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Scientific Modeling and Simulations
Advocacy of computational science (Editors’ preface)

Tomas Diaz de la Rubia · Sidney Yip

Originally published in the journal Sci Model Simul, Volume 15, Nos 1–3, 1–2.
DOI: 10.1007/s10820-008-9099-8 © Springer Science+Business Media B.V. 2008

In its cover letter to President G. W. Bush on May 27, 2005, the President’s Information
Technology Advisory Committee wrote, “Computational Science—the use of advanced com-
puting capabilities to understand and solve complex problems—has become critical to sci-
entific leadership, economic competitiveness, and national security.” This single sentence
explains why this particular scientific endeavor has such a broad impact. It also conveys the
essence of our vision for Scientific Modeling and Simulations.

There exist a number of studies at the federal level which are unanimous in recognizing that
computational methods and tools can help to solve large-scale problems in our society, most
recently problems concerning energy and the environment. On the other hand, there has been
relatively little said about the fundamental attributes of Computational Science that justify
the mobilization of a new science and technology community and the generations that follow.
Along with funding support and the increased expectations of advanced computations, what is
also needed is a sustained environment to continuously assess the intellectually stimulating
and scientifically useful aspects of this endeavor, and promote active exchanges between
different parts of the growing community. In our opinion it is only through this kind of
advocacy and stewardship that the full potentials and rewards of Computational Science can
be realized.

We see the conceptualization of a problem (modeling) and the computational solution
of this problem (simulation), as the foundation of Computational Science. This coupled
endeavor is unique in several respects. It allows practically any complex system to be ana-
lyzed with predictive capability by invoking the multiscale paradigm—linking unit-process
models at lower length (or time) scales where fundamental principles have been established to
calculations at the system level. It allows the understanding and visualization of cause-effect
through simulations where initial and boundary conditions are prescribed specifically to gain
insight. Furthermore, it can complement experiment and theory by providing the details that

T. D. de la Rubia
Lawrence Livermore National Security, Livermore, CA 64550, USA

S. Yip (B)
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: syip@mit.edu

S. Yip & T. Diaz de la Rubia (eds.), Sci Model Simul, DOI: 10.1007/978-1-4020-9741-6_1 1



2 T. D. de la Rubia, S. Yip

cannot be measured nor described through equations. When these conceptual advantages in
modeling are coupled to unprecedented computing power through simulation, one has a vital
and enduring scientific approach destined to play a central role in solving the formidable
problems of our society. Yet, to translate these ideals into successful applications requires the
participation of all members of the science and technology community. In this spirit Scien-
tific Modeling and Simulations advocates the scientific virtues of modeling and simulation,
and also encourages discussions on cross fertilization between communities, exploitations
of high-performance computing, and experiment-simulation synergies.

The community of multiscale materials modeling has evolved into a multidisciplinary
group with a number of identified problem areas of interest. (See the Retrospective for a series
of meetings held by this community). Collectively the group is familiar with the intrinsic
advantages of modeling and simulation and the potentials to enable significant advances in
materials research. We believe that this and other similar groups can play a more expanded
role in the advocacy of Computational Science, by highlighting the insights derived from a
materials-focus study that can impact other problems involving basically the same physical
system. Consider a well-known materials behavior as an example. The strength variation of
the cement slurry from mixing the powder with water to hardened setting is a phenomenon
of which multiscale modeling and simulation may be the only way to achieve some degree
of molecular-level understanding. This is the kind of complex problem that a breakthrough
can have very wide-spread impact; in this case, there would be significant consequences
in communities, ranging from structural materials to colloidal science (paint, coating) to
architecture. The possibilities for cross fertilization between a scientific community which
understands materials and their innovation at the fundamental level and many others where
materials play a critical role is virtually limitless. We recognize of course that the transfer of
insight from one problem to another does not usually follow an obvious path; also what is
insight can be different when seen in different context. Nonetheless, the potential benefit of
a forum for open discussions is clear.

We know of no way to build the community we have in mind other than to engage a broad-
based participation of scientists who share in the belief that this is a vital and promising method
of scientific inquiry beneficial to all disciplines. The contributors to Scientific Modeling and
Simulations have started the process of articulating the usefulness of modeling and simulation,
each in its own context. From this one can begin to get a sense of the many different areas of
applications worthy of investigation.



A retrospective on the journal of computer-aided
materials design (JCAD), 1993–2007

Sidney Yip

Originally published in the journal Sci Model Simul, Volume 15, Nos 1–3, 3–4.
DOI: 10.1007/s10820-008-9098-9 © Springer Science+Business Media B.V. 2008

In 1993 The Journal of Computer-Aided Materials Design (JCAD) was launched by a small
publishing company in the Netherlands, ESCOM. The Publisher, Dr. Elizabeth Schram, had
invited four scientists with common interests in computer simulations of materials to serve
as editors. The motivation then was that atomistic and molecular simulations were being
recognized as emerging computational tools for materials research, so it seemed reasonable
to anticipate that they could be integrated into the process of design. “Since in both analysis
and design one can intrinsically exploit the remarkable (and ever-increasing) capabilities of
computer hardware and software technology, the intersection of computation, in the broad
sense, and materials design, with its holistic nature, naturally delineates a range of issues
which need to be addressed at the present time.” As for the name of the Journal, the decision
was at least partially influenced by the success of another ESCOM journal, the Journal of
Computer-Aided Molecular Design (JCAMD).

The four editors were Anthony K. Cheetham (University of California Santa Barbara)
Ulrich W. Suter (ETH Zurich), Erich Wimmer (then with Biosym in Paris), and me. After
about 3 years it was decided that it would be more efficient if one person would act as the
Principal Editor to oversee all the operational affairs, with the other three assisting primarily
in soliciting manuscripts. The understanding was that this arrangement would rotate about
every three years. History shows that I was chosen to go first in this capacity, and subsequent
handoffs never occurred.

How did things work out? If I were asked, my answer would be the journey was up and
down. JCAD witnessed the period when multiscale materials modeling and simulation began
to flourish from modest topical workshops to sizable international conferences. One of the
most satisfying experiences for me is that the Journal has played a sustained role in building
this community.

In the late 1990s the DOE launched the initiative ASCI (Accelerated Strategic Computing
Initiative) as part of its stockpile stewardship program, which provided major impetus for

S. Yip (B)
Departments of Nuclear Science and Engineering and Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
e-mail: syip@mit.edu

S. Yip & T. Diaz de la Rubia (eds.), Sci Model Simul, DOI: 10.1007/978-1-4020-9741-6_2 3



4 S. Yip

large-scale simulation of materials behavior in extreme environments. A large workshop on
the Dynamics of Metals was conducted in Bodega Bay by the Lawrence Livermore National
Laboratory; the follow up work was reported in another JCAD special issue.

One of the early workshops, considered a significant “kindling event”, took place at the
Institute for Theoretical Physics, UC Santa Barbara, in 1995; the proceedings, Modeling
of Industrial Materials: Connecting Atomistic and Continuum Scales, were published as a
special issue in JCAD. This was followed by two international workshops, first in Beijing,
then in Hong Kong, both with Hanchen Huang as the lead organizer. Together these gatherings
paved the way for the MMM Conferences.

The multiscale materials modeling (MMM) series began in London in 2002 under the
leadership of Xiao Guo, continued in UCLA in 2004 under Nasr Ghoniem, and in Freiburg
in 2006 under Peter Gumbsch. Each meeting was larger than the previous one. The fourth
gathering will take place in Florida State Univ. in October this year, organized by Anter El
Azab.

Tomas Diaz de la Rubia, who organized and chaired the Bodega Bay workshop and was
present at the Santa Barbara workshop, played a key role in keeping the multiscale materials
modeling community engaged, along with other laboratory scientists such as John Moriarty
and Elaine Chandler. It is perhaps appropriate that the last issue of JCAD contains a set of
the invited papers presented at the third MMM Conference in Freiburg.

Looking ahead I can see how the lessons learned can be put to good use. One observation
is that community building is not a natural phenomenon—it does not happen by itself, at
least not for very long. Another is that the design of materials components or systems, in
the context of multiscale modeling and simulation, is still very much in the future. Materials
design poses different challenges from molecular (drug) design, which is not to say the latter
is any less difficult. After 14 years, we still do not have many success stories to showcase the
rewards of materials design. With hindsight I can now say the choice of the journal title was
premature, more of a wish than a reality. JCAD is now relaunched as Scientific Modeling
and Simulation which describes much more closely the interest of the community that JCAD
had served. In closing this brief historical account, I thank the many individuals who have
contributed to the existence of the journal, especially several members of the Editorial Board
for being very helpful at critical times. To everyone in the community I would like to say that
the spirit of JCAD will live on one way or another.



Extrapolative procedures in modelling and simulations:
the role of instabilities

Göran Grimvall

Originally published in the journal Sci Model Simul, Volume 15, Nos 1–3, 5–20.
DOI: 10.1007/s10820-008-9093-1 © Springer Science+Business Media B.V. 2008

Abstract In modelling and simulations there is a risk that one extrapolates into a region
where the model is not valid. In this context instabilities are of particular interest, since they
can arise without any precursors. This paper discusses instabilities encountered in the field
of materials science, with emphasis on effects related to the vibrations of atoms. Examples
deal with, i.a., common lattice structures being either metastable or mechanically unstable,
negative elastic constants that imply an instability, unexpected variations in the composition
dependence of elastic constants in alloys, and mechanisms governing the ultimate strength
of perfect crystals.

Keywords Modelling · Simulation · Extrapolation · Instability · Lattice dynamics ·
Ultimate strength

1 Introduction

“It is a common error which young physicists are apt to fall into to obtain a law, a curve, or
a mathematical expression for given experimental limits and then apply it to points outside
those limits. This is sometimes called extrapolation. Such a process, unless carefully guarded,
ceases to be a reasoning process and becomes one of pure imagination specially liable to
error when the distance is too great.

In temperature our knowledge extends from near the absolute zero to that of the sun,
but exact knowledge is far more limited. In pressures we go from the Crookes vacuum still
containing myriads of flying atoms, to pressures limited by the strength of steel, but still very
minute compared with the pressure at the center of the earth and the sun, where the hardest
steel would flow like the most limpid water. In velocities we are limited to a few miles per
second.”

G. Grimvall (B)
Theoretical Physics, Royal Institute of Technology, AlbaNova University Center,
106 91 Stockholm, Sweden
e-mail: grimvall@kth.se

S. Yip & T. Diaz de la Rubia (eds.), Sci Model Simul, DOI: 10.1007/978-1-4020-9741-6_3 5



6 G. Grimvall

The two preceding paragraphs are taken from the presidential address 1899 by
Henry A Rowland, the first president of the American Physical Society (reprinted in APS
News, January 2008, p. 8). His words were well chosen, in particular in view of the surprises
that were very soon to come. Two examples of that will now be given; one experimental
and one theoretical, although in both cases with an interplay between experimental data
and a mathematical description. They show unexpected phenomena, which prevent a sim-
ple extrapolation. A third example illustrates how a simple conceptual model may fail, in a
counterintuitive way.

1.1 Superconductivity

At low temperatures, the electrical resistivity ρ(T ) of a pure metallic specimen varies rapidly
with the temperature T , but in a very complicated way, which is still difficult to accurately
account for. Lacking further understanding, one may try to describe the temperature depen-
dence by a simple power law,

ρ(T ) = aT n

where a and n are fitted to experimental data. But no material is completely free of defects.
They give rise to a temperature independent impurity resistivity ρimp. The total resistivity
then takes the form

ρ(T ) = ρimp + aT n

This is in reasonable agreement with experiments, at least in a restricted temperature interval,
as exemplified in Fig. 1 for Ag, a metal that does not become superconducting. Thus one
expects that if resistivity data are extrapolated down to T = 0 K, one would measure ρimp.
It was a complete surprise when Kamerlingh Onnes [1] in 1911 found that the resistance of
Hg did not follow this expected behavior, but suddenly dropped to such low values that no
resistance could be measured. He called the new phenomenon superconductivity.

Fig. 1 The resistivity ρ(T ) of
silver, as a function of
temperature T , for a specimen
with residual resistivity
ρimp ≈ 2,98613 p�m. Figure
based on data from Barnard and
Caplin [2]
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Table 1 The experimental heat
capacity per atom at 25 ◦C,
normalised to Boltzmann’s
constant kB

Data from Barin [4]

Substance (CP /atom)/kB

Cu 2.94
NaCl 3.04
PbS 2.97
CaBr2 3.01
C (diamond) 0.74

1.2 Low-temperature heat capacity

Almost two centuries ago, Petit and Dulong [3] noted that the heat capacity CP of solids
showed a striking regularity. In modern language, the Dulong-Petit rule gives

CP = 3kB/atom

where kB is Boltzmann’s constant. In the early 1900’s it was well established that this rule
is approximately obeyed, with the striking exception of diamond (Table 1). Furthermore, the
value 3kB/atom is exactly what the equipartition theorem in classical statistical physics gives
for an ensemble of atoms vibrating as harmonic oscillators. Therefore it was puzzling why
not all substances had a heat capacity CP that was at least as high as about 3kB/atom. (There
could be other contributions to the heat capacity, but they would always be positive and thus
increase CP .)

In a famous paper from 1906, Einstein [5] explained the exceptional behavior of diamond.
In his model of lattice vibrations, the heat capacity has the form

C(T ) = 3kB

(
θE

T

)2 exp(θE/T )[
exp(θE/T ) − 1

]2

Here θE is a characteristic temperature (the Einstein temperature). For a harmonic oscillator,
in which a force with force constant k acts on a particle of mass m, one has

θE = h̄

kB

√
k

m

where h̄ is Planck’s constant. This extremely simple model explains the deviation from the
Dulong-Petit rule, and its failure at low temperatures, Fig. 2.

It is now easy to understand why diamond differs from the other substances in Table 1.
The force between the atoms, represented by the force constant k, is among the largest found
for solids. Furthermore, the atomic mass m of diamond (carbon) is among the lightest in the
Periodic Table. As a consequence the ratio k/m, and hence the characteristic temperature θE,
is much larger than for any other solid. The heat capacity in the Einstein model is a universal
function of the ratio T/θE. At room temperature, T/θE ≈ 1/5 for diamond, while the corre-
sponding ratio for Pb is about 4. One could therefore loosely say that room temperature for
diamond is equivalent to 15 K for Pb. It should be added that if we had included in Table 1
other substances with small atomic masses and strong interatomic forces, for instance B, TiC
and SiO2, we would also get CP /atom < 3kB, but not nearly as small as for diamond.

The Einstein model represents the beginning of modern descriptions of materials, based
on forces between discrete and vibrating atoms and invoking quantum physics. It is remark-
able that the model was formulated about six years before the technique of X-ray scattering
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Fig. 2 The Einstein model of the
heat capacity C of a solid, plotted
as a function of the reduced
temperature T/θE. Symbols refer
to the data points for diamond
used by Einstein in his original
paper [5]. He fitted θE = 1320 K
to the data
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from crystals had been developed, i.e. before one knew the crystal structure of diamond [6]
or of any other solid [7].

1.3 Crystals modelled as stacking of atomic spheres

It is customary, and often very useful, to represent atoms in a solid with spheres stacked in a
certain configuration. Among the elements in the Periodic Table, 17 have the face centered
cubic structure (fcc) and 15 have the body centered cubic structure (bcc) as the equilibrium
phase at ambient conditions. Some of the fcc elements are stable also in the bcc structure
(or some other structure), and vice versa, at other temperatures and pressures. The most
important example is iron, which transforms from bcc to fcc at 1184 K, and back to bcc at
1665 K, before it melts at 1809 K. At room temperature and under high pressure, Fe takes
the hexagonal closed packed (hcp) structure. In the light of this fact, consider for instance
tungsten. It has only been observed in the bcc structure, but one can imagine that if W atoms
were stacked in a fcc lattice it would represent a possible but metastable configuration; a
state with so high energy that it could not be observed before the lattice melts. This idea of
a variety of hypothetical metastable structures has been extensively used in materials sci-
ence, both in accounts of experimental thermodynamic data and in ab initio calculations,
where the energies of different configurations are obtained from strictly theoretical quantum
mechanical calculations.

At the end of the 1980’s there was a growing concern that the experimental and the
theoretical ways to find the energy (enthalpy) difference between a stable and an assumed
metastable structure disagreed strongly in some cases, for instance for tungsten. It was not
clear if the semi-empirical fitting to thermodynamic data, or the ab initio theory, was to be
blamed. Skriver [8], in one of the most ambitious ab initio works at the time, wrote: “In a
comparison between the calculated structural energy differences for the 4d transition metals
and the enthalpy differences derived from studies of phase diagrams, we find that, although
the crystal structures are correctly predicted by the theory, the theoretical energy differences
are up to a factor of 5 larger than their ‘experimental’ counterparts. The reasons for this
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discrepancy may lie in the local-density approximation or in the neglect of the non-spherical
part of the charge distribution. Furthermore, the derived enthalpy differences are certainly
model dependent and may change as the model is improved.”

The origin of the discrepancy later turned out to be caused not by large errors in the ab
initio work but related to the fact that, for instance, fcc W does not represent a metastable
configuration; see a review by Grimvall [9]. The semi-empirical and the ab initio approaches
are essentially correct, but in some cases they give quantities that should not be compared.
The fcc W lattice structure is dynamically (mechanically) unstable at T = 0 K under small
shear deformations. For an unstable lattice one may assume a rigid lattice and calculate the
total energy U as a solution to the Schrödinger equation, but the concept of a vibrational
entropy S cannot be defined. Then also the Gibbs energy G = U − T S, which determines
the thermodynamic properties, has no well-defined meaning. The reason why it took so long
for this insight to be part of the general knowledge may in retrospect seem a bit puzzling.
Born [10] had written in 1940 on the elastic instability of some simple structures, and the
subject is thoroughly treated in a well-known book by Born and Huang [11] from 1954. On
the other hand, the instability is counterintuitive. For instance, when spheres are stacked in
the densest possible packing configuration (fcc), it is natural to assume that a small distur-
bance of that structure would give a state of higher energy and not one of a lower energy as
is implied in a mechanical instability. However, there are still open questions regarding the
effect of the lattice instabilities on the thermodynamic functions, in particular the possible
stabilization of the lattice at high temperatures when the electron band structure is changed
due to the thermal vibrational “disorder” [12].

2 Elastic shear instability and melting

How crystals melt has been a long-standing problem. Thermodynamics requires that melting
takes place when the Gibbs energy G(T ) of the liquid phase becomes smaller than that of
the solid. However, it has also been assumed that the shear modulus Gsh in the solid phase
gradually goes to zero, as the melting temperature Tm is approached. Born [13] wrote in 1939:
“In actual fact there can be no ambiguity in the definition of, or the criterion for, melting.
The difference between a solid and a liquid is that the solid has elastic resistance against
shearing stress while the liquid has not. Therefore a theory of melting should consist of an
investigation of the stability of a lattice under shearing stress.” This view was advocated
by Sutherland already in 1891. Sutherland’s plot of experimental data of the isotropically
averaged shear modulus Gsh as a function of the reduced temperature T/Tm is shown in a
paper by Brillouin [14]; cf. Fig. 3. The experimental points seemed to fit a parabola,

Gsh(T )

Gsh(0)
= 1 −

(
T

Tm

)2

thus suggesting that Gsh extrapolates to zero at T = Tm. Brillouin wrote: “As the melting
point is approached we may guess by extrapolation (italics added here) that the macroscopic
rigidity will tend to zero while the microscopic rigidity remains finite.” Brillouin further
remarked that with a vanishing shear modulus in the solid phase, the latent heat of melting
would be zero, which is not in agreement with experiment, but that the latent heat in any case
is much smaller than the heat of vaporisation and therefore the model could give a reasonable
approximate description. (See also a comment by Born [13] on the latent heat.)

With modern experimental techniques, the single crystal elastic constants Ci j can often
be measured up to close to the melting point. In a crystal of cubic lattice structure there are
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Fig. 3 The normalised elastic
shear modulus Gsh(T )/Gsh(0)
of polycrystalline materials as a
function of the reduced
temperature T/Tm, with some of
the data points used by
Sutherland and referring to Ag,
Pb and Sn. In the original graph
by Sutherland, published 1891 in
Phil. Mag. vol. 32, p. 42 and
reproduced 1938 in a paper by
Brillouin [14], there are also
some points for Fe, Al, Cu, Au
and Mg, with T/Tm < 0.5. The
dashed curve is Sutherland’s
parabolic fit
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only two independent elastic shear constants, C ′ = (C11 − C12)/2 and C44. For lead they
have been measured to within 1 K below the melting point Tm = 601 K. Both C ′ and C44

show a very regular behavior as Tm is approached, and none of them extrapolates to zero at
Tm (Fig. 4).

3 Shear constants in alloys

The previous section discussed how the elastic shear constants extrapolate as a function of
temperature. We now consider how they vary as a function of the composition in an alloy
A1−c Bc with concentration 1 − c of the element A and c of the element B. In most real such

Fig. 4 The experimental elastic
shear moduli,
C ′ = (C11 − C12)/2 (lower
curve) and C44 (upper curve) for
Pb, with data from Vold et al.
[15], do not even approximately
extrapolate to zero at the melting
point Tm = 601 K
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Fig. 5 The measured elastic
shear constants C ′ (solid curve,
diamonds) and C44 (dashed
curve, squares) of binary bcc
Zr-Nb-Mo alloys at room
temperature, plotted versus the
number n of d-electrons per atom
(nZr = 4, nNb = 5, nMo = 6).
Data from the compilation by
Every and McCurdy [16]
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systems one does not have a continuous solid solution from c = 0 to c = 1. This is obvious if
A and B have different crystal structures, but normally there will also be regions with interme-
diate phases, for instance with approximate simple compositions such as AB2, or much more
complex phases. The zirconium-niobium-molybdenum system is a rare exception. There is
complete solid solubility in bcc Nb-Mo at all concentrations and room temperature. In Zr-Nb
it is only at high temperatures that there is complete solubility in the bcc phase at all concen-
trations, but the bcc phase can be retained by quenching to low temperatures when the Nb
content is larger than about 20 at.%. The experimentally determined shear constants C ′ and
C44 at room temperature vary in a regular way, Fig. 5.

Inspection of Fig. 5, and taking into account that the experimental uncertainty in C ′ and
C44 is at least as large as the height of the symbols, suggests that Zr in a hypothetical bcc
structure is close to being either stable or unstable under shear, C ′ ≈ 0. However, there is a
general decrease in the interatomic forces, as exemplified by the bulk modulus B, towards
either end of the transition metal series in the Periodic Table. Therefore one might get further
insight if C ′ and C44 are normalised as C ′/B and C44/B. From Fig. 6 we then see that C44

tends to stiffen significantly as one approaches bcc Zr (n = 4), while the near instability
related to C ′ prevails. Above 1138 K, the thermodynamically stable phase of Zr has the bcc
structure, and below that temperature it has the hcp structure. The bcc structure cannot be
retained in Zr at room temperature by quenching from high temperatures. This has been
taken as evidence that the bcc phase is dynamically unstable at low temperatures. Several
theoretical phonon calculations corroborate this idea. A recent ab initio calculation (Kristin
Persson, private communication 2008) gives C ′ = −3 GPa and C44 = 28 GPa at T = 0 K,
in good agreement with Fig. 5. The stabilisation of the bcc phase at high temperatures has
been ascribed to the effect of the thermal motion of atoms on the electronic structure, i.e. on
the effective forces between the atoms [12].

If a discussion of the dynamical stability of bcc Zr was based exclusively on an extrapo-
lation to pure Zr of the elastic constants in the experimentally accessible range in bcc Zr-Nb
alloys, one could not draw any definite conclusion. For instance, the constant C ′ in Fig. 5
could have increased again as n = 4 was approached, implying that bcc Zr is a metastable
phase. With Ag-Zn as an example we shall now see how dangerous simple extrapolations
can be.
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Fig. 6 Data for C ′ and C44 as in
Fig. 5 but now normalised with
respect to the experimental bulk
modulus, C ′/B and C44/B, with
B = (C11 + 2C12)/3
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The thermodynamically stable phase of Ag has the fcc structure, and pure Zn the hcp
structure. In a binary Ag-Zn system at room temperature, the fcc structure is present only
from 0 to about 30 at.% Zn, and the bcc structure occurs only in a small concentration interval
around 50 at.% Zn and at high temperatures. Experiments therefore give very little infor-
mation about the possibility for fcc and bcc Ag-Zn solid solutions to be metastable, rather
than dynamically (mechanically) unstable, states. But in ab initio calculations one can easily
prescribe that the lattice structure is fcc or bcc, for any assumed solid solution concentration,
and calculate C ′ and C44 from the energy change when the crystal is subject to a static shear.
The result, from Magyari-Köpe et al. [17], is shown in Figs. 7 and 8. These graphs illustrate
how dangerous an extrapolation can be, even if it is based on knowledge over a wide range
of concentrations. For instance, on going from 0 to about 70 at.% of Zn in the bcc lattice
C44 remains almost constant and C ′ increases slowly but steadily, after which they decrease
rapidly, eventually making the lattice unstable (C ′ < 0), Fig. 7. A similar behavior is seen
for C44 of the fcc structure (Fig. 8). In the fcc structure C ′ decreases between 0 and 50 at.%
of Zn in Ag, and the curve seems to extrapolate to zero (i.e. a lattice instability) at about
60 at.% Zn (Fig. 8). But the theoretical calculation shows a very different behavior, with a
reversal of the trend and C ′ becoming large as the Zn content is further increased.

4 Melting of superheated solids

Supercooling is a well-known phenomenon, where a liquid can be cooled to temperature
below the freezing temperature, before a phase transformation takes place through the nucle-
ation and growth of the solid phase. Superheating is much more difficult to achieve. The
geometrical constraints on the formation of a nucleus of the new phase are much less severe
when going from the ordered solid structure to the atomic disorder in the liquid, than in
the reverse direction. It is an interesting scientific question to ask when and how a lattice
eventually will transform to the liquid through so called homogeneous melting, i.e. in the
absence of free surfaces or phase boundaries where nucleation of the liquid phase normally
takes place. Many researchers have addressed the problem, relying on simple conceptual
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Fig. 7 The elastic shear
constants C ′ (solid curve,
diamonds) and C44 (dashed
curve, squares) as calculated by
Magyari-Köpe et al. [17] with ab
initio methods for hypothetical
random Ag-Zn solid solutions in
a bcc lattice structure
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Fig. 8 As in Fig. 7 but for the
fcc lattice structure
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models, correlations of experimental data and numerical simulations; see Mei and Lu [18]
for a review. Modern work is almost exclusively based on computer simulations, usually in
the form of molecular dynamics calculations with an assumed interaction between the atoms.
The possible mechanisms can be divided into two main types—a sudden instability such as the
vanishing of a shear constant, and a thermal fluctuation that leads to a nucleation-and-growth
process, respectively.

One possible mechanism has already been treated in Sect. 2; that the lattice becomes
dynamically unstable under shear. Figure 9 shows such an instability arising in a molecular
dynamics simulation of superheated Au when the lattice undergoes thermal expansion at
P = 0, while the formation of lattice defects is suppressed [19]. Herzfeld and Goeppert
Mayer [20] suggested the possibility of a vanishing bulk modulus (spinodal decomposi-
tion), rather than vanishing shear resistance. Naively, one might expect a simple mechanism
in which the lattice will “shake apart” when the thermal vibrational displacement of the
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Fig. 9 The elastic shear constant
C ′ (lowest curve) becomes zero
as the lattice parameter a
increases due to thermal
expansion, while C44 (middle
curve) and the bulk modulus B
(upper curve) still are finite,. The
straight lines are extrapolations
of data within the stability range.
Figure based on results from
Wang et al. [19] obtained in a
molecular dynamics simulation
for fcc Au at P = 0
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atoms becomes large enough. This is often referred to as the Lindemann [21] melting crite-
rion from 1910, although it was not given its usual formulation until 1956 by Gilvarry [22].
Lennard-Jones and Devonshire [23] used an order-disorder description of the Bragg–
Williams type [24] to model melting. In the 1960’s it was suggested by Mizushima [25],
Kuhlmann-Wilsdorf [26] and several others that at a certain critical temperature there is a
spontaneous formation of dislocations. More recently Gómez et al. [27] also argued for a
dislocation-mediated melting mechanism. The vibrational entropy of atoms at the dislocation
core was assumed in Refs 25 and 26 to play an important role, but realistic simulations [28]
show that the relative effect on the free energy is small. Gorecki [29] attributed correlations
between various melting parameters to the formation of vacancies in metals. Jin and Lu [30],
in a molecular dynamics study of Al, advocated a classical nucleation-and-growth mecha-
nism. Jin et al. [31] suggested a mechanism that combines the Lindemann argument and a
shear instability. In a molecular dynamics simulation for fcc Au, Wang et al. [19] found that
in defect-free lattice, the volume increase due to thermal expansion would eventually cause
a shear instability, see Fig. 9. Sorkin et al. [32], in a similar study for bcc V, found that not
only thermal expansion but also expansion due to defect would lead to a shear instability.
Forsblom and Grimvall [33,34], in a molecular dynamics study relevant for Al, found that
melting takes place though a multi-stage process in which vacancy-interstitial pairs are ther-
mally created. The relatively mobile interstitials then form an aggregate of a few interstitials,
which serves as a nucleation site for further point-defect creation and the eventual melting.
No shear instability was found in this simulation. A mechanism different from those just
discussed is the entropy catastrophe suggested by Fecht and Johnson [35]. They noted that
because the heat capacity of the superheated solid is expected to be larger than that of the
liquid (cf. Forsblom et al. [36]) the entropy of the ordered solid will be larger than that of
the disordered liquid above a critical temperature. This paradoxical behavior was identified
with the onset of instability in a superheated solid phase.

Thus one can envisage many different melting mechanisms, and it is conceivable that
several of them can occur if other mechanisms are suppressed. For instance, in the molecular
dynamics simulation of Wang et al. [19] at constant pressure P = 0, there were no point
defects created, and melting took place through the loss of rigidity. The somewhat similar
molecular dynamics simulation of Forsblom and Grimvall [33,34] allowed for the thermal
generation of vacancies and interstitials. Melting was initiated through a coalescence of such
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Table 2 Some proposed melting mechanisms

Mechanism Reference and year of publication

Large thermal vibrational amplitude Lindemann [21] 1910, Gilvarry [22] 1956
Vanishing bulk modulus on expansion Herzfeld and Goeppert Mayer [20] 1934
Bragg–Williams type disorder Lennard-Jones and Devonshire [23] 1939
Rigidity loss at T = Tm Sutherland 1890 (quoted in [14]), Brillouin [14] 1938, Born [13]

1939
Rigidity loss due to expansion Wang et al. [19] 1997, Sorkin et al. [32] 2003
Entropy catastrophe Fecht and Johnson [35] 1988
Proliferation of dislocations Mizushima [25] 1960, Kuhlmann-Wilsdorf [26] 1965, Cotterill

et al. [38] 1973, Gómez et al. [27] 2003
Proliferation of vacancies Gorecki [29] 1974
Fluctuation, nucleation and growth Jin and Lu [30] 1998, Jin et al. [31] 2001
Migrating interstitials coalesce Forsblom and Grimvall [33,34] 2005

defects, thus precluding a study of the loss of rigidity at an even higher temperature. Table 2
summarises some of the mechanisms that have been suggested, with an incomplete list of
references to such works. In a real system, with a hierarchy of possible melting mechanisms,
the question is which of them that is encountered first when a solid is superheated [37].

5 Theoretical strength of solids

The actual strength of metallic engineering materials can be several orders of magnitude
lower than what one expects from knowledge of the direct forces between the atoms. This
fact, which for some time seemed very puzzling, gradually got an explanation in the 1930’s
and 1940’s. Real materials are never free from defects. In particular they contain disloca-
tions; linear defects that can move more or less easily through the lattice and thus deform
a specimen. But it is of considerable theoretical and practical importance to study how an
initially perfect crystal yields under an external load, i.e. to find its theoretical, or ultimate,
strength. In comparison with the study of homogeneous melting, there are both similarities
and essential differences. The ultimate strength is a much more complex phenomenon. The
load can be applied in many ways; pure tension or shear, or a combination thereof. Seem-
ingly similar materials can show different failure mechanisms even when they are subject to
the same load conditions. The strained lattice may develop phonon instabilities analogous
to those discussed above for the shear constants C ′ and C44 but now for short-wavelength
phonons, as demonstrated in work by Clatterbuck et al. [39]. Furthermore, temperature is an
important parameter in the determination of the ultimate strength. All these complications
make a search for the onset of failure a formidable task. A brief review has been given by
Šob et al. [40].

Like in the melting problem, there is a hierarchy of possible failure mechanisms, and
again the question is which one of them that comes first and thus determines the ultimate
strength. This is illustrated in Fig. 10, which gives the energy U (ε) as a function of the
strain ε for Nb. With no other instabilities present, the energy would increase with ε along
the so called orthorhombic deformation path (upper curve) until one reaches the inflexion
point in U (ε). There the tension σ = dU/dε has its highest value, thus defining a theoretical
tensile strength. But before that, the energy can be lowered through a “branching-off” along
a tetragonal deformation path (lower curve), which means that the traditional approach of
indentifying the theoretical strength with the inflexion point in U (ε) is not correct in this case.
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Fig. 10 The energy U (ε) per
atom as function of the relaxed
〈100〉 tensile strain ε, calculated
for Nb along a tetragonal
deformation path (upper curve),
and along an orthorhombic path,
which is “branching off” (lower
curve). Figure based on data from
Luo et al. [41]

0

0,1

0,2

0,3

0,4

0 0,1 0,2 0,3 0,4 0,5
ε

U
( ε

)
/

(e
V

/a
to

m
)

6 Another model—the linear chain

This paper started with a discussion of one of the most celebrated models in condensed mat-
ter physics, the Einstein model of lattice vibrations. We end with another model in the same
field, which is found in almost all textbooks; the linear chain introduced in 1912 by Born and
von Kármán [42] along with a similar approach to three dimensions. Consider an infinite row
of mass points with masses m, separated a distance a and connected by a spring with force
constant k. Propagating waves (phonons) in the chain have wavenumber q(=2π/λ where λ

is the wavelength) and frequency ω, with

ω(q) = 2

√
k

m
sin

(qa

2

)

The model is used in textbooks to introduce and illustrate several very important concepts.
Thus q has a maximum value π/a at the boundary of the first Brillouin zone. From ω(q) one
can define a normalized density of states D(ω), which is a constant for small ω in a linear
chain. The thermal energy and the heat capacity can also be calculated. Furthermore, the
model is easily extended to a chain of alternating different masses, with a qualitative appli-
cation to infrared properties of ionic solids. However, if we consider the root-mean-square
〈u2〉1/2 of the atomic vibrational amplitude and use the standard expression

〈u2〉 =
ωmax∫
0

h̄

Mω

[
1

2
+ 1

exp(h̄ω/kBT ) − 1

]
D(ω)dω

we find that 〈u2〉1/2 diverges at all T , which might suggest a dynamical instability. The origin
of the divergence lies in the fact that the integral is only an approximation to a discrete sum
of amplitudes from all the individual vibrational quantum states labelled by a discrete set of
wavenumbers q . The smallest possible q is not zero but π/(Na), where N is the number of
atoms in the chain. The divergence in 〈u2〉1/2 varies as logN at T = 0 K. Since the singu-
larity occurs in the limit of long wavelengths, and 〈u2〉1/2 refers to displacements relative to
an assumed coordinate system that is fixed in space, the distance between two neighboring
atoms is not much affected. In d dimensions, the same integral expression for 〈u2〉1/2 holds,
when multiplied by the factor d . With d = 3, D(ω) ∼ ω2 at small ω and the exact definition
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of the lower integration limit is not important. The divergence of 〈u2〉1/2 with increasing
chain length is normally of no concern, and not mentioned in textbooks, but there are cases
requiring detailed attention to the problem [43].

7 Four types of extrapolative procedures

The topic of this paper is the role of extrapolations in modelling and simulations. With
reference to the examples we have treated, the following categorization may be helpful.

• An entirely new phenomenon suddenly arises beyond a critical value of a parameter.

Such a case is rare, with superconductivity being a prime example. It would take almost half
a century from its discovery in 1911 to the theoretical explanation on a microscopic basis
through the BCS theory (Bardeen et al. [44]) in 1957. Before that one just had to accept that
the extrapolation of the resistivity to low T , which worked so well for many metals, was
not valid below a critical temperature Tc for certain other metals. Starting from the BCS
model, one may today calculate the critical temperature and other quantities of interest in
the superconducting state. The obstacle is mainly one of having enough computer power. It
is then necessary to remark that there is not yet any corresponding theory for the so-called
high-temperature superconductors.

• A new theoretical insight explains a gradual change in trend of a physical quantity.

With changing physical parameters one may enter a regime where new effects must be taken
into consideration, thus making a simple extrapolation gradually less relevant until it finally
may fail completely. Arguably the best example of this in condensed matter physics is the
Einstein model of lattice vibrations. On the basis of a single parameter (the Einstein tem-
perature, θE) it explains how far down in temperature one can go and still ignore quantum
effects. This view holds not only for the heat capacity, but for many other properties of
solids involving the thermal vibrations of atoms, for instance the temperature dependence
of the thermal expansion, the thermal conductivity of insulators, and the normal electrical
conductivity of metals. Furthermore, the Einstein model and its various refinements may
give confidence in the extrapolation of certain properties outside the range where there is
good experimental knowledge, if one knows from the model that quantum effects will not be
important.

• An established theoretical basis is used to obtain unknown quantities.

The elastic constants Ci j of metals with cubic crystal structures provide a good example to
illustrate this point. The compilation by Every and McCurdy [16] in the Landolt-Börnstein
tables gives an almost complete account of what was experimentally known about Ci j in the
1980’s. There are data for 31 metallic elements in their pure state, but for only as few as 52
binary metallic alloys and then often for only a few compositions. In a need of data of alloys,
it would then be tempting to interpolate and extrapolate, relying on the available meagre
information. Until recently, this was the only practical alternative. But we also know that
properties like the elastic constants are determined by the electronic structure of the solid,
i.e. the solution to the Schrödinger equation. The steady progress in the computing power
has in many cases made ab initio calculations a fast and cheap alternative to experiments.
Such calculations may also reveal variations in the calculated quantity, which could not be
anticipated on the basis of experimental data but are possible to understand with reference
to the calculated electronic structure.
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• An established theoretical basis is used in simulations to identify physical mechanisms.

If we can account for forces between the atoms, we can study many phenomena in detail,
which would be difficult or impossible to study experimentally. Two examples have been
discussed here; homogeneous melting mechanisms in superheated solids and failure mecha-
nisms when a specimen is loaded to its theoretical strength. One could go further and model
very complex phenomena, for instance plastic deformation on a nanoscale [45]. Such studies
can give a detailed insight into the role of competing mechanisms, which are conceptually
simple but strongly dependent on details. The simulations require substantial computing
power but no new theory per se.

8 Conclusions

The danger of extrapolations has been illustrated through several examples from materials
science. An extrapolation may be questionable because there is an unanticipated change in
trend outside the range of previous knowledge, and caused by the fact that one enters a
new physical regime of effects. An extrapolation can also be completely wrong or irrelevant
because of the presence of an instability. In traditional mathematical modelling, based on
analytical expressions, instabilities may be overlooked if they do not appear as natural exten-
sions of the model, and one has to be explicitly aware of their existence. A ubiquitous model
can contain features that are not generally known, because they are of importance only in
special applications, as was the case in the infinite linear chain. On the other hand, one may
avoid many such difficulties in good numerical simulations. If the basic theory underlying
the simulations is general enough (for instance solving the Schrödinger equation and mini-
mising the total energy with respect to all parameters of interest) one would expect a reliable
model result. However, as was alluded to in the section on the theoretical strength, this may
require an enormous computational effort. It is then tempting to make simplifications by
introducing constraints, and thereby exclude certain crucial outcomes in the simulation. A
thorough insight, or “intuition”, may be needed to avoid unwarranted simplifications. It has
sometimes been argued that intuition is nothing but having seen many examples of results,
which may have direct or indirect relevance for the problem at hand. The discussion of insta-
bilities and of dubious extrapolations in this paper could then add to such an intuition. Two
other aspects of modelling and simulation will be treated in separate papers to follow in this
journal; characteristic quantities and numerical accuracy, respectively.
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Abstract Phenomena in the physical sciences are described with quantities that have a
numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful
aspect of modeling and simulation. Characteristic quantities formed by a combination of
model parameters can give new insights without detailed analytic or numerical calculations.
Dimensional requirements lead to Buckingham’s � theorem—a general mathematical struc-
ture of all models in physics. These aspects are illustrated with many examples of modeling,
e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones
potential for the interaction between atoms, the Lindemann melting rule, and saturation phe-
nomena in electrical and thermal conduction.

Keywords Dimensional analysis · Characteristic quantity · Scaling ·
Buckingham’s theorem · Lennard-Jones interaction

1 Introduction

Phenomena in the physical sciences are described with quantities that have a numerical
value and a dimension, i.e., a physical unit. There are only seven independent such units:
the SI base units for length (metre, m), mass (kilogram, kg), time (second, s), electric cur-
rent (ampere, A), thermodynamic temperature (kelvin, K), amount of substance (mole, mol)
and luminous intensity (candela, cd). Numerous other named units are used in science and
technology, both within SI (e.g., joule, J) and outside SI (e.g., horsepower, hp). However,
they can all be expressed in the seven base units, sometimes in a rather complicated form.
For instance, 1 Btu (British thermal unit)=788.169 ft·lbf (foot·poundforce)=1055.056 J
=1055.056 kg m2 s−2. Molar entropy requires five SI base units: m2kg s−2 K−1 mol−1.
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The fact that seven units suffice to give a quantitative account of any physical phenomenon
has significant consequences for the mathematical form that a physical modeling can take.
Some of the consequences are trivial, for instance that the model parameters must enter so
that all the members in a sum are expressed in the same SI base units, or that the argument of
trigonometric, exponential and logarithmic functions is a number, i.e. dimensionless. Check-
ing for violations of such rules is one of the most powerful methods to detect misprints and
other errors in the derivation of physical relations. Dimensional arguments are then used
posteriorly, as a routine. But they can also be used in a creative way, for instance to identify
characteristic quantities, which should be included in the modeling of a complex phenome-
non, or to give a deeper understanding of a phenomenon through an insightful interpretation
of a characteristic quantity. This review deals with such non-trivial aspects. Through several
examples we first illustrate the concept of characteristic quantities. That is used in an account
of Buckingham’s � theorem, which gives a general mathematical framework for all physical
models. As an application we then discuss the almost century-old Lennard-Jones potential,
which is still frequently used in modeling. The popular Lindemann rule for the melting tem-
perature of solids is shown to be a simple consequence of Buckingham’s � theorem, rather
than a melting criterion. Finally, the “saturation” of electrical and thermal conductivities
provides an example where dimensional arguments give significant insight, even though a
fundamental and closed-form algebraic formulation is lacking.

Many of our examples start from well known relations found in textbooks from various
fields of physics and engineering. Since the purpose is to illustrate general features, rather
than solving a specific problem, they are often presented without further motivation.

2 Four examples of characteristic quantities

2.1 Waves at sea

A nautical chart gives information about depths. Consider a certain location where the depth
is indicated to be d = 20 m. The acceleration of gravity is g = 9.8 m/s2. These two quantities
can be combined as

√
gd = 14 m/s

Is there a physical interpretation of this velocity? Something that propagates with about 14
m/s? The answer is the phase velocity of gravitational waves on a water surface, i.e., the
familiar waves whose properties are governed by gravity forces (as opposed to capillary
waves to be considered later). But the velocity in our example is not what we would normally
observe, if we look at waves on a sea, because it refers to the special case of shallow water.
What is then meant by shallow? In a physical statement like fast or slow, large or small, heavy
or light, we must compare two quantities of the same physical dimension (unit). In our case
the depth d = 20 m must be in some sense small compared with another relevant length. The
wavelength λ of the wave seems to be an obvious choice of such a second length. Indeed,
as we shall see in Sect. 3, the condition of shallow water can be formulated as d � λ. (The
wavelength of the tidal waves is so long that even the oceans can be regarded as shallow.)

This interpretation illustrates important principles, which govern models of physical phe-
nomena. Three more examples in Sect. 2, and a mathematical account of waves on liquid
surfaces in Sect. 3, will provide further background, before we summarize these principles
in Sect. 4.



Characteristic quantities and dimensional analysis 23

2.2 Temperature profile in the ground

The thermal diffusivity of granite is a = 1.1 × 10−6 m2/s. If this quantity is multiplied by
a certain time t , and we form

√
at , the result is a distance L . What could be a relevant time

t , and what is then the interpretation of the distance L? Consider a granite rock on a clear
day. The surface layer of the rock is heated up during the day and cooled during the night,
giving an approximately sinusoidal variation of the temperature with time. But far below the
surface, the temperature variation will be negligible. If the time t is chosen to be the length
of a day, td = 24 × 3600 s, we get

Ld = √
atd ≈ 0.31 m

We can interpret this as a characteristic distance below which the diurnal variations in the
temperature are in some sense small. With t being the length of a year, ty = 3.15 × 107 s,
we get the analogous result for the characteristic penetration depth of the annual temperature
variations:

Ly = √
aty ≈ 5.9 m

This is in good agreement with the familiar fact that the temperature in an underground cave
is approximately constant throughout the year.

Given the thermal diffusivity a, we could also combine it with a certain length L i and get
a time ti:

ti = L2
i

a

The temperature at a depth L i cannot respond immediately to a change in the temperature at
the surface. The quantity ti can be viewed as a characteristic time lag before the temperature
change occurs at the depth L i.

Our interpretations of the distances Ld and Ly, and the time ti, can be put on firm math-
ematical footing, if we solve the corresponding model problem of heat conduction into a
semi-infinite medium. The result is given in Appendix 1.1.

2.3 Terminal velocity

An object is dropped in air from a large height. As it accelerates, the air resistance gradually
becomes increasingly important, and the velocity asymptotically approaches the so called
terminal velocity (speed) vt . It is obvious that if the object is heavy, it will take a longer time,
and require a longer distance of fall, before the terminal velocity is reached. What does heavy
mean in this context? The actual mass m of the object should be compared with a quantity
that also has the physical dimension of mass and is expressed in model parameters describing
the fall.

In a standard model of the force F due to air resistance one writes [9]

F = 1

2
Cd Aρv2

A is the object’s cross section area perpendicular to the direction of motion, ρ the density of
air, v the velocity of the object and Cd the dimensionless so called drag coefficient. Cd depends
on several additional parameters, but it will be considered as constant in our discussion.

Let us now form the quantity

M = ALρ
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a b c 

Fig. 1 A beam resting on supports

where L is the distance the object has fallen. M has the dimension of mass. An interpretation
of M is that if m � M , the air resistance is still small when the object has fallen the distance
L . In other words, the mass m of the object is to be compared with the total mass of the air
inside that “tube” of cross section area A and length L , which is cut out by the trajectory
of the falling object. The relevance of this visually appealing interpretation is confirmed, if
one compares with the analytic result in Appendix 1.2 for the motion of an object under the
influence of gravity and air resistance.

As an alternative approach, we can form a quantity L* with the dimension of length from
the quantities m, A and ρ:

L∗ = m

Aρ

The interpretation of this length is that effects due to air resistance are small as long as the
distance L of fall obeys L � L*.

2.4 Engineering science versus school physics

Consider a uniform beam of mass m and length L , which rests either on two or on three
supports, as in Fig. 1a and b. What are the forces on the supports?

In ordinary school physics, the case of two supports immediately gives the forces mg/2 on
each side, but with three supports the problem “cannot be solved”. Nevertheless, textbooks in
elasticity [26] give the result 3mg/16 for the two outer supports and 10mg/16 for the middle
support. But that is for a special (although very common) case, namely that the supports are
stiff, and the beam is flexible.

As another extreme case, consider an absolutely rigid beam and represent the supports
by springs, which can easily be compressed. The beam will sink down a bit but remain in a
horizontal position, when placed on the supports. Thus all three springs are compressed an
equal amount, and therefore exert the same force mg/3 on the beam.

There are several other special cases, leading to other results for the forces. Suppose that
the beam is rigid, and the supports are not in the same horizontal plane. For instance, in
Fig. 1c the middle support is below the beam, i.e., the forces are the same as in Fig. 1a. Since,
in practice, it is not possible to have three supports at exactly the same height, the standard
solid mechanics result quoted above must assume that the beam is deflected so much under its
own weight, that the variation in height of the supports is negligible. For a beam in geometry
1a, the middle of the beam sinks down a distance d , with [26]

d = 5

384
· mgL3

E I

Here L is the length of the beam, I the second moment of area (“moment of inertia”; unit
m4) and E the elastic constant (Young’s modulus, unit N/m2 = kg/(m s2)). A theoretical
analysis [26] shows that when the (stiff) middle support lays the distance δ below the level
of the outer supports, the force from the middle support is reduced to
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F = 5

8
mg − 48δE I

L3

The force F = 0 when δ = d , as expected.

3 Waves revisited

The propagation of waves in shallow water was briefly considered in Sect. 2.1. We shall now
discuss general expressions for wave propagation on the surface of liquids, in the conventional
model [17]. A wave is described by its wavelength λ, its frequency f and its propagation
speed. One always has

v = λ f

Therefore we can choose either λ or f as the independent model parameter. However, for v

we must distinguish between the group velocity vg (which is what we usually refer to when
we watch waves at sea) and the phase velocity vp. The driving force for an oscillatory vertical
motion of the surface may be gravity, given by the acceleration g, and surface tension (surface
energy) given by γ . Furthermore, the modeling should include the density ρ of the liquid
and the (constant) depth d from the liquid surface to the bottom.

When gravitational and capillary effects, and the depth, are simultaneously included, the
general expression for the phase velocity is [17]

cp =
√(

λg

2π
+ 2πγ

λρ

)
tanh(2πd/λ)

It can be rewritten in three equivalent forms, which will be used in Sect. 5 to illustrate
Buckingham’s � theorem. The only difference between the following three representations
is that they emphasize gravitational waves in deep water, capillary waves in deep water, and
waves in shallow water, respectively:

cp√
λg

=
√(

1

2π
+ 2π · γ

λ2gρ

)
tanh

(
2π · d

λ

)

cp
√

λρ√
γ

=
√(

1

2π
· λ2gρ

γ
+ 2π

)
tanh

(
2π · d

λ

)

cp√
gd

=
√(

1

2π
·λ
d

+ 2π · γ

λgρd

)
tanh

(
2π · d

λ

)

Table 1 gives these wave velocities in the three limits of gravity-induced waves in deep water,
capillary waves in deep water, and waves in shallow water, respectively. It is interesting to
note that the velocity of the gravitational wave only depends on g, λ and d and not on the
type of liquid. One may compare this with the well known result that the frequency of a
mathematical pendulum does not depend on the mass or material of the pendulum bob.

4 Characteristic quantities

In Sect. 2 we encountered a number of characteristic quantities. They set a length scale, a
time scale, a mass scale and so on, leading to a deeper insight into physical phenomena, when
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they are compared with other quantities of the same physical dimension. The comparison
may be straight forward, such as comparing the depth with the wavelength to decide if a wave
is propagating in shallow or deep water. A more interesting, and sometimes quite subtle, case
is when a characteristic quantity is formed through a combination of quantities of different
dimensions. In the example of heat penetration into the ground, we saw how the thermal
diffusivity could be combined with the duration of a day or a year to set a length scale char-
acteristic of how far diurnal or annual variations in the surface temperature penetrate into
the ground. In the example of the falling sphere, we defined a mass scale M and a length
scale L*, which were relevant to decide whether air resistance effects were important. In the
example of a beam resting on supports, we found a length scale, which gave us insight into
how level the three supports must be, if they are regarded as lying in the same horizontal
plane.

In all these cases the argumentation was only qualitative. The water was considered as
shallow if the depth d � λ. The annual temperature variations in the ground were considered
as small at depths z � √

aty. The effect of air resistance on a falling sphere with mass m was
considered as small if m � ALρ. These arguments rest on a comparison of two quantities
with the same dimension, but they do not specify to what extent the inequalities should be
obeyed. Of course it depends on the accuracy we require in the description. But there is also
another aspect. A wave can be described by its wavelength λ and, equally justified, by its
wave number k = 2π/λ. A frequency be may expressed either as f or as its corresponding
angular frequency ω = 2π f . In a circular or cylindrical geometry, one may choose the radius,
the diameter or the circumference as the characteristic length. (An example involving the cir-
cumference is given in Appendix 2.1.) The velocity of a wave can refer to its phase velocity
vp or its group velocity vg, with vp = ω/k and vg = dω/dk. Depending on which choice we
make, an associated characteristic quantity is changed by a numerical factor. The numerical
pre-factors in the wave velocities in Table 1 lie between the smallest value 1/(2

√
2π) ≈ 0.20

and the largest value 3
√

2π/2 ≈ 3.76.
Our examples may suggest that the simplest algebraic expression involving the model

quantities also gives a characteristic quantity, which is numerically relevant to better than an
order of magnitude. This is indeed the case in almost all modeling, but there are exceptions.
The familiar Poiseuille’s law for laminar flow through a tube expresses the flow q (volume
per time) as

q = π

8
· R4	P

ηL

L is the length and R the radius of the tube, 	P the pressure difference between the tube
ends and η the dynamic viscosity of the liquid. If we had chosen the tube diameter D instead
of the radius R, the numerical pre-factor would change from π /8 ≈ 0.39 to π /128 ≈ 0.025.
In the example with a beam resting on two supports, the maximum deflection d had a numer-
ical pre-factor as small as 5/384. Another noteworthy case is the onset of Rayleigh-Bénard

Table 1 Wave velocities Wave type Phase velocity Group velocity

Deep water, gravitational wave 1√
2π

√
gλ 1

2
√

2π

√
gλ

Deep water, capillary wave
√

2π
√

γ
λρ

3
√

2π
2

√
γ
λρ

Shallow water
√

gd
√

gd
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convection instability in a bounded horizontal liquid layer subject to a vertical temperature
gradient. Then the numerical pre-factor is as large as 1708. However, both in this example and
in that of Poiseuille’s law, the simple algebraic form of the characteristic quantity contains a
high power of one of the model parameters (h4 and R4, respectively). In the deflection d of
the middle of a beam on two supports, the length L of the beam enters as L3. If L had instead
been introduced as the length from the end point to the middle of the beam, the pre-factor
would be 5/48 ≈ 0.10 instead of 5/384 ≈ 0.013. In section 6 on scaling we will discuss the
dimensionless Reynolds number Re which describes the behavior of motion in fluids. For
air, a critical value of Re is about 2 × 105. These examples show that there are exceptions to
the common feature of physical models that numerical factors are of the order of one, when
the model is dimensionally consistent in SI units.

A very important aspect of the characteristic quantities is that they indicate the border
line or transition from one physical behavior (regime) to another. Such a transition may be
sudden, as in the Rayleigh instability in the heated liquid layer, but usually it is gradual, as
in our example of waves propagating into increasingly shallow water. (Such a change of the
wave velocity is the reason why waves come in parallel to a shoreline.)

The fact that a characteristic quantity marks the limit of applicability of a certain theory is
an important insight, even when the understanding of the physics beyond that limit is poor.
In Sect. 10 we will exemplify this aspect with conductivity saturation.

The Planck length lP = 1.62 ×10−35 m, and the Planck time tP = 5.39×10−44 s are two
characteristic quantities formed from Planck’s constant h̄(= h/2π), the constant of gravity
G, and the velocity of light c as

lP =
√

h̄G

c3 , tP =
√

h̄G

c5

In this case there is no understanding at all of the physics that describes phenomena at
distances smaller than the Planck length or at times shorter than the Planck time.

5 Buckingham’s � theorem

In Sect. 3 we gave three equivalent mathematical expressions of the phase velocity. They can
all be written in the mathematical form of a relation between dimensionless quantities �i ;

�1 = �(�2, �3)

where � is an appropriate function. The quantities �i are given in Table 2 for the three
considered cases.

Table 2 Dimensionless groups
�i used in the mathematical
expressions for the phase velocity
in three special cases of wave
propagation on a liquid surface

Wave type, phase velocity Dimensionless groups

�1 �2 �3

Deep water, gravitational wave
cp√
λg

γ

λ2gρ
d
λ

Deep water, capillary wave
cp

√
λρ√
γ

λ2gρ
γ

d
λ

Shallow water
cp√
gd

γ
λgρd

d
λ
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In Appendix 1.1 we give an explicit expression for a temperature profile T (z, t) in the
ground. Appendix 1.2 gives the distance L(t) an object has fallen in the case of air resis-
tance. In both these cases the results can be rewritten as relations for dimensionless �i . Our
examples suggest that such a mathematical representation is a generic feature of physical
phenomena. In fact, Buckingham’s � theorem (π theorem, pi theorem) says that all physical
relations can be given this form. It is named after the symbol chosen for the dimensionless
groups in a paper by Buckingham [3], but other scientists have independently arrived at
equivalent results.

In a slightly restricted version of the theorem, it can be formulated as follows. Let a phys-
ical phenomenon be described by n linearly independent quantities ai (i = 1, . . ., n), whose
physical dimensions can be expressed in m independent units. From ai one can then form
n − m dimensionless quantities �1, . . .,�n−m , which are related as

�1 = � (�2, ...,�n−m)

We check that this is consistent with the general equation for the phase velocity of waves
on a liquid surface. There are n = 6 quantities in that equation (cp, g, ρ, γ, λ, d), which can be
expressed in m = 3 independent units (m, s, kg). This leaves us with n − m = 3 independent
dimensionless quantities �ι, cf. Table 2.

A simple example will illustrate two other, and important, points. Suppose that we seek the
period T of a mathematical pendulum with length L and mass m, swinging under the force
of gravity described by the acceleration g. There are n = 4 model parameters (T, L , m, g),
which require m = 3 independent units (s, m, kg), suggesting that we can form n − m = 1
ratio �. However, the mass unit appears in only one of the model parameters. Thus it can
not be included in a dimensionless �, unless there is another model parameter with a phys-
ical dimension that also includes mass. (If that had been the case, we would have 5 model
parameters, expressed in 3 independent units, which would give n − m = 2 quantities �i .
The fact that the pendulum period does not contain the mass is of course well known, but
for the purpose of illustration we did not want to use that knowledge from the outset.) The
true relation consistent with Buckingham’s theorem involves 3 model parameters (T, L , g)

expressed in 2 independent units (s, m), which gives us

T 2g

L
= � = constant

The value of the dimensionless constant on the right-hand side can not be obtained from
dimensional analysis, but we recognize that the mathematical form is the same as in the
familiar result

T = 2π

√
L

g

The �i to be used in Buckingham’s approach are not unique. For instance, we could have
formed the inverted combination � = L/(gT 2) in the example above and still obtained the
same physical relation. A product of two �i will also give a dimensionless quantity. How-
ever, the useful �i are often simple and natural combinations of some of the quantities that
describe the phenomenon. Buckingham’s theorem can be given a more rigorous mathematical
formulation, but that falls outside the scope of this short review.

An in-depth treatment of dimensional analysis is given in many books, for instance by
Taylor [23], Barenblatt [2] and Szirtes [22]. Here we shall mainly focus on its use in the
systematic description of negligibly small effects, but first we make some comments on
scaling.
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6 Scaling

The most important consequence of dimensional analysis and Buckingham’s theorem deals
with scaling and similarity. In the example of a falling sphere with air resistance included,
the distance L(t) covered after a time t is (Appendix 1.2)

L = a ln

[
cosh

(
t

√
g

a

)]

Here a = 2m/(Cd Aρ) is a length parameter. The mass m of a homogeneous sphere of radius
R, varies as R3, while its cross section area A varies as R2. Hence two spheres of the same
material but different size will not fall equally fast. But if their densities scale as 1/R, the ratio
m/A, and therefore also the parameter a, will be constant. Then all data points for falling
spheres of varying sizes will “collapse” onto the same curve L(t).

From the structure of Buckingham’s theorem, it is obvious that scaling onto a universal
“master curve” is very common. It has extremely important applications in fluid mechanics.
For instance, the drag coefficient Cd (which we approximated by a constant) is a function of
the dimensionless Reynolds number Re [9]:

Re = vdρ

η

Here v is the relative velocity of the body through the unperturbed fluid, dis a characteristic
length of the body perpendicular to the direction of motion, ρ is the density of the fluid and
η is the dynamic viscosity. The drag coefficient varies slowly with the Reynolds number in
wide ranges of Re values. Then Cd can be regarded as a constant, and we have the familiar
result that the air resistance increases with the velocity as v2. However, there is also a critical
region where Re varies rapidly; in air it happens at about Re = 3 × 105. If an experiment
is performed on a scale model which is similar in geometry to the actual object, the experi-
mental conditions can be arranged so that, e.g., the Reynolds number, and therefore the drag
coefficient Cd, is unchanged.

7 Systematics in the neglect of certain effects

7.1 Gravity waves in deep water

In our discussion of characteristic quantities, we noted that they may be associated with the
transition from one physical regime to another. On either side of this transition region, certain
effects may be neglected. We now illustrate this with the help of Buckingham’s � theorem.
From the first row in Table 2 we see that the phase velocity of gravity waves can be written

�1 = �wave(�2,�3)

The special case of wave propagation in deep water, and with negligibly small surface tension,
corresponds to the mathematical limit

�1 = �wave(0,∞) = constant

If we had chosen �g = λ/d instead of d/λ, the equivalent relation would be

�1 = �wave(0, 0) = constant
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Fig. 2 Schematic geometry of a
sheet with a hole

σ0

σ0

r 

2R

H 

L 

Ignoring the depth and the surface tension thus means that we take the limit �wave(0, 0) (or
�wave(0,∞)), of course under the assumption that � has no singularity in these limits.

7.2 Small hole in a large sheet under stress

Consider a sheet (Fig. 2) of width H , length L and thickness D, in which there is a hole with
radius R. A uniform stress σ0 is applied along the edge of the sheet. The sheet material is
characterized by the Young’s modulus E and the shear modulus G. We seek the stress σ(r)

at the point r shown in the figure. There are n = 9 parameters in this model. Five of them
(H, L , D, R, r ) have the dimension of length and the remaining four (σ0, σ, E, G) can all
be expressed in the unit of pressure, i.e., there are altogether m = 2 independent units. (Note
that we should consider σ0 etc. to be expressed in only one unit, pascal, in spite of the fact that
pascal contains the three SI units m, s, kg.) According to Buckingham’s theorem, we should
now form n − m = 7 dimensionless and independent ratios. In the spirit of Buckingham’s
approach, we choose them as in the relation

σ (r)

σ0
= �elast

(
r

R
,

R

H
,

R

L
,

D

H
,
σ0

E
,
σ0

G

)

Next, we specialize to the limit of a small hole (R � H, L) in a thin sheet (D � H, L) and
for low stresses (i.e., small elastic deformations) σ0 � E, G. That gives

σ (r)

σ0
= �elast

( r

R
, 0, 0, 0, 0, 0

)
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Finally we take the special case that r = R, i.e., we seek the stress at the edge of the hole.
Then

σ (r)

σ0
= �elast (1, 0, 0, 0, 0, 0)

The value of �elast(1,0,0,0,0,0) does not depend on the magnitude of R, as long as the
inequalities above are obeyed. We obtained this result without any specific knowledge about
the function �elast. A detailed mathematical analysis [25] shows that

σ (r, R) = σ0

[
1 + R2

2r2 + 3R4

2r4

]

which is the explicit form of σ(r)/σ0 = �elast(r/R, 0, 0, 0, 0, 0).
Our approach assumed a continuum mechanics treatment, and therefore we did not discuss

a possible minimum size of the hole radius. A more complete treatment should include the
dimensionless ratio a/R, where a is the size of an atom, with the requirement that a/R � 1.
Further, one may ask what is the meaning of the condition D � H, L , since the thickness
D does not enter in a planar problem. However, we assumed that a constant stress σ0 was
applied to the sheet, and we could have added a requirement for the corresponding total force
σ0HD.

8 The Lennard-Jones model

Many thousand works on the modeling and simulation of properties of solids and liquids
assume that the atoms or molecules interact through a specific interaction potential, which
has been given a simple form. Arguably the most popular such interaction is the Lennard-Jones
potential VLJ [13]. (The author of Ref. [13] is John Edward Jones. He married Kathleen Len-
nard in 1926, adding his wife’s surname to his own to become Lennard-Jones.) The potential
has been used to model phenomena ranging from materials failure in systems with billions of
atoms, to protein folding and even simulations of machine learning. A particularly important
area of application is physical chemistry, as exemplified by a systematic study of transport
properties in fluids by Dyer et al. [4].

A common mathematical form of the Lennard-Jones potential is

VLJ (r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

where ε is a parameter determining the strength of the interaction, and σ is a parameter that
sets a characteristic length scale. The exponent 6 was originally motivated by the form of
dipole interactions. The exponent 12(= 2 × 6) has been chosen mainly for mathematical
convenience. Many works have generalized the potential to have other exponents, (m, n).
Here it suffices to discuss the (12,6) form given above.

The fact that there are only two independent parameters in the Lennard-Jones model, one
with the dimension of length and one with the dimension of energy (in SI units J = kg m2/s2),
has far reaching consequences for the interrelation of properties modeled with the potential.
Let the atoms in a monatomic solid be arranged in different crystal structures, for instance
the face centered cubic (fcc), the hexagonally closed packed (hcp), and the body centred
cubic (bcc) structures. For simplicity we exemplify with a cubic structure, which has a single
lattice parameter a. In equilibrium at 0 K, and in classical physics (i.e., ignoring quantum
effects) it is straight forward to calculate the cohesive energy Ecoh in these structures. The
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Table 3 The cohesive energy per atom (ignoring quantum-mechanical zero point vibrations) expressed in the
natural unit of a Lennard-Jones model. Data from [1,14,21]

Crystal structure fcc hcp bcc

Cohesive energy/ε 8.610 8.611 8.24

problem involves four quantities, Ecoh, ε, a and σ . They can be combined in the dimension-
less quantities �1 = Ecoh/ε and �2 = a/σ . It follows from Buckingham’s theorem that
Ecoh will be proportional to ε (Table 3). Likewise, the lattice parameters of all assumed crys-
tal structures, and the static atomic displacements near defects, scale as σ . Furthermore, all
formation energies associated with static lattice defects, for instance vacancies, dislocations
and grain boundaries, scale as ε.

An atom displaced from its equilibrium position will be subject to a restoring force,
expressed as a force constant k. The magnitude of k depends on the character of the dis-
placement, and on the position of all other atoms in the system, but k always has the phys-
ical dimension of force per length, or N/m = J/m2 = kg/s2. Such a combination in the
Lennard-Jones interaction is ε/σ 2, and this is how force constants scale. Furthermore, elas-
tic constants have the unit Pa = N/m2 = J/m3. Hence, elastic constants calculated from VLJ

scale as ε/σ 3. For instance, the bulk modulus of the fcc structure is 75.2 ε/σ 3 [1].
We next turn to thermal properties, for instance the Gibbs energy G, and do not exclude

quantum effects. The atoms will vibrate, and we must include their mass M . Three more
quantities are required; the temperature T (SI unit K), Boltzmann’s constant kB (SI unit J/K
= kg m2/(s2 K)), and Planck’s constant h (unit J s=kg m2/s). In the discussion to follow it
is convenient to replace the lattice parameter a with the volume per atom, V . We now have 8
quantities (ε, G, σ, V, M, kB , T, h), expressed in 4 independent units (m, s, kg, K). Follow-
ing the philosophy of Buckingham’s theorem, it is natural to form 8 – 4 = 4 dimensionless
quantities �i as in

G

ε
= �G

(
kBT

ε
,

V

σ 3 ,
h2

Mεσ 2

)

The subscript G on �G denotes the mathematical function �, which yields the Gibbs energy.
The equilibrium state is that which minimizes the Gibbs energy. Thus, for every value of
kB T/ε we get the equilibrium value of V/σ 3.

At the melting point T = Tm, the Gibbs energies of the solid and the liquid phases are
equal. Then we can write

�G,sol

(
kBTm

ε
,

Vsol

σ 3 ,
h2

Mεσ 2

)
= �G,liq

(
kBTm

ε
,

Vliq

σ 3 ,
h2

Mεσ 2

)

Vsol and Vliq have values at Tm determined by the equilibrium condition, which gives V/σ 3

for each phase a definite numerical value. It follows from the equation above that if substances
are described by different values of σ and ε in the Lennard-Jones model, but have the same
equilibrium crystal structure, their Tm scales as ε. The presence of the quantity h2/(Mεσ 2)

means that the numerical value of the ratio kBTm/ε depends on whether quantum effects are
included or not.

We next turn to the root-mean-square vibrational displacement u of an atom in a solid,
relative to its equilibrium position. The model quantities are the same as for the Gibbs energy,
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Table 4 Combinations of
quantities which show how
certain physical properties scale
with the model parameters in the
Lennard-Jones potential

Property SI unit Scaling expression

Length m σ

Energy J = kg m2 s−2 ε

Mass kg m

Planck’s constant Js = kg m2 s−1 h̄ = h/(2π)

Boltzmann’s constant J/K = kg m2 s−2 K−1 kB

Force N = kg m s−2 ε/σ

Pressure Pa = kg m−1 s−2 ε/σ 3

Elastic constant N/m2 = kg m−1 s−2 ε/σ 3

Density kg m−3 m/σ 3

Time s
√

mσ 2/ε or h̄/ε

Frequency s−1
√

ε/(mσ 2) or ε/h̄

Viscosity Pa s = kg m−1 s−1
√

mε/σ 4

Surface energy J/m2 = N/m = kg s −2 ε/σ 2

(tension)
Temperature K ε/kB

except that G is replaced by u. We can write

u

σ
= �u

(
kBT

ε
,

V

σ 3 ,
h2

Mεσ 2

)

For a given crystal structure at T = Tm, all the dimensionless ratios in the argument of �u

have the same value. This is used in Section 9 for a discussion of the Lindemann melting
rule.

We have seen how various physical properties get a very simple scaling behavior. Table 4
summarizes the natural units for various properties, when they are modeled with a Lennard-
Jones potential.

9 The Lindemann melting criterion

At the melting temperature, the root-mean-square u of the thermal atomic vibrational dis-
placement from the equilibrium position in a lattice is found to be an almost constant fraction
of the nearest-neighbor atomic distance, for several elements (Table 5). This has then been
taken as a general aspect of melting. The lattice would “shake apart” if the vibrational ampli-
tude is larger. The rule is named after Lindemann, who wrote a seminal paper on lattice
dynamics in 1910 [18], although the formulation as a melting criterion was not given until
1956 by Gilvarry [7]. In the paper on instabilities (Grimvall, this volume) it was argued that
melting is not caused by an instability of the Lindemann type. Still, the regularity in Table 5
is striking, and requires an explanation.

We noted in Sect. 8 that u/σ has a unique value at T = Tm for a given crystal structure
modeled with the Lennard-Jones potential. In other words, the Lindemann melting criterion
is fulfilled for all fcc solids modeled with the Lennard-Jones potential. Likewise, it is fulfilled
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Table 5 The ratio u/(2a) at the melting temperature, where u is the root-mean-square of the thermal atomic
vibrational displacement, and 2a is the nearest-neighbor atomic distance in the lattice (from Grimvall [11])

Na (bcc) Cu (fcc) Pb (fcc) Al (fcc) Mg (hcp) Tl (hcp)

0.13 0.11 0.10 0.10 0.11 0.12

for all bcc solids, and so on, but with a ratio u/σ that is not quite the same for all structures.
Furthermore, we would get the same regular behavior of u/σ if all the solids were modeled
with another two-parameter interaction of the type

V (r) = εφ
( r

σ

)

where ε sets an energy scale, σ a length scale and φ is a “shape function” that determines
how the interaction between atoms depends on their mutual distance.

The elemental metals is such a restricted class of solids that the interaction may be rea-
sonably represented by a potential with a common shape function φ, but different bonding
strengths ε and different atomic sizes σ . Then the Lindemann criterion would be fulfilled
within a certain crystal structure, and it would be no surprise if, e.g., the two closed packed
structures (fcc and hcp) have very similar results for u/σ at T = Tm.

We conclude that the regularities for metallic elements expressed by the Lindemann melt-
ing rule is nothing but a consequence of their similar effective binding potential. Our argument
would not be valid, for instance, in a binary compound like NaCl, where the interaction is
more complex than what can be modeled with a single two-parameter potential. Indeed, it
turns out that the Lindemann criterion fails to account for the pressure dependence of the
melting temperature in alkali halides [28].

10 Saturating conductivities – a still unsolved problem

In electrical conduction in metals, electrons can be viewed as moving in straight lines between
points where they are scattered (Fig. 3). Thermal conduction mediated by lattice vibrations
(phonons) has an analogous description. The mean free path λ is the average distance between
such scattering events. A simple model for the electrical conductivity σ in metals gives
[1,11,15]

σ = ne2τ

m
= ne2�

mvF

Here n is the number of conduction electrons per volume, e the electron charge, m the electron
mass, τ the average time between scattering events, and vF the electron Fermi velocity, with

� = vFτ

Fig. 3 Schematic illustration of
electrical or thermal conduction
in solids. A carrier of charge
(electron) or heat (electron,
phonon) travels in straight lines
between scattering events, with a
mean free path � between each
scattering site
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The mean free path decreases with increased scattering rate, e.g., caused by the addition of
impurity atoms or the increased thermal motion of the atoms at high temperature. However,
the mean free path can not be shorter than the distance between neighboring “scattering
centers”. That distance is, at least, equal to the distance a between nearest atomic neighbors
in a lattice. Thus we now have two length scales, λ and a. In the spirit of Buckingham’s �

theorem, we expect that the schematic description in Fig. 3 breaks down when the ratio a/�

is no longer small. In fact, there is a somewhat more restrictive condition, since electrons
and phonons can be represented by waves with a wavelength λ. It is meaningless to describe
the scattering of a wave as in Fig. 3, if the wavelength is not much shorter than the distance
between the scattering centers. However, the electrons and most of the phonons of interest
here have a wavelength that is of the order of the distance between atoms (cf. electrons or
phonons with wave vectors near the first Brillouin zone boundary).

A consequence of the arguments above is that the standard descriptions of electrical con-
duction in metals, and of thermal conduction through phonons, will fail when the scattering
is strong. It should not matter what is the cause of the scattering, be it thermal disorder or
various types of lattice defects. Experiments confirm this picture, for instance work by Mooij
[19] and Fisk and Webb [5] for the electrical conductivity σ , and by Zeller and Pohl [29] for
the thermal conductivity κ .

Gunnarsson et al. [12] reviewed theories for the electrical conduction in saturating sys-
tems, and Slack [20] reviewed thermal conduction. There is no simple formulation of σ or
κ expressed as an accurate and simple algebraic expression, but there are many approximate
formulas. For instance, Wiesmann et al. [27] noted that the shape of the electrical resistivity
ρ(T ) is well approximated by the so called shunt resistor model:

1

ρ(T )
= 1

ρideal(T )
+ 1

ρsat

Here ρideal(T ) is the “normal” resistivity one would obtain if there were no saturation effects,
and ρsat is the value at which the actual resistivity saturates when ρideal becomes very large
(e.g., because T is high or because of strong scattering by static lattice defects).

In a nearly-free electron model, the expression 1/ρ = σ = ne2�/(mvF) can be rewritten
as [11]

ρ = k
(a0

�

) (
a0h̄

e2

)

Here k is a dimensionless constant, which varies with the electron number density n, and
typically is of the order of 40. The quantity a0h̄/e2 = 0.22 µ� m is a fundamental unit of
resistivity, expressed in the Bohr radius a0. If λ is of the order of a diameter of an atom, ρ

becomes of the order of 1 µ� m, while typical values of ρsat are of the order of 0.1 µ� m.
Thus, an extrapolation of the analytic model for free-electron-like metals only approximately
gives the saturation value of the resistivity, when the mean free path approaches the distance
between nearest neighbor atoms.

The thermal conductivity κel of metals is largely due to electron transport. In an elementary
model, one has the Wiedemann-Franz-Lorenz law [1,11,15]

κel = LT σ

where L is the Lorenz number. Experimental data suggest that this relation remains valid in
the saturation regime; see Grimvall [11,10]



36 G. Grimvall

We next turn to the thermal conductivity of insulators. In the simplest theory, with the
thermal conductivity κph mediated by phonons, one has [1,11,15]

κph = 1

3
ncV C�

Here n is the number of energy carriers (phonons) per volume, cV the heat capacity per
particle (phonon), C the average velocity of the phonons and � the phonon mean free path.
Let � ≈ a, where a is a typical nearest neighbor distance. With a Debye frequency ωD, we
get

κph∼kBωD

a

This value typically is ∼1 W/(m K). Within an order of magnitude it is equal to typical
saturation values of the thermal conductivity [20].

We have already remarked that there seems to be no fundamental theory leading to a
simple closed-form and algebraic result for the electrical resistivity, or the phonon thermal
conductivity, in the saturation regime. Instead one may have to resort to numerical modeling
[6]. In fact, the situation is even more complex and troublesome. There are systems where
the electrical resistivity does not saturate at the expected universal value, for instance the
high-T c cuprate superconductors [12].

11 Conclusions

Dimensional analysis is a powerful aspect of modeling and simulation, which can give new
insights without detailed analytic or numerical calculations. Dimensionless combinations
of parameters that are assumed to describe a phenomenon may lead to the identification of
characteristic quantities, which have the dimension of length, time, mass, speed, and so on.
They are helpful in a qualitative understanding of the problem, for instance to what extent
certain effects may be neglected. They may also indicate the breakdown of a physical mech-
anism, when one goes beyond the values of such characteristic quantities – an insight of
importance even when one does not have a theory to handle the new regime. A particularly
useful approach in modeling and in the analysis of experimental data is to represent the results
obtained under different conditions in such a way that, after a rescaling of quantities, they
fall on a common graph or give the same number. Buckingham’s � theorem provides the
theoretical framework for such an approach.

Appendix 1

1.1 Thermal conduction in a semi-infinite medium

Let the temperature at the surface of a semi-infinite medium (e.g., the surface of the ground)
vary periodically as T s(t) = T o + 	T sin(ωt). The differential equation for the heat flow in
a medium with the thermal diffusivity a yields the temperature T (z,t) at depth z and time t :

T (z, t) = T0 + 	T exp
[
−z

√
ω/(2a)

]
sin

[
ω

(
t − z/

√
2aω

) ]
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The temperature variation decreases exponentially with the depth z. It is reduced by a fac-
tor 1/e at z = √

2a/ω. The temperature variation at the depth z is delayed relative to the
temperature at the surface by the time z/

√
2aω.

1.2 Falling sphere with air resistance

An object with mass m falls under the influence of the gravitational force mg and the retard-
ing force F = 1/2CdρAv2 due to air resistance. If the motion starts from rest, the distance L
covered after the time t is given by solving Newton’s equation of motion:

L = a ln

[
cosh

(
t

√
g

a

)]

Here a is a parameter with the dimension of length,

a = 2m

Cd Aρ

Solving for t , and in a series expansion that keeps only the first term in the small quantity
L/a, gives

t ≈
√

2L

g

(
1 + L

6a

)
=

√
2L

g

(
1 + Cd

12

M

m

)

where M = ALρ. In many realistic applications, Cd is of the order of 1/2. (The expression
for L(t) is easily verified if we consider the acceleration d2 L/dt2 = mg − F .)

Appendix 2

2.1 Spider silk

Consider a liquid cylinder, where the energy of the system is determined by the surface
energy. If the cylinder is long enough, it is unstable under variations in shape such as indi-
cated in Fig. 4. Suppose that the radius R(z) is modulated with a wavelength λ and a small
amplitude δ along the axial coordinate z:

R(z) = R1(δ) + δ sin(2π z/λ)

The radius R1(δ) is adjusted so that the total volume is conserved, i.e., the material is incom-
pressible. It is not difficult to show that the surface area of the cylinder is decreased upon
modulation, provided that the wavelength λ is larger than the circumference 2π R. The cor-
responding decrease in the surface energy of the system (the Rayleigh-Plateau instability) is
the key to the formation of sticky spheres on threads in a cobweb, where the spider can can
produce more than 104 small spheres in just one hour [24]. In the idealized model, the system
is unstable if its length L is larger than the circumference, so that a wavelike perturbation
with λ > 2π R can be accommodated. In practice, this model is too simplified, for instance
because it does not allow for the viscosity of the fluid, but it still shows the qualitative rela-
tionship between the wavelength of the disturbance and the radius of the cylinder. See Goren
[8] for other examples of the instability of a liquid cylinder.
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Fig. 4 Geometry of a
deformation that gives the
Rayleigh-Plateau instability

Fig. 5 Geometry leading to the
Rayleigh-Bénard instability

T+ΔT

T 

h 

2.2 Rayleigh instability and Bénard cells

In a horizontal liquid layer bounded by rigid plates, the upper surface has the temperature
T and the lower surface has a higher temperature, T + 	T (Fig. 5). For small 	T , thermal
conduction gives a vertical transport of thermal energy, but at a certain critical value, convec-
tion currents arise [16]. The pertinent physical quantities include properties of the liquid, viz.
the thermal diffusivity a (SI unit m2/s), the kinematic viscosity ν m2/s), and the thermal vol-
ume expansion coefficient β (1/K). Further, a model must contain the acceleration of gravity
g (m/s2) and the liquid layer thickness h (m). Given these quantities, we can form a quantity
with the physical dimension of the vertical temperature gradient dT /dz in the liquid layer:

aν

gβh4

A mathematical analysis shows that the instability arises when the temperature gradient
exceeds

dT

dz
= Rac · aν

gβh4

where Rac ≈ 1708 is the critical value of the Rayleigh number

Ra =
(

dT

dz

)
gβh4

aν

Physically, the instability occurs when the energy liberated through the motion due to Archi-
medes’ buoyancy equals the energy associated with internal friction in the liquid. The con-
vection pattern is referred to as Bénard cells.
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Abstract The ability of a mathematical model to accurately describe a phenomenon
depends on how well the model incorporates all relevant aspects, how robust the model
is with respect to its mathematical form, and with respect to the numerical values of input
parameters. Some models are primarily intended to reproduce known data. In other cases the
purpose is to make a prediction outside the range of knowledge, or to establish details in a
physical mechanism. These aspects of modelling are discussed, with examples mainly taken
from the field of materials science.

Keywords Modeling · Robustness · Data fitting · Einstein model · CALPHAD ·
Anharmonic effects

1 Introduction

There is a rich literature on the numerical and mathematical aspects of modeling, with appli-
cations in a wide spectrum of fields. Much less has been written on the interplay between
experiment, simulation and the analytic form of models in science and engineering. That will
be in the focus of this paper, which complements the two preceding papers by the author in
this volume.

Several specific examples will be taken from the field of materials science, but the message
is of a general character. Some of the examples deal with fundamental formulas found in
textbooks, but now with remarks on aspects that would often go unnoticed even for the most
ambitious student. Other examples are taken from the current research frontier, but deal with
problems of a long-standing interest.

We are primarily interested in models that are given the mathematical form of an algebraic
formula. Their purpose can be manifold. It can be to explain experimental results, and in this
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way provide a theoretical account of a phenomenon. Another purpose can be to reproduce
data in a form that is suitable for further use, or to extrapolate known data into regions where
the information is meager, uncertain or absent. In some cases, we want to apply a model to
a set of data, in order to extract a specific physical quantity. Furthermore, it is of increas-
ing importance to use models in a simulation of properties that are inaccessible to direct
experiments.

Whatever the purpose is, we would like to know how accurately the model can account
for the real situation. That leads to the following questions:

• Does the model contain all the relevant mechanisms or effects in the studied phenome-
non?

• How robust is the model result with respect to variations in the mathematical form of the
model?

• How robust is the model result with respect to variations in the numerical values of model
parameters?

• How accurately are the model parameters known?

2 Robustness

2.1 The oil peak problem

Half a century ago, Hubbert [1,2] introduced a simple model to predict when the U.S. oil
production would peak. Since then, the modeling of the world’s oil production has become
a central issue. Hubbert’s approach is briefly as follows. The total amount of oil, Q∞, is
assumed to be fixed. It includes presently known resources, as well as those not yet discov-
ered. Since the annual oil production P(t) cannot increase indefinitely, it is assumed to have
some bell-shaped form when plotted versus time. The total area under this curve is Q∞. The
curve is further described by two characteristic quantities: the width W of the “bell” (defined
in some reasonable way), and the time tp where the curve peaks. Data of the oil production are
assumed to be available up to a time t0. With given shape P(t) and total amount of oil Q∞,
the parameters W and tp are adjusted to give the least root mean square deviation (RMSD)
between P(W, tp) and the actual data in the time interval (−∞, t0).

One attractive mathematical form of the bell shape is the Gaussian curve;

P (t) = Q∞
W

√
2π

exp

[
− (

t − tp
)2

2W 2

]

Another common form, and used by Hubbert, is the Logistic curve;

P (t) = Q∞
w

· exp
[(

t − tp
)/

w
]

[
1 + exp

[(
t − tp

)/
w

]] 2

If we take

w = W
√

ln (4)

ln
(

3 + √
8
)

the two curves are normalized to have the same width at half peak height; Fig. 1
Bartlett [3] has discussed the robustness of predictions based on Hubbert-type modeling,

for U.S. as well as world oil production. It was first established that the difference between
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Fig. 1 The Gaussian model (solid curve) and the Logistic model (dashed curve), normalized to enclose the
same area (1 unit), and adjusted to peak at the same time t = 0 and have the same width at half peak height

an analysis based on the Gaussian and on the Logistic curve was insignificant; cf. Fig. 1. In
a sensitivity analysis of the modeling of the U.S. oil production, Bartlett found that fixing W
and tp at their primary values (i.e., those which give the smallest RMSD), and increasing Q∞
by 8.1 %, increased the RMSD of the fit by 70 %. Starting from the primary fit and increasing
tp by 4.4 years increased the RMSD by about 80 %. Similarly, if W was increased by 5.7 years,
the RMSD increased by about 52 %. Further, with the world resource Q∞ = 2.0 × 1012

barrels of oil (Hubbert’s original assumption), the best fit of the Gaussian curve puts the
peak in the world oil production at the year tp = 2004. Increasing Q∞ to 3.0 × 1012 and to
4.0 × 1012 barrels moves the peak to the years 2019 and 2030, respectively.

The work of Bartlett is chosen here because it has a good discussion of the robustness
of the model prediction. Hubert’s original work does not address this aspect in detail, but
Bartlett refers to several other studies, which come to essentially the same result. It should
be added that the purpose of the present discussion is to present an example of a type of
modeling, and not to treat the oil peak problem per se.

2.2 The entropy of TiC

The heat capacity C(T ) of titanium carbide (TiC) is known experimentally [4], from low to
high temperatures. Therefore, also the entropy S(T ) is known;

S (T ) =
T∫

0

C (T )

T
dT

In an attempt to account for these data in a simple mathematical form, one may model
S(T ) with the Einstein model for lattice vibrations (cf. Grimvall, this volume). Then the
entropy per formula unit of TiC has the form [5]

SE (T, θE) = 6kB [(1 + n) ln (1 + n) − n ln (n)]

with the Bose-Einstein statistical factor

n = 1

exp (θE/T ) − 1
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Fig. 2 Einstein model fit (solid curve) to experimental data [4] (dots) for the entropy of TiC. The model has
been fitted to the experiments at T = 1000 K

Here kB is Boltzmann’s constant and θE is the Einstein temperature. We can fit θE by requiring
that SE(T ) agrees with the experimental value Sexp(T ) at a particular temperature Tfit;

SE (Tfit, θE) = Sexp (Tfit)

Figure 2 shows that the Einstein model gives a good account of the experimental entropy
at intermediate and high temperatures. (It is well known that the model fails at very low
temperature, where C and S should be proportional to T 3.) Note that it is sufficient to fit at a
single temperature Tfit rather than, for instance, minimizing the RMSD of SE(T ) − Sexp(T ).

The Einstein temperature θE is a characteristic quantity that sets a temperature scale
for many thermal properties. Furthermore, the combination h̄/(kBθE) gives a characteristic
time, and the combination M(kBθE/h̄)2 gives a characteristic force constant for the interac-
tion between atoms with typical mass M . Therefore, the aim could be to reverse the modeling
process and use the experimental data to extract the characteristic quantity θE, rather than
attempting to reproduce the entropy over a wide range of temperatures. The result will depend
on the chosen temperature Tfit. An analogous fit of data to the Einstein model can be made
for the heat capacity C(T );

CE (Tfit, θE) = Cexp (Tfit)

In physics, both S(T ) and C(T ) are assigned absolute values; the entropy because
S(0) = 0 according to the third law of thermodynamics. On the contrary, the Gibbs
energy G(T ) = U − T S + PV does not have an absolute value, because the internal
energy U (T ), like all energies in physics, is defined only relative to a reference level. But we
can use the experimental data for a difference in G, for instance G(T ) − G(298.15 K), in a
fit to an Einstein model;

GE (Tfit, θE) − GE (298.15 K, θE) = Gexp (Tfit) − Gexp (298.15 K)

The values obtained for θE when CE, SE and GE(T ) − GE(298.15 K) are fitted to exper-
imental data for TiC are given in Table 1. We see that the results for θE are quite different
in these three cases, in spite of the fact C, S and G are closely related through exact ther-
modynamic relations. This is not only because C, S and G give different weights to the
individual phonon frequencies ω; cf. Appendix 1. The failure of the fit to the heat capacity
reflects that C(T ) of harmonic vibrations never exceeds the classical value of 3kB/atom, while
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Table 1 The Einstein temperature θE derived from a fit at the temperature Tfit to the recommended [4]
experimental heat capacity, entropy and Gibbs energy, respectively

Tfit / K 300 400 500 600 700 800 1000 1500 2000 2500 3000

θE /K, from C 658 632 549 446 319 – – – – – –
θE /K, from S 575 585 586 583 580 576 570 553 531 502 471
θE /K, from G 555 560 564 566 567 569 566 560 551 540

Fig. 3 The gross features of the
phonon density of states F(ω)

of TiC [5] (solid curve) and the
Einstein model (represented by
thick vertical line). The Einstein
peak is a delta function enclosing
the same area as F(ω)

F(ω ) 

ω

anharmonicity can make Cexp(T ) larger than this value. In that case there is no solution to
the equation CE(T, θE) = Cexp(T ). Further comments on Table 1 are made in Sect. 3.3

2.3 Discussion

Figure 3 shows the gross features of the phonon density of states F(ω) of TiC, together with
the Einstein model peak that reproduces the experimental entropy at Tfit = 1000 K. It may
seem remarkable that this drastic simplification of the true F(ω) can give such a good account
of the experimental entropy data. There are two main reasons for that. Firstly, both the actual
F(ω) and the model F(ω) are normalized, so that the area underF(ω) (i.e., the number of
phonon modes) is the same. We may refer to this as a sum rule for F(ω). Secondly, the entropy
is obtained from an integration over the density of states F(ω). An integrated property is
often insensitive to features in the integrand. In fact, the entropy of harmonic vibrations in
the limit of high T depends on a single parameter ω(0), which is obtained as an average over
F(ω), see Appendix 1. Finally we note that the Einstein model, like any model assuming
harmonic lattice vibrations, leaves out anharmonic effects. That is the reason why it under-
estimates the entropy at high T . On the other hand, anharmonicity is indirectly accounted for
in the varying θE-values in Table 1. This is further discussed in Sect. 3.3.

The oil peak model also contains a sum rule (the value of Q∞) as well as an integration
of P(t). Moderate fluctuations in P(t) do not much affect the predicted tp of the model.
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Further, the fitting procedure itself invokes a kind of integration, since the RMSD is a sum
(i.e., an integral) of contributions over the fitting interval (−∞, t0). Moreover, the optimum
fit represents a minimum of the RMSD value. As will be further discussed in Sect. 5, the error
in the modeling is expected to be “small to the second order”.

In Sect. 1 we asked if the model contains all the relevant mechanisms or effects. It is
obvious that a modeling of the oil peak should allow for political and technological changes,
which could be drastic. With only a gradual change in such external conditions, our oil-
peak modeling is quite robust. In the case of the entropy of TiC, the most serious deficiency
is the absence of anharmonicity. Some further, and small, effects are discussed in Sect. 3.
Considering that it is a one-parameter model, the robustness is remarkable.

3 Fitting of data—two different objectives

3.1 The CALPHAD method

In many complex modeling situations one needs an explicit mathematical expression, which
accurately reproduces input data over a wide range. An outstanding example in this respect is
the CALPHAD approach to the calculation of phase diagrams. Keeping the old acronym, it
now refers to Computer Coupling of Phase Diagrams and Thermochemistry. As an illustra-
tion of key concepts, consider steel. It is an alloy based on iron, with the addition of carbon
and several other alloying elements, for instance Cr, Ni, Mn and Si. Pure iron has the body
centered cubic crystal structure (bcc) up to 1184 K, followed by the face centered cubic (fcc)
structure at higher temperatures. Carbon atoms have a higher solubility in the fcc phase than
in the bcc phase. A common hardening process of steel is to heat it into the fcc region, so that
the carbon content can be increased. In a subsequent quenching, the specimen returns to the
bcc phase, where the concentration of carbon now becomes higher than what corresponds to
equilibrium. This forces the material to undergo structural changes that lead to a hardened
state.

The point of interest to us is that the transition temperature between the bcc and the fcc
phases, which lies at 1184 K for pure iron, varies significantly with the content of carbon
and other alloying elements. Mapping out such phase region boundaries, i.e., establishing the
phase diagram, is fundamental in materials science. It has been done through painstaking and
expensive experiments, but the experimental information is very incomplete. For instance,
assume that a chemical element is alloyed with five other elements, each of which can be
present in five different concentrations. The number of compositionally different alloys is
55 ≈ 3000. Furthermore, one would like to investigate each of them at, say, five different
temperatures. This example shows the impossibility of a broad experimental investigation.

The CALPHAD method offers a practical solution, through computer modeling of phase
diagrams. It is based on the fact that the equilibrium structure of a material, at any composition
c and temperature T , is that which has the lowest Gibbs free energy G(c, T ). Experimen-
tal thermodynamic and thermophysical data, like the enthalpy, heat capacity, bulk modulus
and thermal expansion coefficient, are used to generate G(T ) for pure elements and simple
substances. Mathematical modeling then yields G(c, T ) for alloys of different compositions
and structures, through interpolation and extrapolation procedures. Finally, a computer pro-
gram searches for that state, which has the lowest Gibbs energy at a given composition and
temperature.

In the procedure sketched above, one should have the best possible G(T ) for the pure sub-
stances. It is the reproduction of the experimental data that matters, and an understanding of
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the physical origin of contributions to G(T ) is of secondary importance. (Sect. 3.2 addresses
the question of the physical origin.) The CALPHAD research community typically expresses
G(T ) of an element as in the following example for bcc molybdenum at zero pressure, in the
temperature interval 298.15 K < T < 2896 K [6]:

G − HSER = −7747.257 + 131.9197T − 23.56414T ln (T ) − 0.003443396T 2

+ 5.662834 × 10−7T 3 − 1.309265 × 10−10T 4 + 65812.39T −1

Here G is given in joule/mole, T is the numerical value of the temperature expressed in
kelvin, and HSER is the stable element reference enthalpy. The form of the T -dependence in
this interval may be understood from the discussion in Sect. 3.2 and in Appendix 1.

The generation of the explicit function G(T ) for a substance requires a deep competence
and a substantial amount of work. Each piece of experimental information must be carefully
evaluated and used in an optimization procedure, which has similarities to a RMSD fit but
also involves a subjective judgment of the quality of the data. The final results for the rec-
ommended thermodynamic and thermophysical quantities must be consistent with the exact
mathematical relations that exist between various such quantities.

3.2 Separation of contributions to the heat capacity

While the previous section focused on the reproduction of thermodynamic data, we shall
now study the underlying physical mechanisms. The heat capacity CP (T ) of a solid can be
accounted for as a sum of almost independent contributions, some of which are so small
that they can be ignored in certain applications, but large enough to be included in a more
detailed analysis. Fundamental research on the heat capacity has usually dealt with the limit
of low temperature, because interesting physical phenomena can be seen in that region. In
this example, however, we will discuss intermediate and high temperatures. The purpose is
to illustrate a fitting procedure, rather than physical rigor, and some simplifications are made
in the following discussion. A detailed discussion of thermodynamic quantities in solids can
be found in, e.g., Ref. [5].

The dominating contribution to the heat capacity comes from phonons in the harmonic
approximation, Char. In a crystal with N atoms there are 3N different phonon modes, with
frequencies ω described by a frequency distribution function (density of states) F(ω). Each
individual phonon frequency gives a contribution to the heat capacity, which has the math-
ematical form of the Einstein model. Typically, N is of the order of Avogadro’s constant,
6 × 1023 mol−1, but in the high-temperature expansion of Char only a few averages ω(n) of
F(ω) are important; see Appendix 1. We can write

Char = 3NkB

[
1 − 1

12

(
h̄ω (2)

kBT

)2

+ 1

240

(
h̄ω (4)

kBT

)4

− ...

]

Another contribution to the heat capacity comes from the anharmonic correction to the
expression Char above. That correction has the high-temperature expansion

Canh = aT + bT 2 + . . .

For the electronic contribution, Cel, we use the form (see Sect. 6.2)

Cel = γ (T ) T ≈ γband (0) T
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At very high temperature, the formation of lattice vacancies may add a term

Cvac = c exp (−Evac/kBT )

to the heat capacity. Here Evac is the vacancy formation energy. The pre-factor c has a temper-
ature dependence, which we ignore in comparison with the strong temperature dependence
in the exponential term.

The sum of all these contributions to the heat capacity gives an expression of the general
mathematical form

Ctotal = A + BT −4 + CT −2 + DT + ET 2 + F exp (−G/T )

Even though several approximations have been made, there are no less than seven inde-
pendent constants A − G. If Ctotal is fitted to experimental CP data, one may get a good
numerical fit, but it would be useless as the basis for a physical interpretation of the indi-
vidual contributions. Very likely, part of an effect with known temperature dependence is,
incorrectly, included in a combination of other numerically fitted terms.

Instead a performing an unrestricted fit, some of the constants A to G may be given val-
ues derived from other information than CP , as follows. The constants A, B and C can be
identified with terms in the high-temperature expansion of Char, where ω(2) and ω(4) are cal-
culated from, e.g., neutron scattering experiments (see Appendix 1). The constants F and G
may be best obtained through independent information on Evac combined with a theoretical
estimation of the pre-factor c, perhaps including its temperature dependence. In a direct fit,
it could be extremely difficult to distinguish between a polynomial and an exponential term
when the fitting interval is not wide enough (see Sect. 4.3), so that is not a good procedure
to obtain F and G.

Two coefficients then remain; D and E . The term linear in T contains contributions from
electrons and from anharmonicity. When the electronic density of states N (E) does not have
significant variations close to the Fermi level EF, one can calculate γel from theoretical band
structure result N (EF), but in transition metals this is often too crude an approximation (see
Sect. 6.2). Finally, the anharmonic term Canh is very hard to calculate. It cannot be reduced to
an expression that is both accurate and algebraically simple. Numerical simulations offer the
only realistic theoretical approach. Then one assumes some parameterized effective interac-
tion between the atoms. But to verify if the numerical simulation yields a good account, one
should also try to extract Canh, starting from the experimental CP and subtracting Char, Cel

and Cvac as outlined above. Such an analysis has been done for aluminum [7]. In a similar, but
less ambitious, analysis the heat capacity of ThO2 and UO2 was analyzed with the purpose
of extracting non-vibrational contributions to CP [8].

3.3 Discussion

The three examples above, where we considered the Einstein model description of the entropy
of TiC, the CALPHAD approach to the Gibbs energy, and the individual contributions to
the heat capacity, deal with the thermodynamic quantities S, G and C . They are connected
through exact thermodynamic relations. Nevertheless, our examples are quite different from
a modeling point of view. The two equations

S = −
(

∂G

∂T

)
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and

C = −T

(
∂2G

∂T 2

)

relate S and C to the first and the second derivative of G, respectively. Conversely, S could be
regarded as a quantity that is obtained after one integration of C , and G as obtained after two
integrations. Features in C(T ) will therefore be much less pronounced in S(T ), and smaller
still in G(T ). With this background we now return to the θE-values for TiC in Table 1.

It has already been remarked that anharmonicity is the reason why a fit of the heat capacity
CE(T, θE) to Cexp(T ) fails even at a moderate temperature (800 K). This is in contrast to
the integrated properties S(T, θE) and G(T, θE), which allow θE to be extracted from a fit
to experiments at all temperatures Tfit. But there is a fundamental difference between the
entropy and the Gibbs energy. The θE-value obtained from the entropy can be given a direct
interpretation in terms of the shifts in the phonon frequencies with temperature (including
thermal expansion) [5]. In θE obtained from G there is no such simple interpretation, because
of a partial double counting of phonon frequency shifts. We see in Table 1 that θE representing
G peaks at a higher temperature, and does not fall off as rapidly with T , when compared
with θE derived from S. This is explained as follows. The model enthalpy HE cannot increase
above the classical value 3kBT per atom, but Hexp has no such restriction. The only way to
accommodate the anharmonic effect present in Hexp when we fit Gexp to GE = HE − T SE is
to let SE have a smaller value, i.e., be represented by a larger θE. This effect is superimposed
on the general decrease of θE that is seen in the data derived from the entropy.

Two further comments should be made. The θE-values in Table 1 derived from S and G
show a broad maximum as a function of T . On the high temperature side, the decrease in θE

is due to anharmonicity, and on the low temperature side it is connected with the fact that a
single parameter is insufficient to describe S(T ) and G(T ); cf. the terms containing ω(n) in
Appendix 1. Finally, there is a small electronic contribution Cel(T ) to the heat capacity. We
have ignored that, with the consequence that the anharmonic effect is slightly exaggerated.

We conclude that the unique properties of the vibrational entropy make S particularly
suitable for thermodynamic analysis, a feature not always recognized, for instance when
experimental data are used to deduce θE(or, more common, the Debye temperature θD). The
smooth decrease in θE obtained from the entropy of TiC (Table 1 ) is very characteristic of
anharmonicity in solids. Deviations from such a regular behavior have been used to detect
errors in published thermodynamic data for Ca [9] and K2O [10].

Returning to the CALPHAD representation of the Gibbs energy, we note that the tempera-
ture dependence of most of the individual terms can be motivated by the expected theoretical
forms of C(T ) discussed in Sect. 3.2. However, it would not be possible to identify the differ-
ent contributions to the heat capacity with terms of a certain T -dependence in the expression
–T (∂2GCALPHAD/∂T 2). Suppose now that G(T ) based on experimental information is not
very well known. It can then be argued that one should not use more than three fitting
parameters, A, B and C . The following two forms might be tried;

G (T ) = A − BT − CT 2

and

G (T ) = A − BT − CT ln T

The first expression would lead to the linear heat capacity CP (T ) = 2CT and the second
expression to the constant heat capacity CP (T ) = C . These examples show the difficulty,
or the danger, encountered when one takes the derivative of a fitted quantity. For instance,
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the tabulated [4] heat capacity of elements in the liquid state is usually a constant, i.e., inde-
pendent of T . In a few cases for which there is more accurate information, CP (T ) shows a
shallow minimum at roughly twice the melting temperature [5,11]. The liquid heat capacity
may be determined from measurements of the change in the enthalpy H(T ), when a speci-
men is quenched from high temperature. Since CP = ∂ H/∂T , a four-parameter expression
H = A + BT + CT 2 + DT 3 is needed to generate a heat capacity that displays a minimum.
This may be beyond the accuracy of the experiment.

4 Fitting in log-log plots

4.1 Introduction

It is characteristic of the algebraic formulas in physical models that the model parameters
appear in powers, with the exponent usually being an integer but sometimes is a simple
fraction. For instance, the emitted power according to the Stefan-Boltzmann radiation law
varies with the temperature T as T 4, the Debye theory says that the heat capacity of a solid at
low temperatures is proportional to T 3, and the average speed of a particle in a classical gas
varies as T 1/2. These “regular” values of the exponents are well understood theoretically.

A more general case appears frequently in practical engineering. We have a quantity Q
whose q-dependence is not known, and we make the Ansatz

Q = a qn

The exponent n is obtained from the slope of the straight line, when data are plotted as ln Q
versus ln q;

lnQ = ln a + n ln q

Although there are examples of very complex phenomena, where the exponent nevertheless
gets a regular value (e.g., in certain so-called critical phenomena), one normally finds that
when complex phenomena can be approximately described by a straight line in a log-log plot,
the exponent has an “irregular” value. We will illustrate that with the thermal conductivity
of insulators. Appendix 2 and 3 give further aspects of data analyzed in log-log plots.

4.2 Thermal conduction in insulators

The thermal energy transport in a crystalline solid insulator is mediated by phonons. They can
be scattered by, e.g., lattice defects and other phonons. The theoretical account of the thermal
conductivity κ is extremely complicated, although the basic physics is well understood. In
the simplest textbook model for κ at high temperature, and in a pure specimen, one has

κ ∝ 1

T

However, when actual data of ln κ are plotted versus ln T , one finds that a better approximation
is

κ ∝ 1

T x
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The exponent typically is x ≈ 1.3, but with large variations between different materials [5,12].
In order to understand this fact, we discuss a more elaborate model [5], where

κ = k
θ3

E

T
The approximate dependence of κ on the phonon frequencies ω is here represented in an
average way by the Einstein temperature θE. The quantity k contains several other character-
istics of the substance, which also vary somewhat with T , but we will regard k as a constant.
Then,

x = − d ln κ

d ln T
= 1 − 3

T

θE
· dθE

dT

We noted in Table 1 that dθE/dT < 0, which explains why x > 1. It is now easy to understand
why the exponent x does not have a simple and universal value, but can vary significantly
with the substance.

5 Second-order effects

5.1 Introduction

In modeling, one often neglects an effect with the motivation that it is of “second order”. Here
we are interested in a property Q that varies with the parameter q , and has a maximum or a
minimum for variations of q around q = q0. Since the extremum implies that d Q/dq = 0
for q = q0, we have to lowest order in q − q0:

Q (q) ≈ Q (q0) + α (q − q0)
2

Q(q0) may be easy to calculate, while the constant α is more difficult to obtain. But with
an approximate estimate of α, one may find that the second-order correction is exceedingly
small in the application of interest. Then Q(q0) gives a satisfactory result even in the non-
ideal situation. This powerful argument will be illustrated with the thermal conductivity
κ , but identical mathematical results hold for the electrical conductivity σ , the dielectric
permittivity ε and the magnetic permeability μ.

5.2 Weakly inhomogeneous materials

Consider a one-phase material where the composition shows fluctuations on a length scale
such that one can assign a varying conductivity κ to each point in the material. Let 〈. . .〉
denote a spatial average over the entire specimen. Then the effective conductivity of the
material is [5]

κeff ≈ 〈κ〉
{

1 − 1

3

〈
(κ − 〈κ〉)2〉

〈κ〉2

}

As an example, let the local conductivity vary along the z-direction as

κ (z) = κ0 + � sin (kz)

Then

κ ≈ κ0

[
1 − 1

6
·
(

�

κ0

)2
]
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With �/κ0 = 0.2, the correction, relative to the case of a uniform conductivity, is less than
1 %, which would be completely negligible in most practical cases.

6 Mislead by simple textbook results

Fundamental formulas found in textbooks in solid state physics are sometimes presented in
such a way that they give the impression of a very high accuracy. However, the high accuracy
may apply to only the most common situations. Many advanced computer simulations deal
with conditions where the textbook formula may be wrong by a factor of two or more. We
will illustrate that with examples from the thermodynamics of solids at high temperature.

6.1 The vibrational heat capacity

Experimental data for the heat capacity usually refer to CP , i.e., the heat capacity at constant
pressure. On the other hand, theoretical simulations are often performed under the condition
of constant volume. There is an exact relation between the heat capacity CV at constant
volume, and CP :

CV (T ) = CP (T ) − V Tβ2 KT

Here V is the specimen volume, β the cubic expansion coefficient and KT the isothermal bulk
modulus. Anharmonic effects can make CP (T ) larger than the classical result, 3kB/atom, at
high temperature. The dominant anharmonic effect usually comes from changes in the effec-
tive interatomic forces caused by thermal expansion. In fact, graphs in many textbooks show
that CV (T ) for an insulator, derived from CP (T ) as above, seems to approach precisely
3kB/atom. This has given rise to a widespread belief that there are no anharmonic effects left
in CV (T ). However, the harmonic approximation requires that the vibrational amplitude of
the atoms is small; a condition that is not fulfilled at high temperature. Although the anhar-
monic contributions to CV are often negligible, they are very significant in, e.g., solid Mo
and W [13] and in molecular dynamics simulations reaching into the superheated solid state
of a solid [7].

There is one further complication when simulations are compared with experimental data
referring to “constant volume”. The operational definition of CV (T ) at the temperature T1 is

CV (T1) = �Q

�T

where �T is the temperature increase when the amount of heat �Q is added to the specimen,
under the condition of unchanged specimen volume V (T1). But if this procedure is carried
out at another temperature T2 �= T1, the specimen volume to be kept constant is now V (T2).
Thus the heat capacity at “constant volume” V is not the same as the heat capacity at “fixed
volume” V0. It is the former condition that is most easily obtained from experiments, while
simulations usually refer to the latter case. To lowest order in the small quantity (V − V0)/V0

one has [5,13,14]

CV (T ) − CV0 (T ) = (V − V0) T
[
KT (∂β/∂T )p +2β (∂KT /∂T )P +β2 KT

(
∂KT

/
∂ P

)
T

]
There is a tendency of cancellation between the terms on the right hand side, making the
correction small in some cases, e.g., KCl [14] and solid Al [7], but it cannot be neglected in,
e.g., liquid Al [11] and solid Mo and W [13].
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Table 2 The Fermi temperature TF of some metals [15]

Element Na K Al Pb

TF / K 37 500 24 600 134 900 108 700

6.2 The electronic heat capacity

The electronic heat capacity of metals is often presented as

Cel = γbandT = 2π2

3
N (EF) k2

B T

where N (EF) is the electron density of states at the Fermi energy EF. Some textbooks rec-
ognize that there is also an enhancement factor (1 + λel−ph) due to interaction between
electrons and phonons [5]. Typically λel−ph is 0.4–0.6, but it can be as large as about 1.5
(Pb, Hg). We have

Cel,exp = γexpT = γband
(
1 + λel−ph

)
T

This relation gives a very accurate description of low temperature experiments. One may ask
if such data can be accurately extrapolated to high temperature. The answer is no, and for
several reasons, as we will now see.

The enhancement factor (1+λel−ph) is temperature dependent. Above the Debye temper-
ature it is almost negligible [5]. In practice, this means that only the term γbandT may remain
above room temperature. It is then tempting to assume that Cel continues to be linear in T ,
but with a reduced slope compared to the low-T limit. This assumption seems to be strongly
supported by the following result obtained for a free electron gas [5]:

γel = 2π2

3
N (EF) k2

B

[
1 − 3π2

10

(
T

TF

)2
]

Here TF = EF/kB is the Fermi temperature. Some characteristic values of TF are given in
Table 2. With those numbers, the correction to a linear T -dependence is exceedingly small,
less than 0.1 % at the melting temperature. But this argument is very misleading. The heat
capacity Cel probes N (E) in a “window” of approximate width ±5kBT around EF. It follows
that Cel is linear in T only to the extent that N (E) can be regarded as a constant within that
window. In the free electron model, N (E) varies slowly over energies of the order of kBTF,
which leads to the mathematical expression above. In a real system N (E) may vary signifi-
cantly over a smaller energy distance kBT * from the Fermi level (Fig. 4). Then Cel ∼ T only
as long as T 
 T *.

Modern electron structure calculations can give N (E) with high accuracy. Such informa-
tion could be used in a straight forward and numerically accurate calculation of Cel. But even
that result may be misleading. At high temperature, the sharp features of N (E) present in
the calculated N (E) are significantly broadened, due to the vibrations of the lattice [16,17].
A calculation of Cel then becomes a demanding task.

Our statement about the width of the energy “window” deserves a comment. Usually, one
says that the Fermi-Dirac function is constant (1 or 0) except in the approximate energy inter-
val EF ± kBT . However, the electronic heat capacity gets its largest contribution from states
at energies EF ± 2.4kBT , and gives zero weight to states at E = EF (due to particle-hole
symmetry). EF ±5kBT is a better measure of the total range of the energy window probed by
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N(E) 

kBTF kBT* 

E 
EF

Fig. 4 A schematic picture of the electron density of states N (E). TF and T * are two characteristic quantities
that describe N (E). See the text for a discussion

Cel. This should be compared with the electronic entropy, which is an integral of Cel(T )/T
(cf. Sect. 3.3) and therefore probes a narrower window, approximately EF ± 3kBT .

7 Conclusions

All models involve constraints and approximations. Constraints that have the form of sum
rules or normalization conditions can make a model robust to fine structure in the model input.
Robustness is also common in properties that depend on the integration of model quantities.
For instance, we have seen that an analysis of the entropy may have significant advantages
compared to a direct analysis of the heat capacity. A third cause of robustness arises when
the simplest model represents an extremum, and more elaborate modeling gives corrections
that are small to the second order. Often the existence of an extremum is obvious from, e.g.,
symmetry arguments, and no detailed treatment of the second order effect is necessary.

A “brute force” numerical fitting to data may be well motivated in some cases, for instance
in the CALPHAD approach to phase diagrams, but it does not give insight into the detailed
physical origin of model quantities. In particular, although the conventional wisdom that
“everything gives a straight line in a log-log plot” contains a certain truth, such a direct fitting
of data may lead to completely erroneous physical interpretations, as we have exemplified
with the difficulties in separating polynomial terms due to anharmonicity from an exponential
term due to vacancy formation, in the heat capacity of solids..

Finally, we have discussed examples where the common text book treatment of a phenom-
enon is presented in such a way that the corresponding mathematical relation may be taken
as literally true, or at least as an extremely good approximations. But those relations may
be merely building blocks in a model that deals with a different, or more complex, property.
One has to be aware of the fact that although the simple textbook relations can be extremely
accurate in a certain limit, they may be quite inaccurate away from that limit. This is partic-
ularly important when simulations make it possible to study systems under conditions that
are very far from those accessible to experiments or used as illustrations in the textbooks.
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Appendix 1

Moment frequencies and thermodynamic functions

Let F(ω) be the phonon density of states. A complete mathematical representation of F(ω)

is obtained in terms of moment frequencies ω(n) defined as [5]

ω (n) =
[∫

ωn F (ω) dω

]1/n

n �= 0

ln [ω (0)] =
∫

ln (ω) F (ω) dω

Here F(ω) is normalized as ∫
F (ω) dω = 1

The entropy per atom, at high temperature and expressed in moment frequencies ω(n), is

S (T ) = 3kB { 1 + ln [kBT/h̄ω (0)]

+ (1/24) [h̄ω (2) /kBT ]2 − (1/960) [h̄ω (4) /kBT ]4 + ...
}

This expression converges very rapidly at high T , where only a single parameter, the log-
arithmically averaged phonon frequency ω(0), suffices to give a very accurate account of
the harmonic entropy S. The corresponding expression for the heat capacity of harmonic
vibrations is

C (T ) = 3kB
{

1 − (1/12) [h̄ω (2) /kBT ]2 + (1/240) [h̄ω (4) /kBT ]4 + ...
}

The Gibbs energy G = U − TS + PV has a constant part in U , which does not follow from
fundamental physics but must be fixed through a convention, for instance so that U +PV = 0
at T = 298.15 K for the elements in their equilibrium state. We can write (for P = 0)

G (T ) = U0 − 3kBT
{

ln [kBT/h̄ω (0)] − (1/24) [h̄ω (2) /kBT ]2

− (1/2880) [h̄ω (4) /kBT ]4 + ...
}

All of the expressions above contain moment frequencies ω(n). It can be a very good approx-
imation to calculate them from the density of states F(ω) determined, for instance, in neutron
scattering experiments.

Appendix 2.

Sum of power laws in a log-log plot

Assume that a physical phenomenon has two contributions to a quantity Q. Each of them
can be exactly described by a power law, as in the expression

Q = Q1

(
q

q0

)m

+ Q2

(
q

q0

)n
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The quantities Q1 and Q2 have the same physical dimension as Q, with Q2 
 Q1. Data for
Q are available in a region of q near q0, and plotted as ln Q versus ln q . Neglecting terms of
order smaller than Q2/Q1, we find after some elementary mathematics that

Q (q)

Q (q0)
≈

(
q

q0

)m+ε

with ε 
 1 given by

ε =
(

Q2

Q1

)
(n − m)

We conclude that when a quantity Q has contributions as above, with exponents m and
n, a single power law with an “irregular” approximate exponent m + ε may give a good
description.

Appendix 3.

Power law versus exponential behavior

Suppose that the correct temperature dependence of a certain quantity is

Qtrue = aT + bT 2

but we don’t know this and try to fit it to an expression of the form

Qfit = cT + d exp
(−E

/
kBT

)
A good fit can be obtained if f (T ) = Qtrue − cT = aT + bT 2 − cT is well repre-
sented in a certain temperature interval around T = T1 by d exp(−E/kBT ), i.e., if ln f (T )

plotted versus 1/T is approximately a straight line with slope –E/kB. This is the case if
∂2lnf/∂(1/T )2 = 0. Then E = −kB[∂ lnf/∂(1/T )], evaluated at T = T1. One always
obtains

E =
(

2 + √
2
)

kBT1 ≈ 3.4kBT1

for any a, b and c. We conclude that it may be very difficult to distinguish between poly-
nomial and exponential representations when one is fitting to data in a narrow interval. If,
however, one finds a very good fit with an exponential term, that result might be ruled out on
physical grounds, when one considers the numerical values of the fitted parameters [18].
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Abstract Multiscale simulations are evolving into a powerful tool for exploring the nature
of complex physical phenomena. We discuss two representative examples of such phenom-
ena, stress corrosion cracking and ultrafast DNA sequencing during translocation through
nanopores, which are relevant to practical applications. Multiscale methods that are able to ex-
ploit the potential of massively parallel computer architectures, will offer unique insight into
such complex phenomena. This insight can guide the design of novel devices and processes
based on a fundamental understanding of the link between atomistic-scale processes and
macroscopic behavior.

Keywords Multiscale simulations · Biomolecules · Corrosion

1 Introduction

Most physical phenomena of interest to humankind involve a large variety of temporal and
spatial scales. This generic statement applies to systems as diverse as the brittle fracture of
solids under external forces, which can lead to the failure of large structures such as bridges
or ships starting at nanometer-scale cracks, to tidal currents in bays extending over many
miles, whose behavior is dictated by the water viscosity determined from the molecular-
scale interactions of water molecules.

Analytical models are typically formulated to capture the behavior of simple, homoge-
neous systems, or small deviations from such idealized situations, which are expressed as
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linear terms of a variable that describes the departure from uniformity. Such theories cannot
cope with situations far from equilibrium, or involving very large deviations away from
homogeneity, as is the case for many interesting phenomena in the spirit of the examples
mentioned above. By necessity, a realistic description of such complex phenomena must
rely on computational models, and more specifically on the use of multiscale approaches.
This last requirement is dictated by the need to use the available computational resources
in the most effective manner, allocating them judiciously to resolve the finer scales of the
physical systems (which are usually the most computationally demanding) only where and
when absolutely necessary. We feel that this notion is so central to computational approaches
that it deserves the status of a “principle”, and we will refer to it as the Principle of Least
Computation (PLC). In other words, multiscale approaches aim at using the least possible
computer power to describe satisfactorily the behavior of a complex physical system. The fact
that these approaches often employ the latest and most sophisticated computer technology
that is available, is a testament to the complexity of the problem at hand.

In the present article we wish to motivate the need for multiscale approaches by dis-
cussing the essential features of two specific examples of complex physical phenomena from
very different domains. Through these examples, we hope to demonstrate how multiscale
approaches can be formulated to satisfy the PLC, and what their prospects are for answer-
ing important scientific questions and addressing specific technological needs. We do not
attempt to provide extensive references to the relevant literature, as this is beyond the scope
of a perspective article and has already been done elsewhere [1]. We will only point to certain
publications which have contributed key ideas on the way toward a comprehensive framework
of multiscale modeling.

2 Two representative examples

Our first example has to do with Stress Corrosion Cracking (SCC): in this phenomenon,
solids that are normally tough (ductile) become weak (brittle) and crack under the influence
of external stresses due to the exposure to a hostile environment in which chemical impurities
affect the structure at the microscopic, atomistic scale (corrosion). SCC is relevant to the
stability or failure of systems in many practical applications [2]. The length scale at which
this phenomenon is observed in everyday-life situations is roughly millimeters and above. At
this scale cracks are detectable by naked eye, and if not arrested they can lead to the failure
(occasionally catastrophic) of large structures such as ships, airplanes, bridges, etc. Evidently,
the presence of chemical impurities changes the nature of bonds between the atoms, which is
crucial in the region near the tip of the crack, where bonds are being stressed to the point of
breaking. These atomic scale changes are ultimately responsible for the macroscopic scale
change in the nature of the solid and can turn a normally ductile material into a brittle one
leading to cracking. A breakdown of the different length and scale regimes relevant to this
phenomenon is illustrated in Fig. 1.

A portion of a solid of linear dimension 1 mm contains of order 1020 atoms. Treating this
number of atoms with chemical accuracy is beyond the range of any present or foreseeable
computational model. Moreover, such a treatment would be not only extremely computa-
tionally demanding but terribly wasteful: most of the atoms are far away from the crack tip,
they are not exposed to the effect of chemical impurities, and have little to contribute to the
cracking phenomenon, until the crack tip reaches them. Thus, a sensible treatment would
describe the vast majority of atoms in the solid by a simple continuum model, such as contin-
uum elasticity theory, which is well suited for the regions far from the crack tip. Closer to the
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Fig. 1 Illustration of the length and time scales in Stress Corrosion Cracking, with the four different length
scales, macro- (a continuum description of the crack in an otherwise elastic solid), meso- (a description of
the plastic zone near the crack tip in terms of dislocations), micro- (a resolution of the dislocation structure
at the atomistic level with classical interatomic interactions) and nano-scale (with the ions and corresponding
valence electrons, treated quantum mechanically). The various acronyms refer to methodologies for extending
the reach of conventional approaches, or coupling approaches across several scales (see text for details)

tip, several scales become increasingly important. First, the plastic zone, a scale on the order
of µm, contains a large number of dislocation defects the presence of which determines the
behavior of the system. The nature and interaction of these defects is adequately described by
continuum theories at large scales [3,4]. However, atomistic scale simulations are required to
derive effective interactions between these defects when they directly intersect each other, or
in any other way come into contact at length scales equal to interatomic separation, when the
continuum level of description breaks down. This introduces the need to couple atomic-scale
structure and motion to dislocation dynamics [5], a coupling that has already been demon-
strated and provided great insight to the origin of crystal plasticity [6]. Finally, in order to
include the effects of chemical impurities on the crack tip, where the important processes
that determine the brittle or ductile nature of the material take place, it is necessary to turn
on a quantum mechanical description of the system, including ions and electrons.

These four levels of description, continuum at the macro-scale (mm), defect dynamics at
the meso-scale (µm), atomistic scale dynamics at the micro-scale (100 nm) and quantum-
mechanical calculations for the nano-scale (1–10 nm), are shown schematically in Fig. 1,
together with the corresponding time scales which range from femto-seconds for the coupled
motion of ions and electrons to milli-seconds and beyond for the macroscopic scale. This
separation of spatial and temporal scales is only intended to show the conceptual division
of the problem into regions that can be successfully handled by well developed computa-
tional methodologies. Such methodologies may include Density Functional Theory at the
quantum-mechanical level, molecular dynamics with forces derived from effective inter-
atomic potentials at the the scale of 100 nm, dislocation dynamics at the scale of several
microns, and continuum elasticity (using, for instance, finite elements to represent a solid of
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arbitrary shape) in the macroscopic region. The goal of mutliscale simulations is to couple
the various regimes, as appropriate for a particular problem, in order to achieve a satisfactory
description of this complex phenomenon.

A number of computational schemes have already been developed to address this type
of phenomenon. The work of Car and Parrinello [7] from over two decades ago, is a gen-
eral method for extending the reach of quantum-mechanical calculations to systems larger
than a few atoms, and can be viewed as a pioneering attempt to couple the purely quantum-
mechanical regime to the classical atomistic. More recently, Parrinello and coworkers [8] have
developed a method that extends the reach of this type of approach to significantly longer
time-scales. The multiscale-atomistics-ab initio-dynamics (MAAD) [9] approach was an at-
tempt to couple seamlessly within the same method three scales, the quantum-mechanical
one, the classical atomistic, and the continuum, that enabled the first realistic simulation of
brittle fracture in silicon. A direct link between the atomistic scale and the scale of defect (dis-
location, domain boundaries, etc.) dynamics was accomplished by the quasi-continuum (QC)
method [10], that enabled realistic simulations of large deformation of materials in situations
like nano-indentation [11] and polarization switching in piezoelectrics [12]. The methods
originally developed by Voter [13] for accelerating molecular dynamics (AMD) can extend
the time-scales of classical atomistic approaches by a few orders of magnitude, addressing
an important bottleneck in multiscale simulations. Finally, dislocation dynamics (DD) and
continuum formulations like the Peierls-Nabarro (PN) theory, can make the connection to
truly marcoscopic scales; however, these approaches depend crucially on input from finer
scales to determine the values of important parameters, so they cannot by themselves have
predictive power unless a connection is made to the finer scales.

We turn next to our second example. This has to do with ultrafast sequencing of DNA
through electronic means, a concept that is being vigorously pursued by several experimental
groups [14,15]. The idea is to form a small pore, roughly of the same diameter as the DNA
double helix, and detect the DNA sequence of bases by measuring the tunneling current
across two electrodes at the edges of the pore during the translocation of the biopolymer
from one side of the pore to the other. Estimates of the rate at which this sequencing can
be done are of order 10 kbp/s, which translates to sequencing the entire human genome in
a time frame of a couple of days. While this goal has not been achieved yet, the successful
demonstration of this concept has the potential to produce long-lasting changes in the way
medicine is practiced.

This system is also a very complex one, involving several scales that are shown schemat-
ically in Fig. 2. At the coarsest scale, the biopolymer in solution needs to be directed toward
the nanopore. The scale of the biopolymer in solution is of order µm, and the time scale
involved in finding the pore is of order fractions of a second. At these scales, the system can
be reasonably modeled as consisting of a continuous polymeric chain in a uniform solvent,
possibly under the influence of an external non-uniform but continuous field that drives it
toward the pore. In experiments, this can be achieved either by a concentration gradient on the
two sides of the pore, or by an electric field acting on a polymer with uniform charge distrib-
ution. Understanding the translocation process itself involves modeling the polymer at scales
set by the persistence length (∼100 nm for DNA), while including the effect of the solvent.
This is already a demanding proposition, because the number of molecules that constitute
the solvent is macroscopic (1024) and in fact it makes no sense to monitor their dynamics at
an individual basis, since it is only the cumulative effect that is felt by the polymer.

We have recently succeeded in producing an efficient coupling between the solvent motion,
described by the Lattice Boltzmann approach to model fluid dynamics [16], and the polymer
motion, described by beads representing motion at the scale of the persistence length and
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Fig. 2 Illustration of the length and time scales in ultrafast DNA sequencing by electronic signals during
translocation through a nanopore. At the micro-scale, the biopolymer is a continuous line moving in a homo-
geneous solvent under external fields, at the next level (100 nm) the biopolymer is resolved at the persistence
length and the fluid is modeled by a transport theory on a grid (the Lattice Boltzmann Equation), at the 10 nm
scale the biopolymer structure is resolved at the level of individual bases (color coded) and electron current
across the leads can be modeled by quantum transport equations, and at the nm scale the individual bases are
modeled explicitly in terms of their atomic and electronic structure

following newtonian dynamics under the influence of local friction from the fluid [17]. This
lattice-Boltzmann plus molecular-dynamics (LBMD) description was very successful in re-
producing details of the observed translocation process in a realistic manner, as observed
in experiments for both single-file and multi-file translocation [18]. Nevertheless, the ap-
proach is still far from capturing the full problem of electronic DNA sequencing. What is
missing is the information at the 10 nm scale, with the biopolymer described as a sequence
of individual DNA bases, the electronic properties of which will determine the electron cur-
rent across the two leads on either side of the pore. The electron current can be calculated
from quantum-transport theories, once the relevant electronic states are known. To this end,
detailed calculations of the electronic properties of DNA bases need to be carried out, at
the level of quantum chemistry, including all the details of the base-pair atomistic structure.
Assembling the entire picture in a coherent model is a serious challenge to current computa-
tional capabilities and is likely to require profound conceptual and mathematical innovations
in the way we handle the phase-space of complex systems [19,20].

3 Problems and prospects

The cases described above are representative of complex systems which by their nature
demand multiscale approaches. There are many subtle issues on how multiscale approaches
are formulated, both at the practical level, with each approach requiring great attention to
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computational details, as well as at the fundamental level, where questions of basic notions
arise when degrees of freedom are eliminated in the process of coarsening [19], but these
are well beyond the scope of the present article. Here, we wish to address only two general
points. The first is the bottleneck of time-scale integration; the second is the bottleneck of
efficient allocation of computational resources.

As the two examples mentioned earlier make clear, it is usually feasible to produce mul-
tiscale methods that successfully integrate several spatial scales, spanning many orders of
magnitude in length. However, it is much more difficult to integrate temporal scales. Most
often, the time-step of the simulation is dictated by the shortest time scale present. Even if
ingenious approaches can be devised to accelerate the time evolution, they can produce a
speedup of a couple orders of magnitude at best, which is rather restricted compared to the
vast difference in time scales for different parts of the process (see Figs. 1, 2). At present, we
are not aware of coupling schemes that can overcome this bottleneck in a satisfactory way,
integrating over many orders of the time variable [21].

Second, we suggest that it may be necessary to rethink traditional algorithmic approaches
in view of recent developments in computer architectures. Specifically, taking advantage of
massively parallel architectures or streamlining in graphics-processing units, can produce
very significant gains, at the cost of writing codes that are specifically suited for these archi-
tectures. We have found that in our LBMD scheme, speedups of order 104 in computation
time could be achieved by using a multi-processor architecture, the IBM BluGene/L, because
when properly formulated, the problem scales linearly with the number of available proces-
sors with excellent parallel efficiency. The mapping of the physical system to the computer
architecture is not trivial and required specialist’s skills. We feel that this aspect of the com-
putational implementation should not be overlooked in trying to construct useful multiscale
models.

As closing remarks, we express our conviction that multi-scale approaches are essential in
faithfully capturing the nature of physical reality in a wide range of interesting phenomena.
We are hopeful that carefully planned and executed computational efforts will indeed come
very close to an accurate and useful representation of complex phenomena. This challenge
has not been met yet, in other words, computation is still shy of full success in meeting
physical reality. But the gap is closing fast.
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Abstract What do nanoscopic biomolecular complexes between the cells that line our
blood vessels have in common with the microscopic silicate glass fiber optics that line our
communication highways, or with the macroscopic steel rails that line our bridges? To be
sure, these are diverse materials which have been developed and studied for years by distinct
experimental and computational research communities. However, the macroscopic functional
properties of each of these structurally complex materials pivots on a strong yet poorly under-
stood interplay between applied mechanical states and local chemical reaction kinetics. As
is the case for many multiscale material phenomena, this chemomechanical coupling can
be abstracted through computational modeling and simulation to identify key unit processes
of mechanically altered chemical reactions. In the modeling community, challenges in pre-
dicting the kinetics of such structurally complex materials are often attributed to the so-
called rough energy landscape, though rigorous connection between this simple picture and
observable properties is possible for only the simplest of structures and transition states. By
recognizing the common effects of mechanical force on rare atomistic events ranging from
molecular unbinding to hydrolytic atomic bond rupture, we can develop perspectives and
tools to address the challenges of predicting macroscopic kinetic consequences in complex
materials characterized by rough energy landscapes. Here, we discuss the effects of mechan-
ical force on chemical reactivity for specific complex materials of interest, and indicate how
such validated computational analysis can enable predictive design of complex materials in
reactive environments.
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1 Introduction

Although computational modeling and simulation of material deformation was initiated with
the study of structurally simple materials and inert environments, there is an increasing
demand for predictive simulation of more realistic material structure and physical conditions.
In particular, it is recognized that applied mechanical force can plausibly alter chemical
reactions inside materials or at material interfaces, though the fundamental reasons for this
chemomechanical coupling are studied in a material-specific manner. Atomistic-level sim-
ulations can provide insight into the unit processes that facilitate kinetic reactions within
complex materials, but the typical nanosecond timescales of such simulations are in contrast
to the second-scale to hour-scale timescales of experimentally accessible or technologically
relevant timescales. Further, in complex materials these key unit processes are “rare events”
due to the high energy barriers associated with those processes. Examples of such rare events
include unbinding between two proteins that tether biological cells to extracellular materials
[1], unfolding of complex polymers, stiffness and bond breaking in amorphous glass fibers
and gels [2], and diffusive hops of point defects within crystalline alloys [3].

Why should we consider ways for computational modeling to bridge this gap between
microscopic rare events and macroscopic reality? The answer lies chiefly in the power of
computational modeling to abstract general physical concepts that transcend compositional
or microstructural details: accurate incorporation of mechanically altered rare events can
help to predict the macroscopic kinetics that govern phenomena as diverse as creep in metal
alloys, hydrolytic fracture of glass nanofibers, and pharmacological drug binding to cell sur-
face receptors (Fig. 1). Modeling of this chemomechanical coupling is especially important
and challenging in materials of limited long-range order and/or significant entropic contri-
butions to the overall system energy. Here, we explore the concepts of rare events and rough
energy landscapes common to several such materials, and show how mechanical environment
defined by material stiffness and applied force can alter kinetic processes in the most complex
of these systems: solvated biomolecules. Finally, we point to the potential of such compu-
tational analyses to address other complex materials for which breakthroughs in materials
design will offer significant technological and societal impact.

2 Putting rare events and rough energy landscapes in context of real materials

2.1 Rare events and rough energy landscapes

Energy landscapes or energy surfaces are graphical representations of the energy of a sys-
tem as a function of reaction coordinates, E(χ). These reaction coordinates can represent
the physical distance between atomic or molecular coordinates of a material (e.g., distance
between atomic nuclei), but more generally represents any relevant order parameter in the
material phase space. The energetic basins or minima represent thermodynamically favored
configurations, separated by many intermediate states during transitions between these min-
ima. The utility of such free energy landscapes in predictions of material dynamics is that
these multidimensional surfaces convey the pathways between local and global energetic
minima. The energy basins associated with these minima define the thermodynamics of the
system, and the connectivity among these basins defines the chemical reaction kinetics. There
exist infinite reaction paths between any two states A and B, but the path of highest activation
barrier traverses the saddle point on this E(χ) surface and is called the transition state. This
reaction proceeds at a rate r :
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Fig. 1 Chemomechanics of complex materials requires abstraction of molecular-scale reactions under defined
mechanical states. This level of abstraction (boxes) is indicated for several disparate macroscale applications,
which are all well described as molecular reactions that are altered by the stiffness and/or applied stress state
of the material interface. (a) In blood vessels, stress altered kinetics of reversible binding of soluble mole-
cules (ligand, red) to cell surface bound molecules (receptor, blue) can be simulated with steered molecular
dynamics; (b) In fiber optics, kinetics of hydrolytic cleavage (orange) in amorphous silicate glasses (gray
and red) can be identified via nudged elastic band methods; (c) In structural steel alloys, migration barriers
governing diffusion kinetics of carbon (red) in iron crystals (gray) under creep stress can be predicted via ab
initio methods

r = k [A] [B] (1)

where k is the rate constant of the transition from A to B:

k = ν exp (−Eb/RT ) (2)

and Eb is the minimum activation barrier the system must overcome to transition from A to
B, and ν is the attempt frequency (e.g., atomic collision frequency). The existence of local
and global minima of defined connectivity in this phase space demonstrates why certain
systems may be kinetically trapped in local minima for hours, whereas others are able to
achieve states predicted by thermodynamic or global minima within seconds. Rare events
or transitions are those with relatively high activation barriers, which consequently occur at
exponentially lower rates. Physical examples of rare events include nucleation and migration
of many-atom defects in crystals or amorphous solids, and large conformational changes in
solvated proteins [4–7].

The challenge in actually using the concept of energy landscapes to predict such mate-
rial transitions is that the free energy landscape of real materials is typically not known a
priori. Figure 1a illustrates a very simple one-dimensional energy landscape between two
states or configurations, showing that the transition to a configuration of lower energy (local
minimum) requires sufficient input energy to overcome a single transition barrier. Although
the energy differences between configurations A and B can be calculated directly through
various methods (e.g., ab initio approximations of the Schrodinger equation describing mate-
rial configurations at the level of electronic structure [8–10]), it is computationally costly to
use such approaches to map out an entire landscape for a material comprising hundreds to
thousands of atoms. Thus, simplified descriptions of one-dimensional paths between confor-
mations of interest (Fig. 2a) are often constructed using empirical force fields, identifying
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Fig. 2 Transition states and rough energy landscapes. (a) Kinetics for a material reaction described by a
simple one-dimensional energy landscape with well-separated transition states A and B can be described via
transition state theory, with energy barriers Eb and energetic distances xb that define reaction rates k; (b) Struc-
turally complex materials often exhibit so-called rough energy landscapes, with access to many energetically
competitive minima between states A and B; (c) More realistically, these landscapes are three-dimensional
(inset), such that two similar configurations/energy states can diverge to attain different final states (compare
a and b) and two dissimilar configurations/energy states can converge to attain similar final states (compare
c and d) Adapted from Ref. [50]

minimum energy paths between the two states of interest via nudged elastic band (NEB)-
type approaches [11,12], or even by drawing from experimental measurements of reaction
times that set relative barrier heights according to Eqs. (1) and (2) [13–15]. Energy landscapes
described as “rough” exhibit many local minima of comparable barrier heights (Fig. 2b), such
that neighboring conformations of lower barriers are rapidly sampled whereas neighboring
conformations of higher barriers are rarely accessed.

Often, the concept of energy landscapes is not invoked to directly predict properties from
quantitatively accurate E(χ) for complex materials, but to understand that systems with
multiple energetic minima will exhibit multiple timescales of relaxation to the local and
global energetic minima. For example, thermal fluctuations in conformations within glasses,
colloids, polymers, and functional states of proteins have long been conceptualized as sam-
pling of neighboring conformations in a high dimensional energy landscape [16]. Thus, a
decrease in temperature forces the material system to sample conformations of lower energy
barriers; this trapping within many local minima effectively freezes out sampling of larger
conformational changes of higher barriers. The most physically relevant and experimentally
accessible transitions in complex materials, however, are typically these high-barrier or “rare
events” such as crack nucleation and protein unfolding. As Fig. 2c illustrates qualitatively,
the roughness of the three-dimensional energy landscape causes the transition states and
reaction rates that are sampled to depend quite strongly on the initial configuration of the
system: small differences in the initial trajectory can lead to large differences in the minima
that are sampled, and likewise two very different paths in phase space can require the same
activation energy. For complex materials, then, the computational challenge is to adequately
sample the ensemble of initial configurations and the frequency of rare events, in order to
predict mechanisms of chemical reactions or macroscopic kinetic consequences of those
reactions. Next, we will consider the increasing complexity of rough energy landscapes in
highly alloyed crystals, glasses, and solvated proteins.

2.2 Diving in to rough energy landscapes of alloys, glasses, and biomolecules

Elemental metallic crystals such as body-centered cubic iron exhibit long range translational
and rotational order, and as such have well-defined energy minima corresponding to the
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underlying atomic lattice. The energy landscape of such Fe crystals is thus relatively smooth,
notwithstanding the magnetic spin state of the atoms, and the activation barriers for nucle-
ation of vacancies within the lattice can be determined directly via density functional theory
(DFT) [3,17–21]. The diffusion of single vacancies within the lattice must overcome an
activation barrier, but in this case the energetic barrier of the diffusive unit process—atomic
hopping to adjacent lattice sites—is defined by transition pathways that are essentially limited
to < 100 > and < 111 > crystallographic directions. Such barriers can then be calculated
readily through NEB approaches that identify a minimum energy path consisting of interme-
diate configurations between state A (vacancy in one defined lattice site) and state B (vacancy
in adjacent lattice site), where energies of these intermediate states can be calculated from
ab initio methods such as DFT [3,22,23].

Now contrast this case of simple bcc Fe with the simplest approximation of high-carbon
ferritic steel. As ubiquitous as this alloy is in failure-critical industrial applications, the addi-
tional chemical complexity created by a thermodynamic supersaturation of Fe self-vacancies
and interstitial carbon immediately impedes such straightforward calculations of self-diffu-
sivity. Ab initio formation energies of point defect clusters indicate that vacancies will be
predominantly sequestered as point defect clusters such as divacancy-carbon clusters [3].
There exist many possible paths and unit processes of self-diffusion for even this triatomic
defect cluster: a single vacancy could dissociate from the cluster along specific directions, the
divacancy pair could dissociate from the carbon, etc. The minimum energy paths and associ-
ated activation barriers for each possible final state could still be computed via NEB, albeit
at considerable computational expense for realistic carbon concentrations of up to 1 wt%C
in body-centered cubic iron to form hardened structural steels.

Next, consider a glass such as amorphous silica. Silica is a naturally occurring material,
comprising silicate tetrahedra (SiO4) in the crystalline form of quartz; it is the most abundant
material in the Earth’s crust and the key component of fiberoptic and dielectric-thin—film
communication platforms. It is well known that water reduces the strength of silica through
several mechanisms, including hydrolytic weakening of quartz due to interstitial water
[24–26] and stress corrosion cracking of amorphous silica due to surface water [17,19–
21]. This interaction is representative of a broader class of chemomechanical degradation
of material strength, including stress corrosion and hydrogen embrittlement in metals, and
enzymatic biomolecular reactions. Owing to the large system size required to recapitulate
such amorphous structures, atomistic reactions and deformation of such materials are typ-
ically studied via molecular dynamics (MD) simulations based on approximate empirical
potentials. To study the unit process of this degradation in this glass, here the process of a
single water molecule attacking the siloxane bonds of amorphous silica [25], the lack of long-
range order confers an immediate challenge, as compared to crystalline analogues: where
will this failure occur? That is, simulations of hydrolytic fracture must identify which of the
thousands of distinct silica bond configurations, which are strained yet thermodynamically
stable just prior to fracture, will be most susceptible to failure and thus should be simulated
in detail. In direct simulation, either via molecular dynamics or quasi-static deformation by
energy minimization, no information is available a priori to determine how far from stabil-
ity the system is located and what failure mechanism will be activated. The system must
be driven beyond the instability point and then allowed to explore the energy landscape in
order to find a lower energy failed configuration. In the amorphous case, there are numer-
ous instability points and a matching number of failed configurations. Therefore, the failure
behavior will be highly dependent on the time available to explore the energy landscape (in
molecular dynamics) or on the number of search directions attempted during minimization
(in NEB identification of minimum energy paths). Here, efficient searching of these strained
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regions of interest, or failure kernels, can be identified by recourse to computational modeling
and simulation methods we have developed for crystalline materials: namely, the identifica-
tion of an unstable localized vibration mode in the material [27]. In the context of disloca-
tion nucleation in metallic crystals, we have previously described this unstable mode as the
λ-criterion [28–30]which can be computed from eigenvectors and stresses calculable for each
atom (for MD simulations) or material region under affine strain (for continuum simulations);
we located the failure kernel of homogeneous dislocation nucleation at crystallographic loca-
tions where λmin = 0. This unstable mode identification thus isolates independent regions
of the many-atom amorphous material that are most strained and thus most susceptible to
bond failure. For silicate glass nanofibers under applied stress (Fig. 1b), we have found that
the size of this failure kernel depends on the cutoff chosen for this vibrational amplitude but
can be as small as 200 atoms within the very complex amorphous glass; this system size dis-
courages use of ab initio methods to study the failure processes in detail, but makes efficient
use of classical and reactive empirical potentials that are currently in development for silicate
glasses, water, and organic molecules.

Proteins and other biomacromolecules can also be idealized as complex materials. The
chemical reactions among such proteins and protein subunits define fundamental processes
such as protein folding (the prediction of three-dimensional protein structures from knowl-
edge of lower-order structural details) and reversible binding of drug molecules to cell
surface-bound molecules. From a computational modeling and simulation perspective that
recapitulates in vitro or in vivo environments, accurate prediction of mechanically altered
chemical reaction kinetics between biomolecules must consider several challenges. For
molecular dynamics (MD) or steered MD (SMD) simulations, these challenges include pro-
tein solvation in aqueous media, definitions of solution pH via protonation of specific amino
acid residues comprising the protein, and the many configurations that will be accessed due to
enhanced entropic contributions of long organic molecules. The structure-function paradigm
of biology states that small changes in protein structure can confer ample changes in function
of that protein. Although the structure of many proteins has been experimentally determined
and shared on the Protein Data Bank (PDB) public database, it is important to note that these
“solved structures” are ensemble or time-averaged snapshots of the many configurations a
protein will access even when exploring a global energetic basin at body temperature. Recent
experiments on photoreceptor proteins have demonstrated that very small-scale variations
in configurations of a protein structure (root-mean-square deviation << 0.1 nm) can have
large functional consequences in the activation response of such proteins to light [31]. The
effects of such small configurational changes in the initial simulated structure are typically
neglected in modern simulation of protein dynamics, and instead the community has focused
on simulations of increasing duration to access rare events such as unfolding over timescales
approaching 100 ms or to access forced unbinding at increasingly realistic (slow) velocities
< 10 m/s [32–34].

These increased timescales of observation are an important and reasonable goal for predic-
tive protein simulations. However, in light of the rough or high-dimensional energy landscape
of proteins (see Fig. 2c), the strong dependence of energetic trajectories on the initial con-
figuration, and thus on the inferred reaction kinetics, warrants additional consideration. For
example, the equilibrium dissociation constant KD is a key parameter that represents the
ratio between the unbinding rate or off-rate koff and binding rate or on-rate kon of a ligand-
receptor complex. The off-rate koffis expressed in units of [s−1], and is the inverse of the
lifetime of the complex τ . In particular, integrated computational and experimental studies of
forced unbinding of complementary macromolecules (e.g., ligand-receptor complexes such
as Fig. 1a) can reveal key energetic and kinetic details that control the lifetime of the bound
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complex. The reversible binding of such complexes is a rare event that can be altered by two
distinct mechanical cues: applied mechanical forces that may result from fluid shear flow or
other far-field stresses, or the mechanical stiffness of materials to which the molecules are
tethered.

In the following section, we will consider the effects of both initial configuration and
effective mechanical stiffness of molecules to which ligands are tethered, as these relate to
the inferred energetic and kinetic properties of a particularly strong and useful biomolecular
complex, biotin-streptavidin. Steered molecular dynamics simulations of this forced unbind-
ing show why the mechanical stiffness effect was noted as a possibility but not calculated
explicitly in the pioneering work of Evans. These simulations also show that tether stiff-
ness and initial configuration should be carefully considered both in the interpretation of
biophysics experiments and in the design of ligand-functionalized drug delivery materials.

3 Forced unbinding of biomolecular complexes

Three decades ago, Bell established that the force required to rupture the adhesion between
two biological cell surfaces FR should increase with the rate of loading d F/dt = F ′:

FR = kBT/xbln
([

F ′xb
]
/ [kBTkoff ]

)
(3)

where kB is Boltzmann’s constant, T is absolute temperature, xb is the energetic distance
between the bound and unbound states in units of χ , and is sometimes termed the unbind-
ing width. This model has since been applied to the rupture between individual molecules
such as adhesive ligands to cell-surface receptors, and Evans and Ritchie have attributed
this rate-dependent rupture force of the molecular complex as a tilt in the one-dimensional
energy landscape [35,36]. They and many others, including our group, have demonstrated
that the dynamic strength of this bond can be measured experimentally by several methods
that quantify the rupture force at defined loading rates FR

(
F ′) [36–39].

Although such experiments are far from equilibrium, in that the dissociation of the molec-
ular pair is forced by the applied loading rate, Eq. (3) shows that the equilibrium bond
parameters kof f and xb should be obtainable via extrapolation and slope of acquired FR vs.
ln F ′, respectively. Here, it is presumed that the loading rates are sufficiently slow that at
least some details of the rough energy landscape E(χ) are accessed. One of the most com-
monly employed experimental methods used to obtain these so-called dynamic force spectra
is molecular force spectroscopy or dynamic force spectroscopy, an atomic force microscopy
(AFM)-based approach that measures the force-displacement response between a ligand teth-
ered to an AFM cantilevered probe and its receptor presented at an opposing surface (such
as a rigid, flat mica surface or a compliant living cell surface) [40]. In such experiments,
the loading rate F’ is expected to alter the observed rupture force according to Eq. (3), and
could be defined as the product of the velocity of the ligand v and the stiffness of the force
transducer to which the ligand is attached ks , or F ′ = ksv.

3.1 Does stiffness matter? Why ks perturbs the accessible molecular rupture forces

Upon compiling experimental results from several groups acquired over several years for a
single molecular complex, biotin-streptavidin, we noticed that Bell’s prediction was qual-
itatively accurate but that various researchers reported significant differences in FR at the
same ostensible loading rate F ′. Biotin-streptavidin is a well studied biomolecular complex
because, under equilibrium conditions and in the absence of applied load, the binding lifetime
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forces depend on loading rate as expected from Bell’s model, but also on ks; (c) This stiffness-dependence
can be attributed to direct alteration of the energy landscape of the complex, even before load is applied to the
biotin ligand. Adapted from Ref. [1]

of the biotin ligand to the streptavidin receptor is long (as compared to other ligand-receptor
and antibody-antigen complexes. Thus, this complex has become a tool to bioengineers who
use the complex to effectively “glue” other molecules together with nearly covalent bond
strength, and to biophysists who use the complex as a benchmark for long binding lifetimes τ .

However, when we observed that experimentalists using the same AFM approach and
biotin-streptavidin preparations measured the same rupture forces for 100-fold differences
in loading rate, or 150 pN differences in rupture force for the same applied loading rate
[1], we developed a matrix of steered molecular dynamics simulations to identify possi-
ble sources of this discrepancy. These simulations are described fully in [1], in which we
acquired the structure of this complex from the PDB, solvated the protein in simple-point
charge (SPC) water with ions to mimic charge neutrality of physiological buffers, and then
selected a single configuration of this complex from the so-called “equilibration trajectory”
of an unconstrained MD simulation of 100 ns duration. This configuration was not strictly
equilibrated in terms of representing the global minimum of the protein structure, of course;
instead, it was chosen at a timepoint in the trajectory which we deemed to be sufficient to
enter an energetic minimum in the admittedly rough energy landscape (20 ns), according to
our protocol for objectively choosing an initial configuration of proteins as we outlined in
Ref. [41]. We then conducted SMD simulations (Fig. 3a), applying a simulated loading rate
via a Hookean spring connected to the ligand, and achieved the same magnitude of F ′ = ksv

for pairs of low ks / high v, and high ks / low v(Fig. 3b).
We were initially surprised that we obtained very different rupture forces FR for pairs of

simulations conducted for different spring constants and velocities but the same resulting F ′,
differing as much as 60 pN for F ′ on the order of 1000 pN/s; this difference was well in excess
of our standard deviation of replicate simulations for the same configuration under the same
loading conditions, differing only in the initial velocities of atoms within the complex. We
also confirmed this finding with AFM force spectroscopy experiments on biotin-streptavidin,
at admittedly lower loading rates, and observed the same result: the velocity of two AFM
cantilevers of differing stiffness ks could not be altered to attain the same rupture force at a
given loading rate defined as F ′ = ksv. However, more careful consideration of our findings
showed a clear and independent effect of this tether stiffness ks on the observed rupture force.
We conceptualized this effect as a direct perturbation of the energy landscape, superposing
an additional energetic term E = ksχ

2 to the existing potential of the complex. Importantly,
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this energy landscape is perturbed even before any external force is applied, and effectively
changes the accessible energy states and trajectories accessible to the complex.

Although Evans had previously noted the possibility of stiffness directly altering the
nature of the energy landscape [42], he had not included this term explicitly in his model of
molecular unbinding kinetics without any loss of accuracy in the interpretation of his own
experiments. Why did this tether stiffness contribute so strongly to our simulations and AFM
force spectroscopy experiments, but so little to Evans et al.’s experiments on the same com-
plex? Figure 3c shows that the magnitude of this stiffness effect naturally scales directly with
the stiffness of the force transducer stiffness, as superposed on a one-dimensional energy
landscape that has been based on several measurements and simulations of the bound states
of this particular complex. In Evans et al.’s biomembrane force probe-based experiments
on this complex, the stiffness of the biomembranes was so low (ks < 10 pN/nm) that the
energy landscape was not noticeably perturbed. In contrast, in our AFM-based experiments
with cantilevers of stiffness ks ∼ 100 pN/nm, there is noticeable alteration of the initial
landscape, such that the barriers to dissociation of the complex are increased with increasing
ks. Naturally, SMD-based simulations of the complex employ springs of even larger stiffness
(ks ∼ 1000 pN/nm) in order to force the dissociation in accessible simulation timescales,
and perturb the initial landscape of the complex to an even greater extent.

Note that the actual rupture force of the complex is unchanged by this tether stiffness, but
rather the observed rupture force Fobs increases with increasing tether stiffness. For biophys-
ical applications, the actual rupture force of the complex FR can thus be computed from this
summed effect:

Fobs = FR − ksxb/2 = kBT/xbln
([

F ′xb
]
/ [kBTkoff ]

)
(4)

However, for practical and biological applications, this direct contribution of tether stiffness
to the applied force required to dissociate the complex presents the following implication.
The force required to dissociate a ligand from its target (such as a cell surface receptor), and
thus the binding lifetime of that complex, will depend directly on the stiffness of the material
to which the ligand is tethered (e.g., the conjugating biomolecules between the drug ligand
and a solid support) and, by extension, to the stiffness of the material to which the receptor is
tethered (e.g., the mechanical compliance of the cell surface region that presents the receptor
protein).

3.2 Enough is enough: practical requirements of rare event sampling in MD

As noted, MD simulations have been utilized to model protein behavior and function for over
30 years, in fact as long as Bell’s model has been known [43,44]. The timescale limitation
of such atomistic simulations has been addressed by the development of Steered Molecular
Dynamics (SMD), a variation on classical MD in which rare events such as ligand-receptor
unbinding are induced by mechanical force. One key goal of simulations that faithfully reca-
pitulate experiments is to consider replicate simulations that explore the variation as well as
the magnitude of simulated parameters and extracted properties of individual and complexed
molecules. However, here we must ask for the sake of tractability, when have we simulated
“enough” of the ensemble, given that we will never full access the entire ensemble via direct
simulation?

MD studies typically utilize a single, long-timescale trajectory to draw conclusions about
biomolecular properties such as complex stabilization, binding pathways, and ligand-recep-
tor unbinding [45–47]. However, proteins in vitro and in vivo show considerable variation in



76 K. J. Van Vliet

measured properties; protein properties including rupture forces and photoactivity are typi-
cally distributions and cannot be adequately characterized by a single measurement, but can
depend critically on small configurational differences that are accessible for a given protein
structure [31]. Therefore, it is reasonable that simulations should aim to sample the property
distribution if they are to be representative of natural or experimental systems, especially
if the goal is to compare simulation results at two different conditions. Encouragingly, a
few simulation-focused researchers have begun to report MD simulated results for multiple
initial configurations [48,49]. For more in the community to consider this initially daunting
approach, however, it is very helpful to know how many initial configurations are necessary
to capture sufficient variation without incurring excessive computational expense.

We have considered this sufficient number for the biotin-streptavidin complex, seeking to
identify whether there were configurational subsets that gave rise to higher or lower rupture
forces under identical applied loading conditions [50]. We first created configurational subsets
of the solvated complexes that differed by less than some cutoff root-mean-square deviation
among atoms (e.g., RMSD< 10 A), and then applied the same loading rate details to each con-
figurational member of the cluster; to the centroid configuration within each cluster (of median
RMSD); and to one of the cluster centroids while varying only the initial velocity of the atoms
as set by the simulated temperature and a random number generator. As Fig. 4 shows, the vari-
ation in rupture force observed for these three different cases was quite similar, demonstrating
that at least for this particular case, configuration is not a strong determinant of observed rup-
ture force. More generally, though, we created randomized subsets of size N = 4 to N = 40,
to identify the sufficient number of simulations required to reproduce this distribution of
observed rupture forces. In retrospect, statistical analysis of epidemiology, economic fore-
casts, and even polymer rheology would have predicted what we observed: in order to capture
the full distribution of rupture forces and correctly identify the mean value, we needed to sim-
ulate at least 30 configurations. In fact, a statistical rule of thumb is that approximately 30 sam-
ples are needed to adequately characterize the mean of an underlying distribution, because for
this sampling number the sampling distribution approaches a normal distribution [51]. Thus,
we can conclude that, in the absence of a correlation between configuration and observed
molecular property, at least 30 replicate simulations will be necessary to ensure adequate char-
acterization of the observed property. We find that the relative error in our simulation output
FR is equal to the relative error of the calculated final parameter kof f , and so 30 replicate
simulations at each loading rate would be appropriate. If this number of initial configurations
is intractable due to system size, however, the confidence interval of the simulated predic-
tions could be calculated and reported. Consideration of such qualifications by the atomistic
simulation community, particularly for predictive modeling of amorphous and biomolecular
systems, should help to inform our interpretation of brute-force simulated dynamics.

4 Potential advances for chemomechanical analysis of other complex materials

Several other complex materials can benefit from computational analyses that establish links
between chemical kinetics and mechanics. Consider the example of cement, a material so
inexpensive and commonly used (1.7 billion tons/year, with 5 billion tons/year estimated by
2050 [52]) that few would initially consider its study as high-impact, and fewer still would
even know the composition and structure of this ubiquitous material. Despite its status as
the most widely used material on Earth, cement remains an enigma in the fundamental sci-
ence of materials and a key international target of environmentally sustainable development.
Cement is the solid composite material that forms at room temperature from mixing a grey
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Fig. 4 Configurational
variations may not be predictive
of property variations. (a)
Rupture force distributions are
quite similar when obtained via
steered molecular dynamics of
configurationally distinct groups
(clusters) of biotin-streptavidin; a
single cluster for which every
member was simulated; or a
single configuration for which
initial atomic velocities were
randomly varied. This indicates
an absence of
configuration-property
correlation for this particular
complex and property, so 30
randomly selected configurations
will capture the actual
distribution of this property.
Adapted from Ref. [49]
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Fig. 5 National production of cement and CO2 in metric tons are inversely related as of 2007, but are projected
to increase rapidly in industrializing nations such as India and China. Predictive modeling and simulation of
cement chemomechanics can contribute to new compositions and/or processing temperatures and pressures
that lower the CO2 production associated with cement production. Data source for cement production and
carbon dioxide: Cement Industry Environmental Impact Assessment (2005) and US Geological Survey (2007),
respectively

Portland cement powder with water, is the most widely used material on Earth at 1 m3/
person/year, typically in the form of concrete comprising cement and stone aggregates. Each
ton of cement produced results in an emission of 750 to 850 kg of carbon dioxide, amounting
to a per capita emission of some 250 kg of CO2 per cubic meter of concrete consumed. As
shown in Fig. 5, cement production for infrastructural applications is currently most prevalent
in industrializing nations such as India and China.

The composition and structure of Calcium-Silica-Hydrate (C-S-H), the basic molecular
unit of cementitious materials, continues to defy quantitative characterization. Cement is a
nanocomposite material, and is called “liquid stone” because it gels by a poorly understood,
exothermic and confined aqueous reaction between calcium/silicate powders and water. As
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the processing of the currently used cement compositions requires reduction of calcium
carbonate (CaCo3, limestone) to CaO prior to reaction with water, every produced ton of
cement contributes approximately 1 ton of CO2 to the atmosphere, representing > 5% of
the global CO2 emission on earth and an estimated “environmental burden cost” of $100 ton
[52].

Experimental efforts to alter cement chemistry and processing without altering the kinetic
rates of gelation and final stiffness and strength of cementitious composites are ongoing,
but have been largely iterative: the structure of the C-S-H constituents and the details of
the gelation over hour-scale gelation reactions are unknown. Importantly, the mechanical
properties of the C-S-H nanoparticles have recently been identified through nanoscale inden-
tation experiments and differ in packing density [53–55]. Here, computational modeling and
simulation can offer valuable insight into structural predictions and dynamics of hydrated
C-S-H layers and nanoparticles that impact curing times in defined ambient environments,
susceptibility to hydrolytic fracture, and ultimate compressive strength of such complex
materials.

What would the benefit of such fundamental modeling and simulation efforts in such an
established material be? The chief advances would focus on reduced energy required to cre-
ate CaO, achieved through either new cement compositions requiring less Ca or more likely
through new processing routes to synthesize or reduce CaO. If materials research efforts could
predict cementitious materials that reduced CaO concentrations (e.g., by identifying alter-
native divalent ions) and/or processing temperature/time (while maintaining critical gelation
times and compressive strength), the CO2 savings could be sufficient for the world to meet
Kyoto Protocol targets. Alternatively, if cement compositions could be modified to include
noxious gas-getting nanoparticles such as TiO2, again with predictive alteration of the kinet-
ics of gelation and the compressive strength of the fully cured gel, the very surface of the
buildings rising rapidly in India and China could be used to meliorate air quality in congested
cities. These are not blue-sky promises, but the foreseeable result of computational studies
focused on complex nanocomposites critical to physical infrastructure. The above consid-
erations of stress-altered reactions in other complex materials such as alloys, glasses, and
biomolecules will be important examples and case studies to guide accurate benchmarking
of such models.

5 Summary and outlook

Here we have discussed the challenge of predictive modeling and simulation for materials
of increasing structural complexity. Although the materials are dissimilar in both structure
and application, the key dobstacles to informative computational studies of stress-altered
reaction kinetics are strikingly similar. Prediction of transition states and associated kinetics
in materials with high-dimensional or rough energy landscapes require careful consideration
of sufficient system size, identification of strained regions of interest, effects of conjugate
variables such as force transducer stiffness, and sufficient sampling of initial configurations.
From alloys to glasses to biomolecules, these requirements of predictive modeling and simu-
lation serve to connect the rich and largely unexplored terrain of chemomechanically coupled
behavior in and between materials. Just as these concepts are interesting within the material
application of interest, they are also inspirational for new materials and material processes
that can potentially improve material performance while reducing associated environmental
burdens.
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1 Introduction

The tight-binding method attempts to represent the electronic structure of condensed matter
using a minimal atomic-orbital like basis set. To compute tight-binding overlap and
Hamiltonian matrices directly from first-principles calculations is a subject of continuous
interest. Usually, first-principles calculations are done using a large basis set or long-ranged
basis set (e.g. muffin-tin orbitals (MTOs)) in order to get convergent results, while tight-bind-
ing overlap and Hamiltonian matrices are based on a short-ranged minimal basis representa-
tion. In this regard, a transformation that can carry the electronic Hamiltonian matrix from
a large or long-ranged basis representation onto a short-ranged minimal basis representation
is necessary to obtain an accurate tight-binding Hamiltonian from first principles.

The idea of calculating tight-binding matrix elements directly from a first-principles
method was proposed by Andersen and Jepsen in 1984 [1]. They developed a scheme
which transforms the electronic band structures of a crystal calculated using a long-ranged
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basis set of muffin-tin orbitals (MTO’s) into a much shorter-ranged tight-binding represen-
tation. In the framework of this transformation, tight-binding matrix elements can be calcu-
lated by first-principles LMTO method and casted into an effective two-center tight-binding
Hamiltonian called LMTO-TB Hamiltonian [1]. More recently, an improved version of such
a “downfolding” LMTO method, namely the order-N MTO [2], has also been developed
which allows the LMTO-TB Hamiltonian matrix elements to be extracted more accurately
from a full LMTO calculation [3].

Another approach to determine the tight-binding Hamiltonian matrix elements by first-
principles calculations was developed by Sankey and Niklewski [4] and by Porezag et al. [5].
In their approach, the matrix elements are calculated directly by applying an effective one-
electron Hamiltonian of the Kohn-Sham type onto a set of pre-constructed atomic-like orbi-
tals. The accuracy of the tight-binding Hamiltonian constructed in this way depends on the
choice of atomic-like basis orbitals. More recently, McMahan and Klepeis [6] have devel-
oped a method to calculate the two-center Slater-Koster hopping parameters and effective
on-site energies from minimal basis functions optimized for each crystal structure, in terms
of k-dependent matrix elements of one-electron Hamiltonian obtained from first-principles
calculations.

All of the above mentioned work was derived from a description of electronic structures
using a fixed minimal basis set, except the work of McMahan and Klepeis [6]. It should be
noted that while a fixed minimal basis set can give a qualitative description of electronic
structures, it is too sparse to give an accurate description of the energetics of systems in vary-
ing bonding environments. A much larger basis set would be required in the first-principles
calculations in order to get accurate and convergent results if the basis set is going to be kept
fixed for various structures. Thus, it is clear that in order for a minimal basis set to have good
transferability, it is important to focus our attention on the changes that the basis must adopt
in different bonding environments.

In the past several years, we have developed a method for projecting a set of chemically
deformed atomic minimal basis set orbitals from accurate ab initio wave functions [7–12].
We call such orbitals “quasi-atomic minimal-basis orbitals” (QUAMBOs) because they are
dependent on the bonding environments but deviate very little from free-atom minimal-basis
orbitals. While highly localized on atoms and exhibiting shapes close to orbitals of the iso-
lated atoms, the QUAMBOs span exactly the same occupied subspace as the wavefunctions
determined by the first-principles calculations with a large basis set. The tight-binding over-
lap and Hamiltonian matrices in the QUAMBO representation give exactly the same energy
levels and wavefunctions of the occupied electronic states as those obtained by the fully
converged first-principles calculations using a large basis set. Therefore, the tight-binding
Hamiltonian matrix elements derived directly from ab initio calculations through the con-
struction of QUAMBOs are highly accurate.

In this article, we will review the concept and the formalism used in generating the
QUAMBOs from first-principles wavefunctions. Then we show that tight-binding Hamilto-
nian and overlap matrix elements can be calculated accurately by the first-principles methods
through the QUAMBO representation. By further decomposing the matrix elements into the
hopping and overlap parameters through the Slater-Koster scheme [13], the transferability
of the commonly used two-center approximation in the tight-binding parameterization can
be examined in detail. Such an analysis will provide very useful insights and guidance for
the development of accurate and transferable tight-binding models. Finally, we will also dis-
cuss a scheme for large scale electronic structure calculation of complex systems using the
QUAMBO-based first-principles tight-binding method.
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2 Quasi-atomic minimal-basis-sets orbitals

The method to project the QUAMBOs from the first-principles wave functions has been
described in detail in our previous publications [7–12]. Some of the essential features of the
method will be reviewed here using Si as an example. If the Si crystal structure contains N
silicon atoms and hence 4N valence electrons in a unit cell, the total number of minimal
sp3 basis orbitals per unit cell will be 4N . In our method, the 4N QUAMBOs (Aα) are
spanned by 2N occupied valence orbitals which are chosen to be the same as those from the
first-principles calculations, and by another 2N unoccupied orbitals which are linear com-
binations of a much larger number of unoccupied orbitals from first-principles calculations.
The condition for picking such 2N unoccupied orbitals is the requirement that the resulting
QUAMBOs deviate as little as possible from the corresponding 3s and 3p orbitals of a free
Si atom (A0

α). The key step in constructing the above mentioned QUAMBOs is the selection
of a small subset of unoccupied orbitals, from the entire virtual space, that are maximally
overlapped with the atomic orbitals of the free atom A0

α .
Suppose that a set of occupied Bloch orbitals φμ(k,r) (μ = 1, 2, . . . , nocc (k)) and virtual

orbitals φν(k,r) (v = nocc (k) +1, nocc (k) + 2, . . . , nocc (k) + nvir (k)), labeled by band μ

or ν, and wave vector k, have been obtained from first-principles calculations using a large
basis set, our objective is to construct a set of quasi-atomic orbitals Aα(r − Ri ) spanned
by the occupied Bloch orbitals φμ(k,r) and an optimal subset of orthogonal virtual Bloch
orbitals ϕp(k,r)

Aα(r − Ri ) =
∑
k,u

aμα(k,Ri )φμ(k,r) +
∑
k,p

bpα(k,Ri )ϕp(k,r) (1)

where

ϕp(k,r) =
∑
ν

Tνp(k)φν(k,r), (p = 1, 2, . . . , n p(k) < nvir (k)) (2)

The orthogonal character of ϕp(k,r) gives
∑
ν

T ∗
νp(k)Tνq(k) = δpq , in which T is a rect-

angular matrix which will be determined later.
The requirement is that Aα should be as close as possible to the corresponding free atom

orbitals A0
α . Mathematically, this is a problem of minimizing 〈Aα − A0

α|Aα − A0
α〉 under the

side condition 〈Aα|Aα〉 = 1. Therefore the Lagrangian for this minimization problem is

L = 〈Aα − A0
α|Aα − A0

α〉 − λ (〈Aα|Aα〉 − 1) (3)

The Lagrangian minimization leads to

Aα(r − Ri ) = D
−1/2
iα

⎡
⎣∑

k,μ

〈
φμ(k,r)

∣∣ A0
α(r − Ri )

〉
φμ(k,r)

+
∑
k,p

〈
ϕp(k,r)

∣∣ A0
α(r − Ri )

〉
ϕp(k,r)

⎤
⎦ (4)

where

Diα =
∑
k,μ

∣∣〈φμ(k,r)
∣∣ A0

α(r − Ri )
〉∣∣2 +

∑
k,p

∣∣〈ϕp(k,r)
∣∣ A0

α(r − Ri )
〉∣∣2

(5)
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For this optimized Aα , the mean-square deviation from A0
α is

�iα = 〈
Aα − A0

α|Aα − A0
α

〉1/2 = [2(1 − D
1/2
iα )]1/2 (6)

It is clear from Eqs. (5) and (6) that the key step to get quasi-atomic minimal-basis-set orbitals
is to select a subset of virtual orbitals ϕp(k,r) which can maximize the matrix trace

S =
∑

i,α,k,p

〈ϕp(k,r)|A0
α(r − Ri )〉〈A0

α(r − Ri )|ϕp(k,r)〉 (7)

The maximization can be achieved by first diagonalizing the matrix

Bk
νν′ =

∑
i,α

〈
φν(k,r)

∣∣ A0
α(r − Ri )

〉 〈
A0

α(r − Ri )
∣∣ φν′(k,r)

〉
(8)

for each k-point, where ν and ν′ run over all unoccupied states up to a converged upper
cutoff. The transformation matrix T which defines the optimal subset of virtual Bloch orbitals
ϕp(k,r) (p = 1, 2, . . ., n p(k)) by Eq. (2) is then constructed using the

∑
k n p(k) eigenvectors

with the largest eigenvalues of the matrixes Bk, each of such eigenvectors will be a column of
the transformation matrix T . Given ϕp(k,r), the localized QUAMBOs are then constructed
by Eqs. (4) and (5). As one can see from the above formalism development that the key con-
cept in this QUAMBO construction is to keep the bonding states (occupied state) intact and
at the same time searching for the minimal number of anti-bonding states (which are usually
not the lowest unoccupied states) from the entire unoccupied subspace. The bonding states
that kept unchanged and the anti-bonding states constructed from the unoccupied states can
form the desirable localized QUAMBOs.

Figure 1 shows the s- and p- like QUAMBOs of Si in diamond structure with different
bond lengths of 1.95 Å, 2.35 Å and 2.75 Å, and in fcc structure with bond lengths of 2.34
Å, 2.74 Å, and 3.14 Å, respectively. The QUAMBOs are in general non-orthogonal by our
construction as discussed above. One can see that the QUAMBOs constructed by our scheme
are indeed atomic-like and well localized on the atoms. These QUAMBOs are different from
the atomic orbitals of the free atoms because they are deformed according to the bonding
environment. It is clear that the deformations of QUAMBOs are larger with shorter interac-
tion distances. When the bond length increases to be 2.75 Å, the QUAMBOs are very close
to the orbitals of a free atom.

As we discussed above, the effective one-electron Hamiltonian matrix in the QUAMBO
representation by our construction preserves the occupied valence subspace from the first-
principles calculations so that it should give the exact energy levels and wavefunctions for
the occupied states as those from first-principles calculations. This property can be seen from
Fig. 2 where the electronic density-of-states (DOS) of Si in the diamond structure calculated
using QUAMBOs are compared with that from the original first-principles calculations. It is
clearly shown that the electronic states below the energy gap are exactly reproduced by the
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(a)

(b)

1.95 Å 2.35 Å 2.75 Å 

2.34 Å 2.74 Å 3.14 Å 

Fig. 1 Non-orthogonal s- and p- like QUAMBOs in Si (a) diamond structure in the (110) plane for three
bond lengths 1.95 Å, 2.35 Å and 2.75 Å, and (b) fcc structure in the (100) plane for three bond lengths 2.34
Å, 2.74 Å, and 3.14 Å

QUAMBOs, while the unoccupied states have been shifted upwards so that the energy gap
between the valence and conduction states increases from ∼0.7 eV to ∼1.8 eV. This shift is
expected because the QUAMBOs contain admixtures of eigenstates from the higher energy
spectrum.

It should be noted that the formalism for the QUAMBOs construction discussed in the
section is based on the wavefunctions from first-principles calculations using all-electrons
or norm-conserving pseudopotentials [14]. The formalism for constructing the QUAMBOs
from first-principles calculations using ultra-soft pseudopotential (USPP) [15] or projector
augmented-wave (PAW) [16], as implemented in the widely used VASP code [17,18], is
similar and has been recently worked out by Qian et al. [12]. Moreover, Qian et al. also adopt
a projected atomic orbital scheme [19–21] which replaces the unoccupied subspace from the
first-principles calculations in the above formula with a projection of the unoccupied part of
the atomic orbitals, and improve the efficiency and stability of the QUAMBO construction
procedure [12].
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Fig. 2 Electronic density of
states of diamond Si obtained by
using the QUAMBOs as basis
set, compared with those from the
corresponding LDA calculations
using the PW basis set
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3 Tight-binding matrix elements in terms of QUAMBOs

Once the QUAMBOs have been constructed, overlap and effective one-electron Hamiltonian
matrices in representation of QUAMBOs are readily calculated from first-principles.

Siα, jβ = 〈
Aα(r − Ri )

∣∣ Aβ(r − R j )
〉

(9)

Hiα, jβ = 〈Aα(r − Ri )|H
∣∣Aβ(r − R j )

〉
(10)

H in Eq. 10 can then be expressed by using the corresponding eigenvalues εn and eigenfuc-
tions φn from original DFT calculations, i.e., H = ∑

n
εn |φn〉 〈φn |, and thus the matrix

elements Hi,α, jβ can be calculated easily.
Note that in our approach the electronic eigenvalues and eigenfunctions of the occupied

states from first-principles calculations are exactly reproduced by the QUAMBO represen-
tation. Although the overlap and effective one-electron Hamiltonian matrices in terms of the
QUAMBOs are in a minimal basis representation, the matrices obtained from our method
go beyond the traditional two-center approximation. Therefore, the Slater-Koster tight-bind-
ing parameters [13] obtained by inverting such first-principles matrices are expected to be
environment-dependent.

In order to examine how the overlap and hopping integrals are dependent on the environ-
ment and to see how serious the error the two-center approximation will make in traditional
tight-binding approaches, we have performed calculations for 3 types (i.e, diamond, simple
cubic (sc), and face-centered cubic (fcc)) of crystal structures of Si with several different bond
lengths for each type of structures in order to study the tight-binding parameters in different
bonding environments. Based on the overlap and effective one-electron Hamiltonian matrix
elements from our QUAMBO scheme, the Slater-Koster overlap integrals sssσ , sspσ , sppσ ,
and sppπ , and hopping integrals hssσ , hspσ , h ppσ , and h ppπ are then extracted using the
Slater-Koster geometrical factors [13]. The results for the overlap and hopping integrals as a
function of interatomic distance in the three different crystal structures are plotted in Figs. 3
and 4, respectively.

Figure 3 shows the overlap parameters sssσ , sspσ , sppσ , and sppπ from different structures
and different pairs of atoms, plotted as a function of interatomic distance. Note that the two-
center nature of overlap integrals for fixed atomic minimal basis orbitals may not necessarily
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Fig. 3 Overlap integrals as a function of interatomic distance for Si in the diamond, sc, and fcc structures

hold for the QUAMBOs because QUAMBOs are deformed according to the bonding envi-
ronments of the atoms. Nevertheless, the overlap parameters obtained from our calculations
as plotted in Fig. 3 fall into smooth scaling curves nicely. These results suggest that the
two-center approximation is adequate for overlap integrals.

By contrast, the hopping parameters as plotted in Fig. 4 are far from being transferable,
especially for h ppσ . Even for the best case of hssσ , the spread in the first neighbor interaction
is about 1 eV. For a given pair of atoms, the hopping parameters h ppσ and h ppπ obtained
from the decompositions of different matrix elements can exhibit slightly different values,
especially for the sc and fcc structures. The hopping parameters from different structures do
not follow the same scaling curve. For a given crystal structure, although the bond-length
dependence of hopping parameters for the first and second neighbor interactions can be fitted
to separate smooth scaling curves respectively, these two scaling curves cannot be joined
together to define an unique transferable scaling function for the structure. These results
suggest that under the two-center approximation, it is not possible to describe the scaling of
the tight-binding hopping parameters accurately.

It is interesting to note from Fig. 4 that the structure which has larger coordination number
tends to have larger hopping parameter (in magnitude) as compared to the lower-coordinated
structure at the same interatomic separation. It is also interesting to note that the scaling
curve of the second neighbor interactions tends to be above that of the first neighbors at the
same interatomic distance. These behaviors are indications of significant contributions from
three-center integrals, because more contribution from the three-center integrals is expected
for pair of atoms that have more neighbors which enhance the effective hopping between the
two atoms.
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Fig. 4 Non-orthogonal tight-binding hopping integrals for Si as a function of interatomic distance in
the diamond, sc, and fcc structures obtained by decomposing the QUAMBO-based effective one-electron
Hamiltonian according to the Slater-Koster tight-binding scheme

To express the tight-binding Hamiltonian matrix in terms of QUAMBOs also allows us to
address the issue of the effects of orthogonality on the transferability of tight-binding models
from the first-principles perspective. We can construct orthogonal QUAMBOs from non-
orthogonal ones using the symmetrical orthogonalization method of Löwdin [22]. Starting
from the Bloch sum of non-orthogonal QUAMBOs

Ãα(k, r) = 1√
N

∑
n

exp(ik · rn)Aα(r − rn) (11)

the overlap matrix of Ãα(k, r) can be defined as

Sαβ(k) =
∑

n

exp(ik · rn)
〈
Aα(r)

∣∣ Aβ(r − rn)
〉

(12)

For each k-point, we perform the symmetrical orthogonalization method of Löwdin [22],

Ãorthog
α (k, r) =

∑
β

Sβα(k)−1/2 Ãβ(k, r) = 1√
N

∑
n,β

exp(ik · rn)Sβα(k)−1/2 Aβ(r − rn)

= 1√
N

∑
n

exp(ik · rn)
∑
k′,β

Sβα(k′)−1/2 Ak′
β (r − rn) (13)
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Then the orthogonal QUAMBOs can be expressed by

Ãorthog
α (r − rn) =

∑
k,β

Sβα(k)−1/2 Ak
β(r − rn) (14)

since 〈
Aorthog

α (r − rn)

∣∣∣ Aorthog
β (r − rn′)

〉

= 1

N

∑
k,k′

〈
Ãorthog

α (k,r)
∣∣∣ Ãorthog

β (k′, r)
〉

exp(ik · rn − ik′ · rn′)

= 1

N

∑
k

exp[ik · (rn − rn′)]δαβ

= δnn′δαβ (15)

Figure 5 shows the orthogonal s- and p- like QUAMBOs in Si diamond and fcc struc-
tures with three different bond lengths, respectively. In comparison with the non-orthogonal
QUAMBOs as shown in Fig. 1, the orthogonal QUAMBOs are much more tightly localized
on the center atoms, but some wavefuction components have been pushed out to the neighbor-
ing atoms in order to satisfy the orthogonal requirement. Using the orthogonal QUAMBOs,
the effective one-electron Hamiltonian matrix in the orthogonal QUAMBO representation
can be calculated and the orthogonal Slater-Koster hopping integrals can be extracted follow-
ing the decomposition procedures discussed in the non-orthogonal tight-binding case. The
results are plotted in Fig. 6. It is interesting to note that the orthogonal hopping parameters
as a function of interatomic distance decay much faster than their non-orthogonal coun-
terparts. Therefore, the interactions in the orthogonal tight-binding scheme are essentially
dominated by the first neighbor interactions which depend not only on the interatomic sepa-
rations but also on the coordination of the structures. In contrast to the non-orthogonal model,
the magnitudes of the orthogonal hopping parameters decrease as the coordination number
of the structure increases. These coordination-dependence of the hopping parameters and the
short-range nature of the interactions are qualitatively similar to the environment-dependent
tight-binding model of Wang et al. [23,24]. In their model, the coordination dependence
of the hopping parameters is considered through a bond-length scaling function, and the
short-ranged interactions is guaranteed by the screening function. However, though small,
the contributions from the second and higher neighbor hopping parameters are not entirely
negligible. In particular, some hopping parameters in the orthogonal TB scheme are found to
change sign at the second and higher neighbors. The sign changes in the second and higher
neighbor interactions can be attributed to the effects of the orthogonality which push some
orbital wavefunctions to the nearby atomic sites in order to satisfy the orthogonal condition
as one can see from Fig. 5. Such effects have not been noticed in previous tight-binding
models.

4 Large-scale electronic calculations using the QUAMBO scheme

The above development in QUAMBO construction and “exact” tight-binding matrix ele-
ments calculation enables us to perform tight-binding electronic-structure calculations for
large systems directly from the first-principles approach, without a fitting procedure to gen-
erate tight-binding parameters. A scheme based on this idea has been developed by Yao et al.
[25]. In this scheme, an overlap or tight-binding Hamiltonian matrix of a big system is built
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(b)

(a) 1.95 Å 2.35 Å 2.75 Å 

2.34 Å 2.74 Å 3.14 Å 

Fig. 5 Orthogonal s- and p- like QUAMBOs in Si (a) diamond structure in the (110) plane for three bond
lengths 1.95 Å, 2.35 Å and 2.75 Å, and (b) fcc structure in the (100) plane for three bond lengths 2.34 Å, 2.74
Å, and 3.14 Å

by filling in the n × n “exact” sub-matrices (where n is the number of minimal basis orbitals
for each atom) for every pair of atoms in the system. Note that the QUAMBOs and hence
the n × n sub-matrices of tight-binding are dependent on the environment around the pair
of atoms, the n × n “exact” sub-matrices has to be calculated for every pair of atoms in the
system. This can be done by first performing first-principles calculations for a relatively small
system with the same environment around the pair of atoms as if they are in the big systems,
then the n × n tight-binding matrix for this pair of atoms can be constructed following the
QUAMBO scheme. This approach will break the first-principles calculations of a big system
into calculations for many much smaller sub-systems. In many cases of our interest (e.g.,
defects in crystals), the bonding environment of many different atom pairs in the big system
may be essentially the same, therefore, first-principles calculations are needed only for a
limited number of smaller systems and an accurate tight-binding overlap and Hamiltonian
matrices for the big system can be constructed.



Tight-binding Hamiltonian from first-principles calculations 91

Fig. 6 Orthogonal tight-binding hopping integrals for Si as a function of interatomic distances in the dia-
mond, sc, and fcc structures obtained by decomposing the QUAMBO-based effective one-electron Hamiltonian
according to the Slater-Koster tight-binding scheme

The method was recently applied to studies the electronic structure of graphene nano-
ribbons [25]. For calculating the electronic structure of perfect armchair-grapheme nano-rib-
bons (A-GNRs) of different width, three different types of atoms in the nano-ribbons have
been identified as illustrated in Fig. 7 where atom a represents a carbon atom inside the
ribbon, atom b represents a carbon atom at the edges, and atom c is a hydrogen atom for
passivation. Only one training sample of a Na = 7 A-GNRs as shown in Fig. 7 and a single
first-principles calculation are needed to extract all the necessary “exact” 4 × 4 or 4 × 1
tight-binding matrices for each pair of a-a, a-b, b-b, and b-c atoms from these three type of
non-equivalent atoms, respectively. Fig. 8 shows the band structures and electronic density
of states (DOS) for A-GNR with the width Na = 7 and 13 (solid lines) from the QUAMBO-
tight-binding scheme using the small 4 × 4 and 4 × 1 tight-binding matrices generated from
the Na = 7 training cell as described above. The results from full first-principles calculations
(circle) were also shown for comparison. One can see that the QUAMBO-TB band struc-
tures agree very well with the full first-principles results up to 1eV above the Fermi-level.
The electronic band gap variation of a perfect A-GNR as a function of the width of the
nanoribbon has also been studied. Fig. 9 shows the oscillating behavior of band gap with a
period of Na = 3 obtained from our QUAMBO-TB scheme agree very well the results from
first-principles calculations [26–28]. The efficiency of the QUAMBO-TB scheme enable us
to calculate the electronic structure of much wider grapheme nano-ribbon, as one can also
see from Fig. 9 where the band gap of a nanoribbon up to 100 Å in width has been calculated
by our QUAMBO-TB method.
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Fig. 7 (Color online) A-GNR
with Na = 7 was chosen to be a
training cell. Dotted rectangle
indicates the unit cell. The left
arrow gives the periodical
direction. Atom a and b are
treated to be different due to
different local environment

Fig. 8 TB band structures based
on the QUAMBO-generated TB
parameters (solid line) com-
pared with first-principles DFT
results (circle) for A-GNR with
Na = 7 and 13 respectively

Fig. 9 (Color online) TB band
gap (solid lines) of A-GNR with
different size compared with
first-principles DFT results
(symbols)

The efficiency of the QUAMBO-TB scheme also enable us to study the electronic structure
of grapheme nano-ribbons with defects, which usually require a much large unit cell and it
is not easy to calculate using straightforward first-principles calculations. Yao et al. have
studied the electronic structures of a Na = 6 A-GNR with random edge defects on one edge
of the ribbon at different defect ratio [25]. The supercell used in the calculation contains 1200
carbon atoms and about 200 hydrogen atoms. The edge defects were generated by randomly
removing pairs of carbon atoms at one side of A-GNR as shown on Fig. 10(a). The carbon
atoms at the defected edge were again passivated by hydrogen atoms. For this defect system,
only some additional QUAMBO-TB matrix elements around the edge defects are needed to
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(a)

(b)

Fig. 10 (Color online) (a) Schematic view of a part of a supercell of Na = 6 A-GNR containing more than
one thousand atoms with edge defects randomly distributed on one side.. (b) The training cell used to generate
the additional TB parameters for the A-GNR with edge defects

be generated using a training cell as shown in Fig. 10(b), where the curved arrows indicate the
new matrix elements between these sites to be added to the existing QUAMBO-TB matrix
elements database from the Na = 7 training cell as discussed above. Based on this set of
QUAMBO-TB matrix elements from first-principles calculations performed on two small
unit cells, actuate tight-binding overlap and Hamiltonian matrices for the defected graphene
nano-ribbons of various defect concentration can be constructed, and the electronic structure
of A-GNRs with random edge defects can be studied. The results of band gap as the function
of defect ratio in the Na = 6 A-GNR are shown in Fig. 11. The random distribution of the
edge defects gives some variation of the band gap at each defect concentration; however, there
exists a general trend of the band gap with increasing defect concentration. The band gap
reaches its minimum (which is quite small) at the edge defect ratio of 70%. This implies that
edge defects have a significant effect on electronic structures of A-GNRs, which is consistent
with the indications from experiments [29].

5 Concluding remarks

Using the recently developed quasi-atomic minimal-basis-set orbitals, we show that accu-
rate tight-binding Hamiltonian and overlap matrix elements can be extracted from first-
principles calculations. Based on the information from the QUAMBO-TB matrix elements,
the transferability of two-center tight-binding models can be examined from a first-principles
perspective. Our studies show that tight-binding models with two-center approximation are
not adequate for describing the effective one-electron Hamiltonian matrix elements under
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Fig. 11 Band gap as a function of edge defects ratio in an Na = 6 A-GNR with random edge defects. A
perfect Na = 6 and Na = 5 A-GNRs corresponds to 0% and 100% defect ratio in this plot respectively

different bonding environments. While we discuss about Si and C systems in this article,
similar analyses have been carried out for other systems such as Al, Mo, Fe, SiC etc. [9,11,12].
Such analyses provide useful insights and guidance for generating accurate and transferable
tight-binding models. In particular, we show that environment-dependence of the tight-bind-
ing parameters need to be adequately described, and it may also be necessary to include
three-center integrals explicitly if we want to describe accurately the electronic structures
of complex systems by tight-binding approach. Although the QUAMBO-TB scheme can
help us gaining insight into how the tight-binding interactions are dependent on the envi-
ronment, how to model and parameterize such environment-dependence of the tight-binding
interaction still remains an open question and need much further investigation.

Another route to utilize the QUAMBO-TB scheme for calculating the electronic structure
of a large system is to use a divide-and-conquered strategy which divides the Hamiltonian
and overlap matrices of a big system into a set of much smaller n×n QUAMBO-TB matrices
of pair of atoms with different bonding environment. First-principles calculations are needed
for small number of atoms around the pairs, yet a QUAMBO-TB matrix for the whole large
system can be constructed accurately. We have shown that such “QUAMBO-on-demand”
approach has been quite successful for the studies of electronic structure in grapheme nano-
ribbons. One could construct a variety of training cells to generate a database of Hamiltonian
parameters for a catalogue of local bonding environments. This opens a promising avenue to
do electronic-structure simulations and total energy calculations for big systems directly from
first principles. The computational savings thus achieved is analogous to savings obtained
using Green’s function boundary condition near infinite half space, but it can handle complex
geometric arrangements. A sophisticated computational technology needs to be developed
in the future to automate this process.
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1 Introduction

The use of tight-binding formalism to parametrize electronic structures of crystals and mole-
cules has been a subject of continuous interests since the pioneer work of Slater and Koster
[1] more than a half of a century ago. Tight-binding method has attracted more and more
attention in the last 20 years due to the development of tight-binding potential models that
can provide interatomic forces for molecular dynamics simulations of materials [2–7]. The
simplicity of the tight-binding description of electronic structures makes the method very
economical for large-scale electronic calculations and atomistic simulations [5,9]. However,
studies of complex systems require that the tight-binding parameters be “transferable”, [4]
i.e., to be able to describe accurately the electronic structures and total energies of a mater-
ial in different bonding environments. Although tight-binding molecular dynamics has been
successfully applied to a number of interesting systems such as carbon fullerenes and carbon
nanotubes, [10,11] the transferability of tight-binding potentials is still the major obstruction
hindering the wide spread application of the method to more materials of current interest.

There are two major approximations made in a typical tight-binding representation of
effective one-electron Hamiltonian matrix or band structure based on the Slater-Koster theory
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[1]. One is the use of a fixed minimal basis set, i.e., the basis orbitals for a given atom type
are not allowed to vary according to structures or bonding environments, and another is the
two-center approximation which assumes that the crystal potential can be constructed as
a sum of spherical potentials centered on atoms, and contribution from atom k’s spherical
potential on matrix element between two basis orbitals on atoms i and j can be neglected.
Experiences from the tight-binding parametrizations have indicated that the transferability
of tight-binding models are limited by both approximations [7,12–14].

Several attempts to go beyond the above two approximations have been shown to improve
the transferability of the tight-binding descriptions of electronic structures and total energies
[12–14]. For example, Mehl and Papaconstantopoulos found that by incorporating a crystal-
field like term into the tight-binding model and allowing the on-site atomic energies to
vary according to the bonds surrounding of the atoms have significant improvement on the
accuracy and transferability of the tight-binding models to describe metallic systems [12].
Wang et al. introduced an environment-dependent tight-binding model that allows the tight-
binding parameters to vary not only with the interatomic distances but also according to the
bonding environment around the interacting pair of atoms, and showed that the environment-
dependent tight-binding model describes well not only the properties of the lower-coordinated
covalent but also those of higher-coordinated metallic structures of carbon and silicon [13,14].

In this article, we will review some progress on tight-binding modeling and simulations
based on the environment-dependent tight-binding model. In particular, application of the
EDTB potentials to the studies of complex systems such as vacancy diffusion and reconstruc-
tion in grapheme, dislocation climb and junction formation in carbon nanotubes, addimer
diffusion on Si surfaces as well as grain boundary and dislocation core structures of in silicon
will be discussed in more details.

2 Environment-dependent tight-binding potential model

2.1 General formalism of tight-binding potential model

The expression for the binding energy (or potential energy) of a system in a tight-binding
molecular dynamics simulation is given by

Ebinding = Ebs + Erep − E0 (1)

The first term on the right hand side of Eq. (1) is the band structure energy which is equal
to the sum of the one-electron eigenvalues εi of the occupied states given by a tight-binding
Hamiltonian HT B which will be specified later,

Ebs =
∑

i

fiεi (2)

where fi is the electron occupation (Fermi-Dirac) function and
∑

i fi = Nelectron.
The second term on the right hand side of Eq. (1) is a repulsive energy and can be expressed

as a functional of sum of short-ranged pairwise interactions,

Erep =
∑

i

f

⎛
⎝∑

j

φ
(
ri j

)
⎞
⎠ (3)
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where φi j is a pairwise repulsive potential between atoms i and j , and f is a function which
for example can be a 4th order polynomial [15] with argument x = ∑

j φ
(
ri j

)
,

f (x) =
4∑

n=0

cn xn (4)

If f (x) = x/2, the repulsive energy is just a simple sum of pairwise potential φ
(
ri j

)
. In

our environment-dependent tight-binding (EDTB) potential model that will be discuss in the
following, we adopt the expression of Eq. (4) for the repulsive energy Erep .

The term E0 in Eq.(1) is a constant which represents the sum of the energies of the
individual atoms. In our model, E0 is absorbed into Ebs and Erep respectively so that E0 is
set to be zero.

The tight-binding Hamiltonians HT B for the electronic structure calculation is expressed
as

HTB =
∑

i

∑
α=s,p

eiαa+
iαaiα+

∑
i, j

∑
α,β=s,p

hiα, jβa+
iαa jβ (5)

where eiα is the on-site energy of the α orbital on site i , a+
iα and aiα are the creation and

annihilation operators, respectively. hiα, jβ is the hopping integral between α and β orbitals
located at sites i and j , respectively. For a system described by only s and p orbitals, there
are four types of hopping integrals hssσ , hspσ , h ppσ , and h ppπ . In general, the Hamiltonian
matrix elements between the orbitals on sites i and j should be dependent on the vector
Rj − Ri. as well as the atomic configuration around these sites. However, under the two-
center approximation made by Slater and Koster [1], the integrals are dependent only on
the separation distance of the two atoms and can be parameterized by fitting to ab initio
band structures. Once the hopping integrals are obtained, the TB Hamiltonian matrix can be
constructed by linear combination of the hopping integrals using the direction cosines of the
vector

(
Rj − Ri

)
[1]

2.2 EDTB potential model formalism

In our EDTB potential model for carbon and silicon [13,14], the minimal basis set of sp3

orbitals is taken to be orthogonal. The tight-binding Hamiltonian HT B takes the form as in
the Slater-Koster theory discussed above, but the effects of orthogonalization, three-center
interactions and the variation of the local basis set with environment are taken into account
empirically by renormalizing the interaction strength between atom pairs according to the
surrounding atomic configurations. The TB hopping parameters and the repulsive interaction
between atoms i and j depend on the environments of atoms i and j through two scaling
functions. The first one is a screening function that is designed to weaken the interactions
between two atoms when there are intervening atoms between them. Another is a bond-
length scaling function which scales the interatomic distance (hence the interaction strength)
between the two atoms according to their effective coordination numbers. Longer effective
bond lengths are assumed for higher coordinated atoms.

Specifically, the hopping parameters and the pairwise repulsive potential as the function
of atomic configurations are expressed as

h
(
ri j

) = α1 R−α2
i j exp

(
−α3 Rα4

i j

) (
1 − Si j

)
(6)
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In Eq. (6), h
(
ri j

)
denotes the possible types of interatomic hopping parameters

hssσ , hspσ , h ppσ , h ppπ and pairwise repulsive potential φ
(
ri j

)
between atoms i and j . ri j

is the real distance and Ri j is a scaled distance between atoms i and j . Si j is a screening
function. The parameters α1, α2, α3, α4, and parameters for the bond-length scaling function
Ri j and the screening function Si j can be different for different hopping parameters and the
pairwise repulsive potential. Note that expression Eq. (6) reduces to the traditional two-center
form if we set Ri j = ri j and Si j = 0.

The screening function Si j is expressed as a hyperbolic tangent (tanh) function (i.e.,
Si j = tanh

(
ξi j

)

Si j = exp
(
ξi j

) − exp
(−ξi j

)
exp

(
ξi j

) + exp
(−ξi j

) (7)

with argument ξi j given by

ξi j = β1

∑
l

exp

[
−β2

(
ril + r jl

ri j

)β3
]

(8)

where β1, β2, and β3 are adjustable parameters. Maximum screening effect occurs when
atom l is situated close to the line connecting atoms i and j (i.e., ril +r jl is a minimum). This
approach allows us to distinguish between first and further neighbor interactions without
explicit specification. This is well-suited for molecular dynamics simulations where it is
difficult to define exactly which atoms are first-nearest neighbors and which are second-
nearest neighbors.

The bond-length scaling function Ri j scales the interatomic distance between two atoms
according to their effective coordination numbers. Longer effective bond lengths are assumed
for higher coordinated atom pairs therefore interaction strength in larger-coordinated struc-
tures is reduced. The scaling between the real and effective interatomic distance is given
by

Ri j = ri j
(
1 + δ1
 + δ2


2 + δ3

3) (9)

where 
 = 1
2

(
ni −n0

n0
+ n j −n0

n0

)
is the fractional coordination number relative to the

coordination number (n0) of the diamond structure, averaged between atoms i and j . The
coordination number can be modeled by a smooth function,

ni =
∑

j

(
1 − Si j

)
(10)

with a proper choice of parameters for Si j which has the form of the screening function
described above (Eq. (7)). The parameters for the coordination number calculations in carbon
and silicon will be given in next subsections, respectively.

Besides the hopping parameters, the diagonal matrix elements are also dependent on the
bonding environments. The expression for the diagonal matrix elements is

eλ,i = eλ,0 +
∑

j


eλ

(
ri j

)
(11)

where 
eλ

(
ri j

)
takes the same expression as Eq. (6), λ denotes the two types of orbitals

(s or p). es,0 and ep,0 are the on site energies of a free atom.
Finally, the repulsive energy term is expressed in a functional of the sum of pairwise

interactions as defined in Eq. (4) in the previous section.
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To ensure that all interactions go to zero smoothly at the given cutoff distance rcut, all the
distance dependent parameters in the model are multiplied by an attenuation function of the
form of cos2 θ with

θ = π

2

r − rmatch

rcut − rmatch
(12)

when the distance is rmatch < r < rcut. This attenuation function can guarantee that the
distance dependent parameters and their first derivatives are continuous at rmatch and go to
zero at rcut.

3 EDTB potential for carbon and its applicationa

3.1 EDTB potential for carbon

Carbon is a strong covalently bonded material best described by the tight-binding scheme.
In 1996, Tang, Wang, Chan, and Ho developed an environment-dependent tight-binding
potential for carbon following the formalism described in the previous subsection [13]. The
parameters of this potential are given in Tables 1 and 2. In addition to the parameters listed in
the tables, the parameters for calculating the coordination number of carbon using Eq. (10) are
β1 = 2.0, β2 = 0.0478, β3 = 7.16. The cutoff distance for the interaction is rcut = 3.4Å and
rmatch = 3.1Å (see Eq. (12). As shown in Fig. 1, the environment-dependent tight-binding
potential model for carbon describes very well the binding energies not only for the covalent
(diamond, graphite, and linear chain) structures, but also for the higher-coordinated metallic
(bcc, fcc, and simple cubic) structures, as compared to the two-center tight-binding model
developed by us earlier [15]. The EDTB potential is also more accurate for elastic constants
and phonon frequencies of diamond and graphite structures as compare to the two-center
tight-binding model (Tables 3, 4).

Table 1 The parameters of the EDTB model for carbon

α1 α2 α3 α4 β1 β2 β3 δ

hssσ −8.9491 0.8910 0.1580 2.7008 2.0200 0.2274 4.7940 0.0310

hspσ 8.3183 0.6170 0.1654 2.4692 1.0300 0.2274 4.7940 0.0310

h ppσ 11.7955 0.7620 0.1624 2.3509 1.0400 0.2274 4.7940 0.0310

h ppπ −5.4860 1.2785 0.1383 3.4490 0.2000 8.500 4.3800 0.0310

φ 30.0000 3.4905 0.00423 6.1270 1.5035 0.205325 4.1625 0.002168


es ,
ep 0.1995275 0.029681 0.19667 2.2423 0.055034 0.10143 3.09355 0.272375

The TB hopping integrals are in the unit of eV and the interatomic distances are in the unit of Å. φ is
dimensionless

Table 2 The coefficients (in unit of eV) of the polynomial function f (x) for the EDTB potential for carbon

c0 c1 c2 c3 c4

12.201499972 0.583770664 0.336418901 × 10−3 −0.5334093735 × 10−4 0.7650717197 × 10−6
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Fig. 1 Cohesive energies as a function of nearest neighbor distance for carbon in different crystalline structures
calculated using the environment-dependent TB model are compared with the results from the first-principles
DFT-GGA calculations. The solid curves are the TB results and the dashed curves are the GGA results (From
Ref. [13])

Table 3 Elastic constants,
phonon frequencies and
Grünneisen parameters of
diamond calculated from the
XWCH-TB model [15] and the
environment-dependent TB
(EDTB) model [13] are compared
with experimental results [16]

Elastic constants are in units of
1012dyn/cm2 and the phonon
frequencies are in terahertz

XWCH EDTB Experiment

a(Å) 3.555 3.585 3.567

B 4.56 4.19 4.42

c11–c12 6.22 9.25 9.51

c44 4.75 5.55 5.76

vLT O () 37.80 41.61 39.90

vT A(X) 22.42 25.73 24.20

vT O (X) 33.75 32.60 32.0

vL A(X) 34.75 36.16 35.5

γLT O () 1.03 0.93 0.96

γT A(X) −0.16 0.30

γT O (X) 1.10 1.50

γL A(X) 0.62 0.98

Table 4 Elastic constants, phonon frequencies and Grüneisen parameters of graphite calculated from the
XWCH-TB model [15] and the environment-dependent TB (EDTB) model [13] are compared with experi-
mental results [17,18]

XWCH EDTB Experiment

c11–c12 8.40 8.94 8.80

E2g2 49.92 48.99 47.46

A2u 29.19 26.07 26.04

γ
(
E2g2

)
2.00 1.73 1.63

γ (A2u) 0.10 0.05

Elastic constants are in units of 1012dyn/cm2 and the phonon frequencies are in terahertz
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Fig. 2 Radial distribution functions G(r) of the tetrahedral amorphous carbon structure generated by tight-
binding molecular dynamics using the environment-dependent TB potential (solid curve) are compared with
the neutron scattering data of Ref. [22] (dotted curve). The theoretical result has been convoluted with the ex-
perimental resolution corresponding to the termination of the Fourier transform at the experimental maximum
scattering vector Qmax = 16 Å−1. (From Ref. [25])

Another example that demonstrates the better transferability of the EDTB model over
the two-center model for complex simulations is the study of diamond-like amorphous car-
bon. Diamond-like (or tetrahedral) amorphous carbon consists of mostly sp3 bonded carbon
atom produced under highly compressive stress which promotes the formation of sp3 bonds,
in contrast to the formation of sp2 graphite-like bonds under normal conditions [19–22].
Although the two-center XWCH carbon potential can produce the essential topology for
the diamond-like amorphous carbon network [23], the comparison with experiment is not
quite satisfactory as one can see from Fig. 2. There are also some discrepancies in ring
statistics between the two-center potential generated and ab initio molecular dynamics gen-
erated diamond-like amorphous carbon model [24]. Specifically, a small fraction of 3 and
4-membered rings observed in the ab initio model is absent from the results of the two-center
tight-binding model. These subtle deficiencies are corrected when the EDTB potential is
used to generate diamond-like amorphous carbon [25,26]. The radial distribution function
of the diamond-like a-c obtained from the EDTB potential is in much better agreement with
experiment as one can see from Fig. 2.

3.2 TBMD simulation of vacancy diffusion and reconstruction in grapheme

Recently, the EDTB carbon potential by Tang et al. [13] has been further improved by Lee et al.
by incorporating an angle dependence factor into the repulsive energy to describe correctly
the diffusion of an adatom and a vacancy in carbon nanotubes and graphene [27–30]. The
modified EDTB carbon potential has described successfully the reconstruction of vacancy
defects in a graphene and carbon nanotubes [27–30].

Vacancy defects in graphene layers, which are usually generated by ion or electron irradi-
ations of graphite or carbon nanotubes, have been an interesting subject of many studies, yet
the dynamics and reconstruction of the defects in graphene layer are still not well understood
[31–35]. Figure 3 illustrates the snapshots of the atomic processes of diffusion, coalescence,



104 C.-Z. Wang etal.

Fig. 3 Atomic processes from the TBMD simulations for vacancy diffusion in a graphene layer. (a) 0 K (at
time t = 0 ps), (b) ∼3000 K (t = 2.7 ps), (c) ∼3000 K (t = 3.0 ps), (d) ∼2900 K (t = 3.3 ps), (e) ∼3000 K
(t = 5.0 ps), (f) ∼3100 K (t = 6.0 ps), (g) ∼3100 K (t = 6.5 ps), and (h) ∼3800 K (t = 125 ps). White arrows
indicate the direction for the carbon atom to jump in the next step. The atoms involved in the diffusion process
are labeled with the numbers. (From Ref. [27])

and reconstruction of vacancy defects in graphene layers during the simulation using mole-
cular dynamics with the improved EDTB carbon potential. The TBMD simulations in Fig. 3
shows that two single vacancies diffuse and coalesce into a 5-8-5 double vacancy at the tem-
perature of 3000 K, and it is further reconstructed into a new defect structure, the 555–777
defect, by the Stone-Wales type transformation at higher temperatures. The stability of the
defect structures observed in the TBMD simulations is further examined by first-principles
calculations which show that the graphene layer containing the 555–777 defect, as shown
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Fig. 4 Atomic processes from the TBMD simulations of four vacancy defects in a graphene layer. (a) 0 K (at
time t = 0 ps); (b) ∼3000 K (t = 5.5 ps); (c) ∼3000 K (t = 52.6 ps); (d) ∼3900 K (t = 86.8 ps); (e) ∼3700 K
(t = 274.4 ps); (f) ∼3700 K (t = 281.6 ps)

in Fig. 3h, is most stable and its formation energy is lower than that of the 5-8-5 defect by
0.91 eV. The formation energy of the two separated single vacancies (Fig. 3a) is much higher
than that of the 555–777 defect by 8.85 eV.

The simulations are also performed for four single vacancies in a graphene sheet. As
shown in Fig. 4 the four single vacancies in the graphene layer first coalesce into two double
vacancies, each consists of a pentagon-heptagon-pentagon (5-8-5) defective structure. While
one of the 5-8-5 defects further reconstructs into a 555–777 defect, which is composed of
three pentagonal rings and three heptagonal rings, the another 5-8-5 defect diffuses toward to
the reconstructed 555–777 defect. During the 5-8-5 defect diffusion process, three interest-
ing mechanisms, i.e., “dimer diffusion”, “chain diffusion”, and “single atom diffusion”, are
observed. Finally, the four single vacancies reconstruct into two adjacent 555–777 defects,
forming a local haeckelite structure proposed by Terrones et al. [36].
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3.3 TBMD simulation of junction formation in carbon nanotubes

The improved EDTB carbon potential has also been applied in tight-binding molecular dy-
namics simulation to study the junction formation through self-healing of vacancies, in single-
walled carbon nanotubes (SWCNT) [29,30]. Figure 5 shows the atomic details of vacancy
reconstruction in a (16,0) SWCNT with a six-vacancy hole by the TBMD simulation [29,30].
The TBMD simulation is performed starting from a relaxed six-vacancy hole geometry as
shown in Fig. 5a. In the early stage of the simulation, the SWCNT is heated up to high
temperature through a constant-temperature molecular dynamics simulation. It was found
that rearrangement of carbon atoms around the vacancy hole starts to occur near 4500 K at
the simulation time of 18 ps through the rotation of carbon dimers, i.e., Stone-Wales trans-
formation. After 19 ps of the simulation time, three hexagons at the lower left corner of the
vacancy hole (those containing the atoms 1-4 in Fig. 5b) are recombined into a pentagon-
octagon-pentagon defect by successive Stone-Wales transformations of the dimers 1-2 and
3-4 as shown in Fig. 5b. After the simulation time of 20 ps, another two hexagons (containing
the atoms 5-7) on the other side of the vacancy hole are also reconstructed into one pentagon
and one heptagon by the Stone-Wales transformation of the dimer 5-6. In order to prevent
the evaporation of carbon atoms, the system is then cooled down to 3,000 K for 4 ps and
the vacancy hole is healed during this simulation period as shown in Fig. 5c. The structure
immediately after the healing process consists of four pentagons and four heptagons with a
two-fold rotation symmetry. The pentagon a and b and the heptagon c and d are related to the
pentagon e and f and the heptagon g and h, respectively through the 2-fold axis which goes
through the center of the carbon bond between atom 2 and 6. After the simulation time of
24 ps, the system is heated up again to 4,500 K for 7 ps and another structural reconstruction
among the defects is observed. As shown in Fig. 5c and d, as the result of a Stone-Wales
transformation of the dimer 1-3, the two heptagons (c and d in Fig. 5c) and one pentagon (b
in Fig. 5c) on the left side of the 2-fold symmetry axis are transformed into three hexagons
while one hexagonal ring containing the carbon atom 3 is transformed into a heptagonal ring.
Finally a pentagon-heptagon pair defect, which has been observed in the experiment after
the irradiation [37], is emerged through the reconstruction process. Since the dimer 5-7 is
equivalent to the dimer 1-3 due to the 2-fold symmetry at the stage of Fig. 5c, the dimer 5-7 is
expected to undergo a similar Stone-Wales transformation. Indeed, after 41 ps of simulation
time, the Stone-Wales transformation happens to the carbon dimer 5-7. Consequently another
pentagon-heptagon pair defect is formed at the right side of the 2-fold axis in the same way
as the formation of the previous pentagon-heptagon pair on the left side of the 2-fold axis.
The structure with two pentagon-heptagon pairs in Fig. 5e is very stable energetically and
can sustain its shape without any changes for more than 20 ps in the simulation even at a
temperature ∼4,500 K. At the final stage of the simulation, the system is gradually cooled
down to 0 K in 12.5 ps and the structure with two pentagon-heptagon pair defects is found to
maintain without any additional reconstruction as shown in Fig. 5f.

Because each pentagon-heptagon is a topological dislocation defect of the grapheme
sheet, Fig. 5 in fact shows an elementary dislocation climb process. Unlike dislocation glide
[38,39] which conserves the number of atoms while relaxing stress, dislocation climb is
a non-conservative process that requires removal or addition of atoms by radiation knock-
out, vacancy diffusion, evaporation, etc. Fig. 5 is akin to the collapse of a vacancy disk
and the formation of Frank edge dislocation loop in metals [40]. We expect that once the
edge dislocation dipole (two pentagon-heptagon of opposite polarity) is formed, as shown in
Fig. 5, further mass removal and chirality change can occur in a steady fashion by a pentagon-
heptagon defect moving up the tube axial direction. Dislocation climb is also stress-coupled,
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Fig. 5 Atomic processes from the TBMD simulations of a (16, 0) SWCNT with six vacancies. (a) 0 K (at time
t=0 ps); (b) ∼4,500 K (t ≈ 20.2 ps); (c) ∼3,100 K (t ≈ 23.2 ps); (d) ∼4,400 K (t ≈ 32.3 ps); (e) ∼4,700 K
(t ≈ 41.5 ps); (f) ∼90 K (t ≈ 53.9 ps). The carbon atoms on the rear side of the tube are concealed in figures in
order to see the reconstruction of vacancies more clearly. Dotted circles in (A) indicate the positions of the six
carbon vacancies in the perfect (16, 0) SWCNT. Yellow colors indicate carbon atoms and bonds in hexagonal
rings. Blue colors indicate carbon atoms and bonds in non-hexagonal rings. See the text for small letters in
(C) and numbers. (From Ref. [29])

which means tensile force on the nanotube can aid/impede climbing motion of the pentagon-
heptagon and mass removal/addition, which may shift the semiconductor-metal junctions at
high temperatures.

Figure 6 shows the front view of the initial and final structure from the TBMD simu-
lation. The vacancy hole in the initial structure is healed up in the final structure and the
radius of the tube in the middle section is reduced. The diameter and chirality in the center
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Fig. 6 Front views of initial and
final structure from TBMD
simulation for (16, 0) SWCNT
with six vacancies. The initial
structure corresponds to Fig. 5a.
The final structure corresponds to
Fig. 1f. (From Ref. [29])

part of the final structure is found to be (15, 0), which is one of the metallic SWCNTs. In
order to understand the effects of the vacancy cluster size on the formation of junctions, they
have also performed the TBMD simulation to study the junction formation dynamics of a
(16, 0) SWCNT containing a hole of ten vacancies. The formation of two pentagon-heptagon
pair defects is also observed, with the mechanism similar to that in the simulation of the
(16, 0) SWCNT with six vacancies discussed earlier in this subsection. The most interesting
difference between the simulation results of the ten and six vacancies is that the length of the
(15, 0) tube section is longer with ten vacancies. These simulation results demonstrate that
intramolecular semiconductor-metal junctions of SWCNTs can be produced by irradiation
followed by a proper annealing which allow various vacancy defects generated by the irradi-
ation to reconstruct into the pentagon-heptagon pairs at the junction. These simulations also
suggest a mechanism for synthesis of carbon nanotube semiconductor-metal intramolecular
junctions with specific locations and controlled sizes and show the possibility of application
to nanoelectronic devices.

4 EDTB potential for silicon and its applications

4.1 EDTB potential for silicon

Although the diamond structure of Si also exhibits covalent sp3 bonding configurations, the
higher coordinated metastable structures of Si are metallic and with energies close to that of
the diamond structure. Therefore, Si can be metallic under high pressures or at high temper-
atures. For example, the coordination of the liquid phase of Si is close to the coordination of
the metallic structures (i.e., 6.5). These properties of Si pose a challenge for accurate tight-
binding modeling of Si: it is difficult to describe the low-coordinated covalent structures and
high-coordinated metallic structures with good accuracy using one set of tight-binding para-
meters. With the environment-dependent tight-binding formalism, Wang, Pan, and Ho show
that this difficulty can be overcome [14]. The EDTB Si potential developed by them gives
excellent fit to the energy vs interatomic distance of various silicon crystalline structures
with different coordination as shown in Fig. 7. The EDTB Si potential also describes well
the structure and energies of Si surfaces in addition to other bulk properties such as elastic
constants and phonon frequencies [14]. These results can be seen from Tables 5 and 6. The pa-
rameters of the EDTB Si potential are listed in Tables 7 and 8. The parameters for calculating
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Fig. 7 cohesive energies as a function of nearest neighbor distance for silicon in different crystalline structures
calculated using the environment-dependent TB model are compared with the results from the first-principles
DFT-LDA calculations. The solid curves are the TB results and the dashed curves are the LDA results. (From
Ref. [14])

the coordination number of Si using the Eq. (10) are β1 = 2.0, β2 = 0.02895, β3 = 7.96284.
The cutoff distances for the interaction are rcut = 5.2 Å and rmatch = 4.8 Å (see Eq. (12)).

A useful benchmark for Si interatomic potentials is a series of model structures for the
� = 13{510} symmetric tilt boundary structures in Si [41]. Eight different structures as
indicated in the horizontal axis of Fig. 8 have been selected for the calculations. These
structures were not included in the database for fitting the parameters. The structures are
relaxed by steepest-decent method until the forces on each atom were less than 0.01 eV/Å.
The energies obtained from the calculations using the EDTB Si potential are compared with
the results from ab initio calculations, and from two-center Si tight-binding potentials [42],
and classical potential calculations [43,44] as shown in Fig. 8. The energy differences for
different structures predicted by the EDTB calculations agree very well with those from the
ab initio calculations. The energies from the two-center tight-binding potentials and classical
potentials do not give the correct results in comparison with the results from ab initio and
environment tight-binding potential calculations even though the atoms in the structures are
all four-fold coordinated.

4.2 TBMD simulation studies of addimer diffusion on Si(100) surface

The EDTB silicon potential has been used to investigate the diffusion pathways and energy
barriers for Si addimer diffusion along the trough and from the trough to the top of dimer row
on Si(100) surface [45,46]. Diffusion of Si addimers on the Si(100) surface have attracted
numerous experimental and theoretical investigations [47–52] because it plays an essential
role in the homoepitaxial growth of silicon films.

Clean Si(100) surfaces exhibit a c(4×2) reconstruction in which the surface Si atoms form
a row of alternating buckled dimers along the [010] direction [53,54]. There are four principal
addimer configurations [47,51] on the Si(100) as shown in Fig. 9. An addimer can sit on top
of a dimer row (A and B) or in the trough between two rows (C and D), with its axis oriented
either parallel (A and D) or perpendicular (B and C) to the dimer-row direction. All four
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Table 6 The coefficients of the polynomial function f (x) for the EDTB potential of Si

c0 (eV ) c1 c2

(
eV −1

)
c3

(
eV −2

)
c4

(
eV −3

)

x ≥ 0.7 −0.739 × 10−6 0.96411 0.68061 −0.20893 0.02183

x < 0.7 −1.8664 6.3841 −3.3888 0.0 0.0

Table 7 Elastic constants and phonon frequencies of silicon in the diamond structure calculated from the two-
center TB model [42] and the environment-dependent TB (EDTB) model [14] are compared with experimental
results [16]

Two-center TB EDTB Experiment

a(Å) 5.450 5.430

B 0.876 0.90 0.978

c11–c12 0.939 0.993 1.012

c44 0.890 0.716 0.796

vLT O () 21.50 16.20 15.53

vT A(X) 5.59 5.00 4.49

vT O (X) 20.04 12.80 13.90

vL A(X) 14.08 11.50 12.32

Elastic constants are in units of 1012dyn/cm2 and the phonon frequencies are in terahertz

Table 8 Surface energies of the
silicon (100) and (111) surfaces
from the EDTB Si potential [14]


E is the energy relative to that
of the (1 × 1)-ideal surface. The
energies are in the unit of
eV/(1 × 1)

Structure Surface energy 
E

Si(100)

(1 × 1)-ideal 2.292 0.0

(2 × 1) 1.153 −1.139

p(2 × 2) 1.143 −1.149

c(4 × 2) 1.148 −1.144

Si(111)

(1 × 1)-ideal 1.458 0.0

(1 × 1)-relaxed 1.435 −0.025

(1 × 1)-faulted 1.495 0.037√
3 × √

3 − t4 1.213 −0.245√
3 × √

3 − h3 1.346 −0.112

(2 × 1)-Haneman 1.188 −0.270

(2 × 1)-π -bonded chain 1.138 −0.320

(7 × 7)-DAS 1.099 −0.359

configurations have been identified in scanning tunneling microscopy (STM) experiments
[55]. Addimer configuration A is the lowest energy configuration. The relative energies of
the four addimer configurations A, B, C, and D are 0.0, 0.02, 0.28, and 1.02 eV respectively
from the tight-binding calculations as compare to 0.0, 0.03, 0.24, and 0.91 eV respectively
from first principles calculations.
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Fig. 8 Energies of the � = 13{510} symmetric tilt boundary structures in Si. Eight different structures as
indicated in the horizontal axis were selected for calculations. The energies are relative to that of the structure
M which has been identified by experiment. The energies obtained from the calculations using the EDTB Si
potential are compared with results from ab initio calculations, and from two-center Si tight-binding potentials
[42], and classical potential calculations (classical I [43] and classical II [44]). The results of EDTB, ab initio,
and classical I are taken from Ref. [41]

Experimental evidence and theoretical calculations [49,52] suggest that the diffusion of
addimers has an anisotropic property: they prefer diffusion along the top of the dimer rows.
However, using the atom tracking method [56], addimer diffusion along the troughs as well
as crossing the trough to the next dimer row at a temperature of 450 K, in addition to the
diffusion along the top of the dimer rows has also been observed [57]. The energy barrier for
addimer to diffuse along the trough and to leave the trough to the top of the dimer row are
estimated by STM experiment to be 1.21 ± 0.09 eV and 1.36 ± 0.06 eV respectively [57].

Because the unit cell used in such calculations contains a large number of atoms, a com-
prehensive search for the low energy barriers diffusion pathway is very expensive using ab
initio methods. Here we have employed tight-binding molecular dynamics calculations to
explore the possible diffusion pathways and select plausible candidate pathways for study by
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Fig. 9 Schematic drawing of the four principal dimer configurations on Si(100). Black circles represent the
Si addimers, the gray circles represent the dimer atoms of the Si(100) substrate, and the open circles represent
the subsurface atoms

more accurate ab initio calculations. The tight-binding studies reveal new pathways which
have diffusion barriers in excellent agreement with the experimentally estimated values. The
EDTB silicon tight-binding model reproduces excellently the experimental observation and
the ab initio calculation results for addimer diffusion and opens up the possibility of studying
surface dynamics on the Si(100) surface by using tight-binding molecular dynamics.

4.2.1 Diffusion between trough and the top of dimer row

Most of the previous calculations consider a straightforward pathway for addimer diffusion
from trough to the top of dimer row by a direct translational motion of perpendicular addimer
from C to B (path I). The energy as the function of addimer displacement along this pathway
obtained by the tight-binding calculations is plotted in Fig. 10a (solid line) which shows that
the energy barrier for diffusion of an addimer from C to B along this pathway is 1.72 eV,
much larger than the experimental value of 1.36 eV.

The energy barrier for the diffusion of a parallel addimer from D to A has also been
investigated. The energy as a function of addimer displacement for D to A along the straight
pathway is plotted in Fig. 10b (solid line). The diffusion barrier from D to A is only 0.88 eV,
which is much smaller than the experimental value of 1.36 eV. However, since the energy of
the D configuration is 0.74 eV higher than that of the C configuration, the total energy barrier
for diffusion from C to A via D (path II) is at least 1.62 eV which is also much higher than
the experimental value.

Using tight-binding molecular dynamics as a search engine, Lee el al. discovered an
unusual diffusion pathway for a Si addimer to diffuse between trough and the top of the
dimmer row [45]. This pathway (path III) consists of rotation of the addimer along the dif-
fusion pathway as shown in Fig. 11. The energy along this pathway is plotted in Fig. 10c
(solid line). The tight-binding calculation gives an energy barrier of 1.37 eV for addimer
diffusion from C to B, in excellent agreement with the experimental value of 1.36 eV [57].
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Fig. 10 The total energy
variations for (a) the direct
translational diffusion of a
perpendicular addimer (path I),
(b) the direct translational
diffusion of a parallel addimer
(path II), and (c) the diffusion
consisting of rotation of addimer
(path III). In each figure, solid
lines represent the calculations by
our tight-binding model and
dashed lines represent the LDA
calculations. Energies are
compared with respect to the
energy of the dimer configuration
A in Fig. 9. The abscissa is the
position of the center of the
addimer from the center-line of
the trough to the center-line of
the dimer row. Numbers over
points in figure (c) indicate the
geometries in Fig. 11

The diffusion containing rotation is more energetically favorable than the translational dif-
fusion of the perpendicular addimer (path I) because a smaller number of broken bonds is
involved along path III.

The above results from the tight-binding calculations are further confirmed by first-
principles calculations as one can see the comparison plotted in Fig. 10.
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Fig. 11 Principal geometries by LDA calculations on the diffusion pathway III. Black circles represents the
Si addimer, the gray circles represent the dimer atoms of the Si(100) substrate and the open circles represent
the subsurface atoms. Numbering of each geometry corresponds to the number over points in Fig. 10c

4.2.2 Diffusion along the trough between the dimmer rows

Diffusion of an addimer can be viewed as a combination motion of the two individual adatoms
as illustrated in top left corner of Fig. 12. The energy surface of the two silicon adatoms
diffusion along the trough between the dimer rows are calculated using the environment-
dependent silicon tight-binding potential. A contour plot of the resulting energy surface is
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shown in Fig. 12. The ζ and ξ axes of the contour indicate the displacements of each adatom
along the trough from their initial positions in geometry C, the most stable position of the
addimer in the trough.

The tight-binding calculations resolve three local minima M1, M2, and M3 on the left
hand side of the symmetry line PQ and two saddle points, one on the symmetry line PQ
(S1) and another below the line PQ (S2). The calculations also show that addimer diffusion
along the trough without dissociation or rotation (along the line C-Q-C′) has very high

Fig. 12 The tight-binding energy contour for a dimer diffusing along the trough. Energies are in eV. The
ζ and ξ axes are the displacements along the diffusion direction of the two adatoms, as illustrated in figure
above (Black circles indicate the addimer, opaque circles indicate the substrate dimer atoms, and gray circles
indicate the initial position of addimer). C is the initial position for the addimer, P indicates completely
separated adatoms on neighboring sites, C′ indicates the addimer diffused to the neighboring site from the
initial position. Line CC′ indicates the translational diffusion path without any rotation of the addimer. The
line connecting Q to P indicates that the addimer on the line connecting surface dimers separates into two
atoms on neighboring sites without any translation of the center of the addimer. The solid lines indicate the
diffusion pathways by the tight-binding calculation. Small black spots and large black spots on the lines
indicate local minima and saddle points, respectively. The dashed lines indicate the diffusion pathways by the
LDA calculation. Note that the dashed lines are not related to the energy contour in this figure and are related
to the position of adatoms



Atomistic simulation studies of complex carbon and silicon systems 117

energy barrier of about 1.7 eV. From the resulting energy contour, one can identify two
paths of diffusion which have similar low energy barriers. One path (1) follows the lines
C → M1 → M2 → S2 → P → S2′ → M2′ → M1′ → C′. The other path (2) follows
the lines C → M1 → M2 → S1 → M2′ → M1′ → C′. The local minima M1 and M2,
which are surrounded by small energy barriers, are on the paths for addimer diffusion from
C to C′. The energy barrier for path 1 is 1.26 eV. The addimer on path 1 dissociates into
two monomers from M2 to P and reform at M2′. This pathway is similar to the dissociation
pathway modeled by Goringe et al. [58]. The highest energy barrier along path 2 is 1.27 eV
which is very similar to the energy barrier of path 1. However, the addimer along path 2
does not dissociate but instead rotates to minimize the energy barrier. Starting from the two
best candidates for pathways predicted by the tight-binding calculations, more accurate first-
principles calculations have been applied to further optimize the pathways and diffusion
barriers. While the diffusion pathways after the optimization by first-principles calculations
are slightly different from the tight-binding predictions, they are essentially similar and with
almost identical diffusion barriers. It should be noted that without the comprehensive tight-
binding calculations to search for the possible diffusion pathway, it would be very difficult for
first-principles calculation to find out the correct diffusion paths and barriers for this complex
system.

4.3 TBMD study of dislocation core structure in Si

The EDTB potential of Si also been applied to the study of dislocation in Si, a much more
complex system. Crystalline structure of Si possess two types of (111) planes for inelastic
shear, a widely separated shuffle-set (blue in Fig. 13 and a compact glide-set (red). In 2001,
experiment using transmission electron microscopy (TEM) [59] show that at low temperature
and high pressure, long undissociated screw dislocations appear, which cross-slip frequently.
Suzuki et al. proposed [60,61] that these may be shuffle-set screw dislocations, centered at A

Fig. 13 Slip planes in Si, and likely centers of undissociated screw dislocations
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Fig. 14 (a) A core, and (b) period-doubled C core configurations. The color of atoms represents the local
atomic shear strain

and B in Fig. 13 based on energy calculations using empirical classical potentials. Pizzagalli
et al. then performed DFT calculations to show that the A core (Fig. 14a) has lower energy
[62] than B, as well as a single-period glide-set full screw dislocation C.

Using tight-binding calculation with the EDTB silicon potential, we are able to investi-
gate the core structure of this dislocation with larger number of atoms and with a calculation
supercell that has more layers in the direction along the dislocation line [63]. We found that
the C core has lower energy than A after period-doubling reconstruction in the direction
along the dislocation line. This double-period C core structure is shown in Fig. 14b. Since
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C can cross-slip between two glide-set planes, it satisfies all the experimental observations
to date. We believe that the double-period C configuration, previously unstudied, may also
play important transient roles in partial dislocation constriction and cross-slip at high tem-
perature, and perhaps ductile-to-brittle transition [64]. The prediction from the tight-binding
calculations are further confirm by first-principles calculations. We find that after the period-
doubling reconstruction, the C core energy is lower than A by 0.16 eV/Å in TB, and 0.14 eV/Å
in DFT. We also find that the double-period C is energetically favorable due to the electronic
structure contribution. The single-period C core has a semi-metallic chain of dangling bonds
which introduces electronic states near the Fermi level. This chain of dangling bonds is sus-
ceptible to Peierls distortion [65,66], leading to a period-doubling reconstruction along the
chain (Fig. 14b) that opens up a wide band gap. Such an electronic mechanism is missed in
the classical potential calculations.

5 Future perspective

Success of the EDTB modeling and simulations are not limited to the carbon and silicon
systems as we discussed above. Its success has also been extended to the transition metal
systems such as Mo [67–71], simple metal systems such as Al [72,73], and Pb [74], as well
as two components systems such as Si-H [75].

In spite of these progresses, the development of environment-dependent tight-binding
models so far still relies on empirical fitting to the band structure and total energies of some
standard structures. The fitting procedure is quite laborious if we want to study a broad range
of materials, especially in compound systems where different sets of interactions have to be
determined simultaneously from a given set of electronic structures. Moreover, fundamental
questions such as how and to what extent the approximations used in the Slater-Koster scheme
influence the transferability of the tight-binding models are still not well understood from the
empirical fitting approach. Information from first-principles calculations about these issues
is highly desirable to guide the development of more accurate and transferable tight-binding
models.

In general, overlap and one-electron Hamiltonian matrices from first-principles calcula-
tions cannot be used directly to infer the tight-binding parameters because fully converged
first-principles calculations are done using a large basis set while tight-binding parameters
are based on a minimal basis representation. Very recently, the authors and co-workers have
developed a method for projecting a set of chemically deformed atomic minimal-basis-set
orbitals from accurate first-principles wavefunctions [76–81]. These orbitals, referred to as
“quasi-atomic minimal-basis-sets orbitals” (QUAMBOs), are highly localized on atoms and
exhibit shapes close to orbitals of the isolated atom. Moreover, the QUAMBOs span exactly
the same occupied subspace as the original first-principles calculation with a large basis set.
Therefore, accurate tight-binding Hamiltonian and overlap matrix elements can be obtained
directly from ab initio calculations through the construction of QUAMBOs. This new devel-
opment enables us to examine the accuracy and transferability of the tight-binding models
from a first-principles perspective.
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Abstract We discuss a number of examples that demonstrate the value of computational
modeling as a complementary approach in the physics and chemistry of ice Ih , where real-life
experiments often do not give direct access to the desired information or whose interpretation
typically requires uncontrollable assumptions. Specifically, we discuss two cases in which,
guided by experimental insight, density-functional-theory-based first-principles methods are
applied to study the properties of lattice defects and their relationship to ice Ihs macroscopic
behavior. First, we address a question involving molecular point defects, examining the ener-
getics of formation of the molecular vacancy and a number of different molecular interstitial
configurations. The results indicate that, as suggested by earlier experiments, a configuration
involving bonding to the surrounding hydrogen-bond network is the preferred interstitial
structure in ice Ih . The second example involves the application of modeling to elucidate on
the microscopic origin of the experimental observation that a specific type of ice defect is
effectively immobile while others are not. Inspired by previous suggestions that this defect
type may be held trapped at other defect sites and our finding that the bound configuration is
the preferred interstitial configuration in ice Ih , we use first-principles modeling to examine
the binding energetics of the specific ice defect to the molecular vacancy and interstitial. The
results suggest a preferential binding of the immobile defect to the molecular interstitial,
possibly explaining its experimentally observed inactivity.

Keywords Ice · Density-functional theory · Point defects

1 Introduction

Ice is arguably one of the most abundant, most studied and most fascinating crystalline solid
materials on Earth. This fascination is shared by scientists from very different research areas.
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Geophysicists and glaciologists are interested in the dynamics of extended ice masses on the
surface of Earth [1]. Engineers are concerned with the specific measures that need to be taken
to handle the construction of structures in the presence of ice. Meteorologists and atmospheric
scientists are involved in studying the influence of ice on the climatological conditions on
our planet and its possible role in global warming. Condensed-matter physicists are, among
other issues, attempting to understand the electrical, optical, mechanical and thermodynamic
properties of bulk ice, the peculiar characteristics of its surface as well as the complexity of
the solid-state part of water’s phase diagram.

While waters phase diagram features at least 15 crystalline varieties, the by far most
abundant ice form on Earth is hexagonal proton-disordered ice, also known as ice Ih [1]. In
addition to being the water phase of the home-made ice cubes that we use to chill our drinks,
it is the fundamental constituent of natural ice that appears in the form of glaciers, sea ice,
and snow flakes, among others. In this light it is not surprising that the bulk of the scientific
research efforts have focused primarily on this particular crystalline form of water.

From a crystallographic point of view, ice Ih is a molecular crystal characterized by
the Wurtzite lattice structure [2], which consists of two interpenetrating hexagonal lattices.
Each water molecule, whose oxygen atoms occupy the lattice sites, is linked to its four
tetrahedrally positioned neighbors by hydrogen bonds [1]. A representative picture of the
structure can be appreciated in Fig. 1, which depicts a view along a direction close to the
hexagonal c-axis. An essential feature of the ice Ih structure is that there is no long-range
order in the orientation of the water molecules on their lattice sites. For this reason, ice
Ih is often referred to as a proton-disordered ice phase. The randomness is subject only to
the two constraints formulated in terms of the Bernal-Fowler ice rules [1,3], which dictate
that, (i), each molecule accepts/donates two protons from/to two nearest-neighbor molecules
and, (ii), there be precisely one proton between each nearest-neighbor pair of oxygen atoms.
The first, and nowadays rather obvious, rule implies that ice consists of water molecules,
whereas the second imposes local restrictions on the possible orientations of nearest-neighbor
molecules. To facilitate visualization [1], Panel a) of Fig. 2 depicts a square two-dimensional
representation of a typical hydrogen-bond topology of a defect-free ice Ih structure that is
consistent with these two prescriptions. Each molecule is hydrogen-bonded to four nearest
neighbors by donating and receiving two protons, respectively.

In reality, however, defect-free ice crystals do not exist. As is the case for any crystalline
solid, real ice Ih crystals are permeated by a variety of crystal defect species. In addition to the
kind typically found in any crystalline solid, such as vacancies and interstitials, the properties
of ice Ih are affected by defect species that are specific to its particular crystal structure,
reflecting its molecular nature and representing violations of the two ice rules. The species
of ionic defects represents violations of the first ice rule. The fundamental characteristics of
these defects can be appreciated in in Panel b) of the two-dimensional square representations
of Fig. 2. The ionic H3O+/OH− defect pair, shown by the blue molecules in Panel b), is
created by transferring a proton along a hydrogen bond and creating two faulted molecules.
Successive proton transfer events may then further separate both ions, eventually creating
an independent H3O+/OH− defect pair. The second type of protonic defect pair, referred
to as the Bjerrum D/L defect pair, originates from a violation of the second ice rule and is
formed by the rotation of a molecule about one of its two molecular O-H axes. The resulting
defect pair is characterized by two faulted hydrogen bonds, one featuring the presence of two
protons, referred to as the D defect and depicted schematically as the bond between the blue
and green molecules in Fig. 2b, and one without any protons, which is called an L defect
and is represented schematically as the bond between the red and green molecules in Fig. 2c.



First-principles modeling of lattice defects 125

Fig. 1 Typical molecular arrangement of the ice Ih Wurtzite structure. Shown view is along direction vicinal
to the hexagonal c-axis

Similar to the case of the ionic defect pair, a series of successive molecular rotations may
eventually create an independent pair of D and L defects.

The existence of the protonic defect species was proposed by Niels Bjerrum [4], inspired
by the peculiar electrical properties of ice Ih . When a specimen of ice is subjected to a static
electric field E , for instance, the material responds by electric polarization, mainly through
the reorientation of molecular dipole moments in the crystal. This is a relatively slow process,
in which the time evolution of the electrical polarization P is a so-called Debye relaxation
process described by

d P

dt
= 1

τD
(Ps − P) , (1)

where Ps is the equilibrium polarization and τD is the Debye relaxation time. The phenom-
enology of the electrical polarization in the liquid phase of water is the essentially the same
as that in ice. However, there is an enormous disparity in the time scales τD associated with
molecular-dipole realignments in both phases. Whereas the typical Debye relaxation time in
ice Ih at a temperature of −10 ◦C is of the order of 10−5 s, its value in liquid water at +10 ◦C
is approximately 6 orders of magnitude shorter, at 10−11 s. This tremendous timescale gap is
due to the fact that, compared to the liquid state, it is much more difficult for the molecules
to reorient themselves in the crystalline phase due to their bonding in the lattice and the
ice rules. Indeed, as recognized by Bjerrum, in an ice crystal in which both ice rules are
strictly obeyed, the molecular-dipole realignments would not be possible at all, given that
the orientation of a given molecule is then strictly determined by its neighbors. This insight
led Bjerrum to postulate the existence of protonic defects, whose thermally activated motion
provides a mechanism for dipolar reorientations as can be inferred from Fig. 2.



126 M. de Koning

Fig. 2 Square two-dimensional
representation of the
hydrogen-bond topology in ice
Ih . a Defect-free ice. b Formation
of ionic defect pair. c Formation
of Bjerrum defect pair
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Subsequently, [5] developed a quantitative theory describing the electrical properties of
ice in terms of the concentrations, formation energies, migration energies (mobilities) and
the effective charges of the D and L Bjerrum defects and the H3O+/OH−ionic defects. Since
it provides a direct link between the microscopic structural properties of ice defects and
the macroscopic electrical properties of ice Ih , Jaccards theory has been used extensively to
interpret experimental observations in terms of the properties of the individual Bjerrum and
ionic defects.

One of the main difficulties in this effort, however, is that the extraction of separate
formation and migration energies requires measurements on doped ice samples, in which an
extrinsic (i.e. athermal) concentration of protonic defects is introduced into the lattice [1].
Typical dopants are HCl, HF and NH3, which, if incorporated substitutionally into the ice
lattice, enable the release of different species of protonic defects into the crystal. An example
is shown in Fig. 3, which depicts the substitutional incorporation and dissociation of an HCl
molecule into an L-type Bjerrum defect and a hydronium ion. This doping is quite similar
to the effect of doping a semiconductor with donor or acceptor atoms, leading to the release
of electrons or holes and providing extrinsic carriers to participate in electrical conduction.
Because of this similarity, ice Ih is sometimes referred to as a protonic semiconductor, given
that the electrical activity in ice is mediated by protons rather than electrons. The interpretation
of experimental results based on doped ice samples, however, calls for the introduction of
a number of uncontrolled assumptions. One of them, for instance, is that in case of doping
with the acids HCl or HF, the extrinsic L Bjerrum defect is assumed to be fully dissociated
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Fig. 3 Substitutional
incorporation and dissociation of
an HCl molecule into an L-type
Bjerrum defect and a hydronium
ion

from the chlorine or fluorine sites, behaving as a free L defect. As a consequence of these
assumptions, the values of the formation and migration energies of protonic defects extracted
from experiments on doped ice samples are subject to large uncertainties. Moreover, different
experiments have led to results that are mutually inconsistent.

Such issues are not restricted to protonic defects and their role in ice’s electrical properties.
Indeed, even the most basic crystalline defects in ice, namely the molecular vacancy and self
interstitial, remain a subject of debate. [1] First, positron annihilation experiments [6,7]
indicated that the vacancy should be the prevalent molecular point-defect species. Later
on, a series of X-ray topographical studies of dislocation loops [8–12] provided convincing
evidence for the opposite, indicating that for T � −50 ◦C the self-interstitial is dominant.
The structure of this self interstitial, however, remains unknown. In addition to a surprisingly
high formation entropy of ∼ 4.9 kB , the X-ray studies inferred a formation energy below the
sublimation energy of ice Ih , which led to the suggestion [8] that its structure might involve
bonding to the surrounding hydrogen-bond network. This idea, however, contrasted with the
established consensus [1] that the relevant structures involve cavity-centered sites in the ice
Ih lattice, [1], for which such bonding is not expected [1,13].

In view of the difficulties in the experiments and the interpretation of their results, mod-
eling and simulation techniques provide an extremely useful complementary approach in
studying the physics and chemistry of ice. Guided by experimental insight, it allows the de-
sign and execution of controlled computational “experiments” that provide information not
otherwise accessible. In the remainder of this article, we will demonstrate the capabilities
of this approach, discussing two examples in which first-principles modeling methods are
applied to gain insight into the characteristics of defects in ice Ih and their relationship to
ice Ihs macroscopic behavior. First, we address a question involving molecular point defects
in ice Ih . Specifically, we examine the energetics of formation of the molecular vacancy
and a number of different molecular interstitial configurations. The results indicate that,
as suggested by earlier experiments, a configuration involving bonding to the surrounding
hydrogen-bond network is the preferred interstitial structure in ice Ih . Moreover, they allude
to a possible cross-over in dominance between the molecular vacancy and interstitial, with
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the former being the most abundant thermal equilibrium point-defect species at lower tem-
peratures and the latter taking over close to the melting point, which was also suggested
experimentally. The second example involves the application of modeling to elucidate on the
microscopic origin of the robust experimental observation [1] that D-type Bjerrum defects
are effectively immobile and that only L defects play a role in the Bjerrum-defect mediated
electrical response of ice Ih . Inspired by the suggestion that D-defects may be held trapped
at other defect sites, we use first-principles modeling to examine the binding energetics of D
and L-type Bjerrum defects to the molecular vacancy and interstitial. Our previous finding
of the bound interstitial structure plays a significant role here, with the results displaying a
preferential binding of D-type Bjerrum defects to this type of interstitial as compared to the
L-type Bjerrum defect. No such preferential binding is found for Bjerrum defect/vacancy
defect complexes. A calculation of the corresponding equilibrium concentrations then shows
that such a preferential binding may lead to conditions under which the concentration of
free L defects is significantly larger than that of free D-defects, possibly explaining the
experimentally observed activity asymmetry of both Bjerrum defect species.

2 Molecular point defects

In crystalline solids the process of self-diffusion is typically mediated by the migration of
point defects such as vacancies and interstitials. In ice Ih this is no different, although the
involved defects are not “point-like”, in view of the molecular character of ice. In case of the
vacancy this does not present any serious difficulties and its structure is readily understood,
representing a site on which an entire water molecule is missing, as is shown in Panel (a)
of Fig. 4. The situation for the interstitial is different, however. Although we know that
it concerns a water molecule in excess of those positioned on regular crystal sites, it is not
immediately clear where the additional molecule should be placed. Panel (b) of Fig. 4 depicts
a view along a direction vicinal to the hexagonal c-axis of the ice Ih structure, with one excess
water molecule. In this particular example, the interstitial molecule has been placed in the
center of a 12-molecule cage, although other positions are possible. We will return to this
point below.

From the experimental point of view, it has not yet been possible to obtain direct informa-
tion as to the preferred structure of the self interstitial in ice Ih . In this context, computational
modeling provides a useful complementary approach that allows one to consider a number of
different interstitial configurations, optimizing their geometries and evaluating the respective
formation energetics.

As a first step towards this goal we need to select the methodology used to model the
ice Ih system. This choice involves essentially two possibilities. On the one hand we may
choose a semi-empirical approach, in which the interactions between the water molecules is
described in terms of interatomic potentials. There is a large variety of such models today,
featuring different functional forms and fitting databases [14]. A second course of action is
to embark on a first-principles electronic structure approach, in which the inter and intra-
molecular interactions are treated quantum-mechanically. In the present case we opt for
the latter, in view of the prospect that the presence of defects may lead to intramolecular
distortions, modifying the equilibrium values of both the O-H distance as well as the H-O-H
bond angles. In addition to affecting the total energy of a configuration, such distortions
are also expected to modify the intramolecular vibrational frequencies and the associated
zero-point contributions to the defect formation energetics.
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Fig. 4 Molecular point defects in ice Ih . a Molecular vacancy. b Molecular interstitial. Arrow indicates excess
water molecule

For this purpose, we employ density-functional theory (DFT) [15,16] as implemented in
the VASP package [17,18] to provide a description of the energetics of ice Ih . As our particular
choice for the exchange-correlation functional we utilize the Perdew-Wang 91 generalized-
gradient approximation and select the projector-augmented-wave [19] approach. We restrict
Brillouin-zone sampling to the �-point and adopt a plane-wave cut-off of 700 eV. As our
order model for ice Ih we employ the 96-molecule periodic supercell that was created by
Hayward and Reimers [20], keeping in mind that the two ice rules should be satisfied at each
site and that there should be no long-range order in the molecular orientations.

This particular modeling approach has shown to provide a satisfactory description of
different aspects of ice Ih . In addition to giving a reasonable sublimation energy of 0.69 eV
(compared to the experimental estimate of 0.611 eV) [21,22], it yields a good estimate of
the effective charge carried by the Bjerrum defects, one of the key parameters in Jaccards
electrical theory of ice. To determine this quantity, we measured the excess energy (energy
difference between defected and defect-free cells) of a D-L Bjerrum defect pair as a function
of the distance between them[22]. For this purpose we created sequences of cells containing
a D-L defect pair at different distances by sequences of molecular rotations of the type shown
in Panel b) of Fig. 2. When the separation between the D and L defects is sufficiently large,
the interaction between them is expected to become of the simple Coulombic type, with point
charges +qDL (on the D defect) and −qDL (on the L defect) at a distance r , interacting in a
dielectric continuum:

Eexcess(r) = EDL − q2
DL

4πεr
. (2)

Here, EDL is the excess energy in the limit r → ∞ and ε is an appropriate dielectric
constant. Fig. 5 shows results of the excess energy as a function of the inverse distance
r−1 for two different D-L separation sequences. According to Eq. (2), this plot should be a
straight line, of which the slope allows the determination of the magnitude of the effective
charge. Indeed, both linear regressions provide good fits to the data, giving, respectively,
qDL = (0.34 ± 0.07) e and qDL = (0.35 ± 0.05) e, with e the electron charge. This value is
in excellent agreement with the experimental estimate of qDL = 0.38 e [1] and establishes
confidence in the chosen modeling methodology.
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Fig. 5 Bjerrum defect pair
excess energy as a function of the
inverse distance r−1 for two
different D-L separation
sequences

To address the question of the molecular point defects in ice, [23] we start by creating
a number of different cells containing a single defect. For this purpose we always start
from the defect-free 96-molecule reference cell, followed by the introduction of a single
vacancy or interstitial. To capture the effect of proton disorder, which leads to variations in
the local environment of each lattice site, we create various realizations of each defect type,
placing it at different locations of the reference cell. For the case of the molecular vacancy
this is straightforward, removing a single water molecule from different lattice sites of the
defect-free cell. The situation involving the molecular interstitial, however, is somewhat more
involved because of the a priori unknown location of the excess molecule. The most obvious
point to start are the two cage center sites available in the ice Ih lattice structure. Placing the
excess molecule in these positions, known as the uncapped trigonal (Tu) and capped trigonal
(Tc) sites, respectively, [1] then leads to interstitial geometries of the kind shown in Fig. 6a
and b, which were obtained by minimizing the forces on all atoms in the cell at fixed volume.
The pictures clearly show that these two interstitial structures, although stable, do not involve
any bonding to the surrounding hydrogen bonding network.

In the search for a possible interstitial configuration that might involve such bonding,
we attempt a different initial geometry, in which we place the interstitial molecule midway
between two water molecules that are hydrogen-bonded to each other in the defect-free
crystal. This is shown in Fig. 7a, in which the interstitial molecule is indicated by the arrow.
The two molecules originally hydrogen-bonded in the defect-free crystal have been displaced
upward and downward respectively. After optimizing this geometry by minimizing the forces
on all atoms in the cell, the structure relaxes into the configuration shown in Fig. 7b. It is clear
that this interstitial structure, which is referred to as the bond-center (Bc) interstitial, now
does involve bonding to the hydrogen-bond network. Specifically, the two molecules that
were originally bound to each other in the defect-free crystal have now formed two hydrogen
bonds with the interstitial molecule. In this manner, these two molecules still participate in
four hydrogen bonds while the interstitial molecule takes part in two. In this respect, the Bc
interstitial is fundamentally different from the Tc and Tu structures, in which the interstitial
molecule does not participate in any hydrogen bonds.

In order to determine which of these is the dominant thermal equilibrium point defect
in ice Ih , we need to analyze the formation energetics of the molecular vacancy and the
three considered interstitial configurations. For this purpose, we first compute the formation
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Fig. 6 Relaxed molecular interstitial structures. a Trigonal uncapped (Tu) interstitial. b Trigonal capped (Tc)
interstial

Fig. 7 Structures of the bond-center (Bc) interstitial in ice Ih . a Configuration before relaxation. Excess
molecule is indicated by arrow. b Relaxed Bc interstitial structure

energies of the respective defect structures. For the molecular vacancy and interstitial, these
are defined as

Evac
f = Evac − N − 1

N
E0 (3)

and

E int
f = E int − N + 1

N
E0, (4)
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Fig. 8 Formation energies of
molecular point defects in ice Ih
as a function of temperature.
Temperature-dependence
includes only implicit effects
associated with thermal
expansion

where Evac and E int are the total energies of the computational cells containing a vacancy
and an interstitial, respectively. N is the total number of molecules in the defect-free ice
cell, which has a total energy E0. To take into account effects of thermal expansion with
temperature, we compute the formation energies as a function of volume, using the experi-
mental lattice parameters [1] at T = 10 K, T = 205 K and T = 265 K. To assess the effect of
proton disorder, we average the formation energies over different realizations of each defect
type, sampling different locations in the cell. The results are shown in Fig. 8. It is clear that
the formation energy of the Tc interstitial is by far the highest among the four point-defect
species and, therefore, is not expected to play a significant role. The formation energy of
the Tu interstitial is substantially lower than that of the Tc interstitial but still larger than
that of the Bc interstitial and molecular vacancy. Comparing the latter two, we find that the
Bc interstitial is particularly sensitive to thermal expansion, showing a reduction of ∼ 7%
upon a linear lattice expansion of only ∼ 0.5%. This effect is much less pronounced for
the vacancy, which shows a decrease of only ∼ 2%. If we consider the optimized defect
structures we find that the strengthened bonding of the Bc interstitial is associated mainly
with the relief of compressed hydrogen bonds upon thermal expansion. Since almost all
the hydrogen bonds in the vicinity of the Bc interstitial are compressed, this effect is more
pronounced than for the vacancy, for which only a third of the affected hydrogen bonds are
compressed.

Since the creation of these defects involves stretched/compressed and/or broken hydrogen
bonds, it is important to include zero-point vibrational contributions in the formation ener-
getics. To do this, we compute the vibrational frequencies of the molecules in the vicinity
of the respective defects before and after the introduction, where we consider both intra
and intermolecular modes. The intramolecular stretching frequencies tend to increase when
hydrogen bonds are broken because of the associated decrease of the intramolecular O-H
distance. Given the elevated frequencies of these modes this leads to a significant zero-point
contribution. After having computed the vibrational modes in the presence and absence of
the defects, not only can we estimate the zero-point contributions, but we can also com-
pute a full defect formation free energy within the harmonic approximation. To this end, we
apply the local harmonic approximation [24], in which the defect formation free energy is
given by
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Fig. 9 Local harmonic
formation free energies of
molecular point defects in ice Ih
as a function of temperature

F f = E f + 1

2

∑
i

h(νdef
i − ν0

i )

+kB T
∑

i

ln

[
1 − exp(−hνdef

i /kB T )

1 − exp(−hν0
i /kB T )

]
, (5)

where νdef
i and ν0

i represent the frequencies in the presence and absence of the defect,
respectively. The results for the molecular vacancy and the Tu and Bc interstitials is shown
in Fig. 9. A comparison between the two interstitials shows that, consistent with the
results of Fig. 8, the formation free energy of the Bc interstitial is lower than that of the
Tu structure across the entire temperature interval. Comparing the vacancy and Bc intersti-
tial, the downward shift of the vacancy curve with respect to the Bc interstitial in relation
to Fig. 8 is due to the mentioned zero-point contributions, which lower the vacancy for-
mation energy by ∼ 0.08 eV compared to a reduction of only ∼ 0.02 eV for the Bc inter-
stitial. This means that the vibrations around the Bc interstitial are more “bulk-like” than
in the vicinity of the vacancy, essentially because the Bc configuration features only one
molecule that is not fully hydrogen bonded, compared to the four in case of the vacancy.
As the temperature increases, however, the formation free-energy difference between the
defects decreases due to the elevated formation entropy of Bc interstitial. At T = 265 K, for
example, the formation entropy of the Bc interstitial reaches a value of ∼ 7 kB compared
to ∼ 5 kB for the vacancy. This elevated formation entropy value [8] is mostly due to the
appreciable reduction of the formation energy contribution upon thermal expansion as shown
in Fig. 8.

With these results we are now in a position to evaluate the relative importance of the
different point-defect species. For this purpose, we determine their thermal equilibrium con-
centrations c (per crystal lattice site) as a function of temperature, which is given by [1]

c = z N exp(−Ff/kB T ). (6)

Here N is the number of available defect sites per lattice site and, for the interstitial defects,
z represents the number of possible orientations of the interstitial molecule on a given site.
For the Tu and Bc interstitials we have NTu = 1/2 and NBc = 2, respectively, which follows
from the number of cages and the number of hydrogen bonds per lattice site [1]. For the Tu
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Fig. 10 Thermal equilibrium
concentrations of the molecular
point defects in ice Ih

interstitial we have observed that the orientation of an interstitial molecule on a given Tu site
is always such that both of its O-H bonds tend to closely align with two oxygen atoms of
the surrounding cage. Counting the number of different ways in which this can be realized,
taking into account the fact that the H-O-H angle of the interstitial molecule is approximately
104◦, we deduce zTu ≈ 40. From different realizations of the Bc interstitial on a given site
we estimate zBc = 4. For instance, considering Fig. 7b, a different stable orientation can
be obtained by rotating the interstitial molecule such that its dangling hydrogen bond points
along the c-axis, out of the paper. Two more stable orientations with similar energies were then
created by a mirror symmetry operation with respect the plane containing the line connecting
molecules 1 and 2 and the c axis. For the molecular vacancy we have NV = zV = 1.

Assuming these values for the site multiplicities, Fig. 10 shows the corresponding
Arrhenius plot for the concentrations of the molecular point defects. It is found that the
concentration of Tu interstitials is significantly lower than that of Bc interstitials across the
entire temperature interval. These modeling results thus suggests that a structure different
from the established Tc and Tu interstitials is the preferred interstitial configuration in ice
Ih . Indeed, the structural properties of the Bc interstitial provided by our model are coherent
with the experimental suggestion of a bound self interstitial [8]. Furthermore, the modeling
results indicate that there is a cross-over in the dominant point-defect species. While the
vacancy dominates for temperatures below T ∼ 200 K, the Bc interstitial takes over for tem-
peratures above T � 230 K. This prediction is also consistent with the crossover scenario
suggested in Ref. [8], in which the interstitial is assumed to dominate for temperatures above
−50 ◦C whereas the vacancy becomes the principal thermal equilibrium point defect at lower
temperatures.

3 Bjerrum defect/molecular point defect interactions

The discussion in the previous section represents an example of the capabilities of molecular
modeling in situations where no direct experimental information is available. In addition, its
specific findings, namely that a configuration involving bonding to the surrounding hydrogen-
bond network is the preferred structure of the molecular interstitial in ice Ih , motivated
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another modeling study related to the activity of Bjerrum defects. As we mentioned in the
Introduction, there is robust experimental evidence that, of the two Bjerrum defect species,
only the L-type is active [1]. The main idea that has been put forward to explain this effect
is that D-defects, somehow, are trapped at other defects. In first place, there would only be a
need for such an explanation if the intrinsic mobility of D and L defects were to be effectively
the same. And second, even if their mobilities were to be the same, the entrapment by other
defects might only explain the observations if the interactions with these defects were to be
significantly different for D and L defects. Given that experiments have so far been unable
to address these questions in a direct manner, computational modeling is the only available
tool that allows a direct investigation of this issue.

As a first step, we investigate whether the idea of entrapment at other defect sites is at all
necessary, considering the intrinsic mobilities of L and D-type defects. For this purpose we
determine the migration barrier for L and D-defect motion within the same DFT modeling
approach of the previous section. Figure 11 shows two sequences of configurations depicting,
respectively, the mechanisms of D and L-defect migration. Full details can be found in
Refs. [22] and [25]. Panels (a–c) demonstrate a typical realization of a D-defect migration
event. In Panel (a), the D defect is located on the indicated water molecule. The event
occurs by the rotation of this molecule, provoking the rotation of one of its neighbors. Panel
(b) shows the corresponding saddle-point configuration, while Panel (c) shows the final
structure, in which the D-defect has moved to the adjacent molecule. Panels (d) and (e)
show a typical L-defect migration event. The L-defect motion occurs through the rotation
of a single molecule, with the saddle point configuration shown in Panel e). Considering a
number of different realizations for both migration processes, the adopted DFT model gives
migration barrier values in the ranges 0.06–0.13 eV [25] and 0.10-0.14 eV [22] for D-defect
and L-defect motion, respectively. This result indicates that the intrinsic mobility of D-defects
is certainly not expected to be any smaller than that of L-defects. This strongly suggests that
the observed asymmetry in the activity of D and L-type defects is not caused by any intrinsic
mobility factors.

Having verified the possibility of intrinsic mobility differences, we now turn to the idea
of Bjerrum defect entrapment at other defect sites. For this purpose, the two most natural
candidates are the molecular vacancy and interstitial. In particular, the finding of the bound
interstitial configuration in the previous section opens the way for the possibility of Bjerrum-
defect/interstitial interactions, given that the bound interstitial forms hydrogen bonds with the
surrounding ice lattice. Such interactions are not expected, on the other hand, for the Tu and
Tc structures, whose configurations involve isolated molecules that remain at relatively large
distances from the hydrogen-bond network. To examine the strength of the molecular vacancy
and interstitial as trapping centers to Bjerrum defects we compute the binding energies of four
molecular point defect/Bjerrum defect defect complexes: (1) The D defect with a vacancy
(DV), (2) the L defect with a vacancy (LV), (3) the D defect with a bond-center interstitial
(DB) and (4) the L defect with a bond-center interstitial [26]. The topological features of these
structures are shown in the two-dimensional square ice representation of Fig. 12. The binding
energies are defined as the difference between the formation energy of a cell containing the
defect complex and the sum of the formation energies of an isolated Bjerrum defect pair and
of the molecular point defect in question. In case of the defect complex formed by a D defect
and an interstitial, for instance, it is given by

�EDB
b = EDB

f − EDL
f − EB

f ,

where EDB
f is the formation energy of cell containing a DB complex and an isolated L defect

and EDL
f and EB

f are the formation energies of a Bjerrum defect pair and a bond-center
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Fig. 11 Free Bjerrum defect migration mechanisms. Sequence shown in panels a–c shows typical D-defect
migration event. Panels d and e show mechanism for L-defect motion

DB

DV LV LB

(a) (b)

Fig. 12 Topological features of Bjerrum defect/molecular point defect defect complexes in two-dimensional
square ice representation. a Defect complexes involving the molecular vacancy. b Defect complexes involving
the Bc interstitial

interstitial, respectively. In the cells containing the isolated defects, both Bjerrum defects as
well as the interstitial are created such that they are located at the same lattice position as
they occupy in the cells containing the respective defect complexes. In order to probe the
effect of the proton disorder, several realizations of each defect complex are considered.

Figure 13 shows typical atomistic configurations of the two defect-complex types involv-
ing the molecular interstitial. Figure 13a depicts the defect agglomerate formed by the D
defect and the bond-center interstitial. The interstitial molecule receives two hydrogen bonds
from the two molecules hosting the D-defect. Part (b) shows the defect complex involving
the L defect and the bond-center interstitial. Similarly to the case of the DB complex, the
interstitial is bonded to the two molecules hosting the L defect. The difference, however, is
that in this case both hydrogen bonds are donated by the interstitial molecule.

Table 1 provides a summary of the energetics of the molecular point defect/Bjerrum defect
agglomerates. It contains the binding energies of the four defect complexes as a function of
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Fig. 13 Relaxed structures of DB and LB complexes. a DB complex b LB complex

Table 1 Average binding energies of the LV, DV, LB and DB defect complexes as a function of temperature

T LV(3) DV(3) LB(4) DB(5)

10 −0.41 ± 0.01 −0.38 ± 0.02 −0.20 ± 0.02 −0.36 ± 0.07

205 −0.41 ± 0.01 −0.38 ± 0.02 −0.19 ± 0.02 −0.35 ± 0.06

265 −0.40 ± 0.01 −0.36 ± 0.02 −0.17 ± 0.03 −0.33 ± 0.06

Values and error bars correspond to the mean value and the standard deviation in the mean obtained from a
number of different realizations. Number of realizations is indicated by number between parentheses. Energies
are given in eV and temperatures in K

temperature. Here, as in the case of the Fig. 8, the temperature dependence involves only
the influence of thermal expansion, not including explicit temperature effects. These effects
are seen to be small for all defect complexes, with variations of the order of only a few
hundredths of an eV across the considered temperature interval. The reported values and
corresponding error bars are determined as the average value and standard deviation of the
mean as obtained from a set of distinct realizations of each defect complex. The numbers of
realizations used for each defect complex are marked in parentheses. First, the results clearly
show that both molecular point defects serve as trapping centers for Bjerrum defects, with
all binding energies being negative. Secondly, the vacancy is a stronger trapping center than
the molecular interstitial, with all binding energies of the complexes involving the vacancy
being larger, in absolute value, than those with the interstitial. Third, the results indicate that
both D and L Bjerrum traps are essentially equally strongly trapped by the vacancy, with both
binding energies being practically equal, within the considered error bars. This suggests that
the vacancy is not responsible for the observed inactivity of D-type Bjerrum defects. The
situation is different, however, for the defect complexes based on the interstitial. The data in
Table 1 imply that the interstitial represents a stronger trapping center for the D defect than
it is for the L defect, with the binding energy of the former being larger than that of the latter
beyond the error bars.
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Fig. 14 Thermal equilibrium
concentrations of free Bjerrum
defects and their complexes
based on DFT energetics

The data in Table 1, together with the point-defect [23] and Bjerrum defect [22]
(M. de Koning et al. (unpublished)) formation free energies enable a calculation of the
thermal equilibrium concentrations of free Bjerrum and molecular point defects, as well as
those of the various defect complexes. Similar to the standard calculation [2] of the thermal
equilibrium concentration of vacancies in a crystalline solid, this is done by minimizing the
free energy of an ice Ih crystal with respect to the numbers of the different defect species.
The details of this calculation can be found in Ref. [26].

Figure 14 shows the thermal equilibrium concentrations of free Bjerrum defects, as well
as those of the four considered defect complexes, as obtained from the formation and binding
energetics provided by the used DFT model. Despite the fact that the D defects are more
strongly trapped at the bond-center interstitial compared to L defects, the corresponding
concentrations of free D and L defects remain essentially the same. Given that the migration
barriers of both free Bjerrum defects are essentially equal, this result, at least in quantitative
terms, does not explain the inactivity of D defects in ice Ih . At this point, however, it is
important to emphasize the limitations of the utilized modeling methodology. Our DFT
approach is known to give discrepancies of the order of 0.1 eV for formation energies in water-
based systems. [21,27] Although errors of such magnitude are acceptable in many systems,
in the case of ice Ih the results tend to be highly sensitive to such variations, mostly due to
the small values of the involved formation/binding energies as well as the low temperatures.
To gain an appreciation of these variations, we recomputed the equilibrium concentrations
of the free Bjerrum defects as well as the Bjerrum defect/point defect complexes using (1)
the lower ends of the confidence interval in Table 1 for the binding energies and, (2) the
lower limit of the experimental estimate of 0.35 eV for the interstitial formation energy. The
results are shown in Fig. 15. Even though the absolute values of the energetics parameters
have changed only by amounts of the order of 0.1 eV, the equilibrium concentration results
are significantly different. Specifically, in this situation, the concentration of free L defects
is between one and two orders of magnitude larger than that of free D-defects, which would
be consistent with the experimental observation of D-defect inactivity.

These results show that a quantitative prediction regarding thermal equilibrium defect
concentrations in ice Ih is very challenging. On the other hand, from a qualitative standpoint,
the DFT results do suggest that the molecular interstitial, in contrast to the case of the
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Fig. 15 Thermal equilibrium
concentrations of free Bjerrum
defects and the associated
Bc-interstial complexes based on
a combination of DFT and
experimental energetics (see text)

molecular vacancy, displays an energetic preference for the formation of complexes involving
the D-type defect. This element, combined with the experimentally observed dominance of
the interstitial as the predominant molecular point defect species in ice Ih , may then lead
to conditions in which the concentration of free D defects becomes considerably smaller
than that of free L defects. Such a scenario could possibly be involved in the experimentally
observed inactivity of D-type Bjerrum defects.

4 Summary

In this paper we have demonstrated two examples of situations in which computational
modeling provides a useful tool in studying the physics and chemistry of ice. In particular,
these examples illustrate how computational modeling provides a means for the execution
of controlled computational “experiments” that give access to information that cannot be
obtained otherwise. In the first example, we address the question involving molecular point
defects in ice Ih , which has been a longstanding issue from the experimental point of view.
Specifically, we examine the energetics of formation of the molecular vacancy and a number
of different molecular interstitial configurations using a DFT modeling framework. The
results indicate that, as was suggested experimentally, [8] a configuration involving bonding
to the surrounding hydrogen-bond network is the preferred interstitial structure in ice Ih .
Moreover, the DFT results suggest a cross-over in dominance between the molecular vacancy
and interstitial, which is consistent with experimental suggestions.

The second example involves a DFT modeling effort to elucidate on the microscopic ori-
gin of the robust experimental observation [1] that D-type Bjerrum defects are effectively
immobile and that only L defects play a role in the Bjerrum-defect mediated electrical re-
sponse of ice Ih . Inspired by the earlier suggestion that D-defects may be entrapped at
other defect sites, we use DFT modeling to investigate the binding energetics of D and
L-type Bjerrum defects to the molecular vacancy and interstitial. The previous finding of the
bound interstitial structure plays a significant role here, with the results displaying a pref-
erential binding of D-type Bjerrum defects to this type of interstitial. A calculation of the
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corresponding equilibrium concentrations then shows that such a preferential binding may
lead to conditions under which the concentration of free L defects is significantly larger than
that of free D-defects, possibly explaining the experimentally observed activity asymmetry
of both Bjerrum defect species.

The two discussed examples illustrate the capabilities of DFT-based computational mod-
eling involving defects in bulk ice Ih . But certainly, the approach is not limited to this area.
Perhaps an even more important application involves one of the least-understood aspects
of the physics and chemistry of ice: its interfaces. Aside from the structure of the free ice
surface, there is significant interest, for instance, in the adsorption of gas molecules on the
ice interface and interactions of the ice surface with other substances. In many situations
experimental results alone are insufficient to arrive at a satisfactory understanding of the
phenomena at hand. Under such circumstances, modeling efforts of the kind described above
can offer valuable complementary insight.
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Abstract This paper discusses a set of recent experimental results in which the mechanical
properties of monolayer graphene molecules were determined. The results included the
second-order elastic modulus which determines the linear elastic behavior and an estimate of
the third-order elastic modulus which determines the non-linear elastic behavior. In addition,
the distribution of the breaking force strongly suggested the graphene to be free of defects,
so the measured breaking strength of the films represented the intrinsic breaking strength
of the underlying carbon covalent bonds. The results of recent simulation efforts to predict
the mechanical properties of graphene are discussed in light of the experiments. Finally, this
paper contains a discussion of some of the extra challenges associated with experimental
validation of multi-scale models.

Keywords Graphene · Intrinsic strength · Elastic properties · Ab initio methods ·
Multi-scale simulations

1 Introduction

Computer-based modeling and simulation have revolutionized our ability to quantitatively
investigate all scientific and engineering phenomena from weather prediction, to study of
earthquakes, to the properties of both biological and non-biological materials. The common
thread that runs through all such simulations is that an actual physical system must first be
idealized as a model, after which the fundamental governing equations are solved numerically
subject to boundary conditions and initial conditions. Approximations and assumptions are
inevitably made in every step of the simulation process and, ultimately, the validity of the
simulations must be established by comparing the results to experiments.

The material properties we can predict with modeling and simulation can be catego-
rized in traditional ways, such as electrical, optical, magnetic, mechanical, etc. A broader
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characterization, though, is that material and system properties can be sorted into: (i) those
systems for which the atoms retain their nearest neighbors and, (ii) those systems for which
the atoms change nearest neighbors.

An impressive list of properties can be accurately predicted from the first category which
include [1]: surface energies, thermal conductivity, electrical conductivity, magnetic prop-
erties, heat capacity, thermal expansion, phonon spectra, crystal structure and interatomic
spacing, surface structure, interface structure, phase transitions, equations of state, melting
temperatures, and elastic moduli. Such properties are calculated from first principles based
predominantly upon solution of Schrödinger’s equation, with atomic positions at their equi-
librium positions or displaced slightly to induce a small mechanical strain.

The second category includes systems such as irreversible deformation of materials, tur-
bulent fluids, earthquakes, weather prediction, etc., for which accurate predictions remain
elusive. One reason is the difficulty of precisely defining the initial conditions of such sys-
tems because of rearrangement of nearest atomic neighbors that have occurred in the past. In
addition, the behavior of such systems depends upon competitions between various mech-
anisms that contribute to relative motion. One such example, for fluids, is the competition
between the intermolecular attractions through atomic potentials in the fluid which promotes
laminar flow and the inertia of the flow which promotes turbulent flow. Another example,
for the irreversible deformation of materials, is the competition between, say, dislocation-
mediated deformation and twin-mediated deformation, which is determined by the details of
the interatomic potentials in conjunction with the local stress evolution. In both cases, the
details of the forces between atoms at relative distances far from equilibrium—even to the
breaking point—play a decisive role in determining the transition in the behavior. In addition
different mechanisms can occur simultaneously and with different characteristic time and
length scales, each of which must be accounted for explicitly in order to accurately model
observed behavior. Thus, these models are called multi-scale simulations.

This article is concerned predominantly with discussion of a recent set of experiments in
which the elastic properties and intrinsic strength of free-standing monolayer graphene were
obtained [1]. The results lend direct insight into the behavior of atomic bonds stretched to
their breaking points and have implications in terms of validation of atomic-scale simulations.

In what follows, Sect. 2 discusses briefly the traditional paradigm for performing multi-
scale simulations which attempt to predict the mechanical behavior of plastically deforming
metals. Section 3 gives an overview of requirements of mechanical experiments at small
length scales. Section 4 describes the recently performed experiments of monolayer graphene.
Section 5 gives an overview of the analysis of those experiments. Recent simulations are
compared to the experiments and suggestions for more detailed models and simulations of
the graphene experiments are made in Sect. 6. Finally, conclusions are drawn in Sect. 7.

2 Overview of multi-scale simulations in ductile metals

There has long been a concerted effort to obtain a physics-based description of the mechanical
constitutive properties of ductile materials [2]. Such knowledge is critical for prediction of
the conditions under which a material deforms plastically, develops fatigue cracks, spalls,
fractures via void growth and coalescence, or fails by some other mechanism. Of particular
interest is the behavior of materials under extreme conditions: at high pressures, high strain-
rates, high strains, high temperatures, and under conditions of high strain gradient. It is
recognized that such material behavior is governed by physical phenomena which act over
several different length and time scales [3–24].
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In order to develop physics-based multi-scale models it is necessary to identify and model
the dominant deformation mechanism at each of the pertinent length and time scales. The
models at smaller length scales and/or shorter time scales are then used to “inform” the
models at larger scales in a hierarchical manner from the atomic length scale to the continuum
length scale. Typically the physical phenomena at the smaller scales are represented by the
evolution of internal variables in models at the larger scales. The task of developing multiscale
constitutive models is complicated by the fact that experiments must be performed at all
relevant length and time scales in order to provide feedback during the modeling process as
well as to validate the models.

At the atomic length scale, elastic properties are the main concern. At very high pressures,
first-principles calculations can predict the pressure-volume response in terms of an equation
of state (EOS) as well as the elastic shear modulus [25–29]. Other research efforts to predict
elastic modulus include adding the effects of alloying elements, dislocations, atomic vacan-
cies, and grain boundaries in the simulations [3]. Other properties of interest which must
be calculated at the atomic length scale include properties of dislocations such as energet-
ics, mobility and dislocation-dislocation interactions [30–33]. The properties of atomic scale
phenomena are then used to develop dislocation dynamics models which treat large groups
of individual dislocations that are assumed to exist within a continuum elastic background
[34–36]. Of interest to the present paper are recent simulations to predict the elastic response
of monolayer graphene films at very large strains, even to the breaking point [37].

Information from atomic scale simulations of the dynamics of individual dislocations is
employed to elucidate appropriate values for internal variables such as dislocation mobility
which are necessary for mean-field continuum models at the micrometer length scale to
predict the current strength of plastic slip systems [13–15,38–41]. Such continuum models
demonstrate that slip system hardening behavior can be predicted under certain conditions
over various temperature ranges and strain rates. However these models can not yet predict
the behavior beyond relatively small strains [3]. It will be necessary to carry out experiments
and dislocation dynamics models to higher strains in order to parameterize the continuum
models for higher levels of strain.

3 Mechanical experiments at small length scales

As stated previously, multi-scale simulations must be validated at all pertinent time and length
scales. It goes without saying that the most that can be claimed of unvalidated models is that
the results demonstrate possible deformation mechanisms and behavior, rather than actual
behavior. It has proven very challenging to perform mechanical experiments at the smallest
length scales, which has inhibited opportunities for feedback and validation of small scale
models. This section addresses some of the conceptual difficulties in performing small length
scale mechanical experiments.

Experiments should measure physics-based, intrinsic variables rather than derived quanti-
ties or phenomenological quantities. For example, mechanical experiments that strive to char-
acterize the continuum properties of, say, metals, quantify the yield stress and the hardening
behavior beyond the yield point. However useful these quantities are in terms of describing
the evolution of deformation from an engineering perspective, they are still phenomenolog-
ical [42]. Instrumented indentation tests have been invaluable as a means of characterizing
deformation at the micrometer length scale and below, but hardness too is a phenomenological
quantity.
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Physics-based theories of the mechanical behavior of materials must account for the
tensorial nature of the various quantities. As such, every effort should be made to measure
tensor components, rather than averaged quantities. Also, every attempt should be made to
measure spatially and temporally resolved quantities rather than averaged quantities. A recent
example of this is the ability to measure directly components of the dislocation density tensor
(also called the incompatibility tensor) associated with imposed strain gradients in plastically
deforming metal crystals [43]. A counter example is the method of instrumented indentation
which reports a force versus displacement behavior of the indenter tip as it plunges into
the material of interest to investigate the elastic-plastic response of a bulk material. The
force is, in essence, an average of the three-dimensional second-rank stress tensor field and
the displacement is a similarly averaged quantity derived from the strain field. There is
typically not enough richness in the data to be able to provide feedback as to the evolution
of individual variables used in small scale simulations, nor to distinguish between good and
bad constitutive models. Recent developments of micro-column compression [44] have been
a significant advance, but it should be kept in mind that the output variables are still averaged
quantities.

The goal of all experiments is to quantify physical phenomena of interest to serve as a
benchmark for the development of theory. Ultimately any mechanics theory will be
expressed in terms of a boundary value problem which incorporates kinetics, kinematics
and constitutive relationships. For the kinetics and kinematics, it is necessary to determine
the shape, volume and mass of the specimen, its displacement and traction boundary condi-
tions, as well as the initial positions, velocities and the like. For the constitutive relationship,
it is necessary to determine the initial state of the material with as much precision as possible.
At minimum, the main elemental constituents of the material, the crystallographic orientation
and the temperature of the environment must be known in order to determine elastic prop-
erties. If deformation is to be modeled beyond the elastic regime, much more information
is required, such as temperature, magnetic, electrical fields and the reactive elements, etc.
Most important, though, is that the initial defect structure of the material must be determined
as precisely as possible, including dislocations, grain boundaries, second-phase particles,
previous irradiation, etc. Spatially-resolved information of this type is extremely difficult to
obtain. As a consequence, most constitutive models incorporate this information only in an
average sense.

Mechanical experiments at the micrometer length scale and below are very difficult to
perform. Traditionally, mechanical specimens are first fabricated and then mounted in the
loading device. The gripping issues inherent in loading small scale specimens often introduce
uncertainties in the displacement boundary conditions. For indentation methods, the shape of
the indenter and the radius of curvature of its tip are important—the latter of which evolves
with extended usage—so the traction boundary conditions often are not well-defined. In order
to circumvent these difficulties, novel test methods such as the micro-compression methods
[44] have been developed in which the specimen is carved out of a bulk specimen using
Focused Ion Beam (FIB) in an electron microscope and the resulting micrometer length scale
column is loaded in compression with a flat-tipped indenter. Even this method has difficulties,
because the cylinders as fabricated are often slightly conical so the stress distribution is not
constant within the specimen. In addition, plastic slip often initiates preferentially at the
top and bottom corners of the cylinders due to stress concentration. Also, the slip boundary
conditions at the bottom of the cylinders where they meet the underlying bulk specimen are
not well-defined because plastic slip is able to propagate from the cylinder into the bulk.
Nevertheless, these new methods represent significant advances in experimental capability.
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Thus, the boundary conditions and initial conditions on the kinetics and kinematics can be
very difficult to either prescribe or describe in small scale mechanical experiments. Likewise
the description of the initial state of the material for the constitutive relationship can be very
challenging. To begin, a precise characterization of the specimen is necessary. At small length
scales, it may not be sufficient to simply state the volume of the material. Rather it may be
necessary to specify the mass, or equivalently, the number of atoms in the system. Graphene
films are an example of this, as will be discussed further in Sect. 4. Likewise, at sufficiently
small length scales, the behavior of the specimen is extremely sensitive to the details of
the initial defects. Therefore, two otherwise identically specimens can exhibit dramatically
different behavior which depends exclusively on the initial defect structure. To make matters
worse, the very steps involved in the fabrication of small scale specimens can introduce
defects so the essence of the material can change during the fabrication process. Therefore,
the defect structure of the as-fabricated specimen must be determined and ultimately modeled.
Finally, since the constitutive behavior of small scale specimens is so highly dependent on the
initial defect structure—which is statistically distributed—the observed behavior of different
specimens often has a wide range. Therefore in materials for which the defect distribution
is unknown, often the best that can be measured from a set of mechanical specimens is the
range of possible behaviors which must be quantified statistically.

4 Mechanical experiments on monolayer graphene

Graphene is a molecule of carbon atoms arranged in a close-packed hexagonal planar struc-
ture; as such it is a two-dimensional material. It is the basic structural element of carbon
nanotubes and other fullerenes and can, in principle, be arbitrarily large. Graphene is also the
basic structural element for graphite. The covalent carbon bonds in graphene endow it with
both high strength and high stiffness. A set of experiments [1] on free-standing graphene to
determine experimentally its strength and stiffness will be described in this section.

A silicon substrate with a 300 nm SiO2 epilayer was patterned using nanoimprint litho-
graphy and reactive ion etching to create a 5 mm by 5 mm array of wells (either 1 µm or
1.5 µm in diameter) with a depth of 500 nm. Graphite flakes from a kish1 graphite [45] source
were mechanically exfoliated [46] and placed on the substrate over the array of wells using
transparent adhesive tape, as shown schematically in Fig. 1. In essence, the adhesive side of
the tape was placed on the graphite source and pulled off, which cleaved graphite flakes from
the surface. The tape was then removed from the graphite source and the adhesive surface
was placed on the previously prepared substrate. After removing the tape from the substrate,
many flakes of graphite remained. The randomly shaped graphite flakes had an average size
of several tens of micrometers and were randomly distributed over the wells. The thicknesses
of the flakes varied, but a few flakes were graphene monolayers, bilayer, trilayers, etc.2

A preliminary evaluation of the thicknesses was made using optical microscopy to identify
the thinnest flakes. A monolayer of graphene sufficiently changes the optical path length of
light to cause a slight change of intensity due to interference effects. In fact, with practice, it
is possible to distinguish between monolayers, bilayers, trilayers and higher integer number

1 Kish graphite is a product of the steel smelting process. The slag covering molten steel for some smelting
processes is known as kish, and graphite is one its constituents. Kish graphite is renowned for its tendency to
flake, perhaps indicating a large grain size.
2 Strictly speaking, a graphene molecule is an individual atomic layer of carbon atoms. Nevertheless, the
term graphene will be employed herein to designate a graphite flake that contains an integer number of atomic
layers.
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Fig. 1 Schematic of experimental set-up showing graphene flake extending over circular well on substrate.
The cantilevered atomic force microscope tip is shown indenting the graphene film

of layers based upon the contrast under the microscope. Raman spectroscopy was then used
on candidate flakes of various thicknesses to confirm the integer number of atomic layers.
There is yet no method to use mechanical exfoliation to control systematically the position
and pre-tension of any individual graphene flake.

The graphene flakes adhere to the SiO2 epilayer on the substrate via van der Waals
interactions. Each flake is large enough to cover many wells in the substrate. Thus, each
flake results in many graphene films suspended over individual wells. The profile of the
suspended graphene films were characterized by Atomic Force Microscopy (AFM) in a non-
contact mode. The results showed that the graphene was “sucked” down into the well a few
nanometers, presumably due to van der Waals interactions between the periphery of the well
and the suspended film, which induces a pre-tension in the suspended film. It is reasonable
to assume that the pre-tensions of the suspended films from a given flake would be approxi-
mately the same. Therefore, each specimen to be tested can be thought of as being a tensioned
“drum head” that is one atomic layer thick, with a diameter of either 1 µm or 1.5 µm.

The mechanical loading was performed via nanoindentation with an AFM (XE-100, Park
Systems). Two micro-cantilevers with diamond3 tips were employed, with tip radii of 16.5 nm
and 27.5 nm, as measured by Transmission Electron Microscopy (TEM). Just prior to the
loading, the suspended graphene films were scanned with the AFM tip, after which the tip was
immediately moved to within 50 nm of the center of the film and loading commenced. The
loading was performed under position control at the rate of 1.4 µm/s and the reaction force on
the tip was measured. Two to three load-unload cycles were made to multiple depths (from
20 nm to 100 nm) for each of the 23 graphene films from two different flakes. In that way, a
total of 67 force-displacement responses were measured. A representation of the deformed
graphene near the indenter tip is shown in Fig. 2. The force-displacement responses were
independent of the rate of indentation and showed negligible hysteresis, which demonstrated
that the graphene did not slip around the periphery of the well.4 Immediately after measuring
the elastic response, the graphene films were loaded to failure and the breaking force on the
AFM tip was recorded.

3 Diamond tips were necessary because traditional silicon tips broke at forces lower than the breaking load
of the monolayer graphene films.
4 The force-displacement response of some films did exhibit hysteresis upon unloading. AFM topography
measurements of such films after a hysteretic response indicated that sliding of the graphene had occurred
around the periphery of the wells. Data from these specimens were not considered in the analysis, but they do
offer a glimpse of how the van der Waals interactions can be measured quantitatively.
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Fig. 2 Schematic representation of highest strained region of graphene under the indenter tip

Fig. 3 Representative force-displacement data showing that the force-displacement response is independent
of indenter tip radius, and the breaking force (shown by the × symbols) is independent of the film radius

As shown in Fig. 3, the force-displacement responses were a strong function of the diameter
of the well, as expected, but were essentially independent of the diamond tip radius. This
suggests that the system can be modeled as a circular film with a point load at the center.
The measured force was linear with displacement at very small deflections and cubic at large
deflections, as would be expected for a linear-elastic material [47,48].

The breaking force depended strongly on the radius of the AFM tip, but was independent
of the diameter of the graphene film. This suggests that the very high stresses in the material
under the indenter tip depend mainly upon the details of the geometry and size of the indenter
tip. The average breaking load for the 16.5 nm radius tip was 1.8 µN and for the 27.5 nm tip
was 2.9 µN and the deflections at failure were greater than 100 nm.

It is interesting to return attention briefly to the discussion in Sect. 3 about experimental
requirements for mechanical experiments at small length scales. One issue is to ensure a
correct description of the boundary conditions and initial conditions. The graphite flakes are
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placed randomly on the substrate and are maintained in position by van der Waals interactions.
As a consequence, one can assume zero displacements around the periphery of the film during
mechanical loading—assuming the van der Waals forces are sufficiently strong—which was
borne out in the experiments. Thus the initial position of the entire film is known and the
initial velocities are zero. The displacement boundary conditions at the load point are mostly
determined by the radius of curvature of the diamond tip and the displacement rate of loading.
There is one caveat however: the nature of the van der Waals interactions between the diamond
tip and the film are not obvious. Experimentally there is a “snap-in” event as the graphene
film is attracted up to and into contact with the descending diamond tip; the measured force
upon attachment of the graphene to the diamond tip is between 5 and 10 nN. This value
can be used to garner information about the van der Waals attraction, but it does not give
information about the sliding forces, which require lateral force measurements.

Another important issue is to minimize damage induced into the specimen during fabri-
cation. The graphene was obtained by exfoliation during which individual atomically thin
graphene layers were cleaved from the graphite source. Since the substrate was prepared
prior to the deposition of graphene, the graphene films were never exposed to highly reactive
chemicals. Therefore, it is unlikely that any new defects were introduced into the specimen
during fabrication. One important uncertainty, though, is that the number of atoms in the
specimen is not known (although it is of the order of 108 atoms) due to the presence of the
pre-tension from the adherence of the graphene film to the interior surface of the well. In
principle, the number of atoms could be calculated from a measurement of the relative atomic
spacing in the suspended graphene; glancing angle x-ray methods offer a potential means of
measuring the lattice spacing. Contamination of the graphene must also be considered, espe-
cially given the fact that every atom in the graphene specimen is on a surface. It is apparent
that the adhesive tape used to transfer the graphite flakes from the source to the substrate
initially must have cleaved the flakes from the source. Although the details are unclear, it is
likely that the flakes cleave again when the adhesive tape is removed from the substrate. Thus,
it is plausible that both sides of the monolayer graphene films are newly-cleaved surfaces,
which reduces the probability of surface contamination.

It is also necessary to describe the initial defect structure of the graphene films which
acts as the initial conditions for the constitutive properties. The experiments showed conclu-
sively that graphene is a brittle material in the sense that final failure occurs suddenly and
catastrophically. Thus, the breaking strength of graphene is expected to be very sensitive to the
presence and the details of pre-existing defects. The lowest stresses in the system are at the
periphery of the well, so any imperfections near the edges are not expected to dominate
the behavior of the system. Detailed continuum-based simulations of the stress state in the
indented graphene film indicated that the region of highest stress is limited to only about 1%
of the area of the graphene film in the immediate neighborhood of the indenter tip. Therefore,
only defects that exist within this small region, which amounts to only a few thousand square
nanometers, are expected to influence the breaking strength.

The sensitivity of the breaking force to the presence of defects was investigated using
Weibull statistics. The statistical distribution of the breaking force for each tip radius was very
narrow and the Weibull modulus [1,49] strongly suggested the graphene films to be defect-
free, at least in the most highly stressed region of the films. Several observations support
this conclusion. First, atomic scale resolution experiments [50] with Scanning Tunneling
Microscopy (STM) on a graphene monolayer film—from the same kish graphite source used
in these experiments—showed there to be no defects over an area of many hundreds of square
nanometers. Second, the concentration of atomic vacancies in a graphite crystal is expected
to be exceedingly small, based on the formation energy of up to 7.4 eV to introduce one
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atomic vacancy in graphite [51,52]. Thus, graphene films exfoliated from the crystal should
have a negligible concentration of atomic vacancies based upon elementary thermodynamic
considerations. Third, the slip plane of dislocations that exist in graphite is typically the basal
plane [53,54]. Thus the dislocations tend to exist between sheets of graphene in the graphite
crystal so the dislocations disappear upon exfoliation. Other potential defects include grain
boundaries or twin boundaries in the basal plane, but these are more likely to be at the
boundaries of an exfoliated flake than at the middle. Finally, interstitial and substitutional
atoms may very well exist, however they would likely not cause as significant a degradation
of strength as one of the other types of defects. Therefore it is not surprising that such a
small region of graphene could be defect free. The stress experienced by the graphene under
the indenter tip at the point of failure is expected to be the intrinsic strength, which is the
maximum stress that can be supported by the graphene prior to failure.

5 Analysis of experiments

As stated in the previous section, the force-displacement response is insensitive to the radius
of the indenter tip. In addition, ab initio calculations of the bending stiffness of graphene
films relative to the in-plane stiffness strongly suggest that to a very good approximation, the
bending contribution to the elastic strain energy at the radii of curvatures of the indenter tips
can be neglected [55]. Hence, the system can be analyzed by treating it as an initially flat
circular membrane indented by a center point load. It is known that at large displacements,
the force scales with the cube of displacement in the limit of zero pre-tension in the film [48],
but the response is more complicated for a non-zero pre-tension [47]. Nevertheless, a closed
form solution of the force-displacement response has not yet been obtained. Therefore a
detailed finite element analysis of the graphene film was performed by treating the graphene
as a membrane subject to a pre-tension to investigate the force-displacement response. An
approximate expression for force that has both linear and a cubic term in displacement was
then determined from the simulations that deviated from the numerical results significantly
less than the experimental uncertainty. This expression was used as a tool to extract values of
pre-tension and stiffness of the graphene based upon least-squares curve fit of the data with
the approximate force versus displacement response. The average Young’s modulus from all
67 measurements is 340 N·m−1, where the stiffness is reported as force per length of the
graphene.

Another result from the experiments is that the breaking force of the films depends
predominantly upon the radius of curvature of the indenter tip and is independent of the
film diameter. Therefore a mechanics analysis of the stresses in the graphene film in the
contact region was performed using finite elements in the limit of zero friction between the
indenter and the graphene film. The maximum stress attained in the film agreed well with an
analytical solution [56] when a linear stress-strain response is employed. The result showed,
however, that the strains in the graphene near the indenter reached values of well over 0.2,
which is far beyond the linear-elastic regime.

Therefore, a non-linear elastic constitutive behavior [57–60] was adopted which is pred-
icated on expanding the elastic strain energy density, �, of a material in a Taylor series in
terms of powers of strain that has the first two terms

� = 1

2
Ci jklηi jηkl + 1

6
Di jklmnηi jηklηmn (1)
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where ηi j is the Lagrangian elastic strain, Ci jkl are the second-order elastic moduli and
Di jklmn are the third-order elastic moduli; the summation convention is observed for repeated
subscripts. The symmetric second Piola-Kirchhoff stress tensor, �i j , is then determined as

�i j = ∂�

∂ηi j
= Ci jklηkl + 1

2
Di jklmnηklηmn (2)

which is work conjugate to the Lagrangian strain. The third-order elastic moduli are effec-
tively negative so there is a decreased tangent modulus at high tensile strains and an enhanced
tangent modulus at high compressive strains. The third-order elastic moduli, Di jklmn , is a
sixth-rank tensor quantity and its independent tensor components depend upon both the
symmetry of the crystal lattice [58] of interest as wall as the symmetry in indices due to
thermodynamic considerations.

Casting this relationship in a uniaxial context, the stress, σ , and strain, ε, response can be
written as σ = Eε+ Dε2, where E is Young’s modulus and D is the effective uniaxial third-
order elastic constant. It is evident that for a negative value of D the maximum stress that
material can achieve in uniaxial tension, here called the intrinsic strength, is σint = −E2

/
4D,

and at a corresponding strain of εint = −E
/

2D. Since D < 0, both quantities are non-
negative.

It is tempting to assign a thickness to the graphene monolayer. A number of researchers
have discussed an appropriate effective thickness by treating a graphene sheet as a continuum
shell to simulate carbon nanotubes. In a small-strain continuum context a shell with thickness,
h, has bending stiffness h3 E/12(1 − ν2), where E and ν are the in-plane Young’s modulus
and Poisson’s ratio, respectively. In a monolayer graphene film, the bending stiffness and
the in-plane stiffness are related, but do not necessary follow the same relationship as the
continuum formulation. As a consequence, effective values of E and h were found by other
researchers (e.g. [61,62] and references therein) in the spirit of a multi-scale model in order
to allow reasonable continuum-based simulations of carbon nanotubes. However it bears
emphasis that the effective thickness is not an intrinsic property of a graphene sheet, and that
the appropriate way to present quantities with units of stress is on a force per length basis
rather than a force per area basis. Therefore, quantities that are obtained from the experiments
are the two-dimensional Young’s modulus, E2D , the two-dimensional third-order stiffness,
D2D , and the, two-dimensional intrinsic strength, σ 2D

int , each with units of force per length.
They can be thought of as the product of effective thickness, h, and the respective effective
three-dimensional quantities with units of force per area.

The value of E2D = 340 N · m−1 was determined from the force-displacement response
of the graphene films. The value of D2D was determined by modeling the deformation
in the film under the indenter tip while assuming the non-linear stress-strain constitutive
relationship using the finite element method. The strain in the graphene directly under the tip
increased monotonically with depth of indentation. Eventually the highest strains exceeded
εint , after which the stress in the most highly strained region began to decrease. This induced
an instability in the deformation and the finite element simulation was unable to converge to
an equilibrium solution. The force on the indenter in the simulation at the point of instability
was deemed to be the breaking force of the graphene film. The value of D2D = −690 N·m−1

led to a predicted breaking force very similar to the experimentally observed breaking force
for both indenter tip radii. This corresponds to an intrinsic strength of σ 2D

int = 42 N·m−1.
It is important to note that the predicted force-displacement response of the graphene

film with the non-linear elastic constitutive description was virtually indistinguishable from
simulations for which a linear constitutive description was employed. This is due to the
fact that only about 1% of the film nearest the indenter tip had sufficiently large strains to
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experience a non-linear response, and the additional displacement accrued in this region as
the tangent modulus decreased was very small compared to the overall displacement.

6 Suggestions for further simulations

The goal of the analysis of the experiments presented above was to determine the elastic
properties and the intrinsic strength based upon elementary continuum concepts. As such,
the analysis purposely avoided any reference to discrete methods of analysis such as molecular
dynamics based upon empirical potentials or to ab initio methods. However, the main utility
of the experiments is to serve as a benchmark for the discrete methods, as will be discussed
in this section.

Ab initio methods based upon quantum mechanics have been used for a plethora of different
problems. The underlying theory uses Schrödinger’s equation so errors in the results creep
in due to approximations used in the calculations. Therefore, comparison of the predictions
to experimental results should be considered as a validation of the solution methods inherent
in the simulation, rather than the validity of the underlying governing equation given the
accuracies that can be currently obtained experimentally in mechanical experiments. Thus,
development of methods that are both accurate and robust for relatively simple materials such
as graphene will give more confidence when the same methods are applied to more complex
materials [63].

There are a number of different ab initio methods [63], including post-Hartree-Fock (HF)
quantum chemistry, quantum Monte Carlo (QMC) simulations, and various types of Density
Functional Theory (DFT). Two recent papers have been published on the mechanical proper-
ties of graphene at large strains. One [37] employed Density Functional Perturbation Theory
(DFPT) to study the phonon modes associated with graphene as it is stretched uniaxially for
two different crystallographic directions, from which they predicted the stress-strain response
and the Poisson’s ratio in the so-called zigzag and armchair directions. The predicted behav-
ior deviates significantly from linear behavior beyond a strain of about 0.05, after which the
tangent modulus decreases. Furthermore, the predicted elastic behavior in the two directions
at strains less then 0.15 is virtually indistinguishable. The tangent modulus of the predicted
response is zero at the highest strain that the graphene can support, which is the intrinsic
strength. The uniaxial prediction in the armchair direction suggests the intrinsic strength of
the graphene to be 40.4 N · m−1 at a strain of 0.266, as compared to an intrinsic strength
in the zigzag direction to be 36.7 N · m−1 at a strain of 0.194. Another ab initio calculation
[64] probed the sensitivity of the breaking strength of graphene to the presence of atomic
vacancies and small tears (or cracks). Quantum mechanical DFT calculations were carried
out in the region surrounding the defects in the graphene, while molecular dynamics using
an empirical potential were used in regions further away, while a continuum mechanical
description was used in regions even further away. This multi-scale simulation predicted the
intrinsic strength to be 38.4 N · m−1, and the breaking strength dropped off dramatically upon
the introduction of defects. The intrinsic strength predicted from these simulations compares
well with the experimental value of 42 ± 3 N·m−1 at a strain of about 0.25. Hence it appears
that ab initio methods are able to predict accurately the experimentally observed behavior,
at least for idealized load states.

There are many different Molecular Dynamics (MD) potentials that can be used to model
mechanical behavior (see the review in [65]). The interatomic potentials are empirical and
typically contain a large number of parameters that are fit to experiment as well as from
ab initio calculations. Furthermore, potentials specialized for studies of mechanical properties
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are typically specialized for small strains. As such, MD potentials are at best an approximation
of the actual physical behavior. Estimates [66] of the error introduced by the empirical
nature of the potentials are as large as 20%. Nevertheless, the allure of MD methods is that
the computational expense is much lower than that of ab initio methods. Therefore, future
work to devise MD potentials that closely approximate the behavior from ab initio methods,
especially at very high strains where the elastic behavior is clearly non-linear, would constitute
a significant advance.

In addition to discrete methods of simulation, a proper continuum description of the non-
linear elastic behavior in Eq. 2 requires that the components of both the second-order elastic
moduli, Ci jkl , as well as the third-order elastic moduli, Di jklmn , be determined. The second-
order elastic moduli tensor is isotropic due to the symmetries inherent in the unstrained
graphene lattice. The third-order elastic modulus, however, is anisotropic because the sym-
metries are broken at high strains. Therefore, one direction of future research is to determine
the values of all non-zero components of the third-order elastic modulus tensor for graphene.
This would allow detailed simulations of various devices made of monolayer graphene, such
as mechanical resonators, as long as the radius of curvature of the deformed graphene is
sufficient small that the bending stiffness can be neglected.

7 Conclusions

A set of experiments in which the mechanical properties of monolayer graphene are measured
was discussed in detail. The pertinent properties were the Young’s modulus, the intrinsic
strength, and an estimate of the third-order elastic modulus for uniaxial tension. In addition,
a number of different directions of future research were delineated.

One was to determine the values of all components of the sixth-rank, third-order elastic
moduli tensor of graphene. This is important for two reasons. First, the stress-strain response
of graphene is known to be non-linear beyond about a strain of 0.05. Second, the mechanical
response of graphene at small strains is isotropic, but is anisotropic at larger strains. The
non-linear, anisotropic behavior at large strains is embedded within the framework of the
third-order elastic modulus.

Two ab initio simulations of the mechanical properties of graphene were reviewed. The
intrinsic strength predictions of both corresponded to the experimental value within exper-
imental uncertainty. However, ab initio methods are very expensive computationally. Thus,
it would be beneficial to develop molecular dynamics interatomic potentials that are valid at
large strains, which would dramatically reduce computational time.

Simulations of graphene sheets that contain tears and other defects rely on a multi-scale
methodology that uses ab initio methods in the region nearest the defect, a continuum
mechanics description far away from the defect, and a molecular dynamics formulation
at intermediate distances. Interatomic potentials that are valid for large strains would allow a
reduction in the size of the ab initio region. Likewise, a continuum description valid at large
strains would allow a reduction in the size of the molecular dynamics region. This would
result in less expensive computations. In addition, validation of the interatomic potentials
will bring more accuracy to simulations at the smallest length scales, which will cascade out
through the larger length scales.

A number of additional experiments are currently under way. One set of experiments is to
measure the mechanical properties of other two-dimensional molecules that can be cleaved
from macroscopic materials, including: BN, MoS2, NbSe2, Bi2Sr2CaCu2Ox , among others.
The methods to exfoliate these films and deposit them on substrates are described in [46]. It
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is important to note that these new molecules consist of at least two different types of atoms,
which will allow validation of more complex models suitable for these materials.

Other experiments underway include a determination of both the maximum van der Waals
force exerted between graphene and a substrate as well as the indenter tip. In addition to van
der Waals forces, experiments are underway to measure the energy associated with the van der
Waals interactions. Another set of experiments to measure the friction properties is being
performed.

It should be emphasized that the experiments and simulations reviewed herein were for
the in-plane mechanical properties. Experiments to probe the bending behavior should also
be performed.

Acknowledgements The author is grateful for conversations with C. Lee, J. Hone and X. Wei, as well
as support from the National Science Foundation through grants DMR-0650555 and CMMI-0500239, the
Air Force Office of Scientific Research through grant FA9550-06-1-0214 and a Department of Energy grant
administered through Lawrence Livermore National Laboratory for a PECASE award.

References

1. Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of
monolayer graphene. Science 321(5887), 385–388 (2008)

2. Pablo, J.J., Curtin, W.A.: Multiscale modeling in advanced materials research: challenges, novel methods,
and emerging applications. MRS Bull. 32, 905–909 (2007)

3. Becker, R.: Developments and trends in continuum plasticity. J. Comput-Aided Mater. Des. 9(2),
145–163 (2002)

4. Chandler, E., Moriarty, J., Rubia, T.D.de la , Couch, R.: LLNL’s dynamics of metals program: multi-scale
modeling of plasticity and dynamic failure. Abstr. Pap. Am. Chem. Soc 222, U13–U13 (2001)

5. Buehler, M.J., Hartmaier, A., Gao, H.: Hierarchical multi-scale modelling of plasticity of submicron thin
metal films. Model. Simul. Mater. Sci. Eng. 12(4), S391–S413 (2004)

6. Clayton, J.D., McDowell, D.L.: Homogenized finite elastoplasticity and damage: theory and computa-
tions. Mech. Mater. 36(9), 799–824 (2004)

7. Hao, S., Liu, W.K., Moran, B., Vernerey, F., Olson, G.B.: Multi-scale constitutive model and computational
framework for the design of ultra-high strength, high toughness steels. Comput. Methods Appl. Mech.
Eng. 193(17–20), 1865–1908 (2004)

8. Khan, S.M.A., Zbib, H.M., Hughes, D.A.: Modeling planar dislocation boundaries using multi-scale
dislocation dynamics plasticity. Int. J. Plast. 20(6), 1059–1092 (2004)

9. Belak, J.: Multi-scale applications to high strain-rate dynamic fracture. J. Comput. Aided Mater.
Des. 9(2), 165–172 (2002)

10. Curtin, W.A., Miller, R.E.: coupling in computational materials science. Model. Simul. Mater. Sci.
Eng. 11(3), R33–R68 (2003)

11. Zbib, H.M., Rubia, T.D. de la : A multiscale model of plasticity. Int. J. Plast. 18(9), 1133–1163 (2002)
12. Hartley, C.S.: Multi-scale modeling of dislocation processes. Mater. Sci. Eng. A Struct. Mater. Prop.

Microstruct. Process. 319, 133–138 (2001)
13. Stainier, L., Cuitino, A.M., Ortiz, M.: A micromechanical model of hardening, rate sensitivity and thermal

softening in bcc single crystals. J. Mech. Phys. Solids 50(7), 1511–1545 (2002)
14. Stainier, L., Cuitino, A.M., Ortiz, M.: Multiscale modelling of hardening in BCC crystal plasticity.

J. Phys. Iv 105, 157–164 (2003)
15. Cuitino, A.M., Stainier, L., Wang, G.F., Strachan, A., Cagin, T., Goddard, W.A., Ortiz, M.: A multiscale

approach for modeling crystalline solids. J. Comput. Aided Mater. Des. 8(2–3), 127–149 (2002)
16. Cuitino, A.M., Ortiz, M.: Computational modeling of single-crystals. Model. Simul. Mater. Sci.

Eng. 1(3), 225–263 (1993)
17. Horstemeyer, M.F., Baskes, M.I., Prantil, V.C., Philliber, J., Vonderheide, S.: A multiscale analysis of

fixed-end simple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state
variable theory. Model. Simul. Mater. Sci. Eng. 11(3), 265–286 (2003)

18. Baskes, M.I.: The status role of modeling and simulation in materials science and engineering. Curr. Opin.
Solid State Mater. Sci. 4(3), 273–277 (1999)



156 J. W. Kysar

19. Horstemeyer, M.F., Baskes, M.I.: Atomistic finite deformation simulations: a discussion on length scale
effects in relation to mechanical stresses. J. Eng. Mater. Technol. Trans. ASME 121(2), 114–119 (1999)

20. Campbell, G.H., Foiles, S.M., Huang, H.C., Hughes, D.A., King, W.E., Lassila, D.H., Nikkel, D.J., Rubia,
T.D. de la , Shu, J.Y., Smyshlyaev, V.P.: Multi-scale modeling of polycrystal plasticity: a workshop
report. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 251(1–2), 1–22 (1998)

21. Hansen, N., Hughes, D.A.: Analysis of large dislocation populations in deformed metals. Phys. Status
Solidi A Appl. Res. 149(1), 155–172 (1995)

22. Horstemeyer, M.F., Baskes, M.I., Godfrey, V., Hughes, D.A.: A large deformation atomistic study exam-
ining crystal orientation effects on the stress–strain relationship. Int. J. Plast. 18(2), 203–229 (2002)

23. Godfrey, A., Hughes, D.A.: Physical parameters linking deformation microstructures over a wide range
of length scale. Scr. Mater. 51(8), 831–836 (2004)

24. Rubia, T.D. de la , Bulatov, V.V.: Materials research by means of multiscale computer simulation. Mater.
Res. Soc. Bull. 26(3), 169–175 (2001)

25. Soderlind, P., Moriarty, J.A.: First-principles theory of Ta up to 10 Mbar pressure: structural and
mechanical properties. Phys. Rev. B 57(17), 10340–10350 (1998)

26. Ogata, S., Li, J., Hirosaki, N., Shibutani, Y., Yip, S.: Ideal shear strain of metals and ceramics. Phys. Rev.
B. 70(10):104104 (2004)

27. Ogata, S., Li, J., Yip, S.: Ideal pure shear strength of aluminum and copper. Science 298(5594),
807–811 (2002)

28. Shibutani, Y., Krasko, G.L., Sob, M., Yip, S.: Atomic-level description of material strength of alpha-
Fe. Mater. Sci. Res. Int. 5(4), 225–233 (1999)

29. Widom, M., Moriarty, J.A.: First-principles interatomic potentials for transition-metal aluminides. II.
Application to Al-Co and Al-Ni phase diagrams. Phys. Rev. B 58(14), 8967–8979 (1998)

30. Moriarty, J.A., Belak, J.F., Rudd, R.E., Soderlind, P., Streitz, F.H., Yang, L.H.: Quantum-based atomistic
simulation of materials properties in transition metals. J. Phys. Condens. Matter 14(11), 2825–2857 (2002)

31. Moriarty, J.A., Vitek, V., Bulatov, V.V., Yip, S.: Atomistic simulations of dislocations and defects.
J. Comput. Aided Mater. Des. 9(2), 99–132 (2002)

32. Yang, L.H., Soderlind, P., Moriarty, J.A.: Atomistic simulation of pressure-dependent screw disloca-
tion properties in bcc tantalum. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 309,
102–107 (2001)

33. Schiotz, J., Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science 301(5638),
1357–1359 (2003)

34. Bulatov, V.V.: Current developments and trends in dislocation dynamics. J. Comput. Aided Mater.
Des. 9(2), 133–144 (2002)

35. Hiratani, M., Bulatov, V.V.: Solid-solution hardening by point-like obstacles of different kinds. Philos.
Mag. Lett. 84(7), 461–470 (2004)

36. Cai, W., Bulatov, V.V.: Mobility laws in dislocation dynamics simulations. Mater. Sci. Eng. A Struct.
Mater. Prop. Microstruct. Process. 387–389, 277–281 (2004)

37. Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under
tension. Phys. Rev. B 76, 064120 (2007)

38. Arsenlis, A., Wirth, B.D., Rhee, M.: Dislocation density-based constitutive model for the mechanical
behaviour of irradiated Cu. Philos. Mag. 84(34), 3617–3635 (2004)

39. Arsenlis, A., Parks, D.M., Becker, R., Bulatov, V.V.: On the evolution of crystallographic dislocation
density in non-homogeneously deforming crystals. J. Mech. Phys. Solids 52(6), 1213–1246 (2004)

40. Arsenlis, A., Tang, M.J.: Simulations on the growth of dislocation density during Stage 0 deformation in
BCC metals. Model. Simul. Mater. Sci. Eng. 11(2), 251–264 (2003)

41. Arsenlis, A., Parks, D.M.: Modeling the evolution of crystallographic dislocation density in crystal plas-
ticity. J. Mech. Phys. Solids 50(9), 1979–2009 (2002)

42. Kysar, J.W.: Energy dissipation mechanisms in ductile fracture. J. Mech. Phys. Solids 51(5),
795–824 (2003)

43. Larson, B.C., El-Azab, A., Yang, W.G., Tischler, J.Z., Liu, W.J., Ice, G.E.: Experimental characterization
of the mesoscale dislocation density tensor. Philos. Mag. 87(8–9), 1327–1347 (2007)

44. Uchic, M.D., Dimiduk, D.M., Florando, J.N., Nix, W.D.: Sample dimensions influence strength and
crystal plasticity. Science 305(5686), 986–989 (2004)

45. Nicks, L.J., Nehl, F.H., Chambers, M.F.: Recovering flake graphite from steelmaking kish.
J. Mater. 47(6), 48–51 (1995)

46. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-
dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

47. Komaragiri, U., Begley, M.R.: The mechanical response of freestanding circular elastic films under point
and pressure loads. J. Appl. Mech. Trans. ASME 72(2), 203–212 (2005)



Direct comparison between experiments and computations at the atomic length scale 157

48. Schwerin, E.: Über Spannungen und Formänderungen kreisringförmiger Membranen. Z. Tech.
Phys. 10(12), 651–659 (1929)

49. Barber, A.H., Andrews, R., Schadler, L.S., Wagner, H.D.: On the tensile strength distribution of multi-
walled carbon nanotubes. Appl. Phys. Lett. 87, 203106 (2005)

50. Stolyarova, E., Rim, K.T., Ryu, S.M., Maultzsch, J., Kim, P., Brus, L.E., Heinz, T.F., Hybertsen,
M.S., Flynn, G.W.: High-resolution scanning tunneling microscopy imaging of mesoscopic graphene
sheets on an insulating surface. Proc. Natl. Acad. Sci. USA 104(22), 9209–9212 (2007)

51. Coulson, C.A., Santos, E, Senent, S., Leal, M., Herraez, M.A.: Formation energy of vacancies in graphite
crystals. Proc. R. Soc. Lond. A Math. Phys. Sci. 274, 461–479 (1963)

52. El-Barbary, A.A., Telling, R.H., Ewels, C.P., Heggie, M.I. and Briddon,P.R.: Structure and energetics of
the vacancy in graphite. Phys. Rev. B. 68(14) (2003). Article Number 144107

53. Grenall, A.: Direct observation of dislocations in graphite. Nature 182(4633), 448–450 (1958)
54. Williamson, G.K.: Electron microscope studies of dislocation structures in graphite. Proc. R. Soc. Lond.

A Math. Phys. Sci. 257(1291), 457–& (1960)
55. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear

response. Phys. Rev. Lett. 76(14), 2511–2514 (1996)
56. Bhatia, N.M., Nachbar, W.: Finite indentation of an elastic membrane by a spherical indenter. Int. J.

Nonlinear Mech. 3(3), 307–324 (1968)
57. Brugger, K.: Thermodynamic definition of highter order elastic coefficients. Phys. Rev. A Gen.

Phys. 133(6A), A1611–A1612 (1964)
58. Brugger, K.: Pure modes for elastic waves in crystals. Journal of Applied Physics 36(3), 759–768 (1965)
59. Brugger, K.: Determination of 3rd-order elastic coefficients in crystals. J. Appl. Phys. 36(3),

768–773 (1965)
60. Lubarda, V.A.: Apparent elastic constants of cubic crystals and their pressure derivatives. Int. J. Non-

Linear Mech. 34(1), 5–11 (1999)
61. Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev.

B 74, 245413 (2006)
62. Pantano, A., Parks, D.M., Boyce, M.C.: Mechanics of deformation of single- and multi-wall carbon

nanotubes. J. Mech. Phys. Solids 52, 789–821 (2004)
63. Carter, E.A.: Challenges in modeling materials properties without experimental input. Sci-

ence 321(5890), 800–803 (2008)
64. Khare, R., Mielke, S.L., Paci, J.T., Zhang, S., Ballarini, R., Schatz, G., Belytschko, T.: Coupled quantum

mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene
sheets. Phys. Rev. B 75, 075412 (2007)

65. Stone, A.J.: Intermolecular potentials. Science 321, 787–789 (2008)
66. Porter, L.J., Li, J., Yip, S.: Atomistic modeling of finite-temperature properties of b-SiC. I. Lattice vibra-

tion, heat capacity and thermal expansion. J. Nucl. Mater. 246, 53–59 (1997)



Shocked materials at the intersection of experiment
and simulation

H. E. Lorenzana · J. F. Belak · K. S. Bradley · E. M. Bringa · K. S. Budil ·
J. U. Cazamias · B. El-Dasher · J. A. Hawreliak · J. Hessler · K. Kadau ·
D. H. Kalantar · J. M. McNaney · D. Milathianaki · K. Rosolankova ·
D. C. Swift · M. Taravillo · T. W. Van Buuren · J. S. Wark · T. Diaz de la Rubia

Originally published in the journal Sci Model Simul, Volume 15, Nos 1–3, 159–186.
DOI: 10.1007/s10820-008-9107-z © US government 2008

Abstract Understanding the dynamic lattice response of solids under the extreme condi-
tions of pressure, temperature and strain rate is a scientific quest that spans nearly a century.
Critical to developing this understanding is the ability to probe and model the spatial and
temporal evolution of the material microstructure and properties at the scale of the relevant
physical phenomena—nanometers to micrometers and picoseconds to nanoseconds. While
experimental investigations over this range of spatial and temporal scales were unimaginable
just a decade ago, new technologies and facilities currently under development and on the
horizon have brought these goals within reach for the first time. The equivalent advance-
ments in simulation capabilities now mean that we can conduct simulations and experiments
at overlapping temporal and spatial scales. In this article, we describe some of our studies
which exploit existing and new generation ultrabright, ultrafast x-ray sources and large scale
molecular dynamics simulations to investigate the real-time physical phenomena that control
the dynamic response of shocked materials.
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1 Introduction

Materials dynamics, particularly the behavior of solids under extreme dynamic compression,
is a topic of broad scientific and technological interest [16,43]. It is well-established that the
bulk material response is strongly dependent on the processing history and is affected by phy-
sical processes that encompass a wide range of temporal and spatial scales [1]. In this work,
we consider the lattice-level response of a solid to shock compression. It is widely accepted
that the material morphology and timescales of atomistic phenomena have a profound impact
on bulk properties, such as plasticity, phase transformations, and damage [50]. Yet, despite
the acknowledged importance of these ultrafast microscopic processes, few studies have cast
light on their nature or provided details of how they govern material response during the
passage of the shock.

Consider a notional crystalline solid, as illustrated in Fig. 1. In the case of a planar shock
denoted here, the initial response is a compression of the crystal along lattice planes whose
unit normals are partially aligned with the direction of shock propagation. This uniaxial
response can remain elastic; that is, once the disturbance is removed, the lattice will relax
back to its original configuration. However, under high-stress conditions and given sufficient
time, the lattice will undergo an irreversible response. The local nucleation and kinetics
of defects and phases leads to plasticity, melting, resolidification, or solid-solid structural
transformations. These atomistic changes can have dramatic and important consequences
to most macroscopically observable behavior such as the material’s thermodynamic state
(pressure, temperature, density), strength, and failure. Little or no data exist concerning the
nature of defect generation and mobility, phase nucleation and growth, and void formation
under these highly dynamic stress conditions.

Historically, two approaches have been employed to address this lack of data: sample
recovery [60] and in situ bulk property measurements. The first approach emphasizes micro-
structural analysis but does not allow direct probing of the samples under dynamic loading.
The examination of shock recovered specimens provides end-state information that can be
useful in inferring dynamic behavior [44,59]. In the second approach, real-time measure-
ments of the bulk response are recorded with fast diagnostics such as surface velocimetry
(VISAR) and internal stress gauges [18]. While such approaches have proven themselves to
be valuable and are largely responsible for our current understanding, these continuum level
methodologies are limited in the insight that they can provide about lattice level processes
under dynamic conditions. As an illustration of this point, a phase transformation event and
its kinetics are inferred from the change in slope of the VISAR wave profile in Fig. 1, effec-
tively measuring a change in the compressibility of the material but providing no insight as
to the atomic level details.

It is clear that a fundamental understanding requires the direct probing and study of
relevant, transient physical processes at their characteristic lattice length scales. We are at
a unique crossroad in materials science where theory, experiments, and simulations have
progressed to the point that such investigations at overlapping temporal and spatial scales
are now possible. This manuscript describes some of our efforts enabled by new advances
in the technology of ultrabright, pulsed x-ray sources and massively parallel computation.
We describe two classes of experimental approaches: laser-based, which offer seamless
timing precision and proven shock loading capabilities, and accelerator-based, which possess
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Fig. 1 A schematic diagram of a shocked crystalline solid, linking microstructural processes to the bulk
behavior measured through conventional velocimetry. Material properties are typically inferred from the
change in velocity at the surface of a target sample (top panel). The rearrangement of the atoms as the lattice
relaxes plastically or undergoes a phase-transition alters the response of the material causing a change in
surface velocity (bottom panel). While a change in slope indicates a change in material response, it does not
provide any information on the microscopic lattice details

unparalleled x-ray beam quality and brightness. These approaches are complementary in their
capacity to probe from the nano-to-macroscale in the spatial and picosecond-to-nanosecond
in the temporal regimes. We discuss our recent experiments and simulations, casting light on
elastic-to-plastic relaxation and solid-solid phase transformations during the shock. We also
introduce future areas of investigation of melt and damage phenomena under dynamic com-
pression conditions.

2 Approaches to in situ studies of atomic processes under dynamic compression

It is now routine to subject macroscopic samples (∼ 0.1 mm to 1 cm) to energy densities
exceeding 1012 ergs/cm3 (∼100 GPa pressures) using high-energy laser and multiple-stage
gas guns. Experiments are currently being designed to investigate solids at pressures signi-
ficantly exceeding 100 GPa at ultrafast timescales using next generation high energy density
(HED) facilities, such as the National Ignition Facility (NIF at Lawrence Livermore National
Laboratory) and the Linac Coherent Light Source (LCLS at Stanford University) [13,51]. In
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parallel, computational molecular dynamics (MD) methodologies have now progressed to
the point where the simulation of ∼ µm size samples out to ∼100 ps is now possible using
state-of-the-art computers [8]. Because of the extreme challenges in conducting experiments
under HED conditions, insight into the atomistic response of the solid under shock conditions
has been limited. We now briefly outline both the experimental and computational approaches
used in this work to perform the real-time and in situ investigations of the dynamic material
processes.

2.1 X-ray techniques—Diffraction and scattering

X-ray diffraction and scattering provide a non-perturbative probe into the lattice level res-
ponse of the shocked solid [14,33]. Diffraction in solids relies on the coherent scattering of
x-rays from a periodic array of atoms to produce spectra that can be correlated with the atomic
structure and described by Bragg’s law. X-ray scattering, on the other hand, is sensitive to
the larger-scale density variations associated with void nucleation and growth. In principle,
temporal resolution of shock loading can be obtained through two basic approaches: (a)
gating or streaking the detector and/or (b) pulsing the x-ray probe. The first approach could
be implemented to as fast as 50ps but with a narrow field of view and has been demonstrated
to ∼50 ns resolutions in powder gun experiments [31,52] with 2 to 4 ns resolution when
streaked [53]. In contrast, current state-of-the-art, pulsed x-ray studies are sub-nanosecond
with the ability to use wide-angle detectors [34,63]. Femtosecond resolution is on the horizon
with the development of new accelerator-based sources.

2.1.1 Laser-based systems for x-ray diffraction

Current high-energy laser facilities have been shown to be excellent venues to generate
both high pressure loading [6,12,55] and implement x-ray-based diagnostics [45]. Shock
pressures between 10 and 1000 GPa are easily accessible through direct ablative drive.
Temporal variation of the drive can be tailored by either laser pulse shaping or target
design, while spatial uniformity of the drive is ensured through the use of phase plates.
Recently, quasi-isentropic drives capable of producing shockless loading have been demons-
trated at pressures between 10 and 200 GPa [19,40]. This shockless loading is expected to
allow access to strain rates from as low as 106sec−1 up to shock regimes > 1010sec−1.
Laser sources can also thermally excite a wide range of x-ray source characteristics from
inner core atomic transitions [47]. Source fluence can exceed 1015 photons/pulse of iso-
tropically illuminating x-rays, orders of magnitude larger than the ∼ 109 photons requi-
red for single-pulse x-ray diffraction, with energies in the range of 500 eV to
22 keV [46].

Multi-beam laser facilities provide exquisite control over timing between drive and diag-
nostic functions. A typical experimental geometry, as illustrated in Fig. 2, offers a largely
unobstructed experimental view for large-area x-ray detectors [35,61,63]. The sample is
driven by a set of coordinated laser pulses that launch a shock into the sample at pressure
P ∼ I2/3

L , where IL is the laser intensity [39]. A separate set of beams are used to generate
a thermal plasma via laser heating that serves as a point source of diagnostic x-rays, termed
a backlighter. To provide the time evolution measurements, these x-rays are delayed relative
to the beams that drive the shock. The backlighting beams are of ∼1 ns duration and are
short enough to effectively freeze some of the lattice dynamics of interest in a single image.
The lattice compression shifts the angle at which the diffracted signal is observed, as shown
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Fig. 2 A schematic diagram of the laser-based in situ x-ray diffraction technique for shock-loaded single-
crystal solids. A pulsed beam is used to generate ablative pressure on a surface of a sample. As the shock
propagates, another beam irradiates a metal foil whose pulsed K-shell x-rays are used to probe the crystal. By
setting the relative timing of the pump-probe experiment, it is possible to record both shocked and unshocked
signal. Due to the geometry of the instrument, the diffraction from the lattice planes generate arcs whose
curvature and position give insight into plane spacings and orientations

in Fig. 2. This separation of signal in angle and space makes it possible to perform a mea-
surement in which both the shocked and unshocked states of the crystal can be diagnosed
simultaneously. The detector for these measurements covers a large field of view, allowing
for the collection of diffraction from multiple lattice planes.

2.1.2 Accelerator-based light source for x-ray scattering

Synchrotrons have traditionally offered significant advantages for x-ray experiments
including brightness, monochromaticity, coherence, collimation, and stability. Synchrotron
radiation is pulsed, since the electrons in the storage ring are bunched and can be used to
generate ultrashort, ultrabright pulses of x-rays for time-resolved measurements. To optimize
the timing and brightness for pump-probe experiments, the storage ring fill pattern can be
adjusted to run in a hybrid mode which consists of a single isolated electron bunch separated
in time from a train of bunches. Such fill patterns can change the timing between electron
bunches to the order of microseconds and allow the use of gated cameras to time-resolve
signals. We note that the time resolution is currently ∼ 100 picosecond (sub-nanosecond)
but soon, with the development of fourth generation synchrotrons, is expected to be ∼100
femtoseconds [37].

2.1.3 Computation-simulation

MD simulations solve the equations of motion for a set of atoms mediated by interatomic
potentials [25]. Such interatomic potentials are generated by fitting to a data bank of electronic
structure calculations for the energies and atomic forces of relevant crystal structures. For our
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purposes, samples are prismatic with free surfaces parallel and periodic boundary conditions
perpendicular to the shock direction. The first few surface layers on one of the free surfaces
are taken to act as a piston and constrained to move at a constant or ramped velocity. At each
time step, the stress and strain state, local phase and dislocation densities can be extracted.

Post-processing these simulations allows the calculation of the expected x-ray diffraction
and scattering signals [56,57]. To simulate these observables, we perform a Fourier transform
on the calculated atomic positions. Since the positions of the atoms are given by arbitrary
and not discretized x, y, and z coordinates, special techniques are required to take advantage
of fast Fourier transform methods, which are not discussed here. We calculate the Fourier
transform using

I
(�k

)
=

∣∣∣∣∣
N−1∑
n=0

e−i(�k·�rn)

∣∣∣∣∣
2

where rn is the position of the nth atom and N is the total number of atoms in a given
test volume or crystal. The solution to this equation for a lattice of atoms is a periodic
distribution of intense scattering peaks in k-space. The location of these resonances is given
by �k = h �b1 + k �b2 + l �b3 where �bn(n = 1, 2, 3) are the reciprocal lattice vectors that define
the crystallography and (h, k, l) are the standard Miller indices that describe the diffraction
plane.

Modeling simulated x-ray scattering in this fashion has three distinct and important advan-
tages. First, it provides a method for analyzing the vast amounts of output from an MD
simulation. The location and intensity of the spots can be used to determine atomic structure,
and more subtle features, like broadening and shifts, can give information about dislocation
density through techniques applied to standard high resolution x-ray diffraction experiments.
Second, it allows for the optimization of future experiments by identifying specific physical
phenomena and relevant experimental conditions to target for investigation. Last, but poten-
tially most important, it allows a direct comparison between experiment and simulation.
Good agreement provides higher confidence in the simulations, resulting in an enhanced
understanding of the measured lattice kinetics and generating improved potentials.

3 Materials response to shock loading

3.1 Inelastic response to shock loading (1D to 3D transition)

The initial response of a crystalline material to shock loading is uniaxial, elastic compression
(1D), leading to a strong shear stress on the lattice. If the shock wave propagating through
the lattice exceeds the Hugoniot elastic limit (HEL), this shear stress leads to nucleation of
dislocations, allowing the lattice to plastically relax to a more quasi-hydrostatic compression
(3D) on some characteristic timescale. The rate of relaxation to hydrostatic conditions is
controlled by the nucleation rates and mobility of dislocations, which in turn depend upon
microstructural parameters such as grain boundaries, barriers, etc.

Experimentally, this relaxation of the lattice behind a shock has been studied with time-
resolved diffraction for FCC metals. As an example, such kinetics have been studied in single
crystal copper shocked to 18Gpa [41]. The degree of lattice relaxation was determined through
diffraction recorded from (200) planes both parallel and perpendicular to the shock loading
direction. These samples were found to have approached a fully 3D state in less than 400 ps
after the passage of the shock front. The observations in copper are broadly supported by
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Fig. 3 Contrast in the dislocation behaviors between the 0 ps and 50 ps ramp compressions in single-crystal
copper. a Shows a real space plot of the dislocation of atoms for a 0 ps rise time compression, 100 ps after the
start of the shock. Dislocation activity appears to be fairly uniform and continuous throughout. b A similar
plot for the 50 ps rise time case with two distinguishable regions of dislocation activity, a multiplication and
homogenous nucleation regimes with a transition region of mixed mechanisms. c Dislocation density for
both simulations. In both cases, the copper crystal included pre-existing dislocation sources located at the
arrows. Marked differences in ρd occur in the vicinity of the initial dislocation sources. Peak particle speed is
0.75 km/s. Reprinted with permission from [9]. Copyright 2006, Nature Publishing Group

results from our MD simulations [9], which are discussed next and show relaxation occurring
over a period of less than 100 ps.

With the advent of large-scale MD simulations, we can now directly compare results
from simulations to time-resolved in-situ x-ray diffraction experiments. The simulations
used a ∼ 1µm long single crystal copper comprised of up to 352 million atoms as the starting
material with defect sources in the form of prismatic dislocation loops. Two large scale
MD simulations were conducted, both with a peak piston velocity of Up = 0.75 km s−1

(peak pressures of approximately 35 GPa), but with different loading profiles. One simulation
ramped the piston to the peak velocity over 50 ps while the other used an instantaneous
“shock” loading. The ramped velocity was aimed at forming a link to experiments, which
have been conducted with rise times ranging from several picoseconds to several nanoseconds.
A snapshot of both simulations at 100 ps shows a large dislocation network in Fig. 3. The 0 ps
rise time shows only homogeneous nucleation (Fig. 3a), while the 50 ps rise time exhibits
three regions of dislocation activity (Fig. 3b).

The total dislocation density (ρd ) versus depth is plotted for 100 ps in Fig. 3c. The zero
rise-time case saturates at a steady-state value of 3 × 1013cm−2. This value is very large
compared with the density of pre-existing sources or the dislocation density typically found
in shock recovered samples [44]. Interestingly, we observe that the final state and micro-
structure in the 0 ps rise time simulations appeared not to be sensitive to the initial defect
concentration. In contrast, for the ramped case, the pre-existing defects led to significant
dislocation multiplication and partial stress relaxation throughout the simulated sample.
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Fig. 4 Plastic response of the
0 ps and 50 ps ramp compressions
in single-crystal copper. a Shear
stress relaxation under loading
conditions of 0 and 50 ps rise
time. b The corresponding lattice
compression from simulated
x-ray diffraction for lattice planes
whose normals are parallel and
orthogonal to the shock direction.
The shock front is located at
z = 0. The black vertical line is
at the limit of previous
simulations while the horizontal
shows the hydrostatic limit of
relaxation. The ‘jitter’ of the
curve corresponds to the
magnitude of the error in our
simulations and the dependence
on local structure. Reprinted with
permission from [9]. Copyright
2006, Nature Publishing Group

A fully 3D relaxed state is ideally defined as having zero shear stress and hydrostatic
compression. Fig. 4 shows that the shear stress behind the shock front markedly decreases
over approximately 60 ps for both types of loadings with more than half of shear stress relieved
within ∼10 ps after the shock passage. The shear stress evolves to an asymptotic value of
0.43 GPa for the zero rise-time simulation and 0.34 GPa for the ramped loading simulation
and is comparable to that inferred from the in situ diffraction experiments on copper [44].
Using the MD simulation, we calculated the expected x-ray diffraction pattern. We analyzed
such patterns with tools used to quantify lattice changes in experimental data. These results
are summarized in Fig. 5, which indicate significant lateral relaxation only at times much
greater than 10 ps. Due to the significant stress relaxation that has occurred, the simulated
x-ray diffraction shows nearly uniform 3D compression, i.e. 5% in each direction. These
large scale simulations are the first to capture the scope of this lattice relaxation, as previous
work was limited to timescales of ∼10 ps, too short to follow fully the evolution.

On the basis of our simulations, we can anticipate two interesting implications for future
experiments. The first is that relaxation phenomena in copper can be observed only at the
picosecond timescale, with little or no relaxation expected until after ∼10 ps after shock pas-
sage. This suggests that we would need to experimentally probe with picosecond resolution,
currently an experimental challenge. The second is that the influence of pre-existing defects
on the final microstructure should be negligible for strong shocks above the limit for homo-
geneous nucleation of dislocations. This latter observation poses a testable prediction that
can be addressed by appropriate selection of drive conditions and engineering of the initial
microstructure of samples.
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Fig. 5 Using simulated x-ray diffraction, we estimate the stacking fault density and lattice compression with
the same tools used to analyze experimental data. The agreement of these estimates with those determined from
the MD simulations using other approaches serves to validate our tools. These results show that the loading
close to the shock front is initially elastic, followed by a rapid formation of dislocations that eventually relieve
the shear stress. Fluctuations are primarily due to statistical variations throughout the simulated sample.
Directions X and Y are orthogonal and Z is parallel to the shock direction

While copper is an example of an FCC material that shows ultrafast plastic relaxation, iron
is a BCC material that exhibits notably longer timescale kinetics for plasticity and appears to
be sensitive to the starting microstructure. Iron MD simulations performed by Kadau et al.
[32] generated a shock by using the momentum mirror method [25] and relied on periodic
boundary conditions in the lateral directions (x and y). The duration of each simulation was
10 ps, the time taken for the shock to transit the 80 nm simulated single crystal. This work
predicted the α–ε transition under shock compression at a pressure of just over 15 GPa,
reasonably consistent with gas gun experiments [5].

Using these MD simulations, we calculated the expected x-ray diffraction pattern for
single crystal iron. As evident from Fig. 6, there was no lattice relaxation observed below
the transition on the timescale of the simulations. The generation and motion of dislocations
associated with plastic flow would have resulted in both a reduction in the mean lattice
parameter perpendicular to the shock propagation direction and an expansion of the reciprocal
lattice, which were not observed.

For highly pure, melt-grown single crystals, the experimental results are consistent with
the simulation, namely that no lattice relaxation is observed before the onset of the phase
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Fig. 6 Simulated x-ray diffraction patterns from iron MD simulations performed in Kadau et al. 2002. The
pressure corresponds to 15 GPa, 19.6 GPa, 28.8 GPa and 52.9 GPa for a, b, c and d, respectively. The discrete
points correspond to different lattice planes. Uniaxial compression causes expansion along the [001] axis, while
lattice relaxation results in expansion along the [110] axis. For these simulations, we do not see any change
in lateral compression. At the α–ε transition, we see a doubling of the lattice, indicated by the appearance of
the circled points. The k space units are 2/ao, where ao is the lattice constant of the BCC unit cell. Reprinted
with permission from [22]. Copyright 2006, American Physical Society

transition (data shown later in Fig. 12). For data at 12 GPa just below the transition, the
diffraction lines associated with the (002), (112), and (11̄2) indicate a compression along
the shock direction of 5.2% based on the change in diffraction of the (002) plane. The
lateral deformation, in contrast, can be estimated at 0.0% ± 0.6% based on the (112) and
(11̄2) planes. A similar analysis of data recorded at 13 GPa shows compression in the shock
direction of 5.8%±0.3% with the lateral compression estimated to be 0.0%±0.6% based on
the same diffraction planes [22]. Within the uncertainty of the measurement, the experiments
demonstrate only uniaxial, elastic compression before the phase transition, which agrees well
with the MD simulations. We note two key points and differences: first that the experimental
observations are made on a timescale that are approximately a nanosecond or two orders
of magnitude longer than that of the simulation, and second, that the measured pressure far
exceeds the accepted HEL.
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Fig. 7 X-ray diffraction data from a vapor-deposited, single-crystal foil of iron shock-compressed to 11 GPa.
In contrast to melt-grown single crystals, these vapor-deposited samples exhibited lattice relaxation after the
shock that was faster than the nanosecond timescale of the measurements These experiments show that the
initial defected state of the sample can strongly affect the lattice kinetics. Reprinted with permission from
[22]. Copyright 2006, American Physical Society

This nanosecond elastic response of iron all the way up to the transition pressure of 13 GPa
contrasts with the plastic behavior inferred from continuum wave profiles of shocked iron
at the microsecond timescales [3,38]. In continuum experiments, a three-wave structure is
often observed—the first being associated with the HEL, the second with an elastic-plastic
transition, and the final with the phase transition itself. While further work is needed to
understand the elastic behavior in iron vis-à-vis the plastic response at different timescales,
we can outline two important conclusions from the existing work that begin to address this
complicated scientific area.

First, we note that the laser experiments are at a time scale intermediate between the
picosecond MD simulations and microsecond shock-wave experiments. Because we see no
plastic response in high-quality single crystals, it is evident that our laser-based results are
serving as an important window into the nucleation and mobility of defects under shock, as
both these processes play key roles in sample relaxation. We conclude that the combined
kinetics of these phenomena appear to be longer than ∼1 ns.

Second, our results also indicate that the elastic/plastic response in iron appears to be
significantly affected by the initial microstructure of the sample itself. Most previous work on
iron has focused on polycrystalline samples, while the diffraction experiments described here
utilized single crystals. En route to systematically identifying the effect of microstructure, we
have studied two kinds of single-crystal iron samples in this work, thick samples (∼400 of µm)
grown from a melt process and thin samples (∼ 10µm) vapor deposited onto a single crystal
substrate. Perhaps surprisingly, the diffraction patterns from the vapor deposited samples
shown in Fig. 7 exhibited lattice relaxation at a timescale faster than the ∼1 ns probe. At
11 GPa, the vapor deposited samples show a compression of 3.8% ± 0.2% of the (002) plane
along the shock direction a 2.8%±0.6% compression of (112), (1̄1̄2), (110) and (020) planes
in the lateral direction, exhibiting a degree of plastic deformation [22]. We speculate that the
difference between the elastic response of the melt grown and plastic behavior of the vapor
deposited crystals is due to the lower crystalline quality of the latter samples.
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Results such as outlined here are only now beginning to provide some insight into the
atomistic processes that control the evolution of the shocked solid. It is clear that substantial
work remains in order to understand the complicated and interrelated effects of the initial
state of the crystals, the temporal and spatial drive characteristics, strain rate, temperature,
sample size, and other parameters on the dynamic plastic response of the shocked solid.

3.2 Phase transformations

Few properties of the ordered solid are as fundamental and important as its crystallogra-
phic structure. The ramifications of the crystal phase are multifold, fundamentally affecting
thermodynamic behavior, electronic structure, shock response, strength, and many other pro-
perties. Under shock compression, solids generally exhibit a rich gamut of solid-to-solid
phase transformations, some of which are metastable and, due to the uniaxial and ultrafast
nature of the compression, may differ from those under longer timescale and more hydro-
static conditions. Carbon, for example, demonstrates a wide range of structural states along
the Hugoniot, including cubic, hexagonal, nanocrystalline, and amorphous diamond [10,64].
Solid-to-melt transformations can also occur under sufficiently strong shocks.

Shock-induced phase transitions represent a fruitful scientific research area where mate-
rial kinetics can play a key role. One of the most well known and widely studied of these
shock-induced transformations is the α–ε transition in iron, where the BCC α transforms to
hexagonal close-packed (HCP) ε structure. This transition was initially discovered in shock
compression work by Bancroft [3]. These researchers associated the splitting of velocity
waves with the elastic-plastic response and the subsequent transformation of iron to a dif-
ferent phase. Analysis of the wave profiles implied that the onset of the phase transition
occurred at a pressure of 13 GPa. At that time, the crystallographic structure of this identified
phase in iron was unknown. Subsequent static high-pressure x-ray diffraction measurements
of iron showed a transformation at about 13 GPa from the BCC to the HCP structure [42],
which has been assumed to be the same transition as in shock experiments due to the coinci-
dence in pressure. Recently, iron was the first metal studied with dynamic x-ray diffraction
techniques to establish the high pressure phase in situ [22,36]. Some of this work is outlined
here.

3.2.1 Phase transition pathways

We now discuss two candidate transformation pathways from the high pressure BCC to
HCP phase in iron. These phases have certain transformation relations that were first pointed
out by Burgers [11]. Specifically, the (0002)HCP basal planes in ε phase HCP structure
correspond to what were (110)BCC planes in the low pressure BCC phase. Similarly we find
the [2110]HCP axis is aligned with the original [001]BCC axis, [0002]HCP with [110]BCC and
[2110]HCP with [002]BCC. The exact alignment of these orientations relative to the initial
crystal depends on the detailed pathways of the transition. Figs. 8 and 9 give a description
of the two pathway mechanisms being compared in this discussion [62]. One mechanism
consists of a compression and shuffle that yields alignment between the low pressure BCC
and high pressure HCP planes. Described in detail in Fig. 8, this mechanisms involves a
compression along the [001] direction accompanied by an expansion in [110] to generate
a hexagon, followed by a shuffle to cause the period doubling for the HCP structure. The
other possible mechanism involves a shear and shuffle that introduces a rotation between the
corresponding lattice planes, described in Fig. 9 as a shear and slip mechanism that generates
a hexagon with a rotation relative to the corresponding BCC planes.
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Fig. 8 Schematic diagram showing the transformation from BCC to HCP following the compression transition
mechanism. The (110)BCC and (0002)HCP planes are in the plane of the paper. The blue and red circles denote
atoms in the page and above the page, respectively. Arrows denote the direction of motion of the atoms. a
Defines the coordinate system in terms of the BCC lattice and has arrows showing the expansion/compression
and dashed lines indicating the location of the

(
1̄12

)
BCC planes. b Defines the coordinate system for the

HCP with arrows showing the shuffle of atoms with the
(
11̄00

)
HCP planes labeled which are equivalent to( 1̄

2
1
2 1

)
BCC. Reprinted with permission from [22]. Copyright 2006, American Physical Society

3.2.2 Phase transition under uniaxial shock compression along [001]BCC direction

In the case of uniaxial shock compression along a particular crystallographic direction, the
atomic rearrangements required to reach a HCP structure may be influenced by the anisotro-
pies induced by uniaxial compression. In the case of the compressive mechanism illustrated
in Fig. 8, there is no expected change in the transformation pathway as the compression can
continue along the uniaxial direction to peak compression without requiring any change in
the lateral direction. In contrast, there is marked change to the slip/shear mechanism in Fig. 9,
as the initial uniaxial compression will change the needed rotation to get from the BCC to
HCP state during the initial shear. The amount of rotation is shown in Fig. 9b. Static diamond
anvil cell experiments using extended x-ray absorption fine structure measurements have
indicated a 5◦ rotation is needed [62]. Due to the cubic symmetry of the BCC lattice and
the cylindrical symmetry imposed by the uniaxial compression of the shock, both transition
mechanisms have degenerate crystallographic directions for the end state. There are four
degenerate pathways leading to two distinguishable states for the compressive mechanism,
whereas the slip shear mechanism has 4 degenerate states that are all distinguishable.

3.2.3 Calculated observables for the α–ε phase transition

We now discuss predictions from the simulations that can be directly compared to experi-
mental observations, specifically crystal rotations and volume changes.

Postprocessing of iron MD simulations performed by Kadau et al. [32], as shown in Figs. 6
and 10, yields calculated reciprocal lattice space corresponding to the uniaxially compressed
BCC lattice. We observe that the BCC lattice reaches a maximum uniaxial compression of
7.0 ± 0.5% for all of the simulations. In contrast, the (002)BCC HCP peak varies in our
simulations from 11.5 to 17.4 ± 0.5% compression upon transition to the HCP phase. These
compressions, deduced from the shift of the spots in reciprocal space, agree with the direct
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Fig. 9 Transformation from BCC to HCP following the slip/shear mechanism. a Schematic diagram showing
the formation of hexagons in the (110)BCC plane. The blue and red circles denote atoms in the page and above
the page, respectively. The

(
1̄11̄

)
BCC shear plane, the

[
11̄2̄

]
BCC direction, and the

[
11̄2̄

]
BCC direction are

labeled. The solid arrows denote the direction of the atomic motion due to the shear/compression. The dashed
arrows represent the effective overall movement of the atoms when the crystal structure undergoes period
doubling. b Rotation of the HCP unit cell, θ , and required compression along

[
11̄2̄

]
BCC to form the hexagon

in the initial step as functions of the initial elastic compression, g, where g = 1 for hydrostatic conditions. �,
g, and θ are defined in panel a. Reprinted with permission from [22]. Copyright 2006, American Physical
Society

Fig. 10 This figure schematically shows the method used in calculating the expected diffraction. The atomic
positions from a select portion or entire MD simulation are Fourier transformed into reciprocal lattice space.
The high intensity peaks represent diffraction planes in the crystal structure. The units are based on the inverse
of the original cubic BCC cell. Three points are labeled with the plane indices. One point contains three labels
to show that there is a BCC component and 2 degenerate HCP components. A dashed hexagon shows that
the reciprocal lattice points are approaching a hexagonal symmetry. The dotted circle gives the limits that
can be experimentally probed using 0.185 nm K-shell radiation from iron. MD simulation image reprinted
with permission from [32]. Copyright 2002, AAAS. Fourier transform reprinted with permission from [23].
Copyright 2006, American Institute of Physics

density measurements from the simulations obtained trivially by counting the number of
atoms per unit volume.

The simulations predict a compression wave of ∼7% propagating through the BCC crystal
before the transformation to an HCP-like structure. For the compressive mechanism, no
rotation of the crystal lattice would be expected even with uniaxial compression. For the
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Fig. 11 An expanded view of the (002)BCC/(21̄1̄0)HCP diffraction peak in reciprocal space. The broadening
of the spot associated with the HCP phase is not consistent with a rotation between the HCP and BCC lattice
orientation required by the slip/shear mechanism. Reprinted with permission from [22]. Copyright 2006,
American Physical Society

slip/shear mechanism, in contrast, we would expect the rotation of the lattice to decrease
from 5% to 3.5%, in order to form perfect hexagons following uniaxial compression. A
rotation in real space is manifested in reciprocal space as a rotation in the pattern of peaks. In
Fig. 11, we show an expanded view of the simulated (002)BCC/(21̄1̄0)HCP spot in reciprocal
space. Also shown on the plot are dashed lines oriented 2◦ and 5◦ relative to the [001]BCC

axis. With two possible directions that the rotation can occur, we would expect to see the
HCP feature composed of two spots, each slightly shifted off the axis. However, the spot is a
single diffuse spot (of order 1◦ FWHM) centered along the [001]BCC axis. We conclude from
the simulations that the α–ε transition is predicted to occur by the compressive mechanism.

3.2.4 In situ, Real-time diffraction measurements during the shock

The experiments described here were performed using the OMEGA [4], Janus, and Vulcan
[15] lasers. Melt-grown single-crystal iron samples with a purity of 99.94% were polished to
a thickness of ∼ 250µm with the surfaces aligned along the [001] direction. These samples
were shock loaded by direct laser irradiation at 1010 to 1012W/cm2 using 2 to 6 ns constant
intensity laser pulses with a laser focal spot size of 2 to 3 mm in diameter and probed with
1.85 angstrom iron K-shell x-rays. Due to absorption in these thick samples, x-rays were
diffracted from the shocked-side of the iron crystal in reflection geometry—which we refer
to as the Bragg geometry. Experiments were also conducted using 10µm thick single-crystal
samples of iron. For these thinner samples it was also possible to perform diffraction in
transmission geometry, which we refer to as Laue geometry. Due to the divergence of the
x-rays and the large angle which the crystal subtends to the x-ray source, the x-rays are
simultaneously collected from many different lattice planes in the crystal. Two wide angle
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Fig. 12 In situ diffraction data from melt-grown, single-crystal iron shocked along the [100] direction. In a
single pulse measurement, we obtain signal from many compressed and static planes, which are labeled with
their corresponding Miller indices. Some features are identified with more than one label due to degeneracy
of planes. The static BCC and HCP lattice lines are denoted by the blue, green, and red lines, respectively.
a 5 GPa below the transition. The lattice in these samples shows no plastic relaxation below the transition.
b 28 GPa above the transition. Reprinted with permission from [36]. Copyright 2005, American Physical
Society

multiple film packs covering a total of nearly 2π steradians recorded the diffracted signal in
both the Bragg and Laue geometries.

A typical diffraction pattern below the α–ε transition is shown in Fig. 12a from both the
shocked and unshocked BCC lattice at a pressure of 5.4 GPa. In contrast, Fig. 12b shows data
for a pressure of 26 GPa above the α–ε transition. In this latter case, we note that the (002)BCC

plane splits into three components—the first corresponding to diffraction from unshocked
BCC, the second to shock-compressed BCC, and the third to a further degree of compression
which we have attributed to the HCP phase, as discussed next.

3.2.5 The transformation mechanism

The experimental data analysis supports the conclusion that the high pressure ε phase is HCP
and that it is polycrystalline with two preferentially ordered variants highly aligned relative
to the original crystal. Out of the list of possible transformation mechanisms from the BCC
to HCP structure that are consistent with static experiments [62], only the two candidate
pathways discussed previously are reasonably consistent with the number of observed variants
and rotation of the lattice. We now contrast these two pathways.

Due to the degeneracy of the shift along the (110)BCC family of planes, there are 4 variants
of the rotation of the

[
21̄1̄0

]
HCP plane. The experimental Laue diffraction has shown that

the transformed HCP crystal is polycrystalline suggesting that, if the slip/shear mechanism
is responsible for the transition, then all four rotations would have occurred. We compare the
data with an overlay of the 4 rotations assuming a single compression. As discussed earlier,
a rotation of 3.5◦ would still be required by the slip/shear mechanism to form a hexagonal
structure when the BCC crystal is uniaxially compressed by ∼7%. Figure 13 shows line outs
from the data with overlays of calculated lineshape, assuming all four degenerate lattice
rotations exist. The arrows denote the center position of the diffraction lines. The simulated
line outs are broadened and scaled to obtain a best fit with the data. It is apparent that a rotation
larger then 2◦ would not be consistent with our data. This small rotation appears to rule out
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Fig. 13 Lineouts from
experimental data showing the
compression of the (002)BCC
lattice plane fitted by various
degrees of rotation between the
HCP and BCC lattices. We
observe that the width of the
fitted line exceeds that of the
experimental lineout beyond 2◦ .
The vertical arrows denote the
center position of each diffraction
line. Reprinted with permission
from [22]. Copyright 2006,
American Physical Society

the slip/shear mechanism, even taking into account an imperfect hexagonal structure upon
transformation. Thus we conclude that the experimentally measured pathway is consistent
with only the compressive mechanism of those listed by Wang et al. and as predicted by the
MD simulations.

These results represent one of the first detailed studies of the atomistic dynamics of a
shock-induced transformation. We have been able to clearly identify the high-pressure crys-
tallographic structures as well as the probable transformation pathways for atomistic motion.
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For the first time, we have demonstrated the existence of variants in the high-pressure phase,
vital information predicted in MD simulations but that had not been previously observed
in recovery experiments. In future work, we will strive to study transformation timescales
through combined simulation and experiments.

4 Future work

4.1 Dynamic melt: simulation and experiment

The kinetics of dynamically driven phase transitions, specifically melt, has been an important
topic of experimental and theoretical investigation for several decades. Few empirical models
have attempted to explain the processes occurring at the atomic level in materials shock
driven to a Hugoniot state beyond the solid-liquid phase boundary [30,58]. Kinetics models
based on a simple picture of nucleation and growth, such as the Johnson-Mehl-Avrami-
Kolmogorov (JMAK) [2] model, have been employed to describe a variety of materials, but
determination of the rate with which the melt phase grows is based on assumptions regarding
the homogeneous or heterogeneous nature of the nucleation rate. As such, there could be a
significant difference between materials of polycrystalline or single crystal structure. In the
former, the grain boundaries may play the primary role in the kinetics of the melt transition,
whereas in the latter, dislocations and crystal orientation may be the determining factor of
the transition kinetics. Lastly, the loading history of the sample under investigation, namely
the shock pressure duration and amplitude, is critical for the transition kinetics and final
microstructure.

Combining results of dynamic compression experiments with large scale MD simula-
tions is beginning to provide knowledge on the non-equilibrium processes occurring during
ps-ns time-scales leading to melt. An example of simulated shock-induced melt in single
crystal Cu is presented here (Fig. 14), where the behavior of the [100] orientated crystal
shocked to 300 GPa and T = 6000 K is shown [7]. The material exhibits melt within nano-
meters of the shock front, corresponding to a time-scale of a few ps. A plot of the calculated
scattering function S(q) depicted in Fig. 15 from which information about the interatomic
spacing in the liquid Cu can be extracted from the series of maxima.

Coupling MD results to experimental observables requires a dynamic technique capable of
revealing transient structural information with ps-ns temporal resolution. Only recently have
dynamic x-ray diffraction techniques managed to demonstrate such capability. Specifically,
we have developed a novel cylindrical pinhole powder camera (CPPC) suitable for laser-
based x-ray backlighting and shock wave generation that has successfully captured signal
from polycrystalline and amorphous materials [24].

The camera consists of a cylindrical detector arrangement with a point x-ray source of
He-like α or K − α radiation produced at the entrance of the camera along the cylinder axis
as shown in Fig. 16. Samples are interrogated by the quasi-collimated x-ray beam obtained
by a suitable pinhole arrangement. Diffracted x-rays reach the detector, consisting of image
plates positioned around the cylinder walls, in both transmission and reflection. Information
is recorded in the azimuthal angle direction φ and the scattering angle 2θ , thus making the ins-
trument capable of a variety of material property measurements under shock conditions inclu-
ding texture as well as phase transitions. Proof-of-principle experiments demonstrating the
camera’s ability in measuring amorphous signals, such as those expected from shock-melted
samples, have been successfully carried out. Fig. 17 shows x-ray diffraction from the surro-
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Fig. 14 Snapshot of MD simulation of Cu shocked to 300 GPa along the [100] direction. The blue region
corresponds to the piston region constrained to move at a fixed speed of 3 km/sec. The yellow is the pristine
unshocked copper atoms, and the orange (color scaled by the centro-symmetry parameter) shows the region
where the periodic lattice has melted into a liquid

Fig. 15 Simulated x-ray scattering from the molten region of the MD simulation, showing broad features
associated with amorphous systems. These features give insight into the correlations in the high pressure fluid
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Fig. 16 Cross sectional view of the cylindrical pinhole powder camera designed for dynamic x-ray diffraction
studies of polycrystalline and amorphous materials [24]. The cylindrical design can record diffraction rings
from angles as low as 2θ = 30◦ to as high as 150◦. The design uses a laser produced plasma as an x-ray
source and an ablative laser drive to shock compress the sample

Fig. 17 Nanosecond single-shot amorphous diffraction from uncompressed metallic glass. The signal-to-
noise of the instrument suggests it should be possible to experimentally measure the amorphous features of a
fluid system under dynamic compression. Reprinted with permission from [24]. Copyright 2007, American
Institute of Physics

gate amorphous material Metglas [Ni55Fe27Co15Si1.6Al1.4], where peak positions and widths
corresponding to the He-like Fe x-ray source were observed.

With feasibility demonstrated, we plan to implement this diffraction geometry under
dynamic conditions to record the melt signature from a variety of materials. Of great interest
will be the connection of our MD simulation results in shock-melted Cu with corresponding
experiments, although the required shock pressure of >200 GPa may present a challenge.
Additionally, bounding information on the melt kinetics may be provided by a simple pump-
probe experiment where the relative timing of the x-ray source and shock wave is varied,
perhaps to as fast as ∼fs at new generation facilities such as LCLS. Such future investigations
should offer a glimpse into the dynamics and kinetics of ultrafast melt phenomena via a
multi-faceted theoretical and experimental effort coupling MD and potentially hydrocode
simulations to dynamic diffraction techniques such as the CPPC described above.

4.2 Damage: in situ void nucleation and growth

The non-equilibrium nucleation of phase transformations and submicron porosity behind the
shock wave result in a microscopically heterogeneous material. When release waves interact,
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Fig. 18 Micrograph of voids in
shock-recovered aluminum.
During passage of the release
wave, these voids grow and may
coalesce, resulting in failure

the metal may be driven into tension leading to the nucleation and growth of voids from these
heterogeneities. Small angle x-ray scattering (SAXS), which arises due to scattering from
electron density fluctuations, is particularly sensitive to the abrupt change in electron density
accompanying voids and thus is a powerful tool to follow the evolution of this process during
shock compression. We discuss here our effort aimed at conducting real-time, in situ void
studies during the shock release process.

As mentioned earlier, shock wave loading is accompanied by considerable defect produc-
tion during both the compression and unloading portions of the process. Defects and other
microstructure (e.g. grain boundaries, second phase regions) may act as nucleation sites for
the formation of voids. These voids can grow and coalesce under tension, resulting in material
failure as exemplified in the micrograph of a shock recovered sample shown in Fig. 18. The
time to failure can be fast from ∼sub-ns to ∼ µs, depending upon the drive conditions in the
experiment. The entirety of this process is termed spall.

Most experimental observations of the spall process have been generated using two
methods: velocimetry and recovery. These types of measurements, while valuable, are inhe-
rently limited. Velocimetry measurements are continuum measurements that cannot identify
or provide direct insight into the underlying processes. Similarly, shock recovered samples
[21] have proven essential in identifying microscopic flaws and residual void distributions,
but they are limited by the difficulty of or uncertainty in arresting the damage evolution during
high strain-rate dynamic loading. Temporally resolved in situ studies offer the opportunity to
potentially answer key questions in the nucleation, early void growth, and final void linkage
regimes.

The SAXS technique is well-established and has been applied to problems ranging from
biology to materials science. In its simplest form, the SAXS scattered intensity is the square
of the Fourier Transform of the scattering length density [20,54]. In the dilute approximation,
scattering is only a function of the form factor, or size and shape of the particles or voids.1

1 In this approximation, and for a single population of scatterers, the scattering can be written in the following

form [28], [29]: I (q) = |�ρ|2
∞∫
0

|F (q, r)|2 V 2 (r) N P (r) dr where q = 4π
λ sin (θ) , λ is the wavelength

of scattered radiation, θ is the scattering half, r is the size of the scattering particle, �ρ is the scattering
contrast (related to the difference in electron density) between the minority and majority phases, F(q, r) is
the scattering form factor, V (r) is the volume of the particle, N is the total number of particles, and P(r) is
the probability of having a minority phase particle of size r .
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Fig. 19 Static SAXS measurements of recovered titanium and analysis of data. a SAXS data of recovered laser
shocked and unshocked Ti samples. b Void distribution assuming spherical voids calculated using maximum
entropy algorithm

Although a given electron density distribution gives a unique scattering intensity profile, the
inversion is not unique and requires model assumptions about microstructure.

To make our initial assessment, we performed SAXS experiments using incipiently spalled
Ti samples recovered from laser shock experiments. The resulting static small-angle scattering
data2 is shown in Fig. 19 [26,27]. The maximum entropy method, implemented in the “Irena”
package for SAXS data analysis, was used to determine scatterer size distributions [28]. For
this study, the voids were modeled using a form factor for spheres, and a maximum entropy
algorithm was employed to calculate size distributions of the voids [28]. This iterative,
linear inversion method, which does not require an a priori guess as to the shape of the
distribution, converges to a unique distribution of sizes for a given form factor by maximizing
the configurational entropy subject to fitting the measured scattering profile [28,48,49].

We believe that time dependent SAXS is an ideal technique to quantify the nucleation and
growth of sub-micron voids under shock compression. To make our initial assessment, we
performed SAXS experiments at the Advanced Photon Source (APS), whose single bunch
mode capability allows the isolation of signal from only one bunch for time dependent x-ray
experiments. To further increase the x-ray fluence, the APS beamline was operated with
a ∼ 4% energy spread around the characteristic energy, which increases the fluence by a
factor of 10 yet does significantly degrade our desired angular resolution.

To demonstrate the ability to perform dynamic SAXS measurements, we used the unique
time-resolved SAXS detector built by Dr. Jan Hessler at APS [17]. Small angle scattering
signals were acquired through the use of a specialized solid state CCD that has ring shaped
pixels that assume circumferential symmetry of the scattering signals but markedly increase
the collected signal. The detector can record a single 120 ps x-ray pulse with a temporal
resolution of 300 ns, which is sufficient to gate against subsequent x-ray pulses. We show
data in Fig. 20 from a single pulse measurement of a Ti foil to demonstrate that time resolved
SAXS measurements are feasible.

2 The Ultra small angle x-ray scattering (USAXS) data were acquired using the beam line 32-ID at the
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, U.S.A. The endstation consists of
a Bonse-Hart camera, which can measure scattering vectors (q) from about 0.0001 to 10Å−1. The monochro-
mator was positioned at about 11 keV (1.13 Å). Data were processed using the codes developed for use on
this USAXS instrument, and included absolute scattering intensity calibration and slit desmearing.
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Fig. 20 Comparison of SAXS
spectra collected on an unshocked
Ti foil in a single 100 ps shot
versus a sum of 1000 shots

In Fig. 21, we show an MD simulation of spall fracture and its corresponding calculated
SAXS signal in dynamically compressed single crystal copper loaded to ∼90 GPa in 60 ps
and then released. During the loading process, stacking faults and dislocations are formed to
relieve the flow stress. MD simulations can identify the primary mechanisms for nucleation,
growth and coalescence of voids, as well as determine Burgers vectors and habit planes
of the observed dislocations. Such results can be parametrized and transitioned to higher-
level statistical models such as dislocation dynamics or level-set coalescence calculations.
Simulating the x-ray scattering using a Fourier transform of the MD simulation output shows
the resolution required to measure the voids at this early stage of material failure.

Our combined experiment and simulation studies strongly indicate that single shot SAXS
has the ability to provide relevant and valuable void formation data in dynamically loaded
metals. With the goal of developing this in situ approach, we have demonstrated several key
intermediate steps. We have shown, through shock-recovered measurements, that SAXS can
provide valuable information about size distribution of microvoids. We have established that
time resolved measurements at a third generation x-ray source, such as the APS, can poten-
tially enable such measurements under shock conditions. These static data are showing direct
evidence of structure in shock recovered samples at length scales less that 1µm. In parallel,
we have simulated the growth of voids during spallation by using large scale MD simula-
tions and then calculating the experimental observables. Being able to quantify the temporal
evolution of these voids under shock conditions by using both experiment and simulation
would be exceedingly valuable in ultimately understanding the processes controlling void
phenomenology.

5 Conclusion

This ongoing work couples together large-scale simulations that model the atomistic level
response of materials to state-of-the-art experiments in order to address the multi-scale pro-
blem of building predictive models of material response under highly dynamic environments.
Applying these capabilities to the shock process, we have investigated and obtained inter-
esting insight into the 1D to 3D transition and the generation and motion of dislocations.
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Fig. 21 A plot of the simulated
SAXS from MD simulations with
voids being generated in single
crystal copper released after
being dynamically loaded to
∼90 GPa. The scattering is shown
13 ps and 21 ps after the pressure
has been relieved. At top are real
space images of the MD
simulation showing the void
morphology. The atom color is
scaled by central symmetry
parameter a to accentuate the
defects and voids

While laser-based experiment and simulation agree very well for iron, the discrepant results
of short timescale laser-based experiments and long timescale gun experiments have raised
intriguing questions as to the processes that affect the kinetics of the plastic response. Using
in situ x-ray diffraction, we have studied the shock-induced high pressure phase of iron and
found both the pathway and structure to be in good agreement with MD simulations. In
addition, we are developing techniques that can be used both to diagnose material melting
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under dynamic loading and that can be used to address polycrystalline solids where grain
boundaries and the interaction of differently oriented crystallites introduce fascinating and
complicated phenomena. And finally, we are investigating void formation and material fai-
lure during the dynamic tensile stress conditions often generated under shock release. These
efforts are poised to provide a more complete picture of the shock response of crystalline
materials than has been previously possible.
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Abstract Brute force histogram calculation and a recently developed method to efficiently
reconstruct the free energy profile of complex systems (the single-sweep method) are com-
bined with ab initio molecular dynamics to study possible local mechanisms for the diffusion
of hydrogen in sodium alanates. These compounds may help to understand key properties of
solid state hydrogen storage materials. In this work, the identity of a mobile species observed
in experiments characterizing the first dissociation reaction of sodium alanates is investi-
gated. The activation barrier of two suggested processes for hydrogen diffusion in Na3AlH6

is evaluated and, by comparing our results with available experimental information, we are
able to discriminate among them and to show that one is compatible with the observed signal
while the other is not.
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1 Introduction

Safe and efficient storage is one of the major challenges for using hydrogen as a sustainable
energy carrier in technological applications with potentially zero greenhouse gas emissions.
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In the past few years, solid state materials have emerged as plausible candidates to solve
this problem. In particular, experiments indicate that alanates, a class of aluminum and light-
metals hydrides, could provide a viable and convenient mean to store and release hydrogen.
Sodium alanates are recognized as the most interesting among these compounds. They dis-
sociate via three chemical reactions:

3NaAlH4 ⇔ Na3AlH6 + 2Al + 3H2 (1)

2Na3AlH6 ⇔ 6NaH + 2Al + 3H2

2NaH ⇔ 2Na + H2

The first reaction occurs at T = 350 K and releases a quantity of molecular hydrogen equal
to 3.7 percent of the weight of the reactant (3.7 wt%); the second happens at T = 423 K and
with 1.9 wt% hydrogen release. These reactions occur close enough to ambient conditions
to be considered interesting for technological applications, while the third takes place at
a much higher temperature (T = 689 K, with an additional 1.9 wt% production of hydro-
gen) and it is not. Recently, it was observed [1] that the addition of a catalyst such as Ti
makes the first two reactions reversible and sustainable over several hydrogen charge and
discharge cycles thus opening the possibility of reuse of the material. The presence of the
catalyst also reduces the decomposition temperatures and enhances the kinetics of dehy-
drogenation and rehydrogenation of the compound. In spite of several experimental and
theoretical studies [2–6], however, little is known about the mechanism of the reaction and
the nature of the intermediate products of the transformation from tetra to hexa-hydride, both
in the presence of the catalyst and for pure samples. In doped compounds, the role of Ti,
or even its location (interstitial or substitutional in the lattice, or on the surface), is essen-
tially unknown along with the characteristics of the aluminum-titanium alloys formed during
repeated hydrogen cycling of the material. There is also a debate on the role of hydrogen
and/or sodium vacancies in facilitating the diffusion of atomic or molecular species within
the crystal [7].

In this paper we shall address a controversy that has recently emerged with regards to
the first dissociation reaction of sodium alanates. Quasi-elastic neutron scattering [8] has
confirmed the existence, first revealed by anelastic spectroscopy experiments [9,10], of a
mobile species that appears both in doped and pure samples as soon as the reaction pro-
duces Na3AlH6. It is known that the species diffuses after overcoming an activation barrier
of about 0.12 eV but its identity has not yet been established beyond doubt. Neutron scat-
tering measurements, combined with some ab initio calculations, suggest that the signal
corresponds to sodium atoms, or rather to sodium vacancy, migration within the lattice. The
same calculations reject two possible motions involving hydrogen, a local diffusion in a
defective Al site (AlH6−x with x = 1) and the diffusion of an H from a AlH6 unit to the
defect, due to high activation energies estimated from a Nudged Elastic Band (NEB) simu-
lation [11–13] (0.41 and 0.75–1.0 eV respectively). The anelastic spectroscopy result, on the
other hand, is interpreted precisely as the local diffusion process mentioned above. In the
following, we shall reconsider the possibility that the mobile species is related to the hydro-
gen atoms present in the system by employing an accurate method to calculate free energy
barriers.

Two numerical challenges must be faced in this calculation. First of all, hydrogen diffusion
involves breaking and forming of chemical bonds that cannot be captured reliably by simple
phenomenological potentials. Consequently, it is necessary to describe the process at the
quantum level at least as far as the electronic structure is concerned. A satisfactory represen-
tation of the system requires considering a relatively large number of atoms (on the order of
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one hundred) and the best compromise among accuracy and efficiency in ab initio molecular
dynamics simulations of alanates is obtained by describing the interactions using density
functional theory (DFT). The numerical cost associated to DFT calculations, however, lim-
its the timescales accessible with a reasonable investment of CPU time. The second, more
significant, challenge stems from the fact that, in the conditions of interest, the event under
investigation is activated. In general, activated processes can be modeled by introducing a set
of collective variables that characterize the initial and final state of the system as local minima
in the free energy, and correspond to transitions between the basins around the minima over a
free energy barrier higher than the available thermal energy. As the time necessary to escape
from the metastable states increases exponentially with the height of the barrier, a brute force
simulation of the event is doomed to fail and special techniques must be deployed to explore
the relevant regions of the free energy profile.

The contents of this paper can be summarized as follows. Section 2 starts with a descrip-
tion of the model of the system that we employ. The model is based on one main hypothesis,
namely that the process can be studied in a Na3AlH6 crystal where an H vacancy is created.
This hypothesis, a drastic simplification with respect to the experimental set up, is compati-
ble with the available information. In fact, in experiments, the signal assigned to the mobile
species is observed as soon as the hexa-coordinated Al is formed and persists until comple-
tion of the dissociation when Na3AlH6 is essentially the only compound left in the sample.
This points to this compound as the crucial environment for diffusion. The interactions are
described at the DFT level and appropriate collective variables are introduced to characterize
the two suggested mechanisms related to hydrogen diffusion. These are presented in subsec-
tions 2.2 and 2.3 for the local diffusion in the defective Al site and for the diffusion from the
AlH6 unit to the defect (henceforth, we shall refer to the latter as “non-local” diffusion). The
behavior of the collective variables is monitored in exploratory ab initio molecular dynamics
simulations of the system at T = 380 K. This temperature was chosen because it is slightly
above that of the first dissociation reaction and in the experimentally interesting range. From
the experiment it is known that, at T = 380 K, the height of the barrier is about four times the
available thermal energy so the expectation is that transitions among the values of the collec-
tive variables characterizing the different minima in the corresponding free energy will be
rare events in the simulation. As shown in Sect. 4, the results of the exploratory runs are quite
different in the two cases considered, allowing for a direct exploration of all relevant states
in the free energy landscape in the case of the local process, while indicating the existence
of a significant activation barrier in the case of the non-local diffusion. This is an indication
that the local vacancy diffusion does not correspond to the experimental signal. To assess
the possibility that the non-local hydrogen motion is responsible for the signal, an accurate
estimate of the activation barrier associated to the process is needed for comparison with the
experimental result. To obtain it, we reconstruct the free energy landscape via the single-
sweep method recently introduced by Maragliano and Vanden-Eijnden [14] and described in
the Method section. After reconstruction, the value of the activation barrier for the non-local
diffusion is evaluated as discussed in Sect. 4. Once the barrier height is available, it is con-
fronted with the experimental result and conclusions on the possible identity of the mobile
species are drawn.

2 Model and computations

As mentioned in the Introduction, we assume that the diffusion process can be modeled as
happening in a Na3AlH6 crystal where a hydrogen vacancy is created. This set up is the
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same as that used in previous calculations on the problem and it has two main advantages: It
allows for a well defined (and numerically affordable) atomistic model of the system—see
Sect. 2.1—and it is the most suitable for comparison with the NEB results.

The local and non-local diffusion processes that we wish to study correspond to changes
in the arrangement of the hydrogen atoms in the system. Since these changes can involve
more than one H, and in general require cooperative motion of different degrees of freedom,
it is more convenient to construct collective variables to discriminate among them rather than
to follow the motion of individual atoms. Once the collective variables are defined, the steps
we perform to identify the mobile species are: (1) to compute the free energy as a function
of the collective variables that characterize the local and non-local diffusion; (2) to identify
the minima corresponding to the initial and final state of the process; (3) to determine the
saddle point between the two. The activation barrier can then be estimated from the difference
among the values of the free energy at the minima and at the saddle point. The similarity or
difference among the computed values and the experiment will provide us with an indication
on the nature of the mobile species.

In the space of the collective variables, the free energy of the system is defined as

F(z) = −β−1lnZ−1
∫

dx e−βV (x)

p∏
j=1

δ(θ j (x) − z j ) (2)

where θ j (x) are the p collective variables, functions of the coordinates of the N Cartesian
coordinates of the particles of the system x = {x1, . . . , xN }, and z = {z j } is a specific set
of values for the collective variables. The definition above amounts to counting the number
of configurations of the system corresponding to a given value of z. This is equivalent to
assigning the probability

P(z) = e−βF(z) (3)

to the macroscopic state θ(x) = z of the system. In principle, this probability density function
can be computed directly by running a long molecular dynamics trajectory for the system and
monitoring the values of θ j (x(t)) generated by any dynamics that preserves the canonical
probability. For example, one could use

mẍ = −∇V (x) + thermostat at β (4)

to evolve the system. In the equation above m is the mass of the particles, and the thermostat
can be any standard thermostat such as Langevin, Nosé-Hoover, isokinetic, etc. The proba-
bility density can be obtained from the trajectory via the frequency estimator by binning the
collective variables and constructing a histogram of their values along the trajectory. Once
P(z) is known, inversion of Eq. (3) immediately gives the free energy. There are however
two problems in implementing this method. The first stems from the fact that the number
of bins that must be included in the calculation scales exponentially with the number of
collective variables. The second problem, perhaps even more serious, arises when activated
processes are of interest. The procedure outlined above, in fact, will produce a global, unbi-
ased, estimate of F(z) only if the trajectory visits all relevant regions of the space of the
collective variables a number of times sufficient to ensure convergency of the frequency
estimator. When activated processes are important, this condition will never be met since
the system will be trapped in metastable minima of the free energy from which it cannot
escape in a time compatible with current trajectory lengths. In fact, it can be estimated from
the Arrhenius formula that the time scale necessary to go over a barrier of height �Fb is
roughly proportional to eβ�Fb . To accurately sample the values of the collective variables,
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the trajectory must be much longer than this characteristic time and this will not be possible
if the barrier is large compared to the typical thermal energy available to the system. This is
indeed the situation that we expect to encounter in studying the diffusion process in sodium
alanates since, from the experiment, it is known that the height of the activation barrier is
about four times the available thermal energy of the system. In Sect. 3 we summarize the
method adopted to overcome this problem. In the remainder of this section, we describe
the model built to mimic and study the process. In 2.1 we specify the interactions and the
simulations set up, while the collective variables chosen to describe the local and non-local
diffusion are introduced in Sects. 2.2 and 2.3. As always, the choice of the collective variable
is a delicate point in the procedure since no rigorous way to identify the most appropriate set
of functions exists. The only available approach is to select them on the basis of physical, or
chemical, intuition and verify a posteriori [15,16], that they provide an accurate description
of the activated process.

2.1 The simulation set up and its validation

To determine the initial conditions in our simulations, we started by constructing a (2×2×1)
supercell for pure Na3AlH6 crystal. The supercell contained a total of 80 atoms. The char-
acteristics of this crystal are well known, both experimentally [17] and from simulations
[2,6]. Na3AlH6 has monoclinic structure of P21/n symmetry (space group number 14) with
two chemical units per primitive cell. The symmetry, lattice parameters, and the subset of
Wyckoff coordinates for the atoms in Table 1, combined with Wyckoff tables available on
the web [18], allow to generate the initial positions for the atoms in the supercell. In the
pure crystal, each aluminum is surrounded by six hydrogen atoms with which it forms a
slightly distorted octahedron. The nature of the bond in the octahedron is not clear, some
calculations showing a covalent character [3], other finding a strong ionic component [2].
The ionic bonding between the Na+ and the negatively charged AlH6 complex, on the other
hand, is well established.

Table 1 Cell parameters (upper panel) and Wyckoff positions of the atoms necessary to build the pure
Na3AlH6 cell (lower panel), α = γ = 90 for monoclinic crystals

Cell parameters a(Å ) b(Å ) c(Å ) β

Experimental 5.39 5.514 7.725 89.86

Calculated 5.27 5.46 7.60 89.99

This work 5.43 5.55 7.65 89.59

Wyckoff positions

Al(2a) 0, 0, 0

Na(2b) 0, 0, 0.5

Na(4e) −0.010, 0.454, 0.255

H(4e) 0.102, 0.051, 0.218

H(4e) 0.226, 0.329, 0.544

H(4e) 0.162, 0.269, 0.934

The experimental cell parameters are as given in ref. [17], while the calculated ones are those obtained in
ref. [8]
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As for the calculation of the electronic structure, required by ab initio MD, the orbitals
were expanded in plane waves, with a spherical cut-off of Ec = 1088 eV (80 Rydberg). Only
orbitals corresponding to the � point [19] have been used. We have used the BLYP [20,21]
form of the generalized gradient approximation for the density functional theory. We adopted
Troullier-Martins pseudopotentials [22], with nine electrons in the valence state of sodium,
three electrons in the valence state of aluminum and one in that of hydrogen. Inclusion of
the semi-core states of sodium was necessary to reproduce the configuration and the cell
parameters of the crystal. We validated this set up by performing atomic positions and cell
optimization in a simulation for pure Na3AlH6.

Having verified that the optimized lattice parameters and interatomic distances obtained for
the pure crystal compared very well with available experimental values and numerical results
(see Table 1), we used the same set up to construct a Na3AlH6 crystal with one hydrogen
defect. In addition to removing one H atom, we adjusted the lattice parameters by scaling them
by a common factor so that the pressure in short dynamical runs approached zero. The adjust-
ment was performed to mimic more closely the experimental conditions. The corresponding
simulation cell, containing 24 Na, 7 AlH6 and 1 AlH5 groups, is shown in Fig. 1. This cell was
used as the initial condition in a set of ab initio MD runs in which nuclear constant temperature
dynamics (T = 380 K) was obtained with a Nosé-Hoover chain [23] with four thermostats
whose inertia, in frequency units, had characteristic frequency ω = 103 cm−1. The collective
variables, instead, were evolved according to Langevin dynamics at a temperature T̄ = 6500
K with (fictitious) mass equal to m̄ = 250[t2(fs)], and friction γ̄ = 4.2 × 10−3 fs−1. The
integration scheme for this calculation , accurate to order dt1/2, can be found in ref. [24]. The
timestep was set to dt = 0.1 fs for all degrees of freedom in all molecular dynamics runs.
The asymptotic value of the force constant in Eq. (14) (see Sect. 3.2) is k = 5.44 eV. All
calculations were performed with CPMD [25].

2.2 Collective variables for the local H-vacancy diffusion

From inorganic chemistry we know that, in vacuum, there are two possible equilibrium
structures for compounds such as AlH5. The first is a pyramid with square base, the second a
triangular bi-pyramid, side (A) and (B) respectively in Fig. 2. The two structures can mutate
into one another via a relatively minor rearrangement in which the base of the bi-pyramide,
defined by hydrogens 1,2,3 in side B of the figure, changes so that the angle H1-Al-H3 goes
from 120 to 180 degrees, while H2 does not move. The square base of the new structure is
identified by hydrogens 1,3,4,5. Both structures were observed in preliminary ab initio MD
runs for the system and can be used to determine two classes of possible configurations for
the defective aluminum group. Within each class, different orientations of the AlH5 group
with respect to the other AlH6 molecules in the crystal, or to a fixed reference frame, are
possible. The local hydrogen diffusion process amounts to changes of the geometry of the
AlH5 group leading to transitions among the configurations within each class and across the
two sets.

To discriminate among these configurations, we introduced the following three dimen-
sional vector whose components will be used as the collective variable

�W =
∑5

i=1 wi �riAlv∑5
i=1 wi

(5)

where �ri Alv = �ri − �rAlv (�rAlv is the position of the defective aluminum, and �ri are the
coordinates of the defective group’s hydrogen atoms), while wi is a constant weight. Let us
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Fig. 1 Simulation (2 × 2 × 1) supercell modeling Na3AlH6 in the presence of a hydrogen vacancy. The 79
atoms in the cell are represented as spheres color coded as follows: Al green, Na blue, and H white. Bonds in
the molecular AlH6 groups are shown as white and green sticks. The defective aluminum group is indicated
by the red arrow

Fig. 2 Schematic representation of the possible equilibrium structures of AlH5 in vacuum. Side (A) shows
the square base pyramid configuration, side (B) the triangular bi-pyramid. Out of plane bonds are represented
as thick lines, bonds in plane are simple lines

consider first the case wi = 1 for all i . In this case, | �W | = 0 for configurations in class B due
to the symmetric disposition of the hydrogen atoms around the aluminum. On the other hand,
a finite value of the modulus of the vector indicates that the configuration belongs to class A.
In Figs. 3 and 4, some of the features of the collective variable for configurations belonging
to the two different classes are shown. The symmetry of the arrangements of the hydrogens is
reflected in the very small value of the length of �W , as shown in the two snapshots in Fig. 3.
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Fig. 3 Snapshots of typical configurations of the system with the defective aluminum group approaching the
by-piramidal structure. The collective variable �W is represented as a red stick. The vector is barely visible due
to the small value of the modulus in the bi-pyramidal arrangement. For graphical purposes, in the figure the
vector has been scaled by multiplying its components by a factor of five

Fig. 4 Snapshots of typical configurations of the system with the defective aluminum group approaching the
square base pyramid structure. The collective variable �W is represented as a red stick. For graphical purposes,
in the figure the vector has been scaled by multiplying its components by a factor of five

In the figure, the origin of the vector coincides with the position of Alv , and �W is represented
as a red stick protruding from the aluminum. Of course, the anisotropy of the environment
and the thermal fluctuations in the system will prevent the group from reaching the exactly
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symmetric configuration of Fig. 2, however the difference in the length of the vector for
configurations in class A or B is apparent by comparing Figs. 3 and 4. In the latter, snapshots
of the defective group in configurations belonging to class A are shown. Typical values of
ρ = | �W | measured in this case range between 0.05 Å and 0.26 Å. The direction of the vector
carries information both on the orientation of the defective group and on the deformation of
the square base of the pyramid. In the ideal case, the vector would be aligned with the bond
connecting the aluminum with the azimuthal hydrogen, while distortions of the geometry
of the base modify both its orientation and magnitude, as shown in the two examples in
Fig. 4. If all weights in Eq. (5) are equal, no information can be obtained about the different
orientations of the by-pyramidal structure defining class B. As mentioned above, in this case
the vector has length zero so its direction cannot be defined. Rigid rotations of the symmetric
structure in the space of configurations can be discriminated by our collective variable if a
set of different values for the weights is introduced. For example, it can be shown by direct
inspection that there is a one to one correspondence among orientations of the symmetric
group and values of the angles in the polar representation of the vector �W if the choice wi = i
with i = 1, . . . , 5 is made. However, analysis of the preliminary MD runs showed that fully
symmetric configurations were never maintained for a time sufficient to observe rotations.
For that reason, in the following we shall limit the definition of the collective variable to the
case of equal, unit, weights.

2.3 Collective variables for the non-local H-vacancy diffusion

Non-local hydrogen diffusion, i.e. the transfer of one hydrogen from an hexa to a penta
coordinated aluminum, can be described as a change in the coordination number of the donor
and acceptor Al with respect to the hydrogens.

A smoothed expression of the coordination of Alα as a function of the hydrogen’s positions
is [26]

Cα =
NH∑
i=1

1

1 + eλ(riα−r0)
(6)

with riα = |�ri −�rα| (the index i runs from 1 to the number of hydrogens NH , �ri is the position
of hydrogen i , and �rα is the position of aluminum α). λ and r0 define the characteristics of the
sigmoid: r0 identifies the inflection point of the function, while λ determines the steepness
of the decay. The specific choice of these parameters for our calculations is discussed in the
Results section.

We used the coordination numbers of all Al atoms in the simulation cell as collective
variables. The presence of all coordinations avoids an a priori choice of the donor and accep-
tor AlHn groups and any assumption on the identity of the H atoms that participate in the
diffusion process.

3 Methods

As mentioned in the previous section, the reconstruction by direct histogramming methods
of the free energy of a system in which activated processes are relevant must tackle two
challenges. First, the number of bins that need to be considered scales exponentially with
the number of collective variables and, second, due to the presence of energy barriers, the
dynamical trajectory is unable to explore all relevant states. In this paper we shall use the
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single-sweep method, introduced in [14], that offers a way out from both difficulties. The
single-sweep method is based on two steps. The first employs a temperature accelerated
evolution of an extended system that includes the collective variables as dynamical variables
(TAMD) [27] to overcome the barriers and efficiently explore the free energy landscape. The
second chooses points along the TAMD trajectory of the collective variables as centers of an
interpolation grid. The free energy is represented by a set of radial basis functions centered on
the interpolation grid. The coefficients of the representation can be obtained by least square
fitting. The two steps of the single-sweep method were described in detail in [14]. For the
reader’s convenience we summarize next the main features of the approach.

3.1 Temperature accelerated molecular dynamics

Temperature accelerated molecular dynamics begins by defining an extended version of the
physical system in which new variables z are coupled to the physical variables via the col-
lective variables θ(x) and the potential energy V (x) is extended to include a quadratic term
that couples θ(x) and z. The new total potential is written as

Uk(x, z) = V (x) + k

2

p∑
j=1

(θ j (x) − z j )
2 (7)

It is further assumed that the z variables, to which a fictitious mass m̄ can be assigned,
evolve at a fictitious temperature T̄ (and with a friction coefficient γ̄ if one is using Langevin
dynamics) different from that of the physical system. The evolution of the extended system
is governed by the following set of coupled equations (compare (4))

mẍ = −∇x V (x) − k
p∑

j=1

(θ j (x) − z j )∇xθ j (x) + thermostat at β

m̄z̈ = k(θ(x) − z) − γ̄ ż +
√

2β̄−1γ̄ ηz (8)

where β̄ = 1/kB T̄, k is a constant, and ηz is the white noise associated with the Langevin
evolution of the new variables. The extended system so defined has the remarkable property
that if we increase the value of m̄ and γ̄ (with the condition that m̄ = O(γ̄ 2)) so as to
induce adiabatic separation of the motion of the physical and fictitious systems, the variables
z evolve, on the slower time scale of their motion, according to the effective equation

m̄z̈ = −∇z Fk(z) − γ̄ ż +
√

2β̄−1γ̄ ηz (9)

where (compare (2))

Fk(z) = −β−1 lnZ−1
k

∫
dxe−βUk (x,z) (10)

with Zk = ∫
dxdze−βUk (x,z). In the limit of large k, the quantity above is the free energy of

the physical system at inverse temperature β. The time evolution of the fictitious variables
then explores the relevant regions of the free energy landscape at the physical temperature.
Moreover, the evolution equation holds for any value of T̄, and this quantity can be increased
to a point when the thermal energy of the fictitious variables is high enough to overcome the
physical system’s free energy barriers and sample all metastable and transition regions.

Equation (9), could in principle be used to sample directly the free energy landscape
thanks to the accelerated dynamics of the fictitious variables. This is in fact why the extended
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system was originally introduced. Although not affected by the metastability problem, this
approach would still require to construct F(z) via histograms and, as such, it suffers from the
exponential growth with the dimensionality of the collective variable space of the number of
bins required. In the single-sweep strategy, this difficulty is circumvented by substituting the
histogram with the best fitting procedure for the free energy, using points sampled along the
z trajectory as described in the next subsection.

3.2 Radial basis representation of the free energy

In this section, following [14], we describe how to use TAMD within the single-sweep method
to reconstruct the free energy. Let us introduce the radial basis set in the space of functions of,
real, variable z given by Gaussian functions (a convenient choice, but not the only possible)

φσ (|z − z j |) = e− |z−z j |2
2σ2 (11)

where {z j } is a set of “centers” in the z-space and σ > 0 is an adjustable parameter to be
discussed in a moment. In single-sweep these centers are chosen among the points along a
TAMD trajectory, z(t), according to a distance criterion: a new center is dropped when the
distance of z(t) from all previous centers exceeds a given threshold d . In this basis, the fitting
free energy can be written as

F̃(z) =
J∑

j=1

a jφσ (|z − z j |) + C (12)

where C is an additive constant that does not affect the properties of the system and J is the
number of centers (equal to the number of basis functions). The coefficients a j and σ are
adjustable parameters which can be determined by minimizing the objective function

E(a, σ ) =
J∑

j=1

∣∣∣∣∣∣
J∑

j ′=1

a j ′∇zφσ (|z j − z j ′ |) + f j

∣∣∣∣∣∣
2

(13)

This equation requires only computing the gradient of the free energy, indicated as f j , at
the points z j . This gradient is called the mean force and it can be calculated locally as the
conditional expectation

f j = − lim
k→∞ ∇z j Fk(z) = − lim

k→∞ lim
T →∞

k

T

∫ T

0
(z j − θ j (x(t)))dt (14)

Here we used the ergodic hypothesis to substitute the conditional average expressing the
mean force

f j = − lim
k→∞

1

Z ′
k

∫
dx k(z j − θ j (x))e−βUk (x,z) (15)

where Z ′
k = ∫

dx e−βUk (x,z), with a time average along the trajectory of the coordinates of
the system as determined by the first line of Eq. (8) with fixed z = {z j }.

The minimization of the objective function is performed in two steps. First, keeping the
value of σ fixed, the function is minimized with respect to the coefficients of the Gaussians
by solving the linear algebraic system
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J∑
j ′=1

B j, j ′(σ )a j ′ = c j (σ ) (16)

where

B j, j ′(σ ) =
J∑

j ′′=1

∇zφσ (|z j − z j ′′ |)·∇zφσ (|z j ′′ − z j ′ |)

c j (σ ) =
J∑

j ′=1

∇zφσ (|z j − z j ′ |)· f j ′ (17)

In the following, the solutions of this system are called ã j . Once the coefficients of the
Gaussians at a given variance are computed, the optimal value of σ is determined by finding
minσ E(ã j (σ ), σ ). The minimum is obtained by performing a one-dimensional scan on the
values of the objective functions as a function of the variance and computing the residual
value of E(ã(σ ), σ ) for increasing values of σ starting with the value of d .

The radial basis representation has several advantages, the most important being that it
seems to converge fast with the number of centers compared to regular grids. This suggests
that the method can be applied to reconstruct high dimensional free energy landscapes with
reasonable numerical cost. Furthermore, the centers {z j } do not have to be located on a reg-
ular grid so that data collected anywhere on the landscape can be used. Note also, that unlike
the histogram approach described previously, the z-trajectory does not have to visit several
times the same region of the free energy. Here, the only requirement is that regions are visited
once so that a center can be dropped and used in the basis set.

4 Results

As a preliminary step in the study of the diffusion processes, we performed an exploratory ab
initio 40 ps molecular dynamics run for the physical system at a temperature T = 380 K in
which we monitored the behavior of all collective variables described in Sect. 2. The analysis
of the time evolution of the collective variables showed very different results for the local
and non-local diffusion. In the case of the local diffusion, the full space was spanned during
the run and no appreciable barrier was detected. Since this excluded local hydrogen diffusion
as the origin of the experimental signal we were investigating, we limited ourselves to a
relatively rough estimate of the free energy profile obtained by building histograms based
on the ab initio molecular dynamics trajectory. Results are shown in the next subsection.
The coordination numbers of the Al atoms, on the other hand, did not change during the
exploratory run pointing to the fact that the non-local diffusion is indeed an activated process
and that the system remained trapped in a metastable state for the duration of the run. We
therefore applied the single-sweep strategy outlined in Sect. 3 to calculate the free energy
profile. Results for this case are presented in subsection 4.2.

4.1 Local hydrogen diffusion

The free energy profile of the system was roughly estimated by evaluating the probability

P( �W ) = e−βF( �W ) (18)
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Fig. 5 Cuts of the contour plots of the free energy for ρ = 0.19 Å (upper figure), ρ = 0.13 Å (middle figure),
and ρ = 0.05 Å (bottom figure) as a function of the angular components, θ and φ, of �W . The free energy is
quite flat for all values of ρ

where we introduced a polar representation of the vector �W = (ρ, θ, φ) and discret-
ized the values of ρ ∈ (0, 0.3), θ ∈ (0, 2π) and φ ∈ (0, π), on a (10 × 10 × 5) grid.
The ab initio molecular dynamics gave us the sample used to estimate the probability
density above, and 40 ps were sufficient to give converged results. The estimated free
energy, see Fig. 5, shows an essentially flat profile with features that depend slightly on
the value of the length of �W . Since several non-local diffusion events occur in the explor-
atory trajectory, the barriers relevant for this process, if any, cannot be much higher than
kBT = 0.03 eV, about four times smaller than the experimental value (0.126 eV). Therefore,
according to our simulations, the local hydrogen diffusion is not the process observed in the
experiments.

The results of this run disagree with the estimate, �E = 0.3 eV, of the activation
energy obtained by Voss et al. [8]. In our opinion, the difference arises because the pro-
cess they investigate to get the local rearrangements of the bond structure of the defective
Al group in their work is not the most energetically favorable. As shown in the bottom
panel of Fig. 6, they choose, to go from one square base pyramid configuration to another,
a local diffusion mechanism that occurs by flipping a single Al-H bond, while leaving the
positions of all other hydrogens essentially unchanged. According to our calculations, the
process proceeds instead via a collective rearrangement of the bonds passing through the
bi-pyramidal configuration, see upper panel of Fig. 6, for which the free energy barrier is
much lower.



200 M. Monteferrante et al.

Fig. 6 Schematic representation of the local diffusion mechanism suggested in this work, upper panel,
compared with the one hypothesized by Voss et al. [8], bottom panel. The leftmost figure is the initial con-
figuration (square pyramide with base identified by hydrogens 1,3,4,5) while the final configuration (square
base pyramid with base identified by hydrogens 2,3,4,5) is at the far right. Our simulations show that the
rearrangement occurs by first changing the angle H1-Al-H3 to 120 degrees, then visiting the bi-pyramidal
configuration—middle state in the sequence specified by the arrows—and finally rotating further hydrogens 1
and 3. In the final configuration, the angles H1-Al-H2 and H1-Al-H3 are equal to 90 degrees, while H3-Al-H2
is 180 degrees. These rearrangements involve collective motion of the hydrogens. In the NEB path only H3
changes position (see Fig. 8 in ref. [8])

4.2 Non-local hydrogen diffusion

4.2.1 The TAMD trajectory

In order to explore the free energy surface and to find a convenient set of centers in preparation
of the radial basis reconstruction, a 100 ps TAMD trajectory associated with the coordination
numbers Cα was run. The fictitious mass and friction chosen (see Sect. 3) guaranteed the
adiabatic separation between the evolution of the physical system and that of the collective
variables. This was verified by computing the Fourier transform of the velocity autocorrela-
tion function: the average frequency of the atomic motion was about two order of magnitude
greater than that of the collective variables. We also have βk 	 1 so that the force on the
collective variables approximates the gradient of the physical free energy. Though these con-
ditions are not strictly necessary since the main purpose of the trajectory is to provide a set
of centers, they ensure that only relevant regions of the free energy landscape are visited and
give meaning to a qualitative analysis of the dynamics.

Some comments on the collective variables are in order. The coordination number (see
Eq. (6)) is a smoothed step function, characterized by two flat regions before and after a
sudden drop that depends on r0 and λ. This poses two problems. First, as described in
Eq. (8), one of the force terms in the evolution equation of the coordinates of the sys-
tem depends on the gradient of the collective variables with respect to the physical posi-
tions. If the parameter λ is too large, this force term becomes stiff and this complicates
the numerical integration of the dynamics. On the other hand, a small value of λ results in
a very slow decay of the function that blurs the meaning of the collective variable since,
in this case, the coordination of an atom cannot be uniquely defined. Second, to change
the collective variables the force must drive the system from one stable state to the other.
In the present case, however, the force is non-zero only in a region of space determined
by λ and r0. A combination of values capable of driving the necessary changes in the
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Fig. 7 Typical non-local diffusion event in the TAMD trajectory. The transferring hydrogen is tagged as the
red sphere. The sequence, to be read from left to right, follows the event from the initial configuration in which
the hydrogen is bound to the donor aluminum group to the accepting defective aluminum group

configuration of the system may not exist in general, although in our case it was found
by setting λ = 10 Å−1 and r0 = 2 Å. This choice places the inflection point of the step
function around the equilibrium Al-H distance and the force decays over a range of about
1 Å around this distance. Consequently, the boundaries of the coordination spheres of neigh-
boring Al overlap, so that the force itself or the thermal fluctuations in the system can always
drive the hydrogen exchange. Furthermore, the function is smooth enough for numerical
integration.

With this choice of the parameters, the accelerated dynamics produced a considerable
number of hydrogen hops between the aluminum atoms and, during the overall TAMD run,
seven out of eight alumina became penta-coordinated at least once. Figure 7 shows a typical
event. Reading the cartoon from left to right, the initial configuration of the defective Al group
is a roughly a square pyramid. The donor AlH6 group has one hydrogen, tagged as the red
sphere in the figure, pointing in the direction of the base of the pyramid. It is this hydrogen that
will hop between the two Al groups. As the hop proceeds there is very little rearrangement
of the surrounding sodium atoms or of the bond structure of the two groups. The putative
transition state, shown in the middle panel of the figure, is in fact quite symmetric with the
transferring H midway between the groups. As the diffusion event proceeds, the hydrogen is
captured by the acceptor that then rearranges very slightly to assume the hexa-coordinated
octahedron geometry while the donor is now in a square base pyramid conformation. The
analysis of the hydrogen transfer events in the TAMD trajectory shows three main features:
(1) the hopping involves only two Al atoms per event with no apparent cooperative effects
among different alumina; (2) there are no appreciable differences in the transfer dynamics
based on the identity of the pair of aluminum atoms participating in the event; (3) most of
the reactive events occur between a specific pair of aluminum atoms, involved in 18 hops
over a total of 44. The average number of hops among other active pairs is 3. Thus we are
led to focus on the pair of alumina among which the largest number of hydrogen hops occur
since they can be considered as representative of all hops. Therefore, we reduced the number
of collective variables from the eight coordination numbers of all Al in the cell to the two
coordination numbers of the pair that participated in most hops. In the following, these alu-
mina are called Al1 and Al2. Given the computational cost of the estimates of the gradient
of the free energy in ab inito molecular dynamics, this reduction is important to make the
analysis affordable. We now proceed to apply single-sweep to reconstruct a two dimensional
free energy surface.

4.2.2 Radial basis reconstruction of the free energy

Due to an error in our implementation of the distance criterion described in the Method
section, we produced a biased set of centers along the TAMD trajectory that suffered from
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clustering of the points. Since we verified that our centers were nonetheless placed in mean-
ingful regions of the free energy landscape, we decided not to repeat the expensive calculation
of the mean force on a set of new, equally spaced, points but rather to improve the characteris-
tics of the available set. First, we added to the 43 TAMD centers 36 new points placed by hand,
then we extracted subsets of points that respected the distance criterion for given choices of d.
Three subsets where obtained this way using d = 0.1 (which selected 55 centers), d = 0.15
(37 centers), d = 0.2 (25 centers). The free energy landscape was then reconstructed with
the three different subsets following the single-sweep procedure described in Sect. 3.2. The
gradient of the free energy at the centers was computed using Eq. (14) with restrained ab initio
molecular dynamics runs. The equilibrium averages were obtained with runs of T 
 2.2 ps,
that ensured an error on the measure, as estimated by the variance associated to the average,
of about 10−2 eV. With this information, the linear system (16) was solved and the variance
of the Gaussians in the basis was then optimized.

The free energy profile reconstructed with 55 centers is shown in Fig. 8. To test the accu-
racy of this calculation, the free energy surface reconstructed with increasing number of
centers, and the results for the free energy barriers, were compared. In Fig. 9 we show the
absolute value of the difference in the reconstructed free energies with 25 and 37 centers,
and with 37 and 55 centers, respectively. As the profiles are defined within a constant, the
figure was obtained by shifting the reconstructed surfaces so that the values at the minimum
corresponding to an hexa-coordinated Al2 coincided. As it can be seen, the convergence with
number of centers is quite fast, and the difference among the free energy calculated with 37
and 55 centers is less than 0.02 eV in the regions involved in the non-local diffusion, giving
an accuracy sufficient for comparison with the experimental data. As a further test of con-
vergence, we evaluated the relative residual, defined in terms of the objective function (13)
and the mean forces (14) as
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Fig. 8 Contour plot of the free energy reconstructed with 55 centers as a function of the coordination numbers
of alumina Al1 and Al2. The white circles superimposed to the plot are the positions of the centers used in
the single-sweep reconstruction. The white curve is the converged steepest descent path computed using the
string method
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Fig. 9 Contour plot of the absolute value of the difference of the free energy profiles reconstructed via the
single-sweep method with increasing number of centers. The free energy scale is the same as in Fig. 8 for easy
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res =
√

E(ã, σ̃ )∑J
j=1 | f j |2

(19)

where, as before, ã j and σ̃ denote the optimized paramters. With J = 55 centers, the residual
was res = 0.2.
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4.2.3 Calculation of the activation barrier

As described in the Model section, we shall estimate the activation barrier by measuring the
difference between the value of the free energy at the minima and at the saddle point. To
determine the position of these points we computed the steepest descent path connecting the
two metastable basins. By definition, along this path we have

(
∇z F̃(z)

)⊥ = 0 (20)

where
(
∇z F̃(z)

)⊥
is the projection of the gradient in the plane orthogonal to the path. To

compute this path we used the string method [28,29] with 200 discretization points. The
maximum of the free energy along the path identifies the minimum free energy barrier to
the hydrogen non-local diffusion process. In Fig. 8 the contour lines of the free energy recon-
structed with 55 centers are shown. Overlaid to them are white circles indicating the positions
of the centers used in the reconstruction of the profile. The white curve shows the converged
steepest descent path. The activation free energy barrier for the non-local diffusion event was
then calculated as

�Fi = F̃(zb) − F̃(zi ) (21)

(i = 1, 2). The results are shown in Table 2 for different number of centers in the radial
basis set. The values for the energy barrier in the Table are in the range of that reported in
the experiments. This indicates that, according to our calculation, the observed process can
be identified with hydrogen transfer from hexa to penta coordinated aluminum. Here too,
we disagree with the conclusions of Voss et al.[8], who have calculated an energy barrier
ranging from 0.75 eV to 1 eV for different NEB paths. Also in this case we presume that the
difference is due to the bias imposed by the initial guess for the NEB trajectory, resulting in
too high an activation barrier.

We conclude with some information on the computational cost of the ab initio calcula-
tions associated to the reconstruction of the free energy. One picosecond of dynamics requires
about 100 hours of CPU time on a Power5 IBM cluster running at 1.9 GHz. The overall time
needed for the different calculations presented in this work amounted to about 30.000 hours.
While significant, this cost is still affordable because the single-sweep method is trivially
parallelizable.

Table 2 Non-local diffusion results as a function of the deposition threshold, d

d Centers C∗
Al1

C∗
Al2

SP �F1[eV ] �F2[eV ]

0.2 25 (5.68,4.84) (4.85,5.68) (5.17,4.94) 0.14 0.26

0.15 37 (5.72,4.86) (4.86,5.73) (5.11,4.93) 0.13 0.24

0.1 55 (5.69,4.86) (4.86,5.71) (5.14,4.89) 0.13 0.27

The second column contains the number of centers. Third, fourth and fifth column are the coordinates of the
two minima, C∗

Ali
, and of the saddle point, SP. The �Fi are the height of the barriers as measured from the

first and second minima respectively. The experimental value is �F = 0.126 eV
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5 Conclusions

In this paper, two local mechanisms for hydrogen diffusion in a Na3AlH6 crystal with one
H vacancy were investigated with the intent to identify a mobile species that appears in
experiments on these materials and whose identity is controversial. The two mechanisms
are the local rearrangement of H positions around a defective Al group and transfer of one
hydrogen from an hexa-coordinated aluminum to the defective group. In our calculations,
they were modeled by introducing collective variables whose behavior was monitored in
a set of ab initio molecular dynamics simulations. The calculated free energy landscapes
showed characteristics that make it possible to discriminate among the two processes. The
local rearrangement of the hydrogen’s positions in a defective Al group, turned out not to be
activated at the experimental temperature. In this case standard histogram methods based on
the ab initio trajectory were sufficient to reconstruct, roughly, the free energy profile. The
second process, on the other hand, was activated and the single-sweep method was used for
reconstruction. The free energy barriers to diffusion for both processes were evaluated and
compared with available experimental and theoretical information. The barrier corresponding
to the non-local diffusion mechanism is quite close to the one observed in experiments so our
calculations indicate that this may indeed be the origin of the signal. Before a definite answer
can be given, however, a third hypothesis involving the diffusion of a sodium vacancy in the
Na3AlH6 crystal must be investigated. The corresponding calculations, and refinements of
the ones presented in this paper, will be the subject of future work.
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Abstract Significant achievements have been demonstrated in computational materials
design and its broadening application in concurrent engineering. Best practices are assessed
and opportunities for improvement identified, with implications for modeling and simulation
in science and engineering. Successful examples of integration in undergraduate education
await broader dissemination.

Keywords Materials design · Multiscale modeling · Robust design · Concurrent
engineering

1 Introduction

Viewing a material as a hierarchical structure having design degrees of freedom associated
with composition and microstructure morphology opens new vistas for improving products.
As traditionally taught and practiced in engineering, product design involves materials selec-
tion as part of the process of satisfying required performance specifications [1]. For example,
an aluminum alloy might be selected instead of a medium strength steel in a given application
by virtue of high specific stiffness or strength, along with secondary considerations such as
corrosion resistance. Titanium alloys might be selected in golf club head inserts instead of
fiber reinforced composites due to higher impact resistance and lower cost of fabrication.
Material choices are typically listed in catalogs by material suppliers, with various properties
for these nominal material forms available in databases and research or trade literature.

In this conventional paradigm, the role of the materials engineer is largely that of indepen-
dent materials development. This involves process-structure experiments and modeling to un-
derstand structure and properties of candidate microstructures, followed by time-consuming
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Fig. 1 Elements of Ni-base superalloy concurrent process, microstructure and gas turbine engine design with
objective of increasing burst speed and decreasing disk weight in the AIM program [2,3]

experimental studies to quantify stability of structure and verify or certify relations of structure
to properties. This sequence of stages to develop and certify a new material have often been
too long (20 years) for a new material or alloy system to be conceived as part of the systems
design process. However, with emerging computational modeling and simulation tools on
the one hand, and increasingly high resolution and rapid characterization instruments and
methods on the other, the goal of accelerating the insertion of new or improved materials
into next generation transportation vehicles and propulsion systems is beginning to be real-
ized. The DARPA Accelerated Insertion of Materials (AIM) program [2,3] from 2000–2003
offered insight into how computational materials science and engineering can be harnessed
in the future to assist in developing and certifying materials in a shorter timeframe to more
closely match the duration of the systems design cycle. AIM was a bold initiative that assem-
bled materials developers, original equipment manufacturers (OEMs), and government and
academic researchers in a collaborative, distributed effort to build designer knowledge bases
comprised of the various elements of systems design such as databases, digital realizations
of microstructure, modeling and simulation tools that addressed various level of materials
hierarchy and interplay with products, experiments, materials characterization, statistical ap-
proaches to uncertainty, metamodeling, and information protocols for managing workflow
and communications.

The AIM program was focused on metallic systems (Ni-base superalloys for gas turbine
engine disks) and composite airframe materials. As shown in Fig. 1, iSIGHT information
management software (upper left) was employed in the metals program to integrate vari-
ous codes and databases used to predict precipitate strengthened γ − γ ′ Ni-base superalloy
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microstructures and estimate the yield strength based on relatively simple dislocation-based
models for strengthening [3]. The disk microstructure was coupled to thermomechanical
process history using predictive codes that draw from fundamental thermodynamic calcula-
tions of phase and interface properties. The model prediction of the cumulative distribution of
yield strength as a function of temperature and microstructure, coupled with computer-aided
design (CAD) tools and optimization routines, enabled accelerated design of a process route,
microstructure, and disk geometry with a significant increase of the burst speed in a spin test
(upper right), while simultaneously reducing overall disk weight. The disk design demon-
stration also allowed experimental validation of predicted spatial variation (lower left) in disk
forging microstructure and properties. Final simulation of process variation over six stages of
manufacturing successfully predicted measured property distributions (lower right) for room
temperature and 620◦C strength with efficient fusion of minimal (n = 15) datasets. All of
this was done concurrently over a three year period, indicating the feasibility and payoff of
concurrent design of process route, material microstructure, and component geometry.

The DOE-sponsored USCAR program from 1995–2000 provided an earlier indication of
the feasibility of obtaining substantial improvements by coupling structure-property relations
and component level design [4–7]. In this program, an increase of cast automotive vehicle
component fatigue strength was achieved with reduction of component weight based on these
ideas of concurrent design of microstructure and associated structure-property relations in a
suspension “A” arm. Computational micromechanics was employed to characterize, to first
order, cyclic plasticity and fatigue processes associated with casting inclusions over a wide
range of length scales, from several microns to the order of one millimeter. These simulations
involved FE calculations on actual and idealized microstructures using concepts of volume
averaging to address scale effects and damage nonlocality, and were aimed at a very different
goal from typical fatigue analyses, namely understanding the sensitivity of various stages
of fatigue crack formation and early growth at hierarchical levels of microstructure. Thresh-
olds for forming small cracks, for small crack growth out of the influence of micronotches,
and microstructurally small crack propagation in eutectic regions and dendrite cells were all
considered in simulations of microstructure attributes at different length scales. The critical
issue of dependence of component fatigue strength on casting porosity and eutectic structure
was addressed by employing numerical micromechanical simulations using FE methods for
a hierarchy of five inclusion types [7] for cast Al-Si alloy A356-T6, spanning the range of
length scales relative to the secondary dendrite arm spacing or dendrite cell size (DCS).
Resulting predictions of high cycle and low cycle fatigue resistance for a range of initial
inclusion types are shown in Fig. 2; the predicted range of fatigue lives for microstructures
with extremal inclusions established by metallographic characterization conform to mea-
sured variation of the experimental fatigue lives. In the LCF regime, multisite fatigue dam-
age and crack impingement/coalescence is taken into account. This microstructure-sensitive
multistage fatigue model [7] formed the basis for estimating fatigue resistance of cast com-
ponents. Similar casting porosity-sensitive strength models were developed to couple with
process models for casting porosity levels to design component geometry and processing for
A356-T6 to reduce weight and gain strength. As in AIM, results were validated using full
scale demonstrations.

One major branch of the genesis of the idea of using computational modeling and simu-
lation tools in concert with experimental characterization of materials to design a material
with targeted property sets traces back to the mid-1980s with the inception of the Steel
Research Group at Northwestern University [8]. Figure 3 summarizes a comparison between
the experiment-intensive traditional process of empirical materials development and the new
analysis-intensive process of “materials by design.” Where the input of scientific knowledge
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Fig. 2 Completely reversed, uniaxial applied strain-total life behavior as a function of inclusion type and size
for cast A356-T6 Al, including coalescence effects in the LCF regime [7]. Arrows denote non-propagating
crack limits (fatigue limits) for small cracks formed at inclusions

is only qualitative in the first approach, the new approach builds on the numerical imple-
mentation of quantitative scientific knowledge to minimize costly experimentation through
validation of model predictions by iterative evaluation of a limited number of prototypes.
Acknowledging the intrinsic hierarchical character of material process-structure-property-
performance relations, and the reciprocal nature of the top-down design problem framed
by mapping the required performance requirements onto properties, then to structure, and
finally into process route and composition, Olson and colleagues constructed system dia-
grams of the type shown in Fig. 4. This is a foundational step in systems-based materials
design to achieve target property sets. It is an exercise that is entirely material-specific and
application/property-specific. It sets the stage for addressing true design of material systems
as an information management exercise, instantiated by specific types of simulations and
validation experiments that convey the necessary information to support decision-making at
various points within the process.

For example, Fig. 4 expresses that tempering dominantly affects dispersed strengthening
phases, and must be designed to minimize larger carbides that would compromise ductility
(and thereby toughness). Toughness is sensitive to a variety of microstructure related aspects,
including lath martensite structure, incoherent carbides, grain size, resistance to nucleation
of microvoids, and amount and stability of precipitated austenite, as well as characteris-
tics of transformation strain. Some of these are geometric (i.e., stereological) attributes of
microstructure, while others involve dynamic evolutionary responses such as fracture or phase
transformation. Hydrogen resistance is directly related to grain boundary chemistry, with
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Fig. 3 Comparison of experiment-intensive traditional empirical development (left) and analysis-intensive
“materials by design” approach (right)

impurities controlled by refining and deoxidation processes. Pursuit of this design problem
requires a combination of expert estimates based on prior experience, experiments, and mod-
els and simulations at virtually every mapping (branch connections) shown in Fig. 4. Note
also that multiple elements populate each level of the hierarchy (six processing steps, five
dominant levels of microstructure, and three target properties to affect). Since the entire
system is coupled by virtue of cause-and-effect interactions, modification of each element
propagates changes through the system, with the dominant interactions shown in the diagram.
This complicates design optimization, as it is generally not possible to optimize the entire
system by focusing on optimization of a given element within a given layer of the hierar-
chy. In certain cases, sub-systems can be optimized in decoupled manner from the overall
system, greatly accelerating design exploration. Identification of the degree of coupling of
sub-systems is indeed an important aspect of design of hierarchical material systems.

In tension with this need for searching for acceptable design solutions to the global systems
problem, there are limitations on the timeframe involved for each of the processing steps.
Moreover, if models do not exist to relate process path to microstructure, or various relations
of microstructure to properties, then costly and time consuming experiments are necessary.
In the worst case, iterations of the system shown in Fig. 4 are not practical, and perhaps
only a part of the system flow diagram can be attempted. This is in fact the historical reason
why traditional material development (Fig. 3 left) has been highly empirical, and dramatic
compromise tradeoffs of competing property objectives such as strength and toughness have
been widely accepted and taught in textbooks as a matter of fact, giving metals the reputation
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Fig. 4 Process-structure-property-performance hierarchy for design of high strength steels for multiple
objectives of strength, toughness and hydrogen resistance. From the SRG at Northwestern University [8,9]

as a mature and heavily constrained/limited class of materials. This does not have to be the
case; by increasing the fraction of decision points or connections in Fig. 4 with support from
modeling and simulation tools, even in the preliminary design exploration stage, multiple
iterations of the entire systems framework can be achieved in modern simulation-assisted
materials design. We will discuss the example of high toughness steel design later in this
regard. Over time, it has already been observed that increasing capabilities and availability of
accurate models has enabled many iterations in efficient multi-objective design of material
systems for required performance objectives.

Figure 5 serves as the general foundation for the specific example of materials design
shown in Fig. 4. As discussed by Olson [9], it emphasizes the design hierarchy and clearly
distinguishes the exercise of top-down, goals/means, inductive systems engineering from
bottom-up, cause and effect, deductive, sequential linkages. The bottom-up approach has
been the historical model for empirical materials development, with limited top-down feed-
back to guide the process. Materials design rests on the twin pillars of process-structure and
structure-property relations. The process of relating properties to performance is effectively a
selection-compromise exercise. For example, the Ashby materials selection charts [1] enable
identification of existing material systems and properties that meet required performance
indices for specified application, which is always an initial step in framing any materials
design problem. This is conventionally done by searching databases for properties or char-
acteristics of responses that best suit a set of specified performance indices [1], often using
combinatorial search methods [10]. At this point, we note that identification of scales of ma-
terial hierarchy are orthogonal to the linear design information flow shown in Fig. 5. Figure 6
presents an example of the hierarchy of computational models that support the predictive de-
sign in the system flowchart of Fig. 4. Acronyms of modeling methods and associated software
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Fig. 6 Hierarchy of model length scales for system of Figure 4, from bottom-up angstroms (interfaces and
lattice faults), nanoscale (coherent precipitates), sub-micron (grain refining dispersoids), microns (phase and
grain boundaries), and tens or hundreds of microns (dendrites, inclusions, grains)

tools appropriate to each scale are shown to the right in each case, while corresponding char-
acterization tools are shown at left (see [9] for details). Clearly, the notion of combinatorial
design whereby an atomic (e.g., crystal) structure would be searched to meet mechanical
property requirements at the scale of hundreds of microns is not particularly useful because
of the influence of the various intermediate scales that affect macroscopic properties. On the
other hand, if for this same hierarchical system it is established that environmental effects on
ductility are limited mainly by the structure of grain boundaries and corresponding fracture
susceptibility to segregation, effects of hydrogen, etc., then that aspect of the design problem



214 D. L. McDowell, G. B. Olson

Fig. 7 Interfacial separation energy as a function of separation distance between interfacial layers in the
semicoherent Fe/TiC system, with application to quantum-engineered steels using the FLAPW [15] plane
wave DFT code

draws attention to detailed simulations of quantum and/or atomistic simulations of these in-
terfaces. As represented by the charge density contour plot for a simulated grain boundary at
the lowest level of Fig. 6, application of the FLAPW density functional total-energy quantum
mechanical code to precise calculation of the relative energies of grain boundaries and their
corresponding fracture surfaces has successfully predicted the relative embrittlement poten-
cies of boundary segregants [11], including environment-induced hydrogen [12], and has
enabled mechanistic prediction of desirable alloying elements for enhanced grain boundary
cohesion [13]. Integration of these predictions with those of the full set of models in Fig. 6
in the design of the full system of Fig. 4 has yielded a new generation of “quantum steels”
that have eliminated intergranular embrittlement [9,14].

Combinatorial searches typically focus on data mining and visualization, and providing
convenient and powerful interfaces for the designer to support materials selection. In problems
involving design of interfaces, nanostructures for catalysis, actuation or sensing, or molecular
structures that serve as effective virus blockers, for example, the function to be delivered is
delivered at the nanostructure scale. A further example of such a problem is the design
of fracture-resistant interfaces at the nanoscale, as demonstrated in Fig. 7 by the variation
of work to separate Fe-TiC interfaces. Application of these methods to the adhesion of
interphase boundaries has aided both the selection of optimal phases for submicron grain
refining dispersions with enhanced resistance to microvoid nucleation during ductile fracture
and the prediction of force-distance laws for input into quantitative fracture simulations as
represented in the middle level of Fig. 6.

For typical cases in which structure at multiple length scales affects properties, as rep-
resented in the examples in Figs. 4–6, it is essential to pursue a systems approach that tar-
gets application of models at various length scales to yield useful information to support
design decisions. Indeed, recent federal initiatives emphasize the interdisciplinary collabo-
ration of materials modeling and simulation, high performance computing, networking, and
information sciences to accelerate the creation of new materials, computing structure and
properties using a bottom-up approach. For example, the NSF vision for Materials Cyber-
Models for Engineering is a computational materials physics and chemistry perspective [16]
on using quantum and molecular modeling tools to explore potentially new materials and
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compounds, making the link to properties. The NSF Blue Ribbon Panel on Simulation Based
Engineering Science [17] issued broad recommendations regarding the need to more fully
integrate modeling and simulation within the curriculum of engineering to tackle a wide
range of interdisciplinary and multiscale/multiphysics problems.

We advocate an approach that embeds material processing/supply, manufacturing, com-
putational materials science, experimental characterization and systems engineering and de-
sign, similar to the conceptualization of Integrated Computational Materials Engineering
(ICME) being pursued by a NAE National Materials Advisory Board study group [18].
ICME is an approach to concurrent design of products and the materials which comprise
them. This is achieved by linking materials models at multiple length and time scales to
address problems relevant to specific products and applications. ICME hearkens back to
Olson’s hierarchical scheme of Figs. 4–5 [9], with the understanding that top-down strate-
gies are essential to supporting goal/means design of materials to meet specific performance
requirements. This was defined over a decade ago for the academic and research communi-
ties at a 1998 NSF-sponsored workshop [19] entitled “New Directions in Materials Design
Science and Engineering (MDS&E)”. That workshop report concluded that a change of cul-
ture is necessary in U.S. universities and industries to cultivate and develop the concepts of
simulation-based design of materials to support integrated design of material and products.
It also forecasted that the 21st century global economy would usher in a revolution of the
materials supply/development industry and realization of true virtual manufacturing capabil-
ities (not just geometric modeling but also realistic material behavior). It was recommended
to establish a national roadmap addressing (i) databases for enabling materials design, (ii)
developing principles of systems design and the prospects for hierarchical materials systems,
and (iii) identifying opportunities and deficiencies in science-based modeling, simulation
and characterization “tools” to support concurrent design of materials and products.

2 What is materials design?

The term may have different meaning to different people and audiences. Our use of the
term materials design (or Materials by DesignT M ) implies the top-down driven, simulation-
supported, decision-based, concurrent design of material hierarchy and product or product
family with a ranged set of performance requirements. In this sense, our definition is more
closely aligned, in general, with the aforementioned comprehensive notion of ICME [18] than
perhaps more narrowly defined bottom-up cyberdiscovery, datamining, or simulation-based
engineering science based on multiscale modeling. In our view, materials design is not just:

• materials selection (although often taught as such)
• computational materials science
• materials informatics, data mining or combinatorics
• multiscale modeling
• an intuitive exercise
• experiential learning applied to new materials and products
• performed by a single group or division
• materials development performed in isolation from product development
• artificial intelligence aiming at eliminating human intervention

The last point is quite important. Modeling and simulation tools provide support for design
decisions but does not replace informed human decision-making in concurrent design of
materials and products.
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2.1 Hierarchy of scales in concurrent design of materials and products

Multiscale modeling contributes in a substantial way to the pursuit of materials design in
many practical cases where different levels of hierarchy of material structure contribute to
targeted ranges of material properties and responses. However, materials design is effectively
a multilevel, multiobjective pareto optimization problem in which ranged sets of solutions
are sought that satisfy ranged sets of performance requirements [20–33]. It does not rely on
the premise of explicit linkage of multiple length scales via numerical or analytical means. In
fact, it is often preferred to introduce rather more elementary, proven model concepts at each
scale than abide the uncertainty of complex, coupled multiscale models for which parameter
identification and validation are difficult [20]. Identification of sub-systems in the material
hierarchy with weak coupling to responses of other sub-systems is an important step [29], as
these sub-systems can be analyzed and optimized independently. Recent efforts within the
Systems Realization Laboratory at Georgia Tech [21–23] have cast such design problems in
terms of robust multilevel decision-based design. Multiscale modeling typically refers to a
means of linking models with different degrees of freedom either within overlapping spatial
and temporal domains or in adjacent domains.

Models at multiple scales can be executed concurrently or sequentially, with the former
necessitating full coupling among scales and the latter only a one way coupling from the
bottom-up. Examples of bottom-up modeling include multiresolution or overlapping domain
decomposition approaches for passing from discrete to continuous models such as a
dynamically equivalent continuum [34,35] informed by atomistics, coarse-grained molec-
ular dynamics [36–38], and domain decomposition methods [39–41] that exchange lower fre-
quency dynamic response between atomistic and coarse-grained MD or continuum
domains.

Self-consistent schemes constitute another approach for multiscale homogenization.
Bottom-up methods such as methods of Eshelby-Kröner type [42–44] are mainly focused on
embedding effects of fine scale microstructure on higher length scale response at the scale
of a representative volume element. For evolution of microstructure, the principle of virtual
work has been generalized to incorporate rearrangement of microstructure as part of the
kinematic structure [45–47]. Some authors have introduced concurrent multiscale schemes
based either on finite element analyses that pass boundary conditions among meshes at vari-
ous scales with different resolution and constitutive equations [48], or deformation gradient
averaging approaches with higher order conjugate (e.g., couple) microstresses or micropolar
formulations [49–51].

Statistical continuum theories have been framed at different scales, including dislocation
field mechanics [52–54], internal state variable models [55,56], nonlocal reaction-diffusion
models [57,58], and transition state theory models that employ kinetic Monte Carlo methods
[59,60].

Often, these models involve statistical description of evolving microstructure at finer
scales, based on “handshaking” methods for informing continuum models from high resolu-
tion models or experiments. These handshaking methods can range from intuitive formulation
of constitutive equations to estimates of model parameters in coarse grain models based on
high resolution simulations (e.g., atomistics or discrete dislocation theory) to development of
metamodels or response surface models that reflect material behavior over some parametric
range of microstructure and responses. An example of a combined bottom-up homogeniza-
tion and handshaking among scales is found in work of McDowell and colleagues [61–63]
on multiscale models for cyclic behavior of Ni-base superalloys. In these models, dislocation
density evolution equations are formulated at the scale of either precipitates or homogenized
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Shearing

Looping

Fig. 8 Hierarchical multiscale models for γ − γ ′ Ni-base superalloys [62,63], with handshaking from fine
scale mechanisms to inform grain level responses, which are then subjected to random periodic boundary
conditions to achieve description of macroscopic response at the scale of structural components

grains, which are then calibrated with experimental elastic stiffness and stress-strain data on
single crystals and polycrystals. Figure 8 shows how such polycrystalline models are then
used for purposes of both simulating stress-strain behavior for complex loading histories as
well as distribution of slip among grains in a polycrystal to establish potency for nucleating
and growing small fatigue cracks.

Another good example of a hierarchical multiscale model that involves a combination of
handshaking between constitutive models at different scales, some of which are calibrated to
experiments and others of purely predictive character, is the ‘multiscale fracture simulator’
developed by Hao and colleagues [64]. Figure 9 shows a progression of length scales con-
sidered in a multiscale modeling strategy for designing fracture resistant materials. In this
way, material structure at various levels of hierarchy can be tailored to contribute to enhanced
resistance to shear localization at the higher length scales. This kind of one-way hierarchical
approach can be quite useful for purposes of materials design, whereas concurrent methods
offer utility in modeling the interplay of microstructure rearrangement and structural response
in applications. In contrast to the usual premise of materials selection based on properties,
one nuance of Fig. 9 is that the resulting “properties” at the macroscale are more complex
than captured by single parameter descriptions such as fracture toughness, strength, ductility,
etc.

It is important to point out that there is considerable uncertainty in any kind of multiscale
modeling scheme, including selection of specific scales of hierarchy, approximations made
in separating length and time scales in models used, model uncertainty at various scales, ap-
proximations made in various scale transition methods, and lack of complete characterization
of initial conditions and process history effects. Moreover, material microstructure typically
has random character, leading to stochastic process-structure and structure-property relations.
Accordingly, stochastic models and methods for scale transitions (statistical mechanics) are
often necessary to indicate expected ranges of structure and properties in spite of a dominant
focus on deterministic methods. These sources of uncertainty give rise to the need to consider
sensitivity of properties and responses of interest to variation of microstructure at various
scales.
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Fig. 9 Multiscale fracture simulation of an alloy system, with first principles computation to quantify
separation energy of interfaces, which informs continuum separation laws for Fe matrix and secondary
particles at scales of hundreds of nm that are incorporated into porosity-dependent constitutive laws at scales
of primary particles (mm), and at the scale of structural stress raisers such as notches [64]

Olson’s hierarchy in Figs. 4–5 should not be confused with multiscale modeling strategies.
It has much more comprehensive nature, embedding multiscale modeling as part of the suite
of modeling and simulation tools that provide decision-support in design. For example,
structure-property relations can involve the full gamut of length and time scales, as can
process-structure relations. In other words, the levels in Olson’s linear design strategy of
Fig. 5 do not map uniquely to levels of material hierarchy. Even concurrent multiscale models
which attempt to simultaneously execute models at different levels of resolution or fidelity
do not serve the full purpose of top-down materials design. Materials design and multiscale
modeling are not equivalent pursuits. This distinction is important because it means that
notions of cyberdiscovery of new or improved materials must emphasize not only modeling
and simulation tools but also systems design strategies for using simulations to support
decision-based concurrent design of materials and products.

Figure 10 conceptualizes how already established methods of design-for-manufacture of
parts, sub-assemblies, assemblies and overall systems may be extended to address the multi-
ple length and time scales of material structure and responses that govern process-property-
performance relations. The objective of tailoring the material to specific applications (to the
left of the vertical bar in Fig. 10) is distinct from traditional materials selection. The basic
challenges revolve around the fact that hierarchical modeling of materials is still in its in-
fancy, and systems-based design methods have not been widely applied to the region left of
the vertical bar in Fig. 10. From a reductionist, bottom-up perspective, many would regard the
hierarchy of scales from quantum to continuum on the left in Fig. 10 as a multiscale modeling
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Fig. 10 Hierarchy of levels from atomic scale to system level in concurrent materials and product design.
Existing systems design methods focus on levels to the right of the vertical bar, addressing mainly the materials
selection problem, only one component in multilevel materials design

problem. The materials design challenge is to develop methods that employ bottom-up mod-
eling and simulation, calibrated and validated by characterization and measurement to the
extent possible, facilitated by top-down, requirements-driven exploration of the hierarchy of
material length scales shown in Fig. 10. Moreover, aforementioned sources of uncertainty
require more sophistication than offered by naïve optimization of limited objectives at either
individual levels of hierarchy or at the systems level. Principles of multiobjective design op-
timization that recognize the need for ranged sets of performance requirements and ranged
sets of potentially acceptable solutions are essential. It is a challenging multilevel robust
design problem.

Figure 11 provides a path for materials design, whereby the structure of Fig. 5 is decom-
posed as a set of multilevel mappings (Process-Structure (PS) relations, Structure-Property
(SP) relations, and Property-Performance (PP) relations) [65]. These mappings (represented
by arrows) can consist of models, characterization and experiments, or some combination.
Lateral movement at each level of hierarchy is associated with reducing model degrees of
freedom, for example through multiscale material modeling shown in Fig. 9. It is also noted
that the shaded red area at the upper right in Fig. 11 represents the materials selection problem,
which occurs at just one or two levels of hierarchy; it involves selection based on tabulated
data from models or experiments, and may be approached using informatics, e.g., data min-
ing, combinatorics, and so forth [1,10,16]. In Fig. 11, each arrow can also be accompanied
by a design decision.

2.2 Goals of materials design

Numerous applications can benefit from strategies of concurrent design of materials and prod-
ucts. It is important to be realistic about goals for leveraging modeling and simulation into
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Fig. 11 Hierarchy of mappings in multi-level materials design

design decision-making. Traditional empirical design of materials has made use of extensive
experience in material processing methods for a limited range of material compositions.
Property goals have been achieved by adjusting compositions and process route in a rather
incremental fashion. As this has been the dominant method for many years, it has imparted
a sort of artificial notion that alloy development is a mature technology, and that there is not
much to be gained by devoting further attention to property enhancement. In other words,
the limitations of the material development cycle, combined with a focus on materials selec-
tion for “characteristic” properties of classes of materials, have led to conventional wisdom
regarding limits on properties of multicomponent alloy systems.

The prospect of systems-based concurrent design of materials and products provides
impetus for breaking through these limitations and preconceived notions. We will describe
examples of such breakthroughs in a later section. In addition to enhanced performance, there
are other important issues that can be addressed by simulation-assisted materials design.
These relate to accelerating the materials discovery and development process and considera-
tion of applications in which materials must meet multifunctional performance requirements,
among others.

• To what degree can empiricism be replaced by information from simulations? How can
we track the fraction of design decisions informed by modeling and simulation? If it is
presently only 10%, can it be increased to 15%? 30%? Significant time and cost savings
could result.

• To what extent can phenomena in different physical domains (mechanical, thermal, chem-
ical, etc.) be considered simultaneously rather than sequentially? How does this affect
constraints on design problems?

By definition, a multifunctional material is one for which performance dictates multiple
property or response requirements. Often these properties conflict in terms of microstructure
requirements, for example the classical trade-off of strength and ducility. By setting property
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targets in multiobjective design rather than constraint allowables on minimum properties,
systems design offers a means for pushing boundaries. This is also the case for multifunctional
materials with property requirements in different physical domains, for example conductivity,
oxidation resistance, tensile strength, elastic stiffness, and fatigue resistance in gas turbine
engine disk or blade materials. Multiple property goals cannot be met by optimizing individual
models at different levels of hierarchy in Fig. 9, for example, but only by considering the
entire hierarchy of scales. Material systems have high complexity; optimizing relational
subsets within complex, nonlinear, coupled systems does not assure optimization of the
overall system. Hence, a systems approach is essential.

3 Some aspects of systems approaches for materials design

3.1 Role of thermodynamics

The essential elements of modeling and simulation invariably fall into one of three categories:
(i) thermodynamics, (ii) kinetics, and (iii) kinematics. Since feasible (realizable) structures
of materials are established by either absolute or (more commonly) constrained minimization
of thermodynamic free energy, we regard thermodynamics as the fundamental building block
for simulation-supported materials design. Thermodynamics provides information on stable
and metastable phases, characterization of structures and energies of interfaces, and driving
forces (transition states) for rearrangement of structure due to thermally activated processes.
As such, it facilitates preliminary design exploration for candidate solutions to coupled ma-
terial and product design. First principles calculations are indispensible in this regard, and
support exploration of multicomponent systems for which little if any empirical understand-
ing has been established. More important than the calculation of constrained equilibria,
thermodynamics defines the forces driving the kinetics of systems far from equilibrium.

Kinetics plays an important role as a further step in screening candidate solutions in
preliminary design exploration. For example, stability of phases and interfaces at finite tem-
perature in operating environments requires assessment prior to expensive investment in ex-
tensive computation and/or experimental characterization of candidate solutions. Moreover,
upper bounds can sometimes be estimated on potential properties using thermodynamics, but
kinetics dictates feasibility of the transition state pathways required for structure-property
relations. Kinetics is often a stumbling block from a modeling perspective as methods for
predicting mobilities are not fully developed. Currently, mobility databases compiled from
empirical diffusivity data have proved to be quite accurate in the prediction of diffusion-based
kinetics in metals.

Kinematics relates to the relative contributions of different attributes (defects, phases)
of microstructure in contributing to overall rearrangement during deformation and failure.
Kinematics can be approached both at the unit process level (individual defect or boundary
segments) or from the many-body level; the latter is necessary at higher stages of hierarchy
shown in Fig. 9, for example.

3.2 Challenges for top-down, inductive design

As previously mentioned, although design is necessarily a top-down exercise, material
process-structure and structure-property relations are intrinsically bottom-up in character.
In fact, elements of thermodynamics, kinetics and kinematics are built up from the unit
process level. There are limited examples for which it is possible to comprehensively invert
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structure-property relations; the groups of Adams [66–68] and Kalidindi [69–71] have tackled
the problem of finding crystallographic textures that deliver certain requirements on macro-
scopic anisotropic elastic stiffness of structures. To first order, this depends only on the
orientation distribution function of polycrystals. Adams et al. [66–68] have introduced the
notion of property closures, prominent in composites material structure-property relations,
which bound the set of feasible properties that can be achieved by available microstructures.
Zabaras and co-workers have developed a reduced order polycrystal plasticity model for such
purposes [72], as well as approaches for dealing with estimation of PDFs for properties from
microstructure ensemble calculations [73]. The assessment of the necessary process path to
achieve target textures is another matter, requiring bottom-up simulation [74], in general.
Lack of invertibility of process-structure and structure-property relations in modeling and
simulation is typical, engendered by:

• Nonlinear, nonequilibrium path dependent behavior, limiting parametric study and impart-
ing dependence upon initial conditions.

• Dynamic to thermodynamic model transitions in multiscale modeling, with non-
uniqueness associated with reduction of model degrees of freedom.

• Wide range of suboptimal solutions that can be pursued.
• Approximations made in digital microstructure representation of material structure.
• Dependence of certain properties such as ducility, fracture toughness, fatigue strength, etc.

on extreme value distributions of microstructure.
• Microstructure metastability and long term evolution.
• Uncertainty of microstructure, models, and model parameters.
• Lack and variability of experimental data.

3.3 Uncertainty in materials design

Uncertainty dominates the process of simulation-supported materials design. There are var-
ious sources of uncertainty, including [24]:

• Parameterizable (errors induced by processing, operating conditions, etc.) and unparame-
terizable (e.g., random microstructure) natural variability

• Incomplete knowledge of model parameters due to insufficient or inaccurate data
• Uncertain structure of a model due to insufficient knowledge (approximations and simpli-

fications) about a system.
• Propagation of natural and model uncertainty through a chain of models.

Ultimately, design is a decision-making process, whether we are designing materials,
systems, or both in concurrent fashion. As in manufacturing process design, the notion of
robust design [27] appears to be central to any reasonable approach. Designs must be robust
against variation of initial microstructure, variation of usage factors and history, variation of
design goals, and various forms of uncertainty listed above, including the models, tools, and
methods used to design. This includes issues such as the distribution of the design effort,
level of expertise and knowledge of modelers and designers, and other human factors such
as degree of interaction and information-sharing in the design process. There are important
practical implications, namely that robust solutions do not necessarily involve large numbers
of iterations, are not focused on excessive optimization searches at individual levels, and
involve the human being as an interpreter of value of information. This means that ranged
sets of solutions, rather than point solutions, are of practical interest. It also means that system
performance requirements should be specified as ranges rather than single values. Moreover,
systems performance should be specified rather than property requirements; in other words,
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Fig. 12 Compromise Decision Support Problem (cDSP) formulation for multi-objective design, with devia-
tions from multiple goals minimized within constraints [25]

ranged sets of multiple properties can usually satisfy ranged sets of performance requirements,
expanding the potential range of acceptable materials solutions.

A practical approach is to quantify the uncertainty to the extent possible and then seek
robust solutions that are less sensitive to variation of microstructure and various other sources
of uncertainty. To this end, the compromise Decision Support Problem (cDSP) protocol [25]
has been introduced, shown in Fig. 12, as the primary decision support tool. It is based on goal
programming rather than standard linear programming, and is a result of negotiation between
multiple designers and analysts regarding assignment of goals, constraints and bounds. In
the cDSP, multiple design objectives are set as targets, with deviations from these goals
minimized subject to user preferences to select from among a family of solutions, subject to
a set of constraints (cf. [25,26]).

For multiple design objectives, robustness establishes preference among candidate
solutions [25–27]; we seek solutions with less sensitivity to variation of noise and con-
trol parameters. In addition, we seek designs that are robust against variability associated
with process route and initial microstructure, forcing functions, cost factors, design goals,
etc. Collaborative efforts at Georgia Tech have yielded new methods to deal with uncertainty
due to microstructure variability and models [20,28] as well as chained sequences of models
in a multi-level (multiscale) context [29].

There are several categories of robust design that deal with different types of uncertainty.
Type I robust design, originally proposed by Taguchi [27], focuses on achieving insensitivity
of performance with respect to noise factors—parameters that designers cannot control in a
system. Type II robust design relates to insensitivity of a design to variability or uncertainty
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Fig. 13 Illustration of Types I and II robust design solutions relative to optimal solution based on extremum
of objective function. Type III robust design minimizes deviation (dashed line) of the objective function from
the flat region associated with model and microstructure uncertainty [20,28]

associated with design variables—parameters that a designer can control in a system.
A method for Types I and II robust design has been proposed, namely the Robust Con-
cept Exploration Method [26]. These types of robust design have recently been extended to
include Type III [20], which considers sensitivity to uncertainty embedded within a model
(i.e., model parameter/structure uncertainty). Figure 13 clarifies the application of Types I-III
robust design, showing that while application of traditional Types I-II robust design meth-
ods seek solutions that are insensitive to variations in control or noise parameters, Type III
robust design additionally seeks solutions that have minimum distance between upper and
lower uncertainty bounds on the response function(s) of interest associated with material
randomness and model structure/parameter uncertainty. These bounds are determined from
the statistics obtained from application of models over a parametric range of feasible mi-
crostructures and process conditions relevant to the simulations necessary to support design
decisions (cf. [20,28]).

This notion of goal programming to identify candidate ranged solutions must be couched
in the context of a top-down strategy in the design system of Fig. 5. An iterative approach
is essential for bottom-up information flow (simulations, experiments), combined with top-
down guidance from applications and associated performance requirements. To this end, there
are opportunities for developing efficient strategies for design exploration. Choi et al. [20,
22] have developed an approach called the Inductive Design Exploration Method (IDEM),
schematically shown in Fig. 14. IDEM has two major objectives: (i) to explore top-down,
requirements-driven design, guiding bottom-up modeling and simulation, and (ii) to man-
age uncertainty propagation in model chains. As illustrated in Fig.14, IDEM requires initial
configuration of the design process. An example of initial configuration of the design sys-
tem is shown at a high level in Fig. 4 for a steel design problem. Implementation of IDEM
necessitates identifying the connections of inputs and outputs of models, simulations, ex-
periments, and databases, and insertion of decision-compromise such that a complete graph
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Fig. 14 Schematic of Steps 1 and 2 in IDEM. Step 1 involves bottom-up simulations or experiments, typically
conducted in parallel fashion, to map composition into structure and then into properties, with regions in yellow
showing the feasible ranged sets of points from these mappings. Step 2 involves top-down evaluation of points
from the ranged set of specified performance requirements that overlap feasible regions established by bottom-
up simulations in Step 1

of information flow is achieved. This configuration of information flow and decision points
(the “design process”) is reconfigurable and therefore constitutes an important element of
the design itself. If certain models have greater certainty, they can be more heavily weighted.
Quality experimental information can be factored in as desired. It is essentially an instantiation
of the balanced decision-making process that has been employed in design for many years,
biased towards quality information and insights. The difference is that it remains open to in-
put regarding regimes of structure or behavior for which little prior empirical understanding
is available, and can be reconfigured as necessary to adapt to new insight or opportunities.
Step 1 in Fig. 14 is very important; it involves the pursuit of modeling and simulation to
map potential process-structure and structure property relations over a sufficiently broad
parametric range of compositions, initial structures, process-structure and structure-property
assessments. It involves evaluation of discrete points at each level of hierarchy correspond-
ing to the various mappings in Figs. 4 and 11, and is amenable to massive parallelization of
simulations and database mining since each of these can be mapped independently without
regard to a specific design scenario. In step 2, the results of the step 1 are inverted to induc-
tively explore the feasible design spaces of properties, structure, and compositions, working
backwards from ranged sets of performance requirements. After step 2, we obtain robust
ranged solutions that include consideration of model uncertainty.

Applications of Types I-III robust design methods described above to design of extruded
prismatic metals for multifunctional structural and thermal applications [30–32] and design
of multiphase thermite metal-oxide mixtures for target reaction initiation probability under
shock compression have been described elsewhere [20,28], further summarized by McDowell
[65]. We will discuss examples related to design of high strength, high toughness steels in
Section 4.

3.4 Microstructure-mediated design

In practice, the duration and number of iterative cycles, mix of computation and experiments,
and time frame of process-structure relations in materials development do not match those
of structure-property relations. Moreover, product design is often conducted with systems
level considerations by distinct groups separated by a “fence” (bold dashed line to the right in
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Fig. 15 Typical time scale and organizational separation of materials development and materials selection
components of the materials design system of Fig. 5

Fig. 15), employing materials selection. As such, the property requirements may be specified
but there is a lack of integration of the degrees of freedom of material structure into the
overall systems design problem. In addition, the cooperative materials development process
between materials suppliers and OEMs typically involves substantially different timeframes
for materials processing and structure-property relations, often carried out in different orga-
nizations. In analogy to multiscale modeling, both time (cycle duration for processing and
certification experiments) and length (organizational distribution) scales serve as limiting
factors in coordinating the design process.

This is essentially just a somewhat more detailed decomposition of the issues addressed
by the AIM program discussed in the Introduction. On the other hand, the approach suggested
here is to effectively remove the bold dashed line to the right in Fig. 15, effectively integrat-
ing structure-property relations with materials selection by coupling computational materials
simulation with the systems product design process. If this is realized, then the dashed line
is moved to the left between the materials suppliers and the OEMs. The mediatory “lan-
guage” for communicating design variables then becomes the material structure. The focus for
accelerating the insertion of new and improved materials into products then is on balancing
the timeframe for materials processing with the structure-properties-performance hierarchy;
the latter is closely integrated, while the former must consider details of microstructure as the
targets of processing rather than just properties. Within the ICME rubric, there is evidence
that this is happening in OEMs [18]. As stated in the report of the 1998 MDS&E work-
shop [19], “The field of materials design is entrepreneurial in nature, similar to such areas
as microelectronic devices or software. MDS&E may very well spawn a “cottage industry”
specializing in tailoring materials for function, depending on how responsive large supplier
industries can be to this demand. In fact, this is already underway.”

4 Applications of materials design

The challenge is to extend these kinds of concurrent material and product systems design
concepts to tailor microstructures that deliver required performance requirements in a wide
range of problems, for example:

• Phase morphologies, precipitate/dispersoid distributions, texture, and grain boundary net-
works in alloy systems for multifunctional performance in terms of strength, ductility,
fracture, fatigue, corrosion resistance, etc.

• Process path and in-service evolution of microstructure (e.g. plasticity, phase transforma-
tion, diffusion, etc.).



Concurrent design of hierarchical materials and structures 227

• Resistance to or preference for shear banding.
• Formable materials that employ transformation- or twinning-induced plasticity.
• Fine and coarse scale porosity control in castings.
• Surface treatment, heat treatment, and residual stresses in alloys with primary inclusions.

The foregoing systems engineering concepts have ushered in a first generation of designer
“cyberalloys” [14,75,76]; these cyberalloys have now entered successful commercial appli-
cations, and a new enterprise of commercial materials design services has steadily grown
over the past decade.

4.1 High strength and toughness steels

Building on the design methodology demonstrated at Northwestern University [9], QuesTek
Innovations LLC (Evanston, IL) has integrated modeling of process-structure-property-
performance relations in several major design programs for over a decade, with emphasis on
proprietary high performance alloys suited to advanced gears and bearings and stainless steels
for landing gear applications. Returning to the steel design example in Fig. 4, as explained
by Olson [9], the objective was to develop martensitic steels with combinations of strength,
toughness and stress corrosion resistance that would allow a major advance in the useable
strength level of structural steels, beyond the levels that could be achieved by empirical
alloy development over the same timeframe. Pursuant to a materials design approach to
this problem, basic science modeling tools (Fig. 6) such as quantum mechanics and contin-
uum micromechanics were used to facilitate the evaluation and analysis of microstructure
‘subsystems’ that relate to interface strength and the effects of strain-induced phase trans-
formations. Certain subsystems control strength and others control toughness, for example.
Diffusionless martensitic transformations occur at a length scale on the order of microm-
eters. To refine alloy carbide precipitate size at the nanometer scale, characterization tools
such as x-ray diffraction, small-angle neutron scattering, atom-probe field-ion microscopy
and analytical electron microscopy were combined with elastic energy calculations from
continuum mechanics along with thermochemical software and related database to compute
interfacial energies. Enhancing control of particle size facilitated development of efficient
strengthening dispersions, leading to 50% increase in strength at a given alloy carbon content.
Toughness subsystems of material architecture are dominated by yet another characteristic
length scale; continuum mechanics analyses can be performed for ductile fracture associated
with microvoid formation and growth at the interfaces on the order of 100 nanometers; these
particles are introduced to decrease grain size in order to inhibit competing brittle fracture
mechanism (cf. Fig. 9). The measured fracture energy and strain localization in shear are
used to validate the results of the models. Finally, embrittlement resistance subsystems that
govern environmental cracking are manifested at atomic scales of 0.1 nm through the effects
of environmental hydrogen and the prior segregation of embrittling impurities, acting in con-
cert to produce intergranular fracture. As described earlier, quantum mechanical calculations
were employed to predict the segregation energy difference necessary to evaluate embrit-
tlement potency. These quantum-based tools enabled designs in which grain boundaries are
doped to attain desired electronic structures to enhance intrinsic cohesion and alter impurity
interactions demonstrating significant improvements of environmental resistance.

Key concepts enabling early development of a design strategy for available computational
tools were (a) subsystem “decoupling” as advocated in the general axiomatic design approach
of Suh [77], and (b) establishing a “parametric” design approach where desired behaviors
could be effectively mapped to predictable independent fundamental parameters. Panchal
[21,29] discusses the desirability of decoupling sub-systems to the greatest extent possible,
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Fig. 16 Compromise of mechanisms of resistance to dislocation bypass via particle shearing and looping for
coherent nm-scale precipitates [78]

as dictated by model utility in decision-making. An example of the decoupling is given by the
experimentally calibrated analysis of the size dependence of coherent precipitation strength-
ening in Fig. 16 [78]. Here the identified optimum particle size, corresponding to the dislo-
cation shear-bypass transition, gives a quantitative size goal for maximizing strengthening
efficiency, evaluated independently of the requirements of other microstructure subsystems.
Parametric control to refine particle size to this optimum is achieved by choosing to operate
in a high supersaturation precipitation regime corresponding to a nucleation and coarsening
behavior for which the trajectory of precipitation is well described by an evolving unsta-
ble equilibrium. This in turn enables a space-time separation in which the time constant of
precipitation can be independently controlled by an extension of classical coarsening the-
ory to multicomponent systems, while particle size is controlled through the thermodynamic
driving force for coherent precipitation. Employing the science foundation described in [8,9],
similar strategies were devised to exert independent parametric control of the subsystems of
Fig. 4, following a mapping very similar to the schema of Fig. 11 [79]. The strongest nonlin-
ear interactions between subsystems arise from multicomponent solution thermodynamics,
which is well described by computational thermodynamics. Computational thermodynamics
has thus served as the primary system integration tool for this efficient parametric approach
to materials design. Using the same tools for a deterministic sensitivity analysis, the design
output consists of a specified chemical composition and set of processing temperatures with
allowable tolerances for each.

The first demonstration of this parametric design approach yielded a high performance
stainless bearing steel for a very specific space shuttle application [80]. This was soon fol-
lowed by a family of high performance carburizing steels [81,82], which has been successfully
commercialized by QuesTek [75]. Exploratory design research has tested the generality of
the design approach, demonstrating feasibility in case-hardenable polymers [83], hydrate
cements [84], and oxidation resistant high temperature niobium-based alloys [85].

Following the iterative process of Fig. 3 (right), parametric design has typically achieved
fairly ambitious property objectives within three iterations, employing as few as one ex-
perimental prototype per iteration. With steadily improving accuracy of design models and
their supporting fundamental databases, an important milestone has been the demonstration
of a successful design within a single iteration of prototyping. Described in detail else-
where [86,87], a weldable high strength plate steel for naval blast protection applications
was designed to maintain the impact toughness of the Navy’s current HSLA 100 steel out to
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Fig. 17 Enhancement of Charpy impact energy absorption [87]

significantly higher strength levels. Adopting a tight carbon limit to promote high weldability,
highly efficient strengthening was designed through a combination of copper precipitation
and optimized alloy carbide precipitation. Superposition of active transformation toughen-
ing was achieved through designed precipitation of an optimal stability austenite dispersion
nucleated on the copper dispersion using a two-step tempering treatment to balance particle
size and composition. Process optimization and microstructural characterization of a sin-
gle 66 kg slab cast prototype demonstrated the remarkable toughness-strength combination
labeled “Blastalloy 160” shown in Fig. 17. High resolution microanalysis confirmed that the
predicted strengthening and toughening dispersions were achieved, including the desired
optimal austenite composition [87]. Continued development of variants of this steel by
QuesTek has already demonstrated exceptional ballistic performance for fragment protection.

4.2 Integrating advances in 3D characterization and modeling tools

The success of computational materials design established the basis for the previously
described DARPA-AIM initiative which broadened computational materials engineering
to address acceleration of the full materials development and certification cycle. The cen-
tral microstructural simulation engine of the AIM methodology is the PrecipiCalc code [3]
developed under QuesTek-Northwestern collaboration, integrating precise calibration via
high-resolution microanalysis. Employing the data fusion strategy for probabilistic model-
ing summarized in Fig. 1, the first demonstration of the AIM method in qualifying a new alloy
is the just-completed specification of QuesTek’s Ferrium S53 (AMS5922) corrosion-resistant
steel for aircraft landing gear applications [76]. The project demonstrated both successful
anticipation of process scaleup behavior, and employed data from 3 production-scale heats
to fine tune processing in order to meet specified minimum design allowable properties,
subsequently validated at the 10 production heat level.

An NMAB study [2] has documented the success of the DARPA-AIM program, high-
lighting the role of small technology startup companies in enabling this technology, and
summarizing the commercial computational tools and supporting databases currently avail-
able. While the methods and tools of parametric materials design are now well established and
undergoing wide application under QuesTek’s commercial design services, the broadening
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Fig. 18 Hierarchical material levels and tools for modeling (labels to right) and characterization (labels to
left)

application of computational materials engineering in the materials-aware manufacturing
context of both AIM accelerated qualification and ICME concurrent engineering practices
drives the demand for even higher fidelity integrated simulation and characterization tools. A
new level of science-based modeling accuracy is now being achieved under the ONR/DARPA
“D3D” Digital Structure consortium. A suite of advanced 3D tomographic characterization
tools are used to calibrate and validate a set of high fidelity explicit 3D microstructure simu-
lation tools spanning the hierarchy of microstructure scales. Figure 18 provides an overview
of the QuesTek-led university consortium component of the D3D program, supporting design
of fatigue and fracture resistant high strength steels. This program is integrated with other
aspects of D3D, including visualization systems, statistical analysis of distributed microstruc-
ture, integration of an archival 3D microstructure “atlas” at the Naval Research Laboratory,
and ultimate iSIGHT-based integration of the full toolset in both computational materials
design and AIM qualification. As examples, Fig. 19 shows how both multi-micron inclusions
and submicron scale carbides that affect microvoid nucleation and growth can be charac-
terized via microtomography for purposes of supporting multiscale strain localization and
fracture models as shown in Fig. 9. Three-dimensional LEAP tomography (atom probe)
shown at right in Fig. 19 renders quantitative information regarding the size and distribution
of nanoscale dispersed carbides and precipitates, a key element in designing alloys for maxi-
mum strength. Figures 20 and 21 respectively show the 3D multiscale modeling strategies to
account for effects of realistic distributions of submicron scale carbides on shear localization,
and the potency of primary nonmetallic inclusions with respect to nucleation of cracks in
high cycle fatigue, including effects of process history (carburization and shot peening) on
shifting the critical location for nucleation to the subsurface.
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Fig. 19 Focused Ion Beam tomographic 3D reconstruction (left) of primary inclusion and submicron carbide
distribution in modified 4330 steel, and (right) 3D Local Electrode Atom Probe tomography identifying a 3 nm
strengthening carbide in the Ferrium S53 steel

Fig. 20 Multiscale models for enhancement of 3D shear localization associated with voids nucleated at micron
scale carbide particle dispersions in martensitic gear steels, offering substantial improvement compared to
previous continuum models based on porous plasticity

5 Educational imperatives for materials design

Clearly, the concept of top-down systems-based robust materials design is an engineering
exercise with several key characteristics:

• Strong role of materials simulation.
• Strong role of engineering systems design.
• Integration of multiple disciplines (materials science, applied mechanics, chemistry,

physics, etc.).
• Drawing on science to support physically-based models, characterization of hierarchical

materials, and bottom-up modeling.
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Fig. 21 Methodology for 3D modeling fatigue crack nucleation potency for clusters of nonmetallic inclusions
in gear steels subjected to carburization and shot peening

An important issue relates to the need for integration of engineering design with the various
other elements of simulation-assisted materials design. The report of the 1998 NSF MDS&E
workshop [19] stated that “The systems integration that is necessary to conduct materials
design must be recognized as part of the materials education enterprise. This has not gener-
ally been the case.” This remains true to a large extent, in spite of fairly widespread materials
design courses offered in undergraduate curricula in materials science in the United States.
However, the necessary change of culture in US universities noted in that 1998 MDS&E
workshop report is underway as more emphasis is being placed on related initiatives such as
AIM and ICME. It is likely necessary for capstone courses in larger engineering disciplines
such as mechanical and civil engineering to address elements of materials design in collab-
oration with MSE departments to inculcate many of the philosophies and insights expressed
in this paper. Moreover, focused investigator grants for undergraduate and graduate program
development to provide support for formulating systems-based materials science and engi-
neering design curricula would likely accelerate this process. An attractive feature of this
kind of systematic approach to materials design is that it can be applied to intriguing problem
sets that excite undergraduate students and are relevant to real product needs, providing a
creative, entrepreneurial product design environment based on modeling and simulation in
addition to intuitive creativity.

Building on the parametric materials design approach developed by Northwestern’s Steel
Research Group, an upper level undergraduate materials design course has been taught at
Northwestern since 1989 [88]. Given the challenge to undergraduates of the technical level
of materials design, it has been found essential to implement a hierarchical coaching system
[89] enabled by drawing projects from funded graduate research. As summarized by the array
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Fig. 22 Examples of design
projects in undergraduate
materials design course at
Northwestern University

MSc390 Materials Design
Spring 2008

Design Projects

I. Civil Shield 1: AusTRIP-120
(EDC)
Client: ONR, DHS, USG
Advisor: Padmanava Sadhukhan

IV. Stentalloy 2000: HP-SMA
(EDC)
Client: Medtronic, GM
Advisor: Matt Bender

III. Ti120: Marine Titanium
Client: ONR, GM
Advisor: Jamie Tran

V. Flying FrankenSteel UAV:
Biomimetic Self-Healing
Mg Composite
Client: Honeywell, NASA, DOE
Advisor: Dr. Dennis Zhang

VI. SuperBubble: HP Gum
(EDC)
Client: QuesTek
Advisor: Les Morgret

II. Civil Shield 2: MarTRIP-130
(EDC)
Client: ONR, DHS, USG
Advisor: Stephanie Chan,

Dr. Felix Latourte

of projects listed in Fig. 22, each project is coached by a graduate student or post-doctoral
researcher actively engaged in the multiyear iterative design of a material system.

Student teams are given access to the latest data and refined models to experience design
integration in the latest iteration of a real design project, with the coaching support to operate
at a high technical level. The technically ambitious projects listed span a range from next
generation blast protection steels, high-performance low-cost titanium alloys, high-strength
fatigue-resistant shape memory alloys, self-healing metallic composites, to high-performance
bubble gum.

The design projects undertaken by materials majors are now being coordinated with engi-
neering schoolwide interdisciplinary design project courses ranging from the freshman [90]
to senior [91,92] levels. Building on the hierarchical coaching model, these undergraduate
initiatives are enabling an integration of separately funded graduate research in different dis-
ciplines while allowing undergraduates to participate in the frontier of concurrent design of
materials and structures. The “Civil Shield” projects listed in Fig. 22 integrate ONR-supported
research in materials science and mechanical engineering on both materials and structures
for blast protection. The undergraduate teams in multiple courses explore civilian appli-
cations of this integrated technology for anti-terrorism bomb mitigation [91]. Through the
undergraduate-driven collaboration, blast simulations of novel panel structures have defined
entirely new property objectives motivating new directions in materials design. Under in-
dustry gift support, demonstrated biomimetic self-healing behavior [93] motivated in part
by protein transformation phenomena [94] is being integrated by mechanical engineering
students in the design of self-repairing wingspars of unmanned aerial vehicles in the “Flying
FrankenSteel UAV” project of Fig. 22, also defining new objectives for design of Mg-matrix
self-healing composites. Having demonstrated a new generation of high strength shape mem-
ory alloys [78,95], undergraduates are now integrating projected property capabilities in the
design of medical devices such as self-expanding endovascular stents.

6 Future prospects

Systems engineering approaches for concurrent design of hierarchical materials and structures
are made feasible by the confluence of several fields:

• Computational materials science and ubiquitous computing.
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• Advances in high resolution materials characterization and in situ measurements.
• Advances in micromechanics of materials.
• Information Technology (information theory, databases, digital interfaces, web protocols).
• Decision theory (game theory, utility theory, goal programming).

In addition to concurrent design of material and component/structure to meet specified per-
formance requirements, there are other important capabilities that accrue to this technology,
including but not limited to:

• Prioritizing models and computational methods in terms of measures of utility in supporting
design decisions.

• Prioritizing mechanisms and materials science phenomena to be modeled for a given design
problem.

• Conducting feasibility studies to establish probable return on investment of candidate new
material systems.

In materials design problems, one often finds that models are either nonexistent or
insufficiently developed to support decision-making. This includes both models for process-
structure relations and 3D microstructure, as well as associated 3D models for structure-
property relations. Of particular need is the coordination of model respositories for rapid
availability to design search. A complicating factor that is rarely addressed is the quantifi-
cation of uncertainty of model parameters and structure that is necessary in robust design
of materials. Another very important consideration is that mechanistic models are often the
limiting factor in applying decision-based design frameworks; however, guidance is required
to decide how to best invest in model development that will maximize payoff or utility in the
design process. Not all models are equally important in terms of their role in design, and this
depends heavily on the design objectives and requirements.

On the other hand, one can readily identify gaps in multiscale modeling methods without
regard to utility in design. One example is the gap in reliable, robust models between the
level of atomistics and polycrystal plasticity. This gap is closing each year with advances in
discrete dislocation plasticity, but progress in predictive methods for dislocation patterning
at mesoscales has been slow, in part due to the lack of top-down calibration compared to
polycrystal plasticity. On the other hand, from the perspective of decision support in materials
design, much can be done using models at lower and higher scales of the hierarchy without
a requirement to accurately predict these substructures. The relative need to bridge this gap
is problem dependent.

Where are the opportunities for improvement in materials design? Several can be identi-
fied:

• Rapid methods for feasibility study and robust concept exploration – Early stage explo-
ration of ranges of potential solutions to specific requirements, beyond experience or
intuition. This requires assessment of value-of-information metrics (utility theory), and
identification where models are needed, establishing model/database priorities.

• Microstructure-mediated design - Balancing process development iteration with structure-
property iteration – managing assets and deciding on nature of interfaces between process-
ing and structure-property relations (cf. Fig. 15); distinguishing design exploration from
detail design.

• Parallel processing algorithms for robust concept exploration – Materials design is an
ideal candidate for parallelization in the initial design exploration process (cf. IDEM Step
1 in Fig. 15). Such searching is normally mentioned in connection with data mining, but
we believe the wider exploration of potential design space is a daunting task worthy of
massively parallel computing.
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The linkage between integrated material and product design and the information sciences
is perhaps rather obvious in view of the foregoing discussion. There is ample room for creative
contributions in this regard. The emerging field of materials informatics (JOM 60(3) 2008)
embodies elements such as knowledge discovery extracted from databases via data mining in
interdisciplinary areas such as statistics, materials databases, and results of material modeling
to assist in discovery of new materials concepts. These ideas are particularly attractive for
cases in which well-established theories and models do not exist, i.e., high uncertainty and
little intuitive guidance. Scaling laws that arise from considering various relations between
data may offer insight into physical relationships and dominant mechanisms across length
and time scales, thereby providing support for metamodeling and simulation in lieu of high
degree of freedom models. The development of networked cyberinfrastructure is an important
aspect of realizing the potential of informatics, which purports to examine existing self-
organized materials systems, even biological systems [94,96], arguing that the hierarchy
shown in Fig. 4 is the materials science equivalent of a biological regulatory network. This
is an interesting, potentially powerful assertion, and time will tell of its utility in pursuing
systems-based robust design of materials. It is likely to be of utility mainly in the preliminary
design exploration stage in which new or improved materials solutions are searched for
feasibility. From a systems perspective, as in synthetic designed materials, understanding the
structure of materials in nature requires a rather thorough understanding of the functions that
are required. In biology, this can be a complex issue indeed.

Closure

Elements of systems approaches for designing material microstructures to meet multiple per-
formance/property requirements of products have been outlined, distinguishing multilevel
design of hierarchical materials from multiscale modeling. Robust design methods are pre-
ferred owing to the prevalence of uncertainty in process route, stochasticity of microstructure,
and nonequilibrium, path dependent nature of inelastic deformation and associated consti-
tutive models. Challenges for design of practical alloy systems and inelastic deformation
and damage mechanisms are outlined, and successful examples of simplified parametric de-
sign are provided. Concurrent design of hierarchical materials and structures is facilitated
by the confluence of engineering science and mechanics, materials science/physics, and sys-
tems engineering. Examples are presented. Continued improvement is a worthy pursuit of
multi-physics modeling and simulation. Materials design exploration that requires inten-
sive computation (e.g., bottom-up Step 1 in IDEM) is an excellent candidate for petascale
computing.

The future of simulation-assisted materials design is promising, particularly with recent
initiatives such as ICME that reinforce its value in industry. We envision that planning
processes for materials development programs in the future will draw on this emerging
multidiscipline. For materials design to realize its full potential, collaborative models must
address intellectual property issues of data/model sharing or purchase. Perhaps one direction
a bit further in the future is widespread availability of special purpose models or datasets
which can be searched on the web and purchased for use in specific, targeted applications
to complement use of general purpose analysis software, proprietary codes, and databases.
Certainly, standards for verification of tool validity, as well as specifications of uncertainty
would be elements of this distributed framework.
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Abstract A fundamental understanding of the glass transition is essential for enabling
future breakthroughs in glass science and technology. In this paper, we review recent advances
in the modeling of glass transition range behavior based on the enthalpy landscape approach.
We also give an overview of new simulation techniques for implementation of enthalpy
landscape models, including techniques for mapping the landscape and computing the long-
time dynamics of the system. When combined with these new computational techniques,
the enthalpy landscape approach can provide for the predictive modeling of glass transi-
tion and relaxation behavior on a laboratory time scale. We also discuss new insights from
the enthalpy landscape approach into the nature of the supercooled liquid and glassy states.
In particular, the enthalpy landscape approach provides for natural resolutions of both the
Kauzmann paradox and the question of residual entropy of glass at absolute zero. We further
show that the glassy state cannot be described in terms of a mixture of equilibrium liquid
states, indicating that there is no microscopic basis for the concept of a fictive temperature
distribution and that the glass and liquid are two fundamentally different states. We also
discuss the connection between supercooled liquid fragility and the ideal glass transition.
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1 Introduction

For nearly five millennia, the beauty of glass has captured the hearts and imagination of
mankind [1]. Glass has also proven to be one of the key enablers of modern civilization.
Glass windows have allowed for sunlight to enter homes while protecting their inhabitants
from harsh weather conditions. Glass lenses have restored clear vision to people suffering
from degraded eyesight and enabled the exploration of faraway stars and galaxies and the
study of the tiniest of microorganisms. The invention of the glass light bulb envelope has
illuminated the nighttime world, when previously our eyes strained under dim candlelight.
More recently, the invention of glass fibers for optical communication has revolutionized
the way in which humanity communicates, bringing the dawn of the Information Age and
making neighbors out of people on distant continents. Indeed, the technological versatility
of glass, together with the innovation and creativity of mankind, has brought revolution upon
revolution to our global society. We strongly believe that mankind has just scratched the sur-
face of what is possible with this beautiful and mysterious material which appears solid-like
but is understood to have liquid-like atomic arrangements.1

To facilitate future breakthroughs in glass science and technology, it is highly desirable
to have a fundamental physical understanding of the glassy state. Traditionally, the study of
glass has been made difficult by the three “nons”:

1. Glass is non-crystalline, lacking the long-range atomic order found in most solid mate-
rials. Unlike crystalline materials, the structure of glass cannot be defined in terms of a
simple unit cell that is repeated periodically in space.

2. Glass is non-equilibrium; hence, the glassy state cannot be described using equilibrium
thermodynamics or statistical mechanics. The macroscopic properties of a glass depend
on both its composition and thermal history.

3. Glass is non-ergodic, since we observe glass on a time scale that is much shorter than
its structural relaxation time. As time elapses, ergodicity is gradually restored and the
properties of a glass slowly approach their equilibrium values [3].

At the heart of these issues lies the glass transition, i.e., the process by which an equi-
librium, ergodic liquid is gradually frozen into a nonequilibrium, nonergodic glassy state.
Many models of the glass transition have been proposed previously. The phenomenological
models of Tool [4] and Narayanaswamy [5] are useful from an engineering point of view to
fit experimental relaxation data; however, they do not offer any insights into the underlying
physics of the glass transition, and they cannot offer a priori predictions of glass transi-
tion range behavior. The free volume model Turnbull, Cohen, and Grest [6,7] is based on a
direct correlation between the fluidity of a supercooled liquid and its free volume; however,
this view has proved to be overly simplistic [8]. The thermodynamic model of Gibbs and
DiMarzio [9] is based on a highly idealized system and is not suitable for studying realistic
glass transitions. Kinetic models such as mode-coupling theory [10,11] show promise for the
modeling of supercooled liquids, but they are not yet capable of reproducing glass transition

1 The alleged liquid-like flow of glass windows in old European churches is an interesting urban legend. It is
now believed [2] that the apparent liquid-like behavior is more due to the way the glass window was installed.
Scientific estimates of time to observe liquid-like behavior are, in essence, part of this publication.
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range behavior [12]. The molecular dynamics technique cannot be used to study realistic
glass transition range behavior since it is limited by the very short integration time step
(about 10−15 s) [13]. Excellent reviews of these and other previous glass transition models
are provided by Scherer [14], Jäckle [15], Gupta [8], and Varshneya [16].

Recently, much progress has been made in modeling and simulation of the glass transition
based on the enthalpy landscape formalism. When combined with nonequilibrium statistical
mechanics techniques, the enthalpy landscape approach allows for modeling of the glass tran-
sition based solely on fundamental physics, without any empirical fitting parameters. Such
a model allows for predictive computation of glass transition range behavior under realistic
glass-forming conditions. The enthalpy landscape technique also offers great insights into
the nature of the supercooled liquid and glassy states.

Our paper is organized as follows. In Sect. 2 we provide an overview of the glass transition
and describe some of its general features. We introduce the concept of an enthalpy landscape in
Sect. 3 and present a model of the glass transition based on the enthalpy landscape approach.
Several new computational techniques are required for implementation of this model. In
Sect. 4 we provide an overview of three of these techniques: an eigenvector-following tech-
nique for locating minima and transition points in an enthalpy landscape, a self-consistent
Monte Carlo method for computing the degeneracy of these states, and a master equation
solver for accessing very long time scales. Finally, in Sect. 5 we discuss some the new
understanding that the enthalpy landscape approach has brought to our knowledge of the
supercooled liquid and glassy states. In particular, we discuss implications related to glassy
entropy, fictive temperature, fragility, and the Kauzmann paradox.

2 The glass transition

The phenomenology of the glass transition can perhaps be best elucidated with the volume-
temperature (V -T ) diagram depicted in Fig. 1. Consider an equilibrium liquid at point a in
the diagram. Upon cooling, the volume of the liquid generally decreases along the path abc.
Point b occurs at the melting temperature Tm of the corresponding crystal. At this point,
the liquid exhibits an infinitesimally small number of crystal nuclei. The degree of crystal-
lization is governed by nucleation and crystal growth rates in the liquid. In this context, a
“nucleus” refers to a precursor to a crystal that lacks a recognizable growth pattern. As shown
in Fig. 2, the rates of nucleation and crystal growth are both zero at Tm and in the limit of
low temperature. The maximum nucleation and crystal growth rates occur slightly below Tm ,
corresponding to point c in Fig. 1. If crystallization occurs, the system undergoes a phase
change from point c to the crystal line in the V -T diagram. Subsequent cooling of the crystal
generally results in a decrease in volume along the path de.

The shaded region around point c in Fig. 1 corresponds to the temperature region where
perceptible crystallization can occur. If a liquid is cooled quickly enough through this tem-
perature range to avoid a phase change, it moves into the “supercooled liquid” state along
the path bc f . The minimum cooling rate required to avoid crystallization can be determined
using a time-temperature-transformation (T -T -T ) diagram, as depicted in Fig. 3. The solid
“transformation” curve in this figure represents the locus of all points in the temperature-time
plane which yield a given crystal concentration (typically 10−6 volume fraction) which serves
as a threshold for crystal detection. Given a liquid at Tm , the minimum cooling rate to avoid
crystallization is determined by the slope of the line which just touches the transformation
curve (the dashed line in Fig. 3).
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Fig. 1 The volume-temperature diagram for a glass-forming liquid. Reproduced from Varshneya [16]

As a supercooled liquid continues to cool, the molecular motion slows down sufficiently
such that the system departs from equilibrium. In other words, the molecules do not have
sufficient time to rearrange themselves into the volume characteristic of that temperature and
pressure. Further cooling results in a gradual solidification of the system, and the resulting
material is a called a “glass.” Glass is remarkable in that it has a liquid-like structure but with
solid-like behavior. As shown in Fig. 1, the final volume of a glass depends on the cooling
rate. A faster cooling rate generally results in a higher volume since the molecules are given
less time to relax into a lower energy structure before the onset of viscous arrest.

The smooth curve between the supercooled liquid and glassy regions in Fig. 1 is termed
the “glass transition” or “glass transformation” range. It should be emphasized that the tran-
sition from the supercooled liquid to glassy states does not occur at a single, well-defined
temperature. Rather, the change is gradual and occurs over a range of temperatures. This
temperature range depends on both the material under study and the particular cooling path.
In other words, glass transition range behavior, and hence the properties of the final glass
itself, depend on both composition and thermal history.

Another interesting behavior of glass is that it never retraces its cooling path in the transi-
tion range upon reheating. Figure 4 shows a variety of reheating curves for different cooling



Enthalpy landscapes and the glass transition 245

Fig. 2 Nucleation and crystal growth rates with respect to temperature. Reproduced from Varshneya [16]

and reheating rates; many glasses can actually show a decrease in volume as they are reheated
through the transition range.

The glass transition is not a phase transition in the thermodynamic sense. Whereas the
crystallization of a liquid results in a discontinuity in first-order thermodynamic variables
(such as volume and enthalpy), there is no such discontinuity in the case of a glass transition.
Instead, the glass transition often involves a rather sharp change in second-order thermody-
namic variables such as heat capacity and thermal expansion coefficient. Figure 5 shows the
heat capacity of glycerol as it undergoes a glass transition. This change in heat capacity is
dramatic, but still not discontinuous. This observation has led some researchers to postulate
an “ideal glass transition,” in which a system undergoes a discontinuity in second-order ther-
modynamic variables. Many thermodynamic models of glass assume an ideal glass transition
[9], but none has ever been observed in experiment.

Glass is a nonequilibrium, nonergodic state of matter. In fact, the only reason we observe
the existence of glass at all is that the relaxation dynamics in glass are much slower than
our observation time scale. While glass appears as a rigid, solid material to us humans, on a
geologic time scale it is actually relaxing toward the supercooled liquid state. Hence, glass
is unstable with respect to the supercooled liquid state. The supercooled liquid is, in turn,
metastable with respect to the equilibrium crystal.

Finally, we should comment on the difference between a glass and an amorphous solid.
Many researchers use these terms interchangeably, as they are both types of non-crystalline
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Fig. 3 Time-temperature-transformation (T -T -T ) diagram for silica using a crystal volume fraction of 10−6.
Reproduced from Varshneya [16]

Fig. 4 Various glass reheating curves. Reproduced from Varshneya [16]
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Fig. 5 Heat capacity of glycerol: (a) liquid, (b) supercooled liquid, (c) glass, (d) crystal, and (e) very slowly
cooled supercooled liquid. Reproduced from Varshneya [16]

solids. However, glasses and amorphous solids are two thermodynamically distinct classes
of material. The short-range order (i.e., the local environment around the atoms) in a glass
is the same as that in the corresponding liquid; the short-range order of an amorphous solid
is different from that of the liquid. For this reason, an amorphous solid cannot be formed by
cooling from a melt. (Amorphous silicon, for example, is prepared by a vapor deposition pro-
cess.) Furthermore, glasses and amorphous solids exhibit different behaviors upon heating.
Whereas a glass undergoes a gradual transition to the liquid state upon heating, an amorphous
solid will crystallize, sometimes explosively. Interestingly, glassy silicon has not yet been
experimentally realized: liquid silicon is 12-coordinated and always crystallizes on cooling,
even for the fastest experimentally realizable cooling rates. Figure 6 illustrates schematically
the relative stability of the glassy, supercooled liquid, amorphous, and crystalline states. In
this report we are only concerned with glasses and supercooled liquids, not amorphous solids.
For a detailed discussion of the differences between a glass and an amorphous solid, we refer
the interested reader to the work of Gupta [17].

3 The enthalpy landscape approach

In a pioneering 1969 paper, Goldstein [18] proposed the idea that atomic motion in a super-
cooled liquid consists of high-frequency vibrations in regions of deep potential energy
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Fig. 6 Schematic diagram illustrating relative thermodynamic stability. The glassy state is unstable with
respect to the supercooled liquid, and the supercooled liquid is metastable with respect to the crystal. The
amorphous state is metastable with respect to the crystal and not connected to the liquidus path [16]

minima, with less frequent transitions to other such minima. The transport properties of
the supercooled liquid, he argued, are linked to the ability of the atoms to flow among these
various minima. This idea was subsequently extended in a series of papers by Stillinger and
coworkers [19–24]. In this section, we review the concept of potential energy and enthalpy
landscapes and present a nonequilibrium statistical mechanical approach for modeling the
dynamics of glass-forming systems under isobaric conditions.

3.1 Potential energy landscapes

The potential energy of a system of N interacting particles can be written as

U = U (r1, r2, . . . , rN ) ≥ C N , (1)

where r1, r2, . . . , rN are the particle position vectors and C is a constant giving the energy
per particle for a perfect crystal at absolute zero. There is no upper bound on potential energy,
owing to the high repulsive energy that exists at small separation distances. The potential
energy U (r1, r2, . . . , rN ) is continuous and at least twice differentiable with respect of the
configurational coordinates r1, r2, . . . , rN . The partition function of the potential energy
landscape is therefore

Q =
∫ L

0
· · ·

∫ L

0

∫ L

0
exp

[
−U (r1, r2, . . . , rN )

kT

]
d3r1d3r2 · · · d3rN , (2)

where k is Boltzmann’s constant, T is absolute temperautre, and L is the length of the
simulation cell, which here we assume to be cubic.

In effect, U (r1, r2, . . . , rN ) represents a continuous multidimensional potential energy
“landscape” with many peaks and valleys. The local minima in the potential energy landscape
correspond to mechanically stable arrangements of the system’s particles. These stable con-
figurations are termed “inherent structures.” The number � of inherent structures in the limit
of large N is given by

ln � ≈ ln
(

N !σ N
)

+ aN , (3)

where σ is a symmetry factor and a > 0 is a constant relating to the number density N/L3.
The first term on the right-hand side of Eq. (3) accounts for the symmetry of the potential
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energy landscape with respect to r1, r2, . . . , rN , and the second term expresses the exponen-
tial increase in the number of distinguishable inherent structures with increasing N [19–24].

In the Stillinger approach, the potential energy landscape is divided into a discrete set of
“basins,” where each basin contains a single minimum in U , i.e., a single inherent structure.
A basin itself is defined to be the set of all coordinates in the 3N -dimensional configuration
space that drains to a particular minimum via steepest descent. With this approach, we can
rewrite the partition function as a summation of integrals over each of the individual basins,

Q =
�∑

α=1

∫
{r|r∈Rα}

exp

[
−U (r)

kT

]
d3N r, (4)

where d3N r = d3r1d3r2 · · · d3rN and Rα denotes the set of all position vectors in basin α.
If we denote the particular configuration of inherent structure α as rα , the partition function
can be rewritten as

Q =
�∑

α=1

∫
{r|r∈Rα}

exp

[
−U (rα) + �Uα (r)

kT

]
d3N r, (5)

where �Uα (r) gives the increase in potential energy at any point in basin α relative to
the inherent structure potential, U (rα), as shown schematically in Fig. 7. Since U (rα) is a
constant for any given α, Q becomes

Q =
�∑

α=1

exp

[
−U (rα)

kT

] ∫
{r|r∈Rα}

exp

[
−�Uα (r)

kT

]
d3N r. (6)

Fig. 7 Schematic diagram of a potential energy landscape showing two basins
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We now introduce the normalized coordinates s1, s2, . . . , sN , defined by

s = r

B1/3N
α

, (7)

where the quantity Bα is the volume of basin α in 3N -dimensional space, given by the
integral

Bα =
∫

{r|r∈Rα}
d3N r. (8)

Since B1/3N
α has units of length, the normalized coordinates s are dimensionless. With this

definition of s, the partition function becomes

Q =
�∑

α=1

BαCα exp

[
−U (rα)

kT

]
, (9)

where the integral

Cα =
∫

{s|s∈Sα}
exp

[
−�Uα (s)

kT

]
d3N s (10)

depends only on the shape of basin α and not its volume in 3N -dimensional space. Here, the
integration is over the scaled set of position vectors Sα in basin α.

The fundamental assumption of the energy landscape approach is that the partition func-
tion Q can be separated into independent configurational and vibrational contributions:

Q = Qcon f Qvib. (11)

Hence, the energy landscape approach has an implicit (and often overlooked) assumption
that the normalized basin shape is a constant (Cα = C). In this manner, the configurational
and vibrational contributions to the partition function can be written independently as

Qcon f =
�∑

α=1

Bα exp

[
−U (rα)

kT

]
(12)

and

Qvib =
∫

{s|s∈S}
exp

[
−�U (s)

kT

]
d3N s. (13)

Please note that while the basin volume Bα can vary by many orders of magnitude [25],
it is quite reasonable to assume that the normalized basin shape is a constant.2 With this
assumption, the fast vibrations within a basin are independent of the slower inter-basin tran-
sitions. With the partition function written in the separable form of Eq. (11), it follows that
all equilibrium thermodynamic properties can be written in terms of separate configurational
and vibrational contributions.

2 Each basin must contain a single minimum, and the edges of the basin are a locus of points giving the
transition barriers to adjacent basins. The potential energy varies smoothly between the minimum and each of
the transition barriers.
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3.2 Enthalpy landscapes

While potential energy landscapes are suitable for modeling glass transition range behav-
ior under isochoric conditions, almost all laboratory glass formation occurs under constant
pressure and not constant volume conditions. Here we extend our discussion of the previ-
ous section to the isothermal-isobaric ensemble, which allows for changes in both particle
positions as well as the overall volume of the system. In the isothermal-isobaric ensemble,
we work with an enthalpy landscape rather than a potential energy landscape. The enthalpy
landscape at zero temperature (i.e., with zero kinetic energy) corresponds to an underlying
surface that is sampled by a system at finite temperature under isobaric conditions.

The zero temperature enthalpy landscape of a system of N atoms can be expressed as

H = U (r1, r2, . . . , rN , V ) + PV, (14)

where V is the volume of the system and the pressure P is constant. The isothermal-isobaric
partition function can be written as

Y =
∫ ∞

0

∫ V 1/3

0
· · ·

∫ V 1/3

0

∫ V 1/3

0
exp

[
− H (r1, r2, . . . , rN , V )

kT

]
d3r1d3r2 · · · d3rN dV,

(15)

where the system is again assumed to be cubic. It is useful to divide the partition function
into two separate integrals for volumes below and above Vmax, which we define to be the
volume of the system at which the interaction potentials no longer contribute significantly
to the overall enthalpy. In other words,

U (r1, r2, . . . , rN , Vmax) � PVmax, (16)

such that U can be safely ignored for V ≥ Vmax. The partition function can then be written
as a sum of interacting and non-interacting contributions:

Y = YI + YN I , (17)

where

YI =
∫ Vmax

0

∫ V 1/3

0
exp

[
− H (r1, r2, . . . , rN , V )

kT

]
d3N rdV (18)

and

YN I =
∫ ∞

Vmax

∫ V 1/3

0
exp

[
− PV

kT

]
d3N rdV . (19)

The non-interacting integral reduces to a constant in the form of an incomplete gamma
function:

YN I =
∫ ∞

Vmax

V N exp

[
− PV

kT

]
dV (20)

=
(

kT

P

)N+1

�

(
N + 1,

PVmax

kT

)
. (21)

Since the enthalpy landscape in the non-interacting regime is strictly a linear function of
volume, there are no minima in the landscape and hence no inherent structures. As a result,
we need only consider the interacting portion of the partition function.
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It is convenient to rewrite the interacting partition function in terms of the length of the
simulation cell, L = V 1/3, such that all coordinates have units of length:

YI =
∫ Lmax

0
3L2

∫ L

0
exp

[
− H (r, L)

kT

]
d3N rd L . (22)

Following the approach in the previous section, we divide the continuous enthalpy landscape
into a discrete set of basins; each basin contains a single minimum in H with respect to all of
the 3N +1 coordinates. We can thus rewrite the interacting partition function as a summation
of integrals over each of the individual basins,

YI =
�∑

α=1

∫
{L|L∈Lα}

3L2
∫

{r|r∈Rα(L)}
exp

[
− H (r, L)

kT

]
d3N rd L , (23)

where the set of position vectors Rα (L) in basin α is a function of L , and Lα is the set of
length values in the basin α. If we denote the particular coordinates of inherent structure α

as {rα, Lα}, the partition function can be rewritten as

YI =
�∑

α=1

exp

[
− H (rα, Lα)

kT

] ∫
{L|L∈Lα}

3L2
∫

{r|r∈Rα(L)}
exp

[
−�Hα (r, L)

kT

]
d3N rd L ,

(24)

where �Hα (r, L) gives the increase in enthalpy at any point in basin α relative to the inher-
ent structure enthalpy, H (rα, Lα). The volume of basin α in (3N + 1)-dimensional space is
given by

Bα =
∫

{L|L∈Lα}

∫
{r|r∈Rα(L)}

d3N rd L (25)

We now introduce the normalized positions s̃1, s̃2, . . . , s̃N , defined by

s̃ = r

B1/(3N+1)
α

, (26)

and a normalized length, defined similarly as

s̃L = L

B1/(3N+1)
α

. (27)

With these normalized coordinates, the partition function becomes

YI =
�∑

α=1

B1+2/(3N+1)
α C̃α exp

[
− H (rα, Lα)

kT

]
, (28)

where the integral

C̃α = 3
∫

{
s̃L |s̃L∈L̃α

} s̃2
L

∫
{

s̃|s̃∈S̃α(s̃L )
} exp

[
−�Hα

(
s̃, s̃L

)
kT

]
d3N s̃ds̃L (29)

depends only on the shape of basin α and not on its volume in (3N + 1)-dimensional space.
Again, we wish to write the partition function in terms of separate configurational and vibra-
tional contributions,

YI = Ycon f Yvib, (30)
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which can be accomplished by assuming a constant normalized basin shape (C̃α = C̃). With
this assumption,

Ycon f =
�∑

α=1

B1+2/(3N+1)
α exp

[
− H (rα, Lα)

kT

]
(31)

and

Yvib = 3
∫

{
s̃L |s̃L∈L̃α

} s̃2
L

∫
{

s̃|s̃∈S̃(s̃L )
} exp

[
−�H

(
s̃, s̃L

)
kT

]
d3N s̃ds̃L . (32)

3.3 Nonequilibrium statistical mechanics

Using the partition functions of Eqs. (11) and (30), we can compute all the equilibrium ther-
modynamic properties of a system. However, study of the glass transition necessarily involves
a departure from equilibrium. A recent model by Mauro and Varshneya [26] combines the
inherent structure approach with nonequilibrium statistical mechanics in order to follow the
evolution of an arbitrary macroscopic property as a glass-forming system departs from its
equilibrium state. Here we present the Mauro-Varshneya model for isobaric conditions.

The dynamics of the system moving between pairs of basins involves the transition states
(first-order saddle points) between adjacent basins. The underlying assumption is that while
landscape itself is independent of temperature, the way in which the system samples the
landscape depends on its thermal energy, and thus the temperature of the system. At high
temperatures, the system has ample thermal energy to flow freely between basins; this cor-
responds to the case of an equilibrium liquid. As the liquid is supercooled, the number of
available basin transitions decreases owing to the loss of kinetic energy. Finally, the glassy
state at low temperatures corresponds to the system getting “stuck” in a single region of the
landscape where the energy barrier for a transition is too high to overcome in laboratory time
scales.

If we consider a total of � basins in the enthalpy landscape, we can construct an � × �

enthalpy matrix,

H =

⎛
⎜⎜⎜⎝

H11 H12 · · · H1�

H21 H22 · · · H2�

...
...

. . .
...

H�1 H�2 · · · H��

⎞
⎟⎟⎟⎠ , (33)

where the diagonal elements (Hαα) are the inherent structure enthalpies and the off-diagonal
elements (Hαβ , α �= β) are the transition enthalpies from basin α to basin β. The matrix H
is symmetric by construction (Hαβ = Hβα).

In order to capture all “memory” effects that can occur in a glassy system, we have the
initial condition of an equilibrium liquid at the melting temperature Tm . From equilibrium
statistical mechanics, the initial phase space distribution for any basin α is

(
peq

)
α

= 1

Ycon f
gα exp

(
− Hαα

kTm

)
, (34)

where gα is the degeneracy of basin α, weighted by the basin volume factor B1+2/(3N+1)
α , as

in Eq. (31).
As we cool the equilibrium liquid into the supercooled liquid and glassy regimes, the

structural relaxation time exceeds the experimental measurement time. We are interested in
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calculating the phase space distribution of the system as it relaxes, which can be accomplished
by writing a master equation for each basin,

d

dt
pα (t) =

�∑
β �=α

Kβα [T (t)] pβ (t) −
�∑

β �=α

Kαβ [T (t)] p (t) , (35)

The probabilities satisfy

�∑
α=1

pα (t) = 1 (36)

for all times t . The rate parameters Kαβ,βα are defined parametrically in terms of an arbitrary
cooling path, T (t), and form a matrix:

K =

⎛
⎜⎜⎜⎜⎜⎝

0 K12 K13 · · · K1�

K21 0 K23 · · · K2�

K31 K32 0 · · · K3�

...
...

...
. . .

...

K�1 K�2 K�3 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

. (37)

Unlike H, K is not a symmetric matrix (Kαβ �= Kβα).
The set of � master equations has been defined without any reference to the underlying

kinetic model. If we assume the system is always in a state of local equilibrium, the rate of
transition from basin α to basin β can be approximated using transition state theory:

Kαβ [T (t)] ≈ ναβ gβ exp

[
−

(
Hαβ − Hαα

)
kT (t)

]
, (38)

where ναβ is the attempt frequency [27,28]. This equation also assumes that there is a single
dominant transition barrier between basins α and β. Of course, a more accurate model of Kαβ

may be substituted for Eq. (38) without changing the underlying formulation of Eq. (35).
The volume of the system can be computed at any time t using the phase space average,

V (t) =
�∑

α=1

Vα pα (t) , (39)

where Vα is the volume associated with inherent structure α. Note that this formulation
ignores any perturburbation in volume caused by asymmetry of the enthalpy basin along the
volume dimension.

4 Simulation techniques

In order to implement the enthalpy landscape approach of Sect. 3, we must have simulation
techniques to:

– Map the continuous enthalpy landscape to a discrete set of inherent structures and tran-
sition points. This allows construction of the enthalpy matrix in Eq. (33).

– Calculate the inherent structure density of states, which provides us with the degeneracy
factors in Eqs. (34) and (38).
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– Solve the system of � master equations in Eq. (35) for an arbitrary temperature path T (t).
This allows for calculation of the evolution of macroscopic properties such as volume
and enthalpy on an arbitrary time scale.

In this section, we review simulation techniques for addressing each of these three aspects
of the problem. First, we review a split-step eigenvector-following technique for locating
inherent structures and transition points in an enthalpy landscape. Next, we provide an over-
view of a self-consistent Monte Carlo technique for computing inherent structure density
of states. Finally, we describe a metabasin technique for solving a large system of master
equations on an arbitrary time scale.

4.1 Locating inherent structures and transition points

Several techniques exist for locating inherent structures and transition points in a potential
energy landscape [29], and many of these can be extended to isobaric conditions to enable
the mapping of enthalpy landscapes. One method of particular interest for mapping enthalpy
landscapes is the split-step eigenvector-following technique [30,31], which includes two steps
at each iteration to vary independently the system volume and relative atomic positions. Let
us consider the zero temperature enthalpy landscape of an N -particle system:

H = U (x1, x2, . . . , x3N , L) + P L3, (40)

where the potential energy U is a function of 3N position coordinates, x1, x2, . . . , x3N , and
the length L of the simulation cell. The pressure P of the system is constant, and we assume
a cubic cell volume of V = L3. The enthalpy landscape therefore has a dimensionality of
3N + 1, minus any constraints.

The eigenvector-following technique proceeds by stepping iteratively through the enthalpy
landscape towards either a minimum or a transition point. Let us denote the enthalpy of the
system with initial positions x0

i , where i = 1, 2, . . . , 3N , and initial length L0 as H
(
x0

i , L0
)
.

We can approximate the enthalpy at a new position xi = x0
i +hi and new length L = L0 +hL

using the Taylor series expansion,

H (xi , L) ≈ H
(
x0

i , L0) +
3N∑
i=1

hi
∂ H

∂xi

∣∣∣∣
xi =x0

i ,L=L0
+ hL

∂ H

∂L

∣∣∣∣
xi =x0

i ,L=L0

+1

2

3N∑
i=1

3N∑
j=1

hi h j
∂2 H

∂xi∂x j

∣∣∣∣
xi, j =x0

i, j ,L=L0
+ 1

2
h2

L
∂2 H

∂L2

∣∣∣∣
xi =x0

i ,L=L0

+1

2

3N∑
i=1

hi hL
∂2 H

∂xi∂L

∣∣∣∣
xi =x0

i ,L=L0
+ 1

2

3N∑
i=1

hL hi
∂2 H

∂L∂xi

∣∣∣∣
xi =x0

i ,L=L0
,

(41)

which can be written in matrix notation as

H (q) ≈ H
(
q0) + g�h + 1

2
h�Hh. (42)
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The position vectors are given by

q =

⎛
⎜⎜⎜⎜⎜⎝

x1

x2
...

x3N

L

⎞
⎟⎟⎟⎟⎟⎠

; q0 =

⎛
⎜⎜⎜⎜⎜⎝

x0
1

x0
2
...

x0
3N
L0

⎞
⎟⎟⎟⎟⎟⎠

(43)

and the displacement vector h = q − q0 is

h =

⎛
⎜⎜⎜⎜⎜⎝

h1

h2
...

h3N

hL

⎞
⎟⎟⎟⎟⎟⎠

. (44)

The gradient vector g and the (3N + 1) × (3N + 1) Hessian matrix H, evaluated at q = q0,
are given by

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ H

∂x1

∂ H

∂x2

...

∂ H

∂x3N

∂ H

∂L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q=q0

(45)

and

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2 H

∂x2
1

∂2 H

∂x1∂x2
· · · ∂2 H

∂x1∂x3N

∂2 H

∂x1∂L

∂2 H

∂x2∂x1

∂2 H

∂x2
2

· · · ∂2 H

∂x2∂x3N

∂2 H

∂x2∂L

...
...

. . .
...

...

∂2 H

∂x3N ∂x1

∂2 H

∂x3N ∂x2
· · · ∂2 H

∂x2
3N

∂2 H

∂x3N ∂L

∂2 H

∂L∂x1

∂2 H

∂L∂x2
· · · ∂2 H

∂L∂x3N

∂2 H

∂L2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q=q0

, (46)

respectively.
For potential energy landscapes [32], the Hessian matrix would be symmetric since it

would contain second derivatives with respect to position coordinates xi only. However, for
an enthalpy landscape, the Hessian matrix has one additional row and column including
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derivatives with respect to the simulation cell length L . When undergoing a change in the
length of simulation cell, the atomic positions scale according to

∂xi

∂L
= xi

L
, (47)

since any change in length produces a corresponding “stretching” of atomic positions. This
relationship leads to

∂2 H

∂xi∂L
= ∂2 H

∂L∂xi
+ 1

L

∂ H

∂xi
, (48)

and therefore the Hessian matrix H for an enthalpy landscape is not symmetric. This poses
a problem when computing the eigenvalues and eigenvectors of H, since an asymmetric
matrix can lead to complex eigenvalues. This problem can be overcome by introducing the
normalized particle coordinates,

x̄i = xi

L
, (49)

which are independent of changes in L . The split-step eigenvector-following technique con-
sists of iteratively stepping through the enthalpy landscape toward a minimum or transition
point, where each iteration involves two steps:

1. Step of the simulation box length L while maintaining constant normalized positions x̄i .
2. Step of the positions xi while maintaining constant L .

In the first step of the iteration, the enthalpy can be written in terms of a Taylor series
expansion:

H
(
x̄0

i , L
) ≈ H

(
x̄0

i , L0) + hL
∂ H

∂L

∣∣∣∣
x̄i =x̄0

i ,L=L0
+ 1

2
h2

L
∂2 H

∂L2

∣∣∣∣
x̄i =x̄0

i ,L=L0
. (50)

We can now write a Lagrange function in one dimension,

LL = −H
(
x̄0

i , L0) − hL
∂ H

∂L

∣∣∣∣
x̄i =x̄0

i ,L=L0

−1

2
h2

L
∂2 H

∂L2

∣∣∣∣
x̄i =x̄0

i ,L=L0
+ 1

2
λL

(
h2

L − c2
L

)
, (51)

where λL is a Lagrange multiplier. Taking the derivative with respect to hL yields

∂LL

∂hL
= 0 = − ∂ H

∂L

∣∣∣∣
x̄i =x̄0

i ,L=L0
− hL

∂2 H

∂L2

∣∣∣∣
x̄i =x̄0

i ,L=L0
+ λL hL . (52)

Defining

FL = ∂ H

∂L

∣∣∣∣
x̄i =x̄0

i ,L=L0
=

(
∂ E

∂L
+ 3P L2

)
x̄i =x̄0

i ,L=L0
(53)

and

bL = ∂2 H

∂L2

∣∣∣∣
x̄i =x̄0

i ,L=L0
=

(
∂2 E

∂L2 + 6P L

)
x̄i =x̄0

i ,L=L0
, (54)
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we have

hL = FL

λL − bL
. (55)

The change in enthalpy �HL for such a step hL is

�HL =
F2

L

(
λL − bL

2

)
(λL − bL)2 . (56)

Hence, the sign of the enthalpy change depends on both bL and the choice of Lagrange
multiplier λL .

The second step involves changes in the particle positions xi with a fixed box length L .
In this case, the gradient and second derivative terms reduce to

∂ H

∂xi
= ∂U

∂xi
;

∂2 H

∂xi∂x j
= ∂2U

∂xi∂x j
. (57)

The position step vector is given by

hx =
3N∑
i=1

Fi

λi − bi
Vi , (58)

where bi and Vi are the eigenvalues and associated eigenvectors of the symmetric 3N × 3N
Hessian matrix H′,

H′Vi = bi Vi , (59)

and Fi is defined by

g =
3N∑
i=1

Fi Vi . (60)

Separate Lagrange multipliers λi are used for each eigendirection. The change in enthalpy
associated with the position step vector h is

�Hx = �Ex =
3N∑
i=1

F2
i

(
λi − bi

2

)
(λi − bi )

2 . (61)

Again, the sign of the enthalpy change in a particular eigendirection Vi depends on both the
eigenvalue bi and the choice of Lagrange multiplier λi .

In order to locate inherent structures and transition points in the enthalpy landscape, we
must step iteratively through the landscape, making an appropriate choice of Lagrange multi-
pliers λi at each step and for each eigendirection. Since an inherent structure is defined to be
a minimum in the enthalpy landscape, when locating an inherent structure we need to choose
λi values that minimize enthalpy along every eigendirection. As summarized in Fig. 8, the
choice of λi depends on both the eigenvalue bi and the gradient Fi along its eigenvector Vi .
The maximum step size along each eigenvector is denoted ci in the figure, and Fth and bth

denote threshold values below which the slope and curvature are considered zero. By choos-
ing the Lagrange multipliers according to Fig. 8, each step vector h will bring the system
closer to a minimum in enthalpy. Convergence to an inherent structure is achieved when we
have reached a minimum along all eigendirections.
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Fig. 8 Choice of Lagrange multipliers for minimization of enthalpy along a given eigendirection

Fig. 9 Choice of Lagrange multipliers for maximization of enthalpy along a given eigendirection

Location of transition points requires a slightly different choice of Lagrange multipli-
ers. Since a transition point is defined as a stationary point where exactly one eigenvalue
bi is negative, here we wish to maximize enthalpy along one eigendirection and minimize
enthalpy along all other eigendirections. Figure 8 therefore provides the choice of Lagrange
multipliers along all of these eigendirections. However, as we wish to maximize enthalpy
along one eigendirection, the choice of Lagrange multipliers in this eigendirection is given in
Fig. 9. This ensures enthalpy maximization along one eigendirection while simultaneously
minimizing enthalpy along all other eigendirections.

Since many transition points are available from any given inherent structure, the eigen-
vector-following technique should be applied many times, starting from the same inherent
structure but maximizing along different eigendirections. Whenever a transition point is
found, the choice of Lagrange multipliers in Fig. 8 can then be used to find the connecting
inherent structure on the other side of the transition point. The algorithm can then be applied
recursively to locate new transition points from this inherent structure. In this manner, we can
construct the enthalpy matrix of Eq. (33), required for simulation of glass transition range
behavior.
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4.2 Inherent structure density of states

In the previous section we have described a technique for locating inherent structures and
transition points in an enthalpy landscape. However, eigenvector-following samples only a
small portion of the very large (3N + 1)-dimensional enthalpy landscape. A separate calcu-
lation is required to ensure that each of these inherent structures and transition points occurs
with the correct degeneracy factor. A modified version of the Wang-Landau technique for
computing density of states [33] can be used to compute the inherent structure density of
states. As described in detail by Mauro et al. [34], the following modifications need to be
made to the Wang-Landau technique:

– Extend the technique to enthalpy landscapes, accounting for the coupling of volume
variations with atomic displacements.

– Include a minimization after each trial displacement in order to compute the inherent
structure density of states rather than that of the continuous landscape.

– Include importance sampling using a Boltzmann weighting factor to sample preferen-
tially the lower enthalpy states, i.e., those that are more likely to be occupied. In other
words, we can compute first an inherent structure quench probability, i.e., the probability
of occupying a given inherent structure upon instantaneous quenching to absolute zero.
The density of states can be computed subsequently from this quench probability.

– As required by Eq. (31), the probability of sampling a particular inherent structure must
be weighted by volume of the corresponding basin in (3N + 1)-dimensional space.

The technique of Mauro et al. [34] is based on a self-consistent Monte Carlo approach
where an initial guess of the inherent structure quench probability is updated as each new
state visited with Monte Carlo sampling is either accepted or rejected. In a general form, the
quench probability can be represented as a matrix, g, in two-dimensional enthalpy-volume
space. In this manner, the density of states can be computed for inherent structures with
all combinations of enthalpy and volume values. Depending on the system under study, the
quench probability matrix could be reduced to a one-dimensional array in either enthalpy or
volume space. Here we present the steps of the algorithm in terms of its more general matrix
form:

1. Initialize the quench probability matrix, g, to unity. The matrix elements gi j cover the
full range of enthalpy and volume values of interest. The first index i covers the enthalpy
space, and the second index j covers the volume space.

2. Choose a random displacement from a uniform distribution over the configuration space.
(The probability of sampling a basin is directly proportional to the volume of that basin.)
Any change in volume should be accompanied by a corresponding rescaling of the particle
positions according to

∂r
∂V 1/3 = r

V 1/3 . (62)

3. Each random displacement is followed by a minimization to the inherent structure con-
figuration, which can be accomplished using the eigenvector-following technique of the
previous section.

4. The trial displacement is accepted if

rand (0, 1) ≤ gi j

gkl
exp

[
− (Hk − Hi )

kT

]
, (63)



Enthalpy landscapes and the glass transition 261

where Hi is the enthalpy of the initial inherent structure and Hk is the enthalpy of the
new inherent structure. The matrix elements gi j and gkl correspond to the enthalpy and
volume values of the initial and new inherent structures, respectively. T is the temperature
of the simulation, and rand (0, 1) is a random number drawn from a uniform distribution
between 0 and 1.

5. If the new state is accepted, the quench probability matrix element gkl (corresponding to
the new state) is increased by some factor A > 1:

gnew
kl = Agold

kl . (64)

Following Wang and Landau [33], we use A = e.
6. If the new state is rejected, the system returns to the previous state and the quench

probability matrix element gi j (corresponding to the previous state) is increased by the
same factor:

gnew
i j = Agold

i j . (65)

7. Repeat steps 2–6. The update factor A decreases throughout the simulation according
to the procedure of Wang and Landau [33], and convergence is achieved as the update
factor approaches unity.

8. The normalized inherent structure density of states, w I S , can then be computed from the
quench probabilities using

w I S (H, V ) = g (H, V ; T ) exp (H/kT )∫
g (H, V ; T ) exp (H/kT ) d HdV

. (66)

4.3 Master equation dynamics

The master equation description of Eq. (35), coupled with the inherent structure and transition
point data of the previous two sections, allows for modeling the dynamics of glass-forming
systems from the liquid state through the glass transition regime and into the glassy state
itself. However, given the exponentially large number of basins computed in Eq. (3), it is
impossible to construct a separate master equation for each individual basin. An additional
problem is that for most realistic glass-forming systems the transition rates can span over
many orders of magnitude. Since the integration time step for solving the system of master
equations is limited by the inverse of the fastest transition rate, direct integration of Eq. (35)
is often highly inefficient. Moreover, an analytical solution for the system of the master
equations must in general assume constant rate parameters; in Eq. (35), the rate parameters
change with time as the initially liquid system cools to a glassy state.

Recently, we have described an efficient algorithm for computing the master equation
dynamics of systems with highly degenerate states and disparate rate parameters [28] that
allows for solution of a reduced set of master equations on the “natural” time scale of the
experiment, i.e., the inverse of the cooling rate, rather than being limited by the fastest
inter-basin transition rate. Our method consists of two steps: first, incorporate the degen-
eracy factors into the master equations, and second, partition the enthalpy landscape into
“metabasins” and rewrite the master equations in terms of this reduced set of metabasins.

First, we incorporate degeneracy into the master equations. Consider a set of degener-
ate basins A = {1, 2, 3, 4, . . . , gA} having the same enthalpy and volume, where gA is the
degeneracy. The total probability of occupying a basin in A is

PA =
∑
i∈A

pi = gA pi∈A. (67)
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Here, pi∈A is the probability of occupying any of the individual basins i in A. We can write
a reduced set of master equations for the degenerate states as

d PA

dt
=

∑
B �=A

(
K̃ B A PB − K̃ AB PA

)
, (68)

where the effective transition rate from set A to set B is

K̃ AB = gB Ki∈A, j∈B . (69)

This equation assumes that there is one dominant transition path between any pair of basins.
In the second step, we account for the disparate rate parameters by partitioning the enthalpy

landscape into metabasins, which are chosen to satisfy the following two criteria:

1. The relaxation time scale within a metabasin is short compared to the inverse of the cool-
ing rate (i.e., the “observation time scale” over which the temperature can be assumed
constant). Hence, the probability distribution within a metabasin follows equilibrium
statistical mechanics within the restricted ensemble.

2. The inter-metabasin relaxation time scale is too long to allow for equilibration on the
observation time scale.

The inter-metabasin dynamics can be computed based on a reduced set of master equa-
tions,

d fα
dt

=
∑
β �=α

(
Wβα fβ − Wαβ fα

)
, (70)

where fα is the probability of occupying metabasin α. There is one master equation for each
metabasin; the Wαβ,βα parameters are the effective inter-metabasin transition rates, computed
by

Wαβ = nβ

fα

∑
A∈α

K A,B∈β PA. (71)

Thus instead of writing a separate master equation for each basin, we can write a reduced
set of master equations with one for each metabasin. At high temperatures the entire system
consists of a single metabasin and is governed by equilibrium statistical mechanics. As the
system is cooled, the enthalpy landscape is partitioned into metabasins, chosen to satisfy the
above two criteria. The procedure for performing such partitioning is beyond the scope of
this review. The interested reader is referred to Ref. [28] for details.

By decoupling the inter- and intra-metabasin dynamics, this technique allows for solution
of a reduced set of master equations on the “natural” time scale of the experiment, i.e., the
observation time scale defined by the inverse of the cooling rate. In other words, the integra-
tion time step is governed by the cooling rate rather than by the fastest microscopic transition
rate. As a result, the computational time required for computing the system dynamics is
largely independent of the fastest inter-basin transition rate.

We have previously used this procedure to simulate the glass transition range behavior of
selenium, an elemental glass-former with a chain-like structure [35]. In order to demonstrate
the versatility of our model, Fig. 10 shows the molar volume of the selenium system computed
with cooling rates covering 25 orders of magnitude. Here, we cool linearly from the melting
temperature of selenium (490 K) to room temperature (298 K) with cooling rates ranging
from 10−12 to 1012 K/s. For the very slow cooling rates (< 10−9 K/s), the system remains a
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Fig. 10 Molar volume of
selenium after cooling from the
melting temperature (490 K) to
room temperature (298 K) with
linear cooling rates ranging from
10−12 to 1012 K/s. For extremely
slow cooling rates (< 10−9 K/s),
the system never departs from the
equilibrium supercooled liquid
line
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Fig. 11 Volume-temperature
diagrams for three selenium
systems cooled from the melting
temperature (490 K) to room
temperature (298 K) at rates of
1012, 1, and 10−12 K/s
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supercooled liquid; glasses form for all of the faster cooling rates. We observe an Arrhenius
dependence of molar volume with respect to cooling rate, in excellent agreement with the
experimental findings of Moynihan and coworkers [36]. The complete volume-temperature
curves for three of the cooling rates (10−12, 1, and 1012 K/s) are shown in Fig. 11. Using the
master equation technique described above, the computation time is approximately equal for
all cooling rates.

These simulations of selenium were performed using potentials based on ab initio simula-
tions [35,37]. Hence, the model offers truly predictive calculations of measurable thermody-
namic properties without any fitting parameters. As we have demonstrated with selenium, the
model is directly applicable to realistic glass-forming compositions. In addition, it incorpo-
rates the full thermal history of the system from the equilibrium liquid state through the glass
transition. As shown in Fig. 12, this approach can also be used to simulate the long-time ageing
behavior of glass. Finally, we note that our model of selenium has been validated against the
experimental measurements of Varshneya and coworkers [38,39] for molar volume, thermal
expansion coefficient, and viscosity. For more details, please see Ref. [35].
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Fig. 12 Long-time ageing of the
selenium glass during an
isothermal hold at room
temperature. The glass undergoes
significant relaxation, but not full
equilibration, on the time scale of
years
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5 Nature of the glassy state

The enthalpy landscape approach has enabled a number of significant insights into the nature
of the glass transition and the glassy state. In this section we review several of these new
insights and discuss their implications for our understanding of glass.

5.1 Continuously broken ergodicity and the residual entropy of glass

One of the most common assumptions in statistical mechanics is that of ergodicity, which
asserts the equivalence of time and ensemble averages of the thermodynamic properties of
a system. Ergodicity implies that, given enough time, a system will explore all allowable
points of phase space. The question of ergodicity is really a question of time scale. At high
temperatures, the internal relaxation time scale of a liquid is small compared to an external
observation time scale, i.e., tint < tobs . When the liquid is cooled, tint increases as the kinetics
of the system slow down. The glass transition occurs when the internal relaxation time is
equal to the external observation time, i.e., tint = tobs . The glassy state itself is necessarily
nonergodic, since at low temperatures tint > tobs . Thus, the glass transition entails a loss of
ergodicity as the ergodic liquid is cooled to a nonergodic glassy state.

In a landmark 1982 paper, Palmer [40] proposed that a glassy system can be described in
terms of mutually inaccessible regions (termed “components” ) that meet the conditions of
confinement and internal ergodicity. Confinement indicates that transitions are not allowed
between components on the given observation time scale. The condition of internal ergodicity
states that ergodicity holds within a given component. As a result, ergodic statistical mechan-
ics can be applied within each of the individual components, and the overall properties of the
nonergodic system can be computed using a suitable average over these components. With
this approach, glass is said to exhibit “broken ergodicity.” This has important implications
related to the entropy of a glassy system. Before proceeding, it is useful to review some
common definitions of entropy, following the terminology of Goldstein and Lebowitz [41]:

1. The thermodynamic entropy of Clausius, given by

d S = d E

T
, (72)
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where E is internal energy and T is absolute temperature. This definition of entropy is
applicable only for equilibrium systems and reversible processes.

2. The Boltzmann entropy,

SB = k ln �B , (73)

applicable to the microcanonical ensemble, where �B is the volume of phase space (i.e.,
the number of microstates) visited by a system to yield a given macrostate.

3. The Gibbs or “statistical” entropy,

S̄ = −k
∑

i

pi ln pi , (74)

where pi gives the probability of occupying microstate i , and the summation is over all
microstates. Here, the probabilities are computed based on an ensemble average of all
possible realizations of a given system. With the assumption of ergodicity, the ensem-
ble-averaged values of pi are equal to the time-averaged values of pi .

One particular point of confusion in the glass science community relates to the applica-
tion of Eq. (72) in conjunction with differential scanning calorimetry (DSC) experiments to
compute the entropy of a system on both cooling and heating through the glass transition
[16]. This results in two main findings: (a) there is no change in entropy at the laboratory
glass transition, and (b) glass has a positive residual entropy at absolute zero. We argue that
these results are incorrect since glass is not an equilibrium materials and the glass transition
is not a reversible process [42]; hence, Eq. (72) cannot be applied. Moreover, the ergodic
formula for Gibbs entropy, which approximately equals the thermodynamic entropy [43],
cannot be used since it cannot account for the defining feature of the glass transition, viz., the
breakdown of ergodicity. Using the enthalpy landscape approach and the concept of broken
ergodicity, the glass transition must entail a loss of entropy rather than a “freezing in” of
entropy. Furthermore, the entropy of glass at absolute zero is always zero (in the classical
limit).

With Palmer’s conditions of confinement and internal ergodicity, we can apply the Gibbs
definition of entropy within each individual component α:

Sα = −k
∑
i∈α

pi

Pα

ln
pi

Pα

, (75)

where the probability of occupying component α, Pα , is the sum of the probabilities of
occupying the various microstates within that component:

Pα =
∑
i∈α

pi . (76)

The configurational entropy of the system as a whole is simply a weighted sum of the Gibbs
entropies of the individual components:

〈S〉 =
∑
α

Sα Pα = −k
∑
α

∑
i∈α

pi ln
pi

Pα

. (77)

Equation (77) gives the entropy of the system accounting for the breakdown of ergodicity
at the glass transition. If the nonergodic nature of glass were not accounted for, the entropy
would be given by direct application of the statistical formula of Eq. (74).
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The difference between the statistical entropy and the nonergodic glassy entropy of
Eq. (77) is called the “complexity” of the component ensemble [40] and is given by

I = S̄ − 〈S〉 = −k
∑
α

Pα ln Pα. (78)

The complexity is a measure of the nonergodicity of a system. At absolute zero, the glass is
trapped in a single microstate; here, each microstate is itself a component, and the entropy is
necessarily zero. Hence, the complexity adopts its maximum value of I = S̄. For a completely
ergodic system (e.g., at high temperatures or for long observation times), all microstates are
part of the same component, and the complexity is zero. The process of ergodicity-breaking,
as occurs at the glass transition, necessarily results in a loss of entropy (and increase in
complexity) as the phase space divides into mutually inaccessible component.

Recently, we have generalized the Palmer approach to account for a continuous, rather
than sudden, breakdown of ergodicity at the glass transition [44] (such as would occur with
normal laboratory glass formation using a finite cooling rate). This generalization is accom-
plished by relaxing the assumption of confinement. Suppose that we make an instantaneous
measurement of the microstate of a system at time t ′. The act of measurement causes the
system to “collapse” into a single microstate i with probability pi

(
t ′
)
. In the limit of zero

observation time, the system is confined to one and only one microstate and the observed
entropy is necessarily zero. However, the entropy becomes positive for any finite observation
time, tobs , since transitions between microstates are not strictly forbidden (except at absolute
zero, barring quantum tunneling). The question we seek to answer is, “What is the entropy
of the system over the observation window

[
t ′, t ′ + tobs

]
?”

We can answer this question by following the dynamics of a system whose basin is known
at t ′, the beginning of the observation window. Let fi, j (t) be defined as the conditional prob-
ability of the system occupying basin j after starting in a known basin i and subsequently
evolving for some time t , accounting for the actual transition rates between microstates. The
conditional probabilities satisfy

�∑
j=1

fi, j (t) = 1, (79)

for any initial state i and for all time t . Hence, fi, j (tobs) gives the probability of transitioning
to basin j after an initial measurement in basin i and evolving through an observation time
tobs . The configurational entropy associated with collapsing into initial state i is therefore:

Si = −k
�∑

j=1

fi, j (tobs) ln fi, j (tobs) . (80)

This represents the entropy of one possible realization of the system and corresponds roughly
to Palmer’s component entropy of Eq. (75); however, we have not made any assumptions
about confinement or partitioning of the enthalpy landscape into components. Note that while
the above equation is of the same form as the Gibbs entropy of Eq. (74), the value of fi, j (tobs)

above gives the probability of the system transitioning from an initial state i to a final state j
within a given observation time tobs . The probability pi in the Gibbs formulation represents
the ergodic limit of tobs → ∞; hence, pi represents an ensemble-averaged probability of the
system occupying a given state and does not account for the finite transition time required to
visit a state, which may be long compared to the observation time scale.
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The expectation value of entropy at the end of the observation window
[
t ′, t ′ + tobs

]
is

simply the weighted sum of entropy values for all possible realizations of the system:

〈S〉 =
�∑

i=1

Si pi
(
t ′
) = −k

�∑
i=1

pi
(
t ′
) �∑

j=1

fi, j (tobs) ln fi, j (tobs) . (81)

With this approach, there is no need to define components or metabasins of any kind. By
considering all possible configurations of the system and the actual transition rates between
basins, this approach can be applied to any arbitrary energy landscape and for any tempera-
ture path. It is thus suitable for modeling systems in all regimes of ergodicity: fully ergodic,
fully confined, and everything in between.

With Eq. (81), the configurational entropy of a system is a function of not only the system
itself, but also an external observation time tobs imposed on the system. The imposition of
this external observation time creates a kinetic constraint, which causes the breakdown of
ergodicity when tint > tobs . The implication is that the glassy state only exists when there is
an external observer who observes the system on a time scale shorter than the relaxation time
scale of the system. If there are two observers who monitor the system on highly disparate
time scales, one observer could see a glass while the other sees an ergodic supercooled liquid.
Hence, Eq. (81) captures the very essence of what is meant by “glass.” With this equation,
the entropy of the system is zero both in the limits of tobs → 0 and T → 0. The first case
(tobs → 0) is in agreement with Boltzmann’s notion of entropy as the number of microstates
visited by a system to yield a given macrostate [41,45,46]: with zero time the system can
visit only a single microstate—no transitions are allowed since there is no time for them to
occur. The second case (T → 0) is due to the system being kinetically trapped in one and
only one microstate. Since other microstates are never visited, they cannot contribute to the
overall entropy of the system [47]. Both of these limits are equivalent in the Palmer model of
discontinuously broken ergodicity [40], where each microstate would have its own separate
component; no transitions are allowed among the components, so the entropy is necessarily
zero.3

For any positive temperature, the limit of tobs → ∞ yields an equilibrated system with
complete restoration of ergodicity. In the Palmer view [40], this is equivalent to all microstates
being members of the same component with transitions freely allowed among all microstates.
Both the Palmer approach and our generalization above yield the same result as the Gibbs
formulation of entropy in the limit of tobs → ∞, i.e., for a fully ergodic, equilibrated system.

Implementation of the above approach requires calculation of the conditional probability
factors fi, j , which can be accomplished using the hierarchical master equation approach
described in Ref. [44]. Figure 13 plots the computed nonergodic glassy entropy of Eq. (81)
and ergodic statistical entropy of Eq. (74) for a simple model landscape described in Ref.
[44]. This figure shows that the departure of the nonergodic and ergodic entropies from equi-
librium exhibit markedly different behaviors. Using the ergodic statistical formulation of
Eq. (74), the glass transition corresponds to a freezing of the basin occupation probabilities
and hence a freezing of the entropy. However, when we account for the continuous break-
down of ergodicity, the glass transition results in a smooth loss of entropy as the system
becomes confined to smaller regions of phase space. Whereas the ergodic formula predicts
a large residual entropy of the glass at absolute zero, the nonergodic formalism of Eq. (81)
correctly predicts zero entropy at absolute zero.

3 The fact that glass has zero entropy at absolute zero does not imply that glass adopts a crystalline configu-
ration. Rather, the glass is kinetically trapped in one of many possible non-crystalline configurations.
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Fig. 13 Evolution of glassy,
statistical, and equilibrium
entropy values with respect to
temperature for a simple model
landscape using an observation
time is 0.01 s. Glassy entropy is
computed with Eq. (81)
accounting for broken ergodicity,
and statistical entropy is
computed under the ergodic
assumption using Eq. (74)
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Finally, we note that the concept of continuously broken ergodicity also has important
implications beyond entropy, as it play a key role in determining the dynamic properties of
glass-forming systems (e.g., viscosity) at and below the glass transition range [35].

5.2 Supercooled liquid fragility

Supercooled liquids can be classified as either “strong” or “fragile,” depending on their
observed scaling of shear viscosity η with temperature. According to Angell’s criterion
[48–51], strong liquids exhibit a scaling that is close to the Arrhenius form,

η = η0 exp

(
�H

kT

)
, (82)

where �H is an activation barrier to flow and η0 is a constant. When the logarithm of
viscosity is plotted as a function of inverse temperature, as in Fig. 14, strong liquids will
have a near-straight-line relationship. Examples of strong liquids include silica (SiO2) and
germania (GeO2).

Fragile liquids, on the other hand, exhibit a large departure from this straight-line rela-
tionship. In this case, the viscosity-temperature relationship can often be described by the
Vogel-Fulcher-Tamman (VFT) relation,

η = η0 exp

[
�H

k (T − T0)

]
, (83)

where T0 is a constant. Examples of fragile liquids include o-terphenyl, heavy metal halides,
and calcium aluminosilicates.

Stillinger [21] has proposed a direct link between the fragility of a supercooled liquid
and the topography of the underlying potential energy or enthalpy landscape. He suggests
that the Arrhenius behavior of strong liquids indicates that their energy landscape has a
rather uniform roughness, as shown in Fig. 15(a). In contrast, fragile liquids are likely to
have a highly non-uniform topography in their potential energy landscape, as indicated in
Fig. 15(b). At high temperatures a fragile liquid is able to flow among basins with relatively
low activation barriers, indicating the rearrangement of a small number of molecules. As the
fragile liquid is supercooled, it samples deeper basins with a greater separation in the energy
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Fig. 14 Variation of viscosity with normalized inverse temperature Tg/T for strong and fragile liquids.
Reproduced from Varshneya [16]

landscape. Flow between these basins requires the cooperative rearrangement of many mol-
ecules and occurs less frequently than the higher temperature relaxations. Hence, as a fragile
liquid is supercooled it encounters continually higher and higher barriers to shear flow.

As noted by Angell [52], a higher value of fragility leads to a sharper, more well-defined
glass transition. This is also consistent with Stillinger’s picture, since with a higher fragility
the effective energy barrier for inter-basin transitions increases more rapidly as the system is
cooled through the glass transition.

It is interesting to consider that in the limit of infinite fragility the energy barriers become
effectively infinite at the glass transition temperature, prohibiting any structural relaxation
and resulting in a perfectly sharp (ideal) glass transition. Such an ideal glass transition would
yield a discontinuity in the slopes of the volume and enthalpy curves. An ideal glass transition
also implies a complete and discontinuous breakdown of ergodicity at the glass transition
temperature.

The subject of an ideal glass transition has been considered previously by Gibbs and
DiMarzio [9] and others seeking to develop a thermodynamic model of the glass transi-
tion [16]. The appeal of the ideal glass transition is that it represents an ideal second-order
Ehrenfest phase transition. With an ideal glass transition, the full thermal history of the glass
can be accounted for using just a single order parameter. While this allows for a greatly
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Fig. 15 Schematic representation of the potential energy landscape for (a) “strong” and (b) “fragile” liquids.
Reproduced from Stillinger [21]

simplified picture of the glassy state, an ideal glass transition can occur only in the limit of
infinite fragility. Hence, a thermodynamic model of the glassy state that uses just a single
order parameter is insufficient to capture accurately the full effect of thermal history on glass
properties.

We note also that supercooled liquid fragility is well correlated with the magnitude of the
change in second-order thermodynamic variables (such as heat capacity and thermal expan-
sion coefficient) during the glass transition. For example, Fig. 16 shows that fragile liquids
experience a much greater change in heat capacity during the glass transition than strong
liquids. This relationship can be explained easily in the enthalpy landscape framework. Since
a more fragile system experiences a greater increase in transition energy barrier as it cools
through the glass transition, there is a greater and more sudden loss of ergodicity compared
to a less fragile system. As a result, the system becomes confined to a smaller region of
phase space, allowing for fewer fluctuations in enthalpy and volume. Since second-order
thermodynamic properties are directly related to fluctuations in first-order properties such as
enthalpy and volume, it is natural that more fragile liquids would experience a greater change
in second-order properties through the glass transition.

5.3 The Kauzmann paradox and the ideal glass transition

One of the decades-old “mysteries of glass science” is that of the Kauzmann paradox. In a
landmark paper, Kauzmann [53] plotted the difference in configurational entropy between
several supercooled liquids and their corresponding crystalline states. He extrapolated the
curves to low temperatures, such as shown in Fig. 17 for glycerol, and found that the entropy
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Fig. 16 Heat capacity as a function of normalized temperature, T/Tg , for various strong and fragile liquids.
Reproduced from Varshneya [16]

difference becomes zero at a finite temperature TK , the Kauzmann temperature. Continued
extrapolation below TK would yield negative configurational entropy for the supercooled
liquid, in violation of the third law of thermodynamics. Examples of this so-called “Kauz-
mann paradox” are shown in Fig. 18.

Kauzmann himself proposed a resolution to this paradox, arguing that the energy barrier
to crystallization must decrease to the same order as the thermal energy. In this way crystal-
lization would be inevitable at low temperatures, and the issue of negative entropy would be
completely meaningless. Figure 19 illustrates this point of view in terms of total configura-
tional plus vibrational entropy. The entropy of an infinitely slowly cooled liquid would meet
that of the crystalline state at TK and then follow it down to absolute zero. Other researchers,
including Gibbs and DiMarzio [9], have proposed that the Kauzmann temperature represents
a lower limit to the glass transition temperature of a system. An infinitely slowly cooled sys-
tem would thus achieve the “ground state” of disordered packing at T = TK and be unable
to undergo any further rearrangements of its structure. In this manner, the configurational
energy of a system remains at zero between the Kauzmann temperature and absolute zero.

Greater insight into the question of the Kauzmann paradox can be gained using the
energy landscape approach. As shown by Stillinger [21] in Fig. 20, it is not possible for the
configurational entropy of a supercooled liquid to reach zero at finite temperature, since some
transitions are always allowed between basins. The entropy of a supercooled liquid reaches
zero only at absolute zero, when it is confined to just a single microstate. Hence, the whole
notion of the “Kauzmann paradox” is based on an incorrect extrapolation of the entropy of
a supercooled liquid at low temperatures. The correct extrapolation of entropy is as shown
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Fig. 17 Entropy of supercooled and glassy glycerol relative to that of the crystal and normalized to the entropy
of fusion S f . Reproduced from Varshneya [16]

Fig. 18 Examples of the
Kauzmann paradox, where
supercooled liquid entropies
apparently extrapolate to negative
values at low temperature.
Reproduced from Varshneya [16]

in Fig. 20. This view is supported by the recent experiment of Huang, Simon, and McKenna
[54], who measured the heat capacity of poly(α-methyl styrene) at very low temperatures.

While Stillinger successfully debunked the notion of a Kauzmann paradox, he does not
dismiss the utility of a Kauzmann temperature at which the entropies of two different phases
of a material become equal. In fact, Stillinger extends the concept of a single Kauzmann
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Fig. 19 Absolute entropy of a supercooled liquid and its corresponding crystal. Reproduced from Varshneya
[16]

Fig. 20 Extrapolations of potential energy and configurational entropy below the glass transition temperature,
Tg , and Kauzmann temperature, TK , according to the Stillinger model of inherent structures [21]. Reproduced
from Varshneya [16]

temperature to multiple “Kauzmann points” in the temperature-pressure plane of a system
[55,56]. Consider the Claussius-Clapeyron equation that describes the slope of the melting
curve in the temperature-pressure plane:
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Fig. 21 Example melting curve in the temperature-pressure plane. Reproduced from Stillinger and
Debenedetti [56]

d Pm (T )

dT
= Sl − Sc

Vl − Vc
. (84)

Here, Pm (T ) is the temperature-dependent melting pressure, and Sl,c and Vl,c are the molar
entropies and volumes of the liquid and crystalline phases, respectively. Figure 21 shows
an example melting curve ABC DE F to demonstrate possible melting phenomena. The
“normal” melting scenario, in which the molar volume increases upon melting of a crystal,
occurs between points B and C . The intervals between C and D and between E and F
show the case where the molar volume decreases upon melting of a crystal, while again heat
is absorbed. This corresponds to the familiar case of ice melting to form liquid water. The
intervals between A and B and between D and E show the perhaps unfamiliar case of inverse
melting, in which an isobaric heating of the system causes the liquid to freeze into the crys-
talline phase. Materials that exhibit inverse melting behavior include the helium isotopes 3He
and 4He at low temperatures and the polymeric substance poly(4-methylpentene-1), denoted
P4MP1 [56].

Points B, D, and E in Fig. 21 are all points of zero slope in the melting curve:

d Pm (T )

dT
= 0 (B, D, E) . (85)

Since the difference in molar volumes, Vl − Vc, can never be infinite, these points must have
vanishing entropy change:

Sl − Sc = 0 (B, D, E) . (86)

Hence, points B, D, and E are all “Kauzmann points” occurring naturally in the tempera-
ture-pressure plane, and the existence of these Kauzmann points does not depend upon or
necessitate the existence of an ideal glass transition. Since the chemical potentials of the
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coexisting liquid and crystal phases are equal, the Kauzmann points must also correspond to
points of vanishing enthalpy, �H = T �S. Stillinger and Debenedetti [56] show that these
Kauzmann points lie on a general “Kauzmann curve,”(

d P

dT

)
�S=0

= C p,l − C p,c

T (αl Vl − αcVc)
, (87)

where C p is heat capacity and α is the isobaric thermal expansion coefficient.

5.4 Fictive temperature and the glassy state

The macroscopic state of a system is defined based on the values of its observable properties.
For a glass, these property values are dependent on thermal history. As such, the equi-
librium macrostate variables (e.g., temperature and pressure) are not sufficient to describe
a glassy state; additional state variables are necessary. In 1932, Tool and Eichlin [4,57]
proposed a description of glass in terms of an equivalent equilibrium liquid state at a dif-
ferent temperature. The temperature of this equivalent liquid state was originally termed
the “equilibrium temperature” but later became known as the “effective temperature” or,
more commonly, the “fictive temperature,” denoted T f . Ideally, the concept of fictive tem-
perature would allow for the difficult glassy problem to be solved in terms of a simpler
equilibrium approach. However, Ritland [58] demonstrated in 1956 with his famous “cross-
over” experiments that two glasses having different thermal histories but the same T f are
actually in two different macroscopic states (as they subsequently relaxed differently). Rit-
land’s result implied that a single additional parameter, T f , is inadequate to describe the
state of a glass. This conclusion has been reinforced recently by simulation studies [59,
60]. However, the question remained as to whether the microscopic state of a glass can be
described using a distribution of fictive temperatures. In other words, can the nonequilibrium
glassy state be described in terms of a mixture of supercooled liquid states? Recently, we
have addressed this question in a general sense within the enthalpy landscape framework
[61].

Suppose we have a probability distribution of fictive temperatures, h
(
T f

)
, which satisfies:

∫ ∞

0
h

(
T f

)
dT f = 1. (88)

For a infinitely fast quench, the glass can be described fully using a single fictive temperature
and the fictive temperature distribution is a Dirac delta function:

h
(
T f

) = δ
(
T f − Tquench

)
. (89)

A glass formed in the laboratory with a finite cooling rate would, in principle, have some
h

(
T f

)
distribution with a nonzero width. A more slowly cooled glass would likely have

a wider distribution of fictive temperatures, covering the full glass transition range. If the
concept of a fictive temperature distribution is meaningful to describe the microscopic state
of a glass, then the occupation probabilities pi of any glass with any thermal history T (t)
could be described using an average of equilibrium states corresponding to the various fictive
temperatures. This can be expressed as:

pi [T (t)] =
∫ ∞

0
h

[
T f , T (t)

]
peq

i

(
T f

)
dT f . (90)

The left hand side of the equation gives the nonequilibrium probability of occupying basin
i after evolving through the particular thermal history given by T (t). The integral on the
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right hand side of the equation gives a weighted average of equilibrium probabilities for
basin occupation at the various fictive temperatures. In other words, the integral provides for
an arbitrary mixing of equilibrium states. The weighting function h

[
T f , T (t)

]
is the fictive

temperature distribution, satisfying Eq. (88), which depends on the thermal history T (t) of
the glass.

If Eq. (90) is valid, then there would be a real physical significance to the concept of fic-
tive temperature distribution since the glassy state could be described in terms of a distribu-
tion of equilibrium states. This would enable computation of the thermodynamic properties
of a glass using just the physical temperature T and the distribution of fictive tempera-
tures h

[
T f , T (t)

]
. To test the validity of Eq. (90) we consider the selenium system of Ref.

[35] using a linear cooling path to 250 K at a rate of 1 K/min. As the system is cooled,
the probabilities pi (t) evolve in time according to the coupled set of master equations in
Eq. (35).

To make use of Eq. (90), we must first compute the equilibrium occupation probabili-
ties peq

i (T ) for the various basins. Figure 22(a) plots the equilibrium probabilities of the
eleven most significant basins for the temperature range of interest (between 250 and 400 K).
Each of these basins corresponds to a different molar volume, as indicated in the legend.
As the temperature decreases, the basins with lower molar volume become more favorable.
The probabilities of the individual basins display peaks owing to a trade-off of entropy (i.e.,
degeneracy) and enthalpy effects.

Figure 22(b) plots the basin probabilities for the glass formed by cooling at a rate of
1 K/min. In order to test Eq. (90), we optimize the fictive temperature distribution h

[
T f , T (t)

]
at each new temperature T to provide a best fit of the nonequilibrium probabilities in
Fig. 22(b) based on a mixture of equilibrium probabilities in Fig. 22(a). At T = 400 K,
the system is in equilibrium, so h

[
T f , T (t)

]
reduces to a Dirac delta function. As the sys-

tem is cooled, the fictive temperature distribution broadens and lags behind the physical
temperature. At low temperatures the distribution becomes frozen. Figure 22(c) shows the
result of this optimization, i.e., the best possible fit of the nonequilibrium glassy probabil-
ities based on the right hand side of Eq. (90). Comparing parts (b) and (c) of the figure, it
is clear that the glass exhibits a much narrower distribution of basin probabilities pi com-
pared to the fictive temperature representation. In fact, it is not possible to construct a system
with such a narrow distribution of basin probabilities based only on a mixing of equilibrium
states.

Figure 23 shows the evolution of the breadth of the basin probability distribution as a
function of temperature. Whereas the nonequilibrium probability distribution undergoes a
significant narrowing through the glass transition regime, the breadth of the “best fit” fictive
temperature-based distribution remains fairly constant. The implication is that the fictive tem-
perature description of the glassy state does not capture accurately the fluctuations in density
and enthalpy observed in the glassy state. This is consistent with the well known behavior
of second-order thermodynamic properties (e.g., heat capacity and thermal expansion coef-
ficient) through the glass transition range. While these second-order properties show marked
changes at the glass transition for a nonequilibrium system, the equilibrium supercooled
liquid values undergo no such change [16] .

Hence, we conclude that the concept of a fictive temperature distribution has no physical
basis for describing the microscopic state of a realistic glass. The fictive temperature rep-
resentation is rigorous only in the special case of an ideal glass transition, which is never
possible in practice. The nonequilibrium glassy state is fundamentally different from the
equilibrium liquid state, and the concept of fictive temperature should not be employed
by researchers seeking a realistic microscopic description of glass. The inherent inequality
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Fig. 22 (a) Equilibrium
distribution of basin probabilities
for supercooled liquid selenium.
(b) Distribution of basin
probabilities for selenium glass
prepared with a cooling rate of
1 K/min. (c) The best
approximation of the above glass
using fictive temperature
mapping. For clarity, every tenth
data point is plotted
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between the glassy and liquid states has been argued previously by Gupta and Mauro [3]
based on the nonergodic nature of glass. Here, by showing that the basin probabilities pi of
a glass cannot be represented in terms of a linear combination of equilibrium pi values, we
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Fig. 23 Computed distribution
of molar volume probabilities for
selenium glass (black line) and
best fit using fictive temperature
mapping (gray line) for physical
temperatures of (a) 318 K and (b)
250 K, assuming a cooling rate of
1 K/min. (c) Plot of the full width
at half maximum (FWHM) of the
molar volume probabilities as a
function of temperature. The
FWHM of the nonequilibrium
distribution falls dramatically as
the system is cooled through the
glass transition
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extend this argument to encompass also the nonequilibrium nature of the glassy state. Hence,
the glassy state is fundamentally different from the liquid based on both its nonergodic and
nonequilibrium features.
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6 Conclusions

The enthalpy landscape formalism offers a powerful approach for modeling the glass transi-
tion range behavior of realistic glass-forming systems on laboratory time scales. Implemen-
tation of the enthalpy landscape approach requires a mapping of the continuous landscape to
a discrete set of inherent structures and transition states. Several new simulation techniques
have been developed to enable this mapping of the landscape and to solve for the dynamics
of the system on long time scales. The enthalpy landscape approach offers several important
insights into the nature of the glass transition and the glassy state:

– The laboratory glass transition represents a continuous breakdown of ergodicity as the
internal relaxation time scale of the system exceeds an external observation time. This
breakdown of ergodicity must be accompanied by a loss of entropy as the system becomes
confined to a small subset of phase space. The entropy of glass is zero at absolute zero.

– The fragility of a supercooled liquid is directly related to the distribution of transition bar-
riers in the enthalpy landscape. A more fragile liquid leads to a greater and more sudden
breakdown of ergodicity at the glass transition. Hence, a more fragile liquid will have a
sharper glass transition accompanied by a larger change in second-order thermodynamic
properties such as heat capacity and thermal expansion coefficient. A perfectly sharp
(i.e., ideal) glass transition can be obtained theoretically in the limit of infinite fragility.

– The Kauzmann paradox is the result of improper extrapolation of the configurational
entropy of supercooled liquids at low temperature. In the enthalpy landscape approach,
the configurational entropy of a supercooled liquid becomes zero only at absolute zero,
and no conflict with the third law of thermodynamics arises. However, the existence of
Kauzmann points in the temperature-pressure plane where the entropy of two separate
phases is identical is not negated.

– The glassy state cannot be described in terms of a mixture of supercooled liquid states.
Hence, there is no microscopic meaning to the concept of a fictive temperature distribu-
tion for a laboratory-produced glass. As a nonequilibrium, nonergodic material, glass is
in a fundamentally different state than the supercooled liquid.
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Abstract Choice of modulation format plays a critical role in the design and perfor-
mance of fiber optic communication systems. We discuss the basic physics of electro-optic
phase and amplitude modulation and derive model transfer functions for ideal and non-ideal
Mach-Zehnder modulators. We describe the generation and characteristics of the standard
nonreturn-to-zero (NRZ) modulation format, as well as advanced formats such as return-
to-zero (RZ), carrier-suppressed RZ (CSRZ), duobinary, modified duobinary, differential
phase-shift keyed (DPSK), and return-to-zero DPSK (RZ-DPSK). Finally, we discuss the
relative merits of these formats with respect to a variety of system impairments.
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1 Introduction and background

Recent advances in glass science and processing technology have enabled the development
of low-loss silica fibers for long-haul transmission of optical signals. Various types of mod-
ulation formats can be used to encode the data, and the relative merits of these modulation
formats is currently a topic of great interest, as modern optical communication systems are
characterized by high bit rates and complex channel and network architecture. Modeling and
simulation play a critical role in evaluating the impact of modulation format on the result-
ing system performance and reliability. With modeling it is possible to isolate the effects
of different types of system impairments, including linear phenomena (such as dispersion
and amplifier noise) and nonlinear phenomena (such as self-phase modulation, cross-phase
modulation, and four-wave mixing). Modeling thus provides great insight into the physics of
optical communication systems and enables cost-effective optimization of system parameters
to maximize performance.
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In this paper, we begin with an overview of the electro-optic effect and then derive transfer
functions for electro-optic modulators. We describe in detail how to model each of the follow-
ing modulation formats: nonreturn-to-zero (NRZ), return-to-zero (RZ) with different duty
cycles, chirped RZ (CRZ), carrier-suppressed RZ (CSRZ), duobinary, modified duobinary,
differential phase-shift keyed (DPSK), and return-to-zero DPSK (RZ-DPSK). Finally, we
discuss the relative merits of these formats with respect to a variety of linear and nonlinear
system impairments.

2 Modulation techniques

In the most general sense, modulation involves impressing a prescribed time-dependent wave-
form upon a continuous-wave (CW) signal. In the context of optical communication systems,
the CW signal is typically monochromatic light from a laser with a wavelength suitable for
low-loss propagation (around 1300–1600 nm). The CW light is modulated using an electrical
signal with a bit rate of 2.5–40 Gb/s.

Optical modulation can be accomplished using a number of different techniques, includ-
ing direct modulation, electro-absorption modulation, and electro-optic modulation. In this
report, we will focus on electro-optic modulation techniques because they yield the highest
quality signal and are thus most suitable for generating advanced modulation formats. In par-
ticular, we will examine electro-optic phase modulators suitable for generating phase-shift
keyed (PSK) formats, and electro-optic amplitude modulators used for generating amplitude-
shift keyed (ASK) formats.

2.1 The electro-optic effect

Electro-optic phase and amplitude modulation is based on a phenomenon where the refractive
index of a material changes when it is subjected to an applied electric field. This electro-optic
effect [1] is caused when the application of a dc or low-frequency electric field distorts the
positions, orientations, or shapes of atoms or molecules in a material, thereby resulting in an
increase in its refractive index. Generally, the electro-optic effect comes in one of two forms:

1. The refractive index changes linearly with the applied electric field, a form known as the
linear electro-optic effect or the Pockels effect; or

2. The refractive index changes quadratically with the applied electric field, known as the
quadratic electro-optic effect or the Kerr effect.

Hence, the refractive index of an electro-optic material can be written as

n(E) = n0 + a1 E + 1

2
a2 E2, (1)

where n0 is the refractive index with no applied field, and a1,2 are the expansion coefficients
of the refractive index for weak fields. Clearly the second and third terms in Equation (1)
correspond to the Pockels and Kerr effects, respectively.

The most common material used for electro-optic modulators is crystalline lithium nio-
bate (LiNbO3), wherein the Kerr effect is negligible and the Pockels effect dominates, i.e.,
a2 � a1. Thus, we may confine our attention to Pockels media and rewrite Equation (1) as

n(E) ≈ n0 − 1

2
�n3

0 E, (2)
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where � = −2a1/n3
0 is the Pockels coefficient and has typical values in the range of 10−12

to 10−10 m/V. Other Pockels media include crystalline NH4H2PO4, KH2PO4, LiTaO3, and
CdTe [1].

2.2 Phase modulators

Perhaps the simplest application of the Pockels effect is in the use of electro-optic phase
modulators. When a beam of CW light travels through a Pockels medium of length L under
an applied electric field E , the light undergoes a phase shift of

ϕ = ϕ0 − π
�n3

0 E L

λ0
, (3)

where λ0 is the free-space wavelength of the light and ϕ0 = 2πn0 L/λ0. If the electric field
is obtained by applying a voltage V across two faces of the Pockels medium separated by
distance d , then E = V/d and Equation (3) yields

ϕ = ϕ0 − π
V

Vπ

. (4)

The quantity

Vπ = d

L

λ0

�n3
0

(5)

is termed the half-wave voltage [1] of the modulator and represents the magnitude of the
applied voltage required to induce a phase shift of π .

Thus, one can modulate the phase of a CW optical signal by passing it through a Pockels
medium subjected to a varying applied voltage V (t). The key parameter that characterizes
an electro-optic phase modulator is the half-wave voltage, Vπ , which depends on material
properties such as n0 and �, the shape of the device in terms of its aspect ratio d/L , and
the optical wavelength λ0. Given an input optical signal of E0(t), the output signal from the
phase modulator is

E (t) = E0 (t) eiπV (t)/Vπ . (6)

If we define a normalized applied voltage,

V0 (t) = V (t)

Vπ

, (7)

then we can rewrite Equation (6) as

E (t) = E0 (t) eiπV0(t). (8)

A schematic diagram of an electro-optic phase modulation is shown in Fig. 1.

2.3 Amplitude modulators

The ability of an electro-optic device to manipulate the phase of an optical field is also key to
manipulating its amplitude. Consider, for example, a simple extension of the phase modulator
setup using a Mach-Zehnder interferometer, illustrated in Fig. 2. The interferometer splits an
input signal E0 (t) into two paths of equal length L . Since the waveguides are composed of
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E0(t) E(t)

V(t)

Pockels Medium (e.g., LiNbO3)

Fig. 1 Schematic diagram of an electro-optic phase modulator

E0(t) E(t)

V1(t) = f1V(t)

V2(t) = f2V(t) + Vb

Fig. 2 Schematic diagram of a Mach-Zehnder modulator

LiNbO3 or another Pockels medium, an applied electric field can be used to change the refrac-
tive indices of the two arms relative to each other. The recombined field E (t) at the output
of the interferometer is simply the superposition of these two fields. If different voltages are
applied to the two arms of the interferometer, they experience different changes in refractive
index, thereby causing the optical fields to travel at slightly different speeds. Consequently,
there may be a phase shift between the two fields when they are recombined at the output
of the interferometer, leading to destructive interference and a subsequent decrease in the
magnitude of E (t) relative to E0 (t). Thus, a Mach-Zehnder interferometer can be used as an
amplitude modulator by controlling the amount of this destructive interference as a function
of time.

2.3.1 Mach-Zehnder modulation with an ideal branching ratio

At the input of an ideal Mach-Zehnder modulator, the incident optical power is divided
equally between the two arms of the interferometer. In this case, the output optical field is
given by

E (t) = 1

2
E0 (t)

[
eiβ1(t)L + eiβ2(t)L

]
, (9)

where β1 (t) and β2 (t) are the phase shifts per unit length induced in the upper and lower
arms, respectively. Application of Euler’s formula to Equation (9) yields

E (t) = E0 (t)

2
{cos [β1 (t) L] + i sin [β1 (t) L] + cos [β2 (t) L] + i sin [β2 (t) L]} . (10)
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Employing the following trigonometric identities:

cos [β1 (t) L] + cos [β2 (t) L] = 2 cos

[
β1 (t) + β2 (t)

2
L

]
cos

[
β1 (t) − β2 (t)

2
L

]
; (11)

sin [β1 (t) L] + sin [β2 (t) L] = 2 sin

[
β1 (t) + β2 (t)

2
L

]
cos

[
β1 (t) − β2 (t)

2
L

]
; (12)

we obtain

E (t) = E0 (t) cos

[
β1 (t) − β2 (t)

2
L

]
·
{

cos

[
β1 (t) + β2 (t)

2
L

]

+ i sin

[
β1 (t) + β2 (t)

2
L

]}
, (13)

which can be simplified as

E (t) = E0 (t) cos

[
β1 (t) − β2 (t)

2
L

]
exp

[
i
β1 (t) + β2 (t)

2
L

]
. (14)

Let us assume that the two arms of the interferometer are composed of LiNbO3 or another
Pockels medium. Because the electro-optic response is linear, the total phase shift induced
in each arm of the interferometer is directly proportional to the applied voltage. Therefore,
we can write

β1 (t) L = V1 (t) η (15)

and

β2 (t) L = V2 (t) η, (16)

where V1 (t) and V2 (t) are the applied voltages in the upper and lower arms of the interfer-
ometer, respectively, and η is change in refractive index per unit voltage. Substituting these
two equations into Equation (14) yields

E (t) = E0 (t) cos

[
V1 (t) − V2 (t)

2
η

]
exp

[
i

V1 (t) + V2 (t)

2
η

]
. (17)

We typically drive both V1 (t) and V2 (t) with the same voltage function V (t), but at
different magnitudes and with one arm under an additional bias voltage Vb. If f1 and f2 are
the fractions of V (t) applied to each arm, then we can write

V1 (t) = f1V (t) (18)

and

V2 (t) = f2V (t) + Vb. (19)

Expressing Vb in terms of a bias coefficient ξ and the half-wave voltage Vπ , we have

Vb = ξ

2
Vπ . (20)

We substitute this equation into Equation (19) to obtain

V2 (t) = f2V (t) + ξ

2
Vπ .

(21)
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Since the half-wave voltage is defined as the applied voltage leading to a phase shift of π ,
we know that

ηVπ = π. (22)

Hence, if one arm of the interferometer is subjected to a voltage Vπ relative to the other
arm, the output field from the interferometer is zero since it undergoes complete destructive
interference.

We now substitute Equations (18), (21), and (22) into our equation for E (t) to obtain

E (t) = E0 (t) cos

[
π

f1V (t) − f2V (t) − ξ
2 Vπ

2Vπ

]
exp

[
iπ

f1V (t) + f2V (t) + ξ
2 Vπ

2Vπ

]
.

(23)

Algebraic manipulation yields

E (t) = E0 (t) cos

[
π

2

(
( f1 − f2)

V (t)

Vπ

− ξ

2

)]
exp

[
i
π

2

(
( f1 + f2)

V (t)

Vπ

+ ξ

2

)]
,

(24)

and we again define a normalized applied voltage

V0 (t) = V (t)

Vπ

(25)

such that

E (t) = E0 (t) cos

[
π

2

(
( f1 − f2) V0 (t) − ξ

2

)]
exp

[
i
π

2

(
( f1 + f2) V0 (t) + ξ

2

)]
.

(26)

We have now obtained a generalized expression for the output field from a Mach-Zehnder
interferometer in terms of f1 and f2. However, it more common to specify these values in
terms of swing s and chirp α′ parameters, where

s = f2 − f1 (27)

and

α′ = f1 + f2

f1 − f2
= − f1 + f2

s
. (28)

With these definitions, our expression for E (t) becomes

E (t) = E0 (t) cos

[
π

2

(
sV0 (t) + ξ

2

)]
exp

[
−i

π

2

(
sα′V0 (t) − ξ

2

)]
. (29)

2.3.2 Mach-Zehnder modulation with a non-ideal branching ratio

If a Mach-Zehnder modulator has an ideal branching ratio, then the input optical power is
split evenly between the two arms of the interferometer such that half enters the upper arm
and half enters the lower arm. Equation (29) is derived under this assumption; however, in
reality the branching ratio may not be ideal. Let us consider the generalized case where a
fraction a of the input power enters the upper arm and the remaining fraction 1 − a of the
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input power enters the lower arm. The output field from the interferometer in this case is
given by

E (t) = E1 (t) eiβ1(t)L + E2 (t) eiβ2(t)L (30)

= E0 (t)
[
aeiβ1(t)L + (1 − a) eiβ2(t)L

]
. (31)

Substituting Equations (15) and (16) into this equation, we obtain

E (t) = E0 (t)
[
aeiV1(t)η + (1 − a) eiV2(t)η

]
. (32)

Next, we substitute in Equations (18) and (21) to get

E (t) = E0 (t)

[
a exp [i f1V (t) η] + (1 − a) exp

[
i

(
f2V (t) + ξ

2
Vπ

)
η

]]
, (33)

and from Equation (22) we have

E (t) = E0 (t)

[
a exp

[
iπ f1

V (t)

Vπ

]
+ (1 − a) exp

[
iπ

(
f2

V (t)

Vπ

+ ξ

2

)]]
. (34)

Using the normalized voltage in Equation (25), we obtain

E (t) = E0 (t)

[
a exp [iπ f1V0 (t)] + (1 − a) exp

[
iπ

(
f2V0 (t) + ξ

2

)]]
. (35)

Finally, we wish to express our expression for E (t) in terms of swing s and chirp α′ param-
eters, defined in Equations (27) and (28), respectively. From these equations, we can write

f1 = − s
(
1 + α′)

2
(36)

and

f2 = s
(
1 − α′)

2
. (37)

Therefore, we obtain the following expression for the output optical field given a non-ideal
power branching ratio:

E (t) = E0 (t)
{

a exp
[
−i

π

2
s
(
1 + α′) V0 (t)

]

+ (1 − a) exp
[
i
π

2

[
s
(
1 − α′) V0 (t) + ξ

]]}
. (38)

2.3.3 Calculation of extinction ratio

A Mach-Zehnder modulator with a non-ideal branching fraction (a �= 1
2 ) leads to pulses with

a finite extinction ratio X , defined by

X = Imax

Imin
, (39)

where Imax is the maximum intensity of output field (corresponding to a “one” bit) and Imin

is the minimum intensity (corresponding to a “zero” bit). With an ideal Mach-Zehnder mod-
ulator, the intensity of a “zero” bit is Imin = 0 , so X is infinite. A finite extinction ratio
means that the output intensity of a “zero” bit is some finite value Imin > 0, a condition
which necessarily degrades the performance of the system.
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In order to calculate extinction ratio, we must first determine values for Imax and Imin in a
non-ideal Mach-Zehnder modulator. From Equation (38), we see that the normalized output
intensity from such a modulator is

I (t) =
∣∣∣∣ E (t)

E0 (t)

∣∣∣∣
2

(40)

=
∣∣∣a exp

[
−i

π

2
s
(
1+α′) V0 (t)

]
+ (1−a) exp

[
i
π

2

[
s
(
1−α′) V0 (t)+ξ

]]∣∣∣2
(41)

= a2 + (1 − a)2 + 2a (1 − a) cos
[π

2
s
(
1 + α′) V0 (t)

+π

2

[
s
(
1 − α′) V0 (t) + ξ

]]
(42)

= 2a2 − 2a + 1 + 2a (1 − a) cos
[
πsV0 (t) + π

2
ξ
]
. (43)

It follows that

Imax = 2a2 − 2a + 1 + 2a (1 − a) (44)

= 1 (45)

and

Imin = 2a2 − 2a + 1 − 2a (1 − a) (46)

= 4a2 − 4a + 1 (47)

= (2a − 1)2 . (48)

Therefore, extinction ratio can be expressed as a function of a as

X (a) = 1

(2a − 1)2 . (49)

Please note that X (a) → ∞ for the ideal case (when a = 1
2 ). Also, it is common to express

extinction ratio in terms of decibel units:

Xd B (a) = −10 log10
[
(2a − 1)2] . (50)

Given an extinction ratio X , the effective branching fraction a can be calculated by

a = 1

2

(
1 + 1√

X

)
, (51)

or

a = 1

2

(
1 + 10−Xd B/20

)
. (52)

2.3.4 Chirp induced by Mach-Zehnder modulation

Besides extinction ratio, another important parameter governing system performance is the
chirp of the optical pulses. Generally speaking, chirp degrades system performance by broad-
ening the optical spectrum of the signal without adding any new information. The chirp of an
optical signal, α (t), is defined in terms of a ratio between the phase and intensity modulations
[2–4],

α (t) = − ∂φ(t)
∂t

1
2I (t)

∂ I (t)
∂t

. (53)
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Assuming an ideal Mach-Zehnder modulator where the output optical field is governed by
Equation (29), the phase of the signal is given by

φ (t) = −π

2

(
sα′V0 (t) − ξ

2

)
. (54)

Hence, we can calculate the phase modulation as

∂φ (t)

∂t
= −π

2

∂

∂t

(
sα′V0 (t) − ξ

2

)
(55)

= −π

2
sα′ ∂V0 (t)

∂t
. (56)

Equation (29) also gives us

I (t) = [E0 (t)]2 cos2
[

π

2

(
sV0 (t) + ξ

2

)]
, (57)

such that

E (t) = √
I (t) exp [iφ (t)] . (58)

We can calculate the chirp, α (t), by taking the time derivative of I (t):

∂ I (t)

∂t
= 2E0 (t)

∂ E0 (t)

∂t
cos2

[
π

2

(
sV0 (t) + ξ

2

)]

−πs [E0 (t)]2 ∂V0 (t)

∂t
cos

[
π

2

(
sV0 (t) + ξ

2

)]
sin

[
π

2

(
sV0 (t) + ξ

2

)]
.

(59)

Therefore,

1

2I (t)

∂ I (t)

∂t
= 1

E0 (t)

∂ E0 (t)

∂t
− π

2
s
∂V0 (t)

∂t
tan

[
π

2

(
sV0 (t) + ξ

2

)]
, (60)

and it follows that

α (t) =
π
2 sα′ ∂V0(t)

∂t

1
E0(t)

∂ E0(t)
∂t − π

2 s ∂V0(t)
∂t tan

[
π
2

(
sV0 (t) + ξ

2

)] . (61)

Under CW conditions for the input optical signal, i.e., E0 (t) = E0, Equation (61) reduces
to

α (t) = −α′ cot

[
π

2

(
sV0 (t) + ξ

2

)]
. (62)

This expression shows that chirp can be minimized by setting α′ = 0. From Equation
(28), we see that α′ = 0 can be obtained by setting f1 = − f2, i.e., by driving both arms of
the interferometer by electrical voltage functions V1,2 (t) of the same amplitude but opposite
sign. In some less expensive Mach-Zehnder modulators, voltage is applied to only one arm of
the interferometer; these “single-drive” modulators necessarily lead to chirped output pulses
and generally poorer system performance.
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3 Modulation formats

In the previous section, we have defined several parameters which control the characteristics
of the output pulses from a Mach-Zehnder modulator, viz.,

• Normalized drive voltage, V0 (t);
• Chirp factor, α′;
• Bias, ξ ;
• Swing, s; and
• Extinction ratio, Xd B .

In this section, we describe how these parameters can be adjusted to generate optical
signals with various modulation formats. Since different modulation formats have different
advantages and disadvantages, choice of modulation format is an important consideration
when designing optical communication systems.

3.1 Nonreturn-to-zero (NRZ)

The most basic of all modulation formats is nonreturn-to-zero (NRZ). Figure 3 shows an
NRZ signal generated using an ideal Mach-Zehnder modulator. The four plots in Fig. 3 show
different aspects of the same signal. Figure 3(a) shows a plot of optical power versus time to
show the form of the actual bit sequence. Figure 3(b) shows the same information displayed
as an “eye diagram,” which represents a superposition of all bits in the signal on top of each
other; a larger eye “opening” indicates less noise or distortion and therefore a higher quality
signal. Note that each bit slot occupies a time of 0.1 ns; hence the bit rate of the system is
(1 bit)/(0.1 ns) = 10 Gb/s. Figure 3(c) shows the phase of the optical signal as a function of
time; in the case of ideal NRZ modulation, all pulses have identical phase. (The phase of the
“zero” bits is plotted as zero since here there is no light for which to measure the phase.)
Finally, Fig. 3(d) shows the optical spectrum of the NRZ signal, where we note sharp peaks
at multiples of the bit rate.

With the NRZ modulation format, each “one” pulse occupies an entire bit slot, and the
signal intensity does not drop to zero between successive “one” bits. As shown in Fig. 3(a),
the only time when the signal intensity changes between the “one” and “zero” levels is when
the bit sequence itself changes between these states. Since rising or falling between these two
intensity levels takes some finite amount of time governed by the electronics that generate
the RF signal, we would like to describe the shape of the NRZ intensity modulation by a
function that is the same in any bit slot. Since the intensities of “one” bits do not return to
zero at the edges of the bit slots, adjacent NRZ pulses can be expressed as a sum:

V0,n (t) =
n+1∑

j=n−1

a j S (t) , (63)

where V0,n (t) is the driving function for the nth pulse in a bit stream, a j is the bit value (zero
or one), and S (t) is the shape function. Mathematically, we can write S (t) as

S (t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
1 + sin

(
π t
TR

))
, − TR

2 < t < TR
2

1, TR
2 < t < TB − TR

2
1
2

(
1 − sin

(
π
TR

(t − TB)
))

, TB − TR
2 < t < TB + TR

2

, (64)
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where TB is the bit period and TR is the rise time (and fall time) of the pulse. The above func-
tional form ensures that half the rising portion of the pulse falls in the preceding bit period
and half the falling portion falls in the succeeding bit period with the cross-over value of 1/2
occurring at the bit boundary. This ensures that successive ones (e.g., the “111” bit pattern)
are exactly compensated in value by neighboring bits and thus yield a constant intensity.

In order to preserve the logic of the bit sequence encoded in the V0 (t) electrical drive,
“0” bits in the electrical domain should correspond to “0” bits in the optical domain, and
“1” electrical bits should correspond to “1” optical bits. This is accomplished by driving the
modulator at V0 (t) = Vπ for “0” bits (to achieve destructive interference) and V0 (t) = 0 for
“1” bits (to achieve constructive interference); hence, for NRZ modulation we require ξ = 2
and s = −1. Chirp factor and extinction ratio are ideally α′ = 0 and Xd B = ∞, respectively,
but other values can still be used to generate (somewhat degraded) NRZ modulation.

3.2 Return-to-zero (RZ)

Return-to-zero (RZ) modulation is accomplished by sending an NRZ-modulated optical sig-
nal into a second Mach-Zehnder modulator with a sinusoidal driving function:

V0(t) = A cos (2πνct − πθ) , (65)

where A is the amplitude (as a fraction of Vπ ), νc is the frequency of the RZ drive, and θ is
the phase offset as a fraction of π . Since the NRZ signal going into the RZ modulator has
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Fig. 3 Nonreturn-to-zero (NRZ) modulation: (a) pulse stream, (b) eye diagram, (c) optical phase, and (d)
optical power spectrum



294 J. C. Mauro, S. Raghavan

already been encoded with the appropriate sequence of ones and zeros, the RZ modulator
does not need a separate electrical input for the desired bit stream.

RZ modulation takes three popular forms: RZ with 50% duty cycle, RZ with 33% duty
cycle, and carrier-suppressed RZ (CSRZ) with 67% duty cycle. Duty cycle refers to the ratio
of the full-width at half-maximum (FWHM) of the pulse intensity to the time duration of the
entire bit slot:

dc = TFW H M

TB
. (66)

We will discuss the methods of generating each form of RZ in the subsections below, but
first let us specify the properties that pulses must satisfy in order to be classified as ideally
“return-to-zero”:

1. E (t) should be periodic with period equal to TB ;
2. E (t) should be zero at the bit period boundaries, t = 0 and t = TB ;
3. E (t) should reach its maximum value at the center of the bit period, t = TB/2; and
4. E (t) should not have any other local maxima or minima, i.e., d E (t) /dt �= 0, except at

the minima, t = 0 and TB , and at the maximum, t = TB/2.

3.2.1 RZ with 50% duty cycle

We generate RZ pulses with 50% duty cycle using the following drive parameters for the RZ
Mach-Zehnder modulator:

α′ = 0 ξ = 1 s = 1/2
νc = B A = 1 θ = 0

where B is the bit rate of the incident NRZ signal. In order to explain the origin of these param-
eters, let us consider the illustration in Fig. 4. The upper curve shows the transfer function of
the Mach-Zehnder modulator, with 100% transmittance at V0 (t) = 0 and 0% transmittance
at V0 (t) = Vπ . The lower curve shows the electrical drive behavior used to generate RZ 50%
signals. The drive voltage varies sinusoidally in time, as indicated by Equation (65), with a
frequency of νc = B and an amplitude of s A = 1/2 of the half-wave voltage. (While we
have chosen A = 1 and s = 1/2, any combination of s and A that satisfies s A = 1/2 will
yield the same results.) Finally, the bias (dc) voltage is Vb = Vπ/2, so by Equation (20) we
have ξ = 1. The phase θ = 0 is chosen to align the RZ modulator drive with the input NRZ
signal, and we have chosen an ideal chirp value of α′ = 0.

Assuming an ideal Mach-Zehnder modulator, the output RZ pulses will be described by

E (t) = E0 (t) cos

[
π

2

(
sV0 (t) + ξ

2

)]
exp

[
−i

π

2

(
sα′V0 (t) − ξ

2

)]
(67)

= E0 (t) cos

[
π

2

(
s A cos (2πνct − πθ) + ξ

2

)]
exp

[
−i

π

2

(
sα′V0 (t) − ξ

2

)]
,

(68)

where E0 (t) now represents the input NRZ optical signal. Substituting the parameter values
from above, we obtain

E (t) = E0 (t) cos
[π

4
cos (2π Bt) + π

4

]
exp

[
i
π

4

]
. (69)
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Fig. 4 Drive settings for the
generation of RZ pulses with
50% duty cycle
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We can use this equation to confirm that these pulses have a duty cycle of 50%. The duty
cycle is determined by the full-width at half maximum of the pulse intensity as a percentage
of the entire bit period. When the intensity is at half its value, the field amplitude reaches
1/

√
2 of its maximum value. Thus, we first determine the time during the bit interval when

the field amplitude reaches 1/
√

2 of its maximum value, and we find from Equation (69) that

cos
(π

4
cos(2π Bt) + π

4

)
= 1√

2
= cos

(
±π

4

)
. (70)

This implies that cos (2π Bt) = 0, which happens at t = ±1/ (4B). Thus the duty cycle is
given by

dc =
1

4B − (− 1
4B

)
1
B

(100%) = 50%. (71)

Figure 5 shows output from the RZ modulator. The time and eye diagrams show that the
pulse intensity returns to zero between consecutive “1” bits; hence, unlike NRZ, all RZ pulses
have exactly the same pulse shape, independent of the neighboring bit values. As with NRZ,
the phases of the RZ pulses are identical and chirp-free under ideal modulation. Figure 5(d)
shows the optical spectrum of the RZ signal, which is much broader than that of NRZ due to
the reduced width of the RZ pulses.
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Fig. 5 Return-to-zero (RZ) modulation with 50% duty cycle: (a) pulse stream, (b) eye diagram, (c) optical
phase, and (d) optical power spectrum

Figure 6 shows the RZ 50% modulation format using non-ideal NRZ and RZ Mach-
Zehnder modulators, both with an extinction ratio of Xd B = 13 dB. Here, we see several
drawbacks of non-ideal modulation, viz.,

1. Since the “0” level of the NRZ modulator does not reach zero intensity, Fig. 6(a) shows that
both the “1” and “0” levels are modulated by the RZ modulator, leading to the eye-closure
penalty shown in Fig. 6(b);

2. Due to the non-ideal branching ratio, the pulses are necessarily chirped, as shown in
Fig. 6(c); and

3. The non-ideal optical spectrum in Fig. 6(d) is much broader than that in Fig. 5(d), thereby
increasing cross-talk with any neighboring channels.

3.2.2 RZ with 33% duty cycle

In order to generate RZ pulses with 33% duty cycle, we use the following Mach-Zehnder
drive parameters:

α′ = 0 ξ = 0 s = −1
νc = B/2 A = 1 θ = 0

which are illustrated in Fig. 7. Here, we see that the drive signal is biased about the maximum
transmission point of the modulator and the swing voltage is twice as large as in the RZ 50%
case. Also, since the period of the RZ 33% drive voltage is twice that of RZ 50%, one RZ 33%
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Fig. 6 Return-to-zero (RZ) modulation with 50% duty cycle, where both the NRZ and RZ modulators have
a 13 dB extinction ratio: (a) pulse stream, (b) eye diagram, (c) optical phase, and (d) optical power spectrum

pulse is generated for each half-period of the RZ 33% sinusoidal drive. In other words, one
pulse is generated during each transition between the nodes of the Mach-Zehnder transfer
function.

Mathematically, we can write the optical field of the RZ 33% signal as

E(t) = E0 (t) cos
[π

2
cos (π Bt)

]
. (72)

Therefore, the duty cycle can be calculated as

cos
[π

2
cos (π Bt)

]
= 1√

2
= cos

(
±π

4

)
; (73)

⇒ cos (π Bt) = ±1

2
; (74)

⇒ t = 1

3B
and

2

3B
, (75)

such that

dc =
2

3B − 1
3B

1
B

(100%) = 33%. (76)

Figure 8 shows the properties of the RZ 33% modulation format. Note that because of its
shorter duty cycle, RZ 33% has a much larger eye opening than both NRZ and RZ 50%. Like
ideal NRZ and RZ 50%, ideal RZ 33% pulses all have the same phase. Finally, comparing
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Fig. 7 Drive settings for the generation of RZ pulses with 33% duty cycle

the optical spectra of the RZ 50% and RZ 33% signals, we note that while the initial lobe
centered at f = 0 is larger for RZ 33% than for RZ 50%, the outer lobes are suppressed
much faster for RZ 33%. This is because the RZ 33% pulse shape is much closer to an ideal
Gaussian shape than RZ 50%.

3.2.3 Carrier-suppressed RZ (CSRZ) with 67% duty cycle

Carrier-suppressed RZ (CSRZ) is similar to standard RZ except that the phase of the pulses
alternates by π every consecutive bit period. The Mach-Zehnder drive parameters for this
case are:

α′ = 0 ξ = 2 s = −1
νc = B/2 A = 1 θ = 1/2

Figure 9 shows that, as with RZ 33%, the sinusoidal drive voltage has a frequency half that
of RZ 50% and swings at twice the amplitude. However, unlike RZ 33%, the CSRZ drive is
biased at the minimum transmittance point of the Mach-Zehnder transfer function. During
each half-period, the voltage swings from minimum to maximum transmittance and then
back to minimum transmittance again. However, since this swing is in the opposite direction
for consecutive bit periods, adjacent pulses are π -phase shifted from each other.

Using the drive parameters above, the amplitude of the CSRZ signal is given by

|E (t)| = |E0 (t)| sin
[π

2
sin (π Bt)

]
. (77)

Hence, the duty cycle can be calculated by
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Fig. 8 Return-to-zero (RZ) modulation with 33% duty cycle: (a) pulse stream, (b) eye diagram, (c) optical
phase, and (d) optical power spectrum
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Fig. 10 Carrier-suppressed RZ (CSRZ) modulation with 67% duty cycle: (a) pulse stream, (b) eye diagram,
(c) optical phase, and (d) optical power spectrum

sin
[π

2
sin (π Bt)

]
= 1√

2
= sin

(π

4

)
or sin

(
3π

4

)
; (78)

⇒ sin (π Bt) = 1

2
= sin

(π

6

)
or sin

(
5π

6

)
; (79)

⇒ t = 1

6B
or

5

6B
; (80)

Therefore,

dc =
5

6B − 1
6B

1
B

(100%) = 67% (81)

Figure 10 shows the properties of the CSRZ 67% modulation format. In Fig. 10(c), we
see that the phase alternates by π every bit period. Over a long bit sequence, this leads to
destructive interference of the carrier frequency: note in Fig. 10(d) that there is no peak at
f = 0. We will see later in this report that carrier-suppression helps to reduce the interactions
between neighboring pulses and thus improve signal quality.

3.2.4 Chirped RZ (CRZ)

Thus far, we have only considered RZ modulation with α′ = 0. If a less expensive single-
drive modulator is used, then the chirp factor becomes α′ = ±1, and the pulses are chirped
according to Equation (61). Figure 11 shows chirped RZ (CRZ) pulses with 50% duty cycle,
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Fig. 11 Chirped RZ (CRZ) modulation with 50% duty cycle: (a) pulse stream, (b) eye diagram, (c) optical
phase, and (d) optical power spectrum

generated with the same parameters as RZ 50% except that α′ = 1. This figure shows that the
pulse power as a function of time is exactly the same for CRZ 50% as for RZ 50%. However,
the phase varies within the time span of each pulse, and hence the spectrum is significantly
broader. Although the chirp of the pulses can be used to counteract fiber dispersion [5], it
generally leads to increased cross-talk penalty and lower overall performance.

We should also note that CRZ 33% can be generated using the same parameters as RZ
33%, except for α′ �= 0. If α′ �= 0 with CSRZ 67% parameters, pulses are chirped with oppo-
site sign in adjacent bit periods. In this case, the modulation format is known as alternate
chirp RZ (ACRZ), and the signal is no longer carrier-suppressed.

3.3 Duobinary

We have seen that alternating the phase between adjacent bit periods can lead to a carrier-
suppressed optical spectrum, as in CSRZ. The duobinary modulation format combines a more
intelligent kind of phase control with an NRZ pulse shape. A duobinary signal is generated
by first encoding an input electrical bit sequence into a three-level electrical waveform [6].
This three-level waveform, with the “0” bits having a value of “0” and the “1” bits having
a value of “1” or “−1”, is then used as the driving function for a Mach-Zehnder modulator.
The change in sign between the “1” and “−1” states reflects itself as a π phase shift between
sequences of “one” bits in the output optical signal.
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Given an input binary sequence an , the duobinary encoded sequence is generated as
follows:

1. Invert the bits.

bn = 1 − an (82)

2. Generate an auxiliary bit sequence.

cn = (bn + cn−1) mod 2 (83)

3. Encode the duobinary sequence.

dn = cn + cn−1 − 1 (84)

For example, an input sequence of

0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0

is encoded as

0, 0, −1, −1, 0, 1, 0, −1, −1, −1, −1, 0, 0, 0, 1, 0, 0, 0.

Otherwise, the Mach-Zehnder drive parameters are the same as for NRZ.
An example duobinary signal is shown in Fig. 12. Since there are no phase shifts between

directly adjacent “1” bits, the NRZ electrical waveform converts into an NRZ optical signal.
This is in contrast to modified duobinary (discussed in the next subsection), where the phase
shifts of consecutive “1” bits cause the optical signal to become RZ, even when the input
electrical waveform is NRZ in shape. Figure 12(c) shows that with duobinary modulation the
phase of consecutive groups of “1” bits is shifted by π . As shown in Fig. 12(d), this results
in a narrow optical spectrum without any sharp peaks.

3.4 Modified duobinary

Modified duobinary, also known as alternate mark inversion (AMI), is an improved version
of duobinary where the phase alternates by π between every pair of “1” bits, regardless
of how many “0” bits, if any, separate them [6,7]. As with duobinary, modified duobinary
involves generating a three-level electrical waveform using an input bit sequence an and
a counter sequence cn . This electrical waveform is then used as the driving function for a
Mach-Zehnder modulator to generate a two-level optical signal with “1” bits of alternating
phase.

With modified duobinary, a counter sequence cn begins with a value of “0” and then
toggles state at each “1” bit in the input bit sequence an . For example:

an = 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0
cn = 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1

Then, a three-level electrical waveform bn is generated by combining an and cn through the
logical procedure shown below.

an cn an × cn cn an × cn bn = (an × cn) − (an × cn)

1 1 1 0 0 1
1 0 0 1 1 −1
0 1 0 0 0 0
0 0 0 1 0 0
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Fig. 12 Duobinary modulation: (a) pulse stream, (b) eye diagram, (c) optical phase, and (d) optical power
spectrum

When this electrical waveform is converted to optical amplitude modulation using a
Mach-Zehnder interferometer, the positive “1” bits yield optical “1” bits with a zero phase
shift, and the negative “1” bits yield optical “1” bits with a π phase shift. Please note that
no two adjacent “1” bits are in phase in the resulting optical signal. Thus, although modified
duobinary is typically driven with an NRZ electrical waveform, adjacent “1” bits in the output
optical signal behave as if they were in an RZ sequence.

Consider the example modified duobinary signal in Fig. 13 and note the return-to-zero
shape of the optical pulses. The phase plot in Fig. 13(c) shows that each “1” bit is π phase-
shifted from its two neighboring “1” bits, regardless if there are any “0” bits in between.
Finally, the optical spectrum plot in Fig. 13(d) shows that modified duobinary, because of its
intelligent phase encoding, yields a very high degree of carrier suppression, much greater
even than CSRZ (Fig. 10).

3.5 Differential phase-shift keyed (DPSK)

Thus far, we have only discussed amplitude-shift keyed (ASK) formats, where the bit sequence
is encoded in the amplitude of the optical signal. Alternatively, phase-shift keyed (PSK) for-
mats encode information in the phase of the optical signal. The most important PSK formats
for fiber optic communication systems are differential phase shift keyed (DPSK), and return-
to-zero DPSK (RZ-DPSK).

As with the duobinary formats, DPSK formats require encoding of the input bit sequence
[8]. Given an input bit sequence an , an auxiliary bit sequence bn is generated by bn =



304 J. C. Mauro, S. Raghavan

Time (ns)

) 
W

 
m

 
( 

r e 
w

 
o

 
P

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
0 

1 

2 

3 

4 

5 

6 

7 (a) 

Time (ns)

) 
W

 
m

 
( 

r e 
w

 
o

 
P

 

-0.1 -0.05 0 0.05 0.1
0 

1 

2 

3 

4 

5 

6 

7 (b) 

Time (ns)

) d
 

a r ( 
e s a h

 
P

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

-3 

-2 

-1 

0 

1 

2 

3 
(c)

Frequency (GHz)

) 
m

 
B

 
d

 
( 

r e 
w

 
o

 
P

 

-50 -40 -30 -20 -10 0 10 20 30 40 50 
-70 

-60 

-50 

-40 

-30 

-20 

-10 

0 
(d)

Fig. 13 Modified duobinary modulation: (a) pulse stream, (b) eye diagram, (c) optical phase, and (d) optical
power spectrum

(an ⊕ bn−1), where ⊕ denotes exclusive OR. The auxiliary sequence is one bit longer than
the input sequence and always begins with b0 = 1. This auxiliary sequence is then encoded
into the phase of a CW optical stream using an electro-optic phase modulator, where “0” bits
in bn are encoded as a zero phase shift and “1” bits in bn are encoded as a π phase shift. The
example below illustrates the encoding procedure.

an = 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0
bn−1 = 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1
bn = 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0
φn = π 0 0 0 π 0 0 π 0 0 0 0 π 0 0 π 0

However, using a standard photodetector we can only detect optical power, not phase. There-
fore, in order to detect the DPSK signal, we must first convert the phase modulation to
amplitude modulation.

Decoding is accomplished by passing the phase-modulated signal through a Mach-Zehnder
interferometer just before the receiver. One arm of the interferometer has a time delay of one
bit period, TB , with respect to the second arm. Hence, at the output of the interferometer the
phase data, φn , interferes with a bit-shifted copy of itself, φn−1, resulting in either construc-
tive or destructive interference. Constructive interference (if φn and φn−1 are of the same
phase) produces a “1” bit, whereas destructive interference (if φn and φn−1 are of opposite
phase) produces a “0” bit. The following example demonstrates this procedure.

φn = π 0 0 0 π 0 0 π 0 0 0 0 π 0 0 π 0
φn−1 = π 0 0 0 π 0 0 π 0 0 0 0 π 0 0 π 0
an = 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0
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Fig. 14 Differential phase-shift keyed (DPSK) modulation without decoding: (a) pulse stream, (b) eye
diagram, (c) optical phase, and (d) optical power spectrum

Notice that the decoded signal an is exactly the same as the input bit sequence above.
A DPSK-encoded signal is shown in Fig. 14. Here, we see that whereas the optical power

remains constant in time, information is encoded in the phase of the signal. After decoding
using a Mach-Zehnder interferometer, the amplitude-modulated signal is shown in Fig. 15.
At this point, the signal is almost identical to duobinary, except for the occurrence of sharp
peaks between adjacent bits slots. These peaks form because of the finite time taken to switch
between the 0 and π phase states in the phase modulation process. When a phase shift occurs
between two adjacent bits, the phase becomes π/2 at the bit boundary. Therefore, when
decoding occurs, the π/2 phase at one bit boundary can align with the π/2 phase at the
adjacent bit boundary, leading to constructive interference and the appearance of a sharp
spike in the resulting amplitude-modulated signal.

The quality of the received DPSK signal can be improved by using a second photodetec-
tor in a setup known as the “balanced receiver.” When the phase-modulated signal interferes
with the bit-shifted copy of itself in the decoding process, the two signals combine via a
directional coupler [9]. The constructive interference propagates through one output port of
the coupler, while the destructive interference is outputted at the second port. Hence, “0” bits
at the destructive port appear with “1” intensity. Two photodetectors are used: one to mea-
sure the constructive output and one to measure the destructive output. Finally, the current
from the destructive photodetector is subtracted from the constructive current such that “0”
bits have a current of “−1.” This effectively doubles the eye opening of DPSK signals and
improves the receiver sensitivity by 3 dB [10,11].
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Fig. 15 Differential phase-shift keyed (DPSK) modulation after decoding: (a) pulse stream, (b) eye diagram,
(c) optical phase, and (d) optical power spectrum

3.6 Return-to-zero DPSK (RZ-DPSK)

The return-to-zero DPSK (RZ-DPSK) modulation format is generated by sending a DPSK-
encoded optical signal through a Mach-Zehnder modulator set for generation of RZ 50%, RZ
33%, or CSRZ 67% pulses. As shown in Fig. 16 for RZ-DPSK 33%, all information is still
encoded in the phase of the optical signal. The optical intensity takes on the shape of the RZ
pulses, but unlike ASK RZ formats there are no bit periods with “0” intensity. Figure 16(d)
shows that the RZ-DPSK 33% spectrum is very similar to that of RZ 33%, except that the
RZ-DPSK format contains no peaks in the spectrum.

Decoding of RZ-DPSK signals is accomplished in the same manner as for standard DPSK.
As shown by the decoded signal in Fig. 17, RZ-DPSK has two main advantages over DPSK.
Firstly, the eye opening is much greater because of its reduced duty cycle. Secondly, since
the intensity of the signal goes to zero at the bit boundaries, there are no spikes between bits
as observed in standard DPSK.

4 Impact on system performance

Various properties of the optical fiber can lead to penalties that deteriorate system perfor-
mance:
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Fig. 16 Return-to-zero DPSK (RZ-DPSK) modulation with 33% duty cycle, without decoding: (a) pulse
stream, (b) eye diagram, (c) optical phase, and (d) optical power spectrum

1. Attenuation due to absorption and Rayleigh scattering makes it necessary to amplify the
signal periodically. Amplification necessarily introduces noise in the system that degrades
the signal quality.

2. The finite low-loss bandwidth of the fiber (and limitations on transmitter and receiver
wavelengths) often force adjacent optical channels to partially overlap. Data from one
signal interferes with data from the adjacent signal, thereby creating linear cross-talk
penalty.

3. Chromatic dispersion and polarization mode dispersion lead to distortion and patterning
of optical pulses as they broaden and shift temporally.

4. Nonlinear optical effects such as self-phase modulation (SPM), cross-phase modulation
(XPM), and four-wave mixing (FWM) generate noise and distortion in the signal.

Because of their different temporal, spectral, and phase characteristics, different modula-
tion formats display different tolerances to these penalties. In this section, we will give a brief
overview describing the behavior of the various modulation formats with respect to each of
the above impairments. But before we proceed, we should take care to describe how system
performance is quantified.

The performance of each channel can be quantified in terms of the Q parameter, which has
different definitions depending on the experimental measurement and underlying assump-
tions about the nature of the noise distribution. The value of Q is commonly measured in one
of two ways. Experimentally, a bit error rate tester (BERT) can be used to detect the exact
number of errors in a very long bit sequence after transmission through the system. The Q
parameter is then obtained from the bit error rate (B E R) by inverting [12]
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Fig. 17 Return-to-zero DPSK (RZ-DPSK) modulation with 33% duty cycle, after decoding: (a) pulse stream,
(b) eye diagram, (c) optical phase, and (d) optical power spectrum
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where Q is given in linear units. Note that the approximation holds for large values of Q.
Also, it is common to express Q in terms of dB units by Qd B = 10 log10 Q.

The second method for obtaining Q involves measuring the mean and the standard devi-
ation values of the “1” and “0” levels using an eye diagram produced by a digital communi-
cation analyzer (DCA). In this case, Q in linear units is given by

Q = I1 − I0

σ1 + σ0
, (86)

where I1,0 and σ1,0 refer to the mean and the standard deviation values of the “1” and “0”
levels, respectively. A larger Q value indicates a lower B E R and hence better performance.
Note, however, that Equation (86) assumes Gaussian statistics for the noise distribution, an
assumption that is often violated in modern communication systems [13–15].

4.1 Amplified spontaneous emission (ASE) noise

Optical amplification has significantly increased the capacity and reach of fiber optic commu-
nication systems. The primary drawback of such amplification is the unavoidable generation
of amplified spontaneous emission (ASE) noise, which leads to degradation of the optical
signal to noise ratio (OSNR) and decreased Q. In fact, all current optical communication
systems are fundamentally limited by ASE noise.
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ASE noise can be classified into two components: signal-spontaneous beat noise and spon-
taneous-spontaneous beat noise [16–18]. Signal-spontaneous beat noise represents a beating
between the signal and noise power at the receiver and contributes primarily to the σ1 term in
Equation (86). Spontaneous–spontaneous noise refers to the noise power beating with itself
and is hence a much smaller effect. If we assume I0 ≈ 0 and σ0 ≈ 0, then the Q factor can
be approximated as

Q ≈ I1

σ1
. (87)

Since the signal-spontaneous noise contribution, σ1, increases proportionally with I1 for a
given average signal power, we can conclude that the ASE contribution to Q is independent
of eye opening. Hence, the only way to increase tolerance to ASE noise is to increase the
OSNR of the signal, i.e., increase the average channel power. Since average channel power
is limited by nonlinear optical effects such as SPM, XPM, and FWM, the performance of
various modulation formats with respect to ASE is intimately connected to its tolerance of
nonlinear impairments. In other words, a higher tolerance to nonlinear impairments means
that more power can be launched into the fiber, thereby improving the OSNR and increasing
the Q factor.

4.2 Fiber nonlinearities

Fiber nonlinearities can be classified into many different types, including self-phase mod-
ulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) [19]. The
dominant nonlinear optical penalty depends on the design of the system. In dense wave-
length-division multiplexed (DWDM) systems, channels are typically spaced close together,
e.g., 50 GHz channel spacing for 10 Gb/s systems or 100 GHz channel spacing for 40 Gb/s
systems. Cross-channel effects such as XPM and FWM typically dominate in 10 Gb/s DWDM
systems, but SPM can also be an issue. Typically, nonlinear penalties can be suppressed by
spreading out the power of the signal in the spectral domain. Hence, reduced duty cycle
formats such as RZ 33% and RZ-DPSK 33% display greater tolerance to nonlinear effects
than spectrally narrow formats such as NRZ [20–22].

The spectrum of a 40 Gb/s signal is four times as broad as the same signal at 10 Gb/s,
so cross-channel nonlinearities are greatly suppressed. However, the various frequencies
within a single channel can mix with each other via intrachannel nonlinear effects, viz.,
intrachannel cross-phase modulation (iXPM) and intrachannel four-wave mixing (iFWM)
[23]. Typically, iXPM is the dominant nonlinear penalty in fibers with low chromatic dis-
persion, e.g., nonzero-dispersion-shifted (NZDSF) fiber with D = 4 ps/nm/km, and iFWM
dominates in fibers with high chromatic dispersion, e.g., standard single-mode fiber (SMF)
with D = 17 ps/nm/km.

Whereas iFWM is sensitive to the phase of pulses, iXPM depends only on intensity.
A shorter duty cycle leads to significant suppression of iXPM penalty, so RZ 33% and
RZ-DPSK 33% are good choices if this impairment is dominant (i.e., for NZDSF sys-
tems). On the other hand, iFWM can be suppressed by alternating the phases of adjacent
bits. CSRZ 67% provides some suppression of iFWM penalty [24], but the maximum
performance can be obtained through the intelligent phase control of modified duobinary
[25–27].
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4.3 Linear cross-talk

Another problem associated with DWDM systems is the overlap of the spectra of adjacent
channels, leading to linear cross-talk penalty. The most effective way to suppress this penalty
is to use a spectrally compact format such as NRZ, duobinary, modified duobinary, or DPSK.
In general, as the duty cycle of the pulses decreases, the linear cross-talk penalty can be
expected to increase [28–30].

However, it is also important to account for the specific shapes of the pulses. As mentioned
previously, RZ 33% offers greater suppression of its outer spectral lobes compared to RZ
50% because of its near-Gaussian shape. Hence, although RZ 33% has a shorter duty cycle
than RZ 50%, it also experiences less linear cross-talk penalty [31].

4.4 Chromatic dispersion

Ideally, the net chromatic dispersion at the end of a system is zero since dispersion-compen-
sating fiber (DCF) is used to counteract the dispersion of the transmission fiber. However,
temperature fluctuations can lead to nonzero dispersion at the receiver, and hence it is impor-
tant to consider the impact of a finite net residual dispersion on the performance of various
modulation formats. In general, dispersion acts to broaden pulses in the time domain; there-
fore, short duty cycle formats such as RZ 33% have a distinct advantage in that they have
more room to broaden before encroaching on pulses in the neighboring bit slots [32,33].
NRZ and duobinary have especially poor tolerance to dispersion since their duty cycle is
effectively 100%.

DPSK and RZ-DPSK formats have perhaps the worst tolerance to dispersion of all for-
mats since they are very sensitive to any phase distortions. Also, dispersion can act to convert
phase modulation to amplitude modulation, thereby generating noise in the received signal.

4.5 Polarization mode dispersion (PMD)

Polarization mode dispersion (PMD) occurs due to random birefringence in optical fibers,
which creates a differential group delay (DGD) between the two principal states of polari-
zation. The DGD manifests itself as a random pulse distortion and acts to degrade the Q of
the system. In general, shorter duty cycle formats can withstand more DGD distortion and
thus yield a higher Q value. However, the greatest tolerance to PMD has been displayed by
DPSK and RZ-DPSK formats [34].

PMD is generally not a limiting impairment in today’s optical fiber due to the use of fiber
spinning and other techniques that minimize birefringence [35].

5 Conclusions

In summary, we have discussed the basic physics of how electro-optic modulators work and
derived the transfer functions for ideal and non-ideal Mach-Zehnder modulators. We have
described the application of Mach-Zehnder and phase modulators to generate a variety of
modulation formats. Different modulation formats offer their own advantages and disadvan-
tages with respect to various fiber impairments, and choice of modulation format depends
largely on the type of system being implemented. Short duty cycle formats such as RZ 33%
and RZ-DPSK 33% offer a high tolerance to most nonlinear and dispersion penalties, but they
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are less spectrally compact than NRZ, duobinary, and DPSK. Because of their alternating
phase behavior, CSRZ 67% and modified duobinary give advantage in high bit rate SMF
systems where iFWM is the dominant impairment.
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Abstract The exploration and production of oil and natural gas facing unprecedented
demands for a secure energy supply worldwide is continuing a long trend to develop and
adopt new technologies to help meet this challenge. For many oilfield technologies mathemat-
ical modeling and simulation have played a truly enabling role throughout their development
and eventually their commercial adoption. Looking ahead, the vision of data-driven “intel-
ligent” oilfields designed and operated using simulations to reach higher recovery factors is
becoming a reality. Very little of this vision would be possible let alone make sense with-
out the capability to move information across several simulation domains. We will examine
several successes of modeling and simulation as well as current limitations which need to
be addressed by new developments in theory, modeling, algorithms and computer hardware.
Finally, we will mention several fundamental issues affecting oil recovery for which increased
understanding is needed from new experimental methods coupled to simulation.

Keywords Modeling and simulation · Oil and gas · Seismic imaging · Porous media ·
Sensors

1 Introduction

The Oil & Gas Exploration & Production (E&P) industry is facing many challenges to satisfy
a growing worldwide demand for a secure energy supply for many decades to come. These
include developments in harsher and more complex environments (deep water and Arctic) to
locate and produce hydrocarbons, a greater emphasis on exploring for and producing uncon-
ventional resources (heavy oil, tar sands, oil shale and coal-bed methane) and a need for
more real time data to manage production and risk. Increasing the quantity and quality of
information about the reservoir and the capital assets deployed will enable oilfield operations
with dramatically improved safety, reliability, and effectiveness as measured by both ultimate
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recovery factor and financial profitability. To achieve this game-changing “illumination” of
the entire enterprise including its geological and capital assets, simulations of many kinds
are being employed with greater sophistication. These simulations naturally span the R&D
landscape with a focus on new materials and sensor systems as enabling technologies for the
operational part of the enterprise. However, some of the heaviest computing and simulation
applications reside on the operational side where imaging and measurements of subsurface
rock and fluid properties are made over spatial scales ranging from mm to km. All of this
feeds into hydrocarbon reservoir simulation as a guide to more optimal strategies for oil and
gas extraction.

But big challenges still remain. More accurate measurements of rock and fluid properties
must extend farther from wells to cover the entire reservoir. Critical subsurface infrastructures
must be instrumented to provide real-time information about their state of health to trigger
replacement or maintenance at the most cost-effective, yet still safe, times. We look forward
to sensing systems that are able to penetrate away from wells within the reservoir without
additional drilling. Enormous amounts of data must be combined and processed intelligently
to focus the operator’s attention on the salient bits for the decisions at hand.

Within this context, we will examine a selection of current practices and opportunities
for exploiting large scale and multi-scale modeling and simulation—first starting with the
big picture associated with geophysical imaging and inversion, then moving into subsurface
measurements made from wells and finally to the design of enabling technologies such as
new nano sensors, networks and materials which will take us down to the scales of atomic
dimensions. Overall, we hope to portray that simulation of one kind or another is found
in: 1) the daily operation of the entire enterprise, 2) the R&D of new services and under-
standing of fundamental processes to aid oil recovery and 3) the provision of new enabling
technologies.

2 Part I. The big picture—geophysical imaging and inversion

2.1 Seismic imaging for exploration and production

Historically seismic surveying has been one of the most important techniques used in the
oil industry to identify new subsurface sources of hydrocarbons. This continues today, but
we also observe important extensions to the production domain using so-called time-lapse
seismic imaging. Basically, seismic imaging is the oilfield analog to the commonly used
MRI technique in medicine. Generating high resolution images of the earth’s subsurface is
essential for minimizing the substantial financial risks associated with exploration. Seismic
imaging has undergone a number of paradigm shifts in capability over several decades, and
each has brought forth the need to acquire, transport, store, and process greater amounts of
raw data. Today a typical 3-D survey may acquire 100’s of Terabytes of data which need to be
subjected to multifaceted mathematical processing to generate the images which geologists
and geophysicists can then interpret for the presence of hydrocarbon deposits.

A typical marine seismic survey is often acquired by a purpose built ship that systemati-
cally cruises over an area of interest and fires air guns that send powerful sound waves into
the ocean. These waves propagate through the water and down through sub-seafloor layers
of sandstone, shale, salt, and other materials, producing echoes that return to the surface.
The ship may tow a dozen or more cables, each up to 10 km long, carrying thousands of
hydrophones that measure the minute pressure waves of the returning reflected wavefield.
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Several thousand square kilometers, sometimes with a quite irregular surface footprint, may
be covered by a survey.

Duration of this process is often measured in months for acquisition and possibly a good
fraction of a year for processing. The industry has traditionally been a rapid adopter of the
latest computing, data storage and visualization technologies for decades. Today the industry
can claim ownership of some of the largest computing centers on earth. A look at the top
machines [46] as of this writing reveals several devoted to seismic processing, and all of them
consisting of several thousand computing nodes adding up to several hundreds of Teraflops
of peak performance.

However, despite already large computational resources, higher levels of performance
are being demanded from increased levels of market activity and a need for higher fidelity
images. The latter is a direct result of having to image evermore complex geologies. Higher
resolution images reduce risk of increasingly expensive decisions. This requires an even
larger density in the amount of data acquired and the application of more rigorous math-
ematical techniques to create the images. Data volumes and mathematical approximations
have historically traded off one another depending on computational and human costs. Often
if the geologies were relatively simple, these tradeoffs could be managed. This is changing
with data volumes continuing to increase at high rates due to single-sensor technology [37],
which allows higher density spatial sampling, and a desire for fewer physics and mathematical
approximations in the processing algorithms.

To create an image the energy in the reflected wavefield measured on the surface must
be extrapolated mathematically to points in the subsurface where the reflected energy origi-
nated from the original down going wavefield. This process called migration locates reflection
points in the subsurface which tend to accumulate along loci associated with rapid changes in
acoustic impedance which are often associated with a geological boundary or a tectonic dis-
ruption of the geology. This produces an image of impedance changes that serves as a proxy
for the geometric changes in geology. Most algorithms in commercial practice today start
with the Helmholtz acoustic wave equation to mathematically extrapolate energy (in reverse
time) back to points in the subsurface where the reflected energy originated. An example is
shown in Fig. 1a which is a 2-D vertical slice from a 3-D volume of image data. Solving the
wave equation in three dimensions starts by creating a 3-D grid of acoustic wave velocity
values that spans the surveyed volume of ocean and sub-seafloor earth. The dimensionality of
the problem could easily range from one to five thousand intervals in each of the X, Y lateral
directions and one thousand in Z depth direction to achieve 10 m resolution. In addition, the
time discretization could range from four to eight thousand samples. At each time step the
pressures of one or more sound waves present are assigned to each grid point. In the past
many seismic imaging codes created 3-D maps of the subsurface by extrapolating using the
one-way wave equation, i.e., seismic waves traveling in just one direction. Physically, this
approximation accounts only for propagation of reflected energy upward from subsurface
points to the surface.

One way migration techniques were generally satisfactory for simple layer-like geologies
and could scale with computer power to deal with ever larger survey data sets. However, the
computational load for seismic imaging continues to grow for several reasons:

1. The quest for higher resolution images has led to greater use of single sensor imaging
which now can employ 30,000 (and growing) sensors at a time to achieve denser spatial
sampling of the wavefields. The challenge of this massive increase in data is further
magnified by growing use of computationally intensive methods to determine iteratively
better subsurface velocity distributions to extrapolate surface data to the right points in
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Fig. 1 Comparison of new high resolution seismic images (a-left) with conventional images (b-right). Note
many fine scale features associated with geological faulting are better resolved on the left (Graphic courtesy
of WesternGeco)

depth. It is clear that these procedures have led to dramatic improvements in resolution
over previous experience. Even to an untrained eye the single sensor image in Fig. 1a
is far easier to interpret for subtle subsurface structure than what was available before
(Fig. 1b).

2. By now it has become normal to extrapolate using the two-way wave equation. In two-
way methods the wave propagation from the air guns to subsurface reflection points is
also accounted for. A good image is obtained when upward reflected energy from points
in the subsurface is consistent with downward propagating energy arriving at the same
points from the surface. This has aided hydrocarbon discoveries in 3-D geologies with
overburden and large geologic lateral heterogeneities such as salt domes and basaltic
bodies that literally can mask the oil deposits (Fig. 2) unless we properly account for all
seismic wave propagating directions in the subsurface.

3. More and more we wish to interpret seismic data not just in terms of the wiggles of a
reflected wavefield, but that same data inverted for underlying reservoir properties that
influence the sound propagation. In Fig. 3 we have an example where seismic waveform
data have been inverted for acoustic impedances [8]. Additionally, this has been done
for two separate times using time lapse seismic, and Fig. 3 actually shows the impedance
changes that in this case are interpreted as water (in red) encroaching on a planned well
path. This caused a change in the planned well path to stay above the water level and
eliminated a potentially costly mistake. With accurate well log data for local calibra-
tion other reservoir properties can be estimated such as types of rock (lithology), elastic
moduli, pressure, density, fluid saturations and fracture fields.

4. The relevant wave equation for seismic wave propagation is ultimately the full elastic
equation which includes conversions to shear waves and the possibility of anisotropic
wave propagation effects. This is only being done currently for research studies and
some small pilot projects and is not yet a common commercial practice.
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Fig. 2 Wave equation based imaging (right) exposes greater detail beneath subsurface salt bodies (upper cen-
ter of the image) compared to more approximate methods (left) that limit tracking of energy that has traveled
at high angles to reach the region of interest. Many sedimentary structures below such bodies can hold trapped
hydrocarbons (Graphic courtesy of WesternGeco)

Fig. 3 Time lapse differences in acoustic impedance in a local seismic data volume show encroachment of
water (red) upward past a barrier that was thought to be sealing from below [8]. The original well plan (black)
was deemed to be too close to the water for efficient production. The new well plan (gray) is shown just above
the water in the producing zone [8]

5. Long term the prospect of doing global inversion is a high priority. This refers to auto-
mated inversion of multiple physics data reflecting underlying earth model properties.
Besides surface seismic this could include borehole-to-surface and cross borehole acous-
tic data and data from other imaging measurement modalities such as electromagnetic
surveys which will be discussed further below because of their complementarity to
acoustic techniques.



318 J. Ullo

2.2 Towards inversion for reservoir properties

Formally inversion refers to estimating earth properties or more rigorously their probability
distribution functions (pdfs) from calibrated seismic impedance maps by fitting synthetic
seismic waveforms to measured (processed) seismic data. Contributions to the pdfs come
from both data and model uncertainties. A good introduction of the subject is given by
Tarantola [45], and several useful articles are given by [10,38,43]. An objective is to derive
subsurface spatial properties with such reliability so as to reduce or eliminate the need for
drilling appraisal wells. Eventually, we wish to link processing and inversion to bring seismic
more and more into the daily reservoir engineering domain.

Most inversion problems are numerically performed by iterating on the parameters of for-
ward models to a point where an optimal match is made between the predicted and measured
seismic waveform data. When this happens the resulting features and properties of the earth
model expose in principle the additional information content in the seismic wavefield that
we are seeking through inversion. In mathematical terms Gauss Newton iteration is often the
method of choice today. In general we wish to invert a forward partial differential equation
Su = f where the f represents the sources (acoustic or electromagnetic). The resulting spatially
and time dependent wavefields u(x,t) are linked to f via the forward operator S. Often either
finite difference or finite element discretizations may be used resulting in a matrix equation
of the form [S] u = f with the matrix [S] usually nonlinearly dependent of the underlying
model parameters and now u and f are column vectors.

The optimization problem is posed as a minimization of the data residuals

δdi = ui − di , i = (1, 2, . . . n) (1)

where the δdi expresses the mismatch between the calculated ui and the measured data di .
The index i goes over all time samples at each surface receiver location for each source.

Commonly, a least-squares technique is used where we seek to minimimize the L2 norm
of the data residuals

E (p) = 1

2
δdtδd∗ (2)

where p respresents the vector of model parameters which is to be optimized by minimizing
E(p). Expanding E(p) in a Taylor series and retaining terms up to second order yields

E (p + δp) = E (p) + δpt∇pE (p) + 1/2
(
δptHδp

)
(3)

where H is the approximate Hessian matrix having elements (i,j) given by,

H = ∂2E (p) /∂pi∂pj (4)

To update the parameter space vector p from one iteration (k) to the next (k+1) we minimize
the quadratic form of the misfit to get

p(k+1) = p(k) − H−1∇pE (p) (5)

The iterations proceed until some chosen convergence criterion is met.
We are mindful that such inverse methods can be risky from non uniqueness of the results.

To meet this challenge substantial use of auxiliary data is made to constrain the inversion
process. Also, due to high computational costs, many approximate forward modeling tech-
niques have served as engines to drive the iterative inversion. No doubt there is growing
interest in exploiting large finite difference models for practical applications, whereas up
to now they have been used sparingly for that purpose. Even a modest survey block might
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require at least a billion spatial mesh cells and a thousand time points making each iterative
forward simulation very expensive in time without access to large computing resources. Key
to any success is the parametrization of the models in such a way that the degrees of freedom
are limited to the order of 100–1000. A brute force voxel-based approach where we have to
update and optimize the parameters for each of one billion mesh cells would be impossible.
Fortunately, there are often many sources of prior information that can be exploited to vastly
reduce the parameter space that has to be searched to find a best model fit. Prior information
about geological boundaries can be extracted from image data, and they can be supplemented
by models of geological processes that create the architectures and properties in the earth.
Well log data can be used to constrain properties at or near well locations, and geostatistical
methods can extend that information deeper away from the wells. Furthermore, the industry
has ample expertise in linking elastic properties (seismic wave propagation) to petrophysical
properties (reservoir) based on laboratory measurements of rock cores. The inverse problem
computational size is still formidable, but it is becoming more tractable for large commercial
data sets especially on new computing architectures that are in sight.

2.3 Evolution to 4-D (time lapse) seismic and reservoir simulations

There is little doubt that the emergence of practical 3-D seismic imaging in the early 90’s
led to significant increases in exploration efficiency and rapidly became a standard practice.
In the meantime time-lapse or 4-D seismic has begun to emerge as a value-added proposition
for managing efficient production and recovery processes [36]. Seismic reflectivity is a func-
tion of both static and dynamic reservoir properties. As dynamic properties such as pressure
and fluid saturations change due to reservoir production, seismic responses change as well,
opening up the possibility of using observed seismic wavefield changes as quantitative mea-
sures of reservoir property changes. This concept, while not new, has taken some time to
reach a degree of practicality and has benefitted from several step changes in acquisition
technology and data processing methods.

A major achievement of 4-D acquisition is the replication of the exact conditions of a
baseline survey so that differences observed between the surveys are dominated by changes
due to reservoir production and the injection of fluids to push the oil out. In other words, the
results should repeat in areas where there are no expected changes in geophysical properties.
This has been accomplished in marine environments through many innovations in acquisition
employing steerable sources and receivers so as to place source and receiver data locations
in the repeat surveys close to the original locations. This requires remarkable computer driven
real time control of locations under dynamical conditions induced by wind, currents, tides
and physical obstacles. Also in real time, new data are processed to monitor signal to noise
characteristics compared to the baseline data and allow decisions to repeat parts of the data
acquisition that fall outside established QC standards.

Such control of acquisition allows more reliable interpretation of changes in seismic ampli-
tudes and relative acoustic impedances that are associated with changes in fluid saturations
and pressures within the reservoir. However, the greatest impact of this will come if the data
are ready to be interpreted along with reservoir simulation data in a matter of days after the
acquisition. This too is benefitting from the aforementioned QC controls and the advanced
computing capabilities on board to do at least some low level image processing that is good
enough for a first look at changes in relative acoustic impedances. At this stage these changes
can be reliable qualitative indicators of where fluid fronts are moving. Comparing the images
to predictions from the reservoir simulators either validates the reliability of the existing
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Fig. 4 The vision of the seismic-to-simulation integrated workflow clockwise from upper left. (Upper left)—
the seismic portion showing the steps of acquisition, data processing to produce detailed images of the
subsurface and subsequent interpretation of the images into geological boundaries and fault lines. (Upper
center)—Acquisition of several kinds of complementary data ranging from well logs (e.g. gravity) to electro-
magnetic surveys. (Upper right)—Joint inversion of single and multiple data sets to derive reservoir properties
over the data volume. (Lower right)—Creation of the reservoir model showing use of modern visualization
techniques to compare seismic data with key model features. (Lower left)—Creation of a cellular model to
transform the reservoir model into a complex 3-D grid for simulation of subsurface flows. The workflow com-
prises several large scale computational steps including real time acquisition QC and initial field processing
of imaging data from both seismic and electromagnetic methods, subsequent data processing to refine the
images using more computationally intense methods, joint inversions of the data using well log measurements
as constraints, and finally mapping the reservoir properties into a simulation model. Production rates and fluid
movements from simulation are tracked against actual time lapse fluid changes of the reservoir leading to
model improvements with better predictive power. Today these workflows can be done approximately, but we
expect the continuity of this feedback loop to improve dramatically in coming years

reservoir model or more likely is used to feedback refinements to the reservoir model so that
predictions become more reliable. In this way a sophisticated feedback loop (Fig. 4) from
seismic to reservoir simulation is set up which over time increases the predictive value of the
simulations and decreases the risk of costly drilling decisions often associated with locating
by-passed hydrocarbons.

Beyond this compute-intensive real time application, the data will continue to be processed
using the sophisticated migration techniques discuss above and subjected to more elaborate
interpretations using new inversion methods. The objective is fuller examination of detailed
changes in seismic properties and linking these to a greater number of reservoir variables.
This can go on for months, but again advances in automation, computing power and algo-
rithmic improvements are making these analyses available in shorter times or allowing more
rigorous analyses which would not have been attempted before. Either way we expect over
time to achieve greater risk reduction and a positive impact on eventual recovery rates.
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2.4 Inversion of seismic and electromagnetic wavefields

The problem of imaging sedimentary structures obscured by high-velocity layers, such as
carbonate, basalt or salt, using conventional seismic techniques is well known (Fig. 2). When
this problem is encountered in offshore areas, marine electromagnetic data can provide valu-
able alternative and complementary constraints on the structure. Marine controlled-source
electromagnetic (CSEM) imaging in the frequency domain uses an electric dipole source to
transmit a low frequency narrow band signal to an array of fixed seabed receivers or to a
towed array just off the seafloor [14,42]. Overall, the geometric features of the acquisition are
quite similar to seismic surveys. The measurements are guided by the fact that the amplitude
and phase features of the detected electric fields are dominated by components that pene-
trated the seafloor and the underlying sediments which are more resistive than the column
of seawater. The method also relies on the large resistivity contrasts between hydrocarbon
bearing sediments and those saturated with saline fluids. Thus the returning signals contain
information of subsurface resistivity structures. Since electromagnetic energy preferentially
propagates in resistive media, conductive structures can be detected and delineated.

The feasibility of mapping hydrocarbon reservoir structures using this technique have
been explored through numerous modeling and simulation studies. These studies generally
follow the inversion procedures described above specifying subsurface models which range
from simple 1-D planar geometries [14,42] to complex 3-D geological models [20] with
parametrizations resembling those likely to be encountered in actual practice. Finite differ-
ence forward models for the electromagnetic field equations are used to generate the synthetic
data.

An example (Fig. 5) which is based on an actual field data set demonstrates the model-
based inversion procedures using a 2.5-D forward modeling approach [2]. The data were
acquired over a portion of a field using twenty three electric dipole transmitters along a
13 km line at a depth around z = 300 m. Details of the acquisition and problem domain are
given in Fig. 5. The initial model (Fig. 5a) used to start the inversion consisted of an air layer, a
water layer and a sea floor layer. The inversion results are shown in Fig. 5b which also shows
the depth of the reservoir estimated from seismic denoted by a dashed-line. We observe that
the depth of the reservoir is accurately estimated along with its broad outline. This was for
a 2-D acquisition data set with a 2.5-D forward modeling package. This can easily be done
on current pc computing nodes, but scaling to large 3-D data sets with source receiver com-
binations similar to modern day seismic acquisitions suggests the electromagnetic inversion
problem will rival that of seismic inversion in size.

Looking ahead we expect increased use of joint seismic and electromagnetic data to raise
the value of geophysical inversion. We have seen that inverted seismic wavefields yield
information directly on acoustic impedance maps which can be used to delineate geological
boundaries as well as elastic parameters, porosity and fluid types using suitable local cali-
brations from well log data. Resistivity maps, on the other hand, yield information on fluid
boundaries and can be used with accurate log data to yield information on fluid types, relative
saturations and porosity. Thus both types of data supplement and complement each other,
suggesting that a simultaneous inversion of combined data would likely result in improved
estimation of flow parameters for input into reservoir simulation models and simulations.
This could be done for multiple configurations of measurements, e.g., borehole-to-bore-
hole, borehole-to-surface and surface-to-surface. Recent reported work [12] on simultaneous
inversions already lends some confirmation to this expectation. We can also foresee, gen-
eralizing the concept of 4-D seismic discussed above to include electromagnetic time-lapse
data to provide almost continuous monitoring of the reservoir fluid pathways. This begs the
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Fig. 5 Inversion of an EM field data set with 45 receiver units employed along a 24 km line at a depth around
z = 320 m. The transmitter fundamental was 0.25 Hz. The inversion domain ranged from x = −7 km to
x = 19 km and z = 0.4 km to z = 3.5 km and was discretized into 260 by 62 grid cells with sizes of 100 m by
50 m. (a) The initial model showing only the sea column (blue), sea bed (orange) and a uniform subsurface
(yellow). (b) The inverted data showing the reservoir in a position consistent with the depth derived from
seismic data (dashed line)

question - can better knowledge of these pathways be used to assist economic ultimate
recovery? We believe the answer is yes. While the cost of this data acquisition and the inver-
sion computational load will initially be high, we can expect continued improvements in
hardware and algorithmic efficiencies. However, the value of more precise exploitation of
reservoirs leading to improved recovery rates could be huge.

The prospects for computer hardware over the next five years show multicore processor
speeds growing beyond a TFlop and no doubt greater access to Petaflop multi-processor com-
puting platforms. Combined with algorithmic improvements, transformations of reservoir
geophysics will continue and likely will produce:

– Much shorter imaging workflows to accomplish what we do today (10 months goes to 2
months or even days) which will certainly improve the matching of 4-D seismic imaging
to reservoir engineering time scales potentially producing a game changer for reservoir
recovery.

– Far more automated velocity field determinations to support accurate 3-D depth imaging
(months to days).

– Multi-component imaging of fully elastic wavefields.
– New generations of sound wave inversion methods for reservoir properties using the

elastic wave equation.
– Joint inversion of 3-D surface and borehole seismic data for reservoir properties.
– Joint inversion of 3-D seismic and 3-D electromagnetic data for reservoir properties.
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– Vastly improved accuracy of reservoir simulations from geophysical data-driven work-
flows that constrain detailed flow pathways.

– Improved uncertainty quantification and control driving better decision making.

3 Part II. Formation evaluation—pore scale fundamentals of oil recovery

3.1 Borehole measurements

Once a well is drilled the industry has developed over the past 80 years many sophisticated
measurement instruments for determining important physical properties of the rock/fluid for-
mations along a well path. These instruments are often linked together and lowered to the
bottom of a well on the end of a wireline cable. The entire assembly is then systematically
pulled to the surface while making continuous measurement readings along the way as a
function of depth (the log). The wireline serves not only as a tether but also is the means
whereby raw data is transmitted to surface computers and processed in real time to allow
local and remote experts to observe the properties of the formations penetrated by the well.

These measurements focus on properties such as locations of geological boundaries, poros-
ity, formation electrical resistivities, oil vs water ratios of the fluids confined in the pore
systems, fluid permeabilities, rock mineral constituents, formation fluid chemical compo-
sitions, rock elastic parameters, pressure and temperature. The modalities include electric
current injection, electromagnetic waves, nuclear gamma ray radiation, neutron radiation,
coupled neutron to gamma ray radiation, acoustic waves, nuclear magnetic resonance and
infrared spectroscopy. We will not endeavor here to describe in detail each of these measure-
ments. Interested readers can consult several general references, e.g., [15,24,29].

Over the past twenty-five years similar measurements have been designed and incorpo-
rated into the structural components of drill strings in order to make these measurements as
a function of depth during the drilling phase of the well. This has been an extraordinary feat
of mechanical engineering in addition to managing the measurement physics. These logging
while drilling (LWD) techniques have enabled measurements to be made very close in time
to the actual penetration which has enormous benefits for mitigating the effects of formation
alteration from the drilling process.

Research and engineering development of these modern logging measurements has ben-
efited greatly from modeling and simulation. Throughout the past three decades this effort
has evolved from 1-D models based on simple, but essential, physics to rigorous 3-D time-
dependent numerical models using finite difference and finite element approaches for wave
propagation [1,20] and Monte Carlo techniques for nuclear radiation transport [32]. In all
cases we are now able to simulate the details of the measurement instrument, its placement
in a well and the details of the surrounding rock formation. In fact systematic studies of the
almost infinite variety of formation characteristics would not be possible today without the
capabilities to simulate their imprint on measurement responses.

3.2 Drilling and geosteering

A good example of these modeling and simulation capabilities is associated with recent
practices in horizontal well drilling. Starting about 15 years ago it has become common to
drill wells horizontally, and today this extended-reach drilling is reaching distances up to
20 km from the original vertical wellbore. Environmentally, this practice becomes attractive
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by substantially reducing the surface footprint of drilling and production facilities. However,
it also has significant economic advantages. Whereas traditional vertical wells may only
penetrate several 10’s of meters of producing zones, a horizontal well suitably drilled to
reach a reservoir target could make contact with several kilometers of a single producing
zone or even intersect multiple producing zones in different isolated reservoirs.

To accomplish this geosteering, which has obvious analogies to modern medical micro-
surgery practices, the well must be drilled with real time steering information. Early LWD
logging measurements commonly measuring resistivity close to the drill bit were used to
locate the reservoir zone and subsequently steer horizontally using a touch and feel tech-
nique. If the drill bit penetrated the top or bottom layer boundaries of the reservoir zone,
the resistivity measurement would sense an immediate decrease in resistivity and indicate
to the driller to steer down or up. While this practice had some success, it suffered from
not being able to see farther to avoid exiting the production zone in the first place and the
directional information proved to be quite crude.

Now new deep directional electromagnetic measurements exist that allow well placement
by real time mapping of distances to geological boundaries [3,27]. Besides novel new sen-
sors, the method rests on being able to use multiple data in real time to perform a model-based
parametric inversion to translate the data into a local layer structural map thereby obtaining
measurement distances to nearby boundaries as well as bed resistivities. Various levels of
model sophistication can be supported again in real time, but none of this would be pos-
sible without the continued evolution of efficient forward modeling numerical algorithms,
data handling, graphics and computer hardware to match the real time constraints of the
application.

Figure 6 shows the results of this process applied to a well with a complex vertical extent of
the reservoir layer some 40 feet thick extending over a horizontal interval of some 2600 feet.
If only seismic imagery were used to “steer” the well, a trajectory following the cyan line
would have been followed. As a result of the new directional measurement with real time
model-based inversion the path denoted by the red line was followed showing excellent steer-
ing within the reservoir zone. One can also see evidence of smaller-scale intrabedding shale
layers (dark color), and it is remarkable that the well trajectory was able to avoid them and
preferentially penetrate the yellow color-coded hydrocarbon bearing sands.

3.3 Porescale physics

3.3.1 Introduction

Carbonate reservoirs represent roughly 60% of the remaining conventional hydrocarbon
reserves. A deep understanding of these rocks that promotes greater recovery is therefore
vital to our continued dependence on hydrocarbons for many decades throughout the 21st
century.

Carbonate rocks are well known to have highly heterogeneous hydraulic properties that
make delineating recoverable reserves and producing them uniquely difficult. Their pore
space is often partially filled with brine of varying pH and salinity. These fluids have been
reacting with the rock matrix minerals for eons and are typically in states of disequilibrium
today. Adding hydrocarbons with a wide range of viscosity and chemical behavior further
complicates the story. As a result surface effects (roughness, chemistry and wettability) can
have profound influences on recovery method choices and their efficiencies. Often to enhance
production in carbonate reservoirs, fluids (water, produced gas, steam, CO2, synthetics) are
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Fig. 6 Visualization of a complex well through a 2600 foot horizontal reservoir section (approximately 40 feet
thick) which is highly faulted. In this case staying in the reservoir also meant navigating fault planes across
which reservoir surfaces were displaced from one another. The cyan line was the planned trajectory from
seismic data while the red line was the actual trajectory. Numerous intrabedded shale layers are shown in the
darker shades. These also had to be navigated in such a way to maximize contact with the lighter layers which
contained hydrocarbons. Figure reproduced with permission from [3]

injected into the formation. The success or failure of these efforts is strongly influenced by
the multi-scale heterogeneity of the reservoir down to the rock-fluid interfacial dynamics. In
simple terms, whether the rock is oil or water wet can result in very different outcomes from
a production enhancement program such as a water flood. Characterizing and understand-
ing how this heterogeneity from pore to reservoir spatial scales determines production is an
ongoing and difficult technical challenge.

3.3.2 What do we want to achieve?

Characterizing the multi-scale fluid flow properties of carbonate reservoirs has typically been
highly empirical, contributed to in an ad hoc sense by many types of physical measurements
and often not transferable. To get the hard oil and gas out and hence raise recovery rates,
we are up against significant gaps in our understanding of the role of surface physics and
chemistry governing flow in hydrocarbon bearing porous media. Mineral-water interfaces
have been under intense study outside the oil industry for several decades driven by interest
in natural geochemical processes and a whole host of environmental concerns related to haz-
ardous wastes. Currently in the oil industry there is a growing appreciation that more focus
is needed on fundamental understanding of processes at rock-fluid interfaces. Lack of under-
standing may indeed be the most important limitation to growing recovery rates significantly
beyond where best practice is now.
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Even for flow conditions over a “planar” mineral surface (no pore walls yet to con-
tend with) complexity over length scales will start from atomic-scale structure at ideal
crystallographic mineral/fluid terminations and move into topologies associated with defects,
micro-cracks, impurities, inorganic and organic coatings and even biofilms. This is the scale
where chemical bond breaking and formation will be most important, and it is the scale
where wetting behavior will be established. The next level will be concerned with the flow
boundary layer next to the mineral surface which is often suggested to be less than 10 nm
thick [49]. Beyond that we get into bulk flow properties and the details at the interface can
serve to establish proper boundary conditions for study of flows at larger scales. As pore
walls are added, the situation can change remarkably as the surface to volume ratio increases
to a point where the interfacial characteristics could significantly perturb or even dominate
the local flow properties.

Rephrasing this into specific goals, we want to:

1. Improve our basic understanding of multi-scale heterogeneity effects on all our mea-
surements to better link macro hydraulic models at the reservoir (production) scale to
those at meso scales (borehole or near borehole) and then to micro scales (pore level) and
finally to nano scales (rock/fluid interface) and vice versa. This represents a formidable
multi-scale problem spanning 12 orders of magnitude.

2. Extend our knowledge of physics and chemistry associated with flows at mineral/pore
fluid interfaces, especially with respect to chemical reactions, factors affecting wettabil-
ity in the presence of multiple fluid species and chemical interventions associated with
Enhanced Oil Recovery (EOR) techniques.

3. Develop new laboratory techniques for item 2 capable of direct observation and charac-
terization of mineral/fluid wetting layers and their alteration.

4. Extend and apply this new knowledge base to unconventional sources of oil & gas such
as heavy oils, shale oil, tar sands and gas hydrates.

5. Extend this work to unique issues relevant to long term CO2 sequestration.

While progress has been made in many of these areas of rock physics and chemistry,
much of this progress has been compartmentalized among the different domains of hydrol-
ogy, contaminant cleanup, earth science, petroleum engineering, etc. An understanding of
carbonate rocks will require an integrated understanding of their rock/fluid interfacial phys-
ics and chemistry over multiple spatial and time scales starting from atomistic/molecular
behaviors.

It is this last point that needs some elaboration with respect to simulation. In order to
predict the transport properties linked to spatial/temporal scales at the rock/fluid interface
several nontrivial issues immediately arise:

• How do me measure geometric features at the interfaces and at what spatial resolution
• How is geometry to be represented
• What geometric parameters are necessary for which properties
• Is there a minimum set of geometrical parameters
• What is the relevant surface chemistry at the interfaces
• What are appropriate models for surface defects and their chemical influence
• How are the interfacial properties transformed into up-scaled boundary conditions.

Each will have to be studied concurrently and systematically integrated to make useful
progress. Simulation will have to play a strong role throughout.
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3.3.3 Porescale simulations

So far approaches to this problem have paid most attention to predicting permeabilities using
microstructural models. Early on, geometric information focused on porosity and specific
surface areas which were all that were needed for simple empirical models [5], but now
detailed geometries are derived from analyses of rock thin sections using optical imagery
[22] and x-ray microtomographic measurements [4,17] which are reaching spatial resolutions
approaching micron and even sub-micron scales.

Modeling has progressed from simple heuristic models [6] to geometrically complicated
models needing large scale numerical simulations which are commonly based on network
models and lattice Boltzmann (LB) techniques. Network models which are derived from
microscopic properties of real porous media continue to have some success [7,48]. In these
models idealized 3-D networks of pores connected by throats are constructed in such a way
to preserve measured geometric and topological information for a particular porous medium.
This information includes size distributions for pores and throats and their coordination
derived from microtomographic data. At first the network elements were taken to be circular,
but this has now moved on to square and triangular elements for more realistic modeling of
wetting states. Fluid movement through these networks proceeds using displacement rules
based on capillary pressures between network elements and gravity. These models yield rea-
sonable predictions of fluid transport properties for single and multi-phase flows, but usually
this success is highly dependent on conditioning the model parameters to experimental data.
Transferability of model predictions to a wider range of rock systems is still problematical
and often depends on getting a good geometric match to the system of interest. Also the
inclusion of wettability distributions on permeability is still an open question.

Beyond network models most attention is now being given to 3-D LB methods [31,39]. LB
methods are uniquely powerful for being able to represent complex pore geometries [4,17]
and boundary conditions if they can be properly derived from smaller-scale dynamics that
exist at rock/pore fluid interfaces. It is no surprise that a major drawback of LB methods is
computational expense, but LB methods are highly parallel, and they will benefit from the
continued evolution of massively parallel computing. More problematical will be describing
realistic microscopic boundary conditions conditioned by nanoscopic details at rock/fluid
interfaces. This will require unique new measurements to probe rock/fluid physical (elec-
trostatic) and chemical (reaction) interactions at the scale of nanoscopic topography (rough-
ness). For example, it is thought that precipitation of certain heavy hydrocarbon components
(asphaltenes) [9,33] can alter the nature of the wetting fluid at the rock/fluid interfaces result-
ing in changes of macroscopic hydrological properties such as the relative permeabilities of
water and oil. This can have sometimes a very detrimental effect on oil recovery, but still little
is understood about the general nature of these processes. We note that these issues, which
in detail are somewhat unique to the oil industry, are still reminiscent of challenges in the
general field of pore scale reactive transport studies which have highlighted long term diffi-
culties associated with physical and chemical scale-dependent heterogeneities in the systems
studied [44].

On the experimental side we see availability of high resolution x-ray microtomograph-
ic images [41] no longer solely reliant on large 3-D synchrotron radiation facilities. More
portable measurement systems are becoming available which will greatly increase the diver-
sity of the data sets (Figs. 7 [4], 8 [40]) and challenge the generality of the simulation models.
There are still important open issues on how to transform the 3-D image data to a form suitable
for inclusion in simulations models whether they be LB or otherwise. We still don’t know
how limiting the resolution of the 3-D image data is for prediction of transport properties
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Fig. 7 Simulation showing invasion of a nonwetting fluid (red) from above displacing a wetting fluid (blue).
The left panel shows initial breakthrough and the right panel shows the nonwetting fluid in steady state. The
original tomographic image is of a Fountainebleau sandstone with a voxel edge of 7.5 µm. Reproduced from
[4] with permission

and correspondingly how big the computational domains must be for highly heterogeneous
pore systems. Thus validation of LB techniques even for single-phase fluid flows still has a
ways to go, but here we can expect good progress.

The situation becomes even more challenging as we move into multi-phase and multi-
component flows with chemical reactions. Recently LB techniques were used to simulate
reactive transport for a model pore system [21] with multiple fluid components and miner-
als taking account of both homogeneous reactions among fluid species and heterogeneous
reactions between the mineral surfaces and the fluid components. Homogeneous reactions
were included as “simple” source/sink terms for each possible chemical reaction with reac-
tion rates for each species specified as a function of concentrations. At interfaces mineral
reactions were handled via boundary conditions accounting for diffusion of solute species to
and from the mineral surface. Overall, the methods produced reasonable results, but the chal-
lenges for real systems will be supplying suitable rate constants for all applicable reactions,
scaling to larger models to include additional pore heterogeneity and validating predictions
against experiments.

We expect that LB simulations of complex (multi-phase, multi-component, reactive) flows
in porous media will be done at micron or sub-micron resolution with upscaling to larger
volumes to aid linkage to macro properties. Important interfacial effects due to boundary
flows and chemical reactions operating at the nano scale must come in as boundary condi-
tions at the micro scale. Resolving these effects involves a different area of both experiment
and simulation. Fortunately, new optical imaging techniques now allow us to directly observe
what is taking place at or near mineral surfaces subjected to controlled flows. Laser scanning
microscopy allows us to image flow profiles with submicron resolution. Likewise electron
microscopy, atomic force microscopy and techniques like vertical scanning interferometry
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Fig. 8 Current state of the art tomographic images of six rocks at 2.85 µm resolution [40]

(VSI) [26,30] are being successfully applied to image mineral surfaces allowing direct quan-
titative measurements of microscopic changes in the mineral surface topography due to
dissolution/precipitation processes with nearly angstrom resolution in the direction normal
to the surface. This capability to observe mineral/fluid interfacial behavior will also serve to
complement use of ab initio computational methods like density functional theory molecular
dynamics to simulate the structure and dynamics at interfaces involving thousands of atoms
over sufficient times to determine average mineral-water interface properties. If necessary
for the study of long time scales, kinetic Monte Carlo techniques [51] may have to be invoked
as well.
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Finally, introducing hydrocarbon phases also adds the complexity of mixed wettability.
Microscopic studies of mixed wettability in systems with multiple fluid phases are still in
their infancy [31,48], but fundamental understanding of interfacial physics and chemistry
surrounding mixed wettability at mineral surfaces will be essential for innovations leading to
better recovery rates. A particular issue, mentioned earlier, will be understanding and man-
aging the wettability altering role of heavier hydrocarbon fractions should they precipitate
out from solution and deposit on mineral surfaces.

This surface deposition problem is quite widespread. Heavy organics such as paraffin,
resin, and asphaltenes exist in petroleum fluids throughout the world. These compounds are
usually found in solution, but some can precipitate out of solution and deposit on mineral sur-
faces due to changes in temperature, pressure or chemical composition. When this happens
in the formation, severe impairment of porous flow can ensue, but they can also precipitate
in wells and other flowlines leading in many cases to total blockage which must undergo
expensive remediation. Asphaltene precipitation and deposition often lies at the center of
these problems. Given the industry trends to develop and produce hydrocarbons with heavier
asphaltic fractions, one can expect this problem to become more prevalent. In fact some
urgency may be called for since these so-called heavy oils are more and more associated with
very expensive operations, e.g., deep water.

While the asphaltene problem is not new and in fact has been studied for many decades,
the understanding of the precipitation/deposition mechanisms from a fundamental stand-
point remains poor. The result has been a strong tendency for the industry to rely on phe-
nomenological models at best and at worst to ignore the problem all together until it is
too late. Several difficulties that impede investigation of these heavy oil fractions are worth
noting:

1. Asphaltenes are a whole class of different compounds with varying molecular weights
which may act differentially with respect to precipitation properties. The chemical struc-
ture of these compounds have been under study using all applicable physical methods
including IR, NMR, ESR, mass spectrometry, electron microscopy and so on. Only
recently has there been some agreement on their molecular weight distributions and
structures [33].

2. The mechanisms of precipitation are believed to be highly dependent on their molec-
ular weights and the existence of other constituents [9]. For example, the paraffins
are believed to mediate the larger molecular weight compounds coming out of solu-
tion and flocculating to form larger particles. These larger particles can have a strong
affinity to solid surfaces due to polar groups associated with the asphaltene molecules
themselves.

3. Resins, if present, may act to stabilize the flocculates by adsorbing onto their surfaces
enabling the asphaltene particles to remain in colloidal suspension. Thus we can postu-
late a general condition whereby lighter asphaltene particles are dissolved in oil, others
are stabilized by resins as flocculates in a suspended colloidal state and still others (pos-
sibly the heaviest) are precipitated out and adhering to the rock mineral surface. Thus
the onset of precipitates and their potential for damage is a dynamic interplay of various
constituents and their physical environments.

Ultimately, we want to understand asphaltene chemistry and dynamics sufficiently to avoid
precipitation in the first place, but a next level of understanding will necessitate fundamen-
tal studies of asphaltic particles adhering to mineral surfaces and how interventions can be
designed to eliminate or mitigate impairment to hydrocarbon flows and recovery.
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4 Part III. Simulation for new enabling technologies in the oil and gas industry

4.1 Introduction

We have discussed how modern simulation tools are becoming indispensable aids for moni-
toring production from oil reservoirs and developing future production strategies. A new level
of data-driven hydrocarbon reservoir management is being achieved from advances in multi-
physics modeling and simulation, algorithms exploiting massive parallelism, and processes
for continuous use of dynamic well-bore and seismic data. Looking ahead, the possibility of
combining large scale reservoir simulations with ubiquitous monitoring sensors embedded
in reservoir-fields, e.g., permanent downhole sensors and seismic sensors anchored at the
seafloor, could provide a new level of symbiotic feedback between measured data and model
predictions. This is sometimes referred to as the “intelligent oilfield”. While this vision is
not yet reality, we can forecast several enabling technologies that will help it become so.

4.2 Illuminating the oilfield with new sensor systems

New micro/nano sensors and network systems are one of the pillars of this outlook, and one
can see them massively deployed as embedded elements in the subsurface infrastructure of
tubulars, valves and even in the steel and cement used to mechanically support well structures.
In this scenario possibilities abound for increased monitoring of the mechanical integrity and
safety of the system (recall structures will be deployed in a hostile environment for many
years). This is a strategy similar to what the aerospace industry is following with respect
to monitoring critical flight elements and structures. In addition, these sensors could yield a
wealth of additional information on production behavior within the well and quite possibly
behavior in the immediate vicinity of the well.

A longer term scenario foresees sensor systems that could be injected into the reservoir
after which they may migrate to locations from which they will “report” properties such as
temperature, pressure and maybe fluid content at their position with an accuracy not obtain-
able by any other method known today. The value of this distributed information coupled
back to reservoir simulation could be another enormous step in data-driven reservoir manage-
ment. The components (sensing, power and communication elements) of these systems will
likely be at the nanoscale opening an opportunity to leverage much of the work on nanoscale
devices currently ongoing, but often driven by biotechnology and biomedical applications.
No doubt the extreme environments of the oilfield will provide new challenges for practical
devices.

One expects that these devices could be based on a number of well known nano build-
ing blocks such as nanowires, nanotubes, quantum dots and wells, as so on. Studies of
these devices rely heavily on a blend of experimental and simulation efforts. Simulations
must deal with multi-scale phenomena beginning with atomic structure at lead contacts, to
quantum descriptions of non-equilibrium electronic transport, to interfaces with power and
communication components (which will likely be nano-sized), and finally to interfaces to
the macro world. These are daunting challenges, but the smallness of the sensors combined
with their demonstrated high sensitivities for detecting mechanical alteration and chemical
species makes them attractive for distributed sensing applications.

For active sensing, predicting and controlling current in these devices as a function of
their environment is essential, but is complicated by quantum phenomena such as tunneling,
confined dimensions, and fluctuations that come into play. Structural details at interfaces will
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Fig. 9 Conceptual view of the simulation of a nanowire device (a carbon nanotube is shown with an attached
molecule). A multi-scale description includes ab initio, atomistic, semi-empirical and continuum models

play a role since free surfaces along conduction paths will undergo reconstruction possibly
with passivating species, and heterointerfaces will often involve charge transport across two
different materials systems. For example, contacts with multi-moded metals will bring a
highly conductive material in thermal equilibrium with a sparsely moded active channel that
operates out of thermal equilibrium.

In Fig. 9 we illustrate the multi-scale nature of the problem ranging from a quantum
mechanical description of the conduction channel and nearby lead structures to a microscopic
macroscopic connection with the outside. If one can specify the atomic configuration and
Hamiltonian [H] of the device connected to the two contacts, it is possible to calculate
the transport properties using several methods, the most popular being the nonequilibrium
Green’s function (NEGF) approach [13,25]. This is usually done self-consistently with an
electrostatics calculation based on the Poisson equation and can include many parasitic effects
such as phonon scattering. The computational challenge depends on the physics included in
the Hamiltonian. Some semiconductor nanodevices can be simulated using an effective mass
Hamiltonian in conjunction with a finite difference description of the Schrodinger equation.
Another level of rigor is reached using atomistic tight binding approaches which will scale
with the number of atomic orbitals per atom. For many semiconductors sp3d5s* orbital sets
are often used leading to matrices that could easily reach 109 elements and beyond depending
on the size of the device. This could make direct inversions to calculate the energy dependent
Green’s functions in the NEGF method quite expensive if not for some elegant approaches
[25] to invert for the Green’s functions at reduced cost. At the highest level one can still resort
to density functional theory, but with some constraint on the number of atoms in the active
device. How predictions from these different approximations compare amongst themselves
is still not well established [23,50]. Furthermore, comparisons against experimental data are
often clouded by variable experimental controls [11]—so we can expect their use to guide
development of new sensors to remain semi-quantitative for some time, but still useful.

4.3 Computational materials

The oil industry uses a lot of different materials to accomplish its business and in many situa-
tions these materials are intended for use in the rather extreme environments of the subsurface
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in terms of temperatures, pressures and risk of chemical attack. The most common structural
materials include steels, specialty stainless steels and cements. Polymer composites though
desirable because of weight are used in a more limited sense (often because of temperature
limitations and strength). Ceramics are most often used as protective coatings or in situations
with severe wear, but have not found general use because of classical tradeoffs of hardness vs
brittleness. Current trends in subsurface operational environments point to more situations
where we will become materials limited. There is also a growing need to place far more infra-
structure into the subsurface to better manage the overall extraction of hydrocarbons over
long periods of time (several decades). This introduces more severe durability requirements
on materials (wear, strain fatigue, corrosion resistance) in addition to improving the usual
mechanical requirements of strength and toughness. All this suggests that new materials
are desired to operate efficiently, and their development time must become much shorter. A
partial list of desirable materials would include:

1) New specialty stainless steels with less costly components and manufacture and with
enhanced strength and toughness and resistance to corrosion, a difficult set of tradeoffs.

2) New high temperature polymer composites whose mechanical properties ideally one
day could match those of current generation stainless steels.

3) Tougher ceramics without compromising their hardness.
4) New classes of cements which are lighter and more resistant to cracking and chemical

attack over long periods of time (many decades).
5) In all cases materials that have some capability to repair themselves if they become

damaged.

This is a tall order, but we can expect that advances from such things as combinatorial
analyses of composite properties [47] and multi-scale simulation [18,51] will make it easier
to identify interesting candidates which could be developed in shorter times. We’ll elaborate
on the case for high temperature composites to make the point.

4.3.1 High temperature polymer composites

A common approach to new composites today is the use of well dispersed nano-sized fillers
that can significantly improve mechanical behavior and other properties at macro scales.
Traditional composite property models which work well for large phase domains may no
longer apply. New theories [18] have to take account of particle sizes (especially particle
specific surface areas) and the interfacial layers between particles and the matrix. Because
we lack theories that describe the mechanics of nanointerfaces and how these are manifested
at larger scales (new constitutive laws), simulations will have to play a role in advancing the
state of the art in order to avoid the time costly trial and error approaches of the past. We
can envision that ab initio calculations will be required at and near interfacial boundaries to
study structures as well as the dynamics of relative displacements of the two phases when
larger stresses are applied potentially disrupting bonding that may be present. This can best be
handled with density functional theory molecular dynamics since tailoring chemical bonding
at the interface is an important strategy for maximizing load transfers [16]. Of course we
would like this information to transition into a classical molecular dynamics simulation over
a larger volume perhaps with appropriate reactive force fields as long as bond breaking is still
an issue and then on to more mesoscopic simulations and finally to finite element methods.

To our knowledge the full multi-scale problem has not been fully integrated and tested
on multiple systems. Instead a large patchwork of results based on different modeling
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assumptions seems to exist. Continuum mechanics approaches [52] treating carbon nano-
tubes (CNTs) as beams, thin shells or solids with cylindrical shapes have been tried to get a
handle on overall load behavior. However, they are of little value to understanding details of
interfacial interactions with the polymer matrix. Various MD simulations have been attempted
with some success [18]. Force fields have been based on fully atomistic potentials to more
coarse-grain potentials often used with dissipative particle dynamics DPD which extends
classical MD methods to larger systems and longer time scales. Molecular dynamics was
employed to calculate the elastic properties of an effective fiber [34] consisting of a CNT
surrounded by polymer in a cylindrical shape. A micromechanics homogenization model
with this effective fiber was then used to calculate the properties of composites with different
CNTs, lengths and volume fractions. Comparisons with experimental data were reasonable.
In another example a full MD approach [19] was employed for two CNT polymer com-
posites. A surprising result was that the calculated elastic moduli were in rough agreement
with the simple classical rule of mixtures. Further work is needed to see if this is a general
correlation or not. At a larger scale a continuum Boundary Element Model (BEM) [28] has
been used to simulate a CNT reinforced composite containing 16,000 straight rigid fibers.
The effective Young’s modulus of this model compared closely to an MD result. Interest-
ingly, the rigid fiber approximation is not limiting since the elasticity of the fibers and more
realistic interface conditions based on MD CNT composite results could be included in the
BEM.

There is little doubt that polymer nanocomposites simulation is a growing field lever-
aging computational power, theory and algorithmic improvements in line with studies of
other materials systems. Designing, producing and optimizing new composites with prop-
erties amenable to the extreme environments of the oil industry is a formidable challenge,
but it also is one shared throughout materials science which gives cause for hope. Even the
few simulation results mentioned above which involve some linking of information over
different length and time scales is testimony that useful progress is happening toward com-
putational materials design. However, we would agree that validated methods on how to
transfer information from the molecular level to the mesoscale is the critical bottleneck for
realizing the potential of computational materials for industrial applications [35]. We also
believe the benefits are worth the effort.

5 Summary

By many indications the petroleum industry is entering a new phase in which demand for
oil & gas continues to reach unprecedented levels due to global growth. We can expect this to
continue with minor fluctuations due to economic cycles. At the same time the age of easy oil
is nearing an end. Two outcomes of this new scenario are already being observed. The first is
greater emphasis on recovery rates from existing resources raising them from today’s average
values of around 30–35% to greater than 60–70%, and the second will be increased develop-
ment of unconventional resources, e.g., heavy oils, bitumen, tar sands, shale oil, gas hydrates
and coalbed methane. For the time being there are still plenty of hydrocarbon molecules, but
the easy ones to produce in terms of today’s technology and economics are reaching shorter
supplies probably over the next couple of decades. Reactions to both trends will place new
demands on increased fundamental understanding and technologies.

With the above macro-economic scenario serving as a context, we have discussed several
of application areas with particular focus on the role of modeling and simulation. These
applications were deliberately chosen from the upstream part of the oil industry which deals
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with the subsurface, which historically has had the greatest risk. That risk has spawned a
chain of notable technical innovations, and we need this to continue.

The enterprise is already becoming data-driven in the sense that continuous new data
reflecting static and dynamic properties of the oil reservoir are being acquired and inter-
preted, and the results are being compared to reservoir simulator predictions and then used to
guide updating the underlying simulator models. This dynamic feedback loop will continue
over the lifetime of the asset starting with appraisal where the models are most uncertain to
late development where they have matured and help focus on by-passed oil and gas. Precision
management of reservoir drainage is a key activity that helps raise recovery factors. Both
seismic and electromagnetic imaging are used to illuminate the reservoir at the largest scales.
The processing of those data into images are among the largest computational tasks done
anywhere today, and we still haven’t exhausted the physics rigor. In a time-lapse sense we
want the image data to become more real time to support drilling decisions which cannot wait
months while data are processed. Novel short cuts are used today to meet this requirement,
but at the sacrifice of physics.

Beyond imagery the same data is being inverted to derive other reservoir properties.
Three-dimensional inversion over the scale of the reservoir is still impractical using finite
difference based methods to solve the forward wave propagation problems. However, algo-
rithmic advances and the growing power of computing platforms now reaching PetaFlop
scale are making this more possible with fewer physics approximations. Logs acquired dur-
ing drilling or via wireline after drilling produce the most accurate data which can be used
to constrain inversion. But logs only measure at or near well penetrations and must be sup-
plemented by geological models to fill in between wells. Thus uncertainties in reservoir
model descriptions between wells are still major risks. This can have a detrimental impact
on horizontal drilling through large sections of a thin reservoir. We saw an example where a
directional EM measurement while drilling supplemented by real time inversion is now able
to pinpoint the reservoir upper and lower boundaries with impressive results over just using
seismic imagery to guide the process. This enables well placement with far greater reservoir
contact and improved recovery.

At the smallest scales approaching atomistic we covered three areas where modeling and
simulation supplemented by modern tools capable of nanoscopic examinations will likely
impact oilfield technology. New materials, especially polymer composites, are interesting
from a strength-to-weight point of view if they can be also engineered to withstand subsur-
face environments for long time. Likewise, new sensors with micro to nano footprints may
someday be in the offering to provide ubiquitous sensing within and from wellbores. There is
even the possibility that tiny devices could perhaps penetrate the formation and act either as
smart tracers or remote sensors of reservoir properties. While some of these ideas are clearly
long term we have to be mindful that in other application domains (medicine, aerospace,
electronics, environment, etc.) work is going on with an impressive blend of experimental
and modeling and simulation efforts that can be leveraged for oilfield applications. Finally,
interfacial physics and chemistry at nano scales can play dominant roles influencing how
reservoir fluids flow in porous media. We made the argument that increasing recovery may
indeed rely on improving understanding of interfacial transport processes and how they link
to macro transport properties. The industry due to lack of tools and economic drive has
ignored the nanoscopic scale in favor of more microscopic to mesoscopic scales as starting
points. These limitations are being removed. New tools, including simulation, for probing
rock mineral/fluid interfaces provide a compelling opportunity to gain insight on some basic
road blocks affecting recovery.
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Abstract The exporting of theoretical concepts and modelling methods from physics and
mechanics to the world of biomolecules and cell biology is increasing at a fast pace. The role
of mechanical forces and stresses in biology and genetics is just starting to be appreciated,
with implications going from cell adhesion, migration, division, to DNA transcription and
replication, to the mechanochemical transduction and operation of molecular motors, and
more. Substantial advances in experimental techniques over the past 10 years allowed to get
unprecedented insight into the elasticity and mechanical response of many different proteins,
cytoskeletal filaments, nucleic acids, both in vitro and, more recently, directly inside the cell.
In a parallel effort, also theoretical models and computational methods are evolving into a
rather specialized toolbox. However, several key issues need to be addressed when applying
to life sciences the theories and methods typically originating from the fields of condensed
matter and solid mechanics. The presence of a solvent and its dielectric properties, the many
subtle effects of entropy, the non-equilibrium thermodynamics conditions, the dominating
role of weak forces such as Van der Waals dispersion, hydrophobic interactions, and hydrogen
bonding, impose a special caution and a thorough consideration, up to possibly rethinking
some basic physics concepts. Discussing and trying to elucidate at least some of the above
issues is the main aim of the present, partial and non-exhaustive, contribution.

Keywords Biomolecules · Mechanical properties · Configurational entropy · Molecular
dynamics · Jarzynski identity

From the point of view of a materials scientist, living tissues exhibit rather extraordinary
properties compared to both standard structural materials, such as metals or ceramics, and
functional materials, such as semiconductors or ionic crystals. On the one hand, living tis-
sues have specific values of mechanical properties that would superficially rule them out of
advanced engineering: their Young’s moduli are typically within a few MPa, i.e. orders of
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magnitude smaller than even the softer polycarbonate (Y ∼ 2.5 GPa); their typical fracture
resistance under tension is in the range from a few kPa (animal skin, muscle fibers) to a few
MPa (cortical bone, with a maximum of ∼100 MPa for limb bones) [1,2], while plastics such
as polypropylene or polystyrene have values of a few tens MPa, and metals are in the range of
thousands of MPa. Their thermal performances are substantially restricted from below by the
freezing and, from above, by the boiling temperature of water at ambient pressure; however,
already at temperatures above 40◦C most metabolic functions of many living organisms will
be endagered, and most tissue cells will die well below 50◦C. As far as electronic properties
are concerned, ion mobility along a neural axone is so slow that it would take years for a
neurotransmitter to cover the distance from the brain to the limbs by pure diffusion, whereas
the typical commuting times of a neural synapse are in the range of msec, i.e. at least six
orders of magnitude slower than some outdated VLSI circuit from the late 90s.

However, a closer examination of biological materials reveals astounding surprises. For
example, abalone shell which is just 97% calcium carbonate, turns out to be 3,000 times
more resistant to fracture than pure calcium carbonate [3], thanks to a molecular-scale “glue”
component that holds together individual mineralized fibrils. Another well-known exam-
ple is spider silk which, although having a Young’s modulus more than ten times smaller
than Kevlar (the best artificial fibre commercially available), is largerly better than Kevlar
as far as failure strain (10 times larger), and resilience (more than twice) [4]. On the other
hand, despite being quite slow at pure number-crunching computing, the human brain can
outperform by orders of magnitude any present digital computer in such tasks as template
matching, pattern recognition and associative memory, with moreover a ridiculously small
size of about 1.5 liters, mostly of water, and a power consumption of about 23 W, compared
to IBM’s Blue Gene supercomputer which covers 250 m2 with its 106,000 computing nodes,
made of 320 kg of silicon drawing nearly 2 MW.

In the above examples—just a few representative ones from an overwhelmingly long list—
the key feature that defies any simplistic material scientists’ intuition about bio-
logical materials is the presence of a tightly interconnected hierarchy of microstructures,
over all the length scales. Figs. 1a and 1b show examples of bone and muscle microstruc-
tures, respectively, with their whole complexity growing from the molecular level all the way
up to the macroscopic living tissue. At every length scale the constituent materials appear
to adopt a well-organized spatial microstructure, which results from the evolutionary design
of specialized molecular factories, capable of assembling kilograms of matter according to a
precise and functionally optimized layout. For a mechanical engineer willing to model such
structures by, e.g., finite-element three-dimensional calculus, the structures shown in Fig. 1
are as breathtaking as a gothic cathedral.

However, as physicists and materials scientists, we can give a possibly helpful contribu-
tion to the understanding of biological materials provided we try to keep a rather general
perspective, aiming at understanding the underlying organization and processing principles
of living microstructures, rather than focussing on all the possible details, no matter how
important they could be for the proper functioning of a cell or tissue. (A typical, maybe
extreme, example is that when a biologist and a physicist are asked how many different
types of neurons there are in the cerebral cortex, the biologist answer is ‘ten million’ and the
physicist says ‘two’ [5].)

Self-organized microstructures at all length scales are widespread in every biological con-
text, from the molecular level and up. Cells are the basic units, coming in a wide variety of
shapes and sizes. The overall organization of such hierachical microstructures is aimed at
obtaining the maximum performances with a minimum of material, by adopting composite
and gradient material structures. The response of cells to external and intrinsic stimulation is
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Fig. 1 a Hierarchical structure of a human cancellous bone such as that found, e.g. in vertrebrae or limbs. The
cancellous structure is filled with a highly porous structure of spongy appearance (spongiosa). The trabecu-
lae, or hanging bridges forming this cellular material are typically 200 µm wide and made of a composite of
collagen and calcium phosphate mineral. This composite has a lamellar structure, where each lamella consists
of layers of parallel mineralised collagen fibrils. Individual collagen fibrils have a diameter of a few hundred
nanometers, while the individual reinforcing mineral particles have a thickness of only a few nanometers.
b (Left) Hierarchical structure of a muscle, starting from the sarcomere, then assembling into myofibrils,
which make up the muscle fibers. (Right) Molecular structure of the sarcomere: the z-lines limit the contrac-
tion, which is activated by the gliding of interdigitated thick (myosin) and thin (actin) filaments. Myosin heads
can bind to specific sites on actin (see crosshatched example) and then rotate to stretch the extensible region.
Rotated heads generate a net force between thick and thin filaments. Regulatory units (tropomyosin) bind
calcium (Ca)
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Fig. 2 (Left) Simplified scheme of a living cell, underscoring the relationship between the overall shape taken
by the lipid membrane, and the mechanical scaffold represented by the cytoskeleton. The latter has at least
two different microstructural components, microtubules and filaments (actin is one kind of structural protein),
differing in their intrinsic length scale and mechanical properties. In general, microtubules are thicker and
more rigid than filaments, and are organized around a central node (centrosome), while actin filaments are
more similar to a dense network spreading all over the cytoplasmic fluid that fills up the whole cell, colored in
light yellow. (Right) a Cytoskeleton of epithelial cells highlighted via a fluorescent stain attached to keratin
filaments (image by W. W. Franke). b Scanning electron micrography of part of an actin filament bundle from
a REF-52 fibroblast after decoration with the protein S1 (skeletal myosin subfragment 1) (from Ref. [6])

determined by complex, interconnected chains of biochemical reactions, defying any endea-
vour aimed at drawing solid borders between the various levels: molecular, supramolecular
(individual cell components and structures), genetic (scale of the cell nucleus), transcrip-
tional, post-transcriptional and regulatory (single-cell level), metabolic (from tissues up to
whole organs).

While all living tissues are generally formed by assemblies of cells, the outer wall of most
cells is made by a very soft and deformable membrane: a double-shell of well-ordered lipid
molecules, having the mechanical consistency of a soft gel. However, cell deformations as
large as 100% are easily observed, e.g., red blood cells of about 7–8 µm fitting into capillary
vases of about 1–3 µm diameter. In fact, besides its very limited elastic capability of just a
few % maximum strain, the main mechanical response of the cell resides in its ability to
continuously supplement new membrane material, taken from some special reservoir, while
adjusting its shape by restructuring the internal cytoskeleton (Fig. 2).

Clearly, living tissue microstructures have plenty of hidden secrets that should greatly
stimulate the imagination of materials scientists. Study and observation of such microstruc-
tures is complex, since there is no single tool, either experimental or theoretical, capable of
covering all the various levels of organization of the biological materials. While structures
down to about a µm in size are accessible to conventional light and fluorescence micros-
copy, higher resolution down to the single-molecule level can be achieved by other probes,
such as confocal, total internal-reflection (TIRF), or resonant energy-transfer (FRET) laser
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microscopy, scanning (SEM) or transmission (TEM) electron microscopy, x-ray diffraction
(XRD) or small-angle x-ray scattering (SAXS), and by a variety of spectroscopic techniques,
from nuclear magnetic resonance (NMR), to Fourier-transform infrared (FTIR) spectroscopy,
and so on.

In this contribution, I wish to focus on the issues raised by the study of the mecha-
nical deformation of living cells and of their molecular constituents, by means of computer
modelling. Far from being exhaustive, my modest (and possibly too naive) purpose is that
of addressing a few general issues about the design and use of theoretical models, from a
physics and materials science point of view, aimed at linking up our rather well-assessed
knowledge in solid mechanics and molecular physics to the domain of cell biology.

1 Cell mechanics and adhesion

The microscopic mechanics of molecules, including proteins and nucleic acids, can be crucial
to understanding several fundamental biological processes, e.g., the manner in which cells
sense mechanical forces or deformation, and transduce mechanical signals into alterations
in such biological processes as cell growth, differentiation and movement, protein secre-
tion, etc. Still in its infancy, this emerging field of mechanics aims to investigate such issues
as: how the structural and mechanical properties of DNA (deoxyribonucleic acid), RNA
(ribonucleic acid) and proteins under stretching, twisting, bending and shearing conditions,
affect DNA—protein, RNA—protein and protein–protein interactions [7]; what function the
deformation of proteins and nucleic acids does have in DNA condensation, gene replica-
tion, transcription and regulation [8]; how mechano-chemical coupling works in enzymes
as nanomachines, how use of DNA and proteins as a component of nanosystems, and the
attendant interface considerations [9] can be understood in terms of the deformation and
mechanics of biomolecules.

At the level of a single cell, microrheological measurements show that the cytoplasm is
a viscous fluid, permeated by a gel-like network (the cytoskeleton, see Fig. 2) with a rather
large mesh size, to the point that particles of up to about 50 nm in diameter can freely diffuse
through the cell. The viscosity of the cytoplasm is about 10–100 mPas, i.e. about 10–100
times that of pure water, reflecting the high concentration of proteins in the fluid (about 20%
weight in a typical cell). The modulus of elasticity of the actin network in the cell typically
has a value in the range 0.1–1 MPa [10].

From a structural mechanics point of view, a tissue can be considered as a compact struc-
ture, endowed with mathematical continuity. In other words, a tissue is seen as a continuous
pattern of cells, possibly evolving in number, shape and size, but generally smooth and, in
mathematical terms, convex, i.e. containing no holes, tears or discontinuities.

Mechanical stresses can be transmitted between cells, via either direct cell-cell contacts,
or cell to the extracellular matrix (ECM) contacts. In either case, the physical link is not a
flat surface between the respective membranes, but is rather represented by a chain of trans-
membrane proteins which ensure the solid contact among membrane portions belonging to
adjacent cells. Transmembrane proteins may link, via a complex microstructure of secondary
proteins, either directly to the cytoskeleton, or to the ECM. Therefore, in order to link the
mechanical deformation of a single cell to the mechanical response of a tissue-like aggregate
of cells, one must necessarily consider also the issue of cell adhesion.

Cell adhesion is a central property of biological tissues, at the origin of numerous impor-
tant properties of living organisms. For example, cell adhesion represents the most direct
way of coordinating the synaptic connectivity in the brain, promoting the contact between
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Fig. 3 Examples of some non-covalent association of molecules leading to intercellular bonds between two
hypothetical cell membranes: (A) two receptors linked by a bivalent ligand, (B) a receptor on cell 1 binding
to a ligand on cell 2, (C) an enzyme-substrate bond, (D) a (hypothetical) bond between identical receptors,
(E) antibodies (or glycoproteins) bridged by two bivalent antigens (or lectins), (F) two antibodies bridged by
a multivalent antigen, (G) antibody binding singly to antigen, (H) antibody binding multiply to antigen, (I)
multiple antibodies bridged by a multivalent antigen, (J) complementary antibody bonds. (Adapted from Ref.
[20].)

dendrites and axons [11]. In a different context, pathologies in genes controlling cell–cell
adhesion are among the main causes of cancerous cells spreading, since the under expression
of adhesive proteins increases cell motility and, on the other hand, the over expression of
different adhesive proteins facilitates the wandering behavior of tumoral cells [12]. Notably,
from the point of view of a biophysicist, the adhesion of a biological cell to another cell, or
to the ECM scaffold, involves complex couplings between biochemistry, structural mechan-
ics and surface physics/chemistry. As such, it may constitute one of the very few occasions
in which a strictly physical mechanism has a direct connection with biological and genetic
phenomena.

At a microscopic, molecular level, adhesion takes place through association and dissoci-
ation of non-covalent bonds between very large transmembranal proteins. Different kinds of
associations are observed (Fig. 3), with either single or multiple non-covalent bonds being
formed between similar or complementary receptors on the proteins on each side. It is to
be noted that membrane proteins are rather free to diffuse in the plane of the lipid layer,
therefore non-covalent association rates will depend on the diffusivity, especially when the
binding rate is much faster than the rates of encounter and formation or dissolution of the
receptor-ligand complex. In particular, the kinetics of reaction between surface-bound reac-
tants leads to much lower 2D diffusion and rates, compared to the 3D diffusive features of
ligands in solution. Moreover, the association/dissociation rates change considerably under
mechanical stress.

The association within, and across a portion of the membrane, of a large number of pro-
teins, enzymes, lipids, proteoglycans etc., during adhesion to the substrate or to a nearby cell,
leads to the formation of the so-called focal adhesion complex (Fig. 4). Such a structure
(a true microstructure, to the eyes of a materials scientist) is indeed a specialized organelle,
and may involve dozens of different molecular species, while covering a large extension of
the membrane surface [13]. Moreover, the protein–protein and protein-ligand interactions are
dynamic, namely the focal adhesion complexes between the cell membrane and cytoskeletal
proteins are formed and continuously adjusted in shape and size, as a function of time, stress
conditions and elastic properties of the substrate [14]. Recent experiments suggested for the
first time the possibility of a direct connection between mechanical forces at the cell sur-
face, and biochemical mechanisms of genetic expression [14–16]. For example, Discher [15]
could highlight a direct role of the Youngs’ modulus of the substrate in promoting the correct
striation of myoblast pre-fibers, starting from stem cells attached onto plastic substrates of
varying elasticity.
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Fig. 4 Hypothetical molecular model of focal contacts and fibrillar adhesions. Since substrate-attached vitro-
nectin forms a rigid matrix, αvβ3 integrin remains immobile despite the applied contraction force. In contrast,
α5β1 integrin is bound to a relatively soft fibronectin matrix and thus translocates centripetally owing to the
actomyosin-driven pulling. The translocation of the fibronectin receptor can also stretch the fibronectin matrix
and promote fibrillogenesis. Abbreviations: a, actin; α, α-actinin; F, FAK; fn, fibronectin; m, myosin II; P,
parvin/actopaxin; pa, paxillin; ta, talin; te, tensin; vi, vinculin; vn, vitronectin; 51, α5β1integrin; v3, αvβ3
integrin. (adapted from Ref. [13])

However, despite that chemical signals involved in mechanical sensing are starting to be
identified, the initial sensor of mechanical force is not yet known. It is generally thought that
eliciting a mechanical response in a cell requires at least two steps [17]: (1) a structure which
is deformed by the applied force, for example the unfolding of some protein domain, in one
of the focal adhesion proteins, and (2) one or more elements that transmit the information to
the ‘target’, for example a transcription initiation site in the cell nucleus.

Just by looking at a simplified scheme of the cell adhesion microstructure (see again Fig. 4),
it may appear surprising that some materials scientist could even conceive of
trying to describe such a complexity in terms of a homogeneized continuum model, as
simple as, e.g., a diffusion-like equation [18]. Nevertheless, thermodynamics models only
slightly more sophisticated than a diffusion equation have today become largely accepted
biophysical theories [19,20], capable of outlining some basic concepts in cell adhesion. The
Bell theory of reversible bond formation and breaking [20] is but one outstanding example
of the possibilities offered by the exporting of physical concepts into the domain of biol-
ogy.1 With a synthesis capability which may appear extraneous, or even misleading, to the
biologists, and despite their only apparent simplicity, such theories are trying to provide a
general framework for what would be otherwise an overwhelming complexity, devoid of any
common interpretative features.

Since this is a review and position paper rather than a scientific communication, I wish
to stress once more that, in order to make true impact in biological sciences as a physicist,
one should resist the temptation of following the immediate path of a strict interpretation of

1 It may be worth noting that, before producing his famous theory about cell adhesion, G. I. Bell had already
amply made his career as a nuclear physicist, including a world-respected book about nuclear reactors theory,
written together with S. Glasstone.
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individual experiments, i.e., having ultimately in mind the possible clinical and therapeutic
outcomes of a series of specific molecular or supramolecular processes. The latter is, indeed,
the business of biomedical and clinical research, and certainly there is people out there much
better trained at it, than a physicist or a materials scientist. I believe that our guiding idea
should always be that of finding general principles, even among the great complexity of life
sciences, aiming at connecting and incorporating in a more general framework the existing,
fundamental theories of non-living matter. As suggested by Buiatti in their papers about the
concept of a “living state of matter” (see [21,22] and refs. therein), which are in turn based on
a philosophical and episthemologic background linking ideas from I. Prigogine, M. Eigen,
and others, present-day physics should be viewed as the theory of only a part of the Universe
(the non-living one), and the eventual inclusion of life sciences into a futuristic “theory of
everything” should be attempted in the spirit of completing physics into a new science with
an enlarged basis of principles, rather than attempting to reduce the whole of biology to just
some ‘special kind’ of physics.

In modern physics, going beyond even the simplest theoretical descriptions necessarily
requires the use of numerical simulations. Models for such a complex phenomenology as cell
adhesion and mechanics should be capable of starting from the most elementary mechanisms
of protein-ligand interaction, and proceed upwards in both the length and time scales, all the
way up to the level of the elasto-plastic deformations of the cell membrane and cytoskeletal
scaffold. To this end, a combination of computational methods must be used, ranging from
Molecular Dynamics (MD), at the most microscopic scale, to micromechanical models, in
which the molecular degrees of freedom are progressively coarse-grained, to continuum or
semi-continuum (microstructured) models, in other words by adopting a multiscale compu-
tational strategy [23,24].

To be specific, a molecular-level study of cell adhesion and mechanical deformation from
the point of view of computer simulations poses numerous daunting challenges, both meth-
odological and conceptual. To list just the most outstanding ones:

– the description of non-covalent interactions, such as Van de Waals, hydrophobic-hydro-
philic, and hydrogen-bonding forces, is still an unsolved problem, even within the most
advanced electron density functional theories;

– the deformation rates applicable in MD simulations are orders of magnitude faster than
in the real experiments and, as a result, the peak forces are overestimated,and irreversible
work is injected in the computer simulation;

– moreover, the too fast MD deformation rates artificially smooth out force fluctuations,
which would allow to sample the space of conformationally-independent deformation
modes, therefore failing to represent the inherent dynamics and stress-force dependence
of actual atomic-force microscopy (AFM) or laser-tweezer pulling experiments;

– linked to the previous point, is the issue of how to correlate the microscopic simulation of
mechanical loading at the atomic scale, to the meso- and macroscopic deformation state
of cell membranes, and tissues;

– fundamental questions still remain about the most adequate statistical mechanical treat-
ment to describe the entropic contribution to the unfolding forces, since the current methods
based, e.g., on steered-molecular dynamics (see below) involve fixing the end-points of
molecules, thereby arbitrarily restricting the configuration space sampling.

An excellent review of open problems in the application of micromechanics models to cell
mechanics has been recently presented by Bao (see Ref. [25] and references therein). It is not
my intention to recapitulate published material and, moreover, the present contribution is not
intended as an exhaustive review article, but rather as a perspective paper. In the remainder
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of this article I will therefore focus on the interplay between protein deformation and cell
adhesion, and mechanical behavior of living tissues, and I will try to address the above ques-
tions concerning molecular-scale and multi-scale modelling of the mechanical deformation
of proteins from a rather general, qualitative standpoint, going from single-molecule to more
complex systems.

2 Modelling molecules inside cells

In the past ten years, it has become clear that studying the deformation of molecules (nucleic
acids, proteins) inside cells could be the key to understand mechano-chemical coupling, and
how mechanical forces could play a role in regulating cell division, shape, spreading, crawl-
ing etc (see for example Ref. [26]). Internal mechanical forces Fα , generated e.g. by motor
proteins, induce conformational changes in a protein that can be understood by studying the
behavior of the total free energy of the system:

G = U +
∑

k

µkck −
∑
α

Fα · xα − T S (1)

where U is the internal energy, T the temperature, S the entropy, and the xα represent vec-
tors of generalized displacements. ‘Total’ here means that one cannot consider the protein
as an isolated object, but must account for the presence of the surrounding solvent, ions,
small molecules (e.g., sugars), and any other adjacent, deformable bodies (cell membrane,
ligands, other proteins), each one indicated by its concentration ck and chemical potential µk .
By assuming quasi-equilibrium conditions under the applied forces Fα , the conformational
changes can be determined by the condition:

∂G

∂xα

= 0, ∀α (2)

The different contributions to U and S upon variations of the atomic positions by xα

are rather difficult to assess. Besides covalent, or bonding, force terms, arising from bond-
stretching, bond-bending, dihedral forces etc., and affecting the internal coordinates of the
molecule, U may contain non-bonding contributions, such as electrostatic and Van der
Waals, hydrogen bonding, hydration, hydrophobic, steric and brownian contributions, affect-
ing the translational and rotational degrees of freedom, and the overall 3D conformation of
the molecule. However, even more subtle and crucial is the role of the entropy, S, for bio-
logical macromolecules. In fact, aside from a usually negligible vibrational entropy term,
an important contribution to G in proteins and long polymers arises from configurational,
or ‘conformational’ entropy (the first name being preferable, to emphasize the connection
with the microstates of a statistical ensemble) which, in turn, is usually negligible when
considering the condensed phases of matter.

Configurational entropy is a measure of the contribution to the free energy arising from
all the possible geometrical arrangements of a polymer chain, compatible with a given set
of macroscopic thermodynamical constraints. It is related to the amount of free volume sur-
rounding the object, and this is the reason why it is usually negligible in the high-density,
condensed states of matter. Intuitively, a polymer chain in solution completely folded into a
globular state, may have a huge number, �, of nearly-equivalent geometrical conformations,
all corresponding to the same values of energy, enthalpy, temperature, volume, etc. The same
chain, once unfolded into an almost rectilinear string, has but a very small number, � ∼ 1,
of equivalent configurations. The configurational entropy corresponding to either state is, by
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definition, Scon f = −kB log �g Thereby, the entropy of a randomly coiled polymer, or a
denaturated protein, is much larger that of a protein folded to its native state. Indeed, at the
very extreme, one may say that there exists only one conformation of a protein, � ≡ 1 and
Scon f = 0, that makes it fully effective for the function to which it is destined. The variation
in configurational entropy is probably the single largest contribution to the stability of the
aminoacid chain, and a similar, albeit non exclusive, entropy role is thought to be involved
in the stabilization of nucleic acid chains. At variance with the world of pure mechanics, the
world of flexible polymers in solution (which includes proteins and nucleic acids) is governed
by the competition between attractive interactions and unfavorable entropy terms. Describ-
ing the evolution of such a system under the action of external mechanical forces cannot be
limited to the minimization of mechanical energy, but must take into account the configura-
tional degrees of freedom, i.e., the changes in the multiplicity of configurations belonging to
a same set of values of energy. This is what is concisely expressed by the concept of entropy.
In the remainder of this Section, I wish to elaborate briefly on the relationship between MD
simulations and configurational entropy, in context of the elasticity of living polymers at null
or small applied forces.

The general features of a chemical reaction, including, e.g., biomolecular association
into a complex, A + B ⇔ AB, association of a soluble ligand to a surface binding site,
L + S ⇔ L : S, or the two-state folding/unfolding of a protein, U ⇔ F , are customar-
ily described in terms of a standard reaction free-energy, �G, and the relative equilibrium
constant, K , for the reaction:

�G = −RT log K (3)

A first problem arises when considering single molecule experiments. As the presence of the
molar gas constant R suggests, the above expression is valid for an ensemble of equivalent
objects in the thermodynamic limit. One should ask whether is it still feasible to extrapolate
the use of a similar description, when an individual object or reaction is being monitored?

In the standard connection between classical MD and thermodynamics, the ergodic hypo-
thesis is assumed, namely that a “sufficiently long” time observation of the system evolution
can represent a statistically meaningful ensemble average. This, in turn, allows to connect
the statistical average values of estimated physical quantities to thermodynamic parameters,
such as �G and K . It turns out that such an assumption is readily verified in (and, indeed,
has been instrumental for the understanding of) a wide range of condensed-phase systems.
This is due to the fact that in such cases, and at relatively low temperatures and pressures, the
free energy is practically dominated by the internal energy contribution, a quantity which is
easily accessible to MD calculations; at non-zero pressure or stress the main contribution to
the free energy is embodied in the enthalpy, again directly accessible to MD calculations by
means of several extended methods to include also external thermodynamic and mechanical
constraints.

However, in a single-molecule experiment, e.g., observation of a protein folding to its
native state, or pulling a protein from one end with an AFM or tweezer apparatus, the system
must be able to explore the entire phase space unconstrained, and the sampling of the inter-
mediate configurations along the minimum free-energy path must be distributed according
to the right multiplicity, i.e., the partition functions of the reactants and the complex. The
classical expression for the equilibrium constant reads like [27]:

K ∝ Z N ,AB Z N ,0

Z N ,A Z N ,B
(4)
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with Z N ,x the statistical partition functions for: x = AB the complex, x = A, x = B the
reactants (all at dilution 1/N in the solvent), and x = 0 the pure solvent, respectively; the par-
tition function of the species X in N solvent molecules is proportional to the configurational
integral,

Z N ,X ∝ QN ,X =
∫

e−βU (rX ,rN )drX drN (5)

The appearance of the ratio of the partition functions in Eq. (4) can be understood since,
during the experiment, the system goes from the initial to the final state, and the difference
between the two free energies (logarithms of K ) turns into the ratio between the configura-
tional integrals.

The free energy difference between initial and final state can be evaluated by the method of
thermodynamic integration (Kirkwood 1935), in practice by performing a set of equilibrium
Molecular Dynamics simulations of the two extreme states, and interpolating by a numerical
approximation [28–30]:

�G AB =
∫

∂G(λ)

∂λ
dλ =

∫ 〈
∂U (λ, rA, rB , rAB , rN )

∂λ

〉
I (rAB )≈1

dλ (6)

The averaging condition I (rAB) ≈ 1 indicates that the configurations over which the integral
(6) is to be evaluated are those for which the ligand is at, or near the binding site (those in
which A and B are far apart giving a negligible contribution). This is true also for the initial
state, when the complex AB is not yet formed, and the ligand is in solution. In other words,
the ligand is surrounded by the solvent, but it is always close to the binding site: this avoids
to wrongly compare calculations of the initial and final states having different values of the
chemical potentials. Such a condition can be implemented during the MD simulation, e.g., by
a hard wall, the I (rAB) being represented by a step function, equal to 1 for rAB smaller than
some cut-off distance and equal to 0 elsewhere; or more effectively by a confining harmonic
potential [31,32].2

It should be noted that all the free-energy methods rest on the central idea [28] that the rate
of change of the system (i.e., the variation of the parameter λ in Eq. (6) above) is sufficiently
slow to represent an ideally adiabatic transformation: if this is the case, the system follows
a constant-entropy path. If, on the other hand, the perturbation rate is too fast, the final state
will depend on the initial conditions, and the calculated free energy will not be a unique
function of time. In practical cases, this means that the minimum change in λ at each step
can be so small that the computation time becomes prohibitive.

In MD calculations one gets access to the internal energy and enthalpy of the system, but
the entropy must be separately added from a model calculation.3 The simplest approach may
involve the use of the classical Sackur-Tetrode equation for the translational entropy of the
ideal gas, plus the ideal gas rotational entropy, and some approximated expression for the
mixing entropy (see [27] and Refs. therein). Otherwise, an explicit calculation of the con-
figurational integral Q can be carried out for each degree of freedom separatedly (all being
expressed in terms of the internal coordinates qi ), and subsequent mixing by a correlation
function, usually of Gaussian form [33,34]. It can be shown, after some algebric manipulation

2 Note that the free energy �G AB as computed, must be corrected by a term describing the transfer of the
ligand from the solvent to the gas phase.
3 Since the Newton’s equations of motion conserve the total hamiltonian as the integral of motion, MD sim-
ulations are performed at constant energy. Therefore, the entropy is not constant during the simulation and
cannot be calculated explicitly.
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and approximations, that such a method requires only knowledge of the covariance matrix:

σi j = 〈
(qi − 〈qi 〉) · (q j − 〈

q j
〉
)
〉

(7)

The individual averages and fluctuations of each internal coordinate are readily available in
a MD simulation, therefore to obtain the configurational entropy it is just necessary to add
the calculation of a determinant.

An improved method to obtain a close upper bound for the configurational entropy has
been introduced by Schlitter in 1993 [35,36]. The heuristic Schlitter’s method works in ‘nat-
ural’ Cartesian coordinates, instead of the more cumbersome internal coordinates, with the
advantage of allowing inclusion of translational and rotational degrees of freedom. Moreover,
it is shown to converge to the correct quantum and classical limits when the temperature goes
to zero or to infinity, respectively.

3 Mechanical loading of single molecules

The considerations in the previous Section concerned the spontaneous evolution of a molec-
ular system in solution, going from a well defined initial state to a well defined final state.
In a mechanical deformation experiment (and simulation), instead, the system is artificially
driven to an unknown final state by applying some external constraint, typically a force at
one extremity of a molecule. Compared to a macroscopic mechanical loading, in which the
sample is deformed in a smooth and non ambiguous way, the kind of loading applied to a
molecular system during an AFM or tweezer pulling experiment has an intrinsic molecular,
or ‘nanoscale’ character. When observed at the nanoscopic scale, the pulling of a molecule
follows a rather noisy, fluctuating path, with a well defined average value and direction of the
force, but the instantaneous movement being continuously biased by the Brownian motion of
the surrounding solvent.4 The values of the forces applied by the AFM or tweezer apparatus
are in the same range, or smaller, than the binding forces holding together the molecule in
its 3-dimensional shape, and comparable to the kB T of thermal fluctuations. As a result,
the deformation path is rather erratic in time and space, and follows the overall free energy
changes of the molecule, the solvent, and the pulling apparatus, all working on comparable
energy, time and length scales.

Dissociation under the action of an external force is a non-equilibrium process, character-
ized by a ‘rupture strength’ (the inverse of the binding affinity) which is not a constant, but
rather depends on the rate of force application and the duration of loading. The ‘off’ rate, ν,
in the already cited model of Bell [20] is the product of a bond vibration frequency, ω, and
the likelihood of reaching a transition state xt , characterized by a ‘reduced’ energy barrier
(Eb − Fxt ):

ν ≈ ω exp [− (Eb − Fxt ) /kB T ] (8)

The above equation shows that the dissociation rate increases with the applied force as
ν ≈ ν0 exp (F/Ft ), with Ft = kB T/xt a scale factor for the force at the transition point. Of
course, the complexity of biomolecular systems is far too large to be captured by a single
parameter, xt , and more refined models are required to describe, e.g., brittle vs. ductile rup-
ture, entropic elasticity, competition between hydrogen bonds and van der Waals forces, and
so on (see below, in the concluding Section). However, Bell’s theory points out the importance
of mechanical forces in biology: in fact, in the presence of non-covalent association, even

4 Quantum motion and uncertainty effects are not a concern for the large masses of biological molecules.
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an infinitesimal force if applied for a long enough time can cause breakage. The question
therefore is: can MD simulations reproduce the actual physics of the mechanical deformation
and rupture of a single molecule?

The practical answer to this problem, over the past ten years or so, has been the method
called “steered Molecular Dynamics”, or SMD [37–39]. SMD refers, in fact, to a collection
of methods intended to apply a force to a molecular-scale complex, such as a bound protein-
ligand ensemble, and monitor the subsequent unbinding, or unfolding process. A first SMD
method prescribes to restrain the ligand to a point x0 in space by an external (e.g., harmonic)
potential, U = k(x − x0)

2/2, and subsequently let the point x0 to move at a constant velocity
v during the simulation. The resulting external force is F = k(x0 + vt − x), the ligand being
pulled by an harmonic spring of constant stiffness k. Alternatively, the point x0 can be held
fixed at some distance well from the equilibrium position, and the spring constant can be
slowly increased in time, as k = αt . In this case, the resulting force is equal to F = αt (x0−x).
Other variations of the basic methods involve the application of a constant force or torque,
to a whole set of atoms. Application of the SMD method requires to prescribe a path, i.e. a
series of directions of the force vector (which of course can also be a constant, resulting in a
rectilinear path), thereby restricing arbitrarily the region of the phase space compatible with
the given thermodynamic constraints. This is coherent with the observation that the procedure
described by the SMD algorithm is, indeed, a non-equilibrium process. As such, the SMD
method has been employed in a rather large range of cases, such as dissociation of biotin
from avidin and streptavidin [37], unbinding of retinal from bacteriorhodopsin [40], release
of phospate from actin [41], stretching of immunoglobulin domains in various molecules
[42,43], glycerol conduction through the aquaglyceroporin [44], the helix-coil transition of
deca-alanine [45], elasticity of tropocollagen [46], and more.

The SMD methods seems to stand on a physical contradiction. The evolution of the
molecular complex under an external force is clearly a non equilibrium, dissipative pro-
cess, but the simulation aims nevertheless at finding a final equilibrium state, character-
ized by some thermodynamic potential, and estimating free energy differences with respect
to the initial state. The so called Jarzynski identity is invoked to solve this contradiction
[47–49]:

〈exp(−W (ts)/kB T )〉�0
= exp(−�G/kB T ) (9)

The puzzling result summarized by the above equation, in only apparent violation of the
Second Law of thermodynamics, is that the ensemble average of the exponential of the work
performed on the system during the “switching time” ts (clearly a non-equilibrium transition
between an initial state �0 and some final state) is equivalent to the exponential of the free
energy difference between the same two states, i.e. a quantity independent on the time trajec-
tory, or phase-space path. In other words, the identity allows to obtain equilibrium quantities
from a collection of non-equilibrium processes. The importance of Eq. (9) for the case of
single-molecule experiments is obvious: one does not need a statistical ensemble in order to
derive the free energy of a single process, it is just sufficient to perform many irreversible
experiments on copies of the same system.

The Jarzynski identity has been debated in the literature and, even if it is currently accepted
on theoretical grounds [50,51], yet is rests on rather stringent practical conditions. In a non-
equilibrium process the work is path-dependent, and the ensemble average in Eq. (9) must
be computed for a collection of time trajectories, with a whole distribution of initial �0. The
limited size of the trajectory sample, and the fact that only a few, rare events contribute impor-
tantly to the Boltzmann average, make the use of the identity quite inaccurate in principle.
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Moreover, the final state should be uniquely identifiable, and be practically the same for any
choice of �0, which is not always the case.

In practice, however, the results of SMD simulations often seem to achieve a good qual-
itative comparison with experimental results, for example when comparing the force-dis-
placement curves on a relative scale [52], and several successful examples have been al-
ready reported, in which the simulation helped identify crucial details of the molecular
processes during a single-molecule nanomechanics experiment [53]. In general, the absolute
values of the forces observed for, e.g., the unfolding of a molecular domain under an applied
force in SMD are substantially larger than those observed in experiments. This is expected,
because of the high stretching velocity used in simulations, which in turn is linked to the very
small time-step (�t ≈ 10−15 sec) necessary to ensure a numerically stable integration of
the atomic equations of motion. Moreover, the fluctuations of the forces in constant-velocity
SMD simulations depend on the stretching velocity and spring constant used, and thereby
the displacement path followed, and possibly the final state reached, is a function of the
same parameters. Advocates of the SMD method concede that “the smaller the velocity
used, the less drastic the perturbation of the system is, and more details along the reac-
tion coordinate are likely to be captured” and that “(too) fast pulling may alter the nature
of the protein’s elastic response” [53]. Indeed, even the slowest stretching velocities used
in simulations (of the order of 10−4 Å per time-step) are orders of magnitude faster than
those used in equivalent AFM stretching experiments, a situation which is common to all
nanomechanics computational studies performed by MD [54]. Althought the a posteriori
comparison with AFM or tweezers experiments can increase confidence in the computa-
tional results, for example by looking at the hierarchy of mechanical stability of the var-
ious unfolding steps, and by comparing on a relative scale the peak-to-peak displacement
distances and force ratios, yet some deep questions about the dependence of the moni-
tored force on the stretching velocity, and about the actual dependence on the �0 sample
size in Eq. (9), remain unsolved. Notably, both questions are bound only by computational
power limitations, and not by fundamental theoretical restrictions. It is, moreover, worth
noting that most experiments, albeit far slower than simulations, are rarely slow enough
to work in a truly reversible regime. I will further elaborate on this point in the following
Section.

With respect to the considerations in the preceding Section, about the role of entropy and
the need for an unbiased sampling of the configuration space, it is clear that a non-equi-
librium process like the one described by SMD cannot but have a strong dependence on
the initial conditions. The computation of the binding affinity (i.e., binding free energy),
moreover in presence of subtle, non-covalent interactions such as the desolvation of ligand
and receptor binding site, and the attending changes in conformational free energy upon
binding, involves a near-compensation of entropy and enthalpy, with a conformational reor-
ganization spanning large length and time scales. Therefore computer simulations should
be particularly careful in this respect, at least by allowing an adequate sampling of the ini-
tial conditions, and by restarting the simulation from intermediate points along the SMD
trajectory (‘pinned’ simulations, in the language of Harris et al. [55]). The latter proce-
dure may reveal, for example, instability towards different final states. To some extent, the
rapid pulling experiment mimicked by SMD amounts to travel ’over the hills’ of the energy
landscape, once the first minimum is escaped, with only occasionally looking at some of
the downslopes leading to intermediate states. A more careful (i.e., slower) exploration of
the landscape should be considered, e.g. by a rare-events search method (see also the final
Section). In any case, the role of configurational entropy, qualitatively translating in the
distribution of multiplicity of nearly-equivalent paths across a given barrier, cannot be
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overlooked [55], and it should be included by one of the methods described in the previ-
ous Section.

4 Nanomechanics of living polymers

Although DNA has been, and still is, the object of intense and thorough experimental and
theoretical studies under any possible respect, the details and biological relevance of the
mechanical response of DNA under applied forces (either external, or arising from inside
the cell) are still unclear in many aspects. It is well known that DNA functions, replication,
transcription, etc., rely on the matching with other nucleic acids and associated proteins.
However, local and global deformations of the DNA in its coiled and supercoiled state can
alter this matching, and thereby its functions. Moreover, there are clear evidences that it
would be impossible to describe specific protein-DNA interactions entirely by a simple ‘rec-
ognition code’, based on direct chemical contacts of amino acid side chains to bases [56].
Even when taking the 3D arrangement of protein-DNA contacts into account [57,58], the
observed specificity cannot always be explained. In general, complexation free energies also
depend on the deformation required to distort both the protein and the DNA binding site into
their 3D structure in the complex. In this way, sequence-dependent structure and the defor-
mability of DNA contribute to sequence-specific binding, the effect called ‘indirect readout’.
Up to date, we do not yet have a clear picture of how mechanical forces are applied to DNA
inside cells and, more generally, we lack understanding of how mechanical forces acting on
DNA may contribute to regulation and control of gene replication and transcription.

Notably, DNA under tension offers a relatively simple and biologically relevant example
of a living polymer for which one can develop rather elegant theoretical expressions of the
free energy G, to be compared to experimental data, and a possibly useful test to check direct
molecular-scale SMD simulations. When pulled along its axis by an external force F (Fig. 5),
double-stranded DNA (or B-DNA) is firstly unwrapped from its supercoiled state, without

Fig. 5 Schematic representation of a typical force-distance curve for polymeric DNA. The flat region of the
force-distance curve at 65 pN is commonly known as the B-S plateau. The DNA unbinds at forces of ∼150 pN
(depending upon experimental details such as the pulling rate). The inset shows on a log-log scale two sets of
experimental data [57,58] at small forces, up to the B-S plateau.



354 F. Cleri

appreciable change in enthalpy. In this force range (F < 0.08 pN) configurational entropy is
the main contribution to the observed elasticity [59]. For 0.08 < F < 0.12 pN, the bending
rigidity of the chain starts contributing, i.e., the local chain curvature is slowly changed by
the applied force: this involves rearranging a number of hydrogen bonds, and the π-stacking
of the bases, thereby giving also an enthalpic contribution to the elasticity. The well-known
freely-jointed chain (FJC) and worm-like chain (WLC) models of random polymers can
describe quite well the experimental data in the above two small-force regimes [60,61]. Both
models assume the polymer chain to be formed by inextensible segments, implying that the
force diverges as the total chain length approaches the uncoiled length L .

At larger forces, the length of the double-twisted chain becomes longer than its uncoiled
length, meaning that in this force range single covalent bonds start to be stretched and bent
[62,63], thereby making the FJC or WLC models unapplicable. Upon reaching a force of
∼65 pN, DNA elongates abruptly at nearly constant force up to some critical length (see
Fig. 5), after which it stiffens again and rapidly breaks apart at a force of about ∼150 pN.
Two physical pictures have been developed to describe this overstretched, or ‘plateau’ state.
The first proposes that strong forces induce a phase transition to a molten state consisting of
unhybridized single strands. The second picture introduces an elongated hybridized phase
called S-DNA, and the plateau is a phase transformation at (nearly) constant stress, from the
B-DNA (the ordinary, right-handed double helix) to S-DNA. Little thermodynamic evidence
exists to discriminate directly between these competing pictures [64].

Several direct simulations of DNA extension by SMD have been performed in the past,
with a moderate degree of success (see, e.g., [65,66]). Basically, such simulations observed
the plateau in the force-extension curve for short fragments, around 12 bp, with features of the
B-S transition. However, the plateau is experimentally observed only for longer fragments
(>30 bp), and interpretation of the experimental results in terms of the B-S transition has been
therefore subject of debate. Since the experiments are not slow enough to be reversible, the
plateau should be more probably an evidence of force-induced melting. This is a good exam-
ple of the careless use of simulations inducing misleading information. As clearly indicated
by Harris et al. [55], the neglect of entropic contributions in the SMD simulations was at the
origin of the wrong interpretation.

The most current interpretation of the mechanical response of short DNA fragments under
external forces is that the two strands detach due to a rare high-energy fluctuation which brings
the system above the thermal barrier. The breaking force is therefore correlated to the spon-
taneous dissociation rate ν(0) (i.e., the frequency at zero applied force), rather than to the
equilibrium free energy of binding, as [67]:

F = kB T

xt
ln

Rxt

ν(0)kB T
(10)

The SMD simulations can provide a value of the transition state xt , at which the force
is maximum and the free energy goes through zero. As shown in Ref.[55], the estimate of
xt = 50 Å, obtained from earlier SMD simulations including the solvent but without explicit
account for the configurational entropy of the stretched DNA, underestimates the experimen-
tal force by a factor of ∼3.5. However, when the entropy is calculated according to, e.g., the
Schlitter’s heuristic formula, the total free energy �G = �UDN A + �Gsolv − T �SDN A

goes through zero at xt = 18 Å, and the SMD calculated force is in very good agreement
with the experimental value.

The simulations carried out on the DNA double helix served as an example to attack
other similar problems, such as the study of mechanical strenght of collagen, a triple helix
held together by hydrogen bonds, similar in some respects to the DNA structure [46,68].
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Also in this case, the first SMD simulations have neglected the role of entropy in the free
energy of deformation. The work by Buehler and Wong [46] points out, indeed, an important
role of entropic elasticity. However their finding is indirect, simply based on the observation
of a steady elongation at nearly constant energy in the first phase of the deformation. The
questions about the efficacity of the plain SMD procedure, in the absence of an adequate aver-
aging over �0, and of a repeated sampling of the non-equilibrium trajectories by restarting
the simulations at mid-points, continue to hold.

However, the SMD simulations have been able to reveal important features the unfold-
ing or unbinding process in many cases for which a direct experimental validation has been
possible. Not surprisingly, in all such cases the enthalpic component was the main respon-
sible for the observed behavior. Several experiments of forced protein unfolding by means
of optical tweezers and AFM have shown a characteristic sawtooth pattern [69–74]. Such
a behavior is reminiscent of the unfolding of DNA, but occuring in a many-steps fashion,
compared to the single-step action of DNA. Since adhesion proteins, such as the VCAM or
NCAM, cytoskeletal proteins such as spectrin, and other proteins, such as titin or avidin, have
a multidomain structure, the most obvious interpretation is that each subsequent branch of
the sawtooth corresponds to the repeated unfolding of one single domain. However, as SMD
simulations helped revealing, the situation is not always so simple and clean.

A more complex multidomain unfolding behavior has been demonstrated in the case of the
human heart muscle titin [72], for which Marszalek et al. were able to identify the microscopic
mechanism responsible for the deviation from the WLC curves of the individual branches
of the sawtooth pattern. A peculiar intermediate state occurring during the unfolding was
identified by SMD simulations, connected with the extra resistance to entropic unfolding
imparted by a patch of six hydrogen bonds. The enthalpy of binding, the force range and
critical extension predicted by SMD nicely matched the experimental data obtained from
AFM single-molecule extension, and the authors of that study were even able to give the
experimental counter proof, by engineering a mutant protein without the six H-bonds, which
did not show any deviation from the purely entropic behavior of the WLC chain.

5 Perspectives: physics, mechanics, and the multiscale modelling of biomolecules

The development of a new discipline necessarily involves a critical revision of the existing
concepts, as well as the introduction of new ideas. Combining biology and physics, and
notably mechanics, can be a worthwhile effort provided we can go beyond a simple cut-and-
paste of concepts from either one of the fields to the other. To deal with biological systems,
physics—and mechanics in particular—have to face the challenge of adapting to working
conditions which are extraneous to their traditional culture. For example, the presence of
the solvent with its own chemistry and subtle entropic effects, leading to hydrophobic and
hydrophilic forces, and to the still somewhat puzzling ‘depletion’ force. Notably, changes
in the ion concentration in the solvent can influence the structural stability of a protein or
nucleic acid: for example, the persistence length of DNA was found to decrease with the
inverse of the ionic strength [75], i.e., an increase in ion concentration leads to more curved
and bent DNA strands. However, the stretching modulus K increases with ion concentration,
in contradiction with the classical elasticity theory that predicts K to be, instead, proportional
to the persistence length.

Mechanochemical coupling in living cells involves, on the one hand, the way in which
forces and movement are sensed by the cells, and how these are transduced into biochemical
signals and, ultimately, genetic transcription [15,16]. From the opposite point of view, it
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also involves the way in which mechanical forces can be generated inside cells starting from
chemical events, such as the activation of movement by molecular motors (see, e.g., [76–78]).
While the coupling between mechanics and chemistry may be embodied, in principle, in the
thermodynamics description of Eq. (1), in practice the microscopic mechanisms involved
in the transduction of chemical into mechanical signals, and vice versa, defy such a simple
picture. The description of a molecular motor cannot stop at the conventional mechanical
relationships between forces and displacements, torques and angular displacements, power,
energy and momentum, but must take into account the randomness of Brownian motion,
since the level of forces and displacements involved, in the range of a few pN times a few
Å, is comparable to the energy of thermal fluctuations kB T . For example, Brownian forces
from the thermal fluctuation of water molecules can assist breakage of hydrogen bonds along
the backbone of a protein, as a sort of background random force. Even more importantly,
it has become clear only in recent years that ‘rectified’ Brownian motion (Fig. 6) could be
responsible for the displacement of motor proteins along the cytoskeletal filaments [77,79],
the average velocities observed being too large to be explained by simple diffusional displace-
ment based on the classical Fick’s law. Indeed, both the microtubules and the actin filaments
in the cytskeleton show a ‘polarity’ at the molecular level, which should be at the basis of

Fig. 6 a Conceptual model of rectified Brownian motion. Consider a particle diffusing in one dimension with
diffusion coefficient D. According to Einstein’s relation, the mean time it takes a particle to diffuse from the
origin, x = 0, to the point x = δ, is τ = δ2/2D. Now, suppose that a domain extending from x = 0 to x = L is
subdivided into N = L/δ intervals, and that each boundary is a “ratchet”: the particle can pass freely through
a boundary from the right, but having once passed it cannot go back (i.e., the boundary is absorbing from the
right, but reflecting from the left). The actual physico-chemical mechanism of the ratchet, schematized in the
figure by the door and lock mechanism, depends on the situation; for example, the particle may be prevented
from reversing its motion by a polymerizing fiber to its left. The time to diffuse a distance L = Nδ is simply
Nτ = Nδ2/2D = Lδ/2D. The average velocity of the particle is v = L/T , so the average speed of a particle
that is ‘ratcheted’ at intervals δ is v = 2D/δ. b The currently accepted model for the rectified Brownian
motion of myosin V along the cytoskeletal actin filaments. The mechano-chemical action provided by the
binding and burning of one ATP molecule is necessary to detach the myosin protein from the actin, thereby
favouring the reversible clicking of the two globular heads. When the protein is weakly bound to its substrate,
the role of thermal fluctuations becomes dominant. From this point the molecule can move to the next stable
site, where the ADD is released and the molecule is bound again to the actin. For the myosin, the elementary
step of ∼35 nm results from several ‘ratchet’ jumps of 4–5 nm each, helped by thermal fluctuations
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the rectification mechanism, i.e., allowing the molecular motors to distinguish between a
forward and a backward direction. The case of rectified Browian motion of motor proteins
and other biological systems also holds a deeper interest for a physicist [80], since it involves
the question of generating order from disorder, thereby touching at fundamental issues about
energy conservation and the Second Law of thermodynamics. It turns out that realizing in the
laboratory a rectified Brownian motor, or ‘thermal ratchet’, is an extremely complicated task,
while biology naturally offers a host of examples [81], in which many fundamental issues
about Brownian motion can be carefully scrutinized and tested.

The mixing of continuum mechanics and statistical mechanics has been invoked in order
to improve the simplified physical picture of bond breaking in molecules provided by Bell’s
theory. Eq. (8) does not include a dependence of the pulling speed on the pulling force. How-
ever, during a SMD simulation the maximum rupture force does show a strong dependence on
the speed at which the free end of the molecule is pulled, i.e., the fracture is strain-rate depen-
dent. In order to obtain such an information, Ackbarow and Buehler [82] considered that the
pulling speed σ could be linearized as the product of the rate ν from Eq. (8) (a statistical
mechanics concept) times the amplitude of the displacement at the transition (a continuum
mechanics concept), σ = ν · xt . Under this assumption, the product can be inverted to obtain
F as a function of the speed, resulting in a logarithmic dependence, F ∝ ln σ . Apparently,
the SMD data can be roughly fitted to ln σ , however the values of the fitting parameters Eb

and xt as obtained lend to ambiguity, since the barrier height, Eb = 5.59 kcal mol−1, is about
1/3 of the experimental value, and the transition state corresponds to a very small elonga-
tion xt = 0.185 Å. While the idea of linearizing the force-velocity relationship (a typical
physicist’s solution to the problem) may be, indeed, a bold one, the result is not entirely
satisfactory.

It is a general statement that extending the ideas and methods of physics to biology does not
amount to simply trying to rephrase biological phenomena according to the laws of physics,
and especially equilibrium thermodynamics. The use of the Jarzynski identity in single-mol-
ecule experiments is a possible example of ways to extend the current domain of physics in
order to deal with life sciences. In fact, it represents one first case in which a physical concept
has been proven with the help of biology. Representing a bridge between equilibrium and
non-equilibrium thermodynamics, a subject that still largely escapes direct physical experi-
mentation, the Jarzynski identity Eq. (9) implies 〈W 〉 � �G (which, besides, makes it clear
that the identity does not violate the Second Law). Notably, for the identity to hold only the
average value of W must be restricted, while there can be some non-equilibrium trajectories
for which W < �G Such fluctuations are negligible in macroscopic systems, however they
can be occasionally realized in a molecular system. When this is the case, their statistical
contribution to the Boltzmann integral is very large, since the exponent becomes positive,
and a few of such contributions cancel out the effect of many trajectories with W > �G.
This is the way by which the Jarzynski identity can recover the full �G, in the limit of a
large number of trajectories. ‘Large’ means practically infinite for a macroscopic system, but
it can be reasonably small to be realized during single-molecule experiments, and this was
proven to be indeed the case [83]. Moreover, it is also interesting to note that the recently
introduced method of metadynamics, aiming at finding rare events along a set of pre-defined
reaction coordinates during a MD simulation [84], has been proven to give an unbiased esti-
mate of the free energy of the phase-space explored by the molecular system during the MD
trajectory [85]. Since the metadynamics method amounts to exploring the phase-space by a
properly constructed collection of non-equilibrium paths according to a history-dependent
bias potential, there seems to be a singular correspondence between such an approach and
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the outcomes of the Jarzynski identity. The implications of such a connection, as well as the
possible advantages or complementarities with respect to SMD, are yet to be explored.

Many fundamentally important processes in biology are inherently multiscale. Biolog-
ical processes such as protein folding, nucleic acid packaging and membrane remodeling,
that evolve over mesoscopic up to nearly macroscopic length and time scales, are intimately
coupled to chemistry and physics by means of atomic and/or molecular level dynamics (e.g.
fluctuations in sidechain conformation, or lipid diffusion). Consequently, it is not surpris-
ing that many diverse computational methodologies need to be developed for the physical
modeling of biological processes, with varying degrees of resolution.

On the one hand, atomic-scale models, such as SMD, will remain a powerful tool for inves-
tigating biological structure and dynamics over nanosecond time and nanometer length scales,
with femtosecond and Angstrom-level resolution. However, due to the inherent limitations
of the computational power, only lower-resolution coarse-grained models could eventually
provide the capability for investigating the longer time- and length-scale dynamics that are
critical to many biological processes. The level of model detail needs to match the given
question and the available computer resources, ranging from quantum mechanical and clas-
sical all-atom MD and SMD simulations, to united-atom models, in which some atoms are
grouped together in subunits (typically the hydrogens in groups CH2, CH3, NH3, etc.), or
residue-based methods, in which only the backbone of the molecule is explicitly described,
to even coarser-scale methods in which only the side chain, or only the main α− C of the ami-
noacid sequence are explicitly modeled, up to mesoscopic and semi-continuum models, in
which many residues are grouped together, the solvent is described as a dielectric continuum,
and the cell membrane is described as a viscoelastic medium (see Ref. [23], in particular the
contribution by Ayton et al. on p. 929, and references therein).

Multiscale techniques have emerged as promising tools to combine the efficiency of
coarse-grained simulations with the details of all-atom simulations, for the characteriza-
tion of a broad range of molecular systems. Recent work has focused on the definition of
strategies that combine different resolutions in different regions of the space during a single
simulation [86,87]. For instance, this idea has been applied to a system of small molecules
where some parts of the space use the all-atom representation and the rest of the space
uses a coarse-grained representation [86]. Multiple resolution simulations have also been
used to study membrane-bound ion channels by coarse graining the lipid and water mole-
cules, while using an all-atom representation for the polypeptide ion channel [88]. In the
context of protein simulation, a similar idea has been applied to represent parts of the pro-
tein, such as the active site, with all-atom detail while using a coarse-grained model for the
rest of the system [87]. Additional multiscale strategies for biomolecular systems focus on
changing the whole system resolution during the same simulation. One of the first applica-
tions in this area used a simplified protein model as a starting point to evaluate the folding
free energy of the corresponding all-atom model [89]. Candidate structures obtained from
coarse-grained simulations can be used as initial configurations for all-atom simulations,
allowing for a larger sampling of the protein conformations than using all-atom simulations
alone. For example, we recently used this strategy to study adhesion of artificial polypeptide
sequences onto inorganic surfaces [90], also coupling low-resolution folding methods based
on simple chemical and electrostatic criteria and implicit solvent representation, to all-atom
MD with explicit solvent. Another idea, known as ‘resolution exchange’ or ‘model hopping’,
allows jumping between different levels of structural detail in order to cross energy barriers
[91]. Also, a coarse-grained variant of the SMD method has been introduced, by using a
continuum representation that allows to efficiently conduct many runs of steered Langevin
dynamics simulations [92]. Coarse-graining is of course more effective when the system can
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be considered homogeneous over some length scale, as in the case of lipid bilayers [93]. For
this case, the coarse-graining method of dissipative particle dynamics (DPD) has been suc-
cessfully employed [94]; some extension of DPD to proteins has also been recently attempted
[95].

The underlying assumption in the definition of multiscale techniques for biomolecular
simulation is that it is possible to reliably and efficiently move between coarse-grained rep-
resentations and all-atom models. In this respect, the coarse-grained model used must be
realistic enough so that the molecular structures being sampled will implicitly represent
relevant atomic-scale conformations of the molecule. Rigorous mathematical procedures,
such as renormalization group theory, have yet to be applied to the general definition of
coarse-grained models. Therefore, an evaluation of the reliability of coarse-grained models
is usually obtained by comparison to experimental data. There have been no thorough studies
yet, on whether going back from coarse-grained to all-atom protein structures could distort
the thermodynamic properties of the corresponding ensembles of structures. Coupling the
coarse-grained and atomistic-level systems involves bridging of information across various
length and time scales, the end goal ultimately being that of integrating the different reso-
lutions of the system into a single, unified, multiscale simulation methodology [96–99] The
development of new theories and computational methodologies for connecting the dispa-
rate spatial and temporal scales relevant to cellular processes remains, arguably, one of the
most significant challenges for the physical and mechanical modeling of complex biological
phenomena.
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Abstract Enveloped viruses are viewed as an opportunity to understand how highly organi-
zed and functional biosystems can emerge from a collection of millions of chaotically moving
atoms. They are an intermediate level of complexity between macromolecules and bacteria.
They are a natural system for testing theories of self-assembly and structural transitions, and
for demonstrating the derivation of principles of microbiology from laws of molecular phy-
sics. As some constitute threats to human health, a computer-aided vaccine and drug design
strategy that would follow from a quantitative model would be an important contribution.
However, current molecular dynamics simulation approaches are not practical for modeling
such systems. Our multiscale approach simultaneously accounts for the outer protein net and
inner protein/genomic core, and their less structured membranous material and host fluid.
It follows from a rigorous multiscale deductive analysis of laws of molecular physics. Two
types of order parameters are introduced: (1) those for structures wherein constituent mole-
cules retain long-lived connectivity (they specify the nanoscale structure as a deformation
from a reference configuration) and (2) those for which there is no connectivity but organiza-
tion is maintained on the average (they are field variables such as mass density or measures
of preferred orientation). Rigorous multiscale techniques are used to derive equations for
the order parameters dynamics. The equations account for thermal-average forces, diffusion
coefficients, and effects of random forces. Statistical properties of the atomic-scale fluctua-
tions and the order parameters are co-evolved. By combining rigorous multiscale techniques
and modern supercomputing, systems of extreme complexity can be modeled.
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1 Introduction

Deriving principles of microbial behavior from laws of molecular physics remains a grand
challenge. While one expects many steps in the derivation can be accomplished based on the
classical mechanics of an N -atom system, it is far from clear how to proceed in detail due to the
extreme complexity of these supra-million atom systems. Most notably, molecular dynamics
(MD) codes are not practical for simulating even a simple bionanosystem of about 2 million
atoms (e.g. a nonenveloped virus) over biologically relevant time periods (i.e. milliseconds or
longer). For example, the efficient MD code NAMD, run on a 1024-processor supercomputer
[1], would take about 3000 years to simulate a simple virus over a millisecond; the largest
NAMD simulation published to date is for a ribosome system of approximately 2.64 million
atoms over few nanoseconds only [2].

We hypothesize that a first step in the endeavor to achieve a quantitative, predictive viro-
logy is to establish a rigorous intermediate scale description. Due to their important role in
human health, complex structure, and inherent multiscale nature, enveloped viruses provide
an ideal system for guiding and testing this approach. Experimental evidence suggests that
an enveloped virus manifests three types of organization:

• an outer protein net that can display several well-defined structures; for each structure,
proteins maintain long-lived connectivity with specific nearest-neighbor units (Fig. 1);

• a sea of membranous material below the protein net; this subsystem consists of phospho-
lipid molecules whose nearest-neighbors are continuously changing but for which there
is long-lived structure on-the-average. Also, biological membranes display liquid-crystal
transitions [3] either autonomously or as promoted by proteins traversing the membranous
subsystem; and

• genomic RNA or DNA complexed with proteins in which there is long-lived connectivity
between nucleotides but which, as evidenced by cryo-electron microscopy and X-ray
diffraction data, often lack well-defined structure [4].

We hypothesize that these three types of organization and the interplay of their stochastic
dynamics is the essence of principles governing the structural transitions and stability of
enveloped viruses.

Developing a quantitative understanding of enveloped viruses is of great importance for
global health. Human pathogenic enveloped viruses include Dengue (Fig. 1) and HIV. Unders-
tanding the mechanisms underlying virus entry and hijacking of host cell processes is a main
step in preventing the often fatal virus infections. The aim is not only to be able to attack
the virus in question (or simply prevent its docking proteins from binding to the host cell
receptors), but also to use viruses for therapeutic delivery. Since viruses have a natural ability
to find and penetrate host cells, using them as a means to deliver genes, drugs, and other
therapeutic agents holds great promise in medical advancement. Enveloped viruses provide
a natural choice as they are able to entirely fuse inside the cell before delivering their pay-
load [7]. Our strategy is to develop a predictive whole-virus model that serves as a basis of
a computer-aided antiviral vaccine and drug design capability. Furthermore, this predictive
model could be a key element of a system for forecasting the potential pandemic of a given
strain via an assessment of computer-generated mutants, and similarly for testing the effects
of a library of potential antiviral drugs.

To achieve these practical goals, and to arrive at a fundamental understanding of complex
bionanosystems, we suggest starting from the laws of molecular physics. These, as considered
here, are Newton’s equations for an N -atom system. For an enveloped virus, N is on the order
of 108. However, the conceptual framework within which one discusses viral phenomena does
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Fig. 1 A Cryo-EM reconstruction of the immature Dengue virion at neutral pH. B Cryo-EM reconstruction
of the immature virion at low pH. C Cleavage of the prM protein into its ‘pr’ peptide and M protein by the
host endoprotease, furin. D The cryo-EM reconstruction of the mature virion. From Refs. [5,6]

not involve keeping track of the positions and momenta of all the atoms. Nonetheless, an
all-atom description is required to derive the principles of enveloped viral behavior from
laws of molecular physics. Processes involved in viral behavior include the 10−14 second
atomic vibration and collisions and the millisecond or longer overall structural transitions.
In addition, various size scales are involved: The scale of the nearest-neighbor atom distance
(a few angstroms) to the diameter of the enveloped virus and a closely associated aqueous
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Fig. 2 Order parameters
characterizing nanoscale features
affect the relative probability of
the atomistic configurations
which, in turn, mediates the
forces driving order parameter
dynamics. This feedback loop is
central to a complete multiscale
understanding of nanosystems
and the true nature of their
dynamics. This loop is also the
schematic workflow of our
AMA/ACM computational
strategy.
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layer (several thousand angstroms). As the short scale phenomena affect the larger scale ones,
and conversely (see Fig. 2), viruses have a strongly multiscale character.

Multiscale techniques have been discussed extensively in the literature [8–31]. These
studies start with the Liouville equation and arrive at a Fokker-Planck or Smoluchowski type
equation for the stochastic dynamics of a set of slowly evolving variables (order parameters).
Of particular relevance to the present study are recent advances [20–31] wherein it was shown
one could make the hypothesis that the N -atom probability density is a function of the 6N
atomic positions and momenta both directly and, via a set of order parameters, indirectly. It
was shown that both dependencies could be reconstructed when there is a clear separation of
timescales, and that such an assumed dual dependence is not a violation of the number (6N )

of classical degrees of freedom. Technical advances were also introduced which facilitated
the derivation of the stochastic equations of the order parameter dynamics and allowed for
an atomistic description of the entire system (i.e. within the host medium and the nanostruc-
tures). Furthermore, it was shown in earlier work [30,31] how to transcend the conceptual
gap between continuum and all-atom theories; starting from the more fundamental all-atom
formulation and, via a deductive multiscale analysis, equations coupling field variables with
selected facets of the all-atom description were derived.

For the present study, we suggest that a mixed continuum/all-atom approach is a natural
framework for achieving an integrated theory of enveloped viruses. As there are several types
of molecular organization to account for, we introduce distinct types of order parameters to
characterize them. Details on these order parameters are provided in Sects. 2 and 3. Common
features of both types of order parameters are as follows:

• they are expressed in terms of the all-atom state (i.e. the 6N positions/momenta of the N
atoms) in terms of which the basic laws of molecular physics are posed;

• they evolve on timescales relevant to virology (i.e. microseconds or longer, and not
10−14 seconds as for atomic vibration/collisions);

• they characterize the nanoscale features of interest to virology (e.g. outer protein net
structure, genomic structure, and liquid-crystal order in the membranous subsystem); and

• they form a complete set, i.e. they do not couple to other slow variables not considered in
the analysis.

In Sect. 4, we develop a multiscale theory of viral dynamics and, in the process, clarify the
need for the above criteria on the nature of order parameters. We derive rigorous equations
for their stochastic dynamics, notably structural fluctuations and transitions. In Sect. 5, we
discuss our multiscale simulation method and present results for the STMV virus to illustrate
the feasibility of our approach. Applications and conclusions are discussed in Sect. 6.
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2 Order parameters for connected structures

Order parameters for subsystems of connected atoms have been constructed as generalized
Fourier amplitudes [23,24]. They represent the degree to which a structure is a deformation
of a reference configuration (e.g. a cryoTEM reconstruction). For Fourier analysis one uses
sine and cosine basis functions. In our approach, other basis functions are introduced as
follows.

The system is embedded in a volume �. Orthogonal basis functions U�

(⇀
r
)

for point
⇀
r in �

with triplet labeling index � are introduced. The basis functions are periodic if computations
are carried out using periodic boundary conditions to approximate a large system by minimi-
zing boundary effects or to handle Coulomb forces. According to our earlier method [32], a
virus and its microenvironment are embedded in a 3-D space where a point

⇀
r is considered a

displacement from an original point
⇀
r 0 in the undeformed space. The deformation of space

taking any point
⇀
r 0 to the position after deformation

⇀
r and the basis functions are used to

introduce a set of order parameters
⇀

�� via

⇀
r =

∑
�

⇀

��U�

(
⇀
r 0
)

. (2.1)

As the
⇀

�� change, a point
⇀
r 0 is moved to

⇀
r and thus, to connect the

⇀

�� to the physical

system, the nanostructure embedded in the space is deformed. The
⇀

�� are interpreted to
be a set of vector order parameters that serve as the starting point of an AMA (All-Atom
Multiscale Analysis) approach. In what follows, we show how to use (2.1) for a finite set
of basis functions and the associated order parameters, and prove that the latter are slowly
evolving for appropriately chosen basis functions.

Each atom in the system is moved via the above deformation by evolving the
⇀

��. However,
given a finite truncation of the �-sum, there will be residual displacement of individual atoms
above that due to the continuous deformation generated by the order parameters. Denoting
the residual of atom i as

⇀
σ i , we write its position

⇀
r i as

⇀
r i =

∑
�

⇀

��U�

(
⇀
r 0
)

+ ⇀
σ i . (2.2)

The size of
⇀
σ i can be controlled by the choice of basis functions, the number of terms in the

�
−

sum, and the way the
⇀

��−
are defined. Conversely, imposing a permissible size threshold

for the residuals allows us to determine the number of basis functions needed to minimize
the

⇀
σ i , and hence order parameters, to include in the analysis.

A concrete definition of the order parameters is developed as follows. Define the mass-
weighted mean-square residual S via

S =
N∑

i=1

mi

∣∣∣⇀σ i

∣∣∣2 �c
i , (2.3)

where N is the total number of atoms in the system, mi is the mass of atom i , and �c
i is one

when atom i belongs to the connected subsystem and zero otherwise. With (2.2), this yields
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S =
N∑

i=1

mi�
c
i

∣∣∣∣⇀r i −
∑

U�−

(
⇀
r

0
i

)
⇀

��−

∣∣∣∣
2

. (2.4)

We assert that the optimal order parameters are those which minimize S, i.e. those containing
the maximum amount of information so that the ⇀

σ i are, on the average, the smallest. Thus,

we obtain the relationship between
⇀

��− and �r =
{

⇀
r 1,

⇀
r 2, . . . ,

⇀
r N

}
via minimizing S with

respect to the
⇀

��− keeping �r constant [22]. This implies

∑
�−′

B�−�−′
⇀

��−′ =
N∑

i=1

mi
⇀
r i U�−

(
⇀
r

0
i

)
�c

i , (2.5)

B�−�−′ =
N∑

i=1

mi U�−

(
⇀
r

0
i

)
U�−′

(
⇀
r

0
i

)
�c

i . (2.6)

Orthogonality of the basis functions implies that the B matrix is nearly diagonal. Hence, the
order parameters can easily be computed numerically in terms of the atomic positions by
solving (2.5).

To proceed, we must be more precise regarding the normalization of the basis functions.
For the function U�− with �− = (0, 0, 0), we take U0− = 1. Thus, B0−0− is the total mass of the

atoms in the connected structure. Furthermore, if the B matrix is diagonal, one can show that
⇀

�0− is the center-of-mass (CM). From earlier studies [20–29], this implies that
⇀

�0− is slowly

varying. If ε = m/B0−0− for typical atomic mass m, then the eigenvalues of B are large, i.e.

O
(
ε−1
)
.

A necessary condition for a variable to satisfy a Langevin equation (i.e. to be an order
parameter in our multiscale formulation) is that it evolves on a timescale much longer than
that of the vibration/collisions of individual atoms. It can be shown that for diagonal B matrix

d
⇀

�0−/dt = ε
⇀


0−, where
⇀


�− is the conjugate momentum of
⇀

��−. Taking d
⇀

��−/dt = ε
⇀


�−, and

applying Newton’s equations (d
⇀

��−/dt = −L
⇀

��− for Liouville operator L), yields

ε
∑
�′

⇀


�′ B��′ =
N∑

i=1

⇀
pi U�

(
⇀
r 0

i

)
�c

i . (2.7)

Inclusion of mi in the above expressions gives the order parameters the character of genera-
lized CM variables.

While the
⇀

��− qualify as order parameters from the above perspective, they do not suffice

as a way to characterize the aqueous microenvironment or the membranous material of
the enveloped virus. This follows because the molecules in these two subsystems do not
maintain nearest-neighbor connectivity. Thus, a second type of order parameters is required
for enveloped virus modeling, as developed in the next section.
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3 Order parameter fields for disconnected subsystems

For disconnected systems, one needs an all-atom/continuum multiscale (ACM) approach
[31]. The starting point of our ACM theory is a set of field variables that change across the
system. These field variables must be related to the atomistic description to achieve a rigorous
formulation. The membranous material of an enveloped virus contains a subsystem composed
of continuously changing molecules. Application of ACM theory to such systems is illustrated
as follows. Let the membranous continuum be comprised of Nt types of molecules labeled
k = 1, 2, . . . , Nt . Each type is described by a mass density field variable �k at spatial point
⇀

R:

�k

(
⇀

R, �r

)
=

N∑
i=1

miδ

(
⇀

R − εd
⇀
r i

)
�k

i , (3.1)

where δ is the Dirac delta function centered at
⇀

0, εd is a smallness parameter, and �k
i = 1

when atom i belongs to a molecule of type k in the disconnected subsystem, and zero

otherwise. As these field variables are intended to be coherent in character,
⇀

R is scaled
such that it undergoes a displacement of about one unit as several nanometers are traversed.
In contrast, the

⇀
r i undergo a displacement of about one unit as a typical nearest-neighbor

interatomic distance for a condensed medium (a few angstroms) is traversed. Thereby, it is
natural to scale

⇀
r i to track the fine-structural details in the system. With this, we let εd be the

ratio of the typical nearest-neighbor interatomic distance to the size of a nanocomponent (e.g.
a viral capsomer). This length scale ratio characterizes the multiscale nature of the enveloped
virus. As εd � 1, it provides a natural expansion parameter for solving the equations of
molecular physics, i.e. the Liouville equation for the N -atom probability density. Newton’s
equations imply

d�k

dt
= −L�k = −εd

⇀∇ ⇀

Gk

(
⇀

R, �

)
≡ εd Jk

(
⇀

R, �

)
(3.2)

⇀

Gk

(
⇀

R, �

)
=

N∑
i=1

⇀
piδ

(
⇀

R − εd
⇀
r i

)
�k

i , (3.3)

where
⇀

Gk is the momentum density of molecules of type k,
⇀∇ is the

⇀

R-gradient, Jk is the

divergence (defined by (3.2)),
⇀
pi is the momentum of atom i , and � =

{
�r ,

⇀
p1,

⇀
p2, . . . ,

⇀
pN

}
is the set of 6N atomistic state variables. For quasi-equilibrium conditions, the average

momentum
〈
⇀
pi

〉
is small. Thus, the momenta of the atoms in the expression for

⇀

Gk tend to

cancel each other. This suggests that
⇀

Gk are of order O
(
ε0

d

)
, and thus �k are slowly evolving,

at a rate of O (εd).

Order parameter fields like �k are indexed by
⇀

R which varies continuously across the

system. Thus, with �r dependency being understood, we sometimes use the notation �k(
⇀

R)

to reflect this parameterization, i.e. to label �k as the
⇀

R-associated order parameter, much
like

⇀
r i is the i-associated position variable (although

⇀
r i is not an order parameter as it has

predominantly 10−14 second timescale dynamics). That for each molecule type k there is a

�k for every point
⇀

R in the system suggests there is an uncountable infinity of slow field
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variables, �k(
⇀

R). Finally, in order to connect the smallness parameter, ε, of Sect. 2 with that
of this section, εd , we suggest that εd is proportional to ε, and thus take εd = ε for simplicity.

4 Multiscale integration for enveloped virus modeling

Integration of the multiple types of order parameters (Sects. 2 and 3) needed for enveloped
virus modeling is achieved in a self-consistent fashion as follows. We hypothesize that the
N -atom probability density ρ for the composite virus/microenvironment system has mul-
tiscale character and can thus be rewritten to express its dependency on both the set of
atomic positions and momenta � and the order parameters. The reduced probability density
W is defined as a function of the set of order parameters describing the connected sub-

system
⇀

�− = ⇀

��− for all �− included, and a functional of the set of order parameter fields

�− (
⇀

R) = {�1(
⇀

R), . . . , �Nt (
⇀

R)} describing the disconnected subsystem. By definition, W

takes the form

W

[
⇀

�− , �− , t

]
=
∫

d6N �∗∏
�−

δ

(
⇀

��− − ⇀

�
∗
�−

) Nt∏
k=1

�
(
�k − �∗

k

)
ρ
(
�∗, t

)
, (4.1)

where � is a continuum product of δ-functions for all positions
⇀

R, �∗ is the N -atom state over

which integration is taken, and
⇀

�
∗
�− and �∗

k are the order parameters for state �∗. With this and

the fact that the N -atom probability density ρ satisfies the Liouville equation ∂ρ
/
∂t = Lρ,

W is found to satisfy the conservation equation

∂W

∂t
= −ε

Nt∑
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∫
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δ
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(
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)
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δ

(
⇀
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�
∗
�−

)

×
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�
(
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k

)
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k

(
⇀

R

)
ρ
(
�∗, t

)

−ε
∑

�−
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∂
⇀

��−

∫
d6N �∗∏

�−

δ

(
⇀

��− − ⇀

�
∗
�−

) Nt∏
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�
(
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)⇀



∗
�−ρ
(
�∗, t

)
(4.2)

where vc is the minimal volume for which it is reasonable to speak of a field variable, and
the superscript * for any variable indicates evaluation at �∗.

We hypothesize that to reflect the multiscale character of the system, ρ should be written
in the form

ρ

(
�,

⇀

�− , �− , t0, t−; ε

)
. (4.3)

The time variables tn = εnt , n = 0, 1, . . . are introduced to track processes on timescales
O
(
ε−n
)

for tn . The set t− = {t1, t2, . . .} tracks the slow processes of interest to viral dynamics,

i.e. much slower than those on the 10−14 second scale of atomic vibration/collisions. In
contrast, t0 tracks the fast atomistic processes. The ansatz (4.3) is not a violation of the
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number (6N ) of degrees of freedom, but a recognition that ρ depends on � in two ways (i.e.

both directly and, via
⇀

�− and �− , indirectly).

With this and the discrete and field order parameters, the chain rule implies the Liouville
equation takes the multiscale form

∂ρ

∂t
= (L0 + εL1) ρ (4.4)

L0 = −
N∑

i=1

(
⇀
pi

mi

∂

∂
⇀
r i

+ ⇀

Fi
∂

∂
⇀
pi

)
(4.5)

L1 = L� + L� (4.6)

L� = −
∑

�−

⇀


�−
∂

∂
⇀

��−

(4.7)

L� = −
Nt∑

k=1

∫
d3 R

υc
Jk

(
⇀

R

)
δ

δ�k

(
⇀

R

) (4.8)

The operator L1 involves derivatives with respect to
⇀

�− and functional derivatives with respect

to �− at constant �, and conversely for L0. By mapping the Liouville problem to a higher

dimensional descriptive variable space (i.e. 6N plus the number of variables in
⇀

�− and the

function space of the order parameter fields �− ), our strategy as suggested by our earlier

studies [20–31] is to solve the Liouville equation in the higher dimensional representation,

and then use the solution to obtain an equation of stochastic
⇀

�− ,�− -dynamics.

The development continues with the perturbation expansion

ρ =
∞∑

n=0

εnρn, (4.9)

and examining the multiscale Liouville equation at each order in ε. We hypothesize the lowest
order behavior of ρ is slowly varying in time since the phenomena of interest vary on the
millisecond or longer, and not the 10−14 second time scale. Thus, we assume the lowest order
solution ρ0 is independent of t0 and, furthermore, is quasi-equilibrium in character.

To O
(
ε0
)
, the above assumptions imply L0ρ0 = 0 so that ρ0 is in the null space of L0 but is

otherwise unknown. We determine ρ0 by adopting an entropy maximization procedure with
canonical constraint of fixed average energy as discussed earlier in the context of nanosystems
[24]; this is equivalent to taking the system to be isothermal. With this, we obtain

ρ0

[
�; ⇀

�− , �− , t−

]
= ρ̂

[
�; ⇀

�− , �−

]
W0

[
⇀

�− , �− , t−

]
(4.10)

ρ̂ = e−β H

Q

[
⇀

�− , �−

] , (4.11)

where β is the inverse temperature, H is the Hamiltonian,

H (�) =
N∑

i=1

p2
i

2mi
+ V (�r ) , (4.12)
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for N -atom potential V , and Q is the partition function which is a function of
⇀

�− and a

functional of �− given by

Q

[
⇀

�− , �−

]
=
∫

d6N �∗∏
�−

δ

(
⇀

��− − ⇀

�
∗
�−

) Nt∏
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�
(
�k − �∗

k

)
e−β H∗

. (4.13)

To O (ε), the multiscale Liouville equation implies

(
∂

∂t0
− L0

)
ρ1 = −∂ρ0

∂t1
+ L1ρ0. (4.14)

This admits the solution

ρ1 = −
t0∫

0

dt
′
0e

L0

(
t0−t

′
0

) {
∂ρ0

∂t1
− L1ρ0

}
, (4.15)

where the initial first order distribution was taken to be zero as suggested earlier [25,26]
to ensure that the system is initially in equilibrium. As a consequence, the final stochastic
equation is closed in W .

Inserting (4.6), (4.7), (4.8), and (4.10) in (4.15) yields

ρ1 = −t0ρ̂
∂W0

∂t1
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where the thermal-average forces are given by

〈
⇀

f �−

〉
= − ∂ F

∂
⇀

��−

(4.17)

〈
hk

(
⇀

R

)〉
= − ∂ F

∂�k

(
⇀

R

) (4.18)

and F is the free energy related to Q via Q = e−βF .
Using the Gibbs hypothesis, imposing the condition that ρ1 be finite as t0 → ∞, and

using the fact that the thermal-averages of Jk and
⇀


�− are zero (since the weighing factor ρ̂ is

even in the
⇀
pi , while Jk and

⇀


�− are odd in them), we find W0 to be independent of t1. With
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this, (4.16) becomes

ρ1 = −ρ̂
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Inserting (4.10) and (4.19) in the conservation equation (4.2) yields
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where

⇀
⇀

D
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�−�−′ ,
⇀

D�−k ,
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kk′ are diffusion coefficients defined as
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As in Ref. [31], there are symmetry rules relating the cross-diffusion coefficients. The set of
Langevin equations equivalent to this generalized Smoluchowski equation (4.20), provides
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a practical approach to the simulation of enveloped virus systems as outlined in the next
section.

5 Multiscale computations and the NanoX platform

The all-atom multiscale approach of the previous section can be implemented as a plat-
form for the simulation of nanosystems. In the flow chart of Fig. 3 it is seen how order
parameters are co-evolved with the statistics of the atomic fluctuations in our NanoX plat-
form. Interscale coupling as in Fig. 2 is manifested through the thermal-average forces and
diffusion coefficients constructed via short-time ensemble/molecular dynamics computations
in the indicated modules. We have implemented this Fig. 3 workflow, creating the NanoX
simulator.

At this writing, NanoX is built on the order parameters of Sect. 2. For it to be practical,
the diffusion coefficients and thermal-average forces must not be excessively demanding on
CPU time. In Fig. 4a we show an example of an order parameter trajectory for the STMV
(nonenveloped) virus in vacuum. This system has been studied elsewhere using classic MD
[33]. Our simulation began from the crystal cryo-structure which was equilibrated for 1 ns
at various temperatures. The order parameter trajectory (here we choose the z component
of the 001 mode) is shown for the first 20 ps and is seen to change slowly except at the
beginning where the system escapes from its potential energy-minimized unphysical struc-
ture. The velocity of the order parameters are obtained by differentiating equation (2.1). After
thermalization, the order parameters hardly change for several picoseconds (Fig. 4b) whereas
the velocity (not shown) appears to fluctuate about zero. These fluctuations are not highly
correlated in time as shown by the rapid decay of the velocity auto-correlation function in
Fig. 4c. This demonstrates that only short MD runs are required to calculate the diffusion
coefficients via (4.21). The behavior of the auto-correlation function was studied at various
temperatures to check consistency with the notion that the diffusion coefficient decreases
with temperature. The auto-correlations were normalized by dividing by their starting values
which are provided in Table 1. If the velocity autocorrelation function does not approach
zero exponentially, then the friction-dominated Smoluchowski limit of Sect. 4 is not valid
and the order parameter velocities should be added to the list of order parameters, i.e. a
Fokker-Planck limit is appropriate [24,25]. This does not appear to be the case in this sys-
tem. To add artificial intelligence, NanoX will automatically determine if a Smoluchowski or

Langevin 
simulator 

Output 
control 

Time series 
graphical 

output

Diffusion
coefficients

Thermal 
average 
forces

Specify initial structure of 
nanostructures, host medium 

conditions, payload, and run time 

Fig. 3 Schematic NanoX workflow indicating that thermal-average forces and diffusion coefficients are com-
puted “on the fly” since they co-evolve with the order parameters describing overall features of a bionanosystem
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Fig. 4 A Order parameter 001z as a function of time. B Order parameter 001z as a function of time after
equilibration (300 K). C Normalized order parameter velocity auto-correlation function for component 001z
as a function of observation time for different temperatures
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Table 1 Initial order parameter
velocity auto-correlation function
for component 001z at different
temperatures

Temperature (K) Initial order parameter
velocity auto-correlation function

50 1.49E-09

200 7.08E-09

300 9.33E-09

400 2.08E-08

Fokker-Planck approach is required. In a similar way, NanoX will include additional order
parameters if necessary, a capability enabled by our automated order parameter generation
scheme of Sect. 2. This feature gives our approach a degree of self-consistency; for example,
if the order parameter velocity autocorrelation functions are poorly behaved, then additional
order parameters are needed to complete the theory.

The thermal-average forces are calculated using two methods. In the first method, the
integral in (4.17) is calculated by a Monte Carlo approach by sampling a fixed order parameter
ensemble. Random sampling generates unfavourable configurations and yields high energy
configurations with negligible Boltzmann weight. Rather, we use a sampling method whereby
only order parameter components orthogonal to the fixed ones are varied. We use this high
frequency order parameter ensemble to calculate order parameter velocities and forces. In
the second method, a short MD run is performed and Gibbs hypothesis is used to calculate
the averages. This approximation is valid since, as discussed above, the order parameters
vary slowly in time and the only limitation is the sampling of configuration space by the MD
trajectory. We hypothesize that a necessary condition for self-consistency is that the order
parameter velocity auto-correlation time is much less than the characteristic time of evolution
of the order parameters as driven by the thermal-average forces. Once the thermal-average
forces and diffusion coefficients are calculated, the feedback loop in Fig. 3 underlying our
multiscale approach is accounted for via the flowchart. The system evolution is carried out
via a sequence starting with short MD runs followed by a Langevin evolution timestep for
the order parameters. This requires the thermal-average forces and diffusion constants. After
the Langevin evolution timestep, the atomic configurations are regenerated by using equation
(2.2). Constrained energy minimization and annealing of high energy contacts generated by
this “fine graining” is needed to ensure sensible atomic scale configurations. This completes
the evolution cycle of Fig. 3. We have implemented this workflow for the STMV virus in our
NanoX simulator.

The calculation of the thermal-average forces, diffusion constants, and the energy mini-
mization are all CPU intensive requiring optimizations at different stages. Our simulations
were run on the 768 node IBM JS21 cluster at Indiana University using NAMD and we built
our simulation modules to effectively utilize existing NAMD resources without introducing
unnecessary overhead. Based on preliminary estimates, the thermal-average force module
takes about 30 minutes to sample and analyze 2000 configurations, a 10 ps NAMD run for
STMV in vacuum takes 15 minutes on 64 processors. Further reductions in CPU time will
be possible with greater integration into the NAMD source code.

6 Applications and conclusions

Because of the impracticality of straightforward all-atom models, phenomenological app-
roaches have mainly been used for systems biology. These approaches require recalibration
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with each new application, a main impediment to progress in computer simulations of bio-
logical systems. This difficulty is compounded by the complexity of the systems of interest,
leading to ambiguities created by over-calibration, i.e. arriving at the right answer for the
wrong reason. To transcend this impediment, we derived principles of microbiology from
the laws of molecular physics as outlined for bionanosystems as in Sects. 2 to 4.

To demonstrate that this is possible with extreme complexity, we focused on enveloped
viruses. We integrated several types of order parameters into a self-consistent framework and
showed that this can be accomplished via rigorous multiscale analysis. This approach over-
comes computational difficulties associated with the great number of atoms involved, and
accounts for the existence of subsystems with distinct types of physics. Enveloped viruses
with their self-assembly, maturation scenario, structural transitions, and richness of pheno-
mena appear to be a prime candidate.

Many systems can be modeled if a self-consistent ACM theory was developed. Examples
include

• local sites such as receptors or pores in a cell membrane;
• an enveloped virus involving a composite of a lipid membrane and protein/DNA or RNA

structures;
• a nanocapsule with its surrounding cloud of leaking drug molecules;
• an intrabacterial energy-storage granule; and
• a nanodroplet with embedded macromolecule(s).

The fundamental science of these systems and their potential importance for medicine
and nanotechnology make the development of ACM approaches of great interest [31]. For
example, an ACM approach could provide the basis of a computer-aided strategy for the
design of antiviral vaccines or nanocapsules for the delivery of drugs, genes, or siRNA to
diseased cells.

Open questions about enveloped viruses include the following.

• What is the structure of the genome-protein core complex deep within the phospholipid
subsystem, i.e. is it well organized or highly fluctuating?

• Does the interaction of the phospholipid subsystem with the outer protein net, traver-
sing protein or the genome-protein core, induce liquid-crystal order in the phospholipid
subsystem?

• What factors restrict the size, structure, and stability of the ghost particles that are devoid
of the genome-protein core?

• What are the ranges of pH, salinity, concentrations of selected ions, and other conditions
in the microenvironment that favor a given structure of the protein outer net (see Fig. 1)?

• What is the effect of an applied electric field, or stress applied through an AFM tip, on
viral structure and stability?

• Can the virus be grown around, or injected with, a magnetic or fluorescent nanoparticle
probe?

• Does the structural transition in Dengue’s outer protein net (Fig. 1) involve bond cleavage
or formation?

• Can chemical labels pass through the outer protein net and selectively bond to the genome-
protein inner core and provide structural information on the core structure [24]?

An integrated multiple order parameter model to address these questions is suggested in
Fig. 5.

We propose a model composed of four order parameters accounting for each of the sub-
systems of Fig.5. Starting from the aqueous microenvironment, we proceed inward to the
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Fig. 5 Schematic four
subsystem model: AM (aqueous
microenvironment), PN (outer
protein net), PL (phospholipid
zone), and CP (inner
genome-protein core particle)

PL

AM PN

CP

genome-protein core. The aqueous microenvironment is described by a set of order parameter
fields �

aq
q specifying the mass-weighted position-orientation density for the water molecules

(as in Sect. 3). The outer protein net is considered to be connected over the time period of the

structural transition. Thus, it is described via a set of structural order parameters
⇀

�
P N

�− from

the set of order parameters introduced in Sect. 2 that specify the CM, orientation, and details
of the conformation of the outer protein net. The membranous zone contains at least two
major components (e.g. phospholipids and Glycoproteins) denoted by A and B here. These
are characterized by the order parameter fields �A and �B giving the spatial distribution of
their CM. The genome-protein core is, for simplicity here, assumed to consist of one connec-
ted object described by a set of order parameters, as in Sect. 2. More complex models would
also include multiple parts of the core, each of which is connected internally, which require
their individual set of order parameters and, therefore, could be suited to study core self-
assembly/maturation within the overall assembled enveloped system. Proteins bridging the
outer protein net and the core could also be accounted for via such structural order parame-
ters. Finally, order parameter fields could be used to track the exchange of small molecules
between the microenvironment and the various inner subsystems.In the integrated model,
one solves the Langevin equations as outlined in Sect. 5, but for all the order parameters. All
order parameters in the model are coupled in two ways. The thermal-average force for any
one order parameter depends on others, thereby accounting for a variety of thermodynamic
interactions. Furthermore, the diffusion coefficients for the order parameters provide cross-
frictional effects among them. Those associated with the field variables introduce nonlocal

effects so that the thermal-average force at
⇀

R affects order parameter fields at
⇀

R′.
While the solution of the Langevin equations presents no major computational challenges,

the construction of thermal-average forces and diffusion coefficients does. However, recent
results of Sect. 5 suggest that the correlation functions for our order parameters have a
characteristic time of around a picosecond. Thus, only short MD simulations are needed to
estimate them.

A simple system for testing the multiscale model of Sect. 4 is to use the structural transitions
in the outer protein net of Dengue virus (Fig. 1). In particular, Dengue “ghosts” consist only of
an outer protein net and inner phospholipid material, i.e. they are devoid of the inner protein-
genomic core assembly. Thus, the model of a ghost consists of the protein-net, as described
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via the set of discrete structural parameters introduced in Sect. 2, while the surrounding
aqueous medium and inner phospholipid subsystems can be described via order parameter
fields. With this, we conclude that with the integration of rigorous multiscale analysis and
supercomputing, complex bionanosystems can be modeled, principles of microbiology can
be derived, and practical benefits for nanotechnology and biomedicine can be achieved.
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Abstract In spite of all efforts, patients diagnosed with highly malignant brain tumors
(gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances
will also require a more detailed quantitative understanding of the dynamic interactions
among tumor cells, and between these cells and their biological microenvironment. Data-
driven computational brain tumor models have the potential to provide experimental tumor
biologists with such quantitative and cost-efficient tools to generate and test hypotheses on
tumor progression, and to infer fundamental operating principles governing bidirectional
signal propagation in multicellular cancer systems. This review highlights the modeling
objectives of and challenges with developing such in silico brain tumor models by outlining
two distinct computational approaches: discrete and continuum, each with representative
examples. Future directions of this integrative computational neuro-oncology field, such as
hybrid multiscale multiresolution modeling are discussed.
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2D Two-dimensional
3D Three-dimensional

1 Introduction

There are two basic types of brain tumors, i.e. primary tumors and secondary or metastatic
brain tumors. Primary brain tumors arise in the brain, and here most often from its support-
ing astrocytes or glia cells (hence the terminology ‘astrocytoma’ or ‘glioma’) and generally
do not spread outside the brain tissue; on the contrary, metastatic brain tumors originate
elsewhere in the body such as in the lung or skin before disseminated cancer satellite cells
spread also to the brain. Carcinogenesis in the brain, much like elsewhere in the body, is
a complex multistage process that originates from genetic changes, distortion of the cell
cycle, and loss of apoptosis [1], and proceeds to angiogenesis, and extensive local infiltration
and invasion [51]. In the United States, for the year 2007 alone, it was estimated that there
were 20,500 new cases of (both primary and secondary) brain tumors, and 12,740 deaths
related to this disease [37]. Brain tumors are still relatively insensitive to conventional cancer
treatments, including radiation and chemotherapy [36]. Despite advances in recent targeted
anticancer therapies, the clinical outcome in treating malignant brain tumors remains dis-
appointing [60] with less than 30% of recurrent glioblastoma (GBM; the most aggressive
form of gliomas) patients surviving without further progression six months after treatment
[9]. This is mainly a result of the tumor’s extensive infiltrative behavior, its rapid develop-
ment of treatment resistance due to its inherent genetic and epigenetic heterogeneity, and
the difficulties the so called blood-brain barrier poses for delivery of therapeutic compounds
[7,43].

Cellular and microenvironmental factors along with the underlying processes at the
molecular level act as regulators of tumor growth and invasion [24,27]. Tumor cells
bi-directionally communicate with their microenvironment: they not only respond to var-
ious external cues but also impact the environment by e.g. producing (auto- and paracrine)
signals and degrading the neighboring tissue with proteases [34]. However, despite a vast
amount of qualitative findings, conventional cancer research has made few gains in exploring
the quantitative relationship between these very complicated intra- and intercellular signal-
ing processes and the behavior they trigger on the microscopic and macroscopic scales [54].
It is here where we and others argue that systems biology [42] can provide useful insights,
which may eventually promote the development of new cancer diagnostic and therapeutic
techniques. While still in its beginning, systems biology has so far focused primarily on the
single-cell level [2]. However, the usefulness of computational modeling and simulation,
combined with experiment, is being increasingly recognized for exploring the dynamics at
a multi-cell or tissue level of a variety of biological systems within a temporal, spatial and
physiological context [8].

To date, computational modeling works have produced preliminary quantifications of the
links between cell-cell and cell-extracellular matrix (ECM) interactions, cell motility, and
local concentration of cell substrates. Already, this sprawling interdisciplinary field draws
increasing attention from an experimental and clinical as well as pharmaceutical perspec-
tive [14,21,31]. A better understanding of the inherent complexity of these cancer systems
requires intensified interdisciplinary research in which the next iteration of innovative com-
putational models, informed by and continuously revised with experimental data, will play an
important role of guiding experimental interpretation and design in going forward [29]. Here,
we discuss first objectives of and challenges with modeling brain tumors mathematically and
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computationally and then briefly review some recent developments in using two distinct in
silico1 approaches.

2 In silico brain tumor modeling: objectives & challenges

As for other in silico oncology efforts, the main objective of modeling brain tumors is to design
and develop powerful simulation platforms capable of (1) providing a realistic mathemat-
ical representation and systematic treatment of the complexity of experimentally observed
cancer phenomena, across the scales of interest and within its distinct biological context,
(2) generating experimentally testable hypotheses to guide wet-lab research and help eval-
uate the algorithms, and finally (3) integrating any number of distinct data qualities (e.g.,
serum markers, genomics, phospho-proteomics and magnetic resonance images) into these
modeling algorithms in an effort to predict tumor growth patterns eventually also in a patient-
specific context. To achieve such ambitious goals, a computational brain tumor model should
be able to (i) quantitatively clarify the characteristics of a set of various basic cancer phe-
notypes (e.g., proliferation, invasion, and angiogenesis) at different scales, and (ii) to assess
the impact of the microenvironmental cues on these cell phenotypes. Finally, we argue that
(iii) an advanced brain tumor model should eventually be extended to the molecular level in
that it explicitly includes the combinational effects of oncogenes [15] and tumor suppressor
genes [11] on the aforementioned microscopic phenotypes.

There are several key challenges confronting a computational tumor biologist in devel-
oping any such model. These include: 1) Selection of modeling scale(s). Choosing the
appropriate scale is the first critical step, usually guided by both the data available and the
area of expertise of the investigator. Also, if a model is designed to be composed of different
scales, then how to link these scales in a way supported by data is another non-trivial step.
For example, GBM cells exhibit a variety of point mutations (molecular level) [35] that can
affect microvascular remodeling (microscopic level) which in turn impacts tumor size, shape,
and composition (macroscopic level) [33]. To date, while some brain tumor modeling studies
have dealt with the interaction of processes between cellular and macroscopic levels (for a
recent review, see [54]), only very few works made an attempt to quantitatively establish
the relationship between the molecular and cellular levels. 2) Level of complexity versus
computational cost. Generally, it holds that the more detailed a model, the more parameters
are involved and thus the higher the computational ‘cost’ of running the algorithm. As such,
for the time being, it is a compromise between the biological complexity to be represented
and the computational resources this would require. Given the ever increasing amount of data
available, scalability becomes an issue of paramount interest when deciding on the applica-
bility of any such in silico tool in a clinical setting. 3) Tumor boundary definition. Defining
the degree of diffuse invasion of tumor cells into the surrounding brain tissue remains difficult
regardless of advancements in conventional medical imaging [69]. While some algorithms
have made progress on translating tumor and surrounding tissue information from patient
imaging data to the coordinate system of the models with finite element methods [16,49],
there is still a long way to go towards accurately predicting where and when what number
of the currently still invisible but surely existent mobile tumor cells spread into the adjacent
healthy brain tissue.

1 In silico refers to experiments carried out entirely using a computer as opposed to being conducted in a wet
lab environment (see [47] for a brief review on differences between in silico and in vitro or in vivo studies).
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Available computational models have addressed these challenges in one form or another.
The next section will detail current approaches with a focus on briefly reviewing some signif-
icant findings of representative models developed in the past few years, and highlight some
research groups active at the forefront of this interdisciplinary field.

3 Computational modeling approaches

Two major types of modeling strategies currently exist in the computational tumor modeling
community: discrete and continuum approaches. Discrete models can explicitly represent
individual cells in space and time and easily incorporate biological rules (based on data or
assumptions), such as defining cell-cell and cell-matrix interactions involved in both che-
motaxis and haptotaxis for instance. However, these models are limited to relatively small
numbers of cells due to the compute intense nature of the method, and as a result a typical
discrete model is usually designed with a sub-millimeter or even lower domain size [70]. In
contrast, continuum models, by describing e.g. extracellular matrix or the entire tumor tissue
as continuum medium rather than at the resolution of individual cells, are able to capture
larger-scale volumetric tumor growth dynamics at comparatively lesser computational cost.
As a trade-off, continuum models lack sensitivity to small fluctuations or oscillatory behav-
iors of a tumor system at a smaller segment, such as tumor angiogenetic sprout branching
[3]. That is a significant shortcoming as in some cases such small changes can be the leading
cause in driving a nonlinear complex biosystem to a different state [10]. In the following, we
will introduce the two approaches in more detail.

3.1 Discrete modeling

The two main, related discrete modeling methods extensively used in this context are
cellular automata (CA) and agent-based model (ABM). A generic CA is a collection of
cells on a grid of specified shape that synchronously evolves through a number of discrete
time steps, according to an identical set of rules (applied to each single cell) based on the states
of neighboring cells [71]. The grid can be implemented in any finite number of dimensions,
and neighbors are a selection of cells relative to a given cell. In contrast, ABM asynchro-
nously models phenomena as dynamical systems of interactions among and between agents
and their environments [12,32]. An agent is any autonomous component that can interact or
communicate with other components. Each biological cell is often represented as an agent in
an ABM, and indeed ABM is the natural extension of CA. Because of the asynchronous char-
acteristic, the ease of implementation and the richness of detail one can expect in exploring
biosystem dynamics, ABM is an appealing choice for the simulation of tumors like glioma
where the behavior and heterogeneity of the interacting cells cannot be safely reduced to
some averaged, stylized or simple mechanism [66].

For instance, GBM growth dynamics in a three-dimensional (3D) environment have been
successfully predicted using a CA model driven by four microscopic parameters (referring to
cell-doubling time, nutritional needs of growth-arrested cells, nutritional needs of dividing
cells, and effects of mechanical confinement pressure) [39,40]. This model was then used
as the basis for a follow-up study to analyze a heterogeneous tumor by introducing a dis-
tinct subpopulation of tumor cells that exhibit a growth advantage [38]. The results showed
that changes even in a small subpopulation may lead to a drastically altered tumor growth
behavior, suggesting that prognosis based on the assumption of a homogeneous tumor cell
population can be markedly inaccurate. With a CA approach to study the effects of surgery
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plus chemotherapy on the evolution of a homogeneous and more realistic heterogeneous
GBM mass, it was found that the spatial distribution of chemotherapeutic resistant cells is an
important indicator of persistence and continued tumor growth [55]. One clinical implication
gained from this study is that the shape of the reoccurring tumor may depend on the rate
at which chemotherapy induces mutations. Since these previous iterations made oversimpli-
fying assumptions on tumor vascular and angiogenesis, a recent two-dimensional (2D) CA
simulation tool [30] considered the processes of vessel co-option, regression and angiogen-
esis in tumor growth; it enabled the researchers to study the growth of a primary neoplasm
from a small mass of cells to a macroscopic tumor mass, and to simulate how mutations
affecting the angiogeneic response subsequently impact tumor development.

To investigate highly malignant brain tumors as complex, dynamic, and self-organizing
biosystems [20], Deisboeck and co-workers have been focusing on the development of ABMs
simulating tumor properties across multiple scales in time and space. First, the spatio-tempo-
ral expansion of virtual glioma cells in a 2D microscopic setup and the relationship between
rapid growth and extensive tissue infiltration were investigated [44,45]. These earlier works
reported a phase transition leading to the emergence of two distinct spatio-temporal patterns:
a) a small number of larger tumor cell clusters exhibiting rapid spatial expansion but shorter
overall lifetime of the tumor system, and b) many small clusters with longer lifetime but
the tradeoff of a slower velocity of expansion, depending on different implicit chemotactic
search strategies. Subsequently, by incorporating a molecular scale in the form of a simplified
representation of the epidermal growth factor receptor (EGFR) signaling pathway (important
for epithelial cancers in general, and for highly malignant brain tumors in particular [46]), the
model was extended to capture tumor growth dynamics to a degree of any specific pathway
component [5,6]. Some intriguing, testable hypotheses have been generated in terms of how
molecular profiles of individual glioma cells impact the cellular phenotype and how such
single-cell decisions can potentially affect the dynamics of the entire tumor system. Most
recently, an explicit cell cycle description was introduced to the model and brain tumor growth
dynamics were examined in a 3D context with a more complicated ECM representation at
the microscopic scale [72]. Together, these works have provided a computational paradigm
for simulating brain tumors from the molecular scale up to the cellular level and beyond. It
should be noted that in these works some environmental parameters, such as growth factors,
nutrient, and oxygen tension, were expressed with a continuum term. Another contribution
of the works by Deisboeck and co-workers is that, based on available data [23,48], they pro-
pose employing, as an example, an EGFR-downstream protein, phospholipase Cγ (PLCγ ),
to determine two phenotypic traits, i.e. cell proliferation and migration, by comparing the rate
of change of its molecular-level concentration with a predefined threshold. That is, a glioma
cell becomes eligible to 1) migrate if the range of change of PLCγ exceeds the threshold, and
2) proliferate if the range of change of PLCγ is below that set threshold, yet above a noise
threshold. More generic, the change in the concentration of a pathway component over time
is calculated with a continuum element, i.e., according to the following differential equation:

dXi

dt
= αXi − β Xi (1)

where Xi represents the concentration level of the i th pathway component, and α and β are
the reaction rates of producing and consuming Xi, respectively. Figure 1 shows a series of
simulation results produced by the model [6], explaining how tumor growth dynamics at the
cellular level can be related to alterations at the molecular level. This algorithm is flexible so
that it can accommodate the governing, physical requirements of other cancer types, such as
non-small cell lung cancer [67], which demonstrates the versatility of this design concept.
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Fig. 1 (a) 2D cross-section of a tumor spheroid, for three different human glioma cell lines, from top to
bottom: D-263 MG, D-247 MG, and D-37 MG. Each simulation was terminated when the first tumor cell
reached the edge of a (red) nutrient source (representing an orthograde cut cerebral blood vessel) located in the
north-east quadrant of the lattice. (b) Polarization of the molecular concentration profiles of the EGFR-pathway
downstream component PLCγ in the first cell, at five consecutive time points. A qualitatively similar PLCγ

polarization pattern emerges in the three cell lines as higher concentrations of PLCγ eventually accumulate
in the apical part of the cell that faces nutrient abundance. Adapted from [6]

It is noteworthy that some efforts employ techniques analogous to ABM to study the
clinical level of brain tumor behavior. A series of in silico studies on simulating a GBM
response to radiotherapy, considering vasculature and oxygen supply, has been conducted
[22,58,59]. While in [59] tumor cells were considered individually, in the follow-up studies
[22,58], in an effort to overcome the extensive computational demand, cells were clustered
into dynamic equivalence classes based on the mean cell cycle phase durations (G1, S, G2,
and M, see [41] for a review); that is, tumor response to radiotherapy was investigated on
each cluster instead of on each individual cell. Moreover, for performing patient-specific
in silico experiments as a means of chemotherapeutic treatment optimization, the same
authors recently developed a four-dimensional simulation platform based on magnetic res-
onance imaging (MRI), histopathologic, and pharmacogenetic data, noting that the model’s
predictions were in good agreements with clinical practice [57]. Taken together, models
from both Deisboeck’s and Stamatakos’ groups pioneered the integration of continuum ele-
ments into a discrete framework. To put this in perspective, we will detail a strict continuum
approach in the following section.

3.2 Continuum modeling

Using a continuum approach, Cristini and co-workers have established a series of exploratory
investigations on mathematical analysis of morphologic stability in growth and invasion of
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highly malignant gliomas [17,18,25,26,53,56,73]. They propose that tumor tissue dynamics
can be simply regulated by two dimensionless parameters: one quantifies the competition
between local cell proliferation (contributing to tumor mass growth) and cell adhesion (which
tends to minimize the tumor surface area), while the other one represents tumor mass reduc-
tion related to cell death. The authors then tested the conditions for morphological stability
for an independent set of experiments where the levels of growth factors and glucose were
changed over a wide range in order to manipulate GBM cell proliferation and adhesion [25].
Most recently, they further confirmed that morphologic patterns of tumor boundary and infil-
trative shapes of invasive tumors predicted by their models were in agreement with clinical
histopathology samples of GBM from multiple patients [26]. Figure 2 shows a time-series
result of the evolving tumor shape over a course of three months using this model. The authors
claimed that their algorithm enabled the prediction of tumor morphology by quantifying the
spatial diffusion gradients of cell substrates maintained by heterogeneous cell proliferation
and an abnormal, constantly evolving vasculature. These models are based on reaction-dif-
fusion equations (that govern variables such as tumor cell density, neovasculature, nutrient
concentration, ECM, and matrix degrading enzymes) of the following generic form:

vt = −∇ · J + �–+ − �− (2)

where v represents one of the evolving variables, J is the flux, �+ and �− are the sources and
sinks with respect to variable v (expansion formulas differ according to the variable investi-
gated; see [26] for detail). This group’s work showed that a continuum approach is capable of
1) accounting for a variety of invasive morphologies observed in tumors in vitro, in vivo, and
in patients, 2) predicting different growth and invasion behaviors of tumors by calibrating
model parameters, and 3) testing the hypothesized phenomenological relationships of tumor
adhesion and proliferation that affect tissue-scale growth and morphology.

Several other groups have also been working on applying a continuum approach to the
investigation of brain tumor behaviors. For instance, [61] developed a continuum model that
incorporated the effects of heterogeneous brain tissue on diffusion and growth rates of glioma
cells in an effort to represent asymmetries of the tumor boundaries. This basic work was then
extended to examine the growth and invasion of gliomas in a 3D virtual brain refined from
anatomical distributions of grey and white matter [62]. By allowing a motility coefficient to
differ depending on the local tissue composition (so that glioma cells migrate more rapidly
along white matter than in grey matter), the algorithm predicted sites of potential tumor recur-
rence to a degree beyond the limits of current medical imaging techniques. Interestingly, as
supported by the results of this model, two independent factors, velocity of diametric expan-
sion and initial tumor size at diagnosis, were indeed found to be statistically significant in a
recent clinical survey on the prognostic evaluation of patients who harbor a grade II glioma
[52]. Based on their previous studies [61,62,65], [63] also investigated the effects of chemo-
therapy on the spatio-temporal response of gliomas. By comparing the simulation results with
MRI data of a glioma patient, it was suggested that differential delivery of the chemothera-
peutic agent to the grey and white matter could successfully describe the clinical problems of
shrinkage of the lesion in certain areas of the brain with continued growth in others. Another
recent continuum model confirmed the effects of repeated immuno-suppression treatment
(using different protocols) on the progression of glioma, and mathematically revealed the
necessity of repeating such treatment in reducing the risk of recurrence [25]. Furthermore, by
combining essential methods of two previous approaches [13,50], [68] were able to capture
the spatio-temporal dynamics of drug transport and cell-death in a heterogeneous collection
of glioma cells and normal brain cells.
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Fig. 2 (a) Time-series of the morphologic features of a growing GBM generated with a 3D model. The
morphology is directly influenced by angiogenesis, vasculature maturation, and vessel co-option. The vessels
labeled in red are capable of releasing nutrients, e.g., oxygen. (b) Histology-like section of the last frame of the
simulation in (a) reveals viable tumor regions (white) surrounding necrotic tissue (dark). The viable region’s
thickness and extent of necrosis are strongly dependent on the diffusion gradients of oxygen/nutrient in the
microenvironment. (c) Another view from the simulation shown in part A. Adapted from [26] with permission

4 Conclusions and perspectives

In recent years, computational cancer research has become a sprawling interdisciplinary field.
This is a result of a number of contributing factors. Firstly, in contrast to conventional wet-lab
experimental methods, such in silico models offer a powerful platform to reproducibly alter
parameters and thus investigate their impact on the cancer system studied, at a rapid pace and
in a cost-efficient way [42]. Secondly, computational models have demonstrated the ability
of providing a useful hypothesis generating tool for refocusing experimental in vitro and
in vivo works [54]. Thirdly, from a practical clinical perspective, computational modeling
has already been applied, with some promise, to simulating the impact of chemotherapy,
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radiotherapy, and drug delivery on brain tumors [19]. Within this in silico oncology area,
modeling and simulating malignant brain tumors is starting to emerge as a paramount driver
for advancing technical developments en route to help addressing important scientific ques-
tions.

Demonstrated with examples from the literature, we have reviewed the two major mathe-
matical modeling approaches, discussed their distinct merits and limitations in quantitatively
studying brain tumor growth dynamics. In summary: While discrete models perform at the
resolution of individual cells, which function independently through a set of behavioral
rules that are inspired by biological facts if not fueled with real data, they are limited to
a rather small number of cells or constituents. Conversely, continuum models can capture
tumor growth at a collective scale that allows monitoring the expansion of a larger cluster of
homogeneously behaving cells yet fail to register single cells, genes or proteins. Since both
discrete and continuum modeling approaches have their own advantages and shortcomings
(Table 1), and because quantifying the relationships between complex cancer phenomena at
different scales is highly desirable, we and others have begun to move into the direction
of hybrid modeling e.g., [4,58,67,72], or more appropriately, towards hybrid, multi-scale
and multi-resolution algorithms as the next stage of cancer modeling in general, and brain
tumor modeling in particular. While ‘hybrid’ refers to the integration of both discrete and
continuum techniques, ‘multi-resolution’ means that cells at distinct topographic regions
are treated differently in terms of the modeling approach applied. The overall strategy is
clear: achieving discretely high resolution wherever and whenever necessary to maintain (or
ideally, improve) the model’s overall predictive power while at the same time reducing com-
pute intensity as much as possible to allow for inclusion of sufficiently large datasets, and
thus support scalability of the approach to clinically relevant levels. Figure 3 schematically
describes the development of a 2D model using this novel strategy. Here, the MRI-demarked
hypointense region within the tumor core, often comprised of a large fraction of apoptotic
cells if not necrotic tissue, can arguably be described sufficiently as a rather homogenous pop-
ulation, thus at a lower resolution which allows employing a continuum module. Conversely,
the highly active, gadolinium enhanced tumor surface supposedly thrives with a genetically
and epigenetically heterogeneous population of cells that must at least in part be described
discretely, and at the resolution of interconnected signaling pathways, to capture topographic
areas that (e.g., with some probability, harbor an aggressive clone that) may impact overall
growth patterns in the future. As the tumor grows, these high-resolution regions of interest
(ROIs) and, thus the in silico modules representing them, will likely have to change dynam-
ically (i.e., in size, number and location) to maintain or, better, improve predictive power

Table 1 Characteristics of discrete, continuum and hybrid brain tumor modeling approaches

Category Characteristics References

Discrete • Autonomous cells, with a set of rules governing their behavior [39,40,45]
• Capable to investigate tumor dynamics at a single cell level and below
• Limited to a comparably smaller scale due to prohibitive computational

costs
Continuum • Describing tumor tissue as a continuum medium [18,26,64]

• Capable to capture larger-scale volumetric tumor dynamics
• Computational cost efficiency
• Difficult to implement heterogeneous cell-cell and cell-environmental

interaction, or molecular level dynamics
Hybrid • Applicable to both small- and large-scale models [5,6,57,58,72]

• Extensive numerical techniques required
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Fig. 3 Schematic illustration of a 2D brain tumor model using a hybrid, multi-scale and multi-resolution
strategy. “ROI” represents a region of interest which refers to a higher modeling resolution desired and thus
discrete-based technique used, versus the larger remaining volume (green) of the tumor tissue that is being
modeled with a continuum-based approach. ROIs can be obtained e.g. by using finite elements and other
numerical techniques [3,17,73]

while training on the patient-specific data set. Admittedly, much work needs to be done in
this area to tackle the considerable challenges involved that range from data processing in 3D
over time (where most computational savings would occur) to automated ROI placement and
result driven, dynamic readjustment. However, eventually, such advanced in silico oncology
approaches should be able to provide, on a clinical level, much needed quantitative insights
into the dynamic cross-scale relationships that characterize these and other highly malig-
nant tumors, and thus prove to become an effective and indispensable tool for personalized
systems medicine in the near future.
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