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Introduction

A structure is an assembly of interrelated components that
serve a common purpose. Structure may present itself with a
hierarchy of components as in the structure of a corporation
or rely on the patterns and relationships between similar
components as in the structure of molecules. In Architecture,
structure is a system of interrelated components that is
capable of supporting itself and transferring all loads safely to
the ground.

Architects and indeed all designers should understand
structures in order to communicate effectively with
contractors and consultants or to design component sizes.
But the most important reason to understand structures is to
express the design intent or concept through the structure.
Only by understanding how different structural types and
materials behave will the structural system become fully
integrated with the design intent.

In this book, the basic concepts of statics and strength
of materials are presented first, followed by discussion
of structural systems. This order allows the reader to
understand how components of various systems behave
in terms of the stresses they receive. After discussion of
structural types, design methods for components for specific
materials of wood, steel and concrete are presented.

If chemical and heat reactions are ignored, there are five
basic ways to physically break an object:

Tension—pulling

Compression—pushing, crushing, squeezing
Flexure—bending

Shear—chopping, cutting, slicing, punching through

oA W N =

Torsion—twisting.

Other types of failure are a refined definition based on these
basic five types. Metal fatigue, for example, is caused by the
repeated bending in alternating opposite directions.

Try this experiment: Collect five identical pieces of chalk,
five identical rubber bands and five identical paper clips. Test
each of the three objects for tension, compression, flexure,
shear and torsion by trying to break one of the identical
objects by pulling, another by crushing, etc. What is noticed
about the behavior of chalk compared to rubber?

The forces and reactions in tension, compression, flexure,
shear and torsion are determined by statics. Statics is the
physical state in which all components are at rest and in
equilibrium. How or when or if a component will fail under
a particular force or stress depends on the properties of the
material from which it is made; the strength of the material.

This book is intended to be a simple explanation of the
structural problems architecture students, designers and
architects may encounter whether designing in steel, wood,
concrete or an alternate material.
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Finding Reactions

Newton’s Three Laws of Motion:

1. A body at rest will remain at rest and a body in motion will
continue uniformly in a straight line unless acted upon by
a force.

2. F =ma: thatis, the rate of change of momentum (mv) is
equal to the force producing it and in the direction of that
force.

3. Every force acting upon a body at rest has an equal and
opposite reaction.

Newton'’s third law of motion is the basis for static structural
analysis. For a structure to remain static, that is, at rest

and not in motion, the sum of all forces must equal zero.

This means that any force applied to a component must be
resisted by that component with an equal and opposite force.
In order to do that, the structural component will internalize
the force and transfer it to a support or another component
of the structural system. The force will be transferred from
component to component until it reaches the ground.

1.1 Vectors

It is important to understand basic trigonometric functions in
order to work with vectors.

Below is a quick review.

A
1.1

Basic trigonometric functions

Basic trigonometric functions:
sin® = O/H , cosB® = A/H and tan® = O/A

O = Hsin® and A = Hcos6

1.1.1 Vectors

Loads or forces in architecture are described in terms of
vectors. There are three necessary components that define a

vector:

1. Origin or starting point
2. Direction
3. Magnitude.

The origin is the point of contact. Vector direction is
expressed by its x and y relationships. Normal convention for
vector direction is that a vector moving to the right is +X, a
vector moving to the left is =X, a vector moving up is +Y and

a vector moving down is =Y.
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A vector direction can be expressed by its x and y
relationships or by its angle from an axis. When a vector is
expressed in terms of rise and run the ratio of the X and Y
components to the full vector magnitude are equal to the
ratio of the rise and run of the direction to the hypotenuse
they create. This is important to remember, because it allows
the vector components or magnitude to be found when only

partial information is available.

Example 1-1: Find the X and Y components of the force
vector A = 10k with a rise/run of %.

Y Y
N
RO N
v 3|Ay N alek
4 X 4 X
AX = 8k >
1.2

Vector components defined by rise and run

A
WOk _ A A a :(@)(4):8 and A, =(@)(3)=6k
5 3 4 5 5

Notice that vector components are tip to tail; directed so that
they form an alternate route from the origin to the endpoint,
indicating component directions.

Example 1-2: Find magnitude of vector E if Ey = 240.

1.3

Vector magnitude defined by rise/run

1. Determine the hypotenuse of the triangle:

H=67+12°) =13

2. Use ratios to determine the vector component E:

E _240# -E ..,Ez(%)(w):zeo
137 12 5 12

Example 1-3: When a vector is expressed in terms of its
angle relative to an axis, use trigonometric functions to

determine the components.

The 16K force is in a direction 30° above the positive y. Because
sin30° and cos30° are known, the ratio of sine or cosine to the
whole is equal to the ratio of F or F, to the vector force F = 16k.

fy

14

Vector components defined by angle

_F* :ﬁ...ﬁ =16k(sin30) =16k(0.5) = 8k
sin30 1
F
Y — @...Fy =16k(cos30) = 16k(0.866) = 13.86k
cos30 1

If the vector direction is expressed in terms of the angle from
the Y-axis, the results will be the same.

B 16K E —16K(0.5) = 8k
cos60 1

F

5 16K E _16K(0.866) = 13.86K
sin60 1 Y

Example 1-4: The ratios of sine and cosine can be used
to find a vector force magnitude when only the angle

from an axis and one of the components are known.

I

Gx = 29.79#

<

- [sp]
sin50 = .7665_
I

o

Te)

n

1.5

Vector magnitude defined by angle



Find magnitude of force G and the horizontal component G if
the vector G is directed 50° left of the positive Y-axis and the
vertical component Gy = 25#.

G 25#  25#

= =——=38.89#
1 cosb0 0.643

254 =G, sinb0...G, = (25#)(@) =29.79#
cosb0 0.643

1.1.2 Adding Vectors

The sum of vectors passing through a common point is called
a resultant vector. Vectors traveling through a common point
may be added graphically by connecting vectors tip to tail,

in any order, starting at the origin, then finding the resultant
vector by drawing a line from the origin to the endpoint.

The independence of order is demonstrated in Figure 1.6

by adding three vectors in different orders. The resultant
vector is always the same. Although an easy way to check an
answer, it is only as accurate as the scale of drawing.

|F+E+C

E+C+F

1.6

Graphically added vectors

To add vectors mathematically:

1. Break each vector into X and Y components.
2. Sum X direction components; sum Y direction
components.

FINDING REACTIONS

3. Find magnitude of resultant vector by using
Pythagorean’s theorem.

F=(=f ) +(=f)

4. Find direction of the resultant vector relative to the X-axis
by using:

Example 1-5: Adding vectors.
Add the three vectors in Figure 1.6:

1. Find vector components:

25k
C, =| ——= [(-3)=-20.80k
(%)

25k
C,= (ﬁ)(—z) =-13.87k

E, = (ZOk)(_—5) =-7.6%
13

E, = (20k)(2) =-18.46k
13

F = 16c0s30 = 13.86k

F, = 16sin30 = 8.00k

2. Sum the X components and sum the Y components.

xf =-20.8 -7.69 + 13.86 = -14.63k
>f =-13.78 + 18.46 + 8.00 = 12.59k

Y

3. Resultant magnitude:
R=4/(14.63% +12.59%) =19.30k

4. Resultant direction:

12.59
-14.63

eztan-1( ):—40.71 or 40.71°

above the negative X-axis.

1.2 Supports

There are three basic types of supports to consider: rollers,
pins and fixed connections.

Rollers: The reaction is a force through the roller center
perpendicular to the surface on which the roller sits, whether
horizontal (a) or at an angle (b).

Ivww .ebook3000.con}
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1.7

Roller support

If the slope of the reaction surface is in terms of a rise (Y)
over a run (X), then the slope of the reaction vector, which
is perpendicular to the surface, has a rise (X) over a run
(Y). Knowing this, the reaction vector components can be
calculated.

If the roller support rests on a surface with a rise/run of %,
the slope of the vector R is %.
1. Determine the hypotenuse of the triangle:

h=32+4?=5

2. Use ratios to determine the vector components A and A :

R
Ez—yzR—x...RX:(E)B):O.GR and RV(E)M):O.SR
5 4 3 5 5

Pinned support: The reaction is a force through the pinin a

direction opposite to the resultant of forces applied to the pin.

It is important to remember that both pins and rollers are free
to rotate. Because of this they do not transfer any rotational
force called a moment through the support.

Rx Rx

Ry Ry
(@) (b)

1.8

Pinned support (a) and fixed support (b).

Fixed support: A fixed support has a reaction in a direction
opposite to the resultant of forces applied. Unlike a pinned
support, a fixed support resists rotation and has a moment
reaction equal to the moment applied to the support, but in
an opposite direction.

1.3 Moments

Moment: M, = F(d)

A moment about some point A is caused by a force, F, acting
at a perpendicular distance, d, to the point. The units for a
moment are: kip-feet (k-f), kip-inches (k-in), pound-feet (Ib-ft)
or pound-in (Ib-in). Convention for the direction of moment is
positive for a clockwise rotation and negative for a counter-
clockwise rotation.

N
M = 7k(6")

=42k-f
A >
D\y 16 |
1 1
@
7k
| 8 i
1
M = 7k(8) |

(b)
1.9

Direction affects moment



The rigid frame in Figure 1.9 has a horizontal 7k force applied
at point C. The perpendicular distance between the line of
that force and point A is 6.

M, = f(d) = 7k(6’) = 42k-f

The rotation is clockwise, which is considered positive,
therefore M, = 42k-f.

The moment about point B (M) is also 42k-f because the
perpendicular distance between the line of force and Point B
remains 6’. The direction is still clockwise.

By rotating the 7k (b) applied at point C, the moment about
point A (M,) changes because the perpendicular distance
between the line of the force and point A changes.

M, = 7k(8’) = 56k-f clockwise = 56k-f
M, = 7k(8’) = 66k-f counter-clockwise = —56k-f

The direction of a moment can be easily shown by holding
a pencil loosely at the point of rotation and pushing in the
direction of the applied force. The pencil will rotate in the
direction of the moment.

Example 1-6: Summing moments.

The 15k force is applied perpendicular to and at the center of
the AC leg. Find the moment about point A and B.

1.10

Summing moments

FINDING REACTIONS

M, can be solved easily because the force is perpendicular to
the leg AC.

IM, = 0 = 15k(5") = 75k

The 16k must be broken into components to solve for M.

15k(£):12k¢ and 15k(§)=9k -
5 5
Mg =0=-12k(12")+9k(3') = =117k-f

counter-clockwise

1.4 Reactions

Structure transmits loads to the ground through a series of
reactions to applied forces. Before any component can be
designed to handle the transfer of applied loads, the reactions
at the support(s) must be found.

To solve for reactions:

1. Identify the unknowns
2. Break all forces into X and Y components
3. Sum the forces and moments at the supports:

SM=0,5f =0,5f =0

1.4.1 Concentrated Loads

A concentrated load is a load that is applied at a single point.
It is handled as a vector with magnitude (force in Ib or K),
direction and origin (the point at which it is applied).

Example 1-7: Finding reactions.

1. ldentify the unknowns: The support at point A is a pin and
therefore may have a reaction in the X and Y directions
(A, and A ). A pin cannot resist rotation and therefore has
no moment transfer. The support at point B is a roller and
therefore the only reaction is a force perpendicular to the
support surface (B,). The free body diagram (b) shows
applied forces and unknown reactions.

2. Break all forces into X and Y components: The applied
force is a horizontal force; it does not have a Y component.

3. Sum the forces and moments at the supports: Start by
summing the moments about a pin.
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7K C Example 1-8: Find reactions in a 12’ beam with
a 4’ overhang.

o .
8 sk 6k

P —

®
=
N

1
L)

7K C
Free body diagram
6' 3 g
44— 3K 6k
Ax| . i
AyT Free body diagram By T Ax ‘ JL
(b) ; 12' . 4 1L
(b)
7K C
6 3 +—& sk 6k

7k
],2.63k 2.63k i * 1k 104
1.L 16 | 12' |4

©) ! ' ©

1.11 1.12

Example 1-7 Example 1-8

1. The unknowns at pin Aare A and A . The unknown at the
roller B is By.
SM=0=A (0)+A(0) + 7k(6’) — B (16") 2. Since the only applied forces are vertical forces, there is
X y y

no need to break them into X and Y components.
0 = 42kt - BY(16 ) 3. Sum moments about the pin

B, = 42i-f/16" = 2.63k IM, = 0= A (0) + A (0') + 3k(8) - B,(12) + 6k(16")

ny:O:Ay‘F BV:AV+2'63K 0 = 24k-f — Bv(12,)+96k_f

Ay = —2.63k. Because the answer is negative and Ay By — 120kf/12" = 10k = 10kT
was assumed to be positive, the answer is Ay =263kl
f,=0=A +B -3k-6k=A +10k - 9k
X =0=7k+A,
Ay = —1kT. Because the answer is negative and Ay was
A = —7k. Because the answer is negative and A was

X

assumed to be up, the answer is Ay =1kd
assumed to be to the right, the answeris A = 7k «

3 =0=A,..A =0



Example 1-9: Find reactions for a 16’ beam with a roller

on an angle at B.

k
g 3 4 6k

L 2

—

pd
; aog

| 16 |

, 3k , Bk
| 8 L 4 |
]

Ax ‘ 3
o | X
| 16 |
7 1
(b)

\ 3k . 6k
L 8 L, 4
]
Ax ‘ Bx = .6B
Ay I By = .8B
| 16 |
1 1
()
. 3k , 6k
| 8 L 4
|
45 ‘ 4.5
q r
| 16 |
1 1
(d)
1.13

Roller on an angle

1. The unknowns at pin A are A _and Ay. The unknown at
the roller B is a vector B in a direction perpendicular to

the surface on which the roller sits. Surface slope = %

vector slope = %. Because we know the direction of the

FINDING REACTIONS

vector in terms of the rise and run, we can break it into its

components.

V3% +4? =5

B

5.2 B -%_oss
B 577 5
B._4 5 -B_o6s
B 5 5

No forces need breaking into X and Y components.
Sum the forces and moments at the supports.

M, =0=A(0) + A (0") + 3k(8) + 6k(12') - B (16")
0 = 24k + 72k - B (16")
B, = 96k-f/16’ = 6k = 6kT

Using the ratios of the vector B:

B, = 0.6B = 0.6(7.5) = 4.5k
2f,=0=A, +B, -3k-6k=A +6k-9k
Ay=3k=3kT

3 =0=A -B,=A -45k

A, = 4.5k = 4.5k -

1.4.2 Distributed Loads

A distributed load is exactly what it sounds like. It is a load
distributed over a length and it is expressed in terms of the
force per unit of length. Distributed loads may be uniform or
non-uniform. Uniform loads are distributed evenly across a
portion of a member. As such there are two parameters that
define the load condition: the length over which it is distributed
and w, the force per unit of length, usually in units of k/f or #/f.
To find the moment about a point caused by a uniform load:
1. Calculate the total load: multiply w by the length of load
application.
2. Find the center of gravity for the load. This occurs at the
center of the length of load application.
3. Calculate the moment caused by the uniform load by
multiplying the total load from step one by the distance
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from the point of interest to the center of gravity located
in step two.

Example 1-10: Finding reactions with a uniform load.

3k/f
A B
i 10' i
) I
C.G.
3k/f
Ax e
i( 5' ]
A.‘Y- '||' By
X 10’ |
1 1

1.14

Reactions for a uniform load

The uniform load, w = 3k/f, the applied length is 10
The total load, W = 3k/f(10") = 30k

The distance from the center of gravity to point A is 5
or half of the applied length.

M, = 0 = 30k(5") - B (10) ... B, = 15k
SF =0=A - 30k + 15k ... A = 15k

SF =0=A,

Example 1-11: Finding reactions with a partial uniform load.

3k/f
N\ 5 3 )
A } B
. 8'
| |
1 1
C.G.
3k/f
Ax
- 5+1.5'=6.5' 15 7T
Ay _ By
N 8' N
| |
1 1
1.15

Reactions for a partial uniform load

The uniform load is w = 3k/f. The applied length is 3”. The
total load, W = (3k/f)(3’) = 9k. The distance from the center
of gravity to point A is the applied load plus half of the applied
length = 5" + 3’/2 = 6.5’ from point A.

IM, =0=9k(6.5) - B (8)...B =731k
IF,=0=A -9 +73Tk... A =169k

SF =0=A,

Example 1-12: Reactions for a partial uniform load and

overhang.
3k/f
.Aél. 5 4/ 3y L 5 |
F B |
N 8 N
T T
C.G.
3k/f
Ax J{
t L} L} L} O 5' “ 2' N
Ay 5425 =75 . _\ i 1"
y

8 ol

1

=~

1.16

Reactions for a partial uniform load with an overhang

w = 3k/f
W = 3k/f(5") = 16k

The distance from the center of gravity to point A is the applied
load plus half of the applied length = 5" + 572 = 7.5’ from point A.

=M, = 0 = 15k(7.5') — B (8") ... B, = 14.06k
SF,=0=A - 15k +14.06 ... A = 0.94k
SF=0=A,

Not all distributed loads are uniform loads. To find the total
load and the center of gravity when the distributed load is
non-uniform, the geometry of the shape of the load must be
considered.

Example 1-13: Finding reactions with a triangular load.

One example of a non-uniformly distributed load is a
triangular load, named for its geometric shape. The area of a



triangle is equal to half the base times the height. The center
of gravity of a triangle is located one third of the base length
from the heaviest end.

3k/f
|
LWL
Lﬁ O
A ' B
| i i
C.G.
3k/f
quill
A LWL
Ay ° — “By
9
! . +
1.17
Triangular load
W:M:B.Sk

The center of gravity is % of the applied length from the heavy
end or 3’ from point B. Therefore, the distance from the
center of gravity to point Ais 9" - 3" =6".

IM, =0=13.5k(6") - B (9") ... B =9k

IF, =0=A - 135k +9k... A =45k

IF=0=A,
Example 1-14: Finding reactions with multiple

distributed loads.

Another example of a non-uniformly distributed load is a load
that varies linearly from one amount at one end to another
amount at the other end as shown in Figure 1.18.

Break the load into one uniform load and one triangular load:

The uniform load is 3k/f. The applied length is 6.

W, = (3k/f)(6’) = 18k
The center of gravity is 3’ from point A.

The triangular load tapers from 3k/f to 0.

FINDING REACTIONS

The applied length is 6”. W, = ((3”k/f”)(6"))/2 = 9k
The center of gravity is 2’ from point A.

M, =0=18k(3") + 9k(2") - B (9") ... B, = 8k

y Y

IF,=0=A - 18k -9k +8k... A =19k

SF =0=A,

Practice Exercises:

1-1 through 1-3: Find the resultant vector magnitude and
direction for the forces shown in the diagrams in Figure 1.19.

1-4: Find the moment about point A.
1-5: Find the moment about support A.
1-6: Find the moment caused by the force:

a) about point A
b) about point B.

1-7 through 1-14: Find the reactions for the forces applied.

6k/f

3k/ | | | | | 3k/f
—iX &
To

9

-
—

1.18
Combined distributed loads

"
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2k 4K 6k
] ] ] 4l
O I i
3
A B
3k 5k
1-4
f@ o i 6k 8k K g 12
2 8' ﬂ
3(9 2 = 39"
- N
5 _ 2 B A | B-(!?- 'A | B{ﬁ-
A A]r 48" | 16 | 6 10 |
1-5 1-6 1-7 1-8
12k
' 2k 3k/f
ARARRARAA Skif
A | B £ 5 3 Lo ZAE 4 4 2
3 3] 10 i 8' B g B
1-9 1-10 1-11
10k
30k
AN °
S 6k
4k/f 3 6' 2! 8-
1k/f 3k o
A B2
A fﬁ B k=
i 15 B |8 g 16
1-12 1-13 1-14

1.19

Chapter 1 Practice exercises.
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Bar Forces in Trusses

A true truss is a stable configuration of bars connected by
pinned joints. Because the joints are pinned, no moment is
transferred along a bar. Therefore, the direction of any bar
force is along its axis. Each bar transfers an axial force in
either compression or tension. Bar forces in compression
have arrows pointing away from each other «~ — and bar
forces in tension are indicated by arrows pointing toward each
other — «.

Truss analysis assumes four things:

All members are linear.
Members are pinned connected at the ends.
The weight of the members is neglected.

o Dn -

Loads are only applied at the joints.

2.1 Method of Joints

The Method of Joints uses the logic that if a joint is isolated
by cutting through the bars, the joint remains in equilibrium
due to the bar forces.

To use the Method of Joints:

Solve for reactions at the supports.

2. Break the truss into individual joints.
Sum the forces in the x and y directions for each joint.
xf, =0, Zf = 0. Note the bar forces on the other side of
the break as equal in force and opposite in direction.

4. Find resultant bar forces:

F=(f*+17)

Example 2-1.

L 6' L 6 L

N

D
prim C o NN
2k
B

A~ | D
ooy

1k

21

Break truss into individual joints

1. Solve for reactions:

Unknowns = A, A, D/

IM,=0=2ki6")-D(12)..D, =1k

2 =0=A -2k+1k... A =Tk
y Y Y
3 =0=A,

2. Break truss into individual joints:
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B

1 Joint D
D

Joint B

2.2

Sum forces at each joint

3. Sum the forces in the x and y directions for each joint.
If, =0 Zf = 0.
Joint A:

If,=0=1k-AB ... AB = Tkl

AB '
! =3—...ABx =2k «
AB, 6

f =0=-2k+AC, ... AC = 2k—
Joint C:

ZR:O:—%+BCW“BQ=2H

»f =0=-2k+CD,...CD_=2k—
Joint D:

5f =0=1-BD ...BD =1l

Yy Yy Yy
ZfX:O: -2 + BDX... BDX:2—>

Joint B: Once all of the bar forces are found, the last joint can
be checked to ensure equilibrium.

Xf =0=1k - 2k + Tk ... okay

2f =0= -2k + 2k ... okay
4. Find resultant bar forces:
F= (17 +17)
AB=BD=4/(22+12) =2.24 Compression <« —

AC = CD = BC = 2 Tension — «

2.3

Find total bar forces

Some trusses have diagonals set at an angle 6 from the
horizontal. For any bar for ratio:

f, Fsin® _

f  Fcos®

X

tan®

f
f,=ftan6 and f, =—
tan®

Example 2-2.
5k

2k 3k
B@ D@ F@
600

A /60° 600\G
* Cl El Rl
L 10 | 0 | 40 |
1 1 1 1

2k 3k 5k
o) ol e
G
M ¢ - Tk

24

Truss defined by angles
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1. Solve for reactions:
Unknowns are A, A and G,
IM, =0 = 2k(®) + 3k(15) + 5k(25') - G, (307) ...
G, =6k

Zf,=0=06k -5k -3k -2k + A ... A =4k

f =0=A,
3k 5Kk
4.042 F
1 577 6
577 1 464
577 1 3.464
1 57 6
2
A 5309 4618 . 3.464 G .
4k C Bk Sum forces at each joint
2. Break into individual joints: Joint D: ny =0=2k-3- DEy DEy =1kT
3. Sum the forces in the x and y directions for each joint.
DE 1
DE, = Y =——=0.577
fo =0, ny =0. * tan60 1.732 <
Joint A:xf =0=4k-AB ... AB = 4kl 2f =0=3.464 + 1155 - 0.577 — DF ... DF = 4.042k«
AB int E- ~ 0= _
ABX= y 4 =2.309K « Joint E: ny—O——1k+ El:y EFV_ H(T
tan60 1.732
$f =0=-2.309 + AC ... C = 2.309k— o VI Ny
* tan60 1.732
Joint B: zfy =0=4k-2- ACy ACy =2kl 2f =0=-4.618+0.577 +0.577 + EG ... EG = 3.464k—
AC Lt e 0= -
AC = =2 sk Joint F:2f =0=-1k -5 +FG, ... FG, = 6kT
tan60 1.732
FG 6
2f =0=2309+ 11565+ BD ... BD = 3.464« FG. = Y —_ ~ 3464k «
* tan60 1.732
JointC:xf =0=2k-CD,...CD = 2kl Joint G: Zf = 0 = -6k + 6k ... okay
CD 0=
D, = =255k f, = 0 = 3.464k — 3.464k ... okay
tan60 1.732

4. Find resultant bar forces:
2f =0=-2309-1.155-1.155+CE ... CE

= 4.618k— F=J(i2+17)
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2k 3k

B 3.46 D@ 4.04

5k

3.46 G

©
I\ P ~N Ve
© 3e) fd
W Z 0% >
A
2.31 o 4.62

4k

C = compression, T = tension

AB=/(2.309” +4%) =4.62kC
AC=231kT
BC=/(1.155"+2°) =2.3k T
BD=3.46C
CD=,/(1.165° +2%) =2.3k C
CE=462T
DE=/(0.577°+ 1) =1.15kC
DF =4.04k C
EF=/(0.5772* + 1) =1.15k C
EG=346T

FG=/(3.464° +6°) =6.93k C

2.2 Method of Sections

Just as any joint can be isolated and examined to be found in
equilibrium, any section of a truss that is isolated will also be
in equilibrium, meaning that the sum of forces and moments
will equal zero. Isolating a section of a truss is very useful
when only a few bar forces need to be found.

To use the Method of Sections:

2.6

Find total bar forces

6k

1. Draw a section line through one or more bars of interest.
The section line must cut through the entire truss.

2. Consider only one side of the section line.

a. If all supports are located on one side of the
section cut, then use the other side. This will
eliminate the need to solve for reactions first.

b. If all supports are not located on one side of
the section line, then solve for reactions before
isolating the section.

3. To each severed bar, assign a bar force variable with
components, assuming a direction (AB,, AB,, etc.)

4. Solve for the bar forces using =M = 0, ny =0 and
2f = 0. In order to decide which equation to use,
observe the isolated section. Count the number of
unknown variables in the x direction. If only one unknown
exists, it may be found by using Xf_= 0. The same is true
of the y direction. If there is more than one unknown in
both directions, use XM = 0, taking the moment about
the intersection of two severed bars to find the forces in
the third. It is also useful to remember that bar forces are
axial and therefore the ratio of f /f = rise/run.

5. Find resultant bar forces:

F=J(f>+17)

Example 2-3: Find the bar forces in members CB and CE
using Method of Sections.



| 16' I
_C| D<=. 8k
V]
o
- (a)
A
C 16' D
@l 8k
CEx (b)
CB CEy DE
Above section line
2.7
Method of Sections

1. Draw a section line through CB and CE.

2. Consider only one side of the section line. Since all of
the supports are located on the bottom, isolate the top
section. This will eliminate the need to solve for reactions
first.

3. The variables are CB, CE —, CE | and DE!. All are
assumed to be in tension. If the answer is negative,
the direction will change and the bar force will be in
compression.

4. There is only one X direction variable, CE , therefore use
xf = 0.

3f =0=-8k+CE, ... CE = 8k—
CE, = 12'(8K)/16" = 6k

There are still two variables in the y direction: CB and DE.
Therefore, Efv = 0 cannot be used yet. Use instead, TM = 0.

BAR FORCES IN TRUSSES

Since CB is the variable to be found, take a moment about
the point where CE and DE intersect; at point E. It does not
matter that point E is not part of the section.

M, =0 = -8k(12’) - CB(16’) ... CB = -6k or 6k in
compression

If envisioning a point not in the isolated section is difficult,
sum the moments about point C, then sum vertical forces.

IM.=0=DE(16) ... DE=0

Efv=0= -6k+0-CB...CB=-6o0r6kin
compression.

5. Find resultant bar forces:
F= (17 +17)
CB =6k C

DE=0
CE= /(8% +6) =10k T

Example 2-4: Find the bar forces in AC using Method of

Sections.

o

3

2.8

Example 2-4

17
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1. Draw a section line through AC. Note that wherever
the section line is drawn, an isolated side will contain a
support. Therefore it is necessary to solve for reactions.

=M, = 0= 10k(4) + C(3") ...
C, = (-40)/3 = -13.33k = 13.33k—>

f =0=13.33k+A ... A =-13.33k = 13.33ke
3f =0=-10k + A ... A =10kT
Yy Yy Yy

Consider only one side of the section line.

The variables are AB,, AB , AC _and AC,. Since there
are four variables and only three available equations, the
relationships between the variables must be defined.

AB, 2
r_2 2B, =AB,
AB, 4 v
AC, 3
=2 .2AC, =AC
AC, 6 v T

4. There are two variables in each of the x and y directions,
therefore use XM = 0. Since AC is the bar of interest,
sum the moments about the only point not connected to
AC, point B.

IMg = 0= -13.33k(5") + 5(AC,) - 2"(AC,) and since
2AC, = AC,

IMg =0=-13.33k(5") + 5’(2AC) - 2/(AC)) ...
AC, =8.33k

AC, = 2(8.33k) = 16.66k
5. Find resultant bar forces:

F=J(£2+17)

AC=/(16.66° +8.33°) =18.63k T

2.3 Diagonal Tension
Bracing

Diagonal Tension Counters are sets of cables or slender
components that stabilize a frame by acting in tension only.
Although the tension counters are placed in sets, only one is
active given any particular load scenario. For example, if the
box is subjected to a force F from the left, the frame wants

to lean towards the right. The cable AC is in tension and
counteracts the force F. Cable BD cannot resist in compression
and becomes inactive. If the box is subjected to a force from
the right, Cable BD is active and cable AC is inactive.

B C B C B c

F
A D Ak b A D
2.9

Only one tension brace is active at a time

To analyze diagonal tension counters:

1. Solve for reactions.

2. Cut a section through both tension counters and assume
bar fragments are in tension. Isolate one side.

3. Sum forces in the direction parallel to the section line
adding only some value Ty if the line is vertical, and T
if the line is horizontal, for the tension counter variable.
Solve for T, or T.. A positive answer indicates T is up. A
negative answer indicates Ty is down.

4. Choose the active tension counter by noting the direction
of T.. Solve for T _using the ratios T /T = rise/run.

5. Find the Tension in the active tension counter using

T={(T2+77)
Example 2-5: Find the tension in the active
tension counters.
1. Solve for reactions.

IM, =0 = 4k(4’) + 6k(8’) + 8k(12') - H (16) ...
H, = 10k

5 =0=A -4-6-8+10..A =8k
y y y
o =0=A,

2. Cut a section through both tension counters and assume
bar fragments are in tension. Isolate one side.

Section 1, left side:
3. =, =0=8k-4k+T ..T = —4k or 4kl

4. BE is the active tension counter because the Ty is
downward.

EATISEE O Y
T, 4 5'



5

2.10

4K 6k 8k
B\/ F 5k
A H
4 ¢ +F| 4 G 4 T
1

a | e !8k
! !F 5k
| H
OB
8k

C@ @G

Diagonal tension bracing

5.

T=\(T2+77) = (322 +4%) =512

Section 2, right side:

3. ny =0=10k -8k + Ty Ty = -2k or 2kl
4. EF is the active tension counter because the Ty is
downward.
A5 ;24 g
T, 4 5
5. T=\[(T2+T77) =162 +2?) =256k
Example 2-6.

1.

2. Cut a section through both tension counters and assume

In this example, there is no need to solve for reactions if

the area above each section line is isolated.

bar fragments are in tension. Isolate one side.

BAR FORCES IN TRUSSES

BRS D
< :
LS E
B
] (=)
A F
AN -
N g s
(a)
c
6k 8' D
\l, \l, (b)
B o oE
C 8' D
6k
8k E
B
(c)
A F
e _8
2.11

Horizontal section cuts
Section 1, top:
3. Xf =0=06k+T ... T =—-06kor6ke

4. DB is the active tension counter because the T is toward
the left.

19
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5 T= \/(sz +17) = (67 +37) =6.7%

Section 2, top:

3. Zf =0=6k+8k+T ... T =-14kor 14k «

4. EA s the active tension counter because the T is toward

the left.

14k 8’ 14k(6")
=T, =
T, 6 8

Y

=10.5k

5. T=(T7+T7) = (14 +10.5?) =17 5

Practice Exercises:

2-1 through 2-3: Solve for the bar forces using Method of
Joints.

2-4: Find the axial forces in bars BE and BC using Method of
Sections.

2-5: Find the axial forces in bars DE and DF using Method of

Sections.

2-6: Find the axial forces in bars CE, CD and CB using
Method of Sections.

2-7 through 2-8: Find the tension in the active diagonal
tension counters.

4k 6k
8k 7k 6k 5k 4k
9k D 6k ok
B D F H K )
N B F
q' N
Dlak
A J A _~30° 30 H .
3.CL 3 EI, 3 GI, 3 _(L)_ /77@77 4 C | 4 E | 4 G| 4 i[)_ A E
7 7 7 7 1 1 i i i i]/L o2k '
Exercise 2-1 Exercise 2-2 1 6 6 1
13k A, 6 Exercise 2-3
A 12k
9% A B c | 9k
l @, A B
D 5k
! l—o 10k )
° | 50°  |F | ®
D |/ 50 -
: D
: . E : . C
76 4L 6 l 6 _(f_ J E F Tok
Exercise 2-4 ) | =)
' F
2k 7k 9k 2k Lo H 4-E =
18' j}
B D F H T R
[sV)
Exercise 2-5 T
H §+
o LG H
16' itL
© 1 1
A G X Exercise 2-8
& xercise
, C ' E ,
i i i i
; k
Exercise 2-7 - 6k I
2.12 2! ; d— Exercise 2-6
Chapter 2 Practice exercises n 4 BL o IP 3 F
7 O
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Statics in Simple Systems

3.1 Cables

Cables can only transfer load through tension.
All cables must have some sag in order to support a load.

This is because the resultant force through a cable is in the

direction of its axis and because a cable, in theory, cannot

transfer loads through shear. Imagine a cable with no sag. 10k

The reactions at the cable supports must be in the same 3.2

direction as the axis of the cable. If a cable has no sag, the Finding tension in cable segments
direction and therefore the reactions are only in the horizontal ) )
. . . ) ) 1. Find reactions.
or x direction. When forces are summed in the y direction:

xf, =0 = W, therefore the load W must be 0. =M, =0=10k(4) - B (12') ... B, = 3.33kT

2Fy=0:=Ay—10k4—333k“.Ay=667kT

X

< > B, 3 3
— == ..B,=3.33| = |=8.89%
Ax JL Bx B 8 X (3) -

10k
A
3.1 —VZE...Ax :6.67k(£)=8.89k—>
A 4 3

X
A cable must have some sag

2. Sum forces at each point of load.
This is because the ratio of the reactions A /A = h/a. If h =0, AC, = A, =B.8%
then Ay = 0 and therefore, W = 0. ACy = Ay =6.67k

To solve for the tension in a cable when the sag is known: BC, = B, = 8.89k

Example 3-1: Find the tension in cable segments AC and CB. BCV -8 - 333K

Note that the force in the X-direction remains constant
throughout the cable.
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3. Find tension in cable legs.

AC=,/(8.89"+6.67°) =11.12k

BC =/(8.89” +3.33”) = 9.50k

Note that the tension is greater in the segment with the
steepest slope.

Example 3-2: Find the sag at points B and D and find
tension in all segments of cable.

Any portion of the cable may be isolated and resultant forces
found.

AL 2 | 20 10 18 4By

3.3

Finding sag in cables

IM,=0=3(12) + 7(32) + 2(42) - E (60) ... E = 5.73kT

f,=0=A+573-12... A = 6.27kT

A and E_cannot be solved without taking a section cut. Cut
cable at point C and isolate right side:

EM, =0 =2(10) - 5.73(28) + E (12) ... E, = 11.71k

E
578 M g
E 1171 18

X

Consider entire cable:

2, =0=171-A ... A = 17Tke
A

A,_627 b | o4

A, 1171 12

AB, = BC, = CD, = DE, = 11.71k
AB, h,

Y

=—_.AB, =6.27k...
11.71 12 Y

AB=[(6.27° +11.71) =13.28k

BC -
—Vth 12...BC =6.27k -3k...BC, =3.27k...
11.71 20" Y Y

BC=,/(3.27° +11.71") =12.16k

CD hy,-12
1171 20

...CD, =5.73-2...

CD=,/(3.73° +11.71) =12.29

DE M e 573,
11.71 12 Y

DE=/(5.73” +11.71) =13.04k

Example 3-3: Find the sag, h, in the cable given the
maximum cable tension, T = 18k.

Ay! ICy
A

10k

3.4

Finding sag for maximum tension

IM, =0=28(10) - 40C, ... C =7k

va=0=Ay—10+7...Ay=3k
The steepest slope will have the greatest tension.

Slope of AB = h/28 and Slope of BC = h/12.
Therefore, BC has the greatest tension and BC = 18k.
Comparing the ratios of force to length in the triangle on the
right side yields:

12 y(he’+12%)

hg _ 12
7 BC, 18k

J(h? +127)
hy = +————=...18h,” = 7h,” +168h, +1008...
18k

hg = 5.07"



Alternatively, BC can be found first and then the used in the

equation:
h_B_ 12
7 BC,

BCZ2+ 7% =182 ... BC, = 16.58k

hg = 7(12)/16.58 = 5.07’

3.2 Arches and Pinned
Frames

3.2.1 Hinged Arches

Three-hinge arches consist of two arched segments
connected by a pin and supported by a pinned connection
at each end. Because there are 4 unknowns and only 3
equations, the arch must be separated into segments to
solve. Note that the pin forces on the right side are equal and
opposite to the pin forces on the left side. The assignment of
the direction of pin forces is arbitrary. If the wrong direction is
chosen, the answer will appear to be negative, meaning that
the direction is opposite of that assumed.
To analyze three-hinge arches:
1. Break into left and right segment. Assign P_and Py
variables to either side of the pin in opposite directions.
2. Using only the left side, sum the moments about the left
support. Find the I:’y in terms of the P_.
3. Using only the right side, sum the moments about the
right support. Find the Py in terms of P_.
4. Setthe Py in terms of P_equations from steps 2 and 3
equal to each other. Solve for P .
5. Using P, solve for Py.
Using only the left side, sum y-direction forces, then
x-direction forces to find reactions at the left support.
7. Using only the right side, sum y-direction forces, then
x-direction forces to find reactions at the right support.

Example 3-4: Solve for the support reactions and the
resultant force in the pin.

STATICS IN SIMPLE SYSTEMS

c
©|
J 20K/
A ‘ ‘ 18 )
| L5, 100 2
| s | s :
1 1

Xe |

3.5
Three-hinged arch

Left side:
IM, = 0=20k(10") - C (6") + C (15) ...
C,=(6C, -200/15=0.4C -13.33
Right side:
IM, =0=C[(15") + C (16") - 18k(5’) ...
C,=1(90 -16C)/15 =6 - 1.07C,

0.4C_-13.33=6-1.07Cx ... C_=19.33/1.47
= 13.16k

C,=6-1.07(13.15) = -8.07k
Left side:
Zf,=0=A -20k +8.07k ... A = 11.93k
2f, =0=A - 13.15k ... A = 13.15k
Right side:
):fy =0= By - 18k - 8.07k ... By =26.07k

*f =0=-B +13.15k ... B, = 13.15k

Resultant pin force = /(13.15” +8.07%) =15.43k

23
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3.2.2 Pinned Frames

Unlike trusses, where bar forces are directed along the bar

axis, pinned frames have bar forces that carry shear and

therefore the bar force direction is unknown until analyzed.
To analyze pinned frames:

1. Find reactions at supports for entire pinned frame
system, if possible.

2. Separate the frame at pins into individual members.
Solve for forces in each member remembering that the
force at the pin in one member will be equal and opposite
to the force at the same pin in the connected member.

Example 3-5: Find the support reactions and the
resultant pin force.

7 ( &
v 4 v
1 1

N

3.6

Pinned frame

2 pinned supports = 4 unknowns. Therefore, it is impossible
to solve for reactions by looking at the whole system.
Left side:

M, =0=8k(2)-C(4)..C =4kl
I =0=A -8k+4k.. A =4kT
y Y y
¥ =0=A-C,..A =C,
Right side:
IM, =0=-10k(8) + C (6") ... C_ = 12.67k = 12.67k—
2f,=0=-4k+B, ... B =4kl
f =0=B_+12.67k - 10k ... B, = -2.67k = 2.67k¢
Resultant pin force:
C=/(12.67* +4%) =13.29%
ANSWER:
A, =267k—, A, =4KT, B =267k B =4kT, C = 13.29k

Example 3-6: Find the forces in the pinned A-Frame
shown in Figure 3.7.

10#,_C

10# Ox
Cy y
TET
By y o# Dy Dy
Ax
Ay Ey
3.7

Pinned A-frame




=M, = 0 = 60#(4) + 10#(6") — E (8) ... E = 37.5#7
2f,=0=A -60#+376# .. A =22564T

X =0=10#-A, ... A =10#c
Isolate bars.

Bar BD:

=M, = 0=60#(2") - D (4) ... D, = 30#T
and on bar CDE B, = 30#!

2f, =0 =B, - 60# + 30# ... By:30#T
and on bar ABCB, = 30#0

Bar ABC:
XM, = 0 = 10#(6") + 22.5#(4") - 30#(2") + B_(3') ...
B, = -30# = 30#— and on bar BD, B = 30#«

2f, =0=225#-30#+C ..C = 7.5#7
and on bar CDE C, = 7.5#!

Xf =0="10#-10#+30#-C _...C =30#«
and on bar CDE C = 30#—

STATICS IN SIMPLE SYSTEMS

Bar CDE:

xf =0=30#-D,..D, =30#
Find pin forces:

B=D=,/(30"+30°) = 42.43k

C=/(7.5*+30°) =30.92
ANSWER:

A, =10# A =225#T E =375#T, B =D =42.43%,
C =30.92#

Practice Exercises:

3-1: For the diagram 1-1 in Figure 3.8:

a) Find the sag (h) and the reactions at the support if h, = 3".
b) Find the sag (h) and the reactions at the supports if the

maximum tension in leg CD is 8k.
3-2: Find the tension in each leg of the cable.

3-3 through 3-7: Find the reactions at the supports and the

resultant pin forces.

3.8

— Chapter 3 Practice exercises
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four

Shear and Moment in Beams

There is a mathematical relationship between the load on
a beam and the shear and moment forces incurred by that
load. This means that given a particular load, the shear and
moment can be calculated at any point along the beam.

V = shear force (k or Ib)

Shear is a chopping action; a force inside the beam that
transfers a load, occurring perpendicular to the axis of the
beam, to the supports. The shear force, V, at any point along
a horizontal beam can be found by summing the forces in the
Y direction on either side of that point.

M = moment (k-f, k-in, Ib-ft, or Ib-in)

Moment is a bending action caused by the shear. The
accumulation of shear across a beam determines the amount
of moment created in the beam. The moment at any point
can be found by summing moments on either side of that
point.

The free-body diagram of a simply supported, 12ft beam
in Figure 4.1(a) with a concentrated load of 6k located at a
distance of 8ft from support A, shows reactions of 2k and 4k
at supports A and B, respectively.

6k

A T P e

(a) 0 B Eﬂf
ok g T 7 4

(b)

4.1

Shear and moment at any point in a beam

The Free Body Diagram is the starting point for finding the
shear and moment at any given point along the beam. To
determine the shear and moment, take a section at the point
of interest. The internal shear (V) and moment (M) may then
be calculated by summing forces and moments about any
point.



In Figure 4.1(b) the beam is cut at section D-D and the
two halves separated, the internal shear force (V) and the
internal moment (M) can be calculated for the section of the
beam to the left of the point load. Because a vertical load will
change the shear, and as a result change the moment in the
beam, a different section line, section E-E, must be evaluated
for points to the right of the load.

To determine the shear and moment at some point to the
left of the point load, break the beam at section line D-D.
Section line D-D occurs at some distance X from support A,
meaning that the values for shear and moment will be found
in terms of the variable X.

Assume a direction for shear (V) and moment (M) on one
side of the break. Since the point is static, the forces and
moments at the point must be in equilibrium. Therefore, the
shear (V) and moment (M) on the other side of the break will
be of equal magnitude, but in the opposite direction.

Consider only the left side of section D-D:

IF =0=2-V..V=2

IM, =0=V(X)-M=2(X) - M ... M = 2X k-f
Consider only the right side of section D-D:

IF,=0=V-6k+4..V=2k

IM,=0=M+6(8 - X) - 4(12 - X)

M = -48 + 6X + 48 — 4X = 2X k-f

If the moment is taken about point B or point C, the answer
will remain the same.

IM, =0 =M +2(8-X) - 4(4)

M = —16 + 2X + 16 = 2X k-f

M =0=M + 6(8-X) - 4(12-X)
M = —48 + 6X + 48 — 4X = 2X k-f

From point A to point B, the shear will remain at 2k and the
moment will remain at 2X k-f for any distance X from support
A up to the point of load.

Point A: X =0, V =2k, M = 2(0) = Ok-f

Point B: X =8, V = 2k, M = 2(8) = 16k-f

Past the point of load, section E-E must be considered.
Consider only the left side of section E-E as shown in
Figure 4.1(c):

SHEAR AND MOMENT IN BEAMS

IF, =0=2k-6k+V..V=4k

XM, = 0 =6k(8") - 4k(X) =M ... M = 48 - 4X k-1”
Consider only the right side of section E-E:

IF,=0=-V+4k..V=4k

IM;=0=M-4(12 - X) ... M =48 — 4X k-

From point B to point C, the shear will remain at 4k and the
moment will remain at 48 — 4X k-f for any distance X from
point B to point C.

Point B: X =8’V =4k, M = 48 - 4(8) = 16k-f

Point C: X =12’V = 4k, M = 48 - 4(12) = Ok-f

4.1 Shear and Moment
Diagrams

In Beam design, the maximum shear and moment must be
considered in order to find the maximum stresses in shear and
flexure. By illustrating the shear or moment at any point on the
beam in terms of a diagram, it becomes easy to assess the
areas of maximum and minimum stress in the beam without

drawing a new section at every change in loading.

4.1.1 Diagrams with Concentrated
Loads

To draw a shear diagram, begin at X = 0 and move vertically
only as a vertical force is encountered. Because reactions are
considered, the shear will begin and end at zero. A positive

or upward force will cause a positive increase in shear of the
same magnitude or amount of force. Likewise, a negative or
downward force will cause a decrease in shear of the same
amount of force. The change in shear due to a concentrated

or point load occurs completely at the point of load and is
represented by a vertical line extending from the value of shear
on one side to the value of shear on the other side. This vertical
line length equals the amount of force encountered at the point.

Example 4-1: A simply supported beam with a
concentrated load.

Consider the simple beam discussed at the beginning of the
chapter, shown in Figure 4.2:

27



28

STATICS AND STRENGTH OF MATERIALS

A T .
B |

T x |

oK 8 | 4 4

2k

®
<%

N
i

2k
®
\'
2k 2k
©
\Y
|
| -4k
|
|
2k 2k
@
\
|
| -4k |
| 7
| | |
2k 2k ! |
@ |
v |
-4k

4.2

Example 4-1: Shear diagram.

(a) Starting at X = 0, which in this example is point A, the
reaction of +2K is immediately encountered. The shear
changes from 0 to 2k. V = 0 + 2k = 2k. Therefore, draw a
line from 0 to 2k at X = 0.

(b) From X =0 to X = 8’, no vertical forces are encountered.
Therefore the shear does not change. It remains at 2K.

(c) At X =8’, which is point B at the load, there is a
downward force of 6k. Therefore, the shear will change
by —6k. Since the shear is 2k, it must drop to V = 2k — 6k
= —4k.

(d) From point B at X = 8’ to the support point C, at X = 12/,
there are no vertical forces encountered. Therefore, the
shear remains at —4k.

(e) At point C, the support reaction of 4k upward is
encountered. The shear increases to V = -4k + 4k = 0.
This is what is expected at the end of the beam.

Just as the shear diagram is influenced by the loads on the
beam, the moment diagram is influenced by the shear on
the beam. Therefore, once the shear diagram is drawn, it can
be used to create the moment diagram. The mathematical
relationship between shear and moment is described as:

M = JVdx.

Because the moment is the integral of the shear, it is
equal to the area under the shear curve. This means that the
moment at any point a distance X from the left is equal to the
sum of all shear areas, positive or negative up to that distance
X. This yields the same result as cutting a section line D-D
and finding that M = 2X k-f. The area under the shear curve
at distance X to section D-D is 2k(X’) = M = 2X k-f. Plotting
the results for M at points X = 0 through X = 8’ yields
Figure 4.3(c). The slope of the moment line equals the shear.

Figure 4.3 illustrates why the total area under the shear
curve from X = 0 to 8" equals the moment at X = 8’, which is
M = 16k-f. Therefore, in drawing the moment diagram, it is
not necessary to examine every point along the beam, but to
calculate the areas as they appear in simple geometric forms.

To create a moment diagram, first calculate the areas
below the shear curve. Remember that areas above the zero
line will be positive while areas below the zero line will be

negative.
A, = 2k(8’) = 16k-f

A, = —4k(4’) = —16k-f

;==
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Example 4-1: Moment diagram

To draw the moment diagram, begin at X = 0. The moment
will equal zero unless there is a fixed support or an applied
moment at that point.

(a) The first shear area, A, = 16k-f, extends from X = 0 to
X = 8’. Therefore, the moment line will extend from M = 0
atX=0toM=0+A, =16kfat X=8.

(b) The second shear area, A, = —16k-f, extends from X = 8’
to X = 12’. Therefore, the moment line will extend from
M=16kfatX=8"toM=16+A,=16-16=0at X =12".

The maximum shear in the beam is 4k. Direction does not
matter, simply the magnitude of the shear. The maximum

SHEAR AND MOMENT IN BEAMS

moment in the beam is 16k-f and occurs at X = 8’. The
moment in the beamis 0 at X =0, 12".

M, = 16k

ma

M=0@X=0,12

Example 4-2: Concentrated loads on a beam with an

overhang.
6k 3k
A 6 JL 6 C &
6k 3k
A N2 C jL
(b) B[ |
X 6! 6' 4’
2k ‘ 7k ]
! [
2|k ok 3k 3k
2Kl A3 = 3k(4)
+ A1 =2k(6') — 12k
(c) =12kt ok
- A2 = -4k(6")
; = -24k-f i
! -4K -4k ‘
M=0+ A1 .
= 12k-f

\ Mj-12k-f i
| + 3=Ok-F\!
|E |
| M=12k-f+A2=W

Example 4-2: Shear diagram

4.4

The moment at pinned or roller supports is NOT always zero.
Consider the beam in Figure 4.4(a). This beam has a span
between supports of 12” and an overhang of 4’. The free body
diagram shown in Figure 4.4(b) is used to find the reactions

as follows:
):I\/IA =0 =6k(6’) - Cy(12’) + 3k(16”) = 84k-f — Cy(12’)
C =7k
Yy

IF,=0=A -6k+7k-3k..A =2k
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The shear diagram in Figure 4.4(c) begins with the reaction at
the support at X = 0 or point A, but does not return to 0 until
it reaches the end of the overhang. The shear values can be
summarized as follows:

Shear diagram:

0<X<6mV=0+2k

6" <X <12V =2k -6k =-4k

127 < X< 16"V = -4k + 7k = 3k
Shear areas:

A1 2k(6") = 12k-f

A, —4k(6") = —24k-f

A, 3k(4) = 12k-f
The moment diagram in Figure 4.4(d) begins at zero because
support A is a pinned support and there is no applied
moment. From point A to point B the moment will increase
2k-f for every foot of beam length because the shear is 2k in
this zone. From point B to point C, the shear is -4k and so the
moment begins at 12k and decreases 4k-f for every foot of
beam in this zone. From point C to the end of the overhang,
the moment begins at —12k-f and increases 3k-f per foot of
beam until it reaches 0. The moment at key points can be

summarized as follows:

Moment diagram:
X=0:M=0
X=6"M=0+A =0+ 12k-f=12kf
X=12"M=0+A +A, =0+ 12kf - 24k-f = —12k-f
X=16"M=0+A +A,+A,
=0 + 12k-f = 24k-f + 12k-f =0
The moment diagram shows that the moment at support

C, which occurs at X = 12/, is not 0, but —24k-f. A negative
moment at the overhang support is typical.

M, = 12kf

m

M=0@ X =0, 16" and some point between 6 and 12’

12k-f\B ‘

a Ny Ok-f

Z+

24 k-f

12k-f
Cc

4.5

Example 4-2: Moment diagram

The distance X where the moment crosses the 0 line may
be determined either geometrically as shown in Figure 4.5 or
algebraically as discussed in section 4.2.

The moment curve is a straight line at the point where it
crosses the zero line. Therefore, equivalent triangles may be
used to determine the distance, X’, from the left.

Let “a” equal the distance Point B to the point where M = 0.
It is known that during that distance, a, the moment drops from
12k-f to Ok-f. It is also known that from point B to point C the

moment drops from 12k-f to —12k-f, a change of 24k-f.
The slope of the small triangle = rise/run = (12k-f)/a

The slope of the large triangle = rise/run = (24k-f)/6’

Since the slope is defined by the same line on the moment
diagram, the slopes of the two triangles are equal.

12/a=24/6...a=12/4=3’
X=6"+a=6"+3=9

M=0@X=0,9 and 16’

4.1.2 Diagrams with Distributed
Loads

A uniform load can be thought of as a series of point loads
placed at very small intervals. For illustration purposes,

one foot intervals are used. Consider the 16’ long beam in
Figure 4.6. It carries a uniformly distributed load of 3k/f. At
any distance X (ft) from the left, the load to the left will be
3k/f(X’) = 3Xk. The shear and moment at any given point may
be found by drawing a section line and considering one side
of the section cut.
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Shear and moment in beams with distributed loads
The reactions are found as follows:
IM,=0=3k/f(16)(8) - B, (16) ... B =24k
IF =0=A - @Kk/M(16") + 24k ... A = 24k
Consider only the left side of section C-C:
IF,=0=24-3X-V..V=(24 - 3X)k
XM, (k-f) = 0 = 3X(X/2) + V(X) - M
M = 3X?/2 + (24 - 3X)Xk-f = 24X — 3X?/2k-f
Example 4-3: A uniform load is applied on a simply
supported beam.

Draw the shear and moment diagram for a uniformly distributed
load, using the Free Body Diagram as shown in Figure 4.7.

3k/f
NV A 22 A A AN A 2 A N A AN
X [
24k 16 24k
24k I
N
+ | %
(a) Vi ‘I'I'
24kl 16" gi
\ _1 ©
+ —
() V

24k \TV = 24k - 48k
+ =-24k

| o

| 24k

4.7

Example 4-3: Shear diagram

SHEAR AND MOMENT IN BEAMS

(a) Starting at X = 0, which in this example is point A, the
reaction of +24K is immediately encountered. The shear
changes from 0 to 24k. V = 0 + 24k = 24k. Therefore,
draw a line from 0 to 24k at X = 0.

(b) The uniform load is also immediately encountered. In
this example the uniform load is 3k/f. This means that for
every foot, there is a downward force of 3k. Plotting the
uniform load on the shear diagram, results in a line with a
slope of —3k/f. As a result, the shear (V) decreases from
V=24k@X=0toV =24k - (3k/f)(1") =21k @ X =1 and
toV =24 - (3k/f)(16’) = =24k @ X = 16”. Notice that the
total drop in shear due to the uniform load is equal to the
area under the load curve.

(c) At point B, the support reaction of 24k upward is
encountered. The shear increases to V = =24k + 24k = 0.
This is what is expected at the end of the beam.

The distance X at which the shear crosses the zero line can

be found using the shear equation:

V =24k - 3k/f(X') =0 ... X = 24k/3k/f = 8’

3k/f
NN A AN AN AN AN A N N NN N

X
24k 16 24k

24K A1 = 24K(8")/2 i
A2 = -24k(8')/4:
= -96k-f

vl 7
v %

4.8

Example 4-3: Moment diagram

As discussed in section 4.1.1, the moment is integral of the
shear. Therefore, the moment at any point on the simple
beam is equal to the accumulated area under the shear curve.
In the case of uniformly distributed loads, the shear is not

constant, it varies linearly.
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Distance Shear (k) Area under shear line

X(ft)

X V =24k - 3X M=Vk(X‘)+(24k—V)( )

0 V = 24k - 3k/f(0) = 24k M = 24k(0) + (24k - 24k)(% = 0.0k-f
1 V =24k - 3k/£(1) =21k M = 21k(1") + (24k - 21k)(%) 22.5k-f
2 V =24k - 3k/f(2) =18k M = 18k(2) + (24k - 18k)(%) 0.0k-f
3 V = 24k - 3k/£(3) =15k M = 15k(3) + (24k - 15k)(35)=0.0k—f
4 V =24k - 3k/f(4) =12k M = 12k(4) + (24k - 12k)(%) 0.0k-f
5 V =24k - 3k/f(5) =9k M = 9k(5) + 24k - 9k)(%) 0.0k-f
6 V =24k - 3k/f(6) =6k M = 6k(6) + 24k - 6k)(65)=0.0kf
7 V =24k - 3k/f(7) =3k M = 3k(7) + 24k - 3k)(%) 0.0k-f
8 V =24k - 3k/f(8) =0k M = 0k(8) + (24k - Ok)(%) 0.0k-f

If the moment is plotted at one foot intervals, as shown
above, the shape of the moment curve can be seen to be
parabolic. The largest increase in moment, and therefore the
steepest slope, occurs where the shear is largest.

To draw the moment diagram, calculate the area below the
shear curve and consider the shape of the moment curve. In
Figure 4.8, the areas under the shear curve are triangles. The
area of a triangle is equal to the base times the height divided
by two. A, = 24k(8")/2 = 96k-f; A, = -24k(8")/2 = -96k-f. The
moment diagram begins at Ok-f because there is no fixed
support or applied moment. At X = 8’, the moment increases
from Ok-f to M = 0 + A, = 96k-f, following a parabolic curve
that levels off to a slope of zero at X = 8. At X = 16’, the
moment decreases from 96k-f to M = 96k-f + A, = 96k-f -
96k-f =0

Example 4-4: A partial uniform load on a simply
supported beam.

Often a distributed load does not extend across the entire
length of a beam.

Consider the beam in Figure 4.9. The uniform load of 3k/f
occurs only between X = 0 and X = 8’. The reactions are
found as follows:

3k/f

AN AN ”T"B

8' ' 8' '

3k/f

Al B

X
1?3k 8 ) 6k
18Kk A1 =18k(6 )/F

= 54k-f

A3 = -6k(8) |
- 4Bkl

. | |
v X = 18k/3K/ B | -6k
! A2 = —6k( /2 i

4.9

Example 4-4: A partial uniform load on a simply supported beam

IM, =0=@3"k/")8)(4) - B (16") ... B, = 6k

IF, =0=A - @"/1")8) + 6k ... A =18k

To draw the shear diagram, begin at X = 0”. The upward
concentrated load of 18k that is the reaction at support A is
immediately encountered. The shear increase at X = 0 from
0toV =0 + 18k = 18k. The uniform load of 3k/f occurs from
X =01to X = 8". Therefore, the shear will decrease linearly
fromV =18k at X=0toV = 18k —(3k/f)(8’) = 18k — 24k = -6k
at X = 8’. There are no loads encountered between X = 8’
and X = 16’; therefore the shear remains constant at —6k.
At X = 16, the upward concentrated load of 6k that is the
reaction at point B is encountered, increasing the shear

at X = 16" from -6k to V = =6k + 6k = Ok. This is what

is expected at the end of the beam. To draw the moment
diagram, the areas below the shear curve must be calculated.
In order to calculate A, the distance X from point A to where
the shear crosses the zero line (V = 0) must be calculated.

X =183 = 6",

A, = base(height)/2 = 6’(18k)/2 = b4k-f

A, = base(height)/2 = (8’ 67)(-6k)/2 = 2'(-6k)/2 = —6k-f



A, = base(height) = 8'(-6k) = —48k-f

The moment curve begins at X = 0 with a value of 0. No fixed
support or applied moment is encountered. At X = 6/, the
moment is M = 0 + A, = 54k-f. The increase in the moment
from 0 to b4k-f at X = 6” follows a parabolic curve with the
steepest slope at X = 0 and tapering off to a slope of 0 at
X=6"

From X = 6’ to X = 8/, the moment decreases by the value
of A, = —6k-f, again following a parabolic curve. This time,
however, the slope begins at 0 and becomes steeper until
X =8"and M = b4k-f + A, = b4k-f — 6k-f = 48k-f.

From X = 8" to X = 16, the moment decreases linearly by
the value of A, = —48k-f because the shear is constant in this
section. At X = 16", M = 48k-f + A, = 48k-f — 48k-f = 0. This is
expected at the end of a simply supported beam.

Example 4-5: Uniform and concentrated loads on a beam.

The 16’ long beam in Figure 4.10 has a partial uniform load
and a concentrated load. A combination of concentrated and
distributed loads has the same methodology for drawing the
shear and moment diagrams as that discussed in the previous
examples. The reactions are found as follows:

IM, =0 =3 k/f (8")(4) + 12k(12") - By(16") ... B = 15k
IF, =0=A -3Kk/f(8)-12k+ 15k ... A =21k
X =0:V =0+ 21k = 21k: point load = vertical line

0< X< 8" Vdrops fromV=21k@X=0to
V=21-3k/f(8)=-3k@X=8
Uniform load = sloped line

8" < X < 12"V remains constant.
No loads = no change in shear.

X =12V = -3k — 12k = —15k: point load = vertical line.

12" < X < 16" V remains constant.
No loads = no change in shear.

X'=16"V = =15k + 15k = 0: point load = vertical line.
Distance to V = 0 is X = 21k/3k/f = 7’
Al =7'(21k)/2 = 73.5k-f

A2 = 1"(-3k)/2 = —1.6k-T

SHEAR AND MOMENT IN BEAMS

12k
3k/f
NN »me
. g g
12k
3k/f
NN N B
X T
21k 8 4 4 15k
| A1 = 21k(7)2 ‘ ‘
= 73.5kf
21k A2 = -3k(1')/4
=15k A3 -3k(4'L
" = -12k-f
Vv -

IN
\ -15k

X = 21k/3k/f = 7' }3

4.10

Example 4-5: Uniform and concentrated loads on a beam

A3 = 4’(-3k) = —12k-f
A4 = 4’(-15k) = —60k-f
X=0:M=0.

X=7"M=0+A =735k
Triangular area = parabolic curve.

X=8"M=735kf+A,=735-15=720kf
Triangular area = parabolic curve.
X=12"M=72kf+A, =720 - 12 = 60k-f
Rectangular area = sloped line.
X=16"M=60kf-A,=60kf-60kf=0
Rectangular area = sloped line.
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Example 4-6: A uniform load on a beam with an overhang.

2k/f
NN \I/\I/\I/\I/\I/\I/\I/\I/\I/\I/\I/\I/\I/\I/\I/M
A B

4" obk 16' 15k
A2 = 24k(8')/2 ‘

HX1 7k - 96k-f A3 = -24K(8)/2
a - 96k
v

M \1/

- -8k

/1—-8k )/2 = -16k-f -15k
X = 4'+17k/2k/f_125J

‘ 56.25k-f

4.11

Example 4-6: A uniform load on a beam with an overhang

Consider the uniformly loaded beam with an overhang
(Figure 4.11). The span between supports is 16" and the
overhang is 4”. In this example, the overhang is on the left,
meaning the shear diagram will not encounter the reaction at
support A until X = 4’. Therefore, the shear will begin at zero
and slope downward. The reactions are found as follows:

IM, =0 =(2k/f)(20")(6") - B (16") ... B = 15k

IF =0=A - (2Kk/f)(20°) + 15k ... A = 25k

X =0:V =0 No point load at end of overhang.

0<X<4mVdropsfromV=0@X=0t1o
V=0-2k/f(4)=-8k@X=4"
Uniform load = sloped line.

X =4V = -8k + 25k = 17k point load = vertical line.

4" < X <16 Vdrops fromV =17k @ X =4’ to
V=17 - 2k/f(16) = =16k @ X = 20’
Uniform load = sloped line.

X =20"V = -15k + 15k = 0 point load = vertical line.
Distance to V = 0 is X = 4’ + 17k/(2k/f) = 12.5

A, = 4(-8k)/2 = 16k

A, =8.5(17k)/2 = 72.26k-f

A, =7.5'(-15k)/2 = -56.25k-f

X=0:M=0

X=4"M=0+A =0-16kf=-16kT

Triangular area = parabolic curve.

X=125"M = -16k-f + A, = 16 + 72.25 = 56.25k-f
Triangular area = parabolic curve.

X=20"M=56.25kf+A,=56.25-56.25=0
Triangular area = parabolic curve.

‘ 1T~
| s
| A2 | o
-
| ~
H 1]
+| =
V .
- A1 = -16k-f ‘
| |
4 |/ a |
A .
+ | ’
M J
i | ‘i
4.12

Finding where M = 0

The problem of finding the point on the beam where M = 0
becomes more difficult to solve geometrically when the
moment curve contains parabolic curves. The distance cannot
be found by comparing similar triangles as in Figure 4.7.
However, A1 = —16k-f is the area on the shear diagram required



to drop the moment value from 0 to —16k-f. It is logical then,
that an area of 16k-f, in the left portion of A, will cause the
moment value to increase 16k-f. Looking at an enlarged portion
of the shear diagram, in Figure 4.14, the variable “a" represents
the distance past the support where M = 0.

a = X — 4’ and h = height of the shear curve at
X=4+a.

A, =alh) +al17 - h)/2 = alh + 17)/2
h =17k — a(2k/f)
Substituting h into the equation for A,

A,=a(l7-a)=16o0ra’-17a+ 16 =0=(a - 16)(@a - 1)
a=16", X=4+ 16 = 20" which is support B.

a=1,X=4+1=5"is the point where M = 0.

V., =17k

m

M., = 56.25kf

M=0@X=0,5%, 20

4.1.3 Diagrams with Applied
Moments

Moments occur at fixed supports. They also occur elsewhere
along a beam whenever there is a rotational influence such
as a horizontal force offset from the axis of the beam or a
couple: two equal but opposite forces acting at a distance
apart (See Chapter 1, section 1.1.3). When these moments
occur, the influence is immediate and results in a vertical

change along the moment line diagram.
Example 4-7: A uniform load on a cantilevered beam.

A beam with a fixed connection, such as the cantilevered
beam in Figure 4.13, has a moment that occurs at that
connection. That moment is found by summing the moments

about point A.

M, =0=-M + 5 Kk/f (10")(5")

A

M = 250k-f. M was assumed counter-clockwise. The answer
is positive and therefore M is 250k-f counter-clockwise.
Draw the shear diagram without regard to the moment at the
support.

SHEAR AND MOMENT IN BEAMS

5k/f
A
% 10'
5k/f
A
X
1 f
50k 10
50Kk ‘
M = -250k-f |

< T

NA = 50k(10")/2 = 250k-f
J

=4

M = -250k-f

4.13

Example 4-7: A uniform load on a cantilevered beam

X =0:V =0+ 50k point load = vertical line.

0 < X< 10 Vdrops fromV =50k @ X =0 to
V = 50k - 5k/f(10") = Ok

@ X =8" uniform load = sloped line.
A, = 10(60k/2) = 250k-f

X=0:M=0+M =0 - 250k-f
Applied moment = straight line.

X=10" M = -250k-f + A, = -250 + 250 = Ok-f
Triangular area = parabolic curve.

V. =50k
M. = —250k-f
M=0@X=10

lvww.ebook3000.con)
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Example 4-8: A beam with an applied moment due to a X=0:V=0+4k =4k
couple. Point load = vertical line.

Consider an applied moment at the mid-span of the beam 0 < X < 3-V remains constant

in Figure 4.14. The two horizontal 6k loads at a distance of No loads = no change in shear.
2’ apart form a couple with a positive moment of 12k-f. The

reactions are found as follows: X=3"V=4k -4k =0

Point load = vertical line.
EM, =0 = 4k(3’) + 6k(1") + 6k(1") + 6k(8’) - By (12’) ...

By = 6k 3’ < X < 8" Vremains constant.

ZFy ~ 0= Ay — 4k — 6k + Bk . Av _ ik No vertical loads = no change in shear.

X=82V=0-6k

4k k

6 Point load = vertical line.
6KJL 8" < X < 12: V remains constant.
2

A 5 B No loads = no change in shear.
M{T” i Tk@/ ‘L Mgf” X =12"V = -6k +6k=0
1 3 1 3 1 I 4 1 Point load = vertical line.
A, = 3'(4k) = 12k-f
4k 6k A, = 4(6k) = 24k-f
19k X=0:M=0
fgﬂ No moment at support.
A B
‘ S X=4"M=0+A =12 kf
X L i Rectangular area = sloped line.
1 ] 1 ' 1 1
3 1 3 2 4
4k
‘ ! ek A <X <67 M=12kf+0=12 kf
4K | | ‘ I No shear, moment is constant.
_ 12kl i ‘
+ AL];’E(?) | ' ok X =6" M = 12k-f + 6K(2") = 24k-f
\% \& ' Applied moment, vertical line.
; ‘ A2 = -6k(4'
| ‘ - _24;((_2 6’ < X < 8" M = 24k + 0 = 24kf
; ‘ No shear, moment is constant.
! | | -6k o _ _
‘ ; oak] X=12"M = 24k-f + A, = 24 — 24 = Ok-f
! ‘ | Rectangular area = sloped line.
l 12k-f ‘ | Vinax = —6K
‘ M., = 24k-f
, | |
M ! | M=0@X=0, 12’
4.14

Example 4-8: A beam with an applied moment due to a couple



Summation of process:
Shear diagrams:

1. BeginatX=0.

2. Add loads as they are encountered. Concentrated loads
will cause a vertical change in the shear curve. Uniform
loads will cause a linear change in the shear curve with a
slope equal to the load.

3. Forany portion of the beam that does not encounter a load,
uniform or concentrated, the shear remains the same.

4. The shear should return to zero at the end of the beam.
Moment diagrams:

1. Find the areas under the shear curve.

2. BeginatX=0.
Add shear areas as encountered. Areas with constant
shear will cause the moment line to change linearly with
a slope equal to the shear. Shear areas with a triangular
area will cause the moment curve to be parabolic with
the steepest slope being at the end with the most shear.

4. Add applied moments when encountered. Applied

moments will cause a vertical line on the moment curve.

4.2 Writing Moment
Equations

Writing the moment equation is helpful when the loads
become complex and it is desired to find where the moment
equals zero without geometrically calculating the areas of
parabolas and the like. As discussed earlier, the moment is the
integral of the shear in a beam. M = JV dx. Another reason for
writing a moment equation is to find the deflection in a beam.
Deflection is the double integral of the moment. AEl = [[M dx.

In writing the moment equation, < > brackets indicate
contents that are only considered if greater than zero. If the
contents inside the < > brackets are less than zero, use zero
as the bracketed amount.

When the shear is constant, as from a point load, the
moment, M = [V dx = Vx + C. When the shear is a uniformly
distributed load, w, the moment, M = JV dx + C, = [fwx dx +
Cx+C,

Example 4-9: Writing moment equations for
concentrated load.

SHEAR AND MOMENT IN BEAMS

Consider the beam from Figure 4.4 again.
M = 2X - 6<X-6> + 7<X-12>

6k 3k

4.15

Writing moment equations for concentrated loads

M=2X-6<X-6>+ 7<X - 12> is the moment
equation.

X=0:M=0-6(0) + 7(0) = Ok-f
X=12"M =2(12) - 6(6) + 7(0) = —=12k-f

X=16""M =2(16) - 6(10) + 7(4) =0

To find where M crosses the zero line, set the moment
equation equal to zero.

M=0=2X-6<X-6>+7<X-12>

X212, M=0=2X-6(X-6)+7(X-12) ... X=16"
f6"<X<12,0=2X-6(X-6)...X=9
[fX<6,0=2X...X=0

To find where M is maximum when a beam contains only
concentrated loads, look at the points where the shear
changes from positive to negative. First, set the derivative of
the moment, the shear equation, equal to zero.

V=2-<6ifX>6>+<7ifX>12>=0
fX>12,0=2 -6+ 7 = 3 (positive)
If 6 <X<12’, 0 = 2 — 6 = -4k (negative)

If X <6’ 0= (positive)

37
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Therefore, the shear crosses the zero line at X = 12" and X = 6"

X=6"M =2(6) - 6(0) + 7(0) = 12k

X=12"M=2(12) - 6(6) + 7(0) = —12k-f

M, = 12k

m

Example 4-10: Writing moment equations for full

uniform loads.

Consider the beam from Figure 4.7 again. This 16ft beam has
a uniform load of 3k/f over the entire length of the beam.

M = 24X - 3X/2
3k/f
AN
L S X
24k 16 24k
4.16

Writing moment equations for full uniform loads

M = 24X — 3X?/2 where 24 is the reaction of 24k at
support A and 3 is the uniform load of 3k/f.

X=0:M=0-0=0
X =8"M = 24(8) - 3(8%)/2 = 96k-
X=16" M = 24(16) - 3(16%)/2 =0

To find where M = 0, set the moment equation equal to zero.
M =0 = 24X - 3X?/2 = =1.6X% + 24X = X(-1.5X + 24)
=0
M=0@X=0and @ X =24/1.5=16"

To find where M is maximum, set the derivative of the
moment, the shear equation, equal to zero.

V=0=24-3X.X=24/3=8"

X =8" M = 24(8) - 3(8?%)/2 = 96k-f

M_ . = 96k
Example 4-11: Writing moment equations for partial
uniform loads.

Consider the beam from Figure 4.9 again. This 16" beam has
a uniform load of 3k/f over one half of its span. Because the

uniform load does not continue past X = 8/, its effect must be
counteracted. This is the equivalent of taking a uniform load
over an entire span and adding an equal but opposite load at
8 < X< 16"

M = 18X - 3X72 + 3<X-8:2/2

3k/f

AN AL B

4.17

Writing moment equations for partial uniform loads

M = 18X — 3X?/2 + 3<X - 8>%/2
X=0:M=0-3(0)/2+3(0/2=0

X =6"M =18(6) - 3(36)/2 + 3(0/2) = 54k-f
X =8"M =18(8) - 3(64)2 + 3(0)/2 = 48k-f

X=16"M = 18(16) — 3(256)/2 + 3(64)/2 =0

To find where M crosses the zero line, set the moment
equation equal to zero.

M=0=18X-3X?%/2+3 <X -8>%2

[fX>8,0=18X-3X%2+3(X-28)%/2=18X - 15X*+
1.5(X? = 16X + 64) = 18X — 1.5X? + 1.6X? — 24X + 96
=-6X+96...X=16

[fX<8,0=18X-3X%2=X(18-1.5X) ... X=0o0r 12’



12" is NOT < 8’ therefore X = 0.

To find where M is maximum, set the derivative of the
moment, the shear equation, equal to zero.

M = 18X — 3X%/2 + 3<X — 8>%/2
V=0=18-3X+3<X-8>

lfX>8:0=18 -3X + 3X - 24 = -6 but this is
impossible since 0 # -6

fX<8:0=18-3X..X=6

Example 4-12: Writing moment equations for triangular
loads.

Consider the beam in Figure 4.18. It has a triangular load
spanning the length of the beam. Often with complex loads
such as triangular loads, it is easier to express the load in
terms of X and then take the integral of the load to find the
shear and the integral of the shear to find the moment.

W = -6X/15

V=15-%X/5

M = 15X - X /15 6k/f
A B
15k | 15 30k
15k
+
VIT x-866

-30k

4.18

Writing moment equations for triangular loads
W = —6k/f (X)/15" = —6X/15k/f

V = W dx = —6X%/(15(2)) + C = =X?/5k + C

SHEAR AND MOMENT IN BEAMS

At X =0, V = 15k because the reaction at support A,
at X =0, is 15k.

Therefore, C = 15k
V=-X?/5+15=15-X?/5
M = [V dx = 15X = X3/15 + C,

At X =0, M = Ok because there is no applied moment at support
A and support A is not a fixed support. Therefore, C, = Ok-f and

M = 16X — X3/15

The moment is zero at M = 0 = 16X — X3/15
= X(15 = X?/15) ... X =0or 1%’
The moment is maximum where V =0 = 15 — X?/6

X =75 = 8.66

M . = 15(8.66) - (8.66)%/15 = 86.60 k-f
Example 4-13: Writing moment equations for an applied
moment.
Consider the beam from Figure 4.14 again. This is the beam

with the 12k-f moment at X = 6".

M =4X - 4<X-3> +<12 if X > 6> - 6<X-8>

L4k k-

¥a

4k 6! ! | 6k

| g

4.19

Writing moment equations for an applied moment
M=4X -4<X-3>+<12if X>6> - 6<X - 8>
To find where M = 0, set the moment equation equal to zero.

M=0=4X -4<X -3>+ <12 if X> 6> - 6<X - 8>

fX2>8:0=4X-4(X-3)+ 12 - 6(X-8)
=24 +48 -6X ... X=12’
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If6'<X<8:0=4X-4(X-23) + 12 = 24 impossible

f3'<X<6"m0=4X-4(X-3) ... X =12 impossible

fX<3:0=4X...X=0

M=0@X=0,12’

To find where M is maximum, set the derivative of the
moment, the shear equation, equal to zero.

M =4X — 4<X-3> + <12 if X>6> — 6<X — 8>

V=0=4-<4if X>3> - <6if X>8>

V=0@3 <X<8

It is impossible to find the location of M__ from this
information. But if the Moment equation is re-examined for

this zone, it becomes clear.
M=4X-4(X = 3) + <12 if X>6> =12 + <12 if X>6>

This means that M = 12k-f @ 3" < X < 6’and M = 24k-f
@6"<X<8g"
Things to remember:

Concentrated load — Uniform Load — Triangular Load

Horizontal Shear Line — Sloped Shear Line —
Parabolic Shear Curve

Sloped Moment Line — Parabolic Moment Curve —
Third-degree Moment Curve

V = JW dx

Shear at any point is equal to the sum of loads on either side
of that point.

M = [V dx

Moment at any point is equal to the sum of shear areas on
either side of that point.

Practice Exercises:

4-1 through 4-9: Find the reactions, draw and label the shear
and moment diagrams for the beams shown in Figure 4.20
and identify M__, V__ and the points where V.=0and M =0
for the beams.

max’

4-10 through 4-12: Find the reactions, write the moment

equation and find M __ .,V and the points where V = 0 and

max’ " ma

M = 0 for the beams shown in Figure 4.20.

A j/ j/ A]I: BI
RN = 8 A

1

A

k
1

Problem 4-1 Problem 4-2

k 8k
I I 4K/
A B NANAN AN
s T Y S
3,8 .38 .3; ) 3 8 3

1 1 1 if

Problem 4-3 Problem 4-4
8k 5k
6k/f Bk/f
T LI L LI TIT N2 AN R PN 2
A B A I B
6' 4' 6' | 3' . 3' | 6' | 4' |
Problem 4-5 Problem 4-6
25k
4k/f 4k-f
A B NNV
T 1 el s °Ts]
Problem 4-7 Problem 4-8
=2k
ol A B 12k/f
o 10 'T AT TILLLIT TB
2k& ' Y g 3
Problem 4-9 Problem 4-10
7w 24k 7k
Jmm 122@1 i
A B
12' 6 :r'
Problem 4-11 Problem 4-12

4.20

Chapter 4 Practice exercises
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Load Tracing

The purpose of structure is to safely transfer all loads to the
ground. The path that loads take to reach the ground depends
on the structural system design. Load tracing follows the
path of applied loads through a structural system, from one
component to the next. Most building loads are expressed

as uniform loads in pounds per square foot (psf) applied to

floors, roofs or walls.

5.1 Finding Floor Loads on
Columns

Tributary area is the area of surface with an applied uniform
load that is transferred to a building component such as
a beam or a column. The load on a beam (w) in #/f is the
product of tributary width (b) in feet and the uniform load (U)
in psf: W = b(U). Tributary width is defined as the sum of half
the distance to the adjacent beam or wall in each direction.
The load on a column (P), when neglecting beam weight,
is the tributary area (A) in square feet multiplied by the
uniform load (U) in psf yielding a load in #: P = A(U). The
tributary area can be found by multiplying the tributary width

between columns in the x and y directions.
Example 5-1: Finding column loads.
For a uniform load (U) of 120psf:

Col. A1: A =24/2(307/2) = 180f%, P = 180f(120psf) = 21,600#

Bm1

—=D= [ @
°
o -
—_— ]2
Bm2 5
Yﬁ (42}
(sp) < £
g—— v Q>
& -
Bm2
—
o
Bm1
k- @
24
1 2
5.1

Finding column loads

Bm1: b =1072 =5, w, = b(U) = 5’(120psf) = 600*

Bm2: b = 1072 + 10/2 = 10’; w, = b(U) = 10’(120psf)
= 1200%

The reactions at the ends of beams Bm2 become point loads
on beams Bm3.

Bm1: R = 600%1(24/2) = 7200# @ x = 0" and 30’
and bears directly on columns

Bm2: R = 1200%(24’/2) = 14400# @x = 10’ and 20’
and bears on Bm3
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The reaction at either end of Bm3 = (14400#(10")
+ 14400#(207))/30" = 14400#

The total load on each column equals the reaction at the end
of Bm3 plus the reaction at the end of Bm1.

P = 14400# + 7200# = 21600# which is the same value
found using the tributary area multiplied by the uniform load.

Example 5-2: Simple bay with unevenly spaced beams
and no openings.

This exercise will show that using tributary area to find the
load on the columns is not dependent on beam spacing.

o Bm1 @

0
Bm2
To) w| ©
= gl —
@ Bm3 @
o
Bm4
i m
@
1 2
5.2

Simple bay with unevenly spaced beams and no openings

Bm1: b =872 = 4", w = 4’(120psf) = 480" ...
R1 = 480*1(24’/2) = 5760#

Bm2:b=1072 + 8/2 = 9, w = 9’(120psf) = 1080*" ...
R, = 1080%1(24’/2) = 12,960#

Bm3: b =12/2 + 1072 = 11", w = 11"(120psf) = 1320#"
... R, = 1320%1(247/2) = 15,840#

Bma4: b = 12'/2 = 6’; w = 6/(120psf) = 720%" ...
R, = 720%(24/2) = 8640#

Bm5: =M, = 0 = 15,840#(12) + 12,960#(22’) —
AY(30') ... A = 15,840#

ny: 0= By— 15,840 - 12,960 + 15,840 ...

B, =12,960

Col A1: The column load equals the sum of the Bmb reaction
at A plus the reaction from Bm1. P = 15,840# + 5760#
=21,600#

Col B1: The column load equals the sum of the Bmb reaction
at B plus the reaction from Bm4. P = 12,960# + 8640#

= 21,600#

Note that this answer is the same as found in Example 5-1.

Example 5-3: A simple bay with an opening.

Find the column loads based on 100psf uniform load.
Include beam weights: w,, = 20% w,, = 32%1; w, = 48"

— #/f. — #/f- — #/f
We, = 64%1 w, . = 60", w,, = 42%".

T

15' 15' 15'

o N R E
B1 B1

@ l1 % > l1 B 2

[ 1oz

e

N
—
10'

@ ' B6
5.3

A simple bay with an opening

Bm1: b =10 w = 10’(100) + 20 = 1020*": L = 15";
R1 = 1020*1(15%/2) = 7650#

1020#/f
L=15

7650#

5.4

7650#

Load diagram for Bm1

Bm2: w = 32#f; P = R, = 7650# @ x = 10" and 20’

IM, = 0 = 7650#(10") + 7650#(20") + 32*1(30")(15") -
B,(30°) ... B, = 8130#

If,=0=A - 7650# - 7650# — 32(30) + 8130# ...



A, = 8130#
10" 7|1650# 10" 7|1650#1 o
32#/f
L =30
8130# 8130#
5.5
Load diagram for Bm?2

Bm3: b =5’ w, = 5/(100psf) = 500%"; w, = 48
P=R,=8130# @x = 15"and 30’

=M, = 0 = 8130#(15") + 8130#(30") + 48%1(45’)(22.5")
+500%1(15")(7.5) + 500*(15')(37.5) - B, (45') ...

B, = 16710#

Zf =0=A, - 8130# - 8130# — 500%(30") — 48*/(45’)
+16710# ... A, = 16710#

15' . 15’ . 15'
8130# 8130
500#/f 500#/f
48#/t
L =45
16710# 16710#
5.6
Load diagram for Bm3

Bm4: bl =b =5"; w, = 5’(100psf) = 500"

w, = 5"(100psf) + 64*" = 664% P = R, = 8130#

/@ 00x = 15" and 30’

IM, = 0 = 8130#(15") + 8130#(30") + 548"1(45")(22.5")

+500%(15')(7.5') + 500*(15')(37.5) ~ B, (45") ...
B, = 27960#

Ify = 0 = Ay — 8130# — 81304 — 500#(30") —
548#1(45) + 16710# ... Ay = 27960#

15' 5 15' 5 15’
8130# 8130
500#/f 500#/f
564#/f
L =45
27960# 27960#
5.7
Load diagram for Bm4

Bmb: w = 60", P, =R, =27,960# @ x = 107,

LOAD TRACING

P,=R, =7650# @ x = 20" and 30’

2

XM, = 27,960#(10°) + 7650#(20") + 7650#(30") +
64%1(40")(20) - A (40") ... A, =17,832.5#

Zf,=0=B - 27960 - 7650 — 7650 — 64(40) +
17,8325 ... B =28,027.5#

27960# 7650#
100 10 T 100 % o
604#/f
L =40
28027.5# 17832.5#
5.8
Load diagram for Bm5

Bm6: w = 100psf(5’) + 60*" = 560%" ...
A, =B, = 560%(457/2) = 12,600#

Col A1 and A2: P = 17,832.5 + 16710 = 34542 .5#

Col B1 and B2: P = 28,027.5 + 12,600 = 40,627.5#

Using tributary area:

®

®

@

15' 151 15"
!53
| (E
B1 B1
BNBY N 51 E‘a’é
1 e
L e
B6

®

5.9

Bay with opening using tributary area

Col A1 and A2: P = 100psf(15)(20") + 20*1(15") +
10#1(15’) + 32#1(207) + 48*1(22.5’) + 60*1(20’)
= 33,370#

Col B1 and B2: P = 100psf[15’(20’) + 7.5(10")] +
10*1(15") + 64#1(22.5’) + 42#1(22.5’) + 60%1(20)
=41,235#
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The difference between the calculated load tracing and using
the tributary area is as follows:

On columns A1 and A2:
(33,370# — 34542.5#)/34542.5# = -3.39%

On columns B1 and B2:
(41,235 - 40265.5)/40,617.5 = 2.39%

Note that while the loads on the columns using the tributary
area are not accurate when there is an opening in the bay, the
margin of error is only 3.39%.

Tributary width and area can be used for lateral loads that
act horizontally against a fagade. The same methods are
applied using the elevation. The loads are transferred to the
column lines resisting lateral forces. Lateral loads are usually
limited to wind and seismic forces, but may also include
hydrostatic pressure from soil or horizontal components of
transferred gravity loads. See Chapter 14: Lateral Bracing
Systems for lateral design loads and resistance systems.

Example 5-4: A building facade receives a uniform wind
pressure of 20psf.

The wind force is resisted by column lines A, B and C. The
facade panels transfer loads to the floor plates. Find the wind
force applied to each column at each level. The solution is
shown in the table below.

Tl

v

5.10

Tributary area for wind pressure

5.2 Accumulation of
Column Loads

The load on any segment of a column is equal to the sum of
all the loads on that column from levels above that segment.
This means that loads accumulate from the top to the bottom
of the column, resulting in the heaviest load at the base of C.

e Nl

VoV

Vrannitanpniatn) Fasanesntsareonts)Fensareonissend I

5.11

Accumulation of column loads

Tributary height Column A Loads Column B Loads Column C Loads
Trib. 2% 26+18 18
width 5 =18 =22 5 =9
12
R =6 6'(13)(20psh) = 1560#  6'(22)(20psh) = 2640#  6'(9)(20psh) = 1080#
12+12
5 o2 12'(13)(20psf) = 3120#  12'(22)(20psf) = 5280#  12'(9)(20ps) = 2160#
4 12+12 ... 12'(13)(20psh) = 3120#  12'(22)(20psf) = 5280#  12'(9)(20psh) = 2160#
2
3 12+16 . . 14'(13)(20psf) = 3640#  14'(22)(20psf) = 6160#  14'(9)(20ps) = 2520#
2
9 16+16 . 16'(13)(20psf) = 4160#  12'(22')(20psf) = 5280#  16'(9")(20psf) = 2880#




Notice that the interior columns carry more load because

the tributary width for interior columns is larger than exterior
columns. If there is a discontinuity of a column, as seen on
the right, the loads normally carried by that column segment
must be transferred by the floor system to neighboring
columns. This affects the loads on columns on all levels
below the discontinuation. The chart below shows the
change in loads when the level 4 to 5 segment of column C is

removed.
Column A B C D
5-R P 2P 2P2P PP
4-5 2p 4P—6P 4P—0 2P—4P
3-4 3P 6P—8P 6P—2P 3P—5P
2-3 4p 8P—10P 8P—4P 4P—6P
1-2 5P 10P—12P 10P—6p 5P—7P

Tuful wf

LOAD TRACING

Practice Exercises:

5-1: Find the loads on the columns given a uniform floor load
of 80psf using tributary area.

5-2: Find the loads on the columns given a uniform floor load
of 80psf

a) using tributary area;

b) by calculating beam reactions.

5-3: A uniform wind load of 30psf is resisted by columns A, B
and C in 5-2 at each level. Determine the wind load on each
column at each level if levels are 120.c.

®
5@ 8 =40 4@ 8 =32

™ ™

0 E— © p——
SO+ I

> SENE N
@—Jr— - ©Oms -

5-1
5.12

Chapter 5 Practice exercises

5-2
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Simple Stress and Strain

Chapter 6 discusses strength of materials and the relationship
between stress and strain.

Refer to Table A1.1: Materials Properties Table in the
Appendix for properties of typical structural materials.

6.1 Force Induced Stress
and Strain

Stress is the expression of a force distributed over the area
on which it bears. The basic formula for stress (f) is:

stress = o =f =P/A

In this text f will signify actual stress and F will signify
allowable stress. For axial forces of tension and compression,
f = P/A. The units for stress are psi (pounds per square inch)
or ksi (kips per square inch).

6.1.1 Tensile and Compressive Stress

Axial loads of tension and compression act on a stress area
that is perpendicular to the line of the force, as seen in
Figure 6.1. The stress area is the cross-sectional area for the

member under tension or compression.

P %A P

Tensile stress = P/A

P %A P

Compressive stress = P/A

6.1

Axial stress

Example 6-1: A 3.5"x3.5” square wood post has an
allowable compressive stress F_of 1000psi.

What is the maximum axial load the post can safely handle?

The allowable compressive stress, F_ = 1000psi, must
be greater than the actual compressive stress = f .

A =3.5"(3.5”) = 12.25in?

f = P/A = P/12.25in? < 1000psi ...
P < 1000psi(12.25in%) = 12,2504

Example 6-2: What size diameter rod is required to support
a 200# load if the allowable tensile stress = F, = 625psi?

A = 200#/625psi = 0.32in? = nd?/4 ...

d =0.638”, round up to %’ diameter rod.



6.1.2 Shear Stress

Shear stress is caused by a load that is parallel to the stress
area f = P/A.

P

Shear stress = P/A
6.2

Shear stress

Example 6-3: Two 1"x4” boards are glued with an
overlap of 3” on the wide edge and subjected to an axial
tension force of 800#.

If the adhesive is rated with an allowable shear stress of
F, = 40psi, is the overlap adequate?

P =800# and A = 3”(4”) = 12in?

f, = P/A = 800#/12in? = 66.67psi > F, = 40psi ...
overlap is not adequate.

How much overlap, h, is required?
F, = 40psi = P/A = 800#/A = 800#/4h ...
h > 800#/(4”(40psi)) = 5”

Example 6-4: Two steel plates are bolted together with
four 1/2” diameter bolts having an allowable shear
stress of 14.4ksi.

\What is the maximum axial tensile load, P, that the bolts can
resist?

SIMPLE STRESS AND STRAIN

F, = 14.4ksi, A = (4bolts)n(0.5)%/4 = 0.785in?

F, = 14.4ksi > f, = P/A = P/0.785in? ...
P < 14.4ksi(0.785in?) = 18.34k

How many %” diameter bolts are required to resist a shear
force of 25k?

FV:14.4ksi>fv@...A> 25k,
A 14.4ksi

F, = 14.4ksi>f =25k/A ... A >25k/14.4ksi = 1.736in?

=1.736in’

Let N = the # of bolts required

A =1.736in? < Nn(0.5)%/4 = 0.196N ...
N >1.736/0.196 = 8.857

Answer: Round up to N = 9 bolts.

6.1.3 Bearing Stress

Bearing stress is the stress caused by the transfer of load
from one component to another on which it rests. The stress
area is perpendicular to the direction of force. f_ = P/A where
A'is the area of bearing.

Bearing stress = P/A

6.3

Bearing stress

Example 6-5: A series of 2x10 joists, spaced at 16"0.c. and
12’ long, with a uniform load of 100psf, bear on a flat 2x6
sill with an allowable bearing stress F_ = 975psi.

Is the 2 x 6 adequate? Actual dimensional lumber sizes: 2 x 6:
1.5”%x5.5”, 2%x10: 1.5”x9.25".
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P

6.4

Joists bearing on header

F. =975psi>f  =P/A

P = reaction at end of 2x 10 joist
W = 100psf(167/12) = 133.33*"

P =WL/2 = 133.33%1(12’)/2 = 800#

A = (thickness of 2 x 10)(width of 2x6) = 1.5”(5.5)
= 8.25in?

f., = P/A = 800#/8.25in? = 96.97psi < 975psi

... 2x6 is adequate for bearing.

6.1.4 Strain and Modulus of Elasticity

Strain is the ratio of change in length to original length. As a
ratio (inches per inch or feet per feet), it has no units.

Strain = € = dL/L where L = original length and dL or
d = change in length

Modulus of Elasticity is the ratio of stress to strain. The units
are the same as those for stress: psi or ksi.

Modulus of Elasticity = E = f/e

Using the three equations, f = P/A, e = dL/L and E = f/e
problems of simple stress and strain can be solved.

Example 6-6: What is the change in length of a 2” square
steel bar, 12" long, subjected to an axial compressive
force of 200k if E = 29,000ksi?

From the problem, it is known that L = 12”7, A = 2”(2”) = 4in?,
P =200k and E = 29,000ksi.

e=dL/L ... dL = L(g)

E=fle...e=1f/E...dL = L(e) = L(f)/E

(P g ZPL_ 200k02Y

cdl=—m= 2ot - 0,0207"
A EA ~ 29,000ksi (4in?)

Example 6-7: A 12’ long beam has a uniform load of 2k/ft.

It is supported at one end by a 1” diameter steel rod

(E, = 29000ksi) and at the other end by a 1/2” diameter
titanium rod (E, = 15000ksi). The steel rod is 2” long. How
long must the titanium rod be for the beam to remain level?

L= 12", w = 5k/f ... P = wL/2 = 2k/f(12')/2 = 12k
A, = n(1)?/4 = 0.785in? E_ = 29,000ksi L_ = 2’ = 24”

A =m(5)?/4 = 0.196in* E, = 15,000ksi L, = ?

If beam remains level, dL_ = dL, and since dL = PL/EA

| _PLEA, _12(24"(15,000ks)(0.196in") _, .,
"TPEA.  12k(29,000ksi)(0.785in?)

Is this design adequate given an allowable tensile stress for
steel of F, = 30ksi and for titanium of F, = 138ksi?

The stress in the steel rod = f_ = P/A = 12k/0.785in?
= 15.29ksi < 30ksi ... okay

The stress in the titanium rod = f, = P/A = 12k/0.196in?
=61.22ksi < 138ksi ... okay

6.2 Temperature Induced
Stress and Strain

Every material has a coefficient of thermal expansion, «,
expressed in terms of strain over change in temperature.
Since strain, € = dL/L, the coefficient of thermal expansion
can be expressed as:

o = e/AT = dL/LAT

The change in length due to thermal expansion is:
dL = aL(AT)



Because E = stress/strain = fL/dL, the stress from
thermal expansion can be defined as:
f = EdL/L = EaL(AT)/L = EaAT

Example 6-8: A 1200’ tall high-rise has an exposed steel
structure with a coefficient of expansion
a=6.5%x10-%in/in/°F.

The temperature of the steel is 85°F on the north side of the
structure and 165°F on the south side. What is the difference
in height between the north and south sides?

dL = aL(AT) = (6.5x 10-%)in/in/°F)(12007)(12"7)(165 —
85°F) = 7.49”

Example 6-9: 8’ wide aluminum panels with a = 12.8x10-¢
are installed on a facade during 50°F weather.

The highest design temperature for the aluminum panels is
200°F. What size expansion joint should be used?

dL = aL(AT) = (12.8 x 10-8in/in/°F)(8")(127%)(200 — 50°F)
=0.184" ... round up to 3/16” = 0.1875”
Given a value of E = 10,000ksi and F_ = 16ksi for aluminum,

what is the maximum change in temperature the panels could
handle without expansion joints?

f=Eo(AT) ... AT = f/Ea
= 16ksi/[10,000ksi(12.8 x 10-%in/in/°F ) = 125°F

¢ I T
1"x 1" Steel post
E = 29,000 ksi 1.5" x 1.5" Bronze post
A E = 12,000 ksi
o 6-3

6.5

Chapter 6 Practice exercises

SIMPLE STRESS AND STRAIN

Practice Exercises:

6-1: A diagonal tension brace, 15" long and having a round
cross-section with a diameter of %” is subjected to 10k of
tension. What is the change in length of the brace if

E = 29,000ksi?

6-2: AW14 x 22 with an area, A = 6.49in? and a length of 24’
is installed on the roof of a building when the temperature

is 80°F. What will be the change in length when the
temperature drops to 15°F if the coefficient of thermal
expansion for steel is 6.5 x 10-6in/in/°F?

6-3: What is the required length of the bronze post if the

beam must remain level?

6-4: A 12’ canopy supports a load of 600*f with a hinge at the
wall and a cable at the end. The cable is attached to the wall
at some distance h above the canopy. Determine the distance
h so that the canopy remains level given the cable properties
of: E =29,000ksi, A = 1in2.

LTI LI

12'

6-4
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Shear and Flexure in Beams

7.1 Neutral Axis and
Moment of Inertia

The shear and bending stresses in a beam are dependent on
the shape and size of the cross-section of the beam. In order
to determine the shear and bending stresses, the neutral axis
of the beam must be located. The neutral axis is located at
the center of gravity.
Table 7.1 lists the center of gravity for some common

geometric shapes. For a beam with a simple geometric form,
finding the neutral axis is as simple as referring to the table.

Often, however, a cross-section is not a simple geometric
shape. For complex cross-sections, the center of gravity can
be found by using the following equations:

X, = ZAX/ZA and Y, = TAY/EA

av

where the center of gravity is located at a distance X_ _ from
the Y-axis and a distance Y, , from the X-axis and where X is
the distance X from the Y-axis to the center of gravity of an
individual component and where Y, is the distance Y from the
x-Axis to the center of gravity of an individual component and
where A, is the area of an individual component.

Example 7-1: Find the center of gravity for the L-shaped
cross-section in Figure 7.1a.



Table 7.1: Properties of simple geometric shapes

SHEAR AND FLEXURE IN BEAMS

Shape Area X v Ix ly
Rectangle
t < bh b/2 h/2 bh*/12 hb*/12
[>|
X
X v
i b |
T 1
Triangle
y
bh/2 b/3 h/3 bh%/36 hb%/36
p e~ = B
(% I
| b |
T 1
Circle
y
r2 0 0 pri/4 pri/4
—X
Semicircle
T 8)a4
2 0 4r/3n (5-&) /8
Quarter Circle
y
@4 | 43 a3 (f5- ) (7~ e
h T v/ 3m H3m 16~ on)" 16~ on)"
[>|
— -X
X
r
Parabolic Half
y J—
e
‘ 2bh/3 5b/8 2h/5 8bh%175 19hb>/480
%Eﬁ iy
[ e | \
| b |
1 T
Subparabolic Half
y _
Ny
‘ —, bh/3 3b/4 3h/10 37bH*/2100 hb%/80
L > -X
| X ,
b |
\ 1
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o o o o o o
1 | 1 1 | 1
1 , 1
. b
| | 2 A | | ]2
i | | | |
‘ B ' C
c o ‘ \\ o
(a) (b)
7.1
Finding the center of gravity
Consider the cross-section above that has been broken into three Consider the cross-section has been broken into three
simple geometric shapes, labeled A, B and C in Figure 7.1(a). simple geometric shapes, labeled A, B and C in Figure 7.1(b).
The best way to solve for the center of gravity involving
multiple geometric shapes is to create a table: Comp. A X AX Y AY.
A 2(6) =12 2/2=1 12 6/2=3 36
Comp. A X; AX, Y, AY, B 4(4)/2=8 2+4/3 26.67 4/3 10.67
=3.33 =1.33
A 24)=8 2/2=1 8(1)=8 2+4/2 8(4) =32
-4 C 22)/2=2 6-2/3 10.66 2-2/3 2.66
B 2(2)/2 2+2/3  2(2.67) 2+2/3  2(2.67) =533 =133
=2 =267 =533 =267 =533 Totals YA =22 ZAX ZAY,
C 6(2)=12 6/2=3 12(3)=36 2/2=1 12(1) =12 - 4933 -4933
Totals A =22 ZAX, ZAY, ,
-4933 -4933 Xave = ZAiX‘/ZA‘, =49.33/22 = 2.24"

The neutral axis Y-Y is located 2.24in to the right of the origin.
X, = TAX/ZA = 49.33/22 = 2.2”

Y,.=ZAY/EA = 49.33/22 = 2.24”

The neutral axis Y-Y is located 2.24” to the right of the origin.

The neutral axis X-X is located 2.24” above the origin.
Y, = ZAY/ZA = 49.33/22 = 2.24”

ave

When a cross-section contains a void, the void is a
The neutral axis X=X is located 2.24” above the origin component with a negative area or an area that may be
Note: The center of gravity for a given cross-section will subtracted from the solid portion of the cross-section.
remain the same regardless of how the shape is divided into

geometric components.



Example 7-2: Find the center of gravity for the 8x12
rectangle with a 4x6 void.

L%
(I
|
|
|

4" .2

T
i

3"

3"

7.2

Finding the center of gravity in a shape with a void

Comp. 4, X A%, v, Ay,
Solid 8(12) =96 8/2=4 384 12/2=6 576
Void 4(6) = -24 2+4/2 -96 4+/2 -168
-4 =
TA =72 ZAX, TAY,
=288 =408

X, = TAX/ZA = 288/72 = 4”

ave

Yave = ZA\Y/ZA‘ =408/72 = 5.67”

7.1.2 Moment of Inertia

Moment of inertia defines the ability of a cross-section to
resist bending and deflection.

| =ly?dAand | = [x?dA

This formula is easy for simple shapes such as a bxh
rectangle where

A = b(y) and dA = bdy

SHEAR AND FLEXURE IN BEAMS

Jy2dA = Jy?bdy = by?/3 fromy = h/2 to —h/2
Jy2bdy = bh3/24 + bh¥/24 = bh3/12

It's not so easy for more complicated shapes.

By breaking a complex shape into simple geometric
components, and by finding the neutral axis, the formula
below can be used to find the moment of inertia:

I, =2, +ZAdy” | =Xl + ZAdx?
wheredy =Y, =Y, _anddx=X - X__
Example 7-3: Find |_for the cross-section in Figure 7.3.

Note that for rectangles, | = bh%12.

2" 2" 2"
f f
| | T
| |
A B C z
[ [ «
| |
;r
&
E'o .Ar
7.3
Finding moment of inertia
Comp. A Y, AY, Ix, dy Ady?
A 2(6)=12 6/2=3 36 2(6%/12 3.67-3 5.39
=36 =.67
B 2(2)=4 4+2/2 20 2(2%)/12 3.67-5 7.08
=5 =133 =-1.33
C 2(4)=8 2+4/2 32 2(4%/12 3.67-4 0.87
=4 =10.67 =-33
A =24 TAY, I -48 TAdy?
=88 =13.34

Y, = SAY/SA = 88/24 = 3.67”

av

| = =l + TAdy? = 48 + 13.34 = 61.34in*

Find Iy for the cross-section in Figure 7.3. Note that for
rectangles, Iv = hb?¥/12.

53



54 STATICS AND STRENGTH OF MATERIALS

Comp. A X AX. Iy, dx Adx’
A 26)=12 2/2=1 12  6(2%/12 267-1 33.47 L5X5X1/2
=4 =1.67
B 22)=4 2+2/2 12 2(2%/12 267-3 0.44 —
=3 =1.33 =-0.33
C 24)=8 4+2/2 40  4(2%/12 267-5 4343 1l NA.
=5 =267 =-2.33
YA =24 SAY  3I =8 ZAdy?
: g4 v =77.34
W14X22
X,.. = ZAX/ZA, = 64/24 = 2.67"
|y = ZIyi + XAdx? = 8 + 77.34 = 85.34in*
— —
What |, and |, reveal about the cross-section in Figure 7.3 is 74
that a load placed vertically, and therefore causing bending Finding moment of inertia in steel shapes
about the X—X axis will create more deflection of the
beam than a load acting horizontally, and therefore causing Section properties:

bending about the Y=Y axis. This is because | < | and so the ) )
_ . o Y W14 x22: A =6.49in?, d = 13.74”7, 1= 199in*
resistance to bending around the X-X axis is less than that X

around the Y=Y axis. L5x5x %: A =475y = 143" | = 11.3in*

7.1.3 Moment of Inertia in Rolled

Comp. A Y. AY. Ix, dy Ady?
Steel Components

i i i i

W14 x22 6.49 =13.74/2 4459 199 10.38-6.87 79.96

- 6. =351

The AISC Steel Manual lists section properties for all standard L5x5x1/2 475 - f:; + 7206 113 1(?358 ~1517 109.08
rolled steel components. Among the section properties 143=15.17 =4.79

listed are the moment of inertia values |_and Iy. When using e s - S - s -

a standard rolled member, there is no calculation necessary. 11.24 116.65 210.3 189.04

But, if the cross-section is built up using rolled sections
and/or plates, then the equations | = XI . + ZAdy? and Yovo = 116.66/11.24 = 10.38

Iy = ZIW + XAdx? must be used. |, =210.3 + 189.04 = 399.34in*

Example 7-4: Find the moment of inertia about the X-X
axis for a W14 x22 with an L5x5x% welded to the top
flange as shown in Figure 7.4.

Note: If all components are symmetrical about the bending
axis X-X, dy = 0 and the equation for | reduces to | = ZI .

7.2 Bending Stress

The basic equation for bending stress is:
f, = Mc/l = M/S

The derivation of this equation comes from examination of
particles in a beam subjected to bending.



7.5

Bending stress

Consider a beam subjected to bending, as shown in
Figure 7.5. The beam wants to deform under the load. The
area above the neutral axis is in compression and the area

below the neutral axis is in tension.
¢ = distance from neutral axis to outer most point of

cross-section

The greatest stress will occur at the greatest distance from
the neutral axis, c. The stress due to bending at any point is

f = fely/c).
Z : VL
V1 \ai
VL ;
fc
ft
7.6

Internal couples

Every particle in the cross-section is at some distance y
from the neutral axis and has some area, dA. The force in
tension or compression acting on each particle is F = dA(f).
The moment caused by the force acting on any particle at a
distance y from the neutral axis is:

SHEAR AND FLEXURE IN BEAMS

M. = Fy = ydA(f)(y/c) = y2dA(f)/c

The bending stress, f,, on any particle is f, = M.c/y?dA and
the total bending stress is the sum of the bending stress on

all particles:
f, = ZMc/y?dA = Mc/Zy*dA

Since moment of inertia = Zy?dA, the value | can be
substituted into the equation, giving the bending stress

formula:
f, = Mc/I

Section modulus is defined as I/c, further simplifying the
equation to:

f, = M/S

Note: Be careful to reconcile the units in the bending stress
equations. If the moment found is in units of #-f or k-f, it must
be multiplied by a factor of 12 inches per foot to obtain a
stress in pounds per square foot (psf) or kips per square foot
(ksi), respectively. For example, if M = 48k-f and S = 16in3,

f, = 48k-f(12")/16in° = 36ksi.

Example 7-5: Find the maximum bending stress in a simply
supported beam carrying a uniform load of 2k/f over a
span of 14’ given the cross-section shown in Figure 7.7.

7n

L L
11 1
L -t=1/2"
5
7.7
Example 7-5

M =wlL?8 = 2k/f(14")2(12")/8 = 588k-in

ma

| =7(10%/12 - 6(9%)/12 = 218.83in*

55



56

STATICS AND STRENGTH OF MATERIALS

c=10"2=5%"

f, = Mc/l = 588k-in(5”)/218.83in* = 13.44ksi

What is the bending stress at a distance of 4’ from a support?

@x =4, M = wx?/2 = 2k/f(4")2(12")/2 = 192k-in
f, = Mc/l = 192k-in(56”)/218.83in* = 4.39ksi

For rolled steel, standard size tables usually include the value
of the section modulus, S.

Example 7-6: Find the maximum bending stress for the
beam in Example 7-5 if the cross-section is a W16 x 31
with S _=47.20in%.

f, = Mc/l = M/S = 588k-in/47.20in* = 12.46ksi

7.3 Shear Stress

7.3.1 Shear in Beams with Geometric
Cross-sections

Unlike shear stress caused by an axial load in which fv = P/A
as described in Chapter 6, a beam with bending causes both
transverse and longitudinal shear forces within the beam.
This occurs because the transverse shear action creates a
moment within particles that must be resisted by an equal
and opposite moment.

VT
VT
N\/
V1= Transverse Shear
V1 = Longitudinal Shear
7.8

Shear stress in beams with geometric cross-sections

The equation for shear in beams is:
The shear stress in each particle is:

f, = Vt/dy(b)
For the entire cross-section:
f,=V/Zyb
This can be multiplied by 1 = ZdAy/ZdAy to yield:
f, = VZdAy/Zy*dAb
Recognizing | = £y?dA, the equation can be reduced to:
f, = VZdAy/lb

Let Q = XdAy = ZAdy when considering individual
geometrical entities in the cross-section, this will yield the
standard shear stress formula:

fv = VQ/Ib where

V = shear from the shear diagram

Q=ZAdy
A, = area above or below the shear plane

dy = distance from the neutral axis to the center of
gravity of the area A

| = moment of inertia

b = the width of the cross-section at the shear plane.
Example 7-7: Find the shear stress at the neutral axis for
a4"x6", 12’ beam with a uniform load of 500",

V = wlL/2 = 500%1(12’)/2 = 3000#

| =4(6°/12 = 72in*

b= 4”

Y.,.. = 3” = the location of the neutral axis X-X

A, =4"(@3) = 12in?

y, =3 + 1.6 = 4.5” = location of center of gravity of Av

dy=y,-Y=45-3=15"

Q = ZAvdy = 12in?(1.5”) = 18in®

f, = VQ/Ib = 3000#(18in%)/[72in*(4”)] = 187.5psi
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Shear stress at neutral axis

Note that for a rectangular cross-section b xh,

| = bh¥/12

A =bh/2

dy =3h/4 - h/2 =h/4

Q = (bh/2)(h/4) = bh?/8

f, = V(bh#/8)/[(bh*/12)(b)] = 3V/2bh = 3V/2A
Example 7-8: The T-shape in Figure 7.10 spans 16’ and
carries a uniform load of 2k/f over its entire span.

Find the maximum shear stress at the neutral axis.

SHEAR AND FLEXURE IN BEAMS

<G 2 kit N
)
16k 16k
; |
.
] |
.

-

s, 4+ 1
(2]
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Shear stress in a T-shape

V = wL/2 = 2k/f(16")/2 = 16k

Comp. A Y, AY, Ix, dy Ady’
Flange 4(2)=8 4+2/2 40 4(23)/12 5-3.5 18
=5 =2.67 =15
Web 2(4)=8 4/2=2 16 2(4%)/12 2-35 18
=10.67 =-1.5
=16 X=56 X=13.33 =36

Y,, = 56/16 = 3.5”
| = 13.33 + 36 = 49.33in*
Q = TAdy = 8(1.5) + 2(.5)(.25) = 12.25in

f, = VQ/Ib = 16k(12.25in%)/[49.33in*(2”)] = 1.99psi
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Find the maximum shear stress at the bottom of the flange.
A, = 8in? (from the table on page 57: Flange A)
y, = 5” = (from the table on page 57: Flange Y))
dy =5 - 3.5 = 1.5” (from the table on page 57: Flange dy)
Q =ZAdy = 8in¥1.5”) = 12.0in°
f, = VQ/Ib = 16k(12in%)/[49.33in*(2”)] = 1.95psi

Note: Always check the shear stress at points where the
width, b, changes, especially when b decreases in a direction
away from the neutral axis.

Example 7-9: Find the shear stress for the cross-section
in Figure 7.11 if V = 100k.

]L 3" 1 " 3" J[
| -
3

d=——_ —— /o
— g

| |

B e

| |
711
Finding shear stress in composite shapes
Comp. A Y, AY, Ix, dy Ady?
Top 5 55 275 10.42 2.67 35.64
Flange 7 2.5 175 0.58 0.33 0.76
Base 6 1 6 2.0 1.83 20.09

=18 X=51 X=13.0 X =156.49

Y, =51/18=2.83"

| =13.0 + 56.49 = 69.49in*

A, =5+ .17(7) = 6.19in?

y, = [5in%(3 + 5/2) + .17(7)(2.83 + .17/2)/6.19 = 5.00
= location of center of gravity of A from bottom

dy=vy,-VY,,=500-283=217"

Q = XAvdy = 6.19in%(2.17”) = 13.43in®

f, = VQ/Ib = 100k(13.43in%/[49.33in*(7”)] = 3.89ksi
Find the maximum shear stress at the top of the flange.

A, = 5in?

dy=3+25-283=267"

Q = Avdy = 5in%(2.67”) = 13.35in®

f, = VQ/lb = 100k(12in%)/[49.33in*(2”)] = 24.33ksi

7.3.2 Shear in Rolled Steel

The AISC (American Institute of Steel Construction)
recommends using a value for actual shear stress of
f, = V/twd. By using this value, the flange components
and fillets connecting flanges to webs are ignored,
making the calculation much simpler.

Example 7-10: Find the shear stress in a W8x40, 8’ long
carrying a concentrated load at center of 50k if the web
thickness, t = 0.36" and the depth, d = 8.25".

V =wL/2 + P/2 = 40*(1k/1000#)(8)/2 + 50k/2
= 25.16k

f, = V/t,d = 25.16k/[0.36"(8.25")] = 8.47ksi

Practice Exercises:

7-1 through 7-6: Find |, and |, for the cross-sections shown:

7-7 through 7-10: Find the maximum bending stress in the
beams and cross-sections shown.

7-11 through 7-14: Find the maximum shear stress in the
beams and cross-sections shown.
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eight

Deflection in Beams

8.1 Deflection Charts

Most architects find the deflection in beams through the
use of deflection charts. Deflection charts can be found in
such publications as the AISC Steel Manual, or readily in
online sources. A sample of shear, moment and deflections
for some typical beam loading scenarios can be found in
Appendix A1.2.

Note: All deflection charts assume that the length of the beam is
in inches. If the length of the beam is not converted to inches, if it
is used in units of feet, the deflection equation must be multiplied
by 1728in%/ft® in order to find a deflection in inches.

Example 8-1: Find the maximum deflection in a 12¢ beam
with a 5k/f load given E = 29,000ksi and | = 300in*.

From A1.2, load type 1:

A”\‘IT”( 5 k/ft \I,B

L 12 ”T”
1 1

8.1

Example 8-1

A, =B5wLY/384El @x = L/2
w = Bk/f, L = 12/, E = 29000ksi, | = 300in*

A, = b(bk/f)(127)4(1728in%/ft%)/[384(29,000ksi)

ma

(300in%)] = 0.27”

What is the deflection at a point 8” from the support?
Ax = wx(L3 — 2Lx? + x°)(1728)/24El

= bk/f(8)[12"% — 2(127)(8%) + 8"%](1728in%/ft3)/
[24(29000ksi)(300in%)] = 0.23”

Example 8-2: Not all loads are symmetrical.

Consider the beam in Figure 8.2(a) with a concentrated load

of 10k placed at 3” from the left support of a 12" span. What is
the maximum deflection if E = 15,000ksi and | = 600in*? The
placement of the concentrated load is such that the equation in
A1.2, load type 3 cannot be used because a < b (3 < 9) and the
equation is valid when a > b. If this situation occurs, consider
the beam from the other side as shown in Figure 8.2(b).

10k
(@)
A ”"f” B
L 3 " 9 /”T”
1 1 f
10k
(b)
B “$‘“A
“TN g i 3 ]
T T )
8.2

Example 8-2



P=10k, L=12"a=9"b=23 E=15000ksi,
| = 600in*

A, = Pabla + 2b)V(3a(a + 2b))/27EIL
= 10(9)(3)(9 + 2(3)VI3(9)(9 + 2(3))1(1728)/127(15,000)
(600)] = 0.58”

Example 8-3: Combining loads.

Many times a beam will have a combination of load scenarios.

For example, a beam may have a uniform load from a floor
loading and from its own weight plus a concentrated load
from the reaction of a beam it supports. Find the maximum
deflection of the beam in Figure 8.3 if E = 1,500,000psi and
the cross-section is 8” wide by 12” deep.

960#
¢ 160 #/ft
A ”‘f" B
L 8 L 8
1 1
8.3

Example 8-3

| = bh3/12 = 8(12)3/12 = 1152in*

Using load scenarios 1 and 3:

w = 160%f, L = 16, E = 1,500,000psi, | = 1152in%,
P = 960#

A, = BWL*/384El + PLY/48E|

= 5(160)(16%)(1728)/[384(1,500,000)(1152)] + 960(163)
(1728)/148(1,500,000)(1152)]

=0.22”

Note: Deflection charts list the absolute value of deflection
without regard to the direction. Care must be taken to note in
what direction a load will cause a deflection, especially when
adding deflections from different loading scenarios.

Example 8-4: Find the deflection at the end of the overhang

for the beam in Figure 8.4 if E = 29,000ksi and | = 199in*.

DEFLECTION IN BEAMS

16k
BK/F
L L
1 12' 1 4'
8.4
Example 8-4

W =3k/f, L=12", x1 =a =4/, P =16k, E =29,000ksi,
[ =199in*

A = —(wL3x1)/24E| + Pa?(L + a)/3El

Notice that the deflection at the end of the overhang caused
by the uniform load will be upwards. Because of this, the

equation is entered as a negative value when adding it to the
equation for the point load at the end of the overhang, which

will be downward.

A = —(3(123)(4)(1728)/124(29000)(199)] + 16(42)(12 + 4)
(1728)/[3(29000)(199)] = —0.259” + 0.409” = 0.15"

8.2 Double Integration
Method

A = [IMdx/El

Deflection is the second integral of the moment equation.
The first integral of the moment equation, JMdx is the slope
of the deflected beam. The Double Integration Method may
not seem as easy to use as deflection charts, but it is useful
when the location of the maximum deflection is unknown and

when there are many combined loading scenarios.

Example 8-5: Find the maximum deflection of a simple
beam with a length, L, and a uniform load, w.

1. Begin by writing the moment equation:
M = wlLx/2 — wx?/2

2. Take the first integral of the moment equation.
Remember to add the constant to the equation.

dEIA = slope = [Mdx = wLx?/4 — wx%/6 + C,
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In many cases, it is not know where the slope will equal
zero; but with a symmetrical load on a simple beam, it is
known that the maximum deflection will be at the center
of the beam and that is the point at which the slope will

equal zero.
Slope =0atx=1L/2
0 = wL(L/2)¥/4 — w(L/2)°/6 + C,
=wL%16 - wL%/48 + C, =0
C,=-wlL?%24

But, for this example, assume that the location of the

maximum deflection is unknown.
dEIA = [Mdx = wLx?/4 — wx%6 + C,
3. Take the second integral of the moment equation:

EIA = [[Mdx = wLx3/12 — wx4/24 + Cx+C,

EIA = 0 at the supports, @ x =0, L
0=wL(0)/12 - w(0)/24 + C,(0)+C,...C,=0

0= wL(L3/12 = W(L4)/24 + C,(L) = wL¥/24 + C,L ...
C, = -wL%24

Inserting the value of C, into the IMdx equation and setting
the equation equal to zero will reveal where the slope equals
zero and therefore points of maximum deflection.

dEIA = [Mdx = wLx?/4 — wx3/6 — wL3/24 = 0
6Lx2-4x3-13%=0...x=1L/2
EIA = [[Mdx = wLx3/12 — wx¥/24 — wxL3/24 @ x = L/2

EIA = [[Mdx = wL4/96 — wlL4/384 — wL/48
= wl44 - 1 - 8)/384 = —5wlL /384

A, = -5wLY/384El

Notice that the Double Integration Method gives the direction
of the defection. A negative value indicates that the deflection
is downward. A = 5wlL%/384El is the value given in the
deflections charts.

Example 8-6: Find the maximum deflection in the beam
shown in Figure 8.5, if E = 29,000ksi and | = 199in*.

8K 1K
T T |
L L L
1 10 T 1 L
8.5
Example 8-6

Find reactions:
IM, =0=8k(10") - B (12") + 1k(16") ... B = 8kT
2f,=0=A -8k+8k-1k.. A =1kT

Write the moment equation:
M = 1x — 8<x — 10> + 8<x — 12>

Find the first and second integral of the moment equation:
dEIA = x¥/2 — 8<x = 10>%/2 + 8<x - 12>%/2 + C,
EIA = x%/6 — 8<x — 10>%/6 + 8<x — 12>3/6 + Cx + C,

Solve for C,and C:
A=0@x=0and@x =12
@x=0EA=0-0+0+0+C,...C,=0

@x =12, EIA=(12)3/6 - 8(2)})/6 + 0 + 12C, =0
C, =110.666 - 288]/12 = -23.11
Set dEIA = 0 to find point of maximum deflection:
EIA = x3/6 — 8<x — 10>%/6 + 8<x — 12>%/6 — 23.11x

dEIA = x?%/2 — 8<x — 10>%/2 + 8<x — 12>2/2 — 23.11
= 0 where deflection changes direction

If Amax occurs between x = 0 and x = 10"
0=x?%2-2311...x=6.80"

If Amax occurs between x = 10" and x = 12"

0 =x%/2 - 8(x — 10)?/2 — 23.11 = x? — 22.86x + 120.89
... x=11.43 - 3.12 = 14.55" or 8.21"; neither of which
falls in the range between x = 10" and x = 12" and
therefore are not valid.
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If Amax occurs at some point where x > 12”: 0 = x?/2 15K 15K 15K
- 8<x — 10>%/2 + 8<x = 12>%/2 - 2311 X =16 +
7.06i which is an unreal answer meaning that the
slope never equals zero in this range, but proceeds to AﬂIF B
increase 4 4 4 4
" ‘ 1 1 |
Find deflection: ! ‘
‘ 15K ‘
@x =06.8"A=[(6.8)%6 - 8(0)%6 + 8(0)%*/6 — 23.11(6.8)] 110K
” ” +
(1728)/129000(199)] = —-0.03” = 0.03") vI

@x = 16, A = [(16)*/6 — 8(6)%/6 + 8(4)*/6 — 23.11(16)] |
(1728)/[29000(199)] = 0.03” = 0.03"1 ‘

|
|
! -20K

8.3 Moment Area Method

The Moment Area Method is a useful tool to find the
deflection in beams with concentrated loads, especially if
the moment diagram has already been drawn. Just as the
accumulated area under the shear curve equals the moment,

the accumulated area under the moment curve equals the
slope of the deflected beam. Using theorems developed by
Mohr, the deflection at a given point can be found by creating
a second moment diagram with a virtual load at the point of

interest and then summing the product of the moment from
the second diagrams at the center of gravity of areas from the
first diagram multiplied by those areas.

Example 8-7: Find the deflection at the mid-span for the
beam shown in Figure 8.6 if E = 29,000 and | = 53.8in%.

1. Find reactions:

IM, =0 =15k(4’) + 15k(8") - B (12) + 15k(16") ...
B, = 35k

8.6

f =0=A — 15k — 15k + 35k — 15k ... A = 10k Finding deflection using Moment Area Method
¥ Y Ty

2. Draw the shear and moment diagrams. )

) ) 7. Calculate the area of each geometric shape (A) and locate

3. Redraw the beam with only a virtual load of 1 at the )
the center of gravity (x).

mid-span. ) )
: ) , 8. Calculate the virtual moment (M) at the centers of gravity
4. Find Virtual reactions: A, =B_=0.5 ) ‘
, ooy (x). In this case: M = .bx — T<x — 6> + .5<x — 12>,
5. Draw virtual shear and moment diagrams.

- . . Therefore:
6. Divide the real moment diagram vertically where the
virtual load is placed and at any point where the virtual x <6’ M, = 0.5x
moment changes direction. In this case it will be at x = 6 <x <12, M = 6 - 0.5x
6" and x = 12”. Divide the real moment areas into simple
127<x, M. =0

geometric shapes and number them as components.
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9. Multiply each value for A by the corresponding value for
M.. Remember to consider the positive or negative nature
of each value of A..

Comp. A, x M, AM,

1 4(40k-f)/2  4'(2/3) 0.5(2.67) =1.33 106.67
=80 =2.67

2 2’(10k-f)/2  4+2/3 0.5(4.67) =2.33 23.33
=10 =4.67

3 2’(30k-f) 4+2/2 0.5(5.00) = 2.50 150.00
=60 =5.00’

4 2’(10k-f)/2  6+2/3 6-.5(6.67)=2.67 26.67
=10 =6.67

5 2'(20k-f) 4+2+2/2 6-.5(7)=2.50 100.00
=40 =7.00

6 1’(20k-f)/2  4+4+1/3 6-.5(8.33)=1.83 18.33
=10 =8.33

7 3'(-60k-f)/2 4+4+1+3(2/3) 6-.5(11)=0.50 -45.00
=-90 =11

8 4'(-60k-)/2 4+4+4+4/3 0 0
=-120 =13.33

TOTAL: 380.00

10. A = ZAM/EI = 380(1728)/29000(53.8) = 0.42”

8.4 Method of Virtual Work

The Method of Virtual Work is a useful tool in finding
deflections in trusses. As in the Moment Area Method for
beams, calculate the forces in the bars of the real truss. Next,
apply a virtual load at the point of interest and recalculate the
bar forces considering only the virtual load.

Example 8-8: Find the deflection of joint C in the truss
shown in Figure 8.7 if all members are 12 diameter steel
rods with E = 29,000.

12k 20k
o, ol
AN
16' 16'
[ 1 |

8.7
Finding deflection using Method of Virtual Work

1.

2.

267 2
1 2 2.6
18.67, 18.67 2,67 267
4 2
A 18.67 T 24
14k

8.8

Find reactions:

IM, = 0=12k(8’) + 20k(24") - B (32") ... B = 18k
If,=0=A - 12k - 20k + 18k ... A =14k

Solve for bar forces using Method of Joints:

g
24

24 18
E
18k

12k 20k

B 21.33 D

7

Find actual forces in truss bars

3.

Redraw truss with a virtual load at point C. Solve for
reactions and bar forces in the virtual truss.

,1.33

8.9

Find virtual forces in truss bars

4. Enter the real and virtual bar forces into the chart
assigning compression a negative value and tension a
positive value. AE values of the bars. In this case, the bar
area A = n(1)%/4 = 0.785in? and E = 29,000ksi for every
bar. Therefore, AE = 0.785in2(29,000ksi) = 22,765k.

Bar Real Force Virtual Force ~ Length AE P.P,L/AE

(P)inkips (P, @
AB  -23.34 -.83 10°(12) = 120" 22,765k 0.102
AC  18.67 67 16'(12) = 192" 22,765k 0.106
BC 3.34 .83 10°(12) = 120" 22,765k 0.015
BD -21.33 -1.33 16'(12) = 192" 22,765k 0.239
CD  -3.34 .83 10°(12) = 120" 22,765k -0.015
CE  24.00 67 16'(12) = 192" 22,765k 0.136
DE  -30.00 -.83 10°(12) = 120" 22,765k 0.131

A=3PPL/AE =0.714"

Since the answer is positive, the deflection is in the direction

of the virtual force, which in this case is downward.

A =3P P,L/AE=0714"



Practice Exercises:

8-1: Use deflection charts to find the maximum deflection for
the W10 x 45 beam shown if E = 29,000ksi and | = 248.

8-2: Use deflection charts to find the deflection at the end of
the overhang for the 7.25” wide by 15” deep beam with
E =1,200,000psi

8-3: Use deflection charts to find the deflection at the mid-
span between supports for the W14 x 22 beam with
E =29,000ksi and | = 199.

8-4: Use the Double Integration Method to find the deflection
at the mid-span between supports for the W8 x 10 beam

DEFLECTION IN BEAMS

with E = 29,000ksi and | = 30.8. Check your answer using
deflection charts.

8-5: Use the Double Integration Method to find the deflection
at the mid-span between supports for the 5.5”x 11.25” beam
with E = 1,100,000psi. Check your answer using deflection
charts.

8-6: Use the Moment Area Method to find the deflection at
X = 4’ for the Titanium beam with E = 15,000ksi and
| =132.4in%.

8-7: Use the Method of Virtual Work to find the deflection at
Joint E for the truss shown. The cross-sectional area of each
bar is 4in.

10k
JL 9004 400#
¥ S J|L :
L 10' L 5' ”T” - 12 L 3
1 1 1 1 1
8-1 8-2
2k 2k
2 K/t
NN \L JL JL
L ¥y I
’IL 4' ’Ii, 3' ’Ii, 6' ’IL I
63 3 3 3
8-4
3k 5k
1200# JL JL
J¢ A B
A B »Tw | | mT”
¥ ¥ e L e |
i 12' i 3' (d 1 T (1
1 7 8-6
85
5k 6k
D F K
J
T E G
mgr 3 |, 3 |, 3 | 3
1 1 1 8.10
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nine

Design of Beams

This chapter will discuss the fundamental criteria for the design
of beams. It does not cover the specifics of design or finding
allowable stresses in wood, steel or concrete. For these topics,
the reader should refer to Chapters 16 through 30.

9.1 Overview of Design
Limitations

9.1.1 Allowable Stresses

Allowable stresses are based on the material of the
component and specified by organizations specific to the
material. Allowable stresses for steel can readily be found

in the AISC steel manual. Allowable stresses for wood can
be found in the American Wood Council National Design
Specifications. For alternate materials, online sites such as
Matweb.com list material properties for various metals and
alloys, ceramics, polymers and carbon fibers. Manufacturers
are always a good resource as material variations between
manufacturers can be great.

Table A1.3 in the Appendix includes a sample guide of
material properties for use in solving practice exercises in this
text. In actual design situations, refer to the governing codes
for the referred allowable stresses.

9.1.2 Allowable Deflections

Allowable deflections are governed by local building codes.
Because beams fail due to stress and not deflection,
deflection limitations are defined by serviceability. Typical
allowable deflections are defined in terms of the beam length
L ininches. For example, if a beam is 25’ long, the allowable
deflection, A, = L/240 = 25'(12")/240 = 1.25".

For A, =L/360 = 25(12"77)/360 = 0.83”".

9.2 Design of Beams
for Flexure, Shear and
Deflection

The three basic criteria for the design of beams are:

f, = actual bending stress < F, = allowable bending
stress

f, = actual shear stress < F = allowable shear stress

A = actual deflection <A = allowable deflection

Setting the equations for bending stress, shear stress and
deflection equal to the allowable stress and deflections will
yield the section properties required for the beam design.



f,= M/S<F, ... S>M/F,

f, =VQ/Ib < F for geometric shapes ... | > VQ/F b

f, =3V/2A<F forrectangular sections ... A > 3V/2F

f,=V/t, d<F forrolled steel shapes ... t d > V/F,

A = [some equationl/I <A ... | > [some equation]/A,,

Example 9-1: Design a 22 X_ joist spanning 14¢ with a
load of 160#".

E =1,100,000psi, F, = 1400psi, F, = 170psi and A, = L/240.

Do not consider beam weight.

Bending:

Shear:

M. = wL?/8 = 160#1(14)2(127)/8 = 47,040#-in

ma

f,= M/S <F, ... S>M/F, = 47,040#-in/1400psi
= 33.6in°

For a rectangle, S = bh?/6 = 2h?/6 > 33.6 ...
h >(33.6(6)/2)) = 10.04”

Reactions = Vmax = wL/2 = 160%1(14")/2 = 1120#

f, = 3V/2A < F, for rectangular sections ...
Az 3V/2F, = 3(1120#)/[2(170psi)] = 9.88in?

For a rectangle, A = bh =2h >9.88in2 ...
h>9.88/2 = 4.94”

Deflection:

A, = BwLY/384EIl = 5(160%)(14")4(1728in%/f%)/
[384(1,100,000psi(l)] = 125.73/I

A, =L/240 = 14°(12"9/240 = 0.7”

A = [some equation]/ I <A ...
| > [some equation]/A,, = 125.73/0.7” = 179.61

For arectangle, | = bh3/12 = 2h3/12 > 179.61 ...
h >3[179.61(12)/2] = 10.25”

Deflection governs with the highest value of h required:

h=10

.25”

USE a rectangular section 2”x 10.25”

DESIGN OF BEAMS

Example 9-2: Design a steel W14 section, 40¢ long
carrying concentrated loads of 10k every 8¢.

Do not consider beam weight. E = 29,000ksi, F, = 30ksi,
F,=20ksiand A, = L/240.

Bending:

From the multiple point load Table A1.1, for 4 point
loads evenly spaced:

M, ., = 3PL/5 = 3(10k)(40")(12)/5 = 2880k-in
f, = M/S<F, ... S=M/F, = 2880k-in/30ksi = 96in°
Shear:

V. = 2P = 2(10k) = 20k

mal

f, = V/t, d <F, forrolled steel shapes ...
t,d=V/F, = 20k/20ksi = 1in?

Deflection:

A .. = -063PL3/El = .063(10k)(40")3(1728in%/13)/

m

[29,000ksi(l)] = 2402.52/1
A, = L/240 = 40°(127)/240 = 2.0”

A = [some equationl/ I <A, ... | = [some equationl/A,,
= 2402.52/2” = 1201.26

Beam selection: Go to the W14 section properties in
Appendix A3.1 to select a size where | > 1201.26in%, S > 96in°®
and t d > 1in2. Note that a W14 x 68 would work for bending
because S_= 103 > 96; but it fails for deflection because |,
=722 < 1201.24. Therefore, A larger size must be used to
satisfy the deflection criteria.

USE W14 x 109:

| =1240 > 1201.26in% S = 173 > 96in?, and
t,d=0.5625(14.3) = 7.5 > 1in%

Example 9-3: Check whether the cross-section design in
Figure 9.1 is adequate for the beam and loading shown if
F, = 1800psi, F = 175psi, E = 1,100,000psi and A = L/240.
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2000# 2000# 2000#

10’ 10'

[ 11

)

‘ ‘ 18"
o [ ] o |
9.1
Trapezoidal cross-section
Determine cross-section properties:
Comp A y Ay I dy Ady?
Left 36 12 432 648 1.5 81
Mid 72 9 648 1944 1.5 162
Right 36 12 432 648 1.5 81
144 1512 3240 324

N.A. =Y, =1512/144 = 10.5”

|, =3240 + 324 = 3564in*

c=10.5"

S, =1/c=3564/10.5" = 339.43in®

batN.A. =4 + 2(4)(10.5/18) = 8.67”
Find Q:
Comp  Area above neutral axis dy Ady
Left 7.57"[(12” - 8.67")/2]/2 = 6.25 7.5(2/3) =5 31.25
Mid 7.57(8.67") = 65 7.5/2 =3.75 243.75
Right 7.5[(12” - 8.67")/21/2 = 6.25 7.5(2/3) =5 31.25

Q=306.25

Bending:
M = PL/2 = 2000#(40")(12"%)/2 = 480,000#-in

f, = M/S =480,000/339.43 = 1414.14psi < 1800psi ...
okay for bending

Shear:
V = 3P/2 = 3(2000#)/2 = 3000#

f, = VQ/Ib = 3000#(306.25in%)/(3564in*)(8.67")
=29.74 < 170psi ... okay for shear

Deflection:
Aall = L/240 = 407(12"%)/240 = 2”

A = -0495PL%El = .0495(2000#)(40")%(1728in%/13)/
[1,700,000psi(3564in%) = 2.79” > 2” ... NO GOOD for
deflection.

At this point, the designer must make a decision about how
to modify the cross-section to satisfy the deflection criteria.
Enlarging the cross-section proportionally will increase |,
S,.and Q. Since the new | > 3564(2.79/2) = 4971.78 itis an
increase by a factor of 2.79/2 = 1.4.

Since | involves b and h?, increasing both dimensions
by 1.4%%% = 1.09 should satisfy the criteria. By changing the
top width to 13”7, the bottom width to 4.5” and the height to
19.75” the values change to:

Y =11.47,1, = 5175.56, S, = 451.08, b = 8.65,
Q = 395.53

f, = 1064.12 < 1800psi ... okay for bending
f,=26.51 < 170psi ... okay for shear

A, = 1927 <2” .. okay for deflection.

ma

Practice Exercises:

9-1: Design the lightest W12 for the beam shown if
E = 29,000ksi, F, = 30ksi, F = 20ksiand A, = L/240.



9-2: Design a 4” wide x h” deep beam with a rectangular
cross-section for the beam shown if E = 1,200,000psi,
F, = 1800psi, F, = 180psi and A, = L/240.

9-3: Find the most economical W14 for the beam shown if
E =29,000ksi, F, = 21.6ksi, F, = 14.4ksi and A, = L/360.

DESIGN OF BEAMS

9-4: Design the most economical (lightest weight) HSS
rectangular shape for the beam shown if E = 29,000ksi,
F, = 21.6ksi, F, = 14.4ksi and A, = L/240.

9-5: Find the maximum load, P, the cross-section shown can
carry for the beam and loading shown if E = 900,000psi,
F, = 1600psi, F, = 190psi and A, = L/240.

12k 12k
5 8 9
3 k/ft 1200 #/ft J
6' 8 6' 16' 6 t2] 11 5'
9-1 9-2 9-3
6II
f =20k P I E—
g E—
Z y
7 8 8
12 10"
T
9-4 9-5

9.2

Chapter 9 Practice exercises
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Design of Columns

Columns are designed to prevent failure in two modes:
crushing and buckling.

Crushing occurs when the load distributed on the cross-
section is higher than the compressive stress that can be
resisted by the column material.

f. = P/A

Buckling is compressive failure due to the lateral deflection in
a column caused by compression in slender members. The
lateral deflection curve will vary depending on the type of
support at each end of the column.

10.1 Axial Loads on

Columns

Axial loads are theoretically at the center of gravity of a cross-
section in the direction of the axis of the column. Theoretically,
an axial load should produce no bending stress on a column.
But, in reality, either the load is not perfectly placed at the
center of gravity or even if it is, the material imperfections of
the column will cause an imbalance in stresses. Euler noticed
that slender compression members tend to buckle while

compact members tend to crush under compression loads.

10.1.1 Critical Buckling Stress

Euler developed an equation for critical buckling stress:

. = mE/(L/r)?

crit

where L and r are both in inches and r = V(I/A) = radius of
gyration. The higher the value of (L/r), the more susceptible

a column is to buckling. Both directions must be considered.
Unless a column is symmetrical along both axes, both L /r_
and L/ry must be considered and the higher value used. For
steel components, the values for r and r can be found in
the AISC Steel Construction Manual. For geometric shapes,

r can be determined by finding | and Iy. For example, for a
rectangular column b”xh”: 1 =bh%12 and | =hb%y.r =
VIJA = Vbh%/12bh = h/¥12 and r, = I /A = Vhb%/12bh = b/V12.

Example 10-1: Find the critical buckling stress for a
W14 x90 pinned column with a length of 18'.

E =29,000ksi, r =6.14", 1 =3.70", A = 26.5in”

f_. = mE/(L/r)? = ©?(29,000ksi)/((18")(12"1)/3.70”)?

crit

=83.98 ksi

f=P/A ..

crit”

What is the critical buckling load = P

P =f A =83.98ksi(26.5in?) = 2,225.47k

crit crit

It is important to note that the critical buckling stress is

not the allowable compressive stress, but only one factor
in determining the allowable compressive stress. For

short columns, crushing will govern the value of allowable
compressive stress and for long columns, buckling will
govern. Every type of material has its own rules governing
the determination of the allowable compressive stress for
these rules include the use of an Effective Length Factor, k.
The Effective Length Factor, k, is determined by evaluating
lateral deflection over the length of the column.



DESIGN OF COLUMNS

—

~

.65 .80 1.0

10.1

Effective Length Factor, k, based on Table C.1.8.1, AISC Steel Construction Manual, 8th edition

The effective length of a column = kL, where the value of k
is the recommended design value when ideal conditions are
approximated in the chart above, NOT the theoretical value.

The slenderness ratio = kL/r

In steel columns the slenderness ratio is limited to kL/r < 200.

To find the allowable compressive stress in steel based on
the AISC guidelines and the LRFD Method, see Chapter 22.

Example 10-2: Find the slenderness ratio of a W14x90
column, 20’ long.

a) pinned connections at both ends
b) pinned at one end and fixed at the other
c) fixed connections at both ends
ifr,=6.14andr =3.7:
a) k=1.0,
kL/r_=1.0(20)(1279/6.14” = 39.09

kL/r, = 1.0(20")(12")/3.7” = 75.71
Use the larger value: 75.71

b) k=0.8
kL/r, = .8(20")(127)/6.14” = 31.27

kL/r, = .8(20")(12"1)/3.7” = 51.89

Use the larger value: 51.89

c) k=0.65
kL/r = .65(20")(12"71)/6.14” = 25.41

kL/r, = .65(20°)(12")/3.7" = 42.16
Use the larger value: 42.16

It is easy to see that the larger slenderness value is in the
weak direction when the unbraced length is equal in both
directions. But, if the unbraced length is different in each
direction, be sure to check both.

Example 10-3: Find the slenderness ratio of a W14x90
column, 20’ long and braced at the mid-point in the
weak direction.

a) pinned connections at both ends
b) pinned at one end and fixed at the other
c) fixed connections at both ends
ifr =6.14” and r, = 3.7"
a) k=10,
L,=20%L =10

kL/r, = 1.0(20")(12")/6.14” = 39.09
kL/r, =1.0010")(12"1)/3.7" = 32.43

Use the larger value: 39.09
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b) k=08
kL/r, = .8(20")(12"1)/6.14” = 31.27
kL/r, = .8(101)(12"/3.7" = 25.95
Use the larger value: 31.27

c) k=0.65
kL/r, = .65(20")(127)/6.14” = 25.41
kL/r,=.65(10")(12"1/3.7” = 21.08
Use the larger value: 25.41

What is the maximum allowable length of the W14 x90
column if pinned connections are used?

kL/r, = 1.0(L)(1279/3.07 <200 ... L <5117’

If the allowable compressive stress, F_, at kL/r = 200 is
3.73ksi, what load can the 51.17” column carry?

A = 26.5in?
P=F A= 3.73ksi(26.5in?) = 98.8k

In wood columns the slenderness is kL/the smallest side
=L /d <50. For the LRFD method to find the allowable
compressive stress in wood based on the AWC National
Design Specifications, see Chapters 16 through 18.

Example 10-4: Find the maximum allowable unbraced
length for a 4x6 column with actual size dimensions

3.5”"x5.5" if the connections are pinned at both ends.
L,=kL=10L=L
[/3.6”<50... L<50(3.5”) = 175" = 14.58’

If the allowable compressive stress F’. = 400psi, what load
can the column carry?

P = FA = 400psi(3.5")(5.5") = 7700#
It may be noted that the slenderness limitations for steel and
wood are very similar.

For wood: L /d <50. Where L_ = kL ... kL/d <50

For steel: kL/r £200. For rectangular cross-sections, r
= d/N12 ... kIN12/d < 200 or kL/d < 57.74

In concrete columns, slenderness is much more limited
because unlike steel and wood, the tensile strength of
concrete is only about 10 % of the compressive strength.

Therefore, concrete columns are categorized and designed as
short columns if:

kL/r < 22 for pinned connections or
kL/r < 34 - 12(M,/M,) for fixed connections where
M, = smaller end moment and M, = larger end moment.

Again, r = d/\12 for a rectangular section, and a comparable
look at the slenderness limitations of concrete to those of
wood and steel would be: kLL/d < 6.35 for pinned concrete
columns. For design of short concrete columns using the
LRFD Method and the ACI code, see Chapter 30.

Example 10-5: Is a 20’, 36" square concrete column with
pinned connections a short column?

kL/r = 1.0(20")(127)/(36/N12) = 23.09 > 22.
No, it is not short.

What unbraced length would make this size column short?
L < 22(36/N12)/(12"7) = 19.05
What width would make the 20” column short?

kL/r <22 ... r=d~N12 > 1(20")(12"/")/22 = 10.909 and
d > 37.79” round up to 38”.

10.2 Column Design

1. Select a trial size and determine the slenderness ratio in
each direction. (Alternately, select a trial slenderness ratio.)

2. Determine the allowable compressive stress for the given
material and slenderness ratio.

3. Find the actual compressive stress in the column: f_= P/A.
Check that the actual stress is less than the allowable stress.

10.2.1 Design of Columns for Metals

For Steel, the AISC determines the allowable compressive
stress = ¢F_ by the following equations:

E3-4: F_ = m*E/(kL/r)?. This is Euler's equation for
critical buckling stress

E3-2:if kL/r <4.71(E/F), then F_ = (6687 )F

E3-3: if kL/r > 4.71V(E/F ), then F_ = 0.877F .
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140 _~ Ti-6Al-4V _ _ _ _ Allowable Compressive Stress/¢
N AN — Euler's Critical Buckling Stress
\
120 | \\ A992 Steel
\
I \
100 |  Ti-BAM4V',
\
_ \
\
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E \
= | \
e \
60 \
\
A992 Steel
- - - - - _ \
T~ |
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\\ N ~
N ~ -
_ o ~ _
N =~ ~
20 — > ~ T~ |
P20 ' 40 " 60 ' 80 ' 10b "'120 T 140 ' 1eb ' 200
kL/r
10.2
F_ compared to Euler’s formula
These equations can be used with any metal as they will k =0.65
yield a curve such as those shown in Figure 10.2 for steel and KL/ = 0.65(12')(12)/1.127 = 83.05
titanium alloy. Note that as kL/r approaches 0, F_ approaches
F,. Because F_ is used with the Resistance Factor, ¢ in the 2. 4'71\/(E/Fy) = 4.71V(15000/141) = 48.58, F_ = ()E/(L/r)?
LRFD Method and because the loads in the LRFD Method are =21.464
ultimate loads or factored loads, the value of ¢F_, = allowable 3. E3-rif kL/r > 471N(E/F), then
compressive stress has an adequate factor of safety built into it. F. =0.877F, = .877(21.464) = 18.82ksi

4. P =18.81ksi(2.75in?) = 51.73k
1A. Select a larger trial size: Hollow core 6” x6” x.5” thick:

Example 10-6: Design a titanium Ti-6Al-4V alloy column for
a factored compressive load of P, =500k with an unbraced

length of 12’ and fixed ends if E = 15,000ksi and f = 141ksi. l,=1,=6%12-5%12 = 55.92in*
1. Select a trial size: Hollow core 3”x3”x.25” thick: A =6% -5 =11in?

| =1,=3%12 - 2.6%12 = 3.49in* r,=r,=(656.92/11) = 2.26”

A =3%2-25%=275in? k =0.65

X

r.=r,="(3.49/2.75) = 1127” kL/r = 0.65(12)(12"1)/1.127 = 41.6
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2A. 4.7NW(E/F) = 4.71V(15000/141) = 4858,
F. = (m)E/(kL/r)? = 85.55

3A. E3-2:ifkL/r<4.7W(E/F ), then F_ = (6587 )F
=70.73

4A. P =70.73ksi(11in2) = 778.03k > 500k but not very
efficient.

1B. Select a smaller trial size: Hollow core 5”x5” x .5” thick:

|, =1,=5%12 - 4%/12 = 30.75in*

A =52-4%2=9in?

r=r = V(30.75/9) = 1.85”

X

k =0.65
kL/r = 0.65(12")(12%)/1.85 = 50.59

2B. 4.71(E/F) =4.71V(15000/141) = 48 58,
F, = (m)E/(kL/r)? = 57.833
3B. E3-3:if kL/r > 4.71\/(E/Fv), then F_ =0.877F,
=.877(57.83) = 50.72ksi
4B. P =50.72ksi(9in?) = 456.48k < 500k no good.
1C. Select a slightly larger trial size: Hollow core
5”x 5”x.625” thick:
| = Iy =5%/12 - 3.75%/12 = 35.6in*
A =52 - 3.75% = 10.94in?
r.=r,=(356.6/10.94) = 1.8”
k =0.65
kL/r = 0.65(12")(12%)/1.8 = 62

2C. 47WI(E/F) = 4.71V(15000/141) = 48.58, F_ = (n?)E/
(kL/1)? = 54.75

3C. EB3-3:ifkL/r > 4.7WI(E/F), then F_ = 0.877F,
= .877(54.75) = 48.02ksi

4C. P =48.02ksi(10.94in? = 525.29k > 500k ... okay
USE 5”x5”x5/8” HSS in Ti-Al6-4V

Example 10-7: Design an A992 steel column for a factored
compressive load of P, = 500k with an unbraced length of
12’ and fixed ends if E = 29,000ksi and Fy = 50Kksi.

1. Select a trial size: Hollow core 6” x6” x .5” thick:
|X = Iy =6%/12 - 5%/12 = 55.92in*
A=6%2-52=11in?

r.=r,=V(65.92/11) = 2.25”

k=0.65
kL/r = 0.65(12)(127)/1.127 = 41.6

2. 47WIE/F) = 4.71N(29000/50) = 113.43,
F. = (m?)E/(kL/r)? = 165.39
3. EB3-2:if kL/r <4.71V(E/Fy), then F. = (658™F)F =44.06
4. P =44.06ksi(11in?) = 484.63 < 500k go larger.
1A. Select a trial size: Hollow core 6”x6”x.625” thick:

l, =1, =6%12-4.75%12 = 65.58in*

X

A =62 - 4752 =13.44in?

r.=r,=(6558/13.44) = 2.21”

X

k =0.65
kL/r = 0.65(12")(12")/2.21 = 42.35

2A. 471W(E/F) = 4.71V(29000/50) = 113.43,

F, = (m)E/(kL/r)? = 169.568
3A. E3-2:ifkL/r< 4.71\/(E/Fy), then F_ = (.658FV/F9)Fy

=43.85
4A. P =43.85ksi(13.44in?) = 589.41 > 500k ... okay

USE 6”x6”x5/8” HSS in A992 steel.
Note that the titanium alloy column uses less material with an
area of 10.94in? compared to the steel column that requires an
area of 13.44in?. Given the current cost of titanium alloy at about
six times the cost of steel, the steel column is the economical
choice at about 21% of the cost of the titanium alloy column.
Given the density of steel is 490pcf and the density of Ti-Al6-4v
is 276.48pcf, the respective weights of the steel and titanium
alloy 12ft columns are 548.8# and 252.06#. The steel column
has more than double the weight of the titanium alloy column. It
should be noted that for kL/r > 57.5, the allowable compression
in steel is higher than that of Ti-Al6-4v. Changing the column
length in the previous two examples to 20’ yields:

Example 10-8: Design a titanium Ti-6Al-4V alloy column

for a factored compressive load of P, = 500k with an

unbraced length of 20’ and fixed ends if E = 15,000ksi

and Fv = 141ksi.

1. Select a trial size: Hollow core 6.25”x 6.25” x 1” thick:
l,=1,=16.25912 - 4.25/12 = 99.97in*

A =6.252 - 4.25% = 21in?

ro=r,= V(99.97/21) = 2.18”

X



k =0.65
kL/r = 0.65(20")(12"1)/2.18 = 71.56

2. 47W(E/F) = 4.71(15000/141) = 48.58, F_ = (n)E/(KL/r)?
=28.91

3. E3-3:ifkL/r > 4.71(E/Fy), then F_ = 0.877Fe
= .877(28.91) = 25.35ksi

4. P =235.35ksi (21in? = 532.44k > 500k ... okay
USE 6.25”x6.25”x 1”7 HSS in Ti-Al6-4V

Example 10-9: Design an A992 steel column for a factored
compressive load of P, = 500k with an unbraced length of
20’ and fixed ends if E = 29,000ksi and F = 50ksi.

1. Select a trial size: Hollow core 6”x6” x.75” thick:
| = Iy =6%/12 — 4.5%/12 = 73.82in*
A =6%-4.52 =15.75in?
r.=r,=V(73.82/15.76) = 217"
k=0.65
kL/r = 0.65(20")(12")/2.17 = 72.05

2. 47NW(E/F) = 4.71(29000/50) = 113.43, F, = (n)E/(KL/r)’
= 55.13ksi

3. E3-2:ifkL/r <4.71(E/Fy), then F_ = (6587 )F
= 34.27ksi

4. P =34.21ksi(15.75in?) = 538.76k > 500k ... okay
USE 6x6”x3%” HSS for Steel.

10.2.2 Design of Wood Columns

The allowable compressive strength in wood columns
depends on the species and grade of wood, the moisture,
temperature and incising conditions as well as the actual size
of the column. A builder’s rule of thumb for wood columns is
F./ = 0.3E/(L/d)*. The accuracy of this rule of thumb is shown
below:

Example 10-10: Design a 12ft column of structural Select
Red Oak with pinned ends, a square cross-section and a
factored compressive load of 20,0004#.

The LRFD Method and NDS specifications, as shown in
Chapter 17, yield an answer of 6 x 6.

DESIGN OF COLUMNS

Using the builder’s rule of thumb, F = 0.3E/(L/d)?, and
a trial size of 6x6 (5.5”x5.5” actual dimensions) yields the
following:

E = 1,300,000psi
F./ =0.3(1,300,000psi)/(12°(12")/5.5")* = 568.94psi

FA=P= 568.94psi(5.5)? = 17210.44# < 20,000# no
good.

Try a larger size: 6x8
F./=0.3(1,300,000psi)/(12°(12"71)/5.5")? = 568.94psi

F/A = P = 568.94psi(7.5)(5.5) = 23468.78# > 20,000#
... okay

Using the rule of thumb as a quick estimating tool generally
yields a larger size, but the exact size required should always
be determined, or at least the rule of thumb size should be
verified, using the AWC National Design Specifications as
outlined in Chapters 16 through 18.

Practice Exercises:

10-1: Determine the critical buckling stress and critical
buckling load for a 14ft, W14 x 108 column with pinned ends.

10-2: Given a 4”x6” (actual dimensions) 10ft wood column
with E = 1,600,000psi:

a) Determine the critical buckling load.

b) If F/ =1600psi, what is the load that will cause the
column to crush?

c) Wil the column buckle or crush first?

10-3: Determine the critical buckling stress of a W21 x55

column, with E = 29,000ksi and an unbraced length of 20" in

the strong direction and 12’ in the weak direction.

10-4: A 16ft metal column has a hollow circular cross-section
with an outside diameter of 18” and a thickness of 1”. Which
metal will hold more load? Metal 1 (E = 10,000ksi and
Fy = 3bksi) or Metal 2 (E = 12,000ksi and Fy = 2bksi)?
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Structural Patterns

Patterns exist everywhere, whether in an architectural Two general types of patterns are hierarchy and network
context, a natural context, or an organizational context. patterns. These types can further be identified as radial,
Human beings easily recognize, and utilize patterns. orthogonal, or algorithmic.

Radial Orthogonal Algorithmic

Hierarchy

Network

Hierarchal Network

11.1

Pattern types
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Hierarchal patterns are systems in which components,
members or elements have varying size, status or
contributing characteristics that are ordered accordingly. In
hierarchal patterns, there is a defined source with subsequent
lesser components as a branch from the source. A corporate
personnel structure or a tree is an example of a hierarchy.
Network patterns are systems in which all components,
members or elements have relatively the same size, status
or contributing characteristics. In network patterns, multiple
relationships between relatively similar components exist.
A honeycomb or a checkerboard is an example of a network
pattern. In architecture, geodesic domes and space frames
are good examples of network patterns.

PLAN

Patterns can also be a combination of hierarchy and
networks. Whether hierarchal or networked, patterns allow
the designer to identify grid systems that may be used for
vertical support systems such as columns, bearing walls or
vertical trusses. Orthogonal, radial and algorithmic grids are
usually based on a mathematical principle. Grids may also be
random or appear random but follow spatial and contextual
input. In plan, structural patterns consist of the configuration
of supports, horizontal spanning members and lateral force
resisting systems. In section or elevation, structural patterns
reveal the relationship between the grids from each level and
either respond to or mimic the horizontal grids.

SECTION |

AXONOMETRIC

11.2

Horizontal and vertical pattern relationship




Structural patterns either correspond with or remain

independent of the building shape. In the latter, the structural
pattern of the building gives no indication of what takes place
spatially or contextually in the building. Likewise, the exterior
and interior views are not indicative of the structural patterns

in place.
(@)
(b)
11.3

Structural pattern (a) independent from form and (b) integrated with

form

Structural patterns are not usually independent from the spatial
and contextual patterns of a project. Because the structure

is the skeleton, the physical strength of a building, structural
patterns that integrate with spatial, contextual and conceptual
patterns help the designer to create a holistic solution.

Spatial patterns are usually defined by program and design
intent or by environmental comfort factors such as natural
lighting, acoustics or thermal convection. Contextual patterns
are patterns dictated by topography, site boundaries or
context of the site including views, circulation, solar shadows,
prevalent winds and the like. Conceptual patterns are the
product of creative diagramming of the concept or big idea
behind the project. A concept may derive from a social or
cultural statement, a natural metaphor for a project or an
independent idea conceived by the designer. Once a concept
is defined, the tools of defining form such as weaving,
sliding, expanding, twisting and the like become tools for the
structural patterns as well. Structural patterns that respond
to the spatial, conceptual and contextual requirements of a
project find the best solution for the parameters given.

STRUCTURAL PATTERNS

11.1 Defining the
Structural Grid

The first decision regarding structure is the pattern of
support. Pattern of support is determined by several factors,
most of which influence the location and distance between
columns, walls or other vertical support systems.

The site context defines the perimeter within which a
structure is placed. Once the perimeter is defined, consider
activity, circulation and materials to determine a preliminary
grid pattern. The type of activity dictates the options for
width, length and height of spaces to be included. Larger
clear spaces require structural systems that can handle large
spans. Multilevel spaces often prevent horizontal bracing
at the levels between floor and ceiling. The programmatic
relationships that exist between types of activity determine
the connections and circulation between spaces. Circulation
affects the structural grid because columns and other
vertical support systems can either define or interfere with
a pathway. A colonnade is a perfect example of circulation
defined by the structural support system. Conversely, it
can be argued that the line of columns in the colonnade
is placed for structural support in order to define a line of
circulation. Another influence of site context on structural
system choices is one of views and privacy. Where views
are important, vertical support systems that allow large or
multiple perforations are desired. When privacy is important,
vertical support systems could be massive bearing walls. The
material choices for the structural system will also dictate the
allowable spans of beams and size of components.

A grid is a pattern of lines that denotes the placement
of columns or bearing walls. An area enclosed by the least
number of connected columns is called a bay. In orthogonal
systems, bays are rectangular. In diagrid systems, bays are
triangular and in honeycomb grids, bays are hexagonal.

HEEERYAVAVY
HEREAVVA
L] \VAV4

11.4

Bays in grid systems
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11.1.1 Orthogonal and Radial Grids

Most grids are orthogonal because orthogonal grids are
easier to design and construct than other types of grids.
Orthogonal grids have many identical members, reducing
the number of beams or columns to be designed. The
square or rectangular bays in orthogonal grids mean that in
construction, connections are at 90°. This means connections
are simple to design, fabricate and construct. In the many
cases, the bays are of uniform size, but it should be noted
that bays may be of varied size. Orthogonal grids may be
combined to suit design needs. When combining orthogonal
grids, align column lines from each grid to create lateral
stability in the system.

Radial grid lines may be connected by circumferential,
radial or diagrid patterns of beams. Radial grids may stand
alone, be used as a connector between grids or used as a
focal point. Connections become more complicated in a radial
grid. Creating regularity in the radial grid, and designing the
connections for ease of installation will make a radial grid
nearly as practical as an orthogonal grid.

Fridy b

11.5

Orthogonal grids

11.1.2 Complex or Irregular Grids

Complex grids may be a combination of orthogonal and
radial grids or may involve algorithmic, geometric or natural
patterns. For example, a set of grid lines may follow
topographic lines, perimeter lines or circulation patterns. In
the grid shown in Figure 11.6, longitudinal grid lines follow
topographic curves. Transverse grid lines are perpendicular
to outer longitudinal lines and evenly space along the center
longitudinal line. The grid is strengthened by the triangulated
pattern of bracing. Complex grids can be created digitally
and components can be manufactured from the digital
model meaning that there is an ease of creating double
curvature forms. Consider carefully how such forms are to

be constructed rather than committing to a structural design

based solely on form.
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11.1.3 Integration of Structural,
Spatial and Contextual Patterns

A structural grid must be developed with regard to the
volumes it supports. It is important to define the structural
grid early so that spaces may be designed to fit the grid, but
it is also equally important to understand that grids may need
to be altered to fit the design of spaces or the relationship to
site context. While regular grids with equidistant column lines
are economical, there is no rule that states grids must be
uniform. Do not be afraid to vary distances between column
lines or create combined or complex grids in order to achieve
the best solution for pattern of support.

11.2 Natural Design and
Structural Form

Nature is endowed with structure. Plants, trees, animals, rock
formations and most other nature forms such as cobwebs
have a structure and a structural pattern. Natural forms are
very efficient and very effective. By observing structural
patterns in nature, the designer may find inspiration for
solutions to structural design problems.

11.8
Structural comparisons of (a) silica sea sponge (b) 30 St. Mary Axe

Building, Foster & Partners

Silica sea sponge is a deceptively strong creature with an
exoskeleton made of tiny glass rods that bundle to form struts
in an elaborate cylindrical truss wrapped in helical nutrient
tubes. The glass rods not only provide a structural skeleton
and conduit for nutrients, but also transmit light through fiber
optic qualities of the glass rods. Silica sea sponge bears a
remarkable resemblance to the Foster & Partners building

at 30 St. Mary Axe in London. This building utilizes a diagrid
structure with helical circulation, atrium and mechanical
system schemes. From a structural perspective, the most
interesting thing about silica sea sponge is its strength.

It raises the question: Are bundled tubes stronger than
individual tubes? If so, is it because bundled tubes have more
area or do they have a higher moment of inertia?

11.9
Bundled tubes

Consider the seven bundled tubes in Figure 11.9(a). If all
tubes have the same outer radius (r ) and inner radius (r), the
area of the seven bundled tubes A = 7xn(r 2 - r?). If a single
tube in Figure 11.9(b) has an outer radius equal to 3r,, and the
same amount of material, and therefore the same area, the
thickness of the tube (t) can be found. The single tube would
have an outer diameter that is equal to the three diameters of
the bundled tubes, or 6r_. The inner radius would then be 3r,
— 1. If the total area of the bundled tubes equals the area of
the single tube, we get:

A=7r(r?-r?=mn(3r) - @r, - 1)
t=3r, - V(2r2+7r2
The moment of inertia for the bundled tubes is:

LsunoLen = 7R, = r9/4 + 4 w(r 2 — r)(1.732r )2
= (n/4)(6br * — 48r2r? — 7rf)

I A = (6br 7 + 7r?)/28

xBUNDLED/



And the moment of inertia for the single tube is:

Lsnare = T((3r)* = (3Br, - 1)%)/4
= (n/4)(77r * - 28r ?r? — 49r7)

| A= (77r 2+ 49r?)/28

xSINGLE/

Clearly, | ¢ c.e/A is greater than | ;. ../A. Since the radius
of gyration r = V(I/A), the single tube will also have a higher
value of r, meaning that the slenderness ratio, kL/r will be
smaller and therefore the allowable compressive stress
will be higher. So, when bundled tubes have the same
area as a single tube, the single tube will perform better in
compression.

If all tubes have the same thickness (t) wherer, =1 - t,
then the area and moment of inertia of the seven bundled

tubes remains the same:

Agunpiep = 712 = 1)
IXgunoLeo = (®/4)(B5r 4 — 48r 2r2 — 7rf)
|XBUNDLED/ABUNDLED = (55ro2 + 7ri2)/28

The single tube has an outer radius, 3r,, and thickness t. The

inner radius is 3r, — t = 2r_ + r, and the area of the single tube is:

Agnele = Tl(3r)? = (B, — 1)?) = nt(6r, - 1)

=m(r, —r)5r, +r)
And the moment of inertia for the single tube is:

Lsingie = ®Br)* = (3r, = 1)4)/4
= (n/4)(65r * — 32r °r — 24r r? — 8r r® —r?)
LsinaLePsingie = (1312 + 4r 1 + 12)/4

= (91r.2 + 28r 1 + 7r2)/28

In this case, the radius of gyration for the single tube is still
larger, but the area is smaller and so while the allowable
compressive stress will be larger for the single tube, the

allowable compressive loads would have to be compared on a

case by case basis.

For example, if designing in steel, when kL/r > 4.71(E/
Fy) the allowable compressive stress = oF . = (.877r?E/(kL)?)
(r?) = (.877w?E/(kL)?)(I/A) and the allowable compressive load
is OF 5(A) = (.877m2E/(kL)A(). | 5 noLeo 1S greater than Ixg, . ¢
whenever the r, > 0.4483r_ But if kL/r < 4.71\/(E/Fy), the
allowable compressive stress = ¢F ., = (.6587/)(F ) and the

equations become complicated and dependent on the kL and

Fy values of the problem.

STRUCTURAL PATTERNS

The point is, when observing natural phenomena,
it is important to observe, but equally important not to
imitate unless fully understanding why a system works.
Understanding why something works in nature allows the
designer to employ the strategy successfully. The idea of
bundled tubes was analyzed for compression, but what about
flexure? It is important to analyze a natural system for all of
the conditions under which it may be used. It is not the form
observed in nature, but how the form behaves that influences
structural thinking.

Biomimicry is a term coined by Janine Benyus in her book
Biomimicry: Innovation Inspired by Nature. Benyus goes
beyond observing structural systems found in nature to using
natural solutions to inspire innovation in design. For example,
shark denticles are a pattern of raised bony scales on the skin
of sharks that serve not only as a form of protection but also
provide hydrodynamic qualities. It is believed that the denticle
pattern allows the shark to move noiselessly through the
water. There have been studies of shark denticle patterns to
explore textural patterns on the hulls of ships. Imagine using
a shark denticle pattern on a metro train or metro station wall
to reduce the noise levels in metro stations. That would be an

example of biomimic design.

Practice Exercises:

11-1: For the perimeter in Figure 11.10, design a pattern of
support for the perimeter shapes below. Maximum beam

spacing is 8" and maximum spacing between columns is 24".

48'

72' |

11.10

Practice exercise 11-1
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11-2: For the perimeter in Figure 11.11, frame the outer shape 11-3: Create your own shape to enclose 14,000 — 16,000sf
with a maximum beam length of 30" and maximum beam within the limits of a 120" by 1507 site. Include in your enclosed
spacing of 10”. Frame the inner shape with a maximum beam area a 2000 — 4000sf atrium and frame around it. Maximum
length of 60" and a maximum beam spacing of 10", beam length = 40" and maximum beam spacing = 10"

()

|
%
|
|
|
|

60'

30’

| 30 1[ 30'

T

30' 30'

J -
i

11.11

Practice exercise 11-2
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Design Loads

Design loads are the forces used in the design of structural
components. The building code that governs in the location
of the project defines what design loads must be used.
Most building codes are based on the International Building
Code (IBC) although other codes do exist. States typically
adopt a building code based on the IBC and may include
modifications or more stringent requirements. The State of
Florida, for example, developed the 2004 Florida Building
Code with higher 3-second gust wind speeds than found in
the IBC. Local municipalities usually refer to a state building
code. However in some cases, local building codes may be
stricter than the state building code. Be certain to use the
code that applies to the site location.

Most design loads defined in the IBC are directly based
on the ASCE Minimum Design Loads for Buildings and Other
Structures (ASCE). The building program and site also play
a role in determining design loads as they affect importance
factors and exposure factors. The first step in determining
design loads is to identify the occupancy category in ASCE
Table 1-1. Note that Category Il is for building types not
covered in the other categories.

The occupancy category will determine the importance
factor for various load calculations.

Table 12.1 ASCE Table 1.5-1 Occupancy Category, recreated with
permission from ASCE

RISK
CATEGORY

NATURE OF OCCUPANCY

Structures that represent a low hazard to human life in
the event of failure

All Structures except those listed in Occupancy

Categories, |,

Il and 1V

Structures that represent a substantial hazard to
human life in the event of failure

Structures not included in Occupancy Category IV, with

potential to cause a substantial economic impact

and/or mass disruption of day—to—day civilian life in the

event of failure

Structures not included in Occupancy Category IV
containing sufficient quantities of toxic or explosive
substances that would be dangerous to the public if

released

Structures designated as essential facilities

Structures containing sufficient quantities of toxic or
explosive substances that would be dangerous to the
public if released

Structures that represent a substantial hazrd to the
community in the even of failure

Structures required to maintain the functionality of
other Risk Category IV structures.

Table 12.2: Importance factors

Occupancy | s for Snow waor Wind Iwi.or Wind |?f0|"
Category VioaHs with V = 85 withV > | Seismic
100mph 100mph Loads
I 0.8 0.87 0.77 1
1l 1 1 1 1
1] 1.1 1.15 1.15 1.25
IV 1.2 1.15 1.15 1.5
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There are three basic categories of design loads: live loads,
dead loads and lateral loads. Live and dead loads are loads
that will have a vertical impact on the design and lateral loads
are those that will have a horizontal impact on the design.

12.1 Live and Dead Loads

Live and dead loads are gravity loads because they are forces
induced by gravity on mass, in other words—weight. The
difference between live and dead loads is as follows:

12.1.1 Dead Loads

Dead loads are the weights of all the materials permanently
attached to the structure. They are considered dead loads
because they do not move or change. Calculating dead loads
requires an understanding of the structural system, facade,
partition walls and mechanical systems to be used as well as

an ability to estimate sizes of components not yet designed.
Many handbooks have simple material guides that will give the
density of common building materials. For specific materials,
manufacturer’s typically supply the density of a material or
weight of a unit. Be careful to convert all dead loads to the same
units whether pounds, pounds per foot, pounds per square foot,
or kips per square foot or kilograms per square meter, etc.

Example 12-1: Calculate the dead load on a series of
beams spaced at 8'o.c. if the beams carry a 4” concrete
slab made of normal weight concrete at 150pcf and 1”
wood flooring at 4psf.

D = 150pcf(4”/127)(8’) + 4psf(8’) = 432#

12.1.2 Live Loads

Live loads are all gravity loads not permanently attached to
the structure. Live loads include people, furnishings, movable
equipment, plantings and installations or displays. The IBC

is a source code for many local and state codes. The ASCE
Table 4-1 and IBC Table 1607.1 list the minimum design

live loads by occupancy type. It is important to remember
that codes list the minimum allowable live load, but not
necessarily the live load that should be considered in special

cases. The IBC live loads are listed in units of pounds per
square foot (psf) for most cases, although areas such as
elevator machine rooms may have a concentrated load listed.

Most buildings have more than one occupancy type to
consider and even within one occupancy type, there can be
multiple conditions listed in the ASCE Table 4-1. An office
building, for example, has an occupancy type: 25 — Office
Buildings, that states that lobbies and first floor corridors have
a minimum 100psf live load, while corridors above the first
floor have a minimum 80psf live load and offices have a 50psf
minimum live load. Further, a file room would be considered
light storage with a minimum 125psf live load, and stairs and
exits have a 100psf minimum live load.

12.1.3 Live Load Reduction

ASCE Chapter 4.8 states that if a member has a tributary area
of more than 400 square feet, the original live load (LLo) can
be reduced.

Effective LL:

LL = LLo(.25 + 15N(K A))

where K| is found in IBC Table 1607.9.1, shown here in
Table 12.3:

Limits: LL >0.5LLo
No LL reduction for Class A occupancy

No LL reduction for LLo > 100psf

Table 12.3: ASCE Table 4-2 Live load element factor, K|, with permission
from ASCE

ELEMENT

)
£

Interior columns

Exterior columns without cantilever slabs

Edge columns with cantilever slabs

Corner Columns with cantilever slabs

Edge Beams without cantilever slabs

NN WA

Interior beams

All other members not identified including: Edge
beams with cantilever slabs, Cantilever beams,
One-way Slabs, Two-way Slabs, Members
without provisions for continuous shear transfer
normal to their span. 1




Example 12-2: If LLo = 95psf and tributary area (A)) is
600sf, what is reduced live load on an interior column?

From Table 1607.9.1 we find K | = 4.

LL = LLo(.25 + 15/N(K_ A) = 95(.25 + 15/V(4)(600))
= 52.84psf

0.5LLo = 0.5(95psf) = 47.5psf < 52.84psf ... okay

LL = 52.84psf.
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12.1

ASCE 7-1 Snow loads in northeastern U.S. With permission from ASCE

DESIGN LOADS

12.2 Snow Loads

The procedure to find design snow loads can be found in
ASCE Chapter 7. The ASCE Figure 7-1 map, a section of
which is shown in Figure 12.1, gives minimum ground snow
loads (pg) in units of psf. The numbers in parentheses are
the upper elevation limits in feet. Beyond these elevations,
and where CS is shown on the map, specific case studies
are required to establish ground snow loads due to potential

extreme local variations.
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Because snow may drift and create uneven loads,
calculations will vary depending on the building design. But
for flat roofs, the snow load = § = 0.7C_C | p, where:

p, = ground snow load from ASCE Figure 7-1

C, = Exposure Factor from ASCE Table 7-2 where terrain
categories are defined as:

B: Urban, suburban and wooded (closely spaced large
obstructions)

C: Open spaces with scattered obstructions

D: Flat unobstructed spaces

Table 12.4: ASCE Table 7-2 Exposure factor, with permission from ASCE

EXPOSURE
OF ROOF

FULLY PARTIALLY
TERRAIN CATEGORY EXPOSED EXPOSED | SHELTERED
B 0.9 1.0 1.2
c 0.9 1.0 1.1
D 0.8 09 1
Above the treeline in windswept
mountainous areas 0.7 0.8 N/A
In Alaska, in areas where trees do not
exist within a 2-mile radius of the site 0.7 0.8 MN/A

C, = Thermal factor from ASCE Table 7-3

|, = Importance factor for snow from ASCE Table 7-4

Table 12.5: ASCE Table 7-3 Thermal factor, with permission from ASCE

THERMAL CONDITION C:

All structures except as indicated below 1

Structures kept just above freezing and others with
cold, ventilated roofs in which the thermal resistance
between the ventilated space and the heated space

exceeds R-25. 1.1

Unheated structures and structures intentionally kept

below freezing 1.2
Continuously heated greenhouses, with a roof having

a thermal resistance less than R-2 0.85

Example 12-3: Calculate the design snow load on a flat
roof of a hospital in Montpelier, Vermont.

p, =60psf, C,=0.9,C =101 =12

$=0.7C,C/lp, = 0.7(0.9)(1)(1.2)(60) = 45.36psf

12.3 Lateral Loads

Lateral loads are any loads exerting a lateral or horizontal
force on the structure. The most common lateral loads are
wind and seismic loads, but there are also other horizontal
forces that must be considered. For example, hydrostatic
pressure in the soil pushes horizontally against a retaining wall
or the weight of a pitched roof pushes outward against the
top of a bearing wall supporting it. This section will discuss
how to calculate wind and seismic loads.

12.3.1 Wind Loads

Follow the procedures in ASCE Chapter 27 for the calculation
of wind loads. There are many scenarios described and care
must be taken to use the correct diagrams and tables. The
basics of calculating wind design loads are listed below, but
are not inclusive of all wind load conditions.

1. Determine the Risk Category based on ASCE Table 1-5.1
shown in Table 12.1.

2. Determine the Design Wind Load Speed, V(mph) at the
site location. The maps in ASCE Figures 26.5-1A, Bor C
provide basic wind speeds for all areas of the U.S. by risk
categories. ASCE Figure 26.5-1A is for Risk Category II,

a section of which is shown in Figure 12.2. For projects
outside of the U.S., refer to local building codes.

3. The directionality factor for the Main Force Resisting
System in Buildings is K, = 0.85. For directionality factors
for other conditions, see ASCE Table 26.6-1.

4. Determine the Exposure Category in ASCE section
26.7.3. In general terms, the categories are as follows:

Category B: Urban and suburban buildings with a
mean roof height < 30"

Category C: All structures not covered in categories
Band D

Category D: Unobstructed (open) terrain structures

5. Determine Topography Factor K, using ASCE Table 26.8-
1. A topographic factor must be included when the
building is located on or near a hill, ridge or escarpment. If
the site does not meet the conditions described in ASCE
Section 26.8.1, the Topgraphic Factor, K,, = 1.
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115(51)

120(54
130(58)

140(63)

140(63)

12.2
Excerpt from ASCE Table 26.5-1A: Basic wind speeds for Risk Category II buildings and other structures. With permission from ASCE

6. The Gust-Effect Factor for a rigid building or other 8. Determine the values of K, and K_ for each level using
structure is G = 0.85. Low-rise buildings (buildings ASCE Table 27.3-1 as shown in Figure 12.7. K, is the
under 100" in height) are considered rigid. For high-rise coefficient at the mean roof height. K_ is the coefficient
buildings, follow ASCE Section 26.9 to determine rigidity at heights where lateral loads can be transferred
and the value for G. through structure. For values of height not listed, linear

7. This text discusses wind load calculations for enclosed interpolation is allowed.

buildings only. See ASCE Sections 26.2 and 26.10 for
definitions of enclosure. For enclosed buildings,
GC_.=-0.18

pi
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Table 12.6: ASCE Table 27.3-1 Velocity pressure exposure coefficients K, 12. Wind load is equal to the design wind pressure multiplied
and K , with permission from ASCE by the tributary area, a. P = pA.
HEIGHT EXPOSURE Example 12-4: Find the wind loads for column line 2 if the
ABOVE fully enclosed rigid structure in Pittsburg, PA, shown in
GROUND Figure 12.3 resists wind with column lines 1, 2, 3 and 4.
LEVEL, 2 U) B G D Use Exposure Category B. The building is an office building
0-15 0.57 0.85 1.03 ' '
20 0.62 0.90 1.08 , , ,
25 0.66 | 0.4 1.12 R —— i =
30 0.70 0.98 1.16 @
40 0.76 1.04 1.22 -
50 0.81 1.09 1.27 A
60 0.85 1.13 1.31
70 0.89 1.17 1.34 \T
80 0.93 1.21 1.38
90 0.96 1.24 1.40 ©
100 0.99 1.26 1.43
9. The velocity pressure g, at any given height is: ©\TI 1 | T | T |
g, = 0.00256K K K V? = 0.00256K (1)(0.85)V? @ : ® : ® : @
10. From ASCE Figure 27.4-1, C, = 0.8 for windward walls 4' 13, 28’ , 26 L 11'4'
and C, = 0.7 for side walls. For leeward walls, the value | I I I |
depends on the ratio of L/B where L is the length of the Plan
building parallel to the wind direction and B is the width
of the building perpendicular to the wind direction. See ) o5 ) o6 )
ASCE Figure 27.4-1 for roof values. —65‘—/' 7 1
7.5
Table 12.7: C_values for walls b Sl
' 15" 5o
Surface L/B Cp Use with 4]
Windward | All values 0.8 qz 15| 35—
0-1 -0.5
Leeward 2 -0.3 ah _. - _ ]
ol 02 17.5| 20'—
Side Wall | All Values -0.7 ah ~No -
11. Design wind pressure = p = qGC_ - q.GC_ where:
g p p=09GC, - qGC, ® ©
g = g, at each level as found in step 9 Section at Column Line 2
12.3

G = 0.85 for rigid buildings or value found in step 6

Example 12-5 structure

C_= 0.8 for windward walls of value found in step 10 ) ]
. 1. From Figure 12.1, Risk Category II.

g, = q, for enclosed buildings 2. From Figure 12.6, V = 115mph
3. K,=0.85

GC, = -0.18 from step 7. 4. Exposure Category B: (given)

pi



K, =1

G=0.85

GC,=-0.18

. Determine the values of K, and K, for each level using
Table 12.6:

K, is atz =65

© N o o

Interpolate between K, = 0.85 @ 60" and K, = 0.89 @ 70’
Use ratios: (.89 - .85)/(70 - 60) = (K, — .85)/(65 - 60) ...
K, =0.87
The same method is used to find Kz at each level resisting
wind loads.

@z=50"K =0.81
@z=35"K,=(76 - .70)(35 - 30)/(40 - 30) + .70 = 0.73
@z=20"K,=0.62
At this point it is helpful to create a table as shown at the
end of the example.
9. The velocity pressure g, at any given height is: g,
= 0.00256K K K V2 =0.00256K (1)(0.85)(115)? = 28.78K,
10. From ASCE Figure 27.4-1, Cp = 0.8 for windward walls
11. Design wind pressure = p = qGCp - inCp‘. =q,(.85)(.8) +
q,(.18) = .68q, + 4.51
12. Wind load is equal to the design wind pressure multiplied
by the tributary area, a. P = pA
For Column Line 2, the tributary width = (26" + 30")/2
=28’
@ z = 65" tributary height = 7.5 ... A = 28(7.5) = 210sf
@ z = 50" tributary height = 15.0 ... A = 28’(15.0")

DESIGN LOADS

]
\
\
\

Wind loads on Example 12-4 structure

12.3.2 Seismic Loads

Seismic loads are caused by the horizontal shear force
induced on buildings by earthquakes. Seismic Design Loads
are covered in Chapters 11 through 23 of the ASCE. The
basics for determining seismic loads using the Equivalent
Lateral Force Procedure are covered below and through
Example 12-5.

V = C W = seismic base shear

W = effective seismic weight = total dead load f floors and
walls plus weights specified in ASCE Section 12.7.2.

C, = S,¢/IR/I.] = the seismic response coefficient

R = the Response Modification Factor found in ASCE
Table 12.2-1, a small portion of which is shown in Table 12.9.

= 420sf
@ z = 35"; tributary height = 15.0 ... A = 287(15.0") Table 12.9: Sample of ASCE Table 12.2-1, with permission from ASCE
= 420sf ey =
Response Modification Coefficient,
.o . , , Category and System
@ z = 20’ tributary height = 17.5 ... A = 28’(17.5") = 490sf R
A. Bearing Walls
SOLUTION:
QOrdinary reinforced concrete shear walls 4
Table 12.8: Wind load spreadsheet Ordinary reinforced masonry shear walls 2
= Light-framed walls sheathed with wood panels
Height (f) Kz 9z= [p=.68qz+ A(@) P(kips) rated for shear resistance or steel sheets. as
28.78Kz | 4.51(psf) e -
65 0.87 25.04 21.54 210 4.52 , Ml WA L
Steel eccentrically braced frames, non-moment
50 0.81 23.31 20.36 420 8.55 resisting connections at columns away from 7
35 0.73 21.01 18.8 420 7.9 links
20 0.62 17.84 16.64 490 8.15 Ordinary steel concentrically braced frames 3.25
Ordinary reinforced concrete shear walls g
C. Moment-Resisting Frame Systems
Ordinary Steel Moment frames 3.5
Ordinary Reinforced concrete moment frames 3
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|, = Importance factor for earthquakes based on Building Risk
Category (Table 12.10).

Table 12.10: Importance factor for seismic loads, with permission from

ASCE
Risk |
Category e
| 1
Il 1
1] 1.26
1\ 1.3

Sos = (2/3)(F)(S,)

S, = mapped spectral response acceleration for short periods
from ASCE Figure 22-1, a portion of which is shown in

Figure 12.5.

F, = site coefficient from ASCE Table 11.4-1, summarized as
in Table 12.11:

Table 12.11: Site coefficient, F, from ASCE Table 11.4-1, with permission

from ASCE
Site Class | Ss <025 | Ss=05 | Ss=0.75| Ss=1.0 | Ss>1.25

A 0.8 0.8 0.8 0.8 0.8

B 1 1 1 1 1

C 1.2 1.2 1.1 1 1

D 1.6 1.4 1.2 11 1

E 25 1.7 1.2 0.9 0.9

F See ASCE section 11.4.7

Spy = (2/3)(F )(S)

S, = mapped spectral response acceleration for a 1-sec
period from ASCE Figure 22-2, a portion of which is shown in
Figure 12.6.

F, = site coefficient from ASCE Table 11.4-2, summarized as
in Table 12.12:

Table 12.12: Site coefficient F, from ASCE Table 11.4-2, with permission

from ASCE
Site Class | S1d0.1 S1=02 | S1=03 S1=04 S1e0.5

A 0.8 0.8 0.8 0.8 0.8

B 1 1 1 1 1

C 1.7 1.6 1.5 14 1.3

D 24 2 1.8 1.8 i)

E 3.5 3.2 28 24 24

F See ASCE section 11.4.7

DESIGN LOADS

Example 12-5: Determine the seismic loads for column
line 2 of the building in Figure 12.3.

The site has very dense soil. The dead loads are 80psf for
floors and 15psf for walls. The structure is a steel braced
frame with pinned connections. Assume Risk Category IV.

1. Using ASCE Table 20.3-1 or IBC Table 1613.5.2,
determine the Site Class. The site classifications are as
follows:

Site Class A: Hard rock

Site Class B: Rock

Site Class C: Very dense soil and soft rock

Site Class D: Stiff soil

Site Class E: Soft clay soil

Site Class F: Soils requiring site response analysis
If unsure of site conditions, use Site Class D. For
this example, very dense soil is Class C.

2. Find the mapped spectral acceleration for short period
(0.2sec) (Ss) from Figure 12.5. The values on the map
are shown as percentages. For calculations, Ss is used in
decimal form. Therefore the map value for Pittsburgh of
15% means that Sg = 0.16.

3. Find the mapped spectral acceleration for 1-sec period
(S,) from Figure 12.6. S, = .05.

4. Find the site coefficient (F ) from Table 12.10. For Site
Class Cand S, < 0.25, F, = 1.2.

5. Find the site coefficient (F ) from Table 12.11. For Site
ClassCand S, < 0.1, F,=1.7.

6. Calculate Sygand S

Sue = (2/3)(F.)(S,) = (2/3)(1.2)(0.15) = 0.12
Spy = (2/3)(F)(S,) = (2/3)(1.7)(.08) = 0.057

7. Find the Response Modification Factor from ASCE
Table 12.2-1. For Case B-2, steel braced frames with
non-moment-resisting connections, R = 7. Some sample
values for R factors are given below. Note that there are
limitations for buildings in Seismic Design Categories
B, C, D, E and F. See ASCE sections 11.6 and 11.7 to
determine the Seismic Design Category before choosing
a value for R. In this example, the structure is in category
Abecause S ¢ = 0.12 < 0.167 and the requirements of
section 11.6 are met.

8. From Table 12.10, I, = 1.5.
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9. Find the coefficient for the upper limit on calculated
period (C) in ASCE Table 12.8-1 shown in Table 12.14.
C,=17when S, <0.1.

Table 12.13: Sample Seismic Response Modification Factors from ASCE
Table 4-2. With permission from ASCE

DESIGN LOADS

= W_h //(3078202)
V= CW = .011(1875.9) = 20.635

F = C, (V) = lateral force in kips.

VX

Table 12.14: Seismic load spreadsheet

Spq Cuy Structure type C, X
204 | 14 Steel Moment Frame 0.028 0.8 h Wy h? Wyh? Cyy v Fx
0.3 14 Concrete Moment Frame 0.016 0.9 65 353.73 4095 1494509 0.486 20.635 10.03
0.2 1.5 Steel eccentrically braced frame 0.03 0.75
015 | 16 |Steel buckling-restrained braced fra__ 0.03| __ 0.75 50 36288 | 2500 | So74s0 | 0311 ] 20655 b4z
<01 1.7 All other systems 0.02 0.75 35 382.98 1225 469151 0.152 20.635 3.14
20 392.73 400 157092 0.051 20.635 1.05
10. Find C; and X from ASCE Table 12.8-2. C; = .03 and 0 363.48 0 0 0 20.635 0

X =0.75 for eccentrically braced steel frames.
11. h, = height in feet to highest point of building = 65

T, =(C))(h ) = (.03)(65°7%) = 0.687 = approximate

a T
fundamental period.

12. T = (C )T, = the structure period (inverse of frequency of

oscillation).
T=1.7(.687)=1.168

13. Cg = Syq(I/R = 0.12 (1.5)/7 = 0.0257

14. Cg,n = 0.01 < Cs = 0.021 ... okay
15. Cqpuax = Sp/(T(R/1D) = .057/[1.168(7)/1.5] = .011
16. C¢ = .011
17. K = an exponent related to the structure period
=1ifT<05
=2ifT>25

If0.5 < T > 2.5, you may use 2 or interpolate between 1
and2...K=2
18. Make a spreadsheet where:
W_= total weight of building at given level
=W__ +W

walls floor

At each level, the weight of the floor = 80psf(52’)(78’)

= 324,480# = 324.48k

At each level the weight of the walls = 15psf(2(78 + 52))
(tributary height) = 3.9k/f(h,)

@z=65"W,_, =39k/f(7.5) = 29.25k ... W_= 35373k
@z=50" W, =3.9k/f(15.0") = 68.5k ... W_=382.98k
@z=35"W,, =39k/f(16.0") = 58.5k ... W,_=382.98k
@z=20"W,,, =3.9k/f(17.5) = 68.25k ... W, = 392.73k
@z=0"W,,, =3.9k/f(10.0) = 39.0k ... W, = 363.48k

W = total weight of building(dead loads) = 1875.9k

C,, = vertical distribution factor = W h ¥/(Zwh*)

12.4 Factored Loads

The LRFD (Load Resistance Factor Design) Method uses
load factors to create an ultimate or factored load that is
the design load. It also uses Resistance Factors (¢) which
are discussed in chapters related to design with specific

materials.

Ultimate or design loads are based on the following types

of loads.

U = The design or ultimate load = factored load
W, = factored uniform load

P, = factored concentrated load

D = dead load

L = live load

Lr = roof live load

S = snow load

R = rainwater/ice load, (not ponding)

W = wind load

E = earthquake load

All loads are placed into one of these categories and factored
using the six equations below. The largest result from the six

equations is used as the design load.

1. U=14D
2. U=12D+16L+05(LrorSorR)
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U=12D+1.6(Lror SorR) + (L or 0.8W)
U=1.2D+ 1.6W + 0.5L + 0.5(Lr or Sor R)
U=12D+E+L+0.2S

U=0.9D = (1.6W or E)

o oA~ W

Example 12-6: Beams weighing 22#f spaced 8’ on center,
support a 50psf dead load, 1507 live load and a 20#*
seismic load.

Find W :
D = 50psi(8") + 22#1 = 422#1
L = 150°s%(8’) = 1200#
E = 20"

= 1.4(422) = 590.8""

=1.2(422) + 1.6(1200) + 0.5(0) = 2426.4*"
=1.2(422) + 1.6(0) + (1200 OR 0) = 1706.4*"
=1.2(422)
=1.2(

c

422) + 1.6(0) + 0.5(1200) + 0.5(0) = 1106.4#
422) + 20*" + 1200 + 0.2(0) = 1726.4*" &

a oA w N =
Eéééé

1686 441f
W, =0.9(422) + (1.6(0) OR 20) = 399.8% & 359.8*
W, = 2426.4*" (highest governs)

o

Practice Exercises:

12-1: If LLo = 80psf and tributary area (A,) is 750, what is

reduced live load on a corner column with a cantilevered slab?

12-2: Calculate the design snow load on a flat roof of an office
building in Denver, Colorado.

12-3: Find the wind loads for Column Line 2 if the fully
enclosed structure in Melbourne, Florida, shown in

Figure 12.7 resists wind with column lines 1, 2, and 3. Use
Exposure Category D and Occupancy Category lll.

12-4: Determine the seismic loads for column line 2 of the
building in Figure 12.17. The site has very dense soil. The
dead loads are 100psf for floors and 50psf for walls. The

structure is a reinforced concrete moment frame.

88—

74—

60—

46—

32—

18—

@

30'

Section at Column Line

30'

©

30'

30'

30'

@

12.7

Plan

Chapter 12 Practice exercises
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Horizontal Framing Systems

Horizontal framing systems are required to carry floor loads
and usually to carry roof loads. The main idea of a horizontal
framing system is to transfer all floor or roof loads as well
as any lateral loads to the vertical support system. To do
this, structural bays in orthogonal, radial or other patterns as
discussed in Chapter 11 are employed to suit the individual
project. The structural materials will define the limitations of
the horizontal framing system.

Horizontal spanning systems consist of a deck that
supports the floor or roof load and spans between and is
supported by beams or joists. The deck not only distributes
the loads to the beams, but provides a continuous stiff
medium that enables the horizontal spanning systems to
act as a horizontal diaphragm, meaning it acts as one rigid
body. Decking material ranges can be any material capable of
transferring the floor or roof loads to the beams or joists.

The beams and/or joists transfer the loads from the deck
to either carrier beams or girders or directly to a vertical
support system. Beam spacing is dependent on the allowable
span of the deck. While some beams or joists may frame into
the walls or columns of the vertical support system, many
will frame into carrier beams or girders.

Most horizontal spanning systems employ an orthogonal
grid pattern that allows for efficient use of materials and ease
of connections. However, this is not required. As discussed
in Chapter 11, grids can also be radial, complex or organic in
form.

13.1 Typical Steel Framing
Systems

Components of a horizontal steel framing system include

the decking material, steel beams or joists, and the angles,
plates and bolts used for connections. The design of steel
components is covered in Chapters 21 through 24. Horizontal
framing systems in steel may also take the form of a space
frame or space truss as discussed in Chapter 15.

13.1.1 Decking in Steel Framing
Systems

Decking can be comprised of almost any material that will
support and safely transfer the floor or roof loads to the
joists or beams. In steel framing, the decking material is
most commonly steel deck, although grating is often used
for catwalks and mezzanines in industrial applications. Other
choices for decking on steel framing systems include precast
concrete slabs and in some cases wood planking.

Steel deck is often covered with a concrete slab. In
composite decking, the concrete and metal deck work
together to support the loads. The concrete handles the
compression forces and the steel deck handles the tension
forces. In order for this to happen the deck must be bonded
to the concrete through the cross-sectional pattern of the
deck and also through the use of steel shear studs welded to
the top of the metal deck.
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In non-composite or form decking, the metal deck is simply a
form that supports the concrete when it is placed and until it
cures. The concrete carries the entire floor or roof load.

Steel deck is selected by reviewing manufacturers’
catalogs. Consider the proximity of the manufacturer’s facility
to the job site; closer is better because less energy will be
used for transportation. Consider the recycled content in
the steel by observing the total scrap steel, post-consumer
recycled content and pre-consumers recycled content of each
facility.

13.1
Steel decks

13.1.2 Steel Joists and Beams

The deck is supported by a series of joists, beams or bearing
walls. Most steel beams are wide flange beams (W-shapes).
W shapes have callout names based on depth and weight. For
example, a W14 x 22 will have an approximate depth of 14” and
a weight of 22#f, M- and S-shapes are other I-beam shapes
that may be used. Steel I-beam shapes are most efficient when
spanning distances between 20" and 40”. For lighter loads and
shorter spans, channel sections (C-shapes), hollow structural
sections (HSS-shapes) or angles (L-shapes) may be used.

13.2

Steel beams



Castellated beams are beams with a perforated web with
holes usually in a series of circles or hexagons. They are
constructed by combining the top half of one W-shape

with the bottom half of another W-shape so that the beam
becomes highly efficient. The top half is designed for
compression and the bottom for tension. If a castellated
beam is used in a scenario involving an overhang, the beam
must be checked for compression in the bottom section near
the overhang support. Castellated beams are used when it
is desired that the openings in the web accommmodate ducts,
pipes or conduit or when it is necessary to reduce weight.

-HOT0G-
_Zz><_>é_>€>€_

13.3

Castellated beams

Open-web joists (OWJ) are another spanning option for
steel framing systems. OWJ consist of a top and bottom
flange usually made of double angles with bar struts placed
in a truss configuration forming the web. OWJ are most
efficient when used in spans over 30”. The open web not only
provides an economical solution, but allows space for ducts,
pipes or conduit to pass through the web.

There are three classes of OWJ with depths and spans
as shown in Table 13.1. Design may vary by manufacturer,
making it important to consider manufacturers close to the
site before designing and calling out an OWJ component.

HORIZONTAL FRAMING SYSTEMS

Table 13.1: Classes of open-web joists

Series depth span
K SSL?FaI;:?;r“EZ:% loads Lo
e
DLH | gace and ong spans 272 (120" toony

OWJs must be braced laterally using horizontal or diagonal
bracing to prevent displacement that could cause torsion in the
joist. Further, OWJs must be bridged to prevent lateral sway.

VAV

Open-web joists

S

I
13.4

Rules of thumb for preliminary planning of steel framing
systems are as follows where L = span in feet and d = depth

in inches:

Steel form deck: d = L/35, L =12’

X

Steel Composite deck and roof deck:
d=L/35,L__ =15

X

Steel I-beams: d = L/20

Steel carrier beams or girders: d = L/15

13.2 Concrete Framing
Systems

Concrete framing systems consist of steel-reinforced
concrete components that are either cast in place or
precast. The design of concrete components is covered in
Chapters 25 through 33. Concrete systems can be designed
to any shape for which a form can be fabricated. However,
because concrete is heavy, weighing about 150pcf, concrete
design should strive for efficiency of material.
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13.2.1 Slabs

Concrete slabs can have either a uniform, tapered or ribbed
cross-section depending on the span and loads carried. The
most common type of slab is one with a uniform depth. A
rule of thumb for slab depth is d = L/20, although slabs may
be designed to be much thinner by calculating deflection,
allowing the slab to be continuous over multiple spans or by
employing pre-stressing methods. Thinner slabs can also
be achieved by using a high-strength or ultra-high strength

concrete.

13.2.2 Concrete Beams and T-beams

Concrete beams are typically rectangular in cross-section,
but this is not a requirement. The shape of the cross-section
is dependent only on its ability to carry the load over its span

and the ability to create formwork to support it while it cures.

The depth of a concrete beam is dependent on the span and
loads carried as well as the amount of steel reinforcement
and strength of the concrete mix. A rule of thumb for the
ratio of the width (b) to the effective depth (d) of a concrete

beam is 1.5 < d/b < 2.2. If shallower, the beam will begin to
behave like a slab and if deeper, the beam will need additional
reinforcement along the sides.

13.3 Wood Framing Systems

There are two basic methods for framing in wood: Western
Framing and Post and Beam Framing, both of which are
discussed in Chapter 15 “Structural Typology.” The difference
between the two in horizontal framing systems is as follows.
Western Framing Systems use closely spaced wood joists
with a plywood or thin plank deck while post and beam
systems use timber beams with a thicker plank deck.

13.3.1 Wood Deck

For Western Framing Systems, plywood decking is used as
the subfloor and then topped with a finished floor product.
The thickness of plywood is typically %” to 1” depending on
the span and the grade of plywood used. OSB, particleboard
and other non-veneer construction products may be used if
rated for use by the manufacturer.
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Plate slab - Two-way beamed slab - One-way beamed slab -

Typical spans to 20'.
prestressed.

Slab spans in two directions.

Slab thickened around columns to

prevent punching shear.

near square bays.
Rule of thumb for slab depth =

span/30.
span /30.

Typical spans up to 30' or more if

Slab spans in two directions.
Best suited for square or

Rule of thumb for slab depth =

Typical spans 8' to 12', but may be
longer.

Slab spans in short direction.

Rule of thumb for slab depth = 13.5
span/20. Concrete
beam and

slab systems
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Joist Slab -

Typical joist spans 15' to 36'.
Joist dimensions are dependent on length and
loads.

Waffle Slab -
Typical spans 24' to 48'.

Coffer depth dependent on span and load.

Typical coffer spacing is 2'to 5' o.c.

Joists are supported by beams which may or may
not be the same depth.

A distribution rib is usually placed at joist midspan.
Typical joist spacing is 20" to 30" o.c.

Rule of Thumb for overall depth = span/20 + 30"

Diagonal sheathing may be used in Western Framing
Systems. Diagonal sheathing consists of a thin plank board Z”
or greater spanning between joists and used as a subfloor. To
ensure the sheathing acts as one unit, it is recommended that
the boards have a ship-lap or tongue and groove connection.

Decking consists of planks placed either diagonally or
perpendicular to the span of the beam or joist. Decking planks
are typically 1.5” thick or greater to span 4’ to 8” with tongue
and groove connections between planks.

Outdoor decking consists of 2x dimensional lumber
spaced to leave a small gap between the boards for drainage.
The span of the decking depends on the ability of a single
board to carry the entire weight of a person who might step
on a single board. This means that the span between deck
joists is much smaller than when the decking is made of
plywood or tongue and groove planks of the same thickness.

Coffers omitted around columns to prevent

punching shear.

Rule of thumb for overall depth = span/30 + 3".

13.3.2 Wood Joists and Beams

Wood joists and timber beams typically have standard-sized,
rectangular cross-sections for economy. But wood is easily
shaped and so custom sizes and non-prismatic members are
sometimes used to convey a style or design concept. Sizes
of wood joist and timber beams are dependent on the loads,
spans, species of wood and factors such as water content,
termite protection and heat. See Chapters 16 through 18 for
design of wood beams.

Wood framing systems may also employ glue-laminated
beams. Glue-laminated beams are manufactured by gluing
thin layers of wood together to form a particular size and
shape. Laminations may be vertical or horizontal, and
horizontal laminations may employ cross-laminating, a

process of alternating laminations at 90 degree angles to
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Built-up wood beams

Wood I-joist x

Western framing systems Western Framing - joists supported by stud walls



create a stronger beam. Glue-laminated beams are costlier
than sawn lumber, but are capable of longer spans.

13.3.3 Wood Built-up Members,
I-beams and Trusses

Wood joists and beams may have cross-sections built up
from sawn lumber or fabricated wood materials such as OSB
or a combination of both. Typical built-up members include
box beams, I-beams and trusses as shown in Figure 13.7.

13.4 Bay Framing

A bay is an area with a perimeter defined by a set of

vertical support components, typically four columns. Often
there are openings with a bay due to vertical shafts for
stairwells, elevators, or MEP services. These openings cause
discontinuity in the transfer of loads from deck to beams
except in cases where the opening is very small or the deck
can handle an overhang or cantilever.

To frame a bay, begin at the perimeter and frame between
the columns. Decide in what direction the deck spans and
evenly space beams to span perpendicular to the deck span.
Consider the typical spacing and spans for the material to be
used. See Table 13.2 as a starting point.

AT
e

X

Post and Beam - beams supported by braced columns

HORIZONTAL FRAMING SYSTEMS

Table 13.2: Typical spacing and spans

Horizontal Spanning Member Rule of thumb for depth

Dimensional Lumber

Typical Span Range

5/4 Wood decking - 2'-4
Solid wood Joist Li16 8-14'
Box beam L18 20'- 60"
| joist L8 15 - 60"
Joist truss L18 15'- 60"
Timber
Timber Beam L/15 a8-20
Timber truss - 20'- 60"
Glue laminated wood
PSL Li20 10'- 45
LVL L/20 10" - 45'
Glu-lams Li20 20' - 90'
Steel
Steel Deck - 2-12'
Light-gaguge steel joists Li20 8'-30"
W- shapes L20 20" - 40'
Deep W-Shapes L5 40' - BO'
Castellated beams Li24 40" - 80
OowJ Li24 20'- 144"
Concrete

Rectangular beam Li16 12'-48'
T-beams L/20 20"- 80"
Doubly reinforced beams Li20 20" - 50"
Pre-stressed beams L20 20'-
Solid one-way slabs Li2g 8'-18'
Solid two-way slabs L/45 15 - 40°
Waffle Slabs Li24 20' - 50
Joist Slabs Li24 20" - 40"
Precast Hollow Core Slabs L/40 12'-24'

Where openings exist, place a beam along each side of the
opening not already framed by a beam and choose the order
of the load transfer.

For example, in Figure 13.10 (a) the deck spans E-W and
the beams span N-S to create four spans. The opening is
10”’x 20" and so the beam on the right is truncated before it

13.9

Post and beam systems
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penetrates the stairwell. A header beam is placed supported 7. Provide additional beams to support the deck. Beams
by the center beam and the beam along the column line. The cannot be spaced farther apart than the maximum span
N-S edge of the opening is framed, supported by the header of the deck.

beam and a girder. 8. Frame around all openings.

In Figure 13.10 (b) the deck spans N-S and the beams

Example 13-1: Create a framing plan for the perimeter
span E-W. Two beams must be truncated before before

defined in Figure 13.11 (a) if using structural steel with a

enetrating the stairwell. A header beam is placed spannin . . .
P 9 P P 9 maximum beam spacing of 10’ and a maximum column

N-S and the E-W edge of the opening is framed, supported spacing of 40"
by the header beam and the girder.

Include an atrium of approximately 5000ft? and an 8’ x 20’

stairwell at each end of the building.

13.5 Framing Process
1. Draw column lines in one direction. Do not exceed

. maximum column spacing. Try to:
The process to frame a roof or floor is as follows: P 9.1y

. . . | lumn lines near corners of th ildin
1. Define the perimeter. a. place colu es near corners of the building

. . b. evenly space column lines for economy or create a
2. Locate stairwells, elevator shafts, ventilation shafts and

L attern of space for a design concept
any other large perforation in the floor or roof. p ; P ) g P

. c. if stairwells or other vertical shafts fall on a column
3. Locate multilevel spaces

. . . line, adjust shaft location if possible. If not, adjust
4. Define circulation patterns and other areas where ) P )

) column lines or plan to frame around the opening.
columns should be avoided. P P g

) . Create column lines in the perpendicular direction.
5. Create the pattern of support using columns or bearing

Frame each bay.
walls. Columns cannot be spaced farther apart than the 4 .
: Frame around openings.
maximum span of the beams.

ok~ DN

6. Frame between vertical supports. Do not place framing Add beams to support decking. See Figure 13.11 (b).

) . Possible solutions are shown in Figures 13.11 (c, d, e and f).
members through vertical shafts such as stairwells or

elevator shafts.

4 i 5 o

T T~ i
13.10
Bay framing (a) E-W deck span (b) N-S deck span

T
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Practice Exercises: @
32'

A ] ) gl
13-1 through 13-3. Frame the bay shown if the maximum @ k! . T ° T
deck span is a) 8ft and b) 10ft. i i
c .
13-4: Frame a structural floor plan that lies within a 96" by '
144’ rectangle. IR
50
The plan must include:
1. atleast 11,000sf of enclosed space (including the atrium K . .
and stairwells listed below); ‘ ‘
2. one atrium space between 800 and 1200sf, located ‘ ‘
anywhere you choose; @ i
3. two 8"x 20’ stairwells along the perimeter and spaced at ‘ ‘
opposite ends of the building; 13.12
maximum slab span = 12’ = maximum beam spacing; Chapter 13 Practice exercises

5. maximum beam span = 40" = maximum column spacing.
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Lateral Bracing Systems

There are three basic methods to resist lateral loads. Trusses,
trussed tubes and braced frames with diagonal tension
counters, all rely on diagonal bracing to resist lateral loads.
Moment frames rely on rigid connections to resist lateral
loads. Shear walls, whether made of reinforced concrete,
masonry or sheathed stud walls, rely on the stiffness of the
wall to resist lateral loads.

When resisting lateral loads, whether wind or seismic, it is
important to maintain a balance of resistance throughout the
structural system. Otherwise, the building will be subjected
to torsion as one portion resists a lateral motion while another
is free to deflect.

14.1 Braced Frames

This section explains the Diagonal Truss Method for
determining the loads on components due to lateral loads
when using diagonal tension bracing. Note that while the
diagrams only show the active diagonal tension braces, there
are in fact diagonal tension braces in both directions. Because
diagonal tension braced systems become indeterminate
when using multiple bays and multiple levels, the following
assumption must be made.

The Diagonal Truss Method assumes each diagonal on any
given level equally resists the sum of horizontal forces above

Moment Frame - Braced Frame -

transfers loads to the ground
through rigid connections

14.1

Three basic types of lateral resistance

transfers loads to the ground
through a series of braces

Shear Wall -

transfers loads to the ground
through the bulk of the
material
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Balanced lateral resistance systems eliminate torsion about the center of gravity of the building mass.

SM SM
= 2.5P-1.5P =2.5P-2.5pP SM
-p -0 =2.5P-2.5P
X ~ =0
/0\ o RS} @\\ K f;aw

J/ P Q P (é\"\¥ SM B >D
SM N—SM =0.5P (@\L SM 4[/;@

=2P-P =05 =0.5P

)

P p p P ) P p p P

Unbalanced lateral resistance systems create torsion about the center of gravity of the building mass.
14.2

Balance in later resistance systems

that level. Once this assumption is made, the axial loads in In the top row the total force to be resisted is 3.2k. Each
the system can be solved by summing forces in the x and y diagonal will resist 3.2k/2 = 1.6k. In the bottom row, each
directions. diagonal will resist (3.2k + 7.2k)/2 = 5.2k.
Example 14-1: Find the additional loads in each member . 20' . 16' '
due to the lateral loads shown. 3201
. 20' . 16' . 1.6 1.6
© 1.28 1.6
— 1.28 1.6
3.2k 1.6 1.6
7.2k
©
i 5.2 5.2
o 5.2 6.5
72k « 5.2 6.5
5.2 5.2
o I
(aV]
14.4
Diagonal Truss Method assumes each bar in a row resists lateral loads
i with equal force
14.3

Diagonal Truss Method



Because the forces are axial in every member, the vertical
component in the diagonal can be found using the ratio of
rise/run: rise/run = f /f ; or f = f (rise/run).

Top left: f = 1.6(16)/20 = 1.28
Top right: f = 1.6(16)/16 = 1.6
Bottom left: fy =5.2(20)/20 =5.2

Bottom right: f, = 5.2(20)/16 = 6.5

The forces at the other end of each bar are equal and
opposite.
Sum forces at each joint to find the additional loads in the

beams and columns.
A:ZFX=O=3.2+X..X=—3.2and2Fy=O=y...y=O

BZF =0=32-16+x...x=-16and
ZFV=O= -1.28+vy..y=1.28

C:2F, =0=16-16+x...x=0... okay and
ZFV:O:—1.6+y...y:1.6

D:ZF =0=72+16+x...x=-8.8and
ZFy:O: 1.28+vy...y=-1.28

E:XF, =0=-52+88+16+x..x=-b2and
ZFV=O= -52-128+16+y..y=4.88

F-ZF =0=-52+52+x..x=0... okay and
ZFV:O:—6.5—1.6+y...y:8.1

G:XF,=0=52+R, ..R =-52and

ZFyz 0=128+5.2+ Ry... sz -6.48
H:XF, =0=52+R .. R =-52and

ZFy=O=6.5—4.88+ Ry... Ryz -1.62
I:ZFV=0=8.1 + Rv Ry: -8.1

It is always a good idea to check the sum of all external
horizontal forces.

LATERAL BRACING SYSTEMS

20' . 16’

L

16'

L

20'

6.48 1.62 8.1
14.5

Horizontal and vertical bar forces

):Fy =0=-6.48-162+8.1=0... okay

2F =0=32k+72k-52k-5.2k=0... okay
Likewise, the moment about any point should equal zero.

XM, = 3.2(36) + 7.2(20) + 1.62(20) - 8.1(36) = 0

IM, =3.2(16) — 6.48(20) — 8.1(16) + 5.2(20) + 5.2(20) = 0
Calculate the tension in the diagonals:

Ty = V(1.6 + 1.28%) = 2.05

T =V(1.67 + 1.62) = 2.26

Teo = V(5.22 +5.22) = 7.35

T, =V(5.22 + 6.5) = 8.32

Note: there are two diagonals in each bay, but only one is
active at any given time because the bracing is designed for
tension alone. Only one brace is shown for analysis because
the force is assumed from one direction. If the lateral loads
are reversed, the diagonals shown with dashes in Figure
14.6(a) would be inactive and the following beam and column
values can be found using the active tension braces. If only
one set of diagonals is preferred, the diagonals will need to
be designed for the compression forces created by reversed
lateral loads as shown in Figure 14.6(b).

m
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3.2k

7.2k

14.6

Reversed lateral loads (a) tensions braces (b) compression braces

The absolute value of the largest loads from both scenarios
must be added to the beams and columns. Knowing the
tension in the diagonals allows them to be designed.

Assume F, = 30ksi. Since F, = P/A, using maximum
tension to size all rods the same, A > 8.32k/30ksi = 0.28in?.
And since A = .28 < rtd?/4, d > 0.60”. Rounding up to the
next %” yields a g” diameter rod. Other structural shapes that
could be used include:

L1-1/4x1-1/4x3/16, A = 0.43
OrC3x3.5,A=1.09

Or HSS2x1x1/8, A =0.61

14.2 Moment Frames

Moment frames resist lateral forces by virtue of the rigid
connections at each joint. Although the connections are rigid,

a moment frame is actually more flexible than a braced frame.

This section explains how to use the Portal Method to solve
for additional shear and axial forces and additional moment in
beams and columns of a moment frame subjected to lateral
forces.

20' : 16'

3.2k

16'
0

S &
6.48
The Portal Method has six basic steps:
1. Find shear in each column
2. Sum x-direction forces
3. Find moment caused by shear in columns
4. Balance moments at each joint
5. Find shear in beams caused by moment
6. Sum y-direction forces
L L L
7 7
Zl Zl
= P/2 P/2
-7 I

—— —==PR2

14.7

The basic portal frame

Consider a portal of height h and length L subjected to a
lateral force P. It is assumed that each leg is equally capable
of resisting the force P and so the reaction at the base of
each leg is P/2. The horizontal force is transferred through the



vertical leg by shear force. At any given point in the leg, there
is a force of P/2 in shear. Summing the horizontal forces at
the point of load we find that the top of the portal has an axial
force = P/2 in compression.

V=P/2

<+

- M = Ph/4

<+

M = -Ph/4

14.8

Moment in the vertical legs

The moment at either end of the leg will be M = —(P/2)(h/2)
= —Ph. And sum of moments at the connection between leg
and top must equal zero or else the connection will rotate.

v L L
1Ph4
P v . Ph/4
T= 7 T
Ph/a~}~ <L Ph/a
Z1l Z1l
- P/2 P/2
-1 17
_| Phva | Phia
F——K =P =P

14.9

Moment in portal frame members

The moment at either end of the top will create shear equal
to the moment divided by half the length of the top or (Ph/4)/
(L/2) = Ph/2L.
Multiple portals in a frame.
Each leg on any given level equally resists the sum of all loads
above that level.

#legs = 2(#bays across)

LATERAL BRACING SYSTEMS

] L }
P/2
————
p Ph/ac—— Ph/4
7 S Ph/4
Ph/4~ T |
A o A x
P2 = P2 £
< o oo
_| Ph/a _|Ph/a
S —K =P <=Pr2
14.10

Moment, shear and axial forces in a simple portal frame

Example 14-2: Use the Portal Method to determine
the additional shear, moment and axial forces in the
moment frame components shown in Figure 14.11.

20' , 16'

16'

7.2k

20'

N T A7 77

14.11

Portal Method example

1. Find shear in each column. Each row has 2 portals and
each portal has 2 legs for a total of 4 legs. This means
that the exterior columns resist (1leg/4legs total) or % the
lateral loads above them and the interior column resists
(2legs/4legs total) or % the lateral loads above them.

13
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(a) v 20 v 16 v
3.2k
pa . -
© 0.8 1.6 0.8
T 4
7.2k
< pa = pa .
ST 52 &6
—N— —XK=26 =52 =26
14.12

Shear in columns

2 bays = 4 legs:

For the 16" segment in the columns, the total forces
above are P, = 3.2k

P./#legs = 3.2k/4legs = .8k/leg

Outside columns have 1 leg, interior columns have 2 legs:

\Y

= V. = .8k shear on exterior columns

V, =.8(2) = 1.6 on interior column

For the 20" segment in the columns, the total forces above
are:

P +P, =32k + 7.2k = 10.4k
(P1 + P2)/# legs = 10.4/4legs = 2.6k/leg

Outside columns have 1 leg, interior columns have 2 legs:

\Y

= V. = 2.6k shear on exterior columns

c
V, = 2.6k(2) = 5.2k on interior column

2. Sum x-direction forces. Start at the top and sum the
x-direction forces at each joint.

(b) . 20' . 16' .
32-08=24 -1.6 =
L 32 24-16=0.8
TN
© 0.8 6 0.8
-  08+72- T 16+54-T7
7 ok 26=54 52=138
o Ne—
S = 82 28

14.13

Horizontal forces in beams

Joint A2: XF =0=3.2k - 0.8k + AB2 ...
AB2 =0.8 - 3.2 = -2.4k.

Because the forces in the beam are pointed toward the joints
(= =), the beam is in compression. The force exerted on
Joint B2 is equal and opposite and therefore positive.

Joint B2: £F =0 =2.4k - 1.6k + BC2 ...
BC2=16-24=-0.8k

Joint C2: F =0 = 0.8k - 0.8k. This is correct. The
sum should equal zero, although sometimes there will
be a small difference at the last joint in a row due to
the rounding of values.

Joint AT: £F =0 = 0.8k + 7.2k — 2.6k + AB1 ...
AB1 = -5.4k = 5.4k«

Joint B1: ZF =0 = 1.6k + 5.4k - 5.2k + BC1 ...
BC1 = -1.8k = 1.8k«

JointC1:XF =0=08+18-26=0



Horizontal reactions at the column bases are equal to the

shear in the column:

Joint AO: F, = 0= 2.6k + A ... A = 2.6k = 2.6ke

B, = -5.2k = 5.2k«

=

Joint BO: 2F =0=5.2k+B_ ...

Joint CO: XF =0=26k+C_...C =-2.6k = 2.6k

=

3. Find moment caused by shear in columns. There is a
negative moment at the end of each column segment =
M = Vh/2 where V = the shear in the column segment
and h = height of the column segment.
20' ; 16'
3.0k 2.4 0.8
.Ar
6.41 12.8] 6.47
© 08 16 0.8
164, 54 {128 1.8 1
26| 52[ 267
S 52 55
126 152 126
-Ar~jf)=-2.6 Z[F)=-5.2 Z|‘§)=-2.6
14.14

Moment in columns

4.

For the 16" segments on the exterior columns:
.8k (167/2) = 6.4 k-f

For the 16" segment on the interior column:
1.6(16/2) = 12.8

For the 20" segments on the exterior columns:
2.6 (20/2) = 26

For the 20" segment on the interior column:
5.2 (20/2) = 52

Balance moments at each joint. M = 0 at each joint.
Moments are equal at both ends of a beam segment
because shear is constant throughout the beam.

LATERAL BRACING SYSTEMS

20' . 16'
2.4 4 08
A_S'Zk 6\4 ‘ 6'\“ ‘
\’V 6_4\\’7 6.4\\’
6.4 12.8 6.4
© 0.8 1.6 0.8
64 54 12.8 1.8
;izk ‘\\ A‘\\ A‘\6-4
17324 324 17324 3241
26 6
S 28
26 152 126
N 6 f:-s.z f:z.e
14.15

Moment in beams

Joint A2: EM = 0 = =6.4 + M,,, ... M,, = 6.4k

Joint B2:IM = 0 = 6.4 — 12.8 + M, ... M, = 6.4k

JointC2: XM =0 =6.4 - 6.4. This is correct.

Joint AT EM =0=-26 -6.4 + M, ... M., = 32.4k-f

Joint B1: ZM =0 =-12.8 + 32.4 - 52 + M, ...
Mg, = 32.4k-f

Joint C1: XM =0 =32.4 - 6.4 — 26. This is correct.

5. Find shear in beams caused by moment. V = M/(L/2)

where M = moment in the beam segment and L = length

of the beam segment.

20 16'
32k 64 24 6.4 0.8
A e R
6.4 S i28 6.4
© 03 1.6 0.8
64 54 128 18
72k + +e.4
e e e g
1T304 N 354 [ 1354<7354 1
pop 24 o 2L ASTAL
S &2 2
26 152 126
N 6

s

14.16

Shear in beams

115
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V,g, = 6.4k1/(207/2) = 0.64k
Ve, = 6.4k-/(167/2) = 0.8k
Vg = 32.4k-1/(207/2) = 3.24k
Ve, = 32.4k-F/(167/2) = 4.05k

6. Sum y-direction forces

20' . 16'
32k (6.4 %{}4 6.4(%268
O R LA - v Ay LA oy
6.4 © 128 6.4
- pa . % £ co A .y
@ 085 16| 0.8/3
6l4 . : :
__7-2(%\3 551/ 32142(§\> 4;18811 <‘\6'4
gt 324 & 824 51'82.43732.4 e
S 5.2 28|19
<
126 152 J.26
2.6 5.2 f:gs
3.88 0.97 4.85
14.17

Axial forces in columns
Joint A2: 5f =0=0.64+F .. F =-0.64k = 0.64kl
JointAl: f =0=0.64+3.24+F ..
Fy = -3.88k = 3.88k{

Joint AO: Xf =0=3.88+A ... A =-3.88k= 3.88k{

= -
Joint B2:2f =0=-0.64+08+F ...
F, - 0.16k = 0.16k{

Joint B1: ny =0=-324+.16+4.05+ Fv
F =-0.97k =0.97k{

Y

Joint BO: 5f =0=0.97 +B, ... B = -0.97k = 097)
Joint C2:5f =0=-08+F ...F =.8k=.8kT

JointC1:2f =0=-0.8-4.06+F ...
F, = 4.85k = 4.85kT

Joint CO: 2f =0=-485+C ..C =4.8bk= 4.85kT

Sum Y reactions: ny =0=-3.88-.97+485=0 ...
okay

When you design your beams and columns for shear and
flexure and deflection, you must add the values you obtain
for shear and moment from this chart. Remember the lateral
forces may act in either direction.

14.3 Shear Walls

A shear wall acts as a rigid body capable of transferring
lateral loads to the foundation through internal moment. Most
shear walls are made of dense material such as masonry

or reinforced concrete. But shear walls can also be created

by lighter materials such as plywood on Western Framing

if adequate tie-downs are provided to resist turnover. If no
tie-downs are used, the resisting moment caused by the
weight of the wall must be 50% greater than the overturning
moment: M_ > 1.6M

<=

W/2 - Ph/L

W/2+Ph/L

14.18

Shear wall

Consider the shear wall in Figure 14.18. The lateral loads push
against the wall and if not counteracted, will overturn the wall
about Point B called the toe with an Overturning Moment =
M, = Ph. The weight of the wall (W) helps to counteract the
overturning moment by creating a negative moment due to



the weight of the wall acting vertically at the center of gravity.

If the shear wall is fully connected to columns as in case A,
the column reactions due to wall weight W and lateral load P
willbe A =W/2 - Ph/L and B = W/2 + Ph/L. But if the wall
is not connected to columns, then the weight of the wall is
uniformly distributed and the lateral load causes a uniform
change from tension to compression along the base of the
wall as in Case B. The wall will require tie-downs wherever

the net reaction is in tension.

Example 14-3: Determine the reactions on the columns
if the normal-weight concrete, 8" thick shear wall in
Figure 14.19 is fully connected to the columns.

Determine a density for the wall based on material:
concrete density = 150pcf

W =16"(36")(8”)(1/12”)(150pcf) = 567,600# = 57.6k

=M, = 0 = 10k(36') + 20k(20") - 67.6k(8") + A, ... A,
= -299.2k = 299.2kl

Sf =0=-299.2k - 57.6k + B ... B, = 356.8k

= 356.8kT
20' . 16'

3.2k
©

7.2k
o
Al
I S /////// 4 Y/ A—— ]/
14.19

Shear wall examples

Example 14-4: Determine the required thickness of the
normal-weight concrete wall in Figure 14.19 in order to

avoid tie-downs if the wall is not connected to columns.

LATERAL BRACING SYSTEMS

Find weight of wall in terms of some thickness t:
W = 16f(36f)(t)(150pcf)/1000#/k = 86.4t
M, = 10(36) + 20(20) = 760k-f
Check the moment about the toe to ensure that M/M_>1.5
M. = 86.4(1)(8ft) = 691.2(t)k-f
691.2(1)/760> 1.5
t21.649" = 19.78” use a 20” wall
Check reactions along the base of the wall:
T = (XPiHI)(3)/b? = 3M /b? = 3(760k-f)/(16%) = 8.906k/f
W/b = 86.4k/f(20"/12")/16" = 9.0k/f

Reaction at point A = W/b — T = 9.0 — 8.906 = 0.094kT
therefore no tie-downs are required.

Multiple shear walls along a plane of resistance may be
used. In such cases, the portion of the load carried by an
individual wall proportional to the total load may be assumed
equal to the width of that wall divided by the total width of all
the walls in that plane.

Practice Exercises:

14-1: For the braced frame shown in Figure 14.20, find the
additional axial loads in the beams, columns and diagonals
caused by the lateral loads. Use the Diagonal Truss Method.

14-2: For the moment frame shown in Figure 14.20, find all
additional shear, moment and axial forces in all components
caused by the lateral loads. Use the Portal Method.

14-3: Determine the additional axial loads on the columns
connected to the shear wall shown in Figure 14.20 if the
density of the wall = 90pcf and the wall thickness is 12”.

14-4: Determine the required thickness of the unconnected
shear wall shown if the wall density is 120pcf.

17
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15'

20'

25'

20'

20'

20'

15'

14-1

20'

25'

20'

20'

20'

14.20

14-3

Chapter 14 Practice exercises

15'

20'

25'

20'

20'

20'

15'

14-2

20'

25'

20'

20'

20'

14-4
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Structural Typology

Most structures are unique in that they are composed of a
set of components that are sized for specific requirements of
spatial and contextual conditions. However, many buildings
have very similar structural systems that can be grouped as a
type. Typology is the study of types. In this chapter structural
systems are grouped by type and the basic characteristics of
each explained.

A building may have one structural system or it may have
multiple different structural systems grouped as structural
zones within the building. A building may also have multiple
but similar type structural systems grouped or massed within
the same building.

Structural Zones may be parts within one volume or may
be separate volumes.

15.1

Structural zones

15.1 Beam and Column
Systems

Beam and column systems are the most common of
structural types. Often called bulk active systems because
loads are transferred through the components by virtue

of their material qualities, this type of system has distinct
subsystems: the horizontal spanning system which is usually
a set of floor and roof assemblies; and the vertical support
system which is comprised of a pattern of columns, bearing
walls or vertical truss or frame assemblies. The components
and their connections may be subject to axial and/or shear
forces as well as moment during the transfer of loads. These
systems tend to be, but are not necessarily orthogonal

in vertical section with a combination of vertical support

systems and horizontal spanning systems.

15.1.1 Horizontal Spanning Systems

Most horizontal spanning systems consist of a deck that
supports the floor or roof load and spans between and is
supported by beams or joists. The deck not only distributes
the loads to the beams, but provides a continuous stiff
medium that enables the horizontal spanning system to act
as a horizontal diaphragm, meaning it acts as one rigid body.
Decking material can be %” plywood, dimensional lumber,
metal deck, grating, concrete slabs or any other material
capable of transferring the floor or roof loads to the beams or

joists.
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Horizontal spanning system +
15.2

Subsystems of beam and column systems

The beams and/or joists transfer the loads from the deck to
either carry beams or girders or directly to a vertical support
system. Beam spacing is dependent on the allowable span

of the deck. While some beams or joists may frame into the

walls or columns of the vertical support system, many will

frame into carrier beams or girders.

\<)= Columns —

15.3

Hierarchy in horizontal spanning systems

Vertical support system =

A

—
L
L
L
L
L —

AV A

Building System

Most horizontal spanning systems employ an orthogonal grid
pattern that allows for efficient use of materials and ease

of connections. However, this is not required. Beam and
column systems can easily follow a non-orthogonal pattern.
As discussed in Chapter 11, grids can be radial, complex or
organic in form. See Chapter 13 for specific examples of
horizontal framing systems using wood, steel or concrete

materials.

15.1.2 Vertical Support Systems

In a true beam and column system, the vertical support
system consists of columns and/or bearing walls. The walls
and columns are configured in a support pattern that follows
a grid as described in Chapter 11.

The important thing to remember about beam and column
systems is that both gravity and lateral loads are transferred
through the connections. Transfer can be made through a
bearing when a component rests, or bears, on a support.
Where components do not bear on a support, they must have
a connection capable of resisting shear.

All systems need lateral stability to prevent failure due to
horizontal forces such as wind and seismic shear. Because
beam and column systems transfer gravity loads through
compression, shear and bearing, they do not necessarily
incorporate lateral resistance assemblies as part of the load
tracing path. Therefore, it is particularly important in beam
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Columns Vertical Trusses Bearing Walls
or Frames

15.4

Vertical support systems

and column systems to remember to plan for lateral stability (inflatable) structures or because the form is efficient and has
by including bracing, moment frames or shear walls along little or no bending stress as in arches, vaults and domes.

strategic column lines.

15.2.1 Tension Structures

15.2 Form-Active Systems
Tension structures, often called membrane or cable

) . . . structures, are form-active because the external forces and
Form-active systems are systems in which there is little or no

bending stress either because the structure adapts its form support reactions dictate the shape or form. Because the

. . structural material responds to external forces, the shape
as in cables, tents or membrane structures or pneumatic

becomes efficient for transfer of loads through tension.

Membrane in tension

Column in compression

Cables in tension

/' 15.5

/ Tension structure components
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Tension structures have three basic components: a
membrane, a cable system and a compression component.
Cables and membrane fabrics do not transfer loads through
compression. However, as mentioned above, tension
structures do have a compression component. Because
cables are hung, the loads are transferred from the cable to
the earth via a compression element such as a column, wall,
or foundation support.

When a cable hangs, it forms a catenary curve due to its
own weight or when subjected to a uniform load. A catenary
curve can be described by the formula y = (1/a)cosh(ax).
Graphically, a catenary curve is the curve made by the
movement of the focal point of a parabola when it is rolled
along a linear surface. The difference between a catenary
curve and a parabola is small and as a result, many designers
choose to design tension structures as if the cables are
parabolic in nature.

It is important to remember that cables subjected to
concentrated loads will theoretically form line segments
between the loads and between loads and supports. Because
the cable has some weight and that weight is a uniform load,
there will be a contribution to the sage from the weight of
the cable. Because cables do not handle shear, the forces are
axial along the cable.

A catenary arch with a = 0.2, having a uniform load, w, and
span, L, will have the following reactions at any point along
the arch at some distance x from the left support:

Catenary curve

Parabolic Curve

f,=wL/5.52¢«and f =wL/2 - wxd

Drawing the reaction vectors at increments of L/20 shows
how the resultant forces follow the curve as shown in
Figure 15.7. Smaller increments yield even closer results.

Tension structures employ a cable system with a pattern
that can be orthogonal, radial, triangulated or any other shape
that will safely transfer the load. The cable system pattern
should be chosen based on the compression support system
pattern. Several cable and support patterns are illustrated in
Figure 15.8.

The membrane of a tension structure is the equivalent of a
roof deck. It must transfer the roof loads to the cable system.
The cable system is the equivalent of a beam or joist system.
Three materials that are typically used for membrane include:

Polytetrafluorethylene (PTFE)—coated glass fiber
Polyvinylchloride (PVC)—coated polyester fabric

Ethylenetetrafluorethylene (ETFE) foil

Consider differences in cost, UV protection, life span, fire
rating, sound characteristics and thermal qualities in choosing
a membrane material. Check with individual manufacturers
for allowable spans and loads.

Tension structures are economical, easy to assemble and
disassemble, capable of spanning long distances, and most
are durable. Also, most allow light transmission while also
reflecting heat, making the system energy efficient.

15.6

Catenary curve and comparison to parabola

A Catenary curve is the path of the focal point
of a parabola when it is rolled onto its side.
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Catenary curve with a uniform load

15.7

Forces in catenary curves

Some interesting examples of tension structures include
the O, Arena by Populous in Greenwich, England; The Hajj
Terminal by SOM in Jeddah, Saudi Arabia; and the Munich
Olympic Stadium by Frei Otto.
To design a tension structure:
Determine the perimeter of the covered area.
2. Determine where the compression members can be
placed (pattern of support).
3. Draw a cable network that will support the membrane
and stabilize the compression members.
4. Add connector cables as needed to support the

membrane.

STRUCTURAL TYPOLOGY

Reaction vectors at L/20 increments

15.2.2 Pneumatic Structures

Pneumatic or inflatable structures have a form that responds to
both external forces and internal pressure where load transfer
is dependent on tension in the membrane. As such, they are
form-active. There are two basic types of pneumatic structures:
air-supported and cellular. The pattern of the membrane is the
key to its ability to support a load. Cellular or compartmentalized
pneumatic structures have the ability to change shape by
regulating the pressure in individual cells. Further, cellular
pneumatic structures can be sealed to reduce the amount of
energy used in keeping the membrane inflated, making them
more energy efficient than air-supported systems.
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Elevation
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Rectangular cable grid
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Radial Cable Grid

15.8

Cable and support patterns
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Pneumatic structures have some clear advantages such as
ease of assembly and disassembly, cost and lightness. But
they have a major disadvantage of requiring energy to inflate
and in the case of air-supported systems, require constant
energy to maintain inflation. Another disadvantage is that
unlike tension structures that will remain structurally sound
with a puncture in the membrane, a pneumatic cell will
deflate once punctured and may cause failure.

15.2.3 Arches, Vaults and Domes

Arches are considered form-active although they do not
change shape with load changes. This is because the load
transfer, which is dependent on the shape of the arch, has
little bending stress. A catenary arch, as discussed in section
15.1, has no bending stress and is the most efficient form for
uniform loads applied vertically.

Arches are probably the category with the largest range
of attributes. Arches may be formed by bending a single
member along its axis or by compiling a series of wedge-
shaped compression members along the arch axis line. Many
arches are built in segments and assembled with pinned
connections on the site. The span can range from a doorway
to the width of a stadium. The materials can include anything
capable of handling compression. Arches can be used alone
to support a load above an opening or can be extruded to
form vaults or rotated to form domes.

A barrel vault is the linear extrusion of an arch and as such

is form-active. And while most vaults maintain the same

cross-sectional shape along the length of the vault, this is not
a requirement. When two barrel vaults intersect, a groin vault
is formed and the loads are transferred along the intersection
line called the groin.

A rib vault is a vault created by a series of ribs that have
an arch shape. The spaces between the ribs have a deck that
transfers loads to the ribs. The ribs are not necessarily parallel
or straight members. Curved ribs and intricate patterns are
possible.

A fan vault uses ribs that fan out from the column supports
toward a horizontal plate at the top. The horizontal plate,
called a lozenge, is useful for supporting vertical loads above
the vault.

Vaults can be tessellated to create a horizontal spanning
system. One advantage to tessellating vaults is that the
thrust, or outward horizontal force, on the columns is
counteracted by the adjacent vault. Another advantage is
that with smaller spans, the thickness of surface or ribs is
reduced. But it must be remembered that each vault will
need vertical support and that tessellations with very small
spans may produce awkward, column-filled spaces.

A dome shape is formed by the rotation of an arch shape,
but not all domes behave as a series of rotated arches. Radial
rib domes are form-active, with each rib transferring loads
through compression with little or no flexural stress. Thin
shell domes are surface-active (see thin shells, section 15.3)
and geodesic domes are vector-active space trusses (see
space trusses, section 15.5). Domes are inherently strong
structures because of the double-curvature of the shape.

Roman Gothic Catenary
Semicircular Pointed

Segmental Bucket Corbelled

15.10

Arch types
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Domes created by rotation of arches.
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Radial Rib Dome

Schwedler Monoclinal
Dome

Ribbed Dome

15.3 Thin Shells

Thin shells are surface-active, although they seem to be
form-active because their shapes are generally efficient like
form-active shapes. They have a fixed shape and transfer the
load through the surface shape, and not through a particular
cross-section, and therefore are surface-active. They differ
from arches, in that the load transfer is in two-directions
although it can be argued that any cross-section produces
some sort of arch. Transfer follows the surface shape, not a
particular cross-section. There are many wonderful examples
of thin shell structures such as the TWA Terminal at JFK by
Eero Saarinen, or the Deitingen Service Station by Heinz Isler,
or Loas Manatiales by Feliz Candela, to mention just a few.

Rib Vault
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15.11
Vaults

Fan Vault
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15.12

Schwedler Lamella Dome Geodesic Dome

Dome

Domes

15.3.1 Hy-pars

A hy-par is a thin shell that forms the shape of a hyperbolic
paraboloid. This means that when a section is taken in one
direction, a hyperbola is seen and in a perpendicular section, a
parabola is seen. Felix Candela is credited with development
of the hy-par and used it successfully in numerous projects.
Because the cross-section is a parabola, which is very close
to a catenary curve, the shell has very little bending stress.
This efficiency accommodates a very thin shell thickness.
Because loads are transferred through compression, concrete
is a suitable material for the hy-pars.
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15.4 Folding Plates

Folding plates transfer loads from one plate to another along
the intersection line between the two plates. Individual
plates must be capable of transferring loads to the edges
through shear and moment and typically can be designed as
a horizontal spanning system. It is the connection between
plates that is important. Adjacent plates, like adjacent vaults,
can counteract each other’s horizontal forces and transfer
vertical loads along the intersection line.

Plates may be assembled in any workable pattern and
tessellation of plate groups is often used. Figure 15.14
describes a few typical plate patterns. Folded plate systems
may be used on any scale with plates varying from floor or
roof diaphragms to pieces of a facade. By varying the shape
of tessellations, either through the use of algorithms or
randomly, the tessellated folded plate structure can take on
double curvature shapes.

15.13

Hyperbolic paraboloid

15.5 Trusses and Space
Frames

Trusses and space trusses are vector-active systems. A vector-
active system, in theory, is one in which loads are transferred
through compression or tension and the members are not
subject to shear and moment. In reality, many trusses are not
true trusses. As mentioned in Chapter 2, bars in a true truss are
connected by pinned joints at each end and the forces on the
true truss are only applied at the joints. In most construction,
however, the top and bottom chords of a truss are usually single
members that span multiple bar lengths. Further, most trusses
carry a uniform load applied to one or more of the chords.
Trusses may be used as beams or joists and placed in
a parallel configuration. But, just as open-web joists need
lateral bracing to prevent sway, trusses should be braced
laterally as well.
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Below is a simple method to create a space truss or space

frame.

1. Create a pattern—Figure 15.16(a).

2. Locate the center points or the spaces; they become the
new vertex points. Connect the vertices on the offset
layer to form a new pattern. (green)—Figure 15.16 (b).

3. Offset the layer.
4. Connect the vertices of both layers. (black)—Figure 15.16 (c).
(a)

15.14

Folded plate structures

To make truss systems more efficient, the trusses span in

two directions, creating a grid of trusses. This is a space

truss. Typical space truss configurations are shown in

Figure 15.15. 15.16

Design of a space truss
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Space trusses
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Space trusses can be stacked or combined in a folded
system. Space trusses do not need to be orthogonal in either
plan or section as in Figure 15.17 below.

15.6 Moment Frames

Moment frames are systems in which lateral forces are
resisted by virtue of the rigidity of the connections. See
Chapter 14 for an explanation of the shear, moment and axial
forces in moment frames. It is the moment created in the
fixed or rigid connections that gives the moment frame its
name. The moment frame is often called a rigid frame, but a
rigid frame is actually more flexible than a braced frame.

The primary advantage to a moment frame is that no
diagonal bracing or shear walls are required. Moment frames
allow for full unblocked views, making them ideal for use with
curtain wall fagades.

Plan

15.17

Design of a non-orthogonal space truss

15.6.1 Steel Moment Frames

Early moment frame connections used riveted connections.
Welding of connections was introduced in the 1950s but
popularity faded in the 1980s due to economic concerns
about the cost of welding and inspecting welds. Further,
many welded fixed connections have failed during
earthquakes due to brittle fracture around the weld. After
2001, federal building requirements for blast resistance
prompted the design of new moment connection systems.

15.6.2 Non-steel Moment Frames

Moment frames may be designed in concrete or other
materials. The logic of load transfer is the same. Small
moment frames may be designed using glue-laminated
timber or laminated bamboo.

3D view

Elevation
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Moment frames
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15.7 High-rise Typology

A high-rise is defined as a building over ten stories in height
or at least 100ft in height. A tall building is defined by the fact
that its tallness is integral to the design. The height is atypical
compared to the vernacular or for the time period in which it
is built.

Lateral forces on high-rises are an important concern.
Seismic forces increase exponentially with height. Wind
forces are constantly present and, as shown in Figure 15.19,
a doubling of the height of a building can increase wind loads
significantly, causing significant moment and deflection.

2.45P

2h

23? 5.07%

Wind on a high-rise

15.19

Lateral loads create another concern for high-rise structures.
The P-delta effect is the additional moment created by
lateral displacement in high-rise buildings. This may be as
high as 10% of moment caused by lateral forces before
displacement.

The bending of the structure as a whole unit creates a
moment at the base or foundation. To resist overturning, the
moment at the base must be resisted.

Lateral loads that are not resisted symmetrically will be
subjected to torsion or twisting of the structure.

Temperature differential is another concern. The south
side of a structure expands more on a sunny day, compared
to the shaded north side, causing flexure in the structure.
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A = oL AT and for steel, the coefficient of thermal
expansion, oo = 6.5x 10°¢. This means that for 100 tall
building with 40°F temperature differential between
the sunny and shaded sides, the change in length is
A =.0000065(100°)(40) = 0.026" = 0.312”

For a 2000’ tall building with 80°F temperature
differential between sunny and shaded sides:
A =.0000065(2000")(80) = 1.04" = 12.48”

Although these numbers seem small, the effect of thermal
expansion is significant enough to warrant expansion joints in
tall or long structures.

With a large number of levels, even a few inches of
depth in a typical floor design can have a major impact on
the structure. A 12” additional depth per floor in a 100-floor
building yields an additional 100ft of height. This means

greater wind loads; therefore greater structural member sizes,

taller elevators, more HVAC ducts and therefore greater cost
per square foot occupied space. Alternately, where there are
limitations to building height, a reduction in floor depth allows
for more levels and therefore more leasable space. A 1200’
tall building with floor-to-floor height of 12’ yields 100 floors.
A one foot reduction in floor depth would yield 1200/11” =
109 floors allowing nine additional levels of space.

Gravity loads are another concern. Every column must
support the accumulated loads on its tributary area from all
of the levels above it. An increase in gravity loads per floor
therefore has a greater impact on column design in taller
buildings. For a given height, gravity loads can be reduced by
choosing lighter, more efficient structural materials.

15.7.1 Tubes and Bundled Tubes

A tube structure is a design in which the gravity and lateral
forces are primarily handled by the perimeter structure.
Flexural stress in the overall structure is reduced because
the moment of inertia for the system increases when the
members are distanced from the neutral axis.

When bundled, each tube has its own structural integrity.
Tied together, they form a unified network capable of
resisting large lateral forces. Because loads and moments
from each level are accumulated as they transfer to the
ground, the number of tubes is often larger at the base than
at the top.

Tube-in-tube structures are exactly as stated. There are
the inner and outer tubes that work together to create a
structure with a thick “wall” tube.

Single Tube Bundled Tubes Tube-in-tube

15.20

Tube structures

15.7.2 Rigid Frame

Moment frames can be designed to about 30 stories in height.
Above that, member sizes become too large to make the
design practical. The primary advantage to a moment frame

is the unobstructed view it allows when used with a curtain
wall system. Although moment frames are often called rigid
frames, they are actually more flexible than braced frames.
They are called rigid frames because the system transfers
moment from the beams to the columns via rigid connections.

15.21

Rigid frame



15.9.3 Braced Frames

Braced frames work well to a height of about 80 stories.
Beyond that, the forces accumulated in the diagonals make
the member sizes bulky. Diagonals help reduce the moment
in individual members and reduce drift (lateral deflection).
Diagonals in braced frames span only one floor level.

The disadvantages of braced frames include the possible
obstruction of view at window locations and the expense of
fabrication and installation of the diagonal connections.

15.22

Braced frames

15.9.4 Trussed Tube

In a trussed tube, sometimes called a braced tube, the tube
is braced with diagonals that span multiple stories creating

a giant truss system. There may be columns in the core, but
they support gravity loads only and not lateral loads. The John
Hancock Building in Chicago by Fazul Kahn is a good example
of a trussed tube.

STRUCTURAL TYPOLOGY
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15.23

Trussed tube

15.7.5 Space Truss

Space trusses in high-rise systems follow the same logic as
discussed in section 15.5 but at a very large scale. Space
truss components can vary from single floor height to
multiple floor height. The floor loads are transferred to the
truss components, which in turn transfer loads vector-actively

to the ground.

15.24

Space truss
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15.7.6 Diagrids

Diagrid systems are truss-like in nature, transferring loads
through vector action. Like space frames or space trusses,
diagrids are redundant—meaning there are multiple pathways
the load can travel. If one pathway becomes fully stressed,
another can handle the load transfer. The main difference
between a diagrid system and a space frame is that the
space frame acts in three dimensions while the diagrid vector
action takes place along a surface.

15.7.7 Megaframe

A megaframe is a frame in which components are a
subsystem, usually a truss. Trusses or moment frames act
as the frame components of the megaframe. This type is a
useful method to reduce materials used by allowing lighter
weight vector-active systems to replace heavy components.
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15.7.8 Core Suspended

Core suspended structures are those in which the structure
for the enclosed building space is suspended from a few
large compression members. The challenge to this type is
that, unlike beam and column design, the entire suspended
structure must act as a rigid body resting on support
connections. Another challenge is that there are very large
shear forces in the connections between the suspended
structures and the compression elements.
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Core suspended structures

15.27

15.8 Exoskeletons

Exoskeletons are systems in which all the loads are
transferred along the perimeter of the structure. The skeleton
may use any system type. The definition relies on the fact
that there are no interior vertical support systems other than
core requirements for stairwells, elevators shafts and the like.

STRUCTURAL TYPOLOGY

A
WYL

X

AN NN

Y Y

A AN
W

15.28

Exoskeletons
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15.9 Hybrid Structures

Hybrid structures employ more than one system type in the
design. The structure could be as simple as a barrel vault on
top of a moment frame, or it could be a complex grouping of

structural zones.

Diagrid + Moment Frame
15.29

Hybrid structures

Practice Exercises:

15-1: Creatively build a tension structure model with a clear
height of 2” over the cover zone (4”x 10”). Do not extend
beyond the site limits (12”x 18”), or exceed 6” in height.
Compression members and cables may be glued to a base.
Compression members must not span the covered area.
Draw the concept idea, and the cable and support pattern
used.

15-2: Using %” maximum thickness plates only, create a 12”
wide structure that can support itself and a full water bottle
over a span of 12". No plate shall have a length greater than 3"
measured from any point to any other point on the plate. No
adjoining plates may occupy the same plane. As a challenge,
include perforations in the design for day lighting from one
direction.

15-3: Draw and build a simple space truss to support a full
water bottle over a span of 18”. The maximum space truss

depth is 2”. Maximum strut size is %”xﬁ”.

15-4: Draw and build a non-orthogonal space truss with
varied thickness, varied clear height from base capable of
supporting its own weight of a clear span of 1”. Maximum

e = A 1L
strut size = 3 X35 -
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Dimensional Lumber Design

Chapter 16 explains the LRFD Method for analysis and design
of dimensional lumber using factors derived by the American
Wood Council (AWC). The LRFD (Load Resistance Factor
Design) Method uses load factors to create an ultimate or
factored load that is the design load. It also uses Resistance
Factors (¢). Chapter 12 discusses the factor of loads for the
LRFD Method.

Categories of Wood Construction Types:

SAWN LUMBER:

.3 1
Boards: 7 x2 to 1§><16
Dimension Lumber: 2x 2 to 4% x 16

Timber: 5x5 and larger

GLUE-LAMINATED TIMBER: any size
It is important to understand that sawn lumber sizes are
nominal sizes not actual sizes. The nominal sizes are rough
cut sizes, before planning. The actual dimension of any edge
of a standard size piece of sawn lumber will be %” to 1”7
less than the nominal edge stated. For example, a 2x4 is
actually 15”><3%". When designing sawn lumber, always use
the actual size for values of width and thickness. Because
wood is easily ripped and planed, custom sizes can be made
at a relatively low cost compared to other materials. In this
chapter, only standard sizes will be used. See Table A2.1:
Section Properties for Dimensional Lumber for a list of
standard dimensional lumber sizes and section properties.

16.1 Adjustment Factors for
Dimensional Lumber

Table 16.1: Adjustment factors of sawn lumber, with permission from the
American Wood Council

ADJUSTMENT FACTORS FOR SAWN LUMBER
[=]
. 5 5
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Allowable stresses, F’, in Table 16.1 are found by multiplying
the design values listed for a given species of wood from
Table 4A and 4B of the National Design Specifications
Supplement by the applicable factors. Tables A2.2 and A2.3
contain sample values for use with examples and exercises in
this book. Note that there are separate tables, 4A for Western
species of wood and 4B for Southern Pine. Southern Pine is
unigue in that the design values vary by the width of lumber
used. Likewise, in some formulas for design, Southern Pine
will have a different factor than Western species.

A is the Time Effect Factor. Values of A are correlated with
the six equations for factored loads as shown in Table 16.2.
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The most common case is a dead load and a live load from
occupancy, resulting in a value of A = 0.8.

Table 16.2: A Time Effect Factor with permission from the American

Wood Council
A Time Effect Factor
LRFD Load Combination A
1.4D 0.6

1.2D + 1.6L + 0.5(Lr or S or R) where L is from storage 0.7

1.2D + 1.6L + 0.5(Lr or S or R) where L is from occupancy | 0.8

1.2D + 1.6L + 0.5(Lr or S or R) where L is from impact 1.25

1.2D + 1.6(Lr or S or R) + (L or 0.8W) 0.8
1.2D + 1.6W + 0.5L + 0.5(Lr or S or R) 1
1.2D+E+L+0.28 1
0.9D + (1.6W or E) 1

C, is the temperature factor. It is used with all dimensional
lumber, timber and glu-lams.

Ciis the incising factor. It is used with dimensional lumber
only. Incising is the injection of treatment into the wood.
Examples of incising are termite, fungus or other preservative
treatments.

Table 16.5: C, Incising Factor, with permission from the American Wood

Council
Ci_Incising Factor
Design Value Ci
Fo, Fe, Ft, Fy 0.80
E, Emin 0.95
Fe, 1.00

C. is the Size Factor. For dimensional lumber, C.. can be found
in Table A2.1: Dimensional Lumber Section Properties.

C, is the Beam Stability Factor. This factor takes some
consideration as it is dependent on the unbraced length of the
beam, the type of loading, the size and the species of wood.
The first thing to do is to establish whether or not C, = 1.

Table 16.3: C, Temperature Factor, with permission from the American Wood Council

C: Temperature Factor

Reference Design Values | In-Service Moisture Conditions

G

T<100° | 100°F < T €125°F | 125°F < T €150°F
Fi, E, Exin Wet or Dry 1 0.9 0.9
Fhv Fv- Fc:; Fc‘i Dry 1 0.8 0.7
Wet or Dry 1 0.7 0.5
C,, is the Wet Service Factor. In dimensional lumber, C_ is C =1if:
used when the moisture content is greater than 19%. a) there is continuous lateral bracing of the compression
member;
Table 16.4: C_Wet Service Factor for sawn lumber, with permission from
the American Wood Council b) d/b<Z;

Cm, Wet Service Factor

DIMENSIONAL LUMBER > 19% moisture content
Design Values Cm
Fy 0.85
Fh when Fb(CF} <1150 PSi 1
Fi 1
Fe 0.8
F. when F¢(Cg) < 750 psi 1
Fy 0.97
Fe, 0.67
E 0.9
Emin 0.9

c) 2<d/b<4 AND edges are secured by blocking or X-bracing;

d) 4<d/b<5AND there is full sheathing AND blocking at
ends;

e) 5<d/b<6AND there is full sheathing AND blocking < 8ft
o.c.;

f) 6 <d/b <7 AND there is full sheathing AND blocking at all
points of bearing.



If none of these conditions are met, C, must be calculated

using the following steps:

1. Determine the effective length using Table 16.6. For a
combination of load types, use the highest value obtained.

Table 16.6: Effective length, with permission from the American Wood
Council

DIMENSIONAL LUMBER DESIGN

C,=1.15when:

1. using dimensional lumber (2—-4” thick);

2. spacing of joists, rafters, studs, etc. is not more than
24"0.c.;

3. there are three or more members in repetition;
members are joined by sheathing, subfloor or other load
distributing elements adequate to support the applied

2. R.?2=L.(d)/b?where L was determined in step 1,

d = depth of beam and b = thickness of beam.

Check that R,? < 2500. If R, ? > 2500, choose a larger size.
Calculate E_, "= E_. (C_)(C)(C)(1.5)

Fe=12(E_ J/R?

F,* = F (all factors EXCEPT C,, C and C|)

F=F/F”

8. C_=(1+F)/1.9) = I(1 + F)/1.9)” - (F/0.95)]

Cf
meaning that the depth, d is less than the width, b. Examples

N o o kW

. is the Flat Use Factor. It is used when the lumber is laid flat;

of flat use are decking and headers or sills. It is only used in
finding the allowable bending stress, F,". Factors for C, are
listed in Table A2.1: Dimensional Lumber Section Properties.

C. is the Repetition Factor. It is only used with dimensional
lumber and only when the criteria below are met.

EFFECTIVE LENGTH, L, for bending members loads.
SIMPLE SPAN BEAM C, is the Column Stability Factor. It is used with all
Load type: When when dimensional lumber, timber and glu-lams. If a compression
Lfd<7 Ly/d>7 member is laterally supported along its entire length, C, = 1.0.
Uniitoi|cd 2.06L, 1.63L, + 3d If not, follow the steps in Table 16.7 to obtain C,.
Point load at center with no lateral bracing at loa | 1.8L, 1. Determine the Effective Length Factor, k, based on end
1.37L, + 3d L.
conditions:
Point load at center with lateral bracing 1.1,
2 equal Point loads at L/3 with lateral support at 1.68L, Table 16.7: Effective Length Factor, k
loads
3 equal Point loads at L/4 with lateral support at 1.54L,
loads k EFFECTIVE LENGTH FACTOR
4 equal Point loads at L/5 with lateral support at 1.68L, k end condition end condition
lpads
5 equal Point loads at L/6 with lateral support at 1.73Lu 0.65 fixed fixed
loads A .
& equal Point loads at L/7 with lateral support at 1.78L, 0.8 pmned fixed
logay 1 pinned pinned
7 or more equal point loads evenly spaced with | 1.84L, . - 3 "
ateral support at loads 1.2 fixed rotation fixed, translation free
1.84L, : e "
Equal end moments 2 pinned rotation fixed, translation free
CANTILEVER " s .
BEAM 2.1 fixed rotation and translation free
when L/ when Ly/d
Load type: d<7 >7
Uniform load 1.33L, 0.90L,, + 3d 2. Effective length, L, = k(L) where Lu is the unbraced
Point load at cantilever end 1.87] 1.44L, + 3d . . .
= n length and k is determined in step 1. For rectangular
when L,/ | when 7< Ly/d | when L/d . . . .
SIMPLE SPAN OR CANTILEVER BEAM d<7 <143 =143 columns, find L, in both directions.
Loading not listed above 2.06L, [1.63L,+3d | 1.84L,

3. Check that L /d <50 in each direction. If not, choose a
larger size. Use the larger value of L /d for step 5.
Calculate E_, "= E . (C )(C)(C)(1.5)

F.=0.822(E_ "/(L/d)

F.* = F_(all factors EXCEPT C,)

¢ = 0.8 for sawn lumber, ¢ = 0.9 for glue-laminated or

N o o p

structural composite lumber.
F = FCE/FC*
9. C,=(1+F)/2c) - I(1 + F)/20)2 - (F/c)]

@

C, is the Bearing Area Factor. It is used for bearing
length less than 6” and not nearer than 3” to the end
of a member.

C, = (L, + 0.375)/L, where L, = bearing length in
inches measured parallel to the grain.

1



142

WOOD DESIGN

16.2 Design of Dimensional
Lumber Components

16.2.1 Flexure

1. Identify the species of wood:
NOT Southern Pine — step 2
Southern Pine — step 20
2. Western species dimensional lumber: refer to Table A2.1
Dimensional Lumber Section Properties for sample
species
Identify F, F, E, E ., G for species and grade
3. Assume trial size = 2x12: C_ =1, A = 16.88in?,
S =31.64in3, | = 177.98in*
4. F=F(C NCO(CHCHC, )CICr(2.16)(A)
C.:lssize 2x12?
Yes: C.=1.0
No: Determine C. from Table A2.1 Dimensional
Lumber Section Properties
C,.: Is moisture content over 19%?
No:C =10
Yes: Determine C_ from Table 16.4
C,: Is temp. above 100°F?
No:C =10
Yes: Determine C, from Table 16.3
C.,: Is beam laid flat like a plank?
No:C, =10
Yes: Find C, in Table A2.1 Dimensional Lumber
Section Properties
C.: Is there preservative or termite treatment or any
other incising?

No: C =1.0
Yes: C, = 0.80
C,: Are beams repeated at a spacing < 24”0.c.?
No:C. =10
Yes: C =1.15

A: Determine A from Table 16.2:
Calculate F," = F_(C_)(Ct)(C )(C(C, J(C)(Cr)(2.16)(X)
= (F,*)C)
C,: find d/b and determine if C_= 1. If not, calculate C
using the steps described earlier in this section
Fo =R (C)

L

5. Find weight of beam: W, = (specific gravity)(62.4pcf)
[(Ain?)/(144in2/ft?)]

6. Find factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, = 1.2(W,,, + W,,) + 1.6(W,,) OR if NO LIVE LOAD:
W, = 1.4(W,,, + W)

P,=1.2P, + 1.6 P, OR if NO LIVE LOAD: P, = 1.4P

7. Find the maximum moment in the beam. Remember to
multiply by 12”f to obtain an answer in #-in.
8. f, = M/S where M from step 7, and S from step 3.
9.Isf <F"?
Yes — step 10
No — estimate S, = M/F " and go back to step 3 and
try larger size.
10. Is f/F,’ 2 0.90?
Yes — step 11
No — estimate S, = M/F "and go back to step 3 and
try smaller size.
1. F/=F,(C)C)C)(2.16) (A)
C,: Is moisture content over 19%?

No:C =10
Yes: C_ = .97

C,: Is temp. above 100°F?
No:C =10

Yes: Determine C, from Table 16.3
C.: Is there preservative or termite treatment or any
other incising?

No:C, = 1.0

Yes: C. =0.8
12. Determine the maximum shear, V, in the beam.
13. f, = 3V/2A

14. 1sf <F?
Yes — step 14
No — Estimate A, = 3V/2F choose a larger size. If b
and d are both greater than or equal to the original
precious size, it is not necessary to check bending
stress again. If not, Go back to step 3 and check
bending stress.
15. A, = L(121/240
16. Unfactored loads: remember to use unfactored loads for
deflection. W, is listed in step 5, and the applied loads are



17.

18.

19.

20.

21.

22.

given. If an applied load is already factored, it may be used
as is. Using a factored load will not create a safety issue; it
will simply yield a larger required moment of inertia.

E” = E(C )(C)(C)

C,: Is moisture content over 19%?

No:C =10
Yes: C_=.90

C,: Is temp. above 100°F?
No: C,=1.0

Yes: Determine C, from Table 16.3
C.: Is there preservatives, termite treatment or any
other incising?
No: C =1.0
Yes: C, = 0.95
Find A, , using deflection charts, by Double Integration
Method or by Moment Area Method. Remember to
multiply the equations by 1728in%/ft® in order to obtain an

answer in inches when using a length, L in feet. | is from

step 3.
IsA, <A?
Yes — done.
No —find | = A (I from step 3)/A,,. Select final size
req act' x all
based on Ireq.

Southern Pine dimensional lumber: Assume trial size
=2x12:C. =1, A =16.88in?
S =31.64in%, | = 178in*

Refer to Table A2.3 for sample Southern Pine sizes.
Identify F,, F, E, E_. and G for size and grade.
F.. = F(C )CHCHCHC, )CHC)(2.16)(M)
Ce
C.=10for2x2 -3x12and 4x4 - 4x6
C. = (12/d) 1/9 for d >12”
C.=11for4x8 -4x12
C,: Is moisture content over 19%?
No:C =10
Yes: Determine C_ from Table 16.4
C,: Is temp. above 100°F?
No:C, =10
Yes: Determine C, from Table 16.3
C,,: Is beam laid flat like a plank?
No:C, =10
Yes: Determine C, from Table A2.1: Dimensional
Lumber Sectional Properties

DIMENSIONAL LUMBER DESIGN

C.: Is there preservatives, termite treatment or any
other incising?

No: C,=1.0
Yes: C, =0.80
C.: Are beams repeated at a spacing < 2470.c.?
No.C. =10
Yes: C =1.156

A: Determine A from Table 16.2.

Calculate F.” = F_(C_)(C)(C )(C(C, )C)C)(2.16)(A)
= (F,*)(C)

C,: find d/b and determine if C, = 1. If not, calculate C_
using the steps described earlier in this section.

F =F*C)

b

23. Find weight of beam: W, = (specific gravity)(62.4pcf)
[(Ain?)/(144in%/ft?)]

24. Find factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, = 1.2(W,,, + W) + 1.6(W,,) OR if NO LIVE LOAD:
W, = 14(W,,, + W)

P,=1.2P, + 1.6 P_ORif NO LIVE LOAD: P, = 1.4P,

25. Find the maximum moment in the beam. Remember to
multiply by 12”7 to obtain an answer in #-in.
26. f, = M/S where M from step 7, and S from step 3.
27. Isf <F?
Yes — step 28
No — estimate S, = M/F " and go back to step 20 and
try larger size.
28. Isf/F’>0.90?
Yes — step 29
No — estimate S = M/F " and go back to step 20 and
try smaller size.
29. F/=F (C_)C)C)2.16)(A)
C_.: Is moisture content over 19%?

No:C =10
Yes: C_=.97

C,: Is temp. above 100°F?
No:C,=1.0

Yes: Determine C, from Table 16.3
C. Is there preservatives, termite treatment or any
other incising?

143
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No:C =1.0
Yes: C,=0.8
30. Determine maximum shear, V, in the beam.
31. f,=3V/2A
32.Isf <F'?
Yes — step 33
No — estimate A, = 3V/2F " and go back to step 20
and try larger size.
33.A,, = L(1271/240
34. Unfactored loads: remember to use unfactored loads for
deflection. W, is listed in step 5, and the applied loads
are listed in problem. If an applied load is already factored,
it may be used as is. Using a factored load will not
create a safety issue; it will simply yield a larger required
moment of inertia.
35. E" = E(C )(C)(C)
C,: Is moisture content over 19%?
No:C =10
Yes: C_=.90
C,: Is temp. above 100°F?
No:C,=1.0
Yes: Determine C, from Table 16.3
C;: Is there preservatives, termite treatment or any
other incising?
No:C =1.0
Yes: C, = 0.95
36. Find A using deflection charts, by Double Integration
Method or by Moment Area Method. Remember to multiply
the equations by 1728in%/ft® in order to obtain an answer in
inches when using a length, L in feet. | is from step 20.
37. IsA, <A,?
Yes — done.
No — find |req = A, (I from 20)/A, . Select final size
basedon| .

Example 16-1: Design of a Western species joist: Design
a series of construction grade Douglas Fir Larch (north)

joists with a moisture content of 16%, spaced at 16"o.c.

with X-bracing at 4'o.c. to carry a dead load of 15psf and
a live load of 40psf with a span of 12ft.

Average temperature = 105°F. Termite treatment is incised in
joists. Max. deflection = L/240.

1. Ildentify the species of wood: Douglas Fir Larch (north)
NOT Southern Pine — step 2.

2. Western species dimensional lumber: refer to Tables A2.2
for sample species.
F, = 950psi, F, = 180psi, E = 1,500,000psi,
E.., = 550,000psi, G = 0.49

3. Assume trial size = 2x12: C. =1, A = 16.88in?,
S =31.64in%, 1 = 177.98in*
4. F =F(C)HCHCHCHC, NCHC)2.16)(A)
C.:lssize 2x12? Yes: C. = 1.0
C,: Is moisture content over 19%7? No: C_ = 1.0
C,: Is temp. above 100°F? Yes: From Table 16.3,
C,=08
C,,: Is beam laid flat like a plank? No: C, = 1.0
C.: Are there preservatives, termite treatment or any
other incising? Yes: C, = 0.80
C.: Are beams repeated at a spacing < 24”0.c. and are
there more than 2 spans? Yes: C = 1.15
A: from Table 16.2, A = 0.8
Calculate F.” = F, (C_NC)HC )CHC NC)HC)(2.16)(A)
= (F,*)(C)
= 950(1)(0.8)(1)(1)(0.8)(1.15)(2.16)(0.8)C, = 1208.21C_

C.:d/b=11.25/1.5 =75 ... calculate C :
a) L,=48"..L/d=48/11.26=427<7
From Table 16.6, L, = 2.06L, = 2.06(48) = 98.88”
b) R,2=L,(d)/b? = 98.88(11.25)/1.5% = 494.4
c) Check that R 2 = 494.4 <2500. Yes ... okay
d E_ =E_(C )C)C)1.5)=550,000(1)(0.9)(0.95)
(1.5) = 705,375psi
e) F,=12(E,VR2=12(705,376)/494.4
= 1712.08psi
f) F,*=1208.21psi
g F=F/F*=1712.08/1208.21 = 1.417
h) C_=(1+F)/1.9) =I((1 + F)/1.9)2 - (F/0.95)] = 0.916
F./=F.* (C) = 1208.21(0.916) = 1106.72psi
5. Find weight of beam: W, = (specific gravity)(62.4pcf)
[(Ain?)/(144in?/ft?)] = .49%62.4%16.88/144 = 3.58*"
6. Find factored loads: W, = 1.2(DL) + 1.6(LL)

= 1.2[15psf(16”/12") + 3.58*1 + 1.6[40psf(16"/12"7)]

= 113.63#
7. M, = wlL?/8 = 113.63%7 (12")2/8 = 2045.34#-f
= 24544.08#-in

8. f, = M/S = 24522.08#-in/31.64in* = 775.03psi
9. Isf, <F? 775.03psi < 1106.72psi ... okay



10. Is f,/F,”>0.90? 775.03/1106.72 = 0.70
No — estimate S = M/F = 24544.08/1106.72

=22.18
3A. Assume 2x10: C. = 1.1, A=13.88in? S = 21.39in?,
| = 98.93in*
4A. F=F(C )C)HC)HCIHC )CIC)(2.16)(r)

C.=1.1

C,,: Is moisture content over 19%7? No: C_ = 1.0

C,: Is temp. above 100°F? Yes: From Table 16.3,
C.,=08

C,,: Is beam laid flat like a plank? No: C, = 1.0

C.: Are there preservatives, termite treatment or any
other incising? Yes: C, = 0.80

C,: Are beams repeated at a spacing < 24”0.c. and are
there more than 2 spans? Yes: C = 1.15

A: from Table 16.2, A = 0.8

Calculate F,” = F, (C_NC)(C)(C(C
= (F,*)C)

= 950(1.1)(0.8)(1)(1)(0.8)(1.15)(2.16)(0.8)C, = 1329.03C

(C)(C)(2.16)(N)

fu)

L

d/b=9.25/1.6=6.17 ... calculate C_ :
a) L,=48"..L/d=481125=427<7
From Table 16.6, L, = 2.06L = 2.06(48) = 98.88”
b) R.?=L,(d)/b?=98.88(9.25)/1.562 = 406.51
c) Checkthat R ?=406.51<2500. Yes ... okay

d E,’=E,_(C)C)C)1.5) =550,000(1)(0.9)(0.95)
(1.5) = 705,375psi

e) F,.=12(E, )/R2=12(705375)/406.51
= 2082.24psi

f) F,*=1329.03psi
g F=F/F*=2082.24/1329.03 = 1.567

h) C_=(1+F)/1.9) = VI((1 + F)/1.9)? - (F/0.95)] = 0.932
F,/=F,* (C) = 1329.03(0.932) = 1238.66psi

5A. Find weight of beam: W,,, = (specific gravity)(62.4pcf)
[(Ain?)/(144in2/ft?)] = .49%62.4%13.88/144 = 2.95%"

6A. Find factored loads: W = 1.2(DL) + 1.6(LL)
= 1.2[15psf(167/12") + 2.95%*7 + 1.6[40psf(167/12")]

= 112.87#
7A. M, =wL?8 =112.87%1(12)2/8 = 2031.72#-f
= 24380.64#-in

8A. f, =M/S= 24380.64#-in/21.39in® = 1139.81psi
9A. Isf <F'?1139.81psi < 1238.66psi ... okay
10A. Is f/F.">0.907 1139.81/1238.66 = 0.92 ... okay for

flexure

DIMENSIONAL LUMBER DESIGN

1. F/=F(C)CHC)2.16) (W)
C,: Is moisture content over 19%7? No: C_ = 1.0
C,: Is temp. above 100°F? Yes: C = 0.8
C. Is there preservative or termite treatment or any
other incising?
Yes: C,=0.8
F., =180(1)(0.8)(0.8)(2.16)(0.8) = 199.07psi

12. V= wlL/2 = 112.87%1(12')/2 = 677.22#
13. f, = 3V/2A = 3(677.24#)/[2(10.88in?)] = 93.37psi
14. Isf <F'?93.37 < 199.07 ... okay for shear
16. A, = L(12"77)/240 = 12/(12")/240 = 0.6”
16. Unfactored loads: = 2.95% + (15psf + 40psf)(167/(12”/f))
= 76.28%"
17. E" = E(C_NC)(C)
C,: Is moisture content over 19%7? No: C_ = 1.0
C,: Is temp. above 100°F? Yes: Determine C = 0.9
C.: Is there preservatives, termite treatment or any
other incising?
Yes: C,=0.95
E” =1,500,000psi(1)(.9)(.95) = 1,282,500psi

18. Aact = bwL*/384El = 5(76.28%%)(1274)(1728in%/ft%)/
[384(1,282,500psi)(98.93in%)] = 0.28”

19. IsA, <A, ? Yes. 0.28” < 0.6”7

ANSWER: USE 2x 10

Example 16-2: Design of a Southern Pine beam: Design
a No. 2 Southern Pine beam, 16’ long, with a moisture
content of 20%, full lateral bracing and dead loads of
100# applied every 48". Max. deflection = L/240.

Identify the species of wood: Southern Pine — step 20.
20. Assume trial size = 2x12: C_ =1, A = 16.88in?,
S =31.64in3, | = 178in*
21. F, =975, F =175, E = 1,400,000, E_
G =0.55
22. F=F (C NCHCHCHC,)CHC)(2.16)(A)

fu

C.=10for2x2 -3x12

= 580,000,

n

C,.: Is moisture content over 19%? Yes: from Table 16.4
C, =1whenF,(C)<1150psi

C,: Is temp. above 100°F? No: C, = 1.0

C,,: Is beam laid flat like a plank? No: C, = 1.0

C. Is there preservatives, termite treatment or any
otherincising? No: C = 1.0

145
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C,: Are beams repeated at a spacing < 24”0.c.?
No:C. =10

A: Determine A from Table 16.2. A = 0.6 (dead loads
only)

Calculate F,” = F_(C_)(C)C)CC)C)CI2.16)(A) = (F,*)(C))
= 975(N(MMMM(1)(2.16)(.6)C_ = 1263.6C_

C, = 1 (full lateral bracing)

F/=F,*(C) = 1263.6psi

23. Find weight of beam: W, = (specific gravity)(62.4pcf)
[(Ain?)/(144in%/ft?)] = .55(62.4)(16.88)/144 = 4.02#"
24. Find factored loads:
Wu = 1.4(4.02) = 5.63%"
Pu = 1.4(100) = 140#
25. M =wL?/8 + PL/2 = 5.63(16%)/8 + 140(16)/2 = 1300.16#-f
=15,601.92#-in
26. f, = M/S = 15,601.92/31.64 = 493.11psi
27. 1sf, <F.? Yes: 493.11psi < 1263.6psi
28. Isf /F’>0.90? No: 493.11/1263.6 = 0.39 ...
estimate S = M/F” = 15601.92/1263.6 = 12.35in°
GO BACK TO STEP 20
20A. Assume trial size = 2x8: C. = 1, A = 10.88in?,
S =12.14in%,| = 47.63in*

21A. F, = 1200, F, = 175, E = 1,600,000, E_ = 580,000,
G =0.55
22A. F = F,(C_)(C)(C(C,)(C,)(C)(C)(2.16)(A)

C.=10for2x2-3x12

C,.: Is moisture content over 19%? Yes: from Table 16.4
C,=085

C.: Is temp. above 100°F?
No:C, =1.0

C.,: Is beam laid flat like a plank?
No:C, =10

C.: Is there preservatives, termite treatment or any
other incising?

No: C, =1.0
C,: Are beams repeated at a spacing < 24”0.c.?
No:C =1.0
A: Determine A from Table 16.2. A = 0.6 (dead loads
only)
Calculate F.” = F_(C_)(C)(C J(C)C, JCHC)(2.16)(A) = (F *)C))

= 1200(0.85)(MN(MN(MN(1)(1)(2.16)(.6)C_ = 1321.92C_

C, = 1(full lateral bracing)
F, =F*(C)=1321.92psi

23A. Find weight of beam: W,,, = (specific gravity)(62.4pcf)
[(Ain?)/(144in%/ft?)] = .55(62.4)(10.88)/144 = 2.59*/

24A. Find factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, = 1.4(2.59) = 3.63%
P, = 1.4(100) = 140#

25A. M = wL?8 + PL/2 = 3.63(16%)/8 + 140(16)/2
= 1236.16#-f = 14,833.92#-in
26A. f, = M/S =14,833.92/12.14 = 1221.90psi
27A. Isf, <F.? Yes 1221.90psi < 1321.92psi
28A. Isf,/F,”>0.90? Yes. 1221.9/1321.92 = 0.92 ... okay for
flexure
29. F/ = F,(C )C)C)(2.16) (A)
C,.: Is moisture content over 19%?
Yes: C = .97
C,: Is temp. above 100°F?
No:C =10
C.: Is there preservatives, termite treatment or any
otherincising? No: C =1.0
F/=175(.97)(1)(1)(2.16)(.6) = 220.00psi
30. V.=wL/2 + 3P/2 = 3.63(16/2) + 3(140)/2 = 239.04#
31. f, = 3V/2A = 3(239.04)/2(10.88) = 32.96psi
32. Isf,<F'? Yes 32.96psi < 220.00psi
33. A, = L(1279/240 = 16(12)/240 = 0.8”
34. Unfactored loads: w = 2.569%". P = 1004
35. E" = E(C_)(C)(C)
C,.: Is moisture content over 19%?
Yes: C_=.90
C,: Is temp. above 100°F?
No:C,=1.0
C.: Is there preservatives, termite treatment or any
other incising?
No:C,=1.0
E’=1,600,000(0.9) = 1,440,000psi
36. Find A, = bwL*/384El + 19PL%/384El = [5(2.59)(16%) +
19(100)(16)](1728in%/1%)/[384(1,440,000)(47.63)] = 0.57”
37. 1sA,,<A,?Yes 0577 <0.8”
ANSWER: USE 2x8



16.2.2 Compression

In this section, the term column refers to all members under
compression. This section discusses the design of Simple
Solid Wood Columns which are columns made of one piece
or made of multiple pieces glued together to act as one piece.
For a review of Critical Buckling Stress and slenderness ratio,
see Chapter 10.

From Table 16.1: Adjustment factors of sawn lumber, the
equation for allowable compressive stress is:

F/ =FJ(C NCHCICHCI2.16)(A)

where the factors are described at the beginning of this
chapter.

Like the design of wood beams, the design of columns
is an iterative process based on an assumed trial size. In the
case of wood columns, a good starting pointis A . = P /F *
where F/ = F *C,.

Design of wood columns:
1. Look up F_and E_, for the given species and grade of

trial

lumber.
2. F/=F (CHCHCHC)C,)2.16 (A) = F *(C,)
C,: Is moisture content over 19%?

No:C =10
Yes: C = .8 unless F (C) <750psi, in which case
C.=1
C,: Is temp. above 100°F?
No:C =10

Yes: Determine C, from Table 16.3
C;: Is there preservatives, termite treatment or any
other incising?
No:C =10
Yes: C,=0.8
Assume C, = 1and C_ =1 for now.

3. Calculate L, = kL(12") in each direction. Effective Length
Factor, k can be found in Figure 10.1. k = 1.0 for pin—pin, k
= 0.8 for pin—fix, k = .65 for fix-fix conditions
Determine minimum width in each direction based on
L /d < 50.

d,.=L,/80andb =L, /50

n

4. A, =PIF*

trial

Select a size with A> A
A, bandd.

b>b .. andd=d . Note

trial’

DIMENSIONAL LUMBER DESIGN

5. Use larger of L /d or Ley/b and L_/d.
6.E_ . =E_ (C)C)C).5)

min

C_.: Is moisture content over 19%?

No:C =10
Yes:C_=.9

C,: Is temp. above 100°F?
No:C, =1.0

Yes: Determine C, from Table 16.3
C.: Is there preservatives, termite treatment or any

other incising?

No: C, = 1.0

Yes: C, = 0.95
7. F.=0.822(E_ )/(L/d)?
8. F=F_/F*

9. ¢ = 0.8 for sawn lumber, ¢ = 0.9 for glu-lams
10. C, = (1 + F)/2c - [((1 + F)/2¢)? — (F/c)]"?
11. F/ = F *(C,) = allowable compressive stress
12. f, = P/A = actual compressive stress
18. Isf < F?
Yes — step 15
No — go back to step 4 and choose larger size.
14. 1s f /F/>0.907 If not, go back to step 4 and try smaller size.

Example 16-3: Design a 9’ high column to be made using
a nominal 3" thick No.2 DFL with pinned supports to
carry a factored load of 10,0004# if termite treatment is
incised into the wood.

Use a standard size depth.

1. F,=1350psiand E_, =560,000psi.

2. F/=FCHCHCHCHC,)2.16(A) = F *(C,)
C,,: Is moisture content over 19%? No: C_ = 1.0
C,: Is temp. above 100°F? No: C, = 1.0
C.: Is there preservatives, termite treatment or any

other incising? Yes: C, = 0.8

Assume C, =1 and C_ = 1 for now.
F./=1350(1)(1)(0.8)C.C,(2.16)(.8) = 1866.24C.C,

3. k=1.0, L =kL(127) = 1(9)(12) = 108" in both directions
Determine min width in each direction based on
L /d < 50.
d..=b.,=L.,/50=108/50 = 2.16"

4. A, =P/F*=10,000/1866.24 = 5.36in
Try 3x4: A = 8.75in%, b = 2.5”, d = 3.5”
5. L/d=108/2.5=432
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6.

10.
1.

12.

13.

4A.
5A.
BA.

7A.

8A.
9A.
10A.

12A.

13.
14.

4B.
5B.
6B.

. = B (CHCIC)(1.5)

C,: Is moisture content over 19%7? No: C_ = 1.0

C,: Is temp. above 100°F? No: C, = 1.0

C.: Is there preservatives, termite treatment or any
other incising? Yes: C, = 0.95

E,./ = 560,000(1)(1)(0.95)(1.5) = 798,000psi

F.e=0.822(E_ /(L /d)* = .822(798,000psi)/(43.2)

= 351.49psi

C.=1.15,F = F./F * = 351.49/1866.24(1.15) = 0.164
¢ = 0.8 for sawn lumber, ¢ = 0.9 for glu-lams
C.=(1+F)/2c - [((1 + F)/2¢)? - (F/c)]2 = 0.1568

F./ = F_*(C,) = allowable compressive stress

= 0.158(1866.24)(1.15) = 339.1

f, = P/A = actual compressive stress = 10,000/8.75
= 1142.86

Is f, < F.? No — go back to step 4 and choose larger
size.

A =8.71(1142.86/344.32) = 29in?

trial

Try 3x12: A=28.13in%, b =2.5", d = 11.25"
L /d=108/2.5 =432
E.. = E...(CHCHC)(.5)
C,.: Is moisture content over 19%? No: C_ = 1.0
C,: Is temp. above 100°F? No: C, = 1.0
C;: Is there preservatives, termite treatment or any
other incising? Yes: C, = 0.95
E.. =560,000(1)(1)(0.95)(1.5) = 798,000psi

F.e=0.822(E_ ")/(L/d)* = .822(798,000psi)/(43.2)?
= 351.49psi
C.=1F=F_/F*=35149/1866.24(1) = 0.188

¢ = 0.8 for sawn lumber, ¢ = 0.9 for glu-lams

Ce= (1 +F)/2c - [((1 + F)/2c)” - (F/o)]'? = 0.264
1MA.F/=F_*(C,) = allowable compressive stress

= 0.264 (1866.24)(1) = 492.69psi

f, = P/A = actual compressive stress = 10,000/28.13
=3565.49

Isf, < F/? Yes.

Is f/F/>0.90? 355.49/492.69 = 0.72 ... go back to
step 4 and try smaller size.

Try 3x10: A =23.13in% b =26, d = 9.26”
L/d=108/2.5=43.2

E.iv = E.i,(C HUCHC)(1.5)

C,,: Is moisture content over 19%7? No: C_ = 1.0

min min

78B.

8B.
9B.
10B.
11B.

12B.

13B.
14B.

4C.

5C.
6C.

7C.
8C.
9C.
10C.
11C.

12C.

13C.

C,: Is temp. above 100°F? No: C = 1.0

C.: Is there preservatives, termite treatment or any
other incising? Yes: C, = 0.95

E... =560,000(1)(1)(0.95)(1.5) = 798,000psi

F.e=0.822(E_)L/d)? = .822(798,000psi)/(43.2)?
= 351.49psi
C.=1F=F_/F*=351.49/1866.24(1) = 0.188
¢ = 0.8 for sawn lumber, ¢ = 0.9 for glu-lams
Cp = (1 + F)/2c - [((1 + F)/2c)? - (F/c)V? = 0.264
F./ = F_ *(C,) = allowable compressive stress = 0.264
(1866.24)(1) = 492.69psi
f. = P/A = actual compressive stress = 10,000/23.13
= 432.34psi
Isf < F/? Yes.
Isf/F/>0.907 432.34/492.69 = 0.88 ... go back to
step 4 and try smaller size.
Try 3x8: A=18.13in% b =2.5",d =7.25"
L/d=108/2.5=43.2
E... = E..(CUCIC)(1.5)
C,.: Is moisture content over 19%? No: C_ = 1.0
C,: Is temp. above 100°F? No: C, = 1.0
C.: Is there preservatives, termite treatment or any
other incising? Yes: C, = 0.95
E... =560,000(1)(1)(0.95)(1.5) = 798,000psi

Foe = 0.822(E  ")/(L /d)* = .822(798,000psi)/(43.2)

= 351.49psi

C.=1.05 F=F_/F * =35149/1866.24(1.05) = 0.179
¢ = 0.8 for sawn lumber, ¢ = 0.9 for glu-lams
Co=(1+F)/2c - (1 + F)/2¢c)* - (F/c)"? = 0.172

F. =F_*(C,) = allowable compressive stress
=0.172(1866.24)(1.05) = 337.04psi

f, = P/A = actual compressive stress = 10,000/18.13
= 551.57psi

Isf,<F/? No

ANSWER: USE 3x10
This method may also be used to check the adequacy or

spacing of columns of a given size by using the given size in

step 4.

Example 16-4: An 8’ high Western frame greenhouse
wall has 2x4, No. 2 DFL studs with bracing at 4’ in the
weak direction and pinned ends.



The moisture content is 22%, the average temperature is

103°F and the wood is treated with preservatives. If the wall

must carry a factored load of 1500, what is the maximum

spacing of the studs (in multiples of 3”)?

1.

F.=1350psiand E_, = 560,000psi.

min

2. F/=F_(C_)(C)(C)C)(C.)2.16 (A) = F_*(C,)

C,: Is moisture content over 19%? Yes: C_ = .8

C,: Is temp. above 100°F? Yes: From Table 16.3,
C,=07

C;: Is there preservatives, termite treatment or any
other incising? Yes: C, = 0.8

Assume C, = Tand C_ = 1.5

F./ = 1350(.8)(.7)(1.5)(.8)(2.16)(0.8)C,, = 1667.64(C_)psi

. Calculate L_ = kL(12"") in each direction.

k=1
d . =L,/50=1(8"(12"1/50 = 1.92”

By = Ly/50 = 1(4)(127)/50 = 0.96”

4. 2x4 = given size: A =5.25in?, b=15", d =3.5”

12.

13.

.E_'=E

. Use largerof L /dor L /band L_/d. 96/3.5 = 27.43 and

48/1.5 =32 ... okay
min = Ein(CCHC)(1.5)
C,: Is moisture content over 19%7? Yes: C_ = .9
C,: Is temp. above 100°F? Yes: Determine C, = 0.9
C;: Is there incising? Yes: C, = 0.95
E.in =560,000(.9)(.9)(.95) = 430,920psi

. F,. = 0.822(E, /(L /d)? = 0.822(430,920)/32?

= 345.91psi

. F=F_/F*=2345.91/1045.09 = 0.331
. ¢ = 0.8 for sawn lumber

10.
11.

Co=(1+F)/2c - (1 + F)/2¢)? = (F/c)I"? = 0.304
F/=F_*(C,) = 1567.64(0.331) = 518.89 = allowable
compressive stress

Let spacing of the studs = s”. P = 1500%/(s)/(12"f) = 125s
f, = P/A = actual compressive stress = 125s/5.25in?

= 23.81s psi

f.<F/..23.81s<518.89 and s <21.79”

ANSWER: space 2 x4 studs at 21”0.c.

Example 16-5: Design a built-up column using standard

sizes with a nominal 2" thickness for an unbraced length

of 10’ and fixed ends to support a factored load of 5000#

using No.1 Southern Pine.

12.

13.
14.

. Because the values of F_and E

DIMENSIONAL LUMBER DESIGN

are higher for 2x4s and

2 x 3s than for other sizes, it will be most efficient to use
2x3sor2x4s. F_=1850psi, E_ . =620,000psi.

min

. F/=F,(C_)(C)CLIC)(C.2.16 (L) = Fc*(C,)

C.: Is moisture content over 19%7? No: C_ = 1.0
C,: Is temp. above 100°F? No: C = 1.0
C.: Is there preservatives, termite treatment or any
other incising? No: C, = 1.0
Assume C,=1andC_.=15
F./ =1850(1)(1)(1.5)(1)(2.16)(0.8)C, = 4795.2

. Calculate L_ = kL(12") in each direction.

Effective Length Factor, k can be found in Figure 10.1.
k = 1.0 for pin—pin, k = 0.8 for pin—fix, k = 0.65 for fix-
fix conditions.
Determine min. width in each direction based on
L /d < 50.

dyin = b = L/50 = 0.65(107)(12)/50 = 1.66”

min

_A,, = P/F_* = 24000/4795.2 = 5

Try two 2x3: A = 2(3.75) = 7.6in?, b = 2.5”, d = 2(1.5")
— 3//

. L/d=0.65(10)(12)/2.6 = 31.2
6. E

min = EninlCUCHC)(1.5)
C,: Is moisture content over 19%7? No: C_ = 1.0
C,: Is temp. above 100°F? No: C, = 1.0

C.: Is there preservatives, termite treatment or any

min

other incising? No: C, = 1.0
E_.’=620,000(1)(1)(1)(1.5) = 930,000psi

. F.=0.822(E, ")/(L/d)? = .822(930,000)/31.2

= 785.32psi

. F=F_/F* =785232/4795.2 = 0.164

. ¢ = 0.8 for sawn lumber, ¢ = 0.9 for glu-lams
10.
11.

Co=(1+F)/2c - (1 + F)/2¢c)* - (F/c)]"* = 0.158

F./ =F.*(C,) = allowable compressive stress

= 0.158(4795.2) = 757.64psi

f, = P/A = actual compressive stress = 5000#/7.5in?

= 666.67psi

Isf, < F/? Yes: 666.67psi < 757.64psi

Is f/F/>0.90? 666.67/757.64 = 0.88, however, smaller

size will not meet d_, requirements.

ANSWER: 2-2x3s
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16.2.3 Bearing

Bearing is compression perpendicular to the grain. It occurs
during the transfer of load from one member to another upon
which it rests. Bearing must be considered when it occurs
within 3” of the end of a member or has more than 6” of
bearing length at any other point.

For sawn lumber:

F./=F. (CHCHCHC)(.5)
C,= (L, +0.375)/L,
where L, is the bearing length measured parallel to the grain.

p

Bearing b
area, A l B

16.1

Full bearing

Bearing area = A = b, (b,) where

b, = width of loaded member
b, = width of supporting (bearing) member

L, = bearing length = b, when inspecting loaded
component for bearing and b, when inspecting the
supporting member.

Partial
bearing
area, A

16.2

Partial bearing

Bearing area = A = b,(b,) where
b, = width of loaded member
b, = bearing depth
b, < b, = width of supporting (bearing) member

L, = bearing length = b, when inspecting loaded
component for bearing and b, when inspecting the
supporting member.

Example 16-6: A 2x10 joist carrying a factored load of
300#f and having a span of 12’ fully bears on a flat 2x6
No. 2 SP top plate. Is this acceptable?

1. Whatis P? P = reaction at end of joist = wL/2
= 300%1(12’)/2 = 1800#
What is A? A = (1.5”)(5.5”) = 8.2bsi
What is actual stress? F. = P/A = 1800/8.25 = 218.18
What is allowable stress? F_"=F_ (C_)(C)(C)(C)(1.5)
C,=C=C=10
C,= (L, +0.375)/L, = (1.5 + 0.375)/1.5 = 1.25

where L, is the bearing length measured parallel to the

grain.
F., = 565psi
F./ =F_(C)C)C)C,)(1.5) = 565(1.25)(1.5)
= 1059.375psi

5. 1059.375 allowable bearing stress > 218.18 actual
bearing stress ... okay

Example 16-7: What is the partial bearing length
required for a No. 2 DFL 2x10 bearing on a flat No. 2 DFL
2x8 with a factored load of 3000#?

P =3000#
C, = (L, +0.375)/L, = (1.5 + 0.375)/1.5 = 1.25
F_/=F_(C)(C)(C)(C,)(1.5) = 625(1)(1)(1)(1.25)(1.5)

cl'™m t i b
= 1171.88psi
4. f =3000#/A<1171.88psi ... A>3000#/1171.88psi
= 2.56in?

5. A=15"b,)=256..b,=256/15=171"



Bearing at an angle:

16.3

Bearing at an angle

If bearing is not perpendicular to the direction of the grain;
if it occurs at an angle other than 90°, then the stress is a

combination of compression and bearing stress where

F, =F*F_/IF *sin + F_ cos?]

0

0 = angle between the direction of the load and the
direction of the grain in degrees.

Example 16-8: A 2 x12 No. 2 Southern Pine rafter at a

30° incline carries a vertical load of 800#f, spans 18’ and
bears on a 2x6 flat top plate. Check the bearing stress in
the top plate.

1. 2x6 - #2 SP:F_=1600psi, F , = 565psi,
E.., =580,000psi
2. F/=F*F [IF *sin®® + F_ cos?6]
F.* = F(CNC)CHC)H2.16)(A) = 1600(1)(1)(1)(1)(2.16)(.8)
= 2764.8psi
C,=(6.5+.375)/5.5 = 1.068
F. =F. (CHCHC)HC,(1.5) = 565(1.068)(1.5)
= 905.284psi
3. F/=F*F_)/IF *sin®® + F_ cos? 6]
= 2764.8(905.284) /[2764.8(.5)> + 905.284(.866)?]
= 1826.79psi
4. f  =P/a=(800")(18/2")/[(1.5)(5.5)]

=872.7 3 < 1737.66psi ... okay

16.2.4 Tension

F/ = F,(C)(C,)(C)(C)(2.16)(A)

DIMENSIONAL LUMBER DESIGN

Example 16-9: Design a tension member with a factored
tension load of 18,000# using a 2x__ in select structural
Douglas Fir Larch, with 18% moisture content and at

room temperature.

Assume C_ =1

F/=1000)(M(1)(1)(2.16)(.8) = 1728psi
f,=P/A=18,000#/A ... A, = 18,000#/1728psi = 10.42in
Try2x8: A=10.88in?, C. = 1.2

F/=1728(1.2) = 2073.6psi

f,= P/A =18,000/10.88 = 1654.41psi

Is f, <F/? Yes: 1654.41 < 2073.6

Is f/F/<0.97 No: 1654.41/2073.6 = 0.80 ... Try smaller
size.

BA.Try 2x6: A=8.25in%, C. = 1.3

6A.F/ =1728(1.3) = 2246.4ps

7A. f, = P/A =18,000/8.25 = 2181.82psi

8A.Isf <F'? Yes: 2181.82 < 2246.4

9A.ls f/F/<0.9? Yes: 2181.82/2246.4 = 0.97

ANSWER: USE 2x6

© ® N o o wNh =

Example 16-10: Find the maximum factored tension that
can be carried by a No.2 So. Pine 2x12 in a greenhouse
(MC > 20%, temperature < 100°F).

C.=1,C_ =1,C =1 Note that moisture does not
affect allowable tensile stress.

F/ =550(1)(1)(1)(1)(2.16)(.8) = 950.4psi

f,= P/11.6(11.25)] <F/ ... P_ = 950.4(5.5)(7.5)
= 39,197.5#

16.2.5 Combined Stresses:

Combined flexure and axial compression:
(f/F 12+ £ AR 1T = (F /R )+ fAF 1T = (fe/F
(f/F. < 1.0

CEZ) -

Where
f,<F., =0.822E
bending (d, = wide face)

win/(L,./d,)? for edge-wise or biaxial
AND

F <F.,=0822E_'/L_/d,)?for flatwise or biaxial
bending (d, = narrow face)

CE2
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AND
f, <F.=120E_ "/R?

Axial

Bending Load

Load

16.4

Bending and axial load on dimensional lumber

Example 16-11: A 4.5x5.5 column, built up using three
2x6s of structural Select Red Oak, is 20’ long with fixed

ends and has a factored axial load of 5000#, a factored M_

of 800 #-in and My of 400 #-in. Is this column adequate?
1. Find values for species and grade:
F, = 1160psi, F, = 1000psi, E_, =510,000psi

2. Find section properties: A = 3(8.25) =
S, =3(7.66) = 22.68in®,

24.74in?,

I, =21, + ):Ady2 = 3(1.547) + 2(8.25)(1.5)? = 41.766in*
c=15+.75=2.25"
Sy = 41.766/2.25 = 18.56in®

3. Find:fy fy fp B Feen Feea Pt P Fie

CEV
f, = P/A =5000/24.74 = 202.1psi
f,, =M /S =800/17.65 = 45.33psi
»» = M, /S = 400/18.56 = 21.55psi

4. Find F,,, F

CE2"

E._.’=510,000(1.5) = 765,000psi
L, = 20ft(12”) = 240"
L, = kL = 0.65(240) = 156
L/d, = 156/5.5 = 28.36

= 0.822(765,000)/28.362 = 781.85

Fegr = 781.85 > 202.1 = f_ ... okay

L/d, = 156/4.5 = 34.67

F.e, = 0.822(765,000)/34.67? = 523.15

CE2

Fee, = 523.16 > 259.74 =1f_... okay

5. Find C.:
F/ =F(CI(C.)(2.16)A = 1000(1.3)(2.16)(.8)C,
= 2246.4C,
Fee/Fc* =781.85/2246.4 =0.348 = F

CE1

Co, =1+ F)/2c - (1 + F)/2c)? -
- [(1.348/1.6)? - (0.348/0.8)]"2 =

(F/c)l'2 = (1.348/1.6)
0.318

Fee/Fo* = 523.15/2246.4 = 0.233

CE2

C,, = (1 + F)/2c - [((1 + F)/2c) -
= (1.233/1.6) - [(1.233/1.6) -

(F/e)'”2
(0.233/0.8)]'% = 0.221

Use lesser value of C, = 0.221
6. Check compression:

=0.221(2246.4) =

for compression.

496.50psi > 202.1 = f_... okay

7. FindC_ F,/ F,/:

F, = F,(C)(C)(2.16)x = 1150(1.3)(2.16)(.8) C
= 2583.36 C,

L

L, = 1.84L, (equal end moments) = 1.84(240) = 441.6

R, =L.d/d,? = 4416 (5.5)/4.52 = 119.94

Fe = 1.2(765,000)/119.94 = 7653.78
F.e, /F,* = 7653.78/2583.36 = 2.963
C., = (1 +F)/1.9) = V(1 + F)/1.9)* - (F/0.95)]

(3 963)/1.9) - VI(3.963/1.9)2 - (2.963/0.95)] = 0.976

F, = 0.976(2583.36) = 2621.36 > 45.33 ... okay

R,,” = Led,/d,? = 441.6(4.5)/5.5% = 65.69

F.e, = 1.2(765,000)/65.69 = 13974.73

bE2

F.e, /F.* = 13974.73/2583.36 = 5.41

bE2

V(1 + F)/1.9)2 -
V[(6.41/1.9)2 -

C,=0+F)/1.9) -
(641/19

(F/0.95)]
(5.41/0.95)] = 0.989

=0.989(2583.36) = 2554.94 > 21.55psi =1, ... okay



8. F,.=lesserof F _ andF
F,c = 7653.78psi

Summary of values found

f =202.10psi f,, = 45.33psi f,=21.55
F.=496.50psi  F,, =781.85 Py, = 523.15
F,, =2521.36 F,) =2554.94psi  F,, =7653.78

9. [fc/Fc,]Z + f AR T = B/ Fog )t + 1R, T = (/Fegy) = (F/
F.)7H< 1.0

[202.1/496.5)? + 45.33/{2521.36[1 - (202.1/781.85)]} +
21.565/{2554.94[1 - 202.1/5623.16 - 45.33/7653.78]}
=0.166 + 0.024 + 0.014 = 0.204 < 1.0 ... okay

Combined axial tension and flexure:

f/F + 1 /F.*<1.0where F * = F times all factors but
C

L

Example 16-12: Check the adequacy of a 4x 16 dimensional
lumber beam with L = 16/, one concentrated load at mid-
span of 3000# and a tension load of 1500#, structural
Select Northern Red Oak with full lateral bracing.

F, = 1400psi, F, = 800psi, F, = 220psi,
E = 1400000psi, E_, =510000psi, G = 0.68

4x16: A =53.38in?, S = 135.66in%, | = 1034in*

1. Check flexure:

F, = F(CHCHCC2.16)(A) = 1400(N)(1)(C )(1)(2.16)
(0.8) = 2419.2C,
C.: d/b=156.25/3.5 = 4.357, but with full lateral bracing,
C. =1

F.” = 2419.2psi
weight of beam = 1.2(.68)(62.4)(53.38/144) = 18.88""

M = wL?/8 + PL/4 = 18.88(16)*(12)/8 + 3000(16)(12)/4
= 151249.92#-in

S, = 135.66

f, = M/S = 1561249.92/135.66 = 1114.92psi < 2419.2psi
... okay for flexure

DIMENSIONAL LUMBER DESIGN

2. Check tension:
F/ =800(2.16)(0.8) = 1382.4psi

f, = P/A =1500/53.38 = 28.1psi < 1382.4psi ... okay

for tension
3. Check flexure and tension combined:

f/F, +f/F.* =28.1/1382.4 + 1114.92/ 2419.2
=0.48<1.0... okay

4. Check shear:
F/=F,(C.) (C)(2.16)(A) = 220(1)(1)(2.16)(0.8) = 380.16
V = 18.88(16)/2 + 3000/2 = 1651.05

f, = 3V/2A = 3(1651.05)/[2(3.5)(15.25)]
=46.40 < 354.24psi ... okay for shear

5. Check deflection:
A, =L/240 = 16(12)/240 = 0.8”
E’=E(C,) (C) = 1,400,000(1)(1) = 1,400,000 psi
| = 1034in*

unfactored load: P = 3000, W = .68(62.4)(53.38)/144
=14.99
A, = BWIY/384El + PL3/48EIl = 5(14.99)
(16)4(1728)/384(1400000)(1034) +
3000(16)3(1728)/48(1400000)(1034)

=0.32 < 0.8 ... okay

16.3 Western Framing
Considerations

There are two types of Western Framing: platform framing
and balloon framing. Platform framing, as shown in

Figure 16.5, uses the method of framing a single level at one
time, then building a horizontal framing system or platform on
which to set the next level walls.
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Balloon framing uses studs that have multiple level lengths as
shown in Figure 16.6. This method is often employed when

there are multilevel height spaces involved in the design. The
disadvantage to balloon framing is that longer studs are more

expense and more prone to warping and bending.

Platform framing - Studs walls are one level high.

Balloon framing - Studs walls are full height.

165 Fire blocking is required between levels.

Platform framing 16.6

Balloon framing



16.3.1 Choosing a Stud Wall Size

Stud walls are historically made of 2x4 @ 16”0.c., although
that standard has changed to 2x 6 @ 24”o.c. for reasons

of strength, economy and thermal comfort. Compare the
efficiency of a2x4 @ 16”0.c. with 2x6 @ 24"0.c.:

If a wall carries w #f, the axial force P on each stud =
(w*f)(spacing f) and the compressive stress on each
stud = f, = P/A. If the allowable compressive stresses
in the studs are equal, as they would be for the

same Western species and grade, then the following
comparison yields:

2x6 @ 24” wall:

P =24W/12 = 2W
f, = 2W/(1.5)(5.5)
= 0.242W

2x4 @16” wall:

P =16W/12 = 1.333W
f, = 1.333W/(1.5)(3.5)
= 0.254W

A wall with 2x6 @ 24” can actually carry more load
than 2x4 @ 16”.

Further, a comparison of insulation yields:

2x6 @ 24” wall:
d=5.5"...R-21

2x4 @16” wall:
d=3.5"...R-13

A 2 x6 wall can hold R-21 fiberglass batt insulation
between studs compared to R-13 for a 2 x4 wall. The
thermal transfer through the stud is reduced because
stud surface is reduced from 1.5”/16 in a 2 x4 wall to
1.57/24 in a 2x6 wall, a 33% reduction.

A 2 x6 wall will have more material cost, but less labor cost.
Energy savings will counteract the material cost whenever fuel
prices are high enough.

16.3.2 Limitations in Western
Framing

Most building codes limit Western frame construction to four
levels in height. Even at only four levels, studs on ground level
often need to be doubled or tripled to carry the gravity loads.
Remember that double studs will reduce energy efficiency.

DIMENSIONAL LUMBER DESIGN

Practice Exercises:

16-1: Design a series of No. 2 DFL floor joists spaced @
24”0.c., with a moisture content of 20%, termite treatment
and a span of 12’. There is a dead load of 15psf and a live load
of 40psf.

16-2: Design a series of No. 1 Southern Pine floor joists
spaced @ 16”0.c., with a moisture content of 18%, and a
span of 15”. There is a dead load of 15psf and a live load of
80psf.

16-3: Determine how many select structural Southern Pine
2x12’s must be joined together to support a factored load of
300*" over a span of 18"

16-4: Find the maximum factored compressive load an 8’, No.
1 Southern Pine 2 x 6 can support without bracing.

16-5: Determine the maximum unbraced length of the box
column shown in Figure 16.7, subjected to a load of 2000# if
the 2 x6s are No. 2 DFL and there is incising and a moisture
content of 21%.

' 5.5" typ.

16.7

Practice exercise 16-5
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16-6: A 2 x 12 joist carrying a factored load of 600*" and
having a span of 14’ fully bears on a flat 2x6 No. 2 Southern
Pine top plate. Is this acceptable?

16-7: What is the partial bearing length required for a No. 2
Southern Pine 2x 10 bearing on a flat No. 2 Southern Pine
2 x4 with a factored load of 2000#?

16-8: Find the maximum allowable tension in a No. 2
Southern Pine 2 x4 with 18% moisture content and at room

temperature.

16-9: A 3x 5.5 column, built up using two 2 x6s of No. 2
Southern Pine, is 16" long with one end fixed and the other
pinned. It has a factored axial load of 3000#, a factored Mx of
750 #-in and My of 150 #-in. Is this column adequate?

16-10: Check the adequacy of a 2 x 8 dimensional lumber
beam with L = 12/, L, = 4/, with two concentrated loads of
2000# at 4’0.c. and a tension load of 500#, using no. 1 DFL.
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Timber Design

Chapter 17 explains the LRFD Method for analysis and
design of timber using factors derived by the American Wood
Council (AWC). The LRFD (Load Resistance Factor Design)
Method uses load factors to create an ultimate or factored
load that is the design load. It also uses Resistance Factors
(¢). To review finding ultimate loads, see Chapter 16.

Timber is sawn lumber in nominal sizes 5x5 and larger.
As with dimensional lumber, timber nominal sizes are 0.5”
to 1”7 larger than the actual sizes. Use actual sizes for design
purposes.

17.1 Adjustment Factors for
Timber

Adjustment factors for timber are the same as those for
dimensional lumber although the values vary in some cases.
See Table 16.1 for the adjustment factors for sawn lumber.
Values for A and C, can be found in Tables 16.2 and 16.3
respectively. Note that values for C, and C, are found using

the same method as with dimensional lumber.
C,+ C = 1.0 for timber

C,, = 1.0 if moisture content is < 19%. Otherwise,
for Western species, C_ = 0.67 for F_ and 0.91 for F_
(NOT So. Pine)

C,. = (12/d)® for d = 12" in flexure only,

C. = 1 otherwise

Table 17.1: Flat Use Factor for timber, with permission from the American

Wood Council
Cwn Flat use factor for Timber
Grade Fp E, Enin
Structural Select | 0.86 1
No. 1 0.74 .9
No.2 1 1

17.2 Design of Timber
Components

17.2.1 Design of Timber Beams:

1. Identify F_, F , E, E_. for species and grade. See
Table A2.5 for Material Properties of selected Timber
Species

2. Assume FACTORED beam weight = W, = L(10)*;
Assume d < 12”7

3. F = FCHUCHCHC, NC)2.16)(A)

Coisd < 1277
Yes: C.=1.0
No: C. = (12/d)"®

C,: is temp. above 100°F?
No:C, =10
Yes: C, — Table 16.3

C, . is beam laid flat like a plank?
No:C, =10
Yes: C,, — Table 17.1
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A: Find value from Table 16.2
Calculate F.” = F_(C)(C)(C(C, )(2.16)(A) = (F
Assume C =1 for now.

(o)
4. Find factored loads using the six equations at the beginning
of this chapter. If there are only dead and live loads:
W, =W, + 1.2(W, ) + 1.6(W, ) or if NO live load:

W, = Wy, + 1.4(W,,)
P,=1.2P, + 1.6 P, ORif NO LIVE LOAD:
P, =1.4P,

5. Find the maximum moment, M in the beam. Remember
to multiply by 12”7 to obtain an answer in #-in.
6. S, > M/F (F from step 3)
7. Choose size basedon S : Note A, S, |,. See Table A2.4
Timber Section Properties.
8. C,: find d/b and determine if C_ = 1. If not, calculate C,
using the steps described in Chapter 16.
F/=F*(C)
9. Check C_ for size from step 7.
C;:isd< 1277
Yes: C.=1.0
No: C. = (12/d)"

10. Adjust F,” for new C_: F,” = (F " from step 3)(C_ from step
9/C. from step 3)

11. Find actual weight of beam: W, = (specific gravity)
(62.4pcf)(A/144)

12. Find actual factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, = 1.2(W,,, + W, ) + 1.6(W ) OR if NO LIVE LOAD:
W, = 1.4W,g, + W,))
P,=12P,+ 1.6 P ORif NO LIVE LOAD: P, = 1.4P,

13. Find the maximum moment in the beam. Remember to
multiply by 12”f to obtain an answer in #-in.

14. f, = M/S M from step 13, S from step 7.

15. Isf, <F'?

Yes — step 16
No — estimate Sreq = M/F,” and go back to step 7 and try
larger size.

16. Isf /F,~>0.907
Yes — step 17
No — estimate S = M/F " and go back to step 7 and try
smaller size.

17. F/ = F,(C)(2.16) ()

C,: Is temp. above 100°F?

No: C = 1.0
Yes: C, — Table 16.3

18. Determine the maximum shear, V, in the beam.

19. f, = 3V/2A

20.isf <F/?

Yes — step 21

No — Estimate A, = 3V/2F choose a larger size. If

b and d are both greater than or equal to the original
precious size, it is not necessary to check bending stress
again. If not, go back to step 7 and check bending stress.

21. A,, = L(12"7)/240 (check your local building codes for
allowable deflections)

22. Unfactored loads: remember to use unfactored loads for
deflection. W, is listed in step 11, and the applied loads
are given. If an applied load is already factored, it may be
used as is. Using a factored load will not create a safety
issue; it will simply yield a larger required moment of

inertia.
23. E"=E(C)
C,: Is temp. above 100°F?
No:C,=1.0

Yes: C, — Table 16.3
24. Find A, , using deflection charts, by Double Integration
Method or by Moment Area Method. Remember to
multiply the equations by 1728in%/ft® in order to obtain an
answer in inches when using a length, L in feet. | is from
step 3.
25.Is A, A7
Yes — done.
No —find I =A (I from step 24)/ A,

act X

Select final size based on | _ .

Example 17-1: Design the most efficient 36’ long timber
beam of No. 2 Douglas Fir Larch 12x_ to support 3 point
loads of LL = 800# and DL = 200 at 9'o.c. with lateral
bracing only at point loads.

1. F,=875psi, F, = 170psi, E = 1,300,000psi,
E,.. = 470,000psi, G =05

2. Assume factored beam weight = L(10) = 36(10) = 360*";
d<12”

3. F,/ = F(CHCHCC, NC)(2.16)(0.8) = 875(1)(C )(1)(1)(2.16)
(0.8) = 15612C,

Assume C, =1, F * = 1512psi
4. Find factored loads:



W, = (W, ) = 360"

u

P, =1.2(200#) + 1.6(8004#) = 1424#

5. M = wL%/8 + PL/2 = 360(36)%/8 + (1424)(36)/2
= 83,952#-f = 1,007,424#-in

6. S, = M/F =1,0074244#-in/1512 = 666.29in°

7. Choose size based on Sreq: Try 12x20 A = 213.75in?,
S =676.88in% | =6430.31in*

8.d/b=19/1125=169<2..C =1

F.=F*(C) =1512(1) = 1512psi

b

9. Check C. for size from step 7.
C.:isd< 1272 yes: C. = (12/19)"° = 0.95

10. Adjust F," for new C_.: F,” = 15612(0.95) = 1436.74psi

11. Find actual weight of beam: W, = (specific gravity)
(62.4pcf)(A/144) = 5(62.4)(213.75)/144 = 46.31%"

12. Find actual factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, =1.2(W,,,) = 1.2(46.31) = 55.58%
P, = 1424# (same as in step 4)

13. M, = wL%8 + PL/2 = 55.58(36)%/8 + (1424)(36)/2
= 34,635.96#-f = 415,631.52#-in

14. f, =M /S = 415,613.52/676.88 = 614.04psi

15. Isf, < F,'? Yes — step 16 614.04 < 1436.74psi

16. Is f,/F,">0.90? No:614.04/1436.74 = 0.43 estimate
Sreq = M /F,’ = 415,631.52/1436.74 = 282.33in’

7A. Try 12x 14 A = 149.06in?, S = 329.18in%, | = 2180.82in*.

8A.d/b =13.25/11.26=118<2...C =1
F,/=F,* (C) =1512(1) = 1512psi

9A. Check C_ for size from step 7.
C.:isd < 127? Yes: C_ = (12/13.25) * = 0.989
10A. Adjust F," for new C.: F,” = 15612(0.989) = 1495.37psi
1A. Find actual weight of beam: W, = (specific gravity)
(62.4pcf)(A/144) = 5(62.4)(149.06)/144 = 32.3%/
12A. Find actual factored loads:

W, = 1.2(W,,,) = 1.2(32.3) = 38.76""

u

P, = 14244# (same as in step 4)

13A. M, = wL?8 + PL/2 = 38.76(36)%/8 + (1424)(36)/2
= 31,911.12#-f = 382,933.44#-in
14A. f, =M /S = 382,933.44/329.18 = 1163.29psi

15A
16A

7B.
8B.

9B.

10B.
1B.

12B.

13B.

14B.
15B.

17.

18.

19.
20.
21.
22.
23.

24.

25.
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. Isf,<F? Yes — step 16 1163.29 < 1495.37psi
. Isf/F >20.90? No: 1163.29/1495.37 = 0.78
estimate S = M, /F,’ = 382,933.44/1495.37 = 256.08in’
Try 12x12 A = 126.54in?, S = 237.3in3, | = 1334.84in%.
d/b=1125/11.25=1<2..C =1
Fo=FF (CL) = 1512(1) = 1512psi

Check C. for size from step 7.
C.isd<12”? No: C. =1

Adjust F," for new C.: F.” = 1612(1) = 1512psi

Find actual weight of beam: W, = (specific gravity)
(62.4pcf)(A/144) = 5(62.4)(126.54)/144 = 27.42*f

Find actual factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, =1.2(W,,, ) = 1.2(27.42) = 32.9%

P, = 1424# (same as in step 4)

M, = wL?/8 + PL/2 = 32.9(36)%/8 + (1424)(36)/2

= 30,961.8#-f = 371,541.6#-in

f, = M/S = 371,541.6/237.3 = 1565.70psi

Is f,<F,’? No: 1565.70 > 1512psi ... use 12x 14 for
flexure.

F/=F,(C)(2.16)(A) C: Is temperature above 100°F?
No: C,=1.0

F/ =170(1)(2.16)(.8) = 293.76psi

V = wL/2 + 3P/2 = 38.76*1(367/2) + 3(1424#)/2

= 2833.68#

f, = 3V/2A = 3(2833.68#)/[2(149.06in?)] = 114.06psi
Isf,<F/? Yes: 114.06psi < 293.76psi ... okay for shear.
A, = L(1279/240 = 36(12)/240 = 1.8”

w = 32.3% P = 200# + 800# = 1000#

E"=E(C)

C,: is temp. above 100°F? No: C, = 1.0

E’ = 1,300,000psi(1) = 1,300,000psi

A, = BwLY/384El + .0495PL%/El = [5(32.3)(36)/384 +
.0495(1000)(363)1(1728)/[1,300,000(2180.82)] = 1.842”
IsA <A, ?No— 1.842">18"...1_ =1.842(2180.82)/

req

1.8 =2231.95, Use 12x16: | = 3164.06in*

ANSWER: USE 12x 16

Exa

mple 17-2: Design a short, heavily-loaded Douglas Fir

Larch (DFL) No.1 timber beam where L =4', P, = 40,000# DL
at center, fixed ends, no repetition and no lateral support.

159



160 WOOD DESIGN

1. F, = 1350psi, F, = 170psi, E = 1,600,000psi, Use 14x16: A = 198.75in?, S = 496.08in?®,
E.,=580,000psi, G=05 | = 3726.56in" because both dimension are equal
2. Assume FACTORED beam weight = W, = L(10)*f or larger than previous size, there is no need to
= 40*"; Assume d < 12” recheck for flexure.
3. F = F(CHCHCHC NC)2.16)(A) 21. A, = L(121)/240 = 4(12)/240 = 0.20”
Cp:isd<12”?Yes: C.=1.0 22. w = .5(62.4)(198.75/144) = 43.06*", P = 40,000#
C,: is temp. above 100°F? No: C, = 1.0 23. E"=E(C)
C,,: is beam laid flat like a plank? No: C, = 1.0 C,: is temp. above 100°F? No: Ct = 1.0
L=06 E” = E(1) = 1,600,000psi
Calculate F," = F, (C)HC )C(C, )(2.16)(A) = (F *)(C)) 24. A, = bwL*/384El + PL3/48El = 5(43.05)(4)(1728)/
= 1350(C(C )(2.16)(0.6) = 1749.6C, [384(1,600,000)(3726.56)] + 40,000(43)(1728)/
Assume C, =1 for now. [48(1,600,000)(3726.56)] = .015”
4. W, = 1.4 Wi, = 1.4(40%) = 56%, P, = 1.4P, 25.1s A, <A, ? Yes: 0.015” < 0.2”
= 1.4(40,000#) = 56,000# ANSWER: USE 14x 16

5. M, = wL?/8 + PL/4 = 56*(4)?/8 + 56,000(4/4)
=56,112#-f = 673,344#-in.

6. S, > M/F’ = 673,344#-in/1749.6psi = 384.86

7. Because of short length and heavy load, choose a bulky

17.2.2 Compression in Timber

Adjustment factors of sawn lumber:
size with a large area.

Try 12x16: A = 168.75in?, S = 421.88in3,

The equation for allowable compressive stress is:

| = 3164.06in* F/ =F.(C NCHCHC)HC)2.16)(1)
8.d/b=15.25/11.26=136<2...C =1 where the factors are described at the beginning of this
F,=F*(C) =1749.6(1) = 1749.6psi chapter. Remember that C, is not used with timber and
9. Check C, for size from step 7. therefore C, = 1. C, is described in Chapter 16.
C;1isd< 12”? No: C, = (12/15.25)"° = 0.974
. , , . F/=F.(C NCHCHC.)2.16)(N)
10. Adjust F,” for new C_: F,” = 1749.6(.974) = 1704.11psi
1. W,,, = (specific gravity)(62.4pcf)(A/144) = 5(62.4) Like the design of wood beams, the design of columns is an
(168.75/144) = 36.56%" iterative process based on an assumed trial size. In the case
12. W, = 1.4(36.56) = 51.19* of wood columns, a good starting pointis A . = P /F_* where
P, = 1.4(40,000) = 56,000# F/=Fr*C,
13. M, = wL?/8 + PL/4 = 51.19*1(4")?/8 + 56,000(4"/4) Design of wood columns:
=56,102.38#-f = 673,228.56#-in 1. Look up F_and E_, for the given species and grade of
14. f, =M /S = 673,228.56/421.88 = 1595.78psi lumber.
15. Is f, <F '? Yes: 1595.78psi < 1704.11psi 2. F/=F(C NC)CC,)2.16 (A) = F *(C,)
16. Is f,/F,” > 0.907 Yes: 1695.78/1704.11 = 0.94 ... okay for C,.: Is moisture content over 19%?
flexure No:C =10
17. F/ =F,(C)(2.16) (A) Yes: C_ =91
C,: Is temp. above 100°F? No: C, = 1.0 C,: Is temp. above 100°F?
F/=170(1)(2.16)(.6) = 220.32psi No:C,=1.0
18. V =wL/2 + P/2 =51.19(4/2) + 56,000/2 = 28,103.8# Yes: Determine C_from Table 16.3
19. f, = 3V/2A = 3(28,103.8)/[2(168.75)] = 249.81psi Assume C, = 1and C_ =1 for now.
20. Is f < F/? No — estimate A’eq = 3V/2F/ 3. Calculate L, = kL(12") in each direction. Effective Length
= 3(28,103.8)/[2(220.320] = 191.34in? Factor, k can be found in Figure 10.1 (k = 1.0 for pin—pin,

k = .8 for pin—fix, k = .65 for fix—fix).



Determine minimum width in each direction based on
L /d < 50.

d.,=L,/50andb =L, /50
4. A, =P/F*
Selectasize withA>A __,b>b . andd=d_ . NoteA,
bandd.
5. Use largerof L/dor L /b and L /d.
6. E ./ =E. . (C)1D)
C,: Is temp. above 100°F?
No:C =1.0

Yes: Determine C, from Table 16.3
7. F.=0.822(E_ /(L /d)?
8. F=F_/F*
9. ¢ = 0.8 for sawn lumber, ¢ = 0.9 for glu-lams
10. C, = (1 + F)/2c - [{(1 + F)/2¢)? — (F/c)]'?
1. F/=F_*(C,) = allowable compressive stress
12. f_ = P/A = actual compressive stress
13. Isf, < F/?
No — go back to step 4 and choose larger size.
14. 1s f/F/ > 0.907 If not, go back to step 4 and try smaller

Yes — step 15

size.

Example 17-3: Design a square No.1 Southern Pine
column 12’ long to carry a factored axial load of 50,000#

with pinned connections and a moisture content of 20%.

1. F,=825psiand E_, = 550,000psi.
2. F/=F(C)NCHCHC,)2.16 (A) = F *(C))
C,.: Is moisture content over 19%? Yes: C_ = .91
C,: Is temp. above 100°F? No: C, = 1.0
Assume C, = 1and C_= 1 for now.
F./ =825(.9MM)(1)(2.16)(.8) = 1297.3(C,)psi ...
F.* =12973psi

3. Le = kL(’IZ”/f) = 10(12’)(’]2”/f) = 144"
dmm = bmm =144"/50 = 2.88”

4. A, =P/F*=50000#/1297.3 = 38.54in?
Try 8x8: A =52.56in?, d =b =7.25", S = 63.51in%,
| = 230.23in*

5. Use larger of L /d = 1447/7.25 = 19.86

6. E, =E.C).5

C,: Is temp. above 100°F?  No: C, = 1.0
E...n =550,000(1)(1.5) = 825,000psi

7. Fop=0.822(E )L /d)? = 0.822(825,000)/19.862
= 1719.36psi

TIMBER DESIGN

8. F=F_/F.* =1719.36/1297.3 = 1.325
9. ¢ = 0.8 for sawn lumber, ¢ = 0.9 for glu-lams
10. C, = (1 + F)/2c - [((1 + F)/2¢)? — (F/c)V? = 0.778
1. F/=F_*(C,) = allowable compressive stress
=1297.3(0.778) = 1009.3psi
12. f_ = P/A = actual compressive stress = 50,000#/52.56in?
=951.29psi
13. Isf, < F/? Yes: 951.29psi < 1009.3psi
14. 1s f/F/ 2 0.90? Yes: 951.29/1009.3 = 0.94
ANSWER: USE 8x8

17.2.3 Bearing in Timber:

Bearing in timber uses the same method and value for
C, as bearing in dimensional lumber. See section 16.2.3.
Remember to use timber values for F_ and C .

17.2.4 Tension in Timber:

Tension in timber uses the same method as tension in
dimensional lumber. See section 16.2.4. Remember to use
timber values for F and C... Also remember that C_ = 1 and C,
=1 for timber in tension.

17.2.5 Combined Stresses in Timber:

Combined flexure and axial compression:
[fof FSP + A AR = B/ Fee)l + f /AR, T = (/Fee,) — (y/

FeP<1.0

Where
f.<F., =0.822 E_ “/(L,/d,)? for edge-wise or biaxial
bending (d, = wide face)

AND

F <F.,=0822E
bending (d, = narrow face)

AND
f., <F,=120E  /R?

"/(L,,/d,)? for flatwise or biaxial

min

Example 17-4: A 6x8 column of structural Select Red
Oak is 20’ long with fixed ends and has a factored axial
load of 20,000#, a factored M, of 800 #-in and M of

400 #-in. Is this column adequate?
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1. Find values for species and grade:
F, = 1350psi, F, = 875psi, E_, = 440,000psi

2. Find section properties: A = 39.88in?, S = 48.18in?,
S, = 36.55in®
3' Flnd fc’ fb‘\’ be’ FC/’ l:CE‘I' FCEQ’Flﬂ,’ FbZ/’ FbE

f, = P/A =20000/39.88 = 501.50psi
f,; = Mx/S = 800/48.18 = 21.89psi
f,, = My/S = 400/36.55 = 10.94psi

4. Find F..,, F

CE1" * CE2"

E.. = 440,000(1.5) = 660,000psi
L, = 20ft(12”) = 240"

L, = kL = 0.65(240”) = 156"

L /d, = 156/7.5 = 20.8

F.g = 0.822(660,000)/20.8? = 1253.98psi

CE1
Fee, = 12563.98psi > 501.50psi = f_ ... okay
L /d, = 156/5.5 = 28.36
Fee, = 0.822(660,000)/28.36% = 674.36psi
Fee, = 674.36psi > 501.50psi = f_ ... okay
5. Find C,:

F/=F(CIC2.16)A = 875(1)(2.16)(.8)C, = 1612C,

Fee,/F.* = 1253.98/1512 = 0.829
C, = 0623
Fee,/Fo* = 674.36/1512 = 0.446

C,,=0.394
Use lesser value of C, = 0.394
6. Check compression:

F./ =0.394(1512) = 596.60psi > 501.50 = f_ ... okay for
compression.

7. FindC_ F,/, F,/

F,/ = F,(C)(C/)(2.16)A = 1350(1)(1)(2.16)(.8) C,
=2332.8C,

C, = 1becaused/d,=75/55=136<2

F..” = (1)(2332.8) = 2332.8psi > 21.89psi = f,, ... okay
F., = (1)(23328) = 2332.8psi > 10.94psi = f,, ... okay

8. F=lesserof F andF ., Foc = 2332.8psi

Summary of values found

f =501.50psi
F =596.60psi
F,,’ = 2332.8psi

f,, = 21.89psi
F.., =1253.98psi
F,, =2332.8psi

f,, =10.94psi
F.., = 674.36psi
F,, = 2332.8psi

9. [f/F/ PP+ 1 AR = (F/F I+ T AR = (/R
— (f, /F <10
[501.50/596.60]% + 21.89/{2332.8[1 -
(501.50/1253.98)] + 10.94/{2332.8[1 - 501.50/674.36
-(21.89/2332.8)?] = 0.707 + 0.016 + 0.018
=0.741 < 1.0 ... okay

Combined axial tension and flexure:
T/F+ 1 /F* <1.0 Where F * = F_ times all factors
but C,

Example 17-5: Check the adequacy of a 6x 10 timber
beam with L =16/, L, = 8', one concentrated load at
midspan of 3000#, a tension load of 1500#, structural
Select Northern Red Oak.

F, = 1600psi, F, = 950psi, F, = 205psi,
E = 1300000psi, E_, =470000psi, G = .68

6x10: A=50.88,S =78.43,1=362.75
1. Check flexure:

F,/ = F,(C,)(C)(C(C,2.16)(2) = 1600(1)(1)(C,)(1)(2.16)
(0.8) = 2764.8C,

C:d/b=9.25/55=168<2..C =1

g
F./ =2764.8(1) = 2764 .8psi
weight of beam = 1.2(.68)(62.4)(50.88/144) = 17.99*"

M = wL?/8 + PL/4 = 17.99(16)%(12)/8 + 3000(16)(12)/4
= 150908.16#-in

S, =78.43

f, = M/S = 150908.16/78.43 = 1924.11< 2748.21 ...
okay for flexure



Check tension:
F/ =950(2.16)(0.8) = 1231.2psi

f, = P/A =15600/50.88 = 29.48 < 1231.2 psi ... okay for

tension
Check flexure and tension combined:

f/F, +f/F.* = 29.48/1231.2 + 1924.11/ 2764.8 = 0.72
< 1.0 ... okay

Check shear:
F/=F,(C )C)2.16)(A) = 205(1)(1)(2.16)(0.8) = 354.24

V =17.99(16)/2 + 3000/2 = 1643.92#

fv = 3V/2A = 3(1643.92)/[2(5.5)(9.25)]
=48.47 < 354.24 ... okay for shear

Check deflection:
A, =1/240 = 16(12)/240 = 0.8”
E” = E(C_)(C) = 1,300,000(1)(1) = 1,300,000 psi
| = bh3/12 = 5.5(9.25)%/12 = 363

unfactored load: P = 3000#, W = .68(62.4)(5.5)
(9.25)/144 = 14.99#/f

A_. =bwl/384El + PL3/48El = 5(14.99)
(16)*(1728)/384(1300000)(363) +
3000(16)3(1728)/48(1300000)(363) = 0.98 > 0.8 no
good.

TIMBER DESIGN

Practice Exercises:

17-1: Design the most efficient 20” long timber beam of No.
2 Douglas Fir Larch 8 x_ with a uniform dead load, w,, = 30*"
and a uniform live load w = 640*" with full lateral bracing.

17-2: Design the most efficient, 16” long timber beam of No.
1 Douglas Fir Larch 6 x_ with a uniform dead load, w, = 20*
and a uniform live load w_= 600%" with lateral bracing at
4o.c.

17-3: Design a square select structural DFL column 16”
long to carry a factored axial load of 80,000# with fixed
connections and a moisture content of 16%.

17-4: Design a 6 x_ No. 2 Southern Pine column 12’ long
to carry a factored axial load of 90,000# with pinned
connections and bracing at 4’ from top in the weak direction.

17-5: A 6x 10 column of select structural DFL is 20" long with
fixed ends and has a factored axial load of 50000#, a factored
M, of 400 #-in and M of 200 #-in. Is this column adequate?

17-6: Check the adequacy of an 8 x 16 timber beam with

L =24’ L, =8’ two concentrated loads of 3000# each at
8’0.c. and, a tension load of 1500#, structural Select Northern
Red Oak.
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eighteen

Glue-Laminated Lumber

Design

Chapter 18 explains the LRFD method for analysis and design
of glue-laminated lumber (glu-lams) using factors derived

by the American Wood Council (AWC). The LRFD (Load
Resistance Factor Design) Method uses load factors to create
an ultimate or factored load that is the design load. It also
uses Resistance Factors (¢). To review finding ultimate loads,
see Chapter 16.

Glu-lams are specified by flexural stress and Modulus of
Elasticity when used for beams. For example, a 24F-1.8E
specifies F, = 2400psi and E = 1,800,000psi or 1.8 x 10°psi.
Designations for glu-lams used primarily in tension or
compression consist of a combination symbol followed
by species designation and grade. For example, 47/SP/
N2M12 refers to a glu-lam with a combination number of 47,
Southern Pine species, and a grade designation of N2M12.
Softwood glue-lams used in compression can be found in
Table 5B of the NDS Supplement. Sample values for problem
solving are given in this text in Table A2.8.

18.1 Adjustment Factors for
Glu-Lams

Glu-lams can be manufactured to specific sizes and shapes
using lamination thicknesses that can vary from .125” to

1.5”. When using the section properties chart for glu-lams,
the nominal sizes are the actual sizes for design purposes.
The charts list standard sizes for Western species and for
Southern Pine, but again, glu-lams can be custom made to
any size.

Note: Only the lesser value of C and C, is applied, NOT
BOTH!

Allowable stresses, F’, in Table 18.1 are found by multiplying
the design values listed for a given species of wood from
Table 6A and 6B of the National Design Specifications
Supplement by the applicable factors. Table A2.8 contains
sample values for use with examples and exercises in this
book.

Values for A, and C, can be found in Tables 16.2 and
16.3, respectively.

Note that values for C, C, and C, are found using
the same method as with dimensional lumber. See
Chapter 16.

There is no value of C_ or C, for glu-lams.

C,, is the Wet Service Factor. In glu-lams, C_ is used when
the moisture content is greater than 16%.



Table 18.1: Adjustment factors for glu-lams, with permission from the American Wood Council

GLUE-LAMINATED LUMBER DESIGN

ADJUSTMENT FACTORS FOR GLU-LAMS
w S
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Ftl = Ft X 2.16 A
C, Cn
E=F; X Cp 2.16 A
F.=F. x| C | Cnm 216 | A
C C
Feoi'=Fg, X : " Ch 1.5
Fu' = Fy x| @ | Cn 216 | A
EI = E X Cl m
Eminl = ErLin X C! m 1.5
Table 18.2: C_Wet Service Factor for glu-lams, with permission from the d = depth of bending member in inches
American Wood Council
b = width of bending member in inches. When the
Cm Wet Service Factor for Glu-Lams width is made of multiple pieces, b = width of widest
Cm = 1.0 if moisture content is < 16%. piece in inches and < 10.75
DeSign Values Cm x = 20 for Southern Pine
Fp, Fi 0.8 x = 10 for all other species.
Feo 0.73 C,, is the Flat Use Factor. In glu-lams, C, is used if the
laminations are vertical and the depth of the beam, dy < 12”.
Fy 0.875
C,, = (12/dy)"®
Fer 0.53
C. is the curvature factor.
Es Emin 0.833
C,=1-2000(t/R)*{/eq

C, is the Volume Factor. It is only used with glu-lams.

C, = (21/L)"X(12/d)"*(5.125/b)"* < 1.0

Where:

L = length in feet of bending member between points

of zero moment.

Where:

t = thickness of laminations in inches

R = radius of curvature of the inside face of the

member in inches.
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t/R < 1/100 for hardwoods and Southern Pine

t/R < 1/125 for other softwoods

For tapered and other non-prismatic members, there are
also factors C,, the stress interaction factor and C , the shear
reduction factor that are not addressed in this book.

18.2 Design of Glu-Lam
Components

Component design using glue-laminated wood follows the
same basic method of designing any wood component. Find
the allowable stress using the design values and adjustment
factors given for each condition and then compare the allowable
stress to the actual stress. If the actual stress is greater than
the allowable stress, the component needs to be resized.

18.2.1 Design of Glu-Lam Beams

Below is a step-by-step method for the design of beams
using glue-laminated wood.
1. Using Table 5A of NDS Supplement, or Table A2.8,
identify F, F , E, E_. and specific gravity for grade.
2. Assume FACTORED beam weight = W, = L{10)*f
3. F,/ = F (C HUCHCHC)(C,)HC)(2.16)(A)
C,: Is moisture content over 16%?
No:C =10
Yes: C_=.80
C,: Is temp. above 100°F?
No: C,=1.0
Yes: Determine C, from Table 16.3

m

C,, Are laminations vertical and depth, dy < 12”7
No:C,, =1.0
Yes: C,, = (12/dy)'"”®

C.=1-2000(t/R)?

A Is there a live load or a factored load stated in the
problem?
No: A =0.6
Yes: A =0.8

Calculate F," = F_(C_J(C)C )C )NC, )C)(2.16)(A) = (F,*)
(C)C)

Assume C, and C = 1 for now

4. Find factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, = Wi, + 1.2(W, ) + 1.6(W,,) OR if NO LIVE
LOAD: W, =W, + 1.4(W, )

P,=1.2P, + 1.6 P_ORif NO LIVE LOAD: P, = 1.4P,

5. Find maximum moment (M). Remember to multiply by
12" to obtain an answer in #-in.
6.S,,>M/F/
7. Choose size based on S find: A, S, and |, from
Table A2.6 for Southern Pine and Table A2.7 for Western
species.
8. C_: find d/b and determine if C_ = 1. If not, calculate C,
using the steps described in Chapter 16.
9. C, = (21/L)"X(12/d)"*(5.125/b)"* < 1.0
X =10 (not Southern Pine) X = 20 (Southern Pine)
10. F” = [F *llesser of (C) or C ] where F_* is from step 3.
11. Find actual weight of beam: W, = (specific gravity)
(62.4pcf)(A/144)#1
12. Find factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:
W, =1.2(W,,, + W, ) + 1.6(W ) ORif NO LIVE LOAD:
W, = 1.4(W,,, + W)

P,=1.2P, + 1.6 P_ORif NO LIVE LOAD: P, = 1.4P,

13. Find maximum moment (M). Remember to multiply by
12" to obtain an answer in #-in.
14. f, = M/S M from step 13, S from step 7.
15. Isf <F?
Yes — step 9
No — estimate S, = M/F " and go back to step 3 and
try larger size.
16. Is f,/F, 2 0.90?
Yes — step 10
No — estimate S, = M/F " and go back to step 3 and
try smaller size.
17. F/ =F,(C )C)(2.16) (A)
C,.: Is moisture content over 16%?
No:C =10
Yes: C_=.875
C,: Is temp. above 100°F?



No:C =1.0
Yes: Determine C, from Table 16.3
18. Determine V using equations for V  from Table A1.2.
19. f, = 3V/2A
20. Isf <F'?
Yes — step 14
No — estimate S = M/F,’ and go back to step 10 and
try larger size.
21. A, = L(1277)/240
22. Unfactored loads: use W,,, from step 11, loads are given
23. E" = E(C)(C)
C,: is moisture content over 16%?
No:C =10
Yes: C_ = .833
Ct: is temp. above 100°F?
No: C,=1.0
Yes: Determine C, from Table 16.3
24. Find maximum deflection = A, Remember to multiply by
1728in%/ft%.
25.1sA <A ?

act — Tall®
Yes — done.
No —find Il  =A _ (I fromstep 3)/A,,. Select final size
req act ‘' x all
based on Ireq.

Example 18-1: Design a 12.25” wide Douglas Fir, 24F-1.8E
glu-lam, spanning 80’ with concentrated live loads of 3000#
and concentrated dead loads of 4000# spaced 10'0.c.

The beam is curved such that the midpoint of the beam is 8’
above the supports. The laminations are 0.75” thick. Blocking
occurs at points of load and at ends.

1. F, = 2400psi, F, = 265psi, E = 1,800,000psi,
E..=950,000psi
2. Assume factored beam weight = W, = 80"(10)*"
= 800*"
3. F,/ = F(C )ICHC)C)(C, )Cc)(2.16)(A)
C,. Is moisture content over 16%? No: C_ = 1.0
C.: Is temp. above 100°F? No: C, = 1.0
C,,: Are laminations vertical and depth, dy < 12”? No:
C,=10
C,=1-2000(t/R)*: find R

GLUE-LAMINATED LUMBER DESIGN

18.1
Radius of curvature
Using the Pythagorean Theorem:
40% + (R - 8)? = R?
40?2 + R? - 16R + 64 = R?
R = (1600 + 64)/16 = 104’ = 1248”
t/R = 0.75/1248 = .0006 < 1/125 = .008 ... okay
C.=1-2000(.0006)* = 0.999

A: Is there a live load or a factored load stated in the
problem? Yes: A = 0.8

F,/ = F,(C,)(C)(C))(C)(C,)(C_)2.16)(%) = 2400(1)(1)(1)
(.999)(2.16)(.8) = (F,*)(C,)(C,) = 4143.05(C )(C,)

V)

4. Find factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, = W,g,, = 800*"
P, = 1.2(4000#) + 1.6 (3000#) = 9600#

5. M__ =wL?8 + PL =800%(80")?/8 + 9600#(80")

ma

= 1,408,000#-f = 16,896,000#-in
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6.
7.

10.

1.

12.

13.

14.

15.

16.

7A.

8A.

9A.

10A.

TA.

12A.

Sieq > M/F,” = 16,896,000#-in/4143.05psi = 4078.15in°
Try 12.25”x 45" A = 551.3in?, S = 4134in? and
| =93020in* from Table A2.7.

. d/b = 45/12.25 = 3.67 Condition states C_ = 1 if

c) 2<d/b <4 AND edges are secured by blocking or
X-bracing. Therefore, C| =1

. C, = (21/L)"*(12/d)"*(5.125/b)"* = (21/80)"1°(12/45)V1°(5.12

5/12.25)"1° = 0.703 < 1.0

X =10 (not Southern Pine)
F.” = [F *lllesser of (C ) or C | = 4143.05(0.703)
=2912.56psi
W, = (specific gravity)(62.4pcf)(A/144)* = (.5)(62.4)
(551.3/144) = 119.45*"
Find factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, = 1.2(119.45%) = 143.34
P, = 1.2(40004#) + 1.6 (3000#) = 9600#

M_ . =wL?8 + PL = 143.34%1(80")%/8 + 9600#(80")
= 882,672#-f = 10,592,064#-in

f, = M/S =10,592,064/4134 = 2562.18psi

Is f, < F,’? Yes: 2662.18psi < 2912.56psi

Is f/F,”>=0.90?

No — 2562.18/2912.56 = 0.88 < 0.9 try smaller size:

Try 12.25”x43.6”: A =532.9in?, S = 3863in? and

| =84030in*

d/b = 43.5/12.25 = 3.55 Condition states C_ = 1 if ¢)

2 <d/b <4 AND edges are secured by blocking or
X-bracing. Therefore, C, =1

C, = (21/L)"X(12/d)"*(5.125/b)""* = (21/80)""°(12/43.5)"1°
(5.125/12.25)"1° = 0.705 < 1.0

F. =[F*lllesserof (C) or C | = 4143.05(0.705)
=2920.51psi

W,,, = (specific gravity)(62.4pcf)(A/144)"

= (.5)(62.4)(532.9/144) = 115.46*"

Find factored loads using the six equations at the
beginning of this chapter. If there are only dead and live
loads:

W, = 1.2(115.46%") = 138.55

P, = 1.2(40004#) + 1.6 (3000#) = 9600#

18A. M, =wL¥8 + PL = 143.34%(80")%/8 + 9600#(80")
= 878,840#-f = 10,546,080#-in

f, = M/S = 10,546,080/3863 = 2730.02psi

Is f, <F.? Yes — 2730.02psi < 2920.57psi

Is f,/F,”=0.90? No — 2730.02/2920.51
=0.93>0.9 ... okay

Note: 12.25x 42 also works and is more efficient for

14A.
15A.
16A.

flexure.
16. F/ = F,(C )C)(2.16) (A)
C,.: Is moisture content over 16%? No: C_ = 1.0
C,: Is temp. above 100°F? No: C, = 1.0
F/ = 265psi(1)(1)(2.16)(.8) = 4567.92psi
17. V. = wL/2 + 7P/2 = 115.46%1(807/2) + 7(9600#)/2
= 38,218.4#
18. f, = 3V/2A = 3(38,218.4)/[2(532.9)] = 107.58psi
19. Isf, < F'? Yes: 107.68psi < 457.92psi
20. A,, = L(1277)/240 = 80°(12)/240 = 4”
21. w = 115.46%, P = 4000# + 3000# = 7000#
22. B’ = E(C_)(C) = 1,800,000psi(1)(1) = 1,800,000psi
C,.: Is moisture content over 16%? No: C_ = 1.0
C,: Is temp. above 100°F? No: C, = 1.0
23. A, = BwL*/384El + 79PL3/768EI = 5(115.46)(80°%)
(1728in%/11%)/[384(1,800,000)(84030)] + 79(7000)(80°%)
(1728)/[768(1,800,000)(84030)] = 0.703 + 4.212
=4.915"{/eq
24.1s A, <A, ? No—findl  =A (I from step 3)/A
=4.915(84030)/4 = 103251.86in*
USE 12.25x48: 1 = 112,900in*

all

Example 18-2: Design a 10.5” wide Southern Pine, 28F-2.1E

SP glu-lam, spanning 40’ with a dead load of 1500#*,

There is no sheathing and blocking is at 8’0.c. The beam is

subjected to 110°F average temperature and 19% water content.

1. F, =2800psi, F, = 300psi, E =2,100,000psi,
E,.., = 1.110,000psi, G = 0.55
2. Assume FACTORED beam weight = W, = 407(10)#"
= 400%
3. B = FCHCHCHCHCNC)2.16)(N)
C,,: Is moisture content over 16%? Yes: C = .80
C,: Is temp. above 100°F? Yes: From Table 16.3,
C,=07
C,: Are laminations vertical and depth, dy < 12”7
No:C, =10



C.=1

A: Is there a live load or a factored load stated in the
problem? No: A = 0.6

F. = F,(CUCHC NHC)C,)(C)2.16)(A) = 2800(.8)(.7)(1)
(1)(2.16)(.6) = 2032.13psi (F,*)(C )(C) = 2032.13(C))
(C)

4. Find factored loads using the six equations at the
beginning of this chapter.

1.4(1500 + 400) = 2660#"

5. M_, =wL?/8 =2660%1(40")?/8 = 532,000#-f
= 6,384,000#-in
6. S, > M/F, =6,384,000#-in/2032.13psi = 3141.53in°
7. Try 10.5”x42.625”: A = 447.6in?, S_= 3180in% and
| =67760in*
8. d/b = 42.625/10.5 = 4.06 There is no sheathing therefore
C_ must be calculated.
L, =8"=96"

L/d = 96/42.625 = 2.25 < 7
L, = 2.06L, = 2.06(96) = 197.76

R,? = L.(d)/b? = 197.76(42.625)/(10.5?)
=76.46 < 2500 ... okay

E_7=E (C)C)(1.5) =1,110,000(.833)(0.9)(1.5)

min min m t

= 1,248,250.5psi

F.. = 1.2(E,,/)/R.2 = 1.2(1,248,250.5)/76.46
= 19,590.64psi

F = F,./F,* = 19,5690.64/2032.13 = 9.64

C = (1 +F)/1.9) = I((1 + F)/1.9)? - (F/0.95)]
=10.64/1.9 — V[((10.64)/1.9)2 - (9.64/0.95)] = 0.994

9. Cv = (21/L)"X(12/d)"%(5.125/b)""* = (21/40)"2°(12/42.625)"2%(
5.125/10.5)720 = 0.877 < 1.0
X =20 (Southern Pine)

10. F,/ = [F *] llesser of (C ) or Cv] = 2032.13(0.877)
= 1782.18psi

1. Wy, = (specific gravity)(62.4pcf)(A/144)"f = (.55)(62.4)
(447.6/144) = 106.68*

12. W, = 1.4(1500 + 106.68"") = 2249.35%"

13. M, = WL¥/8 = 2249.35%(40")?/8 = 449,870#-f
= 5,398,440#-in

14. f, = M/S = 5,398,440/3180 = 1697.62psi

GLUE-LAMINATED LUMBER DESIGN

15. Is f, <F '? Yes: 1697.62psi < 1782.18psi
16. Is f/F, > 0.90?
Yes — 1697.62/1782.18 = 0.95 > 0.9 ... okay
17. F/ = F,(C )C)(2.16) (A)
C..: Is moisture content over 16%? Yes: C_ = 0.875
C,: Is temp. above 100°F? Yes: C, = 0.7
F, = 300psi(0.875)(0.7)(2.16)(.6) = 238.14psi
18. V = wL/2 = 2249.35%(407/2) = 44,987+
19. f, = 3V/2A = 3(44,987)/12(447.6)] = 150.76psi
20. Isf <F'? Yes: 150.76psi < 238.14psi
21. A, = L(1271/240 = 40°(12)/240 = 2”
22. w = 1500 + 106.68 = 1606.68*"
23. B’ = E(C )(C) = 2,100,000psi(0.833)(0.9) = 1,574,370psi
C,,: Is moisture content over 16%? Yes: C_ = 0.833
C,: Is temp. above 100°F? Yes: C = 0.9
24. A, = 5wL*/384El = 5(1606.68)(40)(1728in%/ft%)/
[384(1,574,370)(67760)] = 0.868”
25.IsA, <A, ? Yes — 0.868” < 27
USE: 10.56x42.625

18.2.2 Compression in Glu-Lams

Using adjustment factors for glu-lams, the equation for

allowable compressive stress is:

F/ =F.(C.)(C)(C,)(2.16)(A)

C

where C_ is described at the beginning of this chapter and C,
and C, are described in Chapter 16.

Like the design of wood beams, the design of columns
is an iterative process based on an assumed trial size. In the
case of wood columns, a good starting pointis A =P /F*
where F/ = F *C,

Design of wood columns:
1. Look up F_and E_, for the given species and grade of
lumber.
2. F/=F(C NC)C.)2.16 (A) = F *(C,)
C,: Is moisture content over 19%?
No:C =10
Yes: C =.73
C,: Is temp. above 100°F?
No:C =10
Yes: Determine C_from Table 16.3
Assume C, = 1 for now.
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3. Calculate L, = kL(12") in each direction. Effective Length

Factor, k, can be found in Figure 10.1 (k = 1.0 for pin—pin,
k = 0.8 for pin—fix, k = 0.65 for fix—fix). Determine min.
width in each direction based on L /d < 50.d_, =L_/50
andb, . =L, /50
4. A, =PIF*
Select a size with A > A
Note A, b and d.
5. Use larger of L /d or Le/b and L_/d.
6.E  =E_(C)C)(15)
C,: Is temp. above 100°F?
No:C,=1.0
Yes: Determine C, from Table 16.3
C,: s moisture content over 19%?

bxzb . ,andd>d__ .

trial’

No:C =10

Yes: C_ = .833
7. F.=0.822(E_ ")/(L_/d)?
8. F=F_/F*

9. ¢ = 0.8 for sawn lumber, ¢ = 0.9 for glu-lams
10. C, = (1 + F)/2c — [{(1 + F)/2¢)? — (F/c)]'?
1. F/=F_*(C,) = allowable compressive stress
12. f, = P/A = actual compressive stress
13. Isf, < F/?
Yes — step 15
No — go back to step 4 and choose larger size.
14. Is f/F/>0.907 If not, go back to step 4 and try smaller

size.

Example 18-3: Design a 10.5” wide, 48/SP/N2D12 column,
20’ long, to carry a factored axial load of 50,000# with
pinned connections and a moisture content of 15%.

1. F,=2200psiand E_, =900,000psi
2. F/=F (CCHCL2.16 (M) = Fc*(Cy) = 2200(1)(1)(2.16)(.8)
(C,) = 3801.6(C,)
C,: Is moisture content over 16%? No: C_ = 1.0
C,: Is temp. above 100°F? No: C, = 1.0
3. L, = kL(127) = 1(20")(12"") = 240”
d.,=Db., =L/50=240/50 = 4.8”

4. A, = PIF.* = 50,0004/3801.6 = 13.15 Try 10.5”x 11:
A=1155b=10.5,d =11

5. L /b =240/10.5 = 22.86

6. €, =E_.(C)C_)15)=900000psi(1)(1)1.5)

min

= 1,350,000psi

C,: Is temp. above 100°F? No: C = 1.0
C,.: Is moisture content over 16%? No: C_ = 1.0
7. F.=0.822(E _ /)/(L/d)* = 0.822(1,350,000)/22.862
= 2123.50psi
8. F=F_/F *=2123.60/3801.6 = 0.56
9. ¢ = 0.9 for glu-lams
10. C, = (1 + F)/2c - [((1 + F)/2¢)? - (F/c)]"?
= (1.56)/1.8 - [((1.56)/1.8)? - (.56/.9)]'"? = 0.508
11. F/=F_*(C,) = 3801.6(0.508) = 1931.21psi
12. f, = P/A =50,000/115.5 = 432.9psi
13. Isf, < F/? Yes — 432.9 < 1931.21psi
14. Isf /F/>0.90? No: 432.9/1931.2 = .224 but 10.5x 11 is
the smallest available 10.5” wide size.
ANSWER: USE 10.56”%x 11"

min

18.2.3 Bearing in Glu-Lams

Bearing in glu-lams uses the same method and value for

C, as bearing dimensional lumber except that there is no C,
factor. See section 16.2.3. Remember to use glu-lam values
forF  andC_.

Fe, = Fe, (C,)(C(CD)(1.5)

C, = (L, +0.375)/L,
C,is found in Table 16.3

C_, = 0.53 if the moisture content > 16% (see
Table 18.2)

Example 18-4: Check the bearing in a 10.75x30 16F-1.3E
glu-lam beam that supports a 5.125x 18 16F-1.3E, beam
with a factored load of 20,000# at the bearing point.

C,=1C=1
L, = 5.125”
C, = (L, + 0.375)/L, = (5.125 + 0.375)/5.125 = 1.073

F. = F (C)CH(Ch)(1.5) = 315psi(1)(1)(1.073)(1.5)
=506.99psi

f,, = P/A =20,000#/(5.125(10.75))
= 363.02psi < 506.99psi ... okay



18.2.4 Tension in Glu-Lams

Tension in glu-lams uses the same method as tension in
dimensional lumber except that there is no C, or C_ factor. See
section 16.2.4. Remember to use glu-lam values for Fc, and
C

me

F”=F(C )C)(2.16)(A) where

t ttTm t

A is found in Table 16.2
C, is found in Table 16.3

C,, = 0.8 if the moisture content > 16%
(see Table 18.2)

Example 18-5: Design a 5/DF/L1 beam, 5.125” wide, with
a factored tension load of 150,000# and a moisture
content of 18%.

F, = 1600psi

C =0.8

m

F/=F,(C )(C)(2.16)(A) = 1600(0.8)(1)(2.16)(0.8)
= 2211.84psi

Required Area = A = P/F/ = 150,000#/2211.84psi
= 67.82in?

USE: 5.125”x 13.5”: A = 69.19in?

18.2.5 Combined Stresses in
Glu-Lams

The combined stresses formulae below apply to all types of
wood: dimensional lumber, timber and glue-laminated lumber.

Combined flexure and axial compression:

[f JF /12 + £ /(F, /11 = (fo/F o )] + T,/(F,,/11 — (fc/F
(f, /F, 2 < 1.0

CEZ) -

Where
f, < Fo, = 0.822E _ “/(Le /d,)* for edge-wise or biaxial
bending (d, = wide face)

AND
F, <Fe,=0822E
bending (d, = narrow face)

'/(Lez/dz)z for flatwise or biaxial

n

GLUE-LAMINATED LUMBER DESIGN

AND
f,<F.=120E_ /R?

Example 18-6: A 17/HF/L1D, 12.25"x 18" column is 20’ long
with fixed ends and has a factored axial load of 500,000#,
a factored M, of 80,000 #-in and M, of 60,000 #-in.

Is this column adequate?

1. Find values for species and grade:
F.. = 1900psi, F, =2000psi, F = 1750,
E... =900,000psi
2. Find section properties: A = 220.5in?, S = 661.5in°,
Sv =450.2in®
3. Find: f., f... T, F Fe FeenFots Ful Foe

CE1" * CE2'

f. = P/A = 500,000/220.5 = 2267.57psi
f,, = M,/S, = 80,000/661.5 = 12.09psi
f,, = M /S, = 60,000/450.2 = 133.28psi

4. Find Fg, Fegyt

)
E..” = 900,000(1.5) = 1,350,000psi
L, = 20°(12") = 240”

L, = KL = 0.65(240) = 156

L/d, = 156/18 = 8.67

F.g, = 0.822(1.350,000)/8.67% = 14,774 11psi

CE1

F..,=14,774.11 > 2267.57 = fc ... okay

CE1

Le/d, = 156/12.25 = 12.73
Fee, = 0.822(1.350,000)/12.73% = 6842.72
Fee, = 684272 > 2267.57 = f_ ... okay

5. Find C,:

F/=F.(C_)(C)(CK.0 = 1750(2.16)(.8)C, = 3024C,

c Cc m

Fee/F* =14,77411/3024 = 4.89

CE1
C = 0.9 for glu-lams

Co, =1 +F)/2c = [((1 + F)/2¢)* - (F/c)]V2 = (5.89)/1.8 -
[(5.89/1.8)2 — (4.89/.9)]"2 = 0.976

Fee/Fo* =6842.72/3024 = 2.26

CE2

C,, = 0.934

Use lesser value of C, = 0.934
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6. Check compression: Example 18-7: Check the adequacy of a 17/HF/L1D,
12.25x54 glue-laminated beam with L=80', L =8,
factored concentrated loads at 8ft o.c. of 3000#, and a
tension load of 15000#.

Fc” = 0.934(3024) = 2825.31psi > 2267.57psi = fc ...
okay for compression.
7. FindC, F / F."
F.. = 1900psi, F, = 1400psi, F = 215psi,

F,. = F,,(C)(C)(C(C)C,)(CIK DA = 1900(2.16)(.8) E = 1700,000p8i, E. = 900,000, G = 43

C, =3283.2CC,

. — N2 — in3 — n4
L, = 1.84L, (equal end moments) = 1.84(240) = 441.6 12.25x54: A = 661.5in*, S = 5954in”, | = 160, 700in

1. Check flexure:

R, 2= L.d/d,? = 4416 (18)/12.252 = 52.97
F,/ = F,(C,)(C)(C,)(C)(Cfu)(Ca)(2.16)(%) = 1900(1)(1)(C,)

F.e = 1.2(1,350,000)/52.97 = 30,583.39psi (C)(M(1)(2.16)(0.8) = 3283.3C Cv
F,., /F,* = 30,583.39/3283.2 = 9.32 C.: d/b =54/12.25 = 4.41 (condition d)
Full sheathing is not indicated in the problem, therefore
C,=0.988 C, must be calculated:
Cv = (21/20)"'°(12/12.25)"1°(5.125/18)"1° = 0.884 L, =1.84L, = 1.84(8")(12"/') = 176.64
F,/ = .884(3283.2) = 2903.77psi > 12.09psi R,? = Le(d)/b® = 176.64(54)/(12.25%) = 63.56
=, ... okay E../ = 900,000psi(1.5) = 1,350,000psi
F.,’ = F.,,(C.)(C)(C)C)C,)C KA =2000(2.16)(.8) FE=12E_//R>2=12(1350,000/63.56
C,=3456CC,

= 25,487.73psi

2 _ 2 _ 2
Ryo? = L.d,/d;? = 441.6 (12.25)/18% = 16.70 F,E/F* = 25,487.73/3283.3 = 7.76

Foe, = 1.2(1.350,000)/16.7 = 97,027.5Tpsi C.= (1 +F)/1.9) = I((1 + F)1.97 - (F/0.95)] = 8.76/1.9

F.c, /F.* =97,027.51/3456 = 28.08 - I((8.76)/1.9)” — (7.76/0.95)] = 0.993
C,=.996 C, = [21(12)(5.125)/(80(12.25)(54))]""® = 0.690
C, = (21/20)71°(12/18)V1°(5.125/12.25)V1° = 0.884 Use lesser of C and C_
F,, = 0.884(3456) = 3056.6 > 133.28 = f , ... okay F.”=0.69(3283.3) = 2265.48
8. F=lesserof F_ andF _, F.c = 30,683.39psi weight of beam = 1.2(.43)(62.4)(661.5/144) = 147.91%1

M = W|—2/8 + 5PL/4 = 147'91#”(80,)2(12,,/{)/8
+ 5(3000#)(80)(12"/4 = 5019936#-in

Summary of values found

f.=2267.57psi f,, = 120.94psi f,, = 133.28psi
Fc’ = 2825.31psi F.,=14,774.11psi  F_, =6842.72psi S, = 5954in°
F,,’ =2903.77psi F,,’ = 3056.6psi F,, = 30,583.39psi

f, = M/S = 5019936#-in/5954in® = 843.12psi <
2265.48psi = F," ... okay for flexure

9. [fc/Fe’l? + f, /A, /11 = (fe/F oo I} + f,/F /11 = (fe/Fo,) -
(f/F. ) <1.0 2. Check tension:
[2267.57/2825.31]? + 120.94/2903.77[1
- (2267.57/14,774.11)] + 133.28/3056.6[1 —
2267.57/6842.72 — 120.94/30,683.39] =0.769 < 1.0 ...
okay

FI' = Ft(Cm)Ct)(2.16)(M = 1400(1)(1)(2.16)(0.8)
=2419.2psi

ft = P/A = 15,000#/661.5in? = 22.68psi < 2419.2 psi ...
Combined axial tension and flexure: okay for tension

f/F +1/F.* < 1.0 Where F,* = F_ times all factors but C,



3. Check flexure and tension combined:

f/F, + 1 /F.* =22.68/2419.2 + 843.12/ 2265.48 = 0.38
< 1.0 ... okay

4. Check shear:

F/=F,(C.) (C)2.16)(A) = 215(1)(1)(2.16)(0.8)
= 371.52psi

V =147.91(80)/2 + 3000(9)/2 = 19,416.4#

f, =3V/2A = 3(19,416.4#)/[2(661.5in?)] = 44.03psi
< 37152 = F/ ... okay for shear

5. Check deflection:
A, =L1/240 = 16(80)/240 = 4”7
E’=E(C,) (C) =1,700,000(1)(1) = 1,700,000 psi
| =160,700in*

unfactored load: P = 3000#( factoring unknown),
w = .43(62.4)(661.5)/144 = 123.26%

GLUE-LAMINATED LUMBER DESIGN

A .. = bwlI*/384El + 31PL%/240El = 5(123.26)
(80)%(1728)/384(1700000)(160,700) + 31(3000)
(80)3(1728)/240(1700000)(160,700) = 1.67” < 4”
... okay for deflection.

ANSWER: Beam is adequate.

Practice Exercises:

18-1: Design a 12.25” wide Douglas Fir, 24F-1.8E glu-lam,
spanning 80" with concentrated live loads of 3000# and
concentrated dead loads of 4000# spaced 10’0.c. The beam
is curved such that the midpoint of the beam is 8ft above the
supports. The laminations are 0.75” thick. Blocking occurs at

points of load and at ends.

18- 2. Design a 10.5” wide, 48/SP/N2D12 column, 20ft
long, to carry a factored axial load of 50,000# with pinned
connections and a moisture content of 15%.
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nineteen

Wood Connections

Wood to wood connections can be formed by creating
interlocking shapes with the wood components, or by using
mechanical connectors made of wood or metal.

This text describes the types of connectors available
and suggests some rules of thumb for connections. Design
of wood connections should follow the National Design
Specifications of the American Wood Council, and these
procedures are not covered in this text.

19.1 Mechanical
Connections

Mechanical connections are those that rely only on the
physical nature of a connection without the use of adhesives
or pressure and utilize a connector separate from the actual
pieces joined.

19.1.1 Bolts

Bolts are dowel-type mechanical connectors that have a
threaded end with a nut. The head can have a number of
shapes as depicted in Figure 19.1, but the most common is

a hexagonal head. Bolts may have a shoulder, an unthreaded
portion below the head that has a wider diameter than the
rod. Bolts are usually made of steel and the shear and bearing
strength can be determined as outlined in Chapter 25. A307
or common steel bolts have strength roughly equivalent

to A36 steel. Bolt diameters vary from %” to 1.5”in %”

increments. Bolt lengths vary in size, but thread lengths on
bolts typically are determined by diameter and the overall bolt
length as shown in Table 19.1:

Table 19.1: Bolt sizes

Bolt Diameter (in) | Standard Thread Length (in)
Bolt length <6” | Bolt Length > 6"

1/4 3/4 1

5/16 7/8 1-1/8

3/8 1 1-1/4

7/16 1-1/8 1-3/8

1/2 1-1/4 1-1/2

5/8 1-1/2 1-3/4

3/4 1-3/4 2

7/8 2 2-1/4

1 2-1/4 2-1/2
Nut Head

Threaal—! Shoulder

vvvvvvvvvvvvvvvvv

19.1
Parts of a bolt



Bolts must be used with a washer or a steel connector plate.

The washer size areais A2 T/F_, where F_| is the allowable

bearing stress in the wood and T is the tension in the bolt.
Further F/ > V/nAv where:

F, = Allowable shears stress in the wood
V = the total shear

N = number of bolts resisting the shear
Av = b(D) where

b = thickness of wood

D = bolt diameter.

Where bolts are grouped, see section 24.2 Eccentric Bolted
Connections to find the resultant force on each bolt as well as the
forces parallel and perpendicular to the grain. In general, bolts can
be designed using the same logic of bolt design for steel as long
as the correct material properties of the bolt are used.

Lag screws and wood screws:

Wood screws have larger threads than sheet metal or
drywall screws and can be steel or brass. Sizes range from
18 to 8 and head types vary as shown in Figure 19.2. The
term Phillips refers to an X shape drive for use with a Phillips
screwdriver and slotted refers to a simple slot drive for flat
bladed screwdrivers. Screw heads may be flat, round or oval.
Most flat and oval heads have a conical shape under the
head to allow for countersinking. Round heads are usually

flat under the head and cannot be countersunk. Wood screw

3

diameters range from g” to 3"

7 10 11 12

A A & Slotted

% @ Philips
@ Hex

@ Square

Pan Head
Fillister-head

Flat Head
Oval Head
Round Head
Truss Head

19.2

Wood screws

WOOD CONNECTIONS

Lag screws are also called lag bolts. They have a hex or square
head like a bolt and a tapered thread like a screw. The diameter

”

ranges from %” to 17” and the length ranges from 17 to 12”.

19.1.2 Split Ring Connectors

Split ring connectors are rings that sit in cut grooves formed
in two mating surfaces. The purpose of the split ring
connector is to handle lateral or shear loads too high for bolts
and lag screws. It does so by creating a larger shear area, A,
Since Shear stress f = P/A , a larger area reduces stress. The
diameter of a split ring connector will be either 2%” or4”. The
connection requires a bolt to hold the mating pieces together.

Split Ring Connector

@ embedded in pre-cut groov
N
- |>

19.3

Split ring connectors

19.1.3 Nails and Spikes

Nails are traditionally the most common connector for
dimensional lumber and are made efficient through the use
of nail-guns. Nails have a high shear strength and resist
withdrawal due to friction between the nail and the wood.
However, nailing patterns must be designed for withdrawal
forces per American Wood Council National Design
Specifications section 11.2. Spikes are longer, larger nail-like
fasteners used to connect large wood components.

Smooth or coated
Annularly threaded
Helically threaded

19.4

Nails and spikes
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Table 19.2: Nail sizes

Nail Sizes

Number per

pound
Size | Length | Gauge (Approx.)
2d 1~ No. 15 845
3d 1* No. 14 540
4d i No. 12 290
5d 1= No. 12 250
6d 27 No. 11 165
7d 2" No. 11 150
8d 27 No. 10 100
od 2" No. 10 90
i0d [ 3" No. 9 65
i2d [ 3" No. 9 60
i6d | 3" No. 8 45
20d | 4 No. 6 30
30d | 4" No. 5 20
40d | 5" No. 5 17
50d | &' No. 3 13
60d | 6" No. 2 10

19.1.4 Metal Connector Plates

Metal plate connectors are available in a large number of
standard shapes and sizes, some of which are shown in
Figure 19.5. Metal plate connectors add strength as well as
ease of construction in many cases, such as providing a seat
for joists. Metal plate connectors are strong in tension and are
essential connectors for tie-down applications. See individual
manufacturer specifications for allowable loads.

N

Tie downs

Joist Hanger

o
o
o
o
o

o O O O

o O 0O O O O
o O O O
o O O O
o O O O

o O 0O O O O

o O O O O

o O O O

Gusset Plate

19.5

Metal connector plates

19.1.5 Drift Pins

Drift pins are smooth metal rods that are driven into pre-
bored holes. They can resist lateral loads, but not withdrawal
loads. Drift pins are often used as guides to support
components of a connection in place while fastening occurs
in other holes.



19.1.6 Wood Dowels

Wood dowels are much larger in diameter than steel dowel-
type fasteners such as bolts. This is because steel has

much higher allowable stresses than wood. Wood dowel
connections are tested for the same four failure modes

as steel bolts: gross yielding, tensile rupture, dowel shear
and dowel bearing. See American Wood Council National
Design Specifications for design procedures for wood dowel
components. Humidity must be considered in wood dowel
connections. Dry conditions will cause shrinkage in the dowel
and the connector members. Shrinkage parallel to the grain is
much less than shrinkage perpendicular to the grain meaning
that the dowel may shrink and become loose if installed with
a high moisture content.

19.2 Wood Joinery

Typical wood joints include lap, dado or rabbet, tongue-
and-groove, mitre, mortise-and-tenon, finger and dovetail
joints. Examples of these wood joints are illustrated in
Figure 19.6. With the exception of dovetail joints, wood
joints require a fastener, either mechanical or adhesive, to
hold the connection together. Historically, wood structures
relied on wood joinery to improve the connection rigidity and
minimize the need for dowel-type connections. For example,
pioneers in colonial America employed dovetail joints as a
way of creating log cabins by notching wedges in logs. The
availability of steel connectors and the high cost of labor
involved in the making of detailed wood joints has reduced

the instances of all wood connections.

WOOD CONNECTIONS

&
N

Dado
Joints

Tongue E Groove Dovetail
Q)
Q

Mortise & Tenon Dowels

19.6

Wood joinery
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twenty

Steel Beam Design

The ASD Method designs beams using only the elastic
region. As a result, the allowable moment is limited to the
yield moment, l\/Iy = Fy(l/c) = FVS where S is the elastic
modulus, also known as the section modulus. The LRFD
Method considers stresses beyond the yield stress because
failure doesn't occur until a great deal of yielding occurs. The
allowable moment therefore becomes the plastic moment,
l\/Ip = FVZ, where Z is the plastic modulus. To illustrate,
consider the cross-section of a rectangular beam when
yield stress is reached at the extreme fibers, the moment

is derived by the compression and tension couple using the
internal couple method as shown in Figure 20.1 The yield
moment, M, = (F bd/4)(2d/3) = F bd?/6.

Fy

«C = Fybd/4

d2

a
2d/3

a2

—=t> T = Fybd/4

20.1

Yield moment

The section modulus, S, for a rectangular cross-section
= bd?/6. The yield moment, l\/ly, can then be simplified to
M, =FS.

Fy

d/2

C = Fybd/4

d/2

d2

T = Fybd/4

l

20.2

Plastic moment

If the moment increases in the cross-section, the stress
increases until all fibers are fully stressed as shown in
Figure 20.2. In this scenario, the plastic moment can be
defined using the internal couple method as l\/Ip = (Fybd/Z)
(d/2) = F bd?/4 = F Z. Therefore Z = bd?/4. In the case of the
rectangular cross-section, l\/lp = 1.5l\/ly. The ratio of l\/lp to l\/ly
is called the shape factor and varies with cross-section.

20.1 Designing Beams for
Flexure Using LRFD Method

There are three types of behavior to consider in the design of
beams, and each type is associated with a zone as follows:

Zone 1: Plastic behavior (most beams): compact

beams that can reach I\/IID without buckling. Beams are
determined to be in Zone 1 if the unbraced length, L, is
less than the value Lp = 1.76ry\/(E/Fy) .When L, < Lp, the
allowable design moment, ¢M, = ¢M_ =0.9F Z.
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Zone 2: Inelastic buckling: some but not all of the
compression members buckle before reaching the yield
stress, F,. Beams are determined to be in Zone 2 when
L, <L, <L where L =1.95(rts)E/0.7F )(Jc/S h )"*(1 + (1
+6.76(0.7F S h /EJc))"0.5)10.5) = maximum unbraced

length in LRFD design for inelastic lateral-torsional buckling.

oM, = C.lo,M_ — (oM ~F S )L, - L)I<¢,M_ where C,
the lateral-torsional buckling modification factor.

AISC Equation F1-1 defines C, = 12.6M (R )/[2.5M__

+3M, + 4M, + 3M_1 < 3.0 where M__ is the largest

is

X

moment in an unbraced segment of a beam and M, M,
and M_ are the moments at the % point, % point and

% point, respectively, in the segment. R = the factor
for the degree of bending. R = 1.0 for single curvature
bending. The value of C, must be computed for each
unbraced segment in the beam and the lowest value
used. A chart for the C, values of beams with typical
loadings can be found in the AISC Steel Manual at the
beginning of Table 3-2 and in Figure 20.3 of this text.

No Lateral Bracing

Bracing at Points marked by X

Pu Pu
L/2 JL L2 L2 L/2
ohn 1.32 e ohn 167 167 e
Pu Pu Pu Pu
L/3 L/3 @ L/3 L/3 L/3 L/3
o 114 o w167 1.0 167
Pu Pu Pu Pu Pu Pu
L/4 JL L/4 & L/4 @ L/4 L/4 @ L/4 JL L/4 @ L/4
ohn 114 o w167 1.11 1.1 167
Wu Wu
i&' 1.14 & & 13 < 13 &
Wu
% 1.45 JE 1.01 JE 1.45 &
Wu
Pu
. L2 I . MM
% N\ 152 7 106 106 152
7 1.92 N
Pu
Wu
| % L2 JL L2 N
%}4;@@%@4}@4;& é 227 227 §
7 238 N
Wu
Pu 1
AR R RN EEREN
Z @ 7 2
.38 2.38
é 1.0 7 N
20.3

Lateral-torsional buckling modification factor, C,. Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.



Zone 3: Elastic buckling: buckling occurs before the yield
stress, Fy, can be reached anywhere in member. Beams
are determined to be in Zone 3 when L, > L. ¢M_ =0.9
F.S, where
F, = [CE/L,/r N1 +0.078(Jc/S h (L /r, ).

Design procedure for steel beams:

1. Determine each ultimate load by factoring load types
using the six equations given in Chapter 16. Enter the
factored load or ultimate load into the diagram for the
beam.

2. Find the ultimate moment, M either by drawing the
shear and moment diagrams or by using equations in the
deflection charts A1.2.

3. FindZ

req'd
o,M_, = 0.9F Z where Z = plastic modulus for a

and choose trial size.

cross-section.
By setting M, = 0.9FyZ, the required plastic modulus
¢ =M/0.9F
For example, if the ultimate or factored moment is
M, = 350k-f and F = 50ksi, Z ., = M /0.9F
= 350k-f(12"7)/0.9(50ksi) = 93.33in®
AW14x61 would work with Z = 102in3.
4. Add the moment caused by beam weight (w) to M found

can be found: Z .

in step 2.
M gy = WL?/8k-f where w,, = 1.2(bm. wt.
designation/1000) k/ft
New M =M gree
5. What zone to use?

+ MuBM

L, = unbraced length of the beam.

L, =1.76r N(E/F)

L, = 1.95r(E/0.7F )(Jc/S h )VA[1 + (1 + 6.76(.7F S h /
Ejc)?)]

The values of L and L are listed in the AISC Steel
Manual Table 3-2 or for W14s in Table 20.1.

ZONE 1L <L

ZONE2:L <L, <L,

ZONE3: L <L,

STEEL BEAM DESIGN

Table 20.1: Sample values for LRFD design of W14 beams

oMpx BF Lp Lr (323
SIZE | Zy (ind (k-f) (k) (ft) (ft) (k)
Wi4x22 33.2 125 7.14 3.67 10.40 94.8
W14X26 40.2 151 7.99 3.81 11.10 106
W14X30 47.3 177 6.99 5.26 14.90 112
W14X34 54.6 205 7.59 5.40 15.60 120
W14X38 61.5 231 8.10 547 16.20 13
W14X43 69.6 261 7.24 6.68 20.00 125
W14X48 78.4 294 7.66 6.75 21.10 141
W14X53 87.1 327 7.93 6.78 22.20 155
W14X61 102 383 7.46 8.65 27.50 156
W14X68 115 431 7.81 8.69 29.30 175
W14X74 126 473 8.03 8.76 31.00 191
W14X82 139 521 8.16 8.76 33.10 219
W14X90 157 573 7.22 15.20 42.60 185
W14X99 173 646 7.35 13.50 45.30 206
W14X109 182 720 7.54 13.20 48.40 226
Wi4X120 212 795 7.64 13.20 52.00 256
W14X132 234 863 14.60 9.40 31.80 332
W14X145 260 975 7.68 14.10 61.70 302
W14X159 287 1080 7.79 14.10 66.70 335
W14X176 320 1200 7.84 14.20 73.20 379
W14X193 355 1330 7.92 14.30 79.70 413
W14X211 390 1460 7.99 14.40 86.40 462
W14X233 436 1640 8.09 14.50 94.90 515
W14X257 487 1830 8.21 14.60 104.00 577
W14X283 542 2030 8.31 14.70 114.00 648
W14X311 603 2260 8.46 14.80 125.00 724
W14X342 672 2520 8.64 15.00 137.00 810
W14X370 736 2760 8.80 15.10 148.00 880
W14X398 801 3000 8.96 15.20 158.00 971
W14X426 869 3260 9.16 15.30 169.00 1050
W14X455 936 3510 9.31 15.50 179.00 1150
W14X500 1050 3940 9.65 15.60 196.00 1290

6. Choose equation: NOTE: If the shape chosen in step 3 is
not a compact shape, see Appendix F of the AISC Steel
Manual for modification to the following equations. The
modifications account for the slenderness of the flanges
in certain W shapes.

ZONE 1: o.M, = oM

ZONE 2: M = C [o,M_ - (6
<o,M,

Look up worst case value for C, in Figure 20.3 or

M, - F,S)(L, - L]

b

calculate C,.
ZONE 3: oM =0.9F_S and
F, = [ CmE/(L, /rts)’IN[1 + 0.078(Jc/S,h )L /rts)]
Zone 3 beams have a severely reduced allowable
moment. Therefore, it is suggested to choose a
heavier beam size to find L, < L.
7. Check that ¢, M, is greater than M : if ¢, M (allowable
from step 6) > M, (actual moment from step 4) it is okay
for bending stress, if not, try a larger size and go back to

step 3.
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8.

10.
1.

12.

Check shear: New V =V from step 2 + w,,L/2
note: wg,, is found in step 4.

. Compare V to the value of ¢V . If Vu < ¢V, the beam

is okay for shear. If not, try a larger size and go back to
step 3.

oV, = 0.6F (t,d)

Check deflection: Allowable deflection = L(1271)/240 = A,
Calculate or look up deflection equations from charts.
Using unfactored loads (P, + P or W, + W), calculate
the actual deflection. Remember to include the 1728in3/f
factor when using L in units of feet. Remember to include
e = DWLA(1728)/
[384El]. For multiple load types on a beam, it may be

deflection due to the beam weight: A

easier to use the double-integration method to find the
maximum deflection.
Compare allowable deflection from step 10 to actual
deflection from step 11.
a. If A > A, okay and you are finished.
b.If A, <A, find alarger size of same nominal depth
with | =[x 1A _1/[A]

xnew used act all

Example 20-1: Find the most economical size W14 for an

A992 steel beam spanning 28’ and spaced 8'o.c. with a
dead load W, = 20psf and a live load W, = 80psf.

The beam has full lateral bracing.

1.

W, = 1.2W, + 1.6W, = 1.2(20psf)(8") + 1.6(80psf)(8")
= 1216% = 1.216k/f

2. M, = wlL?8 = 1.216k/f(28’)*(12in/f)/8 = 1430.02k-in
3. Zyq=M/0.9F = 1430.02k-in/[0.9(50ksi)] = 31.78in*

req’d

See Table A3.1 for Section Properties of Selected W14
Shapes.
Try a W14 x22: 7 =33.2in% | = 199in*

- M g, = WL?/8 = 1.2(22/1000)(28)2(12")/8 = 31.05k-in

New M, =M e,
= 1461.07k-in.

+ My, = 1430.02k-in + 31.05k-in

. What zone to use?

L, = 0 because the beam has full lateral bracing.
Therefore, L, < Lp and the beam is in ZONE 1: L, <
L

p

. Choose equation:

ZONE 1: ¢,M, = 0,M, = 0.9F Z = 0.9(50ksi)(33.2in%
= 1494k-in

10.

1.

12.

. Check that ¢, M, is greater than M : if §, M= 1494 k-in >
M, = 1461.07 k-in, therefore okay

. Check Shear:
V, = (1.216Kk/f + 1.2(.022k/))(28°)/2 = 17.39k

.oV, = 0.6Fy(t d) = 0.6(50)(0.23)(13.7) = 94.8k

oV, = 94.8k >V = 17.39, therefore the beam is okay
for shear.

Check deflection: Allowable deflection = L(12"1/240 = A,
=28’(12"/240 = 1.4”
w = ((20 + 80psf)(8’) + 22%1)/1000#/k = 0.822k/f A, .,
= bwl #(1728)/[384El] = 5(0.822k/f)(284)(1728in%/f3)/
[384(29000ksi)(199in%)] = 1.97”
Compare allowable deflection from step 10 to actual
deflection from step 11.

A,=14"<A,, =197

actual
Loow = [ gl AL /A ] = (199in4)(1.977)/1.4”

xused actual all

= 280in*
Choices: W14 x30: | = 291in* or W16x26: | = 301in*
W16 x 26 is most economical, but W14 x 30 has less
depth.

Example 20-2: Find the most economical W14 for an

A992 steel beam spanning 24’ with point loads of P, = 8k

an

d P, =16k placed at 8'0.c. with lateral bracing only at

the point loads.

w N =

. P,=1.2P, + 1.6P_=1.2(8k) + 1.6(16k) = 35.2k @ 8'0.c.

M, = P L/3 = 35.2k(24")(12in/f)/3 = 3379.20k-in

- Zoyg = M /0.9F = 3379.2k-in/[0.9(50ksi)] = 75.09in

TryaW14x48: Z=78.4in%, S _=70.2in3 | = 484in*,
r,=19171t,=038"d=13.8"

- M g = WL?/8 = 1.2(48/1000)(24)2(12"7)/8 = 49.77k-in
New M =M creo, + M g, = 3379.20k-in + 49.77k-in
= 3428.97k-in

. What zone to use?

L, = 8 as stated in the problem. L = 1.76r V(E/F)
=1.76(1.91”) V(29000/50) = 80.96” = 6.75". The values
of L and L, can also be found in the AISC Steel Manual
Table 3-2: L =6.75, L = 21.7
ZONE2: L <L <L,

. Choose equation:
ZONE 2: 9 M = C [oM_ - (9M - F S)L, - L)I<¢M
From Figure 20.3: In the outer unbraced segments,

p

C, = 1.67 and in the middle unbraced segment C, = 1.0.



Use C, = 1.0 because the maximum moment occurs at
the center. If the location of the maximum moment is not
calculated, use the lesser value for a more conservative
answer.

o,M, =0.9F Z = 0.9(50ksi)(78.4in%) = 3810.24k-in

0,M, = C[o,M_ ~ (9,M, ~F S)(L, - L)l = 1.0[3810.24k-
in — (3810.24 — 50ksi(70.2in%)(8.0 — 6.75)] =
3434.94k-in <3810.24 o.M, ... 6,M, = 3434.94k-in

7. Check that ¢, M is greater than M : ¢, M = 3434.94k-in >
M, = 3428.97k-in, therefore okay

8. Check Shear: V, = 35.2k + 1.2(.048k/f)(24)/2 = 35.89k

9. ¢V, = 0.6F (t,d) = 0.6(50)(0.38)(13.8) = 157.32k
¢V, =157.32k >V = 35.89, therefore the beam is okay
for shear.

10. Check deflection: Allowable deflection = L(1277/240 = A |
=24'(12"9/240 = 1.2”

11. P =8k +16k = 24k, w = .048k/f A ., = 23PL*(1728)/
[648EI] + bwlL*(1728)/[384El] = 23(24k)(24°3)(1728)/
[648(29000)(484)] + 5(0.048k/f)(244)(1728in%/f3)/
[384(29000ksi)(484in%)] = 1.45” + 0.03” = 1.48”

12. Compare allowable deflection from step 10 to actual
deflection from step 11.

A,=12"<A, . =148
lxnew = [Ixused][Aactua\]/[AaH] = (484m4)(1 48”)/1 '2”
=596.93in*

USE: W14 x61: | = 640in*

Example 20-3: Find the most economical W14 for an
A992 steel beam spanning 24’ with point loads of P, = 8k
and P = 16k placed at 8'o.c. with no lateral bracing.

1. P,=1.2P, + 1.6P_= 1.2(8k) + 1.6(16k) = 35.2k @ 8'0.C.
2. M, = P_L/3 = 35.2k(24)(12in/f)/3 = 3379.20k-in
3. 7,4 = M J0.9F, = 3379.2k-in/[0.9(50ksi)] = 75.09in?
Try a W14x48: Z = 78.4in%, S_ = 70.2in%, | = 484in,
r,=19171t,=038"d=13.8"
4. M., = wL?/8 = 1.2(48/1000)(24)2(12")/8 = 49.77k-in

New M, =M rep,
= 3428.97k-in

+ M, = 3379.20k-in + 49.77k-in

5. What zone to use?
L, = 24’ as stated in the problem.
L, =675,L =211
ZONE3: L <L,

STEEL BEAM DESIGN

6. Choose equation:
ZONE 3: 9,M, = 0.9F S and F_ = [Cm?E/(L /rts)’NI[1 +
0.078(Jc/S hol(L,/rts)?]
From Figure 20.3 : In the outer unbraced segments,
C, = 1.67 and in the middle unbraced segment
C,=1.0.
From Table 1-1 of the AISC Steel Manual, the following
values are obtained:
rts =2.20,J=145,§ =70.2, h =13.2andc=1.0
because W shapes are doubly-symmetrical.
(Lyrts)? = [(24')(12"/2.20]* = 17137.19
Je/S h, = 1.45/[70.2(13.2)] = 0.00156
F_ = 11.0(3.14159)2(29000)/(17137.19)IN[1 +
0.078(.00156)(17137.19)] = 29.34ksi
¢,M, =0.9F S =0.9(29.34ksi)(70.2in% = 1853.46 k-in
7. Check ¢,M_ against M : ¢, M = 1853.46k-in < M
= 3428.97k-in, therefore, the beam is inadequate.
Therefore, go back to step 3 and try a larger size.
3A.Try aW14x61: Z =102in°, S _=92.1in° | = 640in?,
r,=245"1t,=0.375",d=13.9"
4A.M ;,, = WL?/8 = 1.2(61/1000)(24)%(12")/8 = 63.24k-in

New M, =M gree
= 3442 .44k-in

+ M gy = 3379.20k-in + 63.24k-in

5A. What zone to use?
L, = 24’ as stated in the problem.
From Table 20.1: L = 8.6%, L = 27.5
ZONEZ2: L <L <L
6A. Choose equation:
ZONE 2: ,Mn = C [o,M_ - (9,M - F S)(L - L)
<o,M,
C,=1.0
o.M, = 0.9F Z = 0.9(50ksi)(102in?) = 4590k-in
o.M, =CloM - (oM —FS)L, —L)I
= 1.0[4590k-in - (4590 -50ksi(92.1in%))(24.0 -
8.65)] = 4820.25k-in > 4590 = o.M ... oM
= 4590k-in
7A. Check ¢,M  against M : ¢, M, = 4590k-in >
M, = 3442.44 k-in, therefore, the beam is okay for flexure
8. Check Shear: V = 35.2k + 1.2(.061k/f)(24')/2 = 35.89k
9. ¢V = 0.6F (t d) = 0.6(50)(0.375)(13.9) = 156.38k
¢V, = 1566.38k >V = 35.89, therefore the beam is okay
for shear.

185
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10. Check deflection: Allowable deflection = L(1277/240 = A |
= 24'(12"9/240 = 1.2”

11. P =8k +16k = 24k, w = .061k/f A . = 23PL3(1728)/
[648El] + 5 L*(1728)/[384EI] = 23(24k)(243)(1728)/
[648(29000)(640)] + 5(0.061k/f)(244)(1728in%/f3)/
[384(29000ksi)(640in*)] = 1.10” + 0.02” = 1.12”

12. Compare allowable deflection from step 10 to actual
deflection from step 11.

A, =12">A, . = 112" therefore the beam is
adequate for deflection.
USE: W14 x61.

Practice Exercises:

20-1: Find the most economical W14 for an A992 steel
beam spanning 40” with a dead load of 50psf and a live load

of 80psf if the beams are spaced at 12’0.c. and full lateral
bracing is provided.

20-2: Find the most economical W14 for an A992 steel

beam spanning 35" with concentrated dead loads of 1k and
concentrated live loads of 2k spaced at 5’o.c. if lateral bracing
is only provided at the point loads.

20-3: Find the most economical W14 for an A992 steel
beam spanning 30" with concentrated dead loads of 10k and
concentrated live loads of 20k at midspan if

a) no lateral bracing is provided;
b) lateral bracing is provided at midspan.



twenty one

Design of Steel Compression
Members

There are three types of failure that can occur in steel under

axial compression.

1.

Flexural buckling: Flexural buckling occurs when the

bending stress is too high. The compression member fails

as a whole.

Local buckling: Local buckling is a condition in which part
of the cross-section buckles before the entire section,
causing eccentricities.

Flexural torsional buckling: Flexural torsional buckling is

a condition in which localized buckling causes bending in
multiple directions, causing torsion about the axis of the
compression member. Flexural torsional buckling is not

covered in this book

See section 10.1.1, critical buckling stress, for information on

allowable stresses in other metals, effective length factors

and general design guidelines.

21.1 Axial Loads on Steel
Columns

Column Design Process for LRFD Method:

1. Calculate the factored load, P,

2. Assume a value for the slenderness ratio, kL/r. Any
number between 1 and 200 may be used, however, the
farther from the final ratio of the designed column, the
more iterations will be required to find the best choice
of column size. Guidelines for selecting an assumed kL/r
ratio are as follows:

for columns 10 to 15" use kl/r = 50;
for longer columns use kl/r = 70;
for short columns or heavy loads use kl/r = 30.
3. Find ¢ F_, from Table 4-22 of the AISC Steel Manual or by
using AISC equations E3-2, E3-3 and E3-4:
E3-4: F, = nE/(kL/r)%. This is Euler’s equation for critical
buckling stress
E3-2:if kL/r < 4.71\/(E/Fy), then F_ = (.658FV/F‘3)Fy
E3-3:if kL/r > 4.71\/(E/Fy), then F_ = 0.877F_.
=P/o.F

c cr

. Calculate a trial area: A

trial

. Choose a trial size based on A, . from step 4.

trial

. Calculate actual kL /r and kL, /r, Use larger value.

N o o b

. Find allowable compressive stress, ¢ F_ from Table 4-22

of the AISC Steel Manual or use AISC equations E3-2,
E3-3 and E3-4:

8. Calculate the actual compressive stress = f_ = P/A.

9. IfoF

c cr

step b and try larger size.
10. Check the efficiency of the column: If f /¢ _F_ > 0.90, the

c cr

> f, the size is adequate. If ¢_F_ < f_, go back to

c cr

size is efficient. If fc/¢p_F_ < 0.90, go back to step 5 and

c cr

try a smaller size.

Example 21-1: Design the most economical W21, pinned
at top, fixed at base, L =30’, P, = 600k, P, = 100k using
A992 steel.

1. P, =1.2(600) + 1.6(100) = 880k
2. Assume kL/r = 70 (long and heavy)
3. Find ¢ Fc,

E3-4: F_ = n?E/(kL/r)? = m?(29,000)/(70)? = 58.412ksi

4.7W(E/F) = 471(29,000/50) = 113.43
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E3-2: kL/r <4.71N(E/F), therefore F_ = (.658™/)F
= (.658°058:412)(50) = 34.94ksi

0,F, = 0.9(34.94) = 31.45ksi

: Atrial
. Try W21 x101: A = 29.8in?, r,=2.89"
. kL/r = 0.8(30)(12)/2.89 = 99.65

. Find actual ¢_F_:

c cr’

E3-4: F, = n?E/(kL/r)? = n?(29,000)/(99.65)* = 28.82ksi

=P /o F, = 880k/31.4bksi = 22.98in?

c cr

~N o o b~

4.7W(E/F) = 4.71N(29,000/50) = 113.43

E3-2: kL/r <4.71N(E/F), therefore F_ = (.658™/)F
= (.6585017882)(50) = 24.19ksi

¢ .Fc, = 0.9(24.19) = 21.77ksi

8. Calculate the actual compressive stress = f_ = P/A
= 880k/29.8in? = 29.53ksi

9. ¢,F, =2177 < T =29.563 therefore the column is not
adequate. Go back to step 5 and try larger size. At this
point, one may estimate the area of the next trial size by
multiplying the area tried by the ratio of the actual stress
to the allowable stress. A = 29.53(29.8)/21.77

= 40.42in?

BA. Try W21 x 147: A = 43.2, = 2.95

6A. kL/r = 0.8(30)(12)/2.95 = 97.627

7A. Find actual ¢_F_:

c cr’

trial

E3-4: F, = ®E/(kL/r)? = n?(29,000)/(97.63)> = 30.03ksi
4.71\/(E/Fy) = 4.71V(29,000/50) = 113.43

E3-2: kL/r <4.71N(E/F ), therefore F = (6587)F
= (.658°03003)(50) = 24.91ksi

0.F, = 0.9(24.91) = 22 42ksi

8A. Calculate the actual compressive stress = f_ = P/A
= 880k/43.2in? = 20.37ksi

9A.¢.F, =22.42 > 1 =20.37 therefore the column is
adequate.

10. f /¢ F, = 20.37/22.42 = .909 > 0.90, the size is efficient.

c cr

Compact sections

The design method above assumes that trial shapes have
compact sections and therefore ¢_ = 0.90. Compact section
simply means that the section is sufficient to withstand
buckling until it reaches its yield stress, after which it is

in plastic deformation. For a section to be compact, the
width—thickness ratios must be < in the AISC Steel Manual
Table B4.1. The standard shapes listed in the AISC Steel
Manual Table 1-1 are compact unless noted with a superscript
¢ such as W16 x 31¢, in which case the shape is slender for Fy
= 50ksi steel.

Non-compact sections
For sizes with non-compact sections, the yield stress can be
reached in some parts of the cross-section before buckling
is reached for the entire section. Width—thickness ratios are
greater than Kp but must be less than A _from Table B4.1 of
the AISC Steel Manual. ¢_ = 0.85 for non-compact members.
Slender compression elements
Design of slender columns is complex and generally strength
is very low.

Most W, S shapes etc. are compact or non-compact.
Slender shapes are noted with superscripts following
the shape name. In slender shapes, the width—thickness
ratio is greater than A _from Table B4.1 and as with non-
compact shapes, ¢, = 0.85 for non-compact members.
Slender members can buckle locally. This is common in HSS
members where local buckling may govern failure and so
requires a reduction factor Q. Where:

Q=AJ/A
A, =A-2()h-b,) - 2t)b - b,)

by, = T.92tVE/f )1 - (0.38/(b/OVE/T ]
b,, = 1.92tVE/f J[1 — (0.38/(h/OINE/F ]

21.1.1 Process to Find Reduced ¢ F
in Slender HSS Rectangular Sections

Find ¢ F_, of an HSS Hx B x T with a slenderness factor K,
yield stress Fy(ksi) and a length L(f).

1. Find the section properties: At 1 tb/t h/t
2. b, = 1.92tINE/F I[1 - (0.38/(b/VE/F,]
3. b=B-3t
4. b, = 1.92t NE/A N - (0.38/(h/ONE/f ]
5.h=H-3t
6. A, =A-2(t)h -b,) - 2(t)b - b,)
7.Q=A/A
8. Find: kL/r



9. F, = mE/(kL/r)?
10. Find Fg:
if 4.71 \/29,000/(O(Fy)) > kL/r, use F_ = Q[0.658 Ofv/Fe]Fv
if 4.71429,000/(Q(F )) < kL/r, use F_ = 0.877F,
1. ¢,F, = 0.85F,

c cr

Example 21-2: Find ¢ P, of 24', HSS 14 x 10x% fixed at one
end, pinned at other and Fy = 50ksi.

1. A=10.8,r =535 =414,t=0.233 b/t =39.9, hit
= 57.1

2. b, = 1.92tINE/F 1 - (0.38/(b/)NE/F ] = 1.92(.233)
[V29,000/501[1 - (0.38/(39.9))¥29000/50] = 8.3

3.b=B-3t=10-3(.233)=9.3”

4. b, =1.92t WE/F J[1 - (0.38/(h/)VE/F ) = 1.92(.233)
[V29,000/50] [1 - (0.38/(57.1))¥(29,000/50)] = 9.05

5.h=H-3t=14-3(233) = 13.3

6. A, =A-2(h-b,)-2tb-b,)

b-b,=93-83=10
h-b, =13.3-9.05=4.25

A, =A-2(t)h - b,) - 2(tb - b_) = 10.8 - 2(.233)
(4.25) - 2(.233)(1.0) = 8.35

7. Q=AJA=835/108=0773
8. Find: KL/r = 0.8(24)(12)/4.14 = 55.65
9. F, = E/(kL/)? = m2E/(KL/1)? = 92.42

10. Find F_;

4.71\/(E/OFV) = 4.71V29,000/(.773(50)) = 129.02

4.71V(29,000/QF ) > kL/r therefore F_ = Q[0.658 2"/
F, =0.773[.658 “'°50 = 32.45ksi

11. ¢,F, = 0.85F, = 0.85(32.45) = 27.58ksi
12. 0.P, = ¢.F_A, = 27.58(10.8) = 297.89

c crg

21.1.2 Process to Find Reduced F_ in

Slender Double Angles with a Back-to-

Back Separation of either 0”7, " or 3”

1. Look up A, r, r, and Q, in Table 1-15 Double Angle Section
Properties of the AISC Steel Manual. Be sure to use the
correct value of Q_ dependent on whether the long sides
or short sides of the angles are back-to-back.

DESIGN OF STEEL COMPRESSION MEMBERS

b b
N E— N E—
dL |
d T i Gap
+4~Gap
LLBB SLBB
21.1
Double angles
2. Find kL/r.
3. FindF_:

F, = @E/KL/M?
If kL/r <4.71V(E/QF ) then F_, = Q[0.658%7"<]F,
If kL/r > 4.71V(E/QF ) then F_, = 0.877F,

Example 21-3: Find ¢_P_for ZLBxGx% LLBB (long legs
back-to-back) with a back-to-back separation of %", fixed
ends, L =20, and F = 36ksi.

1. Sections properties: A = 11.5, r_ = 1.86, r, = 2.63,
Q. =10
Find: kL/r = 0.65(20)(12)/1.86 = 83.87
F, = m?E/(kL/r)? = (m)%(29,000)/(83.87)? = 40.69
4.7WE/QF = 4.71V(29,000/1.0(36)) = 133.68
59.32 < 133.68 therefore
F., = Q[0.6589%/f]Fy = 1.0[.658%6/06%][36] = 24.86
5. P,=¢P =0¢F A =0.85F A=0.85(24.86)(11.5)
=243.01k

21.2 Combined Axial
Compression and Flexure

Steel components subjected to compression and flexure
act as both a column and a beam. The component may be
a beam with an axial load due to lateral forces or a column
that has fixed supports, such as columns in a moment frame.
The best strategy in component design for these cases is
to design for the primary function and then check for the
combination of loads.

For doubly and singly symmetric shapes, the AISC
Specification Section H1.1 governs. For unsymmetrical
shapes, AISC Specification Section H.2 governs.

AISC H1.1:
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1. 1fP /0P, >0.2 P /0P + (8/9)(M, /oM, ) + (M_ /oM )1 < 1.0
2. 1PJOP, < 0.2 P/20P, + (M, /0M, ) + (M /oM )< 1.0

Example 21-4: Design a W14 column with fixed supports
at each end to carry an axial factored load of P, = 1200k
and a moment in the strong direction of M_=200k-f and
a moment in the weak direction of Mv =180k-f. L =24/,
L =12.

Use the steel column design guide in section 21.1, except use
A, =P/10.6(0.F )l in step 4 and do not test for efficiency.

trial c cr

1. P, = 1200k
2. Assume kl/r =70
3. Find ¢ F_, from Table 4-22 of the AISC Steel Manual or by
using AISC equations E3-2, E3-3 and E3-4:
E3-4: F_ = n?E/(kL/r)? = n?(29000ksi)/(70)? = 58.41ksi
4.71(E/Fy) = 4.71N(29000/50) = 113.43
F, = (658™F)F = (.658°0%841)(50) = 34.94ksi

=P /10.6(¢.F ) = 1200/

c cr

4. Calculate a trial area: A
[0.6(34.94)] = 57.24in?

5. Try W14 x193: A = 56.8in% 1 = 6.5", 1 =4.05",
Z, =355in% Z =180in° S =310in% S =119in°

6. kL/r, = .65(24")(12”/")/6.5” = 28.8 and kL/r, = .65(12')
(127/)/4.05” = 23.11

7. Find ¢ F

c or’

trial

F, = m?E/(kL/1)? = m2(29000ksi)/(28.8)? = 345.07ksi
4.7(E/F) = 4.71V(29000/50) = 113.43
F., = (.6587/F)F = (.658°0345%7)(50) = 47.06ks]

8. Calculate the actual compressive stress = f_ = P/A
= 1200/56.8 = 21.13ksi
9. If o ,F, =47.06ksi > f_= 21.13ksi, therefore the size is
adequate.
10. Moment in strong direction = M, = 200k-f.
1. ¢,M_ = 0.9F Z = 0.9(50ksi)(355in%)/12"" = 1331.25k-f
12. L= 1.76ry\/(E/Fy) = 1.76(4.05)V(29000/50) = 171.66”
=14.31"<L =24
13. S,ho/Jc = 34.8(1)/310(14)] = 124.71
14. L, = 1.95(rts)E/0.7F )(Je/S h ) "*(1 + (1 + 6.76(0.7F S,h /
EJc)?)~0.5)70.5) = 1.95(4.59)E/0.7(50))(1/124.71)"2(1 +
(1 +6.76(0.7(50)(124.71)/29000)?)A0.5)10.5) = 956.35”
=797
15. Lp =143V <L =24 <L, =797, therefore the column is
in Zone 2.

16. §,M, = C [o,M_ - (9,M_ - F S)L, - L)1 <o,M , where C,
= 1.0 (Moment constant throughout column length)

¢,M,, = 1.0[1331.25 - (1331.25 - (50ksi(310in%)/12in/f))
(24" - 14.31)] = 947.69k-f > 200k-f ... okay

17. Moment in weak direction = M, = 180-f.

18. q)bl\/lpy = O.9FyZy = 0.9(50ksi)(180in3)/12f = 675k-f

19. L, = 1.76r N(E/F ) = 1.76(4.05)\(29000/50) = 171.66"
=14.31" > Ly = 12’, therefore the column is in Zone 2.

20. M = o,M_ = 675k-f > 180k-f ... okay

21. AISC EQTN H-1.1:

P_/0P. = 1200/(47.06(56.8)) = 0.449 > 0.2 ... use
PJOP, + (8/9)(M, /0M, ) + (M, /oM )l < 1.0

0.499 + (8/9)(200/947.69) + (180/675)] = 0.953 <1.0
... okay

ANSWER: W14 x 193

21.3 Built-up Columns

Built-up columns are columns created by assembling and
connecting shapes into a desired design. If the components
are welded together to form one cross-section without gaps,
then the moment of inertia, and the radius of gyration can

be calculated and the column may be designed as previously
discussed with one exception. The AISC Steel manual calls
for modification to the slenderness ratio of built-up columns
where the members are connected by bolts and welds. AISC
equation E6-1 must be used to calculate slenderness ratio for
built-up columns with bolted connections.

E6-1: The modified slenderness ratio = (kL/r ) = \/[(kL/r)O2 +
(a/r)?] where

(kL/r), = column slenderness of built-up column acting
as a whole;

a = distance between connectors;

r. = minimum radius of gyration for individual

component.

AISC equation E6-2 must be used to calculate the
slenderness ratio for built-up columns with welded
connections.



E6-2: The modified slenderness ratio = (kL/r, ) = VI(kL/r) * +
0.82(0/(1 + o?))(a/r, )?] where
r,, = radius of gyration of individual component in
direction parallel to the weak axis of the built-up
column;
h = distance between center of gravity of bracing
members;

A =h/2r,

Example 21-5: Find the maximum compressive load, $P_ for
a W14x90 with a 1"x14.5" plate bolted to each flange with a
bolt spacing of 12" along the length of the 20’ column.

PL1X14.5

W14X90

PL1X14.5 | |

21.2

Built-up column example

1. Find section properties of built-up member:
W14 x90: A = 26.6in%, d = 14.0”, r.=6.14%, r,= 3.70”
PL1x14.5: A=145,| =14.5(1%9/12 = 1.21in*
r. = VII/Al =[1.21/14.5] = 0.289”
a = spacing of bolts = 12”
Built-up properties:

Comp. Ai Ixi dy Ady2

W14 x90 26.5 999 0 0

1x14.5 14.5 121 7.5 815.625

1x14.5 14.5 121 7.5 815.625
TA =555 I =100142 TAdy? = 1631.25

| = ZI, + ZAdy? = 1001.42 + 1631.25 = 2632.67in*
r = II/A] =[2632.67/55.5] = 6.89”
2. Find modified slenderness ratio: kL/r = \/[(kL/r)o2 + (a/r)?l
=I[(1(20(12in/f)/6.89”)% + (12/.289)%] = 54.20
4. Find ¢ F :

c or’

DESIGN OF STEEL COMPRESSION MEMBERS

F, = ®E/KL/1)? = n2(29000ksi)/(54.2)? = 97.43ksi
4.7W(E/F)) = 4.71N(29000/50) = 113.43

F., = (6587F)F = (658°/74%)(50) = 40.34ksi
¢.F, =.9(40.34) = 36.31ksi

¢.P,=0o.F. A=236.31(55.5) = 2015.21k

c cr

This section discusses the design of a column consisting of
separate, clustered components connected only at distinct
intervals. Equations E6.1 and E6.2 do not apply because the
members are not in contact with each other. The connections
are made by using diagonal bracing, called lacing in single or
double layers as shown in Figure 21.3 or by covering the open
edge with a perforated plate.

VI
T T
Double  Single Single Zlacing  Battens
Lacing Lacing Lacing
with
Battens
21.3

Built-up column lacing

The main thing to remember when designing built-up
columns is that there are two cases to be examined. First
consider the column as a whole and second consider the
individual components as columns with an unbraced length
equal to the horizontal connection spacing. A typical built-up
column is one made of two facing channels as shown in
Figure 21.4.

2 facing C-shapes

3

Column lacing

7

21.4

Two channel built-up column
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Example 21-6: Design two 15" channels used to form a
15" square with Fy =50ksi, P, = 800k, and L = 18".

1. Assume kL/r = 50 which means ¢ F_ = 37.5ksi

2. A,, =800/37.5 = 21.33in? total area. A = 21.33/2
= 10.67in? for each channel

3. Try C156x40: A =11.8in?, | = 348in*, Iy =9.17in%,
x=.778",d=15"

4. Consider column as a whole and find I, r and kL/r values.

A =11.8(2) = 23.6in?

| = 348(2) = 696in* and
l,=9.17(2) + 2(11.8)(15/2 - .778)* = 1084.71in*

=(I/A) =(696/23.6) = 5.43”
= (I /A) =(1084.71/23.6) = 6.78”
kL/r = 1.0(18)(12)/5.43 = 39.78

5. Find ¢.F

ccr'

F, = m?E/(kL/r)? = n?(29000ksi)/(39.78)? = 180.87ksi

4.71\/(E/Fy) = 4.71V(29000/50) = 113.43

F_, = (.6587Fe)Fy = (.658501%0.87)(50) = 44.17ksi
0.F, = .9(44.17) = 39.76

6. f =P/A=800k/23.6in* = 33.9ksi < ¢_F_ =39.76
therefore okay

7. efficiency =f /¢ F  =33.9/39.76 = .86 < 0.9 .
smaller size

3A.Try C156x33.9: A = 10in%, | = 315in%, |y =8.07in%,
X =.788",d = 15"

4A. Consider column as a whole and find I, r and kL/r values.

A =10(2) = 20in?

|, = 315(2) = 630in* and
|, =8.07(2) + 2(10)(15/2 - .788)* = 917.16in*
= (I /A) =(630/20) = 5.61”
= (I, /A) =(917.16/20) = 6.77”
kL/r = 1.0(18)(12)/5.61 = 38.5
5A. Find ¢ F_:

c cr’

F, = m?E/(kL/r)? = n%(29000ksi)/(38.5)? = 193.1ksi

4.71\/(E/Fy) = 4.71V(29000/50) = 113.43

F, = (6587 ¢)Fy = (.6585/19%1)(50) = 44.86ksi
0.F, = .9(44.86) = 40.38

6A.T = P/A = 800k/20in? = 40ksi < ¢ F_ = 40.38 therefore
okay

7A. efficiency = f /¢ F = 40/40.38 = .99 > 0.9 ... okay

8. Consider individual C15x33.9 as columns to find
allowable unbraced length and find kL/r.
C15x33.9:A=10,r, =5.62, r, = 0.901
The two channels must be interconnected because each
individual channel carrying half the load would yield: kL/r
=12(20)/.901 = 266.37 > 200 which is the allowable
slenderness limit for compression.
Assume single lacing at 45° with bolt holes 1.5” from

inside edge of channels.

L = 2(built-up column width — 2(b, — 1.5”))
=2(18 - 2(3.40 - 1.5)) = 28.4"

kL/r, =1.0(28.47/0.901") = 31.52

9. Find ¢.F.:
F, = m?E/(kL/r)? = n%(29000ksi)/(31.52)? = 288.09ksi
4.7W(E/F ) = 4.71N(29000/50) = 113.43
F, = (.6587/F)Fy = (.65850/288.09)(50) = 46.5ksi
A =10in? and P = 800k/2 = 400k on each channel section.
f,=P/A =400/10 = 40ksi < ¢ F_ = 46.5ksi ... okay

Built-up columns made of angles are a special case. Please

note the different equations used to calculate the slenderness

ratio in step 3 of the next example.

Example 21-7: Check the adequacy of the column in
Figure 21.2 for a factored axial load, P = 800k.

The total unbraced height is 30” in both directions. The
individual L4 x4 x 1/2 L-shapes form an 18” square column
and are braced at 4’0.c. Fy = 36ksi

I

Column lacing 4 L-shape

21.5

Four angle built-up column



1.

Consider the column as a whole and determine the
Area, Moment of Inertia and Radius of Gyration in each

direction:
Laxdx2:A=37651 =1 =552r =r =121,
y=x=118

A =4(3.75) =15.0
l, =1, =4(5.52) + 15(9 - 1.18)? = 939.37in*.
See Chapter 7 for method to find | and I
r=(I/A) =(939.37/15) = 7.91”
Find ¢.F_, for column as a whole
kL/r =30(12)/7.914 = 45.49
F, = m?E/(kL/r)? = m2(29000ksi)/(45.49)? = 138.31ksi
4.71(E/F ) = 471N(29000/36) = 133.68 > kL/r
therefore use Equation E3-2: F_ = (.6587/F)F
= (.658%6/138:31)(36) = 32.28ksi
¢.F,, =.9(32.28) = 29.05bksi
o.P. = ¢, (A)=29.05(15) = 435.76k
Consider individual angles in compression. As shown in
Figure 21.2, the column has single lacing with bolts at
1.5” from inside edge (2.5 from outside edge).

L =2(18 - 2(2.5)) = 26”

Because single angles often have large eccentricities
when loaded, the AISC has two equations for a modified
slenderness ratio when the angles are members of a
box truss or space truss. The built-up column shown is
essentially a vertical box truss and so AISC E5-3 and E5-4
govern.

If L/r, <75, use E5-3: kL/r = 60 + 0.8L/r,.

IfL/ > 75, use Eb-2: kL/r =45 + 1.25L/r < 200.

L/r,=26"/1.21" = 21.49 < 75, therefore use E5-3.

kL/r =60 + 0.8L/r =60 + 0.8(21.49) = 77.19

Find ¢ F

F, = m?E/(kL/r)? = n%(29000ksi)/(77.19)? = 48.04ksi

4.71N(E/Fy) = 4.71V(29000/36) = 133.68 > kL/r

therefore use Equation E3-2: F = (.658™/)F,
= (.658%6/48.04)(36) = 26.31ksi

¢.F., =.9(26.31) = 23.68

¢.P, =23.68(3.75)(4) = 355.2k
P, is the lesser of the values obtained for the column as
a whole and for individual angles. In this case, the column
as a whole can safely carry 435.75k while the individual

DESIGN OF STEEL COMPRESSION MEMBERS

angles can only carry 355.2k. This means that the column
will fail by the buckling of an individual angle at
¢,P, =3b5.2k.

21.4 Column Splices

The length of a column may be longer than the length that
can be manufactured or transported to the site. In such a
case, the column segments must be spliced together so
that the transfer of loads between components can safely
occur. Column splices may also occur because it may be
more economical to use smaller columns at the top and
increase in size as loads are accumulated. In either scenario,
it is recommended to place column splices at 4" above
finished floor to allow room for beam connections. See AISC
Steel Manual Table 14-3 for typical column splice details.
There are nine splicing scenarios covered by the AISC Steel
Manual Table 14-3, but the three most common are shown in

Figure 21.6.

~ ~ ~
Bolted at Welded Base Plate
flange and welded and
web bolted
21.6

Column splices

General guidelines for column splices include:

1. Use a welded splice plate for splicing columns of same
depth.

2. Use a bearing plate when splicing columns of different
depths.

3. Plates may be applied at the flanges, web or both.
When there is moment in the column, the plates may
have to carry up to 75% of the design load.
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Practice Exercises:

21-1: Design most economical W14, L = 307, P, = 200k,

P_= 400k using A992 steel for the following end conditions:

a) both ends fixed;
b) one end fixed and one end pinned;
c) both ends pinned.

21-2: Find ¢_P, of 18" HSS 10 x 18><% fixed at both ends and
F, = 46ksi.

21-3: Find the maximum compressive load, 6P, for a

W14 x 120 with a 1/2”x 12" plate bolted to each flange with
a bolt spacing of 16” along the length of the 24" column.

F, = 50ksi.

21-4: Repeat exercise 21-3 if the bolts at 16”0.c. are replaced
with 2”welds at 18”0.c.

21-5: Design two 12” channels used to form a 12” square
with Fy = b0ksi, P, = 400k, and L = 16”. Assume single lacing
at 45° with bolts at 1” from inside edge.

21-6: Design a 16 x 16” column made of 4 angles to support
a factored load, P = 500k if L = 14’. Assume double lacing at
45° with bolts 1.5” from inside edges.



twenty two

Steel Tension Design

In designing steel components subjected to tension, the
tensile stress, f, = P/A is a good starting point to determine
how much cross-section area is required to prevent the
component from pulling apart. Most components in tension,
however, are connected to another member with a bolted
connection. In these cases, not only must gross yielding in
tension be considered, but also tensile rupture, block shear
and the shear and bearing strength of the bolts. Bolt design is
covered in Chapter 24: Steel Connections.

Bolt hole sizes:

Standard bolt holes are punched or drilled %” larger than the
bolt diameter. But punching holes may damage steel beyond
the hole perimeter. Therefore, for design with punched holes,
%” is added to the bolt size to determine the design size of
the bolt hole. Drilled holes only require a %” addition, but for
consistency, in this text %” is added to the bolt diameter in all
cases to find bolt hole size.

Before discussing the analysis and design methodologies
for tensile rupture and block shear, it is necessary to
understand how to find the net area of a cross-section.

Net area (A ) is the cross-sectional gross area of a component
minus the area of the bolt holes. In calculating A, every

possible path of fracture must be examined.

Ag = gross area

A, = area of bolt holes where A, = (number of bolt
holes)(bolt hole diameter)(thickness)

A,=netarea=A - A

o O

>-1—0—O-1—>
o

221
1”x8” plate with holes aligned

In Figure 22.1, the gross area of the 1”x8” plate = A_ = 17(8")
= 8in2 The bolt size is 2”. The bolt hole size is

gr/

l//_Z// H
2 t3 =3 diameter.

A = Ag - A, =8in? - (2bo|ts)(%” diameter)(1”
thickness) = 6.25in?

hat

0 & 9 o
| o) ﬁ) | O O
i .2”; N
A B

22.2

1” x 8” plate with staggered holes
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In Figure 22.2, the plate has staggered holes and there

are two possible paths through holes to be considered in
determining A . Path A goes through one bolt hole, creating a
section of Path A as shown in Figure 22.3.

22.3
Path A

Path ArA =A - A, =8in” - (1bo|t)(%” diameter)(1”
thickness) = 7.125in?

Path B goes through two bolts that are separated by a
diagonal as shown in the section in Figure 22.4.

22.4
Path B

Because shear and tensile stresses occur together in
diagonals between staggered holes, the actual length of the
diagonal cannot be used to determine A . Instead, use the
S?/AG rule where:

G = gauge = the distance between the rows of bolt holes
(G = 3”in this example);

S = spacing = the distance between diagonal holes
measured parallel to the line of the rows. (S = 2.00 in
this example);

d,, = diameter of bolt hole;

A, = A, - (d,)#holes in path)(t) + Z(S? /4G)(t) = 8in* — (%”)
(2)(1”) + (22/4(3))(1) = 8 — 1.75 + 0.33 = 6.58”

Once A has been determined for all paths, use the lesser
value in determining tensile rupture.

To find A, in standard shapes, look up the value for the cross-
sectional gross area, listed in the AISC Steel manual Table 1-1
under the heading Area. Next note the flange thickness, t,
and/or the web thickness, t  depending on where the holes
are located in the cross-section.

Example 22-1: Find the net area of a W14 x 22 with
2 - 1.125" diameter bolt holes through each flange.

22.5
W14 x 22 with four bolt holes

From Table A3.1: A = 6.49in? t, = 0.335”

A, = A, - (# holes)(bolt hole dia.)t,
= 6.49 - 4(1.125)(0.335”) = 4.98in?
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Example 22-2: Find the net area of a C12x30 with two
rows of two 3’

2 bolts in the web with 7" gauge, 4" pitch.

Note that when bolt holes are aligned, the smallest value

of A, will be the straight path through the member as

shown in Figure 23.6(a). This is because Path B as shown in
Figure 23.6(b) will go through the same number of holes but
will add the value of S?/4g for the diagonal, making the net
area, A, that much larger. A for Path A and Path B are shown
below to demonstrate this point; however, in analysis and
design with aligned holes, Path B need not be considered.

From AISC Steel Manual Table 1-1:t = 0.510”, A = 8.81”
Path A A, = A, - (d ) #holes)(t) = 8.81 - (.875)(2)(.51)
=7.92in?

Path B: A ; = A, - (d,)(#holes in path)(t) + (S?/4G)(#diagonals)
(t) = 8.81 - (0.875)(2)(.51) + (16/28)(1)(.51) = 8.21in?

Use Path A: A =7.92in?

hole

22.1 Gross Yielding in
Tension

Using the LRFD method where:
¢ = Resistance Factor,
Fy = the yield stress of the steel and
Ag = gross area of the cross-section,
¢, = 0.9 = tensile Resistance Factor

P = Ang = nominal load

STEEL TENSION DESIGN

P, =0AF, = ultimate load or design strength
= gross yielding.

Example 22-3: Determine ultimate tensile load of an
A992 steel 1"x4" plate.

0,=0.9, A =4in? F = 50ksi

P, = (0.9)(4in?)(50ksi) = 180kips

Example 22-4: Determine the ultimate tensile load of an
A992 steel W14 x90.

0,=0.9 A, = 26.5in2, F, = 50ksi

P, = (0.9)(26.5in?)(50ksi) = 1192.5kips

22.2 Tensile Rupture
Strength

In cases where members in tension have bolted connections,
tensile rupture must be considered. Using the LRFD method
where ¢ = Resistance Factor,
F, = the ultimate stress of the steel
= 65ksi for A992 steel
= 60ksi for steel pipe
= 58ksi for A36 steel
A, = effective area of the cross-section
¢ = 0.75 = tensile rupture Resistance Factor
P.=A_F, = nominal load
P, = ¢A_F, = ultimate load or design strength
= tensile rupture strength.
A, =AU where:
U is the shear lag factor from Figure 22.7 or Table D-3.1 of the
AISC Steel Manual;
U = larger of either Table D-3.1 or the equation U = 1 — x/L;
L = distance between the first and last bolts in the line;
x = distance from line of bolts to the N.A. of the portion of
the member supported by the bolts.
If a W10 x 45 has four bolt lines, one on each side of each
flange, then the value of x is the value of y-bar taken from
the WTb5x22.5 section properties, which = .907. But if the
W10x 45 has bolt lines on only one flange, then the value of x
is the y-bar value from a W10 x 45 which is 5”. The AISC allows
either U =1 — x/L or Case 7 for W, M, S and HP shapes.

197



198

STEEL DESIGN

For example, if the W10 x 45 has four lines on bolts with four
bolts per line at 3"0.c.,

L = 3(3”0.c.) =9” and X = 0.907. This means that U = 1 — x/L
=1-.907/9 = 0.90.

Using Case 7, AISC Table D-3.1 states that for a flange
connected with three or more fasteners per line in direction

of loading, if
b, >2/3d, U =0.90 and if

b, < 2/3d, U = 0.85

b, =8.02, 2d/3 = 2(10.1)/3 = 6.73 therefore U = 0.90.

But if the number of bolts per line is reduced to two:
L=3"and U=1-.907/3 =0.70.

Example 22-5: Find the ultimate allowable load P for the
A992 steel W14 x43 with 2 lines of holes in each flange
for %” bolts as shown in Figure 22.7.

22.7
W14 x 43 with four lines of holes

From Table A3.1: W14 x43: A = 12.60in?, t, = 0.563”,
b,=8.00",d=13.7"
Gross yielding:

F, = 50ksi for A992 steel

A,=A=12.6In

P,=0A_F =0.9(12.6in2)(50ksi) = 567k

tgy

Tensile rupture:

Bolt hole diameter = d,, = bolt diameter + 1/8”

=7/8"+1/8"=1"

A,=A, - A, =A, - [#Dboltholes)(bolt hole diameter)

(thickness) = 12.6in% — 4(1”)(0.53") = 10.48in?

To determine the value of U for a W shape with 3 or more

bolts per row, see case 7 of Table 22.1. U = 0.9 if

b, >2d/3. U =0.85if b, < 2d/3.

b, = 8.0” and 2d/3 = 2(13.7)/3 = 9.13”. Therefore,

b, < 2d/3and U = 0.85.

A, =UA =0.85(10.48in? = 8.91in?

F, = 6bksi = ultimate stress for A992 steel.

P,=0P = .75F A =0.75 (65ksi)(8.91in? = 434.36k
Tensile design strength is the lesser value of the gross
yielding strength and the tensile rupture strength.
434.6k < 567k, therefore: P = 434.36k.

Tensile connections may have more than one shear
plane. Multiple shear planes in a connection may occur
because more than two structural members are connected or
because symmetry is desired or because several plates are
required to carry the tensile load. When dealing with multiple
components, remember that tensile forces must be balanced.

Example 22-6: Tension connection with multiple
shear planes.

I-PL 1/4" X4"
P/ 7
; ; i W8X15
L e
P/x 2 22| 22| 22|
L i i i
PL 1/4" X4"

22.8

Tension connection with multiple shear planes

Table 22.1: U-factors. Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

SHEAR LAG FACTOR, U
CASE DESCRIPTION U
1 Plates and built-up members connected by bolts 1.00
W, M, S or HP Shapes or Tees 3or m?re Ii)ofts inflange in |bf 2 2d/3 0.90
7 direction of load bf < 2d/3 0.85
cut from these shapes - ———

4 or more bolts in web in direction of load 0.70
. 4 or more bolts in direction of loading 0.80

8 Single Angles T 5
2 or 3 bolts in direction of loading 0.80




Find the maximum design load, P, for the connection in

Figure 22.8.

1. Check W8x 15 for gross yielding:

A =4.44in?% t. =0.315", b, = 4.01",d = 8.11”

P,=0P =0.9P =0.9FA = .9(b0ksi)(4.44in?)
= 199.8k for gross yielding in the W8 x 15.

2. Check W8 x 15 for tensile rupture:

A =4.44in% t, = 0.315”, b, = 4.01”,d = 8.11”

P,=0P =0.75Pn = 0.75F A = 0.75(65)A (U)

A, = A, - (#ines)(dy,)(t) = 4.44 — 4(7/8)(.315)

= 3.338in2

Check U, Case 7: (2/3)d = (2/3)(8.11) = 5.41 > b, = 4.01
therefore, U = 0.85

A, =AU =3.338in%0.85) = 2.84in?

P, = .75(65)(2.84) = 138.45k for tensile rupture in the
W8 x 15.

3. Check % x 4” plates for gross yielding: Note that because
there are two equal size plates carrying the total load P,
each plate will carry half the load or P /2.

P/2=¢P =0.9P =0.9FA =.9(36)(4)(25) = 32.4k
P, = 32.4k(2) = 64.8k for gross yield in plates
4. Check plates for tensile rupture:
P /2 =¢P_=0.75P_ =0.75F A_=0.75(58)A (U)
A, =4(.25) - 2(7/8)(.25) = 0.56625in?
U = 1.0 for plates ... A, = A U = 0.56625in?
P /2 = .75(568)(0.56625) = 24.47k P = 48.94k for tensile
rupture in plates.

5. The smallest value governs, therefore, the design
strength of the connection is 48.94k. Beyond that, the
connection will fail by tensile rupture in the plates.

If the design strength is not adequate, the size of the
plates could be increased so that plate rupture becomes
equal to beam rupture.

Find area of plates so that P, = 138.45k in tensile rupture:

1. Assume plate width b and plate thickness t

2. Find desired tensile rupture strength per plate: P /2 = ¢P_
=0.75P = 0.75F A_ = 0.75(68)A = 138.45/2 = 69.23

3. Find A interms of b and t:

A, =A, - (#lines)(d, )(t) = b(t) - 2(7/8)(t) = tib - 1.75)

4. SetA equal to desired A = (P /2)/.75F
tlb - 1.75) = 69.23/[.75(58)] = 1.591in’

STEEL TENSION DESIGN

ifb=4,1t=1591/(2.25) = 0.707”

Option 1: increase thickness to %” PL 4”7 x
ORift=.25"b =1.691/256 + 1.75 =8.114
Option 2: increase width to 8.25” PL 8.25” x %”

§ ”
4

22.3 Block Shear

Block shear is a type of rupture—a tearing out of a section of
steel at the corner of a member. This type of tearing occurs
through the bolt holes and involves both shear and tension

in the process; shear parallel to the line of force and tension
perpendicular to the line of force.

Shear Line

Tension
Lines

Areas that would rip out /
from Block Shear.

22.9
Block shear

¢ = 0.75 for block shear
P,=0R =.75R_

R, = BF A, + UgF LA < BF A + Uy F A

BS' U" 'nt BS' U" 'nt

Agv = gross area subjected to shear = (#lines)(distance
from center of farthest bolt to end)

A, = net area subjected to shear = A — (#lines)
(#holes per line — 0.5)(d,,)

A, = net area subjected to tension = (#lines)(distance
from centerline of bolt to edge - d,,/2)

To check for block shear, members should first be checked
for gross yielding and tensile rupture.

Example 22-7: Find the block shear in the connection
from Example 22-6: If there are three bolts spaced at
3"0.c. per line and 3" from the end, with lines 2" apart.
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(PL 1/4" X4" . 4. PJ2=9R =075(0.6F A, +FA ) =.756(36ksi)4.5in?
pP/o< 7 iz + 58ksi(0.28in%)] = 85.08k ... P, =2(85.08k) = 170.16k
"W8X1H5 <listpara >OR
P=2> — 7 P/2=0R =075 (0.6FA  +FA )=.7506(58ksi)
i i i (3.41in?) + 58ksi(0.28in?)] = 101.18k ... Pu = 2(101.18k)
P/2s L =T T = 202.36k
PL 1/4" X4" 5. Block shear in the plates: P, = 170.16k.
_ Failure will occur in plate rupture at 48.94k.
3", 3"l 3", 3"
¢ O ¢ ¢ S ) )
9 & o ¢ < 22.4 Design of Tension
_i Members
22.10

Block shear example 22-7 To design tension members, the goal is to find the gross area

required for gross yielding and tensile rupture. Block shear is
From Example 22-6, the following values were obtained for checked in the designed member and the size is adjusted if
gross yielding and tensile rupture: needed. Since P < O.9FyAg for gross section yielding, dividing

W8 x 15 in gross yielding: — 199 8k both sides of the equation yields A, = P /0.9F .

For example: Design a W section for a tensile load

P, = 240kips using A992 steel.

= 68.4k

Pu
W8x 15 in tensile rupture: P = 138.4bk
Plates in gross yielding: P,

_ , A, = 240k/[(0.9)(50ksi)] = 6.33in”
Plates in tensile rupture: P, =48.94k ¢

, _ A'W10x 19 would work with A = 5.62in?
1. A, = #lines(length of shear line)(t) = 4(3” + 3” + 3”) ¢

(.315”) = 11.34in? For tension members with bolts, tensile rupture must also be
2. A=A, - (#lines)(#holes perline — 0.5) (dg,)(t) = considered.
11.34in? — (4)(2.5)(3/4” + 1/8”)(.315”) = 8.584in? Since P, = ¢P_=0.75F Ae for tensile rupture, A, > P /0.75F .
3. The length of the tension line is (bf — distance between And since A, = UA | A 2P /0.75F U. Butitis the gross area,
lines)/2 = (4.01 - 2)/2 = 1.005". not the net area that must be determined. A, = A + A, At
A, . = (#line)llength of tension line - (0.5) (hole dia.)l(t,) this point, the area of bolt holes (A, ) must be estimated.
= 4[1.005” - 0.5(7/8")1(.315”) = 0.72in? Because the number of lines of bolts and the bolt size are
4. Use lesser of both equations: typically decided, A, can be expressed in terms of t,.
P,=0R =0.75(0.6F A +FA ) =.750.6(50ksi) A, = (#lines)(d, )(t)
(11.34in?) + 65ksi(0.72in?) = 290.25k
OR A, = A, + (#ines)(d,)(t)
P,=0R =0.75(0.6F A  +F A )= .75[.6(6bksi) A, 2P J0.75F U+ A

(8.58in?) + 65ksi(0.72in?) = 286.07k
5. Block shear in the W8x 15: P = 286.07k
Check the block shear in the PL % x 4"
I Ay, = 2070257 = 4.5in" 1. Determine the factored load, P
2. A, =4.5in2 - (2)(2.5)(3/4” + 1/8”)(.25) = 3.41in : P
3. The length of the tension line = (4 — 2)/2 = 1” 2 Ag > P“/('Q(FV))

A, = 2[1 - 0.5(7/8)l(.25) = 0.28in?

When designing tension members, the slenderness ratio,
L/r<300.
The procedure for design of tensile connections:



3. Choose assumed value for U: 1.0 for plates, 0.85 for W
shapes.
4. Assume a value for t,. Ag >A +A, =P/0.75F U) +
(#lines)(bolt hole dia.)(t,)
r>1(12in/)/300
Select a trial size and note: A, t, and r,. Check that A
= P /(0.75F U) + (#lines)(bolt hole dia.)(t) > A
7. A

gREQD
g ACTUAL
o = (#lines)(shear line length)(t,)

A, =A,, - (#lines)(#bolt holes)(d,,)(t)

A, = (#line)llength of tension line — (0.5)(d,)I(t,)
8. Check both Shear Block Equations:

P, < .75L6F A, + U F A, ]

BS' U" 'nt

FA.

BS" U" 'nt

P,<.750.6F A +U

Example 22-8: Design a 20’ long W12 section for a tensile
load P, = 240kips using A992 steel assuming two rows of

three %" bolts @ 3"0.c. on one flange, 2" from end and

lines at 4"o.c.
4"
3" 3“ 2" CIIT 11
O— 60— 06 | |
<
. ——
22.11

Block shear in a W12 with holes in one flange

1. P, = 240kips

2. Gross yielding: Ag > Pu/(.9(Fy)) = 240k/(.9(50ksi)) = 5.33in?
The size must be at least a W12 x 19 (A = 5.57in?)

3. Choose assumed value for U = 0.85

4. Assume t, = .4, Ag =A +A, =P/0.75F U) + (#lines)(bolt
hole dia.)(t,)

STEEL TENSION DESIGN

= 240k/0.75(65ksi)(0.85) + 2(3/4” + 1/8”)(0.4”)
=5.792 + 1.75t, = 6.49in?

5. r>20’(12in/f)/300 = 0.8”

6. Try W12x26: A =7.65,,=0.38, 1, = 1.51, b = 6.49,
d=12.2

7. r, = 1.51” > 0.8” ... okay

8. Check the U value and adjust the equation for A_if
necessary:

2d/3 =1(2/3)(12.2) =8.13>6.49=Db, ... U=0.85
... okay

9. Ag =7.65>5.792 + 1.75(0.38) = 6.46 ... okay
10. Block shear:

A, = (#lines)(shear line length)(t) = 2(3 + 3 + 2)(0.38)
=6.08
A, =A,, - (#lines)(#bolt holes)(d,)(t) = 6.08 - 2(2.5)
(0.875)(0.38) = 4.42in?
b, = 6.49, tension line = (6.49 - 4)/2 = 1.245”
A, = 2(1.245 - 5(.875)) = 1.615in?
P, = 0.75[0.6(65ksi)(4.42) + 1.0(65ksi)(1.615)] = 208.02
k < 240k
The W12 x 26 is not adequate. Go back to step 6 and
try a larger size.
6A. Try W12 x 35: Ag =10.3,t,=0.52, = 1.54,d =125,
b, =6.56
7A. r, = 1.54” > 0.8” ... okay
8A. Check the U value and adjust the equation for A_if
necessary:

2d/3 = (2/3)(12.5) =8.33 >6.56 = b, ... U =0.85
... okay

9A. Ag =10.3in? > 5.792 + 1.75(0.52) = 8.06in? ... okay
10A. Block shear:

A, = (#lines)(shear line length)(t) = 2(3 + 3 + 2)(0.52)
= 8.32in?

A, = A,, - (#lines){#bolt holes — .5)(d, )(t,)
= 8.32 - 2(2.5)(0.875)(0.52) = 6.05in?

b, = 6.56, tension line = (6.56 - 4)/2 = 1.28”

A, =2(1.28 - .5(.875)) = 1.69”
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P, =0.75[0.6(50ksi)(8.32) + 1.0(65ksi)(1.69)]
= 269.59k > 240k

P, =0.75[0.6(65ksi)(6.05) + 1.0(65ksi)(1.69)]
= 259.35k > 240k ... okay

ANSWER: Use W12x 35

It is often possible to reduce the weight of a tension member
whose size is governed by block shear by increasing the
distance from the holes to the end or the edges. For example,
if the problem is changed so that the distance from the holes
to the end is 3” instead of 2” and the distance between lines
of bolts is changed so that the length of the tension line is
1.5” instead of 1.28”, the answer would change.

3" 3" 3"
Q o—o—o—| -
— o—0—0—{&f

22.12

Changed bolt hole spacing

Example 22-9: Design a 20’ long W12 section for a tensile

load P = 240kips using A992 steel assuming two rows of

three %" bolts @ 3"0.c. on one flange, 3" from end and

1.5” from edges.

1. P, = 240kips

2. Gross yielding: A, > P /(.9(F ) = 240k/(.9(50ksi)) = 5.33in’
Must be at least a W12 x 19 (A = 5.57in?)

3. Choose assumed value for U = 0.85

4. Assume t = .4, A 2 A + A =P /(0.75F U) + (#lines)(bolt
hole dia.)(t,) = 240k/0.75(65ksi)(0.85) + 2(3/4” + 1/8”)
(0.4”) =5.792 + 1.75t, = 6.49in?

5. r=20(12in/f)/300 = 0.8”

6. Try W12x26: A, =7.65,1,=0.38,r =151, b, =6.49,
d=12.2

7.r1,= 1.51” > 0.8” ... okay

8. Check the U value and adjust the equation for A if
necessary:
2d/3 =1(2/3)(12.2) =8.13>6.49=Db, ... U=0.85
... Okay

9. A,=765>5792 + 1.75(0.38) = 6.46 ... okay
10. Block shear:

A,, = (#lines)(shear line length)(t) = 2(3 + 3 + 3)(0.44)
=792

A, = A,, — (#lines)(#bolt holes)(d, )(t) = 7.92 — 2(2.5)
(0.875)(0.44) = 6.0

b, = 6.52, tension line = 1.5”

A, =2(1.56 - 5(.875)) = 2.13in?

P, =0.75[0.6(65ksi)(6.0) + 1.0(65ksi)(2.13)] = 279.34k
> 240k

P, =0.75[0.6(50)(7.92) + 65(2.13)] = 282.04k > 240k

USE: W12 x26

Practice Exercises:

22-1 and 22-2: Find the design strength of the connections

shown.

22-3: Find the narrowest 6” plate thickness, t, for the
connection shown if P = 500k.

22-4: Find the most economical W14 for a connection with a
tensile load of 1200# if there are four lines of bolts (2 in each
flange). Each line has four bolts with 1” diameter bolt holes
spaced at 3”0.c. and 3” from the end. The lines of bolts are
b/2” apart.

22-5: Repeat problem 22-4 using é” bolt holes spaced 4”o.c.
and 3” from the end.
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IfPL 1/2" X8"
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I | W814X43
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Chapter 22 Practice exercises



twenty three

Steel Baseplates

A baseplate is a steel plate that is welded or bolted to the /L
bottom of a steel column. The purpose of a baseplate is to
distribute the load over an area larger than the column cross-
sectional area so that the concrete footing below can support
the load. If a heavily loaded column was placed directly on a
concrete footing, the compressive stress carried by the steel
would be too great for the concrete and the column would
punch through the footing.

There are two scenarios to consider in designing a baseplate:

full and partial coverage of the concrete. If the baseplate

covers the entire area of the concrete, the nominal load (Pp) is /L
P, = 0.85f" A where:

' = compressive strength of the concrete and

N
A, = gross area of the base plate = BN. ,i/ p
The design load is P, = 6P where ¢, = 0.60 for base #
plates.
If the area of the concrete is greater than the area of the <
baseplate, the nominal load, P = (0.85F" A(A,/A) where: -1
A, = the area of the concrete g
RN\ U S
A, = the area of the baseplate = BN and N
the value of V(A,/A) < 2. =
’ = compressive strength of the concrete
. : I'm .95d
By rearranging the equation for Pp: ¥ .
A, =P /16,(0.85f) V(A,/A)] where 25
Steel baseplate

¢, = 0.60 for base plates



To design a base plate:
1. Determine P,
2. Determine footing area in square inches
3. The base plate A, = P /[¢_(0.85f")(2)]
4. The base plate must be at least as large as the column
dimensions: d by b,. Check that A, > d(b,), B > b, and
N > d.
Round B and N up to whole numbers
A, =BN
Check the bearing strength of the concrete:
P, < 0P, =0.6(0.85( A)V(A,/A)

8. m=I[N-0.95d]/2
n=[B -0.80b,/2
n’ = [Ndb,)/4 = limitations in determining thickness
requirement in order to account for columns with
light loads.
| = largest of m,n,n’
9. t,, = NI2P/9F BN]

Example 23-1: Design a baseplate for a W14 x90 column
carrying an axial load of P, =900k and bearing on a 6’ by
6’ concrete footing with f’. = 3ksi. d = 14, b, = 14.5.

1. P,=900k
2. A, =6"12in/f)(6")(12in/f) = 5184in?
3. A =P [[$,(0.85fc)(2)] = 900/[.6(.85)(3)(2)] = 294.12in?
4. db, = 14(14.5) = 203. Check that A, > db
5. 294.12 > 203 ... okay
6. Round B and N up to whole numbers: V294 = 17.146
use 17 x18:
A, = BN = 306in?
Note: V(A,/A) = 2
7. Check the bearing strength of the concrete:
P, <¢,P, =0.6(0.85(3)(306))(2) = 936.36 > 900k
... okay

8. Find base plate thickness:

m =[N - 0.95d]/2 = [17 - .95(14)]/2 = 1.85

STEEL BASEPLATES

n=[B-0.80b]/2 =18 - .8(14.4)]/2 = 3.24
n’ = Ndb/4 = N14(14.5))/4 = 3.56 |=3.56

9. t,,=NI2P/9F BNI =3.56V[2(900)/.9(36)(17)(18)] = 1.52”
Base plate: PL 18 x 17 x 15"

Example 23-2: Design the thickness for a base plate of a

given size where:

P, =900k, column W14 x90:d = 14, b, = 14.5
Footing: /. = 3ksi, 25” x 256” pedestal with baseplate covering
pedestal
1. P,=900k
2. A, =25(25) = 625in?
3. P, =0.85FA =.85(3)(625) = 1593.75 ... go right to
step 7
7. Check the bearing strength of the concrete:
P, <¢.,P, =0.6(1593.75) = 956.25 > 900k ... okay

8. Find base plate thickness
M =[N - 0.95d]/2 = [25 - .95(14)]/2 = 5.85

N =[B -0.80b]/2 = [25 - .8(14.5)]/2 =6.7

n’ = NdbJ/4 = N14(14.5))/4 =3.56  /=6.7

9. t,, = NI2P,/9F BN] = 6.7[2(900)/.9(36)(25)(25)] = 2”
Base Plate: PL 25x25x2”

Practice Exercises:

23-1: Design a baseplate for a W24 x 192 column carrying
an axial load of P, = 2400k and bearing on a 8’ x 8’ concrete
footing with /= 4ksi, d = 25.5, and b, = 13.0.

23-2: Design the thickness of a 30”x 30” base plate fully
covering a pedestal of = 3ksi concrete and supporting a
W14 x 120 columns with an axial load of P = 1200k, d = 14.5,
b, = 14.7.
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twenty four

Steel Connections

24.1 Bolted Connections

Bolted connections are the most common type of connection
used in steel. The strength of the connections depends

not only on the strength of the connected components as
discussed in Chapter 22, but also on the shear and bearing
strength of the bolts.

In bearing connections, some slippage is assumed and the
bolt is checked for bearing and shear. In bearing conditions,
the bolts are snug-tight or pre-tensioned without inspection.
A snug-tight bolt is tightened by hand and then wrench
tightened 1.5 turns. The threads are seated together but do
not have to be in continuous contact with each other.

In slip-critical connections, the bolt strength is based on
surface conditions, pre-tensioning of the bolt and hole size. In
skip-critical connections, bolts are tightened up to 70% of the
tensile design strength, threads are in constant contact and
contact surfaces as well as the tension must be inspected.

The three most common types of bolts are the A307, A325
and A490. The A307 is a common bolt and has a strength
roughly equivalent to A36 steel. The A325 and A490 are high
strength bolts and therefore are the most commonly used.

l”

8
increments. A designation of X or N is given to high strength

Bolt sizes range from 0.5” to 1.5” in diameter in

bolts. X indicates threads are excluded from the shear planes
and N indicates threads are NOT excluded from the shear
planes.

24.1.1 Bearing Connection Analysis

Four conditions must be considered for bearing connections:

1. Gross yielding of plates: ¢P = O.9FVAg as discussed in
Chapter 22.

2. Tensile rupture of plates: 6P, = 0.75F A_ as discussed in
Chapter 22.

3. Bearingin bolts: R = 0.756 R where R is the smaller
value of

R, = 1.2 L (t)(F ){# of bolts)

OR

R, = 2.4(d)(t)( F )(# of bolts)

L, = the smallest clear distance between the edges of
holes and edges of adjacent holes or material edges
in direction of force.

t = plate thickness

d = diameter of bolt

4. Shearinbolts: R = ¢F A = 0.75F A where

F, is found in Table 24.1

A, = total area of bolts = (TOTAL # bolts)(r)(bolt
diameter)?/4

The design tension is the smallest value from the four cases.

Example 24-1: Determine the design strength ¢ P, for
bearing connection in Figure 24.1 if plates are A36 steel
and bolts are A-325 with 3" diameter bolts with threads
excluded from the shear plane.



Table 24.1: Nominal shear in bearing connections: F_ (ksi) from AISC Steel

Construction Manual Table J3.2.

Bolt Type Nominal Shear in
Bearing Connections:
F,, (ksi)
A307 24
A325-N 48
A325-X 60
A490-N 60
A490-X 75
5II
8
L - L) =
<=<& 1 7 1 |
3-- L 4n L 3|| [
1 T
| |
2"
<=t 4" L
-5 — —f ———]
I

24.1

Finding design strength of a bearing connection

1. Gross yielding in plates:
0P, =0.9F A =0.9(36ksi)(0.625)(8) = 162k
2. Tensile rupture: ¢P_ = 0.75F A,
A, =UA_ and U =1 for plates
A, =A, =(625")(8") - (.625)(3/4 + 1/8)(2) = 4.02in?
Where .625” is plate thickness and 8” is plate width
%” + %” = 0.785" = bolt hole diameter
2 = # bolt holes in the cross-section
¢oP_ =0.75F A_ = 0.75(58 ksi)(4.02in?) = 174.87k
3. Bearingin bolts: R = 0.75R_ where R is the smaller
value of both R_equations below:
L, = minimum clear distance in direction of force

= smaller of
3 -.872/2” =2.56” or 4” - 0.875” = 3.125”
L =256"

t = 0.625” = thickness of plate,
d = 0.75” = diameter of bolt
Total number of bolts = 4

STEEL CONNECTIONS

R, = 1.2L (t)( F )(# of bolts) = 1.2(2.56)(0.625)(58)(4)

= 445.44K

OR

R, = 2.4(d)(t)( F_)(# of bolts) = 2.4(.75)(.625)(58)(4)
= 261k

¢R, =0.75R = 0.75(261k) = 195.75
4. Shearin bolts: R = oF A =0.75F A,

From Table 24.1 For A325-X bolt, f = 60ksi

A, = total area of bolts = (TOTAL # bolts)(r)(bolt
diameter)?/4 = 4(3.14159)(0.75)?/4 = 1.767in?

oR, = oF A, =0.75(60)(1.767) = 79.52k

The design tension = smallest of four cases

=79.52k

24.1.2 Bearing Connection Design

In design, the number of bolt holes required needs to be
determined for a given load. This is done after the plates or

other connection components are designed.

1. Determine bearing strength in one bolt
2. Determine shear strength in one bolt
3. Determine number of bolts needed

Example 24-2: If the plates in Figure 24.1 are designed
for a tensile design load, P, = 160k, how many rows of
A325-N bolts are required?

1. Determine bearing strength in one bolt:
R, =1.2L (t(F) (1 bolt)

L, = minimum clear distance in direction of force

= smaller of
3 -.872/2” =2.56" or 4” - 0.875” = 3.125”
L, =2.56"

t = 0.625” = thickness of plate

d = 0.75” = diameter of bolt

R, = 1.2L (0(F)(1 bolt) = 1.2(2.56)(.625)(58)(1)
= 111.36k/bolt

OR

R, = 2.4(d)(t)( F )(1 bolt) = 2.4(.75)(.625)(58)(1)
= 65.25k/bolt

¢R =0.75R_ = 0.75(65.25) = 48.94k/bolt

2. Determine shear strength in one bolt: R = ¢F A,

= 0.75F A,

207



208

STEEL DESIGN

From Table 24.1 For A325-X bolt,

f,, = 60ksi

A, = area of ONE bolt = (n)(bolt diameter)?/4
= (3.14159)(0.75)%/4 = 0.442in?

oR. = oF A, =0.75(60)(0.442) = 19.88k/bolt

3. Determine number of bolts needed:

P, = 160k (given)

oR, = 19.88k/bolt (#bolts) = 160k ... #bolts
=160/19.88 = 8.05 ... round up to 10 bolts.

24.1.3 Analysis for More than One
Shear Plane

Analysis for connections with more than one shear plane
follows the same procedure as in section 22.1.1. However, it
must be remembered that if the number of plates carrying a
force in one direction is different than the number of plates
carrying a force in the opposite direction, then the thickness
to be used is equal to the smaller of the sums of plate
thicknesses on each side.

Example 24-3: Determine the design strength ¢ P_for
bearing connection in Figure 24.3 if plates are A992 steel
and bolts are A-490 with 1" diameter bolts with threads
NOT excluded from the shear plane.

%2
P2 | W 3/4
<=l ——h——t— L) .
P/2 =] ="
] 3" 4" . 3"
T+
<= I I 3" o=
3
|

24.2
Multiple shear planes

1. Thickness to the left = 0.5(2) = 1 and thickness of plates
to the right = 0.75(1) =0.75 ... t = 0.75
2. Gross yielding in plates: 9P = 0.9F A = 0.9(50ksi)(0.75)
(10) = 337.5k
3. Tensile rupture: P = 0.75F A,
A, =UA_ and U =1 for plates.

A, =A =(75")(10") - (.75)(7/8 + 1/8)(3) = 5.25in?
¢P_=0.75F A_ = 0.75(65ksi)(5.25in?) = 255.94k
4. Bearingin bolts: R = 0.75R_ where R is the smaller
value of both R_ equations below:
L, = minimum clear distance in direction of force

= smaller of
3-1/2"=25"0or4” -1"=3.0"
L ,=25"

t = 0.75” = thickness of plate,

d = 0.875” = diameter of bolt

Total number of bolts = 4

R, = 1.2L_(t)/(F )(# of bolts) = 1.2(2.5)(0.75)(65)(6)

= 877.5k

OR

R, = 2.4(d)(t)( F )(# of bolts) = 2.4(.875)(.75)(65)(6)
= 614.25k

oR, = 0.75R = 0.75(614.25k) = 460.69k
5. Shearinbolts: R = ¢F A =0.76F A,

From Table 24.1 For A490-N bolt, f_ = 60ksi

A, = total area of bolts = (TOTAL # bolts)(r)(bolt

diameter)?/4 = 6(3.14159)(0.875)%/4 = 3.608in?

¢oR =¢F A =0.75(60)(3.608) = 162.34k
The design tension = smallest of four cases = 162.34k.
The connection will fail through shear in the bolts. If the
design strength is not adequate, the design can be altered
to improve the strength. If the bolt size is increased to 1”
diameter, the bolt holes increased to 1.125” diameter. Steps
3, 4 and 5 would need to be re-evaluated.
3. Tensile rupture: 6P = 0.75F A,

A, =UA_ and U =1 for plates.

A, =A, =(75")(10") - (.75)(1.125)(3) = 4.97in?

¢P, = 0.75F A_ = 0.75(65 ksi)(4.97in?) = 223.59k
4. Bearing in bolts: 9R = 0.75 R, where R_ is the smaller

value of both R_equations below:

L, = minimum clear distance in direction of force

= smaller of
3-1125/2" =2.44" or 4” — 1.125” = 2.875”
Lc =2.44"

t = 0.75” = thickness of plate

d = 1”7 = diameter of bolt

Total number of bolts = 4

R, =1.2 L, ((F )6 of bolts) = 1.2(2.44)(0.75)(65)(6)
= 856.44k



OR

R, = 2.4(d)(t)( F )(# of bolts) = 2.4(1)(.75)(65)(6) = 702k

oR =0.75R_=0.75(702k) = 526.5k.
5. Shearin bolts: ¢R, = ¢F A, = 0.75F A,

From Table 24.1 For A490-N bolt, f = 60ksi

A, = total area of bolts = (TOTAL # bolts)(r)(bolt

diameter)?/4 = 6(3.14159)(1)%/4 = 4.712in?

OR = oF A =0.75(60)(4.712) = 212.06k
The design tension = smallest of four cases = 212.06k
The connection still fails by shear in the bolts, but the
increase in size by 14% increased the design strength of the
connection by 30.6%. The next smallest value for design
strength is in tensile rupture where the design strength was
255.94k using %” bolts. The number of rows of bolts could be
changed to increase the design strength. To find how many
rows of bolts are needed to make connection fail by tensile
rupture, there is no need to reconsider bearing in bolts as it
will only increase with addition of bolts. Therefore, only the
shear in bolts needs to be considered.
5. Shearin bolts: R = ¢F A =0.76F A,

From Table 24.1 for A490-N bolt, f_ = 60ksi

A, = total area of ONE bolt = (1)(n)(bolt diameter)?/4

= 1(3.14159)(0.875)%/4 = 0.601in?

oR, = oF A = 0.75(60)(0.601) = 27.06k
# bolts required = 255.94k/27.06k/bolt = 9.46 bolts ... use 10
bolts.

24.1.4 Slip-critical Connections

¢ = 1.0 for connections preventing slip at serviceability limit
state

¢ = 0.85 for connections preventing slip at the required
strength level

Design of slip-critical connection:

1. P, =factored loads

2. Nominal Strength of one bolt:

R, =uD,h TN

u'sc b s

#bolts required = P /OR

STEEL CONNECTIONS

Table 24.2: Minimum bolt pretension, T, (k) from Table J3.1 of the AISC
Steel Construction Manual, reprinted with permission

Bolt Diameter (in) | A-325 Bolts | A-490 Bolts

0.5" 12 15
0.625" 19 24
0.75" 28 35
0.875" 39 49

1* 51 64

1.125” 56 80
1.25" 71 102
1.375" 85 121

1.5” 103 148

3. Bearing in bolts. NOTE that the constants from bearing
connections equations have changed from 1.2 and 2.4 to
1.5 and 3.0, respectively.
R, = 1.6L tF, (#bolts)
or
R, = 3dtF, (# bolts)
Check that 9R = 0.75R > P
4. Shearin bolts
R, =F.A, (#bolts)
Check that ¢R = 0.75R > P

Example 24-4: Determine the number of 1" A325 slip-
critical bolts in standard size holes needed for the
serviceability limit; state whether the faying surface is
Class A.

The edge distance is 1.75” and the c.c. spacing of bolts is
3(in). F, = 50ksi, F, = 65ksi, P_= 30k, P, = 50k.

1. P,=1.2(50) + 1.6(30) = 108k
2. Nominal strength for slip-critical design for serviceability
state:
R, =uD h T N
u = 0.35 for Class A faying surfaces (unpainted, mill
scale or with Class A coatings)
D,=113
h,. = a hole factor = 1.00 for standard size holes
T, = minimum fastener tension from Table 24.2 = 51 kips
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N, = number of slip planes = 1

R, = 0.35(1.13)(1.0)(61)(1) = 20.17 k/bolt

oR =1.0(20.17) = 20.17k

#bolts required = 108/20.17 = 5.35

USE: 6 bolts.

3. Check bearing strength in all bolts:

L. =3-(1+1/8=1875"

Or

L, =175-(1+1/8)/2=1187"

R,=15L tF, (#bolts) = 1.5(1.187)(5/8)(65)(6)
=433.98

Or

R, = 3dt F (# bolts) = 3(1)(5/8)(65)(6) = 731.25

Check that 9R, = 0.75R_ = 0.75(433.98) = 325.485 > P,

=108 ... okay
4. Check shear strength in all bolts:
R =F A, (#bolts) = 60[(3.14159)(1)%/41(6) = 282.743k

Check that R = 0.75R = .75(282.743) = 212.057 > P,

= 108k

Example 24-5: Find number of bolts needed for slip-
critical connection for the following conditions for the
connections in Figure 24.2.

A325-N, - |nch bolts, Class A surfaces, P, = 60k, P_ = 90k,
standard hole sizes, L, = 3, design state, A36 steel
1. P,=1.2(60) + 1.6(90) = 216k
2. Nominal strength of one bolt:
R, =ubD h T N
u=0350D,=113,h_=10,T, =28 N =2, 6=0.85
R, = 0.35(1.13)(1.0)(28)(2) = 22.148k/bolt
#bolts required = P /0R = 216k/(0.85(22.148k/bolt))
=11.47
USE: 12 bolts minimum (4 rows of 3)
3. Bearing in bolts
R, = 1.6L tF (#bolts) = 1.5(3.0)(.75)(68)(12) = 2349k
or
= 3dtF (#bolts) = 3(3/4)(.75)(58)(12) = 1174.5k
Check that 9R = 0.76R = 0.75(1174.5) = 880.88 > P
=216 ... okay
4. Shearin bolts
R, =F A, (#bolts) = 60[(3.14159)(3/4)%/4]112] = 318.09k

Check that oR = 0.76R = 0.75(318.09k) = 238.56 > P

= 216k ... okay
USE: 12 bolts: 4 rows of 3.

24.2 Eccentric Bolted
Connections

This text uses the Elastic Method for analyzing eccentric
bolted connections.

M = Pe

Where P is the load applied at an offset (eccentricity) of e
from the center of gravity of the bolt group. The horizontal
and vertical components of shear forces on each bolt are

calculated by summing the moments about the center of

gravity of the bolt grouping.

Example 24-6: For the %" plate shown in Figure 25.3,

check the adequacy of using 1", A325-X bolts.

%}’ ﬂzok

e L0

4 i
R E T A

%ré ———)

Eccentric bolt group

Determine e: because the center of gravity is half the

distance between the two lines of bolts, e = 4” + 4”/2 = 6”

2. Determine the horizontal (h) and vertical (v) distances
from each bolt to the center of gravity:

BOLT h h2 v v2

Al 2 4 4.5 20.25
A2 2 4 1.5 2.25
A3 2 4 1.5 2.25
A4 2 4 4.5 20.25
Bl 2 4 4.5 20.25
B2 2 4 1.5 2.25
B3 2 4 1.5 2.25
B4 2 4 4.5 20.25
TOTAL = 32.0 = 90.0



Yd?=3%h?+Xv? =32 +90 =122
3. Determine the resultant force on each bolt:
H = horizontal force due to moment on each bolt
= Mv/ Zd?
M = 20k(6”) = 120k-in
For bolts in rows 1 and 4: H, = 120(4.5)/122 = 4.427k
For bolts in rows 2 and 3: H, = 120(1.5)/122 = 1.475k
V = Mh/Zd? = 120(2)/122 = 1.967k for all bolts
And vertical force due to load
= P/#bolts = 20/8 = 2.5k |
R = resultant force on bolt = V[H? + (V + P/#bolts)?]

BOLT H \%4 P/#bolts ~ V +P/#bolts R

Al 4.43 1.97 -2.5 -0.53 4.46
A2 1.48 1.97 -2.5 -0.53 1.57
A3 -1.48 1.97 -2.5 -0.53 1.57
A4 -4.48 1.97 -2.5 -0.53 4.46
Bl 4.43 -1.97 -2.5 -4.47 6.29
B2 1.48 -1.97 -2.5 -4.47 4.70
B3 -1.48 -1.97 -2.5 -4.47 4.70
B4 -4.43 -1.97 -2.5 -4.47 6.29

S 4.43 ; S 4.43 ;
53 4.47

91.48 ; 31.48 ;

53 4.47

61.48 S 61.48 S

.53 4.47

E4'43 @ 64'43 @

.53 4.47

Forces on eccentric bolt group

The upper right hand (B1) and lower right hand (B4) bolts have

the greatest force. R = 6.289k

STEEL CONNECTIONS

4. Checkthat R < the bearing for one bolt: Determine
bearing strength in one bolt:
L, = minimum clear distance in
direction of force = smaller of
37 _ % —05”
or
3" - 32 =2" ... L =2
t= %” = thickness of plate, d = 1”7 = diameter of bolt
R, =1.2L (0(F)(1 bolt) = 69.6
OR
R, = 2.4(d)(t)(F)(1 bolt) = 69.6
¢oR, =0.75R = 0.75(69.6) = 52.2k = design load per bolt
Highest load on a bolt = 6.29k < 52.2k ... okay for
bearing
5. Check that R < shear strength in one bolt: Determine
shear strength in one bolt:
From Table 24.1, for A325-X: f, = 60
A, = total area of 1 bolt = (r)(1)2/4 = 0.785
¢oR. = ¢F A =0.75(60)(0.785) = 35.343k
Highest load on a bolt = 6.29k < 35.343k ... okay

24.3 Welded Connections

While plug and slot welds can be used to transmit shear

in overlapping components, they are not generally used in
structural steel design. This text will outline the process for
designing fillet welds as they are the most commonly used.
Fillet welds can be used to join components that overlap or

meet at an angle.

24.5
Fillet weld

21
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Lap Weld

| I

Tee Weld
24.6

Weld locations

AISC LRFD Specifications are as follows:

1. Length of weld (L) must be greater than 4 times nominal
leg size (w) of weld.

2. Max. size of fillet weld = material thickness for material
< 7" thick
= material thickness — %” for material > %” thick

3. Min. size of fillet weld: Material thickness of thicker part

joined:
1” 1”
8 4
3. In 1»
16 2 03
l” 1, §”
Z 7 07
i” §/’
% over 3

4. For longitudinal fillet welds connecting plates or bars,
length may not be less than the perpendicular distance
between them.

5. Forlap joints, the minimum overlap permitted = 5 times
thickness of thinner part joined and not less than 1”.

6. If length L of an end loaded fillet weld is greater than
100 times its leg size (w), effective length of weld = BL
= L[1.2 = 0.002(L/w) < L. If the length L is greater than
300w, then BL = 0.6L.

Design of Longitudinal Fillet Welds: (welds parallel to

direction of force)

Design strength = 0R BL = ¢F A BL

Example 24-7: Determine design strength of a 20" long
%” fillet weld using E70 electrodes with a minimum tensile
strength 70ksi. Load is applied parallel to weld length.

L=20"b=7"
L/b =20/.25 =80 < 100; therefore p =1
Nominal strength of weld = F = 0.6(70ksi) = 42ksi

Area of weld = A = L[ 0.707b] = 20in [0.707][0.25"]
=3.635

\/L X

707w

weld area

24.7

Area of weld

oR BL = 0.75[42ksi][1][3.535] = 111.35
Design of transverse fillet welds (welds at an angle 6 to
direction of force)
For a transverse weld, F = (0.6 F )(1.0 + 0.5sin'%0)
When the weld is perpendicular to direction of force this
equation becomes

F,=1(0.6F)(1.5)
but if the transverse weld is at a 45 degree angle from the
direction of force, then the F would equal

F,=(0.6F)(1+0.5(0.707"%)) = (0.6F )(1.2973)
When combining longitudinal and transverse welds use the
LARGER of the two equations below:

R,=R, +R

WT
or

R, = 0.85R,, + 1.5R,;

Example 24-8: Find LRFD design strength for the % E70

weld shown.



24.8

Weld design example

—_

F, =0.6(70) = 42ksi

A, =0.707(0.25)L

Longitudinal welds: L = 2 welds @ 8.5” each = 17”
A, =0.707(0.25)(17) = 3.005in?
Ry = 42ksi(3.005in?) = 126.20k

W N

4. Transverse weld: L = 10”
AW =0.707(0.25)(10) = 1.768in?
Ryr = 42ksi(1.768in?) = 74.26k

5. USE: LARGER OF
R, = Ry, + Ry = 126.20 + 74.26 = 200.46k

or

R,=0.85R,, +1.5R,, = 0.85(126.2) + (111.384)
= 218.65k

6. oR,=0.75(218.65k) = 163.99k = LRFD design strength

24.4 Standard Bolted
Connections

Simple shear connections can be designed using the tables in
Part 10 of the AISC Steel Manual.

Example 24-9: Select the proper double angle for the
connection in Figure 24.9 (a) if P, =50k and P_ = 70k,
F,=36 and F, =58 for angles and F =50 and F, = 65ksi
for the beam and column.

Use 27 A325-N bolts.

STEEL CONNECTIONS

N
N

/T Column Web

(b) Beam to Girder Bolted Connection
24.9

Simple bolted connection

1. R, =1.2(50) + 1.6(70) = 172k
2. Look through Table 10-1 of the AISC Steel Manual to find
the least number of rows allowed for a W30 beam. Five
rows is the least number of rows. The list of W sizes
available is found in the fourth box from the top on the
left side, just under the number of rows. Note: this table
is for %” bolts.
3. Look at A325-N bolts. Maximum load carried is 159k
< 172k needed, therefore go to the chart for six rows of
bolts.
4. A 5/16” angle will work in shear because the LRFD value
listed is 187k which is greater than the 172k needed.
5. Calculate length of the angle for holes spaced at 3”o.c.
and 1.25: from each end as shown in Figure 24.10:
L =5(3) + 2(1.25) = 17.5”
6. Size the angle legs:
on beam web: 2.5” gage + 1”7 minimum distance = 3.5”
On col. flange: .3125 + 1.375 + 1.25 + 1 = 3.9375
Use 4”
Use: LL4 x3.5x5/16x 17.5” long with six rows of bolts

213
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E |F, =50ksi Table 10-1 (continued) 3
DIF = i / -in.
o f=65ksi  All-Bolted Double-Angle 4
2|F =36 ks Connections xolie
< |F,=58ksi Boit and Angle Available Strength, kips
SRows  [asTM| Thread | Hole . ;"“"’ mm“? 7
Desig.| Cond. Type 4 1 [ 2
W30,27,24, 21,18 ASD [LRFD | ASD [LRFD | ASD [LRFD | ASD [LRFD
N — 833|125 | 104 | 156 | 106 | 159 | 106 | 159
X — | 833 125 | 104 | 156 | 125 | 187 | 133 | 198
& STD | 738 111 [ 738 | 111 [73.8 | 111 | 738 111
- (Ms| S ovs | 533|800 | 533800533 800|533 ]800
Ll T |Fiss2 SSUT | 628 | 94.1 | 628 | 94.1  62.8 [ 94.1 | 628 | 94.1
f :J ?' ! s STD | B33 | 125 | 104 | 156 | 105 | 158 | 105 | 158
i L ol s [762|-114 | 782 | 114 | 782 | 114 | 76.2| 114
g Tt SSLT | 820[123 | 896|134 | 896 134 | 896 | 134
S0 N 833125 | 104 | 156 | 125 | 187 | 133 | 199
o X —  |833| 125 | 104 | 156 | 125 | 187 | 166 | 249
é 1 se STD 833|125 | 923|138 | 923|138 | 823 | 138
¥ S .0 ovs | 867 100 | 86.7 | 100 | 86.7 | 100 | 667 | 100

SSUT 784|118 | 784 | 118 | 784 | 118 | 784 | 118
STD 833|125 | 104 | 156 | 125 | 187 | 132 | 198
ovs 824124 | 052 | 143 | 95.2 | 143 | 952 | 143
SSLT 820123 [ 102 | 154 | 112 | 168 | 112 | 168

Beam Web Available Strength per Inch Thickness, kips/in.

sC
Class B

24.10

Simple bolted connection with five rows of bolts from AISC Steel Construction Manual, Table 10-1, reprinted with permission

|E|F, =50 ksi Table 10-1 (continued) 3
gy &
8|F,=85ksil  All-Bolted Double-Angle /4™
2[F =36 ksi Connections apite
5 F, =58 ksi Bolt and Angle Available Strength, kips
8 Bewn ASTM| Thread Hole R Thiohne
W40, 36, 33, 30, 27, Desig. Cond. Type a 51 3 112
24,21 ASD | LRFD| ASD | LRFD| ASD | LRFD| ASD | LRFD
N —_ 995 | 149 | 124 | 187 | 127 | 191 [ 127 | 191
X — | 905 149 | 124 | 187 | 149 | 224 | 150 | 230
" STD [ 886 | 133 | 886 | 133 | 88.6| 133 [ 866 133
wost| € OvS | 64| 9 |64 | 9 | 64 | 9 | 64 | 9% |
|F1852 SSUT 753 113 | 75.3| 113 | 753 113 | 753 | 113}
| sc STD 995 | 149 | 124 | 187 | 127 | 190 | 127 | 190
Class B ovs 014 | 137 | 914 | 137 | 91.4 | 137 | 914 | 137
SSLT 98.2 | 147 | 108 | 161 | 108 | 161 | 108 | 161
N — 995 | 149 124 | 187 | 149 | 224 | 159 | 239
X — 995 | 149 | 124 | 187 | 149 | 224 | 199 | 298
sc | gg 9:‘:’5 149 1;{;1 166 | 111 | 166 | 111 | 166
120 120 | 80 | 120 | 80 | 120
AS0| CiassA | oot |94t 141|941 ] 141 [ ea1] 101 | 941 141
| STD | 995|149 [ 124 [ 167 | 149 | 224 | 158 | 287
B ovs  |986 | 148 | 114 | 171 | 114 | 171 | 114 | 171
| st |es2| va7 | 123 | 184 | 134 | 202 134 | 202
Beam Web Available Strength per Inch Thickness, kips/in.

24.11

Simple bolted connection with six rows of bolts from the AISC Steel Construction Manual, Table 10-1, reprinted with permission.
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Practice EXGICiS es: 24-2: Repeat exercise 24-1 for a slip-critical connection,

assuming standard bolt hole size and class A coatings.

24-1: Find the number of A325 bolts required for a bearing 24-3: Find design load for eccentric connection shown, using

3// 3” H
connection with a load P, = 300k connecting 2 — A36(F, 4 bolts, 7" thick, A36 plate.
= 58ksi) plates, each %” thick with %” bolts spaced at 3” on 24-4: Find design strength for E70xx weld shown.

center and 3” from each edge. The plates are 9” wide and
there are two bolts per row. Bolt threads are excluded from

shear plane.
20k
| T
_ﬂﬁ_%_ 1/4"
| :
| | ‘(E
| 3 |
| ] ]
6.0"
243 &
AT
24-4
24.12

Chapter 24 Practice exercises
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Concrete Design
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twenty five

Concrete Beam Design

Basic Concrete Information:

Advantages of concrete as a structural material include fire
resistance, vibration resistance, flexibility of shape, ease of
maintenance, and availability of the mixture components.
Concrete is a suitable material for almost every type of
structural component including slabs, beams, columns,
bearing or shear walls and foundations. The disadvantages
of concrete as a structural material include the need for
formwork, the need for time to allow the concrete to cure
before subjection to load and the fact that the strength
depends on the mix of ingredients.

Concrete density may vary depending on the weight of the

aggregate. Concrete densities are categorized as:
normal weight concrete: 140 — 150pcf
lightweight concrete: 90 — 112pcf
heavyweight concrete: > 200pcf.

The design strength of concrete is specified in terms of
its compressive strength at 28 days after placement and
designated as f’..
low strength: " = 3000psi
moderate strength: f/ = 3000 - 6000psi
high strength: ' > 6000psi
Concrete gains strength over time:

7 days = 70% 1’

14 days — 85-90% T,
28 days - 100% {7,

5 years — approximately 1560% {7, but the values are
dependent on curing conditions of temperature and
humidity, wet or dry surface, and additives to the

concrete.
Modulus of Elasticity:
E. = w,_*33Vf" where:
w, = the density of the concrete in pcf
" = 28 day compressive strength in psi

NOTE: for normal weight concrete, E = 57000 f*..

25.1 The Internal Couple

25.1.1 Modulus of Rupture and
Cracking Moment

When a beam is stressed in bending due to a downward load,

the portion of the cross-section above the neutral axis is in
compression and the area of the cross-section below the

neutral axis is in tension. Concrete handles compression well,

but its tensile strength is only 10-15% of the compressive
strength. Once concrete is stressed in tension beyond the
modulus of rupture, it will crack.
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modulus of rupture = f, = 7.5M/f" where:
A is a factor based on concrete type.
A = 1.0 for normal weight concrete
A = 0.85 for sand-lightweight concrete
A = 0.75 for all-lightweight concrete.

Given that bending stress f, = Ml/c, setting the bending
stress equal to the modulus of rupture allows the moment at
the point of rupture to be found.

f =1, =M,_()c

cr

Cracking moment = M_ = f_(I)/c = 7.50L(F)(I)/c

C

Once the moment on a beam reaches the cracking moment
(M), it will require tension reinforcement.

Example 25-1: At what factored load, P, applied to

the beam and cross-section in Figure 25.1 will require
tension reinforcement if the density of the concrete is
150pcf and ', = 4,000psi?

g
| 10 |
1 4“7 16"
LX gol
20'

25.1
Example 25-1

W, = 150pcf(8”)(16”)/(144in?/f?) = 133.33#"

M, = PL/4 + wL?/8 = P(20")/4 + 133.33%1(20")%/8
= 5P + 6666.5#-f = 60P + 79998 #-in

l/c = (bh®/12)/(h/2) = bh?/6 = 8(16)?/6 = 341.33in*
f = 7.50f ()/c = 7.5(1V4,000 = 474.34psi
M, = f (I)/c = 474.34psi(341.33in% = 161907.04#-in

M,, = 161907.04 = 60P + 79998 = M, ... P = 1365.15#

25.1.2 The Internal Couple

Concrete does not behave elastically over its entire cross-section
when stressed beyond the modulus of rupture (f) in tension.

As a result, the external method of measuring bending stress,

f, = Ml/c becomes invalid and an internal look at the stress must
be used. A look at the rectangular cross-section in Figure 25.2
with width b and depth h results in a neutral axis located at h/2.

compression

~N.A.

25.2

The internal couple

The stress in the cross-section varies linearly from the f, |
tof
and the area below the neutral axis is in tension. The applied

botom- | NE @rea above the neutral axis is in compression
moment on the beam (M ) equals the internal couple.
Remember a couple is a moment caused by two equal and
opposite forces acting at a distance Z apart. In this case, the
equal and opposite forces are compression, C, and tension, T.

M, = CZ =TZ = internal couple

For a rectangular cross-section, the center of gravity for
the compression triangle is %(h/Z) = h/6 from the top and
the center of gravity for the tension triangle is h/6 from the
bottom. Therefore, the distance between the two forces,

Z=h -2(h/6) = 2h/3

M,=M_=TZ=CZ

T=C=M/Z=M,/(2h/3) =3 M /2h
The stress at the top equals the stress at the bottom = fmp
= f, and

the average stress = f =1 /2 =1 /2 =C/A=T/A

bot
where A is the area upon which the force is distributed. For a

rectangular section, A = bh/2.

oo = 2T/A = 4T/bh = 4[3 M /2h/bh = 6 M, /bh?
= M,/[bh?/6]



This is the same as the answer found by the external method
f, = M /S where S = bh?/6 for a rectangular section.

Not all cross-sections are rectangular. The generic equation
for the cracking moment is:

M, =ZAf/2
Example 25-2: Find the cracking moment for the
T-shaped cross-section shown in Figure 25.3.

Because the area above the neutral axis, the compression
area, is not uniform in width, the force and moment arm for

the web and flange will need to be calculated separately.

20" ftop
N —
gv foot of flangd—y < C
= /— CO.
B- R - Ne——— —
- ~ ANy
R i
To!
- —>T
0" foot
25.3
Cracking Moment in T-shape
Find the neutral axis:
Component A(in2) Y(in) Ay(in3)
Flange 4(20) =80 20+4/3=22 1760
Web 5(20) =100 20/2 =10 1000
XA =180 YAy = 2760

N.A.atY =2760/180 = 15.33in

foo IS in tension —note f_ is greater than f, |

bot

f,..=f =7.5(1)¥4000 = 474.34psi

bot

fiop = 474.34psi(8.67/15.33) = 268.1psi

Stress at bottom of flange: f,, ; 1
=474.34(4.67/15.33) = 144.36psi

1. T = average tensile stress xarea = (f /2)(5(15.33))
= (474.34/2)(5(15.33))psi

T = 18183.1# acting at 10.22” below the neutral axis.

2. C,=1(144.36/2)(5)(4.67) = 1685.4 acting at (2/3)(4.67)
= 3.11” above the neutral axis.

CONCRETE BEAM DESIGN

3. C,=1(144.36)(20)(4) = 11648.8 acting at 4.67 + 4/2
= 6.67” above the neutral axis.

4. C,=1((268.1 - 144.36)/2)(20)(4) = 4949.6 acting at 4.67 +
(2/3)(4) = 7.33” above the neutral axis.

Z =10.22 +3.11 =13.33”

1

Z,=10.22 + 6.67 = 16.89”

2

Z,=10.22 +7.33 = 17.56”
M, =2C, +2,C,+Z,C,

= 13.33(1685.4) + 16.89(115648.8) + 17.77(4949.6 )
= 305,480#-in

= 25,456.67#-ft.

25.2 Reinforced Concrete
Beams

Concrete beams are reinforced with steel rebar to carry the
tension load. This allows the concrete in the beam to carry a
load in compression equal to the load that the steel carries in
tension. Rebar is designated by bar number. In bar numbers 3
through 8, the number corresponds to the diameter of the bar
(d,) in eighths of an inch. For bar diameters of bar numbers 9
through 16, refer to Table A4.1. This table lists bar diameters
and bar areas for bar sizes 3 through 11.

25.2.1 Assumptions for Reinforced
Concrete Design:

1. The strain remains linear throughout the cross-section of
the beam.

2. Iff <1"/2, stress and strain are proportional ...
e /e, =T /1.

3. Ignore concrete in tension; assume the reinforcing steel
handles all tension in the beam.

4. Iff < fy, f,=Ee..

5. ¢, <0.008in/in.

6. There is no slip between the concrete and the steel.

Nomenclature for concrete beam cross-sections:

d = effective depth = the distance from the top of the
beam to the center of gravity of the reinforcing steel.
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d, = the depth from the top of the beam to the center
line of the bottom-most row of steel.

S R s

.0_0
oo |—+

25.4

Typical concrete beam cross-section

Notice that d = d, when there is only one row of steel.

The standard minimum cover for beams, meaning the
clear distance from the outermost steel to the edge of
the beam, is 1.5”. See American Concrete Institute (ACI)
standards for beams on grade or beams exposed to exterior
or adverse conditions. Most beams have a stirrup that
reinforces against shear. This can be assumed to be a #3
rebar with a diameter of g”.

d = h — cover - stirrup diameter — half the diameter of
rebar (d,/2).

In most cases,

d=h-15"-0375"-dy2
25.2.2 The Equivalent Stress Block

b EC 85f'c

c a Y C
IS 7

>T = fyAs

.85f'cab

d-a

€s

25.5

Equivalent stress block

When stresses are low in a reinforced concrete beam, the
line of stress for compression remains linear, ranging from
0 at the neutral axis to f_at the top. But the addition of
reinforcement allows the beam to carry higher stresses. As

a result, the area in compression, the stress block, takes
on a curved shape. Because the area and center of gravity
of the stress block is difficult to calculate when curved, an
equivalent stress block is used with a unit stress of 0.85f",
and a depth,

a = B,c where:

B, = 0.85 for 2500psi < f/ < 4000psi

B, = 0.85 - 0.05(f" — 4000)/1000 > 0.65 for
' > 4000psi

¢ = distance from the top of the beam to the Neutral
Axis.

Since stress = force/area, force = stress(area). If b = width of

cross-section:

C = 0.85f" ab acting at a distance a/2 from the top of
the beam

T =1A, acting at a distance d from the top of the
beam, where

fy = yield stress of reinforcement

A, = cross-sectional area of reinforcement.
The internal couple or internal moment

M =TZ=1A[(d-a/2)

Summing forces horizontally yields C = T or

(0.85f")ab =1 A_ ... a=1A/(0.85b)

M, = practical nominal moment = f A (d - (.5f A/
(0.85f" b))

Strain in concrete and steel:
When the maximum steel strain is less than 0.002 (g, = .002
for grade 60 steel), the beam will fail in compression. Failure
due to compression of concrete is sudden and without
warning. Therefore, we want g > 0.002 when concrete
reaches €, = .003.

When the maximum steel strain is greater than
0.004 (g, < ¢, for all grades of steel rebar), the beam will fail
ductility. Failure due to tension in steel is gradual and with
warning. This is the desired failure mode. Therefore, & must
be greater than or equal to 0.004. Because the strain is linear,
and because the maximum allowable strain in concrete is

0.003, using equivalent triangles gives:



€c =.003

‘N.A.

d-c

€s

.003/c =€s/(d-c)
€s=.003(d-c)/c
25.6

Strain in a concrete beam

g/(d - c)=.003/c ... =.003(d - clc

M, = design moment = ¢M_where ¢ is the LRFD Resistance
Factor per ACI Code, section 9.3. ¢ is a strength-reduction
factor that takes into account workmanship, dimensional

variations on site and material variations.
¢ = 0.90 for tension-controlled sections
¢ = 0.90 in beams, if the steel strain g > 0.005
¢ =0.65 + (g, - 0.002)(250/3) if .004 <&, < 0.005

¢ = 0.75 in compression-controlled sections that are
spirally reinforced

¢ = 0.65 for other reinforcement in compression-
controlled sections

¢ = 0.75 for shear and torsion

¢ = 0.65 for bearing on concrete
Minimum reinforcement steel:

A, . = bd(BVF)/ f >200bd/f,

To check the adequacy of a beam:

Determine b, d, A, ’, fv, and M,

a=fA/0.85f"pb)

M, =fAl(d-a/2)

Check A, > A_ = bd(3VF)/f, >200bd/f,

Find g, = .003(d - c)/c using ¢ = a/B,

Check g >20.004

Determine ¢ where ¢ = 0.90 if & > 0.005 and

¢ =0.65 + (g, — 0.002)(250/3) if 0.004 < ¢ < 0.005.

N o ok N -
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8. If M, < oM, beam is adequate.

Example 25-3: Determine the adequacy of a 24’ beam
with a cross-section 16” wide by 24" deep, reinforcement
of four #8 rebars, an effective depth, d = 21", carrying

a 1k/f uniform live load and a .5k/f uniform dead load
exclusive of beam weight. f' = 4ksi, f = 60ksi.

1. b=16"d=21"A_ =342, = 4,000psi, f = 60,000psi
W, = 1.2(500*" + 150pcf(16/12)(24/12)) + 1.6(1,000%)
= 2680%

M, = wL?/8 = 2680%1(24")?/8 = 192,960#-f
= 2,315,520#-in

2. a=fA/0.85f"b) = 60,000psi(3.142in?)/[.85(4,000psi)
(16”)] = 3.465”

3. M, =fAd-a/2) =60,000(3142)(21 - 3.465/2)
= 3,632,309.14#-in

4. Check A >A . =bd(3VF)/f >200bd/f,.

s min

A, . = 16(21)(3)(V4,000)/60,000
=1.063 > 200(16)(21)/60,000 = 1.12

A, .. =112 <A =3.142in? ... okay

5. c=a/B, =3.465/.85 =4.076", ¢ = .003(d - c)/c
=.003(21 - 4.076)/4.076 = 0.012
. £=0.01220.004 ... okay
7. ¢=0012>0.005...6=0.90
®M_=0.9(3,632,309.1) = 3,269,078#-in > M|
= 2,315,529 #-in ... beam is adequate.
In designing beam reinforcement for a beam of a given size,
the goal is to find the required area of steel, A_. Setting the
applied moment equal to ¢M :
M, = oM = o[f A (d - a/2)]
where a = f A_/(.85f"b)
M, = olf A ld - f A/(1.7F b))]
M Jof 11178 b/f | = A[d(1.7f" b/f ) — A]
AZ = AT7Ebd/f ]+ M, /of 1[1.78'b/f ] =0
A, = 1.7 bd/2f, - (17211 - 4M (1.7F b/of 7]
A, =0.85f"bd/f [1 = V[1 - 2M, /¢(.85f bd?)]

To design reinforcement in a rectangular beam of a given size:
1. Determine 1’ fy, b and h.
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2. Calculate M including beam weight.

3. Estimated=h -3

4. Assume ¢ = 0.9

5. A, = [.85/bd/f I[1 = V[1 - 2M,/¢.85f bd?]

6. Check that A, > A_ = bd(3VF/)/f > 200bd/f,. If not, use
A

7. Select bars from A4.2. Note actual A_. Calculate the
actual value of d. Check the required width for the
number and size of bars chosen from A4.2.

8. a="fA/(85f"b) c =a/B,

9. Check g, = .003(d - c¢)/c > 0.004.

10. Check ¢ = 0.9 assumption. If € < 0.005, recalculate ¢ and
that check M =M .

0 = 0.65 + (g, — 0.002)(250/3) if 0.004 < ¢, < 0.005.

11. Using actual ¢, d and A, check that M < o[f A(d — f A/
(1.7f” b))1, if not, go back to step 5. Using new value for ¢.

Example 25-4: Design reinforcement for a 12" by 20"
concrete beam with a simple span of 20’, a dead load of
600" and a live load of 1200#* using ', = 3,000psi and

fv =40,000psi.

1. f/,=3,000psi, f, = 40,000psi, b = 127, h = 20”
2. W, =1.2(600 + 150(12/12)(20/12)) + 1.6(1200%") = 2940
M, = 2940(20")%/8 = 147,000#-f = 1,764,000#-in

3. Estimated=h-3=20-3=17"

4. Assume ¢ = 0.9

5. R = .85f’bd = .85(3000)(12)(17) = 520,200
A, = R/ )T =11 - 2 M /oRd] = [620,200/40,000][1 -
VI1 - 2(1,764,000)/(.9(520,200)(17)] = 3.30in’

6. A, ., =bd(BVF)/f, = 12(17)(3)(¥3000)/40,000 = 0.838 >
200bd/f, = 200(12)(17)/40,000 = 1.02

A, ., =1.02in? <3.30in? = A_... okay
7. Use three #10: A, = 3.8 > 3.30in?, b, = 9.756” < 12”
... okay
d =20-15-.3756-1.27/2 =17.79"

actual —

8. a=f,A/(85fb) = 40,000(3.8)/1.85(3000)(12)] = 4.97"
c = alp, = 4.977/0.85 = 5.84”

9. Check g, = .003(d - c)/c = .003(17.49 — .84)/5.84 = .006
> 0.004 ... okay
10. ¢, =.006 >0.005...¢=0.9

11. M, = 1,764,000# — in < q)[fyAs(d —a/2))] = .9(40,000(3.8)
(17.49 — 4.97/2)] = 2,052,684 #-in ... okay
ANSWER: 12”x20” beam with three #10

To design a beam with a given width, the goal is to find the
most efficient depth, d and the area of reinforcing steel, A_.
Because these two variables are related, an assumption must
be made. Assume a = 0.2d. The depth of the equivalent
stress block is assumed to be about 20% of the effective
depth of the beam. This puts the bottom of the equivalent
stress block well above the neutral axis and yields a value

for d where the ratio of b/d will most likely fit into the
recommend range of 1.5 <b/d <2.2.

Af,=T=C=085fab... A =0.85fab/f,
M, = oM, = of A(d - a/2) ... (d - a/2) = M /lof A ] and
d = M /I¢f A + a/2. Substituting A = 0.85f"ab/f,
yields:
d =M /[$60.85f" abl + a/2
Inserting the assumption that a = 0.2d yields:
d = M /[60.85f" (.2d)b] + (.2d)/2
0.9d = M /[60.85f" (.2d)b]
d = V{M /1.1536f’ bl}

To design a rectangular beam of a given width, but unknown

depth:
1. Determine {7, f , and b.

. Calculate M excluding beam weight.

. Assume ¢ = 0.9

- d =M /11630’ b]

. Check proportions of d/b. 1.5 < d/b < 2.2 if not, change b
and recalculate d in step 4.

oA W N

. Estimate h = d + 2.5 and round up to next whole inch.

. Determine factored beam weight.

. Calculate Actual M|

A =RAIN - [ - 2M /oRdl where R = .85f bd.

- Check that A_> A_ = bd(3Vf’)/f > 200bd/f. If not, use

O O 0 N O

11. Select bars from Table A4.2. Note actual A_. Calculate
the actual value of d. Check the required width for the
number and size of bars chosen from A4.2.



12. a=fA/(85f"b)and c = a/B,

13. Calculate d,, ., = h — cover — stirrup diameter — d, /2

12. Check ¢, = .003(d - c)/c > 0.004.

14. Check ¢ = 0.9 assumption. If € < 0.005, recalculate ¢ and
check oM =M .

¢ =0.65 + (g, - 0.002)(250/3) if 0.004 < ¢ < 0.005

15. Using actual ¢, d and A, check that M, < ¢[f A (d - f A/
(1.7t b)), if not, go back to step 3 using new value for ¢.

Example 25-5: Design a simple beam, 10” wide, with a
span of 3't to carry a live load of 1k/f. f’ = 4,000psi and
fv = 60,000psi.

. ¥,=4,000psi, f =60,000psi, b = 10"

. M, = 1.6(1000%)(30")?/8 = 180,000#-f = 2,160,000#-in

. Assume ¢ = 0.9

.d= \/l\/lu/[.153¢f’cb] =~[2,160,000/(.153(0.9)(4000)(10))]
=19.80”

. d/b=19.80"10"=1.98"and 1.5 < 1.98 < 2.2 ... b is okay

6. Estimate h =d + 2.6 =19.8” + 2.5” = 22.3”. Round up to

23”.
7. W, = 160pcf(107/12)(23"/12) = 239.58*

N W N =

o1

W, = 1.2(239.568*) + 1.6(1000*) = 1887.5*"

8. M, = wL?/8 = 1887.5% (30")?/8 = 212,343.76#-f
= 2,548,125#-in
9. R = .85f"bd = .85(4000)(10)(19.8) = 673,200

A, = [R/A T =[1 - 2M /oRd] = [673,200/60,000][1 -
V(2(2,548,125)/(0.9(673,200)(19.8))] = 2.71in?

10. Check that A, > A_ = bd(3Vf,)/f, = 10(19.8)
(3Y4000)/60,000 = 0.626 > 200bd/f, = 200(10)
(19.8)/60,000 = 0.66

A =066.A > A . okay

11. Use three #9: A  =2.998, b =9.25 <10 =D.
12. a = A/(.85f"b) = 60000(2.998)/[.85(4000)(10)] = 5.29”

¢ =a/B, =5.29/0.85 = 6.22”

CONCRETE BEAM DESIGN

13. Calculate d,, ,, = h — cover — stirrup diameter — d, /2
=23-15-0.375 - 1.128/2 = 20.56”

14. Check g = .003(d - c)/c = .003(20.56 - 6.22)/6.22
=.0069 > 0.004 ... okay

15. ¢ = 0.9 assumption is correct because .0069 > 0.005

16. ¢[f A (d — a/2] = .9[60000(2.998)(20.56" - 6.22/2)]
=2,825,0154#-in allowable moment > 2,548,125#-in
actual moment ... beam is okay

USE: 10”x23” beam with three #9.

Practice Exercises:

25-1: Determine whether a concrete 14” by 30” beam with a
simple span of 20” will need reinforcing to carry a 500*" dead
load and a 900#" live load if f* = 3,000psi.

25-2: An unreinforced concrete beam has a rectangular cross-
section 12” wide by 20” deep. If it is made using concrete
with = 4000psi, at what length will it fail under its own
weight?

25-3: Design for flexure: a 14” wide, 24” deep concrete beam
with a simple span of 24’ and a uniform live load of 960*/.

25-4: Design for flexure: a 16” wide by 30” deep concrete
beam with a simple span of 32’ to carry two point loads, each
3000# dead load, evenly spaced.

25-b: Design for flexure: a 12” wide beam with a simple span
of 26" to carry P, = 1000# and P, = 2000# at the center of
the span.

25-6: Design the lightest beam (ignore weight of
reinforcement steel) with a maximum width of 16” to carry
1500#f uniform dead load and a 2000#f uniform live load over
a span of 16"
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twenty six

Concrete Slab Design

26.1 One-way Slabs

When analyzing or designing a slab, think of a one-foot
section that is treated like a beam where h = the depth of the
slaband b = 12”.

Temperature steel

26.1

One-way slab

Minimum slab thickness:

ACI Table 9.5a defines the minimum allowable thickness of

a slab for which deflections are not checked. For a simply
supported one-way slab, using normal weight concrete and fy
= 60,000 psi steel, the minimum slab thickness:

h = L/20 where L = slab span in inches.

If another steel strength is used, the found values for h
are multiplied by (0.4 + 60,000/f ).

If lightweight concrete is used, where 90 <w_<
120pcf, the values are multiplied by (1.65 — .005w )
but never by more than 1.09.

w, = weight of concrete in pcf.

Steel area per foot:

$ o o o o o o o o #

12" 12"

26.2

Steel area per foot

As can be seen in Figure 26.2, the choice of where to cut a
12” section would determine whether one or two bars are
in the section. When designing or analyzing a slab, do not
consider the steel in an exact 12” section, but rather the
average steel in any 12” section.

A, = area of steel per foot of slab and when steel is
selected it is designated by the size of the bar and the
spacing. For example, knowing the bar size and spacing, the
area of steel can be found:

#5 @ 7"0.c.

A, = (area of one bar)(12/spacing) = 0.307in(12")/7”
= 0.53in%/f

Knowing an area of steel required, A, and a desired bar size
area, the spacing can be determined:

A, = 0.42, #4 bars (area = .196)

S = (area of one bar)(12/ A) = 0.196in?(12)/0.42in?/f
=56



Minimum steel in slabs:

A = 0.002bh for fy = 40,000 or 50,000psi

S min

A, .. =0.0018bh for 60,000psi

Note that the full cross-section, bh is used in these equations,

not the effective area, bd, as used to find minimum steel area

in beams.
Example 26-1: Slab analysis.

Find service live load in psf for a 10” deep, one-way slab with

a 16’ span, %’ cover, with f = 4000psi and fy =60,000psi

and longitudinal steel = #5 @ 6”0.c.

1. A, =(307in?)(127)/6” = 0.61in?/f
d=10-.75-.625/2=8.94",b = 12"

2. a=1fA/0.85f"b) = 60,000psi(0.61in?/f)/[.85(4000psi)
(12"9] = 0.897”

3. M =fA.d-a/2)=60,000psi(0.61in%f)(8.94 — 0.897/2)
= 310788.9#-in

4. Check A >A_ . =.0018bh =.0018(12"9(10")
= 0.216in%/f < 0.61in?/f ... okay

5. c=a/B, =0.897/.85=1.06
¢ =.003(d - c)/c =.003(10 - 1.06)/1.06 = 0.0253

0.0253 20.004

¢ = 0.90 because 0.253 > 0.005

M, = ¢M = 0.9(310788.9#-in) = 279710#-in
= 23309.17#-f

M, 23309.17#-f = w(16)%/8 ... w, = 23309.17(8)/162
— 728%"

One foot section of slab weight = w,
= 150pcf(107/12”)(1”) = 125*"

m

w, = 1.2(125%f) + 1.6(LL) = 728*f ... LL
= 361.35%" per foot of slab = 361.35psf

Example 26-2: Determine adequate steel reinforcement
for an 8” deep slab with a 1” cover having a span of 12’
and a live load of 250psf if f' = 4000psi and f = 40,000psi.

1. W =1.6(250) + 1.2(150)(8/12)(12/12) = 520psf

2. M, = 520k/ft(12)%/8 = 9360 #-ft = 112,320 #-in

3. Assume #5 reinforcement ...d =8 - 1 - .625/2 = 6.69
4. Assume ¢ =0.9

5. A, =(0.85f"pbd/f) [1 = V[1 - 2M /0(.85f" bd?)]
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= [.85(4000)(12)(6.69)/400001[1 - [1 - 2(112,320)/(.9(.85)
(4000)(12)(6.69%)] = 0.483in%/f
. A, ., =.002bh =.002(12)(8) = .192 < 0.483 ... okay
7. #5 longitudinal steel spacing: s = 0.307(12/0.483) = 7.63”
round down to 7.5”
8. #b temperature steel: s = .307(12/.192) = 19.19 > 18” max
... use 18”.
One-way slab design without calculating deflection:
1. Calculate h _, based on ACI Table 9.5a; round up to next
1/4” for h< 6” or up to next %” for h>6".
. FindM,.
. Assume d = h — 1.12 (#6 bars & 3/4” cover)
. Assume ¢ = 0.9
- A, =0.85fbd/f [1 -1 -2 M /0(.85f bd?)]
.a="1fA/(85f'b), c=a/p, ¢ =.003(d - clc
If £,20.005, ¢ = 0.9; if 0.005 > ¢ >0.004, ¢ = 0.65 + (¢, -
0.002)(250/3); if &, < 0.004, make the slab thinner.
7. A =.002bh for f = 40 or 50

s min

D ok WwN

A =.0018bh for fv =60

s min

8. Longitudinal steel spacing: s = (bar area)(12/ A} , round
down to next .5”

), round down

s min’’

9. Temperature steel: s = (bar area)(12/ A
to next .5”
10. Check maximum spacing of 5h or 18”.

Example 26-3: Design a slab to span 12’ and carry a live
load of 225psf.

= 4ksi, fy = 40ksi use # 6 rebars
1. h,,, = L/20(.4 + 40/100) = 12(12)(.8)/20 = 5.76” round up
to 6”
2. w, =1.2(150)(6/12)(12/12) + 1.6(225) = 450%"

M, = 450(12)%/8 = 8100#-f = 97,200 #-in

3.d=6-1.12=4.88"
4. Assume ¢ = 0.9
5. A, =(0.85f bd/f )[1 - -2 M /6(.85f" bd?)] = [.85(4000)
(12)(4.88)/400001[1 — N[1 — 2(97,200)/(.9(.85)(4000)(12)
(4.88)2)] = 0.588
6. a=f A/(.85f"b) = 40,000(.588)/[.85(4000)(12)] = 0.576"
c=.576/.856=0.677

g, =.003(d - c)/c = .003(4.88 - .677)/.677 = .0186 >
.005...0=0.9
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7. A, ., =-002bh = .002(12)(6) = 0.144
8. Longitudinal steel spacing: s = (.442)(12/.588) = 9.02”
round down to 9”
9. Temperature steel: s = (.442)(12/.144) = 36.83
10. Check maximum spacing of bh or 18”.

5(6) = 30” > 18” ... max. spacing = 18”

Answer:
Temperature steel: #6 @ 18”

Longitudinal steel: #6 @ 9”
Slab thickness = 6”

Design a slab for minimum h, where deflection will be
checked:
1. Determine 7, fy
. Assume h = 6” for weight, calculate w , M
. Assume ¢ = 0.9
. d ="M /.153¢f" b] = V[88,560/(.153(.9)(4000)(12))]
. Estimate h = d + 1.12 and round up to next 1/4” if h < 6,
next 1/2”if h > 6”.
. Calculate actual w, and M using slab thickness
7. A, = 1.85/bd/f 11 = V[T - 2M,/¢.85f bd?]
8. a="fA/(.85f"b), c =a/B, g =.003(d - clfc

o~ WN

(@]

If€,>0.005, ¢ = 0.9; if 0.005 > ¢ >0.004, ¢ = 0.65 + (g, -

0.002)(250/3); if &, < 0.004, make the slab thinner.

If ¢ # 0.9, recalculate A_ with the new value of ¢.
9. A, ., =-0018bh for f =40,000 or 50,000psi,

A =.002bh for fy =60,000psi

S min

10. Longitudinal steel spacing: s = (bar area)(12/A )
)

11. Temperature steel: s = (bar area)(12/A

s min

12. Check maximum spacing of bh or 18”.
Example 26-4.

Design a one-way slab for L = 12/, f*_ = 4ksi, fy = 60ksi, live
load = 200psf:

1. /= 4000psi, fy =60,000psi, b = 12”7

2. assume h = 6” for weight

w, = 1.6(200) + 1.2(150)(6/12) = 410%"
M, = 410(12)%/8 = 7380#-f = 88,5660#-in

3. Assume ¢ = 0.9
4. d =IM/(153¢f’b)] = \[88,560/(.153(.9)(4000)(12))]
= 3.66”

5. Estimate h=d + 1.12 = 3.66 + 1.12 4.78” round up to 5”
- w, = 1.6(200) + 1.2(150)(5/12) = 395*"
M, = 395(12)%(12)/8 = 85,320#-in

(@)

7. A, = .85f/bd/f 111 = \[1 - 2 M /¢.85f’bd? = [85(4000)
(12)(3.66)/60,000111 — VI1 ~ 2(85,320)/(.9(.85)(4000)(12)
(3.66)7] = 0.478

8. a="f A /(:85f'b) = 60,000(.478)/(.85(4000)(12)) = 0.703,
¢ = 0.703/.85 = 0.827, ¢, = .003(3.66 — 0.827)/0.827
=0.010>.005 ... ¢ = 0.9

9. A, ., =.0018bh = .0018(12)(5) = 0.108
10. Longitudinal steel spacing: (#5) s = (.307)(12/.478) = 7.7”
round down to 7.5”
11. Temperature steel using #5rebar: s = (.307)(12/.108)
=34.11"
12. Check maximum spacing of 5h or 18”.
s =5(5) =25” > 18” ... max. spacing = 18”

Answer:
Temperature steel: #5 @ 18”

Longitudinal steel: #5 @ 7.5”

Slab thickness = 5”

26.2 Continuous Slabs

Limitations:

There must be two or more spans not varying by more
than 20% in length

Slab must have uniformly distributed loads
Ratioof LLto DL <3
Members must be prismatic (orthorhombic).

Minimum thickness: ACI Table 9.5a dictates minimum slab
thickness for continuous slabs not checked for deflection as

follows:
Both ends continuous: h > L/28
One end Continuous: h > L/24
Cantilever: h > L/10

Design of continuous one-way slab:
1. Determine minimum slab thickness



2. Determine slab weight and total factored load w, = 1.2DL
+ 1.6LL

3. Calculate the value of wL?

4. Calculate M for each location:

5. Calculate A, = [.85fbd/f I[1 - N[1 - 2M /¢.85f" bd?] for
each location.

6. Calculate a, ¢, € each case. Note: start with the smallest
value of M and work up. Once the strain is above 0.005
for a particular case, all other cases with a higher value
of M, will have higher strain and g, will not need to be
calculated.
If £, >20.005, ¢ = 0.9;if 0.005 > ¢ >0.004, ¢ = 0.65 + (g, -
0.002)(250/3); if & < 0.004, make the slab thinner.
If ¢ # 0.9, recalculate A_ with new ¢.

7. A =.002bh

8. Longitudinal steel spacing: s = (bar area)(12/A))

s min

9. Temperature steel: s = (bar area)(12/A_ )
10. Check maximum spacing of 5h or 18”.
11. Check oVn = 02V(f’bd) > Vu = 1.15wL/2. If not, increase h
and go back to step 1.

w-A 806 n  oh
L L] Uy —r—

26.3

Moment conditions in continuous slabs

It is helpful in designing continuous slabs to create a table
(Table 26.1).

Table 26.1: Continuous slab design template

CONCRETE SLAB DESIGN

Example 26-5: Design a continuous one-way slab for the
plan shown in Figure 26.4.

LL = 80psf, f = 4ksi, f = 60ksi. Use #3 bars

o200 U to20 U t=20 U Lo20 U

26.4
Example 26-5

1. Determine minimum slab thickness: 10°(12)/24 = 5”,
d=5-112=3.88"

- w, = 1.2(160pcf)(67/12)(127/12) + 1.6(80psf)(1’) = 203#

. wL2(12”) = 203(10%)(12) = 243,600#-in

. Calculate M, for each location: see Table 26.1.

. Calculate A = [.85f" bd/f ][1 - V[1 - 2M /6.85f" bd?]
=2.638[1 - V(1 - M, /276398.8)]

. Calculate a, ¢, ¢, for each case.

A =.0018bh = .0018(12)(5) = .108

. Longitudinal steel spacing: s = (.307)(12/A))

. Temperature steel : s = (.11)(12/.108) = 12.22 round down
to 127

10. Check maximum spacing of 5h or 18”.

o b~ W N

s min

© 00 N O

5h = 5(6) = 30” > 18” ... max. spacing = 18”

11. Check ¢V, = ¢2\/(f’cbd) >V, = 1.15wL/2. If not, increase
h and go back to step 1. ¢V, = (.75)2Y4000(12)(3.88)
=4,420# > 1.15(203)(10)/2 = 1,167# ... okay

Example 26-6: Design a continuous one-way slab with
20’ spans as shown in Figure 26.5. Live load = 80psf,
f', = 4ksi, f = 60ksi, use #5 steel.

|_| L=20" LI L=30 || L=20 |_|7

L=4

26.5

Example 26-6

Location M, eqtn M, Ag a c & As min Stong. STemp.
A wL?/24

B,D wL?/11

C wL2/10

EF wL?/16

G wL?/9

H wL?/2
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Location Mu Mu As a c et As

sLong. sTemp.

Practice Exercises:

eqtn min
A wl?/24 10150 6:649 .072 .085 .135 .108 12 12 26-1: Find the allowable service live load in psf for an 8” deep,
1 . ) .
08 one-way slab with a 12ft span, 3/4” cover, with f’ = 4000psi
B,D 12/11 22145 0.108 .159 .187 .059 .108 12 12 . - ,
v and f = 60,000psi and longitudinal steel = #5 @ 9”0.c.
C wL?/10 24360 0.119 .175 .206 .054 .108 11 12 v
E,F 12/16 15225 6674 .108 .129 . 108 12 12 . !
’ wl'/16 15225 108 08 129 .088 .108 26-2: Design a slab to span 14ft and carry a live load
G wl2/9 n/a = 120psf where deflection is not checked. /. = 3,000psi,
H Wwl2/2 n/a f,=40,000psi, use # 5 rebars.

1. Determine minimum slab thickness: 207(12)/24 = 10”,
d=10-1.12=8.88"
2. w, = 1.2(160pcf)(107/12)(127/12) + 1.6(80psf)(1’)
— 278#/f
3. wL2(12") = 278(202)(12) = 1,334,400#-in
. Calculate M, for each location:
. Calculate A, = [.85f" bd/f I[1 - [ - 2M /6.85f" bd?]
= 6.038[1 - V(1 - M /1,447,776.8)]
. Calculate a, ¢, € each case.
. A, . =-0018bh = .0018(12)(10) = .216
. Longitudinal steel spacing: s = (.307)(12/A )
. Temperature steel: s = (.307)(12/.216) = 17.06 round
down to 17”7

o A

© 00 N O

10. Check maximum spacing of 5h or 18”.
5h = 5(10) = 50” > 18” ... max. spacing = 18”
1. Check ¢V, = ¢2\/(f’cbd) > Vu = 1.156wL/2. If not, increase
h and go back to step 1. ¢V, = (.75)2Y4000(12)(8.88)
=10,109.2# > 1.15(278)(20)/2 = 3,197# ... okay

26-3: Design a slab to span 15ft and carry a live load
= 90psf where deflection is not checked. f’. = 4,000psi,
f,=60,000psi{, use # 5 rebars.

26-4: Design a slab with minimum thickness to span 14ft
and carry a LL = 120psf where deflection will be checked.
' =3,000psi, fy = 40,000psi, use # b5 rebars.

26-5: Design a slab with minimum thickness to span 15ft
and carry a LL = 90psf where deflection will be checked.
' =4,000psi, fy = 60,000psi, use # 5 rebars.

26-6: Design a continuous slab for the plan shown in
Figure 26.6 if the floor carries a LL of 90psf and a dead load
of 15psf. /= 4,000psi, fy = 60,000psi use # 5 rebars.

26-7: Design a continuous slab for the plan shown in
Figure 26.6 if the floor carries a LL of 90psf and a dead load
of 15psf. /= 4,000psi, fy = 60,000psi use # 5 rebars.

Location  Muegtn  Mu As a c et As min sLong. sTemp.

A wL?/24 55600 o117 172 .203 129 216 17 17
216

B,D wl?/11 121309 0.258 .380 447 .057 216 14 17

C wL?/10 133440 0.285 419 493 .051 216 12.5 17

E,F wL?/16 83400 0176 .260 .305 .084 216 17 17
216

G wL?/9 n/a

H wL?/2 n/a
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twenty seven

Doubly Reinforced Beams and

T-beams

27.1 Doubly Reinforced
Beams

If the practical nominal moment in a concrete beam needs
to be increased and the beam size cannot be increased, ACI
code, section 10.3.5.1 allows for additional steel to be added
in tension provided it is also added in compression. Two
conditions can exist when top steel is added to a beam.

Condition 1: Both the tensile and compressive steels
yield before the concrete strain reaches 0.003.

Condition 2: The tensile steel yields but the
compressive steel does not yield before the concrete
strain reaches 0.003.

S

A's

N

dif

L

27.1

Doubly reinforced concrete beams

27.1.1 Condition 1

In order to ensure both the top and bottom steel yield before
the concrete, € must not go below .005.
A, = area of tensile and compressive steel at bottom
(depth = d)

A/ = area of compressive steel at top (depth of d’)

For condition 1, when ¢, = .003, &, = .005

N, = Asﬁv where A, is the portion of the bottom steel that
allows the concrete to reach its full compressive strain of
0.003.

The internal couple produced is the same as in singly

reinforced beams:
oM, =N, Z = (Aswfv)(d —a/2)
Ny, =N, ... Asjy =pf’ab...a= Aswfy/[if’cb
B = .85 for < 4ksi.

In analysis, the top steel area A_, is known and it is assumed
that the steel yields. Therefore, . = fy.

N, =N, = As,fy = Aszfy A=A

S2

A, = A, + A, Therefore, A, = A - A/

S

A= Aswfy/.85f’cb and c = a/.85

Once c is calculated, the strain can be determined and the
beam can be verified to be in condition 1 or 2. If g/ > g,
then the beam is in Condition 1; all the steel yields and the



assumption is correct. g, = fy/E for fy = 60ksi, g, = 60/29,000
=0.00207.

Example 27-1: Find $M_for the beam shown in
Figure 27.2. f' = 4ksi, fy = 60ksi.

12"
Ar[‘?
AN
o — e 2-#9
S
0 8- #9
S — - 60— 66—

27.2
Example 27-1

A =8in2 A/ =A_, =2.0in?
A,=A-A,=8-2=6in?
Assume condition 1: f = f/ = f,

a=A_f Bf’b = 6(60)/1.85(4)(12)] = 8.82” ¢ = 8.82/.85
= 10.38”

d=25-25/2=2375"d,=25
Using similar triangles:
g/ =.003(10.38 — 2.5)/10.38 = .00228 > .00207

g, =.003(25 - 10.38)/10.38 = .00423 > .00207 ...
Condition 1

¢ = 0.65 + (.00423 - .002)(250/3) = 0.836

M,, = A.f,(d - a/2) = 6(60)(23.75 - 8.82/2)

= 6962.4k-in = 580.2k-f

M,, = A’f (d - d') = 2(60)(23.75 - 2.5) = 2550k-in
= 212.5kf

OM, = 0(M,, + M) = .836(580.2 + 212.5) = 662.7k-f

DOUBLY REINFORCED BEAMS AND T-BEAMS

27.1.2 Condition 2

Condition 2 occurs when e/ < ey and s > ey.

Example 27-2: Find $M, for the beam shown in
Figure 27.3. f' = 5ksi, f = 60ksi.

12"
Th
N
o ——06 2-#9
9
0 T e
+3 oo o0

27.3

Condition 2 example of doubly reinforced beam

Assume all steel yields.
A, =A/=20in?
A,=6.0in?, A =6 -2 =4in?
a = 4(60,000)/[.85(5000)(12)] = 4.71”
c=a/P

Remember that, for f/_ > 4000psi, B1 = 0.85 — 0.05(f", -
4000)/1000 > 0.65

=.85 - .05(5000 - 4000)/1000 = 0.8
c=471/.8=5.89"

g/ =.003(c - d’)/c =.003(5.89 - 2.5)/5.89 = .00173
<.00207

The compression steel has not yielded (g, < ey)

e, =.003(d, - cl/c = .003(21 - 5.89)/5.89 = .0077
>.00207

The tensile steel had yielded (e, > ¢)
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Condition 2 exists:
Ny =N, +Ng, ... Af = .85f"ba + f/A/

a and f. have changed because the assumption that the
beam was in Condition 1 was wrong.

a=Pcandf’=¢CcE =[003(c - d)/cIE. The only unknown is
c. Solve for ¢ by substituting these equations into the original
and forming a quadratic equation

Af, = (.85f)(b)(@) + f/A/
Af, = .85f" bBc + [.003(c — d')/clE A where:

A, =6, f, =60ksi, ¥/ = bksi, b= 12", p = 0.8, d’ = 2.5",
E. = 29,000ksi, A = 2.0

Note: Be careful to use consistent units: If using
E. = 29,000ksi, use f’ and fy in ksi.

Af, = 6(60) = (85)(5)(12)(.8)(c) + [.003(c ~ 2.5)/c]
(29,000)(2) = .85f"bpc + 1.003(c — d')/cIE A/

360 = 40.8c + 174 — 435/c
0=40.8¢? - 186¢c — 435 = ¢? — 4.559¢ — 10.662
Use quadratic equation formula:

¢ = 4.559/2 + 5V(4.559? + 4(10.662)) = 2.28 + 3.98
=6.26”

Check that assumptions are correct.

f/=1.003(c - d)/c]E,

= [.003(6.26 - 2.5)/6.26][29,000]

=52.26 < fy = 60ksi ... assumption is correct
Knowing ¢ = 6.26”, check g > 0.004

g, =.003(d, - c)/c = .003(21 - 6.26)/6.26 = 0.0071
> 0.004 ... okay

¢ = 0.9 because .0071 > .005
Solve for oM :

d=21"-25"2=19.75"

M. =N.Z =Nl -a/2)

= .85f" ab(d - a/2)

= (.8b)(bksi)(.8(6.26)(12)(19.75 - .8(6.26)/2)

=4494.77k-in = 367.06k-f

M,, = Ne,Z, = Noyd — d) = AJf/(d — d')

C272

{eq = 2(52.26)(19.75 — 2.5) = 1802.97k-in = 150.25k-f

®M_ = 0.9(367.06 + 150.25) = 465.58k-

27.1.3 Doubly Reinforced Beam
Design

To design a doubly reinforced beam, begin by designing
a singly reinforced beam. If the moment requirements
cannot be met without enlarging the beam, design a doubly
reinforced beam. Design each of the two internal couples
(M, and M ,) separately so that the total satisfies the
required moment.

1. Determine M if unknown.
. Assumed=h -3
. Assume ¢ = 0.9
- A, = (.85 bd/f )1 = V(1 - 2M /0.85f bd?)]
.a=1fA/0.85f'b), c = a/B, & = .003(d - c/c. If

g, < 0.004, then beam needs double reinforcement.
. Ate =0.005, c = 3d/8, a = .376dp,
. OM_, = .9(.85f")ab(d - a/2)
. Ag, = .85f"ab/f,

9. 0M_, =M, - oM |
10. Ng, = 6M_,/d(d - d')
1. ¢/=.003(c - d)c<g =.00207 .../ =¢/f,
12. A = N, /t!
13. A, = N/,
14. A=A, +A,
15. Check actual d > assumed d

oA W N

0 N O

16. Check e/, € and ¢ using selected steel:
A=(A, - A/ /85 b
e/ =.003(c -d)/c
T/ =¢/E,
g =.003(dt - c)/cife >005...6=.9
17. Check ¢M, > M :

Example 27-3: Design the steel for a beam with:
M, =350k-f, b =12, h =24, f' = 3ksi, f =60ksi, d’ =2.5".
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Example 27-3

N S I R

. Determine M if unknown. M = 350k-f = 4200k-in
.Assumed=h-3...d=24-3=21"

. Assume ¢ = 0.9

- A, = [.85F" bd/f I[1 - V[T - 2M /6.85f" bd?] = [.85(3)(12)

(21)/601[1 = \[1 = 2(4200)/(.9(.85)(3)(12)(21)?] = 4.762in?

.a=1,A/(0.85f"b) = 60(4.762)/(.85(3)(12) = 9.34”

¢ =a/B, =9.34/.85 = 10.99”

g =.003(d - ¢)/c = .003(21 - 10.99)/10.99 = 0.0027
< 0.004 ... beam needs to be enlarged or needs
double reinforcement.

. Lete, = .003(d - cl/c = 0.005 ... c = 3d/8 ... a = .375d,

= .375(21)(.85) = 6.69”

- oM, = 9[(.85f )abl(d — a/2) = .9(.85)(3)(6.69)(12)(21 -

6.69/2) = 3252.8k-in = 271.07k-f

8. A, = .85/ ab/f = .85(3)(6.69)(12)/60 = 3.41in’
9. 9M_, = M, - OM_, = 350 — 271.07 = 78.93k-f

1.

12.

13.
14.

15.

. Ng, = OM_,/6 (d — d’) = 78.93k-f(12in/f)/.9(21 - 2.5)

= 56.89k

a=6.69" (fromstep 6) ... ¢ = a/B, = 6.69/.85 = 7.87”
g/ =.003(7.87 - 2.5%)/7.87 = .00205 < gy = .00207 ...
f/ =.00205(29000) = 59.36ksi

A/ =N,/ = 56.89k/59.36ksi = 0.96in? use two #7 for
A/ =12

A, =N, /f, =56.89/60 = .95

A=A, +A,=3.41+ .95=436use3 - #11 for

A, =468

Check actual d > 21(assumed d)

DOUBLY REINFORCED BEAMS AND T-BEAMS

d=24-15-.375-141/2=21.42 > 21 ... okay
Al=12 A =468
16. Check g/, € and ¢ using selected steel:
A= (A, - A))f /85 b =(4.68 - 1.2)(60)/.85(3)(12)...
c=6.63.85=78"
g/ =.003(7.8 - 2.5)/7.8 = .00204 < .00207 ... f/ < f,
f/ =.00204(29000) = 59.16
e =.003(21.42 - 7.8)/7.8 = .00524 >.005 ... = .9
17. Check ¢M > M :

M, =A,f (d - a/2) = (3.48)(60)(21.42 - 6.63/2)
= 3780.32k-in = 315k-f

M, = AJf/(d - d’) = 1.2(59.16)(21.42 — 2.5)
= 1343.17k-in = 111.93k-f

oM =.9(315 + 111.93) = 384.24 > M = 350k-f
... okay

Answer: Use three #11 on the bottom, two #7 on the top.

27.2 T-beams

The term T-beam describes a concrete beam that utilizes
the floor slab as a compression flange. The T-beam can be a
simple beam with uniform load or a carrier beam or girder.
The effective flange width, b, is the width of slab that is
allowed to be a part of the T-beam. ACI Code section 8-12
limits effective flange length as follows:

1. b <L/4 (span length/4)

2. b<b, +16h, (web thickness + slab thickness)

3. b <s = center-to-center spacing of beams.

If flange is only on one side then effective flange width is

limited to:
1. b<L/12
2. b<eéhf

3. b<1/2 clear distance to next beam.
If the T-shape is isolated and not part of a slab:

b/2<b<4b,
Minimum steel reinforcement for T-beams is:

A. .. =30f)b,d/f >200b,d/f,

s min
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27.5

T-beam

27.2.1 The Practical Moment Strength
oM,
Example 27-4: Find the practical moment strength, ¢M_
for the T-beam shown in Figure 27.6 if the span is 24ft
and the center-to-center beam spacing is 5ft. f', = 4ksi
and fy = 60 ksi.

<

4"

10"

24"

__G O O__ —

27.6
Example 27-4

1. Find effective flange length:
L/4 =24(12)/4 =72
bw + 16 hf = 10 + 64 = 74”
beam spacing = 60”

use b = 60”7

Check A, min =.0033bwd = .0033(10)(24) = 0.79 < 2.37
(3 #8) ... okay
Assume the steel yields. Find N

N, =Af =2.37(60,000psi) = 142,200#

Find whether the flange can handle the compressive
force:

N, = (.85f")(b)(h,) = .85(4000)(60)(4) = 816,000 >
142,200 ... the compression is handled by the flange and
the analysis is the same as for a rectangular beam with a
width b = 60",

Finda = Af /.85f'b = 2.37(60,000)/.85(4000)(60)
=0.697"

Note: the ratio of a/h, = N;/N, ... a = N;h/N_,
=142,200(4)/816,000 = .697

Find tensile strain e, = .003(d - c)/c

¢ =4a/.85 =.697/.85=0.82
g =.003(24 - .82)/.82 = 0.0848

.0848 > .005 therefore tension controls yielding and
0=0.9.

oM, = 0Af (d —a/2) = 0.9(2.37)(60ksi) (24 — .697/2)
= 3026.92k-in = 252.243 k-f



Compression in the web occurs when there is not adequate
area in the flange, as in the next example.

Example 27-5: Find the 4M_for the T-beam shown in
Figure 27.7. f' = 3ksi and f = 60ksi. The span is 16ft and
the center-to-center beam spacing is 6ft.

<
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|74
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27.7
Example 27-5

1. Find b:
L/4 =16(12)/4 = 48"
b, + 16h =19 + 48 =67
beam spacing = 72”

USE: b = 48"
2. A, ., =-0033b,d=.0033(19)(28) = 1.76 < 7.8 (5 #11)
... okay
3. Assume the steel yields. Find N.:

N, = Af, =7.8(60,000psi) = 468,000#
4. Find if the flange can handle the compressive force.
N, = (.85f")(b)(h) = .85(3000)(48)(3) = 367,200

367,200 < 468,000 therefore the web must help
handle the compression.

5. Find the compression carried by the web.
N, = 468,000 — 367,200 = 100,800#

6. Find the distance the compression block extends below
the flange (a — h)).

(a - h) =100,800/.85(3000)(19) = 2.08

a=208+h =508andc =5.08/.85 = 5.976
7. M, = N_Z, = 367.2k (28 - 3/2) = 9730.8 k-in

8.
9.
10.

1.

DOUBLY REINFORCED BEAMS AND T-BEAMS

M., =N,Z,=100.8k(28 - 3 - 2.08/2) = 2415.17k-in
M. =9730.8 + 2415.17 = 12145.97k-in = 1012.16k-f
g, =.003(28 - c)/c = .003(28 - 5.976)/5.976 = .0111
> .005 therefore ¢ = 0.9

oM_=0.9(1012.16) = 910.944 k-f

27.2.3 To Design a T-beam

1. Determine M,
2. Assumed=h-3,and ¢ =0.9

w

~N o o b

. Find effective width b: b < L/4, beam spacing and

b, + 16h..

. M,, = .85f’bh,(d - h/2)

oM =M, go to step 6. If oM ; <M , go to step 12.
- A, = 1.85f"bd/f JI1 = V[T - 2M,/¢.85f" bd?]

. Check that A, > A

= b, d(3Vf)/f, > 200b, d/f . If not,

s min

use A

s min”

. Select bars based on A_ values from Table A4.2. Note

actual A_. Calculate the actual value of d. Check the
required width for the number and size of bars chosen
from Table 26.1.

.a=1fA/85blc = a/p,
10.
11,

Check g =.003(d - ¢)/c > 0.004.
Check ¢ = 0.9 assumption. If & < 0.005, recalculate ¢ and
check that pM_=M .

¢ = 0.65 + (g, ~0.002)(250/3) if 0.004 < ¢, < 0.005.

When 6¢M_, < M :

12.

13.
14.
15.
16.

17.
18.
19.
20.
21.

Z,=d - h/2 where Z, is the distance from the center of
gravity of the steel to the center of gravity of the flange.
Ay=M /M2

d,=d-h,

M., = M, = oM )/

a,, = depth of stress block in the web.

a,=d, VId,?-2M,_/(.85f'b )]

A, =.85Fa b /f

A=A +A,,

Calculate actual value of d:

A, . = b,dBVF)/f >200b d/f,

a=a, +h,c=a/pl e =.003(d-clc

If e, >.005, ¢ =0.9,

0.004 <& <.005, ¢ = 0.65 + (¢, — .002)(250/3) and check
OM. >M,.
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Example 27-6: Design reinforcement for the T-beam

shown in Figure 27.8. ' = 4ksi, f = 60ksi, b = 12",

h =24", h, = 3", Beam spacing = 8ft, L = 20/, Live Load
= 125psf, Dead Load = 200psf (includes concrete wt).

<

3

12"

24"

27.8

T-beam design

1. W, =[1.2(200) + 1.6(125)]8ft = 3520%" =
M, = (3.62k/1)(20)*/8 = 176k
d=24-3=21" Assume ¢ =0.9
3. b<L/4=20(12)/4 = 60”7
b<b, + 16h, =12 + 16(3) = 60”
b < beam spacing = 96”
use b = 60”
4. M, = .85f"bh(d - h/2) =
= 11934k—|n = 994 .5k-f
5. 0.9(994.5) = 895.05k-f > M = 176k-f ...
T-beam
6. A, = [.85f"bd/f Jl1 = V[1 - 2M /6.85f"bd?] = [.85(4)(60)
(21 )/601[1 N(1- 2(176k-f)(127%)/(.9(.85)(4)(60)(21)2)]
= 1.89in?
7. Check that A, = A

3.52k/f

N

5(4ksi)(60”)(3”)(21 - 3/2)

Rectangular

min

A, ..=0.84<189.. okay

8. Usetwo#9 A =20.d=24-15-.375-1.128/2
=21.561 > 21 ... okay

9. a=1fA/(.85fb) = 60(2)/(.85(4)(60) = 0.588 c = a/B,

= 0.588/.85 = 0.692

10. Check g =.003(d - ¢)/c =.003(21.561 - .692)/.692
=0.09 > 0.004.

11. 0.09>0.005...6=0.9
ANSWER: Use two #9

= b,d(3Vf))/f >200b, d/f, = 12(21)
(3)(4000)/60000 = 0.797 > 200(12)(21)/60000 = 0.84 ...

27.

2.3 Irregular Shapes

Irregular shapes can be designed using the same logic as

with T-beams. Divide the beam into sections based on width

and work from the top down.

Example 27-7: Design reinforcement for the inverted

T-beam shown.

f’, = 4ksi, f, = 60ksi, b, = 18", h = 20", h

— 4//’ b — 6”,

L = 20", M, = 176k

20"

o O O

18"

27.9

Inverted T-beam

12.
13.
14.
15.

16.

17.

18.
19.

Determine M = 176k-f
Assumed=20-3=17",¢=0.9

Find effective width b: b < L/4, beam spacing and b |
+ 16h,. In this case, b is given and is smaller than all
conditions: b = 6”

M_, = .85f"bh.(d — h/2) = .85(4)(6)(4)(17 - 4/2) =
= 102k-f

foM = 0.9(102) = 91.8k-f < M = 176k ...
Z.=d-h/2=17-4/2=15"

Ay =M /f Z, = 102k-f(12in/f)/(60ksi)(15”) = 1.36in?
d,=d-h=17-4=13"

M., =M, -o6M_ )/ ¢ = (176 - 91.8)/0.9 = 93.56k-f
= 1122.67k-in

a,, = depth of stress block in the web.

a,=d, +Vd2?-2M_ /(.85{'b )

=13 +V[169 - 2(1122.67)/(.85(4)(18))] = 1.497in?
A, = -85 a b /f =.85(4)(1.497)(18)/60 = 1.527in?
A=A +A,, =136+ 1527 =2887, use three #9
Calculate actual value of d: d = 20” — 1.5” — .375” -
1.1287/2 = 17.56” > 17” ... okay

1224k-in

go to step 12



20. A, . =b d(BVF)/f =18(17.56)(3)(4000)/60,000
=1.0>200b,d/ f, = 200(18)(17.56)/60000 = 1.05 ... A
=1.05<3.0 ... okay

21.a=a,+h, =5.497",c = a/fl = 5.497/.85 = 6.467”,

g, = .003(d - c)/c = .003(17.56 — 6.467)/6.467 = 0.00514
>0.005 ... ¢ = 0.9.
ANSWER: Use three #9

s min

If an irregular shape has a cross-section not easily adaptable
to the previous method, make an assumption about the ratio
of a/d. Then check whether the assumption is adequate. If
not, go through another iteration with a higher ratio.

Example 27-8: Design reinforcement for the wedge-
shaped beam shown.

18"

9"
27.10
Wedge-shaped beam

M, = 150k-f = 1800k-in, d = 15”7, ¢ = 0.9

Assume a = 0.2d, let A_ = area in compression. Note: for
larger values of M, a larger assumption for the ratio of a/d
will be needed.

A,=a(18 —a/3) = 0.2d(18 - .2d/3)

=.2(15)(18 — .2(15/3)) = 51in?

Af, = .851"A ... A =.85(4)(51)/60 = 2.89in?
Use three #9, A, = 3.0

A, =3.0(60)/(.85(4)) = 52.94 = a(18 - a/3)

a=54/2 + 5V[642 — 4(3)(52.94)] = 3.122”

DOUBLY REINFORCED BEAMS AND T-BEAMS

¢ =3.1227/0.85 = 3.672”

g = 0.003(15 — 3.672)/3.762 = 0.009 > 0.005 ...
0=0.9

Check ¢M, = of A_ (d - a/2) = 0.9(60)(3.0)(15 - 3.122/2)
= 2177.118k-in > 1800k-in = M, ... Okay.
ANSWER: Use three #9.

Practice Exercises:

27-1: Find ¢M for the beam shown in Figure 27.11. {7 = 4ksi,
f, = 60ksi.

27-2: Find ¢M for the beam shown in Figure 27.11. {7, = bksi,
f, = 60ksi.

27-3: Design the steel for a beam with: M = 450k, b = 147,
h =26" = 3ksi, fy = 60ksi, d’ = 2.5".

27-4: Design the steel for a beam with: M = 600k-f, b = 16”,
h =307, ' = 4ksi, fy = 60ksi, d’ = 2.5”.

27-5: Find the ¢M for the T-beam show in Figure 27.11.
? = 3ksiand fy = 60ksi. The span is 20" and the center-to-center
beam spacing is 5".

27-6: Find the ¢M_ for the T-beam show in Figure 27.11.
f’. = 4ksi and f = 60ksi. The span is 24" and the center-to-
center beam spacing is 8”.

27-7. Design reinforcement for a T-beam with /. = 4ksi,
f,=60ksi, b, = 14" h = 27" h, = 4”, beam spacing = 7,
beam span = 18" and M, = 250k-f.

27-8: Design reinforcement for a T-beam with /= 4ksi,
fy = 60ksi, b = 16", h = 27" h. = 3", beam spacing = &/,
beam span = 22" and M = 300k-f.

27-9: Design reinforcement for the inverted T-beam shown
in Figure 27.11. /= 4ksi, fy = 60ksi, beam span = 20" and
M, = 200k-f.

27-10: Design reinforcement for the box beam shown in
Figure 27.11. /= 4ksi, 1‘y = 60ksi, beam span = 20" and
M, = 300k-f.

239



240

CONCRETE DESIGN

0 16" . 14" |
Al (2]
AN — AN B =
Sl e —o- S o —o- © Z
2 -#9 2-#8 |
=C) 3{) ZO :O) 16" :_
@ ™ o s\ AN
o 8-#8
o )
5- #9 “Eeeed L 3dM .
o6 00— ©
27-1 27-2 27-5
| 8" L 6" L 8II L 24" L
- 1 1 . 1 1
i B
15" = - zo
& N 5]
4-#9
TO© 69 T | 22" | 00000
1 i
27-6 27-9 27-10
27.11

Chapter 27 Practice exercises




twenty eight

Shear and Deflection in

Concrete Beams

28.1 Shear in Concrete
Beams

When a beam is subjected to a vertical load, each unit element
transfers the shear through a shear couple (the vertical
forces shown in Figure 28.1) that must be counteracted by a
counteracting couple (the horizontal forces shown) in order
for the unit to remain stable. These forces cause planes

of compression and planes of tension. When shear forces
cause diagonal tension greater than the tensile strength of
the concrete, shear cracks appear. Because shear is usually
greatest at the support, shear cracks most often occur at the
bottom of the beam near the edge of a support and work
diagonally upwards and toward the center of the beam.

Internal Couple due
to resistance of

molecule to rotation

N\ K
AN &

N
SN\,

s < AN

28.1

D

7
&

Internal
Couple
due to

Shear

Tension and compression planes caused by shear

V, = amount of shear force unreinforced concrete can
resist

V, = 2A(f)b, d

A = weight modification factor (1.0 for normal weight
concrete)

b,, = web thickness = b for rectangular sections

Minimum shear reinforcement is required except when the
following conditions exist:
1. in slabs and footings;
2. in concrete joist construction defined by ACI Code,
Section 8.13;
3. in beams with a total depth less than:
10.5”
2.5 times the flange thickness
one-half the width of the web.

N A

28.2

Shear stirrups



CONCRETE DESIGN

A, = minimum shear reinforcement = total cross sectional

area of stirrup steel = 2A_ where:
A, =0.75(f)b, s/f > 50b, s/f
A, = cross-sectional area of stirrup steel.

s = center to center spacing of stirrups in direction
parallel to longitudinal reinforcement.

fyt = yield stress of stirrup steel

Note for f’ < 4444psi A = 50b,s/f |

28.1.1 Shear Reinforcement:

Minimum shear steel required:
IfV,20V/2, A, = O.75(\/f’c)bws/1‘yt 250D, s/f,

When V, > ¢ web reinforcement must be designed for
¢V, =V, - ¢V, and

A, = Vss/fvtd

V, = nominal shear provided by the shear
reinforcement

Maximum spacing of stirrups
Check spacing for minimum steel requirement:

s...=Af, /500,

max vyt

Check ACI 11.5.4 maximum spacing requirement:

ifV,<4(Wf)b,d...s  <d/2<24”
if VvV, 2 4(\/f’0)bwd .8, <d4<12”
Design procedure for shear:
1. Calculate V, = factored shear at distance d from support.
2. Calculate ¢V_ = 92Vf’b, d
3. IsV, 2 ¢V /2? If no - you're done. No shear reinforcement
required.
If yes — go to step 4.
4. 1s oV /2 <V <oV ? If yes, go to step 8
If no, go to step b
S IfV, > ¢V, calculate V=V /6 - V_or (V, - ¢V /o
. Check that V_ < 8Vf’b d (otherwise against code)
Assume a stirrup size and solve for s <Af d/V,

0 N o o

. Check spacing for minimum steel requirement:

s,..=Af, /500,

vyt

9. Check ACI 11.5.4 maximum spacing requirement:
if vV, < 4\/f’cbwd .8, <d2<24”
fV.24fb d...s  <d4<12”

10. Check minimum spacing s, = 4”
11. Locate where ¢V_and ¢V /2 are located on shear diagram
in terms of x.

12. Indicate what shear reinforcement is required and where.

Example 28-1: Design shear reinforcement for a 28’
beam with b = 14", d = 27", f'_ = 4ksi, fv = 60ksi, and a
factored uniform load of 6k/f.

1.V, = 28(6)/2 - 6(27/12) = 70.5

2.V, = $2(f")b,d = .75(2)(N4000)(14)(27)/1000 = 35.86
3.IsV,>¢V /2?7 70.5 > 35.86/2 = 17.93 ... go to step 4.

4. 1s ¢V /2 <V, < ¢V ? No, go to step b.

5. If V, > ¢V, calculate V_ = (V, - ¢V /¢ = (70.5 — 35.86)/.75

= 46.19

6. Check that V, < 8(Vf’)b, d: 46.19 < 8(V4000)(14)(27)/1000
=191.25 ... okay

7. Assume #3 stirrup, s <A f d/V, = .22(60)(27)/46.19
=772"

8. Check spacing for minimum steel requirement:

S Af /50b = .22(60000)/(50(14)) = 18.86 > 7.72

max = vyt

... okay
9. Check ACI 11.5.4 maximum spacing requirement:
46.19 < 4 (V4000)(14)(27)/1000 = 95.63

if vV, < 4(\/f’c)bwd 8 $d/2 <247 =27/2 = 13.57
> 772 ... okay

10. Check Minimum spacings_. =4" < 7.72 ... okay

11. Locate where ¢V_and ¢V /2 are located on shear diagram

min

in terms of x.
¢V, is @ x where 28(6)/2 — 6x = 35.86 ... x = 8.02"
¢V /2 is @ x where 28(6)/2 - 6x = 17.93 ... x = 11.01"

12. Indicate what shear reinforcement is required and where.
Use #3 stirrups @ 770 < x < 8.02 and 19.98 < x < 28
Use #3 stirrups @ 13.5”

Example 28-2: Design shear reinforcement for a 40ft beam
with b =16", d =32", f' =4ksi, fy = 60ksi, a factored uniform
load of 1k/f and a concentrated load every 5’ of 24k.



$Ve = 35.86k

¢Ve/2 = 17.93k

SHEAR AND DEFLECTION IN CONCRETE BEAMS

28.3

Beam shear example

28'

84k

Vu = 70.5k

Draw and label shear diagram.

1

a A~ 0N

10.

.V, =104 - 1(32/12) = 101.33

OV = 02Vf" b d = .75(2)(N4000)(16)(32)/1000 = 48.57

sV, 2¢V /2?7 101.33 >48.57/2 =24.29 ... go to step 4.

.Is ¢V /2 <V <6V, ? No, go to step 5.

1TV, > ¢V, calculate Vs = (V, — ¢V )/d = (101.33 -
48.57).75 = 70.34

. Check that V_ < 8Vf’b_d : 70.34 < 8(4000)(16)(32)/1000
=259.05 ... okay

. Assume #3 stirrup, s <A f, d/V_ =.22(60)(32)/70.34

=6.01"
. Check spacing for minimum steel requirement:

s,.. = Af,/50b, = .22(60000)/(50(16)) = 16.5 > 7.72

m vyt

... okay
. Check ACI 11.5.4 maximum spacing requirement:
70.34 < 4 (V4000)(16)(32)/1000 = 129.53

ifv, < 4\/f'cbwd 8, $0/2<24” =32/2 =167 > 7.72
... okay

Check minimum spacings_ =4" < 7.72 ... okay

in

-84k

11. Locate where ¢V_and ¢V /2 are located on shear diagram

in terms of x.
¢V, is@x =10’
¢V /2is@x =15

12. Indicate what shear reinforcement is required and where.
Use #3 stirrups @ 770 < x < 10 and 30 < x < 40
Use #3 stirrups @ 16” 10 < x < 15 and 25 < x < 30

28.2 Deflection in Concrete
Beams

ACI equation 9-8 states that the moment of inertia to be used
in calculating deflection in concrete is:

I, = {AM/M3+ 11 = (M, / M)AI F< I, where:

M, = maximum moment where deflection is being
calculated

M., = cracking moment for the given cross-section
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24 24 24 24 24 24 24 28.4

Shear diagram

1 k/f
L =40
104
Vu=101.33 99
75
70
@Vc=48.57k 46
41
©Vc/2=24.29k
17
\‘12
32 \\
17 oVc/2=24.29k
15
46 Vc=48.57k
70
75
99 L |Vu=101.33
104
Ig = gross area moment of inertia = bh3/12 for The modular ratio, n, is derived by setting the strain in the
rectangular beams steel equal to the strain in the concrete in tension. It is used

) . . to find the equivalent concrete area, A_, that may replace the
., = moment of inertia of the cracked concrete section q ey yrep

Cl

steel area A_.

|, = bY¥/3 + nA,(d - Y)* where: Using A, = nA_ allows for the neutral axis, Y, to be located
Y = the distance from the top of the beam to the and then | to be determined using the general equation of
neutral axis = A (1 + 2bd/nA ] — 1)/b | =2l +ZAd2

n = E/E_ = modular ratio



SHEAR AND DEFLECTION IN CONCRETE BEAMS

, b .
>
©
As
o000 — —f- Aq=nA
28.5

Equivalent area

Y = ZAY/ZA = [bY(Y/2) + nA_dl/[bY + nA]
This equation can be reformulated into a quadratic equation:
bY?/2 + nAY -nAd=0
Y = (nA/b)N(1 + 2bd/nA) - 1)
l, =Xl +ZAd?
=bY3/12 + b(nA/b)3/12 + bY(Y/2)? + nA(d - Y)?

|, for doubly reinforced beam:
The neutral axis can be located by using the equation:

D b D
A's
o000V — -
A\ A\ A\
As —
A\ A\ A\
28.6

Moment of inertia for doubly reinforced beam

bY?/2 + nA’Y = nA/d"-nAd+nAY =0

or

(b/2)Y? + n(As” + As)Y — n(A/d" + Ad) =0
Using the quadratic equation formula:

Y = —n(As’ + As)/b = (1/b)V[n?(As’ + As)?
+ (4bn/2)(A/d" + A_d)]

| =bY¥3 + nA(d - Y)? + nA/(Y — d)?

|, = bh¥/12

[~ AnAs

+——NA.

] nAs
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The moment at the point of rupture = M_ = cracking moment
andf =M_/S

Mcr = er = frlg/yt

y, = distance from the neutral axis of uncracked cross-section
neglecting steel to extreme outside fiber.

y, = h/2 for rectangular beams

Example 28-3: Find the deflection in a 16 x32 beam with
five #9 rebars @ d = 29", spanning 30’ and carrying a live
load of 2000%" if f' = 4ksi and fy = 60ksi.

1. n=E/E_=29000/[57V4000] = 8.04
2.y =nA (1 + 2bd/nA) - 11/b

= 8.04(5)[V(1 + 2(16)(29)/8.04(5)) - 11/16 = 9.82”
3.1, =by%3 +nA(d -y

= 16(9.82)%/3 + 8.04(5)(29 - 9.82)? = 19839
4.1,=16(32)%/12 = 43691

f = (7.5V4000)/1000 = 0.474ksi

M,, = f 1 /y, = .474ksi (43690.67) /(32/2) = 1294.3 k-in

C

w = (150)(16/12)(32/12) + (2000) = 2533.33#"
M, = 2.53(30)2(12)/8 = 3415.5 k-in
M_/M, = 1294.3/3415.5 = 0.379

9. 1, = {IM/MII + [T = (M_/MII_}
= {[.37913(43691) + [1 — (.379)%](19839) = 21138in*
10. A, = 5wL*(1728)/384EI = 5(2.53k/f)(30)*(1728in%/3)/
[384(57 V4000)(21138)] = 0.61”

Allowable deflections: ACI Code Table 9.5b sets the criteria

for allowable deflections in concrete beams as follows:

L/180: Immediate deflection due to live load on flat roofs
not supporting or attached to nonstructural elements
likely to be damaged by large deflections.

L/240: The sum of the long term deflection due to
sustained loads plus immediate deflection due to any
additional live loads on roofs or floors supporting or
attached to nonstructural elements not likely to be
damaged by large deflections.

L/360: Immediate deflection due to live load on floors not
supporting or attached to nonstructural elements likely to
be damaged by large deflections.

L/480: The sum of the long term deflection due to
sustained loads plus immediate deflection due to any
additional live loads on roofs or floors supporting or
attached to nonstructural elements likely to be damaged
by large deflections.

Checking the beam from example 28-3:
L/240 = 307(12)/240 = 1.5”
L/360 = 30’(12)/360 = 1”
L/480 = 30’(12)/480 = 0.75”
This beam would work in any scenario.

Example 28-4: Find the immediate deflection in a
concrete girder that spans 40ft carrying a concentrated
load of 60k @ x = 10’, 20’ and 30'.

The beam is 16” x 36” with eight #10 in two rows on the
bottom and four #10 at 2.5” from top. /. = 4ksi and fy = 60ks.
A/ =5.08, A =10.16, d = 32.36", allowable deflection = A |
= L/240.

1. n=EJ/E_=29000/[57N4000] = 8.04

2.Y = -n(As” + As)/b + (1/bNIN?(As” + As)? + (4bn/2)(A/d’
+Ad)] = -8.04(5.08 + 10.16)/16 = (1/16)N[8.042(5.08 +
10.16) + (4(16)(8.04/2)(5.08(2.5) + 10.16(32.36))]
= -7.658 + 20.05 = 12.39”

3.1, =by¥3+nA(d-y?+nAsly - d)? = 16(12.39)%/3 +
8.04(10.16)(32.36 — 12.39) + 8.04(5.08)(12.39 - 2.5)2
= 46715.65in*

-1, =16(36)°/12 = 62208in*

. f, = (7.5V4000)/1000 = 0.474ksi
M, = Tl fy, = .474ksi(62208)/(36/2) = 1638.14k-in

- W, = .16(16/12)(36/12) = 0.6k/f

.M, =wL?/8 + PL/2 = 0.6(40)?/8 + 60(40/2) = 1320k-f
= 15840k-in
9. M_/M, = 1638.14/15840 = .103

10, 1_={{M_/MIIg+[1 - (M_/M)II_}

= {[103]%(62208) + [1 - (.103)](46716) = 46733
1. A, =5wI*/384E| + 19PL/384EI
= 5(.6)(40)4(1728)/[384(57 V4000)(46733)]
+19(60)(40)%(1728)/1384(57V4000)(46733)] = 2.154”
12. A, =21564 > A = 1/240 = 40(12)/240 = 2” ... not okay

o N o o A



28.2.1 Long-Term Deflection

A = AiE /(1 + 50p’) is applied only to sustained loads.
Ai = immediate deflection
& = time-dependent factor for sustained loads:

= 2.0 for 5 years or more
= 1.4 for 1 year
= 1.2 for 6 months
= 1.0 for 3 months
p’ = non-prestressed compression reinf. (A’s/bd)

Example 28-5: A 12" by 18" beam has L = 20f, w = 2.67k/f
exclusive of beam weight, d =15.56", A_=4.0,A' =0,
' = 3ksi, fy = 60ksi.

Find the immediate and 5 year deflection if only the beam
weight and 1k/f are sustained loads.

1. n = E/E_=29000/[57V3000] = 9.29
.y =nAN(1 + 2bd/nA) - 11/b = 10.29”
I, =by¥3+nA(d-y)?
=12(10.29)%3 + 9.29(4)(15.56 — 10.29)* = 5394in*
-1, =12(18)*/12 = 6832in*
. f. = (7.5¥3000)/1000 = 0.411ksi
M., = Tl /y, = 411ksi (6832) /(18/2) = 266.2 k-in
. w = .15(12/12)(18/12) + 2.67 = 2.895k/f
. M, = 2.895(20%)(12)/8 = 1737k-in M_/M, = 266.2/1737
= 153
9.1, ={IM_/M_PFlg + [1 = (M_/MIl_ }
= {153%(5832) + [1 - .153°%|5394} = 5396in*
10. A = 5wL*/384EI
= 5(2.895)(20)*(1728)/[384(57V3000)(5396) = 0.619”
11. & = 2.0 for 5 years or more.

w N

o N o oA~

12, w,. = 15(12/12)(18/12) + 1 = 1.225k/f
13. A =0.619(1.225/2.895) = 0.262”
14.p°=0

156. A; = A /(1 + 50p’) = .262(2)/(1 + 0) = 0.524”
16. Total deflection = A = 0.619 + .525 = 1.14”

Practice Exercises:

28-1 through 28-3: Design shear reinforcement for the
concrete beams shown in Figure 28.7.

SHEAR AND DEFLECTION IN CONCRETE BEAMS

28-4 through 28-6: Find the immediate and long-term
deflections of the concrete beams shown in Figure 28.7.

12"
2.2
1.2k/f
AN NN B
hmn 16' min 4| —9—3—-ei9-e— —
28-1 & 28-4
12"
5
2k/f
%/\b\b\b\b\b\b\b 448
% 6' +—t—-o—0—o —o+f —
28-3 & 28-5 14"
3k 3k 3k .
™
6' @ 6' @ 6' @6' 4
o oM I I A
28-2
" ED
12 o
o —e——~\-‘{-
2k
@ 2
NN
A
20' - —e—s—is-e— —

28-6

28.7

Chapter 28 Practice exercises
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twenty nine

Concrete Columns

Concrete columns are either reinforced concrete columns or shapes. This text discusses the design of columns with
composite columns. Composite columns are columns made rectangular and round cross-sections. Note the following
of steel sections that are either encased in concrete or filled terms:

with concrete as in Figure 29.1. Ag = gross area of the column

There are two types of reinforcement in concrete columns: .
A, = core area of the column where the core is

spiral and ties. Spirals are used in columns with a circular defined by the area enclosed by and including the

||
1L

cross-section. Ties are used in concrete columns or other
transverse steel.

[
L

DO O

§v

Round column w/ spiral Square column w/ ties Composite column sections
29.1

Concrete column types



For square columns with a width h, A, = (h — 2(cover))?. For
round columns with a diameter h, A, = n(h — 2(cover))?/4.

Axial loads with small eccentricities are those with a small
ratio of eccentricity to column width.

Ties column: e/h < 0.1
Spiral columns e/h <0.05

h = column dimension perpendicular to bending axis

29.1 Design of Short Axially
Loaded Columns

A concrete column is considered to be short if its slenderness
ratio meets the following requirements:

kL /r < 22 for pinned connections
kL /r < 34 - 12(M,/M,) for fixed connections where M,
= smaller end moment and M, = larger end moment

Is a 36” square column pinned at both ends and with
unbraced length of 20ft short?

r = [36(36)%/12(36)?]'? = 10.392
kL /r=1.0(20)(12)/10.392 = 23.095 > 22 ...
No, the column is not short.

What is the required width for a 20” square column pinned at
both ends to be short?

r=[h4/12(h)2]1/2 = 0.289h
kL /r = 1.0(20)(12)/0.289h < 22 ...
h > 240/.289(22) = 37.75”

In generic terms, for square pinned columns to be short,
h > 1.887L, and for fixed columns with equal moments at
eachend, h > 1.51L .

29.1.1 Design Loads for Short
Concrete Columns

P_ = nominal axial load strength ate = 0

P,= .85/ (A ~ A +f(A)

st

CONCRETE COLUMNS

A, = area of longitudinal steel
A, = gross area of column.

Design axial load strength = ¢P_
For spiral columns: ¢ = 0.75

OP = 0(.85P ) = .75(.85)[.85f (A - A ) + fy(Ast)]
For tied columns: ¢ = 0.65

oP = 0(8P ) = .65(.8)[.85f (A — A)) +f (A)]
Example 29-1: Find allowable axial load on an 18"x 18"

tied column with a maximum unbraced length of 12', ',
= 4ksi, fv’60ksi with 12 #8 longitudinal bars.

From Table A4.1, 12 #8s have an area of steel = A
= 9.48in?

st

A, = 18% = 324in?

0P, = 8(.65)1.85F (A~ A) +f (A
= .8(.65)[.85(4)(324 — 9.48) + 60(9.48)] = 851.8k

29.1.2 Code Requirements for Column
Details

Longitudinal Reinforcement:
0.01<p,=A,/A,<0.08

Minimum 4 longitudinal bars for rectangular or circular
ties

Minimum 6 longitudinal bars for spirals.
Minimum recommended size #5

Clear distance between longitudinal bars > 1.5 bar diameter
(d,) and > 1.5”

Cover > 1.5”

Ties:

minimum #3 for #10 and smaller longitudinal steel bars
minimum #4 for #11 and greater longitudinal steel bars
#5 maximum bar size.

Center-to-center distance between ties < 16d, < 48
tie-bar diameters, or least column dimension where
d, = diameter of longitudinal steel bar.
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Spirals: 2. Core width h — 2(cover) = 28 - 2(1.5) = 25”".

minimum 3/8” diameter. maximum 5/8” diameter From Table A4.3, 16 #11 will fit in a core space of

25”x 25” and there are greater than 4 bars, therefore

17 < clear spacing between spirals < 3” column is adequate for steel placement.
p, = 4A,/d.s = volume of spiral steel in one turn/ 3. Check that P, < ¢P . P, =2000k
volume of column core in height s. d, = h — 2(cover) OP = .65(.8)[.85" (A —A_) +f (A )]

n . . c'' g st y' st
Py i = 0-45((A /A, ) = )(f/f 1) where = .65(.8) [.85 (4)(784 — 25) + 60(25)] = 2121.9k
A, = cross-sectional area of core (out-to-out of spiral) P, =2000 < 2121.9 = ¢P,, therefore column is
= nd,, /4 adequate for load.

4. Check tie size:
279.1.3 Analysis of Short Columns Okay for minimum #4 for #11 and greater longitudinal

steel bars

. ) Tie spacing criteria:
The method to analyze the strength in short columns is as

follows: 16d, = 16(1.41) = 22.56”
1. Check that 0.01 < p, = A /A < 0.08. If not, the column is

48d,, = 48(.5) = 24”
not adequate.

2. Check that the number of longitudinal bars will fit in least column dimension = 28”

the core space of the column with clear spacing limits 22” < 22.56” ... okay for tie spacing

(Table A4.2) and that there is a minimum of 4 bars when _ o
5. Check clear spacing between longitudinal bars on one

face = (28 — 3 - 2(.5) — 5(1.41))/4 = 4.24” < 6”, therefore
column is adequate for longitudinal bar spacing.

using ties and 6 bars when using spirals.
3. Check that P, < ¢P .

P, = .75(.%35)[.%351"C(Ag -A)+ fy(Ast)] for columns with

spiral reinforcement 29.1.4 Design of Short Columns

0P, =.65(.8)[.85F" (A, — A,) + f (A )] for columns with

ties The method for design of short, axially loaded columns is as
follows:

4. Check tie size, spacing and arrangement

S . 1. Deci ial h .
or check spiral size, ps and clear distance. ecide material strengths and p,

5. Check clear spacing between longitudinal bars on one o = aksi, fv = 60ksi, p, =03 are recommended values.

face < 6”. If not, additional ties are required. Determine factored axial load, P,.

Determine Ag:

Example 29-2: Check the adequacy of a short 28"x 28" For rectangular columns:
tied column with a 1.5” cover, f' = 4ksi, fy = 60ksi, 16 #11
and P, =2000k. The column ties are #4 bars at 22"0.c. Ag = P/L8(69L85 (1 ~ pg) * fvpg]}

1. Check that 0.01 < p, = A /A, < 0.08. For spiral columns:

For 16 #11 from Table A4.1, A_ = 25.0in? Ag =P A.85(.75)[.85f" (1 - pg) + fypg]}

Ag =282 = 784in? 4. Determine column size and actual Ag.

p, = A /A, = 25/785 = .032 5. Determine load on concrete:

0.01 < p, =.032 < 0.08, therefore the column is 0P, = B5(BIALBET (T — pyl (tied)

adequate for p, oP, = .75(.85)A .85 (1 - p )] (spiral)



Determine load on steel 6P, =P - 6P,
Determine A_:

A, = 0P /.8(.65)f, (tied)
A = 0P /.85(.75)f (spiral)

8. Select longitudinal bar size and number and check against
Table A4.3 (maximum allowed in one layer)
9A  (tied columns). Select tie size and determine spacing:
s < 48d,, or 16d, or least dimension
9B  (spiral columns). Select spiral size and determine
spacing:

A, =nd Y4

Py min = 4BUAJAL) = NI /F ) where f s the yield
strength of the spiral.

10A (tied columns). Check clear spacing between
longitudinal bars on one face:
If clear distance between longitudinal bars > 6”,
additional ties are required.

10B (spiral columns) Clear spacing between spirals,

Sy = 4A,/d

ma

onPs min Where A = area of spiral

and

1” < clears < 3”or 1 +dsp< s<3+dsp”

Example 29-3: Design a short square column to carry a
dead load of 1000k and a live load of 500k.

1. Use = 4ksi, f, = 60ksi, p, = .03

2. P, =1.2(1000) + 1.6(500) = 2000k

3. A, =P, A65(8)[.85F (1 —p)+Tp.l}
= 2000/{.65(.8)[.85(4)(.97) + 60(.03)]} = 754.44in?

4. \754.44 = 27.47” round up to next whole inch. Use
28x28” column A = 784in?

5. ¢P_= .65(.8)A [.85f (1 — p )] = .65(.8)(784)(.85)(4)(.97)
=1344.53k

6. Determine load on steel 6P, = P, — ¢P_ = 2000 - 1344.53
= 655.47k

7. A, = 0P /8(.65) f =655.47/8(.65)(60) = 21in*

8. From Table A4.1, the area of 16 #11 = 25.0 > 21in? and
this is a multiple of 4 (required for even distribution in
a square column). From Table A4.3, for a core width
d,, =28 -15(2) = 25”7, 16 #11 will fit.

CONCRETE COLUMNS

9. From A4.3, choose recommended tie size: Use #5 tie

s < 48(.625) = 30 or 16(1.41) = 22.56 or 28” ...
s=225"

10. Check clear spacing between longitudinal bars on one
face = (h — 2(cover) — 2d, - (#bars/4 + 1)d,)/(#bars/4)
= (28 — 3 - 2(.625) — 5(1.41))/4 = 4.175” < 6” therefore no
additional ties are required.

Example 29-4: Design a round column for 1000k DL and
500k LL.

Use 1’ = 4ksi, fy = 60ksi, P, = .03
P,=1.2(1000) + 1.6(500) = 2000k
A, =P /A75(.85)[.85F" (1 — p ) + f p I}
= 2000/{.75(.85)[.85(4)(.97) + 60(.03)]} = 615.39 = th?/4
4. h=1[615.39(4)/r] = 27.99. Round up to next whole
number and use 28” dia. column A = n28%/4 = 615.75in?
5. ¢P =.75(.85)A [.85f (1 - p )]
= .75(.85)(615.75)(.85)(4)(.97) = 1294.6k
. 0P, =P, - ¢P_=2000 - 1294.6 = 705.4k
7. A, =0P/85(.75) f = 705.4/.85(.75)(60) = 18.44in’
From Table A4.1, choose 12 #11 = 19.7in? From
Table A4.3, for a core diameter of 28 — 1.5(2) = 25”, 12
#11 will fit.
9. Using a g” diameter spiral, A, = nd_,2/4 = 452.4in?

P, i = AB(AJA,) = NI JE )

c Tyt
= .45((615.75/452.4) — 1)(4/60) = 0.0108
S, = 4A/d ps = 4(.31)/25(.0108) = 4.59”

1+ dsp< s<3+ dsp” ...8<3+0.625 =3.625"

Uses =3.5"

29.2 Columns with Large
Eccentric loads

When the eccentricity of a load is larger than e = .1h in
rectangular columns and e = .05h in round columns, P must
be reduced.

For axial loads with small eccentricity, all the steel is in
compression.
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29.2

Column with eccentric load
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1.2
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RNV

0.6
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0.2 |

00k oty
0.00  0.05

29.3

But as axial loads in columns with large eccentricity increase,
the steel on the side away from the load decreases in
compression and eventually goes into tension. Because of
the large eccentricity, strain values change and corresponding
strength reduction factors, ¢ change. For ease of analysis, the
ACI Design Handbook SP17(11) Volume 1 provides a series of
interaction diagrams for the analysis and design of columns
with large eccentricities. Sample interaction diagrams are
supplied in Appendix A4.4.

Each diagram is created based on a column type and
longitudinal bar configuration as shown in the top-right
corner and the material values f/ and f . Each diagram is
also based on a value of y equal to the ratio of the center-to-
center distance between bars to the column width, h, in the
direction of bending.

0.06

7, =0.08

INTERACTION DIAGRAM R4-60.7 |

f,=4ksi
£, =60 ksi
y=0.7

=

x|

soe
——te—o
ese

=
=
(=1

I

0.10

0.156 0.20

R,=P,e/f/ Ah

0.25 0.30 0.35 0.40

Typical interaction diagram. Reproduced with permission from the American Concrete Institute



The horizontal axis of the interaction diagram measures the
value of R =P e/f’ A h where P e = M . The vertical axis
measures the value of K =P /A . p and is indicated by the
curved lines and the strain, € is indicated by the diagonal lines
that radiate through the p, curves.

29.2.1 Analysis of columns with large
eccentricity

The method to analyze a column with large eccentricity is as

follows:

1. Choose the correct interaction diagram based on ', f , v,
column shape and bar configuration from section A4.4.
Calculate p, = A, /A,

Locate p, oN diagram chosen in step 1.

4. Calculate slope of the h/e. Draw line originating at bottom
left (0,0) and following the slope = h/e.

5. Find the intersection of the p, curve and the h/e line
from steps 3 and 4. Draw a horizontal line through the
intersection to locate K, and a vertical line through the
intersection to locate R .

6. Determine ¢ by checking strain.

a) If the point of intersection is above 1.0 line for fs/fy,
then the column steel is in compression and ¢ = 0.65
for tied columns and 0.75 for spiral columns.

b) If the point of intersection falls below the € = 0.0050
line, then the column is in tension and ¢ = 0.9.

c) If the point of intersection falls between the
lines from cases a and b, then the column is in
transition. ¢ = 0.65 + (g, — .002)(250/3) for tied
columns and ¢ = 0.75 + (g, - .002)(250/3) for spiral

columns.
7. 6P = q)an'CAg and oM = q)Rnf’CAgh =0P.e

Example 29-5: Find the practical nominal moment for
the column shown in Figure 29.4. Eight #9 bars, f'_= 4ksi
and f_=60ksi, e =6".

1. c.c.bars=14", h=20"...y=14/20=0.7 ... use
Diagram A4.4.3

2. p,=A /A, =8/16(20) = 0.025
Locate p, = 0.025 on Diagram A4.4.1. Drawn as heavy
curve on Figure 29.5.

4. slope = h/e = 20/6 = 3.33. Drawn from origin as heavy
line on Figure 29.5.

CONCRETE COLUMNS

T T
20°]
} ’
29.4
Example 29-5
2.0 T T
INTERACTION DIAGRAM R4-60.7 g R
So=dks ——
1.8 _/;=6[|k&i @

S0 NN :
;“ .01 j
W - 1
v 08 050
06 — a4 = = — .
il N X
04| B
€ o T — 1.0
005,
02 R
0.0 1 Il 1 1
0.00 0.05 010 015 020 025 030 035
R=P e/f/ Ah
29.5

Finding K and R Interaction diagram reproduced with permission from

the American Concrete Institute

0.40
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5. Find the intersection of the p_ curve and the h/e line
from steps 3 and 4. Draw a horizontal line through the
intersection to locate K = .56, and a vertical line through
the intersection to locate R, = .17.

6. Determine ¢ by checking strain. The point of intersection
is above 1.0 line for fs/fy, therefore the column steel is in
compression and ¢ = 0.65.

7. 6P =¢K f*A = .65(.56)(4)(20)(16) = 466k

nc g

oM, = ¢R f'A h = .65(17)(4)(320)(20)/12in/f = 236k-f
Or ¢M_ = 6P e = 466(6)/12 = 233k-f

The difference between the two values of oM is due to

the accuracy of estimating R_and K_from the interaction
diagram. A more accurate reading of the chart gives R = .167
and K = .555 yielding...

Kn =555 ... 9P, = 0K /A = .65(.558)(4)(20)(16)
= 464

Rn =167 ... 6M_= R f/A h

nc g

= .65(.167)(4)(320)(20)/12in/f = 232k-f

Or 9M, = 0P, e = 464(6)/12 = 233k-f

Example 29-6: Find the practical nominal moment for
the column shown in Figure 29.4. if eight #6 bars,
f' = 4ksi and fy = 60ksi, e =10".

Assume there is a large applied moment or eccentricity such
that slope = h/e = 1.0

1. c.c.bars =14”, h=20"...y=14/20=0.7 ... use Diagram
A4.4.3

2. p,=A, /A, =3.52/16(20) = 0.011
Locate p, = 0.011 on Diagram A4.4.3. Drawn as heavy
curve on Figure 27.6.

4. slope = h/e =20/10 = 2. Drawn from origin as heavy line
on Figure 27.6.

5. Find the intersection of the p, curve and the h/e line
from steps 3 and 4. Draw a horizontal line through the
intersection to locate K = .26, and a vertical line through
the intersection to locate R, = .13

6. Determine ¢ by checking strain. The strain, € = .0035,
therefore ¢ = 0.65 + (.0035 — .002)(250/3) = 0.775

7. oP =0K ' A = .775(.26)(4)(20)(16) = 257.92k
oM, = 0R " A h =.775(.13)(4)(320)(20)/12in/f = 214.93k-f
Or oM, = ¢P e = 2567.92(10)/12 = 214.63k-

2.0
I " [inrErACTION DIAGRAM R4607] . ©
fo=dksi r-—-ﬁ' { |
1.8 = = 60 ksi 4

y=0.7

G V

12 \
<" 0.02
L° 10 \ i ]
o
n - -
v 08 050
06 | g -
o | L i 075
04 | .
&, o A} L0
- — - s 220,
7
02 75
0.0 t L 1 AN,
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
R,=P,e/f’,Ah
29.6

Example 29-6. Interaction Diagram reproduced with permission from the

American Concrete Institute.

Example 29-7: Find the practical nominal moment for
a 24" diameter column with 1.5” cover, #3 spiral, 14 #9
evenly spaced bars, e = 8", f = 4ksi, f = 60ksi, e =8".

1. Center-to-center distance longitudinal bars
=24 - 2(1.5) - 2(.375) - 1.128 = 19.122

v=19.122/24 = 797 ... use Fig. A4.4.6
2. A, =m(24)/4 = 452.39
p, = A, /A, = 14/452.39 = 0.03

3. Locate p, on diagram chosen in step 1.

4. Slope = h/e = 24/8 = 3. Draw line originating at bottom
left (0,0) and following the slope = 3.

5. K,=.49,R =.195
The point of intersection is just above 1.0 line for f /f,
therefore the column steel is in compression and ¢
= 0.75 for spiral columns.

7. 0P =0oK f"A = .75(.561)(4)(144n) = 692k

nc g

OM_ = oR " A h = .75(17)(4)(1447)(24)/12in/f = 461k-f

nc g

Or oM, = 0P_e = 692(8)/12 = 461k



20
I T TINTERACTION DIAGRAM C4-60.8
o= dksi
18F st £= 60 ki
T r=08

P, IT,A,

Ku o

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

R=P,elf’ Ah

29.7
Example 29-7. Interaction diagram reproduced with permission from the

American Concrete Institute

29.2.2 Design of Columns with Large
Eccentricity

The method to design a column with large eccentricity is as
follows:
1. Determine the factored load, P,
2. Estimate the column size based on Py = 0.01 and ignoring
the eccentricity:

A, = P /[.85(.75)(.85f'(.99) + .01f )] for spiral columns
A, = P /1.8(.65)(.85f(.99) + .01f )] for tied columns

3. Choose a trial size and calculate A,
4. Assume a bar size and tie or spiral size.
5. Choose the correct interaction diagram based on f7, f , v,
column shape and bar configuration from section A.4.4.
6. Required K = P /[6f' A ] and required R, = Mu/[f A hl.
Locate the point of intersection on the diagram.
7. Determine p_ and ¢ at the point of intersection.
8. A, =pA,
9. Select bars.
10A. For tied columns, design ties.
10B. For spiral columns, design spirals.

CONCRETE COLUMNS

Example 29-8: Design a circular column with spiral
reinforcement, P, = 1100kips, e = 4", f' = 4ksi and f = 60ksi.

1. P, = 1100k, M, = P e = 1100k(4”) = 4400k-in

2. Ag = P/1.85(.75)(.85f"(.99) + .O1fy)]
= 1100/[.85(.75)(.85(4)(.99) + .01(60))] = 435.07in?

3. h =(435.07(4)/n) = 23.54” use h = 24”, Ag = n(24?)/4
= 452.39in?

4. Assume #9 size and a 3/8” spiral size.

5. c.c. long. Bars =24 - 3 - 2(.375) - 1.128 = 19.122”

vy =19.122/24 = 79675, use Table A4.4.6

20
I T TINTERACTION DIAGRAM C4-60.8
o= ki
g, =008 i3
18 F =60 ksi
. 04T ¢ 0.8
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F /
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]
s ]
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- 0.25
11:.. ~
u-.‘ 250

Ku o

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

R=P,elf’ Ah

29.8
Example 29-8. Interaction diagram reproduced with permission from the

American Concrete Institute

6. Required K, = P /[0 A ] = 1100/.75(4)(452.39) = .811
Required R = M /[0f’A hl = 4400/[.75(4)(452.39)(24)]
=0.135

Locate the point of intersection on the diagram.

7. pg =.032 and ¢ = 0.75 (above f/f = 1.0 line)

8. A, = pgAg =.032(452.59) = 14.48in?

9. From Table A4.2, 15 #9 would work, and from Table A4.3,
the maximum number of #9s that can be placed in a
single row within a core diameter of (24 — 3) 21" is 15;
therefore okay
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10B. For spiral columns, design spirals.
d,=24-3=21"&A, =n(213)/4 = 346.36in?

p, required = .45(A /A - 1)(f/f)
= .45(452/346.36 - 1)(4/60) = .0091

s=4A_/d p, = 4(11)/21(.0091) = 2.3”

sp’ “ch
USE: spiral spacing @ 2.25”
Clear spacing =2.25 - .375=1.875> 1”and < 3”
... okay
ANSWER: 24” diameter column with 14 #9 and 3/8” spiral at
2.25"0.c.

Example 29-9: Design a square column with ties
P, =1100kips, e = 4, f' = 4ksi and f = 60ksi.

1. P, = 1100k, M, = P e = 1100k(4”) = 4400k-in
2. Estimate the column size based on p, =0.01 and ignoring
the eccentricity:

A, = P/1.8(.65)(.85f" (.99) + .01 )] = 1100/[.8(.65)
(.85(4)(.99) + .01(60))] = 5633.38in?

3. h =+533.38 = 23.1 use 24” A, = 24? = 576in’.
4. Assume #9 size and #4 tie.
5. c.c long. Bars = 24 — 3 — 2(.375) — 1.128 = 19.122”

vy =19.122/24 = 79675, use Diagram A4.4.2

INTERACTION DIAGRAM R4-60.8
=4k

! L]
oy
T = 6l ks
| ?:u,s : * :
- - * 4 @
| . | i
5o | | &
s

12
<
= 10 4
as
i B
Loo8k
[ .75 ]
04 19 ]
s?:f )
0.2 | freea 3

- L i
000 005 010 015 020 025 030 035 040 045
R,=P, e/t Ah
29.9
Example 29-9. Interaction diagram reproduced with permission from the

American Concrete Institute

6. Required K = P /[pf/A ] = 1100/.65(4)(576) = .735
Required R = M /¢f 'A h = 4400/(.65(4)(576)(24)] = 0.122
Locate the point of intersection on the diagram.

7. g=.018and ¢ = 0.65

8. A, =pA, =.018(576) = 10.37in?

9. Because the column is square, the number of bars
must be a multiple of 4. Therefore, use 12 #9, A_ = 12.0.
Checking with Table A4.3 shows 16 #9 are allowed in a
24” square column.

10A. For tied columns, design ties.
Design ties:
d,=24-3=21"and A =441

s = smallest of 16(1.128) = 18.05” or 48(.5) = 24” or
16” Use #4 ties @16”

Check clear spacing of longitudinal bars:

(h — 2(cover) - 2d,, — (#bars/4 + 1)d,)/(#bars/4)
=(24 - 3 - 2(.5) - 4(1.128))/3 = 5.16” < 6”, therefore
no additional ties are required.

Practice Exercises:

29-1: Find allowable axial load on a 12x 12" tied column with
a maximum unbraced length of 14, f* = 4ksi, fv = 60ksi with
eight #8 longitudinal bars.

29-2: Check the adequacy of a short 22”x22” tied column
with a 1.6” cover, f/_ = 4ksi, fy = 60ksi, 16 #9 and P = 1200k.
The column ties are #4 bars at 22”0.c.

29-3: Design a short square column to carry a dead load of
500k and a live load of 800k.

29-4: Design a short round column with spiral reinforcement
to carry a dead load of 500k and a live load of 800k.

29-5: Find the practical nominal moment for the column
shown below. Eight #8 bars, ' = 4ksi and f = 60ksi, e = 3”.

29-6: Find the practical nominal moment for the column
shown in Figure 29.10. Eleven #8 bars, = 4ksi and
fy = 60ksi, e =6".
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29-8: Design a square column with ties P, = 1500kips

29-7: Design a round column with spiral reinforcement.
e =107/ = 4ksiand f = 60ksi.

P, =800kips, e = 6”, f_ = 4ksiand f = 60ksi.
20"

2.5" typ.7

____AT

o o b
Q& | © 8-#8 ©
o o0 © =2
20" o
29-5 29-6

Chapter 29 Practice exercises
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Development Length

Reinforced concrete design is based on the assumption that
there is an adequate bond between the concrete and the
reinforcement bars to prevent slippage and ensure the two
elements act together as one system. Development length
is the length of reinforcement bar required to ensure that the
bond between the concrete and steel is perfect and without

slippage.
Factors affecting development length include:
¥, = reinforcement location factor as dictated by ACI 12.2.4:

¥ = 1.3 if there is more than 12” of concrete below
the bar

¥, = 1.0 all other cases
P, = coating factor
¥, = 1.0 uncoated & galvanized

¥, = 1.5 epoxy coated with cover < 3db or clear
spacing 6db between bars

¥, = 1.2 all other conditions
Ys = size factor

¥, = .8 for #6 and smaller

W, = 1.0 for #7 and larger

¢, = spacing factor is the smaller of:

¢, = the distance from the center of the bar to the
nearest edge

or
¢, = (center to center distance of bar spacing)/2
K, = transverse reinforcement index = 40A /sn where

A, = the total cross-sectional area of the transverse
reinforcement

s = the spacing of the transverse bars in the area
where the development length is being calculated.

n = the number of transverse bars in the area where

the development length is being calculated.

The ACI code allows K= 0. This is conservative and
simplifies the equations and therefore, K. = 0 will be used in
this text.

d, = diameter of the bar

A = modification factor based on concrete weight:
A = 1.0 for normal weight concrete

A = 0.85 for san lightweight concrete

A = 0.75 for all other lightweight concrete

: This reduction factor is not included in

s used”

Ker = A, required/A
the ACI equation for development length, but may be used
as a factor with the development length found from ACI
Equation 12-1.



30.1 Development Length
in Tension Bars

L, = KKolppp/lc, + K )/d,1(d,) where
K, = (3/40)(f /xfc) and

(c, + K)/d, <25

The method for calculating L, in tension bars is as follows:
1. Calculate K, = (3/40)(f /A")

2. Determine ¥, ¥, ¥, c,
3. Assume K =0, find Calculate c,/d,
4' CalCU|ate KER = As reqmred/As used
5. L= KeKplppopy/ic,/dylid,)
N A

T #3 Stirrup

1-1.5" cover Typ.
|

3-#7
11.5"

30.1

Example 30-1

Example 30-1: Find L, for the uncoated #7s in Figure 30.1,
for f', = 4ksi, f = 60ksi and required A_ = 1.77in?

1. Calculate K, = (3/40)(f /") = (3/40)(60000/(1(N4000))
=71.15
2. Determine ¥, ¥, ¥, c,
Y = 1.0 (less than 12” below reinforcing steel)
¥, = 1.0 (uncoated & galvanized)
¥, = 1.0 (#7 and larger)
C,:
center to edge = .875/2 + .375 + 1.5 = 2.31

% center to center = .5(11.5 — 2(1.6 + .375 + .875/2))/2

=172

c,=172

DEVELOPMENT LENGTH

3. Assume K =0, calculate ¢, /d, = 1.72/0.875 = 1.96 and
2.5 ... use 1.96
If c,/d, was found to be greater than 2.5, then 2.5 would
be used.

4. Calculate K., = A /A =1.77/1.8 = 0.983

s required’ " s used

5. L, =KKolpp,p /ic,/d,(d,) = 0.983(71.15)(1/1.96](.875)
=31.23"

30.2 Development Length
in Tension Bars with Hooks

If development length cannot be reached, use a mechanical
fastener such as a hook. Cover for hooks varies with the
degree of bending and the size of the hook. Some standard
ACI hooks are shown in Figure 30.2. D = 6d, for #3 to #8
bars and D = 8d, for #9 to #11 bar for hooks in primary
reinforcement. For ties and stirrups with hooks, D > 4d, for
#3 to #5 bars and 6d, for #6 to #8 bars.

Use the ACI Code, Section 12.5 formula for bars in tension
with a standard hook:

L, = .02p.f d /W where

ey b

¥, = 1.2 for epoxy coating, 1.0 otherwise
A = 0.75 for lightweight concrete, 1.0 otherwise

Ld = th(C )(Cenc\)
C = Cover factor = 0.7

cover

cover

If using # 11 and smaller bars with a side cover > 2.5”
For 90° hooks: extension cover > 2.0”

C__ .= Enclosure factor = 0.8

encl

90° hooks with # 11 and smaller bars within
perpendicular ties or stirrups spaced <3, along L, or
within parallel ties or stirrups spaced < 3, along bend

and tail extension.

180° hooks with # 11 and smaller bars within
perpendicular ties or stirrups spaced < 3db along Ldh.

Example 30-2: Find L, for a 90° hook of uncoated #7 in
Figure 30.1, for f' = 4ksi, fy = 60ksi, side cover = end cover
=1.5" and required A_ = 1.77in%
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Primary Reinforcement

! 4db 2 2-1/2"

Ldn Ldn

de de

90 Hook 180 Hook
Ties and Stirrups

—db db —.

=
oJ
AN

A

6db

30.2

Standard hook shapes

Pe=1 30.3 Tension Splices
Ly, = .02p,f d. /AT = .02(1)(60,000)(.875)/V4000
=16.6" Class A: lap length = 1.0L, if the area of reinforcement is

C _1c twice that for the length of splice and not more than 50%

cover " ~encl T

0.8 (#7 bars)
of total reinforcement is spliced within the required lap

Ld = th(ccover)(cencl) =16.6(1)(0.8) = 13.28" Iength



Class B: lap length = 1.3Ld (everything not class A)
Minimum Lap Length = 12”

Splices in tension tie members must be full welds or full
mechanical splice, staggered at least 30”, AClI recommends
all members have staggered splices.

30.4 Development Length
in Compression Bars

8” > L, = K,(.02d,f /AF7) > .0003f d,

L, may be reduced by a factor of .75 if enclosed by a spiral
not less than %” in diameter, not more than 4” pitch or if
enclosed by #4 ties spaced not more than 4”

30.5 Bar Cut-offs

Beam reinforcement is based on on the design moment, M.
The maximum moment in a beam usually occurs around the
midspan. Near the supports, the moment is reduced and
fewer reinforcing bars may be used. The stopping point for
reinforcing bars can be determined by examining the moment
diagram. Development length and tension splice lengths need
to be considered in this process. Further, ACI code has bar
cut-off requirements as detailed in Figure 30.3.

Example 30-3: A simple beam 16" by 30" with a span of
30’ carries a dead load of 1k/f and a live load of 1k/f.

The reinforcement is six #7 evenly spaced inside a #3 stirrup.
' = 4ksi, fv = 60ksi. Find at what point bars can be cut off.

1. w, =1.6(1) + 1.2[1 + .15(16/12)(30/12)] = 3.4k/f

2. M, =3.4(30)?/8 = 382.5k-f = 4590k-in

3. Forsix #7, A =3.60in?

4. A, .., =.0033(16)(27.69) = 1.46in

5. Find the moment, ¢M_for four #7:A_= 2.40in? > A
= 1.46in? ... okay

s min

)

S min

d=30-15-.375-.875/2 = 27.69”
a=1A/(0.85f"b) = 60(2.4)/(.85(4)(16) = 2.65”

M, = fA(d - a/2) = 60(2.4)(27.69 - 2.65/2)
= 3796.56k-in = 316.38kf

DEVELOPMENT LENGTH

|

sirength

of bars a|

inomcnt |
1 | strength | |
| of bars b, |
x ! :
Mid-span —/l

of l_ncmbcr |

Moment curve

i
> (d,12dy or £,/16) |
|
i
i

\ b
X
> (d or 12dp)
m—}f > Bar b |
@ B_ . PI -{—Embedmcnl of bars a > ¢
e me e BAB @ N = .
—— - - |
) \ [ Z; ot 12dy) |
ZS P e

ection 12.2.1,

or12.11.2, or £4 \—Diametcr of

for compression bars a limited
when bottom by Section 12.11.3
bars used as af point of
compression inflection

reinfnrcement

30.3
Bar cut-off and splice requirements. Reproduced with permission from

the American Concrete Institute

oM 9(316.38) = 284.74k-f = wx?/2

x = [284.74(2)/3.4] = 12.94" where x is the distance
from the support.

6. Check the development length to see if two bars can be
cutatx =12.9”

K, = (3/40)(f /Af) = (3/40)(60000/(1(¥4000)) = 71.15
d, = .875”
¥,=10¥=10¥ =10

c, = lesser of:
center to edge = .875/2 + .375 + 1.5 =2.31
Or % center to center = .5(16 — 2(1.5 + .375 +
.875/2))/5 = 1.137%”
c/d, =1.14/875=1.302.5 ... okay

L, =71.2(.876)/1.30 = 47.92”

This means the two bars cannot be cut until at least 4ft
from centerline; orto x = 15 - 4 = 11"
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7. The cut-off must also be closer to the support than
the theoretical cut-off point by the larger of d or 12d,:
d=27.69” =2.3"and 12d, = 12(.875)/12 = .875".
2.3"governs ... x =12.9-2.3=10.6".

8. Terminate two bars at the lesser of answers from step 6
and step 7:
Terminate two bars at 10.6".

9. Find the moment, ¢M_ for two #7: A_ = 1.20in? < A
= 1.46in? ... cannot cut down to two bars.

s min

30.6 Development Length
for Positive Moment at
Simple Supports

An additional rule for development length in simply supported
members must be considered.

L,<L, + M /V, atthe point of inflection and
L, <L, + 1.3M /V, at the support

Where L, = the greater of effective depth d or 12d,
and V, = total applied shear at the section.

Example 30-4: Consider the beam in Example 30-3. Check
the development requirements for positive moment at

the supports if bars extend 4" past centerline of support.

1.V, =W, L/2 = 3.4k/f(30)/2 = b1k

2. M, =316.38k-f (remember 2 bars were cut off before
reaching the support)

3. L,=d=2769"or12d, = 12(.875) = 10.5” use greater
length: L, = 27.69”

4. L,<L, +1.3M/V, =27.69 + 1.3(316.38(12in/f)/51)
=126.4"

5. From example 30-3, L, for the four #7 was determined to
be L, =47.92" <126.4” ... okay

Practice Exercises:

30-1 through 30-3: Find the development length for the
reinforcement bars shown in Figure 30.4.

30-4: A simple beam 15” by 28” with a span of 24’ three point
loads, P, = 50k at x = 6’, 12" and 18’. The reinforcement is

six #8 evenly spaced inside a #3 stirrup. ', = 4ksi, fy = 60ksi.
Find at what point bars can be cut off.

N A
[ #3 Stirrup
) 1-1.5" cover on sides
Q
Al
—o—d 4-#8
J——2" cover bottom
14"
30-1
N A
[ #4 Stirrup
1-1.5" cover Typ.
N
g 2-#11
11"
30-2
N A
[ #3 Stirrup
5 12" cover Typ.
7o) o d
™~ , 6 -#10
(e}
15"
30-3
30.4

Chapter 30 Practice exercises
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Concrete Walls

This chapter explains the design methods for retaining walls,
bearing walls and shear walls. While all three types may have
significant vertical or gravity loads, shear walls are designed
to handle lateral loads parallel to the face of the wall and
retaining walls are designed to handle lateral loads normal to
the face of the wall.

31.1 Bearing Walls

Load applied with center
of gravity in middle third
of wall length.

—=b
31.1

Bearing Walls

Bearing walls carry applied vertical loads. When the vertical
loads are applied in the middle third of the wall cross-section,
the axial load strength, ¢P , is expressed as:

0P, =0.55¢f" A [1 — (kh/32b)’] where:

¢ = 0.65

b = wall thickness (in)
b,.. = 1/25 unsupported height or length > 4”
b,.., = 7.5” for exterior basement or foundation walls
h = Vertical distance between supports
Ag = gross area in section (in?)
k = Effective Length Factor
= 0.8 if restrained against rotation at one or both ends
= 1.0 if unrestrained against rotation at both ends
= 2.0 for wall not braced against translation
L, = The effective length of the wall is the smaller of:
= the center-to-center distance between loads or

= width of bearing plus four times wall width.

= 12" for uniform loads

A i = Minimum horizontal reinf.
=.0025(12b) = .03b in?/f — for #6 and larger
=.002(12b) = .024b in?/f — for # 5 or smaller bars &
f, = 60ksi

A = minimum vertical reinf.

svmin

=.0015(12b) = .018b in?/f — for #6 and larger

.0012(12b) = .0144b in?/f — for #5 or smaller bars &
f, 2 B60ksi
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If b > 10”, bearing walls other than basement walls must have
reinforcement in each direction on each face.

The bearing design strength = ¢(.85f" A)) where A is the
bearing area.

Max. spacing of bars, s = 3b < 18”

Method for design of bearing walls:

1. Find minimum wall thickness, b_. . b =b_, rounded up to
next whole inch.

2. Check that bearing strength of concrete = ¢(.85f")A <P .
If not, increase b.

3. Find effective length of wall, L.

4. Check that axial load strength,
0P, =0.55¢f" A [1 - (kh/32b)’] 2 P .

svmin and Ashmm

Check that maximum spacing of bars, s = 3b < 18”.

Select steel based on: A

Check if more than one layer of reinforcement is
necessary.

Example 31-1: Design a reinforced concrete bearing wall
to support 12” wide beams spaced at 10'o.c.

The beams bear on the full thickness of the wall. The
bottom of the wall is a fixed connection, the top is a pinned
connection (braced against lateral movement but not against
rotation). The wall is 20" high and the load from each beam,
P, =30k. f{ = 4ksi, f = 60ksi.

1. b =h/25=(1/25)(20)(12) =9.6” ... b = 10”
Bearing strength of concrete = ¢(.85f")A, = 0.65(.85)(4)(8)
(12) = 212.16k
212.6k > 30k = P ... okay
3. Effective length of wall is lesser of:

N

distance between loads = 10" = 120” or
width of bearing + 4b = 12 + 4(10) = 52” Use 52”
L, =52
4. 6P =0.550f"A [1 - (kh/32b)’] = .55(.65)(4)(10)(52)[1 -
(.8(20)(12)/32(10))?] = 475.9k > 30k ... okay
5. Reinforcing steel: (assume #5 or smaller)
Vertical steel: A, = .0144)(10) = .144 use #4 @16”
Horizontal Steel: A, = .024(10) = .24 use #4 @ 10”
6. Check max. spacing of bars, s =3(10) <18 ... s = 18”
... okay
7. One layer of reinforcement may be used because the wall
thickness, h < 10”.

Example 31-2: Design a 24’ long reinforced concrete
bearing wall to support a slab bearing on the full
thickness of the wall.

The bottom and top of the wall are fixed connections.
The wall is 16” high and the load from the slab, W = 6k/f,
7 = 4ksi, fy = 60ksi.

1. b, =(1/25)(16)(12) = 7.68” ... b = 8"
2. (.85f")AT = 0.65(.85)(4)(8)(12”) = 212.16k > 6k/f(1") = 6k
=P, ... okay
3. L =127
Check that axial load strength, ¢P = 0.55 ¢f’A [1 -
(kh/32b)?] = .55(.65)(4)(8)(12)[1 — (.8(16)(12)/32(8))?]
= 87.86k > 6k/f(1") = 6k ... okay
5. Select steel based on:
Vertical steel: A = .0144(8) = .12 use #4 @18”
Horizontal Steel: A, = .024(8) = .20 use #4 @ 12”
6. Check that maximum spacing of bars, s = 3b = 3(8”)
=24"0ors<18”...s=18"
7. One layer of reinforcement may be used because the wall
thickness, b < 10”.

31.2 Shear Walls

Shear walls are capable of resisting lateral loads as well as
supporting vertical loads. As such, they require additional
reinforcement and a different design method.

h = overall height of wall

L = overall length of wall

b = thickness of wall

A = bL = area of wall cross-section

G = shear Modulus of Elasticity = E/2.4 for concrete
I =bl3/12

k, = 3EI/h® + GA/1.2h = (Eh/12)(L/h)® + (Eh/2.88)(L/h)

F. = F..(k/Zk) where the stiffness, k, is determined
by the size and material of each wall. If the lateral
resistance system uses shear walls with equal values

fork, F, = F__/number of walls.

total

d=0.8(L)

0V, = maximum allowable shear strength = 10(Nf’)
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Transverse 31.2
Longitudinal Shear reinforcing—\ / Shear reinforcing Shear walls
I T (\) O I' 1
Additional vertical < h
reinforcement in —~
the end zone . .
' < '
| Lw |
7 g
bd >V, Example 31-3: Design reinforcement for the shear wall

oV = Zq)(\/f’c)bd If V> 0V, shear reinforcement is shown in Figure 31.3. Use f'_ = 4ksi, fy = 60ksi.

required. 16k
Method for design of shear walls: ~
1. Determine factored lateral loads. T
2. Determine the portion of the lateral load carried by each 7k
shear wall, F. = F _(k/k ). N
3. Assume the wall thickness, b = 8”. Assume placement of 45k
reinforcement on both faces. -
4. Check the maximum allowable shear strength of wall T
where d = 0.8(L). ¢V, = 106(Vf’)bd > V, (shear at base of 27k_
wall = sum of lateral loads) -
5.0V, = 2¢(\/f’c)bd If V, > ¢V, shear reinforcement is 16k
required. :
6. Select trial size and determine A (for example, #4 on both =
faces = .2in?x2 = 4in? = A)
7. Determine spacing horizontal shear reinforcement, 20"
s, = 0f dA/IV, — oV ] o1

8. Maximum spacing is smallest of: L/5, 3b or 18”
. Determine p, =.0025 + .5(2.5 — h/L)(A /s,b - .0025) >

10.

1.
12.

13.
14.

15.

16.

Shear wall example

0.0025 1. Determine factored lateral loads. F = 46k + 71k + 45k +
Determine spacing of vertical shear reinforcement, 27k + 16k = 205k
s,=Ap/b 2. Determine the portion of the lateral load carried by each
Maximum spacing is smallest of: L/3, 3b or 18” shear wall, F, = F__(k/k ) = 205k

L total' i’ “tota
Calculate M = moment at base of wall due to factored 3. Assume the wall thickness, b = 8”. Assume placement of
lateral loads. reinforcement on both faces.
Assume ¢ = 0.9 for flexure 4.d=0.8(L) = .8(20)(12") = 1927,

A, = 1.85f/bd/f 111 = V[1 - 2 M, /9.85f ‘b

Check that A, > A = 3bdVE . = 200bdl . If ot use 0V, = 100(Vf/)bd = 10(.75)( V4000)(8)(192)/1000#/k

=728.6k

Select bars from A4.2. These bars are to be placed at ¢V, = 728.6k >V =205k ... okay
each end of the wall.

265



266 CONCRETE DESIGN

5.

10.

1.

OV, = 20(Nf")bd = 2(.75)(¥4000)(8)(192)/1000 = 145.7k
V, =205k > 145.7k = ¢V, ... shear reinforcement is
required.

. Use #4 on both faces = .2in?x2 = .4in? = A,
. Determine spacing horizontal shear reinforcement, s, =

of dA/IV, — 0V ] = .75(60)(192)(.4)/(205 - 145.7) = 68.28"

S, = 20°(12/f)/5 = 48” or = 3b = 3(8) = 24” or 18" ...

s, = 18”7, use #4@18”

. Determine p, =.0025 + .5(2.5 — h/L)(A /s,b —.0025)

=.0025 + .5(2.5 — 657/207)(.4/(18(8)) — .0025) = .0024
<0.0025 ... p_ =.0025

Determine spacing of vertical Shear reinforcement,

s, =A/p.b =.4/.0025(8) = 20”

S = 20°(127/f)/6 = 48” or = 3b = 3(8) = 24”7 or 18” ...

m

s, = 18", use #4@18

16. Check that A, > A_ = 3bdVf/f, = 3(8)(192)
(N4000/60000) = 4.86 > 200bd/f, = 200(8)(192)/60000
=512 ... therefore A, . =5.12 <1213 ... okay

16. From Table A4.1 choose 8 #11 with A_ = 12.56 > 12.13in2.
Place 4 #11 VEF (vertical each face) at each end.

31.3 Retaining Walls

Retaining walls are used to resist the lateral forces of
hydrostatic soil pressure. A retaining wall may also carry a
vertical load as in the case of basement walls, but in this
section only the design for the lateral forces is considered.
Retaining walls can fail by sliding, sinking, overturning or
buckling.

Basic types of retaining walls are shown in Figure 31.5.

12. M, = 46(65) + 71(53) + 45(41) + 27(30) + 16(19) = 9712k A gravity wall is one in which the bulk of the material is
= 116544k-in the deterrent to lateral forces. Its weight creates enough
13. Assume ¢ = 0.9 for flexure friction to prevent sliding and enough moment about the toe
14. A, = ['85fc,bd/fy][1 - - 2M /6.85f 'bd?] = [.85(4) to prevent overturning. Its base is often wide to be able to
(8)(192)/601[1 = VI1 — 2(116544)/[.9(.85)(4)(8)(192)?] distribute the loads to the ground without sinking.
=12.08in?
#4 @ 18" o.c.
#4 @ 18" o.c. Longitudinal Transverse
Shear Reinforcemen(—\ TShear Reinforcement
I \\ \\ 1
—5 o
4-#11 "
additional <> 8
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A cantilever wall is a retaining wall in which a moment
connection between the stem and the footing allow the stem
to be thinner than in a gravity wall. The heel utilizes the load
of the soil sitting on it to counteract overturning.

Forces on a retaining wall with level backfill:

TR

e
: NEIE
HINE =
] |=p
KaWeh KoWeh
31.6

Forces on a retaining wall with level backfill
H, = K,w_h?/2 = the horizontal equivalent force of the
soil
W, = density of soil
h = height of wall
K, = coefficient of active earth pressure
¢ = internal friction angle of soll
K, = (1 = sing)/(1 + sing)
K,W, = equivalent fluid pressure in pcf

H, = K w h,?/2 = horizontal resisting force of the soil in

front of the retaining wall.
W, = density of soil
h, = height of earth on resisting side

Kp = 1/K, = coefficient of passive earth pressure

31.3.1 Checking a Wall for the Four
Modes of Failure

The first three modes of failure are Overturning, Sliding and
Sinking. The fourth mode of failure is failure of the concrete
itself. This is covered in section 31.3.2.

CONCRETE WALLS

31.3.1.1 Overturning

The factored overturning moment = M_ = 1.6H_(h/3)

= 1.6K W, h?¥/6

The factored resisting moment = M,

= 1.6Hp(h1/3) +1.2W,, (d) + 1.2W_.(d,) where:

d, = distance from toe to center of gravity of the wall
d, = distance from toe to center of gravity of soil
resting on heel

Factor of safety:

M/M, =15
Example 31-4: Check the adequacy of the retaining wall
in Figure 31.7 against overturning.

Soil density = 80pcf, concrete density = 150pcf, ¢ = 23 and
equivalent fluid pressure, KW, = 35pcf.

I

12'

1|

X<—j
4| 1 ' 2|

31.7
Example 31-4

M, = 1.6H_(h/3) = 1.6K.W_h%/6 = 1.6(35)(12)%/6
= 16128#-f

K, = 80pcf/35pcf = 2.286

M., = 1.6(2.286)(80pcf)(4)%/6 = 3121.15#-f

M, = 1.2(150)(1)(11)(2.5") = 6187.5#-f

M, = 1.2(150)(7)(1)(3.5) = 4410#-f

M, = 1.2(80)(4)(11)(5") = 21120#-f
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Mg = 1.2(80)(2)(3)(1) = 576#-f

r

M. =3121.15 + 6187.5 + 4410 + 21120 + 576
= 35415#-f

Factor of safety:

M/M_ =35415/16128 = 2.20 > 1.5 ... retaining wall

will not overturn.

31.3.1.2 Sliding

Sliding occurs when the horizontal forces against the wall
are not counteracted by sufficient resisting forces. Resisting
forces are created by the friction between the soil and the
concrete.

Typical coefficient of friction f = 0.5 between soil and
concrete

Resisting force F = fXW
Sliding force S = H, - Hp
Factor of safety: F/S>1.5
Example 31-5: Check the retaining wall in Figure 31.7

against sliding. Soil density = 80pcf, concrete density
= 150pcf, equivalent fluid pressure = 35pcf.

K, = 80pcf/35pcf = 2.286

W, = 1.2(150pcf)(1')(11) = 19804#/f
W, = 1.2(160)pcf(7')(1’) = 1260#/f
W, = 1.2(80pct)(4')(117) = 4224#/t
W, = 1.2(80pcf)(2)(3") = 576#/f

W = (1980 + 1260 + 4224 + 576)(1’ thickness of wall)
= 8040#

F = 0.5(8040#) = 4020#
S=H,-H =16Kw.nh¥2 - 1.6Kwh?2
= 1.6(35)(12)%/2 — 1.6(2.286)(80)(4)?/2 = 2276.35#

Factor of safety = F/S = 4020/2276.35 =177 > 1.5
... okay

31.3.1.3 Sinking

Sinking occurs if the downward pressure caused by weight of
the soil and the wall distributed along the footing of the wall
are greater than the upward allowable soil bearing pressure.
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p, = The allowable soil bearing pressure in psf.
p, = P/A £ Mc/| = soil pressure where

P =3xW

A = area of the footing acting on soil = (L')(1” swath)
= Lft?

e = distance from the centerline of footing to the point
of the resultant vector

M = Pe = (EW)(e)

¢ = distance from centerline to edge = L/2
| =L1%12

p, = ZW/L + 6eZW/L2 = (EW/L)(1 + 6e/L)

There is a resultant vector that acts at the base of the footing
at a distance X from the toe. The horizontal component of
that vector is H, — H_and the vertical component is ZW.

X = (M. - M)/ZW = the distance from the toe to the
point where the resultant vector acts at the base of the
footing.

Example 31-6: Determine whether the retaining wall in
Figure 31.7 is adequate against sinking if the allowable
soil bearing pressure, p, = 2500psf.

From example 31-4, M_= 35415#-f and M_ = 16128#-f.
From example 31-5, W = 8040#

X = (M, - M )/EW = (35415 - 16128)/8040 = 2.40’
Centerline of the footing = 77/2 = 3.5’
e=35-24=171

Soil pressure = p_ = P/A = Mc/I

P, = (EW/L)(1 = 6e/L) = (8040/7)(1+ 6(1.1/7) = 2231.51
@ the toe and

p, = (8040/7)(1 — 6(1.1/7) = 65.63 @ the heel
p, = 65.63 + 309.41x

p, = 2231.51psf < p, = 25600psf ... retaining wall is
adequate against sinking.

CONCRETE WALLS

31.3.2 Retaining wall design

Reinforcement for each component of a cantilever retaining
wall—the heel, toe and stem—can be designed as a
cantilevered beam.

Example 31-7: Design the reinforcement for the retaining
wall in Figure 31.7 using ' = 3000psi and fv = 60,000psi.

/

N

1
4

Factored soil weight = 1056#/f

Factored concrete weight = 180#/f

Factored uniform soil bearing
pressure = 65.63#/f

Factored soil
bearing pressure
varies from 0 to
1237.64#/f

31.9

Shear and flexure in heel

Shear in heel:

Factored concrete weight: = 1.2(150pcf)(17)(17)
= 180#/fl

Factored soil weight: = 1.2(80pcf)(17)(11’) = 1056#/f
p, = 65.63 + 309.41x

Soil bearing pressure changes from 65.63psf @ x = 0’ to
1303.28psf @ x = 4, a difference of 309.41(4) = 1237.64psf.

W, = —1056 — 180 + 65.63 = ~1170.37#/f
W, = 309.41x
W, = -1170.37 + 309.41x
V, = -1170.37x + 154.71x2
Vmax is at Wx = 0. X = 1170.37/309.41 = 3.78’

V, = -1170.37(3.78) + 164.71(3.78)* = -2213.44k

269
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Assume #8 bars
d = 12” — 2” cover(steel at top of footing) — .5 = 9.5”

OV, = ¢(2Vf")bd = .75(2)(V3000)(12)(9.5) = 9366# > V,
... okay

¢V /2 = 9366/2 = 4683# > 2213.44# =V ... Stirrups

are not required.

Flexure in heel: Take the moment about x = 4.
W, = 4/(180+1056) = 4944#| and c.g. is at x = 2’
P, = (1")(65.63psf)(4’) = 2400#T and c.g. is at x = 2

P, = (1"(1237.64)(4")/2 = 2475.284#7 and c.g. is at
x =243 =267

M, = 4944#(2") — 2400#(2’) — 2475.28#(4’ - 2.67’)
= 1787.63#-f = 21451.52k-in

A, = [.85f’bd/f I[1 = \[1 - 2M /¢.85f 'bd?] = [.85(3000)
(12)(9.5)/(60,000)1[1 - \[1 ~ 2(21451.52)/(.9(.85)(3000)
(12)(9.5))] = 0.042in”

A, .., = greater of:
3bdVi/f, = 3(12)(9.5)V3000/60,000 = 0.312
Or 200bd/f, = 0.38

A <A = 0.38, therefore A_ = 0.38in?

Use # 6 steel: A = 0.442in?

Spacing > .442(12)/.38 = 13.96”

Main Steel: #6@ 14”

Shrinkage steel: .0018(12”)(12”) = 0.26
18” > Spacing > .442(12)/.26 = 20.4”
Shrinkage Steel: #6 @ 18”

Shear in toe:

Factored concrete weight: = 1.2(150pcf)(1’)(1")
= 180#/fl

Factored soil weight: = 1.2(80pcf)(1")(3’) = 288#/fl

Factored sail
weight = 288#/f

Factored concrete
weight = 180#/f

/

— Factored uniform soil
bearing pressure =
1612.69#/f

Factored soil bearin
pressure varies from 0 to
618.82#/f

31.10

Shear and flexure in toe

Soil bearing pressure changes from 1612.69psf @ x = 0’
t0 2231.51psf @ x = 27, a difference of 2231.51 — 1612.69
= 618.82psf

W, = -180 - 288 + 1612.69 = 1144.694#/fT
W, = 309.41x#/fT
W, = 1144.69 + 309.41x
V, = 1144.69x + 154.71x2
V  isatx=2
V, = 1144.69(2) + 154.71(2)? = 2908.22k
Assume #8 bars

d = 12" - 2” cover(steel at top of footing) — .5 = 9.5”

oV, = ¢(2\/f’0)bd = .75(2)(V3000)(12)(9.5) = 9366# > Vv,
... okay

¢V /2 = 9366/2 = 4683# > 2908.22# =V, ... Stirrups
are not required.

Flexure in toe: Take the moment about x = 0.
W, = 2(180 + 288) = 936#! and c.g. isatx = 1/

P, = (1(1612.69psf)(2) = 3225.38#7T and c.g. is at
x=1
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Ha =
3388

31.11

P, =(1)(618.82)(2")/2 = 618.82#T and c.g. is at
X =2(2)/3 =133

M, = 936#(1") — 3225.38#(1’) — 618.82#(1.33’)
= —-3114.47#-f = 37373.68k-in

A, = 1.85f/bd/f II1 = V[1 - 2M,/0.85f /bd?] = .85(3000)
(12)(9.5)/(60,000)][1 - [1 — 2(37373.68)/(.9(.85)(3000)
(12)(9.5)%)] = .073in?

A = 0.38 as calculated above

s min

A <A = 0.38, therefore A = 0.38. And the steel is
the same as in the heel:

s min

Main Steel: #6@ 14”

Shrinkage steel: #6 @ 18”

385psf

Shear and flexure in stem

Shear in stem:

The horizontal force k,,,.h varies from 0 @ y = 11" to 35(11)
= 38bpsf @y =0’

H, = 1.6(385psf)(1')(117/2) = 3388#

Hp is not considered because there may be a time when this

soil is removed.

V, = H, = 33884

d =12 - 2” cover(steel at outside of footing) — .5(#8
bars) = 9.5”

OV_ = ¢(2Vf")bd = .75(2)(V3000)(12)(9.5) = 9366# > V,
... okay

¢V_/2 = 9366/2 = 4683# > 3388# ... no stirrups
required.

Flexure in stem: Take moment aty = 0.

CONCRETE WALLS

M, = [(3388#)(117/3)] = 12422.67#-f = 149,072#-in

A, = 1.85f 'bd/f [T~ V[1 ~ 2M /0.85f 'bd?] = [.85(3000)
(12)(9.5)/(60,000)1[1 — V[1 — 2(149072)/(.9(.85)(3000)
(12)(9.5))] = .30in’

A =0.38

s min

A <A, . =0.38, therefore A = 0.38. and the steel in
the stem is the same as in the heel and toe:

s min

Main steel: #6@ 14”

Shrinkage steel: #6 @ 18”

31.3.3 Sloped backfill

A sloped backfill affects the forces on the wall. Not only does

the weight of soil on the heel increase, but the hydrostatic

pressure is not horizontal, meaning that there is both a

horizontal and vertical component to it.

K

ho
hw
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31.12

Retaining wall with sloped backfill

h, = height of backfill at end of heel taken from bottom
of heel

0= slope of backfill

¢ = internal friction angle of soil

_ 20 _ 2
Kazcose[cose cos” 0 —cos q)J

cos0+4/cos? 6 —cos? o
H, = K,W_hb?/2
H,, = H.cos®

H, = Hsin®
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31.13

Example 31-8

Example 31-8: Check the adequacy of the retaining wall

in Figure 31.13 with a backfill angle of 20° and no soil
above the toe.

Use ¢ = 30, W, = 80pcf, soil bearing capacity of 2500psf.

0 = slope of backfill = 20°

h, = 12’ + 4'tan20 = 13.46’

V(cos?20 - cos?30) = V(.883 - .75) = .3647

K, =.9397(.9397 - .3647)/(.9397 + .3647) = 0.4142
H, = KW h b?2 = .4142(80)(13.46)%/2 = 3001.9#
H,, = H,cos8 = 3001.9(cos20) = 2820.86#

Hv = H_sin® = 3001.9(sin20) = 1026.71#

Overturning:

M, = 1.6H,(h,/3) = 1.6(2820.86#)(13.46")/3
= 20250.0#-f

M = 1.6Hv(7’) = 1.6(1026.71#)(7’) = 11499.16#-

M, = 1.2(150pcf)(1)(1")(11°)(2.5") = 4950#-f

r

M., = 1.2(150pcf)(7’)(1)(1")(3.5') = 4410#-

r

M., = 1.2(80pcf)(1')(4")(11°)(5") = 21120#-f

r

M = 1.2(80pcf)(1")(13.46" — 12")(4/2)(2" + 1" + (2/3)
(4)) = 1588.48#-f

M. = 11499.15 + 4950 + 4410 + 21120 + 1588.48
= 43567.63#-f

Factor of safety: M /M = 43567.63/20250 = 2.15 > 1.5
... okay

Sliding:
w, = 1.6H =1.6(1026.71#) = 1642.74#
w, = 1.2(150)(1)(11) = 1980#
w, = 1.2(1560)(7)(1) = 1260#
w, = 1.2(80)(4)(11) = 4224#
w, = 1.2(80)(13.46 - 12)(4/2) = 280.8#
Yw = 9387.54#

F = .5(9387.54) = 4693.77# > H, = 1.6(2820.86)
= 4513.38#

Factor of safety = 4693.77/4513.38 = 1.04 < 1.5 ... no
good

Add soil to top of toe at some height, h,, from bottom of
footing.

Note that overturning need not be rechecked because the
soil at the front will add more resisting moment about the toe,
further increasing the factor of safety.

Leth =4’
W, = 1.2(80pcf)(2')(3") = 576#
Xw = 9387.54 + 576 = 9963.54#
Kp =1/K,=1/4142 = 2.414

H = 1.6KpWeh12/2 = 1.6(2.414)(80)(4)%/2 = 2471.94#

F =.5(9963.54) = 4981.77 > H, -Hp
=4513.38 — 2471.94 = 2041.44

Factor of safety = 4981.77/2041.44 = 2.44 > 1.5 ... okay
Soil bearing pressure:

New M = 43567.63 + 2471.94(4’/3) + 576(1")
= 47439.65#-f

X = (Mr — Mo)/Zw = (47439.55 — 20250)/9963.54
=273

e=35-273=077

Soil pressure = p = (Ew/L)(1 £ 6e/L)
=(9963.54/7)(1 £ 6(.77)/7) = 1423.36 + 939.42

Prax = 2362.78 < 2500psf ... okay



Practice Exercises:

31-1: Design a reinforced concrete bearing wall to support
16” steel beams spaced at 8’0.c. The beams bear on the
full thickness of the wall with b, = 14.5”. The bottom and top
of the wall are fixed connections. The wall is 18" high and the
load from each beam, P = 40k. = 4ksi, fy = 60ksi.

31-2: Design a 20’ long reinforced concrete bearing wall to
support a slab bearing on the full thickness of the wall. The
bottom and top of the wall are fixed connections. The wall is 22”
high and the load from the slab, W, = 2k/f. f/ = 4ksi, f = 60ksi.

CONCRETE WALLS

31-3: Design reinforcement for the shear wall shown in
Figure 31.14. Use = 4ksi, f = 60ksi.

31-4: Check the adequacy of the retaining wall in Figure 31.14
against overturning, sliding and sinking. Soil density = 80pcf,
concrete density = 150pcf, ¢ = 23 and equivalent fluid
pressure, KW, = 3bpcf.

31-b: Design reinforcement for the retaining wall shown in
Figure 31.14. Soil density = 80pcf, concrete density = 150pcf,
¢ = 23 and equivalent fluid pressure, KW, = 35pcf.

15k
12 4

30k i
12 g g g

32k

10’ 1
16'
J1e"
16' 8' 1, 3
31-3 31-4 & 31-5

31.14

Chapter 31 Practice exercises
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thirty two

Footings

The purpose of a footing is to distribute the loads of the
structure sufficiently so that the soil can support the loads.
Concrete has a compressive strength that ranges from
3000psi to over 6000psi depending on the mix. Soils have a
soil bearing capacity that can range from 1000psf (6.94psi)
for loose sandy soils to over 4000psf (27.78psi) for rock

or hardpan. As a result, a structure without a footing to
distribute the loads over a larger area would likely sink into
the soil.

Types of footings include individual footings, wall
footing, combined footings, caissons and piles as shown in
Figure 33.1. Piles are a footing scenario that does not rely on
a larger area. Instead, the piles are driven to bedrock or to a
depth where the friction between the sides of the pile and
the soil will resist the load.

Individual Wall Combined
Footing Footing Footing
32.1
Footing types

32.1 Wall Footings

Just as in the design of a concrete wall or a slab, the design
of a wall footing considers a one-foot thickness of wall,
therefore, b = 12”.

Pu

TP ree

L1

32.2

Wall footing

32.1.1 Wall Footing Design Method:

1. Compute factored loads = P () and unfactored loads
= P(¥)
2. Assume a footing thickness: h (in)
3. Calculate the weight of the footing per foot of width:
Wi, = 0.15kef(h7/127)
4. Calculate the weight of the soil on the footing
=w, = ys(hftg - h)
5. Calculate net allowable soil pressure = p = p, — W — W,
6. Calculate maximum allowable soil pressure = p
=(P/P)p,.)
7. Calculate required footing width = t, =P /p__ and round

max

net

up to the next inch.



8. IfP/o<p
9. Find effective depth d = h” — 3” cover — .5’ (assuming #8
bar)
10. Check whether shear reinforcement is required:

recalculate factored soil pressure = P /b

max’

Shear reinforcement is not required in footings if ¢V, >V

V, = P,..x(G) where G = (L, - 1)/2 - d
__/\/__
(L1-t)/2
G v d t
g T
|-L 0 fo o o a (*I-|
L
32.3

Shear in a wall footing

oV, = .75(2V(f", psi) bd/1000#

11. The moment is maximum at 1/4 of the wall thickness into
the wall, therefore the momentarm =L = (L, - t)/2 + t/4
=L/2-1/4
M, =p,, L2

12. Find area s steel required:
A, =0.85f bd/f [1 + V[ - 2M /6(.85f’ bd?)lin?/ft of wall

A, . = bd(3VF)/f > 200bd/f, for beams and

S min

A, in = -0018bh for slabs

Use the larger of the three values:

13. Check development length of the transverse bars: (see
Chapter 30 for explanation of development length)

14. Longitudinal steel: As min = .0018bh

Example 32-1: Design a wall footing for an 8" concrete
wall (t = 8”) DL = 8k/f, LL = 16k/f, ', = 3ksi, f = 60ksi, soil
density =y, = 80pcf, allowable soil pressure = 4000psf.

The bottom of the footing must be 3.5” below grade.

1. Compute factored loads: (1.2(8) + 1.6(16))(1") = 35.2k = P

Unfactored loads = P = (8 + 16)(1’) = 24k
. Assume footing thickness: h = 18”
- Wy, = 0.15kef(1.57) = 0.225ksf
. w, = 80pcf(38.5" - 1.5") = 160psf = 0.16ksf
. Net allowable soil pressure = p = p, - W, — W,
= 4.0ksf — .22bksf — .16ksf = 3.615 ksf

o~ WN

10.

1.

12.

13.

FOOTINGS
. Maximum allowable soil pressure =p__ = (P /P)(p,_)
= (35.2/24)(3.615ksf) = 5.302ksf
. Required footing width = L, =P /p = 35.2/5.302

=6.639’, round up to 6-8” = 6.67" = 80"

. Recalculate factored soil pressure: = p, = P /L,

= 35.2¥16.67" = 5.277ksf < 5.302ksf ... okay

. Find effective depth assuming #8 bars:

d=18"-3"cover - .5” = 14.5”

Shear reinforcement is not required in footings if ¢V,

> V,. Since the footing width is 6.67” and wall width is
8”/12" = 0.67’, the length of the footing on either side
=(6.67 - .67)/2 =3".

d=14.5/12 = 1.208’
V, = (3.0 - 1.208")(1)(5.302ksf) = 9.50k
OV, = .75(2V(f") d(127)/1000% = 14.3k

Since ¢V, = 14.3 > 9.501 =V, ... No shear reinforcement
necessary.
M, is at 7 of the wall thickness into the wall. Wall

thickness = 8” ... M__ is 2” into the wall.

ma

Moment arm = 27/12”f + 3’ = 3.16’

M, = 5.302ksf(3.161)2/2 = 26.47k-f = 26.47k-f(12"7)
(1000#/k) = 317,640#-in

A, = 0.85fbd/fy[1 £ V1 — 2M /0(.85f'cbd?)] in?/ft of wall
= [(.85(3000)(12)(14.5))/600001[1 — \[1 — 2(317,640#-
in)/.9(.85(3000)(12)(14.5)#-in)(14.5”)] = .417in%/ft of wall

A, .. = bd(3VF)/f > 200bd/f, for beams 3V’ = 164.32
<200 ... use 200, A_ = 200(12")(14.5")/60000

= 0.58 for beams and

s min

A =.0018(12")(18”) = 0.389 for slabs

s min
Use larger of the three values: A_ = 0.58in?/f

#6: A = 0.442, spacing = 12”(0.442/0.58) = 9.14” round
down to 9.0”

Use #6 @ 9”0.c. A_ = 0.589in?

Check development length of the transverse bars: (see
Chapter 30 for explanation of development length)

K, = 3f J40Nf" = 3(60000)/[40(¥3000)] = 82.16
p, = 1.0 (no top reinforcement)

p, = 1.0 (no epoxy coating on bars)
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p, = 0.8 (#6 or smaller bars)

A = 1.0 (normal weight concrete)
pp,=1.0<1.7 ... okay

¢, = smaller of cover or half spacing = 3.38”

K,=0

tr

(c, + K)/d, = 3.38/0.75 = 4.51” > 2.6” ... Use 2.5”

L, = (K/ Mlptpeps)(d,)/l(c, + K )/d,] = 82.8(.8)(.75)/2.5
=19.728

You may use K_, factor = A /A =.574/.589 = .975

s req'd’” 's used

L, =19.728(.9756) = 19.23”

L, provided = critical length for moment — 3” cover
=3.08(12") - 3”7 = 33.96” > 19.06” ... okay

14. Longitudinal steel: A =.0018bh =.0018(6.67")(12"/f)
(18”) = 2.59in?

USE: six #6 bars spaced equally

s min

32.1.2 Rules of Thumb for Non-
reinforced Wall Footings
with Light Loads:

8” wall minimum
Footing depth > wall width

Footing width = 2 x wall width

32.2 Individual Footings

Individual footings may be any shape, but are typically square
or rectangular. They may support any type of column or
vertical truss system and may or may not have a concrete
pedestal.

Design of square footings with width = L, = length = L,
1. Assume footing thickness h = 24”
2. Find net allowable soil pressure = p__ = allowable soll

net

pressure — concrete weight — soil weight

3. Find required footing area = A _, = unfactored loads/net

REQ
allowable soil pressure. Round up and compute actual

area, A.

4. Calculate factored soil pressure p, = P /A

5. Calculate d: d = h — 3” cover — 2rows(d,/2)

6. Check one-way shear: if ¢V_ >V , no shear reinforcement
necessary.
One-way shear in a footing — beam shear

Vu = puLZG

OV, = .75(2Nf)bd

|
|
| d
q G | t
|
|
I
L1
__f\/_.
(WFTG - 1)/2
G ,d t
d
L o o o o o J]
| Li L
1 1
32.4

One-way shear in a footing

7. Check two-way shear in a footing — punching shear
B=t+2(d/2)=t+d

2 _ B?)

Vu = pu(L1
V, = smallest of:

V.= (2 + 4/B)VF'b.d Where B, = L/L, = 1 for square
footings and b = 4B

Or

V, = (o d/b, + 2) \/f'cbod where o, = 40 for interior
columns, 30 for edge columns and 20 for corner columns.



Or

V. = 4a0f’b d

AT
B = t+d
3
bo = perimeter = 4B
AT
|, L1
7 7
32.5

Two-way shear in a footing

8. Calculate moment: M = p L,(F¥/2) where:

u

F=(L - 1)/2
AT I
|
|
|
|
|
9 F t
|
|
|
|
|
AT |
|/ L1
A A
32.6

Moment in a footing

9. Find Area s steel required: (b = L,)

A, = 0.85fbd/f [1 + V[1 ~ 2M /0(.85f’bd?)] in?

A

s min

= bd(3Vf")/f, > 200bd/f, for beams and

FOOTINGS

A = .0018bh for slabs

s min

Use larger of the three values:

10. Check development length of steel

11. Check that the concrete bearing strength at base of
column in the column and the footing are > P

A, =t = area of column
A, = L2 = area of footing
Col. bearing strength = ¢(.85f" A))

Ftg. Bearing Strength = ¢(-85f'cA1)“/(A2/AW) < 0(.85FA)
(2)

12. Calculate dowel Area = A.d = .005A, and check
development length:

Ly = (.Ony/?o/f’c)(db)(Required A d/providedA d)
>.0003f d,

Example 32-2: Design an individual column where: DL =
400k, LL = 150k, allowable soil pressure =5ksf, ' = 4ksi,

f' g = 3ksi, soil density = 100pcf, 24”x24" column, bottom
of footing is 4’ below grade, supporting interior column.

1. Assume footing thickness h = 24”

2. Find net allowable soil pressure = p_,
= bksf - .15(24/12) — .1(24/12) = 4.bksf

3. Required footing area = A__, = (400 + 150)/4.5 = 122.22f*
Round up: Footing size = 11.25" by 11.25" = 126.56f2

4. Find factored soil pressure p, = P /A
= (1.2(400) + 1.6(150))/126.56 = 720/126.56 = 5.689ksf

5. Calculated =h - 3” - d, =24 -3 -1 =20" (assuming
#8bars)

6. Shear: if ¢V, >V , no shear reinforcement necessary.
One-way shear — beam shear

G = (135 - 24)/2 - 20 = 35.5”
V, = p,L,G = 5.689ksf(11.25')(36.5/12) = 189.34k

V. = 2\/f'cbd =2 /3000psi(135in)(20in)/1000#/k
=295.77k

189.34k < .75(295.77k) = 221.83k ... okay
Two-way shear — punching shear
B=24+20=44"

V, =p,(W? - B? =5.689(11.25? - 3.67%) = 643.563k
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V. = smallest of:

V= (2 + 4/B)Nf’b d = 6 ¥3000(4)(44)(20)/1000
= 1376.67k

Or

V. = (o, d/b, + 2) VF'b d = (40(20)/4(44) + 2) N3000(4)
(44)(20)/1000 = 1261.95k

Or
V, = 4/f’b d = 4(1) 3000(4)(44)(20)/1000 = 771.2k

V,=643.53 > ¢V, = .75(771.2) = 578.4k NO GOOD!

The footing depth must be increased, go back to step 1
1A. Increase footing depth to 27~
2A. p,., = bksf - .15(27/12) — 1(21/12) = 4.49ksf
3A. A, = (400 + 150)/ 4.49 = 122.49f?. Use 11.25"x 11.25"

REQ

= 126.56f?

4A. p,=P /A =(1.2(400) + 1.6(150))/126.56 = 720/126.56
= 5.689ksf

5A. d=27-3-1=23"(assuming #8bars)

6A. Shear:if ¢V, >V , no shear reinforcement necessary.
One-way shear — beam shear

G =(135 - 24)/2 - 23 = 32.5
V, = p,L,G = 5.689ksf(11.25')(32.5/12) = 173.34k

V, = 2V’ bd = 2 ¥3000psi(135in)(23in)/10004#/k
= 340.14

173.34 < .75(340.14) = 255.1 ... the footing is
adequate for one-way shear.

7A. Two-way shear — punching shear
B=24+23=47"
V,=p,L2-B?) =5.689(11.2562 — 3.92%) = 632.59k
V, = smallest of:

V. = (2 + 4/B)Vf’b_d = 6v3000(4)(47)(23)/1000
= 1421.01

Or

V, = (o, d/b, + 2NFeb,d
= (40(23)/4(47) + 2) N3000(4)(47)(23)/1000 = 1632.65

Or

V, = 4xf'cb d = 4(1)¥3000(4)(47)(23)/1000 = 947.34

V, =632.59 < ¢V, =.75(947.34) = 710.51 ... the
footing is adequate for punching shear.

7. Calculate moment: M = p L,(F?/2) where:
F=(L -1/2=(11.25-2)/2 =4.62%

M, = p,L,(F%/2) = 5.689(11.25)(4.625%/2) = 684 .51k
= 8214.16k-in

8. Find Area s steel required: (b = L,)

A, = 0.85f"bd/f [1 = V[T - 2M /6(.85F bd?)] in?

= [.85(3000)(11.25)(127)(23")/60000] [1 = N[1 -
2(8214.16k-in)(1000#/k)/.9(.85(3000psi)(11.25")(12")
(237d)?)] = 6.788in?

A, ., = bd(BVF)/f, > 200bd/f,

s min

=200(11.25)(12)(23)/60000 = 10.35in?
A, .. = -0018bh = .0018(11.25')(12"7)(27") = 6.561in?
USE: larger of the three values:
A, = 10.3bin% USE: 24 #6 evenly spaced
9. Check development length of steel
K, = 3fy/40\/f’C = 3(60000)/[40(v3000)] = 82.16
p, = 1.0 (no top reinforcement)
p, = 1.0 (no epoxy coating on bars)
p, =1 (#8 bars)
A = 1.0 (normal weight concrete)

pp,=10<1.7 .. okay

¢, = smaller of cover ( = 3”) or half spacing
(=1(11.25'(12"/f) - 8”7 — .75”)/24bars — 0.75”
= 4.59” spacing) ... ¢, = 3"}

K,=0
(c, + K )/d, =3.0/76 = 4” > 2.6” ... Use 2.5”

Ly = (K/ Mlppp)(dile, + KA IA,
=[82.8(1)(1)/2.5][10.25/10.3] = 32.96”

A, sed!

s used

L, provided = critical length for moment — 3” cover
=4.635(12) - 3 =52.5">32.96" ... okay

10. Check that concrete bearing strength at base of column
for column and for footing are > P



A, = t? = 242 = 576in?
A, = L? = 1352 = 18225in?

*Use 1’ for column

** Use f’_for footing
Col. bearing strength = ¢(.85f" A) = .65(.85)(4ksi*)
(576) = 1272.96 > 740K = P ... okay

Footing bearing strength = ¢(.85f' A )V(A,/A)
< ¢(.85f" A )(2)

V(A2/A1 =5.625 > 2 ... use 2

¢(.85f” A1)(2) = .65(.85)(3ksi**)(5676)(2) = 1909.44
> 740k = P ... okay

11. Calculate dowel area = A_, = .005A, = .005(576) = 2.88in?

... use four # 8, A_ = 3.16in?
Check development length:

L, = (02f /af7)(d,)(Required A_)/provided A_) >
.0003f d,

Ly = (.02(60000)/(1)¥3000)(0.75)(2.88)/3.16) = 14.976”
>.0003f d, = 13.5"

USE: four #8x 13.5” long.

32.3 Combined Footings

There are times when due to heavy loads on adjacent
footings or due to the close proximity of a footing to the site
line, it becomes necessary to create a combined footing. A
combined footing acts like a beam with two concentrated
loads that is supported by a uniform load.

Example 32-3: Design a rectangular combined footing
for the two columns shown in Figure 32.8.

The allowable soil pressure = 4ksf, /. = 3ksi and fy = 60ksi.
Soil density = 80pcf. Column A'is 16”x 16” and carries a dead
load of 50k and live load of 200k. Column B is 20”x20” and
carries a dead load of 80k and a live load of 300k.

1. R =resultant of the column loads. NOTE: Do not factor
loads

50 + 200 + 80 + 300 =630k = R

X = the location of the resultant, R

FOOTINGS

Tapered

Rectangular

32.7

Combined footing

630X = (60 + 250)(0) + (80 + 300)(16") = 6080k-f

X =6080/630 = 9.65

N

Find the length of footing:

maximum distance to left = 9.65 + 2" = 11.65’
maximum footing length = 11.65"(2) = 23.3’, round down
t0 23.25" = 279"

L = 23.25ft.

w

Find footing width:
assume h = 24in
net soil pressure: p__. = 4ksf — 2(.15) — (.08ksf)(2’)

= 3.54ksf

net

A =R/p. . =630/3.54 =177.97sf

net

b=A/L=177.97/23.25 = 7.65%

round up to W = 7.75" = 93”7

4. Draw shear diagram and find M in longitudinal direction:
USE: FACTORED LOADS:
Column A: P = 1.2(50) + 1.6(200) = 380k
Column B: P, = 1.2(80) + 1.6(300) = 576k
Soil weight and beam weight can be ignored because
their effect is offset by an equivalent uniform soil
pressure.
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L, =23.25 - 9.24' =14.0V

One-way shear — beam shear

Column A: V= 297.75k — (97 + d”)(41.12k/f)/(12")

= 29775 - 30.84 - 3.427d = 266.91 — 3.427d
oV, = 2Vf’cbd = .75(2)Y3000psi(93)d/1000#/k = 7.64d
d =266.91/(7.64 + 3.427) = 24.1”

Column B: V, = 360.12 — (10 + d)(41.12)/12

=325.73 - 3.427d

-ﬂ'
The uniform reaction in response to the column loadings 380k 576k
= (380 + 576)/23.25f = 41.12k/f
2' 16' 5.25'
M, = 2'(82.24k)/2 — 297.75k(7.24")/2 = —995.62k-f /I\ /I\
. 41.12k/f
= 11,947.44k-in
| 7.24' 360.12k |
5. Find required depth of footing: Assuming that the depth k ’
of the equivalent stress block, a = 0.2d, (see chapter 26): !3‘24“ |
d = V{M, /[.1530f cbl} = {11947.44/1.153(.9)(3ks)(93")]} | ‘ |
= 17.63” l 215.88k |
297.75k | !
6. Find depth for one-way and punching shear: Consider | | 581 .53K-f |
Column Ato have L, = 2" + 7.24” = 9.24’ (zero point on ;
moment diagram), and Column B to have | | |
| 2

-995.62k-f

32.9

Reaction and moment in combined column



FOOTINGS

32.10
One-way shear in combined

column

16" ,16" ), d | L, d

Al Al | Al Al | Al Al
v 16' v
A Al

0V, = 2Vf’chd = .75(2)V¥3000psi(93)d/1000#/k = 7.64d
d = 325.73/(7.64 + 3.427) = 29.43”

USE: d =307, h=33"
Check two-way shear — punching shear
Column A: (edge column)

A, =9.24'(7.75') = 71.61f2
A, = (16” + 30”) /(144in%/f?) = 14.69f2
V(71.61/14.69) = 2.21 > 2.0 ... B, =2

V,=p,(A = A) = ((41.12k/f)/7.75)(71.61 - 14.69)
=302.01k

b, = 4(16 + 30) = 184"

P

V_ = smallest of:

V.= (2 + 4/B)Nfcb,d = (2 + 4/2)(N3000)(184)(30)/1000
=1209.37k

Or

V, = (0,d/b, + 2) Vi’cb,d = (30(30)/184 + 2)(N3000)
(184)(30)/1000 = 2083.54k

Or
V. = 47o/f’cb0d = (4)(V3000)(184)(30)/1000 = 1209.37k

¢V, - .75(1209.37) = 907.03k > 302.07k ... okay
Column B: (interior column)

A, =14.01"(7.75") = 108.58f2

|
|
__|___ ___________________ :
i
|

]
Ld/2 16" Ld2 |,

v 16'

/1

32.11

Punching shear in combined column
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A, = (20”7 + 30”) /(144in%/f?) = 17.36f
V(108.58/17.36) = 2.5 > 2.0 ... B_ = 2

V,=p,A = A,) = ((41.12k/f)/7.75")(108.568 - 17.36)
= 484.00k

b, = 4(20 + 30) = 200”
V. = smallest of:

V.= (2 + 4/BVf’cb,d = (2 + 4/2)(3000)(200)(30)/1000
= 1314.53k

Or

V, = (0, d/b, + 2) Nf’eb,d = (40(30)/200 + 2)(¥3000)
(200)(30)/1000 = 2629.07k

Or
V, = 4nfch,d = (4)(V3000)(200)(30)/1000 = 1314.53k
0V, - .75(1314.53) = 985.9 > 484k ... okay

7. Compute flexural steel for positive moment:
Column A: M = 82.24k-f = 82.24(12000)#-in
= 986,880#-in

A, = 0.85f'bd/fyl1 + V1 - 2M /(.85f'cbd?)]
= [0.85(3000)(93)(30)/60000][1 = V[1 - 2(986,800)/
((.9)(.85(3000)(93)(30))] = 0.61in?

USE: two #5
Column B: M, = 581.53k-f = 5681.53(12000) #-in
= 6,978,360#-in

A, = 0.85f"bd/f [1 = V[1 - 2M,/¢(.85f bd?)]
= [0.85(3000)(93)(30)/600001[1 = V[1 -2(6,978,360)/
((.9)(.85(3000)(93)(30)2)] = 4.39in?

USE: six #8
8. Compute flexural steel for negative moment

M, = 995.62k-f = 995.62(12000)#-in = 11,947,440#-in

A, = 0.85f"bd/f [1 = V[1 - 2M,/¢(.85fcbd?)]
= [0.85(3000)(93)(30)/600001[1 = V[1 — 2(11,947,440)/
((.9)(.85(3000)(93)(30)2))] = 7.62in?

USE: ten #8
Compute transverse steel:

M, = [(37.57/127/1)2/2]1(1")141.12k/f/7.775"] = 25.91k-f
= 310,877#-in

A, = 0.85f"bd/f [1 = V[T - 2M /6(.85F" bd?)]
=[0.85(3000)(12)(30)/60000I[1 + V[1 - 2(310,877)/((.9)
(.85(3000)(12)(30)2))] = 0.193in%/f

A =.0033(127/f)(30”) = 1.18in?/f

s min

A, .. =.0018(127/f)(33") = 0.71in?/f

s min

USE: #8 @ 8"0.c.

Practice Exercises:

32-1: Design a wall footing for an 8” concrete wall (t = 8”) DL
= 6k/f, LL = 12k/f, T = 3ksi, f = 60ksi, soil density = v,

= 80pcf, allowable soil pressure = 4000psf. The bottom of
the footing must be 4.0” below grade.

32-2: Design an individual column where: DL = 200k,

LL = 500k, allowable soil pressure = 3ksf, f’ | = 4ksi,

i ftg = 3ksi, soil density = 80pcf, 28”x28” column, bottom of
footing is 3’ below grade, supporting interior column.

32-3: Design a rectangular combined footing for the two
columns shown in Figure 32.12. The allowable soil pressure

= 3.bksf, f* = 3ksiand fy = 60ksi. Soil density = 90pcf.
Column A'is 18”x 18” and carries a dead load of 100k and live
load of 300k. Column B is 20”x 20” and carries a dead load of
100k and a live load of 500k.

I

20'

3

%ﬂl l

32.12

Chapter 32 Practice exercises



thirty three

Precast and Precast and
Prestressed Concrete

33.1 Precast Concrete

Precast concrete is concrete that is cast and cured prior to
installation as a solid component of a structural system or
as a non-structural component. In this text, only precast
components that support and transfer applied loads are
discussed.

Precast concrete is commonly used as floor slabs, shear
walls, bearing walls, lintels, staircases and columns in
structural systems. Many other precast components can be
used in building design to form railings, decorative facade
elements and the like.

Limitations in size are typically the limitations provided by
transportation such as the length of a truck bed. There are
also design limitations based on the amount of manipulation
during transport. For example, a unit designed as a vertical
wall panel must be able to support its own weight if laid flat
for transport.

Precast concrete has the advantage of reducing on-site
construction time. Because the unit is cast independently,
there is no delay on the construction site to allow for curing;
units can support weight immediately after installation.
Precast concrete also has the advantage of being mixed,

Double Tee

Single Tee

— @@@@@@%

Solid flat slab
33.1

Typical precast structural components

Hollow core slab
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placed and finished in a controlled environment. As such, any
defective units can be discarded before reaching the building
site. High strength concrete and the use of reactive powder
concrete can result in lighter weight and longer spans.
Precasting allows for the economical creation and reuse of
intricate formwork for detailed units, allowing architectural
details to remain economical.

The strength of precast units is determined, as with
site-cast components, by the strength of the materials (f’,
and fy), the cross-sectional properties, and the placement
of reinforcement. But because precast units are cast and
cured independently of each other, there is no continuity
of material. Therefore, connections and joints must be
carefully designed to consider gravity and lateral loads,
expansion and contraction, and product tolerances. Bolted
or welded connections can be made between adjacent
precast elements or between precast and site-cast or
metal components by embedding a steel plate or angle into
the precast unit. Figure 33.2 shows some typical precast
connections. Design of these connections follows the same
methods as discussed earlier in this text.

33.1.1 Precast Concrete Floor Slabs

Precast concrete floor slabs are generally hollow core slabs
(HC slabs). The advantages of a hollow core slab include the
fact that HC slabs are lightweight relative to cast-in-place
slabs to the same depth. Most manufacturers supply widths

Precast slab connected
to precast column

Precast bearing
wall connected to
foundation

33.2

Typical precast connections

of 2%, 4" and 8’, although some offer 10” and 12" widths. Slabs
are available in depths from 6 to 16”. As a rule of thumb, floor
slabs can span 30 x depth and roof slabs can span 40 x depth.
They maximize ceiling height when the voids are used for
conduit runs. Further, when prestressed, the slabs can be
delivered to site with a camber that will negate deflections.
Standard HC slabs are manufactured in depths from 4” to
15”, although deeper slabs have been created for specialized
purposes or by specific manufacturers. Load tables for HC
slabs are provided by the manufacturer using an equivalent
=(1.4/1.7)DL + LL when uniform
= 8M /L? when other

uniform load: w

equivalent

design loads are presentand w, ...,
loads are present.
As with all precast components, connection details
are important to prevent disaster. HC slabs may have an
embedded plate that welds to a bearing plate or the voids
may be filled at the end to create a sufficient development
length in which to insert a rebar from the bearing wall or
beam. HC slabs may also be embedded into a masonry wall.
Follow ACI codes and refer to the Precast Concrete

Institute’s (PCI) manual for the design of hollow core slabs.

33.1.2 Precast Concrete Beams and
Tees

Precast beams are usually prestressed and have a cross-
section that is either rectangular, an inverted Tee or an L
shape. Although they typically vary in width from 12 to 24”

% %

Precast slab connected
to bearing wall
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Typical precast hollow core slab cross-sections
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33.4
Precast hollow core slab embedded in masonry wall, reproduced with

permission from the American Concrete Institute

and in depth from 16 to 40”, they can be made in any size
specified. The inverted Tee and L shape are often used to
support slabs that will have a concrete cover. As a rule of
thumb, spans are between 10 and 20 times the depth.

PRECAST AND PRESTRESSED CONCRETE

o O O o O O o O O

33.5

Precast beams

Double Tees are used for floor and roof systems. They are
usually supplied in widths of 8, 10, 12 or 15” and depths from
24 to 34”. Double Tees used in floors can span to about 35
and in roofs to about 40” depending on the loads.

33.1.3 Precast Columns

Precast columns are typically used to support beams in
precast systems in low to mid-rise buildings. The columns are
designed to be stacked and often have side ledges to support
beams. They range from 12 x 12” to 24 x48” in size and can

be almost any shape. It should be noted, however, that the
columns are cast in a horizontal position, so one side will be flat
and troweled to match the surfaces of the other three sides.

Beam Seats

.

33.6

Precast columns
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33.1.4 Other Precast Components

Shear and load-bearing walls can be designed using precast
components. They range in size from 15" to 30” widths, 10" to
30’ heights, and 8” to 16” thicknesses. Because of the large
size, they are often cast at the site in a horizontal position and
then tilted into place.

Concrete piles are designed to be stacked and connected
together to form longer piles when needed. They are typically
18 by 18” but can be made smaller or larger and in any shape.
Large piles often have a hollow core to eliminate unnecessary
weight.

Precast stair units are commonly supplied in a large variety
of standard or custom sizes. Cast either upside down or on
end, the underside of the stair is smooth. The top riser is
installed flush with the top of the finished floor.

Stadiums often utilize precast raker beams or stadium
risers which are similar to a stair stringer in that they support
the horizontal floor decks under the seating in a stepped
fashion as shown in Figure 33.7.

Raker Beam has notches similar to a stair

33.2 Prestressed Concrete

Prestressing creates compressive stress in concrete to
counteract the tension that will develop due to applied loads.
Prestressing can be achieved either by post-tensioning or by
pre-tensioning.

In post-tensioning, cables called tendons are stressed in
tension after concrete is placed. Concrete members are cast
with hollow tubes, through which tendons are pulled. After
the concrete strengthens to a certain point, the tendons are
tensioned.

In pre-tensioning, tendons are stressed in tension before
the concrete is placed. After the concrete cures, the tension
is released in the cable, but because the cable has bonded
to the concrete, it transfers that release into the concrete as
compression. Components are usually cast off-site and then
shipped to the site. The cable is typically a 7-wire, uncoated
cable with an ultimate stress, fpu ranging from 250 to 270ksi.

stringer but on a larger scale.

L

33.7

Precast stairs and rakers

Precast Concrete Stairs are
available in many widths,
lengths and rise/run ratios.



Beam loading
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One important factor to consider when designing a
prestressed beam is the mode of failure. As discussed in
Chapter 25, concrete beams must be designed to fail in
tension as failure in compression is sudden and without
warning. If too much prestressing is used, the concrete beam
risks failure in compression. Another factor to consider is
creep. Creep is long-term deflection and as such reduces the
effect of prestressing.

Design of a prestressed concrete beam must consider
both the bending stress due to applied loads and the axial
stress due to the prestressing.

1. Applied loads create a positive moment that is
counteracted with an internal couple creating
compression at the top and tension at the bottom. The
compression force due to applied loads
=C,, =T, =M/l - a/2)]

2. Prestressing force, P, creates compression over the
entire cross-section. The compressive stress resulting
from prestressing = fpre = P/bh acts over the entire
cross-section. Therefore, the maximum stress in the
equivalent stress block that can be used to counteract
M, is f, = .85f —f__. This means that the depth of the
equivalent stress block (a) will vary with different values
of prestressing force P.

3. The goal of prestressing is to eliminate the tensile strain

at the bottom of the beam that is produced by the applied

PRECAST AND PRESTRESSED CONCRETE

Moment Diagram 33.8

Prestressing in a

concrete beam

+

M

- | -Pe
wL?8

+

MZ :
wL?/8 - Pe

—+
M

I/ \I -Pe

loads. When tendons have a sag, (e) in inches, there is a

negative moment produced by the eccentricity of the sag.
M . =Pe.When M __ =M, the resultant moment on the

beamis M, - M =0.
P =M “"/[e(# of tendons)]

4. ltis necessary to check the depth, a of the equivalent
stress block to ensure that it is within the top half of the
depth of the beam. Since C, == abf, =M /lo(d - a/2)l.
Solving for a yields a = d - V[d? - 2M /¢bf, ]

Example 33-1: Given a 40’ long 16"x24" beam with
f’_=4000psi, a DL of .1k/f and a LL of .8k/f.

1. Determine prestressing force required if two parabolic
tendons with a sag of 9” are used.

Beam weight = w = .15pcf(16/12)(24/12) = 0.4 k/f
Factored load = 1.2(0.4 + .1) + 1.6(.8) = 1.88k/f

Moment = M = 1.88k/f(40)%/8 = 376k-f
=4,512,000#-in

Prestressing force = P = M /sag = 4512000/((9”)
(2tendons)] = 250,666.7#

2. Check equivalent stress block depth, a:

T, = .86f" — P/bh = .85(4000) - 250,666.7/(16(24)

app

= 2747.22psi
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a=d-[d? - 2M /obf_ ]
= 21 - [212 - 2(4512000)/(.9)(16)(2747.22)] = 6.41"

c=a/.85=75b4"<h/2=24/2 =12" ... okay
Example 33-2: Given a 40’ long, 9” deep slab with a DL of
.01ksf and a LL of .08ksf.

1. Determine the prestressing force required for parabolic
tendons with a sag of 3” every 6”. d = 7.875”

Slab weight = w = .15pcf(9/12) = 0.1125k/f

Factored load for 12” swath = [1.2(0.1125 + .01) +
1.6(.08)] 12/12 = 0.275 k/f

Moment = M = .275k/f(40)%/8 = 5bk-f = 660,000#-in

Prestressing force = P = M /sag = 660000k-in/(3(2))
= 110,000#

2. Check equivalent stress block depth, a:

f,., = .85f" — P/bh = .85(4000) — 110000/(12(9))

app

= 2381.48psi

a=d - [d? - 2M /obf,_ ] = 7.875 — [7.8752 -
2(660000)/(.9)(12)(2381.48)] = 4.6”

c=4.6".85=5.42">9/2 =4.5” ... okay

Practice Exercises:

33-1: Design a 40’ long 14” x30” beam with /= 4000psi, a
DL of .1k/f and a LL of .8k/f using two tendons with a sag of
12”7,

33-2: Design a 48’ long, 12” deep slab with a LL of .1ksf using
tendons every 6”.



Part VI

Masonry and Alternate
Materials
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thirty four

Masonry Design

Masonry is a structural system made of units of clay,
concrete or stone connected by mortar. The units may vary
in size and shape and in pattern of arrangement. Masonry is
used structurally as vertical compression members. Deep
wall reinforced masonry wall beams can handle flexure, but
are not discussed in this text.

34.1 Masonry Load Bearing
Walls

Based on the MSJC 'Building Code Requirements for
Masonry Structures’ developed by the Masonry Standards
Joint Committee, ACI503/ASCE 5/TMS402 and the IBC, the
height/thickness ratio = length/thickness ratio = 20 for solid,
unreinforced, load bearing walls. For example, a 24’ high
masonry load bearing wall would have a minimum thickness,
t=24(12")/20 = 14.4”.

Mortar types M, S, N are used in load bearing walls.
Although mortar provides binding between units, the
allowable tensile stresses are very low and vary between 40
and 70 psi.

=

distributes loads applied on a single unit to successive

masonry prism test compressive strength. Masonry

supporting units as shown in Figure 34.1. The prism test
evaluates compressive strength based on the distribution of
load in a given bond pattern of a wall.

Allowable bending stress:

F, = 1" /3 for unreinforced masonry

F, = 0.45f" for reinforced masonry

Allowable shear stress:
F, = 1.5Vf_<120psi for unreinforced masonry
F, = 2.0\/1"m for reinforced masonry where M/Vd > 1.0

F, = 3.0\/1"m for reinforced masonry where M/Vd < 0.25
and may be interpolated for values of.25 < M/Vd < 1.0.

Flexure in masonry walls is usually created by lateral loads or
a vertical load with an eccentricity. The maximum stress
in the equivalent stress block for reinforced masonry is
0.8f" .

M, = ¢Asfv(d —a/2)and T = Asfy =C=.08f ab ...

a= Asfy/.8f'mb

M, = q)Asfv(d - /—\Sfyﬁ 61" b)

A = (_8f’mb/fv)(d +\[d? - (2fyl\/|u/.8f’mb¢fy)]
The combined axial and flexural stresses must be checked to
satisfy f /F, +f/F <1.

Example 34-1: Design reinforcement for an 8” thick
masonry wall filled and reinforced with vertical 60ksi
rebar at 16"o.c.

There is a uniform load of 1800#/f with an eccentricity of 2”.
The wall is 16” high and the filled weight = 145pcf.
F’ =2000psi

m=
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Minimum height of wall above lintel = clear span/2.

D0000000000V0O0YIOOOOOOOOVOOOOO YOO

Lintel

Area of influence of
point load

4 X wall thickness + width of bearing platg

\

\

Lintel

\

Portion of load acting on the Iin’u—:-lA

34.1
Load distribution in a

masonry wall



1. Determine M for one foot swath of wall:
M, = Pe = 1800#/f(12")(2”) = 43200#-in.

2. A = (.8f’mb/fy)(d +[d? - (2fy|\/|u/.8f’mb¢fy)] = (.8(2000)
(12)/(60000))(4 + V[42 — (2(60000)(43200)/.8(2000)(12)(.9)
(60000))] = .22in%/f = #5 @ 16"0.c.

3. f, = M/S = 43200#-in/[(12")(8%)/6] = 337.5psi

. F,=0.45f" = .45(2000) = 900psi

5. f = P/A =145pcf(16”)/144in%/f> + 1800%7[127(8")]
= 34.86psi
F, = .8f" =.8(2000) = 1600psi
f/F, +f/F, =34.86/1600 + 337.5/900 = 0.397 <1.0
... okay
USE: #5 @ 16"0.c.

Example 34-2: Design reinforcement for a 12" thick
masonry wall filled and reinforced with vertical 60ksi
rebar at 16"0.c.

There is a uniform load of 2400#/f centered on the wall and
a lateral force of 20psf on the surface of the wall. The wall is
16’ high and the filled weight = 145pcf. F’ = 3000psi

MASONRY DESIGN

1. Determine M for one foot swath of wall:

M, = 20psf(127)(16")%/8 = 7680#-f = 92160#-in.

2. A= (.8f’mb/fy)(d +[d? - (2fyl\/|u/.8f’mb¢fy)] = (.8(2000)(12)/
(60000))(4 + V[42 - (2(60000)(9216000)/.8(3000)(12)(.9)
(60000))] = .49in?%/f = #8 @ 16"0.c.

3. f, = M/S =92160#-in/[(12")(8%)/6] = 720psi

. F, =0.45f" = .45(3000) = 1350psi

5. f = P/A =145pcf(16")/144in?/f? + 2400%7[12"1(8")]
=4111psi
F, = .8f" =.8(3000) = 2400psi
f/F, + 1 /F, =41.11/2400 + 720/1350 = 0.55 <1.0 ... okay
USE: #8 @ 16”0.c.

Practice Exercise:

34-1: Design reinforcement for a 16” thick masonry wall filled
and reinforced with vertical 60ksi rebar. There is a uniform
load of 4800#/f centered on the wall and a lateral force of
20psf on the surface of the wall. The wall is 30” high and the
filled weight = 145pcf. F’ = 3000psi.
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thirty five

Alternate Structural Materials

35.1 Concrete, Steel and
Wood

Concrete, steel and wood are the basic structural materials
covered in most architectural programs. See Table 35.1 for
a summary of the advantages and disadvantages of steel,
concrete and wood as structural materials.

35.1.1 Fly Ash

Fly ash is a waste product of burning coal. In an effort

to find a use for fly ash, it was added to concrete mixes

with surprising results. The benefits of fly ash in concrete
include higher strength, workability, durability and decreased
bleeding, segregation, efflorescence, and permeability. As
shown in Figure 35.1, the compressive strength of concrete is
lower in the first 28 days and higher after 28 days than plain
concrete. The increase in compressive strength continues

to grow over time. Check sites such as www.flyash.com for
more information on the use of fly ash in concrete. LEED 2.2
offers credits for the use of fly ash in concrete dependent on
the amount used.

35.1.2 Reactive Powder Concrete

Reactive powder concrete , also known as ultra-high
performance concrete uses fine quartz sand as the largest

aggregate mixed with up to 10% steel fibers by volume.

It has compressive strengths as high as 120,000 psi and
tensile strengths up to 7000 psi. It also has less deflection
due to a higher Modulus of Elasticity and less creep (long-
term deflection). The drawbacks to reactive powder concrete
are that it requires applied pressure while setting, is very
expensive and to date there are no codes governing its use.

35.1.3 Air-scrubbing concrete

Concrete that uses titanium dioxide to reduce nitrous oxide
pollution. It has the aesthetic benefit of a very white concrete.
The disadvantage is the cost which is about 30% higher than
plain concrete,

35.2 Alternate Metals
35.2.1 Titanium

Titanium is a high strength metal usually used in alloy form
such as Ti-6Al-4V with compressive yield strengths ranging
from 125 to 155ksi, shear strength = 79,800psi and a tensile
yield strength of 128,000psi.

The advantages of titanium include corrosion
resistance. Titanium has a self-healing oxide film that
forms spontaneously when exposed to air. This oxide film
is stable and protects titanium from corrosion. Titanium
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Table 35.1: Advantages and disadvantages of steel, concrete and wood as structural materials

Material Steel Concrete Wood
Advantages High strength to Strength increases with time | Renewable resource
weight ratio
High recycle May be formed to any shape | Economical
content
Easily assembled Easily customized shapes

and disassembled

Uniformity

Elasticity

Disadvantages | Must be Requires formwork Flammability

fire-protected

Corrosion (rust) Not easily recycled Must be protected from

Fungus and pests

Fatigue Strength is dependent on mix

of components

Strength is dependent on site

conditions
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Compressive strength of fly ash concrete and plain concrete over time.
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has the highest strength to weight ratio of all metals. It

is lightweight at 283pcf; it has only 58% of the weight of
steel. Another advantage to titanium is its low coefficient of
thermal expansion. At 4.78uin/in°F, the coefficient of thermal
expansion of titanium alloy is only half that of steel, one-third
of aluminum and equivalent to glass or concrete. Its thermal
conductivity of 10 Btu/hr.-°F/ft. is very low at one-tenth of
aluminum. Titanium is an innoxious metal meaning it does
not interact with humans. It is non-magnetic and has a high
melting point.

The disadvantage of titanium is that it has a low Modulus
of Elasticity of about E = 16,000ksi depending on the alloy
used, compared to E = 29,000ksi for steel. In identical cross-
sections and loads, deflection in titanium will be 29/16 or
1.81 times the deflection in steel. This indicates that titanium
is best used in vector-active systems where loads are
transferred by compression and tension and flexure is avoided

or minimized.

35.2.2 Aluminum

Aluminum is a lightweight metal suitable for light loads.

Most often used as metal studs or facade panels, aluminum
has the advantage of being lightweight and easily extruded.
Although aluminum doesn’t rust in the sense that it does

not contain iron, it does oxidize, especially when in contact
with saltwater. Other disadvantages include a high thermal
conductivity. Aluminum transfers heat at roughly three times
the rate of steel. Aluminum has a low melting point at 1220°F,
compared to steel at 2460°F or titanium at 3000°F. It also
has a rate of electrical conductivity six times that of steel,
and nearly double the coefficient of linear expansion. But the
most significant disadvantage of aluminum from a structural
point of view is its low Modulus of Elasticity at E = 10,000ksi.
This means that an aluminum beam would have nearly three
times the defection of a steel beam with a comparable cross-
section and load scenario. Another significant disadvantage
is aluminum'’s high embodied energy. Although aluminum is
an element, it does not occur naturally in nature. Like steel,

it must be manufactured; but the production of aluminum
involves roughly four times the embodied energy of the

production of steel. Aluminum is expensive, generally about
three times the cost of steel. It does not weld easily and

it has high galvanic action. Galvanic action is a corrosion
that occurs when two different metals are in contact. And
although the galvanic action between aluminum and steel

is not as high as between steel and brass, for example, it is
significant enough to require the use of gaskets to prevent
galvanic action.

35.3 Plant-based Materials
35.3.1 Laminated Bamboo

Raw bamboo has been used as a structural material for
centuries. Traditionally, the bamboo pole is used intact and
tethered to adjacent poles to create a structure. Mechanical
connections are difficult because of the hollow cylindrical
shape of the bamboo pole and because of the variability of
pole diameters and wall thicknesses.

Bamboo is a rapidly renewable material with a 3-5 year
regrowth rate compared to a 20-25 year renew rate for
timber. Bamboo yields measured in Ib/acre are four times
that of wood (Lugt 2006). But perhaps the most significant
advantage bamboo has over timber is found in its structural
properties. All allowable stresses except for compression
parallel to the grain are greater for raw bamboo than those
of most wood species. This information indicates that
raw bamboo poles are a good material for beams, but not
necessarily for columns or other compression members such
as top struts in a horizontal truss.

If bamboo is laminated to form structural components, the
material properties become significantly better than those
of laminated wood. Laminated bamboo (LBL) is ten times
stronger in tension and six times stronger in compression
and flexure than laminated timber (LVL). And yet, laminated
bamboo is only recently becoming a material of interest to
designers. Other advantages of LBL are that it has 15% less
embodied energy in processing than wood and is 20% more
stable than wood in moisture and temperature changes.



35.3.2 Paper

Before Shigeru Ban became famous for his paper tube
houses, Martin Pawley built a house of recycled materials
with a paper tube structure at Rensselaer Polytechnic
Institute in 1976. A 4” inside diameter paper tube has an
ultimate bending stress of 1727psi at 10% moisture content,
but paper tubes must be protected from moisture with a

full coverage of a waterproof coating or strength diminishes
rapidly.

35.4 Plastics

Plastics are man-made materials, usually a petroleum
derivative. Biodegradable plastics are obviously not for
structural use. There are many types of plastics with varied
strengths and mechanical properties. In choosing a plastic,
consider not only the compressive and flexural strength, but
also ductility and fatigue. While plastics have the advantage of
low maintenance, they also have many disadvantages such as
high embodied energy and ultraviolet deterioration. Plastics
are not a renewable resource and many are not recyclable. If
choosing a recyclable plastic, note that mechanical properties
vary depending on the recycled content. If using recycled
plastic lumber, look for single polymer made from high
density polyethylene (HDPE).

35.5 Carbon Fiber

Carbon fiber reinforced polymer (CFRP) is a composite that

is extremely lightweight. At 95pcf, it is less than one-fifth

the density of steel. Carbon fiber is a tensile material with an
ultimate tensile strength of 602ksi and a modulus of elasticity
of 33,500ksi. Carbon fiber reinforced polymers utilize the high
tensile strength of carbon fiber and combine it with a material
high in compression. For example, a CFRP such as HexPly
M49 has a tensile yield strength of 107ksi, compressive yield
strength of 88.5ksi and a flexural yield strength of 134ksi.

ALTERNATE STRUCTURAL MATERIALS

Carbon fibers may be used as tension reinforcement in
concrete to increase the flexural strength of a beam, but the
amount of fibers used, the orientation and the quality of the
bond influences the results.

35.6 Glass

Most glass products including glass block are self-supporting
but not considered structural elements. Glass facade panels
can transfer wind loads to structural support systems.
Structural glass floor systems utilize glass as a decking
material with a span up to 48".
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Conclusions

Things to remember:

1.

Structural design and analysis are based on Newton'’s
Third Law of Motion. Remember that all forces and
moments must be in balance in a static system.

Design the structural system from the relationships
between spatial, contextual and conceptual patterns.
Choose the materials for the system. Every material has
inherent strengths. Identify the materials that have the
strengths necessary for the chosen structural system.

Build redundancy into the structural system.

Follow all building codes. Remember this does not mean
designing for minimum loads. Anticipate load conditions
one hundred years from now and design for the worst
case scenario.

Make sustainable choices in materials and methods.

Be true to your design intent. Do not allow your design to
be compromised by a lack of structural understanding and
creativity.
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Al: General Information
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Table A1.3: Materials properties of selected metal materials

MATERIAL PROPERTIES FOR SELECTED MATERIALS

MATERIAL Fy F, Fy Fc E Density
A36 Steel 21.6 ksi [14.4ksi|21.6 ksi |21.6 ksi 29,000 ksi 0.49Kcf
A992 Steel 30 ksi 20 ksi |30 ksi 30 ksi 29,000 ksi 0.49 kcf
Aluminum 40 ksi 30 ksi |40 ksi 40 ksi 10,000 ksi 0.168 kef
Titanium Alloy 138 ksi |80 ksi [138ksi [141 ksi |[16,500 ksi 0.276 kef
Douglas Fir Larch 1,200 psi |85 psi |700 psi |1,000 psi|1,700,000 psi [35pcf
Southern Pine 1,500 psi |90 psi  [900 psi |1,000 psi|1,600,000 psi [35pcf
Glu-lams 2,400 psi |165 psi | 1,100 psi|1,650 psi|1,800,000 psi |45pcft

A2: Wood Design

Table A2.1: Section properties for dimensional lumber

NOMINAL
SIZE
23
2X4
2X6
2X8
2X10
2X12
oX14
3X4
3X6
3x8
3X10 |
| ax12 |
axi4
3ax16
4%4
4X6
4%8
4X10
4x12
4x14
4x16

b

15
15
15
15
15
15
1.5
25
25
25
25
25
25
25
3.5
35
35
35
35
35
35

DIMENSIONAL LUMBER SECTION PROPERTIES
DIMENSIONAL LUMBER

d A Sx 1% Sy
2.50 3.75 1.56 1.95 0.94
3.50 5.25 3.06 5.36 1.31
5.50 8.25 7.56 20.80 2.06
7.25 10.88 13.14 47.63 2.72
9.25 13.88 21.39 98.93 3.47
11.25 16.88 31.64 177.98 4.22
13.25 19.88 43.89 290.78 4.97
3.50 8.75 5.10 8.93 3.65
5.50 13.75 12.60 34.66 5.73
7.25 18.13 21.90 79.39 7.55
9.25 23.13 35.65 164.89 9.64

1125 2813 | 5273 29663 | 1172

| 1325 33.13 73.15 484.63 13.80
15.25 38.13 96.90 738.87 15.89
3.50 12.25 7.15 1251 7.15
5.50 19.25 17.65 48.53 11.23
7.25 25.38 30.66 111.15 14.80
9.25 32.38 49.91 230.84 18.89
11.25 39.38 73.83 415.28 22.97
13.25 46.38 102.41 678.48 27.05
15.25 53.38 13566 103442 | 31.14

Western Species . So. Pine
ly Cfu CeforFy,  CgforF, | CeforF,  CgforFb
0.70 1.00 1.50 1.50 1.15 1.0
0.98 1.10 1.50 1.50 1.15 1.0
1.55 1.15 1.30 1.30 1.20 1.0
2.04 1.15 1.20 1.20 1.05 1.0
2.60 1.20 1.10 1.10 1.00 1.0
3.16 1.20 1.00 1.00 1.00 1.0
3.73 1.20 0.90 0.90 0.90 1.0
456 1.10 150 1.50 1.15 1.0
7.16 1.15 1.30 1.30 1.20 1.0
9.44 1.15 1.20 1.20 1.05 1.0
| 1204 1.20 1.10 1.10 100 1.0
1465 1.20 1.00 1.00 100 1.0
17.25 1.20 0.90 0.90 0.90 1.0
19.86 1.20 0.90 0.90 0.90 1.0
12.51 1.00 1.50 1.50 1.15 1.0
19.65 1.05 1.30 1.30 1.10 1.0
25.90 1.05 1.30 1.20 1.05 11
33.05 1.10 1.20 1.10 1.00 1.1
40.20 1.10 1.10 1.00 1.00 0.9
47.34 1.10 1.00 0.90 0.90 0.9
54.49 1.10 1.00 0.90 0.90 0.9
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Table A2.2: Material properties for selected dimensional lumber species, courtesy American Wood Council, Leesburg, VA
Design values in pounds per square inch (psi)
Species and Size Tension Shear Compre§sion Compression Spacific
commercial grade classification . parailgl to paraligl to perpendlf:ular parallgl to - gravity
Bending grain grain | tograin grain  Modulus of Elasticity
Fb Ft Fv F-:: Fc E Ernin G
Douglas Fir-Larch
Select Structural 1,500 1,000 180 625 1,700 1,900,000 @ 690,000
No. 1 & Btr 1,200 800 180 | 625 1,550 1,800,000 660,000
No. 1 2"&wider 1,000 675 180 | 625 1,500 1,700,000 620,000
No. 2 900 575 180 625 1350 1,600,000 580,000
No. 3 525 325 180 625 775 1,400,000 | 510,000 0.50
Stud 2" & wider 700 450 180 | 625 850 1,400,000 @ 510,000
Construction 1,000 650 180 | 625 | 1,650 1,500,000 @ 550,000
Standard 2" - 4" wide 575 375 180 | 625 1,400 1,400,000 510,000
Utility 275 175 180 625 900 1,300,000 470,000
Hem-Fir
Select Structural 1,400 925 150 | 405 1,500 1,600,000 580,000
No. 1 & Bir 1,100 725 150 405 1,350 1,500,000 550,000
No. 1 2" & wider 975 625 150 | 405 1,350 1,500,000 550,000
No. 2 850 525 150 405 1,300 1,300,000 470,000
No. 3 500 300 150 | 405 725 1,200,000 440,000 0.43
Stud 2" & wider 675 400 150 | 405 | 800 1,200,000 | 440,000
Construction 975 600 150 | 405 1,550 1,300,000 | 470,000
Standard 2" — 4" wide 550 325 150 | 405 1,300 1,200,000 @ 440,000
Utility 250 150 150 405 850 1,100,000 @ 400,000
Northern Red Oak
Select Structural 1,400 800 220 | 885 1,150 1,400,000 | 510,000
No. 1 o g wider: |—1900. | 575 220 | 885 925 1,400,000 510,000
No. 2 975 575 220 | 885 725 1,300,000 | 470,000
No. 3 550 325 220 | 885 425 1,200,000 & 440,000 0.68
Stud 2" & wider 750 450 220 | 885 450 1,200,000 440,000
Construction 1,100 650 220 | 885 975 1,200,000 & 440,000
Standard 2" - 4" wide 625 350 220 | 885 750 1,100,000 = 400,000
Utility 300 175 220 885 500 1,000,000 @ 370,000
Red Maple
Select Structural 1,300 750 210 615 1,100 1,700,000 = 620,000
No. 1 2" & wider 925 550 210 | 615 900 1,600,000 580,000
No. 2 900 525 210 | 615 700 1,500,000 @ 550,000
No. 3 525 300 210 | 615 400 1,300,000 | 470,000 o
Stud 2" & wider 700 425 210 | 615 450 1,300,000 @ 470,000 ’
Construction 1,050 600 210 | 615 925 1,400,000 510,000
Standard 2" - 4" wide 575 325 210 | 615 725 1,300,000 | 470,000
Utility 275 150 210 615 475 1,200,000 440,000
Redwood
Clear Structural 1,750 1,000 160 | 650 1,850 1,400,000 510,000 0.44
Select Structural 1,350 800 160 | 650 1,500 1,400,000 510,000 0.44
Select Structural, open 1,100 625 160 | 425 1,100 1,100,000 400,000  0.37
No. 1 975 575 160 | 650 1,200 1,300,000 470,000 0.44
No. 1, open grain 2" & wider 775 450 160 | 425 900 1,100,000 @ 400,000 0.37
No. 2 925 525 160 | 650 | 950 1,200,000 | 440,000 0.44
No. 2, open grain 725 425 160 | 425 700 1,000,000 | 370,000 0.37
No. 3 525 300 160 | 650 550 1,100,000 | 400,000 0.44
No. 3, open grain 425 250 160 | 425 400 900,000 | 330,000 0.37
Stud 2" & wider 575 325 160 | 425 | 450 900,000 | 330,000 0.44
Construction 825 475 160 | 425 925 900,000 | 330,000 0.44
Standard 2" — 4" wide 450 275 160 | 425 725 900,000 | 330,000 0.44
Utility 225 125 160 425 475 800,000 | 290,000 0.44
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Table A2.4: Timber section properties

. SEGTION PROPERTIES FOR TIMBER
Nos“fézAL b d A Sx Ix Sy ly C: for Fb
5X5 4.50 450 20.25 1519 | 3447 1519 | 3417 1.00
BX6 5.50 5.50 3025 | 2773 | 7626 | 2773 | 76.26 1.00
6X8 5.50 7.25 30.88 | 4818 | 17466 | 3655 | 10052 1.00
6X10 5.50 9.25 50.88 | 78.43 | 36275 | 4664 | 128.25 1.00
6X12 5.50 1125 | 61.88 | 11602 65259 | 5672 | 155.98 1.00
6X14 5.50 1325 | 7288 | 16093 106618 | 66.80 | 183.71 0.99
6X16 5.50 1500 | 8250 | 206.25  1546.88 | 7563 | 207.97 | 0.98
6X18 5.50 1700 | 9350 | 26492 225179 | 8571 | 23570 | 096
6X20 5.50 19.00 | 10450 | 33092 | 314371 | 9579 | 26343 | 095
6X22 5.50 2100 | 11550 | 404.25 | 424463 | 10588  291.16 | 0.94
6X24 5.50 2300 | 12650 @ 48492  5576.54 @ 11596 | 318.89 | 093
8X8 7.25 7.25 5256 | 6351 | 23023 | 6351 | 23023 1.00
8X10 7.25 9.25 67.06 | 10339 47817 | 8103 | 293.75 1.00

8X12 7.25 11.25 | 8156 | 152.93 | 86023 | 98.55 | 357.26 1.00
8X14 7.25 13.25 96.06 212.14 1405.41 116.08 420.77 0.99
8X16 7.05 1500 | 108.75 | 271.88 | 2039.06 | 131.41 | 47635 | 098
8X18 7.25 1700 | 12325 34921 296827 | 14893 | 539.86 | 0.96
8X20 7.05 1900 | 137.75 | 436.21 | 414398 | 16645 @ 603.37 | 095
8X22 7.25 2100 | 15225 @ 532.88 559519 @ 18397 @ 666.89 |  0.94
8X24 7.25 2300 | 16675  639.21 | 735090 | 201.49 | 73040 |  0.93
10X10 9.25 9.25 8556 | 131.91 61008 | 13191 | 610.08 1.00
10X12 9.25 1125 | 10406 | 19512 | 1097.53 | 16043 | 741.99 1.00
10X14 9.05 1325 | 12256 | 270.66 179311 @ 18895  873.90 | 0.99
10X16 9.25 1500 | 13875 | 346.88 | 2601.56 | 21391 | 98932 | 098
 1ox18 9.05 1700 | 15725 | 44554 378710 | 24243 | 112123 | 0.6
10X20 9.25 1900 | 17575 55654 | 5287.15 @ 27095 | 125313 | 095
10X22 9.25 2100 | 19425  679.88 | 7138.60 @ 29947 | 138504 | 0.94
10X24 9.25 2300 | 21275 | 81554 | 9378.73 | 327.99 | 151695 | 093
12X12 | 11.25 1125 | 12656 | 237.30 | 1334.84 | 237.30 | 133484 | 1.00
12X14 | 1125 | 1325 | 149.06 | 329.18 | 2180.82 @ 279.49 | 157214 | 099
12X16 | 1125 | 1500 | 16875 @ 42188 316406 @ 31641 @ 177979 | 0.98
12x18 | 11.25 1700 | 191.25 | 541.88 | 4605.94 | 35850 | 2017.09 | 0.96
12X20 | 1125 | 1900 21375 @ 676.88 643031 @ 40078 @ 225439 |  0.95
12x22 | 1125 | 2100 | 23625 @ 826.88 868219 @ 44297 @ 249170 @ 0.94
12X24 | 1125 | 2300 | 25875 @ 991.88 | 1140656 48516 @ 2729.00 |  0.93
14x14 | 1325 | 1325 | 17556 | 387.70 | 256852 | 387.70 | 256852 | 0.99
14X16 | 13.25 1500 | 19875  496.88 372656 | 438.91 | 290775 @ 098
14X18 | 18325 | 1700 | 22525 63821 | 5424.77 | 497.43 329545 | 0.9
14X20 | 1325 | 19.00 | 251.75 | 797.21 | 757348 | 55595 368315 | 0.95
14X22 | 1325 | 2100 | 27825 @ 97388 1022569  614.47 | 407086 |  0.94
14X24 | 1325 | 2300 | 30475 | 116821  13434.40 | 67299 445856 | 0.93
16X16 | 15.00 1500 | 22500 56250  4218.75 | 56250 | 421875 | 0.98
16X18 | 15.00 1700 | 25500 | 72250 614125 | 637.50 | 478125 | 0.96
16X20 | 15.00 19.00 | 28500 90250 | 8573.75 | 71250 | 5343.75 | 0.5
16X22 | 1500 | 21.00 | 31500 110250 | 11576.25 787.50 590625 | 0.9
16X24 | 1500 | 2300 | 34500 @ 132250 1520875 86250 @ 646875 |  0.93
18X18 | 17.00 1700 | 28900  818.83  6960.08 | 818.83  6960.08 @ 0.96
18X20 | 17.00 | 19.00 | 323.00 | 1022.83 971692 | 91517 | 777892 | 095
18X22 | 17.00 | 21.00 | 357.00 @ 1249.50 | 13119.75 | 1011.50 859775 |  0.94
1824 | 17.00 | 2300 | 391.00 1498.83 1723658  1107.83 & 941658 | 093 |
2020 | 19.00 19.00 | 361.00 114317  10860.08 114317  10860.08 | 0.5
20X22 | 19.00 | 2100 | 399.00 139650 @ 1466325 126350 1200325 |  0.94
20x24 | 1900 | 2300 | 437.00 | 167517 1926442  1383.83 | 1314642 | 093
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Table A2.5: Material properties for selected timber species, courtesy American Wood Council, Leesburg, VA

Design values in pounds per square inch (psi)
. ) . Tension Shear Compression | Compression
Species and commercial ?{ZE . parallelto  parallelto | perpendicular  parallel to
grade classification Bending grain grain to grain grain
P 5 3 | . | 4
Douglas Fir-Larch
Dense Select Structural ' 1,900 1,100 170 | 730 | 1,300
Select Structural 1,600 950 170 | 625 1,100
Dense No. 1 Beamsand = 1,550 775 170 | 730 1,100
No. 1 Stringers | 1,350 675 170 | 625 ' 925
No. 2 Dense 1,000 500 170 | 730 700
No. 2 | 875 @ 425 | 170 | 625 ' 600
Dense Select Structural 1,750 1,150 170 | 730 1,350
Select Structural 1,500 1,000 170 | 625 . 1,150
Dense No. 1 Postsand 1,400 950 = 170 | 730 = 1,200
No.1 Timbers 1,200 825 170 | 625 . 1,000
No. 2 Dense 850 550 170 | 730 | 825
No. 2 750 475 170 | 625 ' 700
Hem-Fir
Select Structural 1,300 750 140 405 925
No. 1 B:ams and | 050 525 140 | 405 | 750
No. 2 tringers | e75 350 140 | 405 500
Select Structural ' | 1,200 80 140 | 405 975
Posts and { i
No. 1 Timbers | 975 | 650 [ 140 | 405 850
No. 2 575 375 140 405 575
Northern Red Oak
Select Structural Beamsang | 1600 950 205 | 885 950
No. 1 stringers | 1350 675 205 885 800
No. 2 875 425 205 885 500
Select Structural ' 1,500 1,000 205 | 885 1,000
No. 1 i and | 1,200 800 205 885 ' 875
Timbers { {
No. 2 700 475 205 885 400
' Red Maple ' '
Select Structural 1,500 875 195 615 900
No.1 Beams i 1,250 625 195 | 615 ' 750
Stringers i ! | |
No. 2 800 400 195 615 475
Select Structural | 1,400 925 195 | 615 | 950
No.1 e A 1,150 750 195 | 615 ' 825
Timbers i i
No. 2 650 425 195 615 375
Redwood
Clear Structural 1,850 1,250 145 650 1,650
Select Structural 1,400 950 145 | 650 1,200
No. 1 5'x5"and | 1,200 800 145 | 650 1,050
No. 1, open grain larger 950 650 145 | 420 800
No. 2 1,000 525 145 650 900
No. 2, open grain 750 400 145 | 420 650
Southern Pine
Select Structural sighang | LS00 1000 165 | 375 950
No. 1 i 1,350 900 165 | 375 825
No. 2 850 550 165 375 525

Modulus of
Elasticity

E

11,700,000

1,600,000
1,700,000
1,600,000

1,400,000

1,300,000
1,700,000

1,600,000

1,700,000
1,600,000
1,400,000
1,300,000

1,300,000
1,300,000
1,100,000

1,300,000

1,300,000
1,100,000

11,300,000
1,300,000

1,000,000

11,300,000

1,300,000
1,000,000

1,500,000

11,500,000

1,200,000
1,500,000
1,500,000
1,500,000

1,300,000
1,300,000

11,300,000

1,000,000
1,100,000
900,000

1,500,000

11,500,000

1,200,000

E

min

Specific
gravity

G

620,000

580,000
620,000
580,000
510,000
470,000
620,000
580,000
620,000
580,000
510,000
470,000

470,000
470,000
400,000
470,000
470,000
400,000

470,000
470,000
370,000
470,000
470,000
370,000

550,000
550,000
440,000
550,000
550,000
440,000

470,000
470,000
470,000

370,000

400,000
330,000

550,000
550,000
440,000

0.50

0.43

0.68

0.58

0.44
0.44
0.44
0.37
0.44
0.37

0.55
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Table A2.6: Section properties for Southern Pine glu-lams
Depth Area X-X Axis Y-Y Axis Depth Area X-X Axis Y-Y Axis
d (in.) A% | 1% | s.n% [ rn) I, (n%) ]S, (in?) d(in.) A% T 1% | snd [ r(n) L(n% | s, (n?)
3-1/2 in. Width (r,=1.010in.) 8-1/2 in. Width cont'd. (r, = 2.454 in.)
51/2 19.25 48.53 17.65 1.588 19.65 11.23 35 3/4 303.9 32360 1811 10.32 1830 430.5
67/8 24.06 94.78 27.57 1.985 24.56 14.04 371/8 315.6 36240 1953 10.72 1900 447.0
81/4 28.88 163.8 39.70 2.382 29.48 16.84 381/2 327.3 40420 2100 11.11 1970 463.6
95/8 33.69 260.1 54.04 2.778 34.39 19.65 397/8 338.9 44910 2253 11.51 2041 480.2
11 38.50 388.2 70.58 3.175 39.30 22.46 411/4 350.6 49720 2411 11.91 2111 496.7
123/8 43.31 552.7 89.33 3.572 44.21 25.27 42 5/8 362.3 54860 2574 12.30 2181 513.3
13 3/4 48.13 758.2 110.3 3.969 49.13 28.07 44 374.0 60340 2743 12.70 2252 529.8
151/8 52.94 1009 133.4 4.366 54.04 30.88 45 3/8 384.7 66170 2917 13.10 2322 546.4
16 1/2 57.75 1310 158.8 4.763 58.95 33.69 46 3/4 397.4 72370 3096 13.50 2393 562.9
177/8 62.56 1666 186.4 5.160 63.87 36.49 48 1/8 409.1 78950 3281 13.89 2463 579.5
191/4 67.38 2081 216.2 5.557 68.78 39.30 491/2 420.8 85910 3471 14.29 2533 596.1
205/8 72.19 2559 248.1 5.954 73.69 42.11 507/8 432.4 93270 3667 14.69 2604 612.6
22 77.00 3106 282.3 6.351 78.60 44.92 52 1/4 4441 101000 3868 15.08 2674 629.2
23 3/8 81.81 3725 318.7 6.748 83.52 47.72 53 5/8 455.8 109200 4074 15.48 2744 645.7
5-1/2 in. Width (r,=1.588in.) 55 467.5 117800 4285 15.88 2815 662.3
67/8 37.81 148.9 43.33 1.985 95.32 34.66 56 3/8 479.2 126900 4502 16.27 2885 678.8
81/4 45.38 257.4 62.39 2.382 114.4 41.59 57 3/4 490.9 136400 4725 16.67 2955 695.4
95/8 52.94 408.7 84.92 2.778 133.4 48.53 591/8 502.6 146400 4952 17.07 3026 712.0
11 60.50 610.0 110.9 3.175 152.5 55.46 60 1/2 514.3 156900 5185 17.46 3096 728.5
12 3/8 68.06 868.6 140.4 3.572 171.6 62.32 10-1/2 in. Width (r,=3.0311in.)
13 3/4 75.63 1191 173.3 3.969 190.6 69.32 11 1155 1165 211.8 3.175 1061 202.1
151/8 83.19 1586 209.7 4.366 209.7 76.26 123/8 129.9 1658 268.0 3.572 1194 227.4
16 1/2 90.75 2059 249.6 4.763 228.8 83.19 13 3/4 144.4 2275 330.9 3.969 1326 252.7
177/8 98.31 2618 292.9 5.160 247.8 90.12 151/8 158.8 3028 400.3 4.366 1459 277.9
19 1/4 105.9 3269 339.7 5.557 266.9 97.05 161/2 173.3 3931 476.4 4.763 1592 303.2
205/8 113.4 4021 389.9 5.954 286.0 103.0 17.7/8 187.7 4997 559.2 5.160 1724 328.5
22 121.0 4880 443.7 6.351 305.0 110.9 191/4 202.1 6242 648.5 5.557 1857 353.7
233/8 128.6 5854 500.9 6.748 324.1 117.8 205/8 216.6 7677 744.4 5.954 1990 379.0
24 3/4 136.1 6949 561.5 7.145 343.1 124.8 22 231.0 9317 847.0 6.351 2122 404.3
261/8 143.7 8172 625.6 7.542 362.2 131.7 23 3/8 245.4 11180 956.2 6.748 2255 429.5
2712 151.3 9532 693.2 7.939 381.3 138.6 24 3/4 259.9 13270 1072.0 7.145 2388 454.8
287/8 158.8 11030 764.3 8.335 400.3 145.6 26 1/8 2743 15600 1194.0 7.542 2520 480.0
30 1/4 166.4 12690 838.8 8.732 419.4 152.5 271/2 288.8 18200 1323.0 7.939 2653 505.3
315/8 173.9 14500 916.8 9.129 438.5 159.4 287/8 303.2 21070 1459.0 8.335 2786 530.6
33 181.5 16470 998.3 9.526 457.5 166.4 30 1/4 317.6 24220 1601.0 8.732 2918 555.8
34 3/8 189.1 18620 1083 9.923 476.6 173.3 315/8 332.1 27680 1750.0 9.129 3051 581.1
35 3/4 196.6 20940 1172 10.32 495.7 180.2 33 346.5 31440 1906.0 9.526 3183 606.4
8-1/2 in. Width (ry = 2.454 in.) 34 3/8 360.9 35540 2068.0 9.923 3316 631.6
95/8 81.81 631.6 131.2 2.778 492.6 115.9 35 3/4 375.4 39980 2237.0 10.32 3449 656.9
11 93.50 942.8 171.4 3.175 562.9 132.5 371/8 389.8 44770 2412.0 10.72 3581 682.2
12 3/8 105.2 1342 216.9 3.572 633.3 149.0 381/2 404.3 49930 2594.0 11.11 3714 707.4
133/4 116.9 1841 267.8 3.969 703.7 165.6 397/8 418.7 55480 2783.0 11.51 3847 732.7
151/8 128.6 2451 324.1 4.366 7741 182.1 41 1/4 433.1 61420 2978.0 11.91 3979 758.0
16 1/2 140.3 3182 385.7 4.763 844.4 198.7 425/8 447.6 67760 3180.0 12.30 4112 783.2
177/8 151.9 4046 452.6 5.160 914.8 215.2 44 462.0 74540 3388.0 12.70 4245 808.5
19 1/4 163.6 5053 525.0 5.557 985.2 231.8 45 3/8 476.4 81740 3603.0 13.10 4377 833.8
20 5/8 175.3 6215 602.6 5.954 1056 248.4 46 3/4 490.9 89400 3825.0 13.50 4510 859.0
22 187.0 7542 685.7 6.351 1126 264.9 48 1/8 505.3 97530 4053.0 13.89 4643 884.3
23 3/8 198.7 9047 7741 6.748 1196 281.5 491/2 519.8 106100 4288.0 14.29 4775 909.6
24 3/4 2104 10740 867.8 7.145 1267 298.0 507/8 534.2 115200 4529.0 14.69 4908 934.8
26 1/8 2221 12630 966.9 7.542 1337 314.6 52 1/4 548.6 124800 4778.0 15.08 5040 960.1
27172 233.8 14730 1071 7.939 1407 331.1 53 5/8 563.1 134900 5032.0 15.48 5173 985.4
287/8 245.4 17050 1181 8.335 1478 347.7 55 577.5 145600 5294.0 15.88 5306 1011.0
30 1/4 2571 19610 1296 8.732 1548 364.3 56 3/8 591.9 156800 5562.0 16.27 5438 1036.0
315/8 268.8 22400 1417 9.129 1618 380.8 57 3/4 606.4 168500 5836.0 16.67 5571 1061.0
33 280.5 25460 1543 9.526 1689 397.4 59 1/8 620.8 180900 6118.0 17.07 5704 1086.0
34 3/8 292.2 28770 1674 9.923 1759 413.9 60 1/2 635.3 193800 6405.0 17.46 5836 1112.0
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Table A2.7: Section properties for Western species glu-lams

Depth Area X-X Axis Y-Y Axis Depth Area X-X Axis Y-Y Axis
d (in) A (in?) L(n® | 83 [ rin) L% ] S, @3 d (in.) A (in?) L% | S(n® [ rin) L, (n% | s, (3
3-1/2in. Width (r, = 1.0101n.) 10-3/4 in. Width (r, = 3.1031n.)
6 21.00 63.0 21.00 1.732 21.44 12.25 12 129.0 1548 258.0 3.464 1242.00 | 2311
712 26.25 123.0 32.81 2.165 26.80 15.31 131/2 145.1 2204 326.5 3.897 139800 | 260.0
9 31.50 212.6 47.25 2.598 32.16 18.38 15 161.3 3023 403.1 4.330 155300 | 288.9
101/2 36.75 337.6 64.31 3.031 37.52 21.44 16 1/2 177.4 4024 487.8 4763 170800 | 317.8
12 42.00 504.0 84.00 3.464 42.88 24.50 18 193.5 5225 580.5 5.196 1863.00 | 346.7
131/2 47.25 717.6 106.3 3.897 48.23 27.56 19172 209.6 6642 681.3 5629 | 2019.00 | 3756
15 52.50 984.4 131.3 4.330 53.59 30.63 21 2258 8296 790.1 6.062 | 217400 | 4045
161/2 57.75 1310 158.8 4.763 58.95 33.69 22172 241.9 10200 907.0 6495 | 2320.00 | 4334
18 63.00 1701 189.0 5.196 64.31 36.75 24 258.0 12380 1032 6928 | 2485.00 | 4623
191/2 68.25 2163 221.8 5.629 69.67 39.81 25 1/2 274.1 14850 1165 7.361 264000 | 491.1
21 73.50 2701 257.3 6.062 75.03 42.88 27 290.3 17630 1306 7794 | 279500 | 5200
22172 78.75 3322 295.3 6.495 80.39 45.94 28172 306.4 20740 1455 8227 | 205000 | 5489
24 84.00 4032 336.0 6.928 85.75 49.00 30 3225 24190 1613 8660 | 310600 | 577.8
5-1/2in. Width (r, = 1588 in.) 31172 3386 28000 1778 9093 | 3261.00 | 6067
6 33.00 99.0 33.00 1.732 83.19 30.25 33 354.8 32190 1951 9526 | 341600 | 6356
712 41.25 193.4 51.56 2.165 104.0 37.81 34172 370.9 36790 2133 9959 | 2572.00 | 6645
9 49.50 334.1 74.25 2508 124.8 45.38 36 387.0 41800 2320 1039 | 3727.00 | 6934
101/2 57.75 530.6 1014 3.031 145.6 52.94 37172 403.1 47240 2520 1083 | 3882.00 | 7223
12 66.00 792.0 132.0 3.464 166.4 60.50 39 419.3 53140 2725 1126 | 4037.00 | 7512
131/2 74.25 1128 167.1 3.897 187.2 68.06 40172 435.4 59510 2939 1169 | 4193.00 | 780.0
15 82.50 1547 206.3 4.330 208.0 75.63 42 4515 66370 3161 1212 | 4348.00 | 8089
161/2 90.75 2059 249.6 4763 228.8 8319 43172 467.6 73740 33%0 1256 | 4503.00 | 8378
18 99.00 2673 297.0 5.196 2496 90.75 45 483.8 81630 3628 1209 | 465000 | 866.7
191/2 107.3 3308 3486 5.629 2704 98.31 46172 499.9 90070 3874 1342 | 481400 | 8956
21 1155 4245 404.3 6.062 291.2 105.9 48 516.0 99070 4128 13.86 | 4969.00 | 9245
221/2 123.8 5221 464.1 6.495 312.0 113.4 49172 532.1 108700 4390 14.29 512400 | 9534
24 132.0 6336 528.0 6.928 3328 121.0 51 548.3 118800 4660 1472 5280.00 | 9823
251/2 140.3 7600 596.1 7.361 3535 1286 52 1/2 564.4 129600 4938 15.16 5435.00 1011
27 148.5 9021 668.3 7.794 3743 136.1 54 580.5 141100 5225 1559 | 5590.00 1040
281/2 156.8 10610 744.6 8.227 395.1 143.7 551/2 596.6 153100 5519 16.02 5746.00 1069
30 165.0 12380 825.0 8.660 4159 151.3 57 6128 165900 5821 1645 | 5001.00 1098
31172 1733 14330 909.6 9.093 4367 158.8 581/2 628.9 179300 6132 16.89 | 6056.00 1127
33 181.5 16470 998.3 9.526 4575 166.4 60 645.0 193500 6450 17.32 6211.00 1156
341/2 189.8 18820 1091 9.959 4783 173.9 12-1/4 in. Width (r, = 3.536 In.)
36 198.0 21380 1188 10.39 499.1 181.5 13172 165.40 2512 372.1 3.897 2068 337.6
8-3/4 in. Width (r, = 2526 n.) 15 183.80 3445 450.4 4.330 2208 375.2
9 78.75 531.6 118.1 2598 502.4 114.8 16 1/2 202.10 4586 555.8 4763 2528 412.7
101/2 91.88 844.1 160.8 3.031 586.2 134.0 18 22050 5954 661.5 5.196 2757 4502
12 105.0 1260 210.0 3.464 669.9 153.1 19172 238.90 7569 776.3 5.629 2987 487.7
131/2 1181 1794 265.8 3.807 753.7 172.3 21 257.30 9454 900.4 6.062 3217 525.2
15 131.3 2461 3281 4.330 837.4 191.4 22172 275.60 11630 1034 6.495 3447 562.7
161/2 144.4 3276 397.0 4.763 921.1 2105 24 294.00 14110 1176 6.928 3677 600.3
18 157.5 4253 4725 5.196 1005 2207 251/2 31240 16930 1328 7.361 3906 637.8
191/2 170.6 5407 554.5 5.629 1089 248.8 27 330.80 20090 1488 7.794 4136 675.3
21 183.8 6753 643.1 6.062 1172 268.0 281/2 349.10 23630 1658 8.027 4366 712.8
221/2 196.9 8306 738.3 6.495 1256 287.1 30 367.50 27560 1838 8.660 459 7503
24 210.0 10080 840.0 6.928 1340 306.3 31172 385.90 31910 2026 9.003 4825 787.8
251/2 223.1 12090 948.3 7.361 1424 325.4 33 404.30 36690 2223 9.526 5055 825.3
27 236.3 14350 1063 7.794 1507 3445 34172 422.60 41920 2430 9.959 5285 862.9
281/2 249.4 16880 1185 8.227 1591 363.7 3% 441.00 47630 2646 10.39 5515 900.4
30 262.5 19690 1313 8.660 1675 382.8 37172 459.40 53830 2871 10.83 5745 937.9
31172 275.6 22790 1447 9.003 1759 402.0 39 477.80 60550 3105 11.26 5974 975.4
33 288.8 26200 1588 9526 1842 4211 40172 469.10 67810 3349 11.69 6204 1013
34172 301.9 29940 1736 9.959 1926 440.2 42 514.50 75630 3602 12.12 6434 1050
3% 315.0 34020 1890 10.39 2010 459.4 43172 532.90 84030 3863 1256 6664 1088
37172 328.1 38450 2051 10.83 2094 4785 45 551.30 93020 4134 12.99 6893 1125
39 341.3 43250 2218 11.26 2177 4977 46172 569.60 | 102600 4415 13.42 7123 1163
40172 354.4 48440 2392 11.69 2261 516.8 48 588.00 | 112900 4704 13.86 7353 1201
42 367.5 54020 2573 1212 2345 535.9 49172 60640 | 123800 5003 14.29 7583 1238
431/2 380.6 60020 2760 12.66 2428 5565.1 51 624.80 | 135400 5310 1472 7813 1276
45 393.8 66450 2953 12.99 2512 574.2 521/2 643.10 | 147700 5627 15.16 8042 1313
46172 406.9 73310 3153 13.42 2506 593.4 54 66150 | 160700 5954 15.59 8272 1351
48 420.0 80640 3360 13.86 2680 6125 551/2 67990 | 174500 6289 16.02 8502 1388
49172 4331 88440 3573 1429 2763 631.6 57 698.30 | 189100 6633 16.45 8732 1426
51 446.3 96720 3793 1472 2847 650.8 581/2 71660 | 204400 6987 16.89 8962 1463
521/2 459.4 105500 4020 15.16 2931 669.9 60 73500 | 220500 7350 17.32 9191 1501
54 4725 114800 4253 1559 3015 689.1
551/2 485.6 124700 4492 16.02 3098 708.2
57 498.8 135000 4738 16.45 3182 727.3
581/2 511.9 146000 4991 16.89 3266 746.5
60 525.0 157500 5250 17.32 3350 765.6
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A-3 Steel Design

Table A3.1: W14 Section properties

A
size | area (in’)
W14X730 | 215.00 |
W14X655 = 196.00 |
W14X605 = 178.00 |
W14X550 = 162.00 |
W14X500 = 147.00 |
W14X455 = 134.00 |
W14X426  125.00 |
W14X398 = 117.00
W14X370  109.00 |
W14X342 | 101.00
W14X311 | 91.40
W14X283  83.30
W14X257  75.60
W14X233 | 68.50
W14X211 | 62.00
W14X193  56.80
W14X176 | 51.80
W14X159  46.70
W14X145  42.70
W14X132 | 38.30
W14X120 = 35.30
W14X109 | 32.00
W14X99 = 29.10
W14X90 = 26.50
W14X82 | 24.00
W14X74 | 21.80
W1i4X68 | 20.00
Wi4xe1 | 17.90
W14X53 | 15.60
W14X48 | 14.10
W14X43 | 1260
W14X38 | 11.20
W14X34 | 10.00
W14X30 | 8.90
Wi4x26 | 7.70
Wi4x22 | 6.50

depth
(in)
22.40
21.60
20.90
20.20
19.60
19.00
18.70

| 18.30

17.90
17.50

[ 17.10

16.70

| 16.40
| 16.00

15.70

| 15.50

15.20

| 15.00
| 14.80

14.70

| 14.50
| 14.30
| 14.20
| 14.00
| 14.30
| 14.20
| 14.00

13.90

| 13.90

13.80

| 13.70

14.10

| 14.00

13.80

| 13.90
| 13.80

tw
web
thickness
(in)
3.070
2.830
2.600
2.380
2.190
2.020
1.880
1.770
1.660
1.540
1.410
1.290
1.180
1.070
0.980
0.890
0.830
0.745
0.680
0.645
0.590
0.525
0.485
0.440
0.510
0.450
0.415
0.375
0.370
0.340
0.305
0.310
0.285
0.270
0.255
0.230

b,
flange
width
(in)
17.90

| 17.70
| 17.40
1720

17.00

| 16.80

16.70

| 16.60

16.50

| 16.40
| 16.20

16.20

| 16.00
| 1590

15.80

| 1870

15.70

| 15.60

15.50

| 1470

14.70

| 14.60

14.60

| 1450

10.10

| 10.10
| 10.00

10.00
8.10
8.00
8.00
6.80
6.80
6.70
5.03
5.00

|
flange
thickness
(in)
4.910
4.520
4.160
3.820
3.500
3.210
3.040
2.850
2.660
2.470
2.260
2.070
1.890
1.720
1.560
1.440
1.310
1.190
1.090
1.030
0.940
0.860
0.780
0.710
0.855
0.785
0.720
0.645
0.660
0.595
0.530
0.515
0.455
0.385
0.420
0.335

Ix (in®)

14,300 |
12,400 |
10,800 |

9,430
8,210
7,190
6,600
6,000
5,440
4,900
4,330
3,840
3,400
3,010
2,660
2,400
2,140
1,900
1,710
1,530
1,380
1,240
1,110
999
881
795
722
640
541
484
428
385
340
291
245
199

ROLLED STEEL SECTION PROPERTIES

Sx(in®y | m(in) | Zx(in®) | ly(in*) | Sy(in®) | ry(in)
1,280.0 | 817 | 1,660.00 | 4,720 | 527.0 | 4.69
1,150.0 | 7.98 | 1,480.00 | 4,170 4720 | 462
1,0400 | 7.80 | 1,320.00 | 3,680 | 423.0 | 455
931.0 | 763 1,180.00 | 3,250 | 378.0 | 4.49
838.0 | 748  1,050.00 | 2,880 3390 @ 443
756.0 | 7.33 93600 | 2,560 3040 | 4.38
7060 | 726 @ 869.00 | 2,360 | 283.0 | 4.34
656.0 | 7.16 | 801.00 | 2170 | 2620 | 4.31
607.0 | 7.07 @ 73600 | 1990 @ 2410 | 427
558.0 | 6.98 @ 672.00 | 1,810 @ 2210 | 4.24
506.0 | 6.88 @ 603.00 | 1,610 1990 | 4.20
459.0 | 679 @ 54200 | 1,440 1790 | 4.17
4150 | 671 | 487.00 | 1,290 | 1610 | 4.13
3750 | 6.63 | 436.00 | 1,150 | 1450 | 4.10
3380 | 655 @ 390.00 | 1,030 | 1300 | 4.07
3100 | 650 | 35500 | 931 | 119.0 | 4.05
281.0 | 643 @ 32000 | 838 | 1070 @ 4.02
2540 | 6.38 @ 287.00 | 748 | 962 | 4.00
2320 | 633 | 260.00 | 677 | 873 | 3.8
209.0 | 628 23400 @ 548 745 | 376
190.0 | 624 @ 21200 | 495 @ 675 | 3.74
173.0 | 622 | 19200 | 447 | 612 | 373
1570 | 617 | 173.00 | 402 | 552 | 3.71
1430 | 614 @ 15700 | 362 | 499 | 3.70
1230 | 6.05 @ 138.00 | 148 | 203 | 248
1120 | 604 | 12600 | 134 | 266 | 2.48

1030 | 601 | 11500 | 121 | 242 | 246
921 | 588 | 10200 | 107 | 215 | 245
778 | 589 | 8710 | 58 | 143 | 192
702 | 585 | 7840 | 51 | 128 | 191
626 | 582 | 6960 | 45 | 113 | 1.89
546 | 587 | 6150 | 27 | 79 | 155
486 | 583 @ 5460 | 23 | 69 | 153
420 | 573 | 4730 | 20 | 58 149
353 | 565 4020 | 9 | 36 | 355
290 | 554 33.20 7 2.8 1.04

Zy (in%)

816 |

730
652
583

522 |

468

434 |

402
370
338
304
274
246
221
198
180

Tis
5.68
.57
5.46
5.36
5.26
517
5.1
5.08
5.00
4.94
4.87
4.81
475
4.69
4.64
459
4.55
4.51
4.47
4.23
4.20
417
4,14
411
2.85
2.82
2.80
2.78
2.22
2.20
2.18
1.82
1.80
1.0
1.31
1.27




A-4 Concrete Design

Table A4.1: Rebar diameters and areas

Rebar Size
Diameter (in)
Number of

Bars

1

O oo~NoOO A wWN

b
o

Table A4.2: Maximum number of bars in one row

Rebar Size 3
Diameter (in) 0.375
Number of
Bars per
layer

2 55
3 7.0
4 8.5
5 10.0
6 11.0
7 12.5
8 14.0

3
0.375

0.110
0.221
0.331
0.442
0.552
0.663
0.773
0.884
0.994
1.104

4
0.500

0.196
0.393
0.589
0.785
0.982
1.178
1.374
1.571
1.767
1.963

4
0.500

6.0
7.5
9.0
10.5
12.0
13.5
15.0

5
0.625

0.307
0.614
0.920
1.227
1.534
1.841
2.148
2.454
2.761
3.068

5
0.625

6.0
8.0
9.5
11.0
12.5
14.5
16.0

6 7 8
0.750 0.875 1.000

Area of Bars (in®)

0.442 0.601 0.785
0.884 1.203 1.571
1.325 1.804 2.356
1.767 2.405 3.142
2.209 3.007 3.927
2.651 3.608 4.712
3.093 4.209 5.498
3.534 4.811 6.283
3.976 5.412 7.069
4.418 6.013 7.854

6 I 8
0.750 0.875 1.000

Minimum Beam Width (in.)

6.5 6.5 7.0
8.0 8.5 9.0
10.0 10.5 11.0
11.5 12.5 13.0
13.5 14.0 15.0
15.0 16.0 17.0
17.0 18.0 19.0

9
1.128

0.999
1.999
2.998
3.997
4.997
5.996
6.995
7.995
8.994
9.993

9
1.128

7.0
9.5
11.5
13.5
15.5
18.0
20.0

10
1.270

1.267
2.534
3.800
5.067
6.334
7.601
8.867
10.134
11.401
12.668

10
1.270

7.5
10.0
12.0
14.5
16.5
19.0
21.0

APPENDIX

11
1.410

1.561
3.123
4.684
6.246
7.807
9.369
10.930
12.492
14.053
15.614

11
1.410

8.0
10.0
12.5
15.0
1.9
20.0
22.0

31
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Table A4.3:

Minimum and maximum number of longitudinal bars for concrete columns

Spiral Reinforcement
Bar Number

7 B 9 10 1
4 -12] 4 1114 - 1044 -10]4 - 94 - 714 - 5
5 -13]5 - 11]5 - 12} 5 - 11| 4 - 10} 4 - 84 - 6
6 - 165 - 1205 - 13} 5 - 1205 - 11}5 - 856 - 7
6 - 16] 6 13] 6 - 145 - 13| 5 - 12} 5 - 11} 5 - 8
7 18] 6 150 6 - 166 - 15| 6 - 14} 6 - 125 - 10
8 19} 7 - 16| 6 - 17]J6 - 16] 6 - 1506 - 14] 6 - 11
9 -21]7 1707 - 187 - 17} 7 - 16] 6 - 15} 6 - 13
10 228-187v207-18|?v177~16? 14
11 - 241 8 2008 - 218 - 2007 - 187 -17}7 - 16
12 - 251 9 218—228—218—208—18'3—1?
13 - 271 9 22019 - 23)9 -2208 - 21]8 - 208 - 18
14 - 2810 - 23] 9 - 2509 - 23] 96 - 22]9 - 2118 - 20
15 - 3011 - 25Q10 - 26} 9 2509 - 23]9 - 22018 - 21
16 - 3112 - 26410 - 27§10 - 26410 - 24} 6 - 23] 9 - 22
18 - 3313 - 27411 - 28410 - 27410 - 26]10 - 24310 - 23
19 - 34113 - 2811 - 30411 - 28] 11 - 2710 - 25]10 - 24
21 - 3614 - 3012 - 3111 - 30011 - 28]11 - 26]11 - 25
22 - 37|15 - 31)12 - 33412 - 3111 - 29411 - 28]11 - 26
24 - 38]116 3212—3412—3212~3012—29|11~2?
25 - 40418 - 33|13 - 356413 - 33)12 - 32]12 - 30412 - 28
27 - 41419 - 35)14 - 37413 - 3513 - 33|12 - 31|12 - 29
28 - 43]20 - 36]15 - 38414 - 36]13 - 3413 - 32]13 - 30
30 - 44121 37116 - 39414 - 37]14 - 35013 - 33113 - 31
32 - 4622 3816-4114—3814—3614—34'13—33
34 - 4724 - 4017 - 42]15 - 40015 - 3814 - 35414 - 34

Minimum number of bars is based on 6" maximum clear distance between longitudinal bars and p. = 0.01

Diameter
or Side
width

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Minimum - Maximum number of longitudinal bars per single row

Tie Reinforcement
Bar Number
5 F i 8 9 10 1
8 -12] 8 12] 8 - 12} 8 - 814 814 - 814 - 4
8 - 16] 8 12] 8 - 12} 8 - 12| 8 - 8|8 - 8|8 - 8
B - 16] 8 16] 8 - 12} 8 - 12| 8 - 12] 8 - 8|8 - 8
8 - 20]8 16] 8 - 16] 8 - 16| 8 - 12} 8 - 128 - 8
12 - 20] 8 2008 - 16] 8 - 16] 8 1208 - 12 8 - 12
12 - 208 - 20| 8 - 20| 8 - 16] 8 - 16] 8 - 128 - 12
12 - 24]8 - 248 -20]8 -20]8 - 16] 8 - 168 - 12
12 - 24§12 - 24]12 - 24|12 - 20] 8 - 16] 8 - 16] 8 - 12
16 - 2812 - 24)12 - 24)12 - 2412 - 20412 - 16]12 - 16
16 - 2812 - 28]12 - 24]12 - 24]12 - 20]}12 - 20§12 - 16
16 - 32]12 - 28§12 - 2812 - 24]12 - 24}12 - 20412 - 16
20 - 32]12 - 32412 - 28]12 - 28]12 - 24412 - 2012 - 20
20 - 36]16 - 34412 - 32]12 - 28§12 - 24412 - 2012 - 20
24 - 3616 - 36412 - 3212 - 32§12 - 2812 - 2412 - 20
24 - 40416 - 36416 - 36113 - 32§12 - 28412 - 2412 - 20
24 - 40]20 - 40]16 - 36]16 - 32|16 - 28|16 - 24]12 - 24
28 - 44120 - 4016 - 36]16 - 36]16 - 32|16 - 28]16 - 24
28 - 44]20 - 4016 - 40]16 - 36]16 - 32]16 - 28]16 - 24
32 - 48]24 - 44116 - 40)16 - 40§16 - 3216 - 28)16 - 28
32 - 4B)|24 - 4416 - 44)16 - 40§16 - 3616 - 32]16 - 28
36 - b2]24 - 4820 - 44)]16 - 40§16 - 3616 - 32]16 - 28
36 - 52)28 - 4820 - 44]20 - 44]16 - 3616 - 32|16 - 28
40 - 52]28 - 52120 - 48120 - 44420 - 40416 - 3616 - 32
40 - 56]28 - 52|24 - 48]20 - 48]20 - 40j20 - 36]20 - 32
44 - 5628 - 5624 - 52]20 - 48]20 - 4420 - 36]20 - 32

Maximum number of bars is based on 1.5" clear or 1.5d, and p. < 0.08




Table A4.4: Areas of reinforcing bars per foot

APPENDIX

Spacing Bar Size
(in.) 3 4 5 6 7 8 9 10 11
3 0.44 0.79 1.23 1.77 2.41 3.14 4.00 ) *
35 0.38 0.67 1.05 1.51 2.06 2.69 3.43 4.34 »
4 0.33 0.59 0.92 1.3 1.80 2.36 3.00 3.80 4.68
4.5 0.29 0.52 0.82 1.18 1.60 2.09 2.66 3.38 4.16
5 0.27 0.47 0.74 1.06 1.44 1.88 2.40 3.04 3.75
55 0.24 0.43 0.67 0.96 1.31 1.71 2.18 2.76 3.41
6 0.22 0.39 0.61 0.88 1.20 157 2.00 2.53 3.12
6.5 0.20 0.36 0.57 0.82 1.11 1.45 1.84 2.34 2.88
Fg 0.19 0.34 0.53 0.76 1.03 1.35 1.71 e g 2.68
7.5 0.18 0.31 0.49 0.71 0.96 1.26 1.60 2.03 2.50
8 0.17 0.29 0.46 0.66 0.90 1.18 1.50 1.90 2.34
8.5 0.16 0.28 0.43 0.62 0.85 1.11 1.41 1.79 2.20
9 0.15 0.26 0.41 0.59 0.80 1.05 1.33 1.69 2.08
9.5 0.14 0.25 0.39 0.56 0.76 0.99 1.26 1.60 1.97
10 0.13 0.24 0.37 0.563 0.72 0.94 1.20 152 1.87
11 0.12 0.21 0.33 0.48 0.66 0.86 1.09 1.38 1.70
12 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56
13 0.10 0.18 0.28 0.41 0.56 0.72 0.92 127 1.44
14 0.09 0.17 0.26 0.38 0.52 0.67 0.86 1.09 1.34
15 0.09 0.16 0.25 0.35 0.48 0.63 0.80 1.01 1.25
16 0.08 0.15 0.23 0.33 0.45 0.59 0.75 0.95 1.17
17 0.08 0.14 0.22 0.31 0.42 0.55 0.71 0.89 1.10
18 0.07 0.13 0.20 0.29 0.40 0.52 0.67 0.84 1.04
* Minimum clear distance = 1.5dy, therefore the bar size cannot be placed at the spacing indicated.
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Interaction diagrams from ACI SP17(11) Vol. 1: The Reinforced Concrete Design Manual, reproduced with permission from the American

Concrete Institute
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