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To my students






Preface

This book originated out of a desire to provide students with an instrument
which might lead them from knowledge of elementary classical and quantum
physics to modern theoretical techniques for the analysis of electron transport
in semiconductors. The book is basically a textbook for students of physics,
material science, and electronics. Rather than a monograph on detailed
advanced research in a specific area, it intends to introduce the reader to the
fascinating field of electron dynamics in semiconductors, a field that, through
its applications to electronics, greatly contributed to the transformation of all
our lives in the second half of the twentieth century, and continues to provide
surprises and new challenges.

The field is so extensive that it has been necessary to leave aside many
subjects, while others could be dealt with only in terms of their basic
principles.

The book is divided into five major parts. Part I moves from a survey
of the fundamentals of classical and quantum physics to a brief review of
basic semiconductor physics. Its purpose is to establish a common platform
of language and symbols, and to make the entire treatment, as far as possi-
ble, self-contained. Parts II and III, respectively, develop transport theory in
bulk semiconductors in semiclassical and quantum frames. Part IV is devoted
to semiconductor structures, including devices and mesoscopic coherent sys-
tems. Finally, Part V develops the basic theoretical tools of transport theory
within the modern nonequilibrium Green-function formulation, starting from
an introduction to second-quantization formalism.

Preparing this text has been a very long and at times painful task,
especially when it became obvious that it simply could not cope with the
overly large ambitions of the original project. I am deeply grateful to my
family for understanding and accepting with love my absorption in writing
it over a period of several years. In this endeavor, I have been helped by
many colleagues. In particular, I thank Antonio Abramo, Andrea Bertoni,
Paolo Bordone, Rossella Brunetti, Fabrizio Buscemi, Mauro Ferrario, Fabio
Giovanardi, Chihiro Hamaguchi, Paolo Lugli, Giampiero Ottaviani, Enrico



VIII  Preface

Piccinini, Maria Prudenziati, Lino Reggiani, Susanna Reggiani, Fausto Rossi,
Massimo Rudan, Alice Ruini, who have read various parts of the manuscript
and/or suggested many improvements, both topical and stylistic.

The main contribution to this text, however, has come from my many stu-
dents, undergraduate, graduate, and postdocs alike, who since many decades
have accompanied my research and teaching activity with intelligence, curios-
ity, and affection. Without them not only would this book not have been
conceived, but my activity itself as represented in it simply would not exist.
I cannot name all these people: they have been so numerous that to mention
some would inevitably mean being unfair to the others. Some are now well-
known scientists around the world, some have taken a way that took them far
off, out of sight but certainly not out of mind, and others remained close and
continue to share with me our daily work.

This book is dedicated to every one of them.

Modena C. Jacoboni
May 2010
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2DEG Two-dimensional electron gas
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[A,B],[A,B]- Commutator AB — BA

[A, B+ Anticommutator AB + BA
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Ank Coefficient of the expansion of a wavepacket in the n-th
band in Bloch states

BE Boltzmann equation
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B Magnetic induction field
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BZ Brillouin zone
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C Elastic constant, autocorrelation function
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Deformation potential constant for optical phonon scattering
Deformation potential constant for intervalley phonon scattering
Electric induction field

Density functional theory

Electric field

Ensemble Monte Carlo

Electric field produced by an electron
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Hall field

Deformation potential constant for acoustic-phonon scattering
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Effective charge on atoms of compound materials
Polarization direction

Piezoelectric constant

Helmholtz free energy
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Force
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Field-effect transistor

Distribution function
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transform
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Green function

Advanced Green function
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Symbols and Abbreviations

Hamiltonian function

Electron Hamiltonian in a polarization field
Hamiltonian operator

Unperturbed Hamiltonian operator

Crystal Hamiltonian operator

Electron Hamiltonian operator
Electron—phonon interaction Hamiltonian
Free-phonon Hamiltonian

Interaction Hamiltonian operator
High-electron-mobility transistor

Planck constant

Planck reduced constant %

Current

Integer quantum Hall effect

Current density

Current operator

Drift current density

Boltzmann constant

Wavevector, crystal wavevector
Herring-Vogt transformed crystal wavevector
Relative crystal momentum of two colliding electrons
Longitudinal component of crystal wavevector
Transverse component of crystal wavevector
Angular momentum
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Liouvillian operator

Longitudinal acoustic

Light-emitting diode

Linear combination of atomic orbitals
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Large-scale integration

Mean free path

Polarization index

Mass

i-th moment of Boltzmann equation
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Molecular beam epitaxy

Monte Carlo
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s
Me
mp
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my
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OPW

P(k), P(e)
Pk, k)
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Density-of-state effective mass

Free electron mass

Electron effective mass

Hole effective mass

Longitudinal effective mass

Transverse effective mass

Relative effective mass

Normal product

Total number of particles, total number of unit cells
Concentration of ionized acceptors

Concentration of ionized donors
Number-of-particles operator

Number of electrons

Number of holes

Number of phonons of mode (g?)

Number of optical phonons

Non-equilibrium Green functions

Negative differential conductivity

Negative differential mobility

Density of particles, number of particles, occupation number
Electron density

Hole density

Tonized-impurity density

Phonon occupation number

Number operators, density operator
Orthogonalized plane wave

Probability

Total scattering rate from state k with energy ¢
Scattering rate from state k to state k’
Scattering rate for deformation-potential phonons

Scattering rate for deformation-potential acoustic phonons

Scattering rate for deformation-potential acoustic phonons in
elastic approximation
Scattering rate for ionized-impurity scattering

Integrated scattering rate for ionized-impurity scattering in BH
approach

Integrated scattering rate for ionized-impurity scattering in CW
approach

Integrated scattering rate for deformation-potential acoustic
phonons in elastic approximation

Total linear momentum, polarization field

Polarization operator

Canonical momentum, piezoelectric constant, probability
Momentum operator
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Symbols and Abbreviations

Linear momentum

Momentum path variable

Generalized force, heat

Quantum Boltzmann equation

Quantum dot

Quantum Hall effect

Quantum well

Quantum wire

Lagrangian or Hamiltonian coordinate, particle charge
Inverse screening length

Vector in reciprocal space, phonon wavevector
Coordinate observable

Direct lattice vector

Hall constant, reflection coefficient, resistance
Resonant tunnel diode

Recombination rate, random number between 0 and 1
Position

Position path variable

Position operator

Hall factor

Entropy

Surface of constant frequency in reciprocal space
Scattering matrix

Simple cubic

Time-ordering operator

Contour time-ordering operator

Kinetic energy, absolute temperature, tension, transmission
coefficient

Electron temperature

Noise temperature

Herring and Vogt transformation matrix
Torque, crystal translation, symmetry translation, vector of
direct lattice

Transverse acoustic

Transverse optical

Equivalent temperature of optical phonons

Time

Time in path-variable formulation

Periodic part of Bloch wavefunction of band n
Generalized potential

Evolution operator

Potential energy operator

XXIIT

Effective potential energy operator in pseudo-potential theory

Pseudo-potential energy
Potential energy, electric potential, crystal volume
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VAvaaVv

VLSI

W (k, k')

Wp, Wn

€L, €Iy €A
en(k)

Potential of atomic species A, of atomic species B, and of
virtual-crystal atom

Built-in potential

Volume of crystal unit cell

Potential of an ionized impurity

Periodic potential energy of an electron in a crystal
Fourier coefficient of the expansion of V.,.(7)

Hall potential

Scattering potential in the Wigner-function formulation
Velocity

Drift velocity

Group velocity

Sound velocity for longitudinal modes

Sound velocity

Sound velocity for transverse modes

Phase velocity

Very-large-scale integration

Work

Transition frequency

Widths of space-charge regions

Wigner function

Wannier-Stark

Position coordinate

String displacement

Atom displacement field

Partition function, number of charges on impurities
Number of equivalent final valleys of an intervalley transition
Normal coordinate of lattice vibrations, nonparabolicity
parameter

= 1/(KgT), warm-electron coefficient

Total scattering rate including self-scattering, imaginary part
of self-energy

Band gap

Kronecker delta

Dirac delta function

Energy

Bottom energy of conduction band

Electron energy

Hole energy

Top energy of valence band

Energy of an electron with wavevector equal to the inverse
screening length

Split-off energy of valence bands

Bottom energies of valleys at L, I', and A, respectively
n-th energy band
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Symbols and Abbreviations XXV

Fermi level

Dielectric constant or electric permittivity

Dielectric constant at low frequency

Dielectric constant at high frequency

Vacuum permittivity or electric constant

Relative dielectric constant

Orthogonal wavefunction

Amplitude of chain oscillations

Spectral width, function generating a gauge transformation
Wavelength, total scattering rate

Magnetic permeability, electrochemical potential, carrier
mobility

Vacuum permeability or magnetic constant

Electron electrochemical potential

Drift mobility

Hall mobility

Hole electrochemical potential

Differential mobility

Frequency

Deformation potential constants in ellipsoidal valleys
Amplitude of string and chain oscillations

Density, charge density, density of points in phase space,
string linear density, density matrix, resistance in units
of h/2e?

Contour-ordered self energy

Advanced self energy

Retarded self energy

Greater self energy

Less self energy

Time-ordered self energy

Anti-time-ordered self energy

Electrical conductivity, scattering cross section
Momentum relaxation time

Energy relaxation time

Characteristic time of velocity relaxation by collisions
Phonon field operator

Wavefunction in p-representation

Scalar electromagnetic potential

Coefficient of the scalar electromagnetic potential in Fourier
series

Electric susceptibility

Magnetic susceptibility

State vector

State vector in Schrodinger picture

Wavefunction in r-representation, electron wavepacket
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p(q)
U(r), ¥i(r)
¥(r)

Vi (T)

|'(énk:

[Vk)

V)

n

Eigenfunction of p in g-representation
Annihilation and creation field operators
Time-independent wavefunction

Bloch wavefunction of band n with crystal wavevector k
Bloch state of band n with crystal wavevector k
Pseudo Bloch state with crystal wavevector k
State vector in Heisenberg picture

Number of accessible states

Angular frequency 2mv

Cyclotron frequency

Frequency of acoustic modes

Frequency of optical modes

Real part of self-energy
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Basic Concepts in Semiconductor Physics
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Survey of Classical Physics

In this first chapter and in the following one, the fundamentals of classical and
quantum physics will be reviewed. Obviously, the purpose is not to provide
an exhaustive (or even partial) treatment of these subjects: the readers are
supposed to be already familiar with them. We simply intend to recall the
main concepts and to define the symbols that will be used in the rest of the
book. Many excellent textbooks have been written on classical and quantum
physics. We may refer, for example, to Goldstein [168] and Jackson [202] for
the former, and to Messiah [306], Schiff [398] or Greiner [172] for the latter.

1.1 Newton Dynamics

Linear Momentum

The fundamental law of nonrelativistic classical mechanics is Newton second
law of motion for a particle of mass m subject to a force F"

dp _ _ . d*r
ar = F=mgz

(1.1)

where p is the linear momentum, or simply the momentum, of the particle:

_dr

=mv, v=—.
p at

Here, r(t) and v(t) are the position and velocity of the particle at time ¢.
If a system is composed of many particles, a total linear momentum is
defined as the sum over the particles

P = Zpiv
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where p, is the momentum of the i-th particle. In such a case, the force acting
on each particle is the sum of the forces external to the system and those due
to other particles. According to Newton third law of motion, the forces that
two particles exert on each other are equal and opposite and lie along the line
joining the two particles. As a result,

dP

= F(E)7

dt
where F© is the sum of the external forces acting on all the particles of the
system.

Angular Momentum

The angular momentum L of a particle with linear momentum p with respect
to point O is defined as
L=rxp,

where r is the vector from O to the particle position. In the same way, if a
force F' is applied to a particle in 7, the momentum T of this force (or torque)
with respect to point O is defined as

T=rxF. (1.2)

Observing that v x p = v x mv = 0, from Newton second law it follows
immediately that
g
dt
If a system is composed of many particles, a total angular momentum is
defined as the sum over the particles

L=> L,

where L; is the angular momentum of the i-th particle. The application of
Newton second and third laws yields

(1.3)

dL
—— _ e
dt ’

where T®) is the total momentum of the external forces acting on the system.

1.2 Work and Energy

The kinetic energy of a particle with mass m and velocity v is defined as

T = —mv~-.
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This is a scalar quantity and should not be confused with the torque T in
(1.2), which is a vector quantity.

If F(r) is the force acting on a particle in r, and the particle moves from
71 to ro following a path s, the work performed by the force on the particle

along s is defined as
W = / F -dr.
s

From Newton second law, it follows immediately that the work performed
over a particle produces an equal change of its kinetic energy:

W =T, -T.

If a particle is moving in a force field such that the work performed along any
close trajectory is zero,

W:ij-drzo,

then the force field is said to be conservative, and a potential-energy field
V(r) can be defined such that

F=-VV.
In this case, the total energy of the particle
e=T+V (1.4)

is constant.
In a many-particle system, the kinetic energy is the sum of the kinetic
energies of all the particles,

T = ZTi = Z%mzvf

If both the applied (external) forces that act on the particles and the forces
due to particle interactions (internal) are conservative, then the total potential
energy of the system is given by:

ED IR

i#]

where V; is the potential energy of the i-th particle due to the external forces,
and V;; is the potential interaction energy of the pair of particles ¢ and j.
The factor 1/2 is inserted since each pair of particles is present twice in the
sum. Energy conservation, given by (1.4) for a single particle, still holds for
the many-particle system.
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1.3 Hamiltonian Formulation of Dynamics

In a system composed of n particles that can move separately, even though
interacting with each other, the number of coordinates necessary to describe
the configuration of the system is 3n. These quantities are not enough to
indicate how the system will evolve, since the differential equations of motion
are of second order with respect to time, as shown in (1.1). Thus, also the
velocities of the particles must be assigned. This situation is described by
saying that the state of the system is defined by the positions and velocities
of all its particles.

If, however, the particle positions are subject to given constraints, as it
happens, for example, in rigid bodies where the distances between all the
particles are fixed, then the number of degrees of freedom of the system is
reduced. In such a case, the configuration of the system is described by a
certain number of parameters g;, called generalized coordinates. The number
of independent generalized coordinates necessary to describe the configuration
of the system is the number of its degrees of freedom.

The positions of all particles of the system are functions of the generalized
coordinates, so that the state of the system is described by the values of all
the g; and their time derivatives ¢;. The dynamical equations of motion in
terms of such variables are known as the Lagrange equations. For a conserva-
tive system, the Lagrangian function is defined as the difference between the
kinetic and the potential energy of the system:

L(qi, ¢i) = T(qi» ¢i) — V(4i),
and the Lagrange equations of motion are
d (0L oL
— (= )—-=—=0. (1.5)
dt \ 9¢; Jq;

The Lagrange equations can be written also for a nonconservative system
if a generalized potential function U(g;,¢;,t) can be defined such that the
forces applied to the system are given by

ou d [oU
==+ = = ). 1.6

¢ 9qi T (3(11') (1)
In this case, the Lagrangian function is defined as

L=T-U,

and the equations of motion are still the Lagrange equations (1.5).
The momenta p;, conjugate to the generalized coordinates g;, are defined
by means of the Lagrangian function, as

_ 6L(QH qiat)

pi EY (1~7)
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The Hamiltonian function of the system is then defined as
H(gi,pist) = Y Gipi — L(gi, Girt). (1.8)

As can be seen from the Lh.s. of the above equation, H is defined as function
of the generalized coordinates g; and their conjugate momenta p;. Thus, in
the functions on the r.h.s., ¢; must be replaced with its expression in terms of
the ¢; and p; obtained from (1.7).

It may be important to note that the analytical forms of the Lagrangian
and Hamiltonian functions are their crucial properties in the theory, rather
than their particular numerical values.

In general, the Hamiltonian of a system coincides with its energy, but this
is not always necessarily true (see [168] Sect. 7-3).

At this point, we are in the position to write the Hamilton dynamical
equations,

. _ 9H ) :
4% = 3p,> Pi = —5q

(1.9)

For purely mechanical systems, they are equivalent to Newton laws, but they
can also be derived, along with Lagrange equations, from some variational
principles that may be used in more general physical systems [168].

In the Hamiltonian formulation of classical physics, the state of a system
with N degrees of freedom is described by the set of 2V values (g;, p;). These
may be considered as the coordinates of a point representative of the state of
the system in a 2N-dimensional space called the phase-space of the system.

1.4 Canonical Transformations

The generalized coordinates and their conjugate momenta which describe the
state of a physical system are not unique. Given a set of ¢; and p; a transfor-
mation may be considered to new variables ¢} and p} defined by the functions

¢ = d}(q5.p;. 1), D} =Di(g5p;.1). (1.10)

Such a transformation is said to be canonical, and it is of interest, if the new
variables are canonical, i.e., if a function K exists such that the equations of
motion in the new set are the Hamilton equations:

., 0K . oK
4% = 57 by =—%57-
op; dq;
The function K (¢}, p;,t) plays the role of the Hamiltonian function in the new
set of variables.

It can be shown [168] that the transformation from the values of the
Hamilton coordinates at time t to the same variables at time ¢/,

qi(t) = qi(q;(£),p; (), 1) = ai(t),  pi(t) = pi(a;(t), p; (1), t) = pi(t)
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is a canonical transformation. In particular, this is true for the transformation
that associates with the ¢; and p; at time ¢ their initial values. Thus, the state
of the system can be described by the values of the set of ¢;, and p;, at the
initial time,

4i(t) = ¢ilto) = dio,  Pi(t) = pi(to) = Pio- (1.11)
If the value of a physical quantity A at time t is needed, the inverse
transformation must be used:

A(qi(t), pi(t)) = A(gi(gjo, Pjo, 1), Pi(qjor Djos t))- (1.12)

Note that while in the original description the state of the system is described
by time-varying canonical coordinates and the physical quantities are given
functions of such coordinates, after the canonical transformation in (1.11) the
state of the system is defined by a set of constant canonical coordinates, while
the physical quantities (including p;(t) and ¢;(t)), are given by functions of
these coordinates that depend explicitly on time as effect of the dynamics.
A similar situation exists in connection with the Schrédinger and Heisenberg
pictures of quantum mechanics (see Sect. 2.2).

1.5 Small Oscillations

A system is in a stable equilibrium state when its generalized coordinates have
values q( °) corresponding to a minimum of its potential energy and the kinetic
energy is zero. If the system is slightly displaced from that position and then
left alone, it will perform small oscillations about the equilibrium position. A
set of generalized coordinates can be found, called normal coordinates, such
that the dynamics described in terms of these coordinates, correspond to n
independent harmonic oscillators, if n is the number of degrees of freedom of
the system. In fact, if the potential energy is expanded around the equilibrium
configuration qu), it is given, to second order, by

N (e) 1 0%V
V(g o an) = V(g ,...,qn Z(@%) 0-+§Z<aqiaqj ()9¢9j,
17 €

where

0i =qi — 6]56)

are the deviations of the coordinates from their equilibrium values. The first
term in the above equation represents the value of the potential energy at
the equilibrium configuration. Since V' is defined with an arbitrary zero, this
value can be made to vanish. The first derivatives in the second term are zero
owing to the condition of minimum potential energy, so that we are left with

the quadratic term
1
= 5 Z (%% Giﬁj,
ij
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where v;; = (0?V/ 0qi0q;)(e)- Similarly, the kinetic energy can be put in the
form 1
T = 5 Z tijéiéj.
ij

Both matrices v;; and ¢;; are symmetric and it can be shown [168] that with a
suitable canonical transformation of the generalized coordinates they can be
put simultaneously in a diagonal form. In the new normal coordinates n;, the
Lagrangian is given by

L=T—v:%Zijm?—%§ijﬂmf,

where ; and 3; are the diagonal elements of the matrices v;; and ¢;; trans-

formed into the normal coordinates. The conjugate momenta, according to

(1.7), are given by

OL(ni, i, 1)
o

and, according to (1.8), the Hamiltonian is then given by

Ty = = /J'lnl P

H (i, m;) = Zﬁm — L(ni, i) = %Z i”f + % Zﬂm?o

i

This Hamiltonian is the sum of separate Hamiltonians for each normal coordi-
nate and its conjugate momentum. This means that each normal coordinate
follows its own dynamics, which, moreover, is the dynamics of a harmonic
oscillator. In fact, Hamilton equations yield

. _O0H _m
7]1 - 87'('1‘ - /ii’
already known, and
. OH 3
T = — = —Pin;-
om; !

These equations are the dynamical equations of a harmonic oscillator: by
substitution of the time derivative of the first into the second one, we obtain

.
1 /1,1 (2]

n;i(t) = A; cos(wit + ¢;), w; = \/?

Each normal coordinate evolves as an independent harmonic oscillator.

with solution
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1.6 Maxwell Equations

The electric field E and the magnetic induction field B are defined through
the force (Lorentz force) they exert on a test charge g:

F=q[E+vx B]

(1.13)

This expression must be considered in the limit of a test charge so small that
the sources of the electric and magnetic fields are not altered by its presence.
Here, as in general in this book, we use the International System of Units (SI),
recommended by the Conférence Générale des Poids et Mesures since 1960.

Sources of the electromagnetic fields are charges and currents. The dynam-
ics of electric and magnetic fields, or electrodynamics, is described by Maxwell
equations. If we assume a charge density p(r,t) and a current density j(r,t)
in vacuum, i.e., in otherwise empty space, Maxwell equations are

V-B=0
B _

VxE+22 =0
e V-E=p

iVxB—ao%—?:j

(1.14)

where €, and p, are the electric permittivity and the magnetic permeability of
free space, respectively. If these equations are considered inside a material, p
and j contain also charges and currents induced in the medium by the external
applied fields. If a polarization field P is defined as the dipole moment per
unit volume inside the medium, and a magnetization field M is defined as the
magnetic moment per unit volume inside the medium, a polarization charge
is generated as
pp=—-V- P,

and a magnetization current is generated as
jM =V x M.

These charges and currents are added to the external p and j and the last
two Maxwell equations in (1.14) become

V-D =y, (1.15)
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oD .

where D and H are the electric induction field and the magnetic field,
respectively:!
1
D=c¢,E+P, H=—B- M. (1.17)
Lo
The polarization P, the magnetization M, and the current density j are
induced by the applied fields. Their dependences upon the applied fields are
characteristic of each material and are described by the so-called constitutive
equations. In the simplest case of linear materials, the following equations
hold:
P = x.c.F, M =y, H, j=0oE. (1.18)

The proportionality coefficients x., xm, and o are called electric susceptibility,
magnetic susceptibility, and electric conductivity, respectively. If the above
equations (1.18) are used in the definition (1.17) of D and H, linear relations
result between D and E and between H and B:

D=cFE=¢:¢FE, B=pH=%rpuuH.

Here ¢ is the permittivity or dielectric constant of the material; €, is the
relative dielectric constant; p is the magnetic permeability, and &, the relative
permeability. In a linear homogeneous medium, Maxwell equations can then
be rewritten as

V-B=0, (1.19)
0B

E+— = 1.2
VxE+ N 0, (1.20)
eV-E=p, (1.21)

1 oOF
— B—-—¢c—=3j. 1.22
m V x €5 = (1.22)

These equations are very similar to the original “microscopic” Maxwell equa-
tions (1.14) with the electric permittivity and the magnetic permeability of
free space substituted by equivalent quantities of the material.

1.7 Electromagnetic Potentials and Gauge
Transformations

It is often convenient to reduce the four first-order differential Maxwell equa-
tions to two second-order equations by the introduction of the electromagnetic
potentials. Since the divergence of the curl of any vector field is zero, the first

! In different systems of units, not only the electromagnetic units change, but also
the equations of the present section are formally different (see, e.g., [202]).
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Maxwell equation is automatically verified if we define a vector field A(r,t),
called wector potential, such that

B(r,t) =V x A(r,t)

(1.23)

With this position, the second homogeneous Maxwell equation in (1.14)
becomes oA
Vx| E4+—|=0
<[5+ 5]
and is again automatically satisfied if we define a scalar field ¢(r,t), called
scalar potential, such that
0A
E+ — =—Vo¢(r,t),
+ 58 =~ ol 1)
since the curl of the gradient of any scalar field is zero. In terms of the
electromagnetic potentials A and ¢, the electric field is then given by

E=-Vo(r1t) - %

(1.24)

The electromagnetic potentials are not uniquely defined. In fact, E and
B are left unchanged by the following transformations, called gauge transfor-
mations: oA
A— A =A+VA, ¢>—>¢’:¢—§7 (1.25)
where A is an arbitrary function of r and ¢.
The freedom implied by the gauge transformations can be used to prescribe
that the potentials satisfy the Lorentz condition

0o
ot
We can still perform a gauge transformation (1.25) and preserve the Lorentz
condition if we request that the function A verifies the condition

924
~ Mo

V-A+ep 0. (1.26)

vZA =0.

The electric and magnetic fields given by the electromagnetic potentials in
(1.23) and (1.24) satisfy already the first two homogeneous Maxwell equations.
If they are introduced in the last two Maxwell equations, they yield:

2
Vi —engE = —ip

2 .
V2A - end A = 5

(1.27)




1.8 Hamiltonian of a Charged Particle in an Electromagnetic Field 13

where use has been made of the Lorentz condition. These are the wave
equations that in free space predict a velocity of electromagnetic waves
given by

1

VEollo

C =

1.8 Hamiltonian of a Charged Particle in an
Electromagnetic Field

A charged particle in an electromagnetic field is subject to the Lorentz
force (1.13). This force depends on the particle velocity, so that, to write

a Lagrangian, it is necessary to find a suitable function U such that (1.6) is
satisfied. It is easy to verify that such a function is

U=q(¢—A-v).
The Lagrangian is then
Lo o
L=T—U=§mv —qo+qA - v.

Following the procedure indicated in Sect. 1.3, we have the canonical momenta

L
pi = %, = muv; + qA;, (1.28)

and the corresponding Hamiltonian, from (1.8), is

H=3(p—qA)’+q¢

(1.29)

This Hamiltonian will be used to study the dynamics of a charged particle in
a crystal subject to an electromagnetic field.
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Fundamentals of Quantum Mechanics

The first half of the twentieth century has witnessed two major revolutions
in our understanding of the physical world. One of them, quantum mechan-
ics, deals with the description of physical systems and their dynamics; the
other, relativity, concerns the nature and properties of space-time. Here, we
will summarize the basic principles of quantum mechanics, again without any
claim of completeness, and will not deal with the theory of relativity, since it
will not be used in this book.

Quantum mechanics was developed to explain a number of phenom-
ena incomprehensible in the frame of classical physics: thermal radiation,
spectroscopy, atomic physics. After some attempts that lasted more than a
quarter of a century, two successful formulations were independently given by
Schrédinger and by Heisenberg, immediately proved to be equivalent. Soon
after, Dirac provided a framework of the new theory that includes the two
previous formulations as particular cases among an infinite number of pos-
sible ones. His book [120] is one of the greatest monuments of the scientific
literature of all times. Here, we shall often use Dirac formalism since it is
simpler and more intuitive.

The success obtained by quantum physics is extraordinary: no phenomenon
has yet been found, which contradicts the predictions of quantum mechan-
ics. Any experimental result from subatomic to solid-state physics, chemical
physics or biophysics has confirmed the validity of quantum mechanics, within
the reached precision.

This outstanding success has been obtained paying a high price: we had to
give up the idea of describing reality with a unique mental model, independent
of the measurement performed on the physical system under investigation.
Furthermore, we had to give up the idea of a complete determinism: while
the dynamical evolution of an unobserved quantum system is described by a
deterministic equation, the results of measurements have an intrinsic element
of casuality. This also means that the description of the dynamics of a process
of measurement cannot be the same as that of the dynamics of other unob-
served evolutions: a measurement is not a natural event of the same type of
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any other unobserved phenomenon. This is the most difficult aspect to accept
of quantum physics from the epistemological point of view, and many theo-
retical physicists and philosophers of science are still working hard on it (see,
for example, [166,493]).

The following sections contain a review of the basic elements of quantum
mechanics, with the purpose of recalling the main concepts and establishing
the symbols that will be used in the body of the text. The interested reader
not familiar with quantum mechanics may find excellent textbooks on the
subject, such as [306,398], and many others.

2.1 The First Postulates

One of the major novelties of quantum physics with respect to classical
physics is that two possible states of a system can be linearly combined to
yield another possible state of the system. This requirement is suggested by
the experimental evidence of interference phenomena, where a single particle
seems to follow different “trajectories” at the same time. Vectors are mathe-
matical objects that can be combined linearly to give other vectors, so that
abstract vectors appear to be the most natural mathematical objects to use
to represent the states of a physical system. This justifies the first part of the
following first postulate of quantum physics.

Postulate 1: Mathematical Description of Physical Systems

A physical system is associated with a vector space in which vectors repre-
sent the states of the system, with the specification that proportional vectors
represent the same state, and observables represent dynamical variables.

Let us recall that the vector space of quantum mechanics is defined in the
domain of complex numbers and that an observable is by definition a linear
Hermitian operator with a complete set of eigenstates. The basic elements of
the theory of vector spaces and the Dirac formalism used in this book are
given in Appendix A. Since vectors that differ by a multiplicative constant
represent the same physical state of the system, it is useful to consider state
vectors |¥) normalized to unity:

(W) =1.

This condition leaves the arbitrariness of a phase factor ¢! with 6 real. Once
this phase factor is chosen at the set up of a theoretical elaboration, it will
not affect measurable results if kept consistently.

The second part of the above postulate, i.e., the use of linear operators
to represent dynamical variables, is more difficult to justify intuitively. We
may say that dynamical variables have to do with changes of the state of the
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system,' as operators do with vectors, but probably the only fair statement
is that the above postulate is justified by the consequences derived by it,
together with the other postulates of the theory, in perfect agreement with all
known experimental results.

It seems reasonable to assume that in certain states a given physical quan-
tity may have a unique, well-defined, value. However, since the state of a
system may be a superposition of states with different values for that physical
quantity, we cannot say that in general the measurement of a dynamical vari-
able will lead to a unique, well predictable, result. This leads to the second
postulate of quantum mechanics, which introduces the expectation value of
such a measurement.

Postulate 2: Of the Mean Value

The measurement of a dynamical variable represented by the observable A in
a state represented by the vector |¥) does not lead, in general, to an univocally
predictable result. The expectation value of such a measurement is given by

(V| A7)
(A)g = ———.
(w|w)
From this postulate, two consequences can be derived, both extremely
important.

1. A measurement of a dynamical variable A will certainly give as result a
number « if, and only if, the state |¥) on which the measurement is per-
formed is an eigenstate of the observable A belonging to the eigenvalue a.
(See Appendix A; note that the eigenvalues of a Hermitian operator are real.)
2. The possible results of a measurement of a dynamical variable A are its
eigenvalues; the probability that a given eigenvalue will be the result of a
measurement of A on a state |¥) is given by the sum, over the degener-
ate eigenstates belonging to that eigenvalue, of the square moduli of the
coefficients of the expansion of |¥) over the ortho-normalized eigenstates of A.

The statement of this theorem is much more cumbersome than its con-
tent. Let us try to illustrate it in a simpler way. We are going to perform a
measurement of the dynamical variable represented by the observable A on
the state of the system represented by the vector [7). Being an observable, A
has a complete set of eigenstates orthogonal to each other, and they can be
normalized to unity. Let us call a; the eigenvalues and |g02(-r)> the eigenvectors,
where 7 specifies the eigenvectors possibly belonging to the same degenerate
eigenvalue. In formulas,

Ay = ailg™y, (@7 1l) = 6150,

! For example, linear momentum has to do with translations of the system, and
angular momentum with its rotations.
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Since the eigenvectors |<pz(.r)> form a complete basis, we may expand the state

of interest as -
) =" Cirlei™). (2.1)

The theorem above states that the result of the measurement is one of the
values a;, and the probability of occurrence of each a; is

P(a;) =Y _|Cin|*.

If the state |¥) is an eigenstate of A, only the corresponding eigenvalue can
be the result of the measurement so that the first theorem above is a partic-
ular case of the second one. Owing to its importance, however, it deserves a
statement in itself.

Postulate 3: Contraction of the State at the Measurement

When we measure a dynamical variable A, the disturbance involved in the act
of measurement causes the system to collapse into the projection of the state
onto the subspace of the eigenvalue obtained as result of the measurement.

In the case of the example in (2.1), if the result of the measurement is the
eigenvalue a;, the state of the system after the measurement is

W) =3 Cilel™).

For the new state vector to be normalized to unity, the coefficients C; , must
of course be renormalized.

The collapse of the state at the measurement process is the most debated
assumption of quantum mechanics. Until today, however, it has been proved
to be consistent with all experimental findings.

2.2 Equations of Motion

2.2.1 Pictures and Representations

We know that unitary transformations leave eigenvalues, linear combinations,
and scalar products of vectors unaltered (see Appendix A). Thus, if a set
of state vectors and observables are used to describe states and dynamical
variables of a physical system, we may equally well use a different set obtained
from the first one by means of a unitary transformation. A choice of vectors
and observables describing states and dynamical variables is called a picture.
By means of a unitary transformation, we move from one picture to another.
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Two types of pictures are most often used in quantum mechanics. In the
Schréodinger pictures, the time variation of the system due to the dynam-
ics is assigned to the state vectors, while dynamical variables not depending
explicitly upon time are described by constant observables. In the Heisenberg
pictures, on the contrary, state vectors are assumed to be constant, and the
dynamical evolution of the system is assigned to the observables:

S. picture : |Wg(t)) for states, Ag  for dyn. variables,
H. picture : |@y) for states, Ag(t) for dyn. variables.

We also know (see Appendix A) that vectors and linear operators in a vector
space can be specified by their components and matrices with respect to a
given set of basis vectors. Thus, once the picture is chosen, we still have the
choice of the basis to represent vectors and observables with numbers. The
choice of the basis is called a representation.

2.2.2 Evolution Operator and Its Equation of Motion

Let us work, for the time being, in a Schrédinger picture, and let [Pg(¢)) be
the state vector of the system at time t. We then define the evolution operator
as the operator U(t, t,), which yields the state vector at time ¢ when applied
to the state vector at time to:

s (t)) = U(t, Lo)[Ps(to))

(2.2)

This operator must be linear, to preserve the superpositions of states, and
must be unitary, to preserve the normalization of the state vectors.

The equation of motion for the evolution operator is the dynamical
postulate of quantum mechanics:

Postulate 4: Equation of Motion

The evolution operator verifies the following differential equation and initial
condition:

ih2U(t, to) = Hs(t) U(t,to), Ulto,to) =1

(2.3)

If the Hamiltonian does not depend on time, the solution of (2.3) is

Ut o) = o= Rt

(2.4)

If the initial state is an eigenstate |¥(to)) of the Hamiltonian belonging to
the eigenvalue €, (2.4) yields
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W (t)) = e F )W (¢,)),

which gives the well-known relation between energy and frequency:

€ = hw

2.2.3 Equation of Motion in Schrodinger
and Heisenberg Pictures

If (2.3) is applied to the state vector at time ¢, the equation of motion for
the vector states in a Schrédinger picture is obtained:

i [Ws(t)) = Hs(t) ¥s(t))

(2.6)

From the Schrodinger picture, we move to the Heisenberg picture through the
unitary transformation U7 (t,,). State vectors and observables are given by

W) =UT(t, )| Ts(t)) = [Ts(to)), Au(t) =U'(tto) As U(t,Lo).

In the Heisenberg picture, the equation of motion is an equation for the
dynamical variables. It is called the Heisenberg equation:

ihL Ay (t) = [Ay, Hy) +ih 252

(2.7)

The commutator accounts for the time variation due to the dynamics. The
last term takes into account the possibility that the dynamical variable A is
defined with an explicit dependence on time, so that also in the Schrodinger
picture it would be time dependent. The last term in the above equation is
then the transformed of the time derivative of Ag into the Heisenberg picture.

2.2.4 Interaction Picture

Often, the total Hamiltonian of the system of interest contains two parts:
H = Ho + Hl,

where H’ is a perturbation applied to an “unperturbed”, time independent
Hamiltonian H,. In such a case, it may be convenient to use a picture, called
interaction picture, obtained from the Schrédinger picture by means of the uni-
tary transformation Ul (¢, t. ), where Us (¢, to) is the evolution operator relative
to the unperturbed Hamiltonian H,:

@1 (t) = US(t, o) Ts (1), Ar(t) = Ut te) As Us(t, o). (2.8)

Both observables and state vectors are time dependent in the interaction pic-
ture. They carry the dynamical effect of the unperturbed Hamiltonian and of
the perturbation, respectively.
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2.3 Heisenberg Uncertainty Relations

Since, according to the second postulate, a measurement of a dynamical vari-
able A in a well precise state |¥) does not yield, in general, a well precise
result, the distribution of the possible values has a standard deviation. If two
dynamical variables are represented by two observables A and B that do not
commute, then their standard deviations are connected by an uncertainty
relation [306]. More precisely, if

[A,B] =ih C,

then the standard deviations AA and AB of the possible results of their
measurements are subject to the condition that

AAABZ%th. (2.9

If, by means of a suitable experimental apparatus, we decrease the uncertainty
on one of them, the procedure increases the uncertainty on the other one in
such a way that the inequality (2.9) holds still true. This means that we
cannot measure the two quantities at the same time with arbitrary precisions.
In brief, we say that two noncommuting observables are incompatible.

In the common situation in which the two quantities, such as the coordi-
nate q and its conjugate momentum p, have a commutator given simply by
ih, we have

[, p] = i, AqAp > 1h

(2.10)

The time-energy uncertainty relation cannot be treated on the same
ground since the time in this theory is a real number and cannot have nonzero
commutators with any observable. Nevertheless, a very similar relation holds,
which derives from the same general relation (2.9) applied to Heisenberg equa-
tion of motion (2.7). If we define the characteristic time of variation of a
dynamical variable in a state [¥) as the time 7 necessary for its mean value
to change of a quantity of the order of its standard deviation, then

TAe > %h (2.11)

for any dynamical variable A, where Ae is the standard deviation of the
possible results of an energy measurement on the state |¥). Thus, we may
formulate the time-energy uncertainty relation saying that the time necessary
for any variable of a system to change appreciably is related to the uncertainty
on the energy of the system by the relation (2.11).

In particular, if the system is in an eigenstate of its Hamiltonian, no
dynamical variable can change in any finite amount of time, and for this
reason the eigenstates of the Hamiltonian are called stationary states.
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2.4 How to Deal with a General Quantum-Mechanical
Problem in a System with a Constant Hamiltonian

A general quantum-mechanical problem may be formulated, in the Schrédinger
picture, as follows: given the initial state [Ps(t,)) of the system, which is its
state at a successive time t? In particular, what is the probability that at time
t a dynamical variable A will assume a given value?

For the solution, assuming that the Hamiltonian H is time independent, we
must first solve the eigenvalue equation for H, also called the time-independent
Schridinger equation,

H i) = eiles) (2.12)

i.e., we have to find all eigenvalues ¢; (for simplicity we assume here that these
are not degenerate) and eigenvectors |p;). Then we expand the initial state in
series of such eigenvectors, assumed to be normalized to one:

Ws(to)) = Zci|%>’ Ci = (pi|¥s(to))-

We know that this is possible since, for the first postulate, the Hamiltonian is
an observable. Finally, we write the state vector at time ¢ as the same linear
combination, multiplying each term by the proper frequency phase factor:

Ws(t)) =Y Cre 7 (7)), (2.13)

We leave to the reader the simple proof that (2.13) is the solution of the
Schrodinger equation (2.6) with initial condition [Pg(ts)).
As to the second part of the problem, we first solve the eigenvalue equation
for the observable A:
A |ai> = ai|ai>. (214)

For the second theorem in Sect.(2.1), we know that the possible outcomes
of the measurement of A are its eigenvalues. Finally, for the same theorem,
the probability of obtaining a given eigenvalue is the squared modulus of the
coefficients of the expansion of the vector state at time ¢ in the eigenvectors
of A, namely, if the |a;) are normalized,

Pa;) = [{ai|@s(t))]*.

If the eigenvalue a; is degenerate the sum over the eigenstates belonging to
that eigenvalue must be performed.

The present section indicates how to solve, in principle, any well-posed
quantum mechanical problem with constant Hamiltonian. However, the cal-
culations necessary to apply the above procedure are almost always out of any
possible analytical realization. Approximations and numerical solutions have
to be performed in even the simplest practical cases.
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2.5 The {q} Representation: Wave Mechanics

Hamiltonian and Observables

Let us consider a point-like particle in space subject to a potential energy
V(r). Its state is classically described by the position coordinate r and its
conjugate momentum p. To describe its dynamics in quantum mechanical
terms, the rule is to write for the quantum Hamiltonian the same expression
as for the classical case, for example

H = p—m V(). (2.15)

where r and p are now the position and momentum operators, obeying the
commutation relations in (2.10), and V(r) is the potential-energy operator
corresponding to the function V(7).

For the sake of simplicity, let us consider a one-dimensional case. From
the commutator in (2.10), many properties can be obtained. In particular, we
have

0 F@p)] =02 pF@p) = -indL, (2.16)

dp dq
where F is an operator function of q and p [306]. The position operator has
a continuous, nondegenerate spectrum of eigenvalues, given by the entire real
axis, so that the orthogonality relation is expressed by the Dirac delta function
(see Appendix A):

alg) = qlg),  {qld’) = d(q¢ —¢'). (2.17)

The completeness of the basis |¢) is expressed by the spectral decomposition
of the unity (cf. (A.14) of Appendix A)

/OO lg)dq (¢ = 1. (2.18)

— 00

Wavefunction and Schrédinger Equation

Given the state of the system under consideration in the Schrodinger picture
|@s(t)), in the {q} representation, i.e., in the basis formed by the eigenvectors
of q in (2.17), it is represented by the coefficients

¥(g,t) = (al¥s(t)). (2.19)

The function in (2.19) is called the wavefunction of the particle, and the {q}
representation of quantum mechanics in Schrodinger picture, which uses the
wavefunctions to describe the states of the systems, is the wave mechanics
originally proposed by Schrédinger.
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The effect of the basic operators q and p on the wavefunction is found by
applying the operators to the vector states and then evaluating the wavefunc-
tion of the new vector. The result is [306] that the effect of the application of
the operator q is simply given by the multiplication by the number ¢, while
the application of the operator p yields the derivative with respect to ¢ times

(—ih):

0
, —ih—. 2.20
q — q p — 94 (2.20)
At this poi