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Introduction

A structure is an assembly of interrelated components that 

serve a common purpose. Structure may present itself with a 

hierarchy of components as in the structure of a corporation 

or rely on the patterns and relationships between similar 

components as in the structure of molecules. In Architecture, 

structure is a system of interrelated components that is 

capable of supporting itself and transferring all loads safely to 

the ground.

Architects and indeed all designers should understand 

structures in order to communicate effectively with 

contractors and consultants or to design component sizes. 

But the most important reason to understand structures is to 

express the design intent or concept through the structure. 

Only by understanding how different structural types and 

materials behave will the structural system become fully 

integrated with the design intent.

In this book, the basic concepts of statics and strength 

of materials are presented first, followed by discussion 

of structural systems. This order allows the reader to 

understand how components of various systems behave 

in terms of the stresses they receive. After discussion of 

structural types, design methods for components for specific 

materials of wood, steel and concrete are presented.

If chemical and heat reactions are ignored, there are five 

basic ways to physically break an object:

1. Tension—pulling 

2. Compression—pushing, crushing, squeezing

3. Flexure—bending

4. Shear—chopping, cutting, slicing, punching through

5. Torsion—twisting.

Other types of failure are a refined definition based on these 

basic five types. Metal fatigue, for example, is caused by the 

repeated bending in alternating opposite directions.

Try this experiment: Collect five identical pieces of chalk, 

five identical rubber bands and five identical paper clips. Test 

each of the three objects for tension, compression, flexure, 

shear and torsion by trying to break one of the identical 

objects by pulling, another by crushing, etc. What is noticed 

about the behavior of chalk compared to rubber?

The forces and reactions in tension, compression, flexure, 

shear and torsion are determined by statics. Statics is the 

physical state in which all components are at rest and in 

equilibrium. How or when or if a component will fail under 

a particular force or stress depends on the properties of the 

material from which it is made; the strength of the material.

This book is intended to be a simple explanation of the 

structural problems architecture students, designers and 

architects may encounter whether designing in steel, wood, 

concrete or an alternate material.
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one

Finding React ions

Newton’s Three Laws of Motion:

1. A body at rest will remain at rest and a body in motion will 

continue uniformly in a straight line unless acted upon by 

a force.

2. F = ma: that is, the rate of change of momentum (mv) is 

equal to the force producing it and in the direction of that 

force.

3. Every force acting upon a body at rest has an equal and 

opposite reaction. 

Newton’s third law of motion is the basis for static structural 

analysis. For a structure to remain static, that is, at rest 

and not in motion, the sum of all forces must equal zero. 

This means that any force applied to a component must be 

resisted by that component with an equal and opposite force. 

In order to do that, the structural component will internalize 

the force and transfer it to a support or another component 

of the structural system. The force will be transferred from 

component to component until it reaches the ground.

1.1 Vectors

It is important to understand basic trigonometric functions in 

order to work with vectors. 

Below is a quick review.

1.1

Basic trigonometric functions

Basic trigonometric functions: 

sinθ = O/H , cosθ = A/H and tanθ = O/A

O = Hsinθ and A = Hcosθ

1.1.1 Vectors

Loads or forces in architecture are described in terms of 

vectors. There are three necessary components that define a 

vector:

1. Origin or starting point

2. Direction

3. Magnitude.

The origin is the point of contact. Vector direction is 

expressed by its x and y relationships. Normal convention for 

vector direction is that a vector moving to the right is +X, a 

vector moving to the left is −X, a vector moving up is +Y and 

a vector moving down is −Y. 
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A vector direction can be expressed by its x and y 

relationships or by its angle from an axis. When a vector is 

expressed in terms of rise and run the ratio of the X and Y 

components to the full vector magnitude are equal to the 

ratio of the rise and run of the direction to the hypotenuse 

they create. This is important to remember, because it allows 

the vector components or magnitude to be found when only 

partial information is available.

Example 1-1: Find the X and Y components of the force 

vector A = 10k with a rise/run of 3
4 .

1.2

Vector components defined by rise and run 

= = … = ⎛
⎝⎜

⎞
⎠⎟ = = ⎛

⎝⎜
⎞
⎠⎟ =

10k
5

A

3
A
4

A
10k
5

(4) 8 and A
10k
5

(3) 6ky x
x y

Notice that vector components are tip to tail; directed so that 

they form an alternate route from the origin to the endpoint, 

indicating component directions.

Example 1-2: Find magnitude of vector E if Ey = 240.

1.3

Vector magnitude defined by rise/run 

1. Determine the hypotenuse of the triangle: 

 H (5 12 ) 132 3= + =

2. Use ratios to determine the vector component E:

E
13

240#
12

E
5

E
240#

12
(13) 260x= = − … = ⎛

⎝⎜
⎞
⎠⎟ =

Example 1-3: When a vector is expressed in terms of its 

angle relative to an axis, use trigonometric functions to 

determine the components. 

The 16K force is in a direction 30° above the positive y. Because 

sin30° and cos30° are known, the ratio of sine or cosine to the 

whole is equal to the ratio of Fy or Fx to the vector force F = 16k.

1.4

Vector components defined by angle

 

F
sin30

16k
1

F 16k(sin30) 16k(0.5) 8kx
x= … = = =

 
= … = = =

F

cos30
16k

1
F 16k(cos30) 16k(0.866) 13.86ky

y

If the vector direction is expressed in terms of the angle from 

the Y-axis, the results will be the same.

 
= … = =

F
cos60

16k
1

F 16k(0.5) 8kx
x

 
= … = =

F

sin60
16k

1
F 16k(0.866) 13.86ky

y

Example 1-4: The ratios of sine and cosine can be used 

to find a vector force magnitude when only the angle 

from an axis and one of the components are known. 

1.5

Vector magnitude defined by angle
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Find magnitude of force G and the horizontal component Gx if 

the vector G is directed 50° left of the positive Y-axis and the 

vertical component Gy = 25#.

 
= = =

G
1

25#
cos50

25#
0.643

38.89#

 
= … = ⎛

⎝⎜
⎞
⎠⎟ =25#

cos50
G sin50 G (25#)

0.766
0.643

29.79#x x

1.1.2 Adding Vectors

The sum of vectors passing through a common point is called 

a resultant vector. Vectors traveling through a common point 

may be added graphically by connecting vectors tip to tail, 

in any order, starting at the origin, then finding the resultant 

vector by drawing a line from the origin to the endpoint. 

The independence of order is demonstrated in Figure 1.6 

by adding three vectors in different orders. The resultant 

vector is always the same. Although an easy way to check an 

answer, it is only as accurate as the scale of drawing. 

1.6

Graphically added vectors

To add vectors mathematically:

1. Break each vector into X and Y components.

2. Sum X direction components; sum Y direction 

components.

3. Find magnitude of resultant vector by using 

Pythagorean’s theorem. 

 
= Σ + ΣF ( f ) ( f )x

2
y

2

4. Find direction of the resultant vector relative to the X-axis 

by using: 

 

⎛
⎝⎜

⎞
⎠⎟

−tan
f
f

1 y

x

Example 1-5: Adding vectors. 

Add the three vectors in Figure 1.6:

1. Find vector components:

 
= ⎛

⎝⎜
⎞
⎠⎟

− = −C
25k
13

( 3) 20.80kx

 
= ⎛

⎝⎜
⎞
⎠⎟

− = −C
25k
13

( 2) 13.87ky

 
= −⎛

⎝⎜
⎞
⎠⎟ = −E (20k)

5
13

7.69kx

 
= ⎛

⎝⎜
⎞
⎠⎟ = −E (20k)

12
13

18.46ky

Fx = 16cos30 = 13.86k

Fy = 16sin30 = 8.00k

2. Sum the X components and sum the Y components.

Σfx = −20.8 − 7.69 + 13.86 = −14.63k

Σfy = −13.78 + 18.46 + 8.00 = 12.59k

3. Resultant magnitude: 

 = + =R (14.63 12.59 ) 19.30k2 2

4. Resultant direction: 

 
θ =

−
⎛
⎝⎜

⎞
⎠⎟ = − °−tan

12.59
14.63

40.71 or 40.711

above the negative X-axis.

1.2 Supports

There are three basic types of supports to consider: rollers, 

pins and fixed connections.

Rollers: The reaction is a force through the roller center 

perpendicular to the surface on which the roller sits, whether 

horizontal (a) or at an angle (b).
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1.7

Roller support

If the slope of the reaction surface is in terms of a rise (Y) 

over a run (X), then the slope of the reaction vector, which 

is perpendicular to the surface, has a rise (X) over a run 

(Y). Knowing this, the reaction vector components can be 

calculated.

If the roller support rests on a surface with a rise/run of 3
4 , 

the slope of the vector R is 4
3 . 

1. Determine the hypotenuse of the triangle:

 = + =h 3 4 52 2

2. Use ratios to determine the vector components Ax and Ay:

 
= = … = ⎛

⎝⎜
⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟ =R

5
R
4

R
3

R
R
5

(3) 0.6R and R
R
5

(4) 0.8Ry x
x y

Pinned support: The reaction is a force through the pin in a 

direction opposite to the resultant of forces applied to the pin. 

It is important to remember that both pins and rollers are free 

to rotate. Because of this they do not transfer any rotational 

force called a moment through the support.

1.8

Pinned support (a) and fixed support (b).

Fixed support: A fixed support has a reaction in a direction 

opposite to the resultant of forces applied. Unlike a pinned 

support, a fixed support resists rotation and has a moment 

reaction equal to the moment applied to the support, but in 

an opposite direction.

1.3 Moments

Moment: MA = F(d) 

A moment about some point A is caused by a force, F, acting 

at a perpendicular distance, d, to the point. The units for a 

moment are: kip-feet (k-f), kip-inches (k-in), pound-feet (lb-ft) 

or pound-in (lb-in). Convention for the direction of moment is 

positive for a clockwise rotation and negative for a counter-

clockwise rotation.

1.9

Direction affects moment
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The rigid frame in Figure 1.9 has a horizontal 7k force applied 

at point C. The perpendicular distance between the line of 

that force and point A is 6′.

MA = f(d) = 7k(6′) = 42k-f

The rotation is clockwise, which is considered positive, 

therefore MA = 42k-f.

The moment about point B (MB) is also 42k-f because the 

perpendicular distance between the line of force and Point B 

remains 6′. The direction is still clockwise. 

By rotating the 7k (b) applied at point C, the moment about 

point A (MA) changes because the perpendicular distance 

between the line of the force and point A changes.

MA = 7k(8′) = 56k-f clockwise = 56k-f

MB = 7k(8′) = 56k-f counter-clockwise = −56k-f

The direction of a moment can be easily shown by holding 

a pencil loosely at the point of rotation and pushing in the 

direction of the applied force. The pencil will rotate in the 

direction of the moment.

Example 1-6: Summing moments. 

The 15k force is applied perpendicular to and at the center of 

the AC leg. Find the moment about point A and B.

1.10

Summing moments

MA can be solved easily because the force is perpendicular to 

the leg AC. 

ΣMA = 0 = 15k(5′) = 75k-f

The 15k must be broken into components to solve for MB.

 

⎛
⎝⎜

⎞
⎠⎟ = ↓ ⎛

⎝⎜
⎞
⎠⎟ = →

Σ = = − + = −

15k
4
5

12k and 15k
3
5

9k

M 0 12k(12') 9k(3') 117k- fB

counter-clockwise

1.4 Reactions

Structure transmits loads to the ground through a series of 

reactions to applied forces. Before any component can be 

designed to handle the transfer of applied loads, the reactions 

at the support(s) must be found.

 To solve for reactions:

1. Identify the unknowns

2. Break all forces into X and Y components

3. Sum the forces and moments at the supports: 

ΣM = 0, Σfy = 0, Σfx = 0

1.4.1 Concentrated Loads

A concentrated load is a load that is applied at a single point. 

It is handled as a vector with magnitude (force in lb or K), 

direction and origin (the point at which it is applied). 

Example 1-7: Finding reactions.

1. Identify the unknowns: The support at point A is a pin and 

therefore may have a reaction in the X and Y directions 

(Ax and Ay). A pin cannot resist rotation and therefore has 

no moment transfer. The support at point B is a roller and 

therefore the only reaction is a force perpendicular to the 

support surface (By). The free body diagram (b) shows 

applied forces and unknown reactions.

2. Break all forces into X and Y components: The applied 

force is a horizontal force; it does not have a Y component.

3. Sum the forces and moments at the supports: Start by 

summing the moments about a pin. 
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ΣM = 0 = Ax (0′) + Ay(0′) + 7k(6′) − By(16′)

0 = 42k-f − By(16′)

By = 42k-f/16′ = 2.63k

Σfy = 0 = Ay + By = Ay + 2.63k

Ay = −2.63k. Because the answer is negative and Ay 

was assumed to be positive, the answer is Ay = 2.63k ↓ 

Σfx = 0 = 7k + Ax

Ax = −7k. Because the answer is negative and Ax was 

assumed to be to the right, the answer is Ax = 7k ←

Example 1-8: Find reactions in a 12′ beam with 

a 4′ overhang. 

1.12

Example 1-8

1. The unknowns at pin A are Ax and Ay. The unknown at the 

roller B is By.

2. Since the only applied forces are vertical forces, there is 

no need to break them into X and Y components.

3. Sum moments about the pin

ΣMA = 0 = Ax(0′) + Ay(0′) + 3k(8′) − By(12′) + 6k(16′)

0 = 24k-f − By(12′) + 96k-f

By = 120k-f/12′ = 10k = 10k↑

fy = 0 = Ay + By − 3k − 6k = Ay + 10k − 9k

Ay = −1k↑. Because the answer is negative and Ay was 

assumed to be up, the answer is Ay = 1k↓

Σfx = 0 = Ax … Ax = 0

1.11

Example 1–7
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vector in terms of the rise and run, we can break it into its 

components.

 + =3 4 52 2

 
= … = =

B
B

4
5

B
4B
5

0.8By
y

 
= … = =B

B
4
5

B
3B
5

0.6Bx
x

2. No forces need breaking into X and Y components.

3. Sum the forces and moments at the supports. 

ΣMA = 0 = Ax(0′) + Ay(0′) + 3k(8′) + 6k(12′) − By(16′)

0 = 24k-f + 72k-f − By(16′)

By = 96k-f/16′ = 6k = 6k↑

Using the ratios of the vector B: 

 
= … = =6

B
4
5

B
6(5)
4

7.5k

Bx = 0.6B = 0.6(7.5) = 4.5k

Σfy = 0 = Ay + By − 3k − 6k = Ay + 6k − 9k

Ay = 3k = 3k↑

Σfx = 0 = Ax − Bx = Ax − 4.5k

Ax = 4.5k = 4.5k →

1.4.2 Distributed Loads

A distributed load is exactly what it sounds like. It is a load 

distributed over a length and it is expressed in terms of the 

force per unit of length. Distributed loads may be uniform or 

non-uniform. Uniform loads are distributed evenly across a 

portion of a member. As such there are two parameters that 

define the load condition: the length over which it is distributed 

and w, the force per unit of length, usually in units of k/f or #/f.

To find the moment about a point caused by a uniform load:

1. Calculate the total load: multiply w by the length of load 

application.

2. Find the center of gravity for the load. This occurs at the 

center of the length of load application.

3. Calculate the moment caused by the uniform load by 

multiplying the total load from step one by the distance 

Example 1-9: Find reactions for a 16′ beam with a roller 

on an angle at B.

1.13

Roller on an angle

1. The unknowns at pin A are Ax and Ay. The unknown at 

the roller B is a vector B in a direction perpendicular to 

the surface on which the roller sits. Surface slope = 3
4  … 

vector slope = 4
3 . Because we know the direction of the 
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from the point of interest to the center of gravity located 

in step two.

Example 1-10: Finding reactions with a uniform load.

1.14

Reactions for a uniform load

The uniform load, w = 3k/f, the applied length is 10′

The total load, W = 3k/f(10′) = 30k 

The distance from the center of gravity to point A is 5′ 
or half of the applied length.

ΣMA = 0 = 30k(5′) − By(10′) … By = 15k

ΣFy = 0 = Ay − 30k + 15k … Ay = 15k

ΣFx = 0 = Ax

Example 1-11: Finding reactions with a partial uniform load.

1.15

Reactions for a partial uniform load

The uniform load is w = 3k/f. The applied length is 3′. The 

total load, W = (3k/f)(3′) = 9k. The distance from the center 

of gravity to point A is the applied load plus half of the applied 

length = 5′ + 3′/2 = 6.5′ from point A.

ΣMA = 0 = 9k(6.5′) − By(8′) … By = 7.31k

ΣFy = 0 = Ay − 9k + 7.31k … Ay = 1.69k

ΣFx = 0 = Ax

Example 1-12: Reactions for a partial uniform load and 

overhang.

1.16

Reactions for a partial uniform load with an overhang

w = 3k/f

W = 3k/f(5′) = 15k

The distance from the center of gravity to point A is the applied 

load plus half of the applied length = 5′ + 5′/2 = 7.5′ from point A.

ΣMA = 0 = 15k(7.5′) − By(8′) … By = 14.06k

ΣFy = 0 = Ay − 15k + 14.06 … Ay = 0.94k

ΣFx = 0 = Ax

Not all distributed loads are uniform loads. To find the total 

load and the center of gravity when the distributed load is 

non-uniform, the geometry of the shape of the load must be 

considered.

Example 1-13: Finding reactions with a triangular load. 

One example of a non-uniformly distributed load is a 

triangular load, named for its geometric shape. The area of a 
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triangle is equal to half the base times the height. The center 

of gravity of a triangle is located one third of the base length 

from the heaviest end.

1.17

Triangular load

 
= =W

(3k / f)(9')
2

13.5k

The center of gravity is 1
3  of the applied length from the heavy 

end or 3′ from point B. Therefore, the distance from the 

center of gravity to point A is 9′ − 3′ = 6′.

ΣMA = 0 = 13.5k(6′) − By(9′) … By = 9k

ΣFy = 0 = Ay − 13.5k + 9k … Ay = 4.5k

ΣFx = 0 = Ax

Example 1-14: Finding reactions with multiple 

distributed loads. 

Another example of a non-uniformly distributed load is a load 

that varies linearly from one amount at one end to another 

amount at the other end as shown in Figure 1.18.

Break the load into one uniform load and one triangular load:

 The uniform load is 3k/f. The applied length is 6′.

W1 = (3k/f)(6′) = 18k

 The center of gravity is 3′ from point A.

 The triangular load tapers from 3k/f to 0.

 The applied length is 6′. W2 = ((3″k/f″)(6′))/2 = 9k

 The center of gravity is 2′ from point A.

ΣMA = 0 = 18k(3′) + 9k(2′) − By(9′) … By = 8k

ΣFy = 0 = Ay − 18k − 9k + 8k … Ay = 19k

ΣFx = 0 = Ax

Practice Exercises:

1-1 through 1-3: Find the resultant vector magnitude and 

direction for the forces shown in the diagrams in Figure 1.19.

1-4: Find the moment about point A.

1-5: Find the moment about support A.

1-6: Find the moment caused by the force:

a) about point A

b) about point B.

1-7 through 1-14: Find the reactions for the forces applied.

1.18

Combined distributed loads
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1.19

Chapter 1 Practice exercises.



two

B ar  Forces  in  Tr usses

A true truss is a stable configuration of bars connected by 

pinned joints. Because the joints are pinned, no moment is 

transferred along a bar. Therefore, the direction of any bar 

force is along its axis. Each bar transfers an axial force in 

either compression or tension. Bar forces in compression 

have arrows pointing away from each other ← → and bar 

forces in tension are indicated by arrows pointing toward each 

other → ←.

Truss analysis assumes four things:

1. All members are linear.

2. Members are pinned connected at the ends.

3.  The weight of the members is neglected.

4. Loads are only applied at the joints.

2.1 Method of Joints

The Method of Joints uses the logic that if a joint is isolated 

by cutting through the bars, the joint remains in equilibrium 

due to the bar forces. 

To use the Method of Joints:

1. Solve for reactions at the supports.

2. Break the truss into individual joints.

3. Sum the forces in the x and y directions for each joint. 

Σfx = 0, Σfy = 0. Note the bar forces on the other side of 

the break as equal in force and opposite in direction.

4. Find resultant bar forces:

 
( )= +F f fx

2
y

2

Example 2-1. 

2.1

Break truss into individual joints

1. Solve for reactions:

Unknowns = Ax, Ay, Dy 

ΣMA = 0 = 2k(6′) − Dy(12′) … Dy = 1k

Σfy = 0 = Ay − 2k + 1k … Ay = 1k

Σfx = 0 = Ax

2. Break truss into individual joints:
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2.2

Sum forces at each joint

3. Sum the forces in the x and y directions for each joint. 

Σfx = 0, Σfy = 0.

Joint A: 

Σfy = 0 = 1k − ABy … ABy = 1k↓

 
= … = ←

AB
AB

3'
6'

AB 2ky

x
x

Σfx = 0 = −2k + ACx … ACx = 2k→

Joint C: 

Σfy = 0 = −2k + BCy … BCy = 2k↑

Σfx = 0 = −2k + CDx … CDx = 2k→

Joint D:

Σfy = 0 = 1 − BDy … BDy = 1↓

Σfx = 0 = −2 + BDx … BDx = 2→

Joint B: Once all of the bar forces are found, the last joint can 

be checked to ensure equilibrium.

Σfx = 0 = 1k − 2k + 1k … okay

Σfx = 0 = −2k + 2k … okay

4. Find resultant bar forces: 

 
( )= +F f fx

2
y

2

= = + =AB BD (22 12) 2.24  Compression ← →

AC = CD = BC = 2 Tension → ←

2.3

Find total bar forces 

Some trusses have diagonals set at an angle θ from the 

horizontal. For any bar for ratio:

 
= θ

θ
= θ

f
f

Fsin
Fcos

tany

x

 
= θ =

θ
f f tan and f

f
tany x x

y

Example 2-2.

2.4

Truss defined by angles
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1. Solve for reactions:

 Unknowns are Ax, Ay and Gy 

ΣMA = 0 = 2k(5′) + 3k(15′) + 5k(25′) − Gy (30′) … 

Gy = 6k

Σfy = 0 = 6k − 5k − 3k − 2k + Ay … Ay = 4k

Σfx = 0 = Ax

2. Break into individual joints:

3. Sum the forces in the x and y directions for each joint. 

Σfx = 0, Σfy = 0.

Joint A: Σfy = 0 = 4k − ABy … ABy = 4k↓ 

 
= = = ←AB

AB
tan60

4
1.732

2.309kx
y

Σfx = 0 = −2.309 + AC … C = 2.309k→

Joint B: Σfy = 0 = 4k − 2 − ACy … ACy = 2k↓

 
= = = ←AC

AC
tan60

2
1.732

1.155kx
y

Σfx = 0 = 2.309 + 1.155 + BD … BD = 3.464←

Joint C: Σfy = 0 = 2k − CDy … CDy = 2k↓

 
= = = ←CD

CD
tan60

2
1.732

1.155kx
y

Σfx = 0 = −2.309 − 1.155 − 1.155 + CE … CE 

= 4.618k→

2.5

Sum forces at each joint

Joint D: Σfy = 0 = 2k − 3 − DEy … DEy = 1k↑

 
= = = ←DE

DE
tan60

1
1.732

0.577kx
y

Σfx = 0 = 3.464 + 1.155 − 0.577 − DF … DF = 4.042k←

Joint E: Σfy = 0 = −1k + EFy … EFy = 1k↑

 
= = = ←EF

EF
tan60

1
1.732

0.577kx
y

Σfx = 0 = −4.618 + 0.577 + 0.577 + EG … EG = 3.464k→

Joint F: Σfy = 0 = −1k − 5 + FGy … FGy = 6k↑ 

 
= = = ←FG

FG
tan60

6
1.732

3.464kx
y

Joint G: Σfy = 0 = −6k + 6k … okay

Σfx = 0 = 3.464k − 3.464k … okay

4. Find resultant bar forces:

 
( )= +F f fx

2
y

2
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C = compression, T = tension

 
( )= + =AB 2.309 4 4.62k C2 2

AC = 2.31k T

 
( )= + =BC 1.155 2 2.31k T2 2

BD = 3.46 C

 
( )= + =CD 1.155 2 2.31k C2 2

CE = 4.62 T

 
( )= + =DE 0.577 1 1.15k C2 2

DF = 4.04k C

 
( )= + =EF 0.5772 1 1.15k C2 2

EG = 3.46 T

 
( )= + =FG 3.464 6 6.93k C2 2

2.2 Method of Sections

Just as any joint can be isolated and examined to be found in 

equilibrium, any section of a truss that is isolated will also be 

in equilibrium, meaning that the sum of forces and moments 

will equal zero. Isolating a section of a truss is very useful 

when only a few bar forces need to be found.

To use the Method of Sections:

1. Draw a section line through one or more bars of interest. 

The section line must cut through the entire truss. 

2. Consider only one side of the section line. 

a. If all supports are located on one side of the 

section cut, then use the other side. This will 

eliminate the need to solve for reactions first.

b. If all supports are not located on one side of 

the section line, then solve for reactions before 

isolating the section.

3. To each severed bar, assign a bar force variable with 

components, assuming a direction (ABx, ABy, etc.)

4. Solve for the bar forces using ΣM = 0, Σfy = 0 and 

Σfx = 0. In order to decide which equation to use, 

observe the isolated section. Count the number of 

unknown variables in the x direction. If only one unknown 

exists, it may be found by using Σfx = 0. The same is true 

of the y direction. If there is more than one unknown in 

both directions, use ΣM = 0, taking the moment about 

the intersection of two severed bars to find the forces in 

the third. It is also useful to remember that bar forces are 

axial and therefore the ratio of fy/fx = rise/run. 

5. Find resultant bar forces:

 
( )= +F f fx

2
y

2

Example 2-3: Find the bar forces in members CB and CE 

using Method of Sections.

2.6

Find total bar forces
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Since CB is the variable to be found, take a moment about 

the point where CE and DE intersect; at point E. It does not 

matter that point E is not part of the section.

ΣME = 0 = −8k(12′) − CB(16′) … CB = −6k or 6k in 

compression

If envisioning a point not in the isolated section is difficult, 

sum the moments about point C, then sum vertical forces.

ΣMC = 0 = DE(16′) … DE = 0

Σfy = 0 = −6k + 0 − CB … CB = −6 or 6k in 

compression.

5. Find resultant bar forces: 

 
( )= +F f fx

2
y

2

CB = 6k C 

DE = 0

 
( )= + =CE 8 6 10k T2 2

Example 2-4: Find the bar forces in AC using Method of 

Sections.

2.8

Example 2-4

2.7

Method of Sections

1. Draw a section line through CB and CE.

2. Consider only one side of the section line. Since all of 

the supports are located on the bottom, isolate the top 

section. This will eliminate the need to solve for reactions 

first. 

3. The variables are CB↓, CEx→, CEy↓ and DE↓. All are 

assumed to be in tension. If the answer is negative, 

the direction will change and the bar force will be in 

compression.

4. There is only one X direction variable, CEx, therefore use 

Σfx = 0. 

Σfx = 0 = −8k + CEx … CEx = 8k→

CEy = 12′(8k)/16′ = 6k

There are still two variables in the y direction: CB and DE. 

Therefore, Σfy = 0 cannot be used yet. Use instead, ΣM = 0. 
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1. Draw a section line through AC. Note that wherever 

the section line is drawn, an isolated side will contain a 

support. Therefore it is necessary to solve for reactions.

ΣMa = 0 = 10k(4′) + Cx(3′) … 

Cx = (−40)/3 = −13.33k = 13.33k→

Σfx = 0 = 13.33k + Ax … Ax = −13.33k = 13.33k←

Σfy = 0 = −10k + Ay … Ay = 10k↑

2. Consider only one side of the section line. 

3. The variables are ABx, ABy, ACx and ACy. Since there 

are four variables and only three available equations, the 

relationships between the variables must be defined.

 
= … =

AB
AB

2'
4'

2AB ABy

x
y x

 
= … =

AC
AC

3'
6'

2AC ACy

x
y x

4. There are two variables in each of the x and y directions, 

therefore use ΣM = 0. Since AC is the bar of interest, 

sum the moments about the only point not connected to 

AC, point B.

ΣMB = 0 = −13.33k(5′) + 5′(ACx) − 2′(ACy) and since 

2ACy = ACx 

ΣMB = 0 = −13.33k(5′) + 5′(2ACy) − 2′(ACy) … 

ACy = 8.33k

ACx = 2(8.33k) = 16.66k

5. Find resultant bar forces:

 
( )= +F f fx

2
y

2

 
( )= + =AC 16.66 8.33 18.63k T2 2

2.3 Diagonal Tension 
Bracing

Diagonal Tension Counters are sets of cables or slender 

components that stabilize a frame by acting in tension only. 

Although the tension counters are placed in sets, only one is 

active given any particular load scenario. For example, if the 

box is subjected to a force F from the left, the frame wants 

to lean towards the right. The cable AC is in tension and 

counteracts the force F. Cable BD cannot resist in compression 

and becomes inactive. If the box is subjected to a force from 

the right, Cable BD is active and cable AC is inactive.

2.9

Only one tension brace is active at a time

To analyze diagonal tension counters:

1. Solve for reactions.

2. Cut a section through both tension counters and assume 

bar fragments are in tension. Isolate one side.

3. Sum forces in the direction parallel to the section line 

adding only some value Ty if the line is vertical, and Tx 

if the line is horizontal, for the tension counter variable. 

Solve for Ty or Tx. A positive answer indicates Ty is up. A 

negative answer indicates Ty is down.

4. Choose the active tension counter by noting the direction 

of Ty. Solve for Tx using the ratios Ty/Tx = rise/run.

5. Find the Tension in the active tension counter using 

 
( )= +T T Tx

2
y

2

Example 2-5: Find the tension in the active 

tension counters.

1. Solve for reactions.

ΣMA = 0 = 4k(4′) + 6k(8′) + 8k(12′) − Hy(16′) … 

Hy = 10k

Σfy = 0 = Ay − 4 − 6 − 8 + 10 … Ay = 8k

Σfx = 0 = Ax

2. Cut a section through both tension counters and assume 

bar fragments are in tension. Isolate one side.

Section 1, left side:

3. Σfy = 0 = 8k − 4k + Ty … Ty = −4k or 4k↓

4. BE is the active tension counter because the Ty is 

downward.

 
= … = =4k

T
5'
4'

T
4k(4')

5'
3.2k

x
x
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2.11

Horizontal section cuts

2.10

Diagonal tension bracing

5. ( ) ( )= + = + =T T T 3.2 4 5.12kx
2

y
2 2 2

Section 2, right side:

3. Σfy = 0 = 10k − 8k + Ty … Ty = −2k or 2k↓

4. EF is the active tension counter because the Ty is 

downward.

 
= … = =2k

T
5'
4'

T
2k(4')

5'
1.6k

x
x

5. ( ) ( )= + = + =T T T 1.6 2 2.56kx
2

y
2 2 2

Example 2-6.

1. In this example, there is no need to solve for reactions if 

the area above each section line is isolated.

2. Cut a section through both tension counters and assume 

bar fragments are in tension. Isolate one side.

Section 1, top:

3. Σfx = 0 = 6k + Tx … Tx = −6k or 6k←

4. DB is the active tension counter because the Tx is toward 

the left.
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= … = =6k

T
8'
4'

T
6k(4')

8'
3k

x
y

5. ( ) ( )= + = + =T T T 6 3 6.71kx
2

y
2 2 2

Section 2, top:

3. Σfx = 0 = 6k + 8k + Tx … Tx = −14k or 14k ←

4.  EA is the active tension counter because the Tx is toward 

the left.

 
= … = =14k

T
8'
6'

T
14k(6')

8'
10.5k

y
y

5. ( ) ( )= + = + =T T T 14 10.5 17.5kx
2

y
2 2 2

Practice Exercises:

2-1 through 2-3: Solve for the bar forces using Method of 

Joints.

2-4: Find the axial forces in bars BE and BC using Method of 

Sections.

2-5: Find the axial forces in bars DE and DF using Method of 

Sections.

2-6: Find the axial forces in bars CE, CD and CB using 

Method of Sections.

2-7 through 2-8: Find the tension in the active diagonal 

tension counters.

2.12

Chapter 2 Practice exercises
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Stat ics  in  Simple  Systems

3.2

Finding tension in cable segments

1. Find reactions.

ΣMa = 0 = 10k(4′) − By(12′) … By = 3.33k↑

ΣFy = 0 = Ay − 10k + 3.33k … Ay = 6.67k↑

 
= … = ⎛

⎝⎜
⎞
⎠⎟ = →

B
B

3
8

B 3.33k
8
3

8.89ky

x
x

 
= … = ⎛

⎝⎜
⎞
⎠⎟ = →

A
A

3
4

A 6.67k
4
3

8.89ky

x
x

2. Sum forces at each point of load.

ACx = Ax = 8.89k

ACy = Ay = 6.67k

BCx = Bx = 8.89k

BCy = By = 3.33k

Note that the force in the X-direction remains constant 

throughout the cable.

3.1 Cables

Cables can only transfer load through tension.

All cables must have some sag in order to support a load. 

This is because the resultant force through a cable is in the 

direction of its axis and because a cable, in theory, cannot 

transfer loads through shear. Imagine a cable with no sag. 

The reactions at the cable supports must be in the same 

direction as the axis of the cable. If a cable has no sag, the 

direction and therefore the reactions are only in the horizontal 

or x direction. When forces are summed in the y direction: 

Σfy = 0 = W, therefore the load W must be 0.

3.1

A cable must have some sag

This is because the ratio of the reactions Ay/Ax = h/a. If h = 0, 

then Ay = 0 and therefore, W = 0. 

To solve for the tension in a cable when the sag is known:

Example 3-1: Find the tension in cable segments AC and CB.
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3. Find tension in cable legs.

 
( )= + =AC 8.89 6.67 11.12k2 2

 
( )= + =BC 8.89 3.33 9.50k2 2

Note that the tension is greater in the segment with the 

steepest slope.

Example 3-2: Find the sag at points B and D and find 

tension in all segments of cable. 

Any portion of the cable may be isolated and resultant forces 

found. 

3.3

Finding sag in cables

ΣMA = 0 = 3(12) + 7(32) + 2(42) − Ey(60) … Ey = 5.73k↑

Σfy = 0 = Ay + 5.73 − 12 … Ay = 6.27k↑

Ax and Ex cannot be solved without taking a section cut. Cut 

cable at point C and isolate right side:

ΣMC = 0 = 2(10) − 5.73(28) + Ex(12) … Ex = 11.71k

 
= = … =

E
E

5.73
11.71

h
18'

h 8.81'y

x

D
D

Consider entire cable:

Σfx = 0 = 11.71 − Ax … Ax = 11.71k←

 
= = … =

A
A

6.27
11.71

h
12'

h 6.42'y

x

B
B

ABx = BCx = CDx = DEx = 11.71k

 
= … = …

AB
11.71

h
12'

AB 6.27ky B
y

 
( )= + =AB 6.27 11.71 13.28k2 2

 
= − … = − … = …

BC
11.71

h 12
20'

BC 6.27k 3k BC 3.27ky B
y y

 
( )= + =BC 3.27 11.71 12.16k2 2

 
= − … = − …CD

11.71
h 12

20'
CD 5.73 2D

y

 
( )= + =CD 3.73 11.71 12.29k2 2

 
= … = …DE

11.71
h
12'

DE 5.73D
y

 
( )= + =DE 5.73 11.71 13.04k2 2

Example 3-3: Find the sag, h, in the cable given the 

maximum cable tension, T = 18k. 

3.4

Finding sag for maximum tension

ΣMA = 0 = 28(10) − 40Cy … Cy = 7k

Σfy = 0 = Ay − 10 + 7 … Ay = 3k

 The steepest slope will have the greatest tension. 

 Slope of AB = h/28 and Slope of BC = h/12.

Therefore, BC has the greatest tension and BC = 18k. 

Comparing the ratios of force to length in the triangle on the 

right side yields:

 

( )
= =

+h
7

12
BC

h 12

18k
B

x

B
2 2

 

( )
=

+
… = + + …h

h 12

18k
18h 7h 168h 1008B

B
2 2

B
2

B
2

B

hB = 5.07'
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Alternatively, BCx can be found first and then the used in the 

equation:

 
=h

7
12

BC
B

x

BCx
2 + 72 = 182 … BCx = 16.58k

hB = 7(12)/16.58 = 5.07′

3.2 Arches and Pinned 
Frames

3.2.1 Hinged Arches

Three-hinge arches consist of two arched segments 

connected by a pin and supported by a pinned connection 

at each end. Because there are 4 unknowns and only 3 

equations, the arch must be separated into segments to 

solve. Note that the pin forces on the right side are equal and 

opposite to the pin forces on the left side. The assignment of 

the direction of pin forces is arbitrary. If the wrong direction is 

chosen, the answer will appear to be negative, meaning that 

the direction is opposite of that assumed.

To analyze three-hinge arches:

1. Break into left and right segment. Assign Px and Py 

variables to either side of the pin in opposite directions.

2. Using only the left side, sum the moments about the left 

support. Find the Py in terms of the Px.

3. Using only the right side, sum the moments about the 

right support. Find the Py in terms of Px.

4. Set the Py in terms of Px equations from steps 2 and 3 

equal to each other. Solve for Px.

5. Using Px, solve for Py. 

6. Using only the left side, sum y-direction forces, then 

x-direction forces to find reactions at the left support.

7. Using only the right side, sum y-direction forces, then 

x-direction forces to find reactions at the right support.

Example 3-4: Solve for the support reactions and the 

resultant force in the pin.

3.5

Three-hinged arch

Left side:

ΣMA = 0 = 20k(10′) − Cx(6′) + Cy(15′) … 

Cy = (6Cx − 200)/15 = 0.4Cx − 13.33

Right side: 

ΣMB = 0 = Cy(15′) + Cx(16′) − 18k(5′) … 

Cy = (90 − 16Cx)/15 = 6 − 1.07Cx

0.4Cx − 13.33 = 6 − 1.07Cx … Cx = 19.33/1.47 

= 13.15k

Cy = 6 − 1.07(13.15) = −8.07k

Left side: 

Σfy = 0 = Ay − 20k + 8.07k … Ay = 11.93k

Σfx = 0 = Ax − 13.15k … Ax = 13.15k

Right side:

Σfy = 0 = By − 18k − 8.07k … By = 26.07k

Σfx = 0 = -Bx + 13.15k … Bx = 13.15k

 
( )= + =Resultant pin force 13.15 8.07 15.43k2 2
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3.2.2 Pinned Frames

Unlike trusses, where bar forces are directed along the bar 

axis, pinned frames have bar forces that carry shear and 

therefore the bar force direction is unknown until analyzed.

To analyze pinned frames:

1. Find reactions at supports for entire pinned frame 

system, if possible.

2. Separate the frame at pins into individual members.

3. Solve for forces in each member remembering that the 

force at the pin in one member will be equal and opposite 

to the force at the same pin in the connected member.

Example 3-5: Find the support reactions and the 

resultant pin force.

3.6

Pinned frame

2 pinned supports = 4 unknowns. Therefore, it is impossible 

to solve for reactions by looking at the whole system. 

Left side:

ΣMA = 0 = 8k(2′) − Cy(4′) … Cy = 4k↑ 

Σfy = 0 = Ay − 8k + 4k … Ay = 4k↑

Σfx = 0 = Ax − Cx … Ax = Cx

Right side: 

ΣMB = 0 = −10k(8′) + Cx(6′) … Cx = 12.67k = 12.67k→

Σfy = 0 = −4k + By … By = 4k↑

Σfx = 0 = Bx + 12.67k − 10k … Bx = −2.67k = 2.67k←

Resultant pin force:

 
( )= + =C 12.67 4 13.29k2 2

ANSWER:

Ax = 2.67k→, Ay = 4k↑, Bx = 2.67k←, By = 4k↑, C = 13.29k

Example 3-6: Find the forces in the pinned A-Frame 

shown in Figure 3.7.

3.7

Pinned A-frame
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ΣMA = 0 = 60#(4′) + 10#(6′) − Ey(8′) … Ey = 37.5#↑ 

Σfy = 0 = Ay − 60# + 37.5# … Ay = 22.5#↑

Σfx = 0 = 10# − Ax … Ax = 10#←

Isolate bars.

Bar BD: 

ΣMB = 0 = 60#(2′) − Dy(4′) … Dy = 30#↑ 

and on bar CDE By = 30#↓

Σfy = 0 = By − 60# + 30# … By = 30#↑ 

and on bar ABC By = 30#↓

Bar ABC: 

ΣMC = 0 = 10#(6′) + 22.5#(4′) − 30#(2′) + Bx (3′) …

Bx = −30# = 30#→ and on bar BD, Bx = 30#←

Σfy = 0 = 22.5# − 30# + Cy … Cy = 7.5#↑ 

and on bar CDE Cy = 7.5#↓

Σfx = 0 = 10# − 10# + 30# − Cx … Cx = 30# ← 

and on bar CDE Cx = 30#→ 

Bar CDE: 

Σfx = 0 = 30# − Dx … Dx = 30#

Find pin forces:

 
( )= = + =B D 30 30 42.43k2 2

 
( )= + =C 7.5 30 30.92k2 2

ANSWER:

Ax = 10# ←, Ay = 22.5#↑, Ey = 37.5#↑, B = D = 42.43#, 

C = 30.92#

Practice Exercises:

3-1: For the diagram 1-1 in Figure 3.8:

a) Find the sag (h) and the reactions at the support if hB = 3′. 
b) Find the sag (h) and the reactions at the supports if the 

maximum tension in leg CD is 8k.

3-2: Find the tension in each leg of the cable.

3-3 through 3-7: Find the reactions at the supports and the 

resultant pin forces.

3.8

Chapter 3 Practice exercises



four

S hear  and Moment in  B eams

4.1

Shear and moment at any point in a beam

The Free Body Diagram is the starting point for finding the 

shear and moment at any given point along the beam. To 

determine the shear and moment, take a section at the point 

of interest. The internal shear (V) and moment (M) may then 

be calculated by summing forces and moments about any 

point.

There is a mathematical relationship between the load on 

a beam and the shear and moment forces incurred by that 

load. This means that given a particular load, the shear and 

moment can be calculated at any point along the beam. 

V = shear force (k or lb)

Shear is a chopping action; a force inside the beam that 

transfers a load, occurring perpendicular to the axis of the 

beam, to the supports. The shear force, V, at any point along 

a horizontal beam can be found by summing the forces in the 

Y direction on either side of that point.

M = moment (k-f, k-in, lb-ft, or lb-in)

Moment is a bending action caused by the shear. The 

accumulation of shear across a beam determines the amount 

of moment created in the beam. The moment at any point 

can be found by summing moments on either side of that 

point. 

The free-body diagram of a simply supported, 12ft beam 

in Figure 4.1(a) with a concentrated load of 6k located at a 

distance of 8ft from support A, shows reactions of 2k and 4k 

at supports A and B, respectively.
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In Figure 4.1(b) the beam is cut at section D–D and the 

two halves separated, the internal shear force (V) and the 

internal moment (M) can be calculated for the section of the 

beam to the left of the point load. Because a vertical load will 

change the shear, and as a result change the moment in the 

beam, a different section line, section E–E, must be evaluated 

for points to the right of the load.

To determine the shear and moment at some point to the 

left of the point load, break the beam at section line D–D. 

Section line D–D occurs at some distance X from support A, 

meaning that the values for shear and moment will be found 

in terms of the variable X. 

Assume a direction for shear (V) and moment (M) on one 

side of the break. Since the point is static, the forces and 

moments at the point must be in equilibrium. Therefore, the 

shear (V) and moment (M) on the other side of the break will 

be of equal magnitude, but in the opposite direction.

Consider only the left side of section D–D:

ΣFy = 0 = 2 − V … V = 2k

ΣMA = 0 = V(X) − M = 2(X) − M … M = 2X k-f

Consider only the right side of section D–D:

ΣFy = 0 = V − 6k + 4 … V = 2k

ΣMD = 0 = M + 6(8 − X) − 4(12 − X) 

M = −48 + 6X + 48 − 4X = 2X k-f

If the moment is taken about point B or point C, the answer 

will remain the same.

ΣMB = 0 = M + 2(8−X) − 4(4)

M = −16 + 2X + 16 = 2X k-f

ΣMC = 0 = M + 6(8−X) − 4(12−X)

M = −48 + 6X + 48 − 4X = 2X k-f

From point A to point B, the shear will remain at 2k and the 

moment will remain at 2X k-f for any distance X from support 

A up to the point of load. 

 Point A: X = 0, V = 2k, M = 2(0) = 0k-f

 Point B: X = 8′, V = 2k, M = 2(8) = 16k-f 

Past the point of load, section E–E must be considered. 

Consider only the left side of section E–E as shown in 

Figure 4.1(c): 

ΣFy = 0 = 2k − 6k + V … V = 4k

ΣMA = 0 = 6k(8′) − 4k(X) − M … M = 48 − 4X k-f″

Consider only the right side of section E–E:

ΣFy = 0 = −V + 4k … V = 4k

ΣMB = 0 = M − 4(12 − X) … M = 48 − 4X k-f

From point B to point C, the shear will remain at 4k and the 

moment will remain at 48 − 4X k-f for any distance X from 

point B to point C. 

 Point B: X = 8′, V = 4k, M = 48 − 4(8) = 16k-f

 Point C: X = 12′, V = 4k, M = 48 − 4(12) = 0k-f

4.1 Shear and Moment 
Diagrams

In Beam design, the maximum shear and moment must be 

considered in order to find the maximum stresses in shear and 

flexure. By illustrating the shear or moment at any point on the 

beam in terms of a diagram, it becomes easy to assess the 

areas of maximum and minimum stress in the beam without 

drawing a new section at every change in loading.

4.1.1 Diagrams with Concentrated 
Loads

To draw a shear diagram, begin at X = 0 and move vertically 

only as a vertical force is encountered. Because reactions are 

considered, the shear will begin and end at zero. A positive 

or upward force will cause a positive increase in shear of the 

same magnitude or amount of force. Likewise, a negative or 

downward force will cause a decrease in shear of the same 

amount of force. The change in shear due to a concentrated 

or point load occurs completely at the point of load and is 

represented by a vertical line extending from the value of shear 

on one side to the value of shear on the other side. This vertical 

line length equals the amount of force encountered at the point.

Example 4-1: A simply supported beam with a 

concentrated load. 

Consider the simple beam discussed at the beginning of the 

chapter, shown in Figure 4.2:
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4.2

Example 4-1: Shear diagram.

(a) Starting at X = 0, which in this example is point A, the 

reaction of +2K is immediately encountered. The shear 

changes from 0 to 2k. V = 0 + 2k = 2k. Therefore, draw a 

line from 0 to 2k at X = 0. 

(b) From X = 0 to X = 8′, no vertical forces are encountered. 

Therefore the shear does not change. It remains at 2K.

(c) At X = 8′, which is point B at the load, there is a 

downward force of 6k. Therefore, the shear will change 

by −6k. Since the shear is 2k, it must drop to V = 2k − 6k 

= −4k. 

(d) From point B at X = 8′ to the support point C, at X = 12′, 
there are no vertical forces encountered. Therefore, the 

shear remains at −4k.

(e) At point C, the support reaction of 4k upward is 

encountered. The shear increases to V = −4k + 4k = 0. 

This is what is expected at the end of the beam.

Just as the shear diagram is influenced by the loads on the 

beam, the moment diagram is influenced by the shear on 

the beam. Therefore, once the shear diagram is drawn, it can 

be used to create the moment diagram. The mathematical 

relationship between shear and moment is described as: 

M = ∫Vdx.

Because the moment is the integral of the shear, it is 

equal to the area under the shear curve. This means that the 

moment at any point a distance X from the left is equal to the 

sum of all shear areas, positive or negative up to that distance 

X. This yields the same result as cutting a section line D–D 

and finding that M = 2X k-f. The area under the shear curve 

at distance X to section D–D is 2k(X′) = M = 2X k-f. Plotting 

the results for M at points X = 0 through X = 8′ yields 

Figure 4.3(c). The slope of the moment line equals the shear.

Figure 4.3 illustrates why the total area under the shear 

curve from X = 0 to 8′ equals the moment at X = 8′, which is 

M = 16k-f. Therefore, in drawing the moment diagram, it is 

not necessary to examine every point along the beam, but to 

calculate the areas as they appear in simple geometric forms.

To create a moment diagram, first calculate the areas 

below the shear curve. Remember that areas above the zero 

line will be positive while areas below the zero line will be 

negative.

A1 = 2k(8′) = 16k-f

A2 = −4k(4′) = −16k-f
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To draw the moment diagram, begin at X = 0. The moment 

will equal zero unless there is a fixed support or an applied 

moment at that point.

(a) The first shear area, A1 = 16k-f, extends from X = 0 to 

X = 8′. Therefore, the moment line will extend from M = 0 

at X = 0 to M = 0 + A1 = 16k-f at X = 8.

(b) The second shear area, A2 = −16k-f, extends from X = 8′ 
to X = 12′. Therefore, the moment line will extend from 

M = 16k-f at X = 8′ to M = 16 + A2 = 16 − 16 = 0 at X = 12′.

The maximum shear in the beam is 4k. Direction does not 

matter, simply the magnitude of the shear. The maximum 

moment in the beam is 16k-f and occurs at X = 8′. The 

moment in the beam is 0 at X = 0, 12′. 

Vmax = 4k

Mmax = 16k-f

 M = 0 @ X = 0, 12′

Example 4-2: Concentrated loads on a beam with an 

overhang.

4.4

Example 4-2: Shear diagram

The moment at pinned or roller supports is NOT always zero. 

Consider the beam in Figure 4.4(a). This beam has a span 

between supports of 12′ and an overhang of 4′. The free body 

diagram shown in Figure 4.4(b) is used to find the reactions 

as follows:

ΣMA = 0 = 6k(6′) − Cy(12′) + 3k(16′) = 84k-f − Cy(12′) …

Cy = 7k

ΣFy = 0 = Ay − 6k + 7k − 3k … Ay = 2k

4.3

Example 4-1: Moment diagram
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The shear diagram in Figure 4.4(c) begins with the reaction at 

the support at X = 0 or point A, but does not return to 0 until 

it reaches the end of the overhang. The shear values can be 

summarized as follows:

Shear diagram:

0 < X < 6′: V = 0 + 2k

6′ < X < 12′: V = 2k − 6k = −4k

12′ < X < 16′: V = −4k + 7k = 3k

Shear areas:

A1: 2k(6′) = 12k-f

A2: −4k(6′) = −24k-f

A3: 3k(4′) = 12k-f

The moment diagram in Figure 4.4(d) begins at zero because 

support A is a pinned support and there is no applied 

moment. From point A to point B the moment will increase 

2k-f for every foot of beam length because the shear is 2k in 

this zone. From point B to point C, the shear is −4k and so the 

moment begins at 12k and decreases 4k-f for every foot of 

beam in this zone. From point C to the end of the overhang, 

the moment begins at −12k-f and increases 3k-f per foot of 

beam until it reaches 0. The moment at key points can be 

summarized as follows:

Moment diagram:

X = 0: M = 0

X = 6′: M = 0 + A1 = 0 + 12k-f = 12k-f

X = 12′: M = 0 + A1 + A2 = 0 + 12k-f − 24k-f = −12k-f

X = 16′: M = 0 + A1 + A2 + A3 

= 0 + 12k-f − 24k-f + 12k-f = 0

The moment diagram shows that the moment at support 

C, which occurs at X = 12′, is not 0, but −24k-f. A negative 

moment at the overhang support is typical.

Vmax = 4k

Mmax = 12k-f

 M = 0 @ X = 0, 16′ and some point between 6 and 12′

4.5

Example 4-2: Moment diagram

The distance X where the moment crosses the 0 line may 

be determined either geometrically as shown in Figure 4.5 or 

algebraically as discussed in section 4.2.

The moment curve is a straight line at the point where it 

crosses the zero line. Therefore, equivalent triangles may be 

used to determine the distance, X′, from the left.

 Let “a” equal the distance Point B to the point where M = 0. 

It is known that during that distance, a, the moment drops from 

12k-f to 0k-f. It is also known that from point B to point C the 

moment drops from 12k-f to −12k-f, a change of 24k-f. 

 The slope of the small triangle = rise/run = (12k-f)/a

 The slope of the large triangle = rise/run = (24k-f)/6′

Since the slope is defined by the same line on the moment 

diagram, the slopes of the two triangles are equal.

12/a = 24/6 … a = 12/4 = 3′

X = 6′ + a = 6′ + 3′ = 9′

 M = 0 @ X = 0, 9′ and 16′

4.1.2 Diagrams with Distributed 
Loads

A uniform load can be thought of as a series of point loads 

placed at very small intervals. For illustration purposes, 

one foot intervals are used. Consider the 16′ long beam in 

Figure 4.6. It carries a uniformly distributed load of 3k/f. At 

any distance X (ft) from the left, the load to the left will be 

3k/f(X′) = 3Xk. The shear and moment at any given point may 

be found by drawing a section line and considering one side 

of the section cut.
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4.6

Shear and moment in beams with distributed loads

The reactions are found as follows:

ΣMA = 0 = 3 k/f (16′)(8′) − By (16′) … By = 24k

ΣFy = 0 = Ay − (3 k/f)(16′) + 24k … Ay = 24k

Consider only the left side of section C–C:

ΣFy = 0 = 24 − 3X − V … V = (24 − 3X)k

ΣMA (k-f) = 0 = 3X(X/2) + V(X) − M

M = 3X2/2 + (24 − 3X)Xk-f = 24X − 3X2/2k-f

Example 4-3: A uniform load is applied on a simply 

supported beam. 

Draw the shear and moment diagram for a uniformly distributed 

load, using the Free Body Diagram as shown in Figure 4.7.

4.7

Example 4-3: Shear diagram

(a) Starting at X = 0, which in this example is point A, the 

reaction of +24K is immediately encountered. The shear 

changes from 0 to 24k. V = 0 + 24k = 24k. Therefore, 

draw a line from 0 to 24k at X = 0.

(b) The uniform load is also immediately encountered. In 

this example the uniform load is 3k/f. This means that for 

every foot, there is a downward force of 3k. Plotting the 

uniform load on the shear diagram, results in a line with a 

slope of −3k/f. As a result, the shear (V) decreases from 

V = 24k @ X = 0 to V = 24k − (3k/f)(1′) = 21k @ X = 1 and 

to V = 24 − (3k/f)(16′) = −24k @ X = 16′. Notice that the 

total drop in shear due to the uniform load is equal to the 

area under the load curve.

(c) At point B, the support reaction of 24k upward is 

encountered. The shear increases to V = −24k + 24k = 0. 

This is what is expected at the end of the beam.

The distance X at which the shear crosses the zero line can 

be found using the shear equation:

V = 24k − 3k/f(X′) = 0 … X = 24k/3k/f = 8′

4.8

Example 4-3: Moment diagram

As discussed in section 4.1.1, the moment is integral of the 

shear. Therefore, the moment at any point on the simple 

beam is equal to the accumulated area under the shear curve. 

In the case of uniformly distributed loads, the shear is not 

constant, it varies linearly. 
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Distance 
X (ft)

Shear (k) Area under shear line

X V = 24k − 3X M = Vk(X') + (24k – V)
X'
2

⎛
⎝⎜

⎞
⎠⎟

0' V = 24k − 3k/f(0) = 24k M = 24k(0) + (24k – 24k)
0'
2

= 0.0k-f⎛
⎝⎜

⎞
⎠⎟

1' V = 24k − 3k/f(1') = 21k M = 21k(1') + (24k – 21k)
1'
2

= 22.5k-f⎛
⎝⎜

⎞
⎠⎟

2' V = 24k − 3k/f(2') = 18k M = 18k(2') + (24k – 18k)
2'
2

= 0.0k-f⎛
⎝⎜

⎞
⎠⎟

3' V = 24k − 3k/f(3') = 15k M = 15k(3') + (24k – 15k)
3'
2

= 0.0k-f⎛
⎝⎜

⎞
⎠⎟

4' V = 24k − 3k/f(4') = 12k M = 12k(4') + (24k – 12k)
4'
2

= 0.0k-f⎛
⎝⎜

⎞
⎠⎟

5' V = 24k − 3k/f(5') = 9k M = 9k(5') + (24k – 9k)
5'
2

= 0.0k-f⎛
⎝⎜

⎞
⎠⎟

6' V = 24k − 3k/f(6') = 6k M = 6k(6') + (24k – 6k)
6'
2

= 0.0k-f⎛
⎝⎜

⎞
⎠⎟

7' V = 24k − 3k/f(7') = 3k M = 3k(7') + (24k – 3k)
7'
2

= 0.0k-f⎛
⎝⎜

⎞
⎠⎟

8' V = 24k − 3k/f(8') = 0k M = 0k(8') + (24k – 0k)
8'
2

= 0.0k-f⎛
⎝⎜

⎞
⎠⎟

If the moment is plotted at one foot intervals, as shown 

above, the shape of the moment curve can be seen to be 

parabolic. The largest increase in moment, and therefore the 

steepest slope, occurs where the shear is largest.

To draw the moment diagram, calculate the area below the 

shear curve and consider the shape of the moment curve. In 

Figure 4.8, the areas under the shear curve are triangles. The 

area of a triangle is equal to the base times the height divided 

by two. A1 = 24k(8′)/2 = 96k-f; A2 = −24k(8″)/2 = −96k-f. The 

moment diagram begins at 0k-f because there is no fixed 

support or applied moment. At X = 8′, the moment increases 

from 0k-f to M = 0 + A1 = 96k-f, following a parabolic curve 

that levels off to a slope of zero at X = 8′. At X = 16′, the 

moment decreases from 96k-f to M = 96k-f + A2 = 96k-f − 

96k-f = 0. 

Example 4-4: A partial uniform load on a simply 

supported beam.

Often a distributed load does not extend across the entire 

length of a beam. 

Consider the beam in Figure 4.9. The uniform load of 3k/f 

occurs only between X = 0 and X = 8′. The reactions are 

found as follows:

ΣMA = 0 = (3″k/f″)(8′)(4′) − By(16′) … By = 6k

ΣFy = 0 = Ay − (3″k/f″)(8′) + 6k … Ay = 18k

To draw the shear diagram, begin at X = 0′. The upward 

concentrated load of 18k that is the reaction at support A is 

immediately encountered. The shear increase at X = 0 from 

0 to V = 0 + 18k = 18k. The uniform load of 3k/f occurs from 

X = 0 to X = 8′. Therefore, the shear will decrease linearly 

from V = 18k at X = 0 to V = 18k −(3k/f)(8′) = 18k − 24k = −6k 

at X = 8′. There are no loads encountered between X = 8′ 
and X = 16′; therefore the shear remains constant at −6k. 

At X = 16′, the upward concentrated load of 6k that is the 

reaction at point B is encountered, increasing the shear 

at X = 16′ from −6k to V = −6k + 6k = 0k. This is what 

is expected at the end of the beam. To draw the moment 

diagram, the areas below the shear curve must be calculated. 

In order to calculate A1, the distance X from point A to where 

the shear crosses the zero line (V = 0) must be calculated. 

X = 18k/3k/f = 6′.

A1 = base(height)/2 = 6′(18k)/2 = 54k-f

A2 = base(height)/2 = (8′− 6′)(−6k)/2 = 2′(−6k)/2 = −6k-f

4.9

Example 4-4: A partial uniform load on a simply supported beam
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A3 = base(height) = 8′(−6k) = −48k-f

The moment curve begins at X = 0 with a value of 0. No fixed 

support or applied moment is encountered. At X = 6′, the 

moment is M = 0 + A1 = 54k-f. The increase in the moment 

from 0 to 54k-f at X = 6′ follows a parabolic curve with the 

steepest slope at X = 0 and tapering off to a slope of 0 at 

X = 6′. 
From X = 6′ to X = 8′, the moment decreases by the value 

of A2 = −6k-f, again following a parabolic curve. This time, 

however, the slope begins at 0 and becomes steeper until 

X = 8′ and M = 54k-f + A2 = 54k-f − 6k-f = 48k-f. 

From X = 8′ to X = 16′, the moment decreases linearly by 

the value of A3 = −48k-f because the shear is constant in this 

section. At X = 16′, M = 48k-f + A3 = 48k-f − 48k-f = 0. This is 

expected at the end of a simply supported beam.

Example 4-5: Uniform and concentrated loads on a beam.

The 16′ long beam in Figure 4.10 has a partial uniform load 

and a concentrated load. A combination of concentrated and 

distributed loads has the same methodology for drawing the 

shear and moment diagrams as that discussed in the previous 

examples. The reactions are found as follows:

ΣMA = 0 = 3 k/f (8′)(4′) + 12k(12′) − By(16′) … By = 15k

ΣFy = 0 = Ay − 3 k/f (8′) − 12k + 15k … Ay = 21k

X = 0: V = 0 + 21k = 21k: point load = vertical line

0 < X < 8′: V drops from V = 21k @ X = 0 to 

 V = 21 − 3k/f(8′) = −3k @ X = 8′ 
 Uniform load = sloped line

8′ < X < 12′: V remains constant. 

 No loads = no change in shear.

X = 12′: V = −3k − 12k = −15k: point load = vertical line.

12′ < X < 16′: V remains constant. 

 No loads = no change in shear.

X = 16′: V = −15k + 15k = 0: point load = vertical line.

Distance to V = 0 is X = 21k/3k/f = 7′

A1 = 7′(21k)/2 = 73.5k-f

A2 = 1′(−3k)/2 = −1.5k-f

A3 = 4′(−3k) = −12k-f

A4 = 4′(−15k) = −60k-f

X = 0: M = 0.

X = 7′: M = 0 + A1 = 73.5 k-f 

 Triangular area = parabolic curve.

X = 8′: M = 73.5 k-f + A2 = 73.5 − 1.5 = 72.0 k-f 

 Triangular area = parabolic curve.

X = 12′: M = 72 k-f + A3 = 72.0 − 12 = 60k-f 

 Rectangular area = sloped line.

X = 16′: M = 60 k-f − A4 = 60 k-f − 60 k-f = 0 

 Rectangular area = sloped line.

4.10

Example 4-5: Uniform and concentrated loads on a beam
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Example 4-6: A uniform load on a beam with an overhang.

4.11

Example 4-6: A uniform load on a beam with an overhang

Consider the uniformly loaded beam with an overhang 

(Figure 4.11). The span between supports is 16′ and the 

overhang is 4′. In this example, the overhang is on the left, 

meaning the shear diagram will not encounter the reaction at 

support A until X = 4′. Therefore, the shear will begin at zero 

and slope downward. The reactions are found as follows:

ΣMA = 0 = (2 k/f)(20′)(6′) − By(16′) … By = 15k

ΣFy = 0 = Ay − (2 k/f)(20′) + 15k … Ay = 25k

X = 0: V = 0 No point load at end of overhang.

0 < X < 4′: V drops from V = 0 @ X = 0 to 

 V = 0 − 2k/f(4′) = −8k @ X = 4′ 
 Uniform load = sloped line.

X = 4′: V = −8k + 25k = 17k point load = vertical line.

4′ < X < 16′: V drops from V = 17k @ X = 4′ to 

 V = 17 − 2 k/f(16′) = −15k @ X = 20′ 
 Uniform load = sloped line.

X = 20′: V = −15k + 15k = 0 point load = vertical line.

 Distance to V = 0 is X = 4′ + 17k/(2k/f) = 12.5′ 

A1 = 4′(−8k)/2 = −16k-f

A2 = 8.5′(17k)/2 = 72.25k-f

A3 = 7.5′(−15k)/2 = −56.25k-f

X = 0: M = 0

X = 4′: M = 0 + A1 = 0 − 16k-f = −16k-f 

 Triangular area = parabolic curve.

X = 12.5′: M = −16k-f + A2 = −16 + 72.25 = 56.25k-f  

 Triangular area = parabolic curve.

X = 20′: M = 56.25 k-f + A3 = 56.25 − 56.25 = 0 

 Triangular area = parabolic curve.

4.12

Finding where M = 0

The problem of finding the point on the beam where M = 0 

becomes more difficult to solve geometrically when the 

moment curve contains parabolic curves. The distance cannot 

be found by comparing similar triangles as in Figure 4.7. 

However, A1 = −16k-f is the area on the shear diagram required 
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to drop the moment value from 0 to −16k-f. It is logical then, 

that an area of 16k-f, in the left portion of A2, will cause the 

moment value to increase 16k-f. Looking at an enlarged portion 

of the shear diagram, in Figure 4.14, the variable “a” represents 

the distance past the support where M = 0.

 a = X − 4′ and h = height of the shear curve at 

X = 4 + a. 

A2 = a(h) + a(17 − h)/2 = a(h + 17)/2

h = 17k − a(2k/f) 

Substituting h into the equation for A2:

A2 = a(17−a) = 16 or a2 − 17a + 16 = 0 = (a − 16)(a − 1)

 a = 16′, X = 4 + 16 = 20′ which is support B.

 a = 1′, X = 4 + 1 = 5′ is the point where M = 0.

Vmax = 17k

Mmax = 56.25k-f

 M = 0 @ X = 0, 5′, 20′

4.1.3 Diagrams with Applied 
Moments

Moments occur at fixed supports. They also occur elsewhere 

along a beam whenever there is a rotational influence such 

as a horizontal force offset from the axis of the beam or a 

couple: two equal but opposite forces acting at a distance 

apart (See Chapter 1, section 1.1.3). When these moments 

occur, the influence is immediate and results in a vertical 

change along the moment line diagram.

Example 4-7: A uniform load on a cantilevered beam.

A beam with a fixed connection, such as the cantilevered 

beam in Figure 4.13, has a moment that occurs at that 

connection. That moment is found by summing the moments 

about point A. 

ΣMA = 0 = −M + 5 k/f (10′)(5′) 

M = 250k-f. M was assumed counter-clockwise. The answer 

is positive and therefore M is 250k-f counter-clockwise. 

Draw the shear diagram without regard to the moment at the 

support.

 X = 0: V = 0 + 50k point load = vertical line.  

 0 < X < 10′: V drops from V = 50k @ X = 0 to 

V = 50k − 5k/f(10′) = 0k 

 @ X = 8′ uniform load = sloped line.

A1 = 10′(50k/2) = 250k-f

 X = 0: M = 0 + M = 0 − 250k-f 

Applied moment = straight line.

 X = 10′: M = −250k-f + A1 = −250 + 250 = 0k-f 

Triangular area = parabolic curve.

Vmax = 50k

Mmax = −250k-f

 M = 0 @ X = 10′

4.13

Example 4-7: A uniform load on a cantilevered beam
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Example 4-8: A beam with an applied moment due to a 

couple. 

Consider an applied moment at the mid-span of the beam 

in Figure 4.14. The two horizontal 6k loads at a distance of 

2′ apart form a couple with a positive moment of 12k-f. The 

reactions are found as follows:

ΣMA = 0 = 4k(3′) + 6k(1′) + 6k(1′) + 6k(8′) − By (12′) … 

By = 6k

ΣFy = 0 = Ay − 4k − 6k + 6k … Ay = 4k

4.14

Example 4-8: A beam with an applied moment due to a couple 

 X = 0: V = 0 + 4k = 4k 

Point load = vertical line.

 0 < X < 3: V remains constant 

No loads = no change in shear.

 X = 3′: V = 4k − 4k = 0 

Point load = vertical line.

 3′ < X < 8′: V remains constant. 

No vertical loads = no change in shear.

 X = 8′: V = 0 − 6k 

Point load = vertical line.

 8′ < X < 12: V remains constant. 

No loads = no change in shear.

 X = 12′: V = −6k + 6k = 0 

Point load = vertical line.

A1 = 3′(4k) = 12k-f

A2 = 4′(6k) = 24k-f

 X = 0: M = 0 

No moment at support.

 X = 4′: M = 0 + A1 = 12 k-f 

Rectangular area = sloped line.

 4′ < X < 6′: M = 12k-f + 0 = 12 k-f 

No shear, moment is constant. 

 X = 6′: M = 12k-f + 6K(2′) = 24k-f 

Applied moment, vertical line.

 6′ < X < 8′: M = 24k-f + 0 = 24k-f 

No shear, moment is constant.

 X = 12′: M = 24k-f + A2 = 24 − 24 = 0k-f 

Rectangular area = sloped line.

Vmax = −6k

Mmax = 24k-f

 M = 0 @ X = 0, 12′
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Summation of process:

Shear diagrams:

1. Begin at X = 0.

2. Add loads as they are encountered. Concentrated loads 

will cause a vertical change in the shear curve. Uniform 

loads will cause a linear change in the shear curve with a 

slope equal to the load.

3. For any portion of the beam that does not encounter a load, 

uniform or concentrated, the shear remains the same.

4. The shear should return to zero at the end of the beam.

Moment diagrams:

1. Find the areas under the shear curve.

2. Begin at X = 0. 

3. Add shear areas as encountered. Areas with constant 

shear will cause the moment line to change linearly with 

a slope equal to the shear. Shear areas with a triangular 

area will cause the moment curve to be parabolic with 

the steepest slope being at the end with the most shear.

4. Add applied moments when encountered. Applied 

moments will cause a vertical line on the moment curve.

4.2 Writing Moment 
Equations

Writing the moment equation is helpful when the loads 

become complex and it is desired to find where the moment 

equals zero without geometrically calculating the areas of 

parabolas and the like. As discussed earlier, the moment is the 

integral of the shear in a beam. M = ∫V dx. Another reason for 

writing a moment equation is to find the deflection in a beam. 

Deflection is the double integral of the moment. ΔEI = ∫∫M dx.

In writing the moment equation, < > brackets indicate 

contents that are only considered if greater than zero. If the 

contents inside the < > brackets are less than zero, use zero 

as the bracketed amount.

When the shear is constant, as from a point load, the 

moment, M = ∫V dx = Vx + C. When the shear is a uniformly 

distributed load, w, the moment, M = ∫V dx + C1 = ∫∫wx dx + 

C1x + C2.

Example 4-9: Writing moment equations for 

concentrated load.

Consider the beam from Figure 4.4 again. 

4.15

Writing moment equations for concentrated loads

M = 2X − 6 < X − 6> + 7<X − 12> is the moment 

equation.

 X = 0: M = 0 − 6(0) + 7(0) = 0k-f

 X = 12′: M = 2(12) − 6(6) + 7(0) = −12k-f

 X = 16′: M = 2(16) − 6(10) + 7(4) = 0

To find where M crosses the zero line, set the moment 

equation equal to zero.

M = 0 = 2X − 6<X − 6> + 7<X − 12>

 If X ≥ 12, M = 0 = 2X − 6(X − 6) + 7(X − 12) … X = 16′

 If 6′ ≤ X ≤ 12′, 0 = 2X − 6(X − 6) … X = 9′ 

If X ≤ 6′, 0 = 2X … X = 0 

To find where M is maximum when a beam contains only 

concentrated loads, look at the points where the shear 

changes from positive to negative. First, set the derivative of 

the moment, the shear equation, equal to zero.

 V = 2 − <6 if X>6> + < 7 if X > 12 > = 0

 If X ≥ 12, 0 = 2 − 6 + 7 = 3 (positive) 

 If 6′ ≤ X≤12′, 0 = 2 − 6 = −4k (negative)

 If X ≤ 6′, 0 = (positive)
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Therefore, the shear crosses the zero line at X = 12′ and X = 6′. 

 X = 6′: M = 2(6) − 6(0) + 7(0) = 12k-f

 X = 12′: M = 2(12) − 6(6) + 7(0) = −12k-f

Mmax = 12k-f 

Example 4-10: Writing moment equations for full 

uniform loads.

Consider the beam from Figure 4.7 again. This 16ft beam has 

a uniform load of 3k/f over the entire length of the beam.

4.16

Writing moment equations for full uniform loads

M = 24X − 3X2/2 where 24 is the reaction of 24k at 

support A and 3 is the uniform load of 3k/f.

 X = 0: M = 0 − 0 = 0

 X = 8′: M = 24(8) − 3(82)/2 = 96k-f

 X = 16′: M = 24(16) − 3(162)/2 = 0

To find where M = 0, set the moment equation equal to zero.

M = 0 = 24X − 3X2/2 = −1.5X2 + 24X = X(−1.5X + 24) 

= 0 

 M = 0 @ X = 0 and @ X = 24/1.5 = 16′

To find where M is maximum, set the derivative of the 

moment, the shear equation, equal to zero.

V = 0 = 24 − 3X. X = 24/3 = 8′

 X = 8′: M = 24(8) − 3(82)/2 = 96k-f

Mmax = 96k-f

Example 4-11: Writing moment equations for partial 

uniform loads.

Consider the beam from Figure 4.9 again. This 16′ beam has 

a uniform load of 3k/f over one half of its span. Because the 

uniform load does not continue past X = 8′, its effect must be 

counteracted. This is the equivalent of taking a uniform load 

over an entire span and adding an equal but opposite load at 

8′ < X < 16′.

4.17

Writing moment equations for partial uniform loads

M = 18X − 3X2/2 + 3<X − 8>2/2

 X = 0: M = 0 − 3(0)/2 + 3(0)/2 = 0

 X = 6′: M = 18(6) − 3(36)/2 + 3(0/2) = 54k-f

 X = 8′: M = 18(8) − 3(64)2 + 3(0)/2 = 48k-f

 X = 16′: M = 18(16) − 3(256)/2 + 3(64)/2 = 0

To find where M crosses the zero line, set the moment 

equation equal to zero.

M = 0 = 18X − 3X2/2 + 3 <X − 8>2/2

 If X ≥ 8, 0 = 18X − 3X2/2 + 3(X − 8)2/2 = 18X − 1.5X2 + 

1.5(X2 − 16X + 64) = 18X − 1.5X2 + 1.5X2 − 24X + 96 

= −6X + 96 … X = 16′

 If X ≤ 8′, 0 = 18X − 3X2/2 = X(18 − 1.5X) … X = 0 or 12′ 
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12′ is NOT ≤ 8′ therefore X = 0.

To find where M is maximum, set the derivative of the 

moment, the shear equation, equal to zero.

M = 18X − 3X2/2 + 3<X − 8>2/2

V = 0 = 18 − 3X + 3<X − 8>

 If X ≥ 8: 0 = 18 − 3X + 3X − 24 = −6 but this is 

impossible since 0 ≠ −6

 If X ≤ 8′: 0 = 18 − 3X … X = 6′

Example 4-12: Writing moment equations for triangular 

loads.

Consider the beam in Figure 4.18. It has a triangular load 

spanning the length of the beam. Often with complex loads 

such as triangular loads, it is easier to express the load in 

terms of X and then take the integral of the load to find the 

shear and the integral of the shear to find the moment.

4.18

Writing moment equations for triangular loads

W = −6k/f (X′)/15′ = −6X/15k/f

V = ∫W dx = −6X2/(15(2)) + C = −X2/5k + C

 At X = 0, V = 15k because the reaction at support A, 

at X = 0, is 15k. 

 Therefore, C = 15k

V = −X2/5 + 15 = 15 − X2/5

M = ∫V dx = 15X − X3/15 + C1 

At X = 0, M = 0k because there is no applied moment at support 

A and support A is not a fixed support. Therefore, C1 = 0k-f and

M = 15X − X3/15

The moment is zero at M = 0 = 15X − X3/15 

= X(15 − X2/15) … X = 0 or 15′
The moment is maximum where V = 0 = 15 − X2/5

X = √75 = 8.66′

Mmax = 15(8.66) − (8.66)3/15 = 86.60 k-f

Example 4-13: Writing moment equations for an applied 

moment. 

Consider the beam from Figure 4.14 again. This is the beam 

with the 12k-f moment at X = 6′.

4.19

Writing moment equations for an applied moment

M = 4X − 4<X − 3> + <12 if X > 6> − 6<X − 8>

To find where M = 0, set the moment equation equal to zero.

M = 0 = 4X − 4<X − 3> + <12 if X > 6> − 6<X − 8>

 If X ≥ 8: 0 = 4X − 4(X − 3) + 12 − 6(X − 8) 

= 24 + 48 − 6X … X = 12′
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 If 6′< X < 8′: 0 = 4X − 4(X − 3) + 12 = 24 impossible

If 3′< X < 6′: 0 = 4X − 4(X − 3) … X = 12 impossible

 If X ≤ 3′: 0 = 4X … X = 0

 M = 0 @ X = 0, 12′

To find where M is maximum, set the derivative of the 

moment, the shear equation, equal to zero.

M = 4X − 4<X−3> + <12 if X>6> − 6<X − 8>

V = 0 = 4 − <4 if X>3> − <6 if X>8>

 V = 0 @ 3′ < X < 8′

It is impossible to find the location of Mmax from this 

information. But if the Moment equation is re-examined for 

this zone, it becomes clear.

M = 4X − 4(X − 3) + <12 if X>6> = 12 + <12 if X>6>

This means that M = 12k-f @ 3′ < X < 6′ and Mmax = 24k-f 

@ 6′ < X < 8′. 
Things to remember:

 Concentrated load → Uniform Load → Triangular Load

 Horizontal Shear Line → Sloped Shear Line → 

Parabolic Shear Curve

 Sloped Moment Line → Parabolic Moment Curve → 

Third-degree Moment Curve 

V = ∫W dx 

Shear at any point is equal to the sum of loads on either side 

of that point.

M = ∫V dx 

Moment at any point is equal to the sum of shear areas on 

either side of that point.

Practice Exercises:

4-1 through 4-9: Find the reactions, draw and label the shear 

and moment diagrams for the beams shown in Figure 4.20 

and identify Mmax, Vmax and the points where V = 0 and M = 0 

for the beams.

4-10 through 4-12: Find the reactions, write the moment 

equation and find Mmax, Vmax and the points where V = 0 and 

M = 0 for the beams shown in Figure 4.20.

4.20

Chapter 4 Practice exercises



f ive

L oad Tracing

The purpose of structure is to safely transfer all loads to the 

ground. The path that loads take to reach the ground depends 

on the structural system design. Load tracing follows the 

path of applied loads through a structural system, from one 

component to the next. Most building loads are expressed 

as uniform loads in pounds per square foot (psf) applied to 

floors, roofs or walls.

5.1 Finding Floor Loads on 
Columns

Tributary area is the area of surface with an applied uniform 

load that is transferred to a building component such as 

a beam or a column. The load on a beam (w) in #/f is the 

product of tributary width (b) in feet and the uniform load (U) 

in psf: W = b(U). Tributary width is defined as the sum of half 

the distance to the adjacent beam or wall in each direction.

The load on a column (P), when neglecting beam weight, 

is the tributary area (A) in square feet multiplied by the 

uniform load (U) in psf yielding a load in #: P = A(U). The 

tributary area can be found by multiplying the tributary width 

between columns in the x and y directions.

Example 5-1: Finding column loads.

For a uniform load (U) of 120psf: 

Col. A1: A = 24′/2(30′/2) = 180f2; P = 180f2(120psf) = 21,600#

5.1

Finding column loads

 Bm1: b = 10′/2 = 5′; w1 = b(U) = 5′(120psf) = 600#/f

 Bm2: b = 10′/2 + 10′/2 = 10′; w2 = b(U) = 10′(120psf) 

= 1200#/f

The reactions at the ends of beams Bm2 become point loads 

on beams Bm3.

 Bm1: R = 600#/f(24′/2) = 7200# @ x = 0′ and 30′ 
and bears directly on columns

 Bm2: R = 1200#/f(24′/2) = 14400# @x = 10′ and 20′ 
and bears on Bm3
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 The reaction at either end of Bm3 = (14400#(10′) 
+ 14400#(20′))/30′ = 14400#

The total load on each column equals the reaction at the end 

of Bm3 plus the reaction at the end of Bm1.

P = 14400# + 7200# = 21600# which is the same value 

found using the tributary area multiplied by the uniform load. 

Example 5-2: Simple bay with unevenly spaced beams 

and no openings. 

This exercise will show that using tributary area to find the 

load on the columns is not dependent on beam spacing.

5.2

Simple bay with unevenly spaced beams and no openings

 Bm1: b = 8′/2 = 4′; w = 4′(120psf) = 480#/f … 

R1 = 480#/f(24′/2) = 5760#

 Bm2: b = 10′/2 + 8′/2 = 9′; w = 9′(120psf) = 1080#/f … 

R2 = 1080#/f(24′/2) = 12,960#

 Bm3: b = 12′/2 + 10′/2 = 11′; w = 11′(120psf) = 1320#/f 

… R3 = 1320#/f(24′/2) = 15,840#

 Bm4: b = 12′/2 = 6′; w = 6′(120psf) = 720#/f … 

R4 = 720#/f(24′/2) = 8640#

 Bm5: ΣMB = 0 = 15,840#(12′) + 12,960#(22′) − 

Ay(30′) … Ay = 15,840#

Σfy = 0 = By − 15,840 − 12,960 + 15,840 … 

By = 12,960

Col A1: The column load equals the sum of the Bm5 reaction 

at A plus the reaction from Bm1. P = 15,840# + 5760# 

= 21,600#

Col B1: The column load equals the sum of the Bm5 reaction 

at B plus the reaction from Bm4. P = 12,960# + 8640# 

= 21,600#

Note that this answer is the same as found in Example 5-1.

Example 5-3: A simple bay with an opening. 

Find the column loads based on 100psf uniform load. 

Include beam weights: wB1 = 20#/f; wB2 = 32#/f; wB3 = 48#/f; 

wB4 = 64#/f; wB5 = 60#/f; wB6 = 42#/f.

5.3

A simple bay with an opening

 Bm1: b = 10′; w = 10′(100) + 20 = 1020#/f; L = 15′; 
R1 = 1020#/f(15′/2) = 7650# 

5.4

Load diagram for Bm1

 Bm2: w = 32#′f; P = R1 = 7650# @ x = 10′ and 20′ 

ΣMA = 0 = 7650#(10′) + 7650#(20′) + 32#/f(30′)(15′) − 

By(30′) … By = 8130#

Σfy = 0 = Ay − 7650# − 7650# − 32(30) + 8130# … 
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Ay = 8130#

5.5

Load diagram for Bm2

 Bm3: b = 5′; w1 = 5′(100psf) = 500#/f; w2 = 48#/f; 

P = R2 = 8130# @ x = 15′ and 30′

ΣMA = 0 = 8130#(15′) + 8130#(30′) + 48#/f(45′)(22.5′) 
+ 500#/f(15′)(7.5′) + 500#/f(15′)(37.5′) − By(45′) … 

By = 16710#

Σfy = 0 = Ay − 8130# − 8130# − 500#/f(30′) − 48#/f(45′) 
+ 16710# … Ay = 16710#

5.6

Load diagram for Bm3

 Bm4: b1 = b = 5′; w1 = 5′(100psf) = 500#/f; 

w2 = 5′(100psf) + 64#/f = 564#/f; P = R2 = 8130# 

/@ 00x = 15′ and 30′

ΣMA = 0 = 8130#(15′) + 8130#(30′) + 548#/f(45′)(22.5′) 
+ 500#/f(15′)(7.5′) + 500#/f(15′)(37.5′) − By(45′) … 

By = 27960#

Σfy = 0 = Ay − 8130# − 8130# − 500#/f(30′) − 

548#/f(45′) + 16710# … Ay = 27960#

5.7

Load diagram for Bm4

 Bm5: w = 60#/f; P1 = R4 = 27,960# @ x = 10′; 

P2 = R1 = 7650# @ x = 20′ and 30′

ΣMB = 27,960#(10′) + 7650#(20′) + 7650#(30′) + 

64#/f(40′)(20′) − Ay(40′) … Ay = 17,832.5#

Σfy = 0 = By − 27,960 − 7650 − 7650 − 64(40) + 

17,832.5 … By = 28,027.5#

5.8

Load diagram for Bm5

 Bm6: w = 100psf(5′) + 60#/f = 560#/f … 

Ay = By = 560#/f(45′/2) = 12,600#

 Col A1 and A2: P = 17,832.5 + 16710 = 34542.5#

 Col B1 and B2: P = 28,027.5 + 12,600 = 40,627.5#

Using tributary area:

5.9

Bay with opening using tributary area

 Col A1 and A2: P = 100psf(15′)(20′) + 20#/f(15′) + 

10#/f(15′) + 32#/f(20′) + 48#/f(22.5′) + 60#/f(20′) 
= 33,370#

 Col B1 and B2: P = 100psf[15′(20′) + 7.5′(10′)] + 

10#/f(15′) + 64#/f(22.5′) + 42#/f(22.5′) + 60#/f(20′) 
= 41,235#
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The difference between the calculated load tracing and using 

the tributary area is as follows:

 On columns A1 and A2: 

(33,370# − 34542.5#)/34542.5# = −3.39%

 On columns B1 and B2: 

(41,235 − 40265.5)/40,617.5 = 2.39%

Note that while the loads on the columns using the tributary 

area are not accurate when there is an opening in the bay, the 

margin of error is only 3.39%.

Tributary width and area can be used for lateral loads that 

act horizontally against a façade. The same methods are 

applied using the elevation. The loads are transferred to the 

column lines resisting lateral forces. Lateral loads are usually 

limited to wind and seismic forces, but may also include 

hydrostatic pressure from soil or horizontal components of 

transferred gravity loads. See Chapter 14: Lateral Bracing 

Systems for lateral design loads and resistance systems.

Example 5-4: A building façade receives a uniform wind 

pressure of 20psf. 

The wind force is resisted by column lines A, B and C. The 

façade panels transfer loads to the floor plates. Find the wind 

force applied to each column at each level. The solution is 

shown in the table below.

5.10

Tributary area for wind pressure

5.2 Accumulation of 
Column Loads

The load on any segment of a column is equal to the sum of 

all the loads on that column from levels above that segment. 

This means that loads accumulate from the top to the bottom 

of the column, resulting in the heaviest load at the base of C.

5.11

Accumulation of column loads

Tributary height Column A Loads Column B Loads Column C Loads

Trib. 
width

26
2

= 13'
26 + 18

2
= 22'

18
2

= 9'

R
12
2

= 6' 6'(13')(20psf) = 1560# 6'(22')(20psf) = 2640# 6'(9')(20psf) = 1080#

5
12 + 12

2
= 12' 12'(13')(20psf) = 3120# 12'(22')(20psf) = 5280# 12'(9')(20psf) = 2160#

4 12 + 12

2
= 12' 12'(13')(20psf) = 3120# 12'(22')(20psf) = 5280# 12'(9')(20psf) = 2160#

3 12 + 16

2
= 14' 14'(13')(20psf) = 3640# 14'(22')(20psf) = 6160# 14'(9')(20psf) = 2520#

2 16 + 16

2
= 16' 16'(13')(20psf) = 4160# 12'(22')(20psf) = 5280# 16'(9')(20psf) = 2880#
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Notice that the interior columns carry more load because 

the tributary width for interior columns is larger than exterior 

columns. If there is a discontinuity of a column, as seen on 

the right, the loads normally carried by that column segment 

must be transferred by the floor system to neighboring 

columns. This affects the loads on columns on all levels 

below the discontinuation. The chart below shows the 

change in loads when the level 4 to 5 segment of column C is 

removed.

Column A B C D

5 – R P 2P 2P2P PP

4 – 5 2P 4P→6P 4P→0 2P→4P

3 – 4 3P 6P→8P 6P→2P 3P→5P

2 – 3 4P 8P→10P 8P→4P 4P→6P

1 – 2 5P 10P→12P 10P→6p 5P→7P

Practice Exercises:

5-1: Find the loads on the columns given a uniform floor load 

of 80psf using tributary area.

5-2: Find the loads on the columns given a uniform floor load 

of 80psf 

a) using tributary area;

b) by calculating beam reactions.

5-3: A uniform wind load of 30psf is resisted by columns A, B 

and C in 5-2 at each level. Determine the wind load on each 

column at each level if levels are 12o.c.

5.12

Chapter 5 Practice exercises



six

Simple  Stress  and Strain

6.1

Axial stress

Example 6-1: A 3.5″ × 3.5″ square wood post has an 

allowable compressive stress Fc of 1000psi. 

What is the maximum axial load the post can safely handle?

 The allowable compressive stress, Fc = 1000psi, must 

be greater than the actual compressive stress = fc. 

A = 3.5″(3.5″) = 12.25in2

f = P/A = P/12.25in2 ≤ 1000psi … 

P ≤ 1000psi(12.25in2) = 12,250#

Example 6-2: What size diameter rod is required to support 

a 200# load if the allowable tensile stress = Ft = 625psi? 

 A = 200#/625psi = 0.32in2 = πd2/4 … 

d = 0.638″, round up to 3
4 ″ diameter rod.

Chapter 6 discusses strength of materials and the relationship 

between stress and strain.

Refer to Table A1.1: Materials Properties Table in the 

Appendix for properties of typical structural materials.

6.1 Force Induced Stress 
and Strain

Stress is the expression of a force distributed over the area 

on which it bears. The basic formula for stress (f) is: 

stress = σ = f = P/A

In this text f will signify actual stress and F will signify 

allowable stress. For axial forces of tension and compression, 

f = P/A. The units for stress are psi (pounds per square inch) 

or ksi (kips per square inch).

6.1.1 Tensile and Compressive Stress

Axial loads of tension and compression act on a stress area 

that is perpendicular to the line of the force, as seen in 

Figure 6.1. The stress area is the cross-sectional area for the 

member under tension or compression.
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6.1.2 Shear Stress

Shear stress is caused by a load that is parallel to the stress 

area fv = P/A. 

6.2

Shear stress

Example 6-3: Two 1″ × 4″ boards are glued with an 

overlap of 3″ on the wide edge and subjected to an axial 

tension force of 800#.

 If the adhesive is rated with an allowable shear stress of 

Fv = 40psi, is the overlap adequate?

P = 800# and A = 3″(4″) = 12in2

fv = P/A = 800#/12in2 = 66.67psi > Fv = 40psi … 

overlap is not adequate.

How much overlap, h, is required?

Fv = 40psi = P/A = 800#/A = 800#/4h … 

h ≥ 800#/(4″(40psi)) = 5″

Example 6-4: Two steel plates are bolted together with 

four 1/2″ diameter bolts having an allowable shear 

stress of 14.4ksi. 

What is the maximum axial tensile load, P, that the bolts can 

resist?

Fv 
= 14.4ksi, Av = (4bolts)π(0.5)2/4 = 0.785in2

Fv 
= 14.4ksi ≥ fv = P/A = P/0.785in2 … 

P ≤ 14.4ksi(0.785in2) = 18.34k

How many 1
2

″ diameter bolts are required to resist a shear 

force of 25k?

 
F 14.4ksi f

25k
A

A
25k

14.4ksi
1.736 inv v

2= > … > =

Fv = 14.4ksi ≥ fv = 25k/A … A ≥ 25k/14.4ksi = 1.736in2

 Let N = the # of bolts required

A = 1.736in2 ≤ Nπ(0.5)2/4 = 0.196N … 

N ≥ 1.736/0.196 = 8.857

 Answer: Round up to N = 9 bolts.

6.1.3 Bearing Stress

Bearing stress is the stress caused by the transfer of load 

from one component to another on which it rests. The stress 

area is perpendicular to the direction of force. fc⊥ = P/A where 

A is the area of bearing.

6.3

Bearing stress

Example 6-5: A series of 2 × 10 joists, spaced at 16″o.c. and 

12′ long, with a uniform load of 100psf, bear on a flat 2 × 6 

sill with an allowable bearing stress Fc⊥ = 975psi. 

Is the 2 × 6 adequate? Actual dimensional lumber sizes: 2 × 6: 

1.5″ × 5.5″, 2 × 10: 1.5″ × 9.25″.
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6.4

Joists bearing on header

Fc⊥ = 975psi ≥ fc⊥ = P/A

P = reaction at end of 2 × 10 joist 

W = 100psf(16″/12″/f) = 133.33#/f

P = WL/2 = 133.33#/f(12′)/2 = 800#

A = (thickness of 2 × 10)(width of 2 × 6) = 1.5″(5.5) 

= 8.25in2

fc⊥ = P/A = 800#/8.25in2 = 96.97psi < 975psi 

… 2 × 6 is adequate for bearing.

6.1.4 Strain and Modulus of Elasticity

Strain is the ratio of change in length to original length. As a 

ratio (inches per inch or feet per feet), it has no units. 

 Strain = ε = dL/L where L = original length and dL or 

δ = change in length

Modulus of Elasticity is the ratio of stress to strain. The units 

are the same as those for stress: psi or ksi.

Modulus of Elasticity = E = f/ε

Using the three equations, f = P/A, ε = dL/L and E = f/ε 

problems of simple stress and strain can be solved.

Example 6-6: What is the change in length of a 2″ square 

steel bar, 12″ long, subjected to an axial compressive 

force of 200k if E = 29,000ksi?

From the problem, it is known that L = 12″, A = 2″(2″) = 4in2, 

P = 200k and E = 29,000ksi. 

ε = dL/L … dL = L(ε)

E = f/ε … ε = f/E … dL = L(ε) = L(f)/E

 
f

P
A

dL
PL
EA

200k(12")
29,000ksi (4in )

0.0207"2= … = = =

Example 6-7: A 12′ long beam has a uniform load of 2k/ft. 

It is supported at one end by a 1″ diameter steel rod 

(Es = 29000ksi) and at the other end by a 1/2″ diameter 

titanium rod (Et = 15000ksi). The steel rod is 2′ long. How 

long must the titanium rod be for the beam to remain level?

 L = 12′, w = 5k/f … P = wL/2 = 2k/f(12′)/2 = 12k

As = π(1)2/4 = 0.785in2 Es = 29,000ksi Ls = 2′ = 24″

At = π(.5)2/4 = 0.196in2 Et = 15,000ksi Lt = ?

 If beam remains level, dLs = dLt and since dL = PL/EA 

 
L

P L E A
PE A

12k(24")(15,000ksi)(0.196in )
12k(29,000ksi)(0.785in )

3.10"t
s s t t

t s s

2

2= = =

Is this design adequate given an allowable tensile stress for 

steel of Ft = 30ksi and for titanium of Ft = 138ksi? 

 The stress in the steel rod = fs = P/A = 12k/0.785in2 

= 15.29ksi < 30ksi … okay

 The stress in the titanium rod = ft = P/A = 12k/0.196in2 

= 61.22ksi < 138ksi … okay

6.2 Temperature Induced 
Stress and Strain

Every material has a coefficient of thermal expansion, α, 

expressed in terms of strain over change in temperature. 

Since strain, ε = dL/L, the coefficient of thermal expansion 

can be expressed as:

α = ε/ΔT = dL/LΔT

 The change in length due to thermal expansion is: 

dL = αL(ΔT)
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 Because E = stress/strain = fL/dL, the stress from 

thermal expansion can be defined as: 

f = EdL/L = EαL(ΔT)/L = EαΔT

Example 6-8: A 1200′ tall high-rise has an exposed steel 

structure with a coefficient of expansion 

𝛂 = 6.5 × 10−6in/in/°F. 

The temperature of the steel is 85°F on the north side of the 

structure and 165°F on the south side. What is the difference 

in height between the north and south sides?

dL = αL(ΔT) = (6.5 × 10−6)in/in/°F)(1200′)(12″/f)(165 − 

85°F) = 7.49″

Example 6-9: 8′ wide aluminum panels with 𝛂 = 12.8 × 10−6 

are installed on a façade during 50°F weather. 

The highest design temperature for the aluminum panels is 

200°F. What size expansion joint should be used?

dL = αL(ΔT) = (12.8 × 10−6in/in/°F)(8′)(12″/f)(200 − 50°F) 

= 0.184″ … round up to 3/16″ = 0.1875″

Given a value of E = 10,000ksi and Fc = 16ksi for aluminum, 

what is the maximum change in temperature the panels could 

handle without expansion joints?

f = Eα(ΔT) … ΔT = f/Eα 

= 16ksi/[10,000ksi(12.8 × 10−6in/in/°F ) = 125°F

Practice Exercises:

6-1: A diagonal tension brace, 15′ long and having a round 

cross-section with a diameter of 3
4 ″ is subjected to 10k of 

tension. What is the change in length of the brace if 

E = 29,000ksi?

6-2: A W14 × 22 with an area, A = 6.49in2 and a length of 24′ 
is installed on the roof of a building when the temperature 

is 80°F. What will be the change in length when the 

temperature drops to 15°F if the coefficient of thermal 

expansion for steel is 6.5 × 10−6in/in/°F? 

6-3: What is the required length of the bronze post if the 

beam must remain level?

6-4: A 12′ canopy supports a load of 600#/f with a hinge at the 

wall and a cable at the end. The cable is attached to the wall 

at some distance h above the canopy. Determine the distance 

h so that the canopy remains level given the cable properties 

of: E = 29,000ksi, A = 1in2.

6.5

Chapter 6 Practice exercises



seven

S hear  and Flexure  in  B eams

Often, however, a cross-section is not a simple geometric 

shape. For complex cross-sections, the center of gravity can 

be found by using the following equations:

Xave = ΣAiXi/ΣAi and Yave = ΣAiYi/ΣAi 

where the center of gravity is located at a distance Xave from 

the Y-axis and a distance Yave from the X-axis and where Xi is 

the distance X from the Y-axis to the center of gravity of an 

individual component and where Yi is the distance Y from the 

x-Axis to the center of gravity of an individual component and 

where Ai is the area of an individual component.

Example 7-1: Find the center of gravity for the L-shaped 

cross-section in Figure 7.1a.

7.1 Neutral Axis and 
Moment of Inertia

The shear and bending stresses in a beam are dependent on 

the shape and size of the cross-section of the beam. In order 

to determine the shear and bending stresses, the neutral axis 

of the beam must be located. The neutral axis is located at 

the center of gravity.

 Table 7.1 lists the center of gravity for some common 

geometric shapes. For a beam with a simple geometric form, 

finding the neutral axis is as simple as referring to the table. 
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Rectangle

bh

Shape Area

Triangle

bh/2

Semicircle

Parabolic Half

2bh/3

bh/3

Circle

πr

Quarter Circle

2

πr /22

b/2 h/2

x y

b/3 h/3

0 4r/3π

5b/8 2h/5

3b/4 3h/10

0 0

bh /12

Ix Iy

pr /4 
4 

3 hb /123

bh /363 hb /363

pr /4 
4 

4r/3π4r/3ππr /42 ( π
16 − 4

9π)r4

8bh /1753 19hb /4803

37bh /21003 hb /803

( π
16 − 4

9π)r4

(π
8 − 8

9π)r4 π /84

Subparabolic Half

x

y

x

b

y
h

b

h

x

y

y

x

y

x

r

y

y

x

r

y

x

y

r
x

b

h

x

y

y

x

y

x

b

h

x

y

Table 7.1:  Properties of simple geometric shapes
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Consider the cross-section above that has been broken into three 

simple geometric shapes, labeled A, B and C in Figure 7.1(a).

The best way to solve for the center of gravity involving 

multiple geometric shapes is to create a table:

Comp. Ai Xi AiXi Yi AiYi

A 2(4) = 8 2/2 = 1 8(1) = 8 2 + 4/2 
= 4

8(4) = 32

B 2(2)/2 
= 2

2 + 2/3 
= 2.67

2(2.67) 
= 5.33

2 + 2/3 
= 2.67

2(2.67) 
= 5.33

C 6(2) = 12 6/2 = 3 12(3) = 36 2/2 = 1 12(1) = 12

Totals ΣAi = 22 ΣAiXi 
= 49.33

ΣAiYi 
= 49.33

Xave = ΣAiXi /ΣAi = 49.33/22 = 2.2″ 

The neutral axis Y–Y is located 2.24″ to the right of the origin.

Yave = ΣAiYi/ΣAi = 49.33/22 = 2.24″ 

The neutral axis X–X is located 2.24″ above the origin

Note: The center of gravity for a given cross-section will 

remain the same regardless of how the shape is divided into 

geometric components.

Consider the cross-section has been broken into three 

simple geometric shapes, labeled A, B and C in Figure 7.1(b).

Comp. Ai Xi AiXi Yi AiYi

A 2(6) = 12 2/2 = 1 12 6/2 = 3 36

B 4(4)/2 = 8 2 + 4/3 
= 3.33

26.67 4/3 
= 1.33

10.67

C 2(2)/2 = 2 6 − 2/3 
= 5.33

10.66 2 − 2/3 
= 1.33

2.66

Totals ΣAi = 22 ΣAiXi 
= 49.33

ΣAiYi 
= 49.33

Xave = ΣAiXi/ΣAi = 49.33/22 = 2.24″ 

The neutral axis Y–Y is located 2.24in to the right of the origin.

Yave = ΣAiYi/ΣAi = 49.33/22 = 2.24″ 

The neutral axis X–X is located 2.24″ above the origin.

When a cross-section contains a void, the void is a 

component with a negative area or an area that may be 

subtracted from the solid portion of the cross-section.

7.1

Finding the center of gravity
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Example 7-2: Find the center of gravity for the 8 × 12 

rectangle with a 4 × 6 void.

7.2

Finding the center of gravity in a shape with a void

Comp. Ai Xi AiXi Yi AiYi

Solid 8(12) = 96 8/2 = 4 384 12/2 = 6 576

Void 4(6) = −24 2 + 4/2 
= 4

-96 4 + /2 
= 7

−168

ΣAi = 72 ΣAiXi 
= 288

ΣAiYi 
= 408

Xave = ΣAiXi/ΣAi = 288/72 = 4″ 

Yave = ΣAiYi/ΣAi = 408/72 = 5.67″

7.1.2 Moment of Inertia

Moment of inertia defines the ability of a cross-section to 

resist bending and deflection.

Ix = ∫y2dA and Iy = ∫x2dA 

This formula is easy for simple shapes such as a b × h 

rectangle where

A = b(y) and dA = bdy 

∫y2dA = ∫y2bdy = by3/3 from y = h/2 to −h/2 

∫y2bdy = bh3/24 + bh3/24 = bh3/12

It’s not so easy for more complicated shapes.

By breaking a complex shape into simple geometric 

components, and by finding the neutral axis, the formula 

below can be used to find the moment of inertia:

Ix = ΣIxi + ΣAdy2  Iy = ΣIyi + ΣAdx2

where dy = Yi − Yave and dx = Xi − Xave

Example 7-3: Find Ix for the cross-section in Figure 7.3.

Note that for rectangles, Ix = bh3/12.

7.3

Finding moment of inertia

Comp. Ai Yi AiYi Ixi dy Ady2

A 2(6) = 12 6/2 = 3 36 2(63)/12 
= 36

3.67 − 3 
= .67

5.39

B 2(2) = 4 4 + 2/2 
= 5

20 2(23)/12 
= 1.33

3.67 − 5 
= −1.33

7.08

C 2(4) = 8 2 + 4/2 
= 4

32 2(43)/12 
= 10.67

3.67 − 4 
= −.33

0.87

ΣAi = 24 ΣAiYi 
= 88

ΣIxi = 48 ΣAdy2 
= 13.34

Yave = ΣAiYi/ΣAi = 88/24 = 3.67″

Ix = ΣIxi + ΣAdy2 = 48 + 13.34 = 61.34in4

Find Iy for the cross-section in Figure 7.3. Note that for 

rectangles, Iy = hb3/12.
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Comp. Ai Xi AiXi Iyi dx Adx2

A 2(6) = 12 2/2 = 1 12 6(23)/12 
= 4

2.67 − 1 
= 1.67

33.47

B 2(2) = 4 2 + 2/2 
= 3

12 2(23)/12 
= 1.33

2.67 − 3 
= -0.33

0.44

C 2(4) = 8 4 + 2/2 
= 5

40 4(23)/12 
= 2.67

2.67 − 5 
= -2.33

43.43

ΣAi = 24 ΣAiYi 
= 64

ΣIyi = 8 ΣAdy2 
= 77.34

Xave = ΣAiXi/ΣAi = 64/24 = 2.67″

Iy = ΣIyi + ΣAdx2 = 8 + 77.34 = 85.34in4

What Ix and Iy reveal about the cross-section in Figure 7.3 is 

that a load placed vertically, and therefore causing bending 

about the X–X axis will create more deflection of the 

beam than a load acting horizontally, and therefore causing 

bending about the Y–Y axis. This is because Ix < Iy and so the 

resistance to bending around the X–X axis is less than that 

around the Y–Y axis.

7.1.3 Moment of Inertia in Rolled 
Steel Components

The AISC Steel Manual lists section properties for all standard 

rolled steel components. Among the section properties 

listed are the moment of inertia values Ix and Iy. When using 

a standard rolled member, there is no calculation necessary. 

But, if the cross-section is built up using rolled sections 

and/or plates, then the equations Ix = ΣIxi + ΣAdy2 and 

Iy = ΣIyi + ΣAdx2 must be used.

Example 7-4: Find the moment of inertia about the X–X 

axis for a W14 × 22 with an L5 × 5 × 1
2

 welded to the top 

flange as shown in Figure 7.4.

7.4

Finding moment of inertia in steel shapes

Section properties:

 W14 × 22: A = 6.49in2, d = 13.74″, Ix = 199in4

 L5 × 5 × 1
2
: A = 4.75in2, y = 1.43″, Ix = 11.3in4

Comp. Ai Yi AiYi Ixi dy Ady2

W14 × 22 6.49  = 13.74/2 
 = 6.87

44.59 199 10.38 − 6.87 
= 3.51

79.96

L5 × 5 × 1/2 4.75  = 13.74 + 
1.43 = 15.17

72.06 11.3 10.38 − 15.17 
 = 4.79

109.08

Σ = 
11.24

Σ = 
116.65

Σ = 
210.3

Σ = 
189.04

Yave = 116.65/11.24 = 10.38″

Ix = 210.3 + 189.04 = 399.34in4

Note: If all components are symmetrical about the bending 

axis X-X, dy = 0 and the equation for Ix reduces to Ix = ΣIxi.

7.2 Bending Stress

The basic equation for bending stress is:

fb = Mc/I = M/S

The derivation of this equation comes from examination of 

particles in a beam subjected to bending.
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7.5

Bending stress

Consider a beam subjected to bending, as shown in 

Figure 7.5. The beam wants to deform under the load. The 

area above the neutral axis is in compression and the area 

below the neutral axis is in tension. 

 c = distance from neutral axis to outer most point of 

cross-section

The greatest stress will occur at the greatest distance from 

the neutral axis, c. The stress due to bending at any point is 

f = fc(y/c).

7.6

Internal couples

Every particle in the cross-section is at some distance y 

from the neutral axis and has some area, dA. The force in 

tension or compression acting on each particle is F = dA(f). 

The moment caused by the force acting on any particle at a 

distance y from the neutral axis is:

Mi = Fy = ydA(f)(y/c) = y2dA(f)/c

The bending stress, fb, on any particle is fb = Mic/y2dA and 

the total bending stress is the sum of the bending stress on 

all particles:

fb = ΣMic/y2dA = Mc/Σy2dA 

Since moment of inertia = Σy2dA, the value I can be 

substituted into the equation, giving the bending stress 

formula:

fb = Mc/I

Section modulus is defined as I/c, further simplifying the 

equation to:

fb = M/S

Note: Be careful to reconcile the units in the bending stress 

equations. If the moment found is in units of #-f or k-f, it must 

be multiplied by a factor of 12 inches per foot to obtain a 

stress in pounds per square foot (psf) or kips per square foot 

(ksi), respectively. For example, if M = 48k-f and S = 16in3, 

fb = 48k-f(12″/f)/16in3 = 36ksi.

Example 7-5: Find the maximum bending stress in a simply 

supported beam carrying a uniform load of 2k/f over a 

span of 14′ given the cross-section shown in Figure 7.7.

7.7

Example 7-5

Mmax = wL2/8 = 2k/f(14′)2(12″/f)/8 = 588k-in

Ix = 7(103)/12 − 6(93)/12 = 218.83in4
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c = 10″/2 = 5″

fb = Mc/I = 588k-in(5″)/218.83in4 = 13.44ksi

What is the bending stress at a distance of 4′ from a support?

 @x = 4′, M = wx2/2 = 2k/f(4′)2(12″/f)/2 = 192k-in

fb = Mc/I = 192k-in(5″)/218.83in4 = 4.39ksi

For rolled steel, standard size tables usually include the value 

of the section modulus, S.

Example 7-6: Find the maximum bending stress for the 

beam in Example 7-5 if the cross-section is a W16 × 31 

with Sx = 47.20in3.

fb = Mc/I = M/S = 588k-in/47.20in3 = 12.46ksi

7.3 Shear Stress

7.3.1 Shear in Beams with Geometric 
Cross-sections

Unlike shear stress caused by an axial load in which fv = P/A 

as described in Chapter 6, a beam with bending causes both 

transverse and longitudinal shear forces within the beam. 

This occurs because the transverse shear action creates a 

moment within particles that must be resisted by an equal 

and opposite moment.

7.8

Shear stress in beams with geometric cross-sections

The equation for shear in beams is:

The shear stress in each particle is:

fvi = Vt/dy(b) 

For the entire cross-section:

fv = V/Σyb 

This can be multiplied by 1 = ΣdAy/ΣdAy to yield:

fv = VΣdAy/Σy2dAb 

Recognizing I = Σy2dA, the equation can be reduced to:

fv = VΣdAy/Ib 

Let Q = ΣdAy = ΣAidy when considering individual 

geometrical entities in the cross-section, this will yield the 

standard shear stress formula:

fv = VQ/Ib where

 V = shear from the shear diagram

Q = ΣAidy

 Ai = area above or below the shear plane

 dy = distance from the neutral axis to the center of 

gravity of the area A

 I = moment of inertia

 b = the width of the cross-section at the shear plane.

Example 7-7: Find the shear stress at the neutral axis for 

a 4″ × 6″, 12′ beam with a uniform load of 500#/f.

V = wL/2 = 500#/f(12′)/2 = 3000#

Ix = 4(63)/12 = 72in4

b = 4″

Yave = 3″ = the location of the neutral axis X–X

Av = 4″(3′) = 12in2

yA = 3 + 1.5 = 4.5″ = location of center of gravity of Av

dy = yA − Y = 4.5 − 3 = 1.5″

Q = ΣAvdy = 12in2(1.5″) = 18in3

fv = VQ/Ib = 3000#(18in3)/[72in4(4″)] = 187.5psi



S H E A R  A N D  F L E X U R E  I N  B E A M S 57

Note that for a rectangular cross-section b × h, 

I = bh3/12

Ai = bh/2

dy = 3h/4 − h/2 = h/4

Q = (bh/2)(h/4) = bh2/8

fv = V(bh2/8)/[(bh3/12)(b)] = 3V/2bh = 3V/2A

Example 7-8: The T-shape in Figure 7.10 spans 16′ and 

carries a uniform load of 2k/f over its entire span. 

Find the maximum shear stress at the neutral axis.

7.10

Shear stress in a T-shape

V = wL/2 = 2k/f(16′)/2 = 16k

Comp. Ai Yi AiYi Ixi dy Ady2

Flange 4(2) = 8 4 + 2/2 
= 5

40 4(23)/12 
= 2.67

5 − 3.5 
= 1.5

18

Web 2(4) = 8 4/2 = 2 16 2(43)/12 
= 10.67

2 − 3.5 
= −1.5

18

Σ = 16 Σ = 56 Σ = 13.33 Σ = 36

Yave = 56/16 = 3.5″

Ix = 13.33 + 36 = 49.33in4

Q = ΣAdy = 8(1.5) + 2(.5)(.25) = 12.25in3

fv = VQ/Ib = 16k(12.25in3)/[49.33in4(2″)] = 1.99psi

7.9

Shear stress at neutral axis
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Find the maximum shear stress at the bottom of the flange.

 Av = 8in2 (from the table on page 57: Flange Ai)

 yA = 5″ = (from the table on page 57: Flange Yi)

 dy = 5 − 3.5 = 1.5″ (from the table on page 57: Flange dy)

Q = ΣAidy = 8in2(1.5″) = 12.0in3

fv = VQ/Ib = 16k(12in3)/[49.33in4(2″)] = 1.95psi

Note: Always check the shear stress at points where the 

width, b, changes, especially when b decreases in a direction 

away from the neutral axis.

Example 7-9: Find the shear stress for the cross-section 

in Figure 7.11 if V = 100k.

7.11

Finding shear stress in composite shapes

Comp. Ai Yi AiYi Ixi dy Ady2

Top 5 5.5 27.5 10.42 2.67 35.64

Flange 7 2.5 17.5 0.58 0.33 0.76

Base 6 1 6 2.0 1.83 20.09

Σ = 18 Σ = 51 Σ = 13.0 Σ = 56.49

Yave = 51/18 = 2.83″

Ix = 13.0 + 56.49 = 69.49in4

Av = 5 + .17(7) = 6.19in2

yA = [5in2(3 + 5/2) + .17(7)(2.83 + .17/2)/6.19 = 5.00 

= location of center of gravity of Av from bottom

dy = yA − Yave = 5.00 − 2.83 = 2.17″

Q = ΣAvdy = 6.19in2(2.17″) = 13.43in3

fv = VQ/Ib = 100k(13.43in3)/[49.33in4(7″)] = 3.89ksi

Find the maximum shear stress at the top of the flange.

Av = 5in2

dy = 3 + 2.5 − 2.83 = 2.67″

Q = Avdy = 5in2(2.67″) = 13.35in3

fv = VQ/Ib = 100k(12in3)/[49.33in4(2″)] = 24.33ksi

7.3.2 Shear in Rolled Steel

 The AISC (American Institute of Steel Construction) 

recommends using a value for actual shear stress of 

fv = V/twd. By using this value, the flange components 

and fillets connecting flanges to webs are ignored, 

making the calculation much simpler.

Example 7-10: Find the shear stress in a W8 × 40, 8′ long 

carrying a concentrated load at center of 50k if the web 

thickness, tw = 0.36″ and the depth, d = 8.25″.

V = wL/2 + P/2 = 40#/f(1k/1000#)(8′)/2 + 50k/2 

= 25.16k

fv = V/twd = 25.16k/[0.36″(8.25″)] = 8.47ksi

Practice Exercises:

7-1 through 7-6: Find Ix and Iy for the cross-sections shown:

7-7 through 7-10: Find the maximum bending stress in the 

beams and cross-sections shown.

7-11 through 7-14: Find the maximum shear stress in the 

beams and cross-sections shown.
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7.12

Chapter 7 Practice exercises



eight

Def lect ion in  B eams

What is the deflection at a point 8′ from the support?

Δx = wx(L3 − 2Lx2 + x3)(1728)/24EI 

= 5k/f(8′)[12′3 − 2(12′)(8′2) + 8′3](1728in3/ft3)/

[24(29000ksi)(300in4)] = 0.23″

Example 8-2: Not all loads are symmetrical. 

Consider the beam in Figure 8.2(a) with a concentrated load 

of 10k placed at 3′ from the left support of a 12′ span. What is 

the maximum deflection if E = 15,000ksi and I = 600in4? The 

placement of the concentrated load is such that the equation in 

A1.2, load type 3 cannot be used because a < b (3 < 9) and the 

equation is valid when a > b. If this situation occurs, consider 

the beam from the other side as shown in Figure 8.2(b).

8.2

Example 8-2

8.1 Def lection Charts

Most architects find the deflection in beams through the 

use of deflection charts. Deflection charts can be found in 

such publications as the AISC Steel Manual, or readily in 

online sources. A sample of shear, moment and deflections 

for some typical beam loading scenarios can be found in 

Appendix A1.2.

Note: All deflection charts assume that the length of the beam is 

in inches. If the length of the beam is not converted to inches, if it 

is used in units of feet, the deflection equation must be multiplied 

by 1728in3/ft3 in order to find a deflection in inches.

Example 8-1: Find the maximum deflection in a 12¢ beam 

with a 5k/f load given E = 29,000ksi and I = 300in4.

From A1.2 , load type 1: 

8.1

Example 8-1

Δmax = 5wL4/384EI @ x = L/2

w = 5k/f, L = 12′, E = 29000ksi, I = 300in4

Δmax = 5(5k/f)(12′)4(1728in3/ft3)/[384(29,000ksi)

(300in4)] = 0.27″
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 P = 10k, L = 12′, a = 9′, b = 3′, E = 15,000ksi, 

I = 600in4

Δmax = Pab(a + 2b)√(3a(a + 2b))/27EIL 

= 10(9)(3)(9 + 2(3))√[3(9)(9 + 2(3))](1728)/[27(15,000)

(600)] = 0.58″

Example 8-3: Combining loads. 

Many times a beam will have a combination of load scenarios. 

For example, a beam may have a uniform load from a floor 

loading and from its own weight plus a concentrated load 

from the reaction of a beam it supports. Find the maximum 

deflection of the beam in Figure 8.3 if E = 1,500,000psi and 

the cross-section is 8″ wide by 12″ deep.

8.3

Example 8-3

I = bh3/12 = 8(12)3/12 = 1152in4

Using load scenarios 1 and 3: 

 w = 160#/f, L = 16′, E = 1,500,000psi, I = 1152in4, 

P = 960#

Δmax = 5wL4/384EI + PL3/48EI

= 5(160)(164)(1728)/[384(1,500,000)(1152)] + 960(163)

(1728)/[48(1,500,000)(1152)]

= 0.22″

Note: Deflection charts list the absolute value of deflection 

without regard to the direction. Care must be taken to note in 

what direction a load will cause a deflection, especially when 

adding deflections from different loading scenarios.

Example 8-4: Find the deflection at the end of the overhang 

for the beam in Figure 8.4 if E = 29,000ksi and I = 199in4.

8.4

Example 8-4

 W = 3k/f, L = 12′, x1 = a = 4′, P = 16k, E = 29,000ksi, 

I = 199in4

Δ = −(wL3x1)/24EI + Pa2(L + a)/3EI 

Notice that the deflection at the end of the overhang caused 

by the uniform load will be upwards. Because of this, the 

equation is entered as a negative value when adding it to the 

equation for the point load at the end of the overhang, which 

will be downward.

Δ = −(3(123)(4)(1728)/[24(29000)(199)] + 16(42)(12 + 4)

(1728)/[3(29000)(199)] = −0.259″ + 0.409″ = 0.15″↓

8.2 Double Integration 
Method

Δ = ∫∫Mdx/EI

Deflection is the second integral of the moment equation. 

The first integral of the moment equation, ∫Mdx is the slope 

of the deflected beam. The Double Integration Method may 

not seem as easy to use as deflection charts, but it is useful 

when the location of the maximum deflection is unknown and 

when there are many combined loading scenarios.

Example 8-5: Find the maximum deflection of a simple 

beam with a length, L, and a uniform load, w.

1. Begin by writing the moment equation:

M = wLx/2 − wx2/2

2. Take the first integral of the moment equation. 

Remember to add the constant to the equation.

dEIΔ = slope = ∫Mdx = wLx2/4 − wx3/6 + C1
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 In many cases, it is not know where the slope will equal 

zero; but with a symmetrical load on a simple beam, it is 

known that the maximum deflection will be at the center 

of the beam and that is the point at which the slope will 

equal zero.

Slope = 0 at x = L/2

0 = wL(L/2)2/4 − w(L/2)3/6 + C1 

= wL3/16 − wL3/48 + C1 = 0

C1 = −wL3/24

 But, for this example, assume that the location of the 

maximum deflection is unknown.

dEIΔ = ∫Mdx = wLx2/4 − wx3/6 + C1

3. Take the second integral of the moment equation:

EIΔ = ∫∫Mdx = wLx3/12 − wx4/24 + C1x + C2

 EIΔ = 0 at the supports, @ x = 0, L

0 = wL(0)/12 − w(0)/24 + C1(0) + C2 … C2 = 0

0 = wL(L3)/12 − w(L4)/24 + C1(L) = wL4/24 + C1L … 

C1 = −wL3/24

Inserting the value of C1 into the ∫Mdx equation and setting 

the equation equal to zero will reveal where the slope equals 

zero and therefore points of maximum deflection.

dEIΔ = ∫Mdx = wLx2/4 − wx3/6 − wL3/24 = 0 

6Lx2 − 4x3 − L3 = 0 … x = L/2

EIΔ = ∫∫Mdx = wLx3/12 − wx4/24 − wxL3/24 @ x = L/2

EIΔ = ∫∫Mdx = wL4/96 − wL4/384 − wL4/48 

= wL4(4 − 1 − 8)/384 = −5wL4/384

Δmax = −5wL4/384EI

Notice that the Double Integration Method gives the direction 

of the defection. A negative value indicates that the deflection 

is downward. Δmax = 5wL4/384EI is the value given in the 

deflections charts.

Example 8-6: Find the maximum deflection in the beam 

shown in Figure 8.5, if E = 29,000ksi and I = 199in4. 

8.5

Example 8-6

Find reactions:

ΣMA = 0 = 8k(10′) − By(12′) + 1k(16′) … By = 8k↑

Σfy = 0 = Ay − 8k + 8k − 1k … Ay = 1k↑

Write the moment equation: 

M = 1x − 8<x − 10> + 8<x − 12> 

Find the first and second integral of the moment equation:

dEIΔ = x2/2 − 8<x − 10>2/2 + 8<x − 12>2/2 + C1

EIΔ = x3/6 − 8<x − 10>3/6 + 8<x − 12>3/6 + C1x + C2

Solve for C2 and C1:

 Δ = 0 @ x = 0 and @ x = 12

 @x = 0, EIΔ = 0 − 0 + 0 + 0 + C2 … C2 = 0

 @ x = 12, EIΔ = (12)3/6 − 8(2)3/6 + 0 + 12C1 = 0

C1 = [10.666 − 288]/12 = −23.11

Set dEIΔ = 0 to find point of maximum deflection:

EIΔ = x3/6 − 8<x − 10>3/6 + 8<x − 12>3/6 − 23.11x 

dEIΔ = x2/2 − 8<x − 10>2/2 + 8<x − 12>2/2 − 23.11 

= 0 where deflection changes direction

If Δmax occurs between x = 0 and x = 10′:

0 = x2/2 − 23.11 … x = 6.80′

If Δmax occurs between x = 10′ and x = 12′:

 0 = x2/2 − 8(x − 10)2/2 − 23.11 = x2 − 22.86x + 120.89 

… x = 11.43 − 3.12 = 14.55′ or 8.21′; neither of which 

falls in the range between x = 10′ and x = 12′ and 

therefore are not valid.
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 If Δmax occurs at some point where x > 12′: 0 = x2/2 

− 8<x − 10>2/2 + 8<x − 12>2/2 − 23.11 X = 16 + 

7.06i which is an unreal answer meaning that the 

slope never equals zero in this range, but proceeds to 

increase.

Find deflection:

 @ x = 6.8′, Δ = [(6.8)3/6 − 8(0)3/6 + 8(0)3/6 − 23.11(6.8)]

(1728)/[29000(199)] = −0.03″ = 0.03″↓

 @x = 16, Δ = [(16)3/6 − 8(6)3/6 + 8(4)3/6 − 23.11(16)]

(1728)/[29000(199)] = 0.03″ = 0.03″↑

8.3 Moment Area Method 

The Moment Area Method is a useful tool to find the 

deflection in beams with concentrated loads, especially if 

the moment diagram has already been drawn. Just as the 

accumulated area under the shear curve equals the moment, 

the accumulated area under the moment curve equals the 

slope of the deflected beam. Using theorems developed by 

Mohr, the deflection at a given point can be found by creating 

a second moment diagram with a virtual load at the point of 

interest and then summing the product of the moment from 

the second diagrams at the center of gravity of areas from the 

first diagram multiplied by those areas.

Example 8-7: Find the deflection at the mid-span for the 

beam shown in Figure 8.6 if E = 29,000 and I = 53.8in4.

 1. Find reactions: 

ΣMA = 0 = 15k(4′) + 15k(8′) − By(12′) + 15k(16′) … 

By = 35k

Σfy = 0 = Ay − 15k − 15k + 35k − 15k … Ay = 10k

 2. Draw the shear and moment diagrams.

 3. Redraw the beam with only a virtual load of 1 at the 

mid-span.

 4. Find Virtual reactions: Ay = By = 0.5

 5. Draw virtual shear and moment diagrams.

 6. Divide the real moment diagram vertically where the 

virtual load is placed and at any point where the virtual 

moment changes direction. In this case it will be at x = 

6′ and x = 12′. Divide the real moment areas into simple 

geometric shapes and number them as components.

 7. Calculate the area of each geometric shape (Ai) and locate 

the center of gravity (x).

 8. Calculate the virtual moment (Mi) at the centers of gravity 

(x). In this case: M = .5x − 1<x − 6> + .5<x − 12>. 

Therefore:

x < 6′, Mi = 0.5x 

6′ < xi < 12′, Mi = 6 − 0.5x

12′ < xi, Mi = 0

8.6

Finding deflection using Moment Area Method
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 9. Multiply each value for Ai by the corresponding value for 

Mi. Remember to consider the positive or negative nature 

of each value of Ai.

Comp. Ai x Mi AiMi

1 4’(40k-f)/2 
= 80

4’(2/3) 
= 2.67’

0.5(2.67) = 1.33 106.67

2 2’(10k-f)/2 
= 10

4 + 2/3 
= 4.67’

0.5(4.67) = 2.33 23.33

3 2’(30k-f) 
= 60

4 + 2/2 
= 5.00’

0.5(5.00) = 2.50 150.00

4 2’(10k-f)/2 
= 10

6 + 2/3 
= 6.67’

6 − .5(6.67) = 2.67 26.67

5 2’(20k-f) 
= 40

4 + 2 + 2/2 
= 7.00’

6 − .5(7) = 2.50 100.00

6 1’(20k-f)/2 
= 10

4 + 4 + 1/3 
= 8.33’

6 − .5(8.33) = 1.83 18.33

7 3’(−60k-f)/2 
= −90

4 + 4 + 1 + 3(2/3) 
= 11’

6 − .5(11) = 0.50 −45.00

8 4’(−60k-f)/2 
= −120

4 + 4 + 4 + 4/3 
= 13.33’

0 0

TOTAL: 380.00

10. Δ = ΣAiMi/EI = 380(1728)/29000(53.8) = 0.42″

8.4 Method of Virtual Work

The Method of Virtual Work is a useful tool in finding 

deflections in trusses. As in the Moment Area Method for 

beams, calculate the forces in the bars of the real truss. Next, 

apply a virtual load at the point of interest and recalculate the 

bar forces considering only the virtual load.

Example 8-8: Find the deflection of joint C in the truss 

shown in Figure 8.7 if all members are 1² diameter steel 

rods with E = 29,000.

8.7

Finding deflection using Method of Virtual Work

1. Find reactions: 

ΣMA = 0 = 12k(8′) + 20k(24′) − By(32′) … By = 18k

Σfy = 0 = Ay − 12k − 20k + 18k … Ay = 14k

2. Solve for bar forces using Method of Joints:

8.8

Find actual forces in truss bars

3. Redraw truss with a virtual load at point C. Solve for 

reactions and bar forces in the virtual truss.

8.9

Find virtual forces in truss bars

4. Enter the real and virtual bar forces into the chart 

assigning compression a negative value and tension a 

positive value. AE values of the bars. In this case, the bar 

area A = π(1)2/4 = 0.785in2 and E = 29,000ksi for every 

bar. Therefore, AE = 0.785in2(29,000ksi) = 22,765k.

Bar Real Force 
(P1) in kips

Virtual Force 
(P2)

Length
(L)

AE P1P2L/AE

AB −23.34 −.83 10’(12) = 120” 22,765k 0.102

AC 18.67 .67 16’(12) = 192” 22,765k 0.106

BC 3.34 .83 10’(12) = 120” 22,765k 0.015

BD −21.33 −1.33 16’(12) = 192” 22,765k 0.239

CD −3.34 .83 10’(12) = 120” 22,765k −0.015

CE 24.00 .67 16’(12) = 192” 22,765k 0.136

DE −30.00 −.83 10’(12) = 120” 22,765k 0.131

Δ = ΣP1P2L/AE = 0.714”

Since the answer is positive, the deflection is in the direction 

of the virtual force, which in this case is downward.

Δ = ΣP1P2L/AE = 0.714″↓
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Practice Exercises:

8-1: Use deflection charts to find the maximum deflection for 

the W10 × 45 beam shown if E = 29,000ksi and I = 248.

8-2: Use deflection charts to find the deflection at the end of 

the overhang for the 7.25″ wide by 15″ deep beam with 

E = 1,200,000psi

8-3: Use deflection charts to find the deflection at the mid-

span between supports for the W14 × 22 beam with 

E = 29,000ksi and I = 199.

8-4: Use the Double Integration Method to find the deflection 

at the mid-span between supports for the W8 × 10 beam 

with E = 29,000ksi and I = 30.8. Check your answer using 

deflection charts.

8-5: Use the Double Integration Method to find the deflection 

at the mid-span between supports for the 5.5″ × 11.25″ beam 

with E = 1,100,000psi. Check your answer using deflection 

charts.

8-6: Use the Moment Area Method to find the deflection at 

X = 4′ for the Titanium beam with E = 15,000ksi and 

I = 132.4in4.

8-7: Use the Method of Virtual Work to find the deflection at 

Joint E for the truss shown. The cross-sectional area of each 

bar is 4in2.

8.10

Chapter 8 Practice exercises
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nine

Design of  B eams

9.1.2 Allowable Def lections

Allowable deflections are governed by local building codes. 

Because beams fail due to stress and not deflection, 

deflection limitations are defined by serviceability. Typical 

allowable deflections are defined in terms of the beam length 

L in inches. For example, if a beam is 25′ long, the allowable 

deflection, Δall = L/240 = 25′(12″/f)/240 = 1.25″. 
For Δall = L/360 = 25′(12″/f)/360 = 0.83″.

9.2 Design of Beams 
for Flexure, Shear and 
Def lection

The three basic criteria for the design of beams are:

 fb = actual bending stress ≤ Fb = allowable bending 

stress

 fv = actual shear stress ≤ Fv = allowable shear stress

 Δ = actual deflection ≤ Δall = allowable deflection

Setting the equations for bending stress, shear stress and 

deflection equal to the allowable stress and deflections will 

yield the section properties required for the beam design.

This chapter will discuss the fundamental criteria for the design 

of beams. It does not cover the specifics of design or finding 

allowable stresses in wood, steel or concrete. For these topics, 

the reader should refer to Chapters 16 through 30.

9.1 Overview of Design 
Limitations

9.1.1 Allowable Stresses

Allowable stresses are based on the material of the 

component and specified by organizations specific to the 

material. Allowable stresses for steel can readily be found 

in the AISC steel manual. Allowable stresses for wood can 

be found in the American Wood Council National Design 

Specifications. For alternate materials, online sites such as 

Matweb.com list material properties for various metals and 

alloys, ceramics, polymers and carbon fibers. Manufacturers 

are always a good resource as material variations between 

manufacturers can be great.

Table A1.3 in the Appendix includes a sample guide of 

material properties for use in solving practice exercises in this 

text. In actual design situations, refer to the governing codes 

for the referred allowable stresses.
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fb = M/S ≤ Fb … S ≥ M/Fb

fv = VQ/Ib ≤ Fv for geometric shapes … I ≥ VQ/Fvb

fv = 3V/2A ≤ Fv for rectangular sections … A ≥ 3V/2Fv

fv = V/twd ≤ Fv for rolled steel shapes … twd ≥ V/Fv

Δ = [some equation]/I ≤ Δall … I ≥ [some equation]/Δall

Example 9-1: Design a 2² X_ joist spanning 14¢ with a 

load of 160#/f. 

E = 1,100,000psi, Fb = 1400psi, Fv = 170psi and Δall = L/240. 

Do not consider beam weight.

Bending:

Mmax = wL2/8 = 160#/f(14)2(12″/f)/8 = 47,040#-in

fb = M/S ≤ Fb … S ≥ M/Fb = 47,040#-in/1400psi 

= 33.6in3

 For a rectangle, S = bh2/6 = 2h2/6 ≥ 33.6 … 

h ≥ √(33.6(6)/2)) = 10.04″

Shear:

Reactions = Vmax = wL/2 = 160#/f(14′)/2 = 1120#

fv = 3V/2A ≤ Fv for rectangular sections … 

A ≥ 3V/2Fv = 3(1120#)/[2(170psi)] = 9.88in2

 For a rectangle, A = bh = 2h ≥ 9.88in2 … 

h ≥ 9.88/2 = 4.94″

Deflection:

Δmax = 5wL4/384EI = 5(160#/f)(14′)4(1728in3/f3)/

[384(1,100,000psi(I)] = 125.73/I

Δall = L/240 = 14′(12″/f)/240 = 0.7″

Δ = [some equation]/ I ≤ Δall … 

I ≥ [some equation]/Δall = 125.73/0.7″ = 179.61

 For a rectangle, I = bh3/12 = 2h3/12 ≥ 179.61 … 

h ≥ 3√[179.61(12)/2] = 10.25″

Deflection governs with the highest value of h required: 

h = 10.25″ 

USE a rectangular section 2″ × 10.25″

Example 9-2: Design a steel W14 section, 40¢ long 

carrying concentrated loads of 10k every 8¢. 

Do not consider beam weight. E = 29,000ksi, Fb = 30ksi, 

Fv = 20ksi and Δall = L/240.

Bending:

From the multiple point load Table A1.1, for 4 point 

loads evenly spaced:

Mmax = 3PL/5 = 3(10k)(40′)(12″/f)/5 = 2880k-in

fb = M/S ≤ Fb … S ≥ M/Fb = 2880k-in/30ksi = 96in3

Shear:

Vmax = 2P = 2(10k) = 20k

fv = V/twd ≤ Fv for rolled steel shapes … 

twd ≥ V/Fv = 20k/20ksi = 1in2

Deflection:

Δmax = .063PL3/EI = .063(10k)(40′)3(1728in3/f3)/

[29,000ksi(I)] = 2402.52/I

Δall = L/240 = 40′(12″/f)/240 = 2.0″

Δ = [some equation]/ I ≤ Δall … I ≥ [some equation]/Δall 

= 2402.52/2″ = 1201.26

Beam selection: Go to the W14 section properties in 

Appendix A3.1 to select a size where I ≥ 1201.26in4, S ≥ 96in3 

and twd ≥ 1in2. Note that a W14 × 68 would work for bending 

because Sx = 103 > 96; but it fails for deflection because Ix 

= 722 < 1201.24. Therefore, A larger size must be used to 

satisfy the deflection criteria.

 USE W14 × 109: 

I = 1240 > 1201.26in4, S = 173 > 96in3, and 

twd = 0.525(14.3) = 7.5 > 1in2.

Example 9-3: Check whether the cross-section design in 

Figure 9.1 is adequate for the beam and loading shown if 

Fb = 1800psi, Fv = 175psi, E = 1,100,000psi and Δall = L/240.
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9.1

Trapezoidal cross-section

Determine cross-section properties:

Comp A y Ay Ix dy Ady2

Left 36 12 432 648 1.5 81

Mid 72 9 648 1944 1.5 162

Right 36 12 432 648 1.5 81

144 1512 3240 324

N.A. = Yave = 1512/144 = 10.5″

Ix = 3240 + 324 = 3564in4

c = 10.5″

Sx = Ix/c = 3564/10.5″ = 339.43in3

b at N.A. = 4 + 2(4)(10.5/18) = 8.67″

Find Q:

Comp Area above neutral axis dy Ady

Left 7.5”[(12” − 8.67”)/2]/2 = 6.25 7.5(2/3) = 5 31.25

Mid 7.5”(8.67”) = 65 7.5/2 = 3.75 243.75

Right 7.5[(12” − 8.67”)/2]/2 = 6.25 7.5(2/3) = 5 31.25

Q = 306.25

Bending:

M = PL/2 = 2000#(40′)(12″/f)/2 = 480,000#-in

fb = M/S = 480,000/339.43 = 1414.14psi < 1800psi … 

okay for bending

Shear:

V = 3P/2 = 3(2000#)/2 = 3000#

fv = VQ/Ib = 3000#(306.25in3)/(3564in4)(8.67″) 

= 29.74 < 170psi … okay for shear

Deflection:

Δall = L/240 = 40′(12″/f)/240 = 2″

Δmax = .0495PL3/EI = .0495(2000#)(40′)3(1728in3/f3)/

[1,100,000psi(3564in4) = 2.79″ > 2″ … NO GOOD for 

deflection.

At this point, the designer must make a decision about how 

to modify the cross-section to satisfy the deflection criteria. 

Enlarging the cross-section proportionally will increase Ix, 

Sx and Q. Since the new Ix > 3564(2.79/2) = 4971.78 it is an 

increase by a factor of 2.79/2 = 1.4.

Since Ix involves b and h3, increasing both dimensions 

by 1.40.25 = 1.09 should satisfy the criteria. By changing the 

top width to 13″, the bottom width to 4.5″ and the height to 

19.75″; the values change to:

Y = 11.47, Ix = 5175.56, Sx = 451.08, b = 8.65, 

Q = 395.53

fb = 1064.12 < 1800psi … okay for bending

fv = 26.51 < 170psi … okay for shear

Δmax = 1.92″ < 2″ … okay for deflection.

Practice Exercises:

9-1: Design the lightest W12 for the beam shown if 

E = 29,000ksi, Fb = 30ksi, Fv = 20ksi and Δall = L/240.
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9-2: Design a 4″ wide × h″ deep beam with a rectangular 

cross-section for the beam shown if E = 1,200,000psi, 

Fb = 1800psi, Fv = 180psi and Δall = L/240.

9-3: Find the most economical W14 for the beam shown if 

E = 29,000ksi, Fb = 21.6ksi, Fv = 14.4ksi and Δall = L/360.

9-4: Design the most economical (lightest weight) HSS 

rectangular shape for the beam shown if E = 29,000ksi, 

Fb = 21.6ksi, Fv = 14.4ksi and Δall = L/240.

9-5: Find the maximum load, P, the cross-section shown can 

carry for the beam and loading shown if E = 900,000psi, 

Fb = 1600psi, Fv = 190psi and Δall = L/240.

9.2

Chapter 9 Practice exercises
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Design of  Columns

where L and r are both in inches and r = √(I/A) = radius of 

gyration. The higher the value of (L/r), the more susceptible 

a column is to buckling. Both directions must be considered. 

Unless a column is symmetrical along both axes, both Lx/rx 

and Ly/ry must be considered and the higher value used. For 

steel components, the values for rx and ry can be found in 

the AISC Steel Construction Manual. For geometric shapes, 

r can be determined by finding Ix and Iy. For example, for a 

rectangular column b″ × h″: Ix = bh3/12 and Iy = hb3/y. rx = 

√Ix/A = √bh3/12bh = h/√12 and ry = √Iy/A = √hb3/12bh = b/√12. 

Example 10-1: Find the critical buckling stress for a 

W14 × 90 pinned column with a length of 18′. 

E = 29,000ksi, rx = 6.14″, ry = 3.70″, A = 26.5in2.

fcrit = π2E/(L/r)2 = π2(29,000ksi)/((18′)(12″/f)/3.70″)2 

= 83.98 ksi

What is the critical buckling load = Pcrit? f = P/A … 

Pcrit = fcritA = 83.98ksi(26.5in2) = 2,225.47k

It is important to note that the critical buckling stress is 

not the allowable compressive stress, but only one factor 

in determining the allowable compressive stress. For 

short columns, crushing will govern the value of allowable 

compressive stress and for long columns, buckling will 

govern. Every type of material has its own rules governing 

the determination of the allowable compressive stress for 

these rules include the use of an Effective Length Factor, k. 

The Effective Length Factor, k, is determined by evaluating 

lateral deflection over the length of the column. 

Columns are designed to prevent failure in two modes: 

crushing and buckling. 

Crushing occurs when the load distributed on the cross-

section is higher than the compressive stress that can be 

resisted by the column material.

fc = P/A

Buckling is compressive failure due to the lateral deflection in 

a column caused by compression in slender members. The 

lateral deflection curve will vary depending on the type of 

support at each end of the column. 

10.1 Axial Loads on 
Columns 

Axial loads are theoretically at the center of gravity of a cross-

section in the direction of the axis of the column. Theoretically, 

an axial load should produce no bending stress on a column. 

But, in reality, either the load is not perfectly placed at the 

center of gravity or even if it is, the material imperfections of 

the column will cause an imbalance in stresses. Euler noticed 

that slender compression members tend to buckle while 

compact members tend to crush under compression loads. 

10.1.1 Critical Buckling Stress

Euler developed an equation for critical buckling stress:

fcrit = π2E/(L/r)2



D E S I G N  O F  C O L U M N S 71

The effective length of a column = kL, where the value of k 

is the recommended design value when ideal conditions are 

approximated in the chart above, NOT the theoretical value. 

 The slenderness ratio = kL/r

In steel columns the slenderness ratio is limited to kL/r ≤ 200. 

To find the allowable compressive stress in steel based on 

the AISC guidelines and the LRFD Method, see Chapter 22.

Example 10-2: Find the slenderness ratio of a W14 × 90 

column, 20′ long.

a) pinned connections at both ends 

b) pinned at one end and fixed at the other

c) fixed connections at both ends

 if rx = 6.14 and ry = 3.7:

a) k = 1.0, 

kL/rx = 1.0(20′)(12″/f)/6.14″ = 39.09

kL/ry = 1.0(20′)(12″/f)/3.7″ = 75.71

Use the larger value: 75.71

b) k = 0.8

kL/rx = .8(20′)(12″/f)/6.14″ = 31.27

kL/ry = .8(20′)(12″/f)/3.7″ = 51.89

Use the larger value: 51.89

c) k = 0.65

kL/rx = .65(20′)(12″/f)/6.14″ = 25.41

kL/ry = .65(20′)(12″/f)/3.7″ = 42.16

Use the larger value: 42.16

It is easy to see that the larger slenderness value is in the 

weak direction when the unbraced length is equal in both 

directions. But, if the unbraced length is different in each 

direction, be sure to check both.

Example 10-3: Find the slenderness ratio of a W14 × 90 

column, 20′ long and braced at the mid-point in the 

weak direction.

a) pinned connections at both ends 

b) pinned at one end and fixed at the other

c) fixed connections at both ends

 if rx = 6.14″ and ry = 3.7″:
a) k = 1.0, 

 Lx = 20′, Ly = 10′

kL/rx = 1.0(20′)(12″/f)/6.14″ = 39.09 

kL/ry = 1.0(10′)(12″/f)/3.7″ = 32.43

Use the larger value: 39.09

10.1

Effective Length Factor, k, based on Table C.1.8.1, AISC Steel Construction Manual, 8th edition



S T A T I C S  A N D  S T R E N G T H  O F  M A T E R I A L S72

b) k = 0.8

kL/rx = .8(20′)(12″/f)/6.14″ = 31.27 

kL/ry = .8(10′)(12″/f)/3.7″ = 25.95

Use the larger value: 31.27

c) k = 0.65

kL/rx = .65(20′)(12″/f)/6.14″ = 25.41 

kL/ry = .65(10′)(12″/f)/3.7″ = 21.08

Use the larger value: 25.41

What is the maximum allowable length of the W14 × 90 

column if pinned connections are used?

kL/ry = 1.0(L)(12″/f)/3.07 ≤ 200 … L ≤ 51.17′

If the allowable compressive stress, Fcr, at kL/r = 200 is 

3.73ksi, what load can the 51.17′ column carry? 

A = 26.5in2 

P = FcrA = 3.73ksi(26.5in2) = 98.8k

In wood columns the slenderness is kL/the smallest side 

= Le/d ≤ 50. For the LRFD method to find the allowable 

compressive stress in wood based on the AWC National 

Design Specifications, see Chapters 16 through 18.

Example 10-4: Find the maximum allowable unbraced 

length for a 4 × 6 column with actual size dimensions 

3.5″ × 5.5″ if the connections are pinned at both ends.

Le = kL = 1.0L = L

L/3.5″ ≤ 50 … L ≤ 50(3.5″) = 175″ = 14.58′

If the allowable compressive stress F′c = 400psi, what load 

can the column carry?

P = F′cA = 400psi(3.5″)(5.5″) = 7700#

It may be noted that the slenderness limitations for steel and 

wood are very similar.

 For wood: Le/d ≤ 50. Where Le = kL … kL/d ≤ 50

 For steel: kL/r ≤ 200. For rectangular cross-sections, r 

= d/√12 … kL√12/d ≤ 200 or kL/d ≤ 57.74

In concrete columns, slenderness is much more limited 

because unlike steel and wood, the tensile strength of 

concrete is only about 10 % of the compressive strength. 

Therefore, concrete columns are categorized and designed as 

short columns if:

kL/r < 22 for pinned connections or 

kL/r < 34 − 12(M1/M2) for fixed connections where 

M1 = smaller end moment and M2 = larger end moment.

Again, r = d/√12 for a rectangular section, and a comparable 

look at the slenderness limitations of concrete to those of 

wood and steel would be: kL/d ≤ 6.35 for pinned concrete 

columns. For design of short concrete columns using the 

LRFD Method and the ACI code, see Chapter 30. 

Example 10-5: Is a 20′, 36″ square concrete column with 

pinned connections a short column?

kL/r = 1.0(20′)(12″/f)/(36/√12) = 23.09 > 22. 

No, it is not short.

What unbraced length would make this size column short?

L < 22(36/√12)/(12″/f) = 19.05′

What width would make the 20′ column short?

kL/r < 22 … r = d/√12 > 1(20′)(12″/′)/22 = 10.909 and 

d > 37.79″ round up to 38″.

10.2 Column Design 

1. Select a trial size and determine the slenderness ratio in 

each direction. (Alternately, select a trial slenderness ratio.)

2. Determine the allowable compressive stress for the given 

material and slenderness ratio.

3. Find the actual compressive stress in the column: fc = P/A.

4. Check that the actual stress is less than the allowable stress.

10.2.1 Design of Columns for Metals

For Steel, the AISC determines the allowable compressive 

stress = φFcr by the following equations:

 E3-4: Fe = π2E/(kL/r)2. This is Euler’s equation for 

critical buckling stress

 E3-2: if kL/r ≤ 4.71√(E/Fy), then Fcr = (.658Fy/Fe)Fy

 E3-3: if kL/r > 4.71√(E/Fy), then Fcr = 0.877Fe.
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These equations can be used with any metal as they will 

yield a curve such as those shown in Figure 10.2 for steel and 

titanium alloy. Note that as kL/r approaches 0, Fcr approaches 

Fy. Because Fcr is used with the Resistance Factor, φ in the 

LRFD Method and because the loads in the LRFD Method are 

ultimate loads or factored loads, the value of φFcr = allowable 

compressive stress has an adequate factor of safety built into it.

Example 10-6: Design a titanium Ti-6Al-4V alloy column for 

a factored compressive load of Pu = 500k with an unbraced 

length of 12′ and fixed ends if E = 15,000ksi and fy = 141ksi.

1. Select a trial size: Hollow core 3″ × 3″ × .25″ thick: 

Ix = Iy = 34/12 − 2.54/12 = 3.49in4

A = 32 − 2.52 = 2.75in2

rx = ry = √(3.49/2.75) = 1.127″

k = 0.65

kL/r = 0.65(12′)(12″/f)/1.127 = 83.05

2.  4.71√(E/Fy) = 4.71√(15000/141) = 48.58, Fe = (π2)E/(kL/r)2 

= 21.464

3. E3-3: if kL/r > 4.71√(E/Fy), then 

Fcr = 0.877Fe = .877(21.464) = 18.82ksi

4. P = 18.81ksi(2.75in2) = 51.73k 

1A. Select a larger trial size: Hollow core 6″ × 6″ × .5″ thick: 

Ix = Iy = 64/12 − 54/12 = 55.92in4

A = 62 − 52 = 11in2

rx = ry = √(55.92/11) = 2.25″

k = 0.65

kL/r = 0.65(12′)(12″/f)/1.127 = 41.6

10.2

Fcr compared to Euler’s formula
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2A. 4.71√(E/Fy) = 4.71√(15000/141) = 48.58, 

Fe = (π2)E/(kL/r)2 = 85.55

3A. E3-2: if kL/r ≤ 4.71√(E/Fy), then Fcr = (.658Fy/Fe)Fy 

= 70.73 

4A. P = 70.73ksi(11in2) = 778.03k > 500k but not very 

efficient.

1B. Select a smaller trial size: Hollow core 5″ × 5″ × .5″ thick: 

Ix = Iy = 54/12 − 44/12 = 30.75in4

A = 52 − 42 = 9in2

rx = ry = √(30.75/9) = 1.85″

k = 0.65

kL/r = 0.65(12′)(12″/f)/1.85 = 50.59

2B. 4.71√(E/Fy) = 4.71√(15000/141) = 48.58, 

Fe = (π2)E/(kL/r)2 = 57.833

3B. E3-3: if kL/r > 4.71√(E/Fy), then Fcr = 0.877Fe 

= .877(57.83) = 50.72ksi

4B. P = 50.72ksi(9in2) = 456.48k < 500k no good.

1C. Select a slightly larger trial size: Hollow core 

5″ × 5″ × .625″ thick: 

Ix = Iy = 54/12 − 3.754/12 = 35.6in4

A = 52 − 3.752 = 10.94in2

rx = ry = √(35.6/10.94) = 1.8″

k = 0.65

kL/r = 0.65(12′)(12″/f)/1.8 = 52

2C. 4.71√(E/Fy) = 4.71√(15000/141) = 48.58, Fe = (π2)E/

(kL/r)2 = 54.75

3C. E3-3: if kL/r > 4.71√(E/Fy), then Fcr = 0.877Fe 

= .877(54.75) = 48.02ksi

4C. P = 48.02ksi(10.94in2) = 525.29k > 500k … okay

 USE 5″ × 5″ × 5/8″ HSS in Ti-Al6-4V

Example 10-7: Design an A992 steel column for a factored 

compressive load of Pu = 500k with an unbraced length of 

12′ and fixed ends if E = 29,000ksi and Fy = 50ksi.

1. Select a trial size: Hollow core 6″ × 6″ × .5″ thick: 

Ix = Iy = 64/12 − 54/12 = 55.92in4

A = 62 − 52 = 11in2

rx = ry = √(55.92/11) = 2.25″

k = 0.65

kL/r = 0.65(12′)(12″/f)/1.127 = 41.6

2. 4.71√(E/Fy) = 4.71√(29000/50) = 113.43, 

Fe = (π2)E/(kL/r)2 = 165.39

3. E3-2: if kL/r ≤ 4.71√(E/Fy), then Fcr = (.658Fy/Fe)Fy = 44.06

4. P = 44.06ksi(11in2) = 484.63 < 500k go larger.

1A. Select a trial size: Hollow core 6″ × 6″ × .625″ thick: 

Ix = Iy = 64/12 − 4.754/12 = 65.58in4

A = 62 − 4.752 = 13.44in2

rx = ry = √(65.58/13.44) = 2.21″

k = 0.65

kL/r = 0.65(12′)(12″/f)/2.21 = 42.35

2A. 4.71√(E/Fy) = 4.71√(29000/50) = 113.43, 

Fe = (π2)E/(kL/r)2 = 159.58

3A. E3-2: if kL/r ≤ 4.71√(E/Fy), then Fcr = (.658Fy/Fe)Fy 

= 43.85

4A. P = 43.85ksi(13.44in2) = 589.41 > 500k … okay

 USE 6″ × 6″ × 5/8″ HSS in A992 steel.

Note that the titanium alloy column uses less material with an 

area of 10.94in2 compared to the steel column that requires an 

area of 13.44in2. Given the current cost of titanium alloy at about 

six times the cost of steel, the steel column is the economical 

choice at about 21% of the cost of the titanium alloy column. 

Given the density of steel is 490pcf and the density of Ti-Al6-4v 

is 276.48pcf, the respective weights of the steel and titanium 

alloy 12ft columns are 548.8# and 252.06#. The steel column 

has more than double the weight of the titanium alloy column. It 

should be noted that for kL/r > 57.5, the allowable compression 

in steel is higher than that of Ti-Al6-4v. Changing the column 

length in the previous two examples to 20′ yields:

Example 10-8: Design a titanium Ti-6Al-4V alloy column 

for a factored compressive load of Pu = 500k with an 

unbraced length of 20′ and fixed ends if E = 15,000ksi 

and Fy = 141ksi.

1. Select a trial size: Hollow core 6.25″ × 6.25″ × 1″ thick: 

Ix = Iy = 6.254/12 − 4.254/12 = 99.97in4

A = 6.252 − 4.252 = 21in2

rx = ry = √(99.97/21) = 2.18″
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k = 0.65

kL/r = 0.65(20′)(12″/f)/2.18 = 71.56

2. 4.71√(E/Fy) = 4.71√(15000/141) = 48.58, Fe = (π2)E/(kL/r)2 

= 28.91

3. E3-3: if kL/r > 4.71√(E/Fy), then Fcr = 0.877Fe 

= .877(28.91) = 25.35ksi

4. P = 235.35ksi (21in2) = 532.44k > 500k … okay 

 USE 6.25″ × 6.25″ × 1″ HSS in Ti-Al6-4V

Example 10-9: Design an A992 steel column for a factored 

compressive load of Pu = 500k with an unbraced length of 

20′ and fixed ends if E = 29,000ksi and Fy = 50ksi.

1. Select a trial size: Hollow core 6″ × 6″ × .75″ thick: 

Ix = Iy = 64/12 − 4.54/12 = 73.82in4

A = 62 − 4.52 = 15.75in2

rx = ry = √(73.82/15.75) = 2.17″

k = 0.65

kL/r = 0.65(20′)(12″/f)/2.17 = 72.05

2. 4.71√(E/Fy) = 4.71√(29000/50) = 113.43, Fe = (π2)E/(kL/r)2 

= 55.13ksi

3. E3-2: if kL/r ≤ 4.71√(E/Fy), then Fcr = (.658Fy/Fe)Fy 

= 34.21ksi

4. P = 34.21ksi(15.75in2) = 538.76k > 500k … okay

 USE 6 × 6″ × ¾″ HSS for Steel.

10.2.2 Design of Wood Columns

The allowable compressive strength in wood columns 

depends on the species and grade of wood, the moisture, 

temperature and incising conditions as well as the actual size 

of the column. A builder’s rule of thumb for wood columns is 

Fc′ = 0.3E/(L/d)2. The accuracy of this rule of thumb is shown 

below:

Example 10-10: Design a 12ft column of structural Select 

Red Oak with pinned ends, a square cross-section and a 

factored compressive load of 20,000#. 

The LRFD Method and NDS specifications, as shown in 

Chapter 17, yield an answer of 6 × 6.

Using the builder’s rule of thumb, Fc′ = 0.3E/(L/d)2, and 

a trial size of 6 × 6 (5.5″ × 5.5″ actual dimensions) yields the 

following:

E = 1,300,000psi

Fc′ = 0.3(1,300,000psi)/(12′(12″/f)/5.5″)2 = 568.94psi

Fc′A = P = 568.94psi(5.5)2 = 17210.44# < 20,000# no 

good.

Try a larger size: 6 × 8

Fc′ = 0.3(1,300,000psi)/(12′(12″/f)/5.5″)2 = 568.94psi

Fc′A = P = 568.94psi(7.5)(5.5) = 23468.78# > 20,000# 

… okay 

Using the rule of thumb as a quick estimating tool generally 

yields a larger size, but the exact size required should always 

be determined, or at least the rule of thumb size should be 

verified, using the AWC National Design Specifications as 

outlined in Chapters 16 through 18.

Practice Exercises:

10-1: Determine the critical buckling stress and critical 

buckling load for a 14ft, W14 × 108 column with pinned ends.

10-2: Given a 4″ × 6″ (actual dimensions) 10ft wood column 

with E = 1,600,000psi: 

a) Determine the critical buckling load. 

b) If Fc′ = 1600psi, what is the load that will cause the 

column to crush?

c) Will the column buckle or crush first? 

10-3: Determine the critical buckling stress of a W21 × 55 

column, with E = 29,000ksi and an unbraced length of 20′ in 

the strong direction and 12′ in the weak direction.

10-4: A 16ft metal column has a hollow circular cross-section 

with an outside diameter of 18″ and a thickness of 1″. Which 

metal will hold more load? Metal 1 (E = 10,000ksi and 

Fy = 35ksi) or Metal 2 (E = 12,000ksi and Fy = 25ksi)?



This page intentionally left blank



Part  I I 

Str uctural  Design 
Pr inciples



This page intentionally left blank



eleven

Str uctural  Patter ns

Patterns exist everywhere, whether in an architectural 

context, a natural context, or an organizational context. 

Human beings easily recognize, and utilize patterns. 

Two general types of patterns are hierarchy and network 

patterns. These types can further be identified as radial, 

orthogonal, or algorithmic.

11.1

Pattern types
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Hierarchal patterns are systems in which components, 

members or elements have varying size, status or 

contributing characteristics that are ordered accordingly. In 

hierarchal patterns, there is a defined source with subsequent 

lesser components as a branch from the source. A corporate 

personnel structure or a tree is an example of a hierarchy. 

Network patterns are systems in which all components, 

members or elements have relatively the same size, status 

or contributing characteristics. In network patterns, multiple 

relationships between relatively similar components exist. 

A honeycomb or a checkerboard is an example of a network 

pattern. In architecture, geodesic domes and space frames 

are good examples of network patterns. 

Patterns can also be a combination of hierarchy and 

networks. Whether hierarchal or networked, patterns allow 

the designer to identify grid systems that may be used for 

vertical support systems such as columns, bearing walls or 

vertical trusses. Orthogonal, radial and algorithmic grids are 

usually based on a mathematical principle. Grids may also be 

random or appear random but follow spatial and contextual 

input. In plan, structural patterns consist of the configuration 

of supports, horizontal spanning members and lateral force 

resisting systems. In section or elevation, structural patterns 

reveal the relationship between the grids from each level and 

either respond to or mimic the horizontal grids.

11.2

Horizontal and vertical pattern relationship
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Structural patterns either correspond with or remain 

independent of the building shape. In the latter, the structural 

pattern of the building gives no indication of what takes place 

spatially or contextually in the building. Likewise, the exterior 

and interior views are not indicative of the structural patterns 

in place. 

11.3

Structural pattern (a) independent from form and (b) integrated with 

form

Structural patterns are not usually independent from the spatial 

and contextual patterns of a project. Because the structure 

is the skeleton, the physical strength of a building, structural 

patterns that integrate with spatial, contextual and conceptual 

patterns help the designer to create a holistic solution. 

Spatial patterns are usually defined by program and design 

intent or by environmental comfort factors such as natural 

lighting, acoustics or thermal convection. Contextual patterns 

are patterns dictated by topography, site boundaries or 

context of the site including views, circulation, solar shadows, 

prevalent winds and the like. Conceptual patterns are the 

product of creative diagramming of the concept or big idea 

behind the project. A concept may derive from a social or 

cultural statement, a natural metaphor for a project or an 

independent idea conceived by the designer. Once a concept 

is defined, the tools of defining form such as weaving, 

sliding, expanding, twisting and the like become tools for the 

structural patterns as well. Structural patterns that respond 

to the spatial, conceptual and contextual requirements of a 

project find the best solution for the parameters given. 

11.1 Defining the 
Structural Grid

The first decision regarding structure is the pattern of 

support. Pattern of support is determined by several factors, 

most of which influence the location and distance between 

columns, walls or other vertical support systems.

The site context defines the perimeter within which a 

structure is placed. Once the perimeter is defined, consider 

activity, circulation and materials to determine a preliminary 

grid pattern. The type of activity dictates the options for 

width, length and height of spaces to be included. Larger 

clear spaces require structural systems that can handle large 

spans. Multilevel spaces often prevent horizontal bracing 

at the levels between floor and ceiling. The programmatic 

relationships that exist between types of activity determine 

the connections and circulation between spaces. Circulation 

affects the structural grid because columns and other 

vertical support systems can either define or interfere with 

a pathway. A colonnade is a perfect example of circulation 

defined by the structural support system. Conversely, it 

can be argued that the line of columns in the colonnade 

is placed for structural support in order to define a line of 

circulation. Another influence of site context on structural 

system choices is one of views and privacy. Where views 

are important, vertical support systems that allow large or 

multiple perforations are desired. When privacy is important, 

vertical support systems could be massive bearing walls. The 

material choices for the structural system will also dictate the 

allowable spans of beams and size of components. 

A grid is a pattern of lines that denotes the placement 

of columns or bearing walls. An area enclosed by the least 

number of connected columns is called a bay. In orthogonal 

systems, bays are rectangular. In diagrid systems, bays are 

triangular and in honeycomb grids, bays are hexagonal.

11.4

Bays in grid systems
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11.1.1 Orthogonal and Radial Grids

Most grids are orthogonal because orthogonal grids are 

easier to design and construct than other types of grids. 

Orthogonal grids have many identical members, reducing 

the number of beams or columns to be designed. The 

square or rectangular bays in orthogonal grids mean that in 

construction, connections are at 90°. This means connections 

are simple to design, fabricate and construct. In the many 

cases, the bays are of uniform size, but it should be noted 

that bays may be of varied size. Orthogonal grids may be 

combined to suit design needs. When combining orthogonal 

grids, align column lines from each grid to create lateral 

stability in the system.

Radial grid lines may be connected by circumferential, 

radial or diagrid patterns of beams. Radial grids may stand 

alone, be used as a connector between grids or used as a 

focal point. Connections become more complicated in a radial 

grid. Creating regularity in the radial grid, and designing the 

connections for ease of installation will make a radial grid 

nearly as practical as an orthogonal grid.

11.1.2 Complex or Irregular Grids

Complex grids may be a combination of orthogonal and 

radial grids or may involve algorithmic, geometric or natural 

patterns. For example, a set of grid lines may follow 

topographic lines, perimeter lines or circulation patterns. In 

the grid shown in Figure 11.6, longitudinal grid lines follow 

topographic curves. Transverse grid lines are perpendicular 

to outer longitudinal lines and evenly space along the center 

longitudinal line. The grid is strengthened by the triangulated 

pattern of bracing. Complex grids can be created digitally 

and components can be manufactured from the digital 

model meaning that there is an ease of creating double 

curvature forms. Consider carefully how such forms are to 

be constructed rather than committing to a structural design 

based solely on form.

11.5

Orthogonal grids
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11.6

Radial grids

11.7

Topography controlled grid
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11.1.3 Integration of Structural, 
Spatial and Contextual Patterns

A structural grid must be developed with regard to the 

volumes it supports. It is important to define the structural 

grid early so that spaces may be designed to fit the grid, but 

it is also equally important to understand that grids may need 

to be altered to fit the design of spaces or the relationship to 

site context. While regular grids with equidistant column lines 

are economical, there is no rule that states grids must be 

uniform. Do not be afraid to vary distances between column 

lines or create combined or complex grids in order to achieve 

the best solution for pattern of support. 

11.2 Natural Design and 
Structural Form

Nature is endowed with structure. Plants, trees, animals, rock 

formations and most other nature forms such as cobwebs 

have a structure and a structural pattern. Natural forms are 

very efficient and very effective. By observing structural 

patterns in nature, the designer may find inspiration for 

solutions to structural design problems. 

11.8

Structural comparisons of (a) silica sea sponge (b) 30 St. Mary Axe 

Building, Foster & Partners

Silica sea sponge is a deceptively strong creature with an 

exoskeleton made of tiny glass rods that bundle to form struts 

in an elaborate cylindrical truss wrapped in helical nutrient 

tubes. The glass rods not only provide a structural skeleton 

and conduit for nutrients, but also transmit light through fiber 

optic qualities of the glass rods. Silica sea sponge bears a 

remarkable resemblance to the Foster & Partners building 

at 30 St. Mary Axe in London. This building utilizes a diagrid 

structure with helical circulation, atrium and mechanical 

system schemes. From a structural perspective, the most 

interesting thing about silica sea sponge is its strength. 

It raises the question: Are bundled tubes stronger than 

individual tubes? If so, is it because bundled tubes have more 

area or do they have a higher moment of inertia? 

11.9

Bundled tubes 

Consider the seven bundled tubes in Figure 11.9(a). If all 

tubes have the same outer radius (ro) and inner radius (ri), the 

area of the seven bundled tubes A = 7π(ro
2 − ri

2). If a single 

tube in Figure 11.9(b) has an outer radius equal to 3ro, and the 

same amount of material, and therefore the same area, the 

thickness of the tube (t) can be found. The single tube would 

have an outer diameter that is equal to the three diameters of 

the bundled tubes, or 6ro. The inner radius would then be 3ro 

− t. If the total area of the bundled tubes equals the area of 

the single tube, we get: 

A = 7π(ro
2 − ri

2) = π((3ro)
2 − (3ro − t)2)

t = 3ro − √(2ro
2 + 7ri

2)

The moment of inertia for the bundled tubes is:

IxBUNDLED = 7π(ro
4 − ri

4)/4 + 4 π(ro
2 − ri

2)(1.732ro)
2 

= (π/4)(55ro
4 − 48ro

2ri
2 − 7ri

4)

IxBUNDLED/A = (55ro
2 + 7ri

2)/28
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The point is, when observing natural phenomena, 

it is important to observe, but equally important not to 

imitate unless fully understanding why a system works. 

Understanding why something works in nature allows the 

designer to employ the strategy successfully. The idea of 

bundled tubes was analyzed for compression, but what about 

flexure? It is important to analyze a natural system for all of 

the conditions under which it may be used. It is not the form 

observed in nature, but how the form behaves that influences 

structural thinking.

Biomimicry is a term coined by Janine Benyus in her book 

Biomimicry: Innovation Inspired by Nature. Benyus goes 

beyond observing structural systems found in nature to using 

natural solutions to inspire innovation in design. For example, 

shark denticles are a pattern of raised bony scales on the skin 

of sharks that serve not only as a form of protection but also 

provide hydrodynamic qualities. It is believed that the denticle 

pattern allows the shark to move noiselessly through the 

water. There have been studies of shark denticle patterns to 

explore textural patterns on the hulls of ships. Imagine using 

a shark denticle pattern on a metro train or metro station wall 

to reduce the noise levels in metro stations. That would be an 

example of biomimic design.

Practice Exercises:

11-1: For the perimeter in Figure 11.10, design a pattern of 

support for the perimeter shapes below. Maximum beam 

spacing is 8′ and maximum spacing between columns is 24′.

11.10

Practice exercise 11-1

And the moment of inertia for the single tube is:

IxSINGLE = π((3ro)
4 − (3ro − t)4)/4 

= (π/4)(77ro
4 − 28ro

2ri
2 − 49ri

4)

IxSINGLE/A = (77ro
2 + 49ri

2)/28

Clearly, IxSINGLE/A is greater than IxBUNDLED/A.. Since the radius 

of gyration r = √(I/A), the single tube will also have a higher 

value of r, meaning that the slenderness ratio, kL/r will be 

smaller and therefore the allowable compressive stress 

will be higher. So, when bundled tubes have the same 

area as a single tube, the single tube will perform better in 

compression.

If all tubes have the same thickness (t) where ri = ro − t, 

then the area and moment of inertia of the seven bundled 

tubes remains the same:

ABUNDLED = 7π(ro
2 − ri

2)

IxBUNDLED = (π/4)(55ro
4 − 48ro

2ri
2 − 7ri

4)

IxBUNDLED/ABUNDLED = (55ro
2 + 7ri

2)/28

The single tube has an outer radius, 3ro, and thickness t. The 

inner radius is 3ro − t = 2ro + ri and the area of the single tube is: 

ASINGLE = π((3ro)
2 − (3ro − t)2) = πt(6ro − t) 

= π(ro − ri)(5ro + ri)

And the moment of inertia for the single tube is:

IxSINGLE = π((3ro)
4 − (3ro − t)4)/4 

= (π/4)(65ro
4 − 32ro

3ri − 24ro
2ri

2 − 8rori
3 − ri

4)

IxSINGLE/ASINGLE = (13ro
2 + 4rori + ri

2)/4 

= (91ro
2 + 28rori + 7ri

2)/28

In this case, the radius of gyration for the single tube is still 

larger, but the area is smaller and so while the allowable 

compressive stress will be larger for the single tube, the 

allowable compressive loads would have to be compared on a 

case by case basis. 

For example, if designing in steel, when kL/r > 4.71√(E/

Fy) the allowable compressive stress = φFCR = (.877π2E/(kL)2)

(r2) = (.877π2E/(kL)2)(I/A) and the allowable compressive load 

is φFCR(A) = (.877π2E/(kL)2)(I). IxBUNDLED is greater than IxSINGLE 

whenever the ri ≥ 0.4483ro. But if kL/r < 4.71√(E/Fy), the 

allowable compressive stress = φFCR = (.658Fy/Fe)(Fy) and the 

equations become complicated and dependent on the kL and 

Fy values of the problem.
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11-2: For the perimeter in Figure 11.11, frame the outer shape 

with a maximum beam length of 30′ and maximum beam 

spacing of 10′. Frame the inner shape with a maximum beam 

length of 60′ and a maximum beam spacing of 10′. 

11.11

Practice exercise 11-2

11-3: Create your own shape to enclose 14,000 − 16,000sf 

within the limits of a 120′ by 150′ site. Include in your enclosed 

area a 2000 − 4000sf atrium and frame around it. Maximum 

beam length = 40′ and maximum beam spacing = 10′.



twelve

Design L oads

Design loads are the forces used in the design of structural 

components. The building code that governs in the location 

of the project defines what design loads must be used. 

Most building codes are based on the International Building 

Code (IBC) although other codes do exist. States typically 

adopt a building code based on the IBC and may include 

modifications or more stringent requirements. The State of 

Florida, for example, developed the 2004 Florida Building 

Code with higher 3-second gust wind speeds than found in 

the IBC. Local municipalities usually refer to a state building 

code. However in some cases, local building codes may be 

stricter than the state building code. Be certain to use the 

code that applies to the site location. 

Most design loads defined in the IBC are directly based 

on the ASCE Minimum Design Loads for Buildings and Other 

Structures (ASCE). The building program and site also play 

a role in determining design loads as they affect importance 

factors and exposure factors. The first step in determining 

design loads is to identify the occupancy category in ASCE 

Table 1-1. Note that Category II is for building types not 

covered in the other categories.

The occupancy category will determine the importance 

factor for various load calculations.

Table 12.1  ASCE Table 1.5-1 Occupancy Category, recreated with 
permission from ASCE

Table 12.2:  Importance factors

RISK 
CATEGORY NATU RE OF OCCU PANCY 

I Structures that represent a low hazard to human life in 
the event of failure 

II All Structures except those listed in Occupancy 
Categories, I, III and IV 

III Structures that represent a substantial hazard to 
human life in the event of failure 
Structures not included in Occupancy Category IV, with 
potential to cause a substantial economic impact 
and/or mass disruption of day-to-day civilian life in the 
event of failure 
Structures not included in Occupancy Category IV 
containing sufficient quantities of toxic or explosive 
substances that would be dangerous to the public if 
released 

IV Structures designated as essential facilities 
Structures containing sufficient quantities of toxic or 
explosive substances that would be dangerous to the 

I public if released 
Structures that represent a substantial hazrd to the 
community in the even of failure 
Structures required to maintain the functionality of 
other Risk Category IV structures. 

Occupancy Is for Snow 
Iwfor Wind Iwfor Wind lefor 

Category Loads 
with V = 85- with V > Seismic 

1 OOmph 1 OOmph Loads 

I 0.8 0.87 0.77 1 
II 1 1 1 1 
III 1.1 1.15 1.15 1.25 
IV 1.2 1.15 1.15 1.5 
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There are three basic categories of design loads: live loads, 

dead loads and lateral loads. Live and dead loads are loads 

that will have a vertical impact on the design and lateral loads 

are those that will have a horizontal impact on the design.

12.1 Live and Dead Loads 

Live and dead loads are gravity loads because they are forces 

induced by gravity on mass, in other words—weight. The 

difference between live and dead loads is as follows:

12.1.1 Dead Loads

Dead loads are the weights of all the materials permanently 

attached to the structure. They are considered dead loads 

because they do not move or change. Calculating dead loads 

requires an understanding of the structural system, façade, 

partition walls and mechanical systems to be used as well as 

an ability to estimate sizes of components not yet designed. 

Many handbooks have simple material guides that will give the 

density of common building materials. For specific materials, 

manufacturer’s typically supply the density of a material or 

weight of a unit. Be careful to convert all dead loads to the same 

units whether pounds, pounds per foot, pounds per square foot, 

or kips per square foot or kilograms per square meter, etc.

Example 12-1: Calculate the dead load on a series of 

beams spaced at 8′o.c. if the beams carry a 4″ concrete 

slab made of normal weight concrete at 150pcf and 1″ 

wood flooring at 4psf.

D = 150pcf(4″/12″/f)(8′) + 4psf(8′) = 432#/f

12.1.2 Live Loads

Live loads are all gravity loads not permanently attached to 

the structure. Live loads include people, furnishings, movable 

equipment, plantings and installations or displays. The IBC 

is a source code for many local and state codes. The ASCE 

Table 4-1 and IBC Table 1607.1 list the minimum design 

live loads by occupancy type. It is important to remember 

that codes list the minimum allowable live load, but not 

necessarily the live load that should be considered in special 

cases. The IBC live loads are listed in units of pounds per 

square foot (psf) for most cases, although areas such as 

elevator machine rooms may have a concentrated load listed. 

Most buildings have more than one occupancy type to 

consider and even within one occupancy type, there can be 

multiple conditions listed in the ASCE Table 4-1. An office 

building, for example, has an occupancy type: 25 – Office 

Buildings, that states that lobbies and first floor corridors have 

a minimum 100psf live load, while corridors above the first 

floor have a minimum 80psf live load and offices have a 50psf 

minimum live load. Further, a file room would be considered 

light storage with a minimum 125psf live load, and stairs and 

exits have a 100psf minimum live load. 

12.1.3 Live Load Reduction

ASCE Chapter 4.8 states that if a member has a tributary area 

of more than 400 square feet, the original live load (LLo) can 

be reduced.

Effective LL:

LL = LLo(.25 + 15/√(KLLAT))

where KLL is found in IBC Table 1607.9.1, shown here in 

Table 12.3:

 Limits: LL ≥ 0.5LLo

 No LL reduction for Class A occupancy

 No LL reduction for LLo > 100psf

Table 12.3:  ASCE Table 4-2 Live load element factor, KLL, with permission 
from ASCE

ELEMENT 
Interior columns 
Exterior columns without cantilever slabs 
Edge columns with cantilever slabs 
Corner Columns with cantilever slabs 
Edge Beams without cantilever slabs 
Interior beams 

All other members not identified including: Edge 
beams with cantilever slabs,Cantilever beams, 
One-way Slabs, Two-way Slabs, Members 
without provisions for continuous shear transfer 
normal to their span. 

KLL 
4 
4 
3 
2 
2 
2 

1 
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Example 12-2: If LLo = 95psf and tributary area (AT) is 

600sf, what is reduced live load on an interior column?

From Table 1607.9.1 we find KLL = 4. 

LL = LLo(.25 + 15/√(KLLAT)) = 95(.25 + 15/√(4)(600)) 

= 52.84psf

0.5LLo = 0.5(95psf) = 47.5psf < 52.84psf … okay

LL = 52.84psf.

12.1

ASCE 7-1 Snow loads in northeastern U.S. With permission from ASCE

12.2 Snow Loads

The procedure to find design snow loads can be found in 

ASCE Chapter 7. The ASCE Figure 7-1 map, a section of 

which is shown in Figure 12.1, gives minimum ground snow 

loads (pg) in units of psf. The numbers in parentheses are 

the upper elevation limits in feet. Beyond these elevations, 

and where CS is shown on the map, specific case studies 

are required to establish ground snow loads due to potential 

extreme local variations. 
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Because snow may drift and create uneven loads, 

calculations will vary depending on the building design. But 

for flat roofs, the snow load = S = 0.7CeCtIspg where:

 pg = ground snow load from ASCE Figure 7-1

Ce = Exposure Factor from ASCE Table 7-2 where terrain 

categories are defined as:

 B: Urban, suburban and wooded (closely spaced large 

obstructions)

 C: Open spaces with scattered obstructions

 D: Flat unobstructed spaces

Table 12.4:  ASCE Table 7-2 Exposure factor, with permission from ASCE

 Ct = Thermal factor from ASCE Table 7-3

 Is = Importance factor for snow from ASCE Table 7-4

Table 12.5:  ASCE Table 7-3 Thermal factor, with permission from ASCE

Example 12-3: Calculate the design snow load on a flat 

roof of a hospital in Montpelier, Vermont. 

 pg = 60psf, Ce = 0.9, Ct = 1.0, Is = 1.2

S = 0.7CeCtIspg = 0.7(0.9)(1)(1.2)(60) = 45.36psf

12.3 Lateral Loads

Lateral loads are any loads exerting a lateral or horizontal 

force on the structure. The most common lateral loads are 

wind and seismic loads, but there are also other horizontal 

forces that must be considered. For example, hydrostatic 

pressure in the soil pushes horizontally against a retaining wall 

or the weight of a pitched roof pushes outward against the 

top of a bearing wall supporting it. This section will discuss 

how to calculate wind and seismic loads.

12.3.1 Wind Loads

Follow the procedures in ASCE Chapter 27 for the calculation 

of wind loads. There are many scenarios described and care 

must be taken to use the correct diagrams and tables. The 

basics of calculating wind design loads are listed below, but 

are not inclusive of all wind load conditions.

 1. Determine the Risk Category based on ASCE Table 1-5.1 

shown in Table 12.1. 

 2. Determine the Design Wind Load Speed, V(mph) at the 

site location. The maps in ASCE Figures 26.5-1A, B or C 

provide basic wind speeds for all areas of the U.S. by risk 

categories. ASCE Figure 26.5-1A is for Risk Category II, 

a section of which is shown in Figure 12.2. For projects 

outside of the U.S., refer to local building codes. 

 3. The directionality factor for the Main Force Resisting 

System in Buildings is Kd = 0.85. For directionality factors 

for other conditions, see ASCE Table 26.6-1.

 4. Determine the Exposure Category in ASCE section 

26.7.3. In general terms, the categories are as follows:

 Category B: Urban and suburban buildings with a 

mean roof height ≤ 30′
 Category C: All structures not covered in categories 

B and D

 Category D: Unobstructed (open) terrain structures

 5. Determine Topography Factor KZ1 using ASCE Table 26.8-

1. A topographic factor must be included when the 

building is located on or near a hill, ridge or escarpment. If 

the site does not meet the conditions described in ASCE 

Section 26.8.1, the Topgraphic Factor, KZ1 = 1.

EXPOSURE 
OF ROOF 

FULLY PARTIALLY 
TERRAIN CATEGORY EXPOSED EXPOSED SHELTERED 
B 0.9 1.0 1.2 
C 0.9 1.0 1.1 
D 0.8 0.9 1 
Above the treeline in windswept 
mountainous areas 0.7 0.8 N/A 
In Alaska. in areas where trees do not 
exist within a 2-mile radius of the site 0.7 0.8 N/A 

THERMAL CONDITION Ct 

All structures except as indicated below 1 
Structures kept just above freezing and others with 
cold, ventilated roofs in which the thermal resistance 
between the ventilated space and the heated space 
exceeds R-25. 1.1 
Unheated structures and structures intentionally kept 
below freezing 1.2 
Continuously heated greenhouses, with a roof having 
a thermal resistance less than R-2 0.85 
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12.2

Excerpt from ASCE Table 26.5-1A: Basic wind speeds for Risk Category II buildings and other structures. With permission from ASCE

 6. The Gust-Effect Factor for a rigid building or other 

structure is G = 0.85. Low-rise buildings (buildings 

under 100′ in height) are considered rigid. For high-rise 

buildings, follow ASCE Section 26.9 to determine rigidity 

and the value for G.

 7. This text discusses wind load calculations for enclosed 

buildings only. See ASCE Sections 26.2 and 26.10 for 

definitions of enclosure. For enclosed buildings, 

GCpi = −0.18 

 8. Determine the values of Kh and Kz for each level using 

ASCE Table 27.3-1 as shown in Figure 12.7. Kh is the 

coefficient at the mean roof height. Kz is the coefficient 

at heights where lateral loads can be transferred 

through structure. For values of height not listed, linear 

interpolation is allowed.

140(63)

115(51)

120(54

130(58)

140(63)
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Table 12.6:  ASCE Table 27.3-1 Velocity pressure exposure coefficients Kh 
and Kz, with permission from ASCE

 9. The velocity pressure qz at any given height is: 

qz = 0.00256KzKztKdV
2 = 0.00256Kz(1)(0.85)V2

10. From ASCE Figure 27.4-1, Cp = 0.8 for windward walls 

and Cp = −0.7 for side walls. For leeward walls, the value 

depends on the ratio of L/B where L is the length of the 

building parallel to the wind direction and B is the width 

of the building perpendicular to the wind direction. See 

ASCE Figure 27.4-1 for roof values.

Table 12.7:  Cp values for walls

11. Design wind pressure = p = qGCp − qiGCpi where: 

 q = qz at each level as found in step 9

 G = 0.85 for rigid buildings or value found in step 6

 Cp = 0.8 for windward walls of value found in step 10

 qi = qh for enclosed buildings 

 GCpi = −0.18 from step 7.

12. Wind load is equal to the design wind pressure multiplied 

by the tributary area, a. P = pA.

Example 12-4: Find the wind loads for column line 2 if the 

fully enclosed rigid structure in Pittsburg, PA, shown in 

Figure 12.3 resists wind with column lines 1, 2, 3 and 4. 

Use Exposure Category B. The building is an office building. 

12.3

Example 12-5 structure

 1. From Figure 12.1, Risk Category II.

 2. From Figure 12.6, V = 115mph

 3. Kd = 0.85 

 4. Exposure Category B: (given)

HEIGHT EXPOSURE 
ABOVE 

GROUND 
LEVEL, z (f) B C D 

0-15 0.57 0.85 1.03 
20 0.62 0.90 1.08 
25 0.66 0.94 1.12 
30 0.70 0.98 1.16 
40 0.76 1.04 1.22 
50 0.81 1.09 1.27 
60 0.85 1.13 1.31 
70 0.89 1.17 1.34 
80 0.93 1.21 1.38 
90 0.96 1.24 1.40 
100 0.99 1.26 1.43 

Surface UB Co Use with 

Windward All values 0.8 qz 

0-1 -0.5 

Leeward 2 -0.3 qh 

e4 -0.2 

SideWall All Values -0.7 qh 

HEIGHT EXPOSURE 
ABOVE 

GROUND 
LEVEL, z (f) B C D 

0-15 0.57 0.85 1.03 
20 0.62 0.90 1.08 
25 0.66 0.94 1.12 
30 0.70 0.98 1.16 
40 0.76 1.04 1.22 
50 0.81 1.09 1.27 
60 0.85 1.13 1.31 
70 0.89 1.17 1.34 
80 0.93 1.21 1.38 
90 0.96 1.24 1.40 
100 0.99 1.26 1.43 

Surface UB Co Use with 

Windward All values 0.8 qz 

0-1 -0.5 

Leeward 2 -0.3 qh 

e4 -0.2 

SideWall All Values -0.7 qh 
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 5. KZ1 = 1

 6. G = 0.85 

 7. GCpi = −0.18 

 8. Determine the values of Kh and Kz for each level using 

Table 12.6:

Kh is at z = 65′

 Interpolate between Kz = 0.85 @ 60′ and Kz = 0.89 @ 70′
 Use ratios: (.89 − .85)/(70 − 60) = (Kh − .85)/(65 − 60) … 

Kh = 0.87

The same method is used to find Kz at each level resisting 

wind loads.

 @ z = 50′: Kz = 0.81

 @ z = 35′: Kz = (.76 − .70)(35 − 30)/(40 − 30) + .70 = 0.73

 @ z = 20′: Kz = 0.62

 At this point it is helpful to create a table as shown at the 

end of the example.

 9. The velocity pressure qz at any given height is: qz 

= 0.00256KzKztKdV
2 = 0.00256Kz(1)(0.85)(115)2 = 28.78Kz 

10. From ASCE Figure 27.4-1, Cp = 0.8 for windward walls 

11. Design wind pressure = p = qGCp − qiGCpi = qz(.85)(.8) + 

qh(.18) = .68qz + 4.51

12. Wind load is equal to the design wind pressure multiplied 

by the tributary area, a. P = pA

 For Column Line 2, the tributary width = (26′ + 30′)/2 

= 28′
 @ z = 65′: tributary height = 7.5 … A = 28′(7.5′) = 210sf

 @ z = 50′: tributary height = 15.0 … A = 28′(15.0′) 
= 420sf

 @ z = 35′: tributary height = 15.0 … A = 28′(15.0′) 
= 420sf

 @ z = 20′: tributary height = 17.5 … A = 28′(17.5′) = 490sf

SOLUTION:

Table 12.8:  Wind load spreadsheet

12.4

Wind loads on Example 12-4 structure

12.3.2 Seismic Loads

Seismic loads are caused by the horizontal shear force 

induced on buildings by earthquakes. Seismic Design Loads 

are covered in Chapters 11 through 23 of the ASCE. The 

basics for determining seismic loads using the Equivalent 

Lateral Force Procedure are covered below and through 

Example 12-5.

V = CsW = seismic base shear 

W = effective seismic weight = total dead load f floors and 

walls plus weights specified in ASCE Section 12.7.2.

Cs = SDS/[R/Ie] = the seismic response coefficient

R = the Response Modification Factor found in ASCE 

Table 12.2-1, a small portion of which is shown in Table 12.9.

Table 12.9:  Sample of ASCE Table 12.2-1, with permission from ASCE 

Category and System 
Response Modification Coefficient, 

R 

A. Bearing Walls 

Ordinary reinforced concrete shear walls 4 

Ordinary reinforced masonry shear walls 2 

Height (f) Kz 
qz= P = .68qz+ 

A(P) P(kips) 
28.78Kz 4.51 (psf) 

65 0.87 25.04 21 .54 210 4.52 
50 0.81 23.31 20.36 420 8.55 

Light-framed walls sheathed with wood panels 
6.5 

rated for shear resistance or steel sheets. 

B. Building Frame Systems 

Steel eccentrically braced frames, non-moment 
resisting connections at columns away from 7 

35 0.73 21.01 18.8 420 7.9 links 

20 0.62 17.84 16.64 490 8.15 Ordinary steel concentrically braced frames 3.25 

Ordinary reinforced concrete shear walls 6 

C. Moment·Resisting Frame Systems 

Ordinary Steel Moment frames 3.5 

Ordinary Reinforced concrete moment frames 3 
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12.5

A sample of ASCE 22-1 0.2sec Seismic Response Map for Site Class B, with permission from ASCE
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Ie = Importance factor for earthquakes based on Building Risk 

Category (Table 12.10).

Table 12.10:  Importance factor for seismic loads, with permission from 
ASCE

SDS = (2/3)(Fa)(SS) 

SS = mapped spectral response acceleration for short periods 

from ASCE Figure 22-1, a portion of which is shown in 

Figure 12.5. 

Fa = site coefficient from ASCE Table 11.4-1, summarized as 

in Table 12.11:

Table 12.11:  Site coefficient, Fa from ASCE Table 11.4-1, with permission 
from ASCE

SD1 = (2/3)(Fv)(S1)

S1 = mapped spectral response acceleration for a 1-sec 

period from ASCE Figure 22-2, a portion of which is shown in 

Figure 12.6. 

Fv = site coefficient from ASCE Table 11.4-2, summarized as 

in Table 12.12:

Table 12.12:  Site coefficient Fv from ASCE Table 11.4-2, with permission 
from ASCE

Example 12-5: Determine the seismic loads for column 

line 2 of the building in Figure 12.3. 

The site has very dense soil. The dead loads are 80psf for 

floors and 15psf for walls. The structure is a steel braced 

frame with pinned connections. Assume Risk Category IV.

 1. Using ASCE Table 20.3-1 or IBC Table 1613.5.2, 

determine the Site Class. The site classifications are as 

follows:

 Site Class A: Hard rock

 Site Class B: Rock

 Site Class C: Very dense soil and soft rock

 Site Class D: Stiff soil

 Site Class E: Soft clay soil

 Site Class F: Soils requiring site response analysis

 If unsure of site conditions, use Site Class D. For 

this example, very dense soil is Class C.

 2. Find the mapped spectral acceleration for short period 

(0.2sec) (Ss) from Figure 12.5. The values on the map 

are shown as percentages. For calculations, Ss is used in 

decimal form. Therefore the map value for Pittsburgh of 

15% means that SS = 0.15.

 3. Find the mapped spectral acceleration for 1-sec period 

(S1) from Figure 12.6. S1 = .05.

 4. Find the site coefficient (Fa) from Table 12.10. For Site 

Class C and SS < 0.25, Fa = 1.2.

 5. Find the site coefficient (Fv) from Table 12.11. For Site 

Class C and S1 < 0.1, FV = 1.7.

 6. Calculate SDS and SD1:

SDS = (2/3)(Fa)(SS) = (2/3)(1.2)(0.15) = 0.12

SD1 = (2/3)(Fv)(S1) = (2/3)(1.7)(.05) = 0.057

 7. Find the Response Modification Factor from ASCE 

Table 12.2-1. For Case B-2, steel braced frames with 

non-moment-resisting connections, R = 7. Some sample 

values for R factors are given below. Note that there are 

limitations for buildings in Seismic Design Categories 

B, C, D, E and F. See ASCE sections 11.6 and 11.7 to 

determine the Seismic Design Category before choosing 

a value for R. In this example, the structure is in category 

A because SDS = 0.12 < 0.167 and the requirements of 

section 11.6 are met.

 8. From Table 12.10, IE = 1.5.

Risk 
Ie Category 

I 1 
II 1 
III 1.25 
IV 1.3 

Site Class Ss ~ 0.25 Ss = 0.5 Ss = 0.75 Ss = 1.0 Ss ~ 1.25 

A 0.8 0.8 0.8 0.8 0.8 

B 1 1 1 1 1 

C 1.2 1.2 1.1 1 1 

D 1.6 1.4 1.2 1.1 1 

E 2.5 1.7 1.2 0.9 0.9 

F See ASCE section 11.4.7 

Site Class S1 dO.1 S1 = 0.2 S1 = 0.3 S1 = 04 S1 e 0.5 

A 0.8 0.8 0.8 0.8 0.8 

B 1 1 1 1 1 

C 1.7 1.6 1.5 14 1.3 

D 2.4 2 1.8 1.6 1.5 

E 3.5 3.2 2.8 2.4 2.4 

F See ASCE section 11.4.7 
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12.6

A sample of ASCE 22-2 1.0sec Seismic Response Map for Site Class B, with permission from ASCE
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 9. Find the coefficient for the upper limit on calculated 

period (CU) in ASCE Table 12.8-1 shown in Table 12.14. 

CU = 1.7 when SD1 ≤ 0.1.

Table 12.13:  Sample Seismic Response Modification Factors from ASCE 
Table 4-2. With permission from ASCE

10. Find CT and X from ASCE Table 12.8-2. CT = .03 and 

X = 0.75 for eccentrically braced steel frames. 

11. hn = height in feet to highest point of building = 65′

Ta = (CT)(hn
x) = (.03)(650.75) = 0.687 = approximate 

fundamental period.

12. T = (CU)(Ta) = the structure period (inverse of frequency of 

oscillation).

T = 1.7(.687) = 1.168

13. CS = SDS(I)/R = 0.12 (1.5)/7 = 0.0257

14. CSMIN = 0.01 < Cs = 0.021 … okay 

15. CSMAX = SDI/(T(R/IE)) = .057/[1.168(7)/1.5] = .011

16. CS = .011

17. K = an exponent related to the structure period

= 1 if T < 0.5

= 2 if T > 2.5

 If 0.5 < T > 2.5, you may use 2 or interpolate between 1 

and 2… K = 2

18. Make a spreadsheet where:

Wx = total weight of building at given level 

= Wwalls + Wfloor

 At each level, the weight of the floor = 80psf(52′)(78′) 
= 324,480# = 324.48k

 At each level the weight of the walls = 15psf(2(78 + 52))

(tributary height) = 3.9k/f(ht)

 @ z = 65′: Wwalls = 3.9k/f(7.5′) = 29.25k … Wx = 353.73k

 @ z = 50′: Wwalls = 3.9k/f(15.0′) = 58.5k … Wx = 382.98k

 @ z = 35′: Wwalls = 3.9k/f(15.0′) = 58.5k … Wx = 382.98k

 @ z = 20′: Wwalls = 3.9k/f(17.5′) = 68.25k … Wx = 392.73k

 @ z = 0′: Wwalls = 3.9k/f(10.0′) = 39.0k … Wx = 363.48k

W = total weight of building(dead loads) = 1875.9k

Cvx = vertical distribution factor = Wxhx
k/(Σwihi

k) 

= Wxhx
k/(3078202)

V = CsW = .011(1875.9) = 20.635

Fx = Cvx(V) = lateral force in kips.

Table 12.14:  Seismic load spreadsheet

12.4 Factored Loads

The LRFD (Load Resistance Factor Design) Method uses 

load factors to create an ultimate or factored load that is 

the design load. It also uses Resistance Factors (φ) which 

are discussed in chapters related to design with specific 

materials.

Ultimate or design loads are based on the following types 

of loads.

 U = The design or ultimate load = factored load

 Wu = factored uniform load

 Pu = factored concentrated load 

 D = dead load

 L = live load

 Lr = roof live load

 S = snow load

 R = rainwater/ice load, (not ponding)

 W = wind load

 E = earthquake load

All loads are placed into one of these categories and factored 

using the six equations below. The largest result from the six 

equations is used as the design load.

1. U = 1.4D

2. U = 1.2D + 1.6L + 0.5 (Lr or S or R)

SDt Cu Structure type Ct x 

~0.4 1.4 Steel Moment Frame 0.028 0.8 h Wx h2 Wxh2 Cvx V Fx 
0.3 1.4 Concrete Moment Frame 0.016 0.9 65 353.73 4225 1494509 0.486 20.635 10.03 
0.2 1.5 

0.15 1.6 
Steel eccentrically braced frame 0.03 0.75 
Steel buckling-restrained braced frar 0.03 0.75 50 382.98 2500 957450 0.311 20.635 6.42 

~ 0.1 1.7 All other systems 0.02 0.75 35 382.98 1225 469151 0.152 20.635 3.14 

20 392.73 400 157092 0.051 20.635 1.05 

0 363.48 0 0 0 20.635 0 
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3. U = 1.2D + 1.6 (Lr or S or R) + (L or 0.8W)

4. U = 1.2D + 1.6W + 0.5L + 0.5(Lr or S or R)

5. U = 1.2D ± E + L + 0.2S

6. U = 0.9D ± (1.6W or E)

Example 12-6: Beams weighing 22#/f spaced 8′ on center, 

support a 50psf dead load, 150psf live load and a 20#/f 

seismic load. 

Find Wu: 

D = 50psf(8′) + 22#/f = 422#/f

L = 150psf(8′) = 1200#/f

E = 20#/f

1. Wu = 1.4(422) = 590.8#/f

2. Wu = 1.2(422) + 1.6(1200) + 0.5(0) = 2426.4#/f 

3. Wu = 1.2(422) + 1.6(0) + (1200 OR 0) = 1706.4#/f

4. Wu = 1.2(422) + 1.6(0) + 0.5(1200) + 0.5(0) = 1106.4#/f

5. Wu = 1.2(422) ± 20#/f + 1200 + 0.2(0) = 1726.4#/f & 

1686.4#/f

6. Wu = 0.9(422) ± (1.6(0) OR 20) = 399.8#/f & 359.8#/f

Wu = 2426.4#/f (highest governs)

Practice Exercises:

12-1: If LLo = 80psf and tributary area (AT) is 750f2, what is 

reduced live load on a corner column with a cantilevered slab?

12-2: Calculate the design snow load on a flat roof of an office 

building in Denver, Colorado. 

12-3: Find the wind loads for Column Line 2 if the fully 

enclosed structure in Melbourne, Florida, shown in 

Figure 12.7 resists wind with column lines 1, 2, and 3. Use 

Exposure Category D and Occupancy Category III.

12-4: Determine the seismic loads for column line 2 of the 

building in Figure 12.17. The site has very dense soil. The 

dead loads are 100psf for floors and 50psf for walls. The 

structure is a reinforced concrete moment frame.

12.7

Chapter 12 Practice exercises
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Hor izontal  Framing Systems

13.1 Typical Steel Framing 
Systems

Components of a horizontal steel framing system include 

the decking material, steel beams or joists, and the angles, 

plates and bolts used for connections. The design of steel 

components is covered in Chapters 21 through 24. Horizontal 

framing systems in steel may also take the form of a space 

frame or space truss as discussed in Chapter 15.

13.1.1 Decking in Steel Framing 
Systems

Decking can be comprised of almost any material that will 

support and safely transfer the floor or roof loads to the 

joists or beams. In steel framing, the decking material is 

most commonly steel deck, although grating is often used 

for catwalks and mezzanines in industrial applications. Other 

choices for decking on steel framing systems include precast 

concrete slabs and in some cases wood planking. 

Steel deck is often covered with a concrete slab. In 

composite decking, the concrete and metal deck work 

together to support the loads. The concrete handles the 

compression forces and the steel deck handles the tension 

forces. In order for this to happen the deck must be bonded 

to the concrete through the cross-sectional pattern of the 

deck and also through the use of steel shear studs welded to 

the top of the metal deck.

Horizontal framing systems are required to carry floor loads 

and usually to carry roof loads. The main idea of a horizontal 

framing system is to transfer all floor or roof loads as well 

as any lateral loads to the vertical support system. To do 

this, structural bays in orthogonal, radial or other patterns as 

discussed in Chapter 11 are employed to suit the individual 

project. The structural materials will define the limitations of 

the horizontal framing system.

Horizontal spanning systems consist of a deck that 

supports the floor or roof load and spans between and is 

supported by beams or joists. The deck not only distributes 

the loads to the beams, but provides a continuous stiff 

medium that enables the horizontal spanning systems to 

act as a horizontal diaphragm, meaning it acts as one rigid 

body. Decking material ranges can be any material capable of 

transferring the floor or roof loads to the beams or joists.

The beams and/or joists transfer the loads from the deck 

to either carrier beams or girders or directly to a vertical 

support system. Beam spacing is dependent on the allowable 

span of the deck. While some beams or joists may frame into 

the walls or columns of the vertical support system, many 

will frame into carrier beams or girders.

Most horizontal spanning systems employ an orthogonal 

grid pattern that allows for efficient use of materials and ease 

of connections. However, this is not required. As discussed 

in Chapter 11, grids can also be radial, complex or organic in 

form. 
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In non-composite or form decking, the metal deck is simply a 

form that supports the concrete when it is placed and until it 

cures. The concrete carries the entire floor or roof load. 

Steel deck is selected by reviewing manufacturers’ 

catalogs. Consider the proximity of the manufacturer’s facility 

to the job site; closer is better because less energy will be 

used for transportation. Consider the recycled content in 

the steel by observing the total scrap steel, post-consumer 

recycled content and pre-consumers recycled content of each 

facility.

13.1.2 Steel Joists and Beams

The deck is supported by a series of joists, beams or bearing 

walls. Most steel beams are wide flange beams (W-shapes). 

W shapes have callout names based on depth and weight. For 

example, a W14 × 22 will have an approximate depth of 14″ and 

a weight of 22#/f. M- and S-shapes are other I-beam shapes 

that may be used. Steel I-beam shapes are most efficient when 

spanning distances between 20′ and 40′. For lighter loads and 

shorter spans, channel sections (C-shapes), hollow structural 

sections (HSS-shapes) or angles (L-shapes) may be used. 

13.1

Steel decks

13.2

Steel beams
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Castellated beams are beams with a perforated web with 

holes usually in a series of circles or hexagons. They are 

constructed by combining the top half of one W-shape 

with the bottom half of another W-shape so that the beam 

becomes highly efficient. The top half is designed for 

compression and the bottom for tension. If a castellated 

beam is used in a scenario involving an overhang, the beam 

must be checked for compression in the bottom section near 

the overhang support. Castellated beams are used when it 

is desired that the openings in the web accommodate ducts, 

pipes or conduit or when it is necessary to reduce weight.

13.3

Castellated beams

Open-web joists (OWJ) are another spanning option for 

steel framing systems. OWJ consist of a top and bottom 

flange usually made of double angles with bar struts placed 

in a truss configuration forming the web. OWJ are most 

efficient when used in spans over 30′. The open web not only 

provides an economical solution, but allows space for ducts, 

pipes or conduit to pass through the web.

There are three classes of OWJ with depths and spans 

as shown in Table 13.1. Design may vary by manufacturer, 

making it important to consider manufacturers close to the 

site before designing and calling out an OWJ component.

Table 13.1:  Classes of open-web joists

OWJs must be braced laterally using horizontal or diagonal 

bracing to prevent displacement that could cause torsion in the 

joist. Further, OWJs must be bridged to prevent lateral sway. 

13.4

Open-web joists

Rules of thumb for preliminary planning of steel framing 

systems are as follows where L = span in feet and d = depth 

in inches:

 Steel form deck: d = L/35, Lmax = 12′

 Steel Composite deck and roof deck: 

d = L/35, Lmax = 15′

 Steel I-beams: d = L/20

 Steel carrier beams or girders: d = L/15

13.2 Concrete Framing 
Systems

Concrete framing systems consist of steel-reinforced 

concrete components that are either cast in place or 

precast. The design of concrete components is covered in 

Chapters 25 through 33. Concrete systems can be designed 

to any shape for which a form can be fabricated. However, 

because concrete is heavy, weighing about 150pcf, concrete 

design should strive for efficiency of material.

Series depth span 

K 
Single bar web, 

12 to 30" to 60' 
suitable for light loads 

LH 
Suitable for heavy 

18 to 48" to 96' 
loads or lonq spans 

DLH Suitable for heavy 
52 to 72" 

to 144' (roof), 
loads and long spans 120' (floor) 
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13.2.1 Slabs

Concrete slabs can have either a uniform, tapered or ribbed 

cross-section depending on the span and loads carried. The 

most common type of slab is one with a uniform depth. A 

rule of thumb for slab depth is d = L/20, although slabs may 

be designed to be much thinner by calculating deflection, 

allowing the slab to be continuous over multiple spans or by 

employing pre-stressing methods. Thinner slabs can also 

be achieved by using a high-strength or ultra-high strength 

concrete.

13.2.2 Concrete Beams and T-beams

Concrete beams are typically rectangular in cross-section, 

but this is not a requirement. The shape of the cross-section 

is dependent only on its ability to carry the load over its span 

and the ability to create formwork to support it while it cures. 

The depth of a concrete beam is dependent on the span and 

loads carried as well as the amount of steel reinforcement 

and strength of the concrete mix. A rule of thumb for the 

ratio of the width (b) to the effective depth (d) of a concrete 

beam is 1.5 < d/b < 2.2. If shallower, the beam will begin to 

behave like a slab and if deeper, the beam will need additional 

reinforcement along the sides.

13.3 Wood Framing Systems

There are two basic methods for framing in wood: Western 

Framing and Post and Beam Framing, both of which are 

discussed in Chapter 15 “Structural Typology.” The difference 

between the two in horizontal framing systems is as follows. 

Western Framing Systems use closely spaced wood joists 

with a plywood or thin plank deck while post and beam 

systems use timber beams with a thicker plank deck.

13.3.1 Wood Deck

For Western Framing Systems, plywood decking is used as 

the subfloor and then topped with a finished floor product. 

The thickness of plywood is typically 3
4 ″ to 1″ depending on 

the span and the grade of plywood used. OSB, particleboard 

and other non-veneer construction products may be used if 

rated for use by the manufacturer.

One-way beamed slab -

Typical spans 8' to 12', but may be 
longer.

Slab spans in short direc�on.

Rule of thumb for slab depth = 
span/20.

Two-way beamed slab - 

Typical spans up to 30' or  more if 
prestressed.

Slab spans in two direc�ons.
Best suited for square or                                                                         
near square bays.

Rule of thumb for slab depth = 
span /30.

Re
fle

ct
ed

 c
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Plate slab - 

Typical spans to 20'.

Slab spans in two direc�ons.
Slab thickened around columns to 
prevent punching shear.                                   

Rule of thumb for slab depth = 
span/30.

13.5

Concrete 

beam and 

slab systems
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Diagonal sheathing may be used in Western Framing 

Systems. Diagonal sheathing consists of a thin plank board 3
4 ″ 

or greater spanning between joists and used as a subfloor. To 

ensure the sheathing acts as one unit, it is recommended that 

the boards have a ship-lap or tongue and groove connection.

Decking consists of planks placed either diagonally or 

perpendicular to the span of the beam or joist. Decking planks 

are typically 1.5″ thick or greater to span 4′ to 8′ with tongue 

and groove connections between planks. 

Outdoor decking consists of 2× dimensional lumber 

spaced to leave a small gap between the boards for drainage. 

The span of the decking depends on the ability of a single 

board to carry the entire weight of a person who might step 

on a single board. This means that the span between deck 

joists is much smaller than when the decking is made of 

plywood or tongue and groove planks of the same thickness.

13.3.2 Wood Joists and Beams

Wood joists and timber beams typically have standard-sized, 

rectangular cross-sections for economy. But wood is easily 

shaped and so custom sizes and non-prismatic members are 

sometimes used to convey a style or design concept. Sizes 

of wood joist and timber beams are dependent on the loads, 

spans, species of wood and factors such as water content, 

termite protection and heat. See Chapters 16 through 18 for 

design of wood beams.

Wood framing systems may also employ glue-laminated 

beams. Glue-laminated beams are manufactured by gluing 

thin layers of wood together to form a particular size and 

shape. Laminations may be vertical or horizontal, and 

horizontal laminations may employ cross-laminating, a 

process of alternating laminations at 90 degree angles to 

13.6

Ribbed concrete 

systems
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13.7

Built-up wood beams

13.8

Western framing systems
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create a stronger beam. Glue-laminated beams are costlier 

than sawn lumber, but are capable of longer spans. 

13.3.3 Wood Built-up Members, 
I-beams and Trusses

Wood joists and beams may have cross-sections built up 

from sawn lumber or fabricated wood materials such as OSB 

or a combination of both. Typical built-up members include 

box beams, I-beams and trusses as shown in Figure 13.7. 

13.4 Bay Framing

A bay is an area with a perimeter defined by a set of 

vertical support components, typically four columns. Often 

there are openings with a bay due to vertical shafts for 

stairwells, elevators, or MEP services. These openings cause 

discontinuity in the transfer of loads from deck to beams 

except in cases where the opening is very small or the deck 

can handle an overhang or cantilever.

To frame a bay, begin at the perimeter and frame between 

the columns. Decide in what direction the deck spans and 

evenly space beams to span perpendicular to the deck span. 

Consider the typical spacing and spans for the material to be 

used. See Table 13.2 as a starting point.

Table 13.2:  Typical spacing and spans

Where openings exist, place a beam along each side of the 

opening not already framed by a beam and choose the order 

of the load transfer.

For example, in Figure 13.10 (a) the deck spans E–W and 

the beams span N–S to create four spans. The opening is 

10′ × 20′ and so the beam on the right is truncated before it 

13.9

Post and beam systems

Horizontal Spanning Member Rule of thumb for depth Typical Span Range 
Dimensional Lumber 

5/4 Wood decking 2'- 4' 
Solid wood Joist U16 8'-14' 
Box beam U18 20' - 60' 
I joist U18 15' - 60' 
Joist truss U18 15' - 60' 

Timber 
Timber Beam U15 8'- 20' 
Timber truss 20' - 60' 

Glue laminated wood 
PSL U20 10' - 45' 
LVL U20 10' - 45' 
Glu-Iams U20 20' - 90' 

Steel 
Steel Deck 2'-12' 
Light-gaguge steel joists U20 8'- 30' 
W- shapes U20 20' - 40' 
Deep W-Shapes U15 40' - 80' 
Castellated beams U24 40' - 80' 
OWJ U24 20'-144' 

Concrete 
Rectangular beam U16 12'-48' 
T-beams U20 20' - 80' 
Doubly reinforced beams U20 20' - 50' 
Pre-stressed beams U20 20' -
Solid one-way slabs U28 8'-18' 
Solid two-way slabs U45 15 - 40' 
Waffle Slabs U24 20' - 50' 
Joist Slabs U24 20' - 40' 
Precast Hollow Core Slabs U40 12' - 24' 
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penetrates the stairwell. A header beam is placed supported 

by the center beam and the beam along the column line. The 

N–S edge of the opening is framed, supported by the header 

beam and a girder.

In Figure 13.10 (b) the deck spans N–S and the beams 

span E–W. Two beams must be truncated before before 

penetrating the stairwell. A header beam is placed spanning 

N–S and the E–W edge of the opening is framed, supported 

by the header beam and the girder.

13.5 Framing Process

The process to frame a roof or floor is as follows:

1. Define the perimeter. 

2. Locate stairwells, elevator shafts, ventilation shafts and 

any other large perforation in the floor or roof.

3. Locate multilevel spaces

4. Define circulation patterns and other areas where 

columns should be avoided.

5. Create the pattern of support using columns or bearing 

walls. Columns cannot be spaced farther apart than the 

maximum span of the beams.

6. Frame between vertical supports. Do not place framing 

members through vertical shafts such as stairwells or 

elevator shafts.

7. Provide additional beams to support the deck. Beams 

cannot be spaced farther apart than the maximum span 

of the deck.

8. Frame around all openings.

Example 13-1: Create a framing plan for the perimeter 

defined in Figure 13.11 (a) if using structural steel with a 

maximum beam spacing of 10′ and a maximum column 

spacing of 40′. 

Include an atrium of approximately 5000ft2 and an 8′ × 20′ 
stairwell at each end of the building.

1. Draw column lines in one direction. Do not exceed 

maximum column spacing. Try to:

a. place column lines near corners of the building

b. evenly space column lines for economy or create a 

pattern of space for a design concept

c. if stairwells or other vertical shafts fall on a column 

line, adjust shaft location if possible. If not, adjust 

column lines or plan to frame around the opening. 

2. Create column lines in the perpendicular direction.

3. Frame each bay.

4. Frame around openings.

5. Add beams to support decking. See Figure 13.11 (b).

Possible solutions are shown in Figures 13.11 (c, d, e and f).

13.10

Bay framing (a) E–W deck span (b) N–S deck span
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13.11

 Framing example
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Practice Exercises:

13-1 through 13-3. Frame the bay shown if the maximum 

deck span is a) 8ft and b) 10ft.

13-4: Frame a structural floor plan that lies within a 96′ by 

144′ rectangle.

The plan must include:

1. at least 11,000sf of enclosed space (including the atrium 

and stairwells listed below);

2. one atrium space between 800 and 1200sf, located 

anywhere you choose;

3. two 8′ × 20′ stairwells along the perimeter and spaced at 

opposite ends of the building;

4. maximum slab span = 12′ = maximum beam spacing;

5. maximum beam span = 40′ = maximum column spacing.

13.12

Chapter 13 Practice exercises



fourteen

L ateral  Bracing Systems

14.1 Braced Frames

This section explains the Diagonal Truss Method for 

determining the loads on components due to lateral loads 

when using diagonal tension bracing. Note that while the 

diagrams only show the active diagonal tension braces, there 

are in fact diagonal tension braces in both directions. Because 

diagonal tension braced systems become indeterminate 

when using multiple bays and multiple levels, the following 

assumption must be made.

The Diagonal Truss Method assumes each diagonal on any 

given level equally resists the sum of horizontal forces above 

There are three basic methods to resist lateral loads. Trusses, 

trussed tubes and braced frames with diagonal tension 

counters, all rely on diagonal bracing to resist lateral loads. 

Moment frames rely on rigid connections to resist lateral 

loads. Shear walls, whether made of reinforced concrete, 

masonry or sheathed stud walls, rely on the stiffness of the 

wall to resist lateral loads. 

When resisting lateral loads, whether wind or seismic, it is 

important to maintain a balance of resistance throughout the 

structural system. Otherwise, the building will be subjected 

to torsion as one portion resists a lateral motion while another 

is free to deflect.

Moment Frame -
transfers loads to the ground 
through rigid connec�ons 

Braced Frame -
transfers loads to the ground 
through a series of braces

Shear Wall - 
transfers loads to the ground 
through the bulk of the 
material

14.1

Three basic types of lateral resistance
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that level. Once this assumption is made, the axial loads in 

the system can be solved by summing forces in the x and y 

directions.

Example 14-1: Find the additional loads in each member 

due to the lateral loads shown.

14.3

Diagonal Truss Method

In the top row the total force to be resisted is 3.2k. Each 

diagonal will resist 3.2k/2 = 1.6k. In the bottom row, each 

diagonal will resist (3.2k + 7.2k)/2 = 5.2k.

14.4

Diagonal Truss Method assumes each bar in a row resists lateral loads 

with equal force

P P

P P

P

P P P P P P P P

P P

SM 
= 2P - P 
= P P

P

P P P P P P P P

SM 
= 2.5P - 1.5P 
= P

SM 
= 0.5 

SM 
= 2.5P - 2.5P 
= 0

SM 
= 0.5P 

SM 
= 0.5P

SM 
= 2.5P - 2.5P 
= 0

Balanced lateral resistance systems eliminate torsion about the center of gravity of the building mass.

Unbalanced lateral resistance systems create torsion about the center of gravity of the building mass.
14.2

Balance in later resistance systems
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Because the forces are axial in every member, the vertical 

component in the diagonal can be found using the ratio of 

rise/run: rise/run = fy/fx; or fy = fx(rise/run).

 Top left: fy = 1.6(16)/20 = 1.28

 Top right: fy = 1.6(16)/16 = 1.6

 Bottom left: fy = 5.2(20)/20 = 5.2

 Bottom right: fy = 5.2(20)/16 = 6.5

The forces at the other end of each bar are equal and 

opposite.

Sum forces at each joint to find the additional loads in the 

beams and columns.

 A: ΣFx = 0 = 3.2 + x .. x = −3.2 and ΣFy = 0 = y … y = 0

 B: ΣFx = 0 = 3.2 − 1.6 + x … x = −1.6 and 

ΣFy = 0 = −1.28 + y … y = 1.28

 C: ΣFx = 0 = 1.6 − 1.6 + x … x = 0 … okay and 

ΣFy = 0 = −1.6 + y … y = 1.6

 D: ΣFx = 0 = 7.2 + 1.6 + x … x = −8.8 and 

ΣFy = 0 = 1.28 + y … y = −1.28

 E: ΣFx = 0 = −5.2 + 8.8 + 1.6 + x … x = −5.2 and 

ΣFy = 0 = −5.2 − 1.28 + 1.6 + y … y = 4.88

 F: ΣFx = 0 = −5.2 + 5.2 + x … x = 0 … okay and 

ΣFy = 0 = −6.5 − 1.6 + y … y = 8.1

 G: ΣFx = 0 = 5.2 + Rx … Rx = −5.2 and 

ΣFy = 0 = 1.28 + 5.2 + Ry… Ry = −6.48

 H: ΣFx = 0 = 5.2 + Rx … Rx = −5.2 and 

ΣFy = 0 = 6.5 − 4.88 + Ry… Ry = −1.62

 I: ΣFy = 0 = 8.1 + Ry … Ry = −8.1

It is always a good idea to check the sum of all external 

horizontal forces.

14.5

Horizontal and vertical bar forces

ΣFy = 0 = −6.48 − 1.62 + 8.1 = 0 … okay

ΣFx = 0 = 3.2k + 7.2k − 5.2k − 5.2k = 0 … okay

Likewise, the moment about any point should equal zero.

ΣMG = 3.2(36) + 7.2(20) + 1.62(20) − 8.1(36) = 0

ΣME = 3.2(16) − 6.48(20) − 8.1(16) + 5.2(20) + 5.2(20) = 0

Calculate the tension in the diagonals:

TBD = √(1.62 + 1.282) = 2.05 

TCE = √(1.62 + 1.62) = 2.26 

TEG = √(5.22 + 5.22) = 7.35 

TFH = √(5.22 + 6.52) = 8.32 

Note: there are two diagonals in each bay, but only one is 

active at any given time because the bracing is designed for 

tension alone. Only one brace is shown for analysis because 

the force is assumed from one direction. If the lateral loads 

are reversed, the diagonals shown with dashes in Figure 

14.6(a) would be inactive and the following beam and column 

values can be found using the active tension braces. If only 

one set of diagonals is preferred, the diagonals will need to 

be designed for the compression forces created by reversed 

lateral loads as shown in Figure 14.6(b).
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The absolute value of the largest loads from both scenarios 

must be added to the beams and columns. Knowing the 

tension in the diagonals allows them to be designed. 

Assume Ft = 30ksi. Since Ft = P/A, using maximum 

tension to size all rods the same, A ≥ 8.32k/30ksi = 0.28in2. 

And since A = .28 ≤ πd2/4, d ≥ 0.60″. Rounding up to the 

next 1
8 ″ yields a 5

8 ″ diameter rod. Other structural shapes that 

could be used include:

 L1-1/4 × 1-1/4 × 3/16, A = 0.43

 Or C3 × 3.5, A = 1.09

 Or HSS2 × 1 × 1/8, A = 0.61

14.2 Moment Frames 

Moment frames resist lateral forces by virtue of the rigid 

connections at each joint. Although the connections are rigid, 

a moment frame is actually more flexible than a braced frame. 

This section explains how to use the Portal Method to solve 

for additional shear and axial forces and additional moment in 

beams and columns of a moment frame subjected to lateral 

forces.

The Portal Method has six basic steps:

1. Find shear in each column

2. Sum x-direction forces

3. Find moment caused by shear in columns

4. Balance moments at each joint

5. Find shear in beams caused by moment

6. Sum y-direction forces

14.7

The basic portal frame

Consider a portal of height h and length L subjected to a 

lateral force P. It is assumed that each leg is equally capable 

of resisting the force P and so the reaction at the base of 

each leg is P/2. The horizontal force is transferred through the 

14.6

Reversed lateral loads (a) tensions braces (b) compression braces
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vertical leg by shear force. At any given point in the leg, there 

is a force of P/2 in shear. Summing the horizontal forces at 

the point of load we find that the top of the portal has an axial 

force = P/2 in compression. 

14.8

Moment in the vertical legs

The moment at either end of the leg will be M = −(P/2)(h/2) 

= −Ph. And sum of moments at the connection between leg 

and top must equal zero or else the connection will rotate. 

14.9

Moment in portal frame members 

The moment at either end of the top will create shear equal 

to the moment divided by half the length of the top or (Ph/4)/

(L/2) = Ph/2L. 

Multiple portals in a frame.

Each leg on any given level equally resists the sum of all loads 

above that level. 

#legs = 2(#bays across)

14.10

Moment, shear and axial forces in a simple portal frame

Example 14-2: Use the Portal Method to determine 

the additional shear, moment and axial forces in the 

moment frame components shown in Figure 14.11.

14.11

Portal Method example

1. Find shear in each column. Each row has 2 portals and 

each portal has 2 legs for a total of 4 legs. This means 

that the exterior columns resist (1leg/4legs total) or 1
4  the 

lateral loads above them and the interior column resists 

(2legs/4legs total) or 1
2
 the lateral loads above them.
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14.12

Shear in columns

2 bays = 4 legs: 

 For the 16′ segment in the columns, the total forces 

above are P1 = 3.2k

P1/#legs = 3.2k/4legs = .8k/leg

Outside columns have 1 leg, interior columns have 2 legs:

 VA = VC = .8k shear on exterior columns 

 VB = .8(2) = 1.6 on interior column

For the 20′ segment in the columns, the total forces above 

are:

P1 + P2 = 3.2k + 7.2k = 10.4k

(P1 + P2)/# legs = 10.4/4legs = 2.6k/leg

Outside columns have 1 leg, interior columns have 2 legs:

 VA = VC = 2.6k shear on exterior columns 

 VB = 2.6k(2) = 5.2k on interior column

2. Sum x-direction forces. Start at the top and sum the 

x-direction forces at each joint.

(a)

14.13

Horizontal forces in beams

 Joint A2: ΣFx = 0 = 3.2k − 0.8k + AB2 … 

AB2 = 0.8 − 3.2 = −2.4k. 

Because the forces in the beam are pointed toward the joints 

(← →), the beam is in compression. The force exerted on 

Joint B2 is equal and opposite and therefore positive.

 Joint B2: ΣFx = 0 = 2.4k − 1.6k + BC2 … 

BC2 = 1.6 − 2.4 = −0.8k 

 Joint C2: ΣFx = 0 = 0.8k − 0.8k. This is correct. The 

sum should equal zero, although sometimes there will 

be a small difference at the last joint in a row due to 

the rounding of values.

 Joint A1: ΣFx = 0 = 0.8k + 7.2k − 2.6k + AB1 … 

AB1 = −5.4k = 5.4k←

 Joint B1: ΣFx = 0 = 1.6k + 5.4k − 5.2k + BC1 … 

BC1 = −1.8k = 1.8k←

 Joint C1: ΣFx = 0 = 0.8 + 1.8 − 2.6 = 0

(b)
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Horizontal reactions at the column bases are equal to the 

shear in the column:

 Joint A0: ΣFx = 0 = 2.6k + Ax … Ax = −2.6k = 2.6k←

 Joint B0: ΣFx = 0 = 5.2k + Bx … Bx = −5.2k = 5.2k←

 Joint C0: ΣFx = 0 = 2.6k + Cx … Cx = −2.6k = 2.6k←

3.  Find moment caused by shear in columns. There is a 

negative moment at the end of each column segment = 

M = Vh/2 where V = the shear in the column segment 

and h = height of the column segment.

14.14

Moment in columns

 For the 16′ segments on the exterior columns: 

.8k (16′/2) = 6.4 k-f 

 For the 16′ segment on the interior column: 

1.6(16/2) = 12.8 

 For the 20′ segments on the exterior columns: 

2.6 (20/2) = 26 

 For the 20′ segment on the interior column: 

5.2 (20/2) = 52 

4. Balance moments at each joint. ΣM = 0 at each joint. 

Moments are equal at both ends of a beam segment 

because shear is constant throughout the beam.

14.15

Moment in beams

 Joint A2: ΣM = 0 = −6.4 + MAB2 … MAB2 = 6.4k-f

 Joint B2: ΣM = 0 = 6.4 − 12.8 + MBC2 … MBC2 = 6.4k-f 

 Joint C2: ΣM = 0 = 6.4 − 6.4. This is correct.

 Joint A1: ΣM = 0 = −26 − 6.4 + MAB1 … MAB1 = 32.4k-f

 Joint B1: ΣM = 0 = −12.8 + 32.4 − 52 + MBC2 … 

MBC2 = 32.4k-f

 Joint C1: ΣM = 0 = 32.4 − 6.4 − 26. This is correct.

5. Find shear in beams caused by moment. V = M/(L/2) 

where M = moment in the beam segment and L = length 

of the beam segment.

14.16

Shear in beams
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VAB2 = 6.4k-f/(20′/2) = 0.64k

VBC2 = 6.4k-f/(16′/2) = 0.8k

VAB1 = 32.4k-f/(20′/2) = 3.24k

VBC1 = 32.4k-f/(16′/2) = 4.05k

6. Sum y-direction forces

14.17

Axial forces in columns

 Joint A2: Σfy = 0 = 0.64 + Fy … Fy = -0.64k = 0.64k↓ 

 Joint A1: Σfy = 0 = 0.64 + 3.24 + Fy … 

Fy = −3.88k = 3.88k↓

 Joint A0: Σfy = 0 = 3.88 + Ay … Ay = −3.88k = 3.88k↓ 

 Joint B2: Σfy = 0 = −0.64 + 0.8 + Fy … 

Fy − 0.16k = 0.16k↓

 Joint B1: Σfy = 0 = −3.24 + .16 + 4.05 + Fy … 

Fy = −0.97k = 0.97k↓ 

 Joint B0: Σfy = 0 = 0.97 + By … By = −0.97k = 097↓ 

 Joint C2: Σfy = 0 = −0.8 + Fy … Fy = .8k = .8k ↑ 

 Joint C1: Σfy = 0 = −0.8 − 4.05 + Fy … 

Fy = 4.85k = 4.85k↑ 

 Joint C0: Σfy = 0 = −4.85 + Cy … Cy = 4.85k = 4.85k↑ 

 Sum Y reactions: Σfy = 0 = −3.88 − .97 + 4.85 = 0 … 

okay 

When you design your beams and columns for shear and 

flexure and deflection, you must add the values you obtain 

for shear and moment from this chart. Remember the lateral 

forces may act in either direction.

14.3 Shear Walls

A shear wall acts as a rigid body capable of transferring 

lateral loads to the foundation through internal moment. Most 

shear walls are made of dense material such as masonry 

or reinforced concrete. But shear walls can also be created 

by lighter materials such as plywood on Western Framing 

if adequate tie-downs are provided to resist turnover. If no 

tie-downs are used, the resisting moment caused by the 

weight of the wall must be 50% greater than the overturning 

moment: MR ≥ 1.5MO.

14.18

Shear wall

Consider the shear wall in Figure 14.18. The lateral loads push 

against the wall and if not counteracted, will overturn the wall 

about Point B called the toe with an Overturning Moment = 

Mo = Ph. The weight of the wall (W) helps to counteract the 

overturning moment by creating a negative moment due to 



L A T E R A L  B R A C I N G  S Y S T E M S 117

the weight of the wall acting vertically at the center of gravity. 

If the shear wall is fully connected to columns as in case A, 

the column reactions due to wall weight W and lateral load P 

will be Ay = W/2 − Ph/L and By = W/2 + Ph/L. But if the wall 

is not connected to columns, then the weight of the wall is 

uniformly distributed and the lateral load causes a uniform 

change from tension to compression along the base of the 

wall as in Case B. The wall will require tie-downs wherever 

the net reaction is in tension.

Example 14-3: Determine the reactions on the columns 

if the normal-weight concrete, 8″ thick shear wall in 

Figure 14.19 is fully connected to the columns. 

 Determine a density for the wall based on material: 

concrete density = 150pcf 

W = 16′(36′)(8″)(1′/12″)(150pcf) = 57,600# = 57.6k

ΣMB = 0 = 10k(36′) + 20k(20′) − 57.6k(8′) + Ay … Ay 

= −299.2k = 299.2k↓

Σfy = 0 = −299.2k − 57.6k + By … By = 356.8k 

= 356.8k↑

14.19

Shear wall examples

Example 14-4: Determine the required thickness of the 

normal-weight concrete wall in Figure 14.19 in order to 

avoid tie-downs if the wall is not connected to columns.

Find weight of wall in terms of some thickness t:

W = 16f(36f)(t)(150pcf)/1000#/k = 86.4t

Mo = 10(36) + 20(20) = 760k-f

Check the moment about the toe to ensure that Mr/Mo ≥ 1.5

Mr = 86.4(t)(8ft) = 691.2(t)k-f

691.2(t)/760 ≥ 1.5 

t ≥ 1.649′ = 19.78″ use a 20″ wall

Check reactions along the base of the wall:

T = (ΣPiHi)(3)/b2 = 3Mo/b
2 = 3(760k-f)/(162) = 8.906k/f

W/b = 86.4k/f(20″/12″/f)/16′ = 9.0k/f

Reaction at point A = W/b − T = 9.0 − 8.906 = 0.094k↑ 

therefore no tie-downs are required.

Multiple shear walls along a plane of resistance may be 

used. In such cases, the portion of the load carried by an 

individual wall proportional to the total load may be assumed 

equal to the width of that wall divided by the total width of all 

the walls in that plane.

Practice Exercises:

14-1: For the braced frame shown in Figure 14.20, find the 

additional axial loads in the beams, columns and diagonals 

caused by the lateral loads. Use the Diagonal Truss Method.

14-2: For the moment frame shown in Figure 14.20, find all 

additional shear, moment and axial forces in all components 

caused by the lateral loads. Use the Portal Method.

14-3: Determine the additional axial loads on the columns 

connected to the shear wall shown in Figure 14.20 if the 

density of the wall = 90pcf and the wall thickness is 12″.

14-4: Determine the required thickness of the unconnected 

shear wall shown if the wall density is 120pcf.
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14.20

Chapter 14 Practice exercises



f i f teen

Str uctural  Typolo g y

15.1 Beam and Column 
Systems

Beam and column systems are the most common of 

structural types. Often called bulk active systems because 

loads are transferred through the components by virtue 

of their material qualities, this type of system has distinct 

subsystems: the horizontal spanning system which is usually 

a set of floor and roof assemblies; and the vertical support 

system which is comprised of a pattern of columns, bearing 

walls or vertical truss or frame assemblies. The components 

and their connections may be subject to axial and/or shear 

forces as well as moment during the transfer of loads. These 

systems tend to be, but are not necessarily orthogonal 

in vertical section with a combination of vertical support 

systems and horizontal spanning systems. 

15.1.1 Horizontal Spanning Systems

Most horizontal spanning systems consist of a deck that 

supports the floor or roof load and spans between and is 

supported by beams or joists. The deck not only distributes 

the loads to the beams, but provides a continuous stiff 

medium that enables the horizontal spanning system to act 

as a horizontal diaphragm, meaning it acts as one rigid body. 

Decking material can be 3
4 ″ plywood, dimensional lumber, 

metal deck, grating, concrete slabs or any other material 

capable of transferring the floor or roof loads to the beams or 

joists.

Most structures are unique in that they are composed of a 

set of components that are sized for specific requirements of 

spatial and contextual conditions. However, many buildings 

have very similar structural systems that can be grouped as a 

type. Typology is the study of types. In this chapter structural 

systems are grouped by type and the basic characteristics of 

each explained.

A building may have one structural system or it may have 

multiple different structural systems grouped as structural 

zones within the building. A building may also have multiple 

but similar type structural systems grouped or massed within 

the same building. 

15.1

Structural zones
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The beams and/or joists transfer the loads from the deck to 

either carry beams or girders or directly to a vertical support 

system. Beam spacing is dependent on the allowable span 

of the deck. While some beams or joists may frame into the 

walls or columns of the vertical support system, many will 

frame into carrier beams or girders.

15.3

Hierarchy in horizontal spanning systems

Most horizontal spanning systems employ an orthogonal grid 

pattern that allows for efficient use of materials and ease 

of connections. However, this is not required. Beam and 

column systems can easily follow a non-orthogonal pattern. 

As discussed in Chapter 11, grids can be radial, complex or 

organic in form. See Chapter 13 for specific examples of 

horizontal framing systems using wood, steel or concrete 

materials. 

15.1.2 Vertical Support Systems 

In a true beam and column system, the vertical support 

system consists of columns and/or bearing walls. The walls 

and columns are configured in a support pattern that follows 

a grid as described in Chapter 11. 

The important thing to remember about beam and column 

systems is that both gravity and lateral loads are transferred 

through the connections. Transfer can be made through a 

bearing when a component rests, or bears, on a support. 

Where components do not bear on a support, they must have 

a connection capable of resisting shear. 

All systems need lateral stability to prevent failure due to 

horizontal forces such as wind and seismic shear. Because 

beam and column systems transfer gravity loads through 

compression, shear and bearing, they do not necessarily 

incorporate lateral resistance assemblies as part of the load 

tracing path. Therefore, it is particularly important in beam 

15.2

Subsystems of beam and column systems
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and column systems to remember to plan for lateral stability 

by including bracing, moment frames or shear walls along 

strategic column lines. 

15.2 Form-Active Systems

Form-active systems are systems in which there is little or no 

bending stress either because the structure adapts its form 

as in cables, tents or membrane structures or pneumatic 

(inflatable) structures or because the form is efficient and has 

little or no bending stress as in arches, vaults and domes.

15.2.1 Tension Structures

Tension structures, often called membrane or cable 

structures, are form-active because the external forces and 

support reactions dictate the shape or form. Because the 

structural material responds to external forces, the shape 

becomes efficient for transfer of loads through tension. 

15.4

Vertical support systems

 15.5

Tension structure components
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Tension structures have three basic components: a 

membrane, a cable system and a compression component. 

Cables and membrane fabrics do not transfer loads through 

compression. However, as mentioned above, tension 

structures do have a compression component. Because 

cables are hung, the loads are transferred from the cable to 

the earth via a compression element such as a column, wall, 

or foundation support. 

When a cable hangs, it forms a catenary curve due to its 

own weight or when subjected to a uniform load. A catenary 

curve can be described by the formula y = (1/a)cosh(ax). 

Graphically, a catenary curve is the curve made by the 

movement of the focal point of a parabola when it is rolled 

along a linear surface. The difference between a catenary 

curve and a parabola is small and as a result, many designers 

choose to design tension structures as if the cables are 

parabolic in nature. 

It is important to remember that cables subjected to 

concentrated loads will theoretically form line segments 

between the loads and between loads and supports. Because 

the cable has some weight and that weight is a uniform load, 

there will be a contribution to the sage from the weight of 

the cable. Because cables do not handle shear, the forces are 

axial along the cable. 

A catenary arch with a = 0.2, having a uniform load, w, and 

span, L, will have the following reactions at any point along 

the arch at some distance x from the left support:

fx = wL/5.52← and fy = wL/2 − wx↓

Drawing the reaction vectors at increments of L/20 shows 

how the resultant forces follow the curve as shown in 

Figure 15.7. Smaller increments yield even closer results.

Tension structures employ a cable system with a pattern 

that can be orthogonal, radial, triangulated or any other shape 

that will safely transfer the load. The cable system pattern 

should be chosen based on the compression support system 

pattern. Several cable and support patterns are illustrated in 

Figure 15.8.

The membrane of a tension structure is the equivalent of a 

roof deck. It must transfer the roof loads to the cable system. 

The cable system is the equivalent of a beam or joist system. 

Three materials that are typically used for membrane include:

 Polytetrafluorethylene (PTFE)—coated glass fiber

 Polyvinylchloride (PVC)—coated polyester fabric

 Ethylenetetrafluorethylene (ETFE) foil

Consider differences in cost, UV protection, life span, fire 

rating, sound characteristics and thermal qualities in choosing 

a membrane material. Check with individual manufacturers 

for allowable spans and loads.

Tension structures are economical, easy to assemble and 

disassemble, capable of spanning long distances, and most 

are durable. Also, most allow light transmission while also 

reflecting heat, making the system energy efficient.

15.6

Catenary curve and comparison to parabola
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Some interesting examples of tension structures include 

the O2 Arena by Populous in Greenwich, England; The Hajj 

Terminal by SOM in Jeddah, Saudi Arabia; and the Munich 

Olympic Stadium by Frei Otto.

To design a tension structure:

1. Determine the perimeter of the covered area.

2. Determine where the compression members can be 

placed (pattern of support).

3. Draw a cable network that will support the membrane 

and stabilize the compression members.

4. Add connector cables as needed to support the 

membrane.

15.2.2 Pneumatic Structures

Pneumatic or inflatable structures have a form that responds to 

both external forces and internal pressure where load transfer 

is dependent on tension in the membrane. As such, they are 

form-active. There are two basic types of pneumatic structures: 

air-supported and cellular. The pattern of the membrane is the 

key to its ability to support a load. Cellular or compartmentalized 

pneumatic structures have the ability to change shape by 

regulating the pressure in individual cells. Further, cellular 

pneumatic structures can be sealed to reduce the amount of 

energy used in keeping the membrane inflated, making them 

more energy efficient than air-supported systems.

15.7

Forces in catenary curves
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15.8

Cable and support patterns
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15.9

Pneumatic structures
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Pneumatic structures have some clear advantages such as 

ease of assembly and disassembly, cost and lightness. But 

they have a major disadvantage of requiring energy to inflate 

and in the case of air-supported systems, require constant 

energy to maintain inflation. Another disadvantage is that 

unlike tension structures that will remain structurally sound 

with a puncture in the membrane, a pneumatic cell will 

deflate once punctured and may cause failure.

15.2.3 Arches, Vaults and Domes

Arches are considered form-active although they do not 

change shape with load changes. This is because the load 

transfer, which is dependent on the shape of the arch, has 

little bending stress. A catenary arch, as discussed in section 

15.1, has no bending stress and is the most efficient form for 

uniform loads applied vertically. 

Arches are probably the category with the largest range 

of attributes. Arches may be formed by bending a single 

member along its axis or by compiling a series of wedge-

shaped compression members along the arch axis line. Many 

arches are built in segments and assembled with pinned 

connections on the site. The span can range from a doorway 

to the width of a stadium. The materials can include anything 

capable of handling compression. Arches can be used alone 

to support a load above an opening or can be extruded to 

form vaults or rotated to form domes.

A barrel vault is the linear extrusion of an arch and as such 

is form-active. And while most vaults maintain the same 

cross-sectional shape along the length of the vault, this is not 

a requirement. When two barrel vaults intersect, a groin vault 

is formed and the loads are transferred along the intersection 

line called the groin. 

A rib vault is a vault created by a series of ribs that have 

an arch shape. The spaces between the ribs have a deck that 

transfers loads to the ribs. The ribs are not necessarily parallel 

or straight members. Curved ribs and intricate patterns are 

possible.

A fan vault uses ribs that fan out from the column supports 

toward a horizontal plate at the top. The horizontal plate, 

called a lozenge, is useful for supporting vertical loads above 

the vault. 

Vaults can be tessellated to create a horizontal spanning 

system. One advantage to tessellating vaults is that the 

thrust, or outward horizontal force, on the columns is 

counteracted by the adjacent vault. Another advantage is 

that with smaller spans, the thickness of surface or ribs is 

reduced. But it must be remembered that each vault will 

need vertical support and that tessellations with very small 

spans may produce awkward, column-filled spaces.

A dome shape is formed by the rotation of an arch shape, 

but not all domes behave as a series of rotated arches. Radial 

rib domes are form-active, with each rib transferring loads 

through compression with little or no flexural stress. Thin 

shell domes are surface-active (see thin shells, section 15.3) 

and geodesic domes are vector-active space trusses (see 

space trusses, section 15.5). Domes are inherently strong 

structures because of the double-curvature of the shape. 

15.10

Arch types
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15.3 Thin Shells

Thin shells are surface-active, although they seem to be 

form-active because their shapes are generally efficient like 

form-active shapes. They have a fixed shape and transfer the 

load through the surface shape, and not through a particular 

cross-section, and therefore are surface-active. They differ 

from arches, in that the load transfer is in two-directions 

although it can be argued that any cross-section produces 

some sort of arch. Transfer follows the surface shape, not a 

particular cross-section. There are many wonderful examples 

of thin shell structures such as the TWA Terminal at JFK by 

Eero Saarinen, or the Deitingen Service Station by Heinz Isler, 

or Loas Manatiales by Feliz Candela, to mention just a few. 

15.3.1 Hy-pars

A hy-par is a thin shell that forms the shape of a hyperbolic 

paraboloid. This means that when a section is taken in one 

direction, a hyperbola is seen and in a perpendicular section, a 

parabola is seen. Felix Candela is credited with development 

of the hy-par and used it successfully in numerous projects. 

Because the cross-section is a parabola, which is very close 

to a catenary curve, the shell has very little bending stress. 

This efficiency accommodates a very thin shell thickness. 

Because loads are transferred through compression, concrete 

is a suitable material for the hy-pars.

15.11

Vaults

Domes created by rota�on of arches.

Ribbed Dome Radial Rib Dome Schwedler Monoclinal 
Dome

Lamella DomeSchwedler
Dome

Geodesic Dome
15.12

Domes
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15.4 Folding Plates

Folding plates transfer loads from one plate to another along 

the intersection line between the two plates. Individual 

plates must be capable of transferring loads to the edges 

through shear and moment and typically can be designed as 

a horizontal spanning system. It is the connection between 

plates that is important. Adjacent plates, like adjacent vaults, 

can counteract each other’s horizontal forces and transfer 

vertical loads along the intersection line.

Plates may be assembled in any workable pattern and 

tessellation of plate groups is often used. Figure 15.14 

describes a few typical plate patterns. Folded plate systems 

may be used on any scale with plates varying from floor or 

roof diaphragms to pieces of a façade. By varying the shape 

of tessellations, either through the use of algorithms or 

randomly, the tessellated folded plate structure can take on 

double curvature shapes.

15.5 Trusses and Space 
Frames

Trusses and space trusses are vector-active systems. A vector-

active system, in theory, is one in which loads are transferred 

through compression or tension and the members are not 

subject to shear and moment. In reality, many trusses are not 

true trusses. As mentioned in Chapter 2, bars in a true truss are 

connected by pinned joints at each end and the forces on the 

true truss are only applied at the joints. In most construction, 

however, the top and bottom chords of a truss are usually single 

members that span multiple bar lengths. Further, most trusses 

carry a uniform load applied to one or more of the chords.

Trusses may be used as beams or joists and placed in 

a parallel configuration. But, just as open-web joists need 

lateral bracing to prevent sway, trusses should be braced 

laterally as well. 

15.13

Hyperbolic paraboloid
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To make truss systems more efficient, the trusses span in 

two directions, creating a grid of trusses. This is a space 

truss. Typical space truss configurations are shown in 

Figure 15.15. 

Below is a simple method to create a space truss or space 

frame.

1. Create a pattern—Figure 15.16(a).

2. Locate the center points or the spaces; they become the 

new vertex points. Connect the vertices on the offset 

layer to form a new pattern. (green)—Figure 15.16 (b).

3. Offset the layer.

4. Connect the vertices of both layers. (black)—Figure 15.16 (c).

15.16

Design of a space truss

(a)

(b)

(c)

15.14

Folded plate structures

15.15

Space trusses
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Space trusses can be stacked or combined in a folded 

system. Space trusses do not need to be orthogonal in either 

plan or section as in Figure 15.17 below. 

15.6 Moment Frames

Moment frames are systems in which lateral forces are 

resisted by virtue of the rigidity of the connections. See 

Chapter 14 for an explanation of the shear, moment and axial 

forces in moment frames. It is the moment created in the 

fixed or rigid connections that gives the moment frame its 

name. The moment frame is often called a rigid frame, but a 

rigid frame is actually more flexible than a braced frame. 

The primary advantage to a moment frame is that no 

diagonal bracing or shear walls are required. Moment frames 

allow for full unblocked views, making them ideal for use with 

curtain wall façades.

15.6.1 Steel Moment Frames 

Early moment frame connections used riveted connections. 

Welding of connections was introduced in the 1950s but 

popularity faded in the 1980s due to economic concerns 

about the cost of welding and inspecting welds. Further, 

many welded fixed connections have failed during 

earthquakes due to brittle fracture around the weld. After 

2001, federal building requirements for blast resistance 

prompted the design of new moment connection systems. 

15.6.2 Non-steel Moment Frames

Moment frames may be designed in concrete or other 

materials. The logic of load transfer is the same. Small 

moment frames may be designed using glue-laminated 

timber or laminated bamboo.

15.17

Design of a non-orthogonal space truss

Plan Elevation

3D view



S T R U C T U R A L  T Y P O L O G Y 131

15.18

Moment frames

15.7 High-rise Typology

A high-rise is defined as a building over ten stories in height 

or at least 100ft in height. A tall building is defined by the fact 

that its tallness is integral to the design. The height is atypical 

compared to the vernacular or for the time period in which it 

is built.

Lateral forces on high-rises are an important concern. 

Seismic forces increase exponentially with height. Wind 

forces are constantly present and, as shown in Figure 15.19, 

a doubling of the height of a building can increase wind loads 

significantly, causing significant moment and deflection.

15.19

Wind on a high-rise

Lateral loads create another concern for high-rise structures. 

The P-delta effect is the additional moment created by 

lateral displacement in high-rise buildings. This may be as 

high as 10% of moment caused by lateral forces before 

displacement.

The bending of the structure as a whole unit creates a 

moment at the base or foundation. To resist overturning, the 

moment at the base must be resisted.

Lateral loads that are not resisted symmetrically will be 

subjected to torsion or twisting of the structure.

Temperature differential is another concern. The south 

side of a structure expands more on a sunny day, compared 

to the shaded north side, causing flexure in the structure.
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 Δ = αLΔT and for steel, the coefficient of thermal 

expansion, α = 6.5 × 10-6. This means that for 100′ tall 

building with 40°F temperature differential between 

the sunny and shaded sides, the change in length is 

Δ = .0000065(100′)(40) = 0.026′ = 0.312″ 

 For a 2000′ tall building with 80°F temperature 

differential between sunny and shaded sides: 

Δ = .0000065(2000′)(80) = 1.04′ = 12.48″ 

Although these numbers seem small, the effect of thermal 

expansion is significant enough to warrant expansion joints in 

tall or long structures.

With a large number of levels, even a few inches of 

depth in a typical floor design can have a major impact on 

the structure. A 12″ additional depth per floor in a 100-floor 

building yields an additional 100ft of height. This means 

greater wind loads; therefore greater structural member sizes, 

taller elevators, more HVAC ducts and therefore greater cost 

per square foot occupied space. Alternately, where there are 

limitations to building height, a reduction in floor depth allows 

for more levels and therefore more leasable space. A 1200′ 
tall building with floor-to-floor height of 12′ yields 100 floors. 

A one foot reduction in floor depth would yield 1200/11′ = 

109 floors allowing nine additional levels of space.

Gravity loads are another concern. Every column must 

support the accumulated loads on its tributary area from all 

of the levels above it. An increase in gravity loads per floor 

therefore has a greater impact on column design in taller 

buildings. For a given height, gravity loads can be reduced by 

choosing lighter, more efficient structural materials.

15.7.1 Tubes and Bundled Tubes

A tube structure is a design in which the gravity and lateral 

forces are primarily handled by the perimeter structure. 

Flexural stress in the overall structure is reduced because 

the moment of inertia for the system increases when the 

members are distanced from the neutral axis. 

When bundled, each tube has its own structural integrity. 

Tied together, they form a unified network capable of 

resisting large lateral forces. Because loads and moments 

from each level are accumulated as they transfer to the 

ground, the number of tubes is often larger at the base than 

at the top.

Tube-in-tube structures are exactly as stated. There are 

the inner and outer tubes that work together to create a 

structure with a thick “wall” tube.

15.20

Tube structures

15.7.2 Rigid Frame

Moment frames can be designed to about 30 stories in height. 

Above that, member sizes become too large to make the 

design practical. The primary advantage to a moment frame 

is the unobstructed view it allows when used with a curtain 

wall system. Although moment frames are often called rigid 

frames, they are actually more flexible than braced frames. 

They are called rigid frames because the system transfers 

moment from the beams to the columns via rigid connections.

15.21

Rigid frame
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15.9.3 Braced Frames

Braced frames work well to a height of about 80 stories. 

Beyond that, the forces accumulated in the diagonals make 

the member sizes bulky. Diagonals help reduce the moment 

in individual members and reduce drift (lateral deflection). 

Diagonals in braced frames span only one floor level. 

The disadvantages of braced frames include the possible 

obstruction of view at window locations and the expense of 

fabrication and installation of the diagonal connections.

15.22

Braced frames

15.9.4 Trussed Tube

In a trussed tube, sometimes called a braced tube, the tube 

is braced with diagonals that span multiple stories creating 

a giant truss system. There may be columns in the core, but 

they support gravity loads only and not lateral loads. The John 

Hancock Building in Chicago by Fazul Kahn is a good example 

of a trussed tube.

15.23

Trussed tube

15.7.5 Space Truss

Space trusses in high-rise systems follow the same logic as 

discussed in section 15.5 but at a very large scale. Space 

truss components can vary from single floor height to 

multiple floor height. The floor loads are transferred to the 

truss components, which in turn transfer loads vector-actively 

to the ground.

15.24

Space truss
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15.7.6 Diagrids 

Diagrid systems are truss-like in nature, transferring loads 

through vector action. Like space frames or space trusses, 

diagrids are redundant—meaning there are multiple pathways 

the load can travel. If one pathway becomes fully stressed, 

another can handle the load transfer. The main difference 

between a diagrid system and a space frame is that the 

space frame acts in three dimensions while the diagrid vector 

action takes place along a surface.

15.7.7 Megaframe

A megaframe is a frame in which components are a 

subsystem, usually a truss. Trusses or moment frames act 

as the frame components of the megaframe. This type is a 

useful method to reduce materials used by allowing lighter 

weight vector-active systems to replace heavy components.
15.26

Megaframe

15.25

Diagrid
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15.7.8 Core Suspended

Core suspended structures are those in which the structure 

for the enclosed building space is suspended from a few 

large compression members. The challenge to this type is 

that, unlike beam and column design, the entire suspended 

structure must act as a rigid body resting on support 

connections. Another challenge is that there are very large 

shear forces in the connections between the suspended 

structures and the compression elements.

15.27

Core suspended structures

15.8 Exoskeletons

Exoskeletons are systems in which all the loads are 

transferred along the perimeter of the structure. The skeleton 

may use any system type. The definition relies on the fact 

that there are no interior vertical support systems other than 

core requirements for stairwells, elevators shafts and the like.

15.28

Exoskeletons
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15.9 Hybrid Structures

Hybrid structures employ more than one system type in the 

design. The structure could be as simple as a barrel vault on 

top of a moment frame, or it could be a complex grouping of 

structural zones.

15.29

Hybrid structures

Practice Exercises:

15-1: Creatively build a tension structure model with a clear 

height of 2″ over the cover zone (4″ × 10″). Do not extend 

beyond the site limits (12″ × 18″), or exceed 6″ in height. 

Compression members and cables may be glued to a base. 

Compression members must not span the covered area. 

Draw the concept idea, and the cable and support pattern 

used.

15-2: Using 1
16 ″ maximum thickness plates only, create a 12″ 

wide structure that can support itself and a full water bottle 

over a span of 12". No plate shall have a length greater than 3" 

measured from any point to any other point on the plate. No 

adjoining plates may occupy the same plane. As a challenge, 

include perforations in the design for day lighting from one 

direction. 

15-3: Draw and build a simple space truss to support a full 

water bottle over a span of 18″. The maximum space truss 

depth is 2″. Maximum strut size is 1
16 ″ × 1

16 ″.

15-4: Draw and build a non-orthogonal space truss with 

varied thickness, varied clear height from base capable of 

supporting its own weight of a clear span of 1″. Maximum 

strut size = 1
32″ × 1

32″.
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Dimensional  Lumber  Design

16.1 Adjustment Factors for 
Dimensional Lumber

Table 16.1:  Adjustment factors of sawn lumber, with permission from the 
American Wood Council

Allowable stresses, F′, in Table 16.1 are found by multiplying 

the design values listed for a given species of wood from 

Table 4A and 4B of the National Design Specifications 

Supplement by the applicable factors. Tables A2.2 and A2.3 

contain sample values for use with examples and exercises in 

this book. Note that there are separate tables, 4A for Western 

species of wood and 4B for Southern Pine. Southern Pine is 

unique in that the design values vary by the width of lumber 

used. Likewise, in some formulas for design, Southern Pine 

will have a different factor than Western species.

λ is the Time Effect Factor. Values of λ are correlated with 

the six equations for factored loads as shown in Table 16.2. 

Chapter 16 explains the LRFD Method for analysis and design 

of dimensional lumber using factors derived by the American 

Wood Council (AWC). The LRFD (Load Resistance Factor 

Design) Method uses load factors to create an ultimate or 

factored load that is the design load. It also uses Resistance 

Factors (φ). Chapter 12 discusses the factor of loads for the 

LRFD Method.

Categories of Wood Construction Types: 

SAWN LUMBER: 

 Boards: 3
4  × 2 to 1 1

2
 × 16

 Dimension Lumber: 2 × 2 to 4 1
2
 × 16

 Timber: 5 × 5 and larger

GLUE-LAMINATED TIMBER: any size

It is important to understand that sawn lumber sizes are 

nominal sizes not actual sizes. The nominal sizes are rough 

cut sizes, before planning. The actual dimension of any edge 

of a standard size piece of sawn lumber will be 1
4 ″ to 1″ 

less than the nominal edge stated. For example, a 2 × 4 is 

actually 1 1
2

″ × 3 1
2

″. When designing sawn lumber, always use 

the actual size for values of width and thickness. Because 

wood is easily ripped and planed, custom sizes can be made 

at a relatively low cost compared to other materials. In this 

chapter, only standard sizes will be used. See Table A2.1: 

Section Properties for Dimensional Lumber for a list of 

standard dimensional lumber sizes and section properties.

ADJUSTMENT FACTORS FOR SAWN LUMBER 
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The most common case is a dead load and a live load from 

occupancy, resulting in a value of λ = 0.8.

Table 16.2:  λ Time Effect Factor with permission from the American 
Wood Council

Ct is the temperature factor. It is used with all dimensional 

lumber, timber and glu-lams.

Ciis the incising factor. It is used with dimensional lumber 

only. Incising is the injection of treatment into the wood. 

Examples of incising are termite, fungus or other preservative 

treatments.

Table 16.5:  Ci Incising Factor, with permission from the American Wood 
Council

CF is the Size Factor. For dimensional lumber, CF can be found 

in Table A2.1: Dimensional Lumber Section Properties. 

CL is the Beam Stability Factor. This factor takes some 

consideration as it is dependent on the unbraced length of the 

beam, the type of loading, the size and the species of wood. 

The first thing to do is to establish whether or not CL = 1. 

Table 16.3:  Ct Temperature Factor, with permission from the American Wood Council

Cm is the Wet Service Factor. In dimensional lumber, Cm is 

used when the moisture content is greater than 19%.

Table 16.4:  Cm Wet Service Factor for sawn lumber, with permission from 
the American Wood Council

CL = 1 if:

a) there is continuous lateral bracing of the compression 

member;

b) d/b ≤ 2;

c) 2 ≤ d/b ≤ 4 AND edges are secured by blocking or X-bracing;

d) 4 ≤ d/b ≤ 5 AND there is full sheathing AND blocking at 

ends;

e) 5 ≤ d/b ≤ 6 AND there is full sheathing AND blocking ≤ 8ft 

o.c.;

f) 6 ≤ d/b ≤ 7 AND there is full sheathing AND blocking at all 

points of bearing.

A Time Effect Factor 

LRFD Load Combination A 

I.4D 0.6 
Ci Incising Factor 

Design Value Ci 

1.2D + 1.6L + O.S(Lr or S or R) where L is from storage 0.7 Fb• Fe. Ft. Fv 0.80 

1.2D + 1.6L + O.S(Lr or S or R) where L is from occupancy 0.8 

1.2D + 1.6L + O.S(Lr or S or R) where L is from impact 1.2S 

E . E min 0.95 
FC4 1.00 

1.2D + 1.6(Lr or S or R) + (L or 0.8W) 0.8 

I.2D + 1.6W + O.SL + O.S(Lr or S or R) I 

1.2D + E + L + 0.2S I 

0.9D + (1.6W or E) I 

Ct Temperature Factor 

Ct 
Reference Design Values In-Service Moisture Conditions 

T <100° 100°F < T <125°F 125°F < T <150°F 
F,. E. Emin Wet or Dry 1 0.9 0.9 

Fb• F" Fe. Fe4 
Dry 1 0.8 0.7 

Wet or Dry 1 0.7 0.5 

Cm• Wet Service Factor 

DIMENSIONAL LUMBER> 19% moisture content 
Design Values Cm 

Fb 0.85 
Fb when Fb(CF) =:;1150 psi 1 
Ft 1 

Fe 0.8 
Fe when Fe(CF) =:; 750 psi 1 

Fv 0.97 

FC4 0.67 
E 0.9 

Emin 0.9 
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If none of these conditions are met, CL must be calculated 

using the following steps:

1. Determine the effective length using Table 16.6. For a 

combination of load types, use the highest value obtained.

Table 16.6:  Effective length, with permission from the American Wood 
Council

2. Rb
2 = Le(d)/b2 where Le was determined in step 1, 

d = depth of beam and b = thickness of beam.

3. Check that Rb
2 ≤ 2500. If Rb

2 > 2500, choose a larger size.

4. Calculate Emin′ = Emin(Cm)(Ct)(Ci)(1.5)

5. FbE = 1.2(Emin′)/Rb
2

6. Fb* = Fb( all factors EXCEPT Cfu, Cv and CL)

7. F = FbE/Fb*

8. CL = (1 + F)/1.9) − √[((1 + F)/1.9)2 − (F/0.95)]

Cfu is the Flat Use Factor. It is used when the lumber is laid flat; 

meaning that the depth, d is less than the width, b. Examples 

of flat use are decking and headers or sills. It is only used in 

finding the allowable bending stress, Fb′. Factors for Cfu are 

listed in Table A2.1: Dimensional Lumber Section Properties. 

Cr is the Repetition Factor. It is only used with dimensional 

lumber and only when the criteria below are met.

Cr = 1.15 when:

1. using dimensional lumber (2–4″ thick);

2. spacing of joists, rafters, studs, etc. is not more than 

24″o.c.;

3. there are three or more members in repetition;

4. members are joined by sheathing, subfloor or other load 

distributing elements adequate to support the applied 

loads.

CP is the Column Stability Factor. It is used with all 

dimensional lumber, timber and glu-lams. If a compression 

member is laterally supported along its entire length, CP = 1.0. 

If not, follow the steps in Table 16.7 to obtain CP.

1. Determine the Effective Length Factor, k, based on end 

conditions:

Table 16.7:  Effective Length Factor, k

2. Effective length, Le = k(Lu) where Lu is the unbraced 

length and k is determined in step 1. For rectangular 

columns, find Le in both directions. 

3. Check that Le/d ≤ 50 in each direction. If not, choose a 

larger size. Use the larger value of Le/d for step 5.

4. Calculate Emin′ = Emin(Cm)(Ct)(Ci)(1.5)

5. FcE = 0.822(Emin′)/(Le/d)2

6. Fc* = Fc( all factors EXCEPT CP)

7. c = 0.8 for sawn lumber, c = 0.9 for glue-laminated or 

structural composite lumber.

8. F = FcE/Fc*

9. CP = (1 + F)/2c) − √[((1 + F)/2c)2 − (F/c)]

 Cb is the Bearing Area Factor. It is used for bearing 

length less than 6″ and not nearer than 3″ to the end 

of a member. 

Cb = (Lb + 0.375)/Lb where Lb = bearing length in 

inches measured parallel to the grain. 

EFFECTIVE LENGTH, Le for bending members 

SIMPLE SPAN BEAM 

Load type: When when 

Lu/d < 7 Luld > 7 

Uniform load 2.06Lu 1.63Lu + 3d 

Point load at center with no lateral bracing at loa 1.8Lu 
d 1.37Lu + 3d 

Point load at center with lateral bracing 1.11Lu 

2 equal Point loads at U3 with lateral support at 1.68Lu 
loads 

3 equal Point loads at U4 with lateral support at 1.S4Lu 
loads k EFFECTIVE LENGTH FACTOR 

4 equal Point loads at US with lateral support at 1.68Lu 
loads 

k end condition end condition 

S equal Point loads at U6 with lateral support at 1.73Lu 0.65 fixed fixed 
loads 

6 equal Point loads at L!7 with lateral support at 1.78Lu 
0.8 pinned fixed 

loads 1 pinned pinned 
7 or more equal point loads evenly spaced with I 1.84Lu 
ateral support at loads 1.2 fixed rotation fixed, translation free 

1.84Lu 
Equal end moments 2 pinned rotation fixed, translation free 
CANTILEVER 
BEAM 2.1 fixed rotation and trans lation free 

when Lui when Ljd 
Load type: d<7 >7 

Uniform load 1.33Lu O.90Lu + 3d 

Point load at cantilever end 1.87Lu 1.44Lu + 3d 

when Lui when 7< Luld when Ljd 
SIMPLE SPAN OR CANTILEVER BEAM d<7 < 14.3 > 14.3 

Loading not listed above 2.06L 1.63Lu + 3d 1.84L 
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16.2 Design of Dimensional 
Lumber Components

16.2.1 Flexure 

 1. Identify the species of wood: 

NOT Southern Pine → step 2 

Southern Pine → step 20

 2. Western species dimensional lumber: refer to Table A2.1 

Dimensional Lumber Section Properties for sample 

species

 Identify Fb, Fv, E, Emin, G for species and grade

 3.  Assume trial size = 2 × 12: CF = 1, A = 16.88in2, 

S = 31.64in3, I = 177.98in4

 4. Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ)

CF : Is size 2 × 12?

 Yes: CF = 1.0

 No: Determine CF from Table A2.1 Dimensional 

Lumber Section Properties 

Cm: Is moisture content over 19%? 

 No: Cm = 1.0

 Yes: Determine Cm from Table 16.4

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3 

Cfu: Is beam laid flat like a plank?

 No: Cfu = 1.0

 Yes: Find Cfu in Table A2.1 Dimensional Lumber 

Section Properties

Ci: Is there preservative or termite treatment or any 

other incising?

 No: Ci = 1.0

 Yes: Ci = 0.80

Cr: Are beams repeated at a spacing ≤ 24″o.c.?

 No: Cr = 1.0

 Yes: Cr = 1.15

λ: Determine λ from Table 16.2:

Calculate Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ) 

= (Fb*)(CL)

CL: find d/b and determine if CL = 1. If not, calculate CL 

using the steps described earlier in this section

Fb′ = Fb* (CL)

 5. Find weight of beam: WBM = (specific gravity)(62.4pcf)

[(Ain2)/(144in2/ft2)]

 6. Find factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

Wu = 1.2(WBM + WDL) + 1.6(WLL) OR if NO LIVE LOAD: 

Wu = 1.4(WBM + WDL)

Pu = 1.2PD + 1.6 PL OR if NO LIVE LOAD: Pu = 1.4PD 

 7. Find the maximum moment in the beam. Remember to 

multiply by 12″/f to obtain an answer in #-in.

 8. fb = M/S where M from step 7, and S from step 3.

 9. Is fb ≤ Fb′?
Yes → step 10

No → estimate Sreq = M/Fb′ and go back to step 3 and 

try larger size.

10. Is fb/Fb′ ≥ 0.90?

Yes → step 11

No → estimate Sreq = M/Fb′ and go back to step 3 and 

try smaller size.

11. Fv′ = Fv(Cm)(Ct)(Ci)(2.16) (λ)

Cm: Is moisture content over 19%? 

 No: Cm = 1.0

 Yes: Cm = .97

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

Ci: Is there preservative or termite treatment or any 

other incising?

 No: Ci = 1.0

 Yes: Ci = 0.8

12. Determine the maximum shear, V, in the beam.

13. fv = 3V/2A

14. Is fv ≤ Fv′?
Yes → step 14

No → Estimate Areq = 3V/2Fv′ choose a larger size. If b 

and d are both greater than or equal to the original 

precious size, it is not necessary to check bending 

stress again. If not, Go back to step 3 and check 

bending stress.

15. Δall = L(12″/f)/240 

16. Unfactored loads: remember to use unfactored loads for 

deflection. WBM is listed in step 5, and the applied loads are 
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given. If an applied load is already factored, it may be used 

as is. Using a factored load will not create a safety issue; it 

will simply yield a larger required moment of inertia.

17. E′ = E(Cm)(Ct)(Ci)

Cm: Is moisture content over 19%?

 No: Cm = 1.0

 Yes: Cm = .90

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

Ci: Is there preservatives, termite treatment or any 

other incising?

 No: Ci = 1.0

 Yes: Ci = 0.95

18. Find Δact using deflection charts, by Double Integration 

Method or by Moment Area Method. Remember to 

multiply the equations by 1728in3/ft3 in order to obtain an 

answer in inches when using a length, L in feet. Ix is from 

step 3.

19. Is Δact ≤ Δall?

Yes → done.

No → find Ireq = Δact(Ix from step 3)/Δall. Select final size 

based on Ireq. 

20. Southern Pine dimensional lumber: Assume trial size 

= 2 × 12: CF = 1, A = 16.88in2 

S = 31.64in3, I = 178in4

21. Refer to Table A2.3 for sample Southern Pine sizes. 

Identify Fb, Fv, E, Emin and G for size and grade.

22. Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ)

 CF: 

 CF = 1.0 for 2 × 2 − 3 × 12 and 4 × 4 − 4 × 6

 CF = (12/d) 1/9 for d >12″
 CF = 1.1 for 4 × 8 − 4 × 12

Cm: Is moisture content over 19%?

 No: Cm = 1.0

 Yes: Determine Cm from Table 16.4

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

Cfu: Is beam laid flat like a plank?

 No: Cfu = 1.0

 Yes: Determine Cfu from Table A2.1: Dimensional 

Lumber Sectional Properties

Ci: Is there preservatives, termite treatment or any 

other incising?

 No: Ci = 1.0

 Yes: Ci = 0.80

Cr: Are beams repeated at a spacing ≤ 24″o.c.?

 No. Cr = 1.0

 Yes: Cr = 1.15

λ: Determine λ from Table 16.2. 

Calculate Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ) 

= (Fb*)(CL)

CL: find d/b and determine if CL = 1. If not, calculate CL 

using the steps described earlier in this section.

Fb′ = Fb*(CL)

23. Find weight of beam: WBM = (specific gravity)(62.4pcf)

[(Ain2)/(144in2/ft2)]

24. Find factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads: 

Wu = 1.2(WBM + WDL) + 1.6(WLL) OR if NO LIVE LOAD: 

Wu = 1.4(WBM + WDL)

Pu = 1.2PD + 1.6 PL OR if NO LIVE LOAD: Pu = 1.4PD

25. Find the maximum moment in the beam. Remember to 

multiply by 12″/f to obtain an answer in #-in.

26. fb = M/S where M from step 7, and S from step 3.

27. Is fb ≤ Fb′?
Yes → step 28

No → estimate Sreq = M/Fb′ and go back to step 20 and 

try larger size.

28. Is fb/Fb′ ≥ 0.90?

Yes → step 29

No → estimate Sreq = M/Fb′ and go back to step 20 and 

try smaller size.

29. Fv′ = Fv(Cm)(Ct)(Ci)(2.16)(λ)

Cm: Is moisture content over 19%?

 No: Cm = 1.0

 Yes: Cm = .97

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

Ci: Is there preservatives, termite treatment or any 

other incising?
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 No: Ci = 1.0

 Yes: Ci = 0.8

30. Determine maximum shear, V, in the beam.

31. fv = 3V/2A

32. Is fv ≤ Fv′? 

Yes → step 33

No → estimate Areq = 3V/2Fv′ and go back to step 20 

and try larger size.

 33. Δall = L(12″/f)/240 

34. Unfactored loads: remember to use unfactored loads for 

deflection. WBM is listed in step 5, and the applied loads 

are listed in problem. If an applied load is already factored, 

it may be used as is. Using a factored load will not 

create a safety issue; it will simply yield a larger required 

moment of inertia.

35. E′ = E(Cm)(Ct)(Ci)

Cm: Is moisture content over 19%?

 No: Cm = 1.0

 Yes: Cm = .90

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

Ci: Is there preservatives, termite treatment or any 

other incising?

 No: Ci = 1.0

 Yes: Ci = 0.95

36. Find Δact using deflection charts, by Double Integration 

Method or by Moment Area Method. Remember to multiply 

the equations by 1728in3/ft3 in order to obtain an answer in 

inches when using a length, L in feet. Ix is from step 20.

37. Is Δact ≤ Δall?  

Yes → done.

No → find Ireq = Δact(Ix from 20)/Δall. Select final size 

based on Ireq. 

Example 16-1: Design of a Western species joist: Design 

a series of construction grade Douglas Fir Larch (north) 

joists with a moisture content of 16%, spaced at 16″o.c. 

with X-bracing at 4′o.c. to carry a dead load of 15psf and 

a live load of 40psf with a span of 12ft. 

Average temperature = 105°F. Termite treatment is incised in 

joists. Max. deflection = L/240. 

 1. Identify the species of wood: Douglas Fir Larch (north)

NOT Southern Pine → step 2.

 2. Western species dimensional lumber: refer to Tables A2.2 

for sample species.

Fb = 950psi, Fv = 180psi, E = 1,500,000psi, 

Emin = 550,000psi, G = 0.49

 3. Assume trial size = 2 × 12: CF = 1, A = 16.88in2, 

S = 31.64in3, I = 177.98in4

 4. Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ)

CF : Is size 2 × 12? Yes: CF = 1.0

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100°F? Yes: From Table 16.3, 

Ct = 0.8 

Cfu: Is beam laid flat like a plank? No: Cfu = 1.0

Ci: Are there preservatives, termite treatment or any 

other incising? Yes: Ci = 0.80

Cr: Are beams repeated at a spacing ≤ 24″o.c. and are 

there more than 2 spans? Yes: Cr = 1.15

λ: from Table 16.2, λ = 0.8

Calculate Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ) 

= (Fb*)(CL) 

= 950(1)(0.8)(1)(1)(0.8)(1.15)(2.16)(0.8)CL = 1208.21CL

CL: d/b = 11.25/1.5 = 7.5 … calculate CL:

a) Lu = 48″ … Lu/d = 48/11.25 = 4.27 < 7

 From Table 16.6, Le = 2.06Lu = 2.06(48) = 98.88″
b) Rb

2 = Le(d)/b2 = 98.88(11.25)/1.52 = 494.4

c) Check that Rb
2 = 494.4 ≤ 2500. Yes … okay

d) Emin′ = Emin(Cm)(Ct)(Ci)(1.5) = 550,000(1)(0.9)(0.95)

(1.5) = 705,375psi

e) FbE = 1.2(Emin′)/Rb
2 = 1.2(705,375)/494.4 

= 1712.08psi

f) Fb* = 1208.21psi

g) F = FbE/Fb* = 1712.08/1208.21 = 1.417

h) CL = (1 + F)/1.9) − √[((1 + F)/1.9)2 − (F/0.95)] = 0.916

 Fb′ = Fb* (CL) = 1208.21(0.916) = 1106.72psi

 5. Find weight of beam: WBM = (specific gravity)(62.4pcf)

[(Ain2)/(144in2/ft2)] = .49*62.4*16.88/144 = 3.58#/f

 6. Find factored loads: Wu = 1.2(DL) + 1.6(LL) 

= 1.2[15psf(16″/12″/f) + 3.58#/f] + 1.6[40psf(16″/12″/f)] 

= 113.63#/f

 7. Mu = wL2/8 = 113.63#/f (12′)2/8 = 2045.34#-f 

= 24544.08#-in

 8. fb = M/S = 24522.08#-in/31.64in3 = 775.03psi

 9. Is fb ≤ Fb′? 775.03psi < 1106.72psi … okay 
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10. Is fb/Fb′ ≥ 0.90? 775.03/1106.72 = 0.70

No → estimate Sreq = M/Fb′ = 24544.08/1106.72 

= 22.18

3A.  Assume 2 × 10: CF = 1.1, A = 13.88in2, S = 21.39in3, 

I = 98.93in4

4A. Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ)

CF = 1.1

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100°F? Yes: From Table 16.3, 

Ct = 0.8 

Cfu: Is beam laid flat like a plank? No: Cfu = 1.0

Ci: Are there preservatives, termite treatment or any 

other incising? Yes: Ci = 0.80

Cr: Are beams repeated at a spacing ≤ 24″o.c. and are 

there more than 2 spans? Yes: Cr = 1.15

λ: from Table 16.2, λ = 0.8

Calculate Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ) 

= (Fb*)(CL) 

= 950(1.1)(0.8)(1)(1)(0.8)(1.15)(2.16)(0.8)CL = 1329.03CL

CL: d/b = 9.25/1.5 = 6.17 … calculate CL :

a) Lu = 48″ … Lu/d = 48/11.25 = 4.27 < 7

 From Table 16.6, Le = 2.06Lu = 2.06(48) = 98.88″
b) Rb

2 = Le(d)/b2 = 98.88(9.25)/1.52 = 406.51

c) Check that Rb
2 = 406.51 ≤ 2500. Yes … okay

d) Emin′ = Emin(Cm)(Ct)(Ci)(1.5) = 550,000(1)(0.9)(0.95)

(1.5) = 705,375psi

e) FbE = 1.2(Emin′)/Rb
2 = 1.2(705,375)/406.51 

= 2082.24psi

f) Fb* = 1329.03psi

g) F = FbE/Fb* = 2082.24/1329.03 = 1.567

h) CL = (1 + F)/1.9) − √[((1 + F)/1.9)2 − (F/0.95)] = 0.932

Fb′ = Fb* (CL) = 1329.03(0.932) = 1238.66psi

5A. Find weight of beam: WBM = (specific gravity)(62.4pcf)

[(Ain2)/(144in2/ft2)] = .49*62.4*13.88/144 = 2.95#/f

6A. Find factored loads: Wu = 1.2(DL) + 1.6(LL) 

= 1.2[15psf(16″/12″/f) + 2.95#/f] + 1.6[40psf(16″/12″/f)] 

= 112.87#/f

7A. Mu = wL2/8 = 112.87#/f (12′)2/8 = 2031.72#-f 

= 24380.64#-in

8A. fb = M/S = 24380.64#-in/21.39in3 = 1139.81psi

9A. Is fb ≤ Fb′? 1139.81psi < 1238.66psi … okay 

10A. Is fb/Fb′ ≥ 0.90? 1139.81/1238.66 = 0.92 … okay for 

flexure

11. Fv′ = Fv(Cm)(Ct)(Ci)(2.16) (λ)

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100°F? Yes: Ct = 0.8

Ci: Is there preservative or termite treatment or any 

other incising? 

 Yes: Ci = 0.8

Fv′ = 180(1)(0.8)(0.8)(2.16)(0.8) = 199.07psi

12. V = wL/2 = 112.87#/f(12′)/2 = 677.22#

13. fv = 3V/2A = 3(677.24#)/[2(10.88in2)] = 93.37psi

14. Is fv ≤ Fv′? 93.37 < 199.07 … okay for shear

15. Δall = L(12″/f)/240 = 12′(12″/f)/240 = 0.6″
16.  Unfactored loads: = 2.95#/f + (15psf + 40psf)(16″/(12″/f)) 

= 76.28#/f

17. E′ = E(Cm)(Ct)(Ci)

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100oF? Yes: Determine Ct = 0.9

Ci: Is there preservatives, termite treatment or any 

other incising?

 Yes: Ci = 0.95

E′ = 1,500,000psi(1)(.9)(.95) = 1,282,500psi

18. Δact = 5wL4/384EI = 5(76.28#/f)(12′4)(1728in3/ft3)/

[384(1,282,500psi)(98.93in4)] = 0.28″
19. Is Δact ≤ Δall? Yes. 0.28″ < 0.6″
ANSWER: USE 2 × 10

Example 16-2: Design of a Southern Pine beam: Design 

a No. 2 Southern Pine beam, 16′ long, with a moisture 

content of 20%, full lateral bracing and dead loads of 

100# applied every 48″. Max. deflection = L/240. 

Identify the species of wood: Southern Pine → step 20.

20. Assume trial size = 2 × 12: CF = 1, A = 16.88in2, 

S = 31.64in3, I = 178in4

21. Fb = 975, Fv = 175, E = 1,400,000, Emin = 580,000, 

G = 0.55

22. Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ)

CF = 1.0 for 2 × 2 − 3 × 12 

Cm: Is moisture content over 19%? Yes: from Table 16.4 

Cm = 1 when Fb(CF) ≤ 1150psi

Ct: Is temp. above 100°F? No: Ct = 1.0

Cfu: Is beam laid flat like a plank? No: Cfu = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising?  No: Ci = 1.0
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Cr: Are beams repeated at a spacing ≤ 24″o.c.? 

 No: Cr = 1.0

λ: Determine λ from Table 16.2. λ = 0.6 (dead loads 

only)

Calculate Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ) = (Fb*)(CL) 

= 975(1)(1)(1)(1)(1)(1)(2.16)(.6)CL = 1263.6CL

CL = 1 (full lateral bracing)

Fb′ = Fb* (CL) = 1263.6psi

23. Find weight of beam: WBM = (specific gravity)(62.4pcf)

[(Ain2)/(144in2/ft2)] = .55(62.4)(16.88)/144 = 4.02#/f

24. Find factored loads:

Wu = 1.4(4.02) = 5.63#/f

Pu = 1.4(100) = 140#

25. M = wL2/8 + PL/2 = 5.63(162)/8 + 140(16)/2 = 1300.16#-f 

= 15,601.92#-in

26. fb = M/S = 15,601.92/31.64 = 493.11psi

27. Is fb ≤ Fb′? Yes: 493.11psi < 1263.6psi

28. Is fb/Fb′ ≥ 0.90? No: 493.11/1263.6 = 0.39 … 

estimate Sreq = M/Fb′ = 15601.92/1263.6 = 12.35in3

GO BACK TO STEP 20

20A. Assume trial size = 2 × 8: CF = 1, A = 10.88in2, 

S = 12.14in3,I = 47.63in4

21A. Fb = 1200, Fv = 175, E = 1,600,000, Emin = 580,000, 

G = 0.55

22A. Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ)

CF = 1.0 for 2 × 2 − 3 × 12 

Cm: Is moisture content over 19%? Yes: from Table 16.4 

Cm = 0.85

Ct: Is temp. above 100°F? 

 No: Ct = 1.0

Cfu: Is beam laid flat like a plank? 

 No: Cfu = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising? 

 No: Ci = 1.0

Cr: Are beams repeated at a spacing ≤ 24″o.c.? 

 No: Cr = 1.0

λ: Determine λ from Table 16.2. λ = 0.6 (dead loads 

only)

Calculate Fb′ = Fb(Cm)(Ct)(CL)(CF)(Cfu)(Ci)(Cr)(2.16)(λ) = (Fb*)(CL) 

= 1200(0.85)(1)(1)(1)(1)(1)(2.16)(.6)CL = 1321.92CL

CL = 1(full lateral bracing)

Fb′ = Fb* (CL) = 1321.92psi

23A. Find weight of beam: WBM = (specific gravity)(62.4pcf)

[(Ain2)/(144in2/ft2)] = .55(62.4)(10.88)/144 = 2.59#/f

24A. Find factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

Wu = 1.4(2.59) = 3.63#/f

Pu = 1.4(100) = 140#

25A. M = wL2/8 + PL/2 = 3.63(162)/8 + 140(16)/2 

= 1236.16#-f = 14,833.92#-in

26A. fb = M/S = 14,833.92/12.14 = 1221.90psi

27A. Is fb ≤ Fb′? Yes 1221.90psi < 1321.92psi

28A. Is fb/Fb′ ≥ 0.90? Yes. 1221.9/1321.92 = 0.92 … okay for 

flexure

29. Fv′ = Fv(Cm)(Ct)(Ci)(2.16) (λ)

Cm: Is moisture content over 19%? 

 Yes: Cm = .97

Ct: Is temp. above 100°F? 

 No: Ct = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising?  No: Ci = 1.0

Fv′ = 175(.97)(1)(1)(2.16)(.6) = 220.00psi

30. V = wL/2 + 3P/2 = 3.63(16/2) + 3(140)/2 = 239.04#

31. fv = 3V/2A = 3(239.04)/2(10.88) = 32.96psi

32. Is fv ≤ Fv′? Yes 32.96psi < 220.00psi

33. Δall = L(12″/f)/240 = 16(12)/240 = 0.8″
34. Unfactored loads: w = 2.59#/f. P = 100#

35. E′ = E(Cm)(Ct)(Ci)

Cm: Is moisture content over 19%? 

 Yes: Cm = .90

Ct: Is temp. above 100°F? 

 No: Ct = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising? 

 No: Ci = 1.0

E′ = 1,600,000(0.9) = 1,440,000psi

36. Find Δact = 5wL4/384EI + 19PL3/384EI = [5(2.59)(164) + 

19(100)(163)](1728in3/f3)/[384(1,440,000)(47.63)] = 0.57″
37. Is Δact ≤ Δall? Yes 0.57″ < 0.8″
ANSWER: USE 2 × 8
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16.2.2 Compression

In this section, the term column refers to all members under 

compression. This section discusses the design of Simple 

Solid Wood Columns which are columns made of one piece 

or made of multiple pieces glued together to act as one piece. 

For a review of Critical Buckling Stress and slenderness ratio, 

see Chapter 10.

From Table 16.1: Adjustment factors of sawn lumber, the 

equation for allowable compressive stress is:

Fc′ = Fc(Cm)(Ct)(CF)(Ci)(CP)(2.16)(λ)

where the factors are described at the beginning of this 

chapter.

Like the design of wood beams, the design of columns 

is an iterative process based on an assumed trial size. In the 

case of wood columns, a good starting point is Atrial = Pu/Fc* 

where Fc′ = Fc*CP.

Design of wood columns:

 1. Look up Fc and Emin for the given species and grade of 

lumber.

 2. Fc′ = Fc(Cm)(Ct)(CF)(Ci)(CP)2.16 (λ) = Fc*(CP)

Cm: Is moisture content over 19%?  

 No: Cm = 1.0

 Yes: Cm = .8 unless Fc(CF) ≤ 750psi, in which case 

Cm = 1

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

Ci: Is there preservatives, termite treatment or any 

other incising?

 No: Ci = 1.0

 Yes: Ci = 0.8

 Assume CP = 1 and CF = 1 for now.

 3. Calculate Le = kL(12″/f) in each direction. Effective Length 

Factor, k can be found in Figure 10.1. k = 1.0 for pin–pin, k 

= 0.8 for pin–fix, k = .65 for fix–fix conditions

 Determine minimum width in each direction based on 

Le/d < 50.

dmin = Lex/50 and bmin = Ley/50

 4. Atrial = P/Fc* 

 Select a size with A ≥ Atrial, b ≥ bmin, and d ≥ dmin. Note 

A, b and d.

 5. Use larger of Le/d or Ley/b and Lex/d. 

 6. Emin′ = Emin(Cm)(Ct)(Ci)(1.5) 

Cm: Is moisture content over 19%? 

 No: Cm = 1.0

 Yes: Cm = .9

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

Ci: Is there preservatives, termite treatment or any 

other incising?

 No: Ci = 1.0

 Yes: Ci = 0.95

 7. FcE = 0.822(Emin′)/(Le/d)2

 8. F = FcE/Fc* 

 9. c = 0.8 for sawn lumber, c = 0.9 for glu-lams

10. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2

11. Fc′ = Fc*(CP) = allowable compressive stress

12. fc = P/A = actual compressive stress

13. Is fc < Fc′?
Yes → step 15

No → go back to step 4 and choose larger size. 

14. Is fc/Fc′ ≥ 0.90? If not, go back to step 4 and try smaller size.

Example 16-3: Design a 9′ high column to be made using 

a nominal 3″ thick No.2 DFL with pinned supports to 

carry a factored load of 10,000# if termite treatment is 

incised into the wood. 

Use a standard size depth.

 1. Fc = 1350psi and Emin = 560,000psi.

 2. Fc′ = Fc(Cm)(Ct)(CF)(Ci)(CP)2.16(λ) = Fc*(CP)

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100oF? No: Ct = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising? Yes: Ci = 0.8

Assume CP = 1 and CF = 1 for now.

Fc′ = 1350(1)(1)(0.8)CFCP(2.16)(.8) = 1866.24CFCP

 3. k = 1.0, Le = kL(12″/f) = 1(9)(12) = 108″ in both directions

 Determine min width in each direction based on 

Le/d < 50.

dmin = bmin = Lex/50 = 108/50 = 2.16″

 4. Atrial = P/Fc* = 10,000/1866.24 = 5.36in2

 Try 3 × 4: A = 8.75in2, b = 2.5″, d = 3.5″
 5. Le/d = 108/2.5 = 43.2 
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 6. Emin′ = Emin(Cm)(Ct)(Ci)(1.5) 

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising? Yes: Ci = 0.95

Emin′ = 560,000(1)(1)(0.95)(1.5) = 798,000psi

 7. FcE = 0.822(Emin′)/(Le/d)2 = .822(798,000psi)/(43.2)2 

= 351.49psi

 8. CF = 1.15, F = FcE/Fc* = 351.49/1866.24(1.15) = 0.164

 9. c = 0.8 for sawn lumber, c = 0.9 for glu-lams

10. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 = 0.158

11. Fc′ = Fc*(CP) = allowable compressive stress 

= 0.158(1866.24)(1.15) = 339.1

12. fc = P/A = actual compressive stress = 10,000/8.75 

= 1142.86

13. Is fc < Fc′? No → go back to step 4 and choose larger 

size. 

Atrial = 8.71(1142.86/344.32) = 29in2

4A. Try 3 × 12: A = 28.13in2, b = 2.5″, d = 11.25″
5A. Le/d = 108/2.5 = 43.2 

6A. Emin′ = Emin(Cm)(Ct)(Ci)(1.5) 

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising? Yes: Ci = 0.95

Emin′ = 560,000(1)(1)(0.95)(1.5) = 798,000psi

7A. FcE = 0.822(Emin′)/(Le/d)2 = .822(798,000psi)/(43.2)2 

= 351.49psi

8A. CF = 1, F = FcE/Fc* = 351.49/1866.24(1) = 0.188

9A.  c = 0.8 for sawn lumber, c = 0.9 for glu-lams

10A.  CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 = 0.264

11A. Fc′ = Fc*(CP) = allowable compressive stress 

= 0.264 (1866.24)(1) = 492.69psi

12A. fc = P/A = actual compressive stress = 10,000/28.13 

= 355.49

13. Is fc < Fc′? Yes.

14. Is fc/Fc′ ≥ 0.90? 355.49/492.69 = 0.72 … go back to 

step 4 and try smaller size.

4B. Try 3 × 10: A = 23.13in2, b = 2.5″, d = 9.25″
5B. Le/d = 108/2.5 = 43.2 

6B. Emin′ = Emin(Cm)(Ct)(Ci)(1.5) 

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising? Yes: Ci = 0.95

Emin′ = 560,000(1)(1)(0.95)(1.5) = 798,000psi 

7B. FcE = 0.822(Emin′)/(Le/d)2 = .822(798,000psi)/(43.2)2 

= 351.49psi

8B. CF = 1, F = FcE/Fc* = 351.49/1866.24(1) = 0.188

9B. c = 0.8 for sawn lumber, c = 0.9 for glu-lams

10B. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 = 0.264

11B. Fc′ = Fc*(CP) = allowable compressive stress = 0.264 

(1866.24)(1) = 492.69psi

12B. fc = P/A = actual compressive stress = 10,000/23.13 

= 432.34psi

13B. Is fc < Fc′? Yes.

14B. Is fc/Fc′ ≥ 0.90? 432.34/492.69 = 0.88 … go back to 

step 4 and try smaller size.

4C. Try 3 × 8: A = 18.13in2, b = 2.5″, d = 7.25″
5C. Le/d = 108/2.5 = 43.2 

6C. Emin′ = Emin(Cm)(Ct)(Ci)(1.5) 

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising? Yes: Ci = 0.95

Emin′ = 560,000(1)(1)(0.95)(1.5) = 798,000psi

7C. FCE = 0.822(Emin′)/(Le/d)2 = .822(798,000psi)/(43.2)2 

= 351.49psi

8C. CF = 1.05, F = FcE/Fc* = 351.49/1866.24(1.05) = 0.179

9C. c = 0.8 for sawn lumber, c = 0.9 for glu-lams

10C. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 = 0.172

11C. Fc′ = Fc*(CP) = allowable compressive stress 

= 0.172(1866.24)(1.05) = 337.04psi

12C. fc = P/A = actual compressive stress = 10,000/18.13 

= 551.57psi

13C. Is fc < Fc′? No 

ANSWER: USE 3x10

This method may also be used to check the adequacy or 

spacing of columns of a given size by using the given size in 

step 4.

Example 16-4: An 8′ high Western frame greenhouse 

wall has 2 × 4, No. 2 DFL studs with bracing at 4′ in the 

weak direction and pinned ends. 
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The moisture content is 22%, the average temperature is 

103°F and the wood is treated with preservatives. If the wall 

must carry a factored load of 1500#/f, what is the maximum 

spacing of the studs (in multiples of 3″)?

 1. Fc = 1350psi and Emin = 560,000psi.

 2. Fc′ = Fc(Cm)(Ct)(CF)(Ci)(CP)2.16 (λ) = Fc*(CP)

Cm: Is moisture content over 19%? Yes: Cm = .8 

Ct: Is temp. above 100°F? Yes: From Table 16.3, 

Ct = 0.7

Ci: Is there preservatives, termite treatment or any 

other incising? Yes: Ci = 0.8

Assume CP = 1and CF = 1.5

Fc′ = 1350(.8)(.7)(1.5)(.8)(2.16)(0.8)CP = 1567.64(CP)psi

 3. Calculate Le = kL(12″/f) in each direction. 

k = 1

dmin = Lex/50 = 1(8′)(12″/f)/50 = 1.92″ 

bmin = Ley/50 = 1(4′)(12″/f)/50 = 0.96″

 4. 2 × 4 = given size: A = 5.25in2, b = 1.5″, d = 3.5″ 

 5. Use larger of Le/d or Ley/b and Lex/d. 96/3.5 = 27.43 and 

48/1.5 = 32 … okay 

 6. Emin′ = Emin(Cm)(Ct)(Ci)(1.5) 

Cm: Is moisture content over 19%? Yes: Cm = .9

Ct: Is temp. above 100°F? Yes: Determine Ct = 0.9

Ci: Is there incising? Yes: Ci = 0.95

Emin′ = 560,000(.9)(.9)(.95) = 430,920psi

 7. FcE = 0.822(Emin′)/(Le/d)2 = 0.822(430,920)/322 

= 345.91psi

 8. F = FcE/Fc* = 345.91/1045.09 = 0.331

 9. c = 0.8 for sawn lumber 

10. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 = 0.304

11. Fc′ = Fc*(CP) = 1567.64(0.331) = 518.89 = allowable 

compressive stress

12. Let spacing of the studs = s″. P = 1500#/f(s)/(12″/f) = 125s

 fc = P/A = actual compressive stress = 125s/5.25in2

 = 23.81s psi

13. fc ≤ Fc′ … 23.81s ≤ 518.89 and s ≤21.79″ 

ANSWER: space 2 × 4 studs at 21″o.c.

Example 16-5: Design a built-up column using standard 

sizes with a nominal 2″ thickness for an unbraced length 

of 10′ and fixed ends to support a factored load of 5000# 

using No.1 Southern Pine.

 1. Because the values of Fc and Emin are higher for 2 × 4s and 

2 × 3s than for other sizes, it will be most efficient to use 

2 × 3s or 2 × 4s. Fc = 1850psi, Emin = 620,000psi.

 2. Fc′ = Fc(Cm)(Ct)(CF)(Ci)(CP)2.16 (λ) = Fc*(CP)

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising? No: Ci = 1.0

 Assume CP = 1 and CF = 1.5 

Fc′ = 1850(1)(1)(1.5)(1)(2.16)(0.8)CP = 4795.2

 3. Calculate Le = kL(12″/f) in each direction. 

 Effective Length Factor, k can be found in Figure 10.1. 

k = 1.0 for pin–pin, k = 0.8 for pin–fix, k = 0.65 for fix–

fix conditions.

 Determine min. width in each direction based on 

Le/d < 50.

dmin = bmin = Le/50 = 0.65(10′)(12)/50 = 1.56″

 4. Atrial = P/Fc* = 24000/4795.2 = 5

 Try two 2 × 3: A = 2(3.75) = 7.5in2, b = 2.5″, d = 2(1.5″) 

= 3″ 

 5.  Le/d = 0.65(10)(12)/2.5 = 31.2

 6. Emin′ = Emin(Cm)(Ct)(Ci)(1.5) 

Cm: Is moisture content over 19%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

Ci: Is there preservatives, termite treatment or any 

other incising? No: Ci = 1.0

Emin′ = 620,000(1)(1)(1)(1.5) = 930,000psi

 7. FcE = 0.822(Emin′)/(Le/d)2 = .822(930,000)/31.22 

= 785.32psi

 8. F = FcE/Fc* = 785.32/4795.2 = 0.164

 9. c = 0.8 for sawn lumber, c = 0.9 for glu-lams

10. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 = 0.158

11. Fc′ = Fc*(CP) = allowable compressive stress 

= 0.158(4795.2) = 757.64psi

12. fc = P/A = actual compressive stress = 5000#/7.5in2 

= 666.67psi

13. Is fc < Fc′? Yes: 666.67psi < 757.64psi

14. Is fc/Fc′ ≥ 0.90? 666.67/757.64 = 0.88, however, smaller 

size will not meet dmin requirements. 

ANSWER: 2- 2 × 3s
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16.2.3 Bearing

Bearing is compression perpendicular to the grain. It occurs 

during the transfer of load from one member to another upon 

which it rests. Bearing must be considered when it occurs 

within 3″ of the end of a member or has more than 6″ of 

bearing length at any other point. 

For sawn lumber:

Fc⊥′ = Fc⊥ (Cm)(Ct)(Ci)(Cb)(1.5)

Cb = (Lb + 0.375)/Lb

where Lb is the bearing length measured parallel to the grain.

b1

b2

P

Bearing 
area, A

16.1

Full bearing

Bearing area = A = b1(b2) where 

 b1 = width of loaded member

 b2 = width of supporting (bearing) member

 Lb = bearing length = b2 when inspecting loaded 

component for bearing and b1 when inspecting the 

supporting member.

b1

b2

PPar�al
bearing 
area, A

b3

16.2

Partial bearing

Bearing area = A = b1(b3) where 

 b1 = width of loaded member

 b3 = bearing depth

 b3 < b2 = width of supporting (bearing) member

 Lb = bearing length = b3 when inspecting loaded 

component for bearing and b1 when inspecting the 

supporting member.

Example 16-6: A 2 × 10 joist carrying a factored load of 

300#/f and having a span of 12′ fully bears on a flat 2 × 6 

No. 2 SP top plate. Is this acceptable?

1. What is P? P = reaction at end of joist = wL/2 

= 300#/f(12′)/2 = 1800#

2. What is A? A = (1.5″)(5.5″) = 8.25si

3. What is actual stress? FC⊥= P/A = 1800/8.25 = 218.18

4. What is allowable stress? Fc⊥′ = Fc⊥(Cm)(Ct)(Ci)(Cb)(1.5)

Cm = Ct = Ci = 1.0

Cb = (Lb + 0.375)/Lb = (1.5 + 0.375)/1.5 = 1.25

 where Lb is the bearing length measured parallel to the 

grain.

Fc⊥ = 565psi 

Fc⊥′ = Fc⊥(Cm)(Ct)(Ci)(Cb)(1.5) = 565(1.25)(1.5) 

= 1059.375psi

5. 1059.375 allowable bearing stress > 218.18 actual 

bearing stress … okay

Example 16-7: What is the partial bearing length 

required for a No. 2 DFL 2 × 10 bearing on a flat No. 2 DFL 

2 × 8 with a factored load of 3000#?

1. P = 3000#

2. Cb = (Lb + 0.375)/Lb = (1.5 + 0.375)/1.5 = 1.25

3. Fc⊥′ = Fc⊥(Cm)(Ct)(Ci)(Cb)(1.5) = 625(1)(1)(1)(1.25)(1.5) 

= 1171.88psi

4. fc⊥ = 3000#/A ≤ 1171.88psi … A ≥ 3000#/1171.88psi 

= 2.56in2

5. A = 1.5″(b3) = 2.56 … b3 = 2.56/1.5 = 1.71″
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Bearing at an angle:

16.3

Bearing at an angle

If bearing is not perpendicular to the direction of the grain; 

if it occurs at an angle other than 90°, then the stress is a 

combination of compression and bearing stress where

Fθ′ = Fc*Fc⊥/[Fc*sin2θ + Fc⊥cos2θ]

 θ = angle between the direction of the load and the 

direction of the grain in degrees.

Example 16-8: A 2 ×12 No. 2 Southern Pine rafter at a 

30° incline carries a vertical load of 800#/f, spans 18′ and 

bears on a 2 × 6 flat top plate. Check the bearing stress in 

the top plate. 

1. 2 × 6 − #2 SP: Fc = 1600psi, Fc⊥ = 565psi, 

Emin = 580,000psi

2. Fθ′ = Fc*Fc⊥/[Fc*sin2θ + Fc⊥cos2θ] 

Fc* = Fc(Cm)(Ct)(CF)(Ci)(2.16)(λ) = 1600(1)(1)(1)(1)(2.16)(.8) 

= 2764.8psi

Cb = (5.5 + .375)/5.5 = 1.068

Fc⊥ = Fc⊥ (Cm)(Ct)(Ci)(Cb)(1.5) = 565(1.068)(1.5) 

= 905.284psi

3. Fθ′ = Fc*(Fc⊥)/[Fc*sin2θ + Fc⊥cos2 θ] 

= 2764.8(905.284) /[2764.8(.5)2 + 905.284(.866)2] 

= 1826.79psi 

4. fc⊥ = P/a = (800#/f)(18/2′)/ [(1.5)(5.5)] 

= 872.7 3 < 1737.66psi … okay

16.2.4 Tension

Ft′ = Ft(Ct)(Cm)(Ci)(CF)(2.16)(λ) 

Example 16-9: Design a tension member with a factored 

tension load of 18,000# using a 2 ×— in select structural 

Douglas Fir Larch, with 18% moisture content and at 

room temperature.

1. Assume CF = 1

2. Ft′ = 1000(1)(1)(1)(1)(2.16)(.8) = 1728psi

3. ft = P/A = 18,000#/A … Areq = 18,000#/1728psi = 10.42in2

5. Try 2 × 8: A = 10.88in2, CF = 1.2 

6. Ft′ = 1728(1.2) = 2073.6psi

7. ft = P/A = 18,000/10.88 = 1654.41psi

8. Is ft ≤ Ft′? Yes: 1654.41 < 2073.6

9. Is ft/Ft′ ≤ 0.9? No: 1654.41/2073.6 = 0.80 … Try smaller 

size.

5A. Try 2 × 6: A = 8.25in2, CF = 1.3 

6A. Ft′ = 1728(1.3) = 2246.4ps

7A. ft = P/A = 18,000/8.25 = 2181.82psi

8A. Is ft ≤ Ft′? Yes: 2181.82 < 2246.4

9A. Is ft/Ft′ ≤ 0.9? Yes: 2181.82/2246.4 = 0.97 

ANSWER: USE 2 × 6

Example 16-10: Find the maximum factored tension that 

can be carried by a No.2 So. Pine 2 × 12 in a greenhouse 

(MC > 20%, temperature < 100°F). 

 CF = 1, Cm = 1, Ct = 1. Note that moisture does not 

affect allowable tensile stress.

Ft′ = 550(1)(1)(1)(1)(2.16)(.8) = 950.4psi

ft = P/[1.5(11.25)] ≤ Ft′ … Pmax = 950.4(5.5)(7.5) 

= 39,197.5#

16.2.5 Combined Stresses:

Combined flexure and axial compression:

 [fc/Fc′]
2 + fb1/{Fb1′[1 − (fc/FCE1)] + fb2/{Fb2′[1 − (fc/FCE2) − 

(fb1/FbE)
2]} ≤ 1.0

Where

fc < FCE1 = 0.822 Emin′/(Le1/d1)
2 for edge-wise or biaxial 

bending (d1 = wide face)

AND

 Fc < FCE2 = 0.822 Emin′/(Le2/d2)
2 for flatwise or biaxial 

bending (d2 = narrow face)



W O O D  D E S I G N152

AND

fb1 < FbE = 1.20 Emin′/Rb
2

16.4

Bending and axial load on dimensional lumber

Example 16-11: A 4.5 × 5.5 column, built up using three 

2 × 6s of structural Select Red Oak, is 20′ long with fixed 

ends and has a factored axial load of 5000#, a factored Mx 

of 800 #-in and My of 400 #-in. Is this column adequate?

1. Find values for species and grade:

Fb = 1150psi, Fc = 1000psi, Emin = 510,000psi

2. Find section properties: A = 3(8.25) = 24.74in2, 

Sx = 3(7.56) = 22.68in3,

Iy = ΣIyi + ΣAdy
2 = 3(1.547) + 2(8.25)(1.5)2 = 41.766in4 

c = 1.5 + .75 = 2.25″ 

Sy = 41.766/2.25 = 18.56in3

3. Find: fc, fb1, fb2, Fc′, FCE1, FCE2,Fb1′, Fb2′, FbE

fc = P/A = 5000/24.74 = 202.1psi 

fb1 = Mx/S = 800/17.65 = 45.33psi

fb2 = My/S = 400/18.56 = 21.55psi

4. Find FCE1, FCE2:

Emin′ = 510,000(1.5) = 765,000psi

Lu = 20ft(12″) = 240″

Le = kL = 0.65(240) = 156

Le/d1 = 156/5.5 = 28.36

FCE1 = 0.822(765,000)/28.362 = 781.85 

FCE1 = 781.85 > 202.1 = fc … okay

Le/d2 = 156/4.5 = 34.67

FCE2 = 0.822(765,000)/34.672 = 523.15

FCE2 = 523.15 > 259.74 = fc … okay

5. Find CP:

Fc′ = Fc(CF)(CP)(2.16)λ = 1000(1.3)(2.16)(.8)CP 

= 2246.4CP

FCE1/FC* = 781.85/2246.4 = 0.348 = F

CP1 = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 = (1.348/1.6) 

− [(1.348/1.6)2 − (0.348/0.8)]1/2 = 0.318

FCE2/FC* = 523.15/2246.4 = 0.233

CP2 = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 

= (1.233/1.6) − [(1.233/1.6)2 − (0.233/0.8)]1/2 = 0.221

 Use lesser value of CP = 0.221

6. Check compression:

Fc′ = 0.221(2246.4) = 496.50psi > 202.1 = fc … okay 

for compression.

7. Find CL, Fb1′, Fb2′:

Fb′ = Fb(CL)(CF)(2.16)λ = 1150(1.3)(2.16)(.8) CL 

= 2583.36 CL

Le = 1.84Lu (equal end moments) = 1.84(240) = 441.6

Rb1
2 = Led1/d2

2 = 441.6 (5.5)/4.52 = 119.94

FbE1 = 1.2(765,000)/119.94 = 7653.78

FbE1 /Fb* = 7653.78/2583.36 = 2.963

CL1 = (1 + F)/1.9) − √[((1 + F)/1.9)2 − (F/0.95)] 

= (3.963)/1.9) − √[(3.963/1.9)2 − (2.963/0.95)] = 0.976

Fb1′ = 0.976(2583.36) = 2521.36 > 45.33 … okay

Rb2
2 = Led2/d1

2 = 441.6(4.5)/5.52 = 65.69

FbE2 = 1.2(765,000)/65.69 = 13974.73

FbE2 /Fb* = 13974.73/2583.36 = 5.41

CL2 = (1 + F)/1.9) − √[((1 + F)/1.9)2 − (F/0.95)] 

= (6.41)/1.9) − √[(6.41/1.9)2 − (5.41/0.95)] = 0.989

Fb2′ = 0.989(2583.36) = 2554.94 > 21.55psi = fb2 … okay
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8. FbE = lesser of FbE1 and FbE2: 

 FbE = 7653.78psi

Summary of values found

fc = 202.10psi fb1 = 45.33psi fb2 = 21.55

Fc’ = 496.50psi FCE1 = 781.85 FCE2 = 523.15

Fb1’ = 2521.36 Fb2’ = 2554.94psi FbE = 7653.78

9. [fc/Fc′]
2 + fb1/{Fb1′[1 − (fc/FCE1)]} + fb2/{Fb2′[1 − (fc/FCE2) − (fb1/

FbE)
2]} ≤ 1.0

[202.1/496.5]2 + 45.33/{2521.36[1 − (202.1/781.85)]} + 

21.55/{2554.94[1 − 202.1/523.15 − 45.33/7653.78]} 

= 0.166 + 0.024 + 0.014 = 0.204 < 1.0 … okay

Combined axial tension and flexure:

ft/Ft′ + fb/Fb* ≤ 1.0 where Fb* = Fb times all factors but 

CL

Example 16-12: Check the adequacy of a 4 × 16 dimensional 

lumber beam with L = 16′, one concentrated load at mid-

span of 3000# and a tension load of 1500#, structural 

Select Northern Red Oak with full lateral bracing.

 Fb = 1400psi, Ft = 800psi, Fv = 220psi, 

E = 1400000psi, Emin = 510000psi, G = 0.68

 4 × 16: A = 53.38in2, S = 135.66in3, I = 1034in4

1. Check flexure:

Fb′ = Fb(Cm)(Ct)(CL)(CF)(2.16)(λ) = 1400(1)(1)(CL)(1)(2.16)

(0.8) = 2419.2CL

 CL:  d/b = 15.25/3.5 = 4.357, but with full lateral bracing, 

CL = 1.

Fb′ = 2419.2psi

weight of beam = 1.2(.68)(62.4)(53.38/144) = 18.88#/f 

M = wL2/8 + PL/4 = 18.88(16)2(12)/8 + 3000(16)(12)/4 

= 151249.92#-in

Sx = 135.66

fb = M/S = 151249.92/135.66 = 1114.92psi < 2419.2psi 

… okay for flexure

2. Check tension:

Ft′ = 800(2.16)(0.8) = 1382.4psi

ft = P/A = 1500/53.38 = 28.1psi < 1382.4psi … okay 

for tension

3. Check flexure and tension combined: 

ft/Ft + fb/Fb* = 28.1/1382.4 + 1114.92/ 2419.2 

= 0.48 < 1.0 … okay

4. Check shear: 

Fv′ = Fv(Cm) (Ct)(2.16)(λ) = 220(1)(1)(2.16)(0.8) = 380.16

V = 18.88(16)/2 + 3000/2 = 1651.05

fv = 3V/2A = 3(1651.05)/[2(3.5)(15.25)] 

= 46.40 < 354.24psi … okay for shear

5. Check deflection:

Δall = L/240 = 16(12)/240 = 0.8″

E′ = E(Cm) (Ct) = 1,400,000(1)(1) = 1,400,000 psi

I = 1034in4

 unfactored load: P = 3000, W = .68(62.4)(53.38)/144 

= 14.99

Δmax = 5wl4/384EI + PL3/48EI = 5(14.99)

(16)4(1728)/384(1400000)(1034) + 

3000(16)3(1728)/48(1400000)(1034) 

= 0.32 < 0.8 … okay

16.3 Western Framing 
Considerations

There are two types of Western Framing: platform framing 

and balloon framing. Platform framing, as shown in 

Figure 16.5, uses the method of framing a single level at one 

time, then building a horizontal framing system or platform on 

which to set the next level walls. 
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16.5

Platform framing

Balloon framing uses studs that have multiple level lengths as 

shown in Figure 16.6. This method is often employed when 

there are multilevel height spaces involved in the design. The 

disadvantage to balloon framing is that longer studs are more 

expense and more prone to warping and bending.

16.6

Balloon framing



D I M E N S I O N A L  L U M B E R  D E S I G N 155

16.3.1 Choosing a Stud Wall Size

Stud walls are historically made of 2 × 4 @ 16″o.c., although 

that standard has changed to 2 × 6 @ 24″o.c. for reasons 

of strength, economy and thermal comfort. Compare the 

efficiency of a 2 × 4 @ 16″o.c. with 2 × 6 @ 24″o.c.:

 If a wall carries w #/f, the axial force P on each stud = 

(w#/f)(spacing f) and the compressive stress on each 

stud = fc = P/A. If the allowable compressive stresses 

in the studs are equal, as they would be for the 

same Western species and grade, then the following 

comparison yields:

 2 × 4 @16″ wall: 2 × 6 @ 24″ wall:

 P = 16W/12 = 1.333W P = 24W/12 = 2W

 fc = 1.333W/(1.5)(3.5) fc = 2W/(1.5)(5.5)

 = 0.254W = 0.242W

 A wall with 2 × 6 @ 24″ can actually carry more load 

than 2 × 4 @ 16″. 

 Further, a comparison of insulation yields:

 2 × 4 @16″ wall: 2 × 6 @ 24″ wall:

 d = 3.5″ … R-13 d = 5.5″ … R-21

 A 2 × 6 wall can hold R-21 fiberglass batt insulation 

between studs compared to R-13 for a 2 × 4 wall. The 

thermal transfer through the stud is reduced because 

stud surface is reduced from 1.5″/16 in a 2 × 4 wall to 

1.5″/24 in a 2 × 6 wall, a 33% reduction.

A 2 × 6 wall will have more material cost, but less labor cost. 

Energy savings will counteract the material cost whenever fuel 

prices are high enough.

16.3.2 Limitations in Western 
Framing

Most building codes limit Western frame construction to four 

levels in height. Even at only four levels, studs on ground level 

often need to be doubled or tripled to carry the gravity loads. 

Remember that double studs will reduce energy efficiency.

Practice Exercises:

16-1: Design a series of No. 2 DFL floor joists spaced @ 

24″o.c., with a moisture content of 20%, termite treatment 

and a span of 12′. There is a dead load of 15psf and a live load 

of 40psf.

16-2: Design a series of No. 1 Southern Pine floor joists 

spaced @ 16″o.c., with a moisture content of 18%, and a 

span of 15′. There is a dead load of 15psf and a live load of 

80psf.

16-3: Determine how many select structural Southern Pine 

2 × 12′s must be joined together to support a factored load of 

300#/f over a span of 18′.

16-4: Find the maximum factored compressive load an 8′, No. 

1 Southern Pine 2 × 6 can support without bracing.

16-5: Determine the maximum unbraced length of the box 

column shown in Figure 16.7, subjected to a load of 2000# if 

the 2 × 6s are No. 2 DFL and there is incising and a moisture 

content of 21%.

16.7

Practice exercise 16-5
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16-6: A 2 × 12 joist carrying a factored load of 600#/f and 

having a span of 14′ fully bears on a flat 2 × 6 No. 2 Southern 

Pine top plate. Is this acceptable?

16-7: What is the partial bearing length required for a No. 2 

Southern Pine 2 × 10 bearing on a flat No. 2 Southern Pine 

2 × 4 with a factored load of 2000#?

16-8: Find the maximum allowable tension in a No. 2 

Southern Pine 2 × 4 with 18% moisture content and at room 

temperature.

16-9: A 3 × 5.5 column, built up using two 2 × 6s of No. 2 

Southern Pine, is 16′ long with one end fixed and the other 

pinned. It has a factored axial load of 3000#, a factored Mx of 

750 #-in and My of 150 #-in. Is this column adequate?

16-10: Check the adequacy of a 2 × 8 dimensional lumber 

beam with L = 12′, Lu = 4′, with two concentrated loads of 

2000# at 4′o.c. and a tension load of 500#, using no. 1 DFL.



seventeen

T imber  Design

Table 17.1:  Flat Use Factor for timber, with permission from the American 
Wood Council

17.2 Design of Timber 
Components

17.2.1 Design of Timber Beams:

 1. Identify Fb, Fv, E, Emin for species and grade. See 

Table A2.5 for Material Properties of selected Timber 

Species

 2. Assume FACTORED beam weight = WFBM = L(10)#/f; 

Assume d < 12″
 3. Fb′ = Fb(Ct)(CL)(CF)(Cfu)(Ci)(2.16)(λ)

CF: is d < 12″?

 Yes: CF = 1.0

 No: CF = (12/d)1/9 

Ct: is temp. above 100°F?

 No: Ct = 1.0

 Yes: Ct → Table 16.3

Cfu: is beam laid flat like a plank?

 No: Cfu = 1.0

 Yes: Cfu → Table 17.1

Chapter 17 explains the LRFD Method for analysis and 

design of timber using factors derived by the American Wood 

Council (AWC). The LRFD (Load Resistance Factor Design) 

Method uses load factors to create an ultimate or factored 

load that is the design load. It also uses Resistance Factors 

(φ). To review finding ultimate loads, see Chapter 16. 

Timber is sawn lumber in nominal sizes 5 × 5 and larger. 

As with dimensional lumber, timber nominal sizes are 0.5″ 

to 1″ larger than the actual sizes. Use actual sizes for design 

purposes.

17.1 Adjustment Factors for 
Timber

Adjustment factors for timber are the same as those for 

dimensional lumber although the values vary in some cases. 

See Table 16.1 for the adjustment factors for sawn lumber. 

Values for λ and Ct can be found in Tables 16.2 and 16.3 

respectively. Note that values for CL and CP are found using 

the same method as with dimensional lumber.

 Cr + Ci = 1.0 for timber

 Cm = 1.0 if moisture content is < 19%. Otherwise, 

for Western species, Cm = 0.67 for Fc⊥ and 0.91 for Fc 

(NOT So. Pine) 

 CF = (12/d)1/9 for d ≥ 12″ in flexure only, 

 CF = 1 otherwise 
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 λ: Find value from Table 16.2

 Calculate Fb′ = Fb(Ct)(CL)(CF)(Cfu)(2.16)(λ) = (Fb*)(CL)

 Assume CL = 1 for now.

 4. Find factored loads using the six equations at the beginning 

of this chapter. If there are only dead and live loads:

 Wu = WFBM + 1.2(WDL) + 1.6(WLL) or if NO live load: 

Wu = WFBM + 1.4(WDL)

 Pu = 1.2PD + 1.6 PL OR if NO LIVE LOAD: 

Pu = 1.4PD

 5. Find the maximum moment, Mu in the beam. Remember 

to multiply by 12″/f to obtain an answer in #-in.

 6. Sreq > Mu/Fb′ (Fb′ from step 3)

 7. Choose size based on Sreq: Note A, Sx, Ix. See Table A2.4 

Timber Section Properties.

 8. CL: find d/b and determine if CL = 1. If not, calculate CL 

using the steps described in Chapter 16.

Fb′ = Fb* (CL)

 9. Check CF for size from step 7. 

CF : is d< 12″?

 Yes: CF = 1.0

 No: CF = (12/d)1/9 

10. Adjust Fb′ for new CF: Fb′ = (Fb′ from step 3)(CF from step 

9/CF from step 3)

11. Find actual weight of beam: WBM = (specific gravity)

(62.4pcf)(A/144)

12. Find actual factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

Wu = 1.2(WBM + WDL) + 1.6(WLL) OR if NO LIVE LOAD: 

Wu = 1.4(WBM + WDL)

Pu = 1.2PD + 1.6 PL OR if NO LIVE LOAD: Pu = 1.4PD

13. Find the maximum moment in the beam. Remember to 

multiply by 12″/f to obtain an answer in #-in.

14. fb = M/S M from step 13, S from step 7.

15. Is fb ≤ Fb′?
 Yes → step 16

 No → estimate Sreq = M/Fb′ and go back to step 7 and try 

larger size.

16. Is fb/Fb′ ≥ 0.90?

 Yes → step 17

 No → estimate Sreq = M/Fb′ and go back to step 7 and try 

smaller size.

17. Fv′ = Fv(Ct)(2.16) (λ)

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Ct → Table 16.3

18. Determine the maximum shear, V, in the beam.

19. fv = 3V/2A

20. is fv ≤ Fv′?
 Yes → step 21

 No → Estimate Areq = 3V/2Fv′ choose a larger size. If 

b and d are both greater than or equal to the original 

precious size, it is not necessary to check bending stress 

again. If not, go back to step 7 and check bending stress.

21. Δall = L(12″/f)/240 (check your local building codes for 

allowable deflections)

22. Unfactored loads: remember to use unfactored loads for 

deflection. WBM is listed in step 11, and the applied loads 

are given. If an applied load is already factored, it may be 

used as is. Using a factored load will not create a safety 

issue; it will simply yield a larger required moment of 

inertia.

23. E′ = E(Ct)

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Ct → Table 16.3

24. Find Δact using deflection charts, by Double Integration 

Method or by Moment Area Method. Remember to 

multiply the equations by 1728in3/ft3 in order to obtain an 

answer in inches when using a length, L in feet. Ix is from 

step 3.

25. Is Δact ≤ Δall? 

Yes → done.

No → find Ireq = Δact (Ix from step 24)/ Δall

Select final size based on Ireq. 

Example 17-1: Design the most efficient 36′ long timber 

beam of No. 2 Douglas Fir Larch 12 ×_ to support 3 point 

loads of LL = 800# and DL = 200 at 9′o.c. with lateral 

bracing only at point loads. 

 1. Fb = 875psi, Fv = 170psi, E = 1,300,000psi, 

Emin = 470,000psi, G = 0.5

 2. Assume factored beam weight = L(10) = 36(10) = 360#/f; 

d < 12″
 3. Fb′ = Fb(Ct)(CL)(CF)(Cfu)(Ci)(2.16)(0.8) = 875(1)(CL)(1)(1)(2.16)

(0.8) = 1512CL 

Assume CL = 1, Fb* = 1512psi

 4. Find factored loads:
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Wu = (Wfbm) = 360#/f

Pu = 1.2(200#) + 1.6(800#) = 1424# 

 5. M = wL2/8 + PL/2 = 360(36)2/8 + (1424)(36)/2 

= 83,952#-f = 1,007,424#-in

 6. Sreq ≥ M/Fb′ = 1,007,424#-in/1512 = 666.29in3

 7. Choose size based on Sreq: Try 12 × 20 A = 213.75in2, 

S = 676.88in3, Ix = 6430.31in4.

 8. d/b = 19/11.25 = 1.69 < 2 … CL = 1

Fb′ = Fb* (CL) = 1512(1) = 1512psi

 9. Check CF for size from step 7. 

CF : is d< 12″? yes: CF = (12/19)1/9 = 0.95 

10. Adjust Fb′ for new CF: Fb′ = 1512(0.95) = 1436.74psi

11. Find actual weight of beam: WBM = (specific gravity)

(62.4pcf)(A/144) = .5(62.4)(213.75)/144 = 46.31#/f

12. Find actual factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

Wu = 1.2(WBM ) = 1.2(46.31) = 55.58#/f

Pu = 1424# (same as in step 4)

13. Mu = wL2/8 + PL/2 = 55.58(36)2/8 + (1424)(36)/2 

= 34,635.96#-f = 415,631.52#-in

14. fb = Mu/S = 415,613.52/676.88 = 614.04psi

15. Is fb ≤ Fb′? Yes → step 16 614.04 < 1436.74psi

16. Is fb/Fb′ ≥ 0.90? No: 614.04/1436.74 = 0.43 estimate 

Sreq = Mu/Fb′ = 415,631.52/1436.74 = 282.33in3

7A. Try 12 × 14 A = 149.06in2, S = 329.18in3, Ix = 2180.82in4.

8A. d/b = 13.25/11.25 = 1.18 < 2 … CL = 1

Fb′ = Fb* (CL) = 1512(1) = 1512psi

9A. Check CF for size from step 7. 

CF : is d < 12″? Yes: CF = (12/13.25) 1/9 = 0.989 

10A. Adjust Fb′ for new CF: Fb′ = 1512(0.989) = 1495.37psi

11A. Find actual weight of beam: WBM = (specific gravity)

(62.4pcf)(A/144) = .5(62.4)(149.06)/144 = 32.3#/f

12A. Find actual factored loads:

Wu = 1.2(WBM ) = 1.2(32.3) = 38.76#/f

Pu = 1424# (same as in step 4)

13A. Mu = wL2/8 + PL/2 = 38.76(36)2/8 + (1424)(36)/2 

= 31,911.12#-f = 382,933.44#-in

14A. fb = Mu/S = 382,933.44/329.18 = 1163.29psi

15A. Is fb ≤ Fb′? Yes → step 16 1163.29 < 1495.37psi

16A.  Is fb/Fb′ ≥ 0.90? No: 1163.29/1495.37 = 0.78 

estimate Sreq = Mu/Fb′ = 382,933.44/1495.37 = 256.08in3

7B. Try 12 × 12 A = 126.54in2, S = 237.3in3, Ix = 1334.84in4.

8B. d/b = 11.25/11.25 = 1 < 2 … CL = 1

Fb′ = Fb* (CL) = 1512(1) = 1512psi

9B. Check CF for size from step 7. 

CF : is d < 12″? No: CF = 1 

10B. Adjust Fb′ for new CF: Fb′ = 1512(1) = 1512psi

11B. Find actual weight of beam: WBM = (specific gravity)

(62.4pcf)(A/144) = .5(62.4)(126.54)/144 = 27.42#/f

12B. Find actual factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

Wu = 1.2(WBM ) = 1.2(27.42) = 32.9#/f

Pu = 1424# (same as in step 4)

13B. Mu = wL2/8 + PL/2 = 32.9(36)2/8 + (1424)(36)/2 

= 30,961.8#-f = 371,541.6#-in

14B. fb = Mu/S = 371,541.6/237.3 = 1565.70psi

15B. Is fb ≤ Fb′? No: 1565.70 > 1512psi … use 12 × 14 for 

flexure.

17. Fv′ = Fv(Ct)(2.16)(λ) Ct: Is temperature above 100°F? 

No: Ct = 1.0

Fv′ = 170(1)(2.16)(.8) = 293.76psi

18. V = wL/2 + 3P/2 = 38.76#/f(36′/2) + 3(1424#)/2 

= 2833.68#

19. fv = 3V/2A = 3(2833.68#)/[2(149.06in2)] = 114.06psi 

20. Is fv ≤ Fv′? Yes: 114.06psi < 293.76psi … okay for shear.

21. Δall = L(12″/f)/240 = 36(12)/240 = 1.8″
22. w = 32.3#/f, P = 200# + 800# = 1000#

23. E′ = E(Ct)

 Ct: is temp. above 100°F? No: Ct = 1.0

E′ = 1,300,000psi(1) = 1,300,000psi

24. Δact = 5wL4/384EI + .0495PL3/EI = [5(32.3)(364)/384 + 

.0495(1000)(363)](1728)/[1,300,000(2180.82)] = 1.842″
25. Is Δact ≤ Δall? No → 1.842″ > 1.8″ … Ireq = 1.842 (2180.82)/ 

1.8 = 2231.95, Use 12 × 16: Ix = 3164.06in4 

ANSWER: USE 12 × 16

Example 17-2: Design a short, heavily-loaded Douglas Fir 

Larch (DFL) No.1 timber beam where L = 4′, Pu = 40,000# DL 

at center, fixed ends, no repetition and no lateral support.
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 1. Fb = 1350psi, Fv = 170psi, E = 1,600,000psi, 

Emin = 580,000psi, G = 0.5

 2. Assume FACTORED beam weight = WFBM = L(10)#/f 

= 40#/f; Assume d < 12″
 3. Fb′ = Fb(Ct)(CL)(CF)(Cfu)(Ci)(2.16)(λ)

CF : is d < 12″? Yes: CF = 1.0

Ct: is temp. above 100°F? No: Ct = 1.0

Cfu: is beam laid flat like a plank? No: Cfu = 1.0

λ = 0.6

Calculate Fb′ = Fb(Ct)(CL)(CF)(Cfu)(2.16)(λ) = (Fb*)(CL) 

= 1350(CF)(CL)(2.16)(0.6) = 1749.6CL 

Assume CL = 1 for now.

 4. Wu = 1.4 WFBM = 1.4(40#/f) = 56#/f , Pu = 1.4PD 

= 1.4(40,000#) = 56,000#

 5. Mu = wL2/8 + PL/4 = 56#/f(4′)2/8 + 56,000(4′/4) 

= 56,112#-f = 673,344#-in.

 6. Sreq > Mu/Fb′ = 673,344#-in/1749.6psi = 384.86

 7. Because of short length and heavy load, choose a bulky 

size with a large area.

Try 12 × 16: A = 168.75in2, S = 421.88in3, 

Ix = 3164.06in4

 8. d/b = 15.25/11.25 = 1.36 < 2 … CL = 1

Fb′ = Fb* (CL) = 1749.6(1) = 1749.6psi

 9. Check CF for size from step 7. 

CF : is d< 12″? No: CF = (12/15.25)1/9 = 0.974

10. Adjust Fb′ for new CF: Fb′ = 1749.6(.974) = 1704.11psi

11. WBM = (specific gravity)(62.4pcf)(A/144) = .5(62.4)

(168.75/144) = 36.56#/f

12. Wu = 1.4(36.56) = 51.19#/f

 Pu = 1.4(40,000) = 56,000#

13. Mu = wL2/8 + PL/4 = 51.19#/f(4′)2/8 + 56,000(4′/4) 

= 56,102.38#-f = 673,228.56#-in

14. fb = Mu/S = 673,228.56/421.88 = 1595.78psi

15. Is fb ≤ Fb′? Yes: 1595.78psi < 1704.11psi

16. Is fb/Fb′ ≥ 0.90? Yes: 1595.78/1704.11 = 0.94 … okay for 

flexure

17. Fv′ = Fv(Ct)(2.16) (λ) 

Ct: Is temp. above 100°F? No: Ct = 1.0

Fv′ = 170(1)(2.16)(.6) = 220.32psi

18. V = wL/2 + P/2 = 51.19(4/2) + 56,000/2 = 28,103.8#

19. fv = 3V/2A = 3(28,103.8)/[2(168.75)] = 249.81psi

20. Is fv ≤ Fv′? No → estimate Areq = 3V/2Fv′ 
= 3(28,103.8)/[2(220.320] = 191.34in2

Use 14 × 16: A = 198.75in2, S = 496.08in3, 

I = 3726.56in4 because both dimension are equal 

or larger than previous size, there is no need to 

recheck for flexure.

21. Δall = L(12″/f)/240 = 4(12)/240 = 0.20″
22. w = .5(62.4)(198.75/144) = 43.06#/f, P = 40,000#

23. E′ = E(Ct)

Ct: is temp. above 100°F? No: Ct = 1.0

E′ = E(1) = 1,600,000psi

24. Δact = 5wL4/384EI + PL3/48EI = 5(43.05)(44)(1728)/

[384(1,600,000)(3726.56)] + 40,000(43)(1728)/

[48(1,600,000)(3726.56)] = .015″ 

25. Is Δact ≤ Δall? Yes: 0.015″ < 0.2″
ANSWER: USE 14 × 16

17.2.2 Compression in Timber 

Adjustment factors of sawn lumber: 

The equation for allowable compressive stress is:

Fc′ = Fc(Cm)(Ct)(CF)(Ci)(CP)(2.16)(λ)

where the factors are described at the beginning of this 

chapter. Remember that Ci is not used with timber and 

therefore Ci = 1. CP is described in Chapter 16.

Fc′ = Fc(Cm)(Ct)(CF)(CP)(2.16)(λ)

Like the design of wood beams, the design of columns is an 

iterative process based on an assumed trial size. In the case 

of wood columns, a good starting point is Atrial = Pu/Fc* where 

Fc′ = Fc*CP.

Design of wood columns:

 1. Look up Fc and Emin for the given species and grade of 

lumber.

 2. Fc′ = Fc(Cm)(Ct)(CF)(CP)2.16 (λ) = Fc*(CP)

Cm: Is moisture content over 19%?

 No: Cm = 1.0

 Yes: Cm = 91 

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

 Assume CP = 1 and CF = 1 for now.

 3. Calculate Le = kL(12″/f) in each direction. Effective Length 

Factor, k can be found in Figure 10.1 (k = 1.0 for pin–pin, 

k = .8 for pin–fix, k = .65 for fix–fix).
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 Determine minimum width in each direction based on 

Le/d < 50.

dmin = Lex/50 and bmin = Ley/50

 4. Atrial = P/Fc* 

 Select a size with A ≥ Atrial , b ≥ bmin, and d ≥ dmin. Note A, 

b and d.

 5. Use larger of Le/d or Ley/b and Lex/d. 

 6. Emin′ = Emin(Ct)(1.5) 

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

 7. FcE = 0.822(Emin′)/(Le/d)2

 8. F = FcE/Fc* 

 9. c = 0.8 for sawn lumber, c = 0.9 for glu-lams

10. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2

11. Fc′ = Fc*(CP) = allowable compressive stress

12. fc = P/A = actual compressive stress

13. Is fc < Fc′? Yes → step 15

 No → go back to step 4 and choose larger size.

14. Is fc/Fc′ ≥ 0.90? If not, go back to step 4 and try smaller 

size.

Example 17-3: Design a square No.1 Southern Pine 

column 12′ long to carry a factored axial load of 50,000# 

with pinned connections and a moisture content of 20%.

 1. Fc = 825psi and Emin = 550,000psi.

 2. Fc′ = Fc(Cm)(Ct)(CF)(CP)2.16 (λ) = Fc*(CP)

Cm: Is moisture content over 19%? Yes: Cm = .91 

Ct: Is temp. above 100°F? No: Ct = 1.0

 Assume CP = 1 and CF = 1 for now.

Fc′ = 825(.91)(1)(1)(2.16)(.8) = 1297.3(CP)psi … 

Fc* = 1297.3psi

 3. Le = kL(12″/f) = 1.0(12′)(12″/f) = 144″
dmin = bmin = 144″/50 = 2.88″

 4. Atrial = P/ Fc* = 50,000#/1297.3 = 38.54in2 

 Try 8 × 8: A = 52.56in2, d = b = 7.25″, S = 63.51in3, 

I = 230.23in4

 5. Use larger of Le/d = 144″/7.25 = 19.86

 6. Emin′ = Emin(Ct)(1.5) 

Ct: Is temp. above 100°F? No: Ct = 1.0

Emin′ = 550,000(1)(1.5) = 825,000psi

 7. FCE = 0.822(Emin′)/(Le/d)2 = 0.822(825,000)/19.862 

= 1719.36psi

 8. F = FCE/Fc* = 1719.36/1297.3 = 1.325

 9. c = 0.8 for sawn lumber, c = 0.9 for glu-lams

10. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 = 0.778

11. Fc′ = Fc*(CP) = allowable compressive stress 

= 1297.3(0.778) = 1009.3psi

12. fc = P/A = actual compressive stress = 50,000#/52.56in2 

= 951.29psi

13. Is fc < Fc′? Yes: 951.29psi < 1009.3psi

14. Is fc/Fc′ ≥ 0.90? Yes: 951.29/1009.3 = 0.94

ANSWER: USE 8 × 8

17.2.3 Bearing in Timber:

Bearing in timber uses the same method and value for 

Cb as bearing in dimensional lumber. See section 16.2.3. 

Remember to use timber values for Fc⊥ and Cm.

17.2.4 Tension in Timber:

Tension in timber uses the same method as tension in 

dimensional lumber. See section 16.2.4. Remember to use 

timber values for Ft and CF. Also remember that Cm = 1 and Ci 

= 1 for timber in tension. 

17.2.5 Combined Stresses in Timber: 

Combined flexure and axial compression:

[fc/ Fc′]
2 + fb1/{Fb1′[1 − (fc/FCE1)] + fb2/{Fb2′[1 − (fc/FCE2) − (fb1/

FbE)
2]} ≤ 1.0

Where

fc < FCE1 = 0.822 Emin′/(Le1/d1)
2 for edge-wise or biaxial 

 bending (d1 = wide face)

AND

Fc < FCE2 = 0.822 Emin′/(Le2/d2)
2 for flatwise or biaxial 

 bending (d2 = narrow face)

AND

fb1 < FbE = 1.20Emin′/Rb
2

Example 17-4: A 6 × 8 column of structural Select Red 

Oak is 20′ long with fixed ends and has a factored axial 

load of 20,000#, a factored Mx of 800 #-in and My of 

400 #-in. Is this column adequate?
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1.  Find values for species and grade: 

Fb = 1350psi, Fc = 875psi, Emin = 440,000psi

2. Find section properties: A = 39.88in2, Sx = 48.18in3, 

Sy = 36.55in3

3. Find: fc, fb1, fb2, FC′, FCE1, FCE2,Fb1′, Fb2′, FbE

fc = P/A = 20000/39.88 = 501.50psi 

fb1 = Mx/S = 800/48.18 = 21.89psi

fb2 = My/S = 400/36.55 = 10.94psi

4. Find FCE1, FCE2: 

Emin′ = 440,000(1.5) = 660,000psi

Lu = 20ft(12″) = 240″

Le = kL = 0.65(240″) = 156″

Le/d1 = 156/7.5 = 20.8  

FCE1 = 0.822(660,000)/20.82 = 1253.98psi 

FCE1 = 1253.98psi > 501.50psi = fc … okay

Le/d2 = 156/5.5 = 28.36 

FCE2 = 0.822(660,000)/28.362 = 674.36psi 

FCE2 = 674.36psi > 501.50psi = fc … okay

5. Find CP:

Fc′ = Fc(CF)(CP)(2.16)λ = 875(1)(2.16)(.8)CP = 1512CP

FCE1/FC* = 1253.98/1512 = 0.829

CP1 = 0.623 

FCE2/FC* = 674.36/1512 = 0.446

CP2 = 0.394

Use lesser value of CP = 0.394

6. Check compression:

Fc′ = 0.394(1512) = 596.60psi > 501.50 = fc … okay for 

compression.

7. Find CL, Fb1′, Fb2′:

Fb′ = Fb(CL)(CF)(2.16)λ = 1350(1)(1)(2.16)(.8) CL 

= 2332.8 CL

CL = 1 because d1/d2 = 7.5/5.5 = 1.36 < 2

Fb1′ = (1)(2332.8) = 2332.8psi > 21.89psi = fb1 … okay 

Fb2′ = (1)(23328) = 2332.8psi > 10.94psi = fb2 … okay

8. FbE = lesser of FbE1 and FbE2:  FbE = 2332.8psi

Summary of values found

fc = 501.50psi fb1 = 21.89psi fb2 = 10.94psi

Fc’ = 596.60psi FCE1 = 1253.98psi FCE2 = 674.36psi

Fb1’ = 2332.8psi Fb2’ = 2332.8psi FbE = 2332.8psi

9. [fc/Fc′]
2 + fb1/{Fb1′[1 − (fc/FCE1)]} + fb2/{Fb2′[1 − (fc/FCE2) 

− (fb1/FbE)
2]} ≤ 1.0

[501.50/596.60]2 + 21.89/{2332.8[1 − 

(501.50/1253.98)] + 10.94/{2332.8[1 − 501.50/674.36 

− (21.89/2332.8)2] = 0.707 + 0.016 + 0.018 

= 0.741 < 1.0 … okay

 Combined axial tension and flexure:

ft/Ft′ + fb/Fb* ≤ 1.0 Where Fb* = Fb times all factors 

but CL

Example 17-5: Check the adequacy of a 6 × 10 timber 

beam with L = 16′, Lu = 8′, one concentrated load at 

midspan of 3000#, a tension load of 1500#, structural 

Select Northern Red Oak.

Fb = 1600psi, Ft = 950psi, Fv = 205psi, 

E = 1300000psi, Emin = 470000psi, G = .68

6 × 10: A = 50.88, S = 78.43, I = 362.75

1. Check flexure:

Fb′ = Fb(Cm)(Ct)(CL)(CF)(2.16)(λ) = 1600(1)(1)(CL)(1)(2.16)

(0.8) = 2764.8CL

CL: d/b = 9.25/5.5 = 1.68 < 2 … CL = 1

Fb′ = 2764.8(1) = 2764.8psi

weight of beam = 1.2(.68)(62.4)(50.88/144) = 17.99#/f 

M = wL2/8 + PL/4 = 17.99(16)2(12)/8 + 3000(16)(12)/4 

= 150908.16#-in

Sx = 78.43

fb = M/S = 150908.16/78.43 = 1924.11< 2748.21 … 

okay for flexure
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2. Check tension:

Ft′ = 950(2.16)(0.8) = 1231.2psi

ft = P/A = 1500/50.88 = 29.48 < 1231.2 psi … okay for 

tension

3. Check flexure and tension combined: 

ft/Ft + fb/Fb* = 29.48/1231.2 + 1924.11/ 2764.8 = 0.72 

< 1.0 … okay

4. Check shear: 

Fv′ = Fv(Cm)(Ct)(2.16)(λ) = 205(1)(1)(2.16)(0.8) = 354.24

V = 17.99(16)/2 + 3000/2 = 1643.92#

fv = 3V/2A = 3(1643.92)/[2(5.5)(9.25)] 

= 48.47 < 354.24 … okay for shear

5. Check deflection:

Δall = L/240 = 16(12)/240 = 0.8″

E′ = E(Cm)(Ct) = 1,300,000(1)(1) = 1,300,000 psi

I = bh3/12 = 5.5(9.25)3/12 = 363

unfactored load: P = 3000#, W = .68(62.4)(5.5)

(9.25)/144 = 14.99#/f

Δmax = 5wl4/384EI + PL3/48EI = 5(14.99)

(16)4(1728)/384(1300000)(363) + 

3000(16)3(1728)/48(1300000)(363) = 0.98 > 0.8 no 

good.

Practice Exercises:

17-1: Design the most efficient 20′ long timber beam of No. 

2 Douglas Fir Larch 8 ×_ with a uniform dead load, wD = 30#/f 

and a uniform live load wL = 640#/f with full lateral bracing.

17-2: Design the most efficient, 16′ long timber beam of No. 

1 Douglas Fir Larch 6 ×_ with a uniform dead load, wD = 20#/f 

and a uniform live load wL = 600#/f with lateral bracing at 

4′o.c.

17-3: Design a square select structural DFL column 16′ 
long to carry a factored axial load of 80,000# with fixed 

connections and a moisture content of 16%.

17-4: Design a 6 ×_ No. 2 Southern Pine column 12′ long 

to carry a factored axial load of 90,000# with pinned 

connections and bracing at 4′ from top in the weak direction.

17-5: A 6 × 10 column of select structural DFL is 20′ long with 

fixed ends and has a factored axial load of 50000#, a factored 

Mx of 400 #-in and My of 200 #-in. Is this column adequate?

17-6: Check the adequacy of an 8 × 16 timber beam with 

L = 24′, Lu = 8′, two concentrated loads of 3000# each at 

8′o.c. and, a tension load of 1500#, structural Select Northern 

Red Oak.
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Glue-L aminated Lumber 
Design

1.5″. When using the section properties chart for glu-lams, 

the nominal sizes are the actual sizes for design purposes. 

The charts list standard sizes for Western species and for 

Southern Pine, but again, glu-lams can be custom made to 

any size.

Note: Only the lesser value of Cv and CL is applied, NOT 

BOTH!

Allowable stresses, F′, in Table 18.1 are found by multiplying 

the design values listed for a given species of wood from 

Table 6A and 6B of the National Design Specifications 

Supplement by the applicable factors. Table A2.8 contains 

sample values for use with examples and exercises in this 

book. 

 Values for λ, and Ct can be found in Tables 16.2 and 

16.3, respectively.

 Note that values for CL, CP and Cb are found using 

the same method as with dimensional lumber. See 

Chapter 16.

 There is no value of Cr or Ci for glu-lams.

Cm is the Wet Service Factor. In glu-lams, Cm is used when 

the moisture content is greater than 16%.

Chapter 18 explains the LRFD method for analysis and design 

of glue-laminated lumber (glu-lams) using factors derived 

by the American Wood Council (AWC). The LRFD (Load 

Resistance Factor Design) Method uses load factors to create 

an ultimate or factored load that is the design load. It also 

uses Resistance Factors (φ). To review finding ultimate loads, 

see Chapter 16.

Glu-lams are specified by flexural stress and Modulus of 

Elasticity when used for beams. For example, a 24F-1.8E 

specifies Fb = 2400psi and E = 1,800,000psi or 1.8 × 106psi. 

Designations for glu-lams used primarily in tension or 

compression consist of a combination symbol followed 

by species designation and grade. For example, 47/SP/

N2M12 refers to a glu-lam with a combination number of 47, 

Southern Pine species, and a grade designation of N2M12. 

Softwood glue-lams used in compression can be found in 

Table 5B of the NDS Supplement. Sample values for problem 

solving are given in this text in Table A2.8.

18.1 Adjustment Factors for 
Glu-Lams

Glu-lams can be manufactured to specific sizes and shapes 

using lamination thicknesses that can vary from .125″ to 
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Table 18.2:  Cm Wet Service Factor for glu-lams, with permission from the 
American Wood Council

CV is the Volume Factor. It is only used with glu-lams.

Cv = (21/L)1/X(12/d)1/X(5.125/b)1/X ≤ 1.0

Where: 

 L = length in feet of bending member between points 

of zero moment. 

 d = depth of bending member in inches

 b = width of bending member in inches. When the 

width is made of multiple pieces, b = width of widest 

piece in inches and ≤ 10.75″

 x = 20 for Southern Pine

 x = 10 for all other species.

Cfu is the Flat Use Factor. In glu-lams, Cfu is used if the 

laminations are vertical and the depth of the beam, dy < 12″.

Cfu = (12/dy)1/9

Cc is the curvature factor.

Cc = 1 − 2000(t/R)2{/eq

Where:

 t = thickness of laminations in inches

 R = radius of curvature of the inside face of the 

member in inches.

Table 18.1:  Adjustment factors for glu-lams, with permission from the American Wood Council

ADJUSTMENT FACTORS FOR GLU-LAMS 
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Fb' = Fb x Ct Cm CL Cv Cf Cc 2.16 h 

Ft' = Ft 
Ct Cm 

x 2.16 h 

Fc' = Fc 
Ct Cm 

Cp h x 2.16 

Fv' = Fv x Ct Cm 2.16 h 

FC-L' = FC-L 
Ct Cm 

Cb X 1.5 

Frt' = Frt x Ct Cm 2.16 h 

E' = E x Ct Cm 

Emin' = Emin x Ct Cm 1.5 

Cm Wet Service Factor for Glu-Lams 

Cm = 1.0 if moisture content is < 16%. 

Design Values Cm 

Fb, Ft 0.8 

Fc 0.73 

Fv 0.875 

FC-L 0.53 

E, Emin 0.833 
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 t/R ≤ 1/100 for hardwoods and Southern Pine

 t/R ≤ 1/125 for other softwoods

For tapered and other non-prismatic members, there are 

also factors CI, the stress interaction factor and Cvr, the shear 

reduction factor that are not addressed in this book.

18.2 Design of Glu-Lam 
Components

Component design using glue-laminated wood follows the 

same basic method of designing any wood component. Find 

the allowable stress using the design values and adjustment 

factors given for each condition and then compare the allowable 

stress to the actual stress. If the actual stress is greater than 

the allowable stress, the component needs to be resized. 

18.2.1 Design of Glu-Lam Beams

Below is a step-by-step method for the design of beams 

using glue-laminated wood. 

 1. Using Table 5A of NDS Supplement, or Table A2.8, 

identify Fb, Fv, E, Emin and specific gravity for grade.

 2. Assume FACTORED beam weight = WFBM = L(10)#/f 

 3. Fb′ = Fb(Cm)(Ct)(CL)(Cv)(Cfu)(Cc)(2.16)(λ)

Cm: Is moisture content over 16%?  

 No: Cm = 1.0

 Yes: Cm = .80

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

Cfu: Are laminations vertical and depth, dy < 12″?

 No: Cfu = 1.0

 Yes: Cfu = (12/dy)1/9

Cc = 1 − 2000(t/R)2

λ: Is there a live load or a factored load stated in the 

problem?

 No: λ = 0.6

 Yes: λ = 0.8

Calculate Fb′ = Fb(Cm)(Ct)(CL)(Cv)(Cfu)(Cc)(2.16)(λ) = (Fb*)

(CL)(Cv) 

Assume CL and Cv = 1 for now

 4. Find factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

 Wu = WFBM + 1.2(WDL) + 1.6(WLL) OR if NO LIVE 

LOAD: Wu = WFBM + 1.4(WDL)

 Pu = 1.2PD + 1.6 PL OR if NO LIVE LOAD: Pu = 1.4PD

 5. Find maximum moment (M). Remember to multiply by 

12″/f to obtain an answer in #-in. 

 6. Sreq > M/Fb′
 7. Choose size based on Sreq find: A, Sx, and Ix from 

Table A2.6 for Southern Pine and Table A2.7 for Western 

species. 

 8. CL: find d/b and determine if CL = 1. If not, calculate CL 

using the steps described in Chapter 16.

 9. Cv = (21/L)1/X(12/d)1/X(5.125/b)1/X ≤ 1.0

 X = 10 (not Southern Pine) X = 20 (Southern Pine)

10. Fb′ = [Fb*][lesser of (CL) or Cv] where Fb* is from step 3.

11. Find actual weight of beam: WBM = (specific gravity)

(62.4pcf)(A/144)#/f

12. Find factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

Wu = 1.2(WBM + WDL) + 1.6(WLL) OR if NO LIVE LOAD: 

Wu = 1.4(WBM + WDL)

Pu = 1.2PD + 1.6 PL OR if NO LIVE LOAD: Pu = 1.4PD

13. Find maximum moment (M). Remember to multiply by 

12″/f to obtain an answer in #-in.

14. fb = M/S M from step 13, S from step 7.

15. Is fb ≤ Fb′?
Yes → step 9

No → estimate Sreq = M/Fb′ and go back to step 3 and 

try larger size.

16. Is fb/Fb′ ≥ 0.90?

Yes → step 10

No → estimate Sreq = M/Fb′ and go back to step 3 and 

try smaller size.

17. Fv′ = Fv(Cm)(Ct)(2.16) (λ)

Cm: Is moisture content over 16%? 

 No: Cm = 1.0

 Yes: Cm = .875

Ct: Is temp. above 100°F?



G L U E - L A M I N A T E D  L U M B E R  D E S I G N 167

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3 

18. Determine V using equations for Vu from Table A1.2.

19. fv = 3V/2A

20. Is fv ≤ Fv′?
Yes → step 14

No → estimate Sreq = M/Fb′ and go back to step 10 and 

try larger size.

21. Δall = L(12″/f)/240 

22. Unfactored loads: use WBM from step 11, loads are given

23. E′ = E(Cm)(Ct)

Cm: is moisture content over 16%?

 No: Cm = 1.0

 Yes: Cm = .833

Ct: is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

24. Find maximum deflection = Δact Remember to multiply by 

1728in3/ft3. 

25. Is Δact ≤ Δall?

Yes → done.

No → find Ireq = Δact (Ix from step 3)/ Δall. Select final size 

based on Ireq. 

Example 18-1: Design a 12.25″ wide Douglas Fir, 24F-1.8E 

glu-lam, spanning 80′ with concentrated live loads of 3000# 

and concentrated dead loads of 4000# spaced 10′o.c. 

The beam is curved such that the midpoint of the beam is 8′ 
above the supports. The laminations are 0.75″ thick. Blocking 

occurs at points of load and at ends.

 1. Fb = 2400psi, Fv = 265psi, E = 1,800,000psi, 

Emin = 950,000psi

 2. Assume factored beam weight = WFBM = 80′(10)#/f 

= 800#/f 

 3. Fb′ = Fb(Cm)(Ct)(CL)(Cv)(Cfu)(Cc)(2.16)(λ)

Cm: Is moisture content over 16%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

Cfu: Are laminations vertical and depth, dy < 12″? No: 

Cfu = 1.0

Cc = 1 − 2000(t/R)2: find R

18.1

Radius of curvature

 Using the Pythagorean Theorem: 

402 + (R − 8)2 = R2 

402 + R2 − 16R + 64 = R2

R = (1600 + 64)/16 = 104′ = 1248″

t/R = 0.75/1248 = .0006 < 1/125 = .008 … okay

Cc = 1 − 2000(.0006)2 = 0.999

 λ: Is there a live load or a factored load stated in the 

problem? Yes: λ = 0.8

Fb′ = Fb(Cm)(Ct)(CL)(Cv)(Cfu)(Cc)(2.16)(λ) = 2400(1)(1)(1)

(.999)(2.16)(.8) = (Fb*)(CL)(CV) = 4143.05(CL)(CV) 

 4. Find factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

Wu = WFBM = 800#/f

Pu = 1.2(4000#) + 1.6 (3000#) = 9600#

 5. Mmax = wL2/8 + PL = 800#/f(80′)2/8 + 9600#(80′) 
= 1,408,000#-f = 16,896,000#-in
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 6. Sreq > M/Fb′ = 16,896,000#-in/4143.05psi = 4078.15in3

 7. Try 12.25″ × 45″: A = 551.3in2, Sx = 4134in3, and 

Ix = 93020in4 from Table A2.7. 

 8. d/b = 45/12.25 = 3.67 Condition states CL = 1 if 

c) 2≤ d/b ≤ 4 AND edges are secured by blocking or

 X-bracing. Therefore, CL = 1

 9. Cv = (21/L)1/X(12/d)1/X(5.125/b)1/X = (21/80)1/10(12/45)1/10(5.12

5/12.25)1/10 = 0.703 ≤ 1.0

X = 10 (not Southern Pine) 

10. Fb′ = [Fb*][lesser of (CL) or Cv] = 4143.05(0.703) 

= 2912.56psi

11. WBM = (specific gravity)(62.4pcf)(A/144)#/f = (.5)(62.4)

(551.3/144) = 119.45#/f

12. Find factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

Wu = 1.2(119.45#/f) = 143.34

Pu = 1.2(4000#) + 1.6 (3000#) = 9600#

13. Mmax = wL2/8 + PL = 143.34#/f(80′)2/8 + 9600#(80′) 
= 882,672#-f = 10,592,064#-in

14. fb = M/S = 10,592,064/4134 = 2562.18psi

15. Is fb ≤ Fb′? Yes: 2562.18psi < 2912.56psi

16. Is fb/Fb′ ≥ 0.90?

No → 2562.18/2912.56 = 0.88 < 0.9 try smaller size:

7A. Try 12.25″ × 43.5″: A = 532.9in2, Sx = 3863in3, and 

Ix = 84030in4 

8A. d/b = 43.5/12.25 = 3.55 Condition states CL = 1 if c) 

2 ≤ d/b ≤ 4 AND edges are secured by blocking or 

X-bracing. Therefore, CL = 1

9A. Cv = (21/L)1/X(12/d)1/X(5.125/b)1/X = (21/80)1/10(12/43.5)1/10

(5.125/12.25)1/10 = 0.705 ≤ 1.0 

10A. Fb′ = [ Fb*] [lesser of (CL) or Cv] = 4143.05(0.705) 

= 2920.51psi

11A. WBM = (specific gravity)(62.4pcf)(A/144)#/f 

= (.5)(62.4)(532.9/144) = 115.46#/f

12A. Find factored loads using the six equations at the 

beginning of this chapter. If there are only dead and live 

loads:

Wu = 1.2(115.46#/f) = 138.55

Pu = 1.2(4000#) + 1.6 (3000#) = 9600#

13A. Mmax = wL2/8 + PL = 143.34#/f(80′)2/8 + 9600#(80′) 
= 878,840#-f = 10,546,080#-in

14A. fb = M/S = 10,546,080/3863 = 2730.02psi

15A. Is fb ≤ Fb′? Yes → 2730.02psi < 2920.51psi

16A. Is fb/Fb′ ≥ 0.90? No → 2730.02/2920.51 

= 0.93 > 0.9 … okay

 Note: 12.25 × 42 also works and is more efficient for 

flexure.

16. Fv′ = Fv(Cm)(Ct)(2.16) (λ)

Cm: Is moisture content over 16%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

Fv′ = 265psi(1)(1)(2.16)(.8) = 457.92psi

17. V = wL/2 + 7P/2 = 115.46#/f(80′/2) + 7(9600#)/2 

= 38,218.4#

18. fv = 3V/2A = 3(38,218.4)/[2(532.9)] = 107.58psi 

19. Is fv ≤ Fv′? Yes: 107.58psi < 457.92psi 

20. Δall = L(12″/f)/240 = 80′(12″/f)/240 = 4″
21. w = 115.46#/f, P = 4000# + 3000# = 7000#

22. E′ = E(Cm)(Ct) = 1,800,000psi(1)(1) = 1,800,000psi

Cm: Is moisture content over 16%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

23. Δact = 5wL4/384EI + 79PL3/768EI = 5(115.46)(804)

(1728in3/ft3)/[384(1,800,000)(84030)] + 79(7000)(803)

(1728)/[768(1,800,000)(84030)] = 0.703 + 4.212 

= 4.915″{/eq

24. Is Δact ≤ Δall? No → find Ireq = Δact(Ix from step 3)/Δall 

= 4.915(84030)/4 = 103251.86in4

USE 12.25 × 48: I = 112,900in4

Example 18-2: Design a 10.5″ wide Southern Pine, 28F-2.1E 

SP glu-lam, spanning 40′ with a dead load of 1500#/f. 

There is no sheathing and blocking is at 8′o.c. The beam is 

subjected to 110°F average temperature and 19% water content.

 1. Fb = 2800psi, Fv = 300psi, E = 2,100,000psi, 

Emin = 1,110,000psi, G = 0.55

 2. Assume FACTORED beam weight = WFBM = 40′(10)#/f 

= 400#/f 

 3. Fb′ = Fb(Cm)(Ct)(CL)(Cv)(Cfu)(Cc)(2.16)(λ)

Cm: Is moisture content over 16%? Yes: Cm = .80

Ct: Is temp. above 100°F? Yes: From Table 16.3, 

Ct = 0.7

Cfu: Are laminations vertical and depth, dy < 12″? 

No: Cfu = 1.0
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Cc = 1

λ: Is there a live load or a factored load stated in the 

problem? No: λ = 0.6

Fb′ = Fb(Cm)(Ct)(CL)(Cv)(Cfu)(Cc)(2.16)(λ) = 2800(.8)(.7)(1)

(1)(2.16)(.6) = 2032.13psi (Fb*)(CL)(Cv) = 2032.13(CL)

(Cv) 

 4. Find factored loads using the six equations at the 

beginning of this chapter. 

1.4(1500 + 400) = 2660#/f

 5. Mmax = wL2/8 = 2660#/f(40′)2/8 = 532,000#-f 

= 6,384,000#-in

 6. Sreq > M/Fb′ = 6,384,000#-in/2032.13psi = 3141.53in3

 7. Try 10.5″ × 42.625″: A = 447.6in2, Sx = 3180in3, and 

Ix = 67760in4 

 8. d/b = 42.625/10.5 = 4.06 There is no sheathing therefore 

CL must be calculated.

Lu = 8′ = 96″

Lu/d = 96/42.625 = 2.25 < 7 

Le = 2.06Lu = 2.06(96) = 197.76

Rb
2 = Le(d)/b2 = 197.76(42.625)/(10.52) 

= 76.46 < 2500 … okay

Emin′ = Emin(Cm)(Ct)(1.5) = 1,110,000(.833)(0.9)(1.5) 

= 1,248,250.5psi

FbE = 1.2(Emin′)/Rb
2 = 1.2(1,248,250.5)/76.46 

= 19,590.64psi

F = FbE/Fb* = 19,590.64/2032.13 = 9.64

CL = (1 + F)/1.9) − √[((1 + F)/1.9)2 − (F/0.95)] 

= 10.64/1.9 − √[((10.64)/1.9)2 − (9.64/0.95)] = 0.994

 9. Cv = (21/L)1/X(12/d)1/X(5.125/b)1/X = (21/40)1/20(12/42.625)1/20(

5.125/10.5)1/20 = 0.877 ≤ 1.0

X = 20 (Southern Pine) 

10. Fb′ = [ Fb*] [lesser of (CL) or Cv] = 2032.13(0.877) 

= 1782.18psi

11. WBM = (specific gravity)(62.4pcf)(A/144)#/f = (.55)(62.4)

(447.6/144) = 106.68#/f

12. Wu = 1.4(1500 + 106.68#/f) = 2249.35#/f

13. Mmax = wL2/8 = 2249.35#/f(40′)2/8 = 449,870#-f 

= 5,398,440#-in

14. fb = M/S = 5,398,440/3180 = 1697.62psi

15. Is fb ≤ Fb′? Yes: 1697.62psi < 1782.18psi

16. Is fb/Fb′ ≥ 0.90? 

Yes → 1697.62/1782.18 = 0.95 > 0.9 … okay

17. Fv′ = Fv(Cm)(Ct)(2.16) (λ)

Cm: Is moisture content over 16%? Yes: Cm = 0.875

Ct: Is temp. above 100°F? Yes: Ct = 0.7

Fv′ = 300psi(0.875)(0.7)(2.16)(.6) = 238.14psi

18. V = wL/2 = 2249.35#/f(40′/2) = 44,987#

19. fv = 3V/2A = 3(44,987)/[2(447.6)] = 150.76psi 

20. Is fv ≤ Fv′? Yes: 150.76psi < 238.14psi 

21. Δall = L(12″/f)/240 = 40′(12″/f)/240 = 2″
22. w = 1500 + 106.68 = 1606.68#/f

23. E′ = E(Cm)(Ct) = 2,100,000psi(0.833)(0.9) = 1,574,370psi

Cm: Is moisture content over 16%? Yes: Cm = 0.833

Ct: Is temp. above 100°F? Yes: Ct = 0.9

24. Δact = 5wL4/384EI = 5(1606.68)(404)(1728in3/ft3)/

[384(1,574,370)(67760)] = 0.868″
25. Is Δact ≤ Δall? Yes → 0.868″ < 2″
USE: 10.5 × 42.625

18.2.2 Compression in Glu-Lams

Using adjustment factors for glu-lams, the equation for 

allowable compressive stress is:

Fc′ = Fc(Cm)(Ct)(CP)(2.16)(λ)

where Cm is described at the beginning of this chapter and Ct 

and CP are described in Chapter 16.

Like the design of wood beams, the design of columns 

is an iterative process based on an assumed trial size. In the 

case of wood columns, a good starting point is Atrial = Pu/Fc* 

where Fc′ = Fc*CP.

Design of wood columns:

 1. Look up Fc and Emin for the given species and grade of 

lumber.

 2. Fc′ = Fc(Cm)(Ct)(CP)2.16 (λ) = Fc*(CP)

Cm: Is moisture content over 19%? 

 No: Cm = 1.0 

 Yes: Cm = .73 

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

 Assume CP = 1 for now.
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 3. Calculate Le = kL(12″/f) in each direction. Effective Length 

Factor, k, can be found in Figure 10.1 (k = 1.0 for pin–pin, 

k = 0.8 for pin–fix, k = 0.65 for fix–fix). Determine min. 

width in each direction based on Le/d < 50. dmin = Lex/50 

and bmin = Ley/50

 4. Atrial = P/Fc* 

 Select a size with A ≥ Atrial, b ≥ bmin, and d ≥ dmin. 

Note A, b and d.

 5. Use larger of Le/d or Ley/b and Lex/d. 

 6. Emin′ = Emin(Ct)( Cm)(1.5) 

Ct: Is temp. above 100°F?

 No: Ct = 1.0

 Yes: Determine Ct from Table 16.3

Cm: Is moisture content over 19%? 

 No: Cm = 1.0

 Yes: Cm = .833 

 7. FcE = 0.822(Emin′)/(Le/d)2

 8. F = FcE/Fc* 

 9. c = 0.8 for sawn lumber, c = 0.9 for glu-lams

10. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2

11. Fc′ = Fc*(CP) = allowable compressive stress

12. fc = P/A = actual compressive stress

13. Is fc < Fc′?
Yes → step 15

No → go back to step 4 and choose larger size.

14. Is fc/Fc′ ≥ 0.90? If not, go back to step 4 and try smaller 

size.

Example 18-3: Design a 10.5″ wide, 48/SP/N2D12 column, 

20′ long, to carry a factored axial load of 50,000# with 

pinned connections and a moisture content of 15%.

 1. Fc = 2200psi and Emin = 900,000psi

 2. Fc′ = Fc(Cm)(Ct)(CP)2.16 (λ) = Fc*(CP) = 2200(1)(1)(2.16)(.8)

(CP) = 3801.6(CP)

Cm: Is moisture content over 16%? No: Cm = 1.0

Ct: Is temp. above 100°F? No: Ct = 1.0

 3. Le = kL(12″/f) = 1(20′)(12″/f) = 240″
dmin = bmin = Le/50 = 240/50 = 4.8″

 4. Atrial = P/Fc* = 50,000#/3801.6 = 13.15 Try 10.5″ × 11: 

A = 115.5, b = 10.5, d = 11

 5. Le/b = 240/10.5 = 22.86 

 6. Emin′ = Emin(Ct)( Cm)(1.5) = 900,000psi(1)(1)(1.5) 

= 1,350,000psi

Ct: Is temp. above 100°F? No: Ct = 1.0

Cm: Is moisture content over 16%? No: Cm = 1.0

 7. FcE = 0.822(Emin′)/(Le/d)2 = 0.822(1,350,000)/22.862 

= 2123.50psi

 8. F = FcE/Fc* = 2123.50/3801.6 = 0.56

 9. c = 0.9 for glu-lams

10. CP = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 

= (1.56)/1.8 − [((1.56)/1.8)2 − (.56/.9)]1/2 = 0.508

11. Fc′ = Fc*(CP) = 3801.6(0.508) = 1931.21psi

12. fc = P/A = 50,000/115.5 = 432.9psi

13. Is fc < Fc′? Yes → 432.9 < 1931.21psi 

14. Is fc/Fc′ ≥ 0.90? No: 432.9/1931.2 = .224 but 10.5 × 11 is 

the smallest available 10.5″ wide size. 

ANSWER: USE 10.5″ × 11″

18.2.3 Bearing in Glu-Lams

Bearing in glu-lams uses the same method and value for 

Cb as bearing dimensional lumber except that there is no Ci 

factor. See section 16.2.3. Remember to use glu-lam values 

for Fc⊥ and Cm. 

FC⊥′ = FC⊥ (Cm)(Ct)(Cb)(1.5)

Cb = (Lb + 0.375)/Lb 

 Ct is found in Table 16.3

 Cm = 0.53 if the moisture content > 16% (see 

Table 18.2)

Example 18-4: Check the bearing in a 10.75 × 30 16F-1.3E 

glu-lam beam that supports a 5.125 × 18 16F-1.3E, beam 

with a factored load of 20,000# at the bearing point.

Cm = 1, Ct = 1

Lb = 5.125″

Cb = (Lb + 0.375)/Lb = (5.125 + 0.375)/5.125 = 1.073

FC⊥′ = FC⊥(Cm)(Ct)(Cb)(1.5) = 315psi(1)(1)(1.073)(1.5) 

= 506.99psi

fc⊥ = P/A = 20,000#/(5.125(10.75)) 

= 363.02psi < 506.99psi … okay
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18.2.4 Tension in Glu-Lams

Tension in glu-lams uses the same method as tension in 

dimensional lumber except that there is no Ci or CF factor. See 

section 16.2.4. Remember to use glu-lam values for Fc⊥ and 

Cm. 

Ft′ = Ft(Cm)(Ct)(2.16)(λ) where 

 λ is found in Table 16.2

 Ct is found in Table 16.3

 Cm = 0.8 if the moisture content > 16% 

(see Table 18.2)

Example 18-5: Design a 5/DF/L1 beam, 5.125″ wide, with 

a factored tension load of 150,000# and a moisture 

content of 18%.

Ft = 1600psi

Cm = 0.8

Ft′ = Ft(Cm)(Ct)(2.16)(λ) = 1600(0.8)(1)(2.16)(0.8) 

= 2211.84psi

Required Area = A = P/Ft′ = 150,000#/2211.84psi 

= 67.82in2

USE: 5.125″ × 13.5″: A = 69.19in2

18.2.5 Combined Stresses in 
Glu-Lams 

The combined stresses formulae below apply to all types of 

wood: dimensional lumber, timber and glue-laminated lumber. 

Combined flexure and axial compression:

[fc/Fc′]
2 + fb1/{Fb1′[1 − (fc/FCE1)] + fb2/{Fb2′[1 − (fc/FCE2) − 

(fb1/FbE)
2]} ≤ 1.0

Where

fc < FCE1 = 0.822Emin′/(Le1/d1)
2 for edge-wise or biaxial 

bending (d1 = wide face)

AND

Fc < FCE2 = 0.822 Emin′/(Le2/d2)
2 for flatwise or biaxial 

bending (d2 = narrow face)

AND

fb1 < FbE = 1.20 Emin′/Rb
2

Example 18-6: A 17/HF/L1D, 12.25″ × 18″ column is 20′ long 

with fixed ends and has a factored axial load of 500,000#, 

a factored Mx of 80,000 #-in and My of 60,000 #-in. 

Is this column adequate?

 1. Find values for species and grade:

Fbx = 1900psi, Fby = 2000psi, Fc = 1750, 

Emin = 900,000psi

 2. Find section properties: A = 220.5in2, Sx = 661.5in3, 

Sy = 450.2in3

 3. Find: fC, fb1, fb2, FC′, FCE1, FCE2,Fb1′, Fb2′, FbE

fC = P/A = 500,000/220.5 = 2267.57psi 

fb1 = Mx/Sx = 80,000/661.5 = 12.09psi

fb2 = My/Sy = 60,000/450.2 = 133.28psi

 4. Find FCE1, FCE2:

Emin′ = 900,000(1.5) = 1,350,000psi

Lu = 20′(12″) = 240″

Le = KL = 0.65(240) = 156

Le/d1 = 156/18 = 8.67 

FCE1 = 0.822(1.350,000)/8.672 = 14,774.11psi 

FCE1 = 14,774.11 > 2267.57 = fc … okay

Le/d2 = 156/12.25 = 12.73 

FCE2 = 0.822(1.350,000)/12.732 = 6842.72 

FCE2 = 6842.72 > 2267.57 = fc … okay

 5. Find CP:

Fc′ = Fc(Cm)(Ct)(CP)(KFφ)λ = 1750(2.16)(.8)CP = 3024CP

FCE1/FC* = 14,774.11/3024 = 4.89

C = 0.9 for glu-lams 

CP1 = (1 + F)/2c − [((1 + F)/2c)2 − (F/c)]1/2 = (5.89)/1.8 − 

[(5.89/1.8)2 − (4.89/.9)]1/2 = 0.976

FCE2/FC* = 6842.72/3024 = 2.26

CP2 = 0.934

 Use lesser value of CP = 0.934
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 6. Check compression:

Fc′ = 0.934(3024) = 2825.31psi > 2267.57psi = fc … 

okay for compression.

 7. Find CL, Fb1′, Fb2′:

Fb1′ = Fb1(Cm)(Ct)(CL)(Cv)(Cfu)(Cc)(KFφ)λ = 1900(2.16)(.8)

CL = 3283.2CLCv

Le = 1.84Lu (equal end moments) = 1.84(240) = 441.6

Rb1
2 = Led1/d2

2 = 441.6 (18)/12.252 = 52.97

FbE1 = 1.2(1,350,000)/52.97 = 30,583.39psi 

FbE1 /Fb* = 30,583.39/3283.2 = 9.32

CL1 = 0.988

Cv = (21/20)1/10(12/12.25)1/10(5.125/18)1/10 = 0.884

Fb1′ = .884(3283.2) = 2903.77psi > 12.09psi 

= fb1 … okay

Fb2′ = Fb1(Cm)(Ct)(CL)(Cv)(Cfu)(Cc)(KFφ)λ = 2000(2.16)(.8) 

CL = 3456CLCv

Rb2
2 = Led2/d1

2 = 441.6 (12.25)/182 = 16.70

FbE2 = 1.2(1,350,000)/16.7 = 97,027.51psi 

FbE2 /Fb* = 97,027.51/3456 = 28.08

CL2 = .996

Cv = (21/20)1/10(12/18)1/10(5.125/12.25)1/10 = 0.884

Fb2′ = 0.884(3456) = 3056.6 > 133.28 = fb2 … okay

 8. FbE = lesser of FbE1 and FbE2:  FbE = 30,583.39psi

Summary of values found

fC = 2267.57psi fb1 = 120.94psi fb2 = 133.28psi

Fc’ = 2825.31psi FCE1 = 14,774.11psi FCE2 = 6842.72psi

Fb1’ = 2903.77psi Fb2’ = 3056.6psi FbE = 30,583.39psi

 9. [fc/Fc′]2 + fb1/{Fb1′[1 − (fc/FCE1)]} + fb2/{Fb2′[1 − (fc/FCE2) − 

(fb1/FbE)
2]} ≤ 1.0

 [2267.57/2825.31]2 + 120.94/2903.77[1 

− (2267.57/14,774.11)] + 133.28/3056.6[1 − 

2267.57/6842.72 − 120.94/30,583.39] = 0.759 < 1.0 … 

okay

Combined axial tension and flexure:

ft/Ft′ + fb/Fb* ≤ 1.0 Where Fb* = Fb times all factors but CL

Example 18-7: Check the adequacy of a 17/HF/L1D, 

12.25 × 54 glue-laminated beam with L = 80′, Lu = 8′, 

factored concentrated loads at 8ft o.c. of 3000#, and a 

tension load of 15000#.

 Fbx = 1900psi, Ft = 1400psi, Fvx = 215psi, 

E = 1,700,000psi, Emin = 900,000, G = .43

 12.25 × 54: A = 661.5in2, S = 5954in3, I = 160, 700in4

1. Check flexure:

 Fb′ = Fb(Cm)(Ct)(CL)(Cv)(Cfu)(Cc)(2.16)(λ) = 1900(1)(1)(CL)

(Cv)(1)(1)(2.16)(0.8) = 3283.3CLCv

CL:  d/b = 54/12.25 = 4.41 (condition d)

Full sheathing is not indicated in the problem, therefore 

CL must be calculated:

Le = 1.84Lu = 1.84(8′)(12″/′) = 176.64

Rb
2 = Le(d)/b2 = 176.64(54)/(12.252) = 63.56

Emin′ = 900,000psi(1.5) = 1,350,000psi

FbE = 1.2 Emin′/Rb
2 = 1.2(1,350,000)/63.56 

= 25,487.73psi

FbE/F* = 25,487.73/3283.3 = 7.76

CL = (1 + F)/1.9) − √[((1 + F)/1.9)2 − (F/0.95)] = 8.76/1.9 

− √[((8.76)/1.9)2 − (7.76/0.95)] = 0.993

Cv = [21(12)(5.125)/(80(12.25)(54))]1/10 = 0.690

Use lesser of Cv and CL

Fb′ = 0.69(3283.3) = 2265.48

weight of beam = 1.2(.43)(62.4)(661.5/144) = 147.91#/f 

M = wL2/8 + 5PL/4 = 147.91#/f(80′)2(12″/f)/8 

+ 5( 3000#)(80′)(12″/f)/4 = 5019936#-in

Sx = 5954in3

fb = M/S = 5019936#-in/5954in3 = 843.12psi < 

2265.48psi = Fb′ … okay for flexure

2. Check tension:

Ft′ = Ft(Cm)Ct)(2.16)(λ) = 1400(1)(1)(2.16)(0.8) 

= 2419.2psi

ft = P/A = 15,000#/661.5in2 = 22.68psi < 2419.2 psi … 

okay for tension
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3. Check flexure and tension combined: 

ft/Ft + fb/Fb* = 22.68/2419.2 + 843.12/ 2265.48 = 0.38 

< 1.0 … okay

4. Check shear: 

Fv′ = Fv(Cm) (Ct)(2.16)(λ) = 215(1)(1)(2.16)(0.8) 

= 371.52psi

V = 147.91(80)/2 + 3000(9)/2 = 19,416.4#

fv = 3V/2A = 3(19,416.4#)/[2(661.5in2)] = 44.03psi 

< 371.52 = Fv′ … okay for shear

5. Check deflection:

Δall. = L/240 = 16(80)/240 = 4″

E′ = E(Cm) (Ct) = 1,700,000(1)(1) = 1,700,000 psi

I = 160,700in4

unfactored load: P = 3000#( factoring unknown), 

w = .43(62.4)(661.5)/144 = 123.26#/f

Δmax = 5wl4/384EI + 31PL3/240EI = 5(123.26)

(80)4(1728)/384(1700000)(160,700) + 31(3000)

(80)3(1728)/240(1700000)(160,700) = 1.67″ < 4″ 

… okay for deflection.

ANSWER: Beam is adequate.

Practice Exercises:

18-1: Design a 12.25″ wide Douglas Fir, 24F-1.8E glu-lam, 

spanning 80′ with concentrated live loads of 3000# and 

concentrated dead loads of 4000# spaced 10′o.c. The beam 

is curved such that the midpoint of the beam is 8ft above the 

supports. The laminations are 0.75″ thick. Blocking occurs at 

points of load and at ends.

18- 2. Design a 10.5″ wide, 48/SP/N2D12 column, 20ft 

long, to carry a factored axial load of 50,000# with pinned 

connections and a moisture content of 15%.
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Wood Connect ions

increments. Bolt lengths vary in size, but thread lengths on 

bolts typically are determined by diameter and the overall bolt 

length as shown in Table 19.1:

Table 19.1:  Bolt sizes

19.1

Parts of a bolt

Wood to wood connections can be formed by creating 

interlocking shapes with the wood components, or by using 

mechanical connectors made of wood or metal.

This text describes the types of connectors available 

and suggests some rules of thumb for connections. Design 

of wood connections should follow the National Design 

Specifications of the American Wood Council, and these 

procedures are not covered in this text.

19.1 Mechanical 
Connections

Mechanical connections are those that rely only on the 

physical nature of a connection without the use of adhesives 

or pressure and utilize a connector separate from the actual 

pieces joined.

19.1.1 Bolts

Bolts are dowel-type mechanical connectors that have a 

threaded end with a nut. The head can have a number of 

shapes as depicted in Figure 19.1, but the most common is 

a hexagonal head. Bolts may have a shoulder, an unthreaded 

portion below the head that has a wider diameter than the 

rod. Bolts are usually made of steel and the shear and bearing 

strength can be determined as outlined in Chapter 25. A307 

or common steel bolts have strength roughly equivalent 

to A36 steel. Bolt diameters vary from 1
2

″ to 1.5″ in 1
8 ″ 

Bolt Diameter (in) Standard Thread Length (in) 

Bolt length :5 6" Bolt Length> 6" 

1/4 3/4 1 

5/16 7/8 1-1/8 

3/8 1 1-1/4 

7/16 1-1/8 1-3/8 

1/2 1-1/4 1-1/2 

5/8 1-1/2 1-3/4 

3/4 1-3/4 2 

7/8 2 2-1/4 

1 2-1/4 2-1/2 

Bolt Diameter (in) Standard Thread Length (in) 

Bolt length :5 6" Bolt Length> 6" 

1/4 3/4 1 

5/16 7/8 1-1/8 

3/8 1 1-1/4 

7/16 1-1/8 1-3/8 

1/2 1-1/4 1-1/2 

5/8 1-1/2 1-3/4 

3/4 1-3/4 2 

7/8 2 2-1/4 

1 2-1/4 2-1/2 
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Bolts must be used with a washer or a steel connector plate. 

The washer size area is A ≥ T/Fc⊥, where Fc⊥ is the allowable 

bearing stress in the wood and T is the tension in the bolt. 

Further Fv′ ≥ V/nAv where:

 Fv′ = Allowable shears stress in the wood

 V = the total shear

 N = number of bolts resisting the shear

 Av = b(D) where

 b = thickness of wood

 D = bolt diameter.

Where bolts are grouped, see section 24.2 Eccentric Bolted 

Connections to find the resultant force on each bolt as well as the 

forces parallel and perpendicular to the grain. In general, bolts can 

be designed using the same logic of bolt design for steel as long 

as the correct material properties of the bolt are used. 

Lag screws and wood screws:

Wood screws have larger threads than sheet metal or 

drywall screws and can be steel or brass. Sizes range from 

18 to 8 and head types vary as shown in Figure 19.2. The 

term Phillips refers to an X shape drive for use with a Phillips 

screwdriver and slotted refers to a simple slot drive for flat 

bladed screwdrivers. Screw heads may be flat, round or oval. 

Most flat and oval heads have a conical shape under the 

head to allow for countersinking. Round heads are usually 

flat under the head and cannot be countersunk. Wood screw 

diameters range from 1
8 ″ to 3

8
″.

19.2

Wood screws

Lag screws are also called lag bolts. They have a hex or square 

head like a bolt and a tapered thread like a screw. The diameter 

ranges from 1
4 ″ to 11

4 ″ and the length ranges from 1″ to 12″.

19.1.2 Split Ring Connectors 

Split ring connectors are rings that sit in cut grooves formed 

in two mating surfaces. The purpose of the split ring 

connector is to handle lateral or shear loads too high for bolts 

and lag screws. It does so by creating a larger shear area, Av. 

Since Shear stress fv = P/Av, a larger area reduces stress. The 

diameter of a split ring connector will be either 2 1
2

″ or 4″. The 

connection requires a bolt to hold the mating pieces together.

19.3

Split ring connectors

19.1.3 Nails and Spikes

Nails are traditionally the most common connector for 

dimensional lumber and are made efficient through the use 

of nail-guns. Nails have a high shear strength and resist 

withdrawal due to friction between the nail and the wood. 

However, nailing patterns must be designed for withdrawal 

forces per American Wood Council National Design 

Specifications section 11.2. Spikes are longer, larger nail-like 

fasteners used to connect large wood components.

19.4

Nails and spikes
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Table 19.2:  Nail sizes

19.1.4 Metal Connector Plates

Metal plate connectors are available in a large number of 

standard shapes and sizes, some of which are shown in 

Figure 19.5. Metal plate connectors add strength as well as 

ease of construction in many cases, such as providing a seat 

for joists. Metal plate connectors are strong in tension and are 

essential connectors for tie-down applications. See individual 

manufacturer specifications for allowable loads.

19.5

Metal connector plates

19.1.5 Drift Pins 

Drift pins are smooth metal rods that are driven into pre-

bored holes. They can resist lateral loads, but not withdrawal 

loads. Drift pins are often used as guides to support 

components of a connection in place while fastening occurs 

in other holes. 

Nail Sizes 

Number per 
pound 

Size Length Gauge (Approx.) 

2d 1" No. 15 845 

3d 1" No. 14 540 

4d 1" No. 12 290 

5d 1" No. 12 250 

6d 2" No.11 165 

7d 2" No.11 150 

8d 2" No. 10 100 

9d 2" No. 10 90 

10d 3" No.9 65 

12d 3" No.9 60 

16d 3" No.8 45 

20d 4' No.6 30 

30d 4" No.5 20 

40d 5" No.5 17 

50d 5' No.3 13 

60d 6" No.2 10 
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19.1.6 Wood Dowels 

Wood dowels are much larger in diameter than steel dowel-

type fasteners such as bolts. This is because steel has 

much higher allowable stresses than wood. Wood dowel 

connections are tested for the same four failure modes 

as steel bolts: gross yielding, tensile rupture, dowel shear 

and dowel bearing. See American Wood Council National 

Design Specifications for design procedures for wood dowel 

components. Humidity must be considered in wood dowel 

connections. Dry conditions will cause shrinkage in the dowel 

and the connector members. Shrinkage parallel to the grain is 

much less than shrinkage perpendicular to the grain meaning 

that the dowel may shrink and become loose if installed with 

a high moisture content. 

19.2 Wood Joinery

Typical wood joints include lap, dado or rabbet, tongue-

and-groove, mitre, mortise-and-tenon, finger and dovetail 

joints. Examples of these wood joints are illustrated in 

Figure 19.6. With the exception of dovetail joints, wood 

joints require a fastener, either mechanical or adhesive, to 

hold the connection together. Historically, wood structures 

relied on wood joinery to improve the connection rigidity and 

minimize the need for dowel-type connections. For example, 

pioneers in colonial America employed dovetail joints as a 

way of creating log cabins by notching wedges in logs. The 

availability of steel connectors and the high cost of labor 

involved in the making of detailed wood joints has reduced 

the instances of all wood connections.

19.6

Wood joinery
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Steel  B eam Design 

20.2

Plastic moment

If the moment increases in the cross-section, the stress 

increases until all fibers are fully stressed as shown in 

Figure 20.2. In this scenario, the plastic moment can be 

defined using the internal couple method as Mp = (Fybd/2)

(d/2) = Fybd2/4 = FyZ. Therefore Z = bd2/4. In the case of the 

rectangular cross-section, Mp = 1.5My. The ratio of Mp to My 

is called the shape factor and varies with cross-section.

20.1 Designing Beams for 
Flexure Using LRFD Method

There are three types of behavior to consider in the design of 

beams, and each type is associated with a zone as follows:

 Zone 1: Plastic behavior (most beams): compact 

beams that can reach Mp without buckling. Beams are 

determined to be in Zone 1 if the unbraced length, Lb is 

less than the value Lp = 1.76ry√(E/Fy) . When Lb < Lp, the 

allowable design moment, φMn = φMpx = 0.9FyZ.

The ASD Method designs beams using only the elastic 

region. As a result, the allowable moment is limited to the 

yield moment, My = Fy(I/c) = FyS where S is the elastic 

modulus, also known as the section modulus. The LRFD 

Method considers stresses beyond the yield stress because 

failure doesn’t occur until a great deal of yielding occurs. The 

allowable moment therefore becomes the plastic moment, 

Mp = FyZ, where Z is the plastic modulus. To illustrate, 

consider the cross-section of a rectangular beam when 

yield stress is reached at the extreme fibers, the moment 

is derived by the compression and tension couple using the 

internal couple method as shown in Figure 20.1 The yield 

moment, My = (Fybd/4)(2d/3) = Fybd2/6. 

20.1

Yield moment

The section modulus, S, for a rectangular cross-section 

= bd2/6. The yield moment, My, can then be simplified to 

My = FyS.
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 Zone 2: Inelastic buckling: some but not all of the 

compression members buckle before reaching the yield 

stress, Fy. Beams are determined to be in Zone 2 when 

Lp < Lb < Lr where Lr = 1.95(rts)E/0.7Fy)(Jc/Sxho)
1/2(1 + (1 

+ 6.76(0.7FySxho/EJc)2)^0.5)^0.5) = maximum unbraced 

length in LRFD design for inelastic lateral–torsional buckling. 

φMn = Cb[φbMp − (φbMp −FySx )(Lb − Lp)] ≤ φbMp where Cb is 

the lateral–torsional buckling modification factor. 

 AISC Equation F1-1 defines Cb = 12.5Mmax(Rm)/[2.5Mmax 

+ 3MA + 4MB + 3MC] ≤ 3.0 where Mmax is the largest 

moment in an unbraced segment of a beam and MA, MB 

and MC are the moments at the 1
4  point, 1

2
 point and 

3
4  point, respectively, in the segment. Rm = the factor 

for the degree of bending. Rm = 1.0 for single curvature 

bending. The value of Cb must be computed for each 

unbraced segment in the beam and the lowest value 

used. A chart for the Cb values of beams with typical 

loadings can be found in the AISC Steel Manual at the 

beginning of Table 3-2 and in Figure 20.3 of this text.

20.3

Lateral-torsional buckling modification factor, Cb. Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.
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 Zone 3: Elastic buckling: buckling occurs before the yield 

stress, Fy, can be reached anywhere in member. Beams 

are determined to be in Zone 3 when Lb > Lr. φMn = 0.9 

FcrSx where 

Fcr = [ Cbπ
2E/(Lb/rts)

2]√[1 + 0.078(Jc/Sxho)(Lb/rts)
2]. 

Design procedure for steel beams:

 1. Determine each ultimate load by factoring load types 

using the six equations given in Chapter 16. Enter the 

factored load or ultimate load into the diagram for the 

beam.

 2. Find the ultimate moment, Mu either by drawing the 

shear and moment diagrams or by using equations in the 

deflection charts A1.2.

 3. Find Zreq’d and choose trial size.

φbMpx = 0.9FyZ where Z = plastic modulus for a 

cross-section.

By setting Mu = 0.9FyZ, the required plastic modulus 

can be found: Zreq’d = Mu/0.9Fy

For example, if the ultimate or factored moment is 

Mu = 350k-f and Fy = 50ksi, Zreq’d = Mu/0.9Fy 

= 350k-f(12″/f)/0.9(50ksi) = 93.33in3

A W14 × 61 would work with Zx = 102in3.

 4. Add the moment caused by beam weight (w) to Mu found 

in step 2.

MuBM = wL2/8k-f where wBM = 1.2(bm. wt. 

designation/1000) k/ft 

New Mu = MuSTEP2 + MuBM

 5. What zone to use?  

Lb = unbraced length of the beam. 

Lp = 1.76ry√(E/Fy) 

Lr = 1.95rts(E/0.7Fy)(Jc/Sxho)
1/2√[1 + √(1 + 6.76(.7FySxho/

Ejc)2)]

The values of Lp and Lr are listed in the AISC Steel 

Manual Table 3-2 or for W14s in Table 20.1.

ZONE 1: Lb ≤ Lp 

ZONE 2: Lp < Lb ≤ Lr  

ZONE 3: Lr < Lb

Table 20.1:  Sample values for LRFD design of W14 beams

 6. Choose equation: NOTE: If the shape chosen in step 3 is 

not a compact shape, see Appendix F of the AISC Steel 

Manual for modification to the following equations. The 

modifications account for the slenderness of the flanges 

in certain W shapes.

ZONE 1: φbMn = φbMp 

ZONE 2: φbMn = Cb[φbMp − (φbMp − FySx)(Lb − Lp)] 

≤ φbMp

Look up worst case value for Cb in Figure 20.3 or 

calculate Cb.

ZONE 3: φbMn = 0.9 FcrSx and

Fcr = [ Cbπ
2E/(Lb/rts)2]√[1 + 0.078(Jc/Sxho)(Lb/rts)2] 

Zone 3 beams have a severely reduced allowable 

moment. Therefore, it is suggested to choose a 

heavier beam size to find Lb < Lr.

 7. Check that φbMn is greater than Mu: if φbMn (allowable 

from step 6) > Mu (actual moment from step 4) it is okay 

for bending stress, if not, try a larger size and go back to 

step 3.

IjIMpx SF Lp Lr IjIVx 

SIZE Zx (in~ (k-f) (k) (tt) (tt) (k) 

W14X22 33.2 125 7.14 3.67 10.40 94.8 
W14X26 40.2 151 7.99 3.81 11.10 106 
W14X30 47.3 177 6.99 5.26 14.90 112 
W14X34 54.6 205 7.59 5.40 15.60 120 
W14X38 61.5 231 8.10 5.47 16.20 131 
W14X43 69.6 261 7.24 6.68 20.00 125 
W14X48 78.4 294 7.66 6.75 21.10 141 
W14X53 87.1 327 7.93 6.78 22.20 155 
W14X61 102 383 7.46 8.65 27.50 156 
W14X68 115 431 7.81 8.69 29.30 175 
W14X74 126 473 8.03 8.76 31.00 191 
W14X82 139 521 8.16 8.76 33.10 219 
W14X90 157 573 7.22 15.20 42.60 185 
W14X99 173 646 7.35 13.50 45.30 206 

W14X109 192 720 7.54 13.20 48.40 226 
W14X120 212 795 7.64 13.20 52.00 256 
W14X132 234 863 14.60 9.40 31.80 332 
W14X145 260 975 7.68 14.10 61.70 302 
W14X159 287 1080 7.79 14.10 66.70 335 
W14X176 320 1200 7.84 14.20 73.20 379 
W14X193 355 1330 7.92 14.30 79.70 413 
W14X211 390 1460 7.99 14.40 86.40 462 
W14X233 436 1640 8.09 14.50 94.90 515 
W14X257 487 1830 8.21 14.60 104.00 577 
W14X283 542 2030 8.31 14.70 114.00 648 
W14X311 603 2260 8.46 14.80 125.00 724 
W14X342 672 2520 8.64 15.00 137.00 810 
W14X370 736 2760 8.80 15.10 148.00 890 
W14X398 801 3000 8.96 15.20 158.00 971 
W14X426 869 3260 9.16 15.30 169.00 1050 
W14X455 936 3510 9.31 15.50 179.00 1150 
W14X500 1050 3940 9.65 15.60 196.00 1290 



S T E E L  D E S I G N184

 8. Check shear: New Vu = Vu from step 2 + wBML/2 

note: wBM is found in step 4.

 9. Compare Vu to the value of φVnx. If Vu < φVnx the beam 

is okay for shear. If not, try a larger size and go back to 

step 3.

φVnx = 0.6Fy(twd)

10. Check deflection: Allowable deflection = L(12″/f)/240 = Δall

11. Calculate or look up deflection equations from charts. 

Using unfactored loads (PD + PL or WD + WL), calculate 

the actual deflection. Remember to include the 1728in3/f3 

factor when using L in units of feet. Remember to include 

deflection due to the beam weight: Δactual = 5wL4(1728)/

[384EI]. For multiple load types on a beam, it may be 

easier to use the double-integration method to find the 

maximum deflection.

12. Compare allowable deflection from step 10 to actual 

deflection from step 11. 

a. If Δall > Δact, okay and you are finished.

b. If Δall < Δact, find a larger size of same nominal depth 

with Ixnew = [Ixused][Δact]/[Δall]

Example 20-1: Find the most economical size W14 for an 

A992 steel beam spanning 28′ and spaced 8′o.c. with a 

dead load WD = 20psf and a live load WL = 80psf. 

The beam has full lateral bracing.

 1. Wu = 1.2WD + 1.6WL = 1.2(20psf)(8′) + 1.6(80psf)(8′) 
= 1216#/f = 1.216k/f

 2. Mu = wL2/8 = 1.216k/f(28′)2(12in/f)/8 = 1430.02k-in

 3. Zreq’d = Mu/0.9Fy = 1430.02k-in/[0.9(50ksi)] = 31.78in3

 See Table A3.1 for Section Properties of Selected W14 

Shapes.

 Try a W14 × 22: Z = 33.2in3, Ix = 199in4

 4. MuBM = wL2/8 = 1.2(22/1000)(28)2(12″/f)/8 = 31.05k-in 

New Mu = MuSTEP2 + MuBM = 1430.02k-in + 31.05k-in 

= 1461.07k-in.

 5. What zone to use? 

 Lb = 0 because the beam has full lateral bracing. 

Therefore, Lb < Lp and the beam is in ZONE 1: Lb ≤ 

Lp

 6. Choose equation: 

 ZONE 1: φbMn = φbMp = 0.9FyZ = 0.9(50ksi)(33.2in3) 

= 1494k-in

 7. Check that φbMn is greater than Mu: if φbMn = 1494 k-in > 

Mu = 1461.07 k-in, therefore okay

 8. Check Shear: 

Vu = (1.216k/f + 1.2(.022k/f))(28′)/2 = 17.39k

 9. φVnx = 0.6Fy(twd) = 0.6(50)(0.23)(13.7) = 94.8k

φVnx = 94.8k > Vu = 17.39, therefore the beam is okay 

for shear.

10. Check deflection: Allowable deflection = L(12″/f)/240 = Δall 

= 28′(12″/f)/240 = 1.4″
11. w = ((20 + 80psf)(8′) + 22#/f)/1000#/k = 0.822k/f Δactual 

= 5wL4(1728)/[384EI] = 5(0.822k/f)(284)(1728in3/f3)/

[384(29000ksi)(199in4)] = 1.97″
12. Compare allowable deflection from step 10 to actual 

deflection from step 11. 

Δall = 1.4″ < Δactual = 1.97″ 

Ixnew = [ Ixused][ Δactual]/[Δall] = (199in4)(1.97″)/1.4″ 

= 280in4 

Choices: W14 × 30: Ix = 291in4 or W16 × 26: Ix = 301in4

W16 × 26 is most economical, but W14 × 30 has less 

depth. 

Example 20-2: Find the most economical W14 for an 

A992 steel beam spanning 24′ with point loads of PD = 8k 

and PL = 16k placed at 8′o.c. with lateral bracing only at 

the point loads.

 1. Pu = 1.2PD + 1.6PL = 1.2(8k) + 1.6(16k) = 35.2k @ 8′o.c.

 2. Mu = PuL/3 = 35.2k(24′)(12in/f)/3 = 3379.20k-in

 3. Zreq’d = Mu/0.9Fy = 3379.2k-in/[0.9(50ksi)] = 75.09in3

  Try a W14 × 48: Z = 78.4in3, Sx = 70.2in3, Ix = 484in4, 

ry = 1.91″, tw = 0.38″, d = 13.8″
 4. MuBM = wL2/8 = 1.2(48/1000)(24)2(12″/f)/8 = 49.77k-in 

New Mu = MuSTEP2 + MuBM = 3379.20k-in + 49.77k-in

 = 3428.97k-in

 5. What zone to use? 

  Lb = 8′ as stated in the problem. Lp = 1.76ry√(E/Fy) 

= 1.76(1.91″) √(29000/50) = 80.96″ = 6.75′. The values 

of Lp and Lr can also be found in the AISC Steel Manual 

Table 3-2: Lp = 6.75′, Lr = 21.1′
 ZONE 2: Lp ≤ Lb ≤ Lr

 6. Choose equation: 

 ZONE 2: φbMn = Cb[φbMp − (φbMp − FySx)(Lb − Lp)] ≤ φbMp

 From Figure 20.3: In the outer unbraced segments, 

Cb = 1.67 and in the middle unbraced segment Cb = 1.0. 
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Use Cb = 1.0 because the maximum moment occurs at 

the center. If the location of the maximum moment is not 

calculated, use the lesser value for a more conservative 

answer.

φbMp = 0.9FyZ = 0.9(50ksi)(78.4in3) = 3810.24k-in 

φbMn = Cb[φbMp − (φbMp − FySx)(Lb − Lp)] = 1.0[3810.24k-

in − (3810.24 − 50ksi(70.2in3))(8.0 − 6.75)] = 

3434.94k-in ≤ 3810.24 φbMp … φbMn = 3434.94k-in

 7. Check that φbMn is greater than Mu: φbMn = 3434.94k-in > 

Mu = 3428.97k-in, therefore okay

 8. Check Shear: Vu = 35.2k + 1.2(.048k/f)(24′)/2 = 35.89k

 9. φVnx = 0.6Fy(twd) = 0.6(50)(0.38)(13.8) = 157.32k

 φVnx = 157.32k > Vu = 35.89, therefore the beam is okay 

for shear.

10. Check deflection: Allowable deflection = L(12″/f)/240 = Δall 

= 24′(12″/f)/240 = 1.2″
11. P = 8k +16k = 24k, w = .048k/f Δactual = 23PL3(1728)/

[648EI] + 5wL4(1728)/[384EI] = 23(24k)(24′3)(1728)/

[648(29000)(484)] + 5(0.048k/f)(244)(1728in3/f3)/

[384(29000ksi)(484in4)] = 1.45″ + 0.03″ = 1.48″
12. Compare allowable deflection from step 10 to actual 

deflection from step 11. 

Δall = 1.2″ < Δactual = 1.48″ 

Ixnew = [Ixused][Δactual]/[Δall] = (484in4)(1.48″)/1.2″ 

= 596.93in4 

USE: W14 × 61: Ix = 640in4 

Example 20-3: Find the most economical W14 for an 

A992 steel beam spanning 24′ with point loads of PD = 8k 

and PL = 16k placed at 8′o.c. with no lateral bracing.

 1.  Pu = 1.2PD + 1.6PL = 1.2(8k) + 1.6(16k) = 35.2k @ 8′o.c.

 2. Mu = PuL/3 = 35.2k(24′)(12in/f)/3 = 3379.20k-in

 3. Zreq’d = Mu/0.9Fy = 3379.2k-in/[0.9(50ksi)] = 75.09in3

Try a W14 × 48: Z = 78.4in3, Sx = 70.2in3, I = 484in4, 

ry = 1.91″, tw = 0.38″, d = 13.8″
 4. MuBM = wL2/8 = 1.2(48/1000)(24)2(12″/f)/8 = 49.77k-in 

New Mu = MuSTEP2 + MuBM = 3379.20k-in + 49.77k-in 

= 3428.97k-in

 5. What zone to use? 

Lb = 24′ as stated in the problem. 

Lp = 6.75′, Lr = 21.1′
ZONE 3: Lr ≤ Lb

 6. Choose equation:

ZONE 3: φbMn = 0.9FcrSx and Fcr = [Cbπ
2E/(Lb/rts)2]√[1 + 

0.078(Jc/Sxho)(Lb/rts)2] 

From Figure 20.3 : In the outer unbraced segments, 

Cb = 1.67 and in the middle unbraced segment 

Cb = 1.0. 

From Table 1-1 of the AISC Steel Manual, the following 

values are obtained:

rts = 2.20, J = 1.45, Sx = 70.2, ho = 13.2 and c = 1.0 

because W shapes are doubly-symmetrical.

(Lb/rts)2 = [(24′)(12″/f)/2.20]2 = 17137.19

Jc/Sxho = 1.45/[70.2(13.2)] = 0.00156

Fcr = [1.0(3.14159)2(29000)/(17137.19)]√[1 + 

0.078(.00156)(17137.19)] = 29.34ksi

φbMn = 0.9FcrSx = 0.9(29.34ksi)(70.2in3) = 1853.46 k-in

 7. Check φbMn against Mu: φbMn = 1853.46k-in < Mu 

= 3428.97k-in, therefore, the beam is inadequate. 

Therefore, go back to step 3 and try a larger size.

3A. Try a W14 × 61: Z = 102in3, Sx = 92.1in3, I = 640in4, 

ry = 2.45″, tw = 0.375″, d = 13.9″
4A. MuBM = wL2/8 = 1.2(61/1000)(24)2(12″/f)/8 = 63.24k-in 

New Mu = MuSTEP2 + MuBM = 3379.20k-in + 63.24k-in 

= 3442.44k-in

5A. What zone to use? 

Lb = 24′ as stated in the problem. 

From Table 20.1: Lp = 8.65′, Lr = 27.5′
ZONE 2: Lp ≤ Lb ≤ Lr

6A. Choose equation: 

ZONE 2: φbMn = Cb[φbMp − (φbMp − FySx)(Lb − Lp)] 

≤ φbMp

Cb = 1.0 

φbMp = 0.9FyZ = 0.9(50ksi)(102in3) = 4590k-in 

φbMn = Cb[φbMp − (φbMp − FySx)(Lb − Lp)] 

= 1.0[4590k-in − (4590 −50ksi(92.1in3))(24.0 − 

8.65)] = 4820.25k-in > 4590 = φbMp … φbMn 

= 4590k-in

7A. Check φbMn against Mu: φbMn = 4590k-in > 

Mu = 3442.44 k-in, therefore, the beam is okay for flexure

 8. Check Shear: Vu = 35.2k + 1.2(.061k/f)(24′)/2 = 35.89k

 9. φVnx = 0.6Fy(twd) = 0.6(50)(0.375)(13.9) = 156.38k

 φVnx = 156.38k > Vu = 35.89, therefore the beam is okay 

for shear.
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10. Check deflection: Allowable deflection = L(12″/f)/240 = Δall 

= 24′(12″/f)/240 = 1.2″
11. P = 8k +16k = 24k, w = .061k/f Δactual = 23PL3(1728)/

[648EI] + 5wL4(1728)/[384EI] = 23(24k)(243)(1728)/

[648(29000)(640)] + 5(0.061k/f)(244)(1728in3/f3)/

[384(29000ksi)(640in4)] = 1.10″ + 0.02″ = 1.12″
12. Compare allowable deflection from step 10 to actual 

deflection from step 11. 

Δall = 1.2″ > Δactual = 1.12″ therefore the beam is 

adequate for deflection. 

USE: W14 × 61. 

Practice Exercises:

20-1: Find the most economical W14 for an A992 steel 

beam spanning 40′ with a dead load of 50psf and a live load 

of 80psf if the beams are spaced at 12′o.c. and full lateral 

bracing is provided.

20-2: Find the most economical W14 for an A992 steel 

beam spanning 35′ with concentrated dead loads of 1k and 

concentrated live loads of 2k spaced at 5′o.c. if lateral bracing 

is only provided at the point loads.

20-3: Find the most economical W14 for an A992 steel 

beam spanning 30′ with concentrated dead loads of 10k and 

concentrated live loads of 20k at midspan if 

a) no lateral bracing is provided;

b) lateral bracing is provided at midspan.
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Design of  Steel  Compression 
Members

for columns 10 to 15′ use kl/r = 50;

for longer columns use kl/r = 70;

for short columns or heavy loads use kl/r = 30.

 3. Find φcFcr from Table 4-22 of the AISC Steel Manual or by 

using AISC equations E3-2, E3-3 and E3-4:

E3-4: Fe = π2E/(kL/r)2. This is Euler’s equation for critical 

buckling stress

E3-2: if kL/r ≤ 4.71√(E/Fy), then Fcr = (.658Fy/Fe)Fy

E3-3: if kL/r > 4.71√(E/Fy), then Fcr = 0.877Fe.

 4. Calculate a trial area: Atrial = Pu/φcFcr 

 5. Choose a trial size based on Atrial from step 4. 

 6. Calculate actual kLx/rx and kLy/ry. Use larger value.

 7. Find allowable compressive stress, φcFcr, from Table 4-22 

of the AISC Steel Manual or use AISC equations E3-2, 

E3-3 and E3-4:

 8. Calculate the actual compressive stress = fc = P/A.

 9. If φcFcr > fc, the size is adequate. If φcFcr < fc, go back to 

step 5 and try larger size. 

10. Check the efficiency of the column: If fc/φcFcr ≥ 0.90, the 

size is efficient. If fc/φcFcr < 0.90, go back to step 5 and 

try a smaller size.

Example 21-1: Design the most economical W21, pinned 

at top, fixed at base, L = 30′, PD = 600k, PL = 100k using 

A992 steel.

 1.  Pu = 1.2(600) + 1.6(100) = 880k

 2. Assume kL/r = 70 (long and heavy)

 3. Find φcFcr

E3-4: Fe = π2E/(kL/r)2 = π2(29,000)/(70)2 = 58.412ksi

4.71√(E/Fy) = 4.71√(29,000/50) = 113.43

There are three types of failure that can occur in steel under 

axial compression.

1. Flexural buckling: Flexural buckling occurs when the 

bending stress is too high. The compression member fails 

as a whole.

2. Local buckling: Local buckling is a condition in which part 

of the cross-section buckles before the entire section, 

causing eccentricities.

3. Flexural torsional buckling: Flexural torsional buckling is 

a condition in which localized buckling causes bending in 

multiple directions, causing torsion about the axis of the 

compression member. Flexural torsional buckling is not 

covered in this book

See section 10.1.1, critical buckling stress, for information on 

allowable stresses in other metals, effective length factors 

and general design guidelines. 

21.1 Axial Loads on Steel 
Columns

Column Design Process for LRFD Method:

 1. Calculate the factored load, Pu.

 2. Assume a value for the slenderness ratio, kL/r. Any 

number between 1 and 200 may be used, however, the 

farther from the final ratio of the designed column, the 

more iterations will be required to find the best choice 

of column size. Guidelines for selecting an assumed kL/r 

ratio are as follows:
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E3-2: kL/r ≤ 4.71√(E/Fy), therefore Fcr = (.658Fy/Fe)Fy 

= (.65850/58.412)(50) = 34.94ksi

φcFcr = 0.9(34.94) = 31.45ksi

 4. Atrial = Pu/φcFcr = 880k/31.45ksi = 22.98in2

 5. Try W21 × 101: A = 29.8in2, ry = 2.89″
 6. kL/r = 0.8(30)(12)/2.89 = 99.65

 7. Find actual φcFcr: 

E3-4: Fe = π2E/(kL/r)2 = π2(29,000)/(99.65)2 = 28.82ksi

4.71√(E/Fy) = 4.71√(29,000/50) = 113.43

E3-2: kL/r ≤ 4.71√(E/Fy), therefore Fcr = (.658Fy/Fe)Fy 

= (.65850/28.82)(50) = 24.19ksi

φcFcr = 0.9(24.19) = 21.77ksi

 8. Calculate the actual compressive stress = fc = P/A 

= 880k/29.8in2 = 29.53ksi

 9. φcFcr = 21.77 < fc = 29.53 therefore the column is not 

adequate. Go back to step 5 and try larger size. At this 

point, one may estimate the area of the next trial size by 

multiplying the area tried by the ratio of the actual stress 

to the allowable stress. Atrial = 29.53(29.8)/21.77 

= 40.42in2

5A. Try W21 × 147: A = 43.2, ry = 2.95

6A. kL/r = 0.8(30)(12)/2.95 = 97.627

7A. Find actual φcFcr: 

E3-4: Fe = π2E/(kL/r)2 = π2(29,000)/(97.63)2 = 30.03ksi

4.71√(E/Fy) = 4.71√(29,000/50) = 113.43

E3-2: kL/r ≤ 4.71√(E/Fy), therefore Fcr = (.658Fy/Fe)Fy 

= (.65850/30.03)(50) = 24.91ksi

φcFcr = 0.9(24.91) = 22.42ksi

8A. Calculate the actual compressive stress = fc = P/A 

= 880k/43.2in2 = 20.37ksi

9A. φcFcr = 22.42 > fc = 20.37 therefore the column is 

adequate. 

10. fc/φcFcr = 20.37/22.42 = .909 ≥ 0.90, the size is efficient. 

Compact sections

The design method above assumes that trial shapes have 

compact sections and therefore φc = 0.90. Compact section 

simply means that the section is sufficient to withstand 

buckling until it reaches its yield stress, after which it is 

in plastic deformation. For a section to be compact, the 

width–thickness ratios must be ≤ λp in the AISC Steel Manual 

Table B4.1. The standard shapes listed in the AISC Steel 

Manual Table 1-1 are compact unless noted with a superscript 

c such as W16 × 31c, in which case the shape is slender for Fy 

= 50ksi steel.

Non-compact sections

For sizes with non-compact sections, the yield stress can be 

reached in some parts of the cross-section before buckling 

is reached for the entire section. Width–thickness ratios are 

greater than λp but must be less than λr from Table B4.1 of 

the AISC Steel Manual. φc = 0.85 for non-compact members.

Slender compression elements

Design of slender columns is complex and generally strength 

is very low. 

Most W, S shapes etc. are compact or non-compact. 

Slender shapes are noted with superscripts following 

the shape name. In slender shapes, the width–thickness 

ratio is greater than λr from Table B4.1 and as with non-

compact shapes, φc = 0.85 for non-compact members. 

Slender members can buckle locally. This is common in HSS 

members where local buckling may govern failure and so 

requires a reduction factor Q. Where:

Q = Ae/A 

Ae = A − 2(t)(h − beh) − 2(t)(b − beb)

beb = 1.92t[√E/fy][1 − (0.38/(b/t))√E/fy]

beh = 1.92t[√E/fy][1 − (0.38/(h/t))√E/fy]

21.1.1 Process to Find Reduced φcFcr 
in Slender HSS Rectangular Sections

Find φcFcr of an HSS H × B × T with a slenderness factor K, 

yield stress Fy(ksi) and a length L(f). 

 1. Find the section properties: A rx ry t b/t h/t

 2. beb = 1.92t[√E/Fy][1 − (0.38/(b/t))√E/Fy] 

 3. b = B − 3t

 4. beh = 1.92t [√E/fy][1 − (0.38/(h/t))√E/fy] 

 5. h = H − 3t

 6. Ae = A − 2(t)(h − beh) − 2(t)(b − beb)

 7. Q = Ae/A 

 8. Find: kL/r 
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 9. Fe = π2E/(kL/r)2 

10. Find FCR:

if 4.71 √29,000/(Q(Fy)) > kL/r, use Fcr = Q[0.658 Qfy/Fe]Fy

if 4.71 √29,000/(Q(Fy)) < kL/r, use Fcr = 0.877Fe

11. φcFcr = 0.85FCR

Example 21-2: Find ϕcPn of 24′, HSS 14 × 10 × 14  fixed at one 

end, pinned at other and Fy = 50ksi.

 1. A = 10.8, rx = 5.35, ry = 4.14, t = 0.233, b/t = 39.9, h/t 

= 57.1 

 2. beb = 1.92t[√E/Fy][1 − (0.38/(b/t))√E/Fy] = 1.92(.233)

[√29,000/50][1 − (0.38/(39.9))√29000/50] = 8.3

 3. b = B − 3t = 10 − 3(.233) = 9.3″ 

 4. beh = 1.92t [√E/Fy][1 − (0.38/(h/t))√E/Fy] = 1.92(.233)

[√29,000/50] [1 − (0.38/(57.1))√(29,000/50)] = 9.05

 5. h = H − 3t = 14 − 3(.233) = 13.3

 6. Ae = A − 2(t)(h − beh) − 2(t)(b − beb)

b − beb = 9.3 − 8.3 = 1.0

h − beh = 13.3 − 9.05 = 4.25

Ae = A − 2(t)(h − beh) − 2(t)(b − beb) = 10.8 − 2(.233)

(4.25) − 2(.233)(1.0) = 8.35

 7. Q = Ae/A = 8.35/10.8 = 0.773

 8. Find: kL/r = 0.8(24)(12)/4.14 = 55.65

 9. Fe = π2E/(kL/r)2 = π2E/(kL/r)2 = 92.42

10. Find Fcr:

4.71√(E/QFy) = 4.71√29,000/(.773(50)) = 129.02 

4.71√(29,000/QFy) > kL/r therefore Fcr = Q[0.658 Qfy/Fe]

Fy = 0.773[.658 .418]50 = 32.45ksi

11. φcFcr = 0.85Fcr = 0.85(32.45) = 27.58ksi

12. φcPn = φcFcrAg = 27.58(10.8) = 297.89

21.1.2 Process to Find Reduced Fcr in 
Slender Double Angles with a Back-to-
Back Separation of either 0″, 3

8 ″ or 3
4 ″

1. Look up A, rx, ry and Qs in Table 1-15 Double Angle Section 

Properties of the AISC Steel Manual. Be sure to use the 

correct value of Qs dependent on whether the long sides 

or short sides of the angles are back-to-back.

2. Find kL/r.

3. Find Fcr:

Fe = π2E/(kL/r)2 

If kL/r ≤ 4.71√(E/QFy) then Fcr = Q[0.658QFy/Fe]Fy

If kL/r > 4.71√(E/QFy) then Fcr = 0.877Fe

Example 21-3: Find ϕcPn for 2L6 × 6 × 1
2

 LLBB (long legs 

back-to-back) with a back-to-back separation of 3
8
″, fixed 

ends, L = 20′, and Fy = 36ksi.

1. Sections properties: A = 11.5, rx = 1.86, ry = 2.63, 

Qs = 1.0

2. Find: kL/r = 0.65(20)(12)/1.86 = 83.87

3. Fe = π2E/(kL/r)2 = (π)2(29,000)/(83.87)2 = 40.69

4. 4.71√E/QFy = 4.71√(29,000/1.0(36)) = 133.68

59.32 ≤ 133.68 therefore 

Fcr = Q[0.658QFy/Fe]Fy = 1.0[.65836/40.69][36] = 24.86

5. Pu = φcPn = φcFcrAg = 0.85FcrA = 0.85(24.86)(11.5) 

= 243.01k

21.2 Combined Axial 
Compression and Flexure

Steel components subjected to compression and flexure 

act as both a column and a beam. The component may be 

a beam with an axial load due to lateral forces or a column 

that has fixed supports, such as columns in a moment frame. 

The best strategy in component design for these cases is 

to design for the primary function and then check for the 

combination of loads.

For doubly and singly symmetric shapes, the AISC 

Specification Section H1.1 governs. For unsymmetrical 

shapes, AISC Specification Section H.2 governs.

AISC H1.1: 

21.1

Double angles
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1. If Pu/φPn ≥ 0.2 Pu/φPn + (8/9)[(Mux/φMnx) + (Muy/φMny)] ≤ 1.0

2. If Pu/φPn < 0.2 Pu/2φPn + [(Mux/φMnx) + (Muy/φMny)] ≤ 1.0

Example 21-4: Design a W14 column with fixed supports 

at each end to carry an axial factored load of Pu = 1200k 

and a moment in the strong direction of Mx = 200k-f and 

a moment in the weak direction of My = 180k-f. Lx = 24′, 

Ly = 12′. 

Use the steel column design guide in section 21.1, except use 

Atrial = Pu/ [0.6(φcFcr)] in step 4 and do not test for efficiency.

 1. Pu = 1200k

 2. Assume kl/r = 70

 3. Find φcFcr from Table 4-22 of the AISC Steel Manual or by 

using AISC equations E3-2, E3-3 and E3-4:

E3-4: Fe = π2E/(kL/r)2 = π2(29000ksi)/(70)2 = 58.41ksi

4.71√(E/Fy) = 4.71√(29000/50) = 113.43

Fcr = (.658Fy/Fe)Fy = (.65850/58.41)(50) = 34.94ksi

 4. Calculate a trial area: Atrial = Pu/ [0.6(φcFcr)] = 1200/

[0.6(34.94)] = 57.24in2

 5. Try W14 × 193: A = 56.8in2, rx = 6.5″, ry = 4.05″,
Zx = 355in3, Zy = 180in3, Sx = 310in3, Sy = 119in3

 6. kL/rx = .65(24′)(12″/′)/6.5″ = 28.8 and kL/ry = .65(12′)
(12″/′)/4.05″ = 23.11

 7. Find φcFcr : 

Fe = π2E/(kL/r)2 = π2(29000ksi)/(28.8)2 = 345.07ksi

4.71√(E/Fy) = 4.71√(29000/50) = 113.43

Fcr = (.658Fy/Fe)Fy = (.65850/345.07)(50) = 47.06ksi

 8. Calculate the actual compressive stress = fc = P/A 

= 1200/56.8 = 21.13ksi

 9. If φcFcr = 47.06ksi > fc = 21.13ksi, therefore the size is 

adequate. 

10. Moment in strong direction = Mx = 200k-f. 

11. φbMpx = 0.9FyZx = 0.9(50ksi)(355in3)/12in/f = 1331.25k-f

12. Lp = 1.76ry√(E/Fy) = 1.76(4.05)√(29000/50) = 171.66″ 

= 14.31′ < Lx = 24′
13. Sxho/Jc = 34.8(1)/[310(14)] = 124.71

14. Lr = 1.95(rts)E/0.7Fy)(Jc/Sxho)
1/2(1 + (1 + 6.76(0.7FySxho/

EJc)2)^0.5)^0.5) = 1.95(4.59)E/0.7(50))(1/124.71)1/2(1 + 

(1 + 6.76(0.7(50)(124.71)/29000)2)^0.5)^0.5) = 956.35″ 

= 79.7′
15. Lp = 14.31′ < Lx = 24′ < Lr = 79.7′, therefore the column is 

in Zone 2.

16. φbMn = Cb[φbMp − (φbMp − FySx)(Lb − Lp)] ≤ φbMp, where Cb 

= 1.0 (Moment constant throughout column length) 

φbMnx = 1.0[1331.25 − (1331.25 − (50ksi(310in3)/12in/f))

(24′ − 14.31′)] = 947.69k-f > 200k-f … okay

17. Moment in weak direction = My = 180-f. 

18. φbMpy = 0.9FyZy = 0.9(50ksi)(180in3)/12in/f = 675k-f

19. Lp = 1.76ry√(E/Fy) = 1.76(4.05)√(29000/50) = 171.66″ 

= 14.31′ > Ly = 12′, therefore the column is in Zone 2.

20. φbMn = φbMpy = 675k-f > 180k-f … okay

21. AISC EQTN H-1.1:

Pu/φPn = 1200/(47.06(56.8)) = 0.449 > 0.2 … use 

Pu/φPn + (8/9)[(Mux/φMnx) + (Muy/φMny)] ≤ 1.0

0.499 + (8/9)[(200/947.69) + (180/675)] = 0.953 <1.0 

… okay

ANSWER: W14 × 193

21.3 Built-up Columns

Built-up columns are columns created by assembling and 

connecting shapes into a desired design. If the components 

are welded together to form one cross-section without gaps, 

then the moment of inertia, and the radius of gyration can 

be calculated and the column may be designed as previously 

discussed with one exception. The AISC Steel manual calls 

for modification to the slenderness ratio of built-up columns 

where the members are connected by bolts and welds. AISC 

equation E6-1 must be used to calculate slenderness ratio for 

built-up columns with bolted connections.

E6-1: The modified slenderness ratio = (kL/rm) = √[(kL/r)o
2 + 

(a/ri)
2] where

 (kL/r)o = column slenderness of built-up column acting 

as a whole;

 a = distance between connectors;

 ri = minimum radius of gyration for individual 

component.

AISC equation E6-2 must be used to calculate the 

slenderness ratio for built-up columns with welded 

connections.
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E6-2: The modified slenderness ratio = (kL/rm) = √[(kL/r)o
2 + 

0.82(α2/(1 + α2))(a/rib)
2] where

 rib = radius of gyration of individual component in 

direction parallel to the weak axis of the built-up 

column;

 h = distance between center of gravity of bracing 

members;

 Α = h/2rib

Example 21-5: Find the maximum compressive load, ϕPn for 

a W14 × 90 with a 1″ × 14.5″ plate bolted to each flange with a 

bolt spacing of 12″ along the length of the 20′ column.

21.2

Built-up column example

1. Find section properties of built-up member:

W14 × 90: A = 26.6in2, d = 14.0″, rx = 6.14″, ry = 3.70″
PL1 × 14.5: A = 14.5, Ix = 14.5(13)/12 = 1.21in4 

ri = √[I/A] = √[1.21/14.5] = 0.289″
a = spacing of bolts = 12″
Built-up properties:

Comp. Ai Ixi dy Ady2

W14 × 90 26.5 999 0 0

1 × 14.5 14.5 1.21 7.5 815.625

1 × 14.5 14.5 1.21 7.5 815.625
ΣAi = 55.5 ΣIxi = 1001.42 ΣAdy2 = 1631.25

Ix = ΣIxi + ΣAdy2 = 1001.42 + 1631.25 = 2632.67in4

r = √[I/A] = √[2632.67/55.5] = 6.89″
2. Find modified slenderness ratio: kL/rm = √[(kL/r)o

2 + (a/ri)
2] 

= √[(1(20(12in/f)/6.89″)2 + (12/.289)2] = 54.20

4. Find φcFcr: 

Fe = π2E/(kL/r)2 = π2(29000ksi)/(54.2)2 = 97.43ksi

4.71√(E/Fy) = 4.71√(29000/50) = 113.43

Fcr = (.658Fy/Fe)Fy = (.65850/97.43)(50) = 40.34ksi

φcFcr = .9(40.34) = 36.31ksi

φcPn = φcFcr A = 36.31(55.5) = 2015.21k

This section discusses the design of a column consisting of 

separate, clustered components connected only at distinct 

intervals. Equations E6.1 and E6.2 do not apply because the 

members are not in contact with each other. The connections 

are made by using diagonal bracing, called lacing in single or 

double layers as shown in Figure 21.3 or by covering the open 

edge with a perforated plate.

21.3

Built-up column lacing

The main thing to remember when designing built-up 

columns is that there are two cases to be examined. First 

consider the column as a whole and second consider the 

individual components as columns with an unbraced length 

equal to the horizontal connection spacing. A typical built-up 

column is one made of two facing channels as shown in 

Figure 21.4. 

21.4

Two channel built-up column
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Example 21-6: Design two 15″ channels used to form a 

15″ square with Fy = 50ksi, Pu = 800k, and L = 18′. 

1. Assume kL/r = 50 which means φcFc = 37.5ksi

2. Atrial = 800/37.5 = 21.33in2 total area. A = 21.33/2 

= 10.67in2 for each channel

3. Try C15 × 40: A = 11.8in2, Ix = 348in4, Iy = 9.17in4, 

x = .778″, d = 15″
4. Consider column as a whole and find I, r and kL/r values.

A = 11.8(2) = 23.6in2

Ix = 348(2) = 696in4 and 

Iy = 9.17(2) + 2(11.8)(15/2 − .778)2 = 1084.71in4

rx = √(Ix/A) = √(696/23.6) = 5.43″

ry = √(Iy/A) = √(1084.71/23.6) = 6.78″

kL/r = 1.0(18)(12)/5.43 = 39.78

5. Find φcFcr : 

Fe = π2E/(kL/r)2 = π2(29000ksi)/(39.78)2 = 180.87ksi

4.71√(E/Fy) = 4.71√(29000/50) = 113.43

Fcr = (.658Fy/Fe)Fy = (.65850/180.87)(50) = 44.17ksi

φcFcr = .9(44.17) = 39.76

6. fc = P/A = 800k/23.6in2 = 33.9ksi < φcFcr = 39.76 

therefore okay 

7. efficiency = fc/φcFcr = 33.9/39.76 = .85 < 0.9 … try 

smaller size

3A. Try C15 × 33.9: A = 10in2, Ix = 315in4, Iy = 8.07in4, 

x = .788″, d = 15″
4A. Consider column as a whole and find I, r and kL/r values.

A = 10(2) = 20in2

Ix = 315(2) = 630in4 and 

Iy = 8.07(2) + 2(10)(15/2 − .788)2 = 917.16in4

rx = √(Ix/A) = √(630/20) = 5.61″

ry = √(Iy/A) = √(917.16/20) = 6.77″

kL/r = 1.0(18)(12)/5.61 = 38.5

5A. Find φcFcr: 

Fe = π2E/(kL/r)2 = π2(29000ksi)/(38.5)2 = 193.1ksi

4.71√(E/Fy) = 4.71√(29000/50) = 113.43

Fcr = (.658Fy/Fe)Fy = (.65850/193.1)(50) = 44.86ksi

φcFcr = .9(44.86) = 40.38

6A. fc = P/A = 800k/20in2 = 40ksi < φcFcr = 40.38 therefore 

okay 

7A. efficiency = fc/φcFcr = 40/40.38 = .99 > 0.9 … okay

8. Consider individual C15 × 33.9 as columns to find 

allowable unbraced length and find kL/r.

 C15 × 33.9: A = 10, rx = 5.62, ry = 0.901

 The two channels must be interconnected because each 

individual channel carrying half the load would yield: kL/r 

= 12(20)/.901 = 266.37 > 200 which is the allowable 

slenderness limit for compression.

 Assume single lacing at 45° with bolt holes 1.5″ from 

inside edge of channels.

L = 2(built-up column width − 2(bf − 1.5″)) 

= 2(18 − 2(3.40 − 1.5)) = 28.4″

kL/ry = 1.0(28.4″/0.901″) = 31.52

9. Find φcFcr: 

Fe = π2E/(kL/r)2 = π2(29000ksi)/(31.52)2 = 288.09ksi

4.71√(E/Fy) = 4.71√(29000/50) = 113.43

Fcr = (.658Fy/Fe)Fy = (.65850/288.09)(50) = 46.5ksi

A = 10in2 and P = 800k/2 = 400k on each channel section.

fc = P/A = 400/10 = 40ksi ≤ φcFcr = 46.5ksi … okay

Built-up columns made of angles are a special case. Please 

note the different equations used to calculate the slenderness 

ratio in step 3 of the next example.

Example 21-7: Check the adequacy of the column in 

Figure 21.2 for a factored axial load, P = 800k. 

The total unbraced height is 30′ in both directions. The 

individual L4 × 4 × 1/2 L-shapes form an 18″ square column 

and are braced at 4′o.c. Fy = 36ksi

21.5

Four angle built-up column
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1. Consider the column as a whole and determine the 

Area, Moment of Inertia and Radius of Gyration in each 

direction:  

L4 × 4 × 1
2
: A = 3.75, Ix = Iy = 5.52, rx = ry = 1.21, 

y = x = 1.18

A = 4(3.75) = 15.0

Ix = Iy = 4(5.52) + 15(9 − 1.18)2 = 939.37in4. 

See Chapter 7 for method to find Ix and Iy.

r = √(I/A) = √(939.37/15) = 7.91″
2. Find φcFcr for column as a whole

kL/r = 30(12)/7.914 = 45.49

Fe = π2E/(kL/r)2 = π2(29000ksi)/(45.49)2 = 138.31ksi

4.71√(E/Fy) = 4.71√(29000/36) = 133.68 > kL/r 

therefore use Equation E3-2: Fcr = (.658Fy/Fe)Fy 

= (.65836/138.31)(36) = 32.28ksi

φcFcr = .9(32.28) = 29.05ksi

φcPn = φcFcr (A) = 29.05(15) = 435.75k

3. Consider individual angles in compression. As shown in 

Figure 21.2, the column has single lacing with bolts at 

1.5″ from inside edge (2.5 from outside edge).

L = 2(18 − 2(2.5)) = 26″ 

 Because single angles often have large eccentricities 

when loaded, the AISC has two equations for a modified 

slenderness ratio when the angles are members of a 

box truss or space truss. The built-up column shown is 

essentially a vertical box truss and so AISC E5-3 and E5-4 

govern.

If L/rx ≤ 75, use E5-3: kL/r = 60 + 0.8L/rx.

If L/rx > 75, use E5-2: kL/r = 45 + 1.25L/rx. ≤ 200.

L/rx = 26″/1.21″ = 21.49 < 75, therefore use E5-3.

kL/r = 60 + 0.8L/rx = 60 + 0.8(21.49) = 77.19

Find φcFcr:

Fe = π2E/(kL/r)2 = π2(29000ksi)/(77.19)2 = 48.04ksi

4.71√(E/Fy) = 4.71√(29000/36) = 133.68 > kL/r 

therefore use Equation E3-2: Fcr = (.658Fy/Fe)Fy 

= (.65836/48.04)(36) = 26.31ksi

φcFcr = .9(26.31) = 23.68

φcPn = 23.68(3.75)(4) = 355.2k

4. φcPn is the lesser of the values obtained for the column as 

a whole and for individual angles. In this case, the column 

as a whole can safely carry 435.75k while the individual 

angles can only carry 355.2k. This means that the column 

will fail by the buckling of an individual angle at 

φcPn = 355.2k.

21.4 Column Splices

The length of a column may be longer than the length that 

can be manufactured or transported to the site. In such a 

case, the column segments must be spliced together so 

that the transfer of loads between components can safely 

occur. Column splices may also occur because it may be 

more economical to use smaller columns at the top and 

increase in size as loads are accumulated. In either scenario, 

it is recommended to place column splices at 4′ above 

finished floor to allow room for beam connections. See AISC 

Steel Manual Table 14-3 for typical column splice details. 

There are nine splicing scenarios covered by the AISC Steel 

Manual Table 14-3, but the three most common are shown in 

Figure 21.6.

21.6

Column splices

General guidelines for column splices include:

1.  Use a welded splice plate for splicing columns of same 

depth.

2. Use a bearing plate when splicing columns of different 

depths.

3. Plates may be applied at the flanges, web or both.

4. When there is moment in the column, the plates may 

have to carry up to 75% of the design load.
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Practice Exercises:

21-1: Design most economical W14, L = 30′, PD = 200k, 

PL = 400k using A992 steel for the following end conditions:

a) both ends fixed;

b) one end fixed and one end pinned;

c) both ends pinned.

21-2: Find φcPn of 18′ HSS 10 × 18 × 1
2
 fixed at both ends and 

Fy = 46ksi.

21-3: Find the maximum compressive load, φPn for a 

W14 × 120 with a 1/2″ × 12″ plate bolted to each flange with 

a bolt spacing of 16″ along the length of the 24′ column. 

Fy = 50ksi.

21-4: Repeat exercise 21-3 if the bolts at 16″o.c. are replaced 

with 2″welds at 18″o.c.

21-5: Design two 12″ channels used to form a 12″ square 

with Fy = 50ksi, Pu = 400k, and L = 16′. Assume single lacing 

at 45° with bolts at 1″ from inside edge.

21-6: Design a 16 × 16″ column made of 4 angles to support 

a factored load, Pu = 500k if L = 14′. Assume double lacing at 

45° with bolts 1.5″ from inside edges.



twenty two

Steel  Tension Design

 Abh = area of bolt holes where Abh = (number of bolt 

holes)(bolt hole diameter)(thickness)

 An = net area = Ag − Abh

22.1

1″ × 8″ plate with holes aligned

In Figure 22.1, the gross area of the 1″ × 8″ plate = Ag = 1″(8″) 

= 8in2. The bolt size is 3
4 ″. The bolt hole size is 

3
4 ″ + 1

8  ″ = 7
8 ″ diameter.

An = Ag − Abh = 8in2 − (2bolts)(7
8 ″ diameter)(1″ 

thickness) = 6.25in2

22.2

1” × 8” plate with staggered holes

In designing steel components subjected to tension, the 

tensile stress, ft = P/A is a good starting point to determine 

how much cross-section area is required to prevent the 

component from pulling apart. Most components in tension, 

however, are connected to another member with a bolted 

connection. In these cases, not only must gross yielding in 

tension be considered, but also tensile rupture, block shear 

and the shear and bearing strength of the bolts. Bolt design is 

covered in Chapter 24: Steel Connections.

Bolt hole sizes:

Standard bolt holes are punched or drilled 1
16 ″ larger than the 

bolt diameter. But punching holes may damage steel beyond 

the hole perimeter. Therefore, for design with punched holes, 
1
8 ″ is added to the bolt size to determine the design size of 

the bolt hole. Drilled holes only require a 1
16 ″ addition, but for 

consistency, in this text 1
8 ″ is added to the bolt diameter in all 

cases to find bolt hole size.

Before discussing the analysis and design methodologies 

for tensile rupture and block shear, it is necessary to 

understand how to find the net area of a cross-section.

Net area (An) is the cross-sectional gross area of a component 

minus the area of the bolt holes. In calculating An, every 

possible path of fracture must be examined.

 Ag = gross area
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In Figure 22.2, the plate has staggered holes and there 

are two possible paths through holes to be considered in 

determining An. Path A goes through one bolt hole, creating a 

section of Path A as shown in Figure 22.3.

22.3

Path A

Path A: An = Ag − Abh = 8in2 − (1bolt)(7
8 ″ diameter)(1″ 

thickness) = 7.125in2

Path B goes through two bolts that are separated by a 

diagonal as shown in the section in Figure 22.4.

22.4

Path B

Because shear and tensile stresses occur together in 

diagonals between staggered holes, the actual length of the 

diagonal cannot be used to determine An. Instead, use the 

S2/4G rule where:

G = gauge = the distance between the rows of bolt holes 

(G = 3″ in this example); 

S = spacing = the distance between diagonal holes 

measured parallel to the line of the rows. (S = 2.00 in 

this example); 

dbh = diameter of bolt hole;

 An = Ag − (dbh)(#holes in path)(t) + Σ(S2 /4G)(t) = 8in2 − (7
8 ″)

(2)(1″) + (22/4(3))(1) = 8 − 1.75 + 0.33 = 6.58″

Once An has been determined for all paths, use the lesser 

value in determining tensile rupture.

To find An in standard shapes, look up the value for the cross-

sectional gross area, listed in the AISC Steel manual Table 1-1 

under the heading Area. Next note the flange thickness, tf 

and/or the web thickness, tw depending on where the holes 

are located in the cross-section.

Example 22-1: Find the net area of a W14 × 22 with 

2 − 1.125″ diameter bolt holes through each flange.

22.5

W14 × 22 with four bolt holes

From Table A3.1: A = 6.49in2, tf = 0.335″

An = Ag − (# holes)(bolt hole dia.)(tf) 

= 6.49 − 4(1.125″)(0.335″) = 4.98in2
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22.6

Channel back with four bolts (a) Path A (b) Path B

Example 22-2: Find the net area of a C12 × 30 with two 

rows of two 3
4
″ bolts in the web with 7″ gauge, 4″ pitch. 

Note that when bolt holes are aligned, the smallest value 

of An will be the straight path through the member as 

shown in Figure 23.6(a). This is because Path B as shown in 

Figure 23.6(b) will go through the same number of holes but 

will add the value of S2/4g for the diagonal, making the net 

area, An, that much larger. An for Path A and Path B are shown 

below to demonstrate this point; however, in analysis and 

design with aligned holes, Path B need not be considered.

From AISC Steel Manual Table 1-1: tw = 0.510″, A = 8.81″
Path A: AnA = Ag − (dhole)( #holes)(t) = 8.81 − (.875)(2)(.51) 

= 7.92in2

Path B: AnB = Ag − (dbh)(#holes in path)(t) + (S2/4G)(#diagonals)

(t) = 8.81 − (0.875)(2)(.51) + (16/28)(1)(.51) = 8.21in2

Use Path A: An = 7.92in2

22.1 Gross Yielding in 
Tension

Using the LRFD method where:

 φ = Resistance Factor,

 Fy = the yield stress of the steel and 

Ag = gross area of the cross-section,

φt = 0.9 = tensile Resistance Factor

Pn = AgFy = nominal load

Pu = φtAgFy = ultimate load or design strength 

= gross yielding.

Example 22-3: Determine ultimate tensile load of an 

A992 steel 1″ × 4″ plate.

φt = 0.9, Ag = 4in2, Fy = 50ksi

Pu = (0.9)(4in2)(50ksi) = 180kips

Example 22-4: Determine the ultimate tensile load of an 

A992 steel W14 × 90.

φt = 0.9, Ag = 26.5in2, Fy = 50ksi

Pu = (0.9)(26.5in2)(50ksi) = 1192.5kips

22.2 Tensile Rupture 
Strength

In cases where members in tension have bolted connections, 

tensile rupture must be considered. Using the LRFD method 

where φ = Resistance Factor,

Fu = the ultimate stress of the steel 

= 65ksi for A992 steel 

= 60ksi for steel pipe 

= 58ksi for A36 steel 

Ae = effective area of the cross-section

φ = 0.75 = tensile rupture Resistance Factor

Pn = AeFu = nominal load

Pu = φAeFu = ultimate load or design strength 

= tensile rupture strength.

Ae = AnU where:

U is the shear lag factor from Figure 22.7 or Table D-3.1 of the 

AISC Steel Manual;

U = larger of either Table D-3.1 or the equation U = 1 − x/L; 

L = distance between the first and last bolts in the line; 

x = distance from line of bolts to the N.A. of the portion of 

the member supported by the bolts. 

If a W10 × 45 has four bolt lines, one on each side of each 

flange, then the value of x is the value of y-bar taken from 

the WT5 × 22.5 section properties, which = .907. But if the 

W10 × 45 has bolt lines on only one flange, then the value of x 

is the y-bar value from a W10 × 45 which is 5″. The AISC allows 

either U = 1 − x/L or Case 7 for W, M, S and HP shapes.
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For example, if the W10 × 45 has four lines on bolts with four 

bolts per line at 3″o.c.,

L = 3(3″o.c.) = 9″ and X = 0.907. This means that U = 1 − x/L 

= 1 − .907/9 = 0.90.

Using Case 7, AISC Table D-3.1 states that for a flange 

connected with three or more fasteners per line in direction 

of loading, if 

 bf ≥ 2/3d, U = 0.90 and if

 bf < 2/3d, U = 0.85

 bf = 8.02, 2d/3 = 2(10.1)/3 = 6.73 therefore U = 0.90.

But if the number of bolts per line is reduced to two:

L = 3″ and U = 1 − .907/3 = 0.70.

Example 22-5: Find the ultimate allowable load Pu for the 

A992 steel W14 × 43 with 2 lines of holes in each flange 

for 7
8
″ bolts as shown in Figure 22.7.

22.7

W14 × 43 with four lines of holes

From Table A3.1: W14 × 43: A = 12.60in2, tf = 0.53″, 
bf = 8.00″, d = 13.7″
Gross yielding:

 Fy = 50ksi for A992 steel

 Ag = A = 12.6in2

 Pu = φtAgFy = 0.9(12.6in2)(50ksi) = 567k

Tensile rupture:

 Bolt hole diameter = dbh = bolt diameter + 1/8″ 

= 7/8″ + 1/8″ = 1″
 An = Ag − Abh = Ag − (# bolt holes)(bolt hole diameter)

(thickness) = 12.6in2 − 4(1″)(0.53″) = 10.48in2

 To determine the value of U for a W shape with 3 or more 

bolts per row, see case 7 of Table 22.1. U = 0.9 if 

bf ≥ 2d/3. U = 0.85 if bf < 2d/3.

 bf = 8.0″ and 2d/3 = 2(13.7)/3 = 9.13″. Therefore, 

bf < 2d/3 and U = 0.85.

 Ae = UAn = 0.85(10.48in2) = 8.91in2

 Fu = 65ksi = ultimate stress for A992 steel.

 Pu = φPn = .75FuAe = 0.75 (65ksi)(8.91in2) = 434.36k

Tensile design strength is the lesser value of the gross 

yielding strength and the tensile rupture strength. 

434.6k < 567k, therefore: Pu = 434.36k.

Tensile connections may have more than one shear 

plane. Multiple shear planes in a connection may occur 

because more than two structural members are connected or 

because symmetry is desired or because several plates are 

required to carry the tensile load. When dealing with multiple 

components, remember that tensile forces must be balanced. 

Example 22-6: Tension connection with multiple 

shear planes.

22.8

Tension connection with multiple shear planes 

Table 22.1:  U-factors. Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

SHEAR LAG FACTOR, U 

CASE DESCRIPTION U 

1 Plates and built-up members connected by bolts 1.00 

W, M, S or HP Shapes or Tees 
3 or more bolts in flange in I bf ~ 2d/3 0.90 

7 
cut from these shapes 

direction of load Ibf < 2d/3 0.85 

4 or more bolts in web in direction of load 0.70 

8 Si ngle Angles 
4 or more bolts in direction of loading 0.80 

2 or 3 bolts in direction of loading 0.80 
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Find the maximum design load, Pu, for the connection in 

Figure 22.8.

1. Check W8 × 15 for gross yielding:

A = 4.44in2, tf = 0.315″, bf = 4.01″, d = 8.11″
Pu = φPn = 0.9Pn = 0.9FyAg = .9(50ksi)(4.44in2) 

= 199.8k for gross yielding in the W8 × 15.

2. Check W8 × 15 for tensile rupture:

A = 4.44in2, tf = 0.315″, bf = 4.01″, d = 8.11″
Pu = φPn = 0.75Pn = 0.75FuAe = 0.75(65)An(U)

An = Ag − (#lines)(dBH)(tf) = 4.44 − 4(7/8)(.315) 

= 3.338in2

Check U, Case 7: (2/3)d = (2/3)(8.11) = 5.41 > bf = 4.01 

therefore, U = 0.85

Ae = AnU = 3.338in2(0.85) = 2.84in2

Pu = .75(65)(2.84) = 138.45k for tensile rupture in the 

W8 × 15.

3. Check 1
4  × 4″ plates for gross yielding: Note that because 

there are two equal size plates carrying the total load Pu, 

each plate will carry half the load or Pu /2.

Pu/2 = φPn = 0.9Pn = 0.9FyAg = .9(36)(4)(.25) = 32.4k

Pu = 32.4k(2) = 64.8k for gross yield in plates

4. Check plates for tensile rupture:

Pu/2 = φPn = 0.75Pn = 0.75FuAe = 0.75(58)An(U)

An = 4(.25) − 2(7/8)(.25) = 0.5625in2

U = 1.0 for plates … Ae = AnU = 0.5625in2

Pu/2 = .75(58)(0.5625) = 24.47k Pu = 48.94k for tensile 

rupture in plates.

5. The smallest value governs, therefore, the design 

strength of the connection is 48.94k. Beyond that, the 

connection will fail by tensile rupture in the plates.

 If the design strength is not adequate, the size of the 

plates could be increased so that plate rupture becomes 

equal to beam rupture. 

Find area of plates so that Pu = 138.45k in tensile rupture:

1. Assume plate width b and plate thickness t

2. Find desired tensile rupture strength per plate: Pu/2 = φPn 

= 0.75Pn = 0.75FuAe = 0.75(58)An = 138.45/2 = 69.23

3. Find An in terms of b and t: 

An = Ag − (#lines)(dbh)(tf) = b(t) − 2(7/8)(t) = t(b − 1.75) 

4. Set An equal to desired An = (Pu/2)/.75Fu

t(b − 1.75) = 69.23/[.75(58)] = 1.591in2

if b = 4, t = 1.591/(2.25) = 0.707″
Option 1: increase thickness to 3

4 ″ PL 4″ × 34 ″
OR if t = .25″ b = 1.591/.25 + 1.75 = 8.114

Option 2: increase width to 8.25″ PL 8.25″ × 14 ″

22.3 Block Shear

Block shear is a type of rupture—a tearing out of a section of 

steel at the corner of a member. This type of tearing occurs 

through the bolt holes and involves both shear and tension 

in the process; shear parallel to the line of force and tension 

perpendicular to the line of force.

22.9

Block shear

φ = 0.75 for block shear

Pu = φRn = .75Rn

Rn = .6FUAnv + UBSFUAnt < .6FYAgv + UBSFUAnt 

Agv = gross area subjected to shear = (#lines)(distance 

from center of farthest bolt to end)

Anv = net area subjected to shear = Agv − (#lines)

(#holes per line − 0.5)(dbh)

Ant = net area subjected to tension = (#lines)(distance 

from centerline of bolt to edge − dbh/2)

To check for block shear, members should first be checked 

for gross yielding and tensile rupture.

Example 22-7: Find the block shear in the connection 

from Example 22-6: If there are three bolts spaced at 

3″o.c. per line and 3″ from the end, with lines 2″ apart.
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22.10

Block shear example 22-7

From Example 22-6, the following values were obtained for 

gross yielding and tensile rupture:

 W8 × 15 in gross yielding:  Pu = 199.8k

 W8 × 15 in tensile rupture:  Pu = 138.45k

 Plates in gross yielding: Pu = 68.4k

 Plates in tensile rupture: Pu = 48.94k

1. Agv = #lines(length of shear line)(tf) = 4(3″ + 3″ + 3″)

(.315″) = 11.34in2

2. Anv = Agv − (#lines)(#holes per line − 0.5) (dBH)(tf) = 

11.34in2 − (4)(2.5)(3/4″ + 1/8″)(.315″) = 8.584in2

3. The length of the tension line is (bf − distance between 

lines)/2 = (4.01 − 2)/2 = 1.005″.
Ant = (#line)[length of tension line − (0.5) (hole dia.)](tf) 

= 4[1.005″ − 0.5(7/8″)](.315″) = 0.72in2

4. Use lesser of both equations:

Pu = φRn = 0.75 (0.6FyAgv + FuAnt) = .75[.6(50ksi)

(11.34in2) + 65ksi(0.72in2) = 290.25k

 OR

Pu = φRn = 0.75 (0.6FuAnv + FuAnt) = .75[.6(65ksi)

(8.58in2) + 65ksi(0.72in2) = 286.07k

5. Block shear in the W8 × 15: Pu = 286.07k

Check the block shear in the PL 1
4  × 4″:  

1. Agv = 2(9″)(.25″) = 4.5in2

2. Anv = 4.5in2 − (2)(2.5)(3/4″ + 1/8″)(.25) = 3.41in2

3. The length of the tension line = (4 − 2)/2 = 1″
 Ant = 2[1 − 0.5(7/8)](.25) = 0.28in2

4. Pu/2 = φRn = 0.75 (0.6FyAgv + FuAnt) = .75[.6(36ksi)(4.5in2) 

+ 58ksi(0.28in2)] = 85.08k … Pu = 2(85.08k) = 170.16k

 <listpara >OR

 Pu/2 = φRn = 0.75 (0.6FuAnv + FuAnt) = .75[.6(58ksi)

(3.41in2) + 58ksi(0.28in2)] = 101.18k … Pu = 2(101.18k) 

= 202.36k

5. Block shear in the plates: Pu = 170.16k. 

Failure will occur in plate rupture at 48.94k.

22.4 Design of Tension 
Members

To design tension members, the goal is to find the gross area 

required for gross yielding and tensile rupture. Block shear is 

checked in the designed member and the size is adjusted if 

needed. Since Pu ≤ 0.9FyAg for gross section yielding, dividing 

both sides of the equation yields Ag ≥ Pu/0.9Fy.

For example: Design a W section for a tensile load 

Pu = 240kips using A992 steel.

Ag ≥ 240k/[(0.9)(50ksi)] = 5.33in2

A W10 × 19 would work with Ag = 5.62in2

For tension members with bolts, tensile rupture must also be 

considered.

Since Pu = φPn = 0.75FuAe for tensile rupture, Ae ≥ Pu/0.75Fu. 

And since Ae = UAn, An ≥ Pu/0.75FuU. But it is the gross area, 

not the net area that must be determined. Ag = An + Abh. At 

this point, the area of bolt holes (Abh) must be estimated. 

Because the number of lines of bolts and the bolt size are 

typically decided, Abh can be expressed in terms of tf.

Abh = (#lines)(dbh)(tf)

Ag = An + (#lines)(dbh)(tf)

Ag ≥ Pu/0.75FuU + Abh

When designing tension members, the slenderness ratio, 

L/r ≤ 300.

The procedure for design of tensile connections:

1. Determine the factored load, Pu.

2. Ag > Pu/(.9(Fy))
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3. Choose assumed value for U: 1.0 for plates, 0.85 for W 

shapes.

4. Assume a value for tf. Ag ≥ An + Abh = Pu/(0.75FuU) + 

(#lines)(bolt hole dia.)(tf) 

5. r ≥ L(12in/f)/300 

6. Select a trial size and note: Ag, tf and ry. Check that AgREQD 

= Pu/(0.75FuU) + (#lines)(bolt hole dia.)(tf) > Ag ACTUAL

7. Agv = (#lines)(shear line length)(tf) 

Anv = Agv − (#lines)(#bolt holes)(dbh)(tf)

Ant = (#line)[length of tension line − (0.5)(dbh)](tf)

8. Check both Shear Block Equations:

Pu ≤ .75[.6FUAnv + UBSFUAnt]

Pu ≤ .75[.6FYAgv + UBSFUAnt]

Example 22-8: Design a 20′ long W12 section for a tensile 

load Pu = 240kips using A992 steel assuming two rows of

three 3
4
″ bolts @ 3″o.c. on one flange, 2″ from end and 

lines at 4″o.c.

22.11

Block shear in a W12 with holes in one flange

 1. Pu = 240kips

 2. Gross yielding: Ag > Pu/(.9(Fy)) = 240k/(.9(50ksi)) = 5.33in2 

 The size must be at least a W12 × 19 (A = 5.57in2)

 3. Choose assumed value for U = 0.85

 4. Assume tf = .4, Ag ≥ An + Abh = Pu/(0.75FuU) + (#lines)(bolt 

hole dia.)(tf) 

= 240k/0.75(65ksi)(0.85) + 2(3/4″ + 1/8″)(0.4″) 

= 5.792 + 1.75tf = 6.49in2

 5. r ≥ 20′(12in/f)/300 = 0.8″ 

 6. Try W12 × 26: Ag = 7.65, tf = 0.38, ry = 1.51, bf = 6.49, 

d = 12.2

 7. ry = 1.51″ > 0.8″ … okay

 8. Check the U value and adjust the equation for An if 

necessary:

2d/3 = (2/3)(12.2) = 8.13 > 6.49 = bf … U = 0.85 

… okay

 9. Ag = 7.65 > 5.792 + 1.75(0.38) = 6.46 … okay

10. Block shear:

Agv = (#lines)(shear line length)(tf) = 2(3 + 3 + 2)(0.38) 

= 6.08

Anv = Agv − (#lines)(#bolt holes)(dbh)(tf) = 6.08 − 2(2.5)

(0.875)(0.38) = 4.42in2

bf = 6.49, tension line = (6.49 − 4)/2 = 1.245″
Ant = 2(1.245 − .5(.875)) = 1.615in2

Pu = 0.75[0.6(65ksi)(4.42) + 1.0(65ksi)(1.615)] = 208.02 

k < 240k 

The W12 × 26 is not adequate. Go back to step 6 and 

try a larger size.

6A. Try W12 × 35: Ag = 10.3, tf = 0.52, ry = 1.54, d = 12.5, 

bf = 6.56 

7A. ry = 1.54″ > 0.8″ … okay

8A. Check the U value and adjust the equation for An if 

necessary:

2d/3 = (2/3)(12.5) = 8.33 > 6.56 = bf … U = 0.85 

… okay

9A. Ag = 10.3in2 > 5.792 + 1.75(0.52) = 8.06in2 … okay

10A. Block shear:

Agv = (#lines)(shear line length)(tf) = 2(3 + 3 + 2)(0.52) 

= 8.32in2

Anv = Agv − (#lines)(#bolt holes − .5)(dbh)(tf) 

= 8.32 − 2(2.5)(0.875)(0.52) = 6.05in2

bf = 6.56, tension line = (6.56 − 4)/2 = 1.28″

Ant = 2(1.28 − .5(.875)) = 1.69″
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Pu = 0.75[0.6(50ksi)(8.32) + 1.0(65ksi)(1.69)] 

= 269.59k > 240k

Pu = 0.75[0.6(65ksi)(6.05) + 1.0(65ksi)(1.69)] 

= 259.35k > 240k … okay

ANSWER: Use W12 × 35

It is often possible to reduce the weight of a tension member 

whose size is governed by block shear by increasing the 

distance from the holes to the end or the edges. For example, 

if the problem is changed so that the distance from the holes 

to the end is 3″ instead of 2″ and the distance between lines 

of bolts is changed so that the length of the tension line is 

1.5″ instead of 1.28″, the answer would change.

22.12

Changed bolt hole spacing

Example 22-9: Design a 20′ long W12 section for a tensile 

load Pu = 240kips using A992 steel assuming two rows of 

three 3
4
″ bolts @ 3″o.c. on one flange, 3″ from end and 

1.5″ from edges.

 1. Pu = 240kips

 2. Gross yielding: Ag > Pu/(.9(Fy)) = 240k/(.9(50ksi)) = 5.33in2 

 Must be at least a W12 × 19 (A = 5.57in2)

 3. Choose assumed value for U = 0.85

 4. Assume tf = .4, Ag ≥ An + Abh = Pu/(0.75FuU) + (#lines)(bolt 

hole dia.)(tf) = 240k/0.75(65ksi)(0.85) + 2(3/4″ + 1/8″)

(0.4″) = 5.792 + 1.75tf = 6.49in2

 5. r ≥ 20′(12in/f)/300 = 0.8″ 

 6. Try W12 × 26: Ag = 7.65, tf = 0.38, ry = 1.51, bf = 6.49, 

d = 12.2

 7. ry = 1.51″ > 0.8″ … okay

 8. Check the U value and adjust the equation for An if 

necessary:

2d/3 = (2/3)(12.2) = 8.13 > 6.49 = bf … U = 0.85 

… okay

 9. Ag = 7.65 > 5.792 + 1.75(0.38) = 6.46 … okay

10. Block shear:

Agv = (#lines)(shear line length)(tf) = 2(3 + 3 + 3)(0.44) 

= 7.92

Anv = Agv − (#lines)(#bolt holes)(dbh)(tf) = 7.92 − 2(2.5)

(0.875)(0.44) = 6.0

bf = 6.52, tension line = 1.5″
Ant = 2(1.5 − .5(.875)) = 2.13in2

Pu = 0.75[0.6(65ksi)(6.0) + 1.0(65ksi)(2.13)] = 279.34k 

> 240k

Pu = 0.75[0.6(50)(7.92) + 65(2.13)] = 282.04k > 240k

USE: W12 × 26

Practice Exercises:

22-1 and 22-2: Find the design strength of the connections 

shown.

22-3: Find the narrowest 6″ plate thickness, t, for the 

connection shown if Pu = 500k.

22-4: Find the most economical W14 for a connection with a 

tensile load of 1200# if there are four lines of bolts (2 in each 

flange). Each line has four bolts with 1″ diameter bolt holes 

spaced at 3″o.c. and 3″ from the end. The lines of bolts are 

bf/2″ apart.

22-5: Repeat problem 22-4 using 7
8 ″ bolt holes spaced 4″o.c. 

and 3″ from the end.
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22.13

Chapter 22 Practice exercises



twenty three

Steel  B aseplates

23.1

Steel baseplate

A baseplate is a steel plate that is welded or bolted to the 

bottom of a steel column. The purpose of a baseplate is to 

distribute the load over an area larger than the column cross-

sectional area so that the concrete footing below can support 

the load. If a heavily loaded column was placed directly on a 

concrete footing, the compressive stress carried by the steel 

would be too great for the concrete and the column would 

punch through the footing.

There are two scenarios to consider in designing a baseplate: 

full and partial coverage of the concrete. If the baseplate 

covers the entire area of the concrete, the nominal load (Pp) is 

Pp = 0.85f′cA1 where:

f′c = compressive strength of the concrete and 

A1 = gross area of the base plate = BN.

The design load is Pu = φcPp where φc = 0.60 for base 

plates.

If the area of the concrete is greater than the area of the 

baseplate, the nominal load, Pp = (0.85f′cA1)√(A2/A1) where:

A2 = the area of the concrete 

A1 = the area of the baseplate = BN and

the value of √(A2/A1) ≤ 2.

f′c = compressive strength of the concrete

By rearranging the equation for Pp: 

A1 = Pu/[φc(0.85f′c) √(A2/A1)] where

φc = 0.60 for base plates
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To design a base plate:

1. Determine Pu

2. Determine footing area in square inches 

3. The base plate A1 = Pu/[φc(0.85f′c)(2)] 

4. The base plate must be at least as large as the column 

dimensions: d by bf. Check that A1 > d(bf), B > bf and 

N > d.

5. Round B and N up to whole numbers

6. A1 = BN

7. Check the bearing strength of the concrete: 

Pu < φcPp = 0.6(0.85f′cA1)√(A2/A1)

8. m = [N − 0.95d]/2

n = [B − 0.80bf]/2

n′ = [√dbf]/4 = limitations in determining thickness 

requirement in order to account for columns with 

light loads.

l = largest of m,n,n′
9. treq = l√[2Pu/.9FyBN]

Example 23-1: Design a baseplate for a W14 × 90 column 

carrying an axial load of Pu = 900k and bearing on a 6′ by 

6′ concrete footing with f′c = 3ksi. d = 14, bf = 14.5.

1. Pu = 900k

2. A2 = 6′(12in/f)(6′)(12in/f) = 5184in2

3. A1 = Pu/[φc(0.85f′c)(2)] = 900/[.6(.85)(3)(2)] = 294.12in2

4. dbf = 14(14.5) = 203. Check that A1 > dbf

5. 294.12 > 203 … okay

6. Round B and N up to whole numbers: √294 = 17.146

use 17 × 18: 

A1 = BN = 306in2

Note: √(A2/A1) = 2 

7. Check the bearing strength of the concrete: 

Pu < φcPp = 0.6(0.85(3)(306))(2) = 936.36 > 900k 

… okay

8. Find base plate thickness:

m = [N − 0.95d]/2 = [17 − .95(14)]/2 = 1.85

n = [B − 0.80bf]/2 = 18 − .8(14.4)]/2 = 3.24

n′ = [√dbf]/4 = [√14(14.5)]/4 = 3.56 l = 3.56 

9. treq = l√[2Pu/.9FyBN] = 3.56 √[2(900)/.9(36)(17)(18)] = 1.52″
Base plate: PL 18 × 17 × 15

8 ″

Example 23-2: Design the thickness for a base plate of a 

given size where:

Pu = 900k, column W14 × 90: d = 14, bf = 14.5

Footing: f′c = 3ksi, 25″ × 25″ pedestal with baseplate covering 

pedestal

1. Pu = 900k

2. A2 = 25(25) = 625in2

3. Pp = 0.85F′cA1 = .85(3)(625) = 1593.75 … go right to 

step 7

7. Check the bearing strength of the concrete: 

Pu < φcPp = 0.6(1593.75) = 956.25 > 900k … okay

8. Find base plate thickness

M = [N − 0.95d]/2 = [25 − .95(14)]/2 = 5.85

N = [B − 0.80bf]/2 = [25 − .8(14.5)]/2 = 6.7

n′ = [√dbf]/4 = [√14(14.5)]/4 = 3.56 l = 6.7

9. treq = l √[2Pu /.9FyBN] = 6.7√[2(900)/.9(36)(25)(25)] = 2″
Base Plate: PL 25 × 25 × 2″

Practice Exercises:

23-1: Design a baseplate for a W24 × 192 column carrying 

an axial load of Pu = 2400k and bearing on a 8′ × 8′ concrete 

footing with f′c = 4ksi, d = 25.5, and bf = 13.0.

23-2: Design the thickness of a 30″ × 30″ base plate fully 

covering a pedestal of f′c = 3ksi concrete and supporting a 

W14 × 120 columns with an axial load of Pu = 1200k, d = 14.5, 

bf = 14.7.



twenty four

Steel  Connect ions 

24.1.1 Bearing Connection Analysis

Four conditions must be considered for bearing connections:

1. Gross yielding of plates: φPn = 0.9FyAg as discussed in 

Chapter 22.

2. Tensile rupture of plates: φPn = 0.75FuAe as discussed in 

Chapter 22.

3. Bearing in bolts: φRn = 0.75 Rn where Rn is the smaller 

value of

Rn = 1.2 Lc(t)(Fu)(# of bolts) 

OR 

Rn = 2.4(d)(t)( Fu)(# of bolts)

Lc = the smallest clear distance between the edges of 

holes and edges of adjacent holes or material edges 

in direction of force.

t = plate thickness 

d = diameter of bolt

4.  Shear in bolts: φRn = φFnAb = 0.75FnAb where

Fn is found in Table 24.1

Ab = total area of bolts = (TOTAL # bolts)(π)(bolt 

diameter)2/4

The design tension is the smallest value from the four cases.

Example 24-1: Determine the design strength ϕcPn for 

bearing connection in Figure 24.1 if plates are A36 steel 

and bolts are A-325 with 3
4
″ diameter bolts with threads 

excluded from the shear plane.

24.1 Bolted Connections

Bolted connections are the most common type of connection 

used in steel. The strength of the connections depends 

not only on the strength of the connected components as 

discussed in Chapter 22, but also on the shear and bearing 

strength of the bolts. 

In bearing connections, some slippage is assumed and the 

bolt is checked for bearing and shear. In bearing conditions, 

the bolts are snug-tight or pre-tensioned without inspection. 

A snug-tight bolt is tightened by hand and then wrench 

tightened 1.5 turns. The threads are seated together but do 

not have to be in continuous contact with each other.

In slip-critical connections, the bolt strength is based on 

surface conditions, pre-tensioning of the bolt and hole size. In 

skip-critical connections, bolts are tightened up to 70% of the 

tensile design strength, threads are in constant contact and 

contact surfaces as well as the tension must be inspected.

The three most common types of bolts are the A307, A325 

and A490. The A307 is a common bolt and has a strength 

roughly equivalent to A36 steel. The A325 and A490 are high 

strength bolts and therefore are the most commonly used.

Bolt sizes range from 0.5″ to 1.5″ in diameter in 1
8 ″ 

increments. A designation of X or N is given to high strength 

bolts. X indicates threads are excluded from the shear planes 

and N indicates threads are NOT excluded from the shear 

planes.
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Table 24.1:  Nominal shear in bearing connections: Fn (ksi) from AISC Steel 
Construction Manual Table J3.2.

24.1

Finding design strength of a bearing connection

1. Gross yielding in plates: 

φPn = 0.9FyAg = 0.9(36ksi)(0.625)(8) = 162k 

2. Tensile rupture: φPn = 0.75FuAe

Ae = UAn and U = 1 for plates

Ae = An = (.625″)(8″) − (.625)(3/4 + 1/8)(2) = 4.02in2

Where .625″ is plate thickness and 8″ is plate width
3
4 ″ + 1

8 ″ = 0.785″ = bolt hole diameter

2 = # bolt holes in the cross-section

φPn = 0.75FuAe = 0.75(58 ksi)(4.02in2) = 174.87k 

3. Bearing in bolts: φRn = 0.75Rn where Rn is the smaller 

value of both Rn equations below:

Lc = minimum clear distance in direction of force 

= smaller of 

3 − .872/2″ = 2.56″ or 4″ − 0.875″ = 3.125″ 

Lc = 2.56″
t = 0.625″ = thickness of plate, 

d = 0.75″ = diameter of bolt

Total number of bolts = 4

Rn = 1.2Lc(t)( Fu)(# of bolts) = 1.2(2.56)(0.625)(58)(4) 

= 445.44k

OR 

Rn = 2.4(d)(t)( Fu)(# of bolts) = 2.4(.75)(.625)(58)(4) 

= 261k

φRn = 0.75Rn = 0.75(261k) = 195.75 

4. Shear in bolts: φRn = φFnAb = 0.75FnAb

From Table 24.1 For A325-X bolt, fnv = 60ksi

Ab = total area of bolts = (TOTAL # bolts)(π)(bolt 

diameter)2/4 = 4(3.14159)(0.75)2/4 = 1.767in2

φRn = φFnAb = 0.75(60)(1.767) = 79.52k

The design tension = smallest of four cases 

 = 79.52k

24.1.2 Bearing Connection Design

In design, the number of bolt holes required needs to be 

determined for a given load. This is done after the plates or 

other connection components are designed.

1. Determine bearing strength in one bolt

2. Determine shear strength in one bolt

3. Determine number of bolts needed

Example 24-2: If the plates in Figure 24.1 are designed 

for a tensile design load, Pu = 160k, how many rows of 

A325-N bolts are required?

1. Determine bearing strength in one bolt: 

Rn = 1.2Lc(t)( Fu) (1 bolt)

Lc = minimum clear distance in direction of force 

= smaller of

3 − .872/2″ = 2.56″ or 4″ − 0.875″ = 3.125″
Lc = 2.56″
t = 0.625″ = thickness of plate

d = 0.75″ = diameter of bolt

Rn = 1.2Lc(t)( Fu)(1 bolt) = 1.2(2.56)(.625)(58)(1) 

= 111.36k/bolt

OR 

Rn = 2.4(d)(t)( Fu)(1 bolt) = 2.4(.75)(.625)(58)(1) 

= 65.25k/bolt

φRn = 0.75 Rn = 0.75(65.25) = 48.94k/bolt

2. Determine shear strength in one bolt: φRn = φFnAb 

= 0.75FnAb

Bolt Type Nominal Shear in 

Bearing Connections: 

Fn (ksi) 

A307 24 

A325-N 48 

A325-X 60 

A490-N 60 

A490-X 75 
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From Table 24.1 For A325-X bolt, 

fnv = 60ksi

Ab = area of ONE bolt = (π)(bolt diameter)2/4 

= (3.14159)(0.75)2/4 = 0.442in2

φRn = φFnAb = 0.75(60)(0.442) = 19.88k/bolt

3. Determine number of bolts needed:

Pu = 160k (given )

φRn = 19.88k/bolt (#bolts) = 160k … #bolts 

= 160/19.88 = 8.05 … round up to 10 bolts.

24.1.3 Analysis for More than One 
Shear Plane

Analysis for connections with more than one shear plane 

follows the same procedure as in section 22.1.1. However, it 

must be remembered that if the number of plates carrying a 

force in one direction is different than the number of plates 

carrying a force in the opposite direction, then the thickness 

to be used is equal to the smaller of the sums of plate 

thicknesses on each side.

Example 24-3: Determine the design strength ϕcPn for 

bearing connection in Figure 24.3 if plates are A992 steel 

and bolts are A-490 with 7
8
″ diameter bolts with threads 

NOT excluded from the shear plane.

24.2

Multiple shear planes

1. Thickness to the left = 0.5(2) = 1 and thickness of plates 

to the right = 0.75(1) = 0.75 … t = 0.75

2. Gross yielding in plates: φPn = 0.9FyAg = 0.9(50ksi)(0.75)

(10) = 337.5k 

 3. Tensile rupture: φPn = 0.75FuAe

Ae = UAn and U = 1 for plates.

Ae = An = (.75″)(10″) − (.75)(7/8 + 1/8)(3) = 5.25in2

φPn = 0.75FuAe = 0.75(65ksi)(5.25in2) = 255.94k 

4. Bearing in bolts: φRn = 0.75Rn where Rn is the smaller 

value of both Rn equations below:

Lc = minimum clear distance in direction of force 

= smaller of 

3 − 1/2″ = 2.5″ or 4″ − 1″ = 3.0″
Lc = 2.5″
t = 0.75″ = thickness of plate, 

d = 0.875″ = diameter of bolt

Total number of bolts = 4

Rn = 1.2Lc(t)(Fu)(# of bolts) = 1.2(2.5)(0.75)(65)(6) 

= 877.5k

OR 

Rn = 2.4(d)(t)( Fu)(# of bolts) = 2.4(.875)(.75)(65)(6) 

= 614.25k

φRn = 0.75Rn = 0.75(614.25k) = 460.69k

5. Shear in bolts: φRn = φFnAb = 0.75FnAb

From Table 24.1 For A490-N bolt, fnv = 60ksi

Ab = total area of bolts = (TOTAL # bolts)(π)(bolt 

diameter)2/4 = 6(3.14159)(0.875)2/4 = 3.608in2

φRn = φFnAb = 0.75(60)(3.608) = 162.34k

The design tension = smallest of four cases = 162.34k. 

The connection will fail through shear in the bolts. If the 

design strength is not adequate, the design can be altered 

to improve the strength. If the bolt size is increased to 1″ 

diameter, the bolt holes increased to 1.125″ diameter. Steps 

3, 4 and 5 would need to be re-evaluated.

3. Tensile rupture: φPn = 0.75FuAe

Ae = UAn and U = 1 for plates.

Ae = An = (.75″)(10″) − (.75)(1.125)(3) = 4.97in2

φPn = 0.75FuAe = 0.75(65 ksi)(4.97in2) = 223.59k 

4. Bearing in bolts: φRn = 0.75 Rn where Rn is the smaller 

value of both Rn equations below:

Lc = minimum clear distance in direction of force 

= smaller of 

3 − 1.125/2″ = 2.44″ or 4″ − 1.125″ = 2.875″
Lc = 2.44″
t = 0.75″ = thickness of plate 

d = 1″ = diameter of bolt

Total number of bolts = 4

Rn = 1.2 Lc (t)( Fu)(# of bolts) = 1.2(2.44)(0.75)(65)(6) 

= 856.44k
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OR 

Rn = 2.4(d)(t)( Fu)(# of bolts) = 2.4(1)(.75)(65)(6) = 702k

φRn = 0.75 Rn = 0.75(702k) = 526.5k.

5. Shear in bolts: φRn = φFnAb = 0.75FnAb

From Table 24.1 For A490-N bolt, fnv = 60ksi

Ab = total area of bolts = (TOTAL # bolts)(π)(bolt 

diameter)2/4 = 6(3.14159)(1)2/4 = 4.712in2

φRn = φFnAb = 0.75(60)(4.712) = 212.06k

The design tension = smallest of four cases = 212.06k

The connection still fails by shear in the bolts, but the 

increase in size by 14% increased the design strength of the 

connection by 30.6%. The next smallest value for design 

strength is in tensile rupture where the design strength was 

255.94k using 7
8 ″ bolts. The number of rows of bolts could be 

changed to increase the design strength. To find how many 

rows of bolts are needed to make connection fail by tensile 

rupture, there is no need to reconsider bearing in bolts as it 

will only increase with addition of bolts. Therefore, only the 

shear in bolts needs to be considered.

5. Shear in bolts: φRn = φFnAb = 0.75FnAb

From Table 24.1 for A490-N bolt, fnv = 60ksi

Ab = total area of ONE bolt = (1)(π)(bolt diameter)2/4 

= 1(3.14159)(0.875)2/4 = 0.601in2

φRn = φFnAb = 0.75(60)(0.601) = 27.06k

# bolts required = 255.94k/27.06k/bolt = 9.46 bolts … use 10 

bolts.

24.1.4 Slip-critical Connections

φ = 1.0 for connections preventing slip at serviceability limit 

state

φ = 0.85 for connections preventing slip at the required 

strength level

Design of slip-critical connection:

1.  Pu = factored loads

2.  Nominal Strength of one bolt: 

Rn = μDuhscTbNs

#bolts required = Pu/φRn

Table 24.2:  Minimum bolt pretension, Tb(k) from Table J3.1 of the AISC 
Steel Construction Manual, reprinted with permission

3. Bearing in bolts. NOTE that the constants from bearing 

connections equations have changed from 1.2 and 2.4 to 

1.5 and 3.0, respectively.

Rn = 1.5LctFu (#bolts) 

or

Rn = 3dtFu (# bolts)

Check that φRn = 0.75Rn > Pu

4. Shear in bolts

Rn = FnAb (#bolts)

Check that φRn = 0.75Rn > Pu

Example 24-4: Determine the number of 1″ A325 slip-

critical bolts in standard size holes needed for the 

serviceability limit; state whether the faying surface is 

Class A. 

The edge distance is 1.75″ and the c.c. spacing of bolts is 

3(in). Fy = 50ksi, Fu = 65ksi, PL = 30k, PD = 50k.

1. Pu = 1.2(50) + 1.6(30) = 108k

2. Nominal strength for slip-critical design for serviceability 

state:

Rn = μDuhscTbNs

μ = 0.35 for Class A faying surfaces (unpainted, mill 

scale or with Class A coatings)

Du = 1.13

hsc = a hole factor = 1.00 for standard size holes

Tb = minimum fastener tension from Table 24.2 = 51 kips

Bolt Diameter (in) A-325 Bolts A-490 Bolts 

0.5" 12 15 

0.625" 19 24 

0.75" 28 35 

0.875" 39 49 

1" 51 64 

1.125" 56 80 

1.25" 71 102 

1.375" 85 121 

1.5" 103 148 
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Ns = number of slip planes = 1

Rn = 0.35(1.13)(1.0)(51)(1) = 20.17 k/bolt

φRn = 1.0(20.17) = 20.17k

#bolts required = 108/20.17 = 5.35 

USE: 6 bolts.

3. Check bearing strength in all bolts:

Lc = 3 − (1 + 1/8) = 1.875″
Or 

Lc = 1.75 − (1 + 1/8)/2 = 1.187″
Rn = 1.5 Lc t Fu (#bolts) = 1.5(1.187)(5/8)(65)(6) 

= 433.98 

Or

Rn = 3dt Fu (# bolts) = 3(1)(5/8)(65)(6) = 731.25

Check that φRn = 0.75Rn = 0.75(433.98) = 325.485 > Pu 

= 108 … okay

4. Check shear strength in all bolts:

Rn = FnAb(#bolts) = 60[(3.14159)(1)2/4](6) = 282.743k

Check that φRn = 0.75Rn = .75(282.743) = 212.057 > Pu 

= 108k

Example 24-5: Find number of bolts needed for slip-

critical connection for the following conditions for the 

connections in Figure 24.2.

A325-N, 3
4  inch bolts, Class A surfaces, PD = 60k, PL = 90k, 

standard hole sizes, Lc = 3, design state, A36 steel

1. Pu = 1.2(60) + 1.6(90) = 216k

2. Nominal strength of one bolt: 

Rn = μDuhscTbNs

μ = 0.35, Du = 1.13, hsc = 1.0, Tb = 28, Ns = 2, φ = 0.85

Rn = 0.35(1.13)(1.0)(28)(2) = 22.148k/bolt

#bolts required = Pu/φRn = 216k/(0.85(22.148k/bolt)) 

= 11.47

USE: 12 bolts minimum (4 rows of 3)

3. Bearing in bolts

Rn = 1.5LctFu (#bolts) = 1.5(3.0)(.75)(58)(12) = 2349k

or

= 3dtFu(#bolts) = 3(3/4)(.75)(58)(12) = 1174.5k

Check that φRn = 0.75Rn = 0.75(1174.5) = 880.88 > Pu 

= 216 … okay

4. Shear in bolts

Rn = FnAb (#bolts) = 60[(3.14159)(3/4)2/4][12] = 318.09k

Check that φRn = 0.75Rn = 0.75(318.09k) = 238.56 > Pu 

= 216k … okay

USE: 12 bolts: 4 rows of 3.

24.2 Eccentric Bolted 
Connections

This text uses the Elastic Method for analyzing eccentric 

bolted connections.

 M = Pe

Where P is the load applied at an offset (eccentricity) of e 

from the center of gravity of the bolt group. The horizontal 

and vertical components of shear forces on each bolt are 

calculated by summing the moments about the center of 

gravity of the bolt grouping.

Example 24-6: For the 1
2
″ plate shown in Figure 25.3, 

check the adequacy of using 1″, A325-X bolts.

24.3

Eccentric bolt group

1. Determine e: because the center of gravity is half the 

distance between the two lines of bolts, e = 4″ + 4″/2 = 6″
2. Determine the horizontal (h) and vertical (v) distances 

from each bolt to the center of gravity:

BOLT h h2 v v2

A1 2 4 4.5 20.25

A2 2 4 1.5 2.25

A3 2 4 1.5 2.25

A4 2 4 4.5 20.25

B1 2 4 4.5 20.25

B2 2 4 1.5 2.25

B3 2 4 1.5 2.25

B4 2 4 4.5 20.25

TOTAL – 32.0 – 90.0
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Σ d2 = Σh2 + Σv2 = 32 + 90 = 122

3. Determine the resultant force on each bolt:

H = horizontal force due to moment on each bolt 

= Mv/ Σd2 

M = 20k(6″) = 120k-in

For bolts in rows 1 and 4: H1 = 120(4.5)/122 = 4.427k

For bolts in rows 2 and 3: H2 = 120(1.5)/122 = 1.475k

V = Mh/Σd2 = 120(2)/122 = 1.967k for all bolts

And vertical force due to load 

= P/#bolts = 20/8 = 2.5k ↓
R = resultant force on bolt = √[H2 + (V + P/#bolts)2] 

BOLT H V P/#bolts V + P/#bolts R

A1 4.43 1.97 −2.5 −0.53 4.46

A2 1.48 1.97 −2.5 −0.53 1.57

A3 −1.48 1.97 −2.5 −0.53 1.57

A4 −4.48 1.97 −2.5 −0.53 4.46

B1 4.43 −1.97 −2.5 −4.47 6.29

B2 1.48 −1.97 −2.5 −4.47 4.70

B3 −1.48 −1.97 −2.5 −4.47 4.70

B4 −4.43 −1.97 −2.5 −4.47 6.29

24.4

Forces on eccentric bolt group

The upper right hand (B1) and lower right hand (B4) bolts have 

the greatest force. Rmax = 6.289k

4. Check that Rmax < the bearing for one bolt: Determine 

bearing strength in one bolt:

Lc = minimum clear distance in 

direction of force = smaller of 

3″ − 1
2

″ = 2.5″ 

or 

3″ − 1
2
(2) = 2″ … Lc = 2″

t = 1
2

″ = thickness of plate, d = 1″ = diameter of bolt 

Rn = 1.2Lc(t)( Fu)(1 bolt) = 69.6

OR 

Rn = 2.4(d)(t)(Fu)(1 bolt) = 69.6

φRn = 0.75 Rn = 0.75(69.6) = 52.2k = design load per bolt 

Highest load on a bolt = 6.29k < 52.2k … okay for 

bearing

5. Check that Rmax < shear strength in one bolt: Determine 

shear strength in one bolt:

From Table 24.1, for A325-X: fnv = 60 

Ab = total area of 1 bolt = (π)(1)2/4 = 0.785

φRn = φFnAb = 0.75(60)(0.785) = 35.343k

Highest load on a bolt = 6.29k < 35.343k … okay

24.3 Welded Connections

While plug and slot welds can be used to transmit shear 

in overlapping components, they are not generally used in 

structural steel design. This text will outline the process for 

designing fillet welds as they are the most commonly used. 

Fillet welds can be used to join components that overlap or 

meet at an angle.

24.5

Fillet weld
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24.6

Weld locations

AISC LRFD Specifications are as follows:

1. Length of weld (L) must be greater than 4 times nominal 

leg size (w) of weld.

2. Max. size of fillet weld = material thickness for material 

≤ 1
4 ″ thick

  = material thickness − 1
16 ″ for material > 1

4 ″ thick

3. Min. size of fillet weld: Material thickness of thicker part 

joined:

 1
8 ″ 1

4 ″

 3
16 ″ 1

4 ″ to 1
2

″

 1
4 ″ 1

2
″ to 3

4 ″

 5
16 ″ over 3

4 ″

4. For longitudinal fillet welds connecting plates or bars, 

length may not be less than the perpendicular distance 

between them. 

5. For lap joints, the minimum overlap permitted = 5 times 

thickness of thinner part joined and not less than 1″.
6. If length L of an end loaded fillet weld is greater than 

100 times its leg size (w), effective length of weld = βL 

= L[1.2 − 0.002(L/w) ≤ L. If the length L is greater than 

300w, then βL = 0.6L.

Design of Longitudinal Fillet Welds: (welds parallel to 

direction of force)

Design strength = φRnβL = φFwAwβL

Example 24-7: Determine design strength of a 20″ long 
1
4
″ fillet weld using E70 electrodes with a minimum tensile 

strength 70ksi. Load is applied parallel to weld length.

 L = 20″. b = 1
4 ″ 

 L/b = 20/.25 = 80 < 100; therefore β = 1

 Nominal strength of weld = Fw = 0.6(70ksi) = 42ksi

 Area of weld = Aw = L[ 0.707b] = 20in [0.707][0.25″] 

= 3.535

24.7

Area of weld

φRnβL = 0.75[42ksi][1][3.535] = 111.35

Design of transverse fillet welds (welds at an angle θ to 

direction of force)

For a transverse weld, Fw = (0.6 Fn)(1.0 + 0.5sin1.5θ)

When the weld is perpendicular to direction of force this 

equation becomes

Fw = (0.6 Fn)(1.5) 

but if the transverse weld is at a 45 degree angle from the 

direction of force, then the Fw would equal 

Fw = (0.6 Fn)(1 + 0.5(0.7071.5)) = (0.6Fn)(1.2973)

When combining longitudinal and transverse welds use the 

LARGER of the two equations below:

Rn = RWL + RWT

or

Rn = 0.85RWL + 1.5RWT

Example 24-8: Find LRFD design strength for the 1
4
″ E70 

weld shown.
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24.8

Weld design example

1. Fw = 0.6(70) = 42ksi

2. Aw = 0.707(0.25)L

3. Longitudinal welds: L = 2 welds @ 8.5″ each = 17″
Aw = 0.707(0.25)(17) = 3.005in2

RWL = 42ksi(3.005in2) = 126.20k

4. Transverse weld: L = 10″
Aw = 0.707(0.25)(10) = 1.768in2

RWT = 42ksi(1.768in2) = 74.26k

5. USE: LARGER OF 

Rn = RWL + RWT = 126.20 + 74.26 = 200.46k

or

Rn = 0.85 RWL + 1.5RWT = 0.85(126.2) + (111.384) 

= 218.65k

6. φRn = 0.75(218.65k) = 163.99k = LRFD design strength

24.4 Standard Bolted 
Connections

Simple shear connections can be designed using the tables in 

Part 10 of the AISC Steel Manual.

Example 24-9: Select the proper double angle for the 

connection in Figure 24.9 (a) if PD = 50k and PL = 70k, 

Fy = 36 and Fu = 58 for angles and Fy = 50 and Fu = 65ksi 

for the beam and column. 

Use 3
4 ″ A325-N bolts.

24.9

Simple bolted connection

1. Ru = 1.2(50) + 1.6(70) = 172k

2. Look through Table 10-1 of the AISC Steel Manual to find 

the least number of rows allowed for a W30 beam. Five 

rows is the least number of rows. The list of W sizes 

available is found in the fourth box from the top on the 

left side, just under the number of rows. Note: this table 

is for 3
4 ″ bolts.

3. Look at A325-N bolts. Maximum load carried is 159k 

< 172k needed, therefore go to the chart for six rows of 

bolts. 

4. A 5/16″ angle will work in shear because the LRFD value 

listed is 187k which is greater than the 172k needed.

5. Calculate length of the angle for holes spaced at 3″o.c. 

and 1.25: from each end as shown in Figure 24.10: 

L = 5(3) + 2(1.25) = 17.5″
6. Size the angle legs: 

on beam web: 2.5″ gage + 1″ minimum distance = 3.5″
On col. flange: .3125 + 1.375 + 1.25 + 1 = 3.9375

Use 4″
Use: LL4 × 3.5 × 5/16 × 17.5″ long with six rows of bolts
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24.10

Simple bolted connection with five rows of bolts from AISC Steel Construction Manual, Table 10-1, reprinted with permission

24.11

Simple bolted connection with six rows of bolts from the AISC Steel Construction Manual, Table 10-1, reprinted with permission.
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Practice Exercises:

24-1: Find the number of A325 bolts required for a bearing 

connection with a load Pu = 300k connecting 2 − A36(Fu 

= 58ksi) plates, each 3
4 ″ thick with 7

8 ″ bolts spaced at 3″ on 

center and 3″ from each edge. The plates are 9″ wide and 

there are two bolts per row. Bolt threads are excluded from 

shear plane.

24-2: Repeat exercise 24-1 for a slip-critical connection, 

assuming standard bolt hole size and class A coatings.

24-3: Find design load for eccentric connection shown, using 
3
4 ″ bolts, 3

4 ″ thick, A36 plate.

24-4: Find design strength for E70xx weld shown.

24.12

Chapter 24 Practice exercises
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twenty f ive

Concrete  B eam Design

14 days – 85–90% f′c

28 days – 100% f′c

5 years – approximately 150% f′c, but the values are 

dependent on curing conditions of temperature and 

humidity, wet or dry surface, and additives to the 

concrete.

Modulus of Elasticity: 

Ec = wc
1.533√f′c where: 

wc = the density of the concrete in pcf

f′c = 28 day compressive strength in psi

NOTE: for normal weight concrete, E = 57000 f′c. 

25.1 The Internal Couple

25.1.1 Modulus of Rupture and 
Cracking Moment

When a beam is stressed in bending due to a downward load, 

the portion of the cross-section above the neutral axis is in 

compression and the area of the cross-section below the 

neutral axis is in tension. Concrete handles compression well, 

but its tensile strength is only 10–15% of the compressive 

strength. Once concrete is stressed in tension beyond the 

modulus of rupture, it will crack.

Basic Concrete Information:

Advantages of concrete as a structural material include fire 

resistance, vibration resistance, flexibility of shape, ease of 

maintenance, and availability of the mixture components. 

Concrete is a suitable material for almost every type of 

structural component including slabs, beams, columns, 

bearing or shear walls and foundations. The disadvantages 

of concrete as a structural material include the need for 

formwork, the need for time to allow the concrete to cure 

before subjection to load and the fact that the strength 

depends on the mix of ingredients.

Concrete density may vary depending on the weight of the 

aggregate. Concrete densities are categorized as:

normal weight concrete: 140 – 150pcf

lightweight concrete: 90 – 112pcf 

heavyweight concrete: > 200pcf. 

The design strength of concrete is specified in terms of 

its compressive strength at 28 days after placement and 

designated as f′c.

low strength:   f′c = 3000psi

moderate strength: f′c = 3000 – 6000psi 

high strength:  f′c > 6000psi

Concrete gains strength over time: 

7 days – 70% f′c
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modulus of rupture = fr = 7.5λ√f′c where:

 λ is a factor based on concrete type.

 λ = 1.0 for normal weight concrete

 λ = 0.85 for sand-lightweight concrete

 λ = 0.75 for all-lightweight concrete.

Given that bending stress fb = MI/c, setting the bending 

stress equal to the modulus of rupture allows the moment at 

the point of rupture to be found.

fr = fb = Mcr(I)/c

Cracking moment = Mcr = fr (I)/c = 7.5λ(√f′c)(I)/c 

Once the moment on a beam reaches the cracking moment 

(Mcr), it will require tension reinforcement.

Example 25-1: At what factored load, P, applied to 

the beam and cross-section in Figure 25.1 will require 

tension reinforcement if the density of the concrete is 

150pcf and f′c = 4,000psi?

25.1

Example 25-1

Wu = 150pcf(8″)(16″)/(144in2/f2) = 133.33#/f

Mu = PL/4 + wL2/8 = P(20′)/4 + 133.33#/f(20′)2/8 

= 5P + 6666.5#-f = 60P + 79998 #-in

I/c = (bh3/12)/(h/2) = bh2/6 = 8(16)2/6 = 341.33in3

fr = 7.5λ√f′c(I)/c = 7.5(1)√4,000 = 474.34psi

Mcr = fr(I)/c = 474.34psi(341.33in3) = 161907.04#-in

Mcr = 161907.04 = 60P + 79998 = Mu … P = 1365.15#

25.1.2 The Internal Couple

Concrete does not behave elastically over its entire cross-section 

when stressed beyond the modulus of rupture (fr) in tension. 

As a result, the external method of measuring bending stress, 

fb = MI/c becomes invalid and an internal look at the stress must 

be used. A look at the rectangular cross-section in Figure 25.2 

with width b and depth h results in a neutral axis located at h/2.

25.2

The internal couple

The stress in the cross-section varies linearly from the ftop 

to fbottom. The area above the neutral axis is in compression 

and the area below the neutral axis is in tension. The applied 

moment on the beam (Mu) equals the internal couple. 

Remember a couple is a moment caused by two equal and 

opposite forces acting at a distance Z apart. In this case, the 

equal and opposite forces are compression, C, and tension, T.

Mu = CZ = TZ = internal couple

For a rectangular cross-section, the center of gravity for 

the compression triangle is 1
3 (h/2) = h/6 from the top and 

the center of gravity for the tension triangle is h/6 from the 

bottom. Therefore, the distance between the two forces, 

Z = h − 2(h/6) = 2h/3

Mu = Mcr = TZ = CZ

T = C = Mu/Z = Mu /(2h/3) = 3 Mu/2h

The stress at the top equals the stress at the bottom = ftop 

= fbot and 

the average stress = f = ftop /2 = fbot/2 = C/A = T/A

where A is the area upon which the force is distributed. For a 

rectangular section, A = bh/2. 

fbot = 2T/A = 4T/bh = 4[3 Mu/2h]/bh = 6 Mu /bh2 

= Mu/[bh2/6]
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This is the same as the answer found by the external method 

fb = Mu/S where S = bh2/6 for a rectangular section. 

Not all cross-sections are rectangular. The generic equation 

for the cracking moment is:

Mcr = ZAfr/2

Example 25-2: Find the cracking moment for the 

T-shaped cross-section shown in Figure 25.3. 

Because the area above the neutral axis, the compression 

area, is not uniform in width, the force and moment arm for 

the web and flange will need to be calculated separately.

25.3

Cracking Moment in T-shape

Find the neutral axis: 

Component A(in2) Y(in) Ay(in3)

Flange 4(20) = 80 20 + 4/3 = 22 1760

Web 5(20) = 100 20/2 = 10 1000

ΣA = 180 ΣAy = 2760

N.A. at Y = 2760/180 = 15.33in

fbot is in tension – note fbot is greater than ftop 

fbot = fr = 7.5(1)√4000 = 474.34psi 

ftop = 474.34psi(8.67/15.33) = 268.1psi

Stress at bottom of flange: fbot of flange 

= 474.34(4.67/15.33) = 144.36psi 

1. T = average tensile stress × area = (fbot/2)(5(15.33)) 

= (474.34/2)(5(15.33))psi

 T = 18183.1# acting at 10.22″ below the neutral axis.

2. C1 = (144.36/2)(5)(4.67) = 1685.4 acting at (2/3)(4.67) 

= 3.11″ above the neutral axis. 

3. C2 = (144.36)(20)(4) = 11548.8 acting at 4.67 + 4/2 

= 6.67″ above the neutral axis.

4. C3 = ((268.1 − 144.36)/2)(20)(4) = 4949.6 acting at 4.67 + 

(2/3)(4) = 7.33″ above the neutral axis.

Z1 = 10.22 + 3.11 = 13.33″

Z2 = 10.22 + 6.67 = 16.89″

Z3 = 10.22 + 7.33 = 17.55″ 

Mcr = Z1C1 + Z2C2 + Z3C3 

= 13.33(1685.4) + 16.89(11548.8 ) + 17.77(4949.6 ) 

= 305,480#-in

= 25,456.67#-ft.

25.2 Reinforced Concrete 
Beams

Concrete beams are reinforced with steel rebar to carry the 

tension load. This allows the concrete in the beam to carry a 

load in compression equal to the load that the steel carries in 

tension. Rebar is designated by bar number. In bar numbers 3 

through 8, the number corresponds to the diameter of the bar 

(db) in eighths of an inch. For bar diameters of bar numbers 9 

through 16, refer to Table A4.1. This table lists bar diameters 

and bar areas for bar sizes 3 through 11.

25.2.1 Assumptions for Reinforced 
Concrete Design:

1. The strain remains linear throughout the cross-section of 

the beam.

2. If fc ≤ f′c/2, stress and strain are proportional … 

εc/εs = fc/fs.

3. Ignore concrete in tension; assume the reinforcing steel 

handles all tension in the beam.

4. If fs < fy, fs = Esεs.

5. εc ≤ 0.003in/in.

6. There is no slip between the concrete and the steel.

Nomenclature for concrete beam cross-sections:

d = effective depth = the distance from the top of the 

beam to the center of gravity of the reinforcing steel.
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dt = the depth from the top of the beam to the center 

line of the bottom-most row of steel.

25.4

Typical concrete beam cross-section

Notice that d = dt when there is only one row of steel.

The standard minimum cover for beams, meaning the 

clear distance from the outermost steel to the edge of 

the beam, is 1.5″. See American Concrete Institute (ACI) 

standards for beams on grade or beams exposed to exterior 

or adverse conditions. Most beams have a stirrup that 

reinforces against shear. This can be assumed to be a #3 

rebar with a diameter of 3
8

″.

d = h − cover − stirrup diameter − half the diameter of 

rebar (db/2). 

In most cases, 

d = h − 1.5″ − 0.375″ − db/2

25.2.2 The Equivalent Stress Block

25.5

Equivalent stress block

When stresses are low in a reinforced concrete beam, the 

line of stress for compression remains linear, ranging from 

0 at the neutral axis to fc at the top. But the addition of 

reinforcement allows the beam to carry higher stresses. As 

a result, the area in compression, the stress block, takes 

on a curved shape. Because the area and center of gravity 

of the stress block is difficult to calculate when curved, an 

equivalent stress block is used with a unit stress of 0.85f′c 
and a depth, 

a = β1c where:

β1 = 0.85 for 2500psi ≤ f′c ≤ 4000psi

β1 = 0.85 − 0.05(f′c − 4000)/1000 ≥ 0.65 for 

f′c > 4000psi

c = distance from the top of the beam to the Neutral 

Axis.

Since stress = force/area, force = stress(area). If b = width of 

cross-section:

C = 0.85f′cab acting at a distance a/2 from the top of 

the beam

T = fyAs acting at a distance d from the top of the 

beam, where

fy = yield stress of reinforcement

As = cross-sectional area of reinforcement.

The internal couple or internal moment 

Mn = TZ = fyAs(d − a/2)

Summing forces horizontally yields C = T or 

(0.85f′c)ab = fyAs … a = fyAs/(0.85f′cb)

Mn = practical nominal moment = fyAs(d − (.5fyAs/

(0.85f′cb))

Strain in concrete and steel:

When the maximum steel strain is less than 0.002 (εy = .002 

for grade 60 steel), the beam will fail in compression. Failure 

due to compression of concrete is sudden and without 

warning. Therefore, we want εt ≥ 0.002 when concrete 

reaches εc = .003. 

When the maximum steel strain is greater than 

0.004 (εy < εt for all grades of steel rebar), the beam will fail 

ductility. Failure due to tension in steel is gradual and with 

warning. This is the desired failure mode. Therefore, εt must 

be greater than or equal to 0.004. Because the strain is linear, 

and because the maximum allowable strain in concrete is 

0.003, using equivalent triangles gives:
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25.6

Strain in a concrete beam

εt/(d − c) = .003/c … εt = .003(d − c)/c

Mu = design moment = φMn where φ is the LRFD Resistance 

Factor per ACI Code, section 9.3. φ is a strength-reduction 

factor that takes into account workmanship, dimensional 

variations on site and material variations.

φ = 0.90 for tension-controlled sections

φ = 0.90 in beams, if the steel strain εt ≥ 0.005 

φ = 0.65 + (εt − 0.002)(250/3) if .004 ≤ εt < 0.005

φ = 0.75 in compression-controlled sections that are 

spirally reinforced

φ = 0.65 for other reinforcement in compression-

controlled sections 

φ = 0.75 for shear and torsion

φ = 0.65 for bearing on concrete 

Minimum reinforcement steel:

As min = bd(3√f′c)/ fy ≥ 200bd/fy

To check the adequacy of a beam:

1. Determine b, d, As, f′c, fy, and Mu

2. a = fyAs/(0.85f′cb)

3. Mn = fyAs(d − a/2)

4. Check As ≥ As min = bd(3√f′c)/fy ≥ 200bd/fy

5. Find εt = .003(d − c)/c using c = a/β1

6. Check εt ≥ 0.004

7. Determine φ where φ = 0.90 if εt ≥ 0.005 and 

φ = 0.65 + (εt − 0.002)(250/3) if 0.004 ≤ εt < 0.005. 

8. If Mu ≤ φMn, beam is adequate.

Example 25-3: Determine the adequacy of a 24′ beam 

with a cross-section 16″ wide by 24″ deep, reinforcement 

of four #8 rebars, an effective depth, d = 21″, carrying 

a 1k/f uniform live load and a .5k/f uniform dead load 

exclusive of beam weight. f′c = 4ksi, fy = 60ksi.

1. b = 16″, d = 21″, As = 3.142, f′c = 4,000psi, fy = 60,000psi 

Wu = 1.2(500#/f + 150pcf(16/12)(24/12)) + 1.6(1,000#/f) 

= 2680#/f

Mu = wL2/8 = 2680#/f(24′)2/8 = 192,960#-f 

= 2,315,520#-in

2. a = fyAs/(0.85f′cb) = 60,000psi(3.142in2)/[.85(4,000psi)

(16″)] = 3.465″
3. Mn = fyAs(d − a/2) = 60,000(3.142)(21 − 3.465/2) 

= 3,632,309.1#-in

4. Check As ≥ As min = bd(3√f′c)/fy ≥ 200bd/fy. 

As min = 16(21)(3)(√4,000)/60,000 

= 1.063 ≥ 200(16)(21)/60,000 = 1.12 

As min = 1.12 < As = 3.142in2 … okay

5. c = a/β1 = 3.465/.85 = 4.076″, εt = .003(d − c)/c 

= .003(21 − 4.076)/4.076 = 0.012 

6. εt = 0.012 ≥ 0.004 … okay

7. εt = 0012 > 0.005 … φ = 0.90

8. φMn = 0.9(3,632,309.1) = 3,269,078#-in > Mu 

= 2,315,529 #-in … beam is adequate.

In designing beam reinforcement for a beam of a given size, 

the goal is to find the required area of steel, As. Setting the 

applied moment equal to φMn:

Mu = φMn = φ[fyAs(d − a/2)] 

where a = fyAs/(.85f′cb)

Mu = φ[fyAs(d − fyAs/(1.7f′cb))]

[Mu/φfy][1.7f′cb/fy] = As[d(1.7f′cb/fy) − As]

As
2 − As[1.7f′cbd/fy] + [Mu /φfy][1.7f′cb/fy] = 0

As = 1.7f′cbd/2fy − (1/2)√[1 − 4Mu(1.7f′cb/φfy
2]

As = 0.85f′cbd/fy [1 − √[1 − 2Mu /φ(.85f′cbd2)] 

To design reinforcement in a rectangular beam of a given size:

 1. Determine f′c, fy, b and h.
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 2. Calculate Mu including beam weight.

 3. Estimate d = h − 3

 4. Assume φ = 0.9

 5.  As = [.85f′cbd/fy][1 − √[1 − 2Mu/φ.85f′cbd2] 

 6. Check that As ≥ As min = bd(3√f′c)/fy ≥ 200bd/fy. If not, use 

As min.

 7. Select bars from A4.2. Note actual As. Calculate the 

actual value of d. Check the required width for the 

number and size of bars chosen from A4.2.

 8. a = fyAs/(.85f′cb) c = a/β1

 9. Check εt = .003(d − c)/c > 0.004.

10. Check φ = 0.9 assumption. If εt < 0.005, recalculate φ and 

that check φMn ≥ Mu.

φ = 0.65 + (εt − 0.002)(250/3) if 0.004 ≤ εt < 0.005.

11. Using actual φ, d and As, check that Mu ≤ φ[fyAs(d − fyAs/

(1.7f′cb))], if not, go back to step 5. Using new value for φ.

Example 25-4: Design reinforcement for a 12″ by 20″ 

concrete beam with a simple span of 20′, a dead load of 

600#/f and a live load of 1200#/f using f′c = 3,000psi and 

fy = 40,000psi.

 1. f′c = 3,000psi, fy = 40,000psi, b = 12″, h = 20″
 2. Wu = 1.2(600 + 150(12/12)(20/12)) + 1.6(1200#/f) = 2940#/f

Mu = 2940(20′)2/8 = 147,000#-f = 1,764,000#-in

 3. Estimate d = h − 3 = 20 − 3 = 17″
 4. Assume φ = 0.9

 5. R = .85f′cbd = .85(3000)(12)(17) = 520,200

As = [R/fy][1 − √[1 − 2 Mu/φRd] = [520,200/40,000][1 − 

√[1 − 2(1,764,000)/(.9(520,200)(17)] = 3.30in2

 6. As min = bd(3√f′c)/fy = 12(17)(3)(√3000)/40,000 = 0.838 ≥ 

200bd/fy = 200(12)(17)/40,000 = 1.02 

As min = 1.02in2 < 3.30in2 = As … okay

 7. Use three #10: As = 3.8 > 3.30in2, breq = 9.75″ < 12″ 

… okay 

dactual = 20 − 1.5 − .375 − 1.27/2 = 17.79″

 8. a = fyAs/(.85f′cb) = 40,000(3.8)/[.85(3000)(12)] = 4.97″ 

c = a/β1 = 4.97″/0.85 = 5.84″

 9. Check εt = .003(d − c)/c = .003(17.49 − .84)/5.84 = .006 

> 0.004 … okay

10. εt = .006 > 0.005 … φ = 0.9

11. Mu = 1,764,000# − in ≤ φ[fyAs(d − a/2))] = .9[40,000(3.8)

(17.49 − 4.97/2)] = 2,052,684#-in … okay

ANSWER: 12″ × 20″ beam with three #10

To design a beam with a given width, the goal is to find the 

most efficient depth, d and the area of reinforcing steel, As. 

Because these two variables are related, an assumption must 

be made. Assume a = 0.2d. The depth of the equivalent 

stress block is assumed to be about 20% of the effective 

depth of the beam. This puts the bottom of the equivalent 

stress block well above the neutral axis and yields a value 

for d where the ratio of b/d will most likely fit into the 

recommend range of 1.5 ≤ b/d ≤ 2.2.

Asfy = T = C = 0.85f′cab … As = 0.85f′cab/fy

Mu = φMn = φfyAs(d − a/2) … (d − a/2) = Mu/[φfyAs] and

d = Mu/[φfyAs] + a/2. Substituting As = 0.85f′cab/fy 

yields:

d = Mu/[φ0.85f′cab] + a/2

Inserting the assumption that a = 0.2d yields:

d = Mu/[φ0.85f′c(.2d)b] + (.2d)/2

0.9d = Mu/[φ0.85f′c(.2d)b]

d = √{Mu/[.153φf′cb]}

To design a rectangular beam of a given width, but unknown 

depth:

 1. Determine f′c, fy, and b.

 2. Calculate Mu excluding beam weight.

 3. Assume φ = 0.9

 4. d = √Mu/[.153φf′cb]

 5. Check proportions of d/b. 1.5 < d/b < 2.2 if not, change b 

and recalculate d in step 4.

 6. Estimate h = d + 2.5 and round up to next whole inch.

 7. Determine factored beam weight.

 8. Calculate Actual Mu

 9. As = [R/fy][1 − √[1 − 2Mu/φRd] where R = .85f′cbd.

10. Check that As ≥ As min = bd(3√f′c)/fy ≥ 200bd/fy. If not, use 

As min.

11. Select bars from Table A4.2. Note actual As. Calculate 

the actual value of d. Check the required width for the 

number and size of bars chosen from A4.2.
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12. a = fyAs/(.85f′cb) and c = a/β1

13. Calculate dactual = h − cover − stirrup diameter − db/2

12. Check εt = .003(d − c)/c > 0.004.

14. Check φ = 0.9 assumption. If εt < 0.005, recalculate φ and 

check φMn ≥ Mu.

φ = 0.65 + (εt − 0.002)(250/3) if 0.004 ≤ εt < 0.005

15. Using actual φ, d and As, check that Mu ≤ φ[fyAs(d − fyAs/

(1.7f′cb))], if not, go back to step 3 using new value for φ.

Example 25-5: Design a simple beam, 10″ wide, with a 

span of 3′t to carry a live load of 1k/f. f′c = 4,000psi and 

fy = 60,000psi.

 1. f′c = 4,000psi, fy = 60,000psi, b = 10″
 2. Mu = 1.6(1000#/f)(30′)2/8 = 180,000#-f = 2,160,000#-in

 3. Assume φ = 0.9

 4. d = √Mu/[.153φf′cb] = √[2,160,000/(.153(0.9)(4000)(10))] 

= 19.80″
 5. d/b = 19.80″/10″ = 1.98″ and 1.5 < 1.98 < 2.2 … b is okay

 6. Estimate h = d + 2.5 = 19.8″ + 2.5″ = 22.3″. Round up to 

23″.
 7. Wbm = 150pcf(10″/12)(23″/12) = 239.58#/f

Wu = 1.2(239.58#/f) + 1.6(1000#/f) = 1887.5#/f

 8. Mu = wL2/8 = 1887.5#/f (30′)2/8 = 212,343.75#-f 

= 2,548,125#-in

 9. R = .85f′cbd = .85(4000)(10)(19.8) = 673,200

As = [R/fy][1 − √[1 − 2Mu/φRd] = [673,200/60,000][1 − 

√(2(2,548,125)/(0.9(673,200)(19.8))] = 2.71in2

10. Check that As ≥ As min = bd(3√f′c)/fy = 10(19.8)

(3√4000)/60,000 = 0.626 ≥ 200bd/fy = 200(10)

(19.8)/60,000 = 0.66 

As min = 0.66. As > As min … okay 

11. Use three #9: As = 2.998, breq = 9.25 < 10 = b.

12. a = fyAs/(.85f′cb) = 60000(2.998)/[.85(4000)(10)] = 5.29″ 

 c = a/β1 = 5.29/0.85 = 6.22″

13. Calculate dactual = h − cover − stirrup diameter − db/2 

= 23 − 1.5 − 0.375 − 1.128/2 = 20.56″
14. Check εt = .003(d − c)/c = .003(20.56 − 6.22)/6.22 

= .0069 > 0.004 … okay

15. φ = 0.9 assumption is correct because .0069 > 0.005

16. φ[fyAs(d − a/2] = .9[60000(2.998)(20.56′ − 6.22/2)] 

= 2,825,0154#-in allowable moment > 2,548,125#-in 

actual moment … beam is okay

USE: 10″ × 23″ beam with three #9.

Practice Exercises:

25-1: Determine whether a concrete 14″ by 30″ beam with a 

simple span of 20′ will need reinforcing to carry a 500#/f dead 

load and a 900#/f live load if f′c = 3,000psi.

25-2: An unreinforced concrete beam has a rectangular cross-

section 12″ wide by 20″ deep. If it is made using concrete 

with f′c = 4000psi, at what length will it fail under its own 

weight?

25-3: Design for flexure: a 14″ wide, 24″ deep concrete beam 

with a simple span of 24′ and a uniform live load of 960#/f.

25-4: Design for flexure: a 16″ wide by 30″ deep concrete 

beam with a simple span of 32′ to carry two point loads, each 

3000# dead load, evenly spaced.

25-5: Design for flexure: a 12″ wide beam with a simple span 

of 26′ to carry PD = 1000# and PL = 2000# at the center of 

the span.

25-6: Design the lightest beam (ignore weight of 

reinforcement steel) with a maximum width of 16″ to carry 

1500#/f uniform dead load and a 2000#/f uniform live load over 

a span of 16′.
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Concrete  S lab Design

wc = weight of concrete in pcf.

Steel area per foot:

26.2

Steel area per foot

As can be seen in Figure 26.2, the choice of where to cut a 

12″ section would determine whether one or two bars are 

in the section. When designing or analyzing a slab, do not 

consider the steel in an exact 12″ section, but rather the 

average steel in any 12″ section. 

As = area of steel per foot of slab and when steel is 

selected it is designated by the size of the bar and the 

spacing. For example, knowing the bar size and spacing, the 

area of steel can be found:

#5 @ 7″o.c. 

As = (area of one bar)(12/spacing) = 0.307in2(12″/f)/7″ 

= 0.53in2/f

Knowing an area of steel required, As, and a desired bar size 

area, the spacing can be determined:

As = 0.42, #4 bars (area = .196)

S = (area of one bar)(12/ As) = 0.196in2(12″/f)/0.42in2/f 

= 5.6

26.1 One-way Slabs

When analyzing or designing a slab, think of a one-foot 

section that is treated like a beam where h = the depth of the 

slab and b = 12″.

26.1

One-way slab

Minimum slab thickness: 

ACI Table 9.5a defines the minimum allowable thickness of 

a slab for which deflections are not checked. For a simply 

supported one-way slab, using normal weight concrete and fy 

= 60,000 psi steel, the minimum slab thickness:

h = L/20 where L = slab span in inches. 

If another steel strength is used, the found values for h 

are multiplied by (0.4 + 60,000/fy). 

If lightweight concrete is used, where 90 ≤ wc ≤ 

120pcf, the values are multiplied by (1.65 − .005wc) 

but never by more than 1.09. 
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Minimum steel in slabs:

As min = 0.002bh for fy = 40,000 or 50,000psi

As min = 0.0018bh for 60,000psi

Note that the full cross-section, bh is used in these equations, 

not the effective area, bd, as used to find minimum steel area 

in beams.

Example 26-1: Slab analysis.

Find service live load in psf for a 10″ deep, one-way slab with 

a 16′ span, 3
4 ″ cover, with f′c = 4000psi and fy = 60,000psi 

and longitudinal steel = #5 @ 6″o.c.

1. As = (.307in2)(12″/f)/6″ = 0.61in2/f

d = 10 − .75 − .625/2 = 8.94″, b = 12″

2. a = fyAs/(0.85f′cb) = 60,000psi(0.61in2/f)/[.85(4000psi)

(12″/f)] = 0.897″
3. Mn = fyAs(d − a/2) = 60,000psi(0.61in2/f)(8.94 − 0.897/2) 

= 310788.9#-in

4. Check As ≥ As min = .0018bh = .0018(12″/f)(10″) 

= 0.216in2/f < 0.61in2/f … okay

5. c = a/β1 = 0.897/.85 = 1.06

 εt = .003(d − c)/c = .003(10 − 1.06)/1.06 = 0.0253 

6. 0.0253 ≥ 0.004 

7. φ = 0.90 because 0.253 > 0.005

8. Mu = φMn = 0.9(310788.9#-in) = 279710#-in 

= 23309.17#-f

Mu 23309.17#-f = w(16′)2/8 … wu = 23309.17(8)/162 

= 728#/f

One foot section of slab weight = wbm 

= 150pcf(10″/12″/f)(1′) = 125#/f

wu = 1.2(125#/f) + 1.6(LL) = 728#/f … LL 

= 361.35#/f per foot of slab = 361.35psf

Example 26-2: Determine adequate steel reinforcement 

for an 8″ deep slab with a 1″ cover having a span of 12′ 

and a live load of 250psf if f′c = 4000psi and fy = 40,000psi. 

1. W = 1.6(250) + 1.2(150)(8/12)(12/12) = 520psf

2. Mu = 520k/ft(12)2/8 = 9360 #-ft = 112,320 #-in

3. Assume #5 reinforcement … d = 8 − 1 − .625/2 = 6.69 

4. Assume φ = 0.9

5. As = (0.85f′cbd/fy) [1 − √[1 − 2Mu/φ(.85f′cbd2)]

 = [.85(4000)(12)(6.69)/40000][1 − √[1 − 2(112,320)/(.9(.85)

(4000)(12)(6.692)] = 0.483in2/f

6. As min = .002bh = .002(12)(8) = .192 < 0.483 … okay

7. #5 longitudinal steel spacing: s = 0.307(12/0.483) = 7.63″ 

round down to 7.5″
8. #5 temperature steel: s = .307(12/.192) = 19.19 > 18″ max 

… use 18″.
One-way slab design without calculating deflection:

 1. Calculate hmin based on ACI Table 9.5a; round up to next 

1/4″ for h< 6″ or up to next 1
2

″ for h>6″.
 2. Find Mu.

 3. Assume d = h − 1.12 (#6 bars & 3/4″ cover)

 4. Assume φ = 0.9 

 5. As = 0.85f′cbd/fy [1 − √[1 − 2 Mu/φ(.85f′cbd2)] 

 6. a = fyAs/(.85f′cb), c = a/β1, εt = .003(d − c)/c 

 If εt ≥ 0.005, φ = 0.9; if 0.005 > εt ≥ 0.004, φ = 0.65 + (εt − 

0.002)(250/3); if εt ≤ 0.004, make the slab thinner.

 7. As min = .002bh for fy = 40 or 50

As min = .0018bh for fy = 60

 8. Longitudinal steel spacing: s = (bar area)(12/ As) , round 

down to next .5″
 9. Temperature steel: s = (bar area)(12/ As min), round down 

to next .5″
10. Check maximum spacing of 5h or 18″. 

Example 26-3: Design a slab to span 12′ and carry a live 

load of 225psf.

f′c = 4ksi, fy = 40ksi use # 6 rebars 

 1. hmin = L/20(.4 + 40/100) = 12(12)(.8)/20 = 5.76″ round up 

to 6″
 2. wu = 1.2(150)(6/12)(12/12) + 1.6(225) = 450#/f

Mu = 450(12)2/8 = 8100#-f = 97,200 #-in

 3. d = 6 − 1.12 = 4.88″
 4. Assume φ = 0.9 

 5. As = (0.85f′cbd/fy)[1 − √[1 − 2 Mu/φ(.85f′cbd2)] = [.85(4000)

(12)(4.88)/40000][1 − √[1 − 2(97,200)/(.9(.85)(4000)(12)

(4.88)2)] = 0.588

 6. a = fyAs/(.85f′cb) = 40,000(.588)/[.85(4000)(12)] = 0.576″
c = .576/.85 = 0.677

εt = .003(d − c)/c = .003(4.88 − .677)/.677 = .0186 > 

.005 … φ = 0.9 



C O N C R E T E  D E S I G N228

 7. As min = .002bh = .002(12)(6) = 0.144

 8. Longitudinal steel spacing: s = (.442)(12/.588) = 9.02″ 

round down to 9″
 9. Temperature steel: s = (.442)(12/.144) = 36.83 

10. Check maximum spacing of 5h or 18″. 
5(6) = 30″ > 18″ … max. spacing = 18″

Answer:

Temperature steel: #6 @ 18″ 

Longitudinal steel: #6 @ 9″

Slab thickness = 6″

Design a slab for minimum h, where deflection will be 

checked:

 1. Determine f′c, fy

 2. Assume h = 6″ for weight, calculate wu, Mu

 3. Assume φ = 0.9

 4. d = √[Mu/.153φf′cb] = √[88,560/(.153(.9)(4000)(12))]

 5. Estimate h = d + 1.12 and round up to next 1/4″ if h < 6, 

next 1/2″ if h > 6″.
 6. Calculate actual wu and Mu using slab thickness

 7. As = [.85f′cbd/fy][1 − √[1 − 2Mu/φ.85f′cbd2] 

 8. a = fyAs/(.85f′cb), c = a/β1, εt = .003(d − c)/c 

 If εt ≥ 0.005, φ = 0.9; if 0.005 > εt ≥ 0.004, φ = 0.65 + (εt − 

0.002)(250/3); if εt ≤ 0.004, make the slab thinner. 

If φ ≠ 0.9, recalculate As with the new value of φ.

 9. As min = .0018bh for fy = 40,000 or 50,000psi, 

 As min = .002bh for fy = 60,000psi

10. Longitudinal steel spacing: s = (bar area)(12/As) 

11. Temperature steel: s = (bar area)(12/As min) 

12. Check maximum spacing of 5h or 18″.

Example 26-4.

Design a one-way slab for L = 12′, f′c = 4ksi, fy = 60ksi, live 

load = 200psf:

 1. f′c = 4000psi, fy = 60,000psi, b = 12″
 2. assume h = 6″ for weight

wu = 1.6(200) + 1.2(150)(6/12) = 410#/f

Mu = 410(12)2/8 = 7380#-f = 88,560#-in

 3. Assume φ = 0.9

 4. d = √[Mu/(.153φf′cb)] = √[88,560/(.153(.9)(4000)(12))] 

= 3.66″

 5. Estimate h = d + 1.12 = 3.66 + 1.12 4.78″ round up to 5″
 6. wu = 1.6(200) + 1.2(150)(5/12) = 395#/f

 Mu = 395(12)2(12)/8 = 85,320#-in

 7. As = [.85f′cbd/fy][1 − √[1 − 2 Mu/φ.85f′cbd2] = [.85(4000)

(12)(3.66)/60,000][1 − √[1 − 2(85,320)/(.9(.85)(4000)(12)

(3.66)2] = 0.478

 8. a = fyAs/(.85f′cb) = 60,000(.478)/(.85(4000)(12)) = 0.703,

 c = 0.703/.85 = 0.827, εt = .003(3.66 − 0.827)/0.827 

= 0.010 > .005 … φ = 0.9

 9. As min = .0018bh = .0018(12)(5) = 0.108

10. Longitudinal steel spacing: (#5) s = (.307)(12/.478) = 7.7″ 

round down to 7.5″
11. Temperature steel using #5rebar: s = (.307)(12/.108) 

= 34.11″
12. Check maximum spacing of 5h or 18″.

s = 5(5) = 25″ > 18″ … max. spacing = 18″

Answer:

Temperature steel: #5 @ 18″

Longitudinal steel: #5 @ 7.5″

Slab thickness = 5″

26.2 Continuous Slabs

Limitations:

There must be two or more spans not varying by more 

than 20% in length

Slab must have uniformly distributed loads

Ratio of LL to DL ≤ 3

Members must be prismatic (orthorhombic).

Minimum thickness: ACI Table 9.5a dictates minimum slab 

thickness for continuous slabs not checked for deflection as 

follows:

Both ends continuous: h ≥ L/28 

One end Continuous: h ≥ L/24

Cantilever: h ≥ L/10

Design of continuous one-way slab:

 1. Determine minimum slab thickness 
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 2. Determine slab weight and total factored load wu = 1.2DL 

+ 1.6LL

 3. Calculate the value of wL2 

 4. Calculate Mu for each location:

 5. Calculate As = [.85f′cbd/fy][1 − √[1 − 2Mu/φ.85f′cbd2] for 

each location.

 6. Calculate a, c, εt each case. Note: start with the smallest 

value of Mu and work up. Once the strain is above 0.005 

for a particular case, all other cases with a higher value 

of Mu will have higher strain and εt will not need to be 

calculated.

 If εt ≥ 0.005, φ = 0.9; if 0.005 > εt ≥ 0.004, φ = 0.65 + (εt − 

0.002)(250/3); if εt ≤ 0.004, make the slab thinner. 

If φ ≠ 0.9, recalculate As with new φ.

 7. As min = .002bh 

 8. Longitudinal steel spacing: s = (bar area)(12/As) 

 9. Temperature steel: s = (bar area)(12/As min) 

10. Check maximum spacing of 5h or 18″.
11. Check φVn = φ2√(f′cbd) ≥ Vu = 1.15wL/2. If not, increase h 

and go back to step 1.

26.3

Moment conditions in continuous slabs

It is helpful in designing continuous slabs to create a table 

(Table 26.1).

Table 26.1:  Continuous slab design template

Example 26-5: Design a continuous one-way slab for the 

plan shown in Figure 26.4.

LL = 80psf, f′c = 4ksi, fy = 60ksi. Use #3 bars

26.4

Example 26-5

 1. Determine minimum slab thickness: 10′(12)/24 = 5″, 
d = 5 − 1.12 = 3.88″

 2. wu = 1.2(150pcf)(5″/12)(12″/12) + 1.6(80psf)(1′) = 203#/f 

 3. wL2(12″/f) = 203(102)(12) = 243,600#-in

 4. Calculate Mu for each location: see Table 26.1.

 5. Calculate As = [.85f′cbd/fy][1 − √[1 − 2Mu/φ.85f′cbd2] 

= 2.638[1 − √(1 − Mu/276398.8)]

 6. Calculate a, c, εt for each case.

 7. As min = .0018bh = .0018(12)(5) = .108

 8. Longitudinal steel spacing: s = (.307)(12/As) 

 9. Temperature steel : s = (.11)(12/.108) = 12.22 round down 

to 12″
10. Check maximum spacing of 5h or 18″. 

5h = 5(6) = 30″ > 18″ … max. spacing = 18″

11. Check φVn = φ2√(f′cbd) > Vu = 1.15wL/2. If not, increase 

h and go back to step 1. φVn = (.75)2√4000(12)(3.88) 

= 4,420# > 1.15(203)(10)/2 = 1,167# … okay

Example 26-6: Design a continuous one-way slab with 

20′ spans as shown in Figure 26.5. Live load = 80psf, 

f′c = 4ksi, fy = 60ksi, use #5 steel.

26.5

Example 26-6Location Mu eqtn Mu As a c a As min SLang. STemp. -t 

A WL2/24 

B,D WL2/11 

C wL<!/10 

E,F WL2/16 

G wL"/9 

H wL<!/2 
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Location Mu 
eqtn

Mu As a c εt As 
min

sLong. sTemp.

A wL2/24 10150 0.049
.108

.072 .085 .135 .108 12 12

B, D wL2/11 22145 0.108 .159 .187 .059 .108 12 12

C wL2/10 24360 0.119 .175 .206 .054 .108 11 12

E, F wL2/16 15225 0.074
.108

.108 .129 .088 .108 12 12

G wL2/9 n/a

H wL2/2 n/a

 1. Determine minimum slab thickness: 20′(12)/24 = 10″, 
d = 10 − 1.12 = 8.88″

 2. wu = 1.2(150pcf)(10″/12)(12″/12) + 1.6(80psf)(1′) 
= 278#/f

 3. wL2(12″/f) = 278(202)(12) = 1,334,400#-in

 4. Calculate Mu for each location:

 5. Calculate As = [.85f′cbd/fy][1 − √[1 − 2Mu/φ.85f′cbd2] 

= 6.038[1 − √(1 − Mu/1,447,776.8)]

 6. Calculate a, c, εt each case.

 7. As min = .0018bh = .0018(12)(10) = .216

 8. Longitudinal steel spacing: s = (.307)(12/As)

 9. Temperature steel: s = (.307)(12/.216) = 17.06 round 

down to 17″
10. Check maximum spacing of 5h or 18″.

5h = 5(10) = 50″ > 18″ … max. spacing = 18″
11. Check φVn = φ2√(f′cbd) > Vu = 1.15wL/2. If not, increase 

h and go back to step 1. φVn = (.75)2√4000(12)(8.88) 

= 10,109.2# > 1.15(278)(20)/2 = 3,197# … okay

Location Mu eqtn Mu As a c εt As min sLong. sTemp.

A wL2/24 55600 0.117
.216

.172 .203 .129 .216 17 17

B, D wL2/11 121309 0.258 .380 .447 .057 .216 14 17

C wL2/10 133440 0.285 .419 .493 .051 .216 12.5 17

E, F wL2/16 83400 0.176
.216

.260 .305 .084 .216 17 17

G wL2/9 n/a

H wL2/2 n/a

Practice Exercises:

26-1: Find the allowable service live load in psf for an 8″ deep, 

one-way slab with a 12ft span, 3/4″ cover, with f′c = 4000psi 

and fy = 60,000psi and longitudinal steel = #5 @ 9″o.c.

26-2: Design a slab to span 14ft and carry a live load 

= 120psf where deflection is not checked. f′c = 3,000psi, 

fy = 40,000psi, use # 5 rebars.

26-3: Design a slab to span 15ft and carry a live load 

= 90psf where deflection is not checked. f′c = 4,000psi, 

fy = 60,000psi{, use # 5 rebars.

26-4: Design a slab with minimum thickness to span 14ft 

and carry a LL = 120psf where deflection will be checked. 

f′c = 3,000psi, fy = 40,000psi, use # 5 rebars.

26-5: Design a slab with minimum thickness to span 15ft 

and carry a LL = 90psf where deflection will be checked. 

f′c = 4,000psi, fy = 60,000psi, use # 5 rebars.

26-6: Design a continuous slab for the plan shown in 

Figure 26.6 if the floor carries a LL of 90psf and a dead load 

of 15psf. f′c = 4,000psi, fy = 60,000psi use # 5 rebars.

26-7: Design a continuous slab for the plan shown in 

Figure 26.6 if the floor carries a LL of 90psf and a dead load 

of 15psf. f′c = 4,000psi, fy = 60,000psi use # 5 rebars.
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26.6

Exercise 26-6



twenty seven

Doubly  Reinforced B eams and 
T-beams

27.1.1 Condition 1

In order to ensure both the top and bottom steel yield before 

the concrete, εt must not go below .005. 

As = area of tensile and compressive steel at bottom 

(depth = d)

As′ = area of compressive steel at top (depth of d′)

For condition 1, when εc = .003, εs = .005 

NT1 = As1fy where As1 is the portion of the bottom steel that 

allows the concrete to reach its full compressive strain of 

0.003. 

The internal couple produced is the same as in singly 

reinforced beams: 

φMn1 = NT1Z1 = (As1fy)(d − a/2)

NT1 = NC1 … As1fy = βf′cab … a = As1fy/βf′cb

β = .85 for f′c ≤ 4ksi.

In analysis, the top steel area As′, is known and it is assumed 

that the steel yields. Therefore, fs′ = fy.

NC2 = NT2 = As′fy = AS2fy …. As′ = AS2

As = AS1 + AS2. Therefore, AS1 = As − As′

A = AS1fy/.85f′cb and c = a/.85 

Once c is calculated, the strain can be determined and the 

beam can be verified to be in condition 1 or 2. If εs′ ≥ εy 

then the beam is in Condition 1; all the steel yields and the 

27.1 Doubly Reinforced 
Beams

If the practical nominal moment in a concrete beam needs 

to be increased and the beam size cannot be increased, ACI 

code, section 10.3.5.1 allows for additional steel to be added 

in tension provided it is also added in compression. Two 

conditions can exist when top steel is added to a beam.

Condition 1: Both the tensile and compressive steels 

yield before the concrete strain reaches 0.003.

Condition 2: The tensile steel yields but the 

compressive steel does not yield before the concrete 

strain reaches 0.003. 

27.1

Doubly reinforced concrete beams
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assumption is correct. εy = fy /E for fy = 60ksi, εy = 60/29,000 

= 0.00207. 

Example 27-1: Find ϕMn for the beam shown in 

Figure 27.2. f′c = 4ksi, fy = 60ksi. 

27.2

Example 27-1

As = 8in2 As′ = As2 = 2.0in2

As1 = As − As2 = 8 − 2 = 6in2

Assume condition 1: fs = fs′ = fy

a = As1fy/βf′cb = 6(60)/[.85(4)(12)] = 8.82″ c = 8.82/.85 

= 10.38″

d = 25 − 2.5/2 = 23.75″, dt = 25 

Using similar triangles:

εs′ = .003(10.38 − 2.5)/10.38 = .00228 > .00207

εt = .003(25 − 10.38)/10.38 = .00423 > .00207 … 

Condition 1

φ = 0.65 + (.00423 − .002)(250/3) = 0.836

Mn1 = As1fy(d − a/2) = 6(60)(23.75 − 8.82/2) 

= 6962.4k-in = 580.2k-f

Mn2 = As′fy(d − d′) = 2(60)(23.75 − 2.5) = 2550k-in 

= 212.5k-f

φMn = φ(Mn1 + Mn2) = .836(580.2 + 212.5) = 662.7k-f

27.1.2 Condition 2

Condition 2 occurs when εs′ < εy and εs > εy.

Example 27-2: Find ϕMn for the beam shown in 

Figure 27.3. f′c = 5ksi, fy = 60ksi.

27.3

Condition 2 example of doubly reinforced beam

Assume all steel yields.

As2 = As′ = 2.0in2

As = 6.0in2, As1 = 6 − 2 = 4in2

a = 4(60,000)/[.85(5000)(12)] = 4.71″

c = a/β 

Remember that, for f′c > 4000psi, β1 = 0.85 − 0.05(f′c − 

4000)/1000 ≥ 0.65

= .85 − .05(5000 − 4000)/1000 = 0.8

c = 4.71/.8 = 5.89″

εs′ = .003(c − d′)/c = .003(5.89 − 2.5)/5.89 = .00173 

< .00207 

The compression steel has not yielded (εs′ < εy)

εt = .003(dt − c)/c = .003(21 − 5.89)/5.89 = .0077 

> .00207

The tensile steel had yielded (εt > εy)
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Condition 2 exists:

NT = NC1 + NC2 … Asfy = .85f′cba + fs′As′

a and fs′ have changed because the assumption that the 

beam was in Condition 1 was wrong.

a = βc and fs′ = ε′cEs = [.003(c − d′)/c]Es. The only unknown is 

c. Solve for c by substituting these equations into the original 

and forming a quadratic equation

Asfy = (.85f′c)(b)(a) + fs′As′

Asfy = .85f′cbβc + [.003(c − d′)/c]EsAs′ where:

As = 6, fy = 60ksi, f′c = 5ksi, b = 12″, β = 0.8, d′ = 2.5″, 
Es = 29,000ksi, As′ = 2.0 

Note: Be careful to use consistent units: If using 

Es = 29,000ksi, use f′c and fy in ksi.

Asfy = 6(60) = (.85)(5)(12)(.8)(c) + [.003(c − 2.5)/c]

(29,000)(2) = .85f′cbβc + [.003(c − d′)/c]EsAs′ 

360 = 40.8c + 174 − 435/c 

0 = 40.8c2 − 186c − 435 = c2 − 4.559c − 10.662

Use quadratic equation formula:

c = 4.559/2 ± .5√(4.5592 + 4(10.662)) = 2.28 ± 3.98 

= 6.26″

Check that assumptions are correct.

fs′ = [.003(c − d′)/c]Es 

= [.003(6.26 − 2.5)/6.26][29,000]

= 52.26 < fy = 60ksi … assumption is correct

Knowing c = 6.26″, check εt ≥ 0.004

εt = .003(dt − c)/c = .003(21 − 6.26)/6.26 = 0.0071 

> 0.004 … okay 

φ = 0.9 because .0071 > .005

Solve for φMn:

d = 21″ − 2.5″/2 = 19.75″

Mn1 = NC1Z1 = NC1(d − a/2)

= .85f′cab(d − a/2) 

= (.85)(5ksi)(.8(6.26)(12)(19.75 − .8(6.26)/2)

= 4494.77k-in = 367.06k-f

Mn2 = NC2Z2 = NC2(d − d′) = As′fs′(d − d′)

{eq = 2(52.26)(19.75 − 2.5) = 1802.97k-in = 150.25k-f

φMn = 0.9(367.06 + 150.25) = 465.58k-f

27.1.3 Doubly Reinforced Beam 
Design

To design a doubly reinforced beam, begin by designing 

a singly reinforced beam. If the moment requirements 

cannot be met without enlarging the beam, design a doubly 

reinforced beam. Design each of the two internal couples 

(Mn1 and Mn2) separately so that the total satisfies the 

required moment.

 1. Determine Mu if unknown. 

 2.  Assume d = h − 3 

 3. Assume φ = 0.9

 4. As = (.85f′cbd/fy)[1 − √(1 − 2Mu/φ.85f′cbd2)]

 5. a = fyAs/(0.85f′cb), c = a/β1, εt = .003(d − c)/c. If 

εt < 0.004, then beam needs double reinforcement.

 6. At εt = 0.005, c = 3d/8, a = .375dβ1 

 7. φMn1 = .9(.85f′c)ab(d − a/2) 

 8. AS1 = .85f′cab/fy 

 9. φMn2 = Mu − φMn1

10. NC2 = φMn2/φ(d − d′) 
11. εs′ = .003(c − d′)/c < εy = .00207 … fs′ = εs′fy

12. As′ = NC2/fs′ 
13. As2 = NC2/fy 

14. As = As1 + As2 

15. Check actual d > assumed d 

16. Check εs′ , εt and φ using selected steel:

A = (As − As′)fy/.85f′cb 

εs′ = .003(c − d′)/c 

fs′ = εs′Es

εt = .003(dt − c)/c if εt >.005 … φ = .9

17. Check φMn > Mu:

Example 27-3: Design the steel for a beam with: 

Mu = 350k-f, b = 12, h = 24, f′c = 3ksi, fy = 60ksi, d′ = 2.5″.
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27.4

Example 27-3

 1. Determine Mu if unknown. Mu = 350k-f = 4200k-in

 2. Assume d = h − 3 … d = 24 − 3 = 21″
 3. Assume φ = 0.9

 4. As = [.85f′cbd/fy][1 − √[1 − 2Mu/φ.85f′cbd2] = [.85(3)(12)

(21)/60][1 − √[1 − 2(4200)/(.9(.85)(3)(12)(21)2] = 4.762in2 

 5. a = fyAs/(0.85f′cb) = 60(4.762)/(.85(3)(12)) = 9.34″

c = a/β1 = 9.34/.85 = 10.99″

εt = .003(d − c)/c = .003(21 − 10.99)/10.99 = 0.0027 

< 0.004 … beam needs to be enlarged or needs 

double reinforcement.

 6. Let εt = .003(d − c)/c = 0.005 … c = 3d/8 … a = .375dβ1 

= .375(21)(.85) = 6.69″
 7. φMn1 = .9[(.85f′c)ab](d − a/2) = .9(.85)(3)(6.69)(12)(21 − 

6.69/2) = 3252.8k-in = 271.07k-f

 8. As1 = .85f′cab/fy = .85(3)(6.69)(12)/60 = 3.41in2

 9. φMn2 = Mu − φMn1 = 350 − 271.07 = 78.93k-f

10. NC2 = φMn2/φ (d − d′) = 78.93k-f(12in/f)/.9(21 − 2.5) 

= 56.89k

11. a = 6.69″ (from step 6) … c = a/β1 = 6.69/.85 = 7.87″
 εs′ = .003(7.87 − 2.5′)/7.87 = .00205 < εy = .00207 … 

fs′ = .00205(29000) = 59.36ksi

12.  As′ = NC2/fs′ = 56.89k/59.36ksi = 0.96in2 use two #7 for 

As′ = 1.2

13. As2 = NC2/fy = 56.89/60 = .95

14. As = As1 + As2 = 3.41 + .95 = 4.36 use 3 − #11 for 

As = 4.68 

15. Check actual d > 21(assumed d) 

d = 24 − 1.5 − .375 − 1.41/2 = 21.42 > 21 … okay

As′ = 1.2, As = 4.68 

16. Check εs′, εt and φ using selected steel:

A = (As − As′)fy/.85f′cb = (4.68 − 1.2)(60)/.85(3)(12)… 

c = 6.63/.85 = 7.8″

εs′ = .003(7.8 − 2.5)/7.8 = .00204 < .00207 … fs′ < fy

fs′ = .00204(29000) = 59.16

εt = .003(21.42 − 7.8)/7.8 = .00524 >.005 … φ = .9

17. Check φMn > Mu:

Mn1 = As1fy(d − a/2) = (3.48)(60)(21.42 − 6.63/2) 

= 3780.32k-in = 315k-f

Mn2 = As′fs′(d − d′) = 1.2(59.16)(21.42 − 2.5) 

= 1343.17k-in = 111.93k-f

φMn = .9(315 + 111.93) = 384.24 > Mu = 350k-f 

… okay

Answer: Use three #11 on the bottom, two #7 on the top.

27.2 T-beams

The term T-beam describes a concrete beam that utilizes 

the floor slab as a compression flange. The T-beam can be a 

simple beam with uniform load or a carrier beam or girder.

The effective flange width, b, is the width of slab that is 

allowed to be a part of the T-beam. ACI Code section 8-12 

limits effective flange length as follows:

1. b ≤ L/4 (span length/4)

2. b ≤ bw + 16hf (web thickness + slab thickness)

3. b ≤ s = center-to-center spacing of beams. 

If flange is only on one side then effective flange width is 

limited to:

1. b ≤ L/12

2. b ≤ 6hf

3. b ≤ 1/2 clear distance to next beam.

If the T-shape is isolated and not part of a slab: 

bw/2 ≤ b ≤ 4 bw 

Minimum steel reinforcement for T-beams is:

As min = 3(√f′c)bwd/fy ≥ 200bwd/fy 
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27.2.1 The Practical Moment Strength 
φMn

Example 27-4: Find the practical moment strength, ϕMn 

for the T-beam shown in Figure 27.6 if the span is 24ft 

and the center-to-center beam spacing is 5ft. f′c = 4ksi 

and fy = 60 ksi. 

27.6

Example 27-4

1. Find effective flange length:

L/4 = 24(12)/4 = 72″

bw + 16 hf = 10 + 64 = 74″

beam spacing = 60″

use b = 60″

2. Check As min = .0033bwd = .0033(10)(24) = 0.79 < 2.37 

(3 #8) … okay

3. Assume the steel yields. Find NT:

NT = Asfy = 2.37(60,000psi) = 142,200#

4. Find whether the flange can handle the compressive 

force:

 NCf = (.85f′c)(b)(hf) = .85(4000)(60)(4) = 816,000 > 

142,200 … the compression is handled by the flange and 

the analysis is the same as for a rectangular beam with a 

width b = 60″.
5. Find a = Asfy /.85f′cb = 2.37(60,000)/.85(4000)(60) 

= 0.697″
 Note: the ratio of a/hf = NT/NCf … a = NThf/NCf 

= 142,200(4)/816,000 = .697

6. Find tensile strain εt = .003(d − c)/c

c = a/.85 = .697/.85 = 0.82

εt = .003(24 − .82)/.82 = 0.0848

.0848 > .005 therefore tension controls yielding and 

φ = 0.9.

7. φMn = φAsfy(d − a/2) = 0.9(2.37)(60ksi) (24 − .697/2) 

= 3026.92k-in = 252.243 k-f

27.5

T-beam 
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Compression in the web occurs when there is not adequate 

area in the flange, as in the next example.

Example 27-5: Find the ϕMn for the T-beam shown in 

Figure 27.7. f′c = 3ksi and fy = 60ksi. The span is 16ft and 

the center-to-center beam spacing is 6ft.

27.7

Example 27-5

 1. Find b: 

L/4 = 16(12)/4 = 48″

bw + 16 hf = 19 + 48 = 67″

beam spacing = 72″

USE: b = 48″
 2. As min = .0033bwd = .0033(19)(28) = 1.76 < 7.8 (5 #11) 

… okay

 3. Assume the steel yields. Find NT:

NT = Asfy = 7.8(60,000psi) = 468,000#

 4. Find if the flange can handle the compressive force.

NCf = (.85f′c)(b)(hf) = .85(3000)(48)(3) = 367,200

367,200 < 468,000 therefore the web must help 

handle the compression.

 5. Find the compression carried by the web.

NCW = 468,000 − 367,200 = 100,800#

 6. Find the distance the compression block extends below 

the flange (a − hf).

(a − hf) = 100,800/.85(3000)(19) = 2.08 

 a = 2.08 + hf = 5.08 and c = 5.08/.85 = 5.976

 7. Mnf = NcfZf = 367.2k (28 − 3/2) = 9730.8 k-in

 8. Mnw = NcwZw = 100.8k(28 − 3 − 2.08/2) = 2415.17k-in

 9. Mn = 9730.8 + 2415.17 = 12145.97k-in = 1012.16k-f

10. εt = .003(28 − c)/c = .003(28 − 5.976)/5.976 = .0111 

> .005 therefore φ = 0.9

11. φMn = 0.9(1012.16) = 910.944 k-f

27.2.3 To Design a T-beam

 1. Determine Mu

 2. Assume d = h − 3, and φ = 0.9

 3. Find effective width b: b ≤ L/4, beam spacing and 

bw + 16hf.

 4. Mnf = .85f′cbhf(d − hf/2)

 5. If φMnf ≥ Mu, go to step 6. If φMnf < Mu, go to step 12.

 6. As = [.85f′cbd/fy][1 − √[1 − 2Mu/φ.85f′cbd2] 

 7. Check that As ≥ As min = bwd(3√f′c)/fy ≥ 200bwd/fy. If not, 

use As min.

 8. Select bars based on As values from Table A4.2. Note 

actual As. Calculate the actual value of d. Check the 

required width for the number and size of bars chosen 

from Table 26.1.

 9. a = fyAs/(.85f′cb)c = a/β1

10. Check εt = .003(d − c)/c > 0.004.

11. Check φ = 0.9 assumption. If εt < 0.005, recalculate φ and 

check that φMn ≥ Mu.

φ = 0.65 + (εt −0.002)(250/3) if 0.004 ≤ εt < 0.005.

When φMnf < Mu:

12. Zf = d − hf/2 where Zf is the distance from the center of 

gravity of the steel to the center of gravity of the flange.

13. Asf = Mnf/fyZf

14. dw = d − hf

15. Mnw = (Mu − φMnf)/φ
16. aw = depth of stress block in the web. 

aw = dw ± √[(dw
2 − 2Mnw/(.85f′cbw)]

17. Asw = .85f′cawbw/ fy

18. As = Asf + Asw

19. Calculate actual value of d:

20. As min = bwd(3√f′c)/fy ≥ 200bwd/fy

21. a = aw + hf, c = a/β1, εt = .003(d − c)/c 

 If εt > .005, φ = 0.9, 

 0.004 < εt < .005, φ = 0.65 + (εt − .002)(250/3) and check 

φ Mn > Mu.
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Example 27-6: Design reinforcement for the T-beam 

shown in Figure 27.8. f′c = 4ksi, fy = 60ksi, bw = 12″, 

h = 24″, hf = 3″, Beam spacing = 8ft, L = 20′, Live Load 

= 125psf, Dead Load = 200psf (includes concrete wt).

27.8

T-beam design

 1. Wu = [1.2(200) + 1.6(125)]8ft = 3520#/f = 3.52k/f

 Mu = (3.52k/f)(20)2/8 = 176k-f

 2. d = 24 − 3 = 21″, Assume φ = 0.9

 3. b ≤ L/4 = 20(12)/4 = 60″
 b ≤ bw + 16hf = 12 + 16(3) = 60″
 b ≤ beam spacing = 96″
 use b = 60″ 

 4. Mnf = .85f′cbhf(d − hf/2) = .85(4ksi)(60″)(3″)(21 − 3/2) 

= 11934k-in = 994.5k-f 

 5. 0.9(994.5) = 895.05k-f > Mu = 176k-f … Rectangular 

T-beam

 6. As = [.85f′cbd/fy][1 − √[1 − 2Mu/φ.85f′cbd2] = [.85(4)(60)

(21)/60][1 √(1− 2(176k-f)(12″/f)/(.9(.85)(4)(60)(21)2)] 

= 1.89in2

 7. Check that As ≥ As min = bwd(3√f′c)/ fy ≥ 200bwd/fy = 12(21)

(3)(√4000)/60000 = 0.797 ≥ 200(12)(21)/60000 = 0.84 … 

As min = 0.84 < 1.89 … okay

 8. Use two #9 As = 2.0. d = 24 − 1.5 − .375 − 1.128/2 

= 21.561 > 21 … okay

 9. a = fyAs/(.85f′cb) = 60(2)/(.85(4)(60) = 0.588 c = a/β1 

= 0.588/.85 = 0.692

10. Check εt = .003(d − c)/c = .003(21.561 − .692)/.692 

= 0.09 > 0.004.

11. 0.09 > 0.005 … φ = 0.9 

 ANSWER: Use two #9

27.2.3 Irregular Shapes

Irregular shapes can be designed using the same logic as 

with T-beams. Divide the beam into sections based on width 

and work from the top down.

Example 27-7: Design reinforcement for the inverted 

T-beam shown.

f′c = 4ksi, fy = 60ksi, bw = 18″, h = 20″, hf = 4″, b = 6″, 
 L = 20′, Mu = 176k-f

27.9

Inverted T-beam

1. Determine Mu = 176k-f

2. Assume d = 20 − 3 = 17″, φ = 0.9

3. Find effective width b: b ≤ L/4, beam spacing and bw 

+ 16hf. In this case, b is given and is smaller than all 

conditions: b = 6″
4. Mnf = .85f′cbhf(d − hf/2) = .85(4)(6)(4)(17 − 4/2) = 1224k-in 

= 102k-f

5.  f φMnf = 0.9(102) = 91.8k-f < Mu = 176k-f … go to step 12

12. Zf = d − hf/2 = 17 − 4/2 = 15″ 

13. Asf = Mnf/fy Zf = 102k-f(12in/f)/(60ksi)(15″) = 1.36in2

14. dw = d − hf = 17 − 4 = 13″
15. Mnw = (Mu − φMnf)/ φ = (176 − 91.8)/0.9 = 93.56k-f 

= 1122.67k-in

16. aw = depth of stress block in the web. 

aw = dw ± √[dw
2 − 2Mnw/(.85f′cbw)] 

= 13 + √[169 − 2(1122.67)/(.85(4)(18))] = 1.497in2

17. Asw = .85f′cawbw/fy = .85(4)(1.497)(18)/60 = 1.527in2

18. As = Asf + Asw = 1.36 + 1.527 = 2.887, use three #9

19. Calculate actual value of d: d = 20″ − 1.5″ − .375″ − 

1.128″/2 = 17.56″ > 17″ … okay
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20. As min = bwd(3√f′c)/fy = 18(17.56)(3)(√4000)/60,000 

= 1.0 ≥ 200bwd/ fy = 200(18)(17.56)/60000 = 1.05 … As min 

= 1.05 < 3.0 … okay

21. a = aw + hf = 5.497″, c = a/β1 = 5.497/.85 = 6.467″, 
εt = .003(d − c)/c = .003(17.56 − 6.467)/6.467 = 0.00514 

> 0.005 … φ = 0.9. 

ANSWER: Use three #9

If an irregular shape has a cross-section not easily adaptable 

to the previous method, make an assumption about the ratio 

of a/d. Then check whether the assumption is adequate. If 

not, go through another iteration with a higher ratio.

Example 27-8: Design reinforcement for the wedge-

shaped beam shown.

27.10

Wedge-shaped beam

Mu = 150k-f = 1800k-in, d = 15″, φ = 0.9

Assume a = 0.2d, let Ac = area in compression. Note: for 

larger values of Mu, a larger assumption for the ratio of a/d 

will be needed.

Ac = a(18 − a/3) = 0.2d(18 − .2d/3) 

= .2(15)(18 − .2(15/3)) = 51in2

Asfy = .85f′cAc … As = .85(4)(51)/60 = 2.89in2

Use three #9, As = 3.0

Ac = 3.0(60)/(.85(4)) = 52.94 = a(18 − a/3)

a = 54/2 ± .5√[542 − 4(3)(52.94)] = 3.122″

c = 3.122″/0.85 = 3.672″

εt = 0.003(15 − 3.672)/3.762 = 0.009 > 0.005 … 

φ = 0.9

Check φMn = φfy As (d − a/2) = 0.9(60)(3.0)(15 − 3.122/2) 

= 2177.118k-in > 1800k-in = Mu … Okay.

ANSWER: Use three #9.

Practice Exercises:

27-1: Find φMn for the beam shown in Figure 27.11. f ′c = 4ksi, 

fy = 60ksi. 

27-2: Find φMn for the beam shown in Figure 27.11. f ′c = 5ksi, 

fy = 60ksi. 

27-3: Design the steel for a beam with: Mu = 450k-f, b = 14″, 
h = 26″, f′c = 3ksi, fy = 60ksi, d′ = 2.5″.

27-4: Design the steel for a beam with: Mu = 600k-f, b = 16″, 
h = 30″, f′c = 4ksi, fy = 60ksi, d′ = 2.5″.

27-5: Find the φMn for the T-beam show in Figure 27.11. 

f′c = 3ksi and fy = 60ksi. The span is 20′ and the center-to-center 

beam spacing is 5′.

27-6: Find the φMn for the T-beam show in Figure 27.11. 

f′c = 4ksi and fy = 60ksi. The span is 24′ and the center-to-

center beam spacing is 8′.

27-7: Design reinforcement for a T-beam with f′c = 4ksi, 

fy = 60ksi, bw = 14″, h = 27″, hf = 4″, beam spacing = 7′, 
beam span = 18′ and Mu = 250k-f.

27-8: Design reinforcement for a T-beam with f′c = 4ksi, 

fy = 60ksi, bw = 16″, h = 27″, hf = 3″, beam spacing = 5′, 
beam span = 22′ and Mu = 300k-f.

27-9: Design reinforcement for the inverted T-beam shown 

in Figure 27.11. f′c = 4ksi, fy = 60ksi, beam span = 20′ and 

Mu = 200k-f.

27-10: Design reinforcement for the box beam shown in 

Figure 27.11. f′c = 4ksi, fy = 60ksi, beam span = 20′ and 

Mu = 300k-f.



C O N C R E T E  D E S I G N240

27.11

Chapter 27 Practice exercises



twenty eight

S hear  and Def lect ion in 
Concrete  B eams

Vc = amount of shear force unreinforced concrete can 

resist

Vc = 2λ(√f′c)bwd

λ = weight modification factor (1.0 for normal weight 

concrete)

bw = web thickness = b for rectangular sections

Minimum shear reinforcement is required except when the 

following conditions exist:

1. in slabs and footings;

2. in concrete joist construction defined by ACI Code, 

Section 8.13; 

3. in beams with a total depth less than:

10.5″
2.5 times the flange thickness

one-half the width of the web.

28.2

Shear stirrups

28.1 Shear in Concrete 
Beams

When a beam is subjected to a vertical load, each unit element 

transfers the shear through a shear couple (the vertical 

forces shown in Figure 28.1) that must be counteracted by a 

counteracting couple (the horizontal forces shown) in order 

for the unit to remain stable. These forces cause planes 

of compression and planes of tension. When shear forces 

cause diagonal tension greater than the tensile strength of 

the concrete, shear cracks appear. Because shear is usually 

greatest at the support, shear cracks most often occur at the 

bottom of the beam near the edge of a support and work 

diagonally upwards and toward the center of the beam.

28.1

Tension and compression planes caused by shear
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Av = minimum shear reinforcement = total cross sectional 

area of stirrup steel = 2As where: 

Av = 0.75(√f′c)bws/fyt ≥ 50bws/fyt

As = cross-sectional area of stirrup steel.

s = center to center spacing of stirrups in direction 

parallel to longitudinal reinforcement.

fyt = yield stress of stirrup steel

Note for f′c ≤ 4444psi Av = 50bws/fyt

28.1.1 Shear Reinforcement:

Minimum shear steel required:

If Vu ≥ φVc/2, Av = 0.75(√f′c)bws/fyt ≥ 50bws/fyt

When Vu > φ web reinforcement must be designed for 

φVs = Vu − φVc and 

Av = Vss/fytd

Vs = nominal shear provided by the shear 

reinforcement

Maximum spacing of stirrups

Check spacing for minimum steel requirement: 

smax = Avfyt/50bw

Check ACI 11.5.4 maximum spacing requirement:

if Vs ≤ 4(√f′c)bwd … smax ≤ d/2 ≤ 24″
if Vs ≥ 4(√f′c)bwd … smax ≤ d/4 ≤ 12″

Design procedure for shear:

 1. Calculate Vu = factored shear at distance d from support.

 2. Calculate φVc = φ2√f′cbwd 

 3. Is Vu ≥ φVc/2? If no – you’re done. No shear reinforcement 

required. 

  If yes – go to step 4.

 4. Is φVc/2 ≤ Vu ≤ φVc? If yes, go to step 8

  If no, go to step 5

 5. If Vu > φVc, calculate Vs = Vu/φ − Vc or (Vu − φVc)/φ
 6. Check that Vs ≤ 8√f′cbwd (otherwise against code)

 7. Assume a stirrup size and solve for s ≤ Avfytd/Vs

 8. Check spacing for minimum steel requirement: 

smax = Avfyt/50bw

 9. Check ACI 11.5.4 maximum spacing requirement:

 if Vs ≤ 4√f′cbwd … smax ≤ d/2 ≤ 24″

 if Vs ≥ 4√f′cbwd … smax ≤ d/4 ≤ 12″

10. Check minimum spacing smin = 4″
11. Locate where φVc and φVc/2 are located on shear diagram 

in terms of x.

12. Indicate what shear reinforcement is required and where.

Example 28-1: Design shear reinforcement for a 28′ 

beam with b = 14″, d = 27″, f′c = 4ksi, fy = 60ksi, and a 

factored uniform load of 6k/f.

 1. Vu = 28(6)/2 − 6(27/12) = 70.5

 2. φVc = φ2(√f′c)bwd = .75(2)(√4000)(14)(27)/1000 = 35.86

 3. Is Vu ≥ φVc/2? 70.5 > 35.86/2 = 17.93 … go to step 4.

 4. Is φVc/2 ≤ Vu ≤ φVc? No, go to step 5.

 5. If Vu > φVc, calculate Vs = (Vu − φVc)/φ = (70.5 − 35.86)/.75 

= 46.19

 6. Check that Vs ≤ 8(√f′c)bwd: 46.19 < 8(√4000)(14)(27)/1000 

= 191.25 … okay

 7. Assume #3 stirrup, s ≤ Avfytd/Vs = .22(60)(27)/46.19 

= 7.72″
 8. Check spacing for minimum steel requirement: 

smax = Avfyt/50bw = .22(60000)/(50(14)) = 18.86 > 7.72 

… okay

 9. Check ACI 11.5.4 maximum spacing requirement:

46.19 < 4 (√4000)(14)(27)/1000 = 95.63 

if Vs ≤ 4(√f′c)bwd … smax ≤ d/2 ≤ 24″ = 27/2 = 13.5″ 

> 7.72 … okay

10. Check Minimum spacing smin = 4″ < 7.72 … okay

11. Locate where φVc and φVc/2 are located on shear diagram 

in terms of x.

φVc is @ x where 28(6)/2 − 6x = 35.86 … x = 8.02′

φVc/2 is @ x where 28(6)/2 − 6x = 17.93 … x = 11.01′

12. Indicate what shear reinforcement is required and where.

Use #3 stirrups @ 7″ 0 < x < 8.02 and 19.98 < x < 28

Use #3 stirrups @ 13.5″

Example 28-2: Design shear reinforcement for a 40ft beam 

with b = 16″, d = 32″, f′c = 4ksi, fy = 60ksi, a factored uniform 

load of 1k/f and a concentrated load every 5′ of 24k. 
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28.3

Beam shear example

Draw and label shear diagram.

 1. Vu = 104 − 1(32/12) = 101.33

 2. φVc = φ2√f′cbwd = .75(2)(√4000)(16)(32)/1000 = 48.57

 3. Is Vu ≥ φVc/2 ? 101.33 > 48.57/2 = 24.29 … go to step 4.

 4. Is φVc/2 ≤ Vu ≤ φVc? No, go to step 5.

 5. If Vu > φVc, calculate Vs = (Vu − φVc)/φ = (101.33 − 

48.57)/.75 = 70.34

 6. Check that Vs ≤ 8√f′cbwd : 70.34 < 8(√4000)(16)(32)/1000 

= 259.05 … okay

 7. Assume #3 stirrup, s ≤ Avfytd/Vs = .22(60)(32)/70.34 

= 6.01″
 8. Check spacing for minimum steel requirement: 

smax = Avfyt/50bw = .22(60000)/(50(16)) = 16.5 > 7.72 

… okay

 9. Check ACI 11.5.4 maximum spacing requirement:

70.34 < 4 (√4000)(16)(32)/1000 = 129.53

if Vs ≤ 4√f′cbwd … smax ≤ d/2 ≤ 24″ = 32/2 = 16″ > 7.72 

… okay

10. Check minimum spacing smin = 4″ < 7.72 … okay

11. Locate where φVc and φVc/2 are located on shear diagram 

in terms of x.

φVc is @ x = 10′

φVc/2 is @ x = 15′

12. Indicate what shear reinforcement is required and where.

Use #3 stirrups @ 7″ 0 < x < 10 and 30 < x < 40

Use #3 stirrups @ 16″ 10 < x < 15 and 25 < x < 30

28.2 Def lection in Concrete 
Beams

ACI equation 9-8 states that the moment of inertia to be used 

in calculating deflection in concrete is:

Ie = {(Mcr/Ma)
3Ig + [1 − ( Mcr / Ma)

2]Icr } ≤ Ig, where:

Ma = maximum moment where deflection is being 

calculated

Mcr = cracking moment for the given cross-section
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Ig = gross area moment of inertia = bh3/12 for 

rectangular beams

Icr = moment of inertia of the cracked concrete section

Icr = bY3/3 + nAs(d − Y)2 where:

Y = the distance from the top of the beam to the 

neutral axis = As(√[1 + 2bd/nAs] − 1)/b

n = Es/Ec = modular ratio

28.4

Shear diagram

The modular ratio, n, is derived by setting the strain in the 

steel equal to the strain in the concrete in tension. It is used 

to find the equivalent concrete area, Aeq, that may replace the 

steel area As.

Using Aeq = nAs allows for the neutral axis, Y, to be located 

and then I to be determined using the general equation of 

Ix = ΣIxi + ΣAdy
2.
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28.5

Equivalent area

Y = ΣAy/ΣA = [bY(Y/2) + nAsd]/[bY + nAs]

This equation can be reformulated into a quadratic equation:

bY2/2 + nAsY − nAsd = 0

Y = (nAs/b)(√(1 + 2bd/nAs) − 1)

Icr = ΣIxi + ΣAdy
2 

= bY3/12 + b(nAs/b)3/12 + bY(Y/2)2 + nAs(d − Y)2

Icr for doubly reinforced beam:

The neutral axis can be located by using the equation:

bY2/2 + nAs′Y − nAs′d′ − nAsd + nAsY = 0

or

(b/2)Y2 + n(As′ + As)Y − n(As′d′ + Asd) = 0

Using the quadratic equation formula:

Y = −n(As′ + As)/b ± (1/b)√[n2(As′ + As)2 

+ (4bn/2)(As′d′ + Asd)]

Icr = bY3/3 + nAs(d − Y)2 + nAs′(Y − d′)2

Ig = bh3/12 

28.6

Moment of inertia for doubly reinforced beam
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The moment at the point of rupture = Mcr = cracking moment 

and fr = Mcr/S

Mcr = frS = frIg/yt

yt = distance from the neutral axis of uncracked cross-section 

neglecting steel to extreme outside fiber.

 yt = h/2 for rectangular beams

Example 28-3: Find the deflection in a 16 × 32 beam with 

five #9 rebars @ d = 29″, spanning 30′ and carrying a live 

load of 2000#/f if f′c = 4ksi and fy = 60ksi.

 1. n = Es/Ec = 29000/[57√4000] = 8.04

 2. y = nAs[√(1 + 2bd/nAs) − 1]/b 

= 8.04(5)[√(1 + 2(16)(29)/8.04(5)) − 1]/16 = 9.82″
 3. Icr = by3/3 + nAs(d − y)2 

= 16(9.82)3/3 + 8.04(5)(29 − 9.82)2 = 19839

 4. Ig = 16(32)3/12 = 43691

fr = (7.5√4000)/1000 = 0.474ksi

Mcr = frIg/yt = .474ksi (43690.67) /(32/2) = 1294.3 k-in

w = (150)(16/12)(32/12) + (2000) = 2533.33#/f

Ma = 2.53(30)2(12)/8 = 3415.5 k-in 

Mcr/Ma = 1294.3/3415.5 = 0.379

 9. Ie = {[Mcr/Ma]
3Ig + [1 − ( Mcr/Ma)

3]Icr } 

= {[.379]3(43691) + [1 − (.379)3](19839) = 21138in4

10. Δmax = 5wL4(1728)/384EI = 5(2.53k/f)(30)4(1728in3/f3)/

[384(57 √4000)(21138)] = 0.61″

Allowable deflections: ACI Code Table 9.5b sets the criteria 

for allowable deflections in concrete beams as follows:

 L/180: Immediate deflection due to live load on flat roofs 

not supporting or attached to nonstructural elements 

likely to be damaged by large deflections.

 L/240: The sum of the long term deflection due to 

sustained loads plus immediate deflection due to any 

additional live loads on roofs or floors supporting or 

attached to nonstructural elements not likely to be 

damaged by large deflections.

 L/360: Immediate deflection due to live load on floors not 

supporting or attached to nonstructural elements likely to 

be damaged by large deflections.

 L/480: The sum of the long term deflection due to 

sustained loads plus immediate deflection due to any 

additional live loads on roofs or floors supporting or 

attached to nonstructural elements likely to be damaged 

by large deflections.

Checking the beam from example 28-3:

L/240 = 30′(12)/240 = 1.5″

L/360 = 30′(12)/360 = 1″

L/480 = 30′(12)/480 = 0.75″

This beam would work in any scenario.

Example 28-4: Find the immediate deflection in a 

concrete girder that spans 40ft carrying a concentrated 

load of 60k @ x = 10′, 20′ and 30′. 

The beam is 16″ × 36″ with eight #10 in two rows on the 

bottom and four #10 at 2.5″ from top. f′c = 4ksi and fy = 60ks. 

As′ = 5.08, As = 10.16, d = 32.36″, allowable deflection = Δall 

= L/240.

 1. n = Es/Ec = 29000/[57√4000] = 8.04

 2. Y = −n(As′ + As)/b ± (1/b)√[n2(As′ + As)2 + (4bn/2)(As′d′ 
+ Asd)] = −8.04(5.08 + 10.16)/16 ± (1/16)√[8.042(5.08 + 

10.16)2 + (4(16)(8.04/2)(5.08(2.5) + 10.16(32.36))] 

= −7.658 + 20.05 = 12.39″
 3. Icr = by3/3 + nAs(d − y)2 + nA′s(y − d′)2 = 16(12.39)3/3 + 

8.04(10.16)(32.36 − 12.39)2 + 8.04(5.08)(12.39 − 2.5)2 

= 46715.65in4

 4. Ig = 16(36)3/12 = 62208in4

 5. fr = (7.5√4000)/1000 = 0.474ksi

 6. Mcr = frIg/yt = .474ksi(62208)/(36/2) = 1638.14k-in

 7. wbm = .15(16/12)(36/12) = 0.6k/f

 8. Ma = wL2/8 + PL/2 = 0.6(40)2/8 + 60(40/2) = 1320k-f 

= 15840k-in

 9. Mcr/Ma = 1638.14/15840 = .103

10. Ie = {[ Mcr / Ma]
3Ig + [1 − ( Mcr / Ma)

3] Icr } 

= {[.103]3(62208) + [1 − (.103)3](46716) = 46733

11. Δmax = 5wl4/384EI + 19PL3/384EI 

= 5(.6)(40)4(1728)/[384(57 √4000)(46733)] 

+ 19(60)(40)3(1728)/[384(57√4000)(46733)] = 2.154″
12. Δmax = 2.154 > Δall = L/240 = 40(12)/240 = 2″ … not okay 
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28.2.1 Long-Term Def lection

ΔLT = Δiξ /(1 + 50ρ′) is applied only to sustained loads.

Δi = immediate deflection

ξ = time-dependent factor for sustained loads:

 = 2.0 for 5 years or more

 = 1.4 for 1 year

 = 1.2 for 6 months

 = 1.0 for 3 months

ρ′ = non-prestressed compression reinf. (A′s/bd)

Example 28-5: A 12″ by 18″ beam has L = 20f, w = 2.67k/f 

exclusive of beam weight, d = 15.56″, As = 4.0, As′ = 0, 

f′c = 3ksi, fy = 60ksi. 

Find the immediate and 5 year deflection if only the beam 

weight and 1k/f are sustained loads.

 1. n = Es/Ec = 29000/[57√3000] = 9.29 

 2. y = nAs[√(1 + 2bd/nAs) − 1]/b = 10.29″
 3. Icr = by3/3 + nAs(d − y)2 

= 12(10.29)3/3 + 9.29(4)(15.56 − 10.29)2 = 5394in4

 4. Ig = 12(18)3/12 = 5832in4

 5. fr = (7.5√3000)/1000 = 0.411ksi 

 6. Mcr = frIg/yt = .411ksi (5832) /(18/2) = 266.2 k-in 

 7. w = .15(12/12)(18/12) + 2.67 = 2.895k/f

 8. Ma = 2.895(202)(12″/f)/8 = 1737k-in Mcr/Ma = 266.2/1737 

= .153

 9. Ie = {[Mcr/Ma]
3Ig + [1 − (Mcr/Ma)

3]Icr } 

= {.1533(5832) + [1 − .1533]5394} = 5396in4

10. Δi = 5wL4/384EI 

= 5(2.895)(20)4(1728)/[384(57√3000)(5396) = 0.619″
11. ξ = 2.0 for 5 years or more. 

12. wsustained = .15(12/12)(18/12) + 1 = 1.225k/f

13. Δi = 0.619(1.225/2.895) = 0.262″
14. ρ′ = 0

15. ΔLT = Δiξ /(1 + 50ρ′) = .262(2)/(1 + 0) = 0.524″
16. Total deflection = Δ = 0.619 + .525 = 1.14″

Practice Exercises:

28-1 through 28-3: Design shear reinforcement for the 

concrete beams shown in Figure 28.7.

28-4 through 28-6: Find the immediate and long-term 

deflections of the concrete beams shown in Figure 28.7.

28.7

Chapter 28 Practice exercises



twenty nine

Concrete  Columns

shapes. This text discusses the design of columns with 

rectangular and round cross-sections. Note the following 

terms:

Ag = gross area of the column

Ach = core area of the column where the core is 

defined by the area enclosed by and including the 

transverse steel. 

Concrete columns are either reinforced concrete columns or 

composite columns. Composite columns are columns made 

of steel sections that are either encased in concrete or filled 

with concrete as in Figure 29.1. 

There are two types of reinforcement in concrete columns: 

spiral and ties. Spirals are used in columns with a circular 

cross-section. Ties are used in concrete columns or other 

29.1

Concrete column types
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For square columns with a width h, Ach = (h − 2(cover))2. For 

round columns with a diameter h, Ach = π(h − 2(cover))2/4.

Axial loads with small eccentricities are those with a small 

ratio of eccentricity to column width.

Ties column: e/h ≤ 0.1

Spiral columns e/h ≤ 0.05 

h = column dimension perpendicular to bending axis

29.1 Design of Short Axially 
Loaded Columns

A concrete column is considered to be short if its slenderness 

ratio meets the following requirements:

kLu/r < 22 for pinned connections

kLu/r < 34 − 12(M1/M2) for fixed connections where M1 

= smaller end moment and M2 = larger end moment

Is a 36″ square column pinned at both ends and with 

unbraced length of 20ft short?

r = [36(36)3/12(36)2]1/2 = 10.392 

kLu/r = 1.0(20)(12)/10.392 = 23.095 > 22 … 

No, the column is not short.

What is the required width for a 20′ square column pinned at 

both ends to be short?

r = [h4/12(h)2]1/2 = 0.289h

kLu/r = 1.0(20)(12)/0.289h < 22 … 

h > 240/.289(22) = 37.75″

In generic terms, for square pinned columns to be short, 

h > 1.887Lu and for fixed columns with equal moments at 

each end, h > 1.51Lu.

29.1.1 Design Loads for Short 
Concrete Columns

Po = nominal axial load strength at e = 0

Po = .85f′c(Ag − Ast) + fy(Ast)

Ast = area of longitudinal steel

Ag = gross area of column.

Design axial load strength = φPn

For spiral columns: φ = 0.75

φPn = φ(.85Po) = .75(.85)[.85f′c(Ag − Ast) + fy(Ast)]

For tied columns: φ = 0.65

φPn = φ(.8Po) = .65(.8)[.85f′c(Ag − Ast) + fy(Ast)]

Example 29-1: Find allowable axial load on an 18″ × 18″ 

tied column with a maximum unbraced length of 12′, f′c 

= 4ksi, fy′60ksi with 12 #8 longitudinal bars.

From Table A4.1, 12 #8s have an area of steel = Ast 

= 9.48in2 

Ag = 182 = 324in2

φPn = .8(.65)[.85f′c(Ag − Ast) + fy(Ast)] 

= .8(.65)[.85(4)(324 − 9.48) + 60(9.48)] = 851.8k

29.1.2 Code Requirements for Column 
Details

Longitudinal Reinforcement: 

0.01 < ρg = Ast / Ag < 0.08

Minimum 4 longitudinal bars for rectangular or circular 

ties

Minimum 6 longitudinal bars for spirals.

Minimum recommended size #5

Clear distance between longitudinal bars > 1.5 bar diameter 

(db) and > 1.5″
Cover > 1.5″
Ties: 

minimum #3 for #10 and smaller longitudinal steel bars

minimum #4 for #11 and greater longitudinal steel bars

#5 maximum bar size.

Center-to-center distance between ties < 16db < 48 

tie-bar diameters, or least column dimension where 

db = diameter of longitudinal steel bar.
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Spirals: 

minimum 3/8″ diameter, maximum 5/8″ diameter 

1″ < clear spacing between spirals < 3″

ρs = 4Asp/dchs = volume of spiral steel in one turn/

volume of column core in height s. dch = h − 2(cover)

ρs min = 0.45((Ag/Ach) − 1)(f′c/fyt) where

Ach = cross-sectional area of core (out-to-out of spiral) 

= πdch
2/4

29.1.3 Analysis of Short Columns

The method to analyze the strength in short columns is as 

follows:

1. Check that 0.01 < ρg = Ast/Ag < 0.08. If not, the column is 

not adequate. 

2. Check that the number of longitudinal bars will fit in 

the core space of the column with clear spacing limits 

(Table A4.2) and that there is a minimum of 4 bars when 

using ties and 6 bars when using spirals.

3. Check that Pu < φPn. 

φPn = .75(.85)[.85f′c(Ag − Ast) + fy(Ast)] for columns with 

spiral reinforcement

φPn = .65(.8)[.85f′c(Ag − Ast) + fy(Ast)] for columns with 

ties

4. Check tie size, spacing and arrangement 

 or check spiral size, ρs and clear distance.

5. Check clear spacing between longitudinal bars on one 

face < 6″. If not, additional ties are required.

Example 29-2: Check the adequacy of a short 28″ × 28″ 

tied column with a 1.5″ cover, f′c = 4ksi, fy = 60ksi, 16 #11 

and Pu = 2000k. The column ties are #4 bars at 22″o.c.

1. Check that 0.01 < ρg = Ast/Ag < 0.08. 

 For 16 #11 from Table A4.1, Ast = 25.0in2

Ag = 282 = 784in2

ρg = Ast/Ag = 25/785 = .032

0.01 < ρg = .032 < 0.08, therefore the column is 

adequate for ρg.

2. Core width h − 2(cover) = 28 − 2(1.5) = 25″. 
From Table A4.3, 16 #11 will fit in a core space of 

25″ × 25″ and there are greater than 4 bars, therefore 

column is adequate for steel placement.

3. Check that Pu < φPn. Pu = 2000k

φPn = .65(.8)[.85f′c(Ag − Ast) + fy(Ast)] 

= .65(.8) [.85 (4)(784 − 25) + 60(25)] = 2121.9k

Pu = 2000 < 2121.9 = φPn, therefore column is 

adequate for load.

4. Check tie size:

 Okay for minimum #4 for #11 and greater longitudinal 

steel bars

 Tie spacing criteria:

16db = 16(1.41) = 22.56″

48dtie = 48(.5) = 24″

least column dimension = 28″

22″ < 22.56″ … okay for tie spacing

5. Check clear spacing between longitudinal bars on one 

face = (28 − 3 − 2(.5) − 5(1.41))/4 = 4.24″ < 6″, therefore 

column is adequate for longitudinal bar spacing.

29.1.4 Design of Short Columns

The method for design of short, axially loaded columns is as 

follows:

1. Decide material strengths and ρg .

 f′c = 4ksi, fy = 60ksi, ρg = .03 are recommended values.

2. Determine factored axial load, Pu.

3. Determine Ag:

 For rectangular columns:

Ag = Pu/{.8(.65)[.85f′c(1 − ρg) + fyρg]} 

 For spiral columns: 

Ag = Pu/{.85(.75)[.85f′c(1 − ρg) + fyρg]} 

4. Determine column size and actual Ag.

5. Determine load on concrete:

φPc = .65(.8)Ag[.85f′c(1 − ρg)] (tied)

φPc = .75(.85)Ag[.85f′c(1 − ρg)] (spiral)
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6. Determine load on steel φPs = Pu − φPc 

7. Determine Ast:

Ast = φPs/.8(.65)fy (tied) 

Ast = φPs/.85(.75)fy (spiral)

8. Select longitudinal bar size and number and check against 

Table A4.3 (maximum allowed in one layer)

9A (tied columns). Select tie size and determine spacing:

 s < 48dtie or 16db or least dimension

9B (spiral columns). Select spiral size and determine 

spacing: 

Ach = πdch
2/4

ρs min = .45((Ag/Ach) − 1)(f′c/fyt) where fyt is the yield 

strength of the spiral.

10A (tied columns). Check clear spacing between 

longitudinal bars on one face:

If clear distance between longitudinal bars > 6″, 
additional ties are required.

10B (spiral columns) Clear spacing between spirals, 

smax = 4Asp/dchρs min where Asp = area of spiral

and

1″ < clear s < 3″ or 1 + dsp < s < 3 + dsp″ 

Example 29-3: Design a short square column to carry a 

dead load of 1000k and a live load of 500k.

 1. Use f′c = 4ksi, fy = 60ksi, ρg = .03

 2. Pu = 1.2(1000) + 1.6(500) = 2000k

 3. Ag = Pu /{.65(.8)[.85f′c(1 − ρg) + fyρg]} 

= 2000/{.65(.8)[.85(4)(.97) + 60(.03)]} = 754.44in2

 4. √754.44 = 27.47″ round up to next whole inch. Use 

28 × 28″ column Ag = 784in2

 5. φPc = .65(.8)Ag[.85f′c(1 − ρg)] = .65(.8)(784)(.85)(4)(.97) 

= 1344.53k

 6. Determine load on steel φPs = Pu − φPc = 2000 − 1344.53 

= 655.47k

 7. Ast = φPs/.8(.65) fy = 655.47/.8(.65)(60) = 21in2

 8. From Table A4.1, the area of 16 #11 = 25.0 > 21in2 and 

this is a multiple of 4 (required for even distribution in 

a square column). From Table A4.3, for a core width 

dch = 28 − 1.5(2) = 25″, 16 #11 will fit.

 9. From A4.3, choose recommended tie size: Use #5 tie

s < 48(.625) = 30 or 16(1.41) = 22.56 or 28″ … 

s = 22.5″

10. Check clear spacing between longitudinal bars on one 

face = (h − 2(cover) − 2dtie − (#bars/4 + 1)db)/(#bars/4) 

= (28 − 3 − 2(.625) − 5(1.41))/4 = 4.175″ < 6″ therefore no 

additional ties are required.

Example 29-4: Design a round column for 1000k DL and 

500k LL.

1. Use f′c = 4ksi, fy = 60ksi, ρg = .03

2. Pu = 1.2(1000) + 1.6(500) = 2000k

3. Ag = Pu/{.75(.85)[.85f′c(1 − ρg) + fyρg]} 

= 2000/{.75(.85)[.85(4)(.97) + 60(.03)]} = 615.39 = πh2/4

4. h = √[615.39(4)/π] = 27.99. Round up to next whole 

number and use 28″ dia. column Ag = π282/4 = 615.75in2

5. φPc = .75(.85)Ag[.85f′c(1 − ρg)] 

= .75(.85)(615.75)(.85)(4)(.97) = 1294.6k

6. φPs = Pu − φPc = 2000 − 1294.6 = 705.4k

7. Ast = φPs/.85(.75) fy = 705.4/.85(.75)(60) = 18.44in2

8. From Table A4.1, choose 12 #11 = 19.7in2 From 

Table A4.3, for a core diameter of 28 − 1.5(2) = 25″, 12 

#11 will fit.

9. Using a 5
8 ″ diameter spiral, Ach = πdch2/4 = 452.4in2

ρs min = .45((Ag/Ach) − 1)(f′c/fyt) 

= .45((615.75/452.4) − 1)(4/60) = 0.0108

smax = 4Asp/dchρs = 4(.31)/25(.0108) = 4.59″ 

1 + dsp < s < 3 + dsp″ … s < 3 + 0.625 = 3.625″ 

Use s = 3.5″

29.2 Columns with Large 
Eccentric loads

When the eccentricity of a load is larger than e = .1h in 

rectangular columns and e = .05h in round columns, φPn must 

be reduced.

For axial loads with small eccentricity, all the steel is in 

compression.
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29.2

Column with eccentric load 

But as axial loads in columns with large eccentricity increase, 

the steel on the side away from the load decreases in 

compression and eventually goes into tension. Because of 

the large eccentricity, strain values change and corresponding 

strength reduction factors, φ change. For ease of analysis, the 

ACI Design Handbook SP17(11) Volume 1 provides a series of 

interaction diagrams for the analysis and design of columns 

with large eccentricities. Sample interaction diagrams are 

supplied in Appendix A4.4.

Each diagram is created based on a column type and 

longitudinal bar configuration as shown in the top-right 

corner and the material values f′c and fy. Each diagram is 

also based on a value of γ equal to the ratio of the center-to-

center distance between bars to the column width, h, in the 

direction of bending.

29.3

Typical interaction diagram. Reproduced with permission from the American Concrete Institute
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The horizontal axis of the interaction diagram measures the 

value of Rn = Pne/f′cAgh where Pne = Mn. The vertical axis 

measures the value of Kn = Pn/f′cAg. ρg and is indicated by the 

curved lines and the strain, ε is indicated by the diagonal lines 

that radiate through the ρg curves.

29.2.1 Analysis of columns with large 
eccentricity

The method to analyze a column with large eccentricity is as 

follows:

1. Choose the correct interaction diagram based on f′c, fy, γ, 

column shape and bar configuration from section A4.4.

2.  Calculate ρg = Ast /Ag

3. Locate ρg on diagram chosen in step 1.

4. Calculate slope of the h/e. Draw line originating at bottom 

left (0,0) and following the slope = h/e.

5. Find the intersection of the ρg curve and the h/e line 

from steps 3 and 4. Draw a horizontal line through the 

intersection to locate Kn, and a vertical line through the 

intersection to locate Rn. 

6. Determine φ by checking strain. 

a) If the point of intersection is above 1.0 line for fs/fy, 

then the column steel is in compression and φ = 0.65 

for tied columns and 0.75 for spiral columns. 

b) If the point of intersection falls below the εt = 0.0050 

line, then the column is in tension and φ = 0.9.

c) If the point of intersection falls between the 

lines from cases a and b, then the column is in 

transition. φ = 0.65 + (εt − .002)(250/3) for tied 

columns and φ = 0.75 + (εt − .002)(250/3) for spiral 

columns.

7. φPn = φKnf′cAg and φMn = φRnf′cAgh = φPne 

Example 29-5: Find the practical nominal moment for 

the column shown in Figure 29.4. Eight #9 bars, f′c = 4ksi 

and fy = 60ksi, e = 6″.

1. c.c. bars = 14″, h = 20″ … γ = 14/20 = 0.7 … use 

Diagram A4.4.3

2. ρg = Ast/Ag = 8/16(20) = 0.025

3. Locate ρg = 0.025 on Diagram A4.4.1. Drawn as heavy 

curve on Figure 29.5.

4. slope = h/e = 20/6 = 3.33. Drawn from origin as heavy 

line on Figure 29.5.

29.4

Example 29-5

29.5

Finding Kn and Rn. Interaction diagram reproduced with permission from 

the American Concrete Institute
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5. Find the intersection of the ρg curve and the h/e line 

from steps 3 and 4. Draw a horizontal line through the 

intersection to locate Kn = .56, and a vertical line through 

the intersection to locate Rn = .17.

6. Determine φ by checking strain. The point of intersection 

is above 1.0 line for fs/fy, therefore the column steel is in 

compression and φ = 0.65.

7. φPn = φKnf′cAg = .65(.56)(4)(20)(16) = 466k

φMn = φRnf′cAgh = .65(.17)(4)(320)(20)/12in/f = 236k-f

Or φMn = φPne = 466(6)/12 = 233k-f

The difference between the two values of φMn is due to 

the accuracy of estimating Rn and Kn from the interaction 

diagram. A more accurate reading of the chart gives Rn = .167 

and Kn = .555 yielding…

Kn = .555 … φPn = φKnf′cAg = .65(.558)(4)(20)(16) 

= 464

Rn = .167 … φMn = φRnf′cAgh 

= .65(.167)(4)(320)(20)/12in/f = 232k-f

Or φMn = φPne = 464(6)/12 = 233k-f

Example 29-6: Find the practical nominal moment for 

the column shown in Figure 29.4. if eight #6 bars, 

f′c = 4ksi and fy = 60ksi, e = 10″. 

Assume there is a large applied moment or eccentricity such 

that slope = h/e = 1.0

1. c.c. bars = 14″, h = 20″ … γ = 14/20 = 0.7 … use Diagram 

A4.4.3

2. ρg = Ast / Ag = 3.52/16(20) = 0.011

3. Locate ρg = 0.011 on Diagram A4.4.3. Drawn as heavy 

curve on Figure 27.6. 

4. slope = h/e = 20/10 = 2. Drawn from origin as heavy line 

on Figure 27.6.

5. Find the intersection of the ρg curve and the h/e line 

from steps 3 and 4. Draw a horizontal line through the 

intersection to locate Kn = .26, and a vertical line through 

the intersection to locate Rn = .13

6.  Determine φ by checking strain. The strain, ε = .0035, 

therefore φ = 0.65 + (.0035 − .002)(250/3) = 0.775

7. φPn = φKnf′cAg = .775(.26)(4)(20)(16) = 257.92k

 φMn = φRnf′cAgh = .775(.13)(4)(320)(20)/12in/f = 214.93k-f

 Or φMn = φPne = 257.92(10)/12 = 214.63k-f

Example 29-7: Find the practical nominal moment for 

a 24″ diameter column with 1.5″ cover, #3 spiral, 14 #9 

evenly spaced bars, e = 8″, f′c = 4ksi, fy = 60ksi, e = 8″.

1. Center-to-center distance longitudinal bars 

= 24 − 2(1.5) − 2(.375) − 1.128 = 19.122 

γ = 19.122/24 = .797 … use Fig. A4.4.6

2. Ag = π(24)2/4 = 452.39 

ρg = Ast /Ag = 14/452.39 = 0.03

3. Locate ρg on diagram chosen in step 1.

4. Slope = h/e = 24/8 = 3. Draw line originating at bottom 

left (0,0) and following the slope = 3.

5. Kn = .49, Rn = .195 

6. The point of intersection is just above 1.0 line for fs/fy, 

therefore the column steel is in compression and φ 

= 0.75 for spiral columns. 

7. φPn = φKnf′cAg = .75(.51)(4)(144π) = 692k

 φMn = φRnf′cAgh = .75(.17)(4)(144π)(24)/12in/f = 461k-f

 Or φMn = φPne = 692(8)/12 = 461k-f

29.6

Example 29-6. Interaction Diagram reproduced with permission from the 

American Concrete Institute.
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29.2.2 Design of Columns with Large 
Eccentricity

The method to design a column with large eccentricity is as 

follows:

 1. Determine the factored load, Pu.

 2. Estimate the column size based on ρg = 0.01 and ignoring 

the eccentricity: 

Ag = Pu/[.85(.75)(.85f′c(.99) + .01fy)] for spiral columns

Ag = Pu/[.8(.65)(.85f′c(.99) + .01fy)] for tied columns 

 3. Choose a trial size and calculate Ag.

 4. Assume a bar size and tie or spiral size.

 5. Choose the correct interaction diagram based on f′c, fy, γ, 

column shape and bar configuration from section A.4.4.

 6. Required Kn = Pu/[φf′cAg] and required Rn = Mu/[φfc′Agh]. 

Locate the point of intersection on the diagram.

 7. Determine ρg and φ at the point of intersection.

 8. As = ρgAg

 9. Select bars.

10A. For tied columns, design ties.

10B. For spiral columns, design spirals.

Example 29-8: Design a circular column with spiral 

reinforcement, Pu = 1100kips, e = 4″, f′c = 4ksi and fy = 60ksi.

 1. Pu = 1100k, Mu = Pue = 1100k(4″) = 4400k-in

 2. Ag = Pu/[.85(.75)(.85f′c(.99) + .01fy)] 

= 1100/[.85(.75)(.85(4)(.99) + .01(60))] = 435.07in2

 3. h = √(435.07(4)/π) = 23.54″ use h = 24″, Ag = π(242)/4 

= 452.39in2

 4. Assume #9 size and a 3/8″ spiral size.

 5. c.c. long. Bars = 24 − 3 − 2(.375) − 1.128 = 19.122″

γ = 19.122/24 = .79675, use Table A4.4.6

29.8

Example 29-8. Interaction diagram reproduced with permission from the 

American Concrete Institute

 6. Required Kn = Pu/[φf′cAg] = 1100/.75(4)(452.39) = .811

Required Rn = Mu/[φfc′Agh] = 4400/[.75(4)(452.39)(24)] 

= 0.135

 Locate the point of intersection on the diagram.

 7. ρg = .032 and φ = 0.75 (above fs/fy = 1.0 line)

 8. As = ρgAg = .032(452.59) = 14.48in2

 9. From Table A4.2, 15 #9 would work, and from Table A4.3, 

the maximum number of #9s that can be placed in a 

single row within a core diameter of (24 − 3) 21″ is 15; 

therefore okay

29.7

Example 29-7. Interaction diagram reproduced with permission from the 

American Concrete Institute
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10B. For spiral columns, design spirals.

dch = 24 − 3 = 21″ & Ach = π(212)/4 = 346.36in2

ρs required = .45(Ag/Ach − 1)(fc′/fy) 

= .45(452/346.36 − 1)(4/60) = .0091

s = 4Asp/dchρs = 4(.11)/21(.0091) = 2.3″

 USE: spiral spacing @ 2.25″
 Clear spacing = 2.25 − .375 = 1.875 > 1″ and < 3″ 

… okay

ANSWER: 24″ diameter column with 14 #9 and 3/8 ″ spiral at 

2.25″o.c.

Example 29-9: Design a square column with ties 

Pu = 1100kips, e = 4″, f′c = 4ksi and fy = 60ksi.

 1. Pu = 1100k, Mu = Pue = 1100k(4″) = 4400k-in

 2. Estimate the column size based on ρg = 0.01 and ignoring 

the eccentricity: 

Ag = Pu/[.8(.65)(.85f′c(.99) + .01fy)] = 1100/[.8(.65)

(.85(4)(.99) + .01(60))] = 533.38in2

 3. h = √533.38 = 23.1 use 24″ Ag = 242 = 576in2.

 4. Assume #9 size and #4 tie.

 5. c.c long. Bars = 24 − 3 − 2(.375) − 1.128 = 19.122″

 γ = 19.122/24 = .79675, use Diagram A4.4.2

29.9

Example 29-9. Interaction diagram reproduced with permission from the 

American Concrete Institute

 6. Required Kn = Pu/[φfc′Ag] = 1100/.65(4)(576) = .735

 Required Rn = Mu/φfc′Agh = 4400/[.65(4)(576)(24)] = 0.122

 Locate the point of intersection on the diagram.

 7.  g = .018 and φ = 0.65

 8. As = ρgAg = .018(576) = 10.37in2

 9. Because the column is square, the number of bars 

must be a multiple of 4. Therefore, use 12 #9, As = 12.0. 

Checking with Table A4.3 shows 16 #9 are allowed in a 

24″ square column.

10A. For tied columns, design ties.

 Design ties: 

dch = 24 − 3 = 21″ and Ach = 441

s = smallest of 16(1.128) = 18.05″ or 48(.5) = 24″ or 

16″ Use #4 ties @16″

Check clear spacing of longitudinal bars:

(h − 2(cover) − 2dtie − (#bars/4 + 1)db)/(#bars/4) 

= (24 − 3 − 2(.5) − 4(1.128))/3 = 5.16″ < 6″, therefore 

no additional ties are required.

Practice Exercises:

29-1: Find allowable axial load on a 12 × 12″ tied column with 

a maximum unbraced length of 14′, f′c = 4ksi, fy = 60ksi with 

eight #8 longitudinal bars.

29-2: Check the adequacy of a short 22″ × 22″ tied column 

with a 1.5″ cover, f′c = 4ksi, fy = 60ksi, 16 #9 and Pu = 1200k. 

The column ties are #4 bars at 22″o.c.

29-3: Design a short square column to carry a dead load of 

500k and a live load of 800k.

29-4: Design a short round column with spiral reinforcement 

to carry a dead load of 500k and a live load of 800k.

29-5: Find the practical nominal moment for the column 

shown below. Eight #8 bars, f′c = 4ksi and fy = 60ksi, e = 3″.

29-6: Find the practical nominal moment for the column 

shown in Figure 29.10. Eleven #8 bars, f ′c = 4ksi and 

fy = 60ksi, e = 6″.
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29-7: Design a round column with spiral reinforcement. 

Pu = 800kips, e = 6″, f′c = 4ksi and fy = 60ksi.

29-8: Design a square column with ties Pu = 1500kips, 

e = 10″, f′c = 4ksi and fy = 60ksi.

29.10

Chapter 29 Practice exercises



th i r ty

Development L eng th

or

cb = (center to center distance of bar spacing)/2 

Ktr = transverse reinforcement index = 40Atr/sn where

Atr = the total cross-sectional area of the transverse 

reinforcement

s = the spacing of the transverse bars in the area 

where the development length is being calculated.

n = the number of transverse bars in the area where 

the development length is being calculated.

The ACI code allows Ktr = 0. This is conservative and 

simplifies the equations and therefore, Ktr = 0 will be used in 

this text.

db = diameter of the bar

λ = modification factor based on concrete weight:

λ = 1.0 for normal weight concrete

λ = 0.85 for san lightweight concrete

λ = 0.75 for all other lightweight concrete

KER = As required/As used: This reduction factor is not included in 

the ACI equation for development length, but may be used 

as a factor with the development length found from ACI 

Equation 12-1.

Reinforced concrete design is based on the assumption that 

there is an adequate bond between the concrete and the 

reinforcement bars to prevent slippage and ensure the two 

elements act together as one system. Development length 

is the length of reinforcement bar required to ensure that the 

bond between the concrete and steel is perfect and without 

slippage.

Factors affecting development length include:

Ψt = reinforcement location factor as dictated by ACI 12.2.4: 

Ψt = 1.3 if there is more than 12″ of concrete below 

the bar

Ψt = 1.0 all other cases 

Ψe = coating factor

Ψe = 1.0 uncoated & galvanized

Ψe = 1.5 epoxy coated with cover < 3db or clear 

spacing 6db between bars

Ψe = 1.2 all other conditions

Ψs = size factor

Ψs = .8 for #6 and smaller

Ψs = 1.0 for #7 and larger

cb = spacing factor is the smaller of: 

cb = the distance from the center of the bar to the 

nearest edge 
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30.1 Development Length 
in Tension Bars

Ld = KERKD[ρtρeρs/(cb + Ktr)/db](db) where 

KD = (3/40)(fy/λ√f′c) and

(cb + Ktr)/db < 2.5

The method for calculating Ld in tension bars is as follows:

1. Calculate KD = (3/40)(fy/λ√f′c) 
2. Determine Ψt, Ψe, Ψs, cb 

3. Assume Ktr = 0, find Calculate cb/db

4. Calculate KER = As required/As used

5. Ld = KERKD[ρtρeρs/(cb/db)](db)

30.1

Example 30-1

Example 30-1: Find Ld for the uncoated #7s in Figure 30.1, 

for f′c = 4ksi, fy = 60ksi and required As = 1.77in2.

1. Calculate KD = (3/40)(fy/λ√f′c) = (3/40)(60000/(1(√4000)) 

= 71.15

2. Determine Ψt, Ψe, Ψs, cb. 

Ψt = 1.0 (less than 12″ below reinforcing steel)

Ψe = 1.0 (uncoated & galvanized)

Ψs = 1.0 (#7 and larger)

cb:

center to edge = .875/2 + .375 + 1.5 = 2.31

1
2
 center to center = .5(11.5 − 2(1.5 + .375 + .875/2))/2 

= 1.72

cb = 1.72

3. Assume Ktr = 0, calculate cb/db = 1.72/0.875 = 1.96 and 

2.5 … use 1.96

 If cb/db was found to be greater than 2.5, then 2.5 would 

be used.

4. Calculate KER = As required/As used = 1.77/1.8 = 0.983

5. Ld = KERKD[ρtρeρs/(cb/db)](db) = 0.983(71.15)[1/1.96](.875) 

= 31.23″

30.2 Development Length 
in Tension Bars with Hooks

If development length cannot be reached, use a mechanical 

fastener such as a hook. Cover for hooks varies with the 

degree of bending and the size of the hook. Some standard 

ACI hooks are shown in Figure 30.2. D = 6db for #3 to #8 

bars and D = 8db for #9 to #11 bar for hooks in primary 

reinforcement. For ties and stirrups with hooks, D ≥ 4db for 

#3 to #5 bars and 6db for #6 to #8 bars.

Use the ACI Code, Section 12.5 formula for bars in tension 

with a standard hook:

Ldh = .02ρefydb/λ√f′c where

Ψe = 1.2 for epoxy coating, 1.0 otherwise

λ = 0.75 for lightweight concrete, 1.0 otherwise

Ld = Ldh(Ccover)(Cencl)

Ccover = Cover factor = 0.7 

If using # 11 and smaller bars with a side cover ≥ 2.5″

 For 90° hooks: extension cover ≥ 2.0″

Cencl = Enclosure factor = 0.8

90° hooks with # 11 and smaller bars within 

perpendicular ties or stirrups spaced ≤ 3db along Ldh or 

within parallel ties or stirrups spaced ≤ 3db along bend 

and tail extension.

180° hooks with # 11 and smaller bars within 

perpendicular ties or stirrups spaced ≤ 3db along Ldh. 

Example 30-2: Find Ld for a 90° hook of uncoated #7 in 

Figure 30.1, for f′c = 4ksi, fy = 60ksi, side cover = end cover 

= 1.5″ and required As = 1.77in2.
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30.2

Standard hook shapes

ρe = 1

Ldh = .02ρefydb/λ√f′c = .02(1)(60,000)(.875)/√4000 

= 16.6″

Ccover = 1, Cencl = 0.8 (#7 bars) 

Ld = Ldh(Ccover)(Cencl) = 16.6(1)(0.8) = 13.28″

30.3 Tension Splices

 Class A: lap length = 1.0Ld if the area of reinforcement is 

twice that for the length of splice and not more than 50% 

of total reinforcement is spliced within the required lap 

length.



D E V E L O P M E N T  L E N G T H 261

 Class B: lap length = 1.3Ld (everything not class A)

 Minimum Lap Length = 12″

Splices in tension tie members must be full welds or full 

mechanical splice, staggered at least 30″, ACI recommends 

all members have staggered splices. 

30.4 Development Length 
in Compression Bars

8″ > Ldc = KER(.02dbfy/λ√f′c) ≥ .0003fydb

Ldc may be reduced by a factor of .75 if enclosed by a spiral 

not less than 1
4 ″ in diameter, not more than 4″ pitch or if 

enclosed by #4 ties spaced not more than 4″

30.5 Bar Cut-offs

Beam reinforcement is based on on the design moment, Mu. 

The maximum moment in a beam usually occurs around the 

midspan. Near the supports, the moment is reduced and 

fewer reinforcing bars may be used. The stopping point for 

reinforcing bars can be determined by examining the moment 

diagram. Development length and tension splice lengths need 

to be considered in this process. Further, ACI code has bar 

cut-off requirements as detailed in Figure 30.3.

Example 30-3: A simple beam 16″ by 30″ with a span of 

30′ carries a dead load of 1k/f and a live load of 1k/f. 

The reinforcement is six #7 evenly spaced inside a #3 stirrup. 

f′c = 4ksi, fy = 60ksi. Find at what point bars can be cut off.

1. wu = 1.6(1) + 1.2[1 + .15(16/12)(30/12)] = 3.4k/f

2. Mu = 3.4(30)2/8 = 382.5k-f = 4590k-in

3. For six #7, As = 3.60in2

4. As min = .0033(16)(27.69) = 1.46in2

5. Find the moment, φMn for four #7:As = 2.40in2 > As min) 

= 1.46in2 … okay

d = 30 − 1.5 − .375 − .875/2 = 27.69″

a = fyAs/(0.85f′cb) = 60(2.4)/(.85(4)(16) = 2.65″

Mn = fyAs(d − a/2) = 60(2.4)(27.69 − 2.65/2) 

= 3796.56k-in = 316.38k-f

φMn = .9(316.38) = 284.74k-f = wx2/2

x = √[284.74(2)/3.4] = 12.94′ where x is the distance 

from the support.

6. Check the development length to see if two bars can be 

cut at x = 12.9′:

KD = (3/40)(fy/λ√f′c) = (3/40)(60000/(1(√4000)) = 71.15

db = .875″

Ψt = 1.0, Ψe = 1.0, Ψs = 1.0

 cb = lesser of:

center to edge = .875/2 + .375 + 1.5 = 2.31

Or 1
2
 center to center = .5(16 − 2(1.5 + .375 + 

.875/2))/5 = 1.1375″
cb/db = 1.14/.875 = 1.30 2.5 … okay 

Ld = 71.2(.875)/1.30 = 47.92″

 This means the two bars cannot be cut until at least 4ft 

from centerline; or to x = 15 − 4 = 11′.

30.3

Bar cut-off and splice requirements. Reproduced with permission from 

the American Concrete Institute
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7. The cut-off must also be closer to the support than 

the theoretical cut-off point by the larger of d or 12db: 

d = 27.69″ = 2.3′ and 12db = 12(.875)/12 = .875′. 
 2.3′ governs … x = 12.9 − 2.3 = 10.6′.
8. Terminate two bars at the lesser of answers from step 6 

and step 7:

 Terminate two bars at 10.6′.
9. Find the moment, φMn for two #7: As = 1.20in2 < As min 

= 1.46in2 … cannot cut down to two bars.

30.6 Development Length 
for Positive Moment at 
Simple Supports

An additional rule for development length in simply supported 

members must be considered.

Ld ≤ La + Mn/Vu at the point of inflection and

Ld ≤ La + 1.3Mn/Vu at the support

Where La = the greater of effective depth d or 12db 

and Vu = total applied shear at the section. 

Example 30-4: Consider the beam in Example 30-3. Check 

the development requirements for positive moment at 

the supports if bars extend 4″ past centerline of support.

1. Vu = WuL/2 = 3.4k/f(30′)/2 = 51k

2. Mn = 316.38k-f (remember 2 bars were cut off before 

reaching the support)

3. La = d = 27.69″ or 12db = 12(.875) = 10.5″ use greater 

length: La = 27.69″ 

4. Ld ≤ La + 1.3Mn/Vu = 27.69 + 1.3(316.38(12in/f)/51) 

= 126.4″
5. From example 30-3, Ld for the four #7 was determined to 

be Ld = 47.92″ < 126.4″ … okay

Practice Exercises:

30-1 through 30-3: Find the development length for the 

reinforcement bars shown in Figure 30.4.

30-4: A simple beam 15″ by 28″ with a span of 24′ three point 

loads, Pu = 50k at x = 6′, 12′ and 18′. The reinforcement is 

six #8 evenly spaced inside a #3 stirrup. f′c = 4ksi, fy = 60ksi. 

Find at what point bars can be cut off.

30.4

Chapter 30 Practice exercises



th i r ty one

Concrete  Wal ls

b = wall thickness (in)

bmin = 1/25 unsupported height or length > 4″

bmin = 7.5″ for exterior basement or foundation walls

h = Vertical distance between supports

Ag = gross area in section (in2)

k = Effective Length Factor

= 0.8 if restrained against rotation at one or both ends

= 1.0 if unrestrained against rotation at both ends

= 2.0 for wall not braced against translation

Le = The effective length of the wall is the smaller of:

= the center-to-center distance between loads or 

= width of bearing plus four times wall width.

= 12″ for uniform loads

Ashmin = minimum horizontal reinf. 

= .0025(12b) = .03b in2/f – for #6 and larger

= .002(12b) = .024b in2/f – for # 5 or smaller bars & 

fy ≥ 60ksi

Asvmin = minimum vertical reinf. 

= .0015(12b) = .018b in2/f – for #6 and larger

= .0012(12b) = .0144b in2/f – for #5 or smaller bars & 

fy ≥ 60ksi

This chapter explains the design methods for retaining walls, 

bearing walls and shear walls. While all three types may have 

significant vertical or gravity loads, shear walls are designed 

to handle lateral loads parallel to the face of the wall and 

retaining walls are designed to handle lateral loads normal to 

the face of the wall.

31.1 Bearing Walls

31.1

Bearing Walls

Bearing walls carry applied vertical loads. When the vertical 

loads are applied in the middle third of the wall cross-section, 

the axial load strength, φPn, is expressed as:

φPn = 0.55φf′cAg[1 − (kh/32b)2] where:

φ = 0.65 
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If b > 10″, bearing walls other than basement walls must have 

reinforcement in each direction on each face.

The bearing design strength = φ(.85f′cA1) where A1 is the 

bearing area.

Max. spacing of bars, s = 3b < 18″

Method for design of bearing walls:

1. Find minimum wall thickness, bmin. b = bmin rounded up to 

next whole inch.

2. Check that bearing strength of concrete = φ(.85f′c)A1 ≤ Pu. 

If not, increase b.

3. Find effective length of wall, Le.

4. Check that axial load strength, 

φPn = 0.55φf′cAg[1 − (kh/32b)2] ≥ Pu.

5. Select steel based on: Asvmin and Ashmin 

6. Check that maximum spacing of bars, s = 3b ≤ 18″. 
7. Check if more than one layer of reinforcement is 

necessary.

Example 31-1: Design a reinforced concrete bearing wall 

to support 12″ wide beams spaced at 10′o.c. 

The beams bear on the full thickness of the wall. The 

bottom of the wall is a fixed connection, the top is a pinned 

connection (braced against lateral movement but not against 

rotation). The wall is 20′ high and the load from each beam, 

Pu = 30k. f′c = 4ksi, fy = 60ksi.

1. bmin = h/25 = (1/25)(20)(12) = 9.6″ … b = 10″
2. Bearing strength of concrete = φ(.85f′c)A1 = 0.65(.85)(4)(8)

(12) = 212.16k

212.6k > 30k = Pu … okay

3. Effective length of wall is lesser of: 

distance between loads = 10′ = 120″ or 

width of bearing + 4b = 12 + 4(10) = 52″ Use 52″
Le = 52″

4. φPn = 0.55φf′cAg[1 − (kh/32b)2] = .55(.65)(4)(10)(52)[1 − 

(.8(20)(12)/32(10))2] = 475.9k > 30k … okay

5. Reinforcing steel: (assume #5 or smaller)

Vertical steel: As = .0144)(10) = .144 use #4 @16″
Horizontal Steel: As = .024(10) = .24 use #4 @ 10″

6. Check max. spacing of bars, s = 3(10) ≤ 18 … s = 18″ 

… okay

7. One layer of reinforcement may be used because the wall 

thickness, h ≤ 10″.

Example 31-2: Design a 24′ long reinforced concrete 

bearing wall to support a slab bearing on the full 

thickness of the wall. 

The bottom and top of the wall are fixed connections. 

The wall is 16′ high and the load from the slab, Wu = 6k/f, 

f′c = 4ksi, fy = 60ksi.

1. bmin = (1/25)(16)(12) = 7.68″ … b = 8″.
2. φ(.85f′c)A1 = 0.65(.85)(4)(8)(12″) = 212.16k > 6k/f(1′) = 6k 

= Pu … okay

3. Le = 12″
4. Check that axial load strength, φPn = 0.55 φf′cAg[1 − 

(kh/32b)2] = .55(.65)(4)(8)(12)[1 − (.8(16)(12)/32(8))2] 

= 87.86k > 6k/f(1′) = 6k … okay

5. Select steel based on: 

Vertical steel: As = .0144(8) = .12 use #4 @18″
Horizontal Steel: As = .024(8) = .20 use #4 @ 12″

6. Check that maximum spacing of bars, s = 3b = 3(8″) 

= 24″ or s ≤ 18″ … s = 18″. 
7. One layer of reinforcement may be used because the wall 

thickness, b ≤ 10″.

31.2 Shear Walls

Shear walls are capable of resisting lateral loads as well as 

supporting vertical loads. As such, they require additional 

reinforcement and a different design method.

h = overall height of wall

L = overall length of wall

b = thickness of wall

A = bL = area of wall cross-section

G = shear Modulus of Elasticity = E/2.4 for concrete

I = bL3/12

ki = 3EI/h3 + GA/1.2h = (Eh/12)(L/h)3 + (Eh/2.88)(L/h)

Fi = Ftotal(ki/Σki) where the stiffness, k, is determined 

by the size and material of each wall. If the lateral 

resistance system uses shear walls with equal values 

for k, Fi = Ftotal/number of walls.

d = 0.8(L)

φVn = maximum allowable shear strength = 10φ(√f′c)
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bd > Vu

φVc = 2φ(√f′c)bd If Vu > φVc, shear reinforcement is 

required.

Method for design of shear walls:

 1. Determine factored lateral loads. 

 2. Determine the portion of the lateral load carried by each 

shear wall, Fi = Ftotal(ki/ktotal) .

 3. Assume the wall thickness, b = 8″. Assume placement of 

reinforcement on both faces.

 4. Check the maximum allowable shear strength of wall 

where d = 0.8(L). φVn = 10φ(√f′c)bd > Vu (shear at base of 

wall = sum of lateral loads)

 5. φVc = 2φ(√f′c)bd If Vu > φVc, shear reinforcement is 

required.

 6. Select trial size and determine Av (for example, #4 on both 

faces = .2in2 × 2 = .4in2 = Av)

 7. Determine spacing horizontal shear reinforcement, 

sh = φfydAv/[Vu − φVc] 

 8. Maximum spacing is smallest of: L/5, 3b or 18″
 9. Determine ρL = .0025 + .5(2.5 − h/L)(Av/shb − .0025) ≥ 

0.0025

10. Determine spacing of vertical shear reinforcement, 

sv = AvρL/b

11. Maximum spacing is smallest of: L/3, 3b or 18″
12. Calculate Mu = moment at base of wall due to factored 

lateral loads.

13. Assume φ = 0.9 for flexure

14. As = [.85fc′bd/fy][1 − √[1 − 2 Mu /φ.85fc′bd2] 

15. Check that As ≥ As min = 3bd√fc′/fy ≥ 200bd/fy. If not, use 

As min.

16. Select bars from A4.2. These bars are to be placed at 

each end of the wall.

Example 31-3: Design reinforcement for the shear wall 

shown in Figure 31.3. Use f′c = 4ksi, fy = 60ksi.

31.3

Shear wall example

 1. Determine factored lateral loads. F = 46k + 71k + 45k + 

27k + 16k = 205k

 2. Determine the portion of the lateral load carried by each 

shear wall, Fi = Ftotal(ki/ktotal) = 205k

 3. Assume the wall thickness, b = 8″. Assume placement of 

reinforcement on both faces.

 4. d = 0.8(L) = .8(20′)(12″/f) = 192″, 

φVn = 10φ(√f′c)bd = 10(.75)( √4000)(8)(192)/1000#/k 

= 728.6k 

φVn = 728.6k > Vu = 205k … okay

31.2

Shear walls
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 5. φVc = 2φ(√f′c)bd = 2(.75)(√4000)(8)(192)/1000 = 145.7k 

Vu = 205k > 145.7k = φVc … shear reinforcement is 

required. 

 6. Use #4 on both faces = .2in2 × 2 = .4in2 = Av.

 7. Determine spacing horizontal shear reinforcement, sh = 

φfydAv/[Vu − φVc] = .75(60)(192)(.4)/(205 − 145.7) = 58.28″
 8. smax = 20′(12′/f)/5 = 48″ or = 3b = 3(8) = 24″ or 18″ … 

sh = 18″, use #4@18″
 9. Determine ρL = .0025 + .5(2.5 − h/L)(Av/shb − .0025) 

= .0025 + .5(2.5 − 65′/20′)(.4/(18(8)) − .0025) = .0024 

< 0.0025 … ρL = .0025 

10. Determine spacing of vertical Shear reinforcement, 

sv = Av/ρLb = .4/.0025(8) = 20″ 

11. smax = 20′(12′/f)/5 = 48″ or = 3b = 3(8) = 24″ or 18″ … 

sv = 18″, use #4@18

12. Mu = 46(65) + 71(53) + 45(41) + 27(30) + 16(19) = 9712k-f 

= 116544k-in 

13. Assume φ = 0.9 for flexure

14. As = [.85fc′bd/fy][1 − √[1 − 2Mu/φ.85fc′bd2] = [.85(4)

(8)(192)/60][1 − √[1 − 2(116544)/[.9(.85)(4)(8)(192)2] 

= 12.08in2

15. Check that As ≥ As min = 3bd√fc′/fy = 3(8)(192)

(√4000/60000) = 4.86 ≥ 200bd/fy = 200(8)(192)/60000 

= 5.12 … therefore As min = 5.12 < 12.13 … okay 

16. From Table A4.1 choose 8 #11 with As = 12.5 > 12.13in2.

 Place 4 #11 VEF (vertical each face) at each end.

31.3 Retaining Walls

Retaining walls are used to resist the lateral forces of 

hydrostatic soil pressure. A retaining wall may also carry a 

vertical load as in the case of basement walls, but in this 

section only the design for the lateral forces is considered. 

Retaining walls can fail by sliding, sinking, overturning or 

buckling.

Basic types of retaining walls are shown in Figure 31.5. 

A gravity wall is one in which the bulk of the material is 

the deterrent to lateral forces. Its weight creates enough 

friction to prevent sliding and enough moment about the toe 

to prevent overturning. Its base is often wide to be able to 

distribute the loads to the ground without sinking. 

31.4

Example 31-3

31.5

Retaining walls
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A cantilever wall is a retaining wall in which a moment 

connection between the stem and the footing allow the stem 

to be thinner than in a gravity wall. The heel utilizes the load 

of the soil sitting on it to counteract overturning. 

Forces on a retaining wall with level backfill:

31.6

Forces on a retaining wall with level backfill

Ha = Kaweh
2/2 = the horizontal equivalent force of the 

soil

We = density of soil

h = height of wall

Ka = coefficient of active earth pressure

φ = internal friction angle of soil

Ka = (1 − sinφ)/(1 + sinφ)

KaWe = equivalent fluid pressure in pcf

Hp = Kpweh1
2/2 = horizontal resisting force of the soil in 

front of the retaining wall.

We = density of soil

h1 = height of earth on resisting side

Kp = 1/Ka = coefficient of passive earth pressure

31.3.1 Checking a Wall for the Four 
Modes of Failure

The first three modes of failure are Overturning, Sliding and 

Sinking. The fourth mode of failure is failure of the concrete 

itself. This is covered in section 31.3.2.

31.3.1.1 Overturning

The factored overturning moment = Mo = 1.6Ha(h/3) 

= 1.6KaWeh
3/6

The factored resisting moment = Mr 

= 1.6Hp(h1/3) + 1.2Wwall(d1) + 1.2Wsoil(d2) where:

d1 = distance from toe to center of gravity of the wall

d2 = distance from toe to center of gravity of soil 

resting on heel

Factor of safety:

Mr/Mo ≥ 1.5

Example 31-4: Check the adequacy of the retaining wall 

in Figure 31.7 against overturning. 

Soil density = 80pcf, concrete density = 150pcf, φ = 23 and 

equivalent fluid pressure, KaWe = 35pcf.

31.7

Example 31-4

Mo = 1.6Ha(h/3) = 1.6KaWeh
3/6 = 1.6(35)(12)3/6 

= 16128#-f

Kp = 80pcf/35pcf = 2.286

Mr1 = 1.6(2.286)(80pcf)(4)3/6 = 3121.15#-f

Mr2 = 1.2(150)(1)(11)(2.5′) = 6187.5#-f

Mr3 = 1.2(150)(7)(1)(3.5) = 4410#-f

Mr4 = 1.2(80)(4)(11)(5′) = 21120#-f
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Mr5 = 1.2(80)(2)(3)(1) = 576#-f

Mr = 3121.15 + 6187.5 + 4410 + 21120 + 576 

= 35415#-f

Factor of safety:

Mr/Mo = 35415/16128 = 2.20 > 1.5 … retaining wall 

will not overturn.

31.3.1.2 Sliding

Sliding occurs when the horizontal forces against the wall 

are not counteracted by sufficient resisting forces. Resisting 

forces are created by the friction between the soil and the 

concrete.

Typical coefficient of friction ƒ = 0.5 between soil and 

concrete

Resisting force F = ƒΣW

Sliding force S = Ha − Hp

Factor of safety: F/S ≥ 1.5

Example 31-5: Check the retaining wall in Figure 31.7 

against sliding. Soil density = 80pcf, concrete density 

= 150pcf, equivalent fluid pressure = 35pcf.

Kp = 80pcf/35pcf = 2.286

W1 = 1.2(150pcf)(1′)(11′) = 1980#/f

W2 = 1.2(150)pcf(7′)(1′) = 1260#/f

W3 = 1.2(80pcf)(4′)(11′) = 4224#/f

W4 = 1.2(80pcf)(2′)(3′) = 576#/f

ΣW = (1980 + 1260 + 4224 + 576)(1′ thickness of wall) 

= 8040#

F = 0.5(8040#) = 4020#

S = Ha − Hp = 1.6Kaweh
2/2 − 1.6Kpweh1

2/2 

= 1.6(35)(12)2/2 − 1.6(2.286)(80)(4)2/2 = 2276.35#

Factor of safety = F/S = 4020/2276.35 = 1.77 > 1.5 

… okay 

31.3.1.3 Sinking

Sinking occurs if the downward pressure caused by weight of 

the soil and the wall distributed along the footing of the wall 

are greater than the upward allowable soil bearing pressure. 

31.8

Example 31-6
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pa = The allowable soil bearing pressure in psf.

ps = P/A ± Mc/I = soil pressure where

P = ΣW

A = area of the footing acting on soil = (L′)(1′ swath) 

= Lft2

e = distance from the centerline of footing to the point 

of the resultant vector 

M = Pe = (ΣW)(e) 

c = distance from centerline to edge = L/2

I = L3/12

ps = ΣW/L ± 6eΣW/L2 = (ΣW/L)(1 ± 6e/L)

There is a resultant vector that acts at the base of the footing 

at a distance X from the toe. The horizontal component of 

that vector is Ha − Hp and the vertical component is ΣW.

X = (Mr − Mo)/ΣW = the distance from the toe to the 

point where the resultant vector acts at the base of the 

footing.

Example 31-6: Determine whether the retaining wall in 

Figure 31.7 is adequate against sinking if the allowable 

soil bearing pressure, pa = 2500psf.

From example 31-4, Mr = 35415#-f and Mo = 16128#-f.

From example 31-5, ΣW = 8040#

X = (Mr − Mo)/ΣW = (35415 − 16128)/8040 = 2.40′

Centerline of the footing = 7′/2 = 3.5′

e = 3.5 − 2.4 = 1.1′

Soil pressure = ps = P/A ± Mc/I

ps = (ΣW/L)(1 ± 6e/L) = (8040/7)(1+ 6(1.1/7) = 2231.51 

@ the toe and

ps = (8040/7)(1 − 6(1.1/7) = 65.63 @ the heel

ps = 65.63 + 309.41x

ps = 2231.51psf < pa = 2500psf … retaining wall is 

adequate against sinking.

31.3.2 Retaining wall design

Reinforcement for each component of a cantilever retaining 

wall—the heel, toe and stem—can be designed as a 

cantilevered beam. 

Example 31-7: Design the reinforcement for the retaining 

wall in Figure 31.7 using f′c = 3000psi and fy = 60,000psi.

31.9

Shear and flexure in heel

Shear in heel: 

Factored concrete weight: = 1.2(150pcf)(1′)(1′) 
= 180#/f↓

Factored soil weight: = 1.2(80pcf)(1′)(11′) = 1056#/f↓

ps = 65.63 + 309.41x

Soil bearing pressure changes from 65.63psf @ x = 0′ to 

1303.28psf @ x = 4′, a difference of 309.41(4) = 1237.64psf.

W1 = −1056 − 180 + 65.63 = −1170.37#/f

W2 = 309.41x 

Wx = −1170.37 + 309.41x

Vx = −1170.37x + 154.71x2

Vmax is at Wx = 0. X = 1170.37/309.41 = 3.78′

Vu = −1170.37(3.78) + 154.71(3.78)2 = −2213.44k
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Assume #8 bars

d = 12″ − 2″ cover(steel at top of footing) − .5 = 9.5″

φVc = φ(2√f′c)bd = .75(2)(√3000)(12)(9.5) = 9366# > Vu 

… okay

φVc/2 = 9366/2 = 4683# > 2213.44# = Vu … Stirrups 

are not required.

Flexure in heel: Take the moment about x = 4′.

Wu = 4′(180+1056) = 4944#↓ and c.g. is at x = 2′

P1 = (1′)(65.63psf)(4′) = 2400#↑ and c.g. is at x = 2′

P2 = (1′)(1237.64)(4′)/2 = 2475.28#↑ and c.g. is at 

x = 2(4′)/3 = 2.67′

Mu = 4944#(2′) − 2400#(2′) − 2475.28#(4′ − 2.67′) 
= 1787.63#-f = 21451.52k-in

As = [.85fc′bd/fy][1 − √[1 − 2Mu/φ.85fc′bd2] = [.85(3000)

(12)(9.5)/(60,000)][1 − √[1 − 2(21451.52)/(.9(.85)(3000)

(12)(9.5)2)] = 0.042in2

As min = greater of:

3bd√fc′/fy = 3(12)(9.5)√3000/60,000 = 0.312 

Or 200bd/fy = 0.38

As < As min = 0.38, therefore As = 0.38in2

Use # 6 steel: A = 0.442in2 

Spacing ≥ .442(12)/.38 = 13.96″

Main Steel: #6@ 14″

Shrinkage steel: .0018(12″)(12″) = 0.26 

18″ ≥ Spacing ≥ .442(12)/.26 = 20.4″ 

Shrinkage Steel: #6 @ 18″

Shear in toe: 

Factored concrete weight: = 1.2(150pcf)(1′)(1′) 
= 180#/f↓

Factored soil weight: = 1.2(80pcf)(1′)(3′) = 288#/f↓

31.10

Shear and flexure in toe

Soil bearing pressure changes from 1612.69psf @ x = 0′ 
to 2231.51psf @ x = 2′, a difference of 2231.51 − 1612.69 

= 618.82psf

W1 = −180 − 288 + 1612.69 = 1144.69#/f↑

W2 = 309.41x#/f↑

Wx = 1144.69 + 309.41x 

Vx = 1144.69x + 154.71x2

Vmax is at x = 2′

Vu = 1144.69(2) + 154.71(2)2 = 2908.22k

Assume #8 bars

d = 12″ − 2″ cover(steel at top of footing) − .5 = 9.5″

φVc = φ(2√f′c)bd = .75(2)(√3000)(12)(9.5) = 9366# > Vu 

… okay

φVc/2 = 9366/2 = 4683# > 2908.22# = Vu … Stirrups 

are not required.

Flexure in toe: Take the moment about x = 0.

Wu = 2′(180 + 288) = 936#↓ and c.g. is at x = 1′

P1 = (1′)(1612.69psf)(2′) = 3225.38#↑ and c.g. is at 

x = 1′
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P2 = (1′)(618.82)(2′)/2 = 618.82#↑ and c.g. is at 

x = 2(2′)/3 = 1.33′

Mu = 936#(1′) − 3225.38#(1′) − 618.82#(1.33′) 
= −3114.47#-f = 37373.68k-in

As = [.85fc′bd/fy][1 − √[1 − 2Mu/φ.85fc′bd2] = [.85(3000)

(12)(9.5)/(60,000)][1 − √[1 − 2(37373.68)/(.9(.85)(3000)

(12)(9.5)2)] = .073in2

As min = 0.38 as calculated above

As < As min = 0.38, therefore As = 0.38. And the steel is 

the same as in the heel:

Main Steel: #6@ 14″

Shrinkage steel: #6 @ 18″

31.11

Shear and flexure in stem

Shear in stem: 

The horizontal force kaWeh varies from 0 @ y = 11′ to 35(11) 

= 385psf @ y = 0′

Ha = 1.6(385psf)(1′)(11′/2) = 3388#

Hp is not considered because there may be a time when this 

soil is removed.

Vu = Ha = 3388#

d = 12 − 2″ cover(steel at outside of footing) − .5(#8 

bars) = 9.5″

φVc = φ(2√f′c)bd = .75(2)(√3000)(12)(9.5) = 9366# > Vu 

… okay

φVc/2 = 9366/2 = 4683# > 3388# … no stirrups 

required.

Flexure in stem: Take moment at y = 0.

Mu = [(3388#)(11′/3)] = 12422.67#-f = 149,072#-in

As = [.85fc′bd/fy][1 − √[1 − 2Mu/φ.85fc′bd2] = [.85(3000)

(12)(9.5)/(60,000)][1 − √[1 − 2(149072)/(.9(.85)(3000)

(12)(9.5)2)] = .30in2

As min = 0.38 

As < As min = 0.38, therefore As = 0.38. and the steel in 

the stem is the same as in the heel and toe:

Main steel: #6@ 14″

Shrinkage steel: #6 @ 18″

31.3.3 Sloped backfill

A sloped backfill affects the forces on the wall. Not only does 

the weight of soil on the heel increase, but the hydrostatic 

pressure is not horizontal, meaning that there is both a 

horizontal and vertical component to it.

31.12

Retaining wall with sloped backfill

hb = height of backfill at end of heel taken from bottom 

of heel

θ= slope of backfill

φ = internal friction angle of soil

 

= θ
θ − θ − φ
θ + θ − φ

⎛

⎝
⎜

⎞

⎠
⎟K cos

cos cos cos

cos cos cos
a

2 2

2 2

Hs = KaWehb2/2

HH = Hscosθ 

HV = Hssinθ
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31.13

Example 31-8

Example 31-8: Check the adequacy of the retaining wall 

in Figure 31.13 with a backfill angle of 20° and no soil 

above the toe. 

Use φ = 30, We = 80pcf, soil bearing capacity of 2500psf.

θ = slope of backfill = 20° 

hb = 12′ + 4′tan20 = 13.46′

√(cos220 − cos230) = √(.883 − .75) = .3647

Ka = .9397(.9397 − .3647)/(.9397 + .3647) = 0.4142

Hs = KaWehbb
2/2 = .4142(80)(13.46)2/2 = 3001.9#

HH = Hscosθ = 3001.9(cos20) = 2820.86#

Hv = Hssinθ = 3001.9(sin20) = 1026.71#

Overturning:

Mo = 1.6HH(hb/3) = 1.6(2820.86#)(13.46′)/3 

= 20250.0#-f

Mr1 = 1.6Hv(7′) = 1.5(1026.71#)(7′) = 11499.15#-f

Mr2 = 1.2(150pcf)(1′)(1′)(11′)(2.5′) = 4950#-f

Mr3 = 1.2(150pcf)(7′)(1′)(1′)(3.5′) = 4410#-f

Mr4 = 1.2(80pcf)(1′)(4′)(11′)(5′) = 21120#-f

Mr5 = 1.2(80pcf)(1′)(13.46′ − 12′)(4′/2)(2′ + 1′ + (2/3)

(4′)) = 1588.48#-f

Mr = 11499.15 + 4950 + 4410 + 21120 + 1588.48 

= 43567.63#-f

Factor of safety: Mr/Mo = 43567.63/20250 = 2.15 > 1.5 

… okay

Sliding:

w1 = 1.6Hv = 1.6(1026.71#) = 1642.74#

w2 = 1.2(150)(1)(11) = 1980#

w3 = 1.2(150)(7)(1) = 1260#

w4 = 1.2(80)(4)(11) = 4224#

w5 = 1.2(80)(13.46 − 12)(4/2) = 280.8#

Σw = 9387.54#

F = .5(9387.54) = 4693.77# > HH = 1.6(2820.86) 

= 4513.38#

Factor of safety = 4693.77/4513.38 = 1.04 < 1.5 … no 

good 

Add soil to top of toe at some height, h1, from bottom of 

footing. 

Note that overturning need not be rechecked because the 

soil at the front will add more resisting moment about the toe, 

further increasing the factor of safety.

Let h1 = 4′

W6 = 1.2(80pcf)(2′)(3′) = 576#

Σw = 9387.54 + 576 = 9963.54#

Kp = 1/Ka = 1/.4142 = 2.414

Hp = 1.6KpWeh1
2/2 = 1.6(2.414)(80)(4)2/2 = 2471.94#

F = .5(9963.54) = 4981.77 > HH −Hp 

= 4513.38 − 2471.94 = 2041.44

Factor of safety = 4981.77/2041.44 = 2.44 > 1.5 … okay

Soil bearing pressure:

New Mr = 43567.63 + 2471.94(4′/3) + 576(1′) 
= 47439.55#-f

X = (Mr − Mo)/Σw = (47439.55 − 20250)/9963.54 

= 2.73′

e = 3.5 − 2.73 = 0.77′

Soil pressure = p = (Σw/L)(1 ± 6e/L) 

= (9963.54/7)(1 ± 6(.77)/7) = 1423.36 ± 939.42

pmax = 2362.78 < 2500psf … okay
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Practice Exercises:

31-1: Design a reinforced concrete bearing wall to support 

16″ steel beams spaced at 8 ′o.c. The beams bear on the 

full thickness of the wall with bf = 14.5″. The bottom and top 

of the wall are fixed connections. The wall is 18′ high and the 

load from each beam, Pu = 40k. f′c = 4ksi, fy = 60ksi. 

31-2: Design a 20′ long reinforced concrete bearing wall to 

support a slab bearing on the full thickness of the wall. The 

bottom and top of the wall are fixed connections. The wall is 22′ 
high and the load from the slab, Wu = 2k/f. f′c = 4ksi, fy = 60ksi. 

31-3: Design reinforcement for the shear wall shown in 

Figure 31.14. Use f′c = 4ksi, fy = 60ksi.

31-4: Check the adequacy of the retaining wall in Figure 31.14 

against overturning, sliding and sinking. Soil density = 80pcf, 

concrete density = 150pcf, φ = 23 and equivalent fluid 

pressure, KaWe = 35pcf.

31-5: Design reinforcement for the retaining wall shown in 

Figure 31.14. Soil density = 80pcf, concrete density = 150pcf, 

φ = 23 and equivalent fluid pressure, KaWe = 35pcf.

31.14

Chapter 31 Practice exercises



th i r ty two

Footings

 32.2

Wall footing

32.1.1 Wall Footing Design Method:

 1. Compute factored loads = Pu(
k/f) and unfactored loads 

= P(k/f)

 2. Assume a footing thickness: h (in)

 3. Calculate the weight of the footing per foot of width: 

wftg = 0.15kcf(h″/12″/f)

 4. Calculate the weight of the soil on the footing 

 = ws = γs(hftg − h)

 5. Calculate net allowable soil pressure = pnet = ps − wftg − ws

 6. Calculate maximum allowable soil pressure = pmax 

= (Pu/P)(pnet)

 7. Calculate required footing width = tftg = Pu/pmax and round 

up to the next inch.

The purpose of a footing is to distribute the loads of the 

structure sufficiently so that the soil can support the loads. 

Concrete has a compressive strength that ranges from 

3000psi to over 6000psi depending on the mix. Soils have a 

soil bearing capacity that can range from 1000psf (6.94psi) 

for loose sandy soils to over 4000psf (27.78psi) for rock 

or hardpan. As a result, a structure without a footing to 

distribute the loads over a larger area would likely sink into 

the soil. 

Types of footings include individual footings, wall 

footing, combined footings, caissons and piles as shown in 

Figure 33.1. Piles are a footing scenario that does not rely on 

a larger area. Instead, the piles are driven to bedrock or to a 

depth where the friction between the sides of the pile and 

the soil will resist the load.

32.1

Footing types

32.1 Wall Footings

Just as in the design of a concrete wall or a slab, the design 

of a wall footing considers a one-foot thickness of wall, 

therefore, b = 12″.
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 8. If Pu/b < pmax, recalculate factored soil pressure = Pu/b 

 9. Find effective depth d = h″ − 3″ cover − .5′ (assuming #8 

bar) 

10. Check whether shear reinforcement is required:

Shear reinforcement is not required in footings if φVc > Vu

Vu = pmax(G) where G = (L1 − t)/2 − d

32.3

Shear in a wall footing

φVc = .75(2)√(f′c psi) bd/1000#/k

11. The moment is maximum at 1/4 of the wall thickness into 

the wall, therefore the moment arm = L = (L1 − t)/2 + t/4 

= L1/2 − t/4 

 Mu = pmaxL
2/2

12. Find area s steel required:

As = 0.85f′cbd/fy[1 ± √[1 − 2Mu/φ(.85f′cbd2)]in2/ft of wall

As min = bd(3√f′c)/fy ≥ 200bd/fy for beams and

As min = .0018bh for slabs

 Use the larger of the three values: 

13. Check development length of the transverse bars: (see 

Chapter 30 for explanation of development length)

14. Longitudinal steel: As min = .0018bh

Example 32-1: Design a wall footing for an 8″ concrete 

wall (t = 8″) DL = 8k/f, LL = 16k/f, f′c = 3ksi, fy = 60ksi, soil 

density = γs = 80pcf, allowable soil pressure = 4000psf. 

The bottom of the footing must be 3.5′ below grade.

 1. Compute factored loads: (1.2(8) + 1.6(16))(1′) = 35.2k = Pu

 Unfactored loads = P = (8 + 16)(1′) = 24k

 2. Assume footing thickness: h = 18″
 3. wftg = 0.15kcf(1.5′) = 0.225ksf

 4. ws = 80pcf(3.5′ − 1.5′) = 160psf = 0.16ksf

 5. Net allowable soil pressure = pnet = ps − wftg − ws 

= 4.0ksf − .225ksf − .16ksf = 3.615 ksf

 6. Maximum allowable soil pressure = pmax = (Pu/P)(pnet) 

= (35.2/24)(3.615ksf) = 5.302ksf

 7. Required footing width = L1 = Pu/pmax = 35.2/5.302 

= 6.639′, round up to 6′–8″ = 6.67′ = 80″
 8. Recalculate factored soil pressure: = pu = Pu/L1 

= 35.2k/f/6.67′ = 5.277ksf < 5.302ksf … okay

 9. Find effective depth assuming #8 bars: 

d = 18″ − 3″ cover − .5″ = 14.5″
10. Shear reinforcement is not required in footings if φVc 

> Vu. Since the footing width is 6.67′ and wall width is 

8″/12″/f = 0.67′, the length of the footing on either side 

= (6.67 − .67)/2 = 3′. 

d = 14.5/12 = 1.208′

Vu = (3.0 − 1.208′)(1′)(5.302ksf) = 9.50k 

φVc = .75(2)√(f′c) d(12″)/1000#/k = 14.3k

 Since φVc = 14.3 > 9.501 = Vu … No shear reinforcement 

necessary.

11. Mmax is at 1
4  of the wall thickness into the wall. Wall 

thickness = 8″ … Mmax is 2″ into the wall. 

Moment arm = 2″/12″/f + 3′ = 3.16′ 

Mu = 5.302ksf(3.16ft)2/2 = 26.47k-f = 26.47k-f(12″/f)

(1000#/k) = 317,640#-in

12. As = 0.85f′cbd/fy[1 ± √[1 − 2Mu/φ(.85f′cbd2)] in2/ft of wall 

= [(.85(3000)(12)(14.5))/60000][1 − √[1 − 2(317,640#-

in)/.9(.85(3000)(12)(14.5)#-in)(14.5″)] = .417in2/ft of wall

As min = bd(3√f′c)/fy ≥ 200bd/fy for beams 3√f′c = 164.32 

< 200 … use 200, As min = 200(12″)(14.5″)/60000 

= 0.58 for beams and

As min = .0018(12″)(18″) = 0.389 for slabs

 Use larger of the three values: As = 0.58in2/f

 #6: A = 0.442, spacing = 12″(0.442/0.58) = 9.14″ round 

down to 9.0″
 Use #6 @ 9″o.c. As = 0.589in2

13. Check development length of the transverse bars: (see 

Chapter 30 for explanation of development length)

Kd = 3fy/40√f′c = 3(60000)/[40(√3000)] = 82.16

ρt = 1.0 (no top reinforcement)

ρe = 1.0 (no epoxy coating on bars)
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ρs = 0.8 (#6 or smaller bars)

λ = 1.0 (normal weight concrete)

ρtρe = 1.0 < 1.7 … okay

cb = smaller of cover or half spacing = 3.38″

Ktr = 0

(cb + Ktr)/db = 3.38/0.75 = 4.51″ > 2.5″ … Use 2.5″

Ld = (Kd/ λ)(ρtρeρs)(db)/[(cb + Ktr)/db] = 82.8(.8)(.75)/2.5 

= 19.728

 You may use Ker factor = As req’d/As used = .574/.589 = .975

Ld = 19.728(.975) = 19.23″

Ld provided = critical length for moment − 3″ cover 

= 3.08′(12″/f) − 3″ = 33.96″ > 19.06″ … okay

14. Longitudinal steel: As min = .0018bh = .0018(6.67′)(12″/f)
(18″) = 2.59in2

 USE: six #6 bars spaced equally 

32.1.2 Rules of Thumb for Non-
reinforced Wall Footings 
with Light Loads:

8″ wall minimum

Footing depth ≥ wall width

Footing width = 2 × wall width

32.2 Individual Footings

Individual footings may be any shape, but are typically square 

or rectangular. They may support any type of column or 

vertical truss system and may or may not have a concrete 

pedestal.

Design of square footings with width = L1 = length = L2

 1. Assume footing thickness h = 24″
 2. Find net allowable soil pressure = pnet = allowable soil 

pressure – concrete weight – soil weight

 3. Find required footing area = AREQ = unfactored loads/net 

allowable soil pressure. Round up and compute actual 

area, A.

 4. Calculate factored soil pressure pu = Pu/A

 5. Calculate d: d = h − 3″ cover − 2rows(db/2)

 6. Check one-way shear: if φVc > Vu, no shear reinforcement 

necessary.

 One-way shear in a footing – beam shear

Vu = puL2G

φVc = .75(2√f′c)bd

32.4

One-way shear in a footing

 7. Check two-way shear in a footing – punching shear

B = t + 2(d/2) = t + d

Vu = pu(L1
2 − B2)

 Vc = smallest of:

Vc = (2 + 4/βc)√f′cbod Where βc = L1/L2 = 1 for square 

footings and bo = 4B

 Or

 Vc = (αsd/bo + 2) √f′cbod where αs = 40 for interior 

columns, 30 for edge columns and 20 for corner columns.
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 Or

Vc = 4λ√f′cbod

32.5

Two-way shear in a footing 

 8. Calculate moment: Mu = puL2(F
2/2) where:

F = (L1 − t)/2 

32.6

Moment in a footing

 9. Find Area s steel required: (b = L2)

As = 0.85f′cbd/fy[1 ± √[1 − 2Mu/φ(.85f′cbd2)] in2

As min = bd(3√f′c)/fy ≥ 200bd/fy for beams and

As min = .0018bh for slabs

 Use larger of the three values: 

10. Check development length of steel

11. Check that the concrete bearing strength at base of 

column in the column and the footing are > Pu

A1 = t = area of column

A2 = L1
2 = area of footing 

Col. bearing strength = φ(.85f′cA1)

Ftg. Bearing Strength = φ(.85f′cA1)√(A2/A1) < φ(.85f′cA1)

(2)

12. Calculate dowel Area = Asd = .005A1 and check 

development length: 

Ldc = (.02fy /λ√f′c)(db)(Required Asd/providedAsd) 

≥ .0003fydb

Example 32-2: Design an individual column where: DL = 

400k, LL = 150k, allowable soil pressure = 5ksf, f′ccol = 4ksi, 

f′cftg = 3ksi, soil density = 100pcf, 24″ × 24″ column, bottom 

of footing is 4′ below grade, supporting interior column.

 1. Assume footing thickness h = 24″
 2. Find net allowable soil pressure = pnet 

= 5ksf − .15(24/12) − .1(24/12) = 4.5ksf

 3. Required footing area = AREQ = (400 + 150)/4.5 = 122.22f2 

 Round up: Footing size = 11.25′ by 11.25′ = 126.56f2

 4. Find factored soil pressure pu = Pu/A 

= (1.2(400) + 1.6(150))/126.56 = 720/126.56 = 5.689ksf

 5. Calculate d = h − 3″ − db = 24 − 3 − 1 = 20″ (assuming 

#8bars)

 6. Shear: if φVc > Vu, no shear reinforcement necessary.

 One-way shear – beam shear

G = (135 − 24)/2 − 20 = 35.5″

Vu = puL2G = 5.689ksf(11.25′)(35.5/12) = 189.34k

Vc = 2√f′cbd = 2 √3000psi(135in)(20in)/1000#/k 

= 295.77k

189.34k < .75(295.77k) = 221.83k … okay

 Two-way shear – punching shear

B = 24 + 20 = 44″

Vu = pu(W
2 − B2) = 5.689(11.252 − 3.672) = 643.53k
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 Vc = smallest of:

Vc = (2 + 4/βc)√f′cbod = 6 √3000(4)(44)(20)/1000 

= 1376.67k

 Or

Vc = (αsd/bo + 2) √f′cbod = (40(20)/4(44) + 2) √3000(4)

(44)(20)/1000 = 1261.95k

 Or

Vc = 4λ√f′cbod = 4(1) √3000(4)(44)(20)/1000 = 771.2k

Vu = 643.53 > φVc = .75(771.2) = 578.4k NO GOOD!

 The footing depth must be increased, go back to step 1

1A. Increase footing depth to 27″
2A. pnet = 5ksf − .15(27/12) − .1(21/12) = 4.49ksf

3A. AREQ = (400 + 150)/ 4.49 = 122.49f2. Use 11.25′ × 11.25′ 
= 126.56f2

4A. pu = Pu/A = (1.2(400) + 1.6(150))/126.56 = 720/126.56 

= 5.689ksf

5A. d = 27 − 3 − 1 = 23″ (assuming #8bars)

6A. Shear: if φVc > Vu, no shear reinforcement necessary.

  One-way shear – beam shear

G = (135 − 24)/2 − 23 = 32.5

Vu = puL2G = 5.689ksf(11.25′)(32.5/12) = 173.34k

Vc = 2√f ′cbd = 2 √3000psi(135in)(23in)/1000#/k 

= 340.14

173.34 < .75(340.14) = 255.1 … the footing is 

adequate for one-way shear.

7A. Two-way shear – punching shear

B = 24 + 23 = 47″

Vu = pu(L1
2 − B2) = 5.689(11.252 − 3.922) = 632.59k

Vc = smallest of:

Vc = (2 + 4/βc)√f′cbod = 6√3000(4)(47)(23)/1000 

= 1421.01

 Or

Vc = (αsd/bo + 2)√f′cbod 

= (40(23)/4(47) + 2) √3000(4)(47)(23)/1000 = 1632.65

 Or

Vc = 4λ√f′cbod = 4(1)√3000(4)(47)(23)/1000 = 947.34

Vu = 632.59 < φVc = .75(947.34) = 710.51 … the 

footing is adequate for punching shear.

 7. Calculate moment: Mu = puL2(F
2/2) where:

F = (L1 − t)/2 = (11.25 − 2)/2 = 4.625′

Mu = puL2(F
2/2) = 5.689(11.25)(4.6252/2) = 684.51k-f 

= 8214.16k-in

 8. Find Area s steel required: (b = L2)

As = 0.85f′cbd/fy[1 ± √[1 − 2Mu/φ(.85f′cbd2)] in2 

= [.85(3000)(11.25′)(12″/f)(23″)/60000] [1 ± √[1 − 

2(8214.16k-in)(1000#/k)/.9(.85(3000psi)(11.25′)(12″/f)

(23″d)2)] = 6.788in2

As min = bd(3√f′c)/fy ≥ 200bd/fy 

= 200(11.25)(12)(23)/60000 = 10.35in2

As min = .0018bh = .0018(11.25′)(12″/f)(27″) = 6.561in2

 USE: larger of the three values: 

As = 10.35in2: USE: 24 #6 evenly spaced

 9. Check development length of steel

Kd = 3fy/40√f′c = 3(60000)/[40(√3000)] = 82.16

ρt = 1.0 (no top reinforcement)

ρe = 1.0 (no epoxy coating on bars)

ρs = 1 (#8 bars)

λ = 1.0 (normal weight concrete)

ρtρe = 1.0 < 1.7 … okay

cb = smaller of cover ( = 3″) or half spacing 

( = (11.25′(12″/f) − 6″ − .75″)/24bars − 0.75″ 

= 4.59″ spacing) … cb = 3″}

Ktr = 0

(cb + Ktr)/db = 3.0/.75 = 4″ > 2.5″ … Use 2.5″

Ld = (Kd/ λ)(ρtρeρs)(db)/[(cb + Ktr)/db] [As req’d/As used] 

= [82.8(1)(1)/2.5][10.25/10.3] = 32.96″

Ld provided = critical length for moment – 3″ cover 

= 4.635(12) − 3 = 52.5″ > 32.96″ … okay

10. Check that concrete bearing strength at base of column 

for column and for footing are > Pu.
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A1 = t2 = 242 = 576in2

A2 = L1
2 = 1352 = 18225in2

 *Use f′c for column

 ** Use f′c for footing

Col. bearing strength = φ(.85f′cA1) = .65(.85)(4ksi*)

(576) = 1272.96 > 740K = Pu … okay

Footing bearing strength = φ(.85f′cA1)√(A2/A1) 

< φ(.85f′cA1)(2)

√(A2/A1 = 5.625 > 2 … use 2 

φ(.85f′cA1)(2) = .65(.85)(3ksi**)(576)(2) = 1909.44 

> 740k = Pu … okay

11. Calculate dowel area = Asd = .005A1 = .005(576) = 2.88in2 

… use four # 8, As = 3.16in2

 Check development length: 

Ldc = (.02fy/λ√f′c)(db)(Required Asd)/provided Asd) ≥ 

.0003fydb

Ldc = (.02(60000)/(1)√3000)(0.75)(2.88)/3.16) = 14.976″ 

≥ .0003fydb = 13.5″

 USE: four #8 × 13.5″ long.

32.3 Combined Footings

There are times when due to heavy loads on adjacent 

footings or due to the close proximity of a footing to the site 

line, it becomes necessary to create a combined footing. A 

combined footing acts like a beam with two concentrated 

loads that is supported by a uniform load.

Example 32-3: Design a rectangular combined footing 

for the two columns shown in Figure 32.8. 

The allowable soil pressure = 4ksf, f′c = 3ksi and fy = 60ksi. 

Soil density = 80pcf. Column A is 16″ × 16″ and carries a dead 

load of 50k and live load of 200k. Column B is 20″ × 20″ and 

carries a dead load of 80k and a live load of 300k.

1. R = resultant of the column loads. NOTE: Do not factor 

loads

50 + 200 + 80 + 300 = 630k = R

X = the location of the resultant, R

32.7

Combined footing

630X = (50 + 250)(0) + (80 + 300)(16′) = 6080k-f

X = 6080/630 = 9.65′

2. Find the length of footing:

 maximum distance to left = 9.65 + 2′ = 11.65′
 maximum footing length = 11.65′(2) = 23.3′, round down 

to 23.25′ = 279″

L = 23.25ft.

3. Find footing width:

 assume h = 24in

 net soil pressure: pnet = 4ksf − 2(.15) − (.08ksf)(2′) 
= 3.54ksf

A = R/pnet = 630/3.54 = 177.97sf

b = A/L = 177.97/23.25 = 7.65′ 

 round up to W = 7.75′ = 93″
4. Draw shear diagram and find Mu in longitudinal direction: 

USE: FACTORED LOADS:

 Column A: PL = 1.2(50) + 1.6(200) = 380k

 Column B: PR = 1.2(80) + 1.6(300) = 576k

 Soil weight and beam weight can be ignored because 

their effect is offset by an equivalent uniform soil 

pressure. 
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 The uniform reaction in response to the column loadings 

= (380 + 576)/23.25f = 41.12k/f

Mu = 2′(82.24k)/2 − 297.75k(7.24′)/2 = −995.62k-f 

= 11,947.44k-in

5. Find required depth of footing: Assuming that the depth 

of the equivalent stress block, a = 0.2d, (see chapter 26):

d = √{Mu/[.153φf’cb]} = √{11947.44/[.153(.9)(3ksi)(93″)]} 

= 17.63″

6. Find depth for one-way and punching shear: Consider 

Column A to have L1 = 2′ + 7.24′ = 9.24′ (zero point on 

moment diagram), and Column B to have 

L1 = 23.25′ − 9.24′ = 14.01′
 One-way shear – beam shear 

 Column A: Vu = 297.75k − (9″ + d″)(41.12k/f)/(12″/f) 

= 297.75 − 30.84 − 3.427d = 266.91 − 3.427d 

φVc = 2√f′cbd = .75(2)√3000psi(93)d/1000#/k = 7.64d

d = 266.91/(7.64 + 3.427) = 24.1″
 Column B: Vu = 360.12 − (10 + d)(41.12)/12 

= 325.73 − 3.427d

32.8

Example 32-3

32.9

Reaction and moment in combined column
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φVc = 2√f′cbd = .75(2)√3000psi(93)d/1000#/k = 7.64d

d = 325.73/(7.64 + 3.427) = 29.43″

 USE: d = 30″, h = 33″
Check two-way shear – punching shear 

 Column A: (edge column)

A1 = 9.24′(7.75′) = 71.61f2

A2 = (16″ + 30″)2 /(144in2/f2) = 14.69f2

√(71.61/14.69) = 2.21 > 2.0 … βc = 2

Vu = pu(A1 − A2) = ((41.12k/f)/7.75′)(71.61 − 14.69) 

= 302.01k

bo = 4(16 + 30) = 184″

 Vc = smallest of:

Vc = (2 + 4/βc)√f′cb0d = (2 + 4/2)(√3000)(184)(30)/1000 

= 1209.37k

 Or

Vc = (αsd/b0 + 2) √f′cb0d = (30(30)/184 + 2)(√3000)

(184)(30)/1000 = 2083.54k

 Or

Vc = 4λ√f′cb0d = (4)(√3000)(184)(30)/1000 = 1209.37k

φVc − .75(1209.37) = 907.03k > 302.01k … okay

 Column B: (interior column)

A1 = 14.01′(7.75′) = 108.58f2

32.10

One-way shear in combined 

column

32.11

Punching shear in combined column



C O N C R E T E  D E S I G N282

A2 = (20″ + 30″)2 /(144in2/f2) = 17.36f2

√(108.58/17.36) = 2.5 > 2.0 … βc = 2

Vu = pu(A1 − A2) = ((41.12k/f)/7.75′)(108.58 − 17.36) 

= 484.00k

bo = 4(20 + 30) = 200″

 Vc = smallest of:

Vc = (2 + 4/βc)√f′cb0d = (2 + 4/2)(√3000)(200)(30)/1000 

= 1314.53k

 Or

Vc = (αsd/bo + 2) √f′cb0d = (40(30)/200 + 2)(√3000)

(200)(30)/1000 = 2629.07k

 Or

Vc = 4λ√f′cb0d = (4)(√3000)(200)(30)/1000 = 1314.53k

φVc − .75(1314.53) = 985.9 > 484k … okay

7. Compute flexural steel for positive moment: 

 Column A: Mu = 82.24k-f = 82.24(12000)#-in 

= 986,880#-in

As = 0.85f′cbd/fy[1 ± √[1 − 2Mu/φ(.85f′cbd2)] 

= [0.85(3000)(93)(30)/60000][1 ± √[1 − 2(986,800)/

((.9)(.85(3000)(93)(30)2))] = 0.61in2 

 USE: two #5

 Column B: Mu = 581.53k-f = 581.53(12000) #-in 

= 6,978,360#-in

As = 0.85f′cbd/fy[1 ± √[1 − 2Mu/φ(.85f′cbd2)] 

= [0.85(3000)(93)(30)/60000][1 ± √[1 −2(6,978,360)/

((.9)(.85(3000)(93)(30)2))] = 4.39in2

 USE: six #8

8. Compute flexural steel for negative moment

Mu = 995.62k-f = 995.62(12000)#-in = 11,947,440#-in

As = 0.85f′cbd/fy[1 ± √[1 − 2Mu/φ(.85f′cbd2)] 

= [0.85(3000)(93)(30)/60000][1 ± √[1 − 2(11,947,440)/

((.9)(.85(3000)(93)(30)2))] = 7.62in2 

 USE: ten #8

 Compute transverse steel: 

Mu = [(37.5″/12″/f)2/2](1′)[41.12k/f/7.775′] = 25.91k-f 

= 310,877#-in

As = 0.85f′cbd/fy[1 ± √[1 − 2Mu/φ(.85f′cbd2)] 

= [0.85(3000)(12)(30)/60000][1 ± √[1 − 2(310,877)/((.9)

(.85(3000)(12)(30)2))] = 0.193in2/f

As min = .0033(12″/f)(30″) = 1.18in2/f

As min = .0018(12″/f)(33″) = 0.71in2/f

 USE: #8 @ 8″o.c.

Practice Exercises:

32-1: Design a wall footing for an 8″ concrete wall (t = 8″) DL 

= 6k/f, LL = 12k/f, f′c = 3ksi, fy = 60ksi, soil density = γs 

= 80pcf, allowable soil pressure = 4000psf. The bottom of 

the footing must be 4.0′ below grade.

32-2: Design an individual column where: DL = 200k, 

LL = 500k, allowable soil pressure = 3ksf, f′c col = 4ksi, 

f′c ftg = 3ksi, soil density = 80pcf, 28″ × 28″ column, bottom of 

footing is 3′ below grade, supporting interior column.

32-3: Design a rectangular combined footing for the two 

columns shown in Figure 32.12. The allowable soil pressure 

= 3.5ksf, f′c = 3ksi and fy = 60ksi. Soil density = 90pcf. 

Column A is 18″ × 18″ and carries a dead load of 100k and live 

load of 300k. Column B is 20″ × 20″ and carries a dead load of 

100k and a live load of 500k.

32.12

Chapter 32 Practice exercises
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Precast  and Precast  and 
Prestressed Concrete

Limitations in size are typically the limitations provided by 

transportation such as the length of a truck bed. There are 

also design limitations based on the amount of manipulation 

during transport. For example, a unit designed as a vertical 

wall panel must be able to support its own weight if laid flat 

for transport.

Precast concrete has the advantage of reducing on-site 

construction time. Because the unit is cast independently, 

there is no delay on the construction site to allow for curing; 

units can support weight immediately after installation. 

Precast concrete also has the advantage of being mixed, 

33.1 Precast Concrete

Precast concrete is concrete that is cast and cured prior to 

installation as a solid component of a structural system or 

as a non-structural component. In this text, only precast 

components that support and transfer applied loads are 

discussed. 

Precast concrete is commonly used as floor slabs, shear 

walls, bearing walls, lintels, staircases and columns in 

structural systems. Many other precast components can be 

used in building design to form railings, decorative façade 

elements and the like. 

33.1

Typical precast structural components
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placed and finished in a controlled environment. As such, any 

defective units can be discarded before reaching the building 

site. High strength concrete and the use of reactive powder 

concrete can result in lighter weight and longer spans. 

Precasting allows for the economical creation and reuse of 

intricate formwork for detailed units, allowing architectural 

details to remain economical.

The strength of precast units is determined, as with 

site-cast components, by the strength of the materials (f′c 
and fy), the cross-sectional properties, and the placement 

of reinforcement. But because precast units are cast and 

cured independently of each other, there is no continuity 

of material. Therefore, connections and joints must be 

carefully designed to consider gravity and lateral loads, 

expansion and contraction, and product tolerances. Bolted 

or welded connections can be made between adjacent 

precast elements or between precast and site-cast or 

metal components by embedding a steel plate or angle into 

the precast unit. Figure 33.2 shows some typical precast 

connections. Design of these connections follows the same 

methods as discussed earlier in this text.

33.1.1 Precast Concrete Floor Slabs

Precast concrete floor slabs are generally hollow core slabs 

(HC slabs). The advantages of a hollow core slab include the 

fact that HC slabs are lightweight relative to cast-in-place 

slabs to the same depth. Most manufacturers supply widths 

of 2′, 4′ and 8′, although some offer 10′ and 12′ widths. Slabs 

are available in depths from 6 to 16″. As a rule of thumb, floor 

slabs can span 30 × depth and roof slabs can span 40 × depth. 

They maximize ceiling height when the voids are used for 

conduit runs. Further, when prestressed, the slabs can be 

delivered to site with a camber that will negate deflections.

Standard HC slabs are manufactured in depths from 4″ to 

15″, although deeper slabs have been created for specialized 

purposes or by specific manufacturers. Load tables for HC 

slabs are provided by the manufacturer using an equivalent 

uniform load: wequivalent = (1.4/1.7)DL + LL when uniform 

design loads are present and wequivalent = 8Mu/L
2 when other 

loads are present.

As with all precast components, connection details 

are important to prevent disaster. HC slabs may have an 

embedded plate that welds to a bearing plate or the voids 

may be filled at the end to create a sufficient development 

length in which to insert a rebar from the bearing wall or 

beam. HC slabs may also be embedded into a masonry wall.

Follow ACI codes and refer to the Precast Concrete 

Institute’s (PCI) manual for the design of hollow core slabs.

33.1.2 Precast Concrete Beams and 
Tees

Precast beams are usually prestressed and have a cross-

section that is either rectangular, an inverted Tee or an L 

shape. Although they typically vary in width from 12 to 24″ 

33.2

Typical precast connections
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33.5

Precast beams 

Double Tees are used for floor and roof systems. They are 

usually supplied in widths of 8, 10, 12 or 15′ and depths from 

24 to 34″. Double Tees used in floors can span to about 35′ 
and in roofs to about 40′ depending on the loads.

33.1.3 Precast Columns

Precast columns are typically used to support beams in 

precast systems in low to mid-rise buildings. The columns are 

designed to be stacked and often have side ledges to support 

beams. They range from 12 × 12″ to 24 × 48″ in size and can 

be almost any shape. It should be noted, however, that the 

columns are cast in a horizontal position, so one side will be flat 

and troweled to match the surfaces of the other three sides.

 33.6

Precast columns

33.3

Typical precast hollow core slab cross-sections

33.4

Precast hollow core slab embedded in masonry wall, reproduced with 

permission from the American Concrete Institute

and in depth from 16 to 40″, they can be made in any size 

specified. The inverted Tee and L shape are often used to 

support slabs that will have a concrete cover. As a rule of 

thumb, spans are between 10 and 20 times the depth.
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33.1.4 Other Precast Components

Shear and load-bearing walls can be designed using precast 

components. They range in size from 15′ to 30′ widths, 10′ to 

30′ heights, and 8″ to 16″ thicknesses. Because of the large 

size, they are often cast at the site in a horizontal position and 

then tilted into place.

Concrete piles are designed to be stacked and connected 

together to form longer piles when needed. They are typically 

18 by 18″ but can be made smaller or larger and in any shape. 

Large piles often have a hollow core to eliminate unnecessary 

weight.

Precast stair units are commonly supplied in a large variety 

of standard or custom sizes. Cast either upside down or on 

end, the underside of the stair is smooth. The top riser is 

installed flush with the top of the finished floor.

Stadiums often utilize precast raker beams or stadium 

risers which are similar to a stair stringer in that they support 

the horizontal floor decks under the seating in a stepped 

fashion as shown in Figure 33.7.

33.7

Precast stairs and rakers

33.2 Prestressed Concrete

Prestressing creates compressive stress in concrete to 

counteract the tension that will develop due to applied loads. 

Prestressing can be achieved either by post-tensioning or by 

pre-tensioning. 

In post-tensioning, cables called tendons are stressed in 

tension after concrete is placed. Concrete members are cast 

with hollow tubes, through which tendons are pulled. After 

the concrete strengthens to a certain point, the tendons are 

tensioned. 

In pre-tensioning, tendons are stressed in tension before 

the concrete is placed. After the concrete cures, the tension 

is released in the cable, but because the cable has bonded 

to the concrete, it transfers that release into the concrete as 

compression. Components are usually cast off-site and then 

shipped to the site. The cable is typically a 7-wire, uncoated 

cable with an ultimate stress, fpu ranging from 250 to 270ksi. 
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One important factor to consider when designing a 

prestressed beam is the mode of failure. As discussed in 

Chapter 25, concrete beams must be designed to fail in 

tension as failure in compression is sudden and without 

warning. If too much prestressing is used, the concrete beam 

risks failure in compression. Another factor to consider is 

creep. Creep is long-term deflection and as such reduces the 

effect of prestressing.

Design of a prestressed concrete beam must consider 

both the bending stress due to applied loads and the axial 

stress due to the prestressing. 

1. Applied loads create a positive moment that is 

counteracted with an internal couple creating 

compression at the top and tension at the bottom. The 

compression force due to applied loads 

= Capp = Tapp = Mu/[φ(d − a/2)]

2. Prestressing force, P, creates compression over the 

entire cross-section. The compressive stress resulting 

from prestressing = fpre = P/bh acts over the entire 

cross-section. Therefore, the maximum stress in the 

equivalent stress block that can be used to counteract 

Mu is fapp = .85f′c − fpre. This means that the depth of the 

equivalent stress block (a) will vary with different values 

of prestressing force P.

3. The goal of prestressing is to eliminate the tensile strain 

at the bottom of the beam that is produced by the applied 

loads. When tendons have a sag, (e) in inches, there is a 

negative moment produced by the eccentricity of the sag. 

Mpre = Pe. When Mpre = Mu, the resultant moment on the 

beam is Mu − Mpre = 0. 

P = Mu
k-in/[e(# of tendons)]

4. It is necessary to check the depth, a of the equivalent 

stress block to ensure that it is within the top half of the 

depth of the beam. Since Capp = abfapp = Mu/[φ(d − a/2)]. 

Solving for a yields a = d − √[d2 − 2Mu/φbfapp]

Example 33-1: Given a 40′ long 16″ × 24″ beam with 

f′c = 4000psi, a DL of .1k/f and a LL of .8k/f.

1. Determine prestressing force required if two parabolic 

tendons with a sag of 9″ are used.

Beam weight = w = .15pcf(16/12)(24/12) = 0.4 k/f

Factored load = 1.2(0.4 + .1) + 1.6(.8) = 1.88k/f

Moment = Mu = 1.88k/f(40)2/8 = 376k-f 

= 4,512,000#-in

Prestressing force = P = Mu/sag = 4512000/[(9″)

(2tendons)] = 250,666.7#

2. Check equivalent stress block depth, a: 

fapp = .85f′c − P/bh = .85(4000) − 250,666.7/(16(24) 

= 2747.22psi

33.8

Prestressing in a 

concrete beam
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a = d − √[d2 − 2Mu/φbfapp] 

= 21 − √[212 − 2(4512000)/(.9)(16)(2747.22)] = 6.41″

c = a/.85 = 7.54″ < h/2 = 24/2 = 12″ … okay

Example 33-2: Given a 40′ long, 9″ deep slab with a DL of 

.01ksf and a LL of .08ksf.

1. Determine the prestressing force required for parabolic 

tendons with a sag of 3″ every 6″. d = 7.875″

Slab weight = w = .15pcf(9/12) = 0.1125k/f

Factored load for 12″ swath = [1.2(0.1125 + .01) + 

1.6(.08)] 12/12 = 0.275 k/f

Moment = Mu = .275k/f(40)2/8 = 55k-f = 660,000#-in

Prestressing force = P = Mu/sag = 660000k-in/(3(2)) 

= 110,000#

2. Check equivalent stress block depth, a: 

fapp = .85f′c − P/bh = .85(4000) − 110000/(12(9)) 

= 2381.48psi

a = d − √[d2 − 2Mu/φbfapp] = 7.875 − √[7.8752 − 

2(660000)/(.9)(12)(2381.48)] = 4.6″

c = 4.6″/.85 = 5.42″ > 9/2 = 4.5″ … okay

Practice Exercises:

33-1: Design a 40′ long 14″ × 30″ beam with f′c = 4000psi, a 

DL of .1k/f and a LL of .8k/f using two tendons with a sag of 

12″.

33-2: Design a 48′ long, 12″ deep slab with a LL of .1ksf using 

tendons every 6″.



Part  VI

Masonr y and Alter nate 
Mater ia ls



This page intentionally left blank



th i r ty four

Masonr y Design

 Fb = f′m/3 for unreinforced masonry 

 Fb = 0.45f′m for reinforced masonry

Allowable shear stress:

 Fv = 1.5√f′m ≤ 120psi for unreinforced masonry 

 Fv = 2.0√f′m for reinforced masonry where M/Vd ≥ 1.0

 Fv = 3.0√f′m for reinforced masonry where M/Vd ≤ 0.25 

and may be interpolated for values of.25 < M/Vd < 1.0.

Flexure in masonry walls is usually created by lateral loads or 

a vertical load with an eccentricity. The maximum stress 

in the equivalent stress block for reinforced masonry is 

0.8f′m. 

Mu = φAsfy(d − a/2) and T = Asfy = C = .08f′mab … 

a = Asfy/.8f′mb

Mu = φAsfy(d − Asfy/1.6f′mb) 

As = (.8f′mb/fy)(d ± √[d2 − (2fyMu/.8f′mbφfy)]

The combined axial and flexural stresses must be checked to 

satisfy fb/Fb + fa/Fa ≤ 1.

Example 34-1: Design reinforcement for an 8″ thick 

masonry wall filled and reinforced with vertical 60ksi 

rebar at 16″o.c. 

There is a uniform load of 1800#/f with an eccentricity of 2″. 
The wall is 16′ high and the filled weight = 145pcf. 

F′m = 2000psi

Masonry is a structural system made of units of clay, 

concrete or stone connected by mortar. The units may vary 

in size and shape and in pattern of arrangement. Masonry is 

used structurally as vertical compression members. Deep 

wall reinforced masonry wall beams can handle flexure, but 

are not discussed in this text.

34.1 Masonry Load Bearing 
Walls

Based on the MSJC ‘Building Code Requirements for 

Masonry Structures’ developed by the Masonry Standards 

Joint Committee, ACI503/ASCE 5/TMS402 and the IBC, the 

height/thickness ratio = length/thickness ratio = 20 for solid, 

unreinforced, load bearing walls. For example, a 24′ high 

masonry load bearing wall would have a minimum thickness, 

t = 24′(12″/f)/20 = 14.4″.
Mortar types M, S, N are used in load bearing walls. 

Although mortar provides binding between units, the 

allowable tensile stresses are very low and vary between 40 

and 70 psi.

f′m = masonry prism test compressive strength. Masonry 

distributes loads applied on a single unit to successive 

supporting units as shown in Figure 34.1. The prism test 

evaluates compressive strength based on the distribution of 

load in a given bond pattern of a wall.

Allowable bending stress:
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34.1

Load distribution in a 

masonry wall
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1. Determine Mu for one foot swath of wall: 

Mu = Pe = 1800#/f(12″/f)(2″) = 43200#-in.

2. As = (.8f′mb/fy)(d ± √[d2 − (2fyMu/.8f′mbφfy)] = (.8(2000)

(12)/(60000))(4 ± √[42 − (2(60000)(43200)/.8(2000)(12)(.9)

(60000))] = .22in2/f = #5 @ 16″o.c.

3. fb = M/S = 43200#-in/[(12″)(82)/6] = 337.5psi

4. Fb = 0.45f′m = .45(2000) = 900psi

5. fa = P/A = 145pcf(16′)/144in2/f2 + 1800#/f/[12″/f(8″)] 

= 34.86psi

6. Fa = .8f′m = .8(2000) = 1600psi

7. fa/Fa + fb/Fb = 34.86/1600 + 337.5/900 = 0.397 <1.0 

… okay

 USE: #5 @ 16″o.c.

Example 34-2: Design reinforcement for a 12″ thick 

masonry wall filled and reinforced with vertical 60ksi 

rebar at 16″o.c. 

There is a uniform load of 2400#/f centered on the wall and 

a lateral force of 20psf on the surface of the wall. The wall is 

16′ high and the filled weight = 145pcf. F′m = 3000psi

1. Determine Mu for one foot swath of wall: 

Mu = 20psf(12″/f)(16′)2/8 = 7680#-f = 92160#-in.

2. As = (.8f′mb/fy)(d ± √[d2 − (2fyMu/.8f′mbφfy)] = (.8(2000)(12)/

(60000))(4 ± √[42 − (2(60000)(9216000)/.8(3000)(12)(.9)

(60000))] = .49in2/f = #8 @ 16″o.c.

3. fb = M/S = 92160#-in/[(12″)(82)/6] = 720psi

4. Fb = 0.45f′m = .45(3000) = 1350psi

5. fa = P/A = 145pcf(16′)/144in2/f2 + 2400#/f/[12″/f(8″)] 

= 41.11psi

6. Fa = .8f′m = .8(3000) = 2400psi

7. fa/Fa + fb/Fb = 41.11/2400 + 720/1350 = 0.55 <1.0 … okay

 USE: #8 @ 16″o.c. 

Practice Exercise:

34-1: Design reinforcement for a 16″ thick masonry wall filled 

and reinforced with vertical 60ksi rebar. There is a uniform 

load of 4800#/f centered on the wall and a lateral force of 

20psf on the surface of the wall. The wall is 30′ high and the 

filled weight = 145pcf. F′m = 3000psi.
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Alter nate  Str uctural  Mater ia ls

aggregate mixed with up to 10% steel fibers by volume. 

It has compressive strengths as high as 120,000 psi and 

tensile strengths up to 7000 psi. It also has less deflection 

due to a higher Modulus of Elasticity and less creep (long-

term deflection). The drawbacks to reactive powder concrete 

are that it requires applied pressure while setting, is very 

expensive and to date there are no codes governing its use.

35.1.3 Air-scrubbing concrete

Concrete that uses titanium dioxide to reduce nitrous oxide 

pollution. It has the aesthetic benefit of a very white concrete. 

The disadvantage is the cost which is about 30% higher than 

plain concrete,

35.2 Alternate Metals

35.2.1 Titanium

Titanium is a high strength metal usually used in alloy form 

such as Ti-6Al-4V with compressive yield strengths ranging 

from 125 to 155ksi, shear strength = 79,800psi and a tensile 

yield strength of 128,000psi. 

The advantages of titanium include corrosion 

resistance. Titanium has a self-healing oxide film that 

forms spontaneously when exposed to air. This oxide film 

is stable and protects titanium from corrosion. Titanium 

35.1 Concrete, Steel and 
Wood

Concrete, steel and wood are the basic structural materials 

covered in most architectural programs. See Table 35.1 for 

a summary of the advantages and disadvantages of steel, 

concrete and wood as structural materials.

35.1.1 Fly Ash

Fly ash is a waste product of burning coal. In an effort 

to find a use for fly ash, it was added to concrete mixes 

with surprising results. The benefits of fly ash in concrete 

include higher strength, workability, durability and decreased 

bleeding, segregation, efflorescence, and permeability. As 

shown in Figure 35.1, the compressive strength of concrete is 

lower in the first 28 days and higher after 28 days than plain 

concrete. The increase in compressive strength continues 

to grow over time. Check sites such as www.flyash.com for 

more information on the use of fly ash in concrete. LEED 2.2 

offers credits for the use of fly ash in concrete dependent on 

the amount used.

35.1.2 Reactive Powder Concrete

Reactive powder concrete , also known as ultra-high 

performance concrete uses fine quartz sand as the largest 
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Table 35.1:  Advantages and disadvantages of steel, concrete and wood as structural materials

35.1

Compressive strength of fly ash concrete and plain concrete over time.

Material 

Advantages 

Disadvantages 

Steel 

High strength to 

weight ratio 

High recycle 

content 

Easily assembled 

and disassembled 

Uniformity 

Elasticity 

Must be 

fire-protected 

Corrosion (rust) 

Fatigue 

Concrete 

Strength increases with time 

May be formed to any shape 

Requires formwork 

Not easily recycled 

Strength is dependent on mix 

of components 

Strength is dependent on site 

conditions 

Wood 

Renewable resource 

Economical 

Easily customized shapes 

Flammability 

Must be protected from 

Fungus and pests 

Material Steel Concrete Wood 

Advantages High strength to Strength increases with time Renewable resource 

weight ratio 

High recycle May be formed to any shape Economical 

content 

Easily assembled Easily customized shapes 

and disassembled 

Uniformity 

Elasticity 

Disadvantages Must be Requires formwork Flammability 

fire-protected 

Corrosion (rust) Not easily recycled Must be protected from 

Fungus and pests 

Fatigue Strength is dependent on mix 

of components 

Strength is dependent on site 

conditions 
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has the highest strength to weight ratio of all metals. It 

is lightweight at 283pcf; it has only 58% of the weight of 

steel. Another advantage to titanium is its low coefficient of 

thermal expansion. At 4.78μin/in°F, the coefficient of thermal 

expansion of titanium alloy is only half that of steel, one-third 

of aluminum and equivalent to glass or concrete. Its thermal 

conductivity of 10 Btu/hr.-°F/ft. is very low at one-tenth of 

aluminum. Titanium is an innoxious metal meaning it does 

not interact with humans. It is non-magnetic and has a high 

melting point.

The disadvantage of titanium is that it has a low Modulus 

of Elasticity of about E = 16,000ksi depending on the alloy 

used, compared to E = 29,000ksi for steel. In identical cross-

sections and loads, deflection in titanium will be 29/16 or 

1.81 times the deflection in steel. This indicates that titanium 

is best used in vector-active systems where loads are 

transferred by compression and tension and flexure is avoided 

or minimized.

35.2.2 Aluminum

Aluminum is a lightweight metal suitable for light loads. 

Most often used as metal studs or façade panels, aluminum 

has the advantage of being lightweight and easily extruded. 

Although aluminum doesn’t rust in the sense that it does 

not contain iron, it does oxidize, especially when in contact 

with saltwater. Other disadvantages include a high thermal 

conductivity. Aluminum transfers heat at roughly three times 

the rate of steel. Aluminum has a low melting point at 1220°F, 

compared to steel at 2460°F or titanium at 3000°F. It also 

has a rate of electrical conductivity six times that of steel, 

and nearly double the coefficient of linear expansion. But the 

most significant disadvantage of aluminum from a structural 

point of view is its low Modulus of Elasticity at E = 10,000ksi. 

This means that an aluminum beam would have nearly three 

times the defection of a steel beam with a comparable cross-

section and load scenario. Another significant disadvantage 

is aluminum’s high embodied energy. Although aluminum is 

an element, it does not occur naturally in nature. Like steel, 

it must be manufactured; but the production of aluminum 

involves roughly four times the embodied energy of the 

production of steel. Aluminum is expensive, generally about 

three times the cost of steel. It does not weld easily and 

it has high galvanic action. Galvanic action is a corrosion 

that occurs when two different metals are in contact. And 

although the galvanic action between aluminum and steel 

is not as high as between steel and brass, for example, it is 

significant enough to require the use of gaskets to prevent 

galvanic action.

35.3 Plant-based Materials

35.3.1 Laminated Bamboo

Raw bamboo has been used as a structural material for 

centuries. Traditionally, the bamboo pole is used intact and 

tethered to adjacent poles to create a structure. Mechanical 

connections are difficult because of the hollow cylindrical 

shape of the bamboo pole and because of the variability of 

pole diameters and wall thicknesses. 

Bamboo is a rapidly renewable material with a 3–5 year 

regrowth rate compared to a 20–25 year renew rate for 

timber. Bamboo yields measured in lb/acre are four times 

that of wood (Lugt 2006). But perhaps the most significant 

advantage bamboo has over timber is found in its structural 

properties. All allowable stresses except for compression 

parallel to the grain are greater for raw bamboo than those 

of most wood species. This information indicates that 

raw bamboo poles are a good material for beams, but not 

necessarily for columns or other compression members such 

as top struts in a horizontal truss. 

If bamboo is laminated to form structural components, the 

material properties become significantly better than those 

of laminated wood. Laminated bamboo (LBL) is ten times 

stronger in tension and six times stronger in compression 

and flexure than laminated timber (LVL). And yet, laminated 

bamboo is only recently becoming a material of interest to 

designers. Other advantages of LBL are that it has 15% less 

embodied energy in processing than wood and is 20% more 

stable than wood in moisture and temperature changes.
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35.3.2 Paper

Before Shigeru Ban became famous for his paper tube 

houses, Martin Pawley built a house of recycled materials 

with a paper tube structure at Rensselaer Polytechnic 

Institute in 1976. A 4″ inside diameter paper tube has an 

ultimate bending stress of 1727psi at 10% moisture content, 

but paper tubes must be protected from moisture with a 

full coverage of a waterproof coating or strength diminishes 

rapidly.

35.4 Plastics

Plastics are man-made materials, usually a petroleum 

derivative. Biodegradable plastics are obviously not for 

structural use. There are many types of plastics with varied 

strengths and mechanical properties. In choosing a plastic, 

consider not only the compressive and flexural strength, but 

also ductility and fatigue. While plastics have the advantage of 

low maintenance, they also have many disadvantages such as 

high embodied energy and ultraviolet deterioration. Plastics 

are not a renewable resource and many are not recyclable. If 

choosing a recyclable plastic, note that mechanical properties 

vary depending on the recycled content. If using recycled 

plastic lumber, look for single polymer made from high 

density polyethylene (HDPE). 

35.5 Carbon Fiber

Carbon fiber reinforced polymer (CFRP) is a composite that 

is extremely lightweight. At 95pcf, it is less than one-fifth 

the density of steel. Carbon fiber is a tensile material with an 

ultimate tensile strength of 602ksi and a modulus of elasticity 

of 33,500ksi. Carbon fiber reinforced polymers utilize the high 

tensile strength of carbon fiber and combine it with a material 

high in compression. For example, a CFRP such as HexPly 

M49 has a tensile yield strength of 107ksi, compressive yield 

strength of 88.5ksi and a flexural yield strength of 134ksi.

Carbon fibers may be used as tension reinforcement in 

concrete to increase the flexural strength of a beam, but the 

amount of fibers used, the orientation and the quality of the 

bond influences the results.

35.6 Glass

Most glass products including glass block are self-supporting 

but not considered structural elements. Glass façade panels 

can transfer wind loads to structural support systems. 

Structural glass floor systems utilize glass as a decking 

material with a span up to 48′. 



Conclusions

Things to remember:

1. Structural design and analysis are based on Newton’s 

Third Law of Motion. Remember that all forces and 

moments must be in balance in a static system.

2. Design the structural system from the relationships 

between spatial, contextual and conceptual patterns. 

3. Choose the materials for the system. Every material has 

inherent strengths. Identify the materials that have the 

strengths necessary for the chosen structural system.

4. Build redundancy into the structural system.

5. Follow all building codes. Remember this does not mean 

designing for minimum loads. Anticipate load conditions 

one hundred years from now and design for the worst 

case scenario.

6. Make sustainable choices in materials and methods.

7. Be true to your design intent. Do not allow your design to 

be compromised by a lack of structural understanding and 

creativity.
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Table A1.3:  Materials properties of selected metal materials

A2: Wood Design

Table A2.1:  Section properties for dimensional lumber

DIMENSIONAL LUMBER SECTION PROPERTIES 

DIMENSIONAL LUMBER Western Species So. Pine 

NOMINAL 
b d A Sx Ix Sy Iy Cfu CF for Fb CFfor Ft CF for Fe CFfor Fb 

SIZE 

2X3 1.5 2.50 3.75 1.56 1.95 0.94 0.70 1.00 1.50 1.50 1.15 1.0 

2X4 1.5 3.50 5.25 3.06 5.36 1.31 0.98 1.10 1.50 1.50 1.15 1.0 

2X6 1.5 5.50 8.25 7.56 20.80 2.06 1.55 1.15 1.30 1.30 1.20 1.0 

2X8 1.5 7.25 10.88 13.14 47.63 2.72 2.04 1.15 1.20 1.20 1.05 1.0 

2X10 1.5 9.25 13.88 21 .39 98.93 3.47 2.60 1.20 1.10 1.10 1.00 1.0 

2X12 1.5 11 .25 16.88 31 .64 177.98 4.22 3.16 1.20 1.00 1.00 1.00 1.0 

2X14 1.5 13.25 19.88 43.89 290.78 4.97 3.73 1.20 0.90 0.90 0.90 1.0 

3X4 2.5 3.50 8.75 5.10 8.93 3.65 4.56 1.10 1.50 1.50 1.15 1.0 

3X6 2.5 5.50 13.75 12.60 34.66 5.73 7.16 1.15 1.30 1.30 1.20 1.0 

3X8 2.5 7.25 18.13 21.90 79.39 7.55 9.44 1.15 1.20 1.20 1.05 1.0 

3X10 2.5 9.25 23.13 35.65 164.89 9.64 12.04 1.20 1.10 1.10 1.00 1.0 

3X12 2.5 11.25 28.13 52.73 296.63 11.72 14.65 1.20 1.00 1.00 1.00 1.0 

3X14 2.5 13.25 33.13 73.15 484.63 13.80 17.25 1.20 0.90 0.90 0.90 1.0 

3X16 2.5 15.25 38.13 96.90 738.87 15.89 19.86 1.20 0.90 0.90 0.90 1.0 

4X4 3.5 3.50 12.25 7.15 12.51 7.15 12.51 1.00 1.50 1.50 1.15 1.0 

4X6 3.5 5.50 19.25 17.65 48.53 11.23 19.65 1.05 1.30 1.30 1.10 1.0 

4X8 3.5 7.25 25.38 30.66 111 .15 14.80 25.90 1.05 1.30 1.20 1.05 1.1 

4X10 3.5 9.25 32.38 49.91 230.84 18.89 33.05 1.10 1.20 1.10 1.00 1.1 

4X12 3.5 11.25 39.38 73.83 415.28 22.97 40.20 1.10 1.10 1.00 1.00 0.9 

4X14 3.5 13.25 46.38 102.41 678.48 27.05 47.34 1.10 1.00 0.90 0.90 0.9 

4X16 3.5 15.25 53.38 135.66 1034.42 31.14 54.49 1.10 1.00 0.90 0.90 0.9 
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Table A2.2:  Material properties for selected dimensional lumber species, courtesy American Wood Council, Leesburg, VA

Design values in pounds per square inch (psi) 

Species and 
commercial grade 

SI'ze Tension Shear Compression Compression S 'f' . I pecllc classification I S d' I parallel to I parallel to perpendicular parallel to 't 
r-e~n~ln~g+-l __ g~r~a_in __ -+ __ ~gr~a_in __ ~ __ to_ g=r_a_in __ +-I ~g~r~a_in __ -+_M_o_d~u_lu_S_Of,E_I_as~t_ic~ity~+-l g_ra_v_IY-i 

Fb 1 Ft I Fv Fe -.l Fe E -.l Emin I G 
Douglas Fir-Lar ch 

Select Structural 1,5-,,-,00=--+_ 1,000 180 625 _+-_1,700_+-1=,900,000 690,000 
No.1 & Str 1,200 800 180 625 1,550 1,800,000 660,000 
No. 1 2" & wider 1,000 675 180 -r- 625 1,500 1, 700,000r---s20,000 
No.2 f- 900 575 180 -f-- 625 1,350 1,600,000'580,000 
No.3 _+--=,525 325 180 625 775 1,400,000 510,000 
Stud 2" & wider 700 450 180 -f- 625 850 1,400,000'510,000 

0.50 

Construction --+--- 1,000 650 180 -f-- 625 1,650 1,500,OOOr-ss0,000 
1-C-'~~~-'-----------1 

Standard 2" - 4" wide 575 375 180 625 1,400 1,400,000 510,000 
Utility C--- 275 175 180 -f- 625 900 _,-1,300,00_0 :£0,000 

'- -'- -~Hem-Fir'-- -'- - - -

Select Structural 
No.1 & Str 
No.1 
No.2 
NO.3 
Stud 
Construction 
Standard 
Utility 

Select Structural 
No. 1 
No.2 
No.3 
Stud 
Construction 
Standard 
Utility 

Select Structural 
No.1 
No.2 
No.3 

-

-

-

2" & wider 

2" & wider 

2" - 4" wide 

2" & wider 

2" & wider 

2" - 4" wide 

2" & wider 

1 ,4-,,-,00=--+_ 
1,1=00--+_ 

r- 975 
850 

f- 50C::-O--+-

675 

97:-=-5--+_ 
55=0-+_ 
250 

-'-

1,400 -I"'" 

f- 1,000 
975 

f- 55:-=-0-+-

750 
1,100 

62c::-5-+_ 
300 _'-

1300 -, 

925 
r- 90C::-O--+-

525 
Stud 
Construction 

2" & wide-r--r-~70C::-O--+­
--+---= 

1,050 
Standard 
Utility 

Clear Structural 
Select Structural 
Select Structural, open 
No.1 
No. 1, open grain 
No.2 
No.2, open grain 
No. 3 

-

2" - 4" wide 

2" & wider 

No. 3, open grain __ --+-__ 
Stud 2" & wider 
Construction 
Standard 
Utility 

2" - 4" wide 

575 
f- 27=-=-5-+-

-'-

1,750-' 
1,350 

f- 1 ,1 -"-'00=--+-

975 
f- 77=-=-5-+-

f- 925 

f- ~~=~-+-
f- 425 

=-+--
575 
825 
450 
22C::C5-+-

- -
925 _+-_150 405 _+-_1,500_+-1--=,600,000 580,000 
725 150 405 1,350 1,500,000 550,000 
625 150 -I- 405 1,350 1,500,000r-s50,000 
525 150 405 1,300 1,300,000 470,000 
300 150 405 725 1,200,000 440,000 0.43 
400 150 -f- 405 800 1 ,200,000~40 ,000 
600 150 I--- 405 1,550 1 ,300,000 ~,OOO 
325 150 -f- 405 1,300 1 ,200,00~~40,000 

150 150 405 _'- 850 _,-1,100,0~~0,000 '-_ 
N~..!!ern RedO~ _I"'" 

800 220 885 _-+_1,150 -1"'"1,400,000 510,000 I"'" -

575 -+--220 -f- 885 925 1 ,400,000- f-51 0,000 
575 220 885 725 1,300,000 470,000 

!~~ ~~~ -f- ~~~ -+-- :~~ -+-~ --=:~~~:~~~~:~:~~~ 0.68 

650 220 885 __ -+-__ 975 _+-1=,200,000 440,000 
350 220 885 750 1,100,000 400,000 
175 220 -I- 885 -_+,-- 500 -_+,---c1 '--:c,000,00_0-~0,000 _ 

: !led Maple '-- - - --
750 _+-_210 -f- 615 _-+'_ 1,100_-+'~1' .'.'-,700,000_~20,000 ' -
550 210 615 900 1,600,000 580,000 
525 -+--210 -f-- 615 700 1,500,000r---ss0,000 
300 210 615 400 1,300,000 470,000 
425 ---+---210 -f- 615 ---+--- 450 1,300,000~70 ,000 0.58 
600 210 --I-- 615 925 1,400,060'51 0,000 
325 210 615 _+-_ 725 1,300,000 470,000 
150 -+--210 -f- 615 475 1 ,200,000~40 ,000 

: R edwood -'- -'- '-
1,000 ~ 160:c.:::....,..-- 650 -, 1,850 -1"'"1,400,000 510,000 1"'" 0.44 
800 160 -f- 650 ---+---1,500 1,400,000'510,000 0.44 
625 -+--160 --I-- 425 1,100-+-1'--,100,060'400,000 0.37 

575 160 650 1,200 1,300,000 _f-470 '0c...::0-::-O +-_0.44 
450 -+--160 -r- 425 900 1, 1 00,0~~0,0=-=0=0+-_0.37 
525 160 --I-- 650 950 1,200,000 440,000 0.44 
425 __ -+-__ 160 -f-- 425 __ -+-__ 700 1,000,000 370,0::..:0=-=0-+------,0.37 
300 160 650 550 1, 1 00,00~f-~00 ,000 0.44 
250 160 _I- 425 400 900 ,00L~0,000 0.37 
325 160 425 450 900,000 330,000 0.44 
475 160 425 925 900,000 _~30,000 0.44 
275 160 425 725 900,000 330,000 0.44 
125 160 -f- 425 475 800,000'290,000 0.44 



Be
nd

in
g

Te
ns

io
n 

pa
ra

lle
l 

to
 g

ra
in

Sh
ea

r p
ar

al
le

l t
o 

gr
ai

n

Co
m

pr
es

si
on

 
pe

rp
en

di
cu

la
r t

o 
gr

ai
n

Co
m

pr
es

si
on

 
pa

ra
lle

l t
o 

gr
ai

n
Sp

ec
ifi

c 
gr

av
it

y

F b
F t

F v
F c

F c
E

E m
in

G

So
ut

he
rn

 P
in

e

Se
le

ct
 S

tr
uc

tu
ra

l
2,

85
0

1,
60

0
17

5
56

5
2,

10
0

1,
80

0,
00

0
66

0,
00

0

N
o.

 1
1,

85
0

1,
05

0
17

5
56

5
1,

85
0

1,
70

0,
00

0
62

0,
00

0

N
o.

 2
1,

50
0

82
5

17
5

56
5

1,
65

0
1,

60
0,

00
0

58
0,

00
0

Co
ns

tr
uc

�o
n

1,
10

0
62

5
17

5
56

5
1,

80
0

1,
50

0,
00

0
55

0,
00

0

St
an

da
rd

62
5

35
0

17
5

56
5

1,
50

0
1,

30
0,

00
0

47
0,

00
0

U
�l

it
y

30
0

17
5

17
5

56
5

97
5

1,
30

0,
00

0
47

0,
00

0

Se
le

ct
 S

tr
uc

tu
ra

l
2,

55
0

1,
40

0
17

5
56

5
2,

00
0

1,
80

0,
00

0
66

0,
00

0

N
o.

 1
1,

65
0

90
0

17
5

56
5

1,
75

0
1,

70
0,

00
0

62
0,

00
0

N
o.

 2
1,

25
0

72
5

17
5

56
5

1,
60

0
1,

60
0,

00
0

58
0,

00
0

Se
le

ct
 S

tr
uc

tu
ra

l
2,

30
0

1,
30

0
17

5
56

5
1,

90
0

1,
80

0,
00

0
66

0,
00

0

N
o.

 1
1,

50
0

82
5

17
5

56
5

1,
65

0
1,

70
0,

00
0

58
0,

00
0

N
o.

 2
1,

20
0

65
0

17
5

56
5

1,
55

0
1,

60
0,

00
0

58
0,

00
0

Se
le

ct
 S

tr
uc

tu
ra

l
2,

05
0

1,
10

0
17

5
56

5
1,

85
0

1,
80

0,
00

0
66

0,
00

0

N
o.

 1
1,

30
0

72
5

17
5

56
5

1,
60

0
1,

70
0,

00
0

62
0,

00
0

N
o.

 2
1,

05
0

57
5

17
5

56
5

1,
50

0
1,

60
0,

00
0

58
0,

00
0

Se
le

ct
 S

tr
uc

tu
ra

l
1,

90
0

1,
05

0
17

5
56

5
1,

80
0

1,
80

0,
00

0
66

0,
00

0

N
o.

 1
1,

25
0

67
5

17
5

56
5

1,
60

0
1,

70
0,

00
0

62
0,

00
0

N
o.

 2
97

5
55

0
17

5
56

5
1,

45
0

1,
60

0,
00

0
58

0,
00

0

0.
55

Sp
ec

ie
s 

an
d 

co
m

m
er

ci
al

 
gr

ad
e

Si
ze

 c
la

ss
ifi

ca
�o

n

D
es

ig
n 

va
lu

es
 in

 p
ou

nd
s 

pe
r s

qu
ar

e 
in

ch
 (p

si
)

M
od

ul
us

 o
f E

la
s�

ci
ty

2"
 - 

4"
 w

id
e

10
" 

w
id

e
0.

55

12
" 

w
id

e
0.

55

4"
 w

id
e

5"
 - 

6"
 w

id
e

0.
55

0.
55

8"
 w

id
e

0.
55

Ta
bl

e 
A

2.
3:

  M
at

er
ia

l p
ro

pe
rt

ie
s 

fo
r 

se
le

ct
ed

 d
im

en
si

on
al

 S
ou

th
er

n 
Pi

ne
 lu

m
be

r,
 C

ou
rt

es
y 

A
m

er
ic

an
 W

oo
d 

Co
un

ci
l, 

Le
es

bu
rg

, V
A



A P P E N D I X 305

Table A2.4:  Timber section properties

SECTION PROPERTIES FOR TIMBER 
NOMINAL 

b d A Sx Ix Sy Iy CF for Fb 
SIZE 
5X5 4.50 4.50 20.25 15.19 34.17 15.19 34.17 1.00 
6X6 5.50 5.50 30.25 27.73 76.26 27.73 76.26 1.00 
6X8 5.50 7.25 39.88 48.18 174.66 36.55 100.52 1.00 

6X10 5.50 9.25 50.88 78.43 362.75 46.64 128.25 1.00 
6X12 5.50 11.25 61.88 116.02 652.59 56.72 155.98 1.00 
6X14 5.50 13.25 72.88 160.93 1066.18 66.80 183.71 0.99 
6X16 5.50 15.00 82.50 206.25 1546.88 75.63 207.97 0.98 
6X18 5.50 17.00 93.50 264.92 2251.79 85.71 235.70 0.96 
6X20 5.50 19.00 104.50 330.92 3143.71 95.79 263.43 0.95 
6X22 5.50 21.00 115.50 404.25 4244.63 105.88 291 .16 0.94 
6X24 5.50 23.00 126.50 484.92 5576.54 115.96 318.89 0.93 
8X8 7.25 7.25 52.56 63.51 230.23 63.51 230.23 1.00 

8X10 7.25 9.25 67.06 103.39 478.17 81.03 293.75 1.00 
8X12 7.25 11.25 81.56 152.93 860.23 98.55 357.26 1.00 
8X14 7.25 13.25 96.06 212.14 1405.41 116.08 420.77 0.99 
8X16 7.25 15.00 108.75 271 .88 2039.06 131.41 476.35 0.98 
8X18 7.25 17.00 123.25 349.21 2968.27 148.93 539.86 0.96 
8X20 7.25 19.00 137.75 436.21 4143.98 166.45 603.37 0.95 
8X22 7.25 21.00 152.25 532.88 5595.19 183.97 666.89 0.94 
8X24 7.25 23.00 166.75 639.21 7350.90 201.49 730.40 0.93 
10X10 9.25 9.25 85.56 131 .91 610.08 131 .91 610.08 1.00 
10X12 9.25 11.25 104.06 195.12 1097.53 160.43 741 .99 1.00 
10X14 9.25 13.25 122.56 270.66 1793.11 188.95 873.90 0.99 
10X16 9.25 15.00 138.75 346.88 2601.56 213.91 989.32 0.98 
10X18 9.25 17.00 157.25 445.54 3787.10 242.43 1121.23 0.96 
10X20 9.25 19.00 175.75 556.54 5287.15 270.95 1253.13 0.95 
10X22 9.25 21 .00 194.25 679.88 7138.69 299.47 1385.04 0.94 
10X24 9.25 23.00 212.75 815.54 9378.73 327.99 1516.95 0.93 
12X12 11 .25 11 .25 126.56 237.30 1334.84 237.30 1334.84 1.00 
12X14 11.25 13.25 149.06 329.18 2180.82 279.49 1572.14 0.99 
12X16 11 .25 15.00 168.75 421.88 3164.06 316.41 1779.79 0.98 
12X18 11.25 17.00 191 .25 541 .88 4605.94 358.59 2017.09 0.96 
12X20 11.25 19.00 213.75 676.88 6430.31 400.78 2254.39 0.95 
12X22 11.25 21.00 236.25 826.88 8682.19 442.97 2491.70 0.94 
12X24 11 .25 23.00 258.75 991.88 11406.56 485.16 2729.00 0.93 
14X14 13.25 13.25 175.56 387.70 2568.52 387.70 2568.52 0.99 
14X16 13.25 15.00 198.75 496.88 3726.56 438.91 2907.75 0.98 
14X18 13.25 17.00 225.25 638.21 5424.77 497.43 3295.45 0.96 
14X20 13.25 19.00 251.75 797.21 7573.48 555.95 3683.15 0.95 
14X22 13.25 21.00 278.25 973.88 10225.69 614.47 4070.86 0.94 
14X24 13.25 23.00 304.75 1168.21 13434.40 672.99 4458.56 0.93 
16X16 15.00 15.00 225.00 562.50 4218.75 562.50 4218.75 0.98 
16X18 15.00 17.00 255.00 722.50 6141 .25 637.50 4781 .25 0.96 
16X20 15.00 19.00 285.00 902.50 8573.75 712.50 5343.75 0.95 
16X22 15.00 21 .00 315.00 1102.50 11576.25 787.50 5906.25 0.94 
16X24 15.00 23.00 345.00 1322.50 15208.75 862.50 6468.75 0.93 
18X18 17.00 17.00 289.00 818.83 6960.08 818.83 6960.08 0.96 
18X20 17.00 19.00 323.00 1022.83 9716.92 915.17 7778.92 0.95 
18X22 17.00 21 .00 357.00 1249.50 13119.75 1011 .50 8597.75 0.94 
18X24 17.00 23.00 391 .00 1498.83 17236.58 1107.83 9416.58 0.93 
20X20 19.00 19.00 361.00 1143.17 10860.08 1143.17 10860.08 0.95 
20X22 19.00 21.00 399.00 1396.50 14663.25 1263.50 12003.25 0.94 
20X24 19.00 23.00 437.00 1675.17 19264.42 1383.83 13146.42 0.93 
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Table A2.5:  Material properties for selected timber species, courtesy American Wood Council, Leesburg, VA

I Design values in pounds per square inch (psi) 

M d I ,t "., -

Tension Shear Compression Compression 
Species and commercial Size parallel to parallel to perpendicular parallel to 

Bending I 

o u us 0 
grade classification 

grain I grain to grain grain Elasticity 
gravity 

1 Fb Ft Fv Fe Fe E Emin G 
-~ 

Douglas Fir-Larch 

Dense Select Structural J 1,900 1,100 170 730 1,300 1,700,000 620,000 1 
-- -I-

Select Structural _ 1,600 950 170 625 1,100 1,600,000 580,000 
- - - I--

Dense No.1 Beams and 1,550 775 170 730 1,100 1,700,000 620,000 
- - - f--

No.1 Stringers 1,350 675 170 625 925 1,600,000 580,000 

1,000 
- - - r--

No.2 Dense 500 170 730 700 1,400,000 510,000 

No.2 875 425 170 625 600 1,300,000 470,000 

Dense Select Structural 
-

- 1,750 170 -
- - r- 0.50 

1,150 730 1,350 1,700,000 620,000 
- - - - - I--

Select Structural 1,500 1,000 170 625 1,150 1,600,000 580,000 

Dense No.1 Posts and 1,400 950 170 730 1,200 1,700,000 620,000 
- - -

No. 1 Timbers 1,200 825 170 625 1,000 1,600,000 580,000 
- -

No. 2 Dense 

~ 
850 550 170 730 825 1,400,000 510,000 

- - - -I-
No. 2 750 475 170 625 700 1,300,000 470,000 

-- -~ 

Hem-Fir 

Select Structural J Beams and 
1,300 750 140 405 925 1,300,000 470,000 1 

-- -I-
No.1 

Stringers 
_ 1,050 525 140 405 750 1,300,000 470,000 

- - - I--
No.2 675 350 140 405 500 1,100,000 400,000 

Select Structural 
0.43 

Posts and 
_ 1,200 800 140 405 975 1,300,000 470,000 

- - - I-
No. 1 

Timbers 
975 650 140 405 850 1,300,000 470,000 

No. 2 575 375 140 405 575 1,100,000 400,000 
-- -~ 

Northern Red Oak 

Select Structural 
Beams and 

1,600 950 205 885 950 1,300,000 470,000 

No. 1 
Stringers 

1,350 675 205 885 800 1,300,000 470,00~ j 
- - - - - r-

No. 2 875 425 205 885 500 1,000,000 370,000 
- - - - - f-- 0.68 

Select Structural 
Posts and 

1,500 1,000 205 885 1,000 1,300,000 470,000 

No.1 
Timbers 

1,200 800 205 885 875 1,300,000 470,000 
- --

No.2 700 475 205 885 400 1,000,000 370,000 

Red Maple 

Select Structural 
Beams and 

1,500 875 195 615 900 1,500,000 550,000 
--

No. 1 1,250 625 195 615 750 1,500,000 550,000 

No. 2 
Stringers 

800 400 195 615 475 1,200,000 440,000 
- - - - - I-- 0.58 

Select Structural 
Posts and 

1,400 925 195 615 950 1,500,000 550,000 
- - - r--

No. 1 
Timbers 

~150 750 195 615 825 1,500,000 550,000 
-

No. 2 650 425 195 615 375 1,500,000 440,000 

Redwood 

Clear Structural J 1,850 1,250 145 650 1,650 1,300,000 470,000 0.44 
-- -I-

Select Structural _ 1,400 950 145 650 1,200 1,300,000 470,000 0.44 
- - - I--

No.1 5"x5" and 1,200 800 145 650 1,050 1,300,000 470,000 0.44 
No.1, open grain Larger 950 650 145 420 800 1,000,000 370,000 0.37 

- - - - I-
No. 2 1,000 525 145 650 900 1,100,000 400,000 0.44 

- - - I--
No. 2, open grain 750 400 145 420 650 900,000 330,000 0.37 

-- -'-----

Southern Pine 

Select Structural 1 5"x5" and 
1,500 1,000 165 375 950 1,500,000 550,000 

No. 1 J 1,350 900 165 375 825 1,500,000 550,00~ j 0.55 
Larger - - - - r-

No. 2 I 850 550 165 375 525 1,200,000 440,000 
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Table A2.6:  Section properties for Southern Pine glu-lams
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Table A2.7:  Section properties for Western species glu-lams
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A-3 Steel Design

Table A3.1:  W14 Section properties

ROLLED STEEL SECTION PROPERTIES 
tw bf tf 

d web flange flange 
A depth thickness width thickness 

SIZE area (in2
) (in) (in) (in) (in) Ix (in4) Sx (in3

) rx (in) Zx (in3
) Iy (in4) Sy (in3

) ry (in) Zy (in3
) rts 

W14X730 215.00 22.40 3.070 17.90 4.910 14,300 1,280.0 8.17 1,660.00 4,720 527.0 4.69 816 5.68 
W14X655 196.00 21.60 2.830 17.70 4.520 12,400 1,150.0 7.98 1,480.00 4,170 472.0 4.62 730 5.57 
W14X605 178.00 20.90 2.600 17.40 4.160 10,800 1,040.0 7.80 1,320.00 3,680 423.0 4.55 652 5.46 
W14X550 162.00 20.20 2.380 17.20 3.820 9,430 931 .0 7.63 1,180.00 3,250 378.0 4.49 583 5.36 
W14X500 147.00 19.60 2.190 17.00 3.500 8,210 838.0 7.48 1,050.00 2,880 339.0 4.43 522 5.26 
W14X455 134.00 19.00 2.020 16.80 3.210 7,190 756.0 7.33 936.00 2,560 304.0 4.38 468 5.17 
W14X426 125.00 18.70 1.880 16.70 3.040 6,600 706.0 7.26 869.00 2,360 283.0 4.34 434 5.11 
W14X398 117.00 18.30 1.770 16.60 2.850 6,000 656.0 7.16 801.00 2,170 262.0 4.31 402 5.06 
W14X370 109.00 17.90 1.660 16.50 2.660 5,440 607.0 7.07 736.00 1,990 241.0 4.27 370 5.00 
W14X342 101 .00 17.50 1.540 16.40 2.470 4,900 558.0 6.98 672.00 1,810 221.0 4.24 338 4.94 
W14X311 91.40 17.10 1.410 16.20 2.260 4,330 506.0 6.88 603.00 1,610 199.0 4.20 304 4.87 
W14X283 83.30 16.70 1.290 16.20 2.070 3,840 459.0 6.79 542.00 1,440 179.0 4.17 274 4.81 
W14X257 75.60 16.40 1.180 16.00 1.890 3,400 415.0 6.71 487.00 1,290 161 .0 4.13 246 4.75 
W14X233 68.50 16.00 1.070 15.90 1.720 3,010 375.0 6.63 436.00 1,150 145.0 4.10 221 4.69 
W14X211 62.00 15.70 0.980 15.80 1.560 2,660 338.0 6.55 390.00 1,030 130.0 4.07 198 4.64 
W14X193 56.80 15.50 0.890 15.70 1.440 2,400 310.0 6.50 355.00 931 119.0 4.05 180 4.59 
W14X176 51 .80 15.20 0.830 15.70 1.310 2,140 281 .0 6.43 320.00 838 107.0 4.02 163 4.55 
W14X159 46.70 15.00 0.745 15.60 1.190 1,900 254.0 6.38 287.00 748 96.2 4.00 146 4.51 
W14X145 42.70 14.80 0.680 15.50 1.090 1,710 232.0 6.33 260.00 677 87.3 3.98 133 4.47 
W14X132 38.30 14.70 0.645 14.70 1.030 1,530 209.0 6.28 234.00 548 74.5 3.76 113 4.23 
W14X120 35.30 14.50 0.590 14.70 0.940 1,380 190.0 6.24 212.00 495 67.5 3.74 102 4.20 
W14X109 32.00 14.30 0.525 14.60 0.860 1,240 173.0 6.22 192.00 447 61.2 3.73 93 4.17 
W14X99 29.10 14.20 0.485 14.60 0.780 1,110 157.0 6.17 173.00 402 55.2 3.71 84 4.14 
W14X90 26.50 14.00 0.440 14.50 0.710 999 143.0 6.14 157.00 362 49.9 3.70 76 4.11 
W14X82 24.00 14.30 0.510 10.10 0.855 881 123.0 6.05 139.00 148 29.3 2.48 45 2.85 
W14X74 21.80 14.20 0.450 10.10 0.785 795 112.0 6.04 126.00 134 26.6 2.48 41 2.82 
W14X68 20.00 14.00 0.415 10.00 0.720 722 103.0 6.01 115.00 121 24.2 2.46 37 2.80 
W14X61 17.90 13.90 0.375 10.00 0.645 640 92.1 5.98 102.00 107 21.5 2.45 33 2.78 
W14X53 15.60 13.90 0.370 8.10 0.660 541 77.8 5.89 87.10 58 14.3 1.92 22 2.22 
W14X48 14.10 13.80 0.340 8.00 0.595 484 70.2 5.85 78.40 51 12.8 1.91 20 2.20 
W14X43 12.60 13.70 0.305 8.00 0.530 428 62.6 5.82 69.60 45 11.3 1.89 17 2.18 
W14X38 11 .20 14.10 0.310 6.80 0.515 385 54.6 5.87 61.50 27 7.9 1.55 12 1.82 
W14X34 10.00 14.00 0.285 6.80 0.455 340 48.6 5.83 54.60 23 6.9 1.53 11 1.80 
W14X30 8.90 13.80 0.270 6.70 0.385 291 42.0 5.73 47.30 20 5.8 1.49 9 1.77 
W14X26 7.70 13.90 0.255 5.03 0.420 245 35.3 5.65 40.20 9 3.6 3.55 6 1.31 
W14X22 6.50 13.80 0.230 5.00 0.335 199 29.0 5.54 33.20 7 2.8 1.04 4 1.27 
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A-4 Concrete Design

Table A4.1:  Rebar diameters and areas

Table A4.2:  Maximum number of bars in one row

Rebar Size 3 4T 5T 6T 7 8 t 9 T 10 11 
Diameter (in) 0.375 0.500 0.625 0.750 0.875 +- 1.000 1.128 1.270 1.410 
Number of 

Area of Bars (in2
) 

Bars 
1 0.110 0.196 0.307 0.442 0.601 0.785 0.999 1.267 1.561 

+ 
2 0.221 0.393 0.614 0.884 1.203 1.571 1.999 2.534 3.123 
3 0.331 0.589 0.920 1.325 1.804 2.356 2.998 3.800 4.684 

4-

4 0.442 0.785 1.227 1.767 2.405 3.142 3.997 5.067 6.246 ... 
5 0.552 0.982 1.534 2.209 3.007 3.927 4.997 6.334 7.807 
6 0.663 1.178 1.841 2.651 3.608 4.712 5.996 7.601 9.369 ... 
7 0.773 1.374 2.148 3.093 4.209 5.498 6.995 8.867 10.930 
8 0.884 1.571 2.454 3.534 4.811 6.283 7.995 10.134 12.492 
9 0.994 1.767 2.761 3.976 5.412 7.069 8.994 11.401 14.053 ... 
10 1.104 1.963 3.068 4.418 6.013 7.854 9.993 12.668 15.614 

r Rebar Size 3 ' 4 ---r 5 ---r 6 ~ 7 I 8 ---r 9 ~ 10 11 
Diameter (in) 0.375 0.500 0.625 0.750 0.875 1.000 1.128 1.270 1.410 
Number of 
Bars per 

layer 
2 
3 
4 
5 
6 
7 
8 

--t-

--t-

----'--

5.5 
7.0 
8.5 
10.0 
11.0 
12.5 
14.0 

6.0 
7.5 
9.0 
10.5 
12.0 
13.5 
15.0 

6.0 
8.0 
9.5 
11.0 
12.5 
14.5 
16.0 

Minimum Beam Width (in.) 

6.5 
8.0 
10.0 
11.5 
13.5 
15.0 
17.0 

6.5 
8.5 
10.5 
12.5 
14.0 
16.0 
18.0 

7.0 
9.0 
11.0 
13.0 
15.0 
17.0 
19.0 

7.0 
9.5 
11.5 
13.5 
15.5 
18.0 
20.0 

7.5 
10.0 
12.0 
14.5 
16.5 
19.0 
21.0 

8.0 
10.0 
12.5 
15.0 
17.5 
20.0 
22.0 
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Table A4.3:  Minimum and maximum number of longitudinal bars for concrete columns

5 6 
4 - 12 4 - 11 
5 - 13 5 - 11 
6 - 15 5 - 12 
6 - 16 6 - 13 
7 - 18 6 - 15 
8 - 19 7 - 16 
9 - 21 7 - 17 
10 - 22 8 - 18 
11 - 24 8 - 20 
12 - 25 9 - 21 
13 - 27 9 - 22 
14 - 28 10 - 23 
15 - 30 11 - 25 
16 - 31 12 - 26 
18 - 33 13 - 27 
19 - 34 13 - 28 
21 - 36 14 - 30 
22 - 37 15 - 31 
24 - 38 16 - 32 
25 - 40 18 - 33 
27 - 41 19 - 35 
28 - 43 20 - 36 
30 - 44 21 - 37 
32 - 46 22 - 38 
34 - 47 24 - 40 

Minimum - Maximum number of long- d- aJ b - I ItU In ars per s ingle row 

Spiral Reinforcement 

Bar Number 

7 8 9 10 11 
4 - 10 4 10 4 - 9 4 7 4 -

5 - 12 5 - 11 4 - 10 4 - 8 4 -
5 - 13 5 - 12 5 - 11 5 9 5 
6 - 14 5 - 13 5 - 12 5 11 5 -
6 - 16 6 - 15 6 - 14 6 12 5 
6 - 17 6 - 16 6 - 15 6 14 6 
7 - 18 7 -17 7 - 16 6 15 6 
7 - 20 7 - 18 7 - 17 7 16 7 
8 - 21 8 - 20 7 - 18 7 17 7 
8 - 22 8 - 21 8 - 20 8 18 8 
9 - 23 9 - 22 8 - 21 8 20 8 
9 - 25 9 - 23 9 - 22 9 21 8 
10 - 26 9 - 25 9 - 23 9 22 9 
10 - 27 10 - 26 10 - 24 9 23 9 
11 - 29 10 - 27 10 - 26 10 24 10 
11 - 30 11 - 28 11 - 27 10 25 10 
12 - 31 11 - 30 11 - 28 11 26 11 -
12 - 33 12 - 31 11 - 29 11 28 11 
12 - 34 12 - 32 12 - 30 12 29 11 
13 - 35 13 - 33 12 - 32 12 30 12 
14 - 37 13 - 35 13 - 33 12 31 12 
15 - 38 14 - 36 13 - 34 13 32 13 
16 - 39 14 - 37 14 - 35 13 33 13 
16 - 41 14 - 38 14 - 36 14 34 13 
17 - 42 15 - 40 15 - 38 14 35 14 

5 
6 
7 
9 
10 
11 
13 
14 
16 
17 
18 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
33 
34 

Diameter 
or Side 
width 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

5 
8 - 12 
8 - 16 
8 - 16 
8 - 20 
12 - 20 
12 - 20 
12 - 24 
12 - 24 
16 - 28 
16 - 28 
16 - 32 
20 - 32 
20 - 36 
24 - 36 
24 - 40 
24 - 40 
28 - 44 
28 - 44 
32 - 48 
32 - 48 
36 - 52 
36 - 52 
40 - 52 
40 - 56 
44 - 56 

6 
8 - 12 
8 - 12 
8 - 16 
8 - 16 
8 - 20 
8 - 20 
8 - 24 
12 - 24 
12 - 24 
12 - 28 
12 - 28 
12 - 32 
16 - 34 
16 - 36 
16 - 36 
20 - 40 
20 - 40 
20 - 40 
24 - 44 
24 - 44 
24 - 48 
28 - 48 
28 - 52 
28 - 52 
28 - 56 

Tie Reinforcement 

Bar Number 

7 8 
8 12 8 8 4 
8 - 12 8 12 8 
8 - 12 8 12 8 
8 - 16 8 16 8 
8 - 16 8 16 8 
8 - 20 8 16 8 
8 - 20 8 20 8 
12 - 24 12 20 8 
12 - 24 12 24 12 
12 - 24 12 24 12 
12 - 28 12 24 12 
12 - 28 12 28 12 
12 - 32 12 28 12 
12 - 32 12 32 12 
16 - 36 13 32 12 
16 - 36 16 32 16 
16 - 36 16 36 16 
16 - 40 16 36 16 
16 - 40 16 40 16 
16 - 44 16 40 16 
20 -44 16 40 16 
20 -44 20 44 16 
20 - 48 20 44 20 
24 - 48 20 48 20 
24 - 52 20 48 20 

9 

-

- -MInimum number of bars IS, based on 6" maximum clear d istance between longitudinal bars and Ps?: 0.01 

Maximum number of bars is based on 1_5" clear or l _5db and Ps s 0_08 

10 11 
8 4 8 4 - 4 
8 8 - 8 8 - 8 
12 8 - 8 8 - 8 
12 8 12 8 - 8 
12 8 12 8 - 12 
16 8 12 8 - 12 
16 8 - 16 8 - 12 
16 8 16 8 - 12 
20 12 16 12 - 16 
20 12 20 12 - 16 
24 12 20 12 - 16 
24 12 20 12 - 20 
24 12 20 12 - 20 
28 12 24 12 - 20 
28 12 24 12 - 20 
28 16 24 12 - 24 
32 16 - 28 16 - 24 
32 16 28 16 - 24 
32 16 28 16 - 28 
36 16 32 16 - 28 
36 16 32 16 - 28 
36 16 32 16 - 28 
40 16 36 16 - 32 
40 20 36 20 - 32 
44 20 36 20 - 32 
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Table A4.4:  Areas of reinforcing bars per foot

Spacing Bar S,iZH 

fn~) 3 4 5 16 7 8 91 110 111 

3, 0.414 0.791 1.23 1 77 ,2 411 3 14 41.00 
.,. .,. 

3.5 0.38 0.67 1.05 1.511 ,2.,06 ,2.169 3.43 4.34 
.,. 

4 0.33, 0.59 0.912 1~33 1.80 ,2.316 3.00 3.80 4.68 

4.5 0.291 0.52 0.82 1.18 11.60 2.09 2.166 3.38 4.16 

5 0.27 0.47 0.74 1.,06 11 44 11 88 2.40 3.04 3.75 

5.5 0.24 0.43 0.67 0.96 1.311 11.71 2.18 2.76 3.41 

6 0.22 0.391 0.61 0~88 1.20 11.57 2.00 2.53, 3.12 

6.5 0.20 0.36 0.57 0.B2 11JI11 11.415 1.841 2.34 2.88 

7 0.191 0.34 0.53 0 76 1 03 11 35 1.71 2.17 2.68 

7.5 0.18 0.3,1 0.49 0.711 0 '96 11.216 1.160 2.03, 2.50 

8 0.17 0.291 0.46 0~66 0.'90 11.18 1.50 1.90 2.34 

B.5 0.16 0.28 0.43 0.62 0.,.85 11.11 1.41 1.791 2.20 

91 0.15 0.26 0.411 0 5'9 0 80 11 05 1.33 1.691 2.08 

'9.5 0.14 0.25 0.3,9 0.56 0.76 0.99 1.26 1.60 1.917 

10 0.13, 0.24 0.37 0~53 0 72 0.94 1.20 1.52 1.87 

11 0.12 0.21 0.33 0~48 0.66 0.86 1.09 1.38 1.70 

12 0.11 0.20 0.311 O~44 0.60 0.79 1.00 1.27 1.56 

13 0.10 0.18 0.28 O~411 0.56 0.72 0.92 1.17 1.44 

14 0.091 0.17 0.26 0~38 0.5,2 0.167 0.86 1.091 1.3,4 

15 0.091 0.16 0.25 O~35 0.48 0.163 0.80 1.01 1.25 

16 0.08 0.15 0.23 0~33 0 45 0.59 0.75 0.95 1.17 

17 0.08 0.14 0.22 O~311 0.42 0.55 0.71 0.891 1.10 

18 0.07 0.13 0.20 0~29 0.40 0.52 0.67 0.84 1.04 
!lIP Minimlulm Iclear d~stanoe = 11.5db therefore the bar size cannot be plaoed at the sp.acing indieated. 
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