
Scaling Your
Node.js Apps

Progress Your Personal Projects to
Production-Ready
—
Fernando Doglio

Scaling Your Node.js
Apps

Progress Your Personal
Projects to Production-Ready

Fernando Doglio

Scaling Your Node.js Apps: Progress Your Personal Projects to

Production-Ready

ISBN-13 (pbk): 978-1-4842-3990-2		 ISBN-13 (electronic): 978-1-4842-3991-9
https://doi.org/10.1007/978-1-4842-3991-9

Library of Congress Control Number: 2018964431

Copyright © 2018 by Fernando Doglio

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484239902. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Fernando Doglio
La Paz, Canelones, Uruguay

https://doi.org/10.1007/978-1-4842-3991-9

To my wife, who’s been an amazing rock throughout this
entire process: You make me a better person.

To my kids: you managed to fill a place in my heart I didn’t
know I had empty. I love you.

v

Table of Contents

Chapter 1: �The Need to Scale���1

External Factors���1

Traffic Increase���1

Increased Processing Power Required���4

Internal Factors��6

High Availability��7

Fault Tolerance���11

Summary���18

Chapter 2: �Architectural Patterns��19

The Patterns���19

Layered Architecture��20

MVC Is Not Layered��22

Client-Server��25

Master-Slave��27

Event-Bus or Event-Driven Architectures���29

Microservices Architecture���32

The Broker Pattern���34

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

vi

Lambda Architectures��37

Summary���40

Chapter 3: �Ways to Scale���41

Scaling Techniques��41

Vertical or Horizontal Scaling?���41

Taking Advantage of the Cloud���44

Clustering Your Application��47

Clustering with PM2���55

In Conclusion��57

Microservices to the Rescue��57

In Conclusion��60

Summary���61

Chapter 4: �Challenges when Scaling���63

Dealing with Your Log Files��63

You’re Just Logging into stdout and stderr���65

You’re Logging into a Single File��69

Sharing Memory between Processes��73

Single Points of Failure? No Thank You!���76

Stateful Apps and Multi-Server Scenarios���82

Summary���86

Chapter 5: �When to Scale?��87

Monitoring��87

Alerting���89

Monitoring Your Apps��91

Adding AWS Metrics into Your Dashboard��103

Reacting to Your Metrics��104

Summary���109

Table of ContentsTable of Contents

vii

Chapter 6: �Testing Your Application��111

Testing 101��111

The Definition���112

The Tools���115

Best Practices���123

Testing with Node.js���125

Testing without External Modules��125

Mocha���128

Testing Asynchronous Code��130

Integration Testing���137

Testing Approaches��138

Summary���141

Chapter 7: �Success Cases���143

PayPal��143

Uber���146

LinkedIn���148

Biggest Challenges���150

Netflix���151

Summary���155

�Index��157

Table of ContentsTable of Contents

ix

About the Author

Fernando Doglio has worked as a developer

for the past 13 years. In that time, he has come

to love the Web, and has had the opportunity

to work with most leading technologies,

such as PHP, Ruby on Rails, MySQL, Node.js,

Angular.js, AJAX, REST APIs, and others. For

the past four years Fernando has also been

working as a Technical Manager and Technical

Lead for Big Data projects. 

In his spare time, Fernando likes to tinker,

learn new things, and write technical articles and books such as this one.

He’s also a big open source supporter, always trying to bring new people

into it. When not programming, he can be seen spending time with his

family.

Fernando can be contacted on Twitter @deleteman123 or online at

www.fernandodoglio.com.

http://www.fernandodoglio.com/

xi

About the Technical Reviewer

Shane Hudson is a freelance web developer

and author of JavaScript Creativity (Apress,

2014). From small proof of concept prototypes

to large startups, charities and government

organizations, Shane has worked on all kinds

of projects and with all kinds of teams around

the world. He can be found on his personal site

at https://shanehudson.net or on Twitter at

https://twitter.com/ShaneHudson.  

https://shanehudson.net/
https://twitter.com/ShaneHudson

xiii

Acknowledgments

I’d like to thank the amazing technical reviewer involved in the project,

Shane Hudson, whose great feedback was a crucial contribution to the

making of this book.

I’d also like to thank the rest of the Apress editorial team, whose

guidance helped me through the process of writing this book.

xv

Introduction

Any piece of software that either deals with an increasing amount of data

or interacts with the public on a world-wide capacity will eventually (if the

creators play their cards right) grow out of control.

This situation can get out of hand quickly if you’re not expecting it,

after all, it’s plays a major role in crashing your favorite websites everyday.

The key aspect here, is to understand why they happen and the kind of

tools you have a your disposal to solve them once they do. By getting that

part right, you’ll be ready to understand the signs and know how to react to

them. And that is what this book attempts to answer.

Throughout this book, with the help of plenty of diagrams and, in

some weird occasion, a few code samples, I’m going to provide you with

the what, the where, the when, the who, and the “uh?” about scaling large

platforms, while working with Node.js.

1© Fernando Doglio 2018
F. Doglio, Scaling Your Node.js Apps, https://doi.org/10.1007/978-1-4842-3991-9_1

CHAPTER 1

The Need to Scale
To talk about scaling platforms and growing your application to handle

whatever requirements you can think of, we first need to understand the

different factors that can trigger the need to scale. These factors don’t have

to act together in a perfect-storm scenario to become a real headache.

With only one of them present, you’re done; you need to either start

scaling or say goodbye to the stability of your system.

In this chapter, I’ll go over the most common scaling triggers that

might pop up during your application’s development lifecycle, or even

after going live.

�External Factors
External factors are the ones you can’t control. Yes, they can be expected,

and you can and should plan accordingly. You can even predict them,

given the right amount of data. But you don’t really have a say as to

whether they happen or not.

The two most common external factors that will trigger your need to

scale are a considerable change in the traffic your application receives and

an increase in the data you need to process.

Let’s quickly go over them individually.

�Traffic Increase
This is probably one of the most obvious and common cases where in

getting what you wanted, you end up regretting ever asking for it.

2

Let’s say you made a post in Hacker News about your brand-new app,

and it suddenly got the attention of way too many people. Or maybe you

published a new mobile app into Google’s Play store and it was featured,

and now your APIs are receiving 400% more traffic than you expected for

the first five months. Or maybe your online massive multiplayer game is

now popular and even though your game servers are able to handle the

load, your tiny log server is crashing every 2 hours from the amount of

internal traffic it’s receiving.

With any of these, you now have a problem. It might directly affect your

entire application, or it might be a challenge for only part of it, but you will

have to fix it if you want your platform to perform as expected.

An increase in incoming traffic could affect your system in different

ways; we can describe these as direct or indirect.

�Direct Effects

The most obvious direct effect is overloading your servers’ capacity to

handle incoming traffic. No matter how good your server hardware is, if you

have only one server (or a limited number of them), you’ll be limited by it.

Even if you were running a web application and had a very well-configured

Apache server, so that you made the most of your resources, your capacity

to handle traffic would still be limited by the number of processors and

amount of RAM you paid for. There is no other way around it.

Particularly, Apache Httpd spawns a new process for every request,

so multiple concurrent requests might cause this scenario to get out of

hand quickly. Nginx, on the contrary, has a non-blocking I/O approach

(much like Node.js), so it is capable of managing high levels of traffic with

constant memory consumption. With this in mind, swapping them out

might seem a good idea, but eliminating the bottleneck on your web server

might prove to expose one in your own application.

In the following chapters I’ll go over different techniques to overcome

this, but rest assured, they will at some point imply spending more money

on more hardware.

Chapter 1 The Need to Scale

3

�Indirect Effects

An increase in traffic can affect your application indirectly by overloading

one of your internal processes. In a microservices-based architecture, the

communication between services needs to be carefully planned. The fact

that you’re capable of handling the increased traffic on your user-facing

service doesn’t mean the rest of your architecture will be able to handle it.

Figure 1-1 shows exactly that case, where a resource-bound log server

is crashing randomly and limiting the number of logs properly saved in

your database. Good luck troubleshooting any other issues or bugs in your

platform when that happens.

Figure 1-1.  Before and after a traffic increase affecting your platform
indirectly through the log server

Chapter 1 The Need to Scale

4

Another possible indirect effect occurs when an increase in traffic

starts affecting the performance of a service you share with other

platforms. This is what is normally known as service degradation, when the

service is still active and working, but is responding slower than usual.

In this scenario, your lack of planning and scaling capabilities will start

affecting those who use your service. This is why you always want to make

sure that whenever you depend on third-party services, they can actually

assure you that their service will not be degraded by anything.

�Increased Processing Power Required
A need for increased processing power could be related to the previous

case, and sometimes can even be caused by it; but it can also develop

independently, which is why it’s worth discussing as a whole different

category.

Specifically, this is purely a resource-related problem; you’re trying to

process more information than your current resource utilization technique

allows you to (“trying to bite off more than you can chew”). Notice that I

didn’t blame the server directly; instead, I’m sharing the blame between

you and your server.

In this scenario, you’re trying to do something with one or more

sources of data, and suddenly, they start providing considerably more data

than you expected. And when this happens, things can go wrong in one of

two ways: your service may be degraded, or it may crash completely.

�Your Service Is Degraded

In the best-case scenario, even though you weren’t completely prepared

for the increase, your architecture and code are capable of coping with

it. You’re obviously being negatively affected by it, but your service is still

running, although slower than usual. Once again, you’ve got a mob of

Chapter 1 The Need to Scale

5

angry users. That’s right; they’re coming, especially anyone who is paying

for your services and suddenly not getting what they’re paying you for.

In an ideal world, you don’t want this scenario to happen, of course;

you want your platform to be able to handle any kind of increase in the size

of your data sources, and I’ll cover that in future chapters. But trust me—

compared to the alternative, you’ve got it easy.

�Your Service Is Dead

If you were so naive as to think a complete failure would never happen (it

happens to the best of us), then most likely your system will end up in this

category. Your service is crashing every time it tries to process the new

data; and what’s even worse, if the source of the data has some kind of

retry mechanism, or you automatically start reprocessing the data after a

restart, your system is going to keep crashing, no matter how many times

you auto-restart it.

Once your data-processing service starts failing like this, it could affect

the rest of your platform in many ways:

•	 Is your platform a black monolith of code? Then your

whole platform is doomed (of course, it was already

doomed if you went with a monolithic approach).

•	 Is your service or its output used directly by your

clients? You’re definitely in trouble here. If you’re

designing an app/service/platform/whatever that

people need to pay to use, you definitely need to think

about scaling techniques for your first production

version, no matter what.

•	 Is your service used internally by your own platform?

Maybe you’re in luck here, especially if your platform is

capable of recovering from a failed service.

Chapter 1 The Need to Scale

6

•	 Is your service logging during this endless rebooting

and crashing loop? If it is, you might compromise

your logging system through an increase in traffic

from a crashing faulty service. Then an increase in

processing needs causes an increase in internal traffic

and you have two problems, maybe more if you have a

non-scalable centralized logging system. Now you’ve

compromised every component of your platform that

needs to save a log (which ideally would be all of them).

See where this is going?

These are some of the most common external factors that might trigger

the need to scale on your platform. But what about your own requirements

for the platform? Let’s call them internal factors.

�Internal Factors
Internal factors are closely related to the external ones just discussed. But

instead of having them laid down on top of us, we’re the ones pursuing

them. That’s because they provide positive benefits to the application,

even though they require extra work (and sometimes not only from a

scaling perspective). And they are traits you should always aim for in your

architectures, unless the applications don’t provide a very sensitive service

to anyone.

Of course, I’m talking about fault tolerance (FT and high availability (HA).

At first glance, these two terms might seem to describe the same thing, but

they’re slightly different concepts. Let’s go a bit deeper into each one.

Chapter 1 The Need to Scale

7

�High Availability
For an architecture to be highly available, it must ensure that whatever

service it provides will always be available and will not lose performance,

despite having internal problems (such as a loss of processing nodes).

The availability of a system is usually also known as its uptime, and

commercially for service providers you sign onto an SLA (Service Level

Agreement) which is measured in “nines” of availability. For instance,

Amazon ensures three nines of availability for their S3 service, which in

practice means they ensure 99.9% of monthly availability. Put another

way, if their service fails more than 43.2 minutes a month, then they’ll be

over service credits. More critical services, like mobile carriers, ensure five

nines of availability, which translates to 99.999% of uptime, which in turn,

translates to 5.2 minutes a year of downtime allowed.

There are several techniques that can be used to achieve this, but the

most common one is the master-slave pattern.

You will often see this pattern discussed while reading about database

scaling configurations, since most of them tend to go this route. It basically

consists of having at least one more node for each of your main ones, and

some kind of monitoring on the main nodes, so that if they go down, you

can promote one of these “extra” nodes into a main one. In Figure 1-2,

you have a standard three-node service, where node 3’s input depends on

node 2’s output, and node 2’s input depends on node 1’s output. You can

also see the “slaves,” which are the smaller dotted boxes next to them.

Chapter 1 The Need to Scale

8

The final component of the master-slave model is the monitoring

service, which makes sure all master nodes work correctly.

The second half of Figure 1-2 shows what happens when one of

the nodes fails (in this case M2). Its slave node is promoted to master

(essentially taking the place of M2, connecting M1’s output into its input

and its output into M3’s input).

In practice you normally don’t need to worry about switching the

connections or manually monitoring nodes for that matter; usually load

balancers are used between nodes to do exactly that, act as “fixed” points

of connectivity and decide by themselves (and a set of conditions you

configure on them) whether or not to promote a slave.

Figure 1-2.  The failure on “Master M2” does not affect the entire
system

Chapter 1 The Need to Scale

9

That works well if your nodes are simple processing nodes; in other

words, if you can simply exchange a master for a slave without any loss of

data or any kind of information on your platform. But what happens if your

nodes are part of a storage system, like a database? This scenario is slightly

different from the previous one, because here, you’re not trying to avoid a

lack of processing power, or a processing step in your flow. You’re trying to

prevent data loss, without affecting your performance at the same time.

In this case, what you’ll want between your master and slaves (you

could potentially have more than one slave per master), is a passive data-

replication process (write only) from your master into your slaves. This will

make sure that if your master is lost at any point, your slaves will be able

to take over with minimal negative effects, as shown in Figure 1-3. (Note

that you can’t prevent the master going down in mid-write, which would

negate the transaction, preventing the data transfer from completing.)

Figure 1-3.  Data replication between master and slaves to avoid
data loss

In some cases, like Redis (with Sentinel enabled), slaves are not just

there waiting to be promoted, they’re used for read-only queries, thus

helping shed some load off their masters, which in turn, take care of all the

write operations.

Chapter 1 The Need to Scale

10

MongoDB, for another example, provides something called replica

sets,1 which allow you to set up a group of nodes, in which one of them is

the primary and therefore the one your code is constantly talking to, but if

something happens to it, the secondary nodes will “elect” one of them to

be the new primary (as seen in Figure 1-4).

Finally, another real-world example of HA is the newer versions of

Hadoop’s HDFS. Prior to version 2, the HDFS (or Hadoop Distributed File

System) had a single point of failure in its only NameNode. In other words,

if that machine were to fail or be brought down due to maintenance, the

entire cluster would be rendered inaccessible until it was brought back

up. In newer versions, there is an option to set up as many redundant

secondary NameNodes as you want. With this feature, these nodes

effectively act as passive slaves to their master, getting sufficient state (via

external services called journal nodes) to provide a fast failover if required

(shown in Figure 1-5).

1�See https://docs.mongodb.com/manual/core/replica-set-high-availability/

Figure 1-4.  Topology change on a replica set once the primary node
fails

Chapter 1 The Need to Scale

https://docs.mongodb.com/manual/core/replica-set-high-availability/

11

As a side-note, all DataNodes need to send heartbeats to all

NameNodes to ensure that if a failover is required, it will happen as fast as

possible.

As you can see, the slave-master approach can have slightly different

implementations, but if you dig deep enough, they all end-up being the

same.

Let’s take a look now at fault tolerance, to understand how it differs

from HA.

�Fault Tolerance
You can think of fault tolerance as a less strict version of HA. The latter

was all about keeping the offline time of your platform to a minimum and

always trying to keep performance unaffected. With FT, we will again try to

minimize downtime, but performance will not be a concern—in fact, you

could say that degraded performance is to be expected.

That being said, the most important difference between these two is

that if an error occurs during an action, a highly available system does not

ensure the correct end state of that action, while a fault-tolerant one does.

Figure 1-5.  HDFS high availability setup

Chapter 1 The Need to Scale

12

For example, if a web request is being processed by your highly available

platform, and one of the nodes crashes, the user making that request will

probably get a 500 error back from the API, but the system will still be

responsive for following requests. In the case of a fault-tolerant platform, the

failure will somehow (more on this in a minute) be worked-around and the

request will finish correctly, so the user can get a valid response. The second

case will most likely take longer, because of the extra steps.

This distinction is crucial because it will be the key to understanding

which approach you’ll want to implement for your particular use case.

Usually fault-tolerant systems try to catch the error at its source and

find a solution before it becomes critical. An example of this is having

mirrored hard drives in case one of them fails, instead of letting a single

drive fail. That would require replacing the entire server, affecting whatever

actions the server could have been performing at the time.

Hardware-level fault tolerance is beyond the scope of this book; here,

I will cover some of the most common techniques used to ensure FT at a

software level.

�Redundancy

One way to design fault-tolerant architectures is by incorporating

redundancy into your key components. Essentially, this means that you

have one or more components performing the same task and some form of

checking logic to determine when one of them is has failed and its output

needs to be ignored.

This is a very common practice for mission-critical components, and it

can be applied to many scenarios.

For example, in 2012, SpaceX sent its Dragon capsule to berth with

the International Space Station. During the ascent, the Falcon9 rocket

used suffered a failure on one of its nine Merlin engines; and thanks to the

implemented redundancy, the onboard computer was able to reconfigure

the other eight engines to ensure the success of the mission.

Chapter 1 The Need to Scale

13

Because these systems are so complex to code and to test, the cost-

benefit ratio is not always something the normal software project can

handle. Instead, these types of systems are usually present in critical

applications, where human lives might be at risk (such as air traffic

controllers, rocket guidance systems, and nuclear power plants).

Let’s go over some techniques to provide software redundancy and

fault tolerance.

Triple Modular Redundancy

Also known as triple mode redundancy, TMR is a form of redundancy

in which three systems perform the same process and their results are

checked by a majority voting system that in turn produces a single output

(see Figure 1-6). If one of the three systems fails, then the other two will

correct it by providing the accurate output to the voting system.

This is a particular implementation of the N-modular redundancy

systems, where as you might’ve guessed, you can add as many parallel

systems as you see the need for, in order to provide a higher degree of fault

Figure 1-6.  Generic example of a triple modular redundancy system

Chapter 1 The Need to Scale

14

tolerance for a given component. A particularly interesting real-world use

case for this type of solution (in this case a 5-modular redundancy system)

is the FlexRay2 system.

FlexRay is a network communication protocol used in cars; it was

developed by the FlexRay Consortium to govern onboard car computing.

The consortium disbanded in 2009, but the protocol became a standard.

Cars such as the Audi A4 and BMW 7 series use FlexRay. This protocol uses

both data redundancy, sending extra information for problem detection

purposes as metadata in the same messages, and structural redundancy in

the form of a redundant communication channel.

Forward Error Correction

Yet another way to add a form of redundancy to the system, Forward Error

Correction (FEC) adds redundancy into the message itself. That way,

the receiver can verify the actual data and correct a limited number of

detected errors caused by noisy or unstable channels.

Depending on the algorithm used to encode the data, the degree of

redundancy on the channel may vary and with it, the amount of actual

data that can be transferred through it.

There are two main types of encoding algorithms: block codes and

convolutional codes. The first kind deals with fixed-length blocks of data,

and one of the most common algorithms is Reed-Solomon. A classic

example of this is two-dimensional bar codes, which are encoded in such

a way that the reader can withstand a certain number of missing bits from

the code.

Another very interesting real-world example of this type of redundancy

can be found on the messages sent by the Voyager space probe and similar

probes. As you can imagine, the communication with these devices can’t

2�See https://en.wikipedia.org/wiki/FlexRay

Chapter 1 The Need to Scale

https://en.wikipedia.org/wiki/FlexRay

15

really afford retransmissions due to a faulty bit, so this type of encoding is

used to ensure that the receiving end takes care of solving as many errors

caused by a problematic channel as it can.

By contrast, convolutional codes deal with streams of arbitrary length

of data, and the most common algorithm used for this is the Viterbi

algorithm. This algorithm is used for CDMA (Code Division Multiple

Access) and GSM (Global System for Mobiles) cellular networks, dial-up

models, and deep-space communications (sometimes it’s even used in

combination with Reed-Solomon to ensure that whatever defect can’t be

fixed using Viterbi is fixed using R-S).

�Checkpointing

Checkpointing is yet another way to provide tolerance to failure; it is in

fact one method that is commonly used by many programs regular users

interact with daily, one of them being word processors.

This technique consists of saving the current state of the system into

reliable storage and restarting the system by preloading that saved state

whenever there is a problem. Rings a bell now? Word processors usually do

this while you type—not on every keystroke; that would be too expensive,

but at preset periods of time, the system will save your current work, in

case there is some sort of crash.

Now, this sounds great for small systems, such as a word processor

which is saving your current document, but what about whole distributed

platforms?

Dealing with Distributed Checkpointing

For these cases the task is a bit more complex because there is usually a

dependency between nodes, so when one of them fails and is restored to

a previous checkpoint, the others need to ensure that their current state is

consistent. This can cause a cascade effect, forcing the system to return to

the only common stable state: its original checkpoint.

Chapter 1 The Need to Scale

16

There are already some solutions designed to deal with this problem,

so you don’t have to. For example, the tool DMTCP (Distributed

MultiThreading CheckPointing), provides the ability to checkpoint the

status of an arbitrary number of distributed systems.

Another solution, which is used in RFID tags, is called Mementos. In

this particular use case, the tags don’t have a power source; they use the

environment background energy to function, and this can lead to arbitrary

power failures. This tool actively monitors the power levels, and when there

is enough to perform a checkpoint, it stores the current tag’s state into a

nonvolatile memory, which can later be used to reload that information.

When to Use?

This technique is one that clearly doesn’t work on every system, and you

need to carefully analyze your particular needs before starting to plan for it.

Since you’re not checkpointing every time there is new input on your

system, you can’t ensure that the action taking place during the error will

be able to finish, but what you can ensure is that the system will be able

to handle sudden problems and will be restored to the latest stable state.

(Whether that meets your needs is a different question.)

In cases such as a server crash during an API request, the request will

most likely not be able to complete; and if it’s retried, it could potentially

return an unexpected value because of an old state on the server side.

�Byzantine Fault-Tolerance

I intentionally left this one for last, because it could be considered the sum of all

of the above. What we have here is the “Byzantine Generals Problem”, basically

a distributed system where some components fail, but the majority of the

monitoring modules can’t reach a consensus. In other words, you’re in trouble.

Figure 1-7 shows a basic and high-level example of what this problem

means for a platform architecture. In it, you have five replicas of the

component C, which send their output to four different status checkers

Chapter 1 The Need to Scale

17

(A, R, M and Y), they in turn, exchange “notes” and try to reach a

consensus regarding the data they all received. But because there is a

problem, maybe with the data channel or with the fifth component,

different values are sent to different checkers, so in this case a majority

consensus can’t be reached.

There are different approaches to tackle this type of problem; in fact,

there are too many out there to cover in a single chapter, so I’ll just go over

the most common ones, to try to give you an idea of where to start.

The simplest approach, and it is not so much a solution as a

workaround, is to let your status checkers default to a specific value

whenever consensus can’t be reached. That way, the system is not stalled,

and the current operation can continue.

Another possible solution, especially when the fault is on the data

channel and not on the component generating the message itself, is to sign

the messages with some sort of CRC algorithm, so that faulty messages can

be detected and ignored.

Figure 1-7.  Example of a Byzantine problem, where there is a faulty
component sending random data

Chapter 1 The Need to Scale

18

Finally, yet another approach to ensure the authenticity of the

message sent is to use blockchain, just as Bitcoin does, with a Proof of

Work approach, in which each node that needs to send a message must

authenticate it by performing a heavy computation. I’m simply mentioning

this approach, since it could be the subject of an entire book, but the idea

behind this approach is that it solves the Byzantine Generals problem

without any inconvenience.

�Summary
To sum things up, there are a couple of reasons why you’d want to scale

under normal circumstances, and they’re usually tied to the following:

•	 Your traffic increasing.

•	 An increase in your processing needs.

•	 Some form of side effect from one of the above (such as

a faulty log server caused by the increased traffic your

whole platform is getting).

•	 Or you’re looking for a very specific side effect from

your actions, such as high availability or fault tolerance.

The next chapter will cover some of the most common architectural

patterns. We might revisit some of the ideas covered here, but we’ll look at

them from a different point of view.

Chapter 1 The Need to Scale

19© Fernando Doglio 2018
F. Doglio, Scaling Your Node.js Apps, https://doi.org/10.1007/978-1-4842-3991-9_2

CHAPTER 2

Architectural Patterns
Creating a scalable architecture is not just about drawing boxes on a

whiteboard and then connecting them with black lines. There is usually

a method to the madness, and in this chapter I’ll show you some of the

common patterns used in creating a professionally designed system.

In other words, I will provide you with a building block for your next

big project, and even if none of the examples presented here exactly suits

your needs, you’ll be able to solve your problems using the tools you

picked up in this chapter.

�The Patterns
The IT field is filled with patterns, which is funny if you think about it,

because we usually take pride in the way our work is so much like a work

of art, where imagination plays such a big role. Little does everyone else

know that in fact, we’re just using tried and tested patterns and adding

little changes to make them work for us.

Yes, it’s true, every once in a while, there comes a new da Vinci and

blows our mind with a completely new and original pattern. It can happen,

and it will happen, but in the meantime, the rest of us can take pride in our

originality while we blindly follow the work of others.

And please, don’t take this the wrong way. This is exactly what we should

be doing. We’re not paid to reinvent the wheel every day, in fact, we’re paid

to solve problems in the most efficient way, and what’s more efficient

than re-using someone else’s solution if it fits our needs? Literally nothing.

20

So without further ado, let’s start getting our hands dirty with the

different architectural patterns I’m going to cover in this chapter.

�Layered Architecture
One of the most common patterns is probably the layered or n-tier

architecture pattern. It is based on the logical separation of concerns of

your application (or platform) into layers. And these layers must comply

with the following points:

•	 Each layer must have a well-defined purpose

(presentation layer, business layer, and so on).

•	 Each layer cannot speak (or send data) to any other

layer that is not the one directly below it

Tip  In most publications, the terms layer and tier are used
interchangeably, but in practice they refer to two different topics.
Layers are logical groupings of your code, while tiers refer to physical
instances (that is, servers) where the code resides. This is relevant,
because you could perfectly well have a 3-layered architecture that is
deployed into a single tier (your developer’s workstation).

Figure 2-1 shows a very high-level overview of how this pattern expects

the layers to be organized. The level of abstraction, as shown in the image,

refers to the specifics of the business that the logic for your application is

built around. In other words, the deeper you go into your layers, the more

detail you’ll have to deal with regarding your specific business data model

and business rules.

Chapter 2 Architectural Patterns

21

Note  The data-flow refers specifically to the way communication is
initiated, not necessarily how actual data is transmitted; otherwise,
this would imply there would never be any output to the user (since
any action initiated at the interface layer could never return back to it
to display the result).

One common misconception about this pattern is that people confuse

it with MVC (Model-View-Controller), thinking the latter to be the 3-tier

version of this one. In the next pattern, I’ll go over the main differences

between the two.

As a side-effect of using a layered architecture, the code inside a layer

is all related to the same functionality (or at least, follows a set of standards

common to the rest). This in turn helps developers work independently

from each other on different layers. This allows the teams to make internal

changes to the layers without affecting anything else (as long as the actual

interface remains the same).

Figure 2-1.  N-layer architecture example, showing how data flows
from one layer to the next

Chapter 2 Architectural Patterns

22

The most common implementation of this pattern can be seen where

there is extensive usage of storage engines, such as databases, because in

those cases the layers are created beginning from the storage, as follows:

•	 You usually have your storage or persistence layer at

the bottom of your diagram. This layer takes care of

encapsulating everything related to the interaction

with your storage. Encapsulation helps in many ways,

such as making it easier to switch from one storage

medium to the other, without affecting other parts of

the application, such as the business logic or the UI.

•	 On top of the storage, you usually have your business

logic layer. This is where the business knowledge

resides. Whatever makes the application tick goes

in here.

•	 Finally, on top of the previous one, you’ll have your

UI layer. This is the client-facing front end and the

main source of interactions and data for the rest of the

platform.

Some people also split the business layer into two, one in which the

business knowledge remains, and another, often called the application

layer, which owns the interaction logic between the UI and the business

layer and also provides some common services useful for that interaction.

�MVC Is Not Layered
If you’ve been doing any kind of web development for the last few years,

you’ve probably heard or read about Model-View-Controller (MVC). This

pattern is one that many web frameworks have adopted (Ruby on Rails,

Django, and Sails.js, to name a few), because the structure of most web

projects resembles this approach.

Chapter 2 Architectural Patterns

23

That is, in most web projects you have a UI (or View); you most likely

will want to handle the requests of your UI somewhere (the Controller);

and finally, you most likely have a storage engine, inside of which you

can probably force your data to fit into a set of Models that represent your

resources. You’ll also want to perform some transformations on this.

Now, don’t get me wrong; MVC is not web-specific. In fact, you can

use this pattern on any application that handles some sort of domain

knowledge, has a representation for it, and is capable of performing

actions on it. Let me summarize what the definition says for this pattern:

•	 The model is the boss: here’s where the domain

knowledge or business logic is stored, here is where

the actual data is handled, and here is where all the

business specific coding should take place.

•	 The view is a simple representation of the model;

there can even be several views for the same model.

Remember that “representation” doesn’t mean

“web page”; it means anything that can be read and

understood by another system. A JSON object can be a

view; this pattern could be applied to RESTful APIs just

as much as it could be implemented to the front-end

architecture of your very complex SPA.

•	 Finally, the controller is the poor guy who drew the

short stick and is in charge of interconnecting the

model and the view. It basically takes input from the

view and passes it along to the model, while executing

whatever command is needed on that input. Then,

once the controller gets something back from the

model, it sends it back to the view, updating it. In some

cases, the controller can even avoid the last part (as

seen in Figure 2-2), letting the model directly update

the view.

Chapter 2 Architectural Patterns

24

We now have enough information to answer the question of how

this is different from a 3-layered architecture. You have seen that the

layered architectural pattern does not allow jumping layers when sending

messages between them. You could say that for the n-tier architecture,

the communication is completely linear (it needs to go through all

intermediate layers in all cases), while for the MVC pattern, you can work

around that (as seen in Figure 2-2), since it is more of a triangular setup.

This flexibility can potentially be a negative for this pattern if performance

is a big concern, since every extra layer that you add to it will definitely add

latency to the communication (no matter how fast you make it work).

Finally, I want to mention some of the variations on this pattern.

Over the years, many adaptations have been created to improve on it,

depending on whether the goal is to have less component coupling, better

testing capabilities, or simply to follow a similar logic but adapted to

particular needs. For instance, the MVP (Model, View, Presenter) pattern

aims to remove that (normally) unwanted interaction between Model and

View, making the Presenter the sole man-in-the-middle taking care of

passing information between its associated View (there is only one view

Figure 2-2.  The interaction between nodes/objects in an MVC
architecture

Chapter 2 Architectural Patterns

25

for each presenter) and it’s Model. Another very common variation is

the MVVM pattern (Model, View, ViewModel), which aims for a two-way

data binding between the View and ViewModel. This in turns allows for

automatic updates on the view, based on changes in the model.

�Client-Server
The client-server pattern is a very simple yet powerful one. It consists

of having a powerful server that provides meaningful services to many

clients.

This pattern should sound very familiar to anyone who’s done any web

development, since it’s the basic pattern for the World Wide Web. Browsers

act as the many clients, which in turn request resources (web pages)

from the different servers they interact with. Figure 2-3 shows what this

looks like.

Figure 2-3.  Client-server architecture

Chapter 2 Architectural Patterns

26

It’s important to note two things about this pattern that you can’t

directly see in the diagram in Figure 2-3:

	 1.	 Clients always start the conversation. After that

initial step, depending on the communication

protocol/technology, the conversation between

both sides might vary. For example, in HTTP the

server will only be able to send back a response to

specific requests from the client. If you’re working

with sockets, however, your server will be able to

send messages to the clients that are not responses.

	 2.	 The servers are always listening for new connections

from clients to start a new conversation.

This pattern favors the off-loading of application logic into the server,

where more hardware resources can easily be allocated. It also keeps the

clients “thin” and “dumb,” in the sense that they usually don’t have a lot

of business logic knowledge; instead, they simply know what to request

from the server, and it is in the latter where all the heavy business-related

computation will take place.

One of the main benefits of this approach is that making changes and

fixes to either side does not necessarily mean affecting the other. That

is, fixing a server bug doesn’t mean you need to even touch the client

code, and vice-versa. Inherent security is another plus that comes out of

this setup, since any core security check can be done on the server side,

making sure any clients that are tampered with can still remain secure.

(Think of a multiplayer game client, for example, where hackers can

modify a player’s position; if the server is still checking for that, then the

modification has no effect.) The clear separation of concerns between

client and server is what give you that ability.

Another benefit from thin and dumb clients is that they’re easier to

distribute (you don’t need a 2GB client when a simple 10MB will do, and

you can keep the rest of the 2GB code in the server).

Chapter 2 Architectural Patterns

27

Finally, consider that even though Figure 2-3 shows a single server

dealing with all the clients (essentially representing a monolithic

approach), your server “box” can actually be expanded into a set of

microservices or any other distributed architecture you might find more

useful, where there is a single point of contact between dumb clients and

business logic.

In fact, if you think about it, doing that you could very well end-up with

a layered pattern, in which every layer is usually a different tier (physically

separated from each other). As long as your client and server layers are

physically separated, your client-server architecture is essentially a 2-tier

one, in which the two constraints described earlier apply.

�Master-Slave
The master-slave pattern at first glance could be confused with the

previous one, since it implies a single channel of communication between

two parties. But conceptually they’re very different, because instead of

having one centralized hub for the business logic and heavy processing of

data, you have a one-way controlled communication between a controlling

node (the master) and many decentralized nodes (the slaves). Figure 2-4

shows an example of this architecture.

Figure 2-4.  Master-slave architecture example

Chapter 2 Architectural Patterns

28

The heavy processing and expensive tasks are usually performed in

the slaves, while the master merely funnels the requests from outside into

them. The key aspects of this architecture are as follows:

•	 Any behavior-affecting messages are one-way, from

the master to the slaves. Slaves don’t have the ability to

affect the master.

•	 Not all slaves need to work on the same tasks; in fact,

usually this is a way to offload heavy work into multiple

nodes, maintaining a single point of contact with

clients of the architecture.

•	 Some versions of this pattern allow slaves to elect one

of their own as a new master, if the current master is no

longer working.

Some of the most common use cases for this pattern are:

•	 Database architecture. Most databases provide a

version of this pattern; some of them use it to increase

processing power, and others use it to provide high

availability in case of a problem with their master

nodes. For the latter case, slave nodes are in charge of

keeping track of the master’s data and staying in-sync

with it to minimize the effect of a crash in the master.

•	 Increased parallel processing capacity. Hadoop, for

example, uses a master-slave approach to dealing

with its task tracker nodes. The master in this case is

the JobTracker, which takes care of orchestrating and

keeping tabs on the slave task trackers.

Chapter 2 Architectural Patterns

29

Tip  In retrospect, this pattern is one you can use to improve a
monolithic client-server architecture, by breaking up your server
into a master-slave pattern (obviously this only applies if your server
works in this way, but if you were developing a database engine, it
would be a good pattern to follow).

�Event-Bus or Event-Driven Architectures
This pattern is a very interesting one in the sense that it breaks the mold

of what I’ve been telling you about so far. Event-driven architectures

don’t have the one-to-many or many-to one type of relationship between

components; instead, they are usually many-to-many relationships. Let’s

first take a look at Figure 2-5, which shows a basic example of an event-

driven architecture and then I’ll go into more detail about it.

Figure 2-5.  Event-driven architecture

Chapter 2 Architectural Patterns

30

The components for this architecture can be defined as follows:

•	 Event sources: These are the components that

generate events and publish them into the event bus.

•	 Event consumers: The consumers are the components

that are expecting a particular set of events and are

ready to react to them once received.

•	 Event bus: The channel (or channels, since having

multiple ones might help keep things logically separate

and provide separation of concerns) through which the

events will be distributed (sent from the sources to the

consumers). For best results, you’ll want an event bus

that is capable of scaling easily and that ensures at least

high availability if not fault tolerance to minimize loss

of events during a problem.

•	 The actual event: Although not represented in the

diagram, this is just data, in the format you want,

containing the information you want. It’s usually a good

idea for this piece to be serializable, in order to allow it to

easily be transmitted through the event bus.

This pattern is extremely powerful for providing a highly available

platform, or even when trying to scale up—as long as your architecture

follows the guidelines of the diagram in Figure 2-5. In other words, you

need to avoid component-to-component communication and allow them

to interact with each other only through the event bus.

If you do that, you can potentially replace crashed nodes with new

instances in the time it takes them to boot up. The same happens if you

need more processing power; you simply add new consumer or sources

and connect them to the event bus, and that’s all.

Chapter 2 Architectural Patterns

31

A good idea when dealing with this type of architecture is to use a

third-party data bus (as long as that’s an option), because that will allow

you to focus on creating the event sources and event consumers, while at

the same time using a tried-and-tested bus, one that can reliably transmit

the data and scale when needed.

A classic example of this approach consists of using a message queue

as the event bus. In this case you wouldn’t want to create your own bus;

you would most likely want to use one of the many existing solutions such

as RabbitMQ, Kafka, ZeroMQ or any other.

With that being said, remember the old saying:

“With great power comes great chance of having errors.”

Or something along those lines. Although this pattern might sound great, it

has its limitations:

•	 Because of the asynchronous nature of the event bus

and the event-driven reactions, your platform must

also be able to function asynchronously; otherwise it

will not work for you.

•	 Testing a logic bug on this setup is also quite

challenging. You have to trace the path of the event

data from one component to the other, and if the event

is transformed by the actions of one of the consumers,

it’s even worse.

•	 Error handling can also be a challenge—especially if

you don’t standardize that across your platform.

•	 Another potential problem, one that is especially likely

if you have a lot of components and a big team working

on them, is to maintain a standard message protocol

across your platform.

Chapter 2 Architectural Patterns

32

�Microservices Architecture
This pattern is one of the best-known , since it’s been growing in popularity

in the last few years. Everybody and their mother is jumping into the

microservices bandwagon, whether they have use for them or not. Just

like with anything in our industry, there is no silver bullet solution; so

hoping that microservices will solve all your problems without taking into

consideration its pros and cons is reckless, at best.

The core behind this pattern is your understanding of the different

features your platform is supposed to have (that is, the different services

it needs to provide). If you properly understand your platform, you can

probably split the services into a set of smaller services that, when used

together by the client app, yield the same result you would get from a

single block of code with all features bundled together. Figure 2-6 shows an

example.

By splitting your platform into individual services, you gain a new level

of control over it that you never had with a monolithic approach.

Figure 2-6 shows an example of a fake platform that takes care of

payments. It also needs a proper authentication strategy, so it also has a

Figure 2-6.  Example of a microservices-based architecture

Chapter 2 Architectural Patterns

33

dedicated Auth service. Every user needs to be authenticated against it to

start using the platform, and then every request is authorized against the

service. Users also have a way to register into the system, which is why

there is a UserMgnmt service.

Let’s assume that your site’s users show the following behavior:

•	 They tend to use your system massively during the

weekdays, but never do many payments during that time.

•	 On the weekends, that changes. You only get very

specific traffic; not many users log-in, but the ones who

do perform around 10.000 payments per second during

a short period of two hours.

With a microservices-based architecture, you would:

•	 Gain total control over which component of your

application to scale. Based on the known behavior of your

customers, you could automate your platform to spawn

new instances of the Auth service during the weekdays

and the Payment service during the weekends.

•	 Improve the development process, by gaining the

opportunity to create groups who can focus on each

service, and develop them in parallel without affecting

the rest.

•	 Add the ability to switch versions of your components.

You could switch your Auth service; as long as you kept

the same interface for it, your internal authentication logic

could be completely different and no one would notice it.

•	 Gain the ability to reuse components or modules

among applications. You could have, for example,

different front ends using the same back end, selling

customized versions of your application, visually

tailored for your customers.

Chapter 2 Architectural Patterns

34

This pattern might sound like the best solution for most problems, but

you need to take into account that, as with any other option, you might run

into problems because you’re trying to meet your needs with the wrong

architecture.

Here are some of the most common issues you might run into while

developing microservices:

•	 Communication between services needs to be properly

planned; otherwise the overall performance of your

system might be affected.

•	 Too many microservices might create a chaotic

architecture. If that starts to happen, you might want to

consider either a different pattern or at least some sort

of orchestration service to centralize the data flow.

•	 Deployments of microservice-based architectures

can be quite a pain, especially if you’re not properly

automating the process. This needs to be a high priority

item in your to-do list if you’re planning on going with

this approach.

In the end, it’ll be a matter of picking the right tool for the job, as with

everything else.

�The Broker Pattern
You can think of the broker pattern as a specialization of the microservices

architecture. One of the pain points for the latter was that given a

high enough number of microservices, you begin to need a form

of orchestration; otherwise, your clients start to lose the ability to

communicate easily with your platform. You start to burden them with

Chapter 2 Architectural Patterns

35

the knowledge of where everything is in your system, and that should

not be the case. Ideally, clients should be able to discover your services

organically and with minimal previous knowledge.

Here is where the broker pattern comes into play. Its main component

is a node called broker, whose purpose is to centralize and redistribute

requests among different services.

Another key characteristic of this pattern is that by default it is not the

broker that “knows” about its servers; instead, it’s the servers that register

with the broker once they come online, and provide all the information it

needs to understand the services they provide.

Figure 2-7 shows an example of a broker providing services from three

different servers. This pattern is very common among message queues,

such as RabbitMQ,1 Apache Kafka,2 and Apache ActiveMQ.3

1�See https://www.rabbitmq.com/
2�See https://kafka.apache.org/
3�See http://activemq.apache.org/

Figure 2-7.  Broker pattern showing communication between client,
broker, and servers

Chapter 2 Architectural Patterns

https://www.rabbitmq.com/
https://kafka.apache.org/
http://activemq.apache.org/

36

This pattern has a few setbacks, as they all do:

•	 The broker becomes the single point of failure. Or put

another way, if your broker dies, you lose access to all

the services it was providing.

•	 It’s harder to scale your platform unless you also scale

up your broker.

•	 It adds an extra layer of indirection between client and

services; thus extra latency is added to the request time.

This might not be a considerable increase in request

time; it all depends on the type of internal logic your

code will have.

The key motivation for choosing this pattern should be your need

to have your clients directly connected to your service providers. If it is

crucial to have them connected—perhaps because they get to choose from

a set of providers based on custom criteria, or because the proximity of

your servers and clients is important to you—this pattern is not for you.

But it is definitely something to consider if instead you don’t care about

direct connection or have strong reasons for preferring the broker pattern,

like these, just to name a few:

•	 The logic for picking the right server is complex enough

to deserve a whole separate component.

•	 You have multiple providers of the same service, and

it’s not relevant who serves each request.

•	 You actually need physical independence between

your client and servers.

Chapter 2 Architectural Patterns

37

�Lambda Architectures
Lambda architectures are a special pattern designed to provide a high-

throughput platform that is able to process very large quantities of data

both in real time and in batches.

In a nutshell, processing a lot of data takes time, especially if there are

complex calculations. So if your system needs to deal with those amounts

of information, what ends-up happening is that either you take those

calculations out and do them asynchronously, not caring how long they

take (within reason obviously) and allow the users to query those results

in real time. This provides a system that is able to properly respond to

complex queries by having it all precalculated, but the downside, is that

your results show a slightly old version of reality.

Alternatively, you can have a high-performant platform processing

real-time data as it is received, and show those results back to the user.

Again, that’s great unless you need to do something that also requires the

last 5 years’ worth of data. Now your real-time platform is incapable of

processing that amount of data properly and you have no way to give your

clients the information they need.

The middle ground for this use case is where lambda architectures

operate. They provide the batch-processing capabilities you require to deal

with your historical information in a timely manner as well as a real-time

component to process and query the latest data. Of course, your latest

calculations might not be as accurate or complete as they would be if they

also used the historical data, but at least you have something that will

be fixed next time your batch processor runs. Figure 2-8 shows the main

components of the architecture.

Chapter 2 Architectural Patterns

38

Given the current state of the art, some of the following products are

good options for each component:

•	 Batch processing

•	 Hadoop is the de facto solution for this scenario.

There are multiple ways to work on top of it to

process the data, such as simply working using

Map/Reduce jobs, Pig,4 or any similar batch-

processing framework.

•	 Stream processing

•	 Spark Streaming5 and Apache Storm6 are two great

ways to handle this component; they both provide

the speed and throughput required for stream

processing tasks.

4�See https://pig.apache.org/
5�See https://spark.apache.org/streaming/
6�See https://storm.apache.org/

Figure 2-8.  A lambda architecture

Chapter 2 Architectural Patterns

https://pig.apache.org/
https://spark.apache.org/streaming/
https://storm.apache.org

39

•	 Real time querying

•	 This component assumes the resulting outputs

from either of the previous components still require

special capabilities to handle. (That is, the output

is still considered big-data, even if you’re just

querying it with a simple filter function.) Some

good options are Apache Druid7 and Apache

Impala.8

A good example of this architecture is the way Twitter handles tweet

view counts (and other stats) using a lambda approach. Twitter stores the

stream of incoming events into their HDFS, and at the same time they

process it using Spark Streaming. The data on the HDFS is later processed

and pre-computed using a set of batch-processes which load their output

into a real-time database on top of Hadoop.

Yahoo is said to also use this pattern to provide analytics on their

advertising data warehouse using Apache Storm and Hadoop for real-time

and batch processing of their data, while serving the end-clients through

queries using Apache Druid.

With that being said, this is a solution that fits very few and specific

scenarios and it’s also a solution that has a very high maintenance

cost associated with it since you basically are maintaining two parallel

architectures at once, which in turn need to keep a centralized repository

of data in a synchronized matter.

7�See http://druid.io/
8�See http://impala.apache.org/

Chapter 2 Architectural Patterns

http://druid.io/
http://impala.apache.org/

40

�Summary
With this chapter’s abbreviated view of so many different architectural

patterns I hope you’ve been able to see that there are many ways to solve

the same problem. And ideally, you’re also starting to see how some of the

scaling problems mentioned in Chapter 1 can be solved using some of the

patterns described here.

The next chapter will cover different ways to scale your platform, such

as growing horizontally versus vertically, using load balancers, and more.

Chapter 2 Architectural Patterns

41© Fernando Doglio 2018
F. Doglio, Scaling Your Node.js Apps, https://doi.org/10.1007/978-1-4842-3991-9_3

CHAPTER 3

Ways to Scale
Thus far, we’ve covered different architectural patterns and pain points

that can cause you to want to scale your application. It is now time to start

going through different scaling techniques.

This chapter will cover differences between scaling vertically and

horizontally, as well as other techniques, such as using microservices,

clustering, and even load balancers to handle increased traffic.

Without further ado, let’s get cracking.

�Scaling Techniques
It is important to note that the following techniques don’t require a specific

architectural pattern to be used; what I covered in the previous chapter

can be considered an independent topic (in most cases) from this one. In

practice, especially for big platforms with complex components, different

patterns might apply depending on the needs of each one.

�Vertical or Horizontal Scaling?
When it’s time to start scaling, the most basic things you can do are either

improving the hardware your code is running on, or simply adding more

computers to distribute the load among them.

That is the essence of vertical and horizontal scaling (as seen in

Figure 3-1). You can think of this as changing your old car’s tires compared

to buying a new Ferrari when trying to get more horsepower. With the first

42

method you’re always trying to add resources to your existing hardware:

memory, processing power, disk, anything that might help out depending

on your needs.

This approach normally requires some downtime because of the

physical changes that need to take place. Whatever benefits you might get

from doing this are limited by the resources you must add to the hardware.

There is, of course, a sort of improved vertical scaling option, which is

available if you’re in a cloud-based environment. In these situations, your

cloud provider will allow you to switch your application from one type

of hardware to another. This can be done with a few clicks. Options are

limited, but at least you’re not constrained by your original hardware’s

specs. For example, Amazon will let you switch your t2.nano instance that

only has half a Gigabyte worth of RAM for a t2.2xlarge one, which actually

has 32 GB of RAM and 8 virtual CPUs. If memory or CPU power was your

bottleneck, this would solve it).

Figure 3-1.  Simple reminder diagram to understand what vertical
and horizontal scaling means

Chapter 3 Ways to Scale

43

The main problem with vertical scaling, though, is that sooner or later

you’re going to hit the cap for your scaling capacity. No matter what service

you’re paying for, eventually you’ll run out of specs to improve.

And here is where horizontal scaling enters. Instead of improving a

single server, you’re now working with a pool of them, and adding to that

pool is as simple as connecting the new server to it (or removing one from it).

You can design your application to withstand such changes and avoid

any real downtime when scaling. With that you gain “elasticity” in your

capacity, and control over how much money you want to spend, during

both normal operation and peak hours.

There are a few considerations that you should take into account when

designing your architecture for horizontal scaling:

•	 Service oriented architectures: These are the easiest

to horizontally scale. If yours is not designed around

services, it might be a good idea to evaluate whether

that pattern is a fit for your use case. As long as you

have small, interconnected services, you can focus on

scaling the ones that are suffering and leave the rest

alone, avoiding a great deal of headaches.

•	 Stateless microservices: If your architecture is based

on them, adding new copies of the services being

overworked will not be a problem. I will cover this in the

next chapter, but having stateful microservices keeping

session information while trying to scale is not a trivial

task. You will need to have extra considerations before

deciding to boot-up a new copy of the affected service.

•	 Tier separation: A good idea for structuring your

services is to give them a separation between their

presentation, their processing, and their storage access

code. This will let you focus on the main pain points.

Tier separation is closely related to the previous point.

Chapter 3 Ways to Scale

44

You could take it one step further even, and analyze

your individual services. You could try to split them

into individual components following the three-tier

approach. This will give you more control over what

to scale, instead of blindly scaling your entire module,

because one specific part of it is affected (for example,

data access inside your module might be suffering from

a high workload, while the rest of it might not be as

badly affected).

�Taking Advantage of the Cloud
If it is elasticity you’re aiming for, and your architecture is ready to be

horizontally scaled, then the cloud is the right path for you. Manually

handling elastic architectures is practically impossible; the main benefits

of automatic elastic behavior don’t usually go hand-in-hand with manual

administration. For example:

•	 Ability to handle highly predictable spikes of
traffic with predefined growth and shrink scripts:

If you happen to have studied your traffic and have

predictable patterns (that is, if you have high peaks

during specific hours of the day), you can schedule

your infrastructure changes. (For example, you might

increase the number of processing nodes during high

traffic and remove the extra ones after the peak passes.)

This is a service that Azure and AWS provide, but GCP

(Google Cloud Platform) doesn’t, because it claims to

have good enough reaction time to avoid the need for

such a service.

Chapter 3 Ways to Scale

45

•	 Capacity to handle changes in traffic automatically
with near-realtime speed: (Note that it usually takes

time to spin up new instances and scale platforms, but

doing so is fast enough to be useful.) Cloud providers

usually allow you to monitor different resources from

your instances, such as disk space, memory, and

processor utilization. You can also usually monitor

custom metrics, and you can even generate them from

your application to provide more accurate and precise

scaling behavior.

•	 Cost management: This is another added benefit

that derives from the previous points. With all cloud

providers, you’re always paying for what you use.

So by accurately estimating the required size for

your infrastructure, you gain more control over your

expenses.

•	 Improving the overall health of your cluster by
replacing nodes that are not working correctly: You

can monitor specific indicators and decide when to

terminate an unhealthy instance and replace it with a

new one.

•	 Better availability: By deploying into multiple zones,

you gain the ability to remain operational even when

big network outages occur.

Note  In case you’re not aware of the terminology, a “zone” in
this scenario refers to a specific geographic location (usually a
datacenter). So multi-zone deployments refer to having your code
deployed in different parts of the world.

Chapter 3 Ways to Scale

46

�The Power of a Multi-Zone Deployment

Although it is not strictly related to scaling your architecture, taking

advantage of a multi-zone deployment on the cloud is a must if you

have the chance. This is usually something that most of the major cloud

providers already allow, so you should consider, when planning your

architecture, deploying and even scaling into multiple zones.

By doing this, you gain tolerance for big network outages that tend to

affect an entire geographical zone. These types of network problems aren’t

very common, but when they happen, big sections of the internet are

isolated from the world, and this is something you want to avoid.

There are two types of resources to consider this technique for:

services and data. If it’s services you’re deploying, then all you have to

do is make sure you’re deploying behind a load balancer (such as Elastic

Load Balancing for AWS). Figure 3-2 shows an example of such a case. By

doing so, you’ve made sure that no matter what happens, your services will

always be available.

Figure 3-2.  Multi-zone service deployment

Chapter 3 Ways to Scale

47

But if you’re actually deploying data, or a data storage platform such

as a database, this is also a good idea for you. To make it work, however,

requires some extra work. In the case of data, what you want is to make it

available no matter what. To accomplish this, you must make sure you’re

properly replicating your data. Figure 3-3 shows one example of what such

a deployment might look like.

�Clustering Your Application
The term cluster implies a group of things acting together with a common

goal; and when applied to software architecture, it usually implies a group

of nodes (servers) acting together to fulfill a request.

But here I’m going to discuss clustering from a Node.js perspective and

how this concept can actually help you scale your Node apps.

Figure 3-3.  Multi-zone replica schema

Chapter 3 Ways to Scale

48

As you may know, Node.js runs in a single-threaded environment; and

even though there may be some multi-threading involved (at the lowest

levels) to help deal with asynchronous calls, that is definitely outside

the normal user’s realm. To all intents and purposes, Node.js is a single-

threaded language, and because of that, any normal deployments will not

take full advantage of your multi-core systems, unless told otherwise.

Note  Version 10.5.0 Node.js introduced experimental support for
actual threads, but because this feature is still very new and not yet
stable, I will not cover it here. If you want to know more, please visit
Node’s documentation.1

But although Node.js is single threaded, you still have a way to

overcome this limitation and make the most out of your servers—you just

need to remember to cluster your application!

The cluster module should be your first step toward scaling your

applications, regardless of the scaling technique you might consider next.

This module allows you to fork your process multiple times, having the

forks work in parallel using as many cores as your processor might have.

The nice thing about this module is that if you already have an existing

application that needs to be clustered, you don’t really have to change it

to make it work; you simply need to add a few lines of code and suddenly

you’re forking processes and having them act as a single app. Let me show

you a basic example in Listing 3-1.

Tip Y ou don’t need to download the cluster module from
anywhere; it’s included as part of the native modules in Node.

1�See https://nodejs.org/docs/latest/api/worker_threads.html

Chapter 3 Ways to Scale

https://nodejs.org/docs/latest/api/worker_threads.html

49

Listing 3-1.  Basic clustering example code

const cluster = require('cluster');

const numCPUs = require('os').cpus().length;

if (cluster.isMaster) {

 masterProcess();

} else {

 childProcess();

}

function masterProcess() {

 console.log(`Master ${process.pid} is running`);

 for (let i = 0; i < numCPUs; i++) {

 console.log(`Forking process number ${i}...`);

 cluster.fork();

 }

 process.exit();

}

function childProcess() {

 console.log(`Worker ${process.pid} started and finished`);

 process.exit();

}

The code from this example doesn’t do much, but it is more than

enough to show you how to start working with this module. And just to

make sure we’re all on the same page, the code in Listing 3-1 takes care of

creating as many forks as there are logical cores in your CPU and inside

each fork, it will print a message and then exit.

Chapter 3 Ways to Scale

50

Tip  In Listing 3-1, the numCPUs variable contains the number of
logical cores in your CPU. This means the number of physical cores
times the number of threads they can handle at once. So a four-core
CPU with a hyperthreading factor of 2 will have eight logical cores.

The main take-away from the example is the IF statement at the

beginning of the code, because that basically implies that this file is

executed at least twice: once as the main process that is executed to start

the flow, and once (at least) again as the actual fork. So to avoid a classic

case of the infinite forking scenario, you need that initial IF statement.

The other interesting bit is that to create a new process (or worker), you

simply use the cluster object and nothing else; it is completely separate

from the code of the child process. This allows you to clusterize any

development, new or old. Look at Listing 3-2 (the main file for a generic

API based on the restify2 module) for an example of clustering an

existing API.

Listing 3-2.  Example of a clusterized index.js file for a generic API

const restify = require("restify"),

 restifyPlugins = restify.plugins,

 config = require("config");

const cluster = require('cluster');

const numCPUs = require('os').cpus().length;

function start(){

 �const server = restify.createServer(config.

get('server'))

2�See http://restify.com/ for more details.

Chapter 3 Ways to Scale

http://restify.com/

51

 server.use(restifyPlugins.queryParser({

 mapParams: true

 }))

 server.use(restifyPlugins.bodyParser())

 restify.defaultResponseHeaders = data => {

 this.header('Access-Control-Allow-Origin', '*')

 }

 server.listen(config.get('server.port'), () => {

 })

}

if(cluster.isMaster) {

 for(let i = 0; i < numCPUs; i++) {

 cluster.fork();

 }

 process.exit();

} else {

 start();

}

module.exports.start = start;

Note  that the code in Listing 3-2 is an example from an existing
project, and if you try to run it directly, without the rest of the code
around it, you’ll run into problems. Try to understand this code by
reading it instead of by executing it. 

In the example, the content for the start function is what you would

normally add in your API’s main file. This would start the server, set the

access control headers, and configure a couple of plugins, all with the

Chapter 3 Ways to Scale

52

help of restify. You could very well use that code, and your entire project

would work correctly. It would only take advantage of one of your CPU

cores, but it would still work. But if you add the extra bits of code shown in

Listing 3-2, you’re now ready to start increasing your processing capacity

proportionally to the number of cores in your processor. It’s that easy!

The way this module works is by spawning copies of the process (by

forking them) and sharing the port between them. The main worker will

listen to the port you specify, and it will share the connections with the rest

of the worker processes in round-robin order.

Just as when dealing with microservices and scale problems caused

by in-memory session data, Node’s cluster module does not provide any

kind of routing logic. This means that you should not rely too much on in-

memory information, since subsequent requests from the same client are

not ensured to land on the same server process.

Worker processes can share information through the main process via

IPC (Inter Process Communication) by using Event Emitter-like mechanics

as shown in Listing 3-3.

Listing 3-3.  Example of IPC used to share data through processes

const cluster = require('cluster');

const numCPUs = require('os').cpus().length;

if (cluster.isMaster) {

 masterProcess();

} else {

 childProcess(0);

}

function masterProcess() {

 console.log(`Master ${process.pid} is running`);

Chapter 3 Ways to Scale

53

 for (let i = 0; i < numCPUs; i++) {

 cluster.fork();

 }

 for(const id in cluster.workers) {

 cluster.workers[id].on('message', msg => {

 console.log("[", msg.id,"] - ", msg.text)

 })

 }

}

function childProcess(total) {

 process.send({id: process.pid, text: `Worker ${process.pid}

executed, counter: ${total} `})

 if(total < 10) {

 setTimeout(childProcess, 1000, total + 1);

 } else {

 process.exit();

 }

}

This example creates one child process per core in your CPU, and each

process will count from 0 to 10 at one-second intervals. On each run, a

process will send its notification text to the main process through a new

message broadcast using the send method of the process object.

Finally, to look at one more example, you can see in Listing 3-4 that

you can’t rely on in-memory data, because multiple processes might end-

up handling requests.

Chapter 3 Ways to Scale

54

Listing 3-4.  Printing out a process ID to show how subsequent

requests might yield unwanted results

const cluster = require('cluster');

const http = require('http');

const numCPUs = require('os').cpus().length;

if (cluster.isMaster) {

 console.log(`Master ${process.pid} is running`);

 // Fork workers.

 for (let i = 0; i < numCPUs; i++) {

 cluster.fork();

 }

} else {

 // Workers can share any TCP connection

 // In this case it is an HTTP server

 http.createServer((req, res) => {

 console.log("Worker " , process.pid, " handled the

request");

 res.writeHead(200);

 res.end('hello world\n');

 }).listen(8000);

}

Figure 3-4 shows the output from Listing 3-4 when a set of subsequent

requests is received (as suggested by Listing 3-5). As you can see by the

color-coded process IDs, not all requests will be served by the same

process, which becomes a problem if you’re relying on in-memory data to

formulate your responses.

Chapter 3 Ways to Scale

55

In order to fully test the example in Listing 3-4, you need to give your

process enough traffic to merit the use of one or more cores. In my case,

I used Apache Benchmark3 to simulate 100 requests with 10 concurrent

users (as seen in Listing 3-5), and the results show how throughout all of

the 100 lines of output, you get the process IDs of all your instances (see

Figure 3-4 for details).

Listing 3-5.  Command line required to test the previous example

$ ab -n 100 -c 10 http://localhost:8000/

�Clustering with PM2
The cluster module is great, because it allows you to make the most of your

CPU with minimum effort; but that’s about all it can do for you. If you want

more control over how it’s done, or need to know a bit more about what

exactly is happening with your cluster, there is very little you can do out of

the box.

3�See https://httpd.apache.org/docs/2.4/programs/ab.html for more details.

Figure 3-4.  Output showing how requests are handled by different
processes

Chapter 3 Ways to Scale

https://httpd.apache.org/docs/2.4/programs/ab.html

56

In this case, you might want to consider an external tool such as PM2,4

which will take care of clusterizing your app and at the same time provide

monitoring and management capabilities. All you have to do is install it

as shown in Listing 3-6 and then use it to start up your app (as shown in

Listing 3-7).

Listing 3-6.  Command line to install PM2 after you’ve installed

Node.js

$ npm install pm2 -g

Listing 3-7.  Starting your app with pm2

$ pm2 start index.js --name "my app" -i max

With that command, you’ll be starting up your application, naming it

“my app” in PM2’s list of processes, and taking advantage of all your CPU

cores (thanks to the -i max modifier). Figure 3-5 shows the output from

the start command.

As an added bonus, your processes are now being monitored by PM2,

and if any of them crashes for any reason, it will be restarted automatically.

PM2 is also saving everything you throw at stdout and stderr, so if you

happen to be simply logging with console.log and console.err, you can

look at that output using the command shown in Listing 3-8.

4�See http://pm2.keymetrics.io/

Figure 3-5.  Output from pm2 start command

Chapter 3 Ways to Scale

http://pm2.keymetrics.io/

57

Listing 3-8.  Command to show the last few lines of the log files

$ pm2 logs

Figure 3-6 shows the possible output from the logs. As you can see, the

same line is repeated four times, thanks to the four processes running in

parallel (because of my four cores).

�In Conclusion
Clustering is and should be your first step toward scaling whatever Node.

js application you might be working on. Depending on your needs, you

might want to go with the cluster module. You don’t need anything extra;

simply add a few lines of code and you’re done. On the other hand, if

you’re looking to avoid changing your code, and you need extra support

for your production environment, then PM2 or similar solutions should

definitely be your choice.

�Microservices to the Rescue
I’ve already touched on this subject during the previous chapter, and I’ll

probably return to it in future ones. Splitting your application into a set of

services, each one small enough to be easy to maintain and focused on one

or just a few functionalities, simplifies the task of scaling by replication.

Figure 3-6.  Output from the pm2 logs command

Chapter 3 Ways to Scale

58

In many cases horizontally scaling your application should be enough

to solve whatever performance issues you might be having; but if your

application is not ready for it, the cost of such a solution might end-up

being too high.

Horizontal scalation means being able to both add and remove

services to increase and decrease your processing power. And as you can

see in Figure 3-7, doing so for a monolithic application (one that’s not

been properly prepared for this and has its code and logic from all services

coupled) is not nearly as easy (or inexpensive) as doing it for small services

within a much bigger application.

Figure 3-7.  Differences between scaling a monolithic and a
microservices-based architecture

Chapter 3 Ways to Scale

59

The diagram in Figure 3-7 provides two versions of scalation by

duplication. The first approach can’t focus on the most affected areas,

since a monolithic solution can only be considered as a unified block.

Duplicating these applications is easy, because there is no inter-service

communication to deal with, but the main drawback with this approach

lies in the fact that if only one of your layers is affected and it’s the source of

your scalation needs, you still need to duplicate the entire codebase.

The second approach in the diagram, however, shows how different

sections of your platform can be scaled differently depending on your

needs. This is one of the many benefits provided by the microservices route

(or any of its variations). That being said, you need to remember that if

you’re planning on doing this, you need to make sure your code is actually

ready for it. The following considerations can help you in that regard:

•	 Decouple your code: This is a basic one, but if you

can’t follow this step, your scaling efforts are doomed.

This practice will not only allow you to split your code

into individual services, but it will also provide you with

added benefits, such as easier-to-maintain codebase,

simpler logic (which in turn usually yield fewer bugs),

and added extensibility by adding new (future) services

to the existing ecosystem.

•	 Understand what it means to inter-communicate
services: Whether you want to accept it or not, your

architecture will end-up with a (possibly) big number

of services, and you need an easy way to orchestrate

them and let them communicate with each other

whenever necessary. I will cover this subject in the next

chapter, so I’m not going to go into much detail now.

That being said, you might want to think about why this

subject is such a major one in scaling microservice-

based architectures.

Chapter 3 Ways to Scale

60

•	 Automate as much as possible: This is another item

you can get away without if you’re dealing with a

monolithic architecture, because deploying (and other

similar tasks) can be done simply by copying a set of

files from one place to the other. But if you expect your

platform to be easily replicated and horizontally scaled,

thinking about automating deployments, having a

well-defined set of coding rules and standards, and

a documented control flow (such as gitflow), among

other things, will definitely pay off. This is usually

the case because in these type of projects several

development teams need to work together, sometimes

even in different code bases but creating systems that

need to act as one. Once you start factoring in the

human aspect of development, having a well-defined

set of standards and rules definitely helps keep the

chaos in check.

�In Conclusion
Microservices is a topic that you’ll read about throughout this book

because it is a very helpful pattern for scaling Node.js platforms (since

Node is usually used to create APIs).

That being said, and as I’ve already covered in previous chapters,

it is not a silver bullet and will not work for you every time. You need to

remember when this pattern is helpful and how you need to prepare your

code and your team to be able to get the most out of it.

Chapter 3 Ways to Scale

61

�Summary
There is no one way to scale your architecture; in fact, there is even more

than one way to cluster your Node.js applications. In this chapter I’ve tried

to show you a few ideas about how to tackle this topic; it is up to you to

apply them to your own circumstances.

In the next chapter, I’ll cover some common problems that arise

when starting to scale your application for the first time and offer some

suggestions for tackling them.

Chapter 3 Ways to Scale

63© Fernando Doglio 2018
F. Doglio, Scaling Your Node.js Apps, https://doi.org/10.1007/978-1-4842-3991-9_4

CHAPTER 4

Challenges when
Scaling
When scaling your platform or adapting it to allow scaling, you will usually

run into problems or challenges you didn’t have with your older version.

This should not stop you from trying, as these challenges are inherent from

the added complexity of your new design.

They’re sometimes related to secondary subsystems, the ones

that aren’t strictly working toward getting the business rules to work,

but instead address issues such as where you store your log files. And

sometimes the challenges actually affect more important aspects of your

application, such as the data you keep in-memory and how to translate

that into a multi-node scenario.

In this chapter, I’ll cover the major hurdles you might find during your

scaling endeavors and how you can overcome them.

�Dealing with Your Log Files
Paying attention to your logging strategy from the beginning of your

project is often a good idea; otherwise, you may run into problems. This

might sound like an empty warning, but take a step back from your code,

and think about how you’re logging right now and what you’re doing with

that information.

64

If you don’t really have a use for it, then you might as well stop

logging, but if you’re actually getting insights from the data, either when

troubleshooting, or through some sort of analytics tools, then make sure

you can keep doing so after you’ve scaled up (or down) your architecture.

Can you trust that you will be able to process your logging data if you’re

under an elastic scaling architecture?

Our end-goal when it comes to dealing with logs is depicted in

Figure 4-1, where you can see multiple instances of several different

services sending their logging messages to a centralized system. This

system can be either an in-house cluster or a third party service (such as

Splunk,1 Loggly,2 or Logz.io,3 to name just a few). Note that it should be a

cluster or something capable of scaling like one, because it will need to

keep up with your architecture.

1�See https://www.splunk.com/ for more details.
2�See https://www.loggly.com/ for more details.
3�See https://logz.io/ for more details.

Figure 4-1.  Example of a centralized logging architecture, where
multiple instances of different services are sending their logging
information into a single system

Chapter 4 Challenges when Scaling

https://www.splunk.com/
https://www.loggly.com/
https://logz.io/

65

The way these services send their data to their destination will vary

depending on the nature of that system, but usually standard ways will

be provided (the most common ones are either RESTful APIs or agents

you can install on your servers and configure to send the data to a remote

location by themselves).

There are two very common mistakes developers make when logging

in new systems that aren’t necessarily hard to fix, but require attention

when scaling. The first mistake is logging only into stdout and stderr; the

second is logging into a single file. These issues will need to be addressed if

we want to get anywhere near the ideal scenario of Figure 4-1.

�You’re Just Logging into stdout and stderr
And what makes it even worse is that you’re not wrapping the output

function/method of your language of choice into a construct under your

control. In other words, and in the Node.js universe, you’re logging using

console.log and console.error.

This is great for small projects and quick PoC (Proof of Concept), but

if you’re interested in getting anything out of your logs, then you need to

do something about it. In particular, because both the stdout and stderr

are local to each server instance, if you start scaling your application into

multiple servers, you’ll have to deal with distributed logs that aren’t being

saved anywhere (or maybe they are, depending on your setup).

Fortunately, there are several ways to solve this, again depending

on where you’re currently standing. For instance, if you’re using PM2

or something like it, you’ll get access to the logs for all instances of your

process within the same server (see Chapter 3 for more details on PM2),

simply by running the following command:

$ pm2 logs

Chapter 4 Challenges when Scaling

66

This will work, even if you’re not saving the data anywhere, since PM2

will catch all your output and save it automatically, just in case. But that

will only get you halfway, since we also need to send those log files into a

centralized location.

Because there are so many options, and so many variations of similar

solutions, I’m just going to cover a simple one, assuming you have an ELK4

(Elastic, Logstash, and Kibana) cluster configured and ready to receive logs

somewhere on your architecture. This will act as the centralized logging

and analytics system from Figure 4-1.

What you want to do in this situation is configure something that will

ship the log files stored by PM2, into Logstash, which in turn will apply any

transformation you might need to the data and then send it and index it

into Elastic for your consumption using Kibana.

This might sound like a lot at first glance, especially if this is your first

time dealing with something like this, but it is a scalable way of going about

it. If you do it right, you gain the ability to support failures and downtimes

on your Elastic cluster, you get back-pressure, on your ogging pipeline,

making sure you’re not overwhelming your analytics platform, and so on.

To achieve this, you’ll install and configure Filebeat in all your

servers (all those that need to send data out). Filebeat is essentially a log

shipper that follows a standard protocol called Beat. This shipper (and its

associated protocol) is the result of several years of iteration by the team of

Elastic to get the best and most lightweight log shipper possible.

To install it, you can download it from the official website5 and then to

configure it, you can edit the filebeat.yml file (which will be located in its

installation folder, in my case, it was in /etc/filebeat), making it look like

Listing 4-1.

4�See https://www.elastic.co/elk-stack for more details.
5�You can download it from https://www.elastic.co/downloads/beats/
filebeat.

Chapter 4 Challenges when Scaling

https://www.elastic.co/elk-stack
https://www.elastic.co/downloads/beats/filebeat
https://www.elastic.co/downloads/beats/filebeat

67

Listing 4-1.  Configuration content to make filebeat send the

logged data into logstash

filebeat.prospectors:

- input_type: log

 paths:

 - [YOURHOMEFOLDER]/.pm2/logs/yourapp*.log

document_type: yourapp-name

fields_under_root: true

output.logstash:

 hosts: ["LOGSTASH-HOST:5044"]

That configuration will pull the contents of the log files for your app

(stored in a default location by PM2) and into a Logstash server. You need

to replace the constants YOURHOMEFOLDER and LOGSTASH-HOST by the actual

values to make it work.

With that, you can start the shipper in daemon form using the

command from Listing 4-2.

Listing 4-2.  Execution of filebeat

$ sudo filebeat -e -c /etc/filebeat/filebeat.yml

Tip I recommend making sure that line runs every time your server
starts; otherwise, you’ll stop sending data after the first server reboot.

With that, you’re ready to retrieve your log files (if you’re crazy enough

to log using only console.log). But you still need to configure Logstash to

make sure you can parse these logs, transform them (if needed) and then

index them into Elastic. So stop smiling, and keep reading.

Chapter 4 Challenges when Scaling

68

Assuming you’ve already installed your Logstash server, you need to

configure it to use the Filebeat plugin and output that data into Elastic. In

other words, you need to create a configuration file that looks like Listing 4-3.

Listing 4-3.  Configuration file (any file with a .conf extension) for

Logstash

input {

 beats {

 port => 5044

 }

 }

output {

 elasticsearch { hosts => ["ELASTIC-HOST:9200"] }

 }

Note that the configuration from Listing 4-3 will only receive and index

data; it will not transform (which is one of the key benefits of Logstash)

anything. So if you wanted to do some extra tweaking of your logs before

indexing them, I recommend looking at the full documentation for

Logstash.6 Also, make sure to match the port under the configuration for

the Beat plugin with the port specified on the Filebeat config file

(Listing 4-1).

You’re now set. Congratulations, you’ve managed to avoid a major

problem by using the right set of tools.

6�See https://www.elastic.co/guide/en/logstash/current/configuration.html
for more details about configuring Logstash.

Chapter 4 Challenges when Scaling

https://www.elastic.co/guide/en/logstash/current/configuration.html

69

Note E ven if you have some form of workaround in place to
centralize your logs, using console.log and console.error for
logging purposes is far from ideal. Creating a simple wrapper around
these methods (at the very least) will grant you more control over the
log formats, extra information you might want to add, and so on.

If, on the other hand, you weren’t using anything like PM2 that would

catch the output of your process and save it into a file, you’re out of luck.

You’ve lost your logs to the black hole that lives inside every server and

there is no way for you to retrieve them. So don’t do it like this.

�You’re Logging into a Single File
This is a better scenario than the previous one, even though it’s still far

from ideal. You’re now correctly wrapping your output function/method

with something you can control (that is, you have your own logger). You’re

even saving that information into a log file, which is great, but because

you’re not in control over what, where, and when you log, you need to

consider other things, like the following:

•	 File size: How much space can you allocate to your logs?

Are you sure you’re not depleting your hard disk, causing

your application to possibly fail due to lack of space?

•	 History: How much history do you want to keep

in your file? This will depend on your application

logging needs. If you need to keep a lot of debugging

information in your files, then a lot of history is not

recommended, since you’d end-up with huge files. On

the other hand, if you’re not logging a lot of events, you

might as well keep as much as you can (always taking

into account the previous point).

Chapter 4 Challenges when Scaling

70

You could potentially take care of both from inside your own code, by

adding extra logic to your logger and make sure you properly keep the size

and history of your logs in check. You can also use an external tool, such as

the classic logrotate7 command line utility, which is already part of most

(if not all) Linux distributions.

In order to use this utility to solve your problems, you’ll have to create a

configuration file, something that looks like Listing 4-4.

Listing 4-4.  Configuration file required to rotate sample log file

/your/app/path/logfile.log {

 compress

 rotate 5

 size 300M

}

With that configuration, your log file will be rotated whenever it

reaches 300 MB in size, and after the fifth rotation, that file will be removed

(in other words, history is kept up to five rotations). You can now execute

logrotate specifying the path to the new configuration file, as shown in

Listing 4-5.

Listing 4-5.  Executing logrotate

$ logrotate /path/to/your-new-configuration-file.conf

This is definitely the preferred way of handling this logic instead of

writing it directly into your own logger’s code. But you’re not there yet. You

now have your own log file, and you’re properly making sure it doesn’t

grow out of hand, but you still need to send its content into a centralized

location. You can look at the previous point in order to understand how to

configure Filebeat and Logstash.

7�See https://linux.die.net/man/8/logrotate for more details.

Chapter 4 Challenges when Scaling

https://linux.die.net/man/8/logrotate

71

With that last bit of configuration, you’re ready to move on with your

development, because you again have a stable logging system within your

platform.

�Throw Away Your Logger and Use a Real One

There is yet another way of solving this problem. Instead of using an

external tool to solve it, use the right logging module in your system. This

solution applies to any type of system, and in most cases I recommend it

over building your own custom tool.

The one logging module I always recommend and tend to use, thanks

to the flexibility it provides, is Winston.8 Currently on version 3.0.0, it

provides the developer with all the tools needed to create a scalable and

professional logger that will allow you to reach your end-goal with a

minimum of effort.

It is not unique in many of its features, but it’s definitely one of

the most common ones, which makes it the usual target for others to

contribute to. This in turn, helps because thanks to that fact, it has over 20

different “transports” already developed. They will help you integrate your

logger with external systems out of the box.

Look at the example in Listing 4-6, which was taken almost entirely

from Winston’s documentation.

Listing 4-6.  Basic winston-based custom logger

const winston = require("winston");

const logger = winston.createLogger({

 level: 'info',

 format: winston.format.json(),

 transports: [

8�See https://www.npmjs.com/package/winston for details on the module.

Chapter 4 Challenges when Scaling

https://www.npmjs.com/package/winston

72

 �new winston.transports.File({ filename: 'error.log', level:

'error' }),

 new winston.transports.File({ filename: 'combined.log' })

]

});

if (process.env.NODE_ENV !== 'production') {

 logger.add(new winston.transports.Console({

 format: winston.format.simple()

 }));

}

In this example, you can see that we have two different transports

(although they’re both files, they’re different ones), one for error events

and the other for everything (including errors). Then, for production-only

environments, it will also log into stdout (the console).

It is not very difficult to turn that code into something that’s compatible

with the ELK stack from before; simply add a new transport and that’s it.

Look at Listing 4-7 to see how it would look).

Listing 4-7.  Modified logger ready to index data into Elastic

const winston = require("winston");

const ES = require("winston-elasticsearch");

const logger = winston.createLogger({

 level: 'info',

 format: winston.format.json(),

 transports: [

 �new winston.transports.File({ filename: 'error.log', level:

'error' }),

Chapter 4 Challenges when Scaling

73

 new winston.transports.File({ filename: 'combined.log' }),

 new ES({level: 'info'})

]

});

if (process.env.NODE_ENV !== 'production') {

 logger.add(new winston.transports.Console({

 format: winston.format.simple()

 }));

}

With a few added lines and a new transport, you’re now ready to index

your logs into Elastic, which in turn, will be consumed by Kibana for your

log analytics.

Tip N ote how this approach actually avoids using Logstash
altogether and indexes data directly into Elastic. But there are also
several benefits of going through Logstash, and for that, you can use
the winston-logstash9 module.

�Sharing Memory between Processes
Let’s forget about log files for now and think about something a bit more

complicated. Sharing memory between two or more processes might be

problematic when scaling because if you’re already trying to share data

while clustering (between master and workers) or you’re thinking about

starting to communicate two or more processes through memory, then

you have to start thinking in a distributed fashion.

9�See https://www.npmjs.com/package/winston-logstash for more details.

Chapter 4 Challenges when Scaling

https://www.npmjs.com/package/winston-logstash

74

When scaling, you will start running into multi-server scenarios, and

by default your servers don’t share memory. You have to stop thinking

about sharing variables and memory space and start thinking about

exteriorizing that shared data and moving it into outside storage.

If you’re using shared memory, I’m assuming that performance and

read speed are a concern, so moving this data into any type of storage

is not an option; we need something that will provide the same type of

performance gain (or as close as possible) with minimal integration effort.

You will have to restructure your code if you’re already doing that; there is

no way around this, but at least we can try to minimize the damage.

There is no better way to move away from sharing memory and into

a shared memory between your processes than choosing one of the

many options, such as Redis10 (a complex key-value, in-memory storage

system, with support for complex data structures, pub/sub and other

useful features), Memcached11 (a simplified version of Redis, with a

multithreaded architecture), AWS ElastiCache12 (which essentially is a

managed version of the first two), and so on.

The ideal goal (is to achieve something similar to what is shown in

Figure 4-2.

10�See http://redis.io for more details.
11�See https://memcached.org for more details.
12�Read more about ElastiCache here https://aws.amazon.com/elasticache/.

Chapter 4 Challenges when Scaling

http://redis.io/
https://memcached.org/
https://aws.amazon.com/elasticache/

75

All of the technologies mentioned are essentially in-memory

databases. They all allow you to store small bits of information (strings,

objects, numbers, basically anything you can put in a basic variable and

in some cases, a bit more) and share it with other processes. With this

approach, you get several benefits over simply sharing memory:

•	 Support for multi-server scenarios, where they can all

access the same information, no matter where it came

from.

•	 Stable and reliable in-memory storage, which you can

use to centralize the shared information. These systems

are developed to be resilient and in most cases, they

allow for high availability or fault tolerance support.

Figure 4-2.  Migration from sharing memory between processes into
an external shared memory system

Chapter 4 Challenges when Scaling

76

•	 Unlimited memory to share data. You can setup

AWS EastiCache to auto-scale whenever needed and

increase the available memory. This is something you

definitely can’t do in a single-server scenario.

•	 Depending on your use case and your choice, you might

even get extra benefits, such as the Redis pub/sub

or keyspace notifications, which allow you to work

reactively with in-memory mutations (such as changes

in a value, or additions to a list).

Whatever your use case might be, if you’re planning to share or already

sharing memory between processes and you now need to start thinking

about how your system will scale up, then a good rule of thumb is to go

higher-level and forget about it. Just extract that shared memory into an

in-memory database that you can manage (or have managed for you).

They are less complicated to maintain and provide far more benefits at a

very high access speed. And yes, I understand that they can’t match the

read speed of shared memory, but once again, you should double-check

your needs based on your use case and think long and hard about whether

the added performance of that setup is actually worth the limitations and

complications it also brings with it.

�Single Points of Failure? No Thank You!
It may seem obvious, but you should avoid having single points of failure

(SPOFs) whenever possible. They are basically your weakest link and if

they break, your entire application/platform/system will be rendered

useless.

That being said, they also have the habit of sneaking into some

architectures when you’re not looking for them. This is especially true

when systems start growing organically instead of systematically, and you

start adding new bits and pieces based on your most recent needs, without

Chapter 4 Challenges when Scaling

77

thinking about the future. For example, without going too far from what

we’ve been talk about, imagine having to start sharing memory between

processes. You’ve followed my earlier advice, but miss the very crucial part

about setting up your external memory in cluster mode, so you end up

with something that looks like Figure 4-3.

In this scenario, all services depend on Redis, but Redis is not set up to

be able to handle any type of problems; in fact, there is only one instance

of Redis running. If it fails, your entire system will be rendered useless. The

fix for this one is easy enough; just change the way you have your Redis

running. You’d probably set it up as a cluster, or with Sentinel,13 so your

master nodes will have a slave assigned just in case.

Getting rid of single points of failure can be as easy as setting up a

cluster or as hard as adding redundancy to your entire platform. It mostly

depends on how far you can take the process until it no longer provides

enough bang for your buck.

13�Read https://redis.io/topics/sentinel for more details.

Figure 4-3.  Redis as a single point of failure

Chapter 4 Challenges when Scaling

https://redis.io/topics/sentinel

78

Let me give you another example, going back to Figure 4-3. After

you set up your minimum Redis cluster (which by definition will already

contain three master nodes and three slave nodes) you realize that all

nodes could fail, because they’re servers you actually have inside your

own datacenter. So you decide to move to the cloud and deploy your own

Redis cluster in AWS. You then realize that all those servers could still

be unreachable if there is a region-level outage, so you again redeploy

on a multi-region setup. Great, but what if Amazon goes out of business

(unlikely, I know, but bear with me for a second)? You now redeploy your

multi-zone Redis cluster in Azure as well, and you have both multi-zone

load balancers and extra logic in your code to determine when to pick

each one.

You’re now paying a whole lot more money for a level of stability that

you might never need.

�Knowing When to Stop

Understanding that you have SPOFs is half the battle; knowing when to

stop going down the rabbit hole is the other half. I’ve had discussions

with teammates who argued that my managed Redis cluster was a SPOF

because most of my services actually needed it for some task (Figure 4-3 is

based on personal experience). It can definitely be a chokepoint if it’s not

properly optimized, but given our use case and business needs, it made no

sense to even start thinking about contingencies if that cluster were to fail,

because if it did, a lot of other things would also fail and honestly, our SLAs

did not cover that much availability.

So when do you stop and say: “this is good enough”? In my opinion

a good tool for that is the SLA (Service Level Agreement) you sign with

your users or clients regarding the performance, availability, and overall

quality of your service. It usually boils down to a number, a percentage

that is between 90% and 100% (such as 99%, also known as “two nines,”

or 99.99%, known as “four nines”) and is in the context of a period of time

(the most common ones are a week, a month, or even a year).

Chapter 4 Challenges when Scaling

79

You basically take that percentage from the number of minutes in

the time period defined, and you have how much uptime your system is

expected to have in that timeframe. But reaching that number is not an

act of magic or pure guesstimation; it’s a process that if done correctly,

requires a lot of analysis and discussion.

To give you a quick overview (you should dig deeper into this subject

if you’re not familiar with the concepts that are coming), the tools you’ll

need to properly find that number are called system-level indicators (SLIs)

and system-level objectives (SLOs).

System-Level Indicators (SLIs)

These are metrics you will develop and measure constantly to understand

how your system is performing. They are not strictly hardware- or

performance-related; they are business-related. In some cases they

might be obvious, such as counting how many web pages load within an

acceptable timeframe (100ms, for example) on web apps. But in others

they might not be, such as comparing the number of billing requests in

your web-server log files against your database records at the end of the

day and making sure the percentage of correlation is close to 100%. These

indicators should be set based on conversations between developers,

devops/sysadmins or whatever flavor of them you have on your team, and

the business.

All three parts of the equation must be present and must give their

opinion as to what makes an indicator relevant and measurable. Each

SLI should have a basic description of what it’s meant to measure from a

business perspective and then a detailed description of how it needs to be

measured from a technical perspective. Basically, the more documentation

you can write about an SLI, the easier it will be to both maintain it and

review it in future iterations.

To define your SLIs properly, remember to keep them user-centric (it

might be a good idea to define them based on the user journeys for your

Chapter 4 Challenges when Scaling

80

application) and to think about metrics that can be measured in the form

of “good events” divided by the “total number of events” times 100. This

will provide metrics like “proportion of home page requests loading in

under 100 ms.”

There are some predefined SLI types that might come in handy

to guide you while defining your own; they are related to the type of

subsystem you’re trying to analyze, for example:

•	 If you have a user-facing section of your application,

you might want to think of using SLIs of the availability,

latency and throughput types. Or put another way, you

want SLIs that ask, “can my system provide a response

to a request?,” “how long does it take to do it?,” and

“how many requests can it handle?”

•	 on The other hand, if you have a storage system you

want to keep track of, you might want to consider going

with latency, availability, and durability SLIs. These

ask, “How long does it take to read and write?,” “can we

actually request data from it?,” and “is the data there if

we need it?”

•	 Finally, Big Data projects have specific types as well,

such as throughput and end-to-end latency. For

instance, you can ask things like “how much data are

we processing?” and “how much time does data need

to go from ingestion to final storage?”

System Level Objectives (SLOs)

These are the objectives you want to aim for on each of your indicators.

They’re percentage numbers in a timeframe, just like the SLAs, but

internal. They’re not shared with your users or customers, since they

usually act as the upper limit of what you expect your system to do, not

Chapter 4 Challenges when Scaling

81

exactly what you want to state that your system can do to the outside

world. (In other words, try not to shoot yourself in the foot by sharing these

values.)

You should arrive at them based on your understanding of your user’s

needs, which is why having the business represented in these meetings is

important. Sometimes techies like the developers or the sysadmins will

only think from their technical expert positions and forget about what the

user actually feels like and wants from the application they’re building.

This is not to say they shouldn’t help define the objectives, which must be

a group effort to avoid leaving anything out.

These defined objectives are crucial because in the context of rooting

out SPOFs, you need them to understand when to stop pursuing that goal

and start shipping.

When it comes to the number of SLIs and SLOs to write, as a rule

you can probably assume one SLO per SLI and up to three SLIs per user

journey. If you start seeing a lot of relevant SLIs being defined as a result

of these meetings, you should consider grouping them into more generic

topics. For example, if you happen to have three or four different SLIs that

talk about loading time of web pages, you can probably collapse them all

into a generic one that’s not related to a single user journey but to several

(or maybe all of them).

What Happens When We Don’t Meet Our SLOs?

Finally, and although it’s not entirely related to SPOFs, if we’re talking

about SLIs and SLOs, we need to understand what to do when those

numbers aren’t met. Because you can identify your key user journeys and

create all the SLIs you want for them, and you can sit down for weeks with

the business, your devops, and your developers and come up with realistic

and reachable SLOs for those indictors. But you also have to expect the

system to fail at some point and not meet those numbers.

Chapter 4 Challenges when Scaling

82

When that happens, you should already have a plan for it in your

deployment and development policies. You should be keeping track of the

failures and count the time your system is not conforming as expected.

If this time exceeds a given preset amount (some people call it an error

budget), then you need to have already defined what to do. For example,

you may decide to hold back work on new features until major bugs are

fixed, or cancel new deployments until bugs causing the issues are found

and fixed. These are all strategies you need to think about while working

on your indicators and objectives.

Agreeing on Your SLAs

The final step in this process will be agreeing on your SLAs, which

obviously will depend on your business case and use cases, but should

be kept under the objectives, with the intent of preventing your user from

expecting excellence in a scenario where not everything is 100% up to

you and your team. Service providers might fail to deliver, and even if

you don’t, your users will fault you and see your services as the one not

fulfilling the predefined agreement.

�Stateful Apps and Multi-Server Scenarios
Last but certainly not least is the problem that we might run into in

systems that store in-memory information about active user sessions.

When this happens and we start duplicating these services into multi-

server scenarios, the usual setup includes a load balancer in front of all

these new servers. This load balancer will in turn distribute the load as

equally among all servers as possible, and there is no guarantee that your

user will land two subsequent requests on the same server.

Figure 4-4 shows exactly this scenario, with the end-result of having a

partial fragment of your user session in each receiving server.

Chapter 4 Challenges when Scaling

83

Figure 4-4.  Example of a web application making three requests for
the same user and landing on three different servers

This is far from ideal, and it can cause some serious issues if your

servers’ logic depends on that information. The good news, though, is that

this is relatively easy to fix, and in some cases, it will not even require any

code changes.

The first and obvious fix for this scenario, is, as I’ve already covered

in this chapter, to remove the in-memory information from the server

and move it into an external storage, such as Redis. This would, of

course, involve code changes and the added complexity of setting up

and maintaining the Redis cluster. The upside is that it doesn’t affect the

balancing strategy used by your load balancer and helps keep your load

evenly distributed.

Figure 4-5 shows how this solution would end-up looking. Requests

would still be randomly hitting each server (which is ideal), but the session

information is centralized in the external memory; that is, Redis.

Chapter 4 Challenges when Scaling

84

That solution however, involves possibly quite a lot of code changes,

since your entire server could be stateful and depend heavily on in-

memory user state information. If that is too big a change right now,

and your team or project can’t really afford it, you will have to consider

configuring your load balancer to handle sticky sessions. Figure 4-6 shows

how this solution would look.

Sticky sessions is the term for a method used by some load balancers

and routers to link a specific user to one of their balanced servers based

on information contained in the HTTP requests sent. Once that link is

made, every subsequent request that can be identified as coming from the

Figure 4-5.  Solving the fragmented session problem using external
memory access

Figure 4-6.  Solving the fragmented session problem with sticky
sessions

Chapter 4 Challenges when Scaling

85

same client will land on the same server. This solves the problem you were

having, and configuring your classic load balancers fort this behavior is

not difficult at all. For example, Listing 4-8 shows how to configure Apache

using the mod_proxy_balancer14 module to handle sticky sessions.

Listing 4-8.  Example of Apache configuration to handle sticky

sessions

Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e;

path=/" env=BALANCER_ROUTE_CHANGED

<Proxy "balancer://mycluster">

 BalancerMember "http://192.168.1.50:80" route=1

 BalancerMember "http://192.168.1.51:80" route=2

 ProxySet stickysession=ROUTEID

</Proxy>

ProxyPass "/test" "balancer://mycluster"

ProxyPassReverse "/test" "balancer://mycluster"

Most of the common load balancers already have support for this

feature, but you have to make sure it makes sense on your side to have

it as well, since it could cause some difficulties if you start using HTTPS;

because request information can’t be analyzed, other methods need to

be used to identify requests. You might also run into unbalanced servers

receiving too much traffic, just to name a couple of possible issues.

In the end, this technique is just as valid as turning your stateful

services into stateless ones; you just need to make sure that by going this

way, you’re not hiding design flaws on your code.

14�See https://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html for
more details.

Chapter 4 Challenges when Scaling

https://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html

86

�Summary
That is it for problems that can arise when scaling your system. My

intention wasn’t to scare you away from attempting to scale; it was to give

you the tools that you might need to solve those problems should they

happen to you.

In the next chapter I’m going to cover how to monitor your platform in

order to understand when to scale up or down. This is something that can

be done both reactively and proactively, but you have to understand how

your platform behaves before deciding on a strategy.

Chapter 4 Challenges when Scaling

87© Fernando Doglio 2018
F. Doglio, Scaling Your Node.js Apps, https://doi.org/10.1007/978-1-4842-3991-9_5

CHAPTER 5

When to Scale?
Having the tools to scale your architecture but lacking the data to

understand when to use them is like having the keys to your dream car

but not knowing how to drive it. You need the information to back up your

scaling decisions. You need to understand when your inbound traffic is

too big for a single server, or when your database processor is screaming in

pain asking for a sibling to help take the load off.

In this chapter I’m going to cover some of the most common tools that

will enable you to both monitor different key aspects of your platform and

react to those results by triggering an elastic behavior in your platform.

�Monitoring
There are different ways to monitor your application or platform. As you

can see in Figure 5-1, at the lowest level you can look into infrastructure

monitoring, where you can keep track of things like CPU usage, free

memory, and disk space utilization. You can do that on your own servers

(where your app is deployed) or in your related services’ servers (such as

database servers, CDN servers, and others).

88

If you go one level up, you can start monitoring your networking

devices, such as load balancers, routers, and others. From them, you can

get information related to the traffic your app is getting, and you can also

get some level of details about response codes to understand what kind

of problems you might be dealing with. The information you’ll get at this

level will be domain-specific, and you’ll need to have some basic level of

understanding about the app you’re trying to monitor to understand how

to respond to this information (unlike monitoring CPU load or disk space

utilization, where no matter what you’re doing, no disk space is always bad).

Finally, the top layer is reserved for app-specific indicators. These are

the ones you can’t just “pull” from places; you have to first put them there

by writing the required code. These are hyper-specific indicators that are

only relevant to your use case and make sense only within the business

rules of your application. Depending on the type of monitoring system you

might be using, you could simply need to add this ad-hoc information into

your log messages and then by parsing that data, you’ll get the indicators.

Or you could also be using some third-party module to send those new

indicators into your monitoring system directly.

Whatever your application might be, if you’re worried about your

scaling needs, it might be a good idea to start from the bottom and

move up as your architecture grows. Many systems are great with

Figure 5-1.  Different types of monitoring

Chapter 5 When to Scale?

89

basic infrastructure monitoring, but the more complex the app

(meaning, the logic rules behind it), the higher up you’ll have to go on

the pyramid.

�Alerting
A final concept for monitoring in general, before we start delving deeper

into each of the levels I just mentioned, is alerting. This can mean

anything; it can be sending an email to the user or it can be notifying some

system that can it perform predefined actions. Whatever it might mean to

you, it’s the whole point of this practice: you monitor and then you react to

the values received.

Deciding when to send those alerts is also very important; both the

triggering condition and the periodicity of the messages need to be taken

into account to provide a good user experience and add value. Alerting

for the sake of alerting is the worst thing you can do; the only thing you’ll

achieve by doing that is overwhelming your users to the point where

received alerts will be ignored.

Instead of that, you should create a custom alerting strategy for your

platform, one that takes into account your domain knowledge and acts

accordingly. Some suggestions:

•	 Use different alerting channels: Depending on

the severity and importance of what you’re alerting

about, you might want to send that alert via email if

it’s something your user should look at in the next

few hours. You might want to simply send an in-app

notification or leave some sort of alerting record if it’s

something that needs to be reviewed eventually; or you

can send a page, an SMS, or even a WhatsApp message

to your user’s phone if the alert is really critical and she

should take a look immediately.

Chapter 5 When to Scale?

90

•	 Try to alert on symptoms instead of specific
problems: For example, alerting when your homepage

is taking too long to load is a symptom, which might

be caused by various specific problems such as your

database server being overloaded, your Redis cluster

failing, or your web server’s disk running out of space,

to name a few. When you alert on symptoms, you’re

providing context to your users, letting them know

how the current problem is affecting your customers.

As an added bonus, your alerts aren’t bound to your

infrastructure. Going back to the previous example,

suppose you were to remove your Redis cluster

because you no longer needed it, and instead added

an Elastic instance into the mix. If you were alerting

on symptoms, your users will still be getting the same

alerts when problems with Elastic start causing delays

on the homepage loading times; but if you weren’t,

then you now have to introduce visible changes by

removing old alerts (the ones related to Redis) and new

ones (for Elastic). In other words, your alerts are more

durable if they’re based on symptoms.

•	 Try to alert only when the problems are real: This

might be an understatement, but your alerting strategy

should be smart enough to understand when the

symptoms being reported are due to an actual problem

and when they’re caused by a known maintenance

window (for example). A planned server update might

overload your processors for a few hours, causing

some slow response times on your platform, but you

definitely don’t want to wake up your sysadmin at 3

a.m. because of that.

Chapter 5 When to Scale?

91

•	 Make sure your alerting strategy allows you to be
proactive and not reactive to your problems: There

is a very big difference between being notified when

your system is taking 300ms longer to load than normal

and being notified when your pages aren’t loading at

all. You obviously want the second kind of alert (you

should always prepare for the worst), but it shouldn’t

be the only one.

�Monitoring Your Apps
Specifically when it comes to monitoring Node.js applications, there are too

many possibilities to cover them all in this book, and eventually we would

start seeing repeated features. And we’re not just looking for a monitoring

tool, remember that we’re trying to set up an environment that can scale up

and down, according to our needs. So we need a solution that can monitor

and react to the values receive by triggering a set of scaling rules.

So instead of reviewing products such as PM2 Enterprise,1 or even

Prometheus,2 I’m going to review how to set up AWS CloudWatch3 to

monitor your application and your infrastructure at the same time (so

you’ll be able to cover the entire pyramid from Figure 5-1) and on top of

that, how to make it react and trigger new instances of your application.

Figure 5-2 shows the base architecture we’ll use for this example.

1�See https://pm2.io/enterprise for more details.
2�See https://prometheus.io/ for more details.
3�See https://aws.amazon.com/cloudwatch to learn more.

Chapter 5 When to Scale?

https://pm2.io/enterprise
https://prometheus.io/
https://aws.amazon.com/cloudwatch

92

The idea behind this example is that CloudWatch will be gathering

metrics both from our own application (ad-hoc metrics) and from AWS

services that already provide them automatically (such as EC2). These

metrics will be monitored by AWS CloudWatch Alerts and displayed and

charted by AWS CloudWatch Dashboard. The alerts will trigger actions,

which can be anything ranging from a notification (via email, SMS, or even

an SQS queue) to a call to the AWS AutoScaling service.

In order to look at this, we’ll use a sample application, so you can see

how the ad-hoc metrics can be provided to AWS using their own libraries.

This sample app is going to be mind-numbingly simple, but the point is to

avoid distracting you by looking at unimportant code, so bear with me.

The code from Listing 5-1 is simply an API endpoint that will return

the current time every time you send a request to it. The only dependency

this code has is the ExpressJS library, and I’m going to assume you already

know how to install that one.

Figure 5-2.  Monitoring/Alerting/Scaling diagram using AWS

Chapter 5 When to Scale?

93

Listing 5-1.  Code for “What’s the time?” API

const express = require('express')

const app = express()

app.get('/', (req, res) => res.send(Date()))

app.listen(3000, () => console.log("What's the time API up and

running on port 3000"))

To start the refactoring process, we’ll begin by installing the SDK

module from AWS, and with it, we’ll create a basic metric reporter, which

will let us send custom metrics back to CloudWatch.

Listing 5-2 show how to install this new module; make sure you add

the --save flag to it, to ensure that the dependency is saved into your

package.json file.

Listing 5-2.  Installation of AWS’s SDK module

$ npm install aws-sdk --save

After the installation is complete, we can begin to send custom metrics

using the putMetricData method provided by the library. This method

takes two parameters, a JSON object with the metrics to send, and a

callback. Clearly the interesting parameter here is the first one, so let’s go

over its structure in Listing 5-3.

Listing 5-3.  Structure and data type of the metrics parameter

{

 MetricData: [

 {

 MetricName: String,

 Dimensions: [

 {

Chapter 5 When to Scale?

94

 Name: String,

 Value: String,

 }

],

 StatisticValues: {

 Maximum: Float,

 Minimum: Float,

 SampleCount: Float,

 Sum: Float

 },

 StorageResolution: Int,

 Timestamp: Date or String or Int,

 Unit: Enum,

 Value: Float

 },

],

 Namespace: String

}

As you can see, Listing 5-3 shows a basic JSON with a lot of attributes.

There are no really complex ones; they’re mostly basic types. Table 5-1

shows more detail about the data expected in each one.

Chapter 5 When to Scale?

95

Table 5-1.  List of attributes available as part of the metric’s data

Attribute Description Required?

MetricData Contains the data for the metric. This

is an array of objects that will hold

the information for each metric being

reported.

Yes

MetricData/

MetricName

The name of your metric can be anything

you’d like. Just make sure it’s something

that you can understand easily by

reading it, so later you can look it up on

CloudWatch’s console.

Yes

MetricData/

Dimensions

An array of objects, which are simply

Name, Value pairs. Your metrics can have

between 1 and 10 dimensions each.

Yes, at least one

MetricData/

Timestamp

The time when the piece of metric data

was received. It is expressed as the

number of milliseconds since Jan 1, 1970

00:00:00 UTC

Not required

MetricData/Value The actual value of the metric. Note that

although the parameter is meant to be

a Float, CloudWatch does not support

values too big or too small, or special

values such as NaN, +Infinity, and so on.

Not required

MetricData/

StatisticValues

An object which contains a set of

attributes pertaining to statistics about

your metric.

Optional, but if

used all of its

children are

mandatory

(continued)

Chapter 5 When to Scale?

96

Based on the data on Table 5-1, we can create a simple metrics

module that will help us report data back to CloudWatch. As you can see

in Listing 5-4, the code is not complex , and we’re not really using all the

attributes mentioned in Table 5-1.

Table 5-1.  (continued)

Attribute Description Required?

MetricData/

StatisticValues/

SampleCount

The number of sample values used for

the statistics reported.

Only if parent

element is

present

MetricData/

StatisticValues/

Sum

The sum of values for the sample set

reported

Only if parent

element is

present

MetricData/

StatisticValues/

Minimum

The minimum value of the sample set. Only if parent

element is

present

MetricData/

StatisticValues/

Maximum

The maximum value of the sample set. Only if parent

element is

present

MetricData/Unit The unit for your metric. It is an enum,

so only a set of predefined values can

be used here, such as “Seconds” or

“Bytes” or “Bits/Seconds”. Refer to the

documentation for the full list.4

No

4�Please visit https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/
CloudWatch.html#putMetricData-property for more details.

Chapter 5 When to Scale?

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricData-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricData-property

97

Listing 5-4.  Metrics module using AWS’ SDK

// Load the AWS SDK for Node.js

var AWS = require('aws-sdk');

// Set the region

AWS.config.update({region: 'us-east-2'});

// Create CloudWatch service object

var cw = new AWS.CloudWatch({apiVersion: '2010-08-01'});

module.exports = {

 report: (ns, metric, dimensions, cb) => {

 var params = {

 MetricData: [

 {

 MetricName: metric.name.toUpperCase(),

 Dimensions: [dimensions],

 Unit: metric.unit,

 Value: metric.value

 },

],

 Namespace: ns

 };

 cw.putMetricData(params, cb);

 }

}

There is very little to get out of that code, since it’s pretty

straightforward. We’re exporting an object with a single method, which

basically wraps the putMetricData method from the SDK. What’s not

being shown in that code, however, is where the credentials to authenticate

against AWS are. We’re not actually taking care of that directly, because the

SDK is doing that for us. All we have to do is to create a file on the server

where your app is running, as shown in Listing 5-5.

Chapter 5 When to Scale?

98

Listing 5-5.  Format of the credentials file

[default]

aws_access_key_id = [YOUR AWS ACCESS KEY]

aws_secret_access_key = [YOUR AWS SECRET KEY]

That file should be stored in ~/.aws/credentials (or your usual

Windows equivalent), and you can get that information from AWS Console,

while creating your users or by regenerating these keys (for security

reasons the AWS system does not allow you to download existing keys).

After everything is set up and you can successfully test the code from

Listing 5-4, Listing 5-6 shows how to modify the original code to start

capturing the stat and reporting it back to CloudWatch.

Listing 5-6.  Modified code of the main API’s code

const express = require('express')

const app = express()

const metrics = require("./metrics")

app.get('/', (req, res) => {

 let start = (new Date()).getTime()

 res.send(Date())

 �let total = (new Date()).getTime() - start + (Math.

round(Math.random() * 100));

 �metrics.report('API/TRAFFIC', {name: 'VISITS',

value: 1.0, unit: 'Count'}, {Name: 'Counter', Value:

'Requests'}, (err) => {

 �if(err) console.error(err);

 else console.log(" - Count stat sent - ")

Chapter 5 When to Scale?

99

 �metrics.report('API/TRAFFIC', {name: 'VISITS',

value: total, unit: 'Milliseconds'}, {Name:

'PERF', Value: 'DELAY'}, (err) => {

 if(err) console.error(err);

 �else console.log(" - Time stat sent - ")

 })

 })

})

app.listen(3000, () => console.log("What's the time API up and

running on port 3000"))

Let’s break down the code from Listing 5-6, because there is a lot in

there, even though it might not seem like it.

I’ve added all the code inside the request handler; this is for simplicity,

but you can refactor it as you see fit. In it you can see I’m just calculating

the time difference between the previous line actually getting the current

date and the line after it. In other words, I’m just going to be reporting

the performance of this endpoint and the number of requests it received

(simply by sending the first of the two report calls).

Because this is clearly a very simple endpoint, I’m adding a few random

numbers to the time difference calculation, just to add some variability to

our results (you’ll want to omit that random bit in your own code, obviously).

I’m reporting the data using our wrapper module from Listing 5-4. The

parameters seen here are what are important. In both cases, the first one is

the namespace. This is key because it allows you to group your metrics in

CloudWatch’s console. As you’ll see in Figure 5-3, both of our metrics will be

saved in the same API/TRAFFIC namespace. The second one is the actual

metric itself; the first report simply sends a 1, as a count, but the second report

call sends the time difference, on milliseconds (see the unit parameter). Finally

the third parameter is the dimension; you can have up to 10 dimensions for

each namespace and they will allow you to further group your metrics.

Chapter 5 When to Scale?

100

Note  You can’t use namespaces starting with AWS/; those are
reserved for AWS services.

Figure 5-3 shows the steps needed to go through the hierarchy you

created by using the namespace and the domains:

	 1.	 In the first step, you can see the namespace we

defined on our code API/TRAFFIC, and below it,

you can see the space for the AWS namespaces

(which we’re not using right now).

	 2.	 The second step will show the domains defined

inside our namespace. In this example you can see

four, which are tests I made, but two of them are the

ones defined in the example of Listing 5-6 (Counter

and PERF).

	 3.	 Finally, in the third step, you can see the counter we

defined for the number of requests. By selecting it,

you can add it to the plot on top of this list.

Figure 5-3.  Steps navigating through your custom metrics

Chapter 5 When to Scale?

101

After you’re ready with your code and you’re properly sending the data

up to CloudWatch, you can begin creating your plots Figure 5-4 shows the

first one, which is plotting the number of requests received by our API.

Simply by clicking on the metric (as shown in Figure 5-4), your data

will be plotted into the chart shown. Initially, your plot might not look as

you expect; here is what I changed:

•	 The Statistic column needs to be changed from the

default value (which is Average) into Sum; since we’re

submitting a 1 with every request, that will allow us to

get the exact number of requests in the period of time

we pick.

•	 The Period column was also changed; by default it was

aggregating data every 5 minutes, and for the purposes

of this demo, I wanted a more detailed view, so I

changed it to 1 minute.

Figure 5-4.  Plot of the requests metric

Chapter 5 When to Scale?

102

•	 Finally, I added a name in the top-left corner of the

chart, to make sure that once I add it into a dashboard,

I can properly identify the widget.

We do the same for the other metric (see Figure 5-5), but instead of

adding up the numbers, we leave the Statistic column at Average, because

in this case, we want the average of the delay for all requests received

within a minute.

Caution R emember that you can do these tests using the free tier
of AWS, but if you go overboard with your metrics and alerts, you
might start running into costs.5

Figure 5-5.  Plot for the average delay

5�See https://aws.amazon.com/cloudwatch/pricing/ for more details about costs
of this service.

Chapter 5 When to Scale?

https://aws.amazon.com/cloudwatch/pricing/

103

�Adding AWS Metrics into Your Dashboard
Compared to adding your own custom metrics, this should be a walk in the

park; but nevertheless it’s also something you should be aware of, since it

will allow you to monitor your infrastructure.

The great thing about using CloudWatch is that it is very

straightforward. Remember the earlier section on the AWS/ namespace?

Well, for every one of its services you use, several namespaces will pop-up

under this section, letting you pick the metrics you care most about. Maybe

you want to look at CPU utilization, or memory consumption, disk read

operations, network traffic or a lot of other indicators.

Again, this will happen automatically, so all you have to do is start

using your services, and wait a few minutes until those resources finish

booting up and connecting (usually no more than 5 minutes). After that,

you can go to the CloudWatch console inside the metrics section, and

you’ll find all the new namespaces waiting for you. Figure 5-6 shows how

after starting a single EC2 instance and setting up an RDS MySQL instance,

three different official namespaces have appeared.

Figure 5-6.  New AWS-specific metrics appear automatically

Chapter 5 When to Scale?

104

As you can see, AWS provides a lot of metrics for each service,

so you can make sure you are aware of everything you need for your

infrastructure-related metrics. And based on that, you can create whatever

scaling rules you need (more on that in a bit).

�Reacting to Your Metrics
This is the last step in the process. So far, you’ve being setting up your

monitoring system to look for both custom and default metrics received

by your infrastructure and your own Node.js application. You’ve created at

least one dashboard (maybe more), and you can log in into AWS Console

any time you want and look at those numbers.

But we want that process to also be automated; it makes no sense to

have you, or anyone else, systematically logging in and checking numbers,

does it? So instead, let’s look at how you can use AWS Console and its

services to understand how to automate that process.

Note  For simplicity purposes I’m not going to go into all details
regarding this process, especially because AWS tends to update it
and make minor changes from time to time. Instead , I’ll go over it
quickly and let you look at the detailed documentation they provide
(and maintain) if you need to know more.

The process can be a bit confusing without an overall guide, but the

steps to set up your autoscaling actions based on the metrics you’ve

created so far are as follows:

	 1.	 You’ll first want to create at least one Alert based on

your custom metric (or your default ones, it’s up to

you). This alert only needs to notify a list of users

Chapter 5 When to Scale?

105

when your metrics breach a given threshold. These

alerts will be the triggers for the autoscaling actions

you’ll define next.

	 2.	 You then need to create a Launch Configurator. This

component will know what kind of instance to use

when scaling.

	 3.	 After that, you’ll want to create at least one

AutoScaling group, which will have the Launch

Configurator associated with it. This group will

determine how many instances to create, and will

contain the AutoScaling policies.

	 4.	 These policies, in turn, will be associated with

the alarms you created in step 1, and they will be

configured to either add or remove instances when

the alarm is triggered.

That is the basic process you need to go through to automate the

reaction to your metrics. Let’s now go into a bit more detail on each step.

�Step 1: Creating Your Alerts

From within the CloudWatch console, you can create a new Alert, first by

specifying the metrics to use, and then by specifying how to treat those

numbers (as we did for the charts), as seen in Figure 5-7. You’ll have to

select the namespace, which will have your own ones and the default ones

from AWS. After that, you’ll get the list of metrics within that namespace.

Simply select the one you want to alert on and the chart below it will

update, so you can verify the data.

Chapter 5 When to Scale?

106

You can play around with the chart in Figure 5-7 as much as you like,

even changing the operation to perform on the data (as we did for the

Statistic column a while ago) and the time period for the sampling of these

numbers. After you’re happy with the results, you can move on to the final

step, which will take care of setting up the actions for this alert.

Figure 5-8 shows the second step of this process, where you can set the

name for the alert and the values to react to (the threshold). Finally, you

can select a notification list, or create one on the spot.

Figure 5-7.  Step 1 of alert creation

Chapter 5 When to Scale?

107

Note A fter you’re done with the alert, it will appear on your alert list
(under the CloudWatch console). Initially this alarm will appear on the
INSUFFICIENT list, simply because this alert will take a few minutes
to start reporting the data needed. Just wait 5 minutes and the alert
should go into another section (either OK or ALARM if it’s being
triggered).

Figure 5-8.  Step 2 of alert creation process

Chapter 5 When to Scale?

108

�Steps 2 through 4: Setting Everything Else

Once you have your alerts ready, let’s jump on to the AWS EC2 section,

since we’ll be setting up our autoscaling actions to create new EC2

instances.

On the left menu, under the Auto Scaling section, go to the Auto

Scaling Groups section, and create a new group. You’ll be prompted to

create a group based on a configurator, either an existing one or by creating

a new one. If you don’t already have a Launch Configurator, then select

that option, and you’ll be prompted to configure it.

You’ll basically be asked to select the AMI to launch when required as

well as the type of instance to use for those AMIs. In the end, it will just be

a matter of giving this configurator a name, so you can identify it later.

Once you’re done with that process, you’ll be taken back to the group

creation process. Just give the group a name and select at least one Subnet

(the rest of the parameters can be left to their default values for the time

being).

After that, the next step is to set up your policies. You can leave the

group as it is right now and come back to it later, a good option if you don’t

already have the policies thought out. But if you already know how you

want your group to behave, simply add the policies right now.

You’ll be prompted for the following items:

	 1.	 The minimum and maximum group size, so you’ll

make sure you don’t create too many instances by

mistake

	 2.	 A name (such as Scale Up and Scale Down for when

adding and removing instances)

	 3.	 The associated alert that will act as a trigger for this

policy

Chapter 5 When to Scale?

109

	 4.	 The number of new instances to add or existing

instances to remove

	 5.	 How long to wait between actions (simply to make

sure you wait for the new instances to finish booting

up before launching new ones)

The next steps are very straightforward; you’ll be able to set up

notifications when autoscaling takes place, so you can be aware of

everything happening at any given time. And that is it; after this step,

the rest of the process is optional and not relevant right now. Once your

autoscaling group is configured, you’re done, and you can start testing it. If

you’ve been following the examples in this chapter, you can boot up your

API and send several requests in a row; and if you configured a low enough

number on your alert, you’ll see how a new instance is triggered for you.

�Summary
This chapter addressed the question of when to scale. We also went over

a practical example of how to set up one of the main cloud provider

platforms to monitor and auto-scale your platform based on whatever

metrics you might think of.

In the next chapter, I will cover a topic that even though it is not strictly

related to scaling platforms, is very much required for creating applications

that are stable enough to scale properly: testing your applications.

Chapter 5 When to Scale?

111© Fernando Doglio 2018
F. Doglio, Scaling Your Node.js Apps, https://doi.org/10.1007/978-1-4842-3991-9_6

CHAPTER 6

Testing Your
Application
Let’s take a break from discussing architectural patterns and scaling

techniques and discuss something equally important for your project: how

are you going to test it?

The purpose of this chapter is to give you a little insight into what we

normally mean by “testing” in the context of software development. I’ll

cover some basic principles such as unit testing, mocking, and so forth,

and once you’re ready, we’ll go over some examples of how to implement

those concepts in your Node.js project.

So let’s get started.

�Testing 101
First things first: if by the end of this chapter you want to know more about

unit testing, please feel free to go online and keep reading. There is more

than enough material about this subject to fill several books. This chapter’s

only aim is to act as an entry way into this world.

112

�The Definition
Let’s start with the basics: at its core, testing in the context of software

development is basically the act of formulating a statement (something

that should be true) about a piece of code and adding the required set of

assertions to make sure we can prove that the statement is actually true. So

a test can be something like Listing 6-1.

Listing 6-1.  Pseudocode for a theoretical test case

Statement: "myFunction" is capable of adding up two natural

numbers

Assertions:

var a = 10;

var b = 2;

assertion(myFunction(a, b), "is equal to", a + b)

We’re not focusing on a specific language right now, so Listing 6-1

shows only a pseudocode attempt at what a test would look like. I should

also note that in the example I’m testing the function directly. It is a

simple example and there is not a lot of context, but the point is that your

tests should focus on the smallest bit of code that makes sense, instead

of testing several things at the same time. Let me explain with another

example, shown in Listing 6-2.

Listing 6-2.  Several assertions in the same test

Statement: "myFunction" can add, multiply and substract two

natural numbers

Assertions

var a = 10

var b = 10

assertion(myFunction("add", a, b), "is equal to", 20)

assertion(myFunction("multiply", a, b), "is equal to", 100)

assertion(myFunction("substract", a, b), "is equal to", 0)

Chapter 6 Testing Your Application

113

This example is still quite simple, but I’ve added a bit more complex

internal logic to the function called myFunction by adding the ability to

pass in the mathematical function to apply as the first parameter. With this

new logic, the function we’re testing is bigger, and it does different things,

so if we design our tests as in Listing 6-2, we can run into a problem: what

happens if our test fails?

I haven’t really covered what it means to “run” our tests, but it should

be pretty obvious by now: your code is executed and the assertions are

verified; if they are true, then your test will succeed, but if they fail (your

assertion stated that two values were to be equal and in practice, they

aren’t), then your entire test fails. You can see the problem if you’re testing

several things within the same test. Once you get the results back from the

execution, you will have to dig deeper into the execution logs (if there are

any) to understand where your problem lies.

In order to properly test a function like the new myFunction, you’d be

better off splitting your test case (which is how you call a single test) into

three different ones (as shown in Listing 6-3).

Listing 6-3.  The correct way to structure test cases when the

function tested is too complex

Statement: "myFunction" can add two natural numbers

var a = 10

var b = 10

assertion(myFunction("add", a, b), "is equal to", a+b)

Statement: "myFunction" can multiply two natural numbers

var a = 10

var b = 10

assertion(myFunction("multiply", a, b), "is equal to", a*b)

Statement: "myFunction" can substract two natural numbers

var a = 10

var b = 10

assertion(myFunction("substract", a, b), "is equal to", a-b)

Chapter 6 Testing Your Application

114

Now whenever a test fails, you’ll get better details from your test

runner, because you’ll know exactly which test failed, and thus, you’ll

be able to determine immediately which block of code in your complex

function failed.

So to summarize and also give you a more technical definition of what

unit testing is, from everything I’ve shown you so far, you could probably

say that:

A unit test is a statement about a unit of code that needs to be
proven true in order to pass.

The word unit is the most important one there, because if you go online,

you’ll probably find a lot of people defining it as your functions (provided

you’re using a procedural programming language) or your methods (if

you’re using an OOP language). But as you can see from a simple generic

and pseudocode-based example, a unit of code can actually be smaller than

that. It’s true that in all these examples I didn’t really show the actual code

of the function, and you could argue that for each test case of Listing 6-3,

our function is actually calling other, smaller functions, and that is a very

good point!

But there is also probably code tying all those calls together (some kind

of logic based on the value of your first parameter), so if you were to test

those smaller functions individually instead, you’d be missing possible

bugs in there. So we can modify our definition of unit (in the context of

software testing) to something like the following:

A unit of code is the smallest block of code that makes sense to
test and would allow you to cover a whole logical path.

So putting both definitions together, you get a pretty accurate idea of what

testing your code means and a good basis for the rest of this chapter.

Chapter 6 Testing Your Application

115

�The Tools
Now that we’ve covered what unit testing is, let’s review the tools provided

by this methodology that will allow you to test your code.

These are not software tools; they aren’t libraries or frameworks you

can use. We’re not there yet. What I’m trying to give you here are the

concepts, the wheels you’ll use to build your car down the road.

�Test Cases and Test Suites

Test cases have already been covered, but to reiterate, they define how you

call the test. You normally structure them to test a very specific scenario,

which is why you usually need several cases before you can be sure you’ve

properly covered every logical path in your code.

Test suites are, as their name implies, groups of test cases. Depending

on your system and your methodology, you might want to have a single

test suite for all your tests or a set of suites, acting as logical groups for your

unit tests. The criteria used for the suites are entirely up to you and your

team, so feel free to use this tool to organize your code as much as you can.

�Assertions

I’ve already used this concept in the previous section without formally

defining it, because it’s one of those things you don’t really need to define

before people can understand it. That being said, there are still some

details I left out, so let me cover them here.

Assertions bring meaning to your test cases; everything else within

your test is just preparation for these few lines of code. In other words, you

first set everything up (function imports, variables, correct values, and so

on), and then state your assumptions about the output of the tested code,

and that, that is your assertion.

If you want to get a bit more technical, an assertion is (usually)

a function or method that executes your target code with the right

Chapter 6 Testing Your Application

116

parameters and checks its output against your expectations. If they match,

then the function makes your test pass; if they don’t, then it returns an error

using the information it has about your test (description, function called,

expected value, and actual value are some of the most common ones).

You don’t usually need to worry about creating assertions; they are

part of every testing framework and library out there. All you need to

know is how to use them, and that will depend on each implementation.

Usually testing frameworks provide several flavors of assertions to help

make the test case code be more readable. So you might find yourself using

assertions called isTrue, isEqual, notEqual, throwsException and

similar names, instead of using just one as in my previous examples. They

are, of course, syntactic sugar, but when it comes to test development,

making code readable and easy to understand is considered a very good

practice.

It is also considered a very good practice with assertions to structure

your test cases in such a way that you only have one assertion per test. This

will help you do all of the following:

•	 Keep your test’s code clean and simple.

•	 Make the code readable.

•	 Simplify debugging when one of the tests fails, because

there is only one thing that can fail per test.

�Stubs, Mocks, Spies and Dummies

These are all similar tools, so I wanted to cover them as part of the same

section since they’re all related in one way or another. It’s important to

note that so far the examples provided in this chapter have been quite

simple and naïve. Usually production systems aren’t so straightforward,

and your methods and functions will normally interact with each

other and external services (such as APIs, databases, and even the

filesystem), and this set of tools will help you with that interaction.

Chapter 6 Testing Your Application

117

One key mantra that you need to repeat over and over when writing

tests is this:

I shall not test code that’s already been tested by others

Even though in theory that’s quite obvious, in practice, the line is

sometimes a little blurry. One very common case, particularly when

writing public APIs, is to use databases. Your CRUD methods, for instance,

will most likely be 80% database interaction, so should you test that code?

The answer is “not entirely.” Look at Listing 6-4 for an example.

Listing 6-4.  Generic save function interacting with your database

function savePerson(person) {

 if(validationFunction(person)) {

 query = createSavePersonQuery(person)

 return executeQuery(query)

 } else {

 return false

 }

}

Listing 6-4 shows a very basic database interaction. It has

several functions that you would probably have already tested

individually because of their complexity (validationFunction and

createSavePersonQuery), and it also has a function called executeQuery,

that in our case is provided by your database library. You didn’t write that

function and don’t even have access to its code, so why would you care

about testing it? You can’t really do anything about it if it fails.

More so, why would you even consider depending on your database

server being up and running? Are you going to be using the production

database for your tests? What will you do with the garbage data generated

by your tests? What if your database server is up, but your table is not

created? Will the test fail? Should it?

Chapter 6 Testing Your Application

118

These are all normal questions that arise when starting to write tests

and hitting the brick wall that is reality. If you’re not starting out just with

tests but with software development in general, you might think the right

way to go is to have a “test database,” one you can control and you can

do whatever you want with. I’ve done it; it’s completely normal, but also

wrong.

You see, when you add an external service into your tests, even one you

think you can control such as your own database server, you’re implicitly

testing that service and the connectivity between both systems within

your unit test. You’ve turned a simple and straightforward test into a very

complex one that is not even prepared to handle everything that could

go wrong. What if your network fails? Should this test fail? What if you

forgot to start your database server? Should this test fail, too? And this is

just one simple example, one database; I’m not covering logging, other

APIs, multiple database queries, and so forth. You definitely need to cut all

connections to the outside when unit testing; and that means everything

that is not your target unit of code. Fear not, though, because that is where

this particular set of tools comes into play.

Tip  When your architecture is complex enough, containing modules
that have dependencies with each other, acting as external services,
you might want to also consider integration testing, discussed briefly
at the end of this chapter, as well as unit testing your source code.

Stubs

Stubs help you deal with external services, by replacing the code that

uses them with a simpler version, which instead returns a known and

controlled value.

Chapter 6 Testing Your Application

119

You can stub a function or a method in a particular object (as long

as the language lets you), so instead of controlling the database and its

content (as in the previous example), you would overwrite the function

that does the actual query with one that controls the output as you need

it. This way, you can safely test all possible cases, as shown in Listing 6-5

(including those when the network connectivity fails, or the database is

down).

Listing 6-5.  Pseudocode examples of how stubs help your tests

Statement: when the person is saved, the function should return

TRUE

Stub: executeQuery(q) { return TRUE } //we assume the query

execution went well

var person = { name: "Fernando Doglio", age: 34}

assertion(savePerson(person), "equals to", TRUE)

Statement: when the person’s data is not valid, the function

should return FALSE

Stub: validationFunction(data) { return FALSE}

var person = { name: "Fernando Doglio", age: 34}

assertion(savePerson(person), "equals to", FALSE)

Listing 6-5 shows two examples of why stubs are so useful. The first

one shows how you can easily control the outcome of the interaction

with an external service. You don’t need complex logic in your stubs; the

important part of them is their returned value. The second example is not

overwriting an external service, but rather, an external function, in fact,

one that you would probably have written. And the reason for that (instead

of simply providing an invalid person object as input) is that in the future,

your validation code could change—maybe you’ll add or remove valid

parameters to or from your person definition, and then your test could

fail, not because of the code you’re testing, but an unwanted side effect.

Chapter 6 Testing Your Application

120

So instead of suffering from that, you simply eliminate the dependency on

that function, and make sure that no matter what happens to the internal

logic of validationFunction, you’ll always handle the FALSE output

correctly.

In fact, both examples from Listing 6-5 show the most common uses

for stubs:

	 1.	 Removing dependency from external service

	 2.	 Removing dependency from communication

infrastructure (related to the previous point)

	 3.	 Forcing a logical path within your target test code

	 4.	 Ensuring that if there is an error, it will be in your

code and not an external service.

Mocks

Mocks are very similar to stubs—so much so that many people use both

terms to refer to the same behavior. But that is not correct; even though

they’re conceptually similar, they are also different.

Whereas stubs allowed you to replace or redefine a function or a

method (or even an entire object), mocks allow you to set expected

behaviors on real objects/functions. So you’re not technically replacing

the object or function; you’re just telling it what to do in some very specific

cases. Other than that, the object remains working as usual.

Let’s look at the example shown in Listing 6-6 to understand the

definition.

Listing 6-6.  Example of how a mock can be used in a test case

Statement: When replenishing the diapers aisle, the same amount

added, needs to be removed from the inventory

Code:

Chapter 6 Testing Your Application

121

var inventory = Mock(Inventory("diapers"))

//set expectations

inventory

 .expect("getItems", 100)

 .returns(TRUE)

 .expect("removeFromInventory", 100)

 .returns(TRUE)

var aisle = Aisle("diapers")

aisle.setRequiredItems(100)

aisle.replenish(inventory) //executes the normal flow

assertion(aisle.isFull(), "equals to", TRUE)

assertion(inventory.verifiedBehavior, "equals to", TRUE)

(Yes, that’s two assertions in the same test case; I haven’t even finished

the chapter and I’m already going against my words. Bear with me here; in

some cases the expected behavior for mocks is automatically checked by

whatever framework you’re using, so this example is just to let you know

it’s happening.)

Now, back to the example in Listing 6-6. We could have definitely done

this with stubs, too, but we’re conceptually testing something different. Not

just the final state of the aisle object, but also the way the aisle object

interacts with the inventory, which is a bit harder to do with stubs. During

the first part of the test, where we set the expectations, we’re basically

telling the mocked object that its getItems method should be called with

100 as a parameter, and that it should return TRUE. We’re also telling it that

its removeFromInventory method should be called with 100 as a parameter

and to return TRUE when this happens. In the end, we’re just checking to

see if that actually happened.

Chapter 6 Testing Your Application

122

Spies

As cool as this name might sound, we’re still dealing with special objects

for your test cases. This type of object is an evolution of the stub, but I’m

only now discussing it because spies are the answer to the example in the

mock discussion.

In other words, spies are stubs that gather execution information,

so they can tell you, at the end, what was called, when, and with which

parameters. There is not much to them; we can look at another example

(Listing 6-7) where you’d need to know information about the execution of

a function in order to show you how you could test it with spies.

Listing 6-7.  Example of a spy being used to determined if a method

was called

Statement: FileReader should close the open file after it's

done.

Code:

var filename = "yourfile.txt"

var myspy = new Spy(IOModule, "closeFile") //create a spy for

the method closeFile in the module dedicated to I/O

var reader = new FileReader(filename, IOModule)

reader.read()

assertion(myspy.called, "equals to", TRUE)

The example in Listing 6-7 should probably be one of many tests for

the FileReader module, but it illustrates when a spy can come in handy.

Note T he spy, unlike the stub, wraps the target method/function,
instead of replacing it, so the original code of your target will also be
executed.

Chapter 6 Testing Your Application

123

Dummies

Dummies are simply objects that serve no real purpose other than being

there when they’re required. They are never really used, but in some cases,

such as strongly typed languages, you might need to create dummy objects

for your method calls to be possible.

If you’re creating a stub of a method that receives three parameters,

even though you’re not thinking about using them, you might need to

create them so they can be eventually passed to the method stub. This is a

very simple case of a test utility object, but dummy is a term that also gets

mentioned quite a bit, so I thought I’d cover it.

�Fixtures

Test fixtures help provide the initial state of your system before your tests

are executed. They come in handy when your tested code depends on

several outside sources of data.

For instance, think of a configuration checker for your system. You

could have fixtures for different versions of your config files, and load one

in each test case, depending on the type of output to test.

Fixtures are usually loaded before the tests are run, and they can

be unloaded (or reverted if necessary) after everything has been tested.

Usually test frameworks provide specific instances of the testing flow for

these cases, so you just need to have your fixture-related code in place.

�Best Practices
I’ve already covered some of these briefly in the previous section, but it’s

a good idea to review the full list of recommended practices when writing

tests. Like anything in software development, it’s never a solo effort; even

if you’re the only one writing code right now, you have to think about the

future.

Chapter 6 Testing Your Application

124

So let’s quickly review and recap:

•	 Consistent: Your test cases need to be consistent, in the

sense that no matter how many times you run them,

they always need to return the same result if the tested

code hasn’t changed.

•	 Atomic: The end result of your tests needs to be either

a PASS or a FAIL message. That’s it; there is no middle

ground here.

•	 Single responsibility: This one we already discussed:

each of your tests should take care of just one logical

path so that their output is easy to understand.

•	 Useful assertion messages: Testing frameworks

usually provide a way to enter descriptions of your test

suites and test cases, so that they can be used when a

test fails.

•	 No conditional logic within it: Again, I mentioned this

one earlier: you don’t want to add complex logic within

the test case; it is only meant to initialize and verify end

results. If you see yourself adding this type of code into

your test cases, then it’s probably time to split it into

two (or more) new cases.

•	 No exception handling (unless that is what you’re

looking for): This rule is related the previous one. If

you’re writing tests, you shouldn’t really care about

any exceptions thrown by your code, because there

should already be code in place to catch them (unless,

of course, you’re actually testing that your code throws

a specific exception).

Chapter 6 Testing Your Application

125

�Testing with Node.js
Now that you’ve got an idea of what unit testing is and the basic concepts

behind this practice, we can move forward with a specific implementation.

You’ll see that testing your code in js.Node is not hard at all, even without

libraries, since the language already comes with a built-in assertion

module ready to be used.

�Testing without External Modules
Let me first talk about this option, it’s probably not the way to go, since the

provided module is pretty basic, but if you’re looking for something that’s

quick and dirty, this will do the job.

One of the major things you’ll notice this library is missing is the rest

of the framework; with it, you only get the assertion support. The rest will

have to come from you or someplace else, but let’s look into it anyway.

As I already mentioned, this module does not require any kind of

installation steps, since it’s already provided with Node’s installation. All

you have to do to use it is to require the module assert. After you do so,

you’ll gain access to a set of assertion methods, which basically help you

compare two values (or objects).

I’m going to list some of the most interesting ones; if you want the see

the full list, please go to the official documentation.1

ok(value[, message])

1�https://nodejs.org/api/assert.html

Chapter 6 Testing Your Application

https://nodejs.org/api/assert.html

126

This method evaluates value and if it’s true, the test will pass;

otherwise it will throw an AssertionError. The message (if set) is set

as the message of the exception. This one performs a simple equality

validation (using ==), so if you need to check strict equality you might want

to go with the strictEqual method instead.

deepStrictEqual(actual, expected[, message])

This method performs a deep comparison between two objects. That

means Node will recursively compare (using the strictly equal operand)

properties within the objects, and if that comparison fails it will throw an

AssertionError.

For instance, something like what’s shown in Listing 6-8 would display

an error message.

Listing 6-8.  Simple example of how deepStrictEqual works

try {

 assert.deepStrictEqual({a: 1}, {a: '1'})

} catch(e) {

 console.log(e)

}

Listing 6-9 shows the details of the exception thrown by this example.

Listing 6-9.  AssertionError exception thrown from the code of

Listing 6-8

{ AssertionError [ERR_ASSERTION]: { a: 1 } deepStrictEqual { a: '1' }

 at repl:1:14

 at ContextifyScript.Script.runInThisContext (vm.js:44:33)

 at REPLServer.defaultEval (repl.js:239:29)

 at bound (domain.js:301:14)

 at REPLServer.runBound [as eval] (domain.js:314:12)

 at REPLServer.onLine (repl.js:433:10)

Chapter 6 Testing Your Application

127

 at emitOne (events.js:120:20)

 at REPLServer.emit (events.js:210:7)

 at REPLServer.Interface._onLine (readline.js:278:10)

 at REPLServer.Interface._line (readline.js:625:8)

 generatedMessage: true,

 name: 'AssertionError [ERR_ASSERTION]',

 code: 'ERR_ASSERTION',

 actual: { a: 1 },

 expected: { a: '1' },

 operator: 'deepStrictEqual' }

As expected, because in JavaScript, the number 1 and the string literal

‘1’ aren’t strictly the same, the objects compared in Listing 6-8 aren’t

equal.

Note I f instead you were to use the deepEqual method, the
comparison from Listing 6-8 would pass correctly.

throws(block[, error][, message)

The other method I wanted to highlight is this one, which will test your

block of code for a thrown exception. The only mandatory parameter here,

is (as the method signature indicates) the first one, but you can also add

pretty interesting behaviors using the second one.

For the error parameter, you can use one of several options, such as

a constructor that simply indicates the type of error expected, or you can

also use a RegEx to validate the name of the type, or (and this is as crazy

you can get with this method) you can manually check the results by

providing a checking function as the second parameter. Listing 6-10 shows

a small example taken directly from Node’s documentation site, showing

how to use a function to check a couple of details about the error thrown.

Chapter 6 Testing Your Application

128

Listing 6-10.  Example using a function as a second parameter

assert.throws(

 () => {

 throw new Error('Wrong value');

 },

 function(err) {

 if ((err instanceof Error) && /value/.test(err)) {

 return true;

 }

 },

 'unexpected error'

);

There are many other methods to use, but they’re simply variations on

the three we’ve just covered, so I’ll let you browse the documentation. Let’s

now look at adding tests in Node using one of the most common libraries,

Mocha.

�Mocha
When it comes to testing libraries for Node, the list is always growing. You

have some that add assertions, others that are full testing frameworks for

TDD, others provide the tools you need if you’re practicing BDD, and I

could keep going. Here I’ll focus on the one most people in the community

seem to be using these days, and see what testing with it looks like.

Mocha2 is a testing framework (not just an assertion library, it actually

provides a full set of tools for us) that allows both asynchronous and

synchronous testing, so considering that asynchronous functions are quite

common in Node.js, this is a great choice already.

2�https://mochajs.org/

Chapter 6 Testing Your Application

https://mochajs.org/

129

�Installing and First Steps

In order to install the latest version of Mocha into your system, you can

simply enter the line shown in Listing 6-11.

Listing 6-11.  Installing Mocha

$npm install mocha -g

This command will install version 5.1.0 as of the writing of this chapter.

Once installation is complete, you can proceed to start writing your test

cases. Listing 6-12 is a quick example of one.

Listing 6-12.  Sample test case written using Mocha

const assert = require('assert');

describe('Array', function() {

 describe('#indexOf()', function() {

 it('should return -1 when the value is not present',

function() {

 assert.equal([1,2,3].indexOf(4), -1);

 });

 });

});

There are several things to notice from the example in Listing 6-12:

•	 We’re not directly calling Mocha, or requiring the

module at all. It is not needed, because to execute the

test, you’ll be using Mocha’s cli tool, which will take

care of that.

•	 We’re back to using the assert module from Node,

which is one of the features from Mocha: it won’t force

an assertion syntax on you, it will let you decide which

one to use, based on your preferences.

Chapter 6 Testing Your Application

130

•	 The describe function can be nested as many times as

you need; it’s just a grouping mechanism that can help

you when reading the code and when looking at the

output from Mocha (more on this subject in a minute).

•	 Finally, the it function contains the actual test case; in

its callback you define the test’s logic.

To run the test, you simply execute:

$mocha

And the output should be something like Listing 6-13 (provided you

saved your code in a file called test.js).

Listing 6-13.  Output from running your Mocha tests

 Array

 #indexOf()

 • should return -1 when the value is not present

 1 passing (7ms)

Notice the indentation of the first two lines; that’s related to the use of

the describe function.

�Testing Asynchronous Code
Before going into the specifics of how to test our project, I’m going to talk

about one more feature provided by Mocha, since it will come in handy:

asynchronous tests.

In order to test asynchronous functions using Mocha, you simply add a

parameter to the callback on the function. This will tell Mocha that the test

is asynchronous, so it will know to wait until that parameter is called upon

(it’s going to be a function indicating the end of the test). It is worth noting

Chapter 6 Testing Your Application

131

that this function can only be called once per test, so if you try to call it

more than once (or do so by accident), your test will fail.

Listing 6-14 shows an example of what this would look like.

Listing 6-14.  Example of an asynchronous test case in Mocha

describe('User', function() {

 describe('#save()', function() {

 it('should save without error', function(done) {

 var user = new User('Luna');

 user.save(function(err) {

 if (err) done(err);

 else done();

 });

 });

 });

});

The attribute for the callback is usually called done, to signify the

ending of the particular test case. Finally, this function follows the normal

callback pattern, so it receives the error attribute as the first parameter.

Thus the code from Listing 6-14 can be further simplified as shown in

Listing 6-15.

Listing 6-15.  Simplified example of an asynchronous test case.

describe('User', function() {

 describe('#save()', function() {

 it('should save without error', function(done) {

 var user = new User('Luna');

 user.save(done);

 });

 });

});

Chapter 6 Testing Your Application

132

There are many other features for this library that I haven’t covered

(and won’t) in this chapter, so I urge you to go to its main website and

browse through its documentation. Let’s now look at what it would look

like to add some tests to our API project.

�Testing: a Practical Example

Let’s now apply everything I’ve discussed so far into a single example.

Consider an API project, one that is designed for a bookstore. This is a

very straightforward API, so it will have a lot of classic CRUD endpoints.

Let’s assume this API is using the classic MVC pattern for its internal

architecture.

All resources are grouped into controllers, with each one having its

own set of actions to perform.

For the purpose of this exercise and to show how you can add tests

yourself, I’m going to show how to create tests for the create method of

the BookSales controller. This controller simply takes care of listing and

creating new resources (new book sales if you will), nothing else, and

these actions are simple interactions with the database; so again, there is

nothing too complex, since the focus here is on the test cases to add, not

the actual code to test.

Let’s look at the code in Listing 6-16 first, and then I’ll do a quick

overview of what’s being presented.

Listing 6-16.  Unit tests for the BookSales controller’s create

method.

const assert = require("assert");

const restifyErrors = require("restify-errors")

const sinon = require("sinon")

const mongoose = require("mongoose")

const lib = require("../lib");

Chapter 6 Testing Your Application

133

describe("Controllers", function () {

 describe("BookSales", function() {

 describe("#create", function() {

 let BookSales;

 //setup all we need for the tests

 beforeEach(function() {

 �BookSales = require("../

controllers/booksales")(lib);

 �sinon.spy(BookSales,

"writeHAL")

 })

 //and tear down whatever we changed

 afterEach(function(){

 BookSales.writeHAL.restore();

 })

 //tests

 �it("should return an InvalidArgument

exception if no body is provided in the

request", function (done) {

 �BookSales.create({}, {},

function(err) {

 �assert.ok(err

instanceof

restifyErrors.

InvalidArgumentError)

 done();

 })

 })

Chapter 6 Testing Your Application

134

 �it("should call the save method for the

booksale model", function() {

 �//we'll spy on this method to

understand when and how we call

it

 �sinon.spy(mongoose.Model.

prototype, "save")

 �BookSales.create({body:

{totalAmount: 1}}, {})

 �assert.ok(mongoose.Model.

prototype.save.calledOnce)

 �mongoose.Model.prototype.save.

restore();

 })

 �it("should call the writeHAL method",

function() {

 �//we stub the method, so it can

actually succeed even without a

valid connection

 �sinon.stub(mongoose.Model.

prototype, "save").callsFake(

cb => cb())

 �//we create a simple fake

"json" property that will be

called by writeHAL

 �BookSales.create({body:

{totalAmount: 1}}, {json: () =>

{} })

 �assert.ok(BookSales.writeHAL.

calledOnce)

Chapter 6 Testing Your Application

135

 �mongoose.Model.prototype.save.

restore();

 })

 })

 })

})

We begin by creating the groups for our tests. As I mentioned before,

these groups can be anything we want; in my case I felt that grouping as

Controllers ➤ [Controller name] ➤ [Method name] would come in handy.

After that, for the specific method we’re testing here, we’ll test the

following:

•	 Make sure it returns the correct type of error message

whenever the body for a new book sale is not present.

•	 Make sure it calls the save method on the model being

created.

•	 Check that after a successful data save on the database,

the controller is actually calling the writeHAL method,

to create the correctly formatted response.

All three tests have different mechanics. The first one shows you how

to use the done callback optionally available within each test. If you’re

dealing with an asynchronous function, that’s how you tell it when to stop

waiting for a response.

The second test is actually creating a spy on a method, so we can tell

whether it was called. Note that in order to create the spy, we’re using yet

another module, called SinonJS; this particular library works together with

Mocha (or any other unit testing framework) and provides the same tools

we saw earlier in this chapter: mocks, spies and stubs.

Chapter 6 Testing Your Application

136

Finally, the third test case is creating a stub, because we need to

control exactly how the insertion into the database works. (In this case,

we end with a returned value of success as if the database was actually

there.) This particular test also does not directly create or restore the spy

on the writeHAL method for the controller; instead, that happens in the

beforeEach and afterEach function callbacks, which are part of the testing

flow executed by Mocha. They’re provided to exclude from the test case’s

code anything that needs to happen for every single test.

Now that we’ve covered the code, let’s quickly look at its output to

understand what you should be aiming to see. First, you execute it with

the following line, assuming you’ve added the code from Listing 6-16 in a

folder called tests:

$mocha tests/

The output should be something like Figure 6-1.

Here you can see the other point of having the groups; namely that the

results are much easier to understand if the tests are properly grouped.

Also notice the error message; even though the tests are all green, we’re

showing an error message, and that’s completely normal, since the very

first test is actually testing for the error type.

Figure 6-1.  Output of the execution

Chapter 6 Testing Your Application

137

Tip E ven if error messages are normal, you still might want to
catch them somehow (depending on how you’re printing out the
error, possibly using a try-catch block, or redirecting the output based
on an environment variable) in order to show only messages related
to the output of the test, and avoid any clutter related to actual error
messages. This could be useful if you have too much clutter from
your own code.

�Integration Testing
Unit testing helps you save a lot of time and effort fixing bugs later

down the road, but when you’re dealing with a big enough platform,

your modules will start having interdependencies, which in turn

means you might run into trouble when they start interacting with

each other.

You can have different team members working on different modules

of your architecture, and individually the modules can be extremely well

tested, but once you deploy them together, you realize that your teams

never actually coordinated and have been making assumptions about each

other’s systems. So once they start sending messages back and forth, your

application is no longer working as expected.

This happens more often than you’d think, so having an integration

testing strategy from the get-go will save you a lot of headaches in

the future.

Chapter 6 Testing Your Application

138

�Testing Approaches
There are different ways to implement integration testing into your system,

each with its pros and cons. The most common ones are the big bang, top-

down, and bottom-up approaches.

Let’s take a closer look at each one to understand when to use them

and when to avoid them.

�The Big Bang Approach

This approach consists of testing the entire system integration in one go.

Forget about module-to-module communication; this approach goes for

the entire platform at once.

This is great for small systems, with not a lot of interaction between

components, that way if something goes wrong and there is an issue,

you can quickly find the root cause for it. If your platform is complex and

consists of multi-step interactions between modules, on the other hand,

then this approach is not really recommended.

Because you’re testing everything at once, finding the root cause

of a problem becomes a challenge. you can’t simply look at the output

of your test and know which module failed; all you’ll know is that

something went wrong, AND then it’s dive-into-logfiles time to try to

see where the error is.

Figure 6-2 will help you visualize when a big bang approach is actually

useful and when it can become a pain in the neck.

Chapter 6 Testing Your Application

139

With this approach, finding root causes for issues turned up in the

second example of Figure 6-2 would require you to go through the logs of

four different modules in the hope of finding out what went wrong.

Another big problem with this approach is that it requires the entire

system to be present to start applying it. You can’t partially test a user flow if

you’re going big bang; you have to test the entire thing, so you need to wait

for your team (or teams) to have a working version of all required modules

before you can start implementing the integration tests between them.

Figure 6-2.  Big bang approach testing entire user flows for simple
and complex architectures

Chapter 6 Testing Your Application

140

If you’re dealing with complex systems, there are other ways to go

about integration testing that might better suit your needs.

�The Gradual Approach

If testing entire user flows at once is not good enough for your integration

testing needs, then you have to go through the interactions gradually, one

by one, making sure that just two interconnected systems work correctly

with each other, without paying attention to the big picture.

A gradual testing approach can also be broken down (as I already

mentioned) into the following:

•	 Top-down testing, which follows the data flow from

module to module, making sure to test the interactions

between them in each step. This approach works well

if you want to start testing as soon as possible, since

all you need are the first two modules of the flow; after

that, you can start working in parallel with your devs

while they work on the rest of the modules, and you

begin adding tests for the existing ones. This approach

also works well if you aim to have a quick prototype of

your application tested as soon as possible. You don’t

need all its modules for that, only the critical ones, and

this approach allows you to have them tested by the

end of the development effort.

•	 Bottom-up integration testing, on the other hand, starts

at the very end of the data flow, testing integration

between modules, just like the previous one, but

working its way backwards. The main advantage of

doing integration testing this way is that problems deep

in the integration steps are identified early on. The

Chapter 6 Testing Your Application

141

main problem, though, is that it kills your chances of

getting early prototypes out and properly tested if the

development flow instead follows a more top-down

approach.

In the end, these are all valid approaches, and picking the right one for

your particular circumstances requires you to look at your needs, from a

development perspective as well as from a quality one.

�Summary
This chapter provided a small glimpse into the unit testing world as well

as the work required to test big and complex systems. It showed you the

basics of unit testing your applications in order to give you a basic idea of

what it takes to do that in your own Node.js applications.

In the final chapter, I’ll show you some real-world examples of

problems experienced by big companies while trying to scale their

platforms and how they managed to solve them.

Chapter 6 Testing Your Application

143© Fernando Doglio 2018
F. Doglio, Scaling Your Node.js Apps, https://doi.org/10.1007/978-1-4842-3991-9_7

CHAPTER 7

Success Cases
To complete this journey I want to share with you some success cases.

As you might have realized by now, you’re not the only one having these

types of issues; a lot of companies struggle when scaling their successful

products, especially when those products are massively successful, like

PayPal or Netflix.

In this final chapter, I’m hoping to shed some light into how the big

companies are solving the types of problems you and others like you are

having.

�PayPal
PayPal can definitely be considered one of the early adopters of Node.js for

enterprise solutions. Back in 2013 they saw the opportunity to move away

from a front-end/back-end type of development group and into a unified

full-stack one.

They did this gradually, but started to incorporate Node.js into their

team. The first thing they looked at was Express.js, but as happens with

many tools, once they started to use it to build their large-scale solutions,

they realized it was not enough.

And here is where Kraken.js1 came in. Their team managed to create

a layer on top of Express.js to standardize the output of their different

development teams using it. This new open source module is basically

1�See http://krakenjs.com for more details

http://krakenjs.com/

144

middleware for Express.js, but it adds several features that are very

important when creating web applications:

•	 Lusca provides a layer of security to your microservices.

It provides Cross Site Request Forgery, Content Security

Policy X-Frame options and more completely out of the

box.

•	 Kappa provides an NPM proxy, capable of creating

private NPM repos without having to duplicate the

entire registry.

•	 Makara provides internationalization support on top

of Dust.js, which is a templating library. This is perfect

if you’re not just creating APIs, but also working on the

front-end of your application as well.

•	 Adaro is simply a wrapper on top of Dust.js. It is already

in use if you’re using Makara, but if you’re not, you can

simplify your work by using Adaro.

The interesting aspect of this transformation is that because they were

hesitant about going all in with Node.js at that moment, once they decided

to try it with a new application, they did it by developing the same app in

Java as well (which was their language of choice until that moment). They

started working on the Node.js version two months after the Java project

had started and with just two developers.

The end date was the same, but the Node.js version had around 33%

fewer lines of code and almost 40% fewer files. And the cherry on top?

The Node.js app was actually considerably faster than their Java

counterpart. In fact, you can see the results in Figure 7-1, as published

on their technical blog.

Chapter 7 Success Cases

145

Figure 7-1.  Performance comparison between Node.js and Java
versions of the same app2

2�Taken from https://www.paypal-engineering.com/2013/11/22/
node-js-at-paypal/

Chapter 7 Success Cases

https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/

146

In the end, this new approach for PayPal turned out to be a great

move. It didn’t just increase the performance of their apps (an example of

one is shown in Figure 7-1), but it also helped reduce development time

compared to their old Java-based workflow.

�Uber
This is a company that’s been basing their entire business in Node.js since

version 0.8. And at the beginning, like any other quick prototype-based

production system, they had an architecture like you see in Figure 7-2.

After they started growing out of control and realized this monolithic-

based architecture wasn’t going to work, they went for a microservices-

based approach. The problem? They needed high levels of reliability;

the platform had to be up at all times (ideally, it would need to be able to

recover from errors on its own) and needed to grow fast and automatically

whenever the traffic required it to.

So, because of that particular set of needs, a regular set of

microservices wouldn’t cut it, in fact, none of the standard solutions at the

time did, so they ended-up building their own: Ringpop.

This tool is essentially a library for a Node.js project. By adding it into

their code, Uber’s developers gained:

Figure 7-2.  Monolithic initial Uber architecture

Chapter 7 Success Cases

147

•	 A membership protocol for the nodes of the cluster.

This works based on a SWIM gossip protocol variation.

It works very similarly to Redis cluster mode: every

node of the cluster knows about the others, and can be

notified if a new one appears, as well as being notified

when existing members are down. Figure 7-3 shows

a simplified version of the communication protocol

and how a new node can notify any existing one to be

added into the group.

•	 A consistent hashing mechanism to equally distribute

workload amongst worker nodes. This makes sure the

cluster is load-balanced by itself, taking the need for

load balancing off the developer.

•	 A transparent “handle or forward” mechanic, which

makes sure the developer doesn’t need to know each

and every single node of the cluster, instead of that,

they can simply send a request to any one that’s already

known, and if that node is not able to handle the

request, it’ll forward it to the one that can.

Figure 7-3.  Gossip-based cluster example

Chapter 7 Success Cases

148

Essentially this library gives the team everything they needed to create

an architecture capable of handling the high level of traffic they get every

day; and they were kind enough to open source it, so not only can you use

it on your own projects, you can also contribute to it and help make it grow

and improve.

�LinkedIn
LinkedIn is another company that underwent a drastic transformation

for some of their services once they started growing massively. But in this

case, they didn’t migrate off of Java; they migrated from a Ruby on Rails

application into a Node.js setup.

To be more specific, the service they needed to grow was their mobile

API. At the time they had a single service, which was hit several times per

page by the client apps. Each time, a new thread would handle that request

(they were using Mongrel as their main web server with RoR). You can see

an approximate version of this architecture in Figure 7-4. With their traffic

numbers, this was quickly becoming inefficient and hard to scale (each

server was quickly running out of memory, limiting the number of threads

they could spawn), which is why they took action.

Figure 7-4.  Estimated mobile API architecture based on RoR plus
Mongrel

Chapter 7 Success Cases

149

With Node.js they wanted to move away from that model and into

a stateless event-based system, capable of simplifying the interaction

between client and server to a single request.

Instead of going for the classic three-tier model adapting the MVC

pattern for scale, in this situation they decided to create a different middle

tier layer, one that would aggregate all data from different services and

send it back to the client. This effectively reduced the number of requests

into one, simplifying the logic required on the client app. Even further, they

ditched the classic REST approach, and went for a long-lived connection

between client and server, able to stream packed data from the server,

which in turn, is unpacked and rendered by the client. You can see how

this new architecture might have looked like when designed in Figure 7-5.

With this new setup, they drastically reduced the number of servers

they needed, from 30 to only 3, simplifying the effort required to maintain

the infrastructure.

Figure 7-5.  Estimated change on architecture

Chapter 7 Success Cases

150

Note T he comparison here is not meant to state that Node.js is
faster than Ruby on Rails, because there are many factors to take into
consideration. They didn’t just change their programming language
and everything started to work; they changed their entire architecture
and tech stack.

�Biggest Challenges
According to LinkedIn’s engineers, some of the biggest challenges they met

while changing their entire architecture and tech stack were monitoring

and profiling.

�Monitoring

We covered this in a previous chapter, and it is not only mandatory, but

difficult to implement, since it usually requires ad-hoc setups. This is

particularly so when you need to move away from standard architectural

patterns into specific models that only suit your requirements.

�Profiling

Profiling their applications was also a big challenge and something every

team should periodically do if performance is important (which in this

case it was). At the time of this change (circa 2012), there weren’t many

good profilers for Node.js, so they were forced to use what they had at hand

and come up with their own workarounds. For example, Listing 7-1 shows

a quick snippet of code they came up with to monitor for delays on Node’s

event loop.

Chapter 7 Success Cases

151

Listing 7-1.  Pacemaker implementation monitoring the load of the

event loop

var oldTime = process.hrtime();

setInterval(function() {

 var newTime = process.hrtime();

 var delay = (newTime[0] - oldTime[0]) * 1e3 + (newTime[1] -

oldTime[1]) / 1e6 - TIME_INTERVAL;

 oldTime = newTime;

 Metrics.PacemakerDelay.update(delay);

}, TIME_INTERVAL);

That little bit of code simply adds something to the event loop,

recording the time at the moment of insertion, and once the callback is

executed, the time difference is calculated. By tracking these numbers,

you can keep track of spikes on the event-loop, which would indicate the

presence of CPU-intensive code in your application.

�Netflix
Finally, Netflix is yet another company that can be considered an early

adopter of Node.js. They started playing around with it on an enterprise

level early on, and were not afraid of showing their results to the industry

once they started putting in production their “experiments.”

Like many other companies, by the time they decided to start

experimenting with Node.js, they had a full set of monolithic applications

written in Java. They were struggling with some aspects of their

development flow because of the tech stack in place, having big bulky

applications that couldn’t really be tested locally, so every time a change

was made, it required up to 40 minutes of wait time for build processes

and deployment time. And with the constant development of new and

more advanced devices, they suddenly were faced with the requirement of

supporting all those devices.

Chapter 7 Success Cases

152

Essentially this made it very difficult to expand and grow without a

major effort from the development team.

So the first thing they tried was the microservices route; like many

others, they went the REST way. Similarly to what the team at LinkedIn

ended up doing, they had a REST API in front of a set of microservices. The

instant benefit was that they now had a more flexible and standardized

interface they could use to add new devices. That was great, but they also

had problems, such as having the API and the microservices managed by

two different teams, causing the latter to wait several weeks for the first

one to approve and adopt their own changes in order to move them into

production.

Furthermore, this was one of those cases where REST is not the right fit

for the problems. The developers treated everything as a resource (as one

should when it comes to REST), but their UI had far oo many resources

that needed to be loaded, so every screen required too many round trips

before it could load properly.

The next iteration of this approach tried to solve this problem, as well

as provide a better dev experience for their maintainers. They needed

a more flexible environment, one that would allow them to quickly add

device-specific features without the need to redeploy the entire thing.

So for this, they came up with API.NEXT, a new version of their API that

allowed them to upload new APIs to their server individually without

affecting the rest of the teams. You can see a high-level overview of API.

NEXT in Figure 7-6.

Chapter 7 Success Cases

153

The problem with this approach was that it quickly got out of hand,

and because of the size of these APIs, the team now had thousands of

individual scripts to maintain. With all of them being on the same server

instance, those servers needed to be upgraded often due to lack of

memory, or to handle I/O operations, for example. So all in all, this new

approach was definitely a step in the right direction, but they still had

several issues to solve.

That’s where the final and current version of their API comes into

play. For this one, they knew they wanted to keep their developers as a

priority but also think about scalability and availability at the same time.

So the New Generation Data Access API moved all data accessing APIs

into individually running Node.js applications. You can see a high-level

overview of this new architecture in Figure 7-7, and you can compare how

their architecture changed from the one shown in Figure 7-6.

Figure 7-6.  High-level architecture of the approach taken by
API.NEXT

Chapter 7 Success Cases

154

As you can see, they’re isolated thanks to the fact they’re running

inside individual Docker containers. With this approach, they managed

to improve their developer’s productivity, thanks to having JavaScript

everywhere (when it comes to client-facing API development).

Note T his might not be the case for every team, but for this
company, it made a lot of sense to have the teams focused on the
APIs and the client apps working together as one, and for this, a
single programming language made a lot of sense.

Finally, with the Docker approach for their APIs, they also gain

productivity since developers can now simply run that container locally

and test without having to perform deployments anywhere. One last point

to note about this architecture is that it is not purely utilizing Node.js for

Figure 7-7.  Highly available and scalable new architecture for
Netflix’s API

Chapter 7 Success Cases

155

the entire approach; instead, it’s mixing technologies wherever necessary.

Node.js on one side makes a lot of sense for APIs, thanks to the speed of

development and their easy access to non-blocking I/O. But at the same

time, the Netflix team can keep using their Java-based services without

having to rewrite them and still get a lot of performance out of them.

�Summary
This chapter presented several cases showing how some of the most

prominent product-based companies right now have had to deal with their

growing pains. Let’s recap what each of them did:

•	 PayPal extended the tools they were using (Node.js)

by making sure they can be used at scale because at

the time, Node.js hadn’t had the attention from the

enterprise scene that it has now.

•	 Uber went from a monolithic architecture into

microservices using custom protocols they open

sourced.

•	 LinkedIn went from a Ruby on Rails solution that was

not ready to scale (due among other things to the

current state of the tech stack they were using) into a

custom architecture based on Node.js.

•	 Finally, Netflix went through a set of changes, iterating

over their design, looking for weak points and trying

to solve them on the next version. At the end (and

possibly something they’ll eventually change again)

they ended up with a mixed solution, trying to leverage

the strengths of each technology without being blinded

by just one and using it as a silver bullet.

Chapter 7 Success Cases

156

What you should take away from this chapter, and from this book

overall, is this: try to understand how your business is going to impact your

product and try to create an architecture that is ready to grow. Take into

consideration the industry standards, but don’t be afraid to mix and match

styles, creating your own solutions specifically tailored to your business

needs.

Thanks so much for reading and working through this book; I hope

you were able to get something out of it!

Chapter 7 Success Cases

157© Fernando Doglio 2018
F. Doglio, Scaling Your Node.js Apps, https://doi.org/10.1007/978-1-4842-3991-9

Index

A
Adaro, 144
Alerting

maintenance window, 90
periodicity, 89
strategy, 91
symptoms, 90
triggering condition, 89

Architecture
broker pattern, 34–36
client-server, 25–27
event-driven, 29–31
lambda, 37–39
layers, 20

data flows, 21
storage engines, 22

master-slave, 27–28
microservices, 32–34
MVC, 22–25
patterns, 19

Atomic, 124
AWS Console, 104
AWS ElastiCache, 74

B
Bottom-up integration testing, 140
Broker pattern, 34–36

Byzantine fault-tolerance
architecture, 16–17
CRC algorithm, 17
monitoring modules, 16
status checkers, 16

C
Client-server architecture, 25

business-related
computation, 26

communication protocol/
technology, 26

Clustering
color-coded process, 54
forking process, 49
generic API, 50
install PM2, 56
IPC, 52
PM2 logs command, 57
PM2 start command, 56
process ID, printing, 54
single-threaded

environment, 48
Code Division Multiple Access

(CDMA), 15
Consistent, 124
Custom alerting strategy, 89

https://doi.org/10.1007/978-1-4842-3991-9

158

D
Data-processing service, 5–6
Docker approach, 154
Documented control flow, 60

E
Elastic, Logstash, and Kibana

(ELK) cluster, 66
Event-driven architectures

components, 30
limitations, 31

Exception handling, 124

F
Falcon9 rocket, 12
Fault tolerance

Byzantine, 16–18
checkpointing, 15–16

DMTCP, 16
mementos, 16

redundancy (see Redundancy)
Filebeat, 66
FlexRay, 14
Forward Error Correction (FEC)

encoding algorithms, 14
Reed-Solomon, 14
Viterbi algorithm, 15

Fragmented session problem
external memory access, 84
sticky session

Apache configuration, 85
load balancers, 84

G
Global System for Mobiles (GSM), 15

H
Hadoop Distributed File System

(HDFS), 10
High availability

data-replication process, 9
HDFS setup, 10
master-slave model, 8
replica sets, 10
SLA, 7
three-node service, 7

I, J
Integration testing

big bang approach, 138–139
gradual approach, 140–141

Internal factors
fault tolerance, 11
high availability, 7

Inter Process Communication
(IPC), 52

K
Kappa, 144

L
Lambda architectures

batch processing, 38–39
nutshell processing, 37

Index

159

real time querying, 39
stream processing, 38
use case, 37

LinkedIn
architecture, 149
mobile API, 148
monitoring, 150
pacemaker

implementation, 151
profiling, 150
RoR plus Mongrel, 148
three-tier model, 149
transformation, 148

Load balancer, 82
Logging

centralized
architecture, 64

elastic scaling
architecture, 64

index data, 72
module, 71
single file

history, 69
logrotate, configuration and

execution, 70
size, 69

stdout and stderr, 65
filebeat, execution, 67
logstash, configuration,

67–68
winston-based custom

logger, 71
logrotate command, 70
Lusca, 144

M
Makara, 144
Master-slave architecture, 28

controlled
communication, 27

JobTracker, 28
use cases, 28

Memcached, 74
Metrics

alert creation, 105–107
autoscaling actions, 104
EC2 instances, 108
process, 105

Microservices
architectures, 59

authentication
strategy, 32

behavior, 33
issues, 34
monolithic approach, 32
UserMgnmt service, 33

horizontal scaling, 58
vs. monolithic application, 58

Mobile API architecture, 148
Model-View-Controller (MVC), 22

architecture, nodes/objects, 24
data binding, 25
definition, 23
domain knowledge, 23

Model, View, Presenter (MVP)
pattern, 24

Model, View, ViewModel (MVVM)
pattern, 25

Index

160

Monitoring
alerting, 89–91
app-specific indicators, 88
AWS metrics, 103
infrastructure, 87
LinkedIn, 150
metrics (see Metrics)
networking devices, 88
types, 88

Monolithic initial Uber
architecture, 146

Multi-server scenarios
fragmented session problem, 84
user session, partial

fragment, 82

N, O
Netflix

API.NEXT, architecture, 153
Docker approach, 154
high-level architecture, 153
I/O operations, 153
monolithic applications, 151
Node.js, 151
non-blocking I/O, 155
REST API, 152

Node.js applications, 143
ad-hoc metrics, 92
API endpoint, 92
architecture, 91
attributes, JSON, 95–96
average delay, 102
AWS CloudWatch, 91

custom metrics, 100
metrics module, 97
metrics parameter, 93
modified API’s code, 98
refactoring process, 93
scaling rules, 91
SDK module, 93
wrapper module, 99

P, Q
PayPal

enterprise solutions, 143
Express.js, 143
front-end/back-end type, 143
Kraken.js, 143
Node.js and java,

comparison, 145
open source module, 143
performance apps, 146
web applications, 144

Period column, 101
Profiling, LinkedIn, 150
Proof of Concept (PoC), 65
putMetricData method, 93, 97

R
Redis, 74
Redis cluster, 90
Redundancy

fault tolerance, 12
FEC, 14–15
TMR, 13–14

Index

161

Replica sets, 10
Resource utilization technique

crashed service, 5
service degradation, 4

S
Scaling techniques

advantages
automatic elastic

behavior, 44
AWS, 44
cost management, 45
GCP, 44
multi-zone deployment,

46–47
multi-zone replica

schema, 47
horizontal, 41

elasticity, 43
service oriented

architectures, 43
tier seperation, 43

vertical, 41–43
Service degradation, 4
Service level agreement (SLA), 7
Sharing memory

benefits, 75–76
migration, 75
multi-server scenarios, 74

Single points of failure (SPOFs)
error budget, 82
Redis, 77
SLA, 82

SLI, 79–80
SLO, 80–81

SinonJS, 135
Statistic column, 101
System-level indicators (SLIs),

79–80
System level objectives (SLOs),

80–81

T
Testing

AssertionError exception, 126
assertions, 112
asynchronous code

BookSales controller,
132–135

callback pattern, 130, 131
error, 131, 135
Mocha, 130–131
MVC pattern, 132
output, execution, 136
save method, 135
unit tests, 132–135
writeHAL method, 135

deepStrictEqual, 126
Mocha, 128–130
module, 125
parameter, 128
strictEqual method, 126
structure test cases, 113
theoretical test case, 112
thrown exception, 127
unit, 114

Index

162

Tools
assertions, 115–116
dummies, 123
fixtures, 123
frameworks, 124
generic save

function, 117
mocks, 120–121
spies, 122
stubs, 118–120
test cases, 115
test suites, 115

Top-down testing, 140
Traffic increase

direct effects
non-blocking I/O

approach, 2
overloading servers’

capacity, 2
indirect effects

microservices-based
architecture, 3

overloading internal
processes, 3

resource-bound log server, 3
scaling capabilities, 4

Triple modular redundancy
(TMR), 13–14

U, V
Uber

consistent hashing
mechanism, 147

gossip-based cluster, 147
monolithic-based

architecture, 146
Node.js project, 146

Unit testing, 114, 115, 118, 125, 137

W, X, Y, Z
Web-server log files, 79
writeHAL method, 136

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Need to Scale
	External Factors
	Traffic Increase
	Direct Effects
	Indirect Effects

	Increased Processing Power Required
	Your Service Is Degraded
	Your Service Is Dead

	Internal Factors
	High Availability
	Fault Tolerance
	Redundancy
	Triple Modular Redundancy
	Forward Error Correction

	Checkpointing
	Dealing with Distributed Checkpointing
	When to Use?

	Byzantine Fault-Tolerance

	Summary

	Chapter 2: Architectural Patterns
	The Patterns
	Layered Architecture
	MVC Is Not Layered
	Client-Server
	Master-Slave
	Event-Bus or Event-Driven Architectures
	Microservices Architecture
	The Broker Pattern

	Lambda Architectures
	Summary

	Chapter 3: Ways to Scale
	Scaling Techniques
	Vertical or Horizontal Scaling?
	Taking Advantage of the Cloud
	The Power of a Multi-Zone Deployment

	Clustering Your Application
	Clustering with PM2
	In Conclusion

	Microservices to the Rescue
	In Conclusion

	Summary

	Chapter 4: Challenges when Scaling
	Dealing with Your Log Files
	You’re Just Logging into stdout and stderr
	You’re Logging into a Single File
	Throw Away Your Logger and Use a Real One

	Sharing Memory between Processes
	Single Points of Failure? No Thank You!
	Knowing When to Stop
	System-Level Indicators (SLIs)
	System Level Objectives (SLOs)
	What Happens When We Don’t Meet Our SLOs?
	Agreeing on Your SLAs

	Stateful Apps and Multi-Server Scenarios
	Summary

	Chapter 5: When to Scale?
	Monitoring
	Alerting
	Monitoring Your Apps
	Adding AWS Metrics into Your Dashboard
	Reacting to Your Metrics
	Step 1: Creating Your Alerts
	Steps 2 through 4: Setting Everything Else

	Summary

	Chapter 6: Testing Your Application
	Testing 101
	The Definition
	The Tools
	Test Cases and Test Suites
	Assertions
	Stubs, Mocks, Spies and Dummies
	Stubs
	Mocks
	Spies
	Dummies

	Fixtures

	Best Practices

	Testing with Node.js
	Testing without External Modules
	Mocha
	Installing and First Steps

	Testing Asynchronous Code
	Testing: a Practical Example

	Integration Testing
	Testing Approaches
	The Big Bang Approach
	The Gradual Approach

	Summary

	Chapter 7: Success Cases
	PayPal
	Uber
	LinkedIn
	Biggest Challenges
	Monitoring
	Profiling

	Netflix
	Summary

	Index

