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Foreword

Human activities greatly affect the composition of the atmosphere on all scales. The emis-
sion of potentially hazardous substances both in gaseous and condensed state contributes
to increasing concentrations of many trace gases and particulate matter, with resulting
impacts on climate change and air quality. Effects associated with gaseous emissions
(e.g., carbon dioxide, methane, nitrogen oxides and sulfur dioxide) are well recognized
and studied, and a range of satellite instruments is available for the determination of
the concentrations of important trace gases. However, the scientific understanding of roles
of aerosols in climate change is particularly poor and large uncertainties exist. Satellites
are increasingly contributing to improve this situation and their use for air quality assess-
ment is a topic of research worldwide.

This book is the first comprehensive overview of satellite techniques for the deter-
mination of aerosol optical thickness. The processes related to effects of light absorption
and scattering by polydisperse aerosol media are smooth functions of wavelength. There-
fore, the differential absorption methods, which often work well with gases, cannot be used
and one needs to rely on the absolute values of the registered signals. These are influenced
by different contaminating factors including calibration accuracy, presence of clouds and
reflectance of the underlying surface. It is an extremely difficult task to infer the part of the
signal related to aerosols from the total intensity detected by a satellite instrument, which is
composed of contributions from both the atmosphere and underlying surface. The diffi-
culties of retrieval are also due to the fact that, for the characterization of aerosols, it is not
enough to specify their concentration (as it is for gases) – what is needed is information on
particle size, along with concentration, chemical composition and particle shape as func-
tion of size. Often, not enough information is available to retrieve all of these properties.
For the best retrieval results, comprehensive measurements of reflected light including its
angular spectrum, polarization and spectral characteristics are required.

This book summarizes current knowledge on aerosol optical thickness retrieval from
space, based on passive measurements of the reflected solar radiation. The book is written
by experts in the field facing problems of retrievals of aerosol properties from space.
Therefore it gives a flavor of current research on the frontier of satellite remote sensing.
It shows advances and shortcomings of different techniques developed worldwide.

Mainz Paul Crutzen
September, 2008



1 Introduction

Gerrit de Leeuw, Alexander A. Kokhanovsky

Atmospheric aerosol is a suspension of liquid and solid particles, with radii varying from a
few nm to larger than 100 lm, in air. The particles can be directly emitted into the atmo-
sphere (e.g., sea spray aerosol, dust, biomass or fossil fuel burning aerosol, volcanic ash,
primary organic aerosol) or produced from precursor gases (e.g., sulfates, nitrates, ammo-
nium salts, secondary organic aerosol). The total aerosol mass is dominated by aerosols
produced from the surface due to natural processes such as the action of the wind (sea spray
aerosol, desert dust). However, anthropogenic emissions of both primary particles and pre-

Aerosols have a large effect on air quality, in particular in densely populated areas where
high concentrations of fine particulate matter (PM) are associated with premature death
and decrease of life expectancy. Concentrations of PM are subject to regulation which in
turn has economic effects. Aerosols also affect climate because the particles reflect solar
radiation which cools the atmosphere, whereas absorbing particles (such as black carbon)
warm the atmosphere; however, the net effect of aerosols is cooling. This is the direct
radiative effect. Indirect effects occur due to the aerosol particles acting as cloud conden-
sation nuclei and thus affecting cloud formation and the microphysical properties of clouds
(cf. Andreae and Rosenfeld [2008]). Overall, aerosols partly offset warming due to green-
house gases but the magnitude and scientific understanding of the aerosol effect on climate
is low [IPCC, 2007]. Therefore, studies of aerosol properties are relevant to climate
change, including investigations of anthropogenic influences on climate (forcing), and
air quality.

Satellites are increasingly used to obtain information on aerosol properties (e.g., the
aerosol optical depth (AOD), the columnar concentration of particles, their sizes), taking
advantage of technical and scientific developments over the last decades. The purpose of
this book is to provide an overview of current methods of retrieving aerosol properties from
satellite observations. The application of satellite remote sensing for the determination of
aerosol properties started some 30 years ago. A brief description of the history of aerosol
observations from space is given by Lee et al. [2009]. One of the first retrievals of aerosol
optical depth from spaceborne measurements of the spectral intensity of the reflected solar
light was performed using observations from the Multi Spectral Scanner (MSS) onboard
the Earth Resources Technology Satellite (ERTS-1) [Griggs, 1975; Mekler et al., 1977]
and the first operational aerosol products were generated using data from the radiometer on
board the TIROS-N satellite launched on 19 October 1978. The Advanced Very High
Resolution Radiometer (AVHRR) [Stowe et al., 2002] onboard TIROS-N was originally
intended for weather observations but its capability was expanded to the detection of aero-

cursor gases contribute significantly to the total aerosol load [Andreae and Rosenfeld,
2008].



sols. The Nimbus-7 was launched on 25 October 1978, carrying the Stratospheric Aerosol
Measurement instrument (SAM) [McCormick et al., 1979] and the Total Ozone Mapping
Spectrometer (TOMS) [Torres et al., 2002a]. Initially, retrievals were obtained only for
measurements over water; aerosol retrieval results over land have started to become avail-
able on a regular basis only in the last decade.

The TOMS series was extended with the Ozone Monitoring Instrument (OMI) launched
in 2004. The primary aerosol data delivered was Aerosol Index, a measure for absorbing
aerosol, until an algorithm was developed to retrieve AOD as well [Torres et al., 1998,
2002a]. AVHRR flies on NOAA (National Oceanic and Atmospheric Administration) sa-
tellites and has provided continuous data since its first launch in 1978. The primary in-
formation delivered by AVHRR is the surface temperature, but the instrument has also
provided AOD over the ocean [Geogdzhyev et al., 2002] and, more recently, over land
[Hauser et al., 2005]. These long time series have been analyzed to show temporal trends
in AOD [Mishchenko et al., 2007a]. The obtained results have shown the value of long-
term global observations using the same instrument and the same data processing proce-
dures.

Aerosol retrieval over ocean could be accomplished relatively easily due to the low
surface reflectance in the near-infrared channels. In that case, the signal registered on
a satellite is largely determined by light scattered in the atmosphere and the contribution
of the surface (outside the glitter) is comparatively low. Over land the retrieval of aerosol
properties is more complicated due to the relatively strong contribution of the land surface
reflectance to the radiation measured at the top of the atmosphere. This contribution de-
pends on land surface properties, varying from dark surfaces, such as forests in the visible,
to very bright surfaces such as deserts, snow and ice fields. A further complication is the
inhomogeneous distribution of surface types with a variety of spectral bidirectional reflec-
tance distribution functions (BRDF) in a satellite ground scene. Over land, there are more
intense, small-scale, and diverse sources than over ocean, contributing to the inhomogene-
ity of the scene. It becomes even more complicated when the horizontal photon fluxes from
nearby pixels containing clouds (Nikolaeva et al., 2005; Marshak et al., 2008; Wen et al.,
2008) or bright surfaces (so-called adjacency effects) need to be accounted for. This, to-
gether with uncertainty related to the choice of the aerosol model used in the retrieval
process, leads to the severe problems of spectral AOD retrievals over land, as described,
for example, by Liu and Mishchenko [2008].

Initially, satellite instruments were developed for other purposes than the retrieval of
aerosol properties. Notably, they were designed for the retrieval of trace gas concentrations
(e.g., TOMS, GOME (Global Ozone Monitoring Experiment), SCIAMACHY (SCanning
Imaging Absorption SpectroMeter for Atmospheric CHartographY), OMI) or land/sea
surface temperature and reflectance (e.g., AVHRR, SeaWiFS (Sea-viewing Wide
Field-of-view Sensor), MERIS (MEdium Resolution Imaging Spectrometer), (A)ATSR
((Advanced) Along Track Scanning Radiometer). However, the instrument features
(see Appendix) allowed for the retrieval of aerosol properties as well, albeit with variable
success. Ideally, a sensor should have multiple wavelengths, from the ultraviolet (UV) to
the thermal infrared (TIR), and multiple views, and should be sensitive to the polarization
of reflected radiation. The combination of spectral polarization and multiple view mea-
surements for a range of wavelengths is only available from the POLDER (POLarization
and Directionality of the Earth Reflectance) [Deschamps et al., 1994] series of instru-
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ments, the latest of which is flying on PARASOL (Polarization and Anisotropy of Reflec-
tances for Atmospheric Sciences coupled with Observations from a Lidar; see, for exam-
ple, “http://smsc.cnes.fr/PARASOL” http://smsc.cnes.fr/PARASOL) as part of the A-
Train. The GLORY mission [Mishchenko et al., 2007b] to be launched in 2009 will carry
the Aerosol Polarimetry Sensor (APS). The APS will collect accurate multi-angle photo-
polarimetric measurements of the Earth along the satellite ground track within a wide
spectral range extending from the visible to the short-wave infrared. The data from
this instrument are expected to provide aerosol retrievals with a higher accuracy then avail-
able from current instruments. However, the spatial resolution of APS is significantly
lower than other instruments such as MISR and MODIS, so the scene heterogeneity
may be a limiting factor for APS aerosol retrieval accuracy.

Results from the last decade show that it is possible to obtain a useful set of aerosol
parameters even without using advanced multi-view instruments capable of detecting the
polarization state of the reflected solar light. These include the AOD at various wave-
lengths and its wavelength dependence expressed as the Ångström coefficient. Principal
component analysis shows what other aerosol parameters could be retrieved using a dedi-
cated aerosol instrument. These could include, for example, for a bimodal lognormal size
distribution, the effective radius and effective variance, and the refractive index (both real
and imaginary parts) for both modes (Mishchenko et al., 2007b). Sensitivity studies and
investigations of information content of satellite measurements with respect to the deter-
mination of aerosol properties were performed by, among others, Hasekamp and Landgraf
[2005] and Veihelmann et al. [2007].

One of the first reliable retrievals of aerosol optical depth over land was made using the
dual view of the Along-Track Scanning Radiometer (ATSR-2) [Veefkind et al., 1998],
followed by retrievals using POLDER [Deuzé et al., 2001], MODIS (MODerate Resolu-
tion Imaging Spectroradiometer [Kaufman et al., 1997]) and MISR (Multiangle Imaging
SpectroRadiometer [Martonchik et al., 1998]), i.e. instruments which were designed for
aerosol retrievals. Also SeaWiFS and MERIS have been used for this purpose [von Hoy-
ningen-Huene et al., 2003, 2006]. Retrieval techniques have improved to the extent that
satellites are increasingly used for continuous observations of the aerosol distribution and
composition on regional to global scales, complementary to ground-based observation net-
works and dedicated field campaigns, to assess the effects of aerosols on climate [Kaufman
et al., 2002; IPCC, 2007] and, in particular, for calculating the aerosol radiative forcing
[Charlson and Heintzenberg, 1995; Remer and Kaufman, 2006].

Satellite observations can also be used for air quality studies, in particular for the de-
termination of the regional distribution of fine particulate matter (PM1, PM2.5, PM10), the
concentrations of which are subject to regulation for health purposes. PM2.5 and PM10
can be directly derived from satellite observations of the AOD using empirical relations
(e.g., Schaap et al. [2009] and references cited therein), through the assimilation of sa-
tellite-derived AOD values in chemical transport models (e.g., Collins et al. [2001]),
and also directly from the measured spectral AODs using Mie theory [Kokhanovsky et
al., 2006; von Hoyningen-Huene et al., 2008].

1 Introduction 3



Land surface reflectance effects

The surface reflectance is particularly important for single-view instruments or algorithms
using only one view from a multiple-view instrument. The most common assumption used
with these instruments is the restriction to retrieval over dark surfaces. For wavelengths in
the UV (and near-UV) this assumption works well over a wide variety of surfaces and
forms the basis of, for example, the deep blue algorithm applied for MODIS [Hsu et
al., 2004, 2006], the aerosol retrieval algorithms developed for SeaWiFS [von Hoynin-
gen-Huene et al., 2003; Kokhanovsky et al., 2004], for MERIS [von Hoyningen-Huene
et al., 2006; Vidot et al., 2008], and for the OMI multi-wavelengths algorithm [Torres
et al., 2002b; Veihelmann et al., 2007; Curier et al., 2008].

However, for longer wavelengths the dark surface assumption generally does not apply
for most land surfaces and other methods need to be used to account for the surface re-
flectance. Over land, the MODIS aerosol retrieval algorithm assumes a relationship (em-
pirically derived) between the surface reflectances at wavelengths in the short wave infra-
red at 2.1 lm and in the visible channels (0.47 and 0.66 lm) [Kaufman et al., 1997; Levy et
al., 2007a, 2007b]. In previous versions of the algorithm, the relationship was described
with static ratios with aerosol assumed transparent at 2.1 lm. In dust conditions, aerosol
transparency at 2.1 lm is not true. Therefore, in the Collection 5 version (described in
Chapter 2), the observed (total) spectral reflectance is considered to be composed of sur-
face and atmospheric contributions, such that the retrieval of the aerosols’ spectral con-
tribution is constrained by the surface reflectance relationships. Through the use of reflec-
tance (directional) rather than albedo, the technique implicitly includes BRDF effects in
the retrieval process. A major weakness of the algorithm, however, is that although the
assumed surface reflectance relationships may be characteristic of some sort of averaged
vegetated surfaces, deviations and variability of different surfaces can lead to systematic
biases over certain regions.

With an accurate retrieval of aerosol optical depth (and aerosol type) over land, reported
values can be used for the atmospheric correction needed to retrieve surface properties,
such as the surface reflectance. Since successful aerosol retrieval relies on accurate char-
acterization of the surface optical properties, surface and aerosol retrievals comprise an
interdependent problem. Therefore, surface reflectance databases may be generated in
conjunction with the construction of AOD databases (e.g., Grey et al. [2006]). In the
past, when simultaneous AOD and surface reflectance retrievals were not possible,
such databases were necessary. For example, one could begin by identifying cases where
the measured top of atmosphere (TOA) reflectance was characteristic of the clearest and
cleanest cases during a particular time period (say, a month [Koelemeijer et al., 2003]). By
applying a radiative transfer model (RTM), and assuming some sort of background aerosol
conditions, one could determine the appropriate surface reflectance to be used as a bound-
ary condition for aerosol retrieval during that time period. Therefore, given accurate re-
presentation of surface reflectance, one could apply such a surface reflectance database
and provide accurate aerosol retrievals even over very bright surfaces such as the Sahara
desert [Kusmierczyk-Michulec and de Leeuw, 2005].

Only few instruments have more than one view over a particular pixel: (A)ATSR,
POLDER/PARASOL and MISR. Hence these instruments provide more constraints on
the path radiance and surface effects. Methods of deriving both surface and aerosol quan-
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tities were presented by Veefkind et al. [1998] for ATSR-2, by Deuzé et al. [2001] for
POLDER and by Diner et al. [1998, 2005] for MISR. In addition to better decoupling
of the surface effects, the multi-view instruments can also provide information about
the aerosol phase function [Martonchik et al., 1998], and the height of aerosol plumes
[Kahn et al., 2007, 2008].

Active sensors [Winker et al., 2003, 2007] and multi-angle imaging produce comple-
mentary information on the aerosol height. Multi-angle imaging provides maps of plume
height and aerosol injection height near sources such as wildfires, volcanoes, and dust
storms, where the aerosol is thick enough for features to be observed at multiple angles.
Lidar has the sensitivity to see sub-visible layering globally, but the spatial coverage of
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation; http://
www-calipso.larc.nasa.gov), for example, is 0.2% of the planet, once every 16 days, pro-
viding excellent coverage downwind of sources, but rarely if ever capturing actual source
plumes during injection (Kahn et al., 2008).

Aerosol retrieval methods

Satellite observations are made using instruments in a certain orbit, with a certain view
angle and for a solar zenith angle which varies with the season and the time of day. This
geometry needs to be taken into account to properly retrieve atmospheric and surface prop-
erties. Aerosol particles scatter light in different directions with an angular distribution that
depends on particle size, shape, and chemical composition as described by the scattering
phase matrix.

The first step in a retrieval algorithm is cloud screening. Clouds have a very high re-
flectance that overwhelms the aerosol signal which renders cloud-contaminated pixels not
suitable for aerosol retrieval. Several criteria may be applied for cloud detection [Acker-
man et al., 1998]. Cloud detection is not the focus of this book although various chapters
describe the cloud screening methods used for the algorithm discussed and the instrument
characteristics available. These methods are based on a variety of principles including the
analysis of spatial and temporal patterns, thresholds for the various channels from the UV
to the thermal infrared, and also the synergetic use of other instruments including lidars.

The next problem, for clear sky measurements, is to account for the land surface con-
tribution to the TOA reflectance. When this has been accomplished, the path radiance,
which includes contributions from molecular scattering and absorption, remains. To prop-
erly account for molecular effects for the given sun-satellite geometry, a radiative transfer
model is applied. Usually this is applied to a set of geometries to provide look-up tables
(LUTs) which are used in the retrieval step to speed up the processing. The RTM is also
referred to as forward modeling, the retrieval is referred to as inverse modeling.

The LUTs are usually prepared using vector radiative transfer calculations for a set of
aerosol models which are representative for a certain area [Kaufman et al., 2001; Dubovik
et al., 2002; Levy et al., 2007a, 2007b]. Ideally, the algorithm must have a way to select the
most appropriate aerosol model or mixture of aerosol models. In many cases, however,
aerosol type selection is based on a climatology (e.g., Levy et al. [2007a], Curier et al.
[2008]). Such climatologies can be derived from observations (e.g., Dubovik et al.
[2002]; Levy et al. [2007a]) or from results obtained using transport models for the
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area of interest [Curier et al., 2008]. In the future, it may be possible to use transport model
forecasts [Verver et al., 2002] to constrain the retrieval.

A comparison of retrieval results over land was presented in Kokhanovsky et al. [2007,
2009] using results from most of the instruments and methods discussed here. The retrieval
algorithms were applied to a single scene over Germany. This inter-comparison shows that
the scene-averaged AOD as retrieved from different instruments is quite similar but sig-
nificant differences occur as regards the spatial distribution. These observations were the
basis for the discussion of the various algorithms. The next step will be further improve-
ment and comparisons over other scenes which should reveal differences between algo-
rithms (see, for example, Liu and Mishchenko [2008]).

Radiative transfer

Modern satellite retrievals of aerosol properties are based on the LUTs for several radiative
transfer characteristics of cloud-free atmosphere including the atmospheric reflectance,
Ra, the total transmittance from the TOA to the surface, T1, (and from the surface to
the satellite, T2) and the spherical albedo of the atmosphere for illumination from below,
r. LUTs are calculated using radiative transfer codes (see, for example, Rozanov and Ko-
khanovsky [2006]) for different illumination/observation geometries and aerosol phase
functions, pa ðhÞ (or matrices), dependent on the scattering angle h, single scattering al-
bedos, x0, and AODs, s.

The TOA reflectance R ¼ pI=l0E0 (E0 is the solar irradiance on the area perpendicular
to the solar beam at the TOA, I is the intensity of reflected light, l0 is the cosine of ob-
servation angle) for an underlying Lambertian surface with albedo A at wavelength k is
presented as:

R ¼ Ra þ AT1T2

1 � Ar
: ð1Þ

All parameters in Eq. (1) (except A) depend on the aerosol optical depth (or thickness)
defined as

sðkÞ ¼
ðH
0

kaextðz; kÞ dz; ð2Þ

where H is the TOA height, kaextðz; kÞ is the aerosol extinction coefficient at height z above
the ground, for wavelength k. The main task of aerosol retrievals is to determine the spec-
tral dependence of s from satellite measurements of the spectral reflectance R. The value of
A (see Eq. (1)) must be either retrieved during the inversion process or eliminated (e.g.,
using multi-view observations of the same ground scene from different directions) in the
retrieval process. Sometimes spectral surface reflectance databases (dependent on a given
location) are used in the retrieval process. The applied LUTs for Ra, r, T1, T2 (dependent on
s, pa ðhÞ, x0) differ mainly in the applied aerosol models which are either postulated or
selected depending on the region of interest. Some of the retrievals incorporate the search
for the best fit LUTs in the framework of the inversion routines (see, for example, Mar-
tonchik et al. [1998] and de Almeido Castanho et al. [2008]). The most accurate atmo-
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spheric aerosol model can be derived only if multi-view spectropolarimetry is used. This
requires measurements of the angular and spectral distributions of the Stokes vector of
reflected light [Mishchenko et al., 2007b].

The value of r is smaller than 0.1 for most atmospheric situations and, therefore, for dark
surfaces (A ! 0) one can neglect the product Ar in the dominator of Eq. (1), which leads to:

R ¼ Ra þ AT1T2: ð3Þ

Instead of albedo A one can use the surface BRDF for non-Lambertian surfaces. Simple
parameterizations for transmittances T1, T2 and also the spherical albedo r, were derived by
Kokhanovsky et al. [2005].

The value of Ra can be calculated using the RTM but for optically thin layers (e.g.,
s � 0:01), the following analytical result can be used [see, e.g., Kokhanovsky, 2008]:

Ra ¼ x0pðhÞ
4ðlþ l0Þ

ð1 � expð�MsÞÞ; ð4Þ

where l ¼ cos W, l0 ¼ cos W0, M ¼ l�1 þ l�1
0 , h ¼ arccosð�ll0 þ ss0 sinuÞ, s ¼ sin W,

s0 ¼ sinW0, u is the relative azimuth angle between the incident light and the direction of
observation, W0 is the zenith incidence angle, W is the zenith observation angle counted
from the normal to the scattering layer. The optical thickness s includes effects of
both the aerosol and molecular scattering and absorption. The phase function pðhÞ
also contains contributions from scattering by both molecules and particles. The phase
function can be calculated as follows:

pðhÞ ¼ kascapaðhÞ þ kmscapmðhÞ
kasca þ kmsca

: ð5Þ

Here ksca is the scattering coefficient and symbols ‘a’ and ‘m’ denote scattering of light by
aerosol particles and molecules, respectively. At wavelengths in the near-infrared spectral
region (NIR), the ratio kmsca=k

a
sca is a small number and pðhÞ � paðhÞ.

Eq. (4) makes analytical determination of AOD possible:

s ¼ 1

M
ln 1 � Ra

B

� ��1

; ð6Þ

where

B ¼ x0pðhÞ
4ðlþ l0Þ

: ð7Þ

For s ! 0 this results in

s ¼ 4l0lRa

x0pðhÞ : ð8Þ

Eq. (8) shows the importance of information on the phase function and single scattering
albedo for aerosol retrievals.
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Book outline

This book describes aerosol retrieval over land from the perspective of the instruments that
are most commonly used for this purpose. It is based on a workshop conducted in Bremen
(Germany) on June 21–22, 2007. The aim of the workshop was to bring together experts in
the area of aerosol satellite remote sensing over land and discuss the results from current
instruments.

In the workshop several retrieval techniques were discussed including:
* multispectral observations at a single viewing angle;
* multi-view spectral observations of the same target;
* multi-view spectral measurements of intensity and polarization of reflected light.

The state of the art on aerosol retrieval over land is discussed, based on a series of
articles solicited to represent the instruments that are currently used for aerosol retrieval
over land (MODIS, MISR, POLDER, AATSR, MERIS) in a sun-synchronous orbit and
SEVIRI (in a geostationary orbit). For AATSR several retrieval algorithms have been de-
veloped which are based on different principles. The synergistic use of different instru-
ments flying on the same platform, or on different platforms in a constellation such as the
A-Train, is being explored. The synergy between AATSR and SCIAMACHY is used in the
SYNAER (SYNergetic AERosol retrieval) algorithm. Alternative methods for aerosol re-
trieval are presented. In a final chapter the results are evaluated. The book is restricted to
passive instruments, i.e. there is no chapter on lidar (light detection and ranging) which
provides information on the vertical structure of aerosols and has recently become opera-
tional from space with CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) fly-
ing on CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) as
part of the A-Train [Winker et al., 2003, 2007]. Another restriction is that no results are
presented from instruments with a relatively low spatial resolution such as GOME (http://
www.temis.nl/intro.html) or OMI (http://disc.gsfc.nasa.gov/data/datapool/OMI/index.
html), which nevertheless have contributed useful aerosol products. Yet another advanced
satellite instrument not discussed in this book is the Global Imager (Nakajima et al., 1998,
1999 (see, e.g., http://suzaku.eorc.jaxa.jp/GLI/doc/index.html)).

It is noted that some algorithms are applied over an average of a larger number of pixels,
others are applied to single pixels. The latter provide the highest possible spatial resolution,
making possible the detection of small-scale features such as aerosol emission sources, at
the expense of processing time and accuracy of the results.

In Chapter 2, Levy presents a comprehensive overview of the most recent algorithm
developed for MODIS Collection 5 aerosol retrieval. This chapter starts out with a descrip-
tion of aerosol properties, in particular those of importance for retrieval: size distributions
and optical properties. Also a general introduction is provided on aerosol ground-based
measurements which are needed for validation and evaluation of retrieval products. After a
general introduction to satellite remote sensing, the MODIS instrument and an overview of
MODIS dark underlying surface algorithms are provided. The core of the chapter is the
description of the algorithm applied over land, based on Levy et al. [2007a,b], including the
aerosol climatology used, the treatment of the surface reflection (based on relations be-
tween the reflectances at 2.12 lm and 0.47 lm and those at 2.12 lm and 0.66 lm) and
finally the inversion. Level 2 and level 3 satellite products are described and examples are
presented, including their evaluation.
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The dark field method discussed by Levy is only one of the many algorithms used for
retrieving over-land aerosol properties using MODIS data. In particular we note that there
is an entirely independent algorithm [Hsu et al., 2004, 2006] for deriving aerosol properties
from MODIS data, using near-UV channels. This algorithm is optimized for visually
bright surfaces (e.g. deserts), where the surface reflectance is very low in the near-UV
and can be accounted for.

In Chapter 3, Lyapustin and Wang present an alternative method using a time series of
up to 16 days in the MAIAC algorithm (Multi-Angle Implementation of Atmospheric Cor-
rection), which simultaneously derives the AOD and the surface BRF. During these 16
days, different view angles are provided which are used in the BRF retrieval. Assuming
that the BRF changes little during this period and that the AOD is relatively invariant over
short distances (25 km, see also Chapter 8 by Holzer-Popp et al. for a discussion of this
subject), the AOD and BRF can be retrieved. The shape of the BRF is assumed similar for
the 2.1 lm and blue MODIS band. The method is presented, including the radiative trans-
fer model used, the aerosol and atmospheric correction algorithms and the cloud mask.
Examples are given, including validation.

MERIS is an instrument designed to measure ocean color which requires very good
radiometric performance. Other MERIS products are land surface properties and atmo-
spheric properties such as information on clouds and aerosols. The official ESA (European
Space Agency) aerosol product uses the algorithm developed by Santer et al. [1999, 2000].
The results have been evaluated by, for example, Höller et al. [2007]. Alternatively, non-
operational scientific algorithms are available as well. In Chapter 4, Katsev et al. present
the ART (Aerosol Retrieval Technique) for spectral AOD retrieval that uses radiative trans-
fer computations in the retrieval process rather than pre-calculated LUTs that are used in
most other algorithms. The core of the ART code is the RAY radiative transfer code [Tynes
et al., 2001]. The aerosol retrieval technique is described, including the vector radiative
transfer code, the atmospheric model, spectral models of underlying surfaces and the ite-
ration process for the retrieval of spectral AOD. ART was applied to a scene over Europe
using MERIS data and compared with retrievals over the same area using retrievals from
other satellites (MODIS, MISR, AATSR) [Kokhanovsky et al., 2007]. The importance of
the choice of the aerosol model is discussed in relation to the retrieval of the surface al-
bedo. The ART uses several concepts of the Bremen AErosol Retrieval (BAER) algorithm
introduced by von Hoyningen-Huene et al. [2003]. BAER was developed for single view
instruments such as MERIS and SeaWiFS and makes possible the determination of both
the surface albedo and AOD. One of the main features of BAER is the representation of the
albedo of a given inhomogeneous surface as the weighted sum of the bare soil and the
vegetated spectrum with the corresponding weight found from the analysis of the spectral
top-of-atmosphere reflectance. The value of the NDVI (Normalized Differenced Vegeta-
tion Index) is used as a first guess for the weighting parameter in the iteration procedure.

The AATSR (see Chapter 6 for a description) is the third in a series of instruments (after
ATSR and ATSR-2) with the main objective of obtaining information on the sea-surface
temperature with high accuracy. However, the dual view (nadir and 55 � forward) provided
by the instrument renders it very useful in also obtaining information on aerosol properties
over both land and ocean surfaces [Veefkind and de Leeuw, 1998; Veefkind et al., 1998].
The work of Veefkind was further pursued by several PhD students at TNO (Netherlands
Organization for Applied Scientific Research). In 2007 the algorithm was transferred to
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University of Helsinki and Finnish Meteorological Institute (Helsinki, Finland) for further
development and both scientific and operational application as described in Chapter 5 by
Curier et al. A detailed description of the cloud screening applied to AATSR is provided as
well as the aerosol retrieval over land which relies on the dual view to eliminate land sur-
face effects on the TOA radiation based on the assumption that the shape of the BRDF is
similar for wavelengths in the vis-NIR part of the spectrum. The inversion is based on
LUTs produced using the DAK (Double Adding KNMI) radiative transfer code developed
by KNMI (Royal Netherlands Meteorological Institute) [de Haan et al., 1987]. The aerosol
is modeled in terms of a multi-modal (usually only two modes are used) lognormal size
distribution. Results are presented for a variety of different conditions and validated versus
AERONET (AErosol RObotic NETwork; Holben et al., 1998) or MODIS data.

A different approach to retrieving information from AATSR dual view measurements is
described in Chapter 6 by Grey and North. For the treatment of the surface the assumption
on the BRDF wavelength dependence is replaced by a physical model for the surface re-
flection that accounts for the spectral change and the viewing angle [North et al., 1999].
This model results from consideration of effects of direct and diffuse atmospheric scatter-
ing. The forward model used for the calculation of LUTs is 6S [Kotchenova et al., 2008].
Chapter 6 starts with an overview of remote sensing of aerosols in the context of multi-
view angle passive instruments and associated problems, followed by a description and
practical implementation of their algorithm. Results are presented and validated versus
AERONET data.

In Chapter 7, Thomas et al. describe the Oxford-RAL Aerosol and Cloud retrieval al-
gorithm (ORAC) and its application to AATSR and SEVIRI. ORAC is an optimal estima-
tion scheme that uses a bi-directional reflectance distribution function to describe the sur-
face reflectance which allows for multiple views to be used in the retrieval. This is a sig-
nificant improvement to the earlier version of ORAC which used a Lambertian approx-
imation to describe the surface. Both algorithms are described in detail, as well as a third
one that makes use of the thermal infrared channels to improve the detection of lofted dust
above desert surfaces. The ORAC forward model uses the DIScrete Ordinates Radiative
Transfer (DISORT) code [Stamnes et al., 1988] to predict atmospheric transmission and
top-of-atmosphere reflectance based on aerosol phase functions, AOD, single scattering
albedo, Rayleigh scattering and molecular absorption. In addition to aerosol optical depth
and effective radius, the spherical albedo of the surface is also retrieved, using the MODIS
land surface bi-directional reflectance product [Jin et al., 2003a,b] to provide a priori in-
formation. Examples of aerosol retrievals are presented for both single and dual view re-
trievals and evaluated versus AERONET data.

The retrieval of aerosol information from satellite sensors is an ill-posed problem. To
obtain more information, the synergy between different sensors is exploited in the SY-
NAER algorithm described in Chapter 8 by Holzer Popp et al. SYNAER uses two sensors:
AATSR and SCIAMACHY which both fly on ENVISAT. These instruments are briefly
described and an analysis of the information content is presented. Here is assumed that the
surface reflectance and the AOD are known from AATSR measurements and the extra
information from using SCIAMACHY is analyzed. SYNAER consists of two steps. First
the AOD is retrieved for AATSR dark pixels and, assuming spatial homogeneity, the ob-
tained values are inter/extrapolated over brighter pixels in a scene to retrieve the surface
reflectance of these pixels. These values in turn are used to determine a (weighted) average
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surface reflectance over the much larger (60 � 30 km2) SCIAMACHY pixels. In the
second step, based on knowing AOD and surface albedo and selected surface type
(from NDVI, CVI (Calibrated Vegetation Index), brightness) from the first retrieval
step, a choice between simulated aerosol spectra for 40 mixtures is made based on com-
parison with SCIAMACHY spectra. Dust over ocean is often misclassified as clouds and a
specific scheme is implemented to account for such situations. Aerosol models used in
SYNAER are discussed. Dark scene selection over ocean and over land and the selection
of the most plausible aerosol type are discussed as well as validation and applications.
Examples are presented.

Multi-view observations are available from instruments such as CHRIS-PROBA (Com-
pact High Resolution Imaging Spectrometer – Project for On Board Autonomy), POLDER
and MISR. In Chapter 9, Martonchik et al. present the retrieval of aerosol properties over
land using MISR observations. MISR uses nine cameras each fixed at a particular view
zenith angle in the along-track direction and having four spectral bands. Using the com-
bination of viewing angles and spectral information, the retrieval of aerosol is based on
several assumptions. The current MISR aerosol algorithm uses eight particle (six spherical
and two non-spherical) types and 74 mixtures. Optical properties of spherical particle
types are calculated using Mie theory, for non-spherical (dust) particles the discrete dipole
approximation and the T-matrix technique are used. LUTs are created for use in the re-
trieval algorithm which is based on principal component analysis of the multispectral mul-
ti-angle MISR data. The retrieval over land is based on the assumption of spectral invar-
iance of the ratio of the surface reflectance at two angles [Flowerdew and Haigh, 1995],
similar to the method applied to AATSR [Veefkind et al., 1998] as described in Chapter 5.
The MISR algorithm is extensively described in Chapter 9, including the applied cloud
screening method. Results are presented, including a seasonal climatology for eight years
(2000–2007) and comparisons with AERONET for different aerosol types, air quality and
plume studies.

The use of polarimetric remote sensing is addressed in Chapter 10, where Cairns et al.
describe polarization of light and review different instrumental approaches to Earth view-
ing measurements of polarization. Conclusions on the polarized reflectance of land sur-
faces are summarized and modeling for the land surface-atmosphere is discussed. Existing
retrieval methods are discussed with a view on polarimetric remote sensing applied to
POLDER and RSP (Research Scanning Polarimeter, an airborne instrument) [Cairns et
al., 1999]. The RSP approach, an optimal estimation method, is planned to be used
with the APS. The use of additional information contained in the measurements of the
Stokes vector of the reflected light enables better determination of the aerosol model
needed for the retrieval of AOD. However, the real crux of the method is in the fact
that the polarized reflectance of underlying surfaces is usually grey. This implies that
one can easily derive the polarized surface reflectance in the visible from measurements
in the infrared, where the atmospheric contribution is low.

Aside from SEVIRI, all sensors discussed in Chapters 2 to 10 fly on polar orbiting
satellites in a so-called low elevation orbit (LEO). This implies that they circle the Earth
and observe a certain area depending on the swath width. When the swath is large enough,
the whole Earth is observed daily (global coverage). Polar regions are observed several
times per day and measurements at the equator are performed just once per day or even
with larger temporal gaps depending on the swath of the instrument (see Appendix). For a
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higher observation rate, which is desirable for air-quality applications and monitoring of
transport of pollution, other orbits are possible but obviously this will result in a smaller
observation area. The highest temporal data rate is obtained using satellites in a geosta-
tionary orbit, i.e. at a fixed location above the equator (GEO). Examples of GEO instru-
ments that are used for aerosol retrieval are GOES-ABI (Geostationary Operational En-
vironmental Satellite - Advanced Baseline Imager) [Knapp, 2002] and SEVIRI (Spinning
Enhanced Visible Infrared Radiometer) on MSG (Meteosat Second Generation). In Chap-
ter 11 Govaerts et al. present an approach to retrieving AOD and surface BRDF using
SEVIRI observations. SEVIRI is centered on the equator and Greenwich meridian and
scans the Earth disk every 15 min in 11 spectral bands ranging from 0.6 to 13 lm
with a sampling distance of the sub-satellite point of 3 km. Govaerts et al. apply the opti-
mal estimation retrieval method in their Land Daily Aerosol (LDA) algorithm. The BRDF
is delivered in three SEVIRI bands (0.635 lm (channel 1), 0.810 lm (channel 2), and
1.64 lm (channel 3)), and the AOD is delivered at 0.55 lm, determined using the wave-
length dependence of aerosol models selected based on the measurements in channels 1
and 2. The forward model provides simulations for surface and atmospheric conditions for
a range of geometries and observation conditions. Daily accumulated observations are
used under different illumination geometries forming a virtual multiangular and multi-
spectral database which is compared with forward model results. The optimal solution
is obtained by minimizing the so-called cost function. Pre-defined aerosol classes are as-
sumed to change little from one pixel to another but vary in time. Error and autocorrelation
matrices are used as information sources. Error sources are discussed and results are com-
pared with AERONET-retrieved AOD.

In the final Chapter 12, Kinne wraps up the current status of aerosol retrieval over both
land and sea. Time averages of global multi-year satellite AOD data from MODIS (Col-
lections 4 and 5) (2000–2005), MISR (2000–2005), TOMS (1979–2001), POLDER (1987,
2002), AVHRR NOAA (1981–1990) and AVHRR GACP (Global Aerosol Climatology
Project) (1984–2001) are compared with a multi-year reference dataset provided by
AERONET observations processed in a similar way. Kinne develops a scoring concept
to objectively evaluate the various datasets considering bias as well as regional and sea-
sonal differences. No single satellite dataset is better than any of the others, which all have
merits for certain conditions. Kinne uses the satellite data to create global AOD maps and
enhances this by adding AERONET data. Comparisons are presented with AOD results
from global modeling exercises provided by AEROCOM (Aerosol Comparisons between
Observations and Models, http://nansen.ipsl.jussieu.fr/AEROCOM/weboslo05.htm).

With these chapters, the book aims to provide an overview of the current state of the art
of satellite aerosol retrieval over land. The book shows the significant progress in the de-
velopment of aerosol remote sensing techniques since the review by King et al. [1999].

This book is dedicated to the memory of our friend and colleague Y. Kaufman
(01.06.1948–31.05.2006), who made outstanding contributions in the field of aerosol re-
mote sensing from space and ground.
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Appendix:
Characteristics of optical instruments used in aerosol retrieval

Sensor MERIS AATSR SeaWiFS MODIS PARA-
SOL

MISR AVHRR TOMS SEVIRI OMI GOME-2

Resolu-
tion at
nadir
[km]

0.3 (fine
resolu-
tion)

1.2
(reduced
resolu-
tion)

1.0 1.1 0.25
(bands
1-2)

0.50
(bands
3-7)

1.0
(bands
8-36)

6 � 7 0.275 1.1 39 1 (High
res. VIS

3 (IR
and other
VIS
chan-
nels)

13 � 24
(UV-2 &
VIS)
13 � 48
(UV-1)

80 � 40

Swath
width
[km]

1150 512 2801 2330 2400 380 2399 2800 Europe
Africa
S. Ame-
rica

2600 1920

Multi-
view

No 2 No No Yes 9 No No No No No

Polariza-
tion

No No No No 3 No No No No No S and P
in 312–
790 nm
channel

Platform Envisat Envisat Seastar/
Orb-
view-2

Terra /
Aqua

Myriade
Series

Terra POES Nim-
bus-7
Earth
Probe

MSG AURA METOP

Launch March
2002

March
2002

August
1997

Decem-
ber 1999
/ May,
2002

Decem-
ber 2004

Decem-
ber 1999

October
1978

Novem-
ber 1978

Decem-
ber 2005

July
2004

October
2006

Equator
crossing
time

ascend-
ing
10:00

ascend-
ing
10:00

descend-
ing
12:30

descend-
ing
10:30 /
ascend-
ing
13:30

descen-
ding
13:30 /
ascend-
ing
13:30

descend-
ing
10:30

descend-
ing
1:30–
2:30
ascend-
ing
13:30–
14:30

ascend-
ing
noon

Image
acquired
every
15 min.

ascen-
ding
13:42

descend-
ing,
09:30

Heritage – ATSR-1
ATSR-2

– – Polder-1
Polder-2

– AVHRR
series

TOMS
series

MVIRI1 TOMS GOME

1 Meteosat Visible and Infrared Imager
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Table 1.1. General characteristics of instruments currently used for aerosol retrieval (see Table 1.3 for

channel)

links  to websites providing detailed specifications of individual instruments).



M
E

R
IS

A
A

T
S

R

S
ea

W
iF

S

M
O

D
IS

P
A

R
A

S
O

L

M
IS

R

A
V

H
R

R

T
O

M
S

M
S

G
-

S
E

V
IR

I

412.5 412 412.5 308, 312.5, 317.5, 322.3

442.5 443 443
469

443 446

490 490 488 490

510 510 531

560 555 555 551
555

565 558

620 645 630 635

665 659 670 667
678

670 672

681.25

705

753.75 748

760 763
765

775 765 810

865 865 865 858
869.5

865 867

890

900 905
936
940

910 912

1600

3700

11000
12000

1240
1375
1640*
2130
3750
3959
4050
4465
4516

6715
7325
8550
9730
11030
12020
13335
13635
13935
14235

1020

3740

10800
12000

1640

3920

6250

7350
8700
9660
10800
12000
13400

* the 1640 nm band on MODIS-Aqua is non-functional;
+ GOME (240–790 nm), SCIAMACHY (240–2380 nm), OMI (264–504 nm) and GOME-2 (240–790 nm) are spectrometers
which are not included in this table
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331.2, 360

Table 1.2. Wavelength bands (in nm) of current instruments. Wavelength at the centre of each band is
indicated (see Table 1.3 for links to websites providing detailed specifications of individual instruments).



Instrument website

MERIS http://envisat.esa.int/handbooks/meris/CNTR3.htm#eph.meris.nstrumnt
http://www.esa.int/esapub/bulletin/bullet103/besy103.pdf

AATSR http://www.leos.le.ac.uk/aatsr/whatis/index.html

SeaWiFS http://www.csc.noaa.gov/crs/rsªpps/sensors/seawifs.htm#specs

MODIS http://modis.gsfc.nasa.gov/about/specifications.php

PARASOL http://www-icare.univ-lille1.fr/parasol/?rubrique=mission_parasol

MISR http://www-misr.jpl.nasa.gov/mission/mission.html

AVHRR http://geo.arc.nasa.gov/sge/health/sensor/sensors/avhrr.html

TOMS http://jwocky.gsfc.nasa.gov/n7toms/n7sat.html

SEVIRI http://www.esa.int/esapub/bulletin/bullet111/chapter4_bul111.pdf

OMI http://www.knmi.nl/omi/research/instrument/characteristics.php

GOME-2 http://www.eumetsat.int/HOME/Main/What_We_Do/Satellites/ EUMETSAT_Polar_System/
Space_Segment/SP_1139327173571
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2 The dark-land MODIS collection 5 aerosol
retrieval: algorithm development and product
evaluation

Robert C. Levy

1. Introduction

Tropospheric aerosols significantly influence global climate, by changing the radiative
energy balance as well as the hydrological cycle (e.g., IPCC [2007]). Also known as sus-
pended airborne particles, or particulate matter (PM), aerosols are a component of smog
and air pollution (e.g., USEPA [2003], Chen et al. [2002] and Dickerson et al. [1997]) and a
regulated criteria air pollutant (e.g., http://www.epa.gov/oar/particlepollution/naaqs-
rev2006.html). Aerosols are spatially and temporally inhomogeneous and, depending
on aerosol type and meteorology, they may be found far from their sources. Spanning
from nanometers (nm) to tens of micrometers (lm) in radius, aerosols are efficient at scat-
tering solar radiation back to space, thus affecting photochemistry (e.g., Dickerson et al.
[1997]) and changing the effective albedo of the Earth. Passive satellite sensors, from their
vantage point above the atmosphere, observe the scattered solar radiation to measure the
global aerosol distribution [Kaufman et al., 1997a]. The fundamental unit of measure for
aerosol remote sensing is known as the aerosol optical depth (AOD), which is the integral
of the aerosol light extinction over vertical path through the atmosphere, and is a function
of wavelength k. Typically, AOD (measured at k ¼ 0:55lm) ranges from near zero in pris-
tine conditions to 1.0, 2.0 or even 5.0, during episodes of heavy pollution, smoke or dust.

The launch of the MODerate Imaging Spectroradiometer (MODIS, [Salomonson et al.,
1989; King et al., 1992]) sensors aboard NASA’s Terra (in 1999; [Kaufman et al., 1998])
and Aqua (in 2002; [Parkinson, 2003]) satellites, has led to ‘quantitative’ (accurate, precise
and with known uncertainties) observation of global AOD. From MODIS-observed spec-
tral reflectance, separate retrieval algorithms derive aerosol properties over ocean [Tanré et
al., 1997; Remer et al., 2005], over dark land targets [Kaufman et al., 1997b; Levy et al.,
2007b], and over bright land targets [Hsu et al., 2006], respectively. Each algorithm is
customized for the surface type, taking advantage of known behavior of the surface optical
properties. The combination of algorithms provides the basis for an operational algorithm
(near real-time processing) for retrieving spatially continuous global AOD. The products
are free and available to any investigator, and have been used for climate (e.g. IPCC [2001]
and Yu et al. [2006], air quality (e.g., Chu et al. [2003], Al-Saadi et al. [2005], Engel-Cox et
al. [2004, 2006] and Wang and Christopher, [2003]) as well as other applications. By 2004,
enough MODIS data had been processed (known as ‘collection 4’, or c004) to enable ex-
tensive statistical evaluation of the aerosol products over dark land targets, both globally
and regionally [Remer et al., 2005].

Remer et al. [2005] attempted to ‘validate’ the c004 products over dark-land targets,
primarily by comparing them to collocated ‘ground-truth’ measurements made by the glo-



bal AErosol RObotic sunphotometer NEtwork (AERONET). MODIS-derived AOD
(sMODISÞ regressed to sunphotometer-measured AOD (strueÞ, with correlation coefficient
R ¼ 0:80. 68 % were within expected pre-launch uncertainty Ds of

Ds ¼ �0:05 � 0:15strue: ð1Þ

Although the good comparison was said to have validated the MODIS-derived AOD pro-
duct, the same analysis showed that MODIS tended to be high for low AOD, and low for
high AOD i.e.,

sMODIS ¼ 0:78strue þ 0:07 ð2Þ

at 0.55 lm [Remer et al., 2005]. The equation varied in different regions, including (some-
what embarrassingly) relatively poor comparison over the East Coast of the USA (the de-
velopmental home of the MODIS aerosol algorithm) (e.g., Levy et al. [2005]). The y-offset
(MODIS biased high in low AOD conditions) implied errors induced by assuming inap-
propriate surface assumptions (boundary conditions). On the other hand, the less than one
slope implied errors in the atmospheric assumptions. The combination of significant y-
offset, and less than one slope implied that there was room to improve the MODIS algo-
rithm, and was one focus of the MODIS Aerosol Science Team (MAST) since publication
of Remer et al. [2005]. This paper describes development and evaluation of our ‘second-
generation’ dark-land target aerosol retrieval.

2. Properties of aerosols

Aerosols are a mixture of particles (in suspension of air) of different sizes, shapes, com-
positions, and chemical, physical, and thermodynamic properties. They range in size from
nanometers to micrometers, spanning from molecular aggregates to cloud droplets. Aero-
sols between about 0.1 lm and 2.5 lm in radius are of main interest to climate precipita-
tion, visibility, and human health studies. Most aerosols of interest are found in the tropo-
sphere and concentrated toward the Earth’s surface (having a scale height about 2–3 km).
Aerosol physical and chemical properties are determined by their sources and production
processes. Fine aerosols (radius between 0.1 and 1.0 lm) are formed by coagulation of
smaller nuclei (very fine aerosols), or produced directly during incomplete combustion
(from biomass-burning or coal power plants). Aerosols larger than about 1.0 lm are known
as coarse particles, and are primarily from mechanical erosion of the Earth’s surface.
Coarse particles include sea salt and soil dust lifted by winds.

Ambient aerosol distributions contain all size ranges. Coarse particles are usually small
in number but can contain the largest portion of aerosol mass (or volume). Because of their
larger size (and mass), coarse particles are usually quickly settled out of the atmosphere
and are concentrated close to their sources. However, convection may lift them into pre-
vailing winds, where they may be transported far from their source. Also known as the
accumulation mode, the fine mode has the longest residence time (days to weeks) because
it neither efficiently settles nor coagulates on its own. The fine mode contains the largest
portion of aerosol surface area, and the greatest ability to scatter solar radiation. Here, we
loosely define the fine aerosol weighting (FWor g) as the ratio of fine aerosol to the total X,
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but note that the exact definition for FW depends on the quantity represented by X (e.g.,
total mass, total AOD, etc.).

Many aerosols are hygroscopic}, meaning that they have the ability to absorb water
vapor (e.g., Malm et al. [1994], Kotchenruther et al. [1999] and Gassó et al. [2003])
and thus become involved in cloud processes and the hydrologic cycle. For most accumu-
lation-sized aerosols, the residence time is of the same order as water vapor in the atmo-
sphere, usually about four to fourteen days (e.g., Hoppel et al. [2002]). Generally, more
hygroscopic aerosols (known as hydrophilic, e.g., sulfate or sea salt) are spherical in shape,
whereas those less hygroscopic (e.g., hydrophobic, e.g., soot or dust) tend to be non-sphe-
rical. Non-spherical aerosols may be clump-like (soot) or crystalline (certain dusts). Larger
aerosols usually have shorter residence times (days to hours) due to dry deposition.

2.1 Properties of aerosol size distributions

For any size distribution of spherical particles, the number distribution as a function of
radius, N(r), is related to the volume V and area A distributions by:

dN

d ln r
¼ 3

4pr3

dV

d ln r
¼ 1

pr2

dA

d ln r
; ð3Þ

such that N0, V0, and A0 are the totals of the corresponding distributions, i.e.,

N0 ¼
ð1

0

dN

d ln r
d ln r; V0 ¼

ð1
0

dV

d ln r
d ln r; A0 ¼

ð1
0

dA

d ln r
d ln r ð4Þ

and dN ; dV ; dA=d ln r are the number/volume/area size distributions with r denoting radius
(in lm). Although the size distributions may be defined per any dimension, here we define
them as ‘per unit area’. For example, dV and V0 have units of volume per area. The in situ
aerosol measurement community commonly defines aerosol size in terms of diameter (for
example, Seinfeld and Pandis [1998]), whereas the remote sensing community defines size
by radius. Here, we define the means of the log-radii of the number (rgÞ and volume (rvÞ
distributions, as

ln rg ¼

Ðrmax

rmin

ln r
dNðrÞ
d ln r

d ln r

Ðrmax

rmin

dNðrÞ
d ln r

d ln r
; ln rv ¼

Ðrmax

rmin

ln r
dVðrÞ
d ln r

d ln r

Ðrmax

rmin

dVðrÞ
d ln r

d ln r
ð5Þ

and the standard deviations of the log-radii, rg and rm, as:

rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐrmax

rmin

ðln r � ln rgÞ2 dNðrÞ
d ln r

d ln r

Ðrmax

rmin

dNðrÞ
d ln r

d ln r

vuuuuuut ; rm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐrmax

rmin

ðln r � ln rmÞ2 dVðrÞ
d ln r

d ln r

Ðrmax

rmin

dVðrÞ
d ln r

d ln r

vuuuuuut : ð6Þ

Note that r is the log of the quantity defined within the in situ community.
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Aerosol distributions are often approximately lognormal, so they are often assumed as
such. For a lognormal, the moments of order k, Mk are

Mk ¼
ð1

0
rk

dN

d ln r
d ln r ¼ ðrgÞk expð0:5k2r2Þ: ð7Þ

We can see that desirable properties of the lognormal distribution include

r ¼ rg ¼ rm and rm ¼ rg expð3r2Þ: ð8Þ

For a single lognormal mode, the number size distribution is

dN

d ln r
¼ N0

r
ffiffiffiffiffiffi
2p

p exp � ½lnðr=rgÞ�2
2r2

 !
; ð9Þ

and the total volume and number are easily related by

N0 ¼ V0
3

4pr3
g

exp � 9

2
r2

� �
: ð10Þ

This also leads to the definition of effective radius reff of a distribution, i.e.,

reff ¼ M3

M2
¼
Ð1

0 r3 dN

d ln r
d ln r

Ð1
0 r2

dN

d ln r
d ln r

¼ 3

4

V0

A0
¼ rg exp

5

2
r2

� �
: ð11Þ

For aerosols composed of two or more modes, integration must be over both size bin and
mode. For example, for a bimodal distribution,

reff ¼
Ð1

0 r3 ðdN1 þ dN2Þ
d ln r

d ln r

Ð1
0 r2

ðdN1 þ dN2Þ
d ln r

d ln r

: ð12Þ

2.2 Aerosol optical properties

Aerosols are important to Earth’s climate and radiation because of their size. Particles
most strongly affect the radiation field when their size is most similar to the wavelength
of the radiation (e.g., Chandresekhar [1950]). Aerosols in the fine mode (0.1 to 1.0 lm) are
similar in size to the wavelengths of solar radiation within the atmosphere, and are also the
largest contributors to aerosol surface area. Radiation incident on aerosols may be ab-
sorbed, reflected or transmitted, depending on the chemical composition (complex refrac-
tive index, m) and orientation (if non-spherical) of the aerosol particles. Scattering and
absorption quantities [Thomas and Stamnes, 1999] may be represented as functions of
path distance (the scattering/absorption coefficients, bsca=babs, each in units of [per
length]), column number (the scattering/absorption cross-sections, rsca=rabs, each in units
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of [area]) or mass (the scattering/absorption mass coefficients, Bsca=Babs, each in units of
[area per mass]). The use of symbols is inconsistent within the literature, so symbols are
defined for this work as those of Liou [2002]. Extinction (coefficient/cross-section/mass
coefficient) is the sum of the appropriate absorption and scattering (coefficients/cross-sec-
tions/mass coefficients), e.g.,

rextðkÞ ¼ rscaðkÞ þ rabsðkÞ ð13Þ

for the cross-sections. These properties define the amount of radiation ‘lost’ from the ra-
diation field, per unit of material loading, in the beam direction. Note that all of the para-
meters are dependent on the wavelength k. The ratio of scattering to extinction (e.g.,
bsca=bextÞ is known as the single scattering albedo (SSA or x0). As most aerosols are
weakly absorbing in mid-visible wavelengths (except for those with large concentrations
of organic/black carbon), extinction is primarily by scattering (x0 > 0:90 at 0:55 lm).
Black or elemental carbon (soot) can have x0 < 0:5 [Bond and Bergstrom, 2006] espe-
cially near sources. Mineral dusts are unique in that they have a spectral dependence of
absorption, such that they absorb more strongly in short visible and UV wavelengths
(k < 0:47 lm) than at longer wavelengths.

Properties of extinction (scattering and absorption) can be calculated, and are dependent
on the wavelength of radiation, as well as characteristics of the aerosols’ size distribution,
chemical composition, and physical shape. For a single spherical aerosol particle, the com-
bination of complex refractive index (mþ ki), and Mie size parameter, X (relating the ratio
of radius to wavelength, i.e., X ¼ 2pr=k) uniquely describe the scattering and extinction
properties of the particle. The scattering/extinction efficiency (Q) for one particle is related
to the cross-sections by

Qsca ¼ rsca=pr
2 and Qext ¼ rext=pr

2: ð14Þ

The scattered photons have an angular pattern, known as the scattering phase function
(PkðHÞ), which is a function of the scattering angle (H) and wavelength. In other words,
the Mie quantities describe the interaction between an incoming photon and aerosol par-
ticle, whether it is displaced, whether it is scattered, and toward which direction relative to
the incoming path.

For a distribution of aerosol particles, one is concerned with the scattering by all par-
ticles within a space (e.g., per volume, per column). In general, since the average sepa-
ration distance between particles is so much greater than particle radius, particles can be
considered independent of each other. For a unit volume (or columnar surface area) con-
taining N particles of varying r, the integrated extinction/scattering cross-sections (the
extinction/scattering coefficients) are

bext ¼
ð
rextðrÞNðrÞ dr and bsca ¼

ð
rscaðrÞNðrÞ dr: ð15Þ

Therefore, the scattering/extinction efficiencies for a representative single aerosol are

�QQext ¼
Ð
rextðrÞNðrÞ drÐ
pr2NðrÞ dr

and �QQsca ¼
Ð
rscaðrÞNðrÞ drÐ
pr2NðrÞ dr

: ð16Þ
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Light scattering by aerosols is a function of the wavelength, the aerosol size distribution,
and the aerosol composition [Fraser, 1975]. Calculating the scattering properties at two or
more wavelengths provides information about the aerosols’ size. The Ångström exponent
(a) relates the spectral dependence of the extinction (or scattering) at two wavelengths, k1
and k2:

ak1;k2 ¼ � logðrp;k1=rp;k2Þ
logðk1=k2Þ ; ð17Þ

(e.g., Ångström [1929]; Eck et al. [1999]). Often the two wavelengths are defined in the
visible or infrared (e.g., 0.47 and either 0.66 or 0.87 lm). Larger aerosol size is related to
smaller values of a, such that aerosol distributions dominated by fine aerosols have
a 	 1:6, whereas those dominated by coarse aerosols have a � 0:6. Quadratic fits to
more than two wavelengths, known as modified Ångström exponents (e.g., O’Neill et
al. [2001]), can provide additional size information including the relative weighting of
fine mode aerosol to the total (i.e., FW, or g).
The asymmetry parameter, g, represents the degree of asymmetry of the angular scattering
(phase function), and is defined as:

gk ¼ 1

2

ðp
0

PkðHÞ cosH sinH dH ð18Þ

Values of g range from � 1 for entirely backscattered light to + 1 for entirely forward
scattering. For molecular (Rayleigh) scattering, g ¼ 0. For aerosol, g typically ranges be-
tween 0.6 and 0.7 (mostly forward scattering), the lower values in dry (low relative hu-
midity) conditions (e.g., Andrews et al. [2006]). g is strongly related to the aerosol size,
and to the accumulation mode size, specifically.

The aerosol optical depth is the integral of the aerosol extinction coefficient over ver-
tical path from the surface to the top of the atmosphere (TOA), i.e.

sðkÞ ¼
ðTOA
0

bext;pðk; zÞ dz; ð19Þ

where the subscript p represents the contribution from the particles (to be separated from
molecular or Rayleigh optical depth). Typically, AOD (at 0.55 lm) range from 0.05 over
the remote ocean to 1.0, 2.0 or even 5.0, during episodes of heavy pollution, smoke or
dust.

The mass extinction coefficient, Bext, represents the area extinction for a unit mass of the
aerosol (usually in units of [m2/g]). For a distribution of aerosols,

Bext ¼ 3 �QQext

4qreff
; ð20Þ

where q is the average particle density (e.g., Chin et al. [2002]. From here, we define the
mass concentration coefficient (Mc) as
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Mc ¼ 1

Bext
; ð21Þ

which represents the aerosol mass for unit AOD, per unit surface area. If relating dry ae-
rosol mass to ambient AOD, we also must take into account ambient relative humidity
(RH) and aerosol hygroscopicity (e.g., Köpke et al. [1997]).

2.3 Aerosol measurement techniques

Numerous techniques are used to observe and quantify aerosol physical and chemical
properties (e.g., Seinfeld and Pandis [1998]), either in situ or by remote sensing. Each
of these techniques may be passive (operating under ambient conditions) or active (per-
turbed conditions). Combined surface and airborne measurements provide profiles of
aerosol properties such as loading, size distribution, and chemistry. For example, the U.S.
Environmental Protection Agency (US-EPA) monitors in situ aerosol mass concentrations
at the surface by weighing dried (perturbed) aerosol mass collected on filters which pro-
vide PMn where n ¼ 1, 2.5 or 10 lm depending on the largest particles measured. Other
in situ techniques are based on optical measurements, and measure aerosol scattering with-
in a cavity to determine extinction and backscatter coefficients (nephelometers). Aerosol
absorption is commonly monitored by measuring the attenuation of light by aerosol col-
lected on filter using absorption photometers (e.g., MAAP, aetholometer, PSAP). Yet, be-
cause nearly all in situ instruments collect the aerosols on a filter or within a cavity, they
perturb the aerosols themselves.

By contrast, remote sensing techniques observe a radiation field as it interacts with the
atmosphere and surface. Active remote sensing (e.g., radar or lidar) utilizes its own light
source, whereas passive techniques use the ambient radiation (e.g., sunlight) as the source.
Like in situ techniques, remote sensing includes ground-based (e.g. sunphotometer) and
airborne radiometers. Radiometers can also be mounted on orbiting satellites (e.g.,
MODIS) for retrieving continuous information on regional and global scales [Kaufman
et al., 1997a; King et al., 1999; Kaufman et al., 2002].

2.3.1 Passive remote sensing of direct beam extinction by sunphotometer
(AERONET)

The simplest passive remote sensing technique is sunphotometry [Volz, 1959], where the
solar disk is observed through a collimator. The sunphotometer measures the extinction of
direct-beam radiation in distinct wavelength bands, and derives the aerosol contribution to
the total extinction. The measurement assumes that the radiation has had little or no inter-
action with the surface or clouds, and that there is minimal (or known) gas absorption in the
chosen wavelength, k. In other words, sunphotometry is a basic application of the Beer–
Bouguer–Lambert law, in the form of:

Lkðh0Þ ¼ F0;kðh0; dÞ exp½�stkm
tðh0Þ�; ð22Þ

where L, F0, d, h0, st, and m are the measured solar radiance, extra-terrestial solar irra-
diance (irradiance outside the atmosphere), ratio of the actual and average Earth/sun dis-
tance, solar zenith angle, total atmospheric optical depth, and total relative optical air
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mass, respectively. The factor stmt is the only unknown (the other parameters can be cal-
culated), and it can be further broken down as:

stkm
t ¼ sRkm

R þ sakm
a þ sgkm

g ð23Þ

where the superscripts t, R, a and g refer to total, molecular (Rayleigh scattering), aerosol
and gas absorption (variably distributed gases such as H2O, O3, NO2, etc.), where the re-
lative optical air masses of each component differ due to differing vertical distributions.
The molecular portions of Eq. (23) are dependent only on the altitude of the surface target,
and can be accurately calculated (e.g., Bodhaine et al. [1999]). The gas absorption portion,
while varying in vertical profile by component, can be reasonably estimated. Therefore,
since errors are well defined, estimation of AOD (sa, or hereby simplified as s) is straight-
forward from a sunphotometer. When made at more than one wavelength, sunphotometers
retrieve spectral (wavelength-dependent) s, which in turn can be used to characterize the
relative size of the ambient aerosol [Eck et al., 1999; O’Neill et al., 2003].
Although sunphotometers have been used for decades, the products provided by AErosol
RObotic NEtwork (AERONET; Holben et al. [1998]) are considered state-of-the-art for
consistent, calibrated and accessible spectral aerosol depth data. Operating at hundreds of
sites globally, the AERONET sunphotometers (produced by Cimel Electronique in France)
have been reporting at some sites since 1993 (e.g., http://climate.gsfc.nasa.gov). ‘Sun’
products are retrievals of spectral s at several wavelengths (0.34, 0.38, 0.44, 0.67, 0.87
and 1.02 lm, and possibly others depending on the individual instrument), resulting
from application of Eq. (23) to the observations of spectral extinction of the direct
beam. In addition to spectral AOD, AERONET derives columnar water vapor (PW) from
a water vapor absorbing channel (0.94 lm). Approximately every 15 minutes during the
daytime, the sunphotometer points directly at the sun, taking spectral measurements in
triplicate over 1.5 minutes. Cloud screening [Smirnov et al., 2000] is performed by limiting
the variability within each triplet and compared to prior and subsequent triplets. Estimates
of Ångström exponent, and separation into fine and coarse mode contributions, are easily
computed via the spectral de-convolution algorithm of O’Neill et al. [2001].
Level 1 (raw data averages) and Level 1.5 (cloud screened data; e.g. Smirnov et al. [2000])
are provided in near real time to the user community. Level 2 data is considered calibrated,
quality-assured data, meaning that the instrument has been corrected for optical drift and
the products meet certain requirements. Since the upgrade to Level 2 requires the instru-
ment to be taken from the field and re-calibrated, it may not be available for months or
years after Level 1.5 is available. Recently, AERONET has gone through a re-processing of
its direct sun products that is collectively known as ‘Version 2’. AERONET derived es-
timates of spectral AOD are expected to be accurate within � 0.02 (e.g., Holben et al.
[1998]).

2.3.2 Passive remote sensing of sky scattering by sunphotometer (AERONET)

Collimated radiometers (e.g., AERONET) also can be pointed at discrete points in the sky
to observe scattered sky radiance. Requiring additional assumptions as to the shape of the
particles, interaction with the surface and multiple scattering processes, the technique in
essence boils down to retrieval of the spectral, angular (H) aerosol scattering phase func-
tion, PkðHÞ.
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In addition to the direct ‘sun’ measurements, AERONET instruments are programmed
to observe angular distribution of sky radiance, approximately every hour during the day-
time. These ‘sky‘ measurements are made in the almucantar (a circle made with constant
zenith angle equal to solar zenith angle), and the principal plane (line of constant azimuth
angle) in at least at four wavelengths (0.44, 0.67, 0.87 and 1.02 lm), in order to observe
aerosol spectral scattering. These observations are controlled for quality, through rigorous
cloud screening and requirements of angularly symmetric radiance. Sky radiance measure-
ments are used to retrieve size distribution and scattering/extinction properties of the am-
bient aerosol field using spherical aerosol assumptions [Nakajima and King, 1990; Kauf-
man et al., 1994; Dubovik and King, 2000], and more recently, non-spherical assumptions
[Dubovik et al. 2002b]. By assuming the ambient aerosol to be a homogeneous ensemble
of polydisperse spheres and randomly oriented spheroids [Dubovik et al., 2006], the algo-
rithm retrieves the volume distribution (dV=d ln r) for 22 radius size bins and spectral
complex refractive index (at wavelengths of sky radiance observations) that correspond
to the best fit of both sun-measured AOD and almucantar sky radiances. The non-spherical
fraction is modeled with distribution of aspect ratios retrieved [Dubovik et al., 2006)] that
fit scattering matrices of mineral dust measured in the laboratory [Volten et al., 2001]. In
either case, the modeling is performed using kernel look-up tables of quadrature coeffi-
cients employed in the numerical integration of spheroid optical properties over size and
shape. These kernel look-up tables were generated using exact T-matrix code [Mishchenko
and Travis, 1994] and the approximated geometric-optics-integral method of Yang and
Liou [1996], that was used for size or shape parameters exceeding the convergence limits
of T-matrix code. As a result the kernels cover a wide range of sizes
(
 0:12 � 2pr=k �
 625) and axis ratios e (0:3 � e � 3). The usage of kernel look-
up tables allows quick and accurate simulations of optical properties of spheroids and
therefore makes it possible to use a model of randomly oriented spheroids (introduced
by Mishchenko et al. [1997] for desert dust) in AERONET operational retrievals.

The retrieved size distribution and complex refractive index uniquely determine the
aerosol phase function (P) and single scattering albedo (x0Þ, also provided as retrieved
products. In addition, AERONET derives optical properties (s, P and x0Þ and integral
parameters of size distributions (total volume concentration Cm, volume median radius
rm, and standard deviation r), separately for fine mode (r � 0:6 lm) and coarse mode
(r > 0:6 lm) of the retrieved aerosol. Such a representation of AERONET retrievals is
based on the convenient observation that the majority aerosol is bimodal. Although the
parameters are simulated for each mode without assuming any particular shape or size
distribution (see the formulation in Dubovik et al. [2002a]), they are analogous to corre-
sponding parameters of lognormal size distributions described in Section 2.1 (V0; rm; r). In
fact, the assumption of lognormality allows accurate reproduction of aerosol optical prop-
erties in many cases (especially those dominated by fine mode), suggesting that these para-
meters represent lognormal properties of AERONET climatology [Dubovik et al., 2002a].
To ensure a large enough signal, retrievals of optical properties from sky radiance recom-
mend the sun-observed ambient optical depth to be at least 0.4 at 0.44 lm.

Retrievals from both sun and sky AERONET measurements are controlled by rigorous
calibration and cloud-screening processes. The results are also constrained by the criteria
identified in sensitivity studies [Dubovik et al., 2000]. As discussed by Dubovik et al.
[2002a], these selections yield accurate retrieval results that can be used as ground-truth
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estimates (for certain aerosol properties). These products are known as Level 2 AERONET
products. It is noted the AERONET team has recently re-processed the combination of
direct sun and sky products, known as ‘Version 2’ (http://aeronet.gsfc.nasa.gov), using im-
proved characterization of the surface albedo around each site and modified spheroid axis
ratio distributions (applied to the T-matrix code). This reprocessing has led to significant
changes from Version 1 products at some sites, often lowering estimates of spectral x0.

2.3.3 Satellite passive remote sensing

While sunphotometers derive aerosol properties from measurements of extinction or sky-
light scattering in the downward direction, satellites derive aerosol properties from mea-
surements of upscattered (reflected) radiation (e.g., Kaufman et al. [1997a]). The geometry
of the satellite measurement is illustrated in Fig. 2.1, such that h0; h and h are the solar
zenith, target view zenith and relative solar/target relative azimuth angles, respectively.
The scattering angle, H is:

H ¼ arccosð� cos h0 cos hþ sin h0 sin h cos uÞ; ð24Þ

The normalized spectral radiance, or reflectance, qk is defined by

qk ¼ Lk
p

F0;k cosðh0Þ : ð25Þ

Fig. 2.1. Schematic of sun/surface/satellite remote sensing geometry, defining the angles as viewed from
the surface target. The solid lines (and curves) represent solar zenith h0 and satellite view zenith h angles
(measured from the zenith, Z). The dashed lines (and curves) represent the relative azimuth angle u (mea-
sured from the extension of the solar azimuth), whereas the dotted lines (and curves) represent the scatter-
ing angle H (measured from the extension of the direct beam). The Terra satellite icon is from the Earth
Observatory (http://earthobservatory.nasa.gov).
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Because the measured reflectance includes multiple contributions from the atmosphere
and surface, reasonable assumptions must be made to separate them. We can assume
that the reflectance observed at the TOA is a function of successive orders of radiation
interaction within the coupled surface–atmosphere system. The observed spectral reflec-
tance results from: scattering of radiation within the atmosphere without interaction with
the surface (known as the ‘atmospheric path reflectance’); the reflection of radiation off
the surface that is transmitted to the TOA (the ‘surface function’); and the reflection of
radiation from outside the sensor’s field of view (the ‘environment function’). The envir-
onment function is often small so that to a good approximation, the angle-dependent TOA
reflectance at a wavelength k is described by:

q*
kðh0; h; uÞ ¼ qakðh0; h; uÞ þ Tkðh0ÞTkðhÞqsk

1 � skqsk
; ð26Þ

where qak represents the atmospheric path reflectance, including aerosol and molecular
contributions, Tk are the ‘upward (and downward) transmissions’ (direct plus diffuse) de-
fined for zero surface reflectance (reciprocity implied), sk is the atmospheric backscatter-
ing ratio (diffuse reflectance of the atmosphere for isotropic light leaving the surface), and
qsk is ‘surface reflectance’ [Kaufman et al., 1997a], which for now we assume to be Lam-
bertian. Except for the surface reflectance, each term on the right-hand side of Eq. (26) is a
function of the aerosol type (chemical composition, size distribution) and its columnar
loading s. Assuming dark and well-defined spectral surface reflectance, accurate measure-
ments of TOA spectral reflectance can lead to retrievals of spectral s and reasonable es-
timates of one or more aerosol size parameters [Tanré et al., 1996]. Note that in the context
of satellite observations, the ‘target’ angles are referred to as ‘sensor’ angles or ‘view’
angles. In any case, the Earth’s surface is considered the vantage point. As the surface
becomes brighter, the term in the denominator becomes smaller, leading to larger possible
errors in calculating atmosphere–surface interactions. The entire third term is zero if the
surface is black (qs ¼ 0).

In essence, the goal of the satellite retrieval process is to first isolate the atmospheric
path reflectance, then determine the portion that is contributed by aerosol (e.g. the aerosol
path reflectance). Fig. 2.2 demonstrates the spectral response of aerosol scattering for a
number of idealized aerosol types.

In order to reduce the computational cost of radiative transfer calculations at every
satellite-observed pixel, most operational aerosol retrievals from a satellite make use
of a look-up table (LUT). The LUT is a simulation of the atmospheric contribution to
the TOA reflectance, namely the non-surface terms in Eq. (26). The LUT must be suffi-
ciently representative of all reasonably likely atmospheric scenarios and satellite observa-
tions. Not only must the LUT span the real parameter space, it must have sufficient sen-
sitivity to information contained in the measurements.

In addition to MODIS (this chapter), tropospheric aerosol properties have been oper-
ationally retrieved from passive (non-emitting), nadir-viewing, polar-orbiting satellite sen-
sors, such as the Advanced Very High Resolution Radiometer (AVHRR) [Stowe et al.,
1997; Husar et al., 1997; Higurashi et al., 1999], and the Total Ozone Mapping Sensor
(TOMS) [Herman et al., 1997; Torres et al., 1998, 2002], both of which have been flown
on a variety of satellites over the past two decades. The Multi-Angle Imaging Spectro-
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Radiometer (MISR; e.g., Diner et al. [2007] and Kahn et al., [2005]), uses multiple angle
views to retrieve detailed aerosol properties. Other passive sensors and their algorithms are
described in this book, and have been compared by previous studies (e.g. Kokhanovsky et
al. [2007, 2009]).

3. Aerosol remote sensing from MODIS

3.1 The MODIS instrument

The MODerate resolution Imaging Spectro-radiometer (MODIS) was designed with ae-
rosol and cloud remote sensing in mind [King et al., 1992]. From polarorbit, approximately
700 km above the surface and a � 55� view scan, MODIS views the Earth with a swath of
about 2330 km, thereby observing nearly the entire globe on a daily basis (Fig. 3), and
repeating orbits every 16 days. MODIS measures radiance in 36 wavelength bands, ran-
ging from 0.41 to 14.235 lm [Salomonson et al., 1989], with nadir on-ground spatial re-
solutions between 250 meters and 1 km (off-nadir-angle pixels represent larger surface
areas). Its measurements are organized into 5-minute sections, known as granules,
each 
 2300 km long. MODIS actually flies on two NASA satellites, Terra and Aqua.
Terra has a descending orbit (southward), passing over the equator about 10:30 local
sun time, whereas Aqua is in ascending orbit (northward), so that it passes over the equator
about 13:30 local sun time.

The combination of dark-target (over dark land and ocean) aerosol retrieval uses the
seven so-called ‘land’ wavelength bands (listed in Table 2.1), which are all in atmospheric
windows (little absorption by gases). Included in Table 2.1 are estimates of the central

Fig. 2.2. Spectral dependence of aerosol reflectance for selected aerosol types viewed from the top of the
atmosphere (for some arbitrary AOD). Aerosol reflectance depends on single scattering albedo, phase
function and total aerosol loading. (Figure provided by Yoram Kaufman.)
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wavelength in each band (obtained by integration of the channel-averaged response func-
tions). The MODIS channels 1, 2, 3, 4, 5, 6 and 7 are known here as the 0.65, 0.86, 0.47,
0.55, 1.24, 1.64 and 2.12 lm channels, respectively. In addition, the aerosol algorithm
makes use of radiance in other MODIS bands to help with cloud and surface screening.
The ‘Deep Blue’ algorithm (e.g., Hsu et al. [2006]), uses a different set of wavelength
bands, but is not discussed further here.

The MODIS instrument is designed to be spectrally stable and sufficiently sensitive to
changes in aerosol properties (e.g., Guenther et al. [2002] and Xiong et al. [2003]). The
spectral stability for each instrument is better than 2 nm (0.002 lm), with absolute radi-
ance calibrated to within 2 % and is monitored by a solar diffuser screen onboard each
satellite. The ‘noise equivalent differential spectral reflectance’ (NeDq) represents the sen-
sitivity to changes in the signal, and is an inherent property of the instrument. The ‘signal-
to-noise ratio’ (SNR) is defined as the ratio of the ‘typical scene reflectance’ (qts) and the
NeDq. The NeDq and the SNR specifications are given in Table 2.1. To be understood in
the framework of aerosol remote sensing, the definition of SNR should be based on the

Fig. 2.3. Example of a composite MODIS ‘RGB’ image for a whole day, April 1, 2001 (Terra). ‘RGB’ or
‘True-Color’ images are a composite of reflectance in 0.47, 0.55 and 0.65 lm. Image created by Mark
Gray.

Table 2.1 Characteristics of MODIS channels used in aerosol retrieval

Band
no.

Bandwidth
(lm)

Weighted central
wavelength (lm)

Resolu-
tion (m)

NeDq
(�10�4)

Max q Required
SNR

ROD

1 0.620–0.670 0.646 250 3.39 1.38 128 0.0520

2 0.841–0.876 0.855 250 3.99 0.92 201 0.0165

3 0.459–0.479 0.466 500 2.35 0.96 243 0.1948

4 0.545–0.565 0.553 500 2.11 0.86 228 0.0957

5 1.230–1.250 1.243 500 3.12 0.47 74 0.0037

6 1.628–1.652 1.632 500 3.63 0.94 275 0.0012

7 2.105–2.155 2.119 500 3.06 0.75 110 0.0004

Notes: NeDq corresponds to the sun at zenith (h = 0�), ROD is ‘Rayleigh Optical Depth’, SNR is ‘Signal to Noise Ratio’
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expected aerosol signal. Therefore, the ‘noise equivalent differential optical depth’ (NeDs)
can be defined as

NeDs ¼ NeDq
4 cosðh0Þ cosðhmÞ

x0PðHÞ ð27Þ

for small AODs. The least sensitivity to aerosol optical depth (largest noise) is expected
when both sun and satellite are at nadir views (h0 ¼ hm ¼ 0:0), the sum of the Rayleigh and
aerosol phase functions are near minimum (H 
 90 � 120�) and the channel used is the
least sensitive (channel 7, at 2.12 lm). With a typical phase function value of 0.08 at 120�,
a typical aerosol scene requires NeDs 
 1:5 � 10�2. The 2.12 lm channel’s ‘typical scene
optical depth’ (sts) is of the order of 0.01 or less, suggesting that the SNR defined by the
ratio sts=NeDs is SNR 
 0:66. If one requires that the SNR is greater than 10 for sufficient
sensitivity to aerosol variability, then a single 500-m pixel is insufficient.

However, if individual pixels are aggregated to larger areas, say to a grid of
10 � 10 km2 (20 � 20 of 500-m pixels at nadir), then the noise is reduced by a factor
of 400. Instead of 0.66, the SNR becomes 266. However, since clouds and surface inho-
mogeneities affect aerosol retrievals, not all pixels in the aggregate box may be suitable for
aerosol retrieval. If only 5 % of the 500-m pixels are suitable for retrieval, the SNR is
reduced to 13. Therefore, to require SNR 4 10, 10 � 10 km2 boxes can be safely used
as the default retrieval size [Tanré et al., 1996]. Of course, if either the aerosol signal
is larger or the noise is lower, then the retrieval may require fewer pixels.

3.2 Overview of MODIS dark-target algorithms

Since the launch of MODIS aboard Terra (in late 1999) and aboard Aqua (in early 2002),
MODIS spectral reflectance observations have led to retrievals of spectral s and a measure
of aerosol size, known as the fine weighting (FW or g), each with 10 km resolution (at
nadir). Separate dark-target algorithms derive aerosol properties over dark land and ocean
[Remer et al., 2005], necessitated by different surface optical characteristics. The suite of
MODIS dark-target algorithms were originally formulated by Kaufman et al. [1997a] over
land and by Tanre et al. [1997] over water. By the time of MODIS launch on Terra (in
December 1999), the algorithm had been already revised in order to align with actual
MODIS specifications and operational needs. The operational algorithms and products
have been continuously evaluated for self-consistency and comparability to other datasets,
including AERONET [Remer et al., 2005]. MODIS algorithms are organized by ‘versions’
(e.g., vX.Y.Z, where X represents major ‘science’ update, Y represents minor updates, and
Z represents bug fixes or otherwise presumably small updates; see http://modis-at-
mos.gsfc.nasa.gov/MOD04/history), whereas products are arranged as ‘collections’
(e.g., c00X, where X represents major science updates or reprocessing). After initial re-
view by the MODIS science team, the products were released to the public as ‘Collection
003’. Chu et al. [2002] and Remer et al. [2002] evaluated c003 products over land and
ocean, respectively. Soon after Aqua was launched (in June 2002), the algorithm was ap-
plied to both MODIS instruments, beginning the product dataset known as ‘collection 004’
(c004). The v4.2.2 of the algorithm, described by Remer et al. [2005], was included in
production of c004.

32 2 The dark-land MODIS collection 5 aerosol retrieval



Whether the target is land or ocean, the algorithm must ensure that the target is free of
clouds, snow, ice and extreme surface variability. A number of tests are performed to se-
parate water bodies and land surfaces and to select appropriate pixels for retrieval (details
in Remer et al. [2005] and MAST [2006]). Over either surface, some of the brightest and
darkest pixels (within the 10-km box) are removed, in order to reduce residual cloud and
surface contamination effects (such as cloud brightening, shadowing or adjacency effects).
Both dark-target algorithms utilize look-up tables to simulate the radiative effects of a
small set of aerosol types, loadings, and geometry that presumably span the range of global
aerosol conditions [Kaufman et al., 1997b]. The goal of the algorithm is to select which of
the LUT’s simulated scenarios best matches the MODIS-observed spectral reflectance. To
retrieve realistic aerosol properties, it is essential that the LUT represents realistic scenarios.

The first step in MODIS processing is to collect the raw data (known as Level 0), cut
them into five minute chunks (known as granules), and present them as formatted data
(Level 1A). Each granule is converted into calibrated radiance/reflectance and geo-loca-
tion data (known as Level 1B or L1B). The aerosol retrieval uses calibrated reflectance data
from the seven MODIS bands listed in Table 2.1. These reflectance data are first corrected
(by about 1–2 %) for trace gas and water vapor columns, using ‘ancillary’ data from NCEP
(National Centers for Environmental Prediction) analysis [MAST, 2006]. They are orga-
nized into 10 � 10 km boxes (e.g., 40 � 40 of 250 m data, 20 � 20 of 500 m data and
10 � 10 of 1 km data), and separated into land and ocean pixels. Depending on the relative
dominance of either surface, the appropriate algorithm is assigned. Near coastlines, if any
of the observed pixels are considered land, then the over-land algorithm is followed.

Primary products for dark-target algorithms include the total aerosol optical depth (s) at
0.55 lm and an estimate of the fine aerosol weighting (g) to the total optical depth. During
the course of either algorithm, certain criteria are evaluated and the final products are given
Quality Assessment (QA) values to indicate subjective ‘confidence’, ranging from 3 (high)
to 0 (none). The MODIS products include validated, not yet validated, and not able to be
validated parameters; it is up to the user to determine how to utilize the QA information. It
is also noted that whereas the definitions of s are the same, the definitions of g are different
for over dark land and ocean. It is instructive to briefly introduce the over (dark) ocean
algorithm before describing the dark land algorithm in detail.

The main premise of the over-ocean algorithm (unchanged since inception through
c005, e.g., Tanré et al. [1997], Levy et al. [2003], Remer et al. [2005], and MAST
[2006]) is that the ocean reflectance is generally close to zero at red (0.66 lm) and longer
wavelengths, providing a dark background to view aerosol. If all pixels in the 10 � 10 km
box are identified as water pixels, the ocean algorithm is followed. First, obstructed pixels
(cloudy, or otherwise unsuitable for retrieval) are removed, including: those within the glint
mask (within 40� of the specular reflection angle), those flagged as cloudy [Platnick et al.,
2003; Martins et al., 2002; Gao et al., 2002], and those that contain suspended river or other
sediments [Li et al., 2003]. The remaining good pixels are sorted by their 0.86 lm bright-
ness. Of these, the darkest and brightest 25 % are removed, theoretically eliminating re-
sidual cloud and or surface contamination. If at least 10 pixels remain in the 10 � 10 km
box, then spectral reflectance statistics are calculated and used for the inversion. The over-
ocean inversion attempts to minimize the difference between the observed spectral radi-
ance in six MODIS channels and radiance pre-computed in a LUT (slightly modified for
c005; MAST, 2006). The ocean LUT simulates the spectral reflectance arising from com-
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bined contributions of aerosol, molecular and ocean surface (chlorophyll, whitecaps and
sunglint) radiation interactions. The LUT is computed by vector radiative transfer equa-
tions (to include polarization effects on the radiance) for 2304 sun/surface/satellite geo-
metries and five total aerosol loadings, for four fine modes and five coarse modes [Remer
et al., 2005]. The inversion first interpolates the LUT to match the sun/surface/satellite
geometry of the observation. The major assumption is that the total aerosol contribution is
composed of a single fine and single coarse mode. For each combination of fine and coarse
modes (20 combinations) the inversion determines the total spectral s and the fine mode
weighting (g) to the total s that minimizes the least squares difference error (e) between the
modeled and observed spectral reflectance. The fine/coarse mode combination providing
the smallest e is the final solution. A variety of other aerosol parameters are inferred, in-
cluding the effective radius of the aerosol.

3.3 Overview of MODIS dark-target algorithm over land

Land surfaces do not provide the same uniform surface signal as the ocean. They are much
more variable in their reflectance properties and therefore the algorithm must include ad-
ditional steps to estimate the land surface contribution to the satellite-observed signal. If
the surface is well behaved (i.e., it is either completely dark or its reflectance can be ac-
curately modeled or assumed), the atmospheric signal may be sufficiently decoupled from
the combined surface/atmosphere signal.

The aerosol retrieval over land uses spectral reflectance in five of the channels listed in
Table 2.1, specifically the 0.66, 0.86, 0.47, 1.24 and 2.12 lm channels. Preliminary steps
of the retrieval include testing the spectral observations to screen the 10 km box for clouds
[Martins et al., 2002; Gao et al., 2002], snow and ice [Li et al., 2005], and sub-pixel water
bodies such as ponds or swamps [Remer et al., 2005]. The pixels that remain are sorted by
their relative reflectance (at 0.66 lm), such that the 20 % of the darkest pixels and 50 % of
the brightest pixels are removed. The remaining pixels are expected to represent dark sur-
face targets with the least amount of contamination from clouds (including cloud bright-
ening and shadowing) as well as surface inhomogeneities. This means that, at most, 120
pixels remain from the original 400. The retrieval can proceed if at least 12 pixels (10 %;
3 % of the original 400 for sufficient SNR) remain. These remaining pixels are averaged,
yielding one set of spectral reflectance values that are used to retrieve aerosol products
representing 10 km.

The following subsections provide overview for each of the major updates implemented
for MODIS’s second-generation aerosol retrieval over land (e.g. Levy et al., 2007a,
2007b].

3.3.1 Aerosol model climatology

The tendency for MODIS c004 to under-predict AOD in conditions of high aerosol loading
(regression slope less than one) suggested the assumed aerosol models were deficient.
Levy et al. [2005] and Ichoku et al. [2002] demonstrated that updated aerosol model as-
sumptions would lead to better retrievals over the East Coast of the USA and Southern
Africa, respectively. The goal, therefore, is to derive a set of aerosol optical models that
represent the range of global, realistic aerosol scenarios.
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Levy et al. [2007a] describes a ‘subjective’ cluster analysis for AERONET data, using
all AERONET Level 2 (Version 1) data that were processed as of February 2005, encom-
passing retrievals derived from spherical as well as spheroid models. Their analysis in-
cluded only the data that met minimum quality parameters suggested by the AERONET
team, including: s at 0.44 lm greater than 0.4, solar zenith angle greater than 45�, 21
symmetric left/right azimuth angles, and radiance retrieval error less than 4 %. Even
with these strict restrictions, the dataset comprised 13 496 retrievals made using spherical
assumptions and 5128 that assumed mixtures of spheroids. Over a hundred land sites were
represented. In order to differentiate between aerosol types, the data were separated into 10
discrete bins of AOD. Presumably, distinct aerosol types would stay distinct across bins,
but changes as function of AOD would characterize the type of ‘dynamic’ (function of
AOD) properties expected for some aerosol types (e.g., Remer and Kaufman [1998]).
As spheroid-model solutions tend to be representative of coarse dust aerosol in the almu-
cantar, spherical model solutions presumably are related with fine-dominated aerosol con-
ditions.

Since neither total AOD nor particle shape were considered dependent variables (as
were a similar clustering by Omar et al. [2005]), AERONET were separated into broad
‘types’, based on combination of single scattering albedo (x0) and asymmetry parameter
g. Presumably, x0 differentiates between non-absorbing aerosols (such as urban/industrial
pollution [Remer and Kaufman, 1998; Dubovik et al., 2002]) and more absorbing aerosols
(such as savanna burning smoke [Ichoku et al., 2003; Dubovik et al., 2002a]), and g helps
identify relative changes to the phase function that are related to changes in fine aerosol
size. In the end, three distinct clusters were identified, separated primarily by their single
scattering albedo in the visible. These fine-dominated aerosol ‘types’ included strongly

Fig. 2.4. Spherical fine-dominated aerosol type designated at 1� � 1� per season. Red and green repre-
sent strongly absorbing (x0 
 0:85) and weakly absorbing (x0 
 0:95), respectively. Moderately absorb-
ing (x0 
 0:91) is assumed everywhere else (from Levy et al. [2007a]).
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absorbing (x0 
 0:85), moderately absorbing (x0 
 0:91), and weakly absorbing
(x0 
 0:95).

As assumed for c004 [Remer et al., 2005], the theoretical over-land retrieval would
require the fine-dominated aerosol type to be fixed, or prescribed for a given location
and season. For each AERONET site, and for each season, Levy et al., [2007a] determined
whether there was clear dominance of either the weakly absorbing or the strongly absorb-
ing aerosol types. If neither extreme was dominant, then the site/season was assumed to be
characterized by moderately absorbing aerosol. In most cases, the aerosol types assigned at
each location were analogous to those assigned for c004, with exceptions where AERO-
NET provided new information not known before 2003 (such as higher x0 over Southeast
Asia; Eck et al. [2005]).

Fig. 2.4 assigns the fine-dominated aerosol type, as a function of season. While in most
places the assignment directly follows from the logic described above, in some regions a
subjective combination of literature and logic was needed to designate areas not otherwise
characterized by AERONET. For example, even though there were few AERONET sites in

Fig. 2.5. Aerosol size distribution as a function of optical depth for the three spherical (moderately ab-
sorbing, strongly absorbing and weakly absorbing) and spheroidal (dust) models identified by clustering
of AERONET (Levy et al. [2007a]). Please add: The units for each panel are lm for Radius and (lm3/lm2)
for the volume concentration.
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Africa north of the equator, the known surface types and seasonal cycles suggest that heavy
absorbing aerosol would be produced during the biomass burning season. Red designates
regions where the strongly absorbing aerosol (x0 
 0:85) is assigned, whereas green re-
presents weakly absorbing (x0 
 0:95) aerosol. The moderately absorbing (x0 
 0:91)
model is assumed everywhere else. These images were mapped onto a 1� longitude by
1� latitude grid, such that a fine aerosol type is assumed for each grid point, globally.
This global map approach allows for easy alterations as new information becomes avail-
able.

Fig. 2.5 plots the averaged size distributions (as a function of s for the four AERONET-
derived models (three derived with spherical assumptions, one from spheroidal). Each
aerosol ‘model’ can be approximated by the sum of two lognormal modes, either domi-
nated by the fine mode (the three spherical models) or the coarse mode (the spheroidal
model). Sea salt is not a separate aerosol type because, in general s < 0:4, and cannot be
accurately derived via AERONET inversions. Therefore, sea salt properties can be thought
of as a contribution to each of our aerosol models. Tables 2.2(a) and 2.2(b) list the size
and optical properties representing the lognormal approximations to the AERONET-
derived models, as well as the traditional continental model [Lenoble et al., 1984].
Note how the dynamic nature (function of s) is contained in the formulas, and represents

Table 2.2(a) Size properties of the aerosol models used for the c005 dark land LUT

Model Mode rm (lm) r V0

(lm3=lm2)

Continental

1 0.176 1.09 0.305

2 17.6 1.09 0.7364

3 0.050 0.693 0.0105

Moderately absorbing
(developing world)

1 0:0203sþ 0:145 0:1365sþ 0:3738 0:1642s0:7747

2 0:3364sþ 3:101 0:098sþ 0:7292 0:1482s0:6846

Weakly absorbing
(urban/industrial)

1 0:0434sþ 0:1604 0:1529sþ 0:3642 0:1718s0:8213

2 0:1411sþ 3:3252 0:1638sþ 0:7595 0:0934s0:6394

Strongly absorbing
(smoke)

1 0:0096sþ 0:1335 0:0794sþ 0:3834 0:1748s0:8914

2 0:9489sþ 3:4479 0:0409sþ 0:7433 0:1043s0:6824

Spheroidal (dust)

1 0:1416s�0:0519 0:7561s0:148 0:0871s1:026

2 2.2 0:554s�0:0519 0:6786s1:0569

Listed for each model are two or more lognormal modes, where each mode is characterized by volume mean radius rm,
standard deviation r, and total volume V0. Radial properties (rv and r or the strongly absorbing and moderately absorbing
model are defined for s � 2:0; for s > 2:0, s ¼ 2:0 is assumed. Similarly, for the weakly absorbing and spheroidal/dust
model, parameters are defined for s � 1:0. V0 (for all models) is defined for all s For the continental model, V0 represents
arbitrary s.
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Table 2.2(b) Optical properties of the aerosol models used for the c005 dark land LUT

Model Mode Refractive Index:
m ¼ n� ki

x0, g (defined at
s0:55 ¼ 0:5) (0.47/0.55/
0.66/2.12 lm)

Continental x0: 0.90/0.89/0.88/0.67
g: 0.64/0.63/0.63/0.79

1 (1) 1.53 � 0.005i
(2) 1.53 � 0.006i
(3) 1.53 � 0.006i
(4) 1.42 � 0.01i

2 (1) 1.53 � 0.008i
(2) 1.53 � 0.008i
(3) 1.53 � 0.008i
(4) 1.22 � 0.009i

3 (1) 1.75 � 0.45i
(2) 1.75 � 0.44i
(3) 1.75 � 0.43i
(4) 1.81 � 0.50i

Moderately absorbing
(developing world)

x0: 0.93/0.92/0.91/0.87
g: 0.68/0.65/0.61/0.68

1 1.43 � (�0:002sþ 0:008)i

2 1.43 � (�0:002sþ 0:008)i

Weakly absorbing
(urban/industrial)

x0: 0.95/0.95/0.94/0.90
g: 0.71/0.68/0.65/0.64

1 1.42 � (�0:0015sþ 0:007)i

2 1.42 � (�0:0015sþ 0:007)i

Strongly absorbing
(Smoke)

x0: 0.88/0.87/0.85/0.70
g: 0.64/0.60/0.56/0.64

1 1.51 – 0.02i

2 1.51 – 0.02i

Spheroidal (dust) x0: 0.94/0.95/0.96/0.98
g: 0.71/0.70/0.69/0.71

1 (1) 1:48s�0:021ð0:0025s0:132Þi
(2) 1:48s�0:0210:002i
(3) 1:48s�0:021ð0:0018s�0:08Þi
(4) 1:46s�0:040ð0:0018s�0:30Þi

2 (1) 1:48s�0:021ð0:0025s0:132Þi
(2) 1:48s�0:0210:002i
(3) 1:48s�0:021ð0:0018s�0:08Þi
(4) 1:46s�0:040ð0:0018s�0:30Þi

Each aerosol model is represented by two or more modes. Modal properties are determine as a function of s, which for
some aerosol types is related to increasing humidification. For each mode, the spectral refractive index (m ¼ n� ki) is
given, where 1–4 indicate wavelengths of 0.47, 0.55, 0.66 and 2.1 lm, respectively. If only one value is given, than it
represents all wavelengths. Properties of the strongly absorbing and moderately absorbing model are defined for s � 2:0;
for s > 2:0, s ¼ 2:0 is assumed. Similarly, for the weakly absorbing and spheroidal/dust model, parameters are defined
for s ¼ 1:0. The last column lists the spectral single scattering albedo, x0 and asymmetry parameter, g, calculated for
s0:55 ¼ 0:5.
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the properties of ambient aerosol. While optical properties of aerosol are an intrinsic
property of the aerosol (and do not change with AOD), optical properties of the ambient
aerosol may be changing with AOD, due to a correlative effect, such as increasing
humidity.

3.3.2 Scattering/extinction properties of the aerosol models

Extinction/scattering coefficients and aerosol phase functions for the spherical aerosol
models (Table 2.2) can be derived using a Mie code (spherical assumptions). For these
calculations, the MIEV code [Wiscombe et al., 1980] was used. However, Mie theory
is not appropriate for the coarse (spheroid) aerosol model. Therefore, in place of
MIEV, Levy et al. [2007a] modeled the coarse aerosol properties with the same version
of the T-matrix assumptions and kernels as used for the AERONET almucantar inversions
[Dubovik et al., 2002b, 2006] prior to AERONET Version 2. The assumed spheroid axis
ratio distribution is presented as Table 2.3.

Fig. 2.6 plots the final phase function at 0.55 lm for each model as well as spectral
dependence of three parameters (s; x0 and g), calculated for a reference s0:55 ¼ 0:5.
As an additional check, Levy et al. [2007a] compared the spectral dependence of the mod-
eled aerosol types to some independent AERONET sun observations, and found that the
aerosol models were reasonably representative of observed aerosol. The columnar mass
concentration, M, for a given optical depth, is the product of the mass concentration coef-
ficient (Mc; Eq. (21)) and the AOD, e.g.,

M ¼ sMc: ð28Þ

Table 2.4 lists the extinction, scattering and mass conversion factors for the four AERO-
NET-derived aerosol models, along with the continental model for comparison. In each
case, s0:55 ¼ 0:5.

Table 2.3 Axis ratio distribution used for spheroid optical
property calculations

Axis ratio Frequency

0.4019 0.14707

0.4823 0.10779

0.5787 0.10749

0.6944 0.06362

0.8333 0.

1. 0.

1.2 0.

1.44 0.09063

1.728 0.14186

2.0736 0.16846

2.48832 0.17308
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Table 2.4 Extinction/mass properties of the aerosol models

Model x0 Qext reff
[lm]

Bext

[m2/g]
Mc

[lg/cm2]

Continental 0.886 0.621 0.293 1.5910 62.8600

Moderately absorbing (developing) 0.910 1.018 0.261 2.9220 34.2230

Strongly absorbing (smoke) 0.869 0.977 0.256 3.5330 28.3070

Weakly absorbing (urban/industrial) 0.947 1.172 0.207 3.4310 29.1460

Spheroid (dust) 0.953 1.339 0.680 1.4770 67.6960

Listed for each model are the single scattering albedo, extinction efficiency, effective radius, mass extinction coefficient
and mass concentration conversion factor. All optical parameters are defined at 0.55 lm, representing a loading of
s0:55 ¼ 0:5. For comparison, particle density is assumed 1 g/cm3.

Fig. 2.6. Plot of optical properties for the five aerosol models of the dark-target LUT, for s0:55¼0:5. a) PðHÞ
at 0.55 lm, b) sðkÞ, c) x0ðkÞ and d) gkÞ. [Levy et al., 2007a].
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3.3.3 Radiative transfer and aerosol LUT calculation

The c004 MODIS LUT contained simulated aerosol reflectance in two channels (0.47 and
0.66 lm), calculated using a non-polarized (scalar) RT code [Dave, 1970]. Levy et al.
[2004] found that neglecting polarization could lead to significant errors in top of atmo-
sphere reflectance, resulting in significant errors in retrieving AOD. Therefore, vector RT
code was preferred. Due to developer experience with the code, and satisfactory test per-
formance compared to benchmarks, Levy et al., [2007a] selected the vector adding dou-
bling code (RT3; Evans and Stephens [1991]) to simulate the atmospheric contribution to
TOA reflectance in the LUT. For a given wavelength (Table 2.1), RT3 was run, assuming
aerosol scattering/extinction properties (either derived from MIEV or T-matrix codes),
Rayleigh optical depths (Table 2.1), realistic atmospheric profiles (US Standard Atmo-
sphere; [US Government, 1976]), and surface reflectance (zero). Since the MODIS algo-
rithm makes corrections for gas absorption (ozone, water vapor, etc.) to the TOA reflec-
tance, gas absorption is not included in the RT runs.

For the c005 LUT, atmospheric path radiance (coupling of aerosol and Rayleigh) was
calculated in four MODIS channels (0.47, 0.55, 0.66 and 2.12 lm, representing MODIS
channels 3, 4, 1 and 7, respectively), to represent seven different loadings of each of the
five aerosol types, and 2304 combinations of solar/surface/satellite scattering geometry.
Loadings are indexed by AOD at 0.55 lm, having values of s ¼ 0:0 (Rayleigh only), 0.25,
0.5, 1.0, 2.0, 3.0 and 5.0. The LUT includes information for nine solar zenith angles
(h0 ¼ 0:0, 12.0, 24.0, 36.0, 48.0, 54.0, 60.0, 66.0 and 72.0), 16 sensor zenith angles
(h ¼ 0:0 to 65.0, approximate increments of 6.0), and 16 relative azimuth angles
(u ¼ 0:0 to 180.0 increments of 12.0). The approximate increments of h arise from
the use of the Lobatto quadrature function in RT3, allowing for sensor zenith angles similar
to those in the c004 LUT.

If there is nonzero surface reflectance, the second term in Eq. (26) is nonzero. RT3 code
derives s and T, which are included in the LUT (as function of wavelength, aerosol model,
aerosol loading and geometry). Additionally, the LUT includes values for the scattering
and extinction efficiencies/coefficients/mass coefficients Q=b=Mc of the aerosol models
(also having similar functional dependencies).

3.3.4 Surface reflectance relationships

For c004, the surface reflectance in two visible channels (0.47 and 0.66 lm), are each
assumed to be fixed ratios of that at 2.12 lm (e.g., Kaufman et al., 1997a; Remer et
al., 2005], specifically 0.25 and 0.5, respectively. The empirical relationship was consid-
ered to be characteristic of the relationship of liquid water absorption and chlorophyll
reflectance across different vegetation states [Kaufman and Remer, 1994; Kaufman et
al., 2002]. However, studies such as Remer et al., [2001] and Gatebe et al., [2001] showed
that the relationship of visible to 2.12 lm surface reflectance (‘VISvs2.1’) varies as a func-
tion of geometry and surface type.

Levy et al. [2007b] refined the VISvs2.1 relationships, to reduce aerosol retrieval errors
due to insufficient surface information. They collected a set of over 10,000 global AERO-
NET/MODIS co-locations, where the AOD was low (e.g., s < 0:2) as measured by
AERONET. Presumably, in low AOD conditions, multiple scattering by aerosol is small,
and thus the co-location is suitable for performing atmospheric correction (e.g., Kaufman
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and Sendra, 1988; Vermote et al., 1997b] to derive spectral surface reflectance properties.
Given enough statistics with different scattering geometry, Levy et al., [2007b] presumed
that surface BRDF effects could be approximated by the value of the surface reflectance for
the relevant solar and satellite viewing geometry [Kaufman et al., 1997a] assuming a Lam-
bertian surface.

Levy et al. [2007b] concluded that globally averaged ratios of the surface reflectance in
the two visible channels (0.47 and 0.66 lm), to that in 2.12 lm, were closer to 0.28 and
0.55, respectively. However, they demonstrated better fits with lines that had both slope
and offset terms. In addition, correlation of 0.47 and 0.66 lm surface reflectance was much
higher than that at 0.47 and 2.12 lm. The presence of the y-offset is important, because
even in the darkest, most water-laden vegetation, zero reflectance at 2.12 lm does not
imply zero surface reflectance in the visible channels (e.g., Kaufman et al., [2002]).

Levy et al. [2007b] also found that the VISvs2.12 relationships were dependent on scat-
tering angle (H), and influenced by the state of the surface vegetation. They separated the
co-locations into over-urban and non-urban areas, by season (winter or summer) and by
general location (mid-latitude or tropical). Generally, more vegetated surfaces (mid-lati-
tude summer sites both urban and non-urban) displayed higher 0.66 to 2.12 lm surface
reflectance ratios (ratio 4 0.55) than winter sites or tropical savannas and grasslands (ratio
4 0.55). Except for urban sites, the 0.47 lm to 0.66 lm ratio was relatively constant (ratio

 0:52). The relationship of the surface reflectance ratios to known surface condition sug-
gested a relationship to its vegetation amount/condition or ‘greenness.’ Since, the well-
known Normalized Difference Vegetation Index (NDVI; e.g., Tucker and Sellers [1988]) is
influenced by aerosol, Levy et al. [2007b] related the VISvs2.1 relationship to the
NDVISWIR, defined as:

NDVISWIR ¼ ðqm1:24 � qm2:12Þ=ðqm1:24 þ qm2:12Þ ð29Þ

where q1:24 and q2:12 are the MODIS-measured reflectances of the 1.24 lm channel
(MODIS channel 5) and the 2.12 lm channel (channel 7). These longer wavelengths
are less influenced by aerosol (except for extreme aerosol loadings or dusts), and thus
may be more useful for estimating surface condition. In aerosol-free conditions,
NDVISWIR is highly correlated with regular NDVI; values of NDVISWIR > 0:6 represent
active vegetation, whereas NDVISWIR < 0:2 indicates dormant or sparse vegetation.
The parameterization of the VISvs2.12 surface reflectance relationship, with functional
dependence on NDVISWIR and H, is written as:

qs0:6 ¼ f ðqs2:12Þ ¼ qs2:12*a0:66=2:12 þ b0:66=2:12 ð30Þ
and

qs0:47 ¼ gðqs0:66Þ ¼ qs0:66*a0:47=0:66 þ b0:47=0:66;

where

a0:66=2:12 ¼ aNDVISWIR

0:66=2:12 þ 0:002H� 0:27;

b0:66=2:12 ¼ �0:00025Hþ 0:033; (31)

a0:47=0:66 ¼ 0:49; and

b0:47=0:66 ¼ 0:005;
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where in turn

aNDVISWIR

0:66=2:12 ¼ 0:48;NDVISWIR < 0:25;

aNDVISWIR

0:66=2:12 ¼ 0:58;NDVISWIR > 0:75; (32)

aNDVISWIR

0:66=2:12 ¼ 0:48 þ 0:2ðNDVISWIR � 0:25Þ; 0:25 � NDVISWIR � 0:75

It should be noted that while the large AERONET/MODIS co-location dataset was the
broadest and most comprehensive data available for analyzing global surface reflectance
relationships, it was still limited to AERONET site locations, which in turn are mostly
concentrated in certain geographical regions. The parameterization leaves room for im-
provement, especially in non-sampled regions.

3.3.5 Inversion of spectral reflectance, including 2.12 lm

One major limitation of the c004 algorithms was that aerosol was assumed transparent in
the 2.12 lm channel [Kaufman et al., 1997a; Remer et al., 2005]. Under a dust aerosol
regime, aerosol transparency may be an extremely poor assumption. Even in a fine aerosol
dominated regime, s is nonzero. For the moderately absorbing aerosol model (x0 
 0:91),
s0:55 ¼ 0:5 corresponds to s2:12 
 0:05 (Fig. 2.6). This is representative of 2.12 lm path
reflectance of 0.005, rather than zero. Via 0.66 to 2.12 lm ratio of 0.55, this becomes a
reflectance ‘error’ of 0.003 at 0.66 lm, in turn leading to error of 
 0:03 in retrieved AOD.
For low aerosol loadings, this can be a large relative error.

In the spirit of the MODIS aerosol over ocean algorithm [Tanré et al., 1997], the second
generation of aerosol retrieval over dark land simultaneously inverts spectral reflectance to
derive aerosol properties [Levy et al., 2007b]. Analogous to the ocean algorithm’s attempt
to combine fine and coarse aerosol modes, the new land algorithm combines the fine-
dominated and coarse-dominated aerosol models (each bimodal) to match with the ob-
served spectral reflectance. Thus, the inversion is free to assume that the 2.12 lm channel
contains both surface and aerosol information, constrained by the parameterized
VISvs2.12 surface reflectance relationships. Simultaneously inverting the aerosol and sur-
face information in the three channels (0.47 lm, 0.66 lm and 2.12 lm) yields enough
information, that with some assumptions (about spectral dependence), three parameters
can be derived: s0:55, g0:55 and the surface reflectance (qs2:12). A cartoon representation
of the inversion is given in Fig. 2.7.

We rewrite Eq. (26), considering that the calculated spectral total reflectance q*
k at the

top of the atmosphere is approximately the weighted sum of the spectral reflectance from a
combination of fine and coarse-dominated aerosol models, i.e.,

qk* ¼ gk*
f þ ð1 � gÞqk*c; ð33Þ

where q*f
k and q*c

k are each composites of surface reflectance qsk and atmospheric path
reflectance (aerosol + Rayleigh) of the separate aerosol models. That is, we have two equa-
tions

qk*
f ¼ qafk þ T̂T f

k q
s
k=ð1 � sfkq

s
kÞ and qk*c ¼ qack þ T̂Tc

kq
s
k=ð1 � sckq

s
kÞ; ð34Þ
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where the symbols are defined as in Eq. (33), except for separation into fine and coarse
aerosol models (denoted by the superscripts f and c, respectively), and T̂T as the two-way
transmission Tðh0ÞTðhÞ. Surface reflectance (qs) is independent of aerosol type. The
weighting parameter, g, is defined at k ¼ 0:55lm. This weighting parameter also repre-
sents the fraction of the total optical thickness at 0.55 lm contributed by fine (non-dust)
aerosol [Remer et al., 2005]. Note that large surface reflectance and aerosol backscatter
increase the surface/atmosphere couplings in Eq. (34). Nonetheless, for the conditions of
the dark-target algorithm, the approximation of Eq. (33) is valid.

3.3.6 Mechanics of the algorithm

Fig. 2.8 is a flowchart of the second-generation land algorithm. The procedure collects
Level 1B (L1B) spectral reflectance in eight wavelength bands (Table 2.1, plus
1.37 lm) at their finest spatial resolutions, as well as associated geo-location information.
These L1B reflectance values are corrected for water vapor, ozone, and carbon dioxide
obtained from ancillary NCEP analysis data files. Details of this gas correction and cloud
masking are found online [MAST, 2006]. Basically, the high-resolution (20 � 20 at 500 m
resolution) pixels in the 10 � 10 km box are evaluated pixel by pixel to identify whether
the pixel is suitable for aerosol retrieval. Clouds [Martins et al., 2002], snow/ice [Li et al.,
2003] and inland water bodies (via NDVI tests) are considered not suitable and are dis-
carded (also explained in MAST [2006]).

The non-masked pixels are checked for their brightness. Pixels having measured
2.12 lm reflectance between 0.01 and 0.25 are grouped and sorted by their 0.66 lm re-
flectance. The brightest (at 0.66 lm) 50 % and darkest 20 % are discarded, in order to

Fig. 2.7. Cartoon of inversion technique. Observed reflectance in three channels is represented by tur-
quoise dots in the small sub-figure. Green represents fine-dominated model (and its induced path reflec-
tance), whereas orange represents coarse-dominated model (and its induced path reflectance). Red de-
notes surface reflectance. The combination of fine, coarse and surface (combo) is the turquoise square and
spectral dependence curve that most closely matches the observations (dots). The ‘ghostlike’ modal crea-
tures were adapted from a presentation by Lorraine Remer.
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Fig. 2.8. Flowchart illustrating the derivation of aerosol over land for the new algorithm [Levy et al.,
2007b].
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reduce cloud and surface contamination and scale towards darker targets. If there are at
least 12 pixels remaining (10 % of 30 % of the original 400), then the reflectance in each
channel is averaged, yielding the ‘MODIS-measured’ spectral reflectance qm0:47, qm0:66, qm1:24
and qm2:12. These reflectance values are used for so-called ‘Procedure A’. If less than 12
pixels remain, then ‘Procedure B’ (described later) is followed.

Along with any values of derived AOD and other aerosol products, the algorithm as-
signs a relative ‘Confidence’ for the derived products. This parameter, known as the ‘Qual-
ity Assessment’ (or QA) value, has values of 3, 2, 1, or 0, representing ‘high’, ‘moderate’,
‘marginal’, and ‘low’ confidence in the derived products. If following ‘Procedure B’, the
QAC is automatically set to 0 (no confidence). The QAC will be discussed in later sections.
Note that the logic for assigning QAC is completely new for c005 [MAST, 2006].

3.3.6.1 Correcting the LUT for elevation

A major improvement for the c005 is its treatment of elevated surface targets. This is de-
scribed in detail by Levy et al., [2007b] and in MAST [2006]. Essentially, since Rayleigh
optical depth (ROD or sR;k) is directly related to sea-level pressure, then an elevated tar-
get’s ‘effective’ ROD is that scaled to its elevation (via the hydrostatic equation). In other
words, a sea-level ROD for a longer wavelength is equivalent to an elevated ROD for a
given wavelength. The algorithm makes use of the procedure described in Fraser et al.
[1989], scaling the LUT to simulate different ROD by interpolating to an effective wa-
velength. For example, for a mountain site with elevation (Z) of 0.4 km, the effective wa-
velength (k) increases by about 1.2 %. For the blue 0.47 lm channel, where k ¼ 0:466 lm
and ROD 0.185. Assuming that gases and aerosols are optically well mixed in altitude, the
parameter values of a 0.471 lm LUT can be acquired by interpolating (linearly as func-
tions of log wavelength and log parameter) between the 0.47 lm (0.466 lm) and the
0.55 lm (0.553 lm) entries. Similar interpolations are performed for the other channels
(for example, 0.55 lm would be adjusted to 0.559 lm). For the 0.4 km case, this means
that lower values of TOA atmospheric path reflectance and higher values of transmission
are chosen to represent a given aerosol model’s optical contribution. However, also note
that since the 0.55 lm channel has also been adjusted, the associated parameters of the
look-up table (that are defined for specific s) have been adjusted accordingly. In other
words, the algorithm retrieves aerosol optical depth at the adjusted wavelength, which
is equivalent to retrieving s own to the surface elevation height.

Whereas most global land surfaces are at sea level or above, a few locations are below
sea level (Z ¼ 0). In these cases, the algorithm is allowed to extrapolate below 0.466 lm.
Since the extrapolation is at most for a hundred meters or so, this is not expected to in-
troduce large errors, and these cases are till retrieved. Note also that due to the extremely
low ROD in the 2.12 lm channel, little is gained by adjusting this channel.

3.3.6.2 Procedure A: Inversion for darker surfaces

If following Procedure A (for dark surfaces), the QA ‘confidence’ is initially set to a value
between 0 (none) and 3 (high), depending on the number of dark pixels remaining. In
Procedure A, the algorithm assigns the fine aerosol model, based on the location and sea-
son. From the LUT, qa, T̂T and s (for the fine model and coarse model separately) are inter-
polated for angles (h0, h and u), and elevation, resulting in six values for each parameter,
each one corresponding to a different aerosol loading (indexed by s at 0.55 lm).
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The 2.12 lm path reflectance is a non-negligible function of AOD, so that the surface
reflectance becomes related to the AOD. For discrete values of g between � 0.1 and 1.1
(intervals of 0.1), the algorithm attempts to find s at 0.55 lm and the surface reflectance at
2.12 lm that exactly matches the MODIS measured reflectance at 0.47 lm. There will be
some error, e, at 0.66 lm. The solution is the one where the error at 0.66 lm is minimized.
In other words,

qm0:47q
�
0:47 ¼ 0;

jqm0:66 � q�0:66j ¼ e; ð35Þ
qm2:12 � q�2:120;

where

q�2:12 ¼ gðqfa2:12 þ T̂T f
2:12q

f
2:12=ð1 � sf2:12q

s
2:12ÞÞ þ ð1 � gÞðqca2:12 þ T̂Tc

2:12q
s
2:12=ð1 � sc2:12q

s
2:12ÞÞ

q�0:66 ¼ gðqfa0:47 þ T̂T f
0:47gðqs0:66Þ=ð1 � sf0:47gðqs0:66ÞÞÞþ

þð1 � gÞðqca0:47 þ T̂Tc
0:47gðqs0:66Þ=ð1 � sc0:47gðqs0:66ÞÞÞ;

and

q�0:47 ¼ gðqfa0:47 þ T̂T f
0:47gðqs0:66Þ=ð1 � sf0:47gðqs0:66ÞÞÞþ

þð1 � gÞðqca0:47 þ T̂Tc
0:47gðqs0:66Þ=ð1 � s0:47gðqs0:66ÞÞÞ; ð36Þ

where in turn, qa ¼ qaðsÞ, T̂T ¼ T̂TðsÞ, s ¼ sðsÞ are each functions of s (and geometry) in-
dexed within the LUT, calculated for separate fine and coarse models. The surface reflec-
tance relationships, f ðqs2:12Þ and gðqs0:66Þ are described by Eqs (30) and (32). The algorithm
includes choices for non-physical values of g (�0.1 and 1.1) to allow for the possibility of
imperfect assumptions in either aerosol models or surface reflectance. Again, the primary
products are s0:55, g0:55 and the surface reflectance (qs2:12). The fitting error (e) is also noted.

Once the solution is found, a number of secondary products can also be calculated.
These include the fine and coarse mode optical depths sf0:55 and sc0:55:

sf0:55 ¼ s0:55g0:55 and sc0:55 ¼ s0:55ð1 � g0:55Þ; ð37Þ

the columnar mass concentration, M:

M ¼ Mf
c s

f
0:55 þMc

c s
c
0:55; ð38Þ

the spectral total and model optical thicknesses sk, s
f
k, and sck:

sk ¼ sfk þ sck; ð39Þ

where

sfk ¼ sf0:55ð �QQf
k=

�QQf
0:55Þ and sck ¼ sc0:55ð �QQc

k=
�QQc

0:55Þ; ð40Þ
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the Ångström Exponent a:

a ¼ � lnðs0:47=s0:6

and the spectral surface reflectance qsk, M
f
c and Mc

c are mass concentration coefficients for
the fine and coarse model (e.g., Table 2.3), whereas Qf

k and Qc
k represent model extinction

efficiencies at the wavelength, k. If the resulting products are inconsistent, have large fit-
ting error, or otherwise seem suspect, then QA confidence is lowered. Note that the sub-
scripts in Eq. (41) refer to the MODIS channels, whereas the exact wavelengths are needed
for the right-hand side.

3.3.6.3 Procedure B: alternative retrieval for brighter surfaces

The derivation of aerosol properties is still possible when the 2.12 lm reflectance is bright-
er than 0.25, but is expected to be less accurate [Remer et al., 2005], due to increasing
errors from applying the VISvs2.12 relationship. However, if there are at least 12 cloud-
screened, non-water pixels that satisfy

0:25 < qm2:12 < 0:25G < 0:40; ð42Þ

where

G ¼ 0:5 1
l þ 1 ffiffiffiffi

l0
p
. �

;
.�

ð43Þ

then Procedure B is attempted. In this relationship l0 is the cosine of the solar zenith angle,
and l is cosine of the satellite view angle. Eq. (43) represents the combination of up and
down slant paths of the radiation, taking into account the increase of atmospheric photon
path for oblique angles. The contribution from the surface reflectance becomes less im-
portant, and the retrieval can tolerate higher surface reflectance [Remer et al., 2005].

Procedure B is analogous to ‘Path B’ of the c004 algorithm described in Remer et al.
[2005], in that the continental aerosol model is assumed. Unlike c004, the continental
aerosol properties are indexed to 0.55 lm, and we use the VISvs2.1 surface reflectance
parameterization. Since g is undefined, the products for Procedure B include only s0:55, the
surface reflectance, and the fitting error. The QA is set to 0 (no confidence). Some of the
secondary products are undefined.

3.3.7 Low and negative optical depth retrievals

A major philosophical change for the second-generation algorithm is that retrievals of
negative AOD allowed. Given that there is both positive and negative noise in the MODIS
observations, and that surface reflectance and aerosol properties may be under- or over-
estimated depending on the retrieval conditions, it is statistically imperative to allow re-
trieval of negative AOD. In fact it is necessary for creating an unbiased dataset from any
instrument. Without negative retrievals, AOD is biased by definition. However, a large
negative retrieval indicates a situation outside the algorithm’s solution space and should
not be reported. The trick is to determine the cutoff between retrieved AOD that is essen-
tially zero, and a value that is truly wrong. If within the expected error defined by Eq. (1),
then values down to �0.05 should automatically be tolerated. Allowing for slightly higher

48 2 The dark-land MODIS collection 5 aerosol retrieval

Þ= lnð0:4=0:6 Þ ð41Þ55



uncertainty, the algorithm include s retrievals down to �0.10 (twice the expected error in
pristine aerosol conditions), but report these values as �0.05 and lower the QAvalue. Note
that all retrievals with �0:05 < s < 0 are reported with high QA value ¼ 3, unless iden-
tified as poor quality for some other reason. Some of the products that are retrieved or
derived (such as g Ångström exponent) are set to zero or reported as not defined for
negative retrievals. In cases of low sðs < 0:2), g is too unstable to be retrieved with
any accuracy. Therefore, g is reported as undefined even though other parameters
(such as Ångström exponent and fine model s) may be reported.

3.3.8 Sensitivity test

Because the second-generation aerosol algorithm utilizes MODIS channels with wide
spectral range, the inversion (Procedure A) should be able to retrieve AOD with robust-
ness, and have some sensitivity to the aerosol size (e.g., g). Levy et al. [2007b] described a
sensitivity study that performed the following tests: (1) simulation of aerosol loadings and
angles included within the LUT, with specific combinations of fine and coarse modes
(distinct values of g that are not necessarily integral multiples of 0.1), (2) simulation
of aerosol loadings not contained within the standard LUT (e.g., additional s values)
and (3) simulations for LUT conditions, but including one or more prescribed errors.

For most aerosol and geometrical conditions represented by the LUT, the algorithm
successfully derived AOD within Dsj0:01j for s < 1:0, and within Dsj0:1jð10Þ for
s < 1:0. Retrievals of surface reflectance were within 10 % for most cases, and g was
usually within 0.1 of the simulated value. When they simulated AOD conditions not within
the standard LUT (e.g., s ¼ 0:35, 1.5 and 6.0), the retrieval demonstrated 10 error in
retrieved AOD, except for s ¼ 6:0, which must be extrapolated for the standard LUT.
Retrievals of g were usually qualitatively comparable with inputted values. Finally, pro-
ducts derived from perturbed input conditions (simulating errors in aerosol model, angular
information, instrument calibration, assumed target elevation, etc.), demonstrated that
retrieved AOD could generally be expected to lie within that described by Eq. (1).

3.4 L2 c005 products over dark land

Table 2.4 lists the ‘dark-land target’ L2 aerosol products (known as scientific datasets, or
SDS). For each SDS, the table lists its name within the file, its dimension, and its ‘type’.
All products are derived spatially (135 � 203, representing 10 � 10 km resolution at na-
dir). For some products, a third dimension is listed, usually to indicate that it is reported at
multiple wavelengths (also listed). A parameter’s type may be Retrieved, Derived, Diag-
nostic, Experimental, or Joint. A Retrieved parameter is one that results directly from the
inversion (e.g., ‘Corrected_Optical_Depth_Land’ SDS), whereas those Derived (such as
the Ångström exponent) result from those retrieved directly. Products that are Diagnostic
include the QA (‘Quality_Assurance_Land’ SDS), and parameters calculated during in-
termediate steps. These diagnostic parameters can be used to understand how the retrieval
worked. Finally, Joint products are those that are composites of over-land and over-ocean
aerosol retrievals (0.55 lm only), and are defined depending on the QA values assessed
over the particular surface. Over land, the SDS ‘Optical_Depth_Land_And_Ocean’ is de-
fined (equal to ‘Corrected_Optical_Depth_Land’) only when QA 4_ 1, and is the joint
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product recommended for quantitative studies. Ìmage_Optical_Depth_Land_And_Ocean’
is defined even when QA ¼ 0, so that it is better suited for qualitative plume monitoring
and plotting. More about each individual parameter is described in MAST [2006].

Fig. 2.9 shows c005 aerosol properties retrieved from the granule observed by Terra on
May 4, 2003 (15:25 UTC) over the US east coast (same granule as presented in King et al.
[2003]). Fig. 2.9(A) represents the ‘RGB’ or ‘true-color’ image, and is a composite of L1B
reflectance in the 0.47, 0.55 and 0.66 lm channels. Figs 2.9(B) and (C) plot the primary
products (s0:55 and g retrieved from combination of dark-target (both land and ocean) al-
gorithms (joint products with QA 4_ 1). Fig. 2.9(D) presents surface reflectance (qs) over
land only, as the third primary product retrieved from the dark-land algorithm. These plots
indicate an aerosol plume, apparently transported from the Ohio Valley through Maryland
and into the Atlantic. Within the plume, AOD is high (s0:55 
 1:0), and is dominated by
fine particles g 
 1:0 (plotted where s0:55 > 0:2). There is land/ocean continuity and we
note that AERONET observations in Baltimore (MD_Science_Center) also indicate
s 
 1:0, dominated by fine aerosol.

Table 2.5 Land product contents of L2-MODIS aerosol file

Name of product (SDS): Symbol Dimensions: Values of 3rd dim. Type of product

Corrected_Optical_Depth_Land:s X,Y,3: 0.47, 0.55, 0.66 lm Retrieved Primary

Corrected_Optical_Depth_Land_wav2p1:s X,Y,1: 2.12 lm Retrieved Primary

Optical_Depth_Ratio_Small_Land: g X,Y: (for 0.55 lm) Retrieved Primary

Surface_Reflectance_Land: qs X,Y,3: 0.47, 0.66, 2.12 lm Retrieved Primary

Fitting_Error_Land: e X,Y: (at 0.66 lm) Retrieved By-Product

Quality_Assurance_Land: QA X,Y,5: 5 bytes Diagnostic

Aerosol_Type_Land X,Y: Diagnostic

Angstrom_Exponent_Land: a X,Y: (for 0.66/0.47 lm) Derived

Mass_Concentration_Land: M X,Y: Derived

Optical_Depth_Small_Land: sf X,Y,4: 0.47,0.55,0.66,2.12 lm Derived

Mean_Reflectance_Land: qm X,Y,7: 0.47,0.55,0.66,0.86,
1.2,1.6,2.12 lm

Diagnostic

STD_Reflectance_Land X,Y,7: 0.47,0.55,0.66,0.86,
1.2,1.6,2.12 lm

Diagnostic

Cloud_Fraction_Land X,Y: Diagnostic

Number_Pixels_Used_Land X,Y: Diagnostic

Optical_Depth_Land_And_Ocean X,Y: 0.55 lm Joint (QA 4_ 1)

Image_Optical_Depth_Land_And_Ocean X,Y: 0.55 lm Joint (QA 4_ 0)

Optical_Depth_Ratio_Small_Land_
And_Ocean

X,Y: 0.55 lm Joint (QA 4_ 1)

X ¼ 135; Y ¼ 203. If there is a third dimension of the SDS, then the indices of it are given. The ‘Retrieved’ parameters
are the solution to the inversion, whereas ‘Derived’ parameters follow from the choice of solution. ‘Diagnostic’ para-
meters aid in understanding of the directly Retrieved or Derived products. ‘Joint’ products are defined over land, de-
pending on QA values.
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3.5 Level 3 products

The L2 aerosol products are derived along the satellite track, only during the daylight, and
where not obscured by clouds or over inappropriate surfaces. The MODIS orbit covers
4 70 % of the globe per day (during daylight hours), but it observes some places
more than once, and others not at all. MODIS’s 16-day repeat orbit ensures that all parts
of the (daylight) globe are viewed, but that sampling and geometry (especially over the
tropics) changes from day to day. Also, because of orbital geometry, L2 pixels near swath
edges represent surface targets three times larger than the nadir 10 � 10 km resolution.
Over certain regions and certain seasons, entire L2 pixels may be cloudy, resulting in no
aerosol retrieval at all.

Fig. 2.9. Retrieved L2 aerosol and surface properties over the eastern USA on May 4, 2001 (same granule
as King et al. [2003]). Panel (A) is a ‘true-color’ composite image of three visible channels, showing haze
over the mid-Atlantic. Panels (B) and (C) display s and g combined over land and ocean, showing an
aerosol plume (s 
 1:0) dominated by fine particles (g 
 1:0). The transport of the aerosol into the Atlan-
tic is well represented with good agreement between land and ocean. Note that over-land g is not reported
when s < 0:2. Panel (D) shows the retrieved surface reflectance qs (over land only).
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In many applications of satellite data (e.g., comparison with gridded model output), it is
highly desirable that the satellite data be represented on regular grid. Therefore, the
MODIS atmosphere data team (http://modis-atmos.gsfc.nasa.gov) has developed the con-
cept of Level 3 (L3; e.g., King et al. [2003]) products to represent the statistics of the L2
orbital products on a regular grid (1� � 1�) and regular time intervals (daily, 8-day and
monthly). The goal is to derive L3 products that preserve the integrity of the L2 data,
but also have geophysical meaning. Because of both the variable sampling and variable
confidence of the L2 data, it is not trivial to develop optimal L3 products.

3.5.1 L3-daily (D3)

Fig. 2.10 represents statistics for one day (May 4, 2003) of over-land L2 AOD on a 1� � 1�

grid. Fig. 2.10(A) presents the number of possible retrievals (pixel counts, or PC), while
Fig. 2.10(B) represents the number of actual PC on this given day (May 4, 2003) over land.
Possible PC ranges from 4 120 at the poles in the summer hemisphere and at the equator
in all seasons, to zero over areas in between orbits near the equator, and in polar darkness.
Actual PC depends on MODIS distribution of cloud fields, inappropriate (bright, inho-
mogeneous) surface types, and other poor retrieval conditions. Fig. 2.10(C) presents
the total confidence (sum of QA confidence values), which may range between zero
and three times actual PC. Figs 2.10(D) and (E) map two representations of mean
AOD. One is the simple average (known as the SDS’s ‘Mean’) of the L2 values within
the box (Fig. 2.10(D)). The other is known as the SDS’s ‘QA_Mean’, and is derived from
‘Confidence’ weighted L2 (giving larger weighting to retrievals with larger QA). Values of
QA ¼ 3 are assigned a weighting Q ¼ 3, whereas QA ¼ 0 are weighted as Q ¼ 0 (no
weighting). Mathematically, the ‘QA_Mean’ AOD (�ssQA;j;l), is the QA-weighted average
of the L2 AOD values i, in a grid box land day j, i.e.,

�ssQA;j;l ¼
X
i

Qi;lsi;l=Qj;l; ð44Þ

where

Qj;l ¼
X
i

Qi;l: ð45Þ

Fig. 2.10(E) plots the differences between the QA_Mean and Mean values for daily AOD
over land (which are usually small). For each 1� � 1� grid box, L3-daily products include
PC, a QA histogram, and both estimates of the mean. Data files are known as
‘MOD08_D3’ for Terra and ‘MYD08_D3’ for Aqua, that we denote collectively as ‘D3’.

3.5.2 L3-Monthly (M3)

Standard D3 products fully represent the statistics of the original L2 data (PC and QA,
Mean and QA_Mean). Therefore, L3-monthly products (M3) are derived from D3 instead
of from L2 (to save computational time and space).

One method for deriving gridded monthly AOD is to average the D3 data (equal weight
per day, i.e., simple weighting) for every grid box. This means that days with more L2 data
(higher PC) are treated the same as days with fewer. Instead we may choose to weight each
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Fig. 2.10. Quantity (Pixel_Counts, PC) and quality (QA) of the L2 data on a 1� � 1� grid, for May 4,
2003. (A) Possible PC, (B) Actual PC, (C) Total Confidence (sum of QA), (D) computed daily Mean AOD,
and (E) difference between quality weighted mean (QA_Mean) and Mean AOD. Note the different scales
to the right of each panel.
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day’s contribution (to the mean) by its PC, so that a clear, well-sampled day gets more
weight than a cloudy, poorly sampled day. We define the ‘Pixel weighted’ mean AOD
(�ssk;l) for a given month, k, and grid box, l, as

�ssK;l ¼
X
j

Pi;l�ssj;l=
X
j

Pi;l ¼
X
j

X
i

si;j;l=
X
j

Pj;l; 46

where Pj;l and �ssj;l are daily PC and daily AOD Mean. Thus, the gridded mean derived from
basic Pixel weighting of gridded D3 data is equivalent to the mean of non-weighted L2
representing that grid box. Because Pixel weighting best represents the original L2 sam-
pling, derived in ’clear sky’ conditions, Pixel weighting characterizes global aerosol with a
’clear sky bias’.

We realize that aggregation (say from L2 to D3) over any spatial and/or temporal do-
main requires proper accumulation of weights over that domain. For any consequent ag-
gregation (say from D3 to M3), we must decide whether (and how) to account for the first
set of weights. Instead of deriving a monthly value from D3 that is equivalent to that from
using L2, we might desire something else. For example, a particular day may be extremely
cloudy, such that only a single (out of a possible 120) L2 value represents the entire grid
box. Since we might expect this single L2 value to be cloud-contaminated in some way, we
would not want to include it in derivation of a monthly mean. In fact, standard M3 proces-
sing requires that PC 4 5 to include a day’s contribution to the monthly mean. This
’threshold’ Pixel weighting may mask heavily cloud-contaminated days that might other-
wise influence a monthly mean. Across the entire globe, differences between basic Pixel
weighting and threshold Pixel weighting are generally insignificant, but we note that
threshold Pixel weighting is not equivalent to deriving M3 straight from L2. Derived
from the D3 Mean, the standard M3 product (reported over land and ocean, separately)
is known as the ’Mean_Mean’.

In fact, standard M3 processing also applies the same threshold Pixel weighting to the
D3 QA_Mean to derive the M3’s ’QA_Mean_Mean’. The QA_Mean_Mean is not a Con-
fidence weighted product in the sense of the daily QA_Mean, because it may have been
derived with higher weighting (larger PC) assigned to lower confidence data.

4. Evaluation of MODIS c005 products

Evaluation of a satellite (or any) dataset refers to the exercise of understanding the integrity
of the data under all measurement conditions. Validation implies quantitative assessment
of the measurement uncertainty. The validation process asks questions about the precision,
accuracy and consistency of the derived data products. We can focus on consistency (‘Do
the products represent physical quantities with no artificial boundaries?’), precision (‘Do
the products represent small enough increments of physical quantities?’) or accuracy (‘Can
the products be matched with reference standards?’). In this chapter, we first discuss dif-
ferent evaluations of the L2 product, primarily via comparison with sunphotometry. Then
we introduce some interesting new work assessing the meaning of a gridded L3 aerosol
product, and how it may relate to estimates of ‘global mean’ AOD.
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The first type of evaluation can be thought as a qualitative sanity check. Does the algo-
rithm derive products that fit our expectations? We see from Fig. 2.9 that AOD seems
continuous over land and ocean, and there are no obvious problems near mountains.
Also, the aerosol gradients seem reasonable. As for the fine weighting (gW) product,
even with differing definitions over land and ocean, Fig. 2.9(C) shows relative continuity
and few surprises.

4.1 Quantitative evaluation: comparison of L2 with AERONET

The spectral AOD is a physical quantity, resulting from the interaction of spectral radiation
with a particular composition and amount of aerosol within the atmospheric column. If one
assumes that sunphotometry provides the most simple and direct measurement of this
quantity, then satellite-derived AOD should be directly comparable. Because the fine
weighting (FW or g) is defined differently by AERONET and MODIS, we may compare
them, but require additional assumptions. One way to get around direct FW comparison is
by comparing ‘Derived’ products (e.g. a and sf ) with those of AERONET.

We compare MODIS spectral AOD (L2) products to reference ground-based sunphot-
ometers (AERONET) at over a hundred global sites. We use the spatial–temporal tech-

Fig. 2.11. Illustration of the Ichoku et al. [2002] spatial/temporal validation technique over a coastal
AERONET site (star). The orange box is the 10 � 10 km MODIS retrieval containing the site. Since
both MODIS over-land and over-ocean retrievals are performed in this case, both are averaged over
the 50 � 50 km domain, and will be compared with the AERONET measurements. Any 10 km MODIS
retrieval containing land is derived as land, whereas 100 % water is necessary for deriving as ocean. The
tiny boxes represent the 20 � 20 original 500-m MODIS pixels within each 10 km. The time domain for
AERONET is one hour (� 30 minutes of overpass)
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nique (Fig. 2.11) of Ichoku et al. [2002], such that the average of a 50 � 50 km area of
MODIS products centered at the AERONET site (a 5 � 5 box ¼ 25 retrievals at 10 km) is
compared to the average of the AERONET direct-sun measurements within one hour of
satellite overpass (normally four or five measurements). A valid collocation requires
cloud-free conditions for both instruments (MODIS must retrieve at least five pixels
out of 25 and AERONET must retrieve at least twice during the hour) and quality-assured
data (MODIS with QA ¼ 3, AERONET L2) for a valid match. Comparisons are performed
for the MODIS pixels over ocean and over land separately.

4.1.1 Preliminary L2 validation using the test-bed

Levy et al. [2007b] provided a preliminary validation for c005 products, using a 6000-
granule sample known as the ‘test-bed’. The test-bed contained L1B reflectance data from
a somewhat random combination of single granules, entire days, over multiple locations,
time periods, and from both satellites. The same test-bed was used to derive products using
both c005 and c004 algorithms. Histograms showed a dramatic reduction in global-derived
AOD, especially in clean conditions. The test-bed’s mean AOD dropped from 0.28 using
c004 to 0.21 using c005. Comparison with AERONET AOD indicated significant im-
provement, such that the regression y-offset was reduced dramatically (from 0.097 to
0.029), and the slope was increased (from 0.901 to 1.009). In addition, the correlation
(R) of the regression improved from 0.84 to 0.88. In general, the derived size parameter
(g) had higher correlation using c005 (R ¼ 0:5) instead of the c004 algorithm (R ¼ 0:26),
with marginal improvements in derived Ångström exponent and fine AOD [Levy et al.,
2007b]. Fig. 2.12 (from Levy et al. [2007b]) compares the MODIS size parameters
(g; a; sf ) with the analogous parameters derived from AERONET sun observations
[O’Neill et al., 2001].

While it is disappointing that MODIS-derived size parameters (g and a) compare so
poorly to sunphotometer measurements, it should not be surprising given the results of
the sensitivity study. The addition of even small errors in simulating the spectral depend-
ence will lead to large errors in g, and therefore to a. In some regions, errors in surface
reflectance parameterization dominate the spectral error, whereas, in others, the limited
choice of aerosol optical models is the cause. Nonetheless, compared to c004 retrievals,
where there was almost no spectrally dependent signal, we expected better skill in retriev-
ing size parameters.

It should be noted that the input test-bed files used for each algorithm contained so-
called ‘c004 calibration’ for the reflectance data. With the reprocessing to Collection 5, the
MODIS Characterization Science Team (MCST) adjusted some channels’ radiance/reflec-
tance calibration coefficients by as much as 1 % from c004 values. ‘True’ validation ex-
ercises require data that have been produced using the consistent ‘c005 calibration’.

4.1.2 Global c005 L2

Since official c005 processing began in early 2006, we have collected over 20 000 co-lo-
cations of MODIS L2 data and AERONET Level 2 (Version 2) data, using the algorithm of
Ichoku et al. [2002]. This dataset covers the re-processed (and forward processed) entire
MODIS (both Terra and Aqua) mission through early 2007. Fig. 2.13 compares MODIS
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dark target retrieved AOD to that from sunphotometer, for Terra (left) and Aqua (right). For
both sensors, the quality of comparison is almost unimaginable; y-intercepts (absolute
value) are less than 0.02, slopes are different than unity by only 1.6 %, and correlations
(R are greater than 0.9.

At this point, the MODIS Aerosol Science Team (MAST) has not performed extensive
evaluation of the c005 aerosol size products. Over regions heavily populated with AERO-
NET sunphotometers (e.g., eastern North America, Western Europe), the fact that c005
development relied heavily on these data has resulted in qualitatively reasonable deriva-
tions of g and a. Over other regions (e.g., India, China), the MODIS estimated size para-
meters are marginally if at all improved from those derived via c004. These are regions

Fig. 2.12. MODIS aerosol size retrievals compared with AERONET-derived products. The solid shapes
and error bars represent the mean and standard deviation of the MODIS retrievals, in 20 bins of AERO-
NET-derived product. Both the retrievals from V5.1 (c004 algorithm; orange) and V5.2 (c005 algorithm;
green) are shown. The regressions (solid lines) are for the cloud of all points (not shown). (A) g over land
retrieved at 0.55 lm. Note that g is defined differently for MODIS and AERONET and that we only show
results for s0:20. (B) MODIS a (0.466/0.644 lm) over land; AERONET a interpolated to the same wa-
velengths. (C) MODIS fine s over land retrieved at 0.55 lm, compared with AERONET fine s interpo-
lated to 0.55 lm by quadratic fitting and the O’Neill et al. [2003] method. The expected errors for MODIS
(�0:05 � 0:15s) are also shown (dashed lines). (Figure adapted from Levy et al. [2007b].)
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where we have more variability of aerosol type, and therefore lower confidence in both
aerosol model and atmospherically corrected surface reflectance parameterization.

4.1.3 Regional c005 evaluation

Global, long-term scatterplots are informative, but may they hide systematic errors per-
taining to certain regions. A few recent studies have focused on comparing c005 to c004
products over particular regions of the globe. It turns out that some of these locations were
over AERONET sites that did not exist prior to c005 algorithm development, meaning they
could be thought of as independent measures of the MODIS algorithm revision. Mi et al.
[2007] and Jethva et al. [2007] showed significant improvement of AOD products over
China (Xianghe and Taihu), and India (Kanpur), respectively. Yet over both countries,
c005 size estimates showed no improvement. In contrast to that shown for c004 (e.g., Re-
mer et al., 2005; Levy et al., 2005], the MODIS/AERONET comparisons over the East
coast of the United States are much improved; now more than 70 % of the retrievals fall
within expected error [Levy, 2007]. In this region, derived FW showed significant im-
provement from c004. Many other studies analyzing c005 MODIS data over various re-
gions have recently been completed or in progress.

Fig. 2.13. MODIS aerosol optical depth (AOD at 0.55 mm) over dark land plotted against collocated
AERONET observations for Terra (left) and Aqua (right). The data were sorted according to AERONET
AOD, divided into 25 bins of equal observations. Points represent the means of each bin. Error bars re-
present the standard deviation of MODIS AOD within those bins. The highest AOD bin typically repre-
sents the mean of fewer observations than the other bins. AERONET AOD at 550 nm was interpolated
from a log-log plot of standard wavelength observations. The regression line, regression equation and
correlation were calculated from the full cloud of points before binning. Expected uncertainty is
Ds ¼ �0:05 � 0:15s, and is shown in the plots by the dashed lines. (Figure from Remer et al. [2008a].)
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4.2 Impact of data weighting on L3 products

Recall that MODIS Level 3-daily (D3) data represent statistics of L2 (PC, QA, Mean and
QA_Mean) on a 1� � 1� grid. Standard gridded, monthly (M3) products are derived from
threshold (PC 4 5 per day) Pixel weighted D3 data, such that the ‘Mean_Mean’ product is
similar to, but not the same as deriving from equal-weighted L2 data. The ‘QA_Mean_-
Mean’ product, derived from Pixel weighted D3 QA_Mean, is completely different than
derive from Confidence weighted L2 data. Levy et al. [2008] studied the impact of
applying other weightings (instead of Pixel weighting) to derive monthly AOD from
D3 data. They proposed a monthly product (‘QA_Mean_QA_Mean’) that is derived

Fig. 2.14. May 2003 monthly AOD at 1� � 1� resolution, calculated from L3-daily data. Top: Calculated
via ‘Pixel’ weighting. Bottom: Difference between ‘Confidence’ weighting and ‘Pixel’ weighting. (Figure
adapted from Levy et al. [2008].)
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from Confidence weighted D3 QA_Mean, that represents Confidence weighted L2,
i.e.,

�ssQA;k;l ¼
X
j

Qj;l�ssQA;j;l=
X
j

Qj;l: ð47Þ

Fig. 2.14 (bottom) displays a map of the difference when deriving monthly AOD derived
from Confidence weighted D3, versus that computed from Pixel weighting (Fig. 2.14
(top)). Generally, differences between the two weightings are small. However, some ae-
rosol hotspots (e.g., Asian dust/pollution plume) are marked by both large increases
(4 0.1) and large decreases (5 � 0.1). Presumably, as the Asian plume is entrained with-
in mid-latitude weather systems, optically thick aerosol and clouds may be confused. It is
interesting that the African biomass-burning plume (s 
 1:0) shows no significant differ-
ences between the two weightings.

4.3 Global mean AOD

Estimates of ‘global mean’ AOD are not standard MODIS products; however, they have
been used as diagnostic of aerosol trends (e.g., Remer et al. [2008b]), and comparisons
with other datasets (e.g., Kinne et al., 2006]. However, since data aggregation/weighting
have such a huge impact on deriving mean values, users of the data should understand
averaging logic. There are many issues that must be addressed when computing a ‘global
mean’ value from irregularly sampled data such as MODIS. Since it is easy to show that
standard gridded D3 data (PC, QA histogram, Mean and QA_Mean parameters) fully re-
present the sampling and confidence of L2 data (e.g., Eq. (42)), then we use the D3 data to
illustrate the weighting/averaging issues (e.g., Levy et al. [2008]).

The order of averaging is important. One may choose to compute a monthly global
mean by ‘bucket’ averaging (the order of temporal versus spatial averaging is irrelevant),
or by ‘ordered’ averaging of D3 data (requiring first temporal averaging then spatial aver-
aging, or vice versa). Analogous to Eq. (42), one can easily show that pixel weighting and
‘bucket’ averaging of a month’s worth of D3 data is equivalent to deriving a monthly glo-
bal mean directly from a bucket of a month’s worth of equal weighted L2. Confidence
weighted, bucket-averaged D3 are equivalent to Confidence weighted L2. ‘Ordered’ aver-
aging implies that at least two steps are required in taking the average. For example, one
may first derive gridded monthly data (a monthly map) by pixel weighting (Eq. (42)), but
then derive the monthly mean by spatially averaging the map assuming a different weight-
ing. The weighting for the spatial averaging may be equal weighting (i.e. simple average of
the map), or may be something like latitude weighting (where the grid box is multiplied by
the cosine of latitude, to represent diminishing surface area toward the poles). Latitude
weighting favors information from tropical grid locations in the global mean. Of course,
the weightings could be in the opposite order, spatial first (deriving a time series of daily
global means) and then temporal (averaging the days). We can see how applying a pixel
threshold (PC 4 5 per day) will to lead to different value for monthly global mean.
Fig. 2.15 illustrates (using artificial AOD and PC on a three-piece globe for a 2 day month)
how the global monthly average is determined by the choices of ordering and weighting.
For panel A, all paths to the global mean assume pixel weighting in the first step. The
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choice is whether to first derive a map then perform spatial averaging (dotted arrows), first
derive a time series, then perform temporal averaging (dashed arrows), or perform the
spatial and temporal average simultaneously. Each leads to a different estimate of the glo-
bal mean.

The choices of the two weightings are also important. Levy et al. [2008] found that,
depending on the ordering/aggregating/weighting assumptions, estimates of monthly glo-
bal mean AOD over land vary by as much as 40 % for a given month (between 0.20 and
0.32 for May 2003). Pixel weighting represents the ‘quantity’ of L2 sampling, so that a
monthly global mean will have a clear-sky bias. Confidence weighting represents the qual-
ity of L2 sampling, so that monthly global means are dominated regions where the aerosol
retrieval has higher QA (darker targets, better constrained aerosol models and surface re-
flectance assumptions). During the course of a year (2003; Fig. 2.16), the Confidence
weighting’s dark target bias leads to estimates of monthly global mean that are lower
(by Ds 
 0:01) than that derived with pixel weighting’s clear sky bias. Both weightings
derive lower values (Ds 
 0:04) than if we had applied equal weighting (simple averaging)
instead. Presumably, due to tropical dominance of biomass burning and dust, Latitude
weighting tends to derive higher estimates of global mean AOD.

We recall that global L2 validation shows that the expected uncertainty of an individual
L2 value is Ds ¼ 0:05 þ 0:15s. Fig. 2.16 shows that the global mean for May 2003 (ex-
pected maximum from maximum of global dust transports), derived from equal weighted
L2 is s ¼ 0:22. This means that the uncertainty in estimating the global mean (Ds ¼ 0:12)
is larger than the expected uncertainty for retrieving that value (Ds ¼ 0:083)!

Fig. 2.15. Deriving ��ss�ss from different spatial and temporal aggregations (order and weighting) of artificial
D3 data (white boxes) for 3 days and two grids. Different color boxes and arrow types represent different
paths toward ��ss�ss, (A) using pixel weighting in the first step, (B) using equal cell weighting at all steps. Mean
AOD and corresponding pixel or cell count (in parentheses) are reported in each box along the path. Name
of averaging and weighting (in parentheses) are reported along the arrows. Note that for day 3 there are no
retrievals in the lower grid box, and only one representing the upper box. In Panel A, orange boxes re-
present application of ‘threshold’ pixel count weighting (PC 4 5) to exclude low sampled grid boxes/day,
whereas black arrows and grey boxes point to the results derived without the threshold applied. Note how
‘bucket’ averaging represents consistent weighting along ordered averaging.
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5. Summary/Conclusion

As a result of obvious limitations to the MODIS c004 algorithm, Levy et al., [2007a,
2007b] developed a new algorithm for deriving aerosol properties over dark land targets.
This ‘second generation’ algorithm required full re-evaluation of assumed aerosol models,
surface reflectance parameterization, elevation correction, and retrieval philosophy. The
resulting algorithm was implemented in early 2006, and so began the processing/re-
processing known as ‘collection 5’ (c005). Initial algorithm evaluation (applied to a
6000-granule testbed), supported the conclusion of the sensitivity test, suggesting robust
retrieval of total AOD, even in the presence of spectral and absolute reflectance errors.
Global co-location with AERONET (4 20 000 points) confirmed that MODIS does
an excellent job at retrieving AOD [Remer et al., 2008a] over dark land surfaces
(sMODIS ¼ 1:016sþ 0:01; R ¼ 0:9). Unfortunately, actual retrievals of aerosol size para-
meters (ga) confirmed that in the presence of errors, this MODIS algorithm cannot ac-
curately retrieve aerosol size. In the near future, as more aerosol data accumulates (from
AERONET and other data sources), new or improved aerosol optical models may lead to
better retrievals in some regions (e.g. Kanpur, India; H. Jethva, personal communication).
Also, new understanding about spectral surface reflectance properties should also improve
the resulting aerosol retrieval. Nonetheless, even with its limitations, the MODIS c005 data
provides the most consistent, comprehensive, and easily available, global, long-term ae-
rosol dataset.

Due to its relative success, MODIS data are (and have been) used for all sorts of ap-
plications, from monitoring and forecasting air quality, to characterizing aerosol effects on

Fig. 2.16. Time series (Terra, 2003) of monthly, global mean AOD, computed from different aggregation/
weighting methods of L3-daily (D3) data (small squares/triangles, thin curves), L2 data (large dots) and
L3-monthly (M3) data (large squares, thick curves). Both Mean and QA_Mean parameters are considered.
Similar by colored curves/points indicate product equivalency (From Levy et al. [2008].)
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climate. Some of these applications (e.g., comparing to model output) suggest the use of
Level 3 (gridded aggregations of Level 2 data) to represent aerosol data. However, due to
issues of orbital geometry, the presence of clouds, inhomogeneous surfaces, algorithm
logic, quality, etc, MODIS L2 sampling is highly variable. This means that derivations
of L3 data are determined by choices of L2 weighting, and that estimates of global
mean AOD are further complicated by choices of how to average the data (ordered aver-
aging, or bucket?). Here, and in Levy et al. [2008], we showed that how one chooses to
represent the MODIS data can lead to differences in global mean (May 2003) values by
40 % (Ds 
 0:12), which has far more uncertainty than that of the L2 retrieval itself
(Ds ¼ 0:05 þ 0:15s ¼ 0:083).

In the spirit of Mishchenko et al. [2007], Remer et al. [2008b] used spatially averaged
M3 (Pixel weighted D3) data, obtained from Giovanni (e.g., Acker and Leptoukh [2007] to
identify trends in the MODIS mission time series. While not statistically significant at
95 %, they find a compelling trend (Ds=year ¼ �0:0026) over land that might be attri-
butable to efforts to clean up air pollution. Also, AOD trends from MODIS and AERONET
are correlated over many sites. Yet, since the current Giovanni application does not con-
sider the averaging inherent in M3, one cannot draw final conclusions. Clearly, any trend
analysis requires further analysis of the uncertainties of averaging/aggregating the irregu-
lar sampled data, and should be taken up at regional levels.
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Levy, R.C., L.A. Remer, D. Tanré, Y.J. Kaufman, C. Ichoku, B.N. Holben, J.M. Livingston, P.B. Russell,
and H. Maring, 2003: Evaluation of the MODIS retrievals of dust aerosol over the ocean during
PRIDE. J. Geophys. Res., 108(D14), 10.1029/2002JD002460.

Levy, R.C., L.A. Remer et al., 2004: Effects of neglecting polarization on the MODIS aerosol retrieval
over land, IEEE Trans. Geosci. Remote Sens, 42(10), 2576–2583.

Levy, R.C., L.A. Remer et al., 2005: Evaluation of the MODIS aerosol retrievals over ocean and land
during CLAMS, J. Atmos. Sci., 62(4), 974–992.

Levy, R.C., L.A. Remer, and O. Dubovik, 2007a: Global aerosol optical properties and application to
MODIS aerosol retrieval over land. J. Geophys. Res., 112, D13210, doi:10.1029/2006JD007815.

Levy, R.C., L. Remer, S. Mattoo, E. Vermote, and Y.J. Kaufman, 2007b: Second-generation algorithm for
retrieving aerosol properties over land from MODIS spectral reflectance. J. Geophys. Res., 112,
D13211, doi:10.1029/2006JD007811.

Levy, R.C., V. Zubko, G. Leptoukh, A. Gopalan, L.A. Remer, 2008: A critical look at deriving monthly
aerosol optical depth from MODIS orbital data, Geophys. Res. Letts., in press.

Li, R.R., Y.J. Kaufman, B.C. Gao, and C.O. Davis, 2003: Remote sensing of suspended sediments and
shallow coastal waters. IEEE Trans. Geosci. Remote Sens., 41(3), 559–566.

Li, R.R., L. Remer et al., 2005: Snow and ice mask for the MODIS aerosol products. IEEE Geo. and Rem.
Sens. Lett., 2(3), 306–310.

Liou, K.-N., 2002: An Introduction to Atmospheric Radiation, 2nd edition, Academic Press, San Diego,
CA.

Malm, W.C., J.F. Sisler, D. Huffman, R.A. Eldred, and T.A. Cahill, 1994: Spatial and seasonal trends in
particle concentration and optical extinction in the United States, J. Geophys. Res., 99(D1), 1347–
1370.
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3 The time series technique for aerosol retrievals
over land from MODIS

Alexei Lyapustin, Yujie Wang

1. Introduction

Atmospheric aerosols interact with sunlight by scattering and absorbing radiation. By
changing the irradiance at the Earth surface, modifying cloud fractional cover and micro-
physical properties and by a number of other mechanisms, they affect the energy balance,
hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a
growing impact of aerosols on air quality and human health.

The Earth Observing System [NASA, 1999] initiated high-quality global Earth obser-
vations and operational aerosol retrievals over land. With the wide swath (2,300 km) of
MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et
al., 2005; Levy et al., 2007] currently complemented by the Deep Blue method [Hsu et al.,
2004] provides a daily global view of planetary atmospheric aerosol. The MISR algorithm
[Martonchik et al., 1998; Diner et al., 2005] makes high-quality aerosol retrievals in 300-
km swaths covering the globe in 8 days.

With the MODIS aerosol program being very successful, there are still several unre-
solved issues in the retrieval algorithms. The current processing is pixel-based and relies
on a single-orbit data. Such an approach produces a single measurement for every pixel
characterized by two main unknowns, aerosol optical thickness (AOT) and surface reflec-
tance (SR). This lack of information constitutes a fundamental problem of remote sensing
which cannot be resolved without a priori information. For example, the MODIS Dark
Target algorithm makes spectral assumptions about surface reflectance, whereas the
Deep Blue method uses an ancillary global database of surface reflectance composed
from minimal monthly measurements with Rayleigh correction. Both algorithms assume
a Lambertian surface model.

The surface-related assumptions in the aerosol retrievals may affect subsequent atmo-
spheric correction in an unintended way. For example, the Dark Target algorithm uses an
empirical relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 lm
channel (B7) for the purpose of aerosol retrieval. Obviously, the subsequent atmospheric
correction will produce the same SR in the red and blue bands as predicted, i.e. an em-
pirical function of q2:1. In other words, the spectral, spatial and temporal variability of
surface reflectance in the Blue and Red bands appears “borrowed” from band B7.
This may have certain implications for the vegetation and global carbon analysis because
the chlorophyll-sensing bands, B1 and B3, are effectively substituted in terms of variability
by band B7, which is sensitive to plant liquid water.

This chapter describes a new recently developed generic aerosol-surface retrieval algo-
rithm for MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC)



algorithm simultaneously retrieves AOT and surface bi-directional reflection factor (BRF)
using the time series of MODIS measurements.

MAIAC starts with accumulating 3 to 16 days of calibrated and geo-located level 1B
(L1B) MODIS data. The multi-day data provide different view angles, which are required
for the surface BRF retrieval. The MODIS data are first gridded to 1 km resolution in order
to represent the same surface footprint at different view angles. Then, the algorithm takes
advantage of the following invariants of the atmosphere–surface system: (1) the surface
reflectance changes little during accumulation period, and (2) AOT changes little at short
distances (
 25 km), because aerosols have a mesoscale range of global variability of

 50–60 km [Anderson et al., 2003]. Under these generic assumptions, the system of
equations becomes over-defined and formally can be resolved. Indeed, we define the ele-
mentary processing area as a block with the size of N 
 25 pixels (25 km). With K days in
the processing queue, the number of measurements exceeds the number of unknowns

KN 2 > K þ 3N 2 if K > 3; ð1Þ
where K is the number of AOT values for different days, and 3 is the number of free para-
meters of the Li-Sparse Ross-Thick (LSRT) [Lucht et al., 2000] BRF model for a pixel.

To simplify the inversion problem, the algorithm uses BRF, initially retrieved in B7,
along with an assumption that the shape of BRF is similar between the 2.1 lm and the
Blue spectral band:

qkijðl0; l;fÞ ¼ bkijq
B7
ij ðl0; l;fÞ: ð2Þ

The scaling factor b is pixel-, wavelength-, and time-dependent. This physically well-based
approach reduces the total number of unknown parameters to K þ N2. Below, factor b is
called spectral regression coefficient (SRC).

The assumption (2) of similarity of the BRF shape is robust for most land cover types
because the surface absorption coefficient, or inversely, surface brightness, is similar in the
visible and shortwave infrared (SWIR) spectral regions, and because the scale of macro-
scopic surface roughness, which defines shadowing, is much larger than the wavelength
[Flowerdew and Haigh, 1995]. One obvious exception is snow, which is very bright in the
visible wavelengths and dark in the SWIR. The principle of spectral similarity of the BRF
shape was extensively tested and implemented in ATSR-2 [Veefkind et al., 1998] and
MISR [Diner et al., 2005] operational aerosol retrievals.

The MAIAC algorithm is based on minimization of an objective function, so it can
directly control the assumptions used. For example, the objective function is high if surface
changed rapidly or if aerosol variability was high on one of the days. Such days are filtered
and excluded from the processing. The algorithm combines the block-level and the pixel-
level processing, and produces the full set of parameters at 1 km resolution.

From a historical prospective, the new algorithm inherits multiple concepts developed
by the MISR science team, from using the rigorous radiative transfer model with non-Lam-
bertian surface in aerosol/surface retrievals [Diner et al., 1999, 2001] to the concept of
image-based rather than pixel-based aerosol retrievals [Martonchik et al., 1998]. The latter
idea, in a different implementation, was proposed in the Contrast Reduction method by
Tanre et al. [1988], who showed that consecutive images of the same surface area, acquired
on different days, can be used to evaluate the AOT difference between these days.
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MAIAC is a complex algorithm which includes water vapor retrievals, cloud masking,
aerosol retrievals and atmospheric correction. The separate processing blocks are inter-
dependent: they share the data through the common algorithm memory and may update
each other’s output. For example, the cloud mask is updated during both aerosol retrievals
and atmospheric correction. Section 2 of this chapter provides an overview of MAIAC
processing. Section 3 presents the radiative transfer basis for the aerosol retrievals and
atmospheric correction algorithm, which are described in sections 4 and 5, respectively.
Section 6 describes the MAIAC cloud mask algorithm. Finally, section 7 presents exam-
ples of MAIAC performance and results of AERONET validation. The chapter is con-
cluded with a summary (Section 8).

2. MAIAC overview

The block-diagram of MAIAC algorithm is shown in Fig. 3.1.
1. The received L1B data are gridded, split in 600 km Tiles, and placed in a Queue with the

previous data. The size of the Tile is selected to fit the operational memory of our
workstation. As a reminder, MODIS uses 1000 km Tiles in operational processing.
In order to limit variation of the footprint with changing view zenith angle (VZA),
the resolution is coarsened by a factor of 2. For example, the grid cell size is 1 km
for MODIS 500 m channels B1–B7. We use the MODIS land gridding algorithm [Wol-
fe et al., 1998] with minor modifications that allow us to better preserve the anisotropy
of signal in the gridded data when measured reflectance is high, for example over snow,
thick clouds or water with glint.

2. The column water vapor is retrieved for the last Tile using MODIS near-IR channels
B17–B19 located in the water vapor absorption band 0.94 lm. This algorithm is a mod-
ified version of Gao and Kaufman [2003]. It is fast and has the average accuracy of
� 5 – 10 % over the land surface [Lyapustin and Wang, 2007]. The water vapor retrie-
vals are implemented internally to exclude dependence on other MODIS processing
streams and unnecessary data transfers.

Fig. 3.1. Block-diagram of MAIAC algorithm. The initial capital letters indicate spatial and temporal
domains of operations, for example at pixel- (P) or/and block- (B) level, and using the data of the
last Tile only (LT) or using the full time series of the Queue (Q).
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3. The time series of measurements helps to develop a high-quality cloud mask (CM). It is
based on the notion that the surface spatial pattern is stable and reproducible in the short
time frame in cloud-free conditions, whereas clouds randomly disturb this pattern. The
algorithm uses covariance analysis to identify cloud-free blocks. On this basis, it builds
a reference clear-skies image of the surface, which is further used in the pixel-level
cloud masking. The MAIAC CM algorithm has an internal land–water–snow dynamic
classification, which guides the algorithm flow.

4. The main algorithm simultaneously retrieves the block-level AOT for K-days and N 2

values of the spectral regression coefficient bij for the Blue (B3) band. This algorithm
turns on when the B7 BRF is known. Otherwise, MAIAC implements a simplified ver-
sion of the MODIS Dark Target algorithm.

5. The AOT computed in the previous step has a low resolution of 25 km. On the other
hand, knowledge of SRC provides the Blue band BRF from Eq. (2) at a grid resolution.
With the boundary condition known, the Blue band AOT in this step is retrieved at high
1 km resolution.

6. The ratio of volumetric concentrations of coarse-to-fine aerosol fractions (g) is calcu-
lated for the last Tile at the grid resolution. This parameter selects the relevant aerosol
model and provides spectral dependence of AOT for the atmospheric correction. The
AOT and parameter g retrievals are done simultaneously, which is indicated by two
arrows between processing blocks 5 and 6.

7. Finally, surface BRF and albedo are retrieved at grid resolution from the K-day Queue
for the reflective MODIS bands.

2.1 Implementation of time series processing

The MAIAC processing uses both individual grid cells, also called pixels below, and fixed-
size (25 � 25 km2) areas, or blocks, required by the cloud mask algorithm and SRC re-
trievals. In order to organize such processing, we developed a framework of C ++ classes
and structures (algorithm-specific Containers). The class functions are designed to handle
processing in the various time–space scales, for example at the pixel- versus block-level,
and for a single (last) day of measurements versus all available days in the Queue, or for a
subset of days which satisfy certain requirements (filters). The data storage in the Queue is
efficiently organized using pointers, which avoids physically moving the previous data in
memory when the new data arrive.

The structure of the Queue is shown schematically in Fig. 3.2. For every day of observa-
tions, MODIS measurements are stored as Layers for reflective bands 1–7 and thermal
band 31, all of which are required by the CM algorithm. Besides storing gridded MODIS
data (Tiles), the Queue has a dedicated memory (Q-memory) which accumulates ancillary
information about every block and pixel of the surface for the cloud mask algorithm
(Refcm data structure). It also keeps information related to the history of previous retrie-
vals, for example spectral surface BRF parameters and albedo. Given the daily rate of
MODIS observations, the land surface is a relatively static background. Therefore, knowl-
edge of the previous surface state significantly enhances both the accuracy of the cloud
detection, and the quality of atmospheric correction, for example, by imposing a require-
ment of consistency of the time series of BRF and albedo.
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3. Radiative transfer basis

MAIAC resulted from an effort to develop an operational algorithm with explicit mini-
mization where parameters of the surface BRF model can be calculated analytically from
measurements. A similar approach developed by Martonchik et al. [1998] for MISR fea-
tures a relatively small size of the look-up table (LUT) and a high efficacy, which is cri-
tically important for operational algorithm. We will be using a high-accuracy semi-ana-
lytical formula for the top-of-atmosphere (TOA) radiance derived with Green’s function
method [Lyapustin and Knyazikhin, 2001; Lyapustin and Wang, 2005]. Below, s is atmo-
spheric optical thickness, pSk is spectral extraterrestrial solar irradiance, and
s ¼ ðl ¼ cos h; f) is a vector of direction defined by zenith (h) and azimuthal (f) angles.
The z-axis is pointed downwards, so l0 > 0 for the solar beam and l < 0 for the reflected
beam. The TOA radiance Lðs0; sÞ is expressed as a sum of the atmospheric path radiance
(D), and surface-reflected radiance (Ls), directly and diffusely transmitted through the
atmosphere:

Lðs0; sÞ ¼ Dðs0; sÞ þ Lsðs0; sÞe�s=jlj þ Lds ðs0; sÞ: ð3Þ

The surface-reflected radiance is written as:

Lsðs0; sÞ ffi Skl0e�s=l0fqðs0; sÞ þ ac0q1ðlÞq2ðl0Þg þ
a
p

ð
Xþ

Dsðs0; s
0Þqðs 0; sÞl 0ds 0 ð4Þ

Fig. 3.2. Structure of Queue for ASRVN processing. The Queue, designed for the sliding window algo-
rithm, stores up to 16 days of gridded MODIS observations at 1-km resolution. The CM algorithm uses
MODIS bands 1–7 and band 31, which are stored as Layers (double-indexed arrays) shown in the upper-
left corner. A dedicated Q-memory is allocated to store the ancillary information for the CM algorithm,
such as a reference clear-skies image (refcm), block-level statistical parameters fr1max; r1; DBTg, and
results of dynamic land–water–snow classification (mask_LWS). This information is updated with latest
measurements (day L) once a given block is found cloud-free, thus adapting to changing surface condi-
tions. The Q-memory also stores results of previous reliable BRF retrievals for MODIS bands 1–7.

3. Radiative transfer basis 73



where Ds is path radiance incident on the surface, c0 is spherical albedo of the atmosphere,
and

q1ðlÞ ¼
1

2p

ð
Xþ

qðs 0; sÞ ds 0; q2ðl0Þ ¼
1

2p

ð
X�

qðs0; sÞ ds: ð5Þ

a is a multiple reflection factor, a ¼ ð1 � qðl0Þc0Þ�1, where q is surface albedo. The dif-
fusely transmitted surface-reflected radiance at the TOA is calculated from Ls with the help
of 1D diffuse Green’s function of the atmosphere:

Lds ðs0; sÞ ¼
ð
X�

Gdðs1; sÞLsðs0; s1Þ ds1: ð6Þ

The function pGd is often called bi-directional upward diffuse transmittance of the atmo-
sphere. The method of its calculation was discussed in detail by Lyapustin and Knyazikhin
[2001]. The surface albedo is defined as a ratio of reflected and incident radiative fluxes at
the surface:

qðl0Þ ¼ FUpðl0Þ=FDownðl0Þ; ð7aÞ

FDownðl0Þ ¼ pSkl0 e�s=l0 þ
ð
Xþ

Dsðs0; s
0Þl 0 ds 0 ¼ FDir

s ðl0Þ þ FDif
s ðl0Þ; ð7bÞ

FUpðl0Þ ¼ pSkl0 e�s=l0q2ðl0Þ þ
ð
Xþ

l 0q2ðl 0ÞDsðs0; s
0Þ ds 0; q2ðl0Þ ¼

1

p

ð
X�

qðs0; sÞl ds:

ð7cÞ

These formulas give an explicit expression for the TOA radiance as a function of surface
BRF. As shown in Lyapustin and Knyazikhin [2001], the expression for TOA radiance
is reduced to a classical equation of Chandrasekhar [1960] when surface reflectance is
Lambertian. The accuracy of the above formulas is high, usually within a few tenths
of a percent. Below we will use the TOA reflectance, which is defined as

Rk ¼ Lk=ðl0SkÞ: ð8Þ

3.1 Expression for the TOA reflectance using LSRT BRF model

Based on the described semi-analytical solution, TOA reflectance can be expressed as an
explicit function of parameters of the BRF model. We are using a semi-empirical Li Sparse
– Ross Thick (LSRT) BRF model [Lucht et al., 2000]. This is a linear model, represented
as a sum of Lambertian, geometric-optical, and volume scattering components:

qðl0; l;fÞ ¼ kL þ kGfGðl0; l;fÞ þ kV fV ðl0; l;fÞ: ð9Þ

It uses predefined geometric functions (kernels) fG, fV to describe different angular
shapes. The kernels are independent of the land conditions. The BRF of a pixel is char-
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acterized by a combination of three kernel weights, ~KK ¼ fkL; kG; kVgT . The LSRT model
is used in the operational MODIS BRF/albedo algorithm [Schaaf et al., 2002].

The substitution of Eq. (9) into Eqs. (3)–(7) and normalization to the reflectance units
gives the following expressions for the surface-reflected signal (the last two terms of
Eq. (3)):

Rsðl0; l;fÞ ¼ e�s=l0fkL þ kGfGðl0; l;fÞ þ kV fV ðl0; l;fÞþ
þac0q1ðlÞq2ðl0Þg þ al�1

0 fkLEd
0ðl0Þ þ kGD1

Gðl0; l;fÞ þ kVD1
V ðl0; l;fÞg; ð10Þ

Rd
s ðl0; l;fÞ ¼ e�s=l0 � f½kLGavðlÞ þ kGG1

Gðl0; l;fÞþ
þkVG1

V ðl0; l;fÞ� þ ac0½kLGavðlÞ þ kGG11
G ðlÞ þ kVG11

V ðlÞ�q2ðl0Þgþ
þal�1

0 fkLEd
0ðl0ÞGavðlÞ þ kGH1

Gðl0; l;fÞ þ kVH1
V ðl0; l;fÞg: ð11Þ

The surface albedo is written as:

qðl0Þ ¼ E�1
0 ðl0Þfl0e�s=l0q2ðl0Þ þ kLEd

0ðl0Þ þ kGD3
Gðl0Þ þ kVD3

V ðl0Þg: ð12Þ

Different functions of these equations represent different integrals of the incident path
radiance (Ds) and atmospheric Green’s function (G) with the BRF kernels. They were
described by Lyapustin and Wang [2005] along with the method of numerical calculation.
Below, we give only the integral expressions for these functions:

q1ðlÞ ¼ kL þ kGf 1
GðlÞ þ kV f 1

V ðlÞ; ð13Þ

q2ðl0Þ ¼ kL þ kGf 2
Gðl0Þ þ kV f 2

V ðl0Þ; ð14Þ

q2ðl0Þ ¼ kL þ kGf 3
Gðl0Þ þ kV f 3

V ðl0Þ; ð15Þ

D1
kðl0; l;f� f0Þ ¼

1

p

ð1
0

l 0 dl 0
ð2p
0

df 0Dsðl0; l
0;f 0 � f0Þfkðl 0; l;f� f 0Þ; ð16Þ

D3
kðl0Þ ¼

1

p

ð2p
0

df 0
ð1
0

l 0f 3
k ðl 0ÞDsðl0; l

0;f 0Þ dl 0; ð17Þ

GavðlÞ ¼
ð0
�1

dl1

ð2p
0

Gdðl1; l;f� f1Þ df1; ð18Þ

G11
k ðlÞ ¼

ð0
�1

f 1
k ðl1Þ dl1

ð2p
0

Gdðl1; l;f� f1Þ df1; ð19Þ

G1
kðl0; l;f� f0Þ ¼

ð0
�1

dl1

ð2p
0

Gdðl1; l;f� f1Þfkðl0; l1;f1 � f0Þ df1; ð20Þ
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H1
k ðl0; l;f� f0Þ ¼

ð0
�1

dl1

ð2p
0

Gdðl1; l;f� f1ÞD1
kðl0; l1;f1 � f0Þ df1: ð21Þ

The subscript k in the above expressions refers to either geometric-optical (G) or volu-
metric (V) kernels, and the supplementary functions of the BRF kernels are given by:

f 1
k ðlÞ ¼

1

2p

ð1
0

dl 0
ð2p
0

fkðl 0; l;f 0 � fÞ df 0; ð22aÞ

f 2
k ðl0Þ ¼

1

2p

ð0
�1

dl1

ð2p
0

fkðl0; l1;f1 � f0Þ df1; ð22bÞ

f 3
k ðl 0Þ ¼ 1

p

ð0
�1

l dl
ð2p
0

fkðl 0; l;f� f 0Þ df: ð22cÞ

The diffuse and total spectral surface irradiance are calculated from Eq. (7b) as:

Ed
0ðl0Þ ¼ FDif ðl0Þ=ðpSkÞ;E0ðl0Þ ¼ FDownðl0Þ=ðpSkÞ: ð23Þ

Let us rewrite Eqs. (10)–(11) separating the kernel weights. First, separate the small terms
proportional to the product c0q2ðl0Þ into the nonlinear term:

Rnlðl0; lÞ ¼ ac0q2ðl0Þe�s=l0fe�s=jljq1ðlÞ þ kLGavðlÞ þ kGG11
G ðlÞ þ kVG11

V ðlÞg: ð24Þ

Second, collect the remaining multiplicative factors for the kernel weights:

FLðl0; lÞ ¼ ðe�s=l0 þ al�1
0 Ed

0ðl0ÞÞðe�s=jlj þ GavðlÞÞ; ð25Þ

Fkðl0; l;fÞ ¼ fe�s=l0 fkðl0; l;fÞ þ al�1
0 D1

kðl0; l;fÞge�s=jljþ
þe�s=l0G1

kðl0; l;fÞ þ al�1
0 H1

k ðl0; l;fÞ; k ¼ V ; G: ð26Þ

With these notations, the TOA reflectance becomes:

Rðl0; l;fÞ ¼ RDðl0; l;fÞ þ kLFLðl0; lÞ þ kGFGðl0; l;fÞþ
þkVFV ðl0; l;fÞ þ Rnlðl0; lÞ: ð27Þ

This equation, representing TOA reflectance as an explicit function of the BRF model
parameters, provides the means for an efficient atmospheric correction.

Let us derive a modified form of this equation which is used in the aerosol retrievals.
The last nonlinear term of Eq. (27), which describes multiple reflections of the direct-beam
sunlight between the surface and the atmosphere, is small (Rnl / qc0), and can be ne-
glected for simplicity of further consideration. The functions Fk are still weakly nonlinear
via parameter a, which describes multiple reflections of the diffuse incident sunlight. By
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setting a ¼ 1, we omit this nonlinearity and Eq. (27) becomes a linear function of the BRF
parameters. With an additional assumption of spectral invariance of the BRF shape
(Eq. (2)), Eq. (27) can be rewritten for the pixel (i, j) and observation day k as:

Rk
ijðkÞ ffi RDðk; skÞ þ bijðkÞYijðk; skÞ; ð28Þ

where bijðkÞ is spectral regression coefficient for a given spectral band, and function

Yijðk; skÞ ¼ kL;B7
ij FLðk; skÞ þ kG;B7

ij FGðk; skÞ þ kV ;B7
ij FV ðk; skÞ ð29Þ

can be calculated from the look-up table (LUT) for a given geometry, AOTand wavelength,
once the BRF parameters in band B7 for the pixel (i, j) are known. The LUT stores func-
tions f 1

k , f 2
k , f 3

k , which depend on geometry of observations, and functions D1
k , D

3
k , G

av, G1
k ,

G11
k , H1

k , Ed
0 , E0, RD, which depend on geometry, selected aerosol model and AOT. Index k

refers to either volumetric (V) or geometric-optical (G) BRF kernel function. The pressure
correction and water vapor correction of the LUT functions are performed with the algo-
rithm described in Lyapustin and Wang, [2007]. The absorption by stratospheric ozone is
corrected by dividing the measured reflectance by ozone transmittance [e.g., see Diner et
al., 1999].

4. Aerosol algorithm

The aerosol algorithm consists of two steps: deriving spectral regression coefficients
(SRCs), and retrieving AOTand aerosol fractional ratio. The SRC retrievals use parametric
Eq. (28).

4.1 SRC retrievals

Let us assume that the ancillary information for the aerosol retrievals, including water
vapor, cloud mask, and surface BRF in band B7, is available. Let us also assume that
gridded TOA MODIS reflectance data is available for 3 � K � 16 cloud-free days, which
form the processing Queue. Our goal is to derive the set of K AOT values for different days
(orbits), and N2 SRC values for the Blue band (B3) for a given 25-km block of the surface.
The SRC algorithm is implemented in three steps:
(1) select the clearest day from the Queue;
(2) calculate the AOT difference for every day with respect to the clearest day,

Dsk ¼ sk � s0;
(3) find AOT on the clearest day, s0. At this step, the algorithm simultaneously generates

the full set of spectral regression coefficients.
The first task is solved as follows. Initially, the SRCs are calculated for every day and every
pixel separately using Eq. (28) for AOT ¼ 0. For a given pixel, the coefficient bkij is lowest
on the clearest day because its value is increased by the path reflectance on hazier days.
Therefore, the clearest day is selected as a day with the lowest on average set of coefficients
bkij in the block.
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In the next step (2), the AOT difference between the day k and the clearest day is cal-
culated independently for every day of the Queue by minimizing the difference

Fk
1 ¼ 1

N 2

X
i;j

fbClearij � bkijðDskÞg2 ¼ minfDskg: ð30Þ

The SRCs for the clearest day (bClearij ) have been calculated for s0 ¼ 0 in step (1). When
solving Eq. (30), SRCs for the day k are re-calculated for the increasing values of AOT
from the LUT sk (Dsk ¼ sk � s0 ¼ skÞ until the minimum is reached. This operation is
equivalent to simultaneous removal of bias and ‘stretching’ the contrast for a given block
that minimizes the overall difference.

In step (3), AOT on the clearest day is found by minimization of rmse between the the-
oretical reflectance and the full set of measurements for K days and N2 pixels:

F2 ¼
X
K

X
i;j

fRMeas;k
ij � RTh;k

ij ðs0 þ DskÞg2 ¼ minfs0g: ð31Þ

To calculate theoretical reflectance with Eq. (28), one needs to know the coefficients bij.
These are calculated using the first assumption described in Introduction, namely that the
surface reflectance changes little during K days. Therefore, for a given pixel and given
value s0, the SRC can be found by minimizing the rmse over all days of the Queue:

Fij ¼
X
K

fRMeas;k
ij � RTh;k

ij ðskÞg2 ¼ minfbijg; sk ¼ s0 þ Dsk ; ð32Þ

which is solved by the least-squares method (@Fij=@bij ¼ 0Þ with the analytical solution:

bij ¼
X
K

½RMeas;k
ij � RDðskÞ�YijðskÞ=

X
K

fYijðskÞg2: ð33Þ

Thus, given the aerosol model, Eq. (31) becomes parameterized in terms of the only pa-
rameter s0. Eqs (31) and (32) are positively defined quadratic forms which have unique
solutions. To solve these equations numerically, the MAIAC algorithm incrementally in-
creases the AOT (e.g., s0 in Eq. (31)) using the LUT entries, until the minimum is found.
Because the discretization of LUT in AOT is relatively coarse, the algorithm finds the
‘bend’ point, where function F2 starts increasing, approximates the last three points, en-
compassing the minimum, with quadratic function, and finds the minimum analytically.
The set of SRCs is calculated with the final value s0 from Eq. (33).

This algorithm was developed and optimized through a long series of trial and error. It
requires at least three clear or partially clear days in the Queue for the inversion, with at
least 50 % of the pixels of the block being clear for three or more days. The algorithm has a
self-consistency check, verifying whether the main assumptions hold. This is done during
step (2) processing. If the surface had undergone a rapid change during the accumulation
period (e.g., a snowfall, or a large-scale fire, flooding or rapid land-cover conversion, with
the size of disturbance comparable to the block size), or if the AOT changes significantly
inside a given block on day k, then the value of rmse

p
Fk

1 remains high. Currently, the
algorithm excludes such days from the processing Queue based on a simple empirically
established threshold

p
Fk

1 	 0:03. In regular conditions, the value
p
Fk

1 is usually lower
than 0.01–0.015.
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Retrieving SRCs is a well-optimized and a relatively fast process. Nevertheless, in order
to reduce the total processing time, MAIAC makes these retrievals with the period of 2–3
days, which is sufficient to track a relatively slow seasonal variability of the land surface.
For every block, the retrieved spectral regression coefficients are stored in the Q-memory,
along with the band B7 LSRT coefficients. They are used as ancillary information for the
aerosol retrievals at 1 km grid resolution, which are described next.

4.2 Aerosol retrievals

With spectral regression coefficients retrieved, the surface BRF in every grid cell in the
Blue band becomes known (Eq. (2)). Further, the AOT and aerosol fractional ratio are
retrieved at 1-km resolution from the last Tile of MODIS measurements.

This algorithm requires a set of aerosol models with increasing particle size and asym-
metry parameter of scattering. The aerosols are modeled as a superposition of the fine and
coarse fractions, each described by a log-normal size distribution. For example, for the
continental USA we are currently using the weak absorption model with the following
parameters for the fine (F) and coarse (C) fractions: median radius RF

m ¼ 0:14 lm,
RC
m ¼ 2:9 lm; standard deviation rF ¼ 0:38 lm rC ¼ 0:75 lm; spectrally independent

real part of refractive index nr ¼ 1:41, and imaginary part of refractive index
ni ¼ f0:0044; 0:0044; 0:0044; 0:002; 0:001g at wavelengths {0.4, 0.55, 0.8, 1.02,
2.13} lm, respectively. Parameter ni is linearly interpolated between five grid wave-
lengths. By varying the ratio of volumetric concentrations of coarse and fine fractions,
g ¼ CCoarse

m =CFine
m , a wide range of asymmetry (size) parameter is simulated. The LUT

is originally computed for the fine and coarse fractions separately. When MAIAC reads
the LUT, it generates a series of mixed aerosol LUTs for different values
g ¼ f0:2; 0:5; 1; 2; 5; 10g, which are stored in the operational memory. In this se-
quence, value g ¼ 0:5 gives a model that is close to the urban continental weak absorption
(GSFC) model from AERONET classification [Dubovik et al., 2002], whereas the values
g ¼ 2–5 are more representative of the mineral dust. Following the MISR aerosol algo-
rithm [Diner et al., 1999, 2001; Martonchik et al., this volume Ch. 9], a modified linear
mixing algorithm [Abdou et al., 1997] is used to mix the LUT radiative transfer (RT) func-
tions for the fine and coarse fractions. This algorithm retains high accuracy with increasing
AOT and aerosol absorption.

For each pixel, the retrieval algorithm goes through a loop of increasing values of frac-
tional ratio g, and using known surface BRF qB3

ij ðl0; l;fÞ ¼ bB3
ij q

B7
ij ðl0; l;fÞ it computes

AOT (sij) in the Blue band by fitting theoretical TOA reflectance to the measurement

RTheor;B3ðg; sijÞ ¼ RMeas;B3
ij : ð34Þ

In the next step, a spectral residual is evaluated using the Blue (B3), Red (B1), and SWIR
(B7) bands:

vij ¼
X
k

fRMeas;k
ij � RTheor;k

ij ðskðgÞÞg2 ¼ min fgg: ð35Þ

The procedure is repeated with the next value g until the minimum is found. Theoretical
reflectance in Eq. (35) is computed with the LSRT BRF parameters from the previous
cycle of atmospheric correction, which are stored in the Q-memory.
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Because MODIS measurements provide only a spectral slice of information, MAIAC
does not attempt MISR-like retrievals for multiple aerosol models with different absorp-
tion and sphericity of particles. Instead, it follows the MODIS Dark Target approach [Levy,
2007] where the aerosol fractions and their specific absorption properties are fixed region-
ally.

The spectral sensitivity of measurements to variations of the aerosol model in clear
atmospheric conditions, especially at longer wavelengths, is limited. Currently, growth
of the MODIS footprint with the scan angle is the main source of uncertainty in MAIAC’s
knowledge of the surface spectral BRF. These errors, although small, can be costly if a very
asymmetric aerosol model with large AOT values is selected when the atmosphere is ac-
tually very clean. For these reasons, the full minimization procedure Eqs (34) and (35) is
performed only when the retrieved optical thickness for the standard continental model
(g ¼ 0:5) exceeds 0.3. Otherwise, a single value of g ¼ 0:5 is used and AOT is reported for
these background conditions.

The retrieval examples given below were generated using the single low absorption
aerosol model described above. In future, the aerosol model will be geographically pre-
scribed based on the AERONET climatology [Holben et al., 2001]. The following work is
underway: we are studying the AERONET-based classification used in the MODIS aerosol
algorithm [Levy, 2007] and plan to investigate a MISR level 3 aerosol product, which
provides an independent global aerosol climatology over land.

5. Atmospheric correction

Determination of spectral surface BRF is an integral part of MAIAC’s aerosol retrieval
process. Below, we describe the atmospheric correction algorithm implemented in MAIAC.

Once the cloud mask is created and aerosol retrievals performed, the MAIAC algorithm
filters the time series of MODIS measurements for every pixel and places the remaining
clear-skies data in a ‘container’. The filter excludes pixels with clouds and cloud shadows,
as well as snow-covered pixels as detected by the CM algorithm during land–water–snow
classification. We also filter out pixels with high AOT (4 0.9) where sensitivity of mea-
surements to surface reflectance decreases. The container stores measurements along with
the LUT-based RT functions for the cloud-free days of the Queue. If the number of avail-
able measurements exceeds three for a given pixel, then the coefficients of LSRT BRF
model are computed. The retrieval diagram is shown in Fig. 3.3.

5.1 Inversion for LSRT coefficients

In operational MODIS land processing, BRF is determined in two steps: first, the atmo-
spheric correction algorithm derives surface reflectance for a given observation geometry
using Lambertian approximation [Vermote et al., 2002], and next, three LSRT coefficients
are retrieved from the time series of surface reflectance accumulated for a 16-day period
[Schaaf et al., 2002]. The Lambertian assumption simplifies the atmospheric correction
but creates biases in the surface reflectance which depend on the observation geometry and
atmospheric opacity. It is known that Lambertian assumption creates a flatter BRF pattern
while the true BRF is more anisotropic [Lyapustin, 1999].
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The MAIAC algorithm derives LSRT coefficients directly by fitting the measured TOA
reflectance accumulated for a period of 4–16 days. The inversion is based on Eq. (27)
derived earlier. This equation provides an explicit parameterization of TOA reflectance
in terms of the BRF model parameters ~KK ¼ fkL; kG; kVgT .

The quasi-linear form of equation (27) leads to a very efficient iterative minimization
algorithm:

RMSE ¼
X
j

ðrðnÞj � FL
j k

LðnÞ � FV
j k

V ðnÞ � FG
j k

GðnÞÞ2 ¼ min
fKg

; rðnÞ ¼ R� RD � Rnlðn�1Þ;

ð36Þ

where index j lists measurements for different days, and n is the iteration number. Eq. (36)
provides an explicit least-squares solution for the kernel weights. In a matrix form, the
solution is written as:

~KKðnÞ ¼ A�1~bbðnÞ; ð37Þ

where

Fig. 3.3. Block-diagram of MAIAC atmospheric correction algorithm.
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In the first iteration, the small nonlinear term is set to zero, Rnlð0Þ
j ¼ 0, and the multiple

reflection factor a (see Section 3) is set to one, að0Þ ¼ 1. These parameters are updated
once, after the BRF coefficients are calculated in the first iteration. Except for snow-cov-
ered surfaces, the problem converges with high accuracy in two iterations in all conditions
because the nonlinear terms are small. The described algorithm is very efficient compu-
tationally.

5.2 Solution selection and update

Although the LSRT model leads to an efficient BRF retrieval algorithm, there are several
caveats associated with this model. The LSRT kernels are not orthogonal, they are not
positive-only functions, and they are normalized in somewhat arbitrary fashion not linked
to the radiative transfer. These factors reduce the stability of solution upon small perturba-
tion of measurements and may lead to non-uniqueness of solution. The high goodness-of-
fit at the measurement angles does not always guarantee the correct shape of the retrieved
BRF, and may result in negative BRF values at other angles. The albedo, being an integral
function of BRF, is especially sensitive to the peculiarities of a particular BRF shape. For
these reasons, we developed several tests to remove unrealistic solutions.

The initial validation of the solution (see Fig. 3.3) checks that the maximal difference
over all days of the Queue between measured and computed TOA reflectance does not
exceed a specified threshold ( RMeas � RLSRT j < 0:08

		 ). The day (measurement) with high-
er deviation is excluded from the Queue and the retrieval is repeated.

If the solution provides a good agreement with measurements for all days, the algorithm
verifies that values of the direct-beam albedo (q; also function q2ðl0Þ in Eq. (7c)) at solar
zenith angle SZA ¼ 15�, 45�, 60� are positive. Finally, the new solution must be consistent
with the previous solution: qð45�Þ � qPr evð45�Þj j < DðkÞ. D is the band-dependent thresh-
old currently equal to 0.04 (blue), 0.05 (green and red), 0.1 (NIR and shortwave infrared
bands, B4–B6), and 0.06 for band B7. The thresholds are relatively loose to allow varia-
tions in the solution for surface reflectance. The consistency of the time series of BRF and
albedo is characterized by a parameter status. Initially, the confidence in the solution is low
(status ¼ 0). Each time, when the new retrieval agrees with the previous retrieval, the value
of status increases by 1. When the status reaches the value of 4, the retrieval is considered
reliable.

When the new solution is validated, the coefficients of BRF model and direct-beam
albedo q(45�), stored in the Q-memory are updated. The update is performed with rela-
xation designed to mitigate random noise of retrievals:

~KKNew
k ¼ ð~KKNew

k þ ~KKPrev
k Þ=2: ð38Þ
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This updating method increases the quality of BRF and albedo product when the surface is
relatively stable, but it delays response of solution to the surface changes.

Often, the solution for some pixels or for the full area cannot be found because of a lack
of clear-sky measurements. In these cases, MAIAC assumes that the surface does not
change and fills in the gaps with the previous solution for up to a 32-day period. This
is the most natural way of gap-filling with specific solution for a given pixel under
the assumption of stable surface. The gap-filled pixel is marked as ‘Extended’ in the qual-
ity assurance (QA) value with parameter QA. nDelay giving the number of days since the
last reliable solution.

5.3 MAIAC surface reflectance products

MAIAC computes two main products at 1-km resolution for seven 500-m MODIS bands,
i.e. a set of BRF coefficients and the surface albedo. The albedo is defined by Eq. (7a) as a
ratio of surface-reflected to incident radiative fluxes. Thus, it represents a true albedo at a
given solar zenith angle in ambient atmospheric conditions, the value of which can be
directly compared to the ground-based measurements.

MAIAC also computes several derivative products useful for science data analysis and
validation:
(1) NBRF: a Normalized BRF, which is computed from LSRT parameters for the common

geometry of nadir view and SZA ¼ 45�. This product is similar to MODIS NBAR
(nadir BRF-adjusted reflectance) product (part of MOD43 suite). With the geometry
variations removed, the time series of NBRF is useful for studying vegetation phenol-
ogy, performing surface classification, etc.

2) IBRF: an instantaneous (or one-angle) BRF for specific viewing geometry of the last
day of observations. This product is calculated from the latest MODIS measurement
assuming that the shape of BRF, known from previous retrievals, has not changed. To
illustrate the computation of IBRF, let us rewrite Eq. (27) for the measured TOA re-
flectance as follows:

Rðl0; l;fÞ ¼ RDðl0; l;fÞ þ cRSurf ðl0; l;fÞ; ð39Þ

where RSurf combines all surface related terms and can be calculated using previous solu-
tion for BRF (BRFk) and retrieved aerosol information. c is spectrally dependent scaling
factor. Then,

IBRFkðl0; l;fÞ ¼ ckBRFkðl0; l;fÞ: ð40Þ

Below, this algorithm will be referred to as scaling. This description was given as an il-
lustration. In reality, RSurf is a nonlinear function so that parameter ck and IBRF are com-
puted accurately using the formulas of Section 3.

The algorithm computing scaling coefficient (and IBRF) is shown in Fig. 3.3 on the
right. First, the algorithm filters out measurements which differ from theoretically pre-
dicted TOA reflectance based on previous solution (RLSRT

Q ) by more than factor of
Dðk). Then, scaling coefficients are computed, and the consistency requirement is verified
as follows: 0:8 < ck < 1:2. If all conditions are satisfied and the status of pixel is high
(status 4_ 4), then the Q-memory is updated with the scaled solution:
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~KKNew
k ¼ ck þ 1

2
~KKPrev
k : ð41Þ

The time series processing is intrinsically controversial when surface changes rapidly. On
the one hand, one needs all available cloud-free measurements and maximal time window
in order to reduce the rmse. This approach, which mitigates the noise of measurements,
including that of gridding and residual clouds, and which ensures robust BRF shape, is best
for stable periods, for example for natural ecosystems in summer time in mid-latitudes. On
the other hand, detecting and tracking surface changes like spring green-up or fall senes-
cence requires the least possible number of days in the Queue. Such retrievals tend to have
more spatial and spectral noise. Moreover, it is difficult to assess reliability of such solu-
tions when the surface reflectance changes daily with possible data gaps due to clouds.
Based on our experience, the combination of one-day solution (IBRF) and 16-day solution
(NBRF) with an update from the last day of measurements (Eq. (41)) combine both the
accuracy and an ability to track surface changes.

Besides faster response to the surface change, our update strategy assures fast removal
of the retrieval artifacts, mainly residual clouds, which turn out to be the most common
problem.

While the response of the 16-day solution may still be delayed, the IBRF tracks spectral
changes immediately. The update of Q-memory with latest measurements with Eq. (41)
was found to significantly accelerate response of the LSRT coefficients (~KKkÞ, and hence of
NBRF, to changing surface conditions. Overall, the IBRF is better suited for analysis of the
fast surface processes and detection of the rapid surface changes.

6. MAIAC cloud mask

The MAIAC cloud mask is a new algorithm making use of the time series of MODIS
measurements and combining an image and pixel-based processing. With a high frequency
of MODIS observations, the land surface can be considered as a static or slowly changing
background as opposed to ephemeral clouds. This offers a reliable way of developing the
‘comparison clear-skies target’ for the CM algorithm. An early example of such an ap-
proach is the ISCCP CM algorithm [Rossow and Garder, 1993] developed for geostation-
ary platforms. It builds the clear-skies composite map from the previous measurements
and infers CM for every pixel by comparing a current measurement with the clear-skies
reference value. The uncertainty of the reference value, caused by the natural variability
and sensor noise, is directly calculated from the measurements.

The MAIAC cloud mask is a next step in evolution of this idea. It uses covariance ana-
lysis to build reference clear-skies images (refcm) and to accumulate a certain level of
knowledge about every pixel of the surface and its variability, thus constructing fairly com-
prehensive comparison targets for cloud masking. The reference image contains a clear-
skies reflectance in MODIS band 1 (0.645 lm). In order to account for the effects related
to scan angle variation, e.g., pixel size growth, surface BRF effect or reduction of contrast
at higher view zenith angles (VZA), two reference clear-skies images are maintained by
the algorithm, refcm1 for VZA 0 < 45� and refcm2 for VZA ¼ 45 � 60�. In addition to
refcm, the Q-memory also stores the maximal value (r1max) and the variance (r1) of re-
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flectance in band 1 as well as the brightness temperature contrast (DBT ¼ BTmax � BTmin)
for each 25�25 km2 block. Analysis of MODIS data shows that thermal contrast (DBT) is
a rather stable metric of a given land area in clear conditions. In partially cloudy condi-
tions, the contrast increases because BTmin is usually lower over clouds.

The new CM algorithm has an internal surface classifier, producing a dynamic land–
water–snow (LWS) mask, and a surface change mask. These are an integral part of MAIAC
guiding both cloud masking and further aerosol–surface reflectance retrievals when the
surface changes rapidly as a result of fires, floods or snow fall/ablation. The cloud
mask generated by the CM algorithm is updated during aerosol retrievals and atmospheric
correction, which makes it a synergistic component of MAIAC. This complex approach
increases the overall quality of cloud mask.

Below, we briefly describe the algorithm constructing the reference clear-skies image
(refcm), and an overall decision logic in cloud masking. Further details of the algorithm are
given elsewhere [Lyapustin et al., 2008].

6.1 Building reference clear skies image

The clear-sky images of a particular surface area have a common textural pattern, defined
by the surface topography, boundaries of rivers and lakes, distribution of soils and vegeta-
tion, etc. This pattern changes slowly compared with the daily rate of global Earth ob-
servations. Clouds randomly change this pattern, which can be detected by covariance
analysis. The covariance is a metric showing how well the two images X and Y correlate
over an area of N � N pixels,

cov ¼ 1

N 2

XN
i;j¼1

ðxij � �xxÞðyij � �yyÞ
rxry

; r2
x ¼

1

N2

XN
i;j¼1

ðxij � �xxÞ2: ð42Þ

A high covariance of two images usually implies cloud-free conditions in both images,
whereas low covariance usually indicates presence of clouds in at least one of the images.
Because covariance removes the average component of the signals, this metric is equally
successful over the dark and bright surfaces and in both clear and hazy conditions if the
surface spatial variability is still detectable from space.

The core of the MAIAC CM algorithm is initialization and regular update of the ref-
erence clear-skies image for every block. The refcm is initially built from a pair of images
for which covariance is high, and caution is exercised to exclude correlated cloudy fields.
The algorithm calculates a block-level covariance between the new Tile and the previous
Tiles, moving backwards in the Queue until either the ‘head’ of Queue is reached, in which
case initialization fails and the algorithm would wait for the new data to arrive, or until
clear conditions are found. The latter corresponds to high covariance (cov 	 0:68) and low
brightness temperature contrast in the block for both days, DBT ¼ BTmax � BTmin < D1.
The initial value of threshold D1 is currently defined as D1 ¼ 25 þ dTðhÞ K. Factor dTðhÞ
accounts for the surface height variations in the block and is defined for an average lapse
rate, dTðhÞ ¼ 0:0045ðhmax � hmin), where h (km) is surface height over the sea level. Once
the image refcm is initialized, the algorithm begins to use the block-specific value of the
brightness temperature contrast Q.DBT, which is stored in the Q-memory.
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After initialization, the algorithm uses the refcm to compute covariance with the latest
measurements. Once clear conditions are found, refcm and block-parameters
fr1max; r1; DBTg are updated. With this dynamic update, the refcm adapts to the gradual
land-cover changes related to the seasonal cycle of vegetation. The rapid surface change
events (e.g., snowfall/ablation) are handled through repetitive re-initialization which is
performed each time when covariance of the latest Tile with refcm is found to be low.

Following the covariance calculation, the algorithm looks for clouds at the pixel level.
For regular surfaces, not covered by snow, cloud detection is based on a simple postulate
that clouds are usually colder and brighter than the surface:

IFðBTij � BTG � 4ÞANDðr1ij > refcm:r1ij þ 0:05Þ ) CM�PCLOUD; ð43Þ

where BTij is measured brightness temperature and r1ij is measured B1 reflectance. The
reference surface reflectance for every pixel is provided by the refcm clear-skies image,
whereas an estimate of the ground brightness temperature BTG comes either from the clear
land pixels detected by a Dense Vegetation (or high NDVI) spectral test for a given block,
or from the cloud-free neighbor blocks, identified by high covariance.

The final values of the MAIAC CM are clear (CM_CLEAR, CM_CLEAR_WATER,
CM_CLEAR_SNOW), indicating surface type as well, possibly cloudy (CM_PCLOUD),
and confidently cloudy (CM_CLOUD). The value of CM_SHADOW is used for pixels
defined as cloud shadows. Shadows are detected with a simple threshold algorithm which
compares the latest MODIS measurement (qmeas) with predicted reflectance (qpred) based
on the LSRT coefficients from the previous retrievals:

IFqmeas < qpred � 0:12 ) CM�SHADOW : ð44Þ

The shadow algorithm uses MODIS band 5 (1.24 lm), which has little atmospheric dis-
tortion and is bright over land so that the change of reflectance due to cloud shadow is easy
to detect above the noise level.

The covariance component of MAIAC algorithm, which offers a direct way to identify
clear conditions, renders another commonly used value of cloud mask – ‘possibly clear’
redundant.

6.2. Performance of MAIAC CM algorithm

The algorithm performance has been tested at scales of 600–1800 km using the 2004–2005
MODIS Terra data for northeastern USA, southern Africa (Zambia), the Amazon region
(Brazil), the Arabian peninsula, and Greenland. The testing was done for at least half a year
of continuous data in each case, using visual analysis and comparison with MODIS col-
lection 5 operational cloud mask (MOD35).

Fig. 3.4 shows a case of cloud detection over receding snow for three winter days (36–
37, 42) of 2005 for northeastern USA. The area of the image is 600 � 600 km2. The two
RGB images have a different normalization, helping visual distinction between snow and
clouds. The MAIAC cloud mask is shown on the right, and the MODIS collection 5
(MOD35) reprojected and gridded cloud mask is shown at the bottom. The conditions
represent different degrees of cloudiness over the land. Day 35 is entirely cloud-free
over land. MAIAC CM algorithm gives an accurate overall classification. Thin ice on
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Lake Erie is partly misclassified as clouds. It is not as bright as snow in the visible bands,
and has a higher than snow reflectance in the shortwave infrared (2.1 lm). The same holds
true for the block of land and some pixels in the transitional zone from snow to land, which
are masked as clouds. As explained earlier, the error is expected in these cases. On day 36,
MAIAC accurately detects a cloud stretching across Lake Erie. There are two large cloud
systems on day 42, in the left upper and left bottom parts of the image, captured well by the
algorithm. These images also show the strong retreat of the snow line by day 42, and a high

Fig. 3.4. Example of MAIAC (third row) and MOD35 (bottom) cloud mask over snow from MODIS
Terra for days 36, 37 and 42 of 2005 (DOY is day of year). The image shows 1 Tile
(600 � 600 km2) for northeastern USA. The top two RGB images have a different normalization helping
visual distinction between snow and clouds. Legend for MOD35 CM: Blue – clear, Green – possibly clear,
Yellow – possibly cloudy, Red – cloudy, Black – undefined. Legend for MAIAC CM: Blue, Light Blue,
and White – clear (land, water and snow, respectively), Yellow – possibly cloudy, Red – cloudy.
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quality of snow mapping by MAIAC. The MOD35 product accurately detects clouds, but
it also overestimates cloudiness over snow on all three days, with the highest error on
day 37.

Fig. 3.5 compares the cloud mask of the two algorithms for the late spring of 2005 for
the same region. Over land, the accuracy is similar. Some difference exists with regards to
thin cirrus, or otherwise semitransparent clouds. MAIAC CM does not explicitly try to
mask these clouds. Created for the purpose of aerosol retrievals and atmospheric correc-
tion, the algorithm maximizes the volume of data available for the atmospheric correction.
Our study shows that achievable accuracy of surface reflectance retrievals through thin

Fig. 3.5. Example of MAIAC (middle) and MOD35 (bottom) cloud mask from MODIS Terra data for
days 138 (left) and 152 (right) of 2005. The image shows the same Tile (northeastern USA) as in Fig. 3.4.
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cirrus is sufficiently high [Lyapustin and Wang, 2007] but more investigation is necessary.
Another notable difference is cloud detection over the water. The current version of the
algorithm had been developed for the land applications and cloud detection over water at
this stage is rudimentary.

A large-scale comparison of cloud mask products is shown in Fig. 3.6 for a
1200 � 1200 km2 region of the African Savanna (Zambia). This is a region of intense
biomass burning in the dry season. The MAIAC and MOD35 cloud masks are generally
comparable. MAIAC is a little more sensitive, detecting more clouds. One large difference

Fig. 3.6. Example of MAIAC (middle) and MOD35 (bottom) cloud mask at the beginning of dry season
for Zambia, Africa, from MODIS Terra data for days 130 (left) and 141 (right) of 2005. The image shows
four Tiles (1,200 � 1,200 km2).
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is the large number of ‘possibly clear’ pixels in MOD35 when the algorithm cannot declare
clear conditions with confidence. This category is not used in MAIAC, which has a cov-
ariance criterion and ancillary refcm data to identify clear conditions. This feature is par-
ticularly appealing to land applications, sometimes significantly increasing the volume of
measurements, which may be confidently used in the atmospheric correction and in further
applied analysis.

Fig. 3.7. Example of MAIAC (middle) and MOD35 (bottom) cloud mask for the Arabian Peninsula from
MODIS Terra data for days 145 (left) and 207 (right) of 2005. The image shows nine Tiles
(1800 � 1800 km2).
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A final example of the cloud mask comparison for the large (1800 � 1800 km2) bright
desert area of the Arabian Peninsula is shown in Fig. 3.7 for days 145 and 207 of 2005.
Here, the MAIAC cloud mask is shown in the middle of the image and the MOD35 product
is shown at the bottom. Except for a few small differences, the products agree quite well for
day 145. On day 207, MOD35 overestimates cloudiness masking the dust-storm areas as
clouds.

These examples show that the MAIAC CM algorithm demonstrates a high accuracy of
cloud discrimination over land. It offers potential improvements to the operational MODIS
cloud mask when land surface changes rapidly, and over bright snow and ice.

7. MAIAC examples and validation

The MAIAC performance has been tested extensively for different world regions using
50 � 50 km2 subsets of MODIS TERRA data centered on AERONET sites. Because
the algorithm is synergistic and the quality of aerosol retrievals and atmospheric correction
are mutually dependent, the testing includes analysis of all main components of the algo-
rithm. We are using both visual analysis, which remains unsurpassed in complex quality
assessments of imagery products, and direct validation of aerosol retrievals by AERONET
described in Section 7.1. One example of such testing is shown in Fig. 3.8 for the Goddard
Space Flight Center (GSFC), USA site. The image shows 15 successive MODIS Terra
observations for the end of June to early July (Fig. 3.8(a)), and for December
(Fig. 3.8(b)) of 2000. The left two columns show MODIS top of atmosphere RGB reflec-
tance. The images are normalized differently to help visual separations of clouds and aero-
sols from the surface signal. With the view geometry varying, the images collected at nadir
have a better spatial resolution and contrast than those observed at the edge of scan ( view-
ing zenith angle (VZA) 
 55�) despite aggregation to 1 km. This source of noise notwith-
standing, the images display a well-reproducible spatial pattern in cloud-free conditions,
which is the basis of the cloud mask algorithm. Because of the re-projection, the top-left
and bottom-right corners appear not covered by measurements.

Columns 3–7 and 9 show products of MAIAC processing: RGB NBRF (normalized
BRF for the standard viewing geometry of VZA ¼ 0�, SZA ¼ 45�; cloud mask; RGB
IBRF (instantaneous, or one-angle, BRF for the viewing geometry of latest observation);
Blue band AOT (scale 0–1); spectral regression coefficients for the Blue and Red bands
(scale 0.1–0.8); NBRF and MODIS L1B TOA reflectance for band B7 (2.1 lm) (scale 0–
0.4).

The last column shows the ratio of volumetric concentrations of the coarse and fine
aerosol fractions (CC

m =C
F
m ). In these retrievals, values of ratio g ¼ f0:5; 1; 2; 4; 10g

were used, which are represented by colors magenta, blue, light blue, green and yellow,
respectively. One more model used in the retrievals was a liquid water cloud model with the
median droplet diameter of 5 lm. The cloud model was used in aerosol retrievals together
with aerosol models to detect residual clouds. Cases when this model was selected are
shown in red. The aerosol model with g ¼ 10, which is a usually unrealistic combination
of the fine and coarse fractions, was also used for cloud detection. Although this model
may provide a spectrally neutral extinction similar to a cloud, it absorbs in the shortwave
spectral region whereas the cloud does not. Overall, the aerosol retrievals provide a valu-
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able enhancement to the cloud mask (yellow and red colors in the last column). Fig. 3.8
shows detection of small popcorn clouds in summer (Fig. 3.8(a)) and semitransparent
clouds in winter (Fig. 3.8(b)), as well as extensions on the cloud boundaries, which are
difficult to detect by any specialized cloud mask algorithm.

The NBRF and IBRF images are shown as true color RGB composites. The RGB
images are produced using the Red (B1), Green (B4) and Blue (B3) channels with equal
weights. One can see that the quality of atmospheric correction is generally good although
there are still some artifacts related to aerosol retrievals, such as color distortions in the
IBRF image (Fig. 3.8(a), third row). The work is ongoing to resolve this and some other
remaining issues of MAIAC algorithm.

Fig. 3.8(a). Example of MAIAC processing for 50-km MODIS Terra subsets for the GSFC site. Shown
are 15 consecutive observations for days 175–189 of 2000. The left two columns show differently normal-
ized TOA RGB MODIS gridded reflectance. Next shown are the following MAIAC products: RGB
NBRF; cloud mask; RGB IBRF; AOT at 0.47 lm (scale 0–1); spectral regression coefficients for the
blue and red bands (scale 0.1–0.8); NBRF and MODIS L1B TOA reflectance for band B7 (2.1 lm) (scale
0–0.4); ratio of volumetric concentrations (CC

m =C
F
m Þ. The color bar is shown for SRCs.
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Columns 7–8 in Fig. 3.8 show the derived spectral regression coefficients in the Blue
and Red bands. These retrievals are temporally consistent during the short time interval. A
comparison of the summer and winter seasons shows an obvious seasonal trend of SRCs.
These retrievals can be validated indirectly by comparing aerosol results with the AERO-
NET measurements.

7.1 Validation

Fig. 3.9 and 3.10 show scatterplots of MAIAC AOT versus AERONET AOT in the Blue
and Red bands. Following MODIS validation strategy [Remer et al., 2005], AERONET
measurements are averaged over �30 min interval of Terra satellite overpass. MAIAC
retrievals are averaged over 20 km2 area.

Fig. 3.8(b). Example of MAIAC processing for the GSFC site, days 337–349 of 2000. The dark red color
in CM image shows detected cloud shadows.
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Fig. 3.9 gives a comparison for the GSFC site. The overall agreement is good with re-
latively high correlation coefficient (r 
 0:78) and slopes of regression, which are close
between the Blue and Red bands (0.88 and 0.85). The offset is positive in both bands (0.053
and 0.033, respectively). It can be explained by a limited sensitivity of the method at low
AOT values, by residual cloud contamination, and by snow contamination in wintertime.
The identification of pixels partially covered by snow is a very complex problem, and a
small fraction of undetected snow may notably increase the retrieved AOT. In fact, snow is
a significant source of bias in the MAIAC retrievals, as shown in the right plots, where
winter days with snow on the ground were manually filtered. Snow filtering reduces the
bias by a factor of 2 in the Blue band; it also increases correlation coefficient and slope of
regression.

Fig. 3.9. Comparison of MAIAC AOT with AERONET data for GSFC (USA) using MODIS Terra data
for 2000–2007. The left plots for both Blue (B, 0.47 lm) and Red (R, 0.64 lm) bands show the full dataset
(740 points). The right plot shows the reduced dataset where winter days with snow on ground were fil-
tered (587 points).

Fig. 3.10. Comparison of MAIAC AOTwith AERONET data for Moscow (2001–2007, 238 points), Beij-
ing (2001–2007, 504 points), Mexico City (2000–2007, 342 points) and Sao Paulo (2000–2007, 327
points), using MODIS Terra data.
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Fig. 3.10 compares MAIAC AOT with AERONET data for several large cities of the
world with medium-to-high levels of pollution, including Moscow, Beijing, Mexico City
and Sao Paulo. In addition to pollution, there are several dust storms per year over Beijing
with dust blown from the nearest Gobi desert located to the north of the city. MAIAC
results compare well with the AERONET data for Moscow and Beijing with high corre-
lation. There is considerably more scattering in the cases of Mexico City and Sao Paulo.
One can see that the slopes of regression are high (
 0:9 � 0:95) for Moscow and Sao
Paulo. In these cases, the MAIAC aerosol model with relatively low absorption works
reasonably well. However, the slope of regression drops down to 
 0:6 � 0:7 for Beijing
and Mexico City, indicating that aerosol is significantly more absorbing for these cities.

There is some correlation of noise in the retrievals over Mexico City and Sao Paulo with
the viewing geometry, specifically in the forward versus backward scattering directions.
MAIAC tends to underestimate AOT in the forward scattering directions and overestimate
it for the backscattering view geometry. This is the reason for much higher scattering in the
scatterplots for these cities. One possible explanation of this behavior is an uncompensated
surface BRF effect. Over bright surfaces, such as Mexico City and Sao Paulo, the shape of
BRF seems to be more anisotropic in the visible bands than in the SWIR, which is also
brighter. We plan to address this issue in further research.

7.2 Examples of MAIAC aerosol retrievals

At present, we have evaluated performance of MAIAC over the different world regions for
an extended period of time. Typically, we order MODIS data for large areas of several
thousand square kilometers for at least one year, and process the full set of data. Two ex-
amples of the large-scale AOT retrievals from MODIS Terra are shown in Figs 3.11 and
3.12. Fig. 3.11 shows smoke from biomass-burning during the dry season over an area of
1200 � 1200 km2 in Zambia, Africa. The TOA image for the day 205 shows dozens of
small-to-large fires. The fine 1-km resolution allows MAIAC to resolve and trace plumes
of the individual fires. The fire plumes disappear at the coarse 10-km resolution of opera-
tional MODIS aerosol product MOD04 shown on the inset. The comparison shows that the
magnitude of MOD04 and MAIAC retrieved AOT and its spatial distribution is rather si-
milar, although there are certain differences depending on the surface type and geometry of
observations. This particular example shows that, through significantly higher spatial re-
solution, MAIAC offers quantitatively new information about aerosols and their sources
unavailable before. The gradient of AOT at 1-km resolution is high enough to implement
an automatic delineation algorithm for the smoke plume detection, with the data that could
be used in different applications, such as air quality.

Another example of MAIAC aerosol retrievals over a large portion of bright Arabian
Peninsula (area 1800 � 1800 km2 for day 207 of 2005 is shown in Fig. 3.12. The condi-
tions are rather complex on this day. On one hand, the dust is transported across the Red
Sea from Sudan (Africa). The wind does not penetrate the mountains along the peninsu-
lar’s western shore. It is clear on the top of the mountain ridge, and the dust is concentrated
along the shore, as can be seen both from the MODIS RGB image and from the AOT
image. On the other hand, a separate internal dust storm has developed in the southern
part of peninsula, with winds carrying dust in the northwest direction. For comparison,
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Fig. 3.13 shows the true color RGB image of the surface NBRF for this area. The bright
surface feature, corresponding to the epicenter of the dust storms, is absent on the NBRF
image, which confirms that this event is indeed a local dust storm.

8. Concluding remarks

MAIAC is a new algorithm which uses time series processing and combines image- and
pixel-level processing. It includes a cloud mask and generic aerosol–surface retrieval al-
gorithm. The suite of MAIAC products includes column water vapor, cloud mask, dynamic
mask of standing water and snow, AOT at 0.47 lm and the ratio of volumetric concen-
trations of the coarse and fine fractions, and spectral surface reflectance metrics, which
include LSRT coefficients, albedo, NBRF and IBRF. The suite of products is generated in a
systematic and mutually consistent way to satisfy the energy conservation principle. In
other words, the radiative transfer calculation with the given set of parameters closely
corresponds to measurements. All products are produced in gridded format at a resolution
of 1 km.

A high spatial resolution of MAIAC (1 km vs 10 km for operational MODIS aerosol
product) allows a new type of analysis and applications. One demonstrated example is a

Fig. 3.11. Fires during dry biomass-burning season in Zambia, Africa, for day 205 of 2005 (area
1,200 � 1,200 km2). The 1-km gridded MODIS Terra TOA RGB image is shown on the left and
MAIAC-retrieved AOT at 0.47 lm is on the right. The AOT scale is the same for MOD04 and MAIAC.
The high resolution (1-km) of AOT product allows detecting and tracing individual fire plums. The inset
shows result of the MODIS dark target algorithm MOD04_C4.
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possibility of detection and tracing fire plumes from biomass burning. A high resolution of
1 km makes this application possible, whereas most of the information disappears at
coarse, 10-km, resolution. We plan to apply MAIAC to study aerosol and their sources
over large urban centers to complement the air quality analysis.

The current performance of the algorithm is not yet fully optimized. Nevertheless,
MAIAC is already sufficiently fast for operational processing: it takes � 50 seconds of
one single-core AMD Opteron-64 processor to process one Tile (600 � 600 km2) of
MODIS data. The operational testing of MAIAC is planned to begin in 2009 in collabora-
tion with the University of Wisconsin and the GSFC-based MODIS land processing team.

Acknowledgments The algorithm MAIAC was developed by Dr Lyapustin and Dr Wang
with support by the NASA EOS Science (Dr D. Wickland) grant.

Fig. 3.12. MODIS Terra RGB TOA image and MAIAC AOT at 0.47 lm over Arabian Peninsula (area
1800 � 1800 km2) for day 207 of 2005.
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4 Iterative procedure for retrieval of spectral
aerosol optical thickness and surface reflectance
from satellite data using fast radiative transfer
code and its application to MERIS
measurements
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Alexander A. Kokhanovsky

1. Introduction

The retrieval of aerosol characteristics over land from satellite data has been a challenge up
to now. Currently, several well known techniques for retrieving aerosol optical thickness
(AOT) have been developed for satellite instruments including MODIS (Kaufman et al.,
1997; Remer et al., 2005), MERIS (Santer et al., 1999, 2000), POLDER (Deuze et al,
2001), and MISR (Martonchik et al., 2002). While each technique has its own merits,
the accuracy of AOT retrieval still needs further clarification and improvement. From
this point of view the inter-comparison and verification of these techniques undertaken
recently (Kokhanovsky et al., 2007) is of a great importance.

To provide the required accuracy of the retrieval procedures, realistic atmospheric mo-
dels and accurate radiative transfer computations should be used. These procedures em-
ploy look-up-table (LUT) techniques to ensure fast processing of satellite data. The LUT
techniques employ the preliminary computation of the radiative characteristics for the cho-
sen atmospheric parameters set by a verified and reliable radiative code as well as fitting
procedures in the retrieval process. Hence, LUTs save time for radiative transfer calcula-
tion in the processing of satellite data. However, there is a price to be paid for this ad-
vantage as LUT techniques have some inherent restrictions. First, LUTs are based on
a huge bulk of previously computed data, and this bulk has to be recomputed every
time the atmospheric model is changed. The restriction of the LUT volume, the necessity
of having particular LUTs for a given instrument, and difficulties in the application of
some standard techniques for data processing (e.g., the least-mean-squares method to de-
termine the AOT and Ångström exponent) may be considered as additional limitations of
the LUT technique.

In this paper we describe the newly developed aerosol retrieval technique (ART) for
spectral AOT retrieval that uses radiative transfer computations in the process of retrieval
rather than a LUT. This approach can be applied operationally only if the accurate and
extremely fast radiative transfer code is used. Previously, we have developed the RAY
code (Tynes et al., 2001) for simulation of the radiative transfer in the atmosphere–under-
lying surface system with regard to polarization that meets these requirements. This code is
based on the results derived by Zege et al. (1993) and Zege and Chaikovskaya (1996). It has
been applied with success for the solution of many problems. RAY is a core of the ART



code for the retrieval of AOT, Ångström exponent, and surface spectral albedo. RAY’s high
processing speed allows the use of iterative radiation transfer computations in the proces-
sing of satellite data for AOT retrieval, eliminating the need for LUT techniques. This fast
AOT retrieval technique has some additional merits, namely any set of wavelengths from
any satellite optical instruments can be processed. In the ART algorithm the computations
of the derivatives of the reflectance at top of atmosphere (TOA) with respect to the sought-
for values are performed. It provides the application of the least-mean-squares technique to
process the AOT and Ångström exponent retrieval using spectral satellite data. The ART
approach allows one to change atmospheric models in the retrieval process. It uses minimal
simplifications in the computation of the radiative transfer through atmosphere, accounts
for the effect of polarization, and includes the radiative interaction between atmospheric
layers.

We have employed ideas and features from earlier algorithms (Kaufman et al., 1997;
Santer et al., 2000; von Hoyningen-Huene et al., 2003) in the ART algorithm. Particularly,
the pixel sorting technique is very close to that of the MODIS algorithm (Kaufman et al.,
1997). Additionally, the spectral model of the underlying surface is taken from Bremen
AErosol Retrieval (BAER) code (von Hoyningen-Huene et al., 2003).

This chapter presents the first step in developing the AOT retrieval algorithm using a
fast RT code. It is still not a mature algorithm assigned for routine satellite data processing
and retrieving the global AOT distribution. We demonstrate here the ART version for the
middle latitudes. Below we give a brief description of the RAY code (Section 2.1 and Ap-
pendix), the discussion of the radiative characteristics (Section 2.2), the structure of the
atmospheric model used (Section 2.3), brief information on the spectral models of under-
lying surfaces (land, water) (Section 2.4) and the description of the ART code with pre-
liminary data sorting and iteration procedures to retrieve the AOT, the Ångström exponent
and the spectral signature of an underlying surface (Section 2.5). The results of retrievals,
comparisons with AERONET data, and with results of other codes are presented in Sec-
tion 3. A short conclusion summarizes the results of the ART deployment.

2. The aerosol retrieval technique

2.1 The vector radiative transfer code

The RAY code (Tynes et al., 2001) is assigned to calculate radiance and polarization of
radiation at wavelengths in the UV, visible and IR parts of the electromagnetic spectrum for
atmosphere–ocean and atmosphere–land systems including realistic aerosol and trace gas
models and bi-directional reflectivity of underlying surfaces. Accurate and extremely fast
computations with RAYalong with a possibility of detailed and realistic modeling of light
scattering media are due to the original numerical algorithm used, which couples the newly
developed two-component approach of the vector radiative transfer theory with the tradi-
tional adding–doubling technique. The two-component technique to solve the vector ra-
diative transfer equation (VRTE) is a cornerstone and defines the architecture of the whole
algorithm. It combines two approaches recently developed by the authors, namely, the
multi-component approach (Zege et al., 1993) and the new approximate theory of polar-
ized light transfer (Zege and Chaikovskaya, 1996). Because thus far this code has only
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been briefly outlined (Tynes et al., 2001; Chaikovskaya et al., 1999), the theoretical ap-
proach, architecture, specific features and accuracy estimation are given in the Appendix.

Validation of the RAY code showed (Tynes et al., 2001) that it provides highly accurate
data in a fraction of the time required by the Monte Carlo and other methods. In addition, to
run the RAY code a powerful computer is not required; the RAY code can be run quickly on
an ordinary personal computer. These properties make this approach a practical technique
for nearly real-time simulations and processing of spectral satellite data.

The importance of accounting for the polarization effects in the radiative transfer pro-
cesses is demonstrated in Fig. 4.1, where the error e ¼ ðI"sca � I"vectÞ=I"vect of the scalar
approximation for the LOWTRAN maritime aerosol model with an aerosol optical thick-
ness of 0.086 at 550 nm is shown. Here I"sca and I"vect are the TOA radiances computed
with the scalar RTE (without including polarization) and with VRTE (including polariza-
tion), respectively. As might be expected, the polarization effect on radiances depends
strongly on the scattering angle and the wavelength. This figure demonstrates these fea-
tures. Computed intensities of the reflected light at wavelengths above 550 nm are less

Fig. 4.1. The error of the scalar approximation (e, in percent) for calculations of the TOA radiances at
different wavelengths and solar zenith angles W0 (LOWTRAN maritime atmosphere, the nadir observa-
tion. AOT is equal to 0.086 at 550 nm). For the considered geometry, the scattering angle is equal to
p� W0. As one might expect, the largest deviations occur at scattering angles of 90� and 180�, where
the effects of the polarization are at maximum for single (90�) and double (180�) scattering regimes
in the case of purely molecular scattering atmosphere.
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affected by the effect of light polarization than intensities at shorter wavelengths. This is
related to the decrease of the Rayleigh scattering contribution as compared to scattering by
aerosol particles for larger wavelengths. Clearly, polarization effects are more important
for scattering angles about 90�, where the scalar radiative transfer theory overestimates the
top-of-atmosphere reflectance by almost 10 %. Underestimation of reflectance by about
8 % is possible at a scattering angle of 180� as demonstrated in Fig. 4.1 (the solar zenith
angle is zero degrees, the nadir observation). The radiances for solar angles of about 45� at
the nadir observations are least affected by polarization as shown in Fig. 4.1.

2.2 Radiative characteristics

Various radiative characteristics of a light scattering layer are used in the AOT retrieval
procedures described below. For the reader’s convenience we will introduce them now.

First, let us introduce the concept of TOA reflectance that is the reflection function at the
top of the atmosphere defined as

RTOA k; l; l0;fð Þ ¼ pI" k; l; l0;fð Þ
l0E0 kð Þ ; ð1Þ

where E0 kð Þ is the extraterrestrial irradiance incident normally on a given unit area at the
top-of-atmosphere, I" k; l; l0;fð Þ is the measured TOA radiance, l0 and l are cosines of
the incidence and observation zenith angles, and f is a difference between the azimuth
angles of the incidence and observation directions. Hereafter we will use also other char-
acteristics of light reflection and transmission phenomena. Table 4.1 summarizes the de-
finitions and notations of these values.

In Table 4.1, I# k; l; l0;fð Þ is the radiance transmitted by a layer. For brevity the angular
arguments in the reflection and transmission functions will be omitted, i.e.
RTOA kð Þ 
 RTOA k; l; l0;fð Þ and T kð Þ 
 T k; l; l0;fð Þ. But we will keep the argument
l0 in the notations of the reflection r k; l0ð Þ and transmission t k; l0ð Þ coefficients for di-

Table 4.1. Characteristics of light reflection and transmission by a plane layer

Radiative characteristic Notation and definition

Reflection function R k;l; l0;fð Þ ¼ pI" k; l;l0;fð Þ
l0E0 kð Þ

Reflection coefficient for directional illumination
(plane albedo)

r k; l0ð Þ ¼ 1
p

Ð2p
0

df
Ð1
0
R k;l; l0;fð Þldl

Reflection coefficient for diffuse illumination
(spherical albedo)

rs kð Þ ¼ 2
Ð1
0
r k; l0ð Þl0dl0

Transmission function T k; l;l0;fð Þ ¼ pI# k; l; l0;fð Þ
l0E0 kð Þ

Transmission coefficient for directional illumination t k;l0ð Þ ¼ 1
p

Ð2p
0

df
Ð1
0
T k; l; l0;fð Þldl

Transmission coefficient for diffuse illumination td kð Þ ¼ 2
Ð1
0
t k; l0ð Þl0dl0
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rectional illumination particularly to distinguish them from the reflection rs kð Þ and trans-
mission td kð Þ coefficients under diffuse illumination.

2.3 The atmospheric model

The atmospheric model input includes temperature and pressure profiles, profiles of trace
gas concentrations and stratification of aerosol microstructure and concentration. The op-
tical properties of the atmosphere (Mueller matrix elements, extinction and absorption
coefficients) are computed with this input as the superposition of the molecular scattering,
gas absorption, and aerosol absorption and scattering. Note, that tropospheric aerosol
properties over land may have very large spatial and temporal variations. Upper layers
are much more stable in space and time in comparison with labile over-surface layers,
and hence the parameters of the upper layers could be taken the same for all pixels of
the processing image area. The radiative characteristics of the upper atmosphere can
be computed one time for all pixels of the processing area. The specific feature of the
ART approach is the use of the direct radiative transfer computation in the satellite
data processing. With the goal to speed up these computations the stratified atmosphere
is divided into two parts:
(1) The layer ‘1’ (lower layer) of the atmosphere is a layer of the lower troposphere up to

the height H. The value of H is the same for all pixels of the processing image area and
can be defined for each processing area. This layer includes aerosol scattering and
absorption, molecular scattering, and gas absorption (see Fig. 4.2). The aerosol in
this layer may have very large spatial and temporal variations. The AOT of this layer
is supposed to vary over the processing image area and this value is retrieved for each
pixel independently. Note that the surface altitude, and hence the molecular scattering
and gas absorption, can differ between pixels (see below how the pixel altitude is re-
garded). This feature may be particularly important for mountainous regions. To speed
up the ART calculations, the radiative characteristics of the layer ‘1’ for every pixel are
computed as for a homogeneous layer with the characteristics of scattering and ab-
sorption averaged over this layer. The computations performed showed that ignoring
the stratification inside the layer ‘1’ leads to a relative error in the reflectance at the top
of atmosphere of less than 0.2 % at any wavelength in the visible.

(2) Layer ‘2’ (upper layer, i.e. above the altitude H) includes the stratosphere and upper
and middle troposphere. Naturally, layer ‘2’ is characterized by a vertical stratification
of aerosol and gaseous concentrations, pressure and temperature profiles. For com-
putation this layer is presented as N homogeneous sub-layers with optical character-
istics averaged over this sub-layer. As was explained above, the radiation character-
istics of the stratified layer ‘2’ can be computed once for all pixels of the processing
area. This feature reduces the computation volume considerably and is a main reason
for the described partitioning of the atmosphere in two specified layers.

Let us emphasize that the division of atmosphere into two layers in ART does not imply
any additional assumptions. The radiative interaction between these layers is included in
the computation process. The optical model of the atmosphere is flexible and can be chan-
ged easily if it is needed. The developed databases of aerosol optical properties allow for
adjustment of an aerosol model using any a priori available information (for example, on
the presence of turbid sub-layers in the layer ‘2’ due to a volcano eruption or Saharan dust
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transport). If such information is absent and the chosen model of aerosol in the layer ‘2’
is not representative, the effect of this error in the aerosol model of layer ‘2’ on the re-
trieved value of AOT will be partially corrected through the retrieved value of the AOT of
the layer ‘1’.

The profiles of optical characteristics, i.e. the extinction and scattering coefficients and
Mueller (single scattering) matrices, are calculated as superposition of the contribution of
all absorbing and scattering components (gases and aerosol). Radiative characteristics are
calculated accounting for polarization using the VRTE. The importance of the VRTE used
for the calculation of radiative characteristics was discussed in Section 2.1.

In the particular version of ART used for retrievals presented in this paper the radiative
characteristics of layer ‘1’ are calculated without accounting for polarization. This speeds
up calculations. Because the Rayleigh optical thickness of layer ‘1’ is small, and as a rule
the aerosol scattering in this layer prevails, the disregard of polarization in the calculation
for the lower layer results in small errors in the calculation of the TOA reflectance. The
relative error of computation of the TOA reflectance if one neglects the polarization effects
for the layer ‘1’ is depicted in Fig. 4.3. It is seen that the maximal error occurs at small
values of the AOT in the lower layer ‘1’ and for scattering angles of about 90�. At
AOT ¼ 0:1 the relative error due to disregarding polarization achieves 1.8 %. But in
the most typical situations (when the scattering angle is more than 110�) the errors are
smaller and do not exceed 1 % (see Fig. 4.3). Note that if necessary, the ART allows
for the full account of the polarization effects in all atmospheric layers.

Fig. 4.2. The atmospheric model.

106 4 Iterative procedure for retrieval of spectral aerosol optical thickness



The optical characteristics (optical thickness s, single scattering albedo x, and phase
function p hð Þ) of this uniform layer ‘1’ are calculated including contributions of molecular
scattering, gas absorption and absorption and scattering by aerosol, namely

s ¼ sR þ saer þ sg; ð2Þ

x ¼ xRsR þ xaersaer
sR þ saer þ sg

; ð3Þ

where sR, saer, and sg are the optical thicknesses corresponding to molecular scattering,
light extinction by aerosol particles, and gaseous absorption contributions, respectively.
Eq. (3) also includes the single scattering albedo of aerosol particles (xaerÞ and that of
Rayleigh scattering processes (xR ¼ 1).

As for the phase function of layer ‘1’, it is enough to calculate the coefficients xn of the
expansion of the phase function p hð Þ into a series of Legendre polynomials:

xn ¼ sRxn;R þ xaersaerxn;aer
sR þ xaersaer

: ð4Þ

Here xn;R and xn;aer are the coefficients of the expansion of the Rayleigh and aerosol phase
functions, respectively, into a series of Legendre polynomials. These coefficients xn are
used in the adding method procedure to calculate the radiative interaction between layers
‘1’ and ‘2’. Because the Rayleigh scattering phase function comprises only the zeroth and
second Legendre polynomials, we have:

xn ¼ 0:5dn2sR þ xaersaerxn;aer
sR þ xaersaer

ð5Þ

Fig. 4.3. The relative error of computation of the TOA reflectance due to neglecting the polarization
effect in layer ‘1’, k ¼ 412:5 nm. Solar zenith angle is equal to 60�, azimuth angle is 0 or 180�. Numbers
in the legend denote the values of AOT of layer ‘1’.
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at n 	 1 and also x0 ¼ 1 by definition. Here dn2 is the Kronecker delta symbol equal to
one at n ¼ 2 and zero, otherwise.

Adjusting characteristics of layer ‘1’ allows one to account for the variations of the
optical thickness of the Rayleigh atmosphere as a function of altitude over sea level
and to the deviation of the atmospheric pressure from the normal pressure at sea level.
These variations are included as a correction of the Rayleigh optical thickness of a layer
‘1’, i.e. as the additional Rayleigh optical thickness

DsR ¼ sR � s0
R; ð6Þ

where s0
R is the Rayleigh optical thickness at normal conditions with ‘land’ pixels at sea

level (h ¼ 0), and sR is the Rayleigh optical thickness under real conditions. The value of
this correction of the Rayleigh optical thickness of a layer ‘1’ can be presented as a sum of
two terms:

DsR ¼ DsPR þ DshR: ð7Þ

The first term in Eq. (7) that accounts for the deviation DP0 ¼ P� P0 of the atmospheric
pressure P at sea level from the normal value P0 is given as

DsPR ¼ DP0

P0
s0
R: ð8Þ

The second term in Eq. (7) is equal to

DshR ¼ DPh

P0
s0
R ¼ s0

R e�h=h0 � 1
� �

; ð9Þ

where DPh is the deviation of the atmospheric pressure from its normal value P0 at the sea
level, when the area corresponding to the considered image pixel is located at the altitude
h. We assume that h0 ¼ 8000 m in this work (see also Santer et al., 2000).

Note that changes of water vapor and ozone optical thicknesses in the layer ‘1’ over
elevated targets are neglected for the following reasons. The total optical thicknesses of
water vapor and ozone in the atmosphere layer 0–2 km in the spectral range of interest is
small. For instance, the ozone optical thickness in this layer is no more than 0.0006 even
inside the absorption band 510–665 nm.

2.4 Spectral models of underlying surfaces

As was already mentioned in Section 1, the spectral models of the underlying surfaces are
taken from the code described by von Hoyningen-Huene et al. (2003). Similar to von Hoy-
ningen-Huene et al. (2003), it is taken that a linear combination of the basic vegetation
spectra rveg kð Þ and soil rsoil kð Þ describes the land spectral albedo:

rs kð Þ ¼ crveg kð Þ þ 1 � cð Þrsoil kð Þ: ð10Þ

Similarly, a linear combination of the basic spectra of clear ocean water rclear kð Þ and coast-
al water rcoastal kð Þ represents the water spectral albedo:
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rs kð Þ ¼ crclear kð Þ þ 1 � cð Þrcoastal kð Þ: ð11Þ

All basic spectra are given by von Hoyningen-Huene et al. (2003). Thus, the spectral
albedo of the surface (land or water) is characterized by the only parameter c. Just this
surface parameter is determined in the retrieval process. The normalized differential in-
dices serve as a zeroth approximation for the parameter c. This normalized differential
vegetation index for the ‘land’ pixels is defined as

NDVI ¼ R 865 nmð Þ � R 665 nmð Þ
R 865 nmð Þ þ R 665 nmð Þ : ð12Þ

For ‘water’ pixels the normalized differential pigment index (NDPI) is used. It is defined
as:

NDPI ¼ R 443 nmð Þ � R 560 nmð Þ
R 490 nmð Þ : ð13Þ

2.5 Brief description of the aerosol retrieval technique

The ART algorithm is designed to retrieve the AOT, Ångström exponent and underlying
spectral surface albedo. The spectral radiance at the top of the atmosphere measured by any
satellite optical instrument in N spectral channels is the input to the ART algorithm. As has
been already underlined, because ART does not use the LUT technique, the choice of the
spectral channels is very flexible. Their number and particular wavelengths depend on the
spectral characteristics of the satellite optical instrument used. In the examples below sa-
tellite data in nine MERIS spectral channels specified by the wavelengths

k ¼ 412:5; 442:5; 490; 510; 560; 620; 665; 865 and 885 nm ð14Þ

are used. These channels are hardly affected by gaseous absorption, except for the ozone
absorption at wavelengths of 510–665 nm. For example, according to the LOWTRAN
Mid-Latitude Summer molecular-gas model optical thicknesses of the water vapor at
620 nm, 665 nm, and 885 nm are equal to 10�29, 2:8 � 10�12 and 0.075, respectively; ozone
optical thicknesses at 560 nm and 620 nm are equal to 0.033 and 0.035, respectively.

Fig. 4.4 presents the flowchart of ART. The atmospheric model was described in Sec-
tion 2.3; the underlying surface model was discussed in Section 2.4. The preparation of the
input data includes operations described in steps 1–3 below. Steps 4–8 describe the se-
quence of the retrieval operations.
1. Discarding pixels containing sub-pixel clouds. The pixels with RTOA 560ð Þ 	 0:4 or

n ¼ RTOA 412ð Þ=RTOA 443ð Þ � 1:16 are considered as containing a cloud. The first in-
equality immediately discards pixels containing comparatively thick clouds. As was
shown by Kokhanovsky (2004), when clouds completely cover a pixel, as a rule
RTOA 560ð Þ 	 0:2. But the choice of the threshold criterion as RTOA 560ð Þ 	 0:2 (instead
of RTOA 560ð Þ 	 0:4Þ might lead to discarding not only cloud pixels, but pixels with
highly reflective surfaces (for instance, sands, deserts). However, lowering of the cloud
threshold criterion to the level RTOA 560ð Þ 	 0:2 does not guarantee discarding pixels
containing sub-pixel clouds.
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The second criterion n � 1:16 introduced above serves to discard pixels containing sub-
pixel clouds. Figs 4.5 and 4.6 help to explain this criterion. Fig. 4.5 shows the spectral
dependence of the reflectance measured by the MERIS instrument at TOA for 25 pixels
in an area near the city of Hamburg. As seen in the spectral region k ¼ 400 � 500 nm,
where the underlying surface contributes very little, the reflectance for all pixels is
similar. Only few pixels with different reflectance make exclusion. The natural suppo-
sition is that these pixels contain sub-pixel clouds or thin clouds. In Fig. 4.6 one can see
the ratio n for all 25 pixels of this box. This ratio differs considerably from the mean
value n � 1:2 for five pixels that apparently contain sub-pixel clouds.
Variations of the ratio n for pixels, which are free from sub-pixel clouds, arise from
changes of the surface albedo. These variations are small because the surface albedo
poorly contributes to the TOA reflectance as compared to the contribution of the Ray-

Fig. 4.4. Flowchart of the ART algorithm.
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leigh scattering in the wavelength range 412–443 nm. Just this feature along with strong
spectral dependence of the Rayleigh scattering makes the recommended choice of the
wavelengths k ¼ 412:5 nm and k ¼ 443 nm to be expedient. For the same reasons the
criterion n � 1:16 should be applied in the retrieval algorithm before subtraction of the
Rayleigh scattering. As one can see from Fig. 4.4, the criterion n � 1:16 looks promis-
ing for discarding pixels containing sub-pixel clouds. The estimations show that the use
of the criterion n � 1:16 leads to discarding pixels where clouds with the reflectance
more than 0.2 cover 20 % and more of the pixel area.

2. Separating ‘land’ (RTOA 885 nmð Þ 	 0:1) and ‘water’ (RTOA 0:885 nmð Þ < 0:1) pixels
(von Hoyningen-Huene et al., 2003) and discarding ‘bad’ pixels in the group of ‘land’
pixels using the criterion NDVI (Eq. (12)). Following Remer et al. (2005), pixels clas-
sified as ‘land’ at step 2 with NDVI < 0:1 are considered as pixels containing sub-
pixels ‘water’ and are discarded.

Fig. 4.5. Spectral dependence of the TOA reflectance measured by the MERIS instrument for 25 pixels in
a box.

Fig. 4.6. The ratio RTOA (412 nm)/RTOA (443 nm) for 25 pixels of a box.
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3. Compiling the box of neighbors ‘good’ pixels of the same type (‘land’ or ‘water’). The
box size depends on the spatial resolution of the deployed satellite instrument, number
of pixels in the processing image, the scenario, and the problem under consideration.
Particularly separate pixels can be processed independently, for instance while detect-
ing sub-pixel fires. In the examples below a box of 5 � 5 pixels is used. For this box the
average value of �RRTOA kð Þ is calculated. In doing so, 20 % of the pixels with minimal
values of RTOA 665 nmð Þ and 30 % of the pixels with maximal values of RTOA 665 nmð Þ
are discarded from the data to be averaged. The determined average value of �RRTOA kð Þ is
ascribed to the central pixel in the box.
This averaging procedure implies that the optical characteristics of the aerosol layers
are practically the same for all pixels in the compiled pixel box, i.e. the scale of the
spatial changes of the aerosol parameters is much larger than the pixel size. It decreases
the effects of random errors of measurements and of small-scale variations of the sur-
face albedo. Displacement of the pixel box by one column or one row in the array of the
image frame provides retrieval of the moving-average value of the AOT in the retrieval
procedure. Discarding pixels with maximal and minimal values of RTOA 665 nmð Þ in the
compiled pixel box from the averaging procedure allows one to eliminate or at least to
decrease the effect of pixels which either partially contain clouds (maximal values of
RTOA 665 nmð Þ) or include cloud shadows (minimal values of RTOA 665 nmð Þ).

4. For layer ‘2’, the reflectances at the illumination from the top R2 l; l0;fð Þ and from the
bottom R2* l; l0;fð Þ as well as the transmittance at the illumination from the bottom
T2* l; l0;fð Þ are computed with the RAY code. These radiative transfer characteristics
are computed at the set of Gaussian quadratures taking into account the stratification of
atmosphere and light polarization effects as a solution of the vector radiative transfer
equation. To be more specific, the azimuth Fourier harmonics of the reflectance
R kð Þ

2 l; l0ð Þ, R2* kð Þ l; l0ð Þ, and the transmittance T2* kð Þ l; l0ð Þ (k is a number of the azi-
muth harmonics) are computed in the doubling scheme (Lenoble, 1985) and used in the
retrieval procedure to include the radiative interaction between layers‘1’ and ‘2’.

5. For each central pixel (with average reflectance for a box), a correspondent normalized
differential index is estimated: NDVI (Eq.(12)) for ‘land’ pixels or NDPI (Eq.(13)) for
‘water’ pixels.

6. The iteration process (see Section 2.6) with the least-mean-squares algorithm using the
average values (over the box) �RRTOA kð Þ in seven spectral channels (k ¼ 412:5; 442:5;
490; 510; 560; 620 and 665 nm) is carried out. In this process the aerosol optical
thickness s kð Þ and Ångström exponent a of layer ‘1’ are retrieved with the assumption

s kð Þ ¼ bk�a: ð15Þ

The land spectral albedo is described by Eq. (10); the water spectral albedo is given by
Eq. (11). The value of the parameter c in Eq. (10) or Eq. (11), and values of s 412ð Þ and a
are determined in the iteration process with the least-mean-squares method. The value
of c0 ¼ NDVI for land pixels (c0 ¼ NDPI for water pixels) is taken for the zeroth ite-
ration.
The key question is the choice of the tropospheric aerosol model in layer ‘1’ that de-
termines the spectral dependence of the single scattering albedo and, what is most im-
portant, the aerosol phase function. The ART algorithm includes the procedure of cor-
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rection and adapting the aerosol model using the value of Ångström exponent a ob-
tained at the previous step of iteration in the iteration process.

7. The spectral optical thickness of the total atmosphere

stotal kð Þ ¼ s kð Þ þ sstrat kð Þ; ð16Þ

sstrat kð Þ being the optical thickness of aerosol in the stratified upper layer ‘2’, and the
Ångström exponent for the total atmosphere is calculated.

8. The spectral albedo of land rs kð Þ is calculated with the new corrected model of tropo-
spheric aerosol and retrieved dependence s kð Þ. When the underlying surface is land,
the surface albedo rs is defined from the well-known equation

RTOA l; l0;fð Þ ¼ Ra l; l0;fð Þ þ ta lð Þta l0ð Þrs
1 � rsrsa*

; ð17Þ

whereRa l; l0;fð Þ is the TOA reflectance of the whole atmosphere above a black under-
lying surface, ta l0ð Þ is the integral transmittance (direct + diffuse) of the whole atmo-
sphere, rsa* is the spherical albedo of the atmosphere at illumination of atmosphere
bottom upwards. The definitions of all these values are given in Table 4.1. Eq. (17) ac-
counts for the reciprocity theorem (Zege et al., 1991) and is obtained assuming a Lam-
bertian underlying surface.
When the underlying surface is water it is necessary to separate the reflection by the
water body (inner component) and reflection by the atmosphere–water interface. The
inner component can be considered as diffuse with spherical albedo rsw. The surface
reflection depends on the incidence and observation angles and on the ratio of diffuse to
direct components of the solar light after propagating through the atmosphere. This
chapter is directed mainly to development and testing the AOT retrieval over land.
Therefore, we will consider the reflection from sea only in a first approximation. Out-
side the glint region this is approximately:

RTOA l;l0;fð Þ ¼ Ra l; l0;fð Þ þ ta lð Þta l0ð Þ½rsw þ Ref
surf l; l0;fð Þ�

1 � rsa* rsw þ rsf

 � ; ð18Þ

where rsf � 0:06 (Ivanov, 1975) is the integral Fresnel coefficient of water surface
reflection under diffuse illumination (the spherical albedo of the sea surface). In this
relation we have not included the reflection by whitecaps.
As was already mentioned, the value of the effective reflectance of the water surface
Ref
surf l; l0;fð Þ depends on the ratio of diffuse to direct fluxes of the sunlight that illu-

minates a water surface after propagation through the atmosphere. The value of
ta lð Þta l0ð ÞRef

surf l; l0;fð Þ can be approximately defined as a sum of three components
(outside the glitter):

ta lð Þta l0ð ÞRef
surf l; l0;fð Þ ¼ t0a lð Þrf lð Þtsa l0ð Þ þ tsa lð Þrf l0ð Þt0a l0ð Þ þ tsa lð Þrsf tsa l0ð Þ;

(19)

where t0a l0ð Þ and tsa l0ð Þ are direct and diffuse components of the atmospheric transmit-
tance, respectively, ta l0ð Þ ¼ t0a l0ð Þ þ tsa l0ð Þ, rf l0ð Þ is the integral reflectance for a wa-
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ter surface under directional illumination. For not very oblique incidence and obser-
vation angles (l; l0 > 0:5), the Fresnel coefficient rf l0ð Þ could be taken as
rf l0ð Þ � 0:02 (Ivanov, 1975). As seen, the first term in Eq. (19) describes the contribu-
tion of sunlight scattered into atmosphere on its way to the water surface, reflected by
this surface and propagated back to the receiver without scattering. The non-scattered
Sun radiation reflected by the sea surface and scattered on its way to the receiver is
described by the second term. The third term in Eq. (19) includes the contribution
of the radiation scattered both on its way to and from the sea surface.
The listed steps and operations make the skeleton of the ART algorithm. The iteration

procedure used will be described in Section 2.6.

2.6 Iteration process for the retrieval of the spectral aerosol optical
thickness

Let us consider the spectral dependence �RRTOA kð Þ for a given observation geometry as a
function of the surface spectral albedo rs kð Þ and aerosol optical thickness of the layer ‘1’
s1 kð Þ assuming that in accordance to (15)

s kð Þ ¼ s412 k=k0ð Þ�a; ð20Þ

where k0 ¼ 412:5 nm, s412 is AOT of the layer ‘1’ at the wavelength k0 ¼ 412:5 nm.
Hence, the function �RRTOA kð Þ depends on two parameters (s412; aÞ and also the spectral
ground albedo rs kð Þ.

The surface albedo rs kð Þ is described by Eq. (10) for land and by Eq. (11) if water is an
underlying surface. If spectra rveg kð Þ and rsoil kð Þ (or rclear kð Þ and rcoastal kð ÞÞ are specified,
the spectrum rs kð Þ depends on the only parameter that is the weight coefficient c. Thus, the
spectrum �RRTOA kð Þ depends on the following three parameters: s412; a and c in the frame-
work of the retrieval scheme described here.

The parameters s412; a, and c do not depend on the wavelength by definition and can
be derived using the least squares method by iteration process:

s412; iþ1 ¼ s412; i þ Ds412; i

aiþ1 ¼ ai þ Dai: ð21Þ
ciþ1 ¼ ci þ Dci

The corrections Ds412; i, Dai, and Dci are determined from the following set of equation

�RRTOAðkjÞ ¼ �RRTOA; iðkjÞ þ d �RRTOA; iðkjÞ
ds412; i

Ds412; i þ d �RRTOA; iðkjÞ
dai

Dai þ d �RRTOA;iðkjÞ
dci

Dci; ð22Þ

j ¼ 0; 1; ::: N � 1

where �RRTOA kj

 �

are satellite processed data, and values �RRTOA;i kj

 �

are computed charac-
teristics.

The derivatives d �RRTOA;i kj

 �

=ds412;i, d �RRTOA;i kj

 �

=dai, d �RRTOA;i kj

 �

=dci at the point
s412; i; ai; ci

 �

with regard to relations (20) and (10) (or (11)) are calculated using the
following equations:
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d �RRTOA;i kj

 �

ds412;i
¼ d �RRTOA;i kj


 �
dsi kj

 � dsi kj


 �
ds412;i

¼ d �RRTOA;i kj

 �

dsi kj

 � kj

k0

� ��a

; ð23Þ

d �RRTOA;i kj

 �

dai
¼ d �RRTOA;i kj


 �
dsi kj

 � dsi kj


 �
dai

¼ � d �RRTOA;i kj

 �

dsi kj

 � s412;i

kj
k0

� ��ai

ln
kj
k0

� �
; ð24Þ

d �RRTOA;i kj

 �

dci
¼ d �RRTOA;i kj


 �
drs;i kj


 � drs;i kj

 �

dci
¼ d �RRTOA;i kj


 �
drs;i kj


 � rveg kj

 �� rsoil kj


 �� 
 ð25Þ

for land pixels and

d �RRTOA;i kj

 �

dci
¼ d �RRTOA;i kj


 �
drs;i kj


 � drs;i kj

 �

dci
¼ d �RRTOA;i kj


 �
drs;i kj


 � rclear kj

 �� rcoastal kj


 �� 
 ð26Þ

for water pixels.
The derivatives d �RRTOA;i kj


 �
=dsi kj


 �
and d �RRTOA;i kj


 �
=drs;i kj


 �
are calculated with the

RAY code using the finite difference technique (small variations of parameters si kj

 �

and rs;i kj

 �Þ.

The iterations (21) stop if

s412;iþ1 � s412;i


 �
=s412;i

		 		 � d; d ¼ 0:02: ð27Þ

The zeroth approximation for the iteration process is chosen as: a0 ¼ 1:3, s412 ¼ 0:3 and
c0 ¼ NDVI (or c0 ¼ NDPI in the case of water). It was concluded from multiple calcula-
tions that the iteration process convergence is hardly sensitive to the choice of the zeroth
approximation for the parameters a and s412. Fig. 4.7 confirms this statement. It shows the
correlation between the AOT values retrieved with different zeroth approximations for the
parameter s412 (to be more specific, the starting values of s412 were taken equal to 0.1 and 0.4).

Although the starting AOT values are drastically different, the retrieved values are pret-
ty close. To conclude this section, one more note is necessary. As known, the Ångström
exponent for the majority of atmospheric aerosol types is in the range �0:5 < a < 2 (Hol-
ben et al., 2001). The average a value for climatological model (WMO, 1986) is about
a ¼ 1:3. In the described iteration process the values of a sometimes appear to be beyond
these limits. This leads to the divergence of the iteration process. We found that this occurs
when there is a large difference between unknown real surface spectral albedo rs kð Þ and the
spectral model used. To limit the possible range of the Ångström exponent values, we use
the following equation for the determination of the value aiþ1 in the iterative process in-
stead of Eq. (21):

aiþ1 ¼ a* þ ai þ Dai � a*ð Þ exp � ai þ Dai � a*ð Þ2=2r2
a

h i
: ð28Þ

The values of a* and ra can be defined by a user. In our case a* ¼ 1:3, ra � 0:23. At
ai þ Dai � a*j j < 3ra we have aiþ1 ¼ ai þ Dai. Therefore when the value of ai þ Dai

is close to a*, Eq. (28) practically coincides with Eq. (21). At ai þ Dai � a*j 	 3raj
we have aiþ1 � a*.
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2.7 Notes about the resemblance and difference between ART and other
AOT retrieval algorithms

As seen from the previous discussion, the ART has benefited a lot from other AOT retrieval
algorithms. For instance, from the BAER algorithm (von Hoyningen-Huene et al., 2003)
we took the base spectral functions of surface albedo. From the MODIS algorithm (Kauf-
man et al., 1997) we took the idea of compiling pixels in boxes. This compilation implies
averaging of data and diminishes the effect of random errors. The process of the ‘good’/
‘bad’ pixels sorting and ‘bad’ pixels discarding has a lot in common with the MODIS
algorithm. The procedure of sorting ‘water’ and ‘land’ pixels is the combination of meth-
ods used in both algorithms, namely the value of the spectral reflectance at TOA and the
value of the NDVI are jointly used. The procedures of the iteration adjustment of an aerosol
model exists in both MODIS and ART algorithms.

One of the most important characteristics of any satellite retrieval algorithm is the
computation time because of the need to process a large amount of pixels. Although
the ART code does not use LUT, but rigorous computations of the radiative transfer in
the iteration retrieval process, the retrieval procedure with ART code is fast. The retrieval
of the AOT, Ångström parameter, and land reflectance for a pixel takes about 0.02 s; an
area with 2 � 105 pixels is processed in about 1 hour on an ordinary PC (Pentium 2.6 GHz,
1 GB RAM). We have been developing a much faster semi-analytical technique that uses
the combination of analytical solutions and numerical computations.

In the present-day AOT retrieval algorithms the Rayleigh optical thickness is considered
as a well known parameter and its contribution to the registered radiance can be easily
taken into account. Sometimes the Rayleigh reflectance RR l; l0;fð Þ is simply subtracted
from the apparent reflectance RTOA l; l0;fð Þ at the top of atmosphere after correction for
gaseous absorption, no coupling of Rayleigh and aerosol scattering being included. As a
rule, the coupling of layers ‘1’ and ‘2’ is not regarded properly as well. In the MERIS
algorithm (Santer et al., 2000), as in some other algorithms, the interaction between layers
is considered using the following equation:

Fig. 4.7. Correlation between the AOT values retrieved with starting values s412 ¼ 0:1 and s412 ¼ 0:4 at
k ¼ 412:5 nm (left) and 560 nm (right), r is the correlation coefficient.
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RTOA l; l0;fð Þ ¼ RR l; l0;fð Þ þ tR lð ÞtR l0ð ÞRG l; l0;fð Þ
1 � rsGrsR

; ð29Þ

where RG l; l0;fð Þ is the aerosol–ground system reflectance, tR l0ð Þ and tR lð Þ are the
downward and upward Rayleigh transmittances, respectively, and rsR and rsG are the sphe-
rical albedos relating to the Rayleigh and aerosol–ground systems, respectively.

Eq. (29) is correct only in the assumption of the Lambertian distribution of the reflec-
tance RG l; l0;fð Þ at the top of the aerosol layer. Besides, this relation is more accurate for
the narrower angular distributions of light transmittance TR l; l0;fð Þ. It was noted in (San-
ter et al., 2000) that assumption (29) has to be done because of the lack of a priori infor-
mation about the aerosol scattering and about the land surface characteristics.

Without above assumptions the following more accurate equation should be used in-
stead of Eq. (29):

RTOA l; l0;fð Þ ¼ RR l; l0;fð Þ þ TR*RG*TR
1 � rsGrsR

; ð30Þ

where the notation Z ¼ X*Y means (Lenoble, 1985)

Z l; l0;f� f0ð Þ ¼ 1

p

ð2p
0

df 0
ð1
0

X l; l 0;f� f 0ð ÞY l 0; l0;f
0 � f0ð Þ l 0 dl 0: ð31Þ

It means that

TR*RG*TR ¼ 1

p2

ð2p
0

df 0
ð1
0

TR l; l 0;f� f 0ð Þ l 0 dl 0

�
ð2p
0

df 00
ð1
0

RG l 0; l 00;f 0 � f 00ð ÞTR l 00; l0;f� f0ð Þ l 00 dl 00 ð32Þ

Our computations have shown that the assumption (29) can lead to noticeable errors in the
computations of the aerosol–ground system reflectance RG l; ls;fð Þ, overestimations and
underestimations of this value are both possible. The error depends on the sun position,
observation angle, surface albedo, and wavelength. To study the accuracy of Eq. (29), let us
compare the value

~RRa l; l0;fð Þ ¼ RTOA l; l0;fð Þ � RR l; l0;fð Þ½ � 1 � rsGrsRð Þ
tR lð ÞtR l0ð Þ ð33Þ

following from approximation given by Eq. (29) in the case of the black surface (rs ¼ 0)
with the accurate value of Ra l; l0;fð Þ. Here it follows: ra ¼ raG at rs ¼ 0. This com-
parison is shown in Fig. 4.8. The relative error

e ¼
~RRa l; l0;fð Þ � Ra l; l0;fð Þ

Ra l; l0;fð Þ ð34Þ
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of computation of the value ~RRa l; l0;fð Þ is depicted in Fig. 4.9. All functions in Eq. (33)
and the accurate values of the reflectance Ra l; l0;fð Þ of the aerosol layer were computed
with the RAY code. As seen, this error may be very pronounced and can even exceed 50 %
at small values of AOT. Note that the increase of the surface albedo reduces this error.

In contrast, in the ART algorithm the radiative interaction between the aerosol–ground
system and layer ‘2’ is computed accurately with regard to the multiple re-reflections and
real angular distribution of the radiation transmitted and reflected by the layers.

Fig. 4.8 Comparison of exact values of Raðl; lo;fÞ (dashed lines) with ~RRaðl; l0;fÞ computed in approx-
imation (29), (33) (solid lines) at k ¼ 412:5 nm and nadir observation. Numbers in the legend denote the
values of AOT.

Fig. 4.9. Relative error of ~RRaðl; l0;fÞ defined by Eq. (34) for different AOTs (numbers in the legend) at
k ¼ 412:5 nm and nadir observation.
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3. Results

3.1 Inter-comparisons of the retrieved AOTwith results of other algorithms
and AERONET data

The values of the AOT at 550 nm retrieved with the ART code were compared with AOT
values retrieved with other algorithms.

In the examples shown below we used the well-known Standard Atmosphere model
(WMO, 1986). The top boundary of the layer ‘1’ was chosen as H ¼ 2 km (the altitude
of the highest point in the processing area was about 700 m). It was supposed that this layer
contained aerosol of Continental model. Within this model the aerosol is considered as a
mixture of three fractions with log-normal particle size distributions. The first fraction
contains water soluble (WS) particles, the second one includes aerosol of the soil origin
(dust), and the third fraction includes soot particles. Variations of the relative concentra-
tions of water-soluble and dust aerosols alter the Ångström exponent. The Continental
model with volume concentrations equal to 29 % WS, 70 % dust and 1 % soot is recom-
mended in (WMO, 1986) as typical for continental areas.

In accordance with the Standard Atmosphere model (WMO, 1986), the aerosol in the
stratosphere and upper troposphere were supposed to consist of H2SO4 droplets, and an
aerosol optical thickness of the atmospheric layers in the altitude range 5.9–50 km at
k ¼ 550 nm is taken equal to 0.019. The aerosol optical thickness of the middle tropo-
sphere in the altitude interval 2–5.9 km is taken to be equal to 0.02. It is supposed to con-
tain Continental aerosol. The atmospheric model used allows the altitude stratification of
all constituents. Particularly, vertical profiles of pressure, temperature, and gas concen-
tration can be specified. For example, in our case we use the LOWTRAN Mid-Latitude
Summer molecular-gas model (see Table 4.2) which consisted of 48 layers. As a result the
stratified atmosphere model can consist of N layers, where N � 52.

For ART retrieval testing we used the data of a recently performed inter-comparison
(Kokhanovsky et al., 2007). In this work the performance of different algorithms was tested
for a site in Europe, where multiple and near-simultaneous satellite data were available. As
many as 10 different algorithms for the AOT retrieval that used data taken by six satellite
optical instruments currently operated in space were inter-compared.

The explored site included the cloudless ground scene in central Europe (mainly, Ger-
many) on October 13, 2005 (10:00 UTC). The latitude range was 49–53 N and the long-
itude range was 7–12 E. More detailed results are given by Kokhanovsky et al. (2007), for a
smaller area (9–11.5 E, 52–52.5 N) as well. Several AERONET instruments operated at
the time of satellite measurements.

The average values of AOT and standard deviations for different instruments and algo-
rithms, taken from paper by Kokhanovsky et al. (2007), are presented in Tables 4.3 and 4.4
as well as the retrieval data obtained with ART. Note that the time difference between the
measurements of ENVISAT and Terra is 30 min. The data in the tables present the total
atmosphere aerosol optical thickness, including both layers ‘1’ and ‘2’. As seen from the
tables, the ART data are in a good agreement with results of MISR JPL, MODIS NASA,
MERIS BAER, and MERIS ESA retrieval algorithms.

Inter-comparisons between different satellite products and data from AERONET sta-
tions located in central Europe were performed by Kokhanovsky et al. (2007). AERONET
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Table 4.2. The LOWTRAN Mid-Latitude Summer molecular atmosphere model (Kneizys, 1996). Here
N refers to the total number of molecules at a given altitude.

Altitude (km) P (mb) T (K) N (cm�3) H2O (cm�3) O3(cm�3)

120 2.27E � 05 380 4.33E + 11 8.65E + 04 2.16E + 02
115 3.56E � 05 316.8 8.14E + 11 1.95E + 05 4.07E + 03
110 6.11E � 05 262.4 1.69E + 12 4.72E + 05 8.43E + 04
105 1.17E � 04 222.2 3.81E + 12 1.30E + 06 7.63E + 05
100 2.58E � 04 190.5 9.81E + 12 3.92E + 06 3.92E + 06
95 6.25E � 04 178.3 2.54E + 13 1.37E + 07 1.78E + 07
90 1.64E � 03 165 7.20E + 13 6.12E + 07 5.40E + 07
85 4.48E � 03 165.1 1.97E + 14 2.61E + 08 1.12E + 08
80 1.20E � 02 174.1 4.99E + 14 1.05E + 09 9.98E + 07
75 3.00E � 02 196.1 1.11E + 15 3.27E + 09 2.11E + 08
70 6.70E � 02 218.1 2.23E + 15 8.23E + 09 8.90E + 08
65 1.39E � 01 240.1 4.19E + 15 1.85E + 10 3.35E + 09
60 2.72E � 01 257.1 7.66E + 15 3.83E + 10 9.96E + 09
55 5.15E � 01 269.3 1.39E + 16 7.41E + 10 2.49E + 10
50 9.51E � 01 275.7 2.50E + 16 1.37E + 11 7.00E + 10
47.5 1.29E + 00 275.2 3.40E + 16 1.87E + 11 1.19E + 11
45 1.76E + 00 269.9 4.72E + 16 2.57E + 11 2.13E + 11
42.5 2.41E + 00 263.7 6.62E + 16 3.51E + 11 3.91E + 11
40 3.33E + 00 257.5 9.37E + 16 4.78E + 11 7.07E + 11
37.5 4.64E + 00 251.3 1.34E + 17 6.69E + 11 1.16E + 12
35 6.52E + 00 245.2 1.93E + 17 9.53E + 11 1.71E + 12
32.5 9.30E + 00 239 2.82E + 17 1.37E + 12 2.28E + 12
30 1.32E + 01 233.7 4.09E + 17 1.92E + 12 2.86E + 12
27.5 1.91E + 01 228.45 6.05E + 17 2.69E + 12 3.63E + 12
25 2.77E + 01 225.1 8.91E + 17 3.74E + 12 4.28E + 12
24 3.22E + 01 223.9 1.04E + 18 4.17E + 12 4.17E + 12
23 3.76E + 01 222.8 1.22E + 18 4.71E + 12 4.16E + 12
22 4.37E + 01 221.6 1.43E + 18 5.14E + 12 4.14E + 12
21 5.10E + 01 220.4 1.68E + 18 5.78E + 12 4.02E + 12
20 5.95E + 01 219.2 1.97E + 18 6.49E + 12 3.93E + 12
19 6.95E + 01 217.9 2.31E + 18 7.39E + 12 3.47E + 12
18 8.12E + 01 216.8 2.71E + 18 8.55E + 12 2.71E + 12
17 9.50E + 01 215.7 3.19E + 18 1.02E + 13 2.23E + 12
16 1.11E + 02 215.7 3.73E + 18 1.23E + 13 2.24E + 12
15 1.30E + 02 215.7 4.37E + 18 1.48E + 13 2.18E + 12
14 1.53E + 02 215.7 5.14E + 18 2.57E + 13 2.26E + 12
13 1.79E + 02 215.8 6.01E + 18 4.81E + 13 1.80E + 12
12 2.09E + 02 222.3 6.81E + 18 2.01E + 14 1.52E + 12
11 2.43E + 02 228.8 7.69E + 18 7.35E + 14 1.38E + 12
10 2.81E + 02 235.3 8.65E + 18 2.14E + 15 1.13E + 12
9 3.24E + 02 241.7 9.71E + 18 4.01E + 15 1.08E + 12
8 3.72E + 02 248.2 1.09E + 19 7.02E + 15 9.91E + 11
7 4.26E + 02 254.7 1.21E + 19 1.24E + 16 9.41E + 11
6 4.87E + 02 261.2 1.35E + 19 2.04E + 16 8.65E + 11
5.9 4.93E + 02 261.8 1.37E + 19 2.14E + 16 8.62E + 11
5 5.54E + 02 267.2 1.50E + 19 3.34E + 16 8.28E + 11
4 6.28E + 02 273.2 1.67E + 19 6.35E + 16 8.03E + 11
3 7.10E + 02 279.2 1.84E + 19 1.10E + 17 7.78E + 11
2 8.02E + 02 285.2 2.04E + 19 1.97E + 17 7.52E + 11
1 9.02E + 02 289.7 2.26E + 19 3.11E + 17 7.53E + 11
0 1.01E + 03 294.2 2.49E + 19 4.68E + 17 7.52E + 11
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is a network of identical sunphotometers designed specifically for the validation of satel-
lite aerosol retrievals. We also compared ART retrieval with AERONET data. Fig. 4.10
(left), where the ART retrieval data are plotted versus AERONET data for
k ¼ 550 nm, demonstrates a pretty good agreement. AERONET AOT data at 550 nm
are obtained by interpolation between k ¼ 440 nm and k ¼ 670 nm.

Here the correlation coefficient is equal to 0.84. For comparison, other satellite products
versus AERONET, taken from Kokhanovsky et al. (2007), are demonstrated in Fig. 4.10 right.

With ART the values of the AOT at k ¼ 412:5 nm and the Ångström exponent are di-
rectly retrieved, the values of AOTs at other wavelengths, including k ¼ 550 nm, are cal-
culated through these values. It is interesting to compare data of ART and AERONET at
different wavelengths. Such a comparison at k ¼ 440 nm and k ¼ 670 nm is presented in
Fig. 4.11 and shows satisfactory agreement.

Let us compare the values of the AOT retrieved with the ART and other algorithms. In
Fig. 4.12 the correlation of the AOT at 550 nm obtained for the whole test area (7–12 E,
49–53 N) using MERIS-ART and MISR-JPL algorithms is shown. As seen, the AOT va-
lues retrieved with both algorithms are pretty close. The difference is maximal at small
AOT values. The most probable cause of this discrepancy is the difference between the
tropospheric aerosol models used and, particularly, the phase functions used. Fig. 4.13,
where the correlation of AOT at 550 nm obtained using MERIS-ART and MODIS-
NASA algorithms is shown, leads to the similar propositions.

Table 4.3. Average AOTs and standard deviations at k ¼ 550 nm for different instruments and algorithms
in the selected area (7–12E, 49–53N)

Instrument Algorithm Average AOT Standard
deviation

Spatial resolution of
reported AOT, km2

Platform

MERIS ART 0.16 0.035 5 � 5 ENVISAT

MERIS ESA 0.13 0.05 1 � 1 ENVISAT

MERIS BAER 0.18 0.03 1 � 1 ENVISAT

MISR JPL 0.14 0.03 17.6 � 17.6 TERRA

MODIS NASA 0.14 0.04 10 � 10 TERRA

AATSR AATSR-2 0.23 0.05 3 � 3 ENVISAT

AATSR AATSR-1 0.26 0.1 3 � 3 ENVISAT

Table 4.4. The same as in Table 4.3 except for a smaller area (9–11.5E, 52–52.5N)

Instrument Algorithm Average AOT Standard
deviation

Spatial resolution of
reported AOT,km2

Platform

MERIS ART 0.18 0.025 5 � 5 ENVISAT

MERIS ESA 0.21 0.05 1 � 1 ENVISAT

MERIS BAER 0.20 0.02 1 � 1 ENVISAT

MISR JPL 0.16 0.02 17.6 � 17.6 TERRA

MODIS NASA 0.15 0.03 10 � 10 TERRA

AATSR AATSR-2 0.22 0.06 3 � 3 ENVISAT

AATSR AATSR-1 0.30 0.06 3 � 3 ENVISAT
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Fig. 4.10. AOT at k ¼ 550 nm retrieved with ART versus AERONET (left) and different satellite pro-
ducts versus AERONET (Kokhanovsky et al., 2007) (right).

Fig. 4.11. Inter-comparisons between ART and AERONET products at k ¼ 440 nm (left) and
k ¼ 670 nm (right).

Fig. 4.12. Correlation between the AOT (550 nm) values retrieved with ARTand MISR algorithms for the
large test area (7–12 E, 49–53 N).
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Fig. 4.13. Correlation between the AOT (550 nm) values retrieved with ART and MODIS algorithms for
the large test area (7–12 E, 49–53 N).

Fig. 4.14. AOT at k ¼ 412:5 nm for the large test area (7–12 E, 49–53 N) studied by Kokhanovsky et al.
(2007).
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Figs 4.14 and 4.15 show the spatial distribution of the retrieved AOT at 412 nm and the
Ångström exponent. It follows from Fig. 4.14 that the AOT spatial distribution is very
inhomogeneous with higher AOTs at the southern part of the study area, where AOT
reaches 0.4. The background aerosol (blue color) has an AOT around 0.15. The back-
ground Ångström exponent is around 1.2 (see Fig. 4.15) with larger values in areas, where
the AOT is also larger, which points at industrial pollution sources dominated by fine mode
aerosol particles.

3.2 Importance of the choice of the aerosol model

As mentioned above, a very important issue is the choice of the aerosol model for layer ‘1’.
This model assumes not only the value of the single scattering albedo, but, what is the most
important, also the phase function. In our runs we used the Standard Atmosphere model
(WMO, 1986) with the Continental aerosol model in the lower layer ‘1’.

Let us estimate the influence of the chosen phase function on the retrieved AOT value.
Fig. 4.16 demonstrates the phase function of the Continental model at k ¼ 550 nm and a
phase function p hð Þ (h is the scattering angle) that was measured earlier in Germany (von
Hoyningen-Huene et al., 2003) (we will refer to it as the ‘experimental’ phase function).

Here the phase function is normalized as 1=2ð Þ Ðp
0
p hð Þ sin hdh ¼ 1. As seen, in the angle

Fig. 4.15. Ångström parameter for the large test area (7–12 E, 49–53 N).
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range 
 100 � 150 degrees mainly used for AOT retrieval, the values of the experimental
phase function are about two times larger than the values of the phase function of the
Continental model.

Values of the AOT retrieved with the ART algorithm but with two different aerosol
models (Continental and experimental) are compared in Fig. 4.17. The experimental mo-
del is rather simple: the single scattering albedo is equal to 0.9 (as for the Continental
model) and the phase function is considered as independent of the wavelength. The cor-
relation between these data is rather high, but AOT values retrieved with the experimental
phase function are 1.5 times smaller.

This difference is easy to understand. Let us consider the simplest case of a small AOT,
when the single scattering approximation can be used. In this case the reflectance of the
aerosol layer ‘1’ is proportional to the product of the single scattering albedo x, phase
function p hð Þ, and AOT s, i.e.

R2 l; l0;fð Þ 
 xp hð Þs: ð35Þ

Fig. 4.16. Continental and experimental phase functions at k ¼ 550 nm.

Fig. 4.17. Comparison of AOTs (550 nm) for small test area (9–11.5 E, 52–52.5 N) retrieved by ART
algorithm using Continental and experimental phase functions, r is the correlation coefficient.
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It means that, for example, a twofold increase of the value of the phase function p hð Þ in the
considered direction leads to a twofold decrease of the retrieved values of the AOT.

3.3 Retrieval of the surface albedo

One of the most important problems of satellite remote sensing is the retrieval of the true
spectral albedo rs kð Þ of the underlying surfaces (atmospheric correction). After retrieving
s kð Þ the spectral albedo rs kð Þ of the underlying Lambertian surface can be simply calcu-
lated from Eq. (17) if the surface is land:

rs ¼ RTOA l; l0;fð Þ � Ra l; l0;fð Þ
ta lð Þta l0ð Þ þ rsa* RTOA l; l0;fð Þ � Ra l; l0;fð Þ½ � : ð36Þ

In the case of water the value of rw is retrieved from Eq. (18) as follows:

rsw ¼ RTOA l; l0;fð Þ � Ra l; l0;fð Þ½ � 1 � rsa*rsf

 �� ta lð Þta l0ð ÞRef

surf l; l0;fð Þ
ta lð Þta l0ð Þ þ rsa* RTOA l; l0;fð Þ � Ra l; l0;fð Þ½ � : ð37Þ

Let us study how the choice of the aerosol model, particularly, the aerosol phase function,
influences the spectral surface albedo retrieval. The comparison of the spectral surface
albedo values for two wavelengths retrieved with Continental and experimental phase
functions is shown in Fig. 4.18. The correlation of these data is very high.

Hence, the following important conclusion results from this study: the retrieved spectra
of the surface albedo are comparatively stable whereas the retrieved values of AOT are
sensitive to the choice of the aerosol model. This insensitivity of the retrieved spectra
of the surface albedo to variations of the aerosol phase function p hð Þ follows immediately
from the fact that the reflectance of layer ‘1’ is proportional to the product of the phase
function p hð Þ and AOT (see Eq. (35). This statement is more accurate as the the optical

Fig. 4.18. Surface albedo retrieved with the experimental phase function versus the same value retrieved
with the Continental phase function at wavelengths of 412.5 nm (left) and 560 nm (right) for the small test
area (9–11.5 E, 52–52.5 N) used by Kokhanovsky et al. (2007). r is the correlation coefficient.
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thickness of the layer ‘1’ is smaller. Indeed, for a thin layer a twofold increase of the value
of the phase function p hð Þ in the considered direction leads to a twofold decrease of the
retrieved values of the AOT. The product p hð Þs and the value of Ra l; l0;fð Þ in Eqs. (36)
and (37) change only slightly. At small AOT such changes of s lead to modest variations
of the transmittance ta lð Þ as well.

4. Conclusion

A new aerosol retrieval technique for the spectral AOT retrieval from data of satellite op-
tical instruments has been presented. This technique incorporates some ideas and features
from the most elaborated retrieval techniques (e.g., those of MODIS and MERIS). Parti-
cularly, pixel sorting is close to those of the MODIS algorithm; the starting spectral model
of the underlying surface is taken from the BAER code. The main distinction of this new
technique is that it does not use LUT (as practically all AOT retrieval codes do) but in-
cludes radiative transfer computations in the process of retrieval. The base of the devel-
oped approach is the accurate and extremely fast radiative transfer code RAY for the si-
mulation of the radiative transfer in the atmosphere–underlying surface system taking into
account light polarization developed by authors earlier (see Appendix). RAY’s high pro-
cessing speed allowed us to use iterative radiation transfer computations in the processing
of satellite data for AOT retrieval. The AOT retrieval with ART being comparable in the
processing time with other techniques has some additional merits, particularly
* ART uses minimal simplifications in the computation of the radiative transfer through

the atmosphere, for instance it accurately accounts for the interaction between atmo-
spheric layers; and also ART includes the effect of polarization on radiance.

* In the AOT and Ångström exponent retrieval the least-mean-squares technique is ap-
plied (RAY provides fast computation of the derivatives with respect to retrieved va-
lues).

* Any set of wavelengths and also data of many satellite optical instruments can be pro-
cessed without any changes in the ART code.

* The atmospheric model can be easily changed in the retrieval process.
The evaluation of the ART retrieval technique by comparison with AERONET data and
results of AOT and land spectral albedo retrieval with other codes showed that its accuracy
is at least as good as that in other widely used approaches.

It is worth noting that the developed technique can be easily generalized to process the
spectral multi-angle and polarization satellite data.

Appendix: The vector radiative transfer code

A.1 Theory

One of the main keys to the success of our retrieval algorithm is the speed and accuracy of
the RAY code (Tynes et al., 2001; Chaikovskaya et al., 1999) for the computation of the
polarized radiative transfer in atmosphere–land and atmosphere–ocean systems. Below we
give a brief description of this code: outline of the underlying theory, the code architecture,
and the means used to speed up computations.
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Let us consider the scattering of a polarized light beam in a plane-parallel turbid me-
dium. The z-axis of the Cartesian coordinate system XYZ is set normal and downwards to
the scattering layer upper boundary z ¼ 0. This upper boundary is uniformly illuminated
by an infinitely wide beam. A Stokes vector I of the scattered light depends on the optical
depth s ¼ R z0 reðz 0Þ dz 0, where reðzÞ is the extinction coefficient, and on the beam direc-
tion n l;fð Þ. The Stokes vector of scattered light I s; nð Þ at the depth s in the direction
n l;fð Þ is related to the Stokes vector of the incident radiation I0 n0ð Þ, where n0 l0;f0ð Þ
is the incident light direction, as follows:

I s; nð Þ ¼ 1

p

ð ð
G s; n; n0ð Þl0I0 n0ð Þ dn0: ð38Þ

The Green’s matrix G s; n; n0ð Þ obeys the vector radiative transfer equation (VRTE) (Zege
and Chaikovskaya, 1996)

B G s; n; n0ð Þf g ¼ x sð Þ
4p

ð ð
Z s; n; n 0ð ÞG s; n 0; n0ð Þ dn 0 ð39Þ

and the boundary conditions

G s ¼ 0; l; l0;f� f0ð Þ ¼ pEd sð Þd n� n0ð Þ; l 2 0; 1½ �
G s ¼ s0; l; l0;f� f0ð Þ ¼ 0; l 2 0;�1½ � ð40Þ

Here
B ¼ l

@

@s
þ 1 ð41Þ

is the differential operator, x sð Þ and Z s; n;n 0ð Þ, the single scattering albedo and phase
matrix, respectively (their argument s hereafter will be omitted), E is the 4 � 4 unit matrix,
d sð Þ and d n� n0ð Þ are the delta functions, and s0 is the optical thickness of a scattering
layer. Eq. (39) presents four coupled integro-differential radiative transfer equations, each
one being for the Green’s matrix column.

The phase matrix Z n; n 0ð Þ is related to the Mueller (single-scattering) matrix F xð Þ as
follows (Chandrasekhar, 1960):

Z n; n 0ð Þ ¼ L p� v 0
2


 �
F xð ÞL �v 0

1


 �
; ð42Þ

where x ¼ cos h, h is the scattering angle,

x ¼ cos h ¼ ll 0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � l2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � l 02

p
cos f� f 0ð Þ; �1 � l; l 0 � 1 ð43Þ

and L vð Þ is the well-known rotation matrix (Chandrasekhar, 1960).
When a medium phase function is strongly forward peaked, then our way to solve

Eq. (39) consists of the following steps.
1. The phase function F11 xð Þ (note that F11 xð Þ ¼ Z11 xð ÞÞ is represented as a sum of

two components, the first one differs from zero only at small scattering angles
h � hlim 
 100, i.e.,

Z11 xð Þ ¼ A1Z
f
11 xð Þ þ 1 � A1ð ÞZd

11 xð Þ; ð44Þ
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A1 is the normalization constant. The first term, for example, can be determined as
follows

A1Z
f
11 xð Þ ¼ Z11 xð Þ � Z11 Xð Þ; if x 	 X ;

0; if x < X ;

�
ð45Þ

X ¼ cos hlim. The total phase and Green’s matrices are also presented by the sums of
two components:

ẐZ n; n 0ð Þ ¼ A1ẐZ
f n; n 0ð Þ þ 1 � A1ð ÞẐZd nn 0ð Þ; ð46Þ

ĜG b; n; n0ð Þ ¼ ĜGf b; n; n0ð Þ þ ĜGd b; n; n0ð Þ; ð47Þ

and ẐZf is given by ẐZf
11
~̂ZẐZZ, as well as ẐZd is given by Zd

11
~̂ZẐZZ, where ~ZZik ¼ Zik=Z11.

2. Eq. (39) is then transformed, using Eqs (42) and (43) and taking into account the feature
of matrices ẐZf and ĜGf to have forward-peaked diagonal functions. Two different ra-
diative transfer problems are formulated instead of the original one. The first compo-
nent Gf s; n; n0ð Þ of the solution satisfies the independent transfer equation with the
small-angle phase matrix

B Gf s; n; n0ð Þ� � ¼ xA1

4p

ð ð
Zf n; n 0ð ÞGf s; n 0; n0ð Þ dn 0; ð48Þ

and the boundary condition

Gf s ¼ 0; l;l0;f� f0ð Þ ¼ pEd sð Þd n� n0ð Þ; l 2 0; 1½ �: ð49Þ

Let us agree to use the term ‘small-angle’ VRTE in referring to Eq. (48). For the second
component of the Green’s matrix we have:

B Gd s; n; n0ð Þ� � ¼ x
4p

ð ð
Z n; n 0ð ÞGd s; n 0; n0ð Þ dn 0þ

þx 1 � A1ð Þ
4p

ð ð
Zd n; n 0ð ÞGf s; n 0; n0ð Þ dn 0 ð50Þ

Thus, the problem of strongly anisotropic multiple light scattering described by Eq. (39)
is decomposed into two simpler problems based on the solution of Eqs (48) and (50).
Up to this point, no simplifying assumptions have been made. The set of Eqs (48) and
(50) is completely equivalent to the original VRTE (39). But these new transfer equa-
tions are still complicated. The described algorithm is based on the transformation of
Eqs (48) and (50), which makes their forms suitable for solving by known semi-analy-
tical methods.

3. Using theory developed by Zege and Chaikovskaya (1996), with the main idea of
separating the equations for diagonal and non-diagonal elements of the matrix
Gf s; n 0; n0ð Þ, the small-angle matrix problem is reduced to
* scalar small-angle RTEs for leading diagonal elements of matrix Gf s; n 0; n0ð Þ; each

equation can be solved by a small-angle scalar technique;
* simple quasi-single scattering solution for the small non-diagonal elements.
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4. Taking into account the properties of the matrix Gf s; n 0; n0ð Þ, the following equation is
used in the code to derive the Green’s matrix component Gd s; n; n0ð Þ (see Eq. (50)):

Bd Gd s; n; n0ð Þ� � ¼ xd

4p

ð ð
Zd n; n 0ð ÞGd s; n 0; n0ð Þ dn 0 þ xd

4
Zd n; n0ð Þ exp � sd

l0

� �
ð51Þ

with

Bd ¼ l
@

@sd
þ 1; xd ¼ x 1 � A1ð Þ

1 � xA1
; sd ¼ 1 � xA1ð Þs: ð52Þ

Eq. (51) is the conventional VRTE for the case of an effective scattering medium, which
is characterized by the extinction coefficient re 1 � xA1ð Þ, by the single scattering al-
bedo xd and also by the truncated phase matrix Zd n; n 0ð Þ.
The advantage of this approach, named the two-component one, arises from a different

character of a new pair of equations. The first equation is defined only at small scattering
angles and has the effective single scattering albedo smaller than 0.5, therefore it can be
solved within the semi-analytical small-angle approach (Zege et al., 1991; Zege and Chai-
kovskaya, 1996). The second equation, with the truncated phase function, can be easily
solved using the Fourier expansion with adding–doubling methods. Eq. (51) is much sim-
pler as compared to Eq. (39) (forward scattering peaks are removed). The chart of the
approach used in the framework of RAY is given in Fig. 4.19.

This two-component approach makes a basis of the RAYalgorithm. The time saving is
achieved owing to the economical arrangement of the code at the every step and mainly
due to following newly developed features and findings:
1. The basic method used, namely, the two-component approach, that is the principal

source of the saving computation time practically without a loss of the accuracy.

Fig. 4.19. Chart of the RAY code.
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The accurate semi-analytical solution is obtained for the small angle part of the Green’s
matrix, using theory developed Zege and Chaikovskaya (1996). The diffuse part of the
Green’s matrix is the solution of the traditional VRTE with a truncated phase matrix
ẐZd xð Þ, which is very smooth in comparison with initial phase matrix ẐZ xð Þ. Unlike ẐZ xð Þ,
the truncated phase matrix ẐZd xð Þ requires a reasonable number M (up to 30) of the
generalized spherical functions in its expansion with sufficient accuracy. The value
of M is the crucial number, which mainly determines the computation time (the com-
putation time changes at least as M3).

2. The fundamental symmetry and reciprocity relationships to decrease the volume of
calculations, particularly, while computing the Fourier harmonics in the adding–dou-
bling technique, are used.

3. Analytical approximations of a sum of high number of the multi-dimensional integrals
describing the re-reflections between atmospheric sub-layers in the doubling procedure
are used. Also asymptotic solutions of the radiative transfer equation are used for thick
layers. Therefore, not only aerosols but also thick cloud layers can be studied with the
developed technique.

4. The analytical description of the behavior of the Green’s matrix elements in the vicinity
of points l ¼ 1 and l0 ¼ 1 is used.

5. Separate exact computations of the Green’s matrix component for singly scattered ra-
diation are performed.

A.2 The accuracy of the code

Several approximations are used to speed up radiative transfer calculations and in this
sense the developed code provides approximate results. However, the error of the corre-
sponding approximations is much smaller than that due to a priori assumptions, which are
inherent to the retrieval process (e.g., the assumption on the surface reflectance and the
atmospheric state model). Clearly, theoretical tools for the solution of any physical prob-
lem must be adequate, e.g., with respect to the information content for a given set of mea-
surements. Nevertheless, the accuracy of the code is of a primary importance.

The first step to check the code accuracy was to compare the computed reflection and
transmission matrix for the Rayleigh layer with well known data of Coulson et al. (1960).
Our data coincide within five digits with the tabular data presented by Coulson et al.
(1960).

As numerous comparisons with other codes have shown, RAY achieves a similar ac-
curacy as compared to other codes and provides highly accurate data in a fraction of
the time required by the Monte Carlo and other methods (Tynes et al., 2001). For instance,
the difference between RAYand SCIATRAN computations (Rozanov et al., 2005) for mo-
lecular and aerosol atmospheres is smaller than 0.5 % for all Stokes vector components
(see Fig. 4.20). In addition, the RAY code does not require the use of very powerful com-
puters; it runs quickly on an ordinary personal computer. It is important that the RAY code
provides the tradeoff between time and accuracy of computations and allows one to
achieve practically any accuracy at the expense of computation time. These properties
make this code a practical technique for fast simulations of polarized light propagation
through light scattering systems, particularly through the terrestrial atmosphere.
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5 Aerosol retrieval over land using the (A)ATSR
dual-view algorithm

Lyana Curier, Gerrit de Leeuw, Pekka Kolmonen, Anu-Maija Sundström,
Larisa Sogacheva, Yasmine Bennouna

1. Introduction

Aerosols play an important role in climate and air quality. They have a direct effect on
climate by scattering and/or absorbing the incoming solar radiation [Haywood and Bou-
cher, 2000]. Reflection of solar radiation increases the atmospheric albedo, causing a ne-
gative radiative effect and therefore cooling of the atmosphere. On local scales absorbing
aerosols can cause net positive radiative forcing resulting in warming of the atmospheric
layer. Aerosols have an indirect effect on climate through their influence on cloud micro-
physical properties and, as a consequence, on cloud albedo and precipitation. The aerosol
net effect on the Earth’s radiative balance depends on the aerosol chemical and physical
properties, the surface albedo and the altitude of the aerosol layer [Torres et al., 1998]. The
uncertainty in the effect of aerosols on climate stems from the large variability of aerosol
sources, i.e., their concentrations and physical, chemical and optical properties, in com-
bination with their short atmospheric residence time of a few days. In the IPCC (2007)
[Forster et al., 2007] assessment report the total direct aerosol radiative forcing as derived
from models and observations is estimated to be � 0.5 [�0:4] Wm�2, with a medium-low
level of scientific understanding. The radiative forcing due to the effect on cloud albedo is
estimated as � 0.7 [� 1.1,+ 0.4] Wm�2 with a low level of understanding. Long-lived
greenhouse gases are estimated to contribute + 2.63 [� 0.26] Wm�2. Improved satellite
measurements have contributed to the increase of the level of scientific understanding
since the third IPCC assessment report in 2001. The continued improvement of aerosol
retrieval from satellite-based instruments, to provide consistent information with a known
level of accuracy, is important to further our understanding of climate and climate change.

Experimental data on aerosol properties are available from ground based in situ and
remote sensing observations. However, often they are only representative for local situa-
tions and cannot be used for estimates of effects on regional to global scales. Furthermore,
they are part of several networks which often are disconnected and the data are available in
different formats, on different timescales and measured using different procedures and
correction factors. Although efforts have been made to harmonize some of these datasets
(e.g., GAW and EMEP), the data availability on a global or regional scale is still a concern.
In addition, the area coverage is very sparse for most continents.

An alternative to provide aerosol properties on regional to global scales with a temporal
resolution of one per day, is offered by sun-synchronous satellites [Forster et al., 2007].
Satellite data provide a consistent set of aerosol data on regional to global scales, deter-
mined with the same instrument and the same procedure but at the expense of accuracy and
detail. Therefore, the use of satellites is complementary to ground-based networks but



cannot replace them. In addition, satellite data are not always available, e.g., in the pre-
sence of clouds when retrieval of aerosol information is not possible, or over bright sur-
faces when most retrievals are currently not reliable.

Instruments used for aerosol measurements from space are often designed for other
tasks such as the measurement of trace gases, surface temperature or ocean color. However,
their characteristics make them also suitable for aerosol retrieval, e.g., AVHRR, TOMS,
OMI, ATSR-2, AATSR, MERIS. In recent years, instruments dedicated to the remote sen-
sing of aerosols and clouds have been developed such as MODIS, MISR and the POLDER
series. Algorithms have been developed for over 25 years for application over sea and for a
decade for application over land. However, the quality of the results is different for dif-
ferent instruments, although they are converging as shown by comparison exercises [e.g.,
Myhre et al., 2004, 2005; Kokhanovsky et al., 2007]. Kokhanovsky et al. [2009] evaluated
results from the Advanced Along-Track Scanning Radiometer (AATSR) for the retrieval
of aerosol properties over land. The major feature of the AATSR instruments is the dual-
view. A scene is first observed at a forward angle of 55� and then, approximately 150 s
later, at nadir. This dual-view capability is at the basis of the aerosol retrieval algorithms
used with this instrument because it allows us to eliminate land surface effects from the
total measured reflectance. More detail on this instrument and its use for aerosol retrieval
is presented in this contribution.

2. AATSR instrument

The Advanced Along-Track Scanning Radiometer (AATSR) instrument onboard the Eu-
ropean ENVISAT satellite flies at an altitude of approximately 800 km in a sun-synchro-
nous polar orbit. Like its predecessor ATSR-2 on ERS-2, the AATSR has seven wavelength
bands in the visible and infrared parts of the spectrum (0.55, 0.67, 0.87, 1.6, 3.7, 11 and
12 lm). The instrument has a conical scanning mechanism providing two views of the
same location with a resolution of 1 � 1 km2 at nadir view. The radiometer views the sur-
face at a forward angle of 55� and 150 s later at nadir. The swath width of 512 km results
in an overpass over a given location at mid-latitudes once every three days at mid-lati-
tudes.

3. Aerosol retrieval

In the absence of clouds, the upwelling radiance at the top of the atmosphere can be de-
composed into three main contributions:
* reflection by the surface
* molecular (Rayleigh) scattering
* aerosol scattering
All three components are affected by transmission and absorption between the height of
scattering and the TOA. Absorption is due to molecular and aerosol effects. For aerosol
retrieval, wavelengths are chosen where molecular absorption is minimal. In the visible
and near-infrared domains, the Rayleigh contribution to the total radiance is relatively
small as compared to wavelengths in the UV, but not negligible.

136 5 Aerosol retrieval over land using the (A)ATSR dual-view algorithm



The surface contribution depends on the surface type. Over dark surfaces, such as ve-
getation in the UV–visible or the sea surface in the visible and near-infrared, the surface
reflectance is very small. Over brighter surfaces the contribution is significant and of si-
milar magnitude or larger than the aerosol contribution, thus the accurate retrieval of ae-
rosol information requires either a precise characterization of the surface, or a method of
eliminating the surface effect on the TOA reflectance.

The retrieval of aerosol information from satellite data is done in several steps. The first
step is cloud screening. For clear areas the surface contribution is eliminated, to retain the
atmospheric contributions to the TOA radiance. Contributions due to gaseous species can
be well-estimated by the use of radiative transfer models, which leaves the aerosol con-
tribution to be determined. These steps cannot usually be separated because of cross-terms.
Therefore a radiative transfer model, including all processes, is used in combination with a
retrieval code. Because radiative transfer models are computationally heavy, calculations
are made for discrete situations (solar zenith angle, viewing zenith angle, relative azimuth
angle, see Table 5.3) and results are stored in look-up tables (LUTs) which are used in the
actual retrieval.

4. Cloud screening

In the presence of clouds, the aerosol contribution to the TOA reflectance is completely
masked by the cloud contribution. Therefore, aerosol properties can be retrieved accu-
rately only over cloud-free areas. To this end, the semi-automatic algorithm to discriminate
between cloudy and clear pixels from ATSR-2 data developed by Koelemeijer et al. [2001],
based on the work of Saunders and Kriebel [1988], was implemented. It was fully auto-
mated to allow for the processing of large amounts of data, over large areas [Robles-Gon-
zalez, 2003]. The cloud detection procedure consists of four standard cloud detection tests
which are applied to individual pixels and are classified as clear if and only if all tests
indicate that no cloud is detected. These tests are based on the evaluation of histograms
of either brightness temperature or reflectance. To determine whether a pixel is cloud-con-
taminated, thresholds are set which depend on the surface properties and the sun–satellite
geometry. The thresholds are determined for each individual frame of 512 � 512 pixels, in
two steps. First, a fast-fourier transform low-pass filter is applied to smooth the data. Then
the extrema (maximum, minimum and inflexion points) of the smooth histogram are com-
puted by applying a modified Lagrange interpolation, and from this set of extrema the
thresholds for each test are determined.

The first test (T1) is the gross cloud test. It uses the 12 lm channel and makes use of the
fact that the temperature of the atmosphere decreases with altitude. As a result, the tem-
perature of an optically thick cloud at high altitude will be significantly lower than the
surface temperature. If the measured brightness temperature is below the set threshold,
the pixel is marked as cloudy.

The second test (T3) exploits the fact that clouds are brighter than the underlying sur-
face and checks the reflectance at 0.67 lm for each pixel. Cloudy pixels will present a
higher reflectance than non-cloudy pixels. For each frame, the reflectances are histo-
grammed and a threshold is selected to discriminate between cloudy and clear pixels.
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The third test (T4) is based on the reflectance ratio at 0.87 lm and 0.67 lm. It is based
on the difference between the spectral behavior of the surface and the cloud at these wa-
velengths. Cloud reflectances are similar in these channels whereas surface reflectances
are generally different. Over land the surface reflectance at 0.85 lm tends to be higher than
the one at 0.67 lm while over water the reflectance at 0.67 lm tends to be higher than the
one at 0.87 lm. Therefore, three cases can be observed: a reflectance ratio of 1 which
denotes the presence of clouds, a reflectance ratio lower than 1 characterizes water surfaces
whereas land surfaces feature a ratio higher than one.

The fourth test (T5) is made to detect semi-transparent clouds such as cirrus for which
the difference between the brightness temperatures at 12 lm and at 11 lm is large. The
temperature difference is computed for each pixel and compared to a tabulated threshold
value. When the difference exceeds the threshold, the pixel is flagged as cloudy. This last
test must be used carefully and is not used for the analysis of large amounts of data.

Finally, after application of the retrieval algorithm, a spatial variability test can be ap-
plied as a post-processing step to remove extremes in a 10 � 10 pixel frame. This effec-
tively takes care of enhanced aerosol optical depth (AOD) values in the vicinity of clouds
[de Leeuw et al., 2007].

4.1 Cloud screening: example

The effectiveness of the cloud screening procedure outlined above was tested versus the
semi-automatic procedures by Robles-Gonzalez [2003]. In this section we provide an ex-
ample of a comparison with the MODIS cloud screening results.

Fig. 5.1 shows the cloud mask derived for August 10, 2004. The pixels flagged as clear
by all tests are colored in blue, whereas all other pixels have been detected as cloudy by one
or more tests. Table 5.1 provides a description of the different values of the cloud quality

Fig. 5.1. (a) Composite map of the cloud mask derived by the ATSR cloud screening protocol applied to
AATSR for a scene over Italy on August 10, 2004; the color code indicates clear sky conditions (dark blue)
and different cloud tests (Tn, n – number of the cloud test) for each pixel. Pixels for which all tests indicate
the presence of a cloud are dark red. Clear pixels, i.e. no test indicated the presence of clouds, are dark
blue. (b) RGB picture derived from channels 1, 3 and 4 of MODIS for August 10, 2004.
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flag. For comparison, an RGB picture from MODIS is shown in Fig. 5.1(b). Cloud patterns
are similar in both images.

A quantitative comparison for the same scene is presented in Fig. 5.2, where the dif-
ferent color codes designate complete agreement (dark blue) and complete disagreement
between the AATSR and MODIS cloud masks, and values in between. It is noted that the
ATSR cloud screening protocol designates pixels as either cloudy or clear, whereas the
MODIS cloud screening protocol flags pixels in four different ways, cloudy, probably clou-
dy, probably clear or clear. Thus, pixel information from AATSR and MODIS have been
combined into an unsigned integer, such as the two first bits code for the MODIS cloud
mask and the third one for the AATSR cloud mask. This is summarized in Table 5.2 which
also includes the interpretation for each observed value in the combined cloudmask. The
composite map in Fig. 5.2 was derived by meshing the AATSR-derived cloud-mask into
the MODIS cloud-mask grid.

The histogram of the available pixels for this comparison in Fig. 5.2(b) shows that the
cloud screening of the MODIS and AATSR algorithms is in total agreement for 83 % of the
pixels. The cloud masks were in complete disagreement for 12 % of the pixels. For 5 % of
the pixels the comparison is not conclusive as the pixels were flagged as probably clear or
probably cloudy by MODIS.

It is noted that disagreements mainly occur near cloud edges and areas with low cloud
cover. This reflects that the cloud macrostructure is often not well defined, due to humidity
gradients where cloud condensation nuclei may be activated (cloud formation) or hygro-
scopic aerosol particles and cloud droplets adjust to the local relative humidity by taking
up or releasing water vapor which in turn affects their size and thus optical properties.
Because the atmosphere is turbulent, local fluctuations of temperature and dew-point tem-
perature occur, i.e. relative humidity fluctuations resulting in local fluctuations in the
aerosol size distribution, extinction and AOD. (Note that the response time of accumula-
tion mode aerosol particles and small cloud droplets is fast enough to follow these fluc-
tuations [Andreas, 1992].) As a result, on a pixel-to-pixel base the AOD may strongly
fluctuate in the vicinity of clouds. By averaging over a larger area (e.g., 10 � 10 pixels)
pixels) and removing pixels deviating from the average by more than a preset fraction, the
cloud influence can be strongly reduced [de Leeuw et al., 2007].

Table 5.1. Cloud flag coding used for the AATSR cloud
tests as described in the text and used to produce Fig. 5.1.

Flag number Interpretation

clear Clear

T1 Flag by test 1

T3 Flag by test 2

T1 + T3 Flag by tests 1 and 2

T4 Flag by test 3

T1 + T4 Flag by tests 1 and 3

T3 + T4 Flag by tests 2 and 3

all Flag by all tests
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5. Inversion model

The AATSR aerosol retrieval algorithm has its inheritance in algorithms developed for
ATSR-2 for application over ocean (single view) [Veefkind and de Leeuw, 1998] and
over land (dual view) [Veefkind et al., 1998]. Both algorithms include multiple scattering
and the bi-directional reflectance of the surface. The ATSR-2 algorithms were successfully
applied over the east coast of the USA [Veefkind et al., 1998] and the North Atlantic [Veef-
kind et al., 1999], over Europe [Robles-Gonzalez et al., 2000; Veefkind et al., 2000], over
the South Asian continent and the Indian Ocean [Robles-Gonzalez et al., 2006] over Africa
[Robles-Gonzalez and de Leeuw, 2008] and over the desert of the UAE [de Leeuw et al.,
2005].

The single and dual view algorithms were coupled for the semi-operational processing
of large amounts of ATSR-2 data, with good results over Europe for the year 2000. How-

Fig. 5.2. Quantitative comparison of AATSR and MODIS cloud screening for a scene over Italy on Au-
gust 10, 2004. (a) Composite map of the combined cloud-mask. (b) Histogram of the number of pixels
versus the cloud-mask flag. Dark blue (0) and red (7) represent pixels when AATSR and MODIS diag-
nostics agree. Orange and yellow represent pixels when AATSR and MODIS disagree. For more detailed
explanation of the colors, see column ‘Combined’ in Table 5.2.

Table 5.2. Flag description of the combined cloud mask, Fig. 5.2.

MODIS AATSR Combined Interpretation

0 0 0 clear for AATSR and MODIS

1 0 1 probably clear for MODIS, clear for AATSR

2 0 2 probably cloudy for MODIS, clear for AATSR

3 0 3 cloudy for MODIS, clear for AATSR

0 1 4 clear for MODIS, cloudy for AATSR

1 1 5 probably clear for MODIS, cloudy for AATSR

2 1 6 probably cloudy for MODIS, cloudy for AATSR

3 1 7 cloudy for AATSR and MODIS

a) b)
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ever, the application to AATSR for Europe for the year 2003 appeared less successful, as
described in de Leeuw et al. [2007], where also some improvements were proposed. Si-
multaneously a heavier research version of the model was developed which is described
here. It is referred to as the ATSR-DV algorithm and was used in, for example, Kokha-
novsky et al. [2008] and Thomas et al. [2007]. Major upgrades include the aerosol models
and the number of AOD levels considered, which is reflected in the structure of the LUTs,
in addition to some changes in the decision tree. The ATSR-DValgorithm was developed at
TNO (Netherlands Organization for Applied Scientific Research, The Hague, The Nether-
lands)) and in early 2007 it was transferred to the University of Helsinki (UHEL) and the
Finnish Meteorological Institute (FMI) in Helsinki, Finland, where it is further developed
and applied for scientific studies.

A schematic description of the algorithm is shown in Fig. 5.3. The algorithm comprises
two main parts: an inversion part where the actual retrieval is done and a forward part
where all necessary a priori data are defined and/or computed using a radiative transfer
model.

Fig. 5.3. Schematic representation of the ATSR-DV aerosol retrieval algorithm. For a dark surface the
single-view algorithm is used which is not considered here since this paper focuses on retrieval over land.
The algorithm uses the atmospheric reflectance at TOA measured by AATSR (qTOA; meas) which is com-
pared with the calculated reflection at TOA due to a mixture of two aerosol models (qatm; aeri) for which the
reflection is pre-calculated and stored in LUTs. To account for interactions, the TOA reflection is calcu-
lated including molecular effects, which in turn is corrected for in the retrieval algorithm before the mod-
eled reflections are mixed (q"atm; imixðkÞ). The measured reflection for cloud free pixels is also Rayleigh
corrected and subsequently a surface correction is applied. The remaining measured and calculated re-
flections are compared in an iterative loop to determine the optimum mixture imix, using all available
wavelengths to fit the most appropriate AOD, by minimizing the error function RrimixðkÞ. Note that the
LUT contains a range of AODs for each of the two aerosol models and therefore both are determined in the
same step. The aerosol components are selected for the area of interest based on a priori knowledge from
climatology or other information. The final result is the AOD for the most appropriate aerosol mixture
sðkÞ, for individual AATSR pixels (nominal is 1 � 1 km2).
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5.1 Theory

Commonly the reflectance q is used in retrieval algorithms, which can be derived from the
satellite measured radiance L assuming that the surface acts as a Lambertian reflector and
the atmosphere is horizontally uniform using:

q ¼ pL
cos h0ð ÞF0

; ð1Þ

where F0 is the extraterrestrial solar irradiance and h0 is the solar zenith angle.
The reflectance in the visible and near-infrared (NIR) domains measured by AATSR at

TOA is used to retrieve aerosol optical properties. To determine the aerosol contribution,
qaer;measðkÞ, the measured TOA reflectance at wavelength k is corrected for the contribu-
tion of a Rayleigh atmosphere, q0(kÞ,

qaer;measðkÞ ¼ qatmðkÞ � q0ðkÞ: ð2Þ

The retrieval procedure is based on two main assumptions:
1. The TOA reflectance due to an external mixture of two aerosol types qaer;imixðsref ; kÞ

can be approximated as the weighted average of the reflectance TOA of each of the
aerosol types [Wang and Gordon, 1994]:

qaer;imixðsref ; kÞ ¼ qaer;measðkÞ þ eimixðkÞ ¼ naer1qaer1ðsref ; kÞ þ naer2qaer2ðsref ; kÞ ð3Þ

where qaer1ðkÞ and qaer2ðkÞ are the modeled TOA reflectances due to the presence of
each aerosol type. naer1 and naer2 are the contributions of each type (naer1 þ naer2 ¼ 1)
and are determined by minimization in the ATSR-DV algorithm. eimixðkÞ accounts for
the deviation between the measured, qaer;measðkÞ, and the weighted average, qaer;imixðkÞ.
Abdou et al. [1997] modified this equation to account for mutual interactions between
the aerosol components in the mixture.

2. The reflectance at TOA can be expressed as a linear function of the aerosol optical
depth with the reflectance of an aerosol-free atmosphere as an offset [Durkee et al.,
1986]:

qatm kð Þ ¼ q0 kð Þ þ cðkÞsðkÞ; ð4Þ

where qatmðkÞ is the path reflectance due to the presence of aerosols and molecules and
sðkÞ is the aerosol optical depth. Veefkind [1999] demonstrated that Eq. (4) is a valid
assumption for the region of aerosol optical depths characterizing tropospheric aero-
sols, i.e. 0:1 < s < 0:6 (see Fig. 5.4). For higher aerosol loads the intercept q0 does not
solely represent Rayleigh scattering and is influenced by aerosol particles. However, in
practice, TOA reflectances are calculated for discrete AOD values using the LUTs
which allows for interpolation assuming linear dependence over smaller segments.
It is further noted that the forward model takes multiple scattering into account.
The inversion is based on the comparison between modeled and measured TOA reflec-

tances. To this end, aerosol and molecular contributions are separated by a Rayleigh cor-
rection and also ozone absorption is accounted for. Multiple land/atmosphere scattering is
estimated assuming that the surface reflectance behaves as a Lambertian reflector. The
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inversion procedure can use either a least squares minimization method or a least median
square method to fit the modeled reflectance to the satellite measurements. The error func-
tion Rle2

imixðklÞ is minimized to determine the best fit for the mixing ratio:

X
l

e2
imixðklÞ ¼

X3

l¼1

qaer;measðklÞ � qaer;imixðsref ; klÞ
qaer;measðklÞ

 !2

; ð5Þ

where k13 are the available AATSR wavelengths (0.55, 0.67 and 1.6 lm which are used
over land). In cloud-free situations the measured TOA reflectance contains information
about both the surface and the atmosphere. For dark surfaces, the surface contribution
to the TOA reflectance is computed by reconstructing the bi-directional reflectance of
the surface and the aerosol optical depth can be directly determined. Over brighter sur-
faces, the contributions of the surface and atmospheric reflections to the TOA reflectance
need to be separated. In the dual-view algorithm described here, the surface effect is
eliminated by taking advantage of the two views of the Along-Track Scanning Radio-
meter.

5.2 Dual-view algorithm

The dual-view algorithm was developed by Veefkind et al. [1998] for ATSR-2 for aerosol
retrieval over land. In the single-view algorithm, used over water, the surface reflectance is
assumed isotropic, therefore the difference observed in measured TOA radiance between
the two views can easily be explained by a difference in the atmospheric path length. How-
ever, over land, the surface reflectance is usually not isotropic and the surface bi-direc-
tional reflectance distribution (BRDF) affects the interactions between the surface and the
atmosphere. It is, therefore, necessary to use a more complex model to retrieve the atmo-
spheric contribution to the TOA radiance.

Fig. 5.4. Path reflectance (qatm) at 0.55 lm as a function of aerosol optical depth (AOD) for anthropo-
genic and sea spray aerosol types as defined by WMO [1983] and a sun–satellite geometry defined by:
H0 ¼ 45�, H ¼ 30�, and u� u0 ¼ 90�. The lines are linear fits through the points, the correlation coeffi-
cients are larger than 0.99 for both fits.
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Over land the contribution of the surface reflection in the visible to near-infrared do-
main is mainly driven by the direct contribution, i.e. photons are reflected at the surface
and transmitted through the atmosphere. On a pixel-by-pixel approach, we assume that the
surface can be approximated as a Lambertian reflector. The TOA reflectance, q, for an
underlying Lambertian surface, can be written as [Chandrasekhar 1960]:

q kð Þ ¼ qatm kð Þ þ qsfc kð Þ
1 � qsfc kð Þs kð Þ T kð Þ; ð6Þ

where qatmðkÞ is the atmospheric path reflectance, TðkÞ is the atmospheric total transmit-
tance (i.e. the product of the downward and upward transmissions, where upward is due to
reflection by the surface), sðkÞ is the spherical albedo of the atmosphere. The surface re-
flectance qsfc depends both on the wavelength and on the geometry. Flowerdew and Haigh
[1995] point out that the angular variation of the surface reflectance is due to the macro-
scopic structure of the underlying surface, which is of a much larger scale than the wa-
velength of the incident light. Hence the surface reflectance is a strong function of the
wavelength while its shape is in comparison independent of the wavelength. Therefore,
in the dual-view algorithm, it is assumed that the ratio between the surface reflectance
in the nadir view and the surface reflectance in the forward view, k, is independent of
the wavelength:

kk ¼
qsfc;f kð Þ
qsfc;n kð Þ � k; ð7Þ

where the subscripts f and n represent respectively the forward and the nadir view. For
k ¼ 1, this approximation corresponds to a Lambertian surface. Using Eqs. (6) and (7)
and also an assumption that qsurf; nðkÞsðkÞ << 1, the TOA reflectances in the forward,
qf ðkÞ, and nadir, qnðkÞ, views, can be written as:

qf ðkÞ ¼ qatm;f ðkÞ þ kqsfc;nðkÞTf ðkÞ; ð8Þ

qnðkÞ ¼ qatm;nðkÞ þ qsfc;nðkÞTnðkÞ: ð9Þ

Using Eqs. (8) and (9) we can eliminate the unknown surface albedo. Then it follows:

qf ðkÞ � qatm; f ðkÞ
kTf ðkÞ ¼ qnðkÞ � qatm;nðkÞ

TnðkÞ ð10Þ

Assuming that Eq. (4) applies to the path reflectance, qatm;f , the aerosol optical depth,
sðsref ; kÞ, can be derived using an iterative procedure:

siðsref ; kÞ ¼ 1

fiðsref ; kÞ
qnðkÞ � qo;nðsref ; kÞ

Ti�1
n ðsref ; kÞ � qf ðkÞ � qo;f ðsref ; kÞ

kiðsref ÞTi�1
f ðsref ; kÞ

" #
; ð11Þ

where

fiðsref ; kÞ ¼ cnðsref ; kÞ
Ti�1
n ðsref ; kÞ �

cf ðsref ; kÞ
kiðsref ÞTi�1

f ðsref ; kÞ : ð12Þ
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For most continental aerosol types the aerosol extinction decreases rapidly with wave-
length thus the aerosol optical depth at 1.6 lm is small compared to the aerosol optical
depth in the visible.

The ratio ki for the ith iterative step is computed from the 1.6 lm channel:

ki ¼ qf ;meas 1:6 lmð Þ � qi�1
atm;f 1:6 lmð Þ

qn;meas 1:6 lmð Þ � qi�1
atm;n 1:6 lmð Þ ð13Þ

The iterative procedure is initiated by ignoring the atmospheric contribution at 1.6 lm:
qf ;measðk ¼ 1:6 lmÞ � qsfc;f ðk ¼ 1:6 lmÞ. The k-approximation does not apply to the
0.87 lm channel because of the strong reflection by vegetation at this wavelength [Ro-
bles-Gonzalez et al., 2000].
The spectral aerosol optical depth, siðsref ; kÞ, is computed using mixtures of two aerosol
types. The best aerosol optical depth for the 0.55, 0.67, and 1.6 lm channels and subse-
quently the best mixing ratio is determined by applying a least squares minimization as
explained in Section 5.1.

6. Forward model

The determination of aerosol optical properties from the measured TOA reflectance is an
ill-posed problem because there is insufficient information to constrain for possible solu-
tions. Therefore, radiative transfer calculations using DAK (double adding, KNMI; KNMI
is the Royal Netherlands Meteorological Institute where the current version was developed
[de Haan et al., 1987]) are performed to derive the Rayleigh and surface contributions, and
a priori assumptions are made on the aerosol properties. This procedure requires aerosol
models describing the aerosol microphysical and optical properties, determined by the
chemical composition, to calculate the reflectance at the top of the atmosphere (TOA)
using a radiative transfer model.

Reflectances and transmissions for Rayleigh atmospheres and atmospheres containing
both gases and aerosols were calculated for a set of wavelengths, aerosol concentrations
and geometries (solar zenith angle, viewing zenith angle, relative azimuth angles). Ta-
ble 5.3 presents the amount of tiepoints used for each dimension. The results are stored
in look-up tables (LUT), these tables contain nine calculated variables, and an overview of
the variables stored in the LUT as well as their dimensions is given in Table 5.3. By using
LUTs, the retrieval algorithm can make full use of the capabilities of DAK to account for
bi-directional reflectance and multiple scattering, while the algorithm computational
speed is not affected.

DAK makes use of the doubling adding method, a two-step process. Calculations start
with a very thin atmospheric layer in which only single-scattering occurs. An identical
layer is then introduced, the optical properties of the combined layer are calculated
and internal scattering is included. This step is the ‘doubling’ one. The doubling step
will be repeated until the layer has reached the required depth. Multiple scattering is
thus taken into account. The ‘adding’ step is a similar mechanism designed to handle layers
with different optical properties. These layers are combined in a single one which will be
added to a third layer and so on. The ‘adding’ is assumed completed when the boundary
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fluxes of the modeled layers converge. In this study, each input parameter was set to
achieve a four or five decimal accuracy.

7. Aerosol description

In this section, the microphysics and chemical properties of the aerosols used for the LUTs
are described. The aerosol particles are assumed spherical, which allows for the applica-
tion of a Mie code [Mie, 1908] to compute the optical properties. This assumption is jus-
tified because most atmospheric particles are to some degree hygroscopic and thus contain
water vapor when the relative humidity is above a certain threshold value (deliquescence
point). Due to hysteresis, once the particles have absorbed water vapor, they remain wet
unless the relative humidity (RH) drops below a certain value where crystallization occurs.
For common atmospheric aerosol particles the crystallization point occurs at very low RH
(for further discussion cf. Seinfeld and Pandis [1998] and references cited therein). Hence
it is assumed that most atmospheric aerosol particles are in solution. Dust particles are an
exception and should be treated as non-spherical particles.

Table 5.3. Overview of the layout of the different LUTs. Each variable represents an axis of the multi-
dimensional grid. The different parameters contained in each LUT can be found in Table 5.4.

Variable name Symbol Units Number Entries

Wavelength k nm 4 555, 659, 865, 1600

Surface pressure Psfc hPa 1 1013

Cos(solar zenith angle) l0 15 0.15, 0.2, 0.25, …, 0.65, 0.7,
0.8, 0.9, 1

Cos(viewing zenith angle) l 15 0.15, 0.2, 0.25, …, 0.65, 0.7,
0.8, 0.9, 1

Relative azimuth angle Du degree 19 0, 10, 20, …, 180

Aerosol optical depth at
500 nm

s500 – 10 0.05, 0.1, 0.25, 0.5, 1, 1.5, 2,
2.5, 3, 4

Table 5.4. Variables and dimensions for the data stored in the different LUTs.

Variable name Symbol Dimension

Path reflectance qatm ps, k, lo, l, Du, s500

Surface downward reflectance qd ps, k, lo, l, Du, s500

Total transmittance T ps, k, lo, l, s500

Total diffuse transmittance t ps, k, lo, l, s500

Diffuse transmittance down t# ps, k, lo, l, s500

Total transmittance down Ttot ps, k, lo, l, s500

Spherical albedo s ps, k, s500

Aerosol optical depth s k, s500

Single scattering albedo xo k
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The aerosol number concentrations Ni are distributed over the aerosol particle radii ri
following an n-mode lognormal distribution:

dN

d ln r
¼
Xn
i¼1

Ni

ð2pÞ1=2 ln ri
exp � ln ri � ln �rrgi


 �2

2 ln2 ri

 !
; ð14Þ

where �rrgi is the geometric mean radius and ri is the geometric standard deviation of the ith
lognormal mode. In the initial versions of the ATSR-2 retrieval code, the aerosol model
used was the Naval Oceanic Vertical Aerosol Model (NOVAM) [de Leeuw et al., 1989]
which uses the Navy Aerosol Model (NAM) [Gathman, 1983] as kernel. In this model, the
aerosol is described as mixture of sea salt aerosol, water-soluble anthropogenic particles
and water-insoluble particles (dust). It obviously works well over the ocean, but also over
the western USA and over Europe the anthropogenic aerosol provides an adequate des-
cription (e.g., Robles-Gonzalez et al. [2000]). However, for INDOEX (INDian Ocean
EXperiment) several other aerosol models were tested, such as the OPAC (Optical Pro-
perties of Aerosols and Clouds) database [Hess et al., 1998] and models derived from
AERONET [Dubovik et al., 2002]. The latter provided satisfactory results [Robles-Gon-
zalez et al., 2006]. Over Africa mixtures of more absorbing and less absorbing aerosol were
used with good results [Robles-Gonzalez and de Leeuw, 2008]. This shows that aerosol
models need to be selected that are most appropriate for the region for which the retrieval is
made, possibly also as a function of season. The degree of detail may depend on the ap-
plication, i.e., for global retrieval obviously less detail can be provided than for scientific
studies for which the aerosol models can be tuned to provide optimum results.

With this is mind, look-up tables were computed for four aerosol models, using field
campaign measurements and/or literature data:
1. Continental background. This model represents the aerosol background in industrial or

urban areas, and has a trimodal lognormal distribution. The chemical composition is
defined following the work of Heintzenberg [1989] distinguishing between water-sol-
uble inorganic, non-water-soluble inorganic and organic fractions. The complex refrac-
tive index is derived from the chemical composition using Maxwell–Garnet mixing
rules [Chylek et al., 2000] and the complex refractive index of each main fraction
is given by Hess et al. [1998].

2. Anthropogenic particles. Monomodal lognormal distribution representing the aerosol
particles from anthropogenic origin [Veefkind, 1999].

3. Sea spray. Bimodal lognormal distribution [de Leeuw et al., 1989].
4. Biomass burning. Aerosol particles originating from biomass burning are represented

by this model. The size distribution is represented by a trimodal lognormal distribution
[Quinn et al., 2002; Anderson et al., 1996]. The complex refractive index is defined
following Haywood et al. [2003].

Detailed information on the aerosol models, such as geometric mean radii, geometric stan-
dard deviations, complex refractive indices and the mode fractions are presented in Ta-
ble 5.5.
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8. Results and evaluation

Fig. 5.5 shows a composite map of the aerosol optical depth at 555 nm over Germany, for
October 13, 2005. The spatial resolution is 1 � 1 km2 at nadir. The aerosol optical depth
derived is low and ranges from 0.07 to 0.23, with a mean aerosol optical depth of 0.15. The
observed aerosol optical depth pattern was retrieved using a mixture of continental back-
ground aerosol, aerosol originating from human activities and naturally generated aerosol
such as wind-blown dust and sea spray. Some higher AOD values are observed in or near
cloud areas, likely due to residual cloud contamination, illumination of aerosol from a
cloud side (3D effects), or due to enhanced relative humidity in these areas causing swel-

Table 5.5. Physical and optical properties of the aerosols models used to build the LUT. The complex
refractive index is given for k ¼ 555 nm.

Name Mode rg lm lnrg fraction nr ni

Continental m1 0.010 0.161 0.4 1.44 0.0039

background m2 0.05 0.217 72 1.44 0.0039

m3 0.900 0.380 28 1.44 0.0039

Biomass m1 0.085 0.161 85 1.54 0.0180

burning m2 0.395 0.217 3 1.54 0.0180

m3 1.200 0.380 12 1.53 0.0180

Sea spray m1 0.070 0.460 25 1.38 5.38 � 10�9

m2 0.389 0.370 75 1.38 5.38 � 10�9

Anthropogenic m1 0.030 0.139 100 1.41 0.00241

Fig. 5.5. (a) Composite map of the aerosol optical depth derived from AATSR measurements at 0.55 lm
over Germany for October 13, 2005, with a 1 � 1 km2 resolution. (b) The mean aerosol optical depth
retrieved using the dual-view algorithm (filled circles) and from sunphotometer data (open circles)
for selected AERONET stations as a function of wavelength (nm). Error bars indicate the spatial standard
deviation for the mean aerosol optical depth retrieved within a radius of 2 km around the AERONET site
and the temporal standard deviation of the mean aerosol optical depth measured by ground-based sun-
photometers [Kokhanovsky et al., 2008].
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ling and thus elevated extinction. Statistical methods are tested to remove such pixels or
flag them as suspect of cloud influences.

Fig. 5.5(b) presents a comparison between the mean aerosol optical depths retrieved
(filled circles) and their measured counterparts (open circles) for Hamburg, Leipzig
and Mainz. The results compare favorably with the AERONET measured aerosol optical
depth and are within the aerosol optical depth uncertainty of 0.05 [Robles-Gonzales et al.,
2006], for ATSR-2.

8.1 Comparison with AARDVARC algorithm: effect of k-approximation

The AOD over Germany was retrieved by available instruments and intercomparisons were
presented by Kokhanovsky et al. [2007, 2009]. The inter-comparison included the ATSR-
DV and Swansea University (UK) AARDVARC (Atmospheric Aerosols Retrieval using
Dual_View Angle Reflectance Channels) [Grey et al., 2006] algorithms, which correlate
quite well with most data points within the ATSR-DV standard deviation, but also with
quite some scattering between individual data points [Kokhanovsky et al., 2009]. The good
correlation was to be expected because the same data were used and both algorithms use
the dual view. Observed differences in the aerosol optical depth are therefore solely in-
duced by differences in the processing schemes. First, the algorithms have independent
cloud screening and sampling protocols. Thus, different radiances are ingested by the al-
gorithms depending on masking and pixel aggregation. Second, the parameterizations of
aerosol chemical and optical properties used to constrain the ill-posed inverse problem
contain different assumptions. Third, the atmospheric radiative transfer models used
are different, the Swansea University AARDVARC algorithm uses the Second Simulation
of the Satellite Signature in the Solar Spectrum (6S) [Vermote et al., 1997] whereas the
ATSR-DValgorithm uses DAK [de Haan et al., 1987]. Fourth, the sampling of the look-up
tables of atmospheric parameters influences the aerosol retrievals. Finally, the a priori
constraint used to account for the surface reflectance is not the same. A study by North
et al. [1999] indicates that the k-approximation constraint (Eq. (7)) does not strictly apply
in all cases. In AARDVARC a model is applied which separates the angular effects of the
surface into a structural component that depends only on the viewing direction and a spec-
tral component that depends only on the wavelength [Grey et al., 2006].

Thus, the variation between the algorithms themselves and the assumptions upon which
they are based will result in different estimates of the surface and atmospheric reflectances.

8.2 Comparison with MODIS (Terra)

AATSR on board of ENVISAT and MODIS on board of Terra, overpass the same area
within 30 minutes, thus, an exact temporal match is not possible. However, the timespan
is small enough that large changes in the aerosol optical depth are unlikely between the two
overpasses. Fig. 5.6 presents a comparison with the aerosol optical depth derived using
MODIS (Terra, Collection 5). In order to compare the aerosol optical depth, the
ATSR-DV retrieved AOD was meshed within the MODIS grid (10 � 10 km2). The over-
lapping area contains information for 1,283 pixels. The datasets compare favorably, with a
homogeneous distribution of the differences. The ATSR-DV algorithm appears to overes-
timate the aerosol optical depth in about 75 % of the pixels with respect to MODIS, i.e. the
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AATSR values are on average 0.04 high, as derived from the histogram in Fig. 5.6(b). For
69 % of the pixels, the absolute value of difference is within the AATSR standard deviation
of 0.05 [Robles-Gonzales et al., 2006].

8.3 Aerosol over Po Valley

Fig. 5.7 shows a composite map of the AOD over the Po valley for September 4, 2004.
Strong aerosol optical depth gradients are observed with values varying from about
0.1 near the Alps to about 0.5 in the central Po valley. This variability is caused by
the presence of the Alps which form a natural barrier for transport, i.e., aerosols produced
in industrialized areas such as Milan and Turin, can only be ventilated through the Po valley
to the Adriatic Sea. As observed in the validation study, over Germany for October 13,
2005, an unreasonable increase of the aerosol optical depths occurs at the edges of areas
flagged as cloudy. The eastern edge of the composite map shows some unrealistic pattern.

Fig. 5.6. Difference between the AOD derived by MODIS and by means of the ATSR-DV algorithm, at
0.55 lm, over Germany on October 13, 2005. (a) Spatial distribution of the difference (MODIS-AATSR).
(b) Histogram of the same distributions.

Fig. 5.7. Composite map of the aerosol optical depth derived by means of the ATSR-DV algorithm, over
the Po valley, northern Italy, for September 4, 2004. White areas indicate that no data were computed due
to cloud occurrences. Red crosses mark the Ispra (45.7�N, 8.6�S), Nicelli (45.4�N, 12.4�S) and Venice
(45.3�N, 12.5oS) AERONET sites.
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The source of these artifacts, once flagged as sunglint contamination, has not been found.
These artifacts seem to be a peculiar feature of this specific scene, as similar artifacts have
not been encountered in other processed scenes.

The land–sea transition over the coastline of the Adriatic Sea is smooth and shows little
evidence of a sudden change in the aerosol burden. On the other hand, the land–sea tran-
sition observed over the coastline of the Ligurian Sea shows a discontinuity with a severe
increase of the aerosol optical depth.

Table 5.6 shows a direct comparison with the measured aerosol optical depth for three
AERONET ground measurement sites, Ispra (45.7�N, 8.6�S), Nicelli (45.4�N, 12.4�S) and
Venice (45.3�N, 12.5�S). The AERONET averaged aerosol optical depths within
�30 minutes of an AATSR overpass are compared to derived aerosol optical depths
averaged over 5 km. The average aerosol optical depth derived for Ispra is overestimated
by a factor of 2.6. Fig. 5.7 shows that the AOD derived in the area around the site was
quite heterogeneous. By reducing the averaging area, and considering only values within
1 km of the ground site measurement, the averaged aerosol optical depth retrieved over
the Ispra site is 0:144 � 0:006, i.e. within experimental error. The averaged aerosol
optical depths derived for Nicelli and Venice compare well with the AERONET averaged
aerosol optical depths and are within the standard deviation of the AERONET measure-
ments.

8.3 Smoke plumes over Spain

In the previous version of the ATSR-DV algorithm, smoke plumes over the Iberian Penin-
sula appeared to go largely undetected, resulting in relatively low AOD in the summer of
2003, in spite of the frequent occurrence of wildfires [de Leeuw et al., 2007]. The previous
version was designed for semi-operational use and therefore some simplifications had
been made to optimize the computing time. Due to the unsuitable and simplified aerosol
model, the previous dual-view algorithm was unable to produce solutions for extreme
aerosol loads, e.g., smoke plumes, over land. However, over ocean the plumes could
be detected well because of the different kind of inversion procedure (single view).
This is illustrated with an example for August 11, 2003, where a vast smoke plume
over land can be seen in Fig. 5.8(a) over NW Portugal while another plume is extending
over the ocean in SW Portugal. As Fig. 5.8(b) shows, the smoke plume over the ocean is
clearly visible in the retrieved AOD map whereas over land the algorithm is unable to
produce any result for the smoke (white areas in Fig. 5.8(b) designate either cloud or miss-
ing (no solution) AOD). Fig. 5.8(c) shows a closer view of the smoke plume advected out

Table 5.6. Direct comparison of aerosol optical depth derived at 0.55 lm for September 4, 2004. The
aerosol optical depths retrieved by means of the ATSR-DV algorithm were averaged over 5 km around
the ground measurement sites. The AERONET values are averaged over � 30 minutes of AATSR over-
pass. The closest MODIS value available within 10 km was used.

Site AERONET ATSR-DV MODIS

Ispra 0.10 � 0.04 0.26 � 0.01 0.12

Venice 0.18 � 0.02 0.15 � 0.01 –

Nicelli 0.16 � 0.02 0.17 � 0.01 0.26
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over the ocean. The structure of the smoke plume is clearly visible with AOD increasing up
to about 0.8 towards the source.

The situation described above was not satisfactory and therefore the algorithm was
further upgraded after its transfer and installation at the Finnish Meteorological Institute
(FMI) and the University of Helsinki (UHEL). The results presented below were obtained
with the FMI/UHEL version of the algorithm which was further debugged and tested for a
variety of situations with either high (smoke, pollution) or very low (rural remote areas)
AOD, and different aerosol components.

The first example is smoke detection over land, following up on the results shown in
Figs 5.8(b) and (c). Fig. 5.9 shows the same scene as in Fig. 5.8(b), processed with the
upgraded code which clearly shows the smoke plume over land in the western part of
Portugal. In addition, the upgraded code shows more structure in the AOD, in particular
over areas where higher AOD was expected, such as in the north of Spain. Furthermore,
we see a smooth transition between AOD over land and over ocean at the south coast of
Spain, mainly due to more reliable retrieval over land surfaces, as indicated by the en-
hanced AOD (compare Figs 5.8(b) and 5.9) which compares favorably with AERONET
data as well (not shown). It is noted that over sea the AOD looks smoother than over land
where the AOD looks patchier due to more areas where the retrieval did not provide a
solution.

Fig. 5.8. (a) Forward view reflectance map over Portugal and Spain on 11.8.2003 at 0.55 lm. In NW
Portugal a large smoke plume appears over land, another plume is extending over the ocean in SW Por-
tugal. (b) Composite map of AOD at 0.55 lm on 11.8.2003 retrieved with the ‘old’ (TNO semi-opera-
tional) algorithm. The wildfire plume over the ocean is clearly visible whereas over land the code was
unable to produce any result for the smoke plume. (c) Enlarged view of the retrieved smoke plume over the
ocean in SW Portugal.
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8.4 AOD over Finland: clean air

Finland is commonly very clean, with predominantly only natural aerosol sources, and
hence the AOD is usually very low (less then 0.1). The retrieval of AOD in such cases
is a greater challenge than over more polluted areas for which examples were shown earlier
in this chapter and in the literature. However, pollution plumes, which are usually trans-
ported to Finland from Central and Eastern Europe, when AOD increases to 0.4–0.6, are
occasionally observed.

Because an AERONET AOD network was not available in Finland until 2008, when
three sites were established, the retrieved AOD is compared with AOD measurements
using the PFR (Precision Filter Radiometer) data from the WMO-GAW stations in Sodan-
kylä (67.22�N; 26.37�E) and Jokioinen (60.8�N, 23.5�E ).

Fig. 5.10 shows an example of the AOD retrieved over Finland on 13 June, 2006. The
cloud band over the Barents and Norwegian Seas is taken out by using the cloud mask
procedure. Isolated clouds over Kola peninsula and northern Finland are either deleted
from the calculations or retrieved as a high AOD, showing the cloud’s edge.

Most of the remaining area over Finland was free from clouds during that particular day.
The average AOD is about 0.05; higher (up to 0.1) values are observed close to the cloud
edges in the north. Lower AOD over the area between isolated clouds can be related to
advection of clean Arctic air.

Fig. 5.11 shows a comparison of AOD retrieved from AATSR data with AOD measured
using a Precision Filter Radiometer (PFR) in Sodankylä, part of the WMO-GAW network.

Fig. 5.9. Composite map of AOD at 0.55 lm on 11.8.2003 over Portugal and Spain retrieved with the
upgraded ATSR-DV algorithm. The improved algorithm makes it possible to detect smoke over land too.
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In view of the very low AOD over Finland, and the associated difficulty in retrieving its
value, this comparison is quite satisfactory. There are only seven data points, some of
which have a very large standard deviation. The latter were checked against the spatial
variability which appears to be high in all these cases, due to the vicinity of clouds causing
high AOD variability or strong AOD gradients. This also explains the differences between

Fig. 5.10. Composite map of AOD (a) derived from AATSR measurement at 0.55 lm, and satellite image
(b) over Finland for 13.06.2006.

Fig. 5.11. Comparison of AOD retrieved from AATSR data with AOD measured using a Precision Filter
Radiometer (PFR) in Sodankylä, part of the WMO-GAW network. The error bars on the AATSR data were
obtained from averaging over a 10 � 10 km2 area.
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both retrievals because the AATSR and PFR measurements were not exactly matched in
time. Nevertheless, the trend in the PFR-derived AOD, known as a very accurate instru-
ment, is well-reproduced by the AATSR retrieval. For cases with small spatial variability
the AOD is within the previous derived standard deviation of 0.05.

8.5 AOD over China: polluted air

Beijing is the second largest city in China and one of the most polluted cities in the world.
The worldwide interest in air quality in Beijing has been growing in recent years because of
the Summer Olympic Games in August 2008. Even though many actions have been taken
to reduce air pollution in Beijing, the mean aerosol mass concentration is still well above
national and international standards and is characterized by a significant fraction of fine
particles (e.g., Guinot et al. [2007]). Coal combustion remains a large contributor to Beij-
ing atmospheric pollution. In addition, Beijing is also influenced by emissions from the
surrounding densely populated region; in particular, air masses flowing from south and
south west import industrial pollution to Beijing. During springtime, the occurrence of
so-called dust events can also decrease the air quality significantly.

Fig. 5.12(a) shows an example of AOD retrieval at 0.555 lm wavelength, for April 3rd

2005. The composite map shows AOD-values averaged on a grid of 10 � 10 km2, derived
from 1 � 1 km2 resolution data. White areas with no data are discarded, e.g., because of
cloud flags or missing data. The AOD is mainly around 0.5 over the Beijing area. Highest
AOD values (0.8–1) are found east and south from Beijing. The lowest AOD-values (0.1)
are observed in the west and north, where the AOD pattern shows a clear gradient. This can
be partly explained by the topography: Beijing is surrounded by mountains in the north and
west. High mountains block transport of pollution originating from emission in the Beijing

Fig. 5.12. (a) Composite map of AOD derived from AATSR measurements at 0.55 lm over Beijing on
April 3, 2005. The map shows AOD-values averaged from the original pixel size of 1 � 1 km2 to
10 � 10 km2. The patterns are similar to those available from MODIS for the same day (b).
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area and prevent ventilation. On the other hand, airflow from north or west has to rise over
1,500–2,000 m high mountains before arriving in Beijing. The northern Beijing sector is
also considered a relatively clean part, because agriculture is the main activity rather than
heavy industry. For this example, back-trajectory analysis shows that the synoptic flow was
from the cleaner northern sector.

Fig. 5.12(b) shows the AOD available from MODIS for the same day. The patterns are
similar, which provides confidence in the AATSR results.

The AATSR overpass time was about 2:40 UTC which corresponds to 10:40 local Beij-
ing time. The AERONET measurements show a strong increasing trend of AOD during the
AATSR overpass time (Fig. 5.13). Therefore the comparison between AATSR and AERO-
NET is not necessary meaningful. However, for other days the comparison has shown good
agreement between AERONET and AATSR for Beijing.

9. Conclusion

In this chapter the ATSR-DV algorithm for the retrieval of aerosol properties over land,
using data from ATSR-2 on ERS-2 and AATSR on ENVISAT, has been presented. This
algorithm resulted from an upgrade and coupling of the single-view and dual-view algo-
rithms developed by Veefkind and de Leeuw [1998] and Veefkind et al. [1998] for ATSR-2.
The aerosol properties retrieved with these algorithms are the aerosol optical depth at the
available wavelengths (0.55, 0.67, 0.87 and 1.6 lm) and the Ångström coefficient a. The
aerosol mixing ratio, for two predefined components, is potentially available as well, as
explained in the text and demonstrated in Robles-Gonzalez et al. [2006] and Robles-Gon-
zalez and de Leeuw [2008]. It is noted that the ATSR-DV algorithm works on individual
pixels and averaging over larger areas occurs as a post-processing step. This allows for
retrieval of fine detail (spatial resolution 1 � 1 km2) at the cost of computer time. Also

Fig. 5.13. AERONET AOD-measurements for four different wavelengths at Beijing April 3, 2005. The
AATSR overpass time was about 2:40 UTC, which corresponds to 10:40 local Beijing time.
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the accuracy might be improved by first averaging of the original pixels to a large spatial
scale and removal of unreliable pixels beforehand.

The cloud-screening protocol developed for the algorithm is found to be satisfactory
with the ATSR-DValgorithm and MODIS cloud masks agreeing in 83 % of the conclusive
cases. The sensitivity of the cloud-screening protocol for various conditions (i.e., desert,
forest fire) remains to be explored.

The aerosol optical depth estimated using the ATSR-DV algorithm has been compared
with results from the Swansea University AARDVARC algorithm, MODIS and AERO-
NET for an area over Germany. The favorable correlation observed provides confidence in
the ability of the ATSR-DV algorithm to retrieve aerosol optical depth. Other applications
were presented for the Po valley, northern Italy, wildfire plume identification over the
Iberian Peninsula, very low AOD over Finland and polluted air in the Beijing area. In
all cases the results compare favorably with ground-based measurements.

It is worth pointing out that the aerosol optical depths are retrieved within the standard
deviation of 0.05 over land that was earlier derived by Robles-Gonzales et al. [2006] from
comparison of ATSR-2 retrievals with AERONET data.

Land–sea transitions remain an issue in the current implementation of the ATSR-DV
algorithm.
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445.

Myhre, G., F. Stordal, M. Johnsrud, A. Ignatov, M.I. Mishchenko, I.V. Geogdzhayev, D. Tanré, J.L. Deuzé,
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6 Aerosol optical depth from dual-view (A)ATSR
satellite observations

William M. F. Grey, Peter R. J. North

1. Introduction

1.1 Aerosols and the climate system

Atmospheric aerosol particles play a critical role in the Earth’s radiation budget, yet the
global radiative forcing by aerosols is widely recognized as a major uncertainty in our
understanding of the climate [IPCC, 2007]. The radiative characteristics of aerosol par-
ticles are determined by their shape, size, total amount and chemical composition [Kauf-
man et al., 1997a]. Overall though, aerosols have a cooling effect at the Earth’s surface by
reducing the amount of solar radiation arriving at the surface below the layer of aerosols in
the atmosphere. This cooling effect by aerosols is achieved by increasing the planetary
albedo at the top-of-the-atmosphere (TOA) through directly scattering some of incoming
sunlight back into space. However, some of the radiation can also be absorbed in the atmo-
sphere by aerosols and reemitted. The volcanic eruption of Mount Pinatubo in 1991 pro-
vides an excellent natural experiment to demonstrate the surface cooling effect of aerosols.
In the following two years after the eruption the average global surface temperature was
reduced by about half a degree Celsius, principally owing to the scattering of sunlight by
volcanically enhanced stratospheric sulfate aerosol [Hansen et al., 1992]. In addition, to
the direct influence that aerosols have on the climate system, aerosols have an indirect
effect on the radiative forcing through their interaction with cloud droplets and influence
on cloud albedo.

In addition to ash from volcanic eruptions, aerosols are produced by a myriad of natural
and anthropogenic processes from a variety of sources. Naturally occurring aerosols in-
clude wind-blown dust from arid and semi-arid regions, and salts from sea-spray and burst-
ing bubbles, for instance. Aerosols caused by human activities include soot and sulfates
from fossil fuel burning and heavy industry, and smoke from the burning of vegetation,
often as part of land management clearance practices and deforestation (e.g. in the Sahel
and Amazon). Anthropogenic aerosols cause a net global cooling that have a combined
direct and indirect radiative forcing of � 0.4 to � 2.7 W m2, which is of the same order of
magnitude as the positive forcing caused by anthropogenic greenhouse emissions esti-
mated as approximately 2.5 W m2 [IPCC, 2007]. All these different types of aerosols
vary in shape, size and chemical composition and hence have different radiative charac-
teristics. For instance, black carbon (soot) has strongly absorbing characteristics, whereas
aerosols generally are highly reflective.

Anthropogenic aerosols may have reduced the climate sensitivity by reflecting much of
the incoming solar radiation back into space. The climate sensitivity is described as the



increase in temperature caused by a doubling of atmospheric carbon dioxide concentra-
tions from the pre-industrial levels of 280 parts per million by volume. However, we cannot
rely on aerosols to mitigate the effects of our greenhouse emissions for several reasons.
Firstly, it is often the same anthropogenic processes that release both aerosols and carbon
dioxide (e.g. coal-powered electricity stations emit carbon dioxide, sulfates and also soot).
Secondly, not all aerosols have reflective radiative characteristics. From radiation transfer
principles, strongly absorbing anthropogenic aerosols can actually lead to a warming of the
troposphere even though the global balance of aerosol forcing is negative. This has been
elegantly demonstrated in a recent study by Ramanathan et al. [2007], where it was shown
that the brown haze over Asia caused by the release of black carbon in soot from burning
fossil fuels had an equal contribution to atmospheric warming as greenhouse gases in this
region. Thirdly, the net effect of aerosol on climate forcing depends not only on its own
absorption and scattering properties but also on the albedo of the underlying surface. For
instance, a layer of aerosol over a dark ocean surface tends to increase the TOA radiance,
while over bright surfaces such as deserts or snow the TOA radiance may decrease owing to
the greater absorption by the aerosols than the surface. Even non-absorbing aerosols over
snow may decrease the TOA reflectivity relative to no atmospheric aerosol contamination.
Finally, there has been a reduction in anthropogenic particulate emissions worldwide in
part owing to legislation brought into effect since the 1990s in order to reduce harmful
sulfate aerosols at the source of industrial output by the European Union and in the United
States [Crutzen, 2006]. This was highlighted in a study of satellite data by Mishchenko et
al. [2007b] that showed a global reduction in aerosol concentrations since the early 1990s
to the present day, leading to a reverse in global dimming. This clearly has serious im-
plications for climate sensitivity, where we may be at an even greater risk of dangerous
climate change with reduced atmospheric aerosol concentrations to counter the warming
caused by our greenhouse emissions. Geo-engineering solutions for the deliberate mani-
pulation of the Earth’s climate such as the controlled emission of aerosols are not currently
in the mainstream debate on climate change, but these controversial ideas are being con-
sidered as possible solutions even though our understanding of their consequences is poor.

The uncertainty in our understanding of the radiative effects of aerosols stems from the
lack of accurate and repetitive measurements at global scales. In addition to improving our
knowledge of atmospheric aerosols in general, one of the principal drivers behind the study
of atmospheric aerosols is the need to reduce this magnitude of uncertainty in the Earth’s
atmospheric radiative forcing [Kaufman et al., 2002]. Unlike greenhouse gases which tend
to be well mixed in the atmosphere and have long residence times, atmospheric aerosol
concentrations are highly dynamic varying both spatially and temporally and as a result
need to be continuously monitored at regional and global-scales. Typically, aerosols have
short atmospheric residence times of the order of days to weeks before undergoing dry
deposition through gravitational settling and turbulent mixing, and wet-deposition through
precipitation. Aerosol particles are derived from relatively local sources although they can
be distributed between continents and so their distribution and composition are highly
variable worldwide.

Aerosols also influence other aspects of the climate system such as the biogeochemical
and hydrological cycles. For instance, aerosols affect the total and diffuse radiation frac-
tion at the surface which has consequences on carbon assimilation by vegetation (e.g.,
Alton et al. [2005]). In addition, large concentrations of aerosols are thought to lead to
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precipitation suppression, as is the case for dust in the West African Sahel [Rosenfeld et al.,
2001]. This is because aerosols act as cloud condensation nuclei around which cloud dro-
plets coalesce. When the concentration of aerosols is high these cloud droplets are smaller
and are less likely to result in precipitation. Small droplets are also more effective at re-
flecting sunlight back into space and trapping longwave terrestrial radiation. Saharan dust
aerosol is a major source of iron for the fertilization of phytoplankton in the Atlantic
Ocean, possibly leading to the greater uptake of atmospheric carbon dioxide.

1.2 The role of Earth observation

Clearly, understanding the influence of atmospheric aerosols on the Earth’s radiation bud-
get is of profound importance. To meet these scientific objectives, satellite observations in
combination with comprehensive modeling and field experiments and long-term ground
monitoring programs are being carried out. Satellite Earth observations are extremely use-
ful because they provide information that is both frequent and global in coverage. How-
ever, some recent studies using satellite data have yielded different conclusions on the
global radiative forcing by anthropogenic aerosols (e.g., Bellouin et al. [2005], Chung
et al. [2005] and Yu et al. [2005]). This is because the satellite data themselves have dif-
ferent information content with respect to the view angle, spectral channels, spatial and
temporal resolution, and polarization [Kokhanovsky et al., 2007]. Moreover, different sim-
plifying assumptions and aerosol retrieval algorithms applied to the same data source can
also result in different estimates of aerosol properties. Thus, we should be extremely wary
when interpreting satellite datasets and provide information on the limitation to any po-
tential end-users of these products.

The AATSR (Advanced Along-Track Scanning Radiometer) onboard the European
Space Agency’s (ESA) ENVISAT platform and its predecessor the ATSR-2 (Along-Track
Scanning Radiometer-2) are passive optical and thermal instruments that have the poten-
tial to make a major contribution to our understanding of atmospheric aerosols. This is
because global long-term aerosol retrievals spanning more than a decade can be attained
based on very well calibrated radiance measurements.

When interpreting measurements from passive optical instruments the challenge lies in
separating out the atmospheric and surface scattering contributions to the satellite signal.
The method presented here involves the coupled inversion using a physical model of light
scattering that requires no a priori knowledge of the land surface. In this chapter, we pro-
vide a review of the method developed by North et al. [1999] and subsequently implemen-
ted and tested in North [2002] and Grey et al. [2006a, 2006b] for retrieving atmospheric
aerosol properties from AATSR and ATSR-2 satellite data. This chapter is based heavily
on these papers and we refer the interested reader to these works. The pioneering surface
and atmospheric studies from ATSR-2 can be found in Veefkind et al. [1998], Mackay et al.
[1998], Flowerdew and Haigh [1996] and Godslave [1996].

1.3 Algorithm development cycle

There are several key stages in the development cycle of an aerosol retrieval algorithm for
a satellite instrument and the development of our algorithm has not differed from this
generic process. The first stage is the algorithm definition phase during which the algo-
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rithm is conceived from a theoretical standpoint, is written up as a computer program and
generally tested on a simulated dataset of TOA reflectances. The next stage is the valida-
tion phase where satellite data are ingested into the algorithm and the aerosol properties are
retrieved over a range of sites worldwide corresponding to ground-based sunphotometers
that serve as the benchmark for testing satellite-derived aerosol products. In practice, va-
lidation is an on-going process that occurs throughout the development cycle. Once the
algorithm has been rigorously tested and proven to provide accurate estimates of aerosol
properties, we can apply it within an operational framework for routine retrievals. To pro-
cess satellite data operationally and routinely the implementation must necessarily be com-
putationally efficient. To provide useful aerosol climatological datasets the entire archive
of a satellite instrument needs to be processed. Once the aerosol products have been pro-
duced it is then possible to compare with other existing satellite products. During the pro-
duction and validation of a dataset of aerosol properties a great deal can be learnt about the
algorithm and situations where it performs well or poorly. To take account of improve-
ments in scientific algorithms and in the derived geophysical parameters the satellite
data archives can be reprocessed several times. This is important because the same version
of an algorithm applied to the whole dataset will provide consistent products for clima-
tological studies, otherwise artifacts in the geophysical products will occur that will be the
result of the changing of the algorithm. Throughout this chapter we describe each of these
stages of algorithm development in more detail.

1.4 Chapter outline

We begin with an outline of remote sensing of aerosols in the context of multi-view-angle
passive optical satellite instruments and provide a description of the AATSR instrument. In
Section 3, a brief overview of the problem of aerosol retrieval from passive optical remote
sensing instruments is presented. This is followed by a description of the multi-view-angle
algorithm and processor of Grey et al. [2006a, 2006b] developed for AATSR. In Section 4,
we describe the practical operational implementation of the algorithms and the validation
that has been carried out against AERONET (Aerosol Robotic Network) sunphotometer
ground-based measurements and the inter-comparison with other satellite instruments. We
then provide some recommendations for future research. Finally, we summarize the salient
points of this chapter.

2. Remote sensing of aerosols

Satellite remote sensing offers a viable means for routinely measuring aerosols over very
large areas. For instance, the AVHRR (Advanced Very High Resolution Radiometer) is
used operationally for monitoring aerosols over oceans [Stowe et al., 1997]. Another in-
strument that has a long-term archive of aerosol measurements is TOMS (Total Ozone
Mapping Spectrometer) [Torres et al., 2002; Hsu et al., 1999]. Aerosol estimates from
MODIS (Moderate Resolution Imaging Spectroradiometer) have also been retrieved based
on the spectral separation of the surface and atmospheric signal [Levy et al., 2007; Remer
et al., 2005].
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Single-look approaches do not provide all the information on the surface needed for the
remote sensing of aerosols [King et al., 1999]. When viewing from a single direction, we
must rely on the spectral signature to distinguish atmospheric from ground scattering.
Where a target of approximately known reflectance can be identified, such as dense ve-
getation or a body of water, atmospheric properties at the target location may be estimated
on the basis of known correlation of ground reflectance at different wavelengths (e.g.,
Kaufman et al. [1997b]). For a given set of surface reflectances derived by assuming a
certain atmospheric profile when a large number of channels are available it is possible
to represent the target reflectance as a linear mixture of an idealized vegetation and soil
spectrum, or set of spectra. A number of variations on such methods have been used suc-
cessfully for aerosol retrieval with Envisat/MERIS (Medium Resolution Imaging Spectro-
meter) and CHRIS (Compact High Resolution Imaging Spectrometer) On-Board PROBA
(Project for on-board Autonomy) [Guanter et al., 2007; Santer et al., 2007; von Hoyningen-
Huene et al., 2003]. However, routine application is limited to where such targets are avail-
able at the appropriate spatial resolution (i.e. oceans and dark dense vegetation), and ac-
curacy is limited to the level of uncertainty in the a priori estimate of target reflectance
variation.

A number of instruments, such as POLDER (Polarization and Directionality of the
Earth’s Reflectances), MISR (Multi-angle Imaging Spectroradiometer), ATSR-2
(Along-Track Scanning Radiometer), and AATSR (Advanced Along-Track Scanning
Radiometer) have been developed with the enhanced capability of acquiring near-simul-
taneous multi-angle observations through different path lengths allowing the atmospheric
properties to be inferred. Moreover, future missions such as Nasa’s Glory/APS (Aerosol
Polarimetry Sensor) and ESA’s Sentinel-3/SLSTR (Sea and Land Surface Temperature
Radiometer) instruments will also have multi-view-angle capability (see Table 6.1).
The APS instrument will have the unique capability of obtaining the phase function. Re-
trievals of aerosol properties have previously been demonstrated in a number of studies
based on multi-look observations of MISR [Martonchik et al., 2004; Diner et al., 1998],
POLDER [Roujean et al., 1997] and ATSR-2 [North, 2002; Veefkind et al., 1998; North et
al., 1999]. The additional information contained within multi-view-angle observations can
potentially lead to improved aerosol estimates compared with conventional single-look
instruments [Diner et al., 2005a]. The advantage of the multi-look approach over sin-
gle-look methods is that assumptions are not required about the land surface spectral prop-
erties, thus aerosols can potentially be retrieved over any surface even bright desert scenes
[Martonchik et al., 2004]. Satellite remote sensing of aerosol properties have mainly been
retrieved using passive optical satellite instruments, but more recently active lidar instru-
ments such as the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation) instrument that forms part of NASA’s A-Train satellite constellation have pro-
vided useful complementary information on the profile and height of atmospheric aero-
sols. Passive optical instruments cannot easily retrieve this information, although a recent
study by Kahn et al. [2007] did retrieve the height of smoke plumes from multi-view-angle
MISR data.

For passive optical instruments, obtaining accurate information on aerosol properties is
also necessary for atmospheric correction of bi-directional reflectances so that quantitative
analysis of the land and ocean surface can be performed. The uncertainties in the retrieved
biophysical properties such as leaf area index, the fraction of absorbed photosynthetically
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active radiation and albedo will be strongly influenced by the quality of the atmospheric
correction of the measured radiances [Guanter et al., 2007].

2.1 Description of AATSR and ATSR-2

The ATSR-2 and AATSR sensors were designed for atmospheric, land and ocean scientific
applications. AATSR was launched by the European Space Agency onboard ENVISAT in
March 2002 and is one of a series of satellite instruments with the purpose of providing a
well calibrated long-term global dataset of satellite data for climate research. Principally
designed as a geophysical ocean sensor to measure sea-surface temperature, the instrument
has also found applications over land. To all practical intents, the instrument is identical to
its predecessor, the ATSR-2 sensor launched in 1995 on ERS-2 (European Remote Sen-
sing), and provides continuity to the ATSR-1 and ATSR-2 datasets. We note here that
ATSR-1 does only have thermal channels so this instrument is not used for aerosol retrie-
val. One of the benefits of these series of missions is that a long time-series of aerosol and
other biophysical and geophysical properties spanning more than a decade has been ob-
tained. Moreover, the proposed follow-up SLSTR mission as currently scoped on Sentinel-
3 will ensure the continuity of the multi-view-angle data into the future.

One of the characteristics of the AATSR instrument is its ability of acquire two near-
simultaneous observations of the same area of the Earth’s surface at a view zenith angle of
55� (forward view at the surface) and then approximately 120 seconds later at an angle
close to vertical (nadir view) (see Figure 6.1). The observations made in forward view are

Table 6.1. Past, current and future satellite passive optical instruments with multi-view-angle capability

Sensor Platform Launch date/
end date

Features

ATSR-2 ERS-2 1995 Dual-view-angle observations; more than a decade of
observations; 5–6 day coverage at equator; 1 km
spatial resolution. 7 channels with four in optical
region at 550, 670, 870 and 1610 nm.

AATSR Envisat 2002 As ATSR-2

SLSTR Sentinel-3 2012 As (A)ATSR but wider swath and two additional
channels at 1300 and 2250 nm.

CHRIS PROBA 2001 5 viewing angles, hyper-spectral between 400 and
1000 nm, very high spatial resolution of up to 17 m.

MISR Terra 1999 9 viewing angles, 6-day coverage at equator; 1 km
spatial resolution. Four channels: 446, 558, 672,
866 nm

POLDER ADEOS-1 11/1996–6/1997 14 viewing angles; polarization; but relatively coarse
resolution at 6x7 km resolution. Eight channels: 444,
445, 492, 565, 670, 763, 763, 908 and 861 nm.

ADEOS-2 4/2003–10/2003

Parasol 2004

APS (Aerosol
Polarimetry
Sensor)

Glory 2010 
 250 scattering angles per scene; polarization; 6 km
resolution; can obtain phase function. Nine channels:
410, 443, 555, 670, 865, 910, 1,370, 1,610, 2,200 nm
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more influenced by atmospheric scattering and absorption than in the nadir view because
the path length is approximately twice that of the nadir view. The swaths are approximately
500 km in width, which means that on average global coverage can be attained every 6
days at the equator. The nominal size of each pixel at nadir is 1 by 1 km. In the forward
view the pixels sizes are larger, but in the AATSR level 1 products the pixels are resampled
to the same size as those in the nadir view. There are seven spectral bands, but only the four
bands in the visible and near-infrared (555, 660, 870 and 1610 nm) are used for aerosol
retrieval in our scheme presented here. These spectral bands are narrow (approximately
20 nm) and avoid atmospheric water vapor absorption regions in the electromagnetic spec-
trum. Another feature of the (A)ATSR is that it is a well calibrated instrument with an
onboard diffusely reflecting target for calibration of the optical channels, and a blackbody
reference target for the thermal channels.

3. Model inversion for the retrieval of aerosol optical depth

3.1 Atmospheric radiative transfer

Satellite observations at optical wavelengths consist of solar radiation scattered by both the
atmosphere and the surface back in the direction of the sensor. We need to separate out the
atmospheric and surface scattering components through atmospheric radiative transfer
modeling if we are to obtain accurate estimates of biophysical and geophysical properties.
For remote sensing we can infer the radiative characteristics of aerosol particles from the
measured satellite radiances. The atmospheric and surface contributions to the radiance
measured by a spaceborne sensor at the top of the atmosphere, for a given wavelength and
viewing and illumination geometry, over a Lambertian surface are given by the widely
used equation:

Ltoa ¼ L0 þ
TðhsÞTðhmÞF0 cosðhsÞqsurf

pð1 � qsurf SÞ
; ð1Þ

Fig. 6.1. (A)ATSR viewing geometry.
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where L0 is the atmospheric path radiance due to Rayleigh and aerosol scattering, qsurf is
the surface reflectance, F0 is the solar radiance at the top-of-the-atmosphere for a directly
overhead sun, S is the spherical albedo of the atmosphere, TðhmÞ is the total transmittance
from the surface to the top of the atmosphere in the view direction of the satellite, TðhsÞ is
the total transmittance from the top of the atmosphere to the surface along the path of the
incoming solar radiation. In the 6S formulation of the radiative transfer that we employ in
our work we use an approximation [Vermote et al., 1997] by assuming that the gaseous
absorption layer is above the aerosol scattering and absorption layer such that:

Ltoa ¼ Tgðhs; hmÞ L0 þ
TðhsÞTðhmÞF0 cosðhsÞqsurf

pð1 � qsurf SÞ

" #
; ð2Þ

where Tgðhs; hmÞ is the gaseous transmission team. In the non-absorbing regions of the
spectrum this assumption has little effect, but at strongly absorbing wavelengths the effect
of coupling between molecules and aerosols is much stronger and this approach is not valid
[Guanter et al., 2007]. Although the decoupling approach may be valid for some of the
gases such as ozone, it is not appropriate for water vapor, therefore in 6S Eq. (2) is mod-
ified as:

Ltoa ¼ Tgðhs; hmÞ LM þ LAT
H2O
g ðhs; hmÞ þ

TH2O
g ðhs; hmÞTðhsÞTðhmÞF0 cosðhsÞqsurf

pð1 � qsurf SÞ

" #
; ð3Þ

where LM is molecular path radiance owing to Rayleigh scattering, LA is the aerosol path
radiance, and TH2O

g ðhs; hmÞ is the transmittance owing to water vapor only. Moreover, for
(A)ATSR the optical bands are away from absorption regions, thus using the decoupling
approach as employed in 6S is valid.

All reflectance and radiances terms are a function of the wavelength, solar hs and sa-
tellite hm zenith angles and relative azimuth angle between the sun and viewing position f,
as well as the optical properties of the atmosphere and surface. The 1 � qsurf S term refers
to multiple scattering between the surface and atmosphere but this term can be neglected
for an optically thin atmosphere. We note here that radiances L can also be expressed as
reflectances q using:

q ¼ pL

cosðhsÞF0
: ð4Þ

Over a completely absorbing surface (e.g., over deep dark oceans at infrared wavelengths)
the second term in Eq. (1–3) is zero and the measured TOA radiance is due entirely to the
atmospheric path radiance. In contrast, over bright land surfaces the surface reflectance
term makes a large contribution to the measured TOA radiance, while the atmospheric path
radiance contribution is small. This is where the challenge in aerosol remote sensing lies
because even a small error in the surface reflectance can lead to a large error in our re-
trieved aerosol properties.

The atmospheric path radiance L0 can be separated into molecular LM and aerosol LA
radiance scattering components such that
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L0 ¼ LM þ LA: ð5Þ

However, this standard approach does not include the multiple scattering between the mo-
lecules and aerosols. A more realistic representation is given in Rozanov and Kokhanovsky
[2005] and the following discussion is based around this study. By taking into account the
coupling between molecular and aerosol scattering LMA, we have

L0 ¼ LM þ LA þ LMA: ð6Þ

The coupling between aerosols and molecules contributes significantly to the path radi-
ance particularly at blue and ultraviolet wavelengths. At wavelengths of 550 nm or greater
coupling is not so large and the error in the retrieved aerosol path radiance will be small,
typically below 5 % for solar zenith angles smaller than 60� [Rozanov and Kokhanovsky,
2005]. At these solar positions for the AATSR optical wavelengths we do not need to take
into account multiple scattering between the molecules and aerosols. However, at solar
zenith angles larger than approximately 60� this error does become significant and will
result in large uncertainties in retrieved estimates of AOD.

It is also pertinent to discuss here the error in our calculations of scattered light intensity
by not taking into account the polarization of light. Unpolarized sunlight becomes polar-
ized after interaction with atmospheric molecules and particles. The scalar radiative trans-
fer equation as used in our aerosol retrieval scheme does not take account of polarization,
while the vector radiative transfer equation does characterize the polarization of light and
its influence on the intensity of reflected radiation detected by a satellite sensor [Rozanov
and Kokhanovsky, 2005]. The scalar approach can be used in the infrared, where the mo-
lecular contribution is negligible. Errors in the calculated radiance in the UV, where the
Rayleigh scattering contribution is strong, can reach 10 % [Rozanov and Kokhanovsky,
2006; Levy et al., 2004; Mishchenko and Travis, 1997], however. Using the scalar radiative
transfer equation at AATSR wavelengths (550 nm and above) will result in a small error of
the scattered light intensity, but modifications in future work of our aerosol retrieval
scheme will make use of the vector radiative transfer equation.

To retrieve the aerosol path radiance we subtract the molecular scattering from the total
atmospheric radiance [Rozanov and Kokhanovsky, 2006]. The parameters required to
model aerosol radiative effects are aerosol optical depth s, for a given reference wave-
length k, its spectral dependence, defined by Ångström coefficient a, single scattering
albedo x and phase function PðHÞ, where H denotes the scattering angle: The single scat-
tering albedo is equal to the ratio of scattering coefficient rs to the extinction coefficient re
such that x ¼ rs=re where the extinction coefficient is the sum of the scattering and ab-
sorption coefficients ra; re ¼ rs þ ra. These properties are determined by the amount,
chemical composition, size and shape of the aerosol particles. For aerosol retrievals
we are particularly interested in the aerosol path radiance LA given as

LA ¼ f ðs;x;PðHÞ; hs; hV ;fm;fsÞ; ð7Þ

where fm and fs are the viewing and solar azimuth angles, respectively. The aerosol path
radiance is calculated using the successive orders of scattering approach to take account of
multiple scattering [Kotchenova and Vermote, 2007; Kotchenova et al., 2006]. AOD is the
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principal property derived from satellite observations and is a function of the number and
size of particles, and is the extinction of light integrated from the bottom to top of an
atmospheric column

sðkÞ ¼
ð1
0

reðz; kÞ dz: ð8Þ

The phase function provides a description of the distribution of scattered radiation of the
aerosol particles as a function of the scattering angle H between the incident and scattering
direction. To parameterize the backward and forward scattering direction of incident light
we use the asymmetry factor, where a positive asymmetry factor indicates strong forward
scatter and a negative asymmetry value indicates scatter in the backward direction. The
scattering angle is a function of hs, hm and f and is calculated by

H ¼ arccosð� cosðhmÞ cosðhsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � cos2ðhmÞÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � cos2ðhsÞÞ

p
cosðfÞÞ: (9)

The AOD is the most important parameter for calculating the atmospheric radiative forcing
[Chylek et al. 2003]. Climatologically defined aerosol models are used to constrain the
other aerosol parameters (e.g., x and PðHÞÞ in Eq. (7) in order to retrieve AOD.

To retrieve estimates of aerosol properties from measured satellite radiances, we need to
solve this inverse problem and separate the atmospheric and surface scattering contribu-
tions to the observed signal. If the land surface is Lambertian then the differences between
the measured radiances from the different viewing positions could be attributed to atmo-
spheric path radiance only. However, all natural surfaces contain some degree of aniso-
tropy at optical wavelengths, therefore it is necessary to consider how the bi-directional
reflectance of the land surface changes with the viewing and illumination geometry in
order to decouple the atmospheric and surface scattering contributions with any accuracy.
For aerosol retrieval the difficulty lies in obtaining a reliable estimate of the land surface
reflectance. Over bright land surfaces the problem is particularly challenging because sur-
face scattering dominates the satellite signal. In addition, the land surface is heterogeneous
and temporally varying making a priori assumptions difficult. Multi-view-angle observa-
tions help to constrain the inverse problem since the surface is imaged through different
atmospheric path lengths allowing us to infer the atmospheric properties. Also an angular
constraint for the surface scattering behavior is provided that can be exploited for the es-
timation of bi-directional reflectance.

3.2 Model of land surface reflection

In general, it is more challenging to retrieve aerosol properties over land than over ocean.
This is because the scattering from the land surface tends to dominate the satellite signal
making it difficult to discern the atmospheric scattering contribution to the satellite signal
particularly over bright surfaces. In addition, obtaining an accurate model of the land sur-
face is further complicated because bi-directional reflectances are highly variable [North
et al., 1999; Veefkind et al., 2000]. In contrast, atmospheric scattering dominates the signal
over the ocean. Thus, single-look satellite observations can provide accurate estimates of
AOD over ocean [Remer et al., 2005].
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We present a multi-view-angle aerosol retrieval and atmospheric correction algorithm
over land. Similar approaches have been developed elsewhere, for instance at the Finnish
Meteorological Institute and Oxford University and details on both these algorithms can be
found in this volume in Curier et al. (Chapter 5) and Thomas et al. (Chapter 7) respectively.
The algorithm presented here has been integrated into ESA’s GPOD (Grid Processing on
Demand, eogrid.esrin.esa.int) high-performance computing facility for operational retrie-
vals of AOD and bi-directional reflectance from AATSR. Moreover, similar approaches
have been applied to multi-angle CHRIS and MISR data [Diner et al., 2005b]. The algo-
rithm presented here is based on a simple physical model of light scattering for the dual-
angle sampling of the ATSR-2 and AATSR instruments and can be used to separate the
surface bi-directional reflectance from the atmospheric aerosol properties without re-
course to a priori information of the land surface properties, based on an angular constraint
[North et al., 1999]. Previous studies have shown that the shape of the surface bi-direc-
tional reflectance distribution function (BRDF) is similar at different wavelengths. This is
because the scattering elements of the surface are much larger than wavelengths used in the
retrieval procedure and so the angular variation of surface reflectance is often dominated
by wavelength-independent geometric effects. This has been demonstrated by multi-angle
observations from ATSR-2 and AATSR (e.g., Veefkind et al. [1999, 2000]) and MISR
(e.g., Diner et al. [2005b]). For AATSR, the ratio of surface reflectances at the nadir (where
the view zenith angle is close to 0�) and forward viewing angles (where the view zenith
angle is 55�) is well correlated between bands. Thus

qðki; nÞ � qðkj; nÞ
qðkj; f Þ qðki; f Þ; ð10Þ

where nadir n and forward f refer to forward and nadir view zenith angles of (A)ATSR,
respectively, and i and j are any combination of the (A)ATSR optical channels (550, 670,
870, 1630 nm). In the shortwave infrared region, at 1,630 nm there is very little scattering
and absorption owing to aerosols, thus correction for gaseous absorption and Rayleigh
scattering can be sufficient for atmospheric correction, although this is not the case
for large particles like dust or sea-salt with spectrally flat AODs.

North et al. [1999] developed this approach further by considering the variation of the
diffuse fraction of light with wavelength. Scattering of light by atmospheric aerosols tends
to be greater at shorter wavelengths where scattering varies proportionally with 2pre=k,
where re is the effective radius of the scattering elements and k is the wavelength. This is
important to model because the fraction of diffuse to direct radiation influences the ani-
sotropy of the surface. The anisotropy is reduced when the diffuse irradiance is high be-
cause the contrast between shadowed and sunlit surfaces decreases. Anisotropy is similarly
dependent for bright targets owing to the multiple-scattering of light between the surface
elements. The atmospheric scattering elements such as aerosols are comparable in size to
the wavelength of light at optical wavelengths. As a result, the effect of atmospheric scat-
tering on the anisotropy will be a function of wavelength and the shape of the BRDF will
vary. This is clearly demonstrated in Fig. 6.2 which shows the BRDF from Flight [North,
1996] canopy radiative transfer simulations for Old Jack Pine forest with a solar zenith
angle of 45� differs for the red (670 nm) and near-infrared (870 nm) channels of the

3. Model inversion for the retrieval of aerosol optical depth 171



(A)ATSR instruments. Taking these effects into account results is a physical model of
spectral change with view angle [North et al. 1999]

qmodðk;XÞ ¼ ð1 � DðkÞÞmðXÞwðkÞ þ cwðkÞ
1 � g

DðkÞ þ gð1 � DðkÞÞ½ �; ð11Þ

Fig. 6.2. BRDF obtained from Flight simulations for Old Jack Pine forest canopy type with a solar zenith
angle of 45� corresponding to the (a) red (670 nm) and (b) near-infrared (870 nm) channels of the
(A)ATSR instruments.
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where g ¼ ð1 � cÞwðkÞ, k is the wavelength, X is the viewing geometry (forward or nadir
view in the cases of ATSR-2 and AATSR), qmod is the modeled bi-directional reflectance, c
is the fraction contributing to higher-order scattering and is set equal to 0.3 [North et al.,
1999], D is the fraction of diffuse irradiance, v is a wavelength independent parameter, and
w is a parameter independent of the viewing and illumination geometry. The first and
second terms refer to direct and diffuse scattering, respectively. The model separates
the angular effects of the surface into two components (see also Diner et al., 2005b), a
structural parameter m that is dependent only on the view direction, and the spectral pa-
rameter w that is dependent only on the wavelength. The free parameters that we want to
retrieve through model inversion are wðkÞ and mðXÞ. If we assume that the influence of
diffuse irradiance on surface reflectance is negligible (i.e. DðkÞ ¼ 0) then we get

qmodðk;XÞ ¼ mðXÞwðkÞ þ g
cwðkÞ
1 � g

: ð12Þ

Conversely, under completely diffuse illumination conditions, where DðkÞ ¼ 1, we get:

qmodðk;XÞ ¼ cwðkÞ
1 � g

: ð13Þ

However, these situations are most likely to occur under cloudy conditions where we will
be unable to retrieve AOD. By inversion of Eq. (11), this model of surface scattering has
been shown theoretically to lead to a tractable inversion method which is potentially more
robust than the simple assumption of angular invariance alone [North et al., 1999]. The
angular reflectance of a wide variety of natural land surface fits this simple model [North et
al., 1999]. In contrast, reflectance that is a mixture of atmospheric and surface scattering
does not fit this model well. As a result, the model can be used to estimate the degree of
atmospheric contamination for a particular set of reflectance measurements and to find the
atmospheric parameters which allow retrieval of a realistic surface reflectance. The mi-
nimum inputs into the algorithm are radiances from two bands and two solar and viewing
geometries, so it can be applied to all existing multi-view-angle sensors.

3.3 Numerical inversion

In remote sensing we often want to solve the inverse problem, where we need to make
inferences about a quantity that cannot be measured directly. The unknown environmental
variables V that we wish to retrieve are a function of a known set of measured satellite
radiances Latm for a range of wavelengths and viewing and solar geometries, such that
V ¼ f �1ðLatmÞ where the forward problem is expressed as Latm ¼ f ðVÞ. Thus, if the geo-
physical and biophysical properties of the atmosphere and surface are known then we can
predict the radiances measured by a remote-sensing instrument. However, it is the un-
known geophysical and biophysical properties from the observed radiances that are re-
quired.
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For retrieving aerosol properties from top-of-atmosphere reflectance data we need to
solve the model given in Eq. (1) and expressed again here but in a simpler form as [Chylek
et al., 2003]:

LTOA ¼ LM þ LA þ TðhvÞLS ; ð14Þ

where LTOA is the measured radiance, LM and LA are the atmospheric molecular and aerosol
scattering, respectively and LS is the surface-leaving radiance. We neglect the multiple
scattering between the molecules and aerosols. By neglecting the interaction between
the Rayleigh and aerosol scattering, we should be aware that our retrievals of aerosol prop-
erties at large solar zenith angles at high latitudes may be unreliable.

In practice we have LTOA but we need to find all the terms in Eq. (14) in order to retrieve
the aerosol properties. The land surface model Eq. (11) allows us to obtain LS from multi-
view-angle observations, and LM is easily defined as a function of surface pressure and
climatology. The measured satellite radiances are equal to the atmospheric path radiance
once surface-leaving radiance has been taken into account. After correcting for gaseous
absorption and Rayleigh scattering, the remaining contribution to the signal is dominated
by atmospheric aerosol scattering. Thus, we can find the remaining unknown term LA, and
with a prescribed aerosol model defining the single scattering albedo and phase function
we can retrieve AOD.

The inherent difficulty when solving inverse problems is that there are often fewer mea-
surements than model parameters, thus the problem needs to be regularized in order to
provide a unique solution. This is where much of the uncertainty in the retrieval of aerosol
properties can arise because value-based assumptions are sometimes used to regularize the
problem. For instance, we often use an aerosol model to constrain some of the aerosol
properties. These can be set as free parameters, which better characterize the atmospheric
state than a rigid prescribed aerosol model based on climatology or we can use derived
parameters from ground-based observations [Levy et al., 2007].

To regularize the problem so that AOD is the only unknown atmospheric parameter,
assumptions are made concerning the other aerosol optical properties including phase
function and single-scattering albedo. In practice, a range of models representing general-
ized aerosol climatologies (smoke, urban, desert dust, continental and maritime) are used
to constrain the inverse problem. A summary of these properties for the models used in our
scheme are given in Table 6.2. The selection of aerosol model depends on the location and
time of year, and the accuracy of the AOD estimates will depend on how well the general-
ized aerosol model characterizes the actual atmospheric state.

Table 6.2. Optical properties of the five aerosol models used in the 6S radiative transfer code to retrieve
AOD and bi-directional reflectance derived using Mie theory.

Aerosol model Single scattering albedo
at 550 nm

Asymmetry parameter
at 550 nm

Ångström coefficient
550–630 nm

Biomass (smoke) 0.97 0.68 1.44

Continental 0.89 0.64 1.17

Dust 0.94 0.70 0.30

Maritime 0.99 0.74 0.22

Urban (black carbon) 0.65 0.59 1.34
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Our aim is to retrieve AOD from multi-angle top-of-atmosphere (TOA) cloud-free ra-
diances. This is achieved through a coupled inversion of the 6S (Second Simulation of the
Satellite Signal in the Solar Spectrum) radiative transfer model of Vermote et al. [1997]
and the model of surface scattering given in Eq. (11). The inversion is achieved through
iteration of a two-stage numerical process [North et al., 1999], the schematic of which is
presented in Fig. 6.3. In this scheme the Powell multi-dimensional minimization routine is
nested within the Brent one-dimensional numerical optimization algorithm [Press et al.,
1992]. One convenient feature of both these optimization routines is that the partial deri-
vatives are not required. These routines are quick and are generally robust to finding the
global minima. However, as with many numerical routines, they may find a local minima
instead. The algorithm does not explicitly screen for local minima, but we are confident
these cases are rare. In tests using simulated data our forward and inverse modeled esti-
mates of AOD were similar in all cases, indicating that the global minima were always
found. Only in situations where the cost function is complex and highly nonlinear
does false convergence become a significant problem. In contrast, for a given aerosol mod-
el and surface reflectance AOD varies smoothly with measured TOA.

Once a model of the surface scattering is obtained, we can find the atmospheric path
radiances by using an atmospheric radiative transfer model. The optimal aerosol properties
are found by minimizing the difference between the derived and modeled set of surface
reflectances. We use the 6S atmospheric radiative model to iterate through a possible range
of AODs and aerosol models. Aerosol models are used to constrain the inverse problem
and provide generalized climatologies of other aerosol properties such as single scattering
albedo and phase function.

The first stage is to retrieve a set of surface reflectances and estimates of diffuse irra-
diance given an initial estimate of the atmospheric aerosol model and AOD at 550 nm by
inversion of 6S. The best-fit of the two parameters m and w from Eq. (11) for two observa-
tions of the same target from different angles at the same wavelength are found using
Powell routine. The fraction of diffuse irradiance D is calculated in 6S from the AOD
value and aerosol model used for that interaction. In operation this optimization routine
is nested within the Brent minimization routine. The interaction between the Brent and
Powell routines is shown in Fig 6.3. The second stage uses Brent to iterate through a range
of AOD values to converge on the optimum value for AOD at 550 nm. When the best fit of
the parameters for a given AOD is found, another iteration is calculated using a different
estimate of AOD. This process continues until the interaction between AOD and the two m
and x parameters leads to the overall best-fit solution. Generally, it takes between 10 and
20 Brent iterations to converge on an optimum estimate of AOD. For each iteration, each
estimate of AOD results in a different set of surface reflectance values. The dual-view
algorithm makes use of the full information content of observations and incorporates a
set of eight reflectance values in the four AATSR optical channels and at the two looks.
The optimum value of AOD and aerosol model is selected on the basis of best-fit of surface
reflectances to the model given by Eq. (11), and is attained by minimizing the error func-
tion Emod

Emod ¼
X2

X¼1

X4

k¼1

qsurf ðk;XÞ � qmodðk;XÞ
h i2

; ð15Þ
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Fig. 6.3. Schematic showing numerical inversion of AOD and surface reflectance retrieval. This is
achieved through iteration of a nested two-step numerical optimization process. Reproduced from
Grey et al. [2006a], with permission from IEEE.
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where qmod is the surface reflectance estimated using Eq. (11) based on the best-fit values
of the parameters m and w, and qsurf is the surface reflectance calculated using 6S given the
TOA reflectance qTOA and the estimated atmospheric profile. Surface reflectance is related
to the TOA reflectance by rearranging Eq. (1) [Vermote et al., 1997]

qsurf ðhs; hm;fs � fm; kÞ ¼
q 0
TOA

1 þ q 0
TOAS

; ð16Þ

where hs is the solar zenith angle, hm is the view zenith angle, fs is the solar azimuth angle,
fm is the view azimuth angle, S is the atmospheric spherical albedo, and q 0

TOA is

q 0
TOA ¼ qTOAðhs; hm;fs � fm; kÞ � qatmðhs; hm;fs � fm; kÞ

TðhsÞTðhmÞ ; ð17Þ

where q 0
atm is the intrinsic atmospheric reflectance, and TðhsÞ and TðhmÞ denote downward

and upward transmittance, respectively, and qTOA is given by:

qTOA ¼ pLTOA
cosðhsÞF0

: ð18Þ

AOD will be retrieved at 550 nm, but values of AOD can be attained at other wavelengths
depending on the selected aerosol model.

3.4 Look-up tables of atmospheric parameters

We have developed a robust and computationally efficient method for retrieving estimates
of AOD from (A)ATSR that can be applied operationally at regional and global scales.
Computational efficiency is achieved by using pre-calculated look-up tables for the nu-
merical inversion of a radiative transfer model of the atmosphere instead of the full in-
version approach that is more computationally intensive. Performing inversions using re-
peated forward model runs of atmospheric radiative transfer models is computationally
very expensive. By using look-up tables, the most computationally expensive aspect is
completed prior to inversion. Here, we use look-up tables created from forward runs
of the 6S atmospheric radiative transfer model. The values within the look-up tables
are composed of the fraction of diffuse irradiance, atmospheric transmittance and spherical
albedo, allowing us to retrieve the aerosol properties and bi-directional surface reflectance.
The parameters in the look-up tables are dependent on the solar and viewing geometry and
the atmospheric profile. The look-up tables are constructed at the four visible and near-
infrared bands of AATSR in four-dimensions and indexed with AOD at 550 nm (from 0 to
3 at 0.05 intervals), solar zenith angle (from 0� to 80� at 10� intervals), view zenith angle
(from 0� to 60� at 10� intervals), and relative azimuth angle (from 0� to 180� at 20� inter-
vals) (see Table 6.3). The look-up tables are generated for the five tropospheric aerosol
models (see Table 6.2). Only at the grid points do we have the modeled values in the
look-up tables. During operation, the atmospheric parameters are estimated in the
look-up tables using piecewise multi-dimensional linear interpolation. In this approach
a linear model is applied between neighboring grid points in all dimensions. Mathema-
tically, this can be expressed as
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C ¼ C0 þ
Xk¼4

k¼1

@xk
@Ck

@xk
ð19Þ

where C is the interpolated parameter, C0 is the parameter at the reference grid point, and
@x represents the shift along each of the four parameter vectors k ðs; hm; hs;fÞ away from
the reference grid point towards the other corner grid points. The partial derivatives re-
present the gradient along each dimension. By using look-up tables there will inevitably be
a small decrease in the accuracy of the retrieved measurements compared with performing
on-the-fly inversions, but the method gives an approximately 60-fold increase in speed
[Grey et al., 2006b].

4. AATSR AOD retrieval and algorithm validation

4.1 Simulated datasets

To develop and test the AOD retrieval algorithms we often use synthesized Earth obser-
vation data derived from coupled surface and atmospheric radiation transfer models. Given
the central role that simulated datasets have played in our algorithm development we ex-
plain here how these datasets are generated and used but do not present any specific results
of our analysis. Our goal here is to explain the purpose and value of these simulated da-
tasets.

There are several reasons why we might want to use simulated datasets. Firstly, if we are
developing an operational algorithm for a satellite instrument that has yet to be launched
where no data are available, a synthesized dataset configured with the same spectral and
viewing characteristics can be used to test and develop the algorithm and potential of the
available dataset. For instance, this was the case with MODIS where much of the algorithm
development occurred before the satellite instrument was launched. Secondly, simulated
data allows us to perform controlled experiments, where we can examine the influence of
one particular variable on our retrieval of AOD.

Despite the benefits of using simulated data, we need to be very careful when inter-
preting the results that are based on simulation studies. To begin with it is very difficult
to properly characterize the noise within a particular sensor system. Usually we rely on
some statistical random model to generate noise in our synthetic spectra to take account of
uncertainties in calibration and so on but it still may not realistically characterize all noise
sources. In addition, the atmospheric radiative transfer codes cannot fully characterize the
geophysical characteristics of the atmosphere, because they are by nature of models that

Table 6.3. Summary of look-up tables grid points of atmospheric parameters and indices

Parameter Minimum Maximum Interval

AOD 0 3.0 0.05

Solar zenith angle 0� 80� 10�

View zenith angle 0� 60� 10�

Relative azimuth angle 0� 180� 20�
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provide a simplified representation of reality. Thus, there is no substitute for the use of
satellite-acquired data for validating algorithms and data characteristics, but synthetic da-
tasets do have their value even if we do need to be cautious in the inferences that we can
draw.

A large set of simulated data can be created using coupled surface and atmospheric
radiative transfer models for a range of atmospheric and surface conditions. A canopy
radiative transfer model such as that of North [1996] can be used to generate a represen-
tative set of vegetated surfaces corresponding to forests and grasslands. Similarly ocean
and soil surface models can be used. The viewing and illumination conditions correspond
to realistic satellite geometries. The generated surface reflectances are then converted to
TOA reflectances using an atmospheric radiative transfer model in the forward mode. We
select realistic atmospheric parameters for the corresponding land surface using a range of
aerosol models (desert, biomass, continental and maritime) and for a range of AODs. Fi-
nally statistical noise is added to the TOA reflectances in order to simulate poor calibration,
image misregistration and other potential sources of error. The schematic in Fig. 6.4 sum-
marizes how TOA reflectance measurements are generated based on a coupling between
the surface and atmospheric radiative transfer models. Once the dataset is generated we
can then retrieve aerosol properties from the generated TOA radiances by using the aerosol
retrieval algorithms to solve the inverse problem. The algorithms are applied to the simu-
lated TOA reflectances. If the algorithms perform well then the retrieved AOD will be
consistent with the AOD used in the forward model of the atmospheric radiative transfer
to generate the TOA reflectances. Inversions are performed on both the noise-free and
Gaussian noise-added TOA reflectances. Low RMSEs indicate that the algorithm is per-
forming well, when the dynamic range is large.

The initial development of the dual-view AATSR algorithm was performed using si-
mulated (A)ATSR satellite data [North et al., 1999]. This allowed refinement of the per-
formance of the algorithm and testing against other candidate algorithms for controlled

Fig. 6.4. Forward and inverse modeling experiments from simulated TOA reflectance measurements.
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experimental scenarios. Recently simulated data have been used to examine the perfor-
mance of the future Sentinel-3/SLSTR instrument which has a different off-nadir geome-
try to the AATSR and an additional SWIR channel.

4.2 Comparison against AERONET

AERONET (the Aerosol Robotic Network) is a federated system of Cimel sunphotometers
that measure solar and sky radiances from the ground and is dedicated to the long-term
monitoring of atmospheric properties worldwide [Holben et al., 1998]. The measurement
of the solar irradiance at the ground offers the most direct way of determining aerosol
optical depth, so this extensive dataset serves as the principal means of validating the sa-
tellite-based retrieval of aerosol properties. The accuracy of AERONET derived AOD is
reported to be within 0.02 [Smirnov et al., 2000]. Validation against AERONETestablishes
limits of applicability and quantitative error in all the main aerosol properties to be derived.
The satellite-derived AOD at 550 nm have been compared with ground-based sunphot-
ometer measurements taken within 1 hour of the AATSR image acquisition. AERONET
retrieves AOD at multiple wavelengths between 340 and 1,020 m, but does not retrieve
AOD at 550 nm; therefore to allow direct comparison with the satellite-derived aerosol
estimates, the ground-based sun-photometer measurements were interpolated to
550 nm using

sðkÞ ¼ sðkiÞ k
ki

� ��a

; ð20Þ

where s is the AOD and a is the Ångström exponent, which is inversely related to the size
of aerosol particles and describes the variability of AOD with wavelength. The Ångström
exponent is calculated from s at two wavelengths

a ¼ log10ðsðkiÞÞ � log10ðsðkjÞÞ
log10ðkiÞ � log10ðkjÞ

; ð21Þ

where sðkiÞ and sðkjÞ are the AODs at wavelengths ki and kj, respectively. For interpolating
to 550 nm we substitute ki and kj with 440 nm and 670 nm, respectively. Our algorithm can
indirectly retrieve a through selection of the best-fit aerosol model, but the reliability of
these retrievals have yet to be evaluated.

For comparison with AERONET, AATSR radiances are averaged over a 15 by 15 km
area around the location of the corresponding site in order to reduce noise and minimize
the effect of co-registration errors between the nadir and forward looks of the AATSR
instrument. In addition, identifying and removing cloudy pixels is also a prerequisite
for aerosol retrievals. The standard approach to identifying cloud is to apply a set of thresh-
old and statistical tests that were developed by Stowe et al. [1997] and Zavody et al. [2000]
to optical and thermal infrared channels. However, these tests are not always effective at
removing all cloud over land, partly because they were developed for ocean [Plummer,
2008]. Thus additional cloud tests have been incorporated to ensure that as much cloud
as possible is screened out. One such test is the gross cloud threshold that uses the bright-
ness temperatures in the 12 lm channel. The brightness temperature below which we as-
sume cloud varies between 210 and 270 K depending on climatology [Birks, 2007]. An-
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other test based on NDVI is also implemented. Negative NDVI values are considered to be
cloud although we cannot distinguish between cloud and snow. Further details on these can
be found in Plummer [2008], Birks [2007], Zavody et al. [2000] and Stowe et al. [1997].

The averaged TOA reflectances within the window are calculated from only the cloud-
free pixels and are only considered to be cloud-free if more than 40 % of the pixels are not
identified as cloud. This represents a cloud-free conductive scheme that results in some
clear pixels being incorrectly labeled as cloudy, although there still may sub-pixel cloud
contamination in some pixels that pass through the cloud-masking stage.

For validation we acquired more than 200 cloud-free coincident estimates of AOD be-
tween the AATSR and AERONET for 19 sites from around the world representing a range
of land covers (e.g. deserts, savanna, northern boreal regions, urban areas), aerosol types,
and latitudes to examine the effect solar and viewing geometry may have. The overall
Pearson’s correlation coefficient, for all 19 sites combined is 0.70, although the absolute
error of the residuals increases with increasing AOD (see Fig. 6.5). The RMSE (root mean
square error) of all the data is 0.16. There is little evidence of systematic error in the es-
timates of AOD as the mean AOD over all AERONET measurements is 0.27 compared
with a mean of the AATSR-derived AOD estimates of 0.26. A site-by-site breakdown sum-
mary of statistics is presented in Grey et al. [2006a].

Fig. 6.5. Plot of AERONET versus AATSR derived estimates of AOD at 550 nm for 19 sites worldwide
(Alta Floresta (� 9.9� N, 56.0� E), Banizoumbou (13.5� N, 2.7� E), Beijing (40.0� N, 116.4� E), Cart Site
(36.6� N, � 97.4� E), Chulalongkorn (13.7� N, 100.5� E), Ilorin (8.3� N, 4.3� E), Jabiru (� 12.7� N,
132.9� E), Kanpur (26.5� N, 80.4� E), Konza (39.1� N, � 96.6� E), Lake Argyle (� 16.1� N,
128.7� E), Lille (50.6� N, 3.1� E), Mexico City (19.3� N, � 99.2� E), Mongu (� 15.3� N, 23.2� E), Oos-
tende (51.2� N, 2.9� E), Ouagadougou (12.2� N, � 1.4� E), Phimai (15.2� N, 102.6� E), Solar Village
(24.9� N, 46.4� E), Tinga Tingana (� 29.0� N, 140.0� E), Tomsk (56.5� N, 85.0� E)). The dashed line
corresponds to the 1:1 line. Reproduced from Grey et al. [2006a] with permission from IEEE.
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Differences between the sunphotometer- and AATSR-derived estimates of AOD may be
due to a number of factors including the small time differences between acquisition of
sunphotometer measurements and the satellite overpass, undetected sub-pixel cloud con-
tamination, and heterogeneity of the land surface within the 15 by 15 km area of AATSR
observations. In addition, scaling between the point measurement of the AERONET and
areal measurement of the satellite reflectances integrated over a larger area may also cause
differences. The selection of an aerosol model that does not properly characterize the at-
mospheric scattering may also lead to uncertainties in our retrieved estimates of AOD. For
instance, these inversions do not take account of non-spherical dust particles, and im-
proved estimates of AODs can be achieved if non-spherical rather than spherical dust par-
ticles are assumed. Future work will look to the improvement of the aerosol models.

4.3 Time series of AOD

The AATSR and ATSR-2 dataset when used together potentially represents a unique 13-
year archive of AOD retrievals over land. An example of a much shorter time-series of
AATSR derived AOD at 550 nm, from a site in the Amazon at Abracos Hill (� 62.36� E,
10.76� N) corresponding to AERONET retrievals is given in Fig. 6.6. In general there is
good agreement between the AATSR and AERONET estimated AOD at 550 nm, but oc-
casionally there are spikes in the AATSR observations where AOD is overestimated. This
is most likely due to the failure of the cloud removal algorithm to identify all cloudy pixels.
Thus, during the inversion unscreened cloud is considered as a high concentration of ae-
rosol hence the peaks in the AATSR time-series, when there is no corresponding peak in
the AERONET estimates of AOD. In addition, for September 2005 the AATSR estimates
of AOD are underestimated compared with the AERONET retrievals. During the months
September to November there is large amount of vegetation burning as land is cleared for
agricultural uses. Consequently smoke aerosol concentrations are high (typically with
AOD greater that 1 at 550 nm) during this period and is clearly identified in both the
AATSR and AERONET retrievals. Thus AATSR is useful not only in providing a
time-series of observations, but also in providing these globally. Clearly though there
is a need to better discriminate clouds over tropical regions.

Fig. 6.6. Time-series of AATSR and AERONETAOD at 550 nm from January 2004 to December 2005 at
Abracos Hill in the Amazon.
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4.4 Satellite inter-comparisons

Aerosol products derived from different satellite sensors should be consistent despite their
different characteristics in terms of temporal, spatial, polarization, angular and spectral
information content. A range of algorithms have been developed because the instruments
have different characteristics, and this needs to be taken into account. For some instru-
ments (e.g., AATSR) several algorithms have been developed. Although these retrieval
algorithms are different they should produce consistent values for the same aerosol proper-
ties for a given scene. However, inter-comparisons between different aerosol products de-
rived from different passive optical satellite instruments acquired at the same time over the
same location have shown not to agree as well as they should. This point has been realized
in a recent study by Kokhanovsky et al. [2007] for a scene over Germany that showed that
even estimates of the same aerosol optical properties derived from the same sensor and
input images were not consistent between the range of algorithms that have been devel-
oped. Thus, there is some concern within the satellite aerosol community that this issue
needs to be resolved if satellite estimates of aerosol properties are to have any credibility.
Scatterplots of satellite estimates of AOD versus AERONET abound in the literature and
there is often high correlation (e.g., Grey et al. [2006a], Abdou et al. [2005] and Chu et al.
[2002]). Yet when inter-comparisons are made between different aerosol products over
large spatial extents agreement tends to be much poorer [Mishchenko et al., 2007a].
This is possibly because the aerosol retrieval algorithms are developed and tested over
a relatively small number of AERONET sites and may not be generically applicable to
other land covers and aerosol types. Currently, there is poor understanding of why there
are such large differences between the different aerosol products and there is a need to
reappraise some of the products and to establish exactly why the different estimates of
aerosol are not consistent. This will allow us to arrive at product convergence.

The inherent difficulty in retrieving aerosol properties is that there are more free para-
meters than there are measurements, thus a range of assumptions need to be made in order
to regularize the problem. How these assumptions are derived is often value-based. There-
fore, differences shown are due only to different processing schemes and it is important to
understand the reasons behind these discrepancies [Kokhanovsky et al., 2007]. There are a
number of steps within the processing scheme where differences can arise. Firstly, the
different algorithms have independent cloud masking and resampling strategies. Thus,
different radiances are ingested at the fundamental algorithm level depending on masking
and pixel aggregation. Secondly, the variation between the algorithms themselves and the
assumptions upon which they are based will result is different estimates of the surface
reflectance. Thirdly, the selection of aerosol models used to regularize the inverse problem
is value-based and contains different parameterizations of aerosol optical properties such
as single scattering albedo. Fourthly, a range of atmospheric radiative transfer models have
been developed (e.g., 6S and MODTRAN (MODerate resolution atmospheric TRANsmis-
sion)) and different aerosol retrieval schemes use different radiative transfer models some
using vector codes others scalar. Finally, the sampling of the look-up tables of atmospheric
parameters will influence the aerosol retrievals. Moreover, inter-sensor comparisons have
the additional difficulty that there can be small time differences between image acquisition
owing to different overpass times. However this cannot explain the poor agreement be-
tween the MERIS- and AATSR-derived aerosol estimates of AOD because both instru-
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ments are onboard the same platform and therefore imaging the surface simultaneously
[Kokhanovsky et al., 2007].

Thus, it is no surprise that the different aerosol products vary as much as they do given
that so many assumptions are required at different stages in the processing scheme. An in-
depth understanding of each of the steps in the processing schemes will lead to better
performance and also convergence of the various algorithms. Good agreement between
aerosol retrievals from different satellite datasets and algorithms will enhance confidence
in remotely sensed estimates of aerosol properties within climate studies.

4.5 Operational implementation

In order to test the aerosol retrieval look-up table scheme at global-scales, approximately
400 AATSR ATS-TOA-1P striplines for September 2004 were processed for AOD and bi-
directional surface reflectance. The results are a spatially and temporally composited mo-
saic with a pixel size of 5 arcminutes (0.1�) as shown in Figs 6.7 and 6.8. In order to gen-
erate a global-scale product of AOD from the input AATSR ATS-TOA-1P products the
following pre-processing steps are performed.

Firstly, we perform cloud screening using the scheme of Plummer [2008] and Zavody et
al. [2000]. The AOD retrieval algorithm is applied to integrated pixels within a 9 by 9 km
window in this case. This provides us with a resolution of approximately 0.1 degrees at the
equator and is approximately the same as the MODIS (10 km) and MISR (17 km) AOD
products. When compositing the images we need to strike a balance between providing as
much coverage as possible, but not integrating over too long a time period because aerosols
are temporally and spatially dynamic. Given the swath width of (A)ATSR this works out at
about a month, but even over this time period there are regions where no cloud-free data are
available, for instance over tropical regions, and so neither AOD nor surface reflectance
can be retrieved.

Fig. 6.7. A global composite of AATSR-derived AOD at 550 nm for September 2004 over land.
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Fig. 6.7 shows that during September 2004 high levels of AOD were present over the
Sahel in West Africa. This is because continental-wide dust plumes are common at this
time of year owing to the strong harmattan winds. The largest sources of dust are the Bod-
élé depression in northern Chad and in northern Mauritania and Mali [Koren et al., 2006].
In general the dust is blown from the east towards the Atlantic Ocean. The high reflectivity
of the Sahara in the optical region and the lack of contrast between the surface and over-
lying aerosol makes this one of the most challenging environments over which to retrieve
aerosol properties. Approximately 109 kg of dust is emitted from the Sahara each year
[IPCC, 2007], thus understanding and monitoring aerosols in this region is particularly
important. Another large dust source is in southern Saudi Arabia. Throughout this discus-
sion, we do recognize the limitation of using a spherical model assumption for dust par-
ticles, but comparisons of our retrieval using this approach do compare well against
AERONET retrievals even if there is a small overestimate [Grey et al., 2006b], and
our aerosol model is not ideal. Another potential source of error is that the retrieved
AOD is influenced by the background surface reflectance. This is particularly apparent
over the Sahara desert, where the shapes of surface geomorphological features can be
traced in spatial patterns of the AOD estimates.

Other regions that show high concentrations of AOD are the Amazon and South Wes-
tern China. In the Amazonian Basin during September there is considerable vegetation-
burning for agricultural land clearance. Over many parts of China there is a thick layer of
haze resulting from anthropogenic emissions [Li et al., 2007], and this can in part explain
the high level of AOD retrieved from AATSR over this region.

The corresponding global surface reflectance false color composite for AATSR is
shown in Fig 6.8. These are the retrieved reflectances based on the estimated AOD. It
is possible to reconstruct the original TOA radiances from the surface reflectances and
AOD. One of the key problems is cloud, where over some parts of the globe no surface
data are available for the whole month, and in some locations there is cloud contamination.

Fig. 6.8. A global surface reflectance composite of AATSR channels 550 nm (forward view), 870 nm
(nadir view), and 1,630 nm (nadir view) displayed in green, red and blue, respectively.
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5. Avenues for future research

There are a range of standard improvements that can be made to the retrieval scheme in-
cluding the retrieval of other aerosol properties and AOD at different wavelengths, the use
of more aerosol models that better characterize the atmospheric profile, including the ex-
plicit representation of non-spherical particles, and the use of look-up tables with more
parameters (e.g., water vapor, ozone and surface pressure). Here, we identify two avenues
of future work, the generation of a long-term record of AOD from (A)ATSR, and the con-
vergence of different AOD products from different satellite instruments and algorithms.

5.1 A global product of AOD from AATSR and ATSR-2

Our operational multi-look AOD retrieval approach is currently being implemented within
ESA’s GPOD (Grid Processing on Demand) high-performance computing facility for glo-
bal retrievals of AOD and bi-directional reflectance from ATSR-2 and AATSR. The ae-
rosol retrieval code is applied to the (A)ATSR ATS-TOA-1P striplines. To improve effi-
ciency and because of the misregistration between corresponding pixels in the forward and
nadir views of AATSR, AOD is retrieved on a coarser grid of 10 by 10 pixels. Surface
reflectance is retrieved for every 1 km pixel corresponding to the top-of-atmosphere ob-
servations.

We do not make assumptions concerning the aerosol climatology, thus we calculate
AOD separately five times using different aerosol models with their parameters summar-
ized in Table 6.2. Therefore, five sets of AOD, bi-directional reflectances and model best-
fit errors are produced. The optimal AOD and aerosol model are selected on the basis of
the minimization of the error of best-fit; however, all five sets of aerosol estimates and
errors are retained for future experiments.

The software has been written in the C programming language and is tested on a stan-
dard desktop with a 2.8 GHz processor and 1 GB RAM under Fedora Linux, and is com-
putationally efficient both in terms of processing requirements and memory usage. In tests
performed on this system, it generally takes less than 5 minutes to retrieve aerosol optical
depth and surface reflectance from a single orbital AATSR ATS-TOA-1P stripline for one
aerosol model. For each stripline we apply five aerosol models to each stripline, thus the
total processing time for each stripline is less than 30 minutes even after dealing with the
input/output and format conversion issues. To derive AOD and surface reflectance globally
over several years, we intend to process all of the ATS-TOA-1P products in the archive.
Although the software is computationally efficient, the large volume of AATSR data (ap-
proximately 20,000 striplines at 14 Tb) in the archive makes this a substantial processing
requirement.

The principal output products from the processor will be the surface bi-directional re-
flectance at all the (A)ATSR optical channels and both looks, aerosol optical depth at
550 nm at 10 by 10 km, and the error of the best fit of the model inversion. Also monthly
and daily global composites of AOD at 0.10 degrees greed will be produced. The result
will be a 12-year time-series of global estimates of surface and atmospheric aerosol prop-
erties. We do not explicitly retrieve the Ångström exponent which is an extremely useful
variable from which particle size can be inferred. Large particles tend to have more spec-
trally flat AOD variation with wavelength, whereas smaller particles have greater varia-
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bility. However, the Ångström exponent can be retrieved indirectly from the selection of
the best-fit aerosol model. In addition to providing operational retrievals of aerosol and
surface properties users will be able eventually to process the (A)ATSR data for their par-
ticular regions and time periods of interest through a web interface at eogrid.esrin.esa.int.

5.2 Convergence of aerosol products

The aerosol remote sensing community needs to make a concerted collaborative effort to
arrive at convergence of the best estimates of aerosol properties (Kokhanovsky and de
Leeuw, 2009). In order to use these products operationally for assimilation into climate
models for instance, there needs to be much better consistency between the different ae-
rosol products and understanding of uncertainty. Thus, an inter-comparison experiment is
required. Greater consistency between different aerosol products will give us greater con-
fidence in our satellite retrieved aerosol properties. Up to now groups have developed
independently their own systems for the operational retrievals of AOD from space. There
exist at least three independent AATSR retrievals and three MERIS algorithms. Both in-
struments are placed on the same satellite platform and observe the same area at the same
time with MERIS having larger swath with and spatial resolution (0.3 km as compared to
1 km for AATSR). Agreement between the retrieved AODs is not as good as might be
expected. We need to understand why these differences arise at each stage in the various
processors.

6. Summary

Owing to the complexity of the atmospheric and surface coupled radiative transfer prob-
lem we are required to make a number of assumptions in our parameterizations and model
development. To begin with the invariance of the BRDF with wavelength under direct
illumination conditions is a critical assumption in the surface model development.
This effect has been widely documented and quantified and shown to be reliable over
a number of land surface types (e.g., North et al. [1999], Veefkind et al. [1998] and Flower-
dew and Haigh [1996]). The atmospheric radiative transfer problem is extremely complex
and we do make some simplifying assumptions. The key assumptions we make that prob-
ably have greatest influence on the accuracy of our aerosol retrievals are the not account for
the polarization of light, limited climatologies of aerosol types, no multiple scattering of
radiation between aerosol and gases, assumed spherical dust particles, no water absorption
at AATSR wavelengths, and constant surface pressure.

Of course, we can always improve our algorithms by increasing their complexity but we
also have to consider the additional computational burden required. But it is only through
development of the first-generation aerosol retrieval algorithms that we learn of the sen-
sitivity and limitations of our assumptions and improvements that we can make to sub-
sequent versions of our algorithms.

The dual-view capability of the (A)ATSR instruments have the potential to make a ma-
jor contribution to atmospheric aerosol science, particularly over land, where retrieval of
aerosol properties is notoriously difficult. Combined with this is the development of an
algorithm that exploits this multi-view-angle capability allowing robust estimates of AOD

6. Summary 187



without recourse to prescribed information on the land surface. The algorithm solves the
inverse problem of separating out the atmospheric and surface scattering contributions to
the observed signal at the satellite level. The scheme makes use of numerical minimization
routines to converge on optimal estimates of atmospheric properties and surface reflec-
tances. To allow for rapid inversion, the retrieval code uses pre-calculated look-up tables of
atmospheric coefficients derived from forward runs of the 6S atmospheric radiative trans-
fer model. The good agreement between the AATSR- and AERONET-derived estimates of
AOD in addition to the ability of this approach to derived estimates even over bright desert
surfaces is a promising development. There exists now a 13-year archive of observations
from these missions, allowing us to potentially explore this climate dataset for long-term
trends. Moreover, the proposed Sentinel-3/SLSTR mission will ensure the continuity of
this powerful climate dataset. Despite this, there are still some issues that need to be re-
solved particularly with the poor agreement between the different AATSR algorithms’
estimates of aerosol properties. The lack of consistency between the various aerosol pro-
ducts is of major concern. In addition, the approach presented here is limited to the re-
trieval of AOD at 550 nm. Further developments with respect to the look-up tables of at-
mospheric properties are required. Also we do not explicitly retrieve the Ångström expo-
nent. However, the Ångström exponent can be retrieved indirectly from the selection of the
best-fit aerosol model, but in future algorithm developments we will retrieve this directly.
Considerations of aerosol particle shape will lead to improved estimates of aerosol proper-
ties over dust sources, for instance. Finally, the synergistic use of both MERIS multispec-
tral and AATSR multi-view-angle datasets will lead to major improvements in retrieved
aerosol properties from space. The premise of synergy is that the additional information
from multiple instruments will allow us to better constrain the radiative transfer inverse
problem. This may result in more aerosol parameters being retrieved with less uncertainty
compared with existing single-instrument algorithms.
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7 Oxford-RAL Aerosol and Cloud (ORAC):
aerosol retrievals from satellite radiometers

Gareth E. Thomas, Elisa Carboni, Andrew M. Sayer, Caroline A. Poulsen,
Richard Siddans, Roy G. Grainger

1. Introduction

This chapter describes an optimal estimation retrieval scheme for the derivation of the
properties of atmospheric aerosol from top-of-atmosphere (TOA) radiances measured
by satellite-borne visible-IR radiometers. The algorithm makes up part of the Oxford-
RAL Aerosol and Cloud (ORAC) retrieval scheme (the other part of the algorithm per-
forms cloud retrievals and is described in detail elsewhere [by Watts et al.] [37]).

The following sections will describe three separate versions of the ORAC algorithm.
The first is the original ORAC aerosol retrieval algorithm, which has already been applied
in producing global aerosol datasets from ATSR-2, AATSR and SEVIRI measurements
(brief descriptions of these instruments are given in Section 2), through the GRAPE and
GlobAEROSOL projects. This algorithm makes use of visible and near-infrared channels
and assumes the Earth’s surface acts as a Lambertian reflector.

The second version improves on the original Lambertian ORAC, by implementing a
new forward model which uses a bi-directional reflectance distribution function
(BRDF) to describe the surface reflectance. This forward model is more accurate and
also allows the use of multiple views of the same scene (as are produced by the
(A)ATSR instruments) to be incorporated into the retrieval.

Thirdly, a version of ORAC is described which makes use of thermal infrared channels,
which greatly improve the detection of lofted dust above desert surfaces.

Finally, example results produced with all three versions of the ORAC algorithm will be
presented and compared, both with each other, ground-based measurements and other sa-
tellite aerosol products.

2. Instrument descriptions

2.1 The ATSR-2 and AATSR instruments

The second and third generation Along-Track Scanning Radiometers (ATSR-2 and Ad-
vanced ATSR) were launched on the ESA polar orbit satellites ERS-2 and ENVISAT in
1995 and 2002, respectively. As the instruments are essentially the same in their operation,
with the only major difference being the bandwidth available for data transfer, they can be
described together.

The primary design goal of the ATSR instruments is the measurement of sea-surface
temperature, with a secondary objective of ATSR-2 and AATSR being the determination



of land surface and vegetation properties. ORAC makes use of the atmospheric component
of the ATSR signal, which is considered contamination in its primary and secondary roles.

Both ATSR-2 and AATSR have seven spectral channels centered at 0.55, 0.67, 0.87, 1.6,
3.7, 10.7 and 12 lm. The instruments use a dual-view system, with a continuously rotating
scan mirror directing radiation from two apertures and two onboard blackbody calibration
targets onto the radiometer. One viewing aperture produces a scan centered on the nadir
direction, while the other views the surface approximately 900 km ahead of the satellite (at
a viewing angle of 55� from the nadir). This continuous scanning pattern produces a nadir
resolution of approximately 1 � 1 km with a swath width of 512 pixels. The dual-view
system is one of the great strengths of the ATSR instruments, as it allows the atmospheric
and surface contributions to the TOA radiance to be more effectively decoupled than is
possible with a single view. This offers much improved accuracy in both derived surface
and atmospheric parameters. In addition, the instruments are designed to be self-calibrat-
ing, with two integrated, thermally controlled blackbody targets for calibration of the ther-
mal channels, as well as an opal visible calibration target (illuminated by sunlight) for the
visible/near-IR channels.

Due to bandwidth limitations on the ERS-2 satellite, ATSR-2 is usually run in a ‘narrow
swath’ mode over the oceans, which produces a swath of only 256 pixels in some of the
visible channels (with the 0.55 lm channel being the most commonly effected, followed by
0.67 lm). In addition, although ATSR-2 is still operational, the ERS-2 satellite developed
a pointing problem in October 2001, which means that post-2001 data from the instrument
has to have a geo-location correction applied before it can be used. Additionally, in June
2003, the data tape recorder on ERS-2 failed, with the result that ATSR-2 data from this
date is only available while the satellite is within range of a data downlink ground station.
ATSR-2 ceased operating in February 2008, when the scan mirror mechanism failed.

ERS-2 and ENVISAT are in similar polar orbits with periods of approximately 100
minutes. Both ATSR-2 and AATSR nominally provide global coverage every 6 days.

2.2 The SEVIRI instrument

The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) is a line-scanning radio-
meter and has been the primary instrument onboard the European geostationary1 meteor-
ological satellites since Meteosat-8 began operation. The satellite was launched in 2003
and the first data were available in early 2004. In April 2007 Meteosat-9 took over as the
primary operational satellite.

SEVIRI provides data in four visible and near-infrared channels and eight infrared
channels with a resolution of 3 km at the sub-satellite point. The channels used in the
analysis presented here are the 0.67, 0.87 and 1.6 lm in the visible and near-infrared,
with the 10.8 and 12.0 lm being used from the thermal infrared. A key feature of SEVIRI
is its ability to continuously image the Earth every 15 minutes. This allows the tracking of
fast-moving aerosol events, such as dust storms, which offers a great advantage over polar
orbiting instruments. Also, although SEVIRI lacks the dual-view capability of the ATSR
instruments, in conditions of relatively stable aerosol loading, the change in solar elevation

1 The Meteosat sub-satellite point is at 0� longitude, just to the east of the African coastline.

194 7 Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers



throughout the day can be utilized to provide repeated views under different angles of
illumination. The difference in the surface BRDF and aerosol scattering phase function
can then be used to decouple the aerosol and surface signals in a way analogous to the
dual-view system. The main disadvantage of this instrument is the susceptibility of the
larger field-of-view to contamination by cloud.

3. The ORAC forward model

The core of the ORAC retrieval algorithm is the forward model, which uses radiative trans-
fer code to predict the radiance observed at the satellite as a function of aerosol properties,
using assumptions about the atmospheric state and the reflectance of the Earth’s surface.
For the sake of numerical efficiency, ORAC makes use of two forward models: firstly a full
radiative transfer model (referred to here simply as the forward model, FM), which at-
tempts to accurately account for all relevant physical processes effecting the measurement,
is run ‘off-line’ to produce look-up tables of total atmospheric reflectance and transmission
for the plausible range of viewing geometries and aerosol states. These look-up tables are
then used to produce TOA radiances during a retrieval run using a simple arithmetic ex-
pression, known as the fast forward model (Fast-FM). This section details the aerosol FM
used with ORAC, which is the same for both the Lambertian and BRDF surface reflectance
versions of the retrieval scheme, as well as describing the extensions needed to incorporate
thermal infrared channels into the retrieval scheme.

The FM can itself be thought of as consisting of three separate elements:
1. A model of aerosol scattering and absorption.
2. A model of atmospheric gas absorption.
3. Radiative transfer code to produce TOA radiance based on the output of the first two

models, Rayleigh scattering and viewing geometry.

3.1 Aerosol scattering and absorption

In a given location, atmospheric aerosols are characterized by their morphology, concen-
tration, size distribution, chemical composition (which determines their complex refrac-
tive index), and their vertical profile. With knowledge of these properties, the required
radiative characteristics may be approximated by assuming the particles are spherical
and applying Mie theory [20].

The aerosol optical depth, s, is the primary quantity obtained from ORAC. It is defined
as:

sðkÞ ¼
ð1

0
beðz; kÞdz ¼

ð1
0
ðbsðz; kÞ þ b�aðz; kÞÞdz ð1Þ

The total extinction coefficient, be, is defined as the sum of the extinction due to absorp-
tion, ba, and scattering, bs. The vertical profile of ba and bs along with the scattering phase
function,PðhÞ, which determines the angular distribution of the scattered radiation, and the
degree of polarization as a function of scattering angle, fully describe the aerosol radiative
characteristics. Other convenient ways of defining aerosol optical properties are the single
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scattering albedo, xo, which is the ratio of bs to be, and the asymmetry parameter, g,
which is the integral of PðhÞ over all possible scattering angles (0 � h � 180�), weighted
by cos h (i.e. it is the first moment of the phase function). For a given aerosol model
(shape, size, and refractive index), be is proportional to the aerosol concentration while
PðhÞ is not.

Mie theory shows that the extinction coefficient is given by:

bðz; kÞ ¼
ð1

0
Qeðz;m; xÞpr2 nðz; rÞdr; ð2Þ

where Qe is the Mie extinction efficiency factor, and is dependent on the Mie size para-
meter x ¼ 2pr=k, and the refractive index of the particles (m ¼ mr þ imi), nðrÞ is the num-
ber size distribution.

The lognormal distribution is the most suitable representation for characterizing the size
distribution of the atmospheric aerosols [4]. The distribution, in terms of number density as
a function of radius nðrÞ, is described by its median radius ðrmÞ, standard deviation ðrÞ of
ln r, and total number density ðN0Þ:

nðrÞ ¼ N0ffiffiffiffiffiffi
2p

p 1

rr
exp �ðln r � ln rmÞ2

2r2

" #
ð3Þ

The primary source of aerosol properties used in the retrieval is the OPAC (Optical Proper-
ties of Aerosols and Clouds) database [11]. The database provides optical (most impor-
tantly, the complex refractive index as a function of wavelength) and physical properties
(such as the size distribution and vertical distribution) for a set of aerosol components from
which representative aerosol types can be built.

The quantity used to define the size of the aerosol particles in ORAC is the effective
radius, defined as the the ratio of the third and second moments of the size distribution:

re ¼
Ð1

0 r3nðrÞ drÐ1
0 r2nðrÞ dr

ð4Þ

In order to produce radiance look-up tables from this database the scattering properties of
each aerosol type are calculated. Scattering properties are calculated for the central wa-
velength of each channel across a range of effective radii from 0.02 to 20 lm. Two as-
sumptions are made during this step:
* That the radiative properties of the aerosol are constant across the width of each in-

strument channel. As the features of aerosol extinction spectra are very broad in com-
parison with gas features this is a reasonable approximation.

* Assumptions must be made in determining both the form of the aerosol size distribution
and how its shape varies with changing aerosol effective radius. To model aerosol dis-
tributions with different effective radii to those prescribed by the OPAC database, the
relative concentration of the different-sized aerosol components which make up each
aerosol class are changed. For example, if the effective radius needs to be decreased, the
relative concentration of the smallest component of the aerosol (the accumulation
mode) will be increased, while the larger components will be decreased.
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If the required effective radius is equal to that given by the smallest or largest compo-
nent of a given aerosol type, then the type effectively becomes a single component aerosol.
If the size is outside of this range, then the mode radius of the smallest/largest components
is shifted (while keeping the width of the component’s distribution constant). Clearly, in
such situations, the accuracy of the model can be called into question, so we are relying on
the prescribed effective radius being relatively close to that found in the real world. It
should also be pointed out that in the case of very small aerosol particles, the composition
of the particles become less important in determining their scattering effects, since they
will act more like Rayleigh scatterers.
These scattering properties are then used to generate a vertical profile of aerosol extinction
and phase function, based on vertical profiles of number density, N:

NðzÞ ¼ Nð0Þexpð�z=ZÞ; ð5Þ

where z is the height and Z is a scale height, defined by the aerosol type. For each layer at
which the aerosol distribution is defined, the extinction coefficient, single scattering al-
bedo and the coefficients of a Legendre expansion of the scattering phase function are
calculated for each instrument channel and over 20 logarithmically spaced effective radii
between 0.01 and 10 lm.

3.2 Modelling atmospheric gas absorption

Once aerosol scattering properties have been calculated, gas absorption over the instru-
ment band passes is calculated in terms of an optical depth, and convolved with the in-
strument filter transmission functions, using MODTRAN [1]. MODTRAN provides tro-
pical, mid-latitude summer and winter, subarctic summer and winter, and US Standard
Atmosphere climatological atmospheres for the following gases: H2O, CO2, O3, N2O,
CO, CH4, plus single profiles for: HNO3, NO, NO2, SO2, O2, N2, NH3 and the heavy mo-
lecules (CFCs). ORAC look-up tables are generated using the mid-latitude summer atmo-
sphere only. This simplification can be made as gas absorption is weak compared to ae-
rosol extinction in the visible and the (A)ATSR channels are free from strong absorption
features of gases which show large spatial and temporal variability (most notably, H2O).
Although the 1.6 lm channel of SEVIRI is slightly affected by H2O, the effect on aerosol
retrievals has been found to be negligible.

3.3 Modeling atmospheric transmission and reflectance

The final step in the FM is the prediction of atmospheric transmission and bi-directional
reflectance, based on the aerosol phase functions and gas optical depth calculated in the
previous two steps. The ORAC FM uses the DIscrete Ordinates Radiative Transfer (DIS-
ORT) software package [34] to perform this step.

The DISORT algorithm solves the equation for the transfer of monochromatic light at
wavelength k as described by the equation

l
dLkðsk; l;fÞ

ds
¼ Lkðsk; l;fÞ � LSkðsk; l;fÞ; ð6Þ
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where Lkðsk; l;fÞ is the intensity along direction l;f (where l is the cosine of the zenith
angle and f is the azimuth angle) at optical depth sk measured perpendicular to the surface
of the medium. LSkðsk; l;fÞ is the source function.

It should be noted that DISORT still makes some important approximations, which can
limit its accuracy in certain circumstances. The most important of these are:
* It assumes a plane parallel atmosphere, which makes it inapplicable at viewing or zenith

angles above approximately 80�, where the curvature of the Earth has a significant in-
fluence on radiative transfer.

* It is a one-dimensional model, so cannot reproduce the effects of horizontal gradients in
the scattering medium. This is important where strong gradients exist, such as near
cloud edges.

* It does not model polarization effects and hence cannot be used to model measurements
made by instruments which are sensitive to polarization and does not take the polar-
ization introduced into the diffuse component of radiance by Rayleigh scattering.2

DISORT is provided with the aerosol-scattering properties defined by the Mie scatter-
ing calculations and the gas absorptions defined by MODTRAN and a series of 20 loga-
rithmically spaced aerosol optical depths (defined at a wavelength of 0.55 lm) between
0.008 and 5.6. Although DISORT has the ability to include a surface of arbitrary reflec-
tance ‘below’ the modeled atmosphere, no surface reflectance is included at this step.
Rather, the transmission and reflectance of the atmosphere alone is computed for both
direct beam and diffuse radiation sources separately. These calculations produce five
look-up tables for each aerosol type/channel combination:
* Bidirectional reflectance of the atmosphere, from the top of the atmosphere,

RBDðh0; hv;fÞ.
* Diffuse reflectance of the atmosphere to diffuse radiance, from the bottom of the atmo-

sphere, RFD.
* Diffuse transmission of an incident beam, T#

BDðh0Þ.
* Direct transmission of the beam, T#

DBðh0Þ, or T "
DBðhvÞ.

* Total transmission in the viewing direction, T "ðhvÞ.
Here, a # denotes transmission from the top to the bottom of the atmosphere, while "
indicates the reverse. h0, hv andf indicate a dependence on the solar zenith, viewing zenith
and relative azimuth angles, respectively. Each of these files contains tabulated transmis-
sion or reflectance (depending on the file) values for each of the twenty effective radii, nine
0.55 lm optical depths and sun/satellite geometry (specified by 20 equally spaced zenith
angles and 11 equally spaced azimuth angles).

Effects of molecular absorption and Rayleigh scattering are included by adjustment of
the layer’s optical depth and the particle’s single scattering albedo and phase function with
the following:

s ¼ sa þ sR þ sg; ð7Þ

x ¼ sR þ xasa

sg þ sR þ sa
; ð8Þ

2 It should be noted that DISORT has now be superseded by the vectorized VDISORT code [31], which
does include polarization effects. However, this code has yet to be implemented in the ORAC scheme.
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PðhÞ ¼ saxaPaðhÞ þ sRPRðhÞ
saxa þ sR

; ð9Þ

where sa, sR and sg are the contributions to the total optical depth s due to aerosol scatter-
ing, Rayleigh scattering and gaseous absorption within each layer respectively. The aerosol
single scattering albedo is denoted xa.

For each layer bounded by lower and upper pressure levels pl and pu, respectively and
ground-level pressure p0, sR is calculated from

sR ¼ sRT½pl � pu�
p0

; ð10Þ

where sRT, the wavelength-dependent Rayleigh scattering optical depth for a column of
atmosphere extending from the ground surface to the top of the atmosphere, is obtained
from [15]:

sRTðkÞ ¼ p0

ps
� 1

117:03k4 � 1:316k2 ; ð11Þ

where ps is the standard pressure (ps ¼ 1013:25 hPa), p0 is the ground pressure in hPa and
k is in lm.

4. Surface reflectance

Of crucial importance in the retrieval of aerosol properties from ‘near-nadir’ visible/near-
infrared satellite measurements (i.e. measurements in which the Earth’s surface contri-
butes to the measured radiances) is an accurate description of the surface reflectance.
Both the Lambertian and BRDF surface reflectance versions of ORAC retrieve the surface
reflectance in addition to the aerosol optical depth and effective radius, however, it is still
necessary to have accurate a priori knowledge of it.

The methodology used to produce an a priori surface reflectance differs between mea-
surements made over sea or land. Over the sea a surface reflectance model based on the
method presented by Koepke [17] is used. This model includes upwelling radiance from
volume scattering within the water itself [22], specular reflections from the wind-rough-
ened surface (as modeled by the Cox and Munk method [4, 5]) and reflection from white
caps [21, 23]. The model uses ECMWF reanalysis wind fields to determine wave statistics
and white cap coverage and can also make use of chlorophyll concentrations and gelbstoff
loading from MERIS products. A detailed description of the model is given by Sayer [30].

Over land the MODIS3 land surface bidirectional reflectance product [14] is used to
define the a priori surface reflectance. The product consists of a set of three parameters
for the MODIS AMBRALS (Algorithm for Modelling Bidirectional Reflectance Aniso-
tropies of the Land Surface) surface reflectance model [36], which itself consists of three
simple reflectance kernels for different surface types:

3 MODerate resolution Imaging Spectrometer.
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* Isotropic kernel. Lambertian reflectance, for which the kernel is 
 1.
* Ross-thick kernel, KRtðh0; hv;fÞ. Parameterizes densely packed, randomly oriented re-

flectors, such as leaves.
* Li-sparse kernel, KLiðh0; hv;fÞ. Parameterizes the shadowing effects of isolated large

objects, such as scattered trees.
The three coefficients, piso, pvol and pgeo for the isotropic, Ross-thick and Li-sparse kernels
respectively, provided by the BRDF product weight these models to reproduce the atmo-
spherically corrected bi-directional surface reflectance observed by MODIS over a 16-day
period.

The MODIS BRDF product has as specified uncertainty of �0:02 in the white sky
albedo derived from the AMBRALS model coefficients. Validation work [13, 28] has
shown this to be a reasonable estimate of the true accuracy of the product in general,
although accuracy can decrease for scenes with a highly heterogeneous surface.

Since the Ross-thick and Li-sparse kernels are both dependent only on the solar and
viewing directions, the AMBRALS model can be written in the form:

RSBD ¼ piso þ KRtðh0; hv;fÞpvol þ KLiðh0; hv;fÞpgeo: ð12Þ

These coefficients can also be combined to form either a black-sky albedo:

RSLB ¼ piso þ bbs1 þ bbs2h
2
0 þ bbs3h

3
0


 �
pvol þ cbs1 þ cbs2h

2
0 þ cbs3h

3
0


 �
pgeo; ð13Þ

or a white-sky albedo:

RSLW ¼ piso þ bwspvol þ cwspgeo; ð14Þ

where the quantities bws, cws, bbs1, etc. are constant coefficients published by the MODIS
BRDF team [32].

Sunglint

A major problem encountered in making nadir satellite measurements is the specular re-
flection of sunlight off the ocean surface, usually referred to as sunglint. Sunglint has two
detrimental impacts:
1. The TOA signal becomes dominated by the directly reflected radiance from the surface.
2. Consequently, the Lambertian surface reflectance approximation (usually valid for the

ocean surface) becomes wholly inadequate. For these reasons, a retrieval using the
Lambertian Fast-FM (see Section 5) will not produce accurate results in regions of sun-
glint and they must be masked out, resulting in significant loss of data. The BRDF
forward model is able to successfully model the radiative transfer in sun-glint regions.
However, it becomes highly dependeant on accurate modeling of the surface reflectance
(which in turn depends on the accuracy of the assumed surface wind conditions), due to
the relatively small contribution of the atmosphere to TOA radiance in these regions.
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5. The Lambertian fast forward model

The Fast-FM uses the transmission and reflectance look-up tables produced by the FM to
predict a top-of-atmosphere radiance using the scheme shown diagrammatically in
Fig. 7.1. The solar beam is incident on the atmosphere and the first contribution to the
TOA observed radiance is the direct bi-directional reflectance, RBD, of the atmosphere.
Transmission through the atmosphere is partly by direct transmission of the beam,
T#

DB, and partly by diffuse transmission of scattered radiance, T #
BD. As an underlying Lam-

bertian surface is assumed, any preferred directionality of the radiance is lost on reflection
and these transmitted terms can be combined to give the total transmission downward
through the atmosphere, T# ¼ T#

BD þ T #
DB. Radiation reflected by the surface (with reflec-

tance Rs) is partially transmitted by the atmosphere into the viewing direction. This trans-
mission, again with the direct and diffuse components combined, is denoted by T". The
atmosphere also reflects downwards (with reflectance RFD) so there is a set of multiple
reflections and transmissions giving rise to a series of rapidly decreasing contributions to
the TOA reflectance. This process is represented in the following equation:

Rðh0; hv;fÞ ¼ RBDðh0; hv;fÞ þ T#ðh0ÞRsT
"ðhvÞ ð15Þ

þ T #ðh0ÞR2
sT

"ðhvÞRFD

þ T #ðh0ÞR3
sT

"ðhvÞR2
FD

þ . . . :

This expression can be simplified to give

Rðh0; hv;fÞ ¼ RBDðh0; hv;fÞ þ T#ðh0ÞRsT
"ðhvÞ 1 þ RsRFD þ R2

SR
2
FD þ . . .


 � ð16Þ

which, in turn, can be simplified further in terms of a geometric series limit,

Rðh0; hv;fÞ ¼ RBDðh0; hv;fÞ þ T#ðh0ÞT"ðhvÞRs

1 � RsRFD
: ð17Þ

It is this equation that is used to calculate the top-of-atmosphere radiances seen by the
satellite.

Fig. 7.1. Atmosphere surface interactions.
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5.1 Forward model gradient

The gradient of the forward model ð@y=@xÞ where y is a radiance measurement in a single
channel and x is one of the state variables is required for the following two purposes:
1. The gradient with respect to parameters which are to be derived from the measurements

(state parameters) is a vital quantity for the inversion of the non-linear reflectance mod-
el by the Levenberg–Marquardt algorithm.

2. The gradient with respect to parameters which might be considered known and not part
of the inversion procedure (model parameters), e.g., surface reflectance spectral shape,
is used to judge the sensitivity to these parameters and thus to estimate their contribu-
tion to the retrieval error.

If Eq. (17) is rewritten as
R ¼ RBD þ S; ð18Þ

then without reproducing the algebra it can be simply stated that the gradient of the model
with respect to optical depth or effective radius is given by:

@R

@x
¼ R0

BD þ S
T#T "0 þ T#0T"

T#T " þ RSR0
FD

1 � RSRFD

� �
ð19Þ

where all 0 indicate @=@x and x is either s or re.
The gradient with respect to surface reflectance is given by:

@R

@Rs
¼ T#T"

1 � RsRFDð Þ2 : ð20Þ

6. The BRDF fast forward model

Although the approximation of a Lambertian surface reflectance is reasonable for many
surface types, it can be grossly inaccurate in some situations. For this reason a new Fast-
FM has been developed for the ORAC retrieval system that, while using the same reference
forward model and look-up tables as the Lambertian forward model, no longer makes this
assumption. Dropping the assumption of a Lambertian surface reflectance has two con-
sequences on the derivation of the Fast-FM:
1. The surface reflectance can no longer be described by one value. Rather, three values

are required:
* A bi-direction reflectance, RSBD, is needed to characterize the reflection of the direct

solar beam into the viewing angle. This is a function of both solar and viewing angles.
* An equivalent black-sky albedo, or hemispherical reflectance, RSLB, is needed to

characterize the diffuse reflection of the direct beam over the whole hemisphere.
This is only a function of the solar angle.

* An equivalent white-sky albedo, or bi-hemispherical reflectance, RSLW, is needed to
characterize the reflection of diffuse downwelling radiation. This is independent of
solar and viewing angles, since it assumes reflection is isotropic.

2. The combination of the direct transmission of the solar beam, T #
DB, and the diffuse

transmission of the scattered radiance from the solar beam, T#
BD, into a single term
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T# is no longer possible, because the direct beam and diffuse radiance are subject to
different reflectances at the ground.

This means Eq. (15) becomes:

Rðh0; hv;fÞ ¼ RBDðh0; hv;fÞ þ T#
DBðh0ÞRSBDðh0; hv;fÞT "

DBðhvÞ ð21Þ
þ T#

DBðh0ÞRSLBðh0Þ T "ðhvÞ � T"
DBðhvÞ

� �
þ T#

BDðh0ÞRSLWT "ðhvÞ
þ T#

DBðh0ÞRSLBðh0ÞRFDRSLWT"ðhvÞ
þ T#

BDðh0ÞRSLWRFDRSLWT"ðhvÞ
þ T#

DBðh0ÞRSLBðh0ÞRFDRSLWRFDRSLWT "ðhvÞ
þ T#

BDðh0ÞRSLWRFDRSLWRFDRSLWT"ðhvÞ
þ . . . :

Here the term T #
DBðh0ÞRSBDðh0; hv;fÞT"

DBðhvÞ is the direct reflection of the solar beam
into the viewing angle at the surface and thus uses the transmission of the direct
beam for both the downward and upward paths through the atmosphere.
T#

DBðh0ÞRSLBðh0Þ T"ðhvÞ � T "
DBðhvÞ

� �
is the diffuse reflection of the direct beam, i.e. it

is the radiance seen at the satellite due to the direct beam being diffusely scattered by
the ground. Note that for this term, the upwelling transmission is the total transmission
minus the direct beam transmission, since we are only interested in the diffuse component.
Together, these two terms are equivalent to the T#

DBðh0ÞRST"ðhvÞ term present in the Lam-
bertian forward model. Notice also that we require the diffuse-only transmission for the
upwelling radiation from the black-sky (RSLBðh0Þ) term.

The term T#
BDðh0ÞRSLWT"ðhvÞ approximates the reflection of the diffusely transmitted

solar radiation into the viewing direction. Ideally, this would be split into two terms:
T#

BDðh0ÞRSLWT"
BDðhvÞ þ T #

BDðh0ÞRSLBðhvÞT "
DBðhvÞ, where the first gives the upward diffu-

se transmission to the satellite and the second gives the direct transmission. By setting
RSLB(hv) = RSLW these two terms combine to give the above expression and RSLB(hv)
can be eliminated from the equation. This greatly simplifies the formulation of the forward
model and reduces the number of values which must be propogated through the retrieval by
one. The rest of the terms in Eqn.(21) are multiple surface–atmosphere reflections, ana-
logous to those which appear in the Lambertian forward model.

This model makes two simplifying assumptions:
1. The combining of the upwelling direct and diffuse components of the reflected diffu-

sely transmitted solar radiation described above amounts to the approximation that the
surface acts as a Lambertian reflector when diffusely illuminated. That is to say that the
surface will appear the same from all viewing directions if lit by a purely diffuse source.

2. We also assume that when taken as a pair, the surface and atmosphere act as Lambertian
reflectors, so that any directionality left the reflected beam ðT#

DBðh0ÞRSBDðh0; hv;fÞÞ is
lost in that proportion which is reflected back towards the ground.

Following on from this approximation, after the first surface-atmosphere pair of reflec-
tions, the radiation has lost all directionality, and thus the white sky albedo is used for
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subsequent surface reflections, and the total atmospheric transmission (T"ðhvÞ) for the
final upward transmission (Fig. 7.2).

Again, Eq. (21) can be simplified:

Rðh0; hv;fÞ ¼ RBDðh0; hv;fÞ þ T#
DBðh0ÞRSBDðh0; hv;fÞT"

DBðhvÞ (22)

� T #
DBðh0ÞRSLBðh0ÞT "

DBðhvÞ
þ T#

DBðh0ÞRSLBðh0Þ þ T#
BDðh0ÞRSLW

� �
T"ðhvÞ

1 þ RSLWRFD þ R2
SLWR2

FD þ . . .

 �

:

Applying the same series limit as before, our new reflectance value is given by:

Rðh0; hv;fÞ ¼ RBDðh0; hv;fÞ þ T#
DBðh0Þ RSBDðh0; hv;fÞ � RSLBðh0Þð ÞT"

DBðhvÞ ð23Þ

þ
T#

DBðh0ÞRSLBðh0Þ þ T#
BDðh0ÞRSLW

� �
T"ðhvÞ

1 � RSLWRFD
:

6.1 Retrieving the surface reflectance with the BRDF forward model

Using the Lambertian surface forward model, the magnitude of the surface reflectance
(in particular, the albedo at 0.55 lm) is retrieved. The spectral shape of the surface re-
flectance (i.e. the ratios between the reflectance in different channels) is fixed by the
a priori surface albedo (from the MODIS white-sky albedo over land and from the sur-
face reflectance model over the ocean), but the magnitude of this reflectance is allowed to
vary. When using the BRDF forward model we are faced with having three separate re-

Fig. 7.2. Atmospher–surface interactions using the simplified BRDF model.
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flectances for each channel. How then do we include the surface reflectance as a retrieved
parameter?

As has been described already, the black-sky albedo describes the amount of radiation
scattered into the entire hemisphere for a single incoming beam at a given zenith angle.
Hence it can be derived from the BRDF:

RSLBðh0Þ ¼
Ð 2p

0

Ð p=2
0 RSBDðh0; hv;fÞ cos hv sin hv dhv dfÐ 2p

0

Ð p=2
0 cos hv sin hv dhv df

ð24Þ

¼ 1

p

ð2p

0

ðp=2

0
RSBDðh0; hv;fÞ cos hv sin hv dhv df:

Similarly the white-sky albedo is the amount of light scattered over the entire hemisphere
from isotropic diffuse downwelling radiance. It can be calculated by integrating RSLB

across all solar zenith angles:

RSLW ¼
Ð p=2

0 RSLBðh0Þ cos h0 sin h0dh0Ð p=2
0 cos hv sin hv dh0

¼ 2

ðp=2

0
RSLBðh0Þ cos h0 sin h0 dh0: ð25Þ

It is clear from these two equations that a small change in any one of the three surface
reflectance values will result in a proportional change in the other two, since a constant can
simply be moved outside the integral.

Examining Eq. (12), (13) and (14) for the calculation of bi-directional reflectance,
black-sky albedo and white-sky albedo from the MODIS BRDF product, it can be
seen that, for a given pixel, we have three linear equations of the form

R ¼ piso þ c1pvol þ c2pgeo: ð26Þ
Hence the reflectances calculated using these expressions also scale linearly.

The ORAC BRDF retrieval is set up to treat the white-sky albedo as the retrieved pa-
rameter, with the bi-directional and black-sky albedo values being derived from it, as the
white-sky albedo is independent of the viewing geometry.

6.2 Derivatives of the forward model expression

The derivative of Eq. (23) with respect to optical depth or effective radius can be shown
to be

@R

@x
¼ R0

BD þ RSBD � RSLBð Þ T#
DBT

0"
DB þ T 0#

DBT
"
DB

� �
(27)

þ
T#

DBRSLB þ T #
BDRSLW

� �
RSLWT"R0

FD

1 � RSLWRFDð Þ2

þ
T#

DBRSLB þ T #
BDRSLW

� �
T 0" þ T" RSLWT 0#

BD þ RSLBT
0#
DB

� �
1 � RSLWRFD

;

where all 0 indicate @=@x and x is either s or re.
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The derivative with respect to surface reflectance requires that we express the deriva-
tives of RSBD and RSLB in terms of a derivative of RSLW. Since RSBD and RSLB both depend
linearly on RSLW for a given viewing geometry, we can write:

@R

@RSBD
¼ @R

@RSLW

@RSLW

@RSBD
¼ 1

a
@R

@RSLW
ð28Þ

@R

@RSLB
¼ @R

@RSLW

@RSLW

@RSLB
¼ 1

b
@R

@RSLW
; ð29Þ

and the derivative can then be expressed as:

@R

@RSLW
¼ T#

DBðabÞT"
DB þ T #

DBbT
" þ T#

BDT
"

1 � RSLWRFD
þ

T#
DBRSLB þ T #

BDRSLW

� �
T"

1 � RSLWRFDð Þ2 : ð30Þ

7. The thermal infrared forward model

In general aerosol has a relatively small impact on the TOA radiance in the thermal infra-
red, as the particles are generally small enough to act as Rayleigh scatters at these wave-
lengths (i.e. the aerosol signal becomes lost in the Planck curve of the atmosphere). How-
ever, large particles, such as wind-blown dust, can have a significant thermal infrared sig-
nature. This fact has been widely used to develop dust indices, such as the Saharan Dust
Index (SDI) [19] used with SEVIRI. The potential of thermal information on wind-blown
dust is especially great in situations where the lofted dust is above surfaces with a similar
composition. In such cases the contrast between the aerosol and surface in the visible/near-
infrared is particularly poor. However, thermal channels show a strong contrast, as the
lofted dust is almost universally at a significantly lower temperature than the surface.

In order to take advantage of this potential, a version of the ORAC aerosol retrieval
which can utilize thermal window channels,4 has been developed. Using the thermal chan-
nels complicates the retrieval scheme in four main ways:
1. A separate Fast-FM is required for thermal channels, as their signal is dominated by

thermal emission from the Earth’s surface and atmosphere, rather than scattering and
reflection of solar radiation.

2. In window channels, the thermal signal is dominated by the surface temperature and
emissivity. Thus, these parameters must also be accounted for in the retrieval.

3. In order to accurately model the TOA brightness temperature, the thermal emission of
the atmosphere without aerosol loading (i.e. clear-air) must also be modeled. This in-
volves further radiative transfer calculations and requires accurate knowledge of the
temperature structure and trace-gas concentrations of the atmosphere.

4. Since the thermal emission of the aerosol depends on its altitude, this must be ac-
counted for in the retrieval.

4 Channels for which the signal from trace gas absorption and emission is low and the signal is dominated
by the thermal emission from the ground and atmosphere.
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In order to model the clear-sky brightness temperature, RTTOV [25, 29] is used in con-
junction with ECMWF reanalysis data for the scene of interest. The ECMWF fields used
are the surface temperature and pressure, and profiles of temperature, humidity and ozone.
ECMWF data are available at 6-hour intervals, and are linearly interpolated to the mea-
surement time of the satellite. Clearly, the lack of any trace gas information in the ECMWF
data, aside from water vapor and ozone, means this approach will only be valid for in-
strument channels where there is little signal from gas absorption or emission lines
(i.e. the analysis is limited to making use of window channels). RTTOV provides the tem-
perature at 43 layers, the transmission from the surface to each layer and from each layer to
the TOA, as well as the upwelling and downwelling clear-sky radiance at each level, for
each pixel in the satellite image to analysed.

In the calculation of aerosol look-up tables, it is necessary to extend the calculation of
transmission and reflectance of the aerosol layer to diffuse radiation to the thermal wa-
velengths, as well as calculating its emissivity (values for the direct beam transmission and
bi-directional reflectance are not required, as there is no direct beam component in the
thermal radiative transfer). Thus, aerosol optical properties are required which extend
into the thermal infrared.

Additionally the dependence of the thermal signal on the height distribution of the ae-
rosol must be accounted for. In the generation of the look-up tables, the aerosol is modelled
as a single infinitesimally thin layer, for which the transmission, reflectance and emissivity
are computed. In the retrieval, the height of this layer is variable (i.e. the layer height is a
retrieved parameter), and is assumed to be in thermal equilibrium with the surrounding
atmosphere. This approximation will only be valid in certain circumstances (i.e. where a
single elevated aerosol layer exists). However, in the case of wind-blown dust, this is a
common scenario (see [18] for example). Simulations have shown that grossly different
aerosol height distributions (such as boundary layer aerosol below an elevated layer or
aerosol across a broad height range) lead to errors in retrieved parameters which are similar
to, or significantly smaller than the expected error due to uncertainty in the measured
radiances.

Derivation of the thermal Fast-FM follows a similar pattern to that of the shortwave
Fast-FM. If we define:
* Upwelling TOA radiance, I".
* Transmission of the atmosphere above the aerosol layer, Tal.
* Upwelling TOA radiance from the atmosphere above the aerosol layer, I"al.
* Downwelling radiance at the top the aerosole layer from the overlying atmosphere, I#al.
* Transmission of the atmosphere below the aerosol layer, Tbl.
* Upwelling radiance at the bottom of the aerosol layer neglecting multiple reflection,

between the layer and underlying surface, I"bl.
* Black body radiance at of the aerosol layer, Bl.
* Emissivity of the aerosol layer, el.
* Reflectance of the aerosol layer, Rl.
* Surface reflectance, Rs.
The TOA thermal intensity can then be expressed as

I" ¼ BlelTal þ I#alRlTal þ I"al þ I"blTlTal þ I"blRlT
2
blRsTlTal þ I"blR

2
l T

4
blR

2
sTcTal þ . . . : ð31Þ
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Here the first term is the thermal emission from the aerosol layer itself, the second term
gives the contribution from downwelling radiance reflected by the aerosol layer and the
third and fourth terms are the contribution from thermal emission of the atmosphere above
and below the aerosol layer, respectively. The remaining terms account for multiple re-
flections between the surface and the aerosol layer. As with the shortwave forward model,
this expression can be simplified by factorizing and applying a geometric series limit:

I" ¼ BlelTal þ I#alRlTal þ I"al þ I"blTlTal 1 þ RlT
2
blRs þ R2

l T
4
blR

2
s þ . . .


 �
; ð32Þ

leading to the expression

I" ¼ BlelTal þ I#alRlTal þ I"al þ
I"blTlTal

1 � RlT2
blRs

: ð33Þ

Note that the value I"bl includes both the atmospheric transmission below the aerosol layer
and emission from the surface:

I"bl ¼ I"ðatmÞbl þ BsesTbl; ð34Þ

where Bs is the blackbody radiance of the surface and es is its emissivity.
If we neglect multiple scattering between the surface and aerosol layer (which is a rea-

sonable approximation at thermal wavelengths), the later terms in Eq. (31) and (32) be-
come zero and the denominator of Eq. (32) becomes unity.5 Applying this approximation
and substituting (34), we get:

I" ¼ BlelTal þ I#alRlTal þ I"al þ BsesTblTlTal þ I"ðatmÞbl TlTal: ð35Þ

In order to account for the height dependence of the aerosol thermal emission and the
surface-temperature dependence, both of these quantities are retrieved by the thermal al-
gorithm. The state vector for the thermal retrieval thus consists of:
* Aerosol optical depth at 0.55 lm.
* Aerosol effective radius.
* Surface albedo at 0.55 lm.
* Aerosol layer height.
* Surface temperature.
Due to the greatly extended spectral range encompassed when thermal channels are in-
cluded in the retrieval, accurate knowledge of the aerosol spectral refractive index is even
more essential than in a visible near-infrared algorithm. A case study carried out by Car-
boni et al. [3], showed that dust-like aerosol models currently available from the literature
[6, 11] could not be used to reproduce radiances observed by SEVIRI over the Sahara
Desert and Atlantic Ocean during a dust storm event. The errors in aerosol optical depth
and effective radius from retrievals using these refractive indices were completely domi-
nated by this discrepancy. More success was achieved using refractive indices from in-
house spectral measurements of Saharan dust samples [24], however, there remain discre-

5 Note that this is in effect the same as assuming a zero surface reflectance.
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pancies that show the need for future improvement of the characterization of aerosol and
the Earth’s surface in the IR.

8. The retrieval algorithm

All three of the Fast-FMs described in the previous section fit into the same basic ORAC
retrieval algorithm, with minor changes to deal with differing input variables (such as the
necessity of dealing with three surface reflectance values for each pixel for a retrieval using
the BRDF forward model). The algorithm is built around the optimal estimation frame-
work described by Rogers [26, 27]. If we define the vector made up of the retrieved para-
meters to be the state vector, x, and the a vector of the measurements, y, then the probability
density function of the state subject to the measurements is defined, by application of
Bayes’ theorem and Gaussian statistics, to be

�2 lnPðxjyÞ ¼ y� FðxÞð ÞS�1
e y� FðxÞð Þ þ x� xað ÞS�1

a xxað Þ: ð36Þ

Here FðxÞ is the forward function (i.e. the function which maps the state parameters to
measurements, which we approximate with a forward model fðxÞ), Se is the measurement
error covariance matrix, xa is the a priori state vector and Sa is the a priori error covariance
matrix. Together xa and Sa denote our best guess at the state before the measurement is
made and the precision of this guess. The retrieval problem is, therefore, that of finding the
minimum value of Eq. (36), which is known as the cost function (i.e. maximizing the prob-
ability of x subject to y), which is known as the cost function.

ORAC uses the Levenberg–Marquardt numerical optimization to perform this minimi-
zation. This is an iterative procedure, whereby, if the number of measurements in y is m,
and there are n state parameters, x is incremented by

xiþ1 ¼ xi þ S�1
a þKT

i S
�1
e Ki þ cDn


 ��1
KT

i S
�1
e y� FðxÞð Þ � S�1

a x� xað Þ� 

; ð37Þ

where K is the weighting function matrix, c is variable parameter, Dn is a n� n diagonal
scaling matrix and the i subscript denotes values for the current iteration. K is a m� n
matrix, with each column containing the derivative of the forward model with respect to
each state parameter, i.e.

ki;j ¼ @fiðxÞ
@xj

: ð38Þ

Thus, for a linear system, we could write y ¼ Kx.
The parameter c is the key to the efficiency and robustness of the Levenberg–Marquardt

algorithm. If c ! 1, Eq. (37) tends to the step given by the steepest descent algorithm,
which will always lie in the direction of the local ‘downhill’ gradient and is therefore very
robust. If c ! 0, however, the algorithm behaves like Gauss–Newton iteration, which,
although less numerically robust than steepest descent, will provide an exact solution
to a linear problem in one iteration. The procedure for determining the value of c is to
start with a fairly small value (so the initial iteration will resemble Gauss–Newton),
then at each iteration:
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* If, as a result of the step suggested by Eq. (37), the cost function increases, do not update
the state vector and increase c.

* If the cost function is decreased by a step, update the state vector and decrease c for the
next step.

ORAC uses a factor of 10 for increasing and reducing c. The scaling matrix, Dn, is used to
ensure that the state parameters are of similar magnitude, in the interests of numerical
stability.

This iterative procedure is continued until either a convergence criterion is satisfied, or
a maximum number of iterations is exceeded (in the former case the retrieval is said to
have converged, while the later case can generally be rejected as a failed retrieval). ORAC
uses the change in the cost function between iterations to determine whether the algorithm
has converged – a negligible change in cost between iterations indicates that the retrieval
is no longer improving the fit between measurements and forward model.

The optimal estimation framework offers two main advantages over more ad hoc re-
trieval algorithms:
1. A priori information is explicitly included in the retrieval in a way which is consistent

with the way measurement information is included.
2. Rigorous error propagation, including the incorporation of forward model and forward

model parameter error, is built into the system, providing extra quality control and error
estimates on the retrieved state.

Error estimates for the retrieved state can be calculated by applying

ŜS ¼ S�1
a þKT

i S
�1
e Ki ð39Þ

after the final iteration, where ŜS is the covariance of the retrieved state. If there is a known
limitation in the forward model, due to approximations or incomplete modeling of the
relevant physics, this can be accounted for in the retrieval as forward model error described
by a covariance matrix Sfm. Uncertainty in parameters on which the forward model de-
pends, but which are not retrieved (for instance, the height distribution of aerosol), can also
be included in the retrieval as forward model parameter error. These extra error terms are
combined with the measurement error:

Sy ¼ Se þ Sfm þKpSpK
T
p ; ð40Þ

where Sp is the covariance matrix describing the uncertainty in the forward model para-
meters and Kp is the weighting function which maps this error into measurement space (i.e.
it is analogous to the Ki matrix used above). The new measurement covariance Sy then
replaces Se in Eq. (36) to (39).

9. Aerosol speciation

Although the ORAC algorithm does not directly retrieve any information on the composi-
tion of the aerosol, except the change in mixing state implied by the retrieval of effective
radius (see Section 3.1), it is still possible for the system to provide some indication of the
aerosol type present in a given scene. This capability is achieved by running the retrieval
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repeatedly using a different predefined aerosol class each time. The resulting set of aerosol
retrievals can be merged into a single ‘speciated’ product by comparing the retrieval cost
function for each of the aerosol classes used, weighted by a priori knowledge of the likely
aerosol type at that particular location.

For example, over the mid-Atlantic Ocean, the dominant aerosol would be expected to
be maritime. However, during periods of agricultural and forest burning in central and
southern Africa, a biomass aerosol class will often provide a significantly better fit to
the measurements (as indicated by a lower value of the cost function), indicating the pre-
sence of outflow from the African fires.

Although this method has been found to be somewhat successful, it is subjective in
nature (relying on an ad hoc a priori weighting of the cost function comparison) and
can only be considered as an indicative measure of the actual aerosol composition.
Also, the method is only sensitive to aerosol types which appear significantly different
in the measurement channels. For instance, it has been found that when using
(A)ATSR or SEVIRI visible channels, maritime aerosol and desert dust are difficult to
distinguish except at very high optical depths.

10. Example results

The following sections give examples of aerosol properties derived using the different
versions of ORAC described in the previous sections.

10.1 Single-view retrieval from AATSR

Fig. 7.3 shows monthly means of optical depth, effective radius and speciation for Sep-
tember 2004, from AATSR, as retrieved using the Lambertian Fast-FM described in Sec-
tion 5. Nadir view AATSR radiances have been cloud cleared and then averaged onto a
10 km sinusoidal grid [33] prior to retrieval. Cloud clearing over the ocean used the ESA
operational cloud flag [10], while over the land a custom method, which uses a threshold on
normalized difference vegetation index values derived from the 0.55, 0.67 and 0.87 lm
channels, as well as thresholds on the radiances in these channels themselves [2] was used.
The retrieval has been run using five separate aerosol classes:
* continental clean y
* desert dust y
* maritime clean y
* urban y
* biomass burning z

where a y indicates the aerosol class originates from the OPAC database [11] and z ori-
ginates from the work of Dubovik et al. [9]. The monthly mean was performed on a 1� � 1�

latitude/longitude grid and the data has had the following quality-control criteria applied:
* The retrieval must have converged.
* The final value of the retrieval cost function must be below a threshold value.
* The retrieval must have converged to a state within the bounds of the LUTs.
* The retrieved surface reflectance at 550 nm must be less than 0.2.

10. Example results 211



Fig. 7.3. Global mean (a) 0.55 lm aerosol optical depth, (b) effective radius in lm and (c) speciation from
AATSR for the month of September 2004.
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* Over land pixels the fraction of measurement pixels within a given sinusoidal grid cell
flagged as cloud must be less than 50 %.6

The first thing to note from Fig. 7.3 is the limitations introduced by the narrow swath of
AATSR. Since ORAC uses the visible wavelength channels of AATSR, only data from the
descending (daylight) half of the orbit can be used. Even with a month of data, there remain
areas where cloud cover and sunglint mean there is no coverage, and the retrieved fields
still show evidence of the orbital pattern. Taking this into account, the optical depth field
shows the expected patterns, with reasonable values. However, the limitations of the single
view using a Lambertian surface reflectance are clear, especially over land. Generally,
retrievals over land surfaces show slightly higher than expected optical depths and there
is a clear step change in both optical depth and effective radius along coastal boundaries. It
is also notable that some regions which would be expected to show high aerosol loading,
such as China, are not particularly conspicuous in the optical depth field. The optical depth
over the oceans appears to be much more as expected, although a very low value of ef-
fective radius has been retrieved. Speciation (Fig. 7.3(c)) shows that the expected aerosol
class is derived for most pixels, although there is clear evidence of the difficulty in dis-
tinguishing desert dust and maritime aerosol using the AATSR channels. Also, there is
little indication of the biomass burning plume visible in the optical depth field off the
coast of Africa.

These conclusions are supported by Fig. 7.4, which displays the results a comparison
between AERONET optical depths and AATSR retrievals for the same month as in
Fig. 7.3. Fig. 7.5 shows the locations of the AERONET stations used in the comparisons
presented in this chapter. The stations used have been limited to those known to provide
measurements which are representative of their surrounding area, based on recommenda-
tions by S. Kinne [16]. These comparisons relate the mean AERONET optical depth within
30 minutes of the satellite overpass with the mean satellite optical depth within 20 km of
the AERONET site. This averaging is done to try and ensure that similar airmasses are
being measured by the satellite and ground-based instruments and is based on the proce-
dure used for MODIS aerosol validation [12]. Each AERONET station used in the com-
parison has been assigned a unique coloured symbol, with stations within similar geogra-
phical regions having the same color. Stations which are in open sea or coastal sites are
denoted with open symbols, while solid symbols are used for inland sites. The ORAC data
used for comparison with AERONET have had the same filters applied as those applied for
the monthly mean products, with the addition of a threshold of the variability of the re-
trieved optical depth within the 20 km spatial window, which was included to remove cases
where high spatial variablity in aerosol loading could introduce significant sampling
biases to the comparison.

The comparison with AERONET data clearly shows that the retrieval is performing
relatively poorly over land surfaces. The high optical depth bias of the single-view Lam-
bertian ORAC results suggested by the monthly mean plot is confirmed, and the results
show a great deal of scatter, with a correlation of 0.4 between the two datasets. The results

6 The scheme averages all pixels cloud-free within each sinusoidal grid cell, to give a cloud free radiance.
However, the cloud flag applied to AATSR over the land was found to leave some residual cloud con-
tamination. This was not found to be a problem over ocean pixels.
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for ocean pixels are far more encouraging. Here there is no clear bias in the results and
there is much less scatter, with the correlation being 0.8.

These results show that the single-view Lambertian retrieval is very dependent on an
accurate a priori description of the surface reflectance. The higher reflectance and much
greater anisotropicity (and hence greater uncertainty in its reflectance) of the land surface,
when compared to the ocean, results in relatively poor retrieval performance over the land.

Fig. 7.4. Scatterplots of AERONET optical depth at 550 nm versus coincident AATSR retrievals for Sep-
tember 2004 from the single-view Lambertian surface retrieval. The results are a composite of five se-
parate aerosol classes, with the class of each point being determined by comparing the retrieval costs.
Error bars indicate the standard deviation of the values that went into the spatial or temporal averaging.
Each plot includes a least-absolute-deviation fit line (solid line) and its equation, plus uncertainty esti-
mates on this fit (dashed lines), with the uncertainties in the fitted parameters included below the equation.
The one-to-one line (dotted) is also included for comparison, and the correlation coefficient for the plot, R
is given. Plot (a) shows results for inland AERONET stations. Plot (b) shows results for coastal stations,
where only satellite results over the ocean are compared.
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Fig. 7.5. AERONET stations used in the comparisons discussed in this chapter. (a) shows those stations
within the SEVIRI observation disk, (b) shows stations within the Eastern Hemisphere, North American
stations appear in (c) and those in Arabia are shown in (d).

10. Example results 215



10.2 Dual-view retrieval from AATSR

This section presents results equivalent to those presented in Section 10.1, but using the
BRDF surface reflectance version of ORAC incorporating both views of the AATSR in-
strument. Fig. 7.6 can be exactly compared to Fig. 7.3 and shows a marked improvement in
the retrieved aerosol properties. The optical depth field shows far less evidence of elevated
optical depths over land pixels and is much more continuous across coastal boundaries.
Areas of high optical depth are evident, but are generally in regions where high aerosol
loading is to be expected – such as Southern and Eastern Asia). Optical depths in desert
regions are also more believable than in the single-view Lambertian results. The effective
radius field shows features that are also expected such as larger particles in regions of
desert outflow, and smaller particles associated with polluted regions. Speciation also
shows evidence of improvement over the single-view Lambertian results, with significant
amounts of biomass-burning aerosol being detected in regions where it might be expected
(the Amazon Basin and central/southern Africa) as well as clear biomass plume extending
across the Alantic (which even shows evidence of aging – becoming more like background
continental aerosol as it extends towards South America). However, there is still evidence
of the difficulty in distinguishing desert dust and maritime aerosol over the sea and at high
latitudes the speciation over the sea breaks down somewhat (with a scattering of different
aerosol types being retrieved). The reason for this is not clear; however it could due to the
phase functions of the various aerosol types producing similar spectral responces across
the AATSR channels at high solar zenith angles.

Comparison with AERONET data (Fig. 7.7) offers further evidence of the improved
quality of these results with those discussed in Section 10.1. In this instance all of the
comparisons (land and sea) have been plotted together and show a very high degree of
correlation (over 0.95) and very little bias. This level of correlation is extremely impres-
sive, given the widely different methods and sampling used to make the measurements.

Comparing the results from this section and Section 10.1 shows the great improvement
given by the BRDF surface reflectance Fast-FM. This improvement is due to three factors:
1. The surface reflectance is better modeled. This is particularly important for anisotropic

land surfaces and in regions of the ocean effected by sunglint, where the Lambertian
approximation breaks down.

2. The retrieval is able to make use of the AATSR dual-view measurement system. Not
only does this double the number of measurements available to the retrieval but, since
each surface pixel is viewed twice through differing atmospheric paths, the constraint
on both the surface reflectance and aerosol properties being consistent between views
allows the retrieval to decouple their effects much more effectively than with a single
view.

3. The inclusion of four more measurements provides enough information for the retrieval
of the surface reflectance in each channel independently, greatly reducing the reliance
on an accurate a priori knowledge of it.

Although it is difficult to disentangle these three effects, the results do strikingly demon-
strate the strength of the ATSR dual-view system.
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Fig. 7.6. Global mean (a) 0.55 lm aerosol optical depth, (b) effective radius and (c) speciation from
AATSR for the month of September 2004. The data were produced by the BRDF version of ORAC, using
both nadir and forward views on a 
 10 km sinusoidal grid. The monthly mean was performed on a
1� � 1� latitude/longitude grid.
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10.3 Retrieval from SEVIRI using the BRDF Fast-FM

Fig. 7.8 shows the mean 0.55 lm optical depth retrieved from SEVIRI data over September
2004, as given by ORAC using the BRDF forward model. The production of this composite
followed a very similar method as used for the AATSR monthly means discussed in the
previous two sections. The same retrieval grid and aerosol classes were used, and very
similar quality controls were applied. The composite has been formed using two SEVIRI
measurements per day, one at 10:15 and one at 16:15 UT. Although SEVIRI does not

Fig. 7.7. Scatterplots of AERONET optical depth at 550 nm versus coincident AATSR retrievals for Sep-
tember 2004 from the dual-view BRDF retrieval. The results are a composite of five separate aerosol
classes, with the class of each point being determined by comparing the retrieval costs. Both plots
show the results for all AERONET stations, with (b) using a logarithmic scale for clarity. See
Fig. 7.5 for a definition of the plotting symbols.
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provide a dual-view measurement, the BRDF forward model still provides a better descrip-
tion of the surface reflectance than the Lambertian approximation does. One of the largest
difficulties to be overcome when applying the ORAC scheme to SEVIRI data is that of
cloud-contamination. This is largely due to the larger pixel size of the SEVIRI instrument
when compared to the (A)ATSR sensors, which results in relatively large number of cloud
contaminated pixels being flagged as clear by the operational EUMETSAT SEVIRI cloud
flag. Although post-retrieval quality control has removed the vast majority of residual
cloud contamination, there is still some evidence of contaminaton in the very high average
optical depths seen in the Amazon basin.

Fig. 7.9 shows that, as far as agreement with AERONET is concerned, the SEVIRI re-
trieval lies somewhere between the AATSR single-view Lambertian and dual-view BRDF
results. Agreement over the ocean is excellent, with a correlation of 0.79 and very little
bias. For land-based stations, the best-fit line shows a strong negative bias. However, it can
be seen that this is mostly caused by a bias against a single AERONET station – Mongu
(denoted by yellow triangles). This station lies in an arid region of southern Africa (see
Fig. 7.5(a)) that is characterized by a high surface reflectance. This suggests that the SE-
VIRI retrieval is prone to underestimating aerosol optical depth in regions where the sur-
face component dominates the TOA signal. The negative bias in the SEVIRI results ap-
parent when compared against another desert AERONET site, Blida (denoted by brown
squares), supports this conclusion. Furthermore, if Fig. 7.8 is compared to Fig. 7.6, it can
be seen that the SEVIRI-based optical depth does tend to be lower than the AATSR value
in arid regions. Although the SEVIRI results have had a stringent surface reflectance
threshold applied to them (resulting in the regions of missing data over the Sahara, Arabia
and southern Africa), these results suggest that a stronger quality-control criterion may be
needed.

If one neglects the Mongu points in Fig. 7.9, the agreement between SEVIRI and
AERONET is again excellent. Indeed, even with the Mongu points included in the calcu-
lation, the correlation for inland AERONET stations is actually higher than that for the
ocean/coastal sites, at 0.82. This high correlation is largely due to excellent agreement

Fig. 7.8. Global mean 0.55 lm aerosol optical depth from SEVIRI for the month of September 2004. The
data were produced by the BRDF version of ORAC, on a 
 10 km sinusoidal grid. The monthly mean was
performed on a 1� � 1� latitude/longitude grid. Speciation has been carried out in the usual way, from the
same set of five aerosol classes used for the AATSR retrievals.
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Fig. 7.9. Scatter-plots of AERONET optical depth at 550 nm versus coincident SEVIRI retrievals for
September 2004. Plot (a) shows results for inland AERONET stations. Plot (b) shows results for coastal
stations, where only satellite results over the ocean are compared. See Fig. 7.5 for a definition of the
plotting symbols.
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between the ORAC retrieval and AERONET over Europe. An example of this is shown in
Fig. 7.10, where time series of collocated AEROSOL optical depth from SEVIRI and the
IMS-METU-ERBEMLI AERONET station are given. In almost all cases the two measure-
ments agree within the error bars.

10.4 Retrieval using the thermal infrared forward model

At the time of writing, work on including a thermal infrared forward model in the ORAC
aerosol retrieval was still at a fairly early stage. However, the retrieval has been applied to a
limited quantity of SEVIRI data from March 2006. This month was marked by a very large
dust storm in the Sahara, which resulted in large plumes of dust being blown south, towards
the Ivory Coast. There the lofted dust encountered a strong westerly airflow, which carried
it out into the Atlantic at extremely high concentrations. Fig. 7.11 shows the SEVIRI data
collected on March 9, 2006, at the height of the event. The false color image clearly shows
the dust plume extending in a northwesterly direction across the Atlantic, but also demon-
strates the problem encountered when trying to retrieve lofted dust over a desert surface
using a visible/near-infrared retrieval scheme – it is very difficult to distinguish the lofted
dust from the background surface over the desert in Fig. 7.11(a).

Fig. 7.11(b) shows the 550 nm optical depth retrieved using ORAC with the thermal
forward model enabled. In this instance the aerosol class has been assumed to be desert
dust (based on the optical properties of Peters et al. [24]), and the maximum optical depth
covered by the LUTs has been extended from 2 to 5. The retrieval has been performed on a
10-km sinusoidal grid. The dust plume extending into the Atlantic is very clear, and shows
extremely high optical depths, which in some places exceed 5. The optical depth field also
shows the plume extending along the southern edge of the Sahara, and shows elevated
optical depths (exceeding 1) extending north into the Sahara itself.

It must be noted that Fig. 7.11 also shows evidence of the need for further development
of the thermal-infrared retrieval. The differentiation of heavy dust loading and cloud is a

Fig. 7.10. A time-series of 0.55 lm optical depth from SEVIRI retrievals (black) and AERONET sun-
photometer (orange). Only retrievals over land pixels were considered in computing the SEVIRI optical
depth.
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difficulty common among aerosol retrieval schemes, and it is a problem with the thermal-
infrared version of ORAC as well. The optical depth field also shows features which are in
reality clearly associated with the surface. This is due to both limitations in the description
of the surface and the applicability of the assumed aerosol properties. Steps are being taken
to address these issues, namely:
* The description of the surface reflectance in the thermal-infrared retrieval will be im-

proved by incorporating the visible/near-infrared BRDF Fast-FM.
* The use of non-spherical scattering code in the calculation of LUTs for non-spherical

aerosol classes (such as desert dust) is being investigated.
* Further measurements of Saharan aerosol samples will be undertaken.
* It is hoped that a surface BRDF product derived from SEVIRI measurements will be-

come available in the future [35], which will provide an improved description of the
surface for the retrieval.

Fig. 7.11. An example of retrieved optical depth making use of thermal channels. Plot (a) shows a false-
color image from SEVIRI taken on March 9, 2006, at approximately 12:12UT, during a large dust storm
event in the southern Sahara. Plot (b) shows the retrieved optical depth field for this scene. White areas in
plot (b) indicate the presence of cloud or failed retrievals (due, for example, to the optical depth being
outside the 0.01 to 5.0 optical depth range).
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Despite these limitations, however, these results do provide a good overall indication of
aerosol optical depth field. Fig. 7.12 shows a comparison between collocated thermal-in-
frared ORAC and MISR (Multi-angle Imaging SpectroRadiometer) retrievals. Due to its
multiple-view observation system, MISR is regarded as one of the most reliable satellite-
based aerosol products, particularly over bright surfaces like deserts [8]. The agreement
between the two datasets is very close, especially considering the difference in measure-
ment time between the two (MISR observes at approximately 11:30 local solar time, which
means only MISR swaths which lie near the east coast of the Saharan region will be tem-
porally close to the SEVIRI measurement).

11. Conclusion

This chapter has detailed the ORAC aerosol retrieval algorithm in its various forms. ORAC
is a retrieval scheme based around the optimal estimation framework [26, 27] that uses a
plane parallel radiative transfer, using assumed aerosol properties, to forward model the
TOA radiance measured by satellites. The basic ORAC algorithm provides a framework
for the retrieval of aerosol properties from visible/infrared radiometers. As demonstrated
by the variety of different ORAC variants described, the generic nature of the algorithm
makes it suitable for a wide range of instruments, provided they meet the following criteria:
* The measured signal is not polarization-dependent.
* The measured signal is not strongly effected by molecular Rayleigh scattering, as the

variation of this signal with topography height and atmospheric state is not modeled.

Fig. 7.12. Scatter between collocated SEVIRI and MISR optical depths over the Saharan region for the
period March 5–30, 2006. The SEVIRI results, all of which are for 12:12UT, have been retrieved with the
thermal-infrared version of ORAC on a 10 km sinusoidal grid, which has then been interpolated onto the
MISR level 2 optical depth grid. The 1-to-1 line is indicated by the dashed line, while the solid line gives
the best-fit line (least absolute deviation fit, weighted by the error in both datasets), the equation of which
is also given.
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* The channels used in the retrieval are fairly free of molecular absorption by atmospheric
trace gases.

* Instrument and solar zenith angles must be less than 
 80� for the plane parallel ra-
diative transfer used in the forward model to be reliable.

The algorithm can also be easily modified to make use of different forward models, a
feature which has allowed the development of the BRDF, ATSR dual-view and ther-
mal-infrared versions of the algorithms presented.

The example results presented demonstrate that the ORAC algorithm shows good
agreement with ground-based measurements of aerosol optical depth, as well as with cur-
rent operational satellite aerosol products. The quality of the products combined with the
adaptability of the algorithm, makes the ORAC algorithm unique in its ability to quickly
adapt to a range of different instruments. This, combined with the strengths inherent in an
optimal estimation retrieval scheme, namely:
* statistically rigorous error propagation and error estimates on all retrieved quantities,
* the inclusion of a priori information in a statistically consistent way,
make ORAC a strong addition to the stable of satellite aerosol retrieval algorithms.
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8 Benefits and limitations of the synergistic aerosol
retrieval SYNAER

Thomas Holzer-Popp, Marion Schroedter-Homscheidt, Hanne Breitkreuz,
Dmytro Martynenko, Lars Klüser

1. Introduction

Air pollution by solid and liquid aerosol particles suspended in the air is one of the major
concerns in developed countries because of potential health impact of increasing numbers
of nano-particles in particular from diesel engines (see, e.g., Pope et al. [2002] and Sted-
man [2004]), as well as in developing countries with their high particle concentrations in
the air. Furthermore, windblown dust can also act as carrier for long-range transport of
diseases, e.g., from the Sahara to the Caribbean or Western Europe [Pohl, 2003], or even
around the globe [Prospero et al., 2002]. Also well known in principle are direct (by re-
flecting light back to space) and several indirect (e.g., by acting as cloud condensation
nuclei) climate effects of aerosols, although large uncertainties exist in the exact values
of the forcing [IPCC, 2007]. Finally, the highly variable atmospheric aerosol load has a
major impact on satellite observations of the Earth’s surface that need to be atmospheri-
cally corrected for quantitative analysis and on the solar irradiance which is exploited in
solar energy applications (aerosols are the determining factor in clear-sky conditions). In
all these cases an estimation of the type of aerosols is required for an accurate quantitative
assessment. For example, Kaufman, et al. [2002] point out, that the absorption behavior
of particles (mainly soot and minerals) needs to be known in order to assess their total
direct and indirect climate effects. This is because strongly absorbing particles can
regionally reverse the sign of the aerosol direct forcing from cooling to heating or suppress
cloud formation. Therefore, attempts have been made to extend satellite aerosol retrieval
beyond observation of the spatial–temporal distribution patterns to estimate the type of
aerosols.

In recent years the satellite monitoring capabilities in particular to derive maps of ae-
rosol optical depth (AOD) have increased tremendously. A good overview of different
satellite retrieval principles to derive AOD is presented in Kaufman et al. [1997a] and
a review of achieved AOD retrieval capabilities is given in Kaufman et al. [2002]. Exam-
ples of satellite retrieval of additional aerosol optical properties include the Ångström
coefficient, (e.g., AATSR dual view [Veefkind et al., 1999]) and the separation into
fine and coarse mode aerosols (e.g., MODIS multispectral collection 5 [Levy et al.,
2007]; fine mode AOD only by POLDER polarized multispectral measurements
[Deuzé et al., 2001]). Further examples of aerosol characterization use a choice from pre-
defined aerosol types (e.g., MISR multi-angle [Kahn et al., 2005]), the single scattering
albedo (MODIS deep blue [Hsu et al., 2004]), or derived quantities such as particle number
concentrations (e.g., parameterization based on MERIS multispectral measurements von
Hoyningen-Huene et al., 2003; Kokhanovsky et al., 2006]).



Another approach that has been used to extract additional aerosol properties (beyond
AOD) is the SYNAER (SYNergistic AErosol Retrieval) method which was developed to
exploit data from a combination of a radiometer (ATSR-2, Along-Track Scanning Radio-
meter 2) and a spectrometer (GOME, Global Ozone Monitoring Experiment) onboard a
single platform (ERS-2, European Remote Sensing Satellite) to provide a multispectral
retrieval ranging from deep blue to red bands with two different spatial scales [Holzer-
Popp et al., 2002a]. A first-case study validation and retrieval of 15 coincidences of these
ERS-2 data with AERONET observations showed a multispectral AOD accuracy of 0.1 at
three visible wavelengths [Holzer-Popp et al., 2002b].

The SYNAER method is further detailed in this chapter, which is divided into six sec-
tions. Section 2 gives an overview of the SYNAER sensors and an analysis of its infor-
mation content with regard to the aerosol type including realistic noise in the retrieval. The
chapter then gives a comprehensive description of the SYNAER methodology and details
the major advances of the new SYNAER methodology developed during the transfer to
ENVISAT in Section 3: extension of the aerosol component database with moderately
absorbing soot and mineral dust, two additions to the cloud screening, and an improved
dark field method. Section 4 contains a validation of the SYNAER algorithm with the
modifications comparing the results of AOD at 440, 550 and 670 nm for 42 orbits of
summer 2005 against AERONET measurements. In addition a first 4-month dataset
derived with the SYNAER method from ENVISAT sensors AATSR and SCIAMACHY
is discussed. The chapter concludes with a discussion and outlook to further validation and
a long time series by combining ENVISAT and METOP retrievals with SYNAER in
Section 5.

2. SYNAER: exploited satellite instruments and information
content analysis

2.1 Exploited sensors

ATSR-2 and GOME have been acquiring data from onboard the European platform ERS-2
since 1995. The two instruments simultaneously observe the same area on the globe.
ATSR-2 measures Earth reflected radiances in five spectral bands centered at 0.55,
0.67, 0.87, 1.6, and 3.7 lm (at 3.7 lm also including emitted terrestrial radiation) with
bandwidths of 25 to 66 nm and brightness temperatures in two thermal channels at 11
and 12 lm. All observations are taken under two viewing angels (nadir and approximately
55� forward) with a ground resolution of approximately 1.1 km2 at nadir. The main ap-
plication of ATSR-2 is the retrieval of sea-surface temperature with high accuracy [Zavody
et al., 1995].

GOME observes near-nadir reflection from the Earth in the range from 240 to 790 nm
with a spectral resolution of 0.2 nm to 0.4 nm and a pixel size of either 320 � 40 km2 or
80 � 40 km2. The latter pixel size was selected during the entire 9-months commissioning
phase and since July 1997, it has operated in this coarser resolution mode 3 days per
month. Its principal goal is the monitoring of stratospheric ozone but other stratospheric
trace gases can be also measured [Burrows et al., 1999]. Both instruments measure the solar
illumination regularly. Consequently, reflectances R ¼ p � L=l0 � E0 can be calculated,
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where L is the reflected light radiance and E0 is the solar irradiance. This significantly
reduces calibration errors as compared to the use of Just calibrated radiances. The
cross-correlation of spectrally and spatially integrated reflectances measured by both in-
struments was found to satisfy high accuracy requirements with deviations less than 4 % of
absolute reflectance [Koelemeijer et al., 1997].

The Advanced Along-Track Scanning Radiometer (AATSR) and the Scanning Imaging
Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) are flown on the
European platform ENVISATwhich was launched on March 1 in 2002. AATSR has spatial
and spectral characteristics very similar to ATSR-2 but the data are provided in a simpler
format (one data file contains one entire orbit). SCIAMACHY has a nadir and an addi-
tional limb viewing mode. Its nadir pixel size is 60 � 30 km2 and it has an extended
spectral range covering 240 to 1750 nm completely and 1940 to 2380 nm partly with a
spectral resolution between 0.2 and 1.5 nm. In the latest calibration version the cross-cor-
relation of spectrally and spatially integrated reflectances measured by both instruments
and against another radiometer MERIS (Medium Resolution Imaging Spectrometer) on-
board ENVISAT was found to satisfy high accuracy requirements with deviations of the
order of 1 % [Kokhanovsky et al. 2007].

2.2 Analysis of the information content

It is important to understand the information content of remotely sensed observations and,
therefore, how different observations contribute to a retrieval algorithm. By observing re-
flectances at different wavelengths, the size and quality of measurements can be improved.
However, there is a point where adding further observations has a negligible effect.
Further, with the vast increase in satellite data, it is not possible to include all available
observations in retrievals. Therefore, it is necessary to select an optimal subset of the ob-
servations such that the important information is retained. In the case of satellite retrievals,
there is a complicated relationship between observed and retrieved variables. The infor-
mation content determines how many linearly independent pieces of information are con-
tained in a set of observations. This not only depends on the observations, but on the algo-
rithm in which they are used, for example on the radiative transfer model and on the errors
in the observations.

The SYNAER method consists of two parts (see Section 3.1 for more detail). In the first
part the radiometer data are used to retrieve aerosol optical depth and surface reflectance
for selected aerosol types. In the second part the spectrometer data are then used to select
the most plausible aerosol type. As the estimation of the aerosol type is the most innovative
part of SYNAER, this section provides an analysis of the information content of the second
SYNAER part with regard to aerosol composition [Holzer-Popp et al. 2008]. Conse-
quently, the focus of this analysis is on exploiting the spectrometer measurements expli-
citly using the results of the first retrieval step, namely aerosol optical depth at 0.55 lm and
surface reflectance at 0.55, 0.67 and 0.87 lm for each aerosol mixture. In the analysis of
the information content seven basic components (water-soluble, water-insoluble, sea salt
accumulation and coarse mode, anthropogenic soot, biogenic soot and mineral trans-
ported) were used to define a set of 40 mixtures (see Table 8.2, but for insoluble compo-
nents INSL, INSO, MITR, MILO only those with high absorption, i.e. INSO, MITR, are
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used), which was then applied to radiative transfer calculations of simulated SCIAMA-
CHY spectra using the same radiative transfer code.

Information theory or communication theory is concerned with the information content,
i.e. the independent degrees of freedom, contained in a measurement. Information theory
was first used by electrical engineers to design better telecommunication systems, but now
has a wide variety of applications. In particular, concepts from information theory have
been applied to satellite retrieval studies (e.g., Rodgers [2000]). In satellite retrieval studies,
it is useful to obtain a single number as a quantitative measure of the information content.

One of the methods used to examine the information content is the singular value de-
composition (SVD). SVD is a useful tool to identify the dominant or important part of the
observations. This allows us to identify the number of parameters which can be retrieved
from the observations and the variables which can be determined. Generally, the number of
observations does not equal the degrees of freedom because the observations are not in-
dependent and there is usually high correlation between instrument bands. For any remote
measurement, the measured quantity, y, is some vector-valued function F of the unknown
state vector x, and of some other set of parameters b excluded from the state vector, con-
sidering also the experimental error term e:

y ¼ Fðx; bÞ þ e; ð1Þ

where y 22 Rm is the measurements vector of dimension m, x 22 R is the state vector of
dimension n, b is the vector containing all the other parameters necessary to define the
radiative transfer from the atmosphere to the spacecraft, F : Rn ! Rm is the forward mod-
el that describes the physics of the measurements that map from the state space to the
measurements space and e 22 Rm is the measurement error vector.

The measurement vector for SYNAER retrieval consists of simulated spectra for 40
different aerosol mixtures for a given surface type. The state vector consists of 40 elements
corresponding to the different aerosol mixtures and 12 elements corresponding to prede-
fined SYNAER surface types: savanna, pine forest, bog, pasture, La Mancha, plowed field,
and Hildesheimer Börde after Kriebel [1977] and Köpke and Kriebel [1987]; vegetation,
water, soil, sand, and snow after Guzzi et al. [1998]. For the purpose of information con-
tent, error analysis and the inversion procedure it is necessary to linearize the forward
model around a reference state x0:

y� Fðx0Þ ¼ @F

@x
ðx� x0Þ þ e ¼ Kðx� x0Þ þ e; ð2Þ

where K is the weighting function matrix of dimension m� n. Each element of K is the
partial derivative of a forward model element with respect to a state vector element:

Kij ¼ @FðxÞi
@xj

; 8i ¼ 1 . . . ; m; 8j ¼ 1 . . . ; n: ð3Þ

The act of measurement maps the state space into the measurement space according to the
forward model. Conversely, a given measurement could be the result of a mapping from
anywhere in the state space. For this reason it is necessary to have some prior information
about the state, which can be used to constrain the solution.
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The information content is condensed into the degrees of freedom for signal (DFS).
DFS can be interpreted as the number of independent linear combinations of the state
vector that can be independently retrieved from the measurements. It is given by:

DFS ¼
X k2

i

1 þ k2
i

; ð4Þ

where ki are the singular values of K 0 :¼ ðSeÞ�1=2KðSaÞ1=2. Se and Sa are the measurement
covariance and a priori covariance matrices. The measurement covariance matrix Se has a
diagonal form, with diagonal element r2

e ¼ 0:000001 (i.e. the relative error of measured
reflectance spectrum values, which are typically around 0.1, is about 1 %). The a priori
covariance matrix Sa has a block diagonal form, because there is no correlation in retrieval
of surface type and retrieval of aerosol type. The first non-diagonal part of Sa is the ex-
plicitly calculated covariance between percent contributions for 40 aerosol mixtures from
Table 8.2. The second part of the block diagonal matrix Sa (albedo part) is diagonal, since
there is no correlation between different channels for the pre defined 12 SYNAER albedo
spectra. The diagonal values for all albedo surfaces, except for the ‘snow’ case, are equal to
0.0001 (rA ¼ 0:01). For the much brighter ‘snow’ type r2

A ¼ 0:0016 is chosen
(rA ¼ 0:04). These values are taken in correspondence with the albedo values for the
different surface types.

Fig. 8.1(a) shows example spectra of top-of-atmosphere reflectance which were used for
this analysis over six surface types and the 40 mixtures for a typical retrieval condition:
‘vegetation’, ‘fresh snow’, ‘pine forest’, ‘open water’, ‘bare soil’ and, as a special case, for
‘black surface’ type, which corresponds to a numerical model of absolutely dark surface.
Fig. 8.1(b) describes the dependence of DFS on aerosol optical depth, whereas Fig. 8.1(c)
shows the DFS dependence on both sun elevation angle and AOD. The non-monotonous
growth of DFS with the sun elevation angle is supposed to be due to the combination
of the various phase functions of the basic aerosol components. Those values for typical
retrieval conditions as depicted in Fig. 8.1(b) are shown in Fig. 8.1(c) by blue squares. With
increasing AOD, the increase of the DFS values is relatively fast (e.g., at AOD ¼ 0.07, DSF
is at 3.3). This means that the SYNAER aerosol type retrieval shows meaningful results
also for small values of AOD and already at AOD ¼ 0.15 the curve in Fig. 8.1(b) reaches
its saturation at about DSF ¼ 4. The offset value of the DFS of 2 at AOD ¼ 0 (i.e. no
aerosol content and thus no aerosol signal) is supposed to correspond to the surface bright-
ness and AOD (which are provided from the first SYNAER step). The results of the second
step in the SYNAER retrieval are obviously also dependent on the surface type over which
the retrieval was made (Fig. 8.2). An analysis was made for the same set of six different
surface types as in Fig. 8.1(a). Obviously, the retrieval does not work properly over bright
surfaces, such as snow or desert, due to larger absolute noise. Here DFS has approximately
a value of 2; i.e. no additional information content for the aerosol type. The maximum
values of DFS are over vegetation and water pixels. This agrees well with the choice
of surface type for the dark field method. But also for sparsely vegetated surfaces (see
the soil example, where DFS is 3 in Fig. 8.2 versus DSF ¼ 4 for vegetation) the informa-
tion content for the aerosol type is smaller but not negligible (i.e. 2).

In summary, this analysis shows that DFS for the aerosol type (after eliminating the DFS
offset of 2) exhibits a variation from 0 to 3.5. These values of DFS correspond only to the
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determination of the aerosol type, whereas the offset of 2 degrees of freedom is related to
the first part of SYNAER, where AOD and surface brightness are retrieved from the radio-
meter measurements. It should be noted that, based on the retrieved surface reflectances at
0.55, 0.67, and 0.87 lm in this first part of SYNAER, two vegetation indices are calcu-
lated, which are then used to select the surface type, i.e. one of 12 predefined spectral
form curves (while the absolute surface reflectance values are normalized to the retrieved

Fig. 8.1(a). Simulated reflectance spectra over six surface types as function of wavelength from 0.415 to
0.675 lm and for a typical retrieval condition with solar zenith angle 42.5� and aerosol optical depth
(AOD) at 0.55 lm of 0.35.
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values at the three wavelengths; see Section 3.7 for more detail). Thus, in the second
SYNAER part, the spectra simulations are only done for one selected surface spectrum
and accordingly only 1 degree of freedom is needed. It is thus theoretically proven that
SYNAER can determine more than two independent aerosol properties in addition to AOD
and surface brightness. Also this analysis provides a deeper insight into favorable condi-
tions and limitations of the aerosol type retrieval with SYNAER (surface, sun elevation,
AOD).

Fig. 8.1(b). Degrees of freedom of SYNAER exploiting the 10 wavelengths from 0.415 to 0.675 lm as
function of aerosol optical depth (AOD) at 0.55 lm for a typical retrieval condition with solar zenith angle
42.5� and surface type ‘vegetation’ (from Holzer-Popp et al. [2008]).

Fig. 8.1(c). Degrees of freedom of SYNAER exploiting the 10 wavelengths from 0.415 to 0.675 lm as
function of aerosol optical depth (AOD) at 0.55 lm and solar zenith angle for surface type ‘vegetation’.
The blue squares indicate the line of a typical retrieval condition shown in Fig. 8.1(b) at solar zenith angle
of 42.5� (from Holzer-Popp et al. [2008]).
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3. The retrieval method

3.1 Method overview

The synergistic aerosol retrieval method delivers aerosol optical depth (AOD) and an es-
timation of the type of aerosols in the lower troposphere over both land and ocean by
exploiting a combination of a radiometer and a spectrometer. In retrieving AOD the
free tropospheric and stratospheric aerosol concentration are kept constant at background
conditions, whereas the boundary layer aerosol concentration and type and a possible dust
layer are varied. The type of aerosol is estimated as percentage contribution of represen-
tative components from an extension of the OPAC (Optical Parameters of Aerosols and
Clouds; [Hess, et al. [1998]) dataset to AOD in the boundary layer. The high spatial re-
solution including thermal spectral bands of the radiometer permits accurate cloud detec-
tion. The SYNAER aerosol retrieval algorithm comprises then two major parts: step 1,
detailed in sections 3.5 and 3.6 (a dark field method exploits single wavelength radiometer
reflectances to determine aerosol optical depth and surface reflectance over automatically
selected and characterized dark pixels for a set of 40 different predefined boundary layer
aerosol mixtures) and step 2, described in Section 3.7 (after spatial integration to the larger
pixels of the spectrometer these parameters retrieved in the first step are used to simulate
spectra for the same set of 40 different aerosol mixtures with the same radiative transfer
code). A least-squares fit of these calculated spectra at 10 wavelengths to the measured
spectrum delivers the correct AOD value and – if a uniqueness test is passed – the most
plausible spectrum and its underlying aerosol mixture. The entire method uses the same
aerosol model of basic aerosol components, each of them representing optically similar
aerosol species. These basic components are externally mixed into 40 different aerosol
types meant to cover a realistic range of atmospheric aerosol masses. Also the underlying
radiative transfer code (SOS; [Nagel et al., 1978], extended after Popp [1995]) is consis-
tently used throughout all retrieval steps. Fig. 8.3 gives an overview of the SYNAER meth-
od with more detailed descriptions (based on the original publications) given in the rest of
Section 3. For clearer reference we name the original SYNAER version 1.0 [Holzer-Popp
et al., 2002a] and the improved version 2.0 [Holzer-Popp et al., 2008].

Fig. 8.2. Degree of freedom of SYNAER exploiting the 10 wavelengths from 0.415 to 0.675 lm for ae-
rosol optical depth AOD at 0.55 lm ¼ 0.35 and solar zenith angle 42.5� for different surface types: VE-
GE ¼ vegetation, SOIL ¼ bare soil, PINE ¼ pine forest, WAT ¼ open water, SNOW ¼ fresh snow,
BLACK ¼ black surface (from Holzer-Popp et al. [2008]).
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3.2 Radiative transfer model and data preparation

3.2.1 Radiative transfer model

All radiative transfer calculations are conducted with a plane-parallel iterative code (suc-
cessive orders of scattering, SOS; Nagel et al. [1978]) which includes full multiple scat-
tering. The atmosphere is distributed in at least 15 vertical layers up to 30 km which are
subdivided if the total optical thickness of one layer becomes larger than 0.1. This guar-
antees an accurate modeling of multiple scattering. To correct gas absorption by ozone,
oxygen and water vapor in atmospheric window channels, an exponential sum fitting
method has been integrated into SOS [Popp, 1995] based on absorption cross-sections
from LOWTRAN7 [Kneizys et al., 1988]. Ozone columns are taken from the spectrometer
measurements, whereas the total water vapor content is fixed at a climatologic average of
2.3 g cm�2 (only the radiometer near-infrared measurements are somewhat affected by it).

Fig. 8.3. Flowchart of major processing steps in the SYNAER retrieval method. SYNAER is based on
three processing columns: radiometer reflectances enable cloud detection, aerosol optical depth retrieval
over dark fields and surface albedo retrieval as input to spectrometer simulations. Measured spectra from a
contemporary spectrometer are corrected for cloud and ozone effects and then used to select the most
plausible aerosol type. The calculations are conducted for a set of typical atmospheric aerosol mixtures
which are composed from a basic set of aerosol components. The result of this synergistic procedure is the
aerosol optical depth and the aerosol type.
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In order to account for the strong forward peak of aerosol scattering for large particles
a delta-peak approximation is combined with an expansion of the phase function into
Legendre polynomials up to the order of 450 (order of expansion is selected automatically
to meet an accuracy criterion of 1 %). For a fast application in the aerosol retrieval pre-
calculated radiative transfer tables are used. Spectral reflectances are then calculated from
bi-quadratic polynomials as a function of surface albedo and aerosol optical depth. Vertical
profiles of pressure, temperature and aerosols are based on the mid-latitude summer atmo-
sphere [McClatchey et al., 1972]. The aerosol extinction profile within the complete
boundary layer is multiplied by a factor to vary the integrated boundary layer aerosol op-
tical depth. The bi-directionality of surface reflectance is taken into account in step 1 of the
retrieval (aerosol optical depth retrieval with ATSR-2 over dense dark vegetation) by using
a normalized bi-directional reflectance distribution function (BRDF) for pine forest [Krie-
bel, 1977]. As bi-directional behavior is typically defined by the density of vegetation
cover this normalized BRDF is suitable for dense dark vegetation. Furthermore it was
shown by [Popp, 1995] that using any average realistic normalized BRDF results in fewer
errors than assuming Lambertian reflectance behavior. The spectrometer measurements
over different surface types are simulated as Lambertian reflectors because the large pixel
size makes a weak anisotropic behavior of near-nadir observations plausible.

3.2.2 Preparation of measured data

First, normalized radiance values of the radiometer channels at 550, 670, 870 and
1,650 nm are converted into reflectances and the cloud-detection algorithm APOLLO
is applied (see Section 3.3). By use of a global land–water mask data set in APOLLO
(which was derived from the World Database 2 of 1960) and a simple median filter pixels
in the neighborhood of clouds (which might be affected by cloud shadow or brightening
[Nikolaeva et al., 2005]) and in coastal areas (where underwater reflectance or suspended
sediments and chlorophyll prevail and might mislead the retrieval over water) are flagged.

For the GOME reflectance spectra a ‘jump correction’ [Slijkhuis, 1999] is applied using
information from the polarization measurement devices (PMD) of GOME, which are read
out with an integration time much smaller than the detector arrays and synchronized with
the first detector pixel. For SCIAMACHY so far the operational geo-located reflectance
spectra (level 1c product) are obtained. The examples presented in this chapter were de-
rived using version 5.4 spectra. As the absolute radiometric calibration of both spectro-
meters shows significant errors, for each pixel the relative difference of co-located spectro-
meter pixels (spectrally integrated over the response function of the radiometer pixel) with
spatially integrated radiometer pixels are calculated to determine a pixel-wise correction
factor which is then applied to the entire visible spectrum of GOME and SCIAMACHY.
Also for both spectrometers (GOME and SCIAMACHY), the total ozone amount (opera-
tional GOME and SCIAMACHY level 2 products) for each pixel is used to correct the
ozone absorption inside the Chappuis spectral region. To reduce perturbations with high
spectral variability (e.g., the Ring effect, a second-order Raman scattering) spectral reflec-
tances at all exploited wavelengths are integrated over windows of 2 nm.
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3.2.3 Cloud correction of the spectrometer measurements

The simulated spectrometer measurements do not contain any cloud contribution. There-
fore, the fit between simulated and measured spectra needs a cloud corrected ‘measured’
spectrum. This is very significant as only a few percent of spectrometer pixels are totally
cloud-free. The basic idea for cloud correction is the synergistic use of the radiometer and
spectrometer information (see Holzer-Popp et al. [2002a] for more detail).

The radiometer cloud detection (see Section 3.3) discriminates between fully cloudy,
partly cloudy and cloud-free ATSR-2 pixels and retrieves the cloud fraction of the partly
cloudy (1 � 1 km2) pixels. Through summation of fully cloudy and partly cloudy radio-
meter pixel reflectances inside one spectrometer pixel, the reflectance of the cloudy spec-
trometer pixel part is separated from the reflectances of the cloud-free spectrometer pixel
part. For partly cloudy radiometer pixels their retrieved cloud cover fraction retrieved is
taken into account. The cloudy part of the spectrum seen by the spectrometer can be taken
as equal to the radiometer-integrated cloudy reflectance based on the assumption that the
underlying surface within the spectrometer pixel is, on average, homogeneous. The dif-
ference between the integrated reflectance of all radiometer pixels and of only the cloudy
radiometer pixels gives the necessary correction term for the measured spectrum. This
difference is calculated for all three radiometer wavelengths at 0.56, 0.67 and
0.87 lm. Additionally, an extrapolation of the correction term at the three AATSR wave-
lengths to a subset of 10 wavelengths in the spectrometer spectral range, which are
exploited in the SYNAER method (see Section 3.7), is performed with a second-order
fit for non-vegetated surfaces. For vegetated surfaces the influence of the vegetation
on a cloud spectrum is modeled with a normalized sun-angle-dependent structure curve
that describes how the difference between cloudy and cloud-free spectra is typically mod-
ified through vegetation.

After application of this approach, the cloudy part of the spectrometer spectrum is
known without any assumption of cloud type or cloud microphysics. Knowing the cloud
fraction inside the spectrometer pixel from the summation of the radiometer cloud infor-
mation, a linear mixing of the cloudy and cloud-free parts of the spectrum into a mixed
spectrum can be assumed, neglecting nonlinear 3D effects of clouds which are still an
unknown issue of ongoing research. This then delivers the cloud-corrected spectrum.

It was shown in Holzer-Popp et al. [2002a] that this approach represents the cloud in-
fluence very well for non-vegetated surfaces in the wavelength range between 400 and
800 nm. It should be noted that the gas absorption bands cannot be fitted, but this
does not matter as SYNAER exploits only wavelengths selected especially for low gas
absorption (see Section 3.7). The underlying simulations were performed for several cloud
types (cumulus, stratus, altostratus, nimbostratus, stratocumulus and cirrus), for cloud top
heights varying between 0.5 and 10 km, for solar zenith angles between 0 and 80�, for
several aerosol types (urban, rural, maritime, tropospheric, desert as described in MOD-
TRAN; Kneizys et al. [1996]) and several surface types used in SYNAER (see Sec-
tion 3.7). The ozone amount was always set to zero due to the fact that in SYNAER a
separate ozone correction using GOME ozone columns is performed before the cloud cor-
rection. The absolute difference between the second-order fit and simulated cloud spec-
trum was typically less than 0.02 reflectance units (at 400 nm, where largest errors oc-
curred). The procedure was validated for GOME pixels with up to 35 % cloud coverage;
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for high cloud fractions it is expected that the inaccuracy of this approach dominates the
total inaccuracy and spoils the entire retrieval procedure.

3.3 Accurate cloud detection and its improvements

Accurate cloud detection is an important prerequisite for aerosol retrieval. The well es-
tablished APOLLO (AVHRR Processing Scheme Over CLoud Land and Ocean; Saunders
and Kriebel [1988], Kriebel et al. [1989] and Kriebel et al. [2003]) software was adapted
for ATSR-2 and AATSR data. Five radiometer channels which correspond to AVHHR
spectral bands (0.67 and 0.87, 3.7, 11 and 12 lm) are used for cloud detection and the
1.6 lm channel is used for separating clouds from snow. APOLLO yields cloud fraction,
four cloud layers and cloud optical parameters. Few errors occur along the coast due to the
limited accuracy in geo-location through mapping to a land–sea mask, but these coast
pixels are not used in SYNAER anyway. Because snow pixels are too bright, they cannot
be used for aerosol retrieval (see Section 3.5) and they are also flagged as forbidden values.
APOLLO also determines pixels affected by sunglint through a combination of a visible
reflectance threshold and a geometric calculation of the potential sunglint area. The cap-
ability of retrieving cloud cover in boxes of approximately 1 km2 provides a significant
strength to SYNAER because it reduces the erroneous aerosol detection due to the pre-
sence of sub-pixel clouds significantly. It even allows the exploitation of partly cloudy
spectrometer pixels as described in Section 3.2.3.

Unfortunately, adapting the cloud-screening scheme to the ATSR radiometers has two
shortcomings, which have to be accounted for in order to derive an accurate cloud mask for
aerosol retrievals. First, heavy aerosol load over oceans (mainly mineral dust, less frequent
smoke plumes from wildfires) is classified as ‘cloudy’ by APOLLO and these AATSR
pixels are then not used for the retrieval of AOD in SYNAER, leading to slightly reduced
AOD values in the dust belts. The second shortcoming is an improper detection of shallow
cumulus cloud cover over land due to a simple temperature threshold test for the rejection
of cloudy pixels in order to not classify desert surfaces as low clouds. Thus, in some ob-
viously cloudy AATSR scenes no clouds are detected, and those much too bright pixels are
used for the AOD derivation, leading to high AOD over land. Both these shortcomings of
the APOLLO cloud-detection scheme applied to the ATSR radiometers essentially require
corrections to the cloud-screening procedure, which were implemented in SYNAER ver-
sion 2.0 [Holzer-Popp et al., 2008].

3.3.1 Corrected mis-classification of mineral dust over ocean

Heavy dust plumes in the Atlantic region are usually embedded in an air layer often called
Saharan Air Layer (SAL), which is described in detail, e.g., by Wong and Dessler [2005].
The main characteristic properties of this SAL are being warm, dry and well mixed. Thus
11 lm brightness temperatures of dust-laden pixels are well above 273 K. So this bright-
ness temperature value is chosen as a first threshold, which prevents cool mixed-phase or
ice clouds from being taken into account for the further analysis, together with scenes in
polar regions. This condition can also be met by thin cirrus or semi-transparent clouds, so
another criterion for the following dust discrimination scheme is the cloud type ‘low cloud’
determined by the original APOLLO tests.
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Dunion and Velden [2004] use images of the Geostationary Operational Environmental
Satellites (GOES) to track the SAL across the Atlantic Ocean. They discriminate the
‘SAL-strength’ by means of the brightness temperature difference (BTD) between
11 lm and 12 lm, arguing that non-SAL BTD values are well above + 5 K. The SAL-
strength analysed by Dunion and Velden [2004] does not directly represent the aerosol
load or optical depth and also is sensitive to cloud screening.

The BTD alone does not seem to be an appropriate measure to discriminate mis-clas-
sified clouds (not shown), but it is a good method to select AATSR pixels which have to
undergo further inspection. In this APOLLO improvement scheme a slightly more con-
servative BTD threshold of + 2 K is used, because heavy aerosol plumes can be shown to
inhibit values well below this threshold (and low aerosol loads seem not to be mis-classi-
fied by APOLLO). Evan et al. [2006] use different BTD thresholds in different stadiums of
their dust-detection algorithm with the minimal threshold being � 0.5 K and the maximum
BTD value, for which dust classification remains possible, being + 3.5 K. For the purpose
of saving computing time a single BTD threshold of + 2 K has been chosen here for the
initial test.

Furthermore two reflectance thresholds are applied to pre-select possible dusty mis-
classified pixels: they have to inhibit 1.6 lm reflectances below 0.2 and 0.67 lm reflec-
tances below 0.3. Brighter pixels classified as cloudy by APOLLO remain unchanged.

Thus the pre-selection scheme of possible mis-classified pixels consists of the following
tests:

T11lm > 273 K and R1:6lm < 0:2 and R0:67lm < 0:3 and T11lm � T12lm � 2 K ð5Þ

Pixels classified as low-cloud covered by APOLLO, for which these tests apply, can still be
cloud-contaminated or aerosol-laden. The discrimination between clouds and mineral dust
can be achieved by means of the ratio of reflectance at 1.6 lm and 0.67 lm due to the
higher reflectance of water clouds at 1.6 lm compared to mineral dust.

Fig. 8.4 shows AATSR reflectance values at 1.6 lm and 0.67 lm for a desert dust out-
break scene from March 9, 2006, off the western coast of North Africa. The analysis in-
cludes a box area of 1,000 � 512 AATSR pixels. For 0.67 lm reflectance greater than
about 0.1 one can clearly distinguish two different regimes in the scatterplot. The lower
branch, colored blue in the figure, represents pixels which can be identified as dust-laden
by visual inspection (not shown). The upper branch, colored red, can be identified as de-
finitely cloud covered in RGB images of the scene.

The discrimination between both branches does not exactly follow the reflectance ratio
of 1. Dust discrimination requires the condition

R1:6lm þ 0:035

R0:67lm
< 1 ð6Þ

to be met. The additional constant, being 0.035 for AATSR, originates from a best-fit test
and can be shown to differ slightly for other sensors than AATSR (e.g., it is 0.03 for
SEVIRI onboard the MSG satellite).

Furthermore, Fig. 8.4 shows that discrimination between dust and cloud by means of the
reflectance ratio is not possible for 0.67 lm reflectance below about 0.1, values corre-
sponding to moderate to low dust load or thin low-level clouds.
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For pixels, which meet the conditions in (5) and inhibit the 0.67 lm reflectance below
0.1, an even more conservative BTD threshold of 0 K is applied to discriminate mis-clas-
sified pixels, as described in Huang et al. [2006] and also in Evan et al. [2006], while the
reflectance ratio test is not applied for those pixels.

3.3.2 Shallow convection over land

The original adapting of APOLLO to AATSR data includes a temperature threshold test
scheme for the exclusion of very bright desert surfaces from cloud detection. In this
scheme, cloudy pixels having 11 lm brightness temperatures above a scene-dependent
threshold between 285 K and 305 K are rejected (from cloud detection) if they inhibit
0.67 lm reflectance below 0.6. This test is included into the APOLLO scheme to deter-
mine whether a pixel is cloudy or shows bright desert surface. Without this test, APOLLO
classifies many desert areas as ‘cloudy’ due to their high shortwave reflectance. On the
other hand, inclusion of this test rejects pixels, which obviously show low-level convective
cloud fields with warm cloud-top temperatures somewhere in the temperature range of the
thresholds. This makes the application of another test over land necessary, which accounts
for these cloud fields and flags them ‘cloudy’.

Only pixels classified as ‘cloud-free’ by APOLLO after the temperature rejection tests
within the APOLLO scheme are regarded for the additional tests described below. Further-
more the pixels have to inhibit 11 lm brightness temperatures in the range 285 –305 K,
which covers the range of possible thresholds for the temperature rejection test. Pixels
having 11 lm brightness temperatures above the highest possible threshold value of

Fig. 8.4. Scatter plot of AATSR reflectances at 1.6 lm against reflectances at 0.67 lm for a scene from
09.03.2006 showing the differentiation of heavy dust load in blue and shallow stratocumulus clouds in red
(from Holzer-Popp et al. [2008]).
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305 K remain flagged cloud-free, following the original APOLLO strategy for desert sur-
faces.

As a second test, the ratio of reflectance at 1.6 lm and 0.87 lm has to be above 0.65 and
below 1.0. This somewhat arbitrary threshold accounts for the near-equality of those re-
flectances for dense water clouds and desert surfaces which often show reflectance ratios
well above 1.0 (not shown).

As the described conditions alone are not enough to distinguish between desert surface
and low cloud fields, pixels meeting the above conditions are re-classified as ‘cloudy’, if
either of the conditions

R0:87lm > 0:25 and R0:67lm > 0:25 and T11lm � T12lm 	 1:25 K ð7Þ

are met or if

R0:87lm > 0:4 and R0:67lm > 0:4 and � 0:5 < T11lm � T12lm < 1:25 K ð8Þ

is true.
The threshold of 0.4 for 0.67 lm and 0.87 lm reflectance is adapted from Rosenfeld

and Lensky [1998] for pixels with BTD lower than 1.25. This BTD test split value of
1.25 K results from the APOLLO algorithm. So, for BTD values greater than 1.25 a
slightly lower reflectance threshold of 0.25 can be chosen, which follows the cloud-detec-
tion method of Kaufman and Fraser [1997]. Actually, those authors use a threshold 0.2 for
0.67 lm reflectance, combined with a difference in brightness temperatures between
3.7 lm and 11 lm of greater than + 8 K. A slightly higher threshold has been chosen
here because in difference to Kaufman and Fraser [1997] pixels having 11 lm brightness
temperatures warmer than 290 K are also included and no brightness temperature differ-
ence between 3.7 lm and 11 lm is used. Only the combination of both additional tests
enables proper discrimination between rejected desert surfaces and low cloud fields within
the APOLLO cloud detection scheme.

Fig. 8.5 shows an AATSR scene with a large number of obviously mis-classified cloudy
pixels. The left-hand side of the image shows an RGB composite image, in which the low-
level cloud field easily can be observed. On the right-hand side the APOLLO cloud mask is
shown. Green pixels show cloud-free land and white pixels show clouds detected by the
original APOLLO scheme. A clear disagreement between the cloud detection and the
clouds seen in the composite occurs. The red pixels show pixels classified as cloud-cov-
ered by the improved APOLLO scheme, while not by the original one. A great improve-
ment of cloud detection is obvious and clearly shows its necessity.

The improved APOLLO cloud classification, extended by the tests described above, has
been tested by visual inspection with 39 different AATSR orbits of the years 2006 and 2007
during all seasons with many scenes including low-level convection and heavy dust
plumes. These tests show clear improvements of the APOLLO cloud screening for SY-
NAER, which should clearly lead to a reduced bias in AOD both over land and over ocean.

It has to be noted that there can still be some very warm or moderately bright low-level
clouds which go undetected by the APOLLO screening procedure. On the other hand also
slightly more desert pixels, showing no clear evidence of being cloudy, are flagged cloud
covered with the improved scheme, leading to slightly too high mean cloud cover in desert
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regions. But compared to the benefits of additional detection of low-level clouds these mis-
classifications of potentially cloud-free desert pixels can surely be accepted in the case of
SYNAER.

3.4 Aerosol model and its upgrade

3.4.1 The SYNAER aerosol model

The aerosol model consists of three vertical layers with different optical properties. Ae-
rosol optical depth and surface albedo values for the radiometer pixels are derived for 40
boundary layer aerosol mixtures because the retrieved values depend strongly on the ae-
rosol type and relative humidity. The 40 boundary layer aerosol mixtures are constructed
using the external mixing approach [World Climate Program, 1986], which allows the
mixing of arbitrary aerosol types from a set of basic components. Each mixture is defined
by percentage contributions of the components to the boundary layer aerosol optical depth.

Fig. 8.5. AATSR scene over land on March 8, 2006, showing APOLLO misclassifications: left, RGB
composite of bands at 12 lm, 0.87 lm and 0.67 lm; right, corrected cloud mask. Green pixels are
cloud-free land, white pixels are clouds detected by the original APOLLO scheme and red pixels
show clouds only detected by the additional cloud detection scheme (from Holzer-Popp et al. [2008]).
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For large particles with a large specific extinction coefficient, only small percentages of
AOD at 550 nm are used in conformity with observations [Köpke et al., 1997]. However, in
the case of a desert dust outbreak (mixtures number 15–17, and 35–37 in Table 8.2) a
dominating contribution of large particles is allowed. The basic components are defined
by their complex index of refraction, a lognormal size distribution, and humidity depend-
ence for hygroscopic particles. Through Mie calculations the optical properties of each
component are derived and each component summarizes an ensemble of optically similar
particles. For SYNAER version 1.0 [Holzer-Popp et al. 2002a] six components (water sol-
uble, water insoluble, sea salt accumulation and coarse modes, soot, and mineral trans-
ported) from the OPAC database (Optical Properties of Aerosols and Clouds [Hess et
al., 1998]) were used. OPAC was compiled on the basis of a vast number of measurements
and the experiences and thorough evaluation of earlier aerosol climatologies in order to
describe the typical composition of the global aerosol with a representative but small set
of basic components (Global Aerosol Data Set, GADS; Köpke et al., [1997]).

All particles are assumed to be spherical so that their optical properties can be calcu-
lated with Mie theory. Non-sphericity of the particle shape is not taken into account as the
sensitivity of near-nadir measurements of both the spectrometer and the radiometer is ex-
pected to be too low for retrieving information on particle shape. However, for large par-
ticles (minerals, sea salt) this might be a source of error, which has to be investigated
further [Dubovik et al., 2006]. A future option to overcome this limitation is the use
of a specific database for spheroids (e.g.,[Dubovik et al. [2006]). It is noted that these
components are meant to describe a representative set of typical parts of the global aerosol
load, since the optical properties (spectral extinction coefficient, spectral absorption frac-
tion and spectral phase function) are assumed to exist only in a limited number of com-
binations due to their link to the microphysical properties.

Above the boundary layer, free tropospheric and stratospheric aerosol optical depth at
550 nm are set to 0.025 and 0.005, respectively [World Climate Program, 1986], with a free
tropospheric and stratospheric background aerosol type as used in LOWTRAN7 [Kneizys
et al., 1988]. The values of 0.025 and 0.005 were recommended by an expert panel on the
basis of a large number of observations for the purpose of defining a mean standard atmo-
sphere above the boundary layer. This means that the conversion of boundary layer aerosol
optical depth values into total AOD values at 550 nm is simply achieved by adding 0.03.
This approach is justified for the investigated period since 1995 up to now (no major vol-
canic eruption after 1992). The height of the boundary layer is varied from 2 to 6 km to
account for the typical vertical extent of different aerosol types. It should be noted that for
version 1.0 in the case of a desert dust outbreak the ‘boundary layer’ in SYNAER merges
two sub-layers (the desert dust outbreak which is above a background aerosol layer) into
one boundary layer reaching up to 4 km with water-soluble and transported mineral par-
ticles. This approach was adopted as the lower layer is partly masked by the mineral dust
layer above it. Extreme cases of desert dust outbreaks reaching as high as 8 km were there-
fore not covered by this model. Up to now, the surface level has been fixed at sea level
(a future option is the use of an elevation database such as GTOPO30). Due to humidity-
dependent components (water-soluble, sea salt) two models with 50 % and 80 % relative
humidity have been included for each aerosol mixture. The same set of 40 mixtures is
applied to the radiometer aerosol optical depth and albedo retrieval, and the spectrometer
simulations.
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3.4.2 Updates to the original SYNAER aerosol model

Table 8.1 summarizes the relevant microphysical properties and optical characteristics de-
rived from Mie calculations. In SYNAER version 2.0 [Holzer-Popp et al., 2008], on the
basis of more recent campaigns and AERONET data exploitation, some specific updates
have been implemented.

The original soot component was split into two components for strongly absorbing die-
sel soot (DISO) more representative for industrial areas and weakly absorbing biomass
burning soot (BISO). The optical properties of strongly absorbing diesel soot were taken
from Schnaiter, et al. [2003], while optical properties for soot from biomass burning cases,
as for example in Amazonian, South American cerrado, African savanna and boreal re-
gions were adopted from Dubovik et al. [2002]. As size distributions measured in Schnaiter
et al. [2003] were similar to the OPAC database, the size distribution described in the

Table 8.1. Optical and microphysical characteristics of basic components used for external mixing of
in SYNAER (new components are highlighted in italics), where the size distribution is defined by

dNðrÞ
d log r

¼ Nffiffiffiffiffiffi
2p

p � log r
exp � 1

2

log r � log r0

logr

� �2
" #

Component Species Complex
refract.
index at
550 nm

Geometric
mean radius
of lognor-
mal size
distribution

Geometric
standard
deviation
of lognor-
mal size
distribution

Particle
density

Extinction
coefficient
for 1 particle
per cm3 at
550 nm
[km�1]

Single
scattering
albedo at
550 nm

Literature
source

r0 ½lm� r q½g=cm�1�
WASO,
rH ¼ 70 %

Sulfate/
nitrate

1.53 –
0.0055 i

0.028 2.24 1.33 7.9 e-6 0.981 Hess et al.,
1998

INSO Mineral dust,
high hematite
content

1.53 –
0.008 i

0.471 2.51 2.0 8.5 e-3 0.73 Hess et al.,
1998

INSL Mineral dust,
low hematite
content

1.53 –
0.0019 i

0.471 2.51 2.0 8.5 e-3 0.891 Dubovik et
al., 2002

SSAM,
rH ¼ 70 %

Sea salt,
accumulation
mode

1.49 – 0 i 0.378 2.03 1.2 3.14 e-3 1.0 Hess et al.,
1998

SSCM,
rH ¼ 70 %

Sea salt,
coarse mode

1.49 – 0 i 3.17 2.03 1.2 1.8 e-1 1.0 Hess, et al.
1998

BISO Biomass
burning soot

1.63 –
0.036 i

0.0118 2.0 1.0 1.5 e-7 0.698 Dubovik et
al., 2002

DISO Diesel soot 1.49 –
0.67 i

0.0118 2.0 1.0 7.8 e-7 0.125 Schnaiter et
al., 2003

MITR Transported
minerals,
high hematite
content

1.53 –
0.0055 i

0.5 2.2 2.6 5.86 e-3 0.837 Hess et al.,
1998

MILO Transported
minerals,
low hematite
content

1.53 –
0.0019 i

0.5 2.2 2.6 5.86 e-3 0.93 Dubovik, et
al. 2002
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OPAC database are used also for the DISO and BISO components replacing now the ori-
ginal OPAC SOOT component.

For mineral dust, an additional component (MILO, mineral dust with low absorption)
was introduced in order to take dust sources with lower hematite content into account.
Moulin et al. [2001] discuss earlier measurements [Patterson et al., 1997], used for ex-
ample in OPAC, being conducted in regions with large hematite content. As hematite
is a strongly absorbing material, small amounts can change the optical properties of atmo-
spheric dust significantly. Recent measurements (e.g., Schnaiter et al., [2003], Moulin et
al. [2001], and Sinyuk et al. [2003]) in Bahrain, Cape Verde, Sahara and Saudi Arabia (as
regions with low hematite content) show a reduced imaginary part of the refractive index
between 0.001 and 0.002 compared to the OPAC value of 0.0055. Larger hematite con-
centrations can be found only in restricted areas such as the Sahel area, northern India and

Table 8.2. Predefined external aerosol mixtures of the basic components (Table 8.1) which are used in
SYNAER

Component contributions to aerosol optical depth (AOD) at 0.55 lm [%]

No. Name Rel.
hum.
[%]

Vert.
prof.
[km]

WASO INSO INSL SSAM SSCM BISO DISO MITR MILO

1 21 Pure water-soluble 50/80 2 100 50/80

2 22 95 5 5

3 23 Continental 50 2 90 10 10

4 24 85 15 15

5 25 30 70

6 26 Maritime 50/80 2 30 65 5

7 27 15 85

8 28 15 75 10

9 29 Polluted water-soluble 50/80 2 90 10

10 30 80 20

11 31 Polluted continental 50 2 80 10 10 10

12 32 70 10 10 20

13 33 Polluted maritime 50/80 2 40 45 5 10

14 34 30 40 10 20

15 35 Desert outbreak 2–4 25 75 75

16 36 50 3–5 25 75 75

17 37 4–6 25 75 75

18 38 Biomass burning 50/80 85 15

19 39 3 70 30

20 40 55 45

WASO ¼ water-soluble, INSO ¼ insoluble, INSL ¼ insoluble/low hematite, SSAM ¼ sea salt accumulation mode,
SSCM ¼ sea salt coarse mode, BISO ¼ biomass burning soot, DISO ¼ diesel soot, MITR ¼ mineral transported, MI-
LO ¼ mineral transported/low hematite.
For mixture number N and mixture number N + 20 alternative humidity (50 % or 80 %) or mineral composition (INSO or
INSL, MITR or MILO), respectively is chosen.
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eastern Australia [Claquin et al., 1999]. Also, measurements from the GOES-8 satellite
optimally reproduce ground measurements of mineral dust concentrations if an imaginery
part of 0.0015 is assumed [Wang et al., 2003].

As the insoluble component in OPAC (INSO) is modeled with the identical refractive
index as the mineral transported component MITR, also an insoluble component with low
absorption (INSL) was introduced. Both, MILO and INSL have the same size distributions
as the OPAC components MITR and INSO, respectively. In the case of a desert dust out-
break, the lowest aerosol layer of up to 4–6 km is now modeled as two distinct sub-layers
representing a dust layer above background aerosols, as they occur in nature.

Table 8.2 shows the updated definition of the 40 mixtures used in the SYNAER retrieval
method version 2.0. The set of 40 mixtures is meant to model all principally existing ae-
rosol types and allow for some variability in the composition of each type. This set of
mixtures has proven to provide a fit in the GOME spectra retrieval which is in many cases
at a 1 % noise level. Values in the table show the vertical profile, relative humidity in the
boundary layer and the percentage contribution to the optical depth at 0.55 lm of the re-
spective components. Two groups of 20 mixtures, each are applied where either relative
humidity or the absorption of the mineral component are altered. Alternative values are
marked with grey boxes: for example, mixture number 1 has 50 % relative humidity and
mixture number 21 has 80 % relative humidity; mixture number 2 has a 5 % insoluble
(large absorption) component, whereas mixture number 22 has a 5 % insoluble (low ab-
sorption) contribution to the optical thickness at 550 nm.

3.5 Dark field selection and characterization

3.5.1 Dark field selection and characterization over ocean and its improvement

Dark water pixels are selected only over deep cloud-free ocean using the water mask and
cloud filter described in Section 3.3 as shadow (near clouds) and coastal water pixels may
potentially be very dark or affected by ocean color effects. In version 1.0 an average fixed
albedo value of 0.015 at 870 nm was assumed for the aerosol retrieval over these pixels.
The rather high near-infrared albedo value of 0.015 was chosen to account for some minor
diffuse reflection from the water surface. In version 2.0 the near infrared ocean surface
albedo is allowed to vary between 0.005 and 0.035, depending on a ‘chlorophyll index’

CVI ¼ ðR0:55lmÞ � R0:67lm=ðR0:55lm þ R0:67lmÞ; ð9aÞ

which is determined by the ratio of the reflectances at 0.67 and 0.55 lm. The near-infrared
ocean surface albedo at 0.87 lm is then calculated with an experimentally derived function
as

R0:86lm ¼ 0:005 þ 0:15ðCVI � 0:05Þ; R0:86lm 2 ½0:005; 0:035� ð9bÞ

Sunglint is also excluded based on APOLLO results. It is evident that a more sophisticated
treatment would require a wind-speed driven adjustment of the ocean albedo and account-
ing for varying chlorophyll absorption and whitecaps. However, this was not included to
avoid another complexity in the algorithm. The case studies which have been conducted so
far show some agreement between simulated and measured spectra over water so that for
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the large spectrometer pixels the accuracy of this rather crude open ocean treatment can
be accepted for global studies. An evaluation of this approach needs to be conducted, in
particular far away from any land surfaces, by future validation with data from ship
measurements (as AERONET ocean stations are always located on islands or coasts).
This approach is suitable over open ocean, but over case 2 coastal waters difficulties
are expected. For this reason, SYNAER excludes coastal water pixels by applying a
near-coast filter before the retrieval.

3.5.2 The SYNAER dark field selection and characterization over land

Dark radiometer pixels over land are selected on the basis of the 1.6 lm channel and in
version 1.0 also using the reflected contribution to the 3.7 lm channel. It is assumed that
the aerosol effect at these wavelengths can be neglected for most aerosol types. For large
concentrations of large particles this assumption is not valid, but it seems that the interplay
of scattering and absorbtion effects (and maybe non-sphericity of the particles) of these
aerosols in the mid-infrared spectral region (1.0–6.0 lm) allows the application of the
method even in these cases despite violating the basic principle. This has also been in-
dicated by Kaufman et al. [2000]. Thus, in general all cloud-/snow-free pixels with a
1.6 lm (or 3.7 lm) reflectance below given thresholds are selected. To reject sub-pixel
snow and ice, open water on bare soil pixels or small inland waters, which are also
dark in the 1.6 lm channel but brighter in the visible [King et al., 1999], a second criterion
is applied in combination with the 1.6 lm channel test using the Normalized Difference
Vegetation Index

NDVI ¼ ðR0:87lm � R0:67lmÞ=ðR0:87lm þ R0:67lmÞ; ð10Þ

which must be larger than a minimum value. This minimum value was dynamically chosen
in a box of 64 � 64 pixels in SYNAER version 1.0. In SYNAER version 1.0 for the pixels
selected through this scheme the dark field albedo values at 0.67 lm could then be esti-
mated from the 1.6 lm and 3.7 lm reflectances by dividing them by a conversion factor
of 3.7 and 0.8, respectively. The value of 3.7 at 1.6 lm had been selected on the basis of
Landsat-5 TM case studies [Holzer-Popp et al., 2002a], whereas the value of 0.8 at 3.8 lm
had been derived experimentally with GOME/ATSR-2 test pixels.

The correlation of reflectances of vegetated pixels in the visible and mid-infrared chan-
nels can be understood by similar characteristics of vegetation and soil in both wavelength
regions: vegetation reflectivity decreases due to chlorophyll absorption in the visible and
due to absorption by liquid water in the mid-infrared. Wet soil has a lower reflectance in the
visible due to trapping of light and again in the mid-infrared due to liquid water absorption.
Other influences such as surface roughness, shadows, and inclination effects decrease the
reflectance values across the entire solar spectrum [Kaufman and Remer, 1994]. Kaufman
et al. [1997b] suggest a similar selection scheme based on the 2.1 lm and 3.8 lm channels
of the MODIS sensor onboard the TERRA-1 platform.

The conversion factor from the IR-wavelengths to the VIS-wavelengths is just a sta-
tistical average value and therefore not explicitly valid for all pixels and situations.
This results in a significant scatter of the retrieved AOD values even for neighboring pix-
els. Therefore, a minimum number of adjacent pixels had to be exploited during the dark
field selection to allow for an appropriate averaging. Especially in areas with sparse dark
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fields singular outlier values must be rejected by comparison to the nearest available dark
fields.

To deal with these requirements the selection scheme is a stepwise process. Dark fields
are grouped into three different classes with increasing surface albedo, i.e. decreasing re-
trieval accuracy. Threshold values for the NDVI and R3:7 are selected in boxes of 64 � 64
ATSR-2 pixels. The threshold values were chosen as an optimal compromise between find-
ing a suitable number of dark fields in different climate zones and restricting the detection
to the darkest available pixels in the visible channel. For the selection of dark pixels an
iterative scheme is used within boxes of 25 � 25 pixels. Only dark pixels of the lowest
level available, i.e. most accurate, class are exploited.

3.5.3 Improved dark field selection and characterization over land

More detailed analysis with larger data amounts of the ENVISAT sensors showed signifi-
cant scatter of the dark field selection and characterization of the earlier version which
leads to significant numbers of outliers with large errors of the retrieved AOD values. In
SYNAER version 2.0 therefore the dark field scheme was altered [Holzer-Popp et al.,
2008]. Now, no use of the 3.7 lm reflectances is made (as the retrieval accuracy over these
dark fields versus the 1.6 lm reflectances is not well understood since the 3.7 lm radiance
consists of a thermally emitted and a solar reflected signal, which cannot be separated
accurately in all cases) and a more sophisticated estimation of the surface reflectances
in the 1.6 lm channel is now applied. In order to retrieve AOD with an accuracy of
0.1 the surface albedo of the treated dark field should be known with an accuracy of
0.01 (see, e.g., Holzer-Popp et al. [2002a]). To achieve this accuracy in an automatic re-
trieval procedure over land for AATSR, dark fields are selected from a combination of
absolute thresholds for the NDVI (top of the atmosphere) and the reflectance R1:6lm in
the mid-infrared at 1.6 lm. Best values set in the retrieval are now NDVI > 0:5 and
R1:6lm < 0:23. Dark fields are now grouped into four different classes with increasing
surface albedo and decreasing vegetation amount, i.e. decreasing retrieval accuracy. These
classes are defined by following threshold values:

Class 1 : 0:01 < R1:6lm < 0:17 and NDVI > 0:65;

Class 2 : 0:01 < R1:6lm < 0:17 and NDVI > 0:50; ð11Þ
Class 3 : 0:17 < R1:6lm < 0:23 and NDVI > 0:65;

Class 4 : 0:17 < R1:6lm < 0:23 and NDVI > 0:50:

For these dark field pixels the surface reflectance over land at 0.67 lm is then estimated by
a linear regression with the reflectance at 1.6 lm. Similar to the latest update of the
MODIS retrieval algorithm Collection 5 (regression between 2.2 lm and 0.67/0.49 lm
becomes vegetation-dependent in Collection 5; Levy et al. 2007]) this regression shows
a dependence on the vegetation amount. Fig. 8.6 shows the regression of surface reflec-
tance at 0.67 lm versus top-of-atmosphere reflectance at 1.6 lm for intervals of 0.05 in
NDVI (top of the atmosphere). For this plot 2474 AATSR dark fields were analyzed, where
an AERONET sunphotometer measurement was available within 60 minutes and 50 km
from the respective AATSR pixel, where the AOD at 0.55 lm was below 0.1 and where the
scattering angle was between 140� and 160�. The surface reflectance was derived by atmo-
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spheric correction with the SYNAER radiative transfer algorithm and the respective
AERONET AOD value. This analysis leads then to following regression function between
top-of-atmosphere reflectances R1:6lm and surface reflectances R0:67lm:

R0:67lm ¼ aR1:6lm þ bþ c ð12Þ
with

a ¼ �1:5NDVI þ 1:5;
b ¼ 0:1NDVI � 0:1;
c ¼ 0:1ðcosw� cos 150�Þ; for h < 150�;

Fig. 8.6. Correlation between reflectances at 1.6 lm and 0.67 lm for suitable dark fields varying with
normalized vegetation index NDVI. Vegetation surfaces with NDVI 4 0.45 and R1.6 5 0.23 were cho-
sen and are plotted for NDVI intervals of 0.05. The figure shows results based on 2,474 automatically
selected dark fields from 42 ENVISAT orbits in 2005 with aerosol optical depth AOD 5 0.1 and scatter-
ing angles between 140� and 160�. Regression lines in each plot show the dependence function which is
used in the SYNAER retrieval (from Holzer-Popp et al. [2008]).
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where h is the scattering angle and NDVI at top of the atmosphere is used. The third term is
not shown in Fig. 8.6 as the few extreme values of the scattering angle were not included in
this analysis, but it was found necessary to improve the AOD retrieval for a small number
of cases with scattering angles close to 120�. Finally, dark fields where the estimated sur-
face reflectance at 0.67 lm exceeds 0.085 are not used in the retrieval.

In support of the regression function extracted by optimizing AOD agreement with
nearby AERONET observations, Fig. 8.7 shows the results of applying the regression func-
tion to dark fields with all AOD values. This histogram of retrieved AOD errors against
AERONET ground-based measurements (up to 50 km away) for the real dark field pixels
confirms the NDVI- and scattering-angle-dependent regression function. The achieved
standard deviation (0.089) and bias (0.017) are quite satisfactory given the mis-dis-
tance/mis-time to the AERONET station of up to 50 km and 60 min.

This new regression function is used to determine the surface reflectance in the visible
as main precondition for retrieving aerosol optical depth. One drawback of using a regres-
sion based on NDVI is the fact, that the NDVI values themselves are independent of AOD
in the first order but do exhibit a residual dependence on the aerosol optical depth (ty-
pically decreasing with increasing AOD). To overcome this dependence, a one-step ite-
ration is conducted, where the preliminary retrieved AOD value is used to adjust the NDVI
value and subsequently the same regression function is applied again to calculate a cor-
rected visible surface reflectance, which is then exploited for a corrected AOD retrieval.
The function derived empirically to provide optimal agreement of retrieved AOD after
iteration against AERONET observations is:

NDVIcorrected ¼ NDVI þ 0:25AODpreliminary=l0; ð13Þ

where l0 is the cosine of the solar zenith angle.

Fig. 8.7. Absolute error histogram of the retrieved aerosol optical depth (AOD) at 0.55 lm for real dark
field pixels of ENVISAT-AATSR in summer 2005 against coincident AERONET measurements in the
vicinity of up to 50 km (from Holzer-Popp et al. [2008]).
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3.6 Retrieving AOD and surface albedo for 40 aerosol types

Using the estimated surface albedo and pre-tabulated radiative transfer calculations the
top-of-atmosphere (TOA) reflectance over dark field pixels is inverted into values of ae-
rosol optical depth at 0.67 lm (over land) and 0.87 lm (over ocean). In the inversion TOA
reflectances are interpolated between the pre-tabulated values by a second-order polyno-
mial as a function of surface albedo and aerosol optical thickness. These calculations are
conducted for all 40 different boundary layer aerosol mixtures described above. The ex-
tended OPAC database includes a well-defined spectral dependence of the aerosol extinc-
tion coefficient. This allows an easy, and for a certain aerosol mixture, unique conversion
to other wavelengths by multiplying a wavelength-dependent factor. Thus, the retrieval can
be conducted at wavelengths which are best suited due to darkest surfaces, most accurate
albedo characterization, and highest aerosol sensitivity. With the well-defined spectral de-
pendence of the extinction for each aerosol mixture these values are then converted to the
reference wavelength of 0.55 lm.

Even after the rather complex scheme of selecting an optimum set of dark fields de-
scribed in Section 3.5, a significant scatter of the AOD values at adjacent dark fields re-
mains. Therefore, an interpolation and smoothing procedure is applied. The basic assump-
tion behind this procedure is that aerosol variability has, in most cases, a scale of many
kilometers. In SYNAER version 1.0 in boxes of 4 � 4, 16 � 16, and 64 � 64 pixels all
aerosol optical depth values which are outside a 1-r interval are excluded if enough pixels
are available for the statistics (10, 40, 100). In SYNAER version 2.0 this outlier screening
is not applied due to the larger number of spectrometer pixels. For the remaining pixels a
25 � 25 radiometer box average was calculated as AODbox ¼ 0:4 AODbox�meanþ
0:6 AODbox�minimum in version 1.0, since it was found that a simple average calculation
results in AOD values which were too large. This indicated that some of the dark fields
which yielded higher AOD values were still not fulfilling the underlying assumptions.
Following King et al. [1999] who report similar problems (and therefore use only those
results between 10 % and 40 % of a histogram of retrieved dark field AOD values in a
10 � 10 box of MODIS), SYNAER version 2.0 also estimates the 25 � 25 pixel box
AOD as average of only the retrieval results which fall into the 10 % to 50 % range of
the box AOD histogram. This averaging is applied only to the lowest dark field class
with highest accuracy – only if fewer than five dark fields are available in the averaging
box, additional dark fields of the next class are added subsequently.

If no dark fields are available inside a box the average is found by inverse distance-
weighted interpolation between the nearest adjacent boxes which contain dark fields.
In this interpolation the radius is increased until at least three quadrants around the missing
value contain AOD results. Then, aerosol optical depth values for every individual pixel
are calculated by means of an inverse distance-weighted interpolation function between
these (now regularly distributed) box average values.

Using this pixel mask of aerosol optical depth a pixel-wise atmospheric correction (EX-
ACT, EXact Atmospheric Correction by accurate radiative Transfer; Popp [1995]) can be
conducted for all cloud-free pixels which results in surface albedo pixel-masks at the radio-
meter wavelengths 0.55, 0.67 and 0.87 lm. EXACT conducts atmospheric correction by
fully taking into account multiple scattering effects of aerosols and molecules, as well as
ozone, water vapor and aerosol absorption. It is based on the same radiative transfer code
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(SOS) as the other parts of the SYNAER method and the same aerosol model. The aerosol
optical depth for each pixel is taken from the dark pixel derived AOD mask for each of the
40 mixtures. By knowing the aerosol type, its properties can be transferred from 0.55 lm
to the other ATSR-2 channels at 0.67 and 0.87 lm. Because EXACT is applied for 40
aerosol mixtures it yields 40 sets of tri-spectral atmospherically corrected surface albedos.

In summary, the first retrieval step (radiometer retrieval) yields the aerosol optical depth
(stored at 0.55 lm), and the surface albedo values at 0.55, 0.67, and 0.87 lm for all cloud-
free pixels. It should be kept in mind that the degree of darkness and density of the dark
fields impose some limitation on the accuracy of this approach. But, it was found that a
sufficient number of well-characterized dark fields can be found in many locations around
the globe. The set of these parameters is derived 40 times for the different 40 aerosol
mixtures each with known spectral dependence of aerosol extinction, absorption and phase
function.

3.7 Selecting the most plausible aerosol type

At this point surface and aerosol results for all 40 aerosol mixtures are available from step 1
of the retrieval but the decision of the best suitable aerosol mixture is still open. A bi-
spectral (0.55 and 0.67 lm) ‘ATSR-only’ method failed as the 0.55 lm channel has a
much weaker correlation to the mid-infrared spectral range due to strong vegetation in-
fluences. Attempts to use the two viewing angles of ATSR-2 were not successful as the co-
registration of both views (which is done by the data distributor without using a digital
elevation model) showed significant errors in structured terrain and thus the two measure-
ments did not contain the same target. Therefore, the simultaneously measured spectro-
meter spectra are used in step 2 of the retrieval in order to exploit their additional spectral
information. It is not really expected that 40 different mixtures can be separated but this
large number is tested to guarantee an accurate simulation of the truth in the observed
atmospheric spectra.

First, the radiometer results are co-located and spatially integrated to match the larger
spectrometer pixels. From the accuracies of geo-locations specified for both instruments
an error of the respective surface area of 1/2 pixel along the edge of the GOME pixel can be
assumed yielding a relative error of 1

2 ffi 4 %. This agrees well with an assessment of the
radiometric relative accuracy between ATSR-2 and GOME instruments, which was inves-
tigated by Koelemeijer et al. [1997] and found to be 2 % and 4 % at 0.55 and 0.67 lm,
respectively. In the latest calibration version of SCIAMACHY (version 6.1) the cross-cor-
relation of spectrally and spatially integrated reflectances measured by SCIAMACHYand
AATSR instruments (and against another radiometer MERIS onboard ENVISAT) was
even found to show deviations on the order of 1 % [Kokhanovsky et al., 2007].

A surface albedo spectrum is needed for the extrapolation of the surface spectrum to the
blue and UV spectral range where no radiometer channels are available. Its form shape is
chosen out of 12 available data sets [Guzzi et al., 1998; Köpke and Kriebel, 1987]; see the
plots of plate 3 in Holzer-Popp et al. [2002a]) and adapted to absolute values of the derived
radiometer surface albedos at the three radiometer wavelengths. The selection of the
surface type is based on brightness (snow in the green channel brighter than 0.25, water
in the near-infrared channel darker than 0.03), NDVI and a green-to-red ratio
GRR ¼ R0:55lm=R0:67lm which are calculated from the radiometer-derived three spectral
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surface albedo values. In the selection scheme NDVI and GRR are compared to the values
from the 10 signature curves (except water and snow) to choose the type with the closest
coincidences of both values. The surface albedo value at 0.33 lm is kept fixed for each
type. This means that the choice of one of the 12 surface spectral curves defines only
details of the spectral form of the surface albedo signature in the spectrum. However,
the absolute values (except for 0.33 lm) are exactly defined by the corrected radiometer
values at 0.55, 0.67, and 0.87 lm and interpolated linearly in between. This adjustment
scheme is applied to both land and water dominated spectrometer pixels.

In SYNAER version 2.0 a different extrapolation scheme for vegetation types (PINE
FOREST and PASTURE from Köpke and Kriebel [1987], VEGETATION from Guzzi et
al. [1998]) is applied. Following the MODIS retrieval scheme, where the blue surface re-
flectance is estimated as 50 % of the red surface reflectance, the reflectance at 0.50 lm is
calculated as R0:500lm ¼ 0:5 R0:67lm. Then wavelengths below 0.50 lm are linearly extra-
polated from the 0.67 and 0.50 lm surface reflectances, whereas larger wavelength surface
reflectances are interpolated between the 0.50, 0.55 and 0.67 lm bands.

Using the aerosol spectral information GOME or SCIAMACHY spectra can then be
simulated for the 40 mixtures with the pre-tabulated radiative transfer calculations and the
extrapolated surface spectra based on the radiometer surface reflectance values. By a sim-
ple unweighted least-squares fit of the 40 simulations to the cloud-corrected ‘measured’
spectrum the simulated spectrum which fits best is selected. This spectrum is then assumed
to represent the real (surface and atmospheric) conditions in the pixel, and its aerosol op-
tical depth and type of aerosol are taken as the retrieval result. This procedure is conducted
at 10 wavelengths which have been selected based on their high aerosol sensitivity and low
uncertainty due to instrument errors, surface brightness and gas absorption: 0.415, 0.427,
0.460, 0.485, 0.500, 0.516, 0.535, 0.554, 0.615, and 0.675 lm. Wavelengths above
0.700 lm are not utilized because the simulation often does not fit the bright vegetation
peak. Wavelengths shorter than 0.415 lm are not used as they suffer from a strong sen-
sitivity to the boundary layer height for absorbing aerosols.

Application of SYNAER to a large number of pixels yields a number of cases, where all
simulated spectra are completely different from the measured spectrum. As a quality check
spectrometer reflectances corresponding to radiometer channels are therefore calculated
and compared in order to detect large deviations which indicate perturbed pixels. Further-
more, pixels where the fit error is larger than an error due to an assumed 3 % accuracy of
the spectral reflectances are also excluded for both aerosol optical depth and type retrieval.
These problems may be due to instrument errors, to 3D scattering from broken clouds or
inhomogeneous cloud tops inside or near the spectrometer pixel, or to remaining inaccura-
cies in the radiometric calibrations of both instruments. Finally, an ambiguity test is ap-
plied which compares the fit error with the mean deviation between the spectra of the 40
simulated mixtures. Only those spectrometer pixels where the fit is more accurate than this
variability are exploited in terms of the type of aerosol. Thus, especially for pixels with low
aerosol contents, and therefore low differences between the 40 simulated spectra, the ae-
rosol type cannot be derived as proven theoretically in Section 2.2.
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4. Validation and applications

4.1 Validation status and its limitations

Ground-based photometer measurements are widely used to determine the accuracy of
AOD satellite retrievals. However, the natural spatio-temporal variability of aerosol dis-
tributions is often not considered, leading to misinterpretations of the significance of such
comparisons. This is why the determination of the representativeness of single ground
measurement stations – as an indicator for the local variability in AOD and their aptitude
for being used as ground truthing station – is of high interest for both satellite- and ground-
based retrieval of aerosols.

A possible method for quantifying the natural spatial variability of any given parameter
are variogram analyses: they express the variability of a quantity, e.g., AOD, as measured at
different locations but approximately at the same time, seen as a function of the distance
between two locations considered. In Fig. 8.8 the result of such a variogram analysis [Hol-
zer-Popp et al., 2008] is shown, where the RMSE of AOD at 0.55 lm is plotted as a func-
tion of the distance between the ground stations involved. Here all available AERONET
ground stations in Europe (squares), the USA (triangles) and the Middle East region in-
cluding Saudi Arabia (crosses) for 2003 to 2005 are included, allowing only high quality
level-2 ground data for the analysis. All measurements within� 30 minutes are considered
for each RMSE value and each pair of ground stations, which are then grouped into bins of
50 km for legibility purposes.

It has to be pointed out that due to the regional distribution of the AERONET stations
the database for the first values, at a distance of 0 to 50 km, is very small. For all regions
considered the ‘natural variability offset’ of the curve, i.e. the variability of AOD within a
very small region, is around 0.05. This value of atmospheric noise should always be kept in
mind, as the optimal accuracy which can be reached when comparing ground to satellite
measurements.

Fig. 8.8. Absolute RMSE of the measured aerosol optical depth (AOD) at 0.55 lm for Europe (squares),
the USA (triangles) and the Middle East region (crosses); based on AERONET ground measurements for
the years 2003–2005 (from Holzer-Popp et al. [2008]).
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For larger distances the average variability generally increases with increasing distance
between the locations of ground measurements. However, there are differences for the
various regions analyzed: the European stations reach an accuracy of 0.1 at approximately
200 km distance between two ground measurement stations, whereas the US locations can
be spaced apart as far as 500 km to reach the same natural variability. In the Middle East
this distance amounts to approximately 100 km only, signalizing a rather small representa-
tiveness of AOD ground measurements. This means that depending on the geographic
location different natural variabilities of aerosol measurements have to be taken into ac-
count when determining the accuracy limits of satellite-based AOD retrieval.

Table 8.3. AERONET ground stations used for the inter-comparisons

Latitude Longitude Country Comment

Avignon 43.93� N 4.88� E France rural

Belsk 51.84� N 20.79� E Poland rural

Blida 36.51� N 2.88� E Algeria dust

Cabauw 51.97� N 4.93� E Netherlands rural

Cairo 30.08� N 31.29� E Egypt urban

Carpentras 44.08� N 5.06� E France rural

Dunkerque 51.04� N 2.37� E France Urban, coast

Erdemli 36.57� N 34.26� E Turkey Maritime

Evora 38.57� N 7.91� W Portugal rural

Forth Crete 35.33� N 25.28� E Greece coast

Fontainebleau 48.41� N 2.68� E France rural

Ispra 45.80� N 8.63� E Italy industrialized

Karlsruhe 49.09� N 8.43� E Germany industrialized

Kishinev 47.00� N 28.81� E Moldova urban

Laegeren 47.48� N 8.35� E Switzerland urban

Lannion 48.73� N 3.46� E France coast

Lille 50.61� N 3.14� E France urban

Minsk 53.00� N 27.50� E Belarus urban

Modena 44.63� N 10.95� E Italy industrialized

Mongu 15.25� S 23.15� E Zambia fires

Oostende 51.23� N 2.93� E Belgium coast

Palaiseau 48.70� N 2.21� E France urban

Palencia 41.99� N 4.51� W Spain rural

Haute Provence 43.94� N 5.71� E France rural

Rome 41.84� N 12.64� E Italy industrialized

Saada 31.63� N 8.16� E Morocco dust

Santa Cruz de 28.47� N 16.25� W Spain Maritime, island

Skukuza 24.99� S 31.59� E South Africa rural

The Hague 52.11� N 4.33� E Netherlands industrialized/maritime

Toravere 58.26� N 26.46� E Estonia rural

Toulon 43.14� N 6.01� E France coast

4. Validation and applications 255



First inter-comparisons of the new SYNAER-ENVISAT version 2.0 results to ground-
based sunphotometer measurements of the spectral aerosol optical depth from NASA’s
Aerosol Robotic Network (AERONET) at 39 coincidences were conducted [Holzer-
Popp et al., 2008]. A list of the AERONET stations which were included in this inter-com-
parison is shown in Table 8.3. These validation cases have a moderately dark surface al-
bedo (below 0.20 at 0.67 lm) and a fit error better than 0.01 (which is equivalent to a few
percent noise in the spectra) and show a good agreement with correlations above 0.80, bias
values less than 0.02 and standard deviations of 0.10 (0.13, 0.09) at 0.55 (0.44, 0.67) lm as
shown in Fig. 8.9(a), 8.9(b) and 8.9(c). In this inter-comparison AOD values at 550 nm for
AERONET observations (which are not directly measured) were obtained applying a po-
wer law function of AOD values at 500 and 670 nm. This indicates a correct assessment of
the amount and type (namely the spectral dependence of extinction) of aerosol. Through
error propagation of the natural variability of at least 0.05 (coincident with the SYNAER
pixel size of 60 � 30 km2) from the variogram analysis of Fig. 8.8 a standard deviation for
the SYNAER retrieval only of 0.08 at 0.55 lm can be deduced. This ground-based valida-
tion comprised data from Europe and Africa in several climate zones spread over 3 months
in the summer season of 2005. A similar case study validation of SYNAER version 1.0
with a smaller number of 15 data pairs of AERONET and the predecessor satellite instru-
ments ATSR-2/GOME onboard ERS-2 showed a similar agreement [Holzer-Popp et al.
2002b]. Furthermore, a comparison of monthly mean results from SYNAER 1.0 and other

Fig. 8.9(a). Scatter plot of SYNAER version 2.0 versus AERONET aerosol optical depth at 0.44 lm. It
should be noted that the synergistic exploitation of AATSR + SCIAMACHY is applied to the large
(60 � 30 km2) spectrometer pixels. Land pixels are denoted as +, whereas coastal and ocean pixels
are denoted as &+ (from Holzer-Popp et al. [2008]).
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satellite aerosol retrievals as well as AERONET stations over ocean [Myhre et al. 2005]
showed a qualitative agreement with the other datasets for a number of cases.

4.2 First datasets

Since the SYNAER processor started routine operations in June 2005, daily aerosol pro-
ducts have been produced since then (but with gaps due to input failure or processing
errors) – the continuing processing leads to a further evolving dataset. Additionally, re-
processing with version 2.0 has been conducted with data of the months July to November
2003. Reprocessing of the entire dataset with the new SYNAER version 2.0 has been
started recently. This large dataset will then be used for extended statistically significant
validation and assessment of seasonal and geographical distribution of bias and noise in the
SYNAER results. From the validation efforts conducted so far and the theoretical infor-
mation content analysis preliminary application limitations were extracted, which are gi-
ven in Table 8.4. As can be seen in the examples of daily SYNAER 1.0 observations with
ENVISAT in Fig. 8.10 of June 25, 2005, these limitation factors lead to a significant re-
duction of the data coverage. The instrument scan patterns (alternating nadir – limb pattern
of SCIAMACHY; swath width limit of 512 km of AATSR) themselves lead to a revisit
period over one location of about 12 days. Cloudiness, bright surface (deserts, snow cover)
and low sun cause a further reduction of available observations especially in semi-arid
regions and in winter times. The images in Fig. 8.10 show the typical summer coverage

Fig. 8.9(b). Scatter plot of SYNAER version 2.0 versus AERONET aerosol optical depth at 0.55 lm. It
should be noted that the synergistic exploitation of AATSR + SCIAMACHY is applied to the large
(60 � 30 km2) spectrometer pixels. Land pixels are denoted as +, whereas coastal and ocean pixels
are denoted as &+ (from Holzer-Popp et al. [2008]).
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and resolution with two to three orbits per day over Europe. As one feature in this example,
elevated aerosol optical depth over the Iberian peninsula can be seen, which is mainly due
to increased water-soluble and soot aerosols, as is frequently the case for wildfires over
southern Europe in the summer months. Examples of the complete coverage of the cur-
rently available SYNAER-ENVISAT dataset (version 1.0) are discussed in Holzer-Popp et

Fig. 8.9(c). Scatter plot of SYNAER version 2.0 versus AERONET aerosol optical depth at 0.67 lm. It
should be noted that the synergistic exploitation of AATSR + SCIAMACHY is applied to the large
(60 � 30 km2) spectrometer pixels. Land pixels are denoted as +, whereas coastal and ocean pixels
are denoted as &+ (from Holzer-Popp et al. [2008]).

Table 8.4. Limitation factors for SYNAER application

Limitation factor Limiting effect Preliminary threshold

Surface albedo
(0.67 lm)

Total aerosol and type sensitivity
decreases with increasing brightness
of a ground surface

Below 0.20 for SCIAMACHY pixel
Below 0.085 for AATSR dark fields

Cloud fraction Total aerosol and type sensitivity
decreases with increasing cloudiness

Below 0.35

Aerosol optical depth
(AOD) at 0.55 lm

Type retrieval becomes ambiguous
for low aerosol loading

Above 0.15

Solar zenith Neglected effects of non-spherical
atmosphere leads to increasing
AOD error

Below 75�

Coarse mode
particles

Neglected effects of non-spherical
particles lead to increasing AOD
error

Mineral dust components,
sea salt

258 8 Benefits and limitations of the synergistic aerosol retrieval SYNAER



al. [2008] where several well-known features can already be clearly seen. The datasets
shown in Holzer-Popp et al. [2008] give the 4-month average values for the period
July–October 2003 on a 5� � 5� grid. In this time period a reasonable coverage in this
grid is achieved (as opposed to the earlier ERS-2 coverage, which needed one year of
data for a similar pixel number on a 5 � 5 degree grid). Although validation of this aerosol
composition dataset is solely based on the indirect validation through spectral AOD, in the
total aerosol optical depth and the aerosol component maps distinct features can be seen
which are very plausible. The major ones are the tropical biomass burning regions in Afri-
ca and South America, the sub-tropical desert regions (Sahara, Namib/Kalahari, Arabia,
South America) and the biomass burning plume over the Atlantic from southern Africa and
peaks of the soot component in the biomass burning regions and the mineral components

Fig. 8.10. Example images of a daily SYNAER version 1.0 result over Europe for June 25, 2005: aerosol
optical depth composition into the 4 major components – clearly biomass burning can be seen over the
Iberian peninsula in the WASO and SOOT components.
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around the desert areas. No retrieval is possible with this method inside the Sahara due to
the bright surface.

5. Discussion and conclusions

The SYNAER method provides a retrieval, which exploits the optical measurements made
from two sensors in one retrieval algorithm. One significant drawback from this syner-
gistic application is the limited spatial resolution of 60 � 30 km2 and the weak temporal
repetition frequency of 12 days at the equator in cloud-free conditions when applied to
ENVISAT sensors. On the other hand the gain lies in the joint exploitation of 10 spectro-
meter and four radiometer spectral channels. Consecutively, the information content in this
retrieval enables, under favorable conditions (dark and even moderately bright surfaces if
there are few dark spots suitable for the 1 km AOD retrieval within the larger spectrometer
pixel, high sun), the independent retrieval of not only the aerosol loading (aerosol optical
depth), but also its composition.

In this chapter a comprehensive description of SYNAER version 2.0 is provided and in
particular the improvements of the SYNAER method versus the original version 1.0 are
described and their application with the new sensor pair SCIAMACHY and AATSR is
demonstrated and validated. Given the pixel size, the retrieval accuracy of around 0.1
at 0.55 lm (or 0.08 after atmospheric noise deduction) is satisfactory, but there is
room for improvement. Further analysis of the reasons for the remaining error (in addition
to the scaling versus the AERONET point measurements) will be conducted. Potential
underlying reasons are neglecting non-sphericity of particles, not account for the polar-
ization characteristics of scattered light, residual cloud contamination, and the scatter in
the surface reflectance correlation between the 1.6 lm and 0.67 lm channels of AATSR.
Furthermore, the representativity of an AERONET station for a SCIAMACHY pixel area
with large terrain or pollution variance can be absolutely absent.

The theoretical analysis of the information content in the second step of the methodol-
ogy (aerosol type retrieval) yielded up to five degrees of freedom (two for surface albedo
and AOD introduced from the first retrieval step and three for the aerosol type) and thus
supports the conclusion that an estimation of the aerosol composition is becoming feasible
under favorable conditions with this method. Under typical conditions over vegetated sur-
faces outside winter periods two degrees of freedom are available for information on the
aerosol type. As two independent parameters (e.g., spectral extinction gradient and absorp-
tion) are needed to differentiate monomodal aerosol distributions, this would be sufficient
to characterize the major aerosol types. At least one more degree of freedom is needed for
bimodal aerosol distributions, which is then only feasible for the best possible conditions.
Further analysis is required to interpret the information content with regard to these dif-
ferent parameters. For example, the apparent absorption sensitivity in the method (being
able to differentiate water-soluble and soot components) may also be provided by the in-
tegrating of different scales of the two instruments (1 km and 60/30 km) and thus by aver-
aging dark and bright pixels, which is sensitive to the nonlinearity in radiative transport.

SYNAER includes an accurate cloud detection for the radiometer. A method to cope
with partly cloud covered spectrometer pixels by use of the spatially better resolved radio-
meter measurements was developed by model calculations and proven indirectly through
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successful SYNAER retrieval. It assumes a linear mixing of cloudy and cloud-free signals,
neglecting nonlinear 3D-effects in inhomogeneous clouds.

SYNAER is based on physical understanding and uses accurate (but scalar) modeling of
radiative transfer through the atmosphere and scattering by aerosol particles. However, the
final selection of thresholds, box sizes and conversion factors for finding and characterizing
dark fields relies to some extent on an empirical optimization that was conducted with about
2,600 GOME pixels and corresponding ATSR-2 measurements of about 220 frames. The
major goal in this optimization procedure was to find the best balance between computing
costs (e.g., number of aerosol mixtures, number of wavelengths, box size for interpolation)
and sufficient information content to account for a realistic variability of aerosols and the
surface (e.g., density and degree of darkness of dark fields in most climate zones).

SYNAER relies on two major basic assumptions which impose limitations. First, the
dark field approach based on the 1.6 lm channel, together with the NDVI (and the 3.7 lm
channel in version 1.0), limits the applicability in semi-arid areas. Secondly, the aerosol
model includes several simplifications, which might lead to failure of SYNAER under
certain conditions.

The dark field approach is based on the physically plausible correlation between mid-
infrared and visible reflectances of vegetated and some non-vegetated surfaces and the
assumption that aerosol scattering decreases significantly in the mid-infrared region.
The assumption of the correlation was supported by both the investigation of some Land-
sat-5 scenes (SYNAER version 1.0) and the validation results of SYNAER (version 1.0
and 2.0). It should be noted, that aerosol monitoring over land with MODIS relies on com-
parable basic assumptions. The exploitation of a new wavelength sub-region around
1.6 lm was found to have more restrictions than the 2.2 lm channel and a suitable
dark field scheme was developed and improved. On the one hand, the remaining aerosol
extinction in this channel is stronger by a factor of about 2 for small particles which re-
duces retrieval accuracy for high aerosol loading. On the other hand, snow and inland water
are also dark at this channel. Therefore, the vegetation index is used as a second criterion to
stabilize the dark field selection and a vegetation-dependent surface brightness estimation
was developed. Thus now four major dark field approaches were demonstrated: three ex-
ploiting mid-infrared to visible correlations based on: 2.2 lm [Kaufman et al., 1997b], 3.7/
3.8 lm [Kaufman et al., 1997b; Holzer-Popp et al., 2002a], and 1.6 lm channels together
with the NDVI (with fixed correlation factor in Holzer-Popp et al. [2002a] and with ve-
getation dependant correlation in Holzer-Popp et al. [2008]), and the fourth one (the old-
est) assuming fixed dark field albedos for targets selected from the 0.87 lm channel and
the vegetation index [Kaufman and Sendra, 1989]. Future applications and comparisons
between these approaches and with other case-study aerosol retrievals will be valuable in
identifying weaknesses and strengths of the various methods.

The SYNAER aerosol model assumes horizontal aerosol variability at scales above
10 km and a simplified layer structure neglecting disconnected additional aerosol layers
in the troposphere (except dust). It includes only spherical particles (which can be treated
with Mie calculations). An external mixing of representative components is assumed.
These components describe ensembles of optically equivalent (but chemically different)
particles with their fixed combinations of extinction, absorption, phase function, vertical
profiles and size distribution in several size modes based on measured aerosol particle
mixtures. A set of 40 mixtures was chosen as representative for real variability in order
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to keep calculation times within a reasonable limit. Particle swelling due to increased hu-
midity was taken into account with two relative humidity values of 50 % and 80 % for all
mixtures. Improved understanding of aerosols was used to extend the original soot and dust
components to two different components representing different size distributions and mix-
ing modes of combustion and biomass burning soot particles and for low or high hematite
content. Evidently, the component-based mixing approach allows the separation of these
basic components but not the detection of individual molecule species which would be of
interest for chemical investigations. This is self-evident due to the fact that the optical
features, and thus the impact on the measured reflectances are almost equal for the dif-
ferent particle species in one aerosol component.

Further assumptions are used in the method: SYNAER has a rather high technical com-
plexity, since it exploits synergistic measurements of two sensors. It relies on the high
radiometric accuracy and correlation of these two instruments to extract the rather
weak aerosol signals from the observations. SYNAER relies on reference signatures of
several surface types which are adjusted to absolute values on the basis of the radiometer
albedo measurements. In the UV and blue spectral region the simulation of spectrometer
spectra over water relies solely on radiometer-derived surface albedo values at 0.55, 0.67,
and 0.87 lm and one spectral signature of open ocean water, whereas variations in chlo-
rophyll content are estimated with a simple parameterization and wind-driven diffuse glint
is not accounted for. A plane-parallel scalar radiative transfer model is used, limiting the
applicability to data with solar elevations above 15 degrees. In the range of 0.415–
0.500 lm the lack of knowledge of the vertical aerosol profile and the neglecting of po-
larization effects in the radiative transfer calculations is another possible source of error for
absorbing aerosols [Rozanov and Kokhanovsky, 2006]. Therefore, future work will be
done on the retrieval of vertical aerosol profiles from UV spectra. Radiative transfer cal-
culations indicate that it could be feasible to retrieve aerosol optical depths for the bound-
ary layer, free troposphere, and stratosphere or the height of the boundary layer. The pos-
sibility to include new effective optical properties (e.g., non-sphericity or internal mixing)
in the scalar radiative transfer calculations if this becomes available shall be investigated in
the future.

As with all satellite retrieval algorithms for aerosols SYNAER is limited by a math-
ematically ill-posed system, which makes several assumptions and simplifications neces-
sary. These are in addition to the limited sampling, the limitation to spherical particles
(Mie scattering), the dependence on the predefined aerosol mixtures, the decreasing in-
formation content with brighter surfaces, and the general optical remote sensing limita-
tions for low sun and high cloud fraction. One future element in SYNAER is still the ap-
plication of the theoretical analysis to each pixel geometric and surface condition. Here a
good compromise between larger coverage (also over moderately bright surfaces) and
decreasing information content needs to be established in the future with at least one com-
plete global annual dataset.

As validation of the retrieved aerosol composition is extremely difficult due to a lack of
equivalent ground-based data, only an indirect validation approach through multispectral
AOD measurements has been used so far. Validation of satellite-derived information with
this large pixel size and low spatial–temporal coverage is further impeded due to atmo-
spheric noise and the limited number of ground-based stations. It is also important to un-
derstand, that this type of satellite retrieval depends critically on the aerosol model chosen
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and its limitations or its complexity. In the end, the retrieval of aerosol composition must
therefore be considered as a way of interpreting of the optical measurements. But, it is the
conviction of the authors that the plausible results shown in this chapter encourage further
work in this direction.

The validation against AERONET stations includes several cases where the representa-
tiveness of the ground-based station for the SYNAER pixel is weak. Examples are Fon-
tainbleau (at the edge of the mega-city Paris), Ispra (at the edge of an Alpine valley), and
Erdemli (at the coast with high mountains behind). In all these cases the local AOD regime
at the station differs significantly from the regional AOD. One extreme case at Tenerife
island was excluded by the ambiguity test of SYNAER. Here two stations (Izana at 2,367 m
above sea level with an AOD at 0.55 lm of 0.39 and Santa Cruz at sea level with an AOD
at 0.55 lm of 0.71) fall into 1 SYNAER pixel (AOD at 0.55 lm ¼ 0.94) thus highlighting
the possible variability inside a SYNAER pixel for an extreme case of a desert dust
outbreak and the subsequent limitation for the AERONET inter-comparison.

Validation of the derived aerosol composition requires further work. One planned ap-
proach will use EMEP mass speciation fractions to determine the presence of soot (ele-
mental and organic carbon), mineral dust and sea salt and inter-compare with the SYNAER
composition. Other possibilities lie in the inter-comparison to model and other satellite
datasets (e.g., MODIS fine/coarse mode, future MISR aerosol composition product).

The application potential of SYNAER ranges from improving satellite trace gas retrie-
vals over data assimilation into atmospheric chemistry transport models for climate re-
search and air quality monitoring and forecasting to service applications such as accurate
calculation and forecast (through assimilation into a forecast model) of solar irradiance for
solar energy applications (see, for example, Breitkreuz et al. [2007]). Finally, the estima-
tion of the aerosol composition provides one critical piece of information (among vertical
profile/boundary layer height, humidity/aerosol type) for a systematic conversion of AOD
into near-surface mass concentrations (PM values; e.g., Holzer-Popp and Schroedter-
Homscheidt [2004]), which is the key quantity for regulatory purposes.

Due to the need for overlap of two sensors with very different scan patterns, the cover-
age of SYNAER/ENVISAT is still quite weak, providing approximately one synergistic
observation every 12 days if no clouds occur. This leads to the need for large integration
grid boxes or time periods. The potential for independent estimation of the aerosol type can
be shown, but daily monitoring applications are only feasible by assimilation into atmo-
spheric chemistry models. A further improved coverage (every 1–2 days globally) will be
achieved with the transfer to equivalent sensors AVHRR and GOME-2 onboard the opera-
tional meteorological METOP platform. A prototype is already available, but needs further
adjustments for the instrument characteristics and calibration. Finally, by integrating SY-
NAER results from ERS-2, ENVISATand METOP there is a perspective to achieve a long-
term record of AOD and composition ranging from 1995–2020. It was always in the light
of this final goal, that specific instrument characteristics such as the ATSR dual-view or
the SCIAMACHY mid-infrared bands or limb observations were not exploited to ensure
application of SYNAER to all three satellite datasets. However, the different pixel sizes
and sampling will need thorough assessment when integrating these three datasets.

SYNAER/ENVISAT has been implemented for operational processing at the German
Remote Sensing Data Center within the ESA GSE PROMOTE (Protocol Monitoring for
the GMES Service Element; see also http://www.gse-promote.org) and delivers daily near-
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real-time observations (within the same day) and an evolving archive of historic data. SY-
NAER data are stored at the World Data Center for Remote Sensing of the Atmosphere
(http://wdc.dlr.de).
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9 Retrieval of aerosol properties over land using
MISR observations

John V. Martonchik, Ralph A. Kahn, David J. Diner

1. Introduction

Global and regional mapping of aerosol properties, including column amount, particle
type and effective size, is of great interest for environmental and climate studies. Increased
aerosol production results in decreased insolation (a direct aerosol effect), mitigating the
rise in global surface air temperature caused by enhanced concentrations of greenhouse
gases, though on different spatial and temporal scales [Charlson et al., 1992; Kiehl and
Briegleb, 1993; Andreae, 1995]. Indirect aerosol effects include an alteration of cloud
particle properties (size, single scattering albedo) that can modify cloud scattering proper-
ties, lifetimes, and precipitation amount. Although oceans cover the majority of the Earth’s
surface, land areas are the source of most aerosols and essentially all anthropogenic pro-
duction. As a consequence, there is a tendency to find the largest aerosol optical depth
values over land and coastal ocean. Monitoring of these vast areas on a frequent, global
basis can be effectively accomplished only by means of space-based instruments. How-
ever, land and coastal waters generally have complex, heterogeneous, and a priori un-
known surface reflectance characteristics, making the retrieval of aerosol properties in
these locations particularly troublesome. The problem stems from the fact that the radiance
measured at the top of the atmosphere (TOA) is a mixture of two components – radiance
scattered solely by the atmosphere and radiance produced by multiple surface–atmosphere
scattering interactions which is eventually transmitted up through the atmosphere to space.
The successful retrieval process must be able to separate and explicitly describe these two
radiance components, resulting in a determination of both the aerosol properties and the
surface reflectance characteristics.

The retrieval algorithm strategy used to decouple these two radiance components from
the TOA measurements will depend on the operational capabilities of the particular in-
strument. For those instruments that observe a given scene at multiple visible/near-infrared
wavelengths but only at a single sun angle and view angle (typically, low Earth orbit scan-
ners, e.g., the MODerate resolution Imaging Spectroradiometer (MODIS) and the MEdi-
um Resolution Imaging Spectrometer (MERIS)), the aerosol retrieval process at these wa-
velengths always requires the absolute surface reflectance or its spectral variation at the
different wavelengths to be prescribed (e.g., Chu et al. [2002]; Kaufman et al. [2002];
Santer et al. [1999]; Ramon and Santer [2001]; Hsu et al. [2006]). However, imaging in-
struments capable of viewing a scene at multiple wavelengths and at multiple view or sun
angles over a sufficiently short time period so that atmospheric conditions can be assumed
constant are much more flexible. This chapter describes how such measurements from the
Multi-angle Imaging SpectroRadiometer (MISR) on NASA’s Terra space platform are



used to determine aerosol properties over land, unbiased by any assumptions about surface
absolute reflectance or spectral reflectance characteristics.

2. MISR specifications and operation

MISR [Diner et al., 1998] is one of five instruments (among them, MODIS) observing the
Earth on the polar-orbiting Terra platform at an altitude of 705 km (Fig. 9.1). Its nominal
data collection mode uses nine cameras, each fixed at a particular view zenith angle in the
along-track direction and having four spectral bands (446, 558, 672 and 866 nm) with a
cross-track ground spatial resolution of 275 m or 1.1 km. The fore–aft cameras are paired
in a symmetrical arrangement and acquire multispectral images with nominal view angles
relative to the Earth’s surface of 0�, 26.1�, 45.6�, 60.0� and 70.5�, labeled An, Af/Aa, Bf/
Ba, Cf/Ca and Df/Da, respectively. The letters A–D denote the lens design, each lens sys-
tem progressing from shortest focal length (A cameras) to longest (D cameras) to preserve
cross-track spatial resolution, and the letters ‘n’, ‘f’ and ‘a’ indicate nadir, forward and
aftward views, respectively. Thus, for example, designation Ca is the label for the camera
pointing aftward at nominal zenith angle 60�. This camera configuration allows a scene to
be imaged by all cameras in the four bands within a span of 7 minutes, i.e., nearly simul-
taneously. There are two modes in which the instrument can take data. Global Mode is the
nominal operational mode, whereby data are taken at 275 m resolution in 12 channels (all
nine cameras in the red band and the nadir camera in the other three bands) and at 1.1 km
resolution in the remaining 24 channels. Local Mode is a specialized mode, designed to
cover prescribed target areas at 275 m resolution in all 36 channels (nine cameras in four
spectral bands) and traversing a distance along track about equal in length to the swath
width. The swath width of the eight off-nadir cameras is 413km and that of the nadir ca-
mera is 378 km. The polar orbit allows complete coverage between latitudes 82� N and S
every nine days, characterized by minimal observations of a scene at the equator and in-

Fig. 9.1. MISR onboard the Terra platform.
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creasing multiple observations of a scene with increasing latitude. After the 36 channels of
imaging data are radiometrically calibrated, georectified (i.e., geo-located and co-register-
ed) and averaged to a uniform resolution of 1.1 km, they are analyzed to determine aerosol
properties over both land and ocean at a resolution of 17.6 � 17.6 km (16 � 16 1.1 km size
array). This lower-resolution region allows for considerable flexibility in the way retrievals
are performed, while still providing useful information on local, regional and synoptic
scales.

3. Aerosol retrieval data set requirements

The remote sensing of aerosol properties using space-based observations is a severely un-
derdetermined problem. The at-launch MISR aerosol retrieval algorithm built upon earlier
work by making use of the multi-angle data to remove much of the ambiguity [Martonchik
et al. 1998a, 2002]. Since then considerable experience has been gained on how best to
retrieve aerosol properties using the MISR multispectral, multi-angle data [Diner et al.,
2005]. The strategy is based on a few basic assumptions, some physical constraints and
other considerations:
(a) Aerosols are assumed to be laterally homogeneous with the 17.6 � 17.6 km region at

the surface, expanding to approximately 17.6 � 46 km (the area contained within the
view of the two 70.5� view angle cameras (Df and Da) at an altitude of 5 km. With this
assumption the different camera-dependent effective path lengths observed through
the atmosphere vary in a predictable way.

(b) Retrievals are performed by comparing observed radiances with pre-computed model
radiances calculated for a suite of aerosol compositions and particle size distributions
that cover a range of expected natural conditions. This allows the aerosol retrieval to be
computationally efficient. However, no geographical constraints on aerosol types are
applied.

(c) A fit function formalism is used to assess the magnitude of the residuals in the com-
parison of the measured and the model radiances. All models that meet the fit function
acceptance criteria are reported as acceptable solutions to the retrieval process.

(d) For land surfaces which are reflectively heterogeneous within a given 17.6 km region
no assumptions are made concerning the magnitude or explicit angular shape of the
region’s spectral bi-directional reflectance factors (BRFs). Instead, in the initial stages
of the retrieval it is assumed that the BRF angular shape does not change significantly
from one MISR band to another [Diner et al., 2005]. This assumption winnows down
the number of possible pre-computed aerosol models as solutions to the retrieval pro-
cess. For the remaining models additional retrieval processing requires that their BRFs
produce a TOA radiance describable in terms of empirical orthogonal functions
(EOFs), derived directly from the multi-angle imagery.

(e) Because the retrieval algorithm requires an assumption of atmospheric horizontal
homogeneity, no retrieval are performed over land when the surface topography is
determined to be complex. This restriction tends to rule out any retrievals over
mountainous terrain. Additionally, all 1.1 km sub-regions within the 17.6 km region
that are considered to be contaminated by clouds are not used in the aerosol retrieval
process.
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3.1 MISR aerosol models

To realistically constrain the MISR retrievals, it is advantageous to make reasonable use of
what is currently known about the types and characteristics of aerosols found in the tropo-
sphere. In general tropospheric aerosols fall into a small number of compositional cate-
gories that include sea spray (salt), sulfate/nitrate particles, mineral dust, biomass burning
particles, and urban soot. The aerosol information used by the MISR retrieval algorithms is
based on these categories, convolved with the expected sensitivity of MISR data to particle
properties under good but not necessarily ideal viewing conditions [Chen et al., 2008;
Kahn et al., 2001; Kalashnikova and Kahn, 2006]. The aerosol optical models used
are described in the Aerosol Climatology Product (ACP), which is composed of two parts,
an Aerosol Physical and Optical Properties (APOP) file and a tropospheric Aerosol Mix-
ture file. The APOP file has detailed information on the microphysical and scattering char-
acteristics of 21 different aerosol single composition particle types, called components, of
which only eight are used in the MISR operational Version 22 retrieval process (see Ta-
ble 9.1). All components are modeled using lognormal particle size distributions, charac-
terized by the median radius rm, the standard deviation r of the natural log of the radius r,
and the total number of particles N:

nðrÞ ¼ N

ð2pÞ1=2rr
exp½� ðln r � ln rmÞ2

2r2
�: ð1Þ

Table 9.1. MISR aerosol components

Aerosol Type rm

(lm)
r Real refrac-

tive index
Imaginary re-
fractive index

Effective
radius (lm)

Single scatter-
ing albedo

1: spherical 0.03 0.501 1.45 0.00 0.06 1.000

2: spherical 0.06 0.531 1.45 0.00 0.12 1.000

3: spherical 0.12 0.560 1.45 0.00 0.26 1.000

6: spherical 1.0 0.642 1.45 0.00 2.80 1.000

8: spherical 0.06 0.531 1.45 0.0147 0.12 B: 0.911
G: 0.900
R: 0.885
N: 0.853

14: spherical 0.06 0.531 1.45 0.0325 0.12 B: 0.821
G: 0.800
R: 0.773
N: 0.720

19: dust 0.5 0.405 B: 1.50
G: 1.51
R: 1.51
N: 1.51

B: 0.0041
G: 0.0021
R: 0.00065
N: 0.00047

0.21 B: 0.919
G: 0.977
R: 0.994
N: 0.997

21: dust 1.0 0.693 1.51 B: 0.0041
G: 0.0021
R: 0.00065
N: 0.00047

3.32 B: 0.810
G: 0.902
R: 0.971
N: 0.983

B ¼ blue, G ¼ green, R ¼ red, N ¼ Near IR MISR bands
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The six spherical particle types in Table 9.1 range in size from small to large with the
medium size also taking on a range of absorbing strengths. Note that components labeled
2, 8, and 14 have identical size distributions but differ in their imaginary refractive indices,
allowing them to simulate either clean or polluted aerosols or biomass burning particles.

The scattering properties for the spherical particles were computed using Mie theory
whereas those for the two dust components were computed using the discrete dipole ap-
proximation and the T-matrix technique [Kalashnikova et al., 2005]. During the retrieval
process 74 distinct aerosol models are created as mixtures of these components, using
information detailed in the Aerosol Mixture file of the ACP (see Table 9.2). They simulate
the more complex aerosol compositions in the troposphere, i.e., the bimodal and trimodal
combinations that are typically found in nature. The first 50 models have bimodal distri-
butions and are comprised of only spherical particles, simulating aerosol types found in
rural to urban regions, including biomass burning and sea spray. The remaining 24 models
contain at least one dust component. Models 51 through 62 have trimodal distributions
where two modes are fine and coarse, non-absorbing spherical particles and the third
mode is the medium dust component. Models 63 through 70 also have trimodal distribu-
tions but with a single mode of fine, non-absorbing spherical particles mixed with the
medium and large dust components. Finally, models 71 through 74 are all dust bimodal
mixtures composed of the medium and large dust components.

Table 9.2. MISR retrieval aerosol mixtures

Model number Components Mixture fractional optical depth (green band)

1–10: bimodal 1 and 6 Range: 1.0 (1) and 0.0 (6) to 0.2 (1) and 0.8 (6)

11–20: bimodal 2 and 6 Range: 1.0 (2) and 0.0 (6) to 0.2 (2) and 0.8 (6)

21–30: bimodal 3 and 6 Range: 1.0 (3) and 0.0 (6) to 0.2 (3) and 0.8 (6)

31–40: bimodal 8 and 6 Range: 1.0 (8) and 0.0 (6) to 0.2 (8) and 0.8 (6)

41–50: bimodal 14 and 6 Range: 1.0 (14) and 0.0 (6) to 0.2 (14) and 0.8 (6)

51–53: trimodal 2, 6 and 19 Range: 0.72 (2) and 0.08 (6) and 0.20 (19) to 0.16 (2) and 0.64 (6)
and 0.20 (19)

54–56: trimodal 2, 6 and 19 Range: 0.54 (2) and 0.06 (6) and 0.40 (19) to 0.12 (2) and 0.48 (6)
and 0.40 (19)

57–59: trimodal 2, 6 and 19 Range: 0.36 (2) and 0.04 (6) and 0.60 (19) to 0.08 (2) and 0.32 (6)
and 0.60 (19)

60–62: trimodal 2, 6 and 19 Range: 0.18 (2) and 0.02 (6) and 0.80 (19) to 0.04 (2) and 0.16 (6)
and 0.80 (19)

63–66: trimodal 2, 19 and 21 Range: 0.40 (2) and 0.48 (19) and 0.12 (21) to 0.40 (2) and 0.12
(19) and 0.48 (21)

67–70: trimodal 2, 19 and 21 Range: 0.20 (2) and 0.64 (19) and 0.16 (21) to 0.20 (2) and 0.16
(19) and 0.64 (21)

71–74: bimodal 19 and 21 Range: 0.8 (19) and 0.2 (21) to 0.2 (19) and 0.8 (21)

Note: Numbers in parentheses in fractional OD column indicate component label.
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3.2 Radiative transfer look-up tables

In addition to predetermined aerosol models, another major feature of the MISR aerosol
retrieval strategy is the use of the look-up table (LUT) to obtain most of the radiative
transfer (RT) parameters needed by the algorithms. Whether retrieving aerosols over ocean
or land, the fundamental process involves comparing measured TOA radiances with those
derived from a coupled atmosphere/surface RT model. To accommodate the timing re-
quirements of analyzing the large amount of data accumulated on a daily basis and
the modeling of complex RT processes needed by the algorithms, the necessary RT para-
meters have been pre-computed for those aerosol components contained in the ACP and
the results stored in the Simulated MISR Ancillary Radiative Transfer (SMART) dataset.

The atmospheric structure of the RT model is an aerosol layer, defined by its base, top
and scale heights and optical depth, imbedded in a Rayleigh scattering layer defined by its
scale height and optical depth (see Table 9.3). The RT calculations were performed using a
scalar (non-polarized) code based on a matrix operator technique [Grant and Hunt, 1968],
which accounts for all orders of multiple scattering. The final RT calculations include a
correction for Rayleigh polarization effects, two Rayleigh scattering amounts (used to in-
terpolate to a elevation-dependent pressure), and a fixed, standard atmosphere water vapor
amount that affects only slightly the radiance in MISR’s near-IR band (effective water
optical depth 
 0:005). No ozone is included since the MISR observations are corrected
for effects of this gas prior to the use of the SMART dataset.

The SMART dataset contains a variety of computed RT parameters needed for retriev-
ing aerosol properties over both ocean and land and also retrieving land-surface reflection
and biophysical properties [Martonchik et al., 1998a, b]. Each RT parameter is a function
of the aerosol component type, optical depth and, depending on the parameter, one or more
of the view, sun geometry angles, namely view zenith angle, solar zenith angle and the
azimuth angle difference between the view and sun directional vectors. To prevent the size
of the dataset from being prohibitively large, reasonable restrictions were implemented
concerning key variables. For example, the optical depth for each aerosol component
at each wavelength was limited to a maximum value of 3.0. Also, the range of the
view zenith angles in the SMART dataset is appropriate to cover only those angles ob-
served by each of the nine MISR cameras along an orbital path. Likewise, the solar zenith
angle in the dataset is limited to a value of 78.5�, beyond which the plane-parallel atmo-
sphere approximation starts to break down. However, the needed angular geometry in the
SMART dataset is on a sufficiently fine grid to allow for linear interpolation of the RT
parameters with no significant loss of computational accuracy. Finally, requiring that the
RT calculations be carried out for the individual aerosol components only and not the
individual aerosol models, results in the minimal size LUT needed to perform aerosol

Table 9.3. SMART atmospheric layer structure

Layer type Layer base height
(km)

Layer top height
(km)

Layer scale height
(km)

Rayleigh 0.0 705. 8.0

Components 1–14 0.0 10.0 2.0

Components 19 and 21 3.0 6.0 10.0
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retrievals. To transition from RT parameters defined for aerosol components to parameters
needed for mixture models, a modified form of linear mixing [Abdou et al., 1997] is ap-
plied on-the-fly at the desired retrieval locations. This technique is a modification of the
standard linear mixing approach (see, e.g., Wang and Gordon [1994]) and provides a much
more accurate result than standard linear mixing in situations where particles with sub-
stantially different absorption characteristics are present.

4. Methodology for aerosol retrieval over land

The quality of the MISR aerosol retrieval product over land has improved considerably
since it became operational. Much of the initial quality increase was due to improved fil-
tering of the input top-of-atmosphere TOA data (e.g., using better cloud screening tech-
niques) to provide clear sky conditions and leaving the actual mechanics of the retrieval
algorithm virtually unchanged. This retrieval algorithm was based on a principal compo-
nent analysis of the multispectral, multi-angle TOA MISR data from which empirical or-
thogonal functions (EOFs) in view angle were obtained to describe the directional reflec-
tance properties of the surface [Martonchik et al., 1998a]. After three years of operation
and considerable scrutiny of the retrieval results a major design change was implemented
in January 2003 [Diner et al., 2005] This upgrade left the original algorithm intact, serving
instead as an additional step in the processing chain. It functions as an independent re-
trieval algorithm, selecting its own set of acceptable aerosol models based on similarity of
the angular shape of the spectral surface directional reflectance properties associated with
each model. This subset of acceptable models is then used as a filtered input to the original
EOF-based retrieval algorithm, a technique that considerably improves the quality of the
final retrieval result. The theory behind these two retrieval steps, both requiring multi-an-
gle data as a prerequisite for their implementation, is summarized in the following sections.

4.1 Basics of the surface reflectance angular shape similarity retrieval
algorithm

This algorithm has its heritage in pioneering work performed in implementing the Along-
Track Scanning Radiometer (ATSR)-2 experiment. ATSR-2 is a conical scanning radio-
meter that measures TOA radiance at two view zenith angles, one near nadir and the other
at approximately 55�. Flowerdew and Haigh [1995] suggested that the ratio of the surface
reflectance at the two angles should be nearly spectrally invariant because the surface scat-
tering elements are much larger than the wavelengths of the scattered light. Aerosol re-
trieval algorithms based on this idea, created by a number of researchers using ATSR-2
data [Flowerdew and Haigh, 1996; Veefkind et al., 1998; North et al., 1999; North, 2002],
yielded good comparisons with aerosol results from ground-based sunphotometers. The
success of this technique prompted its adaptation to the multi-angle observations of MISR
[Diner et al., 2005].

In the MISR adaptation, the surface directional reflectance is described in terms of the
hemispherical-directional reflectance factor (HDRF), which is the directional surface re-
flectance, illuminated by both direct and diffuse ambient irradiance, ratioed to the reflec-
tance from an ideal Lambertian target, illuminated under the same conditions [Shaepman-
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Strub et al, 2006; Martonchik et al., 2000]. However, a more accurate description of the
surface reflectance, and one which is in better agreement with the physics of angular shape
invariance, is the bi-directional reflectance factor, defined analogously to that of the HDRF
but the surface illumination is restricted to direct (i.e., parallel beam) irradiance only
[Shaepman-Strub et al., 2006; Martonchik et al., 2000]. Assuming surface spectral BRFs
have strict angular shape invariance, the corresponding spectral HDRFs generally would
not have this condition (see, e.g., [Shaepman-Strub et al., 2006]). This is due to the down-
ward diffuse radiance having different directional properties across the visible spectrum,
interacting with the surface whose reflectance can be strongly dependent on illumination
angle. Both strongly wavelength-dependent Rayleigh scattering and large aerosol optical
depths contribute to the angular variability and strength of the diffuse radiance. The ra-
tionale for the MISR approach of using the HDRF instead of the BRF is threefold. First, it
is more complex, involving additional time and computer resources, to remove the effects
of the diffuse field to arrive at the surface spectral BRFs [Martonchik et al.,1998b]. This
would have to be done for every aerosol model being tested in this stage of the retrieval
process, and covering a wide range of optical depths. Second, it is not clear how precise the
spectral angular shape invariance principle is for natural surfaces. For example, it seems
intuitive that the surface albedo would have some influence on the invariance principle.
Multiple scattering taking place within the surface structure should have a greater effect on
reflectance in spectral bands with high surface albedo compared to reflectance in spectral
bands with low albedo, so the angular distribution of the reflected radiance would be ex-
pected to differ from that of single scattering from the surface. Lastly, the goal of this
MISR algorithm is to find and eliminate in an efficient and effective manner those aerosol
models and optical depths that are grossly at odds with the angular shape invariance prin-
ciple. This has been achieved with remarkable success in the MISR operational aerosol
retrieval process, in spite of the identified simplifications [Diner et al., 2005].

The spectral reflectance shape invariance is expressed in the algorithm as

rkð�l; l0f� f0Þ ¼ akf ð�l; l0f� f0Þ; ð2Þ

where rk is the spectral HDRF at wavelength k; f is the invariant (wavelength-indepen-
dent) angular shape function and ak is a wavelength-dependent scaling parameter. The
independent parameters include cosine of the view zenith angle �l, cosine of the solar
zenith angle l0 and relative azimuth angle f� f0. An explicit but approximate expression
for rk can be written as

rkð�l; l0;f� f0Þ ¼
LMISR
k ð�l; l0;f� f0Þ � Latm

k ð�l; l0;f� f0Þ
½expð�sk=lÞ þ tdiff

k ð�lÞ�Llam
k ðl0Þ

; ð3Þ

where LMISR
k is the TOA radiance, Latm

k is the atmospheric path radiance, sk is the total
atmospheric optical depth, tdiff

k is the upward diffuse, azimuthally integrated, atmospheric
transmittance and Llam

k is the upward radiance at the surface reflected from a Lambertian
target. Dividing rk by the camera average value hrkicam, this normalized HDRF, rcamnorm;k
is given by

rcamnorm;kðiÞ ¼ rkðiÞ
hrkðiÞicam

¼ ½LMISR
k ðiÞ � Latm

k ðiÞ�=½expð�sk=liÞ þ tdiff
k ðiÞ�

h½LMISR
k � Latm

k �=½expð�sk=lÞ þ tdiff
k �icam

; ð4Þ
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where the explicit camera geometry, �l; l0;ff0, is replaced by the camera index i. All the
atmospheric parameters in this equation are MISR aerosol model RT parameters contained
in the SMART dataset. It is presumed that, if the correct aerosol model has been selected,
rcamnorm;k will be wavelength independent, as stipulated by Eq. (2). For a given aerosol
model the wavelength independence condition may be measured by means of a fit func-
tion, X 2

angular, defined as

X 2
angularðmodel; sgreenÞ ¼

P
k
wk
P
i
qi½rcamnorm;kðiÞ � hrcamnormðiÞik�2

ð0:05Þ2P
k
wk
P
i
qi

; ð5Þ

where hrcamnormik is the spectral band average of rcamnorm;k, wk are band weights and qi are
camera weights. As implemented, bands 1–4 (blue, green, red, and near-IR) are assigned
wk values of 4, 3, 2, and 1, respectively, indicating higher weights for the shorter wave-
lengths. Similarly, the camera weights, qi, are set to the view angle reciprocal cosine, 1/l,
taking advantage of the greater atmospheric sensitivity in the oblique views.

An alternative view of the surface constraint implied by Eq. (2) is to work with the
normalized HDRF, rbandnorm;k, defined as the HDRF, rk, divided by its band averaged value
hrik,

rbandnorm;kðiÞ ¼ rkðiÞ
hrðiÞik

: ð6Þ

In this formulation the normalized HDRF should be independent of angle. For a given
aerosol model, this independence can be measured as a fit function, X 2

spectral, defined as

X 2
spectralðmodel; sgreenÞ

P
k
wk
P
i
qi½rbandnorm;kðiÞ � hrbandnorm;kicam�2

ð0:05Þ2P
k
wk
P
i
qi

; ð7Þ

where hrbandnorm;kicam is the camera average value of rbandnorm;k and weights wk and qi, as
defined by Eq. (5).

The aerosol model and optical depth that minimizes either Eq. (5) or Eq. (7), in prin-
ciple, would be the ‘best estimation’ of the actual aerosol conditions. The algorithm allows
a weighted linear combination, X 2

shape, of the two fit functions, i.e.,

X 2
shapeðmodel; sgreenÞ ¼ bX 2

angular þ ð1 � bÞX 2
spectral ð8Þ

in which the parameter b is set to 0.5.

4.2 Basics of the principal components retrieval algorithm

This algorithm has undergone little change since its introduction as the algorithm of choice
for operationally retrieving aerosol properties over land using MISR data [Martonchik et
al., 1998a, 2002]. Like the surface reflectance shape similarity retrieval algorithm de-
scribed in the previous section, this algorithm is intrinsically multi-angle in nature and
can only be used with this type of observational data. It assumes that the atmosphere
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is laterally homogeneous over the region of retrieval interest (currently 17.6 � 17.6 km for
the standard MISR aerosol product) and requires that there be sufficient surface contrast
contained within the 256 1.1 � 1.1 km sub-regions defining this region. Under these con-
ditions a principal component analysis (PCA) (see, e.g., Preisendorfer [1988]) in the sur-
face directional reflectance properties can be performed on the MISR TOA radiance data,
which results in constraints on the atmospheric path radiance (and the associated aerosol
models).

For a given sub-region located at x; y the MISR radiance field LMISR
x;y;k at wavelength k can

be written as

LMISR
x;y;k ð�l;l0;f� f0Þ ¼ Latm

k ð�l; l0;f� f0Þ þ Lsurf
x;y;kð�l; l0;f� f0Þ; ð9Þ

where Latm
k is the atmospheric path radiance (independent of x; y) and Lsurf

x;y;k is that com-
ponent of the TOA radiance which contains all the surface–atmosphere interactions. When
the TOA radiance of a particular sub-region within the region is selected as a bias radiance,
LMISR

bias;k , and this radiance is subtracted from every other sub-region TOA radiance in the
region, a scatter matrix Ck can be constructed which is not explicitly dependent on the
unknown atmospheric path radiance Latm

k :

Ckði; jÞ ¼
X
x;y

½LMISR
x;y;k ðiÞ � LMISR

bias;kðiÞ�½LMISR
x;y;k ðjÞ � LMISR

bias;kðjÞ�

¼
X
x;y

½Lsurf
x;y;kðiÞ � Lsurf

bias;kðiÞ�½Lsurf
x;y;kðjÞ � Lsurf

bias;kðjÞ� ð10Þ

Here, Eq. (9) was used, again replacing the camera angular parameters �l; l0; f� f0

with a single camera index i or j. The camera index nominally runs from 1 through 9, each
identified with an individual camera, but the indexing range can be less if certain cameras
are not available (e.g., due to cloud contamination). The summation is over the usable sub-
regions within the region, where a usable sub-region is defined as having clear sky ra-
diances for each available camera view This requirement implies a usable sub-region lo-
cation mask in x, y which is identical for each camera. As a choice for a bias sub-region, the
MISR operational algorithm Version 22 and earlier uses the darkest sub-region as observed
by the nadir (An) camera in the green band. Following standard principal component pro-
cedure, the eigenvectors (aka EOFs) and eigenvalues of matrix Ck are then used to ex-
plicitly describe Lsurf

x;y;k, i.e.

Lsurf
x;y;kðiÞ ¼ Lsurf

bias;kðiÞ þ
X
n

An
x;y;kfn;kðiÞ; ð11Þ

where fn; k are the eigenvectors and An
x;y;k are expansion coefficients for the sub-region

location at x, y. The contribution of an individual eigenvector in describing the angular
shape of Lsurf

x;y;k, is determined by the relative size of its eigenvalue. The eigenvectors
are ordered such that their corresponding eigenvalues decrease monotonically. Therefore,
only those eigenvectors with eigenvalues greater than a prescribed magnitude are used in
the summation in Eq. (11) to effectively describe Lsurf

x;y;k. From Eq. (9), the MISR radiance
LMISR
x;y;k can now be written as
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LMISR
x;y;k ðiÞ ¼ Latm

k ðiÞ þ Lsurf
bias;kðiÞ þ

X
n

An
x;y;kfn;kðiÞ: ð12Þ

Averaging LMISR
x;y;k over all the usable sub-regions,

hLMISR
k ðiÞix;y ¼ Latm

k ðiÞ þ Lsurf
bias;kðiÞ þ

X
n

hAn
kix;yfn;kðiÞ ¼ Latm

k ðiÞ þ
X
n

Bn
kfn;kðiÞ: ð13Þ

Note that Lsurf
bias;k is incorporated into the eigenvector summation term, under the assumption

that it can be adequately expressed in that representation. Experience using a PC analysis
on MISR data generally indicates that only the first two eigenvectors in this summation are
needed to express 95 % of the variation in Lsurf

x;y;k in Eq. (11), as dictated by the eigenvalues.
Equation (13) embodies the PCA aspect of the aerosol retrieval algorithm. On the left

side of the equation is the average MISR radiance over a 17.6 km region. It is fitted via the
expression on the right side, where Latm

k is the atmospheric path radiance for an aerosol
model previously selected as a successful retrieval candidate using the surface reflectance
shape similarity algorithm, and the coefficients Bn

k are determined by a least-squares fit:

Bn
k ¼

X
i

½hLMISR
k ðiÞix;y � Latm

k ðiÞ�fn;k: ð14Þ

This expression for Bn
k is particularly simple and easily computed due to orthonormality of

the eigenvectors fn;k. Defining Lmodel
k as the collection of terms on the right side of Eq. (13),

a fit function, X 2
het, is calculated as

X 2
hetðmodel; sgreenÞ ¼

P
k

P
i
mkðiÞ

½hLMISR
k ðiÞix;y � Lmodel

k ðiÞ�2

r2
het;kðiÞP

k

P
i
mkðiÞ

: ð15Þ

where the weight mk ¼ 1 if a valid value of hLMISR
k ix;y exists; otherwise mk ¼ 0. The pa-

rameter rhet;k is defined as

rhet;kðiÞ ¼ 0:05 max½hLMISR
k ðiÞix;y; 0:04ðE0;k pÞ�;= ð16Þ

where E0k is the solar irradiance at wavelength k. Multiplying radiance by p and dividing
by the TOA solar irradiance defines an equivalent reflectance.

After testing all 74 aerosol models and traversing the total range of model optical depth
(0.0 to 3.0 in the green band) for each, the retrieval process in a region is considered to be
successful if there is at least one model at an optical depth (green band) greater than zero,
which has a minimum X 2

het less than a prescribed upper limit. If more than one model
passes this minimum X 2

het criterion, the retrieved effective aerosol particle properties
and associated spectral optical depths are estimated through an appropriate model aver-
aging procedure [Martonchik et al., 1998a].
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5. MISR cloud screening over land

Cloud screening is a discrimination process whereby pixels in an image are classified as
being either contaminated by cloud or clear of cloud. This is a critical step in the aerosol
retrieval process both over land and ocean, striving to provide assurance that only clear
pixels are used in the analysis. Methods for identifying clouds are generally based on ra-
diance threshold, atmospheric model, or statistical techniques making use of spectral and
textural features in the imagery (see, e.g., Rossow et al. [1985], Goodman and Henderson-
Sellers [1988] and Rossow [1989]). Radiance threshold techniques work on an individual
pixel basis, using predefined single or multiple thresholds applied to radiometrically based
observables, to differentiate between clear and cloudy pixels. Atmospheric model tech-
niques use one or more spectral radiance measurements as input to an atmospheric radia-
tive transfer or structure model and retrieve a physical quantity such as cloud optical thick-
ness or altitude. The pixels are then classified as clear or cloudy based on thresholds in the
retrieved quantity. Statistical techniques use groups of adjacent pixels and methods based
on spatial coherency between adjacent pixels, neural networks, maximum likelihood de-
cision rules, and clustering routines.

MISR operational processing generates three separate and unique cloud masks, each
employing a markedly different discrimination technique, and all three masks are used to
select the clear pixels to be used by the aerosol retrieval algorithm.

5.1 Radiometric camera-by-camera cloud mask (RCCM)

This cloud mask is generated for each of the nine MISR cameras at 1.1 km resolution and
is based on the radiance threshold technique. This is a challenging problem for MISR given
the small number of spectral channels available, none of which have wavelengths longer
than 1 lm. As a result, only a few cloud detection observables can be constructed just using
simple arithmetic operations on the camera radiances as practically mandated by time con-
straints on the operational process. The few observables that are used by the RCCM to
determine clear versus cloudy conditions depends on whether the observations are
made over water or land. In the case of cloud detection over water the two observables
are the TOA BRF in band 4 (near IR at 866 nm) at 1.1 km resolution, R4, and the standard
deviation of the 4 � 4 array of 275 m band 3 (red at 672 nm) BRFs within a 1.1 km area,
r3. Here, the band 4 TOA BRF can be written as

R4ðiÞ ¼ pLMISR
4 ðiÞ=l0E0;4 ð17Þ

where E0;4 is the band 4 solar irradiance. The dependence of R4 on camera is explicitly
expressed by the camera index i. Two observables are used over land, namely the D pa-
rameter and the r3 parameter. The D parameter [Di Girolamo and Davies, 1995] is defined
as

DðiÞ ¼ jNDVIðiÞjb
hR3ðiÞi2 ð18Þ

where hR3i is the average of the 275 m TOA BRFs in band 3 within a 1.1-km pixel area and
NDVI is the Normalized Difference Vegetation Index defined as
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NDVIðiÞ ¼ R4ðiÞ � R3ðiÞ
R4ðiÞ þ R3ðiÞ : ð19Þ

The parameter b in Eq. (18) is chosen so as to maximize the distinction between clear and
cloudy pixels [DiGirolamo and Davies, 1995]. The choice of b also tends to maximize the
spatial variability of clear-sky D-values, thus allowing statistical cloud-detection techni-
ques to be effective. It, however, depends on the underlying surface type. The surface clas-
sification used by the RCCM is that of the Cloud Screening Surface Classifications
(CSSC) dataset, which is based on the WE1.4D version of Olsen’s global ecosystem da-
tabase [NOAA-EPA Global Ecosystems Database Project, 1992], and has the surface di-
vided into 158� contiguous surface types. The other observable, r3, is a type of standard
deviation defined as

r3ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
p¼1

½R275
3;p ðiÞ � hR275

3 ðiÞi�2
vuut ð20Þ

where hR275
3 i is the mean value of the usable number n of 275 m band 3 BRFs, R275

3;p , of the
4 � 4 matrix comprising a 1.1 km pixel.

The thresholds associated with the two observables are a function of surface type, solar
zenith angle, relative azimuth angle and view zenith angle. They are derived using an
automated threshold selection algorithm on MISR TOA data that is suitably fast for
use in operational processing [Yang et al., 2007]. There are three thresholds for each
of the two observables with those of the D parameter updated seasonally for land classes
since surface conditions can vary. The thresholds for spring 2008, for example, are dif-
ferent from those derived for spring 2007, to account for inter-annual variation. Threshold
T1 divides a high-confidence cloudy condition (CloudHC) from a low-confidence cloudy
condition (CloudLC), T2 divides CloudLC from a low-confidence clear-sky condition
(ClearLC), and T3 divides ClearLC from a high-confidence clear-sky condition
(ClearHC). Failure for any reason to retrieve any of these four conditions results in a label
of no retrieval (NR). Thus, the RCCM contains the classification of each 1.1 km pixel for
each camera labeled with one of these five designations.

5.2 Stereoscopically derived cloud mask (SDCM)

This is a single 1.1-km resolution mask (unlike the camera-dependent RCCM), labeling a
pixel as cloudy based on a retrieval of the altitude of the radiance-reflecting layer (surface
or cloud) within that pixel. Due to the multiple camera configuration of MISR, cloud-mo-
tion vectors and cloud-top heights can be determined using a purely geometrical technique
that requires locating the same cloud features at different viewing angles. To this end, fast
stereo-matching algorithms have been developed to perform this camera-to-camera image
matching automatically on an operational basis [Moroney et al., 2002]. Cloud-top height is
generally obtained with an accuracy of�562 m, even over snow and ice, for clouds that are
optically thick enough to have identifiable features in multiple, angular images. This ac-
curacy limitation stems from the lack of sub-pixel acuity in the stereo-matching algo-
rithms. In the operational default case of matching with the nadir and Af/Aa cameras,
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a one pixel difference in the calculated disparity (observed difference in feature location
between cameras) leads directly to a 562 m height difference. Other camera combinations
can theoretically produce better height accuracies but they tend to be more computation-
ally expensive on an operational basis. The influence of winds is an important considera-
tion in the stereo-matching process since the perceived parallax (relative shifting of feature
locations in two camera views with respect to the ground) can be a combination of true
parallax due strictly to geometry and an actual physical shift in a cloud location due to
winds. Therefore, the first step in computing reflecting layer heights is to retrieve the wind
vector at that height, but it is a difficult process that only succeeds about half the time. For
those areas where the wind retrieval succeeded and passed its quality assessment, a wind-
corrected height is calculated, but this field usually contains large gaps in coverage. So, a
less accurate second version is also calculated, where wind effects are ignored but having
almost complete coverage. It is this ‘without winds’ height field product that is used to
generate the WithoutWinds SDCM used in the aerosol-retrieval process.

The ‘WithoutWinds’ reflecting layer height field provides the information to label pix-
els, using a five-label height classification which parallels the five-label cloud/clear clas-
sification of the RCCM. This reflecting layer height mask labels the reflecting layer as
being above the surface with high confidence (AboveSurfHC), above the surface with
low confidence (Above SurfLC), near the surface with low confidence (NearSurfLC),
near the surface with high confidence (NearSurfHC), or no retrieval (NR), based on var-
ious image-matching quality factors associated with the stereo-matching process. The fi-
nal step in generating the SDCM is a comparison of the RCCM with the reflecting layer
height mask to validate, but never override, the height mask classification, resulting in the
SDCM labels of CloudHC, CloudLC, NearSurfaceLC, NearSurfaceHC, and NR. Since the
SDCM is derived solely from the retrieved height of image features (without incorporat-
ing, for example, radiometric information), it cannot be determined with sufficient con-
fidence that a pixel is clear, only that the retrieved reflecting layer height is near the sur-
face.

5.3 Angular signature cloud mask (ASCM)

This is a single 1.1-km resolution mask (like the SDCM), labeling a pixel as cloudy or clear
depending on an analysis of its band-differenced angular signature (BDAS) [Di Girolamo
and Davies, 1994; Di Girolamo and Wilson, 2003]. A BDAS is the TOA radiance differ-
ence in two sufficiently separated, non-absorbing, visible solar spectral bands as a function
of view angle. For MISR cloud detection purposes the BDAS can be defined as

BDASðiÞ ¼ R1ðiÞ � R3;4ðiÞ; ð21Þ

whereR1 is the TOA BRF in band 1 (blue at 446 nm). R4 is used in Eq. (21) when observing
over snow- and ice-free and R3 is used over snowand ice-free land. The basis of the tech-
nique is that the BDAS is sensitive to the relative concentration of Rayleigh scattering to
the total reflectance. Bands 1 and 4 differ by almost a factor of 15 in their sensitivity to
Rayleigh scattering, while bands 1 and 3 differ by more than a factor of 5. Since the con-
tribution of Rayleigh scattering decreases in the presence of high clouds, the resulting
changes in the BDAS enable detection of such clouds. Over much of the snow- and
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ice-free land surface, if bands 1 and 4 were used by the BDAS, its sensitivity to clouds
would generally be hampered by the large difference in land reflectance in these bands.
This is why bands 1 and 3 are used by the BDAS for these types of surface conditions. This
band choice has the advantage of reducing the difference in surface spectral reflectance but
also the disadvantage of reducing the difference in the Rayleigh scattering contribution to
the two spectral TOA BRFs. For snow and ice surface conditions, however, the use of bands
1 and 4 by the BDAS works extremely well in detecting clouds since the surface reflec-
tances in these bands are comparable. This capability provides needed relief from the
difficulties experienced by the RCCM when performing under snow and ice surface con-
ditions.

The BDAS technique, like other cloud-detection techniques, requires a threshold that
distinguishes between clear and cloudy pixels. The observable in this case is W, defined as

Wði; jÞ ¼ ½BDASðiÞ � BDASðjÞ�
hðiÞ � hðjÞ ; ð22Þ

where h is the scattering angle. W is simply the slope of the BDAS with scattering angle,
determined by the selection of two cameras i and j. The two cameras nominally used in the
MISR processing are the fore camera pair, Cf and Df, or the aft pair, Ca and Da, the choice
depending on whether the observations are made in the Northern or Southern Hemisphere,
respectively [Di Girolamo and Wilson, 2003] This distinction is made because maximum
slope sensitivity is obtained with the BDAS between cloud and surface if the radiation is
scattered predominately in the forward direction, i.e., if the C and D cameras have a scat-
tering angle h � 90�. There are three thresholds associated with the observable W, similar
in concept to those used by the RCCM. Threshold W1 divides a high-confidence cloudy
condition (CloudHC) from a low confidence cloudy condition (CloudLC), W2 divides
CloudLC from a low confidence clear-sky condition (ClearLC), and W3 divides ClearLC
from a high-confidence clear-sky condition (ClearHC). Implementation of Eq. (22) and
associated thresholds on a 1.1-km pixel generates the ASCM product. Failure for any rea-
son to retrieve any of these four cloud/clear conditions results in a label of no retrieval (NR)
in the ASCM. Like the RCCM thresholds, the ASCM thresholds also depend on view
zenith angle, relative azimuth angle, solar zenith angle and surface type but, unlike
the RCCM thresholds, they are currently static.

5.4 Aerosol retrieval cloud mask

The aerosol retrieval process uses these three cloud masks to decide which 1.1-km reso-
lution pixels are suitable for use by the retrieval algorithm. When over ice- and snow-free
land, only the RCCM and SDCM masks are considered. For this case Table 9.4 shows the
matrix used to decide the classification of a pixel for a given camera. A label of Cloud
eliminates that pixel being used in the retrieval. When over snow- or ice-covered terrain all
three cloud masks are used to decide the classification of a pixel. Table 9.5 shows the pixel
classification matrix for this case.

The processing of MISR imagery using cloud masks is actually the first step in a three-
step process to determine which pixels are considered suitable as input to the aerosol re-
trieval algorithm. These masks are generated external to the aerosol retrieval process, as

5. MISR cloud screening over land 281



part of the MISR Level 2 TOA/Cloud Product. But two additional data-filtering steps are
initiated within the aerosol retrieval process itself to further eliminate contaminated pixels.
These are the angle-to-angle smoothness and correlation evaluations.

5.5 Angle-to-angle smoothness evaluation

This is a test on each 1.1-km sub-region within the 17.6-km region to insure that the ra-
diance field is ‘smooth’ as a function of view angle [Martonchik et al., 2002]. Besides
additional clouds somehow missed by the MISR cloud masks, other undesirable features,

Table 9.4. Ice/snow-free land cloud classification matrix

RCCM

No Retrieval CloudHC CloudLC ClearLC ClearHC

No Retrieval Clear Clear Clear Clear Clear

SDCM CloudHC Clear Cloud Cloud Clear Clear

CloudLC Clear Cloud Cloud Clear Clear

NearSurfaceLC Clear Clear Clear Clear Clear

NearSurfaceHC Clear Clear Clear Clear Clear

Table 9.5. Ice/snow-covered land cloud classification matrix

ASCM ¼
No Retrieval

RCCM

No Retrieval CloudHC CloudLC ClearLC ClearHC

SDCM No Retrieval Cloud Cloud Cloud Clear Clear

CloudHC Cloud Cloud Cloud Cloud Cloud

CloudLC Cloud Cloud Cloud Cloud Cloud

NearSurfaceLC Clear Cloud Cloud Clear Clear

NearSurfaceHC Clear Cloud Cloud Clear Clear

ASCM ¼
CloudHC or CloudLC

RCCM

No Retrieval CloudHC CloudLC ClearLC ClearHC

SDCM No Retrieval Cloud Cloud Cloud Cloud Cloud

CloudHC Cloud Cloud Cloud Cloud Cloud

CloudLC Cloud Cloud Cloud Cloud Cloud

NearSurfaceLC Cloud Cloud Cloud Cloud Cloud

NearSurfaceHC Cloud Cloud Cloud Cloud Cloud

ASCM ¼
ClearLC or ClearHC

RCCM

No Retrieval CloudHC CloudLC ClearLC ClearHC

SDCM No Retrieval Clear Cloud Cloud Clear Clear

CloudHC Cloud Cloud Cloud Cloud Cloud

CloudLC Cloud Cloud Cloud Cloud Cloud

NearSurfaceLC Clear Cloud Cloud Clear Clear

NearSurfaceHC Clear Cloud Cloud Clear Clear
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e.g., glitter, may be detected by this test. It is applied separately to the four forward-viewing
directions and nadir, and to the four aftward-viewing directions and nadir, and for each
spectral band. The smoothness test consists of fitting the radiance values to a polynomial
with one less degree of freedom than the number of cameras and within a specified to-
lerance. Failure of any of the eight smoothness tests causes the sub-region to be eliminated
(all bands and all cameras) from the aerosol retrieval process.

5.6 Angle-to-angle correlation evaluation

The correlation test is designed to detect features, e.g., small clouds, which result in poor
correlation of the radiance spatial distribution within a 1.1-km sub-region from one view
angle to another [Martonchik et al., 2002]. It makes use of the 275 m data in band 3 (red),
routinely available for all nine cameras in MISR Global Mode operation, producing a
4 � 4 array of radiances for each sub-region. The template used to correlate with each
camera view 4 � 4 array is a simple average of the nine MISR individual camera arrays.
If the correlation fails to fall within a prescribed tolerance for any camera, the sub-region
(all bands and all cameras) is eliminated from the aerosol retrieval process.

It may seem that the use of three cloud masks and two angle-to-angle radiance evalua-
tion tests to detect clouds and other undesirable features is more than sufficient to guar-
antee that only clear-sky pixels are used in the aerosol retrieval process. But operational
results for aerosol optical depth, for example, show that ‘blunders’ do occasionally occur,
indicating that current cloud filtering procedures are still not completely foolproof, both in
the sense that some cloud, especially thin, uniform cirrus, may leak through, and that in
some cases, thick smoke or dust aerosol is identified as cloud.

6. Aerosol retrieval results using MISR

The Atmospheric Data Center at NASA Langley has been generating MISR aerosol pro-
ducts over both ocean and land since the start of the EOS Terra mission. Retrieval results
are available as a Level 2 product that retains the native swath geopositions at the original
17.6 km resolution and also in a spatially and temporally gridded version by latitude and
longitude at a coarser resolution of 0.5� (Level 3). Fig. 9.2 shows a year and season matrix
of Level 3 aerosol optical depth data covering the region of the African continent. Aerosols
in northern Africa are primarily dust, and in central and southern Africa are primarily from
biomass burning, though these components are frequently mixed in the atmospheric col-
umn. Note the good spatial coverage of aerosols over the bright Sahara desert as well as
elsewhere in Africa. An overall consistency in the aerosol patterns from year to year for a
given season is apparent.

A large amount of work has gone into assessing the quality of the MISR aerosol product,
over both land and ocean. This validation effort has relied heavily on the use of sunphot-
ometer data obtained by the ground-based Aerosol Robotic Network (AERONET), with
sites scattered over much of the Earth’s surface (Holben et al., 1998). A comparison of
results from other satellite instruments has also been informative, helping to uncover po-
tential biases in the retrieved aerosol properties which may be present and propagated to
higher-level products. Field campaigns, during which coincident aircraft, surface and sa-
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tellite observations were made, are also proving especially valuable for testing and refining
MISR aerosol microphysical property retrievals. In this section the validation results are
reviewed and selected study results are shown, illustrating how the MISR aerosol product
over land can be used to investigate a variety of important aerosol phenomena.

A number of studies have been carried out to understand how well the MISR retrieval
process has been performing over land. The first studies concentrated on aerosol optical
depth (AOD) only, comparing MISR results to those from AERONET [Diner et al., 2001;
Christopher and Wang, 2004; Liu et al., 2004a; Martonchik et al., 2004; Kahn et al., 2005;
Jiang et al., 2007]. A similar study by Abdou et al. [2005] also included results from the
Terra MODIS instrument. This MODIS–MISR comparison showed that MODIS AOD va-
lues over land were biased high compared to those from MISR and AERONET especially
for AOD smaller than about 0.2. Overall, the results can be summarized by the statement
that most of the MISR AOD values fall within 0.05 or 0.2 � AOD of the corresponding
AERONET AOD values and more than a third are within 0.03 or 0.10 � AOD (see, e.g.,
Kahn et al. [2005]). Also, the studies have shown that when the AOD is larger than about
0.4 and when the aerosols are likely to be moderately to strongly absorbing, there is a
tendency for the MISR values to be biased low (see, e.g., Kahn et al. [2005] and Jiang
et al. [2007]). A global summary of the MISR-AERONET comparison extending from
March 2001 through 2006 is shown in Fig. 9.3. The label above each plot denotes the ae-
rosol type that typically (though not always) dominates at the sites included.

The Ångström exponent a is another retrieved aerosol parameter that can be validated
with AERONET data. It is crudely related to particle size, with small particles having large
values of a (Rayleigh scatterers have a ¼ 4). The value of a can be determined from the
spectral trend of the aerosol optical depth sk as modeled by the expression

sk ¼ sk0

k
k0

� ��a

ð23Þ

Fig. 9.2. MISR aerosol optical depth (green band) over the African continent as a function of year and
season.
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where k0 is a reference wavelength usually situated within the spectral range to be covered
by a. Fig. 9.4 shows the MISR Ångström exponents associated with the AOD values plotted
in Fig. 9.3, compared with the AERONET values. The smaller colored circles in Fig. 9.4
indicate associated AOD values less than 0.15. These cases have Ångström exponent va-
lues that are less strongly correlated with AERONET exponents than those cases with
larger AOD values. This result is not unexpected since smaller aerosol amounts will
have lower detection sensitivities to aerosol properties.

6.1 Particulate air quality study results

Air pollution can damage the health of human populations, primarily through respiratory
and cardiovascular diseases. Fine airborne particulate matter with a diameter 5 2.5 lm
(PM2:5) is a ‘criteria pollutant’ identified for monitoring under the US National Ambient
Air Quality Standards (NAAQS). NAAQS implementation for PM2:5, however, has en-
countered delays resulting from slow deployment of a nationwide in situ monitoring net-
work, issues pertaining to how spatial averaging among monitors should be performed, and

Fig. 9.3. MISR AOD regressed against AERONET AOD (green band) where the aerosol type has been
segregated into four distinct classes. The circle color indicates season (brown ¼ DJF, blue ¼ MAM,
green ¼ JJA, orange ¼ SON; MISR aerosol retrieval algorithm versions 16–20 are included in this com-
parison).

6. Aerosol retrieval results using MISR 285



contention over the contribution of non-local pollution sources [Esworthy, 2004]. Devel-
opment of a satellite-based PM2:5 measurement system could alleviate many of these is-
sues and would also extend monitoring to many parts of the world where surface sensors do
not exist.

MISR efforts are aimed at addressing how well retrievals of column AOD can be used to
estimate surface PM2:5 and to determine how much particulate pollution is imported from
remote sources. Liu et al. [2004b, 2005, 2007a] have shown that an empirical regression
model using MISR AOD and a select few geographical and meteorological parameters is
capable of estimating the 24-hour average PM2:5 concentrations at the surface to better
than 50 %. A predictive relationship between surface PM2:5 concentration and AOD
was developed which relies on a global chemistry and transport model to provide a better
physical basis for relating MISR total column AOD to the spatial and temporal variability
of the PM2:5 concentration. This technique was significantly improved [Liu et al., 2007b,
2007c] by using the fractional AOD contributed by each component of the MISR aerosol
models instead of the total (i.e., combined) AOD. This information, coupled with simu-
lated aerosol vertical profiles and detailed aerosol chemical speciation from a chemistry
and transport model (GEOS-CHEM), allowed an estimate of the fractional anthropogenic

Fig. 9.4. MISR Ångström exponents regressed against AERONET values for the cases displayed in
Fig. 9.3. The circle color indicates season (brown ¼ DJF, blue ¼ MAM, green ¼ JJA, orange ¼ SON).
MISR aerosol retrieval algorithm versions 16–20 are included in this comparison.
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AOD in the lower atmosphere and were used to predict ground-level concentrations of total
PM2:5 mass and major particle species. Fig. 9.5 shows a comparison of the retrieved total
PM2:5 mass to the EPA-measured mass and the retrieved SO4 concentration component to
the EPA-measured SO4 concentration for a number of sites across the United States in
2005. The data are separated into eastern and western regions because significant correc-
tions for dust concentrations were made for EPA sites in the western region. The results
show that PM2:5 mass and SO4 concentrations can be predicted reasonably well in both the
eastern and the western regions compared with available EPA ground-truth. It is expected
that further improvements can be made by the use of more mature MISR aerosol particle
property and retrieval products and the analysis of larger EPA datasets, stratified by season
and location.

6.2 Plume studies

Some of the difficulty in implementing pollution attainment standards is that not all pol-
lution is local. Transported smoke can affect the surface PM2:5 concentrations resulting in
a violation of air-quality standards even if local air-quality measures are being followed.
Also, long-range transport of smoke can affect the AOD-PM2:5 relationship when the
transported smoke is above the boundary layer, if the smoke vertical distribution is not
properly taken into account. MISR can contribute in several ways, making use of stereo-
scopic parallax between the multi-angle views [Moroney et al., 2002; Muller et al., 2002]

Fig. 9.5. Comparison of retrieved values of PM2:5 and SO4 concentrations versus EPA measurements in
the eastern and western United States. From Liu et al. [2007c].
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to retrieve aerosol plume heights. Injection heights can be established using multi-angle
stereo data when the aerosol plume has well defined spatial contrasts, providing initializa-
tion conditions for the modeling of wildfire, volcanic and dust aerosols near their sources
and constraints on the physics of plume formation [Kahn et al., 2007]. Moreover, stereo-
scopic heights, AOD and physical and optical properties of transported aerosols downwind
of sources provide validation information for transport models (e.g., Chen et al. [2007]). A
study of smoke plumes in Alaska and the Yukon during the summer of 2004 has been
performed to determine the frequency of occurrence of aerosol plume injection above
the boundary layer [Kahn et al., 2008], using the MISR Interactive eXplorer (MINX) ana-
lysis tool to retrieve plume heights with greater detail than possible with the MISR stan-
dard stereo product. Fig. 9.6 shows the results for more than 600 identified plumes, in-
dicating that at least 10 % of the plumes injected smoke above the boundary layer. Ex-
tension to other seasons and locations is under way to establish the robustness of this result.

7. Discussion and conclusion

The MISR instrument has been very successful in its ability to retrieve aerosol properties
over a wide variety of surface types, including desert. The algorithms used to accomplish
this task rely on a couple of relatively simple but important properties of surface reflec-
tance that allow the separation of atmospheric path radiance from surface-reflected radi-
ance in the TOA radiance measurements of MISR. These reflectance properties, namely
the similarity of the angular shape of the surface BRF at different wavelengths (spectral
invariance) and the limited variability of the surface BRF angular shape generally found
within region-sized (10–20 km) areas (thus, the need for only a couple of eigenvectors in

Fig. 9.6. MISR plume versus model-derived boundary layer heights above the terrain for 664 plumes in
the Alaska-Yukon region, summer 2004. From Kahn et al. [2008].

288 9 Retrieval of aerosol properties over land using MISR observations



the MISR PCA description), usually provide sufficient constraints to retrieve aerosol prop-
erties over land. It is not clear, however, that the MISR implementation of these constraints,
as described in this chapter, is the optimum way to proceed. Since the future trend of ae-
rosol information from satellites will be in the direction of higher spatial resolution and
more and better quality aerosol properties, it would be desirable to retire the PCA part of
the MISR algorithm. The PCA requires a multi-angle and multi-pixel dataset, with the
multi-pixel surface area having sufficient contrast to extract useful EOFs. Therefore,
this need for a multi-pixel area implies a necessary reduction in the spatial resolution
of the aerosol properties being retrieved, compared to the intrinsic spatial resolution of
an individual pixel. The algorithm employing invariance of the surface spectral reflectance
angular shape, however, has no multi-pixel restrictions and theoretically can be used at the
highest spatial resolution of the multi-angle dataset. In fact, single pixel usage would see-
mingly be the best option since the assumptions inherent to the invariance principle should
be best satisfied when the surface area being investigated is reasonably homogeneous.
There is a need for further validation of the basic assumptions defining the invariance
principle. Its general validity for all surface types encountered in remote sensing, and
the degree to which its validity depends on spatial resolution, need to be confirmed before
an algorithm of this type can play a stand-alone role in a future update to the MISR opera-
tional aerosol retrieval process.

In an effort to resolve these issues the MISR aerosol science team has initiated a study
that uses both MISR and AERONET data to directly investigate AERONET site surface
directional reflectance properties. A large number of different AERONET sites were cho-
sen, each spanning the full range of seasonal change, to allow a large variety of surface
types to be investigated in the study. Surface spectral HDRFs and BRFs are retrieved with
spatial resolution ranging from 1.1 km to 17.6 km, employing the MISR operational sur-
face retrieval algorithm [Martonchik et al., 1998b] and MISR TOA data. Instead of using
the MISR retrieved aerosol properties as is normally done, however, the AERONET re-
trieved aerosol properties obtained during the time of MISR overpass are used, under the
assumption that this aerosol information will be more accurate than that obtained from
MISR. In addition only those overpass times where the AERONET AOD (green band)
was 0.2 or less are being studied, since the surface reflectance retrieval is inherently
more accurate for these smaller aerosol amounts. Therefore, it is reasonable to assume
that the retrieved HDRFs and BRFs obtained using this procedure can be considered
as a fairly accurate representation of the true surface reflectance properties. An example
of retrieved BRFs are shown in Fig. 9.7 for the Avignon (France), AERONET site (the site
picture indicates agricultural field surrounded by scattered trees) in Fall of 2000 at 1.1-km
resolution. Also shown are three BRF model curves fitted to the retrieved values. One
curve, labeled ‘common-shape average’, is for the model described by Eq. (2). The curve
labeled ‘common-shape mRPV’ is described by the three-parameter modified Rahman–
Pinty–Verstraete BRF model [Rahman et al., 1993; Martonchik et al., 1998b] whereby the
two parameters defining the directional shape are the same for all four spectral bands. The
curve labeled ‘H-function’ is described by the Hapke BRF model [Hapke, 1981] and is the
only model of the three in which single and multiple scattering within the surface structure
are treated separately. In this latter model the surface reflectance has an angular shape that
depends on the single scattering albedo of the surface structure, resulting in spectral BRFs
that are not precisely directionally invariant.
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For this particular example the invariance of the directional shape of the reflectance is
readily apparent with all three models providing reasonably good fits. Whether this type of
behavior can be expected in general will be determined as the study progresses. Never-
theless, initial results suggest that surface spectral reflectance angular shape invariance
appears to be a robust property of a wide variety of surfaces. There remains a need
for improvements relative to how this constraint is implemented within the MISR standard
retrieval but it seems certain that this particular surface reflectance phenomenon will play a
major role in future space-based aerosol and surface remote sensing missions involving
multi-angle observations.
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Fig. 9.7. Retrieved MISR spectral BRFs (labeled True) at the Avignon AERONET site. The other three
curves are from semi-empirical BRF models described in the text. Note that the AERONET-derived AOD
(green band) is only 0.086.
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10 Polarimetric remote sensing of aerosols
over land surfaces

Brian Cairns, Fabien Waquet, Kirk Knobelspiesse, Jacek Chowdhary,
Jean-Luc Deuzé

1. Introduction

Writing from the S.S. Narkunda, near Aden, C. V Raman noted [1921] that using a Nicol
prism ‘serves to cut off a great deal of the blue atmospheric “haze” which usually envelops
a distant view, and mostly consists of polarized light.’ Although the reason for the color
and polarization of the sky had been explained some time before by J. W. Strutt [1871],
later Lord Rayleigh, and the neutral points, where the polarization of the sky becomes zero,
had already been named after their discoverers Arago [Barral, 1858], Babinet [1840] and
Brewster [1842], this simple observation of Raman’s was still considered noteworthy, be-
cause of the difference between the behavior of the object being observed and the haze.
The reason for this difference is that light scattered by molecules and small aerosol is
strongly polarized in a plane perpendicular to the scattering plane (the plane defined
by the sun, the object being viewed and the observer) while light scattered by surfaces
is only weakly polarized. Thus, when Raman oriented the polarizer to transmit light in
the plane parallel to the scattering plane the contributions from light scattered by aerosols
and molecules were suppressed while the lighthouse was made more visible (had more
contrast). This difference between the polarizing properties of aerosols and molecules
as compared to surfaces is used by modern polarimetric remote sensing instruments to
determine the amount, size and type of aerosols that are present above the surface.

There are therefore three facets to the use of downward-looking polarimetric measure-
ments for the remote sensing of aerosols over land surfaces. A method for the measurement
of the polarization of the scene being observed, a quantitative model of the polarized re-
flectance behavior of the underlying surface and an understanding of what aspects of the
aerosol loading, microphysics and vertical distribution are revealed in the polarization
signal. This chapter is therefore organized as follows. In Section 2 we provide a brief re-
view of the different instrumental approaches that have been taken to the Earth viewing
measurement of polarization. This review focuses on the benefits and issues related to
these measurement techniques with particular regard to their use over land. In Section 3
we summarize the conclusions that have been drawn in the existing literature related to the
polarized reflectance of land surfaces and discuss how various modeling approaches, that
can be used in remote sensing applications, take advantage of the polarized behavior of the
surface. Although single scattering models of the polarized light reflected by the atmo-
sphere–surface system of the Earth have been used with considerable success [Deschamps
et al., 1994, Deuzé et al., 2001], when measurements are of sufficient accuracy, or extend
into the blue, or ultraviolet spectral domain it is not sufficient to use such an approach for
the modeling of the observed polarized radiances. In Section 4 we therefore describe how



the land surface–atmosphere system can be modeled with different levels of fidelity de-
pending on the accuracy and spectral domain of the measurements that are available. In
Section 5 we review existing retrieval methods [Deuzé et al., 2001] and discuss how op-
timal methods [Rodgers, 2000; Dubovik and King, 2000] can be applied in the case of
polarimetric remote sensing [Hasekamp and Landgraf, 2007, Lebsock et al., 2007]. In
particular we emphasize the capability provided by the extended spectral range and
more accurate measurements that are currently available in airborne polarimeters and
are expected to be available in future spaceborne instruments.

2. Measuring polarization

In order to discuss how different instrument concepts implement the measurement of po-
larization we will define here the Stokes vector of light and how it is related to a simple
measurement system [Hansen and Travis, 1974]. The intensity and polarization of light
can be described by the Stokes vector IT ¼ ðI ; Q; U ; VÞ where I is a measure of the
intensity of the light, Q and U define the magnitude and orientation of the linearly polar-
ized fraction of the light and V is a measure of the magnitude and helicity of the circular
polarization. All four Stokes vector elements have the dimensions of intensity (e.g.,
W m�2 and have a simple relation to the time-averaged electric field of a superposition
of transverse electromagnetic waves propagating in the same direction.

All four of the Stokes parameters describing a beam of light can be measured using a
detector that is sensitive only to the intensity by first transforming the incident beam of
light with a retarder and then using a polarizer to analyze the polarization state. The in-
tensity that is observed by such a detector is given by the expression,

Iðh; dÞ ¼ 1

2
I þ Q cos 2hþ ðU cos dþ V sin dÞ sin 2h½ �; ð1Þ

in which d is the relative phase delay between the electric vectors in orthogonal planes (Ex

and Ey) and h is the angle of rotation of the polarizer with respect to the x-plane. It is clear
that by carefully choosing four measurement pairs d and h, the four Stokes parameters can
be calculated. For the sake of discussing the instrumental issues involved in making po-
larization measurements it is worth examining a simple pair of measurements made by a
detector with a polarizer in front of it that is oriented at 0� and then 90�. Using Eq. (1) the
relevant expressions are seen to be

Ið90; 0Þ ¼ ðI þ QÞ=2
Ið90; 0Þ ¼ ðI � QÞ=2

) I ¼ ½Ið0�; 0�Þ þ Ið90�; 0�Þ� =2
Q ¼ ½Ið0�; 0�Þ � Ið90�; 0�Þ�=2

:

��
ð2Þ

The main difficulty in ensuring that the measurement of the Stokes vector component, Q,
is accurate is that, for most Earth scenes, it is at least an order of magnitude smaller than
the intensity, I. Operationally, in this case, it is therefore determined as the small difference
between two large numbers. The reason for this is that the contribution to the Stokes vector
element I by reflectance over land, is much larger than the contribution to the Stokes vector
elements Q and U. This means that if there is a small error in either, or both, measurements

296 10 Polarimetric remote sensing of aerosols over land surfaces



there will be a large fractional error in the estimate of Q, even though the fractional error in
the estimate of the intensity, I, might be quite small. Clearly if the 0� and 90� observations
are made of slightly different scenes either through spatial mismatch, or a time delay be-
tween measurements there is the potential to create significant errors in the estimated Sto-
kes vector elements and it is these errors that are usually called false polarization errors.

We have presented a very specific example here, but examining Eq. (1) it is apparent
that any method for estimating Q, U and V will require the use of differences, or some form
of modulation of a polarizer or a retarder and that in all of these schemes the intensity is a
large static or invariant term that is the most readily estimated. The determination of Q, U
and V is therefore a test of the capability of a polarimeter to accurately determine a small
modulation, or difference, in the presence of a large background signal.

In the following subsections we describe polarimeter designs that use oriented polar-
izers [Deschamps et al., 1994; Cairns et al., 1999], temporal modulation of retarders [Diner
et al., 2007] and spectral modulation induced by crystal elements [Jones et al., 2004] in
order to measure polarization. In order to fully exploit the information content available
from polarimetric observations it also necessary to observe the same scene from multiple
angles and we therefore also briefly note how the various sensors using these polarimetric
analysis methods achieve this multi-angle sampling. Although we make no claims for the
completeness of this set of polarimeters they do represent the three basic methods that have
been used, or are planned, for use in measurements of polarization from aircraft, or sa-
tellites. We also note that since the amount of sunlight that is circularly polarized by re-
flection off natural objects, aerosols, or molecules is negligibly small the focus of the Earth
observing instruments developed to measure polarization has been on the first three Stokes
parameters I, Q and U [Kawata, 1978]. The interactions of incident sunlight with the sur-
face–atmosphere system can therefore be modeled using the upper left three by three block
of the atmosphere–surface Mueller reflection matrix [Hansen and Travis, 1974].

2.1 Oriented polarizers

The two instruments that have provided most of the downward-looking measurements of
the polarization of the Earth and its atmosphere and that have been used in the remote
sensing retrieval of aerosol properties are the Polarization and Directionality of the Earth
Reflectance (POLDER) sensor [Deschamps et al., 1994] and the Research Scanning Po-
larimeter (RSP) [Cairns et al., 1999]. The POLDER sensor has flown on three satellite
missions, ADEOS I, ADEOS II and PARASOL while the RSP has flown on four different
types of aircraft in a number of large field experiments. The NASA Glory mission [Mis-
hchenko et al., 2007], scheduled for launch in June 2009, will also carry a polarimeter, the
Aerosol Polarimetry Sensor (APS), which uses the same conceptual design as the RSP.
Both the POLDER and RSP use oriented polarizers to analyze the polarization state of
incident radiation. However the way in which they do this is substantially different
with the POLDER instrument using a sequential rotation of polarizers while the RSP mea-
sures the intensity in four polarization orientations in multiple spectral bands simulta-
neously. There are benefits and costs to each approach and we therefore describe them
separately.
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2.1.1 Sequential measurement

The simplest way to estimate the first three Stokes vector elements of a scene is to rotate a
polarizer in front of a detector. This method is the basis of the POLDER instrument that
measures the linear polarization state of light in three spectral bands at 443, 673 and
865 nm using polarizers that are sequentially oriented at 0�, 60� and 120�. The POLDER
instrument also makes intensity only measurements in a number of other bands and pro-
vides images of the scene being viewed on a two-dimensional (2D) charge-couple device
(CCD) array. The Stokes parameters I, Q and U can be determined from the three sequen-
tial polarizer measurements using the formulae

I ¼ 2

3
Ið0�; 0�Þ þ Ið60�; 0�Þ þ Ið120�; 0�Þ½ �;

Q ¼ 2

3
Ið0�; 0�Þ � Ið60�; 0�Þ½ � þ Ið0�; 0�Þ � Ið120�; 0�Þ½ �f g; ð3Þ

U ¼ 2ffiffiffi
3

p Ið60�; 0�Þ � Ið120�; 0�Þ½ �:

The frame rate of POLDER is sufficiently high that multiple images are captured of every
pixel providing multi-angle views of the same scene. However, as the satellite flies over the
Earth the scene that is being viewed moves across the focal plane array as the polarizers
with different orientations sequentially analyze the scene being viewed. In order to mini-
mize the errors that are caused by this motion, the POLDER sensor uses a motion-com-
pensation plate to provide the best possible spatial matching of the different scenes that are
viewed with the polarizers in their different orientations. This is difficult to achieve over
the full field of a wide-angle camera such as POLDER and not even possible if there are
actual time variations in the scene being observed, such as when there are moving clouds
within a pixel. As we note above, false polarization is a concern for sequential, or spatially
mismatched measurements, and the consequent uncertainty in the estimates of Q and U
that POLDER provides are expected to be of the order of 1–2 % larger than for I over
heterogeneous surfaces [Hagolle et al., 1999], with better accuracy possible over homo-
geneous surfaces such as the open ocean. Nonetheless the POLDER instrument has de-
monstrated that an instrument of this kind has a valuable capability to retrieve aerosol
properties over land and one that is not as sensitive to the underlying surface as sensors
that only use reflectance measurements [Deuzé et al., 2001; Fan et al., 2008], as we will
discuss in Section 4.

2.1.2 Simultaneous measurements

Wollaston prisms are optical elements that when illuminated by a collimated incident beam
provide angular separation, and consequently spatial separation, of the beam into ortho-
gonal polarization states. They can therefore be used, when combined with an optical sys-
tem such as a relay telescope, to measure two orthogonal polarization states of the same
scene simultaneously, eliminating false polarization from the estimate of the Stokes vector
parameters. The RSP uses a refractive relay telescope to define the field of view and pro-
vide collimated illumination of a Wollaston prism that spatially separates beams with
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orthogonal polarization states that then illuminate paired detectors. By making measure-
ments with one telescope in which the Wollaston prism is oriented to analyze orthogonal
polarization states of 0� and 90� (see Eq. (2)) and with a second telescope in which the
Wollaston prism is oriented to analyze orthogonal polarization states of 45� and 135� the
RSP allows all three Stokes parameters, I, Q and U, to be determined simultaneously. Wol-
laston prisms are broadband optical elements and this allows the RSP design to use each
telescope to make measurements in three spectral bands that are separated by dichroic
beam splitters. There are a total of six telescopes in the RSP. Three of the telescopes mea-
sure the Stokes parameters I and Q in nine spectral bands, while the other three telescopes
measure the Stokes parameters I and U in the same nine spectral bands providing simul-
taneous measurements of I, Q and U in all nine spectral bands. The nine spectral bands are
at 410, 470 (443), 555, 670, 865, 960 (910), 1590, 1880 (1378) and 2250 nm. The three
spectral band centers in parentheses are those that will be used for the Aerosol Polarimetry
Sensor that are different from the RSP. The band at 443 nm will be used for APS because it
is better for ocean color estimation, is darker over land and is less affected by trace gas
absorption than the RSP 470 nm band. The band at 910 nm will be used for APS because it
provides a broader dynamic range for water vapor estimates than the RSP band at 96 nm
and allows for better detector performance when using silicon detectors. Both the 1378 and
1880 nm bands are extremely effective for screening for thin cirrus clouds, but in the event
of a volcanic eruption the shorter wavelength 1378 nm band would allow for better detec-
tion and characterization of stratospheric aerosols and so this band was chosen for the APS.
The instantaneous field of view (14 mrad) of each telescope is scanned continuously, with
data being taken over a view-angle range of 120� (� 60� from nadir), using a polarization-
insensitive scan mirror system. This system consists of two mirrors each operating with a
45� angle of incidence with their planes of incidence oriented orthogonally. This ensures
that the polarization orientation that is perpendicular to the plane of reflection at the first
mirror is parallel to the plane of reflection at the second mirror so that all polarization
states are transmitted equally. The scan is oriented along the aircraft, or satellite, ground
track in order to provide multiple views of the same scene from multiple angles. The RSP
also incorporates a calibration system that allows the relative responsivity of the detectors
measuring orthogonal polarization states to be tracked continuously allowing a polari-
metric accuracy of better than 0.2 % [Cairns et al., 1999] to be achieved independent
of the scene that is being viewed.

2.2 Temporal modulation

As can be seen from Eq. (1) varying the retardance of an element that is then followed by a
polarizer at a fixed angle also allows the incident polarization state of a beam of light to be
analyzed. A practical implementation of this concept, that is somewhat more complicated
than the simple system modeled by Eq. (1), is to use a photo-elastic modulator (PEM) to
provide a time-varying retardance that is placed between a pair of quarter-wave plates such
that the combination acts as a time-varying circular retarder [Chipman, 1994]. The circular
retarder modulates Q and U such that if it is followed by an appropriately oriented polar-
ization analyzer and detector the temporal modulation of the detector signal is well re-
presented by the formula,
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Ið0�; dÞ ¼ 1

2
I þ Q cos dþ U sin dð Þ: ð4Þ

In astronomical applications it is feasible to use high-speed demodulation at the resonant
frequency (typically between 10 and 100 kHz) and harmonics of the PEM in order to de-
termine Q and U using the different phase and harmonic content of their modulation [Kel-
ler, 2002; Povel et al., 1990]. For Earth remote sensing applications this is an extremely
high speed at which to operate a focal plane, given that the frame rate of a push broom
imager with a resolution of hundreds of meters in low Earth orbit is expected to be on the
order of tens of milliseconds. An ingenious approach to imaging polarimetry for Earth-
viewing satellite applications has therefore been proposed in which a pair of PEMs are
used as the source of retardance modulation with the analysis of the signal being performed
at the beat frequency [Diner et al., 2007]. In this method analyzers oriented at 0� and 45�

are used to provide estimates of I, Q and U as indicated in the following equations:

Ið0�; dbÞ ¼ 1=2 I þ QJ0 dbð Þ½ �; ð5Þ
Ið45�; dbÞ ¼ 1=2 I þ UJ0 dbð Þ½ �;

in which J0 is the zero-order Bessel function and the effective magnitude of the beat fre-
quency retardance modulation, db, is

db ¼ 2d0 cosðxbt � gÞ; ð6Þ
with xb being the beat frequency, g the phase difference between the modulating wave-
forms of the two PEMs, d0 is the magnitude of the retardance modulation of a single PEM
and t is time. Although ‘false’’ polarization can contaminate the estimate of Stokes vector
elements using this measurement approach it is expected to be a weak effect since only
temporal variations in the scene that are similar to the terms modulating Q and U will alias
into those elements. This polarimetric concept is being implemented as an imaging po-
larimeter in which a push broom imaging mode provides cross-track coverage while multi-
angle views are obtained by the brute force approach of having individual cameras for each
view angle. The polarimetric analysis concept underlying this measurement approach has
been demonstrated by a laboratory prototype [Diner et al., 2007] but has not, thus far, been
used for remote sensing measurements.

2.3 Spectral modulation

The final approach to remote sensing measurements of polarization that we review here
has only been developed recently. It uses spectral modulation to encode the Stokes vector
into an intensity measurement [Jones et al., 2004; Oka and Kato, 1999]. In this method a
system of polarization analysis optics is inserted between the scene being viewed and an
imaging spectrometer. These polarization analysis systems have the advantage, for imple-
mentation in a remote sensing system, that they have no moving parts. The way that they
work is by imposing a variation on the incident spectrum that is rapid (hyperspectral) com-
pared with the spectral variations of atmospheric aerosol and molecular scattering. This
rapid variation depends on the Stokes vector, with one particular implementation being
described by Eq. (7),
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IðmÞ ¼ 1=2 I þ Q cosðfÞ½ � þ 1=4U cosðDfÞ � cosðRfÞ½ � þ V sinðRfÞ � sinðDfÞ½ �; (7)

where the modulating terms in the sinusoids are

f ¼ 2pm ne � noð Þl2=c;
Df ¼ 2pm ne � noð Þ l1 � l2ð Þ=c; ð8Þ
Rf ¼ 2pm ne � noð Þ l1 þ l2ð Þ=c;

with l1 and l2 being the optical path lengths through two birefringent crystal elements that
compose the polarization analysis optics and ne and no being the refractive indices for the
extraordinary and the ordinary rays in those crystals. The frequency and speed of light are
represented by m and c respectively. Since the modulating terms are ‘fast’ compared to
variations in atmospheric scattering the Stokes vector can be estimated within broader
windows (typically of 10–20 nm) over the entire spectrum that is measured by the imaging
spectrometer. Multi-angle views can be provided along the ground track of a plane, or
satellite, by orienting the image direction of the imaging spectrometer in the direction
of motion. In principle this is a robust and accurate way to estimate the Stokes vector
since there are no moving parts and the Stokes vector elements are all encoded onto
the spectrum simultaneously. These measurements are therefore inherently insensitive
to ‘false’ polarization caused by temporal or spatial variations in the scene intensity
that is observed being aliased into the estimated polarization state. Of course since the
polarization state is modulated onto the spectrum, care must be taken to avoid, or correct
for atmospheric absorption or scattering features that could themselves cause ‘false’ po-
larization [Jones et al., 2004]. In practice, as with all accurate measurement systems, great
care needs to be taken to ensure the thermal and mechanical stability of the system so that it
can be characterized and calibrated on the ground in a way that is applicable to the remote
sensing measurements themselves. A remote sensing instrument that uses hyperspectral
modulation (Hyperspectral Polarimeter for Aerosol Retrievals HySPAR) has been devel-
oped and successfully flown [Jones et al., 2004], and although the scientific analysis of the
data obtained is still in its early phases the comparisons of the degree of linear polarization
(DoLP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðQ2 þ U2Þp

=I) with simultaneous RSP measurements showed reasonable
(within a few percent) agreement, given that this was one of the first flights of this sensor.

3. Surface polarization

In the following discussion we will refer frequently to the polarized reflectance because it
is a particularly useful quantity to use in discussing the polarizing properties of surfaces.
This is a result of its simplicity, in terms of representing polarization properties, and also in
understanding why those properties behave the way they do. The solutions to multiple
scattering problems and the effects of surface reflection on arbitrary radiation fields
can be conveniently expressed as reflection matrices, R, each composed of four rows
and four columns such that

Imðlm; umÞ ¼
1

p

ð1
0

ls dls

ð2p
0

dusRðlm; ls; us � umÞIsðls; usÞ; ð9Þ
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where l and u are the cosine of the zenith angle and the azimuth angle, with the subscripts s
and m indicating that the angles referred to are the direction of the source radiation and the
viewing direction respectively. It is assumed here that there is no preferred direction so that
the only azimuthal dependence of the reflection matrices is on the difference between the
solar and view azimuths, Du ¼ us � um. The Stokes vector Ig describes the source of ra-
diation incident from the top on the surface, or surface-atmosphere system, represented by
its reflection matrix, R, and m is the Stokes vector of the reflected radiation field that is
being observed. For the purposes of this discussion the source of radiation is the sun
which is essentially unpolarized, at least in terms of the average value across the solar
disk, and for which the Stokes vector is well approximated by the expression
ITs ¼ ½Fsdðl� lsÞdðf� fsÞ; 0; 0; 0� where the Greek delta symbol is used to represent
the Dirac delta function and Fs is the solar irradiance at the top of the atmosphere. Sub-
stituting the particular behavior of the Stokes vector of the solar radiation into Eq. (9)
yields the formula,

Iðlm; umÞ ¼
lsFs

p

R11ðlm; ls;DuÞ
R21ðlm; ls;DuÞ
R31ðlm; ls;DuÞ
R41ðlm; ls;DuÞ

0
BB@

1
CCA ð10aÞ

and the complementary relations that define the reflectances in terms of the Stokes para-
meters

R11

R21

R31

R41

0
BB@

1
CCA ¼

pI
lsFs

pQ
lsFs

pU
lsFs

pV
lsFs

0
BBBBB@

1
CCCCCA: ð10bÞ

Since the circular polarization is negligibly small [18] the magnitude of the polarized re-
flectance, Rp, can therefore be defined to be

Rp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

21 þ R2
31

q
; ð11Þ

which, like the usual definition of reflection, has the benefit that it is independent of the
brightness of the illuminating source. This expression does not capture the orientation of
the polarization, but for single scattering the polarization is either parallel to or perpen-
dicular to the plane of scattering (the plane that contains the solar and viewing directions).
Therefore, if the polarized radiance is defined to be positive when the polarization direc-
tion is perpendicular to the plane of scattering and negative when it is parallel to the plane
of scattering, all of the information in the polarized reflectance is captured by the polarized
reflectance defined in Eq. (9). It has also been found that, even for multiple scattering,
rotating the reference frame for Q and U into the scattering plane causes U to become
small, with the predominant information content of the observations being captured by
Q. Thus, calculating the polarized reflectance using Eq. (11) with a sign that is assigned
based on whether Q in the scattering plane is positive, or negative, captures the majority of
the information in polarization measurements without recourse to multi-dimensional vec-
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tors. We do note, however, that the best accuracy can be retained, when actually performing
calculations or retrievals, by using the Stokes vector elements themselves.

One of the main beauties of the Earth when viewed in remote sensing measurements
from space, or aircraft, is its bright, many-hued underlying surface. This also presents one
of the main difficulties in retrieving aerosol amounts and types using passive remote sen-
sing measurements of the intensity over land surfaces, as noted elsewhere in this volume,
since the background is brighter than our object of interest, the aerosols in the atmosphere.
Although the polarized reflectance of the land surface at visible wavelengths is typically
smaller than the signal from aerosols, it is clear that in order to use polarization measure-
ments to provide an accurate determination of the type and amount of aerosols present in
the atmosphere we need a quantitative understanding of the polarization properties of the
land surface. Such a quantitative understanding, though not the subject of this discussion,
would also be of use in remote sensing of the surface, being indicative of the texture of
soils, or the leaf inclination distribution of vegetation. Fig. 10.1 shows an image of the
different behavior of reflectance and polarized reflectance. The strong contrast between
vegetated and bare fields shown by the reflectance image (Fig. 10.1, left panel) is absent in
the polarized reflectance image (Fig. 10.1, right panel) which shows the dependence of

Fig. 10.1. False-color images created using RSP observations obtained on an aircraft flying at 3000 m
above Oxnard and Ventura, California, USA. The red, green and blue colors are the 2250, 865 and 410 nm
reflectances (left) and polarized reflectances (right) respectively.
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molecular scattering on viewing geometry, decreasing from left to right with scan angle as
the scattering angle increases from near 90� towards the backscattering direction.

The polarizing properties of natural surfaces as understood from ground- and aircraft-
based measurements and observations from several space shuttle flights have been sum-
marized by Coulson [1988]. This summary is still an excellent reference to the historical
measurements that have been made of the polarizing properties of mineral and vegetated
surfaces, although the tendency to present linear polarization measurements in terms of the
DoLP makes some of this information difficult to use. This is because the DoLP, which is a
ratio, mixes the effects of the polarization properties of the surface (numerator) and the
reflection properties of the surface (denominator) that are to a large extent caused by the
different mechanisms of surface and volume scattering respectively. There have also been
a significant number of satellite measurements provided by the POLDER sensor flown on
the ADEOS-I, -II and PARASOL missions, and airborne measurements made by the RSP
sensor since Coulson’s review was published. In this Section we will therefore present the
understanding of the polarizing properties of the surface that has been developed based on
these more recent measurements, together with the historical measurements, and how the
surface polarized reflectance can therefore be modeled.

Our current understanding is that the polarization of surfaces is primarily generated by
external reflections off the facets of soil grains, or the cuticles of leaves. A consequence of
this surface polarization being generated by external reflections is that its magnitude will
tend to be spectrally neutral as long as the real refractive index of the surface varies little.
This is generally true of both minerals [Pollack et al., 1973] and the surface cuticles of

Fig. 10.2. Polarized reflectance measurements taken with the RSP sensor mounted on a small survey
plane over agricultural land near Oxnard, California, USA, at an altitude of 3000 m. The visible polarized
reflectances at 410, 470, 555, 670 and 865 nm are plotted against that at 2250 nm in blue, mauve, tur-
quoise, green and red respectively. The bands are offset by 0.005 from one another to allow any spectral
differences in behavior to be identified. The solid (1:1) lines show what is expected if the surface has a
gray polarized reflectance.
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vegetation [Vanderbilt et al., 1985; Rondeaux and Herman, 1991] and has been experi-
mentally verified to be true for forests, bare soils, agricultural fields and urban landscapes
over the spectral range from the deep blue to the infrared. Thus, although the surface re-
flectance is both colorful and spatially variable, the surface polarized reflectance is spa-
tially variable but spectrally gray. It is this feature of the surface polarized reflectance that
makes polarization measurements such a useful tool for aerosol retrievals over land. The
key remaining questions regarding the surface polarized reflectance, if we are to use po-
larization for remote sensing of aerosols, are the predictability of its absolute value, for a
particular surface, and its angular distribution.

Measurements taken with the RSP sensor over agricultural land containing bare soil and
a range of different crops that are grown near Oxnard, CA (broccoli, peppers etc.) are
shown in Fig. 10.2. This provides an example of the absence of spectral variability that
is seen in the observed polarized reflectance for a wide range of viewing geometries
and surface types. These measurements, which were obtained with the RSP installed
in a small survey plane flying at an altitude of 3000 m, have been atmospherically cor-
rected using simultaneous, collocated sunphotometer measurements. In Fig. 10.3 we show
the angular variation of the polarized reflectance separately for soil (ploughed fields) and
vegetation (soy bean, or winter wheat fields) in the Southern Great Plains of the United
States (during the ALIVE field experiment) and over the Dismal Swamp in Virginia (dur-
ing the CLAMS field experiment). Although the two surface types have different magni-
tudes of polarized reflectance they both have spectrally neutral polarized reflectance as
evidenced in the residual differences between all the shorter wavelength channels and the
longest RSP channel at 2250 nm shown in the lower parts of Figs 10.3(a) and (b). They also
show a similar functional variation with view angle. These surface reflectance estimates

Fig. 10.3. Polarized reflectance measurements taken with the RSP sensor (mounted on the Sky Research
Inc. BAE J-31 research plane) at an altitude of 200 m above the Southern Great Plains in Oklahoma (a) and
(b) during the ALIVE field experiment. For (a) and (b) the solar zenith angle (hs) is 43� and the relative
solar azimuth angle (Du) is 45�. The data in (c) was obtained with the RSP sensor on a Cessna 310 at
200 m over the Dismal Swamp in Virginia during the CLAMS field experiment; the solar zenith angle was
20� and the relative solar azimuth angle is less than 1�. The measurements were atmospherically corrected

at 410, 470, 555, 670, 865, 1590 and 2250 shown in blue, mauve, turquoise, green, red, purple and black
respectively. The residuals are the differences between the polarized reflectance at 2250 nm and the
polarized reflectance in each of the other bands, using the same color scheme as used for the polarized
reflectances figures.
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are based on measurements that were taken at 200 m above the surface and that were cor-
rected to the surface level using data from a nearby ground-based sunphotometer [Holben
et al., 1998] and a sunphotometer on top of the aircraft [Redemann et al., 2006] to define
the aerosol scattering and a microwave radiometer to define the amount of water vapor
present. Other surfaces such as swamps, cityscapes and forests (not shown) show similar
behavior with little spectral variation in the surface polarization.

These measurements show that if a long-wavelength measurement (e.g., 2200 nm) that
is only weakly affected by the aerosol and molecular scattering is available then this can be
used to characterize the polarized reflectance across the entire solar spectrum. A similar
concept has been put forth for the retrieval of aerosols over land using radiance measure-
ments in a more limited set of spectral bands [Kaufman et al., 1997]. The only limiting
factor in using a long-wavelength measurement to characterize the surface is whether the
observational viewing geometry is sufficient to predict the behavior of the surface polar-
ization for other viewing geometries. This is primarily of concern for short wavelengths
where the molecular and aerosol scattering is sufficiently strong that diffuse surface–atmo-
sphere interactions do have to be modeled. When diffuse interactions are significant a
substantial fraction of the radiation incident at the surface is not in the direction of the
direct solar beam and a substantial fraction of the observed radiation was not reflected
by the surface into the viewing angle. This is why a model of the surface is necessary
for accurate forward modeling of the observed polarized reflectance at short wavelengths.
In Fig. 10.4 we show an observation in the solar principal plane (the plane that contains the
local vertical and the sun) that is used to estimate the parameters in a simple Fresnel model
of the surface polarized reflectance, viz.

RSurf
p ls; lm;Duð Þ ¼ fRF

p cð Þ: ð12Þ
RF
p is the Fresnel coefficient for polarized light calculated for a surface refractive index of

1:5:c is the reflection angle that can be expressed as a function of the scattering angle

H ¼ acos½�lmls þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � lmÞ2ð1 � lsÞ2

q
cosðfm � fsÞ� by c ¼ p�H=2 with f being a

coefficient that provides the best fit to the measurements at 2250 nm in the solar principal
plane. This model assumes that the surface does not have a preferred azimuth, as a
ploughed field would have for example, and is therefore applicable to natural surfaces,
or urban landscapes over a sufficiently large area that this assumption is valid. The model
is then used to predict the polarized reflectance of this surface in a different scan plane
from the original observations. It can be seen that the model prediction of the polarized
reflectance for a different viewing geometry to that used to estimate the model is in good
agreement with the observations in this other scan plane. The conclusion we draw is that a
simple Fresnel model, fitted to observations of the surface (or long-wavelength observa-
tions), is sufficient to predict the angular variation of the surface polarized reflectance at
all view angles that are not close to the backscatter direction.

When a long-wavelength measurement is not available it is necessary to predict the
magnitude of the surface polarized reflectance using other observations, or prior informa-
tion in order to use polarization measurements for remote sensing of aerosols. If the po-
larized reflectance of vegetation showed the same magnitude of variability as the polarized
reflectance at Brewster’s angle that is seen in single leaves [Grant et al., 1993], it unlikely
that such an approach would work. However, the variability in the polarized reflectance
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between different plant types is not that great, which indicates that the macroscopic be-
havior of plant canopies, or ensembles is not well represented by measurements of indi-
vidual leaves at a single angle. A more important predictor of the polarized reflectance of
surfaces is the fractional coverage of vegetation and soil, since the differences between the
polarized reflectance of soils and vegetation are larger than the variability within either
class (see Fig. 10.2). This property of the surface polarized reflectance was used in an
analysis of POLDER data [Nadal and Bréon, 1999] to generate a model that is only depen-
dent on the surface type and the normalized difference vegetation index (NDVI) [Tucker,
1979]. The NDVI serves as a proxy for the fractional coverage of soil and vegetation, while
the partitioning of the POLDER data into different surface types allows the model, viz.

RSurf
p ls; lm;Duð Þ ¼ a0 1 � exp � b0R

F
p cð Þ

ls þ lmð Þ

 !" #
; ð13Þ

to account for the fact that NDVI depends both on fractional coverage of vegetation and
vegetation type by allowing the parameters a0 and b0 to be different for the various surface
types of the International Geosphere–Biosphere Program classification [Belward et al.,
1999]. This surface model has been successfully used in the operational processing of
POLDER data for the retrieval of aerosol properties over land [Deuzé et al., 2001],
although it has been found that the retrievals are affected by errors in the model prediction
of surface polarized reflectance [Waquet et al., 2007]. This model limits the magnitude of
polarized reflectance, at high view and solar zenith angles when the argument of the ex-

Fig. 10.4. Atmospherically corrected polarized reflectance measurements at 2250 nm with the data taken
in meridional planes (a) close to the principal plane (b) at 45� to the principal plane.
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ponent in Eq. (13) is large to a0. At lower view and zenith angles the exponent in Eq. (13)
is small and the surface polarization can be approximated, by the expression

RSurf
p ls; lm;Duð Þ � a0b0R

F
p cð Þ

ls þ lmð Þ ; ð14Þ

which is similar to the vegetation model proposed by Breon et al. [1995] with a scaling
factor of a0b0 that plays the same role as f in Eq. (12), although the dependence on view
and zenith angles of Eqs (12) and (14) is different.

4. Modelling atmosphere–surface interactions

In this Section we describe how the surface models introduced above can be incorporated
into a radiative model of how the atmosphere and surface interact. It is forward models of
this kind that are then used either in optimal estimation, or look-up-table (LUT) ap-
proaches, to perform the aerosol retrievals that are described in Section 5. In order to de-
scribe the main processes that generate the up-welling polarized reflectance, we provide in
Eq. (15) an approximate expression for the surface–atmosphere Mueller reflection matrix,
viz.

RAtmþSurf ¼ RAtm þ tþRSurf t� þ Td
þR

Surf t� þ tþRSurfTd
� þ Td

þR
SurfTd

�
� 


; ð15Þ

in which we have suppressed the dependence of the matrices on the viewing geometry
(ls; lmus � umÞ and wavelength for the sake of clarity. The plus (minus) subscripts refer
to a downward (upward) direction. RAtm and RSurf are respectively the atmospheric and
surface reflection matrices. Td corresponds to the diffuse transmission matrix of the atmo-
sphere and t is a direct transmission term given by

t�;þ ¼ exp � sa;k þ sr;k
ls;m

 !" #
; ð16Þ

where sa;k and sr;k are respectively the aerosol and molecular total optical thicknesses at a
particular wavelength k.

Eq. (15) separates the terms that contribute to the observed reflectance into three dis-
tinct components. The first term RAtm describes the contribution of the upwelling light
scattered from the atmosphere without interactions with the surface. The second term de-
scribes the surface contribution transmitted directly through the atmosphere while the third
term, between brackets, models the diffuse interactions between the surface and the atmo-
sphere. An exact expression for RAtmþSurf would require the inclusion of multiple surface
reflections (i.e. multiple scattering interactions between surface and atmosphere).

Fig. 10.5 shows an example of polarized reflectances calculated at the top of the atmo-
sphere (TOA) levels (solid lines) and the same quantities calculated when suppressing the
process of multiple surface reflections (dots). The effective radius (reff ) and effective var-
iance (meff ) characterize the aerosol size distribution [Hansen and Travis, 1974] and mr is
the refractive index of the aerosols with the calculations being performed for a bimodal
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size distribution composed of fine (superscript f ) and coarse (superscript c) mode par-
ticles. It is apparent that the contribution of multiple surface–atmosphere interactions
to the observed polarization at the top of the atmosphere is small. Note that this process
is generally accounted for in multiple scattering calculations [Hansen and Travis, 1974]
but can, if necessary, be neglected and the surface–atmosphere interaction for polarization
can be treated using Eq. (15) rather than an exact calculation.

The polarized reflectance measured over land is usually modeled by considering only
the upwelling polarized light scattering from the atmosphere and a single reflection off the
surface [Deuzé et al., 2001; Waquet et al., 2007]. The polarized reflectance can then be
written in the following form,

RCalc
p;k ls; lm;Duð Þ ¼ RAtm

p ls; lm;Duð Þ þ t�*RSurf
p ls; lm;Duð Þtþ*: ð17Þ

In this equation RAtm
p is the atmospheric polarized reflectance (i.e. calculation made with a

black surface) and RSurf
p is the surface polarized reflectance. t�;þ* is a direct transmission

term where the aerosol and molecular optical thicknesses are scaled respectively by factors
j and f. These factors are empirically derived and account for the neglect of the diffuse
surface–atmosphere interactions [Lafrance, 1997]. In Fig. 10.5, we show the results of
using these different approaches to modeling the polarized reflectance at the TOA.

Fig. 10.5. Contribution of the surface to the TOA polarized reflectance at 410 (blue lines) and 865 (red
lines) nm: Exact calculations (solid lines), calculations without multiple scattering interactions between
surface and atmosphere (dotted lines) and calculations performed using direct transmission term and scal-
ing optical thicknesses (dashed lines). The errors (absolute magnitudes of the difference between exact
and approximate calculations) on the surface and TOA polarized reflectances are shown in more detail
at the top of the figure. Aerosol layer: reff¼0:14 lm, m f

eff ¼ 0:15, r ceff ¼ 2:5 lm, m ceff ¼ 0:5, mf
r ¼ mc

r ¼ 1:4
and sa ¼ 0:1 at 550 nm with coarse mode optical depth being 10 % of the total. Calculations made
for a solar zenith angle of 30�, Du ¼ 45�. The surface albedo was 0.1.
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The coefficients j and f are respectively equal to 0.63 and 0.44. In this example these
factors were adjusted to minimize model errors for this particular aerosol model and load
over the full range of solar zenith and azimuth angles. Although this approach is optimized,
it still introduces some significant errors in the modeling of the surface contribution, re-
sulting in errors in the TOA polarized reflectance that are as large as 0.0001 (2.5 % of the
signal). These errors increase at shorter wavelengths for which the diffuse transmission of
the atmosphere increases relative to the direct beam transmission.

At these shorter wavelengths, typically less than 670 nm, where the simple model of
Eq. (17) is not sufficiently accurate the surface model introduced in Eq. (12) can be used to
calculate the surface reflection matrix so that the diffuse interactions between the surface
and the atmosphere can be accurately calculated. An approach to modeling the polarized
reflectances that has been found to have certain advantages for modeling real data, parti-
cular data with high spatial resolution is presented in Eq. (18). For a given viewing
geometry, the surface contribution can be calculated by considering only the Fresnel
reflectance that is multiplied by a coefficient in order to scale the surface to that which
is observed. In practice, this can be implemented model by the formula,

RCalc
p;k ¼ RAtm

p;k þ RAtmþSurf
p;k;Fresnel surface � RAtm

p;k

h i
n: ð18Þ

The dependence of the quantities on viewing geometry (ls; lm; us � umÞ is once again
suppressed for clarity. RAtmþSurf

p;k;Fresnel surface is the polarized reflectance calculated when the
elements of the reflection matrix are calculated according to the Fresnel law using a sur-
face refractive index equal to 1.5. The term in brackets corresponds to the contribution
from surface interactions (see Eq. (15)), which, since multiple surface interactions are neg-
ligible (see Fig. 10.5) can simply be multiplied by a scale factor n in order to properly
include diffuse reflections. The factor n that provides an appropriate scaling of the surface
reflectance to match the observations is estimated using the formula

n ls; lm;Duð Þ ¼ RMeas
p;2250nm ls; lm;Duð Þ RF

p cð Þ;
.

ð19Þ

where RMeas
p is the polarized reflectance measured at 2250 nm. Clearly, if the polarized

reflectance at 2250 nm is not affected by aerosols and Fresnel reflectance for a refractive
index of 1.5 is a perfect model of the surface then the parameter n will be unity and the
calculated polarized reflectance will be RAtmþSurf

p;k;Fresnel surface as it should be. Similarly if the
actual surface polarized reflectance is negligibly small then n will be equal to zero and the
calculated polarized reflectance will be simply RAtm

pk . Eq. (19) is therefore being used to
extrapolate from the simple Fresnel model using actual observations of the 2250 nm po-
larized reflectance. This approach also has the advantage that the scaling factor, n, is de-
rived for each view angle and allows for the fact that not all view angles may see exactly the
same surface as a result of aircraft attitude variations. For instruments in which the spectral
polarization measurements are simultaneously acquired in each view, this modeling allows
the surface contribution to be eliminated from the measurements even when different an-
gular samples view different surfaces. This is apparent in Fig. 10.10 (a) where the total
polarized reflectance observed with the RSP during ALIVE at an altitude of 4000 m is
shown together with the residual errors in the model fit to the data. The large fluctuations
in the polarized reflectance (a) are caused by the RSP observing different surface types at
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different view angles. The fact that these fluctuations are not apparent in the residual errors
demonstrates the effectiveness of Eqs. (18) and (19) for modeling the effects of surface
polarized reflectance. The polarization generated by Fresnel reflection (i.e. Rf

p) progres-
sively decreases with the scattering angle and becomes null in the backscattering direction
(H ¼ 180�). Near backscattering the polarized reflectance is therefore determined by
effects (multiple and internal scattering) that are not captured by a Fresnel model and
that may also have some spectral dependence. It is therefore necessary to restrict the
use of these simple Fresnel models to scattering angles smaller than 160� and indeed
aerosol retrievals using polarized reflectances are only feasible with this limit on scattering
geometries.

Fig. 10.6. Fine mode aerosol optical thickness retrieved at 865 nm by the PARASOL instrument over
China (monthly average for February 2007).
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5. Aerosol retrievals using polarimetric observations

The use of polarized reflectance measurements for aerosol retrievals over land surfaces is
substantially simpler and more robust than that using reflectance measurements because of
the simpler lower boundary condition provided by the gray nature of the polarized reflec-
tance of natural surfaces. The aerosol retrievals over land using polarized reflectance that
have thus far been implemented for the POLDER and RSP instruments [Deuzé et al., 2001;
Waquet et al., 2008] have therefore restricted themselves to using only polarized reflec-
tance measurements, even though multi-angle reflectance measurements are also avail-
able, because reflectance measurements are more susceptible to cloud contamination
and erroneous assumptions regarding the properties of surface reflectance. In this Sec-
tion we describe two approaches to using polarized reflectances to retrieve aerosols
over land.

5.1 The POLDER experience

The POLDER team pioneered the use of polarimetric measurements for aerosol retrievals
over land surfaces. The principle of the algorithm currently used for the analysis of the
PARASOL observations is based on the one developed for the POLDER instrument
[Deuzé et al., 2001]. Improvements concerning the multiple scattering computations
have been implemented in the present algorithm. The approach is to use a search of
look-up tables (LUTs) to find the size and optical depth of aerosol that best fits the ob-
servations in two bands at 670 and 865 nm. The observations are simulated using a model
based on Eqs (13) and (17) where the surface contribution is estimated based on its IGBP
[Belward et al., 1999] classification and the current NDVI [Tucker, 1979]. The atmo-
spheric contribution is calculated by interpolation within LUTs computed using a multiple
scattering code. In order to account for the altitude of the pixel, the calculations are made
for two values of molecular optical thickness corresponding to surface levels of 0 and
2 km. Calculations are made for several aerosol optical thicknesses varying between
0.0 and 2.0 at 865 nm and for 10 aerosol models. The aerosol polarization mainly comes
from the small spherical particles [Vermeulen et al., 2000] whereas the coarse mode par-
ticles (e.g., mineral dust) do not polarize much [Herman et al., 2005] and therefore cannot
be accurately detected with polarized measurements, at least in the spectral range between
670 and 865 nm. The aerosol models used in the algorithm consist of single lognormal size
distributions of small spherical particles with effective radius varying between 0.075 and
0.225 lm and an effective variance of 0.175 (corresponding to the Ångström exponent
varying between 3 and 1.8). Polarization measurements at 670 nm and 870 nm do not
contain sufficient information to constrain the aerosol refractive index. As the method
is mainly sensitive to fine mode particles, a refractive index of 1.47 – 0.01i is assumed
for all retrievals, which is the mean value for urban-industrial and biomass burning aero-
sols [Dubovik et al., 2002]. As the majority of the anthropogenic particles have sizes that
are within the fine mode, the POLDER missions allow one to locate the main sources of
anthropogenic aerosols at a global scale. Fig. 10.6 shows the optical thickness due to small
particles retrieved by PARASOL over China for February 2007.

The highest aerosol optical thicknesses appear in red on the images. We observe high
optical thicknesses in the vicinity of Beijing with strong gradients across the China. Re-
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gional validation performed over the northeast part of China has shown that the AOTs
retrieved by PARASOL are consistent with the ones given by the federated Aerosol Ro-
botic Network (AERONET) sunphotometers for the fine mode. The operational inversion
algorithm developed for the analysis of the AERONET sunphotometer measurements pro-
vides the spectral aerosol optical thickness, the aerosol complex refractive index and the
particle size distribution between 0.05 and 15 lm [Dubovik and King, 2000]. Fig. 10.7(a)
shows a comparison between the PARASOL AOTand the ones given by AERONET for the
fine mode (reff < 0:3 lm) for the city of Beijing [Fan et al., 2008]. A similar comparison
of the Ångström exponent is shown in Fig. 10.7(b).

As shown in different studies [Chowdhary et al., 2005; Waquet et al., 2008] and dis-
cussed here after, polarization measurements at short visible wavelengths contain impor-
tant information on the aerosol microphysical properties and the aerosol vertical extent.
The PARASOL observations at 490 nm are well calibrated [Fougnie et al., 2007] and are
also sensitive to the presence of mineral dust particles in the air [Fan et al., 2008] and to the
altitude of the layer. Future efforts will therefore focus on the inclusion of the PARASOL
band at 490 nm in the algorithm.

The use of a semi-empirical surface model and restricted spectral range (490–865 nm)
limits the capacity of PARASOL to retrieve detailed aerosol microphysical properties over
land [Deuze et al., 2001]. A multi-spectral airborne polarimeter has been recently devel-
oped by the Laboratoire d’Optique Atmosphérique and the French Centre National
d’Etudes Spatiales. This instrument, called OSIRIS (Observing System Including PolaRi-
sation in the Solar Infrared Spectrum), is based on the POLDER concept, but with the
spectral range extended into the solar near-infrared spectrum with spectral bands at
1600 and 2100 nm. This instrument constitutes a crucial step in the development of a
new European imaging polarimeter dedicated to the monitoring of the climate and air
quality.

Fig. 10.7. PARASOL AOTand Ångström exponent versus those of AERONET for the fine mode fraction
(reff < 0:3 lm) over Beijing.
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5.2 The RSP experience

The approach that is used for the analysis of the RSP observations [Waquet et al., 2008] and
which is planned for use with the APS is an optimal estimation method. This approach is
preferred to the use of a LUT because of the substantially higher information content of the
seven RSP spectral bands that are located in atmospheric windows compared with the two
spectral bands currently used in the POLDER approach. We therefore break this Section
into two subsections: the theory of optimal estimation and our experimental implementa-
tion.

5.2.1 Theory

The principle of an optimal estimate is to determine the most probable atmospheric state
conditional on the value of the measurements and some a priori knowledge of this medium
and errors in measurement [Rodgers et al., 2000]. The determination of the most probable
atmospheric state is identical to the minimization of a cost function U that accounts for
these different quantities:

U ¼ Y� Fð ÞTC�1
T Y� Fð Þ þ X� Xað ÞTC�1

a X� Xað Þ; ð20Þ
where Y is the measurement vector, F is the simulation vector, C�1

T is the total error covar-
iance matrix, X is the atmospheric state vector, Xa is the a priori atmospheric state vector
and C�1

A is the a priori error covariance matrix.
The first term in Eq. (20) corresponds to a weighted least squares error term that mea-

sures the distance between the observed polarized reflectances and the modeled polarized
reflectances. We use the first six spectral bands of the RSP instrument that are in atmo-
spheric windows (410, 470, 555, 670, 873 and 1590 nm) to constrain the aerosol proper-
ties. The observations are simulated using Eqs (18) and (19) and the polarized reflectance
measured at 2250 nm is used to accurately model the surface. The residual atmospheric
effect at 2250 nm is also accounted for in our retrieval process. We use the aerosol model
retrieved with the shorter bands and a rearranged form of Eq. (18) to perform an atmo-
spheric correction the polarized reflectance measured at 2250 nm.

The total error covariance matrix accounts for the measurement errors and some po-
tential modeling errors. We assume that the different sources of errors are independent.
Then, the total covariance matrix is given by the sum of the different error covariance
matrices:

CT ¼ Ce þ Ccal þ Cpol þ CF : ð21Þ
The first term accounts for the effects of the instrumental noise, the second for uncertainty
in the absolute calibration and the third one for the polarimetric accuracy. In the analysis
presented here these error covariance matrices are filled out according to the signal, noise
and accuracy obtained with the RSP instrument which is similar to that expected for the
APS instrument (i.e. signal to noise ratio greater than 300 over dark oceans with typical
aerosol loads, polarimetric accuracy for most scenes of 0.2 % or better and absolute radio-
metric accuracy of 5 %). CF accounts for the effects of a change of the surface refractive
index with wavelength and for the residual errors introduced by our modeling of the po-
larized reflectances (see Fig. 10.5).
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The second term in Eq. (20) is a penalty function that constrains the solution to lie near
the a priori state where the ‘near’ is quantified by the a priori error covariance matrix. The
state vector X contains the aerosol parameters that allow characterizing each mode sepa-
rately: Nf , rfg , rf , mf

r , m
f
i , N

c, rcg, rc, mc
r , m

c
i . The parameter N is the number density of

aerosol particles (1/cm), rg and r are the parameters that define a lognormal size distri-
bution (see Eq. (9) in Chapter 2 of this book), mr and mi are the real and imaginary re-
fractive indices and the superscripts f and c denote the fine and coarse modes. We assume
that aerosols are uniformly from the surface to a pressure level P, which is a reasonable
assumption for a well-mixed boundary layer. The pressure level P should therefore cor-
respond to the mixed layer depth. The a priori knowledge of the aerosol parameters is
based on the aerosol climatology [Dubovik et al., 2002]. In Table 10.1, we provide the
values of the a priori aerosol parameters (i.e. vector Xa) and the associated uncertainties
(standard deviation).

The covariance matrix Ca is assumed diagonal where the diagonal elements correspond
to the square of the standard deviation values given in Table 10.1. The a priori values for
Nf and Nc are derived using a LUT approach as explained in the following.

The determination of the best solution X that minimizes the cost function requires the
resolution of a nonlinear equation. Nonlinear systems are usually solved using the New-
ton–Gauss iteration procedure. In practice, the Newton–Gauss procedure may not con-
verge and needs to be modified. The most widely used modification is known as the Le-
venberg–Marquardt method, which is implemented by the following equation:

Xiþ1 ¼ Xi � H Xið Þ þ c � I½ ��1�rxU Xið Þ; ð22Þ
where I is the identity matrix with the dimensionality of the state vector, i indicates the
number of the iteration and c is a positive coefficient that aids in the convergence of the
iteration. H is known as the Hessian matrix,

H Xið Þ ¼ r2
XU Xið Þ � C�1

a þKT
i � C�1

T �Ki ð23Þ

where

Ki ¼ @F Xð Þ
@Xi

: ð24Þ

K is the Jacobian matrix, which represents the sensitivity of the forward model to the
retrieved quantity (i.e. sensitivity of the polarized reflectances to the aerosol parameters).

The criteria for changing the c value is dependent on the convergence behavior. If
UðXiþ1Þ > UðXiÞ then we reject the solution Xiþ1 and we increase c whereas if
UðXiþ1Þ < UðXiÞ then we accept the solution Xiþ1 and we decrease c. For larger c values
the steepest descent dominates and the convergence is slow (i.e. small step size) but robust
whereas for smaller c values, the search turns to the faster Newtonian descent. The ite-

Table 10.1. A priori knowledge of the aerosol parameters and associated uncertainties

rg; lm r mr mi

Fine mode 0.15 (0.1) 0.4 (0.1) 1.47 (0.14) 0.01 (0.015)

Coarse mode 0.8 (0.2) 0.6 (0.3) 1.53 (0.05) 0.005 (0.005)
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ration process is stopped when there is no change of the cost function between two suc-
cessive iteration steps.

The optimal estimate method also provides an error diagnostic of the retrieved para-
meters. The Hessian matrix obtained at the final step of iteration can be used to calculate
the retrieval error covariance matrix Cx:

Cx ¼ C�1
a þKT

i � C�1
T �Ki


 ��1
: ð25Þ

The square roots of the diagonal elements of Cx give the standard deviation associated with
each retrieved parameter. The aerosol microphysical parameters contained in the vector X
and the error retrieval covariance matrix Cx can also be used to calculate the standard
deviation, or retrieval uncertainty, associated with the optical aerosol parameters. For
the aerosol optical thickness, the standard deviation is given by:

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

XN
j¼1

Cx;i;j
@s
@Xi

@s
@Xj

 !vuut : ð26Þ

A similar formula applies for the single scattering albedo $0.
A first guess of the aerosol parameters ðX0Þ is required to start the iterative process. A

good first guess allows the number of iterations to be reduced and alleviates the problem of
finding a solution X that is only a local minimum of the cost function U. A LUT provides a
simple and effective approach to derive a first estimate of the aerosol optical thickness and
aerosol model. In the LUT used for aerosols retrievals over land the polarized reflectances
are calculated for various aerosol optical thicknesses and aerosol models. Twelve fine
mode models are considered (rfg ¼ 0:05; 0:1; 0:15; 0:2 lm, rf ¼ 0:4, mr ¼ 1:4; 1:47;
1:54, mi ¼ 0:01). We also include the coarse mode particle model described in Table 10.1.
The polarized reflectances are calculated for aerosol optical thicknesses at a reference
wavelength of 550 nm equal to 0, 0.05, 0.1, 0.2, 0.4, 0.8, 1 and 2 and an interpolation
process is used to create a fine step. The first guess corresponds to the aerosol model
and aerosol optical thickness that minimize the least squares error term (see Eq. (20)) cal-
culated between the measurements and the simulations. The properties of the coarse mode
particles are not given the same level of detail in the LUT because the sensitivity of po-
larized reflectance measurements to coarse mode particles is limited by their weak spectral
variation (similar to the surface) and weak polarization signal. As a first guess, the aerosol
optical thickness of the coarse mode (at 550 nm) is assumed to be a tenth of the total
aerosol optical thickness. The properties of the aerosol models considered in the LUT
allow the number density of particles associated with each mode to be derived. In retrievals
the LUT is assumed to reduce the uncertainties in rfg and mf

r given in Table 10.1 to 0.05 and
0.07, respectively, and we assume that the relative uncertainty for both Nf and Nc is 100 %.

The residual atmospheric effect is accounted for in the retrieval process. This effect is
usually small and mainly depends on the aerosol size and load [Waquet et al., 2007]. The
aerosol model retrieved with the shorter bands is used in a rearranged form of Eq. (17) to
perform an atmospheric correction on the polarized reflectance measured at 2250 nm. This
correction is performed before the first iteration using the retrieved parameters obtained
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with the LUT approach and is refined after each iteration step. The final results from the
retrieval are the estimate of the state vector X that describes the aerosol model and the
uncertainty in that state vector calculated using Eq. (25).

The information contained in polarization measurements is mainly dominated by the
single scattering properties of the aerosol. The angular dependence of the single scattering
of polarized light is given by the polarized phase function (P12 element of the aerosol
scattering phase matrix), which is a particular function of the scattering angle. The varia-
tions of the polarized phase function with the scattering angle and wavelength are strongly
dependent on the aerosol microphysical properties [Mishchenko et al., 2006]. Fig. 10.8
illustrates the sensitivity of the observed polarized reflectance to various aerosol para-
meters as a function of the wavelength and scattering angle.

We note the large angular and spectral dependences of the polarized reflectance on the
particle size and on the real part of the refractive index. Fig. 10.8 also shows that polar-
ization measurements in the shortest visible bands are sensitive to the aerosol absorption
(i.e. imaginary part of the complex refractive index) and to the height that they are mixed
to (i.e. the mixed layer depth, P). The sensitivity to these latter parameters mainly appears
in the UV and blue part of the spectrum where the molecular and multiple scattering con-
tributions are significant.

The retrieval error covariance matrix defined in Eq. (25) can be used to simulate the
retrieval errors obtained for any instrument type and surface–atmosphere system with syn-
thetic measurements. Fig. 10.9 shows an example of retrieval errors obtained for sðkÞ,
m0ðkÞ, mrkÞ, reff , meff of each mode and pressure as a function of the aerosol optical thick-
ness at 550 nm. Calculations are made for an aerosol model representative of pollutant
particles following Dubovik et al. [2002]. The error covariance matrix is modeled accord-

Fig. 10.8. Elements of the Jacobian matrix calculated for mf
r , m

f
i , r

f
g and P as a function of the scattering

angle and wavelength. Polarized reflectance calculated for an aerosol model described by a single log-
normal size distribution (rg ¼ 0:1, r ¼ 0:403) and a complex refractive index of 1.44-0.01i. Calculations
performed for hs ¼ 60� and Du ¼ 45� and an aerosol optical thickness of 0.5 at 550 nm and including a
surface polarized reflectance. The wavelengths are: 0.41, 0.47, 0.55, 0.67, 0.865 and 1.6 lm, respectively
in red, blue, magenta, black, green and dark green.
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ing to the instrumental characteristics of the RSP instrument and the a priori information
given in Table 10.1.

Mishchenko et al. [2004] suggested the following retrieval requirements for climate
research over land: 0.04 or (10 %) for the aerosol optical thickness, 0.03 for the single
scattering albedo, 0.1 micron (or 10 %) for the effective radius, 0.3 (or 50 %) for the ef-
fective variance, and 0.02 for the real part of the refractive index. This sensitivity analysis
shows that the uncertainties in aerosol optical thickness (AOT) increase with AOT while
the uncertainties in the microphysical model decrease. The uncertainty in the single scat-
tering albedo (SSA) is notably less than 0.05 by the time the AOT is greater than 0.2. The
increase in the errors associated with the AOT is explained by the fact that the errors in the
column number density of particles N increase with N (not shown) and because the AOT is
closely connected to this parameter. The relative retrieval errors in the AOT, however,
decrease for increasing AOT and remain under the required value for all the wavelengths
considered here (r sðkÞ=sðkÞ < 10 %). The requirements for reff and meff are reached for
any AOT values larger than 0.1 at 550 nm, whereas for mr and m0, the requirements are only
reached in three spectral bands (410, 470 and 550 nm) and for AOT respectively larger than

Fig. 10.9. Retrieval errors (see Eq. (26)) of the spectral aerosol optical thickness (a), single scattering
albedo (b), real part of the refractive index (c), effective radius and effective variance (d) and pressure
of the top of the aerosol layer as a function of the aerosol optical thickness at 550 nm. The dashed lines
correspond to the absolute accuracy requirements suggested by Mishchenko et al. [2004]. Computations
are performed at TOA for hs ¼ 45� and Du ¼ 45�. The wavelengths are 410, 470, 555, 670, 865 and
1600 nm, respectively in red, blue, magenta, black, green and dark green.
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0.3 and 0.6. Figure 10.9 shows that there is also useful information about the height of the
top of the aerosol layer. The error in the pressure level of the top of the aerosol layer is less
than 70 hPa for AOT greater than 0.6 at 550 nm when the true mixed layer depth is
P ¼ 700 hPa. This corresponds to an error of 0.8 km when the aerosol altitude is
3 km. It is important to note that we are primarily interested in retrieving P to ensure
that large retrieval and/or fitting errors do not occur in the presence of thick aerosol layers
such as smoke plumes and that erroneous assumptions about P do not therefore cause a
bias in our retrievals. This aerosol layer pressure top estimate is based on the fact that
aerosols reduce the polarized reflectance at 410 and 470 nm. This happens because the
aerosols attenuate molecular scattering below the aerosol layer, while their own polarized
reflectance contribution is less than that from molecular scattering, even for very small
particles.

5.2.2 Experiment

We applied the method described above to a set of field experiment observations per-
formed with the RSP that provide a test of the realism of the analysis for various aerosol
optical depth regimes. Figure 10.10 shows three examples of scans of polarized reflectance
acquired during the Aerosol Lidar Validation Experiment (ALIVE) and the Megacity In-
itiative: Local And Global Research Observations (MILAGRO) field campaign. The
ALIVE experiment took place over the Department of Energy Atmospheric Radiation
Measurements [Ackerman and Stokes, 2003] program facility in the Southern Great Plains
(SGP). The RSP instrument participated in this campaign onboard the Sky Research Inc.
Jetstream-31 (J31) research aircraft and acquired data throughout all twelve flights per-
formed between September 12 and 22, 2005. The MILAGRO experiment was an inter-
national, multi-agency campaign involving numerous academic and research institutions
from the USA, Mexico and other countries [Fast et al., 2007]. This campaign was designed
to study pollution from Mexico City and regional biomass burning (sources, transport,
transformations and effects) and involved intensive aircraft and ground-based measure-
ments. The RSP instrument flew onboard the J31 between March 3 and 20, 2006, and
participated in 13 flights. A variety of aerosol, cloud, water vapor, and surface conditions
were sampled over Mexico City and the Gulf of Mexico. During these two campaigns the
NASA Ames Airborne Tracking 14-Channel Sun-photometer (AATS-14) was also inte-
grated onto the J31. These measurements allowed the aerosol optical thickness of the col-
umn above the aircraft to be derived in 13 bands between 353 and 2105 nm [Schmid et al.,
1997; Russell et al., 1999]. A cloud-screening algorithm has been developed for the ana-
lysis of the AATS measurements and allowed us to select scenes for which the direct beam
of the sun was cloud-free above the aircraft that eliminated concerns regarding cirrus
clouds.

In Table 10.2 we summarize the observational and illumination geometry of the three
example scenes presented here. Panels (a) and (b) in Fig. 10.10 show scans performed on
September 16 and 19, 2005, during the ALIVE experiment, close to the AERONET station
denoted to be CART (N36.6069�, W97.4858�). The spikes in these scans, that are corre-
lated across all spectral bands and that are present particularly in Fig. 10.10(a), are the
result of different view angles seeing different surface types, since the data have not
been reorganized to view the same point on the ground. During the ALIVE experiment,
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the flights were performed for low aerosol loading (s < 0:165 at 500 nm) and we therefore
did not try to retrieve the absorption and the altitude of the aerosol since the sensitivity to
these parameters is weak at such low AOT. The two scans shown here were performed in
different planes of observation, which provided measurements with different ranges of
scattering angle. We observe that the use of the 2250 nm measurement in Eqs. (18)
and (19) allows the effects of the various surface types to be compensated extremely ef-
fectively. The coarse-mode AOT is negligible for the scan shown in Fig. 10.10(a) and

Fig. 10.10. (a), (b), (c) Polarized reflectance measured at the aircraft level (solid lines) and simulated
polarized reflectance (dashed lines) as a function of the viewing angle. The wavelengths are 410,
470, 555, 670, 865, 1600 and 2250 nm, respectively in red, blue, magenta, black, green, dark green
and brown. The dashed brown line corresponds to the direct surface contribution (measurements at
2250 nm corrected from the atmospheric effects). The error is the difference between the simulated
and measured polarized reflectances and is shown at the top of the figures. Scans (a) and b) were obtained
on 09/16/05 and 09/19/05 during the ALIVE experiment (Southern Great Plains, USA). Scan (c) was
obtained over Mexico City on 03/15/06 during the MILAGRO experiment. (d) Aerosol optical thicknesses
retrieved by the RSP instrument from the measurements shown in (a), (b) and (c) and coincident AERO-
NET measurements (or retrievals when the fine mode AOT is reported) as a function of the wavelength.
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reaches 0.05 at 670 nm for Fig. 10.10(b). Figure 10.10(d) shows a comparison between the
AOT retrieved by the RSP and those measured by AERONET. These results show that our
approach allows the AOT of the fine mode particles to be retrieved with a maximal error of
0.01 for an AOT of 0.08 at 670 nm. The spectral dependence of the AOT estimate agrees
well with the sunphotometer measurements, which suggests that the microphysical proper-
ties of the observed aerosol (i.e. the particle size and the real part of the refractive index),
are also correctly estimated. This conclusion is born out by the agreement of the RSP
inversion of the data shown in Fig. 10.10(b) with an inversion of AERONET sun-photo-
meter measurements that was made close to the time of the RSP observations. The dif-
ference between the effective radii and refractive index retrievals from these two data sets
is 0.025 lm and 0.003 respectively. This comparison also indicated that there is little sen-
sitivity of the polarized reflectance observations to the coarse particle mode at least for
coarse-mode AOTs less than 0.05 with a very large coarse particle mode.

Figure 10.10(c) shows a scan acquired on March 15, 2006, around 1800 UT during the
MILAGRO experiment over the ground-based site called T0. This site was located in the
urban area of Mexico City and was equipped with an AERONET sunphotometer
(N19.4900�, W99.1478�). For this scan, the data are reorganized so that each part of
the scan sees the same target at the ground, as is the case for observations taken from
satellites. It is also interesting to notice that the residual atmospheric effect at
2250 nm is not negligible for this case and must be taken into account (see the differences
between the solid and dashed brown lines in Fig. 10.10(c)). The contribution of the coarse-
mode particles to the total AOT is quite stable during the day and has an average value of
0.02 at 550 nm.

The retrieved AOT is equal to 0.3 (0.005) at 670 nm, the effective radius and the ef-
fective variance are respectively equal to 0.15 (0.005) lm and 0.485 (0.01), the real and
imaginary refractive indices are equal to 1.54 (0.01) and 0.027 (0.005), respectively and P
is equal to 627 hPa (10), corresponding to a height of about 3.85 km. The parenthetic va-
lues are the uncertainties in the retrievals calculated using Eq. (26). We retrieve a small
effective radius and a high real refractive index, which is characteristic of the properties of
the biomass burning particles [Dubovik et al., 2002]. The retrieved imaginary refractive
index leads to a single scattering albedo of 0.865 (0.005) at 550 nm. This value is similar to
estimates made for African savanna biomass burning particles (0:84 < x0 < 0:88) and for
fresh biomass burning particles observed in the vicinity of the source (0.86) [Schmid et al.,
2003]. Figure 10.10(d) shows that the AOT retrieved by the RSP is in good agreement with
the coincident AOT measured by AERONET over a large spectral range, which indicates
that our retrieved aerosol model is valid. An inversion of the AERONET sunphotometer
measurements was made at the T0 site earlier in the afternoon (15:25 UT). However the

Table 10.2. Illumination and viewing geometry of the three datasets presented in Fig. 10.10.

Scan Viewing geometry

Scattering angle, deg Solar zenith angle, deg The difference of azimuths, deg

a 70–160 56.0 � 186

b 135–160 36.5 37

c 85–170 24.1 � 175
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Ångström exponent measured by AERONET is equal to 1.65 at 15:25 UT when this in-
version was performed but changes to 1.9 by 18:00 UT close to the time that the RSP
observations were made. This indicates that the fine mode particles observed at
15:25 UT were different to those observed at 18:00 UT. A comparison of the RSP and
AERONET microphysical retrievals is therefore not useful in this case. Analysis of the
chemical composition of the aerosols observed at the T0 site was made for the period
March 15–27, 2006 [Moffett et al., 2008]. It was found that biomass burning and aged
organic carbon particle types respectively constituted 40 % and 31 % of the submicrometer
mode on average and that the fresh biomass fraction dominated in the afternoons (around
65 % at the time of the RSP observations). This composition is the result of many fires to
the south and southeast of the city on the surrounding mountains and the local meteor-
ological conditions and is coherent with the RSP microphysical retrieval showing quite
strongly absorbing aerosols. The NASA Langley Research Center High Spectral Resolu-
tion Lidar (HSRL) [Hair et al., 2008] flew over the T0 site an hour prior the RSP overpass.
This instrument measures, among other things, the aerosol backscattering coefficient at
532 nm. The HSRL measurements show that the aerosols were located between the ground
and 3.4 km, which indicates that our estimate of the aerosol top layer height is also rea-
listic.

6. Conclusions

It has become apparent over the last few years, based on the measurements presented here
as well as previous work that the surface polarized reflectance is indeed almost perfectly
gray (less than 0.001 variation in the polarized reflectance) over the entire solar and short-
wave infrared spectrum from 400 to 2,300 nm. This is of particular importance given the
apparently similar spectral invariance of the angular shape of the surface reflectance and
the consequent correlation between reflectance shape properties and the surface polarized
reflectance [Elias et al., 2004]. We have hitherto not used the reflectance measurements
over land for aerosol retrievals from POLDER, or RSP, because of a tendency to degrade
the quality of the retrievals obtained using only polarized reflectances. However, based on
the results presented in this book, it would appear that careful use of the spectral invariance
of the angular shape of the surface reflectance in conjunction with the spectral invariance
of the polarized reflectance would provide even stronger constraints on the aerosol retrie-
vals than the current approaches used for analysis of POLDER and RSP data. This ex-
tension of the retrieval approach using polarized reflectances presented here to incorporate
the techniques used for multi-angle reflectance measurements presented elsewhere in this
book is an area of ongoing research.

The POLDER retrieval algorithms have proven themselves to be robust and globally
applicable with particular sensitivity to the fine mode particles that are primarily of anthro-
pogenic origin in many areas and excellent coherence between retrievals over ocean and
land. The addition of the shorter wavelength band at 490 nm is expected to improve detec-
tion of dust aerosols that are currently difficult to identify using just two bands at 670 and
865 nm. The RSP retrieval algorithms are more computationally intensive than those used
for POLDER, but do have the advantage that the addition of other measurements sources
(such as the multi-angle reflectance measurements) are fairly straightforward and assump-
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tions regarding sizes and composition (refractive indices) are minimized. A retrieval ap-
proach of this kind is in fact necessary for the analysis of RSP data because of the larger
number of spectral bands (seven as compared to three) and viewing angles (152 as com-
pared to 12) and the need to appropriately weight the information in each measurement. In
addition a major advantage of optimal estimation methods is the provision of uncertainties
with the retrieval products [Rodgers, 2000] so that appropriate statistical weighting can be
used when estimating mean values and their uncertainties. Having retrieval uncertainties
available is particularly helpful when one is interested in something that is derived from the
retrieval products. One example of this is the absorption AOT which is the product of the
AOTand the single scattering co-albedo (i.e. ð1 � mÞs). The uncertainty in this quantity and
not the uncertainty in the single scattering albedo is what is really important in estimating
the effect of absorption by aerosols. If one examines the uncertainty in this quantity as a
function of AOT using Figure 10.9 it is apparent that the absorption AOT can be retrieved
to better than for an AOT of 0.2 and that the uncertainty in its retrieval increases to almost
0.03 at an AOT of 0.8. The RSP retrievals of absorption AOT are therefore useful at all
optical depths, even though the single scattering albedo is highly uncertain at low optical
depths. In summary, the sensitivity analyses and results presented here show that passive
polarimetric remote sensing has an excellent capability to determine the size, composition,
amount and useful vertical distribution information for aerosols over land.
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tion de l’impact des aérosols stratosphériques sur les mesures de POLDER. Thèse, Université des
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11 Optimal estimation applied to the joint retrieval
of aerosol optical depth and surface BRF using
MSG/SEVIRI observations

Yves M. Govaerts, Sébastien Wagner, Alessio Lattanzio, Philip Watts

1. Introduction

Passive spaceborne imagers observe radiation that has interacted both with the atmosphere
and the surface. Interactions with the atmosphere include gaseous absorption and scatter-
ing by molecules and particulate matter or aerosols. Their characterization from remote
sensing observations relies essentially on their capacity to modify differently the amount of
radiation observed as a function of the wavelength, the viewing directions or the polar-
ization. One of the major issues when retrieving tropospheric aerosol properties using
spaceborne imager observations is to discriminate the contribution of the observed signal
reflected by the surface from the one scattered and absorbed by the aerosols. In particular,
it is crucial when the retrieval occurs above land surfaces which might be responsible for a
non-negligible part of the total signal. Conceptually, this is equivalent to solving a radiative
system composed of minimum two layers, where the upper layers includes aerosols and the
bottom ones represents the soil/vegetation strata. This problem is further complicated by
the intrinsic anisotropic radiative behavior of natural surfaces and its coupling with atmo-
spheric radiative processes. An increase in aerosol optical thickness is responsible for an
increase of the fraction of diffuse sky radiation which, in turn, smooths the effects of sur-
face anisotropy.

The accuracy with which it is possible to retrieve aerosol properties, i.e., to determine
the radiative properties of the upper layer(s), is therefore intimately controlled by the
knowledge of the underlying surface characteristics. As the number of independent ob-
servations is not large enough to fully characterize the radiative properties of all these
layers, i.e., the problem is ill-posed or under-constrained, it is necessary to constrain it
by providing some assumptions or a priori knowledge on the radiative properties of
this medium. Since the primary objective is to determine the characteristics of the upper
aerosol layer(s), this additional knowledge concerns the lower layer(s), i.e., the surface
properties.

Different approaches have been proposed so far to define a priori information on sur-
face properties according to the type of radiometers or the nature of the retrieval algorithms
[14]. These approaches are briefly reviewed in Section 2 for passive remote sensing radio-
meters. An original method is proposed here where surface reflectance anisotropy and
atmospheric scattering properties are retrieved simultaneously, explicitly accounting
for the radiative coupling between these two systems. The algorithm exploits the frequent
repeat cycle of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) observa-
tions onboard Meteosat Second Generation (MSG) to characterize the surface bi-direc-
tional reflectance factor (BRF). This instrument scans the Earth disk every 15 min in



11 spectral channels ranging from 0.6 to 13 lm with a sampling distance at the sub-sa-
tellite point of 3 km. The solar channels (see Fig. 11.1) are calibrated with the method
proposed in [4] with an estimated accuracy of � 5 %.

A priori information on surface BRF assumes that surface albedo temporal variations
are much slower than aerosol ones. The use of a priori information is mathematically
rigorously combined with the information derived from SEVIRI observations in the frame-
work of the Optimal Estimation (OE) method. The retrieval approach is briefly described
in Section 3. The benefit of the OE approach on the characterization of the surface–atmo-
sphere coupling is illustrated through the analysis of the error covariance matrix. Finally, in
this chapter we analyse in detail the impact of improving the surface properties prior
knowledge on the accuracy of the retrieved Aerosol Optical Depth (AOD).

2. Characterization of surface a priori information

The determination of a priori information on surface reflectance is a critical issue when
retrieving aerosol optical depth over land surfaces. Essentially three different approaches
have been proposed according to the nature of the observations.

In case of mono-directional multi-spectral imagers, the common approach consists in
assuming that the spectral shape of surface reflectance is known or that the ratio between
surface reflectance in various wavelengths can be determined. Such an approach has been
widely applied to spectral imager such as the MEdium Resolution Imaging Spectrometer
(MERIS), the Moderate Resolution Imaging Spectroradiometer (MODIS), or Sea-viewing
Wide Field-of-view Sensor (SeaWiFS), (e.g., [32, 38, 36, 28, 16]). The application of this

Fig. 11.1. MSG/SEVIRI VIS06, VIS08 and NIR16 spectral response (shaded gray) used to derive aerosol
optical depth. The red line represents the total gaseous transmittance in a US standard atmosphere. The
green line represents aerosol transmittance for a continental aerosol optical depth [34] of 0.2 at 0.55 lm.
The light blue line represents Rayleigh transmittance. The blue line represents the total atmospheric trans-
mittance.
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method is often limited to the case of dark surfaces as the magnitude of atmospheric scat-
tering prevails upon surface reflectance in such conditions. For instance, in [32] authors
use the atmospherically resistant vegetation index [12] to detect dark dense vegetation
pixels for land aerosol remote sensing. In [38] it is assumed that the land surface reflec-
tance is estimated by a linear mixing model of vegetation and non-vegetation spectra,
tuned by the normalized differential vegetation index. The method proposed by
[28, 16] assumes a predefined ratio between the intensity of the reflected surface radiation
in various wavelengths. This ratio might change according to the illumination and viewing
conditions. In [36] authors applied an algorithm based on the OE theory where the prior
information on the surface albedo relies on the MODIS surface BRF product [11]. The
proposed method includes a rigorous mathematical use of a priori information, but relies
on external datasets which are acquired at a different spatial and temporal resolution. The
surface albedo is retrieved by first assuming an albedo spectral shape for the 0.55, 0.67,
0.87 and 1.6 lm channels. The retrieval procedure searches for the solution with the lowest
cost by varying the albedo in the 0.55 lm channel and keeping constant the respective
ratios of reflectances for all the other channels to that for this channel. Usually, the ap-
proaches listed in this paragraph also assume aerosol classes where the spectral shape of
the single scattering albedo is prescribed.

A second type of approach imposes constraint on the spectral invariance through the
angular shape of the surface directional reflectance. Such an approach is clearly dedicated
to multi-angular observations. [19, 20, 8, 7] developed a simple physical model of light
scattering that is pertinent to the dual-angle sampling of the Along-Track Scanning Radio-
meter (ATSR) instrument and can be used to separate the surface bi-directional reflectance
from the atmospheric aerosol properties without recourse to prior information on the mag-
nitude of surface reflectance. Studies of modeled and real bi-directional reflectance data
have shown that the angular variation of bi-directional reflectance at the different optical
bands of the ATSR-2 instrument are comparable [37]. A similar approach has also been
proposed in [1] to derive aerosol properties from observations acquired by the Multiangle
Imaging SpectroRadiometer (MISR). These authors assume a spectral invariance of the
normalized shape of the surface BRF to improve the retrieval of aerosol properties.

Finally, it is worth mentioning an approach based on the temporal stability of surface
reflectance and the fact that aerosols tend to increase the observed signal at short wave-
lengths, as surface is generally dark in this spectral region. Such a principle has been used
by different authors. In the method proposed in [13, 24, 23], the surface contribution is
determined from temporal compositing of visible imagery, where darker pixels correspond
to less atmospheric scattering. Surface reflectance is deduced from the composite using
radiative transfer calculations. The proposed approach suffers from a lack of rigorous treat-
ment of the radiative transfer as the shape and intensity of surface reflectance depends on
the illumination conditions (e.g., the amount of aerosol) over anisotropic surfaces. Addi-
tionally, these maps are contaminated by remaining aerosols or cloud shadows, and the
surface reflectance has to be assumed constant over a 28-day period. In [10] authors
also proposed a similar approach for MODIS observations, assuming Lambertian surface
reflectance. A reference surface reflectance map is generated from the lowest observed
values over a month. This method relies on the hypothesis that, in the blue spectral region,
surface reflectance is low and that any departure of the observed top-of-atmosphere (TOA)
BRF from the reference map is caused by the presence of aerosols in the atmosphere.
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3. Overview of the optimal estimation retrieval method

The main objective of the Land Daily Aerosol (LDA) algorithm described in this chapter is
to derive the mean daily tropospheric AOD for various aerosol classes over land surfaces.
The aerosol properties are inferred from the inversion of a forward radiative transfer model
against daily accumulated observations in the 0.6, 0.8 and 1.6 lm SEVIRI bands.

The proposed algorithm capitalizes on the capability of SEVIRI to acquire data every
15 minutes to perform an angular sampling of the same radiance field under various solar
geometries (Fig. 11.3). The temporal accumulation of data acquired under different illu-
mination conditions are used to form a virtual multi-angular measurement system. SEVIRI
data are daily accumulated in the 0.6, 0.8 and 1.6 lm bands (noted ~kk1, ~kk2, ~kk3, see Fig. 11.1)
to form the measurement vector. The inversion procedure takes place at the end of this
daily accumulation period to retrieve the surface reflectance in each band and optical depth
for different aerosol classes. The optical thickness is delivered at 0.55 lm. Retrievals at all
channels are processed simultaneously.

The retrieval approach is based on the Optimal Estimation (OE) theory (e.g., [31], [35]).
The goal of such 1D variational retrieval is to seek an optimal balance between information
that can be derived from the observations, and the one that is derived from a priori knowl-
edge on the system. These techniques are traditionally used for the retrieval of vertical
temperature, pressure or humidity profiles within the atmosphere from sounding observa-
tions (e.g., [29]). The basic principle of Optimal Estimation is thus to maximize the prob-
ability of the retrieved atmospheric and surface state x conditional on the value of the
measurements and any prior information. A forward model ym represents the conversion
from the state x to the observation vector yo. The departure of a potential solution ymðxÞ to
a given observation vector, yo, and to an a priori, xb, is expressed by a scalar function,
namely the cost function (Section 5.2). It can be shown that maximising probability is
equivalent to minimizing a cost function which combines these two pieces of information.

The measurement system in an OE estimation framework is composed of the forward
model ym (Section 4.2), the observations yo (Section 5.1) and the a priori information xb
(Section 5.10). For each of these elements, the characterization of the corresponding error
covariance matrix is essential and represents thus one of the most difficult aspect of this
method (e.g., [30, 17]). Additionally, the minimization of the cost function requires knowl-
edge of the Jacobian of the forward model.

4. Forward modelling

4.1 State vector

The state parameters defining the radiative properties of the observed medium are divided
into two categories. The first one, noted x, represents the state variables that are retrieved
from the observations and is referred to as the state vector. The second one, noted b, re-
presents those parameters that also have non-negligible radiative effects on the observed
medium but may not be reliably estimated from those measurements. They are referred
to as the model parameters and are obtained from external sources of information. In
the present case, the model parameters are composed of the ozone and water vapor total
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column content b ¼ fUO3 ; UH2Og and are taken from European Centre for Medium-
Range Weather Forecasts (ECMWF) data.

The state vector x is composed of the surface reflectance qsð~kkÞ in the three SEVIRI
bands, and the aerosol optical depth s delivered at 0.55 lm. The surface reflectance is
represented by the Rahman–Pinty–Verstraete (RPV) model [26] which has four para-
meters that are all wavelength-dependent:
q0 controls the mean amplitude of the BRF. This parameter strongly varies with the wa-

velength and mainly controls the surface albedo. It varies between 0 and 1.
k is the modified Minnaert contribution that determines the bowl shape of the BRF. It

varies between � 1 and 1.
H is the asymmetry parameter of the Henyey–Greenstein phase function and also varies

between � 1 and 1.
h controls the amplitude of the hot-spot, i.e., the ‘porosity’ of the medium. This para-

meter takes only positive values and typically varies between 0 and 5. In the present
case h is set to a fixed value.

In [3] authors analysed in detail the performance and limits of applicability of this para-
metric model. This model formally writes

qsðq0ðkÞ; kðkÞ;HðkÞ; hðkÞ; l0;�lm;frÞ ¼ q0ðkÞ�qqsðkðkÞ;HðkÞ; hðkÞ; l0;�lm;frÞ ð1Þ

where q0 and �qqsðkðkÞ;HðkÞ; hðkÞ; l0;�lm;frÞ describe the amplitude and the angular
field of the surface BRF, respectively. This latter quantity is expressed by:

�qqsðkðkÞ;HðkÞ; hðkÞ; l0;�lm;frÞ ¼ MIðl0;�lm; kðkÞÞFðg;HðkÞÞHðhðkÞ;GÞ ð2Þ

where:
MIðl0;�lm; kðkÞÞ ¼

lk�1
0 lk�1

m

ðl0 þ lmÞ1�k ð3Þ

Fðg;HðkÞÞ ¼ 1 �H2ðkÞ
½1 þ 2HðkÞ cos g þH2ðkÞ�3=2

ð4Þ

HðhðkÞ;GÞ ¼ 1 þ 1 � hðkÞ
1 þ G

ð5Þ

cos g ¼ cos hm cos h0 þ sin hm sin h0 cosfr ð6Þ

G ¼ ½tan2 h0 þ tan2 hm � 2 tan h0 tan hm cosfr�1=2 ð7Þ

The relative azimuth angle, fr, is zero when the source of illumination is behind the sa-
tellite. Here lm is the cosine of the satellite zenith angle hm and lm is the cosine of the solar
zenith angle.

Aerosol optical depth is delivered at 0.55 lm for three standard pre-defined aerosol
classes (e.g., large particles [33], small non-absorbing particles [27] and continental ae-
rosol model [34]) shown in Fig. 11.2. All these aerosol models assume spherical particles.
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4.2 Model formulation

The forward model ymðx; bÞ represents the TOA BRF in the SEVIRI solar channels. This
model depends on the retrieved state variables x and the model parameters b. It also for-
mally depends on the observation conditions m, i.e., the illumination and viewing geo-
metry, the acquisition time and location, and finally the wavelength. However, this index
is skipped in the notation for the sake of clearness. This model expressed the TOA BRF as a
sum of the atmospheric contribution and the contribution specifically due to surface scat-
tering effects. In addition, gaseous absorption is treated separately from the molecular and
aerosol scattering-absorbing effects as represented in Fig. 11.3. However, the SEVIRI
0.8 lm band includes a water vapor absorption band close to 0.83 lm so that this band
cannot be considered as totally transparent as can be seen on Fig. 11.1. As both water vapor
absorption and aerosol scattering occur in the lower part of the atmosphere, it is no longer
possible to assume that gaseous absorption is decoupled from the molecular and aerosol
scattering–absorbing effects. In order to account for the coupling between aerosol scatter-
ing and water vapor absorption, a correction factor g, applied on the water vapor trans-
mittance, has been introduced in the original formulation proposed in [21]. In simplified
notation, the forward model writes

ymðx; bÞ ¼ TgðbÞ gðx; bÞqaðxÞ þ q0�qqsðxÞð Þ ð8Þ

Fig. 11.2. Aerosol asymmetry factor as a function of the single scattering albedo in the three SEVIRI
solar bands for the various classes used in LDA.
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where

TgðbÞ is the total gaseous transmittance;
gðxÞ is the coupling factor between the scattering and gaseous layers;
qaðxÞ is the scattering layer intrinsic reflectance;
q0 is the amplitude of the surface reflectance;
�qqsðxÞ is the shape of the surface reflectance at level zs.

The derivatives Kx (Jacobian matrix) with respect to the forward model ymðx; bÞ are cal-
culated as forward finite differences with the exception of the derivatives with respect to b.

This model explicitly accounts for the surface anisotropy and its coupling with atmo-
spheric scattering [21]. The costs associated with the computation of the forward model are
reduced by pre-computing the values of these functions and storing them in look-up tables.
This, however, implies that a limited number of pre-defined solutions to the inverse prob-
lem will be considered, especially for the parameters k and H controlling the shape of the
surface BRF and the optical depths where only the following values are considered : 0.05,
0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.5. To reduce further the computing time, no interpolation
is performed between these values. These discretized values are noted kDð~kkÞ, HDð~kkÞ, hDð~kkÞ
and sD.

Fig. 11.3. LDA forward model and measurement vector schematic representation. The observation vector
yo is composed of daily accumulated SEVIRI data acquired under different illumination geometries. The
forward model assumes the atmosphere is composed of two layers: the scattering layer ranging from level
z0 (surface) to za. The absorbing gaseous layer ranges from level za to zs. These two layers are coupled. The
underlying surface at level z0 is anisotropic.
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5. Inverse problem

5.1 Measurement vector

The proposed approach exploits SEVIRI capability to acquire data every 15 minutes over a
same pixel to perform an angular sampling of the reflectance changes due to changing
illumination conditions. Using the principle of reciprocity applied to the three SEVIRI
solar channels [15], this daily temporal accumulation is thus used to form a virtual mul-
ti-angular and multispectral measurement vector yo that can be used for retrieving simul-
taneously information on the atmospheric aerosol load-, and the Earth surface reflectance.
Formally, this measurement vector contains the TOA Bi-directional Reflectance Factor in

Fig. 11.4. Top panel: Measurement vectors acquired on March 9, 2005, over the Dakar AERONET sta-
tion (14.38N, 16.95W) in the three SEVIRI solar channels (VIS06 + symbol, VIS08: � symbol and
NIR16: � symbol). The daily average AOD estimated at 0.55 lm during that day in the range of
0.06 � 0.015. Bottom panel: The same but for March 11, 2005, where daily average AOD is in the range
1.18 � 0.17.
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the three SEVIRI solar channels. This approach assumes that the aerosol load does not vary
during the course of the day. As explained in Section 5.3, the error induced by this assump-
tion is converted into an equivalent aerosol autocorrelation noise which is added to the
estimated measurement uncertainties [5]. This vector contains only clear-sky observations,
cloudy observations are disregarded with the high-frequency filtering method proposed by
[22].

Fig. 11.4 illustrates two examples of measurement vectors accumulated during respec-
tively March 9 and 11, 2005, over the Dakar AERONET station (14.38 N, 16.95 W) in the
three SEVIRI solar channels. March 9, 2005, corresponds to a very clear day where the
average AOD measured during that day is in the range of 0.06 � 0.015. On March 11,
2005, the mean observed daily AOD was as large as 1.18 � 0.17. The impact of this
AOD difference on the measurement vector magnitude and shape is clearly visible. An
important increase is observed in the VIS06 band, from 0.15 to more than 0.2, whereas
a decrease is observed in the NIR16 band. As concern the shape of yo, the effects of the
AOD magnitude are also well pronounced. When the AOD is very low (March 9, 2005),the
influence of the surface BRF on the TOA is large. As can be seen on Fig. 11.5, during that
day, the satellite and the sun zenith and viewing angles are similar, a configuration respon-
sible for the so-called ‘hot-spot’ effect. In this particular geometry, both the sun and the
radiometer are aligned with respect to the observed pixel so that no surface shadow is seen
by SEVIRI. This particular condition translates into a sharp increase of the BRF around

Fig. 11.5. Polar plot representing the geometry of illumination (� symbol) and of observation (� symbol)
over the Dakar AERONET station in March 2005. Circles represent zenith angles and polar angles re-
present azimuth angles with zero azimuth pointing to the north.
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12:00 UTC. Conversely, large AOD values tend to increase the scattering of incoming
solar radiation in the atmosphere, increasing thereby the contribution of the diffuse
sky radiation reaching the surface. Under such conditions, shadows are much smoother,
leading to a general increase of the surface BRF and a decrease of the ‘hot-spot’ pheno-
menon. These figures also illustrate the clear need to retrieve jointly surface reflectance
and AOD, as these two parameters are radiatively coupled.

5.2 Definition of the cost function

The basic principle of optimal estimation is to maximize the probability of the retrieved
state conditional on the value of the measurements and any a priori information. Formally,
it is required to maximize the conditional probability P ¼ Pðxjyo; xb; bÞ with respect to the
values of the state vector b (Section 4.1),where xb is the a priori value of the state vector
(Section 5.10) and b are all the other elements of the radiative transfer, called forward
model parameters. The assumption is made that errors in the measurements (Sy), and
a priori (Sx) are normally distributed with zero mean. Then, the conditional probability
takes the form:

PðxÞ / exp � ymðx; bÞ � yoð ÞS�1
y ymðx; bÞ � yoð ÞT

h i
� exp � x� xbð ÞS�1

x x� xbð ÞT
h i

(9)

where the first term represents weighted deviations from measurements and the second
one represents deviations from the a priori state parameters. Maximizing probability PðxÞ
is equivalent to minimizing the so-called cost function J

JðxÞ ¼ ymðx; bÞ � yoð ÞS�1
y ymðx; bÞ � yoð ÞTþ x� xbð ÞS�1

x x� xbð ÞT ð10Þ

Notice that J is minimized with respect to the state variable x, so that the derivative of J is
independent of the model parameters b which therefore cannot be part of the solution. The
first term of the right-hand side of Eq. (10) expresses the contribution due to the obser-
vation and is noted Jy whereas the second term represents the cost due to the a priori
information and is noted Jx so that J ¼ Jy þ Jx.

The diagonal elements of the Sy matrix represent the variance of the mismatch between
the forward model and the observations, which is the sum of the variances associated with
all error components of both the observations and the forward model. The estimation of
these various contributions is one of the most important aspects of the OE approach. Their
estimation is described in Section 5.3. These covariance errors also determine the posterior
covariance or retrieval uncertainty as explained in Section 5.8. Consequently, their correct
definition is of paramount importance for a reliable estimation of the solution uncertainty.
Large values of Sy tend to reduce the importance of the observations in the retrieval system,
increasing thereby the contribution of the a priori information.

The diagonal elements of the matrix Sx, on the other hand, represent the error variance
of the prior state vector estimate and specify the extent to which the actual solution is
expected to deviate from this prior estimate. Any non-diagonal terms of Sx represent
how the state parameters are correlated within a SEVIRI band and between the bands.
The associated magnitude is inversely proportional to the strength of this correlation.
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When the diagonal elements of Sx are taking large values, the cost function J is poorly
constraint by the a priori information and will essentially rely on the observations.

5.3 Measurement system error

A reliable estimation of the measurement system error, i.e., the Sy matrix, is one of the
most critical aspects of the OE approach as it strongly determines the likelihood of the
solution. It should therefore be carefully estimated. In the present case, the measurement
system total error covariance matrix is defined as

Sy ¼ SN þ SC þ SA þ SB þ SF ð11Þ

with

SN the radiometric noise error matrix;
SC the calibration uncertainty error matrix;
SA the aerosol autocorrelation error matrix;
SB the equivalent model parameter error matrix;
SF the forward model error matrix.

The first two terms on the right side characterize instrumental noise whereas the last three
terms characterize the forward model and associated assumption uncertainty. In the current
algorithm, all errors are assumed to have a Gaussian distribution but this assumption has
not been rigorously verified.

Radiometric noise SN

The radiometric noise is composed of (i) the instrument noise due to the dark current; (ii)
the difference between the detector gains; (iii) the number of digitalization levels; and
finally (iv) the geo-location/coregistration accuracy. As SEVIRI images are accumulated
during the course of the day to form a virtual multi-angular observation, any inaccuracies
in the rectification are converted into an equivalent radiometric error.

Calibration uncertainty SC

Calibration uncertainties are responsible for systematic error that are present in all mea-
surements. These errors might be responsible for biases that translate into underestimation
or overestimation of optical depth. It is, however, not possible to optimize the cost function
against such type of bias so that, strictly speaking, it should not appear in the Sy matrix
when it is assembled for the cost function estimation. Conversely, when Sy is used for the
estimation of retrieval total error (see Section 5.8), this contribution should be accounted
for.

Equivalent aerosol autocorrelation noise SA

One of the main assumptions of this algorithm is the relative stability of the aerosol load
during the day. The error induced by this assumption is modeled by the equivalent aerosol
autocorrelation noise SA that accounts for the variation of the AOD around the value taken
at a reference time. It increases as the duration of the accumulation period increases.
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Equivalent model parameter noise SB

This noise is due to the errors in the state vector bð�tt Þ. It is converted in Equivalent Model
Parameter Noise (EQMPN).

Forward model error SF

This term represents the intrinsic errors of the fast forward model ym, i.e., the errors re-
sulting from the forward model assumptions and approximations. This error is estimated
comparing the fast model with a very accurate radiative transfer model [6].

Minimization of J

This section addresses the problem of finding the solution x̂x that minimizes J. This is a
topic where many techniques and methods can be deployed and where tuning of the
adopted scheme can turn out to be as important as the scheme itself. Essentially any meth-
od of finding the minimum is acceptable in a sense, with the caveat that in an operational
context it must be robust and fast. The particular characteristics of this problem are that:
* First and second derivatives of J (with respect to x) are available and continuous. This

condition implies descent algorithms that make use of the local gradient are possible
and these are generally faster than methods that do not.

* Multiple minima are unlikely. This condition is, however, not met in the present case,
and the solution is estimated for different first guess values (see Section 5.5).

* J is likely to be approximately quadratic in the region of the solution, far from quadratic
elsewhere. This characteristics is a result of the reasonably strongly nonlinear nature of
the forward (radiative transfer) problem. It means that quick convergence from a poor
starting position is unlikely.

The cost function JðxÞ is minimized, for example using a steepest descend method, or the
Marquardt–Levenberg method (combined steepest-descent method/Newton method, as
described in Section 5.6). This minimization is performed individually for each defined
aerosol class. The first and second derivatives of J with respect to x are given by:

J0 ¼ @J

@x
¼ KT

x S
�1
y ðlmðx; bÞ � yoÞ þ S�1

x ðx� xbÞ ð12Þ

and

J00 ¼ @2J

@x2
¼ KT

x S
�1
y Kx þ S�1

x : ð13Þ

The expression for J00 is a commonly used approximation in that Kx is assumed to be
independent of x, i.e., the radiative transfer is linear in x̂x. This is only strictly true
near the solution (in the region where J is quadratic) but (see next section) since J00 is
only employed near the solution the approximation is acceptable. Fig. 11.6 shows an ex-
ample of the joint retrieval of AOD ŝs and surface parameters over the Dakar region for a
clear (March 9, 2005) and heavy aerosol load (March 11, 2005) day. In this Figure, the BRF
surface parameters are used to estimate the surface albedo or more precisely the BiHemi-
spherical Reflectance (BHR�) [18] corresponding to perfectly isotropic illumination (or
white sky albedo in the MODIS terminology).
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5.4 First guesses

The presence of multiple local minima are quite likely due to the multi-layer nature of the
problem. Hence, when a minimum value is found, an exploration process should be made
around that minimum in order to determine whether or not it is a local minimum. Such
exploration phase could be computationally expensive. In order to avoid explorations, sev-
eral independent first guesses are used in order to start the minimization from four dif-
ferent places in the state variable space. For the surface parameters, kDð~kkÞ, HDð~kkÞ and
hDð~kkÞ are randomly chosen in each wavelength to best sample the state parameter domain,
i.e., corresponding to low and high surface reflectance values. For each of these cases, an
high and low aerosol load sD is also randomly selected for each aerosol class. A first guess
x0 is defined as a set of values for kDð~kkÞ, HDð~kkÞ, hDð~kkÞ, and sD and is chosen among the
following four possible combinations of state parameter intervals:

Fig. 11.6. Retrieved aerosol optical thickness (top) and BHR� in the SEVIRI VIS06 band (bottom)
over the Dakar area for March 9, 2005 (left) and March 11, 2005 (right).
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1. Low surface reflectance, low AOD value.
2. Low surface reflectance, high AOD value.
3. High surface reflectance, high AOD value.
4. High surface reflectance, low AOD value.
Once a set of values for kDð~kkÞ, HDð~kkÞ, hDð~kkÞ, and sD has been randomly selected within
each of the four prescribed intervals, the corresponding q0 parameter is estimated in each
channel ~kk, minimizing the following expression:

q0ð~kkÞ ¼
P

X WinvðX; ~kkÞ yoðXÞ=TgðbÞ � gðx; bÞqaðxÞ
� 


P
X WinvðX; ~kkÞ�qqsðxÞ

ð14Þ

where WinvðX; ~kkÞ is the weight ð1=r2
yÞ given to the BRF value observed with the angle X.

The selected solution x̂x among the four first guesses is the one which provides the smallest
cost function J.

5.5 Marquardt descent algorithm

The descent algorithm aims at finding the value x̂x that minimizes J. To find the minimum a
‘first guess’ state vector x0 (Section 5.5) is randomly selected and takes steps, dxn, based
on some algorithmic theory. Assuming the value of J decreases at each step then the up-
dated x vector is taking the process towards the cost function’s minimum. The algorithm
uses an implementation of the Marquardt algorithm [25] to define the value of dxn. The use
of this algorithm is consistent with the three points made above. The rationale of the Mar-
quardt algorithm is to use a weighted combination of steepest descent and Newtonian des-
cent according to the characteristics of the cost function. Thus, when the cost function is
near quadratic (generally near the solution) the efficiency of the Newtonian scheme is
employed, and when the cost function is far from quadratic (generally when far from
the solution) the robustness of the Steepest Descent algorithm is favoured.

The Steepest Descent algorithm is intuitively the simplest. The vector �J0 defines the
‘downward’ direction of the local steepest gradient. A move dx ¼ J0 is almost certainly at
least approximately in the direction of the minimum although it may be too far or barely far
enough. The step is therefore usually scaled, dx ¼ �aJ0 where a is variable. If J is found to
be decreasing a can be increased to move faster; if J increases then a is reduced until J
decreases. J must eventually decrease with this method otherwise something is wrong with
the calculation of @J=@x. The problem with steepest descent is that it can be very slow to
converge, especially near the solution where the gradient necessarily becomes small. It is,
however, very robust.

Newtonian descent on the other hand is very fast near the solution because it will find it
in one iteration if J is quadratic. Newton’s method finds the root of an equation and is
therefore applied here in the form to find the root of J0 ¼ 0. The Newton step is therefore
defined as dx ¼ �J0=J00. The problem with Newtonian descent is that, away from the solu-
tion, J can be very non-quadratic; J00 can easily have the ‘wrong’ sign and the step is taken
away from the solution. Scaling can not solve this problem.

The combined use of Steepest Descent and Newtonian methods constitutes the method
of Marquardt. Before each step, the method checks whether the resulting cost is reduced. If
so the step is taken and an adjustment is made to make the next step ‘more Newtonian’. If
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an increase in J is detected, then the step is not taken and an adjustment is made towards
more steepest descent. In this way, the Marquardt method adopts Steepest Descent away
from the solution and makes use of Newtonian descent near the solution. Formally, the
increment in the Marquardt method is:

dx ¼ �ðJ00 þ aIÞ�1J0 ð15Þ

where I is the unit matrix (size nx � nx) and a is the variable that controls the contribution
of the Steepest Descent or the exploration. When a is large (compared to the ‘average’ size
of J00) the step tends to that of the Steepest Descent; when a is small the step is close to the
Newtonian one. To initialize the descent, a is set proportional to the average of the diag-
onals of J00 to obtain a reasonable value

ao ¼ MQstart � traceðJ00Þ: ð16Þ

With a successful (decreasing J) step, then the control parameter is decreased

anþ1 ¼ an �MQstep ð16Þ

and with an unsuccessful step the control parameter is increased

anþ1 ¼ an �MQstep: ð18Þ

The parameters MQstart and MQstep determine respectively the initial value of a and the
contribution of the steepest descend method. The Marquardt a parameter is set and the
iteration loop starts. This involves calculation of dx via the quantities J0 and J00. Sy is up-
dated at each iteration step. The step dx is checked to see if any parameter will go out of
bounds and limits an offending parameter to the bound value if this is the case. Following
this, the cost J at the prospective new state is calculated and a check is made to ensure that
it is less than the previous value. If it is not, then the step is not made; the weight given to
the Steepest Descent is increased and the step recalculated. If the cost is decreasing, the
step is made and the Steepest Descent weight is decreased. Following this, the step is
checked for convergence and the results output if so, a further iteration taken if not.

The iteration process is stopped when the decrease in J between iterations, dJn, is so
small as to be negligible, determined as smaller than a preset value. A parameter that is not
well constrained in a particular situation can oscillate or be unstable (because the cost
function is ‘flat’ in that direction). This instability makes it look like the solution is
not yet found whereas, in fact, the cost is minimal and cannot decrease further. The
use of a convergence criteria on dJn avoids this problem.

5.6 Quality control

In the case of Sx and Sy being both diagonal matrices, the sum of the squared residuals
scaled by their uncertainties represents a v2, distribution. In such condition, the magnitude
of Jðx̂xÞ is a good indicator of the reliability of the solution, i.e., the goodness-of-fit be-
tween the observations to the model on one hand and prior and posterior estimate on the
other hand. This indicator might, however, be difficult to spatially or temporally interpret
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as the number of degrees of freedom my can change from pixel to pixel or from day to day
due to changing number of available observations caused by cloud or illumination con-
ditions. The number of degrees of freedom to be used in this case is equal to the total
number of independent pieces of information introduced into the retrieval system, i.e.,
the number of observational data ny, plus the number of prior estimates minus the size
nx of the state vector x. The normalization of Jðx̂xÞ by the number of degrees of freedom,
should be close to 1, which means that the mismatch between the observations and the
modeled data (or between the prior and posterior estimate) has the same magnitude as Sy
(Sx) [17].

This method might, however, be misleading in the present case as the same criteria
would be applied whatever the number of degrees of freedom. In case only a very limited
number of observations is available, the requirement on the quality of the fit should be
much higher as in the case where a large number of observations are available. Hence, a
probabilistic approach is proposed here based only on Jy, i.e., the model–observation mis-
match. Assuming that the differences between ym and yo are normally distributed, the prob-
ability Q that a value of Jy as poor as the values given by Eq. (10) of the solution x̂x should
occur by chance writes

Px̂x ¼ QðJyðx̂xÞjmyÞ ¼ 1 � 1

2my=2Cðmy=2Þ
ðv2

t

0
e�t=2tmy=2�1 dt; ð19Þ

where my ¼ ny � nx is the number of degrees of freedom, and C is the Gamma function. ny
and nx represent respectively the size of the yo and x vectors. This statistics formulates the
probability Px̂x to find a solution x̂x with a cost Jyðx̂xÞ greater than the cost that has been
calculated. A high probability means that there is a high probability not to find a solution
at a lower cost. So the calculated cost is possibly a good solution to the problem. On the
other hand, a small probability means that the possibility of finding a greater cost is low.
So, it means that it would be highly probable to find a better solution, and therefore such a
probability should be interpreted as a poor agreement between the observations and the

Fig. 11.7. Estimated probability as defined by Eq. (19) over the Dakar area for March 9, 2005 (left)
and March 11, 2005 (right).
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direct model. An example of estimated probability corresponding to a clear and an aerosol
loaded day is shown on Fig. 11.7. Probabilities are taking very low values over sea on
March 11, 2005, when the AOD is larger than one. Retrieved AOD and BHR� over
sea for that day are therefore not reliable. The retrieved BHR�, shown on the lower right
panel of Fig. 11.6, is taking suspiciously high values over sea that should be rejected. The
comparison between the retrieved BHR� for these two dates (Fig. 11.6) overland surfaces
also shows discrepancies. The LDA algorithm still requires some improvements in the
definition of the aerosol classes (see Section 7),which affect particularly retrievals with
high optical depth.

5.7 Linear error analysis

The shape of JðxÞ in the vicinity of the solution x̂x is partially determined by the magnitude
of the elements of the matrices Sy and Sx. In the case of the observations, large values of Sy
tend to reduce the JðxÞ value but also to flatten its shape. In this condition, any minor
perturbation in yo, resulting from measurement noise or forward model uncertainties,
can lead to large displacement of x̂x, increasing thereby the solution uncertainty. Large
values of Sy decrease the importance of the a priori information and therefore its contri-
bution to the estimated a posteriori error.

The retrieval error is based on the OE theory, assuming a linear behavior of ymðx; bÞ in
the vicinity of the solution x̂x. In this condition, the a posteriori error covariance matrix Se
writes

r2
x̂x ¼

@2JðxÞ
@x2

� ��1

¼ KT
x S

�1
y Kx þ S�1

x

� ��1
; ð20Þ

where Kx is the gradient of ymðx; bÞ calculated at the point x̂x.
The error matrix Se provides information on the correlation between the retrieved model

state variables of the solution state vector x̂x. Comparison of the values in Sx and Se, re-

Fig. 11.8. Estimated AOD error over the Dakar area for theMarch 9, 2005 (left) andMarch 11, 2005
(right).
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spectively the prior and posterior covariance matrices, expresses the knowledge gain from
the measurement system and its associated uncertainties. Examples of error covariance
matrices Se are given in Section 6. These estimated errors should be interpreted under
the assumption that the forward model is actually representing the observed medium,
i.e., reasonably plane-parallel in nature, and that the observed aerosols are consistent
with the aerosol classes. Fig. 11.8 shows an example of the estimated AOD error derived
from Eq. (20) over the Dakar region for a clear day (March 9, 2005) and a day with heavy
aerosol load (March 11, 2005). On March 9, 2005, the estimated AOD error are larger over
land than sea surfaces. It is not possible to drawn a similar conclusion for March 11, 2005,
as retrievals over sea surface are not reliable according to results shown on Fig. 11.7.

5.8 Aerosol class selection

For each processed SEVIRI pixel, the solution x̂x is calculated independently for each pre-
defined aerosol class. As an aerosol class is not expected to change erratically from one
pixel to another, a spatial analysis is performed to determine the most probable aerosol
class within a given region. For each pixel ðpx; pyÞ, a restricted geographical area of
np � np pixels centered in ðpx; pyÞ is defined. The mean probability �PPx̂x over this
np � np area is estimated for each aerosol class. The class with the highest mean prob-
ability �PPx̂x is taken as the best one for the pixel ðpx; pyÞ.

This computation is performed only for the aerosol class with a successful retrieval in
ðpx; pyÞ, i.e., with a probability higher than a pre-defined minimum threshold value. When
two aerosol classes have the same mean probability �PPx̂x, the one with the smallest relative
error rŝs=ŝs is chosen.

5.9 A priori information

As already mentioned, one of the major issues in retrieving the aerosol load over land
surfaces is to separate the aerosol contribution from the surface one. In order to improve
the retrieval of the aerosol load, it is therefore essential to characterize the surface as ac-
curately as possible. To do so, a mechanism has been implemented to update the prior
knowledge xb on the surface reflectance is implemented. This prior update procedure relies
on the assumption that the surface BRF temporal stability is stronger than the aerosol load
one. Hence, a time-series analysis can be performed on the previous day retrievals, seven in
the present case, to provide a priori information on the expected amplitude and shape of
the surface BRF. The estimated retrieval error can thus subsequently be used to estimate
the a priori information error on the state of the surface.

The most obvious way to perform this temporal analysis and to select the ‘best day’ db is
to take the one with the highest probability. However, as clouds tend to increase the signal
received at the satellite level, the selection of the solution with the smallest BHR� value
in the VIS06 band will tend to minimize the impact of the clouds. BHR� is the surface
BiHemispherical Reflectance corresponding to purely isotropic incident flux. Hence, the
most representative solution x̂xðdÞ within a compositing period ½1 . . . na� is selected accord-
ing to the following mechanism:
1. Solutions with too large BHR� relative errors or a probabilities Px̂x smaller than 0.1 are

disregarded from the time series. The purpose of this test is to discard unlikely solutions
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with large uncertainties. An error is too large when the corresponding relative error
exceeds a threshold value, in at least one of the processed spectral bands.

2. Within the remaining solutions of the time-series, solutions with too high BHR� values
in the VIS06 band are disregarded. This test aims at removing solutions that might still
be contaminated by clouds. It also privileges snow free solution. To identify these too
high values, the weighted mean �BBHR� and standard deviations

rdð �BBHR�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na
Pna

d¼1 ĵjðdÞ BHR�ðdÞ � �BBHR�ð Þ2

ðna � 1ÞPna
d¼1 ĵjðdÞ

s
ð21Þ

values are computed in the VIS06 band, where the weight ĵjðdÞ is equal to 1=r2
BHR� ðdÞ. A

BHR�ðdÞ is rejected from the time-series when

BHR�ðdÞ > �BBHR� þ rdð �BBHR�Þ: ð22Þ

3. The selected solution corresponding to day db is the one which fullfils the following
criteria within the remaining solutions of the time-series:
(a) the highest probability;
(b) the largest number of degrees of freedom;
(c) the smallest AOD value;
(d) the smallest AOD error.

In case there is more than one valid solution in the time-series, the error of most repre-
sentative solution x̂xðdbÞ is recalculated with

rx̂xðdbÞ ¼ MAX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXna
d¼1

ĵjðdÞðx̂xðdÞ � x̂xÞ2

s
; rx̂xðdbÞ

( )
ð23Þ

where the sum is performed only on all valid solutions. It is expected that the parameter
error decreases as the number of days increases. In case only one likely solution has been
found during the temporal compositing period, the error is taken from Eq. (20). This tem-
poral analysis only starts after the processing of at least na days. Hence, during this ‘trai-
ning’ period, a constant value is assigned to xb with a very large error rx̂x.

6. Interpretation of the error and autocorrelation matrices

The a posteriori error covariance matrix Se provides useful information on the correlation
between the state variables. In order to interpret the non-diagonal terms of Se a re-scaling is
performed, leading to the autocorrelation matrix R whose components write

Rij ¼ Se;ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Se;ii � Se;jj

p ð24Þ

such that �1 � Rij � 1. Three different cases could be differentiated for the interpretation
of the terms of Rij:
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1. When a term Rij ! 0, uncertainties on the state variables i and j are uncorrelated. In
other words, a retrieval error on the state variable i does not affect the retrieval accuracy
of variable j.

2. When Rij ! 1, then uncertainties on the state variables i and j are correlated, i.e., any
error on i affects j, leading to an overestimation or underestimation of both variables.

3. When Rij ! �1 then uncertainties on the state variables i and j are anti-orrelated. Any
overestimation of i translates into an underestimation of j.

In order to illustrate the interpretation of Se and R, the algorithm was applied with SEVIRI
data acquired over AERONET [9] stations for a time period extending from February 15,
2005, to April 15, 2005. 56 AERONET stations with data available during that period over
the Meteosat Second Generation (MSG) disk are shown in Fig. 11.9. Unfortunately, these
data are not uniformly distributed within the disk but are essentially concentrated over
Europe.

Fig. 11.9. Location of the AERONET stations used in this study. The * symbol indicates the restricted list
of stations for which the time-series analysis was performed shown on Fig. 11.16.
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The effect of the a priori information x on Se is assessed by comparing matrices derived
for each station with and without update of the prior information. The efficiency of the a
priori information can be measured by the decrease in the correlation between the AOD
s550 and the surface parameters. This analysis essentially reveals four different types of
impact:
1. Only the correlations between the amplitude (q) of the surface contribution and the

AOD s550 are reduced.
2. Only the correlations between the anisotropy surface (H) and the AOD s550 are reduced.
3. Both correlations between s550 and the amplitude (q), and s550 and the surface aniso-

tropy (H) are reduced.
4. The update of the prior has little impact on the retrieval. Fig. 11.10 represents the R

matrices respectively without (top panel) and with (bottom panel) update of prior in-
formation on the surface. Note that all these matrices are symmetric and should be
interpreted the following way: the first column indicates how the AOD parameter
is correlated with the surface parameters in each SEVIRI band. The diagonal blocks
show the correlation between the surface parameters within a SEVIRI band. The non-
diagonal blocks provides information on the spectral correlation of the surface para-
meters between the SEVIRI bands.
The comparison between the two panels of Fig 11.10 illustrates thus the impact of up-

dating the surface a priori knowledge on the autocorrelation matrix. These figures cor-
respond to the case where both the crossed terms s/amplitude (q), and s- surface anisotropy
(H) are reduced. The presented matrices give an averaged value of the results obtained for
all stations where such a behavior was observed. In all cases, only retrievals with a prob-
ability PðxÞ larger than 0.9 are considered for analysis.

When the surface prior information is updated with the results of the previous days
(Fig. 11.10 bottom panel), it is clear that the overall correlations are decreased. The cor-
relation between the errors on s and the surface variables is reduced by at least 37 % (with a
maximum of 94 % for the crossed terms s/k) in the VIS08 and NIR16 channels. In the
VIS06 channel, the decrease ranges between 4 % and 31 %. In general, the lowest gain
is observed for the crossed terms s/q, or s/h, showing that the coupling between the aerosol
contribution and the surface contribution to the TOA BRF is made through both the amp-
litude of the surface contribution and the anisotropic properties of the surface. The anti-
correlation between s and the surface parameters q and H is an evidence of the compen-
sation mechanism that radiatively couples the surface contribution to the aerosol one. As
natural surface reflectance tends to exhibit predominantly back scattering and aerosol for-
ward scattering, any under (over)-estimation H translates into an over (under)-estimation
of the aerosol contribution. It demonstrates the importance of the angular sampling of the
observation vector yo to characterize both the surface anisotropy and aerosol phase function.

For the diagonal blocks, the gain obtained by improving the a priori knowledge ranges
between 10 % and 46 %, with the lowest values for the crossed terms q/h. Within each
SEVIRI band, the q0, k and H parameters are strongly coupled, which indicates the diffi-
culty to discriminate the individual contribution of each of these parameters in determining
the shape and amplitude of the surface BRF. This behavior supports the concept of intro-
ducing a spectral invariance of the BRF shape as proposed by [1]. In the OE framework,
this a priori information is equivalent to having the non-diagonal terms corresponding to
the couple of parameters ðk; HÞ in the various SEVIRI bands different from zero. The
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Fig. 11.10. Top panel: Example of averaged autocorrelation matrices R without update of the prior in-
formation. q is the amplitude of the surface contribution. k is the modified Minnaert contribution. h is the
Henyey–Greenstein contribution (surface anisotropy). The indices 1, 2, and 3 stand respectively for the
channels VIS06, VIS08, and NIR16. Bottom panel: The same but with updated prior information.
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determination of the strength of this correlation is clearly outside the scope of this chapter.
These terms are thus kept equal to zero for the time being.

The non-diagonal blocks provides information on the spectral correlation between the
SEVIRI bands. As no a priori information is imposed as concerns the surface spectral
shape, the only spectral correlation between the surface parameters results from the pre-
defined aerosol classes, where the spectral shape of the single scattering albedo and asym-
metry parameter are imposed as shown on Fig. 11.2. This translates into a positive corre-
lation between the q0 values derived in the SEVIRI bands. This conclusion also holds for
the H parameter. The q0 and H parameters are also coupled between bands, e.g., q0 in the
VIS06 band with the H in the VIS08 band. The k parameters do not exhibit inter-band
correlation. There is, however, a weak anti-correlation between k derived in the VIS06
band and q0 and H derived in the VIS08 band. For some extra-diagonal elements of
R, some negative gains have been locally observed (i.e., an increasing correlation despite
an improved a priori information), but they correspond to negligible absolute values in any
case when compared with the order of most of the matrix values. This example illustrates
the necessity to determine correctly both the surface anisotropy and the aerosol phase
function for the AOD retrieval over land surfaces.

Fig. 11.11 presents the corresponding relative errors, respectively, for the simulations
without update of the a priori information, and the simulations with improved a priori
knowledge. The significant decrease of the error terms when the a priori information
on the surface is improved is clear, in particular concerning the estimation of the H para-
meters.

7. Temporal analysis of prior information update

Section 6 illustrates the role of the surface a priori information mechanism described in
Section 5.10 in terms of its impact on the error covariance and autocorrelation matrices.
Both matrices show an overall positive impact. The performance of this mechanism is
examined now against AOD ground measurements. A series of experiments are defined
to evaluate the algorithm performance, comparing the retrieved aerosol optical depths with
those from the AERONET dataset. The reference experiment is made without updating the
prior information on the surface. In this case, the default prior information is fixed once
and for all, and is given with a very large error covariance Sx so that xb has no significant
impact on JðxÞ. Sensitivity analysis is next performed using, from one day to another,
updated prior information on the surface, as described in Section 5.10. The results of these
retrievals are compared with the reference cases, that is to say the cases without prior
update of the surface reflectance.

As explained in Section 5.10, the surface prior update mechanism consists in updating
the surface components of xb and Sx with reliable retrieved values from previous days. The
impact of this mechanism on the retrieved solution x̂x is first examined for a time-series
derived over the Dakar AERONET station (Fig. 11.12). As can be seen on the bottom panel
of this figure, a major dust event has been recorded by the AERONET station on March 11,
2005, with a mean daily ground estimated AOD values as large as 1.18 at 0.55 lm.

When no a priori is used on the surface reflectance (dashed line),high BHR� values are
retrieved in all channels by the LDA algorithm. This situation illustrates the difficulty to
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Fig. 11.11. Top panel: Example of averaged relative error matrices without update of the prior informa-
tion. Values range from 0 % (in green) up to a predefined threshold (here 100 %) (in red). q is the amp-
litude of the surface contribution. k is the modified Minnaert contribution. h is the Henyey–Greenstein
contribution (surface anisotropy). The indices 1, 2, and 3 stand respectively for the channels VIS06,
VIS08, and NIR16. Bottom panel: The same but with updated prior information.
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discriminate atmospheric from surface contribution for large AOD values. This event is
further illustrated on Figs 11.13 to 11.15. As can be seen on these figures, the retrieval of
all surface parameters q0, k and H are affected by the March, 11 event which translates by a
decrease of k and an increase of q0 and H. In this specific event, the use of the prior in-
formation has a major impact on the AOD error estimation. The retrieved AOD on March
11, 2005 is equal to 1.0, with or without providing surface prior information (see Fig. 11.7).
However, as already seen in Section 6, providing surface prior information has a major
impact on the estimated AOD error which decreases from 0.693 without prior down to
0.188 with prior surface information.

Fig. 11.12. Impact of updating the prior information on the surface BRF and the AOD over the Dakar
AERONET station. Dashed line ( symbol): no update of the prior information. Plain line ( symbol): update
of the prior information. Vertical bars in the lower panel indicate the daily variability of AERONET re-
trieved AOD.
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When a priori information is provided on the surface reflectance, surface parameter
time-series, shown with the solid line on Figs 11.13 to 11.15 are more stable than without
update (dashed line). Consequently, the retrieved surface BHR� remains closer to the mean
value which corresponds to a decrease of the BHR� standard deviation (Table 11.1). This is
essentially true in the VIS06 and VIS08 bands. Additionally, the root-mean-square error
(RMSE) between AERONET and LDA AOD retrieval decreases from 0.27 (without a
priori update) to 0.21 (with a priori update) during that period. These results clearly il-
lustrate the stabilization of the surface parameters and improvement of AOD retrieval re-
sulting from the a priori information.

Fig. 11.13. Impact of updating the prior surface information on retrieved surface parameters over the
Dakar AERONET station. Dashed line ( symbol): no update of the prior information. Plain line ( symbol):
update of the prior surface information. Results are shown for the SEVIRI VIS06 band. The first panel is
for k, the second for H, the third for q0 and the last one for the BHR�.
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Fig. 11.14. Same as Fig. 11.13 but for the VIS08 band.

Table 11.1. Impact of updating the surface prior information on the surface BHR� and the AOD over the
Dakar AERONET station. The BHR� columns represent the weight mean retrieved value during the pro-
cessed period. The r columns represent the weighted standard deviation estimated with Eq. 21. The Bias
column is the bias between AERONET and LDA AOD values at 0.55 lm. The RMSE column represents
the root-mean-square error between LDA and AERONET AOD retrieval

VIS06 VIS08 NIR16 AOD

BHR� r BHR� r BHR� r Bias RMSE

No prior 0.156 0.021 0.311 0.033 0.453 0.037 � 0.085 0.272

Prior 0.164 0.020 0.304 0.022 0.440 0.030 0.007 0.209
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When observed daily AOD variations are large, as is the case on March 10 and 12, the
LDA algorithm performs poorly. These situations violate the algorithm assumptions and
lead to unexpected behavior. On March 10ß, the retrieved BHR� value in the NIR16 is too
large, whereas large BHR� value is found in the VIS06 band on March 12.

This result indicates that the performance of the algorithm should globally increase in
time, as the accuracy of the surface characterization increases, leading thereby to a better
separation between the surface and the atmospheric contributions. This analysis is limited
to stations that have a complete record during the 2-month time interval, eliminating sta-
tions for which too scarce observations are available due to the presence of clouds or
other limiting factors. These stations are indicated with the * symbol on Fig. 11.9.
When no update of the a priori takes place, the overall RMSE between the retrieved

Fig. 11.15. Same as Fig. 11.13 but for the NIR16 band.
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AODs and AERONET (shown with the solid line on Fig. 11.16) does not show any parti-
cular trend during the period of interest, despite some sharp variations from one day to
another. These variations are essentially due to the limited number of samples used to
derive these statistics. Conversely, when a priori information on the surface is provided,
the RMSE decreases in time (dashed line). This result shows the positive impact of the
‘memory’ mechanism put in place for the surface reflectance. The RMSE exhibits a slow
decrease in time, with an average reduction of about 35 % at the end of the processed
period.

8. Quantitative effects of prior updating

The overall impact of the prior update mechanism is analysed now considering all AERO-
NET observations available during the investigation period (Section 6). As can be seen on
Fig. 11.17, the improvement of the surface BRF a priori information tends to reduce the
RMSE between the AERONET and our retrieval from 0.30 to 0.28. However, our retrieval
tends to underestimate AERONET values. Part of this difference might be explained by the
difference in the measurement spatial resolution.

There is a major difference as function of the type of aerosol. Fewer large particles are
found when a priori information on the surface is provided. This mechanism has, however,
no positive impact in this case (Fig. 11.18) and the retrieved values are totally underes-
timated. Conversely, retrievals are much better when LDA identify the small non-absorb-
ing aerosol as the best class (Fig. 11.19) where the RMSE decreases from 0.32 to 0.27.
These results demonstrate the importance of the aerosol class definition in the accuracy of
the retrieval. Large particles defined in the aerosol model are assumed spherical, which is
clearly unappropriated in the current situation. It is necessary to consider correctly the
shape of large aerosol particles when estimating the phase function (e.g., [39, 2]).

Fig. 11.16. RMSE time-series analysis between retrieved aerosol optical depth from SEVIRI observa-
tions and AERONET data shown with a * symbol in Fig. 11.9. The solid line ( symbol) represents
the reference experiment, i.e., without update of the a priori information on surface reflectance. The
dashed line (& symbol) represents the RMSE with update of the a priori information.
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9. Discussion and conclusion

An original method has been proposed to retrieve simultaneously aerosol load and surface
reflectance using the SEVIRI observations. The algorithm has proved to be capable of
separating the aerosol contribution from the surface one in the overall TOA observed sig-
nal. The method that has been put in place, based on Optimal Estimation, insures a rigorous
control of the system errors, and allows a quality check on the retrieved information. The a
priori information on surface reflectance is based on its temporal stability, an assumption
which is rigorously handled in the framework of the OE theory.

The analysis of the autocorrelation matrices has shown the strong coupling between
surface and aerosol contributions, and provides a detailed understanding of, the compen-
sation mechanism that occurs between the various state variables. This demonstrates the
necessity of retrieving simultaneously the surface reflectance and the aerosol optical
depth, and the importance of the angular sampling in this joint retrieval.

Comparisons with AERONET time-series over a period of 2 months, and at 56 locations
around the Earth disk covered by the SEVIRI instrument have demonstrated the robustness

Fig. 11.17. AERONET versus LDA AOD for 0.1 bins using all stations shown in Fig. 11.9 from February
15, 2005 to April 15, 2005. The � symbol represents the reference experiment. The & symbol represents
the experiment with a priori update for all aerosol classes.
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of the algorithm. They have also shown the stabilization effect on the surface properties of
improving the a priori knowledge on the surface state variables, and the resulting benefit
on the AOD retrieved values when compared to AERONET. The retrieval error has shown
to decrease significantly when the a priori information on the surface variables is im-
proved and better constrained.

The benefits in time of updating the prior can be summarized by the decreasing trend of
the RMSE. These comparisons have also shown the limitations of the aerosol class defini-
tions currently used in LDA, in particular in the case of large particles. The use of specific
phase functions for non-spherical aerosols will be part of future work on the LDA algo-
rithm.

More generally, the use of aerosol classes does not fit very well in the context of OE
theory. Indeed, an aerosol class represents an ensemble of stable variables which also re-
presents some a priori knowledge on the observed medium. This a priori information is
however not handled correctly, as no error covariance matrix is associated with it. It is clear
that the this limitation represents an area which will require improvement before the pro-
posed method becomes fully mature.

Fig. 11.18. As in Fig. 11.17 but considering only AOD for which LDA retrieved the large particle class.
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12 Remote sensing data combinations:
superior global maps for aerosol optical depth

Stefan Kinne

1. Introduction

Aerosol remote sensing from space is predominantly based on sensor data of reflected
sunlight in solar spectral regions, where the attenuation by trace-gases can be neglected
or easily accounted for. But even at these spectral regions retrievals of aerosol properties
are by no means a simple task, as explained in the previous chapters of this book. This is
mostly due to the following major reasons:
1. Cloud contamination. The solar light reflection attributed to aerosol is small compared

to that of clouds and identifying cloud-free and cloud-influence-free regions is a chal-
lenge, especially with sensor limitations to spatial resolution. Also at low sun-eleva-
tions retrievals near clouds are complicated by cloud shadow scene darkening or side-
scatter scene brightening.

2. Surface contributions. The solar reflection attributed to aerosol can be smaller than
surface signals. Thus, surface albedo (also as function of the sun-elevation) needs
to be known to high accuracy. To minimize the surface albedo problem innovative
methods are applied. They rely on spectral dependencies (Kaufman et al., 1997), mul-
ti-angular views (Martonchik et al., 1998), polarization (Deuzé et al., 1999) or retrievals
in the UV (Torres et al., 2002). Higher and variable surface albedos still remain the
major reason that most aerosol satellite products have no or only limited coverage
over land.

3. A-priori assumptions. The relationship that associates changes of solar reflection to
aerosol amount in cloud-free conditions is modulated by aerosol composition and
even atmospheric environment. Even when combining different sensor data sources,
any potential solution is under-determined in the context of dependencies to aerosol
amount, particle size, shape and composition. Thus, a-priori assumptions are required.
Some of these assumptions, usually to absorption, size and shape, have been locally
and/or seasonally validated, but their regional (or even global) and annual application in
the context of aerosol temporal and spatial variability is rarely justifiable.
The availability of remote sensing data with respect to aerosol properties is uneven.

Table 12.1 illustrates that the most commonly retrieved aerosol property is the (mid-vis-
ible) aerosol optical depth (AOD, representing aerosol amount) over oceans. The different
approaches listed in Table 12.1 can provide – next to AOD – important constraints on other
aerosol and environmental properties. Thus, among the different available AOD maps
from satellite remote sensing quality differences can be expected. However, since
more capable sensors are not always matched with better retrieval assumptions, there
is ambiguity about which satellite AOD products to believe. Thus, there is a strong



community interest in comparing and assessing available AOD datasets and in provid-
ing needed recommendations for AOD measurement use (e.g., for model input or evalua-
tion).

2. Satellite AOD datasets

The use of different and often complementary techniques is desirable, but at the same time
complicates data comparisons, as different sensors, retrievals methods and assumptions
are applied. To minimize additional complications by differences in data-sampling,

Table 12.1. Aerosol properties, availability and associated techniques in satellite remote sensing

Property Ocean Land

Availability Technique Availability Technique

amount good solar reflection limited multi-directional

absorption poor glint poor UV-spectral

size limited multi-spectral poor polarization

shape poor polarization poor multi-directional

altitude poor multi-directional limited lidar

Table 12.2. Multi-annual available AOD datasets from remote sensing, temporal coverage, literature re-
ferences, major data limitations and recognized (pos (+) or neg (�)) biases

Sensor Year References Limitation Bias

Aer AERONET 96–06 Holben et al., 1998 local, land only

Mc4 MODIS, T + A 00–05 Tanré et al., 1997,
Kaufman et al., 1997

no deserts + over land

Mc5 MODIS, T + A 00–05 Tanré et al., 1997,
Remer et al., 2005

no deserts

MIS MISR 00–05 Kahn et al., 1998,
Martonchik et al., 1998
Diner et al., 2005

6-day repeat + over ocean

AVn AVHRR, NOAA 81–90 Stowe et al., 1997 no land, a priori

AVg AVHRR, GACP 84–00 Geogdzhyev et al., 2002 no land + cloud
contamination

TOo TOMS 79–01 Torres et al., 2002 50 km pixel, old rs ++ cloud
contamination

TOn TOMS 79–01 Torres (private comm.) 50 km pixel �
POL POLDER 97, 03 Deuzé et al., 1999,

Deuzé et al., 2001
Small size detection
only over land

+ at high
elevation

* Aer: quality AOD reference data are provided by ground based monitoring networks. Providers include passive remote
sensing by sunphotometry, as AERONET http://aeronet.gsfc.nasa.gov/, SKYNET http://atmos.cr.chiba-u.ac.jp/ or GAW
http://wdca.jrc.it/ and active remote sensing by lidar as http://www.earlinet.org/ for active remote sensing by lidar.
* AVn: AOD estimates benefit from cancellation of errors as impacts of overestimates to size are often partially offset
by underestimates to aerosol absorption
* TOn/TOo: the newer processing assumes stronger surface reflectance contributions. This is the major cause for the
significantly reduced AOD values compared to the older processing AOD estimates.
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only monthly mean properties of multi-annual AOD datasets are considered. The dataset
comparison includes suggestions by MODIS collections 5 and 4 (2000–2005), MISR
(2000–2005), TOMS (1979–2001) new and old processing, POLDER (1987, 2002),
and AVHRR NOAA (1981–1990) and AVHRR GACP (1984–2001). Time periods
with enhanced stratospheric aerosol loading (e.g., after the El Chichon 1982–1985 and
after the Mt. Pinatubo 1991–1994 volcanic eruptions) are excluded from these averages.
Annual global AOD maps of these eight remote sensing data products are compared to data
from ground-based monitoring in Fig. 12.1. Background information is provided in Ta-
ble 12.2.

Despite some similarity in major AOD annual patterns, differences among the available
AOD data at a particular time and location can be large (Liu and Mishchenko, 2008).
Already for annual AOD retrievals, locally the range among different AOD retrievals

Fig. 12.1. Annual global mid-visible AOD maps from remote sensing (at 0.55 lm wavelength). Sunphot-
ometer data (aer – enlarged for visual purposes) of ground-based monitoring networks by AERONET,
SKYNET and GAW are compared to satellite sensor retrievals of MISR (MIS), of MODIS collections 5
(Mc5) and 4 (Mc4) – (of both Terra and Aqua platforms), of AVHRR by NOAA (AVn) and by GACP
(AVg) of TOMS older (TOo) and newer (TOn) data processing and of POLDER (POL). Numbers at labels
display annual global averages of locations with (nonzero) data.
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GAW (2003–2004) ground-based monitoring networks. The upper set of panels shows the actual data-

for better visibility. Seasonal global averages of non-zero data are listed below the labels.

Fig. 12.2. Seasonal sunphotometer AOD maps of AERONET (1996–2006), SKYNET (2003–2004) and

points for all networks, while the lower set of panels displays local site statistics spatially stretched



can often exceed the AOD average. In need for a reference, local statistics from ground-
based monitoring is applied. Ground-based monitoring of direct solar attenuation (a trans-
mission) by sunphotometry has the advantage that AOD can be directly measured without
a need to prescribe aerosol composition and (unless aerosols are large) aerosol size. In
addition, the background is well defined as its contributions are negligible.

3. AOD data reference

Monthly multi-annual data from ground-based sunphotometry are selected as reference for
an assessment and ranking of the different satellite AOD regional maps. The sunphot-
ometer monthly statistics is based primarily on 1996–2006 AERONET data (Holben et
al., 1998) further enhanced by 2003–2004 data of SKYNET (Aoki et al., 2006) and
GAW. Seasonal AOD maps from sunphotometry are displayed in Fig. 12.2.

To simplify the assessments, individual station statistics of sunphotometer data were
combined onto the common 1� � 1� lat/lon grid of the satellite remote sensing datasets.
This gridding procedure considered known differences in quality and regional representa-
tion of the local data (T. Eck, personal communication). With the overall goal to combine
identified regional retrievals strengths for a superior satellite AOD composite, assessments
were conducted on a regional basis.

4. Regional stratification

It is expected that a dataset that combines all regionally best-performing satellite retrievals
will be superior in coverage and accuracy over any individual satellite retrieval. For the
necessary regional stratification six oceanic and six continental zonal bands were chosen.
The zonal bands separate Arctic, northern mid-latitudes, dust-belt, biomass belt, southern
oceans and Antarctica, as illustrated in Fig. 12.3. Fig. 12.3 also compares zonal annual

Fig. 12.3. Regional choices and a comparison of mid-visible AOD of all remote sensing annual maps in
Fig.12.1. Averages of zonal bands over oceans are to the left and those over land are to the right. Regional
averages follow the scale in the lower right and are only displayed if satellite data had at least 25 % or
gridded sunphotometer data (AERONET) had at least 2.5 % coverage.

4. Regional stratification 365



averages of the remote sensing datasets, already introduced in Fig. 12.1 and Table 12.2,
separately over oceanic (left comparisons) and continental regions (right comparisons).

In Fig. 12.3 regional AOD averages are displayed only if spatial coverage in that region
exceeded 25 % for satellite data or 2.5 % for sunphotometer (1 � 1 gridded) data. In light
of the different spatial sub-samples (see Fig. 12.1) for satellite data over land and at high
latitudes and certainly for sunphotometer statistics due to their local nature, these com-
parisons are more general in nature. More meaningful assessments of satellite AOD data
(to the sunphotometry reference) requires that all satellite data are sub-sampled in any
region only at grid locations where sunphotometer data exist.

5. Regional comparisons

Comparisons of matching data are presented in Fig. 12.4 for regions where nonzero
(gridded 1� � 1� lat/lon) sunphotometer data (AERONET) cover at least 5 % of that re-
gion. This limits satellite AOD dataset assessments to low and mid-latitudes over land and
only to northern hemispheric low- and mid-latitudes over oceans.

This more visible evaluation indicates that in reference to ground-based monitoring by
sunphotometry almost all satellite retrievals overestimate AOD over oceans. Tendencies
over land are more diverse and also a function of the dominant aerosol type (e.g., industrial

Fig. 12.4. Regional comparison of subsets of mid-visible AOD remote sensing data of Fig. 12.1. All da-
tasets were sub-sampled only at grid-points with nonzero sunphotometer data and are only displayed, if the
regional coverage of sunphotometer nonzero gridded data exceeded 5 % in that region. Averages of zonal
bands over oceans are to the left and those over land to the right.
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pollution, desert dust or biomass burning). In comparison to sunphotometry, there is no
single best retrieval for all regions. For the determination of a region’s superior satellite
AOD retrieval a more objective rank scoring scheme was applied to the satellite-retrieval
versus sunphotometry data pairs. The overall idea is to rank satellite datasets as they com-
pare locally to AERONET sunphotometer data and then use the results to create a merged
dataset from the highest scoring satellite retrievals.

6. Scoring concept

In order to score a data-set performance with respect to a quality reference, aspects of bias,
spatial and seasonal variability should be addressed. Such scoring should start on small
temporal and spatial scales for performance analysis detail. Still, in order to get a better
overview, there is also the need to combine sub-scores into summarizing overall scores.
Thus a total score ST is defined (ST ¼ signðEBÞ � ½1 � jEBj� � ½1 � EV� � ½1 � ES�Þ with
‘0’ for poor and ‘1’ for perfect. This total score ST combines error scores of bias (EB),
spatial variability (EV) and seasonality (ES). Hereby, the sign of ST represents the direction
of the average bias with respect to the reference data. Error-scores (EB, EV and ES) are
defined for a range from 0 for ‘perfect’ and 1 for ‘poor’. All error-scores are based on ranks
(not values) to minimize the impact of data outliers. For the bias score EB involving N data-
pairs from a dataset D and a reference dataset R, all 2 � N elements are placed in one
single array C and ranked by value (rank ¼ 1 for the lowest value, rank ¼ 2 � N for
the largest value). Then the ranks of C associated with D and R are summed and compared.
If the two sums of rank-values for D (DSUM) and R (RSUM) differ, then a bias and also its
sign are identified by EB:

EB ¼ w� ½ðDSUM � RSUMÞ=ðDSUM þ RSUMÞ�;
with w ¼ ½RANGEDþRANGE R�=½MEDIANDþMEDIAN R�:

The weight w is applied to avoid an overemphasis of an error in the overall score, in case
most elements are similar in magnitude (note than the RANGE in the weight formula re-
presents the difference between the 90th and 10th percentile of the cumulative distribution
function). The same weight is also applied for the (regional) variability score EV and the
(temporal) seasonality score ES:

EV ¼ w� ½1 � RC�=2 ES ¼ w� ½1 � RC�=2;

with w ¼ ½RANGEDþRANGE R�=½MEDIANDþMEDIAN R�:

EV examines the spatial distribution at a given time-interval, whereas ES examines tem-
poral development of the median value during an annual cycle. Both variability scores are
based on the (Spearman) rank correlation coefficient RC , which ranges from 1 for ‘cor-
related’ to � 1 for ‘anti-correlated’. Note that a lack of correlation ½RC ¼ 0� still leads to a
positive score for EV and ES.

Scores of any dataset D with respect to reference dataset R are first determined on a
monthly and regional basis – scoring regional variability and bias. Then these regional
variability and bias scores are annually averaged and an additional seasonality score is
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added, which is based on monthly median data pairs for D and R. Finally all three regional
annual scores are combined according to their surface area fraction into annual global
scores.

7. Global scores

Annual global scoresðSTÞ for remote sensing AOD data of Fig. 12.1 are presented in Ta-
ble 12.3 based on regional and monthly sub-scores to AERONET sunphotometer statistics.
Table 12.3 also provides contributing sub-scores for seasonality, bias and regional varia-
bility. In addition, scores for AERONET sky-radiance data, a subset of sunphotometry,
data, are presented. Note, however, that due to different regional samples and coverage,
the scores below do not represent a uniform test of satellite retrieval accuracy, which is
beyond the scope of the current chapter, but is subject of continuing work.

7.1 Sky versus sun data

The AERONET sky-photometer (radiance) data are a subset of the (AERONET) sunphot-
ometer (direct attenuation) data reference. Thus, better scores compared to satellite remote
sensing are expected. The overall ‘sky’ score of � 0.82 indicates by its negative sign that
sky-data are biased low compared to sun-data and its absolute value (0.82) that the match
of monthly statistics between sky- and sun-data is not perfect (1.0). Sub-scores of 0.94,
� 0.93 and 0.93 reveal that these deductions are almost evenly from differences in varia-
bility, seasonality and bias. As sky-data are a subset of the sun-data reference, this suggest
any total score larger than (absolute) 0.8 seems excellent.

The negative bias of the sky-data (with respect to sun-data) was expected, as its radiance
symmetry requirement seemed more clear-sky case conservative than the temporal varia-

Table 12.3. Global annual scores of remote sensing AOD datasets versus the AERONET sunphotometer
data reference (the higher the absolute value of the score, the better)

Rank Label Overall score
ST

Season
1 – ES

Bias
1 – EB

Variability
1 – EV

Dataset

1 sky � 0.82 0.94 � 0.93 0.93 AERONET-sky

2 AVn 0.69 0.92 0.90 0.83 AVHRR-NOAAa

3 Mc5 0.64 0.95 0.83 0.82 MODIS-coll.5

4 MIS 0.64 0.93 0.83 0.82 MISR-vers.22

5 AVg 0.61 0.93 0.82 0.79 AVHRR-GACPa

6 Mc4 0.59 0.94 0.78 0.81 MODIS-coll.4

7 POL 0.58 0.88 0.81 0.80 POLDER

8 TOn 0.48 0.89 0.73 0.74 TOMS, old

9 TOo � 0.47 0.84 � 0.81 0.68 TOMS, new
a Note: AVHRR scores are based on ocean data only. AVHRR-NOAA data have a slight advantage as they were calibrated
against the AERONET reference at selected sites. MISR data (with a narrow swath) and TOMS data (with a
50 km � 50 km footprint) have fewer overall samples. And MISR and TOMS scores also include more difficult retrievals
over bright desert surfaces, which are avoided in MODIS retrievals. Scores limited to either ocean or land regions are
given in Tables 12.4 and 12.5.
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bility method for the sun-data. However, on a regional monthly basis the sky-data bias is
often positive, especially for land regions in the northern hemisphere. In those instances
the largest (above the 90th percentile) AOD values are usually significantly larger. This
suggests that, against expectations, cloud-contamination is an issue for the sky-data.

7.2 Satellite versus sun data

The overall scores for the satellite AOD retrievals range from 0.6 (better) to 0.47 (poorer).
Almost all satellite remote sensing data display positive overall scores. Thus, if AERONET
sunphotometer AOD data are trusted, this indicates that (on average) almost all satellite
retrievals overestimate AOD. Sub-scores indicate that the largest discrepancies are usually
associated with spatial variability and bias. Regional and temporal variability are poorer
over land than over oceans when comparing scores in Tables 12.4 (ocean) and 12.3 (land).
Updated retrievals of the same sensor data (e.g., MODIS, MISR usually) show improved
overall scores. This indicates the untouched potential of sensor data and the need for con-
tinued retrieval improvements.

In order to create a satellite composite, the strongest performing retrievals on a regional
basis must be identified. Scores for all (except polar) regions are listed for the continental

Table 12.4. Ocean annual scores for remote sensing AOD data versus the AERONET sun data reference

Rank Label Overall score
ST

Season
1 – ES

Bias
1 – EB

Variability
1 – EV

Dataset

1 sky � 0.78 0.93 � 0.92 0.92 AERONET-sky

2 AVn 0.69 0.92 0.87 0.83 AVHRR-NOAA

3 Mc5 0.66 0.97 0.81 0.85 MODIS-coll.5

4 Mc4 0.64 0.95 0.80 0.85 MODIS-coll.4

5 AVg 0.61 0.93 0.81 0.81 AVHRR-GACP

6 MIS 0.61 0.92 0.79 0.84 MISR-vers.22

7 POL 0.60 0.91 0.80 0.83 POLDER

8 TOn � 0.54 0.87 � .86 0.72 TOMS, new

9 TOo 0.51 0.90 0.73 0.78 TOMS, old
a See footnote to Table 12.3.

Table 12.5. Land annual scores for remote sensing AOD data versus the AERONET sun data reference

Rank Label Overall score
ST

Season
1 – ES

Bias
1 – EB

Variability
1 – EV

Dataset

1 sky 0.90 0.98 0.97 0.96 AERONET-sky

2 MIS 0.70 0.96 0.92 0.80 MISR-vers.22

3 Mc5 0.58 0.90 0.87 0.74 MODIS-coll.5

4 POL 0.52 0.80 0.86 0.77 POLDER

5 Mc4 0.48 0.90 0.74 0.72 MODIS-coll.4

6 TOo 0.41 0.86 0.73 0.65 TOMS, old

7 TOn � 0.32 0.78 � 0.71 0.57 TOMS, new
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zonal latitude bands in Table 12.6 and for the oceanic zonal latitude bands in Table 12.7. As
a reference, also the scores of the model median AOD fields of global model simulations
by AeroCom (Kinne et al., 2006) are provided. When comparing scores, however, it should
be kept in mind that the sample volume differs among datasets. It is possible that poorer
sampling for MISR and TOMS contributed to their lower scores. Thus, unless the sampling
impact is better understood, scores should not be interpreted as retrieval error. Also the
scoring is only based on AERONET locations, where satellite data are available (e.g.,
MODIS does not provide data over bright land surfaces), which also explains differences
for the reference median (RMEDIAN), especially over land.

No individual satellite retrieval displays the highest score. Thus, a satellite composite
was created by combining the regionally highest scoring retrievals.

8. Satellite composite

Over continents the highest scores among satellite retrievals are achieved by MISR, espe-
cially for northern hemispheric urban pollution. MODIS (collection 5) is usually a close
second and even scores better than MISR over southern mid-latitude land regions. Over
oceans the AVHRR-NOAA retrieval yields the highest score except for northern hemi-
spheric higher latitudes, where MISR performs best. MODIS (collection 5) is always
the second best choice. (In fairness to more advanced recent retrievals over oceans
(e.g. MISR, MODIS) it should be admitted that the AVHRR-NOAA retrieval is tied to
sunphotometry for sensor calibration.) In order to create a satellite remote sensing com-
posite separate for the non-polar 4 ocean and 4 land regions the two best retrievals are
combined, such as giving the primary choice a 0.67 weight and the secondary choice
a 0.33 weight. Then the regional monthly AOD maps are globally combined. To reduce
the potential for abrupt changes when switching between different retrievals at zonal band
boundaries and land/ocean transitions, a 6_o latitudinal transition zone and smoothing
in coastal regions was permitted. The annual global AOD maps of the composite and
its three contributing retrievals are presented in Fig. 12.5.

Seasonal AOD maps of the composite are presented in Fig. 12.6. They illustrate that
AOD maxima due to biomass burning and dust have a strong seasonal character, which
gets lost in the presentation of annual global maps.

Although retrievals with the regionally highest scores with respect to sunphotometer
statistics are applied, none of these retrievals scores close to perfect. Thus, differences
to the reference data can be expected and are illustrated on a seasonal basis in Fig. 12.7.

The AOD satellite composite still displays strong differences to the reference from sun-
photometry. Higher AOD values in northern mid-latitudes during winter and spring sug-
gest snow contamination. Lower AOD values near fast-growing urban pollution areas and
dust outflow regions seem to suggest that some of the larger AOD events are missed due to
sampling limitations or removed in conservative cloud-screening algorithms. The same
reason may also be responsible for the most severe deviations as the timing of the tropical
biomass maxima occurs too early (in late summer) compared to the sunphotometer ref-
erence (early autumn). To reduce these deviations in a measurement-based AOD compo-
site, a modified version of the satellite composite has been developed, where the monthly
AOD fields of the composite are drawn to the AERONET data.
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Table 12.6. Oceanic regional annual scoring and sub-scoring of remote sensing AOD datasets with re-
spect to AERONET sunphotometer data. Scores of median fields by global modeling are added

ST 1-ES 1-EB 1-EV DMED RMED ERRREL BIASREL NH3058_Ocean

1 � 0.88 0.95 � 0.97 0.95 0.141 0.142 0.16 � 0.051 AERONET-sky

2 0.65 0.96 0.81 0.85 0.171 0.120 0.37 0.27 MISR-vers.22

3 0.64 0.89 0.81 0.87 0.179 0.120 0.37 0.27 MODIS-coll.5

4 0.62 0.91 0.84 0.81 0.161 0.120 0.36 0.21 POLDER

5 0.61 0.92 0.84 0.79 0.167 0.120 0.36 0.19 AVHRR-GACP

6 0.60 0.88 0.84 0.81 0.149 0.109 0.31 0.14 AVHRR-NOAA

7 0.60 0.92 0.75 0.87 0.209 0.120 0.45 0.40 MODIS-coll.4

8 0.43 0.92 0.69 0.68 0.271 0.129 0.62 0.55 TOMS, old

9 � 0.37 0.92 � 0.68 0.60 0.092 0.120 0.63 � 0.58 TOMS, new

m 0.67 0.97 0.83 0.83 0.182 0.133 0.37 0.27 median model

ST 1-ES 1-EB 1-EV DMED RMED ERRREL BIASREL NH1030_Ocean

1 � 0.83 0.91 � 0.94 0.97 0.107 0.131 0.15 � 0.062 AERONET-sky

2 0.78 0.95 0.94 0.87 0.109 0.103 0.26 � 0.013 AVHRR-NOAA

3 0.75 0.99 0.83 0.91 0.154 0.103 0.36 0.27 MODIS-coll.5

4 0.73 0.99 0.82 0.90 0.162 0.103 0.37 0.30 MODIS-coll.4

5 0.73 0.97 0.82 0.92 0.157 0.103 0.35 0.28 MISR-vers.22

6 0.70 0.96 0.83 0.88 0.153 0.103 0.39 0.28 POLDER

7 0.65 0.86 0.87 0.86 0.137 0.103 0.35 0.15 AVHRR-GACP

8 � 0.62 0.97 � 0.92 0.69 0.106 0.103 0.40 � 0.11 TOMS, new

9 0.57 0.91 0.75 0.85 0.208 0.103 0.61 0.53 TOMS, old

m � 0.78 0.93 � 0.96 0.88 0.117 0.114 0.28 � 0.016 median model

ST 1-ES 1-EB 1-EV DMED RMED ERRREL BIASREL EQ2210_Ocean

1 � 0.80 0.98 � 0.93 0.88 0.083 0.071 0.24 � 0.051 AVHRR-NOAA

2 � 0.77 0.95 � 0.88 0.92 0.061 0.070 0.21 � 0.14 AERONET-sky

3 0.72 0.98 0.82 0.89 0.112 0.071 0.29 0.24 MODIS-coll.5

4 0.72 0.95 0.85 0.89 0.104 0.071 0.26 0.20 MODIS-coll.4

5 0.69 0.98 0.83 0.85 0.124 0.071 0.37 0.26 AVHRR-GACP

6 0.67 0.96 0.79 0.89 0.124 0.071 0.37 0.33 MISR-vers.22

7 0.57 0.96 0.73 0.82 0.165 0.071 0.51 0.48 POLDER

8 0.56 0.85 0.89 0.74 0.117 0.071 0.39 0.13 TOMS, new

9 0.51 0.89 0.71 0.80 0.198 0.071 0.61 0.59 TOMS, old

m � 0.60 0.86 � 0.79 0.87 0.057 0.070 0.40 � 0.37 median model

ST 1-ES 1-EB 1-EV DMED RMED ERRREL BIASREL SH5822_Ocean

1 � 0.75 0.92 � 0.93 0.88 0.046 0.054 0.21 � 0.020 AERONET-sky

2 0.63 0.90 0.87 0.80 0.084 0.073 0.33 0.20 AVHRR-NOAA

3 0.59 0.97 0.78 0.76 0.119 0.073 0.57 0.51 MODIS-coll.5

4 0.56 0.96 0.75 0.78 0.130 0.073 0.66 0.63 AVHRR-GACP

5 0.56 0.83 0.83 0.81 0.084 0.073 0.35 0.24 POLDER

6 0.55 0.95 0.76 0.77 0.126 0.073 0.65 0.63 MODIS-coll.4

7 0.54 0.80 0.88 0.77 0.089 0.073 0.41 0.24 TOMS, new

8 0.52 0.90 0.76 0.76 0.204 0.068 0.98 0.98 TOMS, old

9 0.48 0.85 0.77 0.73 0.127 0.073 0.64 0.57 MISR-vers.22

m 0.49 0.88 0.86 0.65 0.086 0.071 0.45 0.25 median model
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Table 12.7. Land regional annual scoring and sub-scoring of remote sensing AOD datasets with respect to
AERONET sunphotometer data. Scores of median fields by global modeling are added.

ST 1-ES 1-EB 1-EV DMED RMED ERRREL BIASREL NH3058_Land

1 0.92 0.97 0.98 0.96 0.132 0.129 0.16 0.034 AERONET-sky

2 0.77 0.99 0.96 0.81 0.131 0.121 0.34 0.019 MISR-vers.22

3 0.51 0.87 0.84 0.70 0.171 0.121 0.46 0.24 MODIS-coll.5

4 0.51 0.80 0.85 0.75 0.155 0.140 0.45 0.14 POLDER

5 0.45 0.96 0.68 0.70 0.268 0.120 0.76 0.64 TOMS, old

6 0.42 0.91 0.66 0.69 0.255 0.122 0.67 0.63 MODIS-coll.4

7 � 0.29 0.86 � 0.65 0.52 0.054 0.121 0.92 � 0.82 TOMS, new

m 0.73 0.98 0.89 0.84 0.162 0.128 0.41 0.21 median model

ST 1-ES 1-EB 1-EV DMED RMED ERRREL BIASREL NH1030_Land

1 0.88 0.95 0.97 0.96 0.402 0.384 0.12 0.014 AERONET-sky

2 � 0.69 0.93 � 0.90 0.82 0.321 0.361 0.31 � 0.15 MISR-vers.22

3 � 0.66 0.93 � 0.89 0.80 0.321 0.366 0.35 � 0.15 MODIS-coll.5

4 0.64 0.96 0.90 0.74 0.458 0.383 0.38 0.16 MODIS-coll.4

5 � 0.51 0.75 � 0.86 0.80 0.296 0.301 0.40 � 0.16 POLDER

6 0.50 0.86 0.89 0.65 0.376 0.361 0.41 0.039 TOMS, old

7 � 0.47 0.93 � 0.74 0.69 0.242 0.366 0.67 � 0.60 TOMS, new

m � 0.62 0.93 � 0.89 0.75 0.332 0.374 0.36 � 0.18 median model

ST 1-ES 1-EB 1-EV DMED RMED ERRREL BIASREL EQ2210_Land

1 � 0.89 0.99 � 0.96 0.93 0.125 0.135 0.17 � 0.047 AERONET-sky

2 � 0.66 0.96 � 0.88 0.78 0.159 0.138 0.35 � 0.051 MISR-vers.22

3 � 0.65 0.96 � 0.89 0.77 0.156 0.140 0.40 � 0.049 MODIS-coll.5

4 0.64 0.92 0.89 0.78 0.141 0.110 0.38 0.19 POLDER

5 0.46 0.89 0.74 0.71 0.254 0.138 0.54 0.39 MODIS -coll.4

6 0.37 0.75 0.73 0.67 0.301 0.138 0.63 0.47 TOMS, old

7 � 0.25 0.51 � 0.79 0.63 0.081 0.138 0.75 � 0.54 TOMS, new

m � 0.51 0.89 � 0.78 0.74 0.098 0.137 0.51 � 0.31 median model

ST 1-ES 1-EB 1-EV DMED RMED ERRREL BIASREL SH5822_Land

1 0.93 0.98 0.97 0.98 0.076 0.079 0.13 0.034 AERONET-sky

2 0.64 0.91 0.95 0.74 0.073 0.068 0.47 � 0.020 MODIS-coll.5

3 0.62 0.89 0.87 0.80 0.095 0.068 0.40 0.17 MISR-vers.22

4 0.45 0.96 0.66 0.72 0.186 0.068 0.74 0.70 MODIS-coll.4

5 0.42 0.89 0.88 0.54 0.089 0.068 0.53 0.13 TOMS, new

6 0.35 0.84 0.64 0.66 0.181 0.068 0.82 0.76 TOMS, old

7 0.32 0.57 0.78 0.72 0.120 0.075 0.48 0.33 POLDER

m 0.48 0.78 0.88 0.71 0.072 0.079 0.45 0.17 median model
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Fig. 12.5. Comparison of the annual mid-visible AOD maps of the satellite composite (co) to contributing
multi-annual data of MISR (MIS), MODIS collection 5 (Mc5) and AVHRR-NOAA (AVn).

Fig. 12.6. Seasonal (mid-visible) AOD maps for the satellite composite.
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Fig. 12.7. Seasonal AOD differences between the satellite composite and (sparse and visually enlarged)
AERONET site statistics. Positive differences indicate overestimates and negative values indicate under-
estimates. Only AOD differences exceeding +/� 0.05 are displayed. Annual global averages for deviations
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9. Enhanced composite

Information of sunphotometer monthly statistics was added to the AOD satellite compo-
site. This merging of data gives priority to sunphotometer statistics when locally available.
First background ratio fields are defined by globally spreading available sunphotometer
to satellite composite ratios with weights that decay with distance. Then these ratios are
applied in spatial domains surrounding each surface site. The domain size was defined
by regional representation score attributed to each site (T. Eck and the AERONET staff,
personal communication). Global annual (mid-visible) AOD maps of this new enhanced
satellite composite in comparison to contributing fields of the original satellite composite
and of sunphotometry (AERONET) samples are presented in Fig. 12.8. For comparison
the annual AOD map from global modeling median is given as well.

The new enhanced AOD composite had modified the initial satellite composite mainly
over the western part of North America and over the tropical biomass regions of South
America. Seasonal maps of the (new) enhanced AOD composite are presented in Fig. 12.9.

The comparison of seasonal AOD maps between the new (Fig. 12.9) and the initial
(Fig. 12.6) satellite composites, demonstrates for the enhanced composite reduced
AOD values during continental winters of the northern mid-latitudes and increased
AOD values near tropical biomass-burning regions and urban pollution in Asia during
autumn. Remaining differences of the enhanced composite to the sunphotometer reference
are illustrated on a seasonal basis in Fig. 12.10.

Fig. 12.8. Annual mid-visible AOD maps of the sunphotometry enhanced satellite composite (cR) and its
contributing maps of the satellite composite (co) and AERONET (aer). For comparison the annual global
AOD map based on local monthly median values from global modeling is displayed (med) as well.
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The differences of the (new) enhanced composite and the AERONET reference
(Fig. 12.10) have been reduced compared to those of the initial composite (Fig. 12.7).
Some larger deviations near urban centers (e.g., Mexico City, East Asia) or biomass
sources (e.g., central South America) remain, as the local influence on surrounding regions
was apparently over-extended in the applied data-merging. With improved merging pro-
cedures a closer fit to AERONET (and smaller deviations) can be expected. As the (new)
enhanced composite displays smaller deviations from the reference overall, quantitative
scores should be significantly improved. And they do, as illustrated in Tables 12.8, 12.9
and 12.10 for global, oceanic and continental scores. The sub-scores demonstrate that the
biggest improvements are to the temporal and the spatial variability.

10. Global modeling

An alternative source for global AOD maps is the use of simulated distributions from glo-
bal modeling. For characteristic AOD maps from global modeling, a composite of monthly
local median values of simulations with twenty different models of AeroCom exercises
was chosen (Kinne et al., 2006). The scores of the model median dataset rank with
the best datasets from remote sensing and are comparable to those of the composite.

Median data of an ensemble reduce the impact of outliers by individual models. Thus,
relatively good scores can be expected which are at least superior to the ensemble average.
Nonetheless, there are apparent biases of this model median dataset compared to regional
and seasonal distributions suggested by remote sensing. Based on the regional (bias) scores

Fig. 12.9. Seasonal (mid-visible) AOD maps of the AERONET enhanced satellite composite.
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Fig. 12.10. Seasonal AOD differences between the AERONET enhanced satellite composite and (sparse
and visually enlarged) AERONET site statistics. Positive deviations show overestimates and negative va-
lues show underestimates. Only AOD differences exceeding +/� 0.05 are shown. Annual global averages
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in Tables 12.6 and 12.7, global modeling tends to overestimate AOD over both land and
ocean at northern mid-latitudes (outdated emission inventories?) and tends to underesti-
mate AOD over land regions with major dust and biomass-burning sources and over remote
oceanic regions of the southern hemisphere. These general modeling biases are illustrated
in differences to the (data-based) enhanced composite on a seasonal basis in Fig. 12.11.

The deviations are significant, as these are not individual events but seasonal averages.
There seems to be a general tendency in global modeling to overestimate contributions
from urban pollution and dust and to underestimate contributions from biomass burning.
Models also tend to underestimate aerosol amounts in remote regions with the lowest AOD
values. The permitted uncertainty of +/�0.05 in Fig.12.11, however, is too large to show
this low (but – in a relative sense – significant) bias.

11. Conclusion

When climatological aerosol data are needed, there is a temptation to adopt data from
global modeling. The advantage of global modeling is that the data are complete (e.g.,
no data gaps) and consistent (e.g., all aerosol properties). However, there should be aware-
ness that data, and in particular aerosol data, from global modeling are based on often
poorly constrained interactions and input data. More specifically, despite the ability to
distinguish between different aerosol types in advanced aerosol modules, the required ae-

Table 12.8. Global annual scoring of AOD data composites and median fields of global modeling

Rank Label Overall score
ST

Season
1 � ES

Bias
1 � EB

Variability
1 � EV

Dataset

1 CR 0.75 0.96 0.91 0.86 enhanced composite

2 Cx 0.68 0.94 0.88 0.83 composite

3 med � 0.59 0.88 � 0.85 0.78 median model

Table 12.9. Ocean annual scoring of AOD data composites and median fields of global modeling

Rank Label Overall score
ST

Season
1 � ES

Bias
1 � EB

Variability Dataset

1 CR 0.74 0.96 0.90 0.86 enhanced composite

2 Cx 0.68 0.94 0.86 0.85 composite

3 med � 0.60 0.89 � 0.85 0.79 median model

Table 12.10. Land annual scoring of AOD data composites and median fields of global modeling

Rank Label Overall score
ST

Season
1 � ES

Bias
1 � EB

Variability
1 � EV

Dataset

1 CR 0.77 0.97 0.93 0.85 enhanced composite

2 Cx 0.68 0.96 0.91 0.78 composite

3 med 0.57 0.88 0.86 0.76 median model
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rosol input data (e.g., emission source strength and location) and the aerosol process para-
meterizations (e.g., transport and removal) are highly uncertain. In fact, the resulting AOD
maps in the end are usually tuned towards available AOD data from observations. Thus, to
take advantage of the extra detail by global modeling (e.g., information on properties that
cannot be measured) there is a demand for quality constrains by measurement-based data.
In the case of aerosol, reliable global monthly maps for (mid-visible) AOD (and AOD
spectral dependence) would be extremely useful. Unfortunately, individual data sources
usually lack either spatial coverage (e.g., sunphotometry) or accuracy (e.g., satellite re-
mote sensing). Thus, methods need to be explored that combine the strength of individual
data sources in order to create a superior data product that can really help modeling. The
enhanced AOD composite developed in this contribution is far from perfect. But it demon-
strates that there are ways to more useful data-products. Thus, as an incentive to continue
on that path, Fig. 12.12 displays monthly global maps of the enhanced AOD composite
from remote sensing.
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Fig. 12.11. Seasonal AOD differences between the sunphotometry enhanced (satellite) composite and
median fields of global modeling. Positive differences suggest model underestimates, while negative de-
viations indicate model overestimates. Only AOD differences exceeding +/� 0.05 in absolute value are
displayed. Annual global averages for deviations are listed below the labels.
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Kaufman, Y., D. Tanré, L. Remer, E. Vermote, D. Chu and B. Holben, 1997: Operational remote sensing of
tropospheric aerosol over the land from EOS-MODIS, J. Geophys. Res., 102, 17051–17061.

Fig. 12.12. Monthly global maps for the mid-visible aerosol optical depth based on an AERONET en-
hanced satellite retrievals composite.

380 12 Remote sensing data combinations: superior global maps for aerosol optical depth



Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher,
M. Chin, F. Dentener, T. Diehl, H. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J.
Hendricks, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevåg, S. Kloster, D. Koch, J.E. Kristjansson,
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