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Persönlichkeiten werden nicht durch schöne
Reden geformt, sondern durch Arbeit und
eigene Leistung.

Albert Einstein (1879–1955)



Preface

This book presents a novel concept for introducing the finite element method,
applied in the context of solid mechanics. It presents a major conceptual shift, i.e.,
taking away lengthy theoretical derivations from the face-to-face interaction with
students, focusing on the summary of key equations and concepts and to practice
these on well-chosen example problems. The theoretical derivations are provided as
additional reading, and students must study and review the derivations in a
self-study approach. The theoretical foundation is provided to solve a compre-
hensive design project in the context of tensile testing. A classical clip-on exten-
someter serves as the demonstrator on which to apply the provided concepts. The
major goal is to derive the calibration curve based on different approaches, i.e.,
analytical mechanics and based on the finite element method, and to consider
further design questions such as technical drawing, manufacturing, and cost
assessment. Working with two concepts, i.e., analytical and computational
mechanics, strengthens the vertical integration of knowledge and allows the student
to compare and understand the different concepts, as well as highlighting the
essential need for benchmarking any numerical result. It is beyond question that
such an approach can serve only as a first introduction to this powerful and complex
method and that further in-depth study is required for a reliable and confident
application of the finite element method.

Southport, Australia Andreas Öchsner
September 2017
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Chapter 1
Introduction and Problem Formulation

Abstract This chapter briefly reviews different teaching approaches for computa-
tional statics. The major focus is on the presentation of the design project which
serves to introduce the basic application of the finite element method. The project
is taken from the context of tensile testing of engineering materials and relates to
the design of a clip-on extensometer. The mechanical model of this sensor can be
simplified to a �-shaped frame structure which allows the application of classical
mechanics as well as a computational approach. Thus, the design problem also serves
to review and strengthen classical appliedmechanics and its comparisonwithmodern
numerical approaches.

The incorporation of projects in the classical curriculum structure of higher educa-
tion dates back to the late 1960s. Nowadays, some institutions even have moved to
project-based curricula in engineering [15]. Traditional teaching approaches would
introduce the finite element method based on lectures, which focus on the underly-
ing theory, and tutorials, which deepen the topic, mainly based on hand calculations
of simple problems. Some universities may additionally offer computer laborato-
ries where either a classical programming language (e.g. FORTRAN or C++) or a
multi-paradigm numerical computing environment (e.g. Maple orMATLAB) is used
to write small finite element routines. Alternatively, a commercial package might be
used. Amore recent approach, i.e., project-based learning (PBL), tries to incorporate
these different teaching elements and to focus around a certain design project. Such
approaches are believed to facilitate the learning process and are closer to engineer-
ing practice. In many cases, commercial finite element packages are used and quite
complex structures are investigated or even optimized [22, 37, 42]. The analysis
of complex structures is normally linked to the application of a larger number of
elements and the evaluation of results is, many times, based on contour plots of field
quantities (‘colored pictures’). Themerit of this approach lies in showing the strength
of the method and to illustrate how the theory is transferred to a commercial pro-
gram. Despite the fact that there are numerous commercial finite element packages
available, the general steps to perform a finite element analysis do not change and
only the graphical interface needs to be mastered when moving from one package to
another one.

© Springer International Publishing AG 2018
A. Öchsner, A Project-Based Introduction to Computational Statics,
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2 1 Introduction and Problem Formulation

However, solely focusingoncommercial packages and complex structures involves
many dangers for the finite element beginner. Without the knowledge of the under-
lying theory, a generation of an appropriate and accurate computational model (e.g.
element type, mesh size, and refinement) might be difficult. Furthermore, to rely
on displayed colors or values might be misleading if, for example, the difference
between nodal and integration point results is not known. Thus, a serious introduc-
tion to the finite element methodmust incorporate the corresponding theory andmust
enable the user to judge the quality of the obtained results.

The project-based introduction to the finite element method in this book focuses
on a simple but real engineering structurewhich allows to connect analyticalmechan-
ics to the computational approach based on the finite element method. Doing so, the
basics of applied mechanics are reviewed, strengthened, and linked to a numerical
approach. Furthermore, the project allows to address further questions from many
other subjects such asmaterial selection,manufacturing, costs and lightweight poten-
tial. Nevertheless, it must be highlighted that this approach is only a first introduction
to the finite element method and a reliable application requires further studies into
the underlying theory, as well as comprehensive practice.

1.1 Project Outline

The proposed design project is related to the classical tensile test (see, for exam-
ple, [25]), i.e., the most important and common test to characterize the mechanical
behavior of engineering materials. The quantities to be measured are normally the
applied force and a distance in loading direction.1 The measurements are then con-
verted to the acting stress and strain, normally expressed as so-called engineering
quantities. The force measurement is normally based on a load cell and does not
imply major problems if the capacity is chosen according to the expected force
range. The measurement of the strain is more demanding since the data recording
should happen in the gage section on the specimen and not, for example, be based
on the movement of the machine crosshead. The application of sensors, such as
strain gages or extensometers, directly on the specimen’s surface or noncontacting
optical approaches such as video or laser extensometers are the general options for
this task [19, 32]. Figure1.1 shows a typical clip-on extensometer with knife edges
used to attach the sensor on the specimens via two clip-springs. These knife edges
ensure that the ends of the sensor legs and the corresponding part of the specimen
(gage length) perform the same movement, i.e., displacement but more or less ‘free’
rotation. Other configurations are possible where the feet would be fixed with small
screws on the specimen (quite common in fracture mechanics). The set-up of this
type of sensor looks like a �-shaped frame structure2 with an additional horizontal

1Some evaluation procedures require also a distance measurement perpendicular to the loading
direction in order to evaluate Poisson’s ratio.
2Civil engineers would call it a portal frame.



1.1 Project Outline 3

Fig. 1.1 Flat tensile specimen with extensometer (HBM, Germany)

Fig. 1.2 Schematic sketch of the extensometer and tensile specimen: a undeformed and b deformed
state

mechanical protective mechanism to avoid overexpansion (elongation failure) of the
sensor.

The extensometer shown in Fig. 1.1 can be simplified to a mechanical model as
shown in Fig. 1.2. From this representation it can be seen that all three members
of the frame undergo at least a bending deformation as soon as the specimen is
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Fig. 1.3 Alternative design of an extensometer (Epsilon Technology, USA): a overall view and b
detail of the beam with strain gages

elongated. Based on the configuration with knife edges, a free rotation of ends of the
extensometers legs is assumed. Furthermore, the measuring principle is indicated,
i.e. the strain in the horizontal member is recorded via a strain gage (εstrain gage) and
must be related to the strain (εspecimen) in the actual specimen (so-called calibration).
Thus, the engineering task is to relate the recorded signal in the extensometer to the
real strain in the specimen based on a factor or some kind of equation.

An alternative configuration based on the same measuring principle is shown in
Fig. 1.3. The beam with strain gages on both sides (i.e., one in the tension and the
other one in the compressive strain regime) does not span over the entire gage length
of this extensometer model.

A similar design to Fig. 1.1 is shown in Fig. 1.4 where the knife edges and the
mechanical protective mechanism can be clearly identified.

Based on the explanations regarding project-based introductions of the finite ele-
ment method presented at the beginning of this chapter and the peculiarities of the
sensor design as outlined in Figs. 1.1, 1.2, 1.3 and 1.4, a structure of the design
process as outlined in Fig. 1.5 has been created. The project has been split in two
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Fig. 1.4 Alternative design of an extensometer (NCS, China)

Fig. 1.5 Flowchart of the design process
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design phases. The initial design phase is restricted to classical analytical mechanics
in order to derive a general expression of the calibration curve. It is worth noting
that no specific numbers should be assigned to the derivation and a general, i.e. as a
function of the design variables (geometrical and material properties of the sensor),
expression should be derived. This will allow to later easily check different design
proposals in order to have a reasonable ratio between both strain values. In addi-
tion, reviewing analytical mechanics and applying it to a practical design problem
allows to strengthen the vertical knowledge integration and students should be able
to understand the different benefits and drawbacks to eachmethod. In addition, it was
decided to avoid lengthly derivations in this first introduction to the finite element
method and to provide the derivations as additional reading for weekly self-study.
The textbooks mentioned in the literature section may serve for this purpose. Thus,
the following chapters collect only a summary of basic concepts and equations with
a focus on their application to relatively simple problems.

The design process as outlined in Fig. 1.5 contains components from other courses
such as material selection or manufacturing. This is not covered in this book but is a
valuable addition to the expected design reports since it relates to a complete design
approach as known from engineering practice.

1.2 Assessment Items and Marking Criteria

The proposed design project can be handled as a group or individual assignment.
Obviously, there are different benefits and drawbacks to each method. Working in
groups or teams is definitely closer to the industrial context where larger projects are
nowadays handled in multidisciplinary teams. Thus, it is essential for an engineer to
be trained to work in such a context. This ability is connected to many different soft-
skills, ranging from communication and presentation skills to simplifying complex
circumstances for team members from other areas of expertise. If students are work-
ing in groups, it is important to include a self-assessment component to evaluate the
contribution of each team member. It is sometimes not too uncommon that all team
members give each other the maximum score in order to increase their final mark.
Thus, the allocated weight for any self-assessmentmust be carefully chosen. Another
typical occurrence is that very good students do not really like classical group work
and the corresponding evaluation as a team. These students sometimes feel that they
are carrying someone else’s load in addition to their own work package. Another
point to consider is the grouping of students in teams. Giving the students freedom to
form their own team of x students is in general quite popular while a random selec-
tion of students by the course convenor is less popular. However, the latter avoids the
problem that some students are not able to join a team, or at least claim so. Once the
project is completed or at least has progressed to a certain stage, the findings should
be summarized and communicated. In the case of group projects, this may happen
in the form of group or individual reports and/or group presentations. Oral presenta-
tions are an important skill but group presentations involving all the team members
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with only a few minutes of presentation time (e.g. 2 to 3 min) for each member are
difficult to evaluate if individual marks are required. The aforementioned comments
also hold for the submission of group reports, i.e. top students are normally less in
favor of the procedure. Thus, reports should have at least an individual submission
component for students to have the possibility to distinguish from the other team
members. In any case, it is important to not only rely on non-supervised assessment
items, i.e. design reports. To avoid that a student or a group could ‘outsource’ the
preparation of the design project, a significant supervised assessment item (quiz or
exam) must be included. It is also recommended that the students must pass this
assessment item (hurdle) to pass the entire course.
Based on the above refections, the following assessment scheme is proposed:

• Initial design report (20% of total mark),
• final design report (30% of total mark), and
• final exam (50% of total mark).

The split into an initial and final design report allows to provide a qualified feedback
to the students at an intermediate stage of the semester. Furthermore, it allows to split
the calculation approach in the application of analytical mechanics (initial design)
and the finite element method (final design).

The selected marking criteria for the initial design report are summarized in
Table1.1. It might be questioned why a course on computational methods should

Table 1.1 Initial design report: elements and marking criteria (20% of total mark)

Element Comment Weight

Formal aspects punctual submission; maximum number of pages
(10; including everything, e.g. appendix etc.); PDF
format; each page with name and enrollment
number; only electronic submission; suitable font
size and line spacing; A4 format; naming of the file
as course code_family name_first
name.pdf

10%

Initial sketches only freehand sketches of the sensor design; indicate
all dimensions with variables

15%

Analytical calculations use analytical mechanics (i.e., differential
equation–based approach and energy approach) to
characterize the deformation behavior of your
sensor; compare the results of both approaches;
derive a general expression, i.e., based on variables,
to relate the specimen’s deformation/strain to the
measured strain in the sensor; justify the selection of
your structural members

50%

Literature sufficient and appropriate references 10%

Peer-assessment assess the engagement of your group members;
provide a small paragraph for each member and give
a final mark

15%
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Table 1.2 Final design report: elements and marking criteria (30% of total mark)

Element Comment Weight

Formal aspects punctual submission; maximum number of pages
(20; including everything, e.g. appendix etc.); PDF
format; each page with name and enrollment
number; only electronic submission; suitable font
size and line spacing; A4 format; naming of the file
as course code_family name_first
name.pdf

5%

Technical drawings provide complete manufacturing drawings and
specify the manufacturing process; if your sensor is
composed of different parts, provide assembly
instructions; explain in detail how the sensor
measures and records the deformation (e.g. use of
strain gages); explain the fixation on the specimen

10%

FE calculations use finite-element ‘hand calculations’ to derive a
general equation for the deformation behavior of
your sensor; compare and validate your results with
the analytical calculations and the commercial finite
element package, which was introduced in the
course; justify the element types and mesh density
used; explain in detail all chosen dimensions of the
sensor; estimate the weight of the sensor

50%

Calibration provide clear instructions on the calibration process
of your sensor

7.5%

Cost estimate predict the entire costs for a prototype, including
material, manufacturing, and electronic components

7.5%

Literature sufficient and appropriate references 5%

Peer-assessment assess the engagement of your group members;
provide for each member a small paragraph and give
a final mark

15%

include a major reference to analytical mechanics, which is the topic of a few other
courses. On the one hand, it definitely strengthens the vertical integration of knowl-
edge and shows a practical application of the classical engineering mechanics. On
the other hand, the analytical solution can serve to validate the results of the finite ele-
ment approach. It should be noted that the validation of computational results is the
most important and challenging task of an engineer. This becomes quite demanding
for complex engineering structures where no analytical solutions are available.

The marking criteria for the final design report are summarized in Table1.2. It can
be seen that also areas of other courses are well represented (e.g., technical drawing,
manufacturing, cost assessment) in order to generate a complete design approach.



Chapter 2
Review of Analytical Mechanics

Abstract This chapter treats simple structural members based on two different
analytical approaches. On the one hand based on fundamental equations of contin-
uum mechanics, i.e., the kinematics, the equilibrium and the constitutive equation,
the describing partial differential equations are provided, including their general solu-
tion based on constants of integration. As an alternative approach, the total strain
energy of a system is introduced and applied in Castigliano’s theorems. The covered
structural members are rods (tensile deformation) as well as thin and thick beams
(bending deformation). The provided concepts are finally applied to the extensometer
design problem.

2.1 Overview: One-Dimensional Structural Members

2.2 Partial Differential Equation-Based Approaches

2.2.1 Rods

A rod is defined as a prismatic body whose axial dimension is much larger than its
transverse dimensions [2, 10, 16, 34, 36]. This structural member is only loaded
in the direction of the main body axes, see Fig. 2.1. As a result of this loading, the
deformation occurs only along its main axis.

Derivations are restricted many times to the following simplifications:

• only applying to straight rods,
• displacements are (infinitesimally) small,
• strains are (infinitesimally) small, and
• the material is linear-elastic.

The three basic equations of continuum mechanics, i.e. the kinematics relationship,
the constitutive law and the equilibrium equation, as well as their combination to the
describing partial differential equation (PDE) are summarized in Table2.1.

Under the assumption of constant material (E = const.) and geometric (A =
const.) properties, the differential equation in Table2.1 can be easily integrated twice

© Springer International Publishing AG 2018
A. Öchsner, A Project-Based Introduction to Computational Statics,
https://doi.org/10.1007/978-3-319-69817-5_2
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Fig. 2.1 Schematic
representation of a
continuum rod

Table 2.1 Different formulations of the basic equations for a rod (x-axis along the principal rod
axis), with L1(. . . ) = d(... )

dx

Specific formulation General formulation

Kinematics

εx (x) = dux (x)
dx εx (x) = L1 (ux (x))

Constitution

σx (x) = Eεx (x) σx (x) = Cεx (x)

Equilibrium
dσx (x)
dx + px (x)

A = 0 LT
1 (σx (x)) + b = 0

PDE

d
dx

(
E(x)A(x) duxdx

)
+ px (x) = 0 LT

1 (E AL1 (ux (x))) + px = 0

for constant distributed load (px = p0 = const.) to obtain the general solution of the
problem [24]:

ux (x) = 1

E A

(
−1

2
p0x

2 + c1x + c2

)
, (2.1)

where the two constants of integration ci (i = 1, 2) must be determined based on the
boundary conditions (see Table2.2). The following equation for the internal normal
force Nx was obtained based on one-time integration of the PDE and might be useful
to determine some of the constants of integration:

Nx (x) = E A
dux (x)

dx
= −p0x + c1 . (2.2)

The internal reactions in a rod become visible if one cuts — at an arbitrary location
x — the member in two parts. As a result, two opposite oriented normal forces Nx

can be indicated. Summing up the internal reactions from both parts must result in
zero. Their positive direction is connected with the direction of the outward surface
normal vector and the orientation of the positive x-axis, see Fig. 2.2.

Once the internal normal force Nx is known, the normal stressσx can be calculated:

σx(x) = Nx (x)

A
. (2.3)
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Table 2.2 Different boundary conditions and corresponding reactions for a continuum rod (defor-
mation occurs along the x-axis)

. . . . . .
ux(x = 0) = 0

. . . . . .ux(x = L) = u0

. . . . . .

EAdux(L)
dx

= Nx(L) = F0

Case Boundary Condition Reaction

Fig. 2.2 Internal reactions
for a continuum rod

Fig. 2.3 Axially loaded rod:
a strain and b stress
distribution

(a)

(b)

Application of Hooke’s law (see Table2.1) allows us to calculate the normal strain
εx . Typical distributions of stress and strain in a rod element are shown in Fig. 2.3.
It can be seen that both distributions are constant over the cross section.

To be able to realize a closed-form presentation with discontinuities (e.g. load,
material, or geometry), the so-called Macaulay bracket1 can be used for closed-
form representations. This mathematical notation has the following meaning:

〈x − a〉n =
{

0 for x < a
(x − a)n for x ≥ a .

(2.4)

1In the German literature, this approach is named after August Otto Föppl (1854–1942).
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(a) (b) (c)

Fig. 2.4 Graphical representation of the first three discontinuous functions according to Eq. (2.4):
a jump (n = 0); b kink (n = 1); c smooth transition (n = 2). Adapted from [2]

In particular with the case n = 0

〈x − a〉0 =
{
0 for x < a
1 for x ≥ a

(2.5)

the closed-form presentation of jumps can be realized. The first three discontinuous
functions are shown in Fig. 2.4. Furthermore, derivations and integrals are defined
by regarding the triangular bracket symbol as classical round brackets:

d

dx
〈x − a〉n = n〈x − a〉n−1 , (2.6)

∫
〈x − a〉ndx = 1

n + 1
〈x − a〉n+1 + c . (2.7)

Table2.3 shows a few examples of discontinuous loads and their corresponding
representations due to the discontinuous function given in Eq. (2.4).

In regards to the first case in Table2.3, it should be noted that a positive singe
force (F0 > 0) results in a negative jump in the normal force distribution (Nx ).

If no single closed-form representation is required, all the previous equations
(see Table2.2 and Eqs. (2.1)–(2.3)) can be applied to each continuous section. As a
result, transmission conditions between the continuous sections must be formulated
to determine the additional constants of integration, see Problem2.3.

2.1 Cantilever Rod with Point Loads
Given is a rod of length L and constant axial tensile stiffness E A as shown in Fig. 2.5.
At the left-hand side there is a fixed support and the right-hand side is either elongated
by a displacement u0 (case a) or loaded by a single force F0 (case b). Determine the
analytical solution for the elongation ux (x), the strain εx (x), and the stress σx(x)
along the rod axis. Sketch for both cases the corresponding distributions.

2.1 Solution
Case (a): Let us start the solution procedure by sketching the free-body diagram as
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Table 2.3 Discontinuous loads expressed due to discontinuous functions (deformation occurs along
the x-axis). Adapted from [2]

Case Load (Discontinuity Function)

Fig. 2.5 Rod under different
loading conditions:
a displacement and b force

Fig. 2.6 Free-body diagram
of the rod with displacement
boundary condition

shown in Fig. 2.6. It should be noted here that the imposed displacement u0 at the
right-hand boundary results in a reaction force FR(L).

The next step is to identify the boundary conditions of the problem. They can be
immediately stated as:
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Fig. 2.7 Free-body diagram
of the rod with force
boundary condition

Fig. 2.8 Equilibrium
between internal normal
force Nx and external load
F0

ux (0) = 0 , (2.8)

ux (L) = u0 . (2.9)

Consideration of the first boundary condition in Eq. (2.1) results with p0 = 0 directly
in c2 = 0. Considering the second boundary condition in Eq. (2.1) gives then c1 =
E Au0
L . Thus, the distributions of elongation, strain, and stress are obtained as:

ux (x) = u0
x

L
, (2.10)

εx (x) = dux (x)

dx
= u0

L
, (2.11)

σx (x) = Eεx (x) = u0E

L
. (2.12)

Case (b): Let us start the solution procedure by sketching the free-body diagram as
shown in Fig. 2.7.

The first boundary condition is again ux (0) = 0 which results with Eq. (2.1)
directly in c2 = 0. The second boundary condition might be not so obvious and
requires to consider of the force equilibrium for a small element at x = L , see
Fig. 2.8.

Thehorizontal force equilibriumyields the secondboundary condition as Nx (L) =
F0. Introducing this second condition into Eq. (2.2), the second constant of integra-
tion is obtained for p0 = 0 as c1 = F0. Thus, the distributions of elongation, strain,
and stress are obtained as:

ux (x) = F0

E A
x , (2.13)

εx (x) = dux (x)

dx
= F0

E A
, (2.14)

σx (x) = Eεx (x) = F0

A
. (2.15)
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Fig. 2.9 Graphical representation of the field variables: a–c displacement boundary conditions
(u0), and d–f force boundary condition (F0)

Equation (2.15) is the classical definition of engineering stress in the case of a uni-
axial tensile test. The graphical representation of the field variables (displacement,
strain, and stress) is shown in Fig. 2.9.
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Fig. 2.10 Rod with
distributed load

Fig. 2.11 Free-body
diagram of the rod with
distributed load

2.2 Cantilever Rod with Distributed Load
Given is a rod of length L and constant axial tensile stiffness E A as shown inFig. 2.10.
At the left-hand side there is a fixed support and a constant distributed load p0 is
acting along the entire rod axis. Determine the analytical solution for the elongation
ux (x), the strain εx (x), and the stress σx (x) along the rod axis.

2.2 Solution
Let us start the solution procedure by sketching the free-body diagram as shown in
Fig. 2.11.

As outlined in the previous example, the boundary conditions can be stated as
ux (0) = 0 and Nx (L) = 0. However, we must consider now that a constant dis-
tributed load p0 is acting and the evaluation of Eq. (2.1) based on the first boundary
condition gives c2 = 0. Application of the second boundary condition in Eq. (2.2)
gives now c1 = p0L . Thus, the distributions of elongation, strain, and stress are
obtained as:

ux (x) = p0L2

E A

(
−1

2

[ x
L

]2 +
[ x
L

])
, (2.16)

εx (x) = dux (x)

dx
= p0L

E A

(
−
[ x
L

]
+ 1
)

, (2.17)

σx (x) = Eεx (x) = p0L

A

(
−
[ x
L

]
+ 1
)

. (2.18)

2.3 Cantilever Rod with Different Sections
Given is a rod of length 3L and constant axial tensile stiffness E A as shown in
Fig. 2.12. At the left-hand side there is a fixed support and a constant distributed load
2p0 is acting in the range 0 ≤ x ≤ 2L whereas a load of p0 is acting in the range
2L ≤ x ≤ 3L . Determine the analytical solution for the elongation ux (x), the strain
εx (x), and the stress σx (x) along the rod axis.
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Fig. 2.12 Rod with different
sections

Fig. 2.13 Free-body
diagram of the rod with
different sections

Fig. 2.14 Free-body
diagram of the rod
decomposed into two
sections

2.3 Solution
Let us start the solution procedure by sketching the free-body diagram as shown in
Fig. 2.13.

The discontinuity in the distributed load can be handled by splitting the rod at
X = 2L into two parts, see Fig. 2.14. The left-hand part is now described by the
local coordinate xI with 0 ≤ xI ≤ 2L while the right-hand part is described by the
local coordinate xII with 0 ≤ xII ≤ L .

Consideration of two parts means that Eqs. (2.1) and (2.2) must be applied to both
sections and in total four integration constants, i.e. two for each section (here c1 and
c2 for the left-hand section while c3 and c4 is assigned to the right-hand section),
must be determined. The following two boundary and two transmission conditions
can be stated:

ux (xI = 0) = 0 , Nx (xII = L) = 0 , (2.19)

ux (xI = 2L) = ux (xII = 0) , Nx (xI = 2L) = Nx (xII = 0) . (2.20)

Consideration of boundary condition (2.19)1 in Eq. (2.1) gives immediately c2 = 0.
Consideration of the second boundary condition (2.19)2 in Eq. (2.2) provides c3 =
p0L . The next step requires the application of the transmission conditions. Let us
start with the transmission condition for the normal force (2.20)2:

− (2p0)(2L) + c1 = c3
2nd BC= p0L , (2.21)
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from which a further constant can be determined as c1 = 5p0L . The final constant
can be obtained from the displacement transmission condition (2.20)1:

− 1

2
(2p0)(2L)2 + c1(2L) = c4 , (2.22)

which can be solved for the remaining constant: c4 = 6p0L2. Thus, the distributions
of elongation, strain, and stress are obtained as for each section as:

ux (xI) = p0L2

E A

(
−
[ xI
L

]2 + 5
[ xI
L

])
, (2.23)

εx (xI) = dux (xI)

dx
= p0L

E A

(
−2
[ xI
L

]
+ 5
)

, (2.24)

σx (xI) = Eεx (xI) = p0L

A

(
−2
[ xI
L

]
+ 5
)

, (2.25)

and

ux (xII) = p0L2

E A

(
−1

2

[ xII
L

]2 +
[ xII
L

]
+ 6

)
, (2.26)

εx (xII) = dux (xII)

dx
= p0L

E A

(
−
[ xII
L

]
+ 1
)

, (2.27)

σx (xII) = Eεx (xII) = p0L

A

(
−
[ xII
L

]
+ 1
)

. (2.28)

An alternative solution approach can be based on theMacaulay brackets as outlined
in Eq. (2.4). Based on this particular approach to express discontinuities, we can state
the distribution of the distributed load in the global coordinate X as:

pX (X) = 2p0
(〈X〉0 − 〈X − 2L〉0)+ p0

(〈X − 2L〉0) . (2.29)

This expression can be introduced in the second-order differential equation (see
Table2.2) as load function:

E A
d2uX (X)

dX2
= −2p0

(〈X〉0 − 〈X − 2L〉0)− p0
(〈X − 2L〉0) . (2.30)

Integration twice gives:

E A
d1uX

dX1
= −2p0

(〈X〉1 − 〈X − 2L〉1)− p0
(〈X − 2L〉1)+ c1 , (2.31)

E AuX = −2p0

(
1

2
〈X〉2 − 1

2
〈X − 2L〉2

)
− p0

(
1

2
〈X − 2L〉2

)
+ c1X + c2 .

(2.32)
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(a) (b)

Fig. 2.15 General configuration for Euler–Bernoulli beam problems: a example of boundary
conditions and external loads; b cross-sectional area (bending occurs in the x-z plane)

The constants can be obtained based on the boundary conditions (2.19) as c2 = 0
and c1 = 5p0L . Thus, the distributions of elongation, strain, and stress are obtained
in closed-form representation as:

uX (X) = p0
E A

{
−〈X〉2 + 〈X − 2L〉2 − 1

2
〈X − 2L〉2 + 5LX

}
, (2.33)

εX (X) = p0
E A

{−2〈X〉1 + 2〈X − 2L〉1 − 〈X − 2L〉1 + 5L
}

, (2.34)

σX (X) = p0
A

{−2〈X〉1 + 2〈X − 2L〉1 − 〈X − 2L〉1 + 5L
}

. (2.35)

2.2.2 Euler–Bernoulli Beams

A thin or Euler–Bernoulli beam is defined as a long prismatic body whose axial
dimension is much larger than its transverse dimensions [2, 10, 16, 34, 36]. This
structural member is only loaded perpendicular to its longitudinal body axis by
forces (single forces Fz or distributed loads qz) or moments (single moments My or
distributed moments my). Perpendicular means that the line of application of a force
or the direction of a moment vector forms a right angle with the x-axis, see Fig. 2.15.
As a result of this loading, the deformation occurs only perpendicular to its main
axis.

Derivations are restricted many times to the following simplifications:

• only applying to straight beams,
• no elongation along the x-axis,
• no torsion around the x-axis,
• deformations in a single plane, i.e. symmetrical bending,
• infinitesimally small deformations and strains,
• simple cross sections, and
• the material is linear-elastic.
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Table 2.4 Different formulations of the basic equations for a Bernoulli beam (bending occurs in

the x-z plane), with L2(. . . ) = d2(... )
dx2

Specific formulation General formulation

Kinematics

εx (x, z) = −z d
2uz (x)
dx2

εx (x, z) = −zL2 (uz(x))

κ = − d2uz (x)
dx2

κ = −L2 (uz(x))

Constitution

σx (x, z) = Eεx (x, z) σx (x, z) = Cεx (x, z)

My(x) = E Iyκ(x) My(x) = Dκ(x)

Equilibrium

force

dQz (x)
dx = −qz(x)

moment

dMy (x)
dx = Qz(x)

combined

d2My (x)
dx2

+ qz(x) = 0 LT
2

(
My(x)

)+ qz(x) = 0

PDE

d2

dx2

(
E Iy

d2uz (x)
dx2

)
− qz(x) = 0 LT

2 (DL2 (uz(x))) − qz(x) = 0

d
dx

(
E Iy

d2uz (x)
dx2

)
= −Qz(x)

E Iy
d2uz (x)
dx2

= −My(x)

The three basic equations of continuum mechanics, i.e. the kinematics relation-
ship, the constitutive law and the equilibrium equation, as well as their combination
to the describing partial differential equation are summarized in Table2.4.

Under the assumption of constant material (E = const.) and geometric (Iy =
const.) properties, the differential equation in Table2.4 can be integrated four times
for constant distributed load (qz = q0 = const.) to obtain the general analytical
solution of the problem:

ux (x) = 1

E Iy

(
q0x4

24
+ c1x3

6
+ c2x2

2
+ c3x + c4

)
, (2.36)

where the four constants of integration ci (i = 1, . . . , 4)must be determined based on
the boundary conditions (see Table2.5). The following equations for the shear force
Qz , the bending moment My , and the rotation ϕy were obtained based on one-, two-
and three-times integration and might be useful to determine some of the constants
of integration:
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Fig. 2.16 Internal reactions for a continuum Euler–Bernoulli beam

Qz(x) = −q0x − c1 , (2.37)

My(x) = −q0x2

2
− c1x − c2 , (2.38)

ϕy(x) = −duz(x)

dx
= − 1

E Iy

(
q0x3

6
+ c1x2

2
+ c2x + c3

)
. (2.39)

The internal reactions in a beam become visible if one cuts— at an arbitrary location
x — the member in two parts. As a result, two opposite oriented shear forces Qz

and bending moments My can be indicated. Summing up the internal reactions from
both parts must result in zero. Their positive direction is connected with the positive
coordinate directions at the positive face (outward surface normal vector parallel to
the positive x-axis). This means that at a positive face the positive reactions have the
same direction as the positive coordinate axes, see Fig. 2.16.

Once the internal bending moment My is known, the normal stress σx can be
calculated:

σx (x, z) = My(x)

Iy
z(x) , (2.40)

whereas the shear force Qz allows us to calculate the shear stress distribution. For a
rectangular cross section (width b, height h, see Fig. 2.15) under the assumption that
the shear stress is constant along the width, the following distribution is obtained
[16]:

τxz(x, z) = Qz(x)

2Iy

[(
h

2

)2

− z2
]

. (2.41)

Application of Hooke’s law (i.e., σx = Eεx and τxz = Gγxz) allows us to calculate
the normal and shear strains. Typical distributions of the two stress components in a
beam element are shown in Fig. 2.17. It can be seen that normal stress distribution is
linear while the shear stress distribution is parabolic over the cross section.

Finally, it should be noted here that the one-dimensionalEuler–Bernoulli beam
theory has its two-dimensional analogon in the form of Kirchhoff plates2 [3, 4, 6,
11, 20, 38].

2Also called thin or shear-rigid plates.
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Table 2.5 Different boundary conditions and corresponding reactions for a continuum Euler–
Bernoulli beam (bending occurs in the x-z plane)

Case Boundary Condition Reaction
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(a) (b)

Fig. 2.17 Different stress distributions of an Euler–Bernoulli beam with rectangular cross
section and linear-elastic material behavior: a normal stress and b shear stress (bending occurs
in the x-z plane)

Fig. 2.18 Cantilever beam with different end loads and deformations: a single force; b single
moment; c displacement; d rotation

2.4 Cantilever Beam with Different End Loads and Deformations
Calculate the analytical solutions for the deflection uz(x) and rotation ϕy(x) of
the cantilever beam shown in Fig. 2.18. Calculate in addition for all four cases the
reactions at the fixed support and the distributions of the bending moment and shear
force. It can be assumed for this exercise that the bending stiffness E Iy is constant.

2.4 Solution
Case (a): Let us start the solution procedure by sketching the free-body diagram as
shown in Fig. 2.19a.

The consideration of the global force and moment equilibrium would allow to
calculate the reactions at the fixed support, i.e., at x = 0:

∑
i

Fzi = 0 ⇔ FR
z (0) − F0 = 0 ⇒ FR

z (0) = F0 , (2.42)

∑
i

Myi = 0 ⇔ MR
y (0) + F0L = 0 ⇒ MR

y (0) = −F0L . (2.43)

The boundary conditions can be stated at the left-hand end as

uz(0) = 0 and ϕy(0) = 0 , (2.44)

while the consideration of the force andmoment equilibrium at the right-hand bound-
ary (see Fig. 2.20) requires that
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Qz(L) = −F0 and My(L) = 0 . (2.45)

Consideration of the boundary condition (2.44)1 in the general expression for the
displacement distribution (2.36) gives the fourth constant of integration as: c4 = 0.
In a similar way, the third constant of integration can be obtained by considering
the boundary condition (2.44)2 in the general expression for the rotation distrib-
ution (2.39): c3 = 0. Introducing the boundary conditions at the right-hand end,
i.e. Eq. (2.45) in the expressions for the bending moment and shear force accord-
ing to Eqs. (2.37) and (2.38), the remaining constants are obtained as: c1 = F0 and
c2 = −F0L . Thus, the distributions of deflection, rotational angle, bending moment,
and shear force can be stated as:

uz(x) = F0L3

E I

{
1

6

( x
L

)3 − 1

2

( x
L

)2}
, (2.46)

ϕy(x) = F0L2

E I

{
−1

2

( x
L

)2 +
( x
L

)}
, (2.47)

My(x) = F0L
{
−
( x
L

)
+ 1
}

, (2.48)

Qz(x) = −F0 . (2.49)

The other three cases can be solved in a similar way and the final results for the
distributions are summarized in the following:

Case (b): Single moment M0 at x = L

uz(x) = M0L2

E I

{
1

2

( x
L

)2}
, (2.50)

ϕy(x) = −M0L

E I

( x
L

)
, (2.51)

My(x) = −M0 , (2.52)

Qz(x) = 0 . (2.53)

Case (c): Displacement u0 at x = L

uz(x) =
{
1

2

( x
L

)3 − 3

2

( x
L

)2}
u0 , (2.54)

ϕy(x) =
{
−3

2

( x
L

)2 + 3
( x
L

)} u0
L

, (2.55)

My(x) = 3E Iu0
L2

{
−
( x
L

)
+ 1
}

, (2.56)

Qz(x) = −3E Iu0
L3

. (2.57)
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Fig. 2.19 Free-body diagrams of the cantilever beams with different end loads and deformations:
a single force; b single moment; c displacement; d rotation

Fig. 2.20 Equilibrium
between internal reactions
and external load at x = L

Case (d): Rotation ϕ0 at x = L

uz(x) = ϕ0L

2

( x
L

)2
, (2.58)

ϕy(x) = −ϕ0

( x
L

)
, (2.59)

My(x) = −ϕ0E I

L
, (2.60)

Qz(x) = 0 . (2.61)

2.5 Cantilever Beam with Distributed Load
Given is a beam with different support conditions which is loaded by a constant
distributed load q0, see Fig. 2.21. It can be assumed for this exercise that the bending
stiffness E Iy is constant. Calculate the analytical solution for the deflection uz(x),
rotationϕy(x), the reactions at the supports as well as the distributions of the bending
moment and shear force.

2.5 Solution
Case (a): Let us start the solution procedure by sketching the free-body diagram as
shown in Fig. 2.22a.

The consideration of the global force and moment equilibrium would allow to
calculate the reactions at the fixed support, i.e., at x = 0:
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Fig. 2.21 Beam loaded under constant distributed load and different boundary conditions: a can-
tilever and b simply supported

Fig. 2.22 Free-body diagrams of the beams loaded under constant distributed load and different
boundary conditions: a cantilever and b simply supported

∑
i

Fzi = 0 ⇔ FR
z (0) − q0L = 0 ⇒ FR

z (0) = q0L , (2.62)

∑
i

Myi = 0 ⇔ MR
y (0) + q0L2

2
= 0 ⇒ MR

y (0) = −q0L2

2
. (2.63)

The boundary conditions can be stated at the left-hand end as

uz(0) = 0 and ϕy(0) = 0 , (2.64)

while the consideration of the force andmoment equilibrium at the right-hand bound-
ary (see Fig. 2.20) requires that

Qz(L) = 0 and My(L) = 0 . (2.65)

Consideration of these conditions in the corresponding distributions results in the
following constants of integration: c1 = q0L , c2 = − 1

2 q0L
2, c3 = c4 = 0. Thus, the

distributions of deflection, rotational angle, bending moment, and shear force can be
stated as:
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uz(x) = − q0L4

24E I

([ x
L

]4 − 4
[ x
L

]3 + 6
[ x
L

]2)
, (2.66)

ϕy(x) = −q0L3

6E I

(
−
[ x
L

]3 + 3
[ x
L

]2 − 3
[ x
L

])
, (2.67)

My(x) = q0L2

2

([ x
L

]2 − 2
[ x
L

]
+ 1

)
, (2.68)

Qz(x) = q0L
([ x

L

]
− 1
)

. (2.69)

Case (b): The set of boundary conditions is in this case given as

uz(0) = 0 , My(0) = 0 , (2.70)

uz(L) = 0 , My(L) = 0 , (2.71)

which results in the following constants of integration: c1 = q0L
2 , c2 = 0, c3 = − q0L3

24 ,
and c4 = 0. Thus, the distributions of deflection, rotational angle, bending moment,
and shear force can be stated as:

uz(x) = − q0L4

24E I

([ x
L

]4 − 2
[ x
L

]3 +
[ x
L

])
, (2.72)

ϕy(x) = − q0L3

24E I

(
−4
[ x
L

]3 + 6
[ x
L

]2 − 1

)
, (2.73)

My(x) = q0L2

2

([ x
L

]2 −
[ x
L

])
, (2.74)

Qz(x) = q0L

2

(
2
[ x
L

]
− 1
)

. (2.75)

2.6 Cantilever Beam with Different Sections
Given is a cantilever beam of length L and constant bending stiffness E I as shown in
Fig. 2.23. At the left-hand side there is a fixed support and a constant distributed load
p0 is acting in the range a ≤ x ≤ b. Calculate the analytical solution for the deflection
uz(x), rotation ϕy(x), the reactions at the support as well as the distributions of the
bending moment and shear force.

2.6 Solution
Let us start the solution procedure by sketching the free-body diagram of the entire
structure as shown in Fig. 2.24.

The two discontinuities in regards to the load at X = a and X = b requires to
split the structure in three parts as indicated in Fig. 2.25. The left-hand part is now
described by the local coordinate xI with 0 ≤ xI ≤ a, the middle part is described by
the local coordinate xII with 0 ≤ xII ≤ b − a while the right-hand part is described
by the local coordinate xIII with 0 ≤ xIII ≤ L − b.
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Fig. 2.23 Beam with different sections

Fig. 2.24 Free-body diagram of the beam with different sections

Fig. 2.25 Free-body diagrams of the different sections

Consideration of three parts means that Eqs. (2.36)–(2.39) must be applied to all
sections and in total 12 integration constants, i.e. four for each section (here c1 . . . c4
for the left-hand, c5 . . . c8 for the middle section while c9 and c12 for the right-hand
section), must be determined. The following four boundary and eight transmission
conditions can be stated:

uz(xI = 0) = 0 , My(xIII = L − b) = 0 , (2.76)

ϕy(xI = 0) = 0 , Qz(xIII = L − b) = 0 , (2.77)

and
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uz(xI = a) = uz(xII = 0) , uz(xII = b − a) = uz(xIII = 0) , (2.78)

ϕy(xI = a) = ϕy(xII = 0) , ϕy(xII = b − a) = ϕy(xIII = 0) , (2.79)

Qz(xI = a) = Qz(xII = 0) , Qz(xII = b − a) = Qz(xIII = 0) , (2.80)

My(xI = a) = My(xII = 0) , My(xII = b − a) = My(xIII = 0) . (2.81)

The general solutions for the displacements, rotations, shear forces and bending
moments, i.e., Eqs. (2.36)–(2.39), can be stated for the three sections as:

uz(xI) = 1

E Iy

(
c1x3I
6

+ c2x2I
2

+ c3xI + c4

)
, (2.82)

Qz(xI) = −c1 , (2.83)

My(xI) = −c1xI − c2 , (2.84)

ϕy(xI) = −duz(xI)

dx
= − 1

E Iy

(
c1x2I
2

+ c2xI + c3

)
, (2.85)

and for the second section

uz(xII) = 1

E Iy

(−q0x4II
24

+ c5x3II
6

+ c6x2II
2

+ c7xII + c8

)
, (2.86)

Qz(xII) = + q0xII − c5 , (2.87)

My(xII) = +q0x2II
2

− c5xII − c6 , (2.88)

ϕy(xII) = −duz(xII)

dx
= − 1

E Iy

(−q0x3II
6

+ c5x2II
2

+ c6xII + c7

)
, (2.89)

and for the third section

uz(xIII) = 1

E Iy

(
c9x3III
6

+ c10x2III
2

+ c11xIII + c12

)
, (2.90)

Qz(xIII) = −c9 , (2.91)

My(xIII) = −c9xIII − c10 , (2.92)

ϕy(xIII) = −duz(xIII)

dx
= − 1

E Iy

(
c9x2III
2

+ c10xIII + c11

)
. (2.93)

Consideration of the 12 boundary and transmissions conditions in this set of equations
gives 12 conditions for the unknown constants of integration c1 . . . c12 which can be
expressed in matrix form as follows:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
a3

6
a2

2 0 0 0 0 0 −1 0 0 0 0
a2

2 a 0 0 0 0 −1 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0 0 0
−a −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 (b−a)3

6
(b−a)2

2 (b − a) 1 0 0 0 −1

0 0 0 0 (b−a)2

2 (b − a) 1 0 0 0 −1 0

0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 −(b − a) −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −(L − b) −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

q0(b−a)4

24
q0(b−a)3

6

−q0(b − a)

−q0(b−a)2

2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.94)

Multiplication of the inversed coefficient matrix with the right-hand side allows us
to determine the constants as:

c1 = q0(b − a) , c2 = −q0
2

(b2 − a2) , (2.95)

c3 = 0 , c4 = 0 , (2.96)

c5 = q0(b − a) , c6 = −q0
2

(b − a)2 , (2.97)

c7 = −q0ab

2
(b − a) , c8 = q0a2

12
(a2 + 2ab − 3b2) , (2.98)

c9 = 0 , c10 = 0 , (2.99)

c11 = −q0
6

(b3 − a3) , c12 = − q0
24

(a4 + 3b4 − 4a3b) . (2.100)

Based on these constants of integration, the general expressions (2.82)–(2.93) for the
distributions can be concretized as:
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uz(xI) = q0
E I

(
b − a

6
x3I − b2 − a2

4
x2I

)
, (2.101)

uz(xII) = q0
E I

(−x4II
24

+ b − a

6
x3II − (b − a)2

4
x2II − ab(b − a)

2
xII+

+ a2(a2 + 2ab − 3b2)

12

)
, (2.102)

uz(xIII) = q0
E I

(
−b3 − a3

6
xIII − a4 + 3b4 − 4a3b

24

)
, (2.103)

and for the rotations

ϕy(xI) = − q0
2E I

(
(b − a)x2I − (b2 − a2)xI

)
, (2.104)

ϕy(xII) = − q0
2E I

(
− x3II

3
+ (b − a)x2II − (b − a)2xII − ab(b − a)

)
, (2.105)

ϕy(xIII) = q0
6E I

(
b3 − a3

)
, (2.106)

and for the bending moments

My(xI) = q0

(
−(b − a)xI + b2 − a2

2

)
, (2.107)

My(xII) = q0
2

(
x2II − 2(b − a)xII + (b − a)2

)
, (2.108)

My(xIII) = 0 , (2.109)

and for the shear forces

Qz(xI) = −q0(b − a) , (2.110)

Qz(xII) = q0 (xII − (b − a)) , (2.111)

Qz(xIII) = 0 . (2.112)

An alternative solution approach can be based on theMacaulay brackets as outlined
in Eq. (2.4). Based on this particular approach to express discontinuities, we can state
the distribution of the distributed load in the global coordinate X as:

qZ (X) = −q0
(〈X − a〉0 − 〈X − b〉0) . (2.113)

This expression can be introduced in the fourth-order differential equation (see
Table2.4) as load function:

E I
d4uz(X)

dX4
= qZ (X) = −q0

(〈X − a〉0 − 〈X − b〉0) . (2.114)
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Four times integration of the last equation gives:

E I
d3uz(X)

dX3
= −QZ (X) = −q0

(〈X − a〉1 − 〈X − b〉1)+ c1 , (2.115)

E I
d2uz(X)

dX2
= −MY (X) = −q0

(
1

2
〈X − a〉2 − 1

2
〈X − b〉2

)
+ c1X + c2 ,

(2.116)

E I
d1uz(X)

dX1
= E I (−ϕY (X)) = −q0

(
1

6
〈X − a〉3 − 1

6
〈X − b〉3

)
+

+ c1
2

X2 + c2X + c3 , (2.117)

E Iuz(X) = −q0

(
1

24
〈X − a〉4 − 1

24
〈X − b〉4

)
+ c1

6
X3 + c2

2
X2+

+ c3X + C4 . (2.118)

The constants can be obtained based on the boundary conditions (2.76)– (2.77) as
c1 = q0(b − a), c2 = − q0

2 (b2 − a2), c3 = 0, and c4 = 0. Thus, the distribution of
the deflection is obtained in closed-form representation as:

uZ (X) = −q0
E I

( 〈X − a〉4
24

− 〈X − b〉4
24

− (b − a)

6
X3 + (b2 − a2)

4
X2

)
. (2.119)

It should be noted that the end deflection of the beam can be obtained for X = L as:

uZ (L) = −q0
E I

(
− La3

6
+ a4

24
+ Lb3

6
− b4

24

)
. (2.120)

The special case that the distributed load extends over the entire beam, i.e., a = 0
and b = L , gives the classical result for the end deflection: uZ (L) = q0L4

8E I .
The distributions of the load qZ , shear force QZ , and bending moment MY are

shown in Fig. 2.26 and allows us to understand the dependency of these quantities.

2.2.3 Timoshenko Beams

A thick or Timoshenko beam is defined as a long prismatic body whose axial
dimension is much larger than its transverse dimensions [33, 40]. This structural
member is only loaded perpendicular to its longitudinal body axis by forces (single
forces Fz or distributed loads qz) or moments (single moments My or distributed
moments my). Perpendicular means that the line of application of a force or the
direction of a moment vector forms a right angle with the x-axis, see Fig. 2.15. As a
result of this loading, the deformation occurs only perpendicular to its main axis. The
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Fig. 2.26 Beam with
different sections: a
distributed load, b shear
force, and c bending moment
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Fig. 2.27 General configuration for Timoshenko beam problems: a example of boundary condi-
tions and external loads; b cross-sectional area (bending occurs in the x-z plane)

formulation is a shear-flexible theory which means that the shear forces contribute
to the bending deformation (Fig. 2.27).

Derivations are restricted many times to the following simplifications:

• only applying to straight beams,
• no elongation along the x-axis,
• no torsion around the x-axis,
• deformations in a single plane, i.e. symmetrical bending,
• infinitesimally small deformations and strains,
• simple cross sections, and
• the material is linear-elastic.

The three basic equations of continuum mechanics, i.e. the kinematics relationship,
the constitutive law and the equilibrium equation, as well as their combination to the
describing partial differential equations are summarized in Table2.6. It should be
noted here that the deflection uz and the rotation φy are now independent variables
and both represented in the coupled differential equations.

Under the assumption of constant material (E,G) and geometric (Iy, A, ks) prop-
erties, the system of differential equations in Table2.6 can be solved for constant
distributed loads (qz = q0 = const. and my = 0) to obtain the general analytical
solution of the problem [39, 40]:

uz(x) = 1

E Iy

(
q0x4

24
+ c1

x3

6
+ c2

x2

2
+ c3x + c4

)
, (2.121)

φy(x) = − 1

E Iy

(
q0x3

6
+ c1

x2

2
+ c2x + c3

)
− q0x

ksAG
− c1

ksAG
, (2.122)

My(x) = −
(
q0x2

2
+ c1x + c2

)
− q0E Iy

ksAG
, (2.123)

Qz(x) = − (q0x + c1) , (2.124)
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Table 2.6 Different formulations of the basic equations for a Timoshenko beam (bending in the
x-z plane). e: generalized strains; s: generalized stresses

Specific formulation General formulation

Kinematics[
duz
dx + φy

dφy
dx

]
=
[

d
dx 1

0 d
dx

][
uz
φy

]
e = L1u

Constitution[
−Qz

My

]
=
[
−ksAG 0

0 E Iy

][
duz
dx + φy

dφy
dx

]
s = De

Equilibrium[
d
dx 0

1 d
dx

][
−Qz

My

]
+
[

−qz
+mz

]
=
[
0

0

]
LT

1 s + b = 0

PDE

− d
dx

[
ksGA

(
duz
dx + φy

)]
− qz = 0

d
dx

(
E Iy

dφy
dx

)
− ksGA

(
duz
dx + φy

)
+ my = 0 , LT

1 DL1u + b = 0

where the four constants of integration ci (i = 1, . . . , 4) must be determined based
on the boundary conditions, see Table2.7.

The internal reactions in a beam become visible if one cuts — at an arbitrary
location x — the member in two parts. As a result, two opposite oriented shear
forces Qz and bending moments My can be indicated. Summing up the internal
reactions from both parts must result in zero. Their positive directions are connected
with the positive coordinate directions at the positive face (outward surface normal
vector parallel to the positive x-axis). This means that at a positive face the positive
reactions have the same direction as the positive coordinate axes, see Fig. 2.28.

Once the internal bending moment My is known, the normal stress σx can be
calculated:

σx (x, z) = My(x)

Iy
z(x) = E

dφy(x)

dx
z(x) , (2.125)

whereas the shear stress τxz is assumed constant over the cross section:

τxz = Qz(x)

As
= Qz(x)

ksA
= Gγxz(x) . (2.126)

In the above equation, the relation between the shear area As and the actual cross-
sectional area A is referred to as the shear correction factor ks [9, 13]:

ks = As

A
. (2.127)
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Table 2.7 Different boundary conditions and their corresponding reactions for a continuum Tim-

oshenko beam (bending occurs in the x-z plane)

Case Boundary Condition Reaction
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Fig. 2.28 Internal reactions for a continuum Timoshenko beam (bending occurs in the x-z plane)

(a) (b)

Fig. 2.29 Different stress distributions of a Timoshenko beam with rectangular cross section and
linear-elastic material behavior: a normal stress and b shear stress (bending occurs in the x-z plane)

The value of the shear correction factor is, for example, for a circular cross section
equal to 9

10 and for a square cross section equal to 5
6 , see [41]. The relationship

between the Young’s and shear modulus (see Eqs. (2.125) and (2.126)) is given
by [7]:

G = E

2(1 + ν)
, (2.128)

where ν is Poisson’s ratio. The graphical representations of the different stress
components are shown in Fig. 2.29. The normal stress is, as in the case of the Euler–
Bernoulli beam, linearly distributed whereas the shear stress is now assumed to be
constant.

If more realistic shear stress distributions are considered, one reaches so-called
theories of higher-order [18, 28, 29]. Finally, it should be noted here that the one-
dimensionalTimoshenko beam theory has its two-dimensional analogon in the form
of Reissner- Mindlin plates3 [3, 11, 21, 31, 35].

2.7 Beam Under Pure Bending Load
The cantilever Timoshenko beam shown in Fig. 2.30 is loaded by a moment M0

at the free right-hand end. The bending stiffness E I and the shear stiffness ksAG
are constant and the total length of the beam is equal to L . Determine, based on
the Timoshenko beam theory, the bending line and compare the result with the
Euler–Bernoulli theory.

2.7 Solution
The set of equations for deflection, rotational angle, bending moment and shear force
as given in Eqs. (2.121)–(2.124) reduces for q0 = 0 to the following formulation:

3Also called thick plates.
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Fig. 2.30 Beam loaded
under pure bending moment

uz(x) = 1

E Iy

(
c1
x3

6
+ c2

x2

2
+ c3x + c4

)
, (2.129)

φy(x) = − 1

E Iy

(
+c1

x2

2
+ c2x + c3

)
− c1

ksAG
, (2.130)

My(x) = − (c1x + c2) , (2.131)

Qz(x) = − (c1) . (2.132)

The boundary conditions for the case shown in Fig. 3.34 can be stated as

uz(0) = 0 , My(L) = −M0 , (2.133)

ϕy(0) = 0 , Qz(L) = 0 , (2.134)

which allow to determine the constants of integration in Eqs. (2.129)–(2.132) as
c1 = 0, c2 = M0, c3 = 0, and c4 = 0. Thus, the bending line can be expressed as

uz(x) = M0x2

2E I
. (2.135)

This result is identical with the solution according to the Euler–Bernoulli beam
theory.

2.8 Cantilever Beam Under the Influence of a Point or Distributed Load
The cantilever Timoshenko beam shown in Fig. 2.31 is either loaded by a single
force F0 at its right-hand end or by a distributed load q0. The bending stiffness E I
and the shear stiffness ksAG are constant, the total length of the beam is equal to L ,
and the circular cross section has a diameter of d. Determine the expressions of the
bending lines (uz(x)) and sketch the deflections of the right-hand end (x = L) as a
function of the slenderness ratio d

L for ν = 0.0, 0.3, and 0.5.

2.8 Solution
Case (a): The set of equations for deflection, rotational angle, bending moment and
shear force as given in Eqs. (2.121)–(2.124) reduces for q0 = 0 to the following
formulation:

http://dx.doi.org/10.1007/978-3-319-69817-5_3
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Fig. 2.31 Cantilever
Timoshenko beam: a single
force case and b distributed
load case

(a)

(b)

uz(x) = 1

E Iy

(
c1
x3

6
+ c2

x2

2
+ c3x + c4

)
, (2.136)

φy(x) = − 1

E Iy

(
+c1

x2

2
+ c2x + c3

)
− c1

ksAG
, (2.137)

My(x) = − (c1x + c2) , (2.138)

Qz(x) = − (c1) . (2.139)

The boundary conditions for the case shown in Fig. 2.31a can be stated as

uz(0) = 0 , My(L) = 0 , (2.140)

ϕy(0) = 0 , Qz(L) = F , (2.141)

which allow to determine the constants of integration in Eqs. (2.136)–(2.139) as
c1 = −F0, c2 = F0L , c3 = E I F0

ksAG
, and c4 = 0. Thus, the bending line can be

expressed as

uz(x) = 1

E I

(
−F0

x3

6
+ F0L

x2

2
+ E I F0

ksAG
x

)
, (2.142)

or in normalized representation as:

uz
(
x
L

)
F0L3

E I

= −1

6

( x
L

)3 + 1

2

( x
L

)2 + E I

ksAGL2

( x
L

)
. (2.143)

In the case of the considered circular cross section, one can use ks = 9
10 , A = πd2

4 ,

and I = πd4

64 to simplify Eq. (2.143):
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uz
(
x
L

)
F0L3

E I

= −1

6

( x
L

)3 + 1

2

( x
L

)2 + 5

36
(1 + ν)

( x
L

)( d

L

)2

, (2.144)

or only at the right-hand end, i.e., x = L:

uz
(
x
L = 1

)
F0L3

E I

= 1

3
+ 5

36
(1 + ν)

(
d

L

)2

. (2.145)

The graphical representation of the deflection at the right-hand end for different
values of Poisson’s ratio is given in Fig. 2.32.

Case (b): The set of equations for deflection, rotational angle, bending moment
and shear force must be considered as given in Eqs. (2.121)–(2.124):

uz(x) = 1

E Iy

(
q0x4

24
+ c1

x3

6
+ c2

x2

2
+ c3x + c4

)
, (2.146)

φy(x) = − 1

E Iy

(
q0x3

6
+ c1

x2

2
+ c2x + c3

)
− q0x

ksAG
− c1

ksAG
, (2.147)

My(x) = −
(
q0x2

2
+ c1x + c2

)
− q0E Iy

ksAG
, (2.148)

Qz(x) = − (q0x + c1) . (2.149)

The boundary conditions for the case shown in Fig. 2.31b can be stated as

uz(0) = 0 , My(L) = 0 , (2.150)

ϕy(0) = 0 , Qz(L) = 0 , (2.151)

which allow to determine the constants of integration in Eqs. (2.146)–(2.149) as
c1 = −q0L , c2 = q0L2

2 − q0E I
ksAG

, c3 = q0LE I
ksAG

, and c4 = 0. Thus, the bending line can
be expressed as

uz(x) = 1

E I

(
q0x4

24
− q0Lx3

6
+
[
q0L2

2
− q0E I

ksAG

]
x2

2
+ q0LE I

ksAG
x

)
, (2.152)

or in normalized representation as:

uz
(
x
L

)
q0L4

E I

= 1

24

( x
L

)4 − 1

6

( x
L

)3 + 1

2

[
1

2
− E I

ksAGL2

] ( x
L

)2 + E I

ksAGL2

( x
L

)
.

(2.153)

In the case of the considered circular cross section, one can use ks = 9
10 , A = πd2

4 ,

and I = πd4

64 to simplify Eq. (2.153):
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Fig. 2.32 Deflection of the
right-hand-end of a
Timoshenko beam based on
analytical solutions for single
force loading a general view
and b magnification for
small slenderness ratios
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(
x
L

)
q0L4

E I

= 1

24
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6

( x
L

)3 + 1

2

[
1

2
− 5

36
(1 + ν)

(
d

L

)2
]( x

L

)2

+ 5

36
(1 + ν)

(
d

L

)2 ( x
L

)
, (2.154)

or only at the right-hand end, i.e., x = L:

uz
(
x
L

)
q0L4

E I

= 1

8
+ 5

72
(1 + ν)

(
d

L

)2

. (2.155)

The graphical representation of the deflection at the right-hand end for different
values of Poisson’s ratio is given in Fig. 2.33.
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Fig. 2.33 Deflection of the
right-hand-end of a
Timoshenko beam based on
analytical solutions for
distributed force loading a
general view and b
magnification for small
slenderness ratios
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2.9 Cantilever Beam with Two Different Sections
The cantilever Timoshenko beam shown in Fig. 2.34 is composed of two sections,
i.e., section one (I) with 0 ≤ X ≤ L I and section two (II) with L I ≤ X ≤ L II. The
beam is loaded by a single force FI at X = L I and at its right-hand end by a single
force FII. The bending and the shear stiffnesses are E II and ksAIG in section I while
E III and ksAIIG holds for section II. This means that the beam is made of the same
material and that the cross sections have similar shapes. Determine the expressions
of the bending line.

2.9 Solution
The discontinuity in the cross section can be handled by splitting the beam at X = L I

into two parts. The left-hand part is now described by the local coordinate xI with
0 ≤ xI ≤ L I while the right-hand part is described by the local coordinate xII with
0 ≤ xII ≤ L II. Consideration of two parts means that Eqs. (2.121) and (2.124) must
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Fig. 2.34 Cantilever
Timoshenko beam with two
different sections

Fig. 2.35 Cantilever
Timoshenko beam with two
different sections: a detail
for transmission condition; b
detail for boundary condition

(a) (b)

be applied to both sections and in total eight integration constants, i.e. four for each
section (here c1, . . . , c4 for the left-hand section while c5, . . . , c8 is assigned to the
right-hand section), must be determined:

uz(xI) = 1

E Iy

(
c1
x3I
6

+ c2
x2I
2

+ c3xI + c4

)
, (2.156)

φy(xI) = − 1

E Iy

(
c1
x2I
2

+ c2xI + c3

)
− c1

ksAG
, (2.157)

My(xI) = − (c1xI + c2) , (2.158)

Qz(xI) = − (c1) , (2.159)

and

uz(xII) = 1

E Iy

(
c5
x3II
6

+ c6
x2II
2

+ c7xII + c8

)
, (2.160)

φy(xII) = − 1

E Iy

(
c5
x2II
2

+ c6xII + c7

)
− c5

ksAG
, (2.161)

My(xII) = − (c5xII + c6) , (2.162)

Qz(xII) = − (c5) . (2.163)

The following four boundary and four transmission conditions can be stated (see
Fig. 2.35):
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uz(xI = 0) = 0 , My(xII = L II) = 0 , (2.164)

ϕy(xI = 0) = 0 , Qz(xII = L II) = FII , (2.165)

and

uz(xI = L I) = uz(xII = 0) , ϕy(xI = L I) = ϕy(xII = 0) , (2.166)

Qz(xI = L I) = FI + Qz(xII = 0) , My(xI = L I) = My(xII = 0) . (2.167)

Consideration of the eight boundary and transmissions conditions in this set of equa-
tions gives eight conditions for the unknown constants of integration c1 . . . c8 which
can be expressed in matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
1

ksAIG
0 1

E II
0 0 0 0 0

0 0 0 0 −L II −1 0 0
0 0 0 0 1 0 0 0
L3
I
6

L2
I
2 L I 1 0 0 0 − II

III

−
(

L2
I
2 + E II

ksAIG

)
−L I −1 0 E II

ksAIIG
0 II

III
0

−1 0 0 0 1 0 0 0
−L I −1 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
c3
c4
c5
c6
c7
c8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−FII

0
0
FI

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.168)

Multiplication of the inverse coefficient matrix with the right-hand side allows us to
determine the constants as:

c1 = −(FI + FII) , c2 = FIL I + FII(L I + LLL) , (2.169)

c3 = E II(FI + FII)

ksAIG
, c4 = 0 , (2.170)

c5 = −FII , c6 = FIIL II , (2.171)

c7 = 1

2

III
(
ksAIIG

[
FIL2

I + FIIL2
I + 2FIIL IL II

]+ 2E IIFII
)

IIksAIIG
, (2.172)

c8 = 1

6

L I III
(
ksAIG

[
2FIL2

I + 2FIIL2
I + 3FIIL IL II

]+ 6E II(FI + FII)
)

IIksAIG
. (2.173)

Thus, based on these constants of integration, the bending lines given in Eqs. (2.156)
and (2.160) are determined.

An interesting special case is obtained at the right-hand end for AI = AII = A,
II = III = I , L I = L II = L

2 , and FI = 0 and FII = F :

uz(X = L) = FL3

3E I
+ FL

ksAG
. (2.174)
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Fig. 2.36 Recorded data
from a uniaxial tensile test: a
force-displacement diagram;
b stress-strain diagram

(a) (b)

2.3 Energy-Based Approaches

As an alternative approach to the analytical solution procedures based on partial dif-
ferential equations (see Sects. 2.2.1–2.2.3), the following section is related to energy
approaches, in particular Castigliano’s theorems, see [1, 12, 14, 16].

Let us first illustrate the energy which is stored in a material due to deformation,
i.e. the so-called strain energy. For an ideal uniaxial tensile test with linear-elastic
material behavior, Fig. 2.36 illustrates schematic force-displacement and stress-strain
diagrams.

The area under the force-displacement diagram (see Fig. 2.36a) represents the
total strain energy (Π) and can be calculated as4:

Π = 1

2
F0u0 , (2.175)

or in an integral approach:

Π =
u0∫

0

F(u)du =
u0∫

0

E A

L
udu = E A

2L
u20 = F2

0 L

2E A
=

L∫

0

Nx (x)2

2E A
dx . (2.176)

The transformations in the last equation used Hooke’s law and the equilibrium
between the external load (F0) and the internal reaction (Nx (x)). On the other hand,
the area under the stress-strain diagram (see Fig. 2.36b) represents the volumetric
strain energy (π = Π

V ):

π =
ε0∫

0

σ(ε)dε =
ε0∫

0

Eεdε = E

2
ε20 = 1

2
σ0ε0 . (2.177)

The last equation can extended to the total strain energy in the following way:

dΠ = 1

2
σεdV = 1

2
σε d(Adx) . (2.178)

4Confer the unit of energy: 1 J = 1 Nm = 1 Ws.
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Similar derivations can be written for other simple modes of deformation and the
following cases can be distinguished for linear-elastic material behavior:

• Tension or compression:

Π =
L∫

0

Nx (x)2

2E A
dx . (2.179)

• Bending:

Π =
L∫

0

My(x)2

2E Iy
dx . (2.180)

• Shear:

Π =
L∫

0

Qz(x)2

2GAs
dx =

L∫

0

Qz(x)2

2ksGA
dx . (2.181)

• Torsion5:

Π =
L∫

0

Mx (x)2

2GIp
dx . (2.182)

Thus, the total strain energy in a rod/beam-like structural member can be expressed
as

Π =
L∫

0

Nx (x)2

2E A
dx +

L∫

0

My(x)2

2E Iy
dx +

L∫

0

Qz(x)2

2GAs
dx +

L∫

0

Mx (x)2

2GIp
dx , (2.183)

where the Nx , My, Qz, Mx represent the distributions of the internal reactions.
Depending on the mode of deformation, the corresponding terms in Eq. (2.183) must
be considered. Based on the following theorems which make use of the strain energy,
different quantities can be determined:

Castigliano’s first theorem:
The partial derivative of the total strain energy with respect to the generalized dis-
placement (displacement or rotation) gives the generalized force (force or moment).
In equations, this can be expressed as:

∂Π(x, ui , . . .)

∂ui
= Fi , (2.184)

∂Π(x,ϕi , . . .)

∂ϕi
= Mi . (2.185)

5Only shown for completeness and not further covered here.
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Castigliano’s second theorem:
The partial derivative of the total strain energy with respect to the generalized force
(force or moment) gives the generalized displacement (displacement or rotation) in
the direction of that generalized force. In equations, this can be expressed as:

∂Π(x, Fi , . . .)

∂Fi
= ui , (2.186)

∂Π(x, Mi , . . .)

∂Mi
= ϕi . (2.187)

The procedure also allows us to determine deformations where no external general-
ized forces are acting. This can be handled by introducing an auxiliary generalized
force (Fa or Ma) and setting the auxiliary quantity to zero in the final equation for
the generalized displacement:

(
∂Π(x, Fai , . . .)

∂Fai

)

Fai = 0

= ui , (2.188)

(
∂Π(x, Mai , . . .)

∂Mai

)

Mai = 0

= ϕi . (2.189)

Based on this procedure, it is even possible to calculate entire distributions if the
auxiliary quantity is introduced at a variable position. For practical calculations
with constant material and geometrical properties (E A, E Iy, ksGA,GIp), it might
be useful to perform the partial derivative first and only after the integration. For
example, the case of tension/compression can be written as:

ux,1 = ∂Π

∂F1
= ∂

∂F1

⎛
⎝

L∫

0

N 2
x (x)

2E A
dx

⎞
⎠ =

L∫

0

Nx (x)

E A

∂Nx (x, F1, . . .)

∂F1
dx . (2.190)

2.10 Cantilever Rod with Point Loads (Alternative Solution Procedure of
Problem 2.1)
Given is a rod of length L and constant axial tensile stiffness E A as shown inFig. 2.37.
At the left-hand side there is a fixed support and the right-hand side is either elon-
gated by a displacement u0 (case a) or loaded by a single force F0 (case b). Determine
based on Castigliano’s theorems the solution for the elongation ux (x), the strain
εx (x), and the stress σx (x) along the rod axis.

2.10 Solution
In case that only the reaction force FR(L) at x = L (case a) or the displacement
ux (L) at x = L (case b) would be wanted, we could simply determine the normal
force distributions as, see Fig. 2.38:
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Fig. 2.37 Rod under
different loading conditions:
a displacement and b force

Fig. 2.38 Determination of
the normal force distribution
for the rod under different
loading conditions: a
displacement and b force

(a)

(b)

Nx (x) = FR(L) (case a) , (2.191)

Nx (x) = F0 (case b) . (2.192)

For case (a), we can state based on Castigliano’s second theorem that

u0 = ∂Π

∂FR(L)
= ∂

∂FR(L)

L∫

0

N 2
x (x)

2E A
dx =

L∫

0

Nx (x)

E A

∂Nx (x, FR)

∂FR(L)
dx

=
L∫

0

FR(L)

E A
× 1dx = FR(L)

E A
[x]L0 = FR(L)L

E A
, (2.193)

or solved for the unknown reaction force at x = L:

FR(L) = E Au0
L

. (2.194)

For case (b), we can state based on Castigliano’s second theorem that
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Fig. 2.39 Rod with
displacement boundary
condition and auxiliary force

Fig. 2.40 Rod with
displacement boundary
condition and auxiliary
force: different sections for
normal force determination

ux (L) = ∂Π

∂F0
=

L∫

0

Nx (x)

E A

∂Nx (x, F0)

∂F0
dx =

L∫

0

F0

E A
× 1dx = F0L

E A
. (2.195)

However, if we need to find the distributions of displacement (ux = ux (x)), stress
(σx = σx (x)), and strain (εx = εx (x)), we need to follow a slightly different
approach. For this purpose, an auxiliary force Fa is introduced at an arbitrary position
x . This is shown for case (a) in Fig. 2.39 together with the corresponding free-body
diagram.

From the horizontal force equilibrium, we can conclude that

+ FR(0) + Fa + FR(L) = 0 or FR(0) = −Fa − FR(L) . (2.196)

Since we have now at x = x a discontinuity, we must determine the normal force
distribution for two sections, see Fig. 2.40.

For the section x < x , the internal normal force can be expressed as

Nx (x) = −FR(0) = Fa + FR(L) , (2.197)

while the section x ≥ x gives:

Nx (x) = −FR(0) − Fa = FR(L) . (2.198)

Let us first applyCastigliano’s second theorem to determine the unknown reaction
force at the right-hand end:
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u0 =
L∫

0

Nx (x)

E A

∂Nx (x, FR)

∂FR(L)
dx =

x∫

0

Fa + FR(L)

E A
× 1dx +

L∫

x

FR(L)

E A
× 1dx

= Fa + FR(L)

E A
x + FR(L)

E A
(L − x) = Fax

E A
+ FR(L)L

E A
. (2.199)

With Fa → 0 (and x → x), one obtains the reactions force as:

FR(L) = E Au0
L

. (2.200)

The next application of Castigliano’s second theorem allows us to determine the
distribution of the displacement field:

ux (x) =
L∫

0

Nx (x)

E A

∂Nx (x, Fa)

∂Fa
dx =

x∫

0

Fa + FR(L)

E A
× 1dx +

L∫

x

FR(L)

E A
× 0dx

= Fa + FR(L)

E A
x . (2.201)

With Fa → 0 and x → x , one obtains the displacement field as:

ux (x) = FR(L)x

E A
= u0

x

L
. (2.202)

The application of the kinematics and constitutive relationship (see Table2.2) gives
immediately the strain and stress distributions:

εx (x) = ∂ux (x)

∂x
= u0

L
, (2.203)

σx (x) = Eεx (x) = u0E

L
. (2.204)

The configuration for case (b) and the corresponding free-body diagram is shown in
Fig. 2.41.

From the horizontal force equilibrium, we can calculate the reaction force at the
left-hand end:

+ FR(0) + Fa + F0 = 0 or FR(0) = −F0 − Fa . (2.205)

Due to the discontinuity, the normal force distribution is required for two sections,
see Fig. 2.42.

For the section x < x , the internal normal force can be expressed as

Nx (x) = −FR(0) = F0 + Fa , (2.206)
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Fig. 2.41 Rod with force
boundary condition and
auxiliary force

Fig. 2.42 Rod with force
boundary condition and
auxiliary force: different
sections for normal force
determination

while the section x ≥ x gives:
Nx (x) = F0 . (2.207)

Application ofCastigliano’s second theoremallowsus to determine the distribution
of the displacement field:

ux (x) =
L∫

0

Nx (x)

E A

∂Nx (x, Fa)

∂Fa
dx =

x∫

0

F0 + Fa

E A
× 1dx +

L∫

x

F0

E A
× 0dx

= F0 + Fa

E A
x . (2.208)

With Fa → 0 and x → x , one obtains the displacement field as:

ux (x) = F0x

E A
. (2.209)

The application of the kinematics and constitutive relationships (see Table2.2) gives
immediately the strain and stress distributions:

εx (x) = ∂ux (x)

∂x
= F0

E A
, (2.210)

σx (x) = Eεx (x) = F0

A
. (2.211)
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Fig. 2.43 Rod with
distributed load

2.11 Cantilever Rod with Distributed Load (Alternative Solution Procedure of
Problem 2.2)
Given is a rod of length L and constant axial tensile stiffness E A as shown inFig. 2.43.
At the left-hand side there is a fixed support and a constant distributed load p0 is
acting along the entire rod axis. Determine based on Castigliano’s theorems the
analytical solution for the elongation ux (x), the strain εx (x), and the stress σx(x)
along the rod axis.

2.11 Solution
The determination of the distributions of displacement (ux = ux (x)), stress (σx =
σx (x)), and strain (εx = εx (x)) requires that an auxiliary force Fa is introduced at
an arbitrary position x . This is shown in Fig. 2.44 together with the corresponding
free-body diagram.

From the horizontal force equilibrium, we can conclude that

+ FR(0) + Fa + p0L = 0 or FR(0) = −Fa − p0L . (2.212)

Since we have now at x = x a discontinuity, we must determine the normal force
distribution for two sections, see Fig. 2.45.

For the section x < x , the internal normal force can be expressed as

Nx (x) = Fa + p0(L − x) , (2.213)

while the section x ≥ x gives:

Nx (x) = p0(L − x) . (2.214)

Application ofCastigliano’s second theoremallowsus to determine the distribution
of the displacement field:

ux (x) =
L∫

0

Nx (x)

E A

∂Nx (x, Fa)

∂Fa
dx

=
x∫

0

Fa + p0(L − x)

E A
× 1dx +

L∫

x

p0(L − x)

E A
× 0dx

= 1

E A

(
Fax + p0Lx − p0x

2

2

)
. (2.215)
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Fig. 2.44 Rod with
distributed load: introduction
of auxiliary force

Fig. 2.45 Rod with
distributed load: different
sections for normal force
determination

With Fa → 0 and x → x , one obtains the displacement field as:

ux (x) = p0
E A

(
Lx − x2

2

)
= p0L2

E A

(
−1

2

[ x
L

]2 +
[ x
L

])
. (2.216)

The application of the kinematics and constitutive relationships (see Table2.2) gives
immediately the strain and stress distributions:

εx (x) = ∂ux (x)

∂x
= p0L

E A

(
−
[ x
L

]
+ 1
)

, (2.217)

σx (x) = Eεx (x) = p0L

A

(
−
[ x
L

]
+ 1
)

. (2.218)

2.12 Cantilever BeamwithDifferent EndLoads andDeformations (Alternative
Solution Procedure of Problem 2.4)
Calculate based on Castigliano’s theorems the analytical solutions for the deflec-
tion uz(x) and rotation ϕy(x) of the cantilever beam shown in Fig. 2.46. Calculate
in addition for all four cases the reactions at the fixed support and the distributions
of the bending moment and shear force. It can be assumed for this exercise that the
bending stiffness E Iy is constant.
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Fig. 2.46 Cantilever beam with different end loads and deformations: a single force; b single
moment; c displacement; d rotation

2.12 Solution
Case (a): The determination of the distributions of deflection (uz = uz(x)) and
rotation (ϕy = ϕy(x)) requires that an auxiliary force Fa is introduced at an arbitrary
position x . This is shown in Fig. 2.47 together with the corresponding free-body
diagram.

From the vertical force and moment equilibrium, we can conclude that

+FR
z (0) − Fa − F0 = 0 or FR

z (0) = Fa + F0 , (2.219)

+MR
y (0) + Fax + F0L = 0 or MR

y (0) = −Fax − F0L . (2.220)

Since we have now at x = x a discontinuity, we must determine the bending moment
(the shear force distribution is only required if the shear contribution on the defor-
mation should be considered) distribution for two sections, see Fig. 2.48.

For the section x < x , the internal bending moment can be expressed as

My(x) = −FR
z (0)x − MR

y (0) = Fa(x − x) + F0(L − x) , (2.221)

while the section x ≥ x gives:

My(x) = −FR
z (0)x − MR

y (0) + Fa(x − x) = F0(L − x) . (2.222)

Application ofCastigliano’s second theoremallowsus to determine the distribution
of the displacement field:

uz(x) =
L∫

0

My(x)

E I

∂My(x, Fa)

∂Fa
dx

=
x∫

0

My(x)

E I

∂My(x, Fa)

∂Fa
dx +

L∫

x

My(x)

E I

∂My(x, Fa)

∂Fa
dx
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Fig. 2.47 Cantilever beam
with force boundary
condition: introduction of
auxiliary force

Fig. 2.48 Cantilever beam
with force boundary
condition: different sections
for internal reactions

=
x∫

0

Fa(x − x) + F0(L − x)

E I
× (x − x) dx +

x∫

0

Fa(L − x)

E I
× 0 dx .

The evaluation of these integrals gives finally under consideration of Fa → 0 and
x → x :

uz(x) = F0L3

E I

(
−1

6

[ x
L

]3 + 1

2

[ x
L

]2)
, (2.223)

which is the deflection in direction of Fa.
The other subproblems (b–d) can be solved in a similar manner.

2.4 Extensometer Analysis

The extensometer shown and illustrated in Figs. 1.1 and 1.2 can be modeled in a first
attempt as a 	-shaped frame with different properties for the horizontal and vertical
members (see Fig. 2.49a). Looking at this mechanical model, it is obvious that the

http://dx.doi.org/10.1007/978-3-319-69817-5_1
http://dx.doi.org/10.1007/978-3-319-69817-5_1
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(a) (b)

Fig. 2.49 Mechanical model of the extensometer: a entire sensor and b consideration of symmetry

(a) (b) (c)

Fig. 2.50 Simplified approach for vertical members: a approximation as cantilever beam; b free-
body diagram; c infinitesimal element at x = 0

structure is symmetric with respect to a vertical axis and can be reduced as indicated
in Fig. 2.49b.

A rough mechanical model can be obtained by splitting the frame into a vertical
and horizontal member. The vertical member (I) is assumed to be a cantilever beam
(see Fig. 2.50) which perfectly transmits the reactionmoment and force to the vertical
member (II), see Fig. 2.51. It is obvious that the small rotation in the frame corner is
not perfectly represented in this simplemodel.However, it allowsus to derive a simple
design equation based on the straight beam equations provided in Sects. 2.2.1–2.2.2.
The horizontal member can be assumed to be a simply supported beam of length L II

as shown in Fig. 2.51a or as a cantilever of length L II
2 as shown in Fig. 2.51b.

Let us have a closer look at the vertical member as shown in Fig. 2.50. From
Eqs. (2.55) and (2.57) we can conclude with u0 → −u0 the bending moment and
shear force distributions to be:
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Fig. 2.51 Simplified
approach for horizontal
member: a approximation as
simply supported beam and
b consideration of symmetry

(a)

(b)

My(x) = 3EI IIu0
L2
I

( x
L

− 1
)

, (2.224)

Qz(x) = 3EI IIu0
L3
I

, (2.225)

or at x = 0:

My(0) = −3EI IIu0
L2
I

, (2.226)

Qz(0) = 3EI IIu0
L3
I

. (2.227)

These internal reactions must be balanced at x = L by the reactions of the fixed
support. The force and moment equilibrium at x = L reads:

+Qz(0) + FR
z (0) = 0 ⇒ FR

z (0) = −3EI IIu0
L3
I

, (2.228)

+My(0) + MR
y (0) = 0 ⇒ MR

y (0) = 3EI IIu0
L2
I

. (2.229)

These reactions are now applied at the horizontal member, see Fig. 2.51. To avoid
any confusion with the sign of these quantities, it is advised to simply take the
absolute values and consider the correct directions as indicated in the figure. This
configuration relates to the case that the base sample is under tensile load.

Let us first consider the case that only the bending moment is acting, i.e. the case
of pure bending. The internal bending moment distribution for both cases shown is
Fig. 2.51 is obtained as:
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(a) (b) (c)

Fig. 2.52 Strain distributions in the horizontal member of the extensometer: a pure bending; b
pure tension; c superposition of both cases

My(x) = −3EI IIu0
L2
I

= const. (2.230)

Equation (2.40) together with Hooke’s law allows us to express the normal strain in
the horizontal members (II) as:

εx,II(z) = My(x)

EII III
z(x) = − 3EI IIu0

EII IIIL2
I

z(x) . (2.231)

In the next step, we can express the displacement u0 by the strain in the specimen
εsp, i.e.,

εsp = 2u0
L II

= u0
L II
2

, (2.232)

which allows us to express the strain in the horizontal member of the extensometer
as:

εx,II(z) = −3

2
× EI IIL II

EII IIIL2
I

× εspz(x) . (2.233)

The strain distribution under pure bending is sketched in Fig. 2.52a where a lin-
ear distribution can be observed. Furthermore, the distribution is symmetric with a
compressive regime for z > 0 and a tensile regime for z < 0.

Reviewing again Fig. 2.50b, we can identify a shear force Fy(0) which acts on
the horizontal member as a tensile force, see Fig. 2.51. This ‘tensile’ force results in
the following tensile strain:

εx,II = |FR|
EIIAII

= 3EI IIu0
L3
I EIIAII

= 3

2
× EI IIL II

EIIAIIL3
I

× εsp . (2.234)

The strain components given in Eqs. (2.233) and (2.234) can be superposed to obtain
the total axial strain (see Fig. 2.52c) in the horizontal member of the extensometer
as:



2.4 Extensometer Analysis 59

Fig. 2.53 Schematic
representation of the
calibration curve for the
extensometer

εx,II = 3

2

(
− EI IIL II

EII IIIL2
I

× z(x) + EI IIL II

EIIAIIL3
I

)
εsp . (2.235)

Let us assume in the following a square cross section (with width bII and height hII)
for the horizontal member. Based on the relationship AII = 12III

h2II
, the total strain can

be expressed as:

εx,II = 3

2
× EI IIL II

EII IIIL I

(
− z(x)

L I
+ 1

12

(
hII
L I

)2
)

εsp . (2.236)

The extreme values at the free surfaces, i.e. z = + hII
2 and z = − hII

2 , are obtained as
follows:

εx,II
∣∣
z=+ hII

2
= 3

2
× EI IIL II

EII IIIL I
× hII

L I
×
(

−1

2
+ 1

12

(
hII
L I

))
εsp , (2.237)

εx,II
∣∣
z=− hII

2
= 3

2
× EI IIL II

EII IIIL I
× hII

L I
×
(

+1

2
+ 1

12

(
hII
L I

))
εsp . (2.238)

Based on Eqs. (2.237) and/or (2.238), it is now possible to calculate and draw the
calibration curve for the extensometer, i.e. the relation between the measured strain
in the extensometer (εx,II) and the strain in the specimen (εsp), see Fig. 2.53. From
a practical point of view, one could measure the strain on the top, or the bottom
(larger signal since two positive strain components are summed up) of the beam
or even average both signals (under consideration that the distribution is no longer
symmetric).

Both Eqs. (2.237) and (2.238) can be generally written as

εx,II = εsp(EI, EII, II, III, L I, L II) , (2.239)

which allows us to design the extensometer in the boundaries of minimum strain
(sensitivity) and maximum strain (failure of the strain gage).

Let us look in the following at a solution procedure which is based on the strain
energy as outlined in Sect. 2.3. This allows us to consider the entire frame (see
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Fig. 2.54 Vertical beam
section for the determination
of the internal reactions

Fig. 2.55 Section of the
frame structure for the
determination of the internal
reactions in the horizontal
member

Fig. 2.49) without the strong simplification in regards to the connection of the vertical
and horizontal members.

The horizontal force and moment equilibrium (see Fig. 2.54) gives the internal
reactions of the vertical member as follows:

Qz(xI) = FR
0 , (2.240)

My(xI) = −FR
0 (L I − xI) . (2.241)

For the internal reactions of the horizontal members, it is advantageous to consider
the left-hand half as shown in Fig. 2.55. Horizontal and vertical force as well as the
moment equilibrium give the following internal reactions in the horizontal member:

Nx (xII) = FR
0 , (2.242)

Qz(xII) = 0 , (2.243)

Mz(xII) = −FR
0 L I . (2.244)

It should be noted here that the reaction force FR
0 is still unknown. Based on Cas-

tigliano’s second theorem, it is possible to express the horizontal displacement
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as6:

u0 =
L I∫

0

My(xI)

EI II

∂My(xI, FR
0 )

∂FR
0

dxI +
LII
2∫

0

My(xII)

EII III

∂My(xII, FR
0 )

∂FR
0

dxII+

+
LII
2∫

0

Nx (xII)

EIIAII

∂Nx (xII, FR
0 )

∂FR
0

dxII

= FR
0

(
1

3

L3
I

EI II
+ 1

2

L2
I L II

EII III
+ 1

2

L II

EIIAII

)
. (2.245)

If we assume a square cross section for the horizontal member (width bII and height
hII), we can relate the cross sectional area to the second moment of area, i.e. AII =
12III
h2II

, and Eq. (2.245) can be expressed as:

u0 = FR
0

(
1

3

L3
I

EI II
+ 1

2

L2
I L II

EII III
+ 1

24

L IIh2II
EII III

)
, (2.246)

or rearranged for the unknown reaction force:

FR
0 = u0

1
3

L3
I

EI II
+ 1

2
L2
I L II

EII III
+ 1

24
L IIh2II
EII III

. (2.247)

Based on this reaction force, the internal reactions are known in both members, see
Eqs. (2.240)–(2.244). Let us now calculate the total strain in the horizontal member
of the extensometer. The axial strain due to the bending deformation can be expressed
as:

εx,II = 1

EII

My(xII)

III
z(xII) = 1

EII III

⎛
⎝− u0L I

1
3

L3
I

EI II
+ 1

2
L2
I L II

EII III
+ 1

24
L IIh2II
EII III

⎞
⎠ z(xII) , (2.248)

which can be rearranged under consideration of u0 = L II
2 εsp to:

εx,II = − εsp
2
3
EII IIIL I
EI IIL II

+ 1 + 1
12

h2II
L2
I

(
zII
L I

)
. (2.249)

On the other hand, the axial strain due to the tensile deformation can be expressed
as:

6It is assumed that the beams are thin and that the shear force is not contributing to the bending
deformation modes.
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εx,II = 1

EII

FR
0

AII
= 1

EIIAII

⎛
⎝ u0

1
3

L3
I

EI II
+ 1

2
L2
I L II

EII III
+ 1

2
L II

EIIAII

⎞
⎠ , (2.250)

which can be rearranged under consideration of AII = 12III
h2II

and u0 = L II
2 εsp to:

εx,II = 1

12

h2II
L2
I

⎛
⎝ εsp

2
3
EII IIIL I
EI IIL II

+ 1 + 1
12

h2II
L2
I

⎞
⎠ . (2.251)

Thus, the total strain resulting from bending and tension is obtained as:

εx,II = 1
2
3
EII IIIL I
EI IIL II

+ 1 + 1
12

h2II
L2
I

(
− zII
L I

+ 1

12

(
hII
L I

)2
)

εsp . (2.252)

The extreme values at the free surfaces, i.e. z = + hII
2 and z = − hII

2 , are obtained as
follows:

εx,II
∣∣
z=+ hII

2
= 1

2
3
EII IIIL I
EI IIL II

+ 1 + 1
12

h2II
L2
I

× hII
L I

×
(

−1

2
+ 1

12

(
hII
L I

))
εsp , (2.253)

εx,II
∣∣
z=− hII

2
= 1

2
3
EII IIIL I
EI IIL II

+ 1 + 1
12

h2II
L2
I

× hII
L I

×
(

+1

2
+ 1

12

(
hII
L I

))
εsp . (2.254)

Let us do a simple calculation at z = − hII
2 for the special case EI = EII, II = III,

L I = L II, and hII = L I
10 . From Eq. (2.254), we get

εx,II
∣∣
z=− hII

2
= 61

2000
εsp = 0.0305εsp , (2.255)

while the simplified model according to Eq. (2.238) gives:

εx,II
∣∣
z=− hII

2
= 61

800
εsp = 0.07625εsp . (2.256)

Obviously there is quite a significant difference between both approaches but the
results have at least the same order of magnitude.

The derivation of the equation for the displacement u0 as given in Eqs. (2.245)
and (2.246) was based on the assumption that the shear force is not contributing
to the deformation of the frame. The results for the shear force in Eqs. (2.240) and
(2.243) indicate that only the vertical frame part is loaded by a shear force. In the
case that this member is designed as a short beam, i.e. the application of the thick
beam might be more appropriate, Castigliano’s statement can be modified to the
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following expression:

u0 =
L I∫

0

My(xI)

EI II

∂My(xI, FR
0 )

∂FR
0

dxI +
L I∫

0

Qz(xI)

ks,IGIAI

∂Qz(xI, FR
0 )

∂FR
0

dxI

︸ ︷︷ ︸
shear contribution

+

+
LII
2∫

0

My(xII)

EII III

∂My(xII, FR
0 )

∂FR
0

dxII +
LII
2∫

0

Nx (xII)

EIIAII

∂Nx (xII, FR
0 )

∂FR
0

dxII

= FR
0

(
1

3

L3
I

EI II
+ 1

2

L2
I L II

EII III
+ 1

2

L II

EIIAII
+ L I

ks,IGIAI

)
. (2.257)

The last equation can be rearranged for the unknown reaction force:

FR
0 = u0

1
3

L3
I

EI II
+ 1

2
L2
I L II

EII III
+ 1

2
L II

EIIAII
+ L I

ks,IGIAI

. (2.258)

Under the consideration of a square cross section, i.e. ks,I = 5
6 , GI = EI

2(1+νI)
, Ai =

12Ii
h2i

, Ii = bi h3i
12 , and that the width is the same, i.e. bI = bII, one can easily derive the

following normalized expression:

FR
0

3EII IIIu0
I 3II

=
2
3

2
3
EII
EI

(
hII
L II

)3(
L I
hI

)3+
(

L I
L II

)3+ 1
12

(
hII
L II

)2+2
5 (1 + νI)

EII
EI

(
hII
L II

)3(
L I
hI

) . (2.259)

It should be noted that the last expression in the denominator (which contains Pois-
son’s ratio) stems from the consideration of the shear contribution. Let us now do
some simple estimates to predict the significance of the different contributions. The
different fractions in the denominator are evaluated as a function of hI

L I
in Table2.8

for the special case EII = EI, L II = L I, hII = L II
10 , and νI = 0.3.

We can conclude fromTable2.8 that the dominantmode of deformation is bending
in member II. Increasing the height (hI) of member I with respect to its length (L I)

increases the shear contribution in this members compared to the bending fraction.
However, both contributions reduce their share in the total deformation. Thus, we
can justify from this investigation that we do not need to consider the contribution
of the shear force on the deformation in this particular case.

Let us mention at the end of this section that the presented approach allows also
to estimate the influence of the deadweight, see Fig. 2.56. The distributed bending
loads in the horizontal frame elements are given by qg = dFg

dx = IAIg whereas the

distributed axial load in the vertical frame element is given by pg = dFg
dx = IIAIIg.
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Table 2.8 Sensitivity of different deformationmodes on the normalized reaction force as a function
of the slenderness ratio hI

LI

Member I Member II

Bending Shear Bending Tension

Eq. 2
3
EII
EI

(
hII
LII

)3(
LI
hI

)3
2
5 (1+νI)

EII
EI

(
hII
LII

)3(
LI
hI

) (
LI
LII

)3
1
12

(
hII
LII

)2

hI
LI

1
10 0.6666666667 0.0052000000 1.0 0.0008333333
1
9 0.4860000000 0.0046800000 1.0 0.0008333333
1
8 0.3413333333 0.0041600000 1.0 0.0008333333
1
7 0.2286666667 0.0036400000 1.0 0.0008333333
1
6 0.1440000000 0.0031200000 1.0 0.0008333333
1
5 0.0833333333 0.0026000000 1.0 0.0008333333
1
4 0.0426666667 0.0020800000 1.0 0.0008333333
1
3 0.0180000000 0.0015600000 1.0 0.0008333333
1
2 0.0053333333 0.0010400000 1.0 0.0008333333

1 0.0006666667 0.0005200000 1.0 0.0008333333

Fig. 2.56 Extensometer
under consideration of the
deadweight

2.5 Supplementary Problems

2.13 Rod Loaded By a Single Force in Its Middle
Given is a rod of length 2L and axial tensile stiffness E A which is fixed at both ends,
see Fig. 2.57. A single force F0 is acting in the middle (X = L) in positive direction.
Determine the expression for the displacement uX (X) and the normal fore NX (X)
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Fig. 2.57 Rod loaded by a
single force in its middle

Fig. 2.58 Cantilever
Timoshenko beam: a single
force case and b distributed
load case

(a)

(b)

based on the consideration of two sections or alternatively based on the application
of a discontinuous function. Sketch both distributions.

2.14 Cantilever Beam Under the Influence of a Point or Distributed Load –
Rectangular Cross Section
The cantilever Timoshenko beam shown in Fig. 2.58 is either loaded by a single
force F0 at its right-hand end or by a distributed load q0. The bending stiffness E I
and the shear stiffness ksAG are constant, the total length of the beam is equal to
L , and the rectangular cross section has the dimensions of b × h. Determine the
expressions of the bending lines (uz(x)) and sketch the deflections of the right-hand
end (x = L) as a function of the slenderness ratio h

L for ν = 0.0, 0.3, and 0.5.

2.15 Cantilever Rod with Different Sections (Alternative Solution Procedure of
Problem2.3)
Given is a rod of length 3L and constant axial tensile stiffness E A as shown in
Fig. 2.59. At the left-hand side there is a fixed support and a constant distributed load
2p0 is acting in the range 0 ≤ x ≤ 2L whereas a load of p0 is acting in the range
2L ≤ x ≤ 3L . Determine based on Castigliano’s theorems the analytical solution
for the elongation ux (x), the strain εx (x), and the stress σx(x) along the rod axis.
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Fig. 2.59 Rod with different
sections

Fig. 2.60 Beam-like
structure

2.16 Beam-Like Structure: Energy Approach
Given is a beam-like structure of length 3a and bending stiffness E I which is sim-
ply supported, see Fig. 2.60. A single force F0 is acting at a vertical extension in
positive x-direction. Determine based on Castigliano’s theorems the horizontal
displacement of the load application point (D) and the vertical displacement of point
C.



Chapter 3
Finite Element Method

Abstract This chapter treats one-dimensional finite elements with two nodes. Rods
for tensile deformation and thin and thick beams for bending deformation are intro-
duced based on their elemental finite element equation and the corresponding rela-
tionships for post-processing. Both element types are superposed to the generalized
beam element which can elongate and bend. In a further step, the elements are
arranged in a single plane to form truss or frame structures. The provided elements
are finally applied to the extensometer design problem.

3.1 General Idea of the Method

The general idea of the finite element method is illustrated in Fig. 3.1. The solution of
the differential equation (see Table2.2) of the continuum rod gives the displacement
field ux (x), i.e., the displacement at any location x of the considered domain 0 ≤
x ≤ L , see Fig. 3.1a.

It is easy to accept that such a detailed description of the problem is quite dif-
ficult or even impossible for complex structures. Thus, the major idea of the finite
element method is to limit the description to a finite number of points, the so-called
nodes, and to reduce the complexity of the problem, see Fig. 3.1b. Following this
idea, the displacement is only calculated at these nodes. These nodes also define the
boundary1 of so-called elements, which subdivide the considered domain in smaller
parts (so-called discretization). Furthermore, the nodal displacements are interpo-
lated between these nodal values within an element. To distinguish the node and
element numbering, we use Arabic numerals (1, 2, . . .) for the nodes and Roman
numerals (I, II, . . . ) for the elements.

The same idea is adopted for beams. The solution of the differential equation (see
Table2.4) for a thin continuum beam provides the deflection uz(x) at any location
of the beam, see Fig. 3.2a. In the case of a thick beam (see Table2.6), the rotation

1There are also more advanced elements with inner nodes. However, this is not treated here. For
further details, see [26].
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Fig. 3.1 a Continuum rod
and b discretization with two
finite elements

(a)

(b)

Fig. 3.2 a Continuum beam
and b discretization with two
finite elements

(a)

(b)

would be a second independent field variable. For the finite element approach, each
node of a beam element2 has two independent degrees of freedom, i.e. the deflection
uz and the rotation ϕy .

3.2 Rods and Trusses

3.2.1 Rod Elements

Let us consider in the following a rod element which is composed of two nodes as
schematically shown in Fig. 3.3. Each node has only one degree of freedom, i.e. a

2If we consider bending in a single plane (here: xz).
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Fig. 3.3 Definition of the
one-dimensional linear rod
element: a deformations;
b external loads. The nodes
are symbolized by the two
circles at the ends (©)

(a)

(b)

displacement ux in the direction of the x-axis (i.e., the direction of the principal axis,
see Fig. 3.3a) and each node can be only loaded by single forces acting in x-direction
(cf. Fig. 3.3b). In the case of distributed loads px (x), a transformation to equivalent
nodal loads is required.

Different methods can be found in the literature to derive the principal finite
element equation (see [8, 23]). All these methods result in the same formulation,
which is given in the following for constant material and geometrical properties:

E A

L

[
1 −1

−1 1

] [
u1x
u2x

]
=

[
F1x

F2x

]
+

L∫
0

[
N1

N2

]
px (x) dx , (3.1)

or in abbreviated form

K eue
p = f e , (3.2)

where K e is the elemental stiffness matrix, ue
p is the elemental column matrix of

unknowns and f e is the elemental column matrix of loads. The interpolation func-
tions in Eq. (3.1) are given by N1(x) = 1 − x

L and N2(x) = x
L and Table3.1

summarizes for some simple shapes of distributed loads the equivalent nodal loads.
Several single finite elements can be combined to form a finite element mesh and

the assembly of the elemental equations result in the global system of equations, i.e.

Kup = f , (3.3)

where K is the global stiffness matrix, up is the global column matrix of unknowns
and f is the global column matrix of loads. The global system of equations in the
form of Eq. (3.3) cannot be solvedwithout the consideration of the support conditions
(this results in the reduced system of equations). A fewmethods to consider different
types of boundary conditions are summarized in the following:

• Homogenous Dirichlet boundary condition ux = 0
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Table 3.1 Equivalent nodal loads for a linear rod element (x-axis: right facing)

Loading Equivalent Axial Force

F1x =
pL

2

F2x =
pL

2

F1x = −pa2

2L
+ pa

F2x =
pa2

2L

F1x =
pL

6

F2x =
pL

3

F1x =
pL

12

F2x =
pL

4

F1x =
F (L− a)

L

F2x =
Fa

L

A homogenous Dirichlet3 boundary condition at node n (unX = 0) can be
considered in the non-reduced system of equations by eliminating the nth row and
nth column of the system, see Eq. (3.4).

n⎡
⎢⎢⎢⎢⎣

×
×

× × × × ×
×
×

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣unX

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣×

⎤
⎥⎥⎥⎥⎦

.

××××
××××
×××××
××××××
××××××

⎢ ⎥⎥⎥⎥ ⎢⎢ nnXX
⎥ ⎢⎢⎢ ×× ×× ×××××× ×× ×× ⎥ ⎢⎢uunnnXXX
⎥⎥ ⎢⎢××⎢ ×× ××× ×××××××× ×× ××× ⎥⎥⎥⎥ ⎢⎢uunnXXX
⎥⎥ ⎢⎢×××⎢ ×× ×× ××× × ×× ⎥ ⎢⎢ ⎥⎥
==

⎢⎢××
⎥⎥⎥⎥ ⎢ ⎥

===
⎢

(3.4)

3Alternatively known as 1st kind, essential, geometric or kinematic boundary condition.
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• Non-homogeneous Dirichlet boundary condition ux �= 0

First possibility: A non-homogeneous Dirichlet boundary condition (unX =
u0 �= 0) at node n can be introduced in the system of equations by modifying the
nth row in such a way that at the position of the nth column a ‘1’ is obtained while
all other entries of the nth row are set to zero. On the right-hand side, the given
value u0 is introduced at the nth position of the columnmatrix of the external loads
as follows.

n⎡
⎢⎢⎢⎢⎣ 0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣unX

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣u0

⎤
⎥⎥⎥⎥⎦
. (3.5)

Second possibility: If the boundary condition is specified at node n, the nth column
of the stiffness matrix is multiplied by the given value u0. Now we bring the nth

column of the stiffness matrix to the right-hand side of the system and delete the
nth row of the system of equations. These steps can be identified in the following
equations:

n − 1 n n + 1⎡
⎢⎢⎢⎢⎣

(. . . )u0
(. . . )u0
(. . . )u0
(. . . )u0
(. . . )u0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
un−1X

unX
un+1X

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

(3.6)

⇒

n − 1 n + 1⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
un−1X

unX
un+1X

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦−

n⎡
⎢⎢⎢⎢⎣

(. . . )u0
(. . . )u0
(. . . )u0
(. . . )u0
(. . . )u0

⎤
⎥⎥⎥⎥⎦
(3.7)

⇒

⎡
⎢⎢⎣

⎤
⎥⎥⎦

⎡
⎢⎢⎣un−1X

un+1X

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− (. . . )u0
− (. . . )u0
− (. . . )u0
− (. . . )u0

⎤
⎥⎥⎦ . (3.8)
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Table 3.2 Post-processing of
nodal values for a linear rod
element (defined by element
length L , cross-sectional area
A, and Young’s modulus E).
The distributions are given as
being dependent on the nodal
values as a function of the
physical coordinate
0 ≤ x ≤ L and the natural
coordinate −1 ≤ ξ ≤ 1

Axial displacement (Elongation) ux

uex (x) = [
1 − x

L

]
u1x + [ x

L

]
u2x

uex (ξ) = [ 1
2 (1 − ξ)

]
u1x + [ 1

2 (1 + ξ)
]
u2x

Axial strain εx = dux
dx = dξ

dx
dux
dξ

εex (x) = 1
L (u2x − u1x )

εex (ξ) = 1
L (u2x − u1x )

Axial stress σx = Eεx = E dux
dx = E dξ

dx
dux
dξ

σe
x (x) = E

L (u2x − u1x )

σe
x (ξ) = E

L (u2x − u1x )

Normal force Nx = E Aεx = E A dux
dx = E A dξ

dx
dux
dξ

N e
x (x) = E A

L (u2x − u1x )

N e
x (ξ) = E A

L (u2x − u1x )

Third possibility: Replace in the column matrix of unknowns the variable of the
nodal value unX with the given value u0 and introduce in the column matrix of
the external loads at the nth position the corresponding reaction force FR

nX . Split
the column matrix of the external loads into a component with the given external
loads and a component which contains the unknown reaction force FR

nX . Now we
bring the nth column of the stiffness matrix to the right-hand side of the system
and the component of the load matrix with FR

nX to the left-hand side:

n⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣u0

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣ FR

n,X

⎤
⎥⎥⎥⎥⎦
. (3.9)

• Neumann boundary condition Fx = F0

ANeumann4 boundary condition at node n (FnX = F0) can be considered on the
right-hand side, i.e. in the column matrix of the external loads.

Once the nodal displacements (u1x , u2x ) are known, further quantities and their
distributions can be calculated within an element (so-called post-processing), see
Table3.2. As we can see from this table, the distributions and other field variables
depend only on the nodal displacement values.

4Alternatively known as 2nd kind, natural or static boundary condition.
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Let us summarize here the recommended steps for a linear finite element solution
(‘hand calculation’):

1 Sketch the free-body diagram of the problem, including a global coordinate
system.
2 Subdivide the geometry into finite elements. Indicate the node and element
numbers (the user may choose any numbering order), local coordinate systems,
and equivalent nodal loads.
3 Write separately all elemental stiffness matrices expressed in the global coordi-
nate system. Indicate for each element the nodal unknowns (degrees of freedom)
on the right-hand side and over the matrix. In this step, the DOFs must be cho-
sen according to the global coordinate system—conventionally, in the positive
direction.
4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.
The dimensions of the matrix are equal to the total number of degrees of freedom
which can be determined by multiplying the number of nodes by the number
of degrees of freedom per node. After assembling, the validity of the assembled
stiffness matrix can be tested by the following check list:

K is symmetrical,
K has only positive components on the main diagonal, and
the coupled DOFs have non-zero values as their corresponding components.

5 Insert step-by-step the values of the elemental stiffness matrices into the global
stiffness matrix. This process is called assembling the global stiffness matrix.
6 Add the column matrix of unknowns and external loads to complete the global
system of equations.
7 Introduce the boundary conditions to obtain the reduced system of equations.
8 Solve the reduced system of equations to obtain the unknown nodal deforma-
tions.
9 Post-computation or post-processing: determination of reaction forces, stresses
and strains.
10 Check the global equilibrium between the external loads and the support reac-
tions (optional step for checking the results).

It should be noted that some steps may be combined or omitted depending on the
problem and the experience of the finite element user. The above steps can be seen
as an initial structured guide to master the solution of finite element problems.

3.1 Example: Rod Structure with a Point Load
Given is a rod structure as shown in Fig. 3.4. The structure has a uniform cross-
sectional area A and Young’s modulus E . The structure is fixed at its left-hand end
and loaded by a single force F0.

Model the rod structure with two linear finite elements of equal length L and
determine:
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Fig. 3.4 Rod structure with
a point load

• the displacements at the nodes,
• the reaction force at the left-hand support,
• the strain, stress, and normal force in the elements and
• check the global force equilibrium.

3.1 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system.

Remove the support at the left-hand end and introduce the corresponding reaction
force, see Fig. 3.5. Note that the direction of the reaction force can be arbitrarily
chosen. The sign of the result will confirm (FR

1 > 0) or not (FR
1 < 0) the assumed

direction.
The rod structure with a total length of 2L is divided in the middle into two

elements, see Fig. 3.6. This corresponds to step 2 .

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

K e
I = E A

L

[u1X u2X
1 −1

−1 1

]
u1X
u2X

, (3.10)

K e
II = E A

L

[u2X u3X
1 −1

−1 1

]
u2X
u3X

. (3.11)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having one degree of
freedom (i.e., the axial displacement). Thus, the dimensions of the global stiffness
matrix are (3 × 1) × (3 × 1) = (3 × 3):

Fig. 3.5 Free-body diagram of the rod structure with a point load
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Fig. 3.6 a Free-body
diagram of the discretized
structure with point loads.
b Nodal unknowns

(a)

(b)

K =

u1X u2X u3X⎡
⎣

⎤
⎦ u1X

u2X
u3X

. (3.12)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K = E A

L

⎡
⎣
u1X u2X u3X

1 −1 0
−1 2 −1
0 −1 1

⎤
⎦u1X
u2X
u3X

. (3.13)

6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

E A

L

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 1

⎤
⎦

⎡
⎣u1X
u2X
u3X

⎤
⎦ =

⎡
⎣−FR

1
0
F0

⎤
⎦ . (3.14)

7 Introduce the boundary conditions to obtain the reduced system of equations.

There is no displacement possible at the left-hand end of the structure (i.e., u1X = 0
at node 1). Thus, cancel the first row and first column from the linear system to
obtain:

E A

L

[
2 −1

−1 1

] [
u2X
u3X

]
=

[
0
F0

]
. (3.15)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :
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[
u2X
u3X

]
= L

E A
× 1

2 − 1

[+1 +1
+1 2

] [
0
F0

]
= F0L

E A

[
1
2

]
. (3.16)

9 Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step 6 under the
consideration of the known nodal displacements. The first equation of this system
reads:

E A

L
(−u2X ) = −FR

1 , (3.17)

or finally for the reaction force:

FR
1 = F0 . (3.18)

The obtained positive value confirms the assumption of the selected initial direction
for the reaction force.

The equations for the elemental strains, stresses, and normal forces can be
extracted from Table3.2:

εeI = 1

L
(u2X − u1X ) = F0

E A
, (3.19)

εeII = 1

L
(u3X − u2X ) = F0

E A
, (3.20)

σe
I = E

L
(u2X − u1X ) = F0

A
, (3.21)

σe
II = E

L
(u3X − u2X ) = F0

A
, (3.22)

N e
I = E A

L
(u2X − u1X ) = F0 , (3.23)

N e
II = E A

L
(u3X − u2X ) = F0 . (3.24)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ −FR
1︸︷︷︸

reaction force

+ F0︸︷︷︸
external load

= 0 � (3.25)
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Fig. 3.7 Rod structure with
changing distributed load

3.2 Example: Rod Structure with Changing Distributed Load
Given is a rod structure as shown in Fig. 3.7. The structure has a uniform cross-
sectional area A and Young’s modulus E . The structure is fixed at its left-hand end
and loaded by a single force F0 at X = 3L as well as

(a) a uniform distributed load 2p0 in the range 0 ≤ X ≤ 2L , and
(b) a uniform distributed load p0 in the range 2L ≤ X ≤ 3L .

Model the rod structure with two linear finite elements and determine

• the displacements at the nodes,
• the reaction force at the left-hand support,
• the strain, stress, and normal force in each element, and
• check the global force equilibrium.

3.2 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system.

Remove the support at the left-hand end and introduce the corresponding reaction
force, see Fig. 3.8. Note that the direction of the reaction force can be arbitrarily
chosen. The sign of the result will confirm (FR

1 > 0) or not (FR
1 < 0) the assumed

direction. Looking from a different angle at the problem, we can say that nodes are
introduced at the locations of the single forces (FR

1 and F0) and the discontinuity
of the distributed load.

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads.

The rod structure with a total length of 3L is divided at the discontinuity of the
distributed load (i.e., at X = 2L) into two elements and the corresponding equivalent
nodal loads are calculated from Table3.1, see Fig. 3.9. The two force contributions of

Fig. 3.8 Free-body diagram
of the rod structure with
changing distributed load
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Fig. 3.9 a Free-body
diagram of the discretized
structure with equivalent
nodal loads. b Nodal
unknowns

(a)

(b)

magnitude 2p0L result from the distributed load 2p0 and the two force contributions
of magnitude p0L

L result from the distributed load p0.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

K e
I = E A

2L

[u1X u2X
1 −1

−1 1

]
u1X
u2X

= E A

L

[u1X u2X
1
2 − 1

2

− 1
2

1
2

]
u1X
u2X

, (3.26)

K e
II = E A

L

u2X u3X[
1 −1

−1 1

]
u2X
u3X

. (3.27)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having one degree of
freedom (i.e., the axial displacement). Thus, the dimensions of the global stiffness
matrix are (3 × 1) × (3 × 1) = (3 × 3):

K =

u1X u2X u3X⎡
⎣

⎤
⎦ u1X

u2X
u3X

. (3.28)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.
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K = E A

L

⎡
⎢⎣

u1X u2X u3X
1
2 − 1

2 0

− 1
2

1
2 + 1 −1

0 −1 +1

⎤
⎥⎦
u1X
u2X
u3X

. (3.29)

6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

E A

L

⎡
⎢⎣

1
2 − 1

2 0

− 1
2

1
2 + 1 −1

0 −1 +1

⎤
⎥⎦

⎡
⎢⎣
u1X
u2X
u3X

⎤
⎥⎦ =

⎡
⎢⎣

−FR
1 + 2p0L
5
2 p0L

F0 + p0L
2

⎤
⎥⎦ . (3.30)

7 Introduce the boundary conditions to obtain the reduced system of equations.

There is no displacement possible at the left-hand end of the structure (i.e., u1X = 0
at node 1). Thus, cancel the first row and first column from the linear system to
obtain:

E A

L

[
3
2 −1

−1 +1

][
u2X
u3X

]
=

[
5
2 p0L

F0 + p0L
2

]
. (3.31)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

[
u2X
u3X

]
= L

E A
× 1

3
2 − 1

[
+1 +1

+1 3
2

][
5
2 p0L

F0 + p0L
2

]
= 2L

E A

[
3p0L + F0

13
4 p0L + 3

2 F0

]
.

(3.32)

9 Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step 6 under the
consideration of the known nodal displacements. The first equation of this system
reads:

E A

L

(
1

2
u1X − 1

2
u2X + 0

)
= −FR

1 + 2p0L , (3.33)

or finally for the reaction force:

FR
1 = 5p0L + F0 . (3.34)

The equations for the elemental strains, stresses, and normal forces can be extracted
from Table3.2:
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εeI = 1

L I
(u2X − u1X ) = 1

E A
(3p0L + F0) , (3.35)

εeII = 1

L II
(u3X − u2X ) = 1

E A

(
1

2
p0L + F0

)
, (3.36)

σe
I = E

L I
(u2X − u1X ) = 1

A
(3p0L + F0) , (3.37)

σe
II = E

L II
(u3X − u2X ) = 1

A

(
1

2
p0L + F0

)
, (3.38)

N e
I = E A

L I
(u2X − u1X ) = 3p0L + F0 , (3.39)

N e
II = E A

L II
(u3X − u2X ) = 1

2
p0L + F0 . (3.40)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ −(5p0L + F0)︸ ︷︷ ︸
reaction force

+ F0 + 4p0L + p0L︸ ︷︷ ︸
external loads

= 0 � (3.41)

3.3 Example: Rod Structure with Displacement and Force Boundary Condi-
tions
Given is a rod structure as shown in Fig. 3.10. The structure has a uniform cross-
sectional area A and Young’s modulus E . The structure is fixed at both ends and
loaded by a single force F0 at X = 3

5 L as well as a displacement u0 at X = 2
5 L .

Model the rod structure with five linear finite elements of equal length and deter-
mine

• the displacements at the nodes,
• the reaction forces at the supports,
• the strain, stress, and normal force in each element, and
• check the global force equilibrium.
• Assume now that only u0 is given. Adjust the value of F0 in such away that element
III is in a stress-free state.

Fig. 3.10 Rod structure with
displacement and force
boundary conditions
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Fig. 3.11 Free-body
diagram of the rod structure
with displacement and force
boundary condition

Fig. 3.12 Free-body
diagram of the discretized
structure

3.3 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system.

Remove the supports at both ends and introduce the corresponding reaction forces,
see Fig. 3.11.

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.12.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

K e
I = E A

L
5

u1X u2X[
1 −1

−1 1

]
u1X
u2X

, K e
II = E A

L
5

u2X u3X[
1 −1

−1 1

]
u2X
u3X

, (3.42)

K e
III = E A

L
5

u3X u4X[
1 −1

−1 1

]
u3X
u4X

, K e
IV = E A

L
5

u4X u5X[
1 −1

−1 1

]
u4X
u5X

, (3.43)

K e
V = E A

L
5

u5X u6X[
1 −1

−1 1

]
u5X
u6X

. (3.44)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 6 nodes, each having one degree of
freedom (i.e., the axial displacement). Thus, the dimensions of the global stiffness
matrix are (6 × 1) × (6 × 1) = (6 × 6):
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K =

u1X u2X u3X u4X u5X u6X⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

u1X
u2X
u3X
u4X
u5X
u6X

. (3.45)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K = E A
L
5

⎡
⎢⎢⎢⎢⎢⎢⎣

u1X u2X u3X u4X u5X u6X
1 −1 0 0 0 0

−1 1 + 1 −1 0 0 0
0 −1 1 + 1 −1 0 0
0 0 −1 1 + 1 −1 0
0 0 0 −1 1 + 1 −1
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

u1X
u2X
u3X
u4X
u5X
u6X

. (3.46)

6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

E A
L
5

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
−1 1 + 1 −1 0 0 0
0 −1 1 + 1 −1 0 0
0 0 −1 1 + 1 −1 0
0 0 0 −1 1 + 1 −1
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1X
u2X
u3X
u4X
u5X
u6X

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR
1X

0

FR
3X

F0

0

FR
6X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.47)

7 and 8 Introduce the boundary conditions to obtain the reduced systemof equations.
Solve the reduced system of equations to obtain the unknown nodal deformations.

There is no displacement possible at either ends of the structure (i.e., u1X = 0 at
node 1 and u6X = 0 at node 6). Thus, cancel the first and last rows and the first and
last columns from the linear system to obtain:

5E A

L

⎡
⎢⎢⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u2X
u3X
u4X
u5X

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

FR
3X

F0

0

⎤
⎥⎥⎥⎦ . (3.48)

Thefirst possibility to consider the non-homogeneousDirichletboundary condition
u3X = u0 is:



3.2 Rods and Trusses 83

5E A

L

⎡
⎢⎢⎣
2 −1 0 0
0 L

5E A 0 0
0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u2X
u3X
u4X
u5X

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
u0
F0

0

⎤
⎥⎥⎦ . (3.49)

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎢⎣
u2X
u3X
u4X
u5X

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u0
2

u0
10E Au0+2F0L

15E A
5E Au0+F0L

15E A

⎤
⎥⎥⎥⎦ . (3.50)

The second possibility to consider the non-homogeneous Dirichlet boundary con-
dition u3X = u0 is to multiply the 2nd column of the stiffness matrix with the given
value u0:

5E A

L

⎡
⎢⎢⎢⎣

2 −1 × u0 0 0

−1 2 × u0 −1 0

0 −1 × u0 2 −1

0 0 × u0 −1 2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
u2X
u3X
u4X
u5X

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
FR
3X

F0

0

⎤
⎥⎥⎥⎦ . (3.51)

Bring the second column to the right-hand side of the system of equations:

5E A

L

⎡
⎢⎢⎣

2 0 0
−1 −1 0
0 2 −1
0 −1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣
u2X
u3X
u4X
u5X

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

FR
3X

F0

0

⎤
⎥⎥⎥⎦ − 5E A

L

⎡
⎢⎢⎣

−u0
2u0
−u0
0

⎤
⎥⎥⎦ . (3.52)

Now, let us cancel the second row of the system:

5E A

L

⎡
⎣2 0 0
0 2 −1
0 −1 2

⎤
⎦

⎡
⎢⎣
u2X
u4X
u5X

⎤
⎥⎦ =

⎡
⎢⎣

0

F0

0

⎤
⎥⎦ − 5E A

L

⎡
⎢⎣

−u0
−u0
0

⎤
⎥⎦ . (3.53)
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The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎣
u2X
u4X
u5X

⎤
⎥⎦ =

⎡
⎢⎣

u0
2

10E Au0+2F0L
15E A

5E Au0+F0L
15E A

⎤
⎥⎦ . (3.54)

The third possibility to consider the non-homogeneous Dirichlet boundary condi-
tion u3X = u0 is to introduce the prescribed u0 in the column matrix of unknowns:

5E A

L

⎡
⎢⎢⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣
u2X
u0
u4X
u5X

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
R3X

F0

0

⎤
⎥⎥⎥⎦ . (3.55)

The column matrix of the nodal displacements up contains now unknown quantities
(u2X , u4X , u5X ) and the given nodal boundary condition (u0). On the other hand,
the right-hand side contains the unknown reaction force FR

3X . Thus, the structure
of the linear system of equations is unfavorable for the solution. To rearrange the
system to the classical structure where all unknowns are collected on the left and
given quantities on the right-hand side, the following steps can be applied:

Let us first split the right-hand side in known and unknowns quantities:

5E A

L

⎡
⎢⎢⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣
u2X
u0
u4X
u5X

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

F0

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0

FR
3X

0

0

⎤
⎥⎥⎥⎦ . (3.56)

Let us now multiply the second column of the stiffness matrix with the given value
u0:

5E A

L

⎡
⎢⎢⎢⎣

2 −1 × u0 0 0

−1 2 × u0 −1 0

0 −1 × u0 2 −1

0 0 × u0 −1 2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
u2X
u0
u4X
u5X

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

F0

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0

FR
3X

0

0

⎤
⎥⎥⎥⎦ . (3.57)

The final step is to bring the second column of the stiffness matrix to the right-hand
side of the system (known values) and the known column matrix with FR

3X into the
stiffness matrix:
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5E A

L

⎡
⎢⎢⎢⎣

2 0 0 0

−1 − L
5E A −1 0

0 0 2 −1

0 0 −1 2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
u2X
FR
3X

u4X
u5X

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

5E Au0
L

− 10E Au0
L

F0 + 5E Au0
L

0

⎤
⎥⎥⎥⎦ . (3.58)

Now we can obtain the solution via the classical matrix approach up = K−1 f :

⎡
⎢⎢⎢⎣
u2X
FR
3X

u4X
u5X

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u0
2

25E Au0−4F0L
6L

10E Au0+2F0L
15E A

5E Au0+F0L
15E A

⎤
⎥⎥⎥⎦ . (3.59)

9 Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step 6 under the
consideration of the known nodal displacements. The first equation of this system
reads:

5E A

L
(u1X − u2X ) = FR

1X ⇒ FR
1X = −5E Au0

2L
. (3.60)

In a similar way, we obtain from the other equations:

FR
3X = 25E Au0 − 4F0L

6L
, FR

6X = −5E Au0 + F0L

3L
. (3.61)

The equations for the elemental strains, stresses, and normal forces can be extracted
from Table3.2:

εeI = 1

L
(u2X − u1X ) = u0

2L
, (3.62)

εeII = 1

L
(u0 − u2X ) = u0

2L
, (3.63)

εeIII = 1

L
(u4X − u0) = −5E Au0 − 2F0L

15E AL
, (3.64)

εeIV = 1

L
(u5X − u4X ) = −5E Au0 + F0L

15E AL
, (3.65)

εeV = 1

L
(u6X − u5X ) = −5E Au0 + F0L

15E AL
, (3.66)
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σe
I = E

L
(u2X − u1X ) = Eu0

2L
, (3.67)

σe
II = E

L
(u0 − u2X ) = Eu0

2L
, (3.68)

σe
III = E

L
(u4X − u0) = −5E Au0 − 2F0L

15AL
, (3.69)

σe
IV = E

L
(u5X − u4X ) = −5E Au0 + F0L

15AL
, (3.70)

σe
V = E

L
(u6X − u5X ) = −5E Au0 + F0L

15AL
, (3.71)

N e
I = E A

L
(u2X − u1X ) = E Au0

2L
, (3.72)

N e
II = E A

L
(u0 − u2X ) = E Au0

2L
, (3.73)

N e
III = E A

L
(u4X − u0) = −5E Au0 − 2F0L

15L
, (3.74)

N e
IV = E A

L
(u5X − u4X ) = −5E Au0 + F0L

15L
, (3.75)

N e
V = E A

L
(u6X − u5X ) = −5E Au0 + F0L

15L
. (3.76)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X + FR

3X + FR
6X )︸ ︷︷ ︸

reaction forces

+ F0︸︷︷︸
external load

= 0 . � (3.77)

Additional question: Assume now that only u0 is given. Adjust the value of F0 in
such a way that element III is in a stress-free state. From 9 we can get the stress in
element 3:

σe
III = −5AEu0 − 2F0L

AL
!= 0 . (3.78)

From the last equation we can conclude: F0 = 5AEu0
2L .

3.2.2 Truss Structures

Let us consider a rod element which can deform in the global X -Z plane. The local
x-coordinate is rotated by an angle α against the global coordinate system (X, Z),



3.2 Rods and Trusses 87

Fig. 3.13 Rotational
transformation of a rod
element in the X -Z plane

Table 3.3 Transformation of
matrices between the
elemental (x, z) and global
coordinate (X, Z) system

Stiffness matrix

K e
xz = T K e

XZT
T , K e

XZ = TTK e
xzT

Column matrix of nodal unknowns

uxz = T uXZ , uXZ = TTuxz
Column matrix of external loads

f xz = T f XZ , f XZ = TT f xz

see Fig. 3.13. If the rotation of the global coordinate system to the local coordinate
system is clockwise, a positive rotational angle is obtained.

Each node has now in the global coordinate system two degrees of freedom,
i.e. a displacement in the X - and a displacement in the Z -direction. These two
global displacements at each node can be used to calculate the displacement in the
direction of the rod axis, i.e. in the direction of the local x-axis. The transformation
of components of the principal finite element equation between the elemental and
global coordinate system in summarized in Table3.3 whereas the transformation
matrix T is given by

T =
[
cosα − sinα 0 0

0 0 cosα − sinα

]
. (3.79)

The triple matrix product for the stiffness matrix results in the following formulation
for a rotated rod element:

E A

L

⎡
⎢⎢⎣

cos2 α − cosα sinα − cos2 α cosα sinα

− cosα sinα sin2 α cosα sinα − sin2 α

− cos2 α cosα sinα cos2 α − cosα sinα

cosα sinα − sin2 α − cosα sinα sin2 α

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

u1X
u1Z
u2X
u2Z

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

F1X
F1Z
F2X
F2Z

⎤
⎥⎥⎥⎦ .

(3.80)
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Table 3.4 Elemental stiffness matrices for truss elements given for different rotation angles α, cf.
Eq. (3.80)

0◦ 180◦

E A
L

⎡
⎢⎢⎢⎣

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎦ E A

L

⎡
⎢⎢⎢⎣

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎦

−30◦ 30◦

E A
L

⎡
⎢⎢⎢⎢⎢⎣

3
4

1
4

√
3 − 3

4 − 1
4

√
3

1
4

√
3 1

4 − 1
4

√
3 − 1

4

− 3
4 − 1

4

√
3 3

4
1
4

√
3

− 1
4

√
3 − 1

4
1
4

√
3 1

4

⎤
⎥⎥⎥⎥⎥⎦

E A
L

⎡
⎢⎢⎢⎢⎢⎣

3
4 − 1

4

√
3 − 3

4
1
4

√
3

− 1
4

√
3 1

4
1
4

√
3 − 1

4

− 3
4

1
4

√
3 3

4 − 1
4

√
3

1
4

√
3 − 1

4 − 1
4

√
3 1

4

⎤
⎥⎥⎥⎥⎥⎦

−45◦ 45◦

E A
L

⎡
⎢⎢⎢⎢⎢⎣

1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2 − 1
2

− 1
2 − 1

2
1
2

1
2

− 1
2 − 1

2
1
2

1
2

⎤
⎥⎥⎥⎥⎥⎦

E A
L

⎡
⎢⎢⎢⎢⎢⎣

1
2 − 1

2 − 1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2

1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

⎤
⎥⎥⎥⎥⎥⎦

−90◦ 90◦

E A
L

⎡
⎢⎢⎢⎣
0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

⎤
⎥⎥⎥⎦ E A

L

⎡
⎢⎢⎢⎣
0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

⎤
⎥⎥⎥⎦

To simplify the solution of simple truss structures, Table3.4 collects expressions for
the global stiffness matrix for some common angles α.

The results for the transformation of matrices given in Table3.3 can be combined
with the relationships for post-processing of nodal values in Table3.2 to express the
distributions in global coordinates, see Table3.5.

3.4 Example: Simple Truss Structure with Two Members
Given is a plane truss structure as shown in Fig. 3.14. Both members have a uniform
cross-sectional area A and Young’s modulus E . The length of the members can be
calculated from the given values (horizontal and vertical length a) in the figure. The
structure is supported at its lower end and loaded by the single force F0 at the top of
the structure.

Model the truss structure with two linear finite elements and determine

• the displacement of the free node,
• the reaction forces at the supports,
• the strain, stress, and normal force in each element, and
• check the global force equilibrium.
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Table 3.5 Post-processing of nodal values in global coordinates for a linear rod element (defined
by element length L , cross-sectional area A, and Young’s modulus E)

Axial displacement (Elongation) ux
uex (x) = [

1 − x
L

]
(cos(α)u1X − sin(α)u1Z ) + [ x

L

]
(cos(α)u2X − sin(α)u2Z )

uex (ξ) = [ 1
2 (1 − ξ)

]
(cos(α)u1X − sin(α)u1Z ) + [ 1

2 (1 + ξ)
]
(cos(α)u2X − sin(α)u2Z )

Axial strain εx

εex (x) = 1
L ((cos(α)u2X − sin(α)u2Z ) − (cos(α)u1X − sin(α)u1Z ))

εex (ξ) = 1
L ((cos(α)u2X − sin(α)u2Z ) − (cos(α)u1X − sin(α)u1Z ))

Axial stress σx

σe
x (x) = E

L ((cos(α)u2X − sin(α)u2Z ) − (cos(α)u1X − sin(α)u1Z ))

σe
x (ξ) = E

L ((cos(α)u2X − sin(α)u2Z ) − (cos(α)u1X − sin(α)u1Z ))

Normal force Nx

N e
x (x) = E A

L ((cos(α)u2X − sin(α)u2Z ) − (cos(α)u1X − sin(α)u1Z ))

N e
x (ξ) = E A

L ((cos(α)u2X − sin(α)u2Z ) − (cos(α)u1X − sin(α)u1Z ))

Fig. 3.14 Simple truss
structure composed of two
straight inclined members

3.4 Solution
1 and 2 Sketch the free-body diagram of the problem, including a global coordinate
system. Subdivide the geometry into finite elements. Indicate the node and element
numbers, local coordinate systems, and equivalent nodal loads, see Fig. 3.15.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Element I is rotated by an angle of α = −45◦:

K e
I = E A√

2a

⎡
⎢⎢⎢⎢⎣

u1X u1Z u2X u2Z
1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2 − 1
2

− 1
2 − 1

2
1
2

1
2

− 1
2 − 1

2
1
2

1
2

⎤
⎥⎥⎥⎥⎦
u1X
u1Z
u2X
u2Z

, (3.81)
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Fig. 3.15 Free-body
diagram of the truss structure
composed of two straight
inclined members

Element II is rotated by an angle of α = +45◦:

K e
II = E A√

2a

⎡
⎢⎢⎢⎢⎣

u2X u2Z u3X u3Z
1
2 − 1

2 − 1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2

1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

⎤
⎥⎥⎥⎥⎦
u2X
u2Z
u3X
u3Z

. (3.82)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having two degrees of
freedom (i.e., the horizontal and vertical displacements). Thus, the dimensions of the
global stiffness matrix are (3 × 2) × (3 × 2) = (6 × 6):

K =

u1X u1Z u2X u2Z u3X u3Z⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
u2X
u2Z
u3X
u3Z

. (3.83)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.
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K = E A√
2a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z u2X u2Z u3X u3Z
1
2

1
2 − 1

2 − 1
2 0 0

1
2

1
2 − 1

2 − 1
2 0 0

− 1
2 − 1

2
1
2 + 1

2
1
2 − 1

2 − 1
2

1
2

− 1
2 − 1

2
1
2 − 1

2
1
2 + 1

2
1
2 − 1

2

0 0 − 1
2

1
2

1
2 − 1

2

0 0 1
2 − 1

2 − 1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
u2X
u2Z
u3X
u3Z

. (3.84)

6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

E A√
2a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2 − 1

2 − 1
2 0 0

1
2

1
2 − 1

2 − 1
2 0 0

− 1
2 − 1

2
2
2 0 − 1

2
1
2

− 1
2 − 1

2 0 2
2

1
2 − 1

2

0 0 − 1
2

1
2

1
2 − 1

2

0 0 1
2 − 1

2 − 1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X
u1Z
u2X
u2Z
u3X
u3Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR
1X

FR
1Z

F0

0

FR
3X

FR
3Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.85)

7 Introduce the boundary conditions to obtain the reduced system of equations.

There is no displacement possible at the lower left-hand and lower right-hand of the
structure (i.e., u1X = u1Z = 0 at node 1 and u3X = u3Z = 0 at node 3). Thus, cancel
the first two and last two columns and rows from the linear system to obtain:

E A√
2a

[
1 0

0 1

][
u2X
u2Z

]
=

[
F0

0

]
. (3.86)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :
[
u2X
u2Z

]
=

√
2a

E A

1

1 − 0

[
1 0
0 1

][
F0

0

]
=

√
2aF0

E A

[
1
0

]
. (3.87)

9 Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step 6 under the
consideration of the known nodal displacements. The first equation of this system
reads:

E A√
2a

(
−1

2
u2X

)
= FR

1X ⇒ FR
1X = − F

2
. (3.88)
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In a similar way, we obtain from the other equations:

E A√
2a

(
−1

2
u2X

)
= FR

1Z ⇒ FR
1Z = − F

2
, (3.89)

E A√
2a

(
−1

2
u2X

)
= FR

3X ⇒ FR
3X = − F

2
, (3.90)

E A√
2a

(
1

2
u2X

)
= FR

3Z ⇒ FR
3Z = F

2
. (3.91)

The elemental stresses can be obtained from the displacements of the start (‘s’) and
end (‘e’) node as:

σ = E√
2a

(− cos(α)usX + sin(α)usZ + cos(α)ueX − sin(α)ueZ ) . (3.92)

In the case of element I (αI = −45◦), we should consider u1X = u1Z = u2Z = 0 to
obtain:

σI = E√
2a

cos(αI)u2X = F0√
2A

. (3.93)

Similarly, u1X = u1Z = u2Z = 0 for element II (αII = +45◦):

σII = − E√
2a

cos(αII)u2X = − F0√
2A

. (3.94)

Application of Hooke’s law, i.e., σ = Eε, allows the calculation of the elemental
strains:

εI = σI

E
= + F0√

2E A
, (3.95)

εII = σII

E
= − F0√

2E A
. (3.96)

The normal forces can be obtained from the normal stresses in each element:

NI = σIA = F0√
2
, (3.97)

NII = σIIA = − F0√
2
. (3.98)
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(a) (b)

Fig. 3.16 Approximation of a solid using a truss: a solid, and b truss structure

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X + FR

3X )︸ ︷︷ ︸
reaction force

+ F0︸︷︷︸
external loads

= 0 , � (3.99)

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

3Z )︸ ︷︷ ︸
reaction force

+ 0︸︷︷︸
external load

= 0 . � (3.100)

3.5 Example: Approximation of a Solid Using a Truss Structure
Given is an isotropic and homogeneous solid as shown in Fig. 3.16a. This solid should
be modeled with the plane truss structure shown Fig. 3.16b. The six truss members
have a uniform cross-sectional area A and Young’s modulus E . The length of each
member can be taken from the figure. The structure is supported at its left-hand side
and the bottom. A uniform displacement u0 is applied at the top nodes in the vertical
direction.
Determine:

• the displacements of the nodes,
• the reaction forces at the supports and nodes where displacements are prescribed,
• the ‘macroscopic’ Poisson’s ratio of the truss structure, and
• check the global force equilibrium.

3.5 Solution
The solution will follow the recommended 10 steps outlined on page 73.
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Fig. 3.17 Free-body
diagram of the truss structure

1 and 2 Sketch the free-body diagram of the problem, including a global coordinate
system. Subdivide the geometry into finite elements. Indicate the node and element
numbers, local coordinate systems, and equivalent nodal loads, see Fig. 3.17.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Elements II and IVdonot require any rotation (α = 0◦) and thus, the simple elemental
stiffness matrix given in Eq. (3.1) can be used:

K e
II = E A

a

[ u1X u2X
1 −1

−1 1

]
u1X
u2X

, (3.101)

K e
IV = E A

a

[ u4X u3X
1 −1

−1 1

]
u4X
u3X

. (3.102)

Elements I and III are rotated by an angle of α = +90◦ and Eq. (3.80) allows us to
express the elemental stiffness matrices as:

K e
I = E A

a

⎡
⎢⎢⎣

u4X u4Z u1X u1Z
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦
u4X
u4Z
u1X
u1Z

, (3.103)
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K e
III = E A

a

⎡
⎢⎢⎣

u3X u3Z u2X u2Z
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦
u3X
u3Z
u2X
u2Z

. (3.104)

Element V is rotated by an angle of α = +45◦:

K e
V = E A√

2a

⎡
⎢⎢⎢⎢⎣

u4X u4Z u2X u2Z
1
2 − 1

2 − 1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2

1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

⎤
⎥⎥⎥⎥⎦
u4X
u4Z
u2X
u2Z

. (3.105)

Element VI is rotated by an angle of α = −45◦:

K e
VI = E A√

2a

⎡
⎢⎢⎢⎢⎣

u1X u1Z u3X u3Z
1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2 − 1
2

− 1
2 − 1

2
1
2

1
2

− 1
2 − 1

2
1
2

1
2

⎤
⎥⎥⎥⎥⎦
u1X
u1Z
u3X
u3Z

. (3.106)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with the global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 4 nodes, each having two degrees of
freedom (i.e., the horizontal and vertical displacements). Thus, the dimensions of
the global stiffness matrix are (4 × 2) × (4 × 2) = (8 × 8):

K =

u1X u1Z u2X u2Z u3X u3Z u4X u4Z⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
u2X
u2Z
u3X
u3Z
u4X
u4Z

. (3.107)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.
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K
E A
a

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z u2X u2Z u3X u3Z u4X u4Z

1 + 1
2
√
2

1
2
√
2

−1 0 − 1
2
√
2

− 1
2
√
2

0 0

1
2
√
2

1 + 1
2
√
2

0 0 − 1
2
√
2

− 1
2
√
2

0 −1

−1 0 1 + 1
2
√
2

− 1
2
√
2

0 0 − 1
2
√
2

1
2
√
2

0 0 − 1
2
√
2

1 + 1
2
√
2

0 −1 1
2
√
2

− 1
2
√
2

− 1
2
√
2

− 1
2
√
2

0 0 1 + 1
2
√
2

1
2
√
2

−1 0

− 1
2
√
2

− 1
2
√
2

0 −1 1
2
√
2

1 + 1
2
√
2

0 0

0 0 − 1
2
√
2

1
2
√
2

−1 0 1 + 1
2
√
2

− 1
2
√
2

0 −1 1
2
√
2

− 1
2
√
2

0 0 − 1
2
√
2

1 + 1
2
√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

u2X

u2Z

u3X

u3Z

u4X

u4Z

.

(3.108)

6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be expressed in matrix from as

Kup = f , (3.109)

where the column matrix of the external loads reads:

f = [
FR
1X FR

1Z 0 FR
2Z 0 FR

3Z FR
4X FR

4Z

]T
. (3.110)

7 Introduce the boundary conditions to obtain the reduced system of equations.

The consideration of the support conditions, i.e. u1X = u1Z = u2Z = u4X = 0,
results in the following 4 × 4 system:

E A

a

⎡
⎢⎢⎢⎢⎢⎣

1 + 1
2
√
2

0 0 1
2
√
2

0 1 + 1
2
√
2

1
2
√
2

0

0 1
2
√
2

1 + 1
2
√
2

0
1

2
√
2

0 0 1 + 1
2
√
2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
u2X
u3X
u3Z
u4Z

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

FR
3Z

FR
4Z

⎤
⎥⎥⎥⎦ . (3.111)

The consideration of the displacement boundary condition u3Z = u0 allows a further
reduction of the dimensions of the system of equations. Multiplication of the third
column of the coefficient matrix by the given displacement u0 and bringing this
column to the right-hand side of the system gives after the deletion of the third row
the following equation:
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E A

a

⎡
⎢⎢⎣
1 + 1

2
√
2

0 1
2
√
2

0 1 + 1
2
√
2

0
1

2
√
2

0 1 + 1
2
√
2

⎤
⎥⎥⎦

⎡
⎢⎣
u2X
u3X
u4Z

⎤
⎥⎦ =

⎡
⎣ 0

0

FR
4Z

⎤
⎦ − E Au0

a

⎡
⎢⎣

0
1

2
√
2

0

⎤
⎥⎦ .

(3.112)
A further reduction can be achieved under the consideration of the displacement
boundary conditions u4Z = u0. Multiplication of the third column of the coefficient
matrix by the given displacement u0 and bringing this column to the right-hand side
of the system gives after the deletion of the third row:

E A

a

[
1 + 1

2
√
2

0

0 1 + 1
2
√
2

][
u2X
u3X

]
= − E Au0

a

[ 1
2
√
2

1
2
√
2

]
. (3.113)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

[
u2X
u3X

]
= a

E A
× 1(

1 + 1
2
√
2

)2 − 0

⎡
⎣1 + 1

2
√
2

0

0 1 + 1
2
√
2

⎤
⎦

(
− E Au0

a

)⎡
⎣

1
2
√
2

1
2
√
2

⎤
⎦

= − u0

1 + 2
√
2

[
1
1

]
. (3.114)

9 Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step 6 under the
consideration of the known nodal displacements. The first equation of this system
reads:

E A

a

(
−u2X − u3X

2
√
2

− u3Z

2
√
2

+ 0

)
= FR

1X ⇒ FR
1X = 0 . (3.115)

The second equation of this system reads:

E A

a

(
0 − u3X

2
√
2

− u3Z

2
√
2

− u4Z

)
= FR

1Z ⇒ FR
1Z = −4 + 2

√
2

4 + √
2

× E Au0
a

.

(3.116)
In a similar way,5 the other reactions are obtained as:

FR
2Z = FR

1Z , F
R
3Z = FR

4Z = −FR
1Z , F

R
4X = 0 . (3.117)

5The relation 4+2
√
2

4+√
2

= 2(1+√
2)

1+2
√
2

might be useful to show the identities.
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‘Macroscopic’ Poisson’s ratio of the truss structure:

ν = −εX

εZ
= − − u0/(1+2

√
2)

a
u0
a

= 1

1 + 2
√
2

≈ 0.261 . (3.118)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X + FR

4X )︸ ︷︷ ︸
reaction force

+ 0︸︷︷︸
external loads

= 0 , � (3.119)

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

2Z + FR
3Z + FR

4Z )︸ ︷︷ ︸
reaction force

+ 0︸︷︷︸
external load

= 0 . � (3.120)

3.6 Example: Truss Structure with Six Members (Computational Problem)
Given is a plane truss structure as shown in Fig. 3.18. The members have a uniform
cross-sectional area A and Young’s modulus E . The length of each member can be
taken from the figure. The structure is fixed at its left-hand side and loaded by

• two prescribed displacements u0 and 2u0 at the very right-hand corner, and
• a vertical point load F0.

Model the truss structure with six linear finite elements and determine

• the displacements of the nodes,
• the reaction forces at the supports and nodes where displacements are prescribed,

Fig. 3.18 Truss structure composed of six straight members
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Fig. 3.19 Free-body diagram of the truss structure composed of six axial members

• the strain, stress, and normal force in each element, and
• check the global force equilibrium.

Simplify all your results for the following special cases:

(a) u0 = 0,
(b) F0 = 0.

3.6 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 and 2 Sketch the free-body diagram of the problem, including a global coordinate
system. Subdivide the geometry into finite elements. Indicate the node and element
numbers, local coordinate systems, and equivalent nodal loads, see Fig. 3.19.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Elements I, II and V do not require any rotation (α = 0◦) and the simple elemental
stiffness matrix given in Eq. (3.1) can be used:

K e
I = E A

L

[ u1X u2X
1 −1

−1 1

]
u1X
u2X

, (3.121)

K e
II = E A

L

[u3X u4X
1 −1

−1 1

]
u3X
u4X

, (3.122)
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K e
V = E A

L

[ u4X u5X
1 −1

−1 1

]
u4X
u5X

. (3.123)

Element IV is rotated by an angle of α = +90◦ and Eq. (3.80) allows us to express
the elemental stiffness matrix as:

K e
IV = E A

L

⎡
⎢⎢⎣

u2X u2Z u4X u4Z
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦
u2X
u2Z
u4X
u4Z

. (3.124)

Elements III and VI are both rotated by an angle of α = +45◦:

K e
III = E A√

2L

⎡
⎢⎢⎢⎢⎣

u1X u1Z u4X u4Z
1
2 − 1

2 − 1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2

1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

⎤
⎥⎥⎥⎥⎦
u1X
u1Z
u4X
u4Z

(3.125)

= E A

L

⎡
⎢⎢⎢⎢⎢⎣

u1X u1Z u4X u4Z
√
2
4 −

√
2
4 −

√
2
4

√
2
4

−
√
2
4

√
2
4

√
2
4 −

√
2
4

−
√
2
4

√
2
4

√
2
4 −

√
2
4√

2
4 −

√
2
4 −

√
2
4

√
2
4

⎤
⎥⎥⎥⎥⎥⎦

u1X
u1Z
u4X
u4Z

, (3.126)

K e
VI = E A√

2L

⎡
⎢⎢⎢⎢⎣

u2X u2Z u5X u5Z
1
2 − 1

2 − 1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2

1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

⎤
⎥⎥⎥⎥⎦
u2X
u2Z
u5X
u5Z

(3.127)

= E A

L

⎡
⎢⎢⎢⎢⎢⎣

u2X u2Z u5X u5Z
√
2
4 −

√
2
4 −

√
2
4

√
2
4

−
√
2
4

√
2
4

√
2
4 −

√
2
4

−
√
2
4

√
2
4

√
2
4 −

√
2
4√

2
4 −

√
2
4 −

√
2
4

√
2
4

⎤
⎥⎥⎥⎥⎥⎦

u2X
u2Z
u5X
u5Z

. (3.128)
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4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 5 nodes, each having two degree of
freedom (i.e., the horizontal and vertical displacements). Thus, the dimensions of the
global stiffness matrix are (5 × 2) × (5 × 2) = (10 × 10):

K =

u1X u1Z u2X u2Z u3X u3Z u4X u4Z u5X u5Z⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
u2X
u2Z
u3X
u3Z
u4X
u4Z
u5X
u5Z

. (3.129)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K
E A
L

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z u2X u2Z u3X u3Z u4X u4Z u5X u5Z

1 +
√
2
4 −

√
2
4 −1 0 0 0 −

√
2
4

√
2
4 0 0

−
√
2
4

√
2
4 0 0 0 0

√
2
4 −

√
2
4 0 0

−1 0 1 +
√
2
4 −

√
2
4 0 0 0 0 −

√
2
4

√
2
4

0 0 −
√
2
4 1 +

√
2
4 0 0 0 −1

√
2
4 −

√
2
4

0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0

−
√
2
4

√
2
4 0 0 −1 0 1 + 1 +

√
2
4 −

√
2
4 −1 0√

2
4 −

√
2
4 0 −1 0 0 −

√
2
4 1 +

√
2
4 0 0

0 0 −
√
2
4

√
2
4 0 0 −1 0 1 +

√
2
4 −

√
2
4

0 0
√
2
4 −

√
2
4 0 0 0 0 −

√
2
4

√
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
u2X
u2Z
u3X
u3Z
u4X
u4Z
u5X
u5Z

.

(3.130)

6 and 7 Add the column matrix of unknowns and external loads to complete the
global system of equations. Introduce the boundary conditions to obtain the reduced
system of equations.

The global system of equations can be expressed in matrix from as

Kup = f , (3.131)
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where the column matrix of the external loads reads:

f = [
FR
1X FR

1Z 0 0 FR
3X FR

3Z 0 −F0 FR
5X −FR

5Z

]T
. (3.132)

The boundary conditions u1X = u1Z = u3X = u3Z = 0 allow to delete four rows
and columns from the system of equations:

E A

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 +
√
2
4 −

√
2
4 0 0 −

√
2
4

√
2
4

−
√
2
4 1 +

√
2
4 0 −1

√
2
4 −

√
2
4

0 0 1 + 1 +
√
2
4 −

√
2
4 −1 0

0 −1 −
√
2
4 1 +

√
2
4 0 0

−
√
2
4

√
2
4 −1 0 1 +

√
2
4 −

√
2
4√

2
4 −

√
2
4 0 0 −

√
2
4

√
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X
u2Z
u4X
u4Z
u5X
u5Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−F0

FR
5X

−FR
5Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.133)
Let us first consider the displacement boundary condition u5Z = −2u0. Multiplica-
tion of the column corresponding to u5Z with the prescribed value −2u0 gives:

E A

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 +
√
2
4 −

√
2
4 0 0 −

√
2
4

√
2
4 (−2u0)

−
√
2
4 1 +

√
2
4 0 −1

√
2
4 −

√
2
4 (−2u0)

0 0 2 +
√
2
4 −

√
2
4 −1 0(−2u0)

0 −1 −
√
2
4 1 +

√
2
4 0 0(−2u0)

−
√
2
4

√
2
4 −1 0 1 +

√
2
4 −

√
2
4 (−2u0)√

2
4 −

√
2
4 0 0 −

√
2
4

√
2
4 (−2u0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X

u2Z

u4X

u4Z

u5X
u5Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−F0

FR
5X

−FR
5Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.134)

Let us bring the last column of the stiffness matrix to the right-hand side and cancel
the last row of the system of equations:

E A

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 +
√
2
4 −

√
2
4 0 0 −

√
2
4

−
√
2
4 1 +

√
2
4 0 −1

√
2
4

0 0 2 +
√
2
4 −

√
2
4 −1

0 −1 −
√
2
4 1 +

√
2
4 0

−
√
2
4

√
2
4 −1 0 1 +

√
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X

u2Z

u4X

u4Z

u5X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−F0

FR
5X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− E A

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√
2
2 u0√
2
2 u0

0

0
√
2
2 u0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.135)
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Now, let us consider the second prescribed displacement boundary condition u5X =
u0. Multiplication of the column corresponding to u5X with the prescribed value u0
gives:

E A

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 +
√
2
4 −

√
2
4 0 0 −

√
2
4 u0

−
√
2
4 1 +

√
2
4 0 −1

√
2
4 u0

0 0 2 +
√
2
4 −

√
2
4 −1u0

0 −1 −
√
2
4 1 +

√
2
4 0u0

−
√
2
4

√
2
4 −1 0 (1 +

√
2
4 )u0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X

u2Z

u4X

u4Z

u5X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−F0

FR
5X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− E A

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√
2
2 u0√
2
2 u0

0

0
√
2
2 u0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.136)

Let us bring the last column of the stiffness matrix to the right-hand side and cancel
the last row of the system of equations:

E A

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 +
√
2
4 −

√
2
4 0 0

−
√
2
4 1 +

√
2
4 0 −1

0 0 2 +
√
2
4 −

√
2
4

0 −1 −
√
2
4 1 +

√
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u2X

u2Z

u4X

u4Z

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

−F0

⎤
⎥⎥⎥⎥⎥⎦

− E A

L

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

−
√
2
2 u0√
2
2 u0
0
0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

−
√
2
4 u0√
2
4 u0

−u0
0

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

,

(3.137)

E A

L

⎡
⎢⎢⎢⎢⎢⎣

1 +
√
2
4 −

√
2
4 0 0

−
√
2
4 1 +

√
2
4 0 −1

0 0 2 +
√
2
4 −

√
2
4

0 −1 −
√
2
4 1 +

√
2
4

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
u2X
u2Z
u4X
u4Z

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

0

0

0

−F0

⎤
⎥⎥⎥⎦ + E Au0

L

⎡
⎢⎢⎣

+ 3
√
2

4

− 3
√
2

4
1
0

⎤
⎥⎥⎦ .

(3.138)
8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

u2X = 0.429 u0 − 0.408
FL

E A
, (3.139)

u2Z = −1.357 u0 − 1.562
FL

E A
, (3.140)

u4X = 0.285 u0 − 0.296
FL

E A
, (3.141)

u4Z = −0.928 u0 − 1.970
FL

E A
. (3.142)
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9 Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step 6 under
the consideration of the known nodal displacements. The evaluation of the first,
second, fifth, sixth, ninth and tenth equation of this system gives the following results,
respectively:

FR
1X = −0.184 F0 − 0.858

E Au0
L

, (3.143)

FR
1Z = 0.592 F0 + 0.429

E Au0
L

, (3.144)

FR
3X = 0.296 F0 − 0.285

E Au0
L

, (3.145)

FR
3Z = 0 , (3.146)

FR
5X = −0.112 F0 + 1.144

E Au0
L

, (3.147)

FR
5Z = −0.408 F0 + 0.429

E Au0
L

. (3.148)

The elemental stresses can be obtained from the displacements of the start (‘s’) and
end (‘e’) node as:

σ = E

L
(− cos(α)usX + sin(α)usZ + cos(α)ueX − sin(α)ueZ ) . (3.149)

Application of this general equation (pay attention to the length of element III and
VI which is equal to

√
2L) to the six elements under the consideration of the given

nodal displacements gives:

σI = −0.408
F0

A
+ 0.429

Eu0
L

, (3.150)

σII = −0.296
F0

A
+ 0.285

Eu0
L

, (3.151)

σIII = 0.837
F0

A
+ 0.607

Eu0
L

, (3.152)

σIV = 0.408
F0

A
− 0.429

Eu0
L

, (3.153)

σV = 0.296
F0

A
+ 0.715

Eu0
L

, (3.154)

σVI = −0.577
F0

A
+ 0.607

Eu0
L

. (3.155)
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Application of Hooke’s law, i.e., σ = Eε, allows the calculation of the elemental
strains:

εI = −0.408
F0

E A
+ 0.429

u0
L
, (3.156)

εII = −0.296
F0

E A
+ 0.285

u0
L
, (3.157)

εIII = 0.837
F0

E A
+ 0.607

u0
L
, (3.158)

εIV = 0.408
F0

E A
− 0.429

u0
L
, (3.159)

εV = 0.296
F0

E A
+ 0.715

u0
L
, (3.160)

εVI = −0.577
F0

E A
+ 0.607

u0
L
. (3.161)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X + FR

3X + FR
5X )︸ ︷︷ ︸

reaction force

+ 0︸︷︷︸
external loads

= 0 , � (3.162)

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

3Z − FR
5Z )︸ ︷︷ ︸

reaction force

+ −F0︸︷︷︸
external load

= 0 . � (3.163)

3.3 Beams and Frames

3.3.1 Euler–Bernoulli Beam Elements

Let us consider an Euler–Bernoulli beam element which is composed of two
nodes as schematically shown in Fig. 3.20. Each node has two degrees of freedom,
i.e. a displacement uz in the direction of the z-axis (i.e., perpendicular to the principal
beam axis) and a rotation ϕy around the y-axis, see Fig. 3.20a. Each node can be
loaded by single forces acting in the z-direction or single moments around the y-axis,
see Fig. 3.20b. In the case of distributed loads qz(x), a transformation must be made
to calculate the equivalent nodal loads.

Different methods can be found in the literature to derive the principal finite
element equation (see [8, 23]). All these methods result in the same elemental for-
mulation, which is given in the following for constant material (E) and geometrical
property (Iy):
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Fig. 3.20 Definition of the
Euler–Bernoulli beam
element for deformation in
the x-z plane: a
deformations; b external
loads. The nodes are
symbolized by two circles at
the ends (©)

(a)

(b)

E Iy
L3

⎡
⎢⎢⎣

12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1z
ϕ1y

u2z
ϕ2y

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

F1z

M1y

F2z

M2y

⎤
⎥⎥⎥⎦ +

L∫
0

qz(x)

⎡
⎢⎢⎢⎣
N1u

N1ϕ

N2u

N2ϕ

⎤
⎥⎥⎥⎦ dx ,

(3.164)
or in the abbreviated form

K eue
p = f e , (3.165)

where K e is the elemental stiffness matrix, ue
p is the elemental column matrix

of unknowns and f e is the elemental column matrix of loads. The interpolation
functions in Eq. (3.164) are given by N1u(x) = 1 − 3

(
x
L

)2 + 2
(
x
L

)3
, N1ϕ(x) =

−x + 2 x2

L − x3

L2 , N2u(x) = 3
(
x
L

)2 − 2
(
x
L

)3
and N2ϕ(x) = x2

L − x3

L2 .
Table3.6 summarizes for some simple shapes of distributed loads the equivalent

nodal loads.
Once the nodal displacements (u1z,ϕ1y, u2z,ϕ2y) are known, further quanti-

ties and their distributions can be calculated within an element (so-called post-
processing), see Tables3.7 and 3.8.

3.7 Cantilever Beam with Point Loads
The cantilever beam shown in Fig. 3.21 is loaded by a force F0 and a moment M0 at
the free right-hand end. The bending stiffness E I is constant and the total length of
the beam is equal to L . Model the beam with one single finite element to determine:

• the unknowns at the nodes,
• the equation of the bending line,
• the reactions at the support,
• the internal reactions (shear force and bendingmoment distribution) in the element,
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Table 3.6 Equivalent nodal loads for an Euler–Bernoulli beam element (x-axis: right facing;
z-axis: upward facing), partially adapted from [5]

tnemoMgnidneBecroFraehSgnidaoL

F1z = −qL

2
M1y = +

qL2

12

F2z = −qL

2
M2y = −qL2

12

F1z = − qa

2L3
(a3 − 2a2L+ 2L3) M1y = +

qa2

12L2
(3a2−8aL+6L2)

F2z = − qa3

2L3
(2L− a) M2y = − qa3

12L2
(4L− 3a)

F1z = − 3
20

qL M1y = +
qL2

30

F2z = − 7
20

qL M2y = −qL2

20

F1z = −1
4

MLq 1y = +
5qL2

96

F2z = −1
4

MLq 2y = −5qL2

96

F1z = −F

2
M1y = +

FL

8

F2z = −F

2
M2y = −FL

8

F1z = −Fb2(3a+ b)
L3

M1y = +
Fb2a

L2

F2z = −Fa2(a+ 3b)
L3

M2y = −Fa2b

L2

F1z = −3
2
M

L
M1y = +

M

4

F2z = +
3
2
M

L
M2y = +

M

4

F1z = −6M
ab

L3
M1y = +M

b(2a− b)
L2

F2z = +6M
ab

L3
M2y = +M

a(2b− a)
L2
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Table 3.7 Post-processing quantities (part 1) for aBernoulli beam element given as being depen-
dent on the nodal values as a function of the physical coordinate 0 ≤ x ≤ L and natural coordinate
−1 ≤ ξ ≤ 1. Bending in the x-z plane

Vertical displacement (Deflection) uz

uez(x) =
⎡
⎣1 − 3

(
x

L

)2

+ 2

(
x

L

)3
⎤
⎦ u1z +

[
−x + 2x2

L
− x3

L2

]
ϕ1y

+
⎡
⎣3

(
x

L

)2

− 2

(
x

L

)3
⎤
⎦ u2z +

[
+ x2

L
− x3

L2

]
ϕ2y

uez(ξ) =1

4

[
2 − 3ξ + ξ3

]
u1z − 1

4

[
1 − ξ − ξ2 + ξ3

] L

2
ϕ1y

+ 1

4

[
2 + 3ξ − ξ3

]
u2z − 1

4

[
−1 − ξ + ξ2 + ξ3

] L

2
ϕ2y

Rotation (Slope) ϕy = −duz
dx

= − 2

L

duz
dξ

ϕe
y(x) =

[
+ 6x

L2 − 6x2

L3

]
u1z +

[
1 − 4x

L
+ 3x2

L2

]
ϕ1y

+
[
− 6x

L2 + 6x2

L3

]
u2z +

[
−2x

L
+ 3x2

L2

]
ϕ2y

ϕe
y(ξ) = 1

2L

[
+3 − 3ξ2

]
u1z + 1

4

[
−1 − 2ξ + 3ξ2

]
ϕ1y

+ 1

2L

[
−3 + 3ξ2

]
u2z + 1

4

[
−1 + 2ξ + 3ξ2

]
ϕ2y

Curvature κy = −d2uz
dx2

= − 4

L2

d2uz

dξ2

κe
y(x) =

[
+ 6

L2 − 12x

L3

]
u1z +

[
− 4

L
+ 6x

L2

]
ϕ1y

+
[
− 6

L2 + 12x

L3

]
u2z +

[
− 2

L
+ 6x

L2

]
ϕ2y

κe
y(ξ) = 6

L2 [−ξ ] u1z + 1

L
[−1 + 3ξ]ϕ1y

+ 6

L2 [ ξ ] u2z + 1

L
[1 + 3ξ]ϕ2y
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Table 3.8 Post-processing quantities (part 2) for an Euler–Bernoulli beam element given as
being dependent on the nodal values as function of the physical coordinate 0 ≤ x ≤ L and natural
coordinate −1 ≤ ξ ≤ 1. Bending in the x-z plane

Bending moment My = −E Iy
d2uz
dx2

= − 4

L2E Iy
d2uz

dξ2

Me
y(x) =E Iy

([
+ 6

L2 − 12x

L3

]
u1z +

[
− 4

L
+ 6x

L2

]
ϕ1y

+
[
− 6

L2 + 12x

L3

]
u2z +

[
− 2

L
+ 6x

L2

]
ϕ2y

)

Me
y(ξ) = E Iy

(
6

L2 [−ξ ] u1z + 1

L
[−1 + 3ξ]ϕ1y + 6

L2 [ ξ ] u2z + 1

L
[1 + 3ξ]ϕ2y

)

Shear force Qz = −E Iy
d3uz
dx3

= − 8

L3E Iy
d3uz

dξ3

Qe
z(x) = E Iy

([
− 12

L3

]
u1z +

[
+ 6

L2

]
ϕ1y +

[
+ 12

L3

]
u2z +

[
+ 6

L2

]
ϕ2y

)

Qe
z(ξ) = E Iy

(
12

L3 [−1 ] u1z + 2

L2 [+3]ϕ1y + 12

L3 [ 1 ] u2z + 2

L2 [+3]ϕ2y

)

Normal strain εex (x, z) = −z
d2uez(x)

dx2
= −z

4

L2

d2uz

dξ2

εex (x, z) =
([

+ 6

L2 − 12x

L3

]
u1z +

[
− 4

L
+ 6x

L2

]
ϕ1y

+
[
− 6

L2 + 12x

L3

]
u2z +

[
− 2

L
+ 6x

L2

]
ϕ2y

)
z

εex (ξ, z) =
(

6

L2 [−ξ ] u1z + 1

L
[−1 + 3ξ]ϕ1y + 6

L2 [ ξ ] u2z + 1

L
[1 + 3ξ]ϕ2y

)
z

Normal stress σe
x (x, z) = Eεex (x, z) = Eεex (ξ, z)

(
= My

Iy
z

)

σe
x (x, z) =E

([
+ 6

L2 − 12x

L3

]
u1z +

[
− 4

L
+ 6x

L2

]
ϕ1y

+
[
− 6

L2 + 12x

L3

]
u2z +

[
− 2

L
+ 6x

L2

]
ϕ2y

)
z

σe
x (ξ, z) = E

(
6

L2 [−ξ ] u1z + 1

L
[−1 + 3ξ]ϕ1y + 6

L2 [ ξ ] u2z + 1

L
[1 + 3ξ]ϕ2y

)
z
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Fig. 3.21 Cantilever beam
with two point loads at the
free end

Fig. 3.22 Free-body
diagram of the cantilever
beam with two point loads at
the free end

Fig. 3.23 Free-body
diagram of the discretized
structure

• the strain and stress distributions in the element, and
• the global force and moment equilibrium.

Repeat the solution procedure for an approach based on two equal elements of length
L
2 .

3.7 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system,
see Fig. 3.22.

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.23.

Steps 3 – 6 can be combined since we have only a single element problem. The
global system of equations reads:

E IY
L3

⎡
⎢⎢⎣

12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣
u1Z
ϕ1Y

u2Z
ϕ2Y

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

FR
1Z

MR
1Y

−F0

−M0

⎤
⎥⎥⎥⎦ . (3.166)
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7 Introduce the boundary conditions to obtain the reduced system of equations.

E IY
L3

[
12 6L
6L 4L2

][
u2Z
ϕ2Y

]
=

[
−F0

−M0

]
. (3.167)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

[
u2Z
ϕ2Y

]
= L3

E IY
× 1

12 × 4L2 − 6L × 6L

[
4L2 −6L
−6L 12

] [ −F0

−M0

]

= L

12E IY

[−4F0L2 + 6LM0

6LF0 − 12M0

]
. (3.168)

Based on these nodal unknowns, the bending line (deflection) can be obtained from
the general equation provided in Table3.7:

uZ (X) = 0 + 0 +
⎡
⎣3

(
X

L

)2

− 2

(
X

L

)3
⎤
⎦ u2Z +

[
X2

L
− X3

L2

]
ϕ2Y

= L

E IY

⎧⎨
⎩
⎡
⎣3

(
X

L

)2

− 2

(
X

L

)3
⎤
⎦(−4F0L

2 + 6LM0
)+

+
[
X2

L
− X3

L2

]
(6LF0 − 12M0)

}
. (3.169)

9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the consideration of the known nodal degrees of
freedom (i.e., displacements and rotations). The evaluation of the first and second
equations gives:

E IY
L3

(−12u2Z − 6Lϕ2Y ) = FR
1Z (3.170)

⇒ FR
1Z = F0 , (3.171)

E IY
L3

(6Lu2Z + 2L2ϕ2Y ) = MR
1Y (3.172)

⇒ MR
1Y = M0 − F0L . (3.173)
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The internal reactions (i.e., bending moment and shear force) in the element can be
obtained from the relations provided in Table3.8:

Me
Y (X) = E IY

([
− 6

L2
+ 12X

L3

]
u2Z +

[
− 2

L
+ 6X

L2

]
ϕ2Y

)
(3.174)

= −M0 + (L − X)F0 , (3.175)

Qe
Z (X) = E IY

([
12

L3

]
u2Z +

[
6

L2

]
ϕ2Y

)
(3.176)

= −F0 . (3.177)

The normal stress distribution can be obtained from the bending moment given in
Eq. (3.175):

σe
X (X, Z) = Me

Y (X)

IY
Z = 1

IY
(−M0 + (L − X)F0) Z . (3.178)

The strain distribution results from Hooke’s law:

εeX (X, Z) = σe
x (X, Z)

E
= 1

E IY
(−M0 + (L − X)F0) Z . (3.179)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi Z = 0 ⇔ (FR
1Z )︸ ︷︷ ︸

reaction force

+ (−F0)︸ ︷︷ ︸
external load

= 0 , � (3.180)

∑
i

MiY = 0 ⇔ (MR
1Y )︸ ︷︷ ︸

reaction

+ (F0L − M0)︸ ︷︷ ︸
external load

= 0 . � (3.181)

3.8 Cantilever Beam with Simple Supports and Distributed Load
The beam shown in Fig. 3.24 is loaded by a constant distributed load q0. The bending
stiffness E I is constant and the total length of the beam is equal to 2L . Model the
beam with two finite elements of length L to determine:

• the unknowns at the nodes,
• the reactions at the supports,
• the internal reactions (shear force and bending moment) in each element,
• the strain and stress distributions in each element, and
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Fig. 3.24 Cantilever beam
with simple supports and
distributed load

Fig. 3.25 Free-body
diagram of the cantilevered
beam with simple supports
and distributed load

Fig. 3.26 Free-body
diagram of the discretized
structure with equivalent
nodal loads

• the global force and moment equilibrium.

3.8 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system,
see Fig. 3.25.

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.26.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

K e
I = E IY

L3

⎡
⎢⎢⎣

u1Z ϕ1Y u2Z ϕ2Y

12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2

⎤
⎥⎥⎦

u1Z
ϕ1Y

u2Z
ϕ2Y

, (3.182)
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K e
II = E IY

L3

⎡
⎢⎢⎣

u2Z ϕ2Y u3Z ϕ3Y

12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2

⎤
⎥⎥⎦

u2Z
ϕ2Y

u3Z
ϕ3Y

. (3.183)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having two degrees of
freedom (i.e., the vertical displacement and rotation). Thus, the dimensions of the
global stiffness matrix are (3 × 2) × (3 × 2) = (6 × 6):

K =

u1Z ϕ1Y u2Z ϕ2Y u3Z ϕ3Y⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

u1Z
ϕ1Y

u2Z
ϕ2Y

u3Z
ϕ3Y

. (3.184)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K = E IY
L3

⎡
⎢⎢⎢⎢⎢⎢⎣

u1Z ϕ1Y u2Z ϕ2Y u3Z ϕ3Y

12 −6L −12 −6L 0 0
−6L 4L2 6L 2L2 0 0
−12 6L 24 0 −12 −6L
−6L 2L2 0 8L2 6L 2L2

0 0 −12 6L 12 6L
0 0 −6L 2L2 6L 4L2

⎤
⎥⎥⎥⎥⎥⎥⎦

u1Z
ϕ1Y

u2Z
ϕ2Y

u3Z
ϕ3Y

. (3.185)

6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

E IY
L3

⎡
⎢⎢⎢⎢⎢⎢⎣

12 −6L −12 −6L 0 0
−6L 4L2 6L 2L2 0 0
−12 6L 24 0 −12 −6L
−6L 2L2 0 8L2 6L 2L2

0 0 −12 6L 12 6L
0 0 −6L 2L2 6L 4L2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1Z
ϕ1Y

u2Z
ϕ2Y

u3Z
ϕ3Y

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR
1Z

MR
1Y

FR
2Z − q0L

2
q0L2

12

FR
3Z − q0L

2

− q0L2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.186)
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Fig. 3.27 Beam deflection
along the major axis
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7 Introduce the boundary conditions to obtain the reduced system of equations.

E IY
L3

[
8L2 2L2

2L2 4L2

][
ϕ2Y

ϕ3Y

]
=

[
q0L2

12

− q0L2

12

]
. (3.187)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

[
ϕ2Y

ϕ3Y

]
= L3

E IY

1

32L4 − 4L4

[
4L2 −2L2

−2L2 8L2

][
q0L2

12

− q0L2

12

]

= L

28E IY

[
4 −2

−2 8

][
q0L2

12

− q0L2

12

]
= q0L3

28E IY

[
1
2

− 5
6

]
. (3.188)

The obtained nodal unknowns allow to calculate, for example, the bending curve
based on the nodal approach provided in Table3.7, see Fig. 3.27. It can be seen that
all the support conditions, i.e. u1Z = u2Z = u3Z = 0 and ϕ1Y = 0, are fulfilled.
9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the consideration of the known nodal degrees of
freedom (i.e., displacements and rotations). The evaluation of the first, second, third
and fifth equation gives:

E IY
L3

(12u1Z−6Lϕ1Y − 12u2Z − 6Lϕ2Y ) = FR
1Z (3.189)

⇒ FR
1Z = − 3

28
q0L , (3.190)
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E IY
L3

(−6Lu1Z+4L2ϕ1Y + 6Lu2Z + 2L2ϕ2Y ) = MR
1Y (3.191)

⇒ MR
1Y = 1

28
q0L

2 , (3.192)

E IY
L3

(−12u1Z+6Lϕ1Y + 24u2Z − 12u3Z − 6Lϕ3Y ) = FR
2Z − q0L

2
(3.193)

⇒ FR
2Z = 19

28
q0L , (3.194)

E IY
L3

(−12u2Z+6Lϕ2Y + 12u3Z + 6Lϕ3Y ) = FR
3Z − q0L

2
(3.195)

⇒ FR
3Z = 3

7
q0L . (3.196)

The internal reactions (i.e., bending moment and shear force) in each element can
be obtained from the relations provided in Table3.8.

Me
y(xI) = E Iy

(
− 2

L
+ 6xI

L2

)
ϕ2y = q0L3

56

(
− 2

L
+ 6xI

L2

)
, (3.197)

Me
y(xII) =E Iy

([
− 4

L
+ 6xII

L2

]
ϕ2y +

[
− 2

L
+ 6xII

L2

]
ϕ3y

)

=q0L3

28

(
1

2

[
− 4

L
+ 6xII

L2

]
− 5

6

[
− 2

L
+ 6xII

L2

])
. (3.198)

It is easy to check that the values at the very left- and right-hand boundary correspond
in magnitude to the external loads: Me

y(xI = 0) = − q0L2

28 and Me
y(xII = L) = − q0L2

12 .
The graphical representation of the bending moment is shown in Fig. 3.28. It can be
seen that the magnitude of the bending moment equals the external single moments
at the left and right-hand end. Furthermore, the jump in the middle equals the sum
of the single moments at X = L .

Qe
z(xI) = E Iy

6

L2
ϕ2y = 3

28
q0L , (3.199)

Qe
z(xII) = E Iy

(
6

L2
ϕ2y + 6

L2
ϕ3y

)
= − 1

14
q0L . (3.200)
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Fig. 3.28 Bending moment
distribution
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Fig. 3.29 Shear force
distribution
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The graphical representation of the shear force is shown in Fig. 3.29. It can be seen
that the shear force corresponds in magnitude to the external forces at the very left-
and right-hand boundary, as well as in the middle of the beam structure.

The normal stress distribution can be obtained from the bending moments given
in Eqs. (3.197) and (3.198):

σe
x(xI, z) = Me

y(xI)

Iy
z = q0L3

56Iy

(
− 2

L
+ 6xI

L2

)
z , (3.201)

σe
x (xII, z) = Me

y(xII)

Iy
z = q0L3

28Iy

(
1

2

[
− 4

L
+ 6xII

L2

]
− 5

6

[
− 2

L
+ 6xII

L2

])
z . (3.202)
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The strains result from Hooke’s law:

εex (xI, z) = σe
x(xI, z)

E
= q0L3

56E Iy

(
− 2

L
+ 6xI

L2

)
z , (3.203)

εex (xII, z) = σe
x (xII, z)

E
= q0L3

28E Iy

(
1

2

[
− 4

L
+ 6xII

L2

]
− 5

6

[
− 2

L
+ 6xII

L2

])
z .

(3.204)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

2Z + FR
3Z )︸ ︷︷ ︸

reaction force

+
(
− q0L

2 − q0L
2

)
︸ ︷︷ ︸

external load

= 0 , � (3.205)

∑
i

MiY = 0 ⇔ (MR
1Y − FR

2Z L − FR
3Z2L)︸ ︷︷ ︸

reaction

+
(
q0L
2 L + q0L

2 2L
)

︸ ︷︷ ︸
external load

= 0 . �

(3.206)

3.9 Cantilever Beam with Supporting Rod
The beam shown in Fig. 3.30 is loaded by a triangular shaped distributed load (max-
imum value q0) and a single force F0 at its right-hand end. The bending stiffness E I
is constant and the total length of the beam is equal to L . The beam is supported at
its right-hand end by a rod, which is inclined by 45◦. The rod is characterized by its
constant tensile stiffness E A and length 1

2 L .
Model the beam/rod structure with two finite elements to determine:

• the free-body diagram,
• the unknowns at the nodes,
• the reactions at the supports,

Fig. 3.30 Cantilever beam
with supporting rod
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Fig. 3.31 Free-body
diagram of the cantilever
beam with supporting rod

Fig. 3.32 Free-body
diagram of the discretized
structure with equivalent
nodal loads

• the internal reactions in the beam (shear force and bending moment) and in the
rod (normal force), and

• the global force and moment equilibrium.

3.9 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system,
see Fig. 3.31.

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.32.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Since the beam element is horizontal, it does not require any transformation to the
global coordinate systemand thus, the standard stiffnessmatrix as given inEq. (3.164)
can be used:

K e
I = E IY

L3

⎡
⎢⎢⎣

u1Z ϕ1Y u2Z ϕ2Y

12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2

⎤
⎥⎥⎦

u1Z
ϕ1Y

u2Z
ϕ2Y

, (3.207)
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The rod element is rotated by an angle of α = −45◦:

K e
VI = E A

1
2 L

⎡
⎢⎢⎢⎢⎣

u2X u2Z u3X u3Z
1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2 − 1
2

− 1
2 − 1

2
1
2

1
2

− 1
2 − 1

2
1
2

1
2

⎤
⎥⎥⎥⎥⎦
u2X
u2Z
u3X
u3Z

(3.208)

= E A

L

⎡
⎢⎢⎣

u2X u2Z u3X u3Z
1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎤
⎥⎥⎦
u2X
u2Z
u3X
u3Z

. (3.209)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes. The first node has two degrees
of freedom (deflection and rotation), the second node has three degrees of freedom (a
vertical and horizontal displacement aswell as a rotation)while the third node has two
degrees of freedom (a vertical and horizontal displacement). Thus, the dimensions
of the global stiffness matrix are (7 × 7):

K =

u1Z ϕ1Y u2Z ϕ2Y u2X u3X u3Z⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1Z
ϕ1Y

u2Z
ϕ2Y

u2X
u3X
u3Z

. (3.210)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1Z ϕ1Y u2Z ϕ2Y u2X u3X u3Z
12E I
L3 − 6E I

L2 − 12E I
L3 − 6E I

L2 0 0 0

− 6E I
L2

4E I
L

6E I
L2

2E I
L 0 0 0

− 12E I
L3

6E I
L2

12E I
L3 + E A

L
6E I
L2

E A
L − E A

L − E A
L

− 6E I
L2

2E I
L

6E I
L2

4E I
L 0 0 0

0 0 E A
L 0 E A

L − E A
L − E A

L

0 0 − E A
L 0 − E A

L
E A
L

E A
L

0 0 − E A
L 0 − E A

L
E A
L

E A
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1Z
ϕ1Y

u2Z
ϕ2Y

u2X
u3X
u3Z

. (3.211)
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6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12E I
L3

− 6E I
L2

− 12E I
L3

− 6E I
L2

0 0 0

− 6E I
L2

4E I
L

6E I
L2

2E I
L 0 0 0

− 12E I
L3

6E I
L2

12E I
L3

+ E A
L

6E I
L2

E A
L − E A

L − E A
L

− 6E I
L2

2E I
L

6E I
L2

4E I
L 0 0 0

0 0 E A
L 0 E A

L − E A
L − E A

L

0 0 − E A
L 0 − E A

L
E A
L

E A
L

0 0 − E A
L 0 − E A

L
E A
L

E A
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1Z

ϕ1Y

u2Z

ϕ2Y

u2X

u3X

u3Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR
1Z − 3

20 q0L

MR
1Y + q0L

2

30

−F0 − 7
20 q0L

− q0L
2

20

FR
2X

FR
3X

FR
3Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.212)

7 Introduce the boundary conditions to obtain the reduced system of equations.

The obvious support conditions are at node 1 and 3, i.e. u1Z = 0, ϕ1Y = 0 and
u3X = u3Z = 0. However, it is also important to consider that the beam cannot have
any elongation in the X -direction at node 2: u2X = 0. Thus, a reduced 2× 2 system
is obtained:

⎡
⎢⎢⎣
12E IY
L3

+ E A

L

6E IY
L2

6E IY
L2

4E IY
L

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u2Z

ϕ2Y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−F0 − 7

20
q0L

−q0L2

20

⎤
⎥⎥⎦ . (3.213)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎢⎣
u2Z

ϕ2Y

⎤
⎥⎥⎦= 1

4E IY
L

( 12E IY
L3 + E A

L

)−( 6E IY
L2

)2
⎡
⎢⎢⎣

4E IY
L

−6E IY
L2

−6E IY
L2

12E IY
L3

+ E A

L

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−F0 − 7q0L

20

−q0L2

20

⎤
⎥⎥⎦

= L4

12(E IY )2 + 4(E IY )(E A)L2

⎡
⎢⎣ −4E IY F0

L
− 11E IY q0

10
6E IY F0

L2
+ 3E IY q0

2L
− E Aq0L

20

⎤
⎥⎦

=

⎡
⎢⎢⎣

− 1

40
× L3(11q0L + 40F0)

E(AL2 + 3IY )

− 1

80
× L2(Aq0L3 − 30IY q0L − 120IY F0)

E IY (AL2 + 3IY )

⎤
⎥⎥⎦ . (3.214)

9 Post-computation: determination of reactions, stresses and strains.



122 3 Finite Element Method

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the considerationof theknownnodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

−12
E IY
L3

u2Z − 6
E IY
L2

ϕ2Y = FR
1Z − 3

20
q0L (3.215)

⇒ FR
1Z = 3

40
× 3AL3q0 + 20IY q0L + 40IY F0

AL2 + 3IY
. (3.216)

The other reactions can be obtained in a similar way as:

MR
1Y = − L(7AL3q0 + 120IY q0L + 360IY F0)

120(AL2 + 3IY )
, (3.217)

FR
2X = − AL2(11q0L + 40F0)

40(AL2 + 3IY )
, (3.218)

FR
3X = AL2(11q0L + 40F0)

40(AL2 + 3IY )
, (3.219)

FR
3Z = AL2(11q0L + 40F0)

40(AL2 + 3IY )
. (3.220)

It should be noted that the evaluation of the third and fourth equation can be used to
check— to a certain extent — the system of equations since the result must be equal
to the given value on the right-hand side.

The internal reactions (i.e., bending moment and shear force) in the beam element
can be obtained from the relations provided in Table3.8.

Me
Y (xI) = E IY

(
0 + 0 +

[
− 6

L2
+ 12xI

L3

]
u2Z +

[
2

L
+ 6xI

L2

]
ϕ2Y

)
, (3.221)

Qe
Z (xI) = E IY

(
0 + 0 +

[
12

L3

]
u2Z +

[
6

L2

]
ϕ2Y

)
(3.222)

= − 3

40
× AL3q0 + 14IY q0L + 40IY F0

AL2 + 3IY
. (3.223)

The internal reaction (i.e., normal force) in the rod element can be obtained from the
relation provided in Table3.5:
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N e
x (xII) = E A

L
(sin(α)u2Z ) = AL2

√
2(11q0L + 4F0)

80(AL2 + 3IY )
. (3.224)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
2X + FR

3X )︸ ︷︷ ︸
reaction force

+ 0︸︷︷︸
external load

= 0 , � (3.225)

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

3Z )︸ ︷︷ ︸
reaction force

+
(
−F0 − 3q0L

20 − 7q0L
20

)
︸ ︷︷ ︸

external load

= 0 , � (3.226)

∑
i

MiY = 0 ⇔ (MR
1Y − FR

3Z (L + L/4
√
2) + FR

3X L/4
√
2)︸ ︷︷ ︸

reaction

+ (
q0L

2/30 + F0L + 7/20q0LL − q0L
2/20

)
︸ ︷︷ ︸

external load

= 0 . � (3.227)

3.3.2 Timoshenko Beam Elements

There are many different formulations for Timoshenko beams available in the sci-
entific literature [30, 33]. A very early and simple derivation is based on linear
interpolation functions for the displacement and rotational fields. For this purpose,
let us consider in the following a Timoshenko beam element which is composed of
two nodes as schematically shown in Fig. 3.33. Each node has two degrees of free-
dom, i.e. a displacement uz in the direction of the z-axis (i.e., perpendicular to the
principal beam axis) and a rotation φy around the y-axis, see Fig. 3.33a. Each node
can be loaded by single forces acting in the z-direction or single moments around
the y-axis, see Fig. 3.33b. In the case of distributed loads qz(x), a transformation to
equivalent nodal loads is required.

Different methods can be found in the literature to derive the principal finite
element equation (see [8, 23]). All these methods result in the same elemental for-
mulation, which is given in the following for constant material (E,G), geometrical
(Iy, A, ks) properties and linear interpolation functions:

ksAG

4L

⎡
⎢⎢⎣

4 −2L −4 −2L
−2L 4

3 L
2 + α 2L 4

6 L
2 − α

−4 2L 4 2L
−2L 4

6 L
2 − α 2L 4

3 L
2 + α

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u1z
φ1y

u2z
φ2y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

F1z

M1y

F2z

M2y

⎤
⎥⎥⎦+

L∫
0

qz(x)

⎡
⎢⎢⎣
N1u

0
N2u

0

⎤
⎥⎥⎦ dx ,

(3.228)
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Fig. 3.33 Definition of the
Timoshenko beam element
for deformation in the x-z
plane: a deformations, and
b external loads. The nodes
are symbolized by two
circles at the end (©)

(a)

(b)

where the abbreviation α = 4E Iy
ksAG

was used. In abbreviated form, we can write

K eue
p = f e , (3.229)

where K e is the elemental stiffness matrix, ue
p is the elemental column matrix of

unknowns and f e is the elemental column matrix of loads. The shape functions in
Eq. (3.228) are given by N1u(x) = 1 − x

L and N2u(x) = x
L . Table3.9 summarizes

for some simple shapes of distributed loads the equivalent nodal loads. It is obvious
from Eq. (3.228) that this simple element formulation, based on linear interpolation
functions for the displacement and rotational field and exact integration, yields an
equivalent load vector only with force contributions whereas moment contributions
are not considered, see Table3.9.

Once the nodal displacements (u1z,φ1y, u2z,φ2y) are known, further quanti-
ties and their distributions can be calculated within an element (so-called post-
processing), see Table3.10.

3.10 Beam Under Pure Bending Load
The cantilever Timoshenko beam shown in Fig. 3.34 is loaded by a moment M0 at
the free right-hand end. The bending stiffness E I and the shear stiffness ksAG are
constant and the total length of the beam is equal to L . Model the beam with one
single linear Timoshenko finite element to determine:

• the unknowns at the nodes,
• the equation of the bending line and the distribution of the rotation,
• the reactions at the support,
• the internal reactions (shear force and bendingmoment distribution) in the element,
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Table 3.9 Equivalent nodal loads for a linear Timoshenko beam element (x-axis: right facing;
z-axis: upward facing)

Loading Shear Force Bending Moment

F1z = −qL

2
M1y = 0

F2z = −qL

2
M2y = 0

F1z =
qa2

2L
− qa M1y = 0

F2z = −qa2

2L
M2y = 0

F1z = −1
6
qL M1y = 0

F2z = −1
3
qL M2y = 0

F1z = −1
4
qL M1y = 0

F2z = −1
4
qL M2y = 0

F1z = −F

2
M1y = 0

F2z = −F

2
M2y = 0

• the strain and stress distributions in the element,
• the global force and moment equilibrium, and
• sketch the deflection of the load application point as a function of the slenderness
ratio h

L for ν = 0.0, 0.3 and 0.5.

3.10 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagram of the problem, including a global coordinate system
(see Fig. 3.35).

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads (see Fig. 3.36).

Steps 3 – 6 can be combined since we have only a single element problem. The
global system of equations reads:
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Table 3.10 Displacement, rotation, curvature, shear strain, shear force and bending moment distri-
bution for a linear Timoshenko beam element given as a function of the nodal values in Cartesian
and natural coordinates (bending occurs in the x-z plane)

Vertical displacement (Deflection) uz

uez(x) = [
1 − x

L

]
u1z + [ x

L

]
u2z

uez(ξ) = [ 1
2 (1 − ξ)

]
u1z + [ 1

2 (1 + ξ)
]
u2z

Rotation φy

φe
y(x) = [

1 − x
L

]
φ1y + [ x

L

]
φ2y

φe
y(ξ) = [ 1

2 (1 − ξ)
]
φ1y + [ 1

2 (1 + ξ)
]
φ2y

Curvature κy = dφy

dx
= dφy

dξ

dξ

dx
= 2

L

dφy

dξ
κe
y(x) = [− 1

L

]
φ1y + [ 1

L

]
φ2y

κe
y(ξ) = [− 1

L

]
φ1y + [ 1

L

]
φ2y

Shear strain γxz = duz
dx

+ φy = dξ

dx

duz
dξ

+ φy

γe
xz(x) = [− 1

L

]
u1z + [ 1

L

]
u2z + [

1 − x
L

]
φ1y + [ x

L

]
φ2y

γe
xz(ξ) = [− 1

L

]
u1z + [ 1

L

]
u2z + [ 1

2 (1 − ξ)
]
φ1y + [ 1

2 (1 + ξ)
]
φ2y

Shear force Qz = ksAGγxz = ksAG

(
duz
dx

+ φy

)
= dMy

dx

Qe
z(x) = ksAG

([− 1
L

]
u1z + [ 1

L

]
u2z + [

1 − x
L

]
φ1y + [ x

L

]
φ2y

)
Qe

z(ξ) = ksAG
([− 1

L

]
u1z + [ 1

L

]
u2z + [ 1

2 (1 − ξ)
]
φ1y + [ 1

2 (1 + ξ)
]
φ2y

)

Bending moment My = +E Iyκy = E Iy
dφy

dx
= E Iy

dφy

dξ

dξ

dx
Me

y(x) = E Iy
([− 1

L

]
φ1y + [ 1

L

]
φ2y

)
Me

y(ξ) = E Iy
([− 1

L

]
φ1y + [ 1

L

]
φ2y

)

Fig. 3.34 Beam loaded
under pure bending moment

ksAG

4L

⎡
⎢⎢⎣

4 −2L −4 −2L
−2L 4

3 L
2 + α 2L 4

6 L
2 − α

−4 2L 4 2L
−2L 4

6 L
2 − α 2L 4

3 L
2 + α

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u1Z
φ1Y

u2Z
φ2Y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

FR
1Z

MR
1Y

0

−M0

⎤
⎥⎥⎥⎦ . (3.230)
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Fig. 3.35 Free-body
diagram of the beam loaded
under pure bending moment

Fig. 3.36 Free-body
diagram of the discretized
structure

7 Introduce the boundary conditions to obtain the reduced system of equations.

ksAG

4L

⎡
⎢⎣

4 2L

2L
4

3
L2 + α

⎤
⎥⎦

⎡
⎢⎣
u2Z

φ2Y

⎤
⎥⎦ =

⎡
⎢⎣

0

−M0

⎤
⎥⎦ . (3.231)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎣
u2Z

φ2Y

⎤
⎥⎦ = 4L

ksAG
× 1

4
(
4
3 L

2 + α
) − 4L2

⎡
⎢⎣
4

3
L2 + α −2L

−2L 4

⎤
⎥⎦

⎡
⎢⎣

0

−M0

⎤
⎥⎦

= L

ksAG
× 1

L2

3 + α

⎡
⎢⎣
2M0L

−4M0

⎤
⎥⎦

= 3L

ksAGL2 + 12E I

⎡
⎢⎣
2M0L

−4M0

⎤
⎥⎦ . (3.232)

Based on these nodal unknowns, the bending line (deflection) and the rotational
distribution can be obtained from the general equations provided in Table3.10:
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uez(x) =
[
x

L

]
u2Z = 6M0L2

ksAGL2 + 12E I
×

[
x

L

]
, (3.233)

φe
y(x) =

[
x

L

]
φ2Y = − 12M0L

ksAGL2 + 12E I
×

[
x

L

]
. (3.234)

9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the consideration of the known nodal degrees of
freedom (i.e., displacement and rotation). The evaluation of the first equation gives:

ksAG

4L
(−4u2Z − 2Lϕ2Y ) = FR

1Z (3.235)

⇒ FR
1Z = 0 . (3.236)

The evaluation of the second equation gives in a similar way:

MR
1Y = M0 . (3.237)

The internal reactions (i.e., bending moment and shear force) in the element can be
obtained from the relations provided in Table3.10.

Me
y(x) = E I

[
1

L

]
φ2Y = − 12E I M0

ksAGL2 + 12E I
, (3.238)

Qe
z(x) = ksAG

([
1

L

]
u2Z +

[
x

L

]
φ2Y

)

= 6ksAGM0(L − 2x)

ksAGL2 + 12E I
. (3.239)

The normal and shear stress distributions can be obtained from Eqs. (2.125) and
(2.126):

σe
x (x, z) = Me

y(x)

I
z(x) = − 12EM0

ksAGL2 + 12E I
z(x) , (3.240)

τ e
xz(x) = Qe

z(x)

ksA
= 6GM0(L − 2x)

ksAGL2 + 12E I
. (3.241)

http://dx.doi.org/10.1007/978-3-319-69817-5_2
http://dx.doi.org/10.1007/978-3-319-69817-5_2
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10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi Z = 0 ⇔ (FR
1Z )︸ ︷︷ ︸

reaction force

+ (0)︸︷︷︸
external load

= 0 , � (3.242)

∑
i

MiY = 0 ⇔ (MR
1Y )︸ ︷︷ ︸

reaction

+ (−M0)︸ ︷︷ ︸
external load

= 0 . � (3.243)

Deflection of the load application point as a function of the slenderness ratio h
L for

ν = 0.0, 0.3 and 0.5.
The nodal displacement at node 2 is given in Eq. (3.232):

u2Z = 6M0L2

ksAGL2 + 12E I
. (3.244)

Considering that G = E
2(1+ν)

, A = bh, I = bh3

12 , and ks = 5
6 allows us to express the

last equation as:

u2Z = 1 + ν

5
12

(
L
h

)2 + (1 + ν)
× M0L2

2E I
. (3.245)

The graphical representation of this equation for different values of Poisson’s ratio
is given in Fig. 3.37.

3.11 Beam Loaded by a Single Force
The cantilever Timoshenko beam shown in Fig. 3.38 is loaded by a single force F0

at the free right-hand end. The bending stiffness E I and the shear stiffness ksAG
are constant and the total length of the beam is equal to L . Model the beam with one
single linear Timoshenko finite element to determine:

Fig. 3.37 Comparison of the
finite element solution for a
linear Timoshenko element
based on analytical
integration with the
analytical solutions for beam
problems
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Fig. 3.38 Beam loaded by a
single force

Fig. 3.39 Free-body
diagram of the beam loaded
by a single force

Fig. 3.40 Free-body
diagram of the discretized
structure

• the unknowns at the nodes,
• the equation of the bending line and the distribution of the rotation,
• the reactions at the support,
• the internal reactions (shear force and bendingmoment distribution) in the element,
• the strain and stress distributions in the element,
• the global force and moment equilibrium, and
• sketch the deflection of the load application point as a function of the slenderness
ratio h

L for ν = 0.0, 0.3 and 0.5.

3.11 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagram of the problem, including a global coordinate system
(see Fig. 3.39).

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads (see Fig. 3.40).

Steps 3 – 6 can be combined since we have only a single element problem. The
global system of equations reads:
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ksAG

4L

⎡
⎢⎢⎣

4 −2L −4 −2L
−2L 4

3 L
2 + α 2L 4

6 L
2 − α

−4 2L 4 2L
−2L 4

6 L
2 − α 2L 4

3 L
2 + α

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u1Z
φ1Y

u2Z
φ2Y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

FR
1Z

MR
1Y

F0

0

⎤
⎥⎥⎥⎦ . (3.246)

7 Introduce the boundary conditions to obtain the reduced system of equations.

ksAG

4L

⎡
⎢⎣

4 2L

2L
4

3
L2 + α

⎤
⎥⎦

⎡
⎢⎣
u2Z

φ2Y

⎤
⎥⎦ =

⎡
⎢⎣
F0

0

⎤
⎥⎦ . (3.247)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎣
u2Z

φ2Y

⎤
⎥⎦ = 4L

ksAG
× 1

4
(
4
3 L

2 + α
) − 4L2

⎡
⎢⎣
4

3
L2 + α −2L

−2L 4

⎤
⎥⎦

⎡
⎢⎣
F0

0

⎤
⎥⎦

= F0L

ksAGL2 + 12E I

⎡
⎢⎢⎣
4(ksAGL2 + 3E I )

ksAG

−6L2

⎤
⎥⎥⎦ . (3.248)

Based on these nodal unknowns, the bending line (deflection) and the rotational
distribution can be obtained from the general equations provided in Table3.10:

uez(x) =
[
x

L

]
u2Z = 4F0L(ksAGL2 + 3E I )

ksAG(ksAGL2 + 12E I )
×

[
x

L

]
, (3.249)

φe
y(x) =

[
x

L

]
φ2Y = − 6F0L2

ksAGL2 + 12E I
×

[
x

L

]
. (3.250)

9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the consideration of the known nodal degrees of
freedom (i.e., displacement and rotation). The evaluation of the first equation gives:

ksAG

4L
(−4u2Z − 2Lϕ2Y ) = FR

1Z (3.251)

⇒ FR
1Z = −F0 . (3.252)
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The evaluation of the second equation gives in a similar way:

MR
1Y = F0L . (3.253)

The internal reactions (i.e., bending moment and shear force) in the element can be
obtained from the relations provided in Table3.10.

Me
y(x) = E I

[
1

L

]
φ2Y = − 6E I F0L

ksAGL2 + 12E I
, (3.254)

Qe
z(x) = ksAG

([
1

L

]
u2Z +

[
x

L

]
φ2Y

)

= 2F0(2ksAGL2 + 6E I − 3ksAGLx)

ksAGL2 + 12E I
. (3.255)

The normal and shear stress distributions can be obtained from Eqs. (2.125) and
(2.126):

σe
x (x, z) = Me

y(x)

I
z(x) = − 6EF0L

ksAGL2 + 12E I
z(x) , (3.256)

τ e
xz(x) = Qe

z(x)

ksA
= 2F0(2ksAGL2 + 6E I − 3ksAGLx)

ksA(ksAGL2 + 12E I )
. (3.257)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi Z = 0 ⇔ (FR
1Z )︸ ︷︷ ︸

reaction force

+ (F0)︸︷︷︸
external load

= 0 , � (3.258)

∑
i

MiY = 0 ⇔ (MR
1Y )︸ ︷︷ ︸

reaction

+ (−F0L)︸ ︷︷ ︸
external load

= 0 . � (3.259)

Deflection of the load application point as a function of the slenderness ratio h
L for

ν = 0.0, 0.3 and 0.5.
The nodal displacement at node 2 is given in Eq. (3.248):

u2Z = 4F0L(ksAGL2 + 3E I )

ksAG(ksAGL2 + 12E I )
. (3.260)

Considering that G = E
2(1+ν)

, A = bh, I = bh3

12 , and ks = 5
6 allows us to express the

last equation as:

http://dx.doi.org/10.1007/978-3-319-69817-5_2
http://dx.doi.org/10.1007/978-3-319-69817-5_2
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Fig. 3.41 Comparison
between the finite element
solution for a single linear
Timoshenko beam element
with analytical integration
and the corresponding
analytical solutions a general
view and b magnification for
small slenderness ratios
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u2Z = 36(1 + ν)
(
h
L

)2 + 60

25
(
L
h

)2 1
1+ν

+ 60
× F0L3

3E I
. (3.261)

The graphical representation of this equation for different values of Poisson’s ratio
is given in Fig. 3.41.

3.12 Beam Loaded by a Distributed Load
The cantilever Timoshenko beam shown in Fig. 3.42 is loaded by a constant dis-
tributed load q0. The bending stiffness E I and the shear stiffness ksAG are constant
and the total length of the beam is equal to L . Model the beam with one single linear
Timoshenko finite element to determine:

• the unknowns at the nodes,
• the equation of the bending line and the distribution of the rotation,
• the reactions at the support,
• the internal reactions (shear force and bendingmoment distribution) in the element,
• the strain and stress distributions in the element,
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Fig. 3.42 Beam loaded by a
distributed load

Fig. 3.43 Free-body
diagram of the beam loaded
by a distributed load

Fig. 3.44 Free-body
diagram of the discretized
structure

• the global force and moment equilibrium, and
• sketch the deflection of the right-hand end (x = L) as a function of the slenderness
ratio h

L for ν = 0.0, 0.3 and 0.5.

3.12 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagram of the problem, including a global coordinate system
(see Fig. 3.43).

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads (see Fig. 3.44).

Steps 3 – 6 can be combined since we have only a single element problem. The
global system of equations reads:
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ksAG

4L

⎡
⎢⎢⎣

4 −2L −4 −2L
−2L 4

3 L
2 + α 2L 4

6 L
2 − α

−4 2L 4 2L
−2L 4

6 L
2 − α 2L 4

3 L
2 + α

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u1Z
φ1Y

u2Z
φ2Y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
FR
1Z + q0L

2
MR

1Y
q0L
2
0

⎤
⎥⎥⎦ . (3.262)

7 Introduce the boundary conditions to obtain the reduced system of equations.

ksAG

4L

⎡
⎢⎣

4 2L

2L
4

3
L2 + α

⎤
⎥⎦

⎡
⎢⎣
u2Z

φ2Y

⎤
⎥⎦ =

⎡
⎢⎣

q0L
2

0

⎤
⎥⎦ . (3.263)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎣
u2Z

φ2Y

⎤
⎥⎦ = 4L

ksAG
× 1

4
(
4
3 L

2 + α
) − 4L2

⎡
⎢⎣
4

3
L2 + α −2L

−2L 4

⎤
⎥⎦

⎡
⎢⎣

q0L
2

0

⎤
⎥⎦

= q0L2

ksAGL2 + 12E I

⎡
⎢⎢⎣
2(ksAGL2 + 3E I )

ksAG

−3L

⎤
⎥⎥⎦ . (3.264)

Based on these nodal unknowns, the bending line (deflection) and the rotational
distribution can be obtained from the general equations provided in Table3.10:

uez(x) =
[
x

L

]
u2Z = 2q0L2(ksAGL2 + 3E I )

ksAG(ksAGL2 + 12E I )
×

[
x

L

]
, (3.265)

φe
y(x) =

[
x

L

]
φ2Y = − 3q0L3

ksAGL2 + 12E I
×

[
x

L

]
. (3.266)

9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the consideration of the known nodal degrees of
freedom (i.e., displacement and rotation). The evaluation of the first equation gives:

ksAG

4L
(−4u2Z − 2Lϕ2Y ) = FR

1Z (3.267)

⇒ FR
1Z = −q0L . (3.268)
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The evaluation of the second equation gives in a similar way:

MR
1Y = q0L2

2
. (3.269)

The internal reactions (i.e., bending moment and shear force) in the element can be
obtained from the relations provided in Table3.10.

Me
y(x) = E I

[
1

L

]
φ2Y = − 3E Iq0L2

ksAGL2 + 12E I
, (3.270)

Qe
z(x) = ksAG

([
1

L

]
u2Z +

[
x

L

]
φ2Y

)

= q0L(2ksAGL2 + 6E I − 3ksAGLx)

ksAGL2 + 12E I
. (3.271)

The normal and shear stress distributions can be obtained from Eqs. (2.125) and
(2.126):

σe
x (x, z) = Me

y(x)

I
z(x) = − 3Eq0L2

ksAGL2 + 12E I
z(x) , (3.272)

τ e
xz(x) = Qe

z(x)

ksA
= q0L(2ksAGL2 + 6E I − 3ksAGLx)

ksA(ksAGL2 + 12E I )
. (3.273)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi Z = 0 ⇔ (FR
1Z )︸ ︷︷ ︸

reaction force

+ (q0L)︸ ︷︷ ︸
external load

= 0 , � (3.274)

∑
i

MiY = 0 ⇔ (MR
1Y )︸ ︷︷ ︸

reaction

+
(
− q0L2

2

)
︸ ︷︷ ︸
external load

= 0 . � (3.275)

Deflection of the right-hand end (x = L) as a function of the slenderness ratio h
L for

ν = 0.0, 0.3 and 0.5.
The nodal displacement at node 2 is given in Eq. (3.264):

u2Z = 2q0L2(ksAGL2 + 3E I )

ksAG(ksAGL2 + 12E I )
. (3.276)

Considering that G = E
2(1+ν)

, A = bh, I = bh3

12 , and ks = 5
6 allows us to express the

last equation as:

http://dx.doi.org/10.1007/978-3-319-69817-5_2
http://dx.doi.org/10.1007/978-3-319-69817-5_2
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Fig. 3.45 Comparison
between the finite element
solution for a single linear
Timoshenko beam element
with analytical integration
and the corresponding
analytical solutions:
a general view and
b magnification for small
slenderness ratios
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u2Z = 48(1 + ν)
(
h
L

)2 + 80

25
(
L
h

)2 1
1+ν

+ 60
× q0L4

8E I
. (3.277)

The graphical representation of this equation for different values of Poisson’s ratio
is given in Fig. 3.45.

3.3.3 Generalized Beam and Frame Elements

3.3.3.1 Generalized Beam Elements

Let us consider a generalized beam element, i.e., a superposition of a rod and a simple
beam element, which is composed of two nodes as schematically shown in Fig. 3.46.
Each node has three degrees of freedom, i.e., a displacement ux in the direction of
the x-axis, a displacement uz in the direction of the z-axis (i.e., perpendicular to the
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Fig. 3.46 Superposition of
the rod element a and the
Euler–Bernoulli beam
element b to the generalized
beam element c in the x-z
plane

(a)

(b)

(c)

principal beam axis), and a rotation ϕy around the y-axis, see Fig. 3.46c. Each node
can be loaded by single forces acting in the x- or z-directions or single moments
around the y-axis. In the case of distributed loads px (x) or qz(x), a transformation
to equivalent nodal loads is required.

The principal finite element equation for the generalized beam can be obtained
by combining the expressions for the rod element and the simple beam as given in
Eqs. (3.1) and (3.164):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A

L
0 0 − E A

L
0 0

0
12E I

L3
−6E I

L2
0 −12E I

L3
−6E I

L2

0 −6E I

L2

4E I

L
0

6E I

L2

2E I

L

− E A

L
0 0

E A

L
0 0

0 −12E I

L3

6E I

L2
0

12E I

L3

6E I

L2

0 −6E I

L2

2E I

L
0

6E I

L2

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1x

u1z

ϕ1y

u2x

u2z

ϕ2y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1x

F1z

M1y

F2x

F2z

M2y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
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Fig. 3.47 Generalized
cantilever beam with two
point loads

+
L∫

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

0

0

N2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

px (x) dx +
L∫

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

N1u

N1ϕ

0

N2u

N2ϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

qz(x) dx . (3.278)

The explanation of Eq. (3.278) can be readily taken from the corresponding sections
of the rod and simple beam, see Sects. 3.2.1 and 3.3.1.

3.13 Cantilever Generalized Beam with Two Point Loads
The generalized beam shown in Fig. 3.47 is loaded by two point loads, i.e., a single
horizontal force F0 and a single moment M0 at its right-hand end. The material
constant (E) and the geometrical properties (I, A) are constant and the total length
of the beam is equal to L . Model the member with one generalized beam finite
element of length L to determine:

• the unknowns at the nodes,
• the displacement distributions uZ = uZ (X) (bending) and uX = uX (X) (ten-
sion/compression),

• the reactions at the supports,
• the internal reactions (normal force, shear force and bending moment) in the ele-
ment,

• the strain and stress distributions in the element, and
• the global force and moment equilibrium.

3.13 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system,
see Fig. 3.48.
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Fig. 3.48 Free-body
diagram of the cantilevered
generalized beam with two
point loads

Fig. 3.49 Free-body
diagram of the discretized
structure

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.49.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

There is only a single element and its stiffness matrix reads:

K e
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y

E A

L
0 0 − E A

L
0 0

0
12E I

L3
−6E I

L2
0 −12E I

L3
−6E I

L2

0 −6E I

L2

4E I

L
0

6E I

L2

2E I

L

− E A

L
0 0

E A

L
0 0

0 −12E I

L3

6E I

L2
0

12E I

L3

6E I

L2

0 −6E I

L2

2E I

L
0

6E I

L2

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

. (3.279)

Steps 4 – 6 can be combined since we have only a single element (Determine the
dimensions of the global stiffness matrix and sketch the structure of this matrix with
global unknowns on the right-hand side and over the matrix. Insert the values of the
elemental stiffness matrices step-by-step into the global stiffness matrix. Add the
column matrix of unknowns and external loads to complete the global system of
equations).
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A

L
0 0 − E A

L
0 0

0
12E I

L3
−6E I

L2
0 −12E I

L3
−6E I

L2

0 −6E I

L2

4E I

L
0

6E I

L2

2E I

L

− E A

L
0 0

E A

L
0 0

0 −12E I

L3

6E I

L2
0

12E I

L3

6E I

L2

0 −6E I

L2

2E I

L
0

6E I

L2

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR
1X

FR
1Z

MR
1Y

F0

FR
2Z

−M0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.280)

7 Introduce the boundary conditions to obtain the reduced system of equations.

There are only two degrees of freedom, i.e. the rotation and horizontal displacement
at node 2:

⎡
⎢⎣

E A

L
0

0
4E IY
L

⎤
⎥⎦

⎡
⎢⎣
u2X

ϕ2Y

⎤
⎥⎦ =

⎡
⎢⎣

F0

−M0

⎤
⎥⎦ . (3.281)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎣
u2X

ϕ2Y

⎤
⎥⎦ = 1

E A
L

4E IY
L − 0

⎡
⎢⎣
4E IY
L

0

0
E A

L

⎤
⎥⎦

⎡
⎢⎣

F0

−M0

⎤
⎥⎦ =

⎡
⎢⎢⎣

LF0

E A

− LM0

4E IY

⎤
⎥⎥⎦ . (3.282)

9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the considerationof theknownnodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

− E A

L
u2X = − E A

L
× LF0

E A
= FR

1X ⇒ FR
1X = −F0 . (3.283)

The other reactions can be obtained in a similar way as:

FR
1Z = 3M0

2L
, (3.284)

MR
1Y = −M0

2
, (3.285)
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FR
2Z = −3M0

2L
. (3.286)

The internal reactions (i.e., normal force, bending moment, and shear force) in each
element can be obtained from the relations provided in Tables3.2 and 3.8:

N e
X (X) = E A

L
u2X = F0 , (3.287)

Qe
Z (X) = E IY

(
6

L2
ϕ2Y

)
= −3M0

2L
, (3.288)

Me
Y (X) = E IY

([
− 2

L
+ 6X

L2

]
ϕ2Y

)
= 1

4

(
2(L − 3X)

L2

)
LM0 . (3.289)

The total normal stress distribution is a superposition of the contributions from the
tensile (NX ) and bending (MY ) part, see Tables3.2 and 3.8:

σe
X (X) = N e

X (X)

A
+ Me

Y (X)

IY
Z = F0

A
+ 1

4

(
2(L − 3X)

L2

)
LM0

IY
Z . (3.290)

The strain result from Hooke’s law:

εeX (X , Z) = σe
X (X , Z)

E
= F0

E A
+ 1

4

(
2(L − 3X)

L2

)
LM0

E IY
Z . (3.291)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X )︸ ︷︷ ︸

reaction force

+ (F0)︸︷︷︸
external load

= 0 , � (3.292)

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

2Z )︸ ︷︷ ︸
reaction force

+ (0)︸︷︷︸
external load

= 0 , � (3.293)

∑
i

MiY = 0 ⇔ (MR
1Y − FR

2Z L)︸ ︷︷ ︸
reaction

+ (−M0)︸ ︷︷ ︸
external load

= 0 . � (3.294)

3.14 Generalized Cantilever Beam with Distributed Load and End Displace-
ment
The generalized beam shown in Fig. 3.50 is loaded by distributed loads p0 and a
vertical displacement u0 at its right-hand end. The material constant (E) and the
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Fig. 3.50 Generalized
cantilever beam with
distributed load and end
displacement

Fig. 3.51 Free-body
diagram of the generalized
cantilever beam with
distributed load and end
displacement

geometrical properties (I, A) are constant and the total length of the beam is equal
to L . Model the member with one generalized beam finite element of length L to
determine:

• the unknowns at the nodes,
• the displacement distributions uZ = uZ (X) (bending) and uX = uX (X) (ten-
sion/compression),

• the reactions at the supports,
• the internal reactions (normal force, shear force and bending moment) in the ele-
ment,

• the strain and stress distributions in the element, and
• the global force and moment equilibrium.

3.14 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system,
see Fig. 3.51.

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.52.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.
There is only a single element and its stiffness matrix reads:
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Fig. 3.52 Free-body
diagram of the discretized
structure with equivalent
nodal loads

K e
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y

E A

L
0 0 − E A

L
0 0

0
12E I

L3
−6E I

L2
0 −12E I

L3
−6E I

L2

0 −6E I

L2

4E I

L
0

6E I

L2

2E I

L

− E A

L
0 0

E A

L
0 0

0 −12E I

L3

6E I

L2
0

12E I

L3

6E I

L2

0 −6E I

L2

2E I

L
0

6E I

L2

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

. (3.295)

Steps 4 – 6 can be combined since we have only a single element (Determine the
dimensions of the global stiffness matrix and sketch the structure of this matrix with
global unknowns on the right-hand side and over the matrix. Insert the values of the
elemental stiffness matrices step-by-step into the global stiffness matrix. Add the
column matrix of unknowns and external loads to complete the global system of
equations):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A

L
0 0 − E A

L
0 0

0
12E I

L3
−6E I

L2
0 −12E I

L3
−6E I

L2

0 −6E I

L2

4E I

L
0

6E I

L2

2E I

L

− E A

L
0 0

E A

L
0 0

0 −12E I

L3

6E I

L2
0

12E I

L3

6E I

L2

0 −6E I

L2

2E I

L
0

6E I

L2

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR
1X + p0L

2

FR
1Z

MR
1Y

p0L

2

−FR
2Z

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.296)
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7 Introduce the boundary conditions to obtain the reduced system of equations.

Let us first eliminate the degrees of freedom at the left-hand support:

⎡
⎢⎢⎢⎢⎢⎢⎣

E A

L
0 0

0
12E I

L3

6E I

L2

0
6E I

L2

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u2X

u2Z

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

p0L

2

−FR
2Z

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.297)

Let us now multiply the second column of the stiffness matrix with the given dis-
placement −u0:

⎡
⎢⎢⎢⎢⎢⎢⎣

E A

L
0(−u0) 0

0
12E I

L3
(−u0)

6E I

L2

0
6E I

L2
(−u0)

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u2X

u2Z

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

p0L

2

−FR
2Z

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.298)

Rearranging the second column of the stiffness matrix to the right-hand site of the
system and canceling the second row gives finally the reduced system of equations:

⎡
⎢⎢⎣

E A

L
0

0
4E I

L

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u2X

ϕ2Y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

p0L

2

0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0

6E I

L2

⎤
⎥⎥⎦ u0 . (3.299)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎢⎣
u2X

ϕ2Y

⎤
⎥⎥⎦ = 1

4 E A
L

E I
L − 0

⎡
⎢⎢⎣
4E I

L
0

0
E A

L

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p0L

2
6E Iu0
L2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

L

E A
× p0L

2
3u0
2L

⎤
⎥⎥⎦ . (3.300)

9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the considerationof theknownnodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:
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− E A

L
u2X = − E A

L
× L

E A

p0L

2
= FR

1X + p0L

2
⇒ FR

1X = −p0L . (3.301)

The other reactions can be obtained in a similar way as:

FR
1Z = 3E Iu0

L3
, (3.302)

MR
1Y = −3E Iu0

L2
, (3.303)

FR
2Z = 3E Iu0

L3
. (3.304)

The internal reactions (i.e., normal force, bending moment, and shear force) in each
element can be obtained from the relations provided in Tables3.2 and 3.8:

N e
X (X) = E A

L
u2X = p0L

2
, (3.305)

Qe
Z (X) = E IY

(
12

L3
(−u0) + 6

L2
ϕ2Y

)
= −3E Iu0

L3
, (3.306)

Me
Y (X) = E IY

([
− 6

L2
+ 12X

L3

]
(−u0) +

[
− 2

L
+ 6X

L2

]
ϕ2Y

)
(3.307)

= −3E Iu0
L3

(X − L) . (3.308)

The total normal stress distribution is obtained by superposing the contributions from
the tensile (NX ) and bending (MY ) part, see Tables3.2 and 3.8:

σe
X (X) = N e

X (X)

A
+ Me

Y (X)

IY
Z = p0L

2A
− 3Eu0

L3
(X − L) Z . (3.309)

The strains result from Hooke’s law:

εeX (X , Z) = σe
X (X , Z)

E
= p0L

2E A
− 3u0

L3
(X − L) Z . (3.310)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X )︸ ︷︷ ︸

reaction force

+
(

p0L
2 + p0L

2

)
︸ ︷︷ ︸

external load

= 0 , � (3.311)
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Fig. 3.53 Generalized
cantilever beam with two
types of distributed loads

∑
i

Fi Z = 0 ⇔ (FR
1Z − FR

2Z )︸ ︷︷ ︸
reaction force

+ (0)︸︷︷︸
external load

= 0 , � (3.312)

∑
i

MiY = 0 ⇔ (MR
1Y + FR

2Z L)︸ ︷︷ ︸
reaction

+ (0)︸︷︷︸
external load

= 0 . � (3.313)

3.15 Generalized Cantilever Beam with Two Types of Distributed Loads
The generalized beam shown in Fig. 3.53 is loaded by a constant vertical distributed
load q0 in the range 0 ≤ X ≤ L and a constant horizontal load p0 in the range
L ≤ X ≤ 2L . The material constant (E) and the geometrical properties (I, A) are
constant and the total length of the beam is equal to 2L . Model the member with two
generalized beam finite elements of length L to determine:

• the unknowns at the nodes,
• the displacement distributions uZ = uZ (X) (bending) and uX = uX (X) (ten-
sion/compression),

• the reactions at the supports,
• the internal reactions (normal force, shear force and bending moment) in each
element (compare the distributions of the internal reactions with the analytical
results),

• the strain and stress distributions in each element, and
• the global force and moment equilibrium.

3.15 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system,
see Fig. 3.54.

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.55.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices:
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Fig. 3.54 Free-body diagram of the generalized cantilever beamwith two types of distributed loads

Fig. 3.55 Free-body diagram of the discretized structure with the equivalent nodal loads

K e
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y

E A

L
0 0 − E A

L
0 0

0
12E I

L3
−6E I

L2
0 −12E I

L3
−6E I

L2

0 −6E I

L2

4E I

L
0

6E I

L2

2E I

L

− E A

L
0 0

E A

L
0 0

0 −12E I

L3

6E I

L2
0

12E I

L3

6E I

L2

0 −6E I

L2

2E I

L
0

6E I

L2

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

, (3.314)
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K e
II =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X u2Z ϕ2Y u3X u3Z ϕ3Y

E A

L
0 0 − E A

L
0 0

0
12E I

L3
−6E I

L2
0 −12E I

L3
−6E I

L2

0 −6E I

L2

4E I

L
0

6E I

L2

2E I

L

− E A

L
0 0

E A

L
0 0

0 −12E I

L3

6E I

L2
0

12E I

L3

6E I

L2

0 −6E I

L2

2E I

L
0

6E I

L2

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u2X

u2Z

ϕ2Y

u3X

u3Z

ϕ3Y

. (3.315)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having three degrees of
freedom (i.e., the vertical and horizontal displacements and the rotation). Thus, the
dimensions of the global stiffness matrix are (3 × 3) × (3 × 3) = (9 × 9):

K =

u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
ϕ1Y

u2X
u2Z
ϕ2Y

u3X
u3Z
ϕ3Y

. (3.316)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y
E A
L 0 0 − E A

L 0 0 0 0 0

0 12E I
L3

− 6E I
L2

0 − 12E I
L3

− 6E I
L2

0 0 0

0 − 6E I
L2

4E I
L 0 6E I

L2
2E I
L 0 0 0

− E A
L 0 0 E A

L + E A
L 0 + 0 0 + 0 − E A

L 0 0

0 − 12E I
L3

6E I
L2

0 + 0 12E I
L3

+ 12E I
L3

6E I
L2

− 6E I
L3

0 − 12E I
L3

− 6E I
L2

0 − 6E I
L2

2E I
L 0 6E I

L2
− 6E I

L2
4E I
L + 4E I

L 0 6E I
L2

2E I
L

0 0 0 − E A
L 0 0 E A

L 0 0

0 0 0 0 − 12E I
L3

6E I
L2

0 12E I
L3

6E I
L2

0 0 0 0 − 6E I
L2

2E I
L 0 6E I

L2
4E I
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
ϕ1Y
u2X
u2Z
ϕ2Y
u3X
u3Z
ϕ3Y

.

(3.317)
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6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be written as Kup = f , where the columnmatrix
of nodal unknowns reads

up = [
u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y

]T
, (3.318)

and the column matrix of external loads is given by:

f =
[
FR
1X FR

1Z − q0L
2 MR

1Y + q0L2

12
p0L
2 FR

2Z − q0L
2 − q0L2

12 FR
3X + p0L

2 FR
3Z MR

3Y

]T
.

(3.319)
7 Introduce the boundary conditions to obtain the reduced system of equations.

There are only two degrees of freedom, i.e. the rotation and horizontal displacement
at node 2:

⎡
⎢⎣

E A

L
+ E A

L
0

0
4E I

L
+ 4E I

L

⎤
⎥⎦

⎡
⎢⎣ u2X

ϕ2Y

⎤
⎥⎦ =

⎡
⎢⎣

p0L

2

−q0L2

12

⎤
⎥⎦ . (3.320)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

⎡
⎢⎣
u2X

ϕ2Y

⎤
⎥⎦ =

⎡
⎢⎢⎣

p0L2

4E A

− q0L3

96E IY

⎤
⎥⎥⎦ . (3.321)

The obtained nodal unknowns allow to calculate, for example, the elongation and
the bending curve based on the nodal approaches provided in Tables3.2 and 3.7.
In detail, the elongations in each element can be stated as (see also the graphical
representation provided in Fig. 3.56):

uex (xI) =
[
xI
L

]
u2X = p0L2

4E A
× xI

L
, (3.322)

uex (xII) =
[
1 − xII

L

]
u2X = p0L2

4E A
×

(
1 − xII

L

)
. (3.323)

The bending curve for each element reads as follows (see also the graphical repre-
sentation provided in Fig. 3.57):
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Fig. 3.56 Beam elongation
along the major axis
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Fig. 3.57 Beam deflection
along the major axis
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uez(xI) =
[
x2I
L

− x3I
L2

]
ϕ2Y = − q0L4

96E I

⎛
⎝
(
xI
L

)2

−
(
xI
L

)3
⎞
⎠ , (3.324)

uez(xII) =
[
−xII + 2x2II

L
− x3II

L2

]
= − q0L4

96E I

⎛
⎝− xII

L
+ 2

(
xII
L

)2

−
(
xII
L

)3
⎞
⎠ .

(3.325)

It can be seen from Figs. 3.56 and 3.57 that all the support conditions in regards to
the displacements and rotations are fulfilled.

9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the considerationof theknownnodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:
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− E A

L
u2X = FR

1X ⇒ FR
1X = − p0L

4
. (3.326)

The evaluation of the second equation gives:

− 6E IY
L2

ϕ2Y = FR
1Z − q0L

2
⇒ FR

1Z = 9

16
q0L . (3.327)

In a similar way, the evaluation of the third, fifth, seventh, eighth and ninth equation
gives:

MR
1Y = − 5

48
q0L , FR

2Z = q0L

2
, FR

3X = −3

4
p0L , FR

3Z = −q0L

16
,MR

3Y = −q0L2

48
.

(3.328)

The internal reactions (i.e., normal force, bending moment, and shear force) in each
element can be obtained from the relations provided in Tables3.2 and 3.8:

N e
x (xI) = p0L

4
, (3.329)

N e
x (xII) = − p0L

4
, (3.330)

Qe
z(xI) = −q0L

16
, (3.331)

Qe
z(xII) = −q0L

16
, (3.332)

Me
y(xI) = −q0L2

96

(
−2 + 6

(
xI
L

))
, (3.333)

Me
y(xII) = −q0L2

96

(
−4 + 6

(
xII
L

))
. (3.334)

The graphical representations of the internal reactions are shown in Fig. 3.58. It
can be seen that the finite element approach gives the correct reactions (as well
as displacements and rotations) at the nodes but the distributions of the internal
reactions are not correctly represented, especially in the sections with distributed
loads. Pay attention to the fact that the internal reactions (analytical solution) are
exactly balancing the reactions at the supports.

The analytical solutions for the internal reactions are shown in Fig. 3.59.
The total normal stress distribution is a superposition of the contributions from

the tensile (NX ) and bending (MY ) part, see Tables3.2 and 3.8:
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Fig. 3.58 Finite element
solution: a Normal force
distribution, b shear force
distribution and c bending
moment distribution
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Fig. 3.59 Analytical
solution: a Normal force
distribution
(NX = − ∫

pXdX + c),
b shear force distribution
(QZ = − ∫

qZdX + c), and
c bending moment
distribution
(MY = ∫

QZdX + c)
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σe
x (xI) = N e

x (xI)

A
+ Me

y(xI)

IY
z = p0L

4A
− q0L2

96IY

(
−2 + 6

(
xI
L

))
z , (3.335)

σe
x (xII) = N e

x (xII)

A
+ Me

y(xII)

IY
z = − p0L

4A
− q0L2

96IY

(
−4 + 6

(
xII
L

))
z . (3.336)

The strains result from Hooke’s law:

εex (xI, z) = σe
x (xI, z)

E
= p0L

4E A
− q0L2

96E IY

(
−2 + 6

(
xI
L

))
z , (3.337)

εex (xII, z) = σe
x (xII, z)

E
= − p0L

4E A
− q0L2

96E IY

(
−4 + 6

(
xII
L

))
z . (3.338)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X + FR

3X )︸ ︷︷ ︸
reaction force

+
(

p0L
2 + p0L

2

)
︸ ︷︷ ︸

external load

= 0 , � (3.339)

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

2Z + FR
3Z )︸ ︷︷ ︸

reaction force

+
(
− q0L

2 − q0L
2

)
︸ ︷︷ ︸

external load

= 0 , � (3.340)

∑
i

MiY = 0 ⇔ (MR
1Y + MR

3Y − FR
2Z L − FR

3Z2L)︸ ︷︷ ︸
reaction

+
(
q0L2

12 − q0L2

12 + q0L
2 L

)
︸ ︷︷ ︸

external load

= 0 . �

(3.341)

3.3.3.2 Generalized Frame Elements

Rotation of Beam Elements
Let us consider in the following a thin (Euler–Bernoulli) beam element which
can deform in the global X -Z plane. The local x-coordinate is rotated by an angle α
against the global coordinate system (X, Z), see Fig. 3.60. If the rotation of the global
coordinate system to the local coordinate system is clockwise, a positive rotational
angle is obtained.

Each node has now in the global coordinate system two displacement degrees of
freedom, i.e. a displacement in the X - and a displacement in the Z -direction. These
two global displacements at each node can be used to calculate the displacement per-
pendicular to the beam axis, i.e. in the direction of the local z-axis. The components
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Fig. 3.60 Rotational
transformation of an
Euler–Bernoulli beam
element in the X -Z plane

Table 3.11 Transformation
of matrices between the
elemental (x, z) and global
coordinate (X, Z) system

Stiffness matrix

K e
xz = T K e

XZT
T , K e

XZ = TTK e
xzT

Column matrix of nodal unknowns

uxz = T uXZ , uXZ = TTuxz
Column matrix of external loads

f xz = T f XZ , f XZ = TT f xz

of the principal finite element equation can be transformed between the elemental and
global coordinate system as summarized in Table3.11 in which the transformation
matrix T is given by

T =

⎡
⎢⎢⎣
sinα cosα 0 0 0 0
0 0 1 0 0 0
0 0 0 sinα cosα 0
0 0 0 0 0 1

⎤
⎥⎥⎦ . (3.342)

The triple matrix product for the stiffness matrix results in the following formulation
for a rotated Euler–Bernoulli beam element:

E Iy
L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

12s2α 12sαcα −6Lsα −12s2α −12sαcα −6Lsα
12sαcα 12c2α −6Lcα −12sαcα −12c2α −6Lcα
−6Lsα −6Lcα 4L2 6Lsα 6Lcα 2L2

−12s2α −12sαcα 6Lsα 12s2α 12sαcα 6Lsα
−12sαcα −12c2α 6Lcα 12sαcα 12c2α 6Lcα
−6Lsα −6Lcα 2L2 6Lsα 6Lcα 4L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1X
u1Z
ϕ1Y
u2X
u2Z
ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F1X
F1Z
M1Y
F2X
F2Z
M2Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.343)
The sines (‘sα’) and cosines (‘cα’) values of the rotation angle α can be calculated
through the global node coordinates via
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sα
∧= sinα = − Z2 − Z1

L
or cα

∧= cosα = X2 − X1

L
, (3.344)

where the element length L results from the global node coordinates as:

L =
√
(X2 − X1)2 + (Z2 − Z1)2. (3.345)

To simplify the solution of simple beam structures, Table3.12 collects expressions
of the global stiffness matrix for some common angles α.

The results for the transformation of the matrices given in Table3.11 can be
combined with the relationships for the post-processing of nodal values in Tables3.7
and 3.8 to express the distributions in global coordinates, see Tables3.13 and 3.14.

Rotation of Generalized Beam Elements

Let us consider in the following a generalized beam element which can deform in
the global X -Z plane. Such an element is also called a plane frame element. The
local x-coordinate is rotated by an angle α with respect to the global coordinate
system (X, Z), see Fig. 3.61. If the rotation of the global coordinate system to the
local coordinate system is clockwise, a positive rotational angle is obtained.

Each node has in the global coordinate system two displacement degrees of free-
dom, i.e. a displacement in the X - and a displacement in the Z -direction. These two
global displacements at each node can be used to calculate the displacements in the
directions of the local x- and z-axes. The components of the principal finite element
equation can be transformed between the elemental and global coordinate system as
summarized in Table3.15 in which the transformation matrix T is given by

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

cosα − sinα 0
sinα cosα 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

cosα − sinα 0
sinα cosα 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.346)

The triple matrix product for the stiffness matrix results in the following formulation
for a rotated generalized beam element, see Eq. (3.347).
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Table 3.13 Post-processing quantities (part 1) for a rotatedEuler–Bernoullibeamelement given
as being dependent on the global nodal values as a function of the physical coordinate 0 ≤ x ≤ L
and natural coordinate −1 ≤ ξ ≤ 1. Bending occurs in the X -Z plane

Vertical displacement (Deflection) uz

uez(x) =
⎡
⎣1 − 3

(
x

L

)2

+ 2

(
x

L

)3
⎤
⎦ (u1X sinα + u1Z cosα) +

[
−x + 2x2

L
− x3

L2

]
ϕ1Y

+
⎡
⎣3

(
x

L

)2

− 2

(
x

L

)3
⎤
⎦ (u2X sinα + u2Z cosα) +

[
+ x2

L
− x3

L2

]
ϕ2Y

uez(ξ) =1

4

[
2 − 3ξ + ξ3

]
(u1X sinα + u1Z cosα) − 1

4

[
1 − ξ − ξ2 + ξ3

] L

2
ϕ1Y

+ 1

4

[
2 + 3ξ − ξ3

]
(u2X sinα + u2Z cosα) − 1

4

[
−1 − ξ + ξ2 + ξ3

] L

2
ϕ2Y

Rotation (Slope) ϕy = −duz
dx

= − 2

L

duz
dξ

ϕe
y(x) =

[
+ 6x

L2 − 6x2

L3

]
(u1X sinα + u1Z cosα) +

[
1 − 4x

L
+ 3x2

L2

]
ϕ1Y

+
[
− 6x

L2 + 6x2

L3

]
(u2X sinα + u2Z cosα) +

[
−2x

L
+ 3x2

L2

]
ϕ2Y

ϕe
y(ξ) = 1

2L

[
+3 − 3ξ2

]
(u1X sinα + u1Z cosα) + 1

4

[
−1 − 2ξ + 3ξ2

]
ϕ1Y

+ 1

2L

[
−3 + 3ξ2

]
(u2X sinα + u2Z cosα) + 1

4

[
−1 + 2ξ + 3ξ2

]
ϕ2Y

Curvature κy = −d
2
uz

dx2
= − 4

L2

d2uz

dξ2

κe
y(x) =

[
+ 6

L2 − 12x

L3

]
(u1X sinα + u1Z cosα) +

[
− 4

L
+ 6x

L2

]
ϕ1Y

+
[
− 6

L2 + 12x

L3

]
(u2X sinα + u2Z cosα) +

[
− 2

L
+ 6x

L2

]
ϕ2Y

κe
y(ξ) = 6

L2 [−ξ ] (u1X sinα + u1Z cosα) + 1

L
[−1 + 3ξ]ϕ1Y

+ 6

L2 [ ξ ] (u2X sinα + u2Z cosα) + 1

L
[1 + 3ξ]ϕ2Y
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Table 3.14 Post-processing quantities (part 2) for a rotatedEuler–Bernoullibeamelement given
as being dependent on the global nodal values as a function of the physical coordinate 0 ≤ x ≤ L
and natural coordinate −1 ≤ ξ ≤ 1. Bending occurs in the X -Z plane

Bending moment My = −E Iy
d2uz
dx2

= − 4

L2E Iy
d2uz

dξ2

Me
y(x) =E Iy

⎛
⎝
[
+ 6

L2 − 12x

L3

]
(u1X sinα + u1Z cosα) +

[
− 4

L
+ 6x

L2

]
ϕ1Y

+
[
− 6

L2 + 12x

L3

]
(u2X sinα + u2Z cosα) +

[
− 2

L
+ 6x

L2

]
ϕ2Y

)

Me
y(ξ) =E Iy

(
6

L2 [−ξ ] (u1X sinα + u1Z cosα) + 1

L
[−1 + 3ξ]ϕ1Y

+ 6

L2 [ ξ ] (u2X sinα + u2Z cosα) + 1

L
[1 + 3ξ]ϕ2Y

)

Shear force Qz = −E Iy
d3uz
dx3

= − 8

L3E Iy
d3uz

dξ3

Qe
z(x) =E Iy

⎛
⎝
[
− 12

L3

]
(u1X sinα + u1Z cosα) +

[
+ 6

L2

]
ϕ1Y

+
[
+ 12

L3

]
(u2X sinα + u2Z cosα) +

[
+ 6

L2

]
ϕ2Y

)

Qe
z(ξ) =E Iy

(
12

L3 [−1 ] (u1X sinα + u1Z cosα) + 2

L2 [+3]ϕ1Y

(
+ 12

L3 [ 1 ] (u2X sinα + u2Z cosα) + 2

L2 [+3]ϕ2Y

)

Normal strain εex (x, z) = −z
d2uez(x)

dx2
= −z

4

L2

d2uz

dξ2

εex (x, z) =
⎛
⎝
[
+ 6

L2 − 12x

L3

]
(u1X sinα + u1Z cosα) +

[
− 4

L
+ 6x

L2

]
ϕ1Y

+
[
− 6

L2 + 12x

L3

]
(u2X sinα + u2Z cosα) +

[
− 2

L
+ 6x

L2

]
ϕ2Y

)
z

εex (ξ, z) =
(

6

L2 [−ξ ] (u1X sinα + u1Z cosα) + 1

L
[−1 + 3ξ]ϕ1Y

+ 6

L2 [ ξ ] (u2X sinα + u2Z cosα) + 1

L
[1 + 3ξ]ϕ2Y

)
z

(continued)



162 3 Finite Element Method

Table 3.14 (continued)

Bending moment My = −E Iy
d2uz
dx2

= − 4

L2E Iy
d2uz

dξ2

Normal stress σe
x (x, z) = Eεex (x, z) = Eεex (ξ, z)

(
= My

Iy
z

)

σe
x (x, z) =E

⎛
⎝
[
+ 6

L2 − 12x

L3

]
(u1X sinα + u1Z cosα) +

[
− 4

L
+ 6x

L2

]
ϕ1Y

+
[
− 6

L2 + 12x

L3

]
(u2X sinα + u2Z cosα) +

[
− 2

L
+ 6x

L2

]
ϕ2Y

⎞
⎠ z

σe
x (ξ, z) =E

(
6

L2 [−ξ ] (u1X sinα + u1Z cosα) + 1

L
[−1 + 3ξ]ϕ1Y

+ 6

L2 [ ξ ] (u2X sinα + u2Z cosα) + 1

L
[1 + 3ξ]ϕ2Y

)
z

Fig. 3.61 Rotational
transformation of a
generalized beam element in
the X -Z plane

Table 3.15 Transformation
of matrices between the
elemental (x, z) and global
coordinate (X, Z) system

Stiffness matrix

K e
xz = T K e

XZT
T , K e

XZ = TTK e
xzT

Column matrix of nodal unknowns

uxz = T uXZ , uXZ = TTuxz
Column matrix of external loads

f xz = T f XZ , f XZ = TT f xz
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(3.347)
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Table 3.16 Elemental stiffnessmatrices for plane frame elements given for different rotation angles
α in the X -Z plane, see Eq. (3.347)

0◦ 180◦

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
L 0 0 − A

L 0 0

0 12I
L3 − 6I

L2 0 − 12I
L3 − 6I

L2

0 − 6I
L2

4I
L 0 6I

L2
2I
L

− A
L 0 0 A

L 0 0

0 − 12I
L3

6I
L2 0 12I

L3
6I
L2

0 − 6I
L2

2I
L 0 6I

L2
4I
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
L 0 0 − A

L 0 0

0 12I
L3

6I
L2 0 − 12I

L3 − 6I
L2

0 6I
L2

4I
L 0 − 6I

L2
2I
L

− A
L 0 0 A

L 0 0

0 − 12I
L3 − 6J

L2 0 12I
L3 − 6I

L2

0 − 6I
L2

2I
L 0 − 6I

L2
4I
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−90◦ 90◦

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12I
L3 0 6I

L2 − 12I
L3 0 6I

L2

0 A
L 0 0 − A

L 0
6I
L2 0 4I

L − 6I
L2 0 2I

L

− 12I
L3 0 − 6I

L2
12I
L3 0 − 6I

L2

0 − A
L 0 0 A

L 0
6I
L2 0 2I

L − 6I
L2 0 4I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12I
L3 0 − 6I

L2 − 12I
L3 0 − 6I

L2

0 A
L 0 0 − A

L 0

− 6I
L2 0 4I

L
6I
L2 0 2I

L

− 12I
L3 0 6I

L2
12I
L3 0 6I

L2

0 − A
L 0 0 A

L 0

− 6I
L2 0 2I

L
6I
L2 0 4I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−45◦

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6I
L3 + 1

2
A
L − 6I

L3 + 1
2
A
L

3I
√
2

L2 − 6I
L3 − 1

2
A
L + 6I

L3 − 1
2
A
L

3I
√
2

L2

− 6I
L3 + 1

2
A
L

6I
L3 + 1

2
A
L − 3I

√
2

L2 + 6I
L3 − 1

2
A
L − 6I

L3 − 1
2
A
L − 3I

√
2

L2

3I
√
2

L2 − 3I
√
2

L2
4I
L − 3I

√
2

L2 + 3I
√
2

L2
2I
L

− 6I
L3 − 1

2
A
L

6I
L3 − 1

2
A
L − 3I

√
2

L2
6I
L3 + 1

2
A
L − 6I

L3 + 1
2
A
L − 3I

√
2

L2

+ 6I
L3 − 1

2
A
L − 6I

L3 − 1
2
A
L + 3I

√
2

L2 − 6I
L3 + 1

2
A
L

6I
L3 + 1

2
A
L

3I
√
2

L2

3I
√
2

L2 − 3I
√
2

L2
2I
L − 3I

√
2

L2
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√
2
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4I
L

⎤
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A
L
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2
A
L − 3I
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√
2
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L

6I
L3 + 1

2
A
L − 3I

√
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√
2
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√
2
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√
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√
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√
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√
2
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L
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√
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L
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√
2
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√
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√
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√
2

L2
3I
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2
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L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To simplify the solution of simple beam structures, Tables3.16 and 3.17 collect
expressions for the global stiffness matrix of some common angles α.
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Table 3.17 Elemental stiffnessmatrices for plane frame elements given for different rotation angles
α in the X -Z plane, see Eq. (3.347)

−30◦ E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3I
L3 + 3

4
A
L

√
3
4

(
− 12I

L3 + A
L

)
3I
L2 − 3I

L3 − 3
4

A
L

√
3
4

(
12I
L3 − A

L

)
3I
L2

√
3
4
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− 12I

L3 + A
L

)
9I
L3 + 1
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A
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√
3

L2

√
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4
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L
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
3

L2
4I
L

3I
L2

3I
√
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√
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√
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√
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√
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√
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√
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.16 Triangular Shaped Plane Frame Structure Composed of Generalized
Beam Elements
The plane frame structure shown in Fig. 3.62 is composed of generalized beams
which are arranged in triangular shape. The structure is loaded by a single horizontal
force F0 at the right-hand corner of the structure and a vertical displacement −u0 at
the same location. The material constant (E) and the geometrical properties (I, A)
are constant and the horizontal length of the beam is equal to L while the verti-

Fig. 3.62 Triangular shaped
plane frame structure
composed of generalized
beam elements
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Fig. 3.63 Free-body
diagram of the triangular
shaped plane frame structure
composed of generalized
beam elements

Fig. 3.64 Free-body
diagram of the discretized
structure with nodal loads

cal dimension is equal to L . Model the structure with two generalized beam finite
elements to determine:

• the unknowns at the nodes,
• the displacement distributions in each member,
• the reactions at the supports,
• the internal reactions (normal force, shear force, and bending moment) in each
element, and

• the global force and moment equilibrium.

3.16 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagram of the problem, including a global coordinate system
(see Fig. 3.63).
2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.64.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.
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Element I: αI = 0◦, L I = L

K e
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y

E A

L
0 0 − E A

L
0 0

0
12E I

L3
−6E I

L2
0 −12E I

L3
−6E I

L2

0 −6E I

L2

4E I

L
0

6E I

L2

2E I

L

− E A

L
0 0

E A

L
0 0

0 −12E I

L3

6E I

L2
0

12E I

L3

6E I

L2

0 −6E I

L2

2E I

L
0

6E I

L2

4E I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

. (3.348)

Element II: αII = 45◦, L II = √
2L

Ke
II = E×

u3X u3Z ϕ3Y u2X u2Z ϕ2Y⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6I

(
√
2L)3

+ 1
2

A
(
√
2L)

6I

(
√
2L)3

− 1
2

A
(
√
2L)

− 3I
√
2

(
√
2L)2

− 6I

(
√
2L)3

− 1
2

A
(
√
2L)

− 6I

(
√
2L)3

+ 1
2

A
(
√
2L)

− 3I
√
2

(
√
2L)2

6I

(
√
2L)3

− 1
2

A
(
√
2L)

6I

(
√
2L)3

+ 1
2

A
(
√
2L)

− 3I
√
2

(
√
2L)2

− 6I

(
√
2L)3

+ 1
2

A
(
√
2L)

− 6I

(
√
2L)3

− 1
2

A
(
√
2L)

− 3I
√
2

(
√
2L)2

− 3I
√
2

(
√
2L)2

− 3I
√
2

(
√
2L)2

4I
(
√
2L)

3I
√
2

(
√
2L)2

3I
√
2

(
√
2L)2

2I
(
√
2L)

− 6I

(
√
2L)3

− 1
2

A
(
√
2L)

− 6I

(
√
2L)3

+ 1
2

A
(
√
2L)

3I
√
2

(
√
2L)2

6I

(
√
2L)3

+ 1
2

A
(
√
2L)

6I

(
√
2L)3

− 1
2

A
(
√
2L)

3I
√
2

(
√
2L)2

− 6I

(
√
2L)3

+ 1
2

A
(
√
2L)

− 6I

(
√
2L)3

− 1
2

A
(
√
2L)

3I
√
2

(
√
2L)2

6I

(
√
2L)3

− 1
2

A
(
√
2L)

6I

(
√
2L)3

+ 1
2

A
(
√
2L)

3I
√
2

(
√
2L)2

− 3I
√
2

(
√
2L)2

− 3I
√
2

(
√
2L)2

2I
(
√
2L)

3I
√
2

(
√
2L)2

3I
√
2

(
√
2L)2

4I
(
√
2L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u3X

u3Z

ϕ3Y

u2X

u2Z

ϕ2Y

.

(3.349)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having three degrees of
freedom (i.e., the vertical and horizontal displacements and the rotation). Thus, the
dimensions of the global stiffness matrix are (3 × 3) × (3 × 3) = (9 × 9):
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K =

u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
ϕ1Y

u2X
u2Z
ϕ2Y

u3X
u3Z
ϕ3Y

. (3.350)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K = E×
u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
L

0 0 −A
L

0 0 0 0 0

0 12I
L3 − 6I

L2 0 −12I
L3 − 6I

L2 0 0 0

0 − 6I
L2

4I
L

0 6I
L2

2I
L

0 0 0

−A
L

0 0 A
L

+ 3I
√

2
2L3 + A

√
2

4L
3I

√
2

2L3 − A
√

2
4L

3I
√

2
2L2 −3I

√
2

2L3 − A
√

2
4L

− 3I
√

2
2L3 + A

√
2

4L
3I

√
2

2L2

0 −12I
L3

6I
L2

3I
√

2
2L3 − A

√
2

4L
12I
L3 + 3I

√
2

2L3 + A
√

2
4L

6I
L2 + 3I

√
2

2L2 −3I
√

2
2L3 + A

√
2

4L
−3I

√
2

2L3 − A
√

2
4L

3I
√

2
2L2

0 − 6I
L2

2I
L

3I
√

2
2L2

6I
L2 + 3I

√
2

2L2
4I
L

+ 2I
√

2
L

− 3I
√

2
2L2 −3I

√
2

2L2
I

√
2

L

0 0 0 −3I
√

2
2L3 − A

√
2

4L
−3I

√
2

2L3 + A
√

2
4L

−3I
√

2
2L2

3I
√

2
2L3 + A

√
2

4L
3I

√
2

2L3 − A
√

2
4L

−3I
√

2
2L2

0 0 0 −3I
√

2
2L3 + A

√
2

4L
−3I

√
2

2L3 − A
√

2
4L

−3I
√

2
2L2

3I
√

2
2L3 − A

√
2

4L
3I

√
2

2L3 + A
√

2
4L

−3I
√

2
2L2

0 0 0 3I
√

2
2L2

3I
√

2
2L2

I
√

2
L

−3I
√

2
2L2 −3I

√
2

2L2
2I

√
2

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

u3X

u3Z

ϕ3Y

.

(3.351)

6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be written as Kup = f , where the columnmatrix
of the nodal unknowns reads

up = [
u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y

]T
, (3.352)

and the column matrix of the external loads is given by:

f = [
FR
1X FR

1Z MR
1Y F0 −FR

2Z 0 FR
3X FR

3Z MR
3Y

]T
. (3.353)

7 Introduce the boundary conditions to obtain the reduced system of equations.
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There are only two degrees of freedom, i.e. the rotation and horizontal displacement
at node 2:

E

⎡
⎢⎢⎢⎢⎢⎢⎣

A

L
+ 3

√
2I

2L3
+

√
2A

4L

3
√
2I

2L2

3
√
2I

2L2
4I

L
+ 2

√
2I

L

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u2X

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

F0 + u0E

(
3
√
2I

2L3
− A

√
2

4L

)

u0E

(
6I

L2
+ 3

√
2I

2L2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.354)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u2X

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
2L4
E I

10AL2 + 6A
√
2L2 + 3I + 12I

√
2

⎡
⎢⎢⎢⎢⎢⎢⎣

4I

L
+ 2

√
2I

L
− 3

√
2I

2L2

− 3
√
2I

2L2
A

L
+ 3

√
2I

2L3
+

√
2A

4L

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣
F0 + u0E

(
3
√
2I

2L3
−

√
2A

4L

)

u0E

(
6I

L2
+ 3

√
2I

2L3

)

⎤
⎥⎥⎥⎥⎦ , (3.355)

or after the multiplication:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2
√
2E AL2u0 + 2E AL2u0 − 4

√
2F0L3 + 6

√
2E Iu0 − 8F0L3 − 3E Iu0

E
(
10AL2 + 6

√
2AL2 + 3I + 12

√
2I

)

3 × 2
√
2E AL2u0 + 5E AL2u0 − √

2F0L3 + 6
√
2E Iu0

E
(
10AL2 + 6

√
2AL2 + 3I + 12

√
2I

)
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.356)

If we approximate
√
2 by its numerical value and consider only decimals with a

precision of 2, we get the following simplified expression:
⎡
⎢⎢⎢⎢⎢⎣

u2X

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎣

−4.83E AL2u0 − 13.66F0L3 + 5.49E Iu0

E
(
18.49AL2 + 19.97I

)

3 × 7.83E AL2u0 − 1.41F0L3 + 8.49E Iu0

E
(
18.49AL2 + 19.97I

)
L

⎤
⎥⎥⎥⎥⎥⎦

. (3.357)
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The nodal deformations at node 2 allow the calculation of the displacement distri-
butions in local z- (bending) and x-direction (axial) in each element. Based on the
relationships in Tables3.13 and 3.5, one gets:

uezI(xI) =
⎡
⎣3

(
xI
L

)2

− 2

(
xI
L

)3
⎤
⎦ u2zI +

[
x2I
L

− x3I
L2

]
ϕ2yI , (3.358)

uezII(xII) =
⎡
⎣3

(
xII√
2L

)2

− 2

(
xII√
2L

)3
⎤
⎦ u2zII +

[
x2II√
2L

− x3II
(
√
2L)2

]
ϕ2yII .

(3.359)

The deformations at node 2, expressed in the local coordinate systems (xI, yI, zI)
and (xII, yII, zII), can be calculated from the global values based on the relationships
(consider αI = 0◦,αII = +45◦, u2Z = −u0) given in Table3.15:

u2zI = sin(αI)u2X + cos(αI)u2Z , (3.360)

ϕ2yI = ϕ2Y , (3.361)

u2zII = sin(αII)u2X + cos(αII)u2Z , (3.362)

ϕ2yI = ϕ2Y . (3.363)

Thus, the displacement distributions (bending) can be approximated as:

uezI(xI) ≈ −
[
xI2

L2
− 2

xI3

L3

]
u0+

3 × 7.83E AL2u0 − 1.41F0 L3 + 8.49E Iu0
EL

(
18.49AL2 + 19.97I

)
[
xI2

L
− xI3

L2

]
, (3.364)

uezII(xII) ≈
[
1.5

xII2

L2
− 0.71

xII3

L3

]
×

(
−0.71

4.83E AL2u0 − 13.66F0L3 + 5.49E Iu0

E
(
18.49AL2 + 19.97I

) − 0.71u0

)

+ 3.0 × 7.83E AL2u0 − 1.41F0L3 + 8.49E Iu0

EL
(
18.49AL2 + 19.97I

)

×
[
0.71

xII2

L
− 0.5

xII3

L2

]
. (3.365)
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The axial displacement distributions can be obtained in a similar manner:

uexI(xI) =
[
xI
L

]
u2xI =

[
xI
L

]
(cos(αI)u2X − sin(αI)u2Z ) , (3.366)

uexII(xII) =
[

xII√
2L

]
u2xII =

[
xII√
2L

]
(cos(αII)u2X − sin(αII)u2Z ) , (3.367)

or based on the given values:

uexI(xI) ≈ −4.83E AL2u0 − 13.66F0L3 + 5.49E Iu0

E
(
18.49AL2 + 19.97I

)
[
xI
L

]
, (3.368)

uexII(xII) ≈ 0.50

[
xII
L

](
−4.83E AL2u0 − 13.66F0L3 + 5.49E Iu0

E
(
18.49AL2 + 19.97I

) + u0

)
.

(3.369)

9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the considerationof theknownnodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

0 − E A

L
u2X + 0 = FR

1X , (3.370)

or

FR
1X =

A
(
2
√
2E AL2u0 + 2E AL2u0 − 4

√
2F0L3 + 6

√
2E Iu0 − 8F0L3 − 3E Iu0

)

L
(
10AL2 + 6

√
2AL2 + 3I + 12

√
2I

)

≈
A
(
4.83E AL2u0 − 13.66F0L3 + 5.49E Iu0

)
L
(
18.49AL2 + 19.97I

) . (3.371)

In a similar way, the evaluation of the remaining equations gives:

FR
1Z = 6 ×

I
(
6
√
2E AL2u0 + 5E AL2u0 + 3

√
2F0L3 + 6

√
2E Iu0 + 6E Iu0

)

L3
(
10AL2 + 6

√
2AL2 + 3I + 12

√
2I

)

≈ 6 × I
(
13.49E AL2u0 + 4.24F0L3 + 14.49E Iu0

)
L3

(
18.49AL2 + 19.97I

) , (3.372)
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MR
1Y = −6 ×

I
(
4
√
2E AL2u0 + 5E AL2u0 + √

2F0L3 + 6
√
2E Iu0 + 3E Iu0

)
(
10AL2 + 6

√
2AL2 + 3I + 12

√
2I

)
L2

≈ −6 × I
(
10.66E AL2u0 + 1.41F0L3 + 11.49E Iu0

)
(
18.49AL2 + 19.97I

)
L2

, (3.373)

FR
2Z ≈ 4.83E A2L4u0 + 4.83AF0L5 + 85.67E AI L2u0 + 5.49F0 I L3 + 86.91E I 2u0

L3
(
18.49AL2 + 19.97I

) ,

(3.374)

FR
3X ≈ −0.71 × 6.83E A2L2u0 + 6.83AF0L3 + 7.76E AIu0 + 28.24F0 I L

L
(
18.49AL2 + 19.97I

) ,

(3.375)

FR
3Z ≈ 0.71 × 6.83E A2L2u0 + 6.83AF0L3 + 6.73E AIu0 − 28.24F0 I L

L
(
18.49AL2 + 19.97I

) ,

(3.376)

MR
3Y ≈ −4.24 × I

(
3.83E AL2u0 − 5.41F0L3 + 4.24E Iu0

)
(
18.49AL2 + 19.97I

)
L2

. (3.377)

The internal reactions (i.e., bending moment, shear force, and normal force) in each
element can be obtained from the relations provided in Tables3.14 and 3.5.

Bending moment distribution:

Me
yI(xI) = E I

([
− 6

L2
+ 12xI

L3

]
u2zI +

[
− 2

L
+ 6xI

L2

]
ϕ2yI

)
, (3.378)

Me
yII(xII) = E I

([
− 6

(
√
2L)2

+ 12xII

(
√
2L)3

]
u2zII +

[
− 2√

2L
+ 6xII

(
√
2L)2

]
ϕ2yII

)
,

(3.379)

or based on the given values:

Me
yI(xI) ≈ E I

([
6

L2
− 12xI

L3

]
u0 + 3 × 7.83E AL2u0 − 1.41F0L3 + 8.49E Iu0

EL
(
18.49AL2 + 19.97I

)

×
[
− 2

L
+ 6xI

L2

])
, (3.380)
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Me
yII(xI) ≈ E I

([
− 3

L2
+ 4.25

xII
L3

]
×

(
−0.71

4.83E AL2u0 − 13.66F0L3 + 5.49E Iu0

E
(
18.49AL2 + 19.97I

) − 0.71u0

)

+3
7.83E AL2u0 − 1.41F0L3 + 8.49E Iu0

EL
(
18.49AL2 + 19.97I

)
[
−1.41

L
+ 3xII

L2

])
. (3.381)

Shear force distribution:

Qe
zI(xI) = E I

([
12

L3

]
u2zI +

[
6

L2

]
ϕ2yI

)
, (3.382)

Qe
zII(xII) = E I

([
12

(
√
2L)3

]
u2zI +

[
6

√
2L

2

]
ϕ2yII

)
, (3.383)

or based on the given values:

Qe
zI(xI) ≈ E I

(
−12u0

L3
+ 18 × 7.83E AL2u0 − 1.41F0L3 + 8.49E Iu0

EL3
(
18.49AL2 + 19.97I

)
)

,

(3.384)

Qe
zII(xII) ≈ E I

(
4.24

L3

(
−0.71

4.83E AL2u0 − 13.66F0L3 + 5.49E Iu0

E
(
18.49AL2 + 19.97I

) − 0.71u0

)

+9 × 7.83E AL2u0 − 1.41F0L3 + 8.49E Iu0

EL3
(
18.49AL2 + 19.97I

)
)

. (3.385)

Normal force distribution:

N e
xI(xI) = E A

L
u2xI , (3.386)

N e
xII(xII) = E A√

2L
u2xII , (3.387)

or based on the given values:

N e
xI(xI) ≈ − A

(
4.83E AL2u0 − 13.66F0L3 + 5.49E Iu0

)
L
(
18.49AL2 + 19.97I

) , (3.388)

N e
xII(xII) ≈ 0.71

AE

L

(
−0.71

4.83E AL2u0 − 13.66F0L3 + 5.49E Iu0

E
(
18.49AL2 + 19.97I

) + 0.71u0

)
.

(3.389)
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10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X + FR

3X )︸ ︷︷ ︸
reaction force

+ (F0)︸︷︷︸
external load

= 0 , � (3.390)

∑
i

Fi Z = 0 ⇔ (FR
1Z − FR

2Z + FR
3Z )︸ ︷︷ ︸

reaction force

+ (0)︸︷︷︸
external load

= 0 , � (3.391)

∑
i

MiY = 0 ⇔ (MR
1Y + MR

3Y + FR
2Z L + FR

3X L)︸ ︷︷ ︸
reaction

+ (0)︸︷︷︸
external load

= 0 . � (3.392)

3.17 Plane Frame Structure Composed of Generalized Beam Elements
The plane frame structure shown in Fig. 3.65 is composed of generalized beams
which are arranged in a T-shape formation. The structure is loaded by a single force
F0 in the middle of the structure. The material constant (E) and the geometrical
properties (I, A) are constant and the horizontal length of the beam is equal to L
while the vertical dimension is equal to L

2 . Model the structure with three generalized
beam finite elements of length L

2 to determine:

• the unknowns at the nodes,
• the displacement distributions in each member,
• the reactions at the supports,
• the internal reactions (normal force, shear force and bending moment) in each
element,

Fig. 3.65 Plane frame structure composed of generalized beam elements
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Fig. 3.66 Free-body diagram of the plane frame structure composed of generalized beam elements

Fig. 3.67 Free-body diagram of the discretized structure with nodal loads

• the strain and stress distributions in the elements, and
• the global force and moment equilibrium.

3.17 Solution
The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system,
see Fig. 3.66.

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.67.
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3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Element I: αI = 0◦, L I = L
2

K e
I = E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y

A

L I
0 0 − A

L I
0 0

0
12I

L3
I

−6I

L2
I

0 −12I

L3
I

−6I

L2
I

0 −6I

L2
I

4I

L I
0

6I

L2
I

2I

L I

− A

L I
0 0

A

L I
0 0

0 −12I

L3
I

6I

L2
I

0
12I

L3
I

6I

L2
I

0 −6I

L2
I

2I

L I
0

6I

L2
I

4I

L I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

. (3.393)

Element II: αII = 0◦, L II = L
2

K e
II = E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X u2Z ϕ2Y u3X u3Z ϕ3Y

A

L II
0 0 − A

L II
0 0

0
12I

L3
II

− 6I

L2
II

0 −12I

L3
II

− 6I

L2
II

0 − 6I

L2
II

4I

L II
0

6I

L2
II

2I

L II

− A

L II
0 0

A

L II
0 0

0 −12I

L3
II

6I

L2
II

0
12I

L3
II

6I

L2
II

0 − 6I

L2
II

2I

L II
0

6I

L2
II

4I

L II

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u2X

u2Z

ϕ2Y

u3X

u3Z

ϕ3Y

. (3.394)
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Element III: αIII = 90◦, L III = L
2

K e
III = E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X u2Z ϕ2Y u4X u4Z ϕ4Y

12I
L III

3 0 − 6I
L III

2 − 12I
L III

3 0 − 6I
L III

2

0 A
L III

0 0 − A
L III

0

− 6I
L III

2 0 4I
L III

6I
L III

2 0 2I
L III

− 12I
L III

3 0 6I
L III

2
12I
L III

3 0 6I
L III

2

0 − A
L III

0 0 A
L III

0

− 6I
L III

2 0 2I
L III

6I
L III

2 0 4I
L III

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u2X

u2Z

ϕ2Y

u4X

u4Z

ϕ4Y

. (3.395)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of four nodes, each having three degrees of
freedom (i.e., the vertical and horizontal displacements and the rotation). Thus, the
dimensions of the global stiffness matrix are (4 × 3) × (4 × 3) = (12 × 12):

K =

u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y u4X u4Z ϕ4Y⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
ϕ1Y
u2X
u2Z
ϕ2Y
u3X
u3Z
ϕ3Y
u4X
u4Z
ϕ4Y

.

(3.396)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix:
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K = E× (3.397)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y u4X u4Z ϕ4Y

2A
L 0 0 − 2A

L 0 0 0 0 0 0 0 0

0 96I
L3 − 24I

L2 0 − 96I
L3 − 24I

L2 0 0 0 0 0 0

0 − 24I
L2

8I
L 0 24I

L2
4I
L 0 0 0 0 0 0

− 2A
L 0 0

(
4A
L + 96I

L3

)
0 − 24I

L2 − 2A
L 0 0 − 96I

L3 0 − 24I
L2

0 − 96I
L3

24I
L2 0

(
192I
L3 + 2A

L

)
0 0 − 96I

L3 − 24I
L2 0 − 2A

L 0

0 − 24I
L2

4I
L − 24I

L2 0 24I
L 0 24I

L2
4I
L

24I
L2 0 4I

L

0 0 0 − 2A
L 0 0 2A

L 0 0 96I
L3 0 24I

L2

0 0 0 0 − 96I
L3

24I
L2 0 96I

L3
24I
L2 0 2A

L 0

0 0 0 0 − 24I
L2

4I
L 0 24I

L2
8I
L

24I
L2 0 8I

L

0 0 0 − 96I
L3 0 24I

L2 0 0 0 0 0 0

0 0 0 0 − 2A
L 0 0 0 0 0 0 0

0 0 0 − 24I
L2 0 4I

L 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

u3X

u3Z

ϕ3Y

u4X

u4Z

ϕ4Y

.

6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be written as Kup = f , where the columnmatrix
of the nodal unknowns reads

up = [
u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y u4X u4Z ϕ4Y

]T
, (3.398)

and the column matrix of the external loads is given by:

f = [
FR
1X FR

1Z MR
1Y 0 −F0 0 FR

3X FR
3Z MR

3Y FR
4X FR

4Z MR
4Y

]T
. (3.399)

7 Introduce the boundary conditions to obtain the reduced system of equations.

There are only three degrees of freedom, i.e. the rotation and displacements at node
2:
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E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
4A

L
+ 96I

L3

)
0 −24I

L2

0

(
192I

L3
+ 2A

L

)
0

−24I

L2
0

24I

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X

u2Z

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−F0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.400)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎢⎢⎣
u2X

u2Z

ϕ2Y

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

−1

2
× L3F0

E(AL2 + 96I )

0

⎤
⎥⎥⎥⎦ . (3.401)

The nodal deformation at node 2 allows the calculation of the displacement distri-
butions in local z- (bending) and x-direction (axial) in each element. Based on the
relationships in Tables3.13 and 3.5, one gets:

uezI(xI) =
⎡
⎣3

(
xI
L

)2

− 2

(
xI
L

)3
⎤
⎦ u2Z cos(αI)︸ ︷︷ ︸

1

= −1

2
× L3F0

E
(
AL2 + 96I

)
[
12x2I
L2

− 16x3I
L3

]
, (3.402)

uezII(xII) =
⎡
⎣1 − 3

(
xII
L

)2

+ 2

(
xII
L

)3
⎤
⎦ u2Z cos(αII)︸ ︷︷ ︸

1

= −1

2
× L3F0

E
(
AL2 + 96I

)
[
1 − 12xII2

L2
+ 16xII3

L3

]
, (3.403)

uezIII(xIII) =
⎡
⎣1 − 3

(
xIII
L

)2

+ 2

(
xIII
L

)3
⎤
⎦ u2Z cos(αIII)︸ ︷︷ ︸

0

= 0 . (3.404)
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The axial displacement distributions can be obtained in a similar manner:

uexI(xI) = −
[
xI
L

]
u2Z sin(αI)︸ ︷︷ ︸

0

= 0 , (3.405)

uexII(xII) = −
[
1 − xII

L

]
u2Z sin(αII)︸ ︷︷ ︸

0

= 0 , (3.406)

uexIII(xIII) = −
[
xIII
L

]
u2Z sin(αIII)︸ ︷︷ ︸

1

= 0 ,

= 1

2
× L3F0

E
(
AL2 + 96I

)
[
1 − 2xIII

L

]
. (3.407)

9 Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the considerationof theknownnodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

2A

L
u1X − 2A

L
u2X = FR

1X ⇒ FR
1X = 0 . (3.408)

In a similar way, the evaluation of the remaining equations gives:

FR
1Z = 48I F0

AL2 + 96I
, (3.409)

MR
1Y = − 12I LF0

AL2 + 96I
, (3.410)

FR
3X = 0 , (3.411)

FR
3Z = 48I F0

AL2 + 96I
, (3.412)

MR
3Y = 12I LF0

AL2 + 96I
, (3.413)

FR
4X = 0 , (3.414)

FR
4Z = AL2F0

AL2 + 96I
, (3.415)

MR
4Y = 0 . (3.416)

The internal reactions (i.e., bending moment, shear force, and normal force) in each
element can be obtained from the relations provided in Tables3.14 and 3.5.
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Bending moment distribution:

Me
yI(xI) = E I

([
− 6

L2
I

+ 12xI
L3
I

]
u2Z cos(αI)

)

= 1

2
× I

AL2 + 96I

(
−

[
−24

(
1 − 4

xI
L

)]
LF0

)
, (3.417)

Me
yII(xII) = E I

([
6

L2
II

− 12xII
L3
II

]
u2Z cos(αII)

)

= 1

2
× I

AL2 + 96I

(
−

[
24

(
1 − 4

xII
L

)]
LF0

)
, (3.418)

Me
yIII(xIII) = E I

([
6

L2
III

− 12xIII
L3
III

]
u2Z cos(αIII)

)

= 0 . (3.419)

Shear force distribution:

Qe
zI(xI) = E I

([
12

L3
I

]
u2Z cos(αI)

)

= − 48I F0

AL2 + 96I
, (3.420)

Qe
zII(xII) = E I

([
− 12

L3
II

]
u2Z cos(αII)

)

= 48I F0

AL2 + 96I
, (3.421)

Qe
zIII(xIII) = E I

([
− 12

L3
III

]
u2Z cos(αIII)

)

= 0 . (3.422)

Normal force distribution:

N e
xI(xI) = − E A

L I
uZ sin(αI)

= 0 , (3.423)

N e
xII(xII) = E A

L II
uZ sin(αII)



182 3 Finite Element Method

= 0 , (3.424)

N e
xIII(xIII) = E A

L III
uZ sin(αIII)

= − AL2F0

AL2 + 96I
. (3.425)

The graphical representation of the internal reactions is shown in Fig. 3.68.

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X + FR

3X + FR
3X )︸ ︷︷ ︸

reaction force

+ (0)︸︷︷︸
external load

= 0 , � (3.426)

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

3Z + FR
4Z )︸ ︷︷ ︸

reaction force

+ (−F0)︸ ︷︷ ︸
external load

= 0 , � (3.427)

∑
i

MiY = 0 ⇔ (3.428)

(MR
1Y + MR

3Y + MR
4Y L + F0L I − FR

3Z (L I + L II) − FR
4Z L I + FR

4X L III︸ ︷︷ ︸
reaction

+

+ (0)︸︷︷︸
external load

= 0 . � (3.429)

3.18 Plane Frame Structure Representing a Crane (Computational Problem)
Theplane frame structure shown inFig. 3.69 is composedof generalized beamswhich
are arranged to represent a simple crane. The structure is loaded by a single force
F0 at the right-hand end. The material constant (E) and the geometrical properties
(I, A) are constant and the horizontal length of the frame structure is equal to L

2
while the vertical dimension of the left-hand part is equal to L . Model the structure
with three generalized beam finite elements to determine:

• the unknowns at the nodes,
• the reactions at the supports,
• the internal reactions (normal force, shear force and bending moment) in each
element,

• the strain and stress distributions in the elements,
• the global force and moment equilibrium, and
• the multi-axial stress state near to the foundation.

3.18 Solution
The solution will follow the recommended 10 steps outlined on page 73.
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Fig. 3.68 Graphical representation of the internal reactions: a–c horizontal beams I and II, and d–f
vertical beam III
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Fig. 3.69 Plane frame
structure representing a crane

1 Sketch the free-body diagram of the problem, including a global coordinate system
(see Fig. 3.70).

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.71.

3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Element I: αI = −90◦, L I = L

K e
I = E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y

12I

L I
3 0

6I

L I
2 −12I

L I
3 0

6I

L I
2

0
A

L I
0 0 − A

L I
0

6I

L I
2 0

4I

L I
− 6I

L I
2 0

2I

L I

−12I

L I
3 0 − 6I

L I
2

12I

L I
3 0 − 6I

L I
2

0 − A

L I
0 0

A

L I
0

6I

L I
2 0

2I

L I
− 6I

L I
2 0

4I

L I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ2Y

u2X

u2Z

ϕ2Y

. (3.430)
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Fig. 3.70 Free-body
diagram of the plane frame
structure representing a crane

Fig. 3.71 Free-body
diagram of the discretized
structure
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Element II: αII = 0◦, L II = L
2

K e
II = E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X u2Z ϕ2Y u3X u3Z ϕ3Y

A

L II
0 0 − A

L II
0 0

0
12I

L3
II

− 6I

L2
II

0 −12I

L3
II

− 6I

L2
II

0 − 6I

L2
II

4I

L II
0

6I

L2
II

2I

L II

− A

L II
0 0

A

L II
0 0

0 −12I

L3
II

6I

L2
II

0
12I

L3
II

6I

L2
II

0 − 6I

L2
II

2I

L II
0

6I

L2
II

4I

L II

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u2X

u2Z

ϕ2Y

u3X

u3Z

ϕ3Y

. (3.431)

Element III: αIII = 90◦, L III = L
2

K e
III = E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u3X u3Z ϕ3Y u4X u4Z ϕ4Y

12I

L III
3 0 − 6I

L III
2 − 12I

L III
3 0 − 6I

L III
2

0
A

L III
0 0 − A

L III
0

− 6I

L III
2 0

4I

L III

6I

L III
2 0

2I

L III

− 12I

L III
3 0

6I

L III
2

12I

L III
3 0

6I

L III
2

0 − A

L III
0 0

A

L III
0

− 6I

L III
2 0

2I

L III

6I

L III
2 0

4I

L III

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u3X

u3Z

ϕ3Y

u4X

u4Z

ϕ4Y

. (3.432)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of four nodes, each having three degrees of
freedom (i.e., the vertical and horizontal displacements and the rotation). Thus, the
dimensions of the global stiffness matrix are (4 × 3) × (4 × 3) = (12 × 12):



3.3 Beams and Frames 187

K =

u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y u4X u4Z ϕ4Y⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
ϕ1Y
u2X
u2Z
ϕ2Y
u3X
u3Z
ϕ3Y
u4X
u4Z
ϕ4Y

.

(3.433)

5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K = E× (3.434)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y u4X u4Z ϕ4Y

12I
L3

0 6I
L2

− 12I
L3

0 6I
L2

0 0 0 0 0 0

0 A
L 0 0 − E A

L 0 0 0 0 0 0 0

6I
L2

0 4 4IL − 6I
L2

0 2I
L 0 0 0 0 0 0

− 12I
L3

0 − 6I
L2

(
12I
L3

+ 2A
L

)
0 − 6I

L2
− 2A

L 0 0 0 0 0

0 − A
L 0 0

(
A
L + 96J

L3

)
− 24I

L2
0 − 96I

L3
− 24I

L2
0 0 0

6I
L2

0 2I
L − 6I

L2
− 24I

L2
12I
L 0 24I

L2
4I
L 0 0 0

0 0 0 − 2A
L 0 0

(
2A
L + 96I

L3

)
0 − 24I

L2
− 96I

L3
0 − 24I

L2

0 0 0 0 − 96I
L3

24I
L2

0

(
2A
L + 96I

L3

)
24I
L2

0 − 2A
L 0

0 0 0 0 − 24I
L2

4I
L − 24I

L2
24I
L2

16I
L

24I
L2

0 4I
L

0 0 0 0 0 0 − 96I
L3

0 24I
L2

96I
L3

0 24I
L2

0 0 0 0 0 0 0 − 2A
L 0 0 2A

L 0

0 0 0 0 0 0 − 24I
L2

0 4I
L

24I
L2

0 8I
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

u3X

u3Z

ϕ3Y

u4X

u4Z

ϕ4Y

.

6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be written as Kup = f , where the columnmatrix
of nodal unknowns reads
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up = [
u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y u4X u4Z ϕ4Y

]T
, (3.435)

and the column matrix of external loads is given by:

f = [
FR
1X FR

1Z MR
1Y 0 0 0 0 0 0 0 F0 0

]T
. (3.436)

7 Introduce the boundary conditions to obtain the reduced system of equations.

Three degrees of freedom can be canceled at node 1:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12I
L3

+ 2A
L 0 − 6I

L2
− 2A

L 0 0 0 0 0

0 A
L + 96I

L3
− 24I

L2
0 − 96I

L3
− 24I

L2
0 0 0

− 6I
L2

− 24I
L2

12I
L 0 24I

L2
4I
L 0 0 0

− 2A
L 0 0 2A

L + 96I
L3

0 − 24I
L2

− 96I
L3

0 − 24I
L2

0 − 96I
L3

24I
L2

0 2A
L + 96I

L3
24I
L2

0 − 2A
L 0

0 − 24I
L2

4J
L − 24I

L2
24I
L2

16I
L

24I
L2

0 4J
L

0 0 0 − 96I
L3

0 24I
L2

96I
L3

0 24I
L2

0 0 0 0 − 2A
L 0 0 2A

L 0
0 0 0 − 24I

L2
0 4I

L
24I
L2

0 8I
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X

u2Z

ϕ2Y

u3X

u3Z

ϕ3Y

u4X

u4Z

ϕ4Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

F0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.437)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X

u2Z

ϕ2Y

u3X

u3Z

ϕ3Y

u4X

u4Z

ϕ4Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L3F0
4E I

− LF0
E A

L2F0
2E I

L3F0
4E I

− L(7AL2+24I )F0
24I E A

5L2F0
8E I

− L3F0
16E I

− L(7AL2+36I )F0
24I E A

5L2F0
8I E A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.438)

9 Post-computation: determination of reactions, stresses and strains.
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The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step 6 under the considerationof theknownnodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

− 12I

L3
I

u2X + 6I

L2
I

ϕ2Y = FR
1X ⇒ FR

1X = 0 . (3.439)

In a similar way, the evaluation of the remaining equations gives:

FR
1Z = FR

2X = FR
2Z = FR

3X = FR
3Z = FR

4X = 0 , (3.440)

FR
1Z = F0 , (3.441)

MR
1Y = − LF0

2
, (3.442)

MR
2Y = MR

3Y = MR
4Y = 0 . (3.443)

The internal reactions (i.e., bending moment, shear force, and normal force) in each
element can be obtained from the relations provided in Tables3.14 and 3.5.

Bending moment distribution:

Me
yI(xI) =E I

([
− 6

L2
+ 12xI

L3

]
(u2X (−1) +

[
− 2

L
+ 6xI

L2

]
ϕ2Y

)

= LF0

2
, (3.444)

Me
yII(xII) =E I

([
+ 6

L2
− 12xII

L3

]
(u2Z (1)) +

[
− 4

L
+ 6xII

L2

]
ϕ2Y

+
[
− 6

L2
+ 12xII

L3

]
(u3Z (1)) +

[
− 2

L
+ 6xII

L2

]
ϕ3Y

)

= F0

(
L

2
− 2xII

)
, (3.445)

Me
yIII(xIII) =E I

([
+ 6

L2
− 12xIII

L3

]
(u3X (1)) +

[
− 4

L
+ 6xIII

L2

]
ϕ3Y

+
[
− 6

L2
+ 12xIII

L3

]
(u4X (1)) +

[
− 2

L
+ 6xIII

L2

]
ϕ4Y

)

= 0 . (3.446)
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Shear force distribution

Qe
zI(xI) =E Iy

([
+ 12

L3

]
(u2X (−1)) +

[
+ 6

L2

]
ϕ2Y

)

= 0 , (3.447)

Qe
zII(xII) =E Iy

([
− 12

L3

]
(u2Z (1)) +

[
+ 6

L2

]
ϕ2Y

+
[
+ 12

L3

]
(u3Z (1)) +

[
+ 6

L2

]
ϕ3Y

)

= −F0 , (3.448)

Qe
zIII(xIII) =E Iy

([
− 12

L3

]
(u3X (1)) +

[
+ 6

L2

]
ϕ3Y

+
[
+ 12

L3

]
(u4X (1)) +

[
+ 6

L2

]
ϕ4Y

)

= 0 . (3.449)

Normal force distribution:

N e
xI(xI) = = E A

L ((−(−1)u2Z ))

= −F0 (3.450)

N e
xII(xII) = = E A

L (((1)u3X ) − ((1)u2X ))

= 0 (3.451)

N e
xIII(xIII) = = E A

L ((−(1)u4Z ) − (−(1)u3Z ))

= F0 . (3.452)

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (FR
1X )︸ ︷︷ ︸

reaction force

+ (0)︸︷︷︸
external load

= 0 , � (3.453)

∑
i

Fi Z = 0 ⇔ (FR
1Z )︸ ︷︷ ︸

reaction force

+ (−F0)︸ ︷︷ ︸
external load

= 0 , � (3.454)
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(a) (b)

Fig. 3.72 aMechanical model of the sensor under consideration of symmetry; b free-body diagram

∑
i

MiY = 0 ⇔ (MR
1Y )︸ ︷︷ ︸

reaction

+ (F0L II)︸ ︷︷ ︸
external load

= 0 . � (3.455)

Multi-axial stress state near to the foundation, i.e. xI = 0:
The total normal stress distribution is a superposition of the contributions from

the tensile (NxI) and bending (MyI) parts, see Tables3.2 and 3.8:

σe
xI(xI) = N e

xI(xI)

A
+ Me

yI(xI)

I
zI = − F0

A
+ LF0

2I
× zI . (3.456)

3.4 Extensometer Analysis

The solution will follow the recommended 10 steps outlined on page 73.

1 Sketch the free-body diagramof the problem, including a global coordinate system.

It is advantageous to work only with half of the sensor, i.e. to consider the symmetry
of the problem, see Fig. 3.72a. The free-body diagrams as outlines in Fig. 3.72b
contains also unknown reactions where the displacement boundary condition u0 is
imposed. The reactions at the symmetry line, i.e. the normal force FR

IIX , the vertical
force6 FR

IIZ , and the bending moment MR
IIY will serve to calculate the total normal

strain in element II.

6This vertical force could be omitted right from the beginning since the introduced support has
a vertical degree of freedom. Thus, there will be no vertical reaction force. From this, one could
conclude immediately that FR

IZ must be zero. Nevertheless, the finite element approach will show
this.
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Fig. 3.73 Finite element
model of the sensor based on
two elements (I and II)

2 Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads.

The finite element approach will be based on two frame elements (see Fig. 3.73),
i.e. the superposition of rod and beam elements. Since the horizontal beam is not
loaded by a shear force (see Sect. 2.4), we can rely on the Euler–Bernoulli beam
theory. The vertical beam is subjected to a shear force. However, the contribution
of this shear force to the deformation can only be estimated if real real numbers are
assigned to the design variables, i.e. L I, EI, II. Thus, we assume at this point of the
derivation that the vertical beam is thin.
3 Write separately all elemental stiffnessmatrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Element I is rotated by an angle of α = −90◦ and application of Eq. (3.347) gives:

K e
I = EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1X u1Z ϕ1Y u2X u2Z ϕ2Y

12II
L3
I

0
6I

IL2
−12II

L3
I

0
6II
L2
I

0
AI

L I
0 0 − AI

L I
0

6II
L2
I

0
4II
L I

−6II
L2
I

0
2II
L I

−12II
L3
I

0 −6I

L2

12II
L3
I

0 −6II
L2
I

0 − AI

L I
0 0

AI

L I
0

6II
L2
I

0
2II
L I

−6II
L2
I

0
4II
L I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

, (3.457)

Element II does not require any rotation and its elemental stiffness matrix reads:

http://dx.doi.org/10.1007/978-3-319-69817-5_2
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K e
II = EII

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X u2Z ϕ2Y u3X u3Z ϕ3Y

AII( L II
2

) 0 0 − AII( L II
2

) 0 0

0
12III( L II
2

)3 − 6III( L II
2

)2 0 − 12III( L II
2

)3 − 6III( L II
2

)2

0 − 6III( L II
2

)2 4III( L II
2

) 0
6III( L II
2

)2 2III( L II
2

)

− AII( L II
2

) 0 0
AII( L II
2

) 0 0

0 − 12III( L II
2

)3 6III( L II
2

)2 0
12III( L II
2

)3 6III( L II
2

)2

0 − 6III( L II
2

)2 2III( L II
2

) 0
6III( L II
2

)2 4III( L II
2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u2X

u2Y

ϕ2Z

u3X

u3Y

ϕ3Z

. (3.458)

4 Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having 3 degrees of free-
dom (i.e., the horizontal and vertical displacements, and the rotation). Thus, the
dimensions of the global stiffness matrix are (3 × 3) × (3 × 3) = (9 × 9):

K =

u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X
u1Z
ϕ1Y

u2X
u2Z
ϕ2Y

u3X
u3Z
ϕ3Y

. (3.459)

The cells highlighted in gray color relate to the overlap zone, i.e. node 2 which
connects elements I and II. These cells combine stiffness contributions from both
elements.
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5 Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K =

u1X u1Z ϕ1Y u2X u2Z ϕ2Y u3X u3Z ϕ3Y⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EIII
L3

I
0 6EIII

L2
I

− 12EIII
L3

I
0 6EIII

L2
I

0 0 0

0 EIAI
LI

0 0 −EIAI
LI

0 0 0 0

6EIII
L2

I
0 4EIII

LI
− 6EIII

L2
I

0 2EIII
LI

0 0 0

− 12EIII
L3

I
0 − 6EIII

L2
I

12EIII
L3

I
+ EIIAII(

LII
2

) 0 + 0 − 6EIII
L2

I
+ 0 −EIIAII(

LII
2

) 0 0

0 −EIAI
LI

0 0 + 0 EIAI
LI

+ 12EIIIII(
LII
2

)3 0− 6EIIIII(
LII
2

)2 0 − 12EIIIII(
LII
2

)3 − 6EIIIII(
LII
2

)2

6EIII
L2

I
0 2EIII

LI
− 6EIII

L2
I

+ 0 0− 6EIIIII(
LII
2

)2
4EIII

LI
+ 4EIIIII(

LII
2

) 0 6EIIIII(
LII
2

)2
2EIIIII(

LII
2

)2

0 0 0 −EIIAII(
LII
2

) 0 0 EIIIII(
LII
2

) 0 0

0 0 0 0 − 12EIIAII(
LII
2

)3
6EIIIII(

LII
2

)2 0 12EIIIII(
LII
2

)3
6EIIIII(

LII
2

)2

0 0 0 0 − 6EIIIII(
LII
2

)2
2EIIIII(

LII
2

) 0 6EIIIII(
LII
2

)2
4EIIIII(

LII
2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1X

u1Z

ϕ1Y

u2X

u2Z

ϕ2Y

u3X

u3Z

ϕ3Y

.

(3.460)
6 Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be expressed in matrix from as

Kup = f , (3.461)

where the column matrix of the external loads reads:

f = [
FR
1X FR

1Z 0 0 0 0 FR
3X FR

3Z MR
3Y

]T
. (3.462)

7 Introduce the boundary conditions to obtain the reduced system of equations.

The consideration of the support conditions u1Z = u3X = 0 and ϕ3Y = 0 results in
the following 6 × 6 system:
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u1X ϕ1Y u2X u2Z ϕ2Y u3Z⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

12EIII
L3

I

6EIII
L2

I
− 12EIII

L3
I

0 6EIII
L2

I
0

6EIII
L2

I

4EIII
LI

− 6EIII
L2

I
0 2EIII

LI
0

− 12EIII
L3

I
− 6EIII

L2
I

12EIII
L3

I
+ EIIAII(

LII
2

) 0 + 0 − 6EIII
L2

I
+ 0 0

0 0 0 + 0 EIAI
LI

+ 12EIIIII(
LII
2

)3 0− 6EIIIII(
LII
2

)2 − 12EIIIII(
LII
2

)3

6EIII
L2

I

2EIII
LI

− 6EIII
L2

I
+ 0 0− 6EIIIII(

LII
2

)2
4EIII

LI
+ 4EIIIII(

LII
2

) 6EIIIII(
LII
2

)2

0 0 0 − 12EIIAII(
LII
2

)3
6EIIIII(

LII
2

)2
12EIIIII(

LII
2

)3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

u1X

ϕ1Y

u2X

u2Z

ϕ2Y

u3Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

−FR
1X

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

.

(3.463)
Under consideration of u1X = −u0, one gets:

u1X ϕ1Y u2X u2Z ϕ2Y u3Z⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

1 0 0 0 0 0

6EIII
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4EIII
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12EIII
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+ EIIAII(
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2

) 0 + 0 − 6EIII
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I
+ 0 0

0 0 0 + 0 EIAI
LI

+ 12EIIIII(
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2

)3 0− 6EIIIII(
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2
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2

)3
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L2

I
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I
+ 0 0− 6EIIIII(

LII
2

)2
4EIII

LI
+ 4EIIIII(

LII
2

) 6EIIIII(
LII
2

)2

0 0 0 − 12EIIAII

LII
2

3
6EIIIII

LII
2

2
12EIIIII

LII
2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

u1X

ϕ1Y

u2X

u2Z

ϕ2Y

u3Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

−u0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

.

(3.464)

8 Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach up = K−1 f :

ϕ1Y = 1 + EII
EI

III
II

L I
L II

1 + 2
3
EII
EI

III
II

L2
I

L IL II
+ 1

12
h2II
L2
I

× u0
L I

, (3.465)

u2X = 1

1 + 8 EII
EI

III
II

L3
I

L IIh2II
+ 12 L I2

h2II

× u0 , (3.466)

u2Z = 0 , (3.467)



196 3 Finite Element Method

ϕ2Y = 1

1 + 2
3
EII
EI

III
II

L2
I

L IL II
+ 1

12
h2II
L2
I

× u0
L I

. (3.468)

9 Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step 6 under the
consideration of the known nodal displacements and rotations. The first equation of
this system gives:

FR
1X = u0

1
3

L3
I

EI II
+ 1

2
L2
I L II

EII III
+ 1

24
L IIh2II
EII III

. (3.469)

The evaluation of the corresponding other equations gives:

FR
1Z = 0 , (3.470)

FR
3X = u0

1
3

L3
I

EI II
+ 1

2
L2
I L II

EII III
+ 1

24
L IIh2II
EII III

, (3.471)

FR
3Z = 0 , (3.472)

MR
3Y = − u0

1
3

L3
I

EI II
+ 1

2
L2
I L II

EII III
+ 1

24
L IIh2II
EII III

× L I . (3.473)

Based on the reaction force andmoment at node 3, the axial strain can be evaluated as
outlined in Sect. 2.4. Finally, the same equations are obtained as given in Eqs. (2.253)
and (2.254). It should be noted here that this result, i.e., the finite element solution
is equal to the analytical solution, cannot be generalized to more complex problems.
At least, any further mesh refinement does not increase the accuracy in this specific
case.

10 Check the global equilibriumbetween the external loads and the support reactions.

∑
i

Fi X = 0 ⇔ (−FR
1X + FR

3X )︸ ︷︷ ︸
reaction force

+ 0︸︷︷︸
external loads

= 0 , � (3.474)

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

3Z )︸ ︷︷ ︸
reaction force

+ 0︸︷︷︸
external load

= 0 . � (3.475)

∑
i

MiY = 0 ⇔ (FR
1X L I + FR

1Z
L II
2 + MR

3Y )︸ ︷︷ ︸
reaction moment

+ 0︸︷︷︸
external moment

= 0 . � (3.476)

http://dx.doi.org/10.1007/978-3-319-69817-5_2
http://dx.doi.org/10.1007/978-3-319-69817-5_2
http://dx.doi.org/10.1007/978-3-319-69817-5_2
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Let us investigate in the following the influence of different ratios on the sensor
sensitivity, see Eq. (2.254):

εx,II

εsp

∣∣∣∣∣
z=− hII

2

= 1
2
3
EII IIIL I
EI IIL II

+ 1 + 1
12

h2II
L2
I

× hII
L I

×
(

+1

2
+ 1

12

(
hII
L I

))
. (3.477)

The influence of the different fractions in Eq. (3.477) is illustrated in Figs. 3.74
and 3.75. The ratios of stiffness, second moment of area and length have the same
influence on the strain ratio (pay attention to the fact that Eq. (3.477) contains the
ratio L I

L II
while Fig. 3.74c is plotted as a function of the inverse value). The geometrical

ratio hII
L I

has a stronger influence on the strain ratio. However, it must be checked for
larger ratios if the thin beam assumption is still valid. In case that more than one
ratio is changed in the corresponding direction, one can expect a stronger influence
on the strain ratio, see Fig. 3.76.

The design process, i.e. the choice of the geometrical and material properties of
the extensometer, should consider a few limits:

• The ratio εx,II/εsp should be not too small to avoid that the strain εx,II is below the
sensitivity of the selected strain gage.

• The strain εx,II should not exceed the upper limit of the selected strain gage to
avoid elongation failure (e.g. grid cracking or loss of bond). The limit of high-
performance strain gages is typically 1–2%whereas regular self-temperature com-
pensated strain gages are capable to record up to 5–10% strains [32].

• The material of the extensometer should only deform in the elastic range.

In a final step, it is also possible to use a commercial finite element package such
as MSC Marc/Mentat [17, 27]. In such packages, it is quite simple to investigate
the influence of the mesh density, i.e., the number of nodes per unit length, on the
results. In general, only a sufficient number of nodes or elements guarantees a result
which is — from a practical point of view — independent from the mesh size.
To investigate the mesh dependency, a so-called mesh convergence study must be
conducted. Starting from a coarse mesh (see Fig. 3.77a), the mesh is subsequently
refined (see Figs. 3.77b-c) and a critical quantity evaluated. This could be in our case
the internal bending moment or the normal force. If the difference of this quantity
from one mesh to the next refined configuration is below a certain threshold,7 one
can state that the result is no more mesh dependent.

Let us check this behavior for the internal bendingmoment at node 3, see Fig. 3.77.
The summary in Table3.18 indicates that the internal bending moment and normal

7Other important factors are the computing time or the size of the result file.

http://dx.doi.org/10.1007/978-3-319-69817-5_2
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Fig. 3.74 Sensor sensitivity
as a function of different
ratios: a stiffness, b second
moment of area and c length
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Fig. 3.75 Sensor sensitivity
as a function of the
geometrical ratio hII
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Fig. 3.76 Increased sensor
sensitivity as a function of
the geometrical ratio hII
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force is not dependent on the mesh density. This result is a special case8 for the
applied thin beam elements and the corresponding support and load conditions.

The original and deformed shapes of the mesh with 13 nodes (see Fig. 3.77c) are
shown in Fig. 3.78. It can be seen that all the imposed boundary conditions and the
expected mode of deformation are fulfilled.

For a general problem of complex nature, the result of a mesh convergence study
may look as schematically shown in Fig. 3.79.

8The result of the finite element hand calculation as given in Eq. (3.469) indicated already that the
analytical result has been obtained. Thus, the computational approach is for this special case exact
and a mesh refinement does not increase the accuracy.
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(a) (b) (c)

Fig. 3.77 Frame structure with different mesh densities: a 3 nodes, b 7 nodes, and c 13 nodes

Table 3.18 Result of the mesh sensitivity analysis with: EI = EII = 70000, II = III = 6.75,
L I = L II = 30, square cross section with a side length of 3 (all numerical values in consistent
units)

Number of nodes Bending moment Normal force

3 1259.37 41.979

7 1259.37 41.979

13 1259.37 41.979

Analytical solution 1259.84 41.995

Fig. 3.78 Frame structure
with fine mesh: original and
deformed shape
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Fig. 3.79 Schematic
representation of the result of
a mesh convergence study

3.5 Supplementary Problems

3.19 Rod Structure Under Dead Weight
Given is a rod structure which is deforming under the influence of its dead weight,
see Fig. 3.80. The rod is of the original length L , cross-sectional area A, Young’s
modulus E , and mass density �. The standard gravity is given by g.

Apply two linear rod elements of length L
2 to calculate the elongation of the rod

due to its dead weight.

3.20 Truss Structure with Three Members
Given is a plane truss structure as shown in Fig. 3.81. The members have a uniform
cross-sectional area A and Young’s modulus E . The length of each member can be
taken from the figure. The structure is fixed at its left-hand sides and loaded by two
points loads F1 and F2.

Model the truss structure with three linear finite elements and determine:

• the displacements of the nodes,
• the reaction forces at the supports,

Fig. 3.80 Rod loaded under
its dead weight
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Fig. 3.81 Truss structure
composed of three straight
members

• the strain, stress, and normal force in each element, and
• check the global force equilibrium.

3.21 Simply Supported Beam Partially Loaded with Distributed Load
The beam shown in Fig. 3.82 is loaded by a constant distributed load q0. The bending
stiffness E I is constant and the total length of the beam is equal to 2L . Model the
beam with two finite elements to determine:

• the unknowns at the nodes,
• the equation of the bending line,
• the reactions at the supports,
• the internal reactions (shear force and bending moment) in each element,
• the graphical representations of the deflection, bending moment, and shear force
distributions, and

• the global force and moment equilibrium.

3.22 Fixed-end Generalized Beam with Distributed Load and Displacement
Boundary Condition
The generalized beam shown in Fig. 3.83 is loaded by a distributed load p(X) in the
range 0 ≤ X ≤ 2L and a vertical displacement u0 at X = L . The material constant
(E) and the geometrical properties (I, A) are constant and the total length of the
beam is equal to 2L . Model the member with two generalized beam finite elements
of length L to determine:
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Fig. 3.82 Simply supported
beam partially loaded with
distributed load

Fig. 3.83 Fixed-end
generalized beam with
distributed load and
displacement boundary
condition

• the unknowns at the nodes,
• the displacement distributions uZ = uZ (X) (bending) and uX = uX (X) (ten-
sion/compression), including a graphical representation,

• the reactions at the supports,
• the internal reactions (normal force, shear force and bending moment) in each
element, and

• the global force and moment equilibrium.

3.23 Generalized Beam Supported by a Rod Element
The horizontal generalized beam shown in Fig. 3.84 is supported by a vertical rod
element. The structure is loaded by a single force F0 in the middle of the structure.
The material property (E) and the geometrical properties (I, A) are constant and the
same for beam and rod. The horizontal length of the structure is equal to L while
the vertical dimension is equal to L

2 . Model the structure with two generalized beam
finite elements and one rod element of length L

2 to determine:

• the unknowns at the nodes,
• the displacement distributions in each member,
• the reactions at the supports,
• the internal reactions (normal force, shear force and bendingmoment for the beams
and normal force for the rod) in each element,

• the strain and stress distributions in the elements, and
• the global force and moment equilibrium.
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Fig. 3.84 Generalized beam supported by a rod element

3.24 Generalized Beam Supported by a Rod Element: Revised
Consider again the structure from Problem 3.23 (see Fig. 3.84). Replace the general-
ized beams by a more appropriate element type under consideration of the deforma-
tion of the structure. Furthermore, consider the symmetry of the problem to reduce
the size of your computational model.



Chapter 4
Outlook: Two- and Three-Dimensional
Elements

Abstract This chapter gives a brief outlook on some two- and three-dimensional
elements. The similarities between the previously treated one-dimensional elements,
i.e., rod and beams, and their multidimensional analogs are presented without going
into the mathematical details. The considered elements are restricted to configura-
tions with even node numbers at which nodes are exclusively located at the element
corners.

In Chap.3 introduced one-dimensional elements, i.e., rod and beams, are shown
in Fig. 4.1 with their two- and three-dimensional generalizations. The understanding
of the rod element can easily be transferred to a four-node plane elasticity element
(with plane stress or plane strain behavior) or to the eight-node solid element. The
rod element has in its elemental coordinate system just a single degree of freedom
per node, i.e. the displacement along the rod axis. This concept is extended in the
case of plane elasticity elements to two displacement components (uix , uiy) per node
i whereas the solid element possesses three displacement components (uix , uiy, uiz)
per node i . It should be noted here that there are also other element types with, for
example, inner nodes or elements with an uneven number for plane cases such as
triangular elements.1

Let us recall again the principal finite element equation for rod elements as intro-
duced in Eq. (3.1). A 2× 2 stiffness matrix is multiplied with the column matrix of
two nodal unknowns, see Eq. (4.1).

[
. . . . . .

. . . . . .

]
︸ ︷︷ ︸

2×2

[
u1x
u2x

]
=

[
F1x

F2x

]
. (4.1)

Knowing that a plane elasticity element with four nodes has in total eight degrees of
freedom (number of nodes times nodal degrees of freedom), the elemental stiffness

1The theoretical treatment of triangular elements requires the consideration of natural or triangular
coordinates which are aligned to the sides of the triangle and these axes do not intersect at right
angle. Thus, the approach must be slightly adjusted compared to the elements shown in Fig.4.1.
For example, the linkage between Cartesian and triangular coordinates must be first reviewed.

© Springer International Publishing AG 2018
A. Öchsner, A Project-Based Introduction to Computational Statics,
https://doi.org/10.1007/978-3-319-69817-5_4
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(a) (b) (c)

Fig. 4.1 Classification of considered finite elements: a one-dimensional, b two-dimensional, and
c three-dimensional elements

matrix must have the dimensions 8× 8 and the principal finite element equation has
the structure as shown in Eq. (4.2). Of course that it must be considered that the
mathematical derivations require more work than just considering the structure of
the finite element equation.

⎡
⎢⎢⎢⎢⎢⎣

. . . . . .

. . . . . .

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
8×8

⎡
⎢⎢⎢⎢⎢⎣

u1x
u1y
...

u4x
u4y

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

F1x

F1y
...

F4x

F4y

⎤
⎥⎥⎥⎥⎥⎦

, (4.2)

The same reasoning can be applied to solid elements. Assuming that eight nodes
are forming a hexahedral element, the corresponding stiffness matrix must have the
dimensions 24× 24 since each node has three translatorial degrees of freedom, see
Eq. (4.3).
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . .

. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
24×24

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1x
u1y
u1z
...

u4x
u4y
u4z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1x

F1y

F1z
...

F4x

F4y

F4z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.3)

Finally it should be mentioned that the here introduced beam elements with one
rotational and one translatorial degree of freedom for bending in a single plane have
their two-dimensional counterparts as thin or thick plates, see Fig. 4.1.
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Answers to Supplementary Problems

Problems from Chap. 2

2.13 Rod Loaded by a Single Force in its Middle
Case (a): Approach based on two sections

uxI = F0L

2E A

(
xI
L

)
, uxII = F0L

2E A

(
1 − xII

L

)
, (A.1)

NxI = F0

2
, NxII = − F0

2
. (A.2)

Case (b): Approach based on discontinuous function

E A
duX (X)

dX
= NX (X) = −F0〈X − L〉0 + c1 , (A.3)

E AuX (X) = −F0〈X − L〉1 + c1X + c2 , (A.4)

or finally after the determination of the constants of integration:

uX (X) = − F0

E A

(
〈X − L〉1 + X

2

)
. (A.5)

The displacement and normal force distributions are shown in Fig.A.1.

© Springer International Publishing AG 2018
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Fig. A.1 Rod loaded by a
single force in its middle:
a displacement distribution,
b normal force
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2.14 Cantilever Beam Under the Influence of a Point or Distributed Load –
Rectangular Cross Section
Case (a):

uz
(
x
L = 1

)
F0L3

E I

= 1

3
+ 1

5
(1 + ν)

(
h

L

)2

. (A.6)

Case (b):

uz
(
x
L

)
q0L4

E I

= 1

8
+ 1

10
(1 + ν)

(
h

L

)2

. (A.7)

2.16 Beam-like Structure: Energy Approach
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ux,D = F0a3

8E I
, (A.8)

uz,C = F0a3

3E I
. (A.9)

Problems from Chap. 3

3.19 Rod Structure Under Dead Weight

The following force acts on a volume element: dFg = dmg = �Agdx . Thus, the

distributed load is given by: pg = dFg
dx = �Ag.

• Solution of the reduced system of equations:

[
u2X
u3X

]
= �gL2

8E

[
3
4

]
. (A.10)

3.20 Truss Structure with Three Members

• Unknown displacements:

[
u2X
u2Z

]
= a

3E A(1 + √
3)

[
(3 + √

3)F1 + (3 − √
3)F2

−(3 − √
3)F1 − (9 + 3

√
3)F2

]
. (A.11)

• Reaction forces:

FR
1X = − 1

3(1 + √
3)

(
(3 + √

3)F1 + (3 − √
3)F2

)
, (A.12)

FR
1Z = 0 , (A.13)

FR
3X = − 1

6(1 + √
3)

(
(
√
3)F1 + (3 + 2

√
3)F2

)
, (A.14)

FR
3Z = − 1

2(1 + √
3)

(
F1 + (2 + √

3)F2

)
, (A.15)

FR
4X = − 1

2(1 + √
3)

(
(
√
3)F1 − (3)F2

)
, (A.16)

FR
4Z = − 1

2(1 + √
3)

(
F1 + (−√

3)F2

)
. (A.17)

• Global force equilibrium:

http://dx.doi.org/10.1007/978-3-319-69817-5_3
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∑
i

Fi X = 0 ⇔ (FR
1X + FR

3X + FR
4X )︸ ︷︷ ︸

reaction force

+ (F1)︸︷︷︸
external load

= 0 , � (A.18)

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

3Z + FR
4Z )︸ ︷︷ ︸

reaction force

+ (−F2)︸ ︷︷ ︸
external load

= 0 . � (A.19)

• Elemental stress, strain and normal force:

σI = 1

3A(1 + √
3)

(
(3 + √

3)F1 + (3 − √
3)F2

)
, (A.20)

σII = 1

3A(1 + √
3)

(
(
√
3)F1 + (3 + 2

√
3)F2

)
, (A.21)

σIII =
√
3

3A(1 + √
3)

(
(
√
3)F1 + (−3)F2

)
. (A.22)

εI = 1

3E A(1 + √
3)

(
(3 + √

3)F1 + (3 − √
3)F2

)
, (A.23)

εII = 1

3E A(1 + √
3)

(
(
√
3)F1 + (3 + 2

√
3)F2

)
, (A.24)

εIII =
√
3

3E A(1 + √
3)

(
(
√
3)F1 + (−3)F2

)
. (A.25)

NI = 1

3(1 + √
3)

(
(3 + √

3)F1 + (3 − √
3)F2

)
, (A.26)

NII = 1

3(1 + √
3)

(
(
√
3)F1 + (3 + 2

√
3)F2

)
, (A.27)

NIII =
√
3

3(1 + √
3)

(
(
√
3)F1 + (−3)F2

)
. (A.28)

3.21 Simply Supported Beam Partially Loaded with Distributed Load

• Unknowns at the nodes:

ϕ1Y = − L3q0
96E IY

, ϕ2Y = L3q0
48E IY

, ϕ3Y = − L3q0
32E IY

. (A.29)
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• Equation of the bending line:

ueIZ = L4q0
96E IY

⎛
⎝ xI

L
−

(
xI
L

)3
⎞
⎠ , (A.30)

ueIIZ = − L4q0
96E IY

⎛
⎝2

xII
L

−
(
xII
L

)2

−
(
xII
L

)3
⎞
⎠ . (A.31)

• Reactions at the supports:

FR
1Z = − Lq0

16
, FR

2Z = 5Lq0
8

, FR
3Z = 7Lq0

16
. (A.32)

• Internal reactions in each element:

MIY = L3q0
96

(
6xI
L2

)
, (A.33)

MIIY = − L3q0
96

(
2(L + 3xII)

L2

)
. (A.34)

QIZ = Lq0
16

, QIIZ = − Lq0
16

. (A.35)

• Global force and moment equilibrium:

∑
i

Fi Z = 0 ⇔ (FR
1Z + FR

2Z + FR
3Z )︸ ︷︷ ︸

reaction force

+
(
− q0L

2 − q0L
2

)
︸ ︷︷ ︸

external load

= 0 , � (A.36)

∑
i

MiY (X = 0) = 0 ⇔ (−FR
2Z L − FR

3Z2L)︸ ︷︷ ︸
reaction

+
(
q0L23

2

)
︸ ︷︷ ︸
external load

= 0 . � (A.37)

• Graphical representations of the deflection, bending moment, and shear force dis-
tributions

The graphical representation is shown in Fig.A.2.
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Fig. A.2 a Beam deflection
along the major axis,
b bending moment
distribution and c shear force
distribution
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Fig. A.3 Beam elongation
along the major axis
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3.22 Cantilever Generalized Beam with Distributed Load and Displacement
Boundary Condition

• Nodal unknowns at the nodes:

[
u2X
ϕ2Y

]
=

[
p0L2

3E A
0

]
. (A.38)

• Displacement distributions (see Figs.A.3 and A.4):

ueIZ (xI) =
[
3
x2I
L2

− 2
x3I
L3

]
(−u0) , ueIIZ (xII) =

[
1 − 3

x2II
L2

+ 2
x3II
L3

]
(−u0) , (A.39)

ueIX (xI) = xI
L

× p0L2

3E A
, ueIIX (xII) =

[
1 − xII

L

]
× p0L2

3E A
. (A.40)

• Reactions at the supports:

FR
1X = − p0L

2
, FR

1Z = 12E Iu0
L3

, MR
1Y = −6E Iu0

L2
, FR

2Z = 24E Iu0
L3

, (A.41)

FR
3X = − p0L

2
, FR

3Z = 12E Iu0
L3

, MR
3Y = 6E Iu0

L2
. (A.42)

• Internal reactions (normal force, shear force and bendingmoment) in each element:
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Fig. A.4 Beam deflection
along the major axis
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Qe
IZ (xI) = −E I

[
12

L3

]
u0 , Qe

IIZ (xII) = E I

[
12

L3

]
u0 , (A.44)

N e
IX (xI) = p0L

3
, N e

IIX (xII) = − p0L

3
. (A.45)

3.23 Generalized Beam Supported by a Rod Element

The reduced system of equations reads:

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
A

L I
+ A

L II

)
0 0

0

(
12I

L I
3 + 12I

L II
3 + A

L III

) (
6I

L2
I

− 6I

L2
II

)

0

(
6I

L2
I

− 6I

L2
II

) (
4I

L I
+ 4I

L II

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2X

u2Z

ϕ2Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−F0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.46)
The solution can be obtained as:

⎡
⎢⎢⎢⎣
u2X

u2Z

ϕ2Y

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

−1

2
× L3F0

E(AL2 + 96I )

0

⎤
⎥⎥⎥⎦ . (A.47)
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3.24 Generalized Beam Supported by a Rod Element: Revised

The generalized beams (E, I, A) can be replaced by pure thin beams (E, I ) since
there is no elongation of the horizontal structure.
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Index

A
Analytical solution

Euler-Bernoulli beam, 20
rod, 10
Timoshenko beam, 34

B
Bar, see rod
Basic equations

Euler-Bernoulli beam, 20
rod, 10
Timoshenko beam, 35

Boundary conditions
consideration, 69
Euler-Bernoulli beam, 22
rod, 11
Timoshenko beam, 36

C
Castigliano’s first theorem, 46
Castigliano’s second theorem, 47

D
Design project

flowchart, 5
marking criteria, 7
outline, 2

Dirichlet boundary condition, 69, 71

E
Equivalent nodal loads

Euler–Bernoulli beam, 107
rod, 70

Timoshenko beam, 125
Euler–Bernoulli beam, 105

FE sample problems, 106
Euler-Bernoulli beam, 19

analytical sample problems, 23
Extensometer, 2

analytical calculation, 55
calibration curve, 59
configuration, 3–5
finite element calculation, 191
principle of operation, 3

F
Finite Element

Euler–Bernoulli beam, 106
Generalized beam, 138
rod, 69
three-dimensional, 205
Timoshenko beam, 124
truss, 87
two-dimensional, 205

G
Generalized beam, 137

FE sample problems, 139

M
Macaulay bracket, 11

N
Neumann boundary condition, 72
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P
Post-processing

Euler–Bernoulli beam, 108, 109
rod, 72
Timoshenko beam, 126

Principal finite element equation
Euler–Bernoulli beam, 105
generalized beam, 138
Rod, 69
Timoshenko beam, 123

Project-based learning, 1

R
Rod, 9, 68

analytical sample problems, 12
FE sample problems, 73

Rotation
Euler–Bernoulli beam, 155
generalized beam, 157
rod, 86

S
Shear-flexible beam, see Timoshenko beam
Shear-rigid beam, see Euler-Bernoulli beam
Simple beam, see Euler–Bernoulli beam
Steps for FE hand calculation, 73
Strain energy, 45
Strain gage, 2
Stress distribution

Euler-Bernoulli beam, 23
rod, 11
Timoshenko beam, 37

T
Thick beam, see Timoshenko beam
Thin beam, see Euler-Bernoulli beam
Timoshenko beam, 32, 123

analytical sample problems, 37
FE sample problems, 124
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