterisation, we use piecewise polyno-
mials as in our spectral-element discretisation (Sadourny, 1972; Ronchi et al., 1996;
Chaljub et al., 2003). The sphere is discretised in non-overlapping elements and
each of these elements can be mapped onto a reference cube. On the reference cube,
a polynomial basis is generated by the tensor product of a 1D polynomial basis of
degree ≤N in each direction. The continuity of the parameterisation between ele-
ments is assured. More details on this discretisation mesh can be found in Chaljub
et al. (2003). Figure 15.1 presents the mesh of the sphere used for this parame-
terisation with a polynomial degree N = 2. The number of free parameters is
274, which roughly corresponds to a spherical harmonic degree 8 horizontally in
the upper mantle and a degree 4 horizontally in the lower mantle. In practice, this
parameterisation may not be a good choice, because parameters at the corner of
elements have a different spatial spectral content than parameters at the centre of an
element. However, for the tests presented here, as the input model is represented on
the same mesh as the inversion mesh, this choice does not affect the results.

15.4.2 Experiment Setup and Input Models

The following experiments have been carried out with the mesh from Fig. 15.1 and
only the S wave speed, vS, has been inverted. We choose a realistic source-receiver
configuration of 84 well-distributed events recorded at 174 three-component stations
of the IRIS and GEOSCOPE networks. This source–receiver geometry is shown in
Fig. 15.2.

The corner frequency is 1/160 Hz and each trace has a duration of 12,000 s. For
each test, the starting model is the spherically symmetric PREM (Dziewonski &
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Fig. 15.1 View into the mesh
of the sphere used to
parameterise the velocity
model. The number of free
parameters is 274

Fig. 15.2 Sources (stars) and receivers (diamonds) used to test the inversion process for the
reduced data set. Waveforms from 84 earthquakes recorded at 174 three-component stations are
used

Anderson, 1981). The partial derivative matrix G0 is therefore the same for all tests
and requires 275 spectral-element runs to be built, which is moderate in terms of
numerical cost.

Two input models will be used. For both of them, the reference background
model is PREM. To this we add a 3D vS velocity contrast field generated on the
same mesh as the one that will be used for the inversion (Fig. 15.1).

The first model, shown in Fig. 15.3 and named BIDON, is very simple: all param-
eters are set to zero except for one in the upper mantle and one in the lower mantle.
The maximum amplitude of the velocity perturbations, +9 %, is large compared to
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Fig. 15.3 Earth model BIDON. Only two parameters have a velocity contrast with respect to the
spherically symmetric reference model (PREM). The left panel shows maps at two different depths
and on the right is shown a 1D representation of the model where the S velocity contrast is plotted
as a function of the parameter number (from 1 to 274)

what we expect in the Earth for such a long spatial wavelength. In Fig. 15.3 (left)
we plot a depth cross section of the model and in Fig. 15.3 (right) we show the
vS perturbation as a function of the parameter number of the mesh, ranging from
1 to 274. This 1D representation does not provide a precise idea of what a map of
the model would actually look like, but it provides more accurate information on
the precision of the inversion than a geographical map. The parameter indices are
sorted such that the lower mantle is predominantly on the left side of the plot and
the upper mantle-predominantly on the right side of the plot. This provides some
information about the location of potential errors.

The second model, named SAW6 and shown in Fig. 15.4, is more realistic
than BIDON. It is derived from the tomographic model SAW24B16 (Mégnin &
Romanowicz, 2000), truncated at degree 6 and mapped onto the 274-parameter
mesh from Fig. 15.1. The maximum velocity contrast is much lower (around 3%)
than in BIDON which is typical of long-wavelength mantle heterogeneity. In this
case all the parameters have non-zero values, as can be seen in the right plot of
Fig. 15.4.

15.4.3 Test in a Simple Two-Parameter Model

Stacked data are generated with the coupled spectral-element method in the model
BIDON and are then inverted following the inversion scheme presented in the pre-
vious paragraphs. The results of the first three iterations of inversion are shown in
Fig. 15.5. The first iteration already gives a velocity contrast very close to the correct
value for the two parameters with non-zero velocity contrast, but for the other ones
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Fig. 15.4 Earth model SAW6. This model is derived from the tomographic model SAW26B16
(Mégnin & Romanowicz, 2000). Maps at two different depths (left) and the velocity contrast as a
function of the parameter number (right) are presented

Fig. 15.5 Inversion results for the three first iterations for data generated in model BIDON

(Fig. 15.3). The velocity contrast with respect to PREM is plotted as a function of the parameter
number. The input model is accurately retrieved after three iterations

the result is very noisy. The second iteration gives a much better result and the third
one has converged towards the correct result. This first experiment is satisfactory
and shows that the process can work, at least in simple models. The fact that the first
iteration is relatively far from the correct model is interesting because it means that
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a method based on the first-order Born approximation would give a very poor result
in that case. The non-linearity is strong enough to justify a non-linear scheme, but it
is weak enough to ensure convergence towards the right solution and not towards a
wrong local minimum model, and this without updating the partial derivative matrix
Gi at each iteration.

15.4.4 Tests in a Realistic Degree-6 Global Model

15.4.4.1 The Ideal Case

We now perform the same test but with data generated in the more realistic model
SAW6. Results of the first two iterations of the inversion are shown in Fig. 15.6. They
already reveal an acceptable convergence towards the input model for the second
iteration. The fast convergence compared to the first test can be explained by the
lower velocity contrast of the input model which implies smaller non-linear effects.
All model parameters, from the lower mantle to the surface, are well retrieved.

15.4.4.2 Influence of Noise

The purpose of this experiment is to assess the noise sensitivity of the inversion
scheme. This kind of test reflects the stability of the inversion, and in this experi-
ment, we are not in a favourable situation. In fact, data with periods of 160 s and
above have poor depth resolution, and to obtain very good results with such an

Fig. 15.6 Inversion results for the two first iterations for data generated in model SAW6 (Fig. 15.4).
After two iterations, the inversion result matches very well the input model for all model parameters
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experiment, one should use higher frequency data or decrease the number of verti-
cal parameters. We perform the test with the SAW6 input model and synthetic noise
added to the data. For this we generate a random signal corresponding to realistic
background noise in this frequency band (the noise spectrum has a slope from −175
to −165 dB in the 100–300 s period range) and for each event–station pair, stack
them and then add them to the synthetic data.

The result of the inversion is shown in Fig. 15.7. The noise affects the results of
the inversion, but the scheme is still able to retrieve the target model correctly. The
deepest parameters of the model are the most affected by noisy data which is not a
surprise knowing the poor sensitivity to deep layers of long-period data. Figure 15.8
shows that, despite the noise, the inversion is able to retrieve a model that explains
the data far beyond the noise level. The fact that we are able to fit the data so well,
even though the model is not perfect, is also due to the lack of depth sensitivity of
long-wavelength data.

Fig. 15.7 Inversion results after three iterations for the data generated in the model SAW6
(Fig. 15.4) and with noise added. The two maps show the result of the inversion (output model)
after three iterations when synthetic noise is added to the synthetic data. The lower plot shows the
vS velocity contrast on the input and output model as a function of the parameter number. Note that
the deep parameters are more affected by the noise than the ones close to the surface. The model
is nevertheless correctly retrieved by the inversion
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Fig. 15.8 Time series at station KIP: Noise added to the synthetic vertical-component data before
inversion (dotted line). Starting residual without noise, i.e. synthetic data without noise minus
synthetic for the reference model (solid line). Residual after two iterations, i.e. synthetic for the
output model minus synthetic for the starting model (bold line). The scheme fits the synthetic data
beyond the noise level, meaning that the amplitude of the last residual is smaller than the noise
amplitude

15.4.4.3 One-Station Inversion

We perform an extreme test to assess the ability of the process to recover information
in the case of very poor data coverage. To do so, we limit the number of receivers
to 1: the GEOSCOPE station KIP in Hawaii (Fig. 15.9). This time, no noise is added

Fig. 15.9 Data coverage used in the single-station test. The same number of events (84, plotted as
diamonds) as in the other tests is used, but with only one station (KIP)
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Fig. 15.10 Inversion results with only one station (KIP, see data coverage in Fig. 15.9) for synthetic
data generated in model SAW6 (Fig. 15.4) for iterations 1, 5 and 10. The convergence is slow, but
after 10 iterations, the output model matches the input model

to the traces. The input model is SAW6 (Fig. 15.4) and the results of the inversion
are shown in Fig. 15.10 in the 1D representation for iterations 1, 5 and 10. The
output model for the first iteration is very far from the input model, and at this
point it seems that the inversion scheme has no chance to recover it. However, after
10 iterations, the process finally converges towards the input model. It is impressive
that the process is still able to converge without updating the partial derivative matrix
G0 at any iteration. The conclusion of this experiment is that, what allows us to
retrieve the input model is not only the wide off-path sensitivity but also the non-
linearity or, in other words, the multiple scattering. Indeed, a Born theory with no
geometrical approximation has the same wide off-path sensitivity as a direct solution
method like the spectral-element method, but would give a wrong model (similar to
the one which is obtained at iteration one). Clearly, the inversion is in that case
highly unstable and a very high data precision is required to allow the inversion to
converge towards the right model. A one-station inversion for real data is unlikely
to be successful due to the presence of noise and physical processes not included in
the theory, such as anisotropy, attenuation, effects of atmospheric pressure.

15.4.4.4 Influence of Errors in the A Priori Moment Tensor

So far, a perfect knowledge of the source location, origin time and moment tensor
has been assumed. When applying the method to real data, this will not be the case
and significant errors on the source parameters can be expected. In order to partly
address this issue, we perform a test where the a priori moment tensors are incorrect,
but we keep the source locations and origin times perfectly known. This reflects



15.4 Validation Tests 293

the fact that, at least at very long periods, the location and origin time errors are
small compared to the wavelength. In this test we generate data in the SAW6 model
with each component of each a priori moment tensor randomly perturbed by up to
±30%. The moment tensors used to generate the partial derivatives and to compute
the forward modelling part of the inversion are therefore not the ones that have been
used to generate the synthetic data to be inverted.

The result of the inversion after three iterations is shown in Fig. 15.11. The
scheme can clearly not retrieve the input model. The unknown moment tensors
create large errors in the output model that cannot be overcome with the reduced
number of data. A solution to this problem can be to increase the number of data
and therefore, because the number of stations cannot be significantly increased, to
use multiple stacked data sets. Another solution is to simultaneously invert for both
the moment tensor and vS. In this case, a difficulty due to the stacked data set is
that, for sources close to each other, only the sum of these moment tensors can be
retrieved, but not individual moment tensors. If the primary goal of the inversion is
to retrieve vS, an accurate sum of the moment tensors of sources very close to each
other is enough, because it will give a correct prediction of the stacked displacement.
In fact, this is all we need for a vS tomography with stacked data. Now, if we are also
interested in individual moment tensors, a solution can be to separate sources in the
time domain by introducing time delays between close sources. Doing so, different
sources located at the same place will have a different effect on stacked data. In this
example, we will only focus on retrieving the vS field correctly. In the case of sources
very close to each other, we therefore wish to invert only for the sum of the moment
tensors. In order to do so, we generate partial derivatives of individual components
of moment tensors. The approximate Hessian matrix (G†

i · Gi ) for moment tensors
is then built, an eigenvalue analysis of this matrix is performed and only the 75%
largest eigenvalues are kept. This is equivalent to a damping that removes instabil-
ities, but it only affects the moment tensor inversion part. Of course the choice of
75% will prevent us from explaining the signal perfectly. Therefore, we expect a

Fig. 15.11 Inversion results after three iterations for data generated in model SAW6 (Fig. 15.4)
with error on the a priori moment tensors. To generate the data, a random perturbation of up to
±30% has been applied to each component of each moment tensor. The result of the inversion
(without inverting for sources) after three iterations (thin line) does not match the input model
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small error in the inverted S velocity field. Finally, we invert for vS and the moment
tensors jointly.

Figure 15.12 shows the result of the inversion. Thanks to the inversion for the
moment tensors, we are able to retrieve the input model very well. The remaining
errors are due to the 75% threshold on the eigenvalues for the source inversion.
Indeed, this choice is not optimal. Part of the signal is not explained, thus slightly
degrading the vS inversion.

15.5 Towards Real Cases: Dealing with Missing Data

The success of all preliminary tests encourages applications to real data. When
working with real data, however, a problem with the data reduction scheme imme-
diately appears: the missing data. Indeed when trying to gather data for a sufficient
number of events, say around 50, recorded at a large number of stations (around 80),

Fig. 15.12 The same test as the one presented in Fig. 15.11 with error on the a priori moment
tensors, but this time vS and the moment tensor have been inverted jointly. The maps show the result
of the inversion (output model) after three iterations. The lower plot shows the vS velocity contrast
on the input and output model as a function of the parameter number. When moment tensors are
inverted jointly with vS, the inversion is able to retrieve correctly the input model despite large
errors on a priori moment tensors



15.5 Towards Real Cases: Dealing with Missing Data 295

there are always between 10 and 20% of missing data whatever the configuration
is. This is true even for large events with magnitudes from 6.5 to 7. The reasons
why the data are sometimes not available at a given station vary from case to case,
but there are very few stations that have 100% availability for 50 events. For our
inversion scheme, missing data are a problem as it is easy to generate the sum of
all the data in one run but impossible to remove some of them without computing
each missing source individually. Since almost all sources are missing at least at
one station, removing missing data would require to perform a simulation for each
source, and it seems we are back at our starting point.

However, the sum of all the data ut can be separated into the sum of missing data
um and the sum of available data ua:

ut = ua + um. (15.5)

The total direct problem can also be separated into missing and available synthetic
parts:

Lt(m) = La(m)+ Lm(m) . (15.6)

The main difficulty is that there is no way to efficiently compute the partial derivative
matrices of La and Lm. Therefore trying to solve

La(m) = ua (15.7)

or

Lt(m)− Lm(m) = ua (15.8)

is not an option. On the other hand, solving

Lt(m) = ua + Lm(m) (15.9)

is possible because the partial derivative matrix of this last problem only depends on
the sum of all the data, the missing and the available ones. Nevertheless, since the
right-hand side of the last equation depends on m, it requires an iterative scheme.
This scheme is only interesting if we do not update the partial derivative matrix in
each iteration, but since we can expect only a small number of missing data, this
should not be a problem. The available solutions for Lm(m) are

• Lm = 0, meaning that the missing data are ignored,
• synthetics in the spherically symmetric model (Lm independent of m) with nor-

mal mode summation,
• synthetics in m with normal mode summation first-order perturbation,
• synthetics in m with the spectral element method.
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The first two solutions are numerically inexpensive but probably not very good,
depending on the amount of missing data. The third one is probably a good compro-
mise between numerical cost and precision and the last one is perfect but expensive.
An equally good solution for a finalised model may be to use normal mode per-
turbation theory during the iterative process of the inversion and spectral-element
synthetics in the last iteration.

To test the different strategies, we generate a data set for model SAW6 (Fig. 15.4),
by computing synthetic seismograms from each of the 84 sources individually. We
then randomly select the missing data among each source-receiver pair. The selected
data are not used in the construction of the stacked data set. We adopt a rather
extreme scenario with 35% of missing data, despite our experience with real cases
where it was possible to have around 15–20% of missing data when working with
50 sources and 90 vertical-component receivers. We then perform three inversions.
In the first one, the missing data are replaced with synthetic seismograms computed
in the starting spherically symmetric model. This solution is numerically interest-
ing because the scheme is still explicit: the data set completed with the synthetics
of missing data does not depend on the inverted model. The drawback is that the

Fig. 15.13 Inversion results after three iterations for data generated with model SAW6 (Fig. 15.4,
bold line) but with 35% of missing traces. The solution adopted to deal with the missing data in
this test is to replace the missing data by synthetics computed in the starting model (1D). They are
not updated during the iterative inversion. The result is noisy, as expected. The general features of
the input model are nevertheless retrieved
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final model cannot be accurate as the signature of the starting model will always be
present and cannot be corrected.

The result of this inversion is presented in Fig. 15.13. As expected, the result
is noisy, but the main features of the input model are still retrieved. In the second
inversion, the missing data are replaced by synthetic seismograms computed in the
current model (mi ) with the Born approximation in the normal modes framework
(Capdeville et al., 2000; Capdeville, 2005). This time the scheme becomes implicit
in the sense that the synthetics of missing data depend on the current model.

The output model is shown in Fig. 15.14. Compared to the previous inversion,
the result has significantly improved without being perfect. This is expected as the
first-order Born approximation is not very accurate especially when the time series
is long and when non-linear effects cannot be neglected.

We perform a final test where the missing data are replaced by synthetics com-
puted in the current model with the spectral-element method. This solution is CPU
time consuming as it requires to compute solutions for each source individually. To
reduce the numerical cost we start from the model obtained in the last iteration of
the previous test, and we perform only one extra iteration.

Fig. 15.14 The same as in Fig. 15.13, but the solution adopted to deal with the missing data is
to replace them by synthetics computed in the current 3D model with the Born approximation.
The 3D model is updated during the iterative inversion. The result is better as in the previous case
where the missing data were replaced by 1D synthetics
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Fig. 15.15 The same as in Fig. 15.13, but with the missing data replaced by synthetics computed
in the current model with spectral elements at iteration 4 starting from iteration 3 of the precedent
test (Fig. 15.14). The result (dotted line) is in a good agreement with the target model

The result is presented in Fig. 15.15. Input and output model agree remarkably
well, and only some more iterations would be required to obtain a precision similar
to the one achieved in scenarios with complete synthetic data sets. Nevertheless, the
result is already sufficiently accurate with respect to errors from noise or incomplete
knowledge of the seismic source.

15.6 Discussion and Conclusions

In this chapter, we presented a method for non-linear full waveform inversion on
the global scale, using the spectral-element method as a forward modelling tool and
a data reduction scheme that drastically reduces the computational requirements.
This scheme is based on the non-coherent trace stacking at a common receiver for a
common source origin time.

The difference between the method presented here (see also Capdeville
et al., 2005) and the one of Krebs et al. (2009) is the notion of source encoding.
The idea is to convolve each individual shot by a different time function before
stacking them. The expected result of the source encoding is to minimise possible
drawbacks of the stacking process which could occur when sources are very close to
each other, as is the case for typical configurations in exploration geophysics. Krebs
et al. (2009) showed that a good source encoding is simply to randomly multiply
each shot by +1 or −1 before stacking. The random sign of the source encoding
is also changed through the iteration of the non-linear inversion process. Note that
Capdeville et al. (2005) mentioned a similar idea by applying different time delays to
each source before stacking. It appears that for distant sources, this source encoding
process does not change much the converge rate and the result of the inversion.

The data reduction allows us to simulate the complete data set in one single
spectral-element run and therefore to reduce the number of computations by a factor
equal to the number of sources with respect to a classical approach. A series of tests
shows very promising results. The main advantage of the approach is that it allows
us to investigate global-scale full waveform inversion with comparatively moderate
computational resources. There is also a data selection and processing advantage.
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Phase identification, time picking or phase velocity measurements are not required,
which saves time and minimises human error.

Clearly, there are also drawbacks to this approach. One of them is that some
information is lost in the data reduction. Yet, all tomographic methods use some
data reduction scheme. Travel time tomography, for instance, uses only a limited
number of arrival times per trace, often only one or two. Here, we use traces of
12,000 s duration that contain a large amount of information, even at periods of 160 s
and above. We therefore hope that long traces compensate the loss of information
due to stacking.

If only one single stacked data set is used, there is a limit on the number of
sources, in the sense that additional sources do not contribute any new constraints.
This limit depends on the corner frequency and the length of the signal. When it is
reached, the only way to obtain more information on the model is to use multiple
stacked source data sets. This can be done by splitting the data set into two or more
subsets for which the stacked seismograms are computed. Through the repetition of
this splitting process, we will eventually converge towards the classical case where
all sources are considered individually.

Another drawback of the source stacking is that it does not allow us to select
specific time windows on traces in order to enhance some part of the signal with
respect to others, for instance, to separate body waves from each other and from
surface waves (e.g. Li & Romanowicz, 1996). Body waves have small amplitudes
but contain information about the lower mantle whereas surface waves have a large
amplitude but do not contain information about the lower mantle. As surface waves
will dominate the stacked signal, there is little chance to recover the lower mantle
before the upper mantle is very well explained. As we have seen, this was not a
problem in our tests. We were, however, in a fortunate situation where we knew
exactly what to invert for in order to explain the upper mantle. Thus, once the upper
mantle was explained, the lower mantle was easy to retrieve. In a realistic case, it
may be much more difficult, since we do not know for sure which elastic parameters
are required to explain surface waves well enough and therefore to be able to access
low-amplitude body waves and information about the lower mantle.

This last point leads to another difficulty that we will face in future work. What
physical parameters (elastic, anelastic, density, etc.) do we need to invert for and at
what resolution to explain our data set correctly? The resolution issue is not obvious:
A too low resolution for a given frequency content will lead to aliasing. Too high
resolution may lead to an unstable inversion scheme, as our data set may not have
the information to constrain all the parameters. An equally difficult question con-
cerns the number of physical parameters. Are vS fluctuations enough to explain our
data set? Probably not. Do we need vS, vP, density, anisotropy, 3D anelasticity and
perturbations in source parameters? What is the relative sensitivity of our data set to
those parameters? All these questions will need to be addressed in future work.

Finally, it is well known that the type of least-squares inversion can strongly
constrain the possible models. The theoretical alternative consists in the random
exploration of the model space. The numerical costs are, however, currently not
affordable. Nevertheless, questions on error bars and on what we may be missing in
the least-squares inversion will also need to be addressed in future work.



Appendix A
Mathematical Background for the
Spectral-Element Method

This appendix gives a brief introduction to the mathematical foundations of the
spectral-element method. It is far from being exhaustive but sufficient for most
practical purposes. For more complete treatments the reader is referred to Quarteroni
et al. (2000), Karniadakis & Sherwin (2005), Pozrikidis (2005) or Allaire (2007).

A.1 Orthogonal Polynomials

We consider a family of polynomials, pn , defined on the interval [a, b] ⊂ R and
where pn is of degree n ≥ 0. The polynomials are said to be orthogonal when any
of their mutual projections satisfies the condition

b∫

a

w(x)pn(x)pm(x) dx = Anδnm . (A.1)

The symbol w(x) denotes a positive weighting function, and An is a normalisa-
tion constant. Each integration weight together with particular integration limits
uniquely determines a family of orthogonal polynomials. The two families that
are most relevant in the context of the spectral-element method are the Legendre
polynomials and the Lobatto polynomials.
Legendre polynomials, denoted by Ln(x), are orthogonal with respect to the flat
integration weight w(x) = 1 and the integration interval [−1, 1]. In symbols

1∫

−1

Ln(x) Lm(x) dx = Anδnm . (A.2)

The Legendre polynomials are explicitly given by

Ln(x) = 1

2nn!
dn

dxn
(x2 − 1)n , (A.3)
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and they can be shown to satisfy the Legendre differential equation

d

dx

[
(x2 − 1)

d

dx
Ln(x)

]
= n(n + 1) Ln(x) . (A.4)

Lobatto polynomials, Lon(x), are defined in terms of the Legendre polynomials:

Lon(x) := d

dx
Ln+1(x). (A.5)

Thus, the Lobatto polynomials satisfy the differential equation

d

dx
[(x2 − 1)Lon−1(x)] = n(n + 1) Ln(x) . (A.6)

The Lobatto polynomials are the family that is orthogonal with respect to the inte-
gration weight w(x) = (1 − x2) and the integration interval [−1, 1]:

1∫

−1

(1 − x2) Lon(x) Lom(x) dx = Anδnm . (A.7)

In the following sections we will see that the roots of the Lobatto polynomials play
an important role in polynomial interpolation and numerical quadrature.

A.2 Function Interpolation

A.2.1 Interpolating Polynomial

Finite-element methods in general and the spectral-element method in particular use
interpolating functions for the representation of continuous functions that are known
exactly only on a finite set of collocation points or grid points. The properties of a
finite-element method depend strongly on the interpolation scheme.

Let f (x) be a function that is known at N + 1 data points xi , where i =
1, 2, . . . , N + 1. We want to interpolate the function at an arbitrary point x ∈
[x1, xN+1]. For this, we replace f (x) by an interpolating function g(x) that satisfies
the N + 1 interpolation or matching conditions

g(xi ) = f (xi ) , (A.8)

for i = 1, 2, . . . , N + 1. The properties of the interpolating function are chosen in
accordance with the requirements of a particular application. The most straightfor-
ward choice of an interpolating function g(x) is the polynomial of degree N ,
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PN (x) = a1x N + a2x N−1 + · · · + aN x + aN+1 . (A.9)

Applying the interpolation condition (A.8) to the representation of the N th-degree
polynomial (A.9) gives a set of N+1 linear equations for the polynomial coefficients
a1, a2, ..., aN+1:

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1
x1 x2 . . . xN xN+1
...

...
...

...
...

x N−1
1 x N−1

2 . . . x N−1
N x N−1

N+1
x N

1 x N
2 . . . x N

N x N
N+1

⎞
⎟⎟⎟⎟⎟⎠

T

·

⎛
⎜⎜⎜⎜⎜⎝

aN+1
aN
...

a2
a1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

f (x1)

f (x2)
...

f (xN )

f (xN+1)

⎞
⎟⎟⎟⎟⎟⎠
, (A.10)

where the symbol T indicates matrix transposition. The (N + 1) × (N + 1) matrix
on the left-hand side of Eq. (A.10) is the Vandermonde matrix, denoted by V . Com-
puting the solution of the system (A.10) via Cramer’s rule we find

ai = det Vi

det V
. (A.11)

The symbol Vi denotes the Vandermonde matrix where the ith row has been replaced
by the right-hand side of Eq. (A.10). By induction one can show that the Vander-
monde determinant is explicitly given by

det V =
N∏

i=1

N∏
j=i+1

(xi − x j ) . (A.12)

Thus, when the collocation points xi are mutually distinct, the Vandermonde matrix
is non-singular, and the interpolation problem is well posed.

When the Vandermonde determinant is small, small variations in the right-hand
side of Eq. (A.10) will result in large changes of the polynomial coefficients ai

and in large changes of the interpolated values between the collocation points. This
implies that numerical errors, e.g. discretisation errors, will have a smaller effect
when the Vandermonde determinant is large. The collocation points that maximise
the Vandermonde matrix are called Fekete points (see Sect. A.2.4).

A.2.2 Lagrange Interpolation

Lagrange interpolation allows us to find an interpolating polynomial without explic-
itly computing the coefficients of the monomials in Eq. (A.9). For this we introduce
the family of Nth-degree Lagrange polynomials
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�
(N )
i (x) :=

N+1∏
k=1,k �=i

x − xk

xi − xk
, i = 1, 2, . . . , N + 1 . (A.13)

The Lagrange polynomials satisfy the cardinal interpolation property

�
(N )
i (x j ) = δi j . (A.14)

With the definition (A.13), the interpolating polynomial, PN (x), takes the form

PN (x) =
N+1∑
i=1

f (xi )�
(N )
i (x) . (A.15)

The Lagrange interpolation is, by construction, exact when f (x) is a polynomial of
degree ≤ N . Choosing, as a special case, f (x) = (x − a)m , where a is a constant
and m = 0, 1, . . . , N , gives

(x − a)m =
N+1∑
i=1

(xi − a)m�(N )i (x) . (A.16)

For m = 0 we obtain the first Cauchy relation

1 =
N+1∑
i=1

�
(N )
i (x) , (A.17)

and for a = x the second Cauchy relation

0 =
N+1∑
i=1

(xi − x)m�(N )i (x) . (A.18)

The Cauchy relations (A.17) and (A.18) will play an important role in the following
paragraphs. As an alternative to the definition (A.13), we can represent the Lagrange
polynomials in terms of the generating polynomial

�N+1(x) :=
N+1∏
i=1

(x − xi ) = (x − x1)(x − x2) · · · · · (x − xN+1) . (A.19)

Differentiating (A.19) and substituting the result into (A.13) gives the identity

�
(N )
i (x) = 1

(x − xi )

�N+1(x)

�̇N+1(xi )
. (A.20)
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The dot in Eq. (A.19) denotes a differentiation with respect to the independent vari-
able x . Equation (A.20) can be used to derive expressions for the derivatives of the
Lagrange polynomials, �̇(N )i , at the collocation points x j :

�̇
(N )
i (x j ) =

⎧⎨
⎩

1
(x j −xi )

�̇N+1(x j )

�̇N+1(xi )
if xi �= x j

�̈N+1(xi )

2�̇N+1(xi )
if xi = x j .

(A.21)

For our discussion of interpolation errors and Fekete points we will need a represen-
tation of the Lagrange polynomials in terms of the Vandermonde matrix. For this,
we set a = 0 in Eq. (A.16) and obtain a set of N + 1 equations − one for each
m = 0, 1, . . . , N :

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1
x1 x2 . . . xN xN+1
...

...
...

...
...

x N−1
1 x N−1

2 . . . x N−1
N x N−1

N+1
x N

1 x N
2 . . . x N

N x N
N+1

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

�
(N )
1 (x)

�
(N )
2 (x)
...

�
(N )
N (x)

�
(N )
N+1(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1
x
...

x N−1

x N

⎞
⎟⎟⎟⎟⎟⎠
. (A.22)

Applying Cramer’s rule to the linear system (A.22) gives explicit expressions for
the Lagrange polynomials:

�
(N )
i (x) = det V (xi = x)

det V
. (A.23)

Having introduced the basic concepts of polynomial interpolation, we will now con-
sider suitable choices of the collocation points xi .

A.2.3 Lobatto Interpolation

In Sect. A.2.1 we already mentioned that it is desirable to use Fekete points as col-
location points for polynomial interpolation. To systematically derive Fekete points,
we first have to introduce Lobatto interpolation as a special case of Lagrange inter-
polation.

Without loss of generality, we restrict our attention to the interval [−1, 1]. For a
given set of collocation points xi , with i = 1, 2, . . . , N + 1, the Lagrange polyno-
mials satisfy the cardinal interpolation property �(N )i (x j ) = δi j . In addition to this
mandatory condition we shall now require that the collocation point distribution is
such that the N − 1 optional conditions

�̇
(N )
i (xi ) = 0 (A.24)
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are satisfied for i = 2, 3, . . . , N , i.e. for the internal nodes. Property (A.24) ensures
that the Lagrange polynomial �(N )i (x) reaches a local maximum value of 1 at the
internal collocation point xi . Interestingly, this additional requirement uniquely
specifies the internal node points as the roots of the Lobatto polynomial LoN−1(x).
To prove this statement, we first note that condition (A.24) together with Eq. (A.21)
implies that the second derivative of the generating polynomial, �N+1(x) vanishes
at the node points xi , with i = 2, 3, . . . , N :

�̈N+1(xi ) = 0 , (A.25)

Since �̈(x) is a polynomial of degree N −1 that vanishes at the internal node points,
just as �N+1(x) itself, we must have

�̈N+1(x) = c
�N+1(x)

(x − 1)(x + 1)
= −c

�N+1(x)

(1 − x2)
, (A.26)

where c is a constant. Equation (A.26) holds because a polynomial is uniquely deter-
mined by its zeros. The coefficient of the highest power monomial x N+1 of �N+1
is equal to 1. This implies c = N (N + 1), and therefore

(1 − x2)�̈N+1(x)+ N (N + 1)�N+1(x) = 0 . (A.27)

The generating polynomial satisfies the differential equation (A.27). From Eqs.
(A.4) and (A.5) we infer that the solution of (A.27) is

�N+1(x) = a (x2 − 1) L̇ N (x) = a (x2 − 1) LoN−1(x) , (A.28)

where a is a normalisation constant. Thus, the collocation points that satisfy the
optional condition (A.24) are the roots of the completed Lobatto polynomial

Loc
N−1(x) := (1 − x2) LoN−1(x) . (A.29)

They are commonly referred to as Gauss–Lobatto–Legendre points (GLL points).
Figure A.1 shows the Lagrange polynomials of degree 3–6 with the GLL points as
collocation points.

Using the GLL points for polynomial interpolation has an important conse-
quence: The absolute values of the corresponding Lagrange polynomials are smaller
or equal to 1; in symbols

|�(N )i (x)| ≤ 1 , x ∈ [−1, 1] . (A.30)

This property is interesting in the context of Runge’s phenomenon. Runge’s phe-
nomenon, illustrated in Fig. A.2, consist in the overshooting of high-order inter-
polants near the edges of the interpolation interval when equidistant collocation
points are used. This undesirable effect can be avoided with Lobatto interpolation.
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Fig. A.1 The Lagrange polynomials of degree 3–6. The collocation points, indicated by vertical
lines, are the Gauss–Lobatto–Legendre (GLL) points

Fig. A.2 Illustration of Runge’s phenomenon. Runge’s function, f (x) = (1 + ax)−1, with a = 3
is plotted as a solid curve and the interpolants as dashed curves. The interpolation of Runge’s
function with equidistant collocation points (left) leads to a strong overshooting of the interpolant
near the edges of the interval [−1, 1]. This undesirable effect can be suppressed by choosing the
GLL points as collocation points (right)

The possibility to suppress Runge’s phenomenon is essential for the use of high-
order interpolation in the spectral-element method.

To prove relation (A.30) we consider the 2N -degree polynomial

Q2N (x) :=
[
�
(N )
1 (x)

]2 +
[
�
(N )
2 (x)

]2 + · · · +
[
�
(N )
N+1(x)

]2 − 1 . (A.31)

The cardinal interpolation property ensures that
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Q2N (xi ) = 0 , i = 1, 2, . . . , N + 1 . (A.32)

Evaluating the derivative of Q2N (x) at the internal collocation points gives

Q̇2N (x j ) = 2
N+1∑
i=1

�̇
(N )
i (x j )�

(N )
i (x j ) , (A.33)

and in the light of the optional condition (A.24)

Q̇2N (x j ) = 0 , j = 2, 3, . . . , N . (A.34)

Equations (A.32) and (A.34) imply that the internal collocation points are double
roots of Q2N (x). We can therefore express Q2N (x) in terms of the generating poly-
nomial, �N+1(x) as follows:

Q2N (x) = d
�2

N+1(x)

(x + 1)(x − 1)
= −d

�2
N+1(x)

(1 − x2)
, (A.35)

where d is a constant. Substituting (A.28) into (A.35) yields

Q2N (x) = −b (1 − x2) Lo2
N−1(x) , (A.36)

with a new constant b. To determine b, we evaluate Q̇2N at the collocation point
x = 1 with the help of Eq. (A.21):

Q̇2N (1) = 2�̇(N )N+1(1) = �̈N+1(1)

�̇N (1)
. (A.37)

Again substituting a (x2 − 1) LoN−1(x) for �N+1(x) gives

Q̇2N (1) = ∂2
x [(x2 − 1) LoN−1(x)]
∂x [(x2 − 1) LoN−1(x)]

∣∣∣∣
x=1

. (A.38)

The differential equation (A.6) satisfied by the Legendre and Lobatto polynomials
allows us to simplify (A.38):

Q̇2N (1) = LoN−1(1)

L N (1)
. (A.39)

The Legendre polynomials are normalised such that L N (1) = 1, and for the Lobatto
polynomials evaluated at x = 1 we infer from (A.6)

N (N + 1) L N (1) = N (N + 1) = 2x LoN−1(x)|x=1 + (x2 − 1) ∂x LoN−1(x)|x=1

= 2LoN−1(1) . (A.40)
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Thus, we have

Q̇2N (1) = 1

2
N (N + 1) . (A.41)

Directly differentiating (A.36) yields

Q̇2N (1) = 2b Lo2
N−1(1) = 1

2
bN 2(N + 1)2 , (A.42)

and therefore

b = 1

N (N + 1)
. (A.43)

Combining (A.36) and (A.43) gives the final expression of Q2N (x) in terms of the
generating polynomial:

Q2N (x) = − 1 − x2

N (N + 1)
Lo2

N−1(x) . (A.44)

Equation (A.44) implies Q2N (x) ≤ 0 and therefore

N+1∑
i=1

[�(N )i (x)]2 ≤ 1 . (A.45)

Thus, the relation |�(N )i (x)| ≤ 1 holds for each individual �(N )i (x).

A.2.4 Fekete Points

Fekete points are the collocation points that maximise the Vandermonde determinant
(see Sect. A.2.1). Taking the Fekete points as collocation points ensures that small
variations of the f (xi )− due for example to numerical inaccuracies or measurement
errors − result in the smallest possible variations of the interpolated values between
the grid points. In this paragraph we demonstrate that the GLL points are the Fekete
points of the Vandermonde determinant. The grid points x1 = −1 and xN+1 = 1
are assumed fixed.

The argument is very simple: Inside the interval [−1, 1] the Lagrange polynomi-
als are smaller than or equal to 1 (relation (A.30)), provided that the internal collo-
cation points are the zeros of LoN−1(x). The cardinal interpolation property ensures
that �(N )i (xi ) = 1. Therefore, the Lagrange polynomial �(N )i (x), with i between 2

and N − 1, reaches a local maximum at x = xi . Thus, we have �̇(N )i (xi ) = 0.
(This is just the optional condition (A.24).) Using the expression of the Lagrange
polynomials in terms of the Vandermonde determinant (Eq. A.23) yields
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d

dx
�
(N )
i (x)|x=xi = d

dx

det V (xi = x)

det V

∣∣∣∣
x=xi

= 1

det V

d

dxi
det V = 0 , (A.46)

for i = 2, 3, . . . , N − 1, and therefore

d

dxi
V = 0 , i = 2, 3, . . . , N − 1 . (A.47)

Since the internal collocation points are local maxima, we also have

0 >
d2

dx2
�
(N )
i (x)|x=xi = d2

dx2

det V (xi = x)

det V

∣∣∣∣∣
x=xi

= 1

det V

d2

dx2
i

det V , (A.48)

for i = 2, 3, . . . , N − 1, and

d2

dx2
i

det V < 0 , i = 2, 3, . . . , N − 1 . (A.49)

Relations (A.47) and (A.49) imply that the zeros of LoN−1(x) are indeed the Fekete
points. The maximum of the Vandermonde matrix is global, but a proof of this
statement is clearly beyond the scope of this brief overview (see Szegö, 1975).

A.2.5 Interpolation Error

We consider the max norm of the interpolation error e(x):

||e(x)||∞ := max
x∈[a,b] | f (x)− PN ( f, x)| . (A.50)

In Eq. (A.50) the dependence of the interpolating polynomial PN on the function
f (x) is made explicit through the notation PN = PN ( f, x). Of all Nth-degree poly-
nomials approximating the function f (x), there is an optimal polynomial Popt

N ( f, x)
such that ||e(x)||∞ is minimal. This minimal value of ||e(x)||∞ is the minimax
error, denoted by εN . The optimal polynomial Popt

N ( f, x) is not necessarily an
interpolating polynomial. The max norm ||e(x)||∞ is related to the minimax error
εN through the relation

||e(x)||∞ = ||PN ( f, x)− f (x)||∞ = ||PN ( f, x)− Popt
N ( f, x)+ Popt

N ( f, x)− f (x)||∞
≤ ||PN ( f, x)− Popt

N ( f, x)||∞ + ||Popt
N ( f, x)− f (x)||∞

= ||PN ( f, x)− Popt
N ( f, x)||∞ + εN . (A.51)

The first summand can be transformed as follows:
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||PN ( f, x)− Popt
N ( f, x)||∞ = ||PN ( f, x)− PN (P

opt
N , x)||∞

≤ ||PN ||∞|| f (x)− Popt
N ( f, x)||∞ = ||PN ||∞εN .

(A.52)

In Eq. (A.52) PN is interpreted as an operator that acts on the function f (x), and
||PN ||∞ is the operator norm of PN . For a fixed set of collocation points, PN is
linear in f (x) because the polynomial coefficients are linear functions of the data
values f (xi ). Combining (A.51) and (A.52) gives

||e(x)||∞ ≤ (1 + ||PN ||∞) εN . (A.53)

The max norm of the interpolation operator, ||PN ||∞, can be expressed in terms of
the Lagrange polynomials:

||PN ||∞ = sup
f

||PN ( f, x)||∞
|| f (x)||∞ = sup

f

||∑N+1
i=1 f (xi )�

(N )
i (x)||∞

|| f (x)||∞

= sup
f

maxx∈[a,b] |∑N+1
i=1 f (xi )�

(N )
i (x)|

maxx∈[a,b] | f (x)| ≤ max
x∈[a,b]

∣∣∣∣∣
N+1∑
i=1

�
(N )
i (x)

∣∣∣∣∣

≤ max
x∈[a,b]

N+1∑
i=1

|�(N )i (x)| . (A.54)

The function

L N (x) :=
N+1∑
i=1

|�(N )i (x)| (A.55)

is the Lebesgue function and its max norm, denoted by �N , is the Lebesgue con-
stant. Using this terminology, Eq. (A.53) can be transformed to

||e(x)||∞ ≤ (1 +�N ) εN . (A.56)

Relation (A.56) reveals that there are two separate contributions to the interpolation
error: (1) The minimax error εN depends only on the smoothness of the function
f (x). Smooth functions produce smaller minimax errors than rough functions. We
will not further consider the influence of εN because we have no freedom of choice
concerning the function that we need to interpolate. (2) The Lebesgue constant,�N ,
depends only on the locations of the collocation points. It is desirable to choose the
collocation points such that �N is minimised.

The dependence of the Lebesgue constant on the polynomial order has received
much attention in the literature. (See Hesthaven (1998) for a summary of impor-
tant results.) When the collocation points are equidistant, the associated Lebesgue
constant, �equi

N , can be shown to exhibit the asymptotic behaviour
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�
equi
N ∼ 2N

N log N
. (A.57)

This renders high-order polynomial interpolation with equidistant nodes practically
useless. That the Lebesgue constant cannot be made arbitrarily small is the content
of Erdös’ theorem. It states that

�N >
2

π
log(N + 1)− c , (A.58)

where c is a positive constant. This holds for any set of collocation points. A nearly
logarithmic growth of �N can be achieved when the roots of the Chebyshev poly-
nomials are used as collocation points. For the GLL points we infer from Eq. (A.30)
that

(
LGLL

N

)2 =
(

N+1∑
i=1

|�(N )i (x)|
)2

≤
N+1∑
i=1

|�(N )i (x)|2 ≤ N + 1 , (A.59)

and therefore

�GLL
N ≤ √

N + 1 . (A.60)

The estimate (A.60) seems to be too pessimistic in practice. Based on numerical
experiments, Hesthaven (1998) conjectures that �GLL

N is bounded as

�GLL
N ≤ 2

π
log(N + 1)+ 0.685 . (A.61)

Thus, the Lebesgue constant associated with the GLL points is nearly optimal.

A.3 Numerical Integration

The following paragraphs are concerned with the derivation of numerical quadrature
formulas that are used in the context of the spectral-element method. The general
strategy is to replace the function that we wish to integrate, f (x), by an interpolating
polynomial and to solve the resulting integral analytically.

A.3.1 Exact Numerical Integration and the Gauss Quadrature

Consider the weighted integral of a degree-(2N + 1) polynomial Q2N+1

b∫

a

w(x)Q2N+1(x) dx , (A.62)
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where w(x) is a positive weighting function. We can write Q2N+1 as the sum of
a degree-N polynomial PN (x) that interpolates Q2N+1 at the collocation points
x1, x2, . . . , xN+1 and another polynomial of degree 2N + 1:

Q2N+1(x) = PN (x)+ RN (x) (x − x1)(x − x2) · · · · · (x − xN+1) . (A.63)

The polynomial RN (x) is of degree N . We are interested in the integration error,
ε, incurred by replacing the degree-(2N + 1) polynomial Q2N+1 by the degree-N
polynomial PN (x):

ε =
b∫

a

w(x)Q2N+1(x) dx −
b∫

a

w(x)PN (x) dx =

=
b∫

a

w(x)RN (x) (x − x1)(x − x2) · · · · · (x − xN+1) dx . (A.64)

The integration error is equal to zero when the N + 1 collocation points xi are
the roots of the degree-(N + 1) orthogonal polynomial pN+1(x) that corresponds
to the integration weight w(x). To prove this assertion, we note that pN+1(x) is
proportional to (x − x1)(x − x2) · · · · · (x − xN+1) when each xi is a root of pN+1(x).
Therefore, we have

(x − x1)(x − x2) · · · · · (x − xN+1) = c pN+1(x) , (A.65)

where c is a constant. The degree-N polynomial RN (x) can be expressed through
the orthogonal polynomials up to degree N :

RN (x) =
N∑

i=1

ci pi (x) . (A.66)

The numbers ci , with i = 1, 2, . . . , N , are the expansion coefficients. Combining
Eqs. (A.64), (A.65) and (A.66) and using the orthogonality of the polynomials pi (x)
yields

ε =
N∑

i=1

c

b∫

a

ci pi (x)pN+1(x) dx = 0 . (A.67)

Thus, we can integrate a degree-(2N + 1) polynomial exactly with only N + 1
collocation points, given that the collocation points are the roots of the degree-(N +
1) orthogonal polynomial that corresponds to the integration weight w(x).

In the case where f (x) is any function, not necessarily a polynomial, we can
construct working formulas that approximate the integral. For this, we replace f (x)
by its interpolating polynomial



314 A Mathematical Background for the Spectral-Element Method

PN (x) =
N+1∑
i=1

f (xi )�
(N )
i (x) (A.68)

and introduce this approximation into the weighted integral:

b∫

a

w(x) f (x) dx ≈
b∫

a

w(x)PN (x) dx =
N+1∑
i=1

wi f (xi ) . (A.69)

The integration weights, wi , are independent of f (x):

wi =
b∫

a

w(x)�(N )i (x) dx . (A.70)

Even when f (x) is not a polynomial, the collocation points should be the roots
of an orthogonal polynomial, simply because f (x) is closer to a degree-(2N + 1)
polynomial than to a degree-N polynomial. Equation (A.69) is known as Gauss
quadrature rule.

A.3.2 Gauss–Legendre–Lobatto Quadrature

A disadvantage of the Gauss quadrature − especially in the context of the spectral-
element method − is that the roots of orthogonal polynomials are generally located
inside the integration interval [a, b] but never directly on its boundaries. Explicitly
imposing the requirement that two collocation points coincide with the boundaries
leads to Gauss–Lobatto–Legendre (GLL) quadrature formulas.

In the interest of simplicity we consider the integration interval [−1, 1] and the
flat weighting function w(x) = 1. The integral over a degree-(2N − 1) polynomial
Q2N−1 is then

1∫

−1

Q2N−1(x) dx . (A.71)

Following the developments of the previous section, we decompose Q2N−1 into an
interpolating polynomial of degree N and a polynomial of degree 2N − 1:

Q2N−1(x) = PN (x)+ RN−2(x) (x + 1)(x − x2) · · · · · (x − xN )(x − 1) . (A.72)

The collocation points −1 and 1 are now imposed explicitly. For the integration
error we find
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ε = −
1∫

−1

(1 − x2) RN−2(x) (x − x2)(x − x3) · · · · · (x − xN ) dx . (A.73)

To make ε vanish, we need to choose the N − 1 internal collocation points
x2, x3, . . . , xN such that they are the roots of the degree-(N −1) orthogonal polyno-
mial that corresponds to the integration weight (1 − x2), i.e. to the Lobatto polyno-
mial LoN−1. Thus, a polynomial of degree 2N − 1 can be integrated exactly when
replaced by the degree-N interpolating polynomial PN (x). The collocation points
are −1, 1 and the N − 1 roots of the Lobatto polynomial LoN−1.

In the case of an arbitrary function f (x), we approximate the integral over f (x)
with the integral over the interpolating polynomial PN (x):

1∫

−1

f (x) dx ≈
1∫

−1

PN (x) dx =
N+1∑
i=1

wi f (xi ) , (A.74)

The integration weights, wi , are

wi =
1∫

−1

�
(N )
i (x) dx . (A.75)

Equation (A.74) is referred to as Gauss–Lobatto–Legendre quadrature rule.
Table A.1 summarises the collocation points and integration weights for the GLL
quadrature and the polynomial degrees that are most frequently used in spectral-
element simulations: 4–7.

Table A.1 Collocation points and integration weights for the GLL quadrature and the polynomial
degrees 4–7

Polynomial degree Collocation points Integration weights
4 0 0.7111111111

±0.6546536707 0.5444444444
±1 0.1

5 ±0.2852315164 0.5548583770
±0.7650553239 0.3784749562

±1 0.0666666666
6 0 0.4876190476

±0.4688487934 0.4317453812
±0.8302238962 0.2768260473

±1 0.0476190476
7 ±0.2092992179 0.4124587946

±0.5917001814 0.3411226924
±0.8717401485 0.2107042271

±1 0.0357142857



Appendix B
Time–Frequency Transformations

We briefly review some of the principal definitions and results from time–frequency
analysis. The emphasis will be on the definition of time–frequency transforms and
the derivation of their inverses. For an excellent overview of time–frequency analy-
sis, the reader is referred to Strang & Nguyen (1996). Throughout the text we work
with the following definition of the Fourier transform of a function f :

f̃ (ω) := F[ f ](ω) := 1√
2π

∫
R

f (t)e−iωt dt. (B.1)

where i = √−1 denotes the imaginary unit. The inverse Fourier transform corre-
sponding to (B.1) is

f (t) = F−1[ f̃ ](t) = 1√
2π

∫
R

f̃ (ω)eiωt dω. (B.2)

For any two Fourier-integrable functions f and g we obtain Parseval’s relation by
combining Eqs. (B.1) and (B.2):

( f̃ , g̃) =
∫

R

f̃ (ω)g̃∗(ω) dω = 1

2π

∫
R

[∫
R

f (t)e−iωt dt

] [∫
R

g∗(τ )eiωτ dτ

]
dω

= 1

2π

∫
R

∫
R

f (t)g∗(τ )
∫

R

eiω(τ−t) dω dt dτ

=
∫

R

∫
R

f (t)g∗(τ ) δ(τ − t) dτ dt =
∫

R

f (t)g∗(t) dt = ( f, g) . (B.3)

The symbol g∗ denotes the complex conjugate of g. Parseval’s relation states that
the scalar product of f and g in the time domain is equal to the scalar product of f̃
and g̃ in the frequency domain. Plancherel’s formula follows immediately by setting
f = g:

|| f̃ ||2 = || f ||2 . (B.4)

317



318 B Time–Frequency Transformations

The Fourier transform has zero time resolution. This means, in a seismological
context, that the spectrum f̃ (ω) of a seismogram f (t) does not contain any infor-
mation about the time localisation of different waveforms (e.g. body and surface
waveforms) and their respective frequency content. To overcome this deficiency
we define the windowed Fourier transform of a function f in terms of the regular
Fourier transform of f (τ )h∗(τ − t), where h is a sliding window:

f̃h(t, ω) := Fh[ f ](t, ω) := 1√
2π ||h||2

∫
R

f (τ )h∗(τ − t)e−iωτ dτ. (B.5)

The energy of the window h,

||h||2 =
√∫

R

h(t) h∗(t) dt, (B.6)

is assumed to be finite. We note that the use of h∗ instead of h in the definition
(B.5) is a common convention in time frequency analysis. The windowed Fourier
transform has non-zero time resolution because it provides the spectrum of individ-
ual waveforms that have been isolated by the multiplication of the seismogram f
with the sliding window function h. By defining a time shift operator Tt through
Tth(τ ) = h(τ − t), we can express Fh in terms of F :

Fh[ f ](t, ω) = 1

||h||2 F[ f Tth
∗](ω) . (B.7)

Making use of Parseval’s relation for the Fourier transform (B.3) we can then derive
a similar result for the windowed Fourier transform:

( f̃h, g̃h) =
∫

R2
Fh[ f ](t, ω)F∗

h [g](t, ω) dt dω

= 1

||h||22

∫
R2

F[ f Tth
∗](ω)F∗[gTth

∗](ω) dt dω

= 1

||h||22

∫
R2

f (τ )h∗(τ − t)g∗(τ )h(τ − t) dτ, dt

= 1

||h||22

∫
R2

f (τ )g∗(τ )|h(τ − t)|2 dt dτ =
∫

R

f (τ )g∗(τ ) dτ = ( f, g) .

(B.8)

Setting f = g gives an analogue of Plancherel’s formula: || f̃h ||2 = || f ||2. From
(B.8) we can derive an expression for the inverse of the windowed Fourier transform.
For this, we write
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∫
R

f (t)g∗(t) dt =
∫

R2
Fh[ f ](τ, ω)F∗

h [g](τ, ω) dτ dω

= 1√
2π ||h||2

∫
R2

Fh[ f ](τ, ω)
∫

R

g∗(t)h(t − τ)eiωt dt dτ dω

= 1√
2π ||h||2

∫
R

[∫
R2

Fh[ f ](τ, ω)h(t − τ)eiωt dτ dω

]
g∗(t) dt .

(B.9)

Since g can be any function, we deduce that the inverse F−1
h of Fh is given by

f (t) = F−1
h [ f̃h](t) = 1√

2π ||h||2

∫
R2

Fh[ f ](τ, ω)h(t − τ)eiωt dω dτ . (B.10)

Computing the inverse time–frequency transform therefore requires an integration
over both time and frequency. Another important result can be derived by invoking
Parseval’s relation for the regular Fourier transform: Defining gω,t (τ ) := h(τ − t)
eiωτ gives

Fh[ f ](t, ω) = 1√
2π ||h||2

∫
R

f (τ )g∗
ω,t (τ ) dτ = 1√

2π ||h||2

∫
R

f̃ (ν)g̃∗
ω,t (ν) dν.

(B.11)

To interpret Eq. (B.11) we consider a fixed point (ω, t) in the time–frequency space.
The time–frequency representation Fh[ f ] can be computed in two complementary
ways: First, by integrating over the time representation f (τ ) multiplied by the time
window g∗

ω,t (τ ) shifted by t or, second, by integrating over the frequency represen-

tation f̃ (ν)multiplied by the frequency window g̃∗
ω,t (ν) shifted by ω. A narrow time

window, i.e. a high time resolution, generally leads to a broad frequency window and
therefore to a low frequency resolution. Analogously, a low time resolution results
in a high frequency resolution. This trade-off depends strongly on the choice of the
sliding time window h in the definition of Fh (B.5), and it can be quantified with the
well-known uncertainty principle that we state here without proof:

�g̃�g ≥ 1

2
||gω,t ||2 = 1

2
||h||2 , (B.12)

The symbols�g̃ and�g denote the variances of the frequency window g̃ω,t and the
time window gω,t , respectively. Figure B.1 illustrates the trade-off between time and
frequency resolution. An effective window function h should allow us to increase
the time resolution (reduce �g) while reducing the frequency resolution (increase
�g̃) as little as possible. The optimal choice for h is the Gaussian

hσ (t) = (πσ 2)−1/4e−x2/2σ 2
, (B.13)
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Fig. B.1 Time–frequency analysis of the time-domain signal shown in the top panel. The time
and frequency resolution depends on the width σ of the Gaussian window. Narrow windows (left)
generate a high time resolution at the expense of a small frequency resolution. Wide windows
improve the frequency resolution at the expense of the time resolution (right)

which generates an equal sign in the uncertainty principle (B.12). The L2 norm of hσ
is 1, i.e. ||hσ ||2 = 1 for all σ > 0. We omit the lengthy but straightforward deriva-
tions of these results that may be found in Strang & Nguyen (1996). For h = hσ the
windowed Fourier transform is termed the Gabor transform. In order to simplify the
notation, we introduce the symbolisms Fhσ = G and G[ f ](t, ω) = f̃ (t, ω). The
dependence of G and f̃ (t, ω) on σ is implicit.

We close this short review with the expressions for the Gabor transform pair
because of its outstanding importance for the analysis in Sect. 11.5:

f̃ (t, ω) = G[ f ](t, ω) = 1√
2π

∫
R

f (τ )h∗
σ (τ − t)e−iωτ dτ , (B.14)

f (t) = G−1[ f̃ ](t) = 1√
2π

∫
R2

f̃ (τ, ω)hσ (t − τ)eiωt dω dτ . (B.15)
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