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Abstract 

The aim of the current work is the development of finite element models capable 
of predicting the damping and the damped structural dynamic response of 
laminated composite blades and beams. The book is divided into two main parts, 
of which the first one studies the material coupling effect on the static and modal 
characteristics of composite structures. New damping coupling terms are 
formulated and incorporated into a linear beam finite element to better capture the 
composite material and structural coupling effects. 

The second part describes the theoretical framework for predicting the 
nonlinear damping and damped vibration of laminated composite structures due to 
large in-plane tensile and compressive forces. A nonlinear beam finite element for 
composite strips is developed capable of capturing the effects of geometric 
nonlinearity on the damping of composite laminates. The damping mechanics 
consider a strain based Kelvin viscoelastic model and Green-Lagrange nonlinear 
strain expressions, which introduce geometric nonlinearity into the formulation. 
Incorporation of first-order shear deformation theory into the equations of motion 
provides the linear and new nonlinear cross-section stiffness and damping terms. 
Within each element, the stain field is approximated by linear interpolation shape 
functions. An incremental-iterative methodology is formulated into the finite 
element solver, based on the Newton-Raphson technique in order to obtain the 
system solution at each iteration, till the final convergence is achieved. For the 
sake of completeness, a series of experimental measurements were carried out for 
the composite strip, subject to tensile and buckling loads. Correlations with 
theoretical predictions gave credence to the ability of the nonlinear finite element 
to predict damping of composite structures undergoing large displacements and 
rotations in the nonlinear regime. The finite element was further extended to 
include the nonlinear analysis of large-scale hollow composite structures. New 
first- and second-order stiffness and damping terms were developed and 
incorporated into an updated nonlinear beam finite element, capable of capturing 
the effect of rotational stresses on the static and modal characteristics of composite 
beams and blades. 

  
Keywords: Nonlinear damping, composites beams, wind-turbine blades, 
nonlinear finite element, membrane stiffening, buckling, material coupling. 
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Chapter 1 

Introduction  

The main objective of this work is the development of finite element models 
capable of predicting the structural damping and the damped structural response of 
laminated composite blades and beams. The theoretical framework presented in 
the current work consists of two main parts. Firstly, the material coupling effect 
on the static and modal characteristics of composite structures is investigated. 
New damping terms encompassing strong material coupling effects are formulated 
and incorporated into a new 3-D beam finite element capable of predicting  
the modal characteristics of composite structures. The second part deals with the 
inclusion of nonlinear effects due to large rotations and initial stresses, the 
prediction of nonlinear damped structural dynamics and the characterization of  
the damping of laminated composite strips subject to large in-plane tensile and 
compressive loads. The nonlinear section mechanics were incorporated into a new 
nonlinear tubular beam finite element and a research finite element analysis code 
which enable the computational prediction of nonlinear characteristics of 
composite blades. The finite element is first applied and experimentally validated 
for the case of composite strips subject to initial tensile and compressive loads. 
Based on the successful validation of the nonlinear strip element, an extended 
nonlinear tubular beam finite element for the damping prediction in more 
complicated composite structures, such as wind-turbine blade models, is also 
formulated and presented. 

1.1   The Significance of the General Problem  

The maximization of wind-turbine energy output density and cost performance is 
achieved through large rotors with longer and more flexible composite blade 
configurations, which exceed 60m in length (Figure 1.1). Advanced Carbon/ 
Epoxy and Glass/Epoxy composite systems are extensively used in new blade 
designs. These composite materials systems and laminates improve the 
stiffness/mass and strength/mass ratios and also provide damping which is 
beneficial for the passive control of vibratory, aeroelastic and acoustic loads, in a 
variety of structural applications. The structural dynamics and the characterization  
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and prediction of structural composite damping parameters in such rotors exceeds  
the range of known linear models, hence the inclusion of nonlinear effects into 
analytical and computational formulations becomes essential for describing the 
complex structural dynamic behavior of large-scale composite structures, such as 
wind-turbine and helicopter blades. While the impact of geometric nonlinear 
effects on the dynamic stiffness and modal frequencies of pre-stressed composite 
shell structures is well understood, their respective impact on composite damping 
and on the extension-shear material coupling of blade structures remains mostly 
unknown.  

 

Fig. 1.1 Evolution of wind-turbine blades size 

Consequently, the development of damped mechanics models and finite 
elements for understanding and predicting the complex nonlinear damped 
structural dynamic behavior of composite laminates subject to large deformations 
are important steps for improving vibrational, viscoelastic and aeroelastic response 
of large composite blade structures.  

The last fifteen years significant European projects have been carried out in the 
area of structural analysis of large wind-turbine blades. Among them, 
DAMBLADE (2006) and UPWIND (2011) integrated EU projects contributed to 
the introduction of advanced blade concepts with integrated structural design 
parameters. DAMPBLADE research program enabled the development of damped 
wind-turbine blade models to study the structural damping in terms of tailoring the 
laminate damping properties. Its activities included development and 
characterization of damped composite materials and the evaluation of new 
technology trends by means of designing, fabricating and full-scale testing of an 
innovative realistic 19m wind-turbine blade. As far as UpWind, it is the largest-
ever EU-funded research and development project on wind energy. Its main 
contributions were focused on upscaling a reference 5MW wind turbine rotor 
blade up to 10MW and eventually up to 20MW, reaching a rotor diameter of 
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150m and 250m, respectively. Within UpWind activities new design tools, 
concerning the aeroelastic, aerodynamic behavior and the structural integrity of 
multi-MW turbines, were developed to account for the challenging  nonlinear 
structural response of these composite blade structures. 

1.2   Scope and Objectives 

The theoretical framework presented in the current work aims to the development 
of new nonlinear mechanics models and beam finite elements based on the first-
order shear deformation theory capable of predicting the structural damped 
dynamic response of composite beams and blades. The main objectives of this 
book are summarized below: 

 
 Inclusion and evaluation of  material coupling effects on the prediction of 

static and damped modal characteristics of composite blades structures of 
various cross-sections and geometries. The developed linear finite element 
encompasses multi-scale section mechanics models for predicting the 
stiffness and damping of each composite ply, of the composite skin laminates 
and eventually of the whole tubular beam section. The damping terms due to 
material and section coupling are introduced. The capability of the analytical 
and computational models to predict the structural dynamic behavior of 
composite blades and beams with non-negligible coupling effects is also 
quantified. 

 Formulation of a nonlinear beam finite element for composite strips subject 
to large in-plane tensile and buckling loads and characterization of the 
nonlinear damping and damped vibration response of the structure. The strip 
finite element provides an excellent case for understanding and validating the 
nonlinear stiffness and damping predictions in pre-stressed beams and strips 
transitioning from the pre- to the post-buckling region. The prediction of 
critical buckling loads and stable buckling paths, as well as the associated 
nonlinear dynamic response for composite strips could be correlated with 
measured experimental results. 

 Validation of the nonlinear finite element code through comparisons between 
theoretical predictions and experimental measurements for the case of 
composite strips. Validation cases will demonstrate the value of the 
developed beam finite element and will give credence to the new formulated 
nonlinear stiffness and damping terms. 

 Upgrade to a nonlinear hollow beam finite element which will be capable of 
predicting the static response and the modal damping of large-scale blades 
subject both to rotational stresses and gravitational loads. Development of 
nonlinear damped computational structural dynamic models for composite 
blades is needed to model effects due to large deformations, such as the 
stress stiffening of long composite structures with complex cross-section 
geometry and lamination. 
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1.3   Chapters Outline 

The book consists of seven chapters. In the present one, after a brief introduction, 
the general problem and its significance are reported. The main objectives, which 
will be analytically investigated throughout this work, are also presented. The 
structure of the following chapters depends mainly on the type of the developed 
finite elements and the theoretical frameworks presented in each case. 

Second chapter includes an extensively literature survey regarding the 
international journal articles and conference papers related to the subject and the 
objectives of the current work. The most important analytical models concerning 
the prediction of structural damping of composite structures are overviewed. 
Firstly, the existing models for the undamped structural analysis of thin-walled 
composite beams and blades are outlined, which are further categorized into linear 
models with emphasis on the material coupling effect, nonlinear beam theory 
models with emphasis in analytical solution methods and finite element 
approaches and works concerning the effect of buckling loading on composite 
structures. The second part of this chapter summarizes approaches dealing with 
the introduction of damping in the governing equations of linear and nonlinear 
formulations for composite structures. This part begins with the macro- and micro-
mechanical approaches of damping and then a brief summary on the discrete layer 
damping models is presented for the sake of completeness. Thereafter, some 
important works on the prediction of nonlinear damping in composite structures 
are outlined, which include both analytical solutions and experimental 
measurements. 

Third chapter presents the modeling and evaluation of the effect of material 
coupling on the structural damping of various composite structures. A beam finite 
element is developed based on linear kinematic assumptions. The formulation 
includes composite material coupling effects, first in the element section stiffness 
and damping matrices and finally into the structural stiffness and damping 
matrices of the blade. The chapter structure includes the constitutive equations and 
the strain-displacement relation of the composite ply. Then the blade cross-section 
mechanics and the formulation of the respective linear stiffness, damping and 
mass terms of the cross-section are presented. Building upon the damping 
mechanics, an extended beam finite element is developed capable of providing the 
stiffness and damping matrices of the structure, which contain new material 
coupling terms, essential for describing the structural dynamics response of 
composite beams and blades. The capability of the developed beam finite element 
to predict the static and the damped modal characteristics of composite structures 
is quantified by a series of validation cases. Numerical results illustrate the 
material coupling effect on the static response, natural frequencies and modal loss 
factor values of composite Carbon/Epoxy box-section beams with various ply 
angle laminations. Additional comparisons between predicted and measured 
natural frequencies and modal damping values are shown to quantify the effect of 
new coupling terms on a Glass/Epoxy small model blade with anti-symmetric 
angle-ply laminations. In addition, a realistic 19m wind-turbine model is modeled 
and correlations with experimental measurements are also presented. Finally, the 
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damped beam finite element is applied to predict the cross-section stiffness and 
mass properties as well as the modal characteristics of a 61.5m rotor blade. 

Fourth chapter reports the theoretical framework regarding the development of 
a nonlinear finite element for composite strips. The formulation of a plate-beam 
finite element begins from the composite ply level and ends up to the final beam 
element stiffness and damping matrices. The governing equations of composite 
laminates are described, subject to large Green-Lagrange strains, assuming a 
Kelvin viscoelastic solid. Effective and linearized (tangential) damping and 
stiffness laminate matrices are formulated assuming first-order shear theory. The 
constitutive equations, kinematic assumptions and the damping coefficients at 
composite ply level are also presented. Furthermore, the differential form of the 
stress equilibrium equation is stated and therefore, based on the principle of virtual 
work, the weak formulation of the equilibrium equations, being valid for nonlinear 
as well as linear stress-strain relations, is reported. The damping mechanics and 
nonlinear structural dynamics formulation continues at section level of the 
composite strip. The laminate kinematics consider the first-order shear 
deformation theory assumptions. Incorporation of the constitutive equation into 
the variational form of equations of motion and integrating over the laminate 
thickness, yields the detailed expressions of the linear and nonlinear stiffness, 
damping and mass terms of the finite element. Within each element, the stain field 
is approximated by linear interpolation shape functions, which ensure the accuracy 
and the convergence of the solution. Based on these shape functions, the element 
structural matrices of the system are provided, which depend on the nodal degrees 
of freedom of the nonlinear solution. Consequently an incremental-iterative 
methodology is formulated into the finite element solver, based on the Newton-
Raphson technique. Collecting the common coefficients and taking into account 
the contribution of all finite elements the total stiffness, damping and mass 
matrices of the structure are synthesized. After applying the boundary conditions, 
the nonlinear static and modal characteristics of the composite structure are 
obtained. The solution of the linearized system equations takes place in each 
iteration, till the final convergence is achieved. In each iteration the finite element 
code calculates both the effective and the tangential (linearized) nonlinear 
structural matrices as well as the imbalance vector between the external and 
internal forces. For the sake of completeness, the theoretical background of the 
small amplitude free-vibration analysis as well as the displacement control method 
are also described. The Gauss integration method is applied throughout the 
nonlinear solution in order to calculate the numerical integrations. 

Fifth chapter investigates the nonlinear response of the composite strip subject 
to large in-plane tension and buckling loads and studies the effect of geometric 
nonlinearities on the modal frequencies and modal loss factor values of composite 
strips with various angle-ply laminations. The necessary information about the 
experimental procedure followed for the Glass/Epoxy composite material 
characterization and the extraction of its elastic properties and damping 
coefficients is extensively described. In addition, measurements of modal 
frequency and modal loss factor values of the beam subject to increasing tension 
or buckling load along its longitudinal axis are presented. The capabilities of the 
damped beam element to predict the structural stiffness and modal damping values 
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are highlighted through a series of validation cases. First, numerical results 
quantify the contribution of the new nonlinear damping and stiffness cross-section 
terms on the modal frequencies and damping of composite beams of various 
angle-ply laminations under in-plane tensile loads. Experiments are conducted on 
cross-ply Glass/Epoxy composite beams and their modal characteristics are 
measured for various values of increasing in-plane loads. Thereafter, the response 
of the composite strip as it transitions from the pre- to the post-buckling regime is 
demonstrated. Numerical studies evaluate the contribution of second-order 
nonlinear terms on the modal damping of composite plate-strips under in-plane 
compressive loads in the pre- and the post-buckling region. Overall, validations 
between predicted and experimental modal loss factors and frequencies of the 
beams are presented, both for the tensile and compressive loading, which give 
credence to the developed nonlinear beam finite element. 

In the sixth chapter, an updated composite beam finite element formulation for 
modeling the damped structural analysis of large-scale blades is presented, which 
includes nonlinear effects due to large displacements and rotations. The new 
element objective is the prediction of both the static response and the damped 
dynamic behavior of long composite blades in the nonlinear range. The tubular 
beam finite element is based on the formulation of the strip element, that was 
extensively described in the fourth chapter of the manuscript. The introduction of 
the full Green-Lagrange axial strain expression into the variational form of 
equation of motion provides the nonlinear stiffness and damping matrices of the 
blade section. For the sake of completeness, all the formulated first- and second-
order effective and tangential terms are presented in analytical expressions. 
Numerical results regarding the static and modal characteristics of box-section 
beams with various laminations are also presented. Emphasis is given on the 
nonlinear loss factor values and their trends variation when the structure 
undergoes stiffening effects. Theoretical predictions for a 54m girder box-section 
beam, which consists the structural part of the UP 61.5m wind-turbine blade, are 
also carried out. Supposing that the girder beam subjects to gravitational loads and 
rotational stresses, the nonlinear code is capable of describing the stiffening effect 
on the natural frequencies and the modal damping of the whole composite 
structure. 

In the seventh chapter the main concluding remarks of the this work are 
presented. Correlation cases between numerical results and experimental 
measurements in terms of modal damping predictions are also discussed. Finally, 
directions for future research beyond the content of the current work are 
recommended. 

1.4   DAMPBEAM Finite Element Code 

Thework presented in this book was based on a linear finite element code, called 
"DAMPBEAM", which enables the prediction of the linear damped response of 
composite beam and blade structures. The linear version of "DAMPBEAM" code 
was firstly developed and evaluated by Saravanos and coworkers (2006). 
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This book presents an updated version of "DAMPBEAM" code was developed, 
capable of describing the effect of new linear stiffness and damping terms and 
predicting the nonlinear static and modal characteristics of large composite 
structures. It includes integrated multi-level damping mechanics, which enable the 
prediction of the structure nonlinear damped response. The composite structural 
dynamics analysis cycle is schematically presented in Figure 1.2 and described in 
the following two paragraphs. In summary, the nonlinear element contains new 
nonlinear terms, whereas, the nonlinear solution is attained through an iterative 
procedure. 

The analysis begins at the composite ply level, where the damping coefficients 
and mechanical properties of the composite ply are introduced into the nonlinear 
beam finite element code input. The next key stages include the calculation of 
stiffness and damping terms firstly at skin laminate and then at section level of the 
structure. That enables the detailed analysis of complex composite beams and 
blades, which consist of segments with various laminations and different cross-
section shapes. New nonlinear stiffness and damping terms are included at this 
point. Then, taking into account the number of nodal degrees of freedom at each 
node and the approximation of the strain field by the shape functions, the beam 
element stiffness, damping and mass matrices are formulated. 

 

Fig. 1.2 Composite structural dynamics analysis cycle of the DAMPBEAM finite element 
code 

Assembly of all beam element matrices, yields the structural stiffness and 
damping matrices of the blade. The terms consisting these matrices are 
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categorized based on their order of nonlinearity. The final step to the problem 
solution is the incorporation of the proper iterative technique into the solver of the 
finite element code, which will ensure the convergence at each iteration till the 
nonlinear equilibrium of the composite structure is achieved. 
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Historical Review on the Linear and Nonlinear 
Damped Structural Behavior of Composite 
Structures 

The present chapter describes the work reported in the area of structural analysis 
and structural dynamics of composite blade structures. Emphasis is given in the 
literature survey on analytical beam finite element models which assume linear 
kinematic assumptions in the constitutive equations. The effect of material 
coupling terms both in stiffness and damping structural matrices is also presented 
in the following paragraphs. However, the maximization of wind-turbine blades 
performance through longer rotor blades in combination with the development of 
new more flexible helicopter blade designs made the development of new 
nonlinear models essential regarding their structural analysis. 

2.1   Development of Models for the Undamped Structural 
Analysis of Thin-Walled Composite Beams and Blades 

2.1   Developme nt of Models  for the Undampe d Structural A nalysis  

This category includes analytical models for the structural analysis of composite 
box-section beams as well as the effect of material coupling on their static and 
dynamic behavior. The literature framework is based on linear kinematic 
assumptions for the structure section kinematics and includes significant work on 
the introduction of material coupling effects in structures response.  

2.1.1   Nonlinear Beam Theory Models 

The purpose of this section is to present some of the most important beam theory 
formulations and finite elements for predicting the static and undamped dynamic 
response of composite beams and blades. An extended review on the development 
of engineering beam theories for helicopter rotor blades was reported by Kunz 
(1994), which compared and evaluated significant works in this scientific area. 
Houbolt and Brooks (1958) presented a new formulation for the linear aeroelastic 
rotor blade analysis based on a linear set of equations of motion. In their work, 
they developed differential equations for the lateral and torsional deformation of 
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twisted rotating beams applied to helicopter rotor and propeller blades. 
Improvements on the Houbolt and Brooks formulation were made by Hodges and 
Dowell (1974), who extended their work in order to include nonlinear phenomena. 
Their theory was intended for application to long, straight, slender, homogeneous, 
isotropic beams including dominant nonlinear terms in the equations of motion 
obtained by two complementary methods; Hamilton’s principle and the 
Newtonian method. Contributions to the development of nonlinear equations of 
motions of rotor blades have also been made by Rosen and Friedmann (1978), 
assuming cases with small strain and finite rotations. 

Hodges (1988) presented a literature review on modeling of composite rotor 
blades by separating the existing works into two categories; the ones using an 
analytical approach to calculate the cross-section stiffness properties and the 
studies adopting the finite element approach, the latter offering a modeling 
flexibility on the estimation of elastic properties of structures with general cross-
section geometry. 

2.1.1.1   Analytical Solution Methods  

As far as the analytical approach is concerned, Berdichevsky (1979 and 1981) 
reported the variational-asymptotic method (VAM) where the geometrically 
nonlinear problem of the three-dimensional theory of elasticity of beam-like 
structures was found to be splitted into a nonlinear one-dimensional analysis and a 
linear two-dimensional analysis, leading to the determination of the cross-
sectional stiffness constants. Danielson and Hodges (1987) developed a simple 
matrix expression for the strain components of a beam in which the displacements 
and rotations are large. The advantage of their method is that incorporates 
nonlinear effects without a significant increase of complexity. Hong and Chopra 
(1985) calculated analytically the cross-sectional properties of a rotor blade, 
modeled as a composite laminated single-cell box-beam. The strain-displacement 
relation formulation was based on Hodges and Dowell work, while they used the 
Hamilton’s principle to obtain the equations of motion. Hong and Chopra (1986) 
extended their work on the aeroelastic analysis of rotor blades by modeling them 
as an I-section composite beam consisting of laminates with laminas having 
orthotropic material properties. Hodges et al. (1992) reported a reduced 4x4 
stiffness model, based on nonlinear three-dimensional elasticity, which is 
associated with extension, torsion and two bending measures. An extension to this 
work was reported by Cesnik et al. (1996), where the curvature and twist of the 
undeformed state of the beam were incorporated into the kinematical equations. 
The framework of the variational asymptotic methodology for beams with 
arbitrary cross-sections geometry was better described by Cesnik (1994), who 
outlined the applications of this extended work in modeling highly twisted or 
curved beams, such as rotor blades and prop-fans. Cesnik and Hodges (1997) 
developed a numerical solution program, the so called VABS, providing the 
calculation of the cross-sectional stiffness constants matrix for arbitrary cross 
section, including thin- and thick-walled box beams. The VABS engineering 
software was further developed by Yu et al. (2002) to include initially curved and 
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twisted composite beams with arbitrary choice of reference line and validated with 
an ABAQUS commercial shell element model. Volovoi and Hodges (2000 and 
2002) presented a linear asymptotically theory for thin-walled prismatic composite 
beams which takes into account the shell-bending strain measures. Their 
formulation included four variables associated with extension, twist and bending 
in two orthogonal directions. Based on that framework, typical examples for 
single- and multi-celled thin-walled composite beams were reported and 
correlated with Berdichevsky et al. (1992). Significant work on the assessment of 
various beam theories was also reported by Volovoi et al. (2001) and Hodges 
(2006). 

2.1.1.2   Finite Element Approaches  

The finite element method was widely used for the analysis of composite beam 
structures such as wind turbine and helicopter rotor blades. Bathe et al. (1975) 
presented a detailed review on finite element incremental formulations up to that 
point, which included large displacements, large strains and material 
nonlinearities. Wood and Zienkiewicz (1977) reported a two-dimensional finite 
element solution for geometrically nonlinear problems by introducing a modified 
isoparametric element for structures containing straight or curved members. The 
results referred to correlation cases between the finite element predictions and 
analytical solutions. Ishizaki and Bathe (1980) presented finite element-based 
solutions for the dynamic analysis of shell structures, including geometric and 
material nonlinearities. Their work also dealt with the effect of initial 
imperfections on the static and dynamic buckling behavior of the shell structures. 
Giavotto et al. (1983) reported a finite element-based linear cross-sectional 
analysis for the calculation of stiffness and stresses of beam-section structures 
made of anisotropic and non-homogeneous materials. In addition, they 
incorporated their model into a computer program and presented correlation cases 
between predicted results and experimental measurements. Bauchau (1985) 
developed a beam theory for thin-walled cross-sections assuming that each cross-
section is infinitely rigid in its own plane and calculated the eigenvalue problem. 
Bauchau and Hong (1987) continue this work to include the analysis of initially 
twisted and curved composite beams. Again the formulation referred to thin-wall 
beams (TWB) made of composite material which undergo large displacements and 
rotations but small strains. The nonlinear solution of the problem was based on an 
iterative technique that uses the linearized equations of the system. The same 
authors (1988) made a step further to their previous formulation by considering 
nonlinear terms into the strain-displacement equations. More specifically they 
introduced a squared shearing term in the Green-Lagrange strain expressions, 
which consequently introduced a kinematic coupling between extension and twist 
of the composite structure. The results coming out of this work underlined the 
contribution of nonlinear terms to the stiffening of the beam subject to axial 
loading. Kosmatka and Friedmann (1989) reported an analytical model for 
determining the free-vibration characteristics of advanced composite 
turbopropellers (prop-fans). A finite element model was obtained from Hamilton's 
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principle allowing generally anisotropic material behavior, arbitrary cross-
sectional properties, large pre-twist angles, out-of-plane cross-section warping, 
and geometrically nonlinear behavior. The natural frequencies and mode shapes of 
the structure were calculated assuming linear perturbations about the nonlinear 
static equilibrium position of the blade. Kalfon and Rand (1993) presented 
nonlinear theoretical modeling for thin-walled composite helicopter blades 
assuming nonlinear geometry of the structure which was loaded by axial loads due 
to its rotation. The solution was achieved by an iterative procedure and theoretical 
predictions were correlated with numerical results provided by Chandra et al. 
(1988), as well as experimental measurements. Friedmann and Kosmatka (1993) 
developed a two-node beam element with 4 degrees of freedom per node based on 
Hamilton’s principle using interdependent cubic and quadratic shape functions for 
the transverse and rotational displacements of the beam. In 1995, Kosmatka 
expanded this finite element to predict the buckling load and vibrational behavior 
of axially-loaded isotropic and composite beams for a variety of beam-lengths and 
boundary conditions. Bhaskar and Librescu (1995) formulated a nonlinear theory 
for open or closed composite thin-walled beams taking into account finite 
displacements and large twist angles. They also included non-classical effects, 
such as the transverse shear deformation and restrained warping of the cross-
section, to study the static dynamic stability and nonlinear torsion of composite 
beams. In the same decade Hodges and co-workers (Cesnik and Hodges (1997) 
and Yu et al. (2002)) tried to incorporate VAM into finite element-based cross-
sectional analyses in order to provide more consistent results. 

Varelis and Saravanos (2004) developed a theoretical framework and a finite 
element for predicting the nonlinear response of active piezoelectric shells and 
plates due to large displacements and rotations. An eight-node plate finite element 
was developed with nonlinear Green-Lagrange strain expressions introduced into 
the governing equations and kinematic assumptions taken from the mixed-field 
laminate theory. The shell element is capable of predicting the quasi-static 
response of composite beams and plates through the incremental-iterative 
Newton-Raphson solution technique. The same authors presented an extended 
work (2006a) where they implemented the aforementioned shell element for the 
prediction of the coupled nonlinear response of smart laminated piezoelectric 
cylindrical shells undergoing large deformations and snap-through buckling. In 
order to overcome the snap-through instability of the shell structures subject to 
pressure loading, the displacement control and arc-length methods were 
formulated into the Newton-Raphson nonlinear solver. 

Saravanos et al. (2006) presented a beam finite element for the damped 
structural dynamic analysis of tubular composite beams and blades. Linear 
kinematic assumptions were introduced into the beam formulation, taken from the 
first-order shear deformation theory (Reissner (1945) and Mindlin (1951)), and the 
element was capable of predicting the stiffness properties of the structure at each 
cross-section and at each segment of the cross-section. The unique feature of this 
beam element was its capability to predict the structural damping of the composite 
structure. The credibility of the stiffness terms of the developed beam element was 
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validated with predictions of Volovoi et al. (2000 and 2002) on Carbon/Epoxy 
box-section cantilever beams with geometric data and material properties taken 
from Smith and Chopra (1991), and later with measured modal damping and 
frequency data of model and full-scale wind turbine blades. Vo and Lee (2009) 
applied a variational formulation, based on the classical laminate theory, to obtain 
the cross-sectional stiffness matrix of geometrically nonlinear composite 
structures. Based on the analytical model, the authors developed a displacement-
based one-dimensional finite element model capable of predicting the static 
response of thin-walled box beams and addressing the effects of fiber orientation, 
and laminate stacking sequence. Recently, Carrera and coworkers reported refined 
theories for beams with arbitrary cross-section geometries, which include high-
order warping terms and applied them on the  static (2011a) and free-vibration 
analysis (2011b) of various beam configurations. 

2.1.2   Incorporation of Material Coupling in the Static and 
Dynamic Analysis of Composite Beams  

The material coupling effect was an important issue of great interest for engineers 
involved in the area of wind-turbine and helicopter rotor blades. Complicated 
cross-sectional geometries, combined axial, bending and torsional loading cases 
and extended use of anisotropic composite laminates necessitated the extensive 
study of these effects in order to obtain maximum structural and aeroelastic 
efficiency. Nowadays, the impact of material coupling is of high importance in 
composite beam-like structures, such as long wind-turbine blades, as they affect 
the aerodynamic loads and the ultimate fatigue loading of the blade. 

Mansfield and Sobey (1979) associated composite materials with the 
aeroelastic tailoring of helicopter blades and developed a model which simplified 
the blade structure to a thin-walled shell neglecting all warping effects. The 
numerical analysis applied on tubes representative of GFRP blades and used to 
obtain a first insight of the role of elastic coupling on rotor blades. Stemple and 
Lee (1988), developed a finite element formulation to study the combined 
bending, torsional and extensional behavior of composite helicopter rotor blades 
and later (1989) they upgraded the beam element to include large deflections or 
finite rotations. Although the geometries presented were rather simple, indicative 
results captured the material coupling effects on a composite cylinder under 
vertical loading. Barbero et al. (1993) presented a simple formulation for 
computing the bending and shear stiffness of Timoshenko’s beam theory for thin-
walled laminated beams with open and closed cross-sections subjected to bending 
and axial loads. This formulation was expanded by Massa and Barbero (1998) to 
include torque and shear forces. Both papers take into account the flexural-
torsional coupling and shear flexibility due to the bending of the structure. 

Chandra et al. presented experimental work (1990) as well as comparisons with 
an analytical model for a Graphite/Epoxy composite box-section beam, reported 
by Smith and Chopra (1991) and Chandra and Chopra (1992), exhibiting bending-
torsion, extension-torsion and bending-shear coupling, typical of helicopter rotor 
blades. Hodges et al. (1991) evaluated the effect of ply lay-up on natural 
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frequencies and mode shapes for thin-walled beams of circular cross-section and 
how the material and geometric configuration are associated with extension-shear-
bending coupled modes of the composite structure. Chandra and Chopra (1992) 
used a Newtonian approach to correlate the vibration characteristics of thin-walled 
Glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy symmetric beams encompassing 
bending-torsion and extension-shear coupling, as well as anti-symmetric beams 
encompassing extension-torsion and bending-shear couplings. Ganguli and 
Chopra (1996) conducted a multiobjective aeroelastic optimization for a helicopter 
blade with two-cell composite blades by altering the composite ply angles. Using 
an analytical formulation they studied the benefits of composite bending-torsion 
coupling to the direction of reducing the vibration loads and enhancing the rotor 
stability at higher rotational speeds. Jung et al. (2002) reported an analytical 
method, based on first-order shear deformation theory (FSDT) for the prediction 
of elastic couplings of composite rotor blades. They took into account the 
influence of shell wall thickness and consequently assumed bending and shear 
deformations of the structure. Furthermore, they presented correlation cases with 
Volovoi and Hodges (2000), Berdichevsky et al (1992) and MSC/NASTRAN 
commercial finite element package, regarding the static behavior of composite 
beams with both symmetric and anti-symmetric lay-up configurations and the 
effect of slenderness ratio on box-section and an open-section I-beam.  

A series of works have also been presented by Kosmatka, which dealt with pre-
twisted beams with arbitrary cross-section geometry made of isotropic or 
composite materials. Kosmatka (1992) presented an analytical model, based on the 
Ritz method, including extension-bending-torsion coupling effects of an initially 
twisted isotropic elastic beam having irregular cross-sections. The formulation is 
based on four strain components; the extension strain, two bending curvatures and 
the twist per unit beam length, described in a curvilinear coordinate system. 
Bhumbla and Kosmatka (1996) presented a nonlinear finite element approach, 
where a six-node triangular element was developed for the analysis of spinning 
laminated composite shell structures, based on first-order shear deformation 
theory. Results outlined the effects of pre-twist, laminate lay-up and rotational 
speed on the static and dynamic behavior of spinning pre-twisted plates and gave 
credence to the developed finite element in comparison with other commercial 
triangular finite elements. 

Librescu and co-workers developed a significant framework in the area of 
material coupling effects. Song and Librescu (1993) focused their work on the 
free-vibration of cantilevered composite aircraft wings and evaluated the effect of 
material coupling on the bending eigenfrequencies of those composite structures. 
The same authors (1997) addressed the problem of the structural elastic coupling 
of spinning thin-walled composite beams, rotating with a constant angular speed 
and its effect on the structural natural frequencies. They reached to the conclusion 
that structural tailoring can be successfully employed to enhance the structural 
behavior at larger spin rates. Librescu et al. (1997) proposed another perspective 
of the structural tailoring by applying their numerical model to control the 
vibration of composite structures by using piezoelectric adaptive materials as 
strain actuators on lightweight structures, such as helicopter blades. Song et al. 
(2000) based on the same theory, studied the effect of beam pre-twist, axial 
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compressive load and the symmetry of the cross-section on the natural frequencies 
and instability of the structural system and reported that the material tailoring 
could have a drastic effect on the enhancement of frequency-load interaction. For 
the case of nonrotating thin-walled beams Qin and Librescu (2001) and (2002) 
presented static and dynamic validation cases for single-cell box beams. The 
comparisons revealed excellent agreement not only for static validations with 
Volovoi et al. (2001) and Smith and Chopra (1991) models but also for dynamic 
correlation cases of Chandra and Chopra (1992). Yu et al. (2002) based on the 
engineering software VABS, presented the means to capture all the elastic 
coupling caused by initial curvature, twist and anisotropic material effects and 
reached to the conclusion that extension- and bending-shear couplings have 
influence on the static behavior of these composite beams. Oh et al. (2003) 
reported an extensive work on the Librescu structural model for a pre-twisted 
rotating composite thin-walled beam mounted on a rigid hub, exhibiting coupled 
flapping-lagging-transverse shear vibrations. Emphasis was given on the effect of 
material ply-angle orientation as well as that on the effect of angular velocity on 
coupled bending vibrations and eigenfrequencies of the beam.  

Saravanos et al. (2006) presented a beam finite element where emphasis placed 
on the prediction of structural damping from skin laminations exhibiting 
negligible extension-shear coupling. The effect of the coupling stiffness terms on 
static and vibrational characteristics of composite beams of various cross-section 
shapes was also investigated. Based on this work, Chortis et al. (2012) expanded 
the formulation to include the respective damping coupling terms and evaluated 
the effect of material coupling effect on a series of validation cases of various 
composite structures. The formulation included composite material coupling 
effects, first in the blade section stiffness and damping matrices and finally into 
the structural stiffness and damping matrices of the blade. Numerical results 
demonstrated the material coupling effect on the static response, natural 
frequencies and modal loss factor values of composite Carbon/Epoxy box-section 
beams with various ply angle laminations. Modal damping predictions quantified 
the effect of new coupling damping terms on a Glass/Epoxy small model blade 
with anti-symmetric angle-ply laminations. Furthermore, a realistic 19m wind-
turbine blade was modeled and correlations with experimental measurements were 
also presented. The developed damped beam element was applied for the 
simulation of a 61.5m rotor blade, whose cross-section stiffness properties and 
modal characteristics were also predicted. 

2.1.3   Effect of Rotational and Buckling Loads on Composite 
Structures 

There is a drastic effect of rotational stresses and compressive loads on composite 
structures, which affects their structural instability and damping behavior. The 
majority of articles published in this scientific area associated the tensile or 
buckling loads with the natural frequencies of the structure and less with the 
prediction of the modal damping values. 

Rotational stresses effect was first investigated on the performance of 
conventional turbo-propellers and hingeless helicopter blades (Ormiston and 
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Hodges 1972). Hodges and co-workers (1990 and 2006) presented a series of 
works concerning the free-vibration analysis of rotating beams. Kosmatka and 
Labid (1993) reported an extensive experimental database on the behavior of 
spinning, pre-twisted Graphite/Epoxy composite plates of various geometries and 
lay-up configurations. They investigated the effect of centrifugal forces on the 
static and modal characteristics of symmetric and anti-symmetric rotated plates, 
reaching to the conclusion that increasing rotational speed caused the stiffening of 
the structure. Thereafter, they associated the natural frequencies behavior with the 
geometry coupling of the pre-twisted plate. Bazoune (2005) reported an extensive 
survey on the modal frequency values of centrifugally stiffened beams. The 
review dealt with the determination of natural frequencies and the associated 
mode shapes of rotating beams subject to rotational stresses. Virgin (2007) 
investigated the pre-stressing of thin elastic structures and its effect on the natural 
frequencies due to axial tensile and membrane loads.  

Examples of buckling loading include cases associated with gravitational forces 
on rotating wind-turbine blades, local buckling of the compressed section due to 
bending, or pressure loads on light-weight composite shell structures. A brief 
literature survey on this subject includes the review of Leissa (1987), who presents 
a summary of the buckling and post-buckling studies of composite laminated 
plates. Kosmatka (1995) developed a two-node Timoshenko beam element 
capable of predicting the buckling load and natural frequencies of axially-loaded 
isotropic and composite beams, while Di Sciuva and Icardi (1995) reported a 
formulation regarding the static stability equations for initial buckling of 
laminated Timoshenko beams under transverse and compressive loads. Among 
others, Engelstad et al. (1992) focused their work on the post-buckling response of 
panels under compression, while Starnes and Rouse (1985) presented 
experimental work on Graphite/Epoxy panels loaded in compression. A detailed 
summary of experimental buckling methods in thin-walled structures concerning 
columns, beams and plates is reported by Singer et al. (1997). Varelis and 
Saravanos (2004) and (2006a) presented coupled mechanics and finite element 
formulations for analyzing the buckling and post-buckling response of active 
piezocomposite shells and plates. In addition, they formulated a shell finite 
element method (2006b), which was correlated by experimental results on the 
prediction of the nonlinear effects on piezocomposite beams subject to large 
quasi-static deflections and initial stresses. Furthermore, they implemented the 
displacement control method (Batz and Dhatt (1979)), into the finite element 
solution in order to overcome stiffness matrix singularities near the critical 
buckling point. Recently, Lindgaard and Lund (2011) reported a unified approach 
to nonlinear buckling optimization for composite cylindrical shells using fiber 
angle parameterization. Theoretical predictions were correlated with commercial 
FE package results reaching to the conclusion that the nonlinear buckling could be 
optimized with respect to a general type stability, i.e. critical point stability, 
especially in cases where geometrically nonlinear effects cannot be ignored. 
Analytical solutions were also presented by Lesieutre (2009) and Kosmatka 
(2010). They studied the effect of buckling loads on the stiffness and the damping 
of composite strips both analytically and experimentally and their main 
contribution is described in a following paragraph of the present chapter. 
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2.1.4   Brief Description of Multi-body Dynamic System 
Approaches 

Multi-body dynamic analysis was originally developed as a tool for performing 
simulations of mechanisms using rigid bodies connected by joints and evolved to 
the point where it can handle nonlinear flexible systems with arbitrary geometries. 
Shabana (1985) presented a finite element formulation for viscoelastic analysis of 
multi-body systems based on a linear Kelvin-Voigt viscoelastic model. A slider 
crank mechanism made of steel was considered and its modal modes of vibration 
were employed to describe its deformation. The same author (1986) expanded the 
finite element scheme to include the dynamic response of multi-body systems with 
components manufactured by composite orthotropic materials. Significant review 
papers have also been reported in the area of multi-body systems, including (i) the 
surveys of Boutaghou and Erdman (1993a and 1993b), who reported the existing 
formulations up to that point regarding flexible beams undergoing large motions; 
(ii) the review of Shabana (1997) on basic approaches used in computer aided 
kinematic and dynamic analysis of flexible mechanical systems. Bauchau et al. 
(2001) described the multi-body dynamics approach to the modeling of rotorcraft 
systems. Complex rotor configurations of arbitrary topology were modeled 
through the assembly of basic components, which included rigid and deformable 
bodies as well as joint elements. Furthermore, efficient time integration algorithms 
for dealing with the nonlinear equations and resulting from the proposed 
formulation were also developed. Kunz (2001) used the double pendulum system 
to demonstrate a method based on Hamilton's weak principle for assembling and 
solving the final equations of a multi-body system. In that work, validations with 
analytical solutions were carried out in order to demonstrate the computational 
efficiency and the accuracy of the presented methodology. 

Riziotis and Voutsinas (1997) presented preliminary results and evaluations of 
their aerodynamic and structural prediction tool (GAST) on two representative 
500 KW wind-turbine machines. The code considered the different parts of the 
whole machine, i.e. blades, drive train and tower as flexible beams which were 
introduced as independent bodies with appropriate kinematic and dynamic 
junction conditions. Correlation cases between GAST predictions and 
experimental measurements were on a satisfactory level and set the basis for 
evaluating more complex types of wind-turbine machines. Riziotis (2003) applied 
the multi-body technique to the elastodynamic analysis of horizontal axis wind-
turbine machines. Moving a step further, combination of the former solution with 
the complete machine aerodynamic analysis, resulted in the prediction of the full 
coupled aeroelastic response of the structure. To that direction, the coupled model 
was applied to characterize the aeroelastic behavior of several realistic multi-MW 
machines. The formulation included a second-order nonlinear beam theory which 
could describe more adequately large deformations. Large displacements were 
regarded as rigid body motions and were taken into account by formulating the 
dynamics of the system within the context of nonlinear multi-body theory 
(Riziotis and Voutsinas 2006). Assessment of the coupled aeroelastic model is 
also carried out on a 2.8 MW machine by correlating experimental measurements 
with three sets of simulation results including linear and nonlinear beam theories. 
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2.2   Damping Models for Composite Structures 

In the following subsections the damping mechanics literature incorporated into 
macro- and micro-mechanical approaches is discussed. In addition, the works in 
the area of discrete layer damping as well as some methods regarding the damping 
optimization in composite structures will also be presented for the sake of 
completeness. Analytical expressions of various damping parameters, as well as 
some useful piece of information about basic damping models are reported in 
Appendix B. 

2.2.1   Macro- and Micro-mechanical Models of Damping 

The characterization of damping of a composite material is an essential parameter, 
which affects its static and dynamic structural behavior. The review of the 
available literature on composite damping includes both analytical studies and 
experiments on fiber reinforced structures. There are various computational 
models in the area of damping mechanics of composite materials and laminates. 
Analytical predictions of damping are based mainly on the correspondence 
principle and the strain energy method. Hashin (1970) developed the 
correspondence principle with viscoelastic models to derive the effective complex 
moduli of fiber reinforced materials. Schultz and Tsai (1968 and 1969) provided 
experimental measurements of the storage and the loss moduli of unidirectional 
Glass/Epoxy composite beams. Adams et al. (1969) conducted experiments on 
unidirectional carbon and glass fiber reinforced plastics in order to calculate the 
longitudinal damping. Based on this technique, Adams and Bacon (1973a) 
developed a macro-mechanical model for damping and in parallel they reported a 
new apparatus in which the flexural damping and dynamic modulus could be 
determined. The main advantage of the new apparatus was the elimination of the 
extraneous damping by testing the specimens under free-free support conditions. 
The same year Adams and Bacon (1973b) presented a theoretical model for the 
prediction of damping in beams and plates by defining the specific damping 
capacity (SDC) as the ratio of dissipated to stored strain energy. Gibson and 
Plunkett (1976) presented comparisons of measurements of the complex moduli 
with predicted values of Glass/Epoxy composite beams, reaching to the 
conclusion that damping was sensitive to the frequency whereas the elastic 
properties were not. Bagley and Torvik (1983) examined a fractional derivative 
model for viscoelastic materials and calculated the loss factor as the ratio of the 
dissipated to the maximum stored energy of the material. In addition they outlined 
the construction and solution of the finite element equations of motion for 
viscoelastically damped structures. Ni and Adams (1984) developed a 
comprehensive mathematical technique for predicting the damping of laminated 
composite beams based on Adams and Bacon’s work. They calculated 
experimentally the SDC both in glass and carbon beams of various types of cross-
ply laminations and the results were in excellent agreement with their theoretical 
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predictions. Suarez et al. (1986) and Gibson et al. (1982) studied experimentally 
the effect of fiber aspect ratio as well as of fiber orientation on the loss factor 
values of unidirectional short fibers composites. Moreover, Wren and Kinra 
(1988) and (1992) used experimental apparatus in order to determine the structural 
damping of metal-matrix composites. Crane and Gillespie (1991) measured 
experimentally the damping of a composite cantilever beam test specimen excited 
with an impulse excitation. They reached to the conclusion that damping is 
affected by the fiber-matrix type and fiber orientation, whereas it is insensitive to 
specimen thickness. Adams and Maheri (1994) correlated the measured SDC 
values of glass and carbon pre-preg symmetric angle-ply and off-axis composite 
beams with predicted results based on Adams and Bacon damping criterion 
(1973b). They also studied both experimentally and numerically the effect of 
beams aspect ratio, fiber orientation and stress amplitude on the SDC. Eldred et al. 
(1995) reported a comparison on the Kelvin-Voigt damping model with a three 
and four parameter fractional order constitutive relationships, reaching to the 
conclusion that the derivative models provided a substantially better model over 
much larger bandwidth. Pritz (1996) proposed a four parameter fractional 
derivative model for describing the variation of damping properties of polymers in 
a wide frequency range, provided that there is one symmetric loss peak. This 
model was capable of correcting the inaccuracies introduced by the spring-dashpot 
models, which defined the stress-strain relationship in the time domain by linear 
differential equation. 

The finite element analysis has been used by Cawley and Adams (1978) and 
Lin et al. (1983) to predict the natural frequencies and SDC of composite plates. 
An analytical macro-mechanical model was presented by Crane and Gillespie 
(1992), which combined the elastic-viscoelastic correspondence principle with the 
classical laminate theory (CLT). The new contribution of this work included the 
prediction of composite loss factor incorporating its frequency dependence into 
the analysis. In addition, the effect of fiber orientation on loss factor values was 
experimentally validated and correlated with relative results from Adams and 
Bacon (1973b). Maheri and Adams (1995) presented a damped element based on 
the damping criterion of Adams and Bacon, whose predictions were in good 
agreement with the respective experimental results conducted in a previous work 
of the authors (1993). 

Various analytical models were also developed using the micro-mechanical 
approach to damping analysis of composite structures. Chang and Bert (1973) 
reported micro-mechanical models for the calculation of stiffness and damping in 
fiber-reinforced composites. Bicos and Springer (1989) studied the free damped 
vibration of composite plate and shells using a computer code to calculate the 
natural frequencies, mode shapes and damping factors of plates and panels 
supported under various conditions. Saravanos and Chamis (1990a) presented an 
integrated micromechanics theory for the on-axis and off-axis damping capacity of 
unidirectional composites. In contrast to many previous works, which were 
restricted to ply damping associated with the longitudinal normal stress or the in-
plane shear stress or both, in their proposed unified approach all six damping 
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coefficients related to six stresses were considered. This methodology also 
assumed anisotropic dissipative fiber properties, included the friction due to 
broken fibers and incorporated hygrothermal effects on the elastic and the 
damping properties of the material. The same year the authors extended their work 
to include various composite angle plies and laminates (1990b). More specifically, 
for the case of quasi-isotropic laminations, correlations between predicted and 
experimental results in addition with comparisons of Ni and Adams (1984) gave 
credence to their developed damping micromechanics theory. Saravanos and 
Chamis (1991) presented an integrated finite element based method for the 
simulation of damping of composite structures. In contrast to the limitations of 
other methods, such as Cawley and Adams (1978) and Lin et al. (1983), the 
developed finite element was applicable to both plate and shell-type structures and 
general laminate configurations. Furthermore, the effect of structural geometry on 
the structural damping of composite beams, plates and shells was illustrated. 
Lesieutre (1994) used the complex modulus approach to represent the dissipative 
properties of transversely isotropic materials, such as unidirectional fiber-
reinforced composites. Singh and Gupta (1994) applied first-order deformation 
theory (FSDT) on layered composite cylindrical shells to predict the loss factor 
values corresponding to various shell modes. They used the complex modulus 
approach for harmonic vibrations which was based on the correspondence 
principle of linear viscoelasticity to obtain the variation of loss factors with shell 
parameters. Rikards et al. (1995) developed a triangular finite element and 
predicted the damping by the energy dissipation method for composite plates 
using a correspondence principle. 

Extended work has also been carried out, both numerically and experimentally, 
for the damping prediction of more realistic structures, such as composite beams, 
blades and shells. Philippidis et al. (1997) and (2001) predicted the transient 
forced vibration response of a 10m blade and by conducting experimental 
damping measurements, the tuning of Rayleigh damping coefficients of a detailed 
finite element model was achieved. Verification of theoretical predictions was 
accomplished satisfactorily by comparing with experimental data. Plagianakos and 
Saravanos (2003) presented a finite element method for predicting the damping of 
doubly curved laminates and laminated shell composite structures. Damping 
mechanics calculated the structural modal loss factors using the energy dissipation 
method. The section kinematics assumed FSDT and therefore an eight-node shell 
damping finite element was formulated. Correlation cases between predicted and 
experimental results quantified the ability of the finite element to predict modal 
damping values and natural frequencies of thin and intermediately thick shell 
structures. Saravanos et al. (2004) presented a brief description of a theoretical 
framework for predicting the damping of composite wind-turbine blades with 
hollow laminated sections. An extended work was reported by Saravanos et al. 
(2006) where the analytical formulation of a shear beam finite element for the 
damped structural analysis of composite blades with hollow laminated cross-
sections was incorporated into the so called DAMPBEAM finite element code. 
The novel damped three-dimensional shear beam finite element was capable of 
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providing the stiffness, mass and damping matrices and of predicting the natural 
frequencies and modal damping of hollow blades with various laminate 
configurations. In addition, the modal frequency/damping values of 
Glass/Polyester composite strips, and beams of uniform elliptical and circular 
sections were correlated with the damped shell developed by Plagianakos and 
Saravanos (2003) and the relative values for composite box-section beams were 
compared with a commercial shell finite element. Berthelot (2006) used the Ritz 
method to analyze the damping properties of rectangular unidirectional composite 
plates in combination with experimental characterization of damping in cantilever 
composite beam specimens subjected to an impulse input. 

Chortis et al. (2007) presented a preliminary work based on Saravanos et al. 
(2006) beam element, which included material coupling effects on damping level 
of the structure cross-section. Notable differences in predictions were observed in 
modal damping loss factor and natural frequencies values of Carbon/Epoxy box-
section beams for a range of ply angles between θ=00 to 900. Chortis et al. (2012) 
expanded their previous work on the effect of material coupling terms by 
predicting the modal frequency/damping values of small composite model blades. 
Furthermore, the capabilities of the damped beam element (Saravanos et al. 2006) 
in predicting the modal loss factor of a realistic 19m wind turbine blade, part of 
the DampBlade project (2006), were also presented. 

2.2.2   Discrete Layer Damping Model Theories 

The previously reported structural models fail in the case of very thick composite 
sandwich sections, or composite laminates with constrained polymer damping 
layers. For this reason, analytical solutions and finite elements were developed for 
the prediction of passive damping of laminated plate and shell structures using 
discrete layer model theories. Among other Gibson and Plunkett (1976), Ni and 
Adams (1984) and Alam and Asnani (1986 and 1987) presented important works 
in this field. 

Based on their previous work, firstly Saravanos and Chamis (1992a) presented 
preliminary results and later Saravanos (1994) reported an integrated methodology 
for the calculation of passive damping based on a discrete layer damping theory 
(DLDT) for thick laminates/structures including interlaminate shear strains and 
damping calculation. The formulation of developed DLDT method used linear 
displacement approximations at each discrete layer of the composite structure. 
Comparison of classical laminate damping theory (CLDT) with DLDT showed 
that for very thin laminates both theories gave identical results, whereas the latter 
one provided better predictions for cross-ply laminations at low aspect ratios and 
higher-order modes at high temperatures. The potential of the method in capturing 
the effects of interlaminar stresses due to the laminate configuration of thicker 
composite plates was further illustrated by Saravanos (1993), who built a four-
node bilinear element with damping analysis capabilities. Saravanos and Pereira 
(1992) used the aforementioned theory to demonstrate the impact of embedded 
interlaminar damping layers in composite laminates and their effect on natural 
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frequencies and mode shapes of specialty composite structures (1995). Taylor and 
Nayfeh (1997) reported an analytical solution taking into consideration discrete 
layer kinematic assumptions with linear displacement approximations capable of 
predicting the modal damping capacity of simply supported, thick multilayered 
composite plate strips. Zapfe and Lesieutre (1999) developed a discrete layer finite 
element for the dynamic analysis of laminated beams with integral viscoelastic 
layers for the prediction of modal frequencies and loss factors of cantilever 
sandwich beams. Lee and Kosmatka (2002) predicted the modal characteristics of 
cantilevered laminated plates with embedded damping layers using a discrete layer 
triangular element including higher-order terms in the displacement approximation 
through the thickness. Moreover, they provided correlations between predicted, 
experimental and computational results by a commercial finite element package. 
Plagianakos and Saravanos (2003) formulated a novel plate finite element for the 
prediction of the total damping capacity of laminated piezocomposite plate 
structures. According to this method, modal damping and frequencies were 
predicted from the calculation of the complex eigenvalues-poles of the discretized 
dynamic equations. The credibility of this method was validated by a series of 
experimental cases of Graphite/Epoxy beams under various support conditions. 
The same authors based on the linear layerwise formulations by Saravanos (1993 
and 1994) developed a new high-order discrete layer formulation (2004), where 
quadratic and cubic fields were added in the kinematics of each discrete layer, 
while maintaining displacement compatibility. The capabilities of the layerwise 
high-order mechanics included among others the prediction of modal frequencies, 
damping, through thickness displacement and strain and stress fields in both 
composite and sandwich beams using the modal strain energy dissipation method. 
Expanding this work, Plagianakos and Saravanos (2009) developed an integrated 
formulation which begins with the damped composite ply and is capable of 
predicting the modal damping in composite plate structures. 

2.2.3   Optimization of Composite Damping 

Damping in fiber-reinforced materials is highly tailorable and controlled by 
constituent parameters such as the fiber/matrix properties, the fiber volume ratio 
and the ply orientation angles. Adams and Bacon (1973) illustrated the effect of 
fiber orientation and laminate geometry on the flexural and torsional damping of 
composite materials. Saravanos and Chamis (1990c) presented a method for 
tailoring plate and shell composite structures for optimal forced damped dynamic 
response. Their study was based on the finite element method and the criteria for 
the tailoring of damping were the fiber volume ratios as well as the reduction of 
the maximum resonance amplitudes by a factor of two (2) while keeping 
frequencies in the feasible frequency domain. 

Hwang and Gibson (1992) reported an extended review regarding the strain 
energy-based finite element approaches for the estimation of damping in 
composite structures. Their work was also focused on the optimization of damping 
of composite materials and structures. To that direction, Saravanos and Chamis 
(1992) developed a multiobjective optimal design methodology including 
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micromechanics, laminate and structural shape parameters. The objectives of their 
methodology included the minimization of the damped resonance amplitudes (or 
the maximization of modal damping), weight and material cost. Hufenbach et al. 
(2002) reported an analytical method for the vibration and damping behavior of 
composite cylindrical shells. Their work included elementary optimization studies 
for optimizing damping by altering the lay-up and the radius of the CFRP 
cylindrical structure. 

The DAMPBEAM code was applied within the activities of DAMPBLADE 
project (2006 and Saravanos 2004) to investigate the effect of ply angle and 
lamination tailoring on the modal frequencies and modal damping of a 19m 
Glass/Polyester wind-turbine blade. The damping was optimized using a damped 
polyester resin and by altering the ply orientation of non-unidirectional plies. 
Maheri (2010) used the theoretical predictions of modal response of a square 
layered FRP panel to investigate the variation of modal damping with respect to 
variables such as the laminate lay-up, mode shapes and boundary conditions.   
2.3   Theoretical Framewor k for the Prediction of Nonlinear Damping  

2.3   Theoretical Framework for the Prediction of Nonlinear 
Damping in Composite Structures 

2.3   Theoretical Framewor k for the Prediction of Nonlinear Damping  

The estimation of damping parameters is essential for composite structures and 
especially for those subject to large displacements and rotations, such as wind-
turbine rotors. Composite blades undergo extreme loadings and therefore the 
inclusion of nonlinear effects into the damping mechanics is more than necessary.  

Torvik (2002) published a work where several standard measurements for 
determining the damping of linear one-degree of freedom systems were 
considered and the consequence of stiffness and damping nonlinearities on these 
measurements were determined. In addition, Torvik (2011) presented the 
methodology for estimating system damping from the bandwidth of the amplitude 
response to a specific excitation and studied the consequences of the asymmetry of 
the response function resulting from an amplitude-dependent stiffness. 

Kosmatka (2008) studied both analytically and experimentally the damping 
response of a beam subject to an initial axial force. This work included: a) 
analytical results for the axial tension and compression of an Euler-Bernoulli 
beam composed by a homogenous material with viscous damping; (b) 
experimental measurements for various composite beams under the same loading 
conditions. Especially for the case of the applied axial compressive load, the 
results till the buckling point, indicated decreasing undamped frequency and 
increasing modal damping values. Kosmatka (2010) expanded his previous work 
by examining the vibration response of a geometrically-imperfect post-buckled 
Carbon/Epoxy beam. The effect of a compressive load on the trends of natural 
frequency and modal damping were investigated, while the beam transitions from 
the pre- to the post-buckled region. The analytical solution is based on a simply 
supported beam which is approximated as one degree of freedom (1-DOF) system 
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and the experimental results were conducted using the displacement control 
loading method without taking any measurement near the buckling point area. 

Recently, Lesieutre (2009) presented analytical solutions based on classical 
laminate theory which included the effect of membrane loads on the modal 
damping of composite structures. The solutions considered several damping 
models and the association of each model with the modal damping prediction was 
described. In detail, Lesieutre studied the effect of increasing tensile loads both on 
the natural frequency and the modal damping. Theoretical predictions, which 
quantified the effect of compressive loads on the modal characteristics, were also 
presented. Furthermore, a viscous damping model was proposed (2010), which 
predicted constant modal damping independent of frequency. The developed 
analytical model yields modal damping for simply-supported flexural beams that 
is very nearly independent of frequency (mode number). The theoretical 
predictions were also validated through a simple beam finite element with 2 DOF 
at each node (lateral displacement and slope), using kinematic assumptions 
associated with Bernoulli-Euler beam theory.  

Chortis et al. (2011) presented the theoretical framework for the nonlinear 
damped analysis of composite strips. Damping mechanics and nonlinear structural 
dynamics formulations enable the inclusion of nonlinear effects due to in-plane 
loads and large deformations on both structural stiffness and damping of 
laminated composite strips. The governing equations of composite laminates are 
described, subject to large Green-Lagrange strains, assuming a Kelvin viscoelastic 
solid. The credibility of the developed nonlinear beam finite element is validated 
through correlations with experimental measurements on cross-ply Glass/Epoxy 
beam-strips subject to in-plane tensile loading. Chortis et al. (2013) based on the 
aforementioned nonlinear formulation, updated the beam element in order to 
predict nonlinear damping of composite strips undergoing in-plane buckling. The 
excellent correlation between theoretical predictions and experimental 
measurements gave credence to the nonlinear beam capabilities to capture the 
effect of geometric nonlinearities on beam-strip modal damping. 
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Chapter 3 
3   Linear Material Coupling Effect on Structural Damping  

Linear Material Coupling Effect on Structural 
Damping of Composite Beams and Blades 
Linear Material Coupling Effect on Structura l Damping  

The current chapter presents the theoretical background for the damped dynamic 
analysis of composite beams and blades encompassing material coupling effects. 
The formulation includes composite material coupling effects, first in the cross-
section stiffness and damping matrices and finally into the structural stiffness and 
damping matrices of the blade. In the following sections, new coupling damping 
cross-section terms associated with non-negligible ply stiffness and damping 
terms are formulated. In detail, this chapter consists of seven subsections. Firstly, 
a brief description of the developed damped beam finite element is presented. The 
second subsection reports the constitutive equations as well as the strain-
displacement relations of the composite ply. Accordingly, the third subsection 
deals with the blade cross-section mechanics and the formulation of the respective 
linear stiffness, damping and mass terms of the cross-section. In the fourth 
subsection, building upon the damping mechanics, an extended beam finite 
element is developed capable of providing the stiffness and damping matrices of 
the structure, which contain new material coupling terms, essential for describing 
the structural dynamics response of composite beams and blades. The capability of 
the developed beam finite element to predict the static and the damped modal 
characteristics of composite structures is quantified by a series of validation cases 
in the fifth subsection of the present chapter. Numerical results illustrate the 
material coupling effect on natural frequencies and modal loss factor values of 
composite Carbon/Epoxy box-section beams with various ply angle laminations. 
Additional comparisons between predicted and measured natural frequencies and 
modal damping values are shown to quantify the effect of new coupling terms on a 
Glass/Epoxy small model blade with anti-symmetric angle-ply laminations. A 
realistic 19m wind-turbine model is also modeled and correlations with 
experimental measurements are presented. In the sixth subsection, the damped 
beam finite element is applied for the prediction of the cross-section stiffness and 
mass properties and the modal characteristics of a 61.5m rotor blade. The major 
concluding remarks are reported in the last subsection of the present chapter. 
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3.1   Tubular Laminated Beam 

This subsection provides a brief description of the damped beam mechanics of 
composite structures having a tubular laminated cross-section of arbitrary shape, 
as the one shown in Figure 3.1. 

 

Fig. 3.1 Typical hollow beam cross-section geometry and coordinate systems 

The section skin may entail various segments of arbitrary lamination, which are 
defined around its mid-plane. The beam is considered to be neither curved nor pre-
twisted. The equivalent cross-section properties are defined in the Cartesian 
coordinate system Oxyz, whereas the skin lamination, composite ply properties and 
the equivalent properties of the skin laminate are defined in terms of the local 
curvilinear system O'xsζ. The assumed positive directions of the coordinate systems 
as well as the various levels of analysis have been also schematically depicted in 
Figure 3.1 and are in detail presented within the next sections of the present 
chapter. 

3.2   Composite Ply Level 

The formulation of the beam begins at the composite ply level, which is 
considered to behave as an orthotropic material. The material properties are 
defined in the material coordinate system of the composite ply, O1'2'3', as shown in 
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Figure 3.2a, where 1'-axis is parallel to fibers direction, 2'-axis is perpendicular to 
1'-axis and both of them are on the same level and perpendicular to 3'-axis. When 
the material coordinate system coincides with the global coordinate system, O123, 
the ply is called on-axis, whereas in the case that the material system is rotated by 
an angle θ  with refer to the global coordinate system, the ply is called off-axis 
(Figure 3.2b).  

 

 

Fig. 3.2 a) Material coordinate system of an on-axis composite ply; b) Global and material 
coordinate system of an off-axis composite ply 

3.2.1   Constitutive Equations 

Structural damping calculation starts at the composite ply level. Each composite 
ply of the laminate is assumed to have viscoelastic behavior, such that the 
assumption of a cyclic loading yields the complex stress component cσ , which is 

given by the following relation, 

[ ]( )j   = +   c c c c cσ Q Q η ε (3.1)

where c cσ , ε  are the engineering stress and strain in extended vectorial 

notation, respectively,  is the off-axis ply stiffness matrix,  is the off-

axis damping matrix and j  is the imaginary unit. The subscript c  indicates that 

the previous quantities are defined with respect to the structural axes of the local 
curvilinear coordinate system O'xsζ. 

The characterization of a composite ply damping coefficients is crucial in 
problems involving the calculation of  the structural damping. For the case of an 

on-axis composite ply the damping matrix [ ]lη  at the material coordinate system 

O1'2'3' has the following diagonal form, 

[ ] 1 2 3 4 5 6diag( , , , , , )l l l l l lη η η η η η=lη (3.2)

(a) (b) 

  cQ [ ]cη
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where, l  denotes the material system and 1', 2' and 3' are the longitudinal, 
transverse and through-thickness axes. Moreover,  is the longitudinal (direction 
11),  the transverse in-plane (direction 22),  the transverse through the 
thickness (direction 33),  the in-plane shear (direction 12),  the interlaminar 
shear (direction 23), and  is the interlaminar shear (direction 13) loss 
factor. These damping values will be used as input in the developed finite element 
code for the calculation of the plate-beam damping. According to the kinematic 
assumptions the transverse shear strain is equal to zero and therefore the term  
is neglected. Consequently, Eq. (3.2) becomes: 

[ ] 1 2 4 5 6diag( , , , , )l l l l lη η η η η=lη (3.3)

For the case where the material coordinate system has been rotated with refer to 
the global coordinate system by a θ  angle, the composite ply damping is 
described by the off-axis damping matrix [ ]cη , which is related to the on-axis 
damping coefficients by the following relation, 

[ ] [ ] [ ][ ]T -T

c lη = R η R (3.4)

where, [ ]R
 
is a proper rotation matrix, described in Appendix C; and symbol T  

indicates transpose matrix. Thus, the off-axis damping matrix of the composite ply 
takes the form, 

 

(3.5)

and it is obvious that is a non-diagonal matrix including damping coupling terms 
in the global coordinate system. The damping variables, which are introduced as 
input in the finite element code are 1lη , 2lη , 5lη  and 6lη . 

3.2.2   Strain-Displacement Relations 

The compatibility strain equations associate the engineering strains with the 
displacements for a composite ply. Based on that, the expressions of the normal 
and shear strains in the curvilinear system O'xsζ are, 

 

1lη
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6lη 4lη
5 6l lη η=

3lη

[ ]

11 12

21 22

44 45

54 55

66

0 0 0

0 0 0

0 0 0

0 0 0
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(3.6)

where , ,x s ζε ε ε  refer to the normal strains, ,x sζ ζε ε  refer to the out-of-

plane shear strains and xsε  refers to the in-plane shear strain. All the 

aforementioned expressions correspond to linear strains of the composite ply. 

3.2.3   Equations of Motion 

3.2.3.1   Differential Form of Stress Equilibrium Equation  

The response of an elastic composite ply is described by the differential form of 
the stress equilibrium equation, which is valid for any point of the composite ply 
and has the form, 

, , 1,...3i ij j iu b i jρ σ= + = (3.7)

where, ρ  is the material density; iu  is the mechanical displacement vector; ijσ  is 

the tensor of the applied mechanical stresses at the specific point of the ply and ib  

indicates the external body forces per unit volume of the structure. In Eq. (3.7), 
double superscript dot indicates time differentiation, whereas the comma as a 
subscript indicates space differentiation. 

3.2.3.2   Weak Formulation  

Equation (3.7) is a simple form of a differential equation which could yield the 
exact solution of problems with simple geometry and common support and force 
conditions. Nevertheless, even for the case of one-dimensional problems the 
solution is difficult enough to be found, especially when the structure consists of 
complicated geometry. In such cases, variational formulations are used and 
applied to the whole volume of the structure. The application of the principle of 
virtual work in combination with the differential form of stress equilibrium 
equation, which refers to one point of the ply, yields the "variational form" or the 
so called "weak form", suitable for the three-dimensional stress analysis of 
composite structures.  
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δ δ d δ d δ d δ d 0
V V V

V V Vρ
Γ

= + − − Γ =   T T T T Tu Ψ ε σ u u u b u τ (3.8)

In the above equilibrium equation symbol δ  indicates a virtual variation of 
displacement around the equilibrium point, where term δu  is equal to zero. 
Likewise, τ  is the vector of the external forces applied on the boundary area Γ  
and V  represents the total volume of the composite structure. When the system is 
not at the equilibrium point, Ψ  is the imbalance vector between the internal and 
external forces acting on the structure, which vanishes at the equilibrium point.  

The first integral in the RHS of Eq. (3.8) represents the variation of the strain 
and dissipated energy of the deformed shape of the structure, the second one the 
variation of kinetic energy and the last two integrals the variation of the work of 
body and external forces, which act on the boundary Γ  of the ply. 

3.3   Composite Cross-Section Mechanics 

This subsection objective is to provide the necessary theoretical background for 
the formulation of the section stiffness, damping and mass terms of the beam finite 
element. More specifically, the stiffness and damping terms will be formulated 
and analytically described. 

3.3.1   Section Kinematics 

Blade kinematics is based upon a first-order shear deformation theory. It assumes 
extension along x -axis, bending around y  and z  directions, shear deformations 
on xy  and xz  planes and torsion around x -axis. The displacements at each 
point of the cross-section are expressed in the Cartesian coordinate system Oxyz 
and have the following form, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0
,

0

0

, , , , , , ,

, , , ,

, , , ,

y z xu x y z t u x t z x t y x t x y z

x y z t x t z x

w x y z t w x t y x

β β θ

υ υ θ

θ

= + + + Ψ

= −

= +  

(3.9)

where: 0u , 0υ  and 0w  are the displacements of the section at the origin of the 
coordinate system Oxyz;  and 

 
are bending rotation angles about axes y  and 

z , respectively; θ  is the twisting angle and ( , )y zΨ  is the secondary warping of 
the section; superscript 0  indicates mid-section and the comma in the subscripts 
indicates differentiation. In the curvilinear system O'xsζ (Figure 3.1), kinematic 
assumptions of Eqs. (3.9) are transformed to the following form, 

yβ
zβ
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( ) ( ) ( )( ) ( )( ) ( ) ( )( )
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′ = +  

(3.10)

where ( )0 0,y z  and ( )0 0,sr rζ  are the projections of the vector 0r  describing the 
distance between a point O' on the skin mid-surface from point O on the section x
-axis, on the respective axes of coordinate systems Oxyz and O'xsζ; 

( ) ( )( )0 0,s z r sζ ζΨ = − + Ψ  is the secondary warping function of the section. 
Figure 3.3 illustrates the generalized displacements of the composite beam cross-
section and their respective positive directions. 

 
 

 

Fig. 3.3 Composite tubular beam cross-section generalized displacements 

 
Incorporation of compatibility strain Eqs. (3.6) with kinematic assumptions of 

Eqs. (3.9) and (3.10) yields the normal and the shear strains acting on the structure 
cross-section,  

 

υ 
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, ,

0 0 0 0 0
, ,

0 0 0 0
, ,

, , , , , ,

, , , , 2

, , ,

x x xy s xz s

t
xs xz s xy s xs

x xz s xy s

x s t x t k x t z y k x t y z k x r s

x s t x z x y x s k x

x s t x y x z

θθ ζ

θ

ζ

ε ζ ε ζ ζ ζ

ε ζ ε ε ε ζ

ε ζ ε ε

= + + + − + − + Ψ

= + + −

= −  

(3.11)

The previous generalized strains, which equivalently describe the section 
deformation include the axial strain, 

0
xε , the transverse shear strains 

0 0,xy xzε ε , the 
bending curvatures ,xy xzk k  and the twisting curvatures ,k kθ θθ . The second 
twisting curvature kθθ  expresses second-order variation and is assumed to be 
negligible with respect to other generalized strains. 

Engineering strains, 
0 0

,

,

,

x x

o o
xy x z

o o
xz x y

u

w

ε

ε υ β

ε β

=

= +

= +  

(3.12)

Curvatures, 

,

,

,

xy y x

xz z x

x

k

k

kθ

β

β

θ

=

=

=  

(3.13)

3.3.2   Variational Form of Beam Equations of Motion 

The equations of motion of the beam (Eq.(3.8)) could be, alternatively described 
by the following variational form, 

0 0 0

d δ d d d δW d d d δ d d δ dΓ 0
L L L

d

A A A

x H s x s x T s
Γ

ζ ζ ζ+ + + =       Tu τ (3.14) 

where: H , dW  and T  are the strain, dissipated and kinetic energy, respectively; 
τ  are surface tractions on the free surface Γ ; A  is the cross-sectional area 
covered by material and L is the length of the beam. Symbol δ  indicates virtual 
variation. 
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In Eq. (3.15) the variation of the strain energy, over the cross-sectional area 
becomes, 

[ ] { }secδ δ d d d δ d δ ,δ d
A h

H s s sζ ζ
    = = =   

   
   

Τ
0

s sT T 0 Τ
c c c c c T

s s

A B εε σ ε Q ε ε k
B D k  (3.15)

where, the subscript s  denotes the skin laminate of the structure. Respectively, the 
variation of dissipated energy due to composite damping over the section vibration 
cycle is, 

[ ][ ] [ ][ ]secδ δ d d δ dd
A h

W s dsζ ζ= =  T T
c c c c c c c cε Q η ε ε Q η ε (3.16) 

The complete form of the off-axis strains and stresses of a rotated composite ply 
are, 

1 2 4 5 6

1 2 4 5 6

{ , , } { , , }

{ , , } { , , }

, , , ,

, , , ,

c c c c c cx cs cs cx cxs

c c c c c cx cs cs cx cxs

ζ ζ

ζ ζ

ε ε ε ε ε ε ε ε ε ε

σ σ σ σ σ σ σ σ σ σ

= =

= =

ε

σ

c

c

(3.17) 

where, c  indicates off-axis ply. 
Matrices [ ]cQ  and [ ]cη  are the equivalent off-axis stiffness and damping 

(loss factor) matrices of the composite ply with respect to the curvilinear system 
O'xsζ, defined in the Appendix C. The damping matrix [ ]cη  is related to three in-
plane damping coefficients of the composite ply, which are the longitudinal, 
transverse and in-plane shear loss factors, respectively (Saravanos 1993). It is 
pointed out that both ply stiffness and damping matrices include axial in-plane 
shear coupling terms, 16Q  and 16η , respectively. 

The kinetic energy variation secδT , is represented by the integral over the 
cross-sectional area, 

secδ δ diag( ) d d d δ diag( ) d
A h

T s sζ ζ= − = −  T Tu ρ u u ρ u  (3.18) 

In the above equations, diag(ρ)  is the diagonal matrix with diagonal elements 

equal to the mass density ρ  of the ply and h  is the thickness of the skin laminate. 
The detailed form of the equivalent mass cross-section matrices is reported by 
Saravanos et al. (2006) and is also provided in Appendix C. 

3.3.3   Section Stiffness Terms 

Using the strain expressions provided by Eqs. (3.11) in combination with Eq. 
(3.15), integrating over the skin thickness and around the skin midline, the stored 
strain energy of the section is finally expressed in terms of the generalized strains 
and the equivalent section stiffness terms, as follows, 
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( ) { }secδ δ 2δ δ d δ , δH s
                 = + + =                     


T T T

0 0
0

0 0 0 0 0 T 0 0 T
T0 0

A B εε A ε ε B k k D k ε k
kB D

 (3.19)

where, { }0 0 0, ,x x xsζε ε ε=0ε  and { }, ,xy xzk k kθ=k  represent the equivalent 

strain and curvature of the section, respectively. The previous equation yields the 
equivalent extensional-shear, coupling and flexural-torsional stiffness matrices 

  
0A ,   

0B  and   
0D , of the cross-section, having the form, 

0 0 0 0 0 0 0 0 0
11 15 16 11 12 16 11 12 16

0 0 0 0 0 0 0 0 0
51 55 56 51 52 56 21 22 26

0 0 0 0 0 0 0 0 0
61 65 66 61 62 66 61 62 66

, ,

A A A B B B D D D

A A A B B B D D D

A A A B B B D D D

     
     

     = = =          
     
          

0 0 0A B D (3.20) 

The overbar indicates the section stiffness terms, named thereafter as stiffness 
coupling terms, which depend directly to the extension-shear coupling stiffness 

components of the skin laminate 16 16 16, , ,A B D , These coupling terms induce 

coupling between extension-shear (
0
15A  and 

0
16A ), coupling between extension and 

torsion (
0
16B ) and coupling between bending and torsion (

0
16D  and 

0
26D ). The 

coupling terms vanish if the respective skin laminate coupling stiffness is 

negligible or zero ( )16 0Q = . Detailed description of the stiffness terms is 

provided by Saravanos et al. (2006) and their expressions are reported in 
Appendix C. 

3.3.4   Section Damping Terms 

The significance of the third chapter of the present worklies in part on the 
formulation of the section coupling damping terms of the beam finite element. To 
that direction, similarly to the section stiffness terms, the substitution of Eqs. 
(3.11) into the dissipated energy Eq. (3.16) in combination with the integration 

over the cross-sectional area, yields the dissipated energy of the section, 
sec

dW , 

( )secδ δ δ δ δ ddW s      = + + +      
T T T0 0 0 0 0 T 0 0 T 0

d d d dε A ε ε B k k B ε k D k (3.21)

which can be alternatively written in the following form, 

{ }secδ δ , δdW
            =               

T

0 0
0d d

0 T
T0 0

d d

A B εε k
kB D

(3.22) 
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The dissipated energy of the section is expressed in terms of the arbitrary 
combination of cyclic strain and bending curvatures and twisting angles.   

0
dA , 

  
0
dB  and   

0
dD

 
are the damping matrices having the following form, 

0 0 0 0 0 0
11 15 16 11 12 16

0 0 0 0 0 0
51 55 56 51 52 56

0 0 0 0 0 0
61 65 66 61 62 66

0 0 0
11 12 16

0 0 0
21 22 26

0 0 0
61 62 66

, ,

d d d d d d

d d d d d d

d d d d d d

d d d

d d d

d d d

A A A B B B

A A A B B B

A A A B B B

D D D

D D D

D D D

   
   

   = =      
   
      

 
 

  =   
 
  

0 0
d d

0
d

A B

D
 

(3.23)

In Eq. (3.23), the   
0
dA ,   

0
dB  and   

0
dD  damping matrices express the 

equivalent damping and energy dissipation per unit length of the beam due to 
extension-shear, extension-bending coupling and bending-torsion deformation, 
respectively. Saravanos et al. (2006) have already formulated the damping terms 
which are independent of the material coupling effect and indicated without the 
overbar. The detailed form of these terms is provided in Appendix C for sake of 
completeness. The terms with overbar, indicating damping coupling, are new 
contribution of the present work and are associated with extension-shear ply 

coupling, induced by nonzero ply stiffness 16cQ  and damping 16cη  coefficients.  

They include: 
Extension-shear damping coupling terms, 

( )

( )

0 0
15 16 ,

0 0
16 16 ,

d

d

d d s

d d s

A A z s

A A y s

=

=








(3.24)

Flexural-torsional damping coupling terms, 

( )( )

( )( )

0 0 0 0 0
16 16 16 , 16 ,

0 0 0 0 0
26 16 16 , 16 ,

2 2 d

2 2 d

d d h d h s d s

d d h d h s d s

D A A z B A y z D y s

D A A y B A z y D z s

= − − + −

= − + − +








(3.25)

and the damping coupling terms, 
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( )

( )

( )

( )

( )

0
16 16 16

0 0 0 0
51 16 16 , ,

0 0 0 0
52 16 16 , ,

0 0 0 0
61 16 16 , ,

0 0 0 0
62 16 16 , ,

2 d

d

d

d

d

d d h d

d d d s s

d d d s s

d d d s s

d d d s s

B A A B s

B A z B y z s

B A y B z z s

B A z B y y s

B A y B z y s

= − −

= +

= −

= +

= −





















 

(3.26)

In the above equations, [ ]dA , [ ]dB , [ ]dD  are effective extensional, coupling 

and flexural loss stiffness matrices of the skin laminate. In addition, 0 0,y z  are 

the coordinates of the skin laminate midline, s  is the curvilinear length; 
0 0
, d dsy y s= , 0 0

, dz dsz s=  are derivatives of the midline coordinates. Finally, 

0hA A hλ= , where 0A  and λ  are geometric section parameters defined by, 

0
0

1
d , dA r s s

hζ λ= =   (3.27) 

3.3.5   Section Mass Terms 

The substitution of the displacement relations (Eq. (3.10)) into the kinetic energy 
variation (Eq. (3.18)), and subsequently the integration firstly over the thickness 
( )h  and then along the skin midline ( )s , yields the kinetic energy of the section in 

terms of generalized displacement.  

( )secδ δ 2δ δ dT s= + +
T T0 A 0 0 B T Du m u u m β β m β  (3.28) 

where { }0 0 0, ,u wυ=0u  and { }, ,y zβ β θ=β  represent the average 
displacements and rotations of the section, respectively. Likewise, 

, ,A B Dm m m  are the equivalent linear mass, coupling and rotational inertia 
matrices of the cross-section, per unit length, having the detailed form, 
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11 11 12 13 11 12 13

11 23 21 22 23

33 31 32 3311

0 0

0 0 0 0

0 00 0

, ,

A B B B D D D

A B D D D

B D D DA

m m m m m m m

m m m m m

m m m mm

     
     
     
     
     

    

= = =A B Dm m m (3.29)

The detailed expressions of each terms included in the , ,A B Dm m m  

matrices have already been presented Saravanos et al. (2006) and included in the 
Appendix C for the sake of completeness of the current work.  

3.4   Structural Level 

The next key step is the incorporation of the cross-section stiffness, damping and 
mass terms into the developed damped beam mechanics and the formulation of the 
respective finite element structural matrices. 

3.4.1   Damped Beam Finite Element Formulation 

A shear beam finite element is formulated for the damped dynamic analysis of 
tubular composite beam structures (Figure 3.4) such as wind-turbine blades. The 
element has 6 DOFs at each node (indicated with superscript i ), 

{ }, , , , ,oi oi oi i i i
y zu wυ β β θ=i

eU (3.30)

 
Fig. 3.4 Tubular laminated composite beam element: (a) Cross-section module; (b) 
Finite element. 
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which are respectively: the three displacements  at the origin Oxyz of the 
section, the two bending rotation angles  and  and the twisting angle . The 
previous 6 DOFs admit deformations of the beam in all dimensions, therefore it is 
termed thereafter as three-dimensional shear beam element. 

3.4.1.1   Shape Functions of the Tubular Beam Finite Element 

The generalized displacements along the axis of the beam are approximated by  
0c  continuous interpolation functions . These functions are consistently 

used within along this work and their detailed form is presented in the fourth 
chapter. The approximation of the generalized displacements along the axis of the 
beam is described analytically by the following relations, 

( ) ( )
1

n
o i oi

i

u x N x u
=

≅ ( ) ( )
1

n
o i oi

i

x N xυ υ
=

≅ ( ) ( )
1

n
o i oi

i

w x N x w
=

≅
(3.31)  

( ) ( )
1

n
i i

y y
i

x N xβ β
=

≅
 

( ) ( )
1

n
i i

z y
i

x N xβ β
=

≅ ( ) ( )
1

n
i i

i

x N xθ θ
=

≅

where  is the interpolation function and the superscript i  indicates nodal 
variables. The developed beam finite element has 2n =  nodes and due to that fact 
the interpolation functions are linear. Based on the fact that there are six DOFs at 
each node, there will be: 2 nodes x 6 DOF per node = 12 DOF at each beam finite 
element. 

The relation between the generalized strains and curvatures and the nodal DOF 
values at the finite element, is shown in the next set of equations, 

( )

( ) ( )

( ) ( )

( )

( )

( )

0 0
, ,

, ,

, ,

, ,

,

, ,

i i
x x x

o o i i i i
xy x z x z

o o i i i i
xz x y x y

i i
xy y x x y

i i
xz x z

i i
x x

u N x u

N x N x

w N x w N x

k N x

k N x

k N xθ

ε

ε υ β υ β

ε β β

β β

β

θ θ

= ≅

= + ≅ +

= + ≅ +

= ≅

≅

= ≅

 

(3.32) 

, ,u wυ
yβ zβ θ

( )iN x

( )iN x
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Writing the above expressions in a matrix form and separating in-plane from shear 
terms, it results to the following two equations, 

In-plane terms, 

( )
( )

( )
( )

0 0
,

,

1 ,

,

0 0 0

0 0 0

0 0 0

0 0 0

i i
xx

i in
xxy y

i i
i xxz z

i i
x

N x u

N xk

N xk

N xkθ

ε
β
β
θ

=

    
    

    ≅                 

 (3.33)

The first RHS matrix is the in-plane strain shape matrix and for sake of brevity is 

indicated as i
oR   . 

Shear terms, 

( ) ( )
( ) ( )

0

0
,

1 ,

0 0

0 0

i

o i i in
xz x
o i i i

ixy x y
i

z

N x N x w

N x N x

υ
ε
ε β

β
=

 
       ≅     

      
  

 (3.34)

The first RHS matrix is the shear strain shape matrix and for sake of brevity is 

indicated as i
shR   .  

The combination of these two strain shape matrices, yields the total strain 

matrix i
totR    of the beam element, which is the RHS matrix in Eq. (3.35). 

( )
( ) ( )

( ) ( )
( )

( )
( )

0 0
,

0
,

0
,

1 ,

,

,

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i i
xx

i io i
xxz

i io in
xxy

i i
i xxy y

i i
xxz z

i i
x

N x u

N x N x

N x N x w

N xk

N xk

N xkθ

ε
ε υ
ε

β
β
θ

=

    
    
    
       ≅     
    
    
    
         



 

(3.35)

3.4.1.2   Total Structural Matrices of the Beam Finite Element  

The next step includes the combination of the displacement field approximation 
(Eq. (3.31)) with the expressions of the strain, dissipated and kinetic energy of the 
beam cross-section and with the vector of the generalized strains (Eqs. (3.12) and 
(3.13)), which finally provides the total stiffness, damping and mass matrices of 
the beam finite element. 
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I. Element stiffness matrix, 

[ ]
2 2

1 1

d
e

Tij i j
e tot tot

i j L

K R R x
= =

             =               
 

0 0

T0 0

A B

B D
(3.36)

II. Element damping matrix, 

[ ]
2 2

1 1

d
e

Tij i j
e tot tot

i j L

C R R x
= =

             =               
 

0 0
d d

T0 0
d d

A B

B D
(3.37)

III. Element mass matrix, 

[ ]
2 2

1 1

d
e

Tij i j
e

i j L

M N N x
= =

             =               
 

A B

TB D

m m

m m
(3.38)

where , 1,2i j =  are the element nodes and i
totR    and iN    are the total strain 

and displacement shape function matrices of the beam element, respectively. 

3.4.1.3   Calculation of Structural Matrices at the Local Coordinate System  
of the Element  

The calculation of the integrals presented in Eqs. ((3.36)-(3.38)) takes place in the 
local coordinate system (ξ ) of the developed element. Analytical information 
about the transformation from the global to the local coordinate system is provided 
in the fourth chapter (Eqs. 4.52-4.53) of the book. Based on the transformation 

( )d 2 dex L ξ=  (Eq. (4.53)) and the different integration limits: 0 eL→  to 1 1− →  
from the global to the local coordinate system, respectively, the aforementioned 
structural matrices become, 
I. Element stiffness matrix at the local coordinate system, 

[ ]
12 2

1 1 1

d
2

Tij i j e
e tot tot

i j

L
K R R ξ

= = −

             =               


0 0

T0 0

A B

B D
(3.39)

II. Element damping matrix at the local coordinate system, 

[ ]
12 2

1 1 1

d
2

Tij i j e
e tot tot

i j

L
C R R ξ

= = −

             =               


0 0
d d

T0 0
d d

A B

B D
(3.40)
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III. Element mass matrix at the local coordinate system, 
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The line integrals are calculated using the Gauss integration method, which is also 
described in the fourth chapter of the present work. At this point it should be 
underlined that the in-plane terms are calculated at two integration points, whereas 
the shear terms using one integration point, in order to avoid the shear locking of 
the beam. Furthermore, the final stiffness, damping and mass matrices of each 
beam finite element have square form with dimensions 12x12, 

[ ] [ ] [ ]
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e x
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(3.42) 

3.4.2   Discrete System of Equations of Motion 

An important step towards the final modeling of the composite structure is the 
formulation of the total structural matrices based on the assembly of the finite 
elements. Through proper collection of the previous element matrices terms, 
which correspond to the common nodes of the structure, the total stiffness [ ]K , 
mass [ ]M  and damping [ ]C  matrices of the beam finite element are 
synthesized. 

Assuming harmonic motion and taking into account the governing equations of 
motion ((3.15)-(3.18)), the final discrete set of equations describes the free-
vibration response of the beam by the following relation, 

2 jω− + + =[M]U [C]U [K]U 0 (3.43) 

3.4.3   Calculation of the Modal Loss Factor of the Composite 
Beam 

Direct solution of Eq. (3.43) yields the complex eigenvalues of the system. An 
alternative approximate dissipated energy method, used herein, relies on the 
numerical solution of the undamped system [ ]( )C = 0 , which provides the 
undamped modal frequencies and the relative mode shapes of the beam structure. 
The modal loss factor of the m-eigenshape is given by the following relation, 
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where dW , and H  are the dissipated and the stored energy, respectively, of the 
beam for the mth undamped eigenshape. The modal loss factors of the beam are 
calculated as the ratio of the dissipated energy to the maximum stored modal 

energy of the respective undamped mode shape mU , 
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π
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T
m m
T
m m

U C U
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(3.45) 

Using the previous described formulation, a beam finite element with 2n =  nodes 
and linear shape functions was developed and encoded into the research FE 
analysis code DAMPBEAM (2006), which predicts the damped dynamic 
characteristics (natural frequencies and modal damping) of the beam model, using 
the energy method described above. 

3.5   Validation of Coupling Terms 

Numerical results evaluate the present method and quantify the effect of coupling 
terms on a series of validation cases on composite structures, which, first include 
the static response and the modal characteristics of Carbon/Epoxy box-section 
beams. Then, the natural frequencies and the modal loss factor values of a small 
Glass/Epoxy model blade are predicted and validated towards available 
experimental measurements. Furthermore, the developed finite element is applied 
to the prediction of the modal characteristics of a 19m realistic wind-turbine blade. 
Finally, the capabilities of the developed beam finite element to predict the cross-
section structural properties and the modal characteristics of a 61.5m wind-turbine 
blade will also be presented. 

3.5.1   Box-Section Carbon/Epoxy Beams 

The effect of material coupling was first predicted on a L=0.762m long 
Carbon/Epoxy uniform box-section beam for two lamination cases proposed by 
Volovoi and Hodges (2000 and 2002) and shown in Figure 3.5a. Case I has [θ/-
θ]3, [-θ/θ]3, [θ]6 and [-θ]6 skin laminations at the left, right, top and bottom side, 
respectively (Figure 3.5b), and exhibits high material coupling. Case II consists of 
two shear webs (left and right side) having [±45]3 skin laminations and two 
flanges (top and bottom side) having [θ]6 and [-θ]6 laminations, respectively 
(Figure 3.5c). The mechanical properties of the Carbon/Epoxy composite material 
were taken from Volovoi and Hodges (2000 and 2002) and are shown in  
Table 3.1. 
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Table 3.1 Mechanical properties of Carbon/Epoxy composite material 

ρ (Kg/m3) Ε11 (GPa) Ε22 (GPa) G12 (GPa) ν12 ηl1 (%) ηl2 (%) ηl5 (%) ηl6 (%) 

1578 141.9 9.78 6.13 0.24 0.750 2.297 2.866a 2.866 

aNot measured        
 
 

(a) 

(b) (c) 

Fig. 3.5 Box-section Carbon/Epoxy composite beam: (a) Geometric data; (b) Case I; (c) 
Case II lay-up configurations 

3.5.1.1   Static Response of Carbon/Epoxy Beam  

Emphasis is placed to the inclusion of composite material coupling effects, first 
into the blade section stiffness and damping matrices and finally into the stiffness 
and damping matrices of the beam finite element. Figure 3.6, Figure 3.7 and 
Figure 3.8 show the predicted tip displacement, tip slope and tip twist for the case 
I of the above beam for a transverse tip load of 4.45N, for the respective cases of 
including and neglecting the material coupling terms described in Eqs. (3.20) and 
(3.23). In all diagrams the ply angle θ , of section skin laminations ranges from 00 
to 900 degrees.  
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Fig. 3.6 Tip displacement of box-section Carbon/Epoxy beam 

There is a substantial improvement in the predicted values of tip displacement 
and bending angle when material coupling is included in the finite element, in the 
range of ply orientations yielding non-negligible shear-extension coupling. 

Moreover, as illustrated in Figure 3.8, the inclusion of material coupling terms 
in the model captures the twisting of the beam, while the finite element neglecting 
material coupling fails to do so. 
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Fig. 3.7 Tip slope of box-section Carbon/Epoxy beam 
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Fig. 3.8 Tip twist of box-section Carbon/Epoxy beam 

 

 

Fig. 3.9 Transverse displacement of Carbon/Epoxy box-section beam for θ=200 and θ=450 
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Fig. 3.10 Bending angle of Carbon/Epoxy box-section beam for θ=200 and θ=450 

 

 

Fig. 3.11 Twisting angle of Carbon/Epoxy box-section beam for θ=200 and θ=450 
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To further study the effect of material coupling on the statically deflected slope 
of the beam two specific ply angle values of θ=200 and θ=450 were selected for the 
case I lamination, which are shown in Figure 3.9, Figure 3.10 and Figure 3.11. 
The results indicate that the effect of coupling terms is stronger at θ=200 and also 
the deviation between the coupled and the uncoupled model increases near the tip 
of the composite beam, where the displacement, the bending angle and the twist 
obtain their maximum values. 

3.5.1.2   Modal Characteristics of Carbon/Epoxy Beam  

Notable differences in predictions were observed to the static characteristics of the 
blade with the coupling inclusion. Similar differences were presented in modal 
damping and natural frequency predictions of the box beam for a range of ply 
angles of case I and case II laminations. 

Figure 3.12 illustrates the predicted first flapping modal frequency for the cases 
I and II when the material coupling terms in Eqs. (3.20) and (3.23) are included or 
neglected. In both cases, the models that include coupling terms, predict lower 
frequency values and consequently indicate increased compliance of the blade, 
than the respective model cases which neglected the material coupling terms. 
Moreover, the effect of coupling terms is more pronounced in case I, manifested 
as higher deviation between the coupled and the uncoupled model in the range 
between θ=50 to 400. 

 

Fig. 3.12 First flapping frequency of Carbon/Epoxy box-section beam 
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Fig. 3.13 First modal loss factor of Carbon/Epoxy box-section beam 

 

 

Fig. 3.14 First mode shape of Carbon/Epoxy box-section beam including material coupling 
terms 
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Figure 3.13 shows modal damping predictions for the first mode (first 
flapping). The inclusion of stiffness and damping coupling terms provides higher 
predictions for the modal damping in the range of ply angles between θ=50 and 
350. In particular, in the ply range from θ=50 to 200 the coupled model for case I 
yields higher modal damping predictions than the case II model, which is probably 
attributed to the lamination of the shear webs. 

Similarly, Figure 3.14 illustrates the severe effect of stiffness torsion/bending 
coupling on the first bending mode of the blade for various ply angles. In both 
cases the present model predicts substantial torsion/bending coupling in the range 
from θ=50 to 350, yet, case I provides significantly higher coupling values, due to 
the presence of shear webs angle ply laminations. 

The capabilities of the present beam finite element to predict the static stiffness 
of various box-section lay-up configurations is shown in Figure 3.15 and Figure 
3.16, in comparison to asymptotic beam theory results by Volovoi and Hodges 
(2000 and 2002) and predictions by a commercial shell finite element (ANSYS). 
Figure 3.15 shows the tip bending rotation of a clamped-free composite box-
section beam under a transverse load of 4.45N applied at the free tip.  

Likewise, Figure 3.16a-b present the tip torsional stiffness of the same beam for 
two different material lay-up configurations. The models involving the present beam 
and shell finite element, were discretized using a uniform 40 element mesh along the 
beam length. It is obvious that the present beam finite element follows reasonably 
well the predictions of the shell element. Also, it follows well the asymptotic beam 
theory predictions, with the exception of the case with skin laminations [θ3/-θ3] at the 
left and top side and [-θ3/θ3] at the right and bottom side. 
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Fig. 3.15 Tip bending rotation of a clamped-free box-section Carbon/Epoxy beam with [θ/-
θ]3, [-θ/θ]3, [θ]6 and [-θ]6 skin laminations at the left, right, top and bottom side, 
respectively 
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(b) 

Fig. 3.16 Tip torsional stiffness of a clamped-free box-section Carbon/Epoxy beam with:(a) 
[θ3/-θ3] at the left and right side, and [-θ3/θ3] at the top and bottom side;(b) [θ3/-θ3] skin 
laminations at the left and top side, [-θ3/θ3] laminations at the right and bottom side 
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3.5.2   Small Model Blade 

A small model blade was fabricated and its modal characteristics were 
experimentally measured as part of the DAMPBLADE project (2006). The 
mechanical properties and the damping coefficients of the Glass/Epoxy composite 
material were also experimentally extracted and are shown in Table 3.2. 

Table 3.2 Elastic properties and damping coefficients of Glass/Epoxy small model blade 

ρ (Kg/m3) Ε11 (GPa) Ε22 (GPa) G12 (GPa) ν12 ηl1 (%) ηl2 (%) ηl5 (%) ηl6 (%) 

1670 23.1 8.10 2.50 0.33 0.371 0.898 1.242a 1.242 

aNot measured        

3.5.2.1   Blade Testing and Numerical Simulation 

The small blade has uniform cross-sections with Glass/Epoxy skins of uniform 
thickness and entails two [06/(±45)2] girder segments. The skin lamination 
configurations and cross-section geometry are shown in Figure 3.17 and Table 3.3, 
respectively. 

 

Fig. 3.17 Small model blade cross-section laminations and geometry 

Table 3.3 Geometry section parameters and weight for the small model blade 

Length  
(mm) 

Chord Length 
(mm) 

Airfoil Section Thickness 
(mm) 

Average Ply Thickness
 (mm) 

Weight  
(kg) 

1540 283.5 50.0 0.80 6.0 
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The whole experimental procedure regarding the small model blade conducted 
within the activities of DAMPBLADE project (2006) and were carried out in 
AML by Dr. N. Chrysochoidis. The blade was tested suspended by chords in a 
nearly free-free configuration, thus minimizing the effects of supports on the 
overall modal damping of the tested blade (Figure 3.18). The structure was 
dynamically excited by an applied continuous swept-sine waveform point force 
using an electromagnetic shaker with an instrumented tip. The acceleration of the 
vibrating blade was measured using a tri-axial accelerometer at a grid of locations 
over the span of the blade. The signals from the force and accelerometer sensors 
were conditioned and then acquired by a data acquisition and frequency analyzer 
system implementing a high-speed DAQ card and customized Labview® software. 
The measured accelerance (acceleration/force) frequency response functions were 
correlated with a parametric model of complex exponentials using a least-squares 
fit to extract the modal characteristics of the tested blade. 

 

 

Fig. 3.18 Typical modal testing configuration for the small model blade 

The modal characteristics of the aforementioned small model blade were 
predicted using the developed beam finite element. The comparison between the 
predicted and the measured modal damping and natural frequencies is shown in 
Table 3.4. 

The present damped finite element seems to provide reasonably good 
predictions of both natural frequencies and modal damping for the small model 
blade. The deviations can be attributed to the short length of the blade, which 
deviates from ideal beam behavior, possible imperfections imposed by the hand 
lay-up fabrication method and to additional mass and damping of the adhesive  
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Table 3.4 Predicted and measured natural frequencies and modal damping values of the 
Glass/Epoxy small model blade 

Mode  Natural Frequency (Hz)  Modal Loss Factor (%) 

  Beam Element Experiment  Beam Element Experiment 

1st Flapping  81.4 79.9  0.57 0.44 

2nd Flapping
(torsion coupled) 

 222.6 211.5  0.58 0.70 

1st Sweeping  278.8 306.1  0.93 0.98 

2nd Sweeping  697.5 714.1  0.92 1.28 

1st Torsional  193.4 193.7  0.79 0.94 

2nd Torsional
(flapping 

l d

 389.7 391.9  0.78 0.92 

 
putty which used to join the components of the tested blade. There is higher 
underestimation in the predicted results of the second sweeping mode, due to the 
short length and high transverse shearing of the cross-section in the chord 
direction. The present beam element assumes uniform shearing of the cross-
section, but the results of the second sweeping mode may justify future 
improvements in the kinematic formulation. In summary, the new damped finite 
element has reasonably captured both values and trends seen in the measured 
modal frequencies and damping. 

3.5.2.2   Effect of Coupling Terms 

The effect of material coupling was investigated by predicting the modal 
characteristics of the small model blade with off-axis girders. Two cases of girder 
section laminations (Figure 3.17) were considered: in case I, the top girder 
segment has a [θ6/(±45)2] lamination whereas the bottom girder segment has  
[-θ6/(±45)2] from the inner to the outer girder skins; in case II, both girder 
segments have the same [θ6/(±45)2] lamination. The blade cross-section skin 
laminations at the leading (LE) and trailing (TE) edge are shown in Figure 3.17.  

A discretization of 40 uniform beam elements along blade’s length was 
required to obtain convergence of the results, as shown in Figure 3.19 for the first 
two mode shapes of the small blade model. 
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(a) (b) 

Fig. 3.19 Convergence of the small blade model: (a) First; (b) Second mode shape 

Figure 3.20 and Figure 3.21 show the predicted first modal flapping frequency 
and damping loss factor values for a range of girder ply angle from θ=00 to 900. 

In case I, the inclusion of coupling yields lower modal frequency, hence 
predicting a more compliant blade. Similarly, the inclusion of coupling terms 
provides higher values of respective modal structural damping in the ply angle 
range from θ=50 to 450. As it was expected, the difference is eliminated at θ=00 
and 900 where the material coupling effect is physically eliminated.  

In case II the models with and without coupling terms predict identical results. 
The symmetry between the lay-up merely eliminates extension-shear 0

16A  and 0
16dA , 

the bending-shear 0
16B  and 0

16dB  and the bending-torsion coupling terms 0
16D

 and 
0
16dD  of the blade section. 
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Fig. 3.20 First modal frequency of Glass/Epoxy small model blade 
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Fig. 3.21 First modal loss factor of Glass/Epoxy small model blade 

 

Fig. 3.22 First mode shape of Glass/Epoxy small model blade 

The predicted twisting angle over the bending angle of the blade’s tip node is 
presented in Figure 3.22, for the first flapping mode shape. The inclusion of 
coupling terms in case I, results in strong twisting in the flapping mode, whereas 
the elimination of stiffness coupling terms (see Eqs. (3.20), (3.23)), respectively, 
predicted very low twisting, similar to the predictions for case II. The higher  
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prediction of modal damping in case I (Figure 3.21) can be attributed to the 

nonzero coupling damping properties of the section ( , , ) and the 

twisting in the flapping mode. 

3.5.3   19m Wind-Turbine Blade 

The finite element code was finally applied for predicting the modal 
characteristics of a realistic 19m wind-turbine blade design. The blade has a 
complex external and internal geometry, and large part of the blade is made of 
Glass/Polyester composite sandwich laminates, which are supported by two shear 
webs along its length. The mechanical properties and the damping coefficients of 
the Glass/Polyester composite material are shown in Table 3.5. 

Table 3.5 Mechanical properties and damping coefficients of Glass/Polyester composite 
material 

ρ (Kg/m3) Ε11 (GPa) Ε22 (GPa) G12 (GPa) ν12 ηl1 (%) ηl2 (%) ηl5 (%) ηl6 (%) 

2260 22.05 5.58 2.28 0.33 0.668 3.519 4.204a 4.204 

aNot measured        

 
A typical cross-section consists of the trailing edge (TE), leading edge (LE), 

shear webs (S/W) and top and bottom girder segments, each entailing different 
laminations. The girders entail several [00] UD fiber plies along the length axis of 
the blade. Details and geometry of a typical blade cross-section are shown in 
Figure 3.23. 

 

 

Fig. 3.23 Typical cross-section lamination segments and geometry parameters for the 
19m realistic wind-turbine blade model 

0
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16dB 0
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Table 3.6 presents the predicted natural frequencies and modal loss factors for 
the first two flapwise modes and the first sweeping mode of the blade.  

Table 3.6 Predicted and measured natural frequencies and modal damping values of the 
19m realistic wind-turbine blade model 

Mode  Natural Frequency (Hz)  Modal Loss Factor (%) 

  
Beam 

Element Experiment  
Beam 

Element 
Experiment 

1st Flapping  2.132 1.868  1.112 1.072 

2nd Flapping  5.149 5.076  1.351 1.178 

1st Sweeping  2.787 2.971  1.617 1.174 

 

 

Fig. 3.24 Effect of an off-axis girder on the first flapwise modal frequency of 
Glass/Polyester 19m realistic wind-turbine blade 

 
In order to investigate the material coupling effect on structural behavior of the 

19m blade, two new lamination cases were incorporated into the FE code (Figure 
3.23). Case I, entails laminations where only the UD [00] plies were substituted by 
several [θ]n ply angle laminations in top girder and [-θ]n in bottom girder 
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segments, whereas case II entails the same [θ]n ply angle laminations in both top 
and bottom girders, with refer to x -axis of blade’s length. The ply angle 
laminations were varied in the range from θ=00 to 150, where the effect of new 
coupling terms is expected to dominate. 

Figure 3.24 and Figure 3.25 show the first modal flapping frequency and modal 
damping loss factor values for a range of girder ply angles between θ=00 and 150, 
respectively. It is obvious that inclusion of new material coupling terms yields a 
more compliant blade, which is expressed by the lower frequency and higher 
damping values. In case II, the material coupling effect is almost vanished due to 
the lay-up symmetry in the blade cross-section, which eliminates the extension-
shear coupling terms 0

16A
 and 0

16dA , the bending-shear coupling terms 0
16B

 and 0
16dB

 
and the bending-torsion coupling terms 0

16D
 and 0

16dD  of the cross-section. 
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Fig. 3.25 Effect of an off-axis girder on the first flapwise modal loss factor of 
Glass/Polyester 19m realistic wind-turbine blade 

3.6   Application of the Developed Finite Element on a 61.5m 
Wind-Turbine Blade Model 

3.6   Application of the Develope d Finite Eleme nt  

In the present subsection, the capabilities of the developed damped beam finite 
element to predict the structural properties of a 61.5m Reference Wind Turbine 
(RWT) blade model are presented. Within the activities of UPWIND integrated 
project (2011) a new blade model of 5MW was built, which in the next paragraphs  
 



3.6   Application of the Developed Finite Element 59 

 

will be called as the "UP" blade model. The building procedure of the  
wind-turbine model consists of two main parts, the creation of cross-sections’ 
geometry and the introduction of material lamination in each cross-section’s 
segment. Both of these data were provided by DOWEC project and WMC 
(Kooijman et al. (2003) and Goezinne (2001)), respectively, and were detailed 
enough to allow the creation of the proper lay-up per blade sections. Therefore, 
the developed beam finite element and structural dynamics models were used to 
obtain the structural properties of the UP wind-turbine blade. 

3.6.1    Advanced Cross-Section Structural Properties 

The first part of the current subsection aims to the calculation of the structural 
properties of the 61.5m wind-turbine model. The blade was divided into 20 
sections along its length in x -axis and each cross-section had a different geometry 
and material lamination. The distance of each cross-section from blade root is 
shown in Figure 3.26.  

Fig. 3.26 Cross-sections used in UP blade and their distance from blade root 

Totally, five different material properties where introduced into UP blade 
model to obtain the most realistic simulation per segment of blade’s cross-section. 
These material properties refer to Glass/Epoxy fabrics and structural foams layers 
and they are presented in Table 3.7. 
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Table 3.7 Mechanical properties of 61.5m UP wind-turbine blade composite materials 

Material 
Number 

Material 
Name 

ρ 
(Kg/m3) 

Ε11  
(GPa)

Ε22 
(GPa)

Ε33 
(GPa)

G12 
(GPa)

G23 
(GPa)

G13 
(GPa)

ν12 ν23 ν13 

UD Gl/Epoxy 1869 38.9 9.0 9.0 3.6 3.6 3.6 0.25 0.45 0.25 

TRIAX-1 Gl/Epoxy 1826 24.8 11.5 11.5 4.9 4.9 3.0 0.42 0.25 0.42 

ANGPLY Gl/Epoxy 1789 11.7 11.7 11.7 9.8 9.8 9.8 0.50 0.25 0.25 

FOAM-1 
Struct. 
Foam 

200 256e-3 256e-3 256e-3 22e-3 22e-3 22e-3 0.30 0.30 0.30 

FOAM-2 
Struct. 
Foam 

45 25.e-3 25e-3 25e-3 12e-3 12e-3 12e-3 0.30 0.30 0.30 

 
Regarding the materials properties of Table 3.7, the following assumptions 

should be taken into consideration: 

o Material UD consists of unidirectional layers parallel to x -axis of the wind-
turbine blade. 

o Material TRIAX is a lamination consisting of three layers: [0/±45]. 
o Material ANGPLY is a lamination consisting of two angle ply layers: [±45]. 
o Materials FOAM-1 and FOAM-2 are PVC structural foams used in leading 

edge (LE) and shear webs (S/W) of the blade, respectively. 
 

 

Fig. 3.27 Segments of a typical cross-section of the UP wind-turbine blade 
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In Figure 3.27 a typical cross-section of UP wind-turbine model is presented. The 
section lies on the y z−  level of blade coordinate system and consists of several 
sandwich segments which are detailed modeled into the developed beam finite 
element code. The leading edge (LE), SANDWICH and UD trailing edges (TE), 
the girders and the shear webs consist of different lay-up configurations, due to the 
different role that they play on the structural and aeroelastic response of the whole 
wind-turbine structure. 

Each segment of each cross-section has the following laminations: 

 Leading Edge Segment: Sandwich structure with TRIAX skins and FOAM-1 
core. 

 Girder Segment: Skins of TRIAX and multiple UD layers. 
 Sandwich Trailing Edge Segment: Sandwich structure with TRIAX skins 

and FOAM-1 core. 
 UD Trailing Edge Segment: Skins of TRIAX and multiple UD layers. 
 Shear Webs: Sandwich structures with ANGPLY skins and FOAM-2 core. 

Further analytical information about the 61.5m 5MW blade lay-up configuration is 
provided in Appendix E. In order to verify the credibility of UP blade model, the 
predicted results were validated with the RWT and DOWEC-WMC existing data 
per blade cross-section. 

 

Fig. 3.28 Comparison of chord length along blade span 
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The developed finite element code has the capability of calculating the 
stiffness, mass and damping section matrices. In addition, after synthesizing the 
global structural system, the code provides the modal frequencies and modal 
damping of the whole blade structure. In Figure 3.28 the cross-sections chord 
length variation along blade x -axis is presented. It is obvious that the correlation 
between UP and RWT model is almost excellent along blade radius, which 
ensures the geometrical requirements for the structural analysis of the blade.   

The correspondence between the equivalent section stiffness terms and the 
traditional beam theory section properties is the following, 

0 0 0
11 55 66

0 0 0 0
11 12 22 66

, ,

, , ,
x xy y

x xz xy

b y b yz b z

A E A A G A A G A

D E I D E I D E I D G Jτ

= = =

= = = =
(3.46) 

where A  is the area covered by material of each cross-section; ,
ix bE E  are the 

equivalent axial and flexural modulus of elasticity, respectively; Gτ  is the 

equivalent torsional modulus of elasticity; , ,y yz zI I I  are the inertia moments 

and J  is the polar inertia moment. 
In order to calculate the mass and stiffness properties of the 61.5m blade model, 

the UP model assumed 20 sections-finite elements along its length. The code has 
the capability of predicting the following axial force and cross-section stiffness 
values, which are in detail presented in Appendix E, 

 
0
11A  : Force applied on the cross-section w.r.t. axial direction ( x -axis)  

0
11D  : Cross-section stiffness w.r.t. flapping direction (around y -axis) 

0
22D  : Cross-section stiffness w.r.t. edgewise direction (around z -axis) 

0
33D  : 

Cross-section torsional stiffness w.r.t. axial direction (twist 
around x -axis) 

 
 

The variation of mass and stiffness properties along blade length is better 
described in the next figures, where the UP beam model is compared with RWT 
and DOWEC-WMC relative ones. The beam mass density (Figure 3.29) highly 
depends on the dimensions ( y z−  coordinates) of each cross-section and on the 

number of UD layers in girder segments. Observing Figure 3.29, makes it clear 
that the convergence between the UP and RWT paper case blade model is almost 
excellent for all cross-sections. The prediction of the cross-sectional stiffness 
properties was important to better understand the structural behavior of the 61.5m 
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wind-turbine blade. In Figure 3.30 the flapping stiffness along blade length is 
presented. The correlation of results is on an adequate level and follows the RWT 
and WMC values. 
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Fig. 3.29 Comparison of beam mass density along blade span 
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Fig. 3.30 Comparison of flapping stiffness along blade span 
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A minor deviation observed from 9m to 14m is attributed to the high number of 
UD layers in girder segments of cross-sections, which increase directly the 
stiffness with refer to the flapping direction of the structure. 

In Figure 3.31 and Figure 3.32 the stiffness in the edgewise and torsional 
directions are presented, respectively. It is obvious that the UP beam model 
approaches the RWT values along the blade’s span whereas the DOWEC-WMC 
model underestimates the edgewise stiffness of the blade.  
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Fig. 3.31 Comparison of edgewise stiffness along blade span 
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Fig. 3.32 Comparison of torsional stiffness along blade span 
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As far as the torsional stiffness is concerned, UP model presents an 
underestimation at root of the blade where the cross-sections have a circular 
shape. This minor deviation vanishes during the transition from the circular to the 
airfoil cross-sections which constitute the main body of the wind-turbine blade. 

3.6.2    Modal Analysis of the Wind-Turbine Blade 

The second part of the 61.5m rotor blade analysis includes the calculation of its 
modal characteristics. Table 3.8 presents the modal frequencies and modal loss 
factor values of the 61.5m wind-turbine model. 

Table 3.8 Natural frequencies and modal loss factor values of UP 61.5m wind-turbine 

Mode Natural Frequency (Hz) Loss Factor (%) 

1st Rotor Flapwise 0.680 0.826 

2nd Rotor Flapwise 1.815 0.881 

3rd Rotor Flapwise  3.867 0.931 

4th Rotor Flapwise 7.191 1.030 

5th Rotor Flapwise 11.237 1.119 

1st Rotor Edgewise 0.889  1.259 

2nd Rotor Edgewise 3.238 1.334 

1st Rotor Torsional 6.676 1.945 

2nd Rotor Torsional 11.617 1.910 

3.7   Conclusions 

In the third chapter a theoretical framework was presented to predict the linear 
damped structural dynamics of composite beams and blades exhibiting material 
coupling. New damping terms encompassing strong material coupling effects were 
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incorporated into a new damped 3-D beam finite element, capable of predicting 
the modal characteristics of composite structures. 

The effect of new material coupling terms was evaluated on box-section beams, 
on a small model blade and on a realistic 19m wind-turbine model. In addition, the 
cross-section structural properties and the modal characteristics of a 61.5m rotor 
blade were predicted by the developed beam finite element. Based on the obtained 
numerical results the following major conclusions can be summarized: 

 

1) In all previous structures, the introduction of the new stiffness and damping 
coupling section terms appears to capture the effect of material coupling by 
predicting a more compliant structure having lower modal frequencies and 
higher modal damping values. 

2) Evaluation cases carried out on box-section composite beams quantified the 
material coupling effect on static characteristics and modal frequency and 
damping values. 

3) There is a reasonably good correlation between experimental data and 
numerical results obtained by the present finite element for the case of the 
small model blade.  

4) Notable differences in the predictions of modal characteristics where 
exhibited for anti-symmetric ply-angle girder laminations [06/(±45)2], when 
the [0] plies were rotated by an angle [θ] in the top girder and [-θ] in the 
bottom girder laminations, in the range from θ=50 to 450. 

5) The inclusion of new coupling cross-section terms for the case of a realistic 
19m wind-turbine blade, yielded substantial differences in modal damping 
and frequency predictions between sections with high coupling (top and 
bottom girders with rotated plies of angle [θ]n and [-θ]n, respectively) and 
sections with negligible ply stiffness and damping coupling terms (both 
girders with rotated plies of angle [θ]n). The inclusion of material coupling 
terms seems to significantly improve the structural damping prediction of the 
blade. 

6) There is an excellent correlation of stiffness and mass properties between UP 
61.5m blade model and the RWT paper case blade for blade cross-sections 
along its length. The developed beam finite element code is also capable of 
predicting the modal frequencies and modal damping of UP wind-turbine 
blade. 

The novelty points of the third chapter are: 

∗ The development of new cross-section damping terms, which take into 
account the coupling effects induced by the composite material of the 
structure. 
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∗ The prediction of modal loss factor and natural frequencies values of 
composite structures of various cross-section shapes and the experimental 
correlation where available. 

∗ The investigation of material coupling effect on a realistic 19m wind-turbine 
blade model consisting of off-axis girder segments, which improved the 
structural damping prediction of the blade. 
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Chapter 4 
4   Nonlinear Damping Mechanics and Finite Ele ment Model for the Static  

Nonlinear Damping Mechanics and Finite 
Element Model for the Static and Damped  
Free-Vibration Analysis of Composite Strips 

The current chapter presents the theoretical framework for the study of the 
nonlinear response of composite strips. The analysis of composites strips is 
considered to be an intermediate step before moving to tubular sections and beam 
elements, which provides valuable insight and understanding of the nonlinear 
composite damping behavior of these simple structural configurations, moreover 
offers an opportunity for experimental verification. Nevertheless, there is a void in 
current literature and technology which is also covered by this chapter. The 
damping mechanics and nonlinear structural dynamics formulations enable the 
inclusion of nonlinear effects due to in-plane loads and large deformations on both 
structural stiffness and damping of laminated composite strips. 

In the following sections the formulation of a plate-beam finite element will be 
presented beginning from the composite ply level up to the final beam element 
stiffness and damping matrices. The governing equations of composite laminates 
are described, subject to large Green-Lagrange strains, assuming a Kelvin 
viscoelastic solid. Effective and linearized damping and stiffness laminate 
matrices are formulated assuming first-order shear theory. In detail, the present 
chapter consists of ten subsections. In the first, the constitutive equations and the 
kinematic assumptions on composite ply level are presented. Furthermore, the 
stress equilibrium equation is stated in differential form and based on the principle 
of virtual work, the weak formulation of the equilibrium equations, being valid for 
nonlinear as well as linear stress-strain relations, is presented. In the second 
subsection the laminate kinematics based on the first-order shear deformation 
theory are shown. 

In the third subsection the detailed expressions of the cross-section stiffness, 
damping and mass terms are also reported. Next, the damped nonlinear strip 
element formulation is presented, where the new nonlinear stiffness and damping 
matrices forms both in the global and local coordinate system are shown. Fifth 
subsection provides a brief description of the solution methodology, based on the 
Newton-Raphson incremental-iterative technique. In the sixth subsection the 
complete set of equations of the final system is reported, containing also the 
formulation for the linearized structural matrices of the composite structure.  
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Fig. 4.1 Schematic algorithm flow of the nonlinear finite element code 
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The theoretical background developed within the present chapter is valid for 
composite strips subject to tension or buckling loads. In the former case, the small 
amplitude free-vibration procedure is in detail described in the seventh subsection. 
Accordingly, eighth subsection presents the displacement control methodology, 
which was implemented as solver into the nonlinear finite element code in order to 
describe the response of the composite strip as it transitions from the pre- to post-
buckling regime. In the ninth subsection the numerical integration methodology 
followed along the current work is presented, whereas in the last subsection the 
major concluding remarks of the present chapter are summarized. The 
aforementioned finite element procedure is schematically illustrated in Figure 4.1. 

4.1   Composite Ply Level 

One of the most important benefits of composite material structures is the tailoring 
of their stiffness and damping properties by adjusting the fiber orientation, the 
material, the thickness or some other important parameters of each composite ply. 
The mechanical properties and the damping coefficients of the composite ply, 
actually determine the elastic and damping properties of the laminate, 
respectively. Therefore, the constitutive equations, the stress-strain relation as well 
as the equilibrium stress equations should firstly refer to the composite ply of the 
structure. 

4.1.1   Constitutive Equations 

A strain based Kelvin viscoelastic constitutive model was considered to better 
describe the relation between the ply stresses and strains, having the following 
form, 

      
* *

c cs c cd cσ = Q ε + Q ε (4.1)

where: 

{ } { }

{ } { }

1 5

1 5

, ,

, ,

c c cx cxz

c c cx cxz

ε ε ε ε

σ σ σ σ

= =

= =

c

c

ε

σ
 (4.2)

1 5,c cε ε and 1 5,c cσ σ  are the off-axis normal and shear strains and stresses of 
a rotated composite ply, respectively; c  indicates off-axis ply. Likewise,  and 

 are the reduced off-axis stiffness and damping matrices of the composite ply, 
indicated by the subscripts s  and d , respectively. The reduction from the 6x6 full 
form to the final matrices is achieved by the inversion of the compliance matrices, 
described in detail in Appendix C. In the rest of this chapter the reduced stiffness 
and damping matrices are used and the asterisk symbol is omitted for the sake of 
brevity. By substituting Eqs. (4.2) into Eq. (4.1), the latter takes the following 
form, 

*
csQ

*
cdQ
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5 55 5 55 5

0 0

0 0
c cs c cd c

c cs c cd c
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σ ε ε
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        

= +        
        


 (4.3)

This is a simple viscoelastic model in the time domain, which predicted modal 
damping reasonably well. 

4.1.2   Composite Ply Damping 

The detailed form of the on-axis and off-axis composite ply stiffness and damping 
matrices has already been presented in the third chapter and Appendix C  of the 
book.  

The equivalent reduced off-axis damping matrix [ ]cdQ and stiffness matrix 
[ ]csQ  of a composite ply contain only in-plane and out-of-plane shear damping 
coefficients, and are related by the following equation, 

[ ] [ ][ ]ω cd cs cQ = Q η (4.4)

where ω  is the time frequency.  

4.1.3   Equations of Motion 

This paragraph has already been reported in previous chapter and it is included 
herein to ensure continuity of the theoretical framework presented in the following 
paragraphs of the fourth chapter. 

4.1.3.1   Differential Form of Stress Equilibrium Equation  

The differential form of the stress equilibrium equation, which is valid for any 
point of the composite ply is the following, 

, , 1,2i ij j iu b i jρ σ= + = (4.5)

where, ρ  is the material density;  is the mechanical displacement vector;  
is the tensor of the applied mechanical stresses at the specific point of the ply and 

 indicates the external body forces per unit volume of the structure. In Eq. (4.5) 
the double superscript dot indicates time differentiation, whereas the comma as a 
subscript indicates space differentiation. 

4.1.3.2   Weak Formulation  

Equation (4.5) is a simple form of a differential equation which could yield the 
exact solution of problems with simple geometry and common support and force 
conditions. Nevertheless, even for the case of one-dimensional problems the 
 

iu ijσ

ib
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solution is difficult enough to be found, especially when the structure has 
complicated geometry. In such cases, variational formulations are used, which are 
applied to the whole volume of the structure. The application of the principle of 
virtual work in combination with the differential form of stress equilibrium 
equation, which refers to one point of the ply, yields the "variational form" or the 
so called "weak form", suitable for the three-dimensional stress analysis of 
composite structures.  

δ δ d δ d δ d δ d 0
V V V

V V Vρ
Γ

= + − − Γ =   T T T T Tu Ψ ε σ u u u b u τ (4.6)

In the above equilibrium equation the symbol δ  indicates a virtual variation of 
displacement around the equilibrium point, where the term δu  is equal to zero. 
Likewise, τ  is the vector of the external forces applied on the boundary area Γ  
and V  represents the total volume of the composite structure. When the system is 
not at the equilibrium point,  is the imbalance vector between the internal and 
external forces acting on the structure, which vanishes at the equilibrium point. 

4.2   Laminate Level 

Each laminate of the structure could consist of one or more composite plies, with 
different material and geometric properties as well as various lay-up 
configurations. Consequently, the composite laminate exhibits an anisotropic 
behavior which is expressed through its stiffness and damping properties. 
Combination of the section kinematics with the stress-strain compatibility 
equations will provide the analytical expressions for the linear and nonlinear 
stiffness, damping and mass matrices, presented in the rest of this chapter. 

4.2.1   Section Kinematics 

The first-order shear section deformation theory (Reisner 1945 and Mindlin 1951) 
was considered, which admits extension along x -axis, bending in z  direction and 
shear in x  and z  directions (Figure 4.2).  

According to FSDT the transverse edge of a beam does not remain 
perpendicular to the midsurface after deformation, as illustrated in Figure 4.2. 
Moreover, the normal displacement u  follows a linear distribution along the 
thickness of the laminate, whereas the transverse displacement w  is independent 
of the thickness coordinate z . 

The kinematic assumptions are the first step in order to build the nonlinear 
beam finite element formulation and have the following form, 

0

0

( , , ) ( , ) ( , )

( , , ) ( , )

xu x z t u x t z x t

w x z t w x t

β= +

=

 (4.7)

Ψ
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Fig. 4.2 Beam under the assumptions of FSDT: (a) Undeformed geometry; (b) Deformed 
edge shape 

where: u , w  are the displacement components of the section and xβ  is the 

bending rotation angle around y -axis; superscript 0  indicates mid-section and 

the comma in the subscripts indicates differentiation. 
 

 
Fig. 4.3 Composite laminate coordinate system and beam element nodal degrees of 
freedom 
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4.2.2   Strains-Displacements Compatibility Equations 

In order to capture the effect of initial in-plane loads, a nonlinear Green-Lagrange 
normal strain component was considered. The shear strain acting on the cross-
section is assumed to remain linear. Thus, the strains acting on the section have 
the following form, 

2
, ,

, ,

1

2x x x

xz z x

u w

u w

ε

ε

= +

= +

(4.8)

where, ε  are the engineering strains. Combining Eqs. (4.7) and (4.8), the detailed 
normal and shear strains of the section are expressed as follows,  

20 0
,

0
,

1
( , ) ( ) ( ) ( )

2

( , )

x x x x

xz x x

x z x w x zk x

x z w

ε ε

ε β

= + +

= +

(4.9)

The previous generalized strains, which equivalently describe the deformation of 
the section, include the linear axial strain 0

xε , the transverse shear strain, 
0
xzε  the 

bending curvature 
 
and the nonlinear axial strain due to large deformations  

( )L
x xε . The generalized strains could be categorized in the following form, 

Linear strains, 
0 0

,

0 0
,

x x

xz x x

u

w

ε

ε β

=

= +
(4.10)

Curvature, 

,x x xk β= (4.11)

Nonlinear Strain, 

20
,

1
( )

2
L
x xx wε = (4.12)

4.3   Composite Laminate Section Matrices 

The equations of motion of the beam (Eq.(4.6)) could be, alternatively described 
by the following variational form, 

xk
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0 0

d δ d d δTd δ d 0
L L

A A

x H A x A
Γ

+ + Γ =     Tu τ (4.13)

where:  and  are the strain and kinetic energy;  are surface tractions on the 
free surface ;  is the cross-sectional area covered by material and  is the 
length of the beam. 

The strain energy variation of the section secδH  is represented by the integral 
over the cross-sectional area as follows: 

secδ δ d
h

H b z=  T
c cε σ (4.14) 

Substituting Eq. (4.1) into Eq. (4.14), the final expression for the strain energy 
variation over the cross-sectional area is: 

[ ] [ ]( )( )secδ δ d δ δs ds

h

H b z H H= = + T
c cs c cd cε Q ε + Q ε (4.15) 

where, δ sH  and δ dsH  are the expressions for the strain and dissipated energy 

variation of the cross-section, respectively; b  is the width of the section. 

4.3.1   Section Stiffness Terms 

Replacing the normal and shear strain expressions provided by Eq. (4.9), into Eq. 
(4.14), integrating firstly over the laminate thickness and assuming negligible 
transverse normal and shear laminate stresses , ,y xy yzN N N  and transverse and 
shear moments ,y xyM M  along the coordinate axes, Oxyz , the stored strain energy 
in the section takes the form, 
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where the pre-stressing effect is expressed by the following force and moment 
terms, 

0 0
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(4.17) 

The variation of strain energy terms are collected based on linear and nonlinear 
strain components, and the section strain energy (Eq. (4.16)) becomes,  

0 1 2
δ δ δ δs s s sH H H H= + + (4.18) 

where, 
0 1 2
, ,s s sH H H  are the cross-section strain energy terms, containing 

linear and nonlinear components. Each one of these terms provides respectively 
the linear and nonlinear stiffness terms of the section. 
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(4.19) 

The linear stiffness matrix   0sK  contains the well-known linear extensional-
shear coupling and flexural-torsional stiffness terms   

0A ,   
0B  and   

0D  of 
the cross-section (Saravanos et al. 2006), 
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(4.20) 

The nonlinear stiffness matrices   1sK  and   2sK  refer to first- and second-
order nonlinear strain terms, respectively, having the following form, 
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(4.22) 

The stiffness matrix contains a linear diagonal term proportional to the preload 
stress, and nonlinear terms proportional to the rotation angle.  

In the above Eqs. ((4.20)-(4.22)) ijA , ijB  and ijD  are the extensional, coupling 
and flexural stiffness matrices of the laminate section, respectively, whereas 55A  
is the extensional stiffness term referring to the out of plane shear strain xzε . They 
are related with the section stiffness ijQ  by the following relations, 
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(4.23) 

4.3.2   Section Damping Terms 

The same procedure is followed in order to find the final form of the section 
damping terms of the composite structure. Combining Eqs. (4.1), (4.9) and (4.15) 
and collecting the terms based on their order of nonlinear terms, the dissipated 
strain of the section takes the form, 
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(4.24)

In the above, ,  and  are equivalent extensional-shear, coupling 
and flexural damping matrices of the laminate, respectively, defined in Appendix 
C. In the last three lines of the above equation, the dissipated energy contains 
linear and nonlinear terms and similarly to the stored strain energy, they are 
categorized as follows, 

0 1 2
δ δ δ δds ds ds dsH H H H= + + (4.25) 

where,  are the cross-section dissipated energy terms, 
containing linear and nonlinear components, having the form,  
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In the above expressions, among the equivalent section damping matrices of the 
section,   0dsC  is the linear laminate damping matrix (Saravanos et al. (2006)), 
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The first-order nonlinear damping matrix   1dsC  contains terms which exhibit 
first-order nonlinear dependence to the generalized section displacements. 
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(4.28) 

It was first introduced by Chortis et al. (2011) and its effect was studied on pre-
stressed composite beams in tension. 

The second-order nonlinear damping matrix,   2dsC , has the form, 
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=
2dsC (4.29) 

The second-order nonlinear damping terms, are critical in describing the nonlinear 
damping during the buckling and post-buckling response of composite strips. 

By observing the above linear and nonlinear damping matrices, it is noted that 
all nonlinear damping terms will act as modifiers of the flexural damping of the 
beam, and are proportional to the rotation 0

,xw . If the beam remains in the linear 
regime, i.e. negligible initial in-plane stresses and rotations, the flexural damping 
of the beam is contributed only by term 11dD  which in previous works was 
termed as flexural laminate damping. When the beam enters into the nonlinear 
regime and is subject to large rotations, strong additional damping terms are 
introduced which couple flexure and extension; these terms are proportional to the 
extensional damping coefficient 11dA  of the laminate. 

Especially, the case of buckling and post-buckling, also considered in this 
chapter, provides an excellent case to study the effect of 

1dsC  and 
2dsC  terms on 

the structural damping of the strip, since the effect of rotations is not negligible. 
As the magnitude of the rotation increases, the effect of laminate configuration on 
structural damping will be governed mainly by extensional damping terms dA  
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and less by flexural damping dD . Finally it will be shown in the fifth chapter that 
laminates with unsymmetric laminations ( 11 0dB ≠ ) may introduce additional 
nonlinear damping terms due to extension-flexure coupling, which increase the 
damping of the composite structure. 

4.3.3   Section Mass Terms 

The kinetic energy variation, secδT , is represented by the integral over the cross-
sectional area, 

secδ δ diag( ) d d δ diag( ) d
A h

T b zξ η= − = − T Tu ρ u u ρ u  (4.30) 

In the above equations, diag(ρ)  indicates a diagonal matrix with diagonal 
elements equal to the mass density ρ  of the ply and h  is the thickness of the skin 
laminate and could be re-written in the following form, 

( )secδ δ diag( ) d δu u+δw w d
h h

T b z b zρ ρ= − = − Tu ρ u   (4.31) 

Substituting the displacements equations (Eq. (4.7)) into the kinetic energy 
equation (Eq. (4.31)), and performing the integration over the thickness of the 
laminate, the kinetic energy of the section is expressed in terms of the generalized 
displacements and the resultant mass matrices, 

( )secδ δ +δ δ δ d
h

T b z= + +
T T T T0 A 0 0 B B 0 Du m u u m β β m u β m β   (4.32) 

where { }0 0,u w=0u  and { }xβ=β  represent the average displacements and 
rotations of the section, respectively. Likewise, Am , Bm  and Dm  are the 
equivalent mass, coupling and rotational inertia matrices of the laminate section, 
per unit length, defined in Appendix C. 

4.4   Structural Level 

After estimating the stiffness, damping and mass terms of the laminate section, the 
next key step concerns the development of a computational method capable of 
analyzing the nonlinear response of composite strips under large displacements 
and rotations. To that direction the finite element method was chosen for the 
nonlinear analysis of the composite structure in combination with an incremental-
iterative technique based on the Newton-Raphson technique for the solution of the 
final system of equations.  
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4.4.1   Damped Nonlinear Beam Finite Element 

The finite element method is based on the discretization of the structure into the 
minimum number of finite elements which ensure the convergence of the results. 
In the present work the composite beam structures are analyzed using a 2-node 
beam finite element. Supposing that the total length of the structure consists of K 
number of beam finite elements, then Eq.(4.6), takes the following form, 
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(4.33)

The first two lines of Eq. (4.33) refer to the strain energy; the next two lines refer 
to the dissipated energy; the fifth line refers to the kinetic energy and the last line 
express the external work produced by the applied forces. 

4.4.1.1   Shape Functions of the Two-Node Beam Strip Finite Element  

A three-dimensional shear beam finite element for predicting the nonlinear 
damped dynamic analysis of composite beams was developed encompassing the 
aforementioned generalized nonlinear damping mechanics. The finite elements 
consist of suitable shape functions which ensure continuity criteria, necessary for 
the accuracy and convergence of the final problem solution. The nodes numbering 
of the beam finite element is shown in Figure 4.4b, where each point within the 

element is approximated by nodal coordinate ix  according to the following 

relation, 

( )
1

n
i

i
i

x N x x
=

= (4.34)
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Fig. 4.4 Laminated composite strip-beam element: (a) Cross-section module; (b) Finite 
element 

where, n  is the number of element nodes (at the current work is 2n = ) and  
are the 0c  continuous shape functions, having the form, 
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(4.35) 

where  is the beam element length. The approximation of the generalized 

displacements along the element is given by the following relation, 
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≅ (4.36) 

where, , ,oi oi i
xu w β  are the unknown nodal degrees of freedom, which have 

to be calculated. Similarly, ( )iN x  are known continuous polynomial functions 
at the element length, which are called interpolation shape functions. Due to the 
fact that there are three degrees of freedom at each node, there will be: 2 nodes x 3 
DOF per node = 6 DOF at each beam finite element.  

Usually, the shape functions refer to the local coordinate system of the element, 
where the numerical solution takes place. For the case of the beam finite element, 
the local or natural coordinate system is define by ξ , as follows, 

( )1
2 1

2
1x x

x x
ξ = − −

−
(4.37)

( )iN x

eL
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From Eq. (4.37) it is easy to understand that 1ξ = −  at node 1 and 1ξ =  at 

node 2 (Figure 4.5). The length of the element is covered when ξ  changes from 

1 1− → . 

 

 

Fig. 4.5 Typical two-node beam strip finite element: (a) Global CS; (b) Local CS 

The local coordinate system is used to define the shape functions, which are 
used for interpolating the unknown displacement field within an element. To that 
direction a linear distribution consisting of the following linear shape functions, is 
implemented (Chandrupalta and Belegundu 1991),  
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(4.38) 

The shape functions, shown in Figure 4.6, have some interesting properties that 
derive from the completeness requirements imposed by rigid body motion. 

 

 

Fig. 4.6 Linear shape functions of beam finite element in the local CS 
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It is simple to argue that one property the shape functions must have is that:  

 ( ) 1iN x =  at node i  and ( ) 0iN x =  at the rest of the beam nodes 

This basic property ensures the independence among the shape functions as well 
as the displacement continuity at the common nodes of the beam finite elements. It 
is therefore assumed that these shape functions allow elements to be connected 
together without generating gaps between them. The shape functions are 
continuous polynomial functions whose order and shape depend on the: 

 
- Element type and the 
- Number and distribution of DOFs within the element domain. 

 
The relation between a) the elastic strains (linear and nonlinear) with the 
displacements and b) the curvatures with the rotation angles of the beam were 
described analytically in Eqs. (4.10)-(4.12). The next key step is to establish the 
relation between the generalized strains and the nodal DOF values of the finite 
element. This is analytically described by the next set of equations, 
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(4.39)

where 0 0, , ,L
x xz x xkε ε ε  are the linear, shear, nonlinear strains and curvature 

which are developed within the finite element. Likewise, 

{ }Toi oi i
xu w β=oiu  is the vector containing the three degrees of freedom at 

each node of the beam finite element and , , ,oi oi oi oi
a sa L bR R R R  are the 

matrices consisting of the shape functions ( )iN x  and the strain shape functions 

( ),
i
xN x  of the finite element. Detailed form of the aforementioned displacement 

and strain shape functions is reported in Appendix D of the current work. 
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4.4.1.2   Discrete System Equations 

The next step in order to build the final structural matrices of the strip finite 
element is the introduction of the generalized strains and curvature analytical 
expression (Eq. (4.39)) into the integrated form of equations of motion (4.33), 
which take the following form, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2 2

1 1 1

55

δ (δ [ ] δ [ ]

δ [ ] δ [ ] δ [ ]

δ [ ] δ [ ] δ [ ]

δ [ ]

e

K T Ti oi oj oi oj
a a a b

e i j L

T T Toi oj oi oj oi oj
b a b b sa sa

T T Ti oj i j i oj
L a L L L b

Toi
a

R A R R B R

R B R R D R R A R

R A R R A R R B R

R A R

= = =

= +

+ + +

+ + +

+

   
Toi oi oj oi oj

oi oj oi oj oi oj

oi oj oi oj oi oj

oi

u Ψ u u u u

u u u u u u

u u u u u u

u ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1 1 1

55

δ [ ] )d

(δ [ ] δ [ ]

δ [ ] δ [ ] δ [ ]

δ [ ] δ [ ] δ

e

Tj oi j
L b L

K T Toi oj oi oj
a a a b

e i j L

T T Toi oj oi oj oi oj
b a b b sa sa

T Ti oj i j i
L a L L L

R B R x

R A R R B R

R B R R D R R A R

R A R R A R R

= = =

+

+ +

+ + +

+ + +

   

oj oi oj

oi oj oi oj

oi oj oi oj oi oj

oi oj oi oj

u u u

u u u u

u u u u u u

u u u u u

 

  

  ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

1 1 1

2

1 1

[ ]

δ [ ] δ [ ] )d

δ [ ] 2δ [ ]

δ [ ] )d δ d

T oj
b

T Toi j oi j
a L b L

K T Ti A j i B j

e i j Le

KTi D j i

e i

B R

R A R R B R x

N N N N

N N x N

ρ ρ

ρ

= = =

= = Γ

+ +

+ +

+ − Γ

   

  
T

oi oj

oi oj oi oj

oi oj oi oj

oi oj oi i

u

u u u u

u u u u

u β u u F



 

 

 
 

(4.40)

Combining the previous displacement and strain approximation Eqs. (4.7)-(4.9), 
substituting  into the equations of motion (4.15) and (4.31) and collecting the 
common coefficients the total stiffness   K , damping   C  and mass   M  
matrices respectively, of the beam the equilibrium u(t)  is provided by the 
following equation, 

( ) ( ) ( ) ( ) ( )= + + -          Ψ u,t M u t C u t K u t F t  (4.41) 

The effective stiffness and damping structural matrices contain linear and 
nonlinear components of the following form, 
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where, subscripts 0 , N1 and N2  indicate linear, first- and second-order 
nonlinear components, exhibiting first- and second-order dependency to the 
generalized displacement vector, respectively. The detailed expression of these 
matrices in the global coordinate system is presented in the following set of 
equations, 
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II. Damping matrices, 
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III. Mass matrix, 

[ ] [ ]
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L
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( ρ )d
e

Tij i j

i j L

M N N x
= =

   =       (4.49)

The aforementioned element matrices have square form with dimensions 6x6, as it 
is shown in Eq. (4.50), 

[ ]

1

1

nodes
u u

uij

nodes
u

DOF DOF

DOF
Matrix

DOF

K
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 
 
  
  
 
 






 

(4.50)

where , 1,2i j =  are the element nodes and , , ,oi oi oi oi
a sa L bR R R R              

 
are the strain 

shape function matrices corresponding to the normal, shear, bending and nonlinear 
strains of the cross-section, respectively. Likewise, iN    is the displacement shape 
function matrix and [ ]Lρ  is the generalized mass matrix, having the final form, 

[ ]L

0

ρ 0 0

0

A B

A

B D

ρ ρ
ρ

ρ ρ

 
 =  
  

(4.51) 

4.4.1.3    Transformation to the Local Coordinate System of the Element 

The calculation of the integrals takes place in the local coordinate system of the 
element, shown in Figure 4.5b. Due to the fact that the aforementioned strain 
shape functions refer to the global coordinate system ( x ), it is necessary these 
expression to be transformed to the local coordinate system (ξ ), where the shape 

function expression have already been defined (Eq. (4.38)). The derivative of the 
shape functions with refer to the local coordinate system is, 
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( ) ( )
,

i
i N x

N
xξ
ξ

ξ
ξ

∂ ∂=
∂ ∂

(4.52)

For the beam element case, taking into account Eq. (4.37), it is obvious that the 
transformation will take the form, 

d d
2

eL
x ξ= (4.53) 

Additionally, the integration limits have to change from 0 eL→  to 1 1− →  from the 
global to the local coordinate system, respectively. 

4.4.1.4   Beam Element Matrices in the Local Coordinate System  

In the local coordinate system, incorporation of Eq. (4.53) into the stiffness, 
damping and mass matrices of the global coordinate system (Eqs. (4.43)-(4.49)) 
yields the respective matrices in the local coordinate system, which are the 
following, 

I. Stiffness matrices, 
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II. Damping matrices, 
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II. Mass matrix, 

[ ] [ ]( )12 2

L
1 1 1

ρ d
2

Tij i j e

i j

L
M N N ξ

= = −

   =       (4.60)

4.5   The Newton-Raphson Technique 

The nonlinear code is capable of predicting the dynamic response of the composite 
beam-strip subject to large displacements and rotations. By omitting the damping 
and the mass matrices,  Eq. (4.41) can be written in the following form, 

( ) ( )  Ψ u = K u u - F (4.61) 

where ( )Ψ u  is called the residual, which is a nonlinear function of the unknown 
solution u . It is obvious that Eq. (4.61) cannot be solved directly because the 
nodal degrees of freedom are included in the stiffness matrix calculation. 
Therefore the implementation of a numerical method into the finite element code 
is necessary to obtain the solution of the nonlinear system. To that direction the 
Newton-Raphson incremental-iterative technique was formulated into the finite 
element code solver to obtain a quick and accurate solution of the nonlinear 
problem. The term "incremental" implies that the total applied external loads were 
applied incrementally, according to the relation, 

1n nF F F+ = + Δ (4.62)

An incremental solution procedure is based on the assumption of a known solution 
at an n  increment in order to define the unknown solution at the next increment 

1n +  by the application of an external load FΔ . In the same time, the fact that 
[ ]K  matrices exhibit nonlinear dependence to the nodal degrees of freedom, 
necessitates a suitable number of iterations within each increment in order the 
residual to become equal to zero. 
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Consider that the external load FΔ  has been applied for an increment n  and 
the vector of the elastic degrees of freedom has been estimated at an iteration i . 
The Newton-Raphson technique is based on Taylor's series expansion of the 
nonlinear algebraic Eq. (4.61) about the known solution. Since there is a solution 
( )iu  at iteration i , then the Taylor theorem could be used to obtain the solution 
at an iteration 1i + , taking into account only the first term of Taylor series. 
Therefore, Eq. (4.63) calculates the variation of elastic uΔ  degrees of freedom,  

( ) ( ) ( )1 1 1 0
n i i

n i i n i i i
n i

u
u u u

u
+ + +

∂ Ψ
Ψ = Ψ + Δ =

∂
(4.63) 

Taking into account that FΔ  is constant and independent from the system nodal 
DOFs and substituting Eq. (4.61) into Eq. (4.63), the solution of the latter one 
yields, 

( ) ( )
( )

( )1 1

n i in i i
i n i i i n i i

n i n i

K u uu
u u u K u u F

u u
+ +

        
  

∂∂ Ψ
Δ = − Ψ ⇔ Δ = − +

∂ ∂
(4.64)

The term 
( )( )n i i

n i
T n i

K u u
K

u

 
  

 

∂
=

∂
 is the tangential stiffness of the structure at 

the point of static equilibrium, whereas ( )n iK u 
  

 is the effective stiffness matrix 

of the system. The tangential matrix for structural problems is symmetric even 
though the effective one is not symmetric. Detailed form of the tangential first- 
and second-order stiffness matrices is reported in Appendix D. 

After calculating the variation of elastic uΔ  degrees of freedom, the new 

deformable state of the structure, 1iu +  can be expressed by Eq. (4.65), 

 1 1n i n i iu uu u+ += + Δ (4.65) 

At this point, it should be underlined that at the beginning of each iteration the 
tangential stiffness matrix and the residual vector must be updated using the latest 
available vector solution u . 

The main advantages of the Newton-Raphson incremental-iterative technique 
are: 

 

 For each force increment FΔ  the iterations continue till the convergence 
criterion →Ψ 0  is satisfied. 

 At each iteration the present method calculates the tangential matrices   TK  

as well as the residual vector Ψ , which provides the imbalance between the 
internal and external loads of the structure. 
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 The nonlinear tangential matrices   TK  are those who define the solution 

approximation within each increment.  
 

Figure 4.7 illustrates the Newton-Raphson technique for the approximation of a 
nonlinear solution for a single DOF problem. In each increment the necessary 
iterations are repeated until the imbalance vector between the internal and external 
forces is equal to zero ( )→Ψ 0 . The solution of the linearized Eq. (4.64) 
provides the variation of the nodal DOF 1iu +Δ , and its substitution in Eq. (4.65) 
yields the updated DOF value, 1iu + . This procedure is repeated in the nonlinear 
finite element code till convergence is succeeded. 

The main disadvantage of this method is that the calculation of the effective 
and tangential matrices terms as well as the imbalance vector at each iteration 
increases significantly the computational cost of the problem solution. 
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Δu 
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ΤΚ  
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2
ΤΚ  

[K(u)]un

Δu1

Solution 

 

Fig. 4.7 Newton-Raphson iterative technique for a single DOF system 

4.6   Final System of Equation 

At the present point the detailed form of the tangential matrices of the nonlinear 
system will be described. The assembly of the total matrices and the application of 
the boundary conditions will also be presented. 
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4.6.1   Tangential Matrices at the Local Coordinate System of the 
Finite Element 

The application of the aforementioned incremental-iterative technique provides 
the linearized expression of the nonlinear equations within each iteration, which 
has the following form, 

( ) ( ) ( )   
  TK u Δu = - K u u +F = -Ψ u (4.66) 

The total nonlinear tangential stiffness and damping matrices are, 

( ) ( ) ( )

( ) ( ) ( ) ( )
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           

=

0 1 2

N 1 20

2
N N N

2
N N

K u = K + K u + K u

C u = C u C + C u + C u

(4.67) 

These matrices have the same form with the effective stiffness and damping ones 
and again the subscripts 0 , N1 and N2  indicate linear, first- and second-order 
nonlinear dependence to the generalized section displacements, respectively. So, 
in the local coordinate system of the beam finite element, they are described in 
detail, as follows, 

I. Tangential stiffness matrices, 

[ ] [ ]

[ ] [ ] [ ]

0

12 2

1 1 1

55

(

) d
2

ij T Toi oj oi oj
N a a a b

i j

T T Toi oj oi oj oi oj e
b a b b sa sa

K R A R R B R

L
R B R R D R R A R ξ

= = −

         = + +        

           + +           

  
(4.68)

[ ] [ ] [ ] [ ]

[ ][ ] [ ][ ]

1

12 2

1 1 1

(

) d
2

ij T TT Ti oj i oj
N a b

i j

T Toi j oi j e
a b

K G H A R G H B R

L
R A H G R B H G ξ

= = −

         = + +        

       +       

  
(4.69)

[ ] [ ][ ]
2

12 2

1 1 1

3
d

2 2

ij T Ti j e
N

i j

L
K G H A H G ξ

= = −

      =        
   (4.70)

II. Tangential damping matrices, 
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The notable difference between the effective and the tangential stiffness and 
damping expressions is that although they contain the same terms, they are 
multiplied with different constants. This contributes to the reduction of the 
computational cost of final system solution.  

4.6.2   Assembly of System Equations 

The assembly of the final equations of the system is a critical step in the finite 
element method. Taking into account that the beam-strip finite element has two 

nodes, then if K  is the number of elements in which the structure is descritized 
then 1Q K= +  will be the total nodes of the system. Thus, if U  represents the 

nodal degrees of freedom of the total system then it can take the following form, 

( ) { } ( ){ }  T 3Qx1 3Qx13Qx3Q
K U ΔU = -Ψ U (4.74) 

where, 

( ){ } ( ) { } { }   3Qx1 3Qx13Qx1 3Qx3Q
Ψ U = K U U - F (4.75) 

and the number 3 indicates the DOFs at each node of the element. 

4.6.3   Boundary Conditions 

After having synthesizing the total system of equations for the whole structure, the 
next step involves the application of the boundary conditions. The total vector of 
the nodal degrees of freedom U  consists of two components: a) the vector of 

applied DOFs on the structure cU , which is known and introduced by the user 

into the code and b) the unknown DOFs vector, fU . So, vector U  is, 

{ }
  
 
  

f

c

U
U =

U
(4.76) 
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4.6.4   Expression of the Final Set of Equations 

The substitution of Eq. (4.76) into Eqs. (4.74)-(4.75), provides the final form of 
the system equations, 

( ){ } { }
                     

f f
f c f c
T T T Tc c

ΔU U
K K = -Ψ U = F - K K

ΔU U
(4.77) 

Equation (4.77) gives out one step { }fΔU  of the solution *U  (Figure 4.7). In 

order to reach the final solution, the elimination method is applied. In addition the 

vector of known DOFs cU  is equal to zero. Thus, the final system is, 

{ } ( ){ }  = 
f f
TK ΔU -Ψ U (4.78) 

4.7   Small-Amplitude Free-Vibration of Composite Strip 

This section describes the theoretical background for the nonlinear small-amplitude 
free-vibration response of composite strips subject to large displacements and 
rotations. The effect of large deformations will be demonstrated by predicting the 
modal characteristics of the composite structures.  

Beginning from structural level, where the total stiffness, damping and mass 
matrices of the strip finite element have already been formulated, Eq. (4.41) 
describes the nonlinear dynamic response of the composite structure at a specific 
time increment t, 

( ) ( ) ( ) ( ) ( )= + + -          Ψ u,t M u t C u t K u t F t 
 (4.79) 

where ( )F t  indicates the time dependent external mechanical forces. For 

vibrating beams subject to large deformations, we specialize their motion to the 
case of a perturbation vibration around a nonlinear static equilibrium point su , 

such that, 

( ) ( )su t = u + u t
 (4.80) 

where overbar indicates perturbation quantities and ( )su u t . 

By combining Eq. (4.79) with Eq. (4.80) and taking into account only the first 
term of Taylor's theorem, the equilibrium relation expanded about point su , takes 

the following form, 
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( ) ( ) ( ) ( )
=
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∂ ∂
+ + − + −

∂ ∂s s

C u K u
Ψ u,t M u u K u F u F(t) = 0

u u

 
  

(4.81)

It is observed that since su  is the point of static equilibrium, the imbalance force 

vector between the internal forces and externally applied mechanical loads, 
vanishes, 

( )  = − =s s sΨ K u F 0
 (4.82) 

By definition the terms ( )( )      = ∂ ∂K K u u , ( )( )      = ∂ ∂C C u u   are 

the tangential or linearized stiffness and damping of the structure at the point of 
static equilibrium. Hence, Eq. (4.81) takes the final form which describes the 
small vibration of the beam, 

( ) ( ) ( )        = + + − =s s sΨ u,u ,t M u(t) C u u(t) K u u(t) F(t) 0 
 

(4.83) 

The total stiffness, damping and the linearized stiffness structural matrices contain 
linear and both first- and second-order nonlinear components which are calculated 
from Eqs. ((4.18) - (4.22)), ((4.24)-(4.29)); and therefore, Eq. (4.83) take the 
following form, 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2

+

+

            

            

              

+

+

= +

s s s0 N1 N

s s s0 N1 N2

s s s s0 N1 N2

K u = K + K u K u

K u = K K u K u

C u = C u C C u C u  

(4.84) 

where, subscripts 0 , N1  and N2  indicate linear, first- and second-order 
nonlinear dependence to the generalized section displacements, respectively.  

The Newton-Raphson iterative technique was chosen for calculating the static 
equilibrium point su  due to its simplicity and also because it uses the linearized 

stiffness matrix ( )  K u  described in Eq. (4.84). 

4.8   Displacement Control Method 

The main advantage of the Newton-Raphson iterative technique is that utilizes the 
tangential matrices of the system in order to achieve the convergence of each 
substep and subsequently of the final solution. The case of buckling analysis 
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(Figure 4.8) may involve limit points marking the transition between two stable 
equilibrium paths in the pre- and post-buckling regime, where the beam structure 
loses its stability rapidly. Figure 4.8 presents such a case, where a clamped-free 

beam structure is loaded with a compressive in-plane force F at its free end and is 

deformed in the transverse direction ( )w . 

Fig. 4.8 Typical example of a clamped-free beam undergoing buckling 

Figure 4.9 shows the transverse deflection w  of the beam subject to buckling. 
The limit points A-A' define the transition area, where the linearized stiffness 
matrix may not be positive definite. 

 

Fig. 4.9 Buckling response of a clamped-free beam and transition area from one stable 
equilibrium point to another (A-A') 

One way to overcome this situation, is by imposing nodal displacements 
enabling the stable numerical calculation of structure modal characteristics even in 
the transition area between one stable equilibrium point to another. A Newton-
Raphson iterative technique with displacement control was formulated and 
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implemented as part of the solution procedure for calculating the static 

equilibrium point su . This method has the advantage to overcome the critical 

points where the tangential matrix becomes singular by applying an incremental 
imposed displacement vector on the beam model. 

Supposing that the analysis begins with the first iteration i  in the respective 

first applied displacement increment ( 1n = ), the linearized Newton-Raphson 
equation has the following form, 

( ) { } ( ){ }  K u Δu = Ψ u
 

(4.85) 

The displacement control method considers that the total displacement vector of 
the system consists of the unknown (free) and the applied (imposed) elastic 
degrees of freedom (DOF), indicated by the letters f  and a , respectively. Thus 

Eq. (4.85) becomes, 

( ) ( )
( ) ( )

( ){ }
            
          

f
ff fa

a
af aa

K u K u Δu
= Ψ u

ΔuK u K u  (4.86) 

Equation (4.86) provides the solution of the system as well as the corresponding 
applied displacement component which is considered to be an unknown variable 
in this method. 

( ) { } ( ) { } ( ){ }    +   
i i0 f 0 a 0

ff faK u Δu = - K u Δu Ψ u
 

(4.87) 

where 0  indicates the initial state of the structure and i  is the first iteration. 
Solution of the above equation provides the unknown DOF of the system which 
are updated in each iteration, as follows, 

{ } { } { }i 0 if f fu = u + Δu
 

(4.88) 

The applied mechanical DOF { }iaΔu  should remain constant for all subsequent 

iterations until convergence is achieved within the first increment ( 1n = ). The 
following conditions should therefore be satisfied, 

{ }

{ } { }

i+1

i i

α

α α

Δu = 0

u = Δu
 

(4.89) 

By substituting Eqs. ((4.88)-(4.89)) into Eq. (4.87), the second iteration 1i +  is 
calculated by Eq. (4.90) as follows, 
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( ) { } ( ) { } ( ) { }          
i+1 i ii f i a i f

ff fa ffK u Δu = - K u u - K u u
 

(4.90)

The iteration procedure is continued until the method convergences, →Ψ 0, to 
the equilibrium solution point of each increment, where the reaction force of the 
respective applied displacement is also calculated by the following relation, 

{ } ( ) { } ( ) { }      
f a

af aaR = K u u + K u u
 (4.91) 

Figure 4.10 illustrates the displacement control method for the nonlinear solution 
of a single DOF problem. 

The specified displacement is incremented and a loading parameter is evaluated 
for each step of the iteration procedure. The solution singularity faced by the force 
control method is resolved by knowing the prescribed displacement of the 
controlling DOF, enabling the solver to evaluate equilibrium and calculate the 
response for the whole model. However, the method fails due to singularity when 
the slope of the Force-Displacement curve becomes vertical (infinite) such in 
problems evolving snap-back buckling problems where the Arc Length Control 
Method seems to be the most powerful methodology.  

 

 

Fig. 4.10 Displacement control methodology for a single DOF system 
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4.9   Numerical Integration  

In order to calculate the effective and tangential matrices of the structure the 
numerical integration method was used in the finite element code. The 
implementation of numerical integration is necessary due to the complex functions 
which have to be integrated. In the present subsection the integration along the 
beam finite element axis will be described. 

The Gaussian quadrature approach of numerically evaluating an one-

dimensional integral I  is given below. 

( ) ( )
1

11

d
n

i i
i

I f H fξ ξ ξ
=−

= = (4.92)

where n  is the number of sampling points. 
The method is based on the hypothesis that the one-dimensional integration is 

approximated by the values of function f  at predefined points of the integration 

range ( 1 1ξ− ≤ ≤ ) , the so called "Gauss points" or "sampling points", with the 

suitable weight factors iH . The function f  refers to the element generalized 

matrices multiplied with the shape function matrices. 
Generally, the Gauss integration method uses a small number of sampling 

points, which are always within the integration range, and in such positions that 
the integration error is minimized especially for high-order functions. The 
advantage of this method is that for the case of n sampling points, the order of 
error is 2n . From above, it can be concluded that the n -point Gaussian 
quadrature will provide an exact answer if the function f  is a polynomial of 

order 2 1n −  or less. 
The order of the shape functions is known and therefore the order of the 

functions in the stiffness, damping and mass integrations is also known for each 
element of the structure. Consequently, for the beam finite element is easy to 
predefine the necessary number of sampling points, capable of calculating the 
aforementioned integrations with the highest accuracy. The majority of the 
stiffness and damping terms were estimated using two sampling points. 

4.10   Conclusions 

Fourth chapter presented the theoretical framework for the dynamic analysis of a 
composite strip subject to large in-plane loads. A new nonlinear beam finite 
element was developed based on nonlinear kinematic assumptions, describing the 
geometric nonlinearities due to large deformations and rotations. 

The major conclusions are summarized to the following ones: 

 Incorporation of the strain-based Kelvin viscoelastic constitutive equations 
into the section strain energy expression yields the linear and nonlinear 
damping matrices of the finite element. 
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 The structural damping highly depends on the nonlinear response of the beam. 
If the beam remains in the linear regime, i.e. negligible initial in-plane 
stresses, the flexural damping of the beam is contributed by the flexural 

damping term 11dD . When the beam enters the nonlinear regime and is 

subject to large in-plane forces and rotations, strong additional damping terms 
are introduced which couple flexure and extension. These terms are 

proportional to the extensional damping term 11dA  and section rotation. 

 There is a strong effect of lamination lay-up on the structural damping of the 
composite structure. As the magnitude of the initial load increases, the effect 
of laminate configuration on structural damping will be governed mainly by 

extensional damping terms dA  and less by flexural damping dD . 

The novelty points of the fourth chapter are: 

∗ The development of a theoretical framework for the prediction of nonlinear 
damping of composite beams under large in-plane loads. A new damped 
nonlinear beam finite element was formulated and the aforementioned 
nonlinear stiffness and damping mechanics were incorporated into a research 
finite code enabling computational prediction of nonlinear damping and 
stiffness characteristics of composite strips. 

∗ The detailed formulation of first- and second-order stiffness and damping 
terms both for the effective and the tangential structural matrices of the 
system. The first-order terms are associated with the pre-stressing of the beam 
whereas the addition of second-order terms plays an essential role in the 
buckling and post-buckling response of the composite strip. 
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Chapter 5 

Nonlinear Dynamic Response of Composite 
Plate-Beams 

Composite material systems are known to provide damping which is beneficial for 
the passive control of vibratory, aeroelastic and acoustic loads, in a variety of 
structural applications. Many of such structures may be exposed to large 
deformations and high tensile and compressive loads. 

In the present chapter the nonlinear response of the composite strip subject to 
in-plane tension and compressive loads will be investigated. Based on the 
theoretical framework developed in fourth chapter, the following sections present 
the nonlinear beam finite element capabilities of predicting the nonlinear initial 
stress and geometric effects on both structural stiffness and damping, assuming a 
Kelvin viscoelastic material. Fifth chapter consists of four main subsections; In the 
first one a brief description regarding the calculation of modal damping is 
recalled, whereas the second subsection includes the necessary information of the 
experimental procedure followed for the Glass/Epoxy composite material 
characterization and the extraction of its elastic properties and damping 
coefficients. In addition, the measurement of modal frequencies and modal loss 
factor values of the beam subject to increasing tension or buckling load applied 
along its longitudinal axis is presented. The experimental procedures and testing 
apparatus are briefly described. In the third subsection the capabilities of the 
damped beam element to predict the structural stiffness and modal damping values 
are shown. Numerical results quantify the contribution of the new nonlinear 
damping and stiffness cross-section terms on the modal frequencies and damping 
of composite beams of various angle-ply laminations under in-plane loads. 
Theoretical modal characteristic predictions are correlated with experimental 
measurements on Glass/Epoxy [02/902]s and [02/902]s cross-ply composite beams 
for various values of increasing tensile in-plane loads. Then the developed 
formulation is correlated with available numerical predictions and experimental 
measurements of a shell nonlinear element for the case of an aluminum beam 
specimen. Further validations between predicted and experimental modal loss 
factors and frequencies of composite beams subject to in-plane buckling are 
presented, which give credence to the developed nonlinear beam finite element 
and underline the contribution of first- and second-order nonlinear terms. 
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5.1   Calculation of System Eigenfrequencies and Modal 
Damping 

After synthesizing the aforementioned structural matrices and applying the 
boundary conditions, the next critical step includes the system solution at each 
point of static equilibrium till final convergence is achieved. Assuming harmonic 
motion, Eq. (4.83) may be solved either directly to yield the complex eigenvalues 
of the system or by using an energy approach for the calculation of structural 
damping. In the present work the second method is used, where the numerical 
solution of the undamped system provides the undamped modal frequencies and 
the relative mode shapes of the beam structure, 

[ ] ( ) ( )( )2 jω    +   s s- M + C u K u U = 0 (5.1)

where ω , U  are the eigenfrequencies and the eigenvector of the system, 
respectively. 

The dissipated energy method is accurate in problems involving low damping, 
i.e. like the damping of the composite materials. It also assumes that both the 
natural frequencies and the eigenshapes of the damped structure are very close to 
the respective ones of the structure without damping. Thereafter, the modal loss 
factor for the assumed Kelvin damping (Eq. (4.1)) is calculated as the following 
ratio of the respective dissipated to the maximum stored modal energy in the 
structure, 

( )
( )2

m
m

ωη
π

  =
  

T
m m

T
m m

U C u U

U K u U
(5.2)

where 
mω  and 

mU  are the undamped modal frequency and modal displacement 

vector, respectively. 
The nonlinear beam finite element and previous formulation were encoded into 

an updated version of a research structural dynamics code, DAMPBEAM, which 
is now capable of predicting both the nonlinear modal damping and frequency 
values of composite laminated beams subject to large in-plane loads and rotations. 

5.2   Experimental Determination of Elastic and Damping 
Material Properties 

One of the main objectives of this work deals with the prediction of nonlinear 
damping of composite structures undergoing large deformations. 
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(a) (b) 

Fig. 5.1 Experimental procedure for determining: (a) Glass/Epoxy composite ply 
properties; (b) Modal characteristics of Glass/Epoxy cross-ply specimens under uniaxial 
tension and buckling 

To that direction, a series of dynamic experiments were conducted in order not 
only to define the damping coefficients of the composite material but also to 
measure the nonlinear modal loss factor of the composite beam-strips and 
correlate them with the code theoretical predictions. The latter was necessary to 
ensure the credibility of the finite element code numerical prediction capabilities. 
The schematic flowchart of the experiments procedure followed during the current 
work is illustrated in Figure 5.1. 

5.2.1   Extraction of Material Elastic and Damping Coefficients 

The first step to quantify the effect of geometric nonlinearities on the modal 
characteristics of composite beams included the calculation of beam specimens 
material properties. The composite material characterization procedure was 
divided into the following three major sub-steps: 

 

I. Fabrication of composite specimens. A single Glass/Epoxy unidirectional 
(UD) composite plate was fabricated at the Applied Mechanics Laboratory (AML) 
using the hand lay-up method. The plate consisted of six layers of E-Glass fabrics, 
(Porcher Industries-Composites), whose detailed properties are shown in Table 
5.1. 
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Table 5.1 E-Glass fabrics properties 

Weave 
 

Construction Warp/Weft 
(yarn/cm) 

Weight 
ratio 

Weight 
(g/m2) 

Plain 5.5/6.3 90/10 0.431 

 
The baseline epoxy matrix resin intended for fabrication of wind-turbine blades 

due to the high damping properties and consisted of two parts: Araldite® LY 3505 
resin; and XB 3405 hardener (HUNTSMAN), whose main properties are provided 
in Table 5.2 and Table 5.3, respectively.  

Table 5.2 Key data of Araldite® LY 3505 

Aspect 
 

Viscosity at 250C (ISO 
12058-1) 

(mPa s) 

Density at 250C 
(ISO 1675) 

(g/cm3) 

Flash point 
(ISO 2719) 

(0C) 

Clear 
liquid 

6500 – 8000  1.15 – 1.20   >200 

Table 5.3 Key data of hardener XB 3405 

Aspect 
 

Viscosity at 250C (ISO 
12058-1) 

(mPa s) 

Density at 250C 
(ISO 1675) 

(g/cm3) 

Flash point 
(ISO 2719) 

(0C) 

Clear, red 
liquid 

70 – 90  0.95 – 1.0   109 

 
Table 5.4 presents the epoxy resin/hardener processing data, which were 

followed during the composite plates construction procedure.  

Table 5.4 Epoxy resin/hardener system processing data 

Mix ratio 
(Parts by weight) 

Gelation at 230C  
(h) 

Curing cycle at 600C 
(h) 

Resin:100 
Hardner:35 

Start: 2-3 
End: 4-5 

8-10   

 
II. Experimental procedure developed for the damping measurement. The 
testing apparatus used for the determination of the elastic properties and damping 
coefficients of the Glass/Epoxy composite material is shown in Figure 5.2. 
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Fig. 5.2 Testing apparatus for the extraction of elastic properties and damping coefficients 
of the Glass/Epoxy composite system 

It consists of three modules: a) Measurement of excitation and response signals; 
b) Data processing for the frequency response functions (FRF); c) Modal analysis 
for the estimation of natural frequencies and modal loss factor values of the 
composite structure. A miniature impact hammer was mainly used for specimen 
excitation, which had the capability of force measurement though a load cell. The 
impact force was applied at the midspan of the specimen. The response of the 
beam was also measured at the midspan of the specimen using a miniature (1.0gr) 
piezoelectric accelerometer. The sensor was attached on the specimen's surface 
with an epoxy adhesive. 

The amplified output voltages from the load cell and the accelerometer were 
digitized through a high speed DAQ board and finally processed using FFT 
software to obtain the power spectra and FRFs of the beam. The measured FRFs 
were further correlated with a parametric model consisting of a series of complex 
exponential terms, each term approximating an individual mode with unknown 
modal parameters. In this manner, the modal frequencies and modal damping 
coefficients of the tested system were measured, such that the least square error 
between the model and measured frequency response functions was minimized. 

 
III. Extraction of elastic and damping material ply coefficients. Beam 
specimens were cut from the unidirectional Glass/Epoxy composite plate at 
different angles to the fiber direction, yielding specimens with fiber orientation 
angles from 0o to 90o in increments of 15o (Figure 5.3). The geometric data of the 
tested specimens are shown in Table 5.5. 

 

Accelerometer 

,η 
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Table 5.5 Geometric data for the Glass/Epoxy beam specimens under free-free support 
conditions 

Length, L 
(mm) 

Width, b 
(mm) 

Thickness, h 
(mm) 

Weight 
(g) 

360 20 2.4 30 

 
The beam specimens were subsequently tested in nearly free-free support 

configurations, in order to minimize damping due to friction in the supports. For 
this reason, the specimens were hang using strings attached at the modal lines of 
the first bending mode (Figure 5.2). In addition, they were supposed as thin beams 
( / 18L h = ) in order to minimize the effect of beam thickness and consequently 
the effect of the out-of-plane shear stresses. Thereafter, the equivalent 
experimental modal damping and modal frequency values of the first bending 
mode of each specimen were measured. 

 

Fig. 5.3 Beam specimens cut from the UD Glass/Epoxy plate at 150 increments 

Considering that the first mode refers to pure bending deformations of the thin 
beam specimens (only axial stresses act within the specimen inducing a non-zero 
bending moment), and that all specimens had a uniform through-the-thickness 
material, it can be reasonably assumed that the measured modal frequency values 
are related directly to the axial modulus of the composite material. Similarly, the 
modal damping of each specimen were assumed to be related directly to the axial 
damping of the composite. 
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Ply Elastic Properties 
The first objective of the aforementioned experimental setup is the determination of 
the ply elastic properties 

11 22 12 12, , ,E E Gν . The compliance matrix of a 

composite ply in the material coordinate system (on-axis) is given by the following 
relation, 

[ ]

12

11 11

12

11 22

12

1
0

1
0

1
0 0

l

E E

S
E E

G

ν

ν

 
− 

 
 

= − 
 
 
 
  

 

(5.3)

The off-axis compliance matrix, [ ]cS  is provided from the respective on-axis 

matrix (Eq. (5.3)), and the appropriate rotation matrix [ ]R , 

T
c lS R S R            = (5.4)

Consequently, by inverting the term "11" of Eq. (5.3),  the equivalent elastic 
modulus in the axial direction of the beam specimen is, 

111 /eq cE S= (5.5)
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Fig. 5.4 Fitting of experimental equivalent elasticity modulus of first bending mode with 
the analytical model for the calculation of elastic properties of Glass/Epoxy composite 
material 
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Within the activities of Structural Analysis and Active Materials group 
(SAAM), a module had already been developed in MATLAB for the inverse 
prediction of the three elastic coefficients (longitudinal, transverse and in-plane 
shear) of a composite material system from the measured flexural axial modulus 
of all off-axis specimens. A model approximating the experimental axial flexural 
modulus of a laminate with the composite equivalent elastic modulus was 
developed, based on the least-squares minimization procedure. Figure 5.4 shows 
the experimental values and their approximation by the theoretical model. 

 
Ply damping coefficients 
The same procedure was followed to determine the damping coefficients of the 
composite ply. The elastic coefficients, which were extracted in the previous step, 
were subsequently introduced into the on-axis compliance matrix (Eq. (5.3)). 
Substitution of Eq. (5.3) into Eq. (5.4) and inversion of the latter, yields the off-

axis stiffness matrix of the composite ply, [ ]cQ , 

[ ]
11 12

12 22

66

0

0

0 0
c

Q Q

Q Q Q

Q

 
 =  
  

(5.6)

Likewise, the off-axis damping ply matrix is provided by the following relation, 

[ ] [ ] [ ][ ]T T

c lR Rη η −= (5.7)

where [ ]lη  is the on-axis damping ply matrix when the material coordinate 

system coincides with the global respective one, 

[ ]
1

2

6

0 0

0 0

0 0

l

l l

l

η
η η

η

 
 =  
  

(5.8)

According to the Love-Kirchhoff plate theory, the off-axis stiffness (Eq. (5.6)) and 
damping (Eq. (5.7)) matrices are essential of the calculation of extensional, 
coupling and flexural stiffness and damping terms of the laminate, which have the 
following form, 
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(5.9)

where , 1,2,6i j = ; kh  is the thickness of the kth ply; and kz  is the distance 

between the mid-plane of the kth ply and the mid-plane of the laminate. These 
geometric parameters are better illustrated in Figure 5.5. 

 

 

Fig. 5.5 Geometric position of the kth ply of the composite laminate 
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Due to the symmetric structure of the laminate, the coupling stiffness and 

damping terms ( ,ij dijB B ) are equal to zero. Thus, the constitutive equations of 

the laminate take the form, 

[ ]
[ ]

    
    

      

0
3x3

3x3

A 0N ε
=

M 0 D k
(5.10)

where the vectors { } { }0 0 0
1 2 6 1 2 6, , , ,k k kε ε ε= =0ε , k  represent  

the mid-plane strains and curvatures, respectively. Likewise, 

{ } { }1 2 6 1 2 6, , , ,N N N M M M= =N , M  are the external forces and 

torques applied at the mid-plane of the laminate. Supposing that the  
beam specimens are under free-flexure conditions  
( 1 1 2 6 2 60, 0, 0N M N N M M≠ ≠ = = = = ), Eq. (5.10) becomes, 

0 1
1 11

1
1 11
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NA

Mk D

ε −

−

     
=    

    
(5.11) 

The bending ply loss factor is therefore expressed as the ratio of the respective 
dissipated to the maximum stored modal energy in the beam specimen and has the 
form, 

[ ]
[ ]

1 11 1

1 11 1

1

2

T
d

b T

k D k

k D k
η

π
 

=   
 

(5.12) 

The same module (SAAM) was applied for the inverse prediction of the three 
modal loss factors (

1 2 6, ,l l lη η η ) of the composite material system from the 

measured flexural damping of the off-axis beam specimens. A model 
approximating the experimental axial loss factor of a laminate with the composite 
equivalent flexural loss factor was developed, using the least-squares 
minimization procedure to yield the three damping coefficients of the individual 
composite plies. Figure 5.6 shows the experimental values and their 
approximation by the theoretical model. 

Figure 5.7 presents a typical FRF signal for the case of a Glass/Epoxy beam 
specimen with 00 plies. Figure 5.8 illustrates typical first mode magnitude and 
phase angles of measured frequency response function data, along with the fitted 
parametric model for the extraction of modal frequencies and damping.  
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Fig. 5.6 Fitting of experimental equivalent loss factor of first bending mode with the 
analytical model for the calculation of damping coefficients of Glass/Epoxy composite 
material 
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Fig. 5.7 Typical Frequency Response Function (FRF) diagram for the case of a Glass/ 
Epoxy beam specimen with 00 ply angle 
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 (a) (b) 

Fig. 5.8 Fitting of measured Frequency Response Function data with the analytical model: 
(a) Amplitude diagram; (b) Phase angle diagram 

5.2.2   Relation of Damping with Natural Frequency 

The Kelvin material damping model is a viscous damping model in the time 
domain that yields modal damping values, which are frequency dependent. The 
relation of the measured loss factor with the frequency is, 

11 11d LD Dω η= (5.13) 

The proof of Eq. (5.13) is in detail reported in Appendix B.  
Based on the experimental data shown in Figure 5.9 the elastic coefficients and 

the loss factors of the Glass/Epoxy material shown in Table 5.6, were extracted 
following the procedure described by Chrysochoidis (2001). As expected from 
Figure 5.9, the measured loss factors of the composite material were practically 
insensitive to the natural frequency, hence in the rest of this work, the RHS of the 
above Eq. (5.13) was taken to be invariable to frequency. As a result, the 
frequency term in nominator of Eq. (5.2) will cancel out, and the modal loss factor 
will be effectively invariable to modal frequency. 

The elastic properties and damping coefficient values of the composite ply are 
shown in Table 5.6. These values are introduced as input in the nonlinear finite 
element code in order to obtain numerical predictions which will be further 
correlated with additional experimental measurements of Glass/Epoxy beam 
specimens subject to increasing in-plane loads. 

Table 5.6 Mechanical properties of Glass/Epoxy material 

Ply thickness tl

 (mm) 
ρ 

(Kg/m3) 
Ε11 

(GPa)
Ε22 

(GPa)
G12 

(GPa)
ν12 

 
ηl1 

 (%) 
ηl2 

 (%)
ηl5 

 (%) 
ηl6 

 (%) 

0.3375 1744 25.1 10.9 4.7 0.31 0.528 0.978 1.442a 1.442 

aNot measured         
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Fig. 5.9 Sensitivity of measured modal loss factor values to the natural frequency for the 
first and second bending mode of a Glass/Epoxy beam specimens per 150 ply angle 
increments 

5.2.3   Damped Modal Testing of Composite Beam Modal 
Characteristics 

5.2.3.1   Tension Experimental Procedure 

The first part of the experimental procedure dealt with the damped dynamic 
characteristics of cross-ply Glass/Epoxy composite beams, subject to tension, 
which were experimentally measured and subsequently correlated with numerical 
predictions of the nonlinear finite element code. Two composite plates with 
[02/902]s and [902/02]s laminations were fabricated at AML using hand lay-up with 
vacuum bag consolidation. The glass fibers and epoxy resin properties are the 
same with those indicated in Table 5.1-Table 5.3. Using a sliding mitre saw, beam 
specimens were subsequently cut in dimensions shown in Table 5.7. 

Table 5.7 Geometric data of [02/902]s and [902/02]s Glass/Epoxy beam specimens 

Length, L 
(mm) 

Width, b 
(mm) 

Thickness, h 
(mm) 

Weight 
(g) 

400 30.6 2.7 74 
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The dynamic tests were performed using two different excitation methods. In 
the first method, two PZT-5 piezoceramic plates (12.5mm x 12.5mm), one acting 
as actuator and the other as sensor respectively, were adhered on the same surface 
near the clamped edges (Figure 5.11a). The beams were self-excited through the 
actuator using a swept-sine time signal with a frequency range between 1 and 
2500Hz (Figure 5.10). 

In the second method of excitation, an impact hammer was used to better excite 
the first bending mode of the beam and the response was measured via the 
piezoceramic sensor. The output voltage at the piezoelectric sensor was 
simultaneously acquired by a high-speed data acquisition board and spectral 
analyzer to obtain the frequency response functions of the beam, as the in-plane 
tensile load was progressing. A parametric model consisting of a series of 
complex exponential terms, each term approximating an individual mode, was 
used to extract the modal frequencies and modal loss factors of the tested beam 
from the measured frequency response functions. 

5.2.3.2   Buckling Experimental Procedure  

The damped dynamic characteristics of cross-ply Glass/Epoxy composite beams 
(Figure 5.12), subject to buckling were experimentally measured and subsequently 
correlated with numerical predictions of the present method. Experiments were 
conducted using the same Glass/Epoxy [02/902]s cross-ply lamination beam 
specimens with material properties and dimensions given in Table 5.6 and Table 
5.7, respectively. 

The beams were attached on the same hydraulic uniaxial testing machine 
MAYES 100KN with both ends being clamped by hydraulic wedge grips; one end 
remaining immovable while an in-plane displacement was applied to the other 
end. Unlike to the tension experiments, this time in the buckling tests a rate of 
0.01mm/min was applied to provide a more constant and stable transition from the 
pre-to the post-buckling region of the composite beam. In addition, the lower 
displacement rate ensured more accurate experimental measurements of the modal 
characteristics and the transverse deflection at beam midspan. 

At specified load increments, the displacement was held constant and vibration 
analysis tests were performed using an impact hammer. The response was 
measured with two different sensors: a PZT-5 piezoceramic sensor plate, adhered 
on the beam surface near the clamped edge (Figure 5.12) and a miniature 
accelerometer adhered at the midspan of the beam (Figure 5.13). 

The output voltage at the piezoelectric sensor was simultaneously acquired by a 
high-speed data acquisition board and spectral analyzer to obtain the frequency 
response functions of the beam, as the in-plane buckling load was progressing. 
The same parametric model consisting of a series of complex exponential terms, 
each term approximating an individual mode, was used to extract the modal 
frequencies and modal loss factors of the tested beam from the measured 
frequency response functions. A linear variable differential transformer (LVDT)  
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was also set at the midspan of the beam to measure the transverse displacement 
during the application of the axial compressive displacement. In Figure 5.12 and 
Figure 5.13 the experimental setup is shown for the two measured sets, using: I) a 
piezoceramic sensor and II) an accelerometer. In both sets an impact hammer was 
used to better excite the first bending mode of the composite strip. 

5.3   Numerical Results 

Application of the nonlinear finite element code provided a series of validations 
cases for the composite strip which were subsequently correlated with available 
experimental measurements. Theoretical predictions investigated the effect of 
initial stresses and geometrical nonlinearities, due to in-plane tensile and 
compressive loads, on the modal characteristics of the composite strip. 
Furthermore, theoretical predictions of an aluminum plate-beam specimen are 
presented and validated towards a nonlinear shell FE numerical results and its 
respective experimental measuremets. 

5.3.1   Effect of In-Plane Tensile Load 

The developed nonlinear finite element was evaluated by predicting the modal 
frequency and modal damping values of Glass/Epoxy plate beams. Firstly, the 
modal characteristics of two cross-ply beam specimens are presented and 
correlated with the respective experimental measurements. The second set of 
results includes numerical predictions of the nonlinear code for quasi-isotropic 
laminate configurations. 

5.3.1.1   Cross-Ply Composite Strips 

The modal characteristics of the tested clamped-clamped beams under tensile in-
plane loading were predicted and compared with the measured experimental 
results. 

 
A. Validation of nonlinear stiffness terms 
Excellent correlation was obtained between numerical and experimental results for 
the natural frequencies of [02/902]s and [902/02]s beam specimens. Figure 5.14 and 
Figure 5.15 present the first three and first four bending natural frequencies of the 
[02/902]s and [902/02]s beam specimens, respectively. All natural frequencies 
increase with the applied tensile load due to membrane stiffening which is 

modeled by the stiffness component   N1K . 
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Fig. 5.14 Bending natural frequencies of the [02/902]s clamped-free Glass/Epoxy plate-beam 
under a increasing tensile load 
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Fig. 5.15 Bending natural frequencies of the [902/02]s clamped-free Glass/Epoxy 
plate-beam under a increasing tensile load 
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(a) 

 
(b) 

Fig. 5.16 Predicted and measured first bending modal loss factor of the [02/902]s 

Glass/Epoxy clamped-free plate-beam, under a tensile load: (a) As measured damping; (b) 
With damping of aluminum specimen subtracted. 
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Each symbol of the experimental scatter curves corresponds to a different load 
increment. Likewise, the numerical prediction curves correspond to a series of 
load increments, where in each increment the static solution has been calculated 
using the Newton-Raphson iterative technique. Based on this method, the small-
amplitude dynamic response is solved and consequently, the eigenfrequencies of 
the composite strip are calculated. 

 
B. Validation of nonlinear damping terms 
The predicted and measured damping of the first mode of the [02/902]s beam is 
presented in Figure 5.16a. Both analytical and measured damping values decrease 
with the application of tensile load following a similar trend. The constant offset 
between the predicted and the experimental graph is attributed to external damping 
from the hydraulic grips. This hypothesis is corroborated in Figure 5.17, which shows 
the measured modal loss factor of the aluminum beam, tested in an identical way to 
the composite beam. Although aluminum has a nominal loss factor about 0.04% 
(Granick and Stern 1965), a substantially higher damping value of 0.22% was 
measured which remained nearly constant as the load increased, which more likely 
quantifies the extraneous damping induced by the grips. 
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Fig. 5.17 Measured modal loss factor of aluminum plate-beam 

Although the calibration of the measured data is a common practice, it is 
clearly stated that the difference between the nominal and the measured loss factor 
values was 0.18%. Indeed, after subtracting the grip damping from the damping of 
the composite beams, the correlation between the analytical and the experimental 
damping values is drastically improved (Figure 5.16b). The results in Figure 5.16 
demonstrate that the differences between the “as measured” data and analytical 
predictions are mostly due to extraneous damping at the supports. 
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Fig. 5.18 First bending modal loss factor of a [902/02]s clamped-free Glass/Epoxy beam 
under a tensile load 

0 400 800 1200 1600 2000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

M
od

al
 L

os
s 

F
ac

to
r 

(%
)

In-plane tensile load (N)

 Present FE
 Experiment

 

Fig. 5.19 Predicted and measured loss factor of [02/902]s clamped-free Glass/Epoxy 
beam under a tensile load of fourth bending mode 
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Fig. 5.20 Predicted and measured loss factor of [902/02]s clamped-free Glass/Epoxy beam 
under a tensile load of fourth bending mode 

 
The measured and predicted first modal loss factor values of the [902/02]s 

composite beam are shown in Figure 5.18. This laminate configuration has higher 
modal damping, which also decreases with the application of in-plane load. 

Predicted and measured modal damping of a higher beam mode are shown in 
Figure 5.19 and Figure 5.20 for the [02/902]s and [902/02]s beam, respectively. In 
these measurements the beam was excited using the PZT-5 piezoceramic actuator, 
which provided better FRF diagrams in comparison with the impact hammer. 

In all cases the decreasing trend in measured damping upon application of 
tensile load remains. The results show that the present finite element captures the 
decrease of nonlinear damping for the fourth mode due to the stiffening effect. 
The offset is attributed to external damping.  

In all previous cases the predicted results for the natural frequencies and the 
modal damping values are in excellent agreement with the experimental results, 
leading credence to the present finite element model. To further analyze the effect 
of nonlinear terms on damping, the dissipated and stored modal strain energies are 
shown in Figure 5.21 and Figure 5.22, for modes shapes normalized to a 
maximum value of unity. 
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(b) 

Fig. 5.21 Modal energies of the first bending mode of [02/902]s and [902/02]s Glass/Epoxy 
beams under a tensile load: (a) Dissipated energy; (b) Maximum stored energy 
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Fig. 5.22 Modal energies of the fourth bending mode of [02/902]s and [902/02]s Glass/Epoxy 
beams under a tensile load: (a) Dissipated energy; (b) Maximum stored energy 
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In all cases, it is obvious that the modal damping has decreased nonlinearly and 
monotonically, this effect has been previously experimentally observed by 
Kosmatka (2008). On the other hand, the dissipation of strain energy in absolute 
value has increased monotonically with the application of the tensile load. It is 
important to note, thereafter, that the reduction in damping is caused by the 
disproportional increase in the stored strain energy due membrane stiffening 
effects and not by a decrease in dissipated strain energy. 

A careful observation of the obtained analytical and experimental damping 
results supports expected trends based on the analytical expressions of laminate 
damping matrices in Eqs. (4.27-4.28). The two cross-ply laminates, [02/902]s and 
[902/02]s, have different flexural damping and stiffness terms dD  and D  but  equal 
extensional damping and stiffness dA  and A . The change in modal strain energy 

remains linear to the applied load and the extensional stiffness, explaining the 
same slopes between the two laminations.  Interestingly, for both laminates and 
mode, the dissipated modal energy varies nonlinearly at low loads, while at higher 
loads it follows a linear trend. 

As previously explained, at very low in-plane load values, the dissipated strain 
energy and modal damping are related to flexural laminate damping 

dD , hence 

damping is higher for the [902/02]s  laminate. There is a transition range, and then 
at high in-plane loads, the modal dissipated energy and the modal damping seems 

to be dominated by dA . The transition from a flexural damping, to an extensional 
damping dominated dissipation mechanism, as the in-plane load increases, seems 
to depend also on the order of the bending mode due to the nonlinear behavior of 
the beam. 

5.3.1.2   Quasi-isotropic Composite Strips 

The modal characteristics of Glass/Epoxy composite strip-beams (Figure 5.23) 
having a quasi-isotropic lamination [θ/90+θ/45+θ/-45+θ]s at various orientations 
θ  to the beam axis, were also predicted. The significant effect of laminate 
orientation is better illustrated through predictions with and without the nonlinear 
stiffness and damping terms. 

The beams have identical dimensions and material properties (Table 5.6) with 
the cross-ply beams in the previous subsection being clamped at one and loaded 
with a constant tensile force at the free end. 
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(a)             (b) 

Fig. 5.23 Quasi-isotropic [θ/90+θ/45+θ/-45+θ]s composite strip-beam: (a) Under tensile 
loading; (b) Lay-up configuration 

In Figure 5.24 and Figure 5.25 the variation of the modal frequencies and 
damping of the composite beam, as the constant axial force is applied, is 
presented. The nonlinear section stiffness terms contribute to the increased beam 
stiffness (Figure 5.24). This is indicated by the higher first two bending frequency 
predictions of the nonlinear code in comparison with the linear beam formulation. 
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Fig. 5.24 Effect of laminate orientation on modal bending frequencies of a [θ/90+θ/45+θ/-
45+θ]s beam; linear vs. nonlinear model predictions 
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On the other hand, the change of damping (Figure 5.25) highly depends on the 
lamination and the mode shape, and it has lower values with respect to the linear 
baseline. It is obvious that the modal loss factor takes its maximum values for θ  
near 450

 where the off-axis plies are on the external side of the laminate and 
undergo higher deformations. Consequently, beam damping increases due the 
increased damping of the matrix material. 
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Fig. 5.25 Effect of laminate orientation on modal bending loss factors of a [θ/90+θ/45+θ/-
45+θ]s beam; linear vs. nonlinear model predictions 

In Figure 5.26 and Figure 5.27 the predicted first two bending modal 
frequencies and damping for beams with ([0/90/±45]s) and [±45/90/0]s laminations 

are shown, considering: (i) only linear matrices   
0K ,   

0C  and (ii) including 

both linear   
0K ,   

0C  and nonlinear matrices   N1K  and [ ]N1C . 

In Figure 5.25, Figure 5.26b and Figure 5.27b the modal damping factors of 
different modes predicted by the linear model coincide. This was expected, since 

in the specific material the term [ ]ω cdQ  was set to remain constant with 

frequency, as suggested by the measured material data. As the axial force 
increases, membrane stiffening occurs which has a strong effect on predicted 
modal frequencies and damping. 
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(b) 

Fig. 5.26 Effect of an increasing tensile in-plane load on modal bending characteristics of a 
[0/90/±45]s clamped-free plate-beam: (a) Natural frequencies; (b) Modal loss factor 
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(b) 

Fig. 5.27 Effect of an increasing tensile in-plane load on modal bending characteristics of a 
[±45/90/0]s clamped-free plate-beam: (a) Natural frequencies; (b) Modal loss factor 
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The contribution of nonlinear damping  matrix on structural damping is 

presented in Figure 5.26b for the [0/90/±45]s laminations. The inclusion of 
nonlinear damping matrices has a drastic effect on the calculation of structural 
damping which is rapidly decreasing by the application of the tensile force, an 
effect not captured by the linear model. Similar results were obtained for the 
[±45/90/0]s beams as shown in Figure 5.27b.  

Finally, the dissipated and stored modal strain energies for the first bending 
mode in both laminated beams are shown in Figure 5.28 and Figure 5.29, 
respectively, predicted with modes shape amplitudes normalized to a maximum 
value of unity for each case. 
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Fig. 5.28 Dissipated modal energy of the first bending mode of [0/90/±45]s and [±45/90/0]s  
Glass/Epoxy beams under a tensile load 

In all cases, the dissipation of modal strain energy in absolute value has 
increased monotonically with the application of the tensile load. The reduction in 
damping is caused by the disproportional increase in the stored strain energy due 
to membrane stiffening effects and not by a decrease in dissipated strain energy. 
As in the previous case of cross-ply laminates, the above quasi-isotropic 
laminations have different flexural but equal extensional damping coefficients  

dD  and dA , respectively. The predicted results validate the same theoretical 

observations, i.e.: at very low in-plane load values, the dissipated energy and 
modal damping of the bending modes is provided by flexural laminate damping 

dD . As the load increases, the modal damping and dissipated energy is dominated 

[ ]N1C
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by the extensional laminate damping term 
dA . Also, the reduction of modal 

damping with in-plane load depends on the order of the bending mode due to the 
nonlinear behavior of the beam. 
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Fig. 5.29 Maximum stored modal energy of the first bending mode of [0/90/±45]s and 
[±45/90/0]s Glass/Epoxy beams under a tensile load 

5.3.2   Aluminum Plate-Beam Model 

The modal frequencies of an aluminum plate-beam subject to both tensile and 
compressive loads were predicted and correlated with experimental and numerical 
results provided by an eight node nonlinear shell finite element developed by 
Varelis and Saravanos (2006). The elastic properties of the aluminum material are 
shown in Table 5.8  

Table 5.8 Material properties of the aluminum beam specimen 

ρ 
(Kg/m3) 

Ε11 
(GPa) 

G12 
(GPa) 

ν12 

 

2768 66 27 0.30 

 
Likewise, the geometric characteristics of the aluminum beam specimen are 

included in Table 5.9. 
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Table 5.9 Geometric data of the aluminum beam specimen 

Length, L 
(mm) 

Width, b 
(mm) 

Thickness, h 
(mm) 

530 30 5.0 

5.3.2.1    Static Response of Aluminum Beam Specimen Subject to 
Compressive In-Plane Load 

Firstly, the variation of the in-plane axial reaction force, F  at the tip of the 
aluminum beam specimen with regards to applied in-plane compressive 
displacement, u  is illustrated in Figure 5.30.  
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Fig. 5.30 Axial in-plane force at the beam end under axial in-plane compressive 
displacement 

It is obvious that there is a linear relation between them till the critical buckling 
point, whereas beyond this point the axial force remains constant regardless the 
continuous increase of the applied axial displacement values. The loss of axial 
stiffness of the beam "transforms" the simultaneous additional energy offered by 
the compressive axial displacement, u  into increase of the transverse 
displacement, w  of the beam. It can be supported that there is good correlation 
with the experimental measurements and excellent validation with the respective 
eight node shell element numerical predictions (Varelis and Saravanos 2006). 
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Fig. 5.31 Transverse midspan displacement of the aluminum clamped-free strip in pre- and 
post-buckling response under in-plane compressive displacement along the beam axis 

Figure 5.31 presents the prediction of a stable buckling path for the transverse 
deflection w , while a compressive in-plane load is applied along the beam axis. 
The transverse response of the beam element is very close to shell element 
predictions and experimental results. The aluminum beam response in the pre-
buckling region follows a rapid path, then it passes through the buckling critical 
point and finally it follows a more stable post-buckling path. In the present beam 

model it is assumed that an initial imperfection 0w , of the aluminum beam is 

induced by a transverse point force of F=3.5N at the midspan of the beam length. 

5.3.2.2   Small-Amplitude Free-Vibration Response of Aluminum Beam 
Specimen Subject to In-Plane Tensile and Compressive Load 

Figures 5.32a-c, show the predicted first, second and third bending natural 
frequencies of the aluminum beam specimen for increasing tensile in-plane 
displacement in comparison with the analytical and experimental results provided 
by Varelis and Saravanos (2006).  

All bending natural frequencies increase with the applied in-plane displacement 
due to the increased stiffening of the aluminum beam, expressed by the first-order 
tangential terms. The results of the developed beam element are in excellent 
agreement both with the shell element predictions and the respective experimental 
measurements. 
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Fig. 5.32 Bending modal frequencies of an aluminum clamped-free strip under in-plane 
tensile displacement: (a) First; (b) Second; (c) Third mode 

 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

40

80

120

160

200

 Present Finite Element
 Shell Element (Varelis Saravanos 2006)
 Experiment (Varelis Saravanos 2006)N

at
ur

al
 F

re
qu

en
cy

 (
H

z)

Applied u (mm)

(a) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

 Present Finite Element
 Shell Element (Varelis Saravanos 2006)
 Experiment (Varelis Saravanos 2006)

N
at

ur
al

 F
re

qu
en

cy
 (

H
z)

Applied u (mm)

(b) 



5.3   Numerical Results 137 

 

 

Fig. 5.32 (continued) 

The capabilities of the beam element were further investigated on the aluminum 
specimen subject to an in-plane compressive load. Figures 5.33a, b and c show the 
predicted first, second and third bending modal frequency of the aluminum 
specimen, respectively, during the pre- and post-buckling response, where results 
of the present FE are compared with the nonlinear shell element and the respective 
experimental data. 

The first natural frequency presents the higher sensitivity which is more 
obvious in the post-buckling region, where the frequency values increase rapidly. 
Both finite elements predict the same critical applied displacement value of 

0.15u mm= . The beam element seems to underestimates the natural frequency 
at this point, whereas in the pre- and post-buckling area it yields predictions 
almost identical to the shell element predictions. The decreasing of the bending 
frequencies in the pre-buckling region for the second and third mode of the 
aluminum specimen is also shown in Figures 5.33b and c. 

The decreasing frequency values in the pre-buckling region are attributed to the 
internal compressive stress which are developed within the beam structure. In  
the post-buckling region the beam regains its transverse stiffness and consequently 
the first bending frequency presents a rapid increase, whereas the second remains 
practically constant and the third one presents a slight increase. 
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Fig. 5.33 Bending modal frequencies of an aluminum clamped-free strip under in-plane 
compressive displacement: (a) First; (b) Second; (c) Third mode 
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Fig. 5.33 (continued) 

5.3.3   Nonlinear Buckling Analysis of Composite Strips 

In this subsection the nonlinear buckling response of the same Glass/Epoxy beam-
strip for various lay-up configurations will be investigated and correlated with 
experimental measurements. 

5.3.3.1   Composite Cross-Ply Beam Specimens  

The natural frequencies and the modal damping values of the [02/902]s 
Glass/Epoxy composite beam-strip, were predicted and correlated with measured 
experimental results conducted at AML. The finite element code solver was based 
on the displacement control method, which was extensively discussed in the fourth 
chapter of the manuscript. Figure 5.34 illustrates the testing apparatus used to 
validate the finite element code numerical predictions. Figure 5.35 shows the 
measured and predicted transverse deflection versus the applied compressive load; 
the latter was calculated as the reaction force at the node where the imposed 
compressive displacement was applied. In order to identify the sensitivity of the 
beam response to an initial imperfection, predicted results for w0=0.14mm, 
w0=0.28mm and w0=0.55mm are presented, corresponding to an initial w0 range 
of 0.1-0.3mm observed in the experiments, which consist of the two measurement 
sets, I and II. 
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Fig. 5.34 Testing apparatus used in the buckling experiments of Glass/Epoxy beam 
specimens 
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Fig. 5.35 Predicted and measured transverse displacement at the midspan of the [02/902]s 
clamped-free Glass/Epoxy plate-strip under in-plane compressive displacement along the 
beam axis 
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Fig. 5.36 Predicted and measured first bending modal natural frequency of a [02/902]s 
clamped-free Glass/Epoxy plate-strip under in-plane compressive displacement 

 

Fig. 5.37 Predicted and measured first bending modal loss factor of a [02/902]s clamped-free 
Glass/Epoxy plate-strip under in-plane compressive displacement 

 

0 40 80 120 160 200 240 280
0

20

40

60

80

100

120
 Measured Set I
 Measured Set II
 Present FE, w

0
=0.14mm

 Present FE, w
0
=0.28mm

 Present FE, w
0
=0.55mm

 

N
at

ur
al

 F
re

qu
en

cy
 (

H
z)

Applied Force (N)

0 40 80 120 160 200 240 280
0.0

0.4

0.8

1.2

1.6

2.0

2.4  Measured Set I
 Measured Set II
 Present FE, w

0
=0.14mm

 Present FE, w
0
=0.28mm

 Present FE, w
0
=0.55mm

M
od

al
 L

os
s 

F
ac

to
r 

(%
)

Applied Force (N)



142 5   Nonlinear Dynamic Response of Composite Plate-Beams 

 

Figure 5.36 shows the variation of the first bending modal frequency for 
increasing compressive load. It is obvious that as the buckling path transitions 
from the pre- to post-buckling region, the natural frequency decreases and then 
increases, respectively. The higher the initial imperfection at the midspan the less 
severe is the aforementioned transition in modal frequency, a conclusion reported 
also by Kosmatka (2010). The credibility of the developed beam finite element is 
validated by the excellent correlation of the predicted results with the 
experimental measurements, for the case of initial w0=0.28mm. 

The new capabilities of the beam element are clearly illustrated in Figure 5.37, 
where the first modal loss factor of the composite beam is presented. In the pre-
buckling region the modal damping gradually increases, reaches its maximum 
value near the critical load and thereafter it follows a decreasing path as the beam 
regains stiffness in the post-buckling region. The predicted results are in excellent 
agreement with the experimental measurements for the case of initial w0=0.28mm. 
The significance of the nonlinear formulation has already been described in fourth 
chapter of the book and lies in part on the introduction of second-order nonlinear 
damping terms   2dsC  (Eq. 4.29) into the governing equations of the system.  

Figure 5.38 outlines the effect of second-order nonlinear stiffness   2sK  and 
damping   2dsC  terms on the first mode modal characteristics. 

As shown in Figure 5.38b, the inclusion of such terms is essential in problems 
describing the dynamic response of composite beams and involving buckling, 
especially in the transition from the pre- to post-buckling region. The contribution 
of   1dsC  terms in the pre-buckling region is also quantified. 

Further analysis cases include a comparison of numerical code predictions 
between two cross-ply beam specimens in order to study the effect of laminate 
orientation on the static and modal characteristics of the beam structure. 
Therefore, Figure 5.39a-c show the transverse displacement, the first modal 
bending frequency and the modal damping, respectively, of Glass/Epoxy beams 
with [02/902]s and [902/02]s lay-up configurations while an in-plane compressive 
displacement is applied along the axis of the beam. It is obvious that the [902/02]s 
beam exhibits a more compliant behavior with lower modal frequency and a lower 
critical buckling point in comparison with the stiffer [02/902]s laminate. The 
predicted first modal bending loss factor, is presented in Figure 5.39c, and shows 
an interesting trend: at zero applied force the stiff [02/902]s beam exhibits low 
damping due to low 

11dD , however, as both laminations have equal extension 

damping coefficients 
11dA , the [02/902]s beam quickly exceeds the modal damping 

of the [902/02]s beam in the pre-buckling region. As the beam transitions to the 
post-buckling region, the damping in both beams remains comparable in trend and 
values. 
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(b) 

Fig. 5.38 Effect of second-order terms on the predicted modal characteristics for the 
[02/902]s clamped-free Glass/Epoxy plate-strip first mode: (a) Modal natural frequency; (b) 
Modal loss factor 
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Fig. 5.39 [02/902]s and [902/02]s clamped-free Glass/Epoxy plate-strips under in-plane 
compressive displacement: (a) Predicted transverse displacement; (b) Predicted first modal 
natural frequency; (c) Predicted first modal loss factor 
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Fig. 5.39 (continued) 

5.3.3.2   Composite Beams with Quasi-isotropic and Asymmetric Lamination  

The second part of buckling numerical predictions deals with a quasi-isotropic and 
an asymmetric beam-strip having identical material properties and geometric data 
with the previous cases. 

 

Quasi-isotropic case. The predicted transverse displacement at beam midspan, 
first natural frequency and respective modal loss factor of quasi-isotropic 
Glass/Epoxy lay-up configurations [0+θ/90+θ/45+θ/-45+θ]s are presented in 
Figures 5.40a-c, respectively. Four characteristic values of the ply angle θ  are 
taken into account and are shown in Table 5.10. Similarly to the previous case, the 
stiffer lamination exhibits the higher increase of nonlinear damping in the pre-

buckling range, due to the fact that all laminations have identical 11dA  and 11A  

terms. Moreover, by observing Figures 5.40a-b, it is obvious that the stiffer 
lamination [0/90/45/-45]s presents the higher buckling critical point.  

Table 5.10 Different quasi-isotropic beam laminate orientation depending on the selected 
ply angle 

Ply Angle 
(Degrees) 

Beam Lamination
 

Ply Angle 
(Degrees) 

Beam Lamination 
 

00 [0/90/45/-45]s 900 [90/0/-45/45]s 

450 [45/-45/90/0]s -450 [-45/45/0/90]s 
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Fig. 5.40 Predicted free-vibration response for [0+θ/90+θ/45+θ/-45+θ]s clamped-free 
Glass/Epoxy plate-strips under in-plane compressive displacement: (a) Transverse 
displacement; (b) First modal natural frequency; (c) First modal loss factor 
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Fig. 5.40 (continued) 

Asymmetric case. An asymmetric lamination case is presented in Figures 5.41a-b. 
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(a) 

Fig. 5.41 Comparison of free-vibration characteristics between an asymmetric lamination 
[04/904] and symmetric laminations [02/902]s and [902/02]s: (a) First modal natural 
frequency; (b) First modal loss factor
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Fig. 5.41 (continued) 

The predicted modal frequency and damping values of an asymmetric 
lamination [04/904] are compared with the symmetric laminations [02/902]s and 

[902/02]s respective ones. The nonzero coupling terms 11B  and 11dB  seem to 

influence both the linear and nonlinear damping of the [04/904] beam. 

5.4   Conclusions 

In fifth chapter the theoretical and computational framework of the nonlinear 
beam finite element was applied to predict the static and dynamic response of 
composite beams under large in-plane loads. A damped nonlinear beam finite 
element was formulated and the aforementioned nonlinear stiffness and damping 
mechanics were incorporated into a research finite element code enabling 
computational prediction of nonlinear damping and stiffness characteristics of 
composite strips. The following major conclusions can be summarized in two 
categories regarding the problems of tension and buckling, respectively: 

 

I. Tension 

 The introduction of the new nonlinear stiffness and damping section terms are 
essential for capturing the stiffening effects on vibrating damped composite 
beams under large in-plane extensional stresses. 

 The prediction of both natural frequencies and modal loss factors appeared to 
correlate very well with measured data, thus demonstrating the value of 
developed finite element and nonlinear damped structural dynamic models. 
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 There exist strong effect of initial stresses on damping which is monotonic 
with respect to the linear baseline. In the case of tensile in-plane loads induces 
significant modal damping reductions depending on the mode shape and 
laminate configuration. 

 The reduction of modal damping with in-plane load depends also on the order 
of the bending mode, due to the nonlinear behavior of the beam, and seems to 
be less as the mode order increases. This result is consistent with Lesieutre 
(2009). 

 The new nonlinear damping terms due to tensile in-plane loads increase the 
dissipation of strain energy in absolute value. The reduction in damping is 
caused by the disproportional increase in the stored strain energy due to 
membrane stiffening effects and not by a decrease in dissipated strain energy. 

 The strong dependence of modal damping on the laminate configuration was 
both experimentally and numerically illustrated. At very low in-plane load 
values, the modal damping of bending modes is provided by the flexural 

laminate damping dD , while the reduction in modal damping as the load 

increases, is dominated by the extensional laminate damping dA . 

 The good correlations between analytical and experimental results suggest 
that the Kelvin viscoelastic model provided reasonably good predictions for 
the modal damping values in the pre-stressed strip. 

II. Buckling 
 

o The new beam finite element captures the effect of stress-stiffening and large 
rotations on the natural frequencies and modal loss factor values of composite 
strips subject to in-plane buckling loading. The good correlations between 
predicted results and experimental measurements underline the credibility of 
the formulated beam finite element. 

o The inclusion of nonlinear damping and stiffness terms seems essential for 
predicting the small-amplitude free-vibration response of composite strips in 
the pre- and post-buckling region. 

o The modal damping increases monotonically in the pre-buckling range, 
reaches a maximum at the critical load and then decreases in the post-
buckling region. The second-order nonlinear terms dominate the damping in 
the post-buckling region. 

o The excellent agreement between predicted results and experimental 
measurements also supports the credibility of the Kelvin viscoelastic strain 
model, to provide good modal damping predictions in the buckled strip. 

o An initial imperfection does not change the trend but affects the overall 
damping values. Large imperfections tend to yield lower damping and vice 
versa. This is consistent with Kosmatka (2010) 

o The nonlinear damping terms are proportional to the extensional damping 
coefficient of the laminate. Depending on the lamination, the contribution 
may be significant and may exceed the initial flexural damping of the beam. 
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Within this chapter the Newton-Raphson technique is combined with the detailed 
formulation reported in the fourth chapter. In addition, for the buckling case, the 
displacement control methodology was incorporated in the solver of the nonlinear 
beam finite element code. The novelty points of fifth chapter are: 

 
∗ The existence of strong effect of initial stresses on the nonlinear damping of 

composite structures, which proved to be monotonic with respect to the linear 
baseline. The in-plane load as well as the order of beam bending mode are 
important factors regarding the modal damping trend values of a composite 
structure.  

∗ The prediction of nonlinear damping trend as the composite beam transitions 
from the pre- to the post-buckling region. The nonlinear beam finite element 
captures the effect of stress-stiffening and large rotations on the natural 
frequencies and modal loss factor values of composite strips subject to in-
plane buckling loading. 

∗ The study of the dependence of modal damping on the laminate beam 
configuration, which was both numerically and experimentally illustrated. 
The excellent agreement between predicted results and experimental 
measurements, supported the credibility of the Kelvin viscoelastic strain 
model to the direction of providing good modal damping predictions of the 
strip subject to large displacements and rotations. 

∗ The significance of the first-order stiffness and damping terms in the pre-
stressing of the beam subject to in-plane tensile loading as well as the 
importance of the respective second-order damping nonlinear terms, which 
dominate damping in the post-buckling region. 
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Chapter 6 
6   Prediction of Nonlinear Damped Response  

Prediction of Nonlinear Damped Response of 
Large-Scale Blade Composite Structures 

The necessity for maximization of wind-turbine rotor performance has led to the 
design of longer and more flexible composite blade configurations. In that 
direction, new wind-turbine blade designs are introduced which exceed 60m in 
length and exhibit complex nonlinear structural behavior. These long blades are 
substantially more flexible and exhibit complex nonlinear geometric behavior 
which affects their static, dynamic and aeroelastic response, therefore, 
improvement of current blade modeling tools is required. In order to achieve this 
target, a new composite beam finite element formulation is presented which 
includes nonlinear effects due to large displacements and rotations. The new 
objective of the 3-D beam finite element is to provide a predictive capability for 
the static highly deflected shape, the damping, the eigenfrequencies and the 
vibrations of large scale composite blades in the nonlinear range. The tubular 
beam finite element entails a substantial extension of the formulation of the strip 
element, which was extensively described in the fourth chapter of the manuscript. 

The first subsection of the present chapter presents the new nonlinear 
formulation from the level of beam cross-section and on. Introduction of the full 
Green-Lagrange normal strain expression into the variational form of section 
strain and dissipated energy gives out the nonlinear stiffness and damping 
matrices of the blade section. For the sake of completeness, all the formulated 
first- and second-order effective and tangential terms are presented in analytical 
expressions. Second subsection includes a brief description of the total matrices 
form of the damped tubular element, whereas in the third one, numerical 
predictions of the static and modal characteristics of composite box-section beams 
are presented. At this point, attention is given on the nonlinear modal damping 
(loss factor) values and their variation when the structure undergoes stiffening 
effects. The next subsection deals with the damped nonlinear response of a 54m 
girder box-section beam, which can be considered as the structural part of the UP 
61.5m wind-turbine blade, described in the third chapter of the book. Assuming 
that the blade subjects to gravitational loads and rotates with increasing values of 
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angular velocity, the stiffening effect on the natural frequencies and the modal loss 
factor of the first modes is investigated. In the last part of this chapter the 
concluding remarks are summarized. 

6.1   Nonlinear Mechanics of Composite Blade Structures 

The formulation of nonlinear damped structural dynamic mechanics and models 
for blades will be presented within this section. For the sake of brevity, the 
following considerations will be taken into account: 

 
 The presented damped beam finite element can be considered as a substantial 

generalization of the nonlinear strip finite element which was developed in 
the fourth chapter. It builds on same governing relations at the material level, 
yet it differs in the formulation of the cross-section mechanics. For example, 
a strain based Kelvin viscoelastic constitutive model was considered to better 
describe the relation between the ply stresses and strains as indicated in Eq. 
(4.1) 

 The new nonlinear formulation assumes the same hollow composite tubular 
beam element (Figure 3.3) with arbitrary geometry and skin lamination and 6 
DOFs per node considered in the third chapter. However, the introduction of 
large deformations into finite element beam formulation leads to new and 
more complex nonlinear stiffness and damping matrices. Thus, the relation 
between the engineering strains and the displacements of the cross-section at 
the curvilinear system O'xsζ are described by Eq. (3.6). 

6.1.1   Nonlinear Section Mechanics 

Similarly to the linear section model described in the third chapter, the assumed 
section deformation is based upon a first-order shear deformation theory. 
Therefore, it admits extension along x -axis, bending in y  and z  directions, 

torsion about the x -axis and shear on xy  and xz  planes. In the curvilinear 
system O'xsζ, the kinematic assumptions are expressed by Eq. (3.6). In order to 
capture the effect of large rotations, nonlinear Green-Lagrange strain expressions 
are considered for the normal strain component, which has the following form, 

2 2
, , ,

1 1
2 2x x x xu wε υ= + +

 
(6.1)

By substituting the kinematic assumptions of Eqs. (3.10) into the normal, xε  (Eq. 

(6.1)) and shear ,xs xζε ε  (Eqs. (3.11)) strain expressions of the nonlinear beam 

element cross-section, the former is updated to the following expression, 
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(6.2)

As it has already been underlined, shear strain expressions of the cross-section are 
assumed to remain in the linear regime. 

The equations of motion of the beam are described by the following variational 
form, 

0 0

d δ d d d δ d d δ d 0
L L

A A
x s x sH Tζ ζ

Γ
− + + Γ =     Tu τ (6.3)

where H  and T  are the strain and kinetic energy, τ  are surface tractions on the 
free surface Γ , A  is the cross-sectional areas covered by material and L  is the 
length of the beam. 

The kinetic energy variation of the section is represented by the respective 
integral over the cross-section area, 

secδ δ diag( ) d δ diag( ) dd d
A h

T ss ζζ= − = −  T Tu ρ u u ρ u  (6.4)

Due to the fact that mass terms are not affected by the new nonlinear formulation 
and for the sake of brevity, the detailed form of the equivalent mass cross-section 
terms is identical to the one reported in the third chapter of the present work and 
are also reported in Appendix C. 

The variation of the strain energy of the section is represented by the respective 
integral over the cross-section area, 

secδ δ d d
A

H s ζ=  T
c cε σ (6.5)

Assuming that the polymer matrix composite behaves as Kelvin viscoelastic 
material, the following expression for the stresses of the composite ply is applied, 

      = +c cs c ccdσ Q ε Q ε (6.6)

In the above equations, the assumed large off-axis strains and stresses of the 
composite ply take the following form, respectively, 

{ } { }

{ } { }

51 6

51 6

, , , ,

, , , ,

cx cxscc c cx

cx cxscc c cx

ζ

ζ

ε ε ε ε ε ε

σ σ σ σ σ σ

= =

= =

c

c

ε

σ
(6.7)
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The same issue with the size of strain/stress components is answered in Appendix 
C, where the laminate matrices reduction is extensively discussed. 

In addition, [ ]csQ  is the composite ply equivalent off-axis stiffness matrix and 

[ ]cdQ  is the composite ply equivalent off-axis damping matrix defined in Eq. 

(4.4) with respect to the local curvilinear system O'xsζ. 
Substituting Eq. (6.6) into Eq. (6.5), the final expression for the strain energy 

variation takes the form, 

( )( )secδ d δ d δ δs ds
h

H s H Hζ     = + = +  T
c cs c ccdε Q ε Q ε (6.8)

where, δ sH  represents the strain energy and δ dsH  the dissipated energy of the 

blade cross-section. 

6.1.2   Nonlinear Stiffness Cross-Section Terms 

Replacing the normal and shear strain expressions provided by Eq. (6.2), into Eq. 
(6.8), integrating firstly over the laminate thickness and then around the skin 
midline and assuming that the equivalent hoop force, moment and shear force sN , 

sM  and sN ζ , respectively, defined with respect to the local section coordinates 

O'xsζ should be negligible, the stored strain energy in the section takes the form, 

0 1 2
δ δ δ δs s s sH H H H= + + (6.9)

where, 
0 1 2
, ,s s sH H H  are the cross-section strain energy terms, containing 

linear, first-order nonlinear and second-order nonlinear components. In detail, 
these terms provide the linear and the nonlinear stiffness terms of the cross-
section, as follows, 
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The linear stiffness matrix   0sK  contains the well-known linear extensional-

shear coupling and flexural-torsional stiffness terms   
0A ,   

0B  and   
0D  of 

the cross-section (Saravanos et al. 2006) whose detailed expressions are reported 
in Appendix C, 
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 
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(6.13) 

At this point it should be underlined that all linear and nonlinear terms indicated 
with an overbar are associated with material coupling effects. 

 
First-Order Nonlinear Stiffness. The effective first-order nonlinear stiffness 

matrice   1sK  refers to nonlinear strain terms with linear dependence to 

generalized section strains. The respective stiffness matrix has the following form, 
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The detailed expressions of each of these terms are: 
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Second-Order Nonlinear Stiffness.   2sK  matrix includes the respective 

second-order nonlinear stiffness terms, 
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(6.18)

which have the detailed form, 
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(6.19)
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 (6.21)

6.1.3   Linearized Stiffness Cross-Section Terms 

Similarly to the derivation of the effective section stiffness terms, linearized 
stiffness matrices were derived (see paragr. 4.5), providing the stored energy of 
the cross section, when the latter undergoes small deflections about a statically 
deformed position. 

The new nonlinear tangential stiffness terms are expressed by   1TsK  and 

  2TsK , matrices, which refer to first- and second-order tangential nonlinear 

stiffness terms, respectively. The first-order nonlinear tangential stiffness matrix 

  1TsK  has the form, 

1 1 1
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1 1 1 1 1 1
5551 56 51 52 56

1 1 1 1 1 1
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(6.22) 

where the overbar indicates terms with material coupling. The detailed 
expressions of these terms are, 

( )1 1 0 0
15 51 , 11 , 11 11
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(6.23)
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Similarly,   2TsK  refers to the second-order nonlinear stiffness matrix, 
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(6.26) 

and their respective detailed form is, 
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In the above Eqs. ((6.14)-(6.29)), ijA , ijB  and ijD  are the extensional, coupling 

and flexural stiffness matrices of the laminate section, respectively, which have 
already been defined in Appendix C (Eq. (c.10)).  

6.1.4   Nonlinear Damping Cross-Section Terms 

The same procedure is followed in order to formulate the expressions of the cross-
section damping terms of the composite structure. Combining Eqs. (6.2), (6.6) and 



164 6   Prediction of Nonlinear Damped Response 

 

(6.8) and collecting the terms based on their order of nonlinear terms, the 
dissipated strain of the section takes the form,  

0 1 2
δ δ δ δds ds ds dsH H H H= + + (6.30) 

where 
dsH  represents the dissipated energy per unit length of the beam subject to 

an arbitrary combination of cyclic strain bending curvatures and twisting angles 
and 

0 1 2
, ,ds ds dsH H H  are the cross-section dissipated energy terms, containing 

linear and nonlinear first- and second-order components, having the form, 
respectively, 
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Each one of them provides the linear and nonlinear loss stiffness terms of the 
section, 
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0 1 2ds ds ds dsC C C C
 

(6.34) 

In the above expressions,   0dsC  is the linear laminate damping matrix, 

previously formulated by Saravanos et. al (2006). 
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First-Order Nonlinear Damping. The first-order damping matrix,   1dsC  

contains nonlinear terms, which imply first-order nonlinear dependence to the 
generalized section displacements, 
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and their detailed expressions are, 
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(6.38)
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Second-Order Nonlinear Damping.   2dsC  contains nonlinear damping terms, 

which imply second-order nonlinear dependence to the generalized section 
displacements. Eq. (6.40) refers to general form of the second-order damping 
terms, whereas Eqs. (6.41) - (6.43) include the detailed expressions of each 
damping cross-section term. 
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In the above linear and nonlinear damping equations, [ ]dA , [ ]dB  and [ ]dD  are 

equivalent extensional-shear, coupling and flexural damping matrices of the 
laminate, respectively, defined in Appendix C (Eq. (c.11)). The overbar, once 
again, indicates the material coupling damping terms. 

 
First-order nonlinear terms are associated with the effect of rotational stresses on 
the modal characteristics of composite beams and blades, whereas second-order 
nonlinear damping terms, are critical in describing the nonlinear damping during 
the buckling and post-buckling response of composite strips. 

6.2   Tubular Nonlinear Damped Beam Finite Element 

Although the nonlinear beam finite element includes complex nonlinear stiffness 
and damping terms, the procedure followed in order to build the total structural 
matrices of the composite system is identical with those presented in third and 
fourth chapter. The element has two nodes, with six degrees of freedom per node 
(Eq. (3.30)) and approximates the strain field with linear shape functions (Eq. 
(4.35)).  

Introduction of the shape functions into the formulation yields the discrete set 
of system equations at the global coordinate system of the structure. Thereafter, 
the total effective and tangential stiffness and damping matrices of the element are 
synthesized. The integrals of the structural terms are calculated using the Gauss 
integration method at the local coordinate system of the element. So, the necessary 
transformation both for the shape functions and the integration limits is also 
applied (Eq. (4.53)). The stiffness, damping and mass matrices of each element 
have square form with dimensions 12x12, 

[ ] [ ] [ ]
[ ] [ ]

6 6 6 6

6 6 6 6 12 12

x x

x x x

K K
Matrix

K K

 
 
  

 (6.44) 

In order to build the final set of system equations, the contribution of each beam 
element should be taken into account. Thus, supposing that U  represents the 
vector of the nodal degrees of freedom (DOF) of the total system, the latter may 
take the following form, 

( ) { } ( ) { } { }     T 6Qx1 6Qx1 6Qx16Qx6Q6Qx6Q
K U ΔU = K U U - F (6.45) 

where Q  indicates the total nodes of the structure,   TK  is the tangential 

stiffness matrix;
 
[ ]K  is the effective stiffness matrix and F  is the external forces 

vector; the number 6 indicates the number of the DOFs at each node of the beam  
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element. Application of the boundary conditions reduces the dimensions of the 
final system, which is solved by the Newton-Raphson incremental-iterative 
technique. The displacement control method could be also applied in problems 
involving buckling loads for the reasons discussed in the fourth chapter of the 
current work. 

 
Modal damping 
The modal damping is calculated following the same assumptions presented in 
subsection 5.1 and Eq. (5.2), where the numerical solution of the undamped 
system provides the undamped modal frequencies and the relative mode shapes of 
the beam structure. 

Thus, based on the composite strip beam finite element, a further updated 
nonlinear code capable of predicting the static and the damped dynamic response 
of large composite structures was incorporated into the DAMPBEAM research 
structural dynamics tool. 

6.3   Numerical Evaluation Cases on Box-Section Beams 

In the present subsection some evaluation cases concerning the evaluation of the 
new nonlinear stiffness and damping terms will be presented. To that direction a 
Carbon/Epoxy box-section beam is considered with various ply angle laminations 
at its segments. Firstly the static bean response is studied and then the effect of 
rotational stresses is investigated. 

6.3.1   Static Response under Large Loads  

Various ply angle configurations as well as support conditions were considered for 
the Carbon/Epoxy box-section beam, whose material properties have already been 
shown in Table 3.1 of the third chapter. The length of the beam is 1.0m, while the 
cross-section dimensions and segment thickness are shown in Figure 3.5a. In the 
following cases the composite structure was discretized into 20 uniform beam 
finite elements, which ensured the convergence of the static response and the 
numerical prediction of the beam structure modal frequency and loss factor values. 

6.3.1.1   Hinged-Hinged Beam  

The hinged-hinged beam configuration shown in Figure 6.1 is effectively an 
evaluation case. For the first case a vertical force of F=100N was applied at the 
midspan of the beam and the vertical displacement along the beam was predicted 
and correlated with the respective values of the linear finite element code. 
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Fig. 6.1 Hinged-hinged Carbon/Epoxy composite box beam 

The notable difference between the linear and the nonlinear formulation is 
illustrated in Figure 6.2, for θ=00 and θ=450 for all segments of the cross-section. 
It is obvious that the nonlinear element captures the stiffening of the beam and 
provides lower transverse displacement values than the linear ones. 

 

 
Fig. 6.2 Transverse displacement of the hinged-hinged box beam for linear vs. nonlinear FE 
code 

The effect of nonlinear stiffness terms is better demonstrated in Figure 6.3, 
where the transverse displacement is plotted for increasing values of the vertical 
force at the beam midspan. Transverse displacement does not increase in a linear 
way, but on the contrary, the higher the force, the stiffer becomes the beam 
structure. 
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Fig. 6.3 Nonlinear prediction of transverse displacement of the hinged-hinged beam 
for increasing values of vertical force at its midspan 

 
(a) (b) 

Fig. 6.4 Torsional angle of the hinged-hinged box beam for linear vs. nonlinear finite 
element code predictions and laminations of: (a) θ=00; (b) θ=450 

The significance of the nonlinear formulation is also outlined by predicting the 
composite structure twisting angle, something that the linear code fails to do so, as 
illustrated in Figure 6.4b. For θ=00 the twisting terms are deactivated, whereas for 
θ=450 the nonlinear code yields predictions for the twisting angle of the composite 
beam. 

6.3.1.2   Pressure Loaded Clamped-Free Beam  

Composite structures, such as helicopter rotors or wind-turbine blades have one 
end clamped and actually behave as a clamped-free beam structures. To that 
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direction, evaluation cases on a clamped-free box section beam undergoing large 
static loads will be further presented. The clamped-free beam configuration is 
shown in Figure 6.5. The structure subjects to a vertical distributed load of 
p0=50N/m along its length and the ply angle of [45]6 was considered for the top 
and bottom flanges and the right and left shear webs of the cross-section. 

 

 

Fig. 6.5 Clamped-free Carbon/Epoxy composite box beam 

 

 

Fig. 6.6 Nonlinear prediction of vertical displacement along the clamped-free beam 
applying the linear vs. the nonlinear code 
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Fig. 6.7 Comparison of axial displacement of the clamped-free beam with linear vs. 
nonlinear code 

 

Fig. 6.8 Comparison of torsional angle of the clamped-free beam with linear vs. nonlinear 
code 

 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

A
xi

al
 D

is
pl

ac
em

en
t u

0  (
m

)

Beam Length (m)

 Linear
 Nonlinear

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-3.0x10-5

-2.5x10-5

-2.0x10-5

-1.5x10-5

-1.0x10-5

-5.0x10-6

0.0

 

T
or

si
on

al
 A

ng
le

 (
de

gr
ee

s)

Axial Distance (m)

 Linear
 Nonlinear



174 6   Prediction of Nonlinear Damped Response 

 

Figure 6.6 presents the nodal vertical displacement along the box beam length. 
It is obvious that vertical displacement follows a linear trend and coincides with 
the simple linear finite element predictions. That implies that there are no 
stiffening effects at the clamped-free beam subject to static loading. 

The significance of the new nonlinear formulation lies on the prediction of the 
nodal axial displacement, as well as, of the beam torsion due to resultant nonlinear 
bending-torsion coupling stiffness terms shown in Eqs. (6.17), (6.21), (6.25) and 
(6.29). This is better illustrated in Figure 6.7 and Figure 6.8, where the nonlinear 
finite element calculates a substantial axial displacement and a twisting angle, 
respectively, whereas the linear code does not provide that capability. 

6.3.2   Effect of Rotational Stresses 

The importance of non linear section stiffness terms is stronger in the case a 
clamped-free blade-beam subject to rotational effects due to distributed centrifugal 
loads. Skin laminations [02/±45]s at the upper and lower segment and [(±45)2]s at 
the right and left shear web, are considered, typical of helicopter blade 
configurations. The new nonlinear beam finite element is applied to capture the 
stiffening of blades loaded by a transverse pressure, due to rotational initial 
stresses (Figure 6.9). 

 

 

Fig. 6.9 Composite blade-beam subject to rotational stresses and cross-section lamination 

 
The blade-beam has the same elastic and geometric properties like the previous 

case and the inertial rotational load is consistently discretized on the beam finite 
element nodes. Figure 6.10 illustrates the effect of angular velocity on the vertical 
displacement of the rotated clamped-free beam. The higher the angular velocity 
values the stiffer the beam becomes. The same outcome is obvious in Figure 6.11, 
where the vertical displacement of the beam nodes decreases for higher values of 
the angular velocity. 
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Fig. 6.10 Beam stiffening due to rotational effects 
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Fig. 6.11 Vertical displacement along beam length for increasing values of angular velocity 

The next step of the nonlinear analysis includes the prediction of modal 
characteristics for the bending and sweeping modes of the beam-blade (Figure 
6.9), taking into account only the angular velocity applied on the structure. 
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Fig. 6.12 First three bending frequencies for the composite blade with cross-ply lay-up 
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Fig. 6.13 First two sweeping frequencies for the composite blade with cross-ply lay-up 
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Similarly to the case of composite strip, shown in the fifth chapter, it is obvious 
that the higher the angular velocity, the higher the modal frequency values 
become, indicating the stiffening effects on the blade. 

The main objective of the new nonlinear damped finite element code is the 
prediction of nonlinear damping in composite blade structures undergoing large 
displacements and rotations. This direction also necessitates the prediction of 
rotational stresses effect on the modal damping of large scale composite beams 
and blades. The first step was made in fifth chapter, where it was explained that 
damping is not monotonic and depends on the type of mode shape and the specific 
section lamination. The same conclusion is obtained by observation of Figure 6.14 
and Figure 6.15, where the first three flapping and first two sweeping modal loss 
factor graphs are presented, respectively. Both figures illustrate that the first 
flapping and first sweeping modal loss factor curves present a higher sensitivity to 
rotational stiffening, which is less obvious in higher blade modes. In addition, the 
dash line in the graphs, indicates the respective modal loss factor values predicted 
by the linear finite beam element. The respective frequency and damping torsional 
mode values are omitted due to their low sensitivity to the increasing angular 
velocity and stiffening of the beam. 
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Fig. 6.14 First three bending modal loss factor values for the composite blade with cross-
ply lay-up 

The latter results set the basis for understanding the damping behavior in 
complex beams in order to apply the developed nonlinear beam finite element to 
the simulation of geometric up-scaled structures, such as wind-turbine blades. This 
will be the topic of the last section of the present chapter.  
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Fig. 6.15 First two sweeping modal loss factor values for the composite blade with cross-
ply lay-up 

6.4   Modal Analysis of a Girder Box-Section Beam of a 5MW 
Wind-Turbine Blade 

6.4   Modal A nalys is of a Girder Box-Section Beam 

The modal analysis of the UP 61.5m wind-turbine blade, using the linear code, 
was extensively presented in the third chapter of the book. The main structural 
part of such blade designs is a box-section beam, the so called "girder box-section 
beam", which runs along the most part of blade length. The girder beam consists 
of two girder segments (top end bottom flanges) and two shear webs (right and left 
flanges) for each cross-section. The girder segments and shear webs size 
correspond to the girder size and shear webs size, respectively, of the relative UP 
61.5m blade model airfoil cross-sections. Details about the geometric data of the 
girder box-section beam are provided in Appendix E. 

The four flanges of the girder beam are considered to be sandwich structures. 
Likewise the UP 61.5m blade model, each segment has the following laminations 
(Table 3.7): 

 Girder Segment: Skins of TRIAX and multiple UD layers, whose number is 
eliminated with direction from the root to the tip of the blade. 

 Shear Webs: Sandwich structures with ANGPLY skins and FOAM-2 core, 
whose thickness decreases towards the beam’s tip. 

In Figure 6.16, a typical cross-section of the girder box-section beam at 25.2m of 
wind-turbine blade span, is presented. The [00] UD layers increase significantly 
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where, 
centrifugal
bF  is the discretized centrifugal force on each finite element node 

gravity
bF  is the discretized gravity force on each finite element node 

ρ  is the density of the material 
g  is the gravity acceleration  

A  is the area of each cross-section covered by material 

Ω  is the rotational velocity of the beam 

eL  is the length of each cross-section (element) 

r  is the distance of each cross-section from beam root. 

The predicted first two flapwise, first sweeping and first torsional natural 
frequencies of the girder beam are presented in Figure 6.18-Figure 6.20, 
respectively. It is clear that the higher the angular velocity, the higher the modal 
frequency values become, indicating the stiffening effects on the blade. 

 

Fig. 6.18 First two flapping natural frequencies of the 54m girder box-section beam 

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

 1st flapwise   2nd flapwise

N
at

ur
al

 F
re

qu
en

cy
 (

H
z)

Angular Velocity (rpm)



6.4   Modal Analysis of a Girder Box-Section Beam 181 

 

The rotational stresses also effect on the respective modal damping values of 
the composite girder box-section beam, shown in Figure 6.21-Figure 6.23. 
Contrary to the natural frequency trends, the nonlinear finite element code 
predictions present a higher sensitivity in capturing the damping of the rotating 
composite beam structure. 
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Fig. 6.19 First sweeping natural frequency of the 54m girder box-section beam 
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Fig. 6.20 First torsional natural frequency of the 54m girder box-section beam 
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Fig. 6.21 First two bending modal loss factor values of the 54m girder box-section beam 
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Fig. 6.22 First sweeping modal loss factor of the 54m girder box-section beam 
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Fig. 6.23 First torsional modal loss factor of the 54m girder box-section beam 

 
The stiffening effect is less severe in the case of the first torsional mode, 

probably due to the symmetry of box beam cross-sections. 

6.5   Conclusions 

A new 3-D damped nonlinear beam finite element and a research finite element 
code were developed and presented with capability to predict the static and 
damped structural dynamic response of composite beams and blades which 
undergo large displacements and rotations. 

The effect of new nonlinear stiffness and damping terms was evaluated on a 
box-section beam for various loading cases, which included: large static loads and 
rotational stresses due to the assumed rotation of the beam. In addition, the small-
amplitude free-vibration response of a girder box-section beam undergoing 
gravitational and centrifugal axial loads was studied and its modal characteristics 
were predicted for its first bending, sweeping and torsional modes. Based on the 
obtained numerical results the following major conclusions can be summarized: 

 A nonlinear mechanics framework was developed, which provides both the 
nonlinear effective and tangential first- and second-order section stiffness and 
damping terms of blade cross-section. The synthesized nonlinear section 
matrices capture the first- and second-order effect of large static deformations 
on blade nonlinear behavior. 
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 Nonlinear blade deflections and damped free-vibrations are predicted. The 
new nonlinear beam finite element calculates the axial displacement and 
torsional angle of box-section composite beams with various skin laminations 
which were neglected by previous linear beam elements. 

 The new nonlinear beam element captures the effect of initial stresses on the 
structural damping of composite blade-beams subject to rotational effects. 
The nonlinear effect of initial stresses on damping is not monotonic with 
respect to the linear baseline. The nonlinear damping may be higher or lower 
depending on the mode shape and laminate configuration. 

 The prediction of both natural frequencies and modal loss factors values of 
composite structures indicates the significant role that nonlinear stiffness and 
damping terms play on blade nonlinear behavior and demonstrate the value of 
developed nonlinear structural dynamic model. 

 The new 3-D blade element was applied on a "girder beam", which consists 
the structural part of a large-scale 61.5m wind-turbine blade. The new 
nonlinear code captures the nonlinear stiffening of the rotating 54m girder 
box-section beam, undergoing gravity and centrifugal tensional loads. This is 
demonstrated through the prediction of increased natural frequencies and 
decreased modal loss factor values as the angular velocity increases. 

 
New Contribution. In the sixth chapter a fully updated version of the so called 
DAMPBEAM code was developed and its novelty points are: 

∗ The development of a nonlinear damped computational structural dynamic 
model for the prediction of the nonlinear damping of large beams and blades. 
New nonlinear stiffness and loss factor cross-section terms are synthesized 
based on first- and second-order effective and tangential stiffness and 
damping terms, respectively. 

∗ The nonlinear tubular beam element captures the initial stresses effect on the 
damping of composite blades subject to rotational effects. The nonlinear 
effect of initial stresses on damping is not monotonic with respect to the linear 
baseline. The nonlinear damping may be higher or lower depending on the 
mode shape and laminate configuration. 

∗ The numerical prediction of the small-amplitude free-vibration response of a 
54m girder box-section composite beam subject to tensile gravitational loads 
and rotational stresses. The stiffening effect on the modal characteristics of 
the first modes of the girder beam is also evaluated.  
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Chapter 7 
Conclusions and Suggestions for Future 
Research Topics 

This is the closing chapter of the book which presents a brief summary of the 
conclusions obtained along the current work. It also addresses some open issues 
and interesting topics for future research, regarding the evolution of the developed 
nonlinear beam finite element to better describe the structural analysis and 
structural dynamics of large-scale composite wind-turbine blades. 

The manuscript consisted of two main topics concerning the prediction of 
damping in composite structures of various shapes and geometry. First, the effect 
of new linear damping coupling terms was quantified by predicting the static and 
modal characteristics of composite structures with various shapes and geometries. 
Material coupling effect was incorporated into the linear formulation and new 
linear damping coupling section terms were developed. Evaluation cases were 
carried out on box-section composite beams of various ply angle configurations, a 
small model blade with anti-symmetric lay-up at the top and bottom girder 
segments and a 19m realistic wind-turbine rotor with girder segments containing 
rotated plies, thus exhibiting material coupling effects. The capabilities of the 
complete linear finite element code were also evaluated on the prediction of the 
cross-sectional properties and modal characteristics of a 61.5m current wind-
turbine blade design with complex geometry and lay-up configuration. 

Thereafter, the main topic of this work dealt with the development of a 
theoretical framework for the nonlinear damped analysis of composite strips, 
beams and blades using the updated version of DAMPBEAM nonlinear finite 
element code. A damping mechanics and nonlinear structural dynamics 
formulation was developed enabling the inclusion of nonlinear effects due to in-
plane loads and large deformations on both structural stiffness and damping of 
laminated composite strips. New nonlinear first- and second-order stiffness and 
damping section terms were formulated, essential for capturing the stiffening 
effects on vibrating composite beams subject to large deformations. An 
experimental procedure was set up to measure the modal frequencies and the 
nonlinear damping of cross-ply composite strips. Correlations cases between 
experimental measurements and theoretical code predictions gave credence to the 
developed nonlinear finite element for composite strips. This modeling tool was 
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further updated to the direction of modeling the complex nonlinear damped 
dynamic behavior of slender and more flexible composite structures, such as 
helicopter and wind-turbine blades. 

7.1   General Concluding Remarks 

The summary of the most important concluding remarks obtained from the current 
work are reported in the following paragraphs. 

 
Material Coupling Effect. Numerical comparisons regarding the static and 
dynamic response of composite box-section beams revealed that the inclusion of 
coupling terms led to a more compliant structure. The models including material 
coupling terms exhibited higher displacements and predicted the torsional angle 
under static loading, whereas their modal analysis calculated lower frequencies 
and higher damping values with refer to the uncoupled respective model. As far as 
the small model blade, notable differences in the predictions of modal 
characteristics were also exhibited for anti-symmetric ply-angle girder laminations 
[06/(±45)2], when the [0] plies were rotated by an angle θ in the range from θ=50 to 
450. Numerical modal characteristic predictions were correlated well with 
available experimental data of the Glass/Epoxy small model blade. The next 
evaluation case concerned the inclusion of new coupling cross-section terms in a 
realistic 19m wind-turbine blade, which yielded substantial differences in modal 
damping and frequency predictions between sections with high coupling and  
the respective ones with negligible ply stiffness and damping coupling terms. The 
inclusion of material coupling provided significantly improvement of the 
structural damping behavior of the blade. The linear finite element code was also 
applied to the prediction of the modal frequency and damping values of a 61.5m 
wind-turbine blade model. Excellent correlations were achieved regarding the 
cross-section stiffness and mass properties between the UP blade and available 
paper case blade numerical results. 

 
Nonlinear Finite Element for Composite Strips. The new nonlinear beam finite 
element considered the strain-based Kelvin viscoelastic constitutive equation, 
which subsequently yielded the linear and nonlinear stiffness and damping 
matrices of the element. Studying of the formulated cross-section nonlinear 
damping terms revealed that structural damping highly depends on the nonlinear 
response of the beam. If the beam remains in the linear regime, the flexural 
damping of the beam is contributed by the flexural damping term, whereas when it 
enters the nonlinear region strong additional damping terms are introduced which 
couple flexure and extension. These terms are proportional to the extensional 
damping term and section rotation. Furthermore, there is a strong effect of 
lamination lay-up on the structural damping of the composite structure. As the 
magnitude of the initial load increases, the effect of laminate configuration on 
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structural damping will be governed mainly by extensional damping terms and 
less by flexural damping. 

Effect of Tensile In-Plane Load. Based on obtained numerical results, it was 
demonstrated that tension in-plane loads induce significant modal damping 
reductions, which depend on the mode shape and the laminate configuration of the 
composite structure and appeared to be monotonic with respect to the linear 
baseline. The reduction of modal damping with in-plane load depends also on the 
order of the bending mode, due to the nonlinear behavior of the beam, and seems 
to be less as the mode order increases. In addition, the new nonlinear damping 
terms increase the dissipation of strain energy in absolute value and therefore the 
reduction in damping is caused by the disproportional increase in the stored strain 
energy due to membrane stiffening effects and not by a decrease in dissipated 
strain energy. Last, the prediction of both natural frequencies and modal loss 
factors appeared to correlate very well with experimental measurements, thus 
demonstrating the value of developed finite element and nonlinear damped 
structural dynamic models. 

 
Effect of Compressive In-Plane Load. Regarding the in-plane buckling loading 
case, the inclusion of nonlinear damping and stiffness terms seems essential for 
predicting the small-amplitude free-vibration response of composite strips in the 
pre- and post-buckling region. The modal damping increases monotonically in the 
pre-buckling range, reaches a maximum at the critical load and then decreases in 
the post-buckling region, where the second-order nonlinear terms dominate the 
damping. Based on the numerical predictions, the initial imperfection does not 
change the trend but affects the overall damping values. Consequently, large 
imperfections tend to yield lower damping and vice versa. The new nonlinear 
damping terms are proportional to the extensional damping coefficient of the 
laminate. Depending on the lamination, the contribution may be significant and 
may exceed the initial flexural damping of the beam. The agreement between 
predicted results and experimental measurements, for the buckling case, also 
supports the credibility of the Kelvin viscoelastic strain model, to provide good 
modal damping predictions of the pre-stressed strip. 

 
Nonlinear Damped Response of Large-Scale Composite Beams and Blades. 
Taking into account the last statement of the previous paragraph, un updated 
tubular beam element with six degrees of freedom at each node was developed to 
better model the damped vibrational response of large beams and blades. To that 
direction, the complete form of the first- and second-order matrices was presented, 
regarding both the effective and the linearized matrices of the total system. The 
new nonlinear beam finite element calculates the axial displacement and torsional 
angle of box-section composite beams under static loading, whereas the linear 
finite element code fails to do so. The effect of initial stresses on the structural 
damping of composite blade-beams subject to rotational effects was also 
predicted. The nonlinear damping may be higher or lower depending on the mode 
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shape and laminate configuration, which indicates that the nonlinear effect of 
initial stresses on damping is not monotonic with respect to the linear baseline. To 
conclude, the new nonlinear code captures the stiffening of the 54m girder  
box-section rotating beam, undergoing gravity and centrifugal tensional loads. 
Increasing natural frequency and decreasing modal loss factor trends were 
predicted for the first bending, sweeping and torsional mode shapes of the girder 
beam for increasing values of angular velocity. 

7.2   Future Research Topics 

During the last years the field of the composite wind-turbine blades has been 
presenting a rapid evolution. Integrated projects aim to more efficient harvesting 
of the wind energy through longer and more flexible blade configurations. To that 
direction, improved modeling tools are continuously required to simulate and 
predict the complex dynamic and aeroelastic behavior of such composite 
structures.  

The questions the current work has left open may include the following 
suggested future research topics: 

 
 Integration of the developed nonlinear finite element code with aerodynamic 

models. This integration will provide a robust aeroelastic formulation which 
will lead to upgraded predictions of the rotor performance capturing the full 
potential of the coupled finite element on the prediction of damping of large-
scale wind-turbine blades. The multi-disciplinary integration will bring  
the effects of material coupling, structural damping, and nonlinearity into the 
aeroelastic and aerodynamic performance prediction, as well as, into the 
prediction of dynamic stresses and fatigue life of composite blades. 

 Evaluation, and subsequent improvement, of the capabilities of the nonlinear 
beam element to provide quick predictions of the stress, strength and fatigue 
life of composite blades. This will enable a quick sizing and tailoring of 
preliminary blade designs and/or upscaling of blade models. It will also lead 
to a better understanding of the structural response of the blade structure. 

 Related to the previous issues, the investigation and optimization of the 
material coupling effects constitutes another future topic. The understanding 
of new stiffness and damping coupling terms effect could lead to the 
tailoring of blade structural properties. Formal optimization can consequently 
pursued to control the structure large displacements in the flapwise and 
edgewise direction and optimize aerodynamic loads, aeroelastic performance 
and fatigue life. 

 Improvement of kinematic assumptions by means of considering more 
generalized deformations of the structure cross-section. An updated beam 
finite element with an updated number of nodes and nodal degrees of 
freedom at each node and 1c  continuity shape functions could describe more 
adequately the displacement field and the cross-section deformations, 
regarding both the linear and the nonlinear response of composite structures. 
In the same direction, pre-curved and pre-twisted blades could be considered. 
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Fig. 7.1 Effect of the local buckling on the ovalization of a composite beam cross-section 

 Introduction of more improved and robust viscoelastic models could be 
considered and evaluated on the prediction of modal damping. New stress-
strain constitutive equations could describe more adequately the composite 
material damping behavior. 

 Local blade buckling consists a significant failure mode of large-scale 
composite structures. New realistic blade designs undergo extreme loading 
cases, due to gravitational loads and rotational stresses, which affect their 
functionality and structural integrity. Preliminary results, conducted with a 
commercial FE code, on a tubular composite beam necessitates additional 
numerical results for simulating the buckling response of the girder beam 
(Figure 7.1). A new formulation and beam finite element, introducing the 
determination of local buckling points and studying the effect of cross-
section ovalization and rimpling on the blade static and dynamic response are 
also steps of high importance. 
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Appendix A 

 
 
 
 
In the following tables the symbols, subscripts and superscripts which were used 
within the chapters of the book are explained. 
 

Table A.1 Main symbols 

Symbol Explanation 

σ  Engineering strains 
ε  Engineering strains 

Q  Ply stiffness matrix 
η  Ply damping matrix 
S Compliance matrix 

, ,u wυ Displacements in three dimensions ( , ,x y z ) 
ρ  Density per unit volume 

ib  Body force per unit volume 

Δ  Discrete amount of a symbol 
δ  Virtual variation 
V  Total volume of structure 
τ  External forces applied at the free surface 

Γ  Surface where external forces are applied 

β  Rotation angle 

θ  Twisting angle 

xyzO  Cartesian coordinate system  

'
xsO ζ  Local curvilinear coordinate system 

0r  
Vector describing the distance between a point O' on the skin 
mid-surface from a point O on the cross-section 

0 0,y z  Projections of the 0r  vector on the xyzO  coordinate system 

0 0, sr rζ  
Projections of the 0r  vector on the '

xsO ζ  curvilinear 

coordinate system 
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Table A.1 (continued) 

k  Curvature 

H  Strain energy of the cross-section 

dW  Dissipated energy of the cross-section 

T  Kinetic energy of the cross-section 

sA A  Skin extensional matrix 

sB B  Skin coupling matrix  

sD D  Skin flexural stiffness matrix 

diag  Diagonal matrix 

0A  Cross-section extension-shear stiffness terms 

0B  Cross-section coupling stiffness terms 

0D  Cross-section flexure-torsion stiffness terms 

0
dA  Cross-section extension-shear damping terms 

0
dB  Cross-section coupling damping terms 

0
dD  Cross-section flexure-torsion damping terms 

, ,A B Dm m m Equivalent linear, coupling and inertia mass matrix terms 

K  Stiffness matrix 

C  Damping matrix 

M  Mass matrix 

i
eU  Nodal degrees of freedom vector 

iN  Displacement shape functions 

iR  Strain shape functions 

ω  Natural frequency 

mη  Modal loss factor 

h  Thickness of the skin laminate 

A  Cross-sectional area covered by material 
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Table A.1 (continued) 
 

More symbols describing the nonlinear formulation of the fourth, fifth and sixth 

chapter of the manuscript are the followings: 

sH  Strain energy 

dsH  Dissipated energy 

L
xε

 
Nonlinear axial strain component 

Ψ  Imbalance vector between internal, inertial and external forces 

F  External force 

0sK  Linear section stiffness matrix 

1s
K , 

2sK  Nonlinear first- and second-order section stiffness matrix 

0NK  Linear element stiffness matrix 

1NK , 
2NK  Nonlinear first- and second-order element stiffness matrices 

0NK  Tangential element  linear stiffness matrix 

1NK , 
2NK  

Tangential element nonlinear first- and second-order stiffness 

matrices  

0dsC  Linear section damping matrix 

1dsC , 
2dsC  Nonlinear first- and second-order section damping matrix 

0NC  Linear element damping matrix  

1NC , 
2NC  Nonlinear first- and second-order element damping matrix  

0NC  Tangential element linear damping matrix  

1NC , 
2NC  

Tangential element nonlinear first- and second-order damping 

matrix  

Lρ  Generalized mass matrix of the strip finite element 

b  Width of the strip section 

su  
Nodal degrees of freedom vector at the nonlinear static 

equilibrium point 

u  
Nodal degrees of freedom vector for the small-amplitude 

dynamic response 
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Table A.1 (continued) 

TK  General expression for the tangential stiffness matrix 

mp  Pole of the system 

0p  Distributed load 

Ω  Angular velocity 

Table A.2 List of subscript symbols 

Subscripts Explanation 
, ,x y z  Global Cartesian coordinates 

, ,x s ζ  Local curvilinear coordinates 

e  Element 

s  Skin laminate level 

c  Composite ply level 

cs  Stiffness off-axis ply matrix 

ds  Damping off-axis ply matrix 

l  Material coordinate system 

a  Indicate the strain shape function corresponding to normal 

generalized strains 

b  Indicate the strain shape function corresponding to bending 

generalized strains 

sa  Indicate the strain shape function corresponding to shear 

generalized strains 

L  Indicate the strain shape function corresponding to nonlinear 

generalized strains 

N  Indicates the total stiffness and damping matrices of the finite 

element 

0, 1, 2  Linear, first- and second-order nonlinear terms 

T  Indicates tangential matrix 

f  Free (unknown) elastic degrees of freedom vector 

a  Imposed (known) elastic degrees of freedom vector 

t  Tangential nonlinear terms of the tubular beam finite eleemnt 

, Space differentiation  
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Table A.3 List of superscript symbols 

Superscripts Explanation 
0  Terms referring to the mid-section of the laminate 

L  Nonlinear terms 

T  Transpose quantity 

1nl  
First-order nonlinear stiffness and damping terms of the tubular 

beam finite element 

2nl  
Second-order nonlinear stiffness and damping terms of the 

tubular beam finite element 

f  Unknown degrees of freedom of the displacement vector U  

c  
Applied - known degrees of freedom of the displacement 

vector U  

sec  Indicates the section of the structure 

 Time differentiation 

 Stiffness and damping terms including material coupling 

∗ Reduced stiffness and damping matrices 

Table A.4 Integration limit symbols 

Integration 

Limit 
Explanation 

L  Element length 

A  Cross-sectional area covered by material 

h  Skin laminate thickness 

Table A.5 Coordinate system notation 

Coordinate system notation       
Tensor Notation 11 22 33 23 13 12 
Contracted 1 2 3 4 5 6 
Cartesian coordinate system xx yy zz yz xz xy 
Cartesian coordinate system 
contracted 

x y z yz xz xy 

Local curvilinear coordinate 
system 

xx ss ζζ sζ xζ xs 

Local curvilinear coordinate 
system contracted 

x s ζ sζ xζ xs 
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Table A.6 Abbreviations 

Abbreviations Explanation 
3-D Three Dimensional 

AML Applied Mechanics Laboratory 

CFRP Carbon Fiber Reinforced Polymer 

CLDT Classical Laminate Damping Theory 

CS Coordinate System 

DAQ Data AcQuisition 

DLDT Discrete Layer Damping Theory 

DOF Degrees Of Freedom 

EU European Union 

EAWE European Academy of Wind Energy 

FE Finite Element 

FEA Finite Element Analysis 

FFT Fast Fourier Transform 

FRF Frequency Response Function 

FRP Fiber Reinforced Polymer 

FSDT First-order Shear Deformation Theory 

GAST 

General Aerodynamic and Structural prediction tool for wind 

Turbines 

LE Leading Edge 

LVDT Linear Variable Differential Transformer 

RHS Right Hand Side 

RWT Reference Wind Turbine 

SAAM Structural Analysis and Active Materials group 

S/W Shear Web 

SDC Specific Damping Capacity 

TE Trailing Edge 

TWB Thin Walled Beams or Blades 

UD Uni-Directional 

UP University of Patras wind-turbine blade model 

VABS Variational Asymptotical Beam Sectional analysis 

VAM Variational Asymptotic Method 

WMC Wind turbine Materials and Constructions 

 



 

 

Appendix B 

B.1   Damping Material Models 

A damping material is a solid material capable of converting a significant amount 
of mechanical energy into heat (dissipation of energy) when it is subjected to 
cyclic strain. Damping materials combine energy dissipation (viscous) with energy 
storage (elastic) behavior and for that reason they are often called viscoelastic 
materials. In order to predict the damped structural response of such materials the 
characterization of two parameters is required; one associated with strain energy 
storage and the other with the dissipated energy of the vibrating system. 

B.2   Viscous Damping 

The response of a single DOF spring-mass model predicts that the system will 
oscillate indefinitely and its undamped motion could be described by the 
following relation, 

( ) ( ) 0mx t kx t+ = (b.1) 

Taking into account that realistic material systems motion exhibit a die out 
response an extended form of Eq. (b.1) is suggested, 

( ) ( ) ( ) 0mx t cx t kx t+ + =  (b.2) 

where c  is the viscous damping coefficient. The damping of the system is 
represented by a damping force, having the form, 

( )cf cx t=  (b.3) 

Depending of the relative value of viscous damping coefficient the solution of Eq. 
(b.2) may include oscillation and decay (underdamped) or just exponentially 
decay (overdamped and critically damped). 

Consider that Eq. (b.2) is divided by the mass term then it can be rewritten in 
the following form, 

( ) ( ) ( )22 0n mx t x t x tζω ω+ + =  (b.4) 

Assuming solutions of the form ( ) stx t Ae=  for Eq. (b.4), then the latter is 

expressed as, 
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2 22 0n ms sζω ω+ + = (b.5) 

which is satisfied for the following values of solution s , 

2

1,2 2

c c k
s

m m m

  = − ± −     
(b.6) 

Thus for the case of the critically damped structure the natural frequency and the 
damping ratio are defined as, 

( )
and

2 2
c

n
c

ck c c

m m ckm
ω ζ= = = = (b.7) 

respectively. The parameter cc  is called critical damping constant (Inman 2001).  

B.3   Hysteretic Damping 

I. Energy Approach. During the cyclic loading of a material energy dissipation due 
to internal friction takes place. The material can be approximated by a spring-
damper system where the spring elastic constant represents the material stiffness. 
The hysteretic closed loop of the cyclic loading represents the relationship 
between the total force (spring force and damping force) and the displacement 
(Figure B.1). 

 

Fig. B.1 Hysteresis loop of a damping material 

Taking into consideration that the material exhibits a linear viscoelastic 
behavior with low damping values, it therefore assumed that the point of 
maximum strain coincides with the respective point of maximum stress (point 1 in 
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Figure B.1). The shaded area represents the dissipated energy in one vibration 
cycle, whereas the maximum stored strain energy in the material is indicated by 
the area covered by the triangle on the upper right hand side of the diagram 
(Plagianakos 2004). Thus the next two parameters can be defined as follows: 

 
 Specific Damping Capacity (SDC), ψ , is the ratio of the dissipated energy in 

one vibration cycle to the maximum stored strain energy in the material, 

dW

H
ψ = (b.8) 

 Loss factor coefficient, η , is the ratio of dissipated energy per radian to the 

maximum stored strain energy in the material, 

1

2
dW

H
η

π
= (b.9) 

Thus, substitution of Eq. (b.8) into Eq. (b.9) yields the relation between the SCD 
and the loss factor coefficient, 

2ψ πη= (b.10) 

II. Material complex modulus. For the case where a harmonic forcing is 
considered, the elastic constitutive equation could be modified to include the 
material loss factor η , 

( ) ( ) ( )1 j Eσ ω η ε ω= + (b.11) 

The material loss factor could essentially be the phase difference in forced 
harmonic response between an applied stress and the resultant strain. Eq. (b.11) 
could be rewritten in a form that express multiple material modulus and loss 
factors, 

( ) ( ) ( )*Eσ ω ω ε ω= (b.12) 

where *E  is the complex modulus of elasticity, which in the frequency domain is 
given by the following relation, 

*E E jE′ ′′= + (b.13) 

where the real part E′  is the storage modulus and the imaginary part (loss 
modulus) E′′  is associated with energy dissipation. The loss factor obeys, 

E Eη ′′ ′= (b.14) 
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At this point it should 
parameters, , ,E Eη ′

B.4   Kelvin-Voigt M

The stress-strain relation
expressed by a linear diff
the present work, the no
material model (Figure B.

 

              

The Kelvin model con
Figure B.2. For a compo
takes the form, 

σ =

where σ  is the material

damping matrices of the c

B.5   Relationship of
Damping 

The FRFs (Figure 5.7) o
poles corresponding to th
equivalent damping ratio
magnitude of the pole, 
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onlinear analysis is based on the assumption of Kelvi
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Fig. B.2 Kelvin material model 

nsists of a spring and a dashpot in parallel as shown i
osite material the constitutive equation of Kelvin mod

[ ] ( ) [ ] ( )d

dc dQ t Q t
t

ε ε= + (b.15

l stress, ε  is strain and ,c dQ Q  are the stiffness an

composite material related each other with the relation, 

[ ] [ ]d cQ Qω η= (b.16

f Kelvin Modal Parameters to Measure 
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he first and second bending mode were extracted, an
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( )Re m
m

m

p

p
ζ =

  (b.17) 

The measured damping ratio of all tested specimens versus the respective modal 
frequency are shown in Figure 5.8, and remain practically constant to the variation 
of modal frequency, in the tested frequency range of 50-300 Hz. 

The relationship between the measured modal loss factor and the damping 

matrix [ ]cdQ  in the strain-based Kelvin material model described by Eq. (4.1) 

was established by considering the analytical solution of the strip specimen. 
Lesieutre (2010) has reported such solution, however, for the sake of 
completeness, some key steps are overviewed in the following paragraphs. The 
simpler form of equation of motion (pure flexure) for a strip specimen, including 
damping, takes the form, 

0 0 0
11 , 11 , , 0A

xxxx d xxxxt ttD w D w wρ+ + = (b.18) 

Unforced motion is assumed, 11D , 11dD  are flexural stiffness and damping 

laminate coefficients, Aρ  is linear density of the strip, and the comma in the 

subscripts indicates differentiation. The previous equation of motion, admits a 
solution of the form, 

0 0 x stw W e eξ= (b.19) 

which provides two poles for each mode related to the time response, 

22
2 2 411 1111

1,2 4
2

d d
A A A

D DD
s j

ξ ξ ξ ξ
ρ ρ ρ

   = − ± −     
(b.20) 

where ξ  is the wave-number. An equivalent flexural damping ratio of the strip is 

defined as the ratio of the real part over the magnitude of the pole, which after 
some substitutions takes the form, 

( ) 2 211 11
2
011

Re / /1 1

2 2 //

A A
d d

L A

p D D

p D

ρ ρζ ξ ξ
ω ξρ

= = =
  (b.21) 

where, 2
0 11( / )Dξ ω ρΑ=  is the wave-number of the undamped beam, ω  is 

the time frequency. For the case of low damping, it can be assumed that 1ζ   

and therefore 0ξ ξ , thus, Eq. (b.21)becomes, 
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2 2 411 11 11
0 0

11

1 1 1 1 1

2 2 2
d d d

L A A

D D D

D
ζ ξ ξ ξ ω

ρ ω ρ ω
= = = (b.22) 

Taking into account that 2L Lη ζ= , the relationship between the measured 

flexural damping coefficient of the beam and the equivalent flexural loss factor 
and stiffness simplifies is given by (Lesieutre 2010), 

11 11d LD Dω η= (b.23) 

The previous equation has two implications:  

1) It should be valid on modal frequencies, hence, we extract 11dD  by setting 

Lη  equal to the measured loss factor of bending modes, while 11D  is 

backalculated from the measured respective modal frequency value using the 
analytical solution of the undamped Eq. (b.18). 

2) It is valid for all tested angle-ply specimens having various fiber orientation 

angles, which are used to extract the equivalent loss factor matrix [ ]lη  of the 

composite (Chrysochoidis 2001). Therefore, a similar Eq. (b.24) will relate 

the damping coefficient matrix [ ]cdQ in Eq. (4.1), to the extracted loss factor 

matrix [ ]lη  and the stiffness matrix [ ]lsQ
 
of  the composite material. 

[ ] [ ][ ]ω ld ls lQ = Q η (b.24) 

where subscript l  indicates on-axis composite. Considering the above, the 
extracted equivalent loss factors matrix, of the composite material can be used to 
calculate the material damping matrix, at a specific frequency. 

B.6   Other Damping Models 

Viscoelasticity can be modeled by various combinations of elastic elements (linear 
springs) and viscous elements (dashpots). Apart from the Kelvin model, a brief 
description of other viscoelastic models is presented in Figure B.3. All models of 
this category are based on linear differential equations with respect to the time. 

Beside these models and fractional derivative models with three (Bagley and 
Torvik 1983 & Eldred at al. 1995) or four parameters (Pritz 1996) are reported in 
the second chapter of the current work. The advantage of these models is that they 
provide the material damping in a wide frequency range. In addition, they are 
capable of representing relatively weak frequency-dependent properties in the 
frequency domain. 
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Fig. B.3 Various viscoelastic models using combinations of linear springs and dashpots 
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C.1   Secondary Warping of the Cross-Section 

The torsional strain on the mid-surface ot
xsε  is evaluated by considering and 

solving the torsion stress equilibrium equation on the sζ plane using a properly 
chosen torsional strain function Φ  referred by Saravanos et al. (2006). The mid-
surface torsional strain and the secondary warping function are found to be, 

( ) ( )
( )

( )

0

0
0

,

t
xs

x

s
s

h s

s A

ε

λ
θ

ΔΦ
=

ΔΦΨ = Δ − Δ
 

(c.1) 

where ΔΦ  is the difference of the strain function between the inner and the outer 

surface and 0A  and λ  are geometric section parameters defined by, 

( )
0

,

0
0 0 0

/

1
d , d ,

x

s s

s
A

A r s s
hζ

λ
θ

λ

ΔΦ
= −

Δ = Δ = 
 

(c.2) 

0
0

1
d , dA r s s

hζ λ= =   (c.3) 

C.2   Ply and Laminate Damping Matrices 

The full form of the on-axis composite ply stiffness, [ ]lQ , is (Philippidis 2002), 
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[ ]

11 12 13

12 22 23

13 23 33

33

33

33

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

l l l

l l l

l l l

l

l

l

Q Q Q

Q Q Q

Q Q Q

Q

Q

Q

 
 
 
 

=  
 
 
 
  

lQ

 

(c.4) 

 
Each terms of the composite ply stiffness matrix is expressed through the 
mechanical properties of the material as follows, 

 
( ) ( ) ( )

( ) ( ) ( )

1 23 32 2 12 32 13 3 13 12 23
11 12 13

2 13 31 3 23 21 13 3 12 21
22 23 33

44 23 55 13 66 12

12 21 23 32 13 31 21 32 13

1

1 1

1 2

l l l

l l l

l l l

E E E
Q Q Q

E E E
Q Q Q

Q G Q G Q G

ν ν ν ν ν ν ν ν

ν ν ν ν ν ν ν

ν ν ν ν ν ν ν ν ν

− + +
= = =

Δ Δ Δ

− + −
= = =

Δ Δ Δ

= = =

Δ = − − − −

(c.5) 

 
The kinematic assumptions used throughout the chapters of the current work, 
neglect transverse normal strain, 

( )3 0ε = (c.6) 

The off-axis stiffness composite ply matrix is given by the relation, 

[ ] [ ] [ ][ ]1 T− −=c lQ R Q R (c.7) 

where, [ ]R
 
is a proper rotation matrix, which has the following form, 

[ ]

2 2

2 2

2 2

cos sin 0 0 2cos sin

sin cos 0 0 2cos sin

0 0 cos sin 0

0 0 sin cos 0

cos sin cos sin 0 0 cos sin

θ θ θ θ
θ θ θ θ

θ θ
θ θ

θ θ θ θ θ θ

 
 − 
 = −
 
 
 − − 

R

 

(c.8) 
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and θ  is the counterclockwise rotation angle from the global to the local 
coordinate system. Hence, incorporation of Eqs. (c.4) into Eq. (c.7) yields the full 

form of the composite ply stiffness [ ]csQ
 
containing in-plane and out-of-plane 

shear terms, which therefore takes the form,  
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C.3   Skin Laminate Stiffness and Damping Matrices 

The membrane, coupling and flexural stiffness and damping matrices are 
calculated based on the first-order shear deformation theory and have the 
following form, respectively, 
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C.4   Reduction of Stiffness and Damping Laminate Matrices 

I. Tubular Beam Element 

Assuming first-order shear deformation theory, the equivalent forces and moments 
acting on the laminate are, 
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For the case of the tubular beam element, presented within the third and the sixth 
chapter, the laminate stiffness and damping matrices are further reduced assuming 

diminishing in-plane transverse laminate force, sN , out-of-plane shear force sN ζ  

and transverse bending moment sM . The laminate stiffness and damping 

matrices LC  and dLC
 
have the form, 

,
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where, L  indicates the laminate and [ ]A  is the stiffness matrix containing both 

the extensional membrane [ ]3 3x
A  and shear terms [ ]2 2xshA , respectively. By 

inverting we get the respective compliance counterparts 
-1

L LS = C  and 
T

dL L dL LS = S C S . Then, 
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where asterisk superscript indicates the resultant reduced forces and moments 

vectors { }x xs xN N N ζ=*N
 
and { }x xsM M=*M , respectively.  
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The reduced laminate stiffness and damping matrices take the form, 

-1 T

,* * * * * *
L L dL L dL LC = S C = C S C (c.15) 

and contain the reduced extensional, coupling and flexural stiffness matrices used 
in the calculation of the structure cross-section, 
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The corresponding laminate damping matrices   
*
dA ,   

*
dB

 
and   

*
dD  have 

similar form, 
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The star superscript is implied in Eqs. (3.20)-(3.26) of the third chapter and Eqs. 
(c.23)-(c.29) of current Appendix. 

II. Beam-Strip Element 

It should be pointed out that the same procedure is followed to build the 
formulation of the composite strip element, whose development is present in the 
fourth chapter of the manuscript. The main differences with refer to the tubular 
beam finite element have to do with the laminate stiffness and damping matrices, 
which are further reduced. Thus, the total assumptions include diminishing in-
plane transverse and shear laminate forces yN , xyN , out-of-plane shear force 

yzN
 
and transverse bending and shear moments yM  and xyM . 

The laminate stiffness matrix LC  has the form, 

 
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A B
C =

B D
(c.18) 

where, L  indicates the laminate and [ ]A  is the stiffness matrix containing both 

the extensional membrane [ ]3 3x
A  and shear

 
terms [ ]2 2xsA , respectively. 

Inversion gives out the respective compliance counterparts 
-1

L LS = C . Then, 
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where asterisk superscript indicates the resultant reduced forces and moments 

vectors { }x xzN N=
T*N

 
and { }xM=*M , respectively.  

The reduced laminate stiffness matrix has 3x3 dimensions, 

-1* *
L LC = S (c.20) 

and contains the reduced stiffness matrix used in the calculation of the structure 
cross-section, 
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The corresponding damping matrices 
*
dA , 

*
dB , 

*
dD  have similar form, 
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The star superscript is implied in the equations of the fourth. fifth and sixth 
chapter, regarding the composite strip nonlinear finite element formulation. 

C.5   Detailed Expressions of Section Stiffness, Damping and 
Mass Linear Terms of the Tubular Beam Finite Element 

C.5   Detailed Expressions of Section Stiffness, Da mping  

In this paragraph the section stiffness, damping and mass terms, previously 
formulated by Saravanos et al. (2006), are present for sake of completeness of the 
present work. 

I. Section Stiffness Terms 
Linear extensional-shear stiffness section terms, 

( )0
11 11A A ds=   

 

( )0 0 0
15 51 16 ,sA A A z ds= =    
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( )0 0 0
16 61 16 ,sA A A y ds= =    

( ) ( )2 20 0 0
55 66 , 55 ,s sA A z ds A y ds= +     

( ) ( )0 0 0 0 0 0
56 65 66 , , 55 , ,s s s sA A A y z ds A y z ds= = −     

( ) ( )2 20 0 0
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(c.23) 

 Linear coupling stiffness terms, 

( )0 0 0
11 11 11 ,sB A z B y ds= +  

(c.24) 
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( )0 0 0 0
62 16 16 , ,s sB A y B z y ds= −  

( )0 0
66 66 66 ,2h sB A A B y ds= − −  

Linear flexural and torsional stiffness terms, 
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11 11 11 , 11 ,2 s sD A z B z y D y ds= + +  

(c.25) 

( )( )0 0 0 0 0 0 0 0 0 0
12 21 11 11 , , 11 , ,s s s sD D A y z B y y z z D y z ds= = + − −  

( )( )0 0 0 0 0 0
16 61 16 16 , 16 ,2 2h h s sD D A A z B A y z D y ds= = − − + −  

( )2 20 0 0 0 0
22 11 11 , 11 ,2 s sD A y B y z D z ds= − +  

( )( )0 0 0 0 0 0
26 62 16 16 , 16 ,2 2h h s sD D A A y B A z y D z ds= = − + − +  

( )0 2
66 66 16 664 4h hD A A B A D ds= + +  
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II. Section damping terms without material coupling 

Linear extensional damping section terms,  
0
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(c.27) 
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Linear coupling damping terms,  

( )0 0 0
11 11 11 ,d d d sB A z B y ds= +  

(c.28) 

( )0 0 0
12 11 11 ,d d d sB A y B z ds= −  

( )0 0
56 66 66 ,2d d h d sB A A B z ds= − −  

( )0 0
66 66 66 ,2d d h d sB A A B y ds= − −  

Linear flexural and torsional damping terms,  
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III. Section Mass Terms 
Average mass terms,  

11
A Am dsρ=   (c.30) 

Coupling mass terms,  

( )0 0
11 ,
B A B
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( )0 0
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Inertia mass terms,  
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In order to calculate the equivalent linear mass, coupling and rotational inertia 
matrices of the cross-section it is necessary to define the skin laminate densities of 
the composite structure, 
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where ρ  is the ply density and ζ  is the distance from the skin midline. 
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D.1   Tangential Section Stiffness Matrix of the Composite Strip 
Finite Element 

The tangential linear and nonlinear section stiffness matrices of the nonlinear strip 
finite element have the following form, 

Linear component, 
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Second-order nonlinear component, 
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D.2   Section Mass Matrices 

The equivalent mass, coupling and rotational inertia matrices of the laminate of 
the composite strip per unit length Am , Bm  and Dm  are, 
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The detailed terms expressions of previous matrices are found to have the 
following form, 
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where Aρ , Bρ  and Dρ  are the equivalent average, coupling and inertia 

densities of the skin laminate, 

2, , 1, , dA B D

h

z z zρ ρ ρ ρ=  (d.6) 

where ρ  is the ply density and h  is the thickness of the composite ply, indicated 

also in the manuscript. 

D.3   Shape Function Matrices for the Two-Node Beam-Strip 
Finite Element 

The strain shape functions used for the approximation of the displacement field of 
the nonlinear composite strip finite element have different form according to the 
corresponding strain term of the cross section.  

Shape function matrix of normal strain, 

, 0 0oi
a xR N   =    (d.7) 

Shape function matrix of shear strain, 

,0oi
sa xR N N   =    (d.8) 

Shape function matrix of curvature, 

,0 0oi
b xR N   =    (d.9) 

Shape function matrix of nonlinear strain, 

[ ]i i
LR H G   =    (d.10) 
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where the matrices [ ]H  and iG    have the following analytical forms, 
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Table E.1 Geometrical data of 61.5 rotor blade cross-sections 

Element 
Number 

Section 
Number 

Rotor 
Radius 

(m) 

Twist 
(deg) 

Chord
(m) 

Center of Gravity 
[CG] 

Shear Center [CS] 

XCG 

(m) 
YCG 

(m) 
XCS 

(m) 
YCS 

(m) 

1 B 2.0 15.00 3.542 1.7110 0.4583 -1.5183 -0.4062 

2 C 2.3 15.00 3.542 1.7110 0.4583 -1.5183 -0.4062 

3 D 2.8 15.00 3.542 1.7110 0.4583 -1.5183 -0.4062 

4 E 3.5 15.00 3.542 1.5510 0.3869 -0.5794 -0.1320 

5 F 7.5 15.00 4.344 1.6940 0.05519 -1.8360 -0.1468 

6 G 9.0 12.51 4.537 1.8230 0.0344 -1.0730 -0.2169 

7 H 11.0 10.6 4.559 1.7460 0.302 -1.1370 -0.2450 

8 I 14.0 8.48 4.618 1.5070 0.1082 -0.965 -0.0840 

9 J 19.0 4.24 4.435 1.4197 - -0.8782 -0.0094 

10 K 24.0 0.00 4.150 1.2630 - -0.7129 -0.0315 

11 L 29.0 -3.24 3.846 1.1791 -0.0937 -0.6288 0.04831 

12 M 34.0 -4.21 3.594 1.0631 -0.112 -0.5177 0.05362 

13 N 39.0 -5.95 3.234 1.0163 -0.1099 -0.4959 0.05370 

14 O 44.0 -5.98 2.943 0.9071 -0.1211 -0.4120 0.05330 

15 P 47.0 -6.79 2.786 0.9535 -0.1309 -0.4210 0.05910 

16 Q 49.0 -7.64 2.676 0.8510 -0.1118 -0.3820 0.03520 

17 R 54.0 -7.70 2.347 0.8320 -0.144 -0.3510 0.06000 

18 S 57.0 -8.61 2.182 0.9050 -0.1415 -0.399 0.04581 

19 T 60.0 -9.92 1.417 0.6970 -0.1101 -0.2964 0.03521 

20 U 61.5 -9.93 0.127 0.6970 -0.1101 -0.2964 0.03521 

 
 
Typical cross-section shapes are better illustrated in Figure E.2 (Nijssen et al. 

2007). Each shape corresponds to a different distance from the blade root, which 
is indicated by the respective capital letter of the section number shown in Table 
E.1. The blade cross section near its root has a circular shape, which gradually 
turns into an elliptical shape. At this stage the shear webs are included in the blade 
structural design. Thereafter, the cross-section takes the airfoil shape, whose chord 
length firstly increases (up to 14m of blade length) and then decreases. Near the 
blade tip the cross-sections consist of one shear web. 
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Fig. E.2 Typical cross-section shapes along the 61.5m wind-turbine blade model 
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Fig. E.2 (continued) 

Similarly, Table E.2 presents the mass and stiffness properties of UP wind-
turbine blade per cross-section, as they were predicted by the developed linear 
beam finite element. The comparisons with the respective values provided from 
DOWEC and WMC are illustrated in Figures 3.28-3.32 of the third chapter of the 
manuscript. 

Table E.2 Structural properties of UP blade model 

Element 
Number 

Rotor Radius 
(m) 

Blade Mass 
(Kg/m) 

Stiffness Properties 

FlpStff 
(Nm2) 

EdgStff 
(Nm2) 

GJStff 
(Nm2) 

1 2.0 777.0 1.636E10 1.671E10 6.580E9 

2 2.3 777.0 1.636E10 1.671E10 6.580E9 

3 2.8 683.5 1.448E10 1.479E10 5.755E9 

4 3.5 622.6 1.318E10 1.346E10 5.246E9 

5 7.5 507.2 6.229E9 1.112E10 1.874E9 

6 9.0 387.3 5.319E9 7.536E9 1.272E9 

7 11.0 388.6 5.476E9 7.309E9 1.201E9 

8 14.0 423.7 4.554E9 7.414E9 5.892E8 

9 19.0 360.7 2.868E9 4.851E9 3.799E8 

10 24.0 330.0 1.797E9 4.159E9 2.425E8 

11 29.0 314.0 9.383E8 3.511E9 1.394E8 

12 34.0 284.8 5.795E8 2.972E9 9.923E7 

13 39.0 232.4 2.521E8 2.184E9 4.259E7 

14 44.0 184.8 1.632E8 1.585E9 2.649E7 

15 47.0 148.8 9.213E7 1.078E9 1.350E7 

16 49.0 130.6 7.102E7 1.066E9 1.517E7 

17 54.0 99.14 3.840E7 6.300E8 9.87E6 

18 57.0 71.19 2.418E7 4.570E8 6.207E6 

19 60.0 51.08 1.492E7 3.145E8 4.424E6 

20 61.5 8.187 1.202E6 2.765E7 3.015E5 
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E.2   54m Girder Box-Section Beam Cross-Sectional Geometric 
Properties 

The girder box-section beam consists the structural part of the a large-scale wind-
turbine blade. Table E.3 presents the variation of girders and shear webs size with 
refer to the relative chord length of UP 61.5m wind-turbine model. The aspect 
ratios nY and nZ imply the ratio of the blade radius (fifth column) to the width Y 
and the height Z of the girders and shear webs of the beam, respectively. 

Table E.3 Girder beam radius correspondence with the UP wind-turbine model radius 

Element 
Number 

Section 
Number 

Beam 
Radius 

(m) 

Corresponding 
UP Blade 

Radius 
(m) 

Correspondin
g UP Blade 

Chord 
(m) 

Girders 
Aspect 
Ratio 

nY          

Shear 
Webs 

Aspect 
Ratio 

nZ 

 B 0.0 6.0    

1 C 3.6 9.6 4.344 5.8 1.8 

2 D 7.2 13.2 4.537 6.0 1.9 

3 E 10.8 16.8 4.559 6.1 2.2 

4 F 14.4 20.4 4.618 6.2 2.6 

5 G 18.0 24.0 4.435 5.9 3.1 

6 H 21.6 27.6 4.150 5.5 3.5 

7 I 25.2 31.2 3.846 5.1 4.6 

8 J 28.8 34.8 3.594 4.8 5.4 

9 K 32.4 38.4 3.234 4.3 6.7 

10 L 36.0 42.0 2.943 3.9 7.0 

11 M 39.6 45.6 2.786 3.7 7.7 

12 N 43.2 49.2 2.676 3.6 8.9 

13 O 46.8 52.8 2.347 3.1 9.8 

14 P 50.4 56.4 2.182 2.9 12.1 

15 Q 54.0 60.0 1.417 1.9 7.9 

 
 
In Figure E.3 the distance of each cross-section from beam’s root, is presented. 
In Figure E.4 the lay-up configuration per section is shown. Each cross-section 

is noticed by a capital letter which corresponds to a specific girder box-section 
span. It is obvious that the UD Glass/Epoxy ply number of the girder segments 
decreases with direction from the root to the tip of the blade. The foam thickness 
of the right and left shear webs follows a similar trend. 



234  
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