Angular 5
Projects

Learn to Build Single Page Web
Applications Using 70+ Projects

Mark Clow

Apress’



Angular 5 Projects

Learn to Build Single Page Web
Applications Using 70+ Projects

Mark Clow

Apress’



Angular 5 Projects

Mark Clow
Sandy Springs, Georgia, USA

ISBN-13 (pbk): 978-1-4842-3278-1 ISBN-13 (electronic): 978-1-4842-3279-8
https://doi.org/10.1007/978-1-4842-3279-8

Library of Congress Control Number: 2018934214

Copyright © 2018 by Mark Clow

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484232781. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper


https://doi.org/10.1007/978-1-4842-3279-8

Table of Contents

About the AUtROK ........ccuimmiemmsnmmenmsensn s an s n s snnnnns xvii
About the Technical REVIEWET .......ccsssusssassssassssnsssansssssssssssssssssassssnssssssssassssasssansssans Xix
AcKkNOWIEdgmMEeNTS .....ccuuuiissmmmmmmsssnnnmmssssssnnesssssnnsesssssnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns XXi
11T LT 1 Xxiii
Chapter 1: Web Applications and AJAX Communications ........ccusseemmensssssnssssssssnssnsns 1
Introducing the Client and SEIVET ... 2
Server-Side Web AppliCAtioNnS ... s 2
Client-Side Web AppliCations..........ccvvininnnncnrr e 3
StriKiNg @ BAlANCE .....cc.ooeiiirccere e e e e s 4
Creating Web Applications With AJAX ... 5
CAIIDACKS ....cveuererueerreereeesessesesseseses e se s e e ses e s e se e e s e e sse e se e e nse e nse e sr e e nenan e nae e neaneenns 6

(0] 0= 6
=010 T 7

HAL and HATEQAS ..ot ss s s e s snsnsns s 8
Monitoring Data TraffiC ...........ccoveeeerercrrrcrerere e 9
ANAIYZING JSON........oiierree s r s e e s s e p e e s e e nne e nrnnis 11
SUMIMAIY ...ttt e b b e e e e e R e e e R e e e e e e e Re e Re e nr e e e nrn e 13
Chapter 2: AngularJ$ vs. Angular (0ld vs. NeW) ...c.ccccerrrssssmnnmmsssssnssssssssssssssssnsnsanss 15
SEMANTIC VEISIONING ..evverrereierierere s se s sesses e s s sas e s e ssesaesa s e ssesaesaesessessesassassessesaesssssnsesseses 16
o020 11 S 17
Browsers Run JavaScript Using JavaScript ENQINeS........cccvveirinnnnennnnseninsesessesesesessnnes 18
Shims and POIYIlIS .......cccoeeeeereeeiissssssr s 18

iii



TABLE OF CONTENTS

71T ] RS 19
TrANSPIlALION ... —————————————— 19
Debugging and Map FileS........cccuveriiriinenirirsee s s s s s n e sae s sneas 20
Transpilation and the Angular CLITOO ........cccvcevvererenenseresesesseressessssessessesssssssessesssssssessesses 21

100 L= 21

Controllers and COMPONENTS.........cccceviiineresr s s e 22

Dependency Injection and Constructor INJECTION .........covcvveerereseresrrese e 22

Scope, Controllers, and COMPONENTS .......cocvverreerierierrerrresersersee e se s ssse e sessesssessessssssessesaessesnes 24

FOIMIS ot 24

TEMPIALES....c e ——————————————— 25

E 1114 7 25

Chapter 3: JavaSCript......cccccrursmmrmsssnmmsssnsmssansmsssnsesssnsesssnsesssnsesssnsesssnnesssnnssssnnssssnns 27

JavasScript ES5: Limitations and ShOrtCOmMINgs .........cccvverreererenreserreserese e 27
781 27
Fail FASt BERAVION ........cccoeecereerec e 28
Value/Object COMPANISON ........cccviriirirene s e e e 28
Lo 0] o1 o OSSPSR 30
JavaScript STHCt MOUE ... s 31

JavaScript ES6: Changes and IMProvements .......c..cocccvvnrnnsnseniesssnssessese s sessessesssssssessessens 33
0] 5] 0TS 34
Block Scoped Variables and FUNCHIONS..........ccccviinininn s 34
AITOW FUNCLIONS ....coviecericcrecs e s n e nansens 35
Functions Arguments Can Now Have Default Values........c.c.ccoverrenrnccnnenerescrneseseneneenes 36
Functions Now Accept Rest Parameters ..o sessese s sessesse s 36
String INtErPoIatioN........ccc i ———————————— 37
MOTUIBS ...t e e e e e R p e e s e nre e nrens 37
TYPESCIIDL. ... 39

SUIMIMAIY....eeeerteereee s e e s e s se e e e e e e e Re e e e e e e s e e e Re e e ra e ne e e e nrnnnns 40

iv



TABLE OF CONTENTS

Chapter 4: TYPeSCriPt ....cccviiimmrrmssennnrssssssnsessssssssesssssssssssssnnseessssnnssesssnnnnessssnnnnssss 41
SEONG TYPING .o s e e e e et e e e e Re e b et et e e e nne e 42
ClASSES ... eueerenereeererseesre s e s e s e e e e e s s e re e e e e e e R e s Re e e e e e e e e Re e R e e e e e e e Re e Re e e e e nnrennas 43
102 2 T LS 44
1T 10 PSS 46

INTErNAI MOGUIES...... oo e 46
EXTErNal MOAUIBS ..o s 47
Enumerations and GENENICS .........covrrrmmnmsissrinsssse s s s 48
L8] LY 1T £ 48
11T 0 S 49
GELLers @Nd SELEIS ......ccoecceeeecr e 51
701 52
PrIMITIVE TYPES ..ot s 52
L0 1= T B 0T 53
L0010 T 5] 3 53
LY L E N T 0L OSSOSO 54
TUPIE TYPES .ttt s s e e e b E e e b e e e R R e e e e R nnn 54
Compilation OPLIONS......ccco e ——————————— 54
SUMIMAIY ...ttt s e Re e e e e e s e e Re e s R e e e n e e nRe e ba e s e e e nnnsnnnns 55

Chapter 5: Visual Studio Code .......cccmmmrmmmmmmmmssssssssnsmmsssssssssssssssssssssssssssssssssssssssssss 37

Getting Started with Visual StUIO COUE ......covvrrrrierererrersere e sessere e ssssese e ses e ssessssessesseees 57
Seeing Files, Commands, and HOt KBYS .......ccvcererrrrneniennnensenesessssessessessesessessessessssessesseses 58
3 L (4 T0 T2 1o O 60
Introducing the INTEIfACE.........coevcrce e s n 62
0] ] 62
£ 21 (1 S 63
) TP 64
L0 S 64
(=] 50 1 66
SUIMIMAIY....eeeeeecreree e e e e e e e e s ae e e e e s e e e e nRe e s ee e se e e e e Re e e se e nennnnnnnnees 68



TABLE OF CONTENTS

Chapter 6: NOUE .......ucuuiemmrrmsssnnmmsssssnsssssssnsssessssnnssessssnnssessssnnsessssnnnnsssssnnnnsssssnnnnsssss 69
Setting Up and RUNNING NOGE........ccccerrierirerirnscre et se s 70
Node Package Manager (NPM) ... s s sss s s srsssssnssessesssssssesneens 71
Node Module Installation LEVEIS..........cceoeeerrnerrnenerierese s 72
Running npm install [Module Name] to Install the Module ........ccccooorvrvrnrnininrrrererennn, 72
Updating NOdE MOTUIES ........cocrieeeeererierree s rer e s s e s s s s s s e s s s s s e e sne s s 73
Uninstalling Node MOTUIES.........cccoerervrirne s res e s s e se s e s s s e s e s snesaesseens 73

The Package.jSON File .......cccciciiiinsirire e s e e nne 74
Updating PACKAQgE.JSON ........cccvereririiricre st se s b r s s e s s s be e e nne s 74
VErSion NUMDEIS ... e 74

The Folder N0de_MOAUIES ......cccciiiiieiiieiiinri s s ssnesneas 75
Editing the package.json File and Running npm install...........c.cccvivnnininiennsnsnnenssnsenenns 75
SUIMIMAIY.....eeeeeeecee e ae e e e e e e s ae e s e e e e e e e Re e sae e nen e e nRe e e se e nen e e nnnnees 76
Chapter 7: Starting to Code with the CLI ...........ccccsimmmmnissemnmnnsssssnmmsssssnmssssssnns 77
Create @ Start ProjECL.........coovcvierrreserse e s 78
Modify the STart PrOJECT.......ccoiv v s sa e s sr e 81
Start Project: COMPIIE EFTOFS......ccvvereverrerrerersessssersessessssessessessessssessessessssessessesssssssessessesssssssessees 82
Start Project: RUNTIME EFTOIS .....cucoiiccrrc sttt se s 82
File Watcher and WED SEIVET ..........co e 84
BOOTSTIAPPING. .. e e e e p e s 84
L= (IO I 0] 0110 OO 85
Ahead of Time COMPIlAtioN .........ccvevierininsrir e e nae s 86
S]] 14 7R 87
Chapter 8: Introducing COmMpoNents..........ccousemmsmmsssnmssansssnsssansssansssnsssansssansssasssansas 89
Anatomy of @ COMPONENL.........cccoeierrierrcerre e e s e e sa s 91
@Component ANNOLALION.........c.ccviirnrr s e 92
Component TEMPIALES ......ccccevreririerr e e e et 94
L] 01010 R TCT 1 S 96
COMPONENT ClASS.....erierrerrerersereresseserersessessssersessessssessessessessssessessessssessesssssessssessessessssensesaens 97
Introducing Data Binding ........ccccucviiinnininn s s s s 98



TABLE OF CONTENTS

Example: Data Binding in @ Login COMPONENT..........cccccvrerevnrenseserssessesesessssessessessssessessees 98
Example: Data Binding and Customer Data Input.........ccccooevvvriniennnensnsenenssessesesessessessens 99
One-Way Data BindiNg ..o st sss e s 100
One-Way Data Binding With {{and J}......ccooeerninninnrrnrrn v 100
One-Way Data Binding: Example Code components-eX100 ..........cccocvvevnienennnernsenessenenennes 100
One-Way Data Binding With [ @nd ] OF *......cccvvvierererrrierierersersesessesessese e sessessessessssessessees 102
One-Way Data Binding: Example Code components-eX200 ..........ccccvververerenrersersersssessersenes 103
One-Way Data Binding: Example Code components-eX250 ........ccccevverrererersersersersesessessenes 105
Two-Way Data Binding.........ccccrierinnnninirn s s se s s srs s e s s s s sne s 108
Two-Way Data Binding with [(@nd )] .......ccccrrriennnninirnsnsnsese s sessesseenes 108
Two-Way Data Binding: Example Code components-eX300 ..........ccoeeererrererenernserensesenenens 108
1< 0 = o L T 111
Event Handling: Example Code components-exX400..........ccvievrnnienennninsessesessssessessessssessessens 111
RO 113
L1134 OO 113
Chapter 9: Introducing Modules .......ccvusseenrrsssssnnsssssssnsssssssssssssssssnnsssssssnnssssssnnnnss 115
Different Types of MOUUIES .......ccceeriviirrs e s 115
AngulardS Module SYSTEM ... s 116
JAVASCHIPT MOTUIES.....ccueieicirire e e e s s e e 117
EXPOrtiNG COE ...t 117
Lo T0 o T T 118
Angular Module SYSTEM ........ccvieernirrreserese e sr e re e 119
Modules in the Start Project...........coovernevnnenneserss s sennes 120
ROOT MOTUIE ...ttt e nr s 121
ROULING MOTUIE ...t 122
FEAtUre MOUUIES.......coeeereeerireer et 122
Shared MOTUIES........courreerrrererese s nnn e 123
Angular Module System: Example modules-eX100.........cccucvrrenrnnernsessnsesenesesssesessssessesessenes 123
Deployment: Separate MOAUIES..........ccovcervieririsernse s 130
Deployment: Using Node to Manage Dependencies on Common Code...........cccervrerierennen 130
L1134 7R 131



TABLE OF CONTENTS

Chapter 10: Introducing Webpack .......ccuusemrrmssssnnnmsssssnnssssssssnsssssssssssssssssssssssssnnnss 133
Webpack and the AngUIAK CLI ...t se s se e snenens 133
Modules and DependenCIesS.........cccvieririniinnnir e se e s 134
Installing and Configuring Webpack..........ccoverrenrnsnnerre e 135
B30T 1117 o OSSR 137

Chapter 11: Introducing DireCtives........ccsssansmssansssssnsssssnsssssnsssssnsssssnsssssnnssssanssssns 139
TYPES OF DIFBCTIVES ...veereriertecerere et a e e sae e e e e ae s ae e e e s nne s 140

0] S 140
1100 USSR 142
ngSwitch, ngSwitchWhen, and ngSwitchDefault..........cccovvvvninnnninin e 144
00 TS 146
1015 1 OO 148
Creating DIrECHIVES......ccvierrerrrrersere st s s se e e s sr s s s a e e s sae b e e e s ae s a e e e e naennes 151
Creating Simple Directive: Example directives-eX600...........ccrrerrrrerserierienensersessessssessessenes 152
Accessing the DOM EVENtS in DIFECHIVES .....ccccverreverrerrerersesesseressessssessessessessssessessesssssssessensens 154
Using the Directive Element hoSt ... s 154
HOSILISTEBNEIS. ...t s 154
Accessing the DOM Properties in DIr€CHVES.......cccuvvrerrnievnesins s ssenes 155
Creating a Directive with Events: Example directives-ex700........c..ccorvrririennnnsniennsensensenns 155
£ T T 157

Chapter 12: More COmpoNents .......ccccvusseennmmssssnnmmsssssnnsmsssssssnssssssnnsssssssnnssssssnnnnss 159
Components and Child COMPONENTS........ccocevvrrirere s ssesessesaesnes 159
Data FIOWing DOWNWAIUS .......ccevvriiriieieriersie e rses e see s s s se s sne s s ss s ae s 160
Events FIOWING UPWArUS........coucvcrininnnincnesis s ss e ses s sssssssessessessssssnesnens 163
Emitting Output through @OULPUL() ....ccveceverirrrr s 163
CompoSition: EXAMPIE......c..coiiiirrrin s e e e e e 166
Data Flowing Downwards: EXaMPIE........ccccvrererenmrrnsesensesesesessssesessessssssessssssesssssssssssssssssssssenns 171

Edit the Customer COMPONENL..........c.ccocriviininr e s 171
Edit the Customer List COMPONENT........ccocooiinininnrnsn e 172

viil



TABLE OF CONTENTS

Events Flowing Upwards: EXamPIE ... sse s ssesssssaessessenns 173
Edit the Customer COMPONENL..........ccccviererniniere e se s sse e s ssesaesassessesnes 174
Edit the Customer List COMPONENT........ccocevvirrerernrerrere s s s sse s ssesaesessessesnes 174

Template Reference Variables...........cccviiiinininesnsrcsss s 175
VieWChild: EXAMPIE ....cccccviiecercern ettt sss e st st ss s 176
VieWCRHIlAren: EXAMPIE .....cccvevrererrerereressessersessesessessessesssssssessessessssessessessessssessessesssssssensesaes 177
NgContent and Transclusion: EXAMPIE ........ccccvverevnrenrerierssessesesessssesessessssessessesssssssessesaes 180
ContentChild: EXAMPIE.......cccvvererererrereressssessessessssessessessessssessessesssssssessesasssssessessesssssssesseses 182
ContentChildren: EXAMPIE ......ccccvvververieresessersereseesessesessessssessessesssssssessesaessssessessesssssssesnees 185

Component Class LIfECYCIE ........ccueriiiirirern st 188
Constructor VS. ONINIL.........cccooiieeercrir e 188
(=] i e 189
NgONChanges: EXAMPIE ..ot sas e se s seenis 189
T4y o e T o] OO 192
NGDOCHECK: EXAMPIE ....coveeircrireierec ettt st st et et 194
NgAfterContentinit: EXAMPIE ......ccccvvvvrierieninrerreri s sessessessessessssessessessssessessesassssssssesaes 197
NgAfterContentChecked: EXAMPIE.......cccvvevrrrrerevsnnensereresessesessessssessessessssessessesasssssessesaes 201
NgAfterViewInit: EXamPpIE .......cooeoeririrce et sae s saeens 203
NgAfterViewChecked: EXAMPIE .......ccvcvvereverierrerennsensere e sessessessessssessessessssessessesasssssessesaes 205
NGONDESIIOY: EXAMPIE ...c.veveererererersereresessessessesassessessesaessssessessessssessessssssssssessesasssssessesaes 207

SUMIMANY ..ttt e e e b e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re e R e e e e e aenrs 209

Chapter 13: Dependency Injection.......cc.cccccumnssemmmmmssssnnnmssssssnnmsssssnnssssssssnsssssssnnnss 211

SErviCes and PrOVIAEIS ......c.ueeerererrnsesrsesssese s sssse s sr e ss e s e s s sssse s sesessensnns 212

Creating a Service: EXAMPIE ......cccccveveririeriennserere s se e sss s se s s e s e s saessssessesaesaesessesnesaes 213

Convert App to Share One Instance of Service: Example

dependency-injeCtion-eX200 .........c.cccurrrrierinnnsne e s 219

Convert App to Share One Instance of Service: Example

dependency-injeCtion-EX300 .........c.ouerrrereresmrssesrsseseseseressesrsssess s e s seeesenns 222

Class Providers: Example dependency-injection-ex350 .........ccccerererrmsesmseserssessssessssesessssesenns 226

Factory Providers: Example dependency-injection-ex400...........cccvrevrrrverieresnsessesessssessenaens 227

Factory Providers: Example dependency-injection-ex500..........c.ccuevreririennnsessensensensessensenns 230

ix



TABLE OF CONTENTS

Value Providers: Example dependency-injection-eX600 ............cccvverreerieriennenseesiensessesssesessenaes 232
T =T (0] A o SO S OO PRSSN 234
£ T S 235
Chapter 14: Angular and Ul Widgets.........ccccnmmmmmmmmmmmmmmmmmmmmssssssssssmmsssssssssssssnns 237
Using a Ul Widget Library With ANQUIAK..........ccccvvrmrnnmrnrinenenessse s sessssessssessssesessesenns 237
Pre-AngUIAr WAY.......ccooereererinerereses e ses e sesse e sessssessssessssessssssenssssssssessnns 237
THE ANQUIAE WY ..o s e s e s sss e e s e s e see e senssnsnsenens 238
Pre-Angular vs. Angular With NgBOOTSIIaP .......ccveerrrrerenrerereserese s 238
50053 £ o OO 240
Installing NG-DOOTSIIAP .....coeveereereer e 241
Bootstrap: Example widgetS-eX100........ccovvmvrinnnnnninn s ssssessessesnes 241
L] =L 1= [0 S 244
Installing Angular Material............covervrerrenernnererese e 245
Angular Material Design: Example widgets-ex200..........c.ccovrererenernseressesessesessesesessesesenens 246
B30T 111 T o OSSR 249
Chapter 15: Routes and Navigation ..........cccccuunemmmmmnsssnnnmnissssnnmnssssssnmsssssssssssssnnns 251
Router Routes on the Client Side ... s senns 251
L0 T (= 1o 11 T OO 252
3101012 1 253
ROULEE MOTUIE........cceeeceeccreeer e 253
Simple Routing: EXAMPIE .......cccovreriirsincnen s s 255
Nested ROUting: EXAMPIE ..o 259
Route CONfIGUIALION ......ccccveeeriierireser e e 268
Route Path Parameters............ccocoeeenrnerienrsercres s s 270
Route Query Parameters: EXample..........ccovveeerenernnsnnesenesess s sennes 270
Router Imperative Navigation: EXample..........cccuverninnennesennse s ssssesssssesssesessesenns 278
Router: EXtracting Data.........ccovovveriernninienienesissensese s sessessessesessessessesssssssessesssssssessessesssssssesnens 283
Route GUArdS: EXAMPIE......ccccvvverrerieresenserersessssessessesssssssessessessssessessesssssssessesssssssessessesssssnsessens 284
SUMIMANY ..ttt e e s R e e e e e R e e e e e e R e R e e e e e Re e Re e R e e e e e Re R e e e e naenrin 289



TABLE OF CONTENTS

Chapter 16: Observers, Reactive Programming, and RXJS.........ccccenrnsssnnnnmnsssnnnns 291
Asynchronous Data SIreams.........ccccovecerccrnse s s 291
Observable Sequences (0bSErvables)..........ccovrerrrerererrnrererese e 292
ODSEIVErS: EXAMPIE .....eeeeceie ettt st e b e s b e 292
SUDSCHIPLIONS ..cveiecie st e e e e e b e e e nan 295
0PErators: EXAMPIE........cocviviririere s s sa s s s se e s s st e s sa e s n e 296
Operators That Create ODSEIVADIES .......c.cceeevrererverierenensersere e s s s s e ssessssesessessesessessesnes 298

L0 L1 298
INEEIVA .. 298
OF (WAS JUST)..veiveererueriesseseresseseeses e s e ssesss e sse s saese s e ssesaesae e saesnesaesas e ssesnesaesessesaesasssnnensesaens 299
72 <SSO 299
FEPRAL ..ot 299
BMBE e ————————————————— 300
Operators That Transform Items Emitted by Observables..........ccccvvvvvrrririnnsnseniene s senenns 300
0] 1] 300
1 SR 301
07 301
Operators That Filter ltems Emitted by Observables.........ccocvvvnvninnnnninnn e 302
deboUNCE: EXAMPIE.......ee et 302
011513 304
{11 OSSPSR TP TRV 304
L5 1C OSTRR 305
Operators that Combine Other ObServables.........c.ccvvrvnirnnrnsn e 305
SRR ... ———————————————————————— 306
11T 111 1T o OSSO 307

Chapter 17: RxJS with ANQUIAr ......cccccvvsseemmmnssssnnmmsssssnmssssssnessssssnsssssssessssnnn 309

0bservables and ANQUIAT ... e se e 310
Observables and DOM Events: EXAMPIE........cccuccvrerernnernsenene s sesesesss s sessesessssessnses 310
Observables and HTTP SEIVICES........cccvviirmnmseresmsssnmsesesesssssssess s sssesssssssssssesssssssas 312

SUMIMANY ...ttt e s R e e e e e R e e e e e e e Re e R e e e e e Re e Re R e e e e e Re e R e e e e e Rennn 313

xi



TABLE OF CONTENTS

Chapter 18: HTTP and the HitpClient Module............cccccrrnssmmmnmnsssnnnnnssssnsmnsssnnn 315
HEED BOAY ..t s e s e e e p e 316
Passing Information With HTTP........cccoonrr s 317

QUETY Par@MeTerS....ccververeererersersesessessessessesessessesssssssessessessssessessesssssssessesassssssssessesssssssesaeses 317

LD T U1 (=] (-] 318

Path Par@meters.........cco oo 318

Passing Data in the Request Body ... sessesnes 318
3] S O ST 318
USON ot E R E e e 319
The Angular HEP CHENt ..o e sn s 320
CTC] 1] 1 321
ASYNChron0oUS OPEIAtIONS ......ccverrererierererresersere e sss s ssesse s se e s sa s e s e aesaesa e e nsesaesaessssensesaens 322
ReqUEST OPLIONS......coveiecirec e e 322
HTTP GET Method: EXAMPIE ......cccceririircircnecn s se s se s s sn e s s st sessennens 323
HTTP GET Method Using Parameters: EXample........c.ccoveerenrnnnnsenennenesesesessesese e sessesenns 327
Http GET Method Using Path Parameters: EXample .........ccovvnvninennnnnnins s sessenaens 331
HTTP POST Method: EXAMPIE......ccveeriererreriererieseressessesessessessesessessessessssessessesssssssessessesssnsnsesaens 335
HTTP PUT Method Using Path Parameters..........ccccveevvvnrnienenessenseniessssessesessssessessessessssessensens 339
HTTP PATCH Method Using Path Parameters........ccceverervrrerenessenseressssessessesssssssessessessssessensens 339
HTTP DELETE Method Using Path Parameters..........coucvvririennsnnnennsnsssess s sessessens 340
Modifying the Server Response: EXAmMPpIE.........cccovrerernenmrenernsesesseseseses s sessesenns 340
Handling a Server Error Response: EXample ..o sesessessssessessens 344
Asynchronous Pipes: EXAMPIE .........cccoveceriiernnesinesessse s s sssss e s ssssssessasessnses 347
L1134 R 350

Chapter 19: FOrMS ....ccucceuriiisssnnmmssssssmmmssssssssssssssssssssssssssssssssnsssssssnnssssssnnnsssssnnnnnss 351

Two Ways of WHting FOIMS.......ccccoiiirn s s 351
Template-Driven FOrMS ... s 351
REACHIVE FOIMS.......ceceeece e 352

FOrm Model ODJECTS .......ccveeerecirer s e s 352
0| o 1 SR 353

xii



TABLE OF CONTENTS

0T 16T 0 o 353
FOPMOONTIOL......cciiiicccccst e 353
0112 S SSRN 354
FOrmS @Nd CSS ......ooveiiirirecisr s 354
Template FOrms: EXamPIe.......cooeiervrier et re s s e s s sn e s s 354
Template Variables and Data Binding: EXample...........ccccvinvinnnnninnsnsnesssnssese e 358
Template Forms and CSS: EXAMPIE .......ccccevvinirieninnsinene e sse s sss s s s 364
Reactive FOrms: EXamPIE.........ccociirinninninn e s sss e s e ssssessesnens 368
Reactive FOrms: FOrMBUIIAE ........ccooceeeerereerec e 372
Reactive Forms: Form Group Nesting EXample .........cccccvvevrrsrnicnneseneseses s esesse e 373
L1 U0 TSR 379
Combining Multiple Validators..........ccourrerrniennesire s ses s ses e ssssessenes 380
Custom Validation EXAMPIE .......cccvverrerierereenenseresesessesesessssessessesssssssessesssssssessessesssssssessees 380
SUMIMANY ..ttt e e s R e e e e e R e R e e e e e R e R e b e e e Re e Re e e e e e e Re R e e e e naenrs 384
Chapter 20: PiPesS ...cucuissrssssmmssssnsssssnsssssnsesssnsssssnsesssnsssssnsesssnsesssnsesssnnssssnnssssnnssssas 385
ANQUIAE PIPES...eiiiiiiic et s d s e e e e s b b e b e nne s 385
JOWEICASE .....coveeeereeerree e s e s e e e s e se e e e e e e e ae e R e e e e e nenan e nre e neens 385

(1] 0= (o T S 385
CUITEINICY . cureresereseassessessessssssessessesssessessessessessenseassessesaensnansesaesanaressesaenannnsesnesannnssnsnssennnnnes 386
UK (gDP) POUNT CUITEINCY .....overeerriireressesisses e sresss e s ssessssessessesss s e ssesaesssssssessesssssssssnens 386

02T 0] 0 SR 386

0 386
SROMIAALE ... ——————————— 386
Special Date FOrmat ... st et 387
T 3 RS 388
Angular Pipes: EXAMPIE ..ot s s 388
Custom Pipes: EXAMPIE.......cov it 391
B30T 111 T o OSSR 393

xiii



TABLE OF CONTENTS

Chapter 21: Zones and Change Detection..........cccivnsemmnrnssssnnnmnsssssnnsssssssssssssssnnns 395
NgZone IS Zone.js for ANQUIAT ... s 396
Event LoOp and MESSAQES.......ccueriinninieresinsise s sse st ss s s s se s s snssnssesnesnes 396
BrowSer UL TRMBAM ........ccoueerieeerceree s 397
MONKEY PAtCRING .......cceevereririersee s rerser e re e e s s s se e s a e s s s s e sa e sae s e s sa e snesaenanens 397
Angular and Change Detection ..o s 398
Running Asynchronous Code within the Angular Zone: Example...........ccooeerreenrsenerescrennenenns 399
Running Asynchronous Code Outside the Angular Zone: EXample..........ccccuevevnnnienienensenienens 401
11T 111 1T o OSSOSO 403

Chapter 22: TeSting....c.uccerrmssssmmnmmssssnnssmsssssssssssssssnssssssssnssssssssnsssssssnnssssssasnssssssannss 509

6211 T 407
N 1TSS 408
JASMINEG CONCEPIS ...coviueiiriccrrerir e e e e 410
Jasmine Setup and TEArAOWN ........ccvevervrerreriere s s sse s e s e sse s sasse s saesassessessessens 411
0 TSRS 412
RUNNING UNIE TESES....cticiiciccir s s s e 412
UNIETESE FIIES ... s 412
Dependency INJECHON ... 413
Angular TeSting ODJECES ....ccveveeerrcrrceree e 413
COMPONENTFIXIUIE.....ee e s 414
ComponentINSTANCE. ..o s 414
NALIVEEIBMENT ........cereeerec e re e 414
CLI UNit TeSt: EXAMPIES ...uevveveeirierere e sss s s sas s s sss e s s sas s s saennes 416
Testing with Fake Htp RESPONSES ......ccvceririririerere s s e s sre e s ssesaesss e s e sne s 419
INEFOTUCTION ... 419
How to Use HttpClientTestingModule to Create Fake Hitp ReSponses ..........cccvvervververennnn 420
Testing Service that Uses HttpClient: EXample.......c.ccocvvvnrnienennnnsne e ssssessessesees 420
Testing Component that Uses Service: EXample .......c.ccocvvrvnienennnnsnnennsessessessessssessessenes 430
L1134 R 435

Xiv



TABLE OF CONTENTS

Chapter 23: More Advanced TOPICS ....ucuussesrrsssssnsssssssnnssssssssnssssssssnnssssssnnnssssssnnnnss 437
View ENCapSUIALION...........cciviirisin e s 437
SNAAOW DOMS........oeeeeee e se e e r e ne e e 437
Component ENCAPSUIALION ... e 438

ViewEncapsulation.Emulated: EXample.........cccovvnininnnnininnn s sessesenns 438
ViewEncapsulation.Native: EXample.........c.ccorininininininsnnss s snes 440
ViewEncapsulation.None: EXample..........ccccrinininninnnnn s sessessesees 442
Styling Content Children ... 444
11T 111 1T o OSSOSO 445

(T L (e gl LT T —— T ¥ |

Angular OffiCial WEDSITE ......cvvrerererrere s s e sa e s s e saesaesa s e saesnens 447
GIEHUD ...ttt bbb pnp e np s 448
AnQUIAr-Related BIOGS ........ccouoerureerererereereee e s e sns e neens 448
400 L Y S 449
B30T 111 T o SR 449
INA@X iiiiiissnnnnnnnnnnnnssssssssnnnnnnnnmessssssssnnnnnnnnnsssssssssnnnnnnnnessssssssnnnnnnnnnssssssssnnnnnnnnnnssssssnn 451



About the Author

Mark Clow has worked in IT for the last 28 years and enjoys developing software. An
Englishman now living in Atlanta, Georgia, he’s worked with Angular since version 1.
He is currently working as a full-stack developer with Angular on the front-end and
Spring Boot Microservices on the back-end.

Xvii



About the Technical Reviewer

2.4 | Massimo Nardone has more than 23 years of experiences
L in security, web/mobile development, the cloud, and

IT architecture. His true IT passions are security and
Android. He’s been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python, C/C++,
and MySQL for more than 20 years. He holds a master of
science degree in computing science from the University
of Salerno, Italy, and has worked as a project manager,
software engineer, research engineer, chief security
architect, information security manager, PCI/SCADA
auditor, and senior lead IT security/cloud/SCADA architect for many years.

His technical skills include security, Android, cloud, Java, MySQL, Drupal, Cobol,
Perl, web, mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, and more. Massimo has worked as
visiting lecturer and supervisor for exercises at the Networking Laboratory of the
Helsinki University of Technology (Aalto University). He holds four international patents
(in PKI, SIP, SAML, and Proxy areas).

He currently works as chief information security officer for Cargotec Oyj and is
member of ISACA Finland Chapter Board. Massimo has reviewed more than 40 IT books
for different publishers and is the coauthor of Pro Android Games (Apress, 2015).



Acknowledgments

First and foremost, thanks to my wife Jill and her patience. I hope she is enjoying herself
doing her favorite things, like paddle boarding, kayaking, and being at one with nature.
I hope she never reads this book because it would bore her.

Thanks go out to the people publishing blogs and articles to the web; without you,
I'would never have been able to perform as much research as I did.

Even more thanks go out to the people working on Angular, especially those
updating the Angular.io website with useful information. It was invaluable to me.

The original version of this book was revised. Some minor edits were made to the Introduction.

xxi



Introduction

Disclaimer

Let’s get this over with as quickly as possible. I need to mention two things. First, some of
the information in this book may be incorrect (I'm a human being that makes mistakes).
Also, this book is somewhat opinionated. I have tried my best to be as technically
accurate as possible, but I'm still learning a lot and have much yet to learn about
Angular. I do have some strong opinions, but please don’t take them as gospel. I don’t
intend to harm anything or anyone—I'm not smart enough for that.

Scope

This scope of this book is to help developers get started in Angular. You're not going to
read and learn all there is to know about Angular 5. That’s not the purpose of this book;
getting up to speed as a developer is. In my opinion, getting up to speed means having a
good overall knowledge—sulfficient to start working.

Approach

This book contains chapters with small code examples built with the Angular

CLI You'll be able to try out code without being burdened by setting up a large project.
I did it this way because I found this format easier to understand than creating a large
project would be.

Example Code

The example code is available at https://github.com/markclow/learn-angular-fast.

xxiii


https://github.com/markclow/learn-angular-fast

INTRODUCTION

Remember, you'll need to do an npm install on each project to install the
dependencies and get it working. Sometimes you may also need to re-install the CLI
using the following two commands:

npm uninstall --save-dev angular-cli
npm install --save-dev @angular/cli@latest

And sometimes you may get the “Environment configuration does not contain
environment Source entry” error. This is fixed by editing the file angular-cli.json and
changing the setting from this

"environments": {
"source": "environments/environment.ts",
"dev": "environments/environment.ts",
"prod": "environments/environment.prod.ts"

}

to this:

"environmentSource": "environments/environment.ts",
"environments": {

"dev": "environments/environment.ts",

"prod": "environments/environment.prod.ts"

}

Angular and Naming

The purpose of Angular]S and Angular is to create single page applications (SPAs). I'll
soon talk about how web applications have evolved from server-side applications to
single page applications. Angular gives us a way of writing SPAs, but there’s now more
than one version of Angular. As of the time of writing, there are four versions:

o The original Angular, which runs on JavaScript

e Angular 2, 4, and 5, which run on TypeScript

XXiv



INTRODUCTION

Now that we have four Angulars, developers have rallied around a newer naming
convention, which I use in this book:

e The original Angular is called Angular]S because it runs on JavaScript
and is very different from the other Angulars.

e Angular 2, Angular 4 and Angular 5 will just be called Angular.

My Opinion as a Developer

I'm a developer who's used to using a typed, comprehensive language (such as Java,
.NET C#, VB) on the server, and who enjoys the benefits of a compiler. But I'm also
someone who has to do client-side coding, being a “full stack developer.” I admit don’t
like JavaScript much. I have a long complaint list, and you can see it in Chapter 3. ButI
have to use JavaScript because that’s what runs on the browsers. I have little choice. I just
need code that runs on current browsers, and I wish there was a structured way of doing
it with a proper language.

I also liked the original Angular (Angular]S) because you could get stuff running fast.
However, Angular]JS had some issues (see Figure 1).

package com.mkyong.test.core;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD) //can use in method only.

public @interface Test {

//should ignore this test?
public boolean enabled() default true;

Figure 1. Angular]S issues



INTRODUCTION

It had some strange syntax—mostly because it used JavaScript, for example IFFEs—and
patterns. This caused the learning curve for Angular]S to be somewhat inconsistent, as I've
indicated in Figure 2. Some parts are easy to learn; others are more difficult.

JavaScript Learning Curves

5

jQuery Node.js Angular]s

Figure 2. JavaScript learning curves

Most Angular]S developers wanted the Google people to take a step back and
re-architect Angular to make it simpler, more logical, and more (acceptable) to
developers in general, not just UI guys.

And they did so. I think they did a tremendous job when they converted Angular]S to
Angular.

Why Is Angular the Answer?

Angular can be used with languages like TypeScript and CoffeeScript. Transpilation
(more on that later) is nothing new and has been around since before Angular
came out.

You can write Angular code in JavaScript (I wouldn’t, though), but I believe
it’s easier to write Angular code in TypeScript because Angular was written in
TypeScript. TypeScript (like other transpiled languages) gives you the ability to
write Angular code in a language similar to Java, .NET C#, or VB on the server. You
have classes, interfaces, casting, and a lot more. This will catch on because hordes
of developers who are used to writing code in those languages can transition over to
Angular 5.

XxVi



INTRODUCTION

If You Use TypeScript, You Can Use Annotations

Annotations, a form of metadata, provide data about a program that’s not part of the program
itself. Annotations have no direct effect on the operation of the code they annotate.

Having done a lot of Java Spring development with JPA, I'm used to using
annotations and am totally at ease with them. All you're doing is basically adding more
information about your code. This information is also conveniently located inline, inside
your code, so you can see it.

Annotations have a number of uses, including the following:

o Information for the compiler: Annotations can be used by the
compiler to detect errors or suppress warnings.

o Compile-time and deployment-time processing: Software tools can
process annotation information to generate code, XML files, and so
forth.

e Runtime processing: Some annotations are available to be examined

at runtime.

If you decide to stay with JavaScript for your Angular coding, you can say goodbye to
annotations.

You Use Dependency Injection with Dependencies
Injected Through Constructors

Being a Java Spring guy, I love dependency injection. It makes life simpler. I found
Angular dependency injection similar and a breeze to use. We'll go into dependency
injection more in Chapter 13.

You Can Develop a Well-Structured, Logical User Interface

Angular user interfaces consisting of components. A component can contain other
components, which can contain other components. This is known as composition and
it can form a complex hierarchy of components. Components can also talk among
themselves.

XXVii



INTRODUCTION

Figure 3 shows search user interface. Enter search at top, and list items go
underneath.

Scarch:

List ltem
List Jtem

List liem

In Angular you could implement this with the following hierarchy of components.

App
Component
1

1
Search List
Component | |Component

|| Listltem
Component

| | Listltem
Component

| | Listltem
Component

Figure 3. Search Ul

You Use Instance Variables Bound to the Ul (no $scope)

The strength of Angular is its binding, and that remains. In Angular]JS, the developer used
to bind visual components to variables contained within the scope. Now the developer
binds to variables contained within the class. This is similar to how you code a Ul in Java
or .NET on the server.

xxviii



INTRODUCTION

Sounds Good, Doesn’t It?

There has to be a catch, right? Well, there’s good news and there’s not-so-good news.

Good News

Here’s the good news:

The good news is that Angular seems to be the answer for
mainstream developers like you and me (that is, non-UI gurus). It
may make our life easier in the long term. You will still have to deal
with CSS though!

Some Angular stuff won’t take much learning because you already
know them from the server side.

The Angular CLI makes code generation a snap.

There’s plenty of Angular sample code available online.

Not-So-Good News

There are a lot of new technologies and concepts to learn:

TypeScript

Transpilation of TypeScript to JavaScript
Editing TypeScript

Creating and consuming JavaScript modules
Deploying code, including JavaScript modules
Angular components.

Angular dependency injection

Angular and UI widget libraries

Angular router

Reactive extensions

And, yes, more...

Luckily, those things are covered in upcoming chapters. So, let’s get going!

XXix



CHAPTER 1

Web Applications and
AJAX Communications

This book was written for developers who have a very basic knowledge of web
development. It doesn’t require software to be installed in advance, but in later chapters
you will need to install software to run the example code. The book provides information
on how to download and install the software when required.

Before we dive into Angular, I want to introduce some basic concepts of web
development. This chapter covers the basic architecture of a web application and how it
passes data from the server to the web browser. It also introduces some of the tools that
might make your life easier when debugging the communication between the server and
the web browser.

More experienced developers can just skip over this chapter.

© Mark Clow 2018
M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_1



CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

Introducing the Client and Server

Web applications basically involve two computers communicating with each other,
called a server and a client. This concept is illustrated in Figure 1-1.

&

WEB BROWSER. INTERNET SERVER

‘HTTP REQUEST | >

HTTP RESPONSE |

NN I.

Figure 1-1. Client/server architecture

The server sits in the company office or data center, listens to HTTP requests, and
responds back with answers. The server also accesses the data (stored in a database)
that’s used by the web application.

The user uses their web browser to interact with the web application. The user’s
computer communicates with the server, sending HTTP requests and receiving answers.
Client computers may be a variety of machines, from smart watches to cell phones to
tablets to computers.

On the web, clients and servers communicate using HTTP (HyperText Transfer
Protocol). HTTP works as a request-response protocol between a client and server.
Chapter 20 covers HTTP in detail.

Server-Side Web Applications

A server-side web application is one where most of the application executes on the
server, and the client is only used to display HTML pages one at a time. When the user
performs an action in the web application, the client sends a request to the server, which
does something and returns a brand-new HTML page to be displayed on the client as a



CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

response. The web page is regenerated every time and sent back to be displayed on the
client’s web browser, as illustrated in Figure 1-2.

user interface

1&

client platform

HTTP-request

anet

HTTP(S) - trpffic

internetfintr

v

v 4

database,
data handling,
legacy system etc.

server platform

Figure 1-2. Server-side web application

Client-Side Web Applications

Client-side web applications (also known as single page apps, or SPAs for short) are a
more recent phenomenon, and the computing industry is moving more towards this
model. Here, a lot of the application still executes on the server, but some code also
executes on the client (the web browser) to avoid the frequent regeneration of pages.
When the user performs an action in the client, it sends a request to the server, which
does something and returns information about the result—not an entirely new HTML
page. The client-side code listens for an answer from the server and itself decides what
to do as a response without generating a new page. Client-side web applications tend
to be more interactive and flexible because they can respond more quickly to user



CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

interactions—they don’t have to wait on the server to send back as much data. They only
need to wait for the server to respond back with a result, rather than a whole HTML page.
This architecture is illustrated in Figure 1-3.

web browser

user interface

client platform

(javascript)

internetfintranet

~ orjavascriptdata

web server andlor
XML server

database,
data handling,
legacy system etc.

server platform

server-based system

Figure 1-3. Client-side web application

Striking a Balance

So there are basically two types of web applications: server-side and client side (SPA).
If these are thought of as black and white, your web application should be somewhere in
the middle, in the “grey” area.



CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

The server-side should remain the repository for the clever stuff—the business rules,
data storage, and settings should remain on the server and be invoked or retrieved from
the client-side when required.

The client-side (browser) should use the more modern client-side technology to
avoid full-page refreshes. However, it shouldn’t be too smart or too bloated. It should
know enough to do its job of interacting with the user and nothing more. It should
invoke code on the server-side to do smart things or perform business processes. It
shouldn’t have too much business logic, internal system data (data other than that data
the user can view or modify) or hardcoded information because that’s better managed
on the server.

Caution You must avoid throwing “everything but the kitchen sink” into the client.

Creating Web Applications with AJAX

AJAX stands for Asynchronous JavaScript and XML. AJAX is a technique for creating
better, faster, and more interactive web applications with the help of XML, HTML, CSS,
and JavaScript.

When a client-side web application needs to communicate with the server, it uses
AJAX to send something out and waits for the result to come back. Remember, it gets
back a result that only contains data, not an entirely new web page. Also, the client-
side code doesn'’t stop running while it’s waiting, because it still has to display the user
interface and respond to the user. This is the asynchronous part of AJAX.

Client-side web applications use JavaScript to invoke the AJAX request and respond
to it. This is the JavaScript part of AJAX.

AJAX requests used to use XML (Extensible Markup Language) as the data format
for the request and result data going back and forth between the client and the server.
Nowadays, AJAX tends to use JSON (JavaScript Object Notation) as the data format
instead of XML. That’s because JSON is much more compact and maps more directly
onto the data structures used in modern programming languages. But both XML and
JSON are commonly used formats for transferring data in text form.



CHAPTER 1  WEB APPLICATIONS AND AJAX COMMUNICATIONS

Earlier, I used the term asynchronous. You may think of asynchronous this way:
you call your spouse to ask a favor. Their phone is busy, so you leave a message asking
them to stop at the supermarket and buy you a case of beer. In the meantime, you keep
watching TV—because thse things are happening asynchronously. The outcomes of this
process would include the following:

e Success: Spouse calls you back and tells you the beer is on the way.
e Failure: Spouse calls you back and tells you the store was closed.

In AJAX, the client-side code doesn’t stop running while waiting for a response from
the server, just as you didn’t stop watching TV while waiting for your spouse to get back

to you.

Callbacks

Typically, when you make an AJAX call, you have to tell it what to do when the server
response is received. This code that the AJAX system code should fire when the response
is received is known as the callback.

When you perform AJAX operations, you invoke the AJAX code with parameters and
one or two functions—the callbacks. There are two types of callbacks:

e Success: The success (or done) callback is invoked if the server
responds successfully and the client receives the answer without
error.

e Failure: The fail or error callback is optional and is invoked if
the server responds back with an error (or if the AJAX call can’t
communicate with the server).

Promises

Sometimes you invoke AJAX code, and it returns what’s known as a promise or a deferred.
A promise is an object that is a “promise of response” from an AJAX operation. When you
receive a promise, you can register your success or failure callbacks with the promise,
enabling the promise to invoke the callback once a success or failure occurs.



Encoding

CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

When you work with AJAX (or other communication between client and server), you

need to ensure that the information is sent in a form that’s suitable for transmission.

You do that using encoding. If you don’t use encoding, it’s quite possible that some

information won’t be received exactly as it was sent. This is especially true for some

special character information—for example, spaces, quotation marks, and so on.

Table 1-1 lists the three main methods to encode information.

Table 1-1. Three Main Methods of Encoding Information

Method

Notes

encodeURlI

encodeURIComponent

escape

This is useful for encoding entire URLs into UTF-8 with escape sequences

for special characters. It encodes the string in the same manner as
encodeURIComponent (see next entry), except it doesn’t touch characters that
make up the URL path (such as slashes). Example: http://www.cnn.com
gets converted to http://www.cnn.com%0A.

This is useful for encoding parameters. It’s not suitable for encoding entire URLs
because it can replace important URL path information with escape sequences.
Example: http://www.cnn.com gets converted to http%3A%2F%2F
WWW. chin. com%0A.

This returns a string value (in Unicode format) that contains the contents of
[the argument]. Take care using this because servers don’t expect to receive
data in Unicode format by default. Example: http://www.cnn. com gets
converted to http%3A//www.cnn.com%0A.



http://www.cnn.com/
http://www.cnn.com/
http://www.cnn.com/

CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

To test these methods, head over to http://pressbin.com/tools/urlencode
urldecode/. Figure 1-4 shows what this web interface looks like.

URL-encode and URL-decode text strings
as you type using PHP and Javascript functions

hi there, how ya doin'?

o URL-encode URL-decode

urlencode()
hi+there%2C+how+ya+doin%27%3F

encodeURIComponent()

hi%20theres2c Yya%20doin'%3F

encodeURI()
hi%20there,%20how%20ya%20doin'?

escape()
hi%20there%2C%20how%20ya%20doin%27%3F

Figure 1-4. Web page that displays different encodings for what you type

HAL and HATEOAS

To talk with the server, the client needs to know to which URLs the server is available
on. This information should not be hardcoded on the client. Instead, the server should
tell the client what URLS to use to get information. There are various standards for the
format of sending this information back to the client, including HAL and HATEOAS.

For example, if the client sends an AJAX request to the server to retrieve a list of
customers, the information returned should include the URLS for the AJAX requests for
each customer. This avoids hardcoding the customer AJAX request URL on the client.
You can read more about HAL and HATEOAS at https://martinfowler.com/articles/
richardsonMaturityModel.html and https://en.wikipedia.org/wiki/HATEOAS,
respectively.


http://pressbin.com/tools/urlencode_urldecode/
http://pressbin.com/tools/urlencode_urldecode/
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://en.wikipedia.org/wiki/HATEOAS

CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

Monitoring Data Traffic

Your web browser has developer tools built in. One of these tools is a network tool that
allows you to monitor data traffic between the client and the server. This data traffic is
presented as a list with a timeline, as shown in Figure 1-5. You can select an item on the
list to view it in more detail and see exactly what data was sent to the server and what
data came back. You can filter the type of network traffic that you want to follow. For

example you can select XHR'’ to view AJAX requests.

[® @] GElements Conscle Sources Metwork Timeline Profles Resources Securlty  Audits i X
® O W Y  Vew IZ = Preservelog | Disable cache = No theottling v
Hide data URLs @ XHR JS CSS Img Media Font Doc WS Manifest Other
100ms 200ms. 300 ms 400ms 500ms BOOms 700 ms 800 ms S00ms 1000 ms
s i e S
Name Status Type Intiaior Size Time Timaling - Stan Tima 40000 e B00.00ms BO0.00 ma 100s&
www googhe com 200 document  Other saske  131ms (N |
nav_loga242 pog 200 png (ndexi:53 214KB  B3ms ]
googhelogo_color_272x82dp.png 200 prg (index) 53 1328 55ms |
i2_20c824b0.png 200 png (ingdex) 76 25848 22ms ]
rs=ACTO00GYONmMKAISOTRILPOOWVE... 200 script {ingex) 76 130KB  158ms =
+| dataimage/pngbase. .. 200 png E=ACTO00GYONM..  (from cache) Oms ]
| dataimageigi.base... 200 git E=ACTS00GYONm..  (from cache) oms I
rs=ACTH00ECTVOKkbCOLDIMbOVGUN... 200 script 15=ACTH00GYONm .. 327K 33ms | |
| tapng 200 prg s=ACTS00GYONM - 4248 32ms [ ]
rs=AAZY TsrWLIdHNTIaOVgMmajeJ95... 200 seript (inglex) 249 478KB  24ms | |
| chmgapiloaded 0 200 seript s AAZYIT: H.. 480KB  24ms [ |
| gen_204%va38sswebhplatypecsifie.. 204 textihtrd  (5ACTO0GGYONM,. 278 45ms [ |
12 requests | 378KB transferred | Finish: 671ms | DOMContentLoaded: 178 ms | Load: 626 ms

Figure 1-5. Viewing data traffic with the network developer tool in the
Google Chrome browser



CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

Fiddler is a free web debugging proxy that works in a similar way to the network tab
in your browser’s developer tools (see Figure 1-6). Fiddler has some extra capabilities,
such as creating your own AJAX requests and running scripts. Read more about Fiddler
atwww.telerik.com/fiddler.

= -
{3 Fiddler - HTTP Debugging Proxy [E=EETX=)
File Edit Rules Tools View Help
) 43 Replay X~ b Resume | Stream il Decode | Keep: All sessions ~ @Anypmcus 4 Find [l Save | 18] @ Browse & Clear Cache s
Wb Sessions [es ] Filters | [ Log I — Timelne
# Result Host URL = @ ] B Inspectors | # AutoResponder |
@z 20 snapfles.com  fmages/pagebg.pag Headers | TextView & WebForms | HexView | Auth | Cookes |[Raw
)7 snapfiles.com fmages/searchbg.png son |
i:} 78 snapfies.com fimages/searchbutton
GET h feid m/MRT/jview mss(dwect VT l:wi
27 pagead2.googlesyn... fpagead/jsr2012011¢ | |accepr: appﬂcuionfiavucﬂpt. */7:0=0.8
DE snapfies fimages fappiconsfi_ac Referer: Mﬂmﬂmﬂm&m
®)a: S . Accept-Language: us
el ¥ W, S / User-Agent: uozﬂm..rs 0 (compatible; MSIE 9.0; windows NT 6.
'L-_u'jeg 1R Accept-Encoding: gzip, deflate
s ] HOST: view.atdmt.com
!_.}0-'- ! Connection: Keep-Alive
D ED 200 T
®lss 20 HT snapfles.com  fmages/appic
Ass 04 HTP snapfles.com ﬁnagesfe}ax-bader g
€)s7 200 HITP  pagead2.googesyn... jpageadfsh2012011 |
ﬂSS 200 HTP ww.google-analyt... [_utm.gifutmw -.15.; « [om L§
Slss 200 HIP pagead2.googlesyn... i IFwﬁ...(urenCM-t&teranld} [ viewinnotepad |
oo 200 HIP pagead2.googlesyn...
91 200 HTP pagead2.googlesyn... [ Responseis encoded and may need to be decoded before inspection. Click here to
92 200 HIP pageadl.googlesyn... GetSyntaxView = Transformer | Headers | TextView | ImageView |
93 200 HTP googleads.g.double... | i | S i |
Hex\View | WebView | Auth | Caching CoohesllRaw JSON |
9194 200 HITP  googleads.g.double... : J | : \
@95 200 HMP pagead2.googlesyn... L |
o6 200 HTTP googheads.g.double... HTTP/1.1 200 OK ‘
%q" 3 T Lok 9 ) iCache-Control: no-store —
@97 200 HM googieads.q.dauble. .. / Content-Type: text/javascript
|393 200 pagead2.googlesyn... r\a.,ee.,"‘"aﬂes:a" d E:::?:; Eg‘“‘“"? gzip
%99 200 pagead2.googlesyn... [pagead/mages/ad_d vary': nccem-gn(mmg
P3P: CP="NOI DSP COR CUR ADM DEV TAIO PSA0 PSDO OLR BUS UM
100 200 pagead2.googesyn..._ jpageadfis/r 2012011 Set-Cookie: AADO2=1327507811-4462375; expires=Friday, 24-:°
£ MR fview (35367854 ieﬁ;ﬁggsiezsguggggEsszzc0040163340&39203297015805. expires
= % 4
$) 102 0 pogead2.googesyn... [pagesdfisi20120nse | [X-PSIOTRL SOTARER L,
L:)ms 00  HTIP pagead2.googlesyn... /pageadfmages/ad_d Date: Nied, 251Ju 2012 16:10:11 GMT
#1104 200 googleads.g.double... fpageadjadvienzai=B || [CONRECTION: €105
®w0s 200 googleads.g.double... [pagead/drtfs O : i
S]10s 200 googleads.g.double... fpageadfadviewlai=B ~ ‘l'ﬂ"--- rwrg?rfm(11 rl ) G .vmn'-_
4 »
_ e | Find... (press Ctri+Enter to highbght all) || viewin Notepad ]
ﬁcm:m = Al Processes 1/185 http: [fview. ammwﬁsasmmw 1;wi. 300 hi. mmusezw:m-hm i,“adcidc.g
Y J

Figure 1-6. Viewing data traffic with Fiddler

Postman is very similar to Fiddler (www.getpostman.com). Both are very useful.

10


http://www.telerik.com/fiddler
http://www.getpostman.com/

CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

Analyzing JSON

You'll often receive long JSON responses from the server and need to traverse the
response data to extract just the data you need. Your response data will normally be
passed to your AJAX success callback as an argument. Here are some tips on examining
this data:

o Convert it to a string: You can call the JSON.stringify function to
convert the response data into a string. This will enable you to output
it to the console in your success callback, as shown here:

function success(data){

console.log('success - data:' + JSON.stringify(data));
//

// do something with data

//

}

e Copy the JSON data out of the console: To copy the JSON data into
your clipboard, do the following:

a. Openyour browser.

b. Go to the developer tools menu.
c. Click the console opeion.

d. Select JSON text.

e. Right-click and select Copy.

11



CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

o Format the JSON data to make it more readable: Now that you have
the JSON data in your clipboard, you can copy and paste it into a
website to make it more readable:

a. Openyour browser.

b. Gotohttps://jsonformatter.curiousconcept.com(ora
similar service—there are lots of these). Figure 1-7 shows what
this website looks like.

- C @ hips com % &0
i Apps © Yahoo CEO'su Macis..

JSON:O\&%‘:%« - About  Learn  Bookmarklet Changelog  Support  Contact W

JSON Data/URL

body®:*in non edio excepturd sint sun\nlabore veluptates vitae quia qui
tg are \tasue :erun\r_qu.un non exercitatisnen ﬁ_rle;.tua at"}, o JSON Standard
{"userld™:18,71d":97,"title”: "quas fygiat ot perapiciatis vero provident™,"body™:"pun
non Blapditiis soluta porro quibusdan veluntzs\nvel weluptaten qul plageas dolores qui RFC 4627
welit autinuel inventere aut qunaue culpa explicabe alisuld at\nperspiciasis est et
waluntaten dignissines dolor ifaque sit nam"},{"userId":18,%id":98,"title":"laberinsan JSON Template
dolor veluptates™,“bedy”:“dolarenaue ex fasilis sit sint culpa\nseluta assumenda .
e 3Space Tab 3
Paste in JSOM or a g&;qqnpj.-nm I‘.It f\us\rsﬁqy.‘.‘ﬁ!ﬁ\ﬂus vel quasi\pyeritatis est delores™},
URLand e {"userld®:18,"1d":99, "title": "tenporibys sit alias delectus eligendl passimus
L3 you magni”,"body”™: "quo delenitl pragsentiun dicta non quodinaut est molestias\nmolestiag et
go. of flcla quis nibili\nitaque dolaren quia™},(“userId”:18,71d":100,"title":"at nan
sensequatur ea labore ea harwn®, “body”:“cuniditate quo est a modi pesclunt seluta\ninsa
¥aluntas error itaque dicta in\nauten qui minus nagnan et distinctie cun\nacsusanus
ratigne error aut™}]

Process

Figure 1-7. Formatting JSON data

c. Paste the JSON into the big text box.

d. Click the Process button. The website will show you the JSON
data in a validated, formatted, easy-to-read web page, as
shown in Figure 1-8. You can even view the JSON full-screen.

12


https://jsonformatter.curiousconcept.com/

CHAPTER 1 WEB APPLICATIONS AND AJAX COMMUNICATIONS

JSONuarer. - About Learn  Bookmarklet Changelog Support Contact W
r

&raép- Dafabases = *, o

@at

#1°

INVALID JSON (RFC 4627)

Validator Output

Formatted JSON Data

=id":1,
"tltle":"sunt aut facere repellat provident cccaecati excepturl optlo reprehenderit”,
"body®: "quia et suscipit\nsusciplt recusandae consequuntur expedita et cum\nreprehenderit molestiae ut ut qua

ul est esse”,
rerun terpore vitae\nsequl sint nihil reprehenderit doler beatae ea dolores neque JEESEENSEREERRAL

Figure 1-8. Formatted JSON data

o Copythe JSON data and paste it into your editor: Then you can apply
your editor’s format commands. You may need to first save the file as
a .js file to ensure it formats it as JavaScript.

Summary

The world of web applications has changed a great deal in recent years. Client-side
applications (also known as SPAs) are becoming more common. In this chapter, we saw
that one of the most important aspects of an SPA is the AJAX communication between
the client (the browser) and the server.

As a developer, it will be important for you to know how to use the network portion of
your web browser’s development tools so that you can debug this AJAX communication.
You may also need to know how to use other tools such as Postman or Fiddler.

In the next chapter, I'll introduce Angular and show how it’s changed from version to
version.

13



CHAPTER 2

AngulardS vs. Angular
(Old vs. New)

Before learning Angular, it helps to know a bit about the original version, called

Angular]S, and talk about the most important differences between the first version and

the later ones.

Here are some basic facts about Angular]S and Angular:

Angular]S, released in 2009, was the original Angular.

It's a JavaScript framework for dynamic web applications—no page
reloads required. Dynamic web applications are also known as SPAs
(single page applications).

It’s popular for creating web pages with widgets that work fast on any
browser.

It allows users to extend HTML to add domain-specific tags,
such as <CAR>.

It allows users to bind data from the model to the HTML/
domain-specific tags.

Angular 2 was developed 2009 and 2014.

Google announced development of Angular 4 in September 2014 and
it went into beta in January 2015.

Angular 4 was released in March 2017.

Angular 5 was released in November 2017.

© Mark Clow 2018
M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_2

15



CHAPTER 2  ANGULARJS VS. ANGULAR (OLD VS. NEW)

Angular]S took off like wildfire because it was a great tool for prototyping
applications quickly. It was also flexible in that you could use the HTML for a page and
build quickly on it, turning it from static HTML into a moving, responsive, sexy app.
Here’s how:

1. Take an HTML template and modify some of the HTML code
elements to add data binding.

Data binding allows a visual control (such as a text box, select
box, and so on) to have its value synchronized with a variable. For
example, you could have a city variable that’s bound to a “City”
text box. If the user types into the text box, the value of the city
variable is updated. If the code changes the value of the city
variable, the “City” text box is updated to match

2. Add aJavaScript Angular controller:
a. Add the variables for the HTML markup to be bound to.

b. Add behavioral JavaScript code (code to respond to events like
button clicks and so on).

Done!
You could (obviously) do a lot more, but the point is that developers could get quick
results turning raw HTML into a working, responsive application.

Semantic Versioning

Angular 2, 4 and 5 are very similar and they are all very different from the original
Angular]S. It seems very strange that we had Angular]S for several years then Angular
2,4 and 5 in a short space of time. This is because the people at Google decided to
implement Semantic Versioning since version 2. Semantic versioning is the new
standard for software versioning and the reason why it is now so popular is that the
version number (or the change of version number) provides information about the
changes made since the last version.

With semantic versioning, the version number is split into three parts, each part
separated by a period.

[major version number] . [minor version number] . [patch version number]

So when Angular changed from 4 to 5, this was a change of major version number.

16



CHAPTER 2  ANGULARJS VS. ANGULAR (OLD VS. NEW)

A major version number change indicates that the software changed in a major

way, meaning that your code that used to work may no longer work as the api has been

changed.

A minor version number change indicates that the software was changed but it was

changed in such a way as to allow your code to still work.

A patch version number is for bug fixes and everything should work.

Angular 5 is Angular 4 with many small improvements, some of which result in a

modified api. As indicated by the semantic major version number change, your code

may need to be modified when converting from 4 to 5. The most important changes from
4 to 5 include:

Modification of the http module (this was already included in
Angular version 4.3).

The build optimizer has been modified to generate smaller, more
efficient deployment modules. When you deploy the files from your
Angular project these files will be smaller.

There are new tools for transferring state data from the browser and

the server (and vise-versa).

The compiler has been rewritten be faster and more thorough. In the
past, Angular was written to use jit (just in time compilation) when
running your app. When you loaded components and object, these
would be compiled when required. Angular is now moving more
towards the aot model, in which your code is compiled in advance
rather than when required. These compiler updates in 5 advance

the move to aot, which will make your app run faster as it will be
performing less compilation when running the app.

Improved internationalization support for multi-language apps.

Platform

Angular]S runs on web browsers, and web browsers run JavaScript, so, JavaScript is the

platform for Angular]S and Angular.

17



CHAPTER 2  ANGULARJS VS. ANGULAR (OLD VS. NEW)

The term evergreen browsers refers to browsers that are automatically upgraded
to future versions, rather than being updated by distribution of new versions from the
manufacturer, as was the case with older browsers. The term is a reflection on how the
design and delivery of browsers have changed quickly over the last few years. Now all the
widely used browsers are evergreen and update themselves.

Browsers Run JavaScript Using JavaScript Engines

We used to think of a web browser and its ability to run JavaScript as the same thing.
Since Node (which uses the JavaScript engine from Google Chrome to run programs
away from the browser), this has changed, and you can run these engines standalone,
away from the browser.

A JavaScript engine is a program or interpreter that executes JavaScript and that may
utilize JIT (just-in-time) compilation to bytecode. Since Angular]S, JavaScript engines
have steadily improved with new versions of ECMA JavaScript (ECMA refers to version).
Angular]S ran on web browsers running version of JavaScript called ECMA5. Now most
browsers run a later version. With ECMAG6 (also known as ECMA 2016), JavaScript took a
giant leap toward becoming a structured, typed language like Java or .NET. The two more
important changes there are the new syntaxes for creating classes and modules, which
are important and relevant for this book.

As you may know, the world of client-side JavaScript changes quickly. The ECMA
Wikipedia page is regularly updated with the latest information: https://en.wikipedia.
org/wiki/ECMAScript.

Shims and Polyfills

Shims and polyfills are software components designed to allow older browsers to

run more modern code. A shim is a piece of code that intercepts existing API calls

on a browser and implements different behavior, which enables standardizing APIs
across different environments. So, if two browsers implement the same API differently,
you could use a shim to intercept the API calls in one of those browsers and make

its behavior align with the other browser. A polyfill is a piece of JavaScript that can
“implant” missing APIs into an older browser. For example, shims and polyfills enable
older ECMAS5 browsers to run ECMAG6 code.

18


https://en.wikipedia.org/wiki/ECMAScript
https://en.wikipedia.org/wiki/ECMAScript

CHAPTER 2  ANGULARJS VS. ANGULAR (OLD VS. NEW)

TypeScript

In between the emergence of Angular]S and Angular, JavaScript was improved and
became more of a structured language. But you can take things even further and use the
TypeScript language, which is structured and even more like languages like Java, .NET,
and C#. In fact, TypeScript was developed by Microsoft to be an improved successor to
JavaScript. Figure 2-1 expresses TypeScript in a nutshell.

TypeScript = ECMAG6 + Types + Annotations

Figure 2-1. How to think of TypeScript

Why is TypeScript important? Google developed Angular using TypeScript. Angular
and the TypeScript language are therefore a great combination, and we're going to talk a
lot about that in this book.

Transpilation

How does TypeScript run on a web browser? Well, it doesn’t, at least not at the
moment. TypeScript gets converted back to compatible JavaScript using a process
called transpilation. A transpiler is a piece of software that converts the source code of
one language into the source code of another. For example, TypeScript, CoffeeScript,
Caffeine, Kaffeine, and more than two dozen other languages are transpiled into
JavaScript.

If you want to see transpilation firsthand, check out www. typescriptlang.org/
play/ and look at some examples. If you select Using Classes from the pop-up box on
that web page, you can see how a modern TypeScript class is transpiled into compatible
JavaScript.

Listing 2-1 shows the code you would write for a TypeScript class, and Listing 2-2
shows the transpilation to JavaScript.

Listing 2-1. TypeScript Class

class Greeter {
greeting: string;
constructor(message: string) {
this.greeting = message;

19


http://www.typescriptlang.org/play/
http://www.typescriptlang.org/play/

CHAPTER 2  ANGULARJS VS. ANGULAR (OLD VS. NEW)

}
greet() {

return "Hello, " + this.greeting;
}

}

Listing 2-2. Transpiled to Browser-Compatible JavaScript

var Greeter = (function () {
function Greeter(message) {
this.greeting = message;
}
Greeter.prototype.greet = function () {

return "Hello, " + this.greeting;
};

return Creeter;

10);

Debugging and Map Files

So, you're writing code one way and deploying it in another way—that must be a
nightmare to debug, right? Yes, it would be a nightmare to debug if you didn’t have map
files. Map files are automatically generated by your transpiler and give the browser the
information it needs to map the original (TypeScript) code to the deployed (JavaScript)
code. That means the JavaScript debugger can let you debug your source code as if the
browser were running it. How cool is that? And if you enable .map files in your browser, it
will automatically look for them, pick them up, and use them. I use .map files all the time
when I'm debugging in Chrome.

Map files do the following:

e Map a combined/minified/transpiled file back to an unbuilt state.

o Map JavaScript lines of code in the browser back to the TypeScript
lines of code

o Enable browsers and debuggers to show the original code that you
wrote in TypeScript and debug it

20



CHAPTER 2  ANGULARJS VS. ANGULAR (OLD VS. NEW)

Transpilation and the Angular CLI Tool

There are many ways of setting up your project to transpile your TypeScript code into
browser-friendly JavaScript. It all depends on your project setup. You have many options
in this regard, and it can get complicated and confusing.

I recommend that you get started using the Angular CLI tool. This tool can very
simply generate ready-made projects that have a simple build process setup, including
transpilation. It can also be of use in larger projects.

Modules

The word module refers to small units of independent, reusable software code—for
example, code to perform animations. I think of modules like LEGO blocks (Figure 2-2).
Each block has its own purpose but is plugged into a larger structure (the application).

Angular]S had its own module system that was simple to use. At that time, JavaScript
didn’t have its own system of modularizing code. Angular has its own module system to
package Angular code into modules, as well as modern JavaScript modules.

Figure 2-2. Modules are like software LEGO blocks

Don’t worry, this will all be covered later in more detail.

21



CHAPTER 2  ANGULARJS VS. ANGULAR (OLD VS. NEW)

Controllers and Components

Angular]S used controllers to represent a widget in the user interface on the HTML page.
Angular (from version 2 on) replaces controllers with the Component object.
Components can have their own tag, such as <Component1>. Components have a class
that contains data and code.
Chapter 8 covers components in greater detail. Components are the building blocks
of Angular 5 applications.

Dependency Injection and Constructor Injection

As I've mentioned, being a Java Spring guy, I love dependency injection because it
makes life simpler. We could spend pages and pages on this subject and the benefits that
dependency injection provides.

Angular]S provided dependency injection. Modern Angular also provides
dependency injection. Because your components have classes, dependencies are
now usually injected via the constructor, using the Constructor Injection pattern. This
software pattern is another server-side technology that is now being used on client-
side. Let’s look at an example of Java Spring using Constructor Injection. The following
configuration specifies a constructor argument—a string message, "Spring is fun":

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="message"
class="org.springbyexample.di.xml.ConstructorMessage">

<constructor-arg value="Spring is fun." />
</bean>

</beans>

22



CHAPTER 2 ANGULARJS VS. ANGULAR (OLD VS. NEW)
The following bean class expects to receive the message in the constructor:

public class ConstructorMessage {

private String message = null;

/**

* Constructor

*/

public ConstructorMessage(String message) {
this.message = message;

}

ek

* Gets message.

*/

public String getMessage() {
return message;

}

/**

* Sets message.

*/

public void setMessage(String message) {
this.message = message;

What'’s so great about this? In this case, it’s a simple example of a String. But it shows
how a software object (in this case, a String object) is “plugged into” another software
object using the constructor.

For example, in Angular you could create a single reusable oftware object that handles
communication with your server. You can pass it into every object (class) that needs it by
passing it in through the constructor. Then, in the class, you have a ready-made way of
talking to the server.

Write a service once, use it many times in many places.

23



CHAPTER 2  ANGULARJS VS. ANGULAR (OLD VS. NEW)

Scope, Controllers, and Components

In AngularJS, Scope ($scope) used to be the “data container” for the controller. Your
variables would be contained in the $scope object. For example, if you had a controller
for an input form for an address, each line of the address would probably be a variable
inside the $scope for the controller.

In Angular, you no longer have controllers—you have components, and you use
these components to construct user interfaces. You can nest components inside
other components using composition. Components have a class, similar to Java or
.NET. The class is the “data container” and contains your variables. This is far more like
conventional server-side coding. For example, if you have a component for an input
form with an address, each line of the address would probably be a variable inside the
component’s class, similar to a Java swing (or Windows Form) class.

o Components use classes to contain their variables and application
code.

o Classes have instance variables, constructors, and methods.
e You can inject dependencies into your classes using the constructor.

o Instance variables can be bound to the template to create a

responsive user interface.

Chapter 8 covers components in detail.

Forms

Writing code that handles data input on forms is important. It was easy to write
Angular]S code that worked with forms, data input, and validation, but Angular has new

form modules that make it easier to do the following:
e Create forms dynamically
e Validate input with common validators (required)
e Validate input with custom validators

o Testforms

24



CHAPTER 2  ANGULARJS VS. ANGULAR (OLD VS. NEW)

Templates

Angular]S and Angular both use HTML templates (see Figures 2-3 and 2-4). The HTML
in the template is bound to the data variables and the code in order to make a working
application. Unfortunately, the template syntax has diverged. Chapter 12 covers the new
syntax in detail.

<input ng-model="thing.item” type="text”>

<button ng-click="thing.submit(item)” type="submit”>

Figure 2-3. Angular]S template

<input #item type="text™>

<button (click)="submit(item)” type="submit”>

Figure 2-4. Angular template

Summary

After this chapter you should have a better understanding of the different versions of
Angular. The original Angular]S took off like wildfire because it was a quick way to write
cross-browser applications, but it had some inconsistencies and needed updating to use
capabilities offered by the updated browsers.

The more modern Angular is like Angular]JS, only with a more straightforward
development environment, backed up with the ability to work with newer JavaScript and
TypeScript.

Angular depends on JavaScript and TypeScript. Chapter 3 introduces JavaScript and

how it has changed from version to version.

25



CHAPTER 3

JavaScript

When Netscape hired Brendan Eich in April 1995, he was told that he had ten days to
create and produce a working prototype of a programming language that would run in
Netscape’s browser.

Ten days to create what we now know as JavaScript! I would say he did a pretty good
job considering the time he was given.

JavaScript is continually evolving. Currently, most web browsers support JavaScript
ES5, but ES6 will become the norm within the next year or two.

JavaScript ES5: Limitations and Shortcomings

This section discusses currently perceived limitations and shortcomings in JavaScript
up to and including the current version ES5. Many of these shortcomings have been
addressed in ES6, covered later in the chapter.

Types

When performing operations on variables, a computer may or may not know the type of
each variable involved.
If the types are known then the operations are simple as the operation is very specific.

Example:
const a: number = 123;
const b: number = 456;
const c: number = a + b;

If the types aren’t known then things get more complicated. The computer has
to attempt to figure out the types of the variables being used or coerce them into the
expected type. The logic can get complicated.

27
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_3



CHAPTER 3 JAVASCRIPT
Example:
var foo = 123 + "Mark";

What's the answer?

e 123Mark?

e Error—because 123 is a number and "Mark" is a string?
JavaScript supports only six types:

e Undefined

e Null

e Boolean

o String

e Number

e Object

That’s right, only one number type. Yet there are so many different types of numbers,
including integers and decimals. I don’t think I am stretching things when I write that in
terms of types, JavaScript doesn’t cut it.

Fail Fast Behavior

Code should either work accurately or it should fail fast (immediately). Because
JavaScript has so few types and rules, it quite often continues rather than fails, with
strange side effects. Things you don’t think will work do work.

For example, the following code doesn’t fail:

alert(C![1+[D [+ 11+ LTI+ DD [+ 1+ 011+ (DY DT+ DIDOI D) [+ 1+ L1+ L+ L TT T+ (ELT+0D)
[1+[1+1+01D);

Value/Object Comparison

When you compare two variables in Java or a .NET language, you don’t need to be
arocket-science to figure out how it is going to compare them. You implement a
.equals() method. However, because JavaScript has few types, it uses complicated logic

28



CHAPTER 3  JAVASCRIPT

to compare values or objects. To see how JavaScript compares variables, take a look at
the equality algorithm shown in Figure 3-1. You may want to take a Tylenol first.

Equality Operator '=="
for example A== B

Is Al or
undefined and B null
or undefined?

negative zero equals
positive zero

s
/!

Is A
zero (Negative
or Positive) and B zero
(negative or
positive)
null equals bath null and
undefined

———

'-’ )

are Aand B . kT
entical suings? \_\
~
Ny,
Yo ~
b,
%
A
LY
Yes b
by
Coerce types hY
b
hY
are Aand B identical Yes h"
objects? \
\
Mo Yos \

are Aand B of :
the same type? Values are considered equal if they are
identical strings, numerically equivalent !
numbers, the same object, identical Boolean v
values, or (if different types) they can be -
coerced into one of these situations.

29



CHAPTER 3  JAVASCRIPT

The Abstract Equality Comparison Algorithm
The co 5, produces true or false. Such a comparison is performed as follows

umm true.
5 Mull, r Tue.
s Mumber, then

same sequence of characters (same length and same characters in corresponding posiliens). Otherwise, rg!
true if x and y are b th false. Otherwise, retumn false
a the same ohjec

2 i x is null and ¥

son ToNumber(x) ==y,
ToNumberiy).

relum the r
10.Retum false.

Figure 3-1. Abstract equality comparison algorithm

Scoping

In JavaScript, undeclared variables are promoted implicitly to global variables. To me,
that seems illogical and dangerous, because surely to have a global variable you should

declare it as such?
In Figure 3-2, the variable o001 is a global variable, and variable f002 isn’t. When

this code runs, you only see one alert box that says “hello.” You don’t see the second one

because f002 isn’t set, because it went out of scope and isn’t a global variable.

function a(){
fool = 'hello';

¥

function b(){
var foo2 = '"there';

¥

a();
b();

alert(fool);
alert(foo2);

Figure 3-2. Only one variable is shown in an alert

30



CHAPTER 3  JAVASCRIPT

JavaScript Strict Mode

JavaScript strict mode was released in ES5. It doesn’t affect old code—in other words,
using the strict mode command won't break JavaScript code if run in ES4, for example.
Strict mode is intended to prevent unexpected errors by enforcing better programming
practices.

Invocation

The "use strict" directive is only recognized at the beginning of a script or a function.
This mode can run in two different scopes: file and function. If you place this directive
at the beginning of your script file, all the code in that file will be run in that mode.
If you place it at the beginning of your function, all the code in the function will be run in
that mode.

I can’t cover every aspect of strict mode but I discuss the main ones in this section.

Assigning to an Undeclared Variable or Object

Strict mode throws an error when the user assigns a value to an unassigned variable or
object, preventing the creation of an unintended global variable (I talk more about this
subject later in this chapter). The following throws an error in strict mode:

"use strict";
pie = 3.14;

"use strict";
obj = {str:10, zip:30350};
Deleting Variables or Objects

Strict mode doesn’t allow you to use the delete keyword to delete variables or objects.

The following throws an error in strict mode:

"use strict";
var pie = 3.14;
delete pie;

31



CHAPTER 3  JAVASCRIPT

Duplicating Function Arguments

Strict mode doesn’t allow a function to have more than one argument of the same name

in a function. The following throws an error in strict mode:

"use strict";
function concat(wordi, wordi) {};

Duplicating Object Properties

Strict mode doesn’t allow a function to have more than one property of the same name
in an object. The following throws an error in strict mode:

"use strict";

var obj = {
propl : O,
prop2 : 1,
propl : 2
b
Read Only Properties

In ES5, users can define object properties using the function Object.defineProperties.
This function allows the developer to define some properties as non-writeable (that is,
read-only). In normal mode, the code doesn’t throw an error when the code attempts

to write to a read-only property. In strict mode, though, the code throws an error in this

circumstance:

var obj = Object.defineProperties({}, {
propl : {
value : 1,
writable : false

}
1

obj.prop1l = 2;

32



CHAPTER 3  JAVASCRIPT

Non-Extensible Variables or Objects

In ES5, users can use the function Object.preventExtensions to prevent objects
from being extended. In normal mode, the code doesn’t throw an error when the
code attempts to extend an object, but in strict mode, the code throws an error in this
circumstance:

"use strict";

var obj = {prop1l : 1};
Object.preventExtensions(obj);
obj.prop2 = 2;

Keywords

Strict mode introduced the following reserved keywords that can’t be used in your code
in this mode:

o implements

e interface

e let
o package
e private

o protected

e public
e static
. yield

JavaScript ES6: Changes and Improvements

JavaScript ES6 is much improved over ES5. I'm not going to cover all the improvements
between ES5 and ES6—just the major ones. Covering all the improvements would take
several chapters. Note that if you want to play around with ES6 but aren’t sure what to
do, visit www.es6fiddle.net and try it out.

33


http://www.es6fiddle.net/

CHAPTER 3  JAVASCRIPT

Constants

Constants are for variables that can’t be reassigned new values:

const TAX = 0.06;

Block Scoped Variables and Functions

Before ES6, JavaScript had two big pitfalls with variables. First, in JavaScript, undeclared
variables are promoted implicitly to global variables. As I mentioned before, in my
opinion that seems illogical and dangerous. The strict mode in JavaScript throws an error
if the script attempts to assign to an undeclared variable, as in the following example:

"use strict";
mark = true; // no ‘var mark’ to be found anywhere....

Also, when you declare variables with the var statement, this scopes the variables
to the nearest whole function. The following example has two x variables assigned: one
inside the function but outside the if block, and another inside the function and inside
the if block. Notice how the code runs as if there’s only one x variable. That’s because
it’s scoped to the entire function. It retains the same value even if it leaves the scope of
the if statement:

function varTest() {
var x = 31;
if (true) {
var x = 71; // same variable!
console.log(x); // 71

}
console.log(x); // 71

}

Now ES6 allows developers to declare variables and functions within block scope.
ES6 has a new let statement that’s used to declare variables. It’s similar to the var
statement except that the variable is scoped to the nearest enclosing block, asin {' and '}.

34



CHAPTER 3  JAVASCRIPT

The next example shows how the inner variable x is scoped to the nearest block in
the if statement. When the code exits the if statement, the inner x variable goes out of
scope. Thus, when the console log is printed in the statement below the if, it shows the
value of the outer x variable instead:

function letTest() {
let x = 31;
if (true) {
let x = 71; // different variable
console.log(x); // 71

}
console.log(x); // 31

}

ES6 also lets you define functions that are scoped within a block. These functions
go out of scope immediately when the block terminates. For example, the following
code works fine on Plunker with ES5, but throws “Uncaught ReferenceError: log is not
defined” when run on Es6fiddle.net:

if (1 == 1){

function log(){
console.log("logging");

}
log();
}
log();

Arrow Functions

Arrow functions are a new ES6 syntax for writing JavaScript functions (see Figure 3-3).
An arrow function is an anonymous function that you can write inline in your source
code (usually to pass in to another function). You don’t need to declare arrow functions
by using the function keyword. One very important thing to remember about arrow
functions is that that the value of the this variable is preserved inside the function.

35



CHAPTER 3  JAVASCRIPT

// ES5
var multiply = function(x, y) {
return x * y;

};

// ES6
var multiply = (x, y) = { return x x y };]

Figure 3-3. Arrow function

Functions Arguments Can Now Have Default Values

You can specify default values in case some of the arguments are undefined.
For example, the following

function multiply(a = 10, b = 20){
return a * b;

}

console.log(multiply(1,2));

console.log(multiply(1));

console.log(multiply());

results in the following output:

2
20
200

Functions Now Accept Rest Parameters

This parameter syntax enables us to represent an indefinite number of arguments as an
array.
For example, the following

function multiply(...a){
var result = 1;
for (let arg in a){
result = result * a[arg];

}
36



CHAPTER 3  JAVASCRIPT

return result;
}
console.log(multiply(5,6));
console.log(multiply(5,6,2));

results in the following output:

30
60

String Interpolation

String interpolation enables variables to be data-bound into text strings. Note that the
interpolation only works with the new quote character = used for template literals.
Template literals allow the user to use multi-line strings and string interpolation. String
interpolation doesn’t work with strings enclosed in the usual quotes " and '.

For example, the following:

var person = {name: "julie", city: "atlanta"};
console.log(person.name);

// works

console.log( ${person.name} lives in ${person.city}");
// doesnt work

console.log("${person.name} lives in ${person.city}");
console.log('${person.name} lives in ${person.city}');

produces this output:
julie
julie lives in atlanta

${person.name} lives in ${person.city}
${person.name} lives in ${person.city}

Modules

Modular programming is a software design technique that emphasizes separating the
functionality of a program into independent, interchangeable modules such that each
contains everything necessary to execute only one aspect of the desired functionality.

37



CHAPTER 3  JAVASCRIPT

Currently, most web browsers run JavaScript version ECMA 5, which wasn’t written
to work with modular programming. However, ECMA 6 is designed to work with
modules, and its specification was agreed on June 2015. ES6 JavaScript lets you write
your code into modules and use them like LEGO blocks.

For example, you could have an Internationalization Utility module that contains a
lot of code for internationalization, including code to load resource bundles for different
locales and so on. However you only need other code to access one method of this code,
amethod called getI18N(locale, key), which would return text for a locale and a key.
JavaScript modules give you the ability to do that, letting you code a “black box” of code
that’s only accessible through public interfaces—in this case, an exported function.

One File

In ES6, you write each module in its own JavaScript file—one .js file. There’s exactly one
module per file and one file per module. You have two ways of exporting things from a
module to make them usable from the outside, and both ways use the export keyword.
You can mix the two ways of exporting things in the same module, but it’s simpler if you
don’t. Just pick one. Once you've exported code, you can use it elsewhere by importing it.

Exporting Method 1: Named Exports

If you want your module to export more than one thing (for example, a constant,
function, object, and so on), use named imports. Named imports enable you to export
code with names.

Module mymath. js:

export const sqrt = Math.sqrt;
export function square(x) {
return x * x;
}
export function diag(x, y) {
return sqrt(square(x) + square(y));

38



CHAPTER 3  JAVASCRIPT
Importing and using module code:

import { square, diag } from 'mymath’;
console.log(square(11));
console.log(diag(4, 3));

Note how the export doesn’t need a semicolon and that the names must match the
original names in the module.

Exporting Method 2: Default Exports

Each module can only have one default export. This is useful if you only want your
module to export one thing.
Module mymath. js:

export default function square(x) {
return x * x;

Importing and using module code:

import sq from '‘mymath’;
5q();

Note again how the export doesn’t need a semicolon and that the name sq doesn’t

U

match the function in the module. Using default exports allows you to use “nicknames’
because it knows the object it’s going to use, because there’s only one.

Note If you need to write modern code (ES6 or above) that can be deployed onto
browsers running ES5, you can use transpilation to convert the code.

TypeScript

ES6 is a big step up from ES5, but it’s still missing some pieces that are provided by
modern structured languages like Java and C#—for example, strong typing, decorators,

enumerations, and so on.

39



CHAPTER 3  JAVASCRIPT

Don’t worry. There’s already something out there that builds on ES6, taking it a
step further. It’s called TypeScript. We'll write modern code in ES6 and TypeScript and
use transpilation to convert it into compatible code to be deployed on the major web
browsers.

TypeScript was written by Microsoft and is a very modern, structured language
similar to Java and C#. Google, working in partnership with Microsoft on TypeScript, used
it to write Angular itself. That makes using TypeScript with Angular a very good idea!

Summary

This chapter discussed many of the pitfalls of JavaScript and noted that most current
web browsers still run ES5, not ES6. I mentioned that although ES6 is an improvement
on ES5, TypeScript extends it and improves upon it, providing typing and many other
features. TypeScript is the subject of the next chapter.

40



CHAPTER 4

TypeScript

TypeScript is a superset of JavaScript (written by Microsoft) that primarily provides
optional static typing, classes, and interfaces. It’s open source and is being developed on
GitHub. The compiler is implemented in TypeScript and can work on any JavaScript host.

Being a strict superset of JavaScript means a JavaScript program is also a valid
TypeScript program, and a TypeScript program can seamlessly consume JavaScript.
TypeScript compiles to compatible JavaScript. TypeScript is quite similar to Java/.NET,
with some differences—for example, constructors and interfaces.

You don’t need to download or install TypeScript. When you use the Angular CLI
(covered in Chapter 7), it will set up TypeScript for your project automatically.

In a nutshell, you can think of TypeScript like this:

TypeScript = JavaScript + Types + Classes + Modules + More

The most important of these additions is fypes, discussed in this chapter. Types enable
IDEs to provide a richer environment for spotting common errors as you type the code.

Note Browsers can’t run TypeScript directly—not yet anyway. TypeScript code is
compiled down to JavaScript.

Microsoft’s website for learning TypeScript is www. typescriptlang.org, the
Playground of which is shown in Figure 4-1.

41
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_4


http://www.typescriptlang.org/

CHAPTER 4  TYPESCRIPT

= |
S o t learn play  download interact
ype Crlp tutorial handbook samples language spec
TypeScript Walkthrough: Classes | JET4) Run JavaScript
class Greeter { var Greeter = (function () {
greeting: string; function Greeter(message) {

constructori(message: string) {
this.greeting = message;

}

greet() {
return “Hello, " + this.greeting;
}

}

var greeter = new Greeter("world");

var button = document.createElement('button’);

button.textContent = "Say Hello";

button.onclick = function() {
alert(greeter.greet());

0~ s W N

this.greeting = message;
H
Greeter.prototype.greet = function () {
return "Hello, " + this.greeting;
LH
return Greeter;
ni;
var greeter = new Greeter("world");
var button = document.createElement('button');
button. textContent = "Say Hello";
butten.onclick = function () {
alert(greeter.greet());
3:
document. body.appendChild({button);

17 }

document. body. appendChild(button);

Figure 4-1. Playground area of www.typescriptlang.org

Note that you can enter TypeScript on the left side and see it converted to JavaScript
on the right side.

The rest of this chapter focuses on the main differences between the JavaScript and
TypeScript languages.

Strong Typing

TypeScript provides strong typing and typing is useful because it enables the developer
to specify his or her intention of how the variable is going to be used (what type of
information it will store). This enables the compiler to verify that this is the case. If your
code isn’t using variables in a valid manner as expected, it won’t compile.

Equality comparison is easier with TypeScript than with ECMAS5 JavaScript because
you can easily detect whether the two items compared are of the same type. If they're
not, an error is produced. After type checking is completed, equality checking is easier
because both items are of the same type. Having types in your code gives IDEs more
information to work with. For example, if an IDE knows a variable is a string, it can
narrow down the autocomplete selection to strings only.

42



http://www.typescriptlang.org/

CHAPTER 4  TYPESCRIPT

TypeScript offers the following basic types:
e Boolean

e Number

o String

o Array

¢ Enum

e Any

e Void
Classes

ECMAScript 5 doesn’t have classes, but TypeScript and ECMAScript 6 do.
Classes have constructors in the following format:

class Animal {
private name:string;
constructor(theName: string) { this.name = theName; }

}

Note that the code below will do the same thing as the code above
(ie assign a value to the 'name' instance variable):

class Animal {
constructor(private name: string) {}

Classes can extend other classes:

class Animal {
name:string;
constructor(theName: string) { this.name = theName; }
move(meters: number = 0) {

alert(this.name + " moved " + meters + "m.");

43



CHAPTER 4  TYPESCRIPT

class Snake extends Animal {
constructor(name: string) { super(name); }
move(meters = 5) {
alert("Slithering...");
super.move(meters);

}

class Horse extends Animal {
constructor(name: string) { super(name); }
move(meters = 45) {
alert("Galloping...");
super.move(meters);

Classes can implement interfaces (see the next section). And classes can use public
and private modifiers for member variables or methods. If you don’t specify public or
private for a variable or a method, the compiler assumes that the member is public.

Interfaces

Think of an interface as a promise to do something (for example implement a function in
a certain manner) or store certain data (such as properties, arrays). TypeScript interfaces
can apply to functions:

interface SearchFunc {
(source: string, subString: string): boolean;
}
var mySearch: SearchFunc;
mySearch = function(source: string, subString: string) {
var result = source.search(subString);
if (result == -1) {
return false;

}

else {

44



CHAPTER 4  TYPESCRIPT

return true;

}
}

TypeScript interfaces can also apply to properties. Interfaces can enforce properties
but can also have optional properties (for example, color in the following code):

interface LabelledClothing {
label: string;
size: number;
color? : string;

}

function printLabel(labelled: LabelledClothing) {
console.log(labelled.label + " " + labelled.size);

}
var myObj = {size: 10, label: "Dress"};
printLabel(myObj);

Typescript interfaces can apply to arrays:

interface StringArray {
[index: number]: string;

}

var myArray: StringArray;
myArray = ["Bob", "Fred"];

Classes can implement interfaces:

interface ClockInterface {
currentTime: Date;
setTime(d: Date);

}

class Clock implements ClockInterface {
currentTime: Date;
setTime(d: Date) {
this.currentTime = d;

}

constructor(h: number, m: number) { }

45



CHAPTER 4  TYPESCRIPT
And you can have interfaces that extend other interfaces:

interface Shape {
color: string;

}

interface Square extends Shape {
sidelLength: number;

}

var square = <Square>{};
square.color = "blue";
square.sidelength = 10;

Modules

Modules are not included in ECMAScript 5, but they are in TypeScript and ECMAScript 6.
The export keyword allows you to export your TypeScript objects in a module so they
can be used elsewhere.

There are two main types of TypeScript modules: internal modules and external
modules. In Angular, most of the time you’ll be working with external modules.

Internal Modules

Internal modules are TypeScript’s own approach to modularize code. You use the module
keyword to create a module. Internal modules can span across multiple files, effectively
creating a namespace. In a browser you load the modules using <script/> tags because
there’s no runtime module-loading mechanism. Or you can compile TypeScript files into
a JavaScript file that you include with one <script/> tag.

You declare internal modules like this:

module mymod {

export function doSomething() {
// this function can be accessed from outside the module

}

export class ExportedClass {

46



CHAPTER 4  TYPESCRIPT

// this class can be accessed from outside the module

}

class AnotherClass {
// this class can only be accessed from inside the module
}
}

To consume internal modules, you can address them using their fully qualified

name:
var exportedClassInstance = new mymod.ExportedClass();
Or you can import them:

import ExportedClass = mymod.ExportedClass;
var exportedClassInstance = new ExportedClass();

External Modules

These are the types of modules most commonly used when developing in Angular.
External modules use a runtime module-loading mechanism. We'll go into module
loading mechanisms in chapter 9.

To use external modules, you decide whether to use AMD or Common]JS (your two
choices of module systems) and then compile your sources with the -module compiler
flag with values amd or commonjs.

In computing, a namespace is a set of symbols used to organize objects of various
kinds. With external modules, your file’s name and path will create the namespace,
which identifies the item.

Here’s an example for a file called projectdir/ExportedClass.ts:

class ExportedClass {
// code ....

}

export = ExportedClass;
To consume external modules:

import ExportedClass = require("projectdir/ExportedClass");
var exportedClassInstance = new ExportedClass();

47



CHAPTER 4  TYPESCRIPT

Enumerations and Generics

Enumerations are used to setup lists of constant values. They will be familiar to Java and
.NET developers:

enum Color {Red, Green, Blue};
var c: Color = Color.Green;

As will generics:

interface LabelledClothing {
label: string;
size: number;

}
var arr: Array<lLabelledClothing> = new Array<lLabelledClothing>();

Constructors

TypeScript uses the constructor keyword to declare constructors, rather than the
class name. Another difference is that TypeScript automatically assigns constructor
arguments as properties. You don’t need to assign instance variables in your
constructor—that’s already done for you.

This:

class Person {
constructor(private firstName: string, private lastName: string) {
}

}

equals this:

class Person {
private firstName: string;
private lastName: string;

constructor(firstName: string, lastName: string) {
this.firstName = firstName;
this.lastName = lastName;

48



CHAPTER 4  TYPESCRIPT

Functions

Arrow functions don’t exist in ECMAScript 5, but they do in TypeScript and ECMAScript 6.
An arrow function is a function that you can write inline in your source code (usually to
pass in to another function). Figures 4-2 through 4-4 show arrow functions.

var calculateInterest = function (amount, interestRate, duration) ({

return amount * interestRate * duration / 12;

}

Figure 4-2. Regular function

var calculatelInterest2 = (amount, interestRat, duration) => {
return amount * interestRate * duration / 12;

}

Figure 4-3. The function in Figure 4-2 could be written into an arrow function in

this manner

var calculatelInterest3 = (amount, interestRate, duration) => amount *

interestRate * duration / 12;

Figure 4-4. The functions in the preceding two figures could be written in shorter
form, like this

Note The syntax is the not the main reason why developers use arrow functions
in TypeScript. The main reason is that the value of the this variable is preserved
inside arrow functions. This can be of great benefit to the developer because
regular JavaScript functions have a mechanism called boxing that wraps or
changes the this object before entering the context of the called function. Inside
an anonymous function, the this object represents the global window. In other
functions, it represents something else. Many developers use arrow functions
when they absolutely want to ensure that the this variable is what they expect.

Figure 4-5 shows an example of a regular function.

49



CHAPTER 4  TYPESCRIPT

function Person(age) {
this.age = age
this.grow0ld = function(){

this.age++;

e
¥
var person = new Person(1);
setTimeout(person.grow0ld, 1000);
setTimeout(function(){ console.log(person.age); },2000); // 1, should have been 2

Figure 4-5. A regular function

After running the code in Figure 4-5, person.age has value 1. It should have value
2 because the this variable inside the Person function doesn’t actually represent the
Person function.

Figure 4-6 shows an example of an arrow function.

function Person(age) {
this.age = age

this.grow0ld = () => {

this.age++;
b
)
var person = new Person(1);
setTimeout (person.grow0ld, 1000);
setTimeout (function(){ console.log(person.age); },2000); // 2

Figure 4-6. An arrow function
After running the code in Figure 4-6, person.age has value 2, which is correct. That’s

because the this variable inside the Person function represents the Person function as

expected.

50



CHAPTER 4  TYPESCRIPT

The ellipsis operator (denoted by . . .) allows a method to accept a list of arguments
as an array, as in the following example:

function sum(...numbers: number[]) {
var aggregateNumber = 0;
for (var i = 0; i < numbers.length; i++)
aggregateNumber += numbers[i];
return aggregateNumber;

}

console.log(sum(1, 5, 10, 15, 20));

Getters and Setters

If you're targeting browsers with ECMAScript 5, this scripting version supports the
Object.defineProperty() feature. If you use TypeScript getters and setters, then you
can define and directly access properties with the . notation. If you're used to C#, then
you're already quite used to this:

class foo {
private bar:boolean = false;

get bar():boolean {
return this. bar;

}
set bar(theBar:boolean) {

this. bar = theBar;

}
}
var myBar = myFoo.bar;
myFoo.bar = true;

51



CHAPTER 4  TYPESCRIPT

Types

You can have variable types in TypeScript, but it’s optional. The reason it’s optional is so
that TypeScript is backwards-compatible, meaning it can run all your JavaScript code.
When you declare a variable in Typescript, you can specify the variable type by
adding : [type] after its name.

For example, we declare a mark variable of the type number:

var mark: number = 123;

If we edit the code to assign a string to this variable, we get the syntax error
highlighting shown in Figure 4-7. Note that this doesn’t happen in Plunker—only in an
editor like Visual Studio Code.

public ngOnInit(): voi
this.configResponyg
this.mark = 'x’;

}

Figure 4-7. Syntax error highlighting

If we save this (bad) code and compile the TypeScript, we get the following error:

Type 'string' is not assignable to type 'number'.

Primitive Types
TypeScript offers the following primitive types:
e Any
e Void
e Number
o String

¢ Boolean

52



CHAPTER 4  TYPESCRIPT

Primitive types aren’t inherited from the Object class and aren’t extendable
(you can’t subclass them). Primitive types are typically named with a lowercase first
letter—for example, number.

Object Types

Object types are types that aren’t primitives. They're inherited from the Object class
and are extendable. Object types are typically named with an uppercase first letterfor
example, Number.

Objects of this type have access to their prototype so that you can add additional
functionality to the object:

String.prototype.Foo = function() {
// DO THIS...

Object types also let you use the instanceof to check class:

myString instanceof String

Union Types

Sometimes you want a variable to be one of multiple types—for example, a string or a
number. You can use the union (|) type for this. The following variable can be a string or
anumber, and the code is valid:

var name: string|number;

constructor(){
this.name = 'abc';
this.name = 22;

}

53



CHAPTER 4  TYPESCRIPT
Here’s another example:

var action = ActionNew | ActionSave | ActionDelete ;

if (action instanceof ActionNew){
...do something...

Union types can also to apply to function arguments and results:
function format(value: string, padding: string | number) { // ...}

function getFormatted(anyValue:any): string | number { // ... }

Alias Types

You can also use the type keyword to define type aliases:

type Location = string|number;
var loc: Location;

Tuple Types

A tuple is a finite ordered list of elements—for example: name, address, numeric zip
code. TypeScript allows you to access this data using variables that use classes or tuples.
The tuple type allows you to define a variable as a sequence of types:

var contactInfo: [string, string, number];

contactInfo = ['Mark', '12 Welton Road', 30122];

Compilation Options

You can configure TypeScript to your tastes: where the source code is located,

how strict the compilation is, what compilation checks you want (or don’t want),
where the generated transpiled code is located etc. You can configure TypeScript by
specifying the configuration options in a JSON-formatted file. Normally this file is
called ‘tsconfig.json’ and you will find such a file when you generate your Angular

54



CHAPTER 4  TYPESCRIPT

project using the CLI. I have sometimes edited this file to make irrelevant compile
checks go way if you are going something unusual. For example if you are using some
regular JavaScript code within a TypeScript class.

Summary

You should now have a basic knowledge of how TypeScript improves upon JavaScript.
TypeScript helps you as a developer to be more declarative and specific with your code,
allowing you to declare variables with specified types and enabling more compile-time
checking. Tt also helps you use annotations to provide information to the compiler about
the Angular objects you're writing. TypeScript has really made Angular 2 and 4 easier to use.

We're going to be coding very soon, but first we’ll need to set up our code editor.
Chapter 6 covers editors.

55



CHAPTER 5

Visual Studio Code

Many editors are available that will work with TypeScript, including Visual Studio, Visual
Studio Code, WebStorm, WebEssentials, Eclipse, and many more.

Different people like different editors, and different developers can work with
different editors in the same project without causing many issues. There is no “right” or
“wrong” editor.

I'm going to cover Visual Studio Code because it works very well and is free.
Irecommend you install this editor by going to https://code.visualstudio.comand
clicking the Download link. If you end up not liking Visual Studio Code, you can easily
remove it and choose a different one.

I chose Visual Studio Code because it’s an open source source code editor developed
by Microsoft and available for Windows, Linux, and macOS. It includes support for
debugging, embedded Git control, syntax highlighting, intelligent code completion,
snippets, and code refactoring. It was written by the same people who wrote TypeScript,
so we know it will work well with it. It also works well with JavaScript, PHP, and more.
And it’s relatively compact.

Sometimes I switch over to Webstorm as it can be better at refactoring code.
However 90 percent of the time Visual Studio Code works just fine.

Getting Started with Visual Studio Code

If you haven't already done so, go to https://code.visualstudio.com, download Visual
Studio Code, and install it. Figure 5-1 shows the Download page.

57
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_5


https://code.visualstudio.com/
https://code.visualstudio.com/

CHAPTER 5  VISUAL STUDIO CODE

LN WWW.LS - node-express-1s

Code editing.
Redefined.

In9.Col21 Spaces2 UTFG IF TypeSeript @

Figure 5-1. Download page for Visual Studio Code

Once the program is installed, to start the shell double-click on the Visual Studio
Code icon to open it. Click File » Open Folder and then select your project’s root folder.

Navigate to the root folder of your project. Enter the command code . (code space
period).

Seeing Files, Commands, and Hot Keys

Pressing Ctrl+P lists the files underneath the text box at the top, as shown in Figure 5-2.
When you type, it filters the list.

58



CHAPTER 5  VISUAL STUDIO CODE

dashboard.js|

dashboard.controller.js
dashboard.controller.js.map

D dashboard.route.js.map

D dashboard.module.js.map
D dashboard.route.js.html
dashboard.route.js.html
dashboard.route.spec.js
dashboard.module.js.html
dashboard.module.js.html
dashboard.controller.js.html

dashboard.controller.js.html

BB BPDEE B NEEE

dashboard.controller.spec.js

Figure 5-2. Filtering the list of files

Pressing Ctrl+Shift+P lists the commands at the top underneath the text box at the
top, as shown in Figure 5-2. When you type, it filters the list.

‘»close|

Notification Messages Escape, Shift+Escape
Window Ctrl+W, Ctrl+Shift+W
File: Folder Ctrl+KF
View: All Editors Ctrl+K Ctrl+W
View: All Editors in Group Ctrl+KW
View: Editor Ctrl+F4, Ctrl+W
View: Editors in Other Groups
View: Editors to the Left
View: Editors to the Right
View: Other Editors
View: Reopen d Editor Ctrl+Shift+T

Figure 5-3. Filtering the list of commands

59



CHAPTER 5  VISUAL STUDIO CODE

Starting a Build

Edit the file tasks.json in the root folder of your project (see Figure 5-4). This
configuration file specifies the build command we’re going to use in the example project.
It runs npm run build on the command line to invoke the build. See Chapter 10 for more

information on Webpack and the build process.

tasks.json
{

"version": "0.1.0",

"command": "npm",
"isShellCommand": true,
"args": ["run", "build"]

Figure 5-4. Editing tasks.json

To start a build, press Ctrl+Shift+B. Build output will be displayed in the Output
pane. It normally takes between 10-30 seconds to run. See Figure 5-5.

60



CHAPTER 5  VISUAL STUDIO CODE

® e customers.ts - angular2-webpack-starter

customers.ls o/

es5: [...ROUTER_DIRECTIVES]

F ers {
customers r CustomerL. -

constructor(public http: Http) {

ngOnInit() {
http.get(
.map{(res: F 0 > res.json()).subscribe(res == this.

handleCustomerData(res: any) {
(({res.data) & (res.data.length > @)) {
.customers = res.data;
{

is.customers =

Figure 5-5. Build output will appear in the Output pane

To View build errors, press Ctrl+Shift+M. Errors are listed at the top of the screen (see
Figure 5-6). Click an error to navigate to the source of the error.

pp/orders/orders.ts
' s whitespace
[1, 19]: missing whitespace
[1, 24]: missing whitespace

G in ./src/app/users/users.ts
[14, 1]): trailing whitespace
[1, 19): missing whitespace

customers.ts

aj

e o 5 Customers { [1, 24]: missing whitespace
4 ANGULAR2-WEBPACK-STARTER : Array<ICustomerList>;

G in ./src/app/LoggedInRouterOutiet.
constructor (public http: Http) { : trailing whitespace
trailing whitespace
: trailing whitespace
ngOnInit() { trailing whitespace
32] issing whitespace
31] i whitespace
24] ould be =
16]: missing whitespace

Figure 5-6. Any errors would be listed at the top of the screen

61



CHAPTER 5  VISUAL STUDIO CODE

Introducing the Interface

Visual Studio Code shows a sidebar to the left offering different modes (Figure 5-7) and
an editing area to the right.

Figure 5-7. The Visual Studio sidebar has four modes: Explorer, Search, Git, and
Debug (from top to bottom).

You can show and hide the sidebar using the Ctrl+B keyboard shortcut.
You can easily switch between four main sidebar modes: Explorer, Search, Git, and
Debug. There are different ways to switch modes:

e C(lick the sidebar icons.
e Click View and choose your mode.

e Use the hotkeys (given in the following sections).

Explorer

The Explorer pane (Figure 5-8) is the first pane after the sidebar. It’s split into two
sections: Working Files (above) and Project Files (below—in this case, called Temp).
Click a file in the file list to display it on the right side for editing.

62



CHAPTER 5  VISUAL STUDIO CODE

EXPLORER

4 WORKING FILES

file1.txt
4 TEMP

file1.txt
file2.txt

Figure 5-8. Explorer pane

To activate or focus the Explorer pane, click the Files icon in the sidebar, click View »
Explorer, or press Ctrl+E.

Working Files

When you edit files, they appear in Working Files. If you're only editing a few project files
at once, it is handy having these files listed at the top in the Working Files section. When
you hover over the “Working Files” heading, it shows an X to allow you to clear the list if
you want.

Project Files

Project Files is a list of all the files in the project, as well as the folders.

Search

Search (Figure 5-9) works just like it does in most programs (see Figure 5-9). To activate
or focus the Search pane, click the magnifier icon in the sidebar, click View » Search, or
press Ctrl+Shift+F.

63



CHAPTER 5  VISUAL STUDIO CODE

SEARCH

Figure 5-9. Search

Git
To activate or focus the Git pane, click the Giticon in the sidebar, click View » Git, or
press Gtrl+Shift+G. See Figure 5-10.

e ‘View’ menu option ‘Git!

¢ Control - Shift - G

Message (press Cmd-+Enter to commit)

Figure 5-10. Git
Debug

To activate or focus the Debug pane, click the Debug icon in the sidebar, click View »
Debug, or press Ctrl+Shift+D. See Figure 5-11.

64



CHAPTER 5  VISUAL STUDIO CODE

DEBUG
4 VARIABLES

CALL STACK

BREAKPOINTS

@ All exceptions

# Uncaught exceptions
Figure 5-11. Debug

The debugging is more useful for debugging server-side code than for browser-side
code, so it may not be of too much use to use in regard to Angular. You can debug browser
code using this debugger if you enable remote debugging on your browser and attach to
it, but it is probably easier just to use the available (and excellent) browser debuggers like
the ones in Google Chrome.

To debug your server-side code you must first set up a debug launch task. This
enables you to set up your debugging launch configuration, which you use to start the
server-side code and start debugging it.

To debug, do the following:

1. Click the Debugicon in the sidebar or use another option already
mentioned.

2. Click the Gear icon to open the Debug Configuration settings (in
.settings/launch.json).

3. Pick your debugging configuration (next to the Gear icon) and
click play to launch it.

65



CHAPTER 5  VISUAL STUDIO CODE

Extensions

To activate or focus the Extensions pane, click the Extensions icon on the left (Figure 5-12),
click View » Extensions, or press Ctrl+Shift+X. Figure 5-13 shows the Extensions pane.

=
Figure 5-12. Extensions icon

EXTENSIONS

Bearch Extensions in Marketplace

Jest 2.05 5K X5
g Use Facebook's Jest With Pleasure.

10;

Figure 5-13. Extensions pane

It’s very easy to install extensions into Visual Studio Code. The Angular 5 project I
work on has a build process that includes linting, which checks code to ensure that it
follows style guidelines. Often the build will fail if the user adds too much whitespace.
This becomes annoying, and it’s a good idea to install the linter extension into Code so
that it highlights linting issues as they occur (with a warning at the bottom left).

To view commands having to do with extensions, enter the following:

extensions

This displays the list of available extensions commands shown in Figure 5-14.

>extensior|

Extensions: Install Extension

' Extensions: Show Extension Recommendations
Extensions: Show Installed Extensicns
Extensions: Show Outdated Extensicns

s nls from 'vs/nls';
Figure 5-14. Extensions commands

66



CHAPTER 5  VISUAL STUDIO CODE

To install an extension into Code, enter the following command and follow the

instructions:
ext install

To set up the TypeScript linter in Code, enter the following command and follow the
instructions (see Figure 5-15):

ext install tslin

ext install tslin

t

Figure 5-15. Installing the TypeScript linter

A FEW OTHER HANDY THINGS TO NOTE

Being a rich editing environment, Virtual Studio Code offers IntelliSense code selection and
completion. If a language service knows possible completions, the IntelliSense suggestions
will pop up as you type. You can always manually trigger it by pressing Ctrl+spacebar.

For saving your work, the normal File Menu Save commands apply, as does the Ctrl+S
shortcut.

Visual Studio Code allows you to navigate in and out of code freely. For example, you can
press Girl and click to “drill into” code, such as into a method. This is great when you need

to look at something in detail, but you need to be able to go back to where you were. This is
where navigating backward and forward comes in. To navigate backward, press Ctrl+- or click
View » Navigate backward. To navigate forward, press Ctrl+Shift+- or click View » Navigate
Forward.

67



CHAPTER 5  VISUAL STUDIO CODE

Summary

Hopefully by now you've installed Visual Studio Code and checked it out. Note that the
screens shown in version you installed may look a bit different from the screenshots in
this chapter. The program is frequently updated.

Also remember that you're not “locked into” any particular editor. I chose Visual
Studio Code to use with this book because it’s simple to use and easy to get going with. If
you want to use another editor with the code examples from this book, go right ahead.

Now you've installed an editor, we can move ahead with our development
environment and get ready to start coding. When you develop code with Angular, you
end up using a great deal of third-party code—that is, code written by other people. You
try not to write it all from scratch!

So, your project will have dependencies on other people’s code. The purpose of Node
is to manage these dependencies, so we'll talk about Node in the next chapter.

68



CHAPTER 6

Node

We need to get coding soon, but we're going to need a project. To create a project, we're
going to need to use the CLI (Angular’s command line interface, covered in the next
chapter). And the CLI needs Node to work. So, we need to discuss Node before we can
start coding.

Node is a JavaScript runtime you install on your computer. It’s a platform for
development tools and servers (or anything else). Node is straightforward to use,
and there are hundreds of modules already written for it—which means lots of code you
can reuse.

Node uses the V8 JavaScript engine code written by Google for the Chrome browser,
in combination with additional modules to do file I/O and other useful stuff not done
in a browser. Node does nothing by itself—it’s a platform on which you can run many
useful JavaScript code modules, including web servers, transpilers, and more.

Node also provides dependency management with Node Package Manager, which
we will cover in this chapter. It will enable you to manage your project’s dependencies on
3" party JavaScript libraries. It is essential that you get to grips with operating npm. Node
Package Manager also enables you to publish your Angular code as a module, as well as
use other peoples.

You're going to need Node. To download it, go to nodejs.org/download and install
the core Node software for your computer. Figure 6-1 shows the Node website.

69
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_6



CHAPTER6 NODE

HOME | ABOUT DOWNLOADS | DOCS FOUNDATION | GETINVOLVED | SECURITY NEWS

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/O model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Important security releases, please update now!

Download for macOS (x64)

8.9.1LTS 9.2.0 Current

Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs  Other Downloads | Changelog | API Docs

Or have a look at the LTS schedule.

Figure 6-1. The Node website

You have the option of downloading and installing the most recommended release
or the latest release. Obviously, the former is more stable—that’s why it’s recommended.

Setting Up and Running Node

The following command sets up Node in your project. It asks you some questions and
then generates the package.json file (covered shortly). Run this command in the root
folder of your project:

npm init

Note that the ‘npm’ command is used to invoke the node package manager.

70



CHAPTER6 NODE

Once you have Node installed, you'll have command-line access to the command
node. Entering this command without arguments will allow you to type in JavaScript and
hit Enter to run it:

$ node
> console.log('Hello World');
Hello World

The more useful way to use the command node is to enter this command plus a
filename as an argument. This will execute the contents of the file as JavaScript. In this
case, we we'll create the file hello.js:

setTimeout (function() {
console.log('Hello World!");
}» 2000);

Now we can run it:
node hello.js

The program waits two seconds and then writes “Hello World” to the console.

Node Package Manager (npm)

Now that we know how to run JavaScript code through Node, we need to see about
installing these useful modules. You would think that this would be simple, but it’s
not because many node modules depend on other node modules to work. So, when
you install a node module, Node needs to ensure that any node modules that are
dependencies are also installed. That’s why the Node Package Manager (npm) was
invented for you—to add, update, and delete node modules to your project and also
manage these interdependencies.

For this purpose, Node provides a command-line access to the command npm. This
command has many different arguments allowing you to install modules, update them,
or uninstall them.

The website http://docs.npmjs.comis a great resource for detailed documentation
on npm. And www.npmjs.comis a great resource for available node packages.

71


http://docs.npmjs.com/
http://www.npmjs.com/

CHAPTER6 NODE

Node Module Installation Levels

There are two levels of node module installation:

e Global:If you're installing something that you want to use on the
command line, install it globally by adding -g to the npm install on
the command line:

npm install -g typescript

e Local: If you're installing something that you want to use in your
program (not from the command line), use the local level. To install
amodule locally, leave out the -g from the npm install on the
command line:

npm install express

Running npm install [Module Name] to Install the Module

This works great if you're doing something simple, such as adding a single additional
Node module to your project. For example, one of the most useful modules is Express, a
capable web server. To install Express, we could enter the following on the command line:

npm install express

This won’t update your node dependency file package.json (more on this later).
If you need this module to be saved as a project dependency in that file, add the
--save or --save-dev argument to the command:

o Thesave argument - - save: This adds the Node module that you're about
to install as a Node module that’s required for your project in production.
Your package.json file is modified to include this dependency.

npm install express --save

o The save argument - -save-dev: This adds the Node module that
you're about to install as a Node module that’s required for your project
in development only (that is, it's not needed for production). Once
again your package.json file is modified to include this dependency.

npm install express --save-dev

72



CHAPTER6 NODE

Updating Node Modules

Sometimes your dependencies change. You want to add an additional module, but
adding that module requires others to be of a later version number. Node provides the
following command to check whether your modules are outdated:

npm outdated

There are two different ways of updating modules in Node.

e You can nun the command npm update specifying the module to
be updated. Also add the --save option if you want your package.
json file updated with the later version. If the -g flag is specified, this
command will update globally installed packages.

e You can edit the package.json file, update the module dependency,
and then run npm update. This will update your modules to match
the specifications in this file.

CHECKING YOUR NODE VERSION

If you already have Node installed, you can check its version by running the following
command:

npm -v

Uninstalling Node Modules

You can nun the command npm uninstall, specifying the module to be uninstalled.
Also add the --save option if you want your package.json file updated with the module
removed from the dependency list. If the -g flag is specified, this command will remove
globally installed packages.

73



CHAPTER6 NODE

The package.json File

Node is designed to be run from the command line within a project folder. It allows
developers to store information pertinent to their project in a package.json file, which
should reside in the root folder of your project. This file specifies many useful things

about your project:
e The name and version of your project.

e What Node modules your project depends on (and what versions of

these modules you need).
e What Node modules are required for your project in production.

e What Node modules are required for your project in development
(that is, not needed for production).

Updating package.json
You can update this ‘packages.json’ file in two ways:

e Byusing node commands (on the command line) that install/
update/delete Node modules and update this file.

o By editing this file yourself. Then you run Node commands to install/
update/delete Node modules to match this file.

Version Numbers

The package.json file allows developers to specify Node modules that the project
requires. When you specify the dependencies in this file, you also specify the versions of
these dependencies—for example, 1.0.1. Node allows you to be flexible and specify the
version number you require in many different ways, as summarized in Table 6-1.

74



CHAPTER6 NODE

Table 6-1. Ways of Specifying Version Numbers

1.2.1 Must match version 1.2.1

>1.2.1 Must be later than version 1.2.1

>=1.2.1 Must be version 1.2.1 or later

<1.2.1 Must be before version 1.2.1

<=1.2.1 Must be before or equal to version 1.2.1

~1.21 Must be approximately equivalent to version 1.2.1
M.21 Must be compatible with version 1.2.1

1.2.x Must be any version starting with 1.2.

* Any version

The Folder node_modules

When you install a Node module, it's downloaded and placed into the subfolder
node_modules within your project folder. Often you get a lot more than you bargained
for, because the Node module you installed has many dependencies, so you end up with
a huge node_modules folder with dozens of module subdirectories inside. Sometimes
it takes a long time for npm to download and install the project Node modules. Also
beware of copying this folder from one place to another because this can take what
seems like forever. If you are copying a project from one computer to another, delete the
‘node_modules’ folder first then run ‘npm install’ on the target computer later.

There are two different ways of installing modules into Node. You can nun the
command npm install specifying the module (to install it) or you can edit the package.
json file and then run npm install.

Editing the package.json File and Running npm install

Manually editing your package.json file is the best way to install multiple modules when
your project depends on multiple modules. First of all, you have to set up a package.json
file, which contains an overview of your application, in the root folder of your project.
There are a lot of available fields, but in the following example package.json file you

75



CHAPTER6 NODE

see the minimum. The dependencies section describes the name and version of the
modules you'd like to install. In this case, we’ll also depend on the Express module:

{
"name" : "MyStaticServer",
"version" : "0.0.1",
"dependencies" : {
"express" : "3.3.x"
}
}

To install the dependencies outlined in the package.json file, enter the following on
the command line in the root folder of your project:

npm install

INSTALLING THE LATEST ANGULAR

Go to your project folder and issue the following command:

npm install @angular/{common,compiler,compiler-cli,core,
forms,http,platform-browser,platform-browser-dynamic,platform-
server,router,animations}@latest typescript@latest --save

Summary

Now that you know what Node is and how you can use it to manage your project’s
dependencies on third-party code, it’s time to start coding with the Angular CLI
(the command line interface). Let’s get to it in the next chapter!

76



CHAPTER 7

Starting to Code
with the CLI

When I first started developing in Angular 2, I found there was a sharp learning curve

at first. It was very hard to get a project going because there was no standard Angular 2
project blueprint that would simply take care of building and running the project. You
had to set up your dependencies in Node (more on that later), set up your build process,
and set up a deployment process. That made Angular 2 tough at first, because you had to
learn the concepts and the syntax at the same time.

Enter the CLI. The Angular CLI (command line interface) was developed to allow
developers to get going with Angular fast. And it’s great—it can generate projects that are
well structured and well designed. I can’t emphasize enough what a wonderful tool it’s
turned out to be how. No wonder it’s been so quickly adopted.

The Angular CLI is an open source project. You can look at its code at
https://github.com/angular/angular-cli/. The The official Angular CLI
documentation is available online at https://cli.angular.io/. You can check out the
QuickStart page at https://angular.io/docs/ts/latest/cli-quickstart.html.

The purpose of this chapter is to get you creating a project using the CLI. It’s not going to
go into great detail on the CLI yet, because that’s not yet necessary—there will be much more
on the CLIin later chapters. However, if you want lots of information right now, I recommend
the excellent article atwww. sitepoint.com/ultimate-angular-cli-reference/.

The Angular CLI, true to its name, uses a command line interface. You use the ng
command in the terminal, and it goes to work. Using the command line may remind you
of the “bad old days,” when you had to remember a bunch of commands, but when you
look at what the CLI does, you'll forget all about that:

o Itlets you create new Angular applications.

o [Itletsyourun a development server with live reloading of changes.

77
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_7


https://github.com/angular/angular-cli/
https://github.com/angular/angular-cli/
https://cli.angular.io/
https://angular.io/docs/ts/latest/cli-quickstart.html
http://www.sitepoint.com/ultimate-angular-cli-reference/

CHAPTER 7  STARTING TO CODE WITH THE CLI

o Itlets you add more code to your Angular application
o Itrunsyour application’s tests.

o It builds your application for deployment.

o Itdeploys your application.

To get the CLI running, as mentioned in the preceding chapter, you first need to
install Node.js version 4.0.0 or greater. If you haven’t done so, go back and read about
how to do that.

To install the CLI, enter the following command in a terminal, which will kick off all
kinds of Node downloads:

npm install -g angular-cli

Note that the -g parameter installs Angular CLI as a global package. This will put the
ng command on the path, making it usable in any directory.
You can check your version of CLI by running the following command:

ng --version

To update the CLI version, you should uninstall it and reinstall it with the following
commands:

npm uninstall -g angular-cli
npm cache clean
npm install -g angular-cli

Create a Start Project

Finally, we're going to do some coding! Well, not really. Not quite yet. Let’s just create the
basic project and run it. Follow these steps:

1. Open aterminal window.
2. Navigate to a suitable folder—for example, Documents.

3. Enter the following command, which will create a new Angular app
in a folder called start and will spew out lots of files that it creates:

ng new start

78



CHAPTER 7  STARTING TO CODE WITH THE CLI
4. Navigate to the start folder.
cd start
5. Enter the following command to start the app:
ng serve

6. Open your web browser and browse to localhost:4200. You should
see the text “welcome to app!” as shown in Figure 7-1. That means
your app is running.

Welcome to app!

Figure 7-1. The app is working

Now you can make changes to the files in your project, and the project should
automatically—as long as you're running ng serve—recompile the code and refresh
the application in the web browser. This makes for a highly productive development
environment.

Now let’s take a look at this project and what’s in it. Launch Visual Studio Code and
open the folder start. Table 7-1 shows what’s inside and how it’s structured.

79



CHAPTER 7  STARTING TO CODE WITH THE CLI

Table 7-1. What's in the Root Folder?

File or Folder

What It Is

e2e
node_modules
src

.editorConfig
.gitignore
angular-cli.json
karma-conf.json
package.json
protractor-conf.js
README.md

tslint.json

Folder for testing files (more on testing, Karma, and Protractor later in this book)
Folder for project node dependencies

Folder for project source code

Editor configuration file

Git ignore file

CLI configuration file. You change your CLI options in this file

Karma configuration file (more on testing, Karma, and Protractor later in this book)
Node dependencies configuration file

Protractor configuration file (more on testing, Karma, and Protractor later in this book)
Readme informational file, contains information on CLI commands

Lint configuration file

Table 7-2 shows the source code. This is the really important stuff—the source code

that was generated by the CLI for your project. Here’s the starting point for your coding.

Table 7-2. CLI-Generated project code

File or Folder What It Is

app Folder for your application source code files, currently contains source code for an
application component (more on this later)

assets Folder for your application image and CSS files

environments Folder for configuration files for environments—for example, configurations for
development and production

favicon.ico ~ Application icon

index.html The HTML page for the Angular single page application

main.ts Code to start the application (more on this later)

styles.css Global style definitions

test.ts Code to run the application tests

tsconfig.json  Typescript/compiler configuration file

80



CHAPTER 7  STARTING TO CODE WITH THE CLI

Modify the Start Project

Let’s modify the start project and see what happens. Follow these steps:
1. Open aterminal window.

2. Navigate to the start folder and ensure that the ng start
command is running and that navigating to localhost:8080
produces the “welcome to app!” web page as expected. Leave the
ng start command running.

3. Edit the file src/app/app.component.ts by changing it to the
following:

import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
templateUrl: './app.component.html’,
styleUrls: ['./app.component.css']
1)
export class AppComponent {
title = 'app works! and has been modified....';

}

4. Go back to your web browser. It should now display what you see
in Figure 7-2.

< C' @ localhost:4200

app works! and has been modified....

Figure 7-2. The app has been modified

81



CHAPTER 7  STARTING TO CODE WITH THE CLI

Note how the app automatically recompiled and reloaded as soon as you clicked
Save in your editor. That’s because the CLI project includes Watchman, which watches
for changed files, rebuilds, and reloads your app when you change it. I'll say more about
Watchman shortly.

Start Project: Compile Errors

Let’s introduce a compile error into the project and see what happens.
Edit the file src/app/app.component.ts and change it to the following (remember to
omit the quotes from “app works”:

import { Component } from '@angular/core’;

@Component ({
selector: 'app-root’,
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']

)
export class AppComponent {

title = app works;
}

Note how the app doesn’t change or reload, and that you get the error messages in
the terminal window. You also get error messages in the browser console. In Chrome,
you view the browser console by selecting More Tools and then Developer Tools in the

menu.

Start Project: Runtime Errors

Let’s introduce a runtime error into the project and see what happens:

1. Edit the file src/app/app.component.ts and change it back to the
original code:

import { Component } from '@angular/core';

@Component ({
selector: 'app-root',

82



CHAPTER 7  STARTING TO CODE WITH THE CLI

templateUrl: './app.component.html',
styleUrls: ['./app.component.css']
1)
export class AppComponent {
title = 'app works!';
}

2. Edit the file src/app/app.component.html and change it to the
following (to create an error):
<h1>
{{title.test.test}}
</h1>

The app goes blank. If you check the terminal, it says “webpack: Compiled
successfully.” So, the compile worked. However, the page didn’t load because we
(purposefully) introduced a runtime error (one that only occurs when the app runs). To
find the error, go to the browser console (see Figure 7-3). In Google Chrome, you view
the browser console by opening the ‘Hamburger’ menu, selecting More Tools and then
Developer Tools in the menu.

Console Rendering X
© Vv top v Preserve log
dLUlUSL: 400/ VENUUT s UUIULE,. |5: /209U,
44)

at ViewRef_.detectChanges (htt
p://localhost:4200/vendor.bundle. j
5:54700:20)

at http://localhost:4208/vendo
r.bundle.js:36615:67

at Array.forEach (native)

at ApplicationRef_.tick (htt
p://localhost:4200/vendor.bundle. j
5:36615:25)

at
ApplicationRef_._loadComponent (htt
p://localhost:4200/vendor.bundle. j
5:36590:14)

Figure 7-3. The app has been modified

83



CHAPTER 7  STARTING TO CODE WITH THE CLI

File Watcher and Web Server

As mentioned earlier, if you leave ng serve running, this watches our files (performing

a compile and redeploy when necessary) and runs a local web server on localhost:4200.

When you change something and click Save, the watcher does the following:

Creates a Webpack build, including transpilation to compatible
JavaScript and bundling code (more on Webpack later in this book)

Generates a new index.html file, adding script references as required
to reference the JavaScript files bundled by Webpack

Performs a new deployment onto the local web server

Refreshes the web page

Bootstrapping

Bootstrapping usually refers to a self-starting process that’s supposed to proceed without

external input. In this case, it refers to how an Angular application starts up. This section

takes a look at how the starter project bootstraps.
When we go to localhost:4200, the following happens:

1.

The web browser opens the file index.html by default.

2. The browser loads the script files on the end. This includes main.

84

bundle.js, which is a transpiled version of the typescript file main.
ts. This is our main app entry point.

Main.bundle.js loads some modules then calls the following
Angular system code:

platformBrowserSpecific().bootstrapModule(AppModule)



CHAPTER 7  STARTING TO CODE WITH THE CLI

4. AppModule is loaded—it’s the root Angular module used to
bootstrap the application. This is an Angular module, not a
JavaScript module—they’re different things (I cover Angular
modules later in the book). If you look at AppModule.ts you'll see
that it contains the following line to tell the module to bootstrap
with the AppComponent:

@NgModule ({

bootstrap: [AppComponent]
1)

5. The AppModule bootstraps with the AppComponent, injecting the
component into the space between the start and end tags app-root:

<app-root>Loading...</app-root>

Useful CLI Options

We often use the CLI in this book and here are some of the CLI options we use in our example:
--flat

Generates a cli project with a flat file structure, not generating each component in its
own directory.

--inline-template

Generates components with inline templates (more on those later). Component
template markup will be generated within the component rather than in a separate file.

--inline-style

Generates components with inline styles (more on those later). Component styles
will be generated within the component rather than in a separate file.

--spec false

85



CHAPTER 7  STARTING TO CODE WITH THE CLI

Generates component without the unit testing ‘spec’ files that are normally
generated for you by default.
One very useful new CLI option has been added since I wrote the examples:

--minimal

Generates a minimal cli project with inline templates, styles and without tests.

Ahead of Time Compilation

As mentioned in chapter 2, Angular is now moving more towards the aot model, in
which your code is compiled in advance rather than when required. These compiler
updates in 5 advance the move to aot, which will make your app run faster as it will be
performing less compilation when running the app.

If you are working on a CLI project and you wish to perform aot compilation in
advance, you can add the ‘—aot’ option to your CLI commands. For example, you can
run your app with aot compilation on with the following command:

ng serve -aot

This can be very useful in finding errors in advance in your templates. If your
component is acting strangely and you cannot figure out why, try compiling or running
your app with aot compilation on! This has helped me out on many occasions! Using
the ‘—aot’ option when running ng serve would have caught in advance the Runtime
error that we introduced into the template 3 pages ago:

<h1>
{{title.test.test}}
</h1>

86



CHAPTER 7  STARTING TO CODE WITH THE CLI

Summary

This chapter introduced you to the Angular CLI. There is so much more you can do with
it than just creating a starter project:

o Add different types of objects to your project
e Testyour code

e Build your code

o Deploy your code

e Much more

We'll be using the CLI in all our coding examples, so don’t worry: I'll be covering it
much more and we’ll be doing many more things with it.

The next chapter is very important: it introduces components, the building blocks of
Angular user interfaces.

87



CHAPTER 8

Introducing Components

An Angular component is similar to an Angular]S Controller. A component is basically
markup, meta-data, and a class (containing data and code) that combined together
create a Ul widget. Components are the main tools we use to build an interactive Ul
with. All Angular applications have a root component, often called the application
component.

Angular provides ways for components to pass data to each other and to respond to
each other’s events. We'll get into component inputs and outputs in Chapter 12.

You can write a component and use it as a child component in several other
components—they were designed to be self-contained and loosely coupled for this
purpose. Each component contains valuable data about itself:

e What data it needs as input

e What events it may emit to the outside
e How to draw itself

e What its dependencies are

Normally when you develop components, you have one component in each of three
files because there are three parts to a component: the template, the class, and the style.
This is how the CLI works by default. For example, when you create an app in the CLI
using the command ng new [project name], the CLI generates three files for the app
component (more if you include .spec.ts testing files):

e app.component.css: Style
e app.component.html: Template

e app.component.ts: Class

89
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_8



CHAPTER 8  INTRODUCING COMPONENTS

However, that’s not your only option. Here are more options:

o Include the style in the .ts class file: This is called an inline style and it
saves you having to have a style file for the component. As mentioned
in the previous chapter, use the CLI --inline-style argument to
generate components with inline styles.

o Include the template in the .ts class file: This is called an inline
template and it saves you having to have a template file for the
component. As mentioned in the previous chapter, use the CLI
--inline-template argument to generate components with inline
styles.

o Include multiple component classes in the same file: You can combine
multiple components in the same file, like this:

import { Component } from '@angular/core'’;

@Component ({
selector: 'Paragraph’,
template: °
<p><ng-content></ng-content></p>

~

styles: ['p { border: 1px solid #c0c0c0; padding: 10px }']
)

export class Paragraph {

}

@Component ({
selector: 'app-root',
template: °
<p>
<Paragraph>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
</Paragraph>
<Paragraph>Praesent eget ornare neque, vel consectetur eros. </Paragraph>
</p>

)

90



CHAPTER 8  INTRODUCING COMPONENTS

styles: ['p { border: 1px solid black }']
1)
export class AppComponent {

title = 'welcome to app!’;

}

You may find code examples with multiple components in the same file. This was
done on purpose so that you could copy and paste more code into fewer files.

When you use components in your App, you need to ensure that each component is
declared in modules. Chapter 9 introduces modules in more detail. The following is an
example of a module declaring two components: AppComponent and Paragraph:

import { AppComponent, Paragraph } from './app.component’;

@NgModule({

declarations: [
AppComponent,
Paragraph

]J

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

Anatomy of a Component

Annotations provide metadata to combine all the parts together into a component. A
template is usually HTML markup that’s used to render the component in the browser—
the View in Model-View-Controller (MVC). It can contain tags for nested components.
A class has annotations to add metadata and contains data (was $scope)—the Model in
MVC. It contains code for behavior—the Controller in MVC.

91



CHAPTER 8  INTRODUCING COMPONENTS

@Component Annotation

The annotation is located near the top of the class and is the most important element
of it. It’s a function that marks the class as a component and accepts an object. It uses
the object to provide metadata to Angular about the component and how to run it.
Annotations are also known as decorators.

If you use the CLI to generate a project and you examine the generated component
app.component.ts, you'll see the following @Component annotation:

@Component ({
selector: 'app-root',
templateUrl: './app.component.html’,
styleUrls: ['./app.component.css']

1)

Table 8-1 shows the basic elements you can add to the @Component annotation.

Table 8-1. Basic Elements for the @Component Annotation

Annotation Notes

Element

selector What markup tag, element this component corresponds to.

template/ Specifies the template, which contains the markup for the component. You have

templateUrl  two options: you can use template to specify the template inline in a block of
quotes. This works great for simple templates. Or you can use templateUrl to
specify the relative path to an external template file. This is better for larger or
more complicated template.
If the template is longer than 10 lines, | usually put it in an external template file.

styles/ Specifies the CSS information for the template markup. You have two options:
styleUrls you can use styles to specify an array of styles inline. This works great for
just a couple of style definitions. Or you can use styleUrls to specify an array
of relative paths to style definition files. This is better when you use a variety of
styles.
If there are more than 5 styles used in the component, | usually put them in an
external style file.

92



CHAPTER 8  INTRODUCING COMPONENTS

The selector syntax is like a JQuery selector, as shown in Table 8-2.

Table 8-2. selector Syntax

Type Example Example of Selected Notes
Markup

Name welcome <welcome></welcome> This is the most common way of using the
selector. Just make sure that this tag is unique
and will never be used by HTML. It’s often a
good idea to use a common prefix for your
project and all the components therein. For
example, a rewards program project could
have the prefix rp .

D #welcome  <div id='welcome'>
</div>

CSS .welcome "<div

class class="welcome'>
</div>

Selectors and DSL

In Angular you create can components and directives that map to specific tags (or
attributes). For example, if you're creating an application to sell cars, you could use

tags and attributes like this: <CarSearch></CarSearchy, <CarList></CarlList>,
<CarDetail></CarDetail>, and so on. In effect, with Angular components and
directives we're creating a DSL (domain-specific language) for our application. A DSL

is a computer language specialized to a particular application domain. DSLs are very
powerful because they allow the code to be specific to the domain of the application (its
use) and represent in language form the business entities represented.

Other Elements

Table 8-3 shows other, more advanced elements that you can add to the @Component
annotation. We will go into detail on many of these later on.

93



CHAPTER 8  INTRODUCING COMPONENTS

Table 8-3. Advanced Elements

Annotation Element

Notes

animations List of animations of this component

changeDetection Change detection strategy used by this component

encapsulation Style encapsulation strategy used by this component

entryComponents List of components that are dynamically inserted into the view of this
component

exportAs Name under which the component instance is exported in a template

hosts Map of class property to host element bindings for events, properties,
and attributes

Inputs List of class property names to data-bind as component inputs

interpolation Custom interpolation markers used in this component's template

moduleld ES/CommonJS module ID of the file in which this component is defined

outputs List of class property names that expose output events that others can
subscribe to

providers List of providers available to this component and its children

queries Configure queries that can be injected into the component

viewProviders List of providers available to this component and its view children

Component Templates

The template contains the markup code to display the component in a web browser.

Information about a component’s template is provided by the annotation.

Template Location

The template markup can be included in the same file as the Component class, or it can

be in a separate file:

Here’s the template markup included inline in the @Component annotation:

@Component ({

selector: 'app-root',

94



CHAPTER 8  INTRODUCING COMPONENTS

template: °

<div class="app'>

[app]

<app-customer-list>

</app-customer-list>

</div>

styles: ['.app {background-color:#d5f4e6;margin:10px;padding:10px;}"]
1)

And here’s the template markup contained in a separate file:

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']

1))
Script Tags

The <script> tagisn’t allowed in a component template. It’s forbidden in order to
eliminate the risk of script injection attacks. In practice, <script> is ignored, and a
warning appears in the browser console.

In other words, never do this:

import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<h1>
{{title}}
</h1>
<script>
alert('app works');
</script>

~

)

styles: []

95



CHAPTER 8  INTRODUCING COMPONENTS

)
export class AppComponent {

title = 'welcome to app!’;

}

Elvis Operator

This operator is also known as the ‘safe navigation operator’

Angular often has issues with null values, especially with template expressions. Quite
often you will have an template which suddenly stops working because you add code
that refers to an uninitialized variable. For example, say we have object x that is null, and
we have the following code:

Total {{x.totalAmt}}

That will cause JavaScript and Zone issues (more on Zone later), and your component
will suddenly not render. I wish I had a dollar for every time this has happened to me.

Lucky for us, the “Elvis” operator helps us. Simply put, the Elvis operator is a
question mark in the template expression next to the variable that may be null. As soon
as that variable is found to be null, the Elvis operator tells the code to exit, leaving a
blank. This stops the evaluation of the property and bypasses the JavaScript issue:

Total {{x?.totalAmt}}
Sometimes you need multiple Elvis operators in a template expression:

Total {{x?.amt?.total}}

Component Styles

The styles contain the CSS rules required to change the component’s style. Information
about the component’s template is provided by the style annotation. You can specify
the component’s style in the component or in an external file. When you create an
Angular CLI project, its style files are specified in the .angular-cli.json file.

The styles can be included in the same file as the Component class, or they can bein a
separate file.

Here’s the style markup included inline in the @Component annotation:

@Component ({
selector: 'app-root',

96



CHAPTER 8  INTRODUCING COMPONENTS

template: °

<div class="app'>

[app]

<app-customer-list>

</app-customer-list>

</div>

styles: ['.app {background-color:#d5f4e6;margin:10px;padding:10px;}"]
1)

And here’s the style markup contained in a separate file:

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']

1)

Component Class

This TypeScript class contains both the data and the code for the component. The data
is contained in variables, which can be bound to the HTML markup in the template. The
code can respond to user events (such as clicking a button) or can invoke itself to start
doing things.

Don’t worry, this is only an introduction—we’ll go into component classes in more
detail in Chapter 12.

MVC: MODEL VIEW CONTROLLER

MVC is a way of writing programs, mostly for implementing user interfaces on computers.

It divides a given software application into three interconnected parts: the Model (the data),
the View (what the user sees), and the Controller (the commands to update the Model). In the
context of Angular, it could be said that the Model is the data inside the Component class, the
View is the component template, and the Controller could be code in the Component class.

97



CHAPTER 8  INTRODUCING COMPONENTS

Introducing Data Binding

Data binding is what made Angular so popular—the synchronization of elements of the
component Ul widget to the data in your component classes, and vice versa, managed
by Angular for you. You set up variables in your component classes to store data and edit
the HTML in your component template to add binding to that data. Now your HTML is
no longer static—it changes with your data! If you want your components to interact with
the user, you must use data binding in them.

In terms of MVC, at runtime Angular uses change detection to ensure that the
components View always reflects the components Model. With data binding you can
control the user interface of your components by changing variables, and you can accept
user input, allowing them to change the value of some variables. Data binding can
control every aspect of the user interface: hiding things, closing things, showing results,
accepting user input, and more. It’s incredibly powerful and easy to use.

Example: Data Binding in a Login Component

Let’s say you have a login form with two fields, as in Figure 8-1. Each field has a text box
in the HTML in the component template, and each field has a corresponding instance
variable in the Component class. The text boxes and the instance variables are bound to
each other. If someone enters a username, the username instance variable is updated
with the new value. When the developer codes the Submit button, they get the username
and password from the instance variables, rather than having to extract them from the
HTML.

Login

Username | Required
Password I Required
| Submit

Figure 8-1. Login form with two fields

98



CHAPTER 8  INTRODUCING COMPONENTS

Example: Data Binding and Customer Data Input

You could have a form that enables you to input customer information using fields.
Each field has a text box in the HTML in the component template, and each field
has a corresponding instance variable in the Component class. Angular data binding
enables you to have the instance variables updated automatically when the user inputs
information into HTML fields. It also enables you to have the HTML fields updated
automatically when you change the value of the instance variables, as well as having the
instance variables updated automatically when the user types into the text boxes. When
the developer wants to default the value of the input fields, all they need to do is set the
instance variable values. The HTML textboxes will update automatically.

There are two main types of databinding—one-way and two-way:

1. One-way data binding: This can occur when the template (the
View) is automatically kept up-to-date with the latest values in
the class instance variables (the Model). Updates flow in only one
direction. One-way data binding can also occur when the class
instance variables (the Model) are automatically kept up-to-date
with values input from the template (the View). Updates still flow
in only one direction.

2. Two-way data binding: This is when the class instance variables
(the Model) and the template (the View) keep each other up-to-
date. Updates flow in both directions, as shown in Figure 8-2.

Component

Template (Contains Markup)

First Name Input firstName:String

Last Name Input lastName:String

~= data binding

99

Figure 8-2. Two-way data binding



CHAPTER 8  INTRODUCING COMPONENTS

One-Way Data Binding

This section focuses on various aspects of one-way data binding in Angular.

One-Way Data Binding with {{ and }}

Those double curly braces are also known as moustaches or interpolation. The double
curly braces are used for one-way binding a template expression, making a calculation
from available data in the Model and including it in the View. The expression produces
avalue, and it’s included in the View (the markup from the component template). The
Model—that is, the data in the Component class—is never updated.

A template expression is usually a simple JavaScript expression. Usually the template
expression is just the name of a property in the Model (that is, an instance variable in
the Component class). Angular replaces that property name with the string value of the
property (the string value of the instance variable).

Sometimes the template expression gets more complicated. Angular attempts to
evaluate that expression (which can contain math, property names, method calls, and
more) and converts the evaluation into a string. Then it replaces the contents and the
curly braces with the result.

Here are some examples of curly braces and template expressions:

o {{2+2}}
o {{firstName}}
o {{1+ 1+ getval()}}

One-Way Data Binding: Example Code components-ex100

The following discussion will be about example components-ex100:

1. Build the app using the CLI: Enter the following command, which
will create a new Angular app in a folder called Start and will also
create and spew out lots of files:

ng new components-ex100 --inline-template --inline-style
2. Startng serve: Use the following code:

cd components-ex100
ng serve
100



CHAPTER 8  INTRODUCING COMPONENTS

3. Open app: Launch your web browser and browse to

localhost:4200. You should see the text “welcome to app!” as
shown in Figure 8-3. That means your project is running.

Welcome to app!

Figure 8-3. Your project is running

4. Edit component: Edit the file src/app/app.component.ts and

change it to the following:

import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
template: °
<h1>

{{title}}
</h1>
<p>

Length: {{title.length}}
</p>
<p>

Reversed: {{getReversed(title)}}
</p>

styles: []

export class AppComponent {
title = 'welcome to app!’;

101



CHAPTER 8  INTRODUCING COMPONENTS

getReversed(str: string){
let reversed = '';
for (let i=str.length-1;i>=0;i--){

reversed += str.substring(i,i+1);

}
return reversed;

}

}

Your app should be working at localhost:4200. Note how the template uses two
expressions: one to show the length of the title and another to reverse the title using a
method in the class.

app works!

Length: 10

Reversed: !skrow ppa

One-Way Data Binding with [ and ] or *

The square braces can be used for one-way binding. With these you can bind a template
expression, making a calculation from available data in the Model and including it in the
data binding target.

You can also use the prefix * instead of the double square braces:

[Data Binding Target] = "Template Expression”
Or:
*Data Binding Target = "Template Expression”

The data binding target is something in the DOM (including element properties,
component properties, and directive properties) that can be bound to the result of the
expression to the right side of the target, as shown in Table 8-4.

102



CHAPTER 8  INTRODUCING COMPONENTS

Table 8-4. Data Binding Target Markup

Markup Description

<img [src] = "imageUrl"> Sets image source to property imageUr1 in the Model.

<div [ngClass] = Sets CSS class according to property isSelected in the

"{selected: isSelected}"> Model.

</div>

<car-detail Sets the car attribute of the car-detail to property

[car]="selectedCar"> selectedCar in the Model. The car-detail could be a

</car-detail> component, and this would pass information from the current
template to that component using the car attribute.

<button [style.color] Sets the button color according to property isSpecial in

= "isSpecial ? 'red' : the Model.

‘green'">

A template expression is used to calculate a value from available data in the Model.

One-Way Data Binding: Example Code components-ex200

The following discussion will be about example components-ex200:

1. Build the app using the CLI: Enter the following command:

ng new components-ex200 --inline-template --inline-style

2. Startng serve: Use the following code:

cd components-ex200
ng serve

3. Open app: Launch your web browser and browse to
localhost:4200. You should see the text “welcome to app!”

4. Edit component: Edit the file src/app/app.component.ts and
change it to the following:

import { Component } from '@angular/core';
@Component ({
103



CHAPTER 8  INTRODUCING COMPONENTS

selector: 'app-root',
template: °
<h1>Doesnt work:</h1>
<img src="starUrl">
<h1>Works:</h1>

<img [src]="starUrl">

~

)

styles: []

9

export class AppComponent {
starUrl = "https://developer.mozilla.org/samples/cssref/images/
starsolid.gif';

}

Your app should be working at localhost:4200. Note the following (and see Figure 8-4):

o The first image tag fails because it doesn’t wrap src. It takes the
startUrl literally rather than calculating it as an expression from an
instance variable.

o The second image tag works because it wraps src in square brackets,
meaning this is an expression that requires calculating the value of
the startUrl instance variable.

Doesnt work:

Works:

Figure 8-4. Author please add caption

104



CHAPTER 8  INTRODUCING COMPONENTS

Sometimes you need to dynamically create attributes in the HTML elements
generated by your template. This is useful if you want to have data inside your HTML,
which you can extract later using JavaScript code. For example:

<li
id="12345"
data-make="bmw"
data-model="m3"
data-parent="cars">

</1i>
In this case, the id tag is used to identify the element (very useful for JavaScript and
CSS), and there are various data elements that store information.

In Angular you can use the [attr.***name***] syntax to set attributes in the
generated HTML.

One-Way Data Binding: Example Code components-ex250

This component will list some cars and let you click the View button to view an article
about the car, as shown in Figure 8-5.

e 2002 bmw m3 View
e 2017 acura nsx View
e 2016 chevy camaro View

Figure 8-5. Component that lists cars

The interesting thing about the component is that it stores attribute data in each
<1li> element. This will be about example components-ex250:

1. Build the app using the CLI: Enter the following command:

ng new components-ex250 --inline-template --inline-style

105



CHAPTER 8  INTRODUCING COMPONENTS

2. Startng serve: Use the following code:

cd components-ex250
ng serve

3. Open app: Open your web browser and browse to localhost:4200.
You should see the text “welcome to app!” That means your
project is running.

4. Edit component: Edit the file src/app/app.component.ts and
change it to the following:

import { Component } from '@angular/core’;
import { Car } from './car';
@Component ({
selector: 'app-root',
template: °
<ul>
<1li *ngFor="let car of _cars">
<span [attr.id]="car.id" [attr.data-desc]="car.make + '
" + car.model" [attr.data-article]="car.article">
{{car.year}}&nbsp;{{car.
make}}&nbsp;{{car.model}}&nbsp;<button
(click)="showCar($event)">View</button></span>
</1i>
</ul>

~

)

styles: []
1)
export class AppComponent {
_cars = [
new Car('cari', 2002, 'bmw', 'm3',
"https://en.wikipedia.org/wiki/BMW_M3"),
new Car('car2', 2017, 'acura', 'nsx’',
"https://en.wikipedia.org/wiki/Honda NSX'),
new Car('car3', 2016, 'chevy', 'camaro',
"https://en.wikipedia.org/wiki/Chevrolet Camaro')

106



CHAPTER 8  INTRODUCING COMPONENTS

showCar (event){
const desc = event.target.parentElement.dataset.desc;
if (window.confirm('If you click "ok" you would be
redirected to an article about the ' +
desc + ". Cancel will load this website "))
{

window.location.href=event.target.parentElement.
dataset.article;

};

5. Create class: Create the file src/app/car.ts and change it to the
following:

export class Car {
constructor(
private _id: string,
private _year: number,
private _make: string,
private model: string,
private article: string){

}
public get id() : string {
return this. id;

}

public get year() : number {
return this. year;

}

public get make() : string {
return this. make;

}

public get model() : string {
return this. model;

107



CHAPTER 8  INTRODUCING COMPONENTS

public get article() : string {
return this. article;

}

You've reached the end of the exercise. Note the following:
o How the desc data attribute is generated:

[attr.data-desc]="car.make + ' ' + car.model”

e How the JavaScript is used to get the desc data attribute:

const desc = event.target.parentElement.dataset.desc;

Two-Way Data Binding

This section focuses on two-way data binding.

Two-Way Data Binding with [( and )]

[ ()] is also known as banana in a box. You've already seen this, actually. The [ ( and ) ]
format is used for two-way binding a property—in other words, reading it and writing it
from the Model. The format is like this:

[(Data Binding Target)] = "Property"

“Data Binding Target” is something in the DOM (including Component and
Directive tags) that can be bound to the property of the expression to the right side of
the target. For the input box, the data binding target is ngModel, which corresponds to
the text in the input box.

This is a property in the Model (an instance variable in the Component class).

Two-Way Data Binding: Example Code components-ex300

This is a component that changes foreground and background colors when the user
changes their input, as shown in Figure 8-6:

1. Build the app using the CLI: Enter the following command:

ng new components-ex300 --inline-template --inline-style
108



CHAPTER 8  INTRODUCING COMPONENTS

2. Startng serve: Use the following code:

cd components-ex300
ng serve

3. Open app: Open your web browser and browse to localhost:4200.
You should see the text “welcome to app!” That means your
project is running.

4. Edit module: Edit the file src/app/app.module.ts and change it to
the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppComponent } from './app.component’;
import { FormsModule } from '@angular/forms';

@NgModule({

declarations: [
AppComponent

IE

imports: [
BrowserModule,
FormsModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

5. Edit component: Edit the file src/app/app.component.ts and
change it to the following:

import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
template: °

109



CHAPTER 8

INTRODUCING COMPONENTS

<p>
Foreground: <input [(ngModel)]="fg" />
</p>
<p>
Background: <input [(ngModel)]="bg" />
</p>

<div [ngStyle]="{'color': fg, 'background-color':

'padding’: '5px'}">
Test
</div>

~

)

styles: []

export class AppComponent {

fg = "HEFFEFE;
bg = "#000000";

bg,

Foreground: #ffffff

Background: #0000ff

Figure 8-6. Changing foreground and background colors

Your app should be working at localhost:4200. When the user changes the color

value, this updates the Model, which then updates the template’s HTML:

110

updates to match.

Binding occurs from the input field to the Model (when the user
changes the color values). When the input field changes, the Model

Binding occurs from the Model to the template’s HTML. When the
Model updates, the template’s HTML updates to match.




CHAPTER 8  INTRODUCING COMPONENTS

Event Handling

A user interface needs to respond to user input. That’s why we have event handling
in our component templates. We specify a target event and which statement should
happen when that event occurs. The format goes like this:

(Target Event) = "Template Statement”

“Target Event” is the name of the event in-between the brackets. “Template
Statement” is an instruction on what to do when the target event occurs. Normally this
is a call to a method in the Component class that does something—normally, modify
instance variables that are bound to the template, causing a change in the Ul The event
information is available in the $event variable, which may or may not be utilized. For
example, if you're watching for input in a text box, you could pass the value of the text
in the text box to the method using information from $event. You'll see this in the next
example.

Event Handling: Example Code components-ex400

This component accepts input in a textbox, captures the input event, and displays the
input in both upper and lower-case, as shown in Figure 8-7:

1. Build the app using the CLI: Enter the following command:

ng new components-ex400 --inline-template --inline-style

2. Startng serve: Use the following code:

cd components-ex400
ng serve

3. Open app: Launch a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit class: Edit app.component.ts and change it to the following:

import { Component, AfterViewInit, ViewChild } from
'@angular/core’;

@Component ({

111



CHAPTER 8  INTRODUCING COMPONENTS

selector: 'app-root',

template: °

<input #input type="text" (input)="textInput($event)"
value=""/>

<hr>

Upper-Case: {{upperCase}}

<br/>

Lower-Case: {{lowerCase}}

~

)

styles: []
1)
export class AppComponent implements AfterViewInit{
upperCase: string= "';
lowerCase: string = '';
@viewChild('input') inputBox;

textInput(event){
this.upperCase = event.target.value.toUpperCase();
this.lowerCase = event.target.value.tolLowerCase();

}

ngAfterViewInit() {
this.inputBox.nativeElement.focus()
}
}

hello Mark

Upper-Case: HELLO MARK
Lower-Case: hello mark

Figure 8-7. Displaying the input

Your app should be working at localhost:4200. Note the following:

o Atemplate variable #input and viewChild are used to get a reference
to the input box. After the view is initialized (lifecycle method
ngAfterViewInit is fired), focus is set to the input box.

112



CHAPTER 8  INTRODUCING COMPONENTS

o The template uses the following code to listen for the input event,
firing the method textInput (passing in the event object) when it

occurs:

(input)="textInput($event)"

o The class has a method, textInput, that's fired by the input event.
It calculates the uppercase and lowercase versions of the user’s input,
which it sets to instance variables that are bound (one-way) from the
class to the template.

CDK

The Angular CDK (Component Development Kit) was released in 2017 with Angular 5.
Its purpose is to enable developers to create high-quality Angular custom components.
The CDK is contains services, directives, components, classes and modules. The CDK
contains code for component accessibility, text directionality, platform detection, and
dynamic component instantiation. If you really want to get into building your own
library of custom reusable components then you will need to install the ‘@angular/cdk’
node module and get started.

Summary

This chapter covers important concepts, so I strongly recommend following the
examples before moving on. After reading this chapter you should have some basic
knowledge of components, including what they consist of. You also know that a
component consists of annotations, a template, and a class. We also talked about event
handling.

Now that we can write user interface components, we’ll turn our attention to
modularizing our Angular code in the next chapter. Don’t worry if you don’t ully
understand components yet—later chapters will go into more detail.

113



CHAPTER 9

Introducing Modules

The word module refers to small units of independent, reusable code. A typical module
is a cohesive block of code dedicated to a single purpose. A module exports something of
value in that code, typically one thing, such as an object.

This chapter is all about introducing the concepts of the different modules. It doesn’t
include many coding examples—you will be coding modules later on.

JavaScript gives you the freedom to do many things very badly—you’re under no
obligation to write reusable code. You can scatter your code anywhere. This has to
change now that JavaScript and its environment are maturing. You need to make objects
simpler by concealing their internal workings and leaving public interfaces available
from the outside. You need to be able to package code up into reusable blocks that can
be packaged and deployed separately from each other. You also need the ability to load
them on demand, rather than loading everything up (slowly) when the app starts.

Different Types of Modules

This chapter introduces the three types of ways Angular]S, Angular, and JavaScript have
modularized code:

o The Angular]S module system included in the original version
of Angular: This enabled you to modularize your code at a
course-grained level.

e JavaScript modules now available in ES6 and TypeScript: These
enable you to modularize your code at a fine-grained level.
Remember, there is one module per source code file (.ts or .js).

115
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_9



CHAPTER9  INTRODUCING MODULES

o The Angular module system: This enables you to modularize your
code at a course-grained level. You can bundle units of Angular code
into modules. For example, if you're writing a system in Angular that
contains an application for sales, an application for human resources,
and an application for taxes, you could split these three applications
into separate feature modules and a shared module for sharing
common code, as illustrated in Figure 9-1.

Application

Human Resources
Angular Feature
Module

Sales Angular
Feature Module

Taxes Angular Shared Module
Feature Module (Common Code)

Many JavaScript Many JavaScript Many JavaScript Many JavaScript
Modules Modules Modules Modules

Figure 9-1. Angular applications are made up of Angular modules and JavaScript
modules

AngularJS Module System

Angular]S had its own module system, which was simple. You had an Angular module,
which could contain Angular controllers, directives, and so on.

In Figure 9-2 we're declaring module xxx, which depends on many other modules:
ngCookies, ngRoute, ngResource, ngSanitize, angularSpinner, ui.bootstrap.demo,
ui.bootstrap, ui.select, wj, and angularModalService. After the code, we would declare
the items within this module xxx.

116



CHAPTER9  INTRODUCING MODULES

angular.module('xxx', [//'services.config',
'ngCookies’,
‘ngRoute’,
'ngResource’,
'ngSanitize’,
‘angularSpinner',
'ui.bootstrap.demo'
'ui.bootstrap’,
'ui.select’,
‘wi',
'angularModalService'

1)

Figure 9-2. Declaring module xxx

JavaScript Modules

JavaScript used to work with libraries, and these libraries were very useful for helping a
developer in an area of development. For example, JQuery used to help developers with
Ul development. These libraries were well written but weren’t implemented as modules.
Rather, they were implemented as JavaScript scripts (as in .js script files) that would create
JavaScript objects to do things. This was before the JavaScript module system existed.

Now ES6 and later support modules. In Javascript modules, every file is one module.
You can code your own modules or use other people’s modules. You can use Node to
pull dependent modules into your project (into the node_modules folder).

When we code in Angular 5 in TypeScript, we use two JavaScript module keywords:

e Export: Export module code

e Import: Import module code

Exporting Code

You write your application as a collection of small modules. Your code exports objects from
the module to the outside world using the export keyword. For example, the following
code is used to tell TypeScript that you're exporting the class App for use elsewhere:

export class App {...}

117



CHAPTER9  INTRODUCING MODULES

Here’s how to export a default object from a module:

module "foo" {
export default function() { console.log("hello!") }

}

Importing Code

import statements tell TypeScript to go get module code from somewhere. The
somewhere can be from someone else’s module or from local code in the same project.

Importing Code from Someone Else’s Module

When you use import statements to go get code from someone else’s module, you
identify the module name and the name of the item you want to import, specifying the
module name after the from. This is typically the way you import code from a Node
module. For example, you import the Component from Angular:

import { Component } from '@angular/core’;
Here is how to import the date picker from ngx-bootstrap:

import { DatepickerModule } from 'ngx-bootstrap/datepicker’;

Importing Your Project Code

When you import code from local code in the same project, you specify a relative path to
that code. The following example specifies a relative path (the . /). This tells TypeScript
that the code is in the same folder as the code that’s going to use that module:

import {AppComponent} from './app.component’;
Here are some more import syntaxes:
e Importall:
import * as myModule from 'my-module’;

¢ With named import, the name needs to exactly match the name of an
object exported in the module:

import { myMember } from 'my-module’;

118



CHAPTER9  INTRODUCING MODULES

o For multiple named imports from a module, the names need to
exactly match the names of objects exported in the module:

import { foo, bar } from 'my-module’;

o With a default import from a module, the name doesn’t need to
match any object exported in the module. It can be an alias. It knows
it has to import the default object from the module:

import myDefault from 'my-module’;

Angular Module System

The Angular module system is how Angular bundles code into reusable modules. The
Angular system code itself is modularized using this module system. Many third-parties
provide additional functionality to Angular using modules, which you can easy include
into your application.

Why doesn’t Angular just use JavaScript modules? Why force developers into using
its own module system? Well, for a start, it does use standard JavaScript modules, but
they don’t go far enough. They don’t make it easy for Angular to declare long blocks of
Angular code that consist of disparate objects tied together—for example, components,
services, and pipes. In the earlier days of Angular 2, developers didn’t have the option
of Angular modules, and developers used module loaders to load and start applications
(System.js). To me, it didn’t work well in practice. It was hard to learn, easy to break, and
too complicated.

I worked on Angular2 when it was in beta and liked the product, but I hated how
complicated it was with module loading, having to learn System.js et al. I came back
to it later to find that you could quickly and simply use the Angular CLI to build a
modularized application that used Webpack for deployment. I welcome the Angular
module system and think it works elegantly with the CLI and Webpack.

119



CHAPTER9  INTRODUCING MODULES

Modules in the Start Project

You've already used the Angular module system, even if you didn’t realize it. If you open
the Start project you created using the CLI, you'll see that you already have a file app.
module.ts. Note that modules should have .module in their names. Let’s open it up and
take a look:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms';

import { HttpModule } from '@angular/http’;

import { AppComponent } from './app.component’;

@NgModule({

declarations: [
AppComponent

]J

imports: [
BrowserModule,
FormsModule,
HttpModule

])

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

Let’s look at some of the elements here:

e (@NgModule annotation: This annotation is the most important part
of this class. It’s a function that accepts an object and uses the object
to provide metadata to Angular about the module: how to compile it
and how to run it. So, the @NgModule is Angular’s declarative way for
you to tell Angular how to put the pieces together. Note that the
@NgModule itself needs to be imported from @angular/core at the top.

120



CHAPTER9  INTRODUCING MODULES

declarations: This should be an array of the Angular components,
directives, and pipes used by your module and nothing else—no ES6
classes or anything else. When you add a component using the CLI
command ng generate component, itimports the component and
adds it to this list of declarations. If you add a component and use

it without declaring it here, you'll receive an error message in the
browser console.

import: This should be an array of Angular modules required by the
application here. These modules must be defined using @NgModule.
Angular itself has many system modules that you'll find useful, and
the CLI includes several of these for you by default, including the
browser module, the forms module, and the http module.

providers: This should be an array of Angular provider objects
required by the application. These provider objects are services
classes and values that are injected into your classes for you using
dependency injection. If you had a common service object used
by the components to talk to the server, you would add it here as a
provider.

bootstrap: You can use modules to contain the code for your
application. To run, your application needs to know how to start and
with what component it should start (the root). This is where you
specify the root component, which will be created and mounted into
the HTML when the application starts. This root component is often
called AppComponent.

Root Module

Your Angular application can contain multiple modules. But it always has a starting

point, a module that it uses to bootstrap itself. This is the root module, often called the
AppModule.

121



CHAPTER9  INTRODUCING MODULES

Routing Module

We'll go into routing later on, but routing is very important to an Angular application.

It allows the user to map components to URLs and navigate the user interface. When

we use the CLI to build an Angular application, it builds a separate module for your
application’s routing, usually in the file app-routing.ts. This may seem superfluous, but it
very neatly packages the Angular routing objects together with your app’s routing setup
together into one module, which handles all routing for your app.

Feature Modules

Domain-driven design (DDD) is an approach to software development the address
complex needs by connecting the implementation to an evolving model. DDD often has
to deal with modeling very large, complex business requirements, and its approach to
this is to break these requirements into contexts. Bounded contexts are areas of business
requirements that can be logically separated, as illustrated in Figure 9-3.

- - ’.------..-
/7 = -

- - -
Sales Context N T
/ ‘ Opportunity Support Context b
[ ]

:
— (omme JiLemmer
Customer Customer
| \ ¥
(] Pipeline ’ Ticket
[Territnry] l
{
\
\
N

\ @
' l Product ]
'I T
] Defect
G '
Sales Person , (]
1
V4 ® Product
- -— e Version ’
-— = - = ’

Figure 9-3. Bounded contexts

122



CHAPTER9  INTRODUCING MODULES

As you can see, in Figure 9-3 there are two contexts: Sales and Support. Each could
be a separate part of your Angular application. In fact, each could be contained in its
own separate module, called a feature module. Each module can contain specific code to
meet specific requirements not required anywhere else. For example, the Sales module
could contain an Angular UI to manage the sales pipeline, and this would not be used
anywhere else. So, a feature module often contains code that isn’t intended to be used
outside that module.

When required, the root module can include as many feature modules as required.
The feature module can even be loaded on demand when the user (for example) clicks
the Sales menu.

Shared Modules

You can think of feature modules as blocks of code that aren’t shared. Shared modules
are the opposite—they contain the most commonly used code that’s modularized so it
can be reused as much as possible. When required, the root module can include as many
shared modules as required.

Angular Module System: Example modules-ex100

This example is a very basic exercise of how you can use root modules, feature modules,
and shared modules together.

The example has a component with two links at the top: Sales and Support. You can
click each link to navigate through the app, between the two components. Each of these
two components, Sales and Support, is a separate feature module.

This example has a root module, App, the feature modules (already mentioned), and
a component from a shared module called Shared, as illustrated in Figure 9-4.

123



CHAPTER9  INTRODUCING MODULES

App (Root Module)

Sales (Feature Module) Support (Feature Module)
Shared Shared
Module Module

Welcome!! Welcome!!
Sales Support Sales Support
sales module! support module!
shared module! shared module!

Figure 9-4. Example of Angular module system

Let’s go through the example:

1. Build the app using the CLI: Use the following command:
ng new modules-ex100
2. Startng serve: Use the following code:

cd modules-ex100
ng serve

3. Open app: Launch a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Generate modules: Let’s use the CLI to generate additional
modules:

ng generate module shared

ng generate module routing --routing
ng generate module sales

ng generate module support

124



CHAPTER9  INTRODUCING MODULES

5. Generate components: Let’s use the CLI to generate additional
components:

ng generate component sales
ng generate component support
ng generate component shared

6. Edit component styles: Edit the file sales.component.css and
change it to the following:

div {
background-color: #bdcebe;
border: 1px solid #000000;
padding: 10px;
margin: 10px;

Edit the file support.component.css and change it to the following

div {
background-color: #ecala6;
border: 1px solid #000000;
padding: 10px;
margin: 10px;

Edit the file shared.component.css and change it to the following:

div {
background-color: #d6cbd3;
border: 1px solid #000000;
padding: 10px;
margin: 10px;

125



CHAPTER9  INTRODUCING MODULES

Edit the file app.component.css and change it to the following:

div {
background-color: #e3eaa7;
border: 10px;
padding: 10px;

}

7. Edit component templates: Edit the file sales.component.html and
change it to the following:

<div>
sales module!
<app-shared></app-shared>
</div>

Edit the file support.component.html and change it to the
following:

<div>
support module!
<app-shared></app-shared>
</div>

Edit the file shared.component.html and change it to the
following:

<div>
shared module!
</div>

Edit the file app.component.html and change it to the following:

<div style="text-align:center">
<h1>
Welcome!!
</h1>
<a [routerLink]="["sales"']">Sales</a>
<a [routerLink]="["support']">Support</a>
<router-outlet></router-outlet>
</div>

126



CHAPTER9  INTRODUCING MODULES

8. Edit routing module: Edit the file routing.module.ts and change it

9.

to the following:

import { NgModule } from '@angular/core’;
import { CommonModule } from '@angular/common’;
import { Routes, RouterModule } from '@angular/router’;

import { SalesComponent } from '../sales/sales.component’;
import { SupportComponent } from '../support/support.component’;

const routes: Routes = |
{
path: 'sales',
component: SalesComponent
b
{
path: 'support',
component: SupportComponent
})
{
path: "**',
component: SalesComponent
}
1;

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule],
providers: []

9
export class RoutingModule { }

Edit Sales module: Edit the file sales.module.ts and change it to the
following:

import { NgModule } from '@angular/core’;
import { CommonModule } from '@angular/common’;
import { SalesComponent } from './sales.component’;

127



CHAPTER9  INTRODUCING MODULES

@NgModule({
imports: [
CommonModule

1

declarations: [SalesComponent]

)
export class SalesModule { }

10. Edit Shared module: Edit the file shared.module.ts and change it

to the following:

import { NgModule } from '@angular/core’;
import { CommonModule } from '@angular/common’;
import { SharedComponent } from './shared.component';

@NgModule({
imports: [
CommonModule

1,
exports: [
SharedComponent

1,

declarations: [SharedComponent]

9
export class SharedModule { }

11. Edit Support module: Edit the file support.module.ts and change it
to the following:

import { NgModule } from '@angular/core’;
import { CommonModule } from '@angular/common’;
import { SupportComponent } from './support.component’;

@NgModule({
imports: [
CommonModule

1,

128



CHAPTER9  INTRODUCING MODULES

declarations: [SupportComponent]

1)
export class SupportModule { }

12. Edit App module: Edit the file app.module.ts and change it to the
following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppComponent } from './app.component’;

import { RoutingModule } from './routing/routing.module’;
import { SalesComponent } from './sales/sales.component’;
import { SupportComponent } from './support/support.component’;
import { SharedModule } from './shared/shared.module’;

@NgModule ({

declarations: [
AppComponent,
SalesComponent,
SupportComponent

1,

imports: [
BrowserModule,
RoutingModule,
SharedModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

Your app should be working at localhost:4200. Note the following:

e The Routing module provides the code for the app routing. The
root app imports this module, and all the routing code is ready and
usable.

¢ The Shared module provides the shared component. The root app
only has to import this module to get access to its component.

129



CHAPTER9  INTRODUCING MODULES

e The Sales and Support modules don’t have to import the Shared
module or the Shared component, even though it’s used in the Sales
and Support components.

o The Sales and Support modules don’t import anything other than
the Angular Common module. This Common module has nothing
to do with our code. It’s Angular’s way of providing the code for basic
Angular directives like NgIf, NgFor, and so on.

Deployment: Separate Modules

The ability to have feature modules, shared modules, and so on accessible from one
root module sounds great, but the problem is that you may need to update the feature
modules separately, especially if you have a separate team working on each feature. For
example, the “Sales” people may have different release dates than the “Support” people.
Unfortunately, the example under examination is deployed in one group of Webpack
modules.

If you want Sales to be deployable separately from Support, then each should be its
own single page application in its own folder. That makes life much easier when it’s time
to deploy.

Deployment: Using Node to Manage Dependencies
on Common Code

Another issue with deployment is the common code. Sales may need a different version
of the common code than Support. One may use new common objects, and the other
may not. That makes it a good time to consider using Node to manage each project’s
dependency on common code.

You can create Node modules from Angular projects. Remember, Angular has
modules that are deployed through Node modules. That'’s a little beyond the scope of
this book, but I've done this myself, thanks to the following superb article: https://
medium.com/@cyrilletuzi/how-to-build-and-publish-an-angular-module-
7ad19c0b4464.

You'll need to set up some code from a public code repository for this to work, such
as GitHub. Here’s a very simple example that I put up on GitHub: https://github.com/
markclowisg/sharedcomponents.

130


https://medium.com/@cyrilletuzi/how-to-build-and-publish-an-angular-module-7ad19c0b4464
https://medium.com/@cyrilletuzi/how-to-build-and-publish-an-angular-module-7ad19c0b4464
https://medium.com/@cyrilletuzi/how-to-build-and-publish-an-angular-module-7ad19c0b4464
https://github.com/markclowisg/sharedcomponents
https://github.com/markclowisg/sharedcomponents

CHAPTER9  INTRODUCING MODULES

Useful Node Commands

When working with Angular and Node together, you may also want to consider using the

node package manager commands npm link and npm scope:

npm link: This is very useful when it comes time to build your Node
modules. It lets you set up a link so that dependent projects can

use your Node code without it having to be continually rebuilt and
redeployed to your repository. It’s much easier to do everything
locally and copy up to your repository later on.

npm scope: This is useful when you have several npm common code
projects and you want to group them under a name prefix. Angular
does this with its @angular npm package prefix. You may want to
consider this. If you work for company “abc” and you have two
common npm packages for components and services, you may want
to use scopes so they can be @abc/components and @abc/services.

Summary

This chapter covered a wide range of subjects to do with modularization. It introduced

you to the concept of modularization and how it’s implemented in JavaScript and

Angular.

If you found this chapter overwhelming, don’t worry. You could skip the

“Deployment” section and come back to it later. Modularization may seem complicated

and somewhat obtuse, but it has value and can make your projects more maintainable.

The next chapter covers Webpack, which the Angular CLI uses to bundle up your

code into deployable files.

131



CHAPTER 10

Introducing Webpack

Nowadays you can do a lot more stuff in modern browsers, and this is going to increase
even more in the future. Thanks to technologies like Angular 5, there will be fewer page
reloads and more JavaScript code in each page, a lot of code on the client side. You need
a way to deploy all this code efficiently so that it loads quickly.

Your complex client-side application may contain modules, some of which may load
synchronously, some asynchronously. So how do we package it all and deploy it most
efficiently - we use Webpack!

Webpack and the Angular CLI

The Angular CLI uses Webpack to transpile, compile, and deploy project code. It also
uses the webpack-dev-server as its web server by default. Later in this chapter you I talk
about Webpack configuration and webpack.config.js. You'll look for it in your project and
notice that it’s missing. That’s on purpose because the people who wrote the Angular CLI
wanted to hide as many configuration details as possible to make things simpler, and this
includes the Webpack configuration.

The following Angular CLI command makes the Webpack configuration file
available:

ng eject

However, take care with this command because there may be some unexpected
side-effects. See https://github.com/angular/angular-cli/wiki/eject and
http://stackoverflow.com/questions/39187556/angular-cli-where-is-webpack-
config-js-file-new-2017-feb-ng-eject for more on this subject.

Webpack is a module bundler. It takes modules with dependencies and generates
static assets representing those modules. Figure 10-1 illustrates.

133
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_10


https://github.com/angular/angular-cli/wiki/eject
http://stackoverflow.com/questions/39187556/angular-cli-where-is-webpack-config-js-file-new-2017-feb-ng-eject
http://stackoverflow.com/questions/39187556/angular-cli-where-is-webpack-config-js-file-new-2017-feb-ng-eject

CHAPTER 10  INTRODUCING WEBPACK

"dependencies": {
"@angular/animations": "~5.0.0",
"@angular/common": "~5.0.0",
"@angular/compiler": "~5.0.0",
"@angular/core": "~5.0.0",
"@angular/forms": "~5.0.0",
"@angular/http": "~5.0.0",

Js Js
.png Js
modules webpack static
with dependencies MODULE BUNDLER assets

Figure 10-1. Webpack generates static assets representing modules

Modules and Dependencies

If you use Node for your development, Webpack will read your Node configuration file
packages.json and automatically include your dependencies as static assets in the build.
That takes the pain out of configuring module loading and deployment—you don’t have
to figure anything out. I've used Webpack on every Angular 5 project I've ever worked on
because it makes life easier.

Webpack is good for large projects because it allows for development and production
modes. Development mode can utilize non-minimized assets like JavaScript, enabling
your application to be debugged in this mode. Production mode can use minimized
assets so it has a lighter footprint.

134



CHAPTER 10  INTRODUCING WEBPACK

Your code base can be split into multiple chunks, and those chunks can be loaded

on demand, reducing the initial loading time of your application. Result: quicker
loading times. As a developer, you also have control over configuring these chunks

(more on this later).

The development process goes like this:

1.

2.

Code your project.

Run Webpack as part of your build process (or have it run for you
by the CLI).

After the build, your static assets are ready to deploy on the server.

Installing and Configuring Webpack

You don’t need to install Webpack if you're using the CLI. Webpack runs under Node.
But if you want to experiment with Webpack separately, you can use the following

command to install it (from the root folder of your project):

npm install webpack -g

If yourun the ng eject command mentioned earlier, your Webpack options will be

contained in the webpack.config.js file in the root folder of your project. In this file you'll

find the following:

Output path: You can specify where the bundled assets are put—the
output path.

Entry points: Your app can start in different places using different
code. Webpack will pack the code for deployment so that it can start
with these different codes but share common packaged chunks.

Loaders: Aloader is a Node function that takes a type of file and
converts files of this type into a new source for bundling (see
Figure 10-2). Loaders are Node packages used by Webpack.

135



CHAPTER 10  INTRODUCING WEBPACK

loaders: [
// Support for .ts files.
{
test: /\.ts$/,
loader: 'ts-loader',
query: {
‘ignoreDiagnostics': [
2403, // 2403 —> Subsequent variable declarations
2300, // 2300 -> Duplicate identifier
2374, // 2374 —-> Duplicate number index signature
2375 // 2375 -> Duplicate string index signature
1
},
exclude: [ /\.(spec|e2e)\.ts$/, /node_modules\/(?!(ng2-.+))/ 1]
h

Figure 10-2. Loaders

e Plugins: I use the CommonsChunk plugin in the book’s example
project to split our code into deployable chunks that can be loaded
separately. The CommonsChunk plugin checks which chunks of
code (modules) you use the most and puts them in a file. This gives
you a common file that has the CSS and JavaScript needed by every
page in your application.

plugins: [

new CommonsChunkPlugin({ name: 'vendor', filename: 'vendor.js', minChunks: Infinity }),

new CommonsChunkPlugin({ name: 'common', filename: '‘common.js‘, minChunks: 2, chunks: ['app', 'vendor'] })
// include uglify in production

The code in Figure 10-3 is used to create the following:
e app.js
e app.map
e common.js
e common.map
e vendor.js

e vendor.map
136



CHAPTER 10  INTRODUCING WEBPACK

Summary

This short chapter introduced you to the basics of Webpack. Webpack offers developers
a surprising amount of control, and we could spend a great deal of time going into its
configurability.

But we need to continue learning Angular. Chapter 11 introduces another very

important element: directives.

137



CHAPTER 11

Introducing Directives

Directives are markers on a DOM element (such as an attribute) that tell Angular to
attach a specified behavior to an existing element.

Directives have been around since Angular]S. They're quite complex to use, though
they’re a lot easier to use in Angular, especially when it comes to passing data into
directives. Directives used to be the main way of creating custom tags in an AngularJS
application; now that’s been replaced by directives and components.

Angular itself provides many directives to help you in your coding. You can also code
your own.

As Chapter 8 stated, components have three main elements:

e The annotation provides Angular with metadata to combine all the
parts together into a component.

o The template contains markup (usually HTML) that’s used to render
the component in the browser.

¢ The class contains the data and code for the component. The code
implements the desired behavior of the component.

As you can see, the template is used to generate the markup for the display of
the component. This markup may include tags (or other selectors) for other Angular
components, thus allowing the composition of components from other components.
This markup may also include directives to implement certain behaviors.

For example, you may have a component that displays the promotion details of a
promotion request. However, someone wanting to view the promotion request may
not have the rights to view the information, meaning some elements should be hidden.
You could use the Angular ngIf directive to evaluate the user’s rights and hide or show
elements based on them.

139
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_11



CHAPTER 11 INTRODUCING DIRECTIVES

Types of Directives

Now we know that directives are used by the component templates, but they may affect
the output of templates in different ways. Some directives may completely change the
structure of the output of the template. These directives can change the DOM layout
by adding and removing view DOM elements. Let’s call these structural directives. And
some directives may simply change the appearance of items output by the template.
Let’s call these non-structural directives.

Angular includes several structural directives for you to use in the template:

o NgIf
o NgFor
o NgSwitch, NgSwitchWhen, NgSwitchDefault
Angular also includes several non-structural directives for use in the template:
o NgClass
o NgStyle
o NgControlName
o NgModel

nglf

This is a directive that you add to an element in the markup, usually to a container
element like a div. If the template expression for the ngIf is true, then the content inside
the element is included in the view DOM after the bindings have been completed. If the
template expression for the ngIf is false, then the content inside the element is excluded
from the view DOM after the bindings have been completed. So, the ngIf directive is
used to include or exclude an element of the U], including the element’s child elements.
Markup excluded by nglf wont be invisible, it just wont be in the DOM at all.

140



CHAPTER 11 INTRODUCING DIRECTIVES

In this example (directives-ex100), we toggle between showing a name and an
address, as shown in Figure 11-1.

Name: Mark

Toggle

Address: Atlanta

Toggle

Figure 11-1. Toggling between name and address

Let’s use ngIf to hide and show elements:
1. Build the app using the CLI: Use the following command:
ng new directives-ex100
2. Startng serve: Use the following code:

cd directives-ex100
ng serve

3. Open app: Open web browser and navigate to localhost:4200. You
should see “welcome to app!”

141



CHAPTER 11 INTRODUCING DIRECTIVES
4. Edit class: Edit app.component.ts and change it to the following:
import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
templateUrl: './app.component.html’,
styles: ['div.box { width: 200px;padding:20px;margin:20px;
border:1px solid black;color:white;background-color:green }']
1)
export class AppComponent {
showName: boolean = true;

toggle(){
this.showName = !this.showName;
}
}

5. Edit template: Edit app.component.html and change it to the
following:

<div *ngIf="this.showName" class="box">
Name: Mark

</div>

<div *ngIf="!this.showName" class="box">
Address: Atlanta

</div>

<button (click)="this.toggle()">Toggle</button>

ngFor

This is a directive for processing each item of an iterable object, outputting a markup for
each one. This is known as a structural directive because it can change the DOM layout
by adding and removing view DOM elements.

ndFor is useful for generating repeating content, such as a list of customers, elements
of a dropdown, and so on.

Each item processed of the iterable has variables available in its template context, as
shown in Table 11-1.

142



CHAPTER 11 INTRODUCING DIRECTIVES

Table 11-1. ngFor Variables

Variable Description

ltem itself ~ Example: ngFor="#name of names".In this case, the item has the variable name.

Index Current loop iteration for each template context.

last Boolean value indicating whether the item is the last one in the iteration.
even Boolean value indicating whether this item has an even index.

odd Boolean value indicating whether this item has an odd index.

This will be example directives-ex200, as shown in Figure 11-2.

0: Peter Falk
1: Mary-Ann Blige
2: Eminem

Figure 11-2. ngFor showing a list

Let’s use ngFor to show a list:
1. Build the app using the CLI: Use the following command:

ng new directives-ex200

2. Staritng serve:

cd directives-ex200
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit class: Edit app.component.ts and change it to the following:
import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
templateUrl: './app.component.html’,
styleUrls: ['./app.component.css’]

1)

143



CHAPTER 11 INTRODUCING DIRECTIVES

export class AppComponent {
names = [
'Peter Falk', 'Mary-Ann Blige', 'Eminem'];

5. Edit template: Edit app.component.html and change it to the

following:

<div *ngFor="let name of names; let i = index;">
<div>{{i}}:8nbsp;{{name}}</div>
</div>

ngSwitch, ngSwitchWhen, and ngSwitchDefault

ngSwitch is a directive for adding or removing DOM elements when they match switch
expressions. It’s known as a structural directive because it can change the DOM layout
by adding and removing view DOM elements.

This will be example directives-ex300, as shown in Figure 11-3.

name E

address E

address

other E

other

Figure 11-3. ngSwitch hiding and showing elements

144



CHAPTER 11 INTRODUCING DIRECTIVES

Let’s use ngSwitch to hide and show elements according to your selection:

1.

5.

Build the app using the CLI: Use the following command:
ng new directives-ex300
Startng serve: Use the following code:

cd directives-ex300
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

Edit class: Edit app.component.ts and change it to the following:
import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styles: ['.blockl {background-color:#d5f4e6;margin:10px;
padding:10px;}',
".block2 {background-color:#d5f4ff;margin:10px;padding:10px;}",
".block3 {background-color:#d5cce6;margin:10px;padding:10px;}"']

1))
export class AppComponent {

selection = 'name';

options = ['name', 'address’, 'other'];
}

Edit template: Edit app.component.html and change it to the
following:

<select [(ngModel)]="selection">
<option *ngFor="let option of options">{{option}}</option>
</select>
<div [ngSwitch]="selection">
<div class="block1" *ngSwitchCase="options[0]">name</div>
<div class="block2" *ngSwitchCase="options[1]">address</div>
<div class="block3" *ngSwitchDefault>other</div>
</div>

145



CHAPTER 11 INTRODUCING DIRECTIVES
6. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms’

import { AppComponent } from './app.component';

@NgModule({
declarations: [
AppComponent

1,
imports: [
BrowserModule, FormsModule

1,

providers: [],
bootstrap: [AppComponent]

1)
export class AppModule { }

ngClass

We can the change the appearance of DOM elements by adding or removing classes
using this directive. Its argument is an object that contains pairs of the following:

e ACSS class name
e An expression

The CSS class name is added to the target DOM element if the expression is true—
otherwise it’s omitted. It is not just useful for setting a CSS class. It’s probably easier to
use something like the following code:

<div [class]="classNames">Customer {{name}}.</div>

In the next example, ngClass lets the user click an animal in an animal list to select
it. The selected animal is highlighted in red. This will be example directives-ex400, as
shown in Figure 11-4.

146



CHAPTER 11 INTRODUCING DIRECTIVES

cat
dog

zebra

Figure 11-4. ngClass highlighting in a list

Let’s do example directives-ex400:
1. Build the app using the CLI: Use the following command:
ng new directives-ex400
2. Startng serve: Use the following code:

cd directives-ex400
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core';
@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styles: [
".selected { color: white; background-color:red; padding: 10px;
margin: 10px }',
".unselected { background-color: white; padding: 10px;
margin: 10px}’
]

1)

export class AppComponent {
selectedAnimal = 'cat’';

animals = ['cat', 'dog', 'zebra', 'giraffe'];

147



CHAPTER 11 INTRODUCING DIRECTIVES

onAnimalClicked(event:Event){
const clickedAnimal = event.srcElement.innerHTML.trim();
this.selectedAnimal = clickedAnimal;

5. Edit template: Edit app.component.html and change it to the
following:

<div *ngFor="let animal of animals">
<div [ngClass]="{'selected': animal === selectedAnimal,
'unselected' : animal !== selectedAnimal}"
(click)="onAnimalClicked($event)">{{animal}}</div>
</div>

Your app should be working at localhost:4200.

ngStyle

This is a directive for setting the CSS styles of an element. If you only want to set one
style, it's probably easier to use something like the following code:

<div [style.fontSize]="selected ? 'x-large' : 'smaller'" >
Some text.
</div>

But if you want to set multiple styles, ngStyle is the way to go. This directive expects
an expression that evaluates to an object containing style properties. This expression can
be inline code like this:

[ngStyle]="{"color': 'blue', 'font-size': '24px', 'font-weight': 'bold'}"
Or a function call like this:

[ngStyle]="setStyles(animal)"

... later on in the class ...

setStyles(animal:String){
let styles = {

148



CHAPTER 11 INTRODUCING DIRECTIVES

'width' : 's0px’
}

return styles;

}

It lets the user click on an animal in an animal list to select it. The selected animal is
highlighted in red, as shown in Figure 11-5.

cat
dog
Zebra

Figure 11-5. ngStyle highlighting in a list

Let’s do example directives-ex500:
1. Build the app using the CLI: Use the following command:
ng new directives-ex500
2. Startng serve: Use the following code:

cd directives-ex500
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core’;
@Component ({

selector: 'app-root',

templateUrl: './app.component.html’

1)

149



CHAPTER 11 INTRODUCING DIRECTIVES

export class AppComponent {
selectedAnimal = 'cat';

animals = ['cat', 'dog', 'zebra', 'giraffe'];

onAnimalClicked(event:Event){
const clickedAnimal = event.srcElement.innerHTML.trim();
this.selectedAnimal = clickedAnimal;

}

getAnimalStyle(animal){
const isSelected = (animal === this.selectedAnimal);
return {
'padding' : '10px’,
'margin' : '10px',
'color' : isSelected ? '#ffffff' : '#000000',
'background-color' : isSelected ? '#ffoooo' : '#ffffff',

}

}
}

5. Edit template: Edit app.component.html and change it to the

following:

<div *ngFor="let animal of animals">

<div [ngStyle]="getAnimalStyle(animal)" (click)="onAnimalClicked
($event)">{{animal}}</div>
</div>

Your app should be working at localhost:4200.

Note Angular also uses other directives for form handling. | cover those in a later
chapter.

150



CHAPTER 11 INTRODUCING DIRECTIVES

Creating Directives

Directives and components are both Angular objects that correspond to elements in

the markup and can modify the resulting user interface. They both have selectors. The
selector is used to identify the component or directive that’s associated with markup in
the web page or a template. For components, you usually use the tag name—for example
CustomerList. For directives, you usually use a tag attribute name, which utilizes square
brackets—for example, [tooltip].

Directives and components both have annotations. Directives have the @Directive
annotation, and Components have the @Component annotation. They also both have
classes, and the classes can use dependency injection in the same manner through the
constructor.

However, deirectives and components aren’t completely the same. A component
requires a view, for example, whereas a directive doesn’t. Directives don’t have a
template. There’s no bundled HTML markup that’s used to render the element.

Directives add behavior to an existing DOM element. For example, you could add
a directive for a tooltip. You create the directive, you add the directive selector to the
HTML or the templates that use it, and it delivers the functionality (you will need to add
imports as well).

Creating a directive is similar to creating a component:

1. Importthe Directive decorator.

2. Add the @irective annotation, including a CSS attribute selector
(in square brackets) that identifies the directive as an attribute.
You can also add other elements to the @Directive annotation,
including input properties and host mappings.

3. Specify the name of the public input property for binding
(if required).

4. Write the Directive class. This class will use constructor injection
and will probably manipulate the injected element and renderer.

5. Apply the decorator to the components or directives that are going
to use it.

151



CHAPTER 11 INTRODUCING DIRECTIVES

As mentioned earlier, directives are markers on a DOM element (such as an
attribute) that tell Angular to attach a specified behavior to an existing element. That
means we need a way to access the DOM element that the directive is being applied to,
as well as ways to modify the DOM element.

Angular provides us with two very useful objects: the ElementRef and the Renderer.

o The ElementRef object gives you direct access to the DOM element
for the directive through the nativeElement property. Be cautious
with the use of the ElementRef object. Permitting direct access to the
DOM can make your application more vulnerable to XSS attacks.

e The Renderer object gives us many helper methods to enable us to
modify the DOM element.

We can inject both into our class. The following code accepts the ElementRef (which
lets you access the DOM element using its nativeElement property) and the Renderer
through the constructor and makes each one a private instance variable:

constructor(private element: ElementRef, private renderer: Renderer) {

}

Creating Simple Directive: Example directives-ex600

This is a simple directive that changes the size of the HTML element to which it’s added:
1. Build the app using the CLI: Use the following command:

ng new directives-ex600

2. Navigate to directory; Use the following code:

cd directives-ex600

3. Create directive using CLI: Use the CLI to create the files and also
modify the module app.module.ts:

ng generate directive sizer

152



CHAPTER 11 INTRODUCING DIRECTIVES

This will generate some files, including sizer.directive.ts.

4. Edit sizer.directive.ts: Change it to the following:

import { Directive, Input, Component, ElementRef, Renderer,
|OnInit } from '@angular/core’;

@Directive({
selector: '[sizer]'

1)

export class SizerDirective implements OnInit {
@Input() sizer : string;

constructor(private element: ElementRef, private renderer: Renderer) {

}

ngOnInit() {
this.renderer.setElementStyle(this.element.nativeElement,
'font-size', this.sizer);
}
}

Note how the directive does its work in the ngOnInit method
that’s fired after the directive has initialized. If you were to
move the setElementStyle code to the constructor, this would
work because the sizer input variable doesn’t have its value
immediately set—it’s set when the app component initializes.

5. Edit template: Edit app.component.html and change it to the
following:

<div sizer="72px">

{{title}}

</div>

6. View application: Open a web browser and navigate to
localhost:4200. It should display “app works” in large text.

Your app should be working at localhost:4200. Note how you can use the renderer to
update the style and change the size.

153



CHAPTER 11 INTRODUCING DIRECTIVES

Accessing the DOM Events in Directives

We may also need a way to access the DOM events for the element linked to the
directive. Angular provides different ways to access these events.

Using the Directive Element host

This can be used to specify the events, actions, properties and attributes related to the
host element. It can be used to bind events to code in the class:

@irective({
selector: 'input',
host: {
"(change)': 'onChange($event)’,
"(window:resize)': 'onResize($event)'
}
1)

class InputDirective {
onChange(event:Event) {
// invoked when the input element fires the 'change' event

}

onResize(event:Event) {
// invoked when the window fires the 'resize' event

HostListeners

Angular HostListeners are annotations that allow you to bind a method in your class to
aDOM event:

@HostListener('mouseenter') onMouseEnter() {
this.highlight('yellow');
}

@HostListener('mouseleave') onMouseleave() {
this.highlight(null);
}

154



CHAPTER 11 INTRODUCING DIRECTIVES

private highlight(color: string) {
this.el.nativeElement.style.backgroundColor = color;

}

Accessing the DOM Properties in Directives

You may want to modify the properties for the element linked to the directive. You can do
this using the element ref. However, there’s another way. You can use the @HostBinding
directive to bind a DOM property of the element to an instance variable in your Angular
directive. Then you can update the value of the variable, and the DOM property will
automatically be updated to match.

For example, in the following code you could control the background color of the
element by modifying the value of the backgroundColor instance variable:

@irective({
selector: '[myHighlight]',
9

class MyDirective {
@HostBinding('style.background-color') backgroundColor:string = 'yellow';

}

Creating a Directive with Events: Example
directives-ex700

This is an example directive that works with host events. Host events map to DOM events
in the host element. They’re useful when you need a directive that responds to things
happening on the DOM:

1. Build the app using the CLI: Use the following command:
ng new directives-ex700
2. Navigate to directory: Use this command:

cd directives-ex700

155



CHAPTER 11 INTRODUCING DIRECTIVES

3. Create directive using CLI: Use the CLI to create the files and
modify the module app.module.ts:

ng generate directive hoverer

This will generate some files, including hoverer.directive.ts.

4. Edit hoverer.directive.ts: Change it to the following:
import { Directive, Input, ElementRef, Renderer } from '@angular/core’;

@irective({
selector: '[hoverer]’,
host: {
"(mouseenter)': 'onMouseEnter()',
"(mouseleave)': 'onMouseleave()'

}
1)

export class HovererDirective {
@Input() hoverer;

constructor(
private elementRef:ElementRef,
private renderer:Renderer) { }

onMouseEnter(){
this.renderer.setElementStyle(
this.elementRef.nativeElement, 'color', this.hoverer);

}

onMouseleave(){
this.renderer.setElementStyle(
this.elementRef.nativeElement, 'color', 'black');

5. Edit template: Edit app.component.html and change it to the
following:

<h1 hoverer="red">{{title}}</h1>
156



CHAPTER 11 INTRODUCING DIRECTIVES

6. View Application: Open a web browser and navigate to
localhost:4200. It should turn red when you hover over
“welcome to app!”

Your app should be working at localhost:4200.

Summary

After studing this chapter, you should know how to write directives and understand how
they’re different from components.

Directives are very useful when reused to add common behavior to user interfaces.
They’re often placed into shared modules so they can be reused across applications.
For example, you could write a directive to enable or disable buttons across an entire
application based on the user’s settings (or some other state). This directive could be
specified by an element attribute. You would add the directive to the shared module
(or the main module) and then modify the application’s templates to include the
directive’s attribute on the buttons.

We're done with directives for the moment. The next chapter gets back to
components and looks at them in more detail.

157



CHAPTER 12

More Components

The purpose of this chapter is to enhance your knowledge of components further with
more advanced topics.

Components and Child Components

As you know, a component is a building block in a user interface. An Angular
application always has an Application (or root) component. This component (like other
components) has a tag in the HTML, and Angular bootstraps into that component. This
Application component (like other components) can contain other (child) components.
So, components can contain other components. This is known as composition. As
I putitin an earlier chapter, components are like LEGO bricks for the UL. Composition
is the art of composing an application using these LEGO bricks together. I'll introduce
composition with an example.
When you write a single page application, the convention is that you have a hierarchy
of components—a composition. Figure 12-1 shows an example.

Customer
List

Customer Customer Customer

Figure 12-1. Hierarchy of components

159
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_12



CHAPTER 12 MORE COMPONENTS

When you're coding with a composition, you must take great care to store the data
(known as state) in the correct place so it’s never repeated (stored twice). Pete Hunt at
Facebook wrote a superb article about this at https://facebook.github.io/react/
docs/thinking-in-react.html. The article is about React, but the same rules apply to
Angular.

Data Flowing Downwards

Data should flow downwards from higher-level components to lower-level components.
When you create a component that receives data from outside, you must explicitly tell
Angular to expect that data as input, using the @Input decorator. You place the @Input
decorator next to the instance variable to which the data will be injected from outside.

When you pass data into a component from the outside, you pass that data into the
component using input properties.

Sometimes you may want the name of the input property to be different from the
name of the instance variable to which it will be injected. That’s when you need to use an
alias, which allows you to specify the input property name. The alias may be specified
inside parentheses in the @Input decorator. Figure 12-2 shows an example.

bmw : m3
porsche : 911
bmw : m3

Figure 12-2. Passing data to car components

This component will pass data from the application to car components. This will be

example more-components-ex100:

1. Build the app using the CLI: Use the following command:

ng new more-components-ex100 --inline-template
--inline-style

2. Startng serve: Use the following code:

cd more-components-ex100
ng serve

160


https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/thinking-in-react.html

CHAPTER 12 MORE COMPONENTS

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit app class: Edit app.component.ts and change it to the
following:

import { Component } from '@angular/core’;
import { ICar } from './icar';

@Component ({
selector: 'app-root',
template: °
<car *ngFor="let car of cars" [theCar]="car"></car>

~

)

styles: []

1)
export class AppComponent {

cars:Array<ICar> = [
{make: 'bmw', model: 'm3'},
{make: 'porsche', model: '911'},
{make: 'bmw', model: 'm3'}
15
}

5. Create ICar interface: Use the following command:

ng generate interface ICar

6. Edit ICar Interface: Editicar.ts and change it to the following:

export interface ICar {
make: string,
model: string

7. Create Car class: Use the following code:

ng generate component Car --inline-template
--inline-style --flat

161



CHAPTER 12 MORE COMPONENTS

8. Edit Car class: Edit car.component.ts and change it to the following:

import { Component, Input } from '@angular/core’;
import { ICar } from './icar';

@Component ({
selector: 'car',
template: °
<p>
{{car.make}} : {{car.model}}
</p>

~

)

styles: []
1)
export class CarComponent {
@Input('theCar') car: ICar;
}

Your app should be working at localhost:4200. Note the following:

o The Application component has a list of three cars. We use the ngFor
directive to iterate over the list of cars, generating a Car component
for each one. We use the theCar input property to pass the car to the
Car component.

e We have a Car component to display each car. In the Car component,
we use the theCar aliased input property to accept the car instance
variable from the outside.

Warning You can pass objects that contain fields through the @Input ()
properties and through the inputs element of the @Component annotation. For
example, you could perform an HTTP request to get a customer object that contains a
name and address then pass it into a child component through an attribute to display
it. This works well, but bear in mind that the attribute you’re passing in may be null
until the server returns the response. So the child component may attempt to display
elements like the name and address of a null object, which can cause Angular to
throw exceptions and not display the data when it has come back from the server.
This has caught me out several times. The solution to this is to use the Elvis operator.

162



CHAPTER 12 MORE COMPONENTS

Events Flowing Upwards

Sometimes you need to compose parent components that contain child components
and control them. Parent components need to have code that responds to things
happening (events) on child components. Events should flow upwards, emitted upwards
from lower-level components and responded to by higher-level components.

Here’s how to set up a child component to pass custom events up to parent components:

1. Importthe EventEmitter class.

2. Specify the custom events that your component will emit by
using the events element of the @Component directive. You must
remember to do this!

3. Create an event emitter in your class as an instance variable.
4. Call the event emitter method emit when you want to emit an event.

Here’s how to set up a parent component to receive custom events from child
components:

1. Add the component with the custom events to your other
component. Remember to import it and specify it in the
directive element of the @Component annotation.

2. Add the component with the custom event to the markup in the
template of the other component. Edit the markup in the template
to respond to the custom event using the event name in round
brackets and the template statement it will fire—for example:
(wordInput)="wordInputEvent($event)". Notice that this uses
the same syntax as non-custom events.

Emitting Output through @Output()

You create an @Output () instance variable of type EventEmitter in the child
component/directive. You modify the child component/directive to use this instance
variable to emit events when required. You modify the parent component to bind an
event attribute of the same name in its template with a template statement. Angular will
emit the event from the child component/directive to the parent and will invoke the
template statement. Figure 12-3 shows an example.

163



CHAPTER 12 MORE COMPONENTS

bmw : m3 Delete
porsche : 911 Delete

ford : mustang Delete

localhost:4200 says:

oK

Figure 12-3. Emitting output

Figure 12-3 shows how events can flow upward from one component to another. This
will be example more-components-ex200:

1. Build the app using the CLI: Use the following command:

ng new more-components-ex200 --inline-template
--inline-style

2. Startng serve: Use the following code:

cd more-components-ex200
ng serve

3. Open app: Open web browser and navigate to localhost:4200. You

'H

should see “welcome to app

4. Edit app class: Edit app.component.ts and change it to the
following:

import { Component } from '@angular/core’;
import { ICar } from './icar';

@Component ({
selector: 'app-root',
template: °

164



CHAPTER 12 MORE COMPONENTS

<car *ngFor="let car of cars"
(carDelete)="deleteCar(car)" [theCar]="car">
</car>

~

)

styles: []
9

export class AppComponent {
cars:Array<ICar> = [
{make: 'bmw', model: 'm3'},
{make: 'porsche', model: '911'},
{make: 'ford', model: 'mustang'}

15

deleteCar(car: ICar){
alert('Deleting car:' + JSON.stringify(car));

}
}

Create ICar interface: Use the following code:

ng generate interface ICar

Edit ICar interface: Edit icar.ts and change it to the following:

export interface ICar {
make: string,
model: string

}

Create Car class: Use the following code:

ng generate component Car --inline-template
--inline-style --flat

Edit Car class: Edit car.component.ts and change it to the
following:

import { Component, Input, Output, EventEmitter } from
'@angular/core’;

165



CHAPTER 12  MORE COMPONENTS
import { ICar } from './icar';

@Component ({
selector: 'car',
template: °
<p>
{{car.make}} : {{car.model}}
<button (click)="delete(car)">Delete</button>
</p>

~

)

styles: []
9

export class CarComponent {
@Input('theCar') car: ICar;
@Output() carDelete = new EventEmitter();

delete(car: ICar){
this.carDelete.emit(car);

}
}

Your app should be working at localhost:4200. Note the following:

o The Application component has a list of three Cars. It listens for the

carDelete event, firing the deleteCar method when it occurs.

e We have a Car component to display each car. It contains a delete

button and emits a carDelete event when the user clicks it.

Composition: Example

Let’s use the Angular CLI to create a crude example of a component that contains other

components. We’ll write an app that contains a customer list which contains three

customers, as shown in Figure 12-4.

166



CHAPTER 12 MORE COMPONENTS

[app]

[customer list]

[customer]

[customer]

[customer]

Figure 12-4. Customer list with three customers

This will be example more-components-ex300:

1.

Build the app using the CLI: Use the following command:

ng new more-components-ex300 --inline-template
--inline-style

Notice the --inline-template and --inline-style arguments.
These tell the CLI to combine the template and style into the
component’s class, making the component definition one file
instead of three—much easier when you have small templates
with few styles. When you get to code much larger components,
you may want to rethink this.

When you use this command (and the following commands),

you can add the --spec argument to tell the CLI not to create a
.spec.ts file for the app and the components. I just left the spec file
generation alone.

Startng serve: Use the following code:

cd more-components-ex300
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

167



CHAPTER 12

168

4.

MORE COMPONENTS
Create the customer list component: Use the following code:

ng generate component customer-list --flat
--inline-template --inline-style

Note how we're using the --inline-template and inline-style
arguments again to combine the component into one file. We're
also using the argument --spec false to tell the CLI not to
generate a .spec.ts testing file.

Create customer component: Use the following code:

ng generate component customer --flat --inline-template
--inline-style

Again we're using the --inline-template and inline-style
arguments to combine the component into one file. And we're
using the argument --spec false to tell the CLI not to generate a
.spec.ts testing file.

Edit the app component: Copy and paste the following code into
app.component.ts:

import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
template: °
<div class="app'>
[app]
<app-customer-list>
</app-customer-list>
</div>

~

)

styles: ['.app {background-color:#d5f4e6;margin:10px;pad

ding:10px;}']
1y

export class AppComponent {
}



CHAPTER 12 MORE COMPONENTS

7. Edit the customer list component: Copy and paste the following
code into customer-list.component.ts:

import { Component, OnInit } from '@angular/core’;

@Component ({

selector: 'app-customer-list',

template: °
<div class='customerlList'>
<p>
[customer list]
</p>
<app-customer>
</app-customer>
<app-customer>
</app-customer>
<app-customer>
</app-customer>
</div>

~

)

styles: ['.customerList {background-color:#80ced6;margin
:10px;padding:10px;}']
1)

export class CustomerListComponent implements OnInit {
constructor() { }

ngOnInit() {
}

8. Edit the customer component: Copy and paste the following code
into customer.component.ts:

import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-customer’,
template: °
169



CHAPTER 12 MORE COMPONENTS

<div class="customer'>
[customer]
</div>

~

styles: ['.customer {background-color:#fefbd8;margin:10p
x;padding:10px} "]
9

export class CustomerComponent implements OnInit {
constructor() { }

ngOnInit() {
}

}
Your app should be working at localhost:4200. You have composed an app consisting
of different components. Note the following:

o Each component has a @Component directive at the top that specifies
the selector. For example, the customer component:

@Component ({
selector: 'app-customer’,

When you need to include that component in another component,
you use the selector as a tag. For example, the customer list
component uses the customer component’s tag to include it in the
template three times:

<app-customer>
</app-customer>
<app-customer>
</app-customer>
<app-customer>
</app-customer>

o The file app.module.ts was modified by the CLI. Each component was
added as a declaration in the module (more on modules later).

170



CHAPTER 12 MORE COMPONENTS

Data Flowing Downwards: Example

Let’s modify example more-components-ex300 to pass data down from the customer list
component to the customer components, as shown in Figure 12-5.

lapp]

[customer list]

Brian | Atlanta
Peter | San Francisco

Janet | Colorado

Figure 12-5. Customer list with three customers

This will be example more-components-ex400.

Edit the Customer Component

We edit the customer component to accept input data from the outside:

e Modify the imports to include the Input class from the Angular core:
import { Component, OnInit, Input } from '@angular/core';

o Change the template to include string interpolation of the instance
variable customer: {{customer.name}} and {{customer.city}}.
This will output the contents of the name and city properties of the
customer instance variable:

template: °
<div class="customer'>
{{customer.name}} | {{customer.city}}
</div>

~

)

171



CHAPTER 12 MORE COMPONENTS

Declare instance variable customer as an input variable:

@Input() customer;

Edit the Customer List Component

We edit the customer list component to pass data to the customer component using one-

way data binding (more on this later):

Your app should be working at localhost:4200. You modified the component list to
contain customer list data and you passed this data down to the customer using one-way

Replace the following tags

<app-customer>
</app-customer>
<app-customer>
</app-customer>
<app-customer>
</app-customer>

with the following:

<app-customer *ngFor="let customer of customerlList"
[customer]="customer">
</app-customer>

Declare the instance variable customerList and populate it with
data. Add the code after export and before constructor:

private customerList = [
{ name: 'Brian', city: 'Atlanta'},
{ name: 'Peter', city: 'San Francisco'},
{ name: 'Janet', city: 'Colorado'},

I

(downwards) data binding. Note the following:

172

The customer list component sets up the customer list data as an
instance variable, and the template refers to this variable.



CHAPTER 12 MORE COMPONENTS

o The customer list component uses an ngFor in the template. This
allows the template to iterate over the customer list, creating a
customer variable for each customer and passing it down to the
customer component via a bound attribute.

e The customer component declares an instance variable called
customer. It uses an annotation @Input () to tell Angular to have its
value automatically set from the outside. Note that the Input class
has to be imported at the top of the customer component’s class.

o The customer component uses {{customer.name}} and {{customer.
city}} in the template to output the name and city properties of the
instance variable called customer.

Events Flowing Upwards: Example

Let’s modify the preceding example to fire events from the customer component to the
customer list component, as shown in Figure 12-6. This will be example ex300, and it’s
based on example more-components-ex500.

{app]

[customer list]
Brian | Atlanta
_| &
Peter | San Francisco % hott:l.l.ZW 'm
n ‘Customer Chicked:Brian s
Janet | Colorado Prevent this page from creating additional dialogs.
1 (o

Figure 12-6. Firing events

This will be example ex300.

173



CHAPTER 12 MORE COMPONENTS

Edit the Customer Component

We edit the Customer component to output a clicked event when the user clicks a
customer:

e Modify the import to include the Output and EventEmitter classes
from the Angular core:

import { Component, OnInit, Input, Output, EventEmitter }
from '@angular/core’;

e Modify the template to call the method onClicked when the user
clicks a customer:

template: °
<div class="customer'(click)="onClicked()">
{{customer.name}} | {{customer.city}}
</div>

~

)

¢ Add an instance variable for the event emitter to the TypeScript class:

@utput() clicked: EventEmitter<String> = new
EventEmitter<String>();

e Add the onClicked method to the TypeScript class:

onClicked(){
this.clicked.emit(this.customer.name);

}

Edit the Customer List Component

We edit the customer list component to respond to the clicked event emitted by the
customer component:

e Modify the template to bind to the clicked event, calling the
onCustomerClicked method when the event occurs:

<app-customer *ngFor="let customer of customerlList"
[customer]="customer" (clicked)="onCustomerClicked($event)">

174



CHAPTER 12 MORE COMPONENTS

o Add the method onCustomerClicked to receive the event data and
display an alert box with the customer name:

onCustomerClicked(customerName:String){
alert('Customer Clicked:' + customerName);

}

Your app should be working at localhost:4200. The app should now display an
alert box when you click a customer. Note how the events are flowing up from multiple
customer components to a single customer list component. Also note the following:

e The customer component sets up an instance variable for an event
emitter that outputs an event with string data. It uses an annotation
@0utput() to tell Angular that other components should be able to
bind to this event.

e The customer component template includes the Angular directive
(click) to listen and respond to the user clicking the div. It fires a
method that uses the event emitter to output the event.

o The customer list component includes an event handler to listen and
respond to the custom clicked event in the customer component.

e The customer list component contains code in the
onCustomerClicked method to receive the data from the event and
display an alert box.

Template Reference Variables

A template reference variable is a reference to one or more elements within a template.
You can use the ref- prefix instead of #.

Once you've declared a template reference variable, you can use it in either the
template or in the code. However, you need to know that this variable isn’t set by Angular
until the ngAfterViewInit lifecycle method has completed (more on Angular lifecycles
later in this book).

175



CHAPTER 12 MORE COMPONENTS

ViewChild: Example

ViewChild declares a reference to a child element in the component. When you declare
your instance variable, you specify a selector in parentheses, which is used to bind the
child element to the instance variable.

This example shows text (see Figure 12-7) and it looks similar to the CLI default
application. This is example more-components-ex600.

& C' @ localhost:4200

app works differently!

Figure 12-7. ViewChild example

If you examine the code, you'll see that it uses a template variable to refer to the h1

element:
<h1 #title></h1>

And it has code to set its inner HTML after the component has finished loading the

view:

ngAfterViewInit(){
this.title.nativeElement.innerHTML = 'app works differently!'’

}

Also note that the template variable is referred to by some interpolation in the
template:

The title is {{title.innerHTML}}

Let’s do example more-components-ex600:

1. Build the app using the CLI: Use the following command:
ng new more-components-ex600 --inline-template

Remember that --inline-template tells the CLI to use inline
templates when generating the new application.

176



CHAPTER 12 MORE COMPONENTS

2. Startng serve: Use the following code:

cd more-components-ex600
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit class: Edit app.component.ts and change it to the following:

import { Component, ElementRef, ViewChild, AfterViewInit } from
'@angular/core’;

@Component ({
selector: 'app-root',
template: °
<h1 #title></h1>
The title is {{title.innerHTML}}

)

styleUrls: ['./app.component.css']
1)

export class AppComponent implements AfterViewInit {
@ViewChild('title') title: ElementRef;

ngAfterViewInit(){
this.title.nativeElement.innerHTML = 'app works differently!'’

}
}

5. View app: You should see “app works differently!”

ViewChildren: Example

ViewChildren declares a reference to multiple child elements in the component. When
you declare your instance variable, you specify a selector in parentheses, which is used
to bind the child elements to the instance variable.

This selector can be the child type (that is, the class of the Child Angular element) or
the template reference(s) (#name).

177



CHAPTER 12 MORE COMPONENTS

This example uses ViewChildren to access a list of paragraphs (see Figure 12-8). We
use ViewChildren with a list of child reference names, separated by commas. This is
example more-components-ex700.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr,
sed diam nonumy eirmod tempor invidunt ut labore et
dolore magna aliquyam erat, sed diam voluptua.

At vero eos et accusam et justo duo dolores et ea rebum.
Stet clita kasd gubergren, no sea takimata sanctus est
Lorem ipsum dolor sit amet. Lorem ipsum dolor sit
amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna
aliquyam erat, sed diam voluptua.

Number of Paragraphs:2
Figure 12-8. Accessing a list of paragraphs

Let’s do example more-components-ex700:
1. Build the app using the CLI: Use the following command:
ng new more-components-ex700 --inline-template
2. Startng serve: Use the following code:

cd more-components-ex700
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit class: Edit app.component.ts and change it to the following:

import { Component, ViewChildren, AfterViewInit } from
'@angular/core’;

178



CHAPTER 12 MORE COMPONENTS

@Component ({

selector: 'app-root',
template: °
<p #paragraphi>Lorem ipsum dolor sit amet, consetetur
sadipscing elitr, sed diam nonumy eirmod tempor invidunt
ut labore et dolore magna aliquyam erat, sed diam
voluptua. </p>
<p #paragraph2>At vero eos et accusam et justo duo
dolores et ea rebum. Stet clita kasd gubergren, no sea
takimata sanctus est Lorem ipsum dolor sit amet. Lorem
ipsum dolor sit amet, consetetur sadipscing elitr, sed
diam nonumy eirmod tempor invidunt ut labore et dolore
magna aliquyam erat, sed diam voluptua.</p>
<p *ngIf="note">{{note}}</p>
\)
styles: ['p { background-color: #FFE5CC; padding: 15px;
text-align: center}']

1)

export class AppComponent implements AfterViewInit{
@ViewChildren('paragraphl, paragraph2') paragraphs;
note: string = '';

ngAfterViewInit(){
setTimeout(_ => this.note = 'Number of Paragraphs:' +
this.paragraphs.length);

}
}

Your app should be working at localhost:4200. You should see two paragraphs of text,
with a paragraph count beneath, as in Figure 12-8.

179



CHAPTER 12 MORE COMPONENTS

NgContent and Transclusion: Example

Transclusion is the inclusion and transference of content from the area inside the
component’s tags into the component’s template. The NgContent tag is used for
transclusion. It even has a selector that allows you to select which content to include. If
you use a [ in the selector (as in [test]), then this can be used to select content with this
attribute (for example, <div test>hejwejgwegrhj</div>).

This example is very simple and doesn’t use selectors. It just includes the text
between the component tags. This is example more-components-ex800

(see Figure 12-9).

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Praesent eget ornare neque, vel consectetur eros.

Figure 12-9. Text between component tags

Let’s do example more-components-ex800:
1. Build the app using the CLI: Use the following command:
ng new more-components-ex800 --inline-template
2. Startng serve: Use the following code:

cd more-components-ex800
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit classes: This time we're going to add two Component classes
into the same file. Edit app.component.ts and change it to the
following:

180



5.

CHAPTER 12 MORE COMPONENTS

import { Component } from '@angular/core’;

@Component ({
selector: 'Paragraph’,
template: °
<p><ng-content></ng-content></p>

~

)

styles: ['p { border: 1px solid #c0c0c0; padding:
10px }']
1)

export class Paragraph {

}

@Component ({
selector: 'app-root',
template: °
<p>
<Paragraph>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. </Paragraph>
<Paragraph>Praesent eget ornare neque, vel consectetur
eros. </Paragraph>
</p>
\)

styleUrls: ['./app.component.css']
1)
export class AppComponent {

title = "welcome to app!";

}

Edit module: We have two Component classes in the same file. We

need to ensure that both Components are declared in the module

definition—otherwise, they won’t be useable. Edit app.module.ts
and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;
import { FormsModule } from '@angular/forms’;
import { HttpModule } from '@angular/http’;
181



CHAPTER 12 MORE COMPONENTS

import { AppComponent, Paragraph } from './app.component';

@NgModule({

declarations: [
AppComponent,
Paragraph

])

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

You should see two paragraphs of text, as in Figure 12-9.

ContentChild: Example

You can use ngContent to transclude additional content. Transclusion refers to injecting
content into a specific element in the DOM. You can use ContentChild to declare a
reference to a child element in the transcluded additional content.

This example is like the previous one except it uses ContentChild to get a reference
to the title element inside the transcluded content (see Figure 12-10). It then includes
the inner HTML from that element. This is example more-components-ex900.

Paragraph 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In
pulvinar egestas massa sit amet scelerisque.

Paragraph 2

Praesent eget ornare neque, vel consectetur eros. Morbi
gravida finibus arcu, vel mattis justo dictum a.

Figure 12-10. Text between component tags

182



CHAPTER 12 MORE COMPONENTS

Let’s do example more-components-ex900:

1.

Build the app using the CLI: Use the following command:
ng new more-components-ex900 --inline-template
Startng serve: Use the following code:

cd more-components-ex900
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

Edit classes: Edit app.component.ts and change it to the following:
import { Component, ContentChild } from '@angular/core’;

@Component ({
selector: 'Paragraph’,
template: °
<div>
<b>{{title.nativeElement.innerHTML}}</b>
<p><ng-content></ng-content></p>
</div>

~

)

styles: ['p { border: 1px solid #c0coco }']
)
export class Paragraph {
@ContentChild('title") title;

}

@Component ({
selector: 'app-root',
template: °
<p>
<Paragraph><title #title>Paragraph 1</title>Lorem ipsum
dolor sit amet, consectetur adipiscing elit. In pulvinar
egestas massa sit amet scelerisque.</Paragraph>

183



CHAPTER 12 MORE COMPONENTS

<Paragraph><title #title>Paragraph 2</title>Praesent
eget ornare neque, vel consectetur eros. Morbi gravida
finibus arcu, vel mattis justo dictum a.</Paragraph>
</p>

~

)

styleUrls: ['./app.component.css']
}
export class AppComponent {

title = 'welcome to app!’;

}

5. Edit module: We have two Component classes in the same file. We
need to ensure that both Components are declared in the module
definition—otherwise, they won’t be useable. Edit app.module.ts

and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms';

import { HttpModule } from '@angular/http’;

import { AppComponent, Paragraph } from './app.component';

@NgModule({

declarations: [
AppComponent,
Paragraph

])

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

You should see two paragraphs of text.

184



CHAPTER 12 MORE COMPONENTS

ContentChildren: Example

You can use ContentChildren to declare a reference to multiple child elements in the
transcluded additional content.

This example is like the previous one exceptit uses ContentChild to get a reference to
the title element inside the transcluded content (see Figure 12-11). It then includes the
inner HTML from that element. This is example more-components-ex1000.

Lorem ipsum dolor sit amet, consectetur adipiscing
elit.

- Albertus Falx

- Godefridus Turpilius

- Demipho Renatus

Number of people: 3

Praesent eget ornare neque, vel consectetur eros.
- Hanno Grumio
- Lycus Auxilius

Number of people: 2

Figure 12-11. List of people and people count

Let’s do example more-components-ex1000:

1. Build the app using the CLI: Use the following command:
ng new more-components-ex1000 --inline-template
2. Startng serve: Use the following code:

cd more-components-ex1000
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'"

You should see “welcome to app

4. Edit classes: Edit app.component.ts and change it to the following:

185



CHAPTER 12

MORE COMPONENTS

import { Component, ContentChildren } from '@angular/
core';

@Component ({

selector: 'Person’,
template: °
<div>&nbsp;-&nbsp;<ng-content></ng-content></div>

~

)

styles: ['']

export class Person {

@Component ({

selector: 'Paragraph’,

template: °

<div>

<ng-content></ng-content>

<p *ngIf="people">Number of people: {{people.length}}
</p>

</div>

~

styles: ['div { border: 1px solid #c0cOcO; margin:10px;
padding:10px }', 'p { margin: 5px 0 }']

export class Paragraph {

@ContentChildren(Person) people;

@Component ({

186

selector: 'app-root',

template: °

<Paragraph>Lorem ipsum dolor sit amet, consectetur

adipiscing elit.
<Person>Albertus Falx</Person>
<Person>Godefridus Turpilius</Person>
<Person>Demipho Renatus</Person>



5.

CHAPTER 12 MORE COMPONENTS

</Paragraph>
<Paragraph>Praesent eget ornare neque, vel consectetur
eros.
<Person>Hanno Grumio</Person>
<Person>Lycus Auxilius</Person>
</Paragraph>

)

styleUrls: ['./app.component.css']
}
export class AppComponent {

title = 'welcome to app!’;

}

Edit module: We have three Component classes in the same file. We
need to ensure that both Components are declared in the module
definition—otherwise, they won’t be useable. Edit app.module.ts
and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms’;

import { HttpModule } from '@angular/http’;

import { AppComponent, Paragraph, Person } from './app.component';

@NgModule({

declarations: [
AppComponent,
Paragraph,
Person

])

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

187



CHAPTER 12 MORE COMPONENTS

providers: [],
bootstrap: [AppComponent]

1)
export class AppModule { }

You should see two paragraphs of text. Each paragraph should have a list of people
and a people count at the bottom, as in Figure 12-11.

Component Class Lifecycle

Like Angular]S, Angular manages the components for you—when it creates them, when
it updates them, when it destroys them, and so forth. Each component has what are
known as lifecycle events: birth and life events like changes and death. Sometimes you
need to add extra code that’s fired for you by Angular when these events occur.

Constructor vs. Oninit

Sometimes you need to set up your component and initialize it. You have two choices
here: you can use the constructor or the OnInit lifecycle method. The OnInit lifecycle
method is fired when the component is first initialized.

Tip It’s up to you which one you should use, but many people follow this general
rule of thumb. We mostly use ngOnInit for initialization/declaration and avoid
work in the constructor. The constructor should only be used to initialize class
members but shouldn’t do actual “work.”

You may want to add some code to do something once the component has loaded
and is visible. For example, place the input focus on the first field so the user can just
start typing away. You might think you could add this code to the component class
constructor, but that would be incorrect because the constructor is fired before the
component is visible. In fact, you would probably add this code to ngAfterViewInit—
after the view has been initialized.

188



CHAPTER 12 MORE COMPONENTS

Interfaces

To hook into a lifecycle method, your component’s class should implement the required
interface. The interface will then force you to implement the corresponding method.

For example, to implement a method fired after the view has initialized, you should
implement the interface AfterViewInit, which requires the method ngAfterViewInit.
Table 12-1 has more details.

Table 12-1. Interfaces and Methods

Interface Method Description

OnChanges ngOnChanges Called when an input or output binding
value changes

OnInit ngOnInit After the first ngOnChanges

DoCheck ngDoCheck Developer’s custom change detection

AfterContentInit ngAfterContentInit After component content initialized

AfterContentChecked ngAfterContentChecked After every check of component content

AfterViewInit ngAfterViewInit After component's view(s) are initialized

AfterViewChecked ngAfterViewChecked After every check of a component's
view(s)

OnDestroy ngOnDestroy Just before the directive is destroyed

NgOnChanges: Example

This callback is invoked when the value of a bound property changes. It executes every
time the value of an input property changes. It will receive a changes map, containing
the current and previous values of the binding, wrapped in a SimpleChange

(see Figure 12-12). This is example more-components-ex1100.

189



CHAPTER 12 MORE COMPONENTS

Change this field: hello|

History

{"nm":{"previousValue":{},"currentValue":""} }
{"nm":{"previousValue":"","currentValue":"h"} }
{"nm":{"previousValue":"h","currentValue":"he"} }
{"nm":{"previousValue":"he","currentValue":"hel" } }
{"nm":{"previousValue":"hel","currentValue":"hell" } }

{"nm":{"previousValue":"hell","currentValue":"hello" } }

Figure 12-12. Component with a text box that lets you enter text

When you make a change, the changes are recorded below. Let’s do example more-
components-ex1100:

1. Build the app using the CLI: Use the following command:

ng new more-components-ex1100 --inline-template
--inline-style

2. Startng serve: Use the following code:

cd more-components-ex1100
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit classes: Edit app.component.ts and change it to the following:

import { Component, Input, OnChanges, SimpleChanges } from
'@angular/core’;

@Component ({
selector: 'name’,
template: °

190



5.

CHAPTER 12

<p *ngFor="let change of changes">

{{change}}
</p>
s;yles: []

9

export class NameComponent implements OnChanges{
@Input('name"') nm;
changes: Array<string> = [''];

ngOnChanges (changes: SimpleChanges){
this.changes.push(JSON.stringify(changes));

}
}

@Component ({
selector: 'app-root',
template: °
Change this field: <input [(ngModel)]="name" />
<hr/>
History
<name [name]="name"></name>

~

)

styles: []

1)

export class AppComponent{
name: string = '';

}

MORE COMPONENTS

Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;

import { NgModule } from '@angular/core’;
import { FormsModule } from '@angular/forms’;
import { HttpModule } from '@angular/http’;

import { AppComponent, NameComponent } from './app.component’;

191



CHAPTER 12 MORE COMPONENTS

@NgModule ({

declarations: [
AppComponent,
NameComponent

1,

imports: [
BrowserModule,
FormsModule,
HttpModule

])

providers: [],

bootstrap: [AppComponent]

)
export class AppModule { }

Your app should be working at localhost:4200. Note the following:

e Both components reside in the same file, but they have to be
imported and declared separately in the module.

e The app component uses two-way binding to the name instance
variable. It passes the name instance variable to the Name component.

o The Name component uses the lifecycle method ngOnChanges to listen
for changes to input properties (in this case, name). When this method
is fired it uses JSON.stringify to dump out a string representation of
the change to a list of the changes below.

NgOninit: Example

This callback is invoked once Angular is done creating the component and has initialized
it. It’s called directly after the constructor and after the ngOnChange is triggered for the
first time. This is a component that displays logs, as shown in Figure 12-13. This will be

example more-components-ex2000.

192



CHAPTER 12 MORE COMPONENTS

Thu Jun 01 2017 21:27:04 GMT-0400 (EDT)

Thu Jun 01 2017 21:27:05 GMT-0400 (EDT)

Figure 12-13. Displaying logs

Alog of when the component initializes and when the lifecycle method ngOnInit is

invoked. Let’s do example more-components-ex2000:

1.

Build the app using the CLI: Use the following command:
ng new more-components-ex1200 --inline-template --inline-style

Startng serve: Use the following code:

cd more-components-ex1200
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

Edit class: Edit app.component.ts and change it to the following:

import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-root',
template: °
<p *ngFor="let log of logs">
{{log}}
</p>

styles: []
9

export class AppComponent implements OnInit{
logs: Array<string> = [ new Date()+''];

constructor(){
for (let i=0;1i<1000;i++){
console.log(i);

}

193



CHAPTER 12 MORE COMPONENTS

}

ngOnInit(){
this.logs.push(new Date()+'");

}
}

Your app should be working at localhost:4200. Note the following:

o Thelogis initialized when the instance variable is defined.

o The constructor has some code to slow down the creation of the

component.

o Thelogis augmented when Angular is done creating the component.

NgDoCheck: Example

This callback is invoked every time the input properties of a component or a directive
are checked. We can use this lifecycle hook to extend the check with our own custom
check logic.

This is a component that will let you create an array and will figure out what you
change, as shown in Figure 12-14. This will be example more-components-ex1300.

Let’s do more-components-ex1300:

Enter Array (comma-separated): 1,3,4

added 1
added 2
added 3
removed 2
added 4

Figure 12-14. Creating an array and figuring out what you change

1. Build the app using the CLI: Use the following command:

ng new more-components-ex1300 --inline-template --inline-style

194



CHAPTER 12 MORE COMPONENTS

Startng serve: Use the following code:

cd more-components-ex1300
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

Edit classes: Edit app.component.ts and change it to the following:

import { Component, Input, DoCheck, IterableDiffers } from
'@angular/core’;

@Component ({
selector: 'numbers',
template: °
{{numbers}}
<br/>
<p *ngFor="let change of changes">
{{change}}
</p>
X J
styles: ['p{padding:0;margin:0}"]
1y
export class NumbersComponent implements DoCheck {
@Input('numbers') numbersArray: Array<string>;
changes: Array<string> = [];
differ;

constructor(private differs: IterableDiffers) {
this.differ = differs.find([]).create(null);

}

ngDoCheck() {
const differences = this.differ.diff(this.
numbersArray);
if (differences) {
if (differences.forEachAddedItem) {
differences.forEachAddedItem((item) => {

195



CHAPTER 12 MORE COMPONENTS

if ((item) && (item.item)){
this.changes.push('added ' + item.item);
}
D;
}

if (differences.forEachRemovedItem) {
differences.forEachRemovedItem((item) => {
if ((item) 88 (item.item)){
this.changes.push('removed ' + item.item);
}
D;
}
}
}
}

@Component ({
selector: 'app-root',
template: °
Enter Array (comma-separated): <input
[ (ngModel) ]="numbers" (onModelChange)="onModelChange"/>
<br/>
<numbers [numbers]="numbers.split(",")"></numbers>

)

styles: []

1)

export class AppComponent {
numbers = '';

}

5. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms’;

import { HttpModule } from '@angular/http’;

196



CHAPTER 12 MORE COMPONENTS

import { AppComponent, NumbersComponent } from './app.
component’;

@NgModule ({

declarations: [
AppComponent,
NumbersComponent

])

imports: [
BrowserModule,
FormsModule,
HttpModule

]J

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule {}

Your app should be working at localhost:4200. Note the following:

o The app component parses the input string into an array and passes
it to the Numbers component.

e The Numbers component has an Iterable Differ injected via the
constructor so that it can be an instance variable and used later.

e When the input changes and the input property to the Numbers
component change, that component uses the differ to analyze the
changes and add each change to the change log.

NgAfterContentinit: Example

This callback is invoked after ngOnlInit: when the component or directive’s content has
been initialized and the bindings have been checked for the first time.

In this example, the app component declares a crew structure with members inside
its content, as shown in Figure 12-15. Later on, this lifecycle callback is used to select the
first crew member on the list. This will be example more-components-ex1400.

197



CHAPTER 12 MORE COMPONENTS

Captain Kirk
Spock

Sulu

Bones

Checkov

Figure 12-15. Declaring a crew structure and selecting a member

Time to do example more-components-ex1400:
1. Build the app using the CLI: Use the following command:
ng new more-components-ex1400 --inline-template --inline-style

2. Startng serve: Use the following code:

cd more-components-ex1400
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit classes: Edit app.component.ts and change it to the following:

import { Component, Input, AfterContentInit,
ContentChildren, QuerylList } from '@angular/core’;

@Component ({
selector: 'member’,
template: °
<p [style.backgroundColor]="getBackgroundColoxr()"><ng-
content></ng-content></p>

N

styles: ["p{padding: 5px}"]
)

198



CHAPTER 12 MORE COMPONENTS

export class MemberComponent {
selected = false;
getBackgroundColor(){
return this.selected ? "#FFCCCC" : "#CCFFFF";
}
}

@Component ({
selector: 'crew',
template: °
<p><ng-content></ng-content></p>

~

)

styles: []

1)

export class CrewComponent implements AfterContentInit {
@ContentChildren(MemberComponent) members:
QuerylList<MemberComponent>;

ngAfterContentInit() {
this.members.first.selected = true;

}
}

@Component ({

selector: 'app-root',

template: °

<crew>
<member>Captain Kirk</member>
<member>Spock</member>
<member>Sulu</member>
<member>Bones</member>
<member>Checkov</member>

</crew>

~

)

styles: []

1)
export class AppComponent {}

199



CHAPTER 12 MORE COMPONENTS
5. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms';

import { HttpModule } from '@angular/http’;

import { AppComponent, CrewComponent, MemberComponent }
from './app.component’;
@NgModule({
declarations: [
AppComponent,
CrewComponent,
MemberComponent
1,
imports: [
BrowserModule,
FormsModule,
HttpModule
])
providers: [],
bootstrap: [AppComponent]

9
export class AppModule { }

Your app should be working at localhost:4200. Note the following:

o The app component declares a crew structure with members inside
its content.

o The Crew component declares the instance variable members (which
is declared using @ContentChildren) to map into the list of crew
members inside its own crew tag in the content. This variable is of the
type QuerylList so it can be queried easier.

o The Crew content uses the lifecycle method ngAfterContentInit to
access the instance variable of members once it’s been set for you
by Angular. This lifecycle method then sets the selected instance
variable of the first member so that he or she is highlighted.

200



CHAPTER 12 MORE COMPONENTS

The Member component shows the content inside the member tag and
sets the component’s background color according to the selected
instance variable.

NgAfterContentChecked: Example

This callback is performed after every check of the component or directive’s content,
effectively when all the bindings of the components have been checked; even if they

haven’t changed. This example allows you to pick a card, as shown in Figure 12-16. This

will be example more-components-ex1500.

ace of spades Pick a Card

Figure 12-16. Picking a card

Let’s do example more-components-ex1500:

1.

Build the app using the CLI: Use the following command:
ng new more-components-ex1500 --inline-template --inline-style
Startng serve: Use the following code:

cd more-components-ex1500
ng serve

Open app: Open a web browser and navigate to localhost:4200.

'”

You should see “welcome to app

Edit classes: Edit app.component.ts and change it to the following:

import { Component, ContentChild, AfterContentChecked }
from '@angular/core’;

@Component ({
selector: 'card',
template: °
<ng-content></ng-content>

~

)

201



CHAPTER 12 MORE COMPONENTS

styles: []
9

export class CardComponent {

}

@Component ({
selector: 'app-root',
template: °
<card>{{card}}</card>
<button (click)="pickCard($event)">Pick a Card</button>

~

)

styles: []

1)
export class AppComponent implements AfterContentChecked {

card = CARD ACE_OF_ SPADES;

@ContentChild(CardComponent) contentChild:
CardComponent;

ngAfterContentChecked() {
console.log("content inside card has been checked: " +
this.card);

}

pickCard() {
this.card = this.card === CARD_ACE_OF_SPADES ? CARD_
TEN_OF_CLUBS : CARD_ACE_OF SPADES;
}
}

const CARD ACE _OF SPADES = 'ace of spades';
const CARD TEN OF CLUBS = 'ten of clubs';

5. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;
import { FormsModule } from '@angular/forms’;

202



CHAPTER 12

import { HttpModule } from '@angular/http’;

import { AppComponent, CardComponent } from './app.

component’;

@NgModule ({

declarations: [
AppComponent,
CardComponent

1,

imports: [
BrowserModule,
FormsModule,
HttpModule

])

providers: [],

bootstrap: [AppComponent]

)
export class AppModule { }

Your app should be working at localhost:4200. Note the following:

MORE COMPONENTS

o The app component uses a Card component to display the current

card. The current card is an instance variable, the value of which is

placed inside the Card component as inner content.

o The app component has a button to allow you to flip to another card.

It changes the value of the instance variable.

o The app component has a ngAfterContentChecked method that’s
fired automatically when the content inside the Card component

changes. This is fired when the current card changes.

NgAfterViewlnit: Example

This callback is invoked after a component’s view and its children’s views are created

and have been initialized. It’s useful for performing component initializations. Note that
the @ViewChild and @ViewChildren instance variables are set and available at this point
(unlike earlier in the component lifecycle). This example shows you how to set initial
input focus, as shown in Figure 12-17. This will be example more-components-ex1600.

203



CHAPTER 12 MORE COMPONENTS

First Input Field: |

Figure 12-17. Setting initial inpur focus

Let’s do example more-components-ex1600:

1. Build the app using the CLI: Use the following command:

ng new more-components-ex1600 --inline-template --inline-
style

2. Startng serve: Use the following code:

cd more-components-ex1600
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit class: Edit app.component.ts and change it to the following:

import { Component, AfterViewInit, ViewChild } from '@
angular/core’;

@Component ({
selector: 'app-root',
template: °
First Input Field: <input #firstInput />

~

)

styles: []

}

export class AppComponent implements AfterViewInit{
@ViewChild('firstInput') firstInput;

ngAfterViewInit(){
// ViewChild variables are available in this method.
// Set initial focus.
this.firstInput.nativeElement.focus();
}
}

204



CHAPTER 12 MORE COMPONENTS

Your app should be working at localhost:4200. Note the following:

e The app component sets up the firstInput instance variable to
reference the template variable declared as #firstInput.

o The app component has a ngAfterViewInit method that’s fired once
the view has been initialized and the firstInput instance variable is
available. This method sets the initial input focus.

NgAfterViewChecked: Example

This callback is invoked after every check of the component’s view. It applies to
components only, when all the bindings of the children directives have been checked,
even if they haven’t changed. It can be useful if the component is waiting for something
coming from its child components.

Don’t set any variables bound to the template here. If you do, you'll receive the
“Expression has changed after it was checked” error.

This example allows you to input something and displays a message saying if
your input is numeric or not, as shown in Figure 12-18. This will be example more-
components-ex1700.

12
12
Input is numeric.

Figure 12-18. Displaying whether input is numeric or not

Let’s do example more-components-ex1700:

1. Build the app using the CLI: Use the following command:
ng new more-components-ex1700 --inline-template --inline-style
2. Startng serve: Use the following code:

cd more-components-ex1700
ng serve

205



CHAPTER 12 MORE COMPONENTS

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit class: Edit app.component.ts and change it to the following:

import { Component, ViewChild, AfterViewChecked } from
‘@angular/core’;

@Component ({
selector: 'app-root',
template: °
<input [(ngModel)]="input"/>
<br/>
{{input}}
<br/>
<div #message></div>

~

)

styles: []

1
export class AppComponent implements AfterViewChecked {

input: string = '';
@ViewChild('message') message;

ngAfterViewChecked(){
console.log('AfterViewChecked');
if (isNaN(parseInt(this.input))){

this.message.nativeElement.innerHTML = "Input not
numeric.";

}else{
this.message.nativeElement.innerHTML = "Input is

numeric.";

}
}
}

206



CHAPTER 12 MORE COMPONENTS
Edit class: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppComponent } from './app.component’;

import { FormsModule } from '@angular/forms’;

@NgModule({

declarations: [
AppComponent

])

imports: [
BrowserModule,
FormsModule

1,

providers: [],

bootstrap: [AppComponent]

)
export class AppModule { }

Your app should be working at localhost:4200. Note the following:

The app component sets up the message instance variable to
reference the template variable declared as #message.

The app component has a ngAfterViewChecked method that’s fired
once the view’s bindings have been checked. This is the method in
which we check the input and set the message to indicate whether the

user’s input is numeric or not.

NgOnDestroy: Example

This callback is invoked when a component, directive, pipe, or service is destroyed. Add
code here to destroy any references that may remain as instance variables (ithat is, clean
up your references).

This example counts up using an interval timer, which it destroys when the

component is destroyed, as shown in Figure 12-19. It’s the perfect place to get the
component ready to be disposed of—for example, to cancel background tasks. This will
be example more-components-ex1800.

207



CHAPTER 12

MORE COMPONENTS

23615

Figure 12-19. Counting up with an interval timer

208

Now let’s do example more-components-ex1800:

1.

Build the app using the CLI: Use the following command:

ng new more-components-ex1800 --inline-template
--inline-style

Startng serve: Use the following code:

cd more-components-ex1800
ng serve

Open app: Open a web browser and navigate to localhost:4200.

'"

You should see “welcome to app

Edit class: Edit app.component.ts and change it to the following:

import { Component, OnInit, OnDestroy } from '@angular/
core';

@Component ({
selector: 'app-root',
template: °
<h1>

{{count}}

</h1>

~

)

styles: []

1)

export class AppComponent implements OnInit, OnDestroy{
interval;
count = 0;

ngOnInit(){
this.interval = setInterval(() => {



CHAPTER 12 MORE COMPONENTS

this.count++;

1)
}

ngOnDestroy(){
clearInterval(this.interval);
delete this.interval;
}
}

Your app should be working at localhost:4200. Note the following:

o The app component has a ngOnInit method that’s fired once it has
loaded. It initializes the interval, which counts up.

o The app component has a ngOnDestroy method that is fired when it’s
being destroyed. It clears the interval, which stops the counting up.

Summary

This was an important chapter because you'll spend the majority of your time writing
components. You need to know that your user interface is made up of a hierarchy of
components, with each one having its own lifecycle from creation to destruction.

It is also very important to note how your data flows downwards, from high-level
components down to lower-level components. And you need to know how the events
flow in the opposite direction.

In the next chapter we’ll discuss how you can create service objects to perform
nonvisual tasks and plug these objects into your components using dependency

injection.

209



CHAPTER 13

Dependency Injection

In software engineering, dependency injection is a software design pattern that

implements inversion of control for resolving dependencies. A dependency is an object

that can be used (a service). An injection is the passing of a dependency to a dependent

object (a client) that would use it. After getting used to Angular, you will take the
dependency injection for granted because it is so easy to use.
For example, this code

var svc = new ShippingService(new Productlocator(),
new PricingService(), new InventoryService(),
new TrackingRepository(new ConfigProvider()),
new Logger(new Emaillogger(new ConfigProvider())));

could be replaced by something like this:
var svc = container.Resolve<IShippingService>();

Some of the advantages of dependency injection include the following:
e Your code is cleaner and more readable.
e Objects are loosely coupled.

o Possible to eliminate, or at least reduce, a component’s unnecessary

dependencies.

e Reducing a component’s dependencies typically makes it easier to
reuse in a different context.

o Increases a component’s testability.

e Moves the dependencies to the interface of components, so you
don’t reference the dependencies explicitly—you reference them via
interfaces.

© Mark Clow 2018
M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_13

211



CHAPTER 13 DEPENDENCY INJECTION

Services and Providers

Angular’s provided services are listed in Table 13-1.

Table 13-1. Angular’s Provided Services

Service Description

Http For HTTP communication with the server
Form Form handler code

Router Page navigation code

Animation Ul animations

Ul Library For example, NgBootstrap

Tip You can download other services from www.ngmodules.org.

You might want to write specific implementations of the following services:
e Server communication

e Security

e Auditing
o Logging
e Session

Remember that your implementations can “wrap” other services. For example, your
server communication service could itself use the Angular Http service and add more
functionality, implement something differently, or just have a different configuration.

When you write services, you typically write them as TypeScript classes, with one
file (filename.service.ts) per class. It’s a good idea to mark these classes as injectable
using the @Injectable() annotation. @Injectable() marks a class as available to an
injector for instantiation. Generally speaking, an injector reports an error when trying to
instantiate a class that’s not marked as @Injectable().

212


http://www.ngmodules.org/

CHAPTER 13  DEPENDENCY INJECTION

Providers are used to register classes, functions, or values so that they can be used by
the dependency injection. The Injector class uses the provider to supply information
so that it can create an instance of an object to be injected into another. So, a provider
is basically a source of information on how to create an instance of an object. This
information includes a token, the identifier of an object that may need to be created.
When you see provider () in your Angular code, you're seeing a call to an Angular
function to register information on how to create an object.

There are three types of providers: class providers, factory providers, and value
providers. Later in this chapter I'll introduce the class providers first because they're
used the most.

Each component has its own injector that’s used with the providers to create objects
for the component. When components have child components, the injector creates child
injectors for the child components.

When the dependency injection needs to inject an object into a component, it
attempts to resolve the object in the local injector (that is, the one for the component)
using the get method. If that can’t be resolved (in other words, if the object doesn’t
already exist in the injector), it attempts to resolve the object in the parent component’s
injector and so forth, all the way to the Application component. This ensures that the
nearest (local) injector’s provider is used in preference to a higher-level provider. This is
known as shadowing, and it’s similar to how local variables with the same name are used
in preference to global variables of the same name.

Normally Angular handles the resolution and creation of dependencies for you.
However, the Injector class offers you methods to invoke this yourself—for example,
resolveAndCreate.

Creating a Service: Example

This is a simple component that uses a service to provide information about cars. This
will be example dependency-injection-ex100. It will provide the service in the car
component, as illustrated in Figure 13-1.

213



CHAPTER 13 DEPENDENCY INJECTION

Provides CarService Provides CarService

Figure 13-1. Component using a service to provide information

Let’s try the exercise:

1. Build the app using the CLI: Use the following command:

ng new dependency-injection-ex100 --inline-template --inline-style

2. Startng serve: Use the following code:

cd dependency-injection-ex100
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

4. Create service class: Create car.service.ts and change it to the
following:

import { Injectable } from '@angular/core’;

@Injectable()
export class CarService {
constructor(){
console.log('CarService: constructor');

214



CHAPTER 13  DEPENDENCY INJECTION

// Some dummy method.
isSuperCharged(car: string){
return car === 'Ford GT' ? 'yes' : 'no';

5. Edit class: Edit app.component.ts and change it to the following:

import { Component, OnInit, Input } from '@angular/core';
import { CarService } from './car.service';

@Component ({
selector: 'car',
template: °
<h3>
{{name}} Is Supercharged: {{supercharged}}
</h3>
\)
styles: [],
providers: [CarService]
9
export class CarComponent implements OnInit{
@Input() name;
supercharged: string = '';
constructor(private service: CarService){}
ngOnInit(){
this.supercharged = this.service.isSuperCharged(this.name);

}
}

@Component ({
selector: 'app-root',
template: °
<car name="Ford GT"></car>
<car name="Corvette Z06"></car>

N

)

styles: []

1)
215



CHAPTER 13 DEPENDENCY INJECTION

export class AppComponent {
title = 'app works!';

}

6. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms';

import { HttpModule } from '@angular/http’;

import { AppComponent, CarComponent } from './app.component';

@NgModule ({

declarations: [
AppComponent, CarComponent

1,

imports: [
BrowserModule,
FormsModule,
HttpModule

])

providers: [],

bootstrap: [AppComponent]

1y
export class AppModule { }

Your app should be working at localhost:4200. Note the following:

o The car service outputs a log when in the constructor. This service
contains a method isSuperCharged that receives a car name as an
argument and returns a yes or no accordingly, as shown in Figure 13-2.

216



CHAPTER 13  DEPENDENCY INJECTION

Ford GT Is Supercharged: yes

Corvette Z06 Is Supercharged: no

Figure 13-2. Returning a yes or no

e The app component has a car component that’s used twice. The
car component specifies the car service as a provider. The car
component invokes the service method isSuperCharged in the
method ngOnInit. ngOnInit is fired when the component has been
initialized.

Why do multiple instances of the same service get created? Open the console and
you'll see something like Figure 13-3.

CarService: constructor
CarService: constructor

Figure 13-3. Constructor invoked twice

As you can see, the constructor is invoked twice, as the service is created twice.
That’s because the CarService is provided in the car component and the car component
is create twice. Here’s an excerpt of the car component:

@Component ({
selector: 'car',

217



CHAPTER 13 DEPENDENCY INJECTION

providers: [CarService]

1)

export class CarComponent implements OnInit{

constructor(private service: CarService){}

—
.
.

What we want is for a single instance of the service to be created, as illustrated in
Figure 13-4.

ComponentOne

One Instance of a Service

ComponentTwo

ComponentThree

Figure 13-4. We want one instance of a service created

To make that happen, we simply move the provider to the application level or a class
that’s only being used once. In the code example, we could specify the provider in the

What if we want to share a singleton of the service? We don'’t specify that we need it
on the Car object, because there are multiple Cars. We need to specify that we need the
service somewhere else on an application level.

Let’s convert our app to share one instance of the service.

218



CHAPTER 13  DEPENDENCY INJECTION

Convert App to Share One Instance of Service:
Example dependency-injection-ex200

This is a simple component that uses a service to provide information about cars, as
shown in Figure 13-5.

Ford GT Is Supercharged: yes

Corvette Z06 Is Supercharged: no

Figure 13-5. Service providing information about cars

Example dependency-injection-ex200 is the same as dependency-injection-ex100
except it provides the service in the app component so that only one instance of the
CarService is created, as illustrated in Figure 13-6.

Provides CarService

Figure 13-6. One instance of CarService provided in the app component

219



CHAPTER 13 DEPENDENCY INJECTION

Let’s do exercise dependency-injection-ex200:

1. Build the app using the CLI: Use the following command:

ng new dependency-injection-ex200 --inline-template --inline-style

2. Startng serve: Use the following code:

cd dependency-injection-ex200
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

4. Create service class: This is the same as the previous example. Edit
car.service.ts and change it to the following:

import { Injectable } from '@angular/core';

@Injectable()
export class CarService {
constructor(){
console.log('CarService: constructor');
}
// Some dummy method.
isSuperCharged(car: string){
return car === 'Ford GT' ? 'yes' : 'no';

5. Edit class: This is different from the previous example. Edit app.
component.ts and change it to the following:

import { Component, OnInit, Input } from '@angular/core';
import { CarService } from './car.service';

@Component ({
selector: 'car',
template: °
<h3>

220



CHAPTER 13  DEPENDENCY INJECTION

{{name}} Is Supercharged: {{supercharged}}

</h3>

styles: [],

providers: []
9

export class CarComponent implements OnInit{
@Input() name;

supercharged: string = '';
constructor(private service: CarService){}
ngOnInit(){

this.supercharged = this.service.isSuperCharged(this.name);

}
}

@Component ({
selector: 'app-root',
template: °
<car name="Ford GT"></car>
<car name="Corvette Z06"></car>

~

styles: [],
providers: [CarService]
1)
export class AppComponent {
title = 'app works!';

}

6. Edit module: This is the same as the previous example. Edit app.
module.ts and change it to the following

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms’;

import { HttpModule } from '@angular/http’;

import { AppComponent, CarComponent } from './app.component';

@NgModule({
221



CHAPTER 13 DEPENDENCY INJECTION

declarations: [
AppComponent, CarComponent

I,

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

Your app should be working at localhost:4200. Note that the CarService constructor
is only logged once in the console. That’s because it only needs to be created once in the
app component and can be used by all subcomponents.

Convert App to Share One Instance of Service:
Example dependency-injection-ex300

This is a simple component that uses a service to provide information about cars, as
shown in Figure 13-7.

Ford GT Is Supercharged: yes

Corvette Z06 Is Supercharged: no

Figure 13-7. Service providing information about cars

Example dependency-injection-ex300 is the same as dependency-injection-ex200
except it provides the service in the module so that only one instance of the CarService
is created and can be used anywhere in the app, as illustrated in Figure 13-8.

222



CHAPTER 13  DEPENDENCY INJECTION

Provides CarService

El Em

Figure 13-8. One instance of CarService provided in the module

Let’s do exercise dependency-injection-ex300:
1. Build the app using the CLI: Use the following command:
ng new dependency-injection-ex300 --inline-template --inline-style
2. Startng serve: Use the following code:

cd dependency-injection-ex300
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'H

You should see “app works

4. Create service class: This is the same as the previous example. Edit
car.service.ts and change it to the following:

import { Injectable } from '@angular/core';

@Injectable()
export class CarService {
constructor(){
console.log('CarService: constructor');

223



CHAPTER 13

5.

224

DEPENDENCY INJECTION

// Some dummy method.
isSuperCharged(car: string){
return car === 'Ford GT' ? 'yes' : 'no';

}

Edit class: This is different from the previous example. Edit app.
component.ts and change it to the following:

import { Component, OnInit, Input } from '@angular/core’;
import { CarService } from './car.service';

@Component ({
selector: 'car',
template: °
<h3>
{{name}} Is Supercharged: {{supercharged}}
</h3>

)

styles: []
1)
export class CarComponent implements OnInit{
@Input() name;
supercharged: string = '';
constructor(private service: CarService){}
ngOnInit(){
this.supercharged = this.service.isSuperCharged(this.name);

}
}

@Component ({
selector: 'app-root',
template: °
<car name="Ford GT"></car>
<car name="Corvette Z06"></car>

N

)

styles: []
9



CHAPTER 13  DEPENDENCY INJECTION

export class AppComponent {
title = "app works!';

}

6. Edit module: This is different to the previous example. Edit app.
module.ts and change it to the following

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;
import { FormsModule } from '@angular/forms';

import { HttpModule } from '@angular/http’;
import { AppComponent, CarComponent } from './app.component';

import { CarService } from './car.service';

@NgModule({

declarations: [
AppComponent, CarComponent

])

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [CarService],

bootstrap: [AppComponent]

1)
export class AppModule { }

Your app should be working at localhost:4200. Note that the CarService constructor
is only logged once in the console. That’s because it only needs to be created once in the
App module and can be used by all subcomponents.

225



CHAPTER 13 DEPENDENCY INJECTION

Class Providers: Example dependency-injection-ex350

As mentioned earlier, there are three types of providers: class providers, factory
providers, and value providers. Class providers allow us to tell the provider which class
to use for a dependency.

Figure 13-9 shows a component that relies on a Watch service.

Seiko Time:Mon Jun 12 2017
21:29:40 GMT-0400 (EDT)

Figure 13-9. Component relying on a Watch service

Let’s do example dependency-injection-ex350:

1. Build the app using the CLI: Use the following command:

ng new dependency-injection-ex350 --inline-template --inline-style

2. Startng serve: Use the following code:

cd dependency-injection-ex350
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

4. Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core’;

class Watch {
getTime(): string {
return new Date() + "";

}
}

226



CHAPTER 13  DEPENDENCY INJECTION

class Seiko extends Watch {
getTime(): string{
return "Seiko Time:" + super.getTime();
}
}

@Component ({
selector: 'app-root',
template: °
<h1>
{{watch.getTime()}}
</h1>

~

J)
styles: [],
providers: [{
provide: Watch,
useClass: Seiko

1

1)
export class AppComponent {

constructor(private watch:Watch){}

}

Your app should be working at localhost:4200. Note that when we use the Provider
element of the @Component annotation to create the dependency, we specify that
subclass of the Watch (a Seiko).

Factory Providers: Example
dependency-injection-ex400

Factory providers use a function to provide Angular with an instance of an object. This is
useful when you need to dynamically change the object that you want created, based on
some data.

227



CHAPTER 13 DEPENDENCY INJECTION

This is a simple component that uses a logging service:

1. Build the app using the CLI: Use the following command:
ng new dependency-injection-ex400 --inline-template --inline-style
2. Startng serve: Use the following code:

cd dependency-injection-ex400
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'"

You should see “app works

4. Create service class: This is the same as the previous example.
Create logging.service.ts and change it to the following:

import { Injectable } from '@angular/core';

@Injectable()
export class LoggingService {
constructor(private dateAndTime: boolean){
console.log('LoggingService: constructor');

}

log(message){
console.log((this.dateAndTime ? new Date() + ": ' : '") +
message);

}

}

5. Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core’;
import { LoggingService } from './logging.service';

@Component ({
selector: 'app-root',
template: °
<h1>

{{title}}

</h1>

N

)

228



CHAPTER 13  DEPENDENCY INJECTION

styles: [],
providers: [provideloggingService()]
9
export class AppComponent {
constructor(private logging: LoggingService){
logging.log('test log');
}
title = 'app works!';
}
export const LOGGING USE _DATE = false;
export function provideloggingService() {
return {
provide: LoggingService,
useFactory: () => new LoggingService(LOGGING USE _DATE)
}
}

Your app should be working at localhost:4200. Note that this logging service has the
option of including the logging date and time. You can set this using the constructor
to the logging service. A factory provider is used to provide an instance of the logging
service.

Figure 13-10 shows the date included in logging:

export const LOGGING USE DATE = true;
export function provideloggingService() {
return {
provide: LoggingService,
useFactory: () => new LoggingService(LOGGING USE DATE)
}
}

229



CHAPTER 13 DEPENDENCY INJECTION

LoggingService: constructor
Sun Jun 11 2017 20:10:01 GMT-0400 (EDT): test log
Angular is running in the development mode. Call e

Figure 13-10. Date included in logging

Figure 13-10 shows the date not included in logging:

export const LOGGING USE DATE = false;
export function providelLoggingService() {
return {
provide: LoggingService,
useFactory: () => new LoggingService(LOGGING USE_DATE)
}
}

LoggingService: constructor
test log

Angular is running in the development mode.

Figure 13-11. Date not included in logging

Factory Providers: Example
dependency-injection-ex500

This is a simple component that displays a playing card, as shown in Figure 13-12.

Card is King of Diamonds

Figure 13-12. Displaying a playing card

230



CHAPTER 13  DEPENDENCY INJECTION

Let’s do example dependency-injection-ex500:

1.

Build the app using the CLI: Use the following command:
ng new dependency-injection-ex500 --inline-template --inline-style
Startng serve: Use the following code:

cd dependency-injection-ex500
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

Create Card class: This is the same as the previous example. Edit
card.ts and change it to the following:

import { Injectable } from '@angular/core';

@Injectable()
export class Card {
constructor(public suite: string, public rank: string) {}
toString(): string {
return "Card is

+ this.rank + " of " + this.suite;

}

Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core’;
import { Card } from './card';
@Component ({

selector: 'app-root',

template: °

<h1>

{{title}}

</h1>

~

styles: [],
providers: [{
provide: Card,

231



CHAPTER 13 DEPENDENCY INJECTION

useFactory: () => {
const suite: number = Math.floor(Math.random() * 4);
const suiteName: string =
suite == 0 ? "Clubs" :
suite == 1 ? "Diamonds" :
suite == 2 ? "Hearts" : "Spades";
const rank: number = Math.floor(Math.random() * 15);
const rankName: string =
rank == 0 ? "Ace
rank == 1 ? "Joker" :

rank == 2 ? "King" :
rank == 3 ? "Queen" :
(rank - 3).toString();
return new Card(suiteName, rankName);
}
}
9

export class AppComponent {
title = 'app works!';
constructor(card:Card){
this.title = card.toString();
}
}

Value Providers: Example
dependency-injection-ex600

You've seen code and examples for class providers and factory providers. Now let’s look
at value providers. Value providers simply provide a value of an object, as shown in
Figure 13-13.

232



CHAPTER 13  DEPENDENCY INJECTION

Language is: en

Figure 13-13. Value of an object

Let’s go through example dependency-injection-ex600:

1. Build the app using the CLI: Use the following command:
ng new dependency-injection-ex600 --inline-template --inline-style
2. Startng serve: Use the following code:

cd dependency-injection-ex600
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

4. Edit class: Edit app.component.ts and change it to the following:
import { Component, Injector } from '@angular/core’;

@Component ({
selector: 'app-root',
template: °
<h1>

{{title}}
</h1>

~

styles: [],
providers: [{
provide: 'language’,

useValue: 'en

}]
1)

233



CHAPTER 13 DEPENDENCY INJECTION

export class AppComponent {
title: string = '';
constructor(private injector: Injector){
this.title = 'Language is: '
}
}

+ injector.get('language');

Injector API

You don’t need to know the Injector API in great detail yet. If you feel overwhelmed at this
point in the chapter, feel free to skip to the next chapter and come back to this later on.

However, if you want even more control over creating dependencies, you can access
the Injector object directly. The Injector is a class in the Angular core package.

It'’s a dependency injection container used for instantiating objects and resolving
dependencies.

If the classes you're attempting to resolve and create (using the Injector) have
dependencies themselves, the Injector automatically attempts to resolve and create
those for you. You can also use the additional options in the Provider class when you
use it.

Here’s an example:
import { Injector } from '@angular/core’;
const injector = Injector.resolveAndCreate([Car, Engine, Tires, Doors]);
const car = injector.get(Car);
And another example:
import { Injector } from '@angular/core’;

const injector = Injector.resolveAndCreate(

[

provide(Car, useClass: Car)),
provide(Engine, useClass: Engine)),

234



CHAPTER 13  DEPENDENCY INJECTION

provide(Tires, useClass: Tires)),
provide(Doors, useClass: Doors))

]
)5

const car = injector.get(Car);

Summary

This chapter covered a lot of ground, from the concept of dependency injection all the
way to the Injector itself. At this point you don’t need to know everything about the
Injector APIL.

What you do need to know is the basics of dependency injection in Angular—how
you can set up your providers and use contructor injection. I hope you followed the
examples and that they help you understand how the dependency injection works.

Using services with dependency injection is something you will use all the time.
Most of the time your application will use one instance of each service. Having a single
instance of each service can be very useful because you can then use these services to
hold state information (for example a customer list) accessed by multiple components.
Also sometimes you will use single-instance services as a ‘communication’ bridge
between components.

In the next chapter we’ll start covering third-party widget libraries. Why spend
precious time developing a bespoke look and feel when huge companies offer libraries
of well-tested and beautifully designed UI widgets for you?

235



CHAPTER 14

Angular and Ul Widgets

Angular is the core of many new JavaScript apps. However, you need to couple Angular
with a front-end UI framework, such as Bootstrap or Material Design. I cover Bootstrap
first in this chapter because it’s currently the more common of the two, and then I talk

about Material Design.

Using a Ul Widget Library with Angular

You can use a Ul widget library in two ways:

o The pre-Angular way: Use HTML markup and JavaScript in the
normal manner.

o The Angular way: Use custom markup directives. You utilize a
third-party module of custom components and directives that
generate Ul widget HTML markup.

Pre-Angular Way

You can create components using HTML and JavaScript that style components in the
same manner as you would in JQuery or another earlier JavaScript library.

HTML is, of course, a markup language and the most common document format of
the web. A markup language annotates a document. Some markup languages, including
HTML, have specifications that determine how to display the structured data—it tells the
computer how to display something. In Angular, we write dynamic user interfaces, and
Angular components use HTML markup to tell the computer how to display things.

The markup is in the template, which is specified in the @Component annotation of the
component. It’s also sometimes specified in the @View annotation (more on that later).

237
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_14



CHAPTER 14  ANGULAR AND Ul WIDGETS

The Angular Way

You can create components using a module of pre-built and styled Angular components
and directives, delivered as a module so you can reuse them. This is a module of
component objects (like the ones you've written in earlier chapters) and directives that
enable you to use tags to create a bootstrap UL This requires you to use someone else’s
code, but it saves you time by providing pre-built components and the directives to use
them with. Chapter 11 covered directives.

In this chapter (and others) I'm using the ng2-bootstrap module (http://valor-
software.github.io/ng2-bootstrap/), which is a Bootstrap implementation for
Angular.

Pre-Angular vs. Angular with NgBootstrap

Figure 14-1 shows a common UI element: a tab. We’ll write the HTML markup for the
same tab with and without the ng2-bootstrap module.

Home Profile Messages Settings

Figure 14-1. Common Ul element: a tab

Here’s the pre-Angular way using HTML, CSS, and JavaScript:

<div class="tabbable tabs-left" style="margin-top: 100px;">

<ul class="nav nav-tabs">
<li class="active"><a href="#panel" data-toggle="tab" rel="popover"
id="tab">Homee</a></1i>
<li><a href="#pane2" data-toggle="tab" title="blah blah"
id="tab1">Profile</a></1i>
<li><a href="#pane3" data-toggle="tab" id="tab2">Messages</a></1i>
<li><a href="#pane4" data-toggle="tab">Settings</a></1i>

</ul>

238


http://valor-software.github.io/ng2-bootstrap/
http://valor-software.github.io/ng2-bootstrap/

CHAPTER 14  ANGULAR AND Ul WIDGETS

<div class="tab-content">
<div id="panel" class="tab-pane active">...</div>
<div id="pane2" class="tab-pane">...</div>
<div id="pane3" class="tab-pane">...</div>
<div id="pane4" class="tab-pane">...</div>
</div>
</div>

And here’s the Angular way with the ng2-bootstrap module:

<ngb-tabset>
<ngb-tab title="Home">
<ng-template ngbTabContent>

</ng-template>

</ngb-tab>

<ngb-tab title="Profile">
<ng-template ngbTabContent>

</ng-template>

</ngb-tab>

<ngb-tab title="Messages">
<ng-template ngbTabContent>

</ng-template>

</ngb-tab>

<ngb-tab title="Settings">
<ng-template ngbTabContent>

</ng-template>
</ngb-tab>
</ngb-tabset>

The module makes the code smaller. Note it calls tabs ngb-tabs instead of divs.

239



CHAPTER 14  ANGULAR AND Ul WIDGETS

Bootstrap

Bootstrap is an open source group of tools that has HTML and CSS design templates
for interface elements like forms, buttons, typography, and navigation, plus optional
JavaScript extensions. Bootstrap makes developing dynamic websites and web
applications easier. It's compatible with the latest versions of most browsers, including
Firefox, Internet Explorer, Google Chrome, Opera, and Safari, though not on all platforms.
Bootstrap version 2.0 and up also supports responsive web design, which dynamically
adjusts the layout of web pages according to the characteristics of whatever device
is being used, whether that’s a phone, tablet, or desktop machine. As of version 3.0,
Bootstrap has a mobile-first design philosophy, empoying responsive design by default.
It provides a grid system to allow developers (who may lack skills in responsive design)
to write code that works equally well on all devices. The default 12-column grid system
without responsive features enabled uses a 940-pixel wide container. With the responsive
CSS file added, the grid becomes 724x1170 pixels wide, depending on your viewport.
Below 767-pixel viewports, the columns become fluid and stack vertically.
For much more about Bootstrap, go to http://getbootstrap.com. Figure 14-2 shows
a web page made with Bootstrap.

& Dashboard

Lise Chart
e 000018

(. ~ i g :.::" : Ise 00010
o ,'\( \ / %\\\ £ fl @ e
ol \\ Nt —X—% w e

Aurtrata see 0000 10

: A 4
\ \ "/. / \ \ / ' ';f Konya (3 00 2000
“\,/(\-/ w/>\,/ | ety 2450 0O:1000

< teday » October 2014 e A

Figure 14-2. Web page made with Bootstrap

240


http://getbootstrap.com/

CHAPTER 14  ANGULAR AND Ul WIDGETS

Installing ng-bootstrap

ng-bootstrap is an Angular version of the Bootstrap library that you can use to quickly
build apps using Bootstrap widgets. The source code is available to https://github.
com/ng-bootstrap/ng-bootstrap, and demos are available at https://ng-bootstrap.
github.io/#/components/accordion/examples

Here’s how to install ng-bootstrap:

1. Build the app using the CLI in the usual manner.
2. Use npm to install both ng-bootstrap and Bootstrap modules:

npm install --save @ng-bootstrap/ng-bootstrap bootstrap

3. Tell the CLI project to use the styles in the bootstrap CSS file. Edit
.angular.json and add the following entry under styles:

"../node_modules/bootstrap/dist/css/bootstrap.css”,

4. Edit your module file (app.module.ts) and specify the NgbModule
as an import. This will make the code in NgbModule available in
this Angular module:

imports: [
NgbModule.forRoot (),
BrowserModule

1,

Bootstrap: Example widgets-ex100

This component allows the user to select a pizza using a group of buttons that act like a
group of radio buttons, as shown in Figure 14-2.

241


https://github.com/ng-bootstrap/ng-bootstrap
https://github.com/ng-bootstrap/ng-bootstrap
https://ng-bootstrap.github.io/#/components/accordion/examples
https://ng-bootstrap.github.io/#/components/accordion/examples

CHAPTER 14  ANGULAR AND Ul WIDGETS

Please select your pizza:

Hawaiian  Peperoni  Everything

Your Selection: Hawaiian

Figure 14-3. Selecting a pizza

Let’s go through the example:
1. Build the app using the CLI: Use the following command:
ng new widgets-ex100 --inline-template --inline-style
2. Install ng-bootstrap and bootstrap: Use the following code:

cd widgets-ex100
npm install --save @ng-bootstrap/ng-bootstrap bootstrap

3. Install Bootstrap styles into project: Edit .angular-cli.json and add
the following entry under styles:

"../node_modules/bootstrap/dist/css/bootstrap.css”,

The style block should look like this:

"styles": [
"../node_modules/bootstrap/dist/css/bootstrap.css”,
"styles.css"

1,

4. Startng serve: Use this command:
ng serve

5. Open app: Open a web browser and navigate to localhost:4200.

'"

You should see “welcome to app

242



CHAPTER 14  ANGULAR AND UI WIDGETS
6. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms';

import { NgbModule } from '@ng-bootstrap/ng-bootstrap’;

import { AppComponent } from './app.component';

@NgModule ({

declarations: [
AppComponent

1,

imports: [
NgbModule.forRoot(),
BrowserModule,
FormsModule

1,

providers: [],

bootstrap: [AppComponent]

1
export class AppModule { }

7. Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core'’;
import { NgbModule } from '@ng-bootstrap/ng-bootstrap';

@Component ({
selector: 'app-root',
template: °
<div style="padding:10px">
<h2>Please select your pizza:</h2>
<div [(ngModel)]="model" ngbRadioGroup name="radioBasic">
<label ngbButtonLabel class="btn btn-primary">
<input ngbButton type="radio" value="Hawaiian"> Hawaiian
</label>
<label ngbButtonlLabel class="btn btn-primary">

243



CHAPTER 14  ANGULAR AND Ul WIDGETS

<input ngbButton type="radio" value="Peperoni"> Peperoni
</label>
<label ngbButtonLabel class="btn btn-primary">
<input ngbButton type="radio" value="Everything"> Everything
</label>

</div>

<hr>

Your Selection: {{model}}

</div>

~

)

styles: []
9

export class AppComponent {
model = 'Hawaiian';

}
Your app should be working at localhost:4200.

Material Design

Material Design also uses grid-based layouts like Bootstrap. It enables responsive
animations and transitions, padding, and depth effects light lighting and shadows.
Material has a lok based on paper and ink

Polymer is the implementation of Material Design for web application user
interfaces. It contains the Polymer library, which provides a Web Components API for
browsers and an elements catalog, including a paper elements collection featuring visual
elements. Figure 14-4 show a Material Design web page. You can read much more about

this product at wyw.material-ui.com.

244


http://www.material-ui.com/

CHAPTER 14  ANGULAR AND Ul WIDGETS

Components Q
Preréquisites

Installation

Usage

Server Rendering

Examples

Customization

Components

Discover More

Resources

GitHub

React

Material Design

The app bar, formerly known as the action bar in Androld, is a special kind of toclbar that's used for branding,
navigation, search, and actions.

Examples

Simple example <2

A simple example of AppBar with an icon on the right. By default, the left icon is a navigation-menu.

Buttons <

This example uses an lconButton on the left, has a clickable title through the onTouchTap property, and a
FlatButton on the right.

X Title SAVE

Figure 14-4. Web page of Material Design

Installing Angular Material

Angular Material is an Angular version of the Material library that you can to quickly

build apps with Material components. The source code is available at https://github.
com/jelbourn/material2-app, and the example is here: https://material2-app.

firebaseapp.com.

Here’s how to install Angular Material:

1. Build the app using the CLI in the usual manner.

2. Use npm to install Angular Material, Angular Animation, and CDK

(Components Development Kit).

npm install --save @angular/material
npm install --save @angular/animations
npm install --save @angular/cdk

3. Add the icons to your project by including them in the index.html file:

<link href="https://fonts.googleapis.com/
icon?family=Material+Icons" rel="stylesheet">

245


https://github.com/jelbourn/material2-app
https://github.com/jelbourn/material2-app
https://material2-app.firebaseapp.com/
https://material2-app.firebaseapp.com/

CHAPTER 14  ANGULAR AND Ul WIDGETS

4. Rename the styles file styles.css to styles.scss and change it to the
following:

@import '~@angular/material/prebuilt-themes/deeppurple-amber.css';

5. Change the reference to the style file in .angular-cli.json:

"styles": [
"styles.scss"

1,

6. Edit the CLI-generated module file app.module.ts and ensure
it imports the widget modules (such as MdButtonModule,
MdCheckboxModule), the animations module
(BrowserAnimationsModule), and hammerjs:

import {MdButtonModule, MdCheckboxModule} from '@angular/material’;
import {BrowserAnimationsModule} from '@angular/platform-browser/
animations';

import { hammerjs } from 'hammerjs’;

@NgModule({

imports: [MdButtonModule, MdCheckboxModule],
[BrowserAnimationsModule]

Angular Material Design: Example widgets-ex200

This component allows the user to select the date with a Material-styled date picker
popup, as shown in Figure 14-5.

246



CHAPTER 14  ANGULAR AND Ul WIDGETS

Choose a date B
JUN 2017 +« < >
JUN 1 2 3

12 13 14 15 16 (17 )
8 19 20 21 2 23 24

25 26 27 28 29 30

Figure 14-5. Date picker popup

Let’s do the example:

1.

Build the app using the CLI:
ng new widgets-ex200 --inline-template --inline-style

Install Angular Material, Animations and Component

Development Kit.

cd widgets-ex200

npm install --save @angular/material
npm install --save @angular/animations
npm install --save @angular/cdk

Add the icons to your project by including them in the index.html file:

<link href="https://fonts.googleapis.com/
icon?family=Material+Icons" rel="stylesheet">

247



CHAPTER 14  ANGULAR AND Ul WIDGETS

4. Rename the styles file styles.css to styles.scss and change it to the
following:

@import '~@angular/material/prebuilt-themes/deeppurple-amber.css';

5. Change the reference to the style file in .angular-cli.json:

"styles": [
"styles.scss"

1,

6. Editapp.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;
import { AppComponent } from './app.component’;
import { BrowserAnimationsModule } from '@angular/platform-
browser/animations';
import {FormsModule, ReactiveFormsModule} from '@angular/forms';
import {
MatNativeDateModule,
MatFormFieldModule,
MatInputModule,
MatDatepickerModule
} from '@angular/material’;
@NgModule({
declarations: [
AppComponent
1,
imports: [
BrowserModule, BrowserAnimationsModule, MatNativeDateModule,
MatFormFieldModule, MatInputModule, MatDatepickerModule
])
providers: [],
bootstrap: [AppComponent]

1)
export class AppModule { }

248



CHAPTER 14  ANGULAR AND Ul WIDGETS

7. Edit app.component.ts and change it to the following:
import { Component } from '@angular/core’;

@Component ({

selector: 'app-root',

template: °
<mat-form-field>
<input matInput [matDatepicker]="picker" placeholder="Choose a date">
<mat-datepicker-toggle matSuffix [for]="picker"></mat-
datepicker-toggle>
<mat-datepicker #picker></mat-datepicker>
</mat-form-field>

~

)

styles: []

)

export class AppComponent {
title = 'app';

}

8. Startng serve:
ng serve

9. Open aweb browser and navigate to localhost:4200. You should
see the app running.

Your app should be working at localhost:4200.

Summary

If you're serious about building a polished Angular app, you should use a pre-built
widget library module. Many applications use Bootstrap and Material. I'm currently
working on an application that uses Bootstrap, and it has the advantage of offering a grid
system, which takes away a lot of the pain of responsive design.

UI widget libraries definitely make it easier to write beautiful user interfaces with
more maintainable, standard code. Dont waste your time re-inventing the wheel writing
your own widget library! Remember that you can setup themes in widget libraries to
customize them to your specifications.

249



CHAPTER 15

Routes and Navigation

In most web applications, users navigate from one page to the next as they perform
application tasks. Users can navigate in these ways:

o Entering a URL in the address bar
o Following links, clicking buttons, and so on
e Going backward or forward in the browser history

In Angular applications, users can navigate in the same three ways but they’re
navigating through components (the building blocks of Angular apps). We can navigate
because we have the Angular router. The router can interpret a browser URL as an
instruction to navigate to a component and pass optional parameters (which contain
information) to the component to give it contextual information and help it decide
which specific content to present or what it needs to do.

We can bind the router to links on a page, and it will navigate to the appropriate
component when the user clicks a link. We can navigate imperatively when the user
clicks a button, selects from a drop-down, or responds to some other stimulus from any
source.

The router logs activity in the browser’s history, so the back and forward buttons

work as well.

Router Routes on the Client Side

Any URL that contains a # character is a fragment URL. The portion of the URL to the left
of the # identifies a resource that can be accessed (from the server), and the portion on
the right, known as the fragment identifier, specifies a location within the resource (on
the client). For example, in the URL www.cnn.com/index.html#section2, the fragment
name is section2, and it specifies a location in the document index.html.

251
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_15


http://www.cnn.com/index.html#section2

CHAPTER 15  ROUTES AND NAVIGATION

The original purpose of fragments was to allow the user to jump to alink on a
specified part of the current page, scrolling up or down. Now fragments are often used
for client-side navigation, because by their nature they don’t invoke a request to pull
resources from the server.

HTMLS5 browsers can work with client-side and non-client-side routing for URLs,
including those with hashes and those without. But some older browsers won’t work
with client-side routing for URLS that aren’t hashed. Hashed means that the client-side
part of the URL needs to be after the # sign (that is, it’s a fragment).

If you're deploying a single page application to production,n you probably need to
do the following:

1. Turn on hash routing on the router. This will make your single
page application more compatible with older pre-HTML5
browsers. When you import the router module in your module,
you should do the following:

@NgModule ({
imports: [
RouterModule.forRoot (appRoutes, {useHash: true})
1,

1)

export class ...

2. Ensure that your 404 page on the server reroutes to the web
page (for example, index.html) that contains the single page
application. This will return pages to the single page app if for
some reason the browser attempts to pull server resources in error.

Route Matching

If you specify a URL in your address bar of your web browser and the Angular application
is loaded, the router will attempt to find the route that matches the URL. It goes through
every permutation of possible route combination until it matches the complete URL. If
you have multiple routes that can possibly match to the same url, the router will use the
first route available, even if the second one looks more complete.

252



CHAPTER 15  ROUTES AND NAVIGATION

Router DSL

When you specify a route, you specify it using a text string, for example ‘/customers/123’
DSL stands for ‘Domain Specific Language’ and that term is used because your route text
string can be interpreted and matched in many ways. Your route string can specify:

e An absolute route.

e Arelative route from where you are at the moment.

e Aroute that references server resources.

e Aroute that references client-side resources (using fragment urls).

‘DSL is an intimidating term but don’t worry, we will cover the different types of
routes in this chapter and you will be up to speed quickly!

Router Module

Before you start using the component router, you should know that this module is
included in the Node package dependencies but isn’t included by default in the Angular
CLI project. Routing isn’t included in the application module.

However, you can change that by adding the --routing parameter to the end of the
ng command. For example:

ng new router-ex300 --inline-template --inline-style --routing

Table 15-1 lists the objects in the router module. There are a lot of objects in the
table, but don’t worry—they’ll become more understandable after some exercises.

253



CHAPTER 15  ROUTES AND NAVIGATION

Table 15-1. Objects in the Router Module

Object Type Description

RouterModule Module A separate Angular module that provides the necessary
service providers and directives for navigating through
application views.

Router Displays the application component for the active
URL. Manages navigation from one component to the next.

Routes Defines an array of routes, each mapping a URL path to a
component.

Route Defines how the router should navigate to a component
based on a URL pattern. Most routes consist of a path and
a component type.

RouterQutlet Directive The directive (<router-outlet>) that marks where the
router displays a view.

RouterLink Directive The directive for binding a clickable HTML element to a

RouterLinkActive Directive

ActivatedRoute

RouterState

route. Clicking an element with a RouterLink directive
that’s bound to a string or a link parameters array triggers
a navigation.

The directive for adding/removing classes from an HTML
element when an associated RouterLink contained on or
inside the element becomes active/inactive.

A service that’s provided to each route component

that contains route-specific information such as route
parameters, static data, resolve data, global query params,
and the global fragment.

The current state of the router including a tree of the
currently activated routes together with convenience
methods for traversing the route tree.

254



CHAPTER 15  ROUTES AND NAVIGATION

Simple Routing: Example

This is a pizza-selection component that uses routing to allows the user to click links

to display different types of pizzas, with each type of pizza in its own component. This
example also shows the use of route parameters: you can route to the everything pizza
with a size parameter of small or large. Figure 15-1 illustrates.

Pizzas

Pepperoni Everything Small Everything Large

Everything

Size:small

Figure 15-1. Pizza selection

This is example router-ex100:
1. Build the app using the CLI: Use the following code:
ng new router-ex100 --routing --inline-template --inline-style
2. Startng serve: Use the following code:

cd router-ex100
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

255



CHAPTER 15

4.

256

ROUTES AND NAVIGATION

Edit routing class: Edit app-routing.module.ts and change it to the
following:

import { NgModule } from '@angular/core';

import { Routes, RouterModule } from '@angular/router’;

import { PepperoniComponent, EverythingComponent} from './app.
component’;

const routes: Routes = |
{ path: "',
redirectTo: '/pepperoni',
pathMatch: 'full'

})
{
path: 'pepperoni’,
component: PepperoniComponent
1
{
path: 'everything/:size',
component: EverythingComponent
}
I
@NgModule({

imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

9
export class AppRoutingModule { }

Step 5 - Edit Components Class
Edit ‘app.component.ts’ and change it to the following:

import { Component } from '@angular/core’;
import { Router, ActivatedRoute, ActivatedRouteSnapshot} from
'@angular/router’;

@Component ({
selector: 'pepperoni’,
template: °



CHAPTER 15  ROUTES AND NAVIGATION

<h2>Pepperoni</h2>

<img src="https://thumbi.shutterstock.com/display pic_with_
logo/55755/161642033/stock-photo-single-slice-of-pepperoni-meat-
isolated-on-white-with-path-shot-from-above-161642033.jpg">

~

)

styles: []
9

export class PepperoniComponent {

}

@Component ({
selector: 'everything',
template: °
<h2>Everything</h2>
Size:{{size}}
<img src="https://encrypted-tbno.gstatic.com/images?q=tbn:ANd9
GcROUXyx2jOrCBBBw2N4ofFVw2oWz7keZjDVUB4UDTASE9IHWQd1" >

~

)

styles: []
1)
export class EverythingComponent {
private size: String = '';
constructor(private route: ActivatedRoute){
route.params.subscribe(
(params: Object) =>
this.size = params['size']);
}
}

@Component ({
selector: 'app-root',
template: °
<h1>
Pizzas
</h1>

257



CHAPTER 15  ROUTES AND NAVIGATION

<a [routerLink]="["pepperoni']">Pepperoni</a>

<a [routerLink]="["everything', 'small']">Everything Small</a>
<a [routerLink]="["everything','large']">Everything Large</a>
<router-outlet></router-outlet>

~

)

styles: []

}

export class AppComponent {
title = 'app’;

}

6. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppRoutingModule } from './app-routing.module';
import { AppComponent, PepperoniComponent, EverythingComponent }
from './app.component';

@NgModule({

declarations: [
AppComponent,
PepperoniComponent,
EverythingComponent

1,

imports: [
BrowserModule,
AppRoutingModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

258



CHAPTER 15  ROUTES AND NAVIGATION

Your app should be working at localhost:4200. Note the following:

The file app-routing.module.ts was generated by the CLI. It defines
a module AppRoutingModule just for the routing. This module
contains a data structure that sets up URLs with accompanying
components. Note how the first URL maps the default URL to
another, and note how the path for the EverythingComponent
specifies a size parameter.

{
path: 'everything/:size',
component: EverythingComponent

}

The file app.component.ts contains all the components. It uses
RouterLink directives to modify links to work with the Angular
router. The EverythingComponent is used to display the everything
pizza and can accept a size parameter. Note how it subscribes to
the route parameters object to receive parameter updates. This is
necessary in case the user switches from one size of everything to
another, updating the size parameter.

constructor(private route: ActivatedRoute){
route.params.subscribe(
(params: Object) =>
this.size = params['size']);

}

The file app.module.ts declares all the components so they can be
accessed in the app module. It also imports the AppRoutingModule
that we set up in app.routing.module.ts.

Nested Routing: Example

Nested routing means the ability to route and navigate to subcomponents that are inside
other components that are navigated to. This is definitely possible in Angular, as you can
see in this example.

259



CHAPTER 15  ROUTES AND NAVIGATION

Nested routing link URLs have more than one “level” because now there is a
hierarchy of routes and their children, rather than just routes.

This will be example router-ex200, and Table 15-2 compares the URLSs for this
example with the ones for the previous example.

Table 15-2. router-ex100 URLs vs. router-ex200 URLs

Router-ex100 Router-ex200

/pepperoni /pepperoni

/everything /other/pasta
/other/canzone

This is another pizza selection component that uses routing. However, this time it
uses a nested route for the “other” menu and component. When you click the “other”
link, you can select from a submenu of pasta or calzone, as shown in Figure 15-2. The
display of these menu items is handled by nested routing.

Delivery Menu Delivery Menu
. empmm
Other Menu Items
~eppen B |
Pasta

Figure 15-2. Pasta or calzone?

260



CHAPTER 15  ROUTES AND NAVIGATION

Let’s do example router-ex200:

1.

Build the app using the CLI: Use the following command:
ng new router-ex200 --routing --inline-template --inline-style
Startng serve: Use the following code:

cd router-ex200
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

Edit routing class: Edit app-routing.module.ts and change it to the
following:

import { NgModule } from '@angular/core’;

import { Routes, RouterModule } from '@angular/router’;

import { PepperoniComponent } from './app.component';

import { OtherComponent } from './app.other-component’;

import { NestedPastaComponent, NestedCalzoneComponent } from './
app.other-component';

const routes: Routes = [
{
path: '',
redirectTo: '/pepperoni',
pathMatch: 'full'

b
{

path: 'pepperoni',

component: PepperoniComponent
b

{
path: 'other',

component: OtherComponent,
children: [

{

261



CHAPTER 15  ROUTES AND NAVIGATION

path: '',
redirectTo: 'pasta’,
pathMatch: 'full'

}J
{
path: 'pasta’,
component: NestedPastaComponent
}J
{

path: 'calzone',
component: NestedCalzoneComponent

}
]
}
Is

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

1)
export class AppRoutingModule {}

5. Edit components class: Edit app.component.ts and change it to
the following:

import { Component } from '@angular/core’;
import { Router, ActivatedRoute, ActivatedRouteSnapshot} from '@
angular/router’;

@Component ({
selector: 'pepperoni',
template: °
<div>
<h2>Pepperoni</h2>

262



CHAPTER 15  ROUTES AND NAVIGATION

<img src="https://thumbl.shutterstock.com/display pic with_

logo/55755/161642033/stock-photo-single-slice-of-pepperoni-meat-

isolated-on-white-with-path-shot-from-above-161642033.jpg">
</div>

~

)

styles: []
9

export class PepperoniComponent {

}

@Component ({
selector: 'app-root',
template: °
<div>
<h1>
Delivery Menu
</h1>
<a [routerLink]="["pepperoni']" routerLinkActive="router-
link-active">Pepperoni Pizza</a>
<a [routerLink]="["other']" routerLinkActive="router-link-
active">Other Menu Items</a>
<router-outlet></router-outlet>
</div>

~

)

styles: []
9

export class AppComponent {
title = 'app';
}

263



CHAPTER 15  ROUTES AND NAVIGATION

6. Create other component: Create app.other-component.ts and

change it to the following:
import { Component } from '@angular/core’;

@Component ({
selector: 'pasta’',
template: °
<div>
<h2>Pasta</h2>
<img src="https://capetowncafe.files.wordpress.com/2015/04/
spaghetti-recipe-wikipedia.jpg">
</div>

~

)

styles: []
9

export class NestedPastaComponent {

}

@Component ({
selector: 'calzone',
template: °
<div>
<h2>Calzone</h2>
<img src="https://upload.wikimedia.org/wikipedia/
commons/5/54/Calzone_fritto.jpg">
</div>

~

)

styles: []
9

export class NestedCalzoneComponent {

}

@Component ({
selector: 'other',
template: °

264



CHAPTER 15  ROUTES AND NAVIGATION

<div>
<h2>0ther Menu Items</h2>
<a [routerLink]="["pasta']" routerLinkActive="router-link-
active">Pasta</a>
<a [routerLink]="["calzone']" routerLinkActive="router-1link-
active">Calzone</a>
<router-outlet></router-outlet>
<br/>
<br/>
</div>

~

)

styles: []
9

export class OtherComponent {

}

Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppRoutingModule } from './app-routing.module’;

import { AppComponent, PepperoniComponent } from './app.component';
import { OtherComponent, NestedCalzoneComponent,
NestedPastaComponent } from './app.other-component’;

@NgModule({

declarations: [
AppComponent,
PepperoniComponent,
OtherComponent,
NestedCalzoneComponent,
NestedPastaComponent

])

imports: [
BrowserModule,
AppRoutingModule

1,
265



CHAPTER 15  ROUTES AND NAVIGATION

providers: [],
bootstrap: [AppComponent]

9
export class AppModule { }

8. Edit styles: Edit styles.css and change it to the following:

/* You can add global styles to this file, and also import other style
files */
img {
width:200px;
border: 1px solid #000000;
}
a {
background-color: #0066CC;
color: #ffffff;
border: 1px solid #000000;
padding: 10px;
margin: 10px;
}

.router-link-active {
background-color: #(C14242;

}

div {
border: 1px dotted #000000;
margin: 10px;
padding: 10px;

}

266



CHAPTER 15  ROUTES AND NAVIGATION

Your app should be working at localhost:4200. Note the following:

o The file app-routing.module.ts was generated by the CLI. It defines
a module AppRoutingModule just for the routing. This module
contains a data structure that sets up URLs with accompanying
components. Note that this time the data structure contains child
routing, using the children property:

{
path: ‘'other',
component: OtherComponent,
children: [
{
path: "',
redirectTo: 'pasta’,
pathMatch: 'full'
}J
{
path: 'pasta',
component: NestedPastaComponent
}J
{
path: 'calzone',
component: NestedCalzoneComponent
}
]
}

o The file app.component.ts is used to define the app component and
the pepperoni component (not nested). It also contains the non-
nested router links and the router outlet, into which the non-nested
components are injected.

o The file app.other-component.ts is used to define the other
component (not nested) and the pasta and calzone nested
components. The other component contains the nested router links
and the router outlet, into which the nested components are injected.

267



CHAPTER 15  ROUTES AND NAVIGATION

o The file app.module.ts declares all the components so that
they can be accessed in the app module. It also imports the
AppRoutingModule that we set up in app.routing.module.ts.

o The file styles.css declares some styles (badly, I admit) that
are used for the links and for a tabbed effect. Notice how the
routerLinkActive style is set up on the router links to highlight the
currently active links (this applies to nested and non-nested links).

Router links:

<a [routerLink]="["pepperoni']" routerLinkActive="router-link-active">
Pepperoni Pizza</a>

Styling for active router links:

.router-link-active {
background-color: #(C14242;

Route Configuration

Angular applications route by using a single instance of the router service. When
navigation occurs, the router attempts to resolve a route for the new location. To resolve
routes, routes must be configured for the router. The routes are configured as an array of
route objects. Each route object needs a path (to resolve it) and, usually, a component
that will be displayed in the router outlet for the resolved route. Route objects can also
have more properties (more about that shortly).

You can configure route paths that redirect to other paths. For example, the following
code redirects an empty route to the pepperoni route. In the case of an empty URL,
we also need to add the pathMatch: 'full' property so Angular knows it should be
matching exactly the empty string and not partially the empty string:

const routes: Routes = [

{
path: '',

redirectTo: '/pepperoni',

268



CHAPTER 15  ROUTES AND NAVIGATION

pathMatch: 'full'
1

15

You can also add a CatchAll route by using the path **, and if the URL doesn’t match
any of the other routes it will match this route:

const routes:Routes = [

{path: "**'  component: CatchAllComponent}
K

When you configure your routes, you configure them using an array of route objects.
Each route object can have a data property that contains other properties which can be
extracted later by the target component for that route.

The following code sets up a route with data, including a message for the
“not found” path:

{ path: '500', component: ErrorPageComponent, data: {message: 'Unexpected
Server Error'}}

The following code accesses that data so it can be used to show a message.
Either this:

this.errorMessage = this.snapshot.data[ 'message'];
Or this:

this.route.data.subscribe(
(data: Data) => { this.errorMessage = data[ 'message']; }

)5

Note that this allows you to reuse the same component for different purposes with
different data. For example, you could also set up a route for path 401 which would reuse
the error page component but this time with the message “Unauthorized.”

269



CHAPTER 15  ROUTES AND NAVIGATION

Route Path Parameters

You can pass data parameters to components in the routes as part of the URL path—for
example, customer/123.

When you write the code for the component that receives the parameter, you have
two different implementations to choose from:

e You can read the parameter from the route snapshot (which is a
one-off snapshot of the route). This is useful when you’re routing to
a child component inside a parent component once only and this

parameter never changes:

constructor(route: ActivatedRoute) {
this.customerId = route.snapshot.paramMap.get('id");

}

¢ You can read the parameter by subscribing to an observable
parameter map. This is useful when you’re routing to a child
component inside a parent component and the child component may
reroute (being passed a new parameter) when something changes:

constructor(route: ActivatedRoute) {
route.paramMap.subscribe(
params => this.customerId = params.get('id")
)s
}

Route Query Parameters: Example

You can pass data parameters to components in the routes using query strings—for
example, customer?id=123.

This works in a similar manner to path parameters. When you write the code for
the component that receives the parameter, you have two different implementations to
choose from:

e You can read the query parameter from the route snapshot, useful
when routing to a child component inside a parent component once
only and this parameter never changes:

270



CHAPTER 15  ROUTES AND NAVIGATION

constructor(route: ActivatedRoute) {
this.customerId = route.snapshot.queryParams['id'];

}

e You can read the parameter by subscribing to an observable query
parameter map—useful when routing to a child component inside
a parent component and the child component may reroute when
something changes:

constructor(route: ActivatedRoute) {
route.queryParams.subscribe(
params => this.customerId = params.get('id")
);
}

This example is a component that shows a list of customers at the top, with
details of the selected customer below, as shown in Figure 15-3. This will be
example router-ex300.

Customer List

Mark

>>> Peter <<<

Customer Detail
Peter
Belvue, CA

Balance: $5000

Figure 15-3. List of customers and detail

271



CHAPTER 15  ROUTES AND NAVIGATION
1. Build the app using the CLI: Use the following command:
ng new router-ex300 --routing --inline-template --inline-style
2. Startng serve: Use the following code:

cd router-ex300
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Create customer class: Create customer.ts:

export class Customer {
private _id: number;
private _name: string;
private city: string;
private _state: string;
private balance: number;

constructor(id: number, name: string, city: string, state:
string, balance: number) {

this. id = id;

this. name = name;

this. city = city;

this. state = state;

this. balance = balance;

get id(): number {
return this. id;

get name(): string {
return this. name;

get city(): string {
return this. city;

272



CHAPTER 15  ROUTES AND NAVIGATION

get state(): string {
return this. state;

}

get balance(): number {
return this. balance;

5. Create CustomerService class: Create customerService.ts:

import { Injectable } from '@angular/core’;
import { Customer } from './customer';

@Injectable()
export class CustomerService {
private _customers: Array<Customer> = [
new Customer(1, 'Mark', 'Atlanta', 'GA', 12000),
new Customer(2, 'Peter', 'Belvue', 'CA', 5000),
new Customer(3,'Jill', 'Colombia', 'SC', 2000),
new Customer(4, 'Brian', 'Augusta', 'GA', 2000)

s

get customers() {
return this. customers;

}

getCustomerById(id: number){
for (let i=0,ii=this. customers.length;i<ii;i++){
const customer = this. customers[i];
if (customer.id == id){
return customer;
}
}
return null;
}
}

273



CHAPTER 15  ROUTES AND NAVIGATION

6. Edit app routing module: Edit app-routing.module.ts and change
it to the following:

import { NgModule } from '@angular/core’;

import { Routes, RouterModule } from '@angular/router’;

import { DetailComponent, PleaseSelectComponent } from './app.
component';

const routes: Routes = [

{
pathMatch: 'full',
path: "',
component: PleaseSelectComponent,
children: []
})
{
pathMatch: 'full',
path: 'detail’,
component: DetailComponent,
children: []
}
15
@NgModule({

imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

)
export class AppRoutingModule { }

7. Edit app component: Edit app.component.ts and change it to the
following:

import { Component } from '@angular/core’;

import { ActivatedRoute } from '@angular/router’;
import { CustomerService } from './customerService';
import { Customer } from './customer’;

274



CHAPTER 15  ROUTES AND NAVIGATION

@Component ({
selector: 'pleaseSelect',
template: °
<div>
<h2>Please make a selection.</h2>
</div>

~

styles: ['div { background-color: #FFFFFF; padding: 10px;
border: 1px solid #000000 }']

1

export class PleaseSelectComponent {

}

@Component ({

selector: 'detail’,

template: °
<div>
<h2>Customer Detail {{id}}</h2>
<p>{{customer.name}}<p>
<p>{{customer.city}}, {{customer.state}}</p>
<p>Balance: 8&#36;{{customer.balance}}</p>
</div>

~

)

styles: ['div { background-color: #FFE4E1 }']
1)
export class DetailComponent {
customer: Customer;
constructor(
private customerService: CustomerService,
private route: ActivatedRoute) {
route.queryParams.subscribe(
(queryParams: Object) =>
this.customer = customerService.getCustomerById(queryParams

["id"]1));

275



CHAPTER 15  ROUTES AND NAVIGATION

@Component ({
selector: 'app-root',
template: °
<div>
<h1>
Customer List
</h1>
<p *ngFor="let customer of _customerService.customers">
<a [routerLink]="["detail']" [queryParams]="{id: customer.
id}" routerLinkActive="active">{{customer.name}}</a>
</p>
</div>
<router-outlet></router-outlet>

~

)

styles: ['div { background-color: #faebd7 }',]
)
export class AppComponent {
constructor(private customerService: CustomerService){

}
}

8. Edit app module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core';

import { AppRoutingModule } from './app-routing.module’;

import { AppComponent, DetailComponent, PleaseSelectComponent }
from './app.component’;

import { CustomerService } from './customerService';

import { Customer } from './customer’;

@NgModule({
declarations: [
AppComponent,
DetailComponent,
PleaseSelectComponent

1,
276



CHAPTER 15

imports: [
BrowserModule,
AppRoutingModule
])
providers: [CustomerService],
bootstrap: [AppComponent]

1)
export class AppModule { }

9. Edit styles: Edit styles.css and change it to the following:

div {
padding: 10px; border: 1px solid #000000;
}
h1i,h2 {
margin: Opx;
}
.active {
font-weight: bold;
}

.active::before {

content: ">>> ";

}

.active::after {
content: " <<«";

}

ROUTES AND NAVIGATION

Your app should be working at localhost:4200. Note the following:

e The file customer.ts sets up the customer class.

o The file customerService.ts is a service injected into the app

component and the Detail component. It contains a list of customers,

along with methods to access the customer data.

o The file app-routing.module.ts sets up the route for the Please Select

component and the Detail component.

277



CHAPTER 15  ROUTES AND NAVIGATION

o The file app.component.ts sets up the components. Note how it uses
a different syntax for specifying query parameters to a router link:

<a [routerLink]="["'detail']" [queryParams]="{id: customer.id}" rou
terLinkActive="active">{{customer.name}}</a>

o The file app.module.ts declares the components used, imports the
app routing module, and sets up the CustomerService class as a
provider for the customer dependency injection in the Detail and
App components.

o The file ‘styles.css’ is used to setup common styles for the h1, h2 and
div tags.

Router Imperative Navigation: Example

So far, we've written code that provides the user with the ability to click a link to

navigate. Imperative navigation is different. This is not generating links; it’s simply
telling the router to go somewhere, performing navigation in your code. Navigation is an
asynchronous event; it doesn’t lock the code until completed. The imperative navigation
methods discussed in this section return a Promise object when completed, which is

a callback for success or failure. The two methods are Router.navigate and Router.
navigateByUrl. To use imperative navigation, you first need to inject the router into your
class using constructor injection.

o Router.navigate: This navigates to a component relatively (to the
current route) or absolutely based on an array of commands or
route elements. It returns a promise that resolves when navigation is
complete. It uses the link DSL as specified earlier in router link DSL
format. It’s basically the same as clicking a router link.

e Router.navigateByUrl: This navigates to a complete absolute URL
string. It returns a promise that resolves when navigation is complete.
It's usually preferred to navigate with navigate instead of this
method, because URLs are more brittle. If the given URL begins with
a /, the router will navigate absolutely. If the given URL doesn’t begin
with /, the router will navigate relative to this component.

278



CHAPTER 15  ROUTES AND NAVIGATION

Both navigation methods return a promise, which enables the user to add two

callback methods to handle the navigation result: the first one for a success handler,

the second one for an error handler. There is example of this in the example below.

Both navigation methods also have the ability to accept an additional parameter for a

NavigationExtras object. This object allows you to pass additional information to the

router to further specify the desired route.

This component allows the user to navigate between components and also go back,

as shown in Figure 15-4. It also logs when navigation is completed. This is example

router-ex400.

App Component

Component 1 Component 1 <- Back

Component 1

Figure 15-4. Navigating between components

Let’s do the example:

1.

Build the app using the CLI: Use the following command:
ng new router-ex400 --routing --inline-template --inline-style
Startng serve: Use the following code:

cd router-ex400
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

Edit routing module: Edit app-routing.module.ts and change it to
the following:

import { NgModule } from '@angular/core’;
import { Routes, RouterModule } from '@angular/router’;
import { AppComponent, Component1, Component2 } from './app.

component’; 279



CHAPTER 15  ROUTES AND NAVIGATION

const routes: Routes = [
{
path: 'component1',
component: Componentl

b
{

path: 'component2',
component: Component2
}s
{
path: '**',
component: Componentl
})
15

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

)
export class AppRoutingModule { }

5. Edit Component class: Edit app.component.ts and change it to the

following:

import { Component } from '@angular/core';
import { Router } from '@angular/router’;
import { Location } from '@angular/common’;
@Component ({
selector: 'componenti',
template: °
<h1>
{{title}}
</h1>
<router-outlet></router-outlet>

~

)

styles: []
9

280



CHAPTER 15

export class Componentl {
title = 'Component 1';

}

@Component ({
selector: 'component2',
template: °
<h1>
{{title}}
</h1>
<router-outlet></router-outlet>

~

)

styles: []

)

export class Component2 {
title = 'Component 2';

}

@Component ({
selector: 'app-root',
template: °
<h1>

{{title}}

</h1>

ROUTES AND NAVIGATION

<button (click)="component1()">Component 1</button>
<button (click)="component2()">Component 1</button>

<button (click)="back()"><- Back</button>
<router-outlet></router-outlet>

~

)

styles: []
9

export class AppComponent {
title = "App Component';

constructor(private router: Router, private location: Location)

{}

component1(){

281



CHAPTER 15  ROUTES AND NAVIGATION

this.router.navigate(['component1']).then(result => { console.
log("navigation result: " + result)});

}

component2(){
this.router.navigateByUrl("/component2");

}

back(){
this.location.back();

}

}

6. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppRoutingModule } from './app-routing.module';
import { AppComponent, Component1, Component2 } from './app.
component';

@NgModule({

declarations: [
AppComponent,
Component1,
Component2

1,

imports: [
BrowserModule,
AppRoutingModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

282



CHAPTER 15  ROUTES AND NAVIGATION

Your app should be working at localhost:4200. Note the following:
e The app component injects the router and the location.

o It contains code to navigate imperatively when the user clicks a
button.

o Itcontains a callback that’s fired when navigation is completed.

o Italso contains code in the location for the back button.

Router: Extracting Data

You can extract the information shown in Table 15-3 out of the Router object that’s

injected into your class.

Table 15-3. Extracting Data from Router

Property Description
errorHandler Error handler that’s invoked when a navigation errors
navigated Indicates if at least one navigation happened

urlHandlingStrategy URL handling strategy

routeReuseStrategy Route reuse strategy

routerState Current router state

url Current URL

events An observable of router events, allows you to add callbacks to

router events

You normally define the router routes using a configuration object, and this doesn’t
change. However you can reload a different configuration object into the router
whenever you want using the resetConfig method. This would be very useful if you
wanted to load the routes from the server or other data source.

283



CHAPTER 15  ROUTES AND NAVIGATION

Route Guards: Example

Routes enable the user to navigate through the application. Sometimes the user needs
to do something before being allowed access to a certain part of the application—for
example, log in. Route guards can be used to control access to certain routes.

There are two main types of route guards:

o CanActivate: Can the user navigate to a route? In this class, you can
inject the router. This is useful to navigate the user away to another
resource if the user isn’t allowed to navigate to a route.

e (CanDeactivate: Can the user move away from a route? Useful for
prompting to save changes.

This example component displays menu links. Some of the links will only work once
the user has logged in. This will be example router-ex500:

1. Build the app using the CLI: Use the following command:
ng new router-ex500 --routing --inline-template --inline-style
2. Startng serve: Use the following code:

cd router-ex500
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Create activating service: Create activate.service.ts and change it to
the following:

import { Injectable } from '@angular/core';
import { UserService } from './user.service';
import { CanActivate } from '@angular/router’;

@Injectable()
export class ActivateService implements CanActivate{
constructor(private userService: UserService){}

284



CHAPTER 15  ROUTES AND NAVIGATION

canActivate() {
return this. userService.authenticated;

}
}

5. Edit routing module: Edit app.routing.module.ts and change it to
the following:

import { NgModule } from '@angular/core’;

import { Routes, RouterModule } from '@angular/router’;

import { AuthenticatedComponent, NonAuthenticatedComponent} from
'./app.component’;

import { UserService } from './user.service';

import { ActivateService } from './activate.service';

const routes: Routes = [
{
path: 'authenticated’,
component: AuthenticatedComponent,
canActivate: [
ActivateService

]
}s
{
path: "**',
component: NonAuthenticatedComponent
}
I

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule],
providers: [UserService, ActivateService]

1)
export class AppRoutingModule { }

285



CHAPTER 15  ROUTES AND NAVIGATION

6. Edit components: Edit app.component.ts and change it to the
following:

import { Component, ViewChild } from '@angular/core’;
import { UserService } from './user.service';

@Component ({
selector: 'non-authenticated-component',
template: °
<div>
<h2>Non-authenticated</h2>
<p>This component can be accessed without authentication.</p>
</div>

~

)

styles: []
9

export class NonAuthenticatedComponent {

}

@Component ({
selector: 'authenticated-component',
template: °
<div>
<h2>Authenticated</h2>
<p>This component cannot be accessed without authentication.</p>
</div>

~

)

styles: []
1))

export class AuthenticatedComponent {

}

@Component ({
selector: 'app-root',
template: °
<span *ngIf="! userService.authenticated">
User:<input type="input" #name />

286



CHAPTER 15  ROUTES AND NAVIGATION

Password:<input type="input" #password />

<input type="button" (click)="login()" value="Login" />"
</span>

<hr/>

Authenticated:{{ userService.authenticated}}

<hx/>

<a [routerLink]="["non-authenticated']">Non-Authenticated</a>
<a [routerLink]="["authenticated']">Authenticated</a>
<router-outlet></router-outlet>

~

)

styles: []
1)
export class AppComponent {
loggedIn: boolean = false;
@iewChild('name') name;
@ViewChild('password') password;
constructor(private userService: UserService){}
Login(){
this. userService.authenticate(
this.name.nativeElement.value,
this.password.nativeElement.value);

}
}

7. Edit app module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppRoutingModule } from './app-routing.module';
import { AppComponent, AuthenticatedComponent,
NonAuthenticatedComponent } from './app.component';
import { UserService } from './user.service';

@NgModule ({
declarations: [
AppComponent,

287



CHAPTER 15  ROUTES AND NAVIGATION

AuthenticatedComponent,
NonAuthenticatedComponent
1,
imports: [
BrowserModule,
AppRoutingModule
])
providers: [UserService],
bootstrap: [AppComponent]

1)
export class AppModule { }

8. Create user service: Create user.service.ts and change it to the following:
import { Injectable } from '@angular/core’;

@Injectable()
export class UserService {
private _authenticated: boolean = false;
public get authenticated(): boolean{
return this. authenticated;
}
public set authenticated(value: boolean){
this. authenticated = value;

}
public authenticate(name, password){
if ((name === 'user') && (password === 'password')){
this. authenticated = true;
}
}

288



CHAPTER 15  ROUTES AND NAVIGATION

Your app should be working at localhost:4200. Note the following:

o The service activate.service.ts is a route guard that allows or disallows
aroute from being activated. The canActivate method is invoked:
true allows the activation, and false doesn’t allow the activation.
This service is injected into the routing module so it can be used in
the route configuration.

o The service user.service.ts is a service that tracks the state of the
user—whether they’re authenticated or not. This service is injected
into the service activate.service.ts and the app component.

Summary

Hopefully this chaper will be very useful to you and you’ll use it to write the routing
in your Angular application. Remember that your routing will probably get quite
complicated, possibly with multiple router modules and router outlets. You can try to put
all your routing together in one routing module or you can try to spread it into multiple.
One routing module may be simpler but this may cause more merge conflicts when
developers are constantly changing this one file. Remember you can use route guards to
enforce security, allowing or preventing access to various components.

The next chapter talks about reactive programming and how Angular applications
can use new technology to handle streams of data flowing in applications.

289



CHAPTER 16

Observers, Reactive
Programming, and RxJS

Reactive Extensions for JavaScript (RxJS) is a Reactive streams library that allows you to
work with asynchronous data streams, and it’s included in Angular. The project is actively
developed by Microsoft in collaboration with a community of open source developers.
The purpose of this chapter is to introduce RxJS basic concepts and cover some of
the library’s functionality. I'll cover using RxJS and Angular together in another chapter.
Reactive programming is a programming paradigm focused on data flows and
change. It allows you to express static or dynamic data flows with ease, and the execution
model will automatically propagate changes through the data flow. Reactive Extensions
code is available on almost every computing platform, not just JavaScript, and its
purpose is to bring the capability for Reactive programming to the computing platform.

Asynchronous Data Streams

RxJS libraries compose asynchronous and event-based Reactive programs using observable
collections in JavaScript. What are asynchronous data streams? Let’s break it down:

e Asynchronous: In JavaScript, this means we can call a function and
register a callback to be notified when results are available, so we can
continue with execution and avoid the web page being unresponsive.
This is used for AJAX calls, DOM events, promises, web workers, and
WebSockets.

e Data: Raw information in the form of JavaScript data types, such as
number, string, objects (arrays, sets, maps).

291
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_16



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

o Streams: Sequences of data made available over time. For example, in
contrast to to arrays, you don’t need all the information to be present
in order to start using them.

Examples of asynchronous data streams include things that you're watching:
o Stock quotes
o Tweets
o Computer events, for example mouse clicks

e Web service requests

Observable Sequences (Observables)

In RXJS, you represent asynchronous data streams using observable sequences, also
called just observables. You could watch stock quotes or mouse clicks using observables.
Observables are flexible and can be used with push or pull patterns:

e Push: When using the push pattern, we subscribe to the source
stream and react to new data as soon as it’s made available (emitted).
You can listen to a stream and react accordingly.

e Pull: When using the pull pattern, we're using the same operations
but synchronously. This happens when using arrays, generators, or
iterables.

Because observables are data streams, you can query them using operators
implemented by the observable type. Here are just a few of the many things you can do

with observable operators:
 Filter out stock changes for stocks you don’t own
o Aggregate—get all the typing in the first five seconds

e Perform time-based operations on multiple events

Observers: Example

If observables are things that can be watched, observers are the things that watch them,
as illustrated in Figure 16-1.

292



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

Observable Observer

A class that can
watch another
class.

E.g. Code that
watches stocks.

Figure 16-1. Observables and observers

Observers are classes that can respond to events, or things happening. To respond,
they must implement the following methods:

o onNext: An observable calls this method when the observable
emits an item. onNext takes the item emitted by the observable as a
parameter.

e onError: An observable calls this method when it fails to create the
expected data or hits some other error, stopping the observable. The
observable won’t make any more calls to onNext or onCompleted. The
onError method takes an indication of what caused the error as its
parameter.

o onCompleted: An observable calls this method after it calls onNext for
the last time, if there haven’t been any errors.

In this example, we’ll create an observable with two events and then observe it.
Figure 16-2 shows the console you'll see. This will be example rxjs-ex100.

Next: eventl,event2
Completed

Figure 16-2. Console showing events

293



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

294

Let’s do the example:

1.

Build the app using the CLI: Use the following command:
ng new rxjs-ex100 --inline-template --inline-style
Startng serve: Use the following code:

cd rxjs-ex100
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core’;
import * as Rx from 'rxjs';
@Component ({

selector: 'app-root',

template: °

N

)

styles: []
9
export class AppComponent {
constructor(){
const array: Array<string> = ['event1', ‘event2'];
const observable: Rx.Observable<string[]> = Rx.Observable.
of(array);
const subscription: Rx.Subscription = observable.subscribe(
// Observer
function (x) {
console.log('Next: ' + x);
})
function (err) {
console.log('Error: ' + err);
})
function () {
console.log('Completed');



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

)5
}
}

Your app should be working at localhost:4200. Open developer tools in your browser,
reload the page and look at the console output. Note that the app component does the
following:

e Anarray is created.
e An observable is created from the array.

e A subscription is created from a subscription to the observable. This
subscription implements observer code to handle events.

Subscriptions

A subscription is like a connection between an Observable and an Observer. Figure 16-3
illustrates this relationship.

Subscription
Connects

Observer

Observable

Can be
watched.

Figure 16-3. A subscription connects observable and observer

295



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS
You use a subscription to link an observable and an observer together:

const subscription: Rx.Subscription = observable.subscribe(
// Observer
function (x) {
console.log('Next:

+ X);

1

function (err) {
console.log('Error: ' + err);

1
function () {

console.log('Completed');

}
)5

To unlink an observable and observer, call the method dispose in the subscription:

subscription.dispose();

OBSERVABLES, OBSERVERS, AND JAVASCRIPT ES7

ES7 is an upcoming proposed standard for JavaScript that will include Object.observe,
which will allow an observer to receive a time-ordered sequence of change records that
describe the set of changes which took place to a set of observed objects. This is similar to
what RxJS does, only native in the browser. It’s already implemented in some browsers—for
example, Chrome 36.ss.

Operators: Example

Operators perform a variety of tasks. Their purpose is to make it more convenient to
observe an observable. Operators do the following:

e Create observables
¢« Combine observables

o Filter observables

296



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

¢ Handle errors
e Perform utilities

Most operators operate on an observable and return an observable. This allows you
to apply operators one after the other, in a chain. Each operator in the chain modifies the
observable that results from the operation of the previous operator.

In this example we’ll create an observable with two events and then we’ll observe it.
If you look at the console, you'll see event logs. This will be example rxjs-ex200.

Let’s do the example:

1. Build the app using the CLI: Use the following command:
ng new rxjs-ex200 --inline-template --inline-style
2. Startng serve: Use the following code:

cd rxjs-ex200
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'H

You should see “welcome to app

4. Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core’;
import * as Rx from 'rxjs';
@Component ({

selector: 'app-root',

template: °

)

styles: []
1))
export class AppComponent {
constructor(){
const observable: Rx.Observable<number> = Rx.Observable.
range(0,100);
const subscription: Rx.Subscription = observable.subscribe(
// Observer
val => { console.log("Next: ${val}") },

297



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

err => { console.log( Error: ${err}’) },
() => { console.log(" Completed™) }
)5
}
}

Your app should be working at localhost:4200. Open developer tools in your browser,
reload the page and look at the console output. Note the following:

o The range operator creates a range of events.

o« The observer uses arrow functions to handle the events.

Operators That Create Observables

There are many operators that are used just to create observables. This section talks
about several of these.

from

This operator creates an observable from other objects that emits multiple values. The
following creates an observable from an array that emits two values:

const array: Array<string> = ['eventi', ‘event2'];
const observable: Rx.Observable<string> = Rx.Observable.from(array);

interval

interval creates an observable that emits a value after each period—for example,
0,1,2,3,4. Figure 16-4 shows an observable emitting a value every 1/2 second (500 ms).

298



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

Next: 86
Next: 87

Next: 88
Next: 89

Figure 16-4. Observable emitting a value every half second

Here’s the code:

const observable: Rx.Observable<number> = Rx.Observable.interval(500);
var observable: Rx.Observable<number> = new Rx.Observable.interval(500);

of (Was just)

of converts an item into an observable that emits just that item. The following code
creates an observable that emits 500 only once:

const observable: Rx.Observable<number> = Rx.Observable.of(500);

range

range creates an observable that emits a range of integers. The following code creates an
observable that emits 1 to 100:

const observable: Rx.Observable<number> = Rx.Observable.range(0,100);

repeat

repeat creates an observable that emits the repetition of a given element a specific
number of times. The following code creates an observable that emits1 2 3 1 2 3 1 2
3123

const observable: Rx.Observable<number> = Rx.Observable.range(1,3).repeat(4);

299



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

timer

timer creates an observable that emits a value after due time has elapsed and then after
each period:

const observable: Rx.Observable<number> = Rx.Observable.timer(2000,500);

Operators That Transform Items Emitted
by Observables

You've seen how to create observables that emit values. Now let’s look at how to modify
these values.

buffer

buffer is an operator to periodically gather items from an observable into bundles
and emit these bundles rather than emitting the items one at a time. The following
code creates an observable that emits a value every 100 milliseconds. It then bundles
emissions up every 5000 milliseconds:

const observable: Rx.Observable<any> = Rx.Observable
.timer(0,100)
.buffer( Rx.Observable.timer(o, 5000) );

Figure 16-5 shows the results.

Next: app.component.ts:18
Next: app.component.ts:18

e,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46
,47,48,49

Next: app.component.ts:18
50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71
,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,9
3,94,95,96,97,98

Next: app.component.ts:18
99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,11
5,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131
,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147

Figure 16-5. Gathering observables into bundles

300



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

map

map is an operator commonly used to transform the items emitted by an observable
by applying a function to each item. The following code simply puts a pipe around the
emitted value, and the results are shown in Figure 16-6.

const observable: Rx.Observable<string> = Rx.Observable.range(0,100)

.map((val) => "' +val + '|');
Next: |0
Next: |1]
Next: |2]

Figure 16-6. Putting pipes around emitted values

scan

scan is an operator used to sequentially apply a function to each item emitted by an
observable and emit each successive value. It’s like map except the result from the first
function call is fed into the second, and so on. The results of the following code are
shown in Figure 16-7:

const observable: Rx.Observable<number> = Rx.Observable.range(1,5)
.scan((val) => { val++; return val * val } );

Next: 1
Next: 4
Next: 25
Next: 676
Next: 458329

Figure 16-7. Emitting values of functions applied
301



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

Operators That Filter ltems Emitted by Observables

You don’t always need to watch everything. Sometimes you need to only watch certain
things.

debounce: Example

debounce is an operator used to ensure that an observer only emits one item during a
certain period of time. It’s useful in observing UI elements—for example, if you have a
filter box and you don’t want it to respond too fast and get ahead of itself with multiple
requests. debounce will stop the networks and computers from getting overloaded with
too many search requests.

This will be example rxjs-ex300, and its results are shown in Figure 16-8.

Search: testing123abcde
Search: testing

Search: testing123
Search: testing123abc
Search: testing123abcde

Figure 16-8. Emitting only one item

This example has a searchbox that uses the debounce and distinctUntilChanged
methods to filter the user’s input:

1. Build the app using the CLI: Use the following command:

ng new rxjs-ex300 --inline-template --inline-style

2. Startng serve: Use the following code:

cd rxjs-ex300
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'H

You should see “welcome to app

302



CHAPTER 16 ~ OBSERVERS, REACTIVE PROGRAMMING, AND RXJS
Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core’;
import * as Rx from 'rxjs';

@Component ({
selector: 'app-root',
template: °
Search: <input type="text" (keyup)="onChange($event.target.value)"/>
<div *ngFor="let log of _logs">Search:&nbsp;{{log}}</div>

~

)

styles: []

1

export class AppComponent {
_searchText: string;
_searchSubject: Rx.Subject<string>;
_logs: Array<string> = [];

constructor() {

// Create new Subject.
this. searchSubject = new Rx.Subject<string>();

// Set the Subject up to subscribe to events and filter them by
// debounce events and ensure they are distinct.
this. searchSubject
.debounceTime(300)
.distinctUntilChanged()
.subscribe(
// Handle event. Log it.
searchText => this. logs.push(searchText)
)5
}
public onChange(searchText: string) {

// Emit an event to the Subject.
this. searchSubject.next(searchText);

}
}

303



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

Your app should be working at localhost:4200. Note the following:

o The constructor sets up the Rxjs subject _searchSubject to subscribe
to events and filter them. After filtering, each event is added to a
log, which is displayed in the component. A subject is an object than
can act both as an observer and as an observable. Because it’s an
observer, it can subscribe to one or more observables, and because
it’s an observable, it can pass through the items it observes by
re-emitting them, and it can also emit new items.

o The onChange method is fired when the user types a key on the
search box. The code in this method events a string event to the
_searchSubject Rxjs subject.

distinct

distinct is an operator used to suppress the emission of duplicate items. The following
example generates a new value every 1/2 second. We then use map to transform it into
the string “unchanging value” Then we add distinct to suppress duplicate values. Thus,
we only ever get one value emitted:

const observable: Rx.Observable<string> = Rx.Observable.interval(500)
.map((val) => 'unchanging value').distinct();

filter

filter is an operator used to emit only the first item, or the first item that meets a
condition, from an observable. The following code generates a new value every 1/2
second and then filters out any value not divisible by 7:

const observable: Rx.Observable<number> = Rx.Observable.range(0,100)
filter((val) => val % 7 === 0);

304



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

The results are shown in Figure 16-9.

Next: ©

Next: 7
Next: 14

Figure 16-9. Generating a new value and filtering

take

take is an operator used to emit only the first  items emitted by an observable. The
following code emits new values from 0 to 100 but only takes the first three:

const observable: Rx.Observable<number> = Rx.Observable.range(0,100)
.take(3);

Operators that Combine Other Observables

Table 16-1 lists operators that combine other operators.

305



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

Table 16-1. Operators That Combine Other Operators

Operator Description

And/Then/When  Combine items emitted by more than one observable using pattern and plan
intermediaries

CombinelLatest Combine the latest item emitted by each observable using a specified function
and emit items based on results of function

Join Combine items emitted by two observables when one observable’s item is
emitted in a time frame defined by an item emitted by the other observable

Merge Combine several observables into one by merging what they emit

StartWith Emit a particular sequence of items before emitting items from the source
observable

Switch Convert an observable that emits observables into a single observable that

emits the items emitted by the most-recently-emitted of those observables.

Zip Combine the emissions of a number of observables via a function and emit
single items for each combination based on the results of the function.

share

The share operator allows you to share an instance of a subscription to one or more
observers. share creates a subscription when the number of observers goes from zero to
one and then shares that subscription with all subsequent observers until the number
of observers returns to zero, at which point the subscription is disposed. It’s useful if you
want to watch the same thing from multiple places. Figure 16-10 shows an example, and
Figure 16-11 shows the console logs produced in the second screen.

var obs = Rx.Observable.interval(500).take(5)
.do(i => console.log("obs value "+ i) )
.share();

obs.subscribe(value => console.log("observer 1 received " + value));

obs.subscribe(value => console.log("observer 2 received " + value));

Figure 16-10. The share operator in action

306



CHAPTER 16 OBSERVERS, REACTIVE PROGRAMMING, AND RXJS

obs value @
observer 1 received @

observer 2 received @

obs value 1
observer 1 received 1

observer 2 received 1

Figure 16-11. Console logs produced by the share operator

Summary

This important chapter introduced asynchronous data streams and RxJs. I hope
you followed the exercises because soon we’ll be using events, which are a form of
asynchronous data stream that you’ll observe in your application. We'll use subjects,
observables, and observers when working with Angular events, and we’ll be using the
operators introduced in this chapter.

The next chapter goes into more detail about using RxJs with Angular.

307



CHAPTER 17

RxJS with Angular

In the previous chapter, we went through the core concepts of Reactive extensions and
learned about observables, observers, subscriptions, and operators in RxJS. Now we're
going to see how we can use Reactive Extensions with Angular.

Reactive Extensions weren’t around at the time of writing Angular]S, but promises
were. Angular]S used a lot of promise objects, including by the $http, $interval, and
$timeout modules. Promise objects could be used to represent asynchronous results:
success (return value) or failure (return error). Promise objects were used in HTTP
communication with the server and many other objects. Figure 17-1 shows an example.

In Angular, promises are going away in favor of observables. They haven’t completely
gone away, though.

function asyncGreet(name) {
// Pertorm some asyncnhronous operation
return $q(function(resolve, reject) {
setTimeout(function() {
if (okToGreet(name)) {
resolve('Hello, ' + name + '!');
} else {
reject('Greeting ' + name + ' is not allowed.');
}
}, 1eee);
});

}

]

var promise = asyncGreet('Robin Hood');
promise.then(function(greeting) {
alert('Success: ' + greeting);
}, function(reason) {
alert('Failed: ' + reason);
3

Figure 17-1. Promise objects in Angular]S

309
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_17



CHAPTER 17 RXJS WITH ANGULAR

Observables have a few advantages over promises:

e Promises only emitted one value/error. Observables can emit
multiple values over time. For example, with an observable you can
listen for events on a web socket for a period of time. You can only
listen once with a promise.

¢ You can use operators with observers to map, filter, and more.

¢ You can cancel observables.

Observables and Angular

Angular uses observables for asynchronous data streams in DOM events and HTTP
services. In listening for DOM (Document Object Model) events, you can observe a
steady stream of data of what the user is doing in the user interface, such as keystrokes,
mouse events, and so on. For Http services, you can listen for server responses, having a
connection open and responding to incoming data.

Observables and DOM Events: Example

The DOM is a way of representing and interacting with objects in HTML documents.
Document nodes are organized in a structure called the DOM tree, and objects in the
tree are addressed and manipulated using methods on the objects.

Angular DOM events can be observable. To use DOM events, we’'ll use the module
Rx.DOM (HTML DOM bindings for RxJS) through rx.angular.

You can filter events and combine watching multiple different events and observing
in one place.

This example detects when the user hasn’t done anything for a period of 5 seconds.
When that happens, we add a line saying “idle” to the component’s display, as shown in
Figure 17-2. This will be example rxjs-and-angular-ex100.

Search:
Search: idle
Search: idle

Figure 17-2. Displaying idle users
310



CHAPTER 17 RXJS WITH ANGULAR

Let’s do the example:

1. Build the app using the CLI: Use the following command:
ng new rxjs-and-angular-ex100 --inline-template --inline-style
2. Startng serve: Use the following code:

cd rxjs-and-angular-ex100
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit class: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core’;
import * as Rx from 'rxjs';

@Component ({
selector: 'app-root',
template: °
Search: <input type="text">
<div *ngFor="let log of logs">Search:&nbsp;{{log}}</div>

~

)

styles: []
9
export class AppComponent {
_logs: Array<string> = [];
constructor(){
const observable: Rx.Observable<any> = Rx.Observable.merge(
Rx.0Observable.fromEvent(document, 'keydown"),
Rx.0Observable.fromEvent(document, 'click"),
Rx.0Observable.fromEvent(document, 'mousemove'),
Rx.0Observable.fromEvent(document, 'scroll'),
Rx.0Observable.fromEvent(document, 'touchstart")

);

311



CHAPTER 17 RXJS WITH ANGULAR

const idleEventObservable = observable.bufferTime(5000)
.filter(function(arr) {
return arr.length == 0;
1)
.subscribe(idleEvent => this. logs.push('idle"));
}
}

Your app should be working at localhost:4200. Note that in the constructor, we
merge the emissions from the document events keydown, click, mousemove, scroll,
and touchstart into one observable. We buffer it to every 5 seconds and filter out
occurrences when events occur within that time. We then subscribe to the result, and
when it occurs we add an “idle” log, which is displayed in the component.

Observables and HTTP Services
$http and Http Module

Angular]S had its own Http module. The $http service was a core Angular]S service
that facilitated communication with the remote HTTP servers via the browser’s
XMLHttpRequest object or via JSONP.

The Angular 2 & 4 Http module (@angular/http) was similar to the Http module
in the first version of Angular, except that it used uses Reactive Extensions—in other
words, observables. Reactive Extensions bring a lot to the table, offering all the operators
mentioned in prior chapters.

When Angular 5 was released, it included a new HttpClient module (@angular/
common/http) to replace the previous Http module. You can still use the old Http module
(@angular/http) but it has been deprecated and will be removed in a future version.

The next chapter covers the new Angular HttpClient module.

312



CHAPTER 17 RXJS WITH ANGULAR

Summary

This chapter was very short, but you should now understand the following:

o Angular uses observables for handling DOM events and the results of
HTTP service calls (calling an HTTP service on a server and receiving
the result).

e Observables enable the user to handle streams of data using RxJS. For
example, you could make an HTTP call to get some data and use the
RxJS map operator to transform the result.

I've used RxJs to process DOM events a few times, but I frequently use RxJs operators
with HTTP services very frequently. I'll introduce HTTP services and how to use them
with RxJs in the next chapter.

313



CHAPTER 18

HTTP and the HttpClient
Module

Ninety-nine percent of Angular projects involve communication between a client

(a browser) and some remote server. Normally this is done with HTTP. So, it’s very
important to know how HTTP communication works and how you can write code for it.
That’s what this chapter is about.

The HyperText Transfer Protocol (HTTP) is designed to enable communications
between clients and servers. HTTP works as a request-response protocol between a
client and server. We will cover this in more detail in this chapter.

HTTP methods have been around for a long time (since way before AJAX and different
types of web applications). HTTP methods can be used in traditional server-side web
applications and in client-side AJAX web applications also.

Whenever a client talks to a web server using HTTP, it includes information about
the request method. The method describes what the client wants the server to do—the
intent of the request. The most commonly used methods are GET and POST. The GET
method is used to request data from the server. The POST method is used to send data to
the server in order to save it or update it.

The most commonly used HTTP methods are as follows:

e POST
o GET
o PUT
e PATCH
o DELETE
© Mark Clow 2018 315

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_18



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

HTTP headers allow client and server to pass additional information with requests or
responses. A request header consists of its name, which is case-insensitive, followed by a
colon (:), followed by its value (with no line breaks).

If you use the developer tools in your browser, you can see the network
communications, including the HTTP calls. If you examine the HTTP requests using
the Developer Tools of your web browser, you'll see the requests made to the server
and those returned back.

Figures 18-1 and 18-2 show HTTP request and response headers.

Name x Headers Preview Response Timing

_ | font-check-blue.77286... ¥ General

B analytics.js Request URL: https://www.google-analytics.com/analytics.js

Request Method: GET
fontawesome-webfont...
| fortawesome:webfont Status Code: ® 200 (from disk cache)

_| OpenSans-Light-webf... Remote Address: [2607:f8b0:4002:807: : 200e) : 443
__| OpenSans-Regular-we... Referrer Policy: no-referrer-when-downgrade

Figure 18-1. HTTP request headers

| OpenSans-Lightltalic-... | ¥ Response Headers
OpenSans-Semibold-... age: 1109
— alt-sve: quic=":443"; ma=2592000; v="39,38,37,36,35"

_| OpenSans-italic-webf... cache-control: public, max-age=7200

| header-background.4c... content-encoding: gzip
| data:image/png;char... content-length: 123/43
5 content- : text/javascript
| logo_sprte.7d36cdatd...  Gote Tie 5y Jun 2017 00144:41 GHT
| javascript.b28203373c... expires: Tue, 27 Jun 2017 02:44:41 GMT
last-modified: Tue, 06 Jun 2017 00:25:39 GMT
23 requests | 39.3KB trans.. server: Golfe2

Figure 18-2. HTTP response headers

Http Body

The http body allows the client and the server to pass additional information with the
request or the response after the header. Http bodies are not always required because a
body of information is not always needed. For example, Http ‘get’ requests don’t need to
include information in the body - all the information is already contained in the header.

316



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

Here is an example of the http body of a response from a server:

e——T 7 TTEAUTTS T TEVIEW | TIeSPUNSe UUOIeS — TITing
| search?sclient=psy-ab... 1 {"e":"KLRRWYL_CsTz-AGSmr_ADQ","c":1,"u":"https:\/\/www.google.com\/sear
_gen_2047s=webd&atyp...
t
measurement?jaid=AJ...

Passing Information with HTTP

There are various ways to pass information from the browser to the server. The server
normally returns the information in the body, although it can pass information by
returning data in the HTTP headers.

Query Parameters

The Angular Http client allows you to pass information to the server in the
URL using query parameters. For example, http://localhost:4200/sockjs-node/
info?t=1498649243238.

Some characters are not allowed to be part of a URL (for example, spaces), and
other characters may have a special meaning in a URL. To get around this, the URL
syntax allows for encoding on parameters to ensure a valid URL. For example, the space
character between Atlantic and City in the following URL is encoded as %20: https://
trailapi-trailapi.p.mashape.com/?q[city cont]=Atlantic%20City.

This encoding can be performed when building the URL with string concatenation,
using the JavaScript method encodeURIComponent. If you use an Angular object (such as
URLSearchParams) to build the query parameter string, it will automatically do this for you.

When navigating in your browser, query parameters are visible to the user on the
address bar. When performing an AJAX request using the Angular Http client, though,
they won’t be visible.

Query parameters can’t be used to pass as much information as the request body can.

317


https://trailapi-trailapi.p.mashape.com/?q[city_cont]=Atlantic City
https://trailapi-trailapi.p.mashape.com/?q[city_cont]=Atlantic City

CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

Matrix Parameters

The Angular Http client allows you to pass information to the server in the URL
using matrix parameters—for example, http://localhost:4200/sockjs-node/
info;t=1498649243238. Matrix parameters are similar to query strings but use a different
pattern. They also act differently because, not having a ?, they can be cached. Also,
matrix parameters can have more than one value. You can use matrix parameters in
Angular by specifying a URL that includes them. However, Angular currently does not
have any built-in objects to create URLs with matrix parameters.

Matrix parameters can’t be used to pass as much information as the request body can.

Path Parameters

The Angular Http client allows you to pass information to the server in the URL using
path parameters—for example, http://localhost:4200/api/badges/9243238.

Passing Data in the Request Body

In the old days, HTML forms (with form tags and input fields) were the best way to send
data to the server. The user would fill in a form and hit Submit, and the data would be
posted (using the HTTP POST method) to the server in the request body.

Now the Angular Http client allows you to do the same thing programmatically: pass
information to the server in the request body using the Http client’s POST method.

You can pass more data in the request body than by passing it in the URL using query

or matrix parameters.

REST

A RESTful application is a server application that exposes its state and functionality as a
set of resources that the clients (browsers) can manipulate, and conforms to a certain set
of principles. Examples of resources might be a list of clients or their orders.

All resources are uniquely addressable, usually through URIs, although other
addressing can be used. For example, you could use orders/23 to access order number
23, or orders/24 to access order number 24.

318



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

All resources can be manipulated through a constrained set of well-known actions,
usually CRUD (create, read, update, delete), represented most often through the HTTP
methods POST, GET, PUT, and DELETE. Sometimes just some of these HTML methods are
used, not all of them. For example, you could use an HTTP DELETE to orders/23 to delete
that order.

The data for all resources is transferred through any of a constrained number of well-
known representations, usually HTML, XML, or JSON. JSON is most common.

JSON

JSON stands for JavaScript Object Notation. It’s a data format used to pass data between
the client and the server, in both directions. JSON is the same data format used by the
JavaScript language. It uses a comma to separate items and a colon to separate the name
of a property with the data for that property. It uses different types of brackets to denote
objects and arrays.

Here’s JSON for passing an object containing data. Note how the { and } brackets are
used to denote the start and end of an object:

{ "name":"John", "age":31, "city":"New York" }

Here’s JSON for passing an array. Note how the [ and ] brackets are used to denote
the start and end of an array:

[ IIFordll, IIBMWII, IIFiatll]

Here’s JSON for passing an array of objects. Note how the brackets are combined
to create a cars object that has two properties: Nissan and Ford. Each property has an

array of models:
{
"cars": {
"Nissan": [

{"model":"Sentra", "doors":4},
{"model": "Maxima", "doors":4}

1,

319



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

"Ford": [
{"model":"Taurus", "doors":4},
{"model":"Escort", "doors":4}

The Angular Http Client

The Angular Http client is a service that you can inject into your classes to perform HTTP
communication with a server. This service is available through the new Angular 5 Http
Client module @angular/common/http, which replaces the old Angular 4 Http module
@angular/common/http. You'll need to modify your module class (the one for your
project) to import this module:

@NgModule ({
imports: [

HttpClientModule,

1,

declarations: [ AppComponent ],
bootstrap: [ AppComponent ]

1)

You can inject the Angular Http service directly into your components in this

manner:

@Injectable()
class CustomerComponent {

constructor(private http: HttpClient) {

320



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

That’s fine for prototyping but not advisable for code maintainability in the long
term. You shouldn'’t really use HttpClient directly for data access outside a service
class. Instead you should write service classes that use the Http Client then inject those
classes into your code where you need data access. If you look at the official Angular
documentation at angular.io, you'll see the following: This is a golden rule: always
delegate data access to a supporting service class.

Below is an example of a service class using the HttpClient:

@Injectable()
class CustomerCommunicationService {

constructor(private http: HttpClient) {

}
}

class CustomerComponent {

constructor(private http: CustomerCommunicationService) {

// perform data access

}
}

Generics

With Angular 5, the new HttpClientModule allows us to use generics when we invoke
HTTP requests. Generics enable us to tell Angular the type of response that we expect
to receive back from the HTTP request. The type of response could be a ‘any’ (to allow
any type of response), a variable type (for example a String), a class or an interface. For
example, the code below performs an http ‘get, specifying the expected response to be
an array of Language objects:

this. http.get<Array<Language>>('https://languagetool.org/api/v2/languages');

This enables Angular to parse the response for us so that we don’t have to. No more
having to call JSON.parse to convert the response string to an object.

321



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

Asynchronous Operations

In JavaScript, making HTTP requests is an asynchronous operation. It sends the HTTP
request to the API and doesn’t wait for a response before continuing with the next line
of code. When the API responds milliseconds or seconds or minutes later, then we get
notified and we can start processing the response.

In Angular, there are two ways of handling these asynchronous operations: we can
use promises or observables (covered a couple of chapters ago).

Normally we make calls to our supporting service classes, and they return the
asynchronous result, which we handle in the component.

Request Options

Soon I'll cover each type of HTTP call you can make, but first let’s talk about request
options. When you invoke HTTP communication with a server, you have many ways of
configuring the communication. What headers should you use? What media should you
accept from the server? What credentials should you pass to the server? You set these
options in an Angular object called RequestOptionsArgs and pass this as an argument to
the Angular Http client method call.

Here’s an example of the use of the RequestOptionsArg when making a GET call.
Note how this object is used to specify the URL, the HTTP method, parameters,
authentication token, and body:

var basicOptions:RequestOptionsArgs = {
url: 'bankInfo',
method: RequestMethods.Get,
params: {
accountNumber: accountNumber
b
headers: new HttpHeaders().set('Authentication': authenticationStr),
body: null

};

322



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

HTTP GET Method: Example

The GET method is very commonly used to “get” data from a server. It typically doesn’t

use the request body. For example, for the URL /customers/getinfo.php?id=123, there is

no request body. Here some aspects of GET:

It's idempotent—calling the same PUT multiple times has the same
effect as calling it once.

It can remain in the browser history.
It can be bookmarked.

It has length restrictions.

Request uses HTTP header.

Response returned as HTTP body.

The GET method should be implemented in an indempotent manner on the server.

In other words, making multiple, identical requests has the same effect as making a

single request. Note that although idempotent operations produce the same result on

the server (no side effects), the response itself may not be the same (for example, a

resource’s state may change between requests).

Figure 18-3 shows a component that gets the list of languages and language codes

from Snapchat.

Countries

e Asturian (ast)

¢ Belarusian (be)

e Breton (br)

e Catalan (ca)

e Catalan (Valencian) (ca)
e Chinese (zh)

Figure 18-3. Getting a list of languages and language codes from Snapchat

323



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

This will be example http-ex100:

1. Build the app using the CLI: Use the following command:

ng new http-ex100 --inline-template --inline-style

2. Startng serve: Use the following code:

cd http-ex100
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component’;

import { SwaggerService } from './swagger.service';

import { HttpClientModule } from '@angular/common/http’;

@NgModule ({
declarations: [
AppComponent
1,
imports: [
BrowserModule, HttpClientModule
1,
providers: [SwaggerService],
bootstrap: [AppComponent]

)
export class AppModule { }

5. Create service: Create swagger.service.ts::

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http’;
import { Language } from './language';

324



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

@Injectable()
export class SwaggerService {
constructor(private http: HttpClient){}

getlanguages() {
return this. http.get<Array<Language>>("https://
languagetool.org/api/v2/languages’);

6. Create data object class: Create language.ts.

export class Language {

private code: string;

private name: string;

public get code() {
return this. code;

}

public get name() {
return this. name;

}

public set code(newValue: string){
this. code = newValue;

}

public set name(newValue: string){
this. name = newValue;

7. Edit component: Edit app.component.ts and change it to the
following:

import { Component, OnInit } from '@angular/core’;
import { SwaggerService } from './swagger.service';
import { Language } from './language';

@Component ({
selector: 'app-root',

325



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

template: °

<h1>Countries</h1>

<ul>

<li *ngFor="let language of _languages">
{{language.name}}&nbsp; ({{language.code}})
</1i>

</ul>

~

)

styles: []
9

export class AppComponent implements OnInit{
_languages = new Array<Language>();

constructor(private swaggerService: SwaggerService) {}

ngOnInit(){
this. swaggerService.getlLanguages().subscribe(
res => {
this. languages = res;
})
error => { console.log('an error occurred'); }
)
}

}

Your app should be working at localhost:4200, and you should see a list of languages.
Note the following:

o The file swagger.service.ts creates a service that has the injectable
annotation to enable it to be injected into the app component. This
service has a constructor into which the Angular Http module is
injected. It also contains the method getLanguages, which makes
an HTTP call to a server, which returns an observable. Note that the
get method specifies the response type as ‘Language’ using a generic
(see the <Array<Language>>).

o The file ‘language.ts’ defines the language data object which we will
use to pass data from the service to the component.

326



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

o The file app.component.ts creates a component. Note that the
swagger service is injected into this component using the constructor.
When the component initializes, it calls the swagger service and
subscribes to the observable result with two methods: the first one
for success and the second one for failure.

o The first method (the “success” one) accepts the HTTP result as a
parameter and sets the instance variable langages to the returned
array of JavaScript objects, which is then visible in the component.

HTTP GET Method Using Parameters: Example

We've covered GET, but “get” what? A GET uses parameters to get a specific thing (or
things)—very useful if you want to get the information for a specific customer off
the server. You can do that by simply modifying the URI of the GET to include query
parameters, or you can do it using the Angular search or parameter objects embedded
into the RequestOptionsArgs object.

Figure 18-4 shows an example of performing an HTTP GET in three different ways
using query parameters, triggered by three different buttons.

Atlanta Search (Concatenated URL) | Search (Parameters Object) | Search (Search Object)

{"places":[{"city":" Atlanta","state":"Georgia","country”:"United States","name":"Boat Rock",
Industrial Boulevard go south for 3.8 miles, turn left onto Bakers Ferry Road SW, go 0.5 miles.
small 6 car parking lot. There is a small kiosk at the edge of the lot with a rough map of the are
(see drtopo map).&lt;br /&gt:&lt;br /&gt &lt;br /&gt &lt;br /&gt &ltbr /&gt &lt;br /&gt; 1220
[1,"activities":[{"name":"Boat Rock" ,"unique_id":"2-1012","place_id":5370,"activity_type_id"
{"V"length\"":"\"1\""},"description":"For those of us who like hiking AND rock climbing! Very
boulders. A great experience for families and it's fun getting to watch the expert climbers on th
15T16:12:212","id":2,"name": "hiking","updated_at":"2012-08-15T16:12:21Z"},"thumbnail ":"
{"city":"Atlanta" "state":"Georgia","country”:"United States","name":"Brookhaven Park","pare
Atlanta" "lat":33.86519,"lon":-84.33776,"description":null,"date_created":null,"children":[],"ac
4958" "place_id":19072,"activity_type_id":2,"activity_type_name":"hiking","url":"http://www|
and picnic arca in 9 acre DeKalb county park.","length":1,"activity_type":{"created_at":"2012
15T16:12:212"},"thumbnail":null,"rank":null,"rating":0} ] } ,{ "city":" Atlanta" ,"state":"Michigar
Campground","parent_id":null,"unique_id":17708,"directions":" Atlanta Field Office&It;br /&
Forest campground is closed due to budget cuts, Effective May 5, 2009, until further notice.
come, first-serve basis. No reservations.12 sites for tent and small trailer use. Carry-in boat lau

Figure 18-4. GET in three different ways

327



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

This will be example http-ex200:

1. Build the app using the CLI: Use the following command:

ng new http-ex200 --inline-template --inline-style

2. Startng serve: Use the following code:

cd http-ex200
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms’;

import { AppComponent } from './app.component';

import { HttpClientModule } from '@angular/common/http’;

@NgModule ({

declarations: [
AppComponent

1,

imports: [
BrowserModule,
HttpClientModule,
FormsModule

]’

providers: [],

bootstrap: [AppComponent]

)
export class AppModule { }

328



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

5. Edit component: Edit app.component.ts and change it to the
following:

import { Component } from '@angular/core’;
import { HttpClient, HttpHeaders, HttpParams } from '@angular/
common/http"’;

@Component ({

selector: 'app-root',

template: °
<input [(ngModel)]=" search" placeholder="city">
<button (click)="doSearchConcatenatedUrl()">Search
(Concatenated URL)
</button>
<button (click)="doSeachHttpParams1()">Search
(Http Params1)</button>
<button (click)="doSeachHttpParams2()">Search (Http Params2)
</button>
<p>JSON {{ result | json}}</p>

~

)

styles: []

1)

export class AppComponent {
_search = 'Atlanta’;
_result = {};

constructor(private http: HttpClient){
}

doSearchConcatenatedUrl(){

const concatenatedUrl: string =
"https://trailapi-trailapi.p.mashape.com?q[city cont]=" +
encodeURIComponent(this. search);

const mashapeKey =

"OxWYjpdztcmsheZU9AWLNQcE9g9wp1qdRkFjsneaEp2Yf68nYH' ;

const httpHeaders: HttpHeaders = new HttpHeaders(
{'Content-Type': 'application/json',
'X-Mashape-Key': mashapeKey});

329



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

this. http.get(concatenatedUrl, { headers: httpHeaders }).subscribe(
res => { this. result = res; });

}

doSeachHttpParams1(){
const url: string =
"https://trailapi-trailapi.p.mashape.com’;
const mashapeKey = 'OxWYjpdztcmsheZUQAWLNQcE9g9wp1qdRkFjsnea
Ep2Yf68nYH';
const httpHeaders = new HttpHeaders(
{'Content-Type': 'application/json',
'X-Mashape-Key': mashapeKey});
const params = new HttpParams({
fromString: 'q[city cont]=" + this. search;
1;
this. http.get(url, {headers: httpHeaders, params: params}).
subscribe(
res => { this. result = res; });

}

doSeachHttpParams2(){
const url: string =
"https://trailapi-trailapi.p.mashape.com';
const mashapeKey = 'OxWYjpdztcmsheZU9AWLNQcE9g9wp1qdRkFjsnea
Ep2Yf68nYH';

const httpHeaders = new HttpHeaders(
{'Content-Type': 'application/json',
'X-Mashape-Key': mashapeKey});
const params = new HttpParams().set('q[city cont]', this. search);
this. http.get(url, {headers: httpHeaders, params: params}).
subscribe(
res => { this. result = res; });

330



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

Your app should be working at localhost:4200. Note the following:

e The method doSearchConcatenatedUrl manually builds the
URL string by appending the URL with the encoded ‘q[city_cont]’
parameter set to the encoded input string. The GET method is called
on the Http client.

o The method doSeachHttpParams]1 builds an HttpParams object from
a query string similar to in the method 'doSearchConcatenatedUrl’
above. The GET method is called on the Http client, passing the
HttpParams object within the second argument. Note the HttpParams
object does the encoding for us.

e The method doSeachHttpParams2 creates an HttpParams object and
sets the ‘q[city_cont]’ parameter to the input string. The GET method
is called on the Http client, passing the HttpParams object within the
second.

Hitp GET Method Using Path Parameters: Example

This is an example of performing an HTTP GET using path parameters. The user is shown
a list of articles, and each one has a Show button, as shown in Figure 18-5. The user can
click the Show button, and an HTTP GET will be called, with path parameters, to get the
details of the article, which is then displayed on a popup modal.

X

ea molestias quasi exercitationem repellat qui ipsa sit aut

et iusto sed quo iure voluptatem occaecati omnis eligendi aut ad voluptatem doloribus
vel accusantium quis pariatur molestiae porro eius odio et labore et velit aut

Figure 18-5. Showing an article from a list

331



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

This will be example http-ex300:

1. Build the app using the CLI: Use the following command:

ng new http-ex300 --inline-template --inline-style

2. Startng serve: Use the following code:

cd http-ex300
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppComponent } from './app.component’;
import { HttpClientModule } from '@angular/common/http';

@NgModule ({

declarations: [
AppComponent

1,

imports: [
BrowserModule,
HttpClientModule

1,

providers: [],

bootstrap: [AppComponent]

1
export class AppModule { }

5. Edit component: Edit app.component.ts and change it to the
following:

import { Component, OnInit, AfterViewInit, ViewChild } from
'@angular/core’;
import { HttpClient } from '@angular/common/http’;

332



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

@Component ({
selector: 'app-root',
template: °
<ul>
<li *ngFor="let post of _posts">
{{post.title}}&nbsp;&nbsp;<button (click)="showPost(post.
id)">Show</button>
</1i>
</ul>
<div #modal id="myModal" class="modal">
<div class="modal-content">
<span class="close" (click)="closeModal()">&times;</span>
<h3>{{this. post.title}}</h3>
<p>{{this. post.body}}</p>

</div>
</div>
\)
styles: []
}
export class AppComponent implements OnInit {
_posts = [];
_post = {};

@viewChild('modal') _myModal: any;

constructor(private _http: HttpClient) {
}

ngOnInit() {
return this. http.get<any>("http://jsonplaceholder.typicode.
com/posts").subscribe(
res => {
this. posts = res;
}
)
}

333



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

showPost (postId: number) {

this. http.get<any>("http://jsonplaceholder.typicode.com/
posts/${postId} ).subscribe(
res => {
this. post = res;
this. myModal.nativeElement.style.display = 'block’;
}
)
}

closeModal() {
this. myModal.nativeElement.style.display = 'none’;

}
}

6. Edit styles: Edit styles.css and change it to the following:

.modal {
display: none;
position: fixed;
z-index: 1;
left: o;
top: 0;
width: 100%;
height: 100%;
overflow: auto;
background-color: rgb(0,0,0);
background-color: rgha(0,0,0,0.2);

}

.modal-content {
background-color: #fefefe;
margin: 15% auto;
padding: 20px;
border: 1px solid #888;
width: 60%;

334



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

.close {
color: #aaa;
float: right;
font-size: 28px;
font-weight: bold;
}

.close:hover,

.close:focus {
color: black;
text-decoration: none;
cursor: pointer;

}

Note that In the app component method showPost, we use template literals to inject
the post ID into the URL string.

HTTP POST Method: Example

POST is very commonly used to post data to a server. It typically sends the data in the
request body. For example, for the URL /customers/new, the request body is
name=Mark&city=Atlanta&state=GA.

Here are some important aspects of HTTP POST:

o It'snotidempotent—calling the same put multiple times will result in
a different effect from calling it once.

o Itcan’tbe cached.

o Itcan’tremain in the browser history.

o Itcan’tbe bookmarked.

e Itdoesn’t have length restrictions.

o Therequest uses HTTP body.

e Theresponse is returned as HTTP body.

By its very nature, HTTP POST isn’t idempotent. It has side effects—for example,
adding a customer twice by posting the data twice (double posting).

335



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

Figure 18-6 shows an example of performing an HTTP POST. The user can input a
title and a body and click Add to post them to the server. The server returns information
to the browser, which is added to the list “You added” at the bottom.

:About Angular

Angular is a User interface library.
Vi

Add

You Added:

About Angular

Figure 18-6. HTTP POST

This will be example http-ex400:
1. Build the app using the CLI: Use the following command:
ng new http-ex400 --inline-template --inline-style
2. Startng serve: Use the following code:

cd http-ex400
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser";
import { NgModule } from '@angular/core';
import { HttpClientModule } from '@angular/common/http’;

336



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

import { FormsModule } from '@angular/forms’;
import { AppComponent } from './app.component’;
@NgModule({
declarations: [
AppComponent
1,
imports: [
BrowserModule,
HttpClientModule,
FormsModule
1,
providers: [],
bootstrap: [AppComponent]

)
export class AppModule { }

Edit component: Edit app.component.ts and change it to the
following:

import { Component, OnInit, AfterViewInit, ViewChild } from
'@angular/core’;
import { HttpClient } from '@angular/common/http’;

@Component ({

selector: 'app-root',

template: °
<div>
Title:
<br/>
<input type="text" [(ngModel)]=" title" size="50" />
<br/>
<br/>
Body:
<br/>
<textarea [(ngModel)]=" _body' rows="2" cols="50">
</textarea>
<br/>

337



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

<button (click)="onAdd()">Add</button>
</div>
<p><b>You Added:</b></p>
<p *ngIf="_added.length == 0">None</p>
<p *ngFor="let added of _added">
{{added.title}}
</p>
styles: ['div { padding: 20px; background-color: #CoCoCO }']
9
export class AppComponent {
_title: string;
_body: string;
_added: Array<any> = new Array<any>();

constructor(private http: HttpClient) {
}

onAdd(){
const requestBody = {
title: this. title || '[Unspecified]’,
body: this. body || '[Unspecified]’,
15
this. http.post("http://jsonplaceholder.typicode.com/posts”,
requestBody).subscribe(
res => {
this. added.push(res);
}
)
}
}

Note the following:

e Inthe app component method onAdd we create the object that’s
going to be posted to the server in the request body.

338



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

In the app component method onAdd we use the or operator to
ensure that we pass something valid to the server—either
this. title (if that exists) or the text “[Unspecified]”:

title: this. title || '[Unspecified]’

In the app component method onAdd we subscribe to the HTTP POST
and use an arrow function to process the returned result. We add the
returned result to the array of _added so it appears at the bottom.

HTTP PUT Method Using Path Parameters

The PUT method is similar to the POST method except that with a REST service it’s
typically used to update a resource rather than create it.

Some important aspects of HTTP PUT include the following:

It's idempotent—calling the same PUT multiple times has the same
effect as calling it once.

It doesn’t have length restrictions
It’s not cacheable.
The request uses HTTP body.

The response is returned as HTTP header.

HTTP PATCH Method Using Path Parameters

The PATCH method is like PUT except that it's not idempotent. For example, it would be

useful to increase the value on a resource by a certain amount.

Some important aspects of PATCH include the following:

It’s not idempotent—calling the same PUT multiple times has a
different effect as calling it once.

It doesn’t have length restrictions.
It’s not cacheable.
The request uses HTTP body.

The response is returned as HTTP header.

339



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

HTTP DELETE Method Using Path Parameters

The DELETE method is used to remove a resource from the server. Note the following:

o It'snotidempotent—calling the DELETE multiple times has the same
effect as calling it once.

o It'snot cacheable.
e Therequest uses HTTP body.

o Theresponse is returned as HTTP header.

Modifying the Server Response: Example

Remember that the Http client service calls return observable objects. That means the
server returns an asynchronous data stream to the client (the browser) and that you can
use the RxJS module to process that data using the operators discussed in Chapter 16.
This includes the map operator we can use to transform the data.

e sunt aut : quia et suscipit su

* qui est e: est rerum tempore v

e ea molest: et iusto sed quo iu

e eum et es: ullam et saepe reic

e nesciunt : repudiandae veniam
 dolorem e: ut aspernatur corpo
» magnam fa: dolore placeat quib

Figure 18-7. Usingmap to modify a response

Figure 18-7 shows an example of using the RxJS map operator (with a function) to
modify the response returned from the server. In this case, we use it to transform data
into typed data (data structured in a class).

This will be example http-ex500:

1. Build the app using the CLI: Use the following command:

ng new http-ex500 --inline-template --inline-style

340



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

2. Startng serve: Use the following code:

cd http-ex500
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'"

You should see “welcome to app

4. Create class: Create the following typescript class post.ts in the app:

export class Post {

_title: string = "";

_body: string = "";

constructor(title: string, body: string){
const titleNaN = title || '';
const bodyNaN = body || "';
this. title = titleNaN.length > 10 ? titleNaN.
substring(0,9): titleNaN;
this. body = bodyNaN.length > 20 ? bodyNaN.
substring(0,19): bodyNaN;

get title(): string{
return this. title;

get body(): string{
return this. body;

5. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component’;

import { HttpClientModule } from '@angular/common/http';

341



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

@NgModule({

declarations: [
AppComponent

])

imports: [
BrowserModule,
HttpClientModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

6. Edit component: Edit app.component.ts and change it to the
following:

import { Component } from '@angular/core’;

import { HttpClient } from '@angular/common/http’;
import { Post } from './Post’;

import 'rxjs/Rx';

@Component ({
selector: 'app-root',
template: °
<ul>
<li *ngFor="let post of _posts">
<b>{{post.title}}:</b> {{post.body}}
</1i>
</ul>

~

)

styles: []
1)
export class AppComponent {
_posts: Array<Post>;
constructor(private http: HttpClient) {}
ngOnInit() {

342



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

return this. http.get<Array<Post>>("http://jsonplaceholder.
typicode.com/posts™)
.map(
response => {
const postsArray: Array<Post> = new Array<Post>();
for (const responseltem of response){
const post =
new Post(responseltem['title'], responseltem['body']);
postsArray.push(post);
}
return postsArray;
}
)

.subscribe(
response => {
this. posts = response;
}
)s
}
}

We create the typescript class Post to store each post. Note that this class has a
constructor that trims the title and body of each post. And we use the or trick to convert

“non-truthy” values to an empty string:
const titleNaN = title || '';

We use the following code to get data from the server. We use the map to convert the
response (an array of objects) into a typed array of Post classes. We then subscribe to the
result:

return this. http.get("http://jsonplaceholder.typicode.com/posts™)
.map(
response => {
const postsArray: Array<Post> = new Array<Post>();
for (const responseltem of response){
const post =

343



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

new Post(responseltem['title'], responseItem['body']);
postsArray.push(post);
}
return postsArray;
}
)

.subscribe(
response => {
this. posts = response;
}
)s

Handling a Server Error Response: Example

When you subscribe to an HTTP method call, you supply a handler method that
processes the results. However, you can supply other handler methods too—one to
handle errors and another to handle completion:

.subscribe(
function(response) { console.log("Success
function(error) { console.log("Error " + error)},
function() { console.log("Completion")}

+ response)},

)5

This is an example of handling a server error and displaying an appropriate error

message (shown in Figure 18-8.

Error: 404: Not Found

Figure 18-8. Displaying an error message

This will be example http-ex600:

1. Build the app using the CLI: Use the following command:

ng new http-ex600 --inline-template --inline-style

344



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

2. Startng serve: Use the following code:

cd http-ex600
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'"

You should see “welcome to app

4. Create service class: Create the following typescript class
service.ts in the app:

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http";
import { Observable } from 'rxjs/Observable';
import 'rxjs/Rx';

@Injectable()
export class Service {

constructor(private http: HttpClient) {
}

getPosts() : Observable<any> {
return this. http.get("http://jsonplaceholder.typicode.com/postss");

};

5. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppComponent } from './app.component’;

import { HttpClientModule } from '@angular/common/http’;
import { Service } from './Service';

@NgModule ({
declarations: [
AppComponent

1,

imports: [

345



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

BrowserModule,

HttpClientModule
1,
providers: [HttpClientModule, Service],
bootstrap: [AppComponent]

1)
export class AppModule { }

6. Edit component: Edit app.component.ts and change it to the following:

import { Component } from '@angular/core’;
import { Service } from './Service';
import 'rxjs/Rx';
@Component ({
selector: 'app-root',
template: °
<ul>
<li *ngFor="let post of posts">
<b>{{post.title}}:</b> {{post.body}}
</1i>
</ul>
<div *ngIf="_error">
Error: {{ error.status}}: {{ error.statusText}}
</div>

~

styles: ['div {font-size:20px; padding: 5px; background-color:
red;color: white}']

1)

export class AppComponent {
_posts = [];
_error;

constructor(private service: Service) {}

ngOnInit() {
this. service.getPosts()
.subscribe(

346



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

response => {
this. posts = response;

})
error => {
this. error = error;
}
)
}
}
Note the following:

o The service class service.ts uses an incorrect URL that will throw a
404 error.

o The component app.component.ts calls the method getPosts and
subscribes to its result, using two methods, each one implemented
with an arrow function. The first processes a successful result, and
the second processes an error. In this example, we process the error,
setting the instance variable error to its result.

o The errorinstance variable is referred to in the template. If set, it
shows a message in red.

Asynchronous Pipes: Example

The async pipe subscribes to an observable or promise and returns the latest value it
has emitted. When a new value is emitted, the async pipe marks the component to be
checked for changes. When the component gets destroyed, the async pipe unsubscribes
automatically to avoid potential memory leaks.

Figure 18-9 shows an example of using a map to transform the output from a server
and then using a pipe to output it.

347



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

Post Title Names

sunt aut facere repellat provident occaecati excepturi optio reprehenderitqui
est esseea molestias quasi exercitationem repellat qui ipsa sit auteum et est
occaecatinesciunt quas odiodolorem eum magni eos aperiam quiamagnam
facilis autemdolorem dolore est ipsamnesciunt iure omnis dolorem tempora
et accusantiumoptio molestias id quia eumet ea vero quia laudantium
autemin quibusdam tempore odit est doloremdolorum ut in voluptas mollitia
- dCDE J .:lll 0 DL .'ll"'l_'.ll.' 'I' (L0 'll.lIC b

Figure 18-9. Using a pipe to output

This will be example http-ex700:

1. Build the app using the CLI: Use the following command:

ng new http-ex700 --inline-template --inline-style

2. Startng serve: Use the following code:

cd http-ex700
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “welcome to app!”

4. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppComponent } from './app.component’;

import { HttpClientModule } from '@angular/common/http"’;

@NgModule({
declarations: [
AppComponent
1,
imports: [
BrowserModule,
HttpClientModule

1,

348



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

providers: [HttpClientModule],
bootstrap: [AppComponent]

1)
export class AppModule { }

5. Edit component: Edit app.component.ts and change it to the
following:

import { Component } from '@angular/core';

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http’;
import 'rxjs/Rx';

import { Observable } from 'rxjs/Observable’;

@Component ({
selector: 'app-root',
template: °
<h1>Post Title Names</h1>
<p>{{_result|async}}</p>

~

styles: []

}

export class AppComponent {
_result: any;

constructor(private http: HttpClient) {}

ngOnInit() {
this. result =
this. http.get<Array<any>>("http://jsonplaceholder.typicode.
com/posts")
.map(
response => {
let titles = '';
for (const responseltem of response){
titles += responseltem['title'];

}

return titles;

349



CHAPTER 18  HTTP AND THE HTTPCLIENT MODULE

}
)5

Note the following:

e The component app.component.ts calls the HTTP GET method to
return a list of posts. It uses the map operator (and a function) to
convert it into a string of all the titles of the posts. It then assigns the
result to the result instance variable.

e The component app.component.ts uses a template to display the
value of the _result instance variable.

Summary

This important chapter covered the basics of HTTP communication and how to use the
Http services to get and send data to the server. I recommend that you complete all the
exercises because the Http service will be very important to you in future work writing
single page applications. Remember that the Http Services that you will be working
with may have their own custom headers and content types. For example your server
developers may introduce a custom header to return error information from the server
to the client in the event of an error. You may also need to add security tokens to each
Http Service call. You will need to know how these Http Services work and how you can
extend their functionality to work how you want.

The next chapter is also important: it covers forms, another feature of Angular you
will use all the time.

350



CHAPTER 19

Forms

You can’t enter data in an application without forms. Angular]S allowed the user to
create forms quickly, using the NgModel directive to bind the input element to the data in
the $scope. You can also do the same in Angular, but Angular 4 has a new Forms module
that makes it easier to do the following:

e Create forms dynamically
e Validate input with common validators (required)
o Validate input with custom validators

o Testforms

Two Ways of Writing Forms

You can continue writing forms in a similar way to how you used to in Angular]S, butI
recommend using the new Forms module because it does more work for you. The Forms
module offers two main way of working with forms: template-driven forms and reactive

forms. Both ways work with the same Forms module.

Template-Driven Forms

This is similar to how things were done in Angular.JS. We build the HTML template
and add a few directives to specify addition information (such as validation rules),
and Angular takes charge of building the model objects for us behind the scenes: the
underlying forms, form groups, and controls.

o Advantages: Simple, quick to get started, perfect for simple forms,
don’t need to know how form model objects work

o Disadvantages: HTML and business rules are coupled, no unit testing

351
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_19



CHAPTER 19  FORMS

Reactive Forms

Reactive forms are different. We build the model objects ourselves (including validation
form rules), and the form binds (and syncs) to the template. I typically use Reactive
Forms more than Template-Driven forms.

e Advantages: More control, perfect for more advanced forms, enable
unit testing, HTML and business rules are decoupled

e Disadvantages: Need to know how form model objects work, take
more time to develop

As of the time of writing this book, the Angular CLI generates projects with the
Node dependency to the Forms module already set up. All you have to do is adjust your
module to import the forms module. Here’s an example of the app.module.ts file:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

@NgModule ({

declarations: [
AppComponent

])

imports: [
BrowserModule,
FormsModule

])

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

Form Model Objects

This section applies to both ways of writing forms: template and Reactive. Both use the
same model objects. Let’s take a quick look at them.

352



CHAPTER 19

NgForm

Stores state information for the form, including the following:
e Values for all the controls inside the form
e Groups of fields in the form
o Fields in the form

e Validators

FormGroup

Stores the value and validity state of a group of FormControl instances:

e Values for all the controls inside the form group

FormControl

Stores the value and validity state of an individual control—for instance a listbox:

e Value
e Validation state
o Status (for example, disabled)

You can add a subscriber to respond to form control value changes:

this.form.controls[ "make'].valueChanges.subscribe(
(value) => { console.log(value); }

)5

You can add a subscriber to respond to form control status changes:

this.form.controls[ 'make'].statusChanges.subscribe(
(value) => { console.log(value); }

);
Example output:

INVALID
VALID

FORMS

353



CHAPTER 19  FORMS

FormArray

This is used to track the value and state of multiple FormControls, FormGroups, or
FormArrays. It’s useful for dealing with multiple form objects and tracking overall validity
and state.

Forms and CSS

This section applies to both methods of writing forms: template and Reactive. When

you have form validation, you need to highlight invalid data when it occurs. The Forms
module has been designed to work with CSS to make it very easy to highlight invalid user
input. The styles listed in Table 19-1 are automatically added to the form elements—all
you need to do is add the CSS code to produce the required visual effect.

Table 19-1. Styles Added to Form Elements

Style Description

ng-touched Style applied if control has lost focus

ng-untouched Style applied if control hasn’t lost focus yet

ng-valid Style applied if control passes validation

ng-invalid Style applied if control doesn’t pass validation

ng-dirty Style applied if user has already interacted with the control

ng-pristine  Style applied if user hasn't interacted with the control yet

Template Forms: Example

As mentioned earlier, template forms use directives to create the form model objects.
You build the input form and inputs in the template and add a few directives, and the
form is ready and working. Template forms are perfect for quickly building simple forms
that have simple validation.

Template forms work asynchronously. So, the model objects aren’t available until
the view has been initialized and the directives have been processed. Not all the model
objects are even available in the AfterViewInit lifecycle method.

354



CHAPTER 19  FORMS

To use Angular template forms, your application module needs to import the Forms
module from the @angular/forms node module:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component’;

@NgModule({
declarations: [
AppComponent

])

imports: [
BrowserModule,
FormsModule

1,

providers: [],
bootstrap: [AppComponent]

1)
export class AppModule { }

Let’s go through creating a template form and see what’s needed to make it work.
This will be example forms-ex100.

1. Build the app using the CLI: Use the following command:
ng new forms-ex100 --inline-template --inline-style
2. Startng serve: Use the following code:

cd forms-ex100
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

355



CHAPTER 19  FORMS
4. Edit module: Edit app.module.ts and change it to the following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component’;

@NgModule ({

declarations: [
AppComponent

1,

imports: [
BrowserModule,
FormsModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

5. Edit component: Edit app.component.ts and change it to the
following:

import { Component, ViewChild } from '@angular/core’;
import { NgForm, RequiredValidator } from '@angular/forms’;

@Component ({

selector: 'app-root',

template: °

<form #f novalidate>
<p>First Name <input name="fname"/></p>
<p>Last Name <input name="lname"/></p>
Valid: {{ f.valid }}
Data: {{ f.value | json }}

</form>

~

)

styles: []

356



CHAPTER 19  FORMS

)
export class AppComponent {

@ViewChild('f") f: NgForm;
}

6. View app: Notice that this component just displays the input
forms, as shown in Figure 19-1. It doesn’t display any further
information.

First Name |asdasd|

Last Name asa

Figure 19-1. Displaying input forms

7. Edit component: Now we'll add some directives to the form and
input tags to get the form working as a template form. The changes
are highlighted in bold in the following code:

import { Component, ViewChild } from '@angular/core’;
import { NgForm, RequiredValidator } from '@angular/forms’;

@Component ({
selector: 'app-root',
template: °
<form #f="ngForm" novalidate>
<p>First Name <input name="fname" ngModel required /></p>
<p>Last Name <input name="lname" ngModel required /></p>
Valid: {{ f.valid }}
Data: {{ f.value | json }}
</form> °,
styles: []
1)
export class AppComponent {
@viewChild('f') f: NgForm;

357



CHAPTER 19  FORMS

8. View app: Note that this component displays the input forms and
the state of the form in Figure 19-2—its validity and its data.

First Name peter

Last Name smith|

Valid: true Data: { "fname": "peter”, "Iname": "smith" }

Figure 19-2. State of the form

This shows how quickly you can use the ngForm and ngModel directives to make
a template form, with a form object that holds the form state (including data). Note
also how the HTML input fields use the name attribute—this is picked up by the form
directives and used to identify that control and its value.

Template Variables and Data Binding: Example

Sometimes you need access to each control to access its state, its value, and so on. You
can use the following syntax to set a template variable to the ngModel of the control (that
is, its FormControl object). You can also use the ViewChild to access the FormControl as
avariable:

import { Component, ViewChild } from '@angular/core’;
import { NgForm, FormControl, RequiredValidator } from '@angular/forms’;

@Component ({

selector: 'app-root',

template: °

<form #f="ngForm" novalidate>
<p>First Name <input name="fname" ngModel #fname="ngModel" required />
</p>
<h2>Form Template Variable</h2>
Valid {{ fname.valid}}
Data: {{ fname.value | json }}
<h2>From Instance Variable</h2>
Valid {{ fname2.valid}}
Data: {{ fname2.value | json }}

358



CHAPTER 19  FORMS

</form> °,
styles: []
1)
export class AppComponent {
@viewChild('f') f: NgForm;
@ViewChild('fname') fname2: FormControl;

You can also use template variables to query form control states, as listed in Table 19-2.
This makes it very easy to add logic in the template to hide and show error messages.

Table 19-2. Template Variables

Variable Description

.touched Has the user performed any input in this field? Returns true or false.
.valid Does the field input pass validation? Returns true or false.

.value The current form value.

.hasError('required') Has the specified error occurred? Returns true or false.

Sometimes you need to two-way bind each control’s value to the model so that you
can get and set each control’s value as required. This is useful if you want to set the form
control. Change the ngModel directive to use two-way binding and link it to the instance
variable—in the following case, name:

<input type="text" class="form-control” name="name" placeholder="Name
(last, first)" [(ngModel)]="_name" required>

Let’s go through creating a template form and binding the form controls to instance
variables. And let’s build this form with bootstrap styling so it looks good. The submit
form has a button that enables or disables according to the user’s input, as shown in
Figure 19-3.

359



CHAPTER 19  FORMS

Appointment

MName

mark

Password

Password

Appointment Time
12pm
2pm
4pm

Ailment

Valid: false Data: { "name": "mark", "password": "", "time": "",

“ailment": " }

Figure 19-3. Creating a template form binding form controls to instance variables

This will be example forms-ex200:
1. Build the app using the CLI: Use the following command:
ng new forms-ex200 --inline-template --inline-style
2. Startng serve: Use the following code:

cd forms-ex200
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

4. Edit web page: Edit the file index.html and change it to the
following:

<!doctype html>

<html lang="en">

<head>
<meta charset="utf-8">
<title>FormsEx200</title>
<base href="/">

360



CHAPTER 19  FORMS

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.
com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css”
integrity="sha384-rwoIResjU2yc3z8GV/NPeZWAv561rSmL1dC3R/
AZzGRnGxQQKnKkoFVhFQhNUwEYJ" crossorigin="anonymous">

<script src="https://code.jquery.com/jquery-3.1.1.slim.min.
js" integrity="sha384-A7FZj7v+d/sdmMqp/nOQwlilvUsJfDHW+k90mg/a/
EheAdgtzNs3hpfag6Ed950n" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/
tether/1.4.0/js/tether.min.js" integrity="sha384-DztdAPBW
PRXSA/3eYEEUWTWCy7G5KFbe8Fjk5JAIXUYHKkDx6Qin1DkWx51bBrb"
crossorigin="anonymous"></script>

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-
alpha.6/js/bootstrap.min.js" integrity="sha384-vBWWz1Z]8
ea9aCX4pEW3rVHjgjt7zpkNpzk+02D9phzyeVkE+jooieGizqPLForn"
crossorigin="anonymous"></script>

<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>
<app-root></app-root>

</body>

</html>

Edit module: Edit the file app.module.ts and change it to the
following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;
import { FormsModule } from '@angular/forms’;

import { AppComponent } from './app.component';

@NgModule({
declarations: [
AppComponent

1,

361



CHAPTER 19  FORMS

imports: [
BrowserModule,
FormsModule

])

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

6. Edit component: Edit the file app.component.ts and change it to
the following:

import { Component, ViewChild } from '@angular/core';
import { NgForm, RequiredValidator } from '@angular/forms’;

@Component ({
selector: 'app-root',
template: °
<form #appointmentForm="ngForm" novalidate (ngSubmit) =
"onSubmitForm(appointmentForm)">
<legend>Appointment</legend>
<div class="form-group">
<label for="name">Name</label>
<input type="text" class="form-control" name="name"
placeholder="Name (last, first)" [(ngModel)]=" name" required>
</div>
<div class="form-group">
<label for="password">Password</label>
<input type="password" class="form-control” name="password"
placeholder="Password" [(ngModel)]="_password" required>
</div>
<div class="form-group">
<div class="form-check">
<div>
<label>Appointment Time</label>
</div>

362



CHAPTER 19  FORMS

<label class="form-check-label">
<input type="radio" class="form-check-input" name="time"
value="12pm" [(ngModel)]=" time" required>
12pm
</label>
</div>
<div class="form-check">
<label class="form-check-label">
<input type="radio" class="form-check-input" name="time"
value="2pm" [(ngModel)]="_time" required>
2pm
</label>
</div>
<div class="form-check">
<label class="form-check-label">
<input type="radio" class="form-check-input" name="time"
value="4pm" [(ngModel)]=" time" required>
4pm
</label>
</div>
</div>
<div class="form-group">
<label for="exampleTextarea">Ailment</label><textarea
class="form-control” name="ailment" rows="3" [(ngModel)]=
" ailment" required ></textarea>
</div>
<button type="submit" class="btn btn-primary" [disabled]=
"1 _appointmentForm.valid">Submit</button>
Valid: {{ _appointmentForm.valid }}
Data: {{ _appointmentForm.value | json }}
</form>
\)
styles: ['form { padding: 20px }', '.form-group { padding-top: 20px }']
1)

363



CHAPTER 19  FORMS

export class AppComponent {
@viewChild('appointmentForm') _appointmentForm: NgForm;
_name: string = 'mark’;
_password: string = '';
_time: string = '';
_ailment: string = '';
onSubmitForm() {

alert("Submitting data:" + JSON.stringify
(this. appointmentForm.value));

}
}

Your app should be working at localhost:4200. Note that the file index.html is
modified to link to the bootstrap CSS and JavaScript files.
The file app.component does the following:

o Setsup aform that is a template variable appointmentForm. The form
fires the method onSubmitForm when it’s submitted.

o Setsup input fields and uses two-way binding with the ngModel
directive to link the value of each field to an instance variable.

o Contains the following markup in the template to enable or disable
the Submit button:

<button type="submit" class="btn btn-primary" [disabled]="!
appointmentForm.valid">Submit</button>

o Displays form validity and values underneath.

Template Forms and CSS: Example

Let’s go through creating an input form with color coding to form validation state. Green
indicates valid input, red indicates invalid input. There’s also code for error messages, as
shown in Figure 19-4.

364



CHAPTER 19  FORMS

First Name  [[Tom First Name ~ |Tom
Last Name  |Brown| LastName  JBrown
Email | Email Jmar Invalid email

Figure 19-4. Input form with color coding

This will be example forms-ex300:

1.

Build the app using the CLI: Use the following command:
ng new forms-ex300 --inline-template --inline-style
Startng serve: Use the following code:

cd forms-ex300
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

Edit styles: Edit the file styles.css and change it to the following:

input.ng-valid {
border-left: 5px solid #42A948; /* green */
}

input.ng-invalid {
border-left: 5px solid #a94442; /* red */
}

365



CHAPTER 19  FORMS

.error {
color: #ff0000;

}

label {
display: inline-block;
width: 100px;

}

button {
border: 1px solid black;
margin: 20px;

}

5. Edit module: Edit file app.module.ts and change it to the
following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component’;

@NgModule({

declarations: [
AppComponent

1,

imports: [
BrowserModule,
FormsModule

I,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

366



CHAPTER 19  FORMS

6. Edit component: Edit the file app.component.ts and change it to
the following:

import { Component, ViewChild } from '@angular/core';
import { NgForm, FormControl, RequiredValidator } from '@angular/forms';

@Component ({
selector: 'app-root',
template: °
<form #f="ngForm" novalidate>
<p><label>First Name</label><input name="fname" ngModel
#fname="ngModel" required />
<span class="error" *ngIf="fname.touched && fname.
hasError('required')">Required</span>
</p>
<p><label>Last Name</label><input name="lname" ngModel
#lname="ngModel" required />
<span class="error" *ngIf="lname.touched && lname.
hasError('required')">Required</span>
</p>
<p><label>Email</label><input name="email" ngModel
#email="ngModel" required email />
<span class="error" *ngIf="email.touched && email.
hasError('required')">Required</span>
<span class="error" *nglf="email.value && email.touched &&
email.hasError('email')">Invalid email</span>
</p>
<button (click)="onSubmit()" [disabled]="!f.valid">
Submit</button>
</form>",
styles: []
1)
export class AppComponent {
onSubmit(){
alert('Submitted');

}

367



CHAPTER 19  FORMS

Your app should be working at localhost:4200. Note the following:

o Thefile styles.css applies the required styles to the appropriate
states—for example, setting the ng-valid style to show a green
indicator when the form control has valid data.

o The file app.component.ts contains logic to display error messages
based on the form control states.

Reactive Forms: Example

You build the model objects for the form—they’re the same ones as the template
forms—and then bind them to the input controls in the template. So, you're building
the form controls in your class and amending your template to link to those controls.
This gives you complete control over the form, its values, and its validations. You can
directly manipulate the model objects (for example, change values), and the binding
immediately takes affect synchronously. In fact, value and validity updates are always
synchronous and under your control.

To use Angular template forms, your application module needs to import the
Reactive Forms module from the @angular/forms node module:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;
import { ReactiveFormsModule } from '@angular/forms';

import { AppComponent } from './app.component’;

@NgModule ({

declarations: [
AppComponent

])

imports: [
BrowserModule,
ReactiveFormsModule

])

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

368



CHAPTER 19  FORMS

To bind a template to a model, you create the HTML form, and HTML inputs in the

component’s template. Then you create a form model in your component’s class. Now

you bind the two together using the following directives:

<form [formGroup]="registerForm">: Connects the form model
with the form HTML in the template.

<fieldset formGroupName="address">: Connects the form group
with the fieldset HTML in the template.

<input formControlName="name">: Connects the form control in the
model with the form input HTML in the template.

Let’s go through creating a reactive form and see what’s needed to make it work. This

will be example forms-ex400:

1.

Build the app using the CLI: Use the following command:
ng new forms-ex400 --inline-template --inline-style
Startng serve: Use the following code:

cd forms-ex400
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

Edit styles: Edit the file styles.css and change it to the following:

input.ng-valid {
border-left: 5px solid #42A948; /* green */
}

input.ng-invalid {
border-left: 5px solid #a94442; /* red */

}
.error {

color: #ff0000;
}

369



CHAPTER 19  FORMS

label {
display: inline-block;
width: 100px;

}

button {
border: 1px solid black;
margin: 20px;

}

5. Edit module: Edit the file app.module.ts and change it to the
following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core';
import { ReactiveFormsModule } from '@angular/forms’;

import { AppComponent } from './app.component';

@NgModule ({

declarations: [
AppComponent

])

imports: [
BrowserModule,
ReactiveFormsModule

1,

providers: [],

bootstrap: [AppComponent]

)
export class AppModule { }

6. Edit component: Edit the file app.component.ts and change it to
the following:

import { Component, OnInit } from '@angular/core’;
import { FormGroup, FormControl, FormControlName, Validators }
from '@angular/forms’;

370



CHAPTER 19  FORMS

@Component ({
selector: 'app-root',
template: °
<form #form [formGroup]="formGroup" (ngSubmit)="onSubmit(form)"
novalidate>
<label>Name:
<input formControlName="name">
</label>
<br/>
<label>Location:
<input formControlName="location">
</label>
<br/>
<input type="submit" value="Submit" [disabled]="!formGroup.valid">
</form>

~

)

styles: []
9

export class AppComponent implements OnInit{
formGroup: FormGroup;

ngOnInit(){
this.formGroup = new FormGroup({
name: new FormControl('', Validators.required),
location: new FormControl('', Validators.required)

};
}

onSubmit(form: FormGroup){
alert('sumit');
}
}

Your app should be working at localhost:4200. Note the following:
o Thefile styles.css sets up the CSS styles.

o Thefile app.component.ts contains the HTML in the template for the form.

371



CHAPTER 19  FORMS

o The file app.component.ts initializes the model, a form group with
form controls in the ngInit method, when the component initializes.

e The file app.component.ts links the HTML in the template to the
model. It links HTML form to formGroup using the following:

<form #form [formGroup]="formGroup" (ngSubmit)="onSubmit(form)"
novalidate>

e Itlinks HTML input to formControl using the following:

<input formControlName="name">

Reactive Forms: FormBuilder

The FormBuilder class is designed to help you build the form model with less code.
Inject the FormBuilder into your component’s class and use its methods as listed in
Table 19-3.

Table 19-3. FormBuilder Methods

Method Purpose Arguments Returns
group Create a form group  Configuration object, FormGroup
extra parameters (validators, async
validators)

control Create aform control  Current form state (value/disabled status), FormControl
array of validators,
array of async validators

array Create a form array Configuration object (array), FormArray
validator,
async validator

We'll start using FormBuilder in the upcoming examples.

372



CHAPTER 19  FORMS

Reactive Forms: Form Group Nesting Example

Sometimes our forms consist of multiple different elements. For example, if you were
entering a customer order, the information could be structured in the following manner:

¢ Name
e Address
e Order

e Orderitems
e Credit card info

Each of those elements can contain one or more form controls, so we need to be
able to manage each. This is where form groups come in. In this case, you could have the
hierarchy of form groups shown in Figure 19-5.

Address Credit Card

Order ltem

Figure 19-5. Hierarchy of form groups

This example enables the user to enter and submit an order including the customer
name, customer address, and a list of items, as shown in Figure 19-6.

373



CHAPTER 19  FORMS

Name
First Name Mark
Last Name Clow

Address

Address #1 2387 welton Drive
Address #2

City milton

State| Ga #

Zip 30342

Items
Name: Brush Qty: 1 Price: 12
Name: Toilet Paper Qty: 1 Price:|1.99

Add Item  Submit

Figure 19-6. Entering and submitting an order
This will be example forms-ex500:
1. Build the app using the CLI: Use the following command:
ng new forms-ex500 --inline-template --inline-style
2. Startng serve: Use the following code:

cd forms-ex500
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

4. Edit module: Edit the file app.module.ts and change it to the
following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core';
import { ReactiveFormsModule } from '@angular/forms’;

import { AppComponent } from './app.component';
@NgModule({

374



5.

CHAPTER 19  FORMS

declarations: [
AppComponent

])

imports: [
BrowserModule,
ReactiveFormsModule

])

providers: [],

bootstrap: [AppComponent]

1
export class AppModule { }

Edit component class: Edit the file app.component.ts and change it
to the following:

import { Component, OnInit } from '@angular/core’;
import { FormGroup, FormArray, FormBuilder, Validators } from
'@angular/forms’;

@Component ({
selector: 'app-root',
templateUrl: 'app.component.html',
styles: ['div { background-color: #f2f2f2; padding: 15px;
margin: 5px }',
'p { margin: opx }'
]
1)

export class AppComponent implements OnInit {

public parentForm: FormGroup;
public name: FormGroup;
public addr: FormGroup;
public items: FormArray;

constructor(private fb: FormBuilder){}

ngOnInit() {
this. name = this. fb.group({

375



CHAPTER 19  FORMS

fname: ['', [Validators.required]],
lname: ['', [Validators.required]]

IOk
this. addr = this. fb.group({
addri: ['', [Validators.required]],
addr2: [''],
city: ['', [Validators.required]],

state: ['', [Validators.required]],
zip: ['", [Validators.required, Validators.minLength(5),
Validators.maxLength(5)]],
IOk
this. items = this. fb.array(
[this.createItemFormGroup()]
)5
this. parentForm = this. fb.group({
name: this. name,
addr: this. addr,
items: this. items
1)
}

createItemFormGroup(){
return this. fb.group({
name: ['', Validators.required],
qty: ['1', Validators.required],
price: ['', Validators.required]
IOk
}

addItem(){
this. items.push(this.createItemFormGroup());

}

deleteItem(index){
delete this. items[index];

}

376



CHAPTER 19  FORMS

onSubmit(form: FormGroup){
alert('Submitted');

}
}

6. Edit component template: Edit the file app.component.html and
change it to the following:

<form [formGroup]="_parentForm" novalidate (ngSubmit)="onSubmit
(parentForm)">
<div formGroupName="name">
<b>Name</b>
<br/>
<label>First Name
<input type="text" formControlName="fname">
<small *ngIf="_name.controls.fname.touched && ! name.
controls.fname.valid">Required.</small>
</label>
<br/>
<label>Last Name
<input type="text" formControlName="lname">
<small *ngIf=" _name.controls.lname.touched && ! name.
controls.lname.valid">Required.</small>
</label>
</div>
<br/>
<div formGroupName="addr">
<b>Address</b>
<br/>
<label class="left">Address #1
<input type="text" formControlName="addr1">
<small *ngIf="_addr.controls.addr1.touched && ! addr.
controls.addr1l.valid">Required.</small>
</label>
<br/>
<label>Address #2

377



CHAPTER 19  FORMS

<input type="text" formControlName="addr2">
</label>
<br/>
<label>City
<input type="text" formControlName="city">
<small *ngIf="_addr.controls.city.touched && ! addr.
controls.city.valid">Required.</small>
</label>
<br/>
<label>State
<select formControlName="state">
<option>AL</option>
<option>GA</option>
<option>FL</option>
</select>
<small *ngIf="_addr.controls.state.touched && ! addr.
controls.state.valid">Required.</small>
</label>
<br/>
<label>Zip
<input type="number" formControlName="zip">
<small *ngIf="_addr.controls.zip.touched && ! addr.controls.
zip.valid">Required.</small>
</label>
</div>
<br/>
<div formArrayName="items">
<b>Items</b>
<br/>
<p [formGroupName]="i" *ngFor="let item of _items.controls;let
i=index">
<label>Name:&nbsp;<input type="text" formControlName="name"
size="30">
<small *ngIf="item.controls.name.touched && !item.
controls.name.valid">Required.</small>
</label>

378



CHAPTER 19  FORMS

<label>Qty:&nbsp;<input type="number" formControlName="qty"
min="1" max="10">
<small *ngIf="item.controls.qty.touched && !item.controls.
qty.valid">Required.</small>
</label>
<label>Price:8nbsp;<input type="number"
formControlName="price" min="0.01" max="1000" step=".01">
<small *ngIf="item.controls.price.touched && !item.
controls.price.valid">Required.</small>
</label>
</p>
</div>
<br/>
<div>
<input type="button" value="Add Item" (click)="addItem()"/>
<input type="submit" value="Submit" [disabled]="! parentForm.valid"/>
</div>
</form>

Your app should be working at localhost:4200. Note the following:

o We have at least four fixed FormGroup objects: one for the name, one
for the address, one for the first item, and another for the parent form.

o The FormArray contains one FormGroup object, but it can contain
other FormGroup objects if the user clicks the Add Item button.

o The overall form validity still controls the enablement and
disablement of the Submit button.

Validators

Angular provides some validators for our forms. You can add multiple validators to the
same FormControl (an item in the FormGroup):

e Required validation:

this.form = fb.group({
"name': ['", Validators.required],

};
379



CHAPTER 19  FORMS
e Minimum length validation:

this.form = fb.group({
‘name’: ['", Validators.required, Validators.minLength(4)]

1

e Maximum length validation:

this.form = fb.group({
‘name': ['', Validators.required, Validators.maxLength(4)]

1

Combining Multiple Validators

The Validators class provides the compose method to allow the user to specify multiple
validators to a control:

constructor(private fb: FormBuilder){
this.form = fb.group({
‘name': ['", Validators.compose( [Validators.required,
Validators.maxLength(6)] ) 1,

1

Custom Validation Example

The Angular Forms module allows you to create a custom class to validate your input.
The validation method is static and returns a validation result only when there’s an error.
If everything is okay, this method returns a null. This custom class can be used when
specifying the field in the FormBuilder and can also be used in the component template
to provide a visual cue.

This component won’t allow the user to enter mercedes, as shown in Figure 19-7.

380



CHAPTER 19

Make: Iford
Model: Ifiesta
Submit

Make: Imercedes
Model: Ifiesta

Submit

Figure 19-7. Custom validation

This will be example forms-ex600:

1.

Build the app using the CLI: Use the following command:
ng new forms-ex600 --inline-template --inline-style
Startng serve: Use the following code:

cd forms-ex600
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

Edit styles: Edit the file styles.css and change it to the following:

input.ng-valid {
border-left: 5px solid #42A948; /* green */
}

input.ng-invalid {
border-left: 5px solid #a94442; /* red */
}

FORMS

381



CHAPTER 19  FORMS

5. Edit module: Edit the file app.module.ts and change it to the
following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core';
import { ReactiveFormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

@NgModule({

declarations: [
AppComponent

1,

imports: [
BrowserModule,
ReactiveFormsModule

])

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

6. Edit component: Edit the file app.component.ts and change it to
the following:

import { Component, OnInit } from '@angular/core’;
import { AbstractControl, FormGroup, FormControl, FormControlName,
Validators } from '@angular/forms';

export function validateNotMercedes(control: AbstractControl) {
return (control.value.tolLowerCase() != 'mercedes') ?
null :
{ validateNotMercedes: {
valid: false

382



CHAPTER 19  FORMS

@Component ({
selector: 'app-root',
template: °
<form #form [formGroup]="formGroup" (ngSubmit)="onSubmit(form)"
novalidate>
<label>Make:
<input formControlName="make">
</label>
<br/>
<label>Model:
<input formControlName="model">
</label>
<br/>
<input type="submit" value="Submit" [disabled]="!formGroup.valid">
</form>

~

)

styles: []
9

export class AppComponent implements OnInit{
formGroup: FormGroup;

ngOnInit(){
this.formGroup = new FormGroup({
make: new FormControl('', [Validators.required,
validateNotMercedes]),
model: new FormControl('', Validators.required)
D;
}

onSubmit(form: FormGroup){
alert('sumit');
}
}

383



CHAPTER 19  FORMS

Your app should be working at localhost:4200. Note the following:

e The code in file app.component.ts exports the validateNotMercedes
function to validate the make. Note that it returns a null to indicate
validity—otherwise, it returns an object with the property valid set
to false.

e The code in file app.component.ts sets up the form group using
the FormControl objects. Notice how here the make FormControl
specifies the validateNotMercedes function as a validator.

Summary

You don’t have to use the Angular form modules, but they do a lot of work for you and
save you a lot of time. Angular offers you two options: the quick-and-easy template forms
and the more advanced Reactive forms. You need to know both because they're both
very useful and well implemented. They may take some time to learn, but the payoffis
woth it.

The next chapter covers pipes. Pipes aren’t essential but can be useful.

384



CHAPTER 20

Pipes

Pipes have been around since AngularJS. They're useful at transforming data, especially
when the same transformation is used throughout the application. Pipes make it easy to
add these transformations into your component template.

Angular Pipes

Angular includes several pipes to add to your template. You don’t need to import them
or add them as directives or anything—just start using them.

lowercase

Lowercase: {{ "The Quick Brown Fox Jumped Over The Lazy Dogs" | lowercase }}
Produces:

Lowercase: the quick brown fox jumped over the lazy dogs

uppercase

Uppercase: {{ "The Quick Brown Fox Jumped Over The Lazy Dogs" | uppercase }}
Produces:

Uppercase: THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS

385
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_20



CHAPTER 20  PIPES

currency

Currency: {{ 2012.55 | currency }}
Produces:

Currency: USD2,012.55

UK (gbp) pound currency

UK Pound Currency: {{ 2012.55 | currency: 'gbp':true }}
Produces:

UK Pound Currency: £2,012.55

percent

Percentage: {{ 0.5 | percent }}
Produces:

Percentage: 50%

date

Date: {{ dt | date }}
Produces:

Date: Jul 12, 2017

shortdate

Short Date: {{ dt | date:shortdate }}

386



Produces:

Short Date: Jul 12, 2017

Special Date Format

CHAPTER 20  PIPES

Special Date Format: {{ dt | date:'yMMMMEEEEd' }}

Produces:

Special Date Format: Wednesday, July 12, 2017

Table 20-1 lists the predefined date formats.

Table 20-1. Predefined Date Formats

Name Format Example (English/US)
medium yMMMdjms Sep 3, 2010, 12:05:08 PM
short yMdjm 9/3/2010, 12:05 PM
fullDate yMMMMEEEEd Friday, September 3, 2010
longDate yMMMMd September 3, 2010
mediumDate yMMMd Sep 3, 2010

shortDate yMd 9/3/2010

mediumTime jms 12:05:08 PM

shortTime jm 12:05 PM

Table 20-2 shows how date format elements can be combined.

387



CHAPTER 20  PIPES

Table 20-2. Combining Date Formats

Name Format Text Form Full Text Form Short Numeric Form Numeric Form 2 Digit
era G GGGG G

year y y yy
month M MMMM MMM M MM
day D d dd
weekday E EEEE EEE

hour J j i
12 hour H h hh
24 hour H H HH
minute M m MM
second S S ss
timezone z/Z z VA

json

{{ {customerName: 'Mark', 'address': '2312 welton av 30333'} | json }}
Produces:
{ "customerName": "Mark", "address": "2312 welton av 30333" }

The preceding example does the following:

o Generates a JavaScript object containing two properties: a customer
name and address

o Passes this JavaScript object to the json pipe

o The json pipe outputs a JSON representation of the supplied object

Angular Pipes: Example

The component shown in Figure 20-1 displays information using the variety of Angular
pipes.

388



CHAPTER 20

Lowercase: the quick brown fox jumped over the lazy dogs

Uppercase: THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS
Currency: USD2,012.55

UK Pound Currency: £2,012.55

Percentage: 50%

Date: Jul 12,2017

Short Date: Jul 12,2017

Special Date Format: Wednesday, July 12,2017

Figure 20-1. Showing various Angular pipes

This will be example pipes-ex100:

1. Build the app using the CLI: Use the following command:
ng new pipes-ex100 --inline-template --inline-style
2. Startng serve: Use the following code:

cd pipes-ex100
ng serve

3. Open app: Open web browser and navigate to localhost:4200. You
should see “app works!”

4. Edit component: Edit the file app.component.ts and change it to
the following:

import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<p>
Lowercase: {{ "The Quick Brown Fox Jumped Over The Lazy
Dogs" | lowercase }}
</p>
<p>

PIPES

389



CHAPTER 20  PIPES

Uppercase: {{ "The Quick Brown Fox Jumped Over The Lazy
Dogs" | uppercase }}
</p>
<p>
Currency: {{ 2012.55 | currency }}
</p>
<p>
UK Pound Currency: {{ 2012.55 | currency: 'gbp':true }}
</p>
<p>
Percentage: {{ 0.5 | percent }}
</p>
<p>
Date: {{ dt | date }}
</p>
<p>
Short Date: {{ dt | date:shortdate }}
</p>
<p>
Special Date Format: {{ dt | date:'yMMMMEEEEd' }}
</p>

~

)

styles: []

1)
export class AppComponent {

dt = new Date();
}

The app should be working and displaying the formatted data.

390



CHAPTER 20  PIPES

Custom Pipes: Example

Writing custom pipes is straightforward. However, some new syntax is introduced so
there are a few things to remember:

o The component that uses a custom pipe needs to declare the Pipe
class both as an import and specify it in the @Component annotation.

o The pipe class is prefixed by the @Pipe annotation. It also needs
to import the Pipe and PipeTransform, as well as implement the
PipeTransforminterface.

You can get the Angular CLI command ng generate pipe <pipe name> to generate
a custom pipe in a CLI-generated project. Ignore the <pipe name>.pipe.spec.ts file (it’s
for testing), but edit the <pipe name>.pipe.ts file:

ng generate pipe reverse

installing pipe
create src/app/reverse.pipe.spec.ts
create src/app/reverse.pipe.ts
update src/app/app.module.ts

Your custom pipe should be a TypeScript class that implements the PipeTransform
interface:

interface PipeTransform {
transform(value: any, ...args: any[]): any

}

The component shown in Figure 20-2 allows the user to reverse some text. It also has
an optional argument—the number of spaces to be put between each character of the
reversed text.

My name is eniaC leahciM

MynameiseniaCleahciM

Figure 20-2. Reversing text with a pipe

391



CHAPTER 20  PIPES

This will be example pipes-ex200:

1.

392

Build the app using the CLI: Use the following command:
ng new pipes-ex200
Startng serve: Use the following code:

cd pipes-ex200
ng serve

Open app: Open a web browser and navigate to localhost:4200.
You should see “app works!”

Generate pipe: Generate the custom pipe using the CLI:

ng generate pipe reverse

Edit pipe: Edit the file reverse.pipe.ts and change it to the
following:

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({
name: 'reverse'

1)

export class ReversePipe implements PipeTransform {

transform(value: any, args?: any): any {
let spaces = 0;

if (args){

spaces = parselnt(args);
}
let reversed = '';

for (let i=value.length-1;i>=0;i--){
reversed += value.substring(i, i+1);
reversed += Array(spaces + 1).join(' ");

}

return reversed;



CHAPTER 20

6. Edit component: Edit the file app.component.ts and change it to

the following:

import { Component } from '@angular/core’;
import { ReversePipe } from './reverse.pipe’;
@Component ({
selector: 'app-root',
template: °
<p>My name is {{name | reverse}}
<p>My name is {{name | reverse:5}}

~

)

styles: []
1)
export class AppComponent {
name: string = 'Michael Caine';

}

PIPES

The app should be working and displaying the formatted data. Note the following:

1.

The class ReversePipe implements the PipeTransforminterface
as any pipe would.

The class ReversePipe adds extra spaces by using the Array object
constructor. If you supply a single value to the constructor, it sets
the array length to that value. The join method then specifies a
string to separate each element of the array.

Summary

This short chapter showed how pipes can be useful. I use them in the following
circumstances:

We're going to step it up in the next chapter and cover more advanced subjects:

When I require data to be formatted in a standard manner
throughout the application—for example, currency.

When I want to debug some instance variables, I sometimes add
them to the template with a json pipe. This makes their current state
visible at all times so I can see how they change.

zones and change detection.

393



CHAPTER 21

Zones and Change
Detection

Angular uses a JavaScript module called Zone.js, the purpose of which is to produce an
execution context that persists across asynchronous tasks. Currently, the browser DOM
and JavaScript have a limited number of asynchronous activities, such as DOM events,

promises, and server calls. Zone.js can intercept these activities and give your code the

opportunity to take action before and after the asynchronous activity completes. This is
useful when you need to see all the information pertinent to that task, especially when

an error occurs.

Changes occur as a result of something, such as the following:

e A DOM event:. Example: someone clicks on something.

e Communication: Example: the browser gets data back from the

Server.
o A timer event happens: Example: refresh every 10 seconds.

When dealing with Model View Controller (MVC) remember that the Model is the
data, and the View displays the Data in the Model.

The purpose of change detection in Angular is to look for changes in the Model and
to ensure that the View (that is, the DOM) is kept up-to-date with it. Change detection
can get complicated because it needs to figure out when the View needs to be redrawn
when code is running.

The following is an example of some code that changes the Model. An HTTP call is
made to the server, and data is returned. A customer list is updated in the Model. So now
this change needs to be detected by Angular, and the Ul needs to be refreshed:

@Component ()
class App implements OnInit{

395
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_21



CHAPTER 21  ZONES AND CHANGE DETECTION

customers:Customer[] = [];
constructor(private http: Http) {}
ngOnInit() {
this.http.get('/customers)
.map(res => res.json())
.subscribe(customers => this.customers = customers);

How does Angular know that something may have changed and that it should look
for changes? Because NgZone tells it!

NgZone Is Zone.js for Angular

The NgZone class is a wrapper around the zone.js framework. The dependency injector
can also pass in the zone through constructor injection.

Event Loop and Messages

JavaScript has a concurrency model based on an event loop. JavaScript runtime contains
a message queue, which is a list of messages to be processed. Messages are taken out of
the queue and processed by the browser UI thread. So, the browser basically works in a
loop, picking up and processing messages to do things, as illustrated in Figure 21-1.

Ny

Wait for Process
Message Message

R

Figure 21-1. Eventloop

396



CHAPTER 21 ZONES AND CHANGE DETECTION

Browser Ul Thread

The browser Ul thread is a single thread that updates the user interface by running the
event loop code, processing messages. Each message is processed completely before
the next message is processed. Only one thread is used to update the user interface
(the document that the user views). If the browser Ul thread is overloaded, the browser

displays the message shown in Figure 21-2 (or one similar) to the user.

Windows Internet Explorer x|

'E Stop running this script?

& script on this page is causing Internet Explorer to run slowly.
If it continues to run, your computer might become
uNresponsive.

Figure 21-2. Browser Ul thread is overloaded

Monkey Patching

With NgZone/Zones.js, system JavaScript code is “monkey patched” (when it has to be) so
that it hooks into the event loop code to see what’s happening with the messages being
processed. This enables it to provide additional information about events occurring or
code being called in the zone—for example, an asynchronous server call completing.

Note A monkey patchis a way for a program to extend or modify supporting
system software locally. In terms of Angular and Zone.js, Zone will monkey patch
JavaScript core code when it has to in order to provide execution information.

NgZone emits onTurnStart and onTurnEnd events to inform observers of when
something is about to occur and when something has occurred.

NgZone is used by Angular to look for events that require change detection. In core
Angular code, Angular listens for the NgZone onTurnDone event. When this event fires,
Angular performs change detection on the model and updates the UL

397



CHAPTER 21  ZONES AND CHANGE DETECTION

Angular and Change Detection

Angular applications are built as multiple LEGO-like components, as I've put it before,
with a tree-like hierarchy. You have the main Application component, and then you have
subcomponents, and so forth.

Figure 21-3 illustrates the component UI, and Figure 21-4 illustrates the component

tree.

[Customer] Mark in Atlanta [Customer] Peter in Los Angeles [Customer] Doug 1n New York

Figure 21-3. Component Ul

®-
|
Customer
List
Customer Customer Customer
Mark Peter Doug

Figure 21-4. Component tree

Each Angular component has its own change detector for its variables. You don’t see
ithappen, but Angular creates the change detector classes when it runs. So, if you have a
tree of components, then you have a tree of change detectors. Core Angular code scans
the tree for changes (calling each change detector) from the bottom up to see what'’s
changed.

398



CHAPTER 21 ZONES AND CHANGE DETECTION

Note Mutable objects can change. Immutable objects can’t. Obviously, the
change detection is quicker when it runs against objects that don’t change. If you
want your Angular code to run faster, start looking into using immutable objects for
things that don’t change.

We know that NgZone is used for Change Detection in Angular. NgZone is a class
that’s useful to us (as well as to the system Angular code) because it allows us to run
asynchronous processes inside or outside the Angular zone.

When you run methods inside the Angular zone:

e They update the Angular UL
o They run slower.

We run asynchronous processes inside the Angular zone when we need the change
detection to occur and need to have the Ul constantly updated. To run asynchronous
processes inside the Angular zone, this we call the run method in the injected NGZone
object, passing in the process function.

When you run methods outside the Angular zone:

e Theydon’t update the Angular UL.
o Theyrun faster.

We run asynchronous processes outside the Angular zone when we don’t need the
change detection to occur and we don’t want the UI constantly updated. This may seem
unnecessary, but when ultimate performance is required, this should be considered. To
run asynchronous processes outside the Angular Zone, we call the runOutsideAngular
method in the injected NgZone object, passing in the process method.

Running Asynchronous Code within the Angular
Zone: Example

This example is based on the default Angular TypeScript Plunker application. The file
app.ts is shown in Figure 21-5.

399



CHAPTER 21  ZONES AND CHANGE DETECTION

1 I import {Component, NgZone} from 'angular2/core’ I

@Component({
selector: ‘my-app’,
providers: [],
template:
<button (click)="doCountInAngular()">Count</button>
{{counter}}

»
directives: []
b
export class App {
2| constructor(private _ngione: Ngione) { |
This.counter = ©;

}

doCountInAngular(){
this._ngZone.run(() => { this.initiateCount()};
}

4 initiateCount(){

this.counter = @;
var intervalfFn = () => { this.updateCount()};
this.interval = setInterval(intervalfn), 50@);

}

updateCount(){
this.counter++;
if (this.counter > 1000){
clearInterval(this.interval);
alert('done!!!');

for (var i=0;i<10;i++){
console.log(this.counter + " " + i);

}

| Count | 1000

Figure 21-5. Running asynchronous code within the Angular zone

Let’s go through the example:
1. ImportNgZone.
2. Use constructor injection to inject an instance of NgZone.

3. This method is fired by a Count button that runs the

initiateCount method using the injected NgZone. Notice that
it calls the method run to run the method inside the injected

Angular zone.

400



CHAPTER 21 ZONES AND CHANGE DETECTION

4. The methods initiateCount and updateCount produce console
logs as an asynchronous task, using the interval timer. They
update the counter and finish counting when the counter is over
1000.

When you run this app and click the Count button, you see the counter updating
1,2, 3,4... all the way up to 1000, and then the alert appears. The user interface shows
the count. That’s because the count is being performed in a function inside the Angular
zone, with NgZone watching the events and causing change detection. The change
detection detects that the count variable has changed and updates the UI, as shown in
Figure 21-6.

Count |0

Figure 21-6. count variable updates the Ul

Running Asynchronous Code Outside the Angular
Zone: Example

This example is also based on the default Angular TypeScript Plunker application. The
file app.ts is shown in Figure 21-7.

1. ImportNgZone.
2. Use constructor injection to inject an instance of NgZone.

3. This method is fired by Count button. It runs the initiateCount
method using the injected NgZone. Notice that it calls the method
runOutsideAngular to run the method outside the injected
Angular zone.

4. The methods initiateCount and updateCount produce console
logs as an asynchronous task, using the interval timer. They
update the counter and finish counting when the counter is over
1000.

401



CHAPTER 21  ZONES AND CHANGE DETECTION

1Iinport {Component, NgZone} from 'angular2/core I

@Component({
selector: ‘my-app’,
providers: [],
template: °

<button (click)="doCountOutsideAngular{)">Count</button>
{{counter}}

directives: ()
)

export class App {

2[ constructor(private _nglone: Nglone)] {
this.counter = ©;

}
3 dotountOutsideAngular( )l
// this._ngZone.run(() => { this.initiateCount())};
this._ngZone. runOutsxdeAngular(() => { this.initiateCount()};
}
ZI initiateCount(){
this.counter = 9;

var intervalFn = () => { this.updateCount()};
this.interval = setInterval(intervalFn), 5€9);
3

updateCount(){
this.counter++;
if (this.counter > 1000){
clearInterval(this.interval);
alert('done!!!");
}
for (var i=0;i<10;i++){
console.log(this.counter + "
}

+ 1);

i
¥

Figure 21-7. Running asynchronous code outside the Angular zone

When you run this application and click Count, you don’t see the counter change. The

user interface shows the count as 0 until the alert appears, as shown in Figure 21-8. That'’s

because the count is being performed in a function outside the Angular zone, without

NgZone watching the events and causing change detection. Notice how it’s a bit faster?

Count | 0

Figure 21-8. count variable not updated until alert

402



CHAPTER 21  ZONES AND CHANGE DETECTION

Summary

This chapter attempted to introduce some of the internal workings of Angular. It’s not
intended to cover every detail of this subject—that would require many chapters.

This chapter (briefly) introduced the concept of immutability, something you
need to know about, especially if you are going to do Functional Programming in the
future. Immutability is the concept of objects that can’t be modified once created. As a
developer, you need to consider using immutable objects whenever possible because
they have many benefits:

o They simplify coding (because there are fewer moving parts), and
you know that objects don’t change values.

e They work much better with the Angular change detection algorithm.

e When you restrict as much as possible the number of ways objects
can be changed in your application, you make your code simpler and
keep more control over what things are being changed.

o They minimize the side effects that sometimes occur when objects
are mutated.

e They work much better with multi-threading.

The next chapter will introduce testing your Angular code.

403



CHAPTER 22

Testing

This book is mainly about how to get started being productive with Angular, but it would
be incomplete without at least introducing ways to test the code that you write. The
testing framework is quite complicated, so don’t expect to know everything about it after
reading this chapter.

I'll introduce some of the concepts and then go into the details of writing code to
automate the testing of a project that was generated with the Angular CLI.

Unit testing is the testing of the smallest possible units of the application, either
in a manual or automated form. The point of unit testing is to ensure that the code is
performing as expected and that new code doesn’t break old code. The process of test-
driven development is the development of code in the following order:

1. Writing the test code (the test harness)
2. Writing application code to pass the tests

3. Cleaning up and refactoring application code to pass coding
standards

4. Check that it still passes the tests

This process should be applied to smaller units of code, and this process should
be repeated frequently. Unit tests are essential in the modern process of software
development.

Software development uses the process of developers checking out the latest code
from a central repository and working on it. After work is completed (and the code is
tested), the developers check in the completed code. Continual integration is the process
of integrating (or merging) all developer code into a shared codebase several times a day.
Integrating code as often as possible highlights merging issues quickly and avoids larger
code incompatibilities. The aim is to check out code for as short as time as possible and
check in and integrate the changes as soon as possible before someone changes things

too much in the meantime.

405
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_22



CHAPTER 22  TESTING

Figure 22-1 shows a (very general) diagram of the development process working.

It doesn’t take into account code branches, merging issues, and other factors.

Developer starts
working on ticket.

Developer checks out
Ticket done. latest code from
repository.

Build server runs tests Developer makes
and emails people changes on local
results. machine.

Developer checks in Developer runs unit
and marges changes to tests on local machine
repository. until tested ok.

Figure 22-1. The development process

Automating the unit tests takes some up-front work but in the long run saves people
time. Automated tests can find problems very quickly and they should be used at least in

the following two situations:

o When a user is about to check in code changes, they should invoke
the automated unit tests on their local machine to ensure that the
code is working as expected.

o The build server should invoke the automated unit tests whenever a
developer checks in code changes. The build server should also track
the results of these tests and let people know whether they passed or
failed.

406



CHAPTER 22  TESTING

Integration testing occurs after unit testing has occurred. It tests the combined
code, simulating a user running the complete application. This is a higher level of
testing—testing areas of the system without knowing anything about its structure or
implementation. Integration testing ensures that the application works as expected for
the user and that the component parts of the application work together.

Your Angular application is made up of components that have dependencies. You need
to develop your unit tests so that they test units of code in isolation. For example, if you
want to test a component that uses a service to get data from a server, you probably need to
test the component and service separately. You'll probably need to do the following:

e Write code to test the component, injecting it with a mock (dummy)
version of the service that acts in a predetermined manner. The
mock service simulates an output from the service. That way you can
test that the component processes the output from the service as
expected.

» Write code to test the service, injecting it with a mock version of
the communication layer (the back end) that talks to the server (for
example, the Http service). The mock communication layer simulates
connections, and these mock connections have the ability to simulate
aresponse from the server. That way, you don’t need a real server,
and you can test that the component processes the output from the
server as expected.

One thing that complicates testing is that a lot of the code we’re testing is
asynchronous, meaning it doesn’t block and wait until the code completes. The testing
library (and your testing code) has code to deal with asynchronous operations, and
this complicates things even further. Sometimes the code has to be run in a special
asynchronous zone to simulate these operations.

Karma

Karma is an automated test runner that was developed by the Angular team during the
development of AngularJS. Karma can run unit tests fast and on real browsers.

You use Karma to start a server on which a group of Jasmine tests are run. Karma
opens a web browser and automates it to perform tests, and you can see it running the
tests in that browser. Sometimes it even leaves the browser open after the tests.

407



CHAPTER 22  TESTING

When you build your CLI project, it creates the file karma.conf.js to allow you to
configure Karma for the project. Configuration options include the base path, which
test files to include/exclude, autowatch files, which browsers to test on, colors, timeouts,
testing framework (for example, Jasmine, covered in the next section), server hostname,
and port (for example, localhost:8080), logging, plugins, preprocessors, reporters, single
run, and so on.

Tip The single run configuration is useful if you want to leave your browser open
after tests finish. This is sometimes useful if there’s a failure and you need to see
what went on by looking at the browser’s developer tools.

Jasmine

Jasmine is an open source, automated, unit testing JavaScript framework that’s very
commonly used with Angular and other JavaScript libraries.

When you write Jasmine tests, you have to follow the Jasime way of doing things. You
write sets of described tests in .spec.ts files (one or more per file), and each described
set of tests contains multiple tests. Each test does something with the code it tests, gets a
result, and then checks the result for validity. Figure 22-2 illustrates the Jasmine structure.

[ [
Suite 1: (Jasmine Decribed set Suite 2: (Jamine Described set Suite 3: (Jasmine Decribed set
of Tests) of Tests) of Tests)

Figure 22-2. Jasmine structure
408



CHAPTER 22

Jasmine unit tests have a two-level structure:

A “described” suite of tests: Developers use the describe function
to set up a suite of tests that are executed together. For example,
connectivity tests. Notice that the describe method is also used
to provide the dependencies for the object to be tested. Variables
declared in a describe are available to any it block of code inside
the suite.

it blocks of code that perform tests inside the “described” suite of
tests: Developers use the it function to set up a test where code is
performed and a comparison occurs between the expected and
actual results. Developers use the expect method inside a test to set
result expectations. If they're met, the code passes the test—if not,

it fails. Jasmine uses “matchers” to compare expected and actual
results—for example, expect(a).toEqual(12):

describe("[The class you are about to test]", () => {

beforeEachProviders(() => {
return [Array of dependencies];
};
it("test1", injectAsync([TestComponentBuilder],
(tcb: TestComponentBuilder) => {

TESTING

return tcb.createAsync([The class you are about to test]).

then((fixture) => {

// test code ...
// expect a result

1
N);

it("test2", injectAsync([TestComponentBuilder], (tcb:
TestComponentBuilder) => {

return tcb.createAsync([The class you are about to test]).

then((fixture) => {

409



CHAPTER 22  TESTING

// test code ...
// expect a result

};
)

};

Jasmine Concepts

Table 22-1. Jasmine Concepts

Name Description Code Keyword

Suite Described set of tests that corresponds to anarea  describe
of code that needs testing. There is usually one
suite of tests per unit test file, such as app.
component.suite.ts. However, you can have more
than one described set of tests in a unit test file.

Spec A test that performs code and checks the result it
against expectations. There can be multiple specs
in a suite.

Expectations Used within a test to check the result. expect

Matchers Used by an expectation to specify the expectation ~ toBe, toEqual, toBeNull,
as arule. toContain, toThrow,
toThrowError, and so on

Table 22 are the Jasmine concepts you need to learn and the code keyword associated
with each concept. Take a look at the code for a basic Jasmine test (underneath the table)
and see how it corresponds to the concepts in the table.

describe("CalcUtils", function() { // suite
//Spec for sum operation
it("2 plus 2 equals 4", function() { // spec
var calc = new CalcUtils();
expect(calc.sum(2,2)) // expect
.toEqual(4); // matcher
D;

410



D

//Spec for sum operation with decimal
it("2.5 plus 2 equals 4.5", function() {
var calc = new CalcUtils();
expect(calc.sum(2.5,2))
.toEqual(4.5);

};

Jasmine Setup and Teardown

You have a suite of tests (described) which contains one or more tests (specs). Quite

CHAPTER 22  TESTING

// spec

// expect
// matcher

often the specs will be quite similar and will be testing the same object again and again.

This can cause repetitive code because in every spec you would be instantiating the

object to test, testing it, and then destroying it. You can see this in the code that follows
Table 22-1.
Jasmine offers a solution to this: the setup and teardown methods. These functions

are invoked immediately before and immediately after each test (spec) is run. This

enables you to set up all your tests and clean up all of your tests with as little code as

possible.
Take a look at how the setup cleans up the code we just looked at:

describe("CalcUtils", function() {

var calc;

//This will be called before running each spec

beforeEach(function() {
var calc = new CalcUtils();

1

describe("calculation tests", function(){

//Spec for sum operation
it("2 plus 2 equals 4", function() {
expect(calc.sum(2,2))
.toEqual(4);

1

//

//

//

//
//
//

suite

setup

suite

spec
expect
matcher

411



CHAPTER 22  TESTING

//Spec for sum operation with decimal

it("2 plus 2 equals 4", function() { // spec
expect(calc.sum(2.5,2)) // expect
.toEqual(4.5); // matcher
IOk

};
};

CLI

When we use the Angular CLI to generate our Angular project, it automatically (by
default) generates unit test code for you that works with Karma and Jasmine. For
example, when you generate the Angular project it generates an application component
called app.component.ts and a unit test file called app.component.spec.ts. This unit test
file already has methods stubbed out to unit test your component.

Running Unit Tests

When you issue the following command, Angular performs a compile of the project (the
one in the current working directory) then invokes Karma to run all the unit tests:

ng test

This command includes a file watcher. If you change one of the project files, it will
automatically rebuild the project and rerun the tests.

Unit Test Files

When you use the Angular CLI to generate an Angular project, the project generates unit
test files that use Karma and Jasmine. These unit tests files

o Typically end with .spec.ts.

o Follow the Jasmine format, having a describe block that contains a
block of it tests.

e Can be modified, allowing you to add more tests.

412



CHAPTER 22  TESTING

e Can be written from scratch, and Karma will pick up and run them

for you.

¢ Use many of the Angular testing objects in the Angular @angular/

core/testing module.

Dependency Injection

Each described suite of tests is kind of like a “mini module” because it runs code that

has dependencies and therefore needs to set them up like a module does (an Angular

@NgModule).

Angular Testing Objects

Angular provides a module @angular/core/testing that contains helper objects to make

it easier to write unit tests:

import { TestBed, async } from '@angular/core/testing';

Table 22-2 lists the objects you're most likely to use in the testing module.

Table 22-2. Angular Testing Objects

Name Type Description

TestBed Class Enables the developer to create an enclosure in which the code to be
tested can run and provides the following:

Instantiation of component within enclosure

Methods to control dependency injection for component
Methods to query the component’s DOM elements
Methods to invoke Angular change detection

Method to compile the components being tested

async Function It takes a parameter-less function and returns a function that becomes
the true argument to the beforeEach. It lest you perform the
initialization code in the beforeEach (the spec setup) asynchronously.

413



CHAPTER 22  TESTING

ComponentFixture

The TestBed method createComponent enables you to create the component inside a
testing enclosure and returns you an instance of a ComponentFixture object. One of
the reasons that the component fixture is very useful is that it provides access to the
component being debugged.

The debugElement property of ComponentFixture represents the Angular component
and its corresponding DOM elements. It contains the following properties shown in
Table 22-3.

Table 22-3. debugElement Properties

Property Description

componentInstance A reference to your component class, useful if you want to access instance
variables and methods within your component

nativeElement A reference to your component class’s corresponding html element in the
DOM, useful if you want to access the DOM to see how your component is
being rendered by the template

Componentinstance

Within the debugElement property of the fixture, the user can access the Angular
component via the componentInstance property. Once you access the debugElement you
can call your methods in your component to test it.

NativeElement

Also within the debugElement, the user can access the DOM element via the
nativeElement property. nativeElement gives us the root element of the HTML
generated by the Angular component. This root element is represented by an
HTMLElement object, which is a fully fledged object with many properties and methods.

The HTMLElement object is not Angular-specific, but it’s a very commonly used object
in web development. Refer to https://developer.mozilla.org/en-US/docs/Web/AP1/
HTMLElement for more information.

When you get the nativeElement for the debugElement, this returns the HTMLElement
object for your component, not the entire DOM!

414


https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement

CHAPTER 22  TESTING

Sometimes developers make the mistake of expecting this element to contain HTML

elements that are outside the scope of your component. They won’t be available!

Some of the more useful methods and properties of the HTMLE1ement are listed in

Table 22-4.

Table 22-4. HTMLElement Methods and Properties

Name Description

innerText Useful for returning the text inside the element. Remember that this

(property) element may include unexpected whitespace.

innerHTML Returns the HTML syntax of the markup inside the element belonging to

(property) the component.

outerHTML Returns the HTML syntax of the markup inside the element, including its

(property) descendants.

querySelector Returns the first element that’s a descendent of the element on which it’s

(method) invoked that matches the specified group of selectors. Useful for finding
an element inside the element belonging to the component. For example,
the following code expects that the button with CSS class button-
primary button is defined:
expect(element.querySelector("button.button-primary")).
toBeDefined();

querySelectorAll  Returns a NodelList of all elements descended from the element on

(method) which it’s invoked that match the specified group of CSS selectors. Useful
for finding sub-elements inside the element belonging to the component.
For example, this code gets a list of text-area elements in the element:
let textAreas = element.querySelectorAll("text-area");

getAttribute Returns an attribute (identified by name) for the element—for example,

([name]) disabled. The following code expects that the approveButton is

(method) disabled:

expect (approveButton.getAttribute("disabled"))
.toBeDefined();

415



CHAPTER 22  TESTING

CLI Unit Test: Examples

This first example won’t be exciting but it will show the generation of an example CLI

project and examine the generated test code. This will be example testing-ex100:

1. Build the app using the CLI: Use the following command:

ng new testing-ex100 --inline-template --inline-style
2. Navigate to folder: Use the following command:

cd testing-ex100

3. Open file: Open app.component.spec.ts and note the following:

¢ The beforeEach method is invoked before each spec. This
method configures the testing module to test the AppComponent
component.

o There are three specs (tests). Each one is invoked asynchronously
using the async method in the testing module.

o The first spec creates a fixture and then gets the component
instance from the debug element. It checks that the component is
truthy (that is, has an assigned value).

o The second spec creates a fixture and then gets the component
instance from the debug element. It checks that the component’s
title instance variable has the value ‘app!

e The third spec (test) creates a fixture then gets the component’s
element from the debug element. It checks that this element has
an ‘h1’ element that contains the value “welcome to app!”

4. Run tests: Use the following command:
ng test

Now let’s create a simple component (Figure 22-3) that allows you to increment a

counter. Then we’ll write a unit test for it.

416



CHAPTER 22  TESTING

Jasmine Z2.6.4

4 specs, @ failures

AppComponent
should create the app
should have as title '@’
should render '@' in a hl tag
should increment counter ten times

10

Increment

Figure 22-3. Incrementing a counter
This will be example testing-ex200:
1. Build the app using the CLI: Use the following command:
ng new testing-ex200 --inline-template --inline-style
2. Startng serve: Use the following code:

cd testing-ex200
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

You should see “welcome to app!”

4. Edit class: Edit the file app.component.ts and change it to the
following:

import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<h1>
{{counter}}
</h1>

417



CHAPTER 22

418

TESTING

<button (click)="incrementCounter()">Increment
Counter</button>

~

styles: []

}

export class AppComponent {
counter = 0;

incrementCounter(){
this.counter++;

}
}

Edit unit test: Edit the file app.component.spec.ts and change it to
the following:

import { TestBed, async } from '@angular/core/testing’;
import { AppComponent } from './app.component';

describe('AppComponent', () => {
beforekach(async(() => {
TestBed.configureTestingModule({
declarations: [
AppComponent
]J

}).compileComponents();

1)

it('should create the app', async(() => {
const fixture = TestBed.createComponent(AppComponent);
const app = fixture.debugElement.componentInstance;
expect(app).toBeTruthy();

1);

it("should have as title '0'", async(() => {
const fixture = TestBed.createComponent(AppComponent);
const app = fixture.debugElement.componentInstance;
expect(app.counter).toEqual(0);

D)



CHAPTER 22  TESTING

it("should render '0' in a h1 tag™, async(() => {
const fixture = TestBed.createComponent(AppComponent);
fixture.detectChanges();
const compiled = fixture.debugElement.nativeElement;
expect(compiled.querySelector('h1").textContent).toContain('0");

)

it('should increment counter ten times', async(() => {

const fixture = TestBed.createComponent(AppComponent);

fixture.detectChanges();

const compiled = fixture.debugElement.nativeElement;

for (let i=0;i<10;i++){
compiled.querySelector('button').click();
fixture.detectChanges();
const nbrStr = (i +1) + '';
expect(compiled.querySelector('h1').textContent).toContain(nbrStr);
}

N);
};

6. Run tests: Use the following command:
ng test

Note that there was an additional test added at the end that clicks the Increment
button ten times. Note also that the additional test doesn’t work until the fixture.
detectChanges method is called to perform change detection once the button is clicked.

Testing with Fake Http Responses
Introduction

In the real world, our Angular apps have to talk all the time to servers using HTTP. When
we write unit tests, we cannot assume that there is an API endpoint available for us to
test against. All the servers may be down. There may be no spare servers. What we need
to do is to go without real servers and mock (fake) the HTTP communication between
the our Angular app and the server. In this manner we can write tests to see how our App
deals with a variety of responses from the HTTP server.

419



CHAPTER 22  TESTING

Luckily for us, the Google engineers behind Angular have made our life much easier,
especially now we have Angular 5 and the HttpClient module, which resides in the @
angular/common/http namespace. This new HttpClient module has its own new testing
module called HttpClientTestingModule, which resides in the @angular/common/http/
testing namespace and can be used to create fake http responses for your unit tests.

How to Use HttpClientTestingModule to Create Fake Http
Responses

1. Import HttpClientTestingModule into your unit test.
2. Inject HttpClient and HttpClientTestingModule into your tests.

3. Setup a test request object by calling one of the methods
below to tell HttpClientTestingModule how many http
requests it should expect to receive in the test (see below). The
HttpClientTestingModule will assert that the number of requests it
receives matches what it expects.

# of Requests HttpClientTestingModule method
Unsure match

0 expectNone

1 expectOne

4. You call the ‘flush’ method on the test request object to send back
the mock result.

Testing Service that Uses HitpClient: Example

For the third example, we'll create a simple component that uses a service to enable you
to search for trails using an http service (Figure 22-4). Then we’ll write a unit test for the

service and test how it processes server responses.

420



1.

processes server responses also.

Trail Finder

Atlanta Find Me a Trail

Name: Boat Rock
State: Georgia

Directions: From the intersection of Interstate 20 and Fulton
Industrial Boulevard go south for 3.8 miles, turn left onto
Bakers Ferry Road SW, go 0.5 miles, turn left on Boat Rock
Road SW, go 0.4 miles, look for small gravel driveway on the
right, pull into small 6 car parking lot. There is a small kiosk
at the edge of the lot with a rough map of the area and a trail
leading up to the boulders. The lake area is located a few
hundred yards to the southeast (see drtopo map).&lt;br

/& gti&ltbr /&gt &Itbr /&gt &ltbr /&pt&ltbr /&gt é&ltbr
/&gt;1220 Boat Rock Road Mapquest Link

Activities:

+ hiking For those of us who like hiking AND rock
climbing! Very cool place just inside of Atlanta. We
took our children here and they could climb some of the
boulders. A great experience for families and it's fun
getting to watch the expert climbers on the rocks!

Trail Finder

Atlantax Find Me a Trail

‘We could not find a trail here. :(

Figure 22-4. Component to search for trails

This will be example testing-ex300:

1.

Build the app using the CLI: Use the following code:

Startng serve: Use the following code:

cd testing-ex300

You should see “welcome to app!”

CHAPTER 22  TESTING

A unit test for the component using the service and test how it

ng new testing-ex300 --inline-template --inline-style

Open app: Open a web browser and navigate to localhost:4200.

421



CHAPTER 22  TESTING

4. Edit module: Edit the file app.module.ts and change it to the
following:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms’;

import { HttpClientModule, HttpClient } from
'@angular/common/http’;

import { AppComponent } from './app.component’;

import { Service } from './service';

@NgModule({

declarations: [
AppComponent

])

imports: [
BrowserModule,
FormsModule,
HttpClientModule

1,

providers: [HttpClient, Service],

bootstrap: [AppComponent]

1)
export class AppModule { }

5. Edit class: Edit the file app.component.ts and change it to the
following:

import { Component } from '@angular/core’;
import { Service } from './service';
import { FormsModule } from '@angular/forms';

@Component ({
selector: 'app-root',
template: °
<h2>Trail Finder</h2>
<input [(ngModel)]=" search" placeholder="city">
<button (click)="doSearch()">Find Me a Trail</button>

422



CHAPTER 22  TESTING

<div id="notFound" class="notFound" *ngIf=" searched &&
| result">
We could not find a trail here. :(
</div>
<div class="found" *ngIf="_searched && result">
<p id="name">Name: {{ result?.name}}</p>
<p id="state">State: {{ result?.state}}</p>
<p id="directions">Directions: {{ result?.directions}}</p>
<p>Activities:</p>
<ul id="activities" *ngIf="_result?.activities">
<li *ngFor="let activity of _result.activities">
{{activity.activity type name}} {{activity.description}}
</1i>
</ul>

~

)

styles: [".found {
border: 1px solid black;
background-color: #8be591;
color: black;
margin: 10px;
padding: 10px;
I
“.notFound {
border: 1px solid black;
background-color: #d13449;
color: white;
margin: 10px;
padding: 10px;
1]
)
export class AppComponent {
_search = 'Atlanta’;
_searched = false;

_result = '';

constructor(private service: Service) {

}

423



CHAPTER 22  TESTING

doSearch() {
this. service.search(this. search).subscribe(
res => {
this. result = res;
})
err => {
console.log(err);
}J
0 =1
this. searched = true;
}
)5
}

6. Add service class: Create the file service.ts and change it to the
following:

import { Injectable } from '@angular/core';
import { HttpClient, HttpHeaders } from '@angular/common/http’;
import 'rxjs/Rx';

@Injectable()
export class Service {
constructor(private http: HttpClient){}
search(search) {
const concatenatedUrl: string =
"https://trailapi-trailapi.p.mashape.com?q[city cont]=" +
encodeURIComponent (search);
const mashapeKey = 'OxWYjpdztcmsheZU9AWLNQcE9g9wpiqd
RkFjsneaEp2Yf68nYH';
const httpHeaders: HttpHeaders = new HttpHeaders(
{'Content-Type': 'application/json',
'X-Mashape-Key': mashapeKey});
return this. http
.get<any>(concatenatedUrl, { headers: httpHeaders })
.map(res => {

424



7.

8.

CHAPTER 22  TESTING

// return the first place.
if ((res) && (res['places']) 8& (res['places'].length) 8&&
(res['places'].length > 0)){
return res['places'][0];
telse{
// otherwise return nothing
return undefined;

}
1)

.catch(err => {
console.log(‘error',err)
return undefined;

};

The app should now function: Go back to your web browser and
navigate to localhost:4200. You should be able to search for trails.

Add service unit test: Create the file service.spec.ts and change it to
the following:

import { TestBed, getTestBed, async } from '@angular/core/
testing’;

import { HttpClientTestingModule, HttpTestingController } from
'@angular/common/http/testing’;

import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

import { Service } from './service';

import { HttpClientModule } from '@angular/common/http/src/
module';

import 'rxjs/Rx';

describe('AppComponent (data found)', () => {
let service: Service;
let httpMock: HttpTestingController;

beforeEach(() => {

425



CHAPTER 22  TESTING

TestBed.configureTestingModule({
imports: [HttpClientTestingModule],
providers: [Service]

};

service = TestBed.get(Service);
httpMock = TestBed.get(HttpTestingController);

};

it('should return the first place if there is one', async() => {
service.search("Atlanta").subscribe((res: any) => {
expect(res.name).toContain('Boat Rock');
expect(res.city).toBe('Atlanta’);
expect(res.state).toBe('Georgia');
expect(res.country).toBe('United States');
expect(res.directions).toContain('Interstate 20 and Fulton
Industrial');
expect(res.activities.length).toBe(1);
D;
const req = httpMock.expectOne('https://trailapi-trailapi.p.
mashape.com?q[city cont]=Atlanta');
const mockData =
{
"places":[
{
"city":"Atlanta",
"state":"Georgia",
"country":"United States",
"name" :"Boat Rock",
"parent_id":null,
"unique_id":5370,
"directions":"From the intersection of Interstate
20 and Fulton Industrial Boulevard go south for 3.8
miles, turn left onto Bakers Ferry Road SW, go 0.5
miles, turn left on Boat Rock Road SW, go 0.4 miles,
look for small gravel driveway on the right, pull

426



CHAPTER 22  TESTING

into small 6 car parking lot. There is a small kiosk
at the edge of the lot with a rough map of the area

and a

trail leading up to the boulders. The lake area

is located a few hundred yards to the southeast (see
drtopo map).<br /><br /><br /><br /><br /><br />1220
Boat Rock Road Mapquest Link ",

"lat":
Illonll:

0.0,
0.0,

"description”:null,
"date_created":null,
"children":|[

1,

"activities":[

{

"name" :"Boat Rock",
"unique_id":"2-1012",
"place id":5370,
"activity type id":2,
"activity type name":"hiking",
"url":"http://www.tripleblaze.com/trail.
php?c=3&i=1012",
"attribs":{
"\"length\"":"\"1\""
}J
"description”:"For those of us who like hiking
AND rock climbing! Very cool place just inside
of Atlanta. We took our children here and they
could climb some of the boulders. A great
experience for families and it's fun getting to
watch the expert climbers on the rocks!",
"length":1.0,
"activity type":{
"created at":"2012-08-15T16:12:217",
"id":2,
"name":"hiking",

427



CHAPTER 22  TESTING

"updated at":"2012-08-15T16:12:21Z"
})
"thumbnail”:"http://images.tripleblaze.
com/2009/07/Myspace-Pictures-130-0.jpg",
"rank":null,

"rating":0.0
}
]
}
]

}

req.flush(mockData); // valid response from server

httpMock.verify();
;s

it('should return undefined if there is empty response from the
server', async() => {
service.search("Atlanta").subscribe((res: any) => {
expect(res).toBe(undefined);
1;
const req = httpMock.expectOne('https://trailapi-
trailapi.p.mashape.com?q[city cont]=Atlanta');
req.flush('"'); // empty response from server
httpMock.verify();

};

it('should return undefined if there is empty response object
from the server', async() => {
service.search("Atlanta").subscribe((res: any) => {
expect(res).toBe(undefined);
IOk
const req = httpMock.expectOne('https://trailapi-
trailapi.p.mashape.com?q[city cont]=Atlanta');
req.flush('{}"); // empty response object from server
httpMock.verify();

})s
};

428



CHAPTER 22

9. Run tests: Use the following command:

ng test

Note the following:

In the ‘beforeEach’ (fired before each ‘it test) we:

o Configure our test bed to import HttpClientTestingModule, rather
than HttpClient. This will enable us to mock Http responses.

o We get areference to the service.
e We get a reference to the http testing controller.

In each test, we set expectations on the subscription to the
observable response from the service so that it can test the data
coming back:

service.search("Atlanta").subscribe((res: any) => {
expect(res).toBe(undefined);

};

In each test, we call the method ‘expectOne’ in the http testing
controller to tell it to expect one http request and what its URI should be:

const req = httpMock.expectOne( https://trailapi-
trailapi.p.mashape.com?q[city cont]=Atlanta’);

The ‘expectOne’ method returns a TestRequest object back. On the
next line, we tell the TestRequest to ‘flush’ back a response (in this
case an empty one):

req.flush('');

After using the ‘flush’ method to send back a mock response, we call
the ‘verify’ method to ensure no Http requests are outstanding:

httpMock.verify();

TESTING

429



CHAPTER 22  TESTING

Testing Component that Uses Service: Example

For the fourth example, we’ll build upon the previous example. We will add the unit test
for the component that uses the service to enable you to search for trails (Figure 22-4).

1. Add component test class: Create the file app.component.spec.ts
and change it to the following:

import { TestBed, getTestBed, async } from '@angular/core/testing’;
import { HttpClientTestingModule, HttpTestingController } from
'@angular/common/http/testing’;

import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component’;

import { Service } from './service';

import { HttpClient, HttpClientModule } from '@angular/common/http’;
import 'rxjs/Rx';

describe('AppComponent (data found)', () => {
let service: Service;
let httpMock: HttpTestingController;
let fixture, app, compiled;

beforeEach(() => {

TestBed.configureTestingModule({
declarations: [AppComponent],
imports: [FormsModule, HttpClientTestingModule],
providers: [HttpClient, Service]
}).compileComponents();

service = TestBed.get(Service);
httpMock = TestBed.get(HttpTestingController);

fixture = TestBed.createComponent(AppComponent);
app = fixture.debugElement.componentInstance;
expect(app).toBeTruthy();
fixture.detectChanges();

430



CHAPTER 22  TESTING

compiled = fixture.debugElement.nativeElement;
compiled.querySelector('button').click();

};

it('should display the first place if there is one', async() => {

const req = httpMock.expectOne('https://trailapi-trailapi.
p.mashape.com?q[city cont]=Atlanta');
const mockData =

{

"places":[

{

"city":"Atlanta",

"state":"Georgia",

"country":"United States",

"name" :"Boat Rock",

"parent_id":null,

"unique_id":5370,

"directions":"From the intersection of Interstate 20 and
Fulton Industrial Boulevard go south for 3.8 miles, turn
left onto Bakers Ferry Road SW, go 0.5 miles, turn left
on Boat Rock Road SW, go 0.4 miles, look for small gravel
driveway on the right, pull into small 6 car parking
lot. There is a small kiosk at the edge of the lot with
a rough map of the area and a trail leading up to the
boulders. The lake area is located a few hundred yards
to the southeast (see drtopo map).<br /><br /><br /><br
/><br /><br />1220 Boat Rock Road Mapquest Link ",
"lat":0.0,

"lon":0.0,

"description”:null,

"date created":null,

"children":[

])

"activities":[

{

431



CHAPTER 22  TESTING

"name":"Boat Rock",
"unique_id":"2-1012",
"place_id":5370,
"activity type id":2,
"activity type name":"hiking",
"url":"http://www.tripleblaze.com/trail.
php?c=3&i=1012",
"attribs":{
"\"length\"":"\"1\""
})
"description”:"For those of us who like hiking
AND rock climbing! Very cool place just inside of
Atlanta. We took our children here and they could
climb some of the boulders. A great experience for
families and it's fun getting to watch the expert
climbers on the rocks!",
"length":1.0,
"activity type":{
"created at":"2012-08-15T16:12:212",
"id":2,
"name":"hiking",
"updated at":"2012-08-15T16:12:217"
})
"thumbnail":"http://images.tripleblaze.
com/2009/07/Myspace-Pictures-130-0.jpg",

"rank":null,
"rating":0.0
}
]
}
]

}

req.flush(mockData);

httpMock.verify();

fixture.detectChanges();

432



CHAPTER 22  TESTING

expect(compiled.querySelector('#notFound')).toBeNull();

expect(compiled.querySelector('#name').textContent).
toContain('Boat Rock');

expect(compiled.querySelector('#state").textContent).
toContain('Georgia');

};

it('should display a not found message if there is empty
response from the server', async() => {
const req = httpMock.expectOne('https://trailapi-
trailapi.p.mashape.com?q
[city cont]=Atlanta');
req.flush('');
httpMock.verify();

fixture.detectChanges();

expect(compiled.querySelector('#notFound').textContent).
toContain('We could not find a trail here. :(');

expect(compiled.querySelector('#name')).toBeNull();

expect(compiled.querySelector('#state')).toBeNull();

};

it('should display a not found message undefined if there is
empty response object from the server', async() => {
const req = httpMock.expectOne( https://trailapi-
trailapi.p.mashape.com?q[city cont]=Atlanta');
req.flush('{}");
httpMock.verify();

fixture.detectChanges();

expect(compiled.querySelector('#notFound').textContent).
toContain('We could not find a trail here. :(');

expect(compiled.querySelector('#name')).toBeNull();

expect(compiled.querySelector('#state')).toBeNull();

};
};

433



CHAPTER 22  TESTING

434

2. Run tests: Use the following command:

ng test

Note the following:

e Inthe ‘beforeEach’ (fired before each ‘it’ test) we:

Configure our test bed to import the FormsModule (needed by
the Component to handle input) and HttpClientTestingModule.
The HttpClientTestingModule will enable us to mock Http
responses. We also setup the HttpClient and Service as providers.
Note that we call ‘compileComponents’ to ensure that any
components are compiled and readied.

We get a reference to the service.
We get a reference to the http testing controller.
We create an instance of the AppComponent in the test bed.

We detect changes to allow Angular to perform any change
detection it requires at this point.

We get a reference to the DOM element for the component.

We get a reference to the button inside the DOM element and we
click it. This simulates the user clicking the ‘search’ button.

e Ineach testwe:

Setup different responses to the same search in a similar manner
to the previous example.

We detect changes to allow Angular to perform any change
detection it requires at this point. Angular needs to redraw the ui
to reflect any changes in the model due to the response. Do not
leave this line out!

We check that the DOM elements correspond to the expected
result.



CHAPTER 22  TESTING

Summary

You could write whole books about testing software—in fact, nany people have. It’s a
complicated subject.

Obviously it’s better to write more tests, and testing is a good thing. For example, unit
tests are great if you have to refactor (or design) your code. If the code you refactor is well
covered with unit tests and you change your code and it still passes the tests, this gives
you more confidence in the correctness of your refactoring.

Writing testing code can be difficult and complicated and can take a great deal of
time, so I suggest you think about focusing your testing on the most important parts of
your code: where your code performs calculations, where it applies the business rules,
and so on. You need to write the essential tests that focus on the most important parts
of your code. After that, you can prioritize the testing of the rest of the application and
adjust the amount of time spent writing tests according to the amount of time available.

The next chapter covers view encapsulation and other advanced topics.

435



CHAPTER 23

More Advanced Topics

This chapter throws together introductions to several more advanced Angular topics.

View Encapsulation

Remember how you can apply styles to a component using the styles or styleUrls
properties of the @Component annotation? The meaning of the word encapsulation is “the
action of enclosing something in or as if in a capsule.”
Angular view encapsulation has to do with which method Angular uses to enclose these
styles (the ones you applied the styles or styleUrls properties to) with the component.
Why is view encapsulation required? When you use the styles or styleUrls properties
to style a component, Angular adds styling code into a style tag in the head part of the
HTML document. That’s fine, but you need to watch out for a few things. What happens
if you have conflicting CSS style rules in different components? What if (for example) you
have .h2 {color:red}in one component and .h2 {color:green} in another component?
If your components are using a Shadow DOM (or Emulated Shadow DOM) you don’t
need to worry about these conflicting styles. You're probably using a Shadow DOM (or at
least an Emulated Shadow DOM) because that’s what Angular 4 gives you by default.
However, you need to know about Shadow DOMs because if your components aren’t
using a Shadow DOM (or Emulated Shadow DOM)), then these conflicting styles could
cause you headaches.

Shadow DOMs

Scope has been a problem for some time on the browser. Developers have been able to
make sweeping global changes to HTML documents easily, with little work. They can
add a few lines of CSS and impact many DOM elements immediately. That’s powerful
but can leave your component’s style easy to override or break accidentally.

437
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_23



CHAPTER 23  MORE ADVANCED TOPICS

Shadow DOM is a new emerging standard on the web. Shadow DOMs work on most
browsers (except for Internet Explorer). The idea behind Shadow DOM is to give developers
the option of creating components with their own separate DOM trees, encapsulated away
from the other components, contained within host elements. This lets developers have
styles “scoped” to just that single component that can’t affect the rest of the document.

When you write a component, you don’t have to use a Shadow DOM, but it’s an option
that gives you control using the encapsulation option of the @Component annotation.

Component Encapsulation

The encapsulation option of the @Component annotation gives the developer control
over the level of view encapsulation—in other words, to implement a Shadow DOM or
not. Table 23-1 shows three variations of the option.

Table 23-1. Encapsulation Option

Option Description

ViewEncapsulation.Emulated Emulated Shadow DOM, the default mode for Angular
ViewEncapsulation.Native  Native Shadow DOM

ViewEncapsulation.None No Shadow DOM at all

ViewEncapsulation.Emulated: Example

Let’s create an example component with a style and specify the ViewEncapsulation as
Emulated. This is the default mode for Angular. This will be example advanced-ex100:

1. Build the app using the CLI: Use the following command:

ng new advanced-ex100 --inline-template --inline-style

438



CHAPTER 23  MORE ADVANCED TOPICS

2. Startng serve: Use the following code:

cd advanced-ex100
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'H

You should see “app works

4. Edit component: Edit the file app.component.ts and change it to
the following:

import { Component, ViewEncapsulation } from '@angular/core’;
@Component ({
selector: 'app-root',
template: °
<h1>
{{title}}
</h1>

N

)
styles: ['h1 { color: red }'],
encapsulation: ViewEncapsulation.Emulated
9
export class AppComponent {
title = 'app';
}

The app should be working and displaying the word app in red. Figure 23-1 shows
the document.

439



CHAPTER 23  MORE ADVANCED TOPICS

<html lang="en">
¥ <head>
<meta charset="utf-8">
<title>Ch25Ex100</title>
<base href="/">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">
v <style type="text/css">
/* You can add global styles to this file, and also import other style files %/
</style>
<style>h1[_ngcontent-c@] { color: red }</style>
</head>
¥ <body=>
v <app-root _nghost-c® ng-version="4.3.1">
<h1l _ngcontent-c@>

app
</hl>

</app-root>
<script type="text/javascript" src="inline.bundle.js"></script>
<script type="text/javascript" src="polyfills.bundle.js"></script>
<script type="text/javascript" src="styles.bundle.js"></script>
<script type="text/javascript" src="vendor.bundle.js"=</script=>
<script type="text/javascript" src="main.bundle.js"></script>
</body>
</html>

Figure 23-1. ViewEncapsulation.Emulated

Asyou can see, the style is written to the head of the document. Also Angular rewrote
our style for the component, adding an identifier to both the style and the component
to link just the two together and avoid conflicts with other components with other
identifiers. In this case, the identifier is _ngcontent-co.

ViewEncapsulation.Native: Example

Let’s create an example component with a style and specify the ViewEncapsulation as
Native. This will be example advanced-ex200:

1. Build the app using the CLI: Use the following command:

ng new advanced-ex200 --inline-template --inline-style

440



CHAPTER 23  MORE ADVANCED TOPICS

2. Startng serve: Use the following code:

cd advanced-ex200
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'H

You should see “app works

4. Edit component: Edit the file app.component.ts and change it to
the following:

import { Component, ViewEncapsulation } from '@angular/core’;

@Component ({
selector: 'app-root',
template: °
<h1>

{{title}}

</h1>

N

)
styles: ['h1 { color: red }'],
encapsulation: ViewEncapsulation.Native
1))
export class AppComponent {
title = 'app';
}

The app should be working and displaying the word app in red. Figure 23-2 shows
the document.

441



CHAPTER 23  MORE ADVANCED TOPICS

<html lang="en">
¥ <head>
<meta charset="utf-8">
<title>Ch25Ex200</title>
<base href="/">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">
v <style type="text/css'>
/* You can add global styles to this file, and also import other style files %/
</style=
</head>
¥ <body=
v <app-root ng-version="4.3,1">
v #shadow-root (open)
<style>hl { color: red }</style>
<h1l>

app
</hl>

</app-root>
<script type="text/javascript" src="inline.bundle.js"></script=>
<script type="text/javascript" src="polyfills.bundle.js"></script>
<script type="text/javascript" src="styles.bundle.js"></script=>
<script type="text/javascript" src="vendor.bundle.js"></script>
<script type="text/javascript" src="main.bundle.js"></script>
</body=
</html>

Figure 23-2. ViewEncapsulation.Native

The style is no longer written to the head of the document—instead it’s written inside
the component’s Shadow DOM. To see this output, you must turn on Display Shadow
DOM in your browser. Now it’s easy to see how your styles are only applied to the
component, which resides in the host element app-root.

ViewEncapsulation.None: Example

Let’s now create an example component with a style and specify the ViewEncapsulation
as None. This will be example advanced-ex300:

1. Build the app using the CLI: Use the following command:

ng new advanced-ex300 --inline-template --inline-style

442



CHAPTER 23  MORE ADVANCED TOPICS

2. Startng serve: Use the following code:

cd advanced-ex300
ng serve

3. Open app: Open a web browser and navigate to localhost:4200.

'H

You should see “app works

4. Edit component: Edit the file app.component.ts and change it to
the following:

import { Component, ViewEncapsulation } from '@angular/core’;

@Component ({
selector: 'app-root',
template: °
<h1>

{{title}}

</h1>

N

)
styles: ['h1 { color: red }'],
encapsulation: ViewEncapsulation.None
1))
export class AppComponent {
title = 'app';
}

The app should be working and displaying the word app in red. Figure 23-3 shows
the document.

443



CHAPTER 23  MORE ADVANCED TOPICS

<html lang="en">
¥ <head>
<meta charset="utf-8">
<title>Ch25Ex300</title>
<base href="/">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">
v <style type="text/css">
/* You can add global styles to this file, and also import other style files */
</style>
<style>hl { color: red }</style>
</head>
¥ <body=
v <app-root ng-version="4,3.1">
<hl>
app
</h1>
</app-root=
<script type="text/javascript" src="inline.bundle.js"></script=
<script type="text/javascript" src="polyfills.bundle.js"></script=
<script type="text/javascript" src="styles.bundle.js"></script>
<script type="text/javascript" src="vendor.bundle.js"></script>
<script type="text/javascript" src="main.bundle.js"></script>
</body=>
</html>

Figure 23-3. ViewEncapsulation.None

The style is written to the Head of the document and this style applies to entire
document, possibly conflicting with other styles from other components. Be careful with
this mode.

Angular offers you the best of both worlds: view encapsulation as default plus the
ability to share styles. Your component-specific styles are protected for you even if you
don’t add the encapsulation specification to the @Component annotation.

If you need to share styles in your components, you can use the styleUrls
specification in your @Component annotation to specify shared common style files.

Styling Content Children

Remember how you can apply styles to a component using the styles or styleUrls
properties of the @Component annotation? These styles only apply to the HTML in the
component’s own template. What happens if you go get HTML content from the server
and you inject this content into your component dynamically? How do you style that?

444



CHAPTER 23  MORE ADVANCED TOPICS

The answer is that you use special style tags to apply styles to your component and
its sub-elements (like the HTML content from the server, for example). For example, the
following style rule styles all the h3 elements in your component and its sub-elements:

thost /deep/ h3 { font-style: italic; }

Summary

This chapter introduced the concept of view encapsulation and discussed how it’s
implemented in Angular. It may not sound very important, but you should know about it
because it can affect how you write your CSS styling.

We're getting near the end. The final chapter is about different Angular resources
that are available to further sharpen your Angular skills in the future.

445



CHAPTER 24

Resources

I hope this book has turned out to be useful to you. I didn’t write it in a vacuum—I relied
on many sources of information. I'd like to share a few resources that can help you in
your Angular development.

Angular Official Website

The official Angular website is at https://angular. io, the home page of which is shown
in Figure 24-1. It has a ton of great information and is well laid out. This should be your
starting point for any Angular research.

L - T ——— Lan

+ - C | B biipslangulek SlEo @ E
I Apes @ Anguled Webpacs | [ [ Arguaer and Boost Covgrery [ oS [ Tasea wa Feen (G Aguiwr (D Poccass B ace =

A NGULAR FEATURES  DOCS  ABOUT  CONTRIBUTE  SUPPORT  NEWS

Fast Mobile Flexible

Figure 24-1. Angular website

447
© Mark Clow 2018

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8_24


https://angular.io/

CHAPTER 24  RESOURCES

I've found the API Preview page at https://angular.io/docs/ts/latest/api/ to
be especially useful. Type in what you're looking for, and it displays the search results.
These search results include the objects that match the search, grouped by their
packages. This package information is useful for writing the imports at the top of the
classes. When you click an object in the search results, it shows you detailed information
about its APL

GitHub

GitHub, located at https://github.com, is a popular web-based Git repository hosting
service. Developers use it to publish their code and manage it. GitHub offers paid and
free accounts. The paid accounts enjoy the advantage of private repositories. But the
free accounts are popular and are frequently used when people are writing open source
software projects. GitHub reports more than 12 million users and more than 31 million
repositories, making it the largest host of source code in the world.

Note Check out https://github.com/markclow for code samples and the
example projects from this book.

Gitis a widely used source code-management system for software development.
Unlike older, more conventional source code management systems, Git allows
developers to work in a distributed manner, managing their own local repositories on
their computers, with or without a network. There’s no “central” repository—there are
only “peer” distributed repositories. Once a developer has completed code changes, they
can merge their changes into shared repositories.

Angular-Related Blogs

Table 24-1 lists some good Angular-related blogs you may want to follow.

448


https://angular.io/docs/ts/latest/api/
https://github.com/
https://github.com/markclow

CHAPTER 24  RESOURCES

Table 24-1. Angular-related Blogs

Blog Address Description

http://blog.thoughtram. Advanced Angular articles
io

https://toddmotto.com Advanced Angular articles
http://victorsavkin.com Angular articles

http://blog.jhades.org  Lots of JavaScript and
Angular articles

http://johnpapa.net Lots of articles, including
those for Angular

Angular Air

Angular Air is a superb video podcast about Angular: check it out at waw. youtube.com/
channel/UCdCOpvRk11sBk26ePGDPLpQ.

Summary

I hope you enjoyed the book. If you find any code that doesn’t work, send me an email at
markclow@hotmail.com and I will fix it. And if you feel I've left something valuable out
of this book, please feel free to email me about that.

That’s all, folks! I hope this book has been useful and that you download and use the
code examples from GitHub (see earlier in this chapter). I certainly that site a lot when
I'm working.

I'm very fortunate to enjoy doing what I'm doing. I hope you feel the same about
your work and that the love of your profession keeps you motivated to keep studying.

I wish you the best in your endeavors. Never get discouraged: doing great things is
difficult!

449


http://www.youtube.com/channel/UCdCOpvRk1lsBk26ePGDPLpQ
http://www.youtube.com/channel/UCdCOpvRk1lsBk26ePGDPLpQ

Index

A

Angular

CLI, 77, 412

component, 89

detection, 398-399

Http client, 320-321

module system, 119
deployment, 130
ex100, 123-126, 128-129
feature module, 122-123
Node commands, 131
root module, 121
routing module, 122
shared module, 123
Start project, 120-121

pipes
combining date formats, 388
currency, 386
date, 386
json, 388
lowercase, 385
percentage, 386
predefined date formats, 387
shortdate, 386
UK pound currency, 386
uppercase, 385
variety of, 388, 390

uses observables, 310

© Mark Clow 2018

Angular]S
vs. Angular
JavaScript using JavaScript
engines, 18
platform, 17
semantic versioning, 16-17
shims and polyfills, 18
controllers and components, 22
dependency and constructor
injection, 22-23
forms, 24
modules, 21
module system, 116
scope, controllers, and components, 24
templates, 25
Annotations, 91
app.component.spec.ts, 412
Application component, 89
Asynchronous data streams
event-based reactive programs, 291
observable sequences, 292
observers, 292-294
operators
buffer, 300
debounce, 302-303
distinct, 304
filter, 304
from, 298
interval, 298

451

M. Clow, Angular 5 Projects, https://doi.org/10.1007/978-1-4842-3279-8


https://doi.org/10.1007/978-1-4842-3279-8

INDEX

Asynchronous data streams (cont.)

map, 301
of (Was just), 299
range, 299
repeat, 299
scan, 301
share, 306-307
take, 305
timer, 300

subscription, 295

Asynchronous JavaScript and XML (AJAX)

callbacks, 6

encoding, 7-8

HAL and HATEOAS, 8-10
JSON and XML, 5
promises, 6

B

Bootstrap, 84-85, 240
installing ng-bootstrap, 241
Material Design, 244
installing Angular, 245-246
widgets-ex200, 246-249
web page, 240
widgets-ex100, 241, 243-244
Bounded contexts, 122
Browser Ul thread, 397

C

Callbacks, 6

Change detection, 398-399

Class providers, 226-227

Client/server architecture
client-side web applications, 3-5
server-side web applications, 2

452

Command line interface (CLI)

bootstrapping, 84-85
compilation, 86

compile errors, 82

creating project, 78-79

file watcher and web server, 84
modifying project, 81

options, 85

root folder, 80

runtime errors, 82

source code, 80

Component(s)

child, 159-160
class, 97
class life cycle
constructor vs. Onlnit, 188
interfaces, 189
ngAfterContentChecked, 201-203
ngAfterContentInit, 197-201
ngAfterViewChecked, 205-207
ngAfterViewlnit, 203-205
ngDoCheck, 194-197
ngOnChanges, 189-192
ngOnDestroy, 207-209
ngOnlnit, 192-194
@Component annotation
elements, 92-93
selectors and DSL, 93
selector syntax, 93
composition, 166-167, 169-170
data flowing downwards, 160-162
customer component,
editing, 171-172
customer list component,
editing, 172-173
emitting output through
@Output(), 163-166



events flowing upwards, 163

customer component, editing, 174

customer list component,
editing, 174-175
hierarchy, 159
inline style, 90
inline template, 90
multiple, 91
styles, 96-97
template reference variable (see
Template reference variables)
templates
Elvis operator, 96
location, 94
script tags, 95-96
Components Development
Kit (CDK), 113
Composition, 159, 166-167, 169-170
Continual integration, 405

D

Data binding, 16
customer data input, 99
defined, 98
in login component, 98
one-way (see One-way data binding)
target markup, 103
two-way (see Two-way data binding)
Decorators, see Annotations
Dependency, 211
Dependency injection
advantages, 211
defined, 211
Injector API, 234-235
providers, 213
class, 226-227
factory, 227-232

INDEX

types, 213
value, 232, 234
services, 212
convert app to share one
instance, 219-220, 222-225
creating, 213-215, 217-218
implementations, 212
Directives, 139
creating
components, 151
DOM element, 152
simple directive, 152-153
DOM events, 154
DOM properties, 155
non-structural (see Non-structural
directives)
structural (see Structural directives)
with events, 155, 157
Document Object Model (DOM), 310-311
Domain-driven design (DDD), 122
Domain Specific Language (DSL), 253

E

ECMA 2016, 18

Elvis operator, 96

Encapsulation
Shadow DOM, 437-438
styles/styleUrls properties, 444
view, 437
ViewEncapsulation.Emulated, 438-439
ViewEncapsulation.Native, 440-442
ViewEncapsulation.None, 442-443

Event handling, components-ex400,

111-113

Event loop and messages, 396

Extensible Markup Language (XML), 5

Extensions pane, 66-67

453



INDEX

F

Factory providers
dependency-injection-ex400,
227-230
dependency-injection-ex500,
230-232
Forms
and CSS, 354
custom validation, 381, 384
FormBuilder methods, 372
group nesting, 373-374, 377-379
model objects, 352-354
multiple validators, 380
reactive, 368-371
reactive forms, 352
template, 354-355, 357-358,
364-365, 367-368
template-driven, 351
template variables and data binding,
358-359, 361, 363-364
validators, 379
Fragments
identifier, 251
URL, 251

G

Generics, 321
GitHub, 448

H

Hashed, 252

HyperText Transfer Protocol (HTTP)
asynchronous operations, 322
asynchronous pipes, 347-348, 350
DELETE method, 340
generics, 321

454

GET method, 315, 323, 325, 327
path parameters, 331-332, 334-335
parameters, 327, 329, 331
$http and Http module, 312
matrix parameters, 318
modifying, server response, 340-342, 344
passing data, request body, 318
PATCH method, 339
path parameters, 318
POST method, 315, 335, 337-338
PUT method, 339
query parameters, 317
request headers, 316
request options, 322
RequestOptionsArgs object, 327
response headers, 316
REST application, 318
server error response, 344-345, 347

Imperative navigation, 278-280, 282
Injection, 211

Injector API, 234-235

Integration testing, 407

Interface

Debug pane, 64-65
Explorer pane, 62-63
Git pane, 64

Search pane, 63

Interpolation, 100

Jasmine, 408-411
JavaScript ES5

delete variables/objects, 31
duplication, 32



fail fast behavior, 28
invocation, 31
JavaScript strict mode, 31
keywords, 33
non-extensible variables/
objects, 33
read only properties, 32
scoping, 30
types, 27-28
unassigned variable/object, 31
value/object comparison, 28-30
variables, 30
JavaScript ES6
arrow functions, 35
block scoped variables and
functions, 34-35
constants, 34
default exports, 39
functions arguments, default
values, 36
modules, 37
named exports, 38-39
one file, 38
parameters, 36
string interpolation, 37
TypeScript, 39
JavaScript modules
exporting code, 117
importing code, 118
project code, 118-119
from someone else’s
module, 118
JavaScript Object Notation
(JSON), 5, 11, 13, 319

K, L

Karma test runner, 407-408

Model View Controller (MVC), 395

Modules, 21

Angular]S module system, 116
Angular module system, 119
deployment, 130
ex100, 123-126, 128-129
feature module, 122-123
Node commands, 131
root module, 121
routing module, 122
shared module, 123
Start project, 120-121
defined, 115
exports, 115
JavaScript
exporting code, 117
importing code, 118-119
types, 115

Moustaches, 100

N

Navigation, 278-279
Nested routing

defined, 259
pasta/calzone, 260

INDEX

router-ex100 URLs vs. router-ex200

URLs, 260

router-ex200, 261-262, 264-265, 267-268
@NgModule annotation, 120
Node

dependency management, 69
package.json file
folder node_modules, 75
and running npm install, 75
updating, 74
version numbers, 74-75

455



INDEX

Node (cont.)
setting up and running
module installation levels, 72
npm, 71
npm install to install module, 72
uninstalling modules, 73
updating modules, 73
V8 JavaScript engine code, 69
website, 69-70
Node Package Manager (npm), 71
Non-structural directives, 140
ngClass, 146-148
ngStyle, 148-150

O

Observables
advantages, 310
DOM events, 310-311
Http services, 312

One-way data binding, 99
components-ex100, 100, 102
components-ex200, 103-105
components-ex250, 105, 107-108
with {{ and }}, 100
with [ and | or ¥, 102

Onlnit lifecycle method, 188

PQ

Pipes
angular
combining date formats, 388
currency, 386
date, 386
json, 388
lowercase, 385
percentage, 386

456

predefined date formats, 387
shortdate, 386
UK pound currency, 386
uppercase, 385
variety of, 388, 390
custom, 391, 393
Promise objects, 309-310

R

Resources
Angular Air, 449
Angular-related blogs, 448
GitHub, 448
official Angular website, 447
Router
on client side, 251-252
configuration, 268-269
DSL, 253
extracting data, 283
guards, 284, 286-287, 289
imperative navigation, 278-280, 282
matching, 252
module, 253-254
path parameters, 270
pizza selection example, 255, 258-259
query parameters, 270

S

Selectors, 151
Server-side web applications, 2
Shadowing, 213
Structural directives, 140
ngFor, 142-143
nglf, 140-142
ngSwitch, ngSwitchWhen, and
ngSwitchDefault, 144-145



T

Template expression, 100
Template reference variables
ContentChild, 182-184
ContentChildren, 185-188
NgContent and transclusion, 180-182
ViewChild, 176-177
ViewChildren, 177-178
Test-driven development, 405
Testing
Angular application, 407
Angular objects, 413
CLI Unit Test, 416-417, 419
ComponentFixture, 414
Componentlnstance, 414
component, uses service, 430-434
development process, 406
Http responses, 419-422,
424-426, 429
integration testing, 407
Jasmine, 408-411
Karma, 407-408
NativeElement, 414-415
Transclusion, 180-182
Transpilation
and Angular CLI tool, 21
TypeScript class, 19-20
Transpiler, 19
Two-way data binding, 99
components-ex300, 108-110
with [( and )], 108
TypeScript
basic types, 43
classes, 43-44
compilation options, 54
constructors, 48
definition, 41

INDEX

ECMAGS JavaScript, 42
enumerations and generics, 48
functions, 49-51
getters and setters, 51
interfaces, 44, 46
language
Angular CLI tool, 21
debugging and map files, 20
transpilation, 19-21
Microsoft’s website, 41
modules
external, 47
internal, 46
types
alias, 54
object, 53
primitive, 52-53
syntax error highlighting, 52
tuple, 54
union, 53

U

Ul widgets
Bootstrap
installing ng-bootstrap, 241
Material Design, 244-249
Web page, 240
widgets-ex100, 241, 243-244
pre-Angular way, 237-239
Unit testing, 405

\"

Value providers, 232, 234

Visual Studio Code
Download page, 57-58
Extensions pane, 66-67

457



INDEX

Visual Studio Code (cont.)
interface, 62
Debug pane, 64-65
Explorer pane, 62-63
Git pane, 64
Search pane, 63
seeing files, commands, and
hot keys, 58-59
starting a build, 60-61

W XY
Web applications
with AJAX, 5
callbacks, 6
encoding, 7-8
HAL and HATEOAS, 8-10
promises, 6

458

client-side, 3
JSON, 11, 13
server-side, 2
striking balance, 4-5
Webpack
and Angular CLI, 133
installing and configuring, 135-136
modules and dependencies, 134-135
static assets, 134

Y4

Zone.js, 395

Zones detection
angular zone, 399-402
event loop and messages, 396
monkey patching, 397
NgZone class, 396



	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Web Applications and AJAX Communications
	Introducing the Client and Server
	Server-Side Web Applications
	Client-Side Web Applications
	Striking a Balance

	Creating Web Applications with AJAX
	Callbacks
	Promises
	Encoding
	HAL and HATEOAS
	Monitoring Data Traffic

	Analyzing JSON
	Summary

	Chapter 2: AngularJS vs. Angular (Old vs. New)
	Semantic Versioning
	Platform
	Browsers Run JavaScript Using JavaScript Engines
	Shims and Polyfills

	TypeScript
	Transpilation
	Debugging and Map Files
	Transpilation and the Angular CLI Tool

	Modules
	Controllers and Components
	Dependency Injection and Constructor Injection
	Scope, Controllers, and Components
	Forms
	Templates
	Summary

	Chapter 3: JavaScript
	JavaScript ES5: Limitations and Shortcomings
	Types
	Fail Fast Behavior
	Value/Object Comparison
	Scoping
	JavaScript Strict Mode
	Invocation
	Assigning to an Undeclared Variable or Object
	Deleting Variables or Objects
	Duplicating Function Arguments
	Duplicating Object Properties
	Read Only Properties
	Non-Extensible Variables or Objects
	Keywords


	JavaScript ES6: Changes and Improvements
	Constants
	Block Scoped Variables and Functions
	Arrow Functions
	Functions Arguments Can Now Have Default Values
	Functions Now Accept Rest Parameters
	String Interpolation
	Modules
	One File
	Exporting Method 1: Named Exports
	Exporting Method 2: Default Exports

	TypeScript

	Summary

	Chapter 4: TypeScript
	Strong Typing
	Classes
	Interfaces
	Modules
	Internal Modules
	External Modules

	Enumerations and Generics
	Constructors
	Functions
	Getters and Setters
	Types
	Primitive Types
	Object Types
	Union Types
	Alias Types
	Tuple Types

	Compilation Options
	Summary

	Chapter 5: Visual Studio Code
	Getting Started with Visual Studio Code
	Seeing Files, Commands, and Hot Keys
	Starting a Build

	Introducing the Interface
	Explorer
	Working Files
	Project Files

	Search
	Git
	Debug

	Extensions
	Summary

	Chapter 6: Node
	Setting Up and Running Node
	Node Package Manager (npm)
	Node Module Installation Levels
	Running npm install [Module Name] to Install the Module
	Updating Node Modules
	Uninstalling Node Modules

	The package.json File
	Updating package.json
	Version Numbers
	The Folder node_modules
	Editing the package.json File and Running npm install

	Summary

	Chapter 7: Starting to Code with the CLI
	Create a Start Project
	Modify the Start Project
	Start Project: Compile Errors
	Start Project: Runtime Errors
	File Watcher and Web Server
	Bootstrapping
	Useful CLI Options
	Ahead of Time Compilation
	Summary

	Chapter 8: Introducing Components
	Anatomy of a Component
	@Component Annotation
	Selectors and DSL
	Other Elements

	Component Templates
	Template Location
	Script Tags
	Elvis Operator

	Component Styles
	Component Class

	Introducing Data Binding
	Example: Data Binding in a Login Component
	Example: Data Binding and Customer Data Input

	One-Way Data Binding
	One-Way Data Binding with {{ and }}
	One-Way Data Binding: Example Code components-ex100
	One-Way Data Binding with [ and ] or *
	One-Way Data Binding: Example Code components-ex200
	One-Way Data Binding: Example Code components-ex250

	Two-Way Data Binding
	Two-Way Data Binding with [( and )]
	Two-Way Data Binding: Example Code components-ex300

	Event Handling
	Event Handling: Example Code components-ex400
	CDK
	Summary

	Chapter 9: Introducing Modules
	Different Types of Modules
	AngularJS Module System
	JavaScript Modules
	Exporting Code
	Importing Code
	Importing Code from Someone Else’s Module
	Importing Your Project Code


	Angular Module System
	Modules in the Start Project
	Root Module
	Routing Module
	Feature Modules
	Shared Modules

	Angular Module System: Example modules-ex100
	Deployment: Separate Modules
	Deployment: Using Node to Manage Dependencies on Common Code
	Useful Node Commands


	Summary

	Chapter 10: Introducing Webpack
	Webpack and the Angular CLI
	Modules and Dependencies
	Installing and Configuring Webpack
	Summary

	Chapter 11: Introducing Directives
	Types of Directives
	ngIf
	ngFor
	ngSwitch, ngSwitchWhen, and ngSwitchDefault
	ngClass
	ngStyle

	Creating Directives
	Creating Simple Directive: Example directives-ex600

	Accessing the DOM Events in Directives
	Using the Directive Element host
	HostListeners

	Accessing the DOM Properties in Directives
	Creating a Directive with Events: Example directives-ex700
	Summary

	Chapter 12: More Components
	Components and Child Components
	Data Flowing Downwards
	Events Flowing Upwards
	Emitting Output through @Output()
	Composition: Example
	Data Flowing Downwards: Example
	Edit the Customer Component
	Edit the Customer List Component

	Events Flowing Upwards: Example
	Edit the Customer Component
	Edit the Customer List Component

	Template Reference Variables
	ViewChild: Example
	ViewChildren: Example
	NgContent and Transclusion: Example
	ContentChild: Example
	ContentChildren: Example

	Component Class Lifecycle
	Constructor vs. OnInit
	Interfaces
	NgOnChanges: Example
	NgOnInit: Example
	NgDoCheck: Example
	NgAfterContentInit: Example
	NgAfterContentChecked: Example
	NgAfterViewInit: Example
	NgAfterViewChecked: Example
	NgOnDestroy: Example

	Summary

	Chapter 13: Dependency Injection
	Services and Providers
	Creating a Service: Example
	Convert App to Share One Instance of Service: Example dependency-injection-ex200
	Convert App to Share One Instance of Service: Example dependency-injection-ex300
	Class Providers: Example dependency-injection-ex350
	Factory Providers: Example dependency-injection-
ex400
	Factory Providers: Example dependency-injection-ex500
	Value Providers: Example dependency-injection-ex600
	Injector API
	Summary

	Chapter 14: Angular and UI Widgets
	Using a UI Widget Library with Angular
	Pre-Angular Way
	The Angular Way

	Pre-Angular vs. Angular with NgBootstrap
	Bootstrap
	Installing ng-bootstrap
	Bootstrap: Example widgets-ex100

	Material Design
	Installing Angular Material
	Angular Material Design: Example widgets-ex200

	Summary

	Chapter 15: Routes and Navigation
	Router Routes on the Client Side
	Route Matching
	Router DSL
	Router Module
	Simple Routing: Example
	Nested Routing: Example
	Route Configuration
	Route Path Parameters
	Route Query Parameters: Example

	Router Imperative Navigation: Example
	Router: Extracting Data
	Route Guards: Example
	Summary

	Chapter 16: Observers, Reactive Programming, and RxJS
	Asynchronous Data Streams
	Observable Sequences (Observables)
	Observers: Example
	Subscriptions
	Operators: Example
	Operators That Create Observables
	from
	interval
	of (Was just)
	range
	repeat
	timer

	Operators That Transform Items Emitted by Observables
	buffer
	map
	scan
	Operators That Filter Items Emitted by Observables
	debounce: Example
	distinct
	filter
	take
	Operators that Combine Other Observables
	share
	Summary

	Chapter 17: RxJS with Angular
	Observables and Angular
	Observables and DOM Events: Example
	Observables and HTTP Services
	$http and Http Module


	Summary

	Chapter 18: HTTP and the HttpClient Module
	Http Body
	Passing Information with HTTP
	Query Parameters
	Matrix Parameters
	Path Parameters
	Passing Data in the Request Body

	REST
	JSON
	The Angular Http Client
	Generics
	Asynchronous Operations
	Request Options
	HTTP GET Method: Example
	HTTP GET Method Using Parameters: Example
	Http GET Method Using Path Parameters: Example
	HTTP POST Method: Example
	HTTP PUT Method Using Path Parameters
	HTTP PATCH Method Using Path Parameters
	HTTP DELETE Method Using Path Parameters
	Modifying the Server Response: Example
	Handling a Server Error Response: Example
	Asynchronous Pipes: Example
	Summary

	Chapter 19: Forms
	Two Ways of Writing Forms
	Template-Driven Forms
	Reactive Forms

	Form Model Objects
	NgForm
	FormGroup
	FormControl
	FormArray

	Forms and CSS
	Template Forms: Example
	Template Variables and Data Binding: Example
	Template Forms and CSS: Example
	Reactive Forms: Example
	Reactive Forms: FormBuilder
	Reactive Forms: Form Group Nesting Example

	Validators
	Combining Multiple Validators
	Custom Validation Example

	Summary

	Chapter 20: Pipes
	Angular Pipes
	lowercase
	uppercase
	currency
	UK (gbp) pound currency
	percent
	date
	shortdate
	Special Date Format
	json

	Angular Pipes: Example
	Custom Pipes: Example
	Summary

	Chapter 21: Zones and Change Detection
	NgZone Is Zone.js for Angular
	Event Loop and Messages
	Browser UI Thread
	Monkey Patching

	Angular and Change Detection
	Running Asynchronous Code within the Angular Zone: Example
	Running Asynchronous Code Outside the Angular Zone: Example
	Summary

	Chapter 22: Testing
	Karma
	Jasmine
	Jasmine Concepts
	Jasmine Setup and Teardown

	CLI
	Running Unit Tests
	Unit Test Files
	Dependency Injection

	Angular Testing Objects
	ComponentFixture
	ComponentInstance
	NativeElement

	CLI Unit Test: Examples
	Testing with Fake Http Responses
	Introduction
	How to Use HttpClientTestingModule to Create Fake Http Responses
	Testing Service that Uses HttpClient: Example
	Testing Component that Uses Service: Example

	Summary

	Chapter 23: More Advanced Topics
	View Encapsulation
	Shadow DOMs
	Component Encapsulation
	ViewEncapsulation.Emulated: Example
	ViewEncapsulation.Native: Example
	ViewEncapsulation.None: Example

	Styling Content Children
	Summary

	Chapter 24: Resources
	Angular Official Website
	GitHub
	Angular-Related Blogs
	Angular Air
	Summary

	Index



