
API
Development

Sascha Preibisch

A Practical Guide for Business
Implementation Success

CA Press

API DEVELOPMENT

A PRACTICAL GUIDE FOR BUSINESS
IMPLEMENTATION SUCCESS

Sascha Preibisch

API Development: A Practical Guide for Business Implementation Success

Sascha Preibisch			
Richmond, BC, Canada			

ISBN-13 (pbk): 978-1-4842-4139-4		 ISBN-13 (electronic): 978-1-4842-4140-0
https://doi.org/10.1007/978-1-4842-4140-0

Library of Congress Control Number: 2018963113

Copyright © 2018 by CA. All rights reserved. All trademarks, trade names, service marks and
logos referenced herein belong to their respective companies.

The statements and opinions expressed in this book are those of the author and are not neces-
sarily those of CA, Inc. (“CA”).

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dis-
similar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484241394.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4140-0
orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484241394
http://www.apress.com/source-code

This book is for my mother and
father who both are in heaven!

Contents
About the Author ��vii

About the Technical Reviewer ���ix

Acknowledgments���xi

Introduction���xiii

Chapter 1:	 APIs: What Are They?��� 1

Chapter 2:	 API Stake-holders��11

Chapter 3:	 Importance and Relevance of APIs��23

Chapter 4:	� API Design��41

Chapter 5:	 API Authentication and Authorization����������������������������������61

Chapter 6:	 API Implementation Details ���107

Chapter 7:	 API Gateways ��125

Chapter 8:	 APIs and Microservices ��143

Chapter 9:	 Real-Life API Examples ��159

Appendix A:	 Key Terms ��171

Index��175

About the Author
Sascha Preibisch has been involved in enter-
prise-grade software development since 2005.
He worked as a consultant in Switzerland where
he helped customers expose SOAP-based web
services in a secure way. Today, as software
architect for CA Technologies in Vancouver,
Canada, he works with customers who expose
RESTful services. He advises customers in the
usage of OAuth, OpenID Connect, mobile API
security, and SSO between mobile and desk-
top applications. Sascha regularly attends the
Internet Identity Workshop (IIW) in Mountain

View, California, USA, which is the birthplace of OAuth 2.0 and OpenID
Connect. He is a member of the OpenID Foundation. He maintains a blog on
all aspects of API development, and he wrote a short book about a software
framework (Application Development with XML, Eclipse RCP, and Web Services).
Sascha holds a patent on a secure mobile app registration protocol.

Please feel free to contact the author either via his professional blog space at
https://communities.ca.com/blogs/oauth or via his personal web site at
https://oauth.blog.

https://communities.ca.com/blogs/oauth
https://oauth.blog/

About the Technical
Reviewer
Ola Mogstad is Engineering Director of the CA API Gateway development
team in Vancouver, Canada and has spent the past 10+ years creating enter-
prise-grade software. He is a sci-fi and pizza enthusiast. Ola holds a Master’s
degree in Communication Technology from the Norwegian University of
Science and Technology (NTNU).

Acknowledgments
First of all, I would like to thank my wife, Kerstin, and my two sons, Emil and
Billy. They did not see me a lot while I wrote this book, but they continued
to recognize me as member of our family and they supported me as much as
they could!

Thanks to my employer, CA Technologies, for supporting me at every step in
the writing process.

Special thanks to Ola Mogstad, Victor Kazakov, Evgenia Pshenichnova, Jack Cha,
David Young, Jay Thorne, Scott Morrison, Matt McLarty and Mike Bibblecombe
for their reviews, feedback, and technical guidance.

Introduction
This book is about application programming interfaces (APIs) that provide
access to enterprise systems. This book is meant for anyone who is involved in
API-based projects. The book discusses general design guidelines, talks about
relevant stakeholders, explains the difference between client- and server-side
APIs, provides implementation details independent of programming languages,
and explains the concept of microservices. Most of the content is based on
use cases of enterprise businesses. The book finds itself in the category of
practical/useful rather than theoretically explained.

The book addresses different audiences and has high-level sections just as
very technical ones. If you are in the process of exposing business data via
APIs, consider this book to be part of your decision-making process. If this is
the first time you are going through the process of creating APIs, or the first
time since the days of SOAP services, there is a high chance that you will find
answers to your questions here.

This book is also about phrases and terms that are used in the context of
APIs and should help different audiences communicate with each other on
the same level.

From a technical point of view, this book concentrates on HTTP-based APIs
that leverage OAuth 2.0, OpenID Connect, JSON Web Token (JWT), and
RESTful interfaces. These technologies will be discussed in detail. The book
also introduces microservice architectures and how Docker comes into play.
Deep technical knowledge is generally not required.

On a side note, please be aware that this book is not written in a gender or
otherwise neutral language. Please assume it is referencing persons in general.

Why I Wrote This Book
Almost from the first day of my career in IT I have been involved in the API
business. As a consultant in Switzerland, I worked for big companies. These
companies mainly integrated their systems with other equally big businesses.
The systems usually exchanged SOAP messages and supported use cases such
as transmitting pay stubs or health insurance reports. You may remember
those days and may still have to support those solutions.

Introductionxiv

Now, as a software architect, I am mainly involved in API projects that use
RESTful interfaces. My involvement is requested to discuss architectural ques-
tions. At some point, I realized that those questions were very similar to each
other. At that point in time, I decided to start a blog to talk about topics in
the context of APIs. Some of my posts have 100 views, others a few thousand,
which is a lot in my personal world. Seeing those numbers indicated to me
that my posts matched what people were looking for.

Based on that, a few months ago colleagues suggested I write a book based on
topics from my blog but with more details and written for different audiences.
I thought about it, I liked the idea, and now I am sitting here night after night
writing this book whereas my colleagues are enjoying time with their families!

However, I am very excited and happy to share my experiences with anyone
involved in the process of exposing APIs. If at least one person can say
This book is just what I was looking for, it would be a huge success and the main
reason why I wrote this book!

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0_1

C H A P T E R

APIs: What Are
They?
There are many kinds and types of application programming interfaces (APIs).
This book will only concentrate on a short list of them and this chapter is
meant to get everyone on the same page.

What Is Understood as an API
Let me start with a statement that concentrates on the I of API, which, at least
for me, is the most important piece:

An interface is a well-defined entry point into a system.

Here are a few examples of interfaces in different contexts:

•	 An electrical socket: There is a socket and a plug. The
plug goes into the socket, and the device connected to
the socket works.

•	 A vending machine: You put money into the machine,
you select the desired item, and the machine issues the
item.

•	 A helicopter: You pull the pitch and the helicopter
takes off. You push the stick into any direction and the
helicopter follows it.

1

http://dx.doi.org/10.1007/978-1-4842-4140-0_1

Chapter 1 | APIs: What Are They?2

These examples have one thing in common: they expose very complex
systems in a relatively simple and easy-to-use form. Using a plug with a socket
is extremely easy. Very little knowledge is required to use it. However, this
is only true because the complexity behind it is hidden. You do not need to
know where the electricity comes from and you do not need to know how
the electricity is delivered to this one specific socket. You just need to match
the style of plug and socket, and off you go.

The story around the helicopter is a little different. Most of you have not
flown a helicopter but can still imagine that it is not a simple task. (I can assure
you, it is not! I flew a Westland Sea King Mk 41 in a simulator during my time
in the military and crashed it even after a successful landing!) The nearest
machine to a helicopter that most people have controlled is most likely a
drone. They behave similarly to helicopters but can often be steered using a
mobile phone or tablet. It is difficult to imagine a simpler way of controlling a
flying vehicle than that.

Nevertheless, I stick to my statement that the interface for flying a helicopter
is very simple, only that “simple” is relative and is true for skilled users! And
this brings me to one of my favorite sayings:

A fool with a tool is still a fool!

Full credit for that goes to my former colleague Niels, who brought that saying
from San Francisco back to Switzerland. The message is simple: tools and
interfaces only help skilled users!

Now let’s add the AP of API: application programming interface. You all know
some kind of API. Whether within a programming language or a protocol or a
web site, you have used some sort of API. By looking at application programming
interfaces, you have left the world of simple interfaces. If you do not agree, you
have not seen many APIs. Before you disagree, let me share my favorite image
(Figure 1-1) on that topic with you, which is based on an image created by
Eric Burke.

Figure 1-1.  Simple-to-use devices and applications ... and your own

API Development 3

If you have designed APIs for one of the first two UIs,1 I apologize, and you
may stop reading now. If you are an expert on the APIs behind the third UI,
I welcome you to continue reading.

Many developers believe a simple user interface is the result of great web
design. Please note: they are most likely wrong. Simple user interfaces have
very strong APIs behind them. Here is an example: when I attended my favorite
workshop, IIW2 in Mountain View, California, Google gave a presentation on
the topic of user authentication. To summarize it, the very simple login screen
is powered by a system of 30 or more individual components and their APIs!
These APIs are fed by the content of the search field and hidden values in the
browser that are not visible to users and do not need manual input. Users do
not even need to know that they exist!

Designing simple user interfaces is not an easy task. Developers of different
areas with different expertise have to come together to make it happen.
However, we will ignore UI-related tasks behind the user interface since this
book is concentrating on server-side APIs. To get closer to explaining what is
understood as an API, I will reference the user interfaces shown in Figure 1-1.

The example shows a user interface on the right side with many input fields,
check boxes, and radio buttons—practically all UI elements are used. All of
those elements are required because the UI is nothing more than a collector
of data, which is required by an existing server API. Ending up with such a user
interface could have several reasons: the server API needs the data to create
an account, but no user context was available so nothing could have been
prefilled or preselected. Developers felt it was the fasted and easiest way for
them to implement it. Product owners could mistakenly believe that users
need their system and therefore do not have a choice anyways.

Whatever happens, try to put yourself into the user’s shoes. Always consult
UX experts who may be able to help with revisiting the design of your server
APIs. You could support default values, you could implement server APIs that
do not need all data at once, and you could implement a multistep flow that
eases the use of your system.

In comparison, the simple user interfaces were built on top of well-designed
and architected API systems. A possible approach to get there may have
been a UI-first approach: design the UI and then design the APIs to support
it! Similar, but not completely the same: the aircraft Fairchild Republic A-10
Thunderbolt II was designed around a tank cracking gun. Also, electric-first
cars are designed around electric drive systems. In general, design what is
important first but do not try to squeeze the square peg into a round hole!

1UI, user interface
2IIW, Internet Identity Workshop, www.internetidentityworkshop.com

http://www.internetidentityworkshop.com

Chapter 1 | APIs: What Are They?4

In regards to API systems, I would like to clarify the distinction between
client- and server-side APIs. I will describe the difference using an image that
represents a simple application. The goal of the application is to display a
catalog of some sort to a user of a mobile app. The high-level flow is as follows:

	1.	 User clicks the “Display Catalog” button.

	2.	 The mobile app executes the client-side API named
getCatalog().

	3.	 getCatalog() calls the external server-side API named
https://server.external.com/mobile/catalog.

	4.	 That API calls the internal server API named https://
server.internal.com/catalog?type=mobile.

	5.	 That API selects data from a database and transforms it
into a mobile app-friendly response.

This system will not appear out of nowhere nor will it function by accident.
Many things must be considered and must work together, and they must be
especially designed to do so. Take a look at Figure 1-2. It contains different
boxes representing a client or a server and also shows pseudo code.

As my former manager Jay would say, Let me explain:

Box 1: The Client

A product owner wants a mobile app that displays a catalog. An app developer
implements the screen to be shown. A client-side API developer provides a
library (<script> </script>) with an API (function) , getCatalog().

Figure 1-2.  Client-side vs. server-side APIs

https://server.external.com/mobile/catalog
https://server.internal.com/catalog?type=mobile
https://server.internal.com/catalog?type=mobile

API Development 5

This enables the app developer to create a sexy UI and the one and only
thing he has to do is execute getCatalog() that spits out exactly what he
needs. The app developer does not need to know what happens behind the
scenes, which simplifies his life as a developer. He can concentrate on building
delightful screens.

Box 2: The External Server

That server exposes two external server-side APIs: /mobile/catalog
and /web/catalog. These two APIs receive requests from mobile (as
in this example) or web clients. The main task is to validate and forward
these requests to the internal catalog API. As you can see, there is only one
internal server side API, /catalog. It will be called with a query parameter
(?type=mobile) to give a hint of the expected type of response. It may not
be obvious, but these two APIs also help simplifying the mobile app/client API
developer’s lives. Sending the query parameter ?type=mobile is not required
for them. This is handled in the API /mobile/catalog.

Box 3: The Internal Server

The internal server exposes the internal server-side API, /catalog, which
does all the work: it finds data from the database and creates a response
matching the expectations of the client (either mobile or web).

Overall, each API was designed to simplify someone else’s life and to support
this use case. To sum it up, here are highlights you want to remember:

•	 A client-side API hides the complexity that is involved
in managing requests to servers. SDKs3 are good
examples of such API providers. A client-side API named
registerApp() may register an application on a server.
The registerApp() API (function) provided by an
SDK may execute complicated tasks such as generating
a CSR, extracting device details, managing user sessions,
and sending and receiving requests and responses from
servers. One single client-side API will often interact with
one or multiple server-side APIs.

•	 A server-side API exposes a well-defined entry point into
and out of a closed system. There may be multiple APIs
for the same purpose but for different types of clients. An
API named /register may require five input parameters
for clients that can provide application details, user
details, and device details. The API /register/client
may accept three parameters only if no user context

3SDK, software development kit

Chapter 1 | APIs: What Are They?6

is available. The latter API could add default values to
compensate the missing user context but use the same
registration backend as the first API.

I hope the difference between client-side and server-side APIs is now tangible.

With all that said, I would like to conclude this section with slightly different
explanations of what is understood as an API then you would find at other
locations:

•	 An API is an enabler for business opportunities.

•	 An API indicates how much users are appreciated.

•	 An API indicates how much developers are engaged.

Nothing more, nothing less!

What Types of APIs Exist?
After reading this section you may be surprised to find types of APIs that
you are aware off but have not been mentioned. Do not be surprised, please.
This book is based on my own experiences and therefore any list cannot
be considered as complete. It may also happen that you do not even agree
on what I consider to be a type of API. In the end, I still hope that you get
something to take with you.

From my point of view, an API has nothing to do with technology, at least
not on a higher level. I once worked for a company that developed catalog
creation/printing software. Their product was based on C++ but over time it
also included Java. At some point, the CTO required every API to be available
in both languages so that a developer could use her preferred programming
language during product development. You could argue one API was of type
C++, the other of type Java. I would argue it had nothing to do with type. No
matter if it was used with C++ or Java, the usage was the same and the input
and output was the same; it was just made for specific programming languages.

With that in mind, I can identify two different categories for APIs: use case and
intended consumer. Here are examples for the category of use case:

•	 Finance: Banks, credit cards, debt collectors, financial services

•	 Health: Doctors, hospitals

•	 Insurance: Car, tenant, life

•	 Gaming: Online gaming

•	 Government: Public services

•	 Shopping: Including mobile services, electronics, tools,
foods

API Development 7

•	 Logistics: Managing goods transportation in general

I like the categorization by use case since almost all companies can assign
themselves to at least one of them. The advantage is that regulations, best
practices, specifications, RFCs,4 or laws are in place that should or have to be
respected. Being able to approach types of APIs this way takes you half way to
your requirements document without reinventing the wheel.

Let's say your company assigns itself to the category Finance. You do not have
to search very long to find specifications you may want to or must follow:

•	 PCI: Payment Card Industry security standards. If your
system handles any credit card-based transactions, you
must be PCI-compliant.

•	 FIPS 140: Federal Information Processing Standard,
publication 1 and 2 (FIPS 140-1, FIPS 140-2). Issued by
NIST5. Applies if cryptography is required, which is the
case for financial institutions.

•	 PSD2: Payment Service Directive 2. A European directive
to force financial institutions to create APIs for accessing
account information (high level). This is required for
European institutions but should also be considered
outside of Europe.

•	 FAPI: Financial-grade APIs by OpenID Foundation. A list
of typical requirements to support financial tasks such
as checking account information and transferring funds
between accounts via APIs. Meant as a guideline for any
company that has to adhere to PSD2.

While talking about types of APIs, I would like to remind you that you should
never categorize them by their visibility such as “private” and “public.”
What I mean by that is the concept of calling an API private only because
it is not publicly documented or publicly introduced otherwise. It has been
shown that any kind of API will be found by someone and then misused. Even
if you are exposing APIs for private consumption, you should always treat
them as if they had been made publicly available! Assuming you are safe since
your API is private may lower your standards in regards to authentication and
authorization, rate limiting, and sanitizing content that gets exposed.

After reading about a “breach” of your very own system in the press, you will
find yourself in your company’s head office having a chat with your CEO—the
type of chat you may have had during school time with your principal when he
was not amused with you!

4RFC, Request For Comments, www.ietf.org/standards/rfcs/
5NIST, National Institute of Standards and Technology, www.nist.gov

http://www.ietf.org/standards/rfcs/
http://www.nist.gov

Chapter 1 | APIs: What Are They?8

Here are examples for the category of intended consumer:

•	 B2C: Business-to-consumer

•	 B2B: Business-to-business

The categorization by intended consumer helps you to get a feeling for the
number of expected users and with that an expected traffic volume. For
example, if you are a mobile service provider, you may have 10, 20, or 50
million customers. Potentially each one will download your app to access
their private information, which is located in your data center. This is a very
different story than having a business partner with 500 users. Here are a few
assumptions you can derive from knowing your intended audience:

•	 Type B2C: Leverage an OAuth (RFC 6749) and OpenID
Connect (http://openid.net/connect) infrastructure.
These protocols cover authentication, authorization,
and resource API protection. Guidelines for mobile
app development (RFC 8252) exist. OpenID Certified
providers (cloud and on-premises) already exist and can
be considered (http://openid.net/certification/).
You can calculate the concurrent sessions you need
to handle and with that you can lay out the required
infrastructure.

•	 Type B2B: Leverage an OAuth and OpenID Connect
infrastructure or use SAML for federated user
authentication and authorization. SAML (https://
en.wikipedia.org/wiki/SAML/_2.0) is well supported.

The type B2C has some non-functional requirements that also apply to the
type B2B, but are more important here. Whereas business partners are active
during working hours, Monday - Friday, consumers are active 24/7. Let’s have
a look at the consequences:

•	 Support: Your support team needs to be available 24/7.
That team needs to have at least one expert per system
component. You may even need to include engineers to
be available on-demand.

•	 Redundancy: Your system needs to have redundant
system components. And it is important to pay attention
to details. Here is an example: if your system requires a
web server, you need two of them. If any web application
running on that server needs a database, you need two
of them, too! It may sound obvious, but I have seen it all.

http://openid.net/connect
http://openid.net/certification/
https://en.wikipedia.org/wiki/SAML/_2.0
https://en.wikipedia.org/wiki/SAML/_2.0

API Development 9

•	 CI/CD: You need to have a CI/CD chain that allows
you to update your system at any given time. The CI/
CD chain needs to be automated, not scripted! Especially
with redundant components updates cannot be applied
manually. Otherwise, sooner or later, your components
will run different versions of the same software and
escalations will be unavoidable.

Summary
It is important for every project to clearly understand which type of API needs
to be supported. Knowing this guides the project in the correct direction.
Many requirements can be derived from that information. After reading this
chapter, all involved persons should be on the same page or at least know
which questions to ask before going ahead.

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0_2

C H A P T E R

API
Stake-holders
Any organization has different teams involved in every project. Some projects
may require teams that handle internal network traffic; other projects may
need external network traffic teams. Topics, such as authentication or
authorization, may involve different teams than mobile app development. But
in some cases, members of almost all teams are required. Exposing business
data via APIs is one of those cases.

The following is a list of roles that are required and referenced in this book.
You may hope not to find your own role listed, but that wish will not come
true, especially since you are reading this book.

Product Owners
A product owner is the person who has an idea for a feature that requires
external-facing APIs. She is the one who convinces the business that her idea
will drive revenue and will be an overall enhancement. She may even be able
to identify different user groups that are looking forward to the new API-
based features. Of all involved roles she has the luxury of not needing to know
how the technology behind it works, just like sales persons who promise
features based on alpha-release demos and leave it up to engineers to make
it happen after these features have been sold. Product owners cannot totally
ignore technology, though; they have to work closely with engineers. Exposing
features via an API has limitations and tradeoffs everyone must be aware off
to avoid unrealistic expectations.

2

http://dx.doi.org/10.1007/978-1-4842-4090-8_2

Chapter 2 | API Stake-holders 12

These are tasks product owners should own based on their responsibilities:

•	 Specify what an API-based feature or product should do.

•	 Specify how and by whom the system should be consumed.

•	 Specify what type of data to capture.

•	 Do not dictate implementation details or technologies.

•	 Become a user of your system! Doing so is the best way
for identifying potential areas for improvement.

•	 Own the roadmap and be excited about it! This may
sound obvious, but I have seen many cases where
product owners asked developers, Ok, what do you think
we need next? This is not generally terrible, but it should
not be the main approach for finding new ideas. Engineers
will typically come up with great technical ideas but not
necessarily business-relevant ones.

Software Architects
Some time ago I spoke to another parent while we were watching our children
play a soccer game. We spoke about work life and ended up talking about my
role of software architect. She said, You are an architect? That is a tough job! I
don’t think it is, but it was interesting to hear her comment. If your role is a
software architect too, take a moment to reflect on it. As an architect, you
know exactly how things should work. But you have to deal with product
owners, engineers, operations, and other people who are not involved but
have an opinion. You have to deal with compromises, lack of knowledge, and
new technologies that you may have missed. And yet we are the ones being
blamed or celebrated. Nevertheless, for your own benefit, look at the product
or the overall system you are responsible for and how satisfied users are right
now. I hope you are happy with what you have achieved so far. Enjoy it, an API
project may change that!

API-based systems are quite different than “simple” software products and
have other challenges. Anything you design needs to leverage and provide
API interfaces, in many cases HTTP-based ones. Not having Java or C# or
PHP classes communicating with each other, but stateless HTTP network
calls requires a different mindset. It is not about class A talking to class B
to implement interface C. There are no classes, there are no programming
languages, there are no compilers finding issues in code, and there are no deep
integrations. The only thing that exists are requests where the previous one
has nothing to do with the current one. Request and response parameters,
that’s it, more or less. With that in mind, try to approach architecture from a
different angle and be open to going down new paths.

API Development 13

Let’s look at a simple example. You may have designed an authentication
service in the past that was implemented with a few classes and interfaces, as
illustrated in Figure 2-1 (as an architect you would usually design something
bigger, but this is meant to illustrate the situation). The system consists of
an LDAP (Lightweight Directory Access Protocol) server that is leveraged
by an IDP (Identity Provider). Together they provide access to the details of
users. If you are not familiar with this concept, here is an example: when you
authenticate on your work computer, your employee is the IDP and your user
credentials are found within an LDAP server.

Pretty straightforward, nothing to worry about. But now, let’s compare it with
the API-based solution shown in Figure 2-2.

Figure 2-1. View of a simple authentication service. (ActiveDirectory is often referenced as AD.)

Figure 2-2. View of a simple API-based authentication service

Chapter 2 | API Stake-holders 14

There is no class diagram anymore. There is a diagram showing different
servers supporting multiple APIs (i.e. /authenticate, /idp/ldap/
validate). Server1 receives HTTP POST requests and sends a request to
Server2 or Server3. Server2 and Server3 validate the given credentials and
respond with an error or success message. With this system you now have to
deal with completely different obstacles:

•	 Timeouts

•	 Network zones

•	 Authentication

•	 Authorization

•	 Message sizes

•	 Latency

•	 SLAs1 of services you depend on

To design a usable system, each API has to specify for itself what it does
and how it can be consumed. A typical mistake is to introduce assumptions
on whom the API will be consumed by. In design meetings you should react
allergic to messages such as API 1 has to integrate with Client XYZ. That is a
big NO-NO! If you accept special treatment for dedicated clients, you will
introduce dependencies that will cause issues in the future. The concept of
independence between APIs must be protected.

However, you will still be asked to support Client XYZ differently than others.
One way for you to get out of the dilemma is to extend the API. If your
general requirement for authentication requires username, password you may
be able to accept a JWT2 too if that is what Client XYZ can provide. As long
as the JWT validation itself has no dependency on Client XYZ and if JWT
validation is an added value for your API anyways, it could be a viable approach.
It would look like Figure 2-3.

1SLA, service-level agreement
2JWT, JSON Web Token, RFC 7519. These will be discussed and explained in Chapter 5.
For now, consider them a digitally signed single sign-on token.

http://dx.doi.org/10.1007/978-1-4842-4090-8_5

API Development 15

Your API receives credentials, validates them, sets a username, and finds
attributes for the user. You could go wild now and build those two types
of credential validation within their own APIs. The only limits are available
resources and all obstacles listed above!

These are tasks software architects should own based on their responsibilities:

•	 Specify the APIs. They are the pillars of the system!

•	 Specify the role each involved component in the system
takes on and identify owners.

•	 Identify owners of dependent, external components and
request SLAs for each one.

•	 Delegate the design of smaller components but review
them.

•	 Be critical and do not accept any changes without
convincing reasons and a chain of decision-making
artifacts, not to blame others in the future but to review
what caused the changes. This may help improve the
process for future projects.

•	 Do not try to be everyone’s friend but be the friend of
the systems users. (Why? You have to be the one standing
as firm as a rock between users and a bad system!)

•	 Do not dictate implementation details. Make suggestions
only! In a world of APIs, you may not even need to know
which programming languages are used for different API
implementations.

Figure 2-3. View of extended API

Chapter 2 | API Stake-holders 16

Security Architects
The role of security architect only exists in rare cases and only in companies
that have a deep relationship to security by design. In most cases, one or a
few engineers will take on this role. However, the role is explained with its
tasks, not necessarily meaning that it has to be occupied by a specific person.
Nevertheless, security is important and should never be underestimated.

External-facing APIs are used to expose internal data. If a company is in the
research business, it may want to share results with the entire world as a free
service or monetize it. In both cases, the goal is to share very specific data and
not the complete database. To prevent data leakage, APIs must apply security
measures. These measures relate to authentication and authorization, auditing,
network-level security, encryption, digital signatures, number of datasets, times
when data is available, not distinguishing between internal and external users,
and more. The role that is responsible for specifying these measures is the
security architect. If that role is yours, please remember this: Your failures
may end up in the news!

You, as a security architect, may not be responsible for the API design directly.
But you will still be blamed if the API exposes unauthorized data. Your task is
to define rules and guidelines and checklists that API developers must follow.
Below are a few typical cases for which you must develop guidelines. The list
is quite specific since it includes implementation details such as demanding
OAuth. To include those details or not depends on the type of guideline or
documentation and should be used as an inspiration.

•	 APIs for sharing personal data: Prevent any
unauthorized client or user from retrieving data. Use
OAuth 2.0 and OpenID Connect.

•	 APIs accepting federated users: Prevent unauthorized
third-party users from accessing the API. Use SAML3 or
OpenID Connect for that. Both technologies allow the
API to leverage digital signatures for validation purposes.

•	 APIs accessed anonymously: Even if an API is open
to any user, apply rate limitations and require TLS4 and
an ApiKey5. The goal is to audit the used application and
prevent the backend system from being overloaded.

•	 If APIs are used with HTTP, always require HTTPS. Plain
HTTP should be an exception!

3Security Assertion Markup Language, https://tools.ietf.org/html/rfc7522
4Transport Layer Security, https://tools.ietf.org/html/rfc5246
5ApiKey identifies an application

https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc5246

API Development 17

A very important aspect, but sometimes underrated, is auditing. If audits do
not capture interactions with a system, it is open for fraud. On the other hand,
if all interactions on all levels of the application are audited, it will most likely
perform badly. You have to find the fine line between what is required and what
is overkill. There is a nice comparison to be made with the world of machinery:
Design it to be as precise as needed and as inaccurate as possible. An
example of this is a specification stating that a tolerance of 0.1 mm is good
enough, although 0.05 mm could be achieved.

Here is an example where auditing was missing: I used to blog on a platform
that had different logical locations to group content for different audiences. At
some point, one of my blog posts was moved from my personal blog space to a
different one. In addition, I also lost all privileges on it so that I could not modify
or move it back. As it turned out, the system administrator was not able to find
any details about that event in the auditing system. He did move it back manually
and promised to take action to prevent such magical movements. (If you have
seen something like this in your system, you should stop reading and talk to
your product owner right now!) Just imagine if this was a banking system where
a transaction got executed without leaving any trace!

No matter what, as a security architect you should require all types of events
to be audited that you believe are necessary to secure your system, even if it
turns out that it is impossible to support them. There may still be a valuable
compromise between your requirements and preventing the system from
being usable.

These are tasks security architects should own based on their responsibilities:

•	 Specify requirements for auditing. Imagine the case where
you need to track the lifecycle of individual requests.
When was it received, when was the response created,
and what happened when and where in between?

•	 Specify when and where authentication and authorization
are required. This depends on requirements per API,
which makes it challenging. Nevertheless, these are two
important topics.

•	 Specify network-level authentication and authorization
requirements.

API Developers
There are many types of APIs and therefore there are many types of API
developers. If you talk to a member of the mobile app development team, you
may hear him say, Our SDK exposes APIs that we have developed. Same thing if
you talk to members of the API Gateway team: We have developed APIs that

Chapter 2 | API Stake-holders 18

expose features to external clients. This is a brief explanation on the type of API
developers handled in this section and in this book generally:

•	 API developers who expose APIs to the external
network

•	 API developers who expose APIs to the internal network

All other API developers are certainly welcome, but the focus is on the ones
above. If you ask me for the reason, it is very simple: it is my expertise, I
am a server guy. More importantly, though, this book is focused on securing
APIs that expose business data. That is not done by a mobile app SDK. But
Sascha, our SDK API exposes business data, too! Yes, I know. But this SDK API is
constrained by the external server API. And that external API is constrained
by the internal API. I envision it as a stream of data that gets weaker the
further away it gets from its origin. Figure 2-4 illustrates this.

Now that you know who this section is focusing on, and if this is your role, let’s
put some pressure on you. If you are hindering API adoption through bad
design, you are the one to be blamed; no one else! It is your responsibility to
delight your customers with a well-designed API. No matter what, if your API
is cumbersome, nobody will use it. All other aspects of your implementation
will be relatively less important when it comes to adoption. Third-party
developers will not consider your offering and internal developers will find
other solutions. An internal discussion will probably start like this:

The provided APIs are very sophisticated. Unfortunately, our use case is very different
so we have decided to develop our own solution.

Figure 2-4.  Reducing amount of exposed data when moving from internal to external
network areas

API Development 19

In other words:

What were they thinking? The APIs are not even remotely usable!

As an API developer, you will face many challenges. Big ones! Some of them
are created by your very own colleagues. The magic word is requirements.
Your security architect, client-side developers, business owners, backend
developers, and maybe even third-party partners all have requirements for
you. And many of those requirements will conflict with each other. If you
accept them all, you will miss timelines, your API will be difficult to use, it will
be too restrictive, it will perform badly, and it will be very difficult to maintain.

To survive this situation, you have to learn to filter out necessary and
important requirements from those that fit into the category of nice to have,
later. If you do not do that, you will be the one having to explain to your boss’
boss why the months (or years) of the long and very expensive API project
only produced a mess. Another side effect of not being able to say no is you
will see things you may not have seen for a while: stars in the night sky.
The reason is very simple: you will be the one taking the night shift, working
on escalations in your production system. I know because it happened to me!

These are tasks API developers should own based on their responsibilities:

•	 The main goal is to support the business requirements
made by the product owner.

•	 The second goal is to adhere to the given architecture
and the provided security guidelines.

•	 Follow best practices for API implementations.

Other Roles
There are other roles and teams in an organization that I have not specifically
called out. Documentation, QA, and Support are some of them. All these
groups are involved in API projects and they are important. The only difference
is that the former four groups are the ones sitting in the front row, they
are the ones making most decisions, and they are also the ones called when
escalations arise.

Needless to say, release parties have to include everyone!

Responsibilities
After reading this chapter, you should understand the four roles and their
responsibilities. Nevertheless, I would like to stress that topic.

Chapter 2 | API Stake-holders 20

People often want to take on responsibilities that are not theirs. Sometimes
they do it on purpose; sometimes they do not realize what they are doing.
For example, a previous manager of mine delegated tasks to myself and other
senior developers. However, he did not let go; he continued to take on those
tasks himself. When I confronted him with this, he immediately said, You are
right, I will step back! There is a big difference between delegating responsibilities
and letting go of them. Always pay attention to this and reflect it yourself.

Taking on other team members’ responsibilities has many drawbacks. I
like to talk about my time as a rugby player to explain how ownership of
responsibilities should work.

In rugby, there are 15 players, and each one is important. Each one takes on a
very specific role and a very specific position on the field. A rugby game can
only be won if all 15 members stick to their roles and positions. If a player
gets dragged away, he should go back to his original position as soon as he
can. The worst that can happen during a rugby game is players who ignore this
rule. Positions will be left empty and others will be occupied twice. Having a
position occupied twice is bad, but having positions empty is a catastrophe.
Dependencies are broken, players are confused, players lose confidence in
the team’s organization, they lose their trust in other players and finally, they
lose the game. Successful teams do not have this issue. Successful teams have
players who own, who are accountable, and who respect others. (Take a peek
at www.worldrugby.org/video/337898 and watch one of the best teams,
the New Zealand All Blacks,6 start winning the game even before it starts.)

If you apply this to software development, it is not that different. Each role
is important, each role has to be owned, and there has to be a general trust
among team members. In the end, everyone wants to win the game!

Unfortunately, this does not always seem work out. In comparison to rugby,
organizations have hierarchical structures and some team members are more
equal than others. Decision-making processes are often found outside of a
specific team. Due to these circumstances, it is even more important to be very
clear about who decides what and who is responsible for what. Never exclude
owners in any email thread or other discussions. Always be accountable for
your own piece of the pie.

During rugby games, there is a lot of shouting between players. During API
projects, there needs to be a lot of shouting, too! Not for personal reasons,
but for the sake of the project. Everyone involved has to be very critical. They
must be able to ask What was your decision-making process? If those types of
questions cause confusion or worse, an answer like Not sure, just thought this
may be the right thing to do..., must raise your concerns!

6In this case, the U20 team. Even at their young age they are very impressive!

http://www.worldrugby.org/video/337898

API Development 21

Ownership, accountability, reliability, and respect are the recipe for successful
API projects!

If team members are clear about their responsibilities, own them, and are
serious about them, the API project has a good chance of being successful.
Understanding responsibilities is one of the very first and most important
steps in any project.

Summary
An API project requires different roles to get involved and align their goals. It
is important to adjust to each other early and respect boundaries. Too often
teams believe that others know what they need or want, which is most likely
not the case. It is better to state the obvious often than fail later. If the listed
roles do not exist, they should be created, even as part-time jobs. Otherwise,
certain views get neglected, which will cause trouble in the form of escalations
further down the line.

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0_3

C H A P T E R

Importance
and Relevance
of APIs
APIs are important from different points of views. The business looks at
APIs from a revenue-driven angle whereas engineers see technical benefits.
Arguments on both sides must be considered; both sides must understand
each other’s desires. This chapter gives an overview of the arguments on both
sides.

The Business Value of APIs
Businesses look at APIs to reduce costs, open their system to a broader
audience, or monetize services. Although I am an engineer, I do get involved in
business-related discussions when I attend meetings with enterprise customers.
Those discussions are usually driven by engineers who seek advice on how to
leverage my company’s product in order to satisfy business needs.

3

http://dx.doi.org/10.1007/978-1-4842-4140-0_3

Chapter 3 | Importance and Relevance of APIs 24

My impression is that businesses are very well aware of the power APIs bring
to the table. If done right, the business can grow, costs can be reduced, and
new market opportunities can arise. Here are a few reasons why customers
have introduced external- and internal-facing APIs from a business point of
view:

•	 Omnipresent: Any user should be able to consume
services at any point in time and from any kind of device.

•	 Mobile first: Similar as above but with a focus on being
present in app stores. Even if it is just a simple app, they
want their company’s name to be found.

•	 Integrations: Enable easy user on-boarding and third-
party systems integrations.

•	 Modernization: Understanding that times change and
monolithic systems that use closed and undocumented
interfaces are difficult to maintain, upgrade, replace, and
support.

•	 Automatization: This may sound like a technical
requirement, but businesses are aware that a modernized
infrastructure can only be managed if processes, such
as testing, upgrading, and deployments are automated.
Automatization is possible only if APIs are available for
those tasks.

•	 Monetization: Monetize the usage of APIs. Some
businesses can provide data for which third-party
developers are willing to pay.

Not a single item of above was mentioned by accident or without reasoning.
Let me share the details for each one.

Omnipresent
The business requirement for “omnipresent” could be as simple as this: Users
need to be able to fulfill their needs within our application, independent of time and
location.

The interpretation could sound harmless and be communicated as such:
We need to provide a unified user experience across all online platforms, including
mobile and desktop applications. The user’s workflow should not be interrupted
when switching apps or platforms.

Before I explain the challenges associated with that, take a look at Figure 3-1.

API Development 25

“Omnipresent” references applications enclosed by the dotted lines. Everything
within that square should be usable “as one” app and practically everywhere
available. Here is an example use case: a user is on his daily commute home
from work and opens an app on his mobile phone. He checks account details
and realizes that he needs to update them. To do so, he opens the same app
on his tablet and expects to be able to continue his work where he left it on
the phone. Once he gets home, he turns on his desktop computer, opens the
same application, and finishes the work.

If you are an engineer, you may have an idea of the challenges associated with
this scenario. For everyone else, I will explain what those few sentences mean.
Applications running on different platforms are implemented using different
programming languages, often accompanied by proprietary protocols. For
example, an application implemented for Windows cannot be installed on an
Android platform. If it’s about desktop applications only, existing technologies
such as CORBA1 can be leveraged in some cases, even though it is heavyweight
and complicated. Unfortunately, that technology is not suitable for mobile
applications.

On the other hand, if it’s about mobile applications only, newer standards
such as Bluetooth2 and NFC3 can help. Sadly, these two technologies are not
generally available for applications installed on desktop computers. Running

Figure 3-1.  Components connected via APIs

1CORBA, Common Object Request Broker Architecture, www.corba.org
2Bluetooth, www.bluetooth.com
3NFC, Near-Field Communication, https://nfc-forum.org

http://www.corba.org
http://www.bluetooth.com
https://nfc-forum.org

Chapter 3 | Importance and Relevance of APIs 26

out of options, a completely different solution, and then applications that
communicate directly with each other, must be found.

Businesses have discovered that APIs are a way out of this issue. APIs enable
indirect communication between applications, no matter which platform they
are running on. Figure 3-1 indicates that communication via a component
named ApiProxy (more details on it in Chapter 6). The ApiProxy provides
RESTful APIs and all applications can leverage them. In combination with
a protocol that specifies how applications can be addressed and messages
exchanged, the problem can be solved and business requirements supported.

Mobile First
“Mobile first” expresses the desire to support mobile applications with a higher
priority than desktop applications. Businesses are aware that users expect
availability on any device, be it a phone, a tablet, or even a watch. Another
association with mobile applications refers to geographical independency.
Mobile applications are installed on devices that are carried around all over
the globe. Independent of the current location, users expect their applications
to be available and work just fine.

Mobile-first requirements are not only driven by businesses that provide online
services. They also apply to hardware providers such as in cars, cameras, hi-fi
systems, lights, washing machines, TVs, and many others. The availability of
mobile applications in these areas becomes more and more relevant. There
are multiple reasons for that, as far as I have understood it from customers.
On one hand, users want their devices to be connected with systems such
as Amazon Alexa and Google Home. On the other hand, third-party vendors
want to provide services based on those abilities.

Businesses are aware that providing at least a simple and well working mobile
application is often a minimum requirement to attract users, and with that,
customers. Businesses are also aware that APIs are the only realistic way to
support these apps. APIs become the enabler to get into the mobile application
market and, with that, participation in markets such as house automation.

Integration
Integration is always a big topic. Businesses want to be able to integrate with
other systems. They also want other systems to integrate with theirs. These
cases do not only require a business to provide APIs for its own and potential
third-party usage. It is also important to be able to leverage external third-
party APIs. Otherwise, a one-directional system gets created, which does not
surface all of the features that would be possible in a system supporting both
directions, similar to a car that does not have a reverse gear. It will only take
you so far before you get stuck!

http://dx.doi.org/10.1007/978-1-4842-4140-0_6

API Development 27

Here are typical cases that have been brought up during discussions:

Easy on-boarding of new users. In many cases, this refers to social login, which
is a process that enables users to reuse an existing social platform account
(such as an existing Gmail address) for creating a local account in the business’
system. This feature is purely driven through bidirectional API integrations.
Businesses know that a missing “... or use your existing xyz-platform account
...” button on their web site or their mobile app may cost them potential new
users. Having to create yet another username/password-based account is not
an acceptable process for many users.

In other cases, easy on-boarding refers to the process of users switching
apps or devices. Let’s say a user logged into the system using social login; he
now has a session within the businesses system. If the same user opens a
second app, his expectation is to reuse the existing session. In other words, he
should automagically be logged in. A similar expectation can be observed when
opening the same app on a different device. Here’s an example: my 10-year-old
son used to play a game on my wife’s phone. One day, he got his own phone.
When I told him we now have to find out how to transfer his gaming data to
his phone, he answered, Dad, just place the phones next to each other and the
data will move over.

The last case of easy on-boarding involves different platforms. It’s the same
idea as above, but in this case, users want to seamlessly switch from mobile
apps to web applications on their desktops. Many of you may have seen this
feature with WhatsApp4 or WeChat.5 These mobile applications allow users
to extend their sessions to web applications by simply scanning a QR code6
using their mobile app. Nothing else is required. With that, switching from the
mobile app to the web application only takes one click!

All these scenarios are API driven!

Do it all here use cases. Businesses do not want users to leave their application
due to what I call “missing completeness.” I refer to “completeness” like this:

Enable users to complete all their needs within one application!

Businesses are usually aware of their competitors. They are also aware that
the quality of their own online services may be one of very few differentiators.
Here is an example.

The fictional company SaschasSlowPackages is in the business of moving
packages from A to B. This company provides a mobile application with just
one feature, tracking packages. Other information, such as store locations,
office hours, package prices, is available on a static web site only. This mobile

4WhatsApp, www.whatsapp.com
5WeChat, https://web.wechat.com
6QR code, www.qrcode.com/en/index.html

http://www.whatsapp.com
https://web.wechat.com
http://www.qrcode.com/en/index.html

Chapter 3 | Importance and Relevance of APIs 28

application has almost no value and can’t count as a competitive advantage. To
find information about sending packages with SaschasSlowPackages, customers
must switch between the mobile app, the web site, and other random online
locations.

In comparison, the fictional competitor DirksFlyingParcels, which is more or
less a clone of SaschasSlowPackages, provides a feature-rich mobile application.
This application has all kinds of features: tracking packages, showing store
locations, calculating shipping prices in different currencies and with different
options, integrating with Google Home (When will my DirksFlyingParcels package
arrive in Vancouver?), chat-based communication with the parcel’s sender, and
feedback systems.

Most customers will choose DirksFlyingParcels simply because the non-
functional features are much better covered.

Businesses are very much aware of this. The most prominent example that
I am aware of is the Chinese-based app WeChat. My Chinese colleagues tell
me, that WeChat has everything they need. They can chat, they can make calls,
they can pay, and they can use city services, WeChat even counts steps! There
seems to be hardly any need to switch to another app.

Without knowing more details, it is pretty much a given that the system
behind WeChat uses (and provides) many API-based integrations. If you look at
Figure 3-1 again and concentrate on the lower part, you can see that multiple
components are connected to each other. Although it is just a very small
example, bigger systems are not much different from an architecture point of
view. Each connection represents messages that are being exchanged via APIs.

Modernization
Modernization is a general topic, nothing much to say here. However, businesses
are aware that new technologies are born every day and older technologies
move into IT heaven. Discussions with customers often go like this: Sascha, we
have this new product and we need to integrate it with our backend systems using
APIs. How do we do that and what do we need? The technology behind “we have
this new product” changes over time but “using APIs” is a pattern that has
been around for a while and has increasingly become more important.

What I have observed over the last few years is a general increase of products,
technologies, and tools that are very much dependent on APIs. The next
section on automatization will talk about it more, but the complete build
process of software products can nowadays be automated using APIs only.
Just two or three years ago that wasn’t possible, at least not in general!

Due to these trends, businesses have realized that all of the new features must
be API driven!

API Development 29

Automatization
In the past, businesses usually did not care too much about the process
involved in producing software. They also did not care about processes that
were not automated. Needless to say, that those times have changed. With
new types of expectations, newer technologies, and faster turn-arounds of
product versions, the process of creating software has gained visibility into
all layers of executive levels.

Automatization on a large scale cannot be achieved with monolithic systems
having proprietary interfaces. To leave those systems behind, businesses now
have a new set of terms they want in any software-related project. No matter
if it is about building systems or buying products, each piece of enterprise-
grade software has to be evaluated against the following criteria:

•	 Scalability: Depending on the current demand, systems
need to scale up and down.

•	 Upgradability: Upgrades into production environments
with no downtime.

•	 Testability: Whatever code it is, automation has to
include tests.

•	 Isolation: Different components should have the least
possible dependencies to each other.

•	 Configurability: Configurations for any environment

•	 Deployability: Deployments into any environment

•	 Version-ability: Any system needs to be versioned and
rollbacks must be possible.

You may say that none of these terms are especially new in IT. No, they are
not. But in the past, each one had manual steps associated with it. Here is an
example: until recently I heard the term white gloves action often, referring
to a few manual steps during a software installation or upgrade procedure.
Unfortunately, executing these few manual steps took up to 12 hours, with
no option of rolling back any of them. Luckily, those days are gone or at least
they are disappearing. With good automatization coverage, the same process
takes about 30 minutes. This is not only an overall shorter timeframe; this also
eliminates many potential errors.

Monetization
This is a very important topic, although it does not come up too often
during discussions I have. However, businesses are very interested in creating
environments that can support APIs for monetization purposes as soon as

Chapter 3 | Importance and Relevance of APIs 30

their systems are ready. In the end, this comes back to the readiness of the
omnipresent infrastructure. To monetize APIs, a system needs to be able to
audit transactions from an initial request all the way until a response gets
returned to the requesting client. Since API-based systems are not directly
coupled with each other, they still have to be designed so that values, such as
RequestIDs, can be tracked at each step of the way. An example of a business
requirement could be this:

Any request needs to be audited and logged in a way so that invoices can be created
based on API usage per client and per user.

This requirement may sound simple, but if you look at the small example in
Figure 3-1, you can see that it has a big impact on all system components. All
APIs have to accept the input and output values included within any request.
This has to be considered right from the beginning.

Without an explicit monetization model, APIs are indirectly monetized
through products that provide access to audiences that weren’t available
without the APIs.

Technical Value of APIs
First of all, APIs are the foundation for realizing business requirements, especially
the ones listed above. This is a very high-level statement, but it is important
to be conscious about it (please close your eyes and say it to yourself, very
slowly!). Once that becomes the mindset, nobody will be scared of new
requirements! The answer will be We do not have an API for that, but, we can
build one!

I have been in many discussions that interpreted missing APIs as broken
products rather than requirements that had not been requested yet. In the
right environment, new APIs can be published in a fast, reliable, scalable, well-
documented, and well-tested way to support business value within a short
period of time.

For some readers, the technical value of APIs may be very obvious, specifically
for those who have experience with API-based systems. But for readers who
tackle this topic the first time, it may be difficult to see the light at the end of
the tunnel. I will try my best to nail it down.

Here is something to remember:

APIs are contracts!

Yes, they are contracts! Chapter 4 talks more about this, but it is so important
that I must mention it frequently. Once the contract is written, there shouldn’t
be any questions and all involved parties can start working. Just like a contract
between a homeowner and construction workers, this contract should define
requirements that all parties have to adhere to.

http://dx.doi.org/10.1007/978-1-4842-4140-0_4

API Development 31

These contracts define sets of rules that dictate how a specified business
value can be accessed. These contracts are expressed as human-readable
and machine-readable documents. They are implemented as programming
language-independent interfaces. Here is an example, which is explained in
multiple steps.

The Idea

	1.	 The business owns a database that contains lists of users
and the products they have purchased in the past.

	2.	 The business wants to make this data available.

	3.	 The data should be made available to different audiences
for different purposes.

The Requirements

	1.	 Enable users to retrieve the list of their purchased
products.

	2.	 Enable third-party partners to retrieve anonymized lists
of all purchased products.

These are two different requirements for the same dataset. This could be a
challenge, but not with APIs!

API 1: The List for Users

Human-readable documentation: To retrieve the list of products, an
authenticated user and an authorized application are required. The
communication has to be encrypted. The used message protocol is based on
HTTP and the accepted HTTP method is GET. Lists are only produced for
the authenticated user. An application needs to provide an oauth access_
token as a credential associated with the user and the application itself.
The list is returned as a JSON message.

Machine-readable documentation: This type of document (Swagger7)
cannot be shown in all detail here, but the most important pieces include the
following:

Request-definition:

Method: GET
Scheme: HTTPS
Path: /list/products/users
Header: Authorization: Bearer {access_token}

7Swagger, https://swagger.io

https://swagger.io

Chapter 3 | Importance and Relevance of APIs 32

Response-definition

HTTP status: 200
Header: content-type: application/json

Body:
{
 "data": [{
 "user": "{username}",
 "products": [{
 "product": {
 "name": "computer",
 // the payload would be expressed as JSON structure,
 // this is an example of a possible but shortened response

API 2: The List for Third Parties

Human-readable documentation: To retrieve the list of products,
an authorized application is required. The communication has to be
encrypted. The used message protocol is based on HTTP and the accepted
HTTP method is GET. Lists are produced with no user information. An
application needs to provide an oauth access_token as a credential associated
with the application itself. The list is returned as a JSON message.

Machine-readable documentation: The most important pieces are the
following:

Request-definition:

Method: GET
Scheme: HTTPS
Path: /list/products
Header: Authorization: Bearer {access_token}

Response-definition

HTTP status: 200
Header: content-type: application/json

Body:
{
 "data": [{
 "user": "",
 "products": [{
 "product": {
 "name": "computer",
 // the payload would be expressed as JSON structure,
 // this is an example of a possible but shortened response

API Development 33

Judged by the documentation, the differences are very small. Judged by the
responses, the differences are huge! Whereas API 1 may return a list of tens
of values for just one user (see the “user” in the response body), API 2 may
produce hundreds of values without user context.

From an API point of view, it comes down to differences only in the Path
component of the machine-readable documentation: /list/products/
users vs. /lists/products. In this example, two APIs have to be maintained
to support two requirements.

However, in a real-life scenario these APIs could be merged. This is due to
the fact that one requirement stated access_token associated with user and
application and the other stated access_token associated with application. This
means that API implementations are able to distinguish between access_token
associated with users and access_token associated with applications only. This
reduces the number of required APIs by 50%. And with that, maintenance,
testing, documentation, and scaling tasks are also reduced by 50%.

The documentation could be changed to the following.

API: The List of Products

Human-readable documentation: To retrieve the list of products, an
oauth access_token is required. The communication has to be encrypted.
The used message protocol is based on HTTP and the accepted HTTP
method is GET. Lists are produced without user context unless the given
oauth access_token is associated with an authenticated user. The list is
returned as a JSON message, either with or without user information.

Machine-readable documentation: This document looks as before,
except that two different responses are specified:

Request-definition:

...
Path: /list/products
...
Response-definition: with user context
--
...
Body:
{"data": [{"user": "{username}","products": [{ ...
Response-definition: without user context

...
Body:
{"data": [{"user": "","products": [{ ...

Chapter 3 | Importance and Relevance of APIs 34

The above documentation has left just one question open: What happens in
error cases? They would have to be documented as additional responses. In our
example, only two errors are possible:

	1.	 A missing or invalid access_token: The response
would include HTTP status code 401 (unauthorized) and
a message containing invalid_request.

	2.	 Unsupported http method: The response would
include HTTP status code 405 (method not allowed).

The few listed documents specify how these APIs can be consumed and what
kind of responses they produce. No questions to be asked. On the other hand,
none of the documents have named any details about the API implementation
itself. And that is the beauty! No consumer of those APIs needs to know! Not
needing to know has advantages:

•	 Foremost, the API consumer can be any type of application,
independent of the programming language.

•	 Any HTTP-capable testing tool can be used. No specific
programming language is required.

Let’s have a look at Figure 3-2, derived from Figure 3-1. If all the components
depend on programming language-specific interfaces, it would almost be
impossible to keep the system running.

Figure 3-2.  Components providing interfaces of different programming languages

API Development 35

Communications via APIs, on the other hand, have no notion of language
whatsoever. Components can be replaced, and implementations can be
updated. As long as the APIs stay the same, there is not even a need to share
the information about updated or replaced components.

Another topic is testing!

The API is well defined, and all types of requests and responses are documented.
Testing tools that are capable of processing machine readable documents can
generate code stubs. These code stubs can be completed, and automated
tests can be executed. Due to the nature of APIs not exposing or documenting
implementation details, they can be tested using a black box8 approach. This
reduces the number of required test cases and eliminates the need for manual
tests. Except for sanity checks, APIs do not need a lot of personal love!

After looking at this example and listing a few advantages of using APIs, I would
like to circle back and look at some of the general business requirements
and how they can be satisfied with APIs. I am listing them in order of their
importance and how customers usually prioritize them.

•	 Integrations: This is the top reason for using APIs. I
have not seen any other topic named as often as this
one. Enterprise systems are fully stacked with all kinds
of products. All of these products were acquired from
different vendors that use different technologies and were
not designed to work hand-in-hand with other products.
Needless to say, customers still want those products to
work together and exchange messages using one way or
the other.

The only common feature practically all products share
is the ability to consume and provide APIs. With that,
integrations are possible and actively used. Of course, it
is not always as straightforward as it may sound. There
are cases where products are flexible enough to be
modified, so that required APIs can be made available.
But sometimes that is not possible. In those scenarios
ApiProxys come into play. They are made to be adjusted
to any API and take on the role of a mediator. They
receive messages on one API, translate it to another,
and forward the message to the recipient.

Either way, with or without ApiProxy, APIs enable
integrations and with that business requirements can
be satisfied

8Black box testing, http://softwaretestingfundamentals.com/black-box-testing/

http://softwaretestingfundamentals.com/black-box-testing/

Chapter 3 | Importance and Relevance of APIs 36

•	 Upgradability/deployability: Upgrading and deploying
software components are very different tasks. However,
from an API point of view these two tasks are very similar.
Customers usually do not specifically require APIs as such
in this context, but they require command-line interfaces
(CLIs). CLIs are used for integrations with build tools and
to eliminate the need for manual actions. Even in this case
APIs are the enabler. The exciting part is that those APIs
can support command-line interfaces but also UI-driven
tools. One API, multiple use cases supported!

•	 Configurability: Configuration files are persisted and
managed using version control systems such as Git.9 In
conjunction with online services such as GitHub,10 these
files can be managed via APIs. Having the APIs available,
it can be imagined how these APIs can be used to move
configurations onto a software component.

•	 Testability: I have spoken to developers who work
in a fully automated environment. They finish their
implementation, including tests, and submit the code to
the version control system. Once that is done, they do
not even known when and how their code moves into
the production environment. They will only hear back if a
test has failed during the automated deployment process.

•	 Version-ability: This does not only reference the ability
of defining version numbers after a configuration has
been applied to a software component. No, this also
refers to the idea of activating and deactivating different
components without manual intervention. A typical use
is the selection of a specific deployment by version.
Workflows can be supported this way, such as deploy
version 1.2.00, test it and tag it, if successfully tested, but
remove it and redeploy the previous version if the test fails.
This is another use case where APIs are the enabler!

I hope this section helps you understand the importance and relevance of
APIs from a technical point of view. I encourage you to take some time and
experiment with APIs using existing tools and platforms. After a few successful
tests, the whole picture will come together nicely. I can almost promise that!

9Git, https://git-scm.com
10GitHub, https://github.com/features

https://git-scm.com
https://github.com/features

API Development 37

Business Requirements vs. Technical
Requirements
Most (verbal) fights that I have witnessed during my IT career were fought between
members of business and engineering teams. Product owners and architects want
a slick and easy-to-use application. These applications should also be safe to use,
reliable, maintainable, modularized, future proof, scalable, modern, well architected,
documented, and tested. Generally, product owners and architects are on the
same page. But for some reason, product owners will sometimes say something
along these lines, which emphasizes their different views:

We have a release date and we need to get something out of the door. Please come
up with an MVP (minimum viable product) that I can take to my boss!

My personal reaction is this: Really? How is the proposed product not an MVP
already? And why do we still talk about release dates in a CI/CD11-driven world?

I have been on the engineering side of things always, but I still have a hard
time following the release date arguments. As someone with a background in
machinery and who has repaired helicopters, my feeling is that the software
business is far from being comparable with other industries. Can you imagine
the following discussion in aeronautics?

We have scheduled the first public flight with passengers of SpacePlane-X75
for September. The engines won’t be fully tested by then and cannot be
started if the outside temperature is below 25 degrees Celsius. However,
we cannot move the date. Please come up with an MVP that I can take
to my boss.

OK, I got it, here it is: preheat the engines and do not run them with more
than 80% of their capacity. That should take us off the ground and three
months later we will fly again to show off what we can really do!

I would now like to share some cases of “business vs. engineering” discussions
that I have witnessed. Some of them may sound familiar; some may even be
based on talks between you and me. Please do not be confused by technical
terms you may not know; it is more about the type of conversation. My
recommendations are stated in the row named Recommendation. You may
want to consider it too.

•	 Topic: Authentication = No redirect wanted

Business: We want to use the authorization_code flow
but do not want users to be redirected to a different
location.

11CI/CD, Continuous integration/continuous delivery

Chapter 3 | Importance and Relevance of APIs 38

Engineer: It is essential to redirect to the third-party
server to highlight to users that they are not sharing
their third-party credentials with our system.

Business: Redirects scare users and give us bad ratings
in the app store.

Conclusion: An iFrame will be displayed on the cur-
rent web site that contains the third-party server
login page. Unfortunately, this will leave users skepti-
cal since they cannot identify the owner of the login
screen. Critical users will not consider using your
application in the future.

Recommendation: Redirect users to the third-
party server. Users need to see the security-icon and
who’s hosting the login page in the browser URL. This
addresses privacy concerns.

•	 Topic: Authorization = No explicit consent wanted

Business: We do not want users to see a consent
page.

Engineer: Third-party applications need an explicit
consent by our users before sharing personal details.

Business: Most users are not aware of that anyways
and the consent screen will distract them. This will
give us bad ratings in the app stores.

Conclusion: Authorization flows will be modified to
skip the consent screen; third-party apps will be con-
figured as preauthorized.

Recommendation: Display the consent screen at
least once! Whenever you empower users, they feel
respected and in charge of their own data, leading
them to trust us more.

•	 Topic: Session = Never-ending session wanted

Business: We do not want users to log in more than
once until they actively logout.

Engineer: We cannot trust any type of token-based
credential with an endless lifetime if no proof-of-pos-
session is supported.

Business: You know what we want. Find a solution.

API Development 39

Conclusion: Authorization servers will be con-
figured to issue a session token that has an endless
lifetime. Leaking tokens enable unauthorized entities
(either applications or persons or both) to imperson-
ate users. If users ever discover this, they will abandon
this company.

Recommendation: Issue a short-lived token to
consume resources and a long-lived token to retrieve
a new short-lived token. Exchange the long-lived token
only via backchannel communication. Implement a
flow that proves that users still own the session but
avoid any knowledge-based techniques (most famous
one: What is your mother’s maiden name?).
Instead, have users prove the ownership of devices.
For anything users feel is important to them (like bank
accounts) they will not mind having to prove that they
are the eligible owner of almost anything.

These three example discussions come up over and over again. Usually it is
the business side that wants engineers to find solutions that enable custom
message flows, for example, in OAuth 2.0. When I get involved, I do not
feel that I am answering technical questions. I mean, the questions I get are
always based on technology. But they reflect requirements that were stated
by businesses, and with that, an implementation change is not a change in
technology but an enablement for the business.

In the beginning, I interpreted these types of changes/requirements as a kind
of disconnect between businesses and their engineers. But over the last few
years I have realized that I am wrong. Although there will always be conflicts,
especially when required modifications raise privacy or security concerns, in
the end, technology is not available for the sake of technology but to make
businesses happen. And what I have learned from that is this:

APIs are the foundation for realizing business requirements!

Summary
It is important for any involved party to know why APIs are relevant in their
specific case. Without knowing this, wrong decisions will be made, and the
success of any API project will be in jeopardy. The overall business goals of
reducing costs and gaining revenue will not be achieved. If this chapter was a
success, it should be easier to follow arguments toward systems that are fully
API-driven.

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0_4

C H A P T E R

API Design
Although there are many types of APIs for many different purposes, there are
common aspects that should be considered independently of the use case.
After reading this chapter, a foundational knowledge should be available.

General Guidelines
After becoming a member of Twitter, one of my very first tweets was the
following:

When designing APIs, it will either be simple or complicated. There
is little in between #APIManagement

That was in February, 2015. By the time this book is published, that statement
will be three and a half years old. I have been working with APIs almost every
day since then and I think that statement is still valid!

I wrote that statement after getting the task of designing a storage API. These
were the requirements, functional and more or less non-functional:

•	 Functional:

•	 A client sends a request including a message to be
persisted. The API returns a key associated with the
persisted message.

•	 A client sends a request to retrieve the persisted
message. The client includes the issued key that
identifies the message.

4

http://dx.doi.org/10.1007/978-1-4842-4140-0_4

Chapter 4 | API Design42

•	 Non-Functional:

•	 Only the client is able to retrieve the message.

So far, so good. Sounds simple, right?

If you ever get a “simple” requirement like this, you have to ask questions!
Otherwise, you may assume what the intended behavior should be. Do not
mistake unanswered questions or undefined behavior as implementation
details! For example, if you order a car, you will most likely include the desired
color. If you do not, the car manufacturer will ask you for that information. He
will not assume which color you want!

Here is a list of questions based on those requirements:

•	 Are there limitations in regard to the message size?

•	 Are there limitations in regard to the number of messages
a single client can persist?

•	 Are messages persisted forever or is there an expiration
time?

•	 Are there requirements in regard to the issued key?

•	 Should messages be encrypted when not in use and
stored in the database (encrypted at rest)?

•	 Should a client be able to request a list of all keys that
have been issued to it?

•	 Should a client be able to replace or update an existing
message?

•	 How should a client authenticate itself?

This example started off simple but became very complicated very quickly.
However, asking all these questions early will save a lot of resources in the
long run!

The questions above are very specific to that one API. But there are general
questions about APIs. A few are below. They are the typical ones I receive in
my current role from customers:

•	 Shall we use SSL or SSL with client authentication?

•	 Shall we accept certificates signed by well-known
certificate authorities (CA) or act as a CA and sign CSRs1?

•	 Shall we check for message sizes?

•	 Shall we include a rate limit check?

•	 How shall we authenticate the requesting user?

1CSR, certificate signing request

API Development 43

In general, the types of questions have not changed over the last few years.
Anybody who wants to expose APIs is simply concerned about the security,
accessibility, usability, reliability, and general protection of their systems.

However, more often questions around OAuth, OpenID Connect, JSON Web
Token, and microservices come up these days. When these questions are
asked, it is not uncommon to see them in combination with the desire of
wanting to adhere to an RFC but also to add customizations. In addition, the
questions are often combined with a conversation that starts like this: Sascha,
our case is very special, and it is really complicated. In most cases, it actually
turns out to be complicated but not unique! I have observed this especially in
cases where different authentication and authorization schemes need to be
combined. Many customers have to support legacy systems that need to be
used in conjunction with newer methods. Getting their head around useful
and secure combinations is not often required and therefore new to most
developers I work with. I sometimes compare the perception of the asking
customer with a situation where something was new to me.

For example, some time ago I bought a motorhome. As soon as I got it,
the following happened: I found videos on the topic of motorhomes, I found
motorhome sections in supermarkets, and I found specialized shops in my
area. I never noticed those supermarket sections and shops before. After
talking to me, developers often realize that their situation wasn’t as unique as
they thought and not as complicated as they anticipated.

Usually I get involved very late in the design process of a solution after
developers already went too far down the wrong path to completely fix it
in a given timeframe. (You may have heard of the timeframe: It is too late, we
are going live next week.) In those cases, a rescue mission gets reduced to
minimal changes that improve the system behavior but primarily identify
potential enhancements for the next release. These are frustrating situations
considering the fact that an initial design meeting (or a few) could have changed
the complete path of execution.

It is very important for any future system to discuss the design with
someone who asks questions, provides constructive criticism, has a high-level
understanding of the targeted solution, and whose goal it is not to entertain
his ego. As a matter of fact, it is about defending the design against others. If
that is successful, the chances for having a good design are high.

Without getting very detailed, there are a few guidelines that should always be
considered as part of any API design session:

•	 Good documentation: This is the first step towards
API adoption. Always look at it this way: anything that is
not documented does not exist! If you want features to
be adopted, make them visible to your target audience.
In addition to human-readable documentation, provide

Chapter 4 | API Design44

documents such as Swagger.2 This enables developers to
use your API with less manual programming effort. Some
libraries will even generate code stubs based on Swagger
documents. I know that some will say, Good code does
not need documentation. That may be (partially) true for
programming languages but not for APIs. If a developer
browses a catalog of APIs with no explanation of what
they do and how they behave, it will become a matter of
trial and error. And since good APIs will expose limited
information about errors only, it is nearly impossible for
developers to figure out how particular APIs may be used.

•	 Standards-based interfaces: In most cases, a RESTful
interface is widely accepted as good practice and well
understood by developers. Do not try to be creative; use
that creativity somewhere else.

•	 Performance: As a professor during my studies
used to say, The only thing that matters is performance,
performance, performance! And I agree; it is very important.
Unfortunately, it is difficult to measure. It depends
on the use case. You must define data points yourself.
Performance data points should be specified as part of
the general SLA3 of your API. When specifying the SLA,
include response times, numbers of supported requests
per time frame, maximum number of concurrent requests,
maximum message sizes, and anything a developer needs
to know when consuming your APIs. Without an SLA,
you are opening the door for complaints and your only
(helpless) answer will be Let me check; I have no idea!

•	 Versioning: Your API should be versioned. Do not break
interfaces from one release to another.

On the same note, make sure you pay attention to challenges that are especially
known for HTTP-based API systems:

•	 Statelessness: HTTP APIs are stateless by design. Extra
effort is required to support state.

•	 Latency: The time a request travels from a client
computer to the server computer that implements the
API. The overall latency includes server-side processing
time too. Practically each hop in a network adds latency!
We had customers who have said, I do not want latency!

2Swagger, https://swagger.io
3SLA, service-level agreement

https://swagger.io

API Development 45

If your product cannot reduce latency, we will not consider it!
Latency cannot be removed, so be aware of the fact and
introduce a test system that identifies latency between
different hops. You need to isolate the bottlenecks that
add latency; otherwise you will try changing your system
in the wrong areas, which I have seen often.

•	 Reliability: You need to specify the required availability.
Having APIs available for 100% of the time is a big effort.
This topic requires serious discussions during the design
phase. For example, in this moment while I am writing, my
blogging platform service provider has closed the system
for a period of 12 hours! If you are a bank or a gaming
platform, you may want to choose a design that requires
none or very short maintenance windows.

•	 Accessibility: Once an API is available, there must be
rules regarding its accessibility. Who can consume it when
and how often? On one hand, this is a technical question
but from a product owners’ perspective you may want to
clarify who the intended audience should be.

If you start your working sessions with a checklist that contains the topics
above, you have done the first step towards a good API!

Getting Started
In a new project, it is always difficult to get from nothing to something that
is working and can be used for further detailing. To get off the ground, I
always recommend starting with a design document, taking the “contract first”
approach. You must create a design document that is machine readable. Some
developers say this is too hard, but in my point of view there is nothing better
than it.

Here is an example of how to get documentation, working test clients, working
test suites, mock service stubs, all of that with just a few clicks. I use open
source tools that help me regularly; they may help you, too. Try the following
to get an idea of the flow:

	1.	 Open a Swagger example document at editor.swagger.io.
The content will be similar to Figure 4-1. Use it as your
starting point. It may take some time to get used to it, but
once you get the hang of it, it should become the default
approach. The document contains a basic description, the

Chapter 4 | API Design46

host name (line 14), supported schemes (lines 16, 17),
the URL path (line 23), and the response (line 27). The
document can be copied onto your machine as JSON4 or
YAML5 file.

	2.	 While you are developing the Swagger document, the
same screen will generate a UI. This UI contains two
parts: one static component and one dynamic component
that lets you execute your APIs. Figures 4-2 and 4-3 show
these screens.

Figure 4-1.  Example Swagger API definition

4JSON, www.w3schools.com/js/js_json_intro.asp
5YAML, http://yaml.org

http://www.w3schools.com/js/js_json_intro.asp
http://yaml.org

API Development 47

	3.	 Once you are happy with your API document, the next
tool waits for you. It is SOAPUI6 (which is my personal
preference, but other tools can certainly be used).
SOAPUI can import the Swagger file to get started with
your testing effort. Figure 4-4 shows a screenshot. You
can find a generated test request (Request 1), a TestSuite
(TestSuite 1) with a test case, and a section of load tests
(Load Tests). In addition, a mock service was generated
(REST MockService 1).

Figure 4-2.  Static view

6SOAPUI, www.soapui.org

Figure 4-3.  Dynamic view. The “Try this operation” button actually works!

http://www.soapui.org

Chapter 4 | API Design48

With very little effort you can now start playing around with your API, you
can find issues in your design, and you can discuss your findings with other
team members. Although I have not mentioned how to design APIs yet, at
least you now have tools at hand to help you put the bits and pieces together
once you get there.

If you ask me why I suggest the “contract first” approach, have a look at Figure 4-5.
Having the Swagger (or for that matter, any other machine-readable) document
available, team members can start working on their part of the project at the
same time. No need to wait for anyone else!

Figure 4-4.  SOAPUI, after importing a swagger document

Figure 4-5. Team members can begin working at the same time. The role of the API
Designer is usually taken on by a developer together with a product owner.

API Development 49

Another advantage is that all details of the API have to be specified explicitly.
In comparison, if you take a code first and generate a Swagger approach you
totally depend on that “generation tool” doing the right thing. That is bad since
you need to be in control of your API and not some random tool! In addition,
modifications of the API are most likely required between the “first shot”
and the final result. This is easy to handle if the “contract” gets updated and
all other artifacts follow the changes. Otherwise, the implementation may be
updated, but not exposed in the contract. And with that, all other dependent
groups will miss out and fail at some point in time.

Designing the First API
The difference between using APIs and designing APIs is not too obvious. It is
like eating a meal and preparing a meal! After having eaten many meals, it may
seem easy to prepare one. However, once you are on the other side of the
kitchen counter, it is pretty different!

The same applies to APIs. If you have used one, it may feel easy to design one
yourself. Nevertheless, using an API, implementing an API, and designing an
API are not comparable tasks. Further down, it is all about designing APIs.

The following sections contain a few tips that always work.

Choose the Right Name for the API

Imagine that a developer browses through a registry of APIs. He is looking
for easy and clear names that indicate what the API does. Some examples
are Manage User Attributes if the API manages user attributes and List User
Attributes if the API is a read-only API.

Choose an HTTP Method

It is very common to use them like this:

•	 GET: Retrieve data

•	 POST: Submit data

•	 PUT/PATCH: Update data

•	 DELETE: Delete data

Sometimes GET and POST are both accepted. If you attempt to do so,
document GET to be used with query parameters and POST with a message
body.

Before I move on, there are a few rules an API should adhere to. All HTTP
methods have expected responses by convention. This is crucial, please pay
attention.

Chapter 4 | API Design50

•	 GET: A response should have HTTP status 200.

•	 Implementing an API that does so will comply with
libraries that are commonly used.

•	 DELETE: A response should have HTTP status 200 or 204

•	 Status 200 indicates a successful request with a
payload in the response.

•	 Status 204 indicates a successful response but with
no payload whatsoever.

•	 POST, PUT: A response should have HTTP status 200.

•	 If POST created a message, provide the created
message in the response, even if it is a copy! If the
POST request message got enriched with added
values such as a creation date, it is even more
important.

•	 If PUT modified a message, return the final result!

Enabling clients to use the smallest number of requests to fulfill a task is a best
practice.

Choose the scheme, such as HTTP or HTTPS

Using HTTP should be an exception, HTTPS is the way to go. If you ever hear
an argument against HTTPS due to costly SSL (TLS) certificates, you can easily
put an end to that discussion. The certificate authority Let’s Encrypt7 is free of
charge and its signed certificates are accepted by all browsers and practically
all libraries.

On the other hand, even when using HTTPS, it is not always necessary to have
publicly signed certificates. If your system provides the server and the client,
those two entities can be built to trust self-signed certificates.

Choose the right URL Path

This is a tough one. There is no single right answer. URL paths (sometimes
also called “routes”) have to be considered together with the HTTP method.
Here are examples:

•	 Retrieving a single attribute of a single user:

•	 GET /manage/user/{userId}/attribute/
{attrId}

•	 {userId} would be substituted by a user Id

7Let’s Encrypt, https://letsencrypt.org

https://letsencrypt.org

API Development 51

•	 {attrId} would be substituted by an attribute Id

•	 The response would include exactly one
attribute of exactly one user.

•	 Submit attributes for a single user:

•	 POST /manage/user/{userId}

•	 {"attributes": [{"age":66}]} ← payload

•	 Requests that submit data should carry the data
(payload) within the body of the request.

•	 The HTTP header Content-Type has to
be provided. In this case, since JSON gets
submitted, the value would be application/
json.

•	 Updating attributes for a single user:

•	 PUT /manage/user/{userId}

•	 {"attributes": [{"age":67}]}

•	 More or less a copy of the POST request, but
PUT indicates that existing attributes are updated

•	 Deleting an attribute of a user:

•	 DELETE /manage/user/{userId}/attribute/
{attrId}

Do not build APIs that ignore the HTTP method but instead require the task
in the URL path (.../user/get?userId={userId}) instead of GET .../
user/{userId})! I have done that in the past and it causes confusion.

Specify useful response messages

All tips are important, but this one has potential to make a difference like day
and night. Whatever you do, always keep the following in mind:

APIs are meant for machines, not people!

This is so important because response messages that are meant for people
are not usable in a machine-to-machine environment! This may seem obvious,
but it is not to everyone. When machines communicate with each other, they

Chapter 4 | API Design52

should be able to go with the flow. By that I mean, a request message should
result in a response message that completes a task but should not require
further requests. Here are two bad examples. I was responsible for the first
one myself.

	1.	 An API persists a message. The response is true.

	2.	 An API deploys a new service API. The response is

{"success": "the API has been deployed
successfully"}.

Both responses may be useful for a person, but not for a machine. Here is why:

	1.	 The persisted message was enhanced with data such as
an ID, a creation date, and a status. But the submitting
entity never knew about that!

	2.	 The deployed service was enhanced with an ID. That ID
was the only way to retrieve details about this service.
Unfortunately, the requestor never got the value! The
really bad part about this was that there was potential
for a timely gap between “deployed” and “active.” A
requestor had to poll the API to find out if the service
became active. That poll required the ID! The requestor
now had to send another API request to get a list of
deployed services, find his by searching for it by name, and
then extract the ID.

To illustrate this even further, look at Figure 4-6. It has
a section for a bad response. To find out if the newly
deployed service is active, a client needs to send further
requests to get the needed information about the deploy-
ment status. This could have been completely avoided by
responding with all details right way!

API Development 53

When I used the deploy API the first time, I got angry! I believe other users
got angry, too. API design should avoid those mistakes whenever possible!

Table 4-1 is very simple but it covers high-level information about an API.
It can be used as a starting point for discussions.

Figure 4-6.  Bad response vs. good response

Chapter 4 | API Design54

Table 4-1.  High-level Information About an API

General Info

What is the purpose of the API? This API receives a location and returns
information about the current weather.

What is the name of the API? Weather info

Is this API public ? Yes

Are maintenance windows acceptable? Yes, 15 minutes/month

High-Level, Technical Info

Do clients need to authenticate? No

What is required to use the API? Location, optional a unit for the temperature
(Fahrenheit, Celsius)

Which HTTP methods (verbs) are
supported?

GET

What is included in a response? Location with city, province, country, temperature,
unit, a weather icon

What is the response message type? JSON (JavaScript Object Notation)

Example of a success response {

"weather": [{"city": "Vancouver",
"province": "British Columbia (BC)",
"country": "Canada", "temperature":
"21", "unit": "Celsius", "icon":
"https://url.to.an.image"}]

}

Example of an error response {

"error": "invalid_request",

"error_description":"the given location
is unknown"

}

When this table is passed around to team members, questions will arise.
About 60% of questions and complaints can be addressed even before anyone
starts working on it in any way.

https://url.to.an.image

API Development 55

Going a Little Further
Usually APIs are part of a larger ecosystem. A single API by itself will often
not be very useful. When APIs are built, each one takes on a small role among
others. This is already the case within a small web site. Each button on a web
site will send a request to an API, in many cases a specific API just for this
button. For example, a menu item on a web site may be labeled About. If the
menu gets selected, there may be entries such as Contact, Who we are, Office
locations, and Legal. This may result in four APIs!

Continuing this example, each single API has to be designed for itself, but
also in conjunction with the others. A web site has no flow; buttons or menu
items are selected randomly. Therefore, when designing APIs that are meant
to work together as one application, they must accommodate all cases; either
selected in an expected or random order. Table 4-1 is a good example. Let me
emphasize the WebApp and WebServer components in the derived Figure 4-7.

The web application (WebApp) has no way of controlling the flow in which the
APIs, hosted on the web server (WebServer), are being called. The challenge is
that the APIs should not have hard dependencies to each other. On the other
hand, the web server may need to handle state across those APIs.

Figure 4-7. WebApp and WebServer manage multiple APIs

Chapter 4 | API Design56

In the end, it becomes a challenge within the API implementation, not so
much in the design of the API. Nevertheless, those soft dependencies have to
be considered. In Chapter 6, which covers implementation details, examples
will be covered. When discussing microservices in Chapter 8, this topic will
be relevant again.

User Interface vs. BackEnd API Design
User interface-driven API design approaches the topic with a focus on serving
user interfaces (UIs).

Backend–driven API design approaches the topic with a focus on serving
backend systems.

I am not sure if this is a typical differentiator, but at least I like to do it this way.
It allows me to start the design process with completely different mind sets,
matching the requirement. Another way to emphasize the difference is by use
case for each type of API.

A use case for UI-driven API design: UIs need data structures that contain
everything they require to fill up UI elements with data after just one request and
one response (ideally)!

A use case for backend–driven API design: Backend APIs need to support
command-line tools that integrate with operational systems!

UI-Driven API Design
The idea behind it is simple. For example, an online banking web application
has a View Accounts button. After clicking it, the UI displays the most important
account details. Immediately! This behavior is not possible if the UI does not
receive what it needs in its preferred format.

To get a better understanding, recall Figure 4-6. Imagine the bad response in
this scenario, even extended to multiple bad ones, as shown in Figure 4-8.

http://dx.doi.org/10.1007/978-1-4842-3936-0_6
http://dx.doi.org/10.1007/978-1-4842-3936-0_8

API Development 57

Bad Response 01 includes account IDs only, which is pretty much useless for
the client. The client has to iterate over the list of account IDs and send one
request each to the server to retrieve details for the matching account. For
users with one account, that may be acceptable, but otherwise the usability of
this web application is dreadful.

Bad Response 02 returns all required details but in the wrong message format.
The client now needs to transform the message first so that details can be
selected and displayed.

UI-driven APIs have several requirements that are especially relevant. Before I
list them, please remember: always assume that a web application is used from
a mobile device, which has a data plan and should only be stressed for good
reasons!

•	 Data volume: The required data volume should be
reduced to a minimum. One response with a large
message may be better than multiple medium-sized ones.

•	 Network traffic: Fewer required requests to run an
application are better. If an application needs to execute
requests every other moment, it will fail sooner or later,
especially on mobile devices that have limited network
connectivity. It will also impact the server due to constant,
unnecessary requests.

Figure 4-8.  Bad responses

Chapter 4 | API Design58

•	 Message types: Always remember, UI developers are
very lazy! They want data served in a format that can be
used as is with little effort. This is not meant as criticism;
they just know what they need. What they do not need
are messages that need a lot of massaging before they can
be processed. Implementing a user-friendly UI is already
a big challenge by itself. Always consult UI developers in
UI-driven API projects!

Long story short, enable UI developers as much as possible!

BackEnd–Driven API Design
In many cases, APIs are consumed by command-line tools (clients) such as
curl8. They can be optimized for very different purposes. Handling XML or
CSV files, handling data connections, orchestrating APIs, aggregating different
messages, and requiring and returning minimal data are some of their tasks
and requirements. Backend–driven APIs are often designed to integrate
with command-line tools. Nowadays, where CI/CD processes are becoming
more important, command-line tools depend on APIs that are meant for
configuration updates, build execution, or deployments of software.

Contrary to UI-driven APIs, these APIs should return only the minimum
information that is needed. In addition, responses should return values that
can be piped into other commands. I would not call myself a command-line
wizard, but here is an example.

When working with Docker9, a command-line tool allows you to start, stop
and remove docker containers. They are not REST APIs, but they demonstrate
how a good interface may be designed.

•	 Run tomcat version 8, map port 80 to port 8080, name
the container mytomcat, stop the container, and remove it.

•	 docker run -p 80:8080 --name mytomcat
tomcat:8

•	 docker stop mytomcat

•	 docker rm mytomcat

•	 Stop and remove all running docker containers.

•	 docker stop $(docker ps -aq) && docker rm
$(docker ps -aq)

8curl, https://curl.haxx.se/docs/httpscripting.html
9Docker, www.docker.com/what-docker

https://curl.haxx.se/docs/httpscripting.html
http://www.docker.com/what-docker

API Development 59

The command $(docker ps -aq) returns just the numeric IDs of available
containers, which are passed to docker stop and docker rm. No need
to know IDs explicitly! Having those commands available makes it easy to
integrate with a CI/CD tool chain. UI-based clients would most likely need to
have an indicator such as id=idnumberone&id=idnumbertwo.

Combining Both Types of APIs
Many projects do not start off without an inventory of APIs. The cases I have
seen were mainly backend API heavy. The questions I often receive are on the
topic of connecting UIs to existing backend APIs.

The first thought that may come to mind is to use the existing APIs as they are
and have the client transform or enrich data to serve a UI. As you have just
seen, APIs that were not made for serving UIs will reduce the functionality,
which will reduce the acceptance of the application by users and the project
will suffer.

Instead, it is good practice to implement an abstraction layer in-between the
UI and the backend API. Figure 3-1 already gave a hint on how to approach
this challenge. A component called API Proxy was introduced. An API Proxy
takes on the task of translating UI-driven needs to backend APIs and vice
versa.

A typical case could look like Figure 4-9. A backend provides APIs that return
very specific data only. For example, one API returns user profiles, another an
email address, one home addresses, and one phone numbers of a user. If a UI
wants to display a single page with all of those values, it would have to send a
request to each of them. Instead, the API Proxy provides a single API called /
userinfo that aggregates the data.

http://dx.doi.org/10.1007/978-1-4842-4140-0_3#Fig1

Chapter 4 | API Design60

As discussed earlier, API Proxy can also provide an API per type of client.
Using that approach enables systems to leverage existing backend APIs and
expose them to needs of any type of client.

Summary
Investing time and resources into the early stages of API design will create
efficient and reliable systems. APIs that are not optimized for specific use cases
are just as costly as a weak foundation when building a house. It may look
promising in the beginning, but it will take down the whole system sooner or
later. The guidelines provided in this chapter should give you a good idea of
the topics that need to be considered to get good APIs.

Figure 4-9. API Proxy provides a unified API interface

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0_5

C H A P T E R

API
Authentication
and Authorization
After discussing API design patterns, I would like to dedicate a complete
chapter to this topic due to its importance. All APIs need to know who they
are being used by. The answer is provided via authentication and authorization
mechanisms. Whatever gets implemented, always remember this:

Authentication and authorization keep data private and shared between
authorized entities only!

Authentication vs. Authorization
In any system, almost all relevant APIs require users, or at least clients, to
authenticate. And at some point in time, an API will require authorizations,
too. It is very important to consider this fact in the first design sessions. The
whole API project will be very different without these two attributes.

There are two important questions you must ask. The first question is What
is the difference between authentication and authorization? The answer is quite
simple:

5

http://dx.doi.org/10.1007/978-1-4842-4140-0_5

Chapter 5 | API Authentication and Authorization62

Authentication answers who I am whereas authorization answers what I can do!

In this statement, “I” could be a user (a person) or a client (an application).
I hope that you agree. That’s all there is to say about it.

The second question is What should happen when during message flows? The
answer to this question is very different and more complex. The (hopefully)
obvious part of the answer is the following:

Only authenticated entities can be authorized!

If an entity is unknown, it is not possible to authorize access to any resources
for it. This means whatever flow is executed, authentication happens first!

To get things right, potential authentication methods should be discussed
early in the design process. Whatever is chosen influences API interfaces, the
API implementation, the infrastructure of the environment, potentially the
overall performance, and privacy statements. Here are a few methods as a
first overview:

•	 Username and password as parameters

•	 HTTP basic authentication

•	 x.509 certificates

•	 HTTP cookies

•	 SAML

•	 JWT

•	 Other token-based systems

The chosen option needs to be respected in the API interface design. It makes
a difference if HTTP basic authentication is required rather than, let’s say,
username and password as parameters. The API definitions would include the
following:

Case: HTTP basic authentication

•	 HTTP methods: GET, POST, PUT, DELETE, PATCH, and
more

•	 HTTP header: Authorization: Basic bXk6Ym9vaw==

•	 Content-Type: Any

Case: Username, password as parameters

•	 HTTP methods: POST, PUT, PATCH, and more. However,
the payload (message body) needs to include username,
password. If that is not possible in your use case, this
method is not an option!

API Development 63

•	 Content-Type: application/x-www-form-urlencoded.
Others are possible, but do not comply with HTTP Form
POST mechanisms and require manual extraction of the
values on incoming requests.

•	 Note: Methods like GET or DELETE may include username
and password as URL query parameters, but I do not
consider them viable options (i.e. GET /authenticate?
username=bob&password=secret)

With any method certain advantages and disadvantages will be introduced!
In any case, the API uses the incoming credentials and validates them. Most
likely that involves an identity provider (IDP). That, again, influences the overall
system due to the required type of IDP that has to be made available.

Once the authentication is successful, authorization follows. Here is the most
common question on that topic:

Should the authorization decision be made in conjunction with the authentication
step or only when it actually is needed?

If that is not clear, here is an example. Many apps on mobile devices need to access
certain resources such as contacts. Some apps request authorization for that
right after or during the installation. These apps preemptively request authorization.
Other apps prompt for authorization just in time when they need it.

To make the decision of when to request authorization, use cases have to be
considered. But not only! Let me repeat the figure that shows components
connected via APIs (Figure 5-1) and discuss a few arguments to think about.

Figure 5-1.  Components connected via APIs

Chapter 5 | API Authentication and Authorization64

Preemptive Authorizations
Let’s say a JavaScript app needs access to the database and to the queue via
two different APIs. The JavaScript app first has a user authenticated against
the IDP and then requests authorizations for those two APIs in the same
moment. <ApiProxy> has a mechanism to grant those authorizations and
issue a JWT that contains these authorization statements. The JavaScript app
now uses that JWT on both APIs exposed on <ApiProxy>. Both APIs validate
the JWT, check for a required authorization statement, and grant or deny
the request. <ApiProxy> forwards the request to the matching APIs on the
backend. Here’s the catch: Both APIs know that the JavaScript app has other
authorizations! That may be acceptable but maybe not! In these situations,
always be pessimistic and act in favor of privacy!

It would be better to send a request to those APIs at <ApiProxy> with a
credential only. This would be validated and now, at this point in time for
this API only, <ApiProxy> would create an authorization statement that is
forwarded to the matching API at the backend.

Just-in-Time Authorizations
If you imagine an API-based system that never uses preemptive but just-
in-time authorizations only, you can easily imagine that the network traffic
would potentially grow by a big number. A lot of noise would decrease the
performance for the overall system. Therefore, a compromise between both
approaches has to be found.

My recommendation is to grant authorization statements within APIs
that serve the same application. For example, the fictional HandlePackages
application is based on five APIs; the FindLostParcels application is built on top of
three others. An application on top of them, named MyPackageAndParcelBuddy,
requires access to all eight APIs.

The single app would request and receive its own authorization statements
and would not share them. But MyPackageAndParcelBuddy would now need
two different ones: one authorization statement for each feature and with that
one per group of APIs. Although this may sound more complicated, it removes
the privacy issues.

The next section will talk about OAuth and JWT in more detail and should
help you make decisions in your API project. OAuth is an authorization
framework that helps with both types of authorizations.

Of all available technologies that could be chosen for this task I will concentrate
on OAuth and OpenID Connect. These are practically the default standards
of our time, and everyone should have a good understanding of what they are.

API Development 65

OAuth
In today’s API-based systems OAuth is a technology that is found almost
everywhere. I get many questions about OAuth, I wrote many blog posts
about this topic, and I have created a web site that has oauth in its name
(www.oauth.blog). However, even though this technology has been around
for quite some time, it seems to be challenging.

Here is something you may have heard before. And if not, please pay attention:

OAuth is an authorization framework!

This is easier said than understood. If it is not clear, here is a list of what
OAuth is not:

•	 OAuth is not made for authentication.

•	 OAuth is not a replacement of known authentication
schemes.

•	 OAuth is not a fixed protocol.

•	 OAuth is not a list of well-defined features or use cases.

If you are not quite sure yet, do not worry. Here is a question I have read on
Twitter that emphasizes that many people have trouble understanding it:

Are you using LDAP or OAuth?

If that question is not confusing to you, just keep on reading.

Whoever asked this question did not understand the idea of OAuth. I wrote
a blog post about this topic and explained the difference between LDAP and
OAuth. The post1 still gets new views every day, even after more than two
years. It seems to be a hot topic!

If you are new to OAuth or if you have worked with OAuth without needing
to understand all the details around it, this section may also help you. To get
everyone on the same page I will start with a few terms and how they are
used in OAuth!:

•	 Resource owner (RO): A person, a user, someone who
uses an application

•	 Client: An application (app)

•	 Access token (AT): A short-lived token used by clients
to access APIs that require such token as credential.
These APIs are referenced as protected resources.

1“OAuth vs. LDAP,” https://communities.ca.com/blogs/oauth/2016/10/18/oauth-
vs-ldap

http://www.oauth.blog
https://communities.ca.com/blogs/oauth/2016/10/18/oauth-vs-ldap
https://communities.ca.com/blogs/oauth/2016/10/18/oauth-vs-ldap

Chapter 5 | API Authentication and Authorization66

•	 Authorization server (AS): A server that issues a
different OAuth token

•	 Resource server (RS): A server that provides
protected APIs

•	 Protected resource (PR): An API that serves
information about or for the resource owner

•	 SCOPE: Permissions a client is requesting (more details
further down)

In general, on a high level, OAuth enables clients to access content on a user’s
behalf without requiring their credentials. A typical flow in OAuth looks like
Figure 5-2. Just follow the flow and pay attention to the question Who is
sharing username, password?

Figure 5-2 is simplified and introduces a few terms that will be discussed very
soon. However, it should provide a glimpse into OAuth flows. Here are the
highlights:

•	 The username and password were only shared between
resource owner and authorization server. Neither the
client nor the resource server saw those credentials.

Figure 5-2.  Simple OAuth example

API Development 67

•	 The resource owner was asked to provide his consent!
This means that the resource owner was in the position
to decide whether the client could access his calendar
or not!

•	 The client received an access_token, which it used with
its API request GET /calendar?access_token to the
resource server. This was good enough for the resource
server to accept the request and return the calendar
details {"calendar":"details"}. No user credentials
required!

A few years ago, the resource owner would have configured the client with
his username and password and the client would have accessed protected
resources impersonating the resource owner. With OAuth, the client
accesses the protected resources on behalf of the resource owner!

This was the first flow example, but since OAuth is a framework, it supports
other flows too. There are also terms that must be discussed. If you are not
interested in knowing the bits and pieces, then at least remember that OAuth
is a mechanism for authorizations! If you want to know more, keep on reading.

OAuth, the Details
RFC 6749, OAuth 2.0, is an extensive read and a little confusing. The RFC
talks about implicit flows, public clients, refresh_tokens, scope, and a lot of
that is not explained in detail. Here are a few fundamental concepts:

•	 OAuth supports different flows. They are called
grant_types.

•	 A grant_type can be one of the following:

•	 authorization_code (CODE)

•	 Resource owner password credentials (ROPC)

•	 refresh_token (RT)

•	 client_credentials (CC)

•	 Implicit

•	 OAuth specifies two types of clients:

•	 Public (no, I cannot keep a secret to myself)

•	 Confidential (yes, I can keep a secret to myself)

Chapter 5 | API Authentication and Authorization68

•	 OAuth specifies two APIs:

•	 /authorize (web-based)

•	 /token (API-based)

•	 OAuth matches different flows to different types of
clients (applications):

•	 JavaScript clients

•	 Mobile clients (native implementations)

•	 Web applications

•	 OAuth requires an explicit or implicit consent of resource
owners for a client.

•	 OAuth supports flows that do not involve a resource
owner.

•	 client_credentials

•	 OAuth specifies three different types of tokens:

•	 access_token

•	 refresh_token

•	 authorization_code

All of these terms, entities, and descriptions relate to each other. For example,
a client that wants to leverage the client_credentials grant_type needs to be
of type confidential and will usually be implemented as a web application, or
at least on a server and not a mobile device. Figure 5-3 shows the different
entities and connects them with each other.

Figure 5-3.  RFC 6749, OAuth 2.0, compact and visualized

API Development 69

There is a lot going on in Figure 5-3. This is what it says:

•	 Upper left and right corner:

•	 The types of applications relate to client types.

•	 Lower left and right corner:

•	 resource_owners (users) provide an explicit
consent, requested during an authorization flow, or
implicitly by just using a client.

•	 With the client_credentials (cc) flow no user is
involved and therefore no consent is required.

•	 /authorize, /token

•	 The two APIs that are specified in OAuth

•	 /authorize is used with browser based flows and
displays a login and consent screen.

•	 /token is used as plain data API; no website is
involved.

•	 Public, Confidential

•	 The distinction between clients that are secure and
able to keep a secret (confidential) or not (public)

•	 Implicit

•	 A flow that results in a client receiving an access_
token

•	 CODE, ROPC, RT, CC

•	 Flows that result in a client receiving an access_
token and optionally a refresh_token

•	 Dotted rectangle surrounding Implicit and CODE

•	 Both flows begin with a request to /authorize and
involve a browser.

•	 Both flows include an initial parameter named
response_type (more about that below).

•	 In comparison to implicit, CODE receives a
temporary token (authorization_code) instead of
an access_token. The temporary token has to be
exchanged for an access_token in a second step.

Chapter 5 | API Authentication and Authorization70

•	 Dotted rectangle surrounding CODE, ROPC, RT, and CC

•	 All these flows are API-based with no browser
involved.

•	 Resource_owners are not required to provide
explicit consent. Or they have given it previously.

•	 All flows include an initial parameter named grant_
type (more about that below).

Here are a few sample use cases to demonstrate how Figure 5-3 can be used:

	1.	 An application needs to authenticate, but users do not.

	2.	 Users should grant applications explicitly when using the
mobile app.

Use the figure this way:

	1.	 Use case 1: No user, but the client needs to authenticate
➤ cc (client_credentials). From that, you can see that
the client type must be confidential and should be
implemented as web application (or at least on a server).
The client will use the /token endpoint, no consent
required.

	2.	 Use case 2: Start off in the explicit consent corner.
Via /authorize you get to choose the implicit or the
CODE flow. Since the client is mobile, it is also
public.

Now, let’s begin discussing flows and all their details! Along the way I will
introduce all parameters and hopefully everything that needs to be known
about them.

OAuth flows (grant_types)
OAuth supports different flows that clients can choose to obtain authorizations.
All flows have a few attributes in common and some specific ones. The
common ones are explained in the “General rules” bullet points and specifics
are explained within their own section. Whenever anyone starts working
with OAuth, they always ask, Which flow shall I use? The following sections will
explain which one to use and why.

General rules that apply to all flows:

•	 The /authorize API accepts requests using HTTP GET or
POST and always responds with a redirect (HTTP status
302) unless a redirect_uri is not available.

API Development 71

•	 The /token API only accepts requests using HTTP POST
and always responds with content-type application/json.

•	 HTTP POST requests are always used with content-type
application/x-www-form-urlencoded.

•	 HTTPS is a must!

•	 For any flow that involves a browser, web-based
vulnerabilities have to be addressed.2

•	 Wherever redirect_uris are used, only accept registered
ones! Never accept open redirects!

•	 Submitted parameters must be URLEncoded. A typical
error is to URLEncode a complete URL instead of just
the parameters. It should be done like this:

https://example.com/authorize?

key1=urlEncode(value1)

&key2=urlEncode(value2)

instead of

https://example.com/authorize?

urlEncode(key1=value1&key2=value2)

The examples following here show flows (grant_types) with example
configurations. As you get into OAuth, you will discover that any of the
following can be used with different parameter values. Nevertheless, to get
started, try it as shown for the next five flows, even if the whole section is
very technology heavy.

Implicit Grant
Description: A client is requesting an access_token using the response_type
token. This response_type requires a browser or a web view on a mobile
device and prevents the client from accessing the resource owner’s credentials.
Implicit flows are not secure when it comes to the visibility of issued token.
This should only be considered if an exposed access_token is not a risk.

Authorization request:

GET /authorize?
client_id={client_id}
&response_type={response_type}

2OAuth related security considerations, https://tools.ietf.org/html/rfc6749#
section-10

https://example.com/authorize
https://example.com/authorize
https://tools.ietf.org/html/rfc6749#section-10
https://tools.ietf.org/html/rfc6749#section-10

Chapter 5 | API Authentication and Authorization72

&scope={requested_scope}
&redirect_uri={redirect_uri}
&state={state}

Authorization response will be as follows:

HTTP status=302
HTTP header ‘Location={redirect_uri}
&state={state}
#access_token={access_token}
&expires_in=3600 // lifetime in s, 3600 = default by convention
&token_type=Bearer // other types are optional
&scope={granted_scope}

Let’s break down the authorization response into its individual components:

•	 {client_id}: This is a unique identifier that is known at
the authorization server and identifies one specific client.
It has to be preregistered before it can be used.

•	 {response_type}: For implicit flows the value is token
that advises the authorization server to include an
access_token in its response.

•	 {requested_scope}: A client optionally requests scope
values. Scope values are specific per environment and are
practically permissions. Multiple values may be provided
as a space-separated list of values (but URLEncoded!).

•	 {redirect_uri}: The authorization server will return
any error messages or issued token attached to this
URL as a URL fragment. The fragment is indicated by
the number sign (#). A fragment is only available to the
browser! The {redirect_uri} value used in the request
must match a pre-registered value. The authorization
server will not accept a request if there is a mismatch.

•	 {state}: An optional state can be included in the request.
It is opaque to the authorization server and is meant for
the client only. It can be used to prevent CSRF3 attacks.
The authorization server will attach the value as-is to the
given redirect_uri in its response.

•	 {granted_scope}: The authorization server may not
grant the requested scope. Therefore, the response
includes granted scope.

•	 {access_token}: The token that can be used by the
client to access protected APIs.

3CSRF in OAuth, https://tools.ietf.org/html/rfc6749#section-10.12

https://tools.ietf.org/html/rfc6749#section-10.12

API Development 73

Keep in mind the following danger points:

•	 Access Token displayed in browser: #access_
token={access_token}

•	 On mobile devices, a redirect_uri of a third-party-app
may be invoked. With that, the token is received by the
wrong app!

Authorization_code Grant, Step 1
Description: A client is requesting an access_token using the response_type
code. This response_type requires a browser or a web view on a mobile device
and prevents the client from accessing the resource owner’s credentials. This
is the most secure response_type when it comes to the visibility of issued
tokens. The result is a temporary token, which has to be exchanged for an
access_token afterwards (step 2).

■■ Note  This is also the flow used for social logins!

Authorization request:

GET /authorize?
client_id={client_id}
&response_type={response_type}
&scope={requested_scope}
&redirect_uri={redirect_uri}
&state={state}

Authorization response will be as follows. The browser will handle the redi-
rect and forward the URL query parameters to the client:

•	 HTTP status=302

•	 HTTP header ‘Location={redirect_uri}

&state={state}

&code={authorization_code} // difference compared
to ‘implicit’

Let’s break this down into its components again:

•	 {response_type}: For the code flow the value is code,
which advises the authorization server to include an
authorization_code in its response.

•	 {authorization_code}: A temporary token

Chapter 5 | API Authentication and Authorization74

Keep in mind the following danger points:

•	 On mobile devices a redirect_uri of a third-party app may
be invoked. With that, the authorization_code is received
by the wrong app! To mitigate this risk, apply RFC 7636,
Proof Key for Code Exchange.4

Authorization_code Grant, Step 2
Description: After receiving an authorization_code in Step 1, the client now
needs to exchange the code for an access_token.

Authorization request:

POST /token
Content-Type: application/x-www-form-urlencoded

client_id={client_id}
&client_secret={client_secret}
&grant_type={grant_type}
&redirect_uri={redirect_uri}
&code={authorization_code}

Authorization response includes all issued tokens:

HTTP status=200
Content-Type: application/json
{
"access_token":"{access_token}",
 "refresh_token":"{refresh_token}",
 "expires_in": 3600,
 "token_type":"Bearer",
 "scope":"{granted_scope}"
}

Here are the components:

•	 {client_secret}: Just like a password for users, clients
have a client_secret.

•	 {grant_type}: For this flow, the value is authorization_
code. It advises the authorization server to use the value
of code as grant. The authorization server will validate
the code and find the associated resource_owner who
has granted the client in Step 1.

•	 {refresh_token}: A second token that can be used by
the client to request a new access_token when the first
one expires.

4PKCE explained, https://communities.ca.com/blogs/oauth/2016/11/03/oauth-
and-pkce-rfc-7636

https://communities.ca.com/blogs/oauth/2016/11/03/oauth-and-pkce-rfc-7636
https://communities.ca.com/blogs/oauth/2016/11/03/oauth-and-pkce-rfc-7636

API Development 75

•	 {redirect_uri}: This value has to match the value used
in Step 1!

Keep in mind the following danger points:

•	 One of the few risks is the mix-up problem. This occurs
when a client receives an authorization_code from one
server but tries to exchange it for an access_token with
a fraud server.5

Resource Owner Password Credentials (ROPC) Grant
Description: This flow is considered only for trusted clients. The client
receives the resource_owner credentials directly. This may be chosen only if
the owner of the user credentials (such as an enterprise business) is also the
owner of the client (client for employees).

Authorization request:

POST /token
Content-Type: application/x-www-form-urlencoded

client_id={client_id}
&client_secret={client_secret}
&grant_type={grant_type}
&username={username}
&password={password}
&scope={requested_scope}

Authorization response:

HTTP status=200
Content-Type: application/json
{
"access_token":"{access_token}",
 "refresh_token":"{refresh_token}",
 "expires_in": 3600,
 "token_type":"Bearer",
 "scope":"{granted_scope}"
}

Let’s explain the components again:

•	 {grant_type}: For this flow the value is password.
It advises the authorization server to use the
provided username and password to authenticate the
resource_owner.

5OAuth Server Metadata, https://tools.ietf.org/html/rfc8414

https://tools.ietf.org/html/rfc8414

Chapter 5 | API Authentication and Authorization76

•	 {username}: The username of the resource_owner who
uses the client

•	 {password}: The resource_owners password

Keep in mind the following danger points:

•	 To be used with caution since the client receives the user
credentials.

Refresh Token Grant
Description: A client uses a refresh_token to request a new access_
token, optionally a new refresh_token. By design, this token is valid until the
resource_owner revokes it. However, many implementations do support an
expiration date.

Authorization request:

POST /token
Content-Type: application/x-www-form-urlencoded

client_id={client_id}
&client_secret={client_secret}
&grant_type={grant_type}
&refresh_token={refresh_token}
&scope={requested_scope}

Authorization response:

HTTP status=200
Content-Type: application/json
{
 "access_token":"{access_token}",
 "refresh_token":"{refresh_token}",
 "expires_in": 3600,
 "token_type":"Bearer",
 "scope":"{granted_scope}"
}

As usual, the components explained:

•	 {grant_type}: For this flow the value is refresh_token.
It advises the authorization server to issue a new token
based on the provided refresh_token.

•	 {refresh_token}: An existing refresh token

•	 {requested_scope}: The requested scope cannot
include any value that has not been requested in the
initial authorization request with which the here used
refresh_token has been received!

API Development 77

Keep in mind the following danger points:

•	 Potentially this is a long-lived token. With that, it may be
necessary to have resource_owners prove that they are
still in possession of the client that received this token
from time to time.

Client Credentials Grant
Description: A client requests authorization on its own behalf. No resource_
owner is involved.

Authorization request:

POST /token
Content-Type: application/x-www-form-urlencoded

client_id={client_id}
&client_secret={client_secret}
&grant_type={grant_type}
&scope={requested_scope}

Authorization response:

HTTP status=200
Content-Type: application/json
{
 "access_token":"{access_token}",
 "expires_in": 3600,
 "token_type":"Bearer",
 "scope":"{granted_scope}"
}

The grant_type value:

•	 {grant_type}: For this flow the value is client_
credentials. It advises the authorization server to grant
authorization on behalf of the client. The client is also the
resource_owner.

Keep in mind the following danger points:

•	 Only confidential clients are supported by this grant type.

These are all flows as specified by RFC 6749. If you are a hardcore OAuth
expert, you will notice that I have neglected available options for some flows.
For example, alternatively client credentials can be provided as an HTTP header
‘Authorization: Basic base64(client_id:client_secret)’ and not as
parameters. Nevertheless, I believe the provided descriptions are sufficient in
this context.

Chapter 5 | API Authentication and Authorization78

■■ Tip  You may have observed that these flows often referenced username, password as

parameters in order to authenticate a resource_owner. Needing to reference username, password

is actually only required when the ROPC flow is used! It is not the case for the implicit and CODE

flow. Username and password are only used in the RFC and in this chapter because it is the most

common way to authenticate users.

I encourage you to choose the best way for your environment to authenticate resource_owners! It

may be by cookie, by SAML, by JWT, or a combination of a phone number and an OTP. Whatever it

is, do not limit yourself to anything that does not work for your environment. For example, a product

I work on issues an authorization_code after resource_owners go through a social login flow with a

social platform. No username or password is ever visible in our product, only the code!

OAuth SCOPE
Scope is specified in RFC 6749, but more or less like scope exists, and it can
be used however you want. The RFC does not specify any values, nor does it
provide a good guideline for it. Many questions I get around scope are caused
by this openness. But, before you complain and say, Yes, I have noticed that and
it annoys me, please remember that OAuth is a framework! Frameworks usually
do not provide details such as specific values. Instead, a framework lets you
build whatever you like but within a given and well-known environment. Look
at it as a good thing!

In simple words, scope represents permissions. Permissions that enable a
client to access protected APIs. And, to be clear, during any OAuth flow, the
scope is not directly issued or granted to the client but associated with an
issued access_token and refresh_token. A typical example looks like this:

•	 A client requests authorization, including scope=read
_calendar.

•	 An access_token gets issued, associated with scope=read
_calendar.

•	 The client uses the access_token at a protected API,
which requires the access_token to be associated with
that scope.

•	 The client can read the calendar.

If the same protected API also supports updating a calendar, it may require a
second scope for that such as scope=update_calendar. The client would
have to request that scope additionally, like scope=read_calendar update_
calandar. If it tries to update a calendar without having an access_token
associated with scope=update_calendar, the request will fail!

API Development 79

It is important to remember that scope should be used as permission for
clients but not for resource owners! I have often been asked how scope
can be issued based on authenticated users that have granted the client. In
most cases, the ask is to do it based on certain attributes such as role (i.e.
administrator, writer, developer). To be blunt, that is a bad idea!

Let’s say an enterprise business has employees and each one has different
attributes. OAuth clients are in use and they can access protected APIs. Scope
values are specified. To manage all of these entities, a few components are
required:

•	 Employees: Employees are managed in an LDAP server.

•	 Employee attributes: Attributes are managed in an LDAP
server.

•	 OAuth clients: Clients are managed in a database or and
LDAP server.

•	 SCOPE: Scope values are managed in a database or an
LDAP server.

•	 APIs: APIs are managed in an API Portal system.

These entities need to be put into a relation with each other. This is how it
should be:

•	 API requires scope; scope is granted to clients.

•	 API requires attributes; attributes are assigned to
resource owners.

Timewise it should like this:

•	 During the authorization request:

•	 Grant scope based on client.

•	 When a protected API is accessed:

•	 API checks for scope.

•	 API checks for attributes of resource_owner.

Using this approach does not tie together scope and resource_owner
attributes.

Chapter 5 | API Authentication and Authorization80

If the other approach is taken, issuing scope based on clients and resource_
owner attributes, they are suddenly tied together. Doing that creates a
system where scope is practically an additional attribute for resource_
owners rather than a permission for clients! The same flow as before would
now look like this:

•	 During the authorization request:

•	 Grant scope based on client.

•	 Grant scope based on resource_owner.

•	 When a protected API is accessed:

•	 API checks for scope.

Enabling this does not only imply that all scopes are assigned to clients and
resource owners. It also implies that the authorization server is able to know
which APIs will be accessed by the client. That is often not the case! A client
may be able to access the API /calendar but also /email. Both APIs may use the
same scope’s read write update.

Unfortunately, a typical authorization request does not include the information
of which API will be accessed. The only parameter that could be used is scope.
But now scope values cannot be reused for different APIs! It will cause a huge
maintenance challenge! The two APIs would now need their own scopes such
as read_email write_email update_email. And if you assume that those
APIs have multiple versions it introduces another level of scope complexity.

With that in mind, do not try to use scope for anything else than client
permissions. An API should always know which scopes it requires and, in
addition, and only if needed, which resource_owner attributes need to be
available. Here is an example:

•	 The application CalendarClient is used by owners of a
calendar but also by administrators.

•	 The protected API to access a calendar supports these
features:

•	 Read a calendar: scope=read

•	 Update a calendar: scope=update

•	 Delete a calendar: scope=delete

•	 Update other calendar: scope=write_other

•	 This scope enables a client to update a calendar
of other resource_owners.

API Development 81

•	 The client CalendarClient is used by any employee and
always requests the same scope: scope=read update
delete write_other.

•	 The authorization server authenticates the client and the
resource_owner, and issues those scopes. This means
the authorization only checks these conditions:

•	 Valid client requesting valid scope?

•	 Valid user?

•	 Both validations successful?  issue access_token

The authorization server does not know (and
does not care) which protected APIs will be
accessed later!

•	 The calendar API, however, implements this logic:

•	 For all operations, it will check if the required scope
is associated with the given access_token.

•	 For any non-read operation, it will also check if the
associated resource_owner is also the owner of the
accessed calendar! This is not based on scope but is
based on attributes. No other user than the owner
should be able to modify the calendar.

•	 In addition, the API has implemented support for
writing onto other calendars if the associated
resource_owner is an administrator. This is also
based on attributes.

To decide how OAuth clients, scopes, resource_owners, and APIs are related to
each other, do not hesitate to take the team and simulate different approaches.
Make sure team members of different groups within the organization are
involved!

On a big side note, be conscious about naming conventions and remember
that most resource_owners do not know what scope is. And they should not
have to know. If your team implements a Consent page that displays requested
scope values (permissions), make sure to not display the scope value by itself!
In most cases, that will be perceived as completely useless and confusing.

For example, your Consent page should not display this:

•	 Client xyz requests SCOPE: read update delete to
manage your calendar.

Chapter 5 | API Authentication and Authorization82

Instead it should display this:

•	 Client xyz would like to manage your calendar.

Scope should always be represented as a human-readable message!

OAuth Consent
One reason why OAuth became popular is the fact that resource_owners
are put in control of who can access their data. Most likely anybody reading
this book has been in front of a screen that displayed something like this:
“Application xyz would like to access your email address. Do you grant this
request?” This is the point in time where a click on Grant or Deny shows the
power any user has. Clicking Deny simply rejects the wish of an application.
No administrator or any other entity can overrule the decision.

Although this is very good, there is something that has not been supported
so far, at least not in a larger scale. Whenever a user clicks Grant, there
has been no specified location where this decision could have been viewed.
Sure, some applications have a section within a user profile saying “Associated
applications” or similar. But there is no standardized way of supporting this
kind of feature.

In recent months the term “consent receipt” has been brought up often,
especially during the introduction of GDPR6 in Europe. It’s exactly what it is
called: a receipt for any given consent. This came up first (as far as I know) at
the workshop “Internet Identity Workshop (IIW)” in Mountain View, California
in October, 20157. The concept is similar to a receipt you get after purchasing
an item in a store. It states clearly what has been purchased when and where.
It can be used to prove that this event happened.

In the world of OAuth, the receipt could look like this:

Consent receipt

Application: API Book Consent Receipt App

Date: 10. June 2018, 13:10:00 PST

Permissions: read write update

Domain: example.com

Expiration: unlimited, revocation required

URL: https://example.com/consent

Reason: Required as an example

Status: Active

6GDPR, www.eugdpr.org
7Consent receipt at IIW, http://iiw.idcommons.net/Consent_Receipts_in_UMA

https://example.com/consent
http://www.eugdpr.org
http://iiw.idcommons.net/Consent_Receipts_in_UMA

API Development 83

It is more important than ever to enable any resource_owner to find an
overview of receipts. And, as a vital feature, let resource_owner revoke a
consent but without removing the history of such events!

The receipt above could change its state from Active to Revoked when
resource_owner decided to revoke access for the associated client.

OAuth and Step-Up Authentication
Let me answer this question first:

What is step-up authentication?

In general, it means requiring a stronger credential than have been provided in
the past. If a user has been authenticated by username and password, step-up
may mean providing a one-time-password or answering questions x, y, and z.
Step-up is usually defined within a specific domain.

Despite that fact that OAuth by itself has no such concept as step-up
authentication, I have been in many meetings about this topic. Most meetings
asked the question when to require step-up authentication: during the initial
authentication (when granting a client) or at the point in time when a specific
API gets accessed?

I always look at it this way: If you want to know if a resource_owner is the
one who pretends who he is when it comes to transferring one million dollar,
you want the step-up authentication to happen the moment where the money
is transferred!

Here is an example.

A system provides two APIs:

•	 API: /transfer

•	 Moves funds from one account to another

•	 API: /stepup

•	 Authenticates resource_owners

A resource_owner has been authenticated during an authorization request
using username and password. Now, the same resource_owner clicks a
button in his client named Transfer and the amount is $1,000,000. This is
what happens:

	1.	 Client request:

POST /transfer

Authorization: Bearer {access_token}

Chapter 5 | API Authentication and Authorization84

Content-Type: application/x-www-form-urlencoded

amount=1000000&from_account=111&to_
account=222

	2.	 API:

/transfer: the API validates the incoming request. It
realizes that the original authentication statement of
the resource_owner, who is associated with the given
access_token, is more than 15 minutes old and has an
authentication class reference (acr)8 value of 1 but it
requires 3! It returns this response, requiring a new,
stronger authentication:

HTTP status: 401 (authentication required)

	3.	 The client receives the response and redirects the
resource_owner to /stepup.

	4.	 API:

/stepup: It requests a resource_owner to provide
a username, password, and an OTP (one-time pass-
word), which has been send to his mobile device.
Once the resource_owner confirms the OTP, the cli-
ent redirects him back to /transfer, using the same val-
ues as before.

	5.	 API:

/transfer: The validation of the incoming request now
succeeds, and the amount can be transferred from
one account to another.

If the same step-up authentication had been required during the initial
authorization flow, there would be no guarantee that the authenticated user
is still the same when the amount of $1,000,000 got transferred.

As a hint, keep this in mind:

Require step-up authentication as close to the requiring event as possible!

Although OAuth by itself has nothing to do with step-up authentication, it may
still be related to it!

8ACR in ISO, www.iso.org/standard/45138.html

http://www.iso.org/standard/45138.html

API Development 85

JWT (JSON Web Token)
The book early on referenced JWT but did not explain what it is. The next
section introduces id_token. Before I continue, I would like to explain how
JWT and id_token look and how they relate to each other. That should make
it easier to follow the next few pages.

A JWT is a set of claims represented as a JSON message and encoded in
a JSON Web Signature (JWS9) and/or JSON Web Encryption (JWE10). This
representation enables digital signatures and encryption. Once serialized to a
string, it consists of three base64url encoded sections, separated by a dot (.).
See the following example:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibm
FtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwp
MeJf36POk6yJV_adQssw5

The sections of the string are as follows:

•	 JWT header ({from zero to first dot}.)

•	 eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

•	 base64 decoded: {"alg":"HS256","typ":"JWT"}

•	 JWT payload (.{between the two dots}.)

•	 eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI
6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ

•	 base64 decoded: {"sub":"1234567890","name":
"John Doe","iat":1516239022}

•	 JWT signature (.{after the last dot to the end of the
string})

•	 SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5

This simple format enables JWT to be exchanged as an HTTP parameter or
header, although they are not bound to HTTP! Generally, JWT may be used
in any context. JWTs are also not bound to protocols or frameworks such as
OpenID Connect or OAuth. On the other hand, the usage of JWT in OAuth
and OpenID Connect are reasons for their wide adoption.

9JWS, JSON Web Signature, https://tools.ietf.org/html/rfc7515
10JWE, JSON Web Encryption, https://tools.ietf.org/html/rfc7516

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516

Chapter 5 | API Authentication and Authorization86

If you are now wondering When and where shall I use a JWT?, here are a few
use cases:

•	 Message integrity:

•	 A message is communicated between party A and C
via B. Party B should not be able to manipulate the
message. Therefore, party A creates a JWS using a
shared secret. Party C can validate the integrity.

•	 Example: An application supports financial
transactions that include a currency, an amount, and
a recipient. It is important that none of those values
can be manipulated.

•	 Message confidentiality:

•	 A message is communicated between party A and
C via B, Party B should not be able to read the
message. Therefore, party A creates a JWE using
party C’s public key. Party C can decrypt and read
the message, but party B cannot.

•	 Example: An application communicates health data
between different parties. Only authorized ones
should be able to read the messages.

JWS and JWE both support shared secrets and public/private keys. Shared
secrets have to be exchanged via a secure method which, unfortunately, is
not specified in the RFCs. Nevertheless, in OAuth and OpenID Connect the
OAuth client_secret is usually used for this purpose. For public/private keys, the
JWT header may contain complete certificate chains or references to used
keys. This information can be used by recipients to determine which key to
use for validation purposes. For a list of all header values, refer to RFC 7515,
section 411.

Next, I will explain what id_token is and after that how JWT, JWS, and id_
token work together.

id_token
id_tokens are JSON messages with a well-defined list of keys (set of claims).
Each key within the id_token is defined in the OpenID Connect Core
specification12. Some keys are mandatory, and others are optional. Table 5-1
gives an overview with a short explanation. Full details can be viewed directly
in the referenced specification.

11JOSE headers, https://tools.ietf.org/html/rfc7515#section-4
12id_token, http://openid.net/specs/openid-connect-core-1_0.html#IDToken

https://tools.ietf.org/html/rfc7515#section-4
http://openid.net/specs/openid-connect-core-1_0.html#IDToken

API Development 87

The highlighted keys (Issuer, Audience, Expiration) are the ones that are
always relevant when validating id_token. Others may be neglected in simple
use cases.

Since id_tokens are also JWT, they are expressed as JWS. With that, they
are URL friendly and integrity protected! Because of that, id_token and JWT
often refer to each other. But keep this in mind:

id_tokens are just one type of JWT!

Table 5-1.  Overview of id_token keys

Key Example Required Short description

iss https://server.
example.com

true Issuer: The issuing entity. Usually a
valid URL.

sub 24400320 true Subject: Either a username or a ppid
(pairwise pseudonymous identifier)

aud s6BhdRkqt3 true Audience: The audience for whom
this id_token is intended for. A
client_id of the requesting client.
Optionally other audiences.

exp 1530774920 true Expiration: The 10-digit Unix
timestamp (seconds since 01-01-
1970) when this token expires

iat 1530772920 true Issued at: The 10-digit Unix
timestamp when this token was
issued

auth_time 1530772120 false Authentication time: The 10-digit
Unix timestamp when the resource_
owner was authenticated

nonce a-ranD8m-4alue false A client-side value, opaque to the
server. It is available only if the
client included it in its authorization
request.

acr http://fo.example.
com/loa-1

false Authentication Context Class
Reference, specifying the LoA (Level
of Assurance) of the authentication

amr otp pwd false Authentication Methods Reference:
A reference to the method of
authentication

azp s6BhdRkqt3 false Authorized Party: The client_id of
the requesting client

Chapter 5 | API Authentication and Authorization88

Creating an id_token (JWT)
id_token includes the keys (or claims) shown above. Optionally, details of
resource_owners, such as preferred_username or email, are also included.
The OP will do the following:

•	 Create the JWT header:

•	 {"typ":"jwt", "alg":"HS256"}: Indicates the
usage of a shared secret using the algorithm HMAC-
SHA256. The receiving party has to be informed
which shared secret to use for the signature
validation.

•	 {"typ":"jwt", "alg":"RS256",
"kid":"d273113ad205"}: Indicates the usage
of a private key using the algorithm RSASSA-
PKCS1-v1_5 SHA-256. For validations the receiving
party has to use the public key referenced as
d273113ad205.

•	 Create the payload:

•	 This is the id_token

•	 Create the signature:

•	 Create the input:

•	 Input = base64urlEncode(jwt-header).

base64urlEncode(jwt-payload)

•	 Sign the input:

•	 JWT-signature = base64urlEncode(sign
(alg, input))

•	 Serialize the output (referred to as JWS Compact
Serialization):

•	 jwt.compact = input. signature

The string jwt.compact can now be returned to a requesting client. The
process of validating the JWT will be discussed later.

OpenID Connect
OpenID Connect is referenced as identity layer on top of OAuth 2.0. It adds the
missing link between an OAuth application and resource_owners. In particular,
it enables developers to implement applications that are aware of the current
resource_owner. It also supports identity federation between different parties.

API Development 89

Why OpenID Connect?
In cases where OAuth is used with a response_type (requests send to the
OAuth /authorize API), clients are generally not able to retrieve details of
the resource_owner. Clients are not able to display a message such as Hello
Sascha! Regardless of that, it is often desired. To bypass this limitation (or
better, that part of OAuth’s privacy model) applications have implemented
proprietary OAuth-protected APIs that simply return those details. In order
to access those details, resource_owners must grant permissions (scope) that
are also proprietary.

This situation did not make developers lives easier! For example, if a developer
wanted to build an application that retrieved user details at two different
platforms, he had to use different SCOPE values and different APIs that
produced different responses. In one case, it could have been SCOPEs such
as wl.basic, wl.emails; in the other case, user_about_me, email. In one
case, the API would have been /user; in the other case /me. And with that,
responses were different, too.

After some time, the OpenID Foundation13 took on the task of creating a
specification to align all those different efforts that were around. OpenID
Connect, as an identity layer on top of OAuth, was born!

How Does It Work?
Simply said, OpenID Connect uses OAuth, just like other applications. Before
I discuss the details, here is the high-level flow:

	1.	 Request an access_token granted for specific SCOPEs.

	2.	 Send an OAuth request to the resource_server and
receive the resource_owner’s details.

That’s it, on a high level! On a lower level, there are many details around it.
But first things first.

OpenID Connect started off with a few main features in the Core14 specification
(also referred to as the Basic profile15):

•	 Formalized OAuth SCOPE

•	 openid, email, profile, address, phone,

13OpenID Foundation, http://openid.net
14OpenID Connect, Core, http://openid.net/specs/openid-connect-core-1_0.html
15OpenID Connect, Basic profile, http://openid.net/wordpress-content/uploads/
2018/06/OpenID-Connect-Conformance-Profiles.pdf

http://openid.net
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/wordpress-content/uploads/2018/06/OpenID-Connect-Conformance-Profiles.pdf
http://openid.net/wordpress-content/uploads/2018/06/OpenID-Connect-Conformance-Profiles.pdf

Chapter 5 | API Authentication and Authorization90

•	 Formalized userinfo API that returns details about the
resource_owner

•	 /userinfo, request, and response

•	 Introduced a token, identifying an authenticated
resource_owner

•	 id_token (JSON message with well-defined
structure)

•	 Introduced and extended OAuth response_types

•	 response_type=token id_token

•	 response_type=code // this exists in OAuth, but
in combination with SCOPE=openid the token
response includes an id_token

•	 Additional response_types were added too, but not
right from the beginning

This list may look short, but it simplified the development of applications!
Here are the reasons:

•	 For each SCOPE, OpenID Connect has specified a list of
claims16 that may be returned. This enables a developer
to implement an application that can handle responses of
different platforms with one code base.

•	 The way to invoke the /userinfo API is always the same.
The response is always the same: a JSON message with a
well-defined structure.

•	 The id_token is a JWT and is expressed as a JWS and
can be validated by the client without having to send a
validation request to the issuing server.

•	 The different response_types allow clients to choose the
desired flow, depending on their use case.

An authorization request always starts off at the OAuth /authorize API. Here
is a simple example:

GET /authorize?client_id=...&redirect_uri=...&state=astatevalue&...

...scope=openid+email+profile&response_type=token+id_token

16OpenID Connect, Claims, http://openid.net/specs/openid-connect-core-1_0.
html#StandardClaims

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

API Development 91

The SCOPE and response_type values influence the response as follows:

•	 SCOPE openid: The client indicates to the server that
it is requesting an OpenID Connect flow. Look at this
value as kind of a switch, as in OpenID Connect on/ off.
If it is not included, any of the other SCOPE values will
be treated as non-OpenID Connect values. Some server
implementations may even fail the request. The response
will include the claim sub, which contains the username as
plain text or a ppid, which is expressed as opaque string

•	 SCOPE profile: The client is requesting general
information about the resource_owner such as name,
family_name, given_name, preferred_username.

•	 SCOPE email: The client is requesting the email
address of the resource_owner. The response will also
include the claim email_verified. This indicates that the
responding platform can confirm that this email address
is a valid one.

•	 Response_type token id_token: token is known from
OAuth that indicates an implicit flow. The server will
respond with an OAuth access_token. In addition, an
id_token will be issued. This token cannot be used at any
protected API. Instead, it represents an authenticated user.

Based on the example request above, the following responses will be received:

•	 Response from /authorize would include this in the
redirect_uri:

•	 ...#access_token=...&id_token=eyJh...
ssw5c&...

•	 Response from the /userinfo API could look like this:

•	 {"sub": "12ab34cd56ef","preferred_
username": "saspr","name": "Sascha
Preibisch","email": "sascha@example.
com","email_verified": true}

Although the early version of the Core specification already simplified the
life for application developers, many more features were added over time.
Nowadays the OpenID Connect ecosystem is a very comprehensive list of
specifications including a self-service testing system. The next section explains
how to find the way through the specifications, with a focus on authentication
and authorization.

Chapter 5 | API Authentication and Authorization92

How to Leverage OpenID Connect
Within API ecosystems OAuth is a common participant of authorization flows.
In addition, OpenID Connect is the de facto standard for the authentication
part. For example, wherever a web site provides a button like “Log in with
Google” or “Log in with Facebook”, an OpenID Connect flow gets initiated17.
Not only can applications design the onboarding process for new users easier
this way, they can also reduce the number of times a login and consent screen
are displayed.

Before supporting or leveraging OpenID Connect, it has to be decided which
role the system is taking on:

•	 OP: OpenID Provider (server)

•	 RP: Relying Party (client)

An OP is an OAuth server that also supports OpenID Connect features.
Clients may connect to the server and use extended OAuth responses_types
such as token id_token. RP registers itself as an OAuth client at the OP
and uses an OpenID Connect-enabled OAuth flow to authenticate resource_
owners. Any system may take on both roles, too.

As an OP, a few use cases are more dominant than others. Here are the ones
I get asked about most:

	1.	 Take resource_owners through an initial login and
consent flow.

	2.	 During consecutive authorization flows, display the login
screen only if the resource_owner has no session and do
not display the consent screen again.

	3.	 Accept an id_token issued by a third party as resource_
owner credentials.

OpenID Connect has many more features, but these three seem to be of the
biggest interest. Therefore, I will explain how they are used.

Use Case 1: Take resource_owners Through an Initial Login
and Consent Flow
This is straightforward. A resource_owner uses a client to access a protected
resource. The client’s implementation requires the resource_owner to be
logged in. The client initiates an authorization flow using response_type=code.

17Example, social login flow, https://youtu.be/0b0D5ZCFKnc

https://youtu.be/0b0D5ZCFKnc

API Development 93

The flow redirects the resource_owner to the OP, which provides a login
and consent screen. Once the resource_owner got authenticated and has
authorized the client, an authorization_code gets issued. All of this is standard
OAuth.

There is just one value that makes the difference compared to a default
authorization request: SCOPE:

•	 ...&scope=openid+email+profile&...

The difference is not the parameter itself, but the content. If you read the
previous section around OAuth, you will note that otherwise nothing special
can be seen here. Nevertheless, the OP has to take care of this task:

•	 IF SCOPE contains (openid) THEN persist the consent
decision and issue an id_token in addition to other token
such as access_token and refresh_token.

This task is emphasized because it is important for the three listed use cases
above. The OP may receive other parameters, but they are not relevant for
this discussion. As a final outcome, the client will not only receive the default
token response but also the issued id_token. With that, the resource_owner
is logged in. The client now may send a request to the OP’s /userinfo API to
receive resource_owner details.

Use Case 2: During Consecutive Authorization Flows
Display the Login Screen Only If the resource_owner Has
No Session and Do Not Display the Consent Screen Again
This use case has several aspects to it. For one, the login screen should be
displayed only if no session exists. A session is identified by an active id_token.
Furthermore, the consent screen should not be displayed again! Not again
means it is independent of an existing session and has to be managed as its
own entity!

So, how do these requirements work together?

OpenID Connect has introduced a few more parameters18 compared to
default OAuth. For this example, we are looking at a few of them:

•	 prompt: This may contain one or multiple values.

•	 none: Do not display a login and consent screen.

•	 login: Prompt for login.

18OpenID Connect parameters, http://openid.net/specs/openid-connect-
core-1_0.html#AuthRequest

http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

Chapter 5 | API Authentication and Authorization94

•	 consent: Prompt for consent.

•	 select_account: Enable the resource_owner
to select an account. This is useful for users with
multiple accounts.

•	 id_token_hint: This contains a single value.

•	 id_token: The id_token that was issued earlier.

These parameters can be used by the client whenever it requires a new
access_token. This would be the case where its access_token and refresh_
token have expired. A typical client implementation would look as shown in
Figure 5-4, simplified.

Figure 5-4.  Simplified OpenID Connect flow with prompt and id_token_hint parameters

API Development 95

The diagram has three alternatives:

	1.	 The client uses an existing access_token to access a
protected resource. The OP validates the token and
returns the requested resource.

	2.	 The client’s access_token has expired and therefore it
uses its refresh_token to request new token. The OP
validates the refresh_token and issues a new access_token
and refresh_token. The client uses the new access_token
and retrieves the resource.

	3.	 Both tokens have expired, access_token and refresh_
token. This is the case that is different from default OAuth.
Without OpenID Connect, the client would now need
to request new tokens by taking the resource_owner
through a new authorization flow, which would prompt
for login and consent. But, instead the client leverages
the additional parameters prompt and id_token_hint.
By setting prompt=none the client indicates to the OP do
not display any screens to my user! Needless to say, OP still
has to validate the request:

	a.	 To skip the login screen:

	 i.	 Is the id_token still valid?

	 ii.	 Fail otherwise

	b.	 To skip the consent screen:

	 i.	� Does the requested SCOPE match the previously
issued SCOPE, or a subset?

	 ii.	� Did the resource_owner provide consent
previously for this client?

	 iii.	� Fail otherwise

Using this feature reduces the times a user gets confronted with login and/
or consent screens. This not only improves the user experience but also
reduces the number of times a resource_owner has to use his password! Each
time the password does not need to be used is a step towards password-less
systems.

Chapter 5 | API Authentication and Authorization96

Use Case 3: Accept a id_token Issued by a Third Party as
resource_owner Credentials
Federation is one of the biggest features in OpenID Connect! There even is a
new, dedicated specification for it: OpenID Connect Federation 1.0 – draft 0519,
currently in a draft status (October 2018). The specification will evolve over
the next few months. But even without that specification, federation can be
supported.

Federation in OpenID Connect is based on id_token. Since id_tokens are
JWT, any recipient can validate them by verifying the signature. A typical
validation process includes these steps:

	1.	 Verify the issuer as an accepted third party.

	2.	 Verify the expiration date.

	3.	 Verify the signature algorithm.

	4.	 Verify the signature.

■■ Important  Bullet point 3 is extremely important! Never validate a JWT by using the alg value of

the JWT header. It could have been replaced with any other algorithm by a third party and therefore

the message integrity cannot be assumed!

Validating id_token in Detail
As mentioned, there are several signature algorithms available. In the case of
HS256, the OP and RP usually agree on using the client_secret for creating
and validating the signature. There is hardly a question on how to distribute
that value.

Nevertheless, in a system that leverages RS256 or ES256 it becomes more
complicated. OpenID Connect has invested quite some effort into the process
of simplifying and normalizing the validation. The effort resulted in additional
specifications and APIs:

•	 OpenID Connect Discovery20

•	 A specification describing a discovery document
(JSON) that lists features that are supported.

•	 It’s list of APIs, supported response_types, SCOPEs,
and other details.

19OpenID Connect Federation, https://openid.net/specs/openid-connect-federa
tion-1_0.html
20OpenID Connect Discovery, http://openid.net/specs/openid-connect-discovery-
1_0.html

https://openid.net/specs/openid-connect-federation-1_0.html
https://openid.net/specs/openid-connect-federation-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html

API Development 97

•	 /.well-known/openid-configuration

•	 The API returning the discovery document

•	 /jwks.json

•	 The API containing a list of JSON Web Keys (more
or less the public certificates required for RS and
ES-based signature algorithms)

OpenID Provider
The validation process starts at the OP. The OP prepares his system in such
a way that any RP can validate JWT issued by the OP. These are the steps
required by an OP:

	1.	 iss (issuer)

	a.	 The OP publishes its iss value. This can be a URL.

	b.	 By specification, this URL does not need to be resolvable,
but in my experience, this is usually the case.

	c.	 iss itself has to appear in the OpenID Connect
Discovery document (issuer).

	d.	 Ideally this value is the only one a RP needs to
configure!

	2.	 /.well-known/openid-configuration

	a.	 The OP configures all details of its system that should
be publicly available.

	b.	 This URL is standardized. RP should be able to use it
like this:

	 i.	 {iss}/.well-known/openid-configuration

	3.	 /jwks.json

	a.	 The OP configures this API to return a list of public
keys that are used for JWT signatures.

	b.	 The keys are expressed as JSON Web Key Set (JWK/
JWKS21).

	c.	 Each key is identified by a key ID (kid).

	d.	 When the OP issues an id_token (JWT) the JWT
header needs to include the matching kid!

21JSON Web Key, https://tools.ietf.org/html/rfc7517

https://tools.ietf.org/html/rfc7517

Chapter 5 | API Authentication and Authorization98

Here are example documents.

The response of /.well-known/openid-connect:

{ "authorization_endpoint": "https://example.com/op/server/auth/oauth/v2/
authorize", "token_endpoint": "https://example.com/op/server/auth/oauth/v2/
token", "jwks_uri": "https://example.com/op/server/jwks.json",
"response_types_supported": ["code", "id_token", "code id_token", "id_token
token"], "scopes_supported": ["openid", "profile", "email"],
"issuer": "https://example.com/op/server",
...}

The response of /jwks.json:

{ "keys": [{
"kty": "RSA",
"use": "sig",
"kid": "d273113ad205",
"x5c": ["MIIDBTCCA...c5194bcc59"]}]
}

After the OP has prepared its environment, it can start issuing id_token (  JWT).

Relying Party
Interested RPs will now prepare their own environments:

	1.	 Configure accepted iss.

	a.	 The RP configures its application to accept only JWT
issued by one or multiple configured parties, such as
https://example.com/op/server or https://
anotherone.com/op/server.

	b.	 Only accept the HTTPS scheme. Fail otherwise!

	2.	 Configure expected alg.

	a.	 As mentioned before, NEVER trust the alg found in
the JWT header!

That’s it!

The next step is to implement the validation flow that starts after receiving
the id_token (JWT). There are many steps required but once implemented it
is actually straightforward. The flow should execute CPU (calculate signature)
and latency (network calls) heavy operations late in the process:

https://anotherone.com/op/server
https://anotherone.com/op/server

API Development 99

	1.	 Base64 decode the JWT-payload (the part between the
two dots).

	2.	 Extract iss and compare the value against a configured,
acceptable one.

	3.	 Extract exp and check that it has not expired.

	4.	 Extract aud and check if the client_id is included.

	a.	 This may be skipped for federation cases.

	5.	 Base64 decode the JWT-header and check if at least kid,
alg, and typ are included.

	a.	 alg has to match the expected value.

	b.	 Fail otherwise!

	6.	 Retrieve the discovery document:

	a.	 GET {iss}/.well-known/openid-configuration

	7.	 Extract the jwks URL (jwks_url) as found in the
discovery document.

	8.	 Retrieve the JWKS.

	a.	 GET {jwks_url}

	b.	 Only accept the HTTPS scheme. Fail otherwise!

	9.	 Find a kid that matches the one found in the JWT-header.

	a.	 Fail if there is none!

	10.	 Extract the associated JWK and use it to validate the
JWT signature.

	a.	 Recreate the signature and compare it to the given
one.

	b.	 Fail if it does not match!

These ten steps are required for the validation process. Figure 5-5 displays the
steps on a high level.

Chapter 5 | API Authentication and Authorization100

Any other validation is most likely application specific.

OAuth vs. OpenID Connect vs. LDAP
This content is based on one of my blog posts. I decided to include it in this
book and within this chapter because this topic causes a lot of confusion
according to questions I have received in the past. It relates to API design and
can be seen as an add-on to the last section.

To set the stage, here are a few short descriptions to remember:

•	 If OAuth is a set of characters, OpenID Connect creates
words and a language using them.

•	 OpenID Connect is a profile on top of OAuth just like
HTTP is on top of TCP.

•	 OAuth knows about apps; OpenID Connect knows about
users.

Let’s get started!

LDAP (Lightweight Directory Access Protocol)
A LDAP server (full disclosure: I am not an expert on LDAP) is a directory
structure that contains details and attributes about users. It may contain
a username, firstname, lastname, password (or the hash of a password),
addresses, certificates, date of birth, roles—all kinds of stuff. The data of an
LDAP gets accessed for different purposes:

•	 To authenticate a user: Compare the given username and
password against values found in the LDAP.

•	 To retrieve attributes: Retrieve firstname, lastname, role
for a given username.

Figure 5-5.  High-level id_token (JWT) validation process

API Development 101

•	 To authorize users: Retrieve access rights for directories
for a given username.

I believe that most developers at some point in time have to deal with an
LDAP server. I also believe that most developers will agree with what I just
described.

OAuth
OAuth is a framework that enables applications (clients) to gain access to
resources without receiving any details of the users they are being used by. To
make it a little more visual I will introduce an example.

The very cool app named FancyEMailClient

In the old days,

•	 For each email provider, the user provides details such
as smtp server, pop3 server, username, password on a
configuration page within FancyEMailClient.

•	 FancyEMailClient now accesses all configured email
accounts on behalf of the user. More precise,
FancyEMailClient is acting AS the user!

•	 The user has shared all details with FancyEMailClient. I
must say, it feels a little fishy; don't you agree?

In the days of OAuth:

•	 FancyEMailClient is an OAuth client and gets registered at
each email provider that should be supported.

•	 FancyEMailClient does not ask users for any email provider
details whatsoever.

•	 FancyEMailClient delegates authentication and authorization
to the selected email provider via a redirect_uri.

•	 FancyEMailClient retrieves an access_token and uses
this token at an API such as /provider/email to retrieve
the user’s emails. The access_token may be granted for
scope=email_api.

•	 FancyEMailClient has no clue who the user is and has not
seen any details such as username or password.

•	 This is perfect in regard to the user’s privacy needs.
However, FancyEMailClient would like to display a message
such as “Hello Sascha” if Sascha is the user, but it can’t.

Chapter 5 | API Authentication and Authorization102

OpenID Connect
As I explained above, a client does not get any details about the resource_
owner. But, since most applications would at least like to display a friendly
message such as “Hello Sascha” there needs to be something to help them.

To stick to the email provider example, before OpenID Connect (OIDC) was
born, these providers simply created OAuth-protected APIs (resources) that
would return details about the resource_owner. Users would first give their
consent and afterwards the client would get the username or firstname and
would display “Hello Sascha.”

Since this became a requirement for almost any OAuth client, we now
have a common way of doing that, specified in OpenID Connect. OIDC has
specified SCOPE values, a /userinfo API, and an id_token that represents an
authenticated user.

In order to enhance the OAuth version of FancyEMailClient, the developer of
it would only have to do a few little tweaks:

	1.	 When requesting access to emails, also request access
to user details. The request would now have to include
something like ...&scope=openid+profile+email+em
ail_api&... (scope == permissions like access control).

	2.	 During the authentication and authorization flow, the
user would not only grant access to his emails but also to
his personal details.

	3.	 FancyEMailClient would now receive an access_token
that could not only be used at /provider/email but also
at /provider/userinfo.

	4.	 FancyEMailClient can now display “Hello Sascha!”

Now the big question: How does it all come together?

LDAP servers are the only component that exists without OAuth and OpenID
Connect. LDAP servers are always the source of users (and maybe also clients
and other entities). LDAP servers have always been used to authenticate users
and have been leveraged to authorize them for accessing resources. OAuth
and OpenID Connect can’t be supported if no LDAP server is available. OAuth
and OpenID Connect are protocols only, not systems to manage users.

Figure 5-6 shows an example system.

API Development 103

Here is how FancyEMailClient works using the different technologies.

Case: OAuth

Here is how FancyEMailClient works using OAuth.

	a.	 When a user selects an email provider within
FancyEMailClient, his browser gets redirected to that
provider. It is an OAuth authorization request and
includes OAuth SCOPE values. To access the API /
provider/email, a SCOPE value such as email_api may
be included. I say “may” because there is no standard
SCOPE for that. To also gain access to the user details,
other SCOPE values need to be included. This is more
straightforward since they have been specified within
OpenID Connect. An openid profile email would
be sufficient and is supported by practically all OIDC
providers. In the end of the flow, FancyEMailClient gets
back an OAuth authorization_code.

	b.	 The user only shares his credentials with EMailProvider.
He types them into the EMailProvider’s login page and
EMailProvider will validate them against his LDAP server.
(The LDAP server may be a database or any other system
that maintains user details.)

Figure 5-6.  OAuth and OpenID Connect-based authentication/authorization

Chapter 5 | API Authentication and Authorization104

	c.	 After receiving the OAuth authorization_code
FancyEMailClient exchanges this short-lived token for
an OAuth access_token. That access_token provides
access to resource APIs. I hope it is obvious that this
exchange request is a backchannel request; no browser is
involved!

	d.	 FancyEMailClient accesses /provider/email and /provider/
userinfo by providing the OAuth access_token it
received earlier. Although both APIs require an access_
token, there is one difference. /provider/userinfo is an
OpenID Connect API whereas /provider/email is an
API proprietary to the EMailProvider. Let's call it a plain
OAuth-protected API.

	e.	 In this area I want to emphasize the role of the LDAP
server. As you can see, it is involved during almost all
requests.

Case: The Old Days

The same app without using OAuth would probably look something like
shown in Figure 5-7.

Figure 5-7.  Good old authentication

A user would share his credentials with FancyEMailClient. And he would do
this for each single provider he had an account with. FancyEMailClient would
probably also ask for other details so that an API such as /provider/userinfo
would not even be necessary. FancyEMailClient would now collect all this
sensitive data and could do whatever it wants with it. That is a big disadvantage!

API Development 105

Another disadvantage is the fact that the user’s credentials are now used for
each single request. This increases the chances for them being exposed.

OAuth, OpenID Connect, and LDAP are connected with each other. But I
hope it becomes obvious which component plays which role and that one
cannot replace the other. You may say that my explanation is very black and
white, but I hope that it clarifies the overall situation.

Summary
This chapter discussed questions that come up in the context of API-based
authentication and authorization and gave an introduction to patterns that
should be avoided or explicitly addressed.

Authentication and authorization were discussed and distinguished from each
other. You should now be able to decide at which point in message flows
authentication and authorization should be handled.

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0_6

C H A P T E R

API
Implementation
Details
After discussing some important points about APIs in general, this chapter will
walk through different aspects of API implementations. Everything discussed
here is based around typical, real-world requirements that I have observed
over the last few years. Even if you are not a developer, this information will
help you. All team members should have the same understanding of what
should be found within an API.

Before we get into the subject, here are a few terms with an explanation of
how they are used. This is to get all audiences onto the same page.

•	 Client: Application or app

•	 User: Resource owner or person

•	 Device: A phone or tablet or computer in general

•	 Entity: All of those above

It is necessary to understand and distinguish these terms. It happens too
often that, for example, within a telephone conference someone talks about
what the client is doing and one group assumes it is a user, but others have an
application on their mind!

6

http://dx.doi.org/10.1007/978-1-4842-4140-0_6

Chapter 6 | API Implementation Details108

In general, any meeting should introduce the terminology as used in its
context!

API Protection: Controlling Access
Every API needs some kind of protection. Even if an API is made to only return
the current time, it could still be overloaded and bring down a server. And, if
bringing down a server is not a concern, protection could also refer to logging
the usage of it. However, in the context of this chapter, protection describes how
valid entities can be identified and how to prevent APIs from being overloaded.

Have a look at Figure 6-1. It displays relevant attributes that can be extracted
from the network- or message-level space of any request. At this moment, do
not worry about terms you don’t know, This is meant to give you an overview
of information that is available and can be used to implement different means
of protection.

Having these attributes allows anyone to implement very different ways of
protecting an API. Figure 6-1 shows two different levels (network, message)
for these reasons:

•	 Network: Available attributes of this layer are generally
available, independent of the application.

•	 Message: Available attributes of this layer usually depend
on the type of application.

To visualize a protected API, but without showing snippets of code, see Figure
6-2. It is a screenshot of a drag-and-drop type programming1 language and is
well suited for a discussion of this topic.

Figure 6-1.  Overview of attributes available per request

1The CA API Gateway, www.ca.com/us/products/ca-api-gateway.html

http://www.ca.com/us/products/ca-api-gateway.html

API Development 109

The screenshot can be interpreted like this:

•	 Numbers on the left are line numbers.

•	 Each line represents an “assertion.” In Java, it would be a
method; in JavaScript, it would be a function.

•	 Most lines have a right-hand side comment, which is
displayed in light gray.

•	 Each line that starts with “Comment” represents, who
would have guessed it, a comment.

•	 A request is received at the top and processed to the
bottom. This means that each assertion is applied to
the current request, just as in any other programming
language.

Now that I have clarified how to read the screenshot, below are details on
each step of that API. To summarize it, the implementation tries to filter out as
many invalid requests as possible before calling the backend system on line 27.

Figure 6-2.  Screenshot of a protected API

Chapter 6 | API Implementation Details110

Line 6: Default error message

•	 A template error message is specified. It is extremely
important to handle potential errors, even errors based
on bugs, within the implementation! An API should
never expose an undefined error message. The worst
error responses include details about failed database
connections or server version details. Whatever may
enable a hacker to manipulate the system cannot be
exposed! Figure 6-3 is an example of an error I just
received after clicking a button on a website, something
no system should ever display.

•	 No matter which assertion after line 6 fails, only the
specified error message will be returned as a response.

Line 10: Require TLS/SSL (network level)

•	 TLS/SSL is required to access this API. Any other attempt
will fail. The API cannot be consumed.

•	 In this case, the requesting client needs to present its
own X.509 Certificate2. This is also referenced as “mutual
SSL” or “SSL with client authentication.” Only a client that
can present a certificate is able to consume this API.

Figure 6-3.  Error screen

2X.509, https://de.wikipedia.org/wiki/X.509

https://de.wikipedia.org/wiki/X.509

API Development 111

Line 11: Authenticate the client (network level)

•	 This line represents an IDP (identity provider). The client
needs to be authenticated against this IDP using the
provided X.509 certificate as its credential.

•	 Only authenticated clients are able to consume this API.

Line 12: Limit valid IP addresses (network level)

•	 The requesting client needs to have an IP address3 that
falls into a range of permitted IP addresses.

•	 This is a typical check for APIs that have restrictions
on availability in regard to geolocations. For example, a
gambling web site may restrict the usage of its APIs based
on provinces due to laws that are in place. Restricting
IP addresses is usually part of other geofencing4
requirements.

•	 Limiting IP addresses should be used with caution if mobile
devices are expected to support client applications. Mobile
devices are carried around and change IP addresses
potentially often. The devices may be at the edge of valid
geolocations but would not be able to send valid requests
due to an overlap of valid area and invalid IP address.

Line 16: HTTP method (message level)

•	 Only requests received via HTTP POST methods are
accepted. Since this API also expects a message of a given
type (see line 17) PUT could also be possible, but here
not accepted.

Line 17: Type of message (content-type, message level)

•	 The request needs to match the message type application/
json5. Especially in HTTP-heavy environments, different
types are often found. On the other hand, a specific API
most likely only supports one type. In this case, it’s only
type application/json.

•	 Only requests that contain a message of this type will be
processed.

3IP address, https://en.wikipedia.org/wiki/IP_address
4Geofencing, https://en.wikipedia.org/wiki/Geo-fence
5Content-Type, https://en.wikipedia.org/wiki/Geo-fence

https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Geo-fence
https://en.wikipedia.org/wiki/Geo-fence

Chapter 6 | API Implementation Details112

Line 18: Limit message size (message level)

•	 APIs are usually built to support well-defined types and
formats of messages and with that the expected message
size is known. This line limits the request to a maximum
size in bytes. Anything larger is considered to be invalid.

Line 19: Require an OAuth 2.0 access_token (message level)

•	 The requesting client needs to present an OAuth access_
token in order to consume this API.

•	 This access_token may not be expired but issued with
certain permissions (scope). Keep in mind that scope
only relates to the client, not the resource_owner!

•	 At this point, the API could also check if the resource_
owner associated with the access_token is authorized to
access it. This information cannot be derived from the
access_token itself! What has to happen is an extra step.
The resource_owner (username) has to be sent to an
authorization service. This can be done via an API call or
an LDAP lookup, depending on the system. In any case,
this requires extensive discussions and good design!

Line 20: Rate limiting (message level)

•	 This API limits clients to consuming this API only twice
per second. The provided access_token is used as an
identifier.

•	 Rate limiting is sometimes controversial since it limits a
client’s performance. However, this API has to serve more
than one client and it has a dependency on a backend
service (line 27).

•	 When it comes to rate limiting, always remember that it’s
not about limiting clients but about protecting any backend
system from failing!

Line 21: Require geolocation (message level)

•	 The request needs to provide an HTTP header named
geolocation that contains latitude/ longitude. This
information can be used to compare the location that is
associated with the client’s IP address, a second vector in
the context of geofencing.

•	 Generally, the geolocation has to be translated into a real
address, which can be done by using an external service.

API Development 113

•	 If the link below is copied into a browser, it will take you
to downtown Vancouver. The bold numbers are longitude
and latitude. This is how these values could be provided
by a client:

https://www.google.com/maps/place/49°17'02.3%22N+123°07'
08.8%22W/@49.2839749,123.1196665,19z/data=!3m1!4b1!4m6!3
m5!1s0x0:0x0!7e2!8m2!3d49.2839741!4d-123.1191184

Lines 22/ 23: Protect against replay (message level)

•	 Line 22 extracts an identifier of the incoming message.
Line 23 is using that identifier to protect against replays.
The idea is to accept any message once only.

•	 Replay protection is required in cases where messages
may change the state of a system. For example, submitting
a transaction twice may not be a good idea since it will
cause double bookings.

Line 27: Calling a backend

•	 Finally, after all those checks between line 2 and 23, a
backend service is called. The backend request may
contain details of the original incoming request.

•	 The API will return the response of this backend request
to the original client.

To emphasize the need for API protection, let’s assume the referenced backend
service is hosted on a mainframe. Mainframe usages are charged by CPU
cycles! As a service provider, you only want relevant requests to be forwarded
to the mainframe. And even if there is no mainframe involved, your backend
service may be hosted in serverless environments where charges are applied
per request.

When looking at Figure 6-2, imagine a big funnel, wide open at the top and
small at the bottom, ending at line 27. Whenever an API is built, it should
reject as many requests as possible right at the top. To do this, here is a
guideline to remember:

Catch invalid requests as early as possible!

It may sound obvious, but I have seen many implementations that did not
follow this guideline. These implementations executed checks and validations
that most likely did not fail first! The goal is the opposite! Otherwise, code will
be executed, only to find out later that it wasn’t necessary at all!

Chapter 6 | API Implementation Details114

The guidelines above could be implemented this way:

	1.	 Check for values that are most likely invalid, early.

	2.	 Implement checks that are least expensive, early.

Figure 6-2 checks for the correct HTTP method and content-type very
early on lines 16 and 17. These checks are very cheap, just simple string
comparisons. It then checks for valid OAuth access_tokens on line 19 since
this will fail often due to their expiration date. This is not the cheapest check
but it’s more likely to happen than violations against the replay protection on
line 23. Replay protection is also not cheap, but in a distributed environment,
it’s more expensive than the access_token check.

API Error Handling
Error handling is not a famous topic as far as I can tell. Surprisingly I have not
been in discussions on this topic often. It usually comes up only during panic-
mode escalations when the operations team cannot find reasons for failing
systems. In that moment, all involved team members are surprised about the
absence of a meaningful error framework.

A product I designed used to generate error messages that were often wrong.
It indicated an error that had happened but wasn’t responsible for a failing
request. Developers received an error message and investigated in a wrong
direction. It was painful and I felt bad.

This experience caused a complete change of the product’s architecture,
which took quite a while. Today the produced error messages are correct,
maintained in just one location, and easy to update. The work resulted in
guidelines that I follow myself and suggest to customers. Now it is time to
share those guidelines with a greater audience. Here they are:

	1.	 The API owner must be in control of error
messages. This sounds like a given but especially when
choosing a middleware product, it should be evaluated if
internal errors may be returned instead of ones created
by the API owner/developer. That is not desired.

	2.	 APIs should return correct error messages. This is
another one that should be a given. However, if this is not
the case, developers will be very confused.

	3.	 Error messages should not reveal sensitive
information. The error message should not expose
implementation details such as stack traces. Error
messages should be as general and as specific as possible
at the same time. For example, returning authentication

API Development 115

failed due to invalid credentials is general but also specific
enough. It would be wrong to return authentication failed
due to the incorrect password “xyz.”

	4.	 Error messages should be returned in an expected
message format. If the API consumes and produces
JSON messages, error messages should also be returned
in JSON.

	5.	 Error messages should be maintained in a single
location. This may be controversial and depends on the
API development environment. But, if many APIs have
to be managed, a system that has a central location for
maintaining error messages may be used. Otherwise, if
the error messages are formulated within those APIs
directly, it may be difficult to change or fix them.

	6.	 The same errors should always cause the same
error message. If an API implements parameter
validation and fails, the produced error message should
be the same across all APIs that implement the same
validation. This should be consistent for all types of
errors.

	7.	 All possible error responses should be documented.
Do not let your API consumers guess what errors may
occur. Document all possible errors that may be returned.
This includes potential reasons for a failed request and
also solutions for how this can be fixed. For example, if
the error says token is invalid, you may want to document
The given access_token has expired. Repeat the request using
a valid access_token.

Typically, HTTP-based APIs return error messages with an HTTP status code of
400 and up.6 This is helpful but may leave questions. For example, HTTP status
400 indicates that a client caused an error. However, there may be multiple
reasons that could have caused the error. With no other indicator than the
HTTP status code, it is difficult for the client to continue the workflow since
it cannot decide what to do next.

To solve this problem, here are a few suggestions:

•	 Create a system that uses each HTTP status for one
specific error case only.

•	 Create a system that has a well-defined short list of
possible cases that create a specific HTTP status code.

6HTTP status codes, www.w3schools.com/tags/ref_httpmessages.asp

http://www.w3schools.com/tags/ref_httpmessages.asp

Chapter 6 | API Implementation Details116

•	 Introduce a second level of status codes. They could be
introduced as HTTP headers and would be application-
specific. An example can be found within FAPI7 (Financial
API), which has proposed such a system.8

API Caching
API caching refers to a widely used technology, caching of data. In a world
of APIs, caching is very important in the context of performance, meaning
reduced response times and increased numbers of handled requests.

Caching, in general, tries to reduce the number of CPU or latency intensive
processes with lightweight alternatives. Creating the alternative is done by
keeping data in an easily accessible storage location. A typical example is the
retrieval of datasets from a database (file based) and storing those datasets
in an in-memory cache. The next request will not receive the dataset from
the database but from the cache. There are different categories, different
technologies, and different goals to be achieved. Most cases I have seen had
two main requirements:

	1.	 Reduce the number of database queries.

	2.	 Reduce the number of API calls to external services.

At a first glance, caching sounds like the best invention since bread and butter.
But, in reality, using caches successfully is anything but easy. The very big
challenge with caching is the accuracy of the cached data. Even the simple
example from above provokes the following question:

How is a dataset in a cache as accurate as in the database?

This question has to be asked over and over again and it has to be answered
by the correct design of the API system. It has to be asked to avoid situations
where a cache returns stale data. To explain this better, here is an example. A
typical flow could work as shown in Figure 6-4.

7Financial API, http://openid.net/wg/fapi/
8FAPI error handling, https://bitbucket.org/openid/fapi/src/f1b3c95660dc
e93404f2ff10aabb051b48ac718e/Financial_API_WD_004.md?at=master&
fileviewer=file-view-default#markdown-header-7-api-errors

http://openid.net/wg/fapi/
https://bitbucket.org/openid/fapi/src/f1b3c95660dce93404f2ff10aabb051b48ac718e/Financial_API_WD_004.md?at=master&fileviewer=file-view-default#markdown-header-7-api-errors
https://bitbucket.org/openid/fapi/src/f1b3c95660dce93404f2ff10aabb051b48ac718e/Financial_API_WD_004.md?at=master&fileviewer=file-view-default#markdown-header-7-api-errors
https://bitbucket.org/openid/fapi/src/f1b3c95660dce93404f2ff10aabb051b48ac718e/Financial_API_WD_004.md?at=master&fileviewer=file-view-default#markdown-header-7-api-errors

API Development 117

If a dataset is found in the cache, it is returned. Otherwise, it will be retrieved
from the main source (database) first and then copied into the cache. This
process works as long as the cached dataset has an expiration date and if the
cache is flushed if the content of the main source changes. In this example, an
update of the dataset in the database should cause a flush of the dataset in
the cache.

Unfortunately, Figure 6-4 supports none of the required features that are
necessary for a successful caching system. It needs to be enhanced. The better
version is displayed in Figure 6-5.

Figure 6-4. Typical caching workflow

Chapter 6 | API Implementation Details118

Two enhancements:

	1.	 The service adds a dataset to the cache and sets the
lifetime to 30 seconds. This causes the service to retrieve
the dataset from the database at least every 30 seconds.

	2.	 The database flushes the cache after an update. This
causes the service to retrieve the dataset from the
database, even if it has not been updated.

Someone may say that a flushed cache after an update of the database is
good enough. And it may be true, but it also prevents any invalid cached
dataset being returned based on timing issues between “expired cache dataset
lifetime” and “update database.”

Figure 6-5. A slightly enhanced version of the simple caching system

API Development 119

If you have ever implemented a caching or database solution, you may see
something strange in Figure 6-4. The database got updated and afterwards
notified the cache to flush a dataset. This is usually not supported. The
question is, Is that reality? Yes and no: no for plain database systems and yes for
API-based solutions. Here is a suggestion, which I call DataManager:

•	 To update or retrieve datasets, do not use connections
to a caching or database system but use a DataManager.

•	 A DataManager controls access to data and updates or
retrieves it from/to a database or caching solution or
both.

•	 A DataManager provides APIs for all tasks.

Such a diagram looks like Figure 6-6.

Figure 6-6.  Enhanced flow using a DataManager

Chapter 6 | API Implementation Details120

These are the main differences:

•	 Any communication to the storage layer (cache, database)
is controlled via the DataManager.

•	 No component accesses the cache or database directly.

•	 The DataManager retrieves data either from the cache or
the database and updates them appropriately.

DataManagers are implemented per use case and should support the current
requirements only. Do not try to cover future cases that are not even
expressed yet.

In this section, I only covered caching on a server. In a larger environment,
caches may exist at multiple components, which complicates the system.
Caches could be found within clients, external APIs, internal APIs, or database
systems. I always think of small boxes that are chained to each other, something
like Figure 6-7.

Figure 6-7 is not accurate, but it is a mind model I like to reference. It reminds
me to ask which caches exist (or should exist) in conjunction with sources
of different kinds, how they are configured, how they are refreshed, how they
relate to each other, and what kind of cache they may be. This becomes even
more important if the target system is a distributed environment.

Figure 6-7. A view on chained caches

API Development 121

Security vs. Performance
Caching improves API performance. That is a good thing. Nevertheless, there
are limitations. Sometimes caching is not even an option.

•	 Caching is useful only if the same datasets are retrieved
multiple times. If that is not the case, there is nothing to
cache.

•	 Caching requires large amounts of memory. If memory is
a constraint, caching may not be used or only for limited
use cases.

•	 Caches keep datasets in memory. Some environments
may not accept systems that keep sensitive information
in memory. Caching is not an option here.

Despite these potential reasons for not introducing caching, there are
certainly many good reasons for accepting, sometimes even requiring, the
usage of caches. I would like to point out one specific case of caching that
refers to cached authorization statements, in particular, caching in the context
of OAuth.

OAuth token validations can be very expensive. They either require a token
validation request to an authorization server, which introduces a dependency
and latency, or they require JWT validation, which is CPU intensive. Caching,
to me, sounds like an almost natural fit here, especially since OAuth token are
used often in most cases. My thinking behind it is simple:

A token that is valid now is also valid 10 seconds from now!

The typical validation checks for required scope and expiration. In OAuth,
an API caches the token validation result. To do so, a few things have to be
considered beforehand:

•	 Token validation cache lifetime should be a fraction of the
token lifetime, but they should have a fixed ratio to each
other.

•	 Short token lifetime  short cache lifetime and vice
versa

•	 Typical: token lifetime = 3600s  cache lifetime =
30s

•	 Token validation cache lifetime influences the API performance.

•	 Short cache lifetime  bad performance

Chapter 6 | API Implementation Details122

•	 API performance improves with longer token lifetime.

•	 Short token lifetimes cause clients to request new
tokens often, which requires a full authorization
cycle.

•	 API security increases or decreases based on the configured
lifetimes.

•	 API security refers to the validity of the OAuth
token validation result. It could happen that a cached
but expired token can still be used, depending on
the implementation!

The relationships are shown in Figure 6-8.

Figure 6-8. Attributes that influence API security

Figure 6-8 visualizes the conflict between API security and API performance.
It also shows that the maximum cache lifetime should be in relation to the
maximum token lifetime.

API Documentation
Chapter 4 covered API design and the topic of API documentation. Here I
want to discuss a few important concepts. As explained earlier, documenta-
tion artifacts should be human and machine readable.

http://dx.doi.org/10.1007/978-1-4842-3936-0_4

API Development 123

I am bringing up the machine-readable documentation again because that
artifact should be as close to your APIs as possible. Specifically, it should be
available through its own API! Many developers have the mind set of Who
reads documentation?’ They believe they simply do not need it. But the majority,
at least in my experience, of developers feel they have to search too long to
find what they are looking for.

With that in mind, an API-driven system should make access to documentation
as easy as sending a HTTP request to an API. For example, if a service is
accessible through this API,

https://example.com/account

the documentation could be available at

https://example.com/doc/account

The usage can even be enhanced by providing different types of documentation
that could be requested through simple query parameters:

•	 https://example.com/doc/account?doctype
=swagger

•	 https://example.com/doc/account?doctype=wadl

It is difficult to make it easier than that!

The reason why the documentation URL should not be an extension of the
service API (.../account/doc instead of .../doc/account) is based on the
first part of this chapter that discussed API protection. Usually documentation
should be publicly available whereas services are not. Services are implemented
with mechanisms that restrict and limit accessibility, as discussed earlier.

If the documentation API is an extension (.../account/doc), the service
API will have to support a flow that varies based on the URL path’s end-
ing! Technically that is not too challenging, but it influences the development
process. Any update on the documentation would also be an update on the
service API itself and would require a new test cycle. The service would need
to implement logic such as this:

if (request.URL.path.endsWith("/doc"))
then (return documentation)
else (apply restrictions and process request);

This snippet may look simple but in larger systems it will happen sooner or
later until the check for the doc fails and restrictions are bypassed, especially
since some restrictions, such as require SSL, must be applied always and oth-
ers, such as require oauth access_token, only to portions.

Chapter 6 | API Implementation Details124

In comparison, having the documentation API separated from the service
API allows an update at any given time. The worst thing that may happen
is a mismatch between service implementation and documentation. That
is annoying, but less annoying (and potentially catastrophic) than a broken
service API!

To finish this topic up, other enhancements could also be supported. For
example, the machine-readable documentation could be returned in a format
that is human readable! The documentation API could support additional
query parameters:

https://example.com/doc/account?doctype=swagger&format=html

The response would now be a (hopefully) beautiful HTML page suited for
humans. In general, anything that makes it easier to provide the documentation
is a step towards API adoption, which is one of the main goals for an API-based
system!

Summary
This chapter gave an introduction to implementation details on securing APIs
and preventing them from being consumed by non-authenticated or authorized
entities. API error handling was introduced, as was API caching. The section on
API documentation showed how easy access to documentation can increase
the adoption of API-based systems.

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0_7

C H A P T E R

API Gateways
In previous chapters, API gateways were introduced. Now it is time to look
at them in detail. On a high level, these components are proxies that enable
introspection of any message received and returned. They work on TCP level
3 – 5.1 Figure 7-1 shows a view of the topology within a simple network that
includes an API proxy (I’m using both terms, API gateway and API proxy, to
emphasize that they are the same).

7

Figure 7-1. Typical network topology including an API gateway/API proxy

1Transmission Control Protocol, TCP, https://tools.ietf.org/html/rfc793

http://dx.doi.org/10.1007/978-1-4842-4140-0_7
https://tools.ietf.org/html/rfc793

Chapter 7 | API Gateways126

Figure 7-1 displays the API gateway in between the external and the internal
network, which is a very typical setup. It can look differently, too. It is not
uncommon to find at least two API gateways. Many systems do not allow
access to certain components from within the DMZ. For example, if data
needs to be retrieved from a database, this database can only be accessed
from within the internal network.

In those cases, one API gateway within the DMZ validates incoming messages
by static rules only. These rules are configured once and do not need any
additional information at runtime. After successful validation, that API gateway
forwards the message to a second API gateway within the internal network.
This one has access to all other components including databases and is able
to complete a set of necessary validations.

Another trend that I have noticed during discussions with customers of large
enterprises indicates that the distinction between the external and internal
network has become less of a differentiator. These customers assume an
attacker could be located anywhere. They are starting to place an API gateway
as an Ingress gateway where traffic is received at the edge of their network
and less powerful API gateways throughout different network sections. Each
of them have very specific tasks and are usually responsible for securing a
group of dedicated backend APIs (more on this design pattern in Chapter 8
about APIs and microservices).

The next sections are similar to each other, but they focus on different topics.
Each one can be read on its own if that is preferred.

Why Do API Gateways Exist?
The first API gateways I noticed appeared in 2006. At that time, SOAP web
services were still very new, and those messages could get very complex. XML
schema validation, XML encryption, XML signatures, SOAP envelopes, SOAP
headers and SOAP body, XML namespaces, WSDL, WSS, XSL, XPath—all of
these technologies appeared in a relatively short period of time. And all of
them had to be mastered in order to support a web service infrastructure.

If you remember these days, you will remember that it was not easy to get all
these technologies right. Here is a short SOAP message for anyone who has
not seen one:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body><soapenv:Fault>
<faultcode>soapenv:Server</faultcode>
<faultstring>Policy Falsified</faultstring>
<faultactor>https://example.com</faultactor>
<detail><gw:policyResult status="Service Not Found" xmlns:gw="http://
gateway.example.com/ws/policy/fault"/></detail>
</soapenv:Fault></soapenv:Body></soapenv:Envelope>

http://dx.doi.org/10.1007/978-1-4842-3936-0_8

API Development 127

To process even a short message like this, many details need a developer’s
attention:

•	 Message structure

•	 SOAP messages have an envelope and a body. The
header is optional.

•	 SOAP fault appears in error messages only.

•	 Two namespaces including aliases

•	 soapenv:http://schemas.xmlsoap.org/soap/
envelope/

•	 gw:http://gateway.example.com/ws/policy/
fault. This namespace is specific to this message

•	 Elements with no namespaces

•	 faultcode, faultstring, faultactor, details

•	 Message encoding

•	 UTF-8

•	 Elements and attributes

To access the value status, XPath is required. The expression looks like this:

/soapenv:Envelope/soapenv:Body/soapenv:Fault/detail/
gw:policyResult/@status

That is quite a selector for such a short message! It is not easy to build by
anyone who is new to XML-related technologies. For this purpose, some API
gateways provide easy-to-use graphical interfaces that allow users to create
this XPath expression by simply selecting the element based on an example
message.

Unfortunately, wherever it was required to expose business interfaces as
SOAP web services, developers needed to support these technologies in all
of their APIs. This required specific knowledge and had potential for mistakes,
especially when it came to encryption, digital signatures, and SAML. From
a business logic point of view, having to support these technologies was
considered overhead since they were not really part of the API feature itself.

Similar to mobile applications today, there is always the effort of implementing
the foundation of the app. Components that handle security, authentication,
authorization, session management, all of that is not really the app, but still
required. To help mobile developers, SDKs are available to take care of many
of these technologies.

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://gateway.example.com/ws/policy/fault
http://gateway.example.com/ws/policy/fault

Chapter 7 | API Gateways128

For SOAP web services, products have been made available to help API
developers, similar to mobile SDKs to help app developers. The first products
I worked with were the Layer 7 SecureSpan SOA Gateway (later the CA API
Gateway)2 and IBM DataPower.3 The main goal was to take the burden off
of developers by supporting all these XML-based technologies in an easily
accessible way. Developers could then concentrate on their API business logic
and let the API gateways handle all the complicated, non-business API logic
separately.

A typical scenario, which I have worked on myself, was the following.

A medical report would be sent to the health insurance company. The report
would be signed and partially encrypted. In addition, the report would be sent
via TLS with client authentication.

The API gateway would validate the SSL session, the digital signature, would
check for rate limits and messages size, and it would do XML schema
validation. It would take care of validating the complete message. Decrypting
the message would be an option, depending on the use case. Developers of
backend business APIs could now expect to handle validated messages only!
For example, the signature validation would not be necessary since it was
already done!

Nowadays these SOAP web services may still be running but new SOAP
web services rarely appear. Instead, RESTful API interfaces have taken over.
Although message structures may not be as complex anymore, the need for
introspection still exists. The complex message structure has been replaced
by having to support multiple parameters including optional ones, explicit
HTTP method validations, and different types of payloads. Requirements such
as rate limits and message size validations have not changed. In addition, new
protocols such as OAuth and OpenID Connect have been created and need
to be handled, too.

What Are API Gateways Used For?
A few features have been mentioned, but here I would like to share typical use
cases that I have seen over the years. It is not easy to answer question because
API gateways are usable in very versatile ways. To start off, here is an overview
of the technological categories in which API gateways are often used:

	1.	 Access control (i.e. who can access)

	2.	 Network-level security (i.e. use of TLS)

2CA API Gateway, www.ca.com/us/products/ca-api-gateway.html
3IBM DataPower, www.ibm.com/ca-en/marketplace/datapower-gateway

http://www.ca.com/us/products/ca-api-gateway.html
http://www.ibm.com/ca-en/marketplace/datapower-gateway

API Development 129

	3.	 Message security (i.e. message encryption)

	4.	 Message validation and transformation (i.e. from JSON to
XML)

	5.	 Message routing (i.e. forwarding messages via HTTP)

	6.	 API availability (i.e. accessible during certain hours)

	7.	 Logging

	8.	 Threat protection (i.e. protecting against SQL injection)

	9.	 Support for messaging (i.e. HTTP to MQTT)

	10.	 Support for accessing data sources (i.e. accessing
databases)

It is a long list and it’s not even complete. Other categories can be found, but
they are more like “you can but you should not necessarily do this or that
using an API gateway.” As mentioned, on a high level it is all about externalizing
non-business, API-related features in the API gateway. What that means in
detail is described best by an example.

Let’s say a business API has to validate and persist incoming paystubs. The
requests must be sent by authorized clients who are identified by an OAuth
access_token. The API must apply validations to assure reliability and security.
Once the request has been validated, the API must associate the given paystub
with a user and persist it. All actions must be logged for historical and
compliance reasons.

However, the API developer needs to take care of all of these steps:

	1.	 Error handling

	2.	 SSL/TLS

	3.	 OAuth with SCOPE paystub

	4.	 Authentication

	5.	 Authorization

	6.	 Rate limit

	7.	 Replay attack protection

	8.	 Message size validation

	9.	 SQL injection protection

	10.	 Validate and persist paystub

Chapter 7 | API Gateways130

As you can see, 9 out of 10 requirements are not directly related to the actual
feature. A developer will spend a lot of time implementing those 9 requirements
before he or she gets to number 10. When I think about implementation
efforts for a single API like this, I have two different development modes in
my mind:

	1.	 Preparation  API infrastructure

	a.	 Effort spent to build some kind of foundation including
requirements 1 - 9

	2.	 Implementation  API business logic

	a.	 Effort spent implementing the actual, required logic
for requirement 10

I visualize it as shown in Figure 7-2.

Figure 7-2.  Effort for API infrastructure and API business logic

The percentage may not match in all cases, but it is roughly what I have seen in
real-life scenarios. The point is, everything that is not part of the core feature
of an API is part of its infrastructure. If you multiply this by the number of APIs,
it can be imagined that many resources are used only to get to a point where
the business implementation can be started.

The goal of having an API gateway is to externalize these tasks. With an API
gateway, those 9 requirements can be implemented in front of the business API,

API Development 131

done by a different developer team. And, even if it is the same team, the API
gateway provides features that support the developers to get ahead fast. The
API gateway not only speeds up implementations, it also eases the operation
of services! Internal standards can be applied, logging can be aligned, and API
protection can be aligned—all of this due to having one single component that
“sees” all traffic.

After all, the business API only receives requests that have been validated. This
also reduces the required processing power for them. Figure 7-3 displays this.

The API gateway takes care of most requirements and filters incoming requests
to only forward valid messages to the backend. Steps 1 and 2 on the backend
side are additional required steps. They are to assure that requests were
received by the API proxy and that the user is the one associated with the
paystub. After that, the backend can handle its paystub feature.

If you now ask why the user can’t be authorized by the API proxy, the
answer is quite simple: API gateways should not implement business-relevant
validations! Only the business API itself should do that. Otherwise, a lot of
context needs to be made available to the API gateway and that raises privacy
concerns and potential replication challenges.

In many cases, the requirements in front of different business APIs will be
the same, or at least similar. Knowing this opens the door for tremendous
simplifications. Ideally it becomes so simple that a developer could be placed

Figure 7-3.  Implementing requirements, API proxy vs. backend

Chapter 7 | API Gateways132

in front of a website and simply fill out a dialog with check boxes and input
fields. A click on a “Deploy service” button will create a new API on the API
proxy and all these requirements will be implemented. Simple as that!

I would like to share a prototype that I have worked on. This is the scenario.

A backend API is exposed via an API gateway. The API gateway must filter
the incoming request, forward it to a backend, and inspect responses. If the
responses are valid, they are returned to the requesting client. The web UI of
the prototype looks similar to the one shown in Figure 7-4.

Each box represents a piece of required configuration for creating an API: the
external URL (https://external), filter (RateLimit, Content-Type check),
the backend URL (https://internal) that implements the business logic,
and the response inspection (content inspection of the backend response)
back to the requesting client. The web UI includes a few dialogs (Figure 7-5)
that enable a developer to provide required values.

Figure 7-4.  Prototype of a API proxy API builder

API Development 133

At the end a “Deploy service” button generates a deployment descriptor that
goes into a version control system and is used to generate code for different
API proxy target systems. Since the code for the API proxy is generated, no
errors are possible. Each API follows best practices, include error handling and
generating comments so that readers of the implementation will know what
it does.

It is hopefully obvious that anyone could fill out these dialogs. No hardcore
technology knowledge is needed. The best part about all of this is the fact that
none of this influences the business API. It can be developed without knowing
anything about the API proxy implementation. The contract between those
two would be an API definition such as the Swagger document discussed
previously.

Mocking APIs
I would like to share one of those use cases that are not always obvious. API
gateways are great to “mock” services. If a client must be built to consume a
backend API that has not yet been realized, testing tools can be used. However,
another alternative is to use the API gateway that will later expose the proxy
API. Until the backend API is completed, the proxy API can be built to take
incoming requests and return success and error responses. Where Figure 7-5
shows a dialog to configure the backend API URL, it can simply be set to

Figure 7-5.  Dialog for providing required values for generating a proxy API

Chapter 7 | API Gateways134

something like http://localhost/fake. The implementation would do
nothing else than return a HTTP status 200, fake response message. This
also speeds up the whole development process. To give an impression how easy
this can be, Figure 7-6 displays a screenshot of such a fake API, implemented on
CA API gateway.

A client passes in an HTTP header (line number 3) named x-testcase, which
sets a variable named testcase. Further down the API takes the appropriate
action. For a success message, it will return what is shown in the lower right
dialog.

Many cases can be handled. It can also be done based on other incoming
parameters or request payloads. Ideally the API gateway will require request
messages and return responses that also match the Swagger API definition.
With that, only the content would be fake, but message formats and structures
could already be verified!

Another powerful feature is the capability of simulating failing backend systems,
added latency, connection breakdowns—all the cases no one would like to
see in a production system, but still need to handle!

Figure 7-6.  Implementation of a fake API for testing purposes (mock service)

API Development 135

Why Is It Important to Leverage API
Gateways?
The first reason that comes to my mind for why it is important to leverage
an API gateway is decoupling. An API gateway decouples more than one may
think:

	1.	 External network from internal network

	2.	 External API interface from internal API interface

	3.	 External URL from internal URL

	4.	 External network topology from internal network
topology

	5.	 External API version from internal API version

The second reason is the separation of concerns:

	1.	 The API gateway can be managed by a different team than
the backend API team.

	2.	 Teams such as operations (DevOps) or security can
specify their own requirements without influencing the
business API.

	3.	 The separation of features per API. For example, the API
gateway could expose a JSON-based API and translate
that to an XML interface for the backend API. The API
gateway can also translate between different protocols.

Another main reason is integration and scaling:

	1.	 API gateways can connect to other components to
prepare the request to the backend API.

	2.	 API gateways can be scaled independently of backend
APIs.

Other noticeable reasons, from a more general viewpoint, are the following:

	1.	 Termination of TLS/ SSL connections

	2.	 Service orchestration. One exposed API could leverage
multiple other APIs internally. A response of a simple /
overview API could be the result of five or more API calls,
managed and implemented by the gateway.

	3.	 Caching, to reduce the load of messages being send to
the backend system

Chapter 7 | API Gateways136

All these reasons enable different teams to work on features at the same time,
each one on its own component. Let’s have a closer look into each one.

Decoupling
Figure 7-7 gives an idea how attributes in regard to decoupling could be
implemented and/ or supported.

The API gateway is located within the DMZ and receives requests from
external clients. The requests include an OAuth access_token and a JSON
payload. The API gateway will validate the access_token and retrieve the
associated username. In addition, it will inspect the payload. Depending on
that, it is able to evaluate which backend API of which version should handle
this message (this is also called content-based routing). Since the backend API
requires an XML payload, the API gateway transforms the JSON payload into
that.

The API gateway creates a request for the target backend API and includes
the username as an HTTP header in addition to the XML payload. The
load balancer in between the API gateway and the backend APIs serves one
IP address, which resolves to the matching backend API by examining the
requests URL path. Each target backend receives and processes the request
that matches exactly their interface.

Figure 7-7.  Decoupling between the API gateway and backend API

API Development 137

This setup provides the flexibility for the backend API developers to develop
and test new versions whenever they feel like it. Once the backend API is
ready for production, the load balancer can be updated to route to the new
backend API if required. Lastly, the API gateways logic to inspect the payload
gets updated. That enables it to include the new backend API as a target
location. The API gateway can also be prepared earlier in the development
process but either ignores requests that are received with a newer payload or
simply forwards them to an older version. Many possibilities appear once this
setup has been established.

Separation of Concerns
Figure 7-7 shows several components: the API gateway, a firewall, a load
balancer, and multiple backend servers. What appears to be a complex setup
at a first glance is very much required. The backend APIs may be maintained
by different teams that are specialists in a particular area. At the same time,
network administrators can update the load balancer with configurations as
necessary. The API gateway can handle requirements that are not directly
business API-relevant but reduce complexity in that area.

Often, components in the DMZ require special audits due to the nature of
the DMZ. Everything in the DMZ is exposed to the Internet and is therefore
a potential target for attacks. The security team can apply strong measures
to reduce risks. This does not apply to the backend APIs since they are not
located in the DMZ and message inspections are done in the DMZ. The risk
of receiving an invalid message is very much reduced.

Although the separation is very useful, it also requires well documented
interfaces. If one component goes down, a procedure to identify it quickly
is needed. A useful trick to trace messages is to include a requestID that
is supported practically everywhere. As soon as a request is received, a
requestID should be created and included in all subsequent calls and back
again. If this value is logged, it can be searched for it and the failing component
can be identified, sometimes even by not finding the value for component xyz
in the logs!

Integration and Scaling
Integration is a strong argument for the existence of API gateways. As an
architect, I work with customers who have questions regarding this topic
often! Typical integrations include custom IDPs (Active Directory, Oracle
Access Manager, CA SSO, Open LDAP), different databases (MySQL, Oracle,
Cassandra), FTP servers, email servers, mobile notifications—almost anything
that is available. Even integrations with mainframes! Figure 7-8 gives an
overview.

Chapter 7 | API Gateways138

The beauty is that API gateways already support the technology to integrate
with each of these systems. They only require configurations (exceptions
exist). The backend API developer does not need to include a single line of
code to support these integrations. Having these possibilities enables new use
cases also. A request could be received via an email, checked for viruses using
ICAP, and afterwards forwarded to a backend API. If this had to be handled by
the backend itself, it could require skill sets that may not exist in teams.

■■ Note  Because of these integration capabilities, API gateways are sometimes also referred to as

lightweight ESBs.4 ESBs receive a request and processes it through many different channels until

the message is finally sent to the main recipient.

Scaling is another big and important topic. Scaling may be required to serve
a higher load from the external network but sometimes also into the internal
network. A combination of both is certainly also possible. However, scaling is
nothing that can be handled by any component itself. The network topology
must be prepared for it. Adding a new API gateway or backend API is not an
easy task and requires the correct setup beforehand. Needless to say, this is
something that is necessary, no matter what component has to be scaled.

Figure 7-8. Typical integrations for API gateways

4ESB, enterprise service bus, https://en.wikipedia.org/wiki/Enterprise_service_bus

https://en.wikipedia.org/wiki/Enterprise_service_bus

API Development 139

If the backend needs scaling, it can be done independently of the API gateway.
Session stickiness between the API gateway and a particular backend API
may be required but that can be handled. Scaling in that direction can also
include rate limiting per backend API. The exposed API on the gateway can
be configured to prevent the backend API from failing or getting overloaded.

Caching is also an interesting capability. Often, APIs return the same result,
for example, configurations. In those cases, an API gateway could cache these
types of responses for a specified amount of time to reduce the overall load
to backend services and the overall latency.

In the other direction, looking into the external network, the API gateway
itself may need to scale. In that case, it needs to be located behind a load
balancer itself, and more nodes can be included. If scaling has not been a topic
for anyone reading this section, Figure 7-9 illustrates what it means.

Figure 7-9 contains multiple API gateways and backend APIs. It should illustrate
the idea that components are created based on demand. Since they are all
interconnected with each other in one way or the other, a well-planned
strategy for scaling is required. A client will always send requests to the same
address, but this request may be handled by different servers. This scenario
needs to be supported! Having stateless components with no sessions is
helpful but not always possible.

Figure 7-9.  Scaling API gateways and backend APIs

Chapter 7 | API Gateways140

Having unique feature sets and playing such a vital role, API gateways are also
great for auditing and logging. If all requests are processed by an API gateway,
the API gateway is able to log and audit all messages if desired! This comes at
a cost of decreased performance, but it may be valid for some environments.
Turning on and off auditing and logging for certain time frames or during
escalations is also possible.

Let’s consider a case where employees use an enterprise app. However, this
app sometimes fails for some users. In addition, due to their roles, the app may
access an API on backend XXX and sometimes on backend ZZZ. If logging
only exists on the backend APIs, it could be challenging to discover what is
going wrong. Having the API gateway in-between allows logging of usernames,
request times, target backend APIs, backend API response errors, latency
between APIs—all in a central location no matter what the target API may be.

If you feel that logging and auditing causes concerns in regard to privacy or
access control nightmares, there is good news. API gateways (at least some)
include role-based access. It is possible to limit who can do what and who
can see what based on user roles or other attributes. This not only includes
access to log files or audits; this also includes access to deployed APIs. This
can also be used to simplify the case where API gateways are shared between
different teams. Depending on team membership, these developers may only
have access to reading API implementations or audits or configurations. Fine
granular controls are available and should be leveraged.

API Gateway Alternatives
As an architect who has worked with API gateways since 2006, I usually say,
There is no alternative. You need to have it! Needless to say, this is too easy as an
acceptable answer. Of course alternatives exist!

Here is a list of typical ones that come up when customers explain their
current situation:

•	 Home-grown: Often, customers work with a home-
grown solution. These systems usually start off as a small
project to address exactly one requirement. Over time,
more features are added as the need comes up. However,
a typical conversation starts like this: We have this home-
grown system that we need to replace. We do not have
anyone left who is able to maintain it anymore! The other
conversation sounds like this: We would like to introduce
an API gateway but many of our systems depend on our
home-grown system. Your API gateway needs to integrate the
home-grown token format until we have moved all systems

API Development 141

off of it! Don’t get me wrong: home-grown systems are
not generally bad ideas. But, as it happens, these systems
are often not treated as a product and therefore the
development does not follow best practices for product
development lifecycles. Lack of documentation, lack of
testing, lack of knowledge-sharing are some of the issues.
The investment into existing products may be avoided.
But if the home-grown system is not treated as a product
right from the beginning, it will be more cost-intensive in
the long run. This alternative usually grows organically.
A developer has this cool idea and promises that he can
implement this one single feature easily by himself. Since
it worked out, he is asked to implement another feature.
One after one, and suddenly it’s a complete server that
runs well, at least, as long as this one developer is around.

•	 WAF5 and security per REST API: This option is
found where environments serve pure REST APIs (i.e.
JSON or XML payloads) and web content (i.e. HTML).
Generally, environments that have started with web
content only (web applications) leverage a WAF. Over
time, when systems began to introduce REST services, the
limitations of WAFs were compensated by adding features
directly into each new REST API. Identified redundancies
of common code was externalized and put into libraries
or SDKs. For example, within a PHP-based ecosystem,
REST APIs would use the same includes to handle
rate limiting, message size validation, and other tasks. At
some point in time, developers will have the desire to
completely externalize these tasks into something like an
API gateway or a WAF extension. And this ends up in a
home-grown system again!

•	 Per API solution: Rare, but also seen, are systems
where each API takes care of its own security in all
aspects. Teams that maintain an API, or a group of APIs,
implement the business logic and additionally anything
else that is needed for securing them. Knowledge may be
shared with other teams, but the main mindset follows
the idea of it has to work for us. For example, a system that
has multiple web sites or REST APIs that handle online
payment. Or, at least, the collection of payment details
in order to forward these to payment card processing

5WAF, web application firewall, https://en.wikipedia.org/wiki/Web_application_
firewall

https://en.wikipedia.org/wiki/Web_application_firewall
https://en.wikipedia.org/wiki/Web_application_firewall

Chapter 7 | API Gateways142

providers. How this collection of data is implemented or
secured or displayed to users may be different per web
site with no alignment between teams! As long as security
reviews do not identify potential vulnerabilities and as
long as the specific process is successful, any attempt for
refactoring code is neglected. For this approach to be
successful, the same requirements apply as they do for
the home-grown use case.

A drawback of not having a dedicated component to handle incoming and
outgoing traffic is the distribution of data. It is very difficult to apply company-
wide, or at least business unit-wide, guidelines for securing and auditing APIs.
Different teams have to be convinced of the usefulness and encouraged to
follow these guidelines. Even small things like auditing become challenging
since most teams have their own rules for auditing what, when, and how. If
teams feel that adhering to these guidelines requires extra effort, they will
ignore them as long as possible!

Nevertheless, I have seen one example where customers built a well-working
system themselves. It was built from the ground up. The reason for its success
was the fact that a team was formed and treated as a product development
team. Requirements were collected, the scope of the project was well defined,
timelines were specified, and releases were made available often to collect
feedback from other employees. In addition, the system was well documented.

Summary
API gateways (API proxies) play a vital role in any environment that exposes
RESTful APIs. API gateways are located so that all incoming and outgoing
traffic can be inspected by them. Applying security rules, implementing logging
requirements, enabling reviewers—all of this is supported. The burden of
implementing non-functional requirements in regard to a business API is taken
of the developers’ plates. Each team can concentrate on its own strengths.
Alternatives do exist, but they often end up being a maintenance nightmare
and difficult to manage.

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0_8

C H A P T E R

APIs and
Microservices
After discussing API design and implementation details, it is now time to dis-
cuss how APIs and microservice architecture fit together. This topic has been
popular for quite some time and enterprises have started to move towards this
design pattern. The content of this chapter is based on questions and discus-
sions with customers. Martin Fowler’s article “Microservices” is available for
anyone who wants to learn more about microservice architecture1 in general.

A microservice architecture refers to a design pattern that emphasizes the
idea of having APIs be self-contained and serve one purpose only. Each API
should be deployable through an automated process. An application may use
multiple APIs that are grouped by business purpose. A microservice architec-
ture should create a system that is highly fault tolerant, scalable, deployable,
maintainable, and allows you to add and remove single APIs.

What Is the Difference Between APIs and
Microservices?
At a first glance, APIs and microservices (“services” for short) are the same
thing with different names. Both receive requests and produce expected
responses. The external views on APIs and services do not give any hint to

8

1Martin Fowler, “Microservices,” https://martinfowler.com/articles/microservices.
html

http://dx.doi.org/10.1007/978-1-4842-4140-0_8
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Chapter 8 | APIs and Microservices 144

what they are. The differences are their internals, in regard to implementa-
tion details, deployment model, dependencies, and the scope of features they
serve. In this chapter, I will refer to APIs as the old way of doing things and
microservices (or services) as the new way of doing things.

APIs may be implemented on a server that hosts many other non-related APIs
too. APIs receive requests and handle them but may also send requests to other
APIs to complete their tasks. Unfortunately, when hosted on the same server,
some APIs retrieve other API resources directly, for example, by connecting to
an API’s database. This type of intercommunication is a recipe for expensive
maintenance costs in all possible ways. This pattern is not uncommon and has
caused many escalations and reduced software upgrades to rare events.

Microservices are built to serve one purpose only. Services that have dif-
ferent business purposes are not colocated on the same server. Services
only communicate with other components via documented and provided
interfaces.

Figure 8-1 displays the difference between APIs and services.

Figure 8-1.  High-level view of API and services-based applications

In Figure 8-1 the application on the right side is based on a services architec-
ture. The application leverages services but they don’t run on their own serv-
ers. An update of one service does not influence the other ones. In addition,
one service is dedicated to communicating with the database and through it
other services access the database. Each service can be scaled horizontally,
independent of others.

API Development 145

The application on the left side is based on an architecture where a single
server provides practically all features. In addition, all APIs access the database
directly. Updating or replacing one of those APIs or the database schema is
difficult. The regression test effort may be huge, depending on the behavior of
the APIs. This is a scenario where it may take weeks or even months before
an upgrade can be deployed. This is not unusual; I have seen it in customer
environments. Having this type of architecture prevents systems from being
updated regularly, which means that new features and security updates cannot
be made available when they should be.

I recently attended a public event in Vancouver, hosted by a social platform,
and the message was, Our website gets updated up to three times per day, our
mobile app once a week. It is very unlikely that two attendees here have the same
version of our app!’ That was pretty impressive.

It is difficult to top that dynamic environment. In spite of knowing about this
possibility, it should not be the first goal when coming from a twice per year
upgrade rhythm. Having multiple servers, multiple databases, each component
communicating with others, everything tangled together is a tough situation.
Being able to update such a system at least once per month is probably a big
step ahead already.

The question is, How can we get from an API-based architecture to a services-
based architecture with independent services everywhere?

The first step is to find out what exists. Often not even the current state is
known. If developers are asked, What does this API do?, the answer may be Not
sure, but it seems to work!’ Knowing that these kinds of answers will be given,
you should ask different development teams to create dependency and entity
diagrams to explain how their individual systems work. After collecting and
tying together different diagrams, you can get a larger picture and the existing
system will start to get transparent, which is one of the most crucial require-
ments for this task.

After the system has been documented, including communication channels
between different entities, a small piece should be identified, ideally a piece of
the system that is serving one business purpose only. This should be the Guinea
pig for the transformation from a monolithic to a services-based application.

Developers should move this service onto its own server. For example, if it is a
Java application, it could be deployed into an Apache Tomcat2 or JBoss server.3
As soon as these services are deployable and locally tested, they should be
taken into a QA environment where test clients can verify their function.
Once that is successful, clients who have been consuming the original service

2Apache Tomcat, http://tomcat.apache.org
3JBoss, www.jboss.org

http://tomcat.apache.org
http://www.jboss.org

Chapter 8 | APIs and Microservices 146

should switch to the new one. Step by step this service can be promoted to
different environments. If this promotion is a manual task, this is the right
time to start turning it into an automated process, even if it is only a bunch of
scripts. It is important to get started!

■■ Note  I sometimes hear people say that automation is not possible. This is usually not true.

Instead, it has not been done before, it is difficult, and it requires changes in processes. No matter

what, enabling automation must be a focus in the development, testing, and deployment process!

With some effort, including the automation, developers should find them-
selves in a situation where a check-in into a version control system (VCS)4 is
all it takes to get a new version of a service deployed, or at least built. Getting
this done in a test and/or development environment is the first step. It will
take some time to figure out the details of how to do (or not to do) things,
but it is a good feeling when a test server suddenly hosts an updated version
of code with no manual effort. It also teaches everyone how not to break
services interfaces without notifying anyone else because other developers,
whose services consume these ones, will complain immediately!

Visualized, the process could look like Figure 8-2.

Figure 8-2.  High level and simplified lifecycle of service development

4VCS, version control system, example Git: https://git-scm.com/book/en/v2/
Getting-Started-About-Version-Control

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

API Development 147

Figure 8-2 indicates that a developer (or a group of developers) keeps her
work within a development environment. She goes through all tasks that are
needed to get the system up and running. Once she is done, she checks her
code into the VCS. When this happens, a build server kicks off and executes
automated tests, configures the services, and creates artifacts as needed.
When this step successfully ends, the build server deploys the service into the
target environment’s application server. This server instantiates the artifacts
and the updated service becomes available.

Figure 8-2 is very simple, but in the end, it is always the same process, some-
times including a few more steps than shown but basically like that. Depending
on the environment, the application server may host more than a single or
logical group of services. Due to resource limitations this may not be avoidable,
but, regardless, services should not have implicit dependencies to each other.

The automated process enables teams to redeploy services often. A bug was
found, it got fixed (and nothing else), tested, checked in, and deployed. Considering
my own experience, any manual task that can be eliminated is a step towards
automated deployability. Updates do not need to be scheduled over months;
they may not be scheduled at all! As long as interfaces do not change, clients will
not need to be updated and can continue even with the latest service.

■■ Note  Automated tests have very little value if a failing test raises the question Was it the test
or the implementation that caused the failure? This question indicates missing trust in the test

system and, with that, in the quality of the tested product itself!

The last few paragraphs got a little mixed up with the next section. Nevertheless,
if the process of extracting services out of monolithic applications had its first
small success stories, it becomes easier to follow the microservices pattern.

What to Know When Supporting a
Microservice Infrastructure
Having the term “infrastructure” in this section’s title should indicate that
there is more to microservices than just modifying the implementation. As
mentioned in the previous chapter, it should be possible to automate the
deployment of services. This requires a CI/CD5 pipeline that avoids as many
manual tasks as possible. This is not only necessary to enable automation but
also because the team members who will deploy the software are not part of
the group of software developers.

5CI/ CD = continuous integration, continuous deployment

Chapter 8 | APIs and Microservices 148

To support a good working CI/CD pipeline, other groups than only develop-
ers are required. Network infrastructure experts, security experts, support,
operations—all these groups are needed. Over the last two or three years
the term DevOps6 was introduced and now refers to the whole process.
DevOps emphasizes the fact that development and operations are working
hand in hand (specifically development, QA, and operations). Each involved
group between development and deployment has its own tasks, but at the
same time the needs of other groups are respected.

If you are currently not following the DevOps principle, you may wonder what
the difference to your current process may be. Here are a few thoughts of
mine, based on real life experiences:

•	 Your developers implement, test, document, and release
software into production environments all by themselves.

•	 QA is testing software manually.

•	 Network administrators accompany developers to open
up server rooms and provide access to servers so that
these developers can manually deploy new versions of
software straight into production.

•	 The database administrator is on stand-by during an
upgrade to rescue failed attempts and suggest default val-
ues for database configurations.

•	 You do have operations teams who have received instruc-
tions for manual software installations. The instructions
assume deep knowledge of the software, which does
not exist. After 5.5 hours of following instructions, the
process is rolled back due to some undocumented and
missing parameters (the procedure to roll back is not
documented, so operations must figure it out on the fly).

•	 QA has never tested the software in a production-like
system (the development environment is the same as
production anyways …).

•	 You had to postpone a release due to a sick developer
whose knowledge is required during an upgrade.

•	 Systems have to be taken offline to run the upgrade. SLAs
state very clearly how long this may take, and additional
periods will result in costly penalties. To reduce the
chance of having to pay those penalties, the number of
releases is limited to two per year.

6DevOps, Development and Operations, www.atlassian.com/devops

http://www.atlassian.com/devops

API Development 149

If all of the above, or at least a few of them, are true for your current environ-
ment, it is a strong indicator that some work lies ahead of you. The work is
not only referring to implementations, but in changing the mindsets of teams.
Current processes have to change!

In order to enhance existing processes, they have to be broken apart. Once
that is done, each process needs to have an owner. Owners are responsible
for everything that falls into their scope and they have to be very clear about
the requirements that need to be successful. Each team has to assume that
others are experts in their own processes only. Without that, upgrades or
installations will often fail. Let’s look at this by example:

Developer: I have written all 15 steps you need to follow to install the
upgrade. Have a good evening. See you on Monday!

Operations: Ok, I will follow them tonight during the maintenance
window.

The instructions say Open the installations menu and provide the default user-
name. Guess what? Operations will already be stuck. They do not know how
to open the installations menu nor are they aware of the default username!
This little example is not fake. I witnessed it (not saying who I was in that
scenario)!

There were a few mistakes made:

	1.	 The developer assumed that operations knew how to
open the installation menu.

	2.	 The developer assumed that operations knew the default
username.

	3.	 Operations did not go through the instructions when the
developer was still around.

In larger scenarios there are almost endless possibilities for failure! For that
reason, development and operations need to work close together. For exam-
ple, after the above situation, operations shared with the developer that they
are maintaining more than 30 systems at the same time. It is impossible for
them to be experts on all systems and to know the default username for each
one of them.

To get to a working CI/CD pipeline, teams have to discuss all steps of the
deployment process in detail. Each team has to understand others and be very
clear on what they can handle and what they can’t. Once that has been clari-
fied, the same instructions from above may look like this:

Chapter 8 | APIs and Microservices 150

Developer: I have written all 15 steps you need to take to install the
upgrade. I also included a script that executes steps 1-6 and 9-11 if
you prefer that. Usernames, passwords, locations for menus are all
documented. I will be home later, but I have left my phone number for the
worst-case scenario.

Operations: Let me just check the instructions …. Ok, I got it, Looks
good. I will do a dry run right now and give you a call if something is
missing. I will use the scripts to reduce the chance of errors caused
between the screen and the keyboard. Thanks!

Runbooks
The written instructions are also called runbooks. Runbooks should have
straightforward instructions but also cover anything that may happen outside
the happy-path deployment process (this may even be the most important
content, recovering from errors). A good runbook is created by team work!
Operations must be able to install new systems or upgrade existing systems
just by following the runbook instructions.

Creating the runbook is an iterative process. It goes back and forth between
different teams, mainly the ones shown in Figure 8-3.

Figure 8-3.  Participants in creating a runbook

API Development 151

The shown groups may vary, but Figure 8-3 should be more or less accurate
for environments that own the complete process.

Developers implement and build software and create a runbook based on
their current deployment experiences. This draft is reviewed by operations
and used in production-like environments. Their review results in a list of
updates and a set of questions and recommendations. Documentation reviews
the instructions and applies the feedback. In between, QA verifies that no steps
for validating the software’s function are missing. This iterative process ends
with a runbook that enables operations to install or upgrade systems with
confidence.

■■ Note  The documentation team is not always mentioned in the context of creating a runbook.

Nevertheless, technical writers are the ones who can help formulate instructions to be understood

in the target language. Developers and QA members often work in environments that use languages

other than their native ones. For example, our documentation team turns my German-English into

English frequently.

An accepted runbook is the first step towards a working DevOps process.
Having this runbook points out that the team understands and respects
everyone’s needs. Once this has been established, the next step waits.

Automating the Runbook!
Yes, automation is the overall goal for the process. Only automated processes
permit frequent service deployments with low risk of failures. Where the first
runbook is good for deployments that happen once in a while or environ-
ments with just a few services, the automated runbook is a prerequisite for
enterprise-level systems with hundreds of services. To me, this became very
obvious when I had lunch with a previous colleague who said, Sascha, I develop
the code, I write the unit test, I commit it. That’s it! After a few days, my code runs
in production and I have no clue how it got there!’ She did know that her code
was tested in an automated QA pipeline and reviewed at some point. But the
interesting part for me was that developers did not need to know the details
of the deployment pipeline (the automated runbook).

Getting to that stage of automation is a challenge. However, after multiple
runbook iterations and better understanding of what can go wrong and how can
it be f ixed, all teams understand how essential it is to remove manual tasks of
the deployment process. Figure 8-4 is the generally accepted view of required
CI/CD steps.

Chapter 8 | APIs and Microservices 152

Figure 8-4 lists the steps that are considered part of the CI/CD pipeline. It
is an endless, ever-repeating circle. The left half contains tasks and asks for
operations (Ops) and the right half the tasks and asks for development (Dev),
which also includes QA. This image also indicates the hand-off from Dev to
Ops. Development has no role on the operations side, which emphasizes the
need for a process that does not need a developer to be available when a
system gets released!

■■ Note  In Figure 8-4 monitor is a little special and needs attention. Monitoring any deployment

is highly important. Monitoring is the only way of knowing how the system performs. Operations

needs to be able to collect metrics, analytics, and a view into the current state. Comprehensive

monitoring capabilities should be an acceptance criteria for any deployment!

To summarize this section, supporting a microservices infrastructure requires
an automated CI/CD pipeline. It requires investment in tooling, education,
and a change of mentality. It is just as important as a strong foundation when
constructing a house.

Figure 8-4.  Steps of a CI/CD pipeline

API Development 153

How Does Docker Help?
The previous section discussed CI/CD and DevOps. It spoke about (auto-
mated) runbooks. In traditional environments, application servers run and
never stop (ideally). Software installations or upgrades are executed on those
servers. It is the same process for each supported environment. In addition,
developers often need their own, local instance to speed up development
without breaking tests or builds that others are running at the same time. It is
a huge effort to keep all these servers up and running and configure them all
the same way, or, at least, similar to each other.

Docker7 is a technology that helps simplifying this situation. Docker has the
concept of containers where a container serves one particular purpose and
its content is referred to as docker image. Like containers on ships, containers
can be stacked and replaced and do not influence others. On the other hand,
multiple containers may form one application. Imagine a construction site.
Sometimes you’ll see containers stacked on top of and next to each other, and
each container is different. Although each container serves a different pur-
pose (restroom, office), together they represent a complete construction site
management building. Please note that Docker was chosen because it is very
popular and because I have personally used it. But it is not the only container
solution out there!8

Having these pictures in mind helps explain why Docker is relevant in the
CI/CD, DevOps realm. Figure 8-1 displayed how services run in their own
servers. When that figure was discussed, the message was each service is run-
ning in its own server. With Docker, this changes slightly. There is no server
running into which a new service gets deployed. A service brings its own
server! Furthermore, containers should be ephemeral, which means they
appear and disappear without leaving a trace/ persisting data. Here is an
example.

Without Docker: A developer creates a runbook. One area of the runbook
explains how to upgrade software within a running application server. Another
area explains how to set up a new application server and how to deploy new
software into it. The automated runbook may do this without requiring man-
ual effort. However, the new application server and the new software most
likely need some sort of configuration, too. To make the complete chain of
tasks work, the runbook does not only need to discuss the actual pieces of
software; in addition, prerequisites have to be specified to match requirements
for the application server and the software within it.

7Docker, www.docker.com
8Docker alternatives, www.1and1.ca/digitalguide/server/know-how/docker-alter
natives-at-a-glance/

http://www.docker.com
http://www.1and1.ca/digitalguide/server/know-how/docker-alternatives-at-a-glance/
http://www.1and1.ca/digitalguide/server/know-how/docker-alternatives-at-a-glance/

Chapter 8 | APIs and Microservices 154

With Docker: The story is very different. To launch an application server
that includes the desired software, the runbook may only include this line:

docker run acme/app:v1.0

This is a very simple example but launching docker containers is generally
similar. In this case, the application acme/app, version 1.0, will be deployed!

Regardless of the fact that this example is simple, the question is How does that
one statement replace potentially many instructions in a runbook? To be honest,
they are not replaced! But they are executed at a different point in time and
by the developers themselves. This is where the automation story becomes
relevant again. Here is another example.

I started to work on a project that uses an Apache Tomcat servlet container.
Tomcat is open source and can be used for personal or professional use cases.
After Tomcat was downloaded, it required a few modifications to adjust it to
my personal needs. This is what I would have written into a runbook for the
operations team to apply those modifications (shortened, but still many lines):

	1.	 Download Apache Tomcat.

https://tomcat.apache.org/download-90.cgi

	2.	 Install Tomcat at /usr/local/tomcat.

	3.	 Remove the example web applications:

rm -rf /usr/local/tomcat/webapps/*

	4.	 Copy my project into the web applications directory:

cp add-ons/web /usr/local/tomcat/webapps/ROOT

	5.	 … many more …

This continues, line by line, until all my requirements have been addressed. If
another instance has to be prepared and launched, the same steps have to be
executed. It is hopefully obvious that this process is very error prone, espe-
cially if executed by a team that does not work with Tomcat in detail. And
even if all those lines were moved into a script, the script could still fail!

With Docker, the trick is to run all these instructions when building a new
docker image! The resulting image is based on a default Tomcat server but
includes all my required modifications. This has several advantages:

•	 Runbooks for operations can be simplified.

•	 Runbooks reference docker images that are already
tested.

•	 Operations do not need to have any knowledge about
Tomcat itself.

API Development 155

Here are the steps that need to be done to get to a simplified runbook that
leverages a docker image to run a new container:

	1.	 Create a new docker image.

	2.	 Tag the new docker image (provide a useful name).

	3.	 Push the new image to a repository.

	4.	 Launch a new container using the new image.

It works like this:

Step 01: Create a new docker image. For that, a so-called dockerfile is
required. This file contains the equivalent instructions that were listed in the
runbook:

Retrieve a default tomcat server. By default, it is pulled from a public
repository
FROM tomcat:alpine
remove the default web applications
RUN rm -rf /usr/local/tomcat/webapps/*
add our own web application
COPY add-ons/web /usr/local/tomcat/webapps/ROOT
add any other steps that turn the default image into one for your own use
case

Step 02: Tag a new docker image. This is like a label that identifies the new
image.

docker build --tag acme/app:v1.0 .

Step 03: Push the new image to a repository. Once the image is pushed it is
available to others.

docker push <registry>/<username>/acme/app:v1.0

As of now, the previous runbook only requires the docker run command
from above. The image has certainly been tested and deployed into staging
environments beforehand to verify its functionality.

Although this sounds very good and is very good, there are a few differences
in comparison to traditional runbook procedures. For me personally, this is
the main differentiator:

Chapter 8 | APIs and Microservices 156

Containers are ephemeral!

This has several implications:

	1.	 Modifications against running containers are lost when
the container stops.

•	 Containers may even be immutable! With that,
modifications would not even be possible!

	2.	 Modifications against containers are valid only as long as
they are running.

	3.	 Containers do not persist data by default (which includes
configurations).

	4.	 Launching multiple instances are duplicates of each other.
Some resources may be available once only (i.e. ports).

	5.	 Each container instance requires the same resources (i.e.
memory).

Especially the fact that even configurations are transient may raise the con-
cern of having to build a different image for each configuration. For example,
a container in the development environment may access a local database
whereas the same container in production connects to a database hosted in
a cloud environment.

The concern is valid but gets addressed by launching containers with different
configurations. Enabling this is part of the image and is most likely a general
requirement. Figure 8-5 illustrates that based on the Tomcat example. Tomcat
can be configured through different configuration files. With each environ-
ment that launches a container, a different configuration is applied.

API Development 157

Each environment launches a container using the default docker image.
However, each environment applies its own configuration to it. In a real envi-
ronment, each developer would have its own local configuration. The test
configuration would be applied to a build server, or to multiple ones, and one
configuration for the production. The docker run command from above
would just need another parameter to make this happen. For example, to
overwrite the configuration file server.xml, this would be the command:

docker run -v dev_server.xml:/usr/local/tomcat/conf/server.xml acme/app:v1.0

The local file dev_server.xml would overwrite the file /usr/local/tom-
cat/conf/server.xml of the Tomcat image.

Docker-compose9 is another set of tools on top of Docker itself. Docker-
compose is helpful in cases where multiple containers have to be launched
together, which is most often the case. Here is the content of a docker-com-
pose file (docker-compose.yml) that launches two containers, a load bal-
ancer, and a remote cache service:

version: '2'
services:
 remote_cache:
 image: memcached

Figure 8-5.  Default docker image with an environment-specific configuration for each
container

9Docker-compose, https://docs.docker.com/compose/

https://docs.docker.com/compose/

Chapter 8 | APIs and Microservices 158

 ports:
 - "11211"
 lb:
 image: dockercloud/haproxy:1.6.7
 environment:
 BALANCE: roundrobin
 restart: always
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 links:
 - remote_cache
 ports:
 - 11211:11211

The command to launch those containers is as simple as this:

docker-compose up

After a few seconds those two containers are available. To sum up this sec-
tion, leveraging Docker has many advantages. However, to run software in
Docker at an enterprise scale requires more than just creating the docker
images themselves. The infrastructure for that has to be provided, knowledge
has to be available, and success and error cases have to be managed just the
same way. Platforms such as Red Hat OpenShift10 or Microsoft Azure for
Docker11 should be evaluated as a Docker management platform.

Summary
Turning an existing monolithic-style application into a microservice architec-
ture is a challenge. This challenge has great benefits but cannot be done with-
out commitment of all teams including business owners. At the end of the
transformation, new versions of software systems can be deployed frequently
and reduce the risk of failures.

10Red Hat OpenShift, www.openshift.com
11Microsoft Azure for Docker, https://azure.microsoft.com/en-ca/services/
kubernetes-service/docker/

http://www.openshift.com
https://azure.microsoft.com/en-ca/services/kubernetes-service/docker/
https://azure.microsoft.com/en-ca/services/kubernetes-service/docker/

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0_9

C H A P T E R

Real-Life API
Examples
An Elaboration on Publically Available APIs

After discussing API design and implementations, it is time to check out a few
existing APIs that are publicly available. Publicly, in most cases, means that a
developer account must be created. This is usually free.

These are the APIs for this chapter:

	1.	 Google Maps1

	2.	 Microsoft, OpenID Connect2

	3.	 IFTTT3

The referenced APIs require a different mix of credentials and have very dif-
ferent reasons for their existence. They provide the opportunity to look back
at some important aspects that were discussed in this book to close the loop
between theory and practice.

9

1Google Maps API, https://developers.google.com/maps/documentation/
2Microsoft, OpenID Connect, https://docs.microsoft.com/en-us/azure/active-
directory/develop/v1-protocols-openid-connect-code
3IFTTT, IF This Then That, https://ifttt.com/discover

http://dx.doi.org/10.1007/978-1-4842-4140-0_9
https://developers.google.com/maps/documentation/
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-openid-connect-code
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-openid-connect-code
https://ifttt.com/discover

Chapter 9 | Real-Life API Examples160

■■ Note  All information in this chapter is based on official documentation and personal experience

and conclusions.

Google Maps
This API enables developers to use Google Maps within their own application.
Whenever locations have to be visualized, this API can be used. Free and billed
services are available. Without any further ado, the following is an example
that can be used from any browser. It will open a map pointing at Vancouver,
Canada:

https://www.google.com/maps/place/Vancouver,+BC

In this context, we care about the structure of the URL (API):

•	 https is the URL scheme.

•	 www.google.com is the server hosting the API.

•	 /maps is the maps service.

•	 /place is the current feature.

•	 /Vancouver,+BC is the location to find.

The API is built in such a way that it starts off globally (www.google.com) and
each part of the URL path narrows the scope of the location. The API can be
compared with to funnel, from wide to narrow.

Embedded Maps
Google provides dedicated APIs that support embedded maps for use within
a web site. The documentation is freely accessible; to try them out, a Google
account is required. Once the account is created, a so-called API_KEY gets
issued. The API_KEY is a unique identifier just for your app!

The documentation provides examples that leverage iFrames. These exam-
ples can be copied and pasted into your HTML code and are ready to use.
However, we are interested in the API that is used:

https://www.google.com/maps/embed/v1/place?key=API_KEY&q=Space+Needle,
Seattle+WA

If you look closely, you can find the placeholder API_KEY. Once configured, it
will be included in each request. You can also see that the feature has changed
from place to embed. There are even two more selectors: v1 and place. v1
indicates the version of this API and place is referred to as the mode (other
values are search, view, directions, and streetview).

https://www.google.com/maps/place/Vancouver,+BC
http://www.google.com
http://www.google.com
https://www.google.com/maps/embed/v1/place?key=API_KEY&q=Space+Needle,
Seattle+WA
https://www.google.com/maps/embed/v1/place?key=API_KEY&q=Space+Needle,
Seattle+WA

API Development 161

Figure 9-1 shows a graphical interpretation.

Figure 9-1.  Initial graph of Google Maps APIs

Looking at Figure 9-1, at least for me, makes it pretty obvious that it is a chal-
lenge to manage a large number of APIs. Imagine v1, v2, v3. In addition, all of
these APIs take query parameters that are not the same for all of the mode
values. You can see why it is so important to invest design time when starting
an API-based environment.

To help users of APIs, Google not only documents the APIs, but it also provides
recommendations for securing the API_KEY since it is located within the web
site’s source code. To prevent anyone else from misusing it, Google has a list of
documented and supported ways for mitigating the risk:

•	 HTTP header “referrer”: Provide a list of valid values that
Google’s server should accept. A request from another
location will fail. The value includes your own web serv-
er’s host name.

•	 IP address: Provide a list of IP addresses that Google’s
server should accept. A request from any other IP address
will fail.

These supported features are not a guarantee that your API_KEY cannot be
misused. In fact, the HTTP header can be added to any request. Nevertheless,
it’s better than nothing. In addition, the API_KEY can be limited to a set of
APIs or just a single one. Trying to access an API that was not listed for this
API_KEY will fail.

Chapter 9 | Real-Life API Examples162

JavaScript API
The second example, Google’s JavaScript (JS) API, supports JavaScript applica-
tions. Let’s compare the API with one from above:

•	 JS: https://maps.googleapis.com/maps/api/js?key
=API_KEY

•	 Embed: https://www.google.com/maps/embed/v1/
place?key=API_KEY

The JS URL is hosted on a different server. And it has api as a selector in its
URL path. If you remember the graph in Figure 9-1 it now needs an extension
for yet another level of APIs (and I am sure this only scratches the surface!),
as displayed in Figure 9-2.

The main difference when using those APIs is the level of support developers
receive. In one case (embed), the developer needs to construct the correct
APIs himself. In the other case (JS), the JS libraries provide helper methods
for retrieving data, so only the initial URL has to be configured. If you look
into Googles SDKs for supporting iOS and Android, you will find that no URL
needs to be configured at all!

Figure 9-2.  Extended graph on Google Maps APIs

https://maps.googleapis.com/maps/api/js?key
=API_KEY
https://maps.googleapis.com/maps/api/js?key
=API_KEY
https://www.google.com/maps/embed/v1/place?key=API_KEY
https://www.google.com/maps/embed/v1/place?key=API_KEY

API Development 163

If you review Google Maps APIs, you can identify these properties:

•	 Different levels of access:

•	 Anonymously

•	 Google account

•	 Different levels of authentication:

•	 None

•	 API_KEY

•	 OAuth (This was not shown above, but Google also
supports OAuth as an authorization scheme for
mobile applications.)

•	 Different levels of support for developers:

•	 None (documentation only) for embed scenarios.

•	 JavaScript: Only one URL needs to be configured.

•	 SDKs: URLs are completely hidden.

•	 Hierarchical URL path

Whenever your organization wants to start an API-based system, check that
the relevant properties from above have been addressed. They are not only
relevant for Google Maps but for any API. If there are any plans of monetizing
APIs, some kind of authentication is required.

In addition, the process of onboarding developers has to be designed.
Developers do not simply appear out of nowhere; they need an easy way to
join the system. In Google’s case, one account works for all of its services,
which makes it very easy to get started! And getting started is done by one
sign-up process only!

Microsoft, OpenID Connect
Microsoft is one of the main drivers for OpenID Connect and one of the early
supporters. Since OpenID Connect is an identity layer, it is certainly only use-
ful in a context that requires knowledge about users (or resource_owners
in OAuth terms). For that, any interaction with Microsoft’s OpenID Connect
implementation requires a Microsoft account such as myname@hotmail.com.
Microsoft’s services are also used with Microsoft Office 365. As for Google, the
documentation is publicly available, but an account is required to use the APIs.

Chapter 9 | Real-Life API Examples164

OpenID Connect Discovery
As specified in OpenID Connect, Microsoft supports the Discovery endpoint,
which can simply be called from a browser:

https://login.microsoftonline.com/common/.well-known/
openid-configuration

It returns a JSON document describing the APIs, OAuth SCOPEs, and other
values that help developers build an application.

The URL contains the default URL path, which is the same for all OpenID
Connect-supporting providers: /.well-known/openid-configuration. It is
a reminder that it’s nice to adhere to standards!

However, since we care about APIs, let’s look at the structure of it:

•	 https is the URL scheme.

•	 login.microsoftonline.com is the server hosting
the API.

•	 /common is the tenant.

•	 /.well-known/openid-configuration is the discov-
ery document location.

The interesting component here is common, representing a tenant. Microsoft’s
online services are available as SaaS4 and therefore they are multi-tenant–
enabled. This means that anyone, after creating an account, can start leveraging
OpenID Connect features for his own purposes. The value common represents
the general tenant. For example, if you sign up with an email address, that will
be handled as tenant common. However, if you sign up with an email address
and create your own user directory, you also get your own tenantId tied to
your own user directory. To reference a tenant, the value common is replaced
with {tenant}.

Microsoft has chosen to require the tenant in more or less all APIs. For exam-
ple, the OAuth endpoints, such as /authorize and /token, include the ten-
antId as well:

https://login.microsoftonline.com/{tenant}/oauth2/authorize

With that, the OpenID Connect Discovery document is tailored to each
tenant.

4SaaS, Software as a Service, https://en.wikipedia.org/wiki/Software_as_a_service

https://login.microsoftonline.com/common/.well-known/openid-configuration
https://login.microsoftonline.com/common/.well-known/openid-configuration
http://microsoftonline.com
https://login.microsoftonline.com/{tenant}/oauth2/authorize
https://en.wikipedia.org/wiki/Software_as_a_service

API Development 165

id_token Validation
The value for tenant is also included in responses. For example, an id_token
will always include the value tid (tenant). The concept of tenant is similar to
a namespace. This becomes especially valuable when validating id_token. The
validation can be used to identify different groups of users, such as your own
users, users of partners, and unknown users. A typical validation could have
this logic:

IF (validate(id_token) == valid) THEN
IF (tid == my_own_tid)
 THEN grant access to internal, partner and public documentation;
ELSE IF (tid == partner_tid)
 THEN grant access to partner and public documentation
ELSE grant access to public documentation

Once everything is tied to a tenant, it is simple to create different virtual
spaces. For each one, different experiences can be supported. Figure 9-3 visu-
alizes this.

Figure 9-3. Virtual spaces

Whatever is configured in the virtual space of the tenant (Figure 9-3) can be
extended (with limitations) to partners using simple federation mechanisms.
The public space can also be served by restricting users of that space even
more.

Chapter 9 | Real-Life API Examples166

For example, software developers usually maintain internal documents that
include functional specifications and test results for features they are imple-
menting. Since these documents are meant for internal users only, they never
get published. Nevertheless, sometimes partners could be more effective if
they had at least read-access to those documents. Using OpenID Connect,
OAuth-protected APIs, and the concept of tenants could support the use case
where partners log in to the internal system but only get read-access to these
technical documents.

If you review Microsoft’s OpenID Connect implementation, you can identify
these properties:

•	 Different levels of access:

•	 Anonymously

•	 Microsoft account

•	 Different levels of authentication:

•	 OAuth for applications (secrets and pki)

•	 User authentications via username, password

•	 Support for MFA (multi-factor authentication)

•	 Multi-tenancy

Whenever your organization wants to provide a SaaS for authentication
and authorizations, make sure the relevant properties from above have been
addressed. Multi-tenancy especially has to be part of early designs. Trying to
add that kind of requirement into a ready-to-use single-tenant system is a very
intense process.

IFTTT
Google Maps and Microsoft OpenID Connect are services that can be lever-
aged by developers. Anyone can start developing against their APIs immedi-
ately. IFTTT is slightly different. If you haven’t worked with IFTTT, this is what
is does.

IFTTT is a SaaS that hosts applications. Users may combine these applications
to implement message flows that follow the pattern “IF <something happens>
THEN do <this or that>.” For example, having API- and cloud-enabled lights
(e.g. Philips Hue) and cameras (e.g. Netgear Arlo) enable flows such as “IF my
camera detects motion THEN turn on my front door light.” For end users
specifically, this is done by simply configuring a few dialogs on a web site or
mobile app.

API Development 167

If your company wants to become “the lights” or “the camera” provider, you
need to provide APIs! IFTTT needs APIs to connect to! Your company needs
to become an API provider!

Authentication and Authorization
IFTTT accepts different authentication and authorization methods. We care
about OAuth, which is one of the options. Based on the lights and camera
example, Figure 9-4 gives an overview how everything connects to each other.

Figure 9-4.  Overview of connections between components in IFTTT

In IFTTT a user can pick and choose features he wants to use. One fea-
ture could be “turn lights on” and the other could be “notify me when my
camera detects motion.” To support this, IFTTT needs to be able to com-
municate with each of those systems. In Figure 9-4, OAuth is emphasized.
This is because OAuth can authenticate users and collect users’ authorization
decisions. If you are the vendor of the camera system, your system needs to
support OAuth as a server! In addition, your server also needs to support an
IFTTT API Key.

Let’s have a look how IFTTT APIs are structured. IFTTT provides test end-
points that are, more or less, always the same. And there are application-
specific endpoints.

Chapter 9 | Real-Life API Examples168

This is the test API: https://{your-server}/ifttt/v1/test/setup

•	 https is the URL scheme.

•	 your-server is your server, hosting the test API.

•	 /ifttt is the indicator of the platform.

•	 /v1 is the API version.

•	 /test is the feature.

•	 /setup is the test step.

You may notice that your-server is shown, instead of having some kind of
itfttt-server location! This indicates that IFTTT is communicating as a cli-
ent only. And, in fact, that is the case! What is not shown here is that IFTTT
test requests always include an API_KEY called IFTTT-Service-Key. This has
to be supported and validated in your implementation, too!

Here are more APIs for triggers and actions (two different entities in IFTTT
of which you may implement both or just one):

Trigger: https://{your-server}/ifttt/v1/triggers/{your-trigger}

Action: https://{your-server}/ifttt/v1/actions/{your-action}

The APIs’ URL paths end on your-trigger and your-action. Regardless
of it saying your-*, it is still dictated by the platform. That path element is
derived from a trigger or action that you may have implemented. What I like
is that there are no questions like How shall I name it? It follows a pattern that
makes everyone’s life easy. And, in the end, it does not really matter how it’s
called as long as it makes sense in association with a supported feature.

From a developer’s point of view, IFTTT has made it very comfortable to
work within their website and to test and verify implementations as a client.
Here are the highlights:

•	 Easy-to-use web interface:

•	 Easy on-boarding for new developers

•	 Easy-to-use test framework

•	 Developers are well supported during their
implementation phase

•	 Comprehensive documentation

•	 Practically all needed topics are documented online

•	 Easy user experience

•	 End users are able to configure an app within
minutes with just a few clicks

API Development 169

If your company is in the process of providing a platform for similar features,
check out IFTT, which I think is a very good example of a well-designed system.

What to Remember Based on These Examples
Here is what you should remember based on what has been discussed here:

•	 Support flexible authentication and authorization
schemes.

•	 Plan for free and billable APIs or features of APIs.

•	 Provide comprehensive but well-structured public
documentation.

•	 Plan for multitenancy as of the first design sessions (if
needed).

•	 Provide easy onboarding methods for developers and
users.

•	 Enable partners with privileged access.

Anyone following these guide lines should have a good starting point!

Summary
The discussed APIs serve different purposes, they use different authentica-
tion and authorization schemes, and they also monetize their APIs differently.
However, they are examples of well-designed systems with an ecosystem that
makes it easy for any developer to get involved.

If your company is in the process of starting an API-driven business, it is highly
important to look at the whole system: APIs, documentation, accessibility to
the system, presentation, features, and usability from different audiences. APIs
do not get popular by just existing!

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0

A P P E N D I X

A

Key Terms
Provided here are full spellings of acronyms and brief definitions that will be
of use to you as you read the book.

Term Description

access_token A temporary token that provides access to OAuth-protected APIs

API Application Programming Interface. In the context of this book, they are
mainly REST –based

API Key An identifier of an application presented at an API

API
management

A reference to all aspects of an API development environment: API
developer onboarding, API documentation, API monetization, and API
implementation as well as API lifecycle

CI/CD Continuous Integration/Continuous Deployment

Contract first Starting the API development based on documentation rather than an
implementation

CORBA Common Object Request Broker Architecture

CSR Certificate Signing Request

Docker A container platform

Docker image The source for a Docker container

ESB Enterprise Service Bus

FAPI Financial-grade API. A working group in the context of the OpenID
Foundation

FIPS Federal Information Processing Standards

(continued)

http://dx.doi.org/10.1007/978-1-4842-4140-0

Appendix A | Key Terms172

Term Description

ICAP Internet Content Adaptation Protocol. An interface used to, for example,
request a virus scan via an API call

IDP Identity provider. A source of identities

IIW Internet Identity Workshop. The place where OAuth 2.0 and OpenID
Connect were initiated

JWE JSON Web Encryption

JWKS JSON Web Key Set. A list of public keys used to verify a JWS

JWS JSON Web Signature

JWT JSON Web Token. A JSON-based message format supporting digital
signatures and encryption

LDAP Lightweight Access Directory Protocol

Let's Encrypt A free service for issuing SSL certificates

Microservice A term found in the context of microservice architecture. An API
(microservice) serving one purpose only

Mobile first An approach of supporting mobile use cases and mobile users first

MVP Minimum viable product. A version of a product that supports the least
number of features that are required to make it usable

NFC Near-field communication

NIST National Institute of Standards and Technology

OAuth 2.0 An authorization framework. It uses different types of tokens to provide
access to OAuth-protected APIs

Omnipresence Being represented on multiple platforms at the same time

OTP One-time password

PCI Payment Card Industries. Also PCI DSS, Payment Card Industry Data
Security Standard

PSD2 Payment Service Directive 2. A European law to force banks to provide
API access to accounts

QA Quality assurance

RESTFul Representational State Transfer

RFC Request For Comment. In the context of this book, RFC 6749, 7515, 7519

Roadmap An indication of features planned for the near future

SAML Security Assertion Markup Language. A XML-based message format used
for authentication and authorizations

SCOPE
(OAuth)

A list of values representing permissions in the context of OAuth

(continued)

API Development 173

Term Description

SLA Service-level agreement

SOAP Simple Object Access Protocol. An XML-based message format for
exchanging data

Social login The process of authenticating users by their username provided by a
social platform

Step-up
authentication

Requiring an authentication method that indicates a higher trust than a
previous authentication mechanism

Swagger A machine-readable document describing an API definition

TLS Transport Layer Security

WADL Web Application Description Language

WAF Web application firewall

WSDL Web Service Description Language

YAML YAML Ain't Markup Language. A clear text message format, usually used
for configurations

I

© CA 2018
S. Preibisch, API Development, https://doi.org/10.1007/978-1-4842-4140-0

A
access_token, 31–34

Amazon Alexa, 26

Apache Tomcat, 58

API consumer, 34

API Developers, 16–19

API Key, 167

API Management, 41

API Proxy, 26, 35

Application programming interfaces
(APIs), 1–9

Application
server, 147, 153–154

Architecture, 12, 19

Artifacts, 15

Attribute, 49–51

Auditing, 16–17

Authentication, 11, 13–14, 16–17

Authorization, 11, 14, 16–17

Authorization server (AS), 66, 72–77,
80–81, 101

Automatization, 24, 28–29

B
Backend, 16, 19

Base64, 77, 85, 88, 99

Basic Authentication, 62

Bluetooth, 25

Business-to-business (B2B), 8

Business-to-consumer (B2C), 8

C
C, 12

C#, 12

CA API Gateway, 108

CA certificate, 42

Caching, 116–121, 124

Central processing unit (CPU), 113, 116, 121

Certificate signing request (CSR), 5

Certificates, 42, 50

Classes, 12–13

Client, 4–6

Code stubs, 44

Common Object Request Broker
Architecture (CORBA), 25

Compiler, 12

Components, 15

Configurability, 29, 36

Consent, 67–70, 81–83, 92–95, 102

Container, 58

Content-Type, 51

Continuous integration/continuous
delivery (CI/CD), 9

Contract First, 45, 48

Cookies, 62

CSRF, 72

Index

https://doi.org/10.1007/978-1-4842-4140-0

176 Index

D
Database, 4–5, 8

Datasets, 16

Demilitarized zone (DMZ), 126, 136–137

Deployability, 29, 36

Design pattern, 61

Desktop, 24–27

Developer, 3–6

Device, 107, 111

DevOps, 135

Docker, 58

Docker-compose, 157–158

Docker image, 153–155, 157–158

E
Ecosystem, 55

Encryption, 16

Enterprise service bus (ESB), 138

Entity, 107

Ephemeral (Docker/container),
153, 156–157

Escalations, 19, 21

Extensible Markup Language
(XML), 126–129, 135–136, 141

Extensible Stylesheet Language (XSL), 126

F
Federal Information Processing

Standard (FIPS), 7

Federation, 8

File transfer protocol (FTP), 137

Financial API (FAPI), 7

Firewall, 137, 141

Framework, 64–66, 78, 85, 101

Function, 4–5

G
Geo-Location, 111–113

GET, 31–33

Git, 36

GitHub, 36

Google Home, 26, 28

Google Maps, 160–163, 166

H
HTTP, 12, 14, 16

HTTP header, 134, 136

HTTP status, 32, 34

I
IBM Datapower, 128

Identity Provider (IDP), 63–64

If this, then that (IFTTT), 166–169

Impersonation, 67

Implementation, 12, 15–16, 18

Implicit (OAuth), 67–70

Instance (container), 156

Integration, 12

Internet content adaptation protocol
(ICAP), 138

Internet Identity Workshop (IIW), 3

IP Address, 161

J, K
Java, 145

JavaScript, 64, 68

JBoss, 145

JSON, 31–33

JSON Web Encryption (JWE), 85–86

JSON Web Key Set (JWKS), 97, 99

JSON Web Signature (JWS), 85–88, 90

JSON Web Token (JWT), 14

L
Latency, 14

Let’s Encrypt, 50

Lightweight Directory Access Protocol
(LDAP), 13

Load balancer, 136–137, 139

Logging, 129, 131, 140, 142

177Index

M
Machine-readable documentation, 31–33

Mainframe, 113

Martin Fowler, 143

Message confidentiality, 86

Message integrity, 86, 96

Microservice, 43, 56

Microservices architecture, 143–144

Microsoft Azure for Docker, 158

Microsoft OpenID Connect, 166

Minimum viable product (MVP), 37

Mobile apps, 4–5, 8

Mobile first, 24, 26

Mock service, 45, 47

Monetization, 24, 29–30

N
National Institute of Standards and

Technology (NIST), 7

Near-Field Communication (NFC), 25

Netgear Arlo, 166

Network traffic, 11

Notifications, 137

O
OAuth, 8

OAuth 2.0, 39

Omnipresence, 24–25

One-time password (OTP), 78, 84, 87

Online services, 26–27, 36

On-Prem, 8

OpenID Connect, 8

OpenID Foundation, 7

OpenID Provider (OP), 92

P
Parameters, 12

Password, 14

Payload, 128, 134, 136–137, 141

Payment Card Industry (PCI), 7

Payment Service Directive 2 (PSD2), 7

Performance, 62, 64

Persist, 41–42, 52

Philips Hue, 166

PHP, 12

Pipe, 58

Pipeline (CI/CD), 147–149, 152

Platform, 24–27, 36

Poll, 52

Port, 58

POST, 14

Product Owners, 11–12, 17, 19

Programming languages, 12, 15

Proprietary, 25, 29

Protocol, 65, 85, 100, 102

Provider, 111, 113

Pseudo Code, 4

Q
QR Code, 27

Quality assurance (QA), 145

R
Rate limit, 42

Red Hat OpenShift, 158

Redundancy, 8

Reliability, 21

Relying Party (RP), 92, 98–100

Remote cache, 157

Replay, 113–114

Request, 12, 14–15, 17

Request For Comments (RFC), 7–8

RequestIDs, 30

Requirements, 14, 17, 19

Resource server (RS), 66

Resource owner (RO), 65–71, 73–84,
87–96, 102

Resources (memory), 156

178 Index

Response, 12, 17

RESTFul, 26

Roadmap, 12

Roles, 11, 19–21

Runbooks, 150–155

S
Scalability, 29

SCOPE (OAuth), 66

Script, 4

Security architects, 16–17

Security Assertion Markup
Language (SAML), 8

Server, 3–6, 8

Service-level agreement (SLA), 14–15

Signatures, 16

Simple object access protocol
(SOAP), 126–128

SOAPUI, 47, 48

Social-Login, 27

Social-Platform, 27

Software Architects, 12–15

Software development kit (SDK), 5

Statelessness, 44

Step-up authentication, 83–84

Swagger, 31

System, 12–17, 19

T
Tenant, 164–166

Testing tool, 34–35

Threat protection, 129

Transaction, 17

Transmission control protocol (TCP), 125

Transparence, 145

Transport Layer Security (TLS), 16

Twitter, 41

U
Upgradability, 29, 36

URL encoded, 71

URL fragment, 72

URL Path, 46, 50–51

User interface (UI), 3, 5

Username, 14–15

V
Version-ability, 29

Version control system (VCS), 146–147

W
Web Application Description Language

(WADL), 123

Web application firewall (WAF), 141

Web applications, 27

Web Server, 55

Web services description language
(WSDL), 126

WeChat, 27–28

WhatsApp, 27

Windows, 25

X
x.509, 62

XML. See Extensible Markup
Language (XML)

XML namespace, 126

XML schema, 126, 128

Xpath, 126–127

XSL. See Extensible Stylesheet
Language (XSL)

Y, Z
YAML Ain’t Markup Language

(YAML), 46

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: APIs: What Are They?
	What Is Understood as an API
	What Types of APIs Exist?
	Summary

	Chapter 2: API Stake-holders
	Product Owners
	Software Architects
	Security Architects
	API Developers
	Other Roles
	Responsibilities
	Summary

	Chapter 3: Importance and Relevance of APIs
	The Business Value of APIs
	Omnipresent
	Mobile First
	Integration
	Modernization
	Automatization
	Monetization

	Technical Value of APIs
	Business Requirements vs. Technical Requirements
	Summary

	Chapter 4: API Design
	General Guidelines
	Getting Started
	Designing the First API
	Going a Little Further

	User Interface vs. BackEnd API Design
	UI-Driven API Design
	BackEnd–Driven API Design
	Combining Both Types of APIs

	Summary

	Chapter 5: API Authentication and Authorization
	Authentication vs. Authorization
	Preemptive Authorizations
	Just-in-Time Authorizations

	OAuth
	OAuth, the Details
	OAuth flows (grant_types)
	Implicit Grant
	Authorization_code Grant, Step 1
	Authorization_code Grant, Step 2
	Resource Owner Password Credentials (ROPC) Grant
	Refresh Token Grant
	Client Credentials Grant

	OAuth SCOPE
	OAuth Consent
	OAuth and Step-Up Authentication

	JWT (JSON Web Token)
	id_token
	Creating an id_token (JWT)

	OpenID Connect
	Why OpenID Connect?
	How Does It Work?
	How to Leverage OpenID Connect
	Use Case 1: Take resource_owners Through an Initial Login and Consent Flow
	Use Case 2: During Consecutive Authorization Flows Display the Login Screen Only If the resource_owner Has No Session and Do Not Display the Consent Screen Again
	Use Case 3: Accept a id_token Issued by a Third Party as resource_owner Credentials

	Validating id_token in Detail
	OpenID Provider
	Relying Party

	OAuth vs. OpenID Connect vs. LDAP
	LDAP (Lightweight Directory Access Protocol)
	OAuth
	OpenID Connect

	Summary

	Chapter 6: API Implementation Details
	API Protection: Controlling Access
	API Error Handling
	API Caching
	Security vs. Performance

	API Documentation
	Summary

	Chapter 7: API Gateways
	Why Do API Gateways Exist?
	What Are API Gateways Used For?
	Mocking APIs
	Why Is It Important to Leverage API Gateways?
	Decoupling
	Separation of Concerns
	Integration and Scaling

	API Gateway Alternatives
	Summary

	Chapter 8: APIs and Microservices
	What Is the Difference Between APIs and Microservices?
	What to Know When Supporting a Microservice Infrastructure
	Runbooks
	Automating the Runbook!

	How Does Docker Help?
	Summary

	Chapter 9: Real-Life API Examples
	Google Maps
	Embedded Maps
	JavaScript API

	Microsoft, OpenID Connect
	OpenID Connect Discovery
	id_token Validation

	IFTTT
	Authentication and Authorization
	What to Remember Based on These Examples

	Summary

	Appendix A: Key Terms
	Index

