
T E C H N O L O G Y I N A C T I O N ™

Coding the
Arduino

Building Fun Programs, Games,
and Electronic Projects
—
Bob Dukish

Coding the Arduino
Building Fun Programs, Games,

and Electronic Projects

Bob Dukish

Coding the Arduino: Building Fun Programs, Games, and

Electronic Projects

ISBN-13 (pbk): 978-1-4842-3509-6 ISBN-13 (electronic): 978-1-4842-3510-2
https://doi.org/10.1007/978-1-4842-3510-2

Library of Congress Control Number: 2018945863

Copyright © 2018 by Bob Dukish

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natlie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3509-6.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Bob Dukish
Canfield, Ohio, USA

https://doi.org/10.1007/978-1-4842-3510-2

iii

Chapter 1: A Background on Technology ��1

The Difference Between Science and Technology ��1

Ohm’s Law ��7

Engineering Notation ��11

Review Questions ��13

Project 1 ��14

Chapter 2: Computers and the Binary System �����������������������������������17

Digital Signals ���17

Power Consumption ��22

Interfacing ���26

Pull-Ups and Pull-Downs ��32

Review Questions ��34

Project 2 ��36

About the Author ��vii

About the Technical Reviewers ���ix

Warning ���xi

Introduction ���xiii

Table of Contents

iv

Chapter 3: Microcontrollers ��37

Describing Microcontrollers ��37

Writing a Program ���43

Review Questions ��57

Project 3 ��59

Chapter 4: More Loops, and More Elegant Methods
to Flash an LED ��61

Timer Loops ��61

Controlling Embedded Processes ���66

Digital Electronics ���72

Intermittent Windshield Wiper Control with Arduino ���77

Review Questions ��79

Project 4A ��82

Project 4B ��82

Chapter 5: Serial Communications ���83

The Binary Number System and ASCII Code ���83

Simulating Artificial Intelligence ���86

Designing a Serial Communications Game ���95

Finding Odd and Even Numbers ��105

A Recipe Quantity Calculator for Baked Goods ���106

Review Questions ��110

Project 5 ��112

Chapter 6: Having Fun with Programming ���������������������������������������113

Random Teacher Jokes ���113

Perfecting Random Numbers ��123

Poker Game ���130

Table of ConTenTsTable of ConTenTs

v

Multidimensional Arrays ���135

Dice Game ���136

Review Questions ��140

Project 6 ��142

Chapter 7: More Game Programming, with a
Detailed Explanation ���143

Coding the Game 21: First Attempt ���143

Coding the Game 21: Second Attempt ��151

Review Questions ��154

Project 7 ��156

Chapter 8: Electronic Projects ��157

Coding a Voltmeter ��157

Dimming an LED with Pulse Width Modulation ���160

Controlling an LED Using a Light Sensor ���162

Coding a Frequency Counter ���166

Pulse Generation ���172

Counter with Seven-Segment Display (with Driver IC) ��������������������������������������176

Dice Game with Seven-Segment Display (with Driver IC) ���������������������������������180

Counter with Seven-Segment Display (No Driver IC) ��185

Dice Game with Seven-Segment Display (No Driver IC) �����������������������������������189

Electronic Dice Game with LEDs ���197

Review Questions ��207

Project 8 ��209

Chapter 9: More Elaborate Projects ��211

Coding a More Functional Poker Game ���211

Coding a More Functional Game of 21 ��222

Using the Arduino to Transmit Morse Code ���235

Table of ConTenTsTable of ConTenTs

vi

Chapter 10: Capstone Projects ���251

Building an Audio Morse Code Reader ��251

Building an Audio Morse Code Decoder ��257

Team Project 1: IR Morse Code Link ���260

Team Project 2: IR Control Link ���267

Coding Math Combination Word Problems ��271

 Appendix ���277

 Using and Writing Libraries ���277

 Answers to Chapter Review Questions and Projects ��280

 Chapter 1 ���280

 Chapter 2 ���281

 Chapter 3 ���282

 Chapter 4 ���283

 Chapter 5 ���284

 Chapter 6 ���285

 Chapter 7 ���286

 Chapter 8 ���286

 Parts List ���287

 Index ���289

Table of ConTenTsTable of ConTenTs

vii

About the Author

Bob Dukish has been working in the field of computers and electronics

for over 35 years. He served in the military, worked as an electronic

component engineer, ran a corporation, and taught engineering at both

the high school and college levels. He has two associate’s degrees in

technology, a bachelor’s degree in physics from Syracuse University,

and master’s degrees from both Kent State University and Rensselaer

Polytechnic Institute. His last master’s degree was earned at the age of 54,

and he considers himself to be a lifelong learner.

ix

About the Technical Reviewers

Dave Brett started his electronics career in the U.S. Air Force as an

instructor in the Radar School at Keesler AFB. He went on to work as a

technician for the Ohio State University, and as a 2-way radio technician

for MSS. Dave taught electronics for many years at ITT Technical Institute

in Youngstown Ohio, and is now is an Instructor at the Pittsburgh Institute

of Aeronautics. He graduated from Youngstown State University with a

master’s degree in Education and is certified by the Electronics Technician

Association, CompTia, and the Society of Broadcast Engineers. Dave is

an avid Amateur Radio enthusiast and participates in the Amateur Radio

Emergency Service.

Mark Furman, MBA is a systems engineer, author, teacher, and

entrepreneur. For the last 18 years he has worked in the information

technology field with a focus on Linux-based systems and programming

in Python, working for a range of companies including Host Gator,

Interland, Suntrust Bank, AT&T, and Winn-Dixie. Recently he has been

focusing his career on the maker movement and has launched Tech Forge

(techforge.org). He holds a master’s of business administration

degree with a focus on business intelligence from Ohio University. You can

follow him on Twitter at

@mfurman.

xi

Warning

Electrical circuits and components may contain lethal voltages even

when disconnected. Do not attempt to test, modify, or repair electrical

equipment. Hazardous voltages might be present, and even low voltages

can produce high currents that can cause severe burns. Care must also

be taken, as some Arduino boards have exposed solder connections that

could come in contact with conductive materials and cause a short circuit.

xiii

Introduction

 Communication and Creativity
Life-forms on our planet are biologically programmed through evolution

to be interested in their surroundings for self-preservation, but some go a

step further. There is a popular expression: “Curiosity killed the cat.” Our

human species is extraordinarily inquisitive as well (although not equal to

the cat), but it is our curiosity coupled with communication and creativity

that has propelled humankind to become the dominant species on the

planet. What is truly special about the human race is our ability to discover,

retain, convey, and most important, synthesize new concepts. The

communal knowledge that we amass allows us as a species to learn from

past experiences, and we use our creativity to develop entirely new ideas.

This has brought about modern technological marvels such as telephone,

television, computers, and all of the other items ubiquitous in our modern

lifestyle. Humankind’s insatiable need to be linked together with others

and communicate information builds a database of knowledge where

creative thought can then be applied to synthesize new concepts. This is

undeniably how the exponential growth in technological advancement has

occurred. Paraphrasing Sir Isaac Newton, we stand “on the shoulders of

giants.”

We can extrapolate back to prehistoric times and make an educated

assumption that knowledge was shared in early societies by individuals

patterning after others within a group even before spoken or written

language was developed. As time progressed and history developed, we

know through writings that early humans sought to satisfy their curiosity

and used creative thought to make sense of the world around them.

xiv

Most early civilizations imagined that mystical entities brought about

order to the surrounding world, and the dichotomy of good and bad was

explained as being the intent of either benevolent or malevolent deities.

Early Greek mythology gave fanciful explanations of the world by looking

up to the unreachable stars overhead and associating their patterns with

supernatural concepts. Later, their civilization provided humanity with the

beginnings of science from enlightened explanations of the physical world

deduced through logical reasoning. The early Greek scholars’ explanation

of indirectly observable phenomenon such as electricity provides us a

working knowledge that is somewhat still in use to this day. Very quickly,

in the grand scheme of things, humankind went from thinking everything

was magical and out of human control to a basic understanding of the

atom as being an indivisible building block of the chemical elements that

make up the universe.

It seems that we have now come to the point where there is an

exponential growth function of the advancement of knowledge leading

to great leaps in both science and technology that are almost explosive!

Atoms are building blocks of matter, just as the early Greeks thought,

but late nineteenth- and early twentieth-century science had discovered

that atoms were constructed of a collection of three subatomic particles:

electrons, protons, and neutrons. Thanks to mathematicians, particle

physicists, and supercolliders, we now know that the protons and neutrons

are made up of even smaller subatomic particles called quarks, to which

physicists have given fanciful names in identifying different varieties such

as top, bottom, up, down, charm, and strange.

With our wondrous machines actually able to peer inside of individual

atoms, and through painstaking theoretical work in mathematics and

science, humankind has achieved such a detailed understanding of the

physical structure of matter and the interactions of energy, we now know

that there are more than 100 subatomic particles dealing with matter and

forces. The universe is just as beautifully complex as it is immense. Beyond

narrow religious views, nationalistic fervor, race, and socioeconomic

InTroduCTIonInTroduCTIon

xv

status, the grandeur of the universe should resonate with us and unite

all of humankind. Unfortunately, parochial systems persist, and we have

amassed the knowledge and technology to obliterate the planet we live

on. Several nations across the globe have a hairpin trigger on nuclear

devices that could purposefully destroy our entire civilization. Perhaps the

reason that we have not been able to eavesdrop on communication signals

emanating from civilizations orbiting other stars is that they are either too

young or have gotten to the point at which we are now and have developed

nuclear weapons and destroyed themselves. Let’s hope for the best for

them, and for ourselves.

 About This Book
This book is intended for someone new to computer coding and

electronics technology. It contains four sections. The first provides a

background on electronic components and circuits. We then begin writing

game code for an Arduino development board using a subset of the

popular programming language called C++. In the third section, we build

electronic game and communications projects, and modify some of the

code presented in previous chapters to operate the devices. The fourth

section expands on the functionality of some of the programs presented in

previous chapters and challenges the reader with capstone projects.

As we present programs throughout the text, and later make

modifications to perform additional functions, we will generally rewrite

the original code and highlight new code placed into the more functional

programs. At the end of each chapter, there are review questions that allow

the reader an opportunity to test his or her comprehension of the material.

Additionally, coding projects will be described where the program code

that is presented can be modified, or in which two or more of the sample

programs can be used to synthesize a new program as the solution to

the problem that is presented. Answers to both the review questions and

InTroduCTIonInTroduCTIon

xvi

solution help to the coding projects appear in the Appendix. Additionally,

the Appendix contains information about the use of Arduino libraries that

simplify program coding.

There are many different ways to code a program, just as there are

many different routes that can be taken on a trip between two points

on the globe. The final objective in traveling is to arrive at an intended

destination. I consider the learning process to be like a trek along an

infinite pathway, and many of the examples in this text take what might

be termed the scenic route to discover new and interesting things along

the way. This helps make the learning experience more immersive, just

as if one were on vacation and able to spend additional time exploring

unknown areas of the world to discover new things. It is also hoped that

the adventurous learner will experiment with the programs by coding

modifications to the projects as they are presented.

Arduino boards are available from the official Arduino web site at

www.arduino.cc, and from many electronics suppliers. Inexpensive

parts kits containing resistors, light-emitting diodes (LEDs), integrated

circuits (ICs), and other items discussed in this text are available through

a number of sources. Links to parts outlets and some of the lengthier code

examples can be obtained as a free download from the author’s official

web site at www.dukish.com.

 Acknowledgments
A very intelligent gentleman who worked as a professional house painter

offered thoughtful advice when I complained that a job was so massive

that it would take “forever” to complete. His response was to not look at

the overall project, but to only concentrate on one section at a given time.

That advice rings true in every aspect of life, and especially in complex

areas like computer hardware design and software programming. What

at first glance might seem insurmountably difficult to comprehend can

InTroduCTIonInTroduCTIon

http://www.arduino.cc/
http://www.dukish.com/

xvii

indeed be conquered by having laser-like focus and taking things one step

at a time. Thank you, Tom Martinko. Thank you to the code reviewers Dave

Brett and Mark Furman who tested every line of code for functionality.

I would also like to thank my students from the Trumbull Correctional

Institution in Ohio and their desire to overcome adversity and achieve

success as productive citizens by gaining new employment skills. Finally,

I would like to express my gratitude to the great college instructors I was

lucky to have had, who helped me understand complex material by not

putting tedious and unnecessary roadblocks in the way.

 A Note from the Author About Education
Many years ago, I had an excellent experience in the military where it was

strongly encouraged that airmen take college courses and work toward a

college degree. I attended night classes at both Mohawk Valley Community

College and Utica College of Syracuse University, but struggled with what

are now termed STEM courses. While struggling in college, I was lucky to

have a great physics teacher who suggested the best way to learn complex

material was to read and reread the text, as many times as it took to truly

understand the concepts. That teacher also had an excellent suggestion on

textbook problem solving: “Try working out a problem, and if the answer

was incorrect, take a break and later retry solving the same problem.” I

heeded the advice and my college textbooks were well read, and numerous

end-of-chapter problems were worked until the solution was correct and

understood. There is much truth in the sayings that patience is a virtue and

ignorance is bliss. Now as a teacher, I feel extremely honored to be able to

pass that information on to students covering complex material. I also had

a great English teacher for my first college writing class. I mentioned to

him that I did not remember anything from my high school English classes

about verbs, predicates, and pronouns. His advice was, “Forget about all of

that, and just write how you speak,” only to clean it up and be more formal.

InTroduCTIonInTroduCTIon

xviii

I do not expect to win a writing contest for this book, but I hope it provides

some new and interesting information.

A doctor can bury his mistakes, but an architect can only
advise his clients to plant vines.

—Frank Lloyd Wright

Let’s build a few programs for fun and worry about the vines later. If

you push the wrong button or enter the wrong code, you need not worry;

the computer won’t blow up! Also, no matter how lengthy, repetitive, or

ugly the code that we write in implementing the objectives in this text, we

will be successful if the program works and produces the intended result.

Before money mattered, I am sure Bill Gates—now the richest man in

the world—just had fun playing with computer code to produce simple

tasks. Let’s have fun and learn new ways of thinking. We can worry about

perfecting the code and making money later.

InTroduCTIonInTroduCTIon

1© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_1

CHAPTER 1

A Background
on Technology
 The Difference Between Science
and Technology
The two words science and technology are used interchangeably in

the everyday world, but the fields are distinguishably different. As a

technologist, one should have a profound appreciation of science;

however, it is imperative that a technologist not only appreciate and

understand general scientific concepts, but also be able to apply them

to the everyday world. Essentially, science can be thought of as a body

of knowledge with technology being the practical application of that

knowledge. To be an effective electrical engineer or technician, for

example, it helps to have an understanding of the actual physical theory

of materials and electricity, but many times we will take a simplified

approach to solve specific problems. To gain an understanding of the

reasoning for simplification in problem solving, please refer to Figure 1-1,

a drawing of the copper atom.

2

The copper atom is composed of 29 protons, each having a positive

charge, and located at the center of the atom. Surrounding the protons and

uncharged neutrons in the nucleus are 29 negatively charged electrons

in several thin spherical clouds located at distances from the center. The

location of each cloud is dependent on the energy level of the electrons

it contains. Electrons with higher energy levels are located farther away

from the center. Like charges repel and unlike charges attract in an inverse

square relationship to the distance between charges. In the element

copper, there is a single electron called the valance electron in the highest

energy level, and that electron is loosely bound to the atom because of its

distance from the nucleus. The basic original theory of charge, and even

the name electron, comes about from the work of early Greek scholars

more than 2,500 years ago, who theorized about electrostatic interactions

between cloth and the substance known as amber. More recently,

physicists in the early 1900s helped to refine our basic understanding of

the structure of matter. Through studies of the nature of electricity, it is

known that in a conductive wire, such as one made of copper, if given

an amount of external energy from a power source such as a battery, the

electron farthest away from the nucleus can become free, and escape

the atom to flow with an organized electric current through the wire,

eventually joining an atom farther down the line that has a vacancy, called

a hole, from the loss of its highest energy electron. Although the movement

Figure 1-1. The Bohr model of the copper atom

Chapter 1 a BaCkground on teChnology

3

of each electron, called drift, takes a slight amount of time, the effective

signal speed through the entire wire occurs at roughly three-fourths the

speed of light.

With the preceding explanation, it is possible to have a very good

working knowledge of how a conductor works. Please note that materials

at the atomic level are actually much more complicated due to recently

discovered quantum theory, but we do not need to discuss the subatomic

quarks to understand the essential mechanics for electric current flow.

Our technological discussion, therefore, relies mainly on the educated

guesses of ancient Greek scholars 2,500 years ago, and through the

groundbreaking, but now outdated, explanation of the construction of

atoms by physicist Niels Bohr in the 1920s, which is enough to give us a

simplified working model of matter as it relates to current flow through

a conductor. Now, let us go back in time about 200 years, to the days of

one of America’s greatest scientists, Ben Franklin, who was without an

understanding of the atomic theory, for which Bohr was awarded the

Nobel Prize in 1922. Ben Franklin used intuition and common sense, and

hypothesized that electric flow most probably flowed like water, from a

high level, to one that is lower. He felt that, like gravity, the electric force

pulled down toward a low point of charge. We now typically refer to this

low point as either ground, neutral, or return.

Many college courses in electrical engineering still use Ben Franklin’s

conventional current theory to evaluate circuits like the one shown

in Figure 1-2, even though Franklin’s flow, called conventional, is

completely backward! Thanks to the work of Bohr and other scientists

of the 20th century, we now know that the negative electrons are the

current carrier, as the proton is more massive and locked within the

nucleus, but we can simplify the thought process for problem solving by

using the conventional flow theory of Ben Franklin. The conventional

idea is that the flow of current starts at the positive terminal of the battery

(red wire) and proceeds around the loop, until it ends up at the battery’s

negative terminal (black wire). The reason that current flows is because

Chapter 1 a BaCkground on teChnology

4

the battery is providing an electric force to the circuit through chemical

means, and a path for the current flow exists through the components

that are in series in the loop of wiring connected between the battery

terminals. Theoretically we know the electrons are jumping from atom to

atom toward the positive battery terminal, but it is more helpful to us, for

problem solving, to use the analogy of water flowing through a pipe when

thinking about the process of electric current flow in a wire.

220 ohm

5 volts

Figure 1-2. An LED circuit

The symbols used in our circuit drawing might look a little like ancient

Egyptian hieroglyphics, but they actually make sense once we have a little

background information. We call the symbols and diagrams schematics.

The battery in the circuit is shown on the left, and the symbol is how a car

battery looks inside, as seen from above with the water fill caps removed.

The battery is comprised of a system of plates of metal surrounded by

a sulfuric acid solution. One plate loses electrons, and the other gains

them. This chemical action is responsible for setting up a positive charge

on the one outside terminal of the battery, and a negative charge on the

other. In our light-emitting diode (LED) circuit, the positive terminal is

shown on the top. Because our circuit has a complete path of components

Chapter 1 a BaCkground on teChnology

5

and wiring, it is called a closed series circuit, which allows the battery’s

stored electric charge to flow as current through the components and wire

around the loop. The first component that the conventional current flow

encounters is shown as a squiggly line, which is the schematic symbol for

a resistor. A resistor is used to restrict current flow. Again, the symbol is

drawn to make sense, and can best be understood if you think of electric

current flow being similar to water flow, and then thinking about how

a stream or river zigzagging from side to side would tend to restrict, or

resist, the free flow of water. The next component in the circuit that the

current encounters is the LED, shown wired just underneath the resistor.

It is a schematic symbol drawn as an arrow, because diodes only allow

current flow in one direction. The positive and negative sides of the diode

must connect toward their respective terminals of the battery or it will

not light. The diode has polarization, whereas the resistor does not. The

LED negative side can be identified as having the shorter lead, and also is

represented by the side of the plastic component that is slightly flattened.

Diodes work with electric current flow somewhat similarly to how valves

work with water flow. In fact, in the very early days in the development

of electronic diodes when they were vacuum tubes, they actually were

called valves. Diodes have many purposes in electronics; when they are

used to turn alternating current (AC) into direct current (DC) they are

called rectifier diodes; diodes used to keep a voltage constant are called

regulators or Zener diodes; and diodes used to oscillate at microwave

frequencies and produce radio signals are called tunnel diodes. The LED

is a diode that has the enhanced function to give off light as current flows

through the polarized junction. The small unconnected arrows shown at

an angle from the component in our schematic signify that it is an LED,

with the arrows representing the light that is emitted from the device.

In the circuit, we have a 5-volt source, as this is the operating voltage of

an Arduino Uno, and also the voltage it sends as a high level to its output

ports (a port is a connection to the outside world). The unit of resistance

is the Ohm, and resistors with higher Ohm values tend to restrict current

Chapter 1 a BaCkground on teChnology

6

flow more. The symbol for the Ohm is the horseshoe Ω, which actually is

the uppercase Greek character Omega. So as to not overload the controller

output, the value of 220 Ω will be used to limit current flow in many of our

later Arduino projects. The resistor value does not need to be precise to

illuminate a typical LED; one with a value in the 100 to 400 Ohm range will

work fine. It’s usually best to try to limit current flow as much as possible.

Using Ben Franklin’s conventional current flow theory, the circuit

operation is as follows: The positive charge on the high side of the battery

terminal flows into the wire connected to the resistor. The resistor limits

the current flow and drops the voltage. The LED that is connected between

the resistor and the negative terminal of the battery lights with an intensity

corresponding to the amount of current flow, as limited by the resistor. The

LED will produce a voltage drop as well. When we talk about voltage drops,

they occur across a component. When talking about voltage drops of

more than one component, we add them together. Normally, the negative

battery terminal is directly connected to ground, or the chassis, as it is in a

vehicle. The symbol below the battery in our LED circuit represents earth

ground. In residential house wiring, there is actually a long copper rod, 8

feet or longer, that is driven into the ground to establish the earth ground

connection. Soil is somewhat conductive because of moisture and the

salts and minerals it contains. Inserting the copper rod deeply into the

earth provides much surface area contact with the soil and enables a good

electrical connection. In automotive wiring, the same concept is used;

however, in residential wiring the use of ground is primarily for safety

concerns, whereas in a vehicle, the entire metal chassis is used as a return

for the current to reach the negative terminal of the battery. The vehicle

chassis is one half of the circuit path, so there is no need to run long

lengths of wire to the negative terminal of the battery.

Now with all this background in electric current flow we can see why

simplification is important to achieve a working knowledge of technology.

Going back to the Bohr model of the atom and Figure 1-1 showing a

Chapter 1 a BaCkground on teChnology

7

copper atom, we know that the electron is charged negatively, and that

when energy produced by a battery is connected to a closed circuit that

current will flow. We were able to explain the operation of the LED circuit

using Ben Franklin’s conventional flow, and it makes sense because water

runs downhill from a high level to one that is lower. Electrons actually flow

uphill, though, because the negatively charged electrons are the carriers

and move through the wires from a more negative, or low point, to a higher

positive point where there is a deficiency of electrons. Thinking about

water flowing uphill is hard to imagine, and the simplistic explanation of

using conventional flow is incorrect, but it works and makes sense! A good

analogy is that if you had one gallon of water per second flowing down a

stream, or up a stream, either way you would have one gallon of water per

second flowing in the stream. The numbers work out, and simplification

keeps us from having nightmares about electrons jumping uphill, from

atom to atom.

 Ohm’s Law
Just because a theory is old does not necessarily make it outdated or

incorrect. The law we are about to look at was first published in 1827,

and it remains in use to this day. Georg Ohm was a physicist who

studied the relationship between the amounts of voltage, resistance, and

current in electrical circuits. In science, there is a difference between a

relationship and a law. A relationship signifies a linkage between values.

A quantity might tend to increase or decrease as another quantity varies.

If both values tend to rise together, then we can say that there is a direct

relationship. If, however, one quantity increases as the other decreases,

we would refer to the relationship as being inverse. In the last section,

we mentioned that with a steady voltage, a larger value of resistance

(measured in Ohms, Ω) would cause a decrease in current flow, and

likened it to a zigzagging stream obstructing the path of water. The

Chapter 1 a BaCkground on teChnology

8

relationship between resistance and current is thus inverse. With constant

voltage, you can look at this relationship in two ways:

 1. As resistance goes up, current goes down.

 2. As current goes down, resistance goes up.

The math symbol for proportionality resembles a fish (α). Usually

in science, proportional relationships are found and then a constant of

proportionality is used to make an equation that can then be solved for

a numerical result. Just as in everyday life, relationships start out easy

and get more complicated as stronger links are made. Luckily, Ohm’s

Law is not messy at all, and the relationships between voltage, resistance,

and current turn right into equations without the need for a constant of

proportionality. Ohm found the following simple equations to explain

electricity (using V for volts, R for Ohms of resistance, and I for amps of

current intensity):

I

V

R
=

R

V

I
=

 V IR=

Figure 1-2, the schematic from the previous section, has been redrawn

and is now shown as Figure 1-3, with the LED and resistor flip-flopped.

The position of the components in a series circuit is irrelevant. The reason

is because a series circuit is one loop, and all the current must pass

through the wire and through every component in the path, regardless

of the component’s location within the loop. It makes the explanation a

little clearer to design the circuit with the LED on top, because due to the

internal construction of an LED, regardless of other circuit parameters,

they tend to always drop approximately 2 volts. The reason there is a drop

of voltage between the positive and negative sides of an LED is because a

Chapter 1 a BaCkground on teChnology

9

barrier junction is formed between the two sides that requires about 2 volts

of force to push current through the device. The amount of voltage drop

will vary with color; red has a little less drop and blue a little more, and the

drop will increase slightly as current increases. Typical LEDs need about

20 milliamps (mA), which is two hundredths (0.020) of an amp of current

to properly illuminate; some need a little less and some need a little more

current to achieve proper brightness. In a circuit we will later build later,

120 Ω resistors are used. The nice thing about a hand grenade, nuclear war,

and electronics design is that you do not have to be exact, just close. Now

using Ohm’s Law to calculate current in our circuit, first subtract the 2-volt

drop across the LED internal junction, write the proper formula, and plug

the numbers into a calculator.

5 volts

220 ohm

Figure 1-3. Revised LED circuit

5 – 2 = 3 volts across the resistor

I

V

R
=

I =

3

220

I = .014 amps

Chapter 1 a BaCkground on teChnology

10

The current rounds off to about 14 mA, which is fourteen thousandths

(0.014) of an amp. Because this is in series with the LED, it is also the

LED current. Although this is only about three-quarters of the amount

needed to bring the LED to full brightness, it will be visible. This will be

a good Ohm value for our projects, as we will be connecting many LEDs

to Arduino ports and need to keep currents to a minimum, so as not to

overload the controller’s maximum output.

Some people find it easy to have a graphical method to aid in finding

the proper Ohm’s Law formula to use with a given problem. The procedure

for using the wheel shown in Figure 1-4 is to cover the unknown quantity,

and the other two variables appear in the proper position to write the

formula.

Figure 1-4. Ohm’s Law wheel

It is interesting to note that if one were to graph a series of results with

one independent variable held constant, and the other were to vary in the

Ohm’s Law formula for current:

I
V

R
= .

We find that with R held steady as V varies, a graph of a linear equation

results because it is of the form y = x.

I

v

Chapter 1 a BaCkground on teChnology

11

We also find that with V held steady as R varies, a graph of a hyperbola

results because it is of the form 1/x.

I

R

Along with the first quadrant graph, as shown for the linear equation,

one could graph negative results located in the third quadrant, dependent

on the frame of reference; however, there is not a true negative current,

other than that as being referenced to its direction of flow. The hyperbola

could also have a similar graph located in the fourth quadrant if the frame

of reference of the fixed voltage was negative, which then caused current

flow in a negatively referenced direction. Interestingly, both asymptotes of

the hyperbola could never touch either on the axis because both continue

to approach infinity, and the curve could never touch the origin, as there is

no perfectly zero resistance.

 Engineering Notation
In the last section, we said that LEDs typically require approximately two

hundredths (0.020) of an amp of current for full brightness. Although

the current requirement will vary greatly depending on the size, color,

and lumens of output brightness, it will normally be in a range from

0.010 to 0.040 amps for common LEDs. Expressing quantities such as

this in tenths, hundredths, or thousandths is very cumbersome, so in

engineering the way of expressing large and small quantities is in a slightly

different format than is used in scientific notation. To make things simple,

engineering notation requires numbers to be in groups of three. Each

group of three numbers is given a word prefix, so that they can easily be

understood. When we discuss the large amounts of voltage and power

Chapter 1 a BaCkground on teChnology

12

the energy companies generate, we use two of the word prefixes, kilo and

mega, attached to the units. For power, we have the names kilowatts for

thousands of watts, and megawatts for millions of watts. The following

is a list of engineering prefixes for both large and small numbers used

frequently in electronics:

For large numbers:

Trillion = Tera = x 1012

Billion = Giga = x 109

Million = Mega = x 106

Thousand = Kilo = x 103

The exponent × 100 is assigned to the first group of three numbers,

ending in 999, which are just units with no engineering prefix used. The

following prefixes are for fractionally small numbers between 0.999 of a

unit and 0.000000000001 of a unit:

Thousandth = milli = x 10-3

Millionth = micro = x 10-6

Billionth = nano = x 10-9

Trillionth = pico = x 10-12

In our LED circuit design problem in the last section (see Figure 1- 3),

we would say in engineering terms that the current in the circuit is

calculated to be 14 milliamps (mA).

Chapter 1 a BaCkground on teChnology

13

 Review Questions
 1. LED voltage drop will vary with color. (True/False)

 2. One Meg-Ohm represents what value resistor in

Ohms?

 a. 1,000 Ohms

 b. 10,000 Ohms

 c. 100,000 Ohms

 d. 1,000,000 Ohms

 3. In Ohm’s Law, resistance and current are:

 a. directly related.

 b. proportionally related.

 c. inversely related.

 d. the product of sums.

 4. A diode that is used to turn AC voltage into DC

voltage is called a __________________ diode.

 5. The unit of current is the ______________ and the

unit of power is the ________________.

 6. Conventional current flow goes around a closed

path starting at the ________________ terminal

of a battery and ending at the ________________

terminal.

 7. Fifteen thousandths of an amp would be called what

in engineering notation?

 a. 1.5 milliamps

 b. 15 milliamps

Chapter 1 a BaCkground on teChnology

14

 c. 1.5 microamps

 d. 15 microamps

 8. Explain the difference between science and

technology.

 9. The particle that carries current through a conductor

is a(n)

 a. electron.

 b. mooseon.

 c. proton.

 d. nucleus.

 10. A coefficient turns a mathematical relationship into

a(n) _____________ that can be solved.

 Project 1

Figure 1-5. A voltage divider

Chapter 1 a BaCkground on teChnology

15

 Problem

Using Figure 1-5, find the current flowing through the wire.

 Solution

One solution is that because it is given that 2.5 volts is dropped across

the top resistor in the circuit, you can find the current flowing through it

by using Ohm’s Law. (You have V and R, so solve for current I.) Because

this is a series circuit, the current is the same everywhere in the loop so

the current through the top resistor will be of equal value to the current

flowing through the bottom resistor, and also through the wire.

(Answers to the review questions and problems can be found in the

Appendix of this book.)

Chapter 1 a BaCkground on teChnology

17© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_2

CHAPTER 2

Computers and the
Binary System
 Digital Signals
The abacus could be thought of as the first computing device. It was

developed in China more than two millennia ago and is used in some

remote areas of the world to this day. Mechanical computing devices that

worked on an analog basis eventually followed. The computing devices we

use today are digital. The difference between analog and digital is shown

in Figure 2-1. Analog signal voltage could slowly change with time, as

displayed on the vertical y axis, with reference to time on the horizontal

x axis, and analog signals could have a curved or a ramped wave shape,

whereas digital signals rapidly jump between two discrete voltage levels.

One of the digital levels is considered to be a low (0) and the other a high (1).

18

Figure 2-1. Analog and digital oscilloscope displays

The oscilloscope is a versatile testing device that allows the user

to measure the voltages and time period, and to actually see one or

more signals in an electronic circuit. By examining the bottom readings

on the display, we see that the analog signal displayed in Figure 2-1

is approximately 1 volt from the top peak as measured to the bottom

peak, which is called the peak-to-peak voltage. Voltage in a circuit is

also sometimes referred to as amplitude. The frequency of the signal is

Chapter 2 Computers and the Binary system

19

approximately 1,000 cycles per second, called Hertz, so using engineering

notation we could say it is a 1 kiloHertz (kHz) signal. If the generator

producing the signal we are displaying in Figure 2-1 were connected to

a speaker, you would hear a constant single tone. A 1 kHz analog signal

is a standard test tone for audio circuits. Music is made up of a varying

and complex waveform of many frequencies. Along with music and

sound being analog, so is just about everything else in the universe,

including light, gravity, heat, motion, and so on. Even the signals from

digital broadcasts consist of analog waves that carry the signal and

must be adapted to convey digital information through a process called

modulation. Even most Internet connections (other than fiber) are analog

and use modems, a name that is a contraction of the two words modulate

and demodulate. Because the transmission carrier is analog, purely digital

signals must be converted, or modulated, to adapt the transmitting carrier

to convey the digital data. On receipt, the signal containing the data

must be converted back to purely digital logic levels, or demodulated.

The process of modulation and demodulation can be complex, but it is

necessary to convey digital information over an analog medium. Fiber

optic cable is a glass “pipeline” that can carry digital light pulses directly

without modulation, but they are usually modulated to increase efficiency,

and to allow for multiple transmissions to occur through the same fiber cable.

As we mentioned earlier, digital signals are either on or off, and there

is no in-between state, other than for a brief transition time when the

discrete logic level either quickly rises or falls. If the sun coming up in

the morning were digital, one moment it would be dark, and the next

moment it would be light. So, this question arises: Because practically no

digital circumstances can be found occurring in nature, why are modern

computers digital? The answer is that digital circuits are easy to design,

manufacture, and miniaturize. As a digital signal is either on or off, it

is very similar to the light switch on a wall, and a switch is the simplest

electronic circuit. Also, there is no interpretation of the lamp brightness,

as there would be with a light dimmer, which is an analog device.

Chapter 2 Computers and the Binary system

20

Through the use of transistors acting as switches, digital devices can

be made very small and densely packed into integrated circuits (ICs),

commonly called chips. The very early digital computers used vacuum

tubes and electromechanical relays to act as switches, and they were quite

massive. One of the first digital computers was developed by the British

during World War II to help break the Axis Powers’ Enigma code. It was a

code that was developed in Germany that was thought to be unbreakable.

The British computer’s name was Colossus, and it was colossal. The

similarly massive American version was named ENIAC, and it contained

more than 17,000 vacuum tubes and 1,500 relays, and it used enough

wattage to power a large neighborhood. War seems to bring out both

the worst and the best in societies. Even the Internet came about from

ARPANET, which was a communications network designed for military use

during the Cold War, a time when the Soviet Union and the United States

risked mutual destruction. It was a precarious time for civilization, as the

annihilation of all life on the planet was a distinct possibility, but the Cold

War also led to the space race and perhaps one of humanity’s greatest

achievements to date, humans walking on the moon. It was these early

military projects that brought about the computer revolution we enjoy

today. Seemingly the instruments of war many times are turned into useful

products and innovations that aid humankind through extraordinary

advancements in technology that benefit society. It seems that the bad

makes the good better. This yin and yang process occurs throughout the

universe and has an inherent cruelty when living organisms are involved

with the bad aspects of nature. There might even be some sadness from

older people waxing nostalgic over some of the early computer equipment

like 486 machines, 56K telephone modems, and picture tube monitors

that have met a horrible end, being ripped apart, smashed, and recycled to

provide the raw materials for the next generation of technical devices. As

advancements in circuit miniaturization have packed a whopping number

of transistors, in the billions, into a modern computer’s processor, artificial

intelligence is now in its early stages. Soon machines might actually be

Chapter 2 Computers and the Binary system

21

able to learn, think, and function without human intervention. What was

once only science fiction could soon become science fact!

As we previously discussed, basic digital signals have electronic simplicity

as shown in Figure 2-2. Along with that simplicity, though, also comes the

added benefit of noise immunity. In the standard digital electronics designs

that use the construction process of transistor- transistor- logic (TTL), the

off state is called a low and is given the binary number zero, whereas the

on state is called a high and given the binary number one. The voltages

need not be exact, but must be below 0.8 volts for a low and above 2.0 volts

for a high. Noise immunity comes about because any voltage can fluctuate

between 0 volts and up to 0.8 volts and still be interpreted as a low, and

any voltage can fluctuate between 2.0 volts and up to 5.0 volts and still

be interpreted as a high. When we talk about noise in the computer and

electronics field, we are describing electromagnetic interference. A good

example of electromagnetic interference is the distortion of buzzes and

howls sometimes picked up on an AM radio while listening to a ballgame

or talk show from a distant station.

HIGH

UNDETERMINED

LOW

Figure 2-2. Digital logic levels

The oscilloscope is extremely helpful in analyzing analog waveforms,

but a much simpler and very inexpensive piece of test equipment, called

a logic probe, is extremely helpful in troubleshooting digital circuits when

Chapter 2 Computers and the Binary system

22

a technician is out in the field. It is just slightly larger than a pen and

represents the two discrete logic levels by illuminating a red or green light.

When analyzing multiple digital signals, a device called a logic analyzer is

used. The logic analyzer is much like an oscilloscope, but able to display

many simultaneous digital signals. The analyzer would be used in a shop

setting, or during the design and manufacturing stages of digital products.

It is helpful in troubleshooting timing skew issues, which sometimes occur

in digital hardware when signals become out of synchronization due to

unwanted delays, as the signals pass through electronic circuitry. Timing

skew is a common problem during the design stage.

 Power Consumption
The process of interfacing is necessary, as we already have discussed,

when transferring information between digital and analog systems, but in

the next two sections we are more concerned with interfacing voltages and

currents and understanding the concept of power. In Chapter 1, you were

introduced to the three variations of Ohm’s Law, which mathematically

explain the relationship among voltage, current, and resistance. The term

power is also an electronics term but has two meanings when we talk

about computers. One common definition is the amount of computational

ability of a computer system. If in a conversational sense it is mentioned

that a computer is a very powerful machine, the meaning that it is a high-

end product that can process information, run programs, or operate

very swiftly. In electronics, however, the term power has a very precise

definition of a quantity. The watt is the unit of power, and it identifies

the number of joules of energy consumed per second to produce work.

Whenever we talk in engineering about units, we are referencing a basic

quantity of measurement. In analyzing distances, we might use the units

of inches, feet, and miles in the English system of measurement,

with inches being the basic unit. The same concept holds true in

Chapter 2 Computers and the Binary system

23

electronics, where the Ohm’s Law quantities that we spoke about earlier

have the basic units of volts for the force of electricity, Ohms as the basic

unit of resistance, and amps as the basic unit for current flow. This is

a similar concept to using inches as the basic unit for distance. Just as

inches can become feet, and feet can become yards and miles in distance

measurements, seconds can become minutes, hours, and so on, but in

science and technology the second is our standard reference for time.

Again, power is energy consumed per second, and its quantity is given the

name watt, named after James Watt, who invented the steam engine. If you

are interested in exploring more of the field of electronics, you can look at

the fundamental concepts that are usually laid out in great detail in physics

books describing the nature of electricity and magnetism, and also from a

more practical standpoint in books written for engineers and technicians.

We might also recommend others in a fine series of books like Extreme

Fundamentals of Technology and Extreme Fundamentals of Energy, both

of which are written by the author of this text. For now, a short and quick

explanation of power should suffice. There were three Ohm’s Laws and

there are also three power laws. Some people refer to them as Watt’s Laws:

P IV=

P I R= 2

P
V

R
=

2

where P represents power in watts, V is voltage in volts, R is resistance

in Ohms, and I is the current intensity in amps. Refer to Figure 2-3 for a

detailed analysis using those quantities.

Chapter 2 Computers and the Binary system

24

We bring back our LED circuit that was used when exploring Ohm’s

Law, but now run power calculations. We can find the power consumed by

the LED to produce light, as well as the power given off by the resistor as

heat used to limit the current in the circuit. The process can be handled in

different ways; one solution is to find the power used by each component

and then add those amounts together. An analogy is that if you had two

old-style incandescent light bulbs that were lighting a room in a house, and if

each were a 100-watt bulb, the total power of the bulbs adds up to 200 watts.

The same concept is used with LED bulbs, as well as other power- consuming

devices. It is really a pretty straightforward concept. Using this method to find

the total power consumption in our circuit, let’s start by finding the power

dissipated as heat in our current-limiting resistor.

You can use any of the three power formulas, but because we have

learned that the LED drops about 2 volts, that means the resistor must be

dropping 3 volts, because the total voltage of the battery source is 5 volts.

Again, this is a pretty straightforward concept, but it is explained in more

5 volts

220 ohm

Figure 2-3. Our LED circuit from Chapter 1

Chapter 2 Computers and the Binary system

25

detail in other books and is known as Kirchhoff’s Voltage Law. Finding the

power dissipated by the resistor:

P
V

R
=

2

P =
3

220

2

P =
9

220

P = .041 watts, or we could say 41 milliwatts.

To find the power used by the LED, we can use Ohm’s Law to solve for

the current through the resistor, and because this is a series circuit, we

know it is the same amount of current that is going through the LED. After

we find the LED current and knowing its voltage is 2 volts, we can find its

power consumption. We now find the current through the resistor:

I
V

R
=

I =
3

220

I = 0.014 amps, or 14 milliamps (mA).

Now for the power of the LED:

P = IV,

P = (.014) (2) = 0.028 watts, or 28 milliwatts

The total power is the power we found for the resistor plus the power of

the LED. So, 41 milliwatts for the resistor + 28 milliwatts for the LED equals

69 milliwatts total. This is a very small amount of energy consumption,

but many electronic circuits use small quantities such as this. Just as in

lighting a house, the amount of circuits in a device have a power usage

Chapter 2 Computers and the Binary system

26

that is additive, so as the amount of circuits increases, so will the overall

energy consumption. (Additional series circuits make up what are called

a parallel circuit.) Typical PC power supplies could be as high as 500

watts. As was previously discussed, engineering notation can express both

large and small quantities, and many times electronic circuits might only

have powers in the milliwatt range (thousandths of a watt), and currents

in the milliamp range (thousandths of an amp). On the other hand, we

commonly use large resistors in the kiloOhm range (thousands of Ohms)

to keep the current limited in circuits.

 Interfacing
Microcontrollers like the Arduino are not directly capable of providing

even moderately high currents or power. Microwaves, toasters, and coffee

makers each require in the neighborhood of 1,000 watts to operate, which

at the 120 volts used as household voltage in the United States equals the

following current:

P = IV, divide both sides of the equation by V and you get

P

V
I= .

By using the commutative law of mathematics, we get:

I
P

V
= .

For a typical microwave that uses 1,000 watts of power:

I =
1000

120

I = 8.3 amps of current, but with the Arduino only capable of outputting

20 mA per pin, which is 0.020 amps, we have a problem. It looks like

Chapter 2 Computers and the Binary system

27

there is no way to run our kitchen appliances with a microcontroller.

Actually, though, microcontrollers are now embedded in many kitchen

appliances and operate them indirectly through the process of interfacing,

through which the microcontroller sends voltage at a low current to an

intermediary device that actually operates the appliance. The simplest

intermediary device is an electromechanical relay. Relays have been used

in automotive vehicles for many years and are referred to as solenoids

when used for an application such as starting an engine.

The starter motor of a vehicle must provide a tremendous amount

of torque to rotate the gasoline-powered engine up to the speed that

is needed to begin the combustion process. In our earlier discussion

of conductors and copper wire, we assumed that copper was a perfect

conductor and had no resistance, when in fact nothing in the universe is

perfectly good or perfectly bad, as there is no such observable thing in the

universe that is perfect in every aspect. There always seem to be trade-offs.

Copper wire does actually have a certain amount of resistance per foot,

albeit very low. The trade-off is that we must shorten the length or increase

the diameter for its resistance to decrease. All metal wire conductors

behave this way and without performing any calculations it is worth noting

the relationship.

R
l

A
= r

where R is the resistance of the wire in Ohms, ρ (the Greek letter Rho) is the

amount of resistivity of the wire due to the material composition, l is the

wire length, and A is the wire cross-sectional area. It can be seen, then, that

as the wire increases in length its resistance goes up because of the direct

relationship. On the other hand, as the wire increases in cross-sectional

area by increasing the diameter, the resistance goes down, as shown in the

formula, because the relationship is inverse between the cross-sectional

area and the resistance. Rho is one of the constants of proportionality that

Chapter 2 Computers and the Binary system

28

we discussed earlier in the text that makes a relationship into a formula

(i.e., no matter what material is being used as a conductor, the relationship

is that as its length increases its resistance goes up, and conversely as its

cross-sectional area increases its resistance goes down.)

In a vehicle starter motor circuit, as depicted in Figure 2-4, a very

large amount of current must be carried through a conductor from the

vehicle battery to the starter motor, so because the conductor has some

resistance, we want to have a short distance of a large diameter wire, or

there will be a drastic voltage drop and power loss across the length of

wire. Because the key switch to the starter motor is located in the vehicle

driver compartment, it would be impractical to run a very thick wire that

is needed to increase the cross-sectional area up and down the steering

column, and this also would increase our wire length. Instead, a thinner

wire is used to carry a small amount of current that is used to cause a

relay coil to energize by producing a magnetic field that pulls a high

current contactor, making it close and thus making a remote high-current

connection. The connection through the contactor provides a conductive

path directly from the battery to the starter motor. The return path to the

negative terminal of the battery is through the vehicle’s chassis, which we

consider to be ground.

12 V

C MOTORM

key

contact

coil

Figure 2-4. Simplified vehicle ignition system

Chapter 2 Computers and the Binary system

29

The ignition system of a vehicle is shown as a simplified schematic

diagram, where the positive terminal of a 12-volt battery is connected to

both the ignition key and the starter motor contactor, with both shown

in the diagram being in the off position, or what is called the deenergized

state. When the driver turns the key, the key contact connection closes the

coil circuit path and provides a current produced by the battery to flow

through the relay coil circuit. The coil then produces a magnetic field that

pulls the contactor in the starter motor circuit down and connects the

path, which provides high current produced by the battery to flow through

the starter motor. It then rotates and turns the vehicle engine, allowing

combustion to occur, which will start the vehicle.

Relays are very useful as interface devices, but in most cases a small

microcontroller like the Arduino does not even have the current-handling

capability to energize a relay coil directly and might need a transitional

interface circuit, called a driver. The term driver is also used in computers

to mean a low-level software code needed to link a device with a computer

operating system, or essentially a low-level software code needed to

make some hardware operate. In electronics, we use the term to identify a

device that will serve as an intermediary between two devices that cannot

be directly connected together due to voltage, current, or resistance and

impedance mismatches. In using the Arduino, or other microcontrollers,

we might need to construct a circuit as shown in Figure 2-5 to

electronically drive higher current loads than the microcontroller can

accommodate directly.

Chapter 2 Computers and the Binary system

30

This circuit could be used to run a very small 12-volt DC motor

without a relay using the Arduino as a controller, as the voltages are kept

separate with only the ground in common. In Figure 2-5, the left side of

the open 1 kiloOhm resistor would connect to pin 7, or to any other digital

pin that you wish to assign as an output on the Arduino. Because of the

type of transistor that we are using, the Arduino would need to provide

a logic high in order to run the motor. The control current being sourced

from the Arduino can be calculated using Ohm’s Law, and is found to

be approximately 0.004 amps, which is 4 mA, well below the maximum

recommended Arduino pin current of 20 mA. The value of 4 mA is found

by knowing that the maximum voltage output from a logic high state on an

Arduino UNO (the version we are using) is 5 volts. There is a voltage drop

across the transistor of 0.7 volts from the middle pin to the bottom pin.

12 V

MOTOR
M

2N3904
1k

Pin 7

Arduino Ground

Figure 2-5. Example of a microcontroller interfacing circuit

Chapter 2 Computers and the Binary system

31

So, for our Arduino current path to ground, the voltage is 5 – 0.7 = 4.3 volts.

Showing the calculations to find the current through the resistor:

I
V

R
=

I =
4 3

1000

.

I = 4.3 × 10-3, which is 0.0043, or 4 mA (rounding off). In electronics, it is

very typical to round off numbers because there is usually quite a bit of

component tolerance. The Arduino typically will output slightly under

5 volts, so the 4 mA result that was found is the worst case scenario of

current draw. Also, notice in Figure 2-5 that the Arduino current path has

no connection to the 12-volt source that we are using to run the motor,

because that is a separate current loop. The control current acts similarly

with the relay coil current that was previously discussed, in that it enables

the top connection of the device to seemingly connect directly to the

bottom connection. The bottom pin of the transistor, which is called the

emitter, is attached directly to ground in our circuit. The middle pin that

we have connected to the current-limiting resistor in the Arduino current

loop is called the base. The top lead of the transistor connected to the

motor is called the collector. The part number of the transistor is 2N3904.

It is a small signal device that can handle a maximum collector to emitter

current (the motor current loop in our circuit) of 0.2 amps, also referred

to as 200 mA in engineering notation. If you wanted to drive a very large

motor you could choose to use a transistor that can handle more current,

or the intermediary circuit would need to be expanded to possibly include

an electromagnetic relay, in which the transistor would have the relay coil

in its collector to emitter path, and the motor current loop would connect

through the relay’s separate contactor. Most of the projects in this book

do not require interfacing, as our main objective is to understand the

programming thought process, but wherever you have a need to interface,

Chapter 2 Computers and the Binary system

32

knowing the three Ohm’s Law formulas, which we covered, will help with

your specific project.

 Pull-Ups and Pull-Downs
The pull-up circuit shown in Figure 2-6 allows you to switch between a

logic high and logic low, with the flip of a switch or the push of a button.

The point shown to the far right in Figure 2-6 is the output and could

connect to a digital input pin on a microcontroller. The value of the resistor

need not be a specific value; anything will work fine in the range from 1

K, up to about 10 K Ohm or higher, depending on the IC. The output of

the pull-up switch as shown in Figure 2-6 is called an open, and provides

a logic high to the output. If the switch, or push button, were making

contact (called closed), it would then connect to ground and give a logic

low output. The resistor in the circuit is there to limit current flow so that

there is not excessive current in the switch path when the switch enables a

connection to ground (closes). If the switch and resistor were transposed,

the circuit would be called a pull-down, and would normally give a low

output, with the logic level becoming a high when the switch was engaged

(closed).

5 V

1k

Figure 2-6. Pull-up circuit

Chapter 2 Computers and the Binary system

33

When using mechanical switches to signal a logic level to a controller

input, sometimes there is a problem with a phenomenon called bounce

as represented in Figure 2-7. It occurs due to imperfections in the

mechanical switching process in both pull-up and pull-down circuits. The

contacts might make and break a few quick times in a split second before

stabilizing. Normally a switch bouncing is not noticeable to us in the

everyday world because it happens so quickly, but a processor can react

at tremendous speed and might interpret bounce as more than one event.

For example, if a program were meant to count each press of a momentary

switch, the bounce issue might cause the processor to overreact and have

an incorrect count that is too large. Most bounce problems occur within

a time period that is in the very low millisecond range after a mechanical

switching action has occurred. There are electronic hardware circuits that

can eliminate the bounce problem, or you can compensate for the issue

in your program code. Examples of coding methods to compensate for

switch bounce can be as simple as adding a slight delay after a digital read

command when a switch is to make or break contact.

High

Low

Figure 2-7. Switch bounce

Some sensors are analog, and the Arduino also has analog

input/output (I/O) pins and excellent project examples in the integrated

development environment (IDE). Because we try to use minimal hardware

with this text, and because it is introductory, our projects involve mainly

digital circuits, but we briefly cover analog projects later.

Chapter 2 Computers and the Binary system

34

 Review Questions
 1. The TTL logic levels are a voltage below

_____________ for a low, and a voltage above

______________ for a high.

 2. Explain the difference between digital signals and

analog signals, and give an example of each.

 3. In the formula for resistance of a length or wire, the

Greek letter ρ (Rho) for a given material is:

 a. the letter representing Ohms.

 b. the resistivity of the material.

 c. the length of wire.

 d. the power loss in the wire.

 4. A pull-up or pull-down circuit prevents the

excessive current of a short circuit. (True/False)

 5. Explain what is meant by the term power.

 6. A relay is an interfacing device that

 a. provides a direct path to ground.

 b. provides a remote connection.

 c. interrupts excessive current.

 d. does all of the above.

Chapter 2 Computers and the Binary system

35

 7. If you were to use a transistor as an interfacing

device, the controller output would connect to

which part of the transistor?

 a. the emitter

 b. the base

 c. the collector

 d. the gate

 8. A 2N3904 transistor is very commonly used in

interfacing the Arduino output pins to drive

higher current devices. What is the recommended

maximum current that the 2N3904 can drive?

 a. 200 mA

 b. 20 mA

 c. 200 amps

 d. 20 microAmps

 9. Explain what is meant by the term noise in the

computer and electronics field.

 10. A very small and inexpensive piece of test

equipment that could easily be taken out in the field

to test logic levels of digital circuits is called

 a. an oscilloscope.

 b. a logic probe.

 c. a logic analyzer.

 d. a multimeter.

Chapter 2 Computers and the Binary system

36

 Project 2

5 volts

10 ohm

Figure 2-8. An LED circuit with a small value resistor

Find the current through the LED in the schematic of Figure 2-8. Is it

an excessive current? (Hint, assume that the LED drops approximately 2

volts, which means that 3 volts is dropped across the resistor, as 2 volts + 3

volts = 5, and Kirchhoff’s Voltage Law is satisfied. Also, remember that the

current is the same everywhere in a series circuit.)

Chapter 2 Computers and the Binary system

37© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_3

CHAPTER 3

Microcontrollers
 Describing Microcontrollers
Let’s start by discussing the differences between a typical computer and a

microcontroller. Normal PCs have a mouse and keyboard for user input,

and a monitor for output, whereas a microcontroller usually operates

without human interaction. A typical computer could be used to multitask

and run numerous programs simultaneously such as playing music,

getting e-mail, and looking at informative web sites such as dukish.com,

but the microcontroller can only run one program at a time (although the

program can be redirected through the activation of hardware interrupts

and software subroutines). Essentially a microcontroller is a specialized

type of computer with mostly nonhuman I/O devices for interaction

with the outside world. The job of a microcontroller might be to run the

heating and air conditioning system in a building, monitor and control the

operation of an automotive engine, or run machinery on an automated

assembly line. Even though a microcontroller is not used like a personal

computer, there are connections to the outside world. Rather than having

a mouse, keyboard, and monitor as standard I/O peripherals, though,

the microcontroller uses devices called sensors as inputs and actuators

as outputs. A sensor examines the environment and senses specific

stimuli, such as touch, sound, temperature, and other parameters, almost

in the same way as human senses detect stimuli from the surrounding

world. Microcontroller sensors respond to their respective stimuli by

either creating a voltage, reporting a changing voltage, or generating an

38

abrupt change in a voltage logic level, and then sending the signal on

a conductive wire to the microcontroller, as well as wirelessly through

radio frequency (RF) links such as Wi-Fi and Bluetooth. In a human

body, we have sensors to detect conditions in the outside world, which

then similarly produce voltage outputs that are transmitted to the brain

through the electrochemical wiring connections of the nervous system.

The microcontroller can almost be thought of as a very tiny computer

brain. Just as in the human body where the brain reacts to stimulus, the

microcontroller sensors provide stimulus as input to a running program,

which normally is running in a continuous loop, and the program can react

and change outputs as conditions warrant. For instance, in the winter, if

the temperature in a building goes lower than a preprogrammed value, a

microprocessor-controlled thermostat will activate the heating system to

increase the temperature to an acceptable level. This function, however,

can be performed in a much more simplistic way without the necessity

of a microcontroller, as was done for many years before the adoption of

digital technology. Many older style wall-mounted thermostats contained

a bimetallic strip, shaped into a circular spring pattern to control furnaces

and air conditioning units. The two different metals on each side of the

strip, each having a different temperature coefficient of expansion, caused

the strip to bend and move the end of the metal spring to and fro in

coordination with a changing temperature. The bimetallic strip spring was

connected to a mercury switch, the movement of which either enabled

or disabled the building heating and cooling devices by either making or

breaking a connection used for control. In a microprocessor-controlled

programmable thermostat, however, the set temperature can be altered

due to factors such as the time of day or day of the week. Some of today’s

programmable thermostats even have network capability and can even

be adjusted over the Internet as an Internet of Things device (IOT). The

programmable thermostats are sometimes called “smart.” It seems that, in

many ways, the microcontroller operates in a somewhat human fashion.

It is almost as though it is a one-track brain that can react, but not actually

Chapter 3 MiCroControllers

39

think. Due to their usefulness and low cost, microcontrollers have become

commonplace in our homes, and are now found in such household

appliances as home entertainment systems, refrigerators, and even

high- end coffee makers.

Although computers and microcontrollers can mimic some human

functions, please do not confuse their operation with true intelligence. We

might call a thermostat “smart” or “intelligent,” but all thermostats operate

in a predestined manner only following a procedure as dictated by their

programming. It does not matter how elaborate the device, or how good

the program is that runs on the machine, computers and microcontrollers

cannot truly be considered intelligent. Strides, however, are being made

in machine learning and artificial intelligence. As multicore parallel

processing, high operational speeds, and vast storage capacity in digital

electronic devices are unfathomable to the generation that relayed on

bimetallic strip technology to control heating and cooling in their homes, it

seems that the next step might be a “thinking machine” that could actually

become sentient (i.e., knowing that it exists). As for now, let’s strive to

understand how we can code a microcontroller to follow our commands

and operate in a predestined and orderly manner.

The Arduino is an open source prototyping platform. A prototype

is a first step in producing a new product, allowing for proof of concept

testing that could lead to possible future refinement and production. The

language that you will use to code the Arduino is a high-level computer

programming language called processing or wiring. It is a slight adaptation

of the very popular programming language C++, which has been around

for quite some time, and is in widespread use in industry. C++ and its

predecessor C are very powerful computer languages, and were even

used to write sections of the Microsoft Windows operating systems.

Microcontrollers in the past, such as the 8-bit Motorola (now Freescale)

65HC11, used a low-level programming method of operational codes

(op codes), with specified addresses that were entered through the use

of hexadecimal numbers, which are one step up from the binary one and

Chapter 3 MiCroControllers

40

zero machine language. This assembly language used a system of op code

mnemonics instructions as a way to bridge the gap between humans

and computers. Each processor had its own set of mnemonics and

addresses, and it took a great deal of effort to write programs back in that

era. Assembly is low-level programming because it deals very closely with

the hardware and has direct control of the manipulation of data in digital

circuits. Assembly language is a very powerful programming method that

requires little in the way of speed and memory usage, and is surprisingly

becoming quite popular again with the proliferation of IOT devices. Some

examples of IOT devices are light bulbs, speakers, and even garage doors

that can be connected through the Internet and controlled by computers

and portable devices like smartphones. The high-level languages like C++,

however, are much more common, and have both simplified the process of

programming computers and microcontrollers and allowed for

cross- platform compatibility and standardization.

The Arduino programs that you will construct with its open source

freeware can be very complex, but we only need to explore a few of the

features to get started writing useful code. We will be using the IDE for the

Arduino. As we progress through this section, you will need to work on the

IDE screen to write code and load it into the microcontroller, where it will

continuously run whenever power is applied to the board. You will code

in the white area under where it says sketch and the date. You code line by

line to make the controller perform desired tasks. It is very important to

understand that the instructions are executed in the line-by-line sequence

of events. Once you are satisfied that your code should work, you can click

the check mark button to discern if the formatting, or what is called the

syntax, is correct. The syntax is very precisely laid out to make sure that the

controller understands your exact intent. Once the code is in the proper

computer language syntax, you can click the arrow located to the right of

the check mark, or you could choose to use the menu bar, click File, and

then click Upload to send your program to the Arduino board through a

temporary USB connection.

Chapter 3 MiCroControllers

41

Let’s get a feel for how the IDE layout is structured (see Figure 3-1).

The top horizontal section contains the menu bar, where you can open

files, edit files, and so on. (Note that under the Tools menu, there will be a

drop-down list for the serial monitor that will be used in the early stages of

our program development in this text, but can also be used as an effective

aid in debugging a program anytime you wish to check variable values,

or know that a section of code has run as expected. The serial monitor

can also be accessed by clicking the magnifier icon in the upper right

of the IDE screen.) Located just below the words in the menu bar is the

toolbar that provides shortcuts to the most common menu functions. This

structure is very similar to many other Windows programs with which you

are probably familiar.

Figure 3-1. The IDE layout

Very seldom will any program run perfectly on the first try. Even

experienced programmers spend much of their time and effort testing and

debugging program code. In any technological endeavor, troubleshooting

is a normal procedure, and care must be taken to not become frustrated

Chapter 3 MiCroControllers

42

with the process. There are times however, after figuratively hitting the

wall, that one might need to take a break and return later with a fresh

perspective. It also helps developers to examine similar programs that

are available in the public domain to see how others have approached

solutions to difficult coding issues.

There are many sample programs located in the IDE under the File

menu in the Examples section. The Blink program is a good place to start.

If you have the IDE downloaded and installed on your PC and access to

an Arduino board, you can practice uploading, running, and modifying

the Blink program to change the blinking pattern. (The program is found

under the File menu in the Example, Basic section.) In examining the

Blink program code, notice that the command named delay has a

number located between two parentheses. That number is the delay time

in milliseconds. (Remember from our engineering notation section that

milli is thousandths, so 1,000 milliseconds are equal to 1 second, because

you have 1,000 thousandths.) You can easily modify the Blink program by

either increasing or decreasing the delay number, which will lengthen or

shorten the blink time pattern, respectively. You will also notice that the

sentence statements end with the semicolon symbol rather than a period.

This is true of Java and other popular modern languages and comes as a

carry-over from an old programming language called Pascal. If you neglect

to enter the semicolon symbol after each statement, or block of code, a

syntax error will occur and the program will not run.

If you try to upload the Blink example code but it fails to operate, and a

communications error occurs between the Arduino and the PC, you might

need to change the com port setting in the hardware manager section of

the PC operating system. This tends to be an issue that only happens when

initially connecting the controller to the PC. There is a helpful IDE section

that allows for changes in the com port. As shown in Figure 3-2, it can be

found by selecting tools from the menu bar, and then usually selecting the

highest numbered serial port that is listed.

Chapter 3 MiCroControllers

43

 Writing a Program
Most modern computer programming languages have similarities, and the

material we cover with Arduino programming will fundamentally apply

to other languages, with changes only in the syntax. The most important

rule to remember in any programming language is to document your code.

Whether you are working with a team of programmers, or you just want to

make a few changes a year or two after you first wrote a program, providing

documentation will help explain the intent of each section of the program.

Most languages allow you to make comments in the code that are ignored by

computers but can be seen and understood by programmers. In the Arduino

language, we use double forward slashes (//) to begin a single comment

line and pressing Enter on the keyboard ends the line. If you would like to

generate a large amount of comments without beginning each line with the

forward slashes, you can use a forward slash immediately followed by an

asterisk (/*) to begin the comments, and switch them around at the end (*/).

Figure 3-2. Changing the com port

Chapter 3 MiCroControllers

44

Remember, this is only when you have a large section of document

information; otherwise just use the double forward slashes for one line at a

time. In the programs presented in this book, we might overdocument our

code to help the reader, and there is no need for you to retype it into your test

of the program. It is recommended that at this point you connect an Arduino

UNO board to a USB cable linked to a PC running the IDE, and work along,

as we present programs in the remaining sections of the book. The Arduino

UNO can be purchased from many electronics outlets for approximately

$25, or you can purchase it through the official Arduino web site at http://

www.arduino.cc where the IDE is available as a free download.

After connecting the Arduino microcontroller to a PC with the IDE

running, probably the trickiest thing is to connect to the proper com port.

In Windows, the Found New Hardware wizard might open and ask to find

the software. It is best to let it automatically search and click Yes to the

questions. Afterward if there is a connection problem, as we just pointed

out, it is a good trick to go to the Tools section on the menu bar, scroll

down to Serial Port, and select the highest number port. This linking issue

should only occur the first time you interface a new or different Arduino

board to a PC. To check your link, use the menu bar to go to File, scroll

down to Examples, then across to Basics, and select Blink. After examining

the Blink code, click Upload next to the check mark icon on the IDE, and in

a second or two, you will notice an LED located near pin 13 on the board

blinking at the rate of about once per second. The UNO board has a

built- in LED circuit containing a current-limiting resistor connected to

pin 13. Having the ability to upload the program assures you have

established a good connection.

In our first project, we will type code from scratch to control the

blinking of the LED connected to pin 13. It is similar to the example code

that is in the example Arduino software. To power the board, you can use

USB power or disconnect the board after you have uploaded the program

and connect a 9-volt battery to the V in pin on the board or to the power

adapter jack. You can also connect 5 volts directly to the 5-volt header

Chapter 3 MiCroControllers

http://www.arduino.cc/
http://www.arduino.cc/

45

pin, but it must be precisely 5 volts or damage could result. Once the

program is uploaded correctly, you will see a small LED located directly

next to header pin 13 blinking slowly, slightly after the program has been

uploaded. The uploaded program will stay in the board’s memory and

the LED will blink anytime power is applied to the board. To code our first

program, begin by selecting File from the menu bar on the Arduino IDE

program on the PC, and then select New. In the empty white code area,

type in the code shown in Listing 3-1. To save time and effort, do not type

the lines of documentation. In other words, don’t bother entering any text

between the characters /* and */ or anything on the single line following,

and including the characters //. This is only documentation for yourself

and other programmers that the processor ignores.

Listing 3-1. Coding the Blink Program

Chapter 3 MiCroControllers

46

There are three sections that have been mentioned in the

documentation. Examining each section and line of code, we notice the

very top contains information about the variables used in the program.

Remember that in algebra, a variable is a letter or group of letters that

can represent a number. When writing a program, it is best not to use

algebra letters x, y, z, and so forth as variables, but rather try to use letters

that form a word that is descriptive of the variable’s usage. This standard

practice will help you understand the program’s intent in using the

variable. If you are working as part of a programming team, or you look

back on your code in a year or two, it might be hard to remember what

variables like the algebra letters x, y, or z meant, but is easy to realize that

the variable count was used for a counter operation. All of the variables

used in the program must be declared in the top section, however, and

this is true in most programming languages. Also, the type of variable is

declared, which allows the controller to allocate the proper amount of

memory space for data storage, and also helps the processor know what

type of operations can be performed on the variable. It was good past

practice to set variables equal to zero when they were declared, but this is

now unnecessary.

You might remember that in algebra there are constants along

with variables. In science, a relationship might be found between two

things, but to form an equation that can be solved for a numerical result,

a constant of proportionality might be needed. We use constants in

programming to help in the readability of code, just as we make variables

descriptive. A constant could be used in the declaration section to refer

to the LED pin, so that later in the code we would write LED, instead of

pin 13. This is very helpful when there are many pins in use for inputs

and outputs. In Listing 3-2, we modify our previous code by changing

the number of blinks and speeding them up. We show the code without

documentation, and the changes are highlighted.

Chapter 3 MiCroControllers

47

Listing 3-2. Modifying the Blink Program

The keyword const means the variable LED will always be associated

with pin 13. If you left out the fact that it was a constant, the code would

still run correctly because the Arduino is very forgiving, but it is good

practice to include the const keyword. The keyword int assigns integer

value and memory size. An integer is a number (with no decimal part)

and includes zero. Two bytes of memory space are allocated, which

allows the use of values from –32,768 to +32,767. If you are only using

positive numbers (called whole numbers in mathematics), you can use the

keywords unsigned int, which will allow you to use numbers between

zero and 65,535. For the number 13 that we are using for the LED in our

project, we could conserve memory space by using only one byte for the

size, by using the keyword byte instead of int. A byte can hold numbers

from 0 to 255. For numbers that have a decimal value the keyword float is

used, which uses up four bytes of memory space. In modern PCs, memory

size is not an issue, but in microcontrollers there is not much memory

(only 2 K for the Arduino UNO), so we try to use memory conservatively.

Chapter 3 MiCroControllers

48

Microcontrollers also run much slower than PCs, and have limitations on

the number of internal bits that can simultaneously be processed. Typical

PCs have quad cores, 64-bit data bus size (for simultaneous processing of

the bits), and clock speeds of several gigahertz. The latest version of the

Arduino uses an Intel Curie processor that has a dual core, 32-bit data size,

and a 32 MHz clock speed. Originally designed for low power consumption

useful in portable operation, it is an extremely efficient processor for the

Arduino boards, but is out of production at this time. Microcontrollers

generally do not need the fast processing speeds and functionalities of PCs

because they run limited processes and have very efficient operating code.

In the second section of our modified code to blink the LED, we mainly

assign inputs and outputs. The Arduino has bidirectional I/O. In our

example, we want pin 13 to send out a voltage, and consequently a current

through an onboard current-limiting resistor to the LED to illuminate

it. In our tests, we are using the Arduino UNO board, which outputs the

standard zero volts for a logic low, and 5 volts for a high. Some boards

like the Arduino 101, which uses the Intel Curie processor, outputs 3.3

volts for a high. In either case, our code is the same and uses the keyword

pinMode, followed by the pin number or name of the pin, and then the

designation of input or output. All of the code we are using is case sensitive

and special characters matter. If the words are misspelled or the formatting

is off, the program will not run, but will instead alert you to a syntax error.

If you typed the letter M lowercase in pinMode, or put a space between

the two words, the code word not run. Syntax errors can be corrected by

diligently reviewing every typed word, character, and punctuation mark on

each line in the malfunctioning section of code. A logic error, on the other

hand, is harder to catch because you have to rethink the overall approach

to solving the problem.

The first two sections of code only run once, but the main loop will run

continuously while power is applied. The main loop is considered to be a

function, as is the set-up section, and the keyword void signifies that they

perform an operation but are devoid of returning specific values after the

Chapter 3 MiCroControllers

49

process. The while statement is a conditional keyword that can invoke a

section of code to run, such as in our program where a loop of code runs

inside of the main loop. If the condition that the while function is based

on is not true (or was true, but is no longer true), then the code located

inside of the while function code space, which is identified by the nearest

set of curly braces { and }, will not execute. In our program, the variable we

called count starts at zero. Because code operates line by line, the while

condition we specified is true as the variable called count starts at zero, so

the LED turns on and stays on for 500 milliseconds before turning off and

staying off for 500 milliseconds (500 thousandths of a second = 1/2 second).

The count variable is then incremented so that the variable now goes from

the value zero to one. The program loops at the back brace }, returning up

to the while keyword, where the condition is checked again. The loops

of on-and-off LED flashes therefore go through the counts of (0, 1, 2, 3, 4,

5, 6). When the counter hits the number 7, the condition in parentheses

is no longer true (because 7 is not less than 7), and the while code space

is exited at the line of code at the point of the back brace } for the while

condition. Additionally, please note that the end of the main loop is the

very last back brace } , and when the program hits that point, it is redirected

back up to the point after the corresponding first main loop forward brace

{. The while line runs on every main loop rotation, but because the

counter is equal to 7 and it has not been incremented any higher or reset,

the while keyword condition is false and the code inside of the while

braces is skipped. The main loop keeps rotating, but not doing anything. It

is completely normal to have trouble visualizing this detailed explanation

of the code running line by line and it might be helpful to read this step-

by-step description again slowly, and in small sections, while referring to

the code listing that we are describing. The curly braces tend to be a main

point of confusion when coding, but luckily the Arduino IDE can help

you troubleshoot them. When you click just beyond a brace, the IDE will

highlight what front brace it is associated with, or you can click just in front

of the front brace to see its association with a back brace.

Chapter 3 MiCroControllers

50

Computer processors cannot yet think for themselves, so programmers

must tell them what to do every step of the way. It can be a little tedious

and cumbersome, but after a little practice, it becomes lots of fun. This

section of the book is also slightly tedious and cumbersome, but by taking

time now and digging deeply into the foundation of how these things work,

you will be able to use your creativity later to make powerful programs

that can do amazing things. If, on the other hand, you find the background

information too simplistic, hang in there because we are in a building

process and are using scaffolding to get to the higher level material. Having

a project that only flashes an LED five or seven times and then stops is not

very exciting. Next, we will design code that will allow a push button to

reset the blinking process.

There is a reset button on the Arduino that will restart the entire

program, and in turn reset the counter variable back to zero, but there

is a better way to restart the flashing without a hard reset. It would be

impractical to reset the entire board if more code were running along

with the flashing, so we will write some code that will use a push button

to cause the program to reset. You might want to use a momentary switch

and a breadboard if they are available, otherwise we can just use a 3-inch

piece of wire connected to the input pin, and simply simulate a button

push by momentarily touching the end of the wire to the metal shield

around the USB connector located on the Arduino board. The shield is

grounded and will give us a low logic level. We will write the code so that

when a low is encountered, it causes an action to occur. To make the logic

level change reliable, we invoke the pull-up mode in the setup section

of the code. A pull-up can also be hardwired on a breadboard, but it is

much easier to use the code to take care of this. The code in Listing 3-3 is

similar to our last project but with the new material highlighted, so that

if you are working along as you are reading the text, you will only need

to modify the code by adding the highlighted sections. We try to follow

this practice throughout the rest of the text, but sometimes we might

Chapter 3 MiCroControllers

51

greatly modify the code, so care must be taken that what is in the printed

examples matches your code identically. Also, although not necessary, it

is suggested that you use the same variable names as we do to reduce any

confusion.

Listing 3-3. Further Modifications to the Blink Program

This code causes the LED to go into the blinking process as soon as it is

uploaded, or if the program has been uploaded and power is cycled off-on,

or if the Arduino board reset button has been pressed. However, the new

code that was added additionally allows for a programmed reset button

to restart the LED flash sequence. It does this by resetting the counter to

zero, so that the while condition is met and it causes that section of code

Chapter 3 MiCroControllers

52

 space to loop seven times again (the counts are 0 through 6, which equals

seven flashes). Notice in the top declaration section the variable reset was

given the type Boolean. A Boolean number is only one bit, but is allocated

one byte of memory in the Arduino. It can be used for our variable, as we

are only dealing with a high or low logic level. Boolean logic consists of

only two possibilities, 1 or 0, but you can also use the keywords HIGH or

LOW. You can use the integer data type, but it is a waste of valuable memory

space because integers are allocated two bytes. The variable could have

been called x or anything you would like, but the variable name reset

is descriptive. Some words, however, are reserved as keywords from the

operational code and cannot be used. If you pick words that are reserved,

the IDE program will show them in a different color, and will generate

a syntax error causing the program not to upload or run. The logical

reasoning for the resetting of the counter is as follows: Once the program

has initially run, and then has stopped because the count has exceeded

its max value to meet the while condition, the main loop continues

looping while power is applied, so that when you momentarily touch the

wire connected from pin 7 (which we called button), to the grounded

USB box, it is read as a logic low. The keyword if is a very important

conditional keyword! If a condition is true, then what is in the code space

located between the open curly brace { and the close curly brace } after

the if condition will execute; if the condition is not true, the code space

will be skipped. When checking for a condition, this computer language

uses the double equal signs (= =), but when doing math only a single

equal sign is used. In our program, the controller will continue looping

all day checking for this condition to be met. The situation is analogous

to parents riding in the car on a long trip with their kids in the back seat

periodically asking, “Are we there yet?” Anyone with a distorted sense of

humor could modify this program to use a voice synthesizer to ask, over

Chapter 3 MiCroControllers

53

and over, “Are you going to push the button?” (I’ll have to remember that

for my next fun project.) It is also interesting to note that if you try to trigger

a reset as the LED flash loop is executing, the program might ignore you if

it is in the while loop and is busy performing the delay command. In the

next modification, we interrupt the controller so that it is more reliable and

responds immediately.

There are two types of interrupts: One is software defined and the

other is activated by hardware. We will change the code to do the latter

and create a hardware interrupt. On the Arduino UNO board, there are

two pins that can be used as hardware interrupt inputs. They are pins

2 and 3, with pin 2 given the designation of interrupt 0, and pin 3 given

the designation interrupt 1. We will move our wire from pin 7 from our

last code, now over to pin 2, so that we will use interrupt 0. Interrupts

do exactly what their name implies: No matter where the processor is in

code execution, it stops to perform the interrupt service routine (ISR),

and then returns to the point in the code where it stopped before the

interrupt occurred. Also, note that if you are saving code as we work

through our modifications, the IDE gives the program, also called a sketch,

the current date as the default file name, but it is good practice to change

the name to something more descriptive of your project. Also, the IDE

saves work to the Arduino folder, but you might want to create project

folders and save them in the Documents folder on your computer. Of

course, it is an individual preference as to where and how to save files.

Continuing now in modifying the original code from Listing 3-1, before

we added the ability to reset the counter, we have the following new code

(Listing 3-4) with additions highlighted for the use of a hardware interrupt.

Momentarily tapping a wire from pin 2 to ground will cause a reset to

occur immediately.

Chapter 3 MiCroControllers

54

Listing 3-4. Using a Hardware Interrupt

With the use of the interrupt, the program can be restarted at any point

during program execution. Interrupts are very useful when some event is

reported by an external sensor that demands an immediate reaction. In

our code, there might be a slight inconsistency in the number of flashes if

the program is reset during specific sections as it is running in the while

section of the code space. It seems that our program has encountered

a small bug. In the early days of the giant old mainframes that used

vacuum tubes and electromechanical relays, the warmth and light of the

tubes caused flying insects to be attracted to the computer equipment.

Occasionally a moth or other insect would get caught between relay

contacts or some other electromechanical device, and the computer would

need to be debugged. Nowadays our bugs are due to coding issues with

syntax or logic errors. We examine later how to disable interrupts from

Chapter 3 MiCroControllers

55

occurring during critical sections of code and then how to reestablish them

afterward. Our issue, however, is caused by the way that interrupts leave

and then return to the main program. When an interrupt occurs, there is

an internal memory called a stack pointer that remembers the exact point

of program execution when the main program gets interrupted and exits

to perform an ISR or subroutine. After the external code runs its course,

the stack pointer shows the exact spot in the main program where the

processor needs to return to resume its operation. The bug in our program

deals with the delay function. If the main program was interrupted while it

was into a delay, it will resume the main program at that exact point where

it left the delay, which could be somewhere before or at the beginning,

middle, or near the end. We need to digress to understand why we are even

using the delay command in our program. When we give the command in

our code to make an output pin a high or low the time period afterward is

indefinite. The code in Listing 3-5 would only light the LED continuously.

(Don’t bother coding it.)

Listing 3-5. Lighting the LED Continuously

Chapter 3 MiCroControllers

56

Now, if we were to write the code shown in Listing 3-6 and upload it to

the Arduino, we would notice a dim LED, because the on time and off

time would occur very quickly, switching the LED on and off in a fraction

of a second. Our human eyes would not discern the actual blinking light

because of its rapid speed, but would instead interpret the overall intensity

as half-brightness.

Listing 3-6. Changing the Switching Speed of the Blink Program

The delay command, as we have been using it to flash LEDs, can

give a perceptible blinking effect. If the on and off times of the delay are

somewhat short we can get a fast blink; if the on and off times of the delay

are long we get a slower blinking of the LED. It would be a good learning

experience to modify the code just presented to gain a good understanding

of this process. In the next chapter, we debug our program glitch by using

different types of delaying methods.

This chapter covered a large volume of material and we learned how

to write code. It might be beneficial to stop here and review this section of

text before proceeding. As mentioned in the book’s preface, the best advice

I ever received from a teacher was to reread complex material to gain a

firm grasp of the content before moving on. In the next section, we will

refine our programs, and have some fun communicating back and forth

with a microcontroller. This might be a good spot to take a well-deserved

Chapter 3 MiCroControllers

57

break before we refine the code for microcontrollers to break out of loops

and create delays that do not hold up the processor.

 Review Questions

 1. The main purpose of a microcontroller is

 a. to operate at faster clock speeds and have more

memory than PCs.

 b. to test inputs and produce outputs.

 c. to run video games.

 d. to run simultaneous programs such as e-mail

and Windows.

 2. The Arduino is based on a version of the C++

language called processing. (True/False)

 3. The Integrated Development Environment (IDE) is

 a. used to write programs.

 b. used to check syntax.

 c. used to upload compiled code to the controller.

 d. Used for all of the above.

 4. Which are easier to debug: syntax or logic errors?

 a. Syntax

 b. Logic

 c. Both are equally easy to debug

Chapter 3 MiCroControllers

58

 5. A low-level programming method seeing an upsurge

in popularity due to the proliferation of devices

being produced for the Internet of Things (IOT) is

 a. Basic.

 b. C+.

 c. IDE.

 d. Assembly.

 6. Misspelling or using improper grammar in

programming code is

 a. a syntax error.

 b. a logic error.

 c. not using spell check.

 d. a loop.

 7. The while conditional statement will run code

contained between the forward brace { and the back

brace } when the condition is not met. (True/False)

 8. The main program loop

 a. continues looping anytime power is applied.

 b. loops one time.

 c. loops while the condition is true.

 d. loops while the condition is false.

 9. The two types of interrupts are _____________ and

_____________.

Chapter 3 MiCroControllers

59

 10. When an interrupt causes a program to leave its

main loop where will it return?

 a. at the beginning of the code

 b. at the bottom of the code

 c. at the next variable

 d. at the next point where it left off

 Project 3
Design a program that will flash the LED connected to pin 13 four times.

Make the flash consist of 1 second on and 2 seconds off. Use pin 8 to reset

the flashing so that it will restart when pin 8 is grounded.

Chapter 3 MiCroControllers

61© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_4

CHAPTER 4

More Loops, and More
Elegant Methods
to Flash an LED
 Timer Loops
The delay command is useful in most circumstances and it is easy to

understand, but a for loop works very well as a timer whenever we want

to repeatedly run a command a specific number of times, or when we wish

to accomplish an additional task, or easily break out of the delay. Using a

timer for loop should fix our delay bug from Chapter 3. In our program,

our only additional task is to allow the possibility to break out of a delay,

and leave the delay without returning there after an ISR or subroutine is

activated. Note that both ISRs and subroutines are small subsets outside

of the main program code. They both exist outside of the main loop, and

are not used in all programs, but might sometimes be helpful. In the

case of an ISR, the typically small section of external code responds to a

hardware interrupt, such as that produced by a sensor or switch, whereas

the traditional subroutine is mainly software defined and useful for

organizing code so that repetitive procedures can be grouped and referred

to periodically, rather than having repetitious code appearing numerous

times within the main code loop. The use of traditional subroutines,

62

however, is not encouraged in C or C++. In our code for the program we

are debugging (Listing 4-1), we use an ISR to reset the LED flash count.

There are two possibilities for when this can occur: One is after the series

of flashes have occurred and the LED is extinguished for a considerable

period of time, and the other can occur as the flashing sequence is in

progress. There are many ways to solve the issue of inconsistency of the

number of flashes following a reset. One possible bug fix is shown in

Listing 4-1. We are now executing a series of five slow flashes with the

momentary tapping of a wire from pin 2 to ground causing a reset of the

flash sequence.

Listing 4-1. A Possible Bug Fix

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

63

The code uses the hardware interrupt as before, but now there are two

loops to control the duration of each LED state, both contained within an

outside loop used to control the total number of on and off flashes. We call

the counter for the LED time on counter1 and the counter for the LED

time off counter2. Each one repeats 100 times, with a delay of 10 ms,

giving a 1,000 ms (1-second) total time duration, so that the LED is on for

1 second and then off for 1 second. For reset purposes, we use the variable

called insideLoop to identify if a flash sequence is occurring. When there

is a hardware interrupt, the ISR checks for this with an if else statement

to restart the illumination sequence in the proper way. If the interrupt

occurs during a flash sequence, the ISR returns with reset = 1 and the if

statement that is embedded in the for loop of the LED-on will cause a break

out of the loop, which cancels the LED on state. Because of that cancellation,

the proper number of flashes will occur. The ISR had to restart the outside

loopcounter variable at negative one to enable the proper number of

flashes. Otherwise, if the interrupt occurs when the flash sequence is not

running, the ISR simply resets the outside loopcounter variable to zero.

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

64

Notice that the on and off times were changed to 1 second each, and

instead of seven flashes as in the program before, we changed it to five. We

are now asking you to modify the code to restore half-second timing and

seven flashes. The task lurks as an end-of-chapter problem, but it would be

best performed now while the code is fresh. A hint appears in the Appendix.

An even more elegant method of causing an LED to flash while

performing other operations in a program is to use a built-in timer function in

the AVR processor used by Arduino. From the time that power is first applied

to the board, the Arduino has a timer that begins counting the elapsed time.

The counting process will continue for well over a month before it resets.

To use this function, you need only specify the range either being micros or

millis. The micros range would be used if you were measuring very short

times in millionths of a second, whereas the millis range is for longer time

periods that are in the thousandths of a second. For seconds of time we use

1,000 micros. In the next section of code, we use the timer so that we do not

need to tie up the controller during the LED flashing process with a delay.

This will allow it to perform other operations in the program code. This is an

example of how we can mimic multitasking in a microcontroller.

Early PC operating systems used a similar method called preemptive

multitasking. It seemed as though the computer was performing separate

tasks simultaneously, but really it was only sharing time between different

applications as required. In the very early days of mainframe computing,

a similar system existed called polling, in which a specific amount of time

share was given to multiple user terminals, so that they would connect

for a brief period of time. It similarly gave the illusion that multiple events

could be processed simultaneously. The difference between preemptive

multitasking and time sharing is that preemptive multitasking only allocated

processing time as was needed by the additional event, whereas mainframe

polling would give an equal time slice to every operating terminal.

Nowadays, with multicore processors and parallel computing, we are truly

able to separately process data streams simultaneously. Even though some

of the newest microcontrollers have multicore processors, their job is to

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

65

have a one-track mind, and even with interrupts, subroutines, and elegant

coding, the microcontroller is meant to run in a continuous loop.

Using the millis function, the code shown illuminates the LED, and

then will extinguish it for a period of about 1 second each way, based on

the last on or off state. It is not shown in Listing 4-2, but additional code

could be written above, between, or below our LED code. Through this

process, the controller can perform multiple tasks.

Listing 4-2. The Blink Program Using the Arduino Internal Timer

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

66

 Controlling Embedded Processes
In the previous section on timer loops, the very last program that we

examined used the millis timer to repeatedly flash the LED on and off.

It was mentioned that other code could be performed while the flashing

sequence was occurring so that it gives the illusion of multitasking. In this

section, we demonstrate how the additional embedded code operates, and

then later we modify the LED section of the code so that five flashes will

take place and allow for a reset of the operation.

Because the Arduino only has one onboard LED, we need to connect

an outside LED to one of the other header pins. Any other output pin

would suffice, but our code calls for pin 12 as a second output to the

external LED, and any one of the ground pins. You can just tie the two

components together, or wire them on a breadboard. As shown in

Figure 4- 1, we need to connect the current-limiting resistor. You might

wish to build two external LED circuits on a breadboard using different

color LEDs, using pins 13, 12, and a common ground.

220

LED1

pin 12

ground

Figure 4-1. Connecting the current-limiting resistor

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

67

Listing 4-3. Using the Arduino Timer to Mimic Multitasking

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

68

The program seemingly is controlling two simultaneous operations

of two separate devices. To keep things simple, our second operation is

just modifying the variable names and the blinking speed of the external

LED, so that it blinks twice as fast as the internal LED connected to pin 13.

Using this same concept with motors on a robotic arm instead of the LEDs,

embedded code such as this could run two motors simultaneously, so that

the arm could be made to run in a diagonal direction.

We now stop the process of the slower flashing LED, connected to pin 13,

after five flashes with the following code, Listing 4-4, with changes shown

as highlighted.

Listing 4-4. Blink Program Using the Arduino Internal Timer

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

69

The conditional statement that allows the slow flashing of the LED

connected to pin 13 is expanded with the AND condition, so that the total

number of flashes will not exceed five (i.e., the condition allows the LED to

flash for the longFlash variable to increment five times: zero through the

number four).

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

70

The next addition to the code will allow for a reset of the long flashing

on pin 13, by zeroing the variable called longFlash through the use of an

interrupt. The additional code is highlighted in Listing 4-5.

Listing 4-5. Using an ISR

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

71

The code shown in Listing 4-5 adds a hardware ISR named ISR_

RESET, which will reset the counter called longFlash to zero. By

resetting the longFlash variable to zero, we allow the long flashing on

pin 13 to occur again for additional flashes. The interrupt could occur at

any time during program execution. The longFlash variable could be

reset at any time, including during the flashing sequence, to provide the

additional flashes.

The sections of the preceding code show examples of how seemingly

simultaneous operations can be coded, so that separate events can be

controlled in a microcontroller program. More than two events can also

be written into the program; however, as occurs with every processor, as

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

72

multitasking is expanded, the overall execution of the operations tends to

slow down, which could cause issues in overall functionality.

 Digital Electronics
If the coding programs we have presented to flash an LED on and off

seem trivial by today’s standards, then let’s take a look at exactly how

difficult an endeavor it is to accomplish through the use of basic electronic

components. Please understand that the function we are examining could

also be applied to many far-flung applications, with one such example

being the control of vehicle intermittent windshield wipers. Until the late

1960s, the windshield wipers on vehicles had two speeds, low and high.

Thanks to American inventor Robert Kearns, who patented a windshield

wiper triggering system in 1964, whenever mist or light rain conditions

developed that only needed a delayed sweep response of wipers across a

windshield, an electronic circuit that he employed would delay operation

for a preset period of time dependent on the values of two electronic

components, the resistor and the capacitor. As we have learned in the

first chapters of this book, the electronic component called a resistor is

used in circuits to limit current flow. The other electronic component

that Kearns used in his intermittent windshield wiper circuit, for timing,

was a capacitor. A capacitor is used to store electric charge, and its

charging function is determined by the amount of resistance in the series

circuit path multiplied by the amount of capacity of the component. He

developed a triggering circuit for windshield wipers that was delayed until

enough charge built up across the components so that it would trigger a

transistor to activate a wiper motor. In earlier chapters, we learned that

transistors in computers operate as electronic switches, similar to wall

switches used in our homes to switch lights on and off. The intermittent

wiper is but one example to help illustrate that our ability to control the

number of flashes of LEDs and their delay can be applied in solutions to

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

73

numerous problems that exist in seemingly unrelated areas, and that the

use of a preprogrammed microcontroller is one of many solutions.

A similar but far more robust transistor timing circuit than that used by

Kearns in the 1960s was developed into an IC in the early 1970s. Its basic

part number is 555, and it was used in early Apple and IBM computers. In

fact, it is still widely in use today in many applications. Figure 4-2 shows

one of its many uses, where it is wired as an asynchronous multivibrator.

That function provides regularly timed pulses that continue indefinitely,

so long as power is applied to the circuit. In our 555 schematic, we use

values of the resistive and capacitive components that make an LED

flash at roughly 1-second intervals (i.e., half-second on, half-second off).

This is the same speed as our flashing LED in the previous programs. In

later projects, we will speed up the frequency. The frequency of a 555

can be increased by decreasing the value of the resistive and capacitive

components. The supply voltage does not affect the frequency. For a

basic timing circuit, this hardware option is a low-cost solution when high

accuracy is not a requirement.

GND

1

DIS7

OUT 3RST4

VCC

8

THR6

CON5

TRI2

47 k

47 k

10 uF

9 V

220

Figure 4-2. Schematic of a 555 integrated circuit

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

74

Typical part numbers for this IC timer are NE555 and LM555. The

letters before and after the number identify the manufacturer and package

type. The designation 555 is called the base number, and it is essentially

the part number of the device. The timer is also available as a dual version

with the base number of 556. Let’s take a look at how the single 555

operates. We chose to use a 9-volt battery for our circuit because 9-volt

batteries are readily available. The 555/556 can be operated at anywhere

between 4.5 and 15 volts with an output current of up to 200 mA. Its wide

range of voltages and currents, as well as its durability, is why this IC

developed back in 1971 is still popular today. It is a hybrid of analog and

digital technology and given the name mixed signal. If it were to be used

with digital circuits the 9 volts would need to be varied accordingly (i.e.,

the voltage would need to be no higher than 5 volts for TTL logic devices,

and for our Arduino). The schematic drawing is helpful to understand the

operation of the 555 circuit, but the physical pins on the IC are numbered

as shown in Figure 4-3. For all ICs in this type of package, which is

called a dual inline package (DIP), the same pin numbering scheme is

used, regardless of the total number of pins. Pin number 1 is always the

leftmost bottom pin under the orientation marking, with the pin numbers

increasing as they run, left to right, along the bottom of the package. The

pin numbering then loops upward, counterclockwise to the top, and then

runs right to left across the top of the IC package (see Figure 4-3).

Figure 4-3. The DIP pin numbering scheme

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

75

In the 555 circuit of Figure 4-2, the main voltage (VCC) is connected

from the battery to the power pin 8, as well as reset pin 4. Keeping pin 4

high does not allow the reset function to occur, and the 555 keeps flashing

the LED from its output pin 3. In our example, the resistor-capacitor (RC)

timing circuit consists of the two 47,000 (47 KΩ) series resistors, and the

10 microFarad (μF) capacitor (the Greek symbol μ, called mu, stands for

the prefix micro in engineering notation). When power is first applied,

charge across the capacitor is restricted by the two resistors that are in the

series path to the capacitor. However, once enough time elapses and the

capacitor develops enough charge across it, the 555 pins 2 and 6 trigger the

device into operation, causing the capacitor to discharge into pin 7, which

has an internal transistor turned on to supply a ground. After the capacitor

voltage has discharged sufficiently to ground, the transistor inside of the

555 shuts off, and the pin 7 discharge path is then open, which allows the

charge process of the capacitor to repeat. Because of its internal circuitry,

the output of the 555 timer, which is pin 3, will oscillate between the VCC

and ground voltage levels as a digital square wave. If you are building this

circuit, do not tear it down because it could be used again in Chapter 8 as

a frequency source for a number of electronic projects. To use the Arduino

to provide power and ground, and for more information about the LM555

and breadboard connections, skip ahead to Chapter 8 and review the

description.

To implement the logic of our Arduino project that ran a fast blinking

and a slower blinking LED simultaneously, we could use a second 555

timer with different timing components, or just a single IC by selecting

a 556 dual timer. In the 555 circuit just presented, the flashing rate was

a half-second on, followed by a half-second off. The circuit used two

resistors that were 47 KΩ, as are identified by the colors yellow = 4,

violet = 7, orange = 3 zeros, which describes the value 47,000 Ohms of

resistance. The gold band on the resistor is the last color band of four.

It is helpful for orientation in reading the color code, and its gold color

represents a tolerance of plus or minus 5%. Resistors are not polarized.

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

76

The capacitor value is directly labeled on the side of the component and

it is polarized, so that the side marked with the negative symbol must

go toward ground. (Most capacitors at or above 1 μF of capacitance are

polarized.) To create a second 555 circuit to additionally flash at the rate

of twice per second, we would need to construct a second circuit similar

to the one in our schematic, but replacing the resistors and capacitor

with values so that the RC time constant was one half. If we then ran both

circuits simultaneously, it would accomplish the same outcome as our

previous Arduino code. Alternatively, a single 556 dual circuit could be

used for the same task. If that were the only function needed in a project,

and the parameters were not going to change, it might be beneficial to only

use two 555s or one 556 instead of a microcontroller because the size, cost,

power consumption, and other factors could make the use of a processor

on a small project impractical.

In the preceding exercise in digital electronics we can see that the

control of objects and operations can be done electronically without the

use of microcontrollers. Many legacy devices were controlled through the

utilization of discrete components and ICs until recently, but with the cost

of microcontrollers having become extremely low, and their versatility and

processing power becoming very high, the use of a microcontroller is a

simple solution when more than a few functions need to be accomplished,

or if the parameters might change over time. As in our coding example,

the flashing rate could very easily be adjusted through slight changes in a

line or two of code, whereas in a digital circuit using discrete components,

physical changes would need to be made. Even still, digital electronics is

what make up the hardware of computer systems, cell phones, televisions,

and other equipment we enjoy today. The study of both analog and digital

electronics is a very useful and rewarding endeavor. The microcontroller is

but a piece of the overall objective, which is to use technology for practical

purposes.

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

77

 Intermittent Windshield Wiper Control
with Arduino
Intermittent windshield wipers were developed in the 1960s by Robert

Kearns, as discussed earlier. There is an excellent movie about his

invention and subsequent patent fight with the “Big Three” automobile

manufacturers called A Flash of Genius. The popular film was released

by Universal Pictures in 2009 and documents Kearns’s tenacity. It is a

movie that is educational, entertaining, and uplifting. In his invention,

as we discussed earlier, Kearns used an analog timing system relying on

the charge and discharge function of capacitors and resistors. The charge

and discharge voltage level of the capacitor triggered a transistor into

conduction for motor activation. Later, with the proliferation of digital

circuits, and today with microcontrollers, a program can easily be coded to

control the intermittent response of a vehicle wiper system. The program

code that is presented in Listing 4-6 simulates the wiper motor direction by

using two LEDs designated as wipeRight on pin 8 and wipeLeft on pin 9. In

our simulation, each LED is separately connected in series to an Arduino

output pin and through a 220 Ohm resistor, similar to Figure 4-1. Our code is

rudimentary simulation. For actually using a nonfeedback loop DC motor,

limit switches could be employed to compensate for motor drift. Servo, or

stepper motors, could also be used to achieve a higher degree of reliability.

Listing 4-6. An Intermittent Wiper Motor Control

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

78

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

79

 Review Questions
 1. Use of the delay function is simple and

straightforward, but it has a drawback in that

 a. the delay function is difficult.

 b. the delay function idles the processor from

performing any other tasks.

 c. it requires many lines of code.

 d. it reduces the number of variables.

 2. The letters ISR stand for

 a. Internet source reference.

 b. into some resistance.

 c. integer standing relative.

 d. interrupt service routine.

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

80

 3. For loops are very useful if you wish to

 a. repeat a section of code for a specific time

period.

 b. infinitely loop.

 c. delay and have the entire delay run without

interruption.

 d. do all of the above.

 4. The term multitasking in a microcontroller means

 a. seemingly performing multiple tasks

simultaneously.

 b. performing tasks individually.

 c. running multiple clocks.

 d. using multiple variables.

 5. If statements in a program are examples of

 a. conditional decisions.

 b. unconditional decisions driven by hardware.

 c. subroutines.

 d. interrupt.

 6. The line of code that would have x = x + 1 in many

high-level languages, equal to the code in the C++

language of X++, means

 a. the program is over.

 b. decrement x.

 c. increment x.

 d. the program begins.

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

81

 7. An ISR is written

 a. inside a subroutine.

 b. outside of the main code.

 c. in the declaration section.

 d. in the setup section.

 8. The code break is used to

 a. debug a program in IDE mode.

 b. end a loop or other function.

 c. stop for coffee.

 d. do none of the above.

 9. The base number of an old but reliable timer IC still

in use today is

 a. LM555CN.

 b. NE556XP.

 c. 555.

 d. NE556.

 10. A polarized capacitor means that

 a. it has a positive and negative connection.

 b. its north side must face south.

 c. it can only connect to resistors.

 d. it is usually less than a value of 1 Ω.

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

82

 Project 4A
In the first program that we covered in this chapter, we improved on the

interrupt handling of the flashing LED programs from Chapter 3. We

eliminated the long delay functions and replaced them with for loops.

Please modify the code to restore seven distinct flashes, and so that the

LED is on for one half-second and off for one half-second. (Hint: The code

can stay essentially the same but some numbers will need to be modified.)

 Project 4B
Design a digital circuit using the 555 timer as shown that will additionally

illuminate a second LED during the opposite logic level. It should work

like the warning lights at a train track, so that the two LEDs alternate their

flashing. (Hint: The 555 supplies a high in the circuit as shown in the text

to light the LED; however, it also provides a low when it is in its other state.)

Chapter 4 More Loops, and More eLegant Methods to FLash an Led

83© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_5

CHAPTER 5

Serial Communications
 The Binary Number System and ASCII Code
A very useful and fun tool in working with the Arduino is the serial

monitor. Using the USB PC connection and the serial monitor feature of

the IDE makes it unbelievably easy to use the on-screen serial monitor

for both troubleshooting and creating entertaining game programs

with minimal electronic interfacing. The IDE serial monitor function is

bidirectional so that you can both transmit and receive data and see it in

real time on the PC screen.

We know that computers only understand 1s and 0s, so for us

humans to interact with our computers for writing an e-mail or posting

to social media, for example, how do the words we type on the computer

keyboard convert to the 1s and 0s of the binary system that our computers

understand? The trick is to use a code that has a sequence of 1s and 0s to

represent the information. It has gone through a few changes since the

basic idea was developed in the early 1960s. Today the standard method

uses 8 bits and is called ASCII code. The letters ASCII stand for the

American Standard Code for Information Interchange (pronounced

“as- key”). In using 8 bits and having the rule in the binary system that each

bit may only contain a 1 or 0, the smallest 8-bit number is 00000000, and

the largest is 11111111. As with the decimal system, characters to the left

carry a greater weight. Also, each column has a specific weight associated

with its location. In the decimal system that we use in everyday life, an

example dealing with dollars in a paycheck is that the number 200 is much

84

better than the number 002, because the 2 in the first case is in the third

column where the weight of its position is in the hundreds of dollars,

whereas in the second case the 2 is located in the first column where it is

associated with ones. If you had a check for $202 that you took to the bank

to cash, the teller might give you two $100 bills and two $1 bills to pay out

$202. The binary system works in pretty much the same way, except you

cannot go above 1 in any column and the column weights are different.

The concepts are described using Table 5-1 and Table 5-2.

Table 5-1. The Decimal Representation for Decimal 202

10,000,000 1,000,000 100,000 10,000 1000 100 10 1

0 0 0 0 0 2 0 2

Table 5-2. The Binary Number Equal to Decimal Number 202

128 64 32 16 8 4 2 1

1 1 0 0 1 0 1 0

In Table 5-1, we have 200 + 2 = 202, and in Table 5-2 we have

128 + 64 + 8 + 2 = 202. So, if the bank were cashing your check in binary

money the teller would give you 11001010 dollars in binary. It looks like

a lot of money, but it is completely equivalent to the $202 that you would

have in the decimal system.

In our first serial monitor example, we use a simple Arduino program

to generate the decimal equivalent of the binary system powers of two. In

examining Table 5-2, we go from number 1, which is base two raised to

the exponent 0, up to decimal equivalent number 128, which is base two

raised to the exponent 7. If you count each of the columns in the chart, you

will find that there are eight of them, starting with the zero power, so the

chart contains 8 bits. Eight bits of data is also called a byte. In our following

program, the code expands the chart of base two, up to the 15th power

Chapter 5 Serial CommuniCationS

85

(16 bits, which is 2 bytes). The highest column has the decimal equivalent

number of 32,768. After typing the code shown in Listing 5-1 into the IDE

and uploading, click the magnifying glass icon in the upper right of the

screen to go to the serial monitor, or you can choose Serial Monitor from

the Tools menu bar.

Listing 5-1. Program to Generate Powers of 2

Chapter 5 Serial CommuniCationS

86

It gets a little confusing converting between different number systems;

unfortunately, we have to go through the process because the everyday

world is decimal, but computers are binary and can only deal directly

with 1s and 0s. Fortunately for us, calculators and computers can easily

make the translations. If you would like to perform the operation from our

program on a scientific calculator, you can find each result by entering the

base number 2 and then usually using the x to the y function to enter the

power of two. It might be a second function key on your calculator. Usually

the key is labeled xy. You would enter the number 2 as the base, shown as

x, then press the xy key and enter the number for y, which would be the

power of two for the exponent. You might need to consult the instructions

for your specific calculator.

For a computer to understand what you are typing on a keyboard,

there is an IC located inside of the keyboard case that, through the use

of a matrix, associates each keystroke with its corresponding ASCII code

number by generating a scan code. The code is needed because even

though there are some numbers on a keyboard, there are letters, too

(both lowercase and uppercase), in addition to punctuation and special

functions. The group of experts who standardized the associative code

gave a distinctive 8-bit number to represent all of the information on the

keyboard.

 Simulating Artificial Intelligence
In our next serial communication project, we will type a few letters on

the keyboard and view the display on the serial monitor to see how the

keyboard IC and the computer convert our letters to scan code and then to

ASCII. There is also a behind-the-scenes interrupt number that is also sent

from the keyboard to the PC, which is called an interrupt request (IRQ).

It works similarly to the concept we used in the project when we sent a

hardware interrupt to the Arduino to cause a reaction during our LED flash

Chapter 5 Serial CommuniCationS

87

program. However, now the interrupt occurs automatically without having

to poke a piece of wire to ground an input pin. It occurs when the keyboard

sends data to the computer CPU for processing. The IRQ signal interrupts

the CPU, so that it gives attention to the keyboard data that are sent. To

observe this activity, we want to open the Arduino IDE and upload the

program in Listing 5-2.

Listing 5-2. Programming for an IRQ

After you have typed the code, which appears in the large open white

area as shown in Figure 5-1, you can click the check mark on the left side

of the IDE screen to test the syntax, or select the arrow next to the check

mark in the upper left side of the screen, to both check and upload the

code to an Arduino board. In either case, if there is a syntax error the

IDE will display error messages and might highlight the code section

that might have a problem. Sometimes syntax errors are not in the exact

section that is highlighted. If you find that the results printed on the

Chapter 5 Serial CommuniCationS

88

output screen seem to run together, or the syntax continues to have an

error, a very common problem in this type of program is typing the print

line return incorrectly. The command Serial.println has a lowercase

l and n attached to the print statement. Many times, people mistake it for

a lowercase i and n. The code in this example is pretty straightforward, but

in general you will find that troubleshooting is a challenging and rewarding

part of any development project. Quite often, errors in coding are due to

a misspelled word or a punctuation error. Once the code is successfully

uploaded, we are able to run the program. As you type letters on the

keyboard to communicate over the serial monitor, the letter information

is temporarily stored in a memory area called a buffer as it is transmitted

serially as a packet to the PC when the Enter key is pressed, or the Send

button is clicked. The Arduino can hold 64 bytes in its buffer, (i.e., 64 ASCII

characters), and any keyboard information beyond 64 characters will be

ignored and lost. In this program, we only need to enter a few letters to

interact with the serial monitor and observe how computers translate

between different number systems. To run the program and view the serial

monitor, in the upper right corner click the magnifying icon (Figure 5-1), or

on the menu bar click Tools and select Serial Monitor, to open the screen

shown in Figure 5-2.

Now, type the lowercase letter a into the top input bar on the left and

press Enter on the keyboard, or click the Send button on the right side of

the screen. The monitor should then display the letter and both the binary

code number and the ASCII decimal value for the lowercase letter a in

the large open white area. You might also wish to add code to display the

Chapter 5 Serial CommuniCationS

89

Figure 5-1. Code entered in the IDE

Figure 5-2. The serial monitor screen

Chapter 5 Serial CommuniCationS

90

hexadecimal (HEX) value. You would need to add a modified section of the

decimal code from the program, where the DEC keyword is replaced by HEX:

Serial.print ("the hexadecimal number is");

Serial.println (keys, HEX);

The hexadecimal number system, usually referred to as just hex, is

base 16, and uses 4 binary bits to represent a single number. Any binary

number can be represented by a group of 4 bits in this format. Because

4 bits has its highest value equal to decimal 15 (11112), to only have one

character, the hex system uses letters to represent single numbers above

decimal number 9. The following numbers above the value of decimal

number 9 are shown with their hex equivalent:

10 = A

11 = B

12 = C

13 = D

14 = E

15 = F

In mathematics, a base number system exists for every natural

number (i.e., counting numbers), and the base is also referred to as the

radix. In computers and electronics, we use the base 2 (binary system),

base 8 (octal system), and base 16 (hex system), along with the normal

base 10 (decimal system) systems. Computers only deal directly with the

binary numbers, but octal and hex notation make it easier to write large

groups of bits in an abbreviated manner. When we work with high-level

programming languages, the conversion process is usually handled behind

the scenes. In some languages, the entire program is converted into 1s

and 0s in a process called compiling, whereas in other languages sections

are converted only as needed, and that method is called an interpreted

language.

Chapter 5 Serial CommuniCationS

91

When we input and output letters, printed text numbers, and

punctuation directly with a computer program, each instance is called a

character of the string data type. The decimal number of the ASCII code for

some of the most common characters is shown in Table 5-3 and Table 5-4.

In our next serial monitor program example (Listing 5-3), we use the

computer to both input and output information to the microcontroller.

The program leads the user through prompts and outputs corresponding

information about the user’s and microcontroller’s favorite colors. It is

a very simple program that mimics artificial intelligence (AI). Work on

Table 5-3. Lowercase ASCII Letters

a = 97 g = 103 m = 109 s = 115 y = 121

b = 98 h = 104 n = 110 t = 116 z = 122

c = 99 i = 105 o = 111 u = 117 Space=32

d = 100 j = 106 p = 112 v = 118 period=46

e = 101 k = 107 q = 113 w = 119 Comma=44

f = 102 l = 108 r = 114 x = 120 hyphen=45

Table 5-4. Uppercase ASCII Letters

a = 65 G = 71 m = 77 S = 83 Y = 89

B = 66 h = 72 n = 78 t = 84 Z = 90

C = 67 i = 73 o = 79 u = 85 numbers

D = 68 J = 74 p = 80 V = 86 zero through

e = 69 K = 75 Q = 81 W = 87 nine:

F = 70 l = 76 r = 82 X = 88 48–57

Chapter 5 Serial CommuniCationS

92

AI began in earnest after the 1940s when Warren McCulloch and Walter

Pitts first mathematically quantified a neural network, the structure in

which the neurons in animals’ brains are wired together. A man-made

neural network, or artificial neural network (ANN) is but one solution for

creating a thinking machine. The Turing test for machine intelligence was

developed at the beginning of the 1950s by the father of digital computer

science, Alan Turing. The test consisted of a human having a conversation

with either a computer or another human being, and not being able to

distinguish any difference between the two. In 1956, John McCarthy, a

professor at Dartmouth College, made the case that, “learning or any

other feature of intelligence can in principle be so precisely described that

a machine can be made to simulate it.” That early era of computing gave

way to children’s robot toys and science fiction movies featuring thinking

machines. Mathematicians, scientists, and programmers have feverishly

been trying to develop AI in the years since then. Some forms of AI exist

today, and as processing power continues to ramp up, intelligent machines

will drastically change the landscape of our modern society. Today’s best

efforts to develop a thinking computer are to create a learning machine,

in which a computer will learn from its past experience and pick the

best future scenario. Seventeenth-century French mathematician Rene

Descartes, well known for developing the Cartesian coordinate system,

purposed the Latin philosophical concept, Cogito ergo sum, which roughly

translated means, “I think, therefore I am.” Today, as many well-known

tech companies such as Google, Apple, Amazon, and even Facebook

have been spending millions of dollars to develop AI, the single most

promising field is heuristics, which is the ability to match patterns and

relationships. There are also a great many computer programs that simply

mimic machine intelligence. In our code, we add the ASCII decimal values

of the letters in the words that the user enters on a keyboard. For example,

the word red is comprised of the letters r = 114, e = 101, and d = 100. The

total for the word red is thus 315. A glitch will occur in a more involved

program using this simple method, due to the commutative property in

Chapter 5 Serial CommuniCationS

93

arithmetic. Because our simple program does not take the sequence of the

characters into account, a different series of numbers could happen to add

together and produce the same total value. Listing 5-3 is merely a simple

demonstration of the use of string I/O for multiple characters. Feel free to

modify the code and make it more robust to more closely simulate AI.

Listing 5-3. Using String I/O for Multiple Characters

Chapter 5 Serial CommuniCationS

94

Chapter 5 Serial CommuniCationS

95

Text, called character strings, take lots of memory. If you are doing a

project that is using lots of text printing to the serial monitor, you can try

using a handy macro contained within the Arduino libraries, where the

capital letter F encloses the text string; for example, Serial.print

(F ("This won't eat up RAM memory, since it goes to

flash not directly to RAM")).

 Designing a Serial Communications Game
In the last section, we examined the serial monitor, which is a very

powerful tool for debugging code and watching real-time processing

operations. The ASCII code described was more of a hardware process

rather than the main objective of this text, which is to understand the

software of programming controllers. The procedure was just presented

as background information for the reader. There is low-level software

called firmware that converts the keyboard scan codes and ASCII codes

for us behind the scenes, so when programming a solution to a problem,

we don’t have to get bogged down and reinvent the wheel. If you type the

number 5, as we learned, even though the information sent from your

keyboard is only a code of 1s and 0s, that ASCII number represents the true

number 5, so as high-level software programmers, we don’t really care too

much about the lower level code. The firmware will make all necessary

translations. Computers operate at three distinct levels. The lowest level

is the hardware level. The actual ICs and circuit boards of a computer are

considered to be low level because they make up the machine level. The

Chapter 5 Serial CommuniCationS

96

second level is the firmware and operating system level. This would be like

Windows or Apple OS, where control of the hardware is maintained and

interfaced with the top level. The top level is the user level, where human

interaction occurs. As programmers, we produce programs that are at the

top of this hierarchy.

We will now design a rather straightforward program that uses the

serial monitor to give us output, thus saving us from having to interface

electronic circuits to the microcontroller for the time being (Listing 5-4).

We will design a game of over and under, where we will guess the outcome

of a random number between 1 and 99 that the controller will generate.

The code is provided in Listing 5-4 and an explanation follows.

Listing 5-4. Code for the Over and Under Game

Chapter 5 Serial CommuniCationS

97

Chapter 5 Serial CommuniCationS

98

True random numbers are extremely difficult for a computer to generate.

A processor must follow a code leading to a predetermined sequence of

events. A trivial way a processor can pick a random number is for a group

of numbers to circulate in a loop. When the user pushes a button or causes

some sort of action, the number that is nearest the output of the circulating

loop is chosen as the pseudorandom number. It is not truly a random

number, however, because the user’s choice of time determined the number

that was picked. There are many sophisticated pseudorandom generation

techniques. The best Arduino random number generator method is using

an analog voltage appearing at an unused analog input pin. It is simple

and works fairly well in generating random numbers. Electronic noise is

composed of stray signals that are out in open space like radio, TV, and

cell phone signals, or electromagnetic interference from electric lines and

the operation of household appliances, as well as signals produced by

solar wind and cosmic rays. The Arduino uses these random stray signals

to aid in the choice of a random number. In the setup section, the code

randomSeed(analogRead(5)); reads the analog random noise value

of an open unused analog input pin and uses it as a reference to generate

Chapter 5 Serial CommuniCationS

99

a random number. You might be able to increase the reception of noise

by connecting a small wire to the analog pin to act as an antenna. The

serial.begin (9600) command opens the serial port on the Arduino

and allows communication at 9,600 bits per second (the communications

term bits per second is also called baud). We will monitor the activity just

as we did when we used the serial monitor to examine the keyboard ASCII

code. The variable named button (assigned to pin 7) starts the game when

it momentarily goes low. A random number is then generated and user

prompts are given, which appear on the IDE serial monitor screen.

Printing nicely to the monitor screen takes a little practice. The command

Serial.print ("X"); will print the letter X. Any string of characters

enclosed in quotation marks will print directly on the screen. Without the

quotation marks, the value of a variable X would be displayed as a decimal

number. Adding ln (lowercase LN), shorthand for line, directly after a print

statement will print the object, and then cause a line return by moving

additional text to the following line. In the old days of teletypes, this was called

a carriage return. To allow for better readability, you might wish to skip lines

on the monitor output vertically, by using the commands Serial.println

(); or Serial.println (" ");. An empty open and closed set of

quotation marks is called a null string. It could also be useful to add horizontal

spaces between text enclosed within quotation marks, such as when printing

on the same line using the Serial.print (" "); command.

The for loop in our code allows up to 20 seconds of time to elapse, for

the player to make a decision, before the program times out. This amount of

time is because each delay in the loop is 10 ms times the 2,000 times around

the loop (.01 s × 2,000 = 20 s). The break; procedure will exit the loop as

soon as a player decision is made so that we do not have to wait for an entire

delay time to pass. We could have used interrupts, but the break works fine. If a

condition is true, it breaks out of the loop and goes to the next section of code.

The higher or lower pin choice is checked on each rotation of the loop. The if

and else if conditional statements pick and display the proper outcome.

Finally, a restart prompt is given, and the game can be played again.

Chapter 5 Serial CommuniCationS

100

Are computer games always fair? Let’s modify the code to keep the player

from winning by making a few minor changes. Add the changes highlighted

in Listing 5-5 to our original program code and the player will never win.

Listing 5-5. Altering the Game Code

Chapter 5 Serial CommuniCationS

101

Chapter 5 Serial CommuniCationS

102

The highlighted code will reject the second computer-generated

number if it is a winner and generate a new second random number. If

the second random number would be a winner, the code uses a goto

command to redirect the next line execution above the random number

generation until a random number is picked that will cause the player to be

wrong. Players will think their luck is very bad but should eventually catch

on to the fact that they are being cheated, because they will never win a

single round. In our next iteration of the game, we will occasionally allow

them to win.

The changes to the original clean code first presented are again

highlighted in Listing 5-6. Now we introduce a variable called counter to

keep track of the number of times the second computer-generated number

is repicked for the player to lose the round. We are introducing a complex

type of division called modulo to allow the player to occasionally win a

round. The modulo, sometimes called modulus or mod, is a division

function that will only return the remainder of a division problem. So, if we

mod divide a counter number by, say, 3, then only the number 3 and its

multiples (6, 9, etc.) will have an integer result with no remainder. To make

it visible for us to show where the cheating is happening, we are printing

a message showing the number of times the second number was rerun to

make the player lose (feel free to modify the code to change the odds).

Chapter 5 Serial CommuniCationS

103

Listing 5-6. Introducing the counter Variable

Chapter 5 Serial CommuniCationS

104

Chapter 5 Serial CommuniCationS

105

 Finding Odd and Even Numbers
It was a bit of overkill to use mod divide in the last project, when other

simpler conditional statements exist. We could have replaced the

mod division with "while (counter < 3){...", or used "for

(counter = 1; counter < 3; counter++)[{...". We wanted

to introduce mod division, though, because it can be useful.

The next project finds even numbers using mod division by dividing an

ever-incrementing number by 2 and checking for there to be no remainder

(Listing 5-7). We use a wire quickly tapped to ground to increment the

variable named value. When it is 2, or an even multiple, no remainder

will be produced. The variable will print to the serial monitor screen as

it increments, and pin 13 on the Arduino will light for 2 seconds if the

number is even. Odd numbers would be a little tricky to find directly, but

we could adapt the code to find them through the process of elimination

(i.e., if the number is not even, then it is odd).

Chapter 5 Serial CommuniCationS

106

Listing 5-7. Finding Even Numbers Using Mod Division

 A Recipe Quantity Calculator for Baked Goods
We are again using the serial monitor, but now for a useful program.

The code is for baking recipes that allow the user to adjust for the exact

quantity of baked goods that are needed. The given code in Listing 5-8 only

has one recipe, but once additional recipe information is included in the

program, the specific recipe can be selected by looking for input equating

to the ASCII value of the names of the additional items.

Chapter 5 Serial CommuniCationS

107

Listing 5-8. A Baking Recipe Quantity Calculator

Chapter 5 Serial CommuniCationS

108

Chapter 5 Serial CommuniCationS

109

Chapter 5 Serial CommuniCationS

110

 Review Questions
 1. If a for loop had a delay of 2, and a maximum loop

count of 3,000, what would be the total delay in

seconds?

 2. Signals from unwanted electromagnetic waves

are called

 a. noise.

 b. hyperbole.

 c. cosmic.

 d. digital.

 3. The code Serial.println ("Z"); will

 a. print the value of the variable Z.

 b. print the letter Z.

 c. print the value of the variable Z and then start a

new line.

 d. print the letter Z and then start a new line.

 4. If statements can be followed by else if

conditions and may end with the last condition

equal to else. (True/False)

 5. The statement myNumber = random (1, 10);

 a. stores a random number between 1 and 9 into a

variable.

 b. outputs the value of myNumber to the screen.

 c. picks the numbers 1 and 10 as random numbers.

 d. randomly loops between 1 and 10.

Chapter 5 Serial CommuniCationS

111

 6. The base 16 system is also called

 a. radix.

 b. decimal.

 c. hex.

 d. 16 cycles.

 7. An operating system such as Windows is which at

level of the computer hierarchy?

 a. low level

 b. midlevel

 c. high level

 d. network

 8. ASCII code has how many bits?

 a. 1

 b. 4

 c. 8

 d. 16

 9. The hexadecimal number 1110 is represented by

which letter?

 a. A

 b. F

 c. X

 d. E

Chapter 5 Serial CommuniCationS

112

 10. The decimal number 9 is represented by which

binary number?

 a. 1000

 b. 0009

 c. 1001

 d. 1111

 Project 5
Modify the over and under game so that it is not possible for the second

random number to equal the first. (Hint: Different methods are possible;

one solution would be a while loop or a do while loop. The help

section on the IDE contains a great reference section with examples of

many different conditional statements.)

Chapter 5 Serial CommuniCationS

113© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_6

CHAPTER 6

Having Fun
with Programming
 Random Teacher Jokes
I would have to pay high taxes if this book project became a success, so in

hopes of keeping sales down, it was decided to add a section making fun of

teachers to ensure that the book would not be widely used in schools. The

random number generator from the last chapter is a fun way to learn to

develop games and interesting applications. In this section, we write code

to deliver nasty random insults to teachers. You might wish to modify the

code to poke fun of a lawyer, mother, or any other person of your choosing.

There are a few issues that we need to resolve in the program that

follows. Some of the jokes do not make much sense because the insults

in the first part do not match the punch lines in the second part. There is

code to stop direct repeats of jokes, but the spacing is not far enough to

eliminate repetition. One possible solution is to expand the joke library

(please consult with a good comedian). Also, grouping related sections will

tie the insults and punch lines together. Before we improve the code, let’s

understand how it works in its first phase.

Just as before, if you intend to copy and paste the following code

from an e-book, be careful of the formatting of apostrophes and other

punctuation marks. It might be best to just retype the code as shown into

a blank Arduino IDE. Be very careful, however, because the IDE does

114

not provide a spell check or punctuation correction function. To help

format the code after you enter it, you can press Ctrl+T on the keyboard.

To run the program after it is uploaded to an Arduino, momentarily tap

a wire from pin 7 to ground, such as the metal box surrounding the USB

connector, so we can see an obnoxious, but possibly humorous joke

materialize from code in Listing 6-1.

Listing 6-1. Teacher Joke Generator

Chapter 6 having Fun with programming

115

Chapter 6 having Fun with programming

116

Chapter 6 having Fun with programming

117

In analyzing the code, we again describe our variables in the declaration

section, and in the setup section we define inputs and outputs and call

for the random number generator. After the button is clicked to trigger

the start of the program, we incorporate a do-while loop. We have used

while loops in previous code examples, but the do-while is slightly

different in that it performs an action and subsequently tests its condition.

The thought process here is to store the random number from the previous

run of the program and while the old number and new number are equal,

the generator will run until they are not equal. In this way, we eliminate

a direct repeat of both the insult and the punch line. Next, this program

makes use of software subroutines that are frowned on by traditional C and

C++ programmers. In early computer programming languages, such as

Basic, subroutines were used for organization and to keep code modules

from having to be repeatedly rewritten. Languages like Visual Basic, which

is very intuitive and fun to use, rely heavily on subroutines to perform

operations in conjunction with user inputs. Although now frowned on,

subroutines work nicely for our objective by associating a string with a

random number (strings are groups of characters that form words). In

the subroutine sections, we use a common conditional statement that is

similar to if and else if called the switch case. Case statements are

used in many languages to consolidate a large number of if statements.

In our code, it matches the random numbers to the associated strings.

We use the first set of random numbers to generate the insults and the

second set of numbers to generate the punch lines as they are printed to

the serial monitor. If you run the code in Listing 6-1, you can see that some

of the jokes make no sense. In Listing 6-2, a grouping sequence is used so

that there is more of a relationship between the insult and corresponding

punch line. Much can be copied and pasted from before.

Chapter 6 having Fun with programming

118

Listing 6-2. Using a Grouping Sequence

Chapter 6 having Fun with programming

119

Chapter 6 having Fun with programming

120

Chapter 6 having Fun with programming

121

Chapter 6 having Fun with programming

122

Chapter 6 having Fun with programming

123

The changes in this code are not highlighted, but in comparing this latest

code for teacher jokes to the code in Listing 6-1, along with an increased

number of put-downs, you can see that we are grouping the insults with

the punch lines for the jokes to make more sense. Also, we are not allowing

the repetition of each section of the joke to occur any closer than a spacing

of three. As a project, you can modify the program by both expanding the

database of jokes (don’t be too mean), and increasing the nonallowance of

repeat spacing. Additionally, it is recommended that if you are using this

text in a school, you should change the focus of the joke to pass the class

with high marks. Lawyer jokes are a good choice, because almost everyone

likes lawyer jokes.

 Perfecting Random Numbers
In our previous examples of trying to generate discrete responses that were

not duplicated, we found that it was possible to limit repetitiveness by

spacing the occurrences and pulling from a larger reservoir of possibilities.

In this section, we describe simple algorithms that can be used to entirely

eliminate the duplication of random numbers. An algorithm is not

always a mathematical formula; in coding it is generally a process used

to accomplish a goal. It is the logic behind the code. A complex algorithm

usually takes a great deal of thought, time, and effort to develop, and

cannot be typed into code on the fly. There are a number of methods

programmers use to mentally visualize the operation of a program. Some,

in fact, do use math, but the majority of programmers will use simple

sketches on paper or a more orderly type of drawing called a flowchart, as

illustrated in Figure 6-1.

Chapter 6 having Fun with programming

124

Another commonly used method that aids in establishing an algorithm

is called pseudocode. This method has you write the code in a somewhat

normal language, just as you would speak, but you try to sound a bit like a

computer. The code matching the flowchart in Figure 6-1 for not wanting

to have duplicated random numbers is shown here as pseudocode:

Generate random number

If random number = existing number in data base

Then go back, generate new random number

Else, add new number to data base

Flowcharts and pseudocodes are common ways to design program

operation, and there are many other ways to devise the logic that is needed

to complete the objective. Understanding the objective and taking time

yes

no

Generate a
random number

Add random number
to the data

Does number
already exist in the
data base?

Figure 6-1. An example flowchart

Chapter 6 having Fun with programming

125

to design the logic flow of a program is always time well spent, where in

all but the simplest cases, the actual writing of code should be the very

last step. A surgeon would have X-rays and MRIs at his or her disposal

before operating on a sick patient, an architect would have a blueprint

before constructing a building, and an engineer or technician would have

a schematic of a device before building it, so it follows that a programmer

would have a logic tree and algorithm substantially constructed before

beginning to write code.

We have been working with random numbers and have had some

issues arise where we wish to eliminate duplicate numbers. The code we

generate in Listing 6-3 follows the previous flowcharts and pseudocode for

a logical way to eliminate duplication.

Listing 6-3. Eliminating Duplication

Chapter 6 having Fun with programming

126

This code works fine for very small sets of numbers, up to about 10 or

so, when using the Arduino UNO. The processing time becomes too great,

however, when larger sets of numbers must be generated because if any

number in the set is not unique, the code throws out the entire set and

restarts the process from the beginning. The result will be correct, but the

iterations of an entire set of numbers could take quite a long time as the

set gets long. We fix this issue in our next project, so let’s now look at an

interesting way of checking for duplicate numbers. The code uses two for

loops, with the algorithm based on the mechanical logic of two separate

circles that hold identical numbers. Each circle holds what is termed an

Chapter 6 having Fun with programming

127

array. Arrays of numbers use one variable but have many possibilities

for discrete values contained in separate instances of the array that are

differentiated by an index number assigned to each instance of the one

variable. At the top of our code we declare two arrays: ArrayOne holds

10 discrete values indexed from 0 to 9, and ArrayMirror is the second

array that equally is declared to hold 10 discrete values also indexed from

0 to 9. In our logic, we consider the outside circle mentioned earlier to be

ArrayOne, and the inside circle to be ArrayMirror.

Please visualize this as you examine the code shown in the main

loop: The outer circle clicks clockwise only one click as the inner circle

rotates 360 degrees. The equal index numbers are ignored, but if any

other instance of an equal value exists between the two arrays, it indicates

a duplicate. In this way, each outer number of the slowly rotating circle

values is compared to each and every inner circle value. If a duplicate is

noted, the random number generation for the arrays will reoccur. The code

in Listing 6-4 addresses the elapsed time problem we had in our previous

code that threw out the entire set of numbers if there was a duplicate. Now,

by identifying the nonduplicate numbers and storing them in a final array,

only the duplicate numbers need be regenerated, as needed.

Listing 6-4. Eliminating the Elapsed Time Problem

Chapter 6 having Fun with programming

128

Chapter 6 having Fun with programming

129

There might be other more efficient methods to generate arrays of

nonduplicate numbers, but the code as shown builds a new nonduplicate

array of a distinct amount of numbers that can very easily be used to

simulate a deck of cards containing 52 distinct outcomes. We utilize this

code in later sections of the text, as we build card games to have fun with

programming.

Chapter 6 having Fun with programming

130

 Poker Game
We will now combine the nonduplicative random number code with more

use of the array process to play the game of five-card straight poker. In this

game, five cards are dealt to the player and five to the dealer. The rules of

poker apply to determine which hand is better. We did not incorporate

the rules of the game into this code, as our main objective is now simply

to demonstrate an application where the nonduplicative random number

code is useful. A more complete version of this game is shown later in the

book. As an extended project, you can add code to the extended game

shown later to display the player or dealer as the winner of the hand. We

must keep in mind however, that the onboard memory on the UNO is

limited to 2 kB, and that a microcontroller’s real job is to examine inputs

and produce corresponding outputs. The advantage of working with

the Arduino microcontroller comes from its open source hardware and

software: It has tremendous popularity in the maker space, as well as a high

degree of standardization. There are many project applications and add-on

modules available, called shields. Shields plug in over the top of the Arduino

board and increase its functionality. There are even breadboard type

shields available that allow the user to construct hardware device input and

output on an attached circuit board that sits atop the Arduino. A controller’s

job is to do useful things, and we are misusing it by playing games.

In the following program, some of the code is the same as that for

our last project. We have highlighted the new lines and changes. For

consistency between the grouping of cards and the different suits, such as

diamonds, hearts, and so forth, we have formatted them into Table 6-1.

Chapter 6 having Fun with programming

131

Because we have card numbers 1 through 13 accounted for in the

first column, our algorithm was to disregard the section of card numbers

until the next number’s least significant digit matched. That is why

it was determined that card 21 would be the ace in the next suit. It is

slightly inefficient to generate random numbers that are not in use, but

the processing time lag is not seriously affected, and the coding is more

straightforward. Listing 6-5 is the program that follows from Table 6-1.

Listing 6-5. Five-Card Poker Game

Table 6-1. Sorting Cards

Suit 0 = Clubs Suit 1 = Diamonds Suit 2 = Spades Suit 3 = hearts

Card 1 = ace Card 21 = ace Card 41 = ace Card 61 = ace

2 22 42 62

through through through through

10 30 50 70

Card 11 = Jack Card 31 = Jack Card 51 = Jack Card 71 = Jack

Card 12 = Queen Card 32 = Queen Card 52 = Queen Card 72 = Queen

Card 13 = King Card 33 = King Card 53 = King Card 73 = King

Chapter 6 having Fun with programming

132

Chapter 6 having Fun with programming

133

Chapter 6 having Fun with programming

134

Chapter 6 having Fun with programming

135

 Multidimensional Arrays
In the past few projects, we used arrays to keep track of individual values

contained in number sets. Occasionally, more complex analysis of

groupings might be needed; that is when two- and three-dimensional

arrays can really come in handy. The project code in Listing 6-6

illustrates a two-dimensional array. We define two small arrays with

three possibilities each, using the subscripts 0, 1, and 2. Having two

combinations of three possibilities equals a total of nine possible

outcomes (32 = 9). Each value is loaded, and on running the program, the

serial monitor will display each of the distinct values associated with the

two arrays.

Chapter 6 having Fun with programming

136

Listing 6-6. A Two-Dimensional Array

 Dice Game
The following dice game is a great learning example of how to write computer

code that must produce specific results for a given set of circumstances. In

engineering and technology, we must find solutions to problems. The problem

given to us in this section is to write code for a computer to simulate throwing

a pair of dice. The game has simple rules that readily lend themselves to

computer coding, but at the same time provide a caveat in that if no win or loss

Chapter 6 having Fun with programming

137

is achieved in the first round, a completely different set of rules then supersede

the first set of rules, until the game starts over.

The first set of rules that are in effect for the first throw are as follows:

Two dice are thrown (each is called a die), and if the dot markings on both

dice add up to the numbers 7 or 11, then the person throwing the dice

is a winner. If on the first throw any one of the following numbers result,

however, the throw is considered to be a loss: 2, 3, or 12. The caveat is that

if the number of dots resulting from the first throw is neither a win nor a

loss (i.e., 4, 5, 6, 8, 9, 10), then the number that is thrown is called the point.

If a point is the result of the first throw, then the player must repeatedly

throw the dice in hopes of matching the point number to win the game. If

in the process, however, the player’s dot pattern thrown equals the number 7,

then he or she loses the game, and the game resets back to the initial set of

rules for the next throw. In coding this process, the first set of rules and the

second set of rules are both straightforward. The complication is moving

between the two sets of rules. One method to solve this problem is shown

in Listing 6-7.

Listing 6-7. Using Two Sets of Rules

Chapter 6 having Fun with programming

138

Chapter 6 having Fun with programming

139

Chapter 6 having Fun with programming

140

The preceding code used a series of multiple if statements. The if

statement is a very powerful conditional statement that allows for the

decision-making process of a computer program. Here is an analogy:

Traveling on the Ohio Turnpike on the way to Cleveland, there was a road

sign spotted saying “Cleveland Left.” Some people might turn around

and return home because they would think that Cleveland was not there

anymore, whereas an autonomous vehicle with the computer code if

Cleveland then exit would arrive at the destination.

 Review Questions

 1. How can you enable spell check in the Arduino IDE?

 a. Press Ctrl+S.

 b. Type SPELL CHECK in all capital letters.

 c. Choose Spell Check from the menu.

 d. There is no spell check.

Chapter 6 having Fun with programming

141

 2. A quick way to format code is to

 a. type FORMAT in all capital letters.

 b. choose Format from the menu.

 c. Press Ctrl+T.

 d. Choose Format in the Options box.

 3. A graphical way to plan for program operation is to use

 a. pseudocode.

 b. functions.

 c. loops.

 d. flowcharts.

 4. A while loop will run continuously while a

condition exists. (True/False)

 5. A do-while loop will execute a block of code how

many times at the absolute minimum?

 6. Which of these is a more efficient way of performing

many if conditional statements?

 a. Switch case

 b. do loops

 c. if then, as if

 d. Breaks

 7. Which of these is a way of planning a program using

words that are similar to actual code?

 a. Flowchart

 b. Pseudocode

Chapter 6 having Fun with programming

142

 c. Conditional statements

 d. Conditional testing

 8. For loops are identical to while loops but run only

once. (True/False)

 9. What is an algorithm?

 10. What is the geometric shape for a decision in a

flowchart?

 a. Diamond

 b. Square

 c. Parabola

 d. Triangle

 Project 6
Add to the database by including more insults to the humorous teacher

joke program. (Don’t be too outlandish, or they might flunk you.)

Chapter 6 having Fun with programming

143© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_7

CHAPTER 7

More Game
Programming,
with a Detailed
Explanation
 Coding the Game 21: First Attempt
We will continue creating interactive games from scratch. They are

simplistic video games, as modern computer and gaming consoles have

such lifelike graphics, animation, and sounds that even the military is

using the technology to train solders for combat scenarios. We, however,

are essentially using a device only meant to be a controller of equipment

to provide us with a little entertainment as we learn the fundamentals of

coding. Our next program is the card game 21, also called blackjack. Card

games work well for learning how to code because the games have specific

rules and outcomes. We have a player and dealer, each given two cards.

The cards’ numerical values range from 2 up to 10, and there are four picture

cards, for a total of 13 possibilities. We will code a random number of 2

to 14, which gives us all of the possibilities. The code for this is "random

(2, 15)". This first version of the game is incomplete, but it begins the

design process. Other more complete versions of the game are provided

144

later. This first iteration does not use nonduplicate numbers and does not

address the point value of picture cards; we will do that later. For now,

we review concepts in a slow, methodical process and begin to develop

the game. Open the Arduino IDE and load the code shown in Listing 7-1

without statements followed by the double forward slashes (//), as they

are comment lines only seen by other programmers and not recognized

by the processor as code. Comments are important for you and others to

understand the thought process of the programmer. When writing your

own code, please use them. Also, do not type in the line numbers as they

are shown for illustration purposes only.

Listing 7-1. Coding for 21 Game

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

145

The code for our program is numbered to aid in providing a complete

description. Old programming languages relied on line numbering, but

used a trick of not making the line numbers consecutive, and would

instead increment by 10 or more, just in case a programmer needed to

make future changes and insert code between the lines. It is good to note

that the processor does indeed follow each line of code from the top of

the code to the bottom (unless redirected). The old Basic programming

language, as well as others, allowed for subroutines to keep things orderly

and decrease repetitious sections of code. The idea was to have the main

program go to a separate section outside of the step-by-step procedure

to perform a task, and then return at the point in the main program

where it left off. Most of today’s modern programming languages do

not recommend the use of subroutines, but a similar concept called a

function can be employed with the Arduino to accomplish the same goal.

In our sample code, we use a function to place the section of code used to

generate a set of random numbers and then store them in an array.

Referring to the top section of code in our program, lines 1 through 5

are where variables are declared and can be initialized. Remember that

in algebra, a variable is a letter that can represent a number. In coding, we

can use more than one letter to represent a single number, and instead

of using something very abstract like xyz, we want to name a variable

using a group of letters that are somewhat descriptive. This helps the

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

146

programmer and others reading the code to better understand what the

variables represent. In our example, the variables are triggerPin,

randomNumbers, trigState, TrigLatch, and counter. Notice a

variable must consist of a letter or group of letters without a space. It is

not necessary, but it is common practice to capitalize the first letter of the

second word if you are using a variable that needs more than one word

to be descriptive. Some programmers like to instead use an underscore

to make the words readable. Using the underscore method, our variable

triggerPin could be called trigger_pin. Either method works

just fine to allow for good human readability of the code. There is no

spell check when you are writing code, which could lead to a debugging

headache in large programs. The processor does not care what you call

a variable, as long as you are consistent throughout your program. The

processor does, however, need to know what type of number and how

much space in computer memory to allocate to each variable. Because we

are only referring to a header pin number on the Arduino board with the

triggerPin variable, it is byte size. In computers, the binary system is

used, where a bit is a single memory cell that can hold a 1 or a 0, and eight

memory cells are called a byte, so a byte is 8 bits. Its maximum size would

be if the 8 bits were 1s, and that equates to the number 255 in our normal

decimal system. We have about 20 header pins that can be used as I/O on

the board, so it is fine to use the byte designation for their memory size,

and because the pin number will not be changing, we call it a constant. In

algebra, it is permissible to let a letter represent a constant. It is standard

practice in math to use the beginning letters of the alphabet for constants

and the end of the alphabet for variables that will change values as they

are manipulated. For program coding purposes, we only care about

naming them for ease of human readability. The first line of our code is

telling the processor from that point forward, anytime we refer to the term

triggerPin, we are specifying header pin 7. This occurs after we identify

it as I/O in the setup section. In electronics, the term trigger specifies a

signal of short duration that begins or ends an operation; for example,

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

147

a push button switch turning a television on or off. In our code, I chose

pin 7 as the start pin because 7 is my lucky number. You could have just

as well called it START or anything else that is descriptive, as long as you

are consistent throughout the program. You could have also assigned any

other appropriate I/O header pin to perform the trigger function. Please

note that in this language, uppercase and lowercase letters do matter,

so the variable START is not the same as start; they would be entirely

separate variables. Also, the code const byte has to be spelled exactly

in that way, and in that order, or you would generate a syntax error and

the program would not compile. When a program compiles, the computer

language is changed into 1s and 0s that can be loaded into the computer

memory to run the program. Many times the IDE will highlight the error

and try to explain a naming problem, but the Arduino IDE is not perfect

and cannot find the exact problem 100% of the time. Common problems

to watch out for are neglecting to end each sentence with a semicolon (;).

The following are also commonplace errors in syntax: misspellings, errors

in capitalization, word and letter spacing, and—the hardest to notice—a

curly brace misplacement. The curly braces start and stop a block of code

that works as a cohesive unit. The braces look like this: { starts a section,

} stops the section. Sometimes the program logic requires you to have

sections within sections. To keep the braces from getting confusing, many

good programmers will immediately put both the open and the close brace

on the page, and then fill out the code in between.

Earlier we discussed generating random numbers through the use

of an array; there are a great many ways to write a program where the

methodology could be completely different but accomplish the same

objective. It would be just as possible to generate each random number

in our program rather than doing it in one fell swoop. The use of arrays

is a very efficient but slightly difficult concept to understand. It is a fast

way to group values as a specific block of data. There is one variable with

many different values. Each specific data value is given a variable subscript

called an index number.

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

148

In line 2 of our code, we are specifying integers using the syntax int.

Integers are also sometimes called short and variables assigned with

this designation use 2 bytes of computer memory space and can contain

decimal numbers between –32,768 and 32,767. Integers also are whole

numbers without a fractional part. If you needed greater accuracy in

computations, you could use the data type called float, which allows for

fractional values. In our code, we are generating numbers between 2 and

14 to represent the distinct values in a deck of cards, with card numbers

11 through number 14 translated to equal the jack through ace cards.

In line 2 the number inside the brackets gives the maximum number of

discrete values for the array. We could have also more appropriately used

byte as the type. Notice the brackets ([]) are different from the braces we

discussed earlier. Brackets are used for arrays, whereas braces ({ }) are

used for enclosing sections of code operations. Because we specified the

number 4 within our brackets, there will be four distinct values, indexed

from 0 to 3. We need four cards because the player and dealer get two

cards each. Notice that computers start counting at zero, so zero through

three accounts for four distinct values. For example, if you specifically

wanted to reference the second card generated, you would use the code

randomNumbers[1] because index zero is card 1, and index 1 is card 2.

Yes, it is a little confusing, but computers start counting at zero. After a little

gnashing of the teeth, we schedule a trip to the dentist and our frown turns

to a clean and happy smile, as we get use to starting with zero.

When we declare a variable outside of the program, it is a called a

global or general declaration and will be available for use anywhere. For

efficiency, it is possible to also use a variable in a specific area of the code

and in this case, it is called local. After declaring the global variables in

the top section, in lines 1 through 5 of the code, we proceed to the setup

area where we identify pins as being input or output. The Arduino has the

ability of using the data lines in a bidirectional manner. This means that a

sensor, such as a switch, could be connected to a specific pin as an input

to the controller, or an actuator such as an LED could be connected as an

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

149

output using the same pin; however, a specific pin can only be used as

either an input or output at any given time. We can easily touch a small

wire from our input pin to the USB metal box on an Arduino board to get

a ground (which is a computer low). The pullup designation on line

7 means that without any connection, the pin is a computer level high,

as it is pulled up. We want to display real-time data on our computer

monitor so we enable serial communication in line 8. The (9600) in the

parentheses specifies the communication speed in baud, which is bits of

data exchange per second; this is a very slow speed. Before broadband

Internet connections, analog telephone modems were commonly 56 K

baud, or nearly six times as fast, but in our Arduino programs, we are

only interested in exchanging text between a computer and a controller

and 9600 baud is fast enough. Program line 9 prompts the user, and 10

provides a line space. The randomSeed command line appearing next in

the setup section elects to pick up electrical interference commonly called

noise from the analog pin 5, which is designated an input. Electrical noise

is everywhere and caused by power lines, radio and television stations,

and even naturally occurring events in outer space. Usually in electronics

we try to shield against noise, but in our generation of random numbers

it will help the randomization process because the noise is random and

unpredictable.

Now to where the magic happens: Line 12 is the main section of the

program. It is called a loop because it loops around to the bottom of the

section continually while power is applied. The loop might be broken by

a function or subroutine for a time, but returns when the external process

is completed. The top variable designation section and the setup section

of the code only run once when power is first applied or the program is

first loaded or reset, but the main loop keeps running over and over. The

term void just means that the loop is a function that returns no specific

value. Going back to algebra again to look at functions, the formula y = x2,

is a function that produces a parabola. If you made a graph and picked

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

150

numbers of both positive and negative values as the domain (x), the range (y)

would consist of a parabolic object centered about the positive y axis

with its origin at zero. In computer languages, functions usually produce

a result such as a number to coincide with the meaning of functions of

mathematics; however, for a controller such as the Arduino, we do not

usually want to have a result to a math problem. We instead want to sense

things and do things. Because of this difference, just about every function

in controller programming is a void, which means that we are not getting

an overall number result. Just as with a computer starting a count at zero,

eventually our frowns turn to happy smiles as we get used to it.

Looking at program lines 13 through 16, the main program looks

for a trigger low on pin 7, which we called triggerPin (this is when

we momentarily tap a wire from pin 7 to the USB metal ground). It

momentarily stores the information if a low is there in a memory location

we called trigState. Then it remembers by storing the fact into a

variable called trigLatch. trigLatch is being used as a longer term

memory. When it is true (1), the program will run until we release it by

setting trigLatch to its original state of false (0). In general terms in

electronics, a latch locks in a condition until it is reset. A push button on

a television remote is momentary. When you push the on button on your

remote the television latches onto that command, until you push a button

again and trigger it back to the off state. Again, keep in mind when writing

your own code, you have the opportunity to name variables anything you

want, but it is best to be descriptive so that other people can figure out

your thought process. In addition, you might need to revise your own code

sometime in the future and might not remember the logic that you were

using. This also leads to the important subject of documentation. You will

notice statements in the code that we are using that start with a double

backslash (//). They are comment lines, as we mentioned before, and the

computer ignores them, but they help us explain our thought process from

one human to another.

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

151

To generate our random numbers in the main loop section, this

code calls a function on program line 17 that we named getNumbers.

The function is essentially a subroutine residing outside of the main

loop. Again, it is a void function because it really does not produce an

actual result, but it does generate an array of four random numbers.

Each number will be between 2 and 14, representing the card values in a

deck. It accomplishes the generation through the use of a for loop in the

function or subroutine. The for command institutes a loop that ends after

a condition is met. This generates a distinct random number for each spin

around the function loop. The counter variable is incremented each time

through by the syntax command counter++, which adds one every time

it executes. After the four times around the loop, the program pointer goes

back to the spot in the main program loop where it left off, and continues to

execute the remainder of the main loop code. The next section in the main

loop, program lines 18 through 20, uses another for command to print

the random numbers that were generated to the computer monitor. After

all the numbers are displayed on the monitor, the trigLatch is broken

at program line 21. The main program continues to loop but ignores the

trigLatch interior code until trigger pin 7 is made low once more.

 Coding the Game 21: Second Attempt
In the next area of code, we want to associate picture cards with their

values. We are assigning 11 to the ace because that is the value of points,

and we go on to assign 12 to the jack, 13 to the queen, and 14 to the king.

After allowing the players to know what card they were dealt, though, we

have to make their card game point value equal to 10 for the face cards

other than the ace. (In the sample code that follows in Listing 7-2, this

procedure is done only for the player. To make the game functional, you

will need to complete the procedure for both of the dealer’s cards. Use

copy and paste as much as possible and just change the specific values.)

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

152

Listing 7-2. Another Version of the 21 Game

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

153

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

154

 Review Questions
 1. Subroutines are frowned on in C, C++, and the

processing language that the Arduino code is based

on, but _________ can be implemented to do pretty

much the same thing.

 a. arrays

 b. functions

 c. floats

 d. brackets

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

155

 2. Arrays in Arduino code use __________ to contain

the index.

 a. { } curly brackets

 b. [] solid brackets

 c. *\ asterisk and backslash

 3. Why should variables be somewhat descriptive?

 4. In older computer languages, lines of code were

numbered. (True/False)

 5. The integer data type contains ___________, whereas

the float contains ___________.

 6. Why are arrays useful?

 7. The control structure very frequently used with

arrays is

 a. floats.

 b. if then statements.

 c. do loops.

 d. variables.

 8. In Arduino code “xyz” would be

 a. one variable.

 b. two variables.

 c. three variables.

 d. a constant.

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

156

 9. Using the statement Serial.print ("c"),

which of the following would occur?

 a. A carry operation would occur.

 b. A carry operation will print.

 c. A letter c would print to the serial monitor.

 d. A space would print to the serial monitor.

 10. In making variables descriptive, how many spaces

between variable words are allowed?

 a. zero

 b. one

 c. two

 d. three

 Project 7
Rewrite the code for the game of 21 using different variables.

Chapter 7 More GaMe proGraMMinG, with a DetaileD explanation

157© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_8

CHAPTER 8

Electronic Projects
The circuits presented in this chapter require basic electronic
components readily available at online retail outlets. Links
can be found for complete kits and parts vendors from the
author’s official website at www.dukish.com.

 Coding a Voltmeter
As discussed in Chapter 1, LEDs have a voltage drop of approximately 2

volts across their internal junction, and the voltage can vary depending

on the size, color of the LED, and forward current. We will use an analog

input on the Arduino and measure the exact value of the voltage drop.

Because the microcontroller is digital, the analog information must be

converted into the binary system to be processed. In general, when we go

from analog to digital we use a device called an analog-to-digital converter

(ADC). Going the other way, coming from the digital realm to the analog

world, we use a digital-to-analog converter (DAC). For us to measure an

analog voltage, as opposed to a logic level, the Arduino ADC will convert

the voltage to a binary number between 0 and 1,023. The number 1,023 is

the maximum voltage that the processor can handle, which equates to 5

volts with the UNO. If you are consistently measuring a voltage lower than

5 volts, use the analog reference pin AREF to increase the ADC accuracy.

A reference voltage can easily be developed across a resistor voltage

divider. Our project code, shown in Listing 8-1, uses the entire range and

http://www.dukish.com/

158

reads the voltage once each second, and then displays the ADC value

between 0 and 1,023, equating to the actual voltage value of between 0 and

5 volts. For finding the actual voltage from the ADC, in our case we divide

5 by the 1,024 steps for the conversion factor (5/1,024 = 0.004883), then the

actual voltage is found by multiplying the ADC step number reading, by

the conversion factor, which is the height of each step. Because we want a

precise voltage value, rather than using the integer data type, we declare

variables as float for floating point decimals. Voltage is also described as

a difference of potential, and measured across a component. Because our

Arduino voltmeter is referenced to ground potential, though, we can only

directly check across the bottom component in a circuit, so we will build

the LED circuit shown in Figure 8-1 and connect our analog input pin

between the LED and the resistor. We happened to pick pin A0 as our input

pin, but the UNO has six analog pins, and any of them could have been

used. They can also be used for digital I/O when needed.

Listing 8-1. Coding a Voltmeter

Chapter 8 eleCtroniC projeCts

159

After running the code for the voltmeter, the ADC number representing

2 volts is 410 with both numbers being displayed on the serial monitor if

you were measuring a typical red LED; however, the values could vary due

to the type of LED and component tolerances. Using Kirchhoff’s voltage

law, we can assume that because 5 volts is the total voltage, and we were

reading 2 volts across the LED, there must be 3 volts across the current-

limiting resistor. We can also measure the voltage across the resistor, but

because the Arduino is taking a reading with ground as the reference point,

we must interchange the LED and the resistor in the circuit. After swapping

the two components around and running the program, you should observe

approximately 3 volts across the resistor. As one last measurement, we

could reverse the LED and measure zero volts across the resistor. Because

the LED and resistor are in a series circuit and the current loop is broken,

no current will flow through the resistor to produce a voltage drop across

it (remember Ohm’s Law). The current is near zero because the LED is

a polarized component and the current can only flow in one direction

through a diode. There is a negligible amount of reverse current, but if the

input voltage were to drastically increase, a breakdown of the LED junction

could occur and cause a short circuit. There is no voltage across a short

circuit and a maximum voltage across an open circuit. We can simulate

an open LED by orienting the two components into their initial positions

as shown in Figure 8-1. Then with the resistor on top and the LED on the

bottom, reverse the polarity of the LED by flipping around so that the

negative side is facing toward the positive voltage source. The LED should

be off and the voltmeter will read 5 volts across the open circuit. This

illustrates two valuable indications for troubleshooting circuits: Shorts

have zero volts across them, and there will be maximum voltage across an

open circuit. With the LED reverse biased, it is essentially an open point in

the circuit.

Chapter 8 eleCtroniC projeCts

160

220 ohm

5 volts

Figure 8-1. An LED circuit

 Dimming an LED with Pulse Width
Modulation
In the last project, we used an analog voltage as an input to the

microcontroller. This would be useful in a variety of applications where

analog sensors are used to either produce a varying voltage or resistance

as conditions change. In this project, we will produce a pseudoanalog

output coming from the microcontroller. Although a digital device can only

approximately generate a true analog output, because there are voltage

level steps involved in the DAC process just as we saw with the ADC, the

steps can be made small so as to approach a true analog signal output.

There are two ways to produce an analog output: One way is to actually

produce a varying voltage with the DAC, and the other is by varying the

pulse widths of square waves. In a few of our earlier projects we rapidly

flashed an LED and noted that its brightness appeared steady but dim.

This pseudoanalog technique is called pulse width modulation (PWM).

In digital electronics, there are two logic levels. For the Arduino UNO,

a low level is zero and a high is 5 volts. A high pulse is shown between the

two arrows in Figure 8-2, with a low pulse shown immediately to the right.

Both the high pulse and low pulse make up one cycle. In Figure 8-2, we

Chapter 8 eleCtroniC projeCts

161

would say that the signal is a square wave because the pulse widths are

equal. The time on is equal to the time off. It has a 50% duty cycle. When

the times of the cycles are short, and the flashing is fast, our eyes do not

discern the flashes, but instead we will notice that the overall brightness

decreases. The characteristic of our vision called persistence allows us to

watch television and movies and not notice any flickering between frames.

If the high pulse time shown in Figure 8-2 were to lessen, the duty cycle

would go down and the LED would appear dimmer because the entire

cycle time would remain the same but the LED would be on for a smaller

fraction of the total. This explains how PWM works with vision, but PWM

can also be used as a way to modulate communication signals and to

control motor speed.

High Low

Figure 8-2. Pulse width modulation

The Arduino has a number of pins for PWM; on the UNO they are 3,

5, 6, 9, 10, and 11. This project uses PWM to control the brightness of an

LED. Start by connecting a 220 Ohm resistor and an LED between pin 9

and ground. After loading the code in Listing 8-2, we can control the LED

intensity by momentarily grounding any one of three pins. We use pin 7

for 100% duty cycle (full brightness), pin 6 drops to medium brightness,

and pin 5 drops the LED to low brightness. The command analogWrite

identifies the output and the number that follows is the PWM duty cycle

broken up into 256 steps, 0 to 255, with 255 being the highest duty cycle

producing full output. We picked the medium value to be 50% duty cycle,

and the low to be about 25% duty cycle.

Chapter 8 eleCtroniC projeCts

162

Listing 8-2. Dimming an LED with PWM

 Controlling an LED Using a Light Sensor
In the schematic in Figure 8-3, we use a photo resistor to vary the

conduction of an NPN transistor circuit used to illuminate an LED.

Chapter 8 eleCtroniC projeCts

163

The photo resistor, as shown in the circle, exhibits decreasing

resistance as light increases. There is a voltage at the point between

the two resistors that also connects to the control element of the NPN

transistor, called the base. If there is decreasing resistance across the

photo resistor caused by increasing light, the corresponding decreasing

voltage also appears on the transistor base. If the base voltage decreases,

it produces less base current through the transistor, which causes the LED

to have less current through the vertical section of the transistor’s emitter

and collector sections, which therefore causes the LED to go dimmer, or

off (i.e., more ambient light, less LED light). Conversely, if there is less light

on the photo resistor, the resistance goes higher, the voltage goes higher,

and the current through the LED goes higher, causing it to get brighter (i.e.,

10 K

5

120

Figure 8-3. Transistor circuit used to illuminate an LED

Chapter 8 eleCtroniC projeCts

164

less ambient light, more LED light). The objective is that in bright ambient

light the LED is off, and in low light the LED is on. If the light changes are

somewhat gradual on the photo resistor, the electronic circuit will produce

a somewhat gradual change in LED intensity. If parts are available, build

and test the circuit.

We will use the Arduino to switch an LED on and off. This exercise

(Listing 8-3) could easily be adapted to control outdoor lighting,

security systems, and other devices for which operation is dependent

on differentiating day from night. To add the microcontroller, connect a

wire from the intersecting point between the two resistors and transistor

base to the Arduino analog input pin A0. We are using an analog input

because the voltage developed across the photo resistor will vary in an

analog manor related to the amount of light intensity. (You might also

wish to later modify the program to output a PWM signal to vary the

LED brightness, but our program is only interested in sensing between

light and dark, and correspondingly switching an LED off or on. Please

modify the code to achieve a different switching response, and you

might need to do this, as ambient light conditions will vary.) The analog

voltage developed across the photo resistor is represented by a number

of from 0 to 1,023. We could scale our input for more accuracy by using

an external reference connected to the AREF pin on the Arduino, and

adjust the code accordingly. In our example, we just use the ADC

number of 1,024 to represent the full 5 volts. (Again, keep in mind that

you might need to make adjustments to the analog read numbers we call

lowLight in Listing 8-3, depending on the amount of light intensity

you are working in.)

Chapter 8 eleCtroniC projeCts

165

Listing 8-3. Controlling an LED with a Light Sensor

In the bottom section of code where we commented about hysteresis,

without adding that section, the controller could have possibly flickered

the LED when the ambient light was very near the switching threshold.

Hysteresis is used to lock in a function until there is a large change in the

input. It is used in thermostats so that the heating or cooling periods are

distinct, so that temperature control units do not repeatedly cycle on and

off near the set point.

Analog sensors tend to be a little finicky, so the code that we presented

might need to be adapted to your specific lighting conditions and

breadboard circuit build. That is why we added the serial monitor function

into the code. After uploading the code, you can open the serial monitor

and check the analog read as you expose the photo resistor to light and

dark conditions, and then adjust your numbers for the proper switching

Chapter 8 eleCtroniC projeCts

166

function. Once the Arduino code is working properly, you will notice that

the transistor circuit varies the intensity of its LED in an analog manor,

whereas the controller abruptly switches the onboard LED near pin 13 on

and off.

Analog circuits can also abruptly switch logic levels. This can be done

in several ways, with one solution being the use of a hybrid device called

a comparator, which is basically an open-ended operational amplifier

(op-amp), which is configured as a high-gain voltage amplifier. With small

changes near the switching point it can jump from rail to rail, between

low and high levels. Comparators are available as ICs. On the other hand,

microcontrollers can simulate analog outputs, as with the PWM project

that we looked at in the last section. With the inclusion of a DAC they can

mimic analog circuit output, as in the case of a CD or MP3 player. There

are gray areas between analog and digital technology.

 Coding a Frequency Counter
The schematic shown in Figure 8-4 was first presented in Chapter 4 to

demonstrate how a process could be implemented either by using discrete

physical components or by creating a program to have a microprocessor

perform the process. The process that we are examining is a free-running

astable multivibrator. Due to the resistive and capacitance components

connected to the NE555 (LM555) timer, a square wave output is observed

on IC output pin 3, which flashes an LED once a second. (The output

is approximately one half-second off and one half-second on.) Timing

circuits like this are useful in providing clock pulses for timing purposes;

however, the accuracy of a 555 timer circuit is not very good due to the

wide tolerances in resistive and capacitance components. Common

resistors have a plus or minus tolerance of 5%, and capacitors have an even

Chapter 8 eleCtroniC projeCts

167

Our next project is to use the 555 timer IC as a square wave frequency

source and create a program to read its frequency and create an output

on the Arduino indicating that the frequency is within tolerance. If the

electronic components are not available, you can use a function generator

or a second Arduino to act as the frequency generating device, as

described in the next section.

To power the device, we are connecting the VCC power line of the

555 to the 5-volt header pin on the Arduino to use USB power, and the

ground line to one of the Arduino ground pins. Pin 3 of the 555 should be

connected to pin 3 on the Arduino; the LED circuit can remain connected

on the breadboard. We use pin 3 on the Arduino just because of the nice

number match, but any digital I/O pin will work just as well (see Figure 8- 5).

GND

1

DIS7

OUT 3RST4

VCC

8

THR6

CON5

TRI2

47 k

47 k

10 uF

5 V

220

Figure 8-4. A timing circuit

wider tolerance. If accuracy were an issue, a hardware solution could be a

crystal controlled oscillator, and such ICs are readily available.

Chapter 8 eleCtroniC projeCts

168

Figure 8-5. Powering the device

The breadboard has a gap in the middle separating two similar

sides. The holes on each side running parallel with the short edge of the

breadboard are all connected. Usually there are five holes in a row on each

side, and they are connected together, but are not connected to the holes

on the other side of the gap, or to any other holes. Running perpendicular

along the long side of the breadboard are two parallel lines of holes. Each

parallel line running along the length of the board is connected, but

they are not connected anywhere else. These two sets of parallel lines

are manly for use as power buses and can each be jumped together to

the sets of lines on the other side of the board, which can be seen on the

far right side of Figure 8-5. The IC is placed in any convenient location

straddling the middle gap. It can be seen in Figure 8-5 that the breadboard

is getting 5-volt power and ground from the Arduino, which is connected

to a computer via the USB connector. As mentioned, also connect a wire

between pin 3 of the IC on the breadboard and pin 3 on the Arduino.

If built as shown in Figure 8-4, the 555 will generate one pulse per

second, which equates to a frequency of 1 Hz. The code in Listing 8-4 will

read the square wave pulses from the Arduino and display the number 1

on the serial monitor, showing that it is counting a 1 Hz signal.

Chapter 8 eleCtroniC projeCts

169

Listing 8-4. A Frequency Counter

Chapter 8 eleCtroniC projeCts

170

The do-while loop in the code is using the millis timer to count an

elapsed time of 1 second, as frequency is defined as cycles per second (Hz).

The pulse count is triggered as the waveform goes through one

alternation between positive and negative value, as shown in Figure 8-6,

and then again for the low pulse between the negative going transition

and the next positive going transition. Because this trigger point accounts

for one half of the waveform and occurs twice for each cycle, the number

is divided by two to report the actual frequency in cycles per second (Hz).

The code will work for square waves, sine waves, and triangle waves. If a

function generator is available, it would be an interesting project to try all

three waveforms at different frequencies up to 20 kHz. Care must be taken,

however, so that the waveforms are in the range between 0 and 5 volts

DC. Use of a TTL output is convenient.

Figure 8-6. Alternation between positive and negative values

We now change our 555 circuit’s frequency by removing and replacing

the 10 μF capacitor with a 0.1 μF capacitor to increase the frequency from

about 1 Hz to 100 Hz. The 0.1 μF cap is nonpolarized, meaning that there

is no polarity consideration for positive and ground. Small capacitors

under 1 μF are generally nonpolarized. Because of their small physical

size, a code is sometimes used to identify the value of small capacitors.

The first number represents the first digit, followed by the second digit,

with the third number representing the number of zeros, and the total

value as picoFarad in engineering notation. Our 0.1 μF cap will have the

code 104, as 1 and a 0 followed by four more 0s means 100,000 pF, and that

is equal to 0.1 μF. (If you have a question about this, be sure to review the

engineering notation information earlier in the text.)

The adaptation to the previous program will display the exact

frequency of the 555 on the serial monitor as before; however, the

Chapter 8 eleCtroniC projeCts

171

code is now slightly enhanced to additionally flash the onboard LED

connected to pin 13, if the frequency is within plus or minus 10 Hz of

100 Hz. Lighting the LED could also be used in a real-world application of

checking for a good signal condition. Additionally, the code, or the circuit,

could be modified to flash a lamp or sound a buzzer if the signal goes

out of tolerance. The changes to the code to now respond to the correct

frequency are shown as highlighted in Listing 8-5.

Listing 8-5. Responding to the Correct Frequency

Chapter 8 eleCtroniC projeCts

172

 Pulse Generation
The Arduino can produce a frequency output, as was done previously with

the 555 timer IC. The advantage of using code to control the frequency is

that no IC, resistors, or capacitors need to be used. Our code also allows

for real-time control of the frequency via text input to the serial monitor.

The frequency output is also displayed on the serial monitor and sent to

a digital output pin to control an LED and a normal speaker, or possibly

a piezo speaker. A piezo speaker uses the piezoelectric effect to generate

sound. The piezo element is made of a crystalline material that makes

sound as a varying voltage is placed across the element. It does this by

distorting (bending) as the voltage varies. The piezoelectric effect has

reciprocity, as do most devices that act as a transducer. A transducer is

a device that converts one form of energy to another. In our case, the

element will convert electrical energy to mechanical energy that will

produce sound.

As a side note, we all know the law of conservation on mass and

energy, which basically states that matter and energy cannot be created

or destroyed, but can be changed from one form to another. Once we use

Chapter 8 eleCtroniC projeCts

173

electrical energy to bend a crystal and produce sound, or move a speaker

diaphragm, then, what form of mass-energy does the process ultimately

produce? (We will save that thought for a chapter review question.)

As mentioned, the piezoelectric transducer has reciprocity, which

means that it bends when a voltage is applied across its element, and

conversely it also can produce electricity when a mechanical force is

used to bend it. It could be used as either an input device (sensor) or an

output device (actuator), as in our application. One advantage of using

a piezo speaker is that they are inexpensive and lighter in weight than a

normal speaker. Piezoelectric elements also have a capacitive effect and

capacitive devices pass higher frequencies better, so the higher frequencies

will generally have better sound fidelity than will low frequencies. Typical

human hearing has a range of from 20 Hz to 20,000 Hz (20 kHz), although

as one ages the frequency response to high frequencies is lessened (some

people say that this accounts for long marriages). The lowest frequency we

can produce with our code is 35 Hz, due to the tone command limitation.

On the high side, we can produce frequencies well above the range of

human hearing. Because we are using the unsigned int type for the tone

command (Listing 8-6), we can go as high as 65,535 Hz. The piezo speaker

should give the most favorable results between 500 and 5,000 Hz. If you do

not have a piezo speaker, you can connect a small normal 8 Ohm speaker

to the Arduino. As shown in Figure 8-7, the current must be limited by

adding the series resistor as shown, or damage to the Arduino could result.

We are also using the onboard LED near pin 13, so you can see the results

even without a sound-producing device. Even at the lowest Arduino

tone of 35 Hz, the individual flashes are not distinguishable, but the LED

flashing results in reduced brightness. You will also notice that when an “x”

is input in the serial monitor, the LED completely extinguishes because the

pulse generation output stops.

Chapter 8 eleCtroniC projeCts

174

Listing 8-6. Entering Frequency for Pulse Generation

120 ohm

Arduino pin 13

Piezo
speaker

Figure 8-7. Adding a series resistor

Chapter 8 eleCtroniC projeCts

175

We look for numbers from the serial monitor input and ignore other

characters while determining the frequency that is to be used with the

tone command. The numbers are put together as string type data and

then converted to an integer, when the user inputs either letter h or H for

Hertz. When the user inputs x or X, the output stops. This project outputs

a series of pulses at a given frequency. Square waves have tremendous

distortion and sound terrible as audio signals, but the pulses we are

producing in our project could have many different applications beyond

that of just producing sound.

Chapter 8 eleCtroniC projeCts

176

 Counter with Seven-Segment Display
(with Driver IC)
It is possible to use the Arduino to directly light the seven-segment

display, but the next two projects reduce wiring by using a 74LS47 BCD to

seven- segment display driver TTL IC. Figure 8-8 shows the pin-out for the

seven- segment display. It is oriented with its left side on the bottom, and

the display’s decimal points shown to the right. It has the same numbering

scheme as a 14-pin IC. Shown with the segments facing the viewer,

pins 1 through 7 run left to right along the bottom, and then proceed

counterclockwise to pins 8 through 14 along the top, which run right to

left. (Please note that pins 4, 5, and 12 are missing on the display, and this

also aids in finding the proper orientation.) The segment letters shown

connect to the pins as illustrated in the schematics for the projects that

follow. Additionally, 5 volts connects through a current-limiting resistor

to common anode pins 3 and 14. The projects presented save time and

minimize parts by only using one current-limiting resistor connected on

the anode side of the display. This, however, will cause fluctuations in the

overall brightness as different numbers are displayed. Ideally, a current-

limiting resistor should be placed in each of the cathode sections. In using

a common anode device, a low on the pin associated with a segment will

cause the segment to light. (A high on the pin will not allow for conduction

through the LED segment, and it will not light.)

Figure 8-8. MAN 72 common anode seven-segment display

Chapter 8 eleCtroniC projeCts

177

The schematic (Figure 8-9) and code (Listing 8-7) for this project will

cause the seven-segment display to show each number between 0 and 9,

after Arduino pin 8 is momentarily touched to ground. After the number

9 has been displayed, the count returns, and holds at 0 until Arduino pin

8 is retriggered. The count can be reset during the operation, however,

if Arduino pin 7 is momentarily grounded. A similar, but more complex

circuit is used in the next project. It would be best to build this project

and preserve it, keeping in mind that a similar additional display and

two switching transistors will be added in Listing 8-8. A picture of the

breadboarded circuit is shown in that section (Figure 8-10).

Figure 8-9. The schematic for this project

Chapter 8 eleCtroniC projeCts

178

Listing 8-7. Seven-Segment Display

Chapter 8 eleCtroniC projeCts

179

Chapter 8 eleCtroniC projeCts

180

 Dice Game with Seven-Segment Display
(with Driver IC)
This microprocessor-based game, shown in Figure 8-10, randomly

generates two numbers that simulate a dice roll. The NPN switching

transistor is a 2N3904. It provides a current path to +5 volts (VCC) to

the display, as the 74LS47 IC driver provides a ground for the respective

segments to light. The 330 Ohm resistor limits the current flow. If the

display is too dim, replace the resistor with a 220 Ohm. (Note that we

have slightly changed the output pins on the Arduino; now the least

significant digit is pin 11, and the most significant digit is pin 13. Pin 10

on the Arduino is not used, and pin 6 of the driver IC is wired to ground.)

The schematic in Figure 8-11 shows one of the displays; however, you

must construct a second identical seven-segment display connected

in parallel with the 74LS47 IC seven-segment driver outputs, and also

construct a second 5-volt switching transistor circuit. Two displays are

needed to display both dice numbers. Because only one display driver IC

is necessary, the best way to connect the second display is to jump a wire

from the driver output side of each LED segment connection in the first

circuit over to the second display. The seven segment wires act essentially

Chapter 8 eleCtroniC projeCts

181

Figure 8-10. Seven-segment display for dice game

as a data bus, and the transistor circuit provides a chip enable for the

appropriate device. This type of bus design is very common in computer

hardware.

Chapter 8 eleCtroniC projeCts

182

U1

A7

B1

C2

D6

OA 13

OD 10

OE 9

OF 15

OC 11
OB 12

OG 14
~LT3

~RBI5

~BI/RBO4

U2

A B C D E F G

CA

Display Pins
A = pin 1
B = pin 13
C = pin 10
D = pin 8
E = pin 7
F = pin 2
G = pin 11

IC Pins
A = pin 13
B = pin 12
C = pin 11
D = pin 10
E = pin 9
F = pin 15
G = pin 14

V1

0

0

pin 8

16

(1's) Arduino pin 10

(2's) pin 11

(4's) pin 12

Q1

Pins 3, and 14

R1

R2

10k

3305 VDC

Data bus to other display

Arduino pin A0(A1)

Figure 8-11. Schematic for one of the displays

The code in Listing 8-8 selects one of the two displays by providing a

high to the base of the transistor, thus switching it on to provide current

from 5-volt VCC to display a number. After a very short time period, we

select the other transistor switching circuit to enable the other display to

show a different number. In this way, we are able to multiplex the data

to minimize the number of Arduino output ports, as well as minimize

power draw. Essentially the displays will alternately flash both numbers

as they are rapidly selected and as the appropriate data are output on

the BCD bus. The flashing is much too fast for the human eye to discern,

and it will appear as though two separate numbers are being displayed

simultaneously. The use of this multiplexing technique will also be

necessary for later projects. To simplify the code in this section, we

eliminate code used for the serial monitor. This project allows you to

see the result of a dice roll without the IDE serial monitor. Later, we will

Chapter 8 eleCtroniC projeCts

183

connect LEDs in place of the displays to simulate the dots on a pair of dice,

and code for wins and losses.

Listing 8-8. Code for the Dice Game Display

Chapter 8 eleCtroniC projeCts

184

Chapter 8 eleCtroniC projeCts

185

 Counter with Seven-Segment Display
(No Driver IC)
This section uses the Arduino to drive each LED segment of the display

directly. Driving the display directly not only eliminates the IC, but also

allows for special effects. The drawback is that more Arduino ports are

needed and the wiring complexity is increased. There is no schematic,

but the wiring is explained in the code section (Listing 8-9). It is helpful to

refer to the pin-out of the MAN72 and some of the circuitry shown in the

schematic of Figure 8-9 and Figure 8-11.

Chapter 8 eleCtroniC projeCts

186

Listing 8-9. Using Arduino to Drive Each LED Segment Directly

Chapter 8 eleCtroniC projeCts

187

Chapter 8 eleCtroniC projeCts

188

Chapter 8 eleCtroniC projeCts

189

 Dice Game with Seven-Segment Display
(No Driver IC)
The code in this project (Listing 8-10) again uses the Arduino to directly

drive each LED segment of the display without the use of a decoder-driver

IC. The drawback is that more Arduino ports are needed and the wiring

complexity is increased. As before, in wiring the circuit on a breadboard,

it will be helpful to refer to the MAN72 display illustration in Figure 8-8,

and some of the circuity shown in the schematic of Figure 8-11. We will

again be multiplexing two seven-segment displays. This project adds

some special effects as the number is displayed. The code also activates

a speaker to play two sets of tones: A set of higher frequency tones will

signal a win, and a lower steady tone is emitted if there is a loss. See the

schematic in Figure 8-7 about how to connect a speaker to the Arduino.

A series resistor must be used to limit excessive speaker current, or

damage could result.

Chapter 8 eleCtroniC projeCts

190

Because this code signals wins and losses, we need to understand the

rules of the game of craps. There are two sets of rules that are differentiated

between the first in a series of rolls and that of subsequent rolls. If on

the beginning first roll, or just after a win or a loss occurs, the winning

numbers are 7 or 11. The losing numbers are 2, 3, or 12. If neither a win nor

a loss occurs in the first roll, then the number rolled is termed the point.

The player continues throwing the dice in hopes of rolling the point. If,

however, a 7 appears before the value of the point is matched, then the

player will lose the round.

Listing 8-10. Dice Game with a Seven-Segment Display and No IC

Chapter 8 eleCtroniC projeCts

191

Chapter 8 eleCtroniC projeCts

192

Chapter 8 eleCtroniC projeCts

193

Chapter 8 eleCtroniC projeCts

194

Chapter 8 eleCtroniC projeCts

195

Chapter 8 eleCtroniC projeCts

196

Chapter 8 eleCtroniC projeCts

197

 Electronic Dice Game with LEDs
This project (Listing 8-11) uses a series of two sets of seven LEDs arranged

in the pattern of the dots on two dice pieces (Figure 8-12). The positive

anodes of each LED are connected in parallel to its companion display

to produce a data bus similar to the one in Figure 8-11. To add a light that

signals a win, connect an LED from ground through a 220 Ohm resistor to

pin A2. Connect a buzzer or speaker to signal a win or a loss, by connecting

through a 120 Ohm resistor to pin 11, similar to Figure 8-7. We are using

the analog pins as digital outputs. Pins A0 through A5 are very versatile by

having the ability to be used for either analog or digital I/O. The trigger pin

for the game is pin 8. It can be momentarily grounded by a player to start a

new roll or can be kept grounded to run the game in demonstration mode.

Chapter 8 eleCtroniC projeCts

198

One of the circuits is shown in Figure 8-13. The best way to connect

complex circuits like this is to start at whatever point you like, and then

connect each spot wire by wire. A wise man once advised against looking

at the overall project and instead just concentrating on each small section

at any given time. Some people like to check off each connection on

the schematic with a pencil as they are made on a breadboard. It is a

translation to go from an orderly schematic to the actual world and we get

better with practice. It is important to be focused and not be in a hurry,

and also to double check as each connection is made.

LED1

LED2

LED3

LED4

LED5

LED6

LED7

Q1

2N3904

R1

120

R2

10k

A0 (A1)

pin 10 , 2, 3, 4, 5, 6, 7

Construct two of the circuits shown.
each transistor will select the proper LEDs

Figure 8-12. LEDs configured for dice game

Chapter 8 eleCtroniC projeCts

199

DICE GAME RULES RECAP

Winning: 7 or 11 on first pass lights win leD.

losing: 2, 3, or 12 on first pass sounds buzzer.

if no win or loss on the first pass, play for the point with the following

conditions:

a point match lights the leD, but hitting 7 is a bust and sounds the buzzer.

all numbers are displayed on the pair of seven leDs, each arranged in a

dice pattern.

Figure 8-13. One of the LED dice circuits wired on a breadboard

Chapter 8 eleCtroniC projeCts

200

Listing 8-11. Electronic Dice Game with LEDs

Chapter 8 eleCtroniC projeCts

201

Chapter 8 eleCtroniC projeCts

202

Chapter 8 eleCtroniC projeCts

203

Chapter 8 eleCtroniC projeCts

204

Chapter 8 eleCtroniC projeCts

205

Chapter 8 eleCtroniC projeCts

206

Chapter 8 eleCtroniC projeCts

207

 Review Questions
 1. The output pulses from a 555 timer are

 a. square waves.

 b. sine waves.

 c. circular waves.

 d. longitudinal waves.

 2. The gap running down the center of a breadboard

work area

 a. provides the voltage.

 b. separates the two work area sides.

 c. allows for adequate cooling.

 d. is a place for the convenient placement of wire.

 3. A piezoelectric element exhibits reciprocity that most

closely equates to which of the following statements?

 a. Letter A comes before B.

 b. The transistor was used to replace vacuum tubes.

 c. A single radio antenna can be used for

transmission and reception.

 d. Six plus six equals twelve, not a baker’s dozen.

 4. A very rapidly flashing LED might look

 a. dimmer than if it were on continuously.

 b. brighter than if it were on continuously.

 c. slightly a different color.

 d. slightly a different hue.

Chapter 8 eleCtroniC projeCts

208

 5. Displays to produce the numbers 0 through 9 have

_________segments.

 a. two

 b. seven

 c. eight

 d. nine

 6. ________binary digits are required to produce a

decimal output of 0 to 9.

 a. Two

 b. Three

 c. Four

 d. Ten

 7. Which of these is the code to output either a high or

low from the Arduino?

 a. digitalRead

 b. digitalWrite

 c. pulseOut

 d. count

 8. LEDs have a positive and negative side.

(True/False)

 9. The best way to connect circuits on a breadboard is

 a. as quickly as possible.

 b. one wire at a time.

Chapter 8 eleCtroniC projeCts

209

 c. positives all followed by negatives.

 d. with power on.

 10. Multiple true conditions can be tested with which

operator to see if two or more conditions exist

simultaneously?

 a. OR (||)

 b. AND (&&)

 c. If

 d. While

 Project 8
As was mentioned in the chapter in describing the operation of a

piezoelectric sounder, electrical energy is converted to mechanical energy

and the ultimate conversion is into heat. Describe the process.

Chapter 8 eleCtroniC projeCts

211© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_9

CHAPTER 9

More Elaborate
Projects
 Coding a More Functional Poker Game
In Chapter 6 we experimented with coding the game of poker and were

able to put together a very simplistic version of the game. The advanced

program in this chapter builds on the earlier code for generating

nonduplicate numbers to represent the cards in a playing deck. It deals

five random cards to the player and five to the dealer (refer to Table 6-1 for

card value translations). The code in Listing 9-1 goes on to identify both

hands by using the rules of poker. At first glance, it looks like a tremendous

amount of code, but because the player and dealer sections are similar,

much of it can be copied and pasted with only minor alterations. It is left

to the reader to generate the additional code needed to identify a winner

if desired. My intent is to only show how a computer program can act in

accordance with a set of rules. You might also wish to rework the code

using functions (subroutines) to eliminate some repetition and provide for

better overall organization.

https://doi.org/10.1007/978-1-4842-3510-2_6#Tab1

212

Listing 9-1. An Expanded Poker Game

Chapter 9 More elaborate projeCts

213

Chapter 9 More elaborate projeCts

214

Chapter 9 More elaborate projeCts

215

Chapter 9 More elaborate projeCts

216

Chapter 9 More elaborate projeCts

217

Chapter 9 More elaborate projeCts

218

Chapter 9 More elaborate projeCts

219

Chapter 9 More elaborate projeCts

220

Chapter 9 More elaborate projeCts

221

Chapter 9 More elaborate projeCts

222

 Coding a More Functional Game of 21
In Chapter 7, we made two attempts to code the game of 21 (blackjack).

This advanced project, the code for which is shown in Listing 9-2,

significantly expands on the first and second versions of the game. It

uses pin 7 as before to begin the game, but now includes two hardware

interrupts that allow the player to make the decision of adding the points

from additional cards to surpass the dealer’s points without going over 21.

Many of the actual game rules are incorporated into the code that follows,

but it is left to the reader to finish the game so that when two equal cards

are dealt to the player, he or she has the option to play two distinct hands,

which is called a split. Also, note that the nonduplication that was coded

into the last project is neglected to simulate a dealer using multiple card

decks, but can be incorporated into the game, if desired.

Listing 9-2. Expanded Functionality for a Game of 21

Chapter 9 More elaborate projeCts

223

Chapter 9 More elaborate projeCts

224

Chapter 9 More elaborate projeCts

225

Chapter 9 More elaborate projeCts

226

Chapter 9 More elaborate projeCts

227

Chapter 9 More elaborate projeCts

228

Chapter 9 More elaborate projeCts

229

Chapter 9 More elaborate projeCts

230

Chapter 9 More elaborate projeCts

231

Chapter 9 More elaborate projeCts

232

Chapter 9 More elaborate projeCts

233

Chapter 9 More elaborate projeCts

234

Chapter 9 More elaborate projeCts

235

 Using the Arduino to Transmit Morse Code
Morse code is somewhat similar to the binary system, in that it also uses

two values, but rather than being logic levels, Morse signals are time

dependent. A dot is represented by a signal of a short duration, whereas a

dash is represented by a signal of a longer duration. Each Morse signal is

Chapter 9 More elaborate projeCts

236

separated by one dot time period. The differentiation of the letters within

words are also time dependent, as are the groupings of complete words.

The dot is the basic unit of time. The other binary case is the dash, which

consists of a signal of three dot time durations. The 26 individual letters

of the English alphabet consist of different groupings of dots and dashes,

as do the numbers 0 through 9. There is no provision for uppercase or

lowercase letters. Originally Morse code was used for wired telegraph

communication and migrated to radio when wireless communication

was developed in the late 19th century. Soon thereafter, it was discovered

how normal audio could be transmitted over radio. The first commercial

radio license was issued to KDKA in Pittsburgh, Pennsylvania, in 1920.

It featured music, news, and entertainment programs. Before that time,

Morse code was used regularly as the communication method for ships

and even for point-to-point communication over land. The use of Morse

code still has an advantage of power efficiency, because even under poor

broadcast conditions, it is easy to hear the individual dots and dashes.

Although it is no longer a license requirement for amateur radio operators,

some still use it regularly as it has the benefit of cutting through harsh

reception conditions when voice signals could be misunderstood or

unintelligible.

The code in our final regular project (Listing 9-3) looks daunting, but

much of the code is repetitive and can be easily copied and pasted. As with

many of the code examples in this book, it is available as a download. The

program allows a user to type in sentences with up to 64 characters. The

UNO maximum buffer size is 64 bytes and anything more is ignored and

lost. At the end of each sentence when the user presses the Enter key or

Chapter 9 More elaborate projeCts

237

clicks the Send button on the serial monitor IDE screen, the Morse code

signals are sent letter by letter, and the text is displayed on the IDE screen

as it is transmitting. The default speed can be altered by changing the delay

times in the declaration section at the top of the code. The time periods

we are using will produce a transmission speed of about five words per

minute, which is a good beginning speed. To monitor the output of the

Arduino, an LED can be connected to pin 7 through a current-limiting

resistor of around 220 Ohms, but it would be better to use a speaker

connected to pin 7 (remember to use a series resistor larger than 100

Ohms). To actually transmit the data over a radio, an interface would need

to be constructed.

Table 9-1 shows the Morse code dot and dash patterns for the

representation of letters and numbers. It helps to represent the dots and

dashes graphically. An upcoming capstone project is to write a program to

receive data in Morse form and convert it to text. Many programs already

exist in the amateur radio community to do both the transmission and

reception of Morse code, but it would be interesting to do it from scratch

and to customize the programming code for specific applications.

Chapter 9 More elaborate projeCts

238

Table 9-1. Morse Code

a =

b =

c =

d =

e =

f =

g =

h =

I =

J =

k =

l =

m =

n =

o =

p =

q =

r =

s =

t =

u =

v =

w =

x =

y =

z =

1 =

2 =

3 =

4 =

5 =

6 =

7 =

8 =

9 =

0 =

Chapter 9 More elaborate projeCts

239

You can breadboard three momentary switches or use the process of

quickly tapping a wire to ground to change the code transmission speed.

The default speed can be changed by tapping pin 9 to ground so that the

code speed steps up to approximately 10 words per minute, and pin 10

provides about 15 words per minute. At any time, you can reset the speed

back to five words per minute by momentarily grounding pin number 8.

Notice that we are using the dot time as our reference and adjusting the

other characteristics accordingly.

Listing 9-3. Program for Transmitting Mose Code

Chapter 9 More elaborate projeCts

240

Chapter 9 More elaborate projeCts

241

Chapter 9 More elaborate projeCts

242

Chapter 9 More elaborate projeCts

243

Chapter 9 More elaborate projeCts

244

Chapter 9 More elaborate projeCts

245

Chapter 9 More elaborate projeCts

246

Chapter 9 More elaborate projeCts

247

Chapter 9 More elaborate projeCts

248

Chapter 9 More elaborate projeCts

249

There are many different ways to code a program. It is an exercise in

problem solving. First, we must understand the problem. The second step

is to find an overarching strategy to tackle the problem. Finally, tactics

are devised to find a correct solution to the problem. In coding, we have

the additional headache of entering the correct programming language

syntax into the computer. It is highly advisable to take time and put much

effort into the problem-solving aspect of finding a solution, as finding

syntax errors is somewhat more straightforward. Spending time before

doing any actual coding by drawing sketches and diagrams, drawing

flowcharts, or writing pseudocode out by hand will be well worth the

effort. Chapter 10 outlines projects that will ask you to devise solutions to

make modifications to given code. It might be helpful to revisit some of the

programs presented in earlier sections of the text. The reference section in

the Arduino IDE is also a very handy source of information.

Chapter 9 More elaborate projeCts

251© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2_10

CHAPTER 10

Capstone Projects
 Building an Audio Morse Code Reader
Throughout the text, we have presented projects that demonstrated a

wide variety of coding techniques and asked you to make modifications

to gain a greater understanding of the programming process. In this

capstone chapter, we present projects that are fairly difficult and require

you to improvise solutions to produce a fully functioning project. This first

capstone section asks you to build a reader that will respond to the last

project presented in Chapter 9. The electronic circuit and corresponding

Arduino code will read the Morse code to some extent. The code as given

will respond to the slow (default) code speed, and to the audio frequency

of 2 kHz sent to a small speaker. When the speaker is held within a few

inches of the microphone, the code that is sounded is converted into

information on the reader program’s serial monitor. The program only

converts the sounds back to the following symbols: dot, dash, letter, word,

and a hyphen that is shown between the dots and dashes. To recover this

information, the code responds to the sound and finds the total time of

each tone by adding short increments of sequential samples. It does this by

using the goto function, which rotates around a section of code while the

audio tone is present. It redirects the program operation to the start of a

section of code that we call sampleStart:. It should be noted that goto

commands are frowned on by experienced programmers because they

tend to make programs difficult to follow. It works nicely in our program,

but could be replaced with the do or do-while commands. This would

252

necessitate having do functions within do functions, however, which

might be considered as nested do-do, and could make the code even

messier.

In the code that is provided, we also use a subroutine (sometimes called

a function) to find and print out the transmitted information. (Subroutine

use in C and C++ is discouraged, but sometimes can help eliminate the

need to repeat sections of code.) In our code, we move to the subroutine

called routine, which is located outside of the main loop, to check for

spacing times.

By using the slow code speed, the information is decoded by the

following time periods: 250 ms represents a dot and three dot times

represent a dash. For Morse code spacing, the following convention is

used: The space between dots and dashes is the same as for a letter; at our

code speed, this is one dot time (250 ms). The spaces between complete

letters and numbers is three dot times and the space between words

is seven dot times. The circuit that we are using is simple, inexpensive,

and functional. If any difficulties are encountered, it is advisable to use

a small 8 Ohm speaker of 2- to 3-inch diameter and hold it steady within

a distance from 3 to 5 inches from the microphone. Tests should be run

in a quiet environment. If there is no response or an incorrect response,

the code transmitter might need additional amplification. Once the given

code is tested with your circuit, the objective of this capstone project is to

modify the given code so that it can respond to the other two transmitting

speeds from the project shown in Chapter 9.

The microphone circuit (Figure 10-1) uses an LM386 amplifier set with

the maximum gain of 200. The 386 is a power amplifier best used to drive

small speakers, but because of its low cost and availability it is used instead

of an op-amp in this project. The 386 output is coupled to an analog input

on the Arduino, where the 1 k Ohm voltage divider sets the DC level exactly

at 2.5 volts DC with no audio. (No audio from a 386 has a DC level of 2.5

volts, but sometimes it can be a little off.) The DC offset is used to bring

the audio signal above ground and avoid clipping the negative portion

Chapter 10 Capstone projeCts

253

of the sine wave. The Arduino interprets voltages at its analog input pins

at values of 0 up to 1,023, which corresponds to DC voltages of from 0 to

5 volts. Therefore, each volt has an Arduino analog representative value

of approximately 205. With no audio input, our voltage divider sets the

number to approximately 512. As the audio from the tone causes the wave

to rise above and below the reference, which represents zero for no sound,

the half-waves are counted in a manner similar to the frequency counter

project in Chapter 8. The program code looks for audio time periods to

identify the dots and dashes, and for silent time periods to find the spacing

between them.

M

2.2k

mic

0.1

5 v

470

10

10

10

3

2

4

7

6
8

1

5
To Arduino

+

1 k

1 k

Figure 10-1. Schematic of the mic amp circuit with a gain of 200
using an LM386

It is recommended that two Arduino boards be used for this project;

however, one board could be used if it is first configured as an audio

transmitter and a line of Morse code is then recorded on another device

such as a smartphone. The board can subsequently be set up as the

receiver, so that it can then respond to the prerecorded sounds. It is best to

Chapter 10 Capstone projeCts

254

proceed in small sections at a time, such as getting the circuit and program

working with a few recognizable characters such as repeating the phrase

SOS, which has the code “dit-dit-dit (letter) dash-dash-dash (letter) dit-dit-

dit” (word). It is folklore that the letters SOS stand for “save our ship.” The

actual reason it was chosen as the Morse code distress call was due to its

recognizable pattern.

This is a challenging capstone project. Commercial programs have

been written for ham radio operators that will go to the next step, which

is to decode the dots, dashes, and spacing back into the original text. Our

next project will make our program more complete. The main objective

of this project (Listing 10-1) is for you to modify the given code so that it

will be switchable to allow operation at the three different speeds that our

transmitter can send.

Listing 10-1. An Audio Morse Code Reader

Chapter 10 Capstone projeCts

255

Chapter 10 Capstone projeCts

256

Chapter 10 Capstone projeCts

257

 Building an Audio Morse Code Decoder
In this project (Listing 10-2), we adapt the program code from the previous

section to decode the transmitted audio from the Morse code audio

transmitter presented in Chapter 8. It operates in a very similar fashion

to the first capstone project, and you will need to incorporate the ability

to work with differing transmission speeds, which was the requirement

of the last project. Additionally, you will need to develop a database of

Morse characters that will be compared with the received information, to

generate letters and numbers on the program’s serial monitor, which will

match the transmitted text.

The operation of the given program code should be tested first. Much

of it can be copied and pasted from the last program into the new code

that you are developing. The Morse strings for the letters S and O are

given, and the others are listed in Table 9-1 in Chapter 9. As in the last

project, you will need two Arduino boards, or you can use just one, by first

running the audio transmit program and using a recording device such as

a smartphone, and later playing back the sounds as this project’s receiver

program is running. The objective of the capstone project is for you to

complete the code, so that as the tones are generated by the transmitter

and subsequently received by the microphone circuit (Figure 10-1), the

program will display the information as text on the serial monitor.

Listing 10-2. An Audio Morse Code Decoder

Chapter 10 Capstone projeCts

https://doi.org/10.1007/978-1-4842-3510-2_9#Tab1

258

Chapter 10 Capstone projeCts

259

Chapter 10 Capstone projeCts

260

 Team Project 1: IR Morse Code Link
This capstone project allows for text messages to be sent over an infrared

(IR) link. We describe a one-way system, but the project could easily be

developed into a two-way transceiver system. The project could also be

adapted for communication over radio frequency links using nonlicensed

433 MHz transmitters and receivers, or over Wi-Fi using low-cost wireless

transceivers such as the popular NRF24L01, which operates in the 2.4 GHz

band. Our project uses the IR receiver module DFR0094, responsive to 38

KHz pulses. Any similar IR receiver module can be substituted, as long as

Chapter 10 Capstone projeCts

261

it provides a logic low output condition while it is receiving 38 KHz pulses;

otherwise the logic state needs to be a high. Any compatible IR LED can be

used on the transmit side. For very close range (about 5 feet), the LED and

a 120 Ohm resistor can be connected in series between output pin 7 and

Arduino ground. For a range of about 20 feet, the circuit in Figure 10-2 can

be used or modified with two or more LED circuits to increase the range

even farther.

5 v

pin 7

1 k

22

2N3904

IR

ground

Figure 10-2. A circuit used to increase range

A 2N3904 NPN transistor is capable of a maximum collector current

of 200 mA. By using a 22 Ohm emitter resistor in the circuit as shown, the

continuous collector current would be 130 mA, and resistor power would

be 0.4 watt, but we are operating at less than a 50% duty cycle so a quarter-

watt resistor will not be overheated.

The transmitter code only needs to be slightly modified from what is

shown in Chapter 9. The difference is that we replace the 2,000 Hz tone

with a carrier pulse frequency of 38,000 Hz, which is the standard carrier

frequency for IR devices. Because this value is larger than the maximum

integer value, we assign the variable called led the unsigned int type

Chapter 10 Capstone projeCts

262

in the top declaration section. Then at the beginning of the main loop, we

add the code led = 38000; this section is shown in Listing 10-3, with

the changes to the project highlighted.

Listing 10-3. Infrared Morse Code Link

Chapter 10 Capstone projeCts

263

Also, due to the internal construction of the timers in the ATmega328P

processor used in the Arduino UNO, there are timing issues that result in

using the tone function at high frequencies with the coding method that

we previously used in Chapter 9. All of the ASCII cases for transmitting

both numbers and letters need to be redone by calling the noTone

function in our switch case section. As an example (Listing 10-4), the new

revised code is shown for transmitting the S and O letters.

Listing 10-4. Revised Code for Transmitting S and O

Chapter 10 Capstone projeCts

264

It is again recommended to use the letters SOS for testing, and to then

roll out the code changes to all of the other letters and numbers once the

testing is successful. The best course of action would be to put all of this

ASCII to text data in the form of a library and include it in the program, but

as a learning experience, for now it might be more helpful to actually see

the entire code.

The decoding program must be changed significantly and is shown

in its entirety, but with only the letters S and O completely described. All

other possibilities for letters and numbers must be added in the subroutine

that we call routineLetters(). As in the requirements for the previous

capstone projects, you will need to modify the code to switch the decode

speed to match the transmission speed.

In the code (Listing 10-5), finding the dot and dash time duration is

straightforward. For the spacing, we use a two-step process. Figure 10-3

might aid in understanding the timing concepts used in the code.

(duration = currentMillis – lastMillis)

lastMillis currentMillis

high

startNext

space

low

stopLast

Figure 10-3. Timing concepts used in the code

Notice, in Listing 10-5, (space = space – "the dot or dash

duration time").

Chapter 10 Capstone projeCts

265

Listing 10-5. Infrared Morse Decoder

Chapter 10 Capstone projeCts

266

Chapter 10 Capstone projeCts

267

 Team Project 2: IR Control Link
Our final capstone project requiring electronic circuits uses two Arduino

boards, with one programmed as a transmitter and the other as a receiver.

We use IR pulses to convey information, but now we will be sending digital

signals used to control devices on the receiver end of the link, the actual

objective of what a microcontroller is meant to do. It is very similar to the

way commercial IR remote controls work for most home entertainment

products such as TVs and stereos. The commercial systems, however, will

send a long series of pulses that make up a digital code for each of the

device’s functions.

The transmit IR LED schematic is shown in Figure 10-2, and the IR

receiver can be the DFR0094 or any suitable substitute 38 kHz receiver

module that gives a digital low output when the signal is received. The

transmitter uses three input pins, which when momentarily grounded,

will transmit a pulse train that corresponds to the code needed to activate

a specific device on the receiver side of the link. We use three different

Chapter 10 Capstone projeCts

268

color LEDs to simulate the devices. Because two Arduinos are needed, this

makes a good team project. Two separate computers can be used, or just

one can be used to program both boards provided that operational power

is then supplied to the stand-alone board. This can be accomplished by

connecting the V in the header pin to a voltage a few volts above 5 volts,

so that the on-board regulator supplies the correct voltage to the Arduino.

On the receiver end, the negative side (cathode) of the LEDs can each be

connected though a 220 Ohm resistor to ground, or you can tie the three

cathodes together and use just one 220 Ohm resistor connected to ground.

The code in Listing 10-6 will send a 2 ms pulse at three different pulse

repetition rates, depending on the selection pin that is put to ground. As a

capstone project, you might wish to modify the code to switch the remote

device both on and off. Additionally, you might wish to develop interfacing

circuitry to control devices other than the LEDs used in this project.

Listing 10-6. Creating an IR Control Link

Chapter 10 Capstone projeCts

269

Chapter 10 Capstone projeCts

270

Chapter 10 Capstone projeCts

271

 Coding Math Combination Word Problems
The following example of a word problem deals with combinations, where

each possible scenario is tested (Table 10-1); the inputs and outputs can be

displayed in tabular form where the correct solution will easily be seen. As

a capstone project, another similar combination problem should be used.

LaTessa and five of her closest friends were celebrating her
16th birthday at a popular vegan restaurant. Each person
ordered a salad. Some in the group had a large salad, which
was priced at $7.75, and others had a small salad priced at
$5.50. The total amount the group paid was $52.00, which
included a $10.00 tip to the server. How many people ordered
the large salad, and how many ordered the small salad?

Chapter 10 Capstone projeCts

272

It should be understood that there are six persons involved, and that

the amount for the food is the grand total for the group, minus the $10.00

gratuity, or $42.00. In prealgebra, the easiest solution is to examine all of

the possibilities to find the solution. A similar table might be produced,

where the correct combination of large and small orders equates to the

total food cost.

Persons with good arithmetic skills might notice the fact that

individual costs must add together to produce an even dollar amount,

which could then be used in simplifying the procedure for finding the

solution.

The programming code in Listing 10-7 provides a solution to the given

problem by examining every possibility. Just as a visual learner might

produce a table to test the possibilities, a person favoring a sequential logic

approach might prefer producing code rather than using a visual aid. In

our sample program code running on an Arduino, we use a nested loop

method first introduced in Chapter 6 where we generated nonduplicate

numbers to be used to simulate a random deck of 52 playing cards. To

generate and display a solution to the given problem, the code is written to

jump out of the loop and go to a print subroutine when the correct result

occurs.

Table 10-1. Word Problem Solution in Tabular Form

Large Small Total

1 = $7.75 5 = $27.50 $35.25 (too low)

2 = $15.50 4 = $22.00 $37.50 (too low)

3 = $23.25 3 = $16.50 $39.75 (too low)

4 = $31.00 2 = $11.00 $42.00 (Correct answer)

Chapter 10 Capstone projeCts

273

Listing 10-7. Solving the Word Problem with Sequential Logic

Chapter 10 Capstone projeCts

274

Our coding example uses a brute force method to check every

possibility. Although this might not be the most elegant way to find a

solution, it is fairly easy to comprehend for a person favoring sequential

logic, and due to the tremendously fast speeds of modern processors, the

result will be uncovered within the blink of an eye. Without a computer,

this method can be a slow process, especially if a great many possibilities

are involved.

One mathematical solution is to represent the problem geometrically

with the lines of each equation drawn on a Cartesian coordinate plane.

The point where the lines intersect identifies the solution. Additionally,

through the use of algebra, the word problem presented represents a

system of equations, where the number of diners having each of the two

dishes is one of the equations. The other equation in the system is the

number of dishes expressed as a coefficient of the large and small salad

costs, respectively, being equal to the total food cost.

The simplest equation is x + y = 6 where x is the small salad and y is the

large salad. The second in the system of equations is x (5.50) + y (7.75) = 42.

Using the substitution method and solving for x in the first equation:

x = 6 – y

Now substituting the expression for x into the second equation we

have:

(6 – y)(5.50) +(y) (7.75) = 42

33 – 5.50y + 7.75y = 42

2.25y = 9

Chapter 10 Capstone projeCts

275

y = 9/2.25

y = 4

Now substituting the number 4 for y into the other equation, we have:

x + y = 6

x = 6 – 4

x = 2

As y is the amount of large vegan salads and x is the amount of small

vegan salads, the answer is that there were four large salads and two small

salads ordered.

A NOTE TO EDUCATORS

as instructors strive to incorporate different modalities to accommodate the

wide range of learning styles, using computer coding is now a possibility. It

is my belief that coding is actually a new learning style that I call computer-

aided sequential logical reasoning. even those students who can easier solve

a problem by more traditional means will benefit from being exposed to the

logical step-by-step process of computer coding.

Chapter 10 Capstone projeCts

277© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2

 Appendix
 Using and Writing Libraries
The Arduino IDE has quite a few example programs that are very helpful to

aid in learning coding. Many of the example programs are linked to libraries

embedded within the IDE. You can examine the sample programs contained

in the IDE by opening the File menu, and then selecting Examples. On

some of the more robust programs, you might notice the pound sign (#)

and the term include followed by a name. This can be seen in the Wi-Fi

example program where SPI.h and WiFi.h are included. Library files

that are included with a sketch add additional functionality to the project.

The inclusion of library files allows the programmer to use code that has

previously been written to perform a common set of tasks or might be

somewhat complex.

Many Arduino library files can be freely downloaded from repository

Web sites such as github.com. To install the libraries, they can be

downloaded as a .zip file and saved in the Arduino libraries folder,

where they should be renamed as one word without any .master

designation. Once they are saved in the library folder, they can be easily

added (Figure A-1) . Depending on the version of IDE, start under the

Sketch menu, then select Import Library, and finally Add Library. You then

navigate to My Documents and the Arduino library folder, which should

contain the folder that you previously downloaded and renamed. That

folder must contain at least two files: one with the name and extension .h,

and one with the name and a file extension of .cpp.

https://doi.org/10.1007/978-1-4842-3510-2

278

Once the libriaries are added to the IDE, they can be included into a

sketch by clicking the library, or using the pound sign (#) followed by the

word include, and then the name of the file with the . h extension.

(The .cpp file is linked and does not need to be called for directly.) The

downloaded zip folder might also contain a keyword file that is used

to highlight the keywords in color as they are used in the sketch. The

downloaded folder might also contain example programs that will be

displayed in the Include Library section of the IDE.

In the code files that follow (Listings A-1, A-2 and A-3), we present a

simple example of how to write a library and how to write a sketch to then

use the library functions. In writing the code using the Microsoft Windows

Notepad program, or any similar simple text program, we write both the

.h and .cpp files, and a keyword file. After writing the library files, save

them in a folder inside of the Programs\Arduino\Library folder.

Once that is done, the example program gives a serial monitor message in

the sketch that tells the user to ground pin 7, which will then be followed

by the words hello world generated by the library files.

Figure A-1. Adding a library

Appendix

279

Listing A-1. The Text File That Is Saved with a .cpp Extension

The .h file:

Appendix

280

Listing A-2. The Keyword File

Listing A-3. The Arduino Sketch

 Answers to Chapter Review Questions
and Projects
 Chapter 1
 Review Questions

 1. True

 2. d

 3. c

Appendix

281

 4. rectifier

 5. amp, watt

 6. positive, negative

 7. b

 8. Science provides the means of gathering a body of

knowledge, whereas technology is the application of

knowledge.

 9. a

 10. formula

 Project 1

I = 0.025, or 25 mA expressed in engineering notation.

 Chapter 2
 Review Questions

 1. 0.8 volts, 2 volts

 2. Digital signals contain discrete voltage levels and

are similar to the function of switching a light bulb

on or off. Analog signals have an infinite number of

possibilities and can be compared to the operation

of a lamp controlled by a dimmer switch.

 3. b

 4. True

Appendix

282

 5. Power is the rate of energy consumption. (The

word consumption is misleading, however, because

energy is never really consumed, but is rather

converted into another form. Typically, electrical

energy is ultimately converted to heat.)

 6. b

 7. b

 8. a

 9. Noise in electronics and computer situations is

caused by electromagnetic interference (EMI). It can

be generated by currents in wires, signals switching

on and off, motor operation, and so on. (A subset of

EMI is radio frequency interference [RFI].)

 10. b

 Project 2

I = 0.3 amps. LED characteristics will vary and are listed in the device’s

data sheet, but LEDs used in electronic projects typically can handle no

more than 50 mA. The LED will be damaged and a larger current-limiting

resistor should be used in the circuit.

 Chapter 3
 Review Questions

 1. b

 2. True

 3. d

Appendix

283

 4. a

 5. d

 6. a

 7. False (It runs it while the condition is met.)

 8. a

 9. hardware, software

 10. d

 Project 3

A solution is to modify the code shown in Chapter 3.

 Chapter 4
 Review Questions

 1. b

 2. d

 3. a

 4. a

 5. a

 6. c

 7. b

 8. b

 9. c

 10. a

Appendix

284

 Project 4A

One method to restore the LED duty cycle is to make both of the on and off

loop times one-half of their present value. To increase the flash sequence,

increase the number from 5 to 7.

 Project 4B

One method is to connect one LED circuit to positive voltage, and the

other to ground.

 Chapter 5
 Review Questions

 1. 6 seconds (This is because the 2 is the number of

milliseconds, and 0.002 × 3,000 = 6.)

 2. a

 3. d

 4. True

 5. a

 6. c

 7. b

 8. c

 9. d (because 1110 = decimal 14 = hex E)

 10. c (because 1001 is a binary representation of

decimal 8 and 1)

Appendix

285

 Project 5

Many possibilities exist to make this modification. It could be possible to

use the if conditional statement and the condition equal to ==, or not

equal to !=. As suggested, it might be helpful to reference the section from

the IDE help menu.

 Chapter 6
 Review Questions

 1. d

 2. c

 3. d

 4. True

 5. once

 6. a

 7. b

 8. False

 9. An algorithm is a structured process that is used to

find a solution to a problem.

 10. a

 Project 6

Be creative, and remember that the teacher has the red pen!

Appendix

286

 Chapter 7
 Review Questions

 1. b

 2. c

 3. It aids in human understanding of the code.

 4. True

 5. whole numbers/floating point decimals

 6. Arrays can store large data sets with minimal use of

variables.

 7. c

 8. a

 9. c

 10. a

 Project 7

Remember to describe your new variables at the top of the code in the area

for global general declarations.

 Chapter 8
 Review Questions

 1. a

 2. b

 3. c

 4. a

Appendix

287

 5. b

 6. c

 7. b

 8. a

 9. b

 10. b

 Project 8

All ordered phenomena tend to dissolve to a state of entropy

(randomness). Just as each conversion from one state of energy to another

is not 100% efficient and some amount is lost during each conversion as

heat, the ultimate result of electric energy turning to mechanical energy,

then to acoustic energy, finally ends as the sound waves distort the

surroundings and produce heat energy, which ultimately then increases

the entropy of the surroundings as the higher level energy dissipates.

 Parts List
• 1 Arduino UNO Rev3

• 1 USB cable

• 1 breadboard

• 1 FET electret microphone

• 1 IR receiver module DFR0094 or equivalent

• 1 IR LEDk to match receiver

• 1 LM386 amplifier

• 1 speaker, dynamic or piezo

Appendix

288

• 1 NE555 timer

• 2 seven-segment displays 08MAN72

• 1 photoresistor, cadmium sulfide

• 14 LEDs

• 2 2N3904 transistors

• 2 74LS47 ICs

Capacitors

• 1 470 uF

• 3 10 uF

• 1 0.1 uF

Resistors

• 2 47 K Ohm

• 2 10 K Ohm

• 1 4.7 K Ohm

• 2 2.2 K Ohm

• 2 1 K Ohm

• 2 330 Ohm

• 3 220 Ohm

• 2 120 Ohm

• 1 22 Ohm

Additional

• 1 spool of hook-up wire

• 1 bottle of aspirin or other headache reliever

Appendix

289© Bob Dukish 2018
B. Dukish, Coding the Arduino, https://doi.org/10.1007/978-1-4842-3510-2

Index

A
Amber, 2
Analog-to-digital

converter (ADC), 157
Arduino IDE

adding libriaries, 277–278
Arduino sketch, 280
.cpp files, 278
keyword file, 280

Arduino library files, 277
ATmega328P processor, 263
Audio Morse code decoder

audio transmit program, 257
Morse characters, 257
recording device, 257
transmission speeds, 257

Audio Morse code reader, 254–256
Audio time periods, 253
Audio transmitter, 253

B
Brute force method, 274

C
Capstone project, 252, 254
Cartesian coordinate plane, 274
Controlling embedded processes

Arduino timer to mimic
multitasking, 67

current-limiting resistor, 66
ISR, 70–71
longFlash variable, 69, 71
millis timer, 66
modifying variable names, 68

D
DC offset, 252
Digital electronics

Arduino project, 75
asynchronous multivibrator, 73
base number, 74
capacitor, 72
DIP, 74
far-flung applications, 72
555 integrated circuit, 73
microcontrollers, 76
mixed signal, 74
resistor, 72
resistor-capacitor (RC) timing

circuit, 75
transistors, 72

Digital signals
amplitude, 18
analog and digital

oscilloscope, 18

https://doi.org/10.1007/978-1-4842-3510-2

290

ARPANET, 20
chips, 20
digital logic levels, 21
Hertz, 19
mechanical computing, 17
modulation, 19
peak-to-peak voltage, 18
TTL process, 21

Digital-to-analog
converter (DAC), 157

Dual inline package (DIP), 74

E
Electronic projects

coding frequency
counter, 166–172

coding voltmeter, 157–159
controlling LED using light

sensor, 162–166
counter with seven-segment

display (no driver IC),
185–189

counter with seven-segment
display (with driver IC),
176–177

dice game with seven-segment
display (no driver IC),
189–190

dice game with seven-segment
display (with driver IC),
180–183

dimming LED with PWM,
160–161

electronic dice game with
LEDs, 197–206

pulse generation, 172–173, 175
Engineering notation, 11–12
Entropy, 287

F
A Flash of Genius, 77
Functional game of 21, 222–235
Functional poker game

expanded, 212
functions (subroutines), 211

G, H
Game coding, 21

algebra, 145
binary system, 146
blackjack, 143
brackets, 148
comments, 144
counter variable, 151
errors in syntax, 147
global/general declaration, 148
integers, 148
line numbering, 145
pullup designation, 149
random numbers, 147
randomSeed command, 149
trigger, 146

Digital signals (cont.)

Index

291

triggerPin, 150
trigLatch, 150
trigState, 150
variables, 146
version, 152
void function, 151

I, J, K
Infrared (IR) link, 260
Integrated circuits (ICs), 20
Integrated development

environment (IDE), 33
Interfacing

Arduino, 30
collector, 31
deenergized state, 29
driver, 29
emitter, 31
ignition system, vehicle, 29
microcontrollers, 26–27, 29
solenoids, 27
trade-offs, 27

Intermittent windshield
wipers, 77–79

Internet of Things device (IOT), 38
Interrupt request (IRQ), 86
IR control link

creation, 268–271
remote controls, 267

IR Morse code link, 262
infrared Morse decoder, 265
NPN transistor, 2N3904, 261

NRF24L01, transceivers, 260
subroutine, routineLetters(), 264

IR receiver module DFR0094, 260

L
LED duty cycle, 284
Light-emitting diode (LED)

circuit, 4

M
Microcontrollers, 37

Arduino programs, 40
assembly language, 40
Blink program code, 42
com port, 42–43
65HC11, 39
IDE layout, 41
IOT, 38
prototype, 39
sensors, 37
smart thermostats, 38–39
syntax, 40
thermostat, 38
wiring, 39
writing program

Blink code, 44–47
Boolean logic, 52
constants, 46
count variable, 46
delay function, 55
delaying methods, 56
external sensor, 54

Index

292

forward slashes, 43
Found New Hardware

wizard, 44
if keyword, 52
Intel Curie processor, 48
interrupts, 53–54
int keyword, 47
lighting LED, 55
pinMode keyword, 48
pull-up mode, 50
reset button, 50
while statement, 49

Morse code, 235, 251
Arduino to transmit, 235–249
do/do-while commands, 251
goto function, 251
routine, 252
spacing convention, 252

N
Nested loop method, 272

O
Ohm resistor, 261, 268
Ohm’s law, 7–11
NoTone function, 263

P
Piezoelectric effect, 172
Power amplifier, 252

Power consumption
interfacing, 22
Kirchhoff’s voltage law, 25
LED circuit, 24
parallel circuit, 26
quantity of measurement, 22
Watt’s Laws, 23

Programming, fun with
dice game, 136–137, 140
multidimensional arrays, 135
perfecting random numbers

algorithms, 123
arrays, 127
eliminating

duplication, 125–126
eliminating elapsed time

problem, 127, 129
flowchart, 123
pseudocode, 124

poker game, 130
five-card, 131
shields, 130
sorting cards, 130–131

random teacher jokes, 113
case statements, 117
do-while loop, 117
generator, 114
grouping sequence, 117–122

Pull-down circuit, 32–33
Pull-up circuit, 32–33
Pulse train, 267
Pulse width modulation

(PWM), 160

Microcontrollers (cont.)

Index

293

Q, R
Quarter-watt resistor, 261

S
Science and technology, 1

amber, 2
Bohr model of copper

atom, 2
closed series circuit, 5
conventional flow, 3
drift, 3
hole, 2
LED circuit, 4, 7
polarization, 5
rectifier diodes, 5
voltage drop, 6
Zener diodes, 5

Serial communications
artificial intelligence

base number system, 90
character of string data type,

91
character strings, 95
compiling, 90
heuristics, 92
hexadecimal number

system, 90
interpreted language, 90
IRQ, 86
learning machine, 92
mimics, 91
radix, 90
serial monitor screen, 89

Serial.println command, 88
string I/O for multiple

characters, 93
baking recipe quantity

calculator, 106–109
binary number system and

ASCII code, 83–86
game designing

altering code, 100
code for over and under

game, 96
counter variable, 102–105
firmware, 95
for loop, 99
modulo, 102
random numbers, 98
serial.begin (9600)

command, 99
odd and even

numbers, 105

T, U
Timer loops

Blink program, 65
built-in timer function, 64
delay command, 61
hardware interrupt, 63
loopcounter variable, 63
millis function, 65
polling, 64
possible bug fix, 62
preemptive multitasking, 64
traditional subroutines, 61

Index

294

Transducer, 172
Transistor-transistor-logic (TTL), 21
Transmit IR LED, 267

V
Voltage divider, 253

W, X, Y, Z
Word problem

mathematical
solution, 274

sequential logic, 273–274

solution, 272

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Warning
	Introduction
	Chapter 1: A Background on Technology
	The Difference Between Science and Technology
	Ohm’s Law
	Engineering Notation
	Review Questions
	Project 1
	Problem
	Solution

	Chapter 2: Computers and the Binary System
	Digital Signals
	Power Consumption
	Interfacing
	Pull-Ups and Pull-Downs
	Review Questions
	Project 2

	Chapter 3: Microcontrollers
	Describing Microcontrollers
	Writing a Program
	Review Questions
	Project 3

	Chapter 4: More Loops, and More Elegant Methods to Flash an LED
	Timer Loops
	Controlling Embedded Processes
	Digital Electronics
	Intermittent Windshield Wiper Control with Arduino
	Review Questions
	Project 4A
	Project 4B

	Chapter 5: Serial Communications
	The Binary Number System and ASCII Code
	Simulating Artificial Intelligence
	Designing a Serial Communications Game
	Finding Odd and Even Numbers
	A Recipe Quantity Calculator for Baked Goods
	Review Questions
	Project 5

	Chapter 6: Having Fun with Programming
	Random Teacher Jokes
	Perfecting Random Numbers
	Poker Game
	Multidimensional Arrays
	Dice Game
	Review Questions
	Project 6

	Chapter 7: More Game Programming, with a Detailed Explanation
	Coding the Game 21: First Attempt
	Coding the Game 21: Second Attempt
	Review Questions
	Project 7

	Chapter 8: Electronic Projects
	Coding a Voltmeter
	Dimming an LED with Pulse Width Modulation
	Controlling an LED Using a Light Sensor
	Coding a Frequency Counter
	Pulse Generation
	Counter with Seven-Segment Display (with Driver IC)
	Dice Game with Seven-Segment Display (with Driver IC)
	Counter with Seven-Segment Display (No Driver IC)
	Dice Game with Seven-Segment Display (No Driver IC)
	Electronic Dice Game with LEDs
	Review Questions
	Project 8

	Chapter 9: More Elaborate Projects
	Coding a More Functional Poker Game
	Coding a More Functional Game of 21
	Using the Arduino to Transmit Morse Code

	Chapter 10: Capstone Projects
	Building an Audio Morse Code Reader
	Building an Audio Morse Code Decoder
	Team Project 1: IR Morse Code Link
	Team Project 2: IR Control Link
	Coding Math Combination Word Problems

	Appendix
	Using and Writing Libraries
	Answers to Chapter Review Questions and Projects
	Chapter 1
	Review Questions
	Project 1

	Chapter 2
	Review Questions
	Project 2

	Chapter 3
	Review Questions
	Project 3

	Chapter 4
	Review Questions
	Project 4A
	Project 4B

	Chapter 5
	Review Questions
	Project 5

	Chapter 6
	Review Questions
	Project 6

	Chapter 7
	Review Questions
	Project 7

	Chapter 8
	Review Questions
	Project 8

	Parts List

	Index

