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Foreword

It is hardly possible to find a single rheological law for all the soils. However
they have mechanical properties (elasticity, plasticity, creep, damage etc.) that
are met in some special sciences, and basic equations of these disciplines can
be applied to earth structures. This way is taken in this book. It represents
the results that can be used as a base for computations in many fields of the
Geomechanics in its wide sense. Deformation and fracture of many objects
include a row of important effects that must be taken into account. Some of
them can be considered in the rheological law that, however, must be simple
enough to solve the problems for real objects.

On the base of experiments and some theoretical investigations the con-
stitutive equations that take into account large strains, a non-linear unsteady
creep, an influence of a stress state type, an initial anisotropy and a damage
are introduced. The test results show that they can be used first of all to
finding ultimate state of structures – for a wide variety of monotonous load-
ings when effective strain does not diminish, and include some interrupted,
step-wise and even cycling changes of stresses. When the influence of time is
negligible the basic expressions become the constitutive equations of the plas-
ticity theory generalized here. At limit values of the exponent of a hardening
law the last ones give the Hooke’s and the Prandtl’s diagrams. Together with
the basic relations of continuum mechanics they are used to describe the de-
formation of many objects. Any its stage can be taken as maximum allowable
one but it is more convenient to predict a failure according to the criterion of
infinite strains rate at the beginning of unstable deformation. The method re-
veals the influence of the form and dimensions of the structure on its ultimate
state that are not considered by classical approaches.

Certainly it is hardly possible to solve any real problem without some
assumptions of geometrical type. Here the tasks are distinguished as anti-
plane (longitudinal shear), plane and axisymmetric problems. This allows to
consider a fracture of many real structures. The results are represented by re-
lations that can be applied directly and a computer is used (if necessary)
on a final stage of calculations. The method can be realized not only in
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Geomechanics but in other branches of industry and science. The whole
approach takes into account 5 types of non-linearity (3 physical and 2 ge-
ometrical) and contains some new ideas, for example, the consideration of
the fracture as a process, the difference between the body and the element
of a material which only deforms and fails because it is in a structure, the
simplicity of some non-linear computations against linear ones (ideal plastic-
ity versus the Hooke’s law, unsteady creep instead of a steady one etc.), the
independence of maximum critical strain for brittle materials on the types of
structure and stress state, an advantage of deformation theories before flow
ones and others.

All this does not deny the classical methods that are also used in the book
which is addressed to students, scientists and engineers who are busy with
strength problems.



Foreword to the 2nd Edition

More than 2 years passed from the appearance of my work “Strength Anal-
ysis in Geomechanics”. Since that time I worked on the theme, solved some
new geotechnical problems and included them in the book. Among them the
fracture of a tunnel arch in Chap. 1 and of economical profile of triangular
dam under self-weight as well as lateral pressure in Chap. 2; ultimate state of
compressed soil by inclined plates in Chap. 4; displacements in massif pressed
similarly in Chap. 5; generalization of shells theory and that of compressed
cylinder in Chap. 6; practical approach to the task of plastic material flow
in the cone (Appendix E); propagation of big plastic zones near crack adges
in Appendix F; strength of different profiles rotating disk in Appendix O,
ultimate state of anisotropic tubes under axial load and internal pressure;
the same for isotropic ones with addition of torsion are found; construction
of rheological equations based on the hypothesis of potential function exis-
tence; comparison with test data on metals and a polymer. Some important
additions are made. Among them ultimte state of a non-linear material at ec-
centric compression in Chap. 1; direct equations for main (principal) stresses
at a plane problem in Chap. 2; deformation of soil under triangular load, dis-
placements of the beam on elastic foundation under uniformly distributed load
on finite length and in slope of compressed body (Chap. 3); critical loads for
constant displacements in Chaps. 3 and 5 and Appendixes F, I, J are found.
New references are also attached. Some figures are corrected and slips of the
pen as well as misprints are remowed. The changes above demand to correct
the title of the book as “Strength Analysis in Geotechnics”.

2009 S. Elsoufiev



Preface

The solution of complex problems of strength in many branches of industry
and science is impossible without a knowledge of fracture processes. Last 50
years demonstrated a great interest to these problems that was stimulated
by their immense practical importance. Exact methods of solution aimed at
finding fields of stresses and strains based on theories of elasticity, plastic-
ity, creep, etc. and a rough appreciation of strength provide different results
and this discrepancy can be explained by the fact that the fracture is a com-
plex problem at the intersection of physics of solids, mechanics of media and
material sciences. Real materials contain many defects of different form and
dimensions beginning from submicroscopic ones to big pores and main cracks.
Because of that the use of physical theories for a quantitative appreciation of
real structures can be considered by us as of little perspective. For technical
applications the concept of fracture in terms of methods of continuum me-
chanics plays an important role. We shall distinguish between the strength of
a material (considered as an element of it – a cube, for example) and that of
structures, which include also samples (of a material) of a different kind. We
shall also distinguish between various types of fracture: ductile (plastic at big
residual strains), brittle (at small changes of a bodies’ dimensions) and due
to a development of main cracks (splits).

Here we will not use the usual approach to strength computation when the
distribution of stresses are found by methods of continuum mechanics and then
hypotheses of strength are applied to the most dangerous points. Instead, we
consider the fracture as a process developing in time according to constitutive
equations taking into account large strains of unsteady creep and damage
(development of internal defects). Any stage of the structures’ deformation
can be supposed as a dangerous one and hence the condition of maximum
allowable strains can be used. But more convenient is the application of a
criterion of an infinite strain rate at the moment of beginning of unstable
deformation. This approach gives critical strains and the time in a natural
way. When the influence of the latter is small, ultimate loads may be also
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found. Now we show how this idea is applied to structures made of different
materials, mainly soils.

The first (introductory) chapter begins with a description of the role of
engineering geological investigations. It is underlined that foundations should
not be considered separately from structures. Then the components of geo-
mechanics are listed as well as the main tasks of the Soil Mechanics. Its short
history is given. The description of soil properties by methods of mechanics
is represented. The idea is introduced that the failure of a structure is a pro-
cess, the study of which can describe its final stage. Among the examples of
this are: stability of a ring under external pressure and of a bar under com-
pression and torsion (they are represented as particular cases of the common
approach to the stability of bars); elementary theory of crack propagation; the
ultimate state of structures made of ideal plastic materials; the simplest the-
ory of retaining wall; a long-time strength according to a criterion of infinite
elongations and that of their rate. The properties of introduced non-linear
equations for unsteady creep with damage as well as a method of determina-
tion of creep and fracture parameters from tests in tension, compression and
bending are given (as particular cases of an eccentric compression of a bar).

In order to apply the methods of Chap. 1 to real objects we must intro-
duce main equations for a complex stress state that is made in Chap. 2. The
stresses and stress tensor are introduced. They are linked by three equilibrium
equations and hence the problem is statically indeterminate. To solve the task,
displacements and strains are introduced. The latters are linked by compati-
bility equations. The consideration of rheological laws begins with the Hooke’s
equations and their generalization for non-linear steady and unsteady creep is
given. The last option includes a damage parameter. Then basic expressions
for anisotropic materials are considered. The case of transversally isotropic
plate is described in detail. It is shown that the great influence of anisotropy
on rheology of the body in three options of isotropy and loading planes inter-
position takes place. Since the problem for general case cannot be solved even
for simple bodies some geometrical hypotheses are introduced. For anti-plane
deformation we have five equations for five unknowns and the task can be
solved easily. The transition to polar coordinates is given. For a plane prob-
lem we have eight equations for eight unknowns. A very useful and unknown
from the literature combination of static equations is received. The basic ex-
pressions for axi-symmetric problem are given. For spherical coordinates a
useful combination of equilibrium laws is also derived.

It is not possible to give all the elastic solutions of geo-technical problems.
They are widely represented in the literature. But some of them are included
in Chap. 3 for an understanding of further non-linear results. We begin with
longitudinal shear which, due to the use of complex variables, opens the way
to solution of similar plane tasks. The convenience of the approach is based
on the opportunity to apply a conformal transformation when the results for
simple figures (circle or semi-plane) can be applied to compound sections.
The displacement of a strip, deformation of a massif with a circular hole and



Preface xi

a brittle rupture of a body with a crack are considered. The plane deformation
of a wedge under an one-sided load, concentrated force in its apex and pressed
by inclined plates is also studied. The use of complex variables is demonstrated
on the task of compression of a massif with a circular hole. General relations
for a semi-plane under a vertical load are applied to the cases of the crack
in tension and a constant displacement under a punch. In a similar way rela-
tions for transversal shear are used, and critical stresses are found. Among the
axi-symmetric problems a sphere, cylinder and cone under internal and exter-
nal pressures are investigated. The generalization of the Boussinesq’s problem
includes determination of stresses and displacements under loads uniformly
distributed in a circle and rectangle. Some approximate approaches for a com-
putation of the settling are also considered. Among them the layer-by-layer
summation and with the help of the so-called equivalent layer. Short infor-
mation on bending of thin plates and their ultimate state is described. As a
conclusion, relations for displacements and stresses caused by a circular crack
in tension are given.

Many materials demonstrate at loading a yielding part of the stress-strain
diagram and their ultimate state can be found according to the Prandtl’s and
the Coulomb’s laws which are considered in Chap. 4, devoted to the ultimate
state of elastic-plastic structures. The investigations and natural observations
show that the method can be also applied to brittle fracture. This approach is
simpler than the consequent elastic one, and many problems can be solved on
the basis of static equations and the yielding condition, for example, the tor-
sion problem, which is used for the determination of a shear strength of many
materials including soils. The rigorous solutions for the problems of cracks and
plastic zones near punch edges at longitudinal shear are given. Elastic-plastic
deformation and failure of a slope under vertical loads are studied among
the plane problems. The rigorous solution of a massif compressed by inclined
plates for particular cases of soil pressure on a retaining wall and flow of the
earth between two foundations is given. Engineering relations for wedge pen-
etration and a load-bearing capacity of a piles sheet are also presented. The
introduced theory of slip lines opens the way to finding the ultimate state of
structures by a construction of plastic fields. The investigated penetration of
the wedge gives in a particular case the ultimate load for punch pressure in a
medium and that with a crack in tension. A similar procedure for soils is re-
duced to ultimate state of a slope and the second critical load on foundation.
Interaction of a soil with a retaining wall, stability of footings and different
methods of slope stability appreciation are also given. The ultimate state of
thick-walled structures under internal and external pressures and compression
of a cylinder by rough plates are considered among axi-symmetric problems.
A solution to a problem of flow of a material within a cone, its penetration in
a soil and load-bearing capacity of a circular pile are of a high practical value.

Many materials demonstrate a non-linear stress-strain behaviour from the
beginning of a loading, which is accompanied as a rule by creep and damage.
This case is studied in Chap. 5 devoted to the ultimate state of structures
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at small non-linear strains. The rigorous solution for propagation of a crack
and plastic zones near punch edges at anti-plane deformation is given. The
generalization of the Flamant’s results and the analysis of them are presented.
Deformation and fracture of a slope under vertical loads are considered in
terms of simple engineering relations. The problem of a wedge pressed by
inclined plates and a flow of a material between them as well as penetration
of a wedge and load-bearing capacity of piles sheet are also discussed. The
problem of the propagation of a crack and plastic zones near punch edges at
tension and compression as well as at transversal shear are also studied. A
load-bearing capacity of sliding supports is investigated. A generalization of
the Boussinesq’s problem and its practical analysis are fulfilled. The flow of the
material within a cone, its penetration in a massif and the load-bearing capa-
city of a circular pile are studied. As a conclusion the fracture of thick-walled
elements (an axi-symmetrically stretched plate with a hole, sphere, cylinder
and cone under internal and external pressures) are investigated. The results
of these solutions can be used to predict failure of the voids of different form
and dimensions in soil.

In the first part of Chap. 6, devoted to the ultimate state of structures
at finite strains, the Hoff’s method of infinite elongations at the moment of
fracture is used. A plate and a bar at tension under hydrostatic pressure are
considered. Thick-walled elements (axi-symmetrically stretched plate with a
hole, sphere, cylinder and cone under internal and external pressure) are stud-
ied in the same way. The reference to other structures is made. The second
part of the chapter is devoted to mixed fracture at unsteady creep. The same
problems from its first part are investigated and the comparison with the
results by the Hoff’s method is made. The ultimate state of shells (a cylinder
and a torus of revolution) under internal pressure as well as different mem-
branes under hydrostatic loading is studied. The comparison with test data is
given. The same is made for a short bar in tension and compression. In conclu-
sion the fracture of an anisotropic plate in biaxial tension is investigated. The
results are important not only for similar structures but also for a finding the
theoretical ultimate state of a material element (a cube), which are usually
formulated according to the strength hypotheses. The found independence of
critical maximum strain for brittle materials on the form of a structure and
the stress state type can be formulated as a “law of nature”.
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Introduction: Main Ideas

1.1 Role of Engineering Geological Investigations

An estimation of conditions of buildings and structures installation demands
a prediction of geological processes that can appear due to natural causes or
as a result of human activity. This prediction should be based on a geolog-
ical analysis which takes into account different forms of interaction between
created structures and an environment.

The prediction of the structures role is usually made by the methods of the
engineering geology that includes computations according to laws of mechanics
(deformation, stability etc.). The basic data are: geological schemes and cross-
sections, physical-mechanical characteristics of soils, and others. An engineer-
geologist participates in the choice of structures places and gives their proofs.

The engineer-geologist must always take into account that engineering
structures made of concrete, brick, rock, steel, wood and other materials
should not be considered separately of their foundations which must have
the same degree of reliability as a whole construction. The main causes of
their destruction can be changes in their stress state and, consequently, – the
deformation of the soil. So, an engineer and a geologist must have enough
knowledge of the geo-mechanics as a part of the whole structures theory.

1.2 Scope and Aim of the Subject. Short History
of Soil Mechanics

The Soil Mechanics deals mainly with sediments and their unconsolidated
accumulations of solid particles produced by mechanical and chemical disin-
tegration of rocks. It includes the parts (according to another classification
they are components of the geo-mechanics): (1) Mechanics of rocks. (2) That
of mantel or rigolitth – the Soil Mechanics itself. (3) Mechanics of organic
masses. (4) Mechanics of frozen earth.
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The main features of soils are:

a) A disintegration which distinguishes a soil from a rock, the particles can
not be bonded but they form a body with the strength much lower than
that of a particle; it induces a porosity that can change under external
actions;

b) They have the property of permeability;
c) Strength and stability of a soil is a function of a cohesiveness and of a

friction between the particles;
d) The stress-strain dependence of a soil includes as a rule residual compo-

nents and influence of time (a creep phenomenon).

The main tasks of the Soil Mechanics are as follows: (1) the establishment
of basic laws for soils as sediments and other accumulations of particles.
(2) the study of soil strength and stability including their pressure on re-
taining walls. (3) investigation of structures strength problems in different
phases of deformation.

For the solution of these tasks two main methods are used – theoretical (on
the basis of a mathematical approach) and modelling with different materials.
Here the first of them is considered.

The development of the Soil Mechanics began at the end of the eighteenth
century. The first period is characterized by a rare use of scientific methods.
The theoretical investigations that are actual now are contained in the works
of French scientists (Prony, 1810; Coulomb, 1778; Belidor, 1729; Poncelet,
1830 and others) who were solving the problem of soil pressure on retaining
wall and Russian academician Fussa (the end of the eighteenth century) who
received a computational method for a beam on elastic foundation. Until the
beginning of the twentieths century works on the Soil Mechanics were linked
with determination of a soil pressure on retaining walls and a solution of the
simplest problems of slopes as well as footings stability. V.I. Kurdumov began
in 1889 laboratory tests of soils as foundations of structures.

The next step in the Soil Mechanics was made by Carl Terzaghi /1/ in USA
and N.M. Gersewanov in the USSR. They gave the schemes of deformation
calculations. In the problem of soil strength we must mention the works of
N.N. Pouzyrevski in the USSR and O. Frölich /2/ in Germany. The books
of N.A. Cytovich /3/, V.A. Florin, N.N. Maslov and other Russian scientists
have broad applications. Rigorous solutions for a soil massif at its ultimate
state was given by V.V. Sokoöovski /4/.

1.3 Use of the Continuum Mechanics Methods

Computations in the Soil Mechanics are usually fulfilled by methods of the
Continuum Mechanics. Although soils have different mechanical properties
their settlings have been found on the base of the Elasticity Theory /5/. The
complete solution of its plane problem was given by N.I. Muschelisvili /6/
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thanks to the use of the complex variables. An application of the Plasticity
Theory methods are met much rarer although they give solutions nearer to
the reality /7/.

The founder of the strength disciplines is G. Galilei who in 1638 published
his book “Discorsi E Demonstrazioni Matematiche Intorno A Due Nuove Sci-
ence” (Talks and proofs concerning two new sciences) in which he grounded
the Theoretical Mechanics and the Strength of Materials. In that time laws
of deformation were not discovered and G. Galilei appreciated a strength of
bodies directly.

The discovery of the linear dependence between acting force and induced
by it displacement by R. Hooke in 1676 gave the basis of the Elasticity The-
ory. Rigorous definitions of stresses and strains formulated a civil engineer
O. Cauchy. The main mathematical apparatus of this science was introduced
in the works of G. Lame and B. Clapeyron who worked at that period in
S.-Petersburg institute of Transport Communications. The number of prac-
tically important problems was solved thanks to the famous principle of
Saint-Venant.

In calculations according to the scheme of the Elasticity Theory the main
task is the determination of stress and strain fields. An estimation of a strength
has as a rule an auxiliary character since a destruction in one point or in a
group of them does not lead to a failure of a structure. The Galilei’s idea of
an appreciation of the strength of the whole body found applications only in
some districts of the Continuum Mechanics (the stability of compressed bars
according to the Euler’s approach, a failure of some objects in the Structural
Mechanics, the theory of the ultimate state of soils, and quite recently – in
the theory of cracks propagation due to the Griffith’s idea /8/).

The computations according to the ultimate state began to develop thanks
to a study of metal plastic deformation at the end of the nineteenth century
by French investigators Levy, Tresca, Saint-Venant and at the beginning of
the last century by German scientists Mises, Hencki, Prandtl. The latter in-
troduced the diagram of an ideal elastic-plastic material and solved a row of
important problems including geo-mechanic ones. The important role for the
practice play up to now two Gvozdev’s theorems of the ultimate state of a
plastic body /9/ (the static one that proposes the ultimate load as a maximum
force among all corresponding to an equilibrium and a minimum load for all
kinematically possible forms of destruction) which he proved in the thirties of
the last century in the USSR for the objects of the Structural Mechanics. In
the Media Mechanics such theorems were formulated at the fifties in USA.

The prominent contribution to the Plasticity Theory made W. Prager,
F. Hodge and A. Nadai who received also a row of important results in the geo-
mechanics and other disciplines. The works of Soviet scientists V. Sokolovski,
L. Kachanov and A. Iljushin in this field are also well-known. The special
interest have their investigations in the Theory of Plasticity of a hardening
material which describes the real behaviour of a continuum and includes as
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particular cases the linear elasticity and the ideal plasticity. An intensive study
of cracks in an elastic-plastic material provides G. Rice in USA.

The phenomenon of creep was discovered by physicists who (Boltzman,
Maxwell, Voight, Kelvin) constructed in the nineteenth century the consti-
tutive equations which are actual now. In the technique the creep processes
are studied since the twentieths of the last century in the connection with
the metals deformation at elevated temperatures under constant loads. The
construction of the basic relations followed the ideas of the Plasticity Theory
of a hardening body. The large work in this direction was made by F. Odquist.

In twentieths-thirtieths of the last century Odquist and Hencki found an
opportunity to compute the fracture time of a bar in tension under constant
load when its elongation tends to infinity. This idea began to spread out only
after the work of N. Hoff (1953) who used more simple equation of creep and
received the good agreement with test data. To predict an earlier failure of the
structure L.M. Kachanov introduced in the sixtieths a parameter of a damage
as a ratio of a destructed part of a cross-section to the whole one. According
to his idea the bar either elongates infinitely or is divided in parts when the
defects fit up the whole area.

Another way to describe the ultimate state in a creep opens the criterion of
infinite elongations rate at the beginning of unstable deformation (R. Carlsson,
1966). The introduction in constitutive equations of a damage parameter al-
lowed S. Elsoufiev to find on the base of the criterion the ultimate state of
many objects including geotechnical ones /7.10/.

1.4 Main Properties of Soils

1.4.1 Stresses in Soil

Due to the weight (which is always present), tectonic, hydrodynamic, physical-
chemical, residual and other processes internal stresses appear in the earth.
In a weightless massif at an action of load P (Fig. 1.1) in a point M a part of
the body under cross-section nMl is in an equilibrium with internal stresses
p which are distributed non-uniformly in the part of the massif. If they are
constant in a cross-section the relation for their determination (Fig. 1.2) is

p = P/A (1.1)

where A is an area of cross-section aa.
At a non-uniformly distributed stresses they can be found according to

expression
p = lim

dA→0
(dP/dA). (1.2)

Here dA is an elementary area in a surrounding of the investigated point and
dP – the resultant of forces acting in it.
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Fig. 1.1. Stresses in massif of soil
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Fig. 1.2. Stresses in compressed bar

The value and the direction of stress p depend not only on a meaning
of external forces and the position of the point but also on the direction of
a cross-section. If vector p is inclined to a plane it can be decomposed into
normal σ and shearing τ components (Fig. 1.3).

Since materials resist differently to their actions such a decomposition has
a physical meaning. In the general case an elementary cube is cut around the
point on each side of which one normal and two shearing stresses act (see
Chap. 2 further).
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Fig. 1.3. Decomposition of stress p

The base of a structure is a part of the massif where stresses depend on
the structure erected. It differs from a foundation that transfers the structure
weight to the base. The boundary of the latter is a surface where the stresses
are negligible. All the artificial soil massifs (embankments, dams etc.) are not
the bases, they are structures.

Stresses in the massif under external loads differ from their real meanings
on values of the soil self-weight components. These so-called natural pressures
depend on a specific weight γe of the soil, a coordinate z of the point and
the depth of an underground water. The natural pressure is determined by
relation

σ′
z = γez + γ ′z′

where γ ′ is the specific weight of the soil with the consideration of its suspen-
sion by the underground waters, z′ is the depth of the point from their mirror.
Normal stresses on vertical planes are determined as

σ′
x = σ′

y = ζσ′
z.

Here ζ = ν/(1− ν) is the factor of lateral soil expansion and ν – the Poisson’s
ratio.

1.4.2 Settling of Soil

Phases of Soil State

An elastic solution shows that with a growth of a load on a punch plastic
deformation begins at its edges. Then inelastic zones expand according to
the plastic solution. Experiments confirm this picture if we suppose that the
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Fig. 1.5. Settling of a layer of limited thickness

part of the soil (districts a, b in Fig. 1.4) acts together with the punch. At
the same time the expansion of the soil upwards (zones c in the figure) takes
place and slip lines appear in zones b. This phenomenon was observed by
V.I. Kourdumov in his tests. Professor N.M. Gersewanov proposed to consider
three stages of the base state at the growth of the load: (1) its condensation,
(2) an appearance of the shearing displacements and (3) its expansion. By
these processes a condensed solid core (zone a in the figure takes place) and
it moves together with the punch making additional plastic districts.

Settling of Earth Layer of Limited Thickness

Under an action of uniformly distributed load p at a large length (Fig. 1.5)
an earth layer is exposed to a pressure without lateral expansion. The pro-
cess is similar to the compressive deformation and the problem becomes
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one-dimensional. If the layer is supported by an incompressible and impen-
etrable basis its full settling is equal to the difference of current and initial
lengths, that is

S = ho − h (1.3)

The skeleton volume in a prism with a basic area A before and after the
deformation remains constant as

Aho/(1 + eo) = Ah/(1 + e) (1.4)

where eo, e are factors of the soil porosity before and after the loading. They
are computed as ratios of pores and skeleton volumes.

Solving (1.4) relatively to height h and putting it into (1.3) we find

S = ho(eo − e)/(1 + eo). (1.5)

Now we introduce a factor a as

a = (eo − e)/p

and put it in (1.5) which gives

S = hoap/(1 + eo). (1.6)

Value
a/(1 + eo)

is a factor av of soil compressibility and (1.6) becomes

S = hoavp. (1.7)

As a result we receive that the full settling of the soil layer under a homo-
geneous loading and in the conditions of an absence of its lateral expansion
is proportional to the thickness of the layer, the intensity of the load and
depends on the properties of the soil.

Role of Loading Area

As natural observations show a settling depends on the loading area in a
form of the curve in Fig. 1.6 on which three districts can be distinguished:
1 – of small areas (till 0.25m2) when the soil is in the phase of the shearing
displacements and the settling decreases with a growth of A, a zone 2 where the
soil is in the phase of a condensation and the settling is practically proportional
to A0.5:

S = Cp
√

A

where C is a coefficient of proportionality, and part 3 in which with a fall of
the condensation role of the kern the divergences from the proportionality law
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Fig. 1.6. Dependence of settling on footing area

is observed. We must also notice that the relation above is valid at pressures
which do not exceed the soils practical limit of proportionality and at its
enough homogeneity on a considerable depth.

At the same area of the footing, pressure and other equal conditions the
settling of compact (circular, square etc.) foundations is higher than stretched
ones. That follows also from analytical solutions (see further). A transfer from
square footing to rectangular one (at equal specific pressure) decreases the
active depth of the soil massif.

Influence of Load on Footing

At successive increase of a load on a soil three stages of its mechanical state are
observed – of condensation 1 (Fig. 1.7), shearing displacement 2 and fracture
3. In the first of them the earth’s volume decreases and deformation’s rate
falls with a tendency to zero. In this stage the dependence between the acting
force F and the settling may be described by Hooke’s law:

S = Fh/EA. (1.8)

where E – modulus of elasticity.
The second stage is characterized by an appearance of shearing displace-

ment zones with growth of which the settlings become higher and their rate
decreases more slowly. In the third stage strains increase rapidly and soil ex-
panses out of a footing. Deformation grows catastrophically and the settlings
are big.

At cycling loading the soil’s deformation increases with the number of cy-
cles. Its elastic part changes negligibly and the full settling tends to a constant
value. In the last state a soil becomes almost elastic.
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Fig. 1.8. Settling in time

Influence of Time

The experiments with earths and natural observations show that at constant
load a development of the settling in time may be represented by Fig. 1.8.
Curve 1 corresponds to sands in which settling happens fast as the resistance
to squeezing a water out is small. Case 2 takes place in disperse soils such
as clays, silts and others whose pores in natural conditions are filled with a
water. The rate of the soil’s stabilization depends on its water penetration
and a creep of the skeleton.

The settling does not end in a period of a structure’s construction and
continues after it. The time at which the full settling takes place depends on
the consolidation of a layer under the footing. In its turn the last phenomenon
is determined by a rate and a character of external loading and by properties
of soil, firstly by its compressibility and ability to water penetration. In condi-
tions of good filtration the settling goes fast but at a weak water penetration
the process may continue years.
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Combined Influence of Time and Loading

At small loads F the settling grows slowly (curve 1 in Fig. 1.9) and tends to
a constant value. There is a maximum load on footing at which this process
takes place. At bigger F the settling increases faster (line 2 in the figure) at
approximately constant velocity and it may lead to a failure of structures
(curve 3 in Fig. 1.9).

The velocity of the settling influences the strength of structures as they
have different ability to redistribute the internal forces at non-homogeneous
settlings of a footing. At high velocities of the settling the brittle fractures
may take place, at slow ones – creep strains. For soils whose pores are fully
filled with water the theory of filtration consolidation is usually used.

1.4.3 Computation of Settling Changing in Time

Premises of Filtration Consolidation Theory

The initial hypothesis of the theory is an assessment that the velocity of the
settling’s decrease depends on an ability of the water to penetrate the soil.
Above that the following suppositions are introduced:

a) The pores of a soil are fully filled with water, which is incompressible,
hydraulically continuous and free,

b) Earth’s skeleton is linearly deformable and fully elastic,
c) The soil has no structure and initially an external pressure acts only on

the water,
d) A water filtration in the pores subdues to the law of Darcy,
e) The compression of the skeleton and a transfer of the water are vertical.

Model of Terzaghi-Gersewanov

The model is a vessel (Fig. 1.10) filled with water and is closed by a sucker
with holes. It is supported by a spring which imitates a skeleton of the soil
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Fig. 1.10. Terzaghi-Gersewanov’s model

and the holes – capillaries in earth. If we apply to the sucker an external load
then its action presses in an initial moment only the water. After some time
when a part of the water flows out of the vessel the spring begins to resist to
a part of the pressure. The water is squeezed out slowly and has an internal
pressure

H = p/γw (1.9)

where γw is a specific gravity of the water.
The filtration of the water subdues to Darcy’s law, which is however com-

plicated by a presence of a connected water. At small values of the hydraulic
gradient a filtration can not overcome the resistance of the water in the pores.
Its movement is possible only at an initial value of the gradient.

Differential Equation of Consolidation Due to Filtration

In the basis of the theory the suppositions are put that a change of the wa-
ter expenditure subdues to the law of filtration and a change of porosity is
proportional to the change of the pressure.

Now we consider a process of the soil compression under a homogeneously
distributed load. We suppose that in an initial state the soil’s massif is in a
static state which means that a pressure in pores is equal to zero. We denote
the last as pw (zone 2 in the figure) and effective pressure which acts on the
solid particles as pz (zone 1 in the figure). At any moment the sum of these
pressures is equal to the external one as:

p = pw + pz. (1.10)

In time the pressure in water decreases and in the skeleton – increases until
the last one supports the whole load.
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At any moment an increase of the water expenditure q in an elementary
layer dz is equal to the decrease of porosity n that is

∂q/∂z = −∂n/∂t. (1.11)

The last expression gives the basis for the inference of differential equation of
a consolidation theory which with consideration of (1.9) is

∂H/∂t = Cv∂
2H/∂z2 (1.12)

where Cv = K∞avγw is a factor of the soil’s consolidation.
Relation (1.12) is a well-known law of diffusion and it is usually solved in

Fourier series.
For the determination of a settling in a given time a notion of consolidation

degree is usually used. It is defined as the ratio between the settling in the
considered moment and a full one or

u = Sf/S. (1.13)

It may be found through the ratio of areas of pressure diagrams in the skeleton
(pz) at the present moment and at infinite time as

u =

h∫

0

(pz/Ap)dz (1.14)

where Ap is the area of fully stabilized diagram of condensed pressure.
Putting in (1.13) expression for pressure pz in the soil’s skeleton which is

received at the solution of equation (1.12) we have after integration

u = 1 − 8(e−N + e−9N/9 + e−25N/25 + . . . ..)/π2 (1.15)

where e is the Neper’s number, N = π2Cvt/4h2 – a dimensionless factor of
time. Putting (1.15) in (1.7) we find the settling at given time t.

For bounded, hard plastic and especially of firm consolidated soils, con-
taining connected water the theory cannot be used.

In the conclusion we must say that (1.15) is the creep equation and it is
difficult to apply it to boundary problems and for this task simpler rheological
laws can be used and this way is considered in the book.

1.5 Description of Properties of Soils and Other
Materials by Methods of Mechanics

1.5.1 General Considerations

Usually problems of the Soil Mechanics are divided in two main parts.
The first of them deals with the settling of structures due to their own

weight and other external forces. This problem is almost always solved by
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the methods of the Elasticity Theory although many earths show non-linear
residual strains from the beginning of a loading.

The second task is the stability which is connected with an equilibrium of
an ideal soil immediately before an ultimate failure by plastic flow. The most
important problems of this category are the computation of the maximum
pressure exerted by a massif of soil on elastic supports, the calculation of the
ultimate resistance of a soil against external forces such as a vertical pressure
acting on an earth by a loaded footing etc. The conditions of a loss of the
stability can be fulfilled only if a movement of a structure takes place but the
moment of its beginning is difficult to predict.

So, we must consider the conditions of loading and of support required to
establish the process of transition from the initial state to a failure. Here we
demonstrate on simple examples the approaches that can help to study this
process.

1.5.2 The Use of the Elasticity Theory

Main Ideas

Some earths components and even their massifs (rock, compressed clays,
frozen soils etc) subdue to the Hooke’s law i.e. for them displacements are
proportional to external forces almost up to their fracture without residual
strains. Here in a simple tension (Fig. 1.11) stress p which is determined by
relation (1.1) and is equal in this case to normal component σ is linked with
relative elongation

ε = l/lo − 1 (1.16)

where index o refers to initial values (broken lines in the figure) by the law
similar (1.8):

σ = Eε (1.17)

Here according to the main idea of the book we show the use of this expression
for the prediction of a failure of some structure elements.

F

A

l

p

Fig. 1.11. Bar in tension
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Fig. 1.12. Element of bar under internal and external forces

Some Solutions Connected with Stability of Bars

As was told before one of the first methods of theoretical prediction of
failure gave L. Euler for a compressed bar. His approach can be generalized
and we give the final results. We begin with static equations of a part of it
(Fig. 1.12) as

dδQ/ds + χoxδQ + δχxQo = 0, dδM/ds + χoxδM + δχxMo + ixδQ = 0 (1.18)

and constitutive equation similar (1.17):

∂M = BjEδχ(j = x, y, z). (1.19)

Here i, Q, M are vectors – unit, of shearing force, of bending moment, Q∗ =
Q + dQ, M∗ = M + dM, δ – sign of their increment, χ – curvature of the bar,
x – sign of multiplication, BjE – rigidity and subscript o denote initial values
(before a failure).

For a ring with radius r and thickness h under external pressure q we have
Mo = χxo = χyo = Qyo = Qzo = 0, χyo = 1/r, Qxo = −qr, ds = rdθ where
z, x are normal and tangential directions, θ is the second polar co-ordinate.
For the planar loss of stability we have from (1.18), (1.19)

d2δQz/dθ2 + (1 + qr3/ByE)δQz = 0.

The solution of this problem is well-known and the maximum critical
pressure is

q∗ = 3EIy/r3.

This result is valid for a long tube if we replace moment of inertia Iy relatively
to axis y by cylindrical rigidity h3/12(1 − ν2) where ν is the Poisson’s ratio.
The solution is used for the appreciation of the strength of galleries in an earth.

For a bar under compression and torsion (Fig. 1.13) the solution of (1.18),
(1.19) can be presented in the form

(M/M∗)2 + F/F∗ = 1 (1.20)
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Fig. 1.13. Circular bar under compression and torsion

q
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Fig. 1.14. Crack under tension

where values M∗ = 2πEI/l, F∗ = π2EI/l2 refer to the separate actions of the
respective loads, I = πr4/4 is axial moment of inertia of a circle. The relation
can be used for the appreciation of strength of bores, piles, drills etc.

Bases of Crack Mechanics

The basis of the modern linear mechanics of cracks was given by English
scientist A. Griffith /8/. In order to clear up the idea we consider a plate
(Fig. 1.14) with a narrow crack of length 2l perpendicular to tensile stresses q
in infinity. The distribution of stresses near the crack’s edge is shown in the
left part of the picture and their maximum can be given by

max p = 2q
√

l/r (1.21)
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where r is a radius of curvature in the end of the crack. When the last one
begins to propagate the following amount of the work is freed:

dW = (max p)2(r/E)dl

or with consideration of (1.21)

dW = 4(q2/E)ldl. (1.22)

This process is resisted by the forces of surface stretching with an energy
dU = 2γsdl where γs is the energy per unit length. In the critical state dU =
dW and we derive from (1.22) the value of a critical stress:

q∗ =
√

γsE/2l. (1.23)

The more detailed analysis of this theory will be given in Chaps. 3–5.

1.5.3 The Bases of Ultimate Plastic State Theory

Main Ideas

Many soils and other materials have small hardening and angle of internal
friction as well as negligible deviation from the condition of constant volume.
For them the ultimate state of structures according to the scheme of an ideal
(perfect) elastic-plastic body can be used. Its diagram in coordinates p, e
is given in Fig. 1.15 with p∗ – an yielding point. In the Media Mechanics
consequent coordinates are σ, ε and σyi.

To catch the idea of the method we consider a part of a beam (Fig. 1.16, a)
loaded by moments M with a cross-section on Fig. 1.16, b. Diagram of stress in
elastic state with yielding value at most remote point of the compressed part
of the cross-section is given in Fig. 1.16, c. With the growth of the moment
σ-diagram in the compressed zone becomes a trapezoid. Then the yielding
point is reached in the tensile zone and the σ-diagram there becomes the
trapezoid too.

p

AA

OO

BB

ee

p*

Fig. 1.15. Diagram of ideal elastic-plastic material
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Fig. 1.16. Pure bending of beam

The distribution of stresses at ultimate state is drawn in Fig. 1.16, d where
we have two rectangles. From equilibrium condition we receive

ΣX = σyiA+ − σyiA− = 0

from which we have A+ = A− = A/2. It means that in ultimate state tensile
and compressed areas are equal to one half of the whole one. From the second
static equation (ΣMz = 0) we find the ultimate load as

M∗ = σyiA(CD)/2

where (CD) is the distance between centroids of compressed and tensile zones.
Particularly for a rectangle with a width b and a height h we compute

M∗ = σyibh2/4. (1.24)

Here we must underline that we used for the final results only the horizontal
part of the diagram in Fig. 1.15 and so the method may be applied to a brittle
fracture too.

Ultimate State of Statically Indetermined Beams

As the second practical example of the theory we consider a retaining wall
or a piles sheet under triangular load of a soil or a liquid (Fig. 1.17, a). The
approximate M-diagram in elastic state is given in Fig. 1.17, b. In the ultimate
state plastic hinges with moments M∗ (see relation (1.24) at b = 1) appear.
According to M-diagram one of them (see the broken line in Fig. 1.17, a) is in
the fixed end (point A), another – somewhere in the span (point C). In order
to find distance x we use static equations

−MA = ql2/6 − Hl = M∗, MC = Hx − qx3/6l = M∗.
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Fig. 1.17. Statically indetermined beam

Excluding from these two expressions reaction H we have

q = 6M∗/x(l − x).

According to the second Gvozdev’s theorem /9/ the position of hinge C gives
minimum to q-value. So, we compute

x = l/2, q∗ = 24M∗/l2.

The same value of q∗ can be got according to the first Gvozdev’s theorem as
a maximum load in the ultimate static state /7/.

Ultimate State of Plates in Bending

We consider firstly a polygonal plate (Fig. 1.18, a) with simply supported
edges. We model its part ODCE as a double-supported beam AB (Fig. 1.18,
b) with a M-diagram similar to the broken axis (broken line in Fig. 1.18, c)
under concentrated load in point O which acts on the plate. The value of
Mmax is evident

Mmax = MC = Fd(l − d)/l. (1.25)

Taking Mmax equal to M∗ according to formula (1.24) at b = 1, substituting
in (1.25) d = L tan ϕs, l − d = L tanψs where ϕs = a, ψs = c in Fig. 1.18, a,
s = 1, 2, . . .n (n is a number of plate’s corners), and the moments along the
rays of fracture from point O to the corners of the plate we find

F∗ = M∗
n∑

s=1

(cot ϕs + cotψs). (1.26)
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Fig. 1.18. Polygonal plate in bending

For a rectangle with a width b, a height h we have cot ϕs = h/b, cotψs = b/h,
n = 4 and

F∗ = 4M∗(h/b + b/h).

In the case of a square (h = b) it gives

F∗ = 8M∗. (1.27)

For a right polygon with n corners and the force F in its centre we have
ϕs = ψs = π(0.5 − n−1), cot ϕs = cotψs = tan(π/n) and according to (1.26)

F∗ = 2nM∗ tan(π/n).

When n → ∞ we derive for a circle

F∗ = 2πM∗. (1.28)

If the plate has fixed edges we can suppose that the fracture occurs along
them too. From Fig. 1.19 where part ODE of the plate is represented we have
the static equation ΣMDE = 0

F∗H = M∗l

and as d = Hcot ϕs, l − d = Hcotψs we get again (1.26) and so for our case

F∗ = 2M∗
n∑

s=1

(cot ϕs + cotψs). (1.29)
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Fig. 1.19. Equilibrium of part of plate

For a circle with the critical force in its centre we have similar to (1.28)

F∗ = 4πM∗ (1.30)

and it is less than in the case of a right polygon F∗ = 4nM∗ tan(π/n) and so
its mode of fracture is a circle of an indeterminate radius.

If the distributed load q is applied to the plate we can suppose that it
does the same work as its resultant F. So, in the case of q = constant we must
replace in the previous relation force F∗ by q∗A/3 where A is an area of the
plate’s surface. So, for a right polygon with supported and fixed ends as well
as for a circle we have respectively

q∗ = 6M∗/R2, q∗ = 12M∗/R2 (1.31)

where R is radius of an internal circumference. The first (1.31) is valid for a
square 2R × 2R.

Another use of the first Gvozdev’s theorem for plates will be given later
in Chap. 3.

1.5.4 Simplest Theories of Retaining Walls

We consider a development of main ideas of the ultimate state computation on
the example of a retaining wall loaded mainly by a soil. The first investigators
of this problem supposed that in an ultimate state triangle ABC (Fig. 1.20, a)
is against the wall. After somewhat näıve work of Belidor (1729) Coulomb
/11/ considered the earth pressure on the portion BC of the vertical side CE
and assumed that the earth has a tendency to slide down along some plane
AB. Neglecting any friction on CB he concluded that reactions of the wall
with their resultant H are horizontal. Weight Q of prism ABC is

Q = (γeh
2 tan Ψ)/2
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Fig. 1.20. Retaining wall

where γe is a specific weight of the earth. Resultant R of the reactions along
sliding plane AB forms friction angle ϕ with normal n to AB. It means that
R is inclined to a horizontal direction under angle Ψ + ϕ.

The triangle in Fig. 1.20, b represents the condition of an equilibrium of
prism ABC from which we have

H = Q cot(Ψ+ϕ) = 0.5γeh
2 tan Ψ cot(ϕ+Ψ) = 0.5γe(1− f tan Ψ)/(1+ f cotΨ)

(1.32)
where f = tan ϕ is a coefficient of friction. Then he found the maximum of H
and equalling its derivative by Ψ to zero he received expression

tan2 Ψ = (1 − f tan Ψ)/(1 + f cotΨ)

from which it follows
tan Ψ = −f +

√
1 + f2. (1.33)

Prony threw equation (1.33) in simpler form, viz cot(Ψ+ϕ) = tan Ψ which
gives

Ψ = 0.5(π/2 − ϕ). (1.34)

All above was concerned an active pressure of a soil on the retaining wall.
Similar computations for a passive state of an earth when the wall moves
against it gives relation like (1.34)

Ψ = 0.5(π/2 + ϕ). (1.35)

Rankine /12/ offered a method of finding proper dimensions of a retain-
ing wall. He considered a horizontal plane (Fig. 1.21) when σx, σy are main
stresses. It allows to construct Mohr’s circle (Fig. 1.22) in coordinates τ, σ.
In ultimate state ϕ is an angle of repose, so from the figure we have

σy − σx = (σy + σx) sin ϕ
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or
σy/σx = (1 + sin ϕ)/(1 − sin ϕ). (1.36)

But since σy = γey the maximum horizontal reaction on the retaining wall in
ultimate equilibrium is

σx = γey(1 − sin ϕ)/(1 + sin ϕ). (1.37)

Rankine recommends this pressure as to be used when investigating a stability
of a retaining wall. In the case of a passive pressure similar computations give

σx = γey(1 + sin ϕ)/(1 − sin ϕ). (1.38)

Relations (1.37), (1.38) are very often used in design practice (see Chap. 4).
But it is not difficult to show that they coincide with the Coulomb’s law (1.32)
if we put there the value of Ψ according to (1.34), (1.35). So, we can conclude
that the Rankine’s angle of repose is equal to the Coulomb’s angle of friction
and their theories are the same.
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A theory for determining the necessary depth of foundation was proposed
by Pauker (St.-Petersburg, 1889) – Fig. 1.23. Considering an element ab under
the wall and using equation (1.37) of the Rankine’s theory he concluded that
at the moment of sliding the lateral pressure σx must satisfy equation

σx = q(1 − sin ϕ)/(1 + sin ϕ). (1.39)

Taking into account relation (1.38) for an ultimate state of the soil with depth
h instead of y and combining it with (1.39) he get the necessary depth of the
foundation as

h = (q/γe)(1 − sin ϕ)2/(1 + sin ϕ)2. (1.40)

To verify this equation some interesting experiments were provided by
V. Kourdumov in the laboratory of the Ways Communication institute in
St.-Petersburg and by H. Müller-Breslau in 1906. These tests showed that
the pressure on the wall can sometimes be higher than that predicted by the
Coulomb’s theory.

1.5.5 Longtime Strength

All the materials deform in time and this phenomenon is called a creep. The
creep curves for soils are shown in Figs. 1.8, 1.9 and in the Media Mechanics
they are considered in coordinates ε, t at different σ. We can conditionally
distinguish three parts of creep- a primary one with d2ε/dt2 < 0, the second
where dε/dt is approximately constant and the third with d2ε/dt2 > 0. The
last one is usually linked with fracture due to a damage (a development of
internal defects) and a decrease of cross-section (at tension).

N. Hoff /13/ used for the second portion of the curves a power law

dε/dt = Bσm, (1.41)
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where B-coefficient and m is an exponent of the hardening law, to predict
the rupture time at tension which corresponds to infinite elongation of a bar
under constant load F. He used also a link between conditional σo = F/Ao

and true σ = F/A stresses
σ = σoeε. (1.42)

which follows from the condition of constant material’s volume Aolo = Al
(Fig. 1.11). Here

ε = ln(l/lo). (1.43)

is a true strain.
Putting (1.42) into (1.41) he received after integration in limits 0 ≤ t ≤ t∞,

0 ≤ ε ≤ ∞ a finite value of rupture time as

t∞ = (B(σo)mm)−1. (1.44)

According to this relation a structure can be destroyed at any load. It
makes conditional the traditionally used strength limits. The scheme can be
generalized.

Experiments show that for creep curves the following law may be intro-
duced /7, 10/

εe−αε = Ω(t)σm (1.45)

where Ω is an experimentally determined function of time and factor e−αε

(α ≥ 0) takes into account a damage increase that induces a decrease of
ultimate strain and time for not enough ductile materials, a growth of their
volume, the third parts of creep curves and other effects.

Tests show that relation (1.45) is valid for monotonous loading while strain
ε does not diminish. At stepwise or interrupted change of stress (Fig. 1.24)
rheological law (1.45) may be applied to the parts where σ is not less than on
previous ones if the time is calculated from a beginning of a new application of
stress. The agreement of (1.45) with an experiment is better for more unsteady
creep /14/. It may be used for finding the ultimate state of structures.

Putting (1.42) into (1.45) and using the criterion /15/ dε/dt → ∞ we get
on critical strain and time as

ε∗ = (α + m)−1, Ω(t∗) = ((α + m)(σo)me)−1. (1.46)

If a change of the bar’s dimension is small or true stress σ is constant we have
from (1.46) the fracture values due to damage only as

ε∗ = 1/α, Ω(t∗) = (ασme)−1. (1.47)

Similarly from (1.46) we can find at α = 0 critical values for perfectly ductile
bodies. When an influence of time is negligible (Ω = constant) law (1.45)
becomes a constitutive equation of the Plasticity Theory generalized here and
expressions (1.46), (1.47) develop the theory of maximum loads at unstable
deformation.
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Expressions (1.45)–(1.47) give an opportunity to find all the parameters in
rheological law (1.45). When we take from the primary parts of creep curves at
the same time strains ε we can construct diagrams σ-ε whose approximation
by the power function allows to find the exponent m of the hardening law.
Dividing ε by σm we have a creep curve Ω(t) which can be also approximated
by a power law e.g. Ω = Btn Damage factor. α may be found in two ways,
either according to the first expressions (1.46), (1.47) or by approximation
of the third parts of creep curves. Very often the both approaches give near
values of α.

1.5.6 Eccentric Compression and Determination of Creep
Parameters from Bending Tests

We take a bar with a width 2h (Fig. 1.25, a) and unity thickness loaded by
compressive force F with eccentricity e. We use the law of plane cross-sections
ε = ky1 (broken line in the figure) where k is an angle of their rotation and
two systems of coordinates – xOy and xO1y1 with y1 = y + c. If we apply
forces in point O we find axial load N = F and bending moment M = Fe.

We take a material of non-linear creep type (1.45) at α = 0 as

σ = ω(t)εμ = p (1.48)

where ω = Ω−μ, μ = 1/m (0 ≤ μ ≤ 1). At ω = constant and μ = 1 (then
ω = E) we have the Hooke’s law (1.17) – straight line OA in Fig. 1.15. If μ = 0
we receive the perfect plastic body with ω = σyi = p∗ – horizontal straight
line in the same figure.

With consideration of the expression above for ε we derive from (1.48) –
Fig. 1.25, b.

p = ωkμ(y1)μ = ωkμ(y + c)μ (1.49)

Putting (1.49) into static equations ΣX = 0, ΣMo1 = 0 we compute
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Fig. 1.25. Eccentric compression of bar

N = ωkμ

h+c∫

h−c

(y1)μdy1 = ωkμ((h + c)1+μ − (h − c)1+μ)/(1 + μ), (1.50)

M = ωkμ

h+c∫

h−c

(y1)1+μdy1 − Nc

= ωkμ((h + c)2+μ + (h − c)2+μ)/(2 + μ) − Nc. (1.51)

Now we consider some particular cases for ideal materials that are well-known
from a literature on the Strength of Materials.

If μ = 1, ω = E we have from (1.50), (1.51) N = 2Ekch, M = 2Ekh3/3
and from (1.49) – a well-known relation (generalization of this law for brittle
material see in Appendix A)

p = N/2h + 3My/2h3.

When p at y = h reaches its yielding point p* we receive the condition (straight
line in Fig. 1.26 in coordinates M/p∗h2, N/2p∗h)

N/2p∗h + 3M/2p∗h2 = 1. (1.52)

At μ = 0, ω = p∗ we receive from (1.50), (1.51) N = 2p∗c, M = p∗(h2−c2)
and after the exclusion of c we have (solid curve in the figure)

M/p∗h2 + (N/2p∗h)2 = 1. (1.53)

It is interesting to notice a similarity of (1.53) and (1.20) that shows a
resemblance of the behaviour of structures in an ultimate state.

Such simple results can not be received for other μ. However we can put
different c in relations (1.49)–(1.51) and for p* = p(h) after an exclusion
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of ωkμ we get N/2p∗h, M/p∗h2. Obtained by this way curve for μ = 0.5 is
constructed in Fig. 1.26 by broken line.

If c = 0 we find from (1.50), (1.51) N = 0, M = ωkμI which gives a genera-
lization of approximate bending equation

v′′ = −Mm/(ωI)m (1.54)

where I = 2h2+μ/(2+μ) – moment of inertia relatively to axis z perpendicular
to directions x, y in Fig. 1.27, v – deflection of a beam and sign ‘denotes the
derivative by coordinate x.

Function v(x) can be found by the same procedure as in the Strength of
Materials and the Structural Mechanics for linear material. However, here we
can not use a single equation for the whole beam and must consider its parts
separately. We shall demonstrate it on the scheme which is often used in tests
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for a study of materials behaviour (Fig. 1.27). Since the beam is symmetric
we can consider only its two portions. So, at (F/ωI)m = K we have in parts I
and II

v′′
I = −Kxm, v′

I = v′
I(0) − Kxm+1/(m + 1),

vI = v′
I(0)x − Kxm+2/(m + 1)(m + 2),

v′′
II = −K(1/3)m, v′

II = v′
II(0) − Kx(1/3)m,

vII = vII(0) + v′
II(0)x − Kx2(l/3)m/2.

(1.55)

Here we take vI(0) = 0. From condition v′
II(1/2) = 0 we find

v′
II(0) = Klm+1/3m2.

From border demand v′
I(1/3) = v′

II(1/3) we compute

v′
I(0) = K(1/3)m+1(m + 3)/2(m + 1)

Now the similar condition vI(1/3) = vII(1/3) gives the last unknown as

vII(0) = −K(1/3)m+2m/2(m + 2).

So, all the constants in (1.55) are found and the displacement and the angle
of rotation in any point of axis x are determined. Particularly, the deflection
in the middle of the beam where it is usually measured is

vII(l/2) = K(1/3)m+2(5m + 18)/8(m + 2) (1.56)

At m = 1 we compute well-known result v(1/2) = 23Fl3/648EI. Approxima-
tion of (1.56) gives m, ω and hence Ω(t).

1.5.7 Fracture of Tunnel Arch

We begin with the task of a pure bending of a large curvature rectangular
rod. We take the unity width of it and height 2h (Fig. 1.28,a). Let ρo, ρ are
curvature radii of the bar axis and of the neutral layer. The strain of fibres at
distance x from axis y is evident from Fig. 1.28b as

ε = x(Δdϕ/dϕ)/(x + ρ). (1.57)

By condition (1.48) we receive expression for normal stress as follows

σ = ω(t)(Δdϕ/dϕ)μ(x/(x + ρ))μ. (1.58)

At μ = m = 1 we have linear approach and S. Timoshenko /5/ showed that
in the following range

1.3 < (ρo + h)/(ρo − h) < 3

it is in a good agreement with the Theory of Elasticity solution.
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Developing the linear approach we determine the position of the neutral
axis from condition ΣY = 0 that with consideration of (1.58) gives

e+h∫

e−h

(x/(x + ρ))μdx = 0 (1.59)

where e = ρo − ρ. In the common case ρ must be found by attempts method
beginning, e.g., from its value at μ = 1. For μ = 0.5 integral in (1.59) can be
computed rigorously giving condition√

(e + h)(ρo + h) −
√

(h − e)(ρo − h)

− ρ ln
((√

ρo + h +
√

e + h
)
/
(√

ρo − h +
√

h − e
))

= 0. (1.60)

Calculations at ρo = 3 h give ρ = 2.92 h which is near to consequent value by
the linear solution /47/:

ρ = 2h/ln((ρo + h)/(ρo − h)) = 2.8854h.

To find the stresses we write condition ΣMz = 0 which with consideration of
(1.58) gives
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M = ω(t)J(Δdϕ/dϕ)μ. (1.61)

Here

J =

e+h∫

e−h

(x1+μ/(x + ρ)μ)dx

Excluding from (1.58), (1.61) multiplier (Δdϕ/dϕ)μ we derive

σ = Mxμ/J(x + ρ)μ. (1.62)

In the common case integral J must be calculated approximately, however at
μ = 0.5 it can be represented with consideration of (1.60) in form

J = 0.5
(
(e + h)3/2

√
ρo + h − (h − e)3/2

√
ρo − h

)
.

The stresses in points A, B at Fig. 1.29 are

/σA/ = M
√

(e + h)(ρo + h)/J = 1.0422M/h2,

/σB/ = M
√

(h − e)(ρo − h)
/
J = 1.3603M/h2. (1.63)

Diagrams of stress distribution according to (1.5.7) are given in Fig. 1.29 by
solid line.

It is interesting to compare the results received to the solution for straight
bar. Putting the stresses like (1.49)

σ = ω(t)kμxμ

x A

1.25M/h2

1.25M/h2

h h/2 O –h/2 –h
B

Fig. 1.29. Diagrams of stresses
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into condition ΣMz = 0 we have after exclusion of ωkμ

σ = M(2 + μ)xμ/2h2+μ. (1.64)

From Fig. 1.29 where by broken line also for μ = 0.5 the curve according (1.64)
and data from /5/ are represented we can see that with a fall μ the influence
of the curvature on bearing capacity of the bar is reducing.

The tensile stresses are the most dangerous and at certain direction of the
bending moment they can have the absolute highest value. For the case of
small strains expressions (1.46) give

ε∗ = 1/α, Ω(t∗) = (αeσm
+)−1,

Here σ+-the maximum tensile stress. S. Timoshenko in /5/ recommends the
linear option of the solution for computation of tunnel arches strength and,
so, the results above have the meaning for the Geomechanics.



2

Main Equations in Media Mechanics

2.1 Stresses in Body

The stresses p, σ, τ for tension and compression were introduced in Chap. 1.
In order to study the stress state in a point the cube is usually cut about it
(Fig. 2.1). Acting on its faces stresses are often written in a form of a matrix
which is called the tensor (of stresses) as

Tσ =

⎛
⎝σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

⎞
⎠ (2.1)

where τij = τji and as a rule it is supposed σxx ≡ σx, σyy ≡ σy, σzz ≡ σz.
There is an interesting interpretation of a tensor as the vector in

9-dimensional space /7/ the part of which is shown in Fig. 1.22.
Tensor (2.1) fully defines the stress state around a point because unit force

pn at any cross-section through this point with normal n (nx, ny, nz) can be
found from static equations (Fig. 2.2 where stresses from Fig. 2.1 act on the
opposite sides of the cube) as

pnx = σxnx + τxyny + τxznz,
pny = τxynx + σyny + τyznz,
pnz = τxznx + τyzny + σznz.

(2.2)

The projection of pn on n gives normal stress σn as

σn = σx(nx)2 + σy(ny)2 + σz(nz)2 + 2τxynxny + 2τxznxnz + 2τyznynz.

Components τnm and τnl can be determined in the same manner. The trans-
formation of all the tensor stresses can be written in the form (i, j = x, y, z;
r, s = n, m, l)

σrs =
∑

i

∑
j

σkl cos(i, r) cos(j, s). (2.3)
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Fig. 2.1. Cube with stresses on its faces
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Fig. 2.2. Decomposition of vector pn

When the cube rotates in a body stresses on its planes change and such
a position of it can be found that shearing components become zero. The
corresponding faces and normal stresses on them are called main (principal)
planes and stresses respectively. They can be found from conditions

(nx)2 + (ny)2 + (nz)2 = 1, (2.4)
∣∣∣∣∣∣
σx − σn τxy τxz

τxy σy − σn τyz

τxz τyz σz − σn

∣∣∣∣∣∣ = 0. (2.5)

The last of them gives equation relatively to σn

(σn)3 − I1(σn)2 + I2σn − I3 = 0 (2.6)

where n = 1, 2, 3, σ1 ≥ σ2 ≥ σ3 – main stresses and I1, I2, I3 – invariants;
they do not depend on the position of the cube and are computed as
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I1 = σx + σy + σz = σ1 + σ2 + σ3, (2.7)
I2 = σxσy+σzσy + σxσz−(τxy)2−(τxz)2−(τyz)2=σ1σ2+σ2σ3+σ1σ3, (2.8)
I3 = σxσyσz + 2τxyτxzτyz − σx(τyz)2−σy(τxz)2−σz(τxy)2=σ1σ2σ3. (2.9)

In the Mechanics of Fracture the fundamental role plays the maximum
shearing stress that can be defined as follows

τe = 0.5(σ1 − σ3). (2.10)

From (2.2) with a help of the Gauss-Ostrogradski’s theorem /6/ the differen-
tial static equations can be found:

∂σx/∂x + ∂τxy/∂y + ∂τxz/∂z + X = 0,
∂τxy/∂x + ∂σy/∂y + ∂τyz/∂z + Y = 0,
∂τxz/∂x + ∂τyz/∂y + ∂σz/∂z + Z = 0

(2.11)

where X, Y, Z are volume’s forces. As we can see from (2.11) six stresses are
linked only by three expressions and the problem is statically indeterminate.
To solve it the strains must be put in consideration.

2.2 Displacements and Strains

External forces deform a body, so its points move in a new position by
displacements u(ux,uy,uz) which determine strains as /5/

εx = ∂ux/∂x, εy = ∂uy/∂y, εz = ∂uz/∂z,
γxy = ∂ux/∂y + ∂uy/∂x, γxz = ∂uz/∂x + ∂ux/∂z, γyz = ∂uz/∂y + ∂uy/∂z.

(2.12)
Here is also valid γij = γji, εxx ≡ εx, εyy ≡ εy, εzz ≡ εz and strains form a tensor
similar to (2.1) (see errata to 1st ed.)

Tε =
| εx γxy/2 γxz/2|(
γxy/2 εy γyz/2

)
|γxz/2 γyz/2 εz |

. (2.13)

The strains are linked by well-known compatibility equations

∂2εx/∂y2 + ∂2εy/∂x2 = ∂2γxy/∂x∂y,

2∂2εx/∂z∂y = ∂(∂γxy/∂z + ∂γxz/∂y − ∂γyz/∂x)/∂x (2.14)

and 4 other similar relations can be received by cyclic change of indexes.
The generalization for finite linear strains can be fulfilled with considera-

tion of a change of measured basis (see (1.43)) as

εi = ln(li/lio) (i = x, y, z) (2.15)

and there is an option for shear /7/.
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It is not difficult to notice an analogy between tensors (2.1) and (2.13)
where σi, τij must be replaced by εi, γij/2 and vice versa. In this manner
invariants for strains can be found from (2.7)–(2.9) and for maximum shear
we have

γm = ε1 − ε3. (2.16)

Now for 15 unknowns we have 9 equations and in order to close the system
we must add some other 6 equations. They are constitutive laws which are
not the same for different materials.

2.3 Rheological Equations

2.3.1 Generalised Hooke’s Law

In a certain range of deformation the Hooke’s law can be used. It is usually
written in form

εx = (σx − ν(σy + σz))/E, γzy = τzy/G,

εy = (σy − ν(σx + σz))/E, γxz = τxz/G (2.17)
εz = (σz − ν(σx + σy))/E, γxy = τxy/G.

where modulus of shear G is linked with E and the Poisson’s ratio ν by
expression

G = E/2(1 + ν). (2.18)

In practice other forms of the Hooke’s law are often applied. In order to get
some of them we summarize three left relations (2.17) and find

σm = Eem/3(1 − 2ν). (2.19)

Here
em = εx + εy + εz (2.20)

– a relative change of materials volume and

σm = (σx + σy + σz)/3 (2.21)

is the mean stress. Quantities σm, em are invariants of respective tensors
(see above (2.7) and the analogy between them).

Taking off em/3 from the left three expressions (2.17) we receive relations

ei = (1 + ν)Si/E (2.22)

where ei, Si (i = x, y, z or 1, 2, 3 for main strains and stresses) are components
of consequent deviators (tensors with sums of diagonal elements equal to zero).
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Considering (2.22), (2.18) and three right equations (2.17) we can represent
the Hooke’s law as

Sij = 2Geij (i, j = x, y, z) (2.23)

which must be used together with (2.19). Here for i �= j Sij ≡ τij, eij ≡ γij/2.
There are other forms of the Hooke‘s law in the literature.

In practice the effective values σe, εe linked with the second invariants
of consequent deviators (for which expression (2.8) is valid with respective
replacements) are used. They are usually written as follows (εe is given for
incompressible body)

σe =
√

1/2
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2, (2.24)

εe =
(
2/

√
3
)√

ε2
1 + ε2

3 + ε1ε3. (2.25)

With consideration of (2.24), (2.25) relations (2.23) can be represented in the
form useful for generalizations as

eij = (3εe/2σe)Sij. (2.26)

2.3.2 Non-linear Equations

In the theory of ideal plasticity expressions (2.26) mean only a proportionality
of the deviators since ratio εe/σe is taken constant. Above that condition

σe = σyi(τe = τyi = σyi/2), (2.27)

where σyi was given in Chap. 1 and τyi is an yielding point in shear, together
with demand of the constant material’s volume is used.

For a hardening plastic body a dependence of εe on σe must be known and
(2.26) becomes

eij = (3εe(σe)/2σe)Sij. (2.28)

The power law for this purpose is often applied in form

εe = Ω(σe)
m (2.29)

Here Ω, m are constants which can be found from tests in tension, compression
or bending (see Chap. 1). Here below expression (2.29) will be also used as a
dependence of stresses on strains:

σe = ω(εe)
μ (2.30)

where ω = Ω−μ(1 ≥ μ ≥ 0).
Replacing in (2.28) strains eij by their rates we get a power law for a steady

creep (see also (1.41))
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deij/dt = (3B/2)(σeq)m−1Sij. (2.31)

Here σeq is an equivalent stress that takes into account an influence of a stress
state type on curves in coordinates σe, εe.

The simplest way to describe an unsteady creep with damage is to
generalize relation (1.45) (for incompressible body) as /7/

exp(−αεeq)εij = (3Ω(t)/2)(σeq)m−1Sij. (2.32)

where εeq – an equivalent strain which determines a development of a damage.
The experiments /14/ show that as εeq the biggest main strain ε1 may be
taken. If the influence of time is small (2.32) becomes the plasticity law (2.28)
generalized here.

2.3.3 Constitutive Equations for Anisotropic Materials

Equation (2.32) can be generalized for an anisotropic body /7/. If main axes
of stress state coincide with orthotropic directions we have

εiexp(−αεeq) = Ω(t)(σeq)
m−1(kj(σi − σk) + kk(σi − σj)). (2.33)

Here ks (s = i, j, k or x, y, z) are anisotropy parameters. Their role can be ap-
preciated by a divergence of curves in coordinates σe, εe (scalar properties of
a material) and deviations from the condition με = μσ (its vector properties)
where με, μσ are the Lode’s parameters (they are linked with the third invari-
ants of respective deviators) which are determined by well-known relations
/22/

μσ = (2σ2 − σ1 − σ3)/(σ1 − σ3) (1 ≥ μσ ≥ −1), (2.34)
με = 3ε2/(ε1 − ε3) (1 ≥ με ≥ −1) (2.35)

where the latter expression is given for an incompressible body.
Soils are usually stratified or laminated in horizontal directions. For this

case we can use a model of transversally isotropic body with vertical symmetry
axis z (Fig. 2.3).Putting into (2.33) ki = kj = 0.5 we have after transformations

exp(−αεeq)εi = Ω1(t)(σeq)m−1(σi − kσj − (1 − k) σk),
exp(−αεeq)εk = Ω1(t)(σeq)m−1(2σk − σi − σj)(1 − k). (2.36)

where i, j = x, y; 2kk =k/(1 − k), Ω1 = Ω/2(1 − k) and the value of k can be
found from the results of tension or compression in i-direction at σj = σk = 0
according to relation k = −εj/εi.

When k = 0.5 the material is isotropic. If k = 1 it can be modelled as a
system of fibres parallel to axis k in a feeble matrix (a wood, for example).
Cases k = 0 and k = −1 can be interpreted as systems of unconnected bars
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Fig. 2.3. Cube with axis of symmetry z

in directions of axes i, j or under angles π/4 to them respectively (Fig. 2.3).
The last two models correspond to a play-wood.

In the case of plane deformation we have from (2.36) at εy = 0. σy =
kσx + (1 − k)σz and hence

exp(−αεeq)εz = −exp(−αεeq)εx = Ω1(t)(σeq)m−1(σz − σx)(1 − k2). (2.37)

Similar expressions can be found from (2.33) at if kx = ky = 0.5. We can see
that law (2.37) differs from (2.32) by a constant multiplier.

Now we study the rheological properties of a transversally isotropic ma-
terial in a plane stress state for three options of interposition of loading and
isotropy planes. Using relations (2.24), (2.25) and (2.36) we receive

exp(−αεeq)εe = 2Ω1(3(1 − n + n2))−1/2
√

Λ(σeq)m−1σe (2.38)

where n = σy/σx and the structure of function Λ(k, n) depends on a mutual
position of symmetry and loading planes.

For the case of Fig. 2.3 at σk = 0 we have from the first expression (2.36)

exp(−αεeq)εi = Ω1(t)(σeq)m−1(σi − kσj) (i, j, = x y). (2.39)

In this option

Λ = (1 − k + k2)(1 + n2) + n(k2 − 4k + 1). (2.40)

Curves σe(εe) according to (2.38) at α = 0, (2.40) are represented in Fig. 2.4
by solid (k = 0.5), broken (k = 1), interrupted by points (k = 0) and dotted
(k = −1) lines for n equal to 0 and 1. It is easy to see that the body k = 1
has an absolute rigidity at n = 1 and small resistance to deformation at
n = 0. This result is well-known from compression tests of timber along and
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Fig. 2.4. Curves σe(εe) at different n and k when z is axis of symmetry

transverse the fibres respectively. We must also notice that when parameter
k diminishes the material’s rigidity falls.

According to (2.34), (2.35) we find for the cases ε2 = εy and ε2 = εz

respectively

με = 3(μσ ± (1 − 2k))/(5 − 4k ± (1 − 2k)μσ), (2.41)
με = 3(1 − k)(3 ± μσ)/(1 + k)(μσ ± (−1)) (2.42)

at upper signs. The corresponding curves are shown by solid and broken lines
in Fig. 2.5.

From this picture we can see that the influence of k on the vector properties
of the body is also high and condition με = μσ fulfils for an isotropic body
and in relation (2.42) at με = μσ = −1.

A similar situation takes place in two other options of isotropy and loading
planes interposition when we derive from (2.36)

exp(−αεeq)εi = Ω1(t)(σeq)m−1(1 − k)(2σi − σj),
exp(−αεeq)εj = Ω1(t)(σeq)m−1(σj − (1 − k)σi).

(2.43)

In (2.43) parameter k can be determined according to relation k = −εz/εj at
σi = 0 where j is axis of symmetry.

If i = x we have for Λ

Λ = 3(1 − k)2(1 − n) + n2(1 − k + k2) (2.44)

and function σe(εe) can be constructed as in Fig. 2.4 with the mutual replace-
ment of curves n = 0 and n = 1. Expressions (2.41), (2.42) for ε2 = εy and
ε2 = εx can be used at lower signs and consequent diagram με(μσ) can be
found from Fig. 2.5 by rotating it about the centre on angle π.
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Fig. 2.5. Dependence με(μσ) at different k when z is axis of symmetry
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Fig. 2.6. Curves σe(εe) at different n and k when y is axis of symmetry

Such similarities of these two cases can be explained by the same position
of the plane with τe relatively to the symmetry axis.

If in (2.43) i = y is the axis of symmetry function Λ(n, k) can be found by
replacement in (2.38), (2.44) n by 1/n. Corresponding curves σe(εe) are given
in Fig. 2.6 by the same lines as in Fig. 2.4. In order to find all expressions
με(μσ) we must consider three possibilities of relations between strains when
we have

με = 3μσ(1 − k)/(1 + k), (2.45)

με = 3(±(−(1 + k)) − μσ(1 − k))/(1 + k ± μσ(k − 1)) (2.46)

for the options ε2 = εy, ε2 = εz (upper signs) and ε2 = εx (lower signs) respec-
tively. The corresponding diagrams are given by solid, broken and interrupted
by points lines in Fig. 2.7 and we can see also the high influence of k here
Option (2.45) embraces the first and the third quadrants of the plane when k
changes from −1 to 1 including straight line k = 0.5.
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Fig. 2.7. Function με(μσ) at different k when y is axis of symmetry

Following the idea of (2.33) we can generalize (2.31) for a steady creep in
a similar way as

dεi/dt = B(σeq)
m−1(kj(σi − σk) + kk(σi − σj)). (2.47)

and the option of transversally isotropic material can be also developed.

2.4 Solution Methods of Mechanical Problems

2.4.1 General Considerations

In the common case of the continuum mechanics it is necessary to find 15
functions from 15 equations ((2.11), (2.12) and of (2.17) type). Searched vari-
ables should satisfy boundary conditions when stresses or strains are given on
parts of body’s surface. The consequent problems are called the first and the
second border tasks. A mixed problem appears when stresses and strains are
given simultaneously on different parts of the surface.

The usual way to solve the problem consists in exclusion of variables,
so only stresses or strains (displacements) remain. But up to date no final
results are known for the general task even at ideal materials in consider-
ation. For this reason simplifying hypotheses of geometrical character are
introduced when the task is studied as the anti-plane (a longitudinal shear),
plane, axisymmetric etc. problem.

2.4.2 Basic Equations for Anti-plane Deformation

In this case we have only five unknowns (Fig. 2.8): τxz ≡ τx, τyz ≡ τy, γxz ≡
γx, γyz ≡ γy and uz.
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Fig. 2.8. Stresses at anti-plane deformation

According to (2.11)–(2.14) they are linked by equations

∂τx/∂x + ∂τy/∂y = 0, (2.48)
γx = ∂uz/∂x, γy = ∂uz/∂y, (2.49)
∂γx/∂y − ∂γy/∂x = 0. (2.50)

In elastic range we receive from (2.15)

τx = Gγx, τy = Gγy (2.51)

and for 5 unknowns we have 5 equations (2.48), (2.49) and (2.51) or for 4
variables τx, τy, γx, γy – 4 equations: (2.48), (2.50) and (2.51).

For an ideal plastic body condition τe = τyi where

τe =
√

(τx)2 + (τy)2 (2.52)

makes the problem statically determinate.
Lastly at unsteady creep we have from (2.32)

exp(−αεeq)γi = Ω(t)(τe)
m−1τi (2.53)

where i = x, y and maximum shear may be computed through γx, γy by
expression similar to (2.52):

γm =
√

(γx)2 + (γy)2. (2.54)

For some problems it is more convenient to use polar coordinates r =√
x2 + y2, tan−1θ = y/x (Fig. 2.9) where

τr ≡ τrz = τxcos θ + τysin θ, τθ ≡ τθz = −τxsin θ + τycos θ (2.55)
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Fig. 2.9. Polar coordinate system

and instead of (2.48) we have

∂(rτr)/∂r + ∂τθ/∂θ = 0. (2.56)

The shearing strains in this case are:

γr ≡ γrz = ∂uz/∂r, γθ ≡ γθz = ∂uz/r∂θ (2.57)

and compatibility law (2.50) becomes

∂γr/∂θ − ∂(rγθ)/∂r = 0. (2.58)

Expressions (2.51)–(2.54) are valid at the replacement in them x, y by r, θ.

2.4.3 Plane Problem

Here 8 main variables do not depend on one coordinate (for example z) and
for them we have from (2.11), (2.12) and (2.14) common equations

∂σx/∂x + ∂τxy/∂y + X = 0, ∂τxy/∂x + ∂σy/∂y + Y = 0, (2.59)
εx = ∂ux/∂x, εy = ∂uy/∂y, γxy = ∂ux/∂y + ∂uy/∂x, (2.60)

∂2εx/∂y2 + ∂2εy/∂x2 = ∂2γxy/∂x∂y. (2.61)

The Hooke’s law (2.17) in the case σz = 0 (plane stress state) becomes

Eεx = σx − νσy, Eεy = σy − νσx, Gγxy = τxy. (2.62)

If εz = 0 (plane deformation) then we find from the third expression (2.17)
σz = ν(σx + σy) and relations (2.62) are valid at the replacement in them E,
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ν by E/(1 − ν2), ν/(1 − ν) respectively and it is not difficult to prove that
G-value remains the same.

Excluding from (2.59), (2.60), (2.62) stresses and strains we get two equa-
tions for ux, uy. If we solve the problem in stresses we can receive from
(2.59)–(2.62) a byharmonic equation for a function Φ as

∂4Φ/∂x4 + 2∂4Φ/∂x2∂y2 + ∂4Φ/∂y4 = 0 (2.63)

where

σx = ∂2Φ/∂y2, σy = ∂2Φ/∂x2, τxy = −∂2Φ/∂x∂y − yX − xY. (2.64)

The maximum shearing stress in this problem is

τe = 0.5
√

(σx − σy)2 + 4(τxy)2 (2.65)

and here we can also conclude that for ideal plasticity condition τe = τyi =
σyi/2 together with (2.59) makes the problem statically determinate one. For
hardening at creep body we have for the plane deformation

exp(−αεeq)εx = −exp(−αεeq)εy = 3Ω(t)(σeq)m−1(σx − σy)/4,

exp(−αεeq)γxy = 3Ω(σeq)m−1τxy. (2.66)

The main equations in the polar coordinate system (Fig. 2.9) can be derived di-
rectly or by transformations of corresponding expressions in Decart’s variables
x, y. In /7/ a simplified procedure is used for this purpose (after differentiation
we equal θ to zero). As a result we receive firstly static laws as

r∂σr/∂r + σr − σθ + ∂τrθ/∂θ = 0, ∂(r2τrθ)/∂r + r∂σθ/∂θ = 0. (2.67)

Combining (2.67) we receive a very useful expression

∂2τrθ/∂θ2 + ∂(r∂(σr − σθ)/∂θ)/∂r − r∂(∂(r2τrθ)/r∂r)/∂r = 0 (2.68)

Strains are linked with displacements by relations similar to (2.60) and they
can be received from them with the help of vector transformation equations
similar to (2.55):

εr = ∂ur/∂r, εθ = ur/r + ∂uθ/r∂θ, γrθ = r∂(uθ/r)/∂r + ∂ur/r∂θ. (2.69)

Condition of constant volume εr + εθ = 0 can be written with the help of two
first expressions (2.69) as

∂(rur)/∂r = − ∂uθ/∂θ (2.70)

and instead of (2.61) we have

r∂(∂(r2εθ)/r∂r)/∂r− ∂2εθ/∂θ2 = ∂2(rγrθ)/∂r∂θ. (2.71)
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It is valid to notice the identity of (2.71) and (2.68) if we replace εθ, γrθ by τrθ
and σr − σθ respectively.

The Hooke’s law (2.62), relations (2.65), (2.66) are valid here with the
replacement in them x, y by r, θ. Transformation equations (2.3) can be
expressed here as (see also Fig. 2.9)

τrθ = 0.5(σy − σx) sin 2θ + τxy cos 2θ,

σr = σm + 0.5(σx − σy) cos 2θ + τxy sin 2θ,

σθ = σm − 0.5(σx − σy) cos 2θ − τxy sin 2θ (2.72)

σ1

σ3
= σ ± τe (2.73)

where (see the Mohr’s circle in Fig. 1.22)

σm = 0.5(σx + σy) = 0.5(σθ + σr).

Lastly instead of (2.63), (2.64) we write

(∂/r∂r + ∂2/r2∂θ2 + ∂2/∂r2)(∂Φ/r∂r + ∂2Φ/r2∂θ2 + ∂2Φ/∂r2) = 0, (2.74)
σr = ∂Φ/r∂r + ∂2Φ/r2∂θ2, σθ = ∂2Φ/∂r2, τ = − ∂(∂Φ/r∂θ)∂r. (2.75)

2.4.4 Axisymmetric Problem

In this case cylindrical coordinates (Fig. 2.10) can be used and if all the
variables do not depend on angle θ the main equations are:

εr = ∂ur/∂r, εθ = ur/r, εz = ∂uz/∂z, γrz = ∂ur/∂z + ∂uz/∂r,
∂σr/∂r + ∂τrz/∂z + (σr − σθ)/r = 0, ∂τrz/∂r + ∂σz/∂z + τrz/r = 0,

Δσr − 2(σr − σθ)/r2 + 3(∂2σr/∂r2)/(1 + ν) = 0,

Δσθ + 2(σr − σθ)/r2 + 3(∂σr/r∂r)/(1 + ν) = 0. (2.76)

χ

ρ
σθ

σχ

σr

σz
σρ

θ

N

z

x

O

Fig. 2.10. Cylindrical and spherical coordinates
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The first line σχ in (2.76) is the Saint-Venant’s expressions, the second
one represents (2.78) − ρ(∂(ρ3τρχ)/ρ2∂ρ)/∂ρ static law and the latter two are
compatibility equations in which Δ is the Laplace’s operator of this task

Δ = ∂2/∂r2 + r−1∂/∂r + ∂2/∂z2.

2.4.5 Spherical Coordinates

In the option when all the variables are independent on θ the initial static
laws can be written as

ρ∂σρ/∂ρ + ∂σχ/∂χ + 2σρ − σχ − σθ + τρχ cot χ = 0,
∂(ρ3τρχ)/ρ2∂ρ + ∂σχ/∂χ + (σθ − σχ) cot χ = 0.

(2.77)

Combining (2.77) at σθ = σχ we receive a very useful equation

∂2(ρ2(σρ − σχ))/ρ∂ρ∂χ + ∂2τρχ/∂χ2 + ∂(τρχ cot χ)/∂χ
− ρ(∂(ρ3τρχ)/ρ2∂ρ)∂ρ = 0. (2.78)

Strains are linked with displacements by expressions

ερ = ∂uρ/∂ρ, εχ = ∂uχ/ρ∂χ + uρ/ρ, εθ = uρ/ρ + uχ(cot χ)/ρ,

γρχ = ∂uρ/ρ∂χ + ρ∂(uχ/ρ)/∂ρ. (2.79)

Three of them submit to compatibility equation

ρ∂(ρ∂εχ/∂ρ)/∂ρ + ∂2ερ/∂χ2 + ρ∂(εχ − ερ)/∂ρ − ∂2(ργρχ)/∂χ∂ρ = 0

which at replacement ρ, χ by r, θ gives (2.71). The rheological laws will be
given for a concrete task.

If the main variables do not depend on angle χ the equations are simpler
and can be written as follows

d(ρ2σρ)/ρdρ − 2σθ = 0, ερ = duρ/dρ, εθ = εχ = uρ/ρ. (2.80)

The strains are linked by the conditions of compatibility and of a constant
volume:

dεθ/dρ + (εθ − ερ)/ρ = 0, d(ρ2uρ)/dρ = 0. (2.81)

When uθ = uχ = 0 the second and the third equation (2.80) are valid. Relation
for γρχ as well as the compatibility law are

γρχ = duρ/ρdχ, dεχ/dχ = γρχ. (2.82)
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2.5 Economical Profile of Triangular Dam Under
Self-Weight and Lateral Pressure of Water

Brittle materials badly resist tensile stress. Because of that in made of them
structures such as triangular dam (Fig. 2.11) only compressive pressures are
allowed. In economical profile on face OA the condition σy = 0 is taken and
according to the hypothesis of plane horizontal cross-sections εy = kx where
k is angle of their rotation we have from (1.48) (see diagram in Fig. 2.11)

σy = ω(t)kμxμ. (2.83)

Using integral static equations ΣY = 0 and ΣMA = 0 we receive

−δmy2 tan β = 2ωkμ

ytan β∫

0

xμdx,

−δmy3 tan2 β − δwy3 = ωkμ

ytan β∫

0

xμ+1dx.

Here β is angle in apex of the profile, δm, δw – specific weights of dam material
and water. Computing the integrals we obtain after cancellations
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Fig. 2.11. Profile of triangle dam
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−δm = 2ωkμyμ−1(tanμβ)/(μ + 1),

−(δmtan2β + δw) = 6ωkμyμ−1(tanμ+2β)/(μ + 2).
(2.84)

Excluding from (2.84) ωkμ we find minimum angle β for economical profile as

tan β =
√

(2 + μ)/(2μ + 1)
√

δw/δm. (2.85)

At μ = 1 we deduce from (2.85) the well-known elastic solution /51/.
An absence of tensile stresses does not exclude a fracture due to maximum

strain. We shall determine it on faces OA and OB. In the first case we have
σy = τxy = 0 and

σx = q = −yδw (2.86)

or with consideration of (2.85)

q = −yδm((2μ + 1)/(μ + 2)) tan2 β. (2.87)

In order to receive main compressive stress on face OB we exclude from (2.83)
and the first (2.84) (the second one coincides with it due to (2.85)) multiplier
ωkμ which gives

σy = −0.5δmy(μ + 1). (2.88)

Now we use two first equations (2.2) with τxz = τyz = 0, pnx = pny = 0 in
form

σxcos β − τxysin β = 0, τxycos β − σysin β = 0 (2.89)

and obtain

τxy = −0.5yδm(μ + 1) tan β, σx = −0.5δmy(μ + 1) tan2 β. (2.90)

From relations (2.73) for main (principal) stresses (see e.g./47/) we compute
σ1 = 0 and the stress along line OB as

σ3 = − 0.5yδm(μ + 1)/cos2 β. (2.91)

To find dangerous points we combine from (2.87), (2.91) ratio

q/σ3 = 2((2μ + 1)/(2 + 3μ + μ2))/ sin2 β (2.92)

At μ = 1, μ = 0 we have q = /σ3/sin2β and, so, /σ3/ > q. Maximum of ratio
(2.92) takes place at μ = 0.366 and is equal to 1.072 sin2 β or

max(q/σ3) = 1.464/(δm/δw + 1.366).

For real materials it is also less than unity. Since /σ3/ increases with y the
fracture of the economical profile may be expected in the lowest part of face
OB. For elastic materials we can find with the help of (2.91)

max ε = (ν/E)ymax/cos2 β.

The use of infinite elongations rate criterion gives for incompressible
materials (clay e.g.)

ε∗ = 1/α, Ω(t∗) = (max /σ3/)m/αe. (2.93)
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Some Elastic Solutions

3.1 Longitudinal Shear

3.1.1 General Considerations

If a force Q acts along axis z (Fig. 3.1) we have from (2.56) a simple equation

d(rτr)/dr = 0 (3.1)

with an obvious solution τr = C/r where C = −Q/2π from the equilibrium
equation ΣZ = 0 of the part of the cylinder in Fig. 3.1. Using the Hooke’s law
(2.51) and the first expression (2.57) we can write the final result as follows

τr = −Q/2πr, uz = −(Q/2πG) ln r + uo (3.2)

where uo is a constant.
Now we study the problem in complex variables z = x + iy, ζ = ξ + iη

etc. The convenience of such an approach follows from the fact that main
unknowns (displacements, stresses and, hence, strains) can be determined by
complex variables and their derivatives. According to definition differentiation
of a function

w(z) = ϕ(x, y) + iψ(x, y) (3.3)

is possible when its real (Re) ϕ and imaginary (Im) ψ parts satisfy well-known
equations of Cauchy-Riemann

∂ϕ/∂x = ∂ψ/∂y, ∂ϕ/∂y = −∂ψ/∂x. (3.4)

If the function w(z) is known the main variables of the task can be found by
the following relations (we can prove the second of them using expressions
(3.4), (2.48), (2.50), (2.51))

uz = ϕ(x, y)/G = Re(w(z))/G, τx − iτy = (τr − iτθ)e−iθ = w′(z). (3.5)
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The latter equation is derived with the help of relation for vector components
transformation (2.55) and sign ‘means a derivative by z. We can check expres-
sions above on the example of Fig. 3.1 for which the solution can be given in
the following way:

w(z) = −(Q/2π) ln z + Guo (3.6)

The convenience of the complex variables usage consists in the opportunity
of conformal transformations application when solutions for simple figures
(a semi-plane or a circle) can be transformed to compound sections /16/.

3.1.2 Longitudinal Displacement of Strip

To derive the solution of this problem by the conformal transformation of
result (3.6) to the straight line −l, l (Fig. 3.2) with the help of the Zhoukovski’s
relation which was deduced for an ellipse and here is used for our case as

ζ = 0.5l(z + z−1),
z
z−1 =

(
ζ ±

√
ζ2 − l2

)
/l (3.7)
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we put the second of these expressions into (3.6) and using (3.5) we receive

w(ζ) = Q ln
(

ζ/l +
√

(ζ/l)2 − 1
)

/π + Guo, τξ − iτη = Q/π
√

ζ2 − l2 = w′(ζ).
(3.8)

Along axis ξ we compute as follows

At/ξ/ < l : uz = uo, τξ = 0, τη = Q/π
√

l2 − ξ2
,

At/ξ/ > l : uz =uo − (Q/Gπ) ln(ξ/l +
√

(ξ/l)2 − 1), τη = 0, τξ = Q/π
√

ξ2 − l2.
(3.9)

In the same manner the displacement and stresses in any part of the massif
can be found. The most dangerous points are η = 0, /ξ/ = l and in order
to investigate the fracture process there it is convenient to use decomposition
ξ − l = reiθ which gives according to expressions (3.5), (3.8) and (2.52)

uz = uo − (Q/Gπ)
√

2r/l cos(θ/2),
τr

τθ
= Q/π

√
2rl×

−cos(θ/2)

sin(θ/2)
, τe =Q/π

√
2rl.

From the third of these relations we can see that the condition τe = constant
gives a circumference with a center at /ξ/ = l where a fracture or plastic
strains should begin. Now following the Griffith’s idea (see Sect. 1.5.2) we
find critical load similar (1.23) (see also Sect. 3.1.4)

Q∗ =
√

2Gγsπl (3.10)

3.1.3 Deformation of Massif with Circular Hole of Unit Radius

In this case (Fig. 3.3) the boundary conditions are:

τη|ζ=∞ = τζ, τρ|ρ=1 = 0. (3.11)

τζ

τζ

ξ

η

ρ

Z

Fig. 3.3. Massif with circular hole
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We seek the solution in a form

w′(ζ) =
∞∑

n=0

An/ζn; (3.12)

and the first condition (3.11) gives immediately A0 = −iτζ. Now with the help
of (3.5) we rewrite the second (3.11) as Re(eiθw′(eiθ)) = 0 from that we have
A2 = −iτζ and all other factors are equal to zero. So, we receive

w′(ζ) = − iτζ(1 + ζ−2), w(ζ) = −iτζ(ζ − ζ−1). (3.13)

For example at η = 0 we compute by (3.5)

τξ = uz = 0, τη = τζ(1 + ξ−2)

and τη(1) = 2τζ – the dangerous point.

3.1.4 Brittle Rupture of Body with Crack

This problem is very significant in the Mechanics of Fracture. In the literature
it is usually named as the third task of cracks. Its solution can be received
by conformal transformation of the second relation (3.13) with the help of
Zhoukovski’s expression (3.7) in which the variables ζ and z are interchanged.
So, with consideration of condition τo = 2τζ/l we have (Fig. 3.4)

w′(z) = −τoz/
√

l2 − z2, w(z) = ± τo

√
l2 − z2. (3.14)

It is not difficult to prove that the first expression (3.14) can be got from the
second (3.8) after replacing in it ζ, l, Q/π by l/z, l/l, τo/l respectively.

At x = 0 we determine from (3.14)

uz = ± (τo/G)
√

l2 + y2, τy = τoy/
√

l2 + y2, τx = 0. (3.15)

Along the other axis (x) we find similarly

τo

τo

θ

z

y
II

r

x

Fig. 3.4. Crack at anti-plane deformation
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uz = ± (τo/G)
√

l2 − x2, τy = 0, τx = −τox/
√

l2 − x2(/x/ < l),

uz = 0, τx = 0, τy = τox/
√

x2 − l2(/x/ > l).
(3.16)

According to the Clapeyron’s theorem we can compute the work which
is done by stress τy at its decrease from τo to zero which corresponds to a
formation of the crack as

W = τo

1∫

−1

uzdx = π(τo)2l2/2G. (3.17)

When the crack begins to propagate an increment of the work becomes
equal to a stretching energy 4γsdl where γs is this energy per unit length. From
this condition we find critical stress

τ ∗ = 2
√

γsG/πl. (3.18)

From the strength point of view stresses and strains in the edge of the crack
are of the greatest interest. To find them we use the asymptotic approach as in
Sect. 3.1.2 that in polar coordinates r, θ (see Fig. 3.4) according to expressions
(3.5), (3.14) gives

uz = τo

√
2rl sin(θ/2)/G, τr =

√
l/2rτo sin(θ/2),

τθ =
√

l/2rτo cos(θ/2), τe = τo

√
l/2r.

(3.19)

From the fourth of these relations we can see that in this case condition τe =
constant represents also a circumference with the center in the top of crack.

Since the largest part of the energy concentrates near the crack edges we
can use expressions (3.19) for the computation of τ∗. When the crack grows
we should put in the first relation (3.19) θ = π, r = dl − x and in the third
one – θ = 0, r = x, then the increment of the work at the crack propagation
is equal to that in (3.17) as follows

dW =

dl∫

0

τθ(0)uz(π)dx = ((τo)2/G)ldl

1∫

0

√
(1 − ξ)/ξdξ

or after integration

dW = (τ2
o/2G)πldl. (3.20)

Now we introduce an intensity factor K3 = τo

√
πl and equaling dW to

the stretching energy 2γsdl we find K3∗ = 2(γsG)0.5 after that the strength
condition may be written in form

K3 ≤ K3∗

where factor K3∗ is determined by the properties of the continuum and its
value can be found experimentally in elastic or plastic range /17/. The tests
show that the condition K3∗ = constant fulfils well enough for brittle bodies
only. However (3.20) characterizes a resistance of the material to the crack
propagation (the so-called fracture toughness).
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3.1.5 Conclusion

Problems of anti-plane deformation are ones of the simplest in the Mechanics
of Continuum and Fracture. But their solutions have practical and theoretical
value. Many processes in the earth (a loss of structures stability, landslides
etc.) occur due to shear stresses. Later on we will consider the problems above
in a non-linear range and the analogy between the punch movement and crack
propagation will be used for finding the solution of one of them when a result
of the other is known. Moreover there is a similarity between these results and
ones in the plane deformation will be also of great importance.

3.2 Plane Problem

3.2.1 Wedge Under One-Sided Load

In this case we suppose that stresses and strains do not depend on coordinate r
(Fig. 3.5) and expressions (2.67), (2.71) become

dτ/dθ + σr − σθ = 0, dσθ/dθ + 2τ = 0, dεr/dθ = γ − C/G (3.21)

where C is a constant. Combining these relations with the Hooke’s law (2.62)
(in polar coordinates) we receive equation

d2τ/dθ2 + 4τ = 4C

which has the solution with consideration of boundary condition τ(±λ) = 0
in form

τ = Co(cos 2θ − cos 2λ) (3.22)
and from (3.21)

σr

σθ
= C1 + Co(2θ cos 2λ ± sin 2θ). (3.23)

Finally boundary conditions σθ(−λ) = 0, σθ(λ) = −p give the values of
constants as

Co = 0.5p(sin 2λ − 2λ cos 2λ)−1, C1 = −p/2 (3.24)

and according to (2.65)

τe = 0.5p
√

(1 − 2 cos 2θ cos 2λ + cos2 2λ)/(sin 2λ − 2λ cos 2λ). (3.25)

The analysis of (3.25) shows that at λ = π/4 the maximum shearing stress is
the same in the whole wedge and it is equal to p/2. At other λ > π/4 τe reaches
his maximum only on axis θ = 0 (interrupted by points line in Fig. 3.5).

In order to compute displacements we firstly determine the strains accord-
ing to the Hooke’s law (2.62) as

εr

εθ
= (−0.5p(1 − 2ν) + Co(2(1 − 2ν)θ cos 2λ ± sin 2θ)/2G),

γ = Co(cos 2θ − cos 2λ)/G.

(3.26)
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Using (2.69), neglecting the constant displacement and excluding infinite
values at r = 0 we receive

ur = r(−0.5p(1 − 2ν) + Co(2(1 − 2ν)θ cos 2λ + sin 2θ))/2G,

uθ = Cor(cos 2θ − 4(1 − ν) ln(r/d) cos 2λ)/2G.
(3.27)

where d is the the value of r where points have no tangential displacements
for incompressible material (ν = 0.5) relations (3.26), (3.27) become much
simpler.

3.2.2 Wedge Pressed by Inclined Plates

General Case

Let plates move parallel to their initial position (broken straight lines in
Fig. 3.6) with displacement V(λ) = Vo. Then according to (2.70), (2.71) at
uθ = V(θ) and (2.69) we receive

ur = U(θ)/r − V′, εr = −εθ = −U/r2, γ = U′/r2 − f(θ)/r (3.28)
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where f = V + V′′ and from (2.66) at m = 1, Ω = 1/3G we have at τ ≡ τrθ

τ = G(U′/r2 − f/r), σr − σθ = −4GU/r2 (3.29)

that gives together with (2.67)

σθ = F(r) + (G/r)
∫

fdθ, σr = F(r) + (G/r)
∫

fdθ. (3.30)

Putting stresses according to (3.29), (3.30) into the first static law (2.67)
we receive an equality

r3dF/dr − Gr
(

f′ +
∫

fdθ
)

= −G(U′′ + 4U)

both parts of which must be equal to the same constant, e.g. n and

f′ +
∫

fdθ = 0.

With the consideration of anti-symmetry and symmetry conditions we
determine

f = −C sin θ, U = −Dcos 2θ − n/4G

where C, D are constants. In order to find n we use a stick demand /18/
U(λ) = 0 which gives

U = −D(cos 2θ − cos 2λ),

and, consequently, – the stresses as

τ = G((2D/r2) sin 2θ + (C/r) sin θ),

σθ = A + 2(GD/r2) cos 2λ + (GC/r) cos θ,

σr = A − 2(GD/r2)(cos 2λ − 2 cos 2θ) + (GC/r) cos θ (3.31)

where constants A, C, D should be determined from condition σθ(a, λ) = 0
and integral static equations

λ∫

−λ

σr(a, θ) cos θdθ = 0,

a+l∫

a

σθ(r, λ)dr = −ql.

(3.32)

Putting in (3.32) stresses according to (3.31) we derive at θ = λ

σθ = −(q/Bo)(Λ(1 − a2/r2) cos 2λ + (1 − a/r) cosλ) (3.33)

where

Bo = Λ(1 + a/l)−1 cos 2λ + (1 − (a/l) ln(l/a + 1) cosλ) (3.34)

and
Λ = 3(cosλ − λ/ sinλ)/16 sin 2λ.
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In practice l 
 a and (3.34) becomes

Bo = Λ cos 2λ + cosλ (3.35)

The diagrams σθ(r/a) at l/a = 9 are given by solid lines in Figs. 3.6–3.8 for
λ = π/6, λ = π/4 (a model of a retaining wall) and λ = π/2 (a flow of the
material between two foundations) respectively.

From (3.31), (2.65) with consideration of D-value we compute maximum
shearing stress as

τe = (q/Bo)((Λ
2 cos 2λ − cos 2θ)2 + (Λ sin 2θ + sin θ)2)0.5. (3.36)

To find maximum of τe we use condition dτe/dθ = 0 which gives θ = 0 and
equation

cos 2θ + (1/6)(4Λ cos2λ + 1/Λ) cosθ − 1/3 = 0. (3.37)

Investigations show that at λ < 5π/12 an impossible condition cos θ > 1 takes
place and hence τe should be found from (3.36) at θ = 0 as follows

/τe/ = 2qΛ(sin2 λ)/Bo.

But at λ > 5π/12 max τe is determined by (3.36) with θ from (3.37). Diagram
max τe(λ) is given in Fig. 3.9 by solid line 1.
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Fig. 3.9. Diagram max τe(λ)

Some Particular Cases

Besides this common solution it is interesting to study two simpler options:
C = 0 (a compulsory flow of the material between immovable plates) and
D = 0 (when plates move and the compulsory flow is negligible). In the both
cases we use expressions for stresses (3.31), condition σθ(a, λ) = 0 and the
second static equation (3.32). For the first option we have

σθ = −q(1 − a2/r2)/B1, (3.38)

τe = (q/B1)(1 − 2 cos 2θ/ cos 2λ + 1/ cos2 2λ)0.5 (3.39)

where
B1 = 1 + a/l.

At l >> a B1 = 1.163 and diagrams σθ(r/a) are shown in Figs. 3.6 and
3.7 by broken lines. Condition dτe/dθ = 0 gives demand sin 2θ = 0 with
consequent solutions θ = 0 and θ = π/2 but calculations show that only the
first of them gives to τe the maximum value which is

max τe = (q/B1)(1 − 1/ cos 2λ)

Diagram max τe(λ) according to this relation is drawn in Fig. 3.9 by broken
line and we can see that at λ = π/4 it tends to infinity.

For the case D = 0 we derive in a similar way

σθ = −(q/B2)(1 − (a cos θ)/(r cosλ)), (3.40)
τe = (q/B2)(sin θ/ cosλ) (3.41)

where
B2 = 1 − (a/l) ln(1 + l/a)
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The highest value of σθ is at θ = λ and since at l 
 a B2 =1. Diagrams σθ(r/a)
are given by interrupted by points lines in Figs. 3.6–3.8. Maximum τe takes
place at θ = λ and the consequent diagram is shown in Fig. 3.9 by interrupted
by points curve which tends to infinity at λ = π/2. So we can conclude that
max τe—values can be high and plastic deformations are expected in some
zones.

Case of Parallel Plates

As an interesting particular case we consider a version of parallel plates
(Fig. 3.10). We take uy as a function of y only and according to incompressibil-
ity equation εx + εy = 0 as well as symmetry and stick (at y = h) conditions
we find

ux = 3Vox(h2 − y2)/2h3, uy = Voy(y2 − 3h2)/2h3 (3.42)

where Vo is a velocity of plates movement. Then we compute strain by re-
lations (2.60) and stresses by the Hooke’s law (2.62) and static equations as
follows

τxy = −3VoGxy/h3
,

σx = 3GVo(3(h2 − y2) + x2 − l2)/2h3
, (3.43)

σy = 3GVo(y2 − h2 + x2 − l2)/2h3.

Here condition σy(l, h) = 0 is used. Integral equilibrium law

1∫

−1

σy(x, h)dx = −P (3.44)

gives
P = 2GVol3/h3. (3.45)

P

P

y
h

h

x

II

Fig. 3.10. Compression of layer by parallel plates
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3.2.3 Wedge Under Concentrated Force in its Apex:
Some Generalizations

General Case

In this problem we have boundary conditions: σθ = τrθ = 0 at θ = ±λ. Since
angle λ is arbitrary we can suppose that σθ and τrθ are absent at any θ. That
allows to seek function Φ from (2.75) in form

Φ = rf(θ) + C (3.46)

where C is a constant. Now we put (3.46) into (2.74) which gives f′′ + f = 0
and with consideration of symmetry as well as static condition at αo = 0
(Fig. 3.11) we receive

σr = −P(cos θ)/r(λ + 0.5 sin2λ). (3.47)

The strains and displacements can be determined as usual.
The particular case λ = π/2 is of great interest

σr = −2P(cos θ)/πr,
εr = −2P(cos θ)/Eπr, (3.48)
εθ = 2Pν(cos θ)/Eπr.

Using relations (2.69) we find displacements ur, uθ /5/ which we write for the
edge of the semi-plane as follows

ux ≡ ur = −P(1 − ν)/2Eπ, uy ≡ uθ = (2P/πE) ln(x/d) (3.49)

where d is the coordinate on axis y which has no vertical movement.

Pαo

x

r

y

θ

λλ

σr

Fig. 3.11. Wedge under concentrated force
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Fig. 3.12. Deformation under flexible load

Case of Distributed Load

If the load is distributed in interval (a, b) we replace in the relations above P
by pdη and integrate as follows

uy = uo + (2/πE)

b∫

a

p(η) ln(x − η)dη (3.50)

and for the case p = constant at −l ≤ η ≤ l (Fig. 3.12) we compute

uy = uo−2(pl/πE)((x/l+1) ln(x/l+1)+(1−x/l) ln(x/l−1))(/l/ ≤ x). (3.51)

In the same manner stresses under a flexible load in an interval (−l, l) can
be found. We begin with the first relation (3.48) and according to (2.72) we
write

σy = −(2P/πr) cos3 θ = −2Py3/πr4,

τxy = −2Pxy2/πr4, σx = −2Px2y/πr4.

Now as before we replace P by pdη and summarize the loads as follows:

σy = −(2py3/π
) 1∫

−1

(
y2 + (x − η)2

)−2

dη

or after integration:

σy = −p(υ1 − υ2 + 0.5(sin 2υ1 − sin 2υ2))/π. (3.52)

Similarly we find:

σx = −p(υ1 − υ2 + 0.5(sin 2υ2 − sin 2υ1))/π, τxy = p(sin2 υ1 − sin2 υ2)/π.
(3.53)
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According to (2.65) and (2.72) we compute maximum shearing stress and
main components as:

τe = p sin (υ1 − υ2)/π,

σ1

σ3
=

p (υ2 − υ1 ± sin (υ2 − υ1))
π

.
(3.54)

The biggest τe is p/π and it realizes on the curve x2 + y2 = l2 (broken line
in Fig. 3.12). Hence if strength condition τe = τyi is used a sliding along this
circumference should be considered. This result was particularly applied to
an appreciation of the earth resistance to mountains movement.

The First Ultimate Load

For the foundation with width 2l and depth h we must add load γeh outside
the main one (p in Fig. 3.12). We suppose the hydrostatic distribution of the
soil’s weight σ3s = σ1s = γe(h + y), We take also compressive stresses as
positive and rewrite the second relation (3.54) in the following way:

σ1

σ3
=

(p − γeh) (υ ± sin υ)
π

− γe (h + y) (3.55)

where υ = υ1 − υ2. Now we put these stresses in the ultimate equilibrium
condition (see broken line in Fig. 1.22) in form:

σ1 − σ3 = 2(σm + c cot ϕ) sin ϕ. (3.56)

That gives expression:

((p − γeh)/π) sin υ − (((p − γeh)/π)υ + γe(h + y)) sin ϕ = c cos ϕ

from which we can find equation of the boundary curve where the first plastic
strains can appear:

y = ((p − γeh)/πγe)(sin υ/ sin ϕ − υ) − c/γe tan ϕ − h. (3.57)

Now we use the condition dy/dυ = 0 which gives cos υ = sin ϕ or:

υ = π/2 − ϕ (3.58)

Putting (3.58) into (3.57) we derive:

ymax = ((p − γeh)/πγe)(cot ϕ + ϕ − π/2) − c(cot ϕ)/γe − h.

If we decide to find a load at which plastic deformation does not begin in any
point we must suppose ymax = 0 that leads to minimum load:

min pyi = π(γeh + c cot ϕ)/(cot ϕ + ϕ − π/2) + γeh
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which is always called in the literature as the first critical load that was found
by Professor Pousyrevski in 1929. At h = 0 it becomes:

min pyi = πc/(1 + (ϕ − π/2) tan ϕ) (3.59)

and this relation can not be applied to soils without cohesiveness. If ϕ = 0
it coincides with value pu (ultimate load) following from (3.54). At other ϕ
factor c may be represented as a1τyi where a1-values are given in Table here.
If a1 is less pyi < pu.

ϕ 0 5 10 15 20 25 30 35 40 45

a1 1 0.87 0.75 0.64 0.56 0.47 0.40 0.32 0.27 0.215
a2 0.61 0.49 0.38 0.29 0.21 0.15 0.10 0.07 0.04 0.024
a1/a2 1.64 1.80 2.0 2.27 2.62 3.11 3.79 4.83 6.41 9.174

To take more real approach we suppose that:

p(η) = po(1 − η/l)

(broken straight lines in Fig. 3.12). Computations as before give:

σy = po((1 − x)(υ2 − υ1 + 0.5(sin 2υ1 − sin 2υ2)) + y(cos2 υ1 − cos2 υ2))/πl,
σx = po((1 − x)(υ2 − υ1 − 0.5(sin 2υ1 − sin 2υ2))

+ y(cos2 υ2 − cos2 υ1 + ln(r2/r1)))/πl,

τxy = po((1 − x)(cos2 υ2 − cos2 υ1) + y(υ2 − υ1 + 0.5(sin 2υ2 − sin 2υ1)))/πl.

Expression (2.65) for τe is somewhat complex. To simplify the problem we
find it on axis y (at x = 0) which gives expression at y/l = u

τe = (poy/π)
√

1(u + 1/u)2 + (u tan−1(1/u) − 1(u + 1/u)2

that grows with an increase of y and reaches its biggest value in infinity.
So according to this approach the mountain range is stable.

3.2.4 Beams on Elastic Foundation

We model such a foundation as a set of closely spaced separate springs
(Fig. 3.13) which exert reactions r(x) = kv(x) where k is a modulus of an
elastic bed and v – a deflection of a beam. If distributed load is p(x) total
forces acting on the beam are q = p − r and according to the Strength of
Material law q = −M′′ where M is linked with the deflection by expression
(1.54) at m = 1 as

v′′ = −M/EI. (3.60)
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Fig. 3.13. Beam on elastic foundation

P
a

a)
y

x

b)

dη

b
P(η)

3 π//4β8EIβ3
P

π/4β

η

4β
P

Fig. 3.14. Concentrated load in origin

Here E-elasticity modulus of the beam material. Combining all these rela-
tions we receive linear differential equation of the fourth order for the beam
on elastic foundation as follows:

vIV + 4β4v = p(x)/EI

where the propotionality factor is:

4β4 = k/EI (3.61)

The general solution of (3.61) is:

v = Aeβx cos βx + Beβx sin βx + Ce−βx cos βx + De−βx sin βx + vp. (3.62)

Here A, B, C, D – constants and vp is a particular solution.
Now we consider the important example of concentrated load P in the

origin of the coordinate system x, y (Fig. 3.14, a). In this case p(x) = 0 and
hence vp = 0. Since displacement in infinity has finite value we must suppose
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A = B = 0. Constants C, D can be found from conditions v′(0) = 0 and
v′′′(0) = −Q/EI = −P/2EI where Q is a shearing force (see Sect. 1.5.2.). As a
result we have the following solution for the right part:

v = Pe−βx(cos βx + sin βx)/8β3EI (3.63)

(broken line in Fig. 3.14, a) with maximum deflection at x = 0 as:

vmax = P/8β3EI (3.64)

and v = 0 in point x = 3π/4β.
Using law (3.60) we find from relation (3.63) expression for bending

moment (Fig. 3.14, b)

M = Pe−βx(cos βx − sin βx)/4β (3.65)

with maximum value Mmax = P/4β and M = 0 in points x = π/4β, x = 5π/4β
etc. (Fig. 3.14, b).

In order to appreciate the role of the elastic foundation we compare this
result to a similar bending solution for a beam with supports at x = ±3π/4β
(the moments there are equal to −20.5Pe−3π/4/4β = −0.007Pl and they can be
neglected). According to well-known relations of the Strength of Materials for
such a beam without elastic foundation Mmax = Pl/4 and vmax = Pl3/48EI.
For our task β = 3π/2l and we conclude that the elastic foundation decreases
the maximum moment and deflection in 5.7, 17.4 times. So the role of the bed
is significant.

Similarly to the previous section we can consider a distributed load in
(3.63) as

v(x) = (1/8β3EI)

b∫

a

e−β(x−η)p(η)(cos β(x − η) + sin β(x − η))dη,

When p = constant at −l < η < l we compute

v(x) = pe−βx(eβl cos β(x − l) − cos βx)/2k

Condition v′(0) = 0 gives for the right side of the beam equation

cos βl − sin βl = eβl/2βl. (3.66)

Combining these two relations and using (3.61) we find expressions similar
(3.63), (3.65) as

v = eβlp(sin βl)e−βx(sin βx + cos βx)/2k,

M = peβl(sin βl)e−βx(cos βx − sin βx)/4β2.

To compare these results with the previous case we put here p = P/2l and
apply (3.61). We receive respectively (3.63), (3.65) with multiplier

(eβl/2βl) sin βl.

Solutions of (3.66) are 0 and near 5π/4, 9π/4 . . . but only the third one can be
used when the multiplier is approximately 60 and so the length of the beam
must be taken in consideration.
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3.2.5 Use of Complex Variables

General Expressions

Main equations of the plane problem are given by relations (2.59)–(2.62).
Similarly to the case of a longitudinal shear it is convenient to use here complex
variables when law (2.63) becomes

∂4Φ/∂z2∂z̄2 = 0 (3.67)

where the line over a value means that we must change in it i by −i. The
solution of (3.67) is obvious, containing two functions, e.g. F(z) and χ(z).
When they are known stresses and displacements can be found according to
relations

σx + σy = 4ReF′(z),
σy − σx + 2iτxy = 2(z̄F′′(z) + χ′(z)), (3.68)

2G(ux + iuy) = κF(z) − zF′(z) − χ(z). (3.69)

Here κ is equal to 3−4ν and (3 − ν)/(1 + ν) for plane deformation and the
same stress state respectively.

Functions F(z) and χ(z) must be found from border demands that for the
first boundary problem (see sub-chapter 2.4) is

σy + iτxy = F′(z) + zF′′(z) + F′(z) + χ′(z) (3.70)

or as a resultant of forces on an arc ab:

Px + iPy = −(F(z) + zF′(z) + χ(z))|ba . (3.71)

Tension of Plate with Circular Hole

As an example we study a plane with a circular hole of a radius R (Fig. 3.15)
under tension by stresses σ in infinity (the problem was solved by G. Kirsch
in 1898). According to border condition (3.71) we have at z = Reiθ

F(z) + zF′(z) + χ(z) = 0. (3.72)

Similar to the case of massif with circular hole at anti-plane deformation we
seek the solution in series as:

F(z) = Az + Fo(z), χ(z) = Bz + χo(z)

where A, B – constants and

Fo(z) =
∞∑

n=0

An/zn, χo(z) =
∞∑

n=0

Bn/zn. (3.73)
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Fig. 3.15. Tension of plate with circular hole

From expressions (3.68) we find at z → ∞A = σ/4, B = σ/2. Then we put
Fo(z), χo(z) into (3.72) that gives:

σz/4 + Fo(z) + σz/4 + zF′
o(z) + σz̄/2 + χo(z) = 0. (3.74)

Now we consider in (3.74) condition z = R2/z̄ and compute

Fo(z) + R2F′
o(z)/z̄ + χo(z) = −σR2/2z − σR2/2z̄. (3.75)

Taking into account A, B – values above and integrating the derivative F′
o(z) =

σR2/2z2 we finally receive:

F(z) = σz/4 − σR2/2z, χ(z) = −σR2/2z + σz/2 − σR4/2z3. (3.76)

From (3.69) we have:

2G(ux + iuy) = (κ − 1)σz/4 − κσR2/2z − σzR2/2z̄2 − σzR2/2z̄2 − σz̄/2

+ σR2/2z̄ + σR4/2z̄3. (3.77)

To determine the stresses we differentiate functions F′(z), χ(z) as:

F′′(z) = −σR2/z3, χ′(z) = σ/2 + σR2/2z2 + 3σR4/2z4. (3.78)

Then relations (3.68)–(3.70) can be used to determine stresses and dis-
placements. For example at y = 0 we have:

σy = σ(1 + R2/2x2 + 3R4/2x4) (3.79)

(shaded diagram in Fig. 3.15) with maximum σy at x = R as:

max σy = 3σ. (3.80)

If x = 0, y = R we find in a similar manner τxy = 0, σx = −σ and hence it is
the dangerous point at uni-axial compression of a wall or a tunnel.
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3.2.6 General Relations for a Semi-Plane Under Vertical Load

Since in this case τxy = 0 at y = 0 we have from (3.70)

zF′′(z) = −χ′(z), χ(z) = F(z) − zF′(z). (3.81)

So, instead of the second expression (3.68) and (3.69), (3.70) we receive:

σy − σx + 2iτxy = −4iyF′′(z),
(3.82)

σy + iτxy = F′(z) + F′(z) − 2iyF′′(z),

2G(ux + iuy) = κF(z) − F(z) − 2iyF′(z). (3.83)

From (3.83) and the second (3.82) we have at y = 0

uy = (κ + 1)ImF(xo)/G, σy = 2ReF′(xo)

and it is not difficult to notice that they differ only by a constant multiplier
from border conditions

uz = Rew(xo)/2G, τy = −Imw′(xo)

(see relations (3.5)) for an anti-plane deformation. That allows to receive
solutions of plane problems by replacing in similar results of longitudinal
shear functions w′(z) by −2iF′(z).

3.2.7 Crack in Tension

Replacing in the first expression (3.14) τo by iσ/2 we get the solution for a
plane with crack of length 2l perpendicular to tensile stresses σ in infinity
(Fig. 3.16) in form

F′(z) = σz/2
√

z2 − l2, F(z) = σ
√

z2 − l2/2. (3.84)

y

x

θ

r

σ

σ

Fig. 3.16. Crack in tension
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Fig. 3.17. Crack under concentrated forces

If z → ∞ then F′(z) = σ/2, F′′(z) = 0 and from (3.82), (3.84) we have
σx = σy = σ instead of σx = 0, σy = σ. So, the solution is wrong. But for the
purpose of the further theory it is not important because stress σx does not
influence the moment of a crack propagation beginning. Now since

F′′ = −0.5σl2(z2 − l2)−3/2 (3.85)

we find according to (3.82), (3.83) at y = 0, x ≤ /l/

σy = τxy = σx = 0, uy = (σ/4G)(k + 1)
√

l2 − x2. (3.86)

In a similar way the case in Fig. 3.17 can be considered where we
have /17/

F′(z) = P1/2πz
√

z2 − l2, F(z) = (P/2π) cos−1 l/z

and it is an example of a stable crack because its length increases with a
growth of the forces P.

3.2.8 Critical Strength

Now we find the energy due to the creation of a crack. According to the
Clapeyron’s theorem (3.17) and relation (3.86) we compute:

W = σ
1∫

−1

/uy/dx = (1 + κ)πl2σ2/8G

and increment of the energy due to a propagation of the crack

dW = (1 + κ)πl(σ∗)2dl/4G (3.87)

must be equal to stretching resistance of the material 4γsdl. That gives the
critical value of σ
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σ∗ = 4
√

Gγs/πl(1 + κ) (3.88)

which differs from (1.23) by a constant multiplier depending on the type of
the problem (plane deformation or the same stress state) and the Poisson’s
ratio.

As in Sect. 3.1.4 we can find σ∗ according to the relations of the asymptotic
approach z − l = eiθ which gives with a help of transformation equations like
(2.55), (2.72)

ur + iuθ = e−iθ(ux + iuy), σθ − σr + 2iτrθ = (σy − σx + 2iτxy)e2iθ (3.89)

as well as (3.82)–(3.84) and (2.65)

σθ = (K1/
√

2πr) cos3(θ/2), σr = (K1/
√

2πr)(1 + sin2(θ/2)) cos(θ/2),

τrθ = (K1/2
√

2πr) sin θ cos(θ/2), τe = (K1/2
√

2πr) sin θ, (3.90)

ur = (K1/G)
√

r/2π(0.5(κ + 1) − cos2(θ/2)) cos(θ/2), (3.91)

uθ = (K1/G)
√

r/2π(0.5(1 − κ) − sin2(θ/2)) sin(θ/2)

where
K1 = σ

√
πl

is stress intensity coefficient for the first crack task. Constructing the equilib-
rium equation in its usual form

dl∫

0

/uθ(dl − r, π)/σθ(r, 0)dr = 2γsdl (3.92)

and using (3.90), (3.91) we find:

K1∗ = 4
√

Gγs/(κ + 1) (3.93)

and the strength condition is:

K1 ≤ K1∗.

There are some other approaches to a strength computation for brittle me-
dia. G. Barenblatt (see /17/) introduced a crack in a form of a beck (Fig. 3.18).
His model gives strength value in 1.27 times higher than the Griffith’s rela-
tion. Similar to that idea was introduced by N. Leonov and V. Panaciuk
/19/. In their approach the crack begins to propagate when opening δ reaches
its critical value δcr (Fig. 3.18). In this moment the critical strength can be
computed as:

σ∗ =
√

Eσbrδcr/πl (3.94)

where σbr is a limit of brittle strength.
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Fig. 3.19. Pressure of punch

3.2.9 Stresses and Displacements under Plane Punch

M. Sadowski solved this problem (Fig. 3.19) using the analogy method /20/.
Replacing in the second relation (3.8) Q, ζ, w′(ζ) by P, z, 2iF′(z) respectively
we receive:

F′(z) = −P/2π
√

l2 − z2, F(z) = −(Pi/2π) ln(z +
√

z2 − l2) + 2Guo. (3.95)

We can easily notice that this result can be got from the first expression (3.84)
after the consequent replacement of z, l, σ, by l/z, l/l, −Pi/πl respectively.

With a help of (3.82), (3.83) we find a distribution of stresses (broken line
for σy in Fig. 3.19) and displacement uy (solid curves outside the punch) at
y = 0 at x < l, x > l respectively as:

uy = uo, τxy = 0, σx = σy = −P/π
√

l2 − x2, (3.96)

σx = σy = τxy = 0, uy = uo − (P/2πG)(1 + κ) ln(x/l −
√

(x/l)2 − 1). (3.97)

The computations show that diagram uy outside the punch is near to that
one for uniformly distributed load according to (3.51).

In a similar way as before we find with a help of (3.95), (3.82), (3.83) and
(2.65) in the asymptotic approach

σr

σθ
= −(P/π

√
2rl)(1 ± cos2(θ/2)) sin(θ/2),

τrθ =
(
P/2π

√
2rl
)

sin θ sin(θ/2), τe =
(
P/2π

√
2rl
)

sin θ, (3.98)
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uθ = u1 − (P/πG)
√

r/2l(0.5(κ + 1) − sin2(θ/2)) cos(θ/2),

ur = u2 − (P/πG)
√

r/2l(0.5(κ − 1) + cos2(θ/2)) sin(θ/2)

where u1, u2 – constants. It is easy to notice that τe in this task differs
from that in the problem of crack (see the fourth relation (3.90)) by a constant
multiplier. The condition τe = constant is shown by pointed line in the left
part of Fig. 3.19 under the edge of the punch and the plastic zone must have
this form.

From (3.98) we find critical load

P∗ = 2
√

2γsG/πl(k + 1). (3.99)

3.2.10 General Relations for Transversal Shear

In this case we have on axis x condition σy = 0 and from (3.68) we find after
some simple transformations

χ′(z) = −(2F′(z) + zF′′(z)), χ(z) = −(F(z) + zF′(z)). (3.100)

Putting these expressions into (3.68), (3.69) we receive:

σy − σx + 2iτxy = −4(F′(z) + iyF′′(z)), (3.101)

2G(ux + iuy) = κF(z) + F(z) − 2iyF′(z). (3.102)

From (3.101) we have at y = 0

τxy = −2ImF′(xo)

that is twice τy-value in the problem of the longitudinal shear in (3.5) and we
can replace in the results of sub-chapter 3.1 w′(z) by 2F′(z).

3.2.11 Rupture due to Crack in Transversal Shear

In this case (Fig. 3.20) τxy(∞) = τ and we derive from (3.14)

F′(z) = −iτz/2
√

z2 − l2, F(z) = −0.5iτ
√

z2 − l2 (3.103)

and according to (3.102) we find on axis x at x < /l/ and x > /l/ respectively

τxy = uy = σy = 0, σx = −2τx/
√

l2 − x2, ux = −τ ((κ + 1) /2G)
√

l2 − x2,

σx = σy = ux = 0, τxy = τx/
√

x2 − l2, uy = ((κ − 1)/2G)
√

x2 − l2
(3.104)

and by the Clapeyron’s theorem (3.17) as well as the energy balance

(1 + κ)πlτ2
∗dl/4G = 4γsdl
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Fig. 3.20. Crack in transversal shear

we compute

τ∗ = 4
√

Gγs/π(κ + 1)l. (3.105)

The same results can be received according to the asymptotic approach and
(3.102), (3.103) as

σr = −(K2/
√

2πr)(2 − 3 cos2(θ/2)) sin(θ/2),
σθ = −3(K2/

√
2πr) cos2(θ/2) sin(θ/2),

τrθ = (K2/
√

2rπ)(1 − 3 sin2(θ/2)) cos(θ/2),

τe = (K2/2
√

2πr)
√

1 + 3 cos2 θ, (3.106)

ur

uθ
= (K2/2G)

√
r/2πx

(−κ − 5 + 6 cos2(θ/2)) cos(θ/2).

(−κ + 5 − 6 sin2(θ/2)) sin(θ/2)
(3.107)

Here K2 = τ
√

πl – the stress intensity coefficient of the second crack task.
Further computation follows that one for a crack in tension and we find a
similar value (see also (3.93))

K2∗ = 4
√

Gγs/(κ + 1) (3.108)

and the strength condition
K2 ≤ K2∗.

Diagrams σθ/σyi, σr/σyi, τ/σyi at τe = σyi/2 as functions of θ are given in
Fig. 3.21 by solid, broken and interrupted by points lines 1 respectively.

3.2.12 Constant Displacement at Transversal Shear

Using the analogy mentioned above we have from (3.8) at ζ = z

F′(z) = −Q/2π
√

z2 − l2, F(z) = 2Guo − (Q/2π) ln
(
z/l +

√
(z/l)2 − 1

)
(3.109)
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Fig. 3.21. Diagrams of stress distribution at crack ends in transversal shear

wherein Q is a resultant of τxy at y = 0, −l < x < l. From (3.101), (3.102),
(3.109) we find on axis x at x < /l/ and x > /l/ respectively

ux = uo, uy = σx = σy = 0, τxy = Q/π
√

l2 − x2,

τxy = uy = σy = 0, σx = −2Q/π
√

x2 − l2,

ux = uo − (Q/2πG)(κ + 1) ln(x/l +
√

(x/l)2 − 1).

In the asymptotic approach we receive similarly to (3.106), (3.107) as

σr = −(Q/π
√

2rl)(3 cos2(θ/2) − 1) cos(θ/2),

σθ = −3(Q/π
√

2rl) sin2(θ/2) cos(θ/2),

τrθ = (Q/π
√

2rl)(3 sin2(θ/2) − 2) sin(θ/2), τe = (Q/2π
√

2rl)
√

1 + 3 cos2 θ,

ur = u1 − (Q/πG)
√

r/2l((κ + 1)/2 − 3 sin2(θ/2)) cos(θ/2),

uθ = u2 − (Q/πG)
√

r/2l((κ − 1)/2 − 3 cos2(θ/2)) sin(θ/2).
(3.110)

And we again can see that τe in (3.106), (3.110) differ by a constant multiplier.
For critical stress we have expression (3.99) with Q instead of P.

3.2.13 Inclined Crack in Tension

By a combination of the solutions in Sects. 3.2.7, 3.2.11 a strength of a body
with inclined crack in tension (Figure 3.22) can be studied. Supposing accord-
ing to (2.72) σ = p sin2 β, τ = 0.5p sin 2β and seeking in the end of the crack
main plane with θ = θ∗ L. Kachanov found in /17/ relation

sin θ∗ + (3 cos θ∗ − 1) cot β = 0 (3.111)

according to which the crack must propagate in this direction. Some experi-
ments confirm it.
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Fig. 3.22. Inclined crack in tension
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Fig. 3.23. Sphere under internal and external pressure

3.3 Axisymmetric Problem and its Generalization

3.3.1 Sphere, Cylinder and Cone Under External and Internal
Pressure

For a sphere with internal a, current ρ and external b radii (Fig. 3.23) we use
(2.80), (2.81) and the Hooke’s law (2.17) at σθ = σχ in the form

σθ = E(εθ +νερ)/(1−ν−2ν2), σρ = E(ερ(1−ν)+2νεθ)/(1−ν−2ν2). (3.112)

Putting (2.81) into (3.112) and the result – in (2.80) we get on a differential
equation for uρ ≡ u

d2u/dρ2 + 2du/ρdρ − 2u/ρ2 = 0

with an obvious integral
u = A/ρ2 + Bρ. (3.113)
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Now we determine strains from (2.80), stresses – by (3.112) and constants –
according to boundary conditions σρ(a) = −q, σρ(b) = −p. As a result we
have

σθ = (qa3(2ρ3 + b3) − pb3(2ρ3 + a3))/2ρ3(b3 − a3),

σρ = (qa3(ρ3 − b3) + pb3(a3 − ρ3))/ρ3(b3 − a3).
(3.114)

The strains and the displacements can be found according to the Hooke’s law
and expression (2.80).

In a similar way the stress distribution in a tube can be analysed. To
change the method we use here potential function Φ (see Sect. 2.4.3) since the
problem is a plane one. The biharmonic equation (2.74) in this case becomes

d(rd(d(rdΦ/dr)/rdr)/dr)/rdr = 0

with a very simple solution that with a help of (2.75) and boundary conditions
like that for the sphere (with replacement in them ρ by r) gives

σr = (a2b2(p − q)/r2 + qa2 − pb2)/(b2 − a2),

σθ = (qa2 − pb2 + a2b2(q − p)/r2)/(b2 − a2).
(3.115)

Let us now consider a cone (Fig. 3.24) for which we use spherical coordinates
(Fig. 2.10) and supposition τρθ = τρχ = τχθ = ερ = γρθ = γρχ = γχθ = 0 (as in a
cylinder). Other components do not depend on ρ, θ. Above that uρ = uθ = 0
and uχ = ρu(χ). In coordinates θ, χ the first equation (2.77) takes the form

dσχ/dχ + (σχ − σθ) cot χ = 0 (3.116)

and expressions (2.79) give

u = C/ sin χ, εθ = −εχ = C cos χ/ sin2 χ. (3.117)

p

λ

χ
ρ

Ψ

q

O

Fig. 3.24. Cone under external and internal pressure
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Now we use the Hooke’s law (2.17) that leads to relation

σθ − σχ = 4GCcos χ/ sin2 χ

and from (3.116) – to

σχ = D − 2GC(cos χ/ sin2 χ + ln tan(χ/2)). (3.118)

Constants C, D have to be determined from border demands σχ(ψ) = −q,
σχ(λ) = −p. As a result we derive finally

σθ
σr

= −q + (q − p)(cosψ/ sin2ψ± cos χ/ sin2 χ − ln(tan(χ/2)/ tan(ψ/2)))/A

where

A = cosψ/ sin2ψ− cosλ/ sin2 λ + ln(tan(ψ/2)/ tan(λ/2)). (3.119)

From expression (3.117) we find deformations and displacement for incom-
pressible body as follows

εθ = (p − q) cos χ/2GA sin2 χ = −εχ, u = (p − q)/2AGsin χ.

This solution can model a behaviour of a volcano. When ψ, λ, χ tend to zero
we get the Lame’s relations for the tube that were derived above.

The theory of this section can be used for an appreciation of the strength
of different voids in a medium.

3.3.2 Boussinesq’s Solution and its Generalization

Stresses in Semi-Space Under Concentrated Load

If an external concentrated force F acts vertically in point O (Fig. 2.10) on a
semi-infinite solid the stresses in point N are /5/

σz = −3Fz3/2πρ5, σr = F((1 − 2ν)(ρ − z)/ρr2 − 3r2z/ρ5)/2π,
σθ = F(1 − 2ν)(zr2 + zρ2 − ρ3)/2πr2ρ3, τrz = −3Frz2/2πρ5.

(3.120)

These relations are known as the Bousinesq’s solution for axisymmetric
problem published in 1889 and they are similar to the Flamant’s expressions
in Sect. 3.2.3 for plane one. Using (2.72) we compute

σρ = F((1 − 2ν)(1 − z/ρ) − 3z/ρ)/2πρ2,

σχ = Fz2(1 − 2ν)(1 − z/ρ)/2πr2ρ2, (3.121)

τρχ = Fz(1 − 2ν)(1 − z/ρ)/2πrρ2

and we can see that only for incompressible material (ν = 0.5) directions ρ, χ
are main ones and σχ = σθ = 0.
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Fig. 3.25. Stresses under uniformly distributed load in circle

Stresses Under Distributed Load

Using the superposition method we can find stresses under any load. As the
first example we consider a circle of radius a under uniformly distributed forces
q. Firstly we study stresses along axis z where we have /5/

σz = q(z3(a2 + z2)−3/2 − 1). (3.122)

In the same manner stresses σr, σθ (Fig. 3.25) can be found as

σθ = σr = q
(
−1 − 2ν + 2(1 + ν)z/

√
a2 + z2 − z3(a2 + z2)−3/2

)
/2. (3.123)

Particularly in point O we have

σz = −q, σr = σθ = −q(1 + 2ν)/2.

The maximum shearing stress can be easily computed according to (2.10),
(3.122), (3.123) as follows

τe = q(0.5(1 − 2ν) + (1 + ν)z/
√

a2 + z2 − 3z3(a2 + z2)−3/2)/2. (3.124)

This expression has its maximum at z∗ = a
√

(1 + ν)(7 − 2ν) and it is

maxτe = q(0.5(1 − 2ν) + 2(1 + ν)
√

2(1 + ν)/9)/2. (3.125)

For example if ν = 0.3 then z∗ = 0.64a and max τe = 0.33q.
An interesting case takes place for a circular punch and Boussinesq gave

the solution in a form similar to (3.95) as

q = P/2πa
√

a2 − r2 (3.126)

where P is a resultant of loads q. The least value of q is in the centre: qmin =
P/2πa2. Diagram q(r) is given in Fig. 3.26 by broken line and as we can see
the stresses are very high at r = a (similar to other problems of punches
and cracks in plane problem). In reality plastic strains appear at the edges,
redistribution of stresses occurs and q(r) diagram has a form of the solid curve
in the figure.
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Fig. 3.26. Distribution of stresses under circular punch

Stresses Under Rectangles

The linear dependence of stresses on displacements allows to use the super-
position principle for finding stresses at different loadings. To realize that we
rewrite the first relation (3.120) for the stress in a point with coordinates z, r
(Fig. 2.10) as

σz = KσF/z2. (3.127)

Here (in this section compressive stresses are taken positive)

Kσ = 3/2π(1 + r2/z2)5/2

is a coefficient the values of which are given in special tables (see Appendix B).
When several (n) forces act then stress σz is computed as follows

σz =

(
n∑

i=1

KσiFi

)
/z2

where factors Kσi are taken as the functions of ratio ri/z and ri is the distance
from the studied point to the direction of a Fi action. This method can be
applied to a case of distributed load when we lay out a considered area on
separate parts and compute the resultant for each of them.

The special particularly important case takes place when we have uni-
formly distributed load over a rectangle. Here we lay out the whole area on
separate rectangles and find the stress in the common for them point as a
sum of the stresses in each of the parts. The following options can be met
(Fig. 3.27):

1. Point M is on a border of the rectangle (Fig. 3.27, a) and we summarize
stresses due to loads in rectangles abeM and Mecd,

2. Point M is inside a rectangle (Fig. 3.27, b) and we summarize the stresses
from the action of the load in rectangles Mhbe, Mgah, Mecf and Mfdg,
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Fig. 3.27. Uniformly distributed load over rectangle

3. Point M is outside a rectangle (Fig. 3.27, c) and we summarize the stresses
from the action of a load in rectangles Mhbe and Mecf and subtract that
in rectangles Mhag and Mgdf.

The determination of stresses is fulfilled with the help of special tables
according to relation

σz = K′q (3.128)

where factor K′ is given in the function of ratios m = l/b – relative length
and n = z/b – relative depth (see Appendix C). q is an intensity of the loads.
For example in the case 1 we have

σz = q((K′)I + (K′)II). (3.129)

Displacements in Massif

We begin with the case of concentrated force F when we have according to
the Hooke’s law on the surface z = 0 /5/

ur = −(1 − 2ν)(1 + ν)F/2πEr, uz ≡ S = F(1 − ν2)/πEr. (3.130)

In other cases we use the superposition method. E.g. for a circle of radius
a under uniformly distributed load q we write for a point outside it

uz = 4q(1 − ν2)r(L(a/r) − (1 − a2/r2)K(a/r))/πE (3.131)

where K(a/r), L(a/r) are full elliptic integrals of the first and the second kind.
They can be calculated with a help of special tables. For the settling of the
external circumference (r = a) we receive

uz = 4(1 − ν2)qa/πE (3.132)
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and in points inside the circle the displacement is

uz = 4(1 − ν2)qaL(a/r)/πE. (3.133)

The highest displacement is in the centre of the circle as

maxuz = 2(1 − ν2)qa/E

and it is easy to prove that max uz/uz(a) = π/2. Now we find a mean
displacement as

meanuz = (P/πa2)

a∫

0

2πuzrdr = 0.54F(1 − ν2)/πE

and it is near to the displacement under a circular punch

uz = 0.5F(1 − ν2)/πE. (3.134)

A similar situation takes place for a square with sides 2a loaded by
uniformly distributed forces q. In this case

max uz = 8qa ln(
√

2 + 1)(1 − ν2)/πE = 2.24qa(1 − ν2)/E. (3.135)

In corners uz = 0.5 maxuz and an average uz is equal to 1.9qa(1 − ν2)/E.
The same computations were made for rectangles with different ratios of h/b.
The results are represented in a form

uz = moq(1 − ν2)/E. (3.136)

The values of mo are given in table here as a function of the sides ratio h/b.

h/b circle 1 1.5 2 3 5 10 100

mo 0.96 0.95 0.94 0.92 0.88 0.82 0.71 0.37

Approximate Methods of Settling Computations

In practice some approximate approaches are used for a computation of a
settling. One of them is a method of a summation “layer by layer”. Here
the hypothesis is taken that a lateral expansion is absent or in other words
that the dependence of stresses on porosity is compressive (see Sect. 1.4.2). It
is also supposed that a decrease of σz with a depth subdues to Boussinesq’s
solution (Fig. 3.28). The whole settling is calculated as a sum of displacements
of elementary layers /10/

S = βo

n∑
i=1

σzihi/Ei. (3.137)
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Fig. 3.28. Approximate computation of settling

Here βo is a dimensionless coefficient equal usually to 0.8, hi, Ei – a thick-
ness and a modulus of deformation of i-layer, σzi is computed according to
the first relation (3.120) for the middle of the layer, hn is taken for a layer
where the settling is small. In Russia σzn = 0.2σze where σze are stresses from
earth’s self-weight (see Sect. 2.4.1). If this layer has E < 5 MPa it is included
in sum (3.128). For hydro-technical structures with big width b (Fig. 3.28)
condition σz > 0.5σze is usually taken.

Another approach to the solution of this problem gave N. Cytovich /3/
who proposed to take into account some lateral expansion of the soil and an
influence of a footing size (see Fig. 1.6). He introduced the so-called equiva-
lent layer hs which exposes the same settling as in the presence of a lateral
expansion:

hs = (1 − ν2)ηb. (3.138)

Here parameter η considers a form and a rigidity of a footing with width b.
When a foundation has a form of a rectangle the method of corner points

is applied similar to that for the calculation of stresses.

3.3.3 Short Information on Bending of Thin Plates

General Equations for Circular Plates

A plate is considered to be thin when the ratio of its thickness to the minimum
dimension in plane L satisfies the condition 0.2 > h/L > 0.0125. This problem
is studied in special courses and comparatively simple theory exists for axi-
symmetric plates. Differential equation of their element (Fig. 3.29) is

Mθ − d(Mrr)/dr = Qr. (3.139)

Here Mr, Mθ are radial and tangential bending moments, Q – transversal
(shearing) force which can be computed according to an equilibrium condition
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Fig. 3.29. Element of circular plate

of a middle part of the plate with radius r. In the case of uniformly distributed
load q it is

Q = 0.5qr. (3.140)

For a plate of radius R at q = constant in a circle of diameter 2ro
integration of (3.139) with consideration of (3.140) gives equation

RMr(R) + q(ro)3/6 + q(ro)2(R − ro)/2 =

R∫

0

Mθdr. (3.141)

Replacing in (3.141) q(ro)2 by F/π and supposing ro = 0 we come to the case
of concentrated force F in the centre of the plate as

FR/2π =

R∫

0

Mθdr − RMr(R). (3.142)

At R = ro we have from (3.141) the solution for a plate under uniformly
distributed pressure q in form

RMr(R) + qR3/6 =

R∫

0

Mθdr. (3.143)

Similarly some other cases can be considered.

Ultimate State of Circular Plates

Now we find according to the first Gvozdev’s theorem the ultimate state of
the plate. If its edges are freely supported we must put in (3.142), (3.143)
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Mr(R) = 0, Mθ = M∗ (where M∗ = σyih2/4 – see expression (1.24)) which
gives

F∗ = 2πM∗, q∗ = 6M∗/R2. (3.144)

Comparing these F∗ and q∗ to (1.28) and the first (1.31) we see that they
coincide and hence are rigorous. If the edges of the plate are fixed we must
put in (3.142), (3.143) – Mr(R) = Mθ = M∗. That leads to ultimate values

F∗ = 4πM∗, q∗ = 12M∗/R2 (3.145)

which coincide with relation (1.30) and the second expression (1.31) respec-
tively. Therefore they are also exact. In the similar way some other different
cases of an axi-symmetric load can be considered.

Ultimate State of Square Plates

The bending of rectangular plates are usually studied in double trigonometric
series. For example for a square 2R × 2R in plane loaded by uniformly dis-
tributed pressure q with origin of coordinate system x, y in one of its corners
we have

Mx/My = (16qR2/π4)
∞∑

m=1

∞ m2+νn2∑
n=1 n2+νm2(

x
(

sin mπx
2R

)(
sinmπy

2R

))
/mn(m2 + n2)2(m, n = 1, 3, ..).

(3.146)

Taking only the first member of the series we find for maximum moments
(in the centre of the plate)

max Mx = max My = (1 + ν)qR2/6

which give the ultimate load as

q∗ = 6M∗/(1 + ν)R2. (3.147)

Another simple solution can be received when we use differential equation of
an element of the plate in form

∂2Mx/∂x2 + 2∂2Mxy/∂x∂y + ∂2My/∂y2 = −q (3.148)

where Mxy is the moment of a torsion. Taking approximately for the moments
expressions that satisfy the border demands (here the origin of the coordinate
system is in the centre of the plate) Mx = C(R2 − x2), My = C(R2 − y2),
Mxy = 0 and putting them into (3.148) we find C = q/4 and hence

q∗ = 4M∗/R2
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Fig. 3.30. Circular crack in tension

which coincides with (3.147) for incompressible material.
Taking into account (3.147) and the first relation (1.31) we find the

following limits for the ultimate load

6M∗/R2(1 + ν) ≤ q∗ ≤ 6M∗/R2. (3.149)

We can see that the q∗-value is rigorous for ν = 0.

3.3.4 Circular Crack in Tension

Here (Fig. 3.30), (2.76) are valid and we seek solution in the following form
/17/

uz = −∂2Φ/2G∂r∂z, uz = (2(1 − ν)ΔΦ − ∂2Φ/∂z2)/2G

where Φ is a function of z and r. Putting these expressions into (2.76) and
then strains – into the Hooke’s law we get the stresses as

σr = ∂(νΔΦ − ∂2Φ/∂r2)/∂z, σθ = ∂(νΔΦ − ∂Φ/r∂r)∂z,

σz = ∂((2 − ν)ΔΦ − ∂2Φ/∂z2)∂z, τrz = ∂((1 − ν)ΔΦ − ∂2Φ/∂z2)/∂r.

These values satisfy static equations and putting them into compatibility
relation (2.76) we find biharmonic law for Φ.

Using the the Henkel’s transformations we get expressions for the displace-
ment and stress that at p = constant, ρ = r/a and z = 0 are

uz(ρ, 0) = 4(1 − ν2)pa
√

1 − ρ2)/πE (ρ ≤ 1),

σz = 2p
(
1/
√

ρ2 − 1 − sin−1(1/ρ)
)

(ρ > 1).
(3.150)

Since near the crack edges the first member in brackets is much higher than
the second one the solution is somewhat similar to that (3.126) for the circular
punch.
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From Fig. 3.31 where the curve uz(ρ) according to the first (3.150) is shown
by broken lines we can see that deformed crack is an ellipsoid. Stress σz has
the same peculiarity as in similar problems at the longitudinal shear and plane
deformation. Using the expression for the work at crack propagation

W = −2pπa2

1∫

0

uz(ρ, 0)dρ,

relation (3.150) for uz(ρ, 0) and equality

dW = 2πγsada

as in Sects. 3.1.4, 3.2.8 and 3.2.11 we find

Ko∗ =
√

γsE/(1 − ν2) = 2p
√

a/
√

π.

The problem of non-uniformly distributed forces is solved in the same manner.
The task of two cracks in distance z = ±z1 is also studied in a space and in a
cylinder.



4

Elastic-Plastic and Ultimate State
of Perfect Plastic Bodies

4.1 Anti-Plane Deformation

4.1.1 Ultimate State at Torsion

Although exact elastic solutions at torsion are known only for some cross-
sections the ultimate state can be found for any problem because in this case
we should consider only two equations for two unknowns (Fig. 2.8) – condition
τe = τyi together with static law (2.48). It can be satisfied if we take

τx = ∂w/∂y, τy = −∂w/∂x (4.1)

and from 2.52 we find

(∂w/∂x)2 + (∂w/∂y)2 = (τyi)2

or
/gradw/ = τyi = constant. (4.2)

Here the gradient w(x, y) is the maximum slope of that function which can be
interpreted as a sand heap with angle of repose equal to tan−1 τyi. Expression
(4.2) means that the distance between lines in which τyi acts are constant and
it allows to compute an elementary moment of torsion as (Fig. 4.1)

dM∗ = τyipdpds = τyi2dpdA

where A is an area under curve w =constant and p–perpendicular to it from
a pole. Summarizing dM∗ we find the ultimate moment as

M∗ = 2V. (4.3)

Here V is volume of the heap.
Relation (4.3) opens the way for finding the ultimate load experimentally.

For some sections M∗-value can be calculated. In the case of a circle with
radius R e.g. we have

M∗ = 2πR3τyi/3.
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For a rectangle (Fig. 4.2) we compute in a similar way

M∗ = h2(3b − h)τyi/6.

From this expression we have as particular cases M∗-values for a long strip
and a square:

M∗ = bh2τyi/2, M∗ = h3τyi/3.

Relations above can be used for τyi determination by the torsion tests of
plastic materials including some soils.

4.1.2 Plastic Zones Near Crack and Punch Ends

When plastic strains appear the value of τ∗ (see Sect. 3.1.4) falls as G decreases
in many times. There are several solutions for a perfect plastic body. We
follow here the approaches of Rice /21/ for small plastic zones where relations
(3.19) are valid. As we mentioned there the condition τe = constant gives a
circumference and we can suppose that the plastic zone is a circle (Fig. 4.3)
with a radius Ro that can be found from boundary conditions for stresses and
displacement uz on the border between elastic and plastic districts.
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Fig. 4.3. Plastic zone near crack end

According to relations of (2.55) type we find with a help of (3.19)

τr1 = 0, τθ1 = τo

√
l/2r.

Taking τe as τyi we receive Ro as follows

Ro = (τo)2l/2(τyi)2. (4.4)

Now we consider the displacements and from elastic part of the body we have
according to (4.4) and the first expression (3.19)

uz = (τo/G)
√

2lRo sin θ/2. (4.5)

Then from the second expression (2.57) we find on the circumference starting
from the plastic zone at r1 = 2Ro cos θ1

uz = (τyi/G)2Ro

θ1∫

0

cos θ1dθ1

or after computations

uz = 2(τyi/G)Ro sin(θ/2). (4.6)

Taking into account equality sin θ1 = θ/2 and comparing (4.6) to (4.5) we
get on expression (4.4) that is the same value of Ro. Lastly we determine the
displacement in the end of the crack in form

δ = 2uz(Ro, π) = 2l(τo)2/Gτyi.

In the same manner the problem of the strip’s longitudinal movement can
be studied. Using expressions (2.58) and (3.10) we find on the circumference
r = Ro:

τθ1 = 0, τr1 = τe = Q/π
√

2Rol.
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Supposing τr1 = τyi we find the radius Ro of the plastic zone as

Ro = Q2/2π2l(τyi)2. (4.7)

Now if we replace in the third relation (3.10) r by Ro this equation is valid on
the border from the elastic side. And from the plastic region we have according
to the first (2.57)

uz = uo − τyir1/G

or
uz = uo − 2Ro(τyi/G) cos(θ/2).

Comparing this expression to the first relation (3.10) at r = Ro we find again
(4.7). The position of the circumference’s centre will be determined in the
next chapter.

4.2 Plane Deformation

4.2.1 Elastic-Plastic Deformation and Failure of Slope

Stresses in Wedge

As was told in Sect. 3.2.1 the maximum shearing stress τe in the cases λ > π/4
reaches its maximum at θ = 0 and there the first residual strains appear when
load p is

pyi = 2τyi(2λ cos 2λ − sin 2λ)/(cos 2λ − 1).

At p > pyi we have in Fig. 3.5 plastic zone BOC as well as two elastic districts
AOB and COD for which the solution of Sect. 3.2.1 is valid in form

τ = C1 + C2 cos 2θ + C3 sin 2θ,
σθ
σr

= C4 − 2C1θ ± C3 cos 2θ ± (−C2 sin 2θ). (4.8)

In the plastic zone we take the same condition as on the straight line θ = 0 at
p = pyi that is τ = τyi and from (3.21) we find with consideration of demand
σr(0) = σθ(0) = −p/2

σr = σθ = −p/2 − 2τyiθ.

Constants Ci(i = 1–4) and τyi should be found from the compatibility equa-
tions for stresses at θ = ±υ and boundary conditions τ(−λ) = σθ(−λ) = 0
and τ(λ) = 0, σθ(λ) = −p on lines OA and OD respectively. As a result we
have

τyi = Co(cos 2(λ − υ) − 1),
σr = σθ = 2Coθ(1 − cos 2(λ − υ)) − p/2 (4.9)
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where
Co = 0.5p/(−2υ + 2λ cos 2(λ − υ) − sin 2(λ − υ)) (4.10)

From (4.9), (4.10) the link between p/τiy and υ for different λ may be found. In
elastic districts AOB, COD at upper and lower signs before υ are the stresses
are:

τ = Co(cos 2(λ − υ) − cos(θ ± υ)),
σθ
σr

= Co(−(±(−2υ)) − 2θ cos 2(λ − υ) ± sin 2(θ ± υ)) − p/2.

At λ − υ = π/4 and τ = τyi we have from (4.9), (4.10) the ultimate load as
follows

pu = 2τyi(2λ − π/2 + 1) (4.11)

and it is interesting to notice that if we take the solution that is recommended
in /18/ by V. Sokolovski for the case λ ≤ π/4 which in our case gives the
smaller load at π/2 > λ > π/4 as

(pu)′ = 2τyi(sin 2λ − (π/2 − 1) cos 2λ).

However the last relation predicts a fall of the ultimate load with an increase
of λ as a whole (e.g. (pu)′(π/2) = 1.14τyi) that contradicts a real behaviour
of foundations.

Displacements in Wedge

In order to find displacements we use expressions (2.69), (2.66) in which
m = 1, Ω = 1/G and indices x, y are replaced by r, θ respectively. As a
result we have in districts AOB and COD at upper and lower signs before υ
consequently

εθ
εr

= (−0.5p(1 − 2ν) + Co((1 − 2ν)(−(±2υ) − 2θ cos 2(λ − υ)

± sin 2(θ ± υ)))/2G,

γ = Co(cos 2(λ − υ) − cos 2(θ ± υ))/G,

ur = Cor(−0.5p(1 − 2ν)(−(±2υ) − 2θ cos 2(λ − υ)) − sin 2(θ ± υ))/2G,

uθ = Co(4(1 − ν) ln(r/d) cos 2(λ − υ) − cos 2(θ − υ))/2G.

where d has the same meaning as in relation (3.27).

Ultimate State of Slope

As an alternative we study a possibility of a rupture in the plastic zone where
elongations ε1 = γ/2 take place. From expression (2.32) we write

τ = 2G(t)ε1 exp(−αε1)
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and according to criterion dε1/dt → ∞ we find the critical values of ε1 and t
as follows

ε∗ = 1/α, G(t∗) = pαe(cos 2(λ − υ) − 1)/4(2λ cos 2(λ − υ) − 2υ − sin(λ − υ)).

If the influence of time is negligible the ultimate load can be determined as

p∗ = 4G(2λ cos 2(λ − υ) − 2υ − sin 2(λ − υ))/αe(cos 2(λ − υ) − 1).

The smallest value of p∗ and pu (see relation (4.11)) must be chosen.

4.2.2 Compression of Massif by Inclined Rigid Plates

Main Equations

Here we use the scheme in Fig. 3.6. Excluding from (2.66), (2.68) at τe = τyi

difference σr − σθ we get on an equation for τrθ ≡ τ at τ = τ(θ) which after
the integration becomes

dτ/dθ = ±
(
−2
√

(τyi)2 − τ2

)
+ 2nτyi (4.12)

where n is a constant. The integration of (4.12) gives a row of useful results.
When n = 0 we find expression τ = ±τyi sin(c + 2θ) which corresponds

to homogeneous tension or compression. The family of these straight lines
has two limiting ones on which τ = ±τyi (they are called “slip lines”) and
according to the first two equations (3.21) σr = σθ = ±2τyiθ. Another family
of slip curves is a set of circular arcs (Fig. 4.4a), Such a field was realized in
plastic zone BOC of the problem in Sect. 4.2.1 and can be seen near punch
edges. The photographs of compressed marble and rock specimens are given
in book /22/ and they are shown schematically in Fig. 4.4b. It is interesting

a) b)

P

Fig. 4.4. Slip lines
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to notice that this stress state is described by the same potential function
(see (2.75))

Φ = τyir2θ
as in an elastic state.

General Case

When in (4.12) n �= 0 we have a compression of a wedge by rough rigid plates.
Putting in (4.12)

τ = τe sin 2ψ, σr − σθ = 2τe cos 2ψ (4.13)

where ψ is equal to angle Ψ in Figs. 1.21 and 1.22 we find for the upper sign
in (4.12)

dψ/dθ = n/ cos 2ψ− 1. (4.14)

The integral of (4.14) at boundary condition ψ(0) = 0 is obvious

θ = n(n2 − 1)−1/2 tan−1
(√

(n + 1)/(n − 1) tanψ
)
−ψ

and n depends on λ according to the second border demand ψ(λ) = π/4 as
(Fig. 4.5)

λ = n(n2 − 1)−1/2 tan−1
√

(n + 1)/(n − 1) − π/4.

Now from static equations (2.67) we compute

σr

σθ
= τyi(C − 2 ln (r/a)− n ln(n − cos 2ψ) ± cos 2ψ) (4.15)

where a is represented in Fig. 3.6 and constant C can be found from the first
equation (3.32). The simplest option is

σr

σθ
= τyi(2 ln (a/r) − n ln((n − cos 2ψ)/(n − 1)) ± cos 2ψ).

1
0

40

80

120

λo

2 3 4 n

Fig. 4.5. Dependence λ on n
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In order to find displacements we derive from (2.66), (3.18) and (4.13)

(U′ − r2f(θ))/U = −2 tan 2ψ.

Since ψ = ψ(θ) we must put f(θ) = V ′ + V = 0 and deduce together with
conditions V (0) = 0, V (λ) = Vo and (4.14)

uθ = Vo sin θ/ sinλ, ur = uo/r(n − cos 2ψ) − Vo cos θ/ sin λ

where uo may be found from the supposition that some point at θ = λ,
ψ = π/4, r = d has no radial movement. As a result we have

ur = Vo(nd/r(n − cos 2ψ) tanλ − cos θ/ sinλ)

Sokolovski /18/ used this solution for the description of material flow through
a narrowing channel. For both cases we can find resultant Q = ql (Fig. 3.6)
according to the second integral static equation (3.32) as /23/

q = 2nτyi((a/l + 1) ln(l/a + 1) + 0.5 ln(n/(n − 1)) − 1).

Diagram max τe(λ) at l/a → ∞ is given in Fig. 3.9 by solid curve 0. We can
see that at λ > π/4 it is below the line 1.

Cases of Big n and Parallel Plates

If n is high we have from (4.14)

dψ/dθ = n/ cos 2ψ

and after integration
nθ = 0.5 cos 2ψ

Parameter n is linked with λ as n = 1/2λ and for ψ we have

sin 2ψ = θ/λ, cos 2ψ =
√

1 − (θ/λ)2.

In the same manner as before we find stresses

τ = τyiθ/λ,
σr

σθ
= τyi

(
λ−1 ln(a/r) − 1 + 2

√
1 − (θ/λ)2

0

)
,

and as before we find displacements. From (2.66), (3.28), (4.13) we have

(U′ − f(θ)r)/U = 2θ/
√

λ2 − θ2.

That means f(θ) = 0 and

ln(U/uo) = −2
√

λ2 − θ2
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Fig. 4.6. Compression of massif by parallel plates

from which we derive

uθ = Voθ/λ, ur = Vo

(
(d/r) exp

(
−
√

λ2 − θ2
)
− 1
)
/λ.

Lastly at λ → 0 we have the case of parallel plates and at θ/λ = y/h we derive
(Fig. 4.6)

τ = τyiy/h, σx − σy = 2τyi

√
1 − (y/h)2

and using (2.59) at X = Y = 0

σx = f(y) − τyix/h, f′(y) = − 2τyiy/h
√

h2 − y2

or after integration

σx = (C − τyix/h) + 2τyi

√
1 − (y/h)2, σy = C − τyix/h.

Supposing σy(0, h) = −τyi we finally derive

σx = −τyi

(
1 + x/h − 2

√
1 − (y/h)2

)
, σy = τyi(1 + x/h) (4.16)

and from integral static equation we compute

p = P/l = τyi(1 + l/2h).

Diagrams σx(y). σx(l) and σy(x) for the left side of the layer are shown in
Fig. 4.6. The broken lines correspond to the case when the material is pressed
into space between the plates (two similar states are described in Sect. 1.5.4).

In order to seek displacements we suppose uy = −Voy/h and according to
(2.60), (3.42) and incompressibility condition (εx + εy = 0) we have

ux = F(y) + Vox/h, γxy = F′(y).
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and from the similarity of deviators

γxy/εx = 4τ/(σx − σy)

with consideration of (2.66)

F′(y) = 2Voy/h
√

h2 − y2

or after integration together with border demand ux(l, h) = 0

ux = Vo

(
(x − l)/h − 2

√
1 − (y/h)2

)
.

The set of slip lines is also drawn in Fig. 4.6. They are cycloids and their
equation will be given later. Experimental investigations show that rigid zones
appear near the centre of the plate (shaded districts in Fig. 4.6) while plastic
material is pressed out according to the solution (4.16) above.

Its analysis shows that at small h/l shearing stresses are much less than
the normal ones and the material is in a state near to a triple equal tension or
compression. This circumstance has big practical and theoretical meaning. It
explains particularly the high strength of layers with low resistance to shear
in tension (solder, glue etc.) or compression (soft material between hard one
in nature or artificial structures). It also opens the way to applied theory of
plasticity /10/.

Generalization of this problem on hardening at creep body is given in
Appendix H.

Addition of Shearing Force

Here we suppose /10/ that shearing stresses on contact surfaces (Fig. 4.7) are
constant. At y = h, x < l and y = −h, x > l we have τ = τyi and in other
parts of the surface τ = τ1 < τyi. Then satisfying static equations (2.59) and
condition τe = τyi the solution may be represented in a form

τxy/τyi = (1 + k1)/2 + (1 − k1)y/2h,

σy/τyi = −C− (1 − k1)x/2h, σx/τyi = σy/τyi + 2
√

1 − (τxy/τyi)2.
(4.17)

Here k1 = τ1/τyi and C is a constant. If k1 = −1 we have solution (4.16) and
at k1 = 1 we receive a pure shear (σx = σy = 0, τxy = τyi).

Now we use integral static equations similar to (3.32)

h∫

−h

σx(0, y)dy = 0,

1∫

0

σy(h)dx = P

which give after exclusion of C

π/2 − k1

√
1 − (k1)2 − sin−1 k1 = (1 − k1)(−p − (1 − k1)l/4h). (4.18)
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Fig. 4.7. Layer under compression and shear
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Fig. 4.8. Dependence of p on q

Here p = P/lτyi. Then we take integral equilibrium equation at contact
surface as

2Q = τyi(1 + k1)l

which gives 1+k1 = 2q where q = Q/τyil. Excluding from (4.18) k1 we finally
receive

(1− q)(−2p− (1− ql/h) = π/2 + 2(1− 2q)
√

q(1 − q)− sin−1(2q− 1). (4.19)

At q = 0 we again find the Prandtl’s solution (4.16).
From Fig. 4.8 where diagrams (4.19) for l/h = 10 and l/h = 20 are

constructed we can see the high influence of q on ultimate pressure p.

4.2.3 Penetration of Wedge and Load-bearing Capacity
of Piles Sheet

As we can see from Fig. 4.5 the dependence λ(n) may be also used at λ >
π/2 when a wedge penetrates into a medium (Fig. 4.9).General relations for
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Fig. 4.9. Penetration of wedge

stresses of Sect. 4.2.2 are valid here but constant C should be searched from
equations similar to (3.32) as

p∗ sinλ = −
λ∫

0

(σr(a, θ) cos θ + τ(a, θ) sin θ)dθ,

P∗ = 2(p∗b +

a+l∫

a

(σθ(r, λ) sin λ + τ(r, λ) cos λ)dr). (4.20)

where p∗ is an ultimate pressure at compression. Putting into (4.20) σr, σθ
from (4.15) and τ from (4.13) we find

P∗/2τyi = p∗(b/l + sin λ)/τyi + Jo − n(lnn − 2 + 2n(1 + a/l)
× ln(l/a + 1)) sinλ + cosλ. (4.21)

Here

Jo =

λ∫

0

(cos 2ψ− n ln(n − cos 2ψ) cos θ + sin 2ψ sin θ)dθ.

In the case of a wedge penetration we must put in (4.21) a = 0 that gives
the infinite ultimate load due to the hypothesis of constant form and volume
of the material near the wedge. Because of that we recommend for the case the
solution of Sect. 4.2.2. However for λ near π (an option of pile sheet) simple
engineering relation can be derived when at n = 1.07, λ = 179◦, a → ∞ we
derive from (4.21)

P∗ = 2(p∗b + τyil(1 + Jo)). (4.22)

The computations of Jo(π) gives its value 2.0. Taking into account the struc-
ture of (4.22) and its original form (4.20) we can conclude that the influence
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of σθ is somewhat higher than that of τ. We must also notice that P∗-value in
(4.22) is computed in the safety side because we do not consider an influence
of σθ on τyi.

4.2.4 Theory of Slip Lines

Main Equations

Such rigorous results as in previous paragraphs are rare. More often approx-
imate solutions are derived according to the theory of slip lines that can be
observed on polished metal surfaces. They form two families of perpendicular
to each other lines for materials with τyi = constant. We denote them as α, β
and for their determination we use transformation relations (2.72) which give
the following stresses in directions inclined to main axes 1, 3 under angles π/4
(Fig. 4.10)

σα = σβ = σm = 0.5(σ1 + σ3),
ταβ = τyi = 0.5(σ1 − σ3). (4.23)

Now we find the stresses for a slip element in axes x, y. According to
expressions (2.72) (Fig. 4.11)

σx

σy
= σm ± τyi sin 2ψ, τxy = −τyi cos 2ψ. (4.24)

These relations allow to find equations of slip lines in form

dy/dx = tanψ = (1 − cos 2ψ)/ sin 2ψ = 2(τyi + τxy)/(σx − σy)

and for another family dy/dx = − cotψ.

Fig. 4.10. Stresses in element at ideal plasticity
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Fig. 4.11. Slip element in axes x, y

Examples of Slip Lines

Reminding the problem of the layer compression (see Sect. 4.2.2.) we put in
the last expressions the relations for stresses and get on equations

dy/dx = −
√

(h − y)/(h + y), dy/dx =
√

(h + y)/(h − y)

and after integration we find the both families of the slip lines as

x = C +
√

h2 − y2 + h cos−1(y/h), x = C +
√

h2 − y2 − h cos−1(y/h)

where C is a constant. The slip lines according to these expressions are shown
in Fig. 4.6. In a similar way the construction of slip lines can be made for the
compressed wedge in Fig. 3.6.

As the second example we consider a tube with internal a and external b
radii under internal pressure q. Here τrθ = 0, σr − σθ = 2τe = σyi and from
the first static equation (2.67) we receive

q∗ = σyi ln(b/a). (4.25)

Slip lines are inclined to axes r and θ by angle π/4 (broken lines in Fig. 4.12).
From this figure we also find differential equation

dr/rdθ = ±1

with an obvious integral
r = ro exp(±θ). (4.26)

So, the slip lines are logarithmic spirals which can be seen at pressing of a
sphere into a plastic material.
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Fig. 4.12. Slip lines in tube under internal pressure

Construction of Slip Lines Fields

In order to construct a more general theory of slip lines we transform
static equations (2.59) into coordinates α, β putting there expressions (4.24).
Applying the method of Sect. 2.4.3 (see also /10/) we derive differential
equations

∂(σm + 2τyiψ)/∂α = 0, ∂(σm + 2τyiψ)/∂β = 0

with obvious integrals

σm/2τyi ±ψ = ξ
η = constant. (4.27)

The latter relations allow to determine parameters ξ, η in a whole field if
they are known on some its parts particularly on borders. In practice simple
constructions are used corresponding as a rule to axial tension or compression
(Fig. 4.13) and centroid one (Fig. 4.4a). A choice between different options
should be made according to the Gvozdev’s theorems /9/.

Construction of Slip Fields for Soils

In a similar way the simple fields of slip lines can be found for a soil with angle
of internal friction ϕ (see solid straight line in Fig. 1.22) when according to
(1.34), (1.35) the slip planes in a homogeneous stress field are inclined to the
planes with maximum and minimum main stresses under angles π/4−ϕ/2 and
π/4 + ϕ/2 respectively. In order to generalize the centroidal field in Fig. 4.4a
we find from Fig. 1.22 expression τ = ±(−σθ tan ϕ) and put it into the second
equation (3.21) which after transformations gives

σθ = C exp(±2θ tan ϕ), τ = ±(−C(tan ϕ) exp(±2θ tan ϕ)).
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Fig. 4.13. Slip lines at homogeneous tension or compression

Now we again use Fig. 1.22 and write the result at the upper sign in the
previous relations as follows

σm = σθ + τ tan ϕ = C(1 + tan2 ϕ) exp(±2θ tan ϕ)

or finally
σm = Dexp(±2θ tan ϕ) (4.28)

where D is a constant.
Supposing that in the origin at r = ro the second family of the slip lines is

inclined to the first set of them (the rays starting from the centre – see Fig. 4.4)
under angle π/4 – ϕ/2 we conclude from Fig. 1.22 that they form angle ϕ with
the normal to r. So for the second family we have equation similar to the case
of τyi = constant as

dr/rdθ = ± tan ϕ
and hence

r = ro exp(±θ tan ϕ) (4.29)

(see also (4.26) and Fig. 4.12). This theory can be generalized for a cohesive
soil by the replacement in (4.28) σm by σm+c/ tan ϕ (broken line in Fig. 1.22).

4.2.5 Ultimate State of Some Plastic Bodies

Plate with Circular Hole at Tension or Compression

We begin with a simple example of a circular tunnel (Fig. 4.14) in a massif
under external homogeneous pressure p. In this case we choose a slip lines
field corresponding to simple compression (left side in the figure). Then we
have according to relations (4.27) σx = σm + τyi = 0 that means σm = −τyi

and σy = σm – τyi = −2τyi = −σyi. We suppose also that the material inside
a strip 2a is rigid and we find

P∗ = 2(b − a)σyi. (4.30)
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As the P∗-value is found from the static equation the result is a rigorous one.
It is also valid for a tension of the plane with a circular hole and it is much
simpler than the similar solution for an elastic body in Sect. 3.2.5.

Penetration of Wedge

Now we consider a pressure of a wedge into a massif (Fig. 4.15). We suppose
that a new surface OA is a plane and the slip field consists of two triangles
OAB, OCD at pure compression and a centroidal part OBC between them.
Firstly we determine the stress state in the triangles. In AOB

ψ = −υ/2, σ1 = σm + τyi = 0

that means σm = −τyi. Similarly in COD

ψ = υ/2, σ3 = −p∗ = σm − τyi
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Fig. 4.16. Dependence of compressing force on angle λ

that gives σm = τyi − p∗.
Putting these results into (4.27) we receive

−τyi/2τyi − υ/2 = (τyi − p∗)/2τyi + υ/2

from which
p∗ = σyi(1 + υ) (4.31)

and according to static equation as the sum of the forces on vertical direction:

P∗ = 2σyi(1 + υ)l sinλ. (4.32)

The auxiliary quantity υ can be excluded by the condition of the equality
of volumes KDG and AOG. Since from triangle AOG angle OAG is equal to
π−(π/2−λ)−(π/2+υ) or after cancellation – to λ−υ we have for segment KE

l cosλ − h = l sin(λ − υ) (4.33)

and we find /24/

h2 tanλ = (l cosλ − h)(l cos(λ − υ) + (l cosλ − h) tanλ). (4.34)

Excluding from (4.33), (4.34) l, h we finally derive

2λ = υ + cos−1(tan(π/4 − υ/2)). (4.35)

Diagram P∗(λ) according to (4.32), (4.35) is represented in Fig. 4.16 by broken
line. Replacing in (4.31) υ by 2λ – π/2 we get on the critical pressure (4.11)
for the slope.

Pressure of Massif through Narrowing Channel

Similar to investigations of the previous paragraph we can study the scheme in
Fig. 4.17. We consider first the option l = h and the slip lines field consisting
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Fig. 4.17. Pushing massif through channel

of triangle AOB and sector OBC on each half. The parameters in the triangle
and on straight line OC are respectively

ψ = λ + π/4, σ3 = σm − τyi = −p∗;ψ = π/4, σ1 = σm + τyi = 0. (4.36)

Putting (4.36) into (4.27) we have

p∗ = 2τyi(1 + λ) (4.37)

and from static equation we finally receive

P∗ = 2lσyi(1 + λ) sin λ. (4.38)

Relation (4.38) is represented in (Fig. 4.16) by the solid line and we can see
that it is near to the broken curve which corresponds to the latter solution
for b = 0. So, we can conclude that the simple results (4.37), (4.38) can be
used for a case of l > h as well.

At υ = π/2 in (4.31) and λ = π/2 in (4.37) we find the ultimate punch
pressure (left part in Fig. 4.18) as

p∗ = σyi(1 + π/2). (4.39)

Tension of Plane with Crack

Relation (4.39) is valid for the problem of a crack in tension (right part in
Fig. 4.18). Here in square ODCD’

σx = σyiπ/2, τxy = 0, σy = σyi(1 + π/2)

and according to (2.72) we compute

σr = σyi(π/2 + sin2 θ), σθ = σyi(π/2 + cos2 θ), τrθ = τyi sin 2θ. (4.40)



108 4 Elastic-Plastic and Ultimate State of Perfect Plastic Bodies

A

B

y

O

D

x

C

p
*

p
*

D’

Fig. 4.18. Pressure of punch and tension of plate with crack
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Fig. 4.19. Diagrams of stresses

In the same manner we find in triangle AOB σy = τxy = 0, σx = σyi and

σr = σyi cos2 θ, σθ = σyi sin2 θ, τrθ = −τyi sin 2θ. (4.41)

In sector OBD’ τrθ = τyi and stresses σr = σθ change as linear function of θ:

σr = σθ = σyi(0.5 + 3π/4 − θ). (4.42)

Diagrams σθ/σyi, σr/σyi, τrθ/σyi are represented in Fig. 4.19 by solid, broken
and interrupted by points lines 0. The same curves with index 1 refer to elastic
solution (3.90), at max τe = σyi/2. It is interesting to notice that these lines
reflected relatively axis θ = π/2 describe the stress state near the punch edge.

It is also valid to note that in plastic state the potential function exists
near the crack ends as

0.5 σyir2(π/2 + cos2 θ), 0.5 σyir2(0.5 + 3π/4 − θ), 0.5 r2σyi sin2 θ (4.43)

at θ ≤ π/4, π/4 ≤ θ ≤ 3π/4 and 3π/4 ≤ θ ≤ π respectively.
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Fig. 4.20. Generalized Coulomb’s law

4.2.6 Ultimate State of Some Soil Structures

Conditions of Beginning of Plastic Shear

As we noticed above an earth is a very complex medium and its fracture
is usually linked with shearing stresses. The strength condition is as a rule
written in form τ < τ∗ – stable equilibrium, τ = τ∗ – ultimate state and
τ > τ∗ – plastic flow where τ∗ is a characteristic of a material a value of which
depends linearly on normal stress applied to the plane where τ acts. This is
the Coulomb’s law (here up to sub-chapter 4.3 according to /10/ compressive
stresses are supposed positive with σ3 > σ1).

τ∗ = σ tan ϕ (4.44)

(inclined straight line in Fig. 1.22) for a quicksand and

τ∗ = σ tan ϕ + c (4.45)

(inclined broken line in the figure) – for a coherent soil. The latter equality is
usually led to the form (4.44) (Fig. 4.20)

τ∗ = (σ + σc) tan ϕ (4.46)

where σc = c/ tan ϕ – coherent pressure which replaces an action of all cohesive
forces.

From (4.46) we have

tan ϕ = τ∗/(σ + σc). (4.47)

This condition may be written in another form. We draw through a point A
(Fig. 4.21) at angle β to the horizon plane mn on which the components of
full stress p – normal σβ and shearing τβ are acting. The first of them includes
the cohesion pressure. From geometrical consideration we find

tan θ = τβ/(σβ + σc). (4.48)
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Fig. 4.21. Decomposition of full stress

Value of θ is usually called an angle of divergence which can not exceed angle
of internal friction ϕ. That gives the condition of ultimate equilibrium as

θ = ϕ. (4.49)

Representations of Ultimate Equilibrium Condition

At an appreciation of materials’ strength the so-called Mohr’s circles are used.
In the common representation of a tensor as a vector in a nine-dimensional
space /10/ there are three such figures. At a plane stress state we have in
coordinates σ, τ only one circumference (Fig. 1.22) along which a point moves
when a plane turns in a material.

As was told in Chap. 2 the faces of a cube with absent shearing stresses are
called main (principal) planes with normal stresses on them σ1 = σx, σ2 = σz,
σ3 = σy. O. Mohr used his representation for a formulation of his hypothesis
of strength which in its linear option coincides with the Coulomb’s relation
(4.44) and can be interpreted as a tangent to the circumference in Fig. 1.22
under angle ϕ.

From expression (1.36) we have in main stresses the condition of the
ultimate state of quicksand as:

sin ϕ = (σ3 − σ1)/(σ3 + σ1). (4.50)

For coherent earth (4.50) can be generalized in form (broken line in Fig. 1.22)

sin ϕ = (σ3 − σ1)/(σ1 + σ3 + 2c cot ϕ). (4.51)

Relation (4.50) can be also represented in form:

σ1/σ3 = tan2(π/4 ± ϕ/2). (4.52)

In the theory of interaction of structures with an earth sign minus corresponds
to active pressure of soil and plus – to its resistance. In quicksand or coherent



4.2 Plane Deformation 111

earth shearing displacements occur on planes under angles π/4 − ϕ/2 to the
direction of σ3.

In some cases it is useful to write (4.50), (4.51) in stresses σx, σy, τxy with
the help of (2.65) as follows:

sin2 ϕ = ((σy − σx)2 + 4(τxy)2)/(σy + σx)2 (4.53)

for quicksand and

sin2 ϕ = ((σy − σx)2 + 4(τxy)2)/(σx + σy + 2c cot ϕ) (4.54)

for coherent soils.

Wedge Pressed in Soil

We construct the field of slip lines as in Fig. 4.22 /25/ and we again suppose
that OA is a straight line. From the figure we compute that it is inclined to
horizon AK by angle λ − υ as in Fig. 4.16. From geometrical considerations
we have l = al1 where

a = (1 − sin ϕ)(exp(−υ tan ϕ))/cos ϕ

and
h = l1(a cosλ − sin(λ − υ)). (4.55)

Putting (4.55) into the condition of constant volume similar to that for ideal
plastic material we find expression:

h2 tan λ = (l1)2 sin(λ − υ)(cos(λ − υ) + sin(λ − υ) tan λ)

which gives after transformations relation for tanλ:

(4a cos υ + sin 2υ) tan2 λ− 2(a2 − cos 2υ + 2a sinυ) tan λ− sin 2υ = 0. (4.56)

DC

O
K

p
*p

*

h

B

A

l1

Fig. 4.22. Wedge pressed in soil
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Now we find the ultimate load according to the field of slip lines in Fig. 4.22.
From Fig. 1.22 we have for a cohesive soil:

σ3

σ1
= σm (1 ± sin ϕ) ± c cos ϕ. (4.57)

In triangle ABO σ1 = θ = 0 and from (4.57)

σm(1 − sin ϕ) = c cos ϕ

but from (4.28) for a cohesive soil σm = D − c/tan ϕ and so

D = c/(1 − sin ϕ) tan ϕ. (4.58)

In the same manner for triangle OCD where σ3 = p∗, θ = υ we find from
(4.57), (4.28)

p∗ = D(1 + sin ϕ)(exp 2υ tan ϕ) − c/ tan ϕ
and with consideration of D-value from (4.58) we receive finally:

p∗ = c((1 + sin ϕ)e2υ tan ϕ/(1 − sin ϕ) − 1)/ tan ϕ. (4.59)

Lastly from static condition we derive:

P∗ = 2lc((1 + sin ϕ)e2υ tan ϕ/(1 − sin ϕ) − 1) sinλ/tan ϕ. (4.60)

From diagrams P∗/2lc = f(λ) at different ϕ in Fig. 4.23 we (broken curves)
can see that P∗ increases with a growth of ϕ and λ. It can be much bigger its
value at ideal plasticity (ϕ = 0, c = τyi – broken line in Fig. 4.16).

Pressure of Soil through Narrowing Channel

Similar to Fig. 4.17 we can construct the field of slip lines for the soil (its
right part is shown in Fig. 4.24). Then we use relations (4.57)–(4.60) with
replacement in them υ by λ. The consequent diagrams are represented by
solid lines in Fig. 4.23 and we can see that they are near to broken curves for
more complex solution above.

20
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0 π/6

π/6

π/12

0

π/3 λ

21c
P

Fig. 4.23. Dependence of P∗ on λ
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Fig. 4.24. Pressure of soil through narrowing channel

Some Important Particular Cases

At υ = π/2− β we have from (4.59) the ultimate load for a slope (Fig. 3.5) as
follows:

p∗ = c((1 + sin ϕ)e(π−2β) tanϕ/(1 − sin ϕ) − 1) cot ϕ (4.61)

and if υ = π/2 – well-known pu-value for a foundation (Fig. 3.12) – the
so-called second ultimate load as:

p∗ = (γeh + c cot ϕ)(1 + sin ϕ)eπ tanϕ/(1 − sin ϕ) − c cot ϕ. (4.62)

At h = 0 we again see that this expression can not be applied to soils without
cohesiveness. Once more we suppose p∗ = a2τyi. The values of a2 are given in
the Table in Sect. 3.2.2. The ratio a1/a2 there means p∗/minpyi and we can
see that it increases strongly with a growth of ϕ.

4.2.7 Pressure of Soils on Retaining Walls

Active Pressure of Soil’s Self-weight

A horizontal plane behind a vertical wall endures compression stress:

σ3 = γez. (4.63)

Using equation of ultimate state (4.52) we find:

σ1 = γez tan2(π/4 − ϕ/2). (4.64)

Diagram σ1(z) is given in Fig. 4.25 as triangle abd. The resultant of this
pressure can be derived in form

Ra = 0.5γeH2 tan2(π/4 − ϕ/2). (4.65)
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Fig. 4.26. Additional external pressure

In the case of the earth’s passive resistance we must take in brackets of
expressions (4.64), (4.65) sign plus.

When an uniformly distributed load q acts on a horizontal surface z = 0 we
usually replace it by equivalent height h = q/γe (Fig. 4.26) and the resultant is:

R = 0.5(σ1 + (σ1)′)H.

Since

σ1 = γe(H + h) tan2(π/4 − ϕ/2), (σ1)′ = γeh tan2(π/4 − ϕ/2) (4.66)

the resultant can be computed as

R = 0.5γeH(H + 2h) tan2(π/4 − ϕ/2). (4.67)

Consideration of Coherence

If a soil has coherence its influence can be conditionally replaced by three-
dimensional pressure of coherence σc = c/ tan ϕ (Fig. 1.22) and by equivalent
layer

σc/γe = c/γe tan ϕ. (4.68)
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Fig. 4.27. Consideration of coherence

Taking this into account we can write:

σ1 = γe(H + c/γe tan ϕ) tan2(π/4 − ϕ/2) − c/ tan ϕ or
σ1 = γeHtan2(π/4 − ϕ/2) − 2c tan(π/4 − ϕ/2). (4.69)

According to Fig. 4.27 we can represent (4.69) as:

σ1 = σ1ϕ − σ1c (4.70)

where σ1ϕ, σ1c are maximum lateral pressures in an absence of the coherence
and decrease of it due to coherent forces.

The whole pressure σ1 changes from tension in the top to compression in
the bottom and condition σ1 = 0 gives:

hc = 2c/γe tan(π/4 − ϕ/2). (4.71)

The resultant of active pressure can be found as the area of shaded triangle
with base σ1 and height H − hc that is:

Rc = 0.5 σ1(H − hc).

Putting here σ1 according to (4.69) we compute:

Rc = 0.5γeH2 tan2(π/4 − ϕ/2)− 2cH tan(π/4 − ϕ/2) + 2c2/γe. (4.72)

Comparing this result to (4.65) we can conclude that the coherence may
diminish a resultant very strongly.

4.2.8 Stability of Footings

Besides the failures considered above a structure may loose its stability. We
consider two types of such a phenomenon – plane and deep shears (Figs. 4.28
and 4.29 respectively).
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Fig. 4.28. Plane shear
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Fig. 4.29. Deep shear

In the first case the loss of stability occurs by a movement parallel to hor-
izontal surface. An appreciation of strength is usually made by a calculation
of a factor of stability as:

Ks = (fP + Ra)/Q (4.73)

where Q is a shearing force, f – coefficient of friction, P – weight of the struc-
ture, Ra – resultant of active pressure computed by the relations (4.65), (4.67)
and others of the previous paragraph or (4.72).

In the second case the loss of stability takes place by a movement along a
cylindrical surface. The coefficient of stability can be calculated as a ratio of
sums of moments of resistance and shearing forces:

Ks =

(
n∑

i=1

(Mi)res/

(
n∑

i=1

Mi

)

sh

. (4.74)

To compute these sums we subdivide the soil massif by parts (blocks) and
find for each of them normal and tangent forces as:
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Ni = Pi cos αi, Ti = Pi sin αi. (4.75)

With consideration of relations (4.75) expression (4.74) can be represented in
the following way:

Ks =

(
n∑

i=1

Nitanϕ + cL

)/
n∑

i=1

Ti (4.76)

where c is a specific coherence, L – a length of slip arc.

4.2.9 Elementary Tasks of Slope Stability

Soil Has Only Internal Friction

We consider a slope inclined to the horizon under angle β (Fig. 4.30). Particle
M on its surface has weight P. We decompose it in normal N and tangent T
components. Force T′ of friction resists to a movement of the particle. From
the equilibrium condition we have:

P sin β = tan ϕP cos β

or
tan β = tan ϕ. (4.77)

It means that ultimate angle β of a slope in quicksand is equal to its angle of
internal friction ϕ.

Influence of Filtration Pressure

The angle of internal friction depends on hydrodynamic pressure D of a water
in a condition of its filtration. In this situation shearing forces are (Fig. 4.31)

T = P sin β, D = γwni sin β (4.78)

T ′

T

P

N

M

Fig. 4.30. Equilibrium of particle on slope surface
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Fig. 4.32. Vertical slope of coherent soil

where γw is a specific weight of the water, n – porosity, i sin β – a hydraulic
gradient. Resistance force is:

T′ = P′ cos β tan ϕ. (4.79)

Here P′ = (γe)′i and (γe)′ is a specific weight of soil suspended in the water.
With consideration of (4.78), (4.79) the stability factor is:

Ks = T′/(T + D) = (γe)′ tan ϕ/((γe)′ + γwn) tan β. (4.80)

Coherent Soil

Now we consider a vertical slope of coherent earth when slip surface is a plane
(Fig. 4.32).

The acting force is self-weight P of sliding prism abc as:

P = 0.5γeh2 cot β (4.81)
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from which
T = 0.5γeh2 cos β (4.82)

The force of resistance is
T′ = hc/sin β.

In ultimate state T = T′ and with consideration of (4.82) we derive

0.5h2γe cos β = hc/sin β (4.83)

from which
c = (γeh/4) sin 2β. (4.84)

According to condition of ultimate equilibrium β = π/4 − ϕ/2 and at ϕ = 0
the slip plane makes with the horizon angle π/4. Taking this into account we
find ultimate height of the vertical slope as:

h = 4c/γe.

4.2.10 Some Methods of Appreciation of Slopes Stability

Rigorous Solutions of Ultimate Equilibrium Theory

A rigorous solution of slope stability takes into account both the angle of
internal friction and the coherence. Two main cases should be considered.

1. Maximum vertical pressure is given by relation (4.61) which corresponds
to plane slope. Here some special tables are also used at different β, ϕ and
dimensionless ultimate pressure σo can be found. Then the whole ultimate
pressure with consideration of coherence can be written as follows:

pu = σo + c cot ϕ,

2. A slope in its ultimate state can support on its horizontal surface uniformly
distributed load with intensity

p∗ = 2c cos ϕ/(1 − sin ϕ).

This value can be considered as an action of an equivalent soil’s layer with a
height

h = 2c cos ϕ/γe(1 − sin ϕ).

When c and ϕ both are not equal to zero a construction of most equally stable
slope may be fulfilled by the Sokolovski’s method of dimensionless coordinates

x = Xc/γs, y = Yc/γs (4.85)

beginning from the top of the slope.
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Method of Circular Cylindrical Surfaces

The method consists in a determination of a stability coefficient of natural
slope for the most dangerous slip surfaces. In practice they are taken circu-
lar cylindrical and by a selection of the centre of the most dangerous one
(for which Ks has minimum) is found.

Let the centre be in a point O (Fig. 4.33). We draw from it through the
lower point an arc of slip and construct the equilibrium equation for massif
abd. For this purpose we divide it by vertical cross-sections in n parts and use
condition ΣM = 0 as

n∑
i=1

TiR −
n∑

i=1

NiR tan ϕ − cLR = 0. (4.86)

Excluding from (4.86) R we have:

Ks =

(
n∑

i=1

Nitan ϕ + cL

)/
n∑

i=1

Ti. (4.87)

To receive the most dangerous surface we behave in the following way
(Fig. 4.34). We begin with case ϕ = 0 and find point O using angles β1, β2 from
Table D1 of Appendix D. Then we put points O1, O2, . . . at equal distances
and compute for each of them c-values according to (4.86) for consequent
sliding surface. cmax corresponds to the most dangerous slope.

A simplification of this method was made by Prof. M. Goldstein according
to whom

Ks = Atan ϕ + Bc/γeh (4.88)

where coefficients A, B must be taken from Table D2 of Appendix D. It is not
difficult to find h (Fig. 4.35) as

h = cB/γe(Ks − Atan ϕ) (4.89)
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Fig. 4.35. Method of M. Goldstein

Method of Equally Stable Slopes by Approach of Professor Maslov

The method is based on the supposition that at the same pressure angle ϕ
of resistance to shear in laboratory tests is linked with angle of repose ψ in
natural conditions as

tanψ = tan ϕ + c/γeH. (4.90)

To construct a profile of a stable slope we divide it on a row of layers (Fig. 4.36)
and compute for each of them the pressure of the soil on a lower plane and
angle of shear by (4.90) with consideration of stability coefficient as follows:

tanψ = (tan ϕ + c/p)/Ks. (4.91)

The profile of such a slope with computed values of ψ beginning from the
lower layer is given in Fig. 4.36.
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Fig. 4.36. Profile of equally stable slope

Method of Leaned Slopes

This method is used for an appreciation of landslide stability at fixed slip
slopes and stability coefficient is computed according to (4.87). For a choice
of a place of prop structure a pressure of a landslide must be found by this
way. The massif is divided by parts (blocks) and for each of them the slip
surface is a plane. According to the equilibrium condition for each of them
(Fig. 4.33)

Ri + Ni tan ϕ − cLi − Ti = 0 (4.92)

we have

R1 = P1 sin α1 − P1 cos α1 tan ϕ1 − c1L1,

R2 = P2 sin α2 − P2 cos α2 tan ϕ2 − c2L2 + R1 cos(α1 − α2)

or

Ri = Pi sin αi − Pi cos αi tan ϕi − ciLi + Ri−1 cos(αi−1 − αi) (4.93)

where Ri−1 is the projection of landslide pressure of preceding part on the
direction of slip of the block in the consideration in the point with Rmin

corresponds to the place of the structure.

4.3 Axisymmetric Problem

4.3.1 Elastic-plastic and Ultimate States
of Thick-walled Elements

Sphere

We begin with a sphere (Fig. 3.23) and computing difference of stresses
σθ – σρ from (3.114) and equalling it to σyi we find the difference of pressures
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which corresponds to the beginning of plastic deformation at ρ = a (q > p is
everywhere in this paragraph) at β = b/a as follows

(q − p)yi = 2σyi(1 − β−3)/3. (4.94)

When q − ρ > (q − p)yi we have two zones – an elastic in c ≤ ρ ≤ b where

σρ = C1 + C2/ρ3, σθ = C1 − C2/2ρ3

and a plastic one at a ≤ ρ ≤ c. In the latter we determine from (2.80),
boundary condition σρ(a) = −q and yielding demand σθ − σρ = σyi –
expressions

σρ = −q + 2σyi ln(ρ/a), σθ = −q + σyi(1 + 2 ln(ρ/a)). (4.95)

Constants C1, C2 can be excluded according to conditions σρ(b) = −p and
σθ – σρ = σyi at ρ = c. As a result we have in the elastic zone

σρ = −p + 2c3σyi(1−b3/ρ3)/3b3, σθ = −p + 2c3σyi(1 + b3/2ρ3)/3b3. (4.96)

From the compatibility law for stresses at ρ = c we find the dependence of
p − q on c and its ultimate value at c = b as follows:

q − p = 2σyi(1 − c3/b3 + 3 ln(c/a)), (q − p)u = σyi ln β. (4.97)

Cylinder

It can be considered in the same manner. From (3.114) we find the difference
of pressures at which the first plastic strains appear as

(q − p)yi = σyi(1 − β−2)/2. (4.98)

At (q − p)yi ≤ (q − p) we have in the elastic zone c ≤ r ≤ b

σr = −p + c2σyi(1 − b2/r2)/2b2, σθ = −p + c2σyi(1 + b2/r2)/2b2.

The dependence of q – p on c and its ultimate value at c = b are

q − p = 0.5σyi(1 − c2/b2 + 2 ln(c/a)), (q − p)u = σyi ln β. (4.99)

In plastic zone the expressions for stresses are similar to (4.95) and they can
be written with a help of (2.67) as follows:

σr = −q + σyi ln(r/a), σθ = −q + σyi(1 + ln(r/a)).

Comparing (4.94), (4.97)–(4.99) respectively we can conclude that a sphere
demands the somewhat bigger difference of pressures for the beginning of
yielding and twice of it at ultimate state than a cylinder.
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Cone

Similarly the case of the cylinder (Fig. 3.24) the first plastic strains appear
according to (3.118) at

(q − p)yi = 0.5Aσyi sin2ψ/ cosψ

where A is given by (3.120). At q−p > (q−p)yi we have in elastic and plastic
zones respectively

σθ
σχ

= −p + 0.5σyisin2υ
(
cosλ/sin2λ ± cos χ/sin2χ

+ ln (tan (λ/2)/tan (χ/2)))/cos υ,

σχ = −q + σyi ln(sin χ/ sinψ), σθ = −q + σyi(1 + ln(sin χ/ sinψ)).

The dependence of q – p on angle υ at the border between elastic and plastic
zones and the ultimate state are described by relations

q − p = 0.5 σyi(1 + 2 ln(sin υ/ sinψ) − sin2 υ(cos υ/ sin2 υ)
+ ln(tan(λ/2)/ tan(υ/2))), (q − p)u = σyi ln(sin λ/sinψ). (4.100)

Let us now consider the yielding of the cone with initial angles ψo, λo when it
is in the ultimate state. From (2.79) we derive the constant volume equation
for displacement V = uχ/ρ in following form:

duχ/uχdχ = −cot χ

with obvious solution
uχ = uχ(ψ) sinψ/sin χ.

But according to definition

uχ(χ)/uχ(ψ) = dχ/dψ

that gives the integral which can be also found from the condition of constant
volume of differences of spherical sectors

cos χ − cos χo = cosψ− cosψo (4.101)

and instead of (4.100) we can write

(q − p)u = 0.5 σyi ln(1 − (cosψ− cosψo + cosλo)2/sin2ψ).

Sokolovski /18/ investigated also the case of π/2≤ λ when two plastic zones
(AOB and COD in Fig. 4.37) appear. This problem can be considered similarly
to the previous one.

Particularly the ultimate state takes place at υ = π/2 and for it we have
also (4.100).
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Fig. 4.38. Compression of cylinder

4.3.2 Compression of Cylinder by Rough Plates

L. Kachanov found upper load compressing a cylinder of height 2 h and radius
a (Fig. 4.38). He proposed displacements in a form

ur = U = Cr(1 − βz/h), uz = V = Voz/h

where β is a barrel factor, Vo – velocity of the plates and constant C can be
found from the constant volume demand (see expressions (2.76)) as follows:

dU/dr + U/r + dV/dz = 0.

Then L. Kachanov uses the equality of power of external and internal
forces as

P∗Vo = 2πa2τyi

⎛
⎝2a

η∫

0

1∫

0

εeρdρdξ +

1∫

0

U(ρ) ρdρ

⎞
⎠ . (4.102)
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Fig. 4.39. Dependence of ultimate pressure on a/h

Here η = h/a, ρ = r/a, ξ = z/a and equivalent strain εe is given by relation
(2.25). Computing εr, εz, εθ, γrz according to (2.25), putting it into (4.102) we
get on a complex expression. Parameter β should be found from the condition
of minimum p∗ where p = P/πa2. The dependence of p∗ on a/h is shown by
solid curve in Fig. 4.39. The broken line in the figure corresponds to elementary
solution β = 0 when εe = εz = Vo/h, U = Voaρ/2h in form

p∗/σyi = 1 + 1/6η.

It is easy to see that the simple solution gives results near to the rigorous
ones. In a similar manner the problems of stress state finding can be fulfilled
for a neck in a bar at tension.

4.3.3 Flow of Material within Cone

Common Case

Similarly Sect. 4.2.2 we consider a flow within a cone (Fig. 3.6 where coordi-
nates r, θ must be replaced by ρ, χ respectively). Above that we suppose here
τ ≡ τχθ and that strains εχ = εθ = −ερ/2 depend only on χ. Removing from
(2.78) difference σρ – σχ according to (2.65) and condition τe = τyi we get on
the first integral as

dτ/dχ = 2nτyi − τ cot χ − 4
√

(τyi)2 − τ2

where n is a constant. Putting here representation (4.13) at r = ρ, θ = χ
we get equation

dψ/dχ = n/cos 2ψ− 2 − 0.5 cotχ tan 2ψ (4.103)

that can not be solved rigorously. Sokolovski /18/ gave diagrams λ(n) and
ψ(χ) for λ ≤ 40◦.

These curves for 0 ≤ λ ≤ π are represented by solid lines in Figs. 4.40
and 4.41.
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Fig. 4.41. Diagrams ψ(χ) at different λ

Now from the second equation (2.77) and representation (4.13) at τe = τyi

we derive
σχ = F(ρ) − 3τyi

∫
sin 2ψdχ

where F is a function of ρ. Computing from (4.13) stress σρ and putting it into
the first (2.77) we find with consideration of (4.103) F(ρ) and hence stresses
depending on constant C.

σχ = C − τyi

(
2n ln ρ + 3

∫
sin 2ψdχ

)
, σρ = σχ + 2τyi cos 2ψ. (4.104)

Case of Big n

In /18/ Sokolovski proposed some simplifications as in Sect. 4.2.2 and got
results for small λ
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λ = 1/2n, τ = τyiχ/λ, σρ − σχ = (2τyi/λ) ln(a/ρ),
σρ = 2τyi

(
λ−1 ln(a/ρ) + 2

√
1 − (χ/λ)2

)
.

Diagram λ(n) according to the first of these expressions is drawn in Fig. 4.40
by broken line and we can see that it is valid only for very small λ.

Approximate Approach

If we neglect in (4.103) the last member we can integrate the equation
rigorously as follows:

χ = 0.5
(
n(n2 − 4)−0.5 tan−1

(√
(n + 2)/(n − 2) tanψ

)
−ψ

)
.

(interrupted by points lines in Fig. 4.41). At ψ = π/4 this relation gives ex-
pression for λ(n) – broken-solid curve in Fig. 4.40. The vicinity of the curves
at the same λ in Fig. 4.41 allows to use this approach for further study From
(4.18), (4.104) and integral static equation

λ∫

0

σρ(a, χ) sin 2χdχ = 0 (4.105)

we have approximately (see also Appendix E)

σχ
σρ

= τyi

(
2n ln(a/ρ) − J/8 sin2 λ − 0.375n ln(n − 2 cos 2ψ)

−0.75
+1.25 × cos 2ψ)

where (solid line in Fig. 4.42)

J =

λ∫

0

(10 cos 2ψ− 3n ln(n − 2 cos 2ψ)) sin 2χdχ.

If we suppose σρ(a, λ) = σχ(a, λ) = −q∗ then we find

q∗ = τyi(3n ln n + J/sin2 λ)/8 (4.106)

and this expression will be used later in Chap. 5.

4.3.4 Penetration of Rigid Cone and Load-bearing
Capacity of Circular Pile

These problems can be solved in the same manner as in Sect. 4.2.4. The
basic relations of the previous subparagraph are valid here but instead of
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Fig. 4.42. Diagram J(λ)

(4.105) we must use similar to (4.20) (Fig. 4.9 with consequent replacement
of coordinates) integral static laws for axisymmetric problem

p∗b2 = −2a2
λ∫
0

(σρ(a, χ) cos χ + τ(a, χ) sin χ) sin χdχ,

P∗/π = p∗b2 + 2 sinλ
a+1∫
a

(σχ(ρ, λ) sin λ + τ(ρ, λ) cosλ)ρdρ.

(4.107)

As a result we find

P∗/π = p∗b2 + τyi(l(l + 2a)(J1/4 + cosλ sin λ + n(1 − (3/8)lnn) sin2 λ)
−2n(l + a)2 ln(l/a + 1) sin2 λ). (4.108)

Here

J1 =

λ∫

0

(10cos 2ψ− 3n ln(n − 2 cos 2ψ) cos χ + 8 sin 2ψ sin χ) sin χdχ.

For λ near to π and a → ∞ (the option of a circular pile) we compute that it
is valid

P∗/π = p∗b2 + 2τyibl(1 + J1/4 sinλ). (4.109)

The calculations at n = 2.045, λ = 179◦ give J1 ≈ 6.5 and hence ratio
J1/4 sinλ is big (due to an approximative character of the above theory).
Neglecting this member we have a simple result in a safety side as following

P∗ = πb(p∗b + 2τyil). (4.110)

4.4 Intermediary Conclusion

An importance of the results according to the scheme of the perfect plastic
body is difficult to overestimate. They give ultimate loads and therefore –
the moment of structures destruction. We can also notice that a procedure
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of computations is much simpler that by the Theory of Elasticity methods.
However the solutions of this chapter can be used first of all for the materials
with big yielding part of stress-strain diagram or small hardening (for soils –
with distinctive angle of internal friction and cohesiveness). Above that the
process of deformation and fracture between elastic and plastic stages is un-
known. This gap can be removed in computations according to equations of
the hardening body which is considered in the following two chapters where
unsteady non-linear creep and damage are also taken into account.



5

Ultimate State of Structures at Small
Non-Linear Strains

5.1 Fracture Near Edges of Cracks and Punch
at Anti-Plane Deformation

5.1.1 General Considerations

Equilibrium equation (2.56) is satisfied if we take

τr = −∂W/r∂θ, τθ = ∂W/∂r

where W is a potential function that can be written in form W = Krsf(θ)
which gives relations for stresses

τr = −Krs−1f′(θ), τθ = Ksrs−1f(θ),

τe = Krs−1
√

(sf)2 + (f′)2.
(5.1)

Since /21/ τiγi is proportional to r−1 we find with a help of (2.53) at
α = 0 s = m/(m + 1) and according to (2.57), (5.1) – derive following values

uz = − Ω(t)(m + 1)Kmr1/(m+1)((sf)2 + (f′)2)(m−1)/2f′,
τθ = Kmr−1/(m+1)f/(m + 1).

(5.2)

From compatibility expression for strains (2.58) we have differential equation
for f(θ) as /16/

f ′′+(1+m(m − 1)(((m+1)f′)2+f2)/(((m+1)f′)2+mf2))F/(m+1)2 = 0. (5.3)

At m = 1 we have from (5.3) results (3.10) and (3.19).
In order to get a rigorous solution we put in (5.3)

f = ez, f′ = ezU, f′′ = ez(U2 + U′)
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that gives (C is a constant)

U =
(
±
√

(1 + m)2 + 4mtan2(C − θ) − (1 + m)
)

/2(1+m) tan(C−θ). (5.4)

On the other hand we have ln (f/D) = Udθ (D is also a constant) and with
consideration of (5.4) as well as supposing tan(C − θ) =

√
η we receive

4(m + 1)d ln(f/D) =
(
1 + m −

(
±
√

(m + 1)2 + 4mη
))

dη/η(1 + η) (5.5)

and after integration we find (see Appendix F)

f = D (
√− m + 1) / (

√
+ m − 1)(m−1)/4(m+1)

× ((
√

+ m + 1) / (
√− m − 1))1/4

√
sin(C − θ) (5.6)

where √
=
√

(1 + m)2 + 4m tan2(C − θ).

5.1.2 Case of Crack Propagation

For this task from boundary conditions f(0) = 1, f(π) = 0 (Fig. 3.4 and
relations (5.1)) we compute C = 0 and the value of another constant

D1 = mm−1/4/(1+m)/(1 + m)0.5. (5.7)

From Fig. 5.1 where according to expressions (5.1) and (5.6) diagrams τr(θ),
τθ(θ) are constructed for m = 1, 3, 7 by solid, broken and interrupted by points
lines we can see that with an increase of m the role of one component of τe in
the certain part of the plane is growing.

0

0.25

0.5

0.75

τθ /τyi

τθ
τr /τyi

τr

45 90 135 θ°

Fig. 5.1. Diagram of shearing stresses near crack end
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In order to find the value of K we compute integral J = dΠ/dl where

dΠ =

dl∫

0

τθ(r, 0)uz(dl − r, π)dr

is a free energy of crack propagation. Taking into an account uz and τθ from
(5.2) we calculate

J = Ω(t)Km+1m(f′(π))m
1∫

0

(ξ/(1 − ξ))1/(1+m)dξ.

According to /21/ a value of J in the similar problem for tension does not
depend on the properties of a material. Assuming this supposition also for our
task we can equal J to its meaning at m = 1 that gives

Km+1 = τ2
oπl/2GΩ(t)/f′(π)/mI(m)

where

I(m) = (m + 1)Γ((2 + m)/(1 + m))Γ((2m + 1)/(m + 1)).

Here Γ() is gamma-function and f′(π) must be taken from solution (5.6).
Computing τe by the third expression (5.1) we receive the following equation
for r(θ) at τe = constant

2GΩ(τe)1+mr/(τo)
2l = π

(√
(sf)2 + f′2

)m+1

/I(m)/f′(π)/m. (5.8)

From Fig. 5.2b where condition (5.8) is represented by solid, broken and in-
terrupted by points lines for m = 1, 3, 7 respectively for the elastic-plastic

0 1 3

2

5 7 x/l

y/l b)

a)

τ = τyi (γ/γyi)
m

τyi

γyi γ

τ

Fig. 5.2. Plastic zones for non-linear material
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material with diagram in Fig. 5.2a (see Appendix F) we can see that with the
growth of m plastic zone increases and moves out of the crack. It confirms the
solution of Sect. 4.1.2 for a perfect plastic body.

5.1.3 Plastic Zones Near Punch Edges

In this case we have boundary conditions f(0) = 0, f(π) = 1 and from (5.6)
we find C = 0 and D2 in Appendix F. It is shown there that in the previous
solution angle θ must be replaced by value π – θ and diagram in Fig. 5.1 should
be reflected relatively to axis θ = π/2.

5.2 Plane Deformation

5.2.1 Generalization of Flamant’s Problem

Common Solution

As in Sect. 3.2.3 we suppose σθ = τrθ = 0 (Fig. 3.11) that allows to find from
the first static equation (2.67)

σr = f(θ)/r (5.9)

and according to rheological law (2.66) at σe = σx = σr we have

εr = −εθ = 0.75Ω(t)r−mg(θ) (5.10)

wherein g(θ) = fm. From (2.66) at α = 0 and condition γrθ = 0 compatibility
expression (2.71) becomes

g′′ + β2g = 0. (5.11)

Here β =
√

m(2 − m). The solution of (5.11) depends on the value of m /18/.
If m = 2, m > 2 and m < 2 then we have respectively

g = Cθ + D,

g = C cos hβθ + Dsinh βθ, g = C cos βθ + Dsin βθ.

The constants C D can be found from integral static laws (see Fig. 3.11) as

P cos αo = −
λ∫

−λ

rσr cos θdθ, P sin αo = −
λ∫

−λ

rσr sin θdθ. (5.12)
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Particular Cases

At λ = π/2 and αo = 0 (see Fig. 3.11) we compute for m = 2 C =0. D = (P/2)2

and stress
σr = P/2r

does not depend on angle θ.
In a similar way cases m > 2, m < 2 can be studied. Taking into an account

the symmetry condition we receive respectively

σr = D1(cos hβθ)μ/r, σr = D2(cos βθ)μ/r. (5.13)

Constants D1, D2 can be found from expressions (5.12). At m = 1 and αo = 0
we receive the Flamant’s result (3.17).

For practical purposes it is interesting to establish the dependence of stress
σy on angle θ. From (2.72), (5.12), (5.13) we have for m = 1, 2, 4 respectively

σy(1) = −(2P/πy) cos4 θ, σy(2) = −(P/2y) cos3 θ
σy(4) = −0.4(P/y)

(
cos h2

√
2θ
)1/4

cos3 θ.
(5.14)

Corresponding diagrams /σy(θ)/ are constructed in Fig. 5.3 by solid, broken
and interrupted by points curves. We can see that with an increase of m the
stress distribution is more even.

Comparison of Results

In order to appreciate the results we compare for the case m = 1 the distribu-
tion of stresses σy along vertical axis under the concentrated load as well as
centres of the punch and uniformly placed load where we have according to
the first relation (5.14) (solid line in Fig. 5.4), and expressions (3.95) (broken
curve in the figure), (3.52) (interrupted by points line) respectively

σy/p= −4l/πy, σy/p= −2(1 + 2(y/l)2)/π(1 + (y/l)2)3/2
,

σy/p = −2(tan−1(l/y) + (y/l)/(1 + (y/l)2))/π.
(5.15)
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Fig. 5.3. Distribution of stresses at different m
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Here p = P/2l and we can see from Fig. 5.4 that at y > 3l the curves practically
coincide. Since with the growth of non-linearity the stress distribution becomes
more uniform we can expect that solutions (5.13) can replace other forms of
pressure on the foundation at least at y > 3l.

Case of Horizontal Force

The results of the previous subparagraph can be used here for the case λ =
αo = π/2 if we compute angle θ from horizontal direction when we have
for m = 1, 2, 4 respectively (solid, broken and interrupted by points lines in
Fig. 5.5)

0 0.4 0.8 σy/p

2

4

y/l

Fig. 5.4. Distribution of stresses under different loads

0.64 0.5 0
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0.5

0.96

Fig. 5.5. Distribution of stresses due to horizontal force
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Fig. 5.6. Distribution of stresses at different loadings

σr = −2(Q/πr) sin θ, σr = −Q/2r, σr = −0.4Q
(
cos h2

√
2θ
)1/4

/r. (5.16)

In order to give to the results just received a practical meaning we compare
for the case m = 1 the distribution of σr along axis x according to the first
relation (5.16) and expressions (3.101), (3.109) as follows

σr = −4ql/πx, σr = −4q((x/l)2 − 1)−1/2/π.

where q = Q/2l, and from Fig. 5.6 in which the corresponding diagrams are
given by solid and broken lines we can see that the curves are near to each
other and practically coincide at x/l > 3. So, we can use results (5.16) in a
non-linear state at least out of this district.

5.2.2 Slope Under One-Sided Load

General Relations

For the purpose of this paragraph we rewrite (2.66) at α = 0, γrθ ≡ γ in
following form (see also (2.30))

σr − σθ = 4ω(t)(γm)μ−1εr, τ = ω(t)(γm)μ−1γ (5.17)

where γm is a maximum shearing stress

γm =
√

(εr − εθ)2 + γ2

linked with τe by the law similar to (2.30) as

τe = ω(t)(γm)μ. (5.18)

Putting (5.17) and similar to (4.13) representations for strains

εr = 0.5γm cos 2ψ, γ = γm sin 2ψ (5.19)

into (2.68) and the third equation (3.21) we get on the system

d((γm)μ sin 2ψ)/dθ + 2(γm)μ cos 2ψ = 0, (5.20)

d(γm cos 2ψ)/dθ = 2γm sin 2ψ+ C1 (5.21)
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where C1 is a constant. At μ = 1 we have from (5.20), (5.21) the solution of
Sect. 3.2.1.

Fulfilling the operations in (5.20), (5.21) and excluding γm we receive the
second order differential equation which is not detailed in /18/. Replacing
in it

Θ = −dθ/dψ (5.22)

we find the first order differential equation

(tan 2ψ)dΘ/Θdψ = 2(1 − Θ)((Θ − 1)/μ + 1 − 2/Ψ) (5.23)

in which
Ψ = 1 − (1 − μ) sin2 2ψ. (5.24)

Sokolovski /18/ gave curves ψ(θ), τe(θ) and max τe(λ) for μ = 1/3, λ < π/4.
The latter is shown by pointed line in Fig. 5.7 (we calculated it till λ = π/3).
Solid curves 1 and 0 refer to expression (3.25) (for a linear material at θ = 0
when λ < π/4 and λ > π/4) and 4.11. So we can conclude that the Sokolovski’s
solution is wrong at λ < π/4.

Here we integrate (5.23) by the finite differences method at boundary
condition Θ(0) = 1. Then we use (5.22) at border demand θ(0) = λ. Another
similar condition θ(π/4) = 0 allows to choose ratio (1 − Θ)/ tan 2ψ in point
Θ(0) = 1. The calculations were made by a computer.

Results of Computation

Firstly we consider case μ = 1 when we have (solid curves in Fig. 5.8)

tan 2ψ = (cos 2θ − cos 2λ)/ sin 2θ. (5.25)

30
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Fig. 5.7. Dependence of max τe on λ
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Fig. 5.8. Dependence of ψ on θ at different λ

At λ = π/4 and λ = π/2 we can receive from (5.25) straight lines 1,2

ψ = −θ + π/4,ψ = −θ/2 + π/4

respectively and the first is valid at any μ. Differentiating (5.25) we find

Θ = (1 + cos2 2λ − 2 cos 2λ cos 2θ)/(1 − cos 2λ cos 2θ). (5.26)

or after transformations – as function of ψ with upper sign for λ > π/4 and
lower one for λ < π/4:

Θ = 1 ± (sin 2ψ)(tan2 2λ + sin2 2ψ)−1/2.

The approximate calculations reveal good agreement with (5.25), (5.26).
It allows to use the finite differences method for another μ. The curves for
μ = 1/2 and μ = 1/4 for Θo = 1.5. Θo = 1.9 respectively are near to solid
lines in Fig. 5.8.

When function ψ(θ) is known a value of τe can be found from equations
following of (3.21), (4.13) and boundary conditions for σθ (see Sect. 3.2.1) as

dτe/τedθ + 2 (dψ/dθ + 1) cot 2ψ = 0,

p = 4
λ∫
0

τe sin 2ψdθ.

Combining these expressions we find for maxτe = τe(0) at λ ≥ π/4

p = 4 max τe

λ∫

0

sin 2ψ exp

⎛
⎝−2

θ∫

0

(1 + dψ/dθ) cot 2ψdθ

⎞
⎠ dθ. (5.27)

Computations for μ = 2/3, 1/2 and 1/3 show that diagrams max τe(λ) are
near the solid line 1 in Fig. 5.7. It can be explained by the absence of μ in
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(5.27) and the vicinity of curves in Fig. 5.8 at different μ. It allows to use the
solid lines in the latter figure for practical purposes.

In order to find the ultimate state we rewrite (5.18) with consideration of
(1.45), (2.30) on axis θ = 0 where εθ = εr = 0, γ = 2ε1 ≡ 2ε > 0

Ω(t)(2maxτe)m = εe−αε. (5.28)

Using the criterion dε/dt → ∞ we receive the values at critical state as

ε∗ = 1/α, Ω(t∗) = (2 max τeeα)−m. (5.29)

Simple Solution

In order to find engineering relations we rewrite (5.17) in form of (2.66) at
α = 0 as follows /25/

εr = Ω(t)(τe)m−1(σr − σθ)/4, γ = Ω(t)(τe)m−1τ (5.30)

and put them into the third (3.21) that gives

(τe)m−1((m − 1)(τe)−2τ′2 + 1)(τ′′ + 4τ) = C2. (5.31)

where C2 is a function of t. Here and further the dependence on time is hinted.
According to the symmetry condition τ′(0) = 0 and taking this assumption
for the whole wedge we receive from (5.31)

(τe)m−1(τ′′ + 4τ) = C2

which gives at m = 1 the solution of Sect. 3.2.1.
To exclude C2 from (5.31) we differentiate it as follows

(m − 1)((m − 3)(τ′′ + 4τ)τ′2 + (τe)2(3τ′′ + 4τ))τ′(τ′′ + 4τ)

+ (τe)2((m − 1)τ′2 + (τe)2)(τ′′′ + 4τ′) = 0. (5.32)

Here we again suppose τ′ = 0 in the whole wedge that gives from (5.32) τ′′′ = 0
and with consideration of (3.21) as well as the same boundary conditions as
in Sect. 3.2.2 for σθ, τ at ±λ we compute

τ = 3p(λ2 − θ2)/8λ3, σr − σθ = 3pθ/4λ3,

σθ
σr

= 3p(θ3/3 + θx−λ2

1−λ2)/8λ3 − p/2, τe = 3p
√

θ2 − (θ2 − λ2)2/8λ3.
(5.33)

From Fig. 5.7 we can see that interrupted by two points curve corresponding
to (5.33) at θ = 0(λ > 1) and θ = λ(λ < 1) may be taken as the first
approach.
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5.2.3 Wedge Pressed by Inclined Rigid Plates

Engineering Relations for Particular Case

We considered the problem of a pressed wedge in Sects. 3.2.2 and 4.2.2 for
elastic and plastic media. Here we study the task for a hardening at creep ma-
terial and begin with the case of parallel moving plates (Fig. 3.6) at negligible
compulsory flow /23/. From (3.28) we have at uθ = −V(θ)

ur = V′, εr = εθ = 0, γ = (V′′ + V)/r (5.34)

and using (5.17), (2.67) we find

τ = ω(t)r−μf(θ), σr = σθ = F(r) − ω(t)r−μ(2 − μ)
∫

f(θ)dθ (5.35)

where F is a function of r and

f(θ) = (V′′ + V)μ.

Putting (5.35) into (2.68) we get on equality

ω(t)
(

μ(2 − μ)
∫

f(θ)dθ + f′(θ)
)

= −r1+μdF/dr

which is true if its both parts are equal to the same function of t, say n(t).
This gives two expressions

F = A − mr−μn, f′′ + μ(2 − μ)f = 0.

Taking into account the symmetry condition we write the solution of the latter
equation as following:

f(θ) = C sin βθ.

Here β =
√

μ(2 − μ), n = 0 and constant C will be determined further. So,
using condition σr(a, λ) = σθ(a, λ) and the second integral static laws (3.32)
we derive for θ = λ

τe = /τ/(q/mBoβ)(a/r)μ tan βλ, σr = σθ = −q(1 − (a/r)μ)Bo (5.36)

where
Bo = 1 − a(1 − (1 + l/a)1−μ)/l(1 − μ).

At l >> a we have again Bo = 1 and for μ = β = 1 − solution (3.40),
(3.41). Diagrams σθ(r), max τe(λ) for μ = 0.5 are given by pointed curves in
Figs. 3.7–3.9. At λ → 0 we get the solution near to that in /17/.

To find the critical state for ε ≡ ε1 = γ/2 > 0 we apply criterion of infinite
strain rate dε/dt → ∞ at dangerous points a = r, θ = λ and we compute with
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a consideration of (5.36), (5.28)

ε∗ = 1/α, Ω(t∗) = ((2αeq/mβ) tan βλ)−m.

To receive displacement V we use expressions for f(θ) which give equation

V′′ + V = Cm sinm βθ

with

C = qaμΩμ21−μ/mβ cos ßλ

which must be solved at boundary demands V(0) = 0, V ′(λ) = 0 (stick condi-
tion) and V(λ) = Vo. The latter reveals dependence of Vo on load and time.
For m = 1, 2, 3, . . . the equation may be easily solved e.g. At m = 2 we obtain

Vo = C2
(
2 + cos

√
3λ +

√
3 sin

√
3λ tan λ − 3/cosλ

)
/4.

Flow of Material Between Immovable Plates

Now we consider the case when only the compulsory flow takes place (a model
of a volcano row) and here we have from (3.28)

ur = U(θ)/r, εθ = −εr = U(θ)/r2, γ = dU/r2dθ. (5.37)

According to (5.18) we find

γm = g(θ)/r2 (5.38)

where

g =
√

U′2 + 4U2. (5.39)

Using the representation similar to (5.19)

εr = (g/2r2) cos 2ψ, γ = (g/r2) sin 2ψ (5.40)

we have from (5.37)

ln(/U/ : D) = −2

θ∫

0

tan 2ψdθ, g = −2U/cos 2ψ. (5.41)

Here D is a constant that will be found later. We must also notice that the
solution satisfies stick condition U(λ) = 0.

Putting (5.40) into compatibility law following from (5.37) as

∂εθ/∂θ = γ
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we receive equation
(g cos 2ψ)′ + 2g sin 2ψ = 0 (5.42)

which also gives the boundary condition

dψ/dθ = 1 (5.43)

at θ = λ. Above that we find from (5.42) expression for g(θ) as

ln(g/D) = 2

θ∫

0

(dψ/dθ − 1) tan 2ψdθ. (5.44)

Now from (5.17) and (5.40) we derive expressions

σr − σθ = 2ω(t)r−2μgμ cos 2ψ, τ = ω(t)r−2μgμ sin 2ψ (5.45)

which together with (2.68) give

(gμ sin 2ψ)′′ + 2(1 − 2μ)(gμ cos 2ψ)′ + 4μ(1 − μ)gμ sin 2ψ = 0. (5.46)

From (5.46), (5.42) we find after exclusion of g(θ) the second order differential
equation for ψ(θ) which is not detailed in /18/. Replacing in it

Φ = dθ/dψ (5.47)

we derive the first order differential equation

(cot 2ψ)dΦ/dψ = 2Φ(μ − 1 + 2μ/Ψ − (1 + 2μ2/Ψ)Φ + μ2Φ2/Ψ) (5.48)

where
Ψ = μ + (1 − μ) cos2 2ψ. (5.49)

Expression (5.48) should be solved at different Φ(0) = Φo. Then we find
function θ(ψ) at θ(0) = 0 that corresponds to θ = λ, Φ = 1 at ψ = π/4
(Fig. 5.9 for μ = 0.5) and finally we have g(θ) and U(θ).

Here we must notice that (5.41), (5.44) give different values of g(θ) since
we use conditions g(0)/D = 1, U(0)/D = 1. To get the correct answer we
recommend the following procedure. We compute g1/D, U1/D according to
expressions (5.41), (5.44) respectively. Then we find /U2//D by the first rela-
tion (5.41), calculate difference U/D = (U1−/U2//D) according to the second
law (5.41). Since g and ψ in (5.45) do not depend on r we can represent the
normal stresses in form

σr

σθ
= Ω(t)(A + r−2μ(K(θ) ± gμ cos 2ψ)) (5.50)

where according to the first equilibrium law (2.67)

K(θ) = ((gμ sin 2ψ)′ + 2(1 − μ)gμ cos 2ψ)/2μ.
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Fig. 5.9. Function ψ(θ) at different λ and μ = 0.5
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Fig. 5.10. Dependence of J on λ at μ = 0.5

Using the first integral static equation (3.32) and condition σθ(a, λ)= σr(a, λ)
= −q∗ we have

σr

σθ
= q∗(−1 +

(
gμ(θ) sin 2ψ)′/θ=λ + (a/r)2μ2μ(K(θ) ± gμ(θ) cos 2ψ)

)
/B3,

τ = 2μ(q∗/B3)(a/r)2μgμ(θ) sin 2ψ, τe = 2μ(q∗/B3)(a/r)2μgμ(θ).
(5.51)

Here
B3 = −(gμ(θ) sin 2ψ)

′ |θ=λ − (gμ(λ) cos λ + J(λ))/sin λ

and (see Fig. 5.10 for μ = 0.5)

J =

λ∫

0

gμ(θ) (sin 2ψ sin θ + 2 cos 2ψ cos θ) dθ.

The maximum τe is at r = a and here we can use the criterion of infinite rate
of the biggest elongation ε which gives with consideration of (5.28) and the
second expression (5.51)

ε∗ =
1
α

, Ω(t∗) = ((2μq∗/B3)max gμ(θ)eα)−m. (5.52)
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Fig. 5.11. Dependence max τe(λ) at different μ

Some Particular Cases

At μ = 0 we have from (5.46) expression (4.14) and hence the solution of
Sect. 4.2.2. So from (4.15) we find (solid line in Fig. 5.11)

τe = τyi = q∗/nln(n/(n − 1)).

where n is linked with λ by relation in the above mentioned paragraph.
At μ = 1 we derive from (5.46), (5.42) and the anti-symmetry condition

g sin 2ψ = 2Dsin 2θ (5.53)

and from (5.51) we derive (broken line in Fig. 5.11)

max τe/q∗ = 0.75x1
cot λ

λ ≥ π/4
λ ≤ π/4 (5.54)

At μ = 0.5 we have from (5.46)

√
gsin 2ψ = Hsin θ (5.55)

where H is a constant. Putting (5.55) into (5.42) we receive differential
equation

dθ/dψ = (1 + 2 cot2 2ψ)/(1 + cot θ cot 2ψ). (5.56)

which should be integrated at different Φ(0)=Φo for boundary condition
θ(0) = 0 and it gives values of λ at ψ = π/4. Sokolovski /18/ has repre-
sented the results for λ < π/4. We made the computations for all λ < π
(Fig. 5.9). From (5.51), (5.55) and (2.65) we find maximum shearing stress

τe = 2q∗ sin θ/cos 2ψB4. (5.57)
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Here
B4 = (2J1(λ) + λ)/sin λ − cosλ

and

J1 =

λ∫

0

(sin 2θ/tan 2ψ) dθ.

Seeking dτe/dθ = 0 we have with the consideration of (5.56) condition
tan 2ψ = 2 tan θ which gives to (5.57) at θ = λ, a = r

max τe = q∗
√

cos2λ + 4 sin2λ/B4. (5.58)

Diagram of (5.58) is drawn in Fig. 5.11 by broken-pointed curve.

5.2.4 Penetration of Wedge and Load-bearing Capacity
of Piles Sheet

Putting σr, σθ from (5.50) and τ from (5.45) into (4.20) we receive

P/2l = p∗(1 + a/l) sin λ + ωB5/a2μ (5.59)

where

B5 = ((1 + l/a)1−2μ − 1)(K(λ) sin λ + gμ(λ) cos λ(a/l)/(1 − 2μ) − J2(λ)),

J2 =

λ∫

0

((K(θ) + gμcos 2ψ) cos θ + gμsin 2ψ sin θ) dθ.

Computing according to (2.65), (5.45) τe we find for its maximum at r = a

max τe = (P/2l− p∗(1 + a/l))max gμ(θ)/B5. (5.60)

At a → 0 we have the case of the wedge penetration and at a → ∞, λ → π
we come to the load-bearing capacity of piles sheet. Now we consider the
particular cases.

If μ = 0 we have the solution of Sect. 4.23. At μ = 1 we compute from
(2.65), (3.31) at C = 0 and (4.14)

max τe = 2 (P/2l sinλ − p∗ (1 + a/l)) xsin λ
cos λ/

(
1 + (4/3) sin2λ

)

− (3 − 4 sin2λ
)
/(1 + l/a)

) at π/2 ≤ λ ≤ 3π/4
at 3π/4 ≤ λ ≤ π

which gives at a = 0 and a → ∞, λ → π respectively

max τe = 2 (P/2l sinλ − p∗) xsin λ
cos λ/(1 + (4/3) sin2λ,

at π/2 ≤ λ ≤ 3π/4
at 3π/4 ≤ λ ≤ π

, Pyi

= 2 (p∗b + τyil) (5.61)
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where both members are obvious and the last member in the second expression
is added from mechanical point of view.

At μ = 0.5 we receive with (4.20), (5.50) and (5.55).

max τe = (P/2l− p∗ (1 + a/l) sinλ)
√

cos2λ + 4 sin2λ/2 ((a/l)
× ln (l/a + 1) sin 2λ − (λ + J1 (λ))) . (5.62)

For the cases a = 0 and a → ∞, λ → π we have respectively

max τe = (P/2l− p∗sin λ)
√

cos2λ + 4 sin2λ/2 (λ + 2J1 (λ)) ,

max τe = (P/2 − p∗b)/2 (π + 2J1 (π)) (5.63)

and the expression like the second one (5.61) and similar to (5.29) as well as
according to the criterion dγ/dt → ∞

Pu = 2(16τtl + p∗b); ε∗ = 1/α, Ω(t∗) = (αe2 max τe)−2 (5.64)

Here τu is ultimate shearing stress and for the last relations the following
constitutive equation is used (see rheological law (5.28) at μ = 1/2.)

Ω(t)(2 max τe)2 = εe−αε

5.2.5 Wedge Under Bending Moment in its Apex

We will seek a rigorous solution of this task (Fig. 5.12) at σθ = 0. Then we
have from expressions (2.67) at τrθ ≡ τ equations /18/

∂(rσr)/∂r + ∂τ/∂θ = 0, ∂(r2τ)/∂r = 0 (5.65)

M

x

y

r

Fig. 5.12. Wedge under moment in its apex
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that give solutions in form

τ = f(θ)/r2, σr = f′(θ)/r2 (5.66)

where f is a function of θ only. Boundary conditions for τ are

τ(±λ) = 0. (5.67)

Above that on the neutral axis (θ = 0) as in the beam at bending similar to
the problem of the slope under one-sided load we have σr = 0.

Components of main vector in any cross-section r = constant

∑
X = r

λ∫

−λ

(σrsin θ + τ cos θ) dθ,
∑

Y = r

λ∫

−λ

(σrcos θ + τ sin θ) dθ

with a help of (5.65), (5.66) can be rewritten as

λ∫

λ

(f sin θ)′ dθ,

λ∫

λ

(f cos θ)′ dθ

and according to (5.66), (5.67) they are equal to zero.
Now we use representations similar to (5.18)

εr = 0.5g(θ)r−2m cos 2ψ, γ = g(θ)r−2m sin 2ψ (5.68)

where g(θ) = γmr2m and according to (5.17)

σr = 2ω(t)(gμ/r2) cos 2ψ, τ = ω(t)(gμ/r2) sin 2ψ. (5.69)

Putting (5.69) into the first static equation (5.65) we find

(gμ sin 2ψ)′ − 2gμ cos 2ψ = 0. (5.70)

In the same manner we derive from (5.68), (2.71)

(g cos 2ψ)′′ + 4m(1 − m)g cos 2ψ+ 2(2m − 1)(g sin 2ψ)′ = 0. (5.71)

At μ = m = 1 we have from (5.70), (5.71) equation

(g cos 2ψ)′′ + 4g cos 2ψ = 0

with obvious solution

g cos 2ψ = C cos 2θ + Dsin 2θ.
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Condition above σr(r, 0) = 0 gives C = 0 and from (5.65), (5.66) as well as
obvious integral static law

M = −2

λ∫

0

τ (θ) r2dθ (5.72)

we compute

σr = 2(M/r2B6) sin 2θ, τ = (M/r2B6)(cos 2λ − cos 2θ) (5.73)

where
B6 = sin 2λ − 2λ cos 2λ. (5.74)

Now (2.65) gives

τe = M(1 + cos2 2λ − 2 cos 2θ cos 2λ)0.5/r2B6. (5.75)

Condition dτe/dθ = 0 leads to equality sin 2θ = 0 with solutions θ = 0 and
θ = π/2. Investigations show that max τe is at θ = 0 in form

max τe = 2M sin2 λ/B6. (5.76)

Diagram max τe(λ) is drawn by solid line in Fig. 5.13. From relations (5.60),
(5.73) we derive expression (5.22) with sign minus and hence, solid lines in
Fig. 5.8 reflected relatively to axis θ.

In the general case we derive from (5.70), (5.71) after an exclusion of g the
second order differential equation

tan 2ψψ′′ − 2(1/μ − 1 + 2/Ψ)ψ′2 + 2(1 + 2/μΨ)ψ′ − 2/μΨ = 0 (5.77)

30
0

1

2

75 60 75 l°

max τ
e
r2

 /M

Fig. 5.13. Diagram max τe(λ)
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where Ψ is given by relation (5.49). Now we suppose

dθ/dψ = Θ (5.78)

and (5.77) becomes

(tan 2ψ)dΘ/Θdψ+ 2(1/μ− 1 + 2/Ψ)− 2(1 + 2/μΨ)Θ+ 2Θ2/μΨ = 0. (5.79)

According to (5.7) equation (5.79) must be solved at different Θ(−π/4) = Θo.
Then we integrate (5.78) with border demand θ(−π/4) = 0 (see Appendix
G).

To find max τe we write from (5.70) with consideration of (5.78) and
condition g(0) = 1 as

g (θ) = exp

⎛
⎝(2/μ)

θ∫

0

(1 − 1/Θ) cot 2ψdθ

⎞
⎠ . (5.80)

Now from (5.69), (5.72) we find at θ = 0 for λ > π/4 and θ = λ for λ < π/4
respectively

max τe = M/2Jr2, max τe = Mg(λ)/2Jr2. (5.81)

V. Sokolovski /18/ used the first of them for λ < π/4 that underesti-
mates max τe. The same mistake is in /18/ for a wedge under one-sided load
(see Sect. 5.2.2). In (5.81)

J =

λ∫

0

(g (θ) /g(0))μ sin 2ψdθ. (5.82)

A very simple solution takes place at μ = 0 when we have from (5.70) with
consideration of boundary condition above relation

ψ = θ − π/4

and from (5.69) we find expression

τ = −(ω(t)/r2) cos 2θ.

Putting it into (5.72) we receive at θ = 0 (broken line in Fig. 5.13)

max τe = M/r2 sin 2λ. (5.83)

We can see that this value coincides with (5.78) only at λ = π/4 and at bigger
values of λ it is above the curve for m = 1.
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Fig. 5.14. Sliding support

5.2.6 Load-bearing Capacity of Sliding Supports

In order to improve conditions of sluice and lock exploitation the inconvenient
wheels and rollers are often replaced by sliding supports. The latter usually
consists /26/ of embraced in metal holder 1 (Fig. 5.14) polymer skid 2 along
which steel rail 3 moves. The structure hinders from longitudinal displacement
of the skid and because of that the greatest interest has an appreciation of its
resistance to compression.

A rigorous solution of this task with consideration of complex boundary
conditions and peculiarities of the polymer’s mechanical behaviour is hardly
possible. At the same time constantly widening use of such structures in differ-
ent branches of industry compels to seek simple and convenient for practice
approaches. Because of that we give here the approximate solution based
on results of study of this problem for simple media and some kinematic
hypotheses.

Here we use the first expression (5.17) as

σ1 − σ3 = 4ω(t)εμ. (5.84)

On the base of applied plasticity theory /10/ (see also Sect. 4.2.2) and with
consideration of the Coulomb’s friction law /11,27/ the following expressions
for parts I and II of the skid (Fig. 5.14) are formulated (see Appendix H)

4ω (t) (εxI)
μ = σo + /N/f/h

(
e2fa/h − 1

)
,

4ω (t) (εyII)
μ = −fhσo/

(
efh/(b−a) − 1

)
(b − a) .

(5.85)

Here f is friction coefficient, dimensions a, b, h are shown in Fig. 5.14 and
value of σo in the second expression (5.85) is determined from integral static
equation. Excluding from (5.85) σo and using the constant volume demand in
form

εxI = (β − 1)εyII (5.86)



152 5 Ultimate State of Structures at Small Non-Linear Strains

where β = b/a we derive

4ω(t)(εxI)μ = /N/f/h(e2fh/a−1)(1+(b−a)(efh/(b−a)−1)/fh(β−1)μ). (5.87)

When εxI is known the most interesting value of track’s depth dh can be found
from (5.86) as

dh = hεxIβ/(β − 1). (5.88)

The approximate solution (5.87), (5.88) must be compared with similar results
for ideal bodies according to the Hookè’s law when μ = 1, ω = G, and perfect
plasticity with μ = 0, σ1 −σ3 = σyi. The comparison will be made for smooth
surfaces contact of the skid with the holder and the rail. So, at f = 0 we have
from (5.87), (5.88)

Gdh/N = hβ/8b

(solid lines 1, 2 in Fig. 5.15 for b/h = 1, 2 respectively) and

aσyi/N = 1/4

(solid straight line in Fig. 5.16).
The solution of the problem for linear material is given in the form (broken

line in Fig. 5.15)

dh = C − /N/F(ϕ, dn(K/β))/4GK1 (5.89)

where C-constant, F – incomplete elliptic integral of the first kind with
modulus dn(K′/β)

ϕ = sin−1(sn(Kx/b)/sn(K/β)),

sn, dn – sine and delta of amplitude (the Jakobi’s elliptic functions), K, K1 –
full elliptic integrals of the first kind with moduli k and ksn(K/β) respectively.
The dimensions are linked by relation

K(k)/K(k′) = b/h. (5.90)

Here k′ =
√

1 − k2 – modulus additional to k.
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Fig. 5.15. Dependence of dh on β for elastic material
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Fig. 5.16. Compression of ideal plastic layer

On the base of theoretical-experimental investigation R. Hill /28/ gave
the dependence of punch pressure on the thickness of a layer of ideal plastic
material that in terms of our work is drawn by broken line in Fig. 5.16. At
β > 2 it is near to that of expressions (4.39).

From Figs. 5.15, 5.16 we can see that at b/h near 2 and β > 2 the proposed
here simple solution agrees well enough with similar results for ideal bodies.
Since in practice dimensions of the skid are taken as b near to 2 h and β = 1.5–
3 the represented relations can be used for applications. To receive calculation
expressions we exclude from (5.87). (5.88) εxI that gives

dh = Ω(t)(N/4)mR (5.91)

where

R = βh1−m/(f(e2fa/h − 1)(1 + (b − a)(efh/(b−a) − 1)/fh(β − 1)μ)m(β − 1)).

Relation (5.91) has the same properties as similar creep laws for tension and
in complex stress state and it can serve for computation of dh according to
the test data in compression.

5.2.7 Propagation of Cracks and Plastic Zones near Punch Edges

General Relations

Similarly Sect. 5.1.1 we take the potential function as

Φ = Krsf(θ)

We find the stresses according to (2.75) and strains by (2.66) at α = 0.
Since sum of products σijεij is proportional to r−1 /21/ we have s =
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(2m +1)/(m +1),

σr = Kr−1/(m+1)(sf + f′′), σθ = Kr−1/(m+1)s(s − 1)f,

τrθ = Kr−1/(m+1)(1 − s)f′ (5.92)

and

εθ = −0.5Ω1(t)Kmr−m/(m+1)Fm−1(f′′ + s(2 − s)f),

γrθ = 2Ω1(t)(1 − s)Kmr−m/(m+1)Fm−1f′. (5.93)

Here Ω1 is proportional to Ω, x, y in (2.61) must be replaced by r, θ
respectively and

F = ((f′′ + f(1 + 2m)/(m + 1)2)2 + (2mf ′/(m + 1))2)0.5. (5.94)

Putting εθ, γrθ into compatibility law (2.71) we get a very complex non-linear
differential equation of the fourth order which must be solved together with
the consequent boundary conditions.

Crack in Tension and Pressure of Punch

The border demands for these problems are respectively: f(0) = 1, f′(0) =
f′(π) = f(π) = 0 and f(π) = −1, f′(0) = f′(π) = f(0) = 0.

Since for the tasks f′(0) = f′(π) = 0, in perfect plastic solution f′′′(0), f′′′(π)
and this value at π/4 < θ < 3π/4 is also equal to zero as well as in consequent
elastic relations (Sects. 3.2.7 and 3.2.9 where f(θ) is proportional to cos3 θ and
sin3 θ respectively) f′′′(0) = 0 we suppose f′ = f′′′ = 0 everywhere in the zones
mentioned above and derive equation (see also Appendix I)

fIv + (3m + 7)f′′/(1 + m)2 + (2m + 1)(2 + m)f/(m + 1)4 = 0 (5.95)

with obvious solution

f = A1 cos β1θ + A2 sin β1θ + A3 cos β2θ + A4 sin β2θ. (5.96)

Here
β1

β2
=
((

−3m − 7 ±
√

m2 + 22m + 41
)
/2(1 + m)2

)0.5

,

and Aj (j = 1–4) can be found from the boundary conditions (it is interesting
to notice that at m = 1 this approximate solution coincides with the rigorous
one – see consequent relations in Sect. 3.2.8). Then we compute f′, f′′ and
the stresses according to (5.92). Calculations show that their diagrams for
m = 3, m = 15 are near to ones in Fig. 4.19 for elastic and perfect plastic
bodies respectively.

In the general case we can find K according to the condition /21/ of the
independence of integral J = dW/dl on the properties of the material. Here
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dW =

dl∫

0

σθ (x, 0) uθ (dl − x, π) dx. (5.97)

Putting σθ, uθ from (3.90), (3.91) into (5.97) we find for m = 1 and k = 1
(plane deformation)

J1 = πσ2l/4G. (5.98)

To get J in the general case we use relations (5.93), (5.92) for εr, εθ, γrθ, σθ
and compute uθ from (2.69). The latter gives

uθ = Ω1(t)Kmr1/(m+1)Fm−1((6m + 1)f′ − (m + 1)2((m − 1)
×F′(f′′ + fs(2 − s))/F + f′′′))/4m

where

F′/F = F−2(f′′ + fs(2 − s))(f′′′ + f′s(2 − s)) + (4(1 − s)f′f′′).

Now from (5.97), (5.92) and expression for uθ above we derive J for any m

J = 0.5Km+1m(2m + 1)/f′′ (π)/m−1f′′′ (π)

1∫

0

((1 − ξ)/ξ)1/(1+m) dξ.

Using equation J = J1 we have

K = ((κ + 1)πσ2/4GΩ1(t)I1(m))1/(1+m).

Here

I1(m) = (2m+1)(m+1)/f′′(π)/m−1f′′′(π)Γ((2m+1)/(m+1))Γ((2+m)/(1+m))

and Γ() is a Γ-function. Lastly, according to condition τe = constant we
compute equation

3r(2τe)m+1GΩ1I1(m)/σ2πl = Fm+1 (5.99)

which determines yielding zone near the crack edges.

Transversal Shear

It can be considered in a similar manner. Since in this problem f(0) = f(π) = 0
we neglect here f and f ′′ versus f′ and find from (5.94)

F = 2mf′/(m + 1).
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Compatibility law (2.71) gives equation

fIv + (5m2 + 4m + 1)f′′/(m + 1)2 + m(2m + 1)(m + 2)f/(m + 1)4 = 0

with solution (5.96) in which

β1

β2
=
((

−(5m2 + 4m + 1) ±
√

25m4 + 32m3 + 6m2 + 1
)

/2
)0.5

/(m + 1).

For the crack and punch we have two other border demands as f′(π) = 0,
f′(0) = 1 and f′(π) = 1, f′(0) = 0 respectively. It is interesting to notice that
once again the approximate solution gives at m = 1 the rigorous results.

Now we find f′, f′′ (see calculations in Appendix J) and according to
(5.92) – stresses σθ, σr, τrθ, τe, strain εθ, displacement ur, integral J and factor
K as

Km+1 = 3πτ2l/I(m)/f′′(π)/m

where I(m) is the same as in Sect. 5.1.2. Condition τe = constant gives
equation for r in form

1.5r(2τe)m+1GΩ(t)/τ2πl = Fm+1/I(m)/f′′(π)/m. (5.100)

Diagrams σθ/σyi, σr/σyi, τrθ/σyi are given in Fig. 3.21 by the same lines as for
m = 1 but with index 0. From the figure we can see that with the growth
of m the distribution of stresses changes very strongly. In the same manner
the problem of the punch horizontal movement can be considered. The curves
for the stresses can be received by reflection of the previous ones relatively to
axis θ = π/2.

5.3 Axisymmetric Problem

5.3.1 Generalization of Boussinesq’s Solution

As in Sect. 3.3.2 we suppose for incompressible material (ν = 0.5) σχ = σθ =
τρχ = 0, and from the first static equation (2.77) as well as from rheological
law (1.45) at α = 0 we have for stress and strain following relations /31/

σρ = f(χ)/ρ2, ερ = g(χ)Ω(t)ρ−2m (5.101)

where g = fm. Since for this case in (2.79) εχ = εθ we find easily

uχ = U(ρ) sin χ, uρ = ϕ(χ) + g(χ)Ω(t)ρ1−2m/(1 − 2m). (5.102)

Using condition ερ = −2εχ we derive

0.5Ω(t)(3 − 2m)g(χ)ρ1−2m/(1 − 2m) + ϕ(χ) + U(ρ) cos χ = 0. (5.103)
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Putting uρ, uχ from (5.102) into condition γρχ = 0 we determine

ϕ′(χ) + g′(χ)Ω(t)ρ1−2m/(1 − 2m) + ρ2(sin χ)∂(U(ρ)/ρ)/∂ρ = 0. (5.104)

Excluding ϕ′(χ) from (5.103), (5.104) we obtain the expression in which both
parts must be equal to the same constant, say n, since each of them depends
only on one variable (neglecting t as a parameter) in form

Ω(t)g′(χ)/2 sin χ = ρ2mdU(ρ)/dρ = −n

with obvious solutions

f(χ) = Ω−μ(C + 2n cos χ)μ, U(ρ) = D − nρ1−2m/(1 − 2m). (5.105)

Since at χ = π/2 we have σρ = 0 we must put in the first (5.105) C = 0 and
constant n should be found from condition (Fig. 5.17)

P = −2

λ∫

0

σρρ2sin χ cos χdχ. (5.106)

Putting here σρ from (5.101) we find after calculations

σρ = −P(μ + 2)(cos χ)μ/2π(1 − cosμ+2 λ)ρ2. (5.107)

Taking in the second relation (5.105) D = 0 we get the displacement as

uχ = −0.5Ω(t)(P/(μ + 2)/2π(1 − cos2+μ λ))mρ1−2m(sin χ)/(1 − 2m). (5.108)

The most interesting case takes place at λ = π/2 when we receive from
expressions (5.107), (5.108)

σρ = −P(2 + μ) (cosμχ) /2πρ2,
uχ = −0.5Ω(t) (P(2 + μ)/2π)mρ1−2m (sin χ) /(1 − 2m). (5.109)

P

Z

Fig. 5.17. Computation of constant n
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It is easy to notice that the highest value of σρ at ρ = constant is on the line
χ = 0. It is not difficult to find that there stress σρ at m = 1 is 1.5 times more
than at μ = 0. The biggest value of uχ is at χ = π/2 but its dependence on
m is more complex. However the second relation (5.109) allows to calculate
the displacements in some distance from the structure loaded by forces with
a resultant P.

To appreciate a practical meaning of the results we compare for m = 1
the distribution of stress σz on axis z for the concentrated force P = qπa2

and for the circular punch of radius a when we have from (5.109) and (3.122)
respectively

/σz//q = 3(a/z)2/2, σz/q = 1 − (1 + (a/z)2)−3/2. (5.110)

From Fig. 5.18 where by solid and broken lines diagrams /σz/(z) are shown
we can see that at z/a > 3 the simplest solution for concentrated force can
be used. Since at μ < 1 a distribution of stresses becomes more even we can
expect better coincidence of similar curves with the growth of a non-linearity

It is interesting to notice that according to Fig. 5.18, 5.4 vertical stress in
axisymmetric problem is approximately twice less than in the plane one. This
explains higher load-bearing capacity of compact foundations.

5.3.2 Flow of Material within Cone

Common Equations

We solve this problem at the same suppositions as that in Sect. 4.3.3 from
(2.79) at uχ = 0 we compute

ερ = −2U/ρ3
, εθ = εχ = U/ρ3

,

γρχ ≡ γ = dU/ρ3dχ, γm = g/ρ3 (5.111)

0 0.2 0.4

2

4

z/a

Fig. 5.18. Comparison of stress distribution
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where U = U(χ) and according to (2.16)

g (χ) =
√

9U2 + U′2.

Similar to (5.18) and (5.68) we use representations

εχ = −g(cos 2ψ)/3ρ3, γρχ = g(sin 2ψ)/ρ3 (5.112)

putting which into the first law (2.82) we have equations

(g cos 2ψ)′ + 3g sin 2ψ = 0,
dg/gdχ = 2 (dψ/dχ − 3/2) tan 2ψ.

(5.113)

The latter gives boundary condition dψ/dχ = 3/2 at ψ= π/4. From expres-
sions for strains above we can also find

dln/U//dχ = −3 tan 2ψ, g(χ) = −3U/cos 2ψ, (5.114)

From (5.17) and (5.112) we derive representations

τρχ = τ = ω (t) ρ−3μgμsin 2ψ,
σρ
σχ

= ω (t)
(
C + ρ−3μ (K+2

−1x2gμ (cos 2ψ)/3
)) (5.115)

where C is a constant and function K(θ) can be found from the first static
equation (2.77) as follows

3μK = (gμ sin 2ψ)′ + cot χ(gμ sin 2ψ) + 4(1 − μ)gμ cos 2ψ. (5.116)

Putting (3.115) into (2.78) we derive

(gμ sin 2ψ)′′ + (gμ sin 2ψ)′ cot χ + (9μ(1 − μ) − 1/ sin2 χ)gμ sin 2ψ
+ 2(2 − 3μ)(gμ cos 2ψ)′ = 0. (5.117)

Combining (5.113), (5.117) we have at Ψ according to (5.49) two differential
equations

Θ = dχ/dψ, (5.118)

(cot 2ψ) dΘ/dχ − 2(μ − 1 + 2μ/Ψ) + Θ((6μ2 + 3μ + 4 (1 − μ) cos22ψ)/Ψ

− cot χ cot 2ψ)−3Θ2(3μ2−(μ + μ tan 2ψ cot χ + 1/3 sin2χ) cos22ψ)/2Ψ = 0
(5.119)

the second of which should be solved at different Θo = Θ. Then we integrate
(3.118) at border demand χ(0) = 0. The searched function must also satisfy
condition χ = λ at ψ = π/4. Now we receive from (5.113), (5.114), (2.65)
U(χ), g(χ) and τe.
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Putting stress σρ from (5.115) into integral static equation (4.105) we find
at −q∗ = σρ(a, λ) = σχ(a, λ) expression for max τe as

max τe = 3μq∗maxgμ (χ)/
(
(gμ (θ) sin 2ψ)′ |χ=λ − gμ (λ) cotλ − 2J3/sin2λ

)

where

J3 =

λ∫

0

gμ (θ) (sin 2ψ sin2χ + 2 cos 2ψ sin 2χ)dχ.

Then the criteria max τe = τu and dγm/dt → ∞ must be used as before. For
the latter we have

ε∗ = 1/α, Ω(t∗) = (αe2 max τe)−m.

Some Particular Cases

At μ = 0 we have from (5.117), (5.103) and hence the solution of Sect. 4.3.3.
If μ = 1 we compute from (5.113), (5.117) equation

(g sin 2ψ)′′ + (g sin 2ψ)′ cot χ + (6 − 1/ sin2 χ)g sin 2ψ = 0

with obvious solution
g sin 2ψ = 2Dsin 2χ (5.120)

where D is a constant. Then from (5.112) and the stick condition

g cos 2ψ = 3D(cos 2χ − cos 2λ). (5.121)

From (5.120), (5.121) we receive

tan 2ψ = 2(sin 2χ)/3(cos 2χ − cos 2λ)

Diagrams ψ(χ) at different λ according to this relation are drawn in Fig. 5.19.
Similar to the general case we have ultimate condition as

max τe = q∗x1
2/3 tan λ(λ>

<33.7◦) (5.122)

At μ = 2/3 we calculate from (5.117) equation

(g2/3 sin 2ψ)′′ + (g2/3 sin 2ψ)′ cot χ + (2 − 1/ sin2 χ)g2/3 sin 2ψ = 0

with obvious solution
g2/3 sin 2ψ = Hsin χ (5.123)

where H is a constant. Putting (5.123) into (5.113) we derive differential
equation of the first order

dχ/dψ = 2(2 + 3 cot2 2ψ)/3(2 + cot χ cot 2ψ) (5.124)
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Fig. 5.19. Dependence ψ(χ) at μ = 1
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Fig. 5.20. Diagrams ψ(χ) at μ = 2/3 and different Θo

that should be integrated at different Θ(0) = Θo. Diagrams χ(ψ) at Θo-values
in the curves middles and λ at their tops are given in Fig. 5.20.

Putting σρ from (5.113) into (4.105) we find C and from condition
dτe/dχ = 0 with consideration of (5.124) – equality tan 2ψ = 3 tan χ which
gives to max τe (it increases with a growth of χ) value

max τe = q∗sin2λ
√

cos2λ + 9 sin2λ/
(
3 cosλ − cos3λ − 2 − 12J4

)
.

Here as before −q∗ = σρ(a, λ) = σχ(a, λ) and

J4 =

λ∫

0

(
sin2χ cos χ

)
(tan 2ψ)−1 dχ.

Diagrams J4(λ) and max τe(λ) are shown by solid curves in Figs. 5.21, 5.22
respectively. The broken line in the latter picture refers to the case μ = 1
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Fig. 5.21. Diagram J4(λ) for μ = 2/3

0

1
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30 60

Fig. 5.22. Diagrams max τe(λ)

(computations for μ = 1/3 see in Appendix K interrupted by points curve in
the figure) and pointed line refers to solution (4.106).

5.3.3 Cone Penetration and Load-bearing Capacity
of Circular Pile

Here common relations (5.111)–(5.119) are valid. We put stresses according
to (5.115) into integral static equations (4.107) to detail the constants and
according to (2.65) we compute max τe at a = ρ as

max τe = 3μ(P/π − p∗(a + l)2sin2λ)(max gμ(χ))/a(a(2(g
μ
(χ) sin 2ψ)′|χ=λ

× sin2λ + gμ (λ) (1 + 3μ) sin 2λ(1 + l/a)2−3μ − 1)/(2 − 3μ)
− l(gμ(λ)sin 2λ + 2J5)(2 + l/a)) (5.125)

where p∗ is the strength of soil in a massif at compression and

J5 =

λ∫

0

gμ(χ)((1 + 3μ) sin 2ψ sin2χ + 2 cos 2ψ sin 2χ)dχ.
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At λ → π, a → ∞ we find for a circular pile

max τe = (P/π − p∗b2)max gμ(χ)/4l(bgμ(λ) + J5(λ))(2 + l/a). (5.126)

In the same manner we consider the particular cases and consequently for
μ = 0 we receive from (5.117), (4.103) and hence the solution of Sect. 4.3.4.

At μ = 1 we have

max τe = 4.5(P/π − p∗(a + l)2sin2λ)x1
2/3 tan λ/la(2(5 − 6 sin2λ)/(1 + l/a)

−(2 + 3 sin2λ)(2 + l/a))λ<146◦

λ>146◦

and for the pile the yielding (the first ultimate) load is

Pyi = πb(2τyil + p∗b). (5.127)

We can see that this result has obvious structure and coincides with approxi-
mate relation (4.110) for ideal plasticity.

Similarly we compute for μ = 2/3

max τe = (P/π − p∗(a + l)2sin2λ)
√

cos2λ + 9 sin2λ/6a(2a cosλsin2λ

× ln(1 + l/a) − l(2 + l/a)(1 − cosλ + 2J4)).

Here J4 is given in Sect. 5.3.2. For the circular pile this relation predicts big
values of ultimate load and so we can take in the safety side

Pu = πb(p∗b + 2τul). (5.128)

5.3.4 Fracture of Thick-walled Elements due to Damage

Stretched Plate with Hole

We consider plate of thickness h with axes r, θ, z (Fig. 5.23) and use the
Tresca-Saint-Venant hypotheses. Since here σθ > σr > σz = 0 we have εr = 0
and from (2.32) at α = 0, σeq = 2τe = σθ

ε ≡ εθ = 3Ω(t)σm
θ /4

σθ = (4/3Ω)μεμ (5.129)

where ε = u/r and radial displacement u depends only on t.
Putting (5.129) into the static equation of this task

hσθ = d(hrσr)/dr, (5.130)
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a

b

r u
p

Fig. 5.23. Stretched plate

integrating it at h = constant as well as at boundary conditions σr(a) = 0,
σr(b) = p and excluding factor (4u/3Ω)μ we receive with the help of (5.129)

σθ = p(1 − μ)(b/r)μ
/(1 − βμ−1) (5.131)

where β = b/a. Putting σθ into (2.66) we find for the dangerous (internal)
surface

e−αεε = 3β(1 − μ)mΩ(t)pm/4(1 − βμ−1)m (5.132)

Applying to (5.132) criterion dε/dt → ∞ we have

ε∗ = 1/α, pmΩ(t∗) = 4(1 − βμ−1)m/3β(1 − μ)mαe. (5.133)

When the influence of time is negligible we compute from (5.133) at
Ω = constant critical load

p∗ = (4/3)μ(1 − βμ−1)/(1 − μ)(αβΩe)μ. (5.134)

At small μ that value must be compared to ultimate load pu which follows
from (5.131) at μ → 0 as

pu = σyi(1 − 1/β)

where σyi is a yielding point at an axial tension or compression and the small-
est value should be taken. At m near to unity we must compare p∗ with
yielding load which follows from (5.131) at m = 1 in form:

pyi = (σyi/β) ln β

and the consequent choice should be made. The solution may be also used for
compression.
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Sphere

For a sphere under internal q and external p pressures (Fig. 3.23) we denote
the radial displacement also as u and according to relations (2.80) we compute
εθ = u/ρ, ερ = du/dρ and from the constant volume demand (2.81) we find

u = C/ρ2, ερ = −2C/ρ3, εθ = C/ρ3 (5.135)

where constant C is to be established from boundary conditions. Now from
(2.32) at α = 0 and σeq = σθ − σρ we deduce

εθ = Ω(t)(σθ − σρ)m/2

or with consideration of (5.135)

σθ − σρ = (2C/Ωρ3)μ. (5.136)

Putting (5.136) into static equation (2.80) we get after integration at border
demands σρ(b) = −p, σρ(a) = −q and exclusion of constants

σθ − σρ = 3(q − p)μ(b/ρ)3μ/2(β3μ − 1). (5.137)

Now we use constitutive law (2.32) which for our structure is

e−αεε = 0.5Ω(t)(σθ − σρ)m (5.138)

where ε = εθ. Using here σθ − σρ from (5.137) and criterion dε/dt → ∞ we
deduce

ε∗ = 1/α, (q − p)mΩ(t∗) = 2(2m/3)m(1 − β−3μ)m/αe. (5.139)

When the influence of time is not high critical difference of the pressures at
Ω = constant can be got

(q − p)∗ = 21+μm(1 − β−3μ)/3(αΩe)μ. (5.140)

At small μ this value should be compared with (q − p)u according to (4.97)
and the smaller one must be taken. Similar choice have to be fulfilled between
(q − p)∗ and (q − p)yi given by (4.94) at μ near unity. At p < 0 the solution
may be used for compression.

Cylinder

In an analogous way the fracture of a thick-walled tube can be studied. From
(2.32) at α = 0, εx = 0, εθ ≡ ε and σeq = σθ − σr we have

ε = (3/4)Ω(t)(σθ − σr)m (5.141)
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and providing the procedure above for the disk and the sphere we find
/17, 27/

σθ − σr = 2μ(q − p)(b/r)2μ
/(β2μ − 1). (5.142)

Equation (2.32) for this structure is

e−αεε = 3Ω(t)(σθ − σr)m/4. (5.143)

Using here expression (5.142) at r = a and the criterion dε/dt → ∞ we derive

ε∗ = 1/α, (q − p)mΩ(t∗) = 4(m/2)m(1 − β−2μ)/3αe. (5.144)

When influence of time is negligible we can find as before critical difference
of pressures as

(q − p)∗ = (4/3)μm(1 − β−2μ)/2(αΩe)μ

and again for μ near to zero this value must be compared with (q − p)u ac-
cording to (4.99) and smaller one have to be taken. The similar choice should
be made between (q − p)∗ and (q − p)yi from relation (4.98) at m near unity.

From Fig. 5.24 where at α = 1, m = 1 and m = 2 by solid and broken lines
1, 2, 3 for plate, sphere and cylinder curves t∗(β) are represented respectively
we can see that the critical time for a tube is less than the consequent one for
the sphere and higher that of the plate.

Cone

We consider this task at the same suppositions as in Sects. 3.3.1 and 4.3.1.
Using the scheme above, relations for strains (3.117) and stresses (3.116) as
well as law (5.141) at σr → σχ we find

σθ − σχ = (q − p) cosμ χ/J6 sin2μ χ (5.145)

10
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Ω * (q-p)m
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β

Fig. 5.24. Dependence of t∗ on β and m
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where

J6 =

λ∫

ψ

(cos1+μ χ/ sin2μ+1 χ)dχ. (5.146)

The computations for m = 1 when J6 = A/2 from Sect. 3.3.1 at λ = π/3,
ψ = π/6 show that integral J6 can be easily calculated. For example at m = 2
and the shown meanings of λ,ψ its value is 0.9.

In order to appreciate the moment of fracture we put (5.145) into (5.143)
and use criterion dε/dt → ∞ when we have for a dangerous (internal) surface

ε∗ = 1/α, Ω(t∗)(q − p)m = 4(J6)m(sin2ψ)/3eα cosψ. (5.147)

If the influence of time is negligible we derive from (5.147) at Ω = constant

(q − p)∗ = (4/3)μJ6(sin2ψ/αeΩ cosψ)μ. (5.148)

Once more for small μ this value must be compared with (q − p)u according
to (4.100) and smaller one should be taken. At μ near to unity (q − p)∗ must
be compared to (q − p)yi from Sect. 4.3.1 and similar choice should be made.

Conclusion

The results of the solutions of this Section can be used for a prediction of a
failure not only of similar structures but also of the voids of different form
and dimension in soil massifs.
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Ultimate State of Structures at Finite Strains

6.1 Use of Hoff’s Method

6.1.1 Tension of Elements Under Hydrostatic Pressure

This approach takes as the moment of a fracture time t∞ when the structures’
dimensions become infinite. We consider as the first example a plate in tension
by stresses p under hydrostatic pressure q (Fig. 6.1). Since here σ1 = σ2 = p,
σ3 = −q we have from (2.31)

dε/dt = 0.5B(po)m(eε + κo)m (6.1)

where ε = ε1, κo = q/po, and according to (1.42) p = poeε. The integration
of (6.1) in limits 0 ≤ ε ≤ ∞, 0 ≤ 1 ≤ t∞ gives

B(po)mt∞ = 2
(

ln(1 + κo) + (m − 1)!
m−1∑
i=1

(m − 1)!
∑

(−1)i!(1 − l/(1 + κo)i)

/i!i(m − 1 − i)!
)
/(κo)m.

From Fig. 6.2 where for some κo curves tu(μ) according to the latter expression
are given by broken lines we can see that tu ≡ t∞ diminishes with an increase
of hydrostatic component.

In a similar way the fracture time can be found for a bar in tension by
stresses q under hydrostatic pressure p (Fig. 6.3). In this case /17/ σ1 = q,
σ2 = σ3 = −p and hence in (2.31)

S1 = 2(p + q)/3, σeq = p + q.

Comparing this data to the previous ones we can see that rate dε/dt in the
latter problem is twice of that for the plate. Hence t∞ for the bar is one half
of that in the plate case.
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Fig. 6.1. Stretched plate under hydrostatic pressure
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Fig. 6.2. Dependence of ultimate time tcr on κo and μ
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Fig. 6.3. Bar in tension under hydrostatic pressure
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6.1.2 Fracture Time of Axisymmetrically Stretched Plate

In order to integrate differential equation (5.130) in the range of finite strains
we take according to the condition of Tresca-Saint-Venant in Sect. 5.3.4. r =
ro + u(t). We replace strains and displacements by their rates and rewrite
(5.130) with consideration of (5.129) at B instead of Ω (see (2.31)) and dε/dt =
dr/rdt as

d(rohoσr)/dro = (4/3B)μroho(ro + u)−1−μ(du/dt)μ. (6.2)

Integration of (6.2) at boundary conditions σr(ao) = 0, σr(bo) = p gives

hbbop = (4/3B)μ(du/dt)μ

bo∫

ao

roho(ro)(ro + u)−1−μdro. (6.3)

Here hb = ho(bo). From (6.3) the fracture time can be found. Particularly at
ho = constant and ho = hbbo/ro we derive after transformations

B(bop)mt∞ = (4/3)

∞∫

0

(((bo + u)1−μ − (ao + u)1−μ)/(1 − μ) + u((bo + u)−μ

− (ao + u)−μ)/μ)mdu,

Bpmt∞ = (4/3)mm

∞∫

0

((ao + u)−μ − (bo + u)−μ)mdu. (6.4)

For any m integrals in (6.4) can be computed. If e.g. m = 1 we have
respectively at β = bo/ao

Bpt∞ = 4(1 − 1/β)/3, Bpt∞ = (4/3) ln β (6.5)

and from Fig. 6.4 where broken lines 0, 1 are drawn according to (6.5) we can
see that the curved profile has higher fracture time. Broken 2 and interrupted

1

1

2

4

Bpm tcr

2

2

2
1

0

1

1

b

Fig. 6.4. Dependence of ultimate time tcr on β and m for stretched plate



172 6 Ultimate State of Structures at Finite Strains

by points1 lines refer to the cases m = 2, ho = hbbo/ro and ho = constant
when we derive from (6.4)

Bp2t∞ = (16/3) ln((1 +
√

β)4/16β),

Bp2t∞ = 16((3(1 + β2)/2 + 2β) − 2(1 + β)
√

β + 2(ln((1 +
√

β)/2)

+ β2 ln((1 + 1/
√

β)/2))/3β2.

6.1.3 Thick-Walled Elements Under Internal
and External Pressures

We begin with a sphere and replace εθ, u in (5.135) by their rates dεθ/dt, V.
Then we suppose in (5.136) Ω(t) = Bt. According to definition β = b/a we
have

dβ/dt = (db/dt − βda/dt)/a (6.6)

where

db/dt = V(b) = bdεθ(b)/dt, da/dt = V(a) = adεθ(a)/dt.

Using (5.136), (5.137) and (6.6) we derive after integration

B(q − p)mt∞ = 2(2m/3)m
βo∫

1

((β3μ − 1)m/β(β3 − 1))dβ. (6.7)

Here βo = bo/ao and critical time is equal to t∞. Diagram tcr(βo) according
to (6.7) at m = 1 is given in Fig. 6.5 by broken line 0. The curves for m = 2,
m = 3 go much higher. For them

B(q − p)2t∞ = 128(ln(β2
√

3
o + 1/2β3/4

o ))/27, B(q − p)3t∞
= 16(ln βo + 2

√
3 tan−1((1 − βo)/

√
3(1 + βo))).

0

1
2

0
4

4 7 b01
0

1.5

B(q-p)m t cr

Fig. 6.5. Dependence of ultimate time tcr on βo and m for thick-walled elements



6.1 Use of Hoff’s Method 173

In a similar way the fracture of a cylinder can be considered. Using the pro-
cedure above for the disk and the sphere with a help of (6.6), (5.141), (5.142)
we find

σθ − σr = 2μ(b/r)2/(β2μ − 1), (6.8)

B(q − p)t∞ = (4/3)(m/2)m
βo∫

1

((β2μ − 1)m/β(β2 − 1))dβ. (6.9)

For m = 1 and m = 2 we compute respectively

B(q − p)t∞ = (2/3) ln βo, B(q − p)2t∞ = (4/3) ln((βo + 1)2/4βo).

The consequent curves are drawn in Fig. 6.5 by broken lines 1, 2 and we can
see that for the tube t∞ is less than that for the sphere. Similarly for m = 4
we have (line goes higher)

B(q − p)4 = (128/3)(ln(
√

βo + 1)4/8
√

βo(βo + 1)).

For a cone we use the condition of its constant volume (4.101) for the whole
body and introduce ratio

β = cosψ/ cosλ.

Then λ is function of β as

cosλ = ((βo − 1)/(β − 1)) cosλo

and integral J6 in (5.146) is also a function of β. Now we find

dβ/dt = (β − 1)(tan λ)dλ/dt (6.10)

and since (Fig. 3.24)
ε(λ) = ln(sinλ/ sinλo)

then
dλ/dt = tanλdε(λ)/dt

and from (5.141) with dε/dt, B instead of ε, Ω and (5.145) we derive

dε(λ)/dt = (3B/4)(q − p)m(cosλ)/(J6)m sin2 λ. (6.11)

Putting dλ/dt together with (6.11) into (6.10), separating the variables and
integrating as before we have finally

B(q − p)mt∞ = (4/3)(βo − 1) cosλo

1∫

βo

(J6)m(β − 1)−2dβ. (6.12)

The integrals in (6.12) should be calculated as a rule approximately.



174 6 Ultimate State of Structures at Finite Strains

6.1.4 Final Notes

Although the method in this sub-chapter uses somewhat unrealistic supposi-
tion of an infinite elongation at the rupture, sometimes the fracture time is
near to test data. An analysis shows that the reason of it lays in the non-
linearity of equations linking the rate of strains with stresses. Because of that
the approach is widely used for the prediction of the failure moment of struc-
tures. For example in /17/ a row of elements are considered. Among them a
grating of two bars, thin-walled sphere and tube under internal pressure, a
long membrane loaded by hydrostatic pressure. Sometimes an initial plastic
deformation is also taken into account. The task of axisymmetric thin-walled
shells under the internal pressure is formulated. An attempt of consideration
of stress change on the base of creep hypotheses is also made. But the method
is mainly applied to a steady creep (see also Appendix L).

6.2 Mixed Fracture at Unsteady Creep

6.2.1 Tension Under Hydrostatic Pressure

For the bar in tension we use the notation of Fig. 6.3. According to relations
(1.42), (1.45) we can link conditional qo and true q stresses by expression

q = qoe(1+α)ε

and from (2.32) we have

ε = Ω(t)(qo)m(e(1+α)ε + ko)m. (6.13)

By criterion dε/dt → ∞ we find from (6.13)

ε∗ = μ(κo exp(−(1 + α)ε∗) + 1)/(1 + α).

We can get critical time t∗ by putting ε∗ into (6.13). As we can see from
Fig. 6.6 the critical strains (at α = 0) increase with a growth of the hydrostatic
component.

In the same manner the failure of the plate in the axisymmetric tension
under hydrostatic pressure (Fig. 6.1) can be studied. As a result we have in
notation of Sect. 6.1.1

(po)mΩ(t∗) = 2ε∗(exp(1 + α)ε∗ + κo)−m

and as we can see from Fig. 6.2 where for a steady creep (Ω = Bt) by solid lines
at the same κo as the Hoff’s method diagrams t∗(μ) are constructed critical
time increases (similar to fracture time) with a fall of the hydrostatic compo-
nent. We can also notice that t∗ < t∞ and it can be shown (see Appendix L)
that with a growth of creep curves non-linearity the difference between critical
and fracture times increases. It can be explained first of all by the circum-
stance that the method of infinite strain rate takes more realistic condition of
failure at finite strains than the Hoff’s approach.
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Fig. 6.6. Dependence of ε∗ on μ at different κo for bar in tension under hydrostatic
pressure

6.2.2 Axisymmetric Tension of Variable Thickness Plate with Hole

General Case and that of Constant Thickness

Here /29/ we use the same suppositions as in Sect. 6.1.2 which bring (2.32)
to form

εe−αε = (3/4)Ω(t)(σθ)m

where ε = εθ = ln(r/ro). Using the condition of a constant volume as

(ro + u)h = roho

with u = u(t) we integrate differential equation (5.130) in initial variables as
follows:

(3Ω/4)μhbbop =

bo∫

ao

ho(ro)(1 + u/ro)
−1−αμ lnμ(1 + u/ro)dro. (6.14)

If we seek the critical state with the help of a computer we can apply criterion
dε/dt → ∞ directly to expression (6.14). Calculated in this way diagrams
εb∗(β) (here β = bo/ao), ho = constant, α = 0 and α = 1 are represented in
Fig. 6.7 by solid and broken lines 1. Critical time t∗ for these cases at Ω = Bt
is given from (6.14) in Fig. 6.4 by solid curves 2 and 1.

Curved Profile

For the case ho = hbbo/ro, α = 0 we derive from (6.14) at du/dt → ∞ equality

bo∫

ao

(1 + u/ro)
−2(μ lnμ−1(1 + u/ro) − lnμ(1 + u/ro))(ro)

−2dro = 0
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Fig. 6.7. Dependence of ε∗ on β for thick-walled structures

or after computing the integral

(1 + ξ∗/β) lnμ(1 + ξ∗) = (1 + ξ∗) lnμ(1 + ξ∗/β)

where ξ = u/ao. This equation can be solved parametrically if we suppose

1 + ξ∗/β = (1 + ξ∗)
η.

Here η is a parameter. We have from this equation

ξ∗ = ημ/(η−1) − 1

and we can find other variables in form

β = ξ∗/((1 + ξ∗)
η − 1), εb∗ = η ln(1 + ξ∗).

Curves εb∗(β) are given by dotted lines 1 and 2 in Fig. 6.7 for m = 1 and m =
2 respectively. When ξ∗ is known we can find t∗ from (6.14) as

pmΩ(t∗) = (4/3)

⎛
⎝

β∫

1

(ξ∗ + ρ)−1 lnμ(1 + ξ∗/ρ)dρ

⎞
⎠

m

where ρ = ro/ao. Diagrams t∗(β) are drawn by dotted lines 1 and 2 in Fig. 6.4
for m = 1 and m = 2 respectively. We can see that in this case the curved
profile also gives higher critical time than that with ho = constant. This
indicates that an optimal profile can be searched.

Optimal Profile

We shall seek such a disk among ones with radial cross-sections as following

ho = ao(β − 1)−1((ha − βhb)bo/(ro)2 + (β2hb − ha)/ro). (6.15)
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Putting this expression into (6.14) at α = 0 we receive

(3Ω/4)μhbβp=((β2hb − ha)

bo∫

ao

(1 + u/ro)
−1lnμ(1 + u/ro)dro/ro+(bo(ha − βhb)

+(ln1+μ(1 + u/ao) − ln1+μ(1 + u/bo))/u(1 + μ))/(β − 1).
(6.16)

Using criterion du/dt → ∞ and integrating we find equation

(1 + μ)(1 − 1/β)ξ∗(ha(1 + ξ∗)
−1 lnμ(1 + ξ∗) − βhb(1 + ξ∗/β)−1 lnμ(1 + ξ∗/β))

= (ha − βhb)(ln1+μ(1 + ξ∗/β) − ln1+μ(1 + ξ∗)).

from which ratio ha/hb can be computed and we consider limit case ha = 0.
For it we have at Ω = Bt

ln1+μ(1 + ξ∗) − ln1+μ(1 + ξ∗/β) + (1 + μ)(1−!/β)ξ∗(1 + ξ∗/β)−1

× lnμ(ξ∗/β) = 0,

Bpmt∗ = 4

⎛
⎝

β∫

1

(ρ + ξ∗)
−1 lnμ(1 + ξ∗/ρ)dρ + (ln1+μ(1 + ξ∗/β)

− ln1+μ(1 + ξ∗))/(1 + μ)ξ∗

⎞
⎠

m

/3 (1 − 1/β)m .

Diagrams εb∗(β) for m = 1 and m = 2 are drawn in Fig. 6.7 as interrupted
by points lines 1 and 2. We can see that they are somewhat higher than the
consequent values for profile ho = hbbo/ro. The curves t∗(β) for m = 1 and
m = 2 are shown also by the same lines 1 and 2 as in Fig. 6.4 and they are
lower than respective ones for curved profile above. However all the curves
for every m are near to each other and from practical point of view the disk
ho = constant should be recommended (the curves hb = 0 are the lowest).
Similar solution may be received for rotating disk /30/ (see Appendix O).

6.2.3 Thick-Walled Elements Under Internal
and External Pressures

Sphere

For this structure the initial equations are

εχ = εθ ≡ ε = ln(ρ/ρo) ≡ (1/3) ln(ρ/ρo)
3,

ρ3 − a3 = (ρo)
3 − (ao)3, εe−αε = Ω(t)(σθ − σρ)m/2. (6.17)

Here ρ, χ = θ are spherical coordinates. The second of expressions (6.17) is
the condition of constant volume and using it for the whole sphere (ρ = b)



178 6 Ultimate State of Structures at Finite Strains

as well as the first expression (6.17) we represent the strains at internal and
external surfaces as

εa = (1/3) ln κ, εb = (1/3) lnκb

where
κ = (a/ao)

3, κb − 1 = (κ − 1)/(βo)
3, βo = bo/ao.

In order to integrate the static equation (2.80) in current variables we write
the second (6.17) as following:

1 − (ρo/ρ)3 = 1 − e−3ε = (a3 − (ao)3)/ρ3

and differentiate it. That gives

dρ/ρ = (1 − exp 3ε)−1dε.

Putting the last expression together with the third (6.17) into the first (2.80)
we determine after integration

(q − p)Ω(t) = 21+μ

εa(κ)∫

εb(κ)

(exp 3ε − 1)−1(e−αεε)μdε. (6.18)

According to criterion dε/dt → ∞ we receive from (6.18)

κ−(1+αμ/3)
∗ lnμ κ∗ = κ−(1+αμ/3)

b∗ lnμ κb∗

and if we suppose κ∗ = κη
b∗ the results can be represented as functions of

parameter η
κb∗ = ημ/(η−1)(1+αμ/3),

after that we find κ∗ and

βo = ((κ∗ − 1)/(κb∗ − 1))1/3.

Considering in (6.18) the critical values of strains we get on the critical time.
From Fig. 6.7 where for m = 1, α = 0 and α = 0.9 diagrams εb∗(βo) are
represented by solid and broken lines 3 respectively we can see that the critical
strains decrease with a growth of α and βo. In certain conditions (big α, βo, m)
the strains at fracture can be small enough and it explains brittle destruction
of structures made of plastic materials.

Comparing solid curve 3 in Fig. 6.7 with straight line 0 that corresponds
to simple (see (1.46) at α = 0, m = 1) or biaxial equal tension we can see that
even thin-walled (βo is near to unity) sphere failures at strains three times
less than a plate in the same stress state. From Fig. 6.5 where function t∗(βo)
is shown by solid line 0 for the case of sphere at α = 0, m = 1 we can see that
t∗ is less than t∞.
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Cylinder and Cone

In the same manner we consider the failure of a thick-walled tube /30/. The
results can be represented in a form similar to (6.18) as

(q − p)mΩ(t∗) = (4/3)

⎛
⎜⎝

ε(κ∗)∫

ε(κb∗)

(e2ε − 1)−1(εe−αε)μdε

⎞
⎟⎠

m

(6.19)

wherein ε = εθ, κ = (a/ao)
2, κb = 1+(κ−1)/(βo)

2 and according to criterion
dε/dt → ∞ we have

κb∗ lnμ κ∗ = κ∗ lnμ κb∗.

A solution of the latter equation with a help of parameter η as in the cases of
the disk and the sphere is also possible. Diagrams ε∗(β) and t∗(β) are drawn
in Figs. 6.7 and 6.5 by solid lines 4.

A comparison of the results for the sphere and the cylinder allows to
conclude that the fracture of the first one demands longer time than that of
the second. However the strains at external surface in unstable state of the
sphere are less than those of the cylinder and the latter are smaller for the
plate in biaxial equal tension. All that can be explained by the influence of
the form of a structure that is not taken into account by classical approaches
to finding the ultimate state by the strength hypotheses.

In order to use the criterion of infinite strains rate to a cone we write the
condition of the constant material’s volume (4.101) in form

cos χ − cos χo = (δ − 1) cosψo

where δ = cosψ/cosψo. From these expressions and the definition of tangen-
tial strain (Fig. 3.24) as

ε(χ) = ln(sin χ/ sin χo)

we derive equation

(1 − e−2ε) sin2 χ + 2(δ − 1) cosψo cos χ − (δ − 1)2 cos2 ψo = 0

that allows to determine cos χ by solution

cos χ = (1 − e−2ε)−1(δ − 1) cosψo +
√

1 + (1 − e−2ε)−2e−2ε(δ − 1)2 cos2ψ

and dχ is proportional to dε. With consideration of the last dependence and
the constitutive law we integrate (3.116) as follows:

(3Ω/4)μ(q − p) =

εa(δ)∫

εb(δ)

εμ−1e−(2+αμ)((1 − cos χ)−1 cos χdε).

Applying to this relation criterion dε/dt → ∞ we get on an equation for
critical value of δ consideration of which gives the critical time. If its influence
is negligible we have a critical difference of pressures as before /31/.
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6.2.4 Deformation and Fracture of Thin-Walled Shells
Under Internal Pressure

General Relations

In the following we are going to consider a shell /32/ with initial length 2lo
between rigid bottoms with coaxial holes of radius a (in Fig. 6.8 a quarter of
the structure is shown), diameter 2ro, the wall thickness ho under axial force
P and internal pressure q. We write down basic expressions for the shell’s
deformed state (solid lines in the figure). Static laws are:

σx = (q(r2 − a2) + P/π)/2rhcosθ, d(hrσx)/dr = hσy (6.20)

where σx, σy are stresses in longitudinal and circumferential directions, θ –
angle between the shell’s ξ and x axes; relations for finite strains

εx = ln(dr/ sin θdξ), εy = ln(r/ro), εz = ln(h/ho) (6.21)

which are linked by constant volume condition

εx + εy + εz = 0.

The system is closed by a rheological expression which we take with a con-
sideration of the stress state at P = 0 as εx = 0. We suppose the second
constitutive equation in form like (1.45) and (2.30)

2τe = ω(t)(γm)μ exp(−αε1). (6.22)

Equations (6.21) can be replaced by expression

νo =

εm∫

0

f(ε1)(sin θ)−1dε1. (6.23)
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Here f = exp ε1, νo = lo/ro, ε1 = εy = ε, εm = ε at ξ = 0 and function θ(εm, ε)
can be derived from (6.20), (6.21) in form

(e2ε − χo)/cos θ = exp2εm − χo + Nq

ε∫

εm

εμe−αεdε (6.24)

where χo = (a/ro)2, Nq = 21+μω(t)ho/qro.
With consideration of (6.24) we apply criterion dεm/dt → ∞ to (6.23). The

consequent diagram ε∗(νo) for m = 1, α = χo = 0 is given by solid line 1 in
Fig. 6.9. Computations show that at χo = 1 (the case of rings) the consequent
curve is near to that line. Critical time t∗ can be found from expression for
Nq at ε = ε∗.

Some Approximate Solutions

We demonstrate one of them for the case χo = 0 when from (6.24) we have
at εm − ε = η (η is a small value) after decomposition of exponents in series
and neglecting members with η in power 2 and more

1/ cos θ = 1 + η(2 − Nqεμ
m exp(−(2 + α)εm)),

and from (6.23)

νo =
√

2εm(exp εm)/
√

2 − Nqεμ
m exp(−(2 + α)εm).

Using the criterion dεm/dt → ∞ we compute

Nq∗ = 2(1 + 2ε∗) exp((2 + ά)ε∗)/εμ
∗(1 − μ + (4 + ά)ε∗)0.5,

νo =
√

ε∗(exp ε∗)
√

1 − μ + (4 + α)ε∗/
√

(2 + α)ε∗ − μ.
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For case μ = 1, α = 0 we have simple expressions

Nq∗ = (1 + 2ε∗)(exp 2ε∗)/ε2
∗,

νo = 2ε∗(exp ε∗)/
√

2ε∗ − 1.

The curve νo(ε∗) is inside the totality of lines 1 When νo → ∞ (infinite length)
we derive ε∗ = 1/2m. If μ = 0.5 the consequent diagram is constructed in
Fig. 6.9 by solid line 2 and it is below the respected curve for m = 1.

Another Approximate Approach

In some works (/32, 33/ and others) the hypothesis is taken that straight lines
in x directions deform as circular arcs with radius Rx (Fig. 6.8) defined by
expression

Rx = 0.5((r1 − ro)2 + l2)/(r1 − ro).

That supposition fully determines the geometry and the deformation of the
shell. Particularly

cos θ = (Rx − r1 + r)/Rx,

ε1 = ln(1 + 2ρ sin2(νo/2ρ))

where ρ = Rx/ro. Computing from (6.20), (6.21) σy and putting it together
with ε1 into (6.22) we find expression for ρ as follows:

Nq2ρ lnμ(1 + 2ρ sin2(νo/2ρ)) = (2ρ cos2(νo/2ρ) − 1)(1 + 2ρ sin2(νo/2ρ))2+α.

Using criterion dρ/dt → ∞ and excluding Nq we derive an equation for ρ∗

(νo sin(νo/ρ∗) + 1) exp ε∗ = 2ρ2
∗(μ/ε∗ − 2 − α)(2 cos2(νo/2ρ∗) − 1/ρ∗)

× (sin2(νo/2ρ∗) − (νo/ρ∗) sin(νo/ρ∗))

according to which interrupted by points line1 is given in Fig. 6.9. The dotted
curve is constructed in the supposition of l = lo /33/. The good agreement of
these results with the rigorous solution (especially at ν > 5) opens the way
for approximate study of other shells.

Torus of Revolution

We suppose that the structure (one quarter of which is shown in Fig. 6.10)
changes at deformation its dimensions but not the form. The measurements
and natural observations show that

Ro − ro = R − r
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and the fracture takes place in points y = 0, z = r. So, for them at h =
constant we have

Rhr = Rohoro
(this expression is valid also for the whole volume of the material at ho =
constant). The stresses there are

σy = σoe2ε(ρo + eε)/(ρo + 1)

where σo = qro/ho, ρo = Ro/ro − 1, 0 < ρo < ∞ and strain ε = ε1 = εy is
determined by the second expression (6.21).

Deformation εz is given by the third relation under this number and for
εx we write

εx = ln(R/Ro),

So, with consideration of constant volume condition we find maximum shear

γm = 2ε + ln((ρo + eε)/(ρo + 1))

and rheological law (6.22) becomes

σoe(2+α)ε(ρo + eε) = ω(t)(2ε + ln((ρo + eε)/(ρo + 1)))μ(ρo + 1).

According to criterion dε/dt → ∞ we derive equation for critical deforma-
tion as

((2+α)(ρo+exp ε∗) + exp ε∗)(2ε∗+ln(ρo+exp ε∗))/(ρo+1) = μ(2ρo+3 exp ε∗).

At ρo → ∞ (a long tube) and ρo = 0 (a sphere) with replacement of α by
μα we compute respectively the relations that were received earlier for these
structures

ε∗ = 1/(2m + α), ε∗ = 1/(3m + α)

and that confirms a validity of the hypotheses above. The consequent curves
for α = 0 are drawn in Fig. 6.11 by solid straight lines t, s and we can expect
that other cases are between them.



184 6 Ultimate State of Structures at Finite Strains

0.6

0.4

2
5

3
6

4 7
1

0.2

0 0.25 0.5

s

t

0.75 μ

ε*

Fig. 6.11. Dependence of critical deformations on μ

Oo

Ro

y

L
LoA

B
R

O

qo

θb

bo

Ao

Fig. 6.12. Cross-section of membrane

6.2.5 Thin-Walled Membranes Under Hydrostatic Pressure

General Expressions and Cylindrical Membrane

These structures are more often used in the Geo-mechanics (see e.g. /34/,
Appendix N). We begin with a long membrane as a part of a cylinder the
cross-section of which is shown in Fig. 6.12 and suppose as before that its
form remains at a deformation (solid line in the figure). From the condition
of the constant material’s volume and geometrical considerations we have

Lh = Loho, Lo = Roθo, L = Rθ, Ro sin θo = R sin θ (6.25)

where h is a thickness of the membrane. We shall solve the problem in terms
of angle θ when for ε ≡ εy and σy = 2τe we receive with consideration of (6.25)

ε = ln(θ sin θo/θo sin θ), σy = σoθ sin2 θo/θo sin2 θ.
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Here σo = qRo/ho and q is the hydrostatic pressure. Putting ε and σy into
(6.22) we deduce

2θ sin2 θo/θo sin2 θ = Nq lnμ(θ sin θo/θo sin θ)

where Nq has the same value as in (6.24) with replacement r by Ro.
Using criterion dθ/dt → ∞ and excluding Nq we find equation for critical θ

μ = (sin θ∗ − 2θ∗ cos θ∗)/(sin θ∗ − θ∗ cos θ∗ + α) ln(θ∗ sin θo/θo sin θ∗)

which for θo = θ∗ = π (a cylinder) gives at α = 0, ε∗ = μ/2 as for a long
tube (solid straight line t in Fig. 6.11) and for another ultimate case θo = 0
we have the solid curve. So we can conclude that at 0 < θ < π the points
are between these lines and the influence of the form of the structure on its
ultimate state is high.

Spherical Membrane

For such a segment we keep picture in Fig. 6.12 and take condition

ε ≡ εx = εy = −εz/2.

Then with consideration of (6.25) we write for stresses

σ ≡ σy = σx = qRoe
2ε(sin θo/sin θ)/2ho.

Putting σ and ε into (6.22) we derive

qRo(sin θo/ sin θ)/ho = 3μ2εμe−(2+α)εω(t).

According to criterion dε/dt → ∞ and after an exclusion of ω(t) together
with the constants we find

μ = (2 + α − (dθ/dε)∗ cot θ∗)ε∗. (6.26)

Further we can take different suppositions. The simplest of them is h = con-
stant, but strains can be calculated in two options. From the condition of
material incompressibility we have

ε = 0.5 ln((1 + cos θo)/(1 + cos θ))

and from (6.26)

μ = (0.5α + (1 − 2 cos θ∗)/(1 − cos θ∗)) ln((1 + cos θo)/(1 + cos θ∗)).

If we compute ε according to a change of a meridian then similar to the case
of the cylindrical membrane we receive

μ = (α + (2 tan θ∗ − 3θ∗)/(tan θ∗ − θ∗)) ln(θ∗ sin θo/θo sin θ∗). (6.27)
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The calculations show that both options give similar results that for the case
α = θo = 0 are constructed by broken curve in Fig. 6.11. Its comparison to
straight line s for the sphere shows also the big influence of the form on the
critical state of this structure.

The case of non-homogeneous deformation (when h is not a constant) we
consider on the base of the supposition that point Ao on straight line OoB in
Fig. 6.12 comes to point A of ray OB. From the figure we find the expression
(valid at θo < π/2) for ε in the pole where β = βo = 0

ε = − ln(cos θ/cos θo)

putting which into (6.26) we receive

μ = −(2 + α − cot2 θ∗) ln(cos θ∗/ cos θo). (6.28)

The consequent curve is drawn in Fig. 6.11 by interrupted by points line
at α = 0.

Comparison with Test Data

In Fig. 6.11 the experimental points are given according to /35/ for mild
copper (1 – Brown-Sacks), aluminum, hard and mild steel (2, 3, 4 – Brown-
Tomson), two types of copper (5, 6 – Weil-Newmark), polyethylene (7 from
/36/). We can see that these points are situated between curves according to
(6.28), (6.27). As the first of them gives safer values it can be recommended
for practical use. We can also note that solution (6.27) at μ = 1, α = θo = 0
gives θ∗ near to represented in /37/ where deformation ε = θ/sin θ and linear
link between σ, ε are taken. This θ∗ corresponds well enough to test data on
butadiene rubber membranes of different thickness. It opens the way to the
theory above also for rubbers.

So, the test data above confirm the theory in the case of a spherical seg-
ment. The good agreement of this approach was fulfilled by the author for
thin-walled tubes under axial load, internal pressure and torsion (see /14, 38/
and others).

6.2.6 Two other Problems

Tension of Limited Length Tube

Now we consider the case of axial load P action when we suppose that in
dangerous cross- section ξ = 0 the strains are linked as

εy = εz = −εx/2

(a hypothesis of the material). We rewrite the second equilibrium expression
(6.20) with consideration of (6.21) as follows
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2 exp εxd(exp(−εx)σx)/dεx = −σy

or taking into account (6.22) with 2τe = σx − σy

d(σx exp(−3εx/2)) = 0.5(3/2)μω(t) exp(−(α + 0.5)εx)dεx.

An integration of this expression together with (6.21) and the first (6.20) gives
at εx ≡ ε

1/ cos θ = e−ε/2

⎛
⎝exp(εm/2) + NP

ε∫

εm

εμe−(α+0.5)εdε

⎞
⎠ (6.29)

where
NP = (3/2)μω(t)/σo, σo = P/2πroho.

Now we apply criterion dε/dt → ∞ to (6.23) with f(ε1) = 0.5 exp(−3ε/2).
Computed with a help of a PC curve for α = 0, m = 1 is given in Fig. 6.9
by solid line 3 in which broken straight line corresponds to the bar of infinite
length. We can see that the influence of the latter takes place only for small
νo. Critical time t∗ can be found from the expression for NP at εm = ε∗.

Compression of Cylinder

The solution above can be used for a compression by rough plates of a short
cylinder (see Fig. 4.38) if we suppose that it consists of a set of thin-walled
tubes. Computed with a help of PC diagram is represented by solid line 4
in Fig. 6.9. The difficulties of this task solution and its importance allow to
apply some approximate approaches similar to that for the thin-walled shell
under internal pressure above.

We rewrite approximately (6.29) as

1/ cos θ = 1 + 0.5η(1 − NPεμ
m(exp(−(1 + α)εm))).

Putting it in (6.23) we receive after integration

νo =
√

εm exp(−1.5εm)/
√

1 − Np(εμ
m exp(−(1 + α)εm)).

Using criterion dε/dt → ∞ we finally find

NP∗ = (3ε∗ − 1) exp((1 + α)ε∗)/ε∗/−μ/(/μ − 1 + (2 − α)ε∗/),

νo = exp(−1.5ε∗)
√

/μ − 1 + (2 − α)ε∗//ε∗//
√

/μ − (1 + α)ε∗./

At α = 0, μ = 1 the curve in tension practically coincides with line 3 in Fig. 6.9
and at compression (ε∗ < 0) broken curve 4 is near to that of the rigorous
solution above., It is interesting to notice that the approximate results are
valid for big εm. The critical time may be found from expression for NP∗.
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Final Notes

The relations above are important because the theory supposes infinite length
of samples although the experiments are usually made on the ones of limited
length and so we can appreciate its influence on the results.

6.2.7 Ultimate State of Anisotropic Plate in Biaxial Tension

General Considerations

The application of this sub-chapter method to a plate in a tension allows
not only to find the ultimate state of similar structure elements but also to
establish a theoretical strength of an element of a material. The latter problem
is usually solved in an experimental way with a help of the so-called strength
hypotheses.

Basic Expressions

To receive initial equations we use the links between true σs and conditional
σso stresses in form (1.42) which result from constant density condition. By
applying these relations to initial rheological laws (2.39), (2.43) we obtain the
expressions describing a development of strains in time as follows

εxSy = εySx, exp(−αεeq)εx = Ω1(t)(σxo)mDm−1Sx (6.30)

where D = σeq/σxo and the values of Sx, Sy depend on the position of the
symmetry axis relatively to the loading plane. For the cases when z, x, y are
isotropy axes we have

Sx = exp εx − kno exp εy, Sy = no exp εy − k exp εx,

Sx = (1 − k)(2 exp εx − no exp εy), Sy = no exp εy + (k − 1) exp εx,

Sx = exp εx + (k − 1)no exp εy, Sy = (1 − k)(2no exp εy − exp εx).

Here no = σyo/σxo.

Ultimate State

Any stage of the deformation can be taken as a limiting one but the most
convenient is the use of criterion dε/dt → ∞ when at no = constant we find
from (6.30) an equation for critical strains as

(ε∗)2(1 + R∗)no(1 − k2) exp(ε∗ + εy∗) − C∗Sx∗ε∗ + (Sx∗)2 = 0. (6.31)

Here ε∗ = εx∗, R = (m − 1)∂D/∂εx + α and functions C(no, εx, εy) for the
options above are respectively
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A

b

0.75 no0.50.250

0.5

mε*

1

Fig. 6.13. Dependence of mε∗ on m, k and no when z is axis of symmetry

1

1

b

0.75 no0.50

0.5

mε*

0.25

Fig. 6.14. Dependence of mε∗ on m, k and no when y is axis of symmetry

C = RSx + exp εx + no exp εy,

C = RSx + 2(1 − k) exp εx + no exp εy,

C = RSx + exp εx + 2(1 − k)no exp εy. (6.32)

From Figs. 6.13, 6.14 where for the cases when z and y are axes of symmetry
(the case if x is axis of isotropy is similar of the first of them – this similarity
was explained in Sect. 2.3.3) diagrams mε∗(m, k, no) for α = 0, m = 1 and
m → ∞ (signs 1 and b) are represented we can see the great influence on
critical state of the structure of m and k (solid, broken, interrupted by points
and dotted lines for k-values equal to 0.5 (isotropic material – see Sect. 2.3.3),
1, 0, −1 respectively) and sign A means a validity for both m above.

Ultimate State of Plastic Materials

Expression (6.31) does not contain time and hence it can be used for plastic
materials the limit state of which is usually evaluated by the dependence of
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critical sub-tangent Z∗ /39/ (see Fig. 2.5)

Z∗ = σe∗(dεe/dσe)∗

to curve σe(εe) on n. The transition to these variables can be made as

Z = mεe, no = n exp(εx − εy) (6.33)

and after transformations we obtain

(Z∗
√

3/2
√

Λ∗)2n∗(1 − k2)(1 + α/m) − (Z∗
√

3/2
√

Λ∗)C1∗ + m = 0

where Λ are given by (2.40), (2.44) and values of C1(n) can be derived from
(6.32) as follows

C1 = (m − 1 + α)(1 − kn) + 1 + n,

C1 = (m − 1 + α)(1 − k)(2 − n) + 2(1 − k)n,

C1 = (m − 1 + α)(1 − (1 − k)n) + 1 + 2(1 − k)n. (6.34)

The analysis shows (see Figs. 6.15, 6.16 in which diagrams Z∗(n) are con-
structed for the same options and in the same manner as in Figs. 6.13 and
6.14) that parameters k, n, m have high influence on the ultimate plasticity
of the body. Sometimes the same material can reveal absolute rigidity as well
as infinite strains. We must notice that at m → ∞, α = 0 we have relation
for Z∗ in “classical” /39/ sense as

Z∗ = 2
√

Λ/
√

3c∗

where for the options above

c = 1 − kn, c = (1 − k)(2 − n), c = 1 + (k − 1)n.

For isotropic material at k = 0.5 and σeq = 2τe we receive

Z∗ = 2
√

1 − n∗ + (n∗)
2/(2 − n∗) .

A

b

1

0.50

1

Z*

n

Fig. 6.15. Dependence Z∗(n) when z is axis of symmetry
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Fig. 6.16. Dependence Z∗(n) when y is axis of symmetry

Ultimate State of Brittle Materials

When α is big we can neglect m − 1 and m in expressions (6.34) and for R∗.
So, putting the second relation (6.33) into (6.31) we derive

ε2
∗n(1 − k2) − ε∗c2 + c2/α = 0. (6.35)

Solving this equation and decomposing the function under square root in series
we have for two members of it a very simple and important result

ε∗ = 1/α (6.36)

which coincides with the first relations (1.47), (5.129), (5.134) and others of
that kind for all the structures in any stress state and can be considered as a
“law of nature”. Putting (6.36) into the second expression (6.30) we find the
critical time

Ω1(t∗) = 1/αeσm
xoD

m−1
∗ Sx∗.

When the influence of time is negligible we deduce for Ω = constant

σxo∗ = (Ω1αeDm−1
∗ Sx∗)μ.

In the same manner the critical state of anisotropic thin-walled tube under
axial load and internal pressure in three options of symmetry axis and loading
plane as well as with addition of torsion (for case k = 0,5) can be studied
/40/.(see also Appendix P).



Conclusion

In the book above we tried to put the bases for computations in the Geo-
mechanics as a whole and the Soil Mechanics in particular for three types of
body: elastic, plastic and hardening at creep with a damage. We demonstrated
the methods of consequent sciences on the most important for practice exam-
ples (a slope under vertical loads, a compressed wedge, an action of a soil on
a retaining wall, a flow of a material between two foundations, inclined plates
and in a cone, a wedge and a cone penetration as well as the load-bearing
capacity of piles and sheets of them, a tension and transversal shear of a body
with a crack and a pressure on it of a punch, ultimate state of sphere, cylinder
and cone under internal and external pressures, and plates at bending etc).
Some of the problems were not studied due to the mathematical difficulties
(e.g. a slope under combined loads for a non-linear material) or thanks to
their unclear mechanical formulation.

We suppose as the most important Chaps. 5 and 6 that describe processes
in structures between an initial elastic deformation and the final ultimate
state, representing them as particular cases. To the regret Chap. 5 is the most
difficult from mathematical point of view. However proposed here method of
reducing the third order differential equations to the systems of the first order
ones that can be solved one after another simplifies the procedure. We hope
that this approach can be useful for some other tasks. We give also whenever
is possible simple engineering relations.

The solutions in Chap. 6 take into account large displacements and strains
that are often met in the geo-mechanical and other processes. Here the appli-
cation of the criteria of infinite elongations and their rates is very convenient.
The phenomenon of unstable change of strains due to a damage is also often
met. The experiments show that the prediction of the method is nearer to
a reality for more unsteady creep and non-linear link between stresses and
strains. If we suppose that in the common sense the destruction is obliged to
main elongations in dangerous body parts the method is widely used. Thanks
to consideration of a damage (it is well-known that the theoretical strength
of a material is much higher than a real one) this approach can be applied to
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structures that are destroyed at small change of dimensions and it was demon-
strated in Chaps. 5 and 6. Here we underline as the most important result the
independence of the maximum critical strain in brittle materials on the types
of structure and stress state. In appendixes some auxiliary data are given.
Among them the tables for simple computations of necessary values, details
on calculations of some complex relations, a study of the fracture of brittle
materials at eccentric compression, bases of applied creep theory similar to
that in plasticity, the use of creep hypotheses for determination of the fracture
time and others. Most results of the book have been received by the author
in recent years and they are published in different editions throughout the
world. (additionally to the author references above see also /41-47/) We hope
that their compact presentation together with some well-known achievements
in the field is necessary.

Herewith I use the occasion to remember the professor of Leningrad State
University L.M. Kachanov who opened me the ideas of new approaches to
Fracture Mechanics, and the professor of Odessa State University I.P. Zelinsky
who put me for a solution some geo-technical problems. I also want to thank
the workers of CIP Insel of Electro-technic faculty of Bochum University who
helped me to create electronic version of this book.
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Appendices



A

Computation of p∗ for Brittle Materials
Which do not Resist Tension

In Germany the computation of ultimate load for brittle material is usually
made according to the schemes that are represented in Fig. A.1.

If e = h/6 force F is in the edge of the core /47/ (Fig. A.1,a) and the
maximum stress is

p∗ = 2F/h

and F is the first ultimate load

a)

b)

c)

h/2 h/2

e

e

e

F

p*

p*

p*

F

F

Fig. A.1. Distribution of stresses at eccentric compression in brittle materials like
soils
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If h/6 < e < h/3 (the force is out of the core – Fig. A.1,b) we receive from
static equation

p∗ = 4F/3(h − 2e).

If e = h/3 (damage reaches the axis of symmetry – Fig.A.1,b) we have

p∗ = 4F/h

and F is the second ultimate load which in this case is less than the first one.



B

Values of Kσ in (3.127)

Values of coefficients for computation of compressive stresses due to concentrated
force

r/z K r/z K r/z K r/z K r/z K r/z K

0.00 0.4775 0.32 0.3742 0.64 0.2024 0.96 0.0933 1.28 0.0422 1.60 0.0200
0.02 0.4770 0.34 0.2632 0.66 0.1934 0.98 0.0887 1.30 0.0402 1.62 0.0191
0.04 0.4756 0.36 0.3521 0.68 0.1846 1.00 0.0844 1.32 0.0383 1.64 0.0183
0.06 0.4732 0.38 0.3408 0.70 0.1762 1.02 0.0803 1.34 0.0365 1.66 0.0175
0.08 0.4699 0.40 0.3294 0.72 0.1684 1.04 0.0764 1.36 0.0348 1.68 0.0167
0.10 0.4657 0.42 0.3181 0.74 0.1603 1.06 0.0727 1.38 0.0332 1.70 0.0160
0.12 0.4607 0.44 0.3068 0.76 0.1527 1.08 0.0694 1.40 0.0317 1.72 0.0153
0.14 0.4548 0.46 0.2955 0.78 0.1455 1.10 0.0658 1.42 0.0302 1.74 0.0147
0.16 0.4482 0.48 0.2843 0.80 0.1398 1.12 0.0626 1.44 0.0288 1.76 0.0141
0.18 0.4409 0.50 0.2733 0.82 0.1320 1.14 0.0595 1.46 0.0275 1.78 0.0135
0.20 0.4329 0.52 0.2625 0.84 0.1267 1.16 0.0567 1.48 0.0263 1.80 0.0129
0.22 0.4242 0.54 0.2518 0.86 0.1196 1.18 0.0539 1.50 0.0251 1.82 0.0124
0.24 0.4151 0.56 0.2414 0.88 0.1138 1.20 0.0513 1.52 0.0340 1.84 0.0119
0.26 0.4054 0.58 0.2313 0.90 0.1083 1.22 0.0489 1.54 0.0229 1.86 0.0114
0.28 0.3951 0.60 0.2214 0.92 0.1031 1.24 0.0466 1.56 0.0219 1.88 0.0109
0.30 0.3849 0.62 0.2117 0.94 0.0981 1.26 0.0443 1.58 0.0209 1.90 0.0105



C

Values of K′ in (3.128)

Values of coefficients K′ for computation of stresses by the method of corner points

n =
z/b

m = a/b

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 3.0 4.0 8.0

0.0 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
0.2 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249
0.4 0.240 0.242 0.243 0.243 0.244 0.244 0.244 0.244 0.244 0.244 0.244 0.244
0.6 0.223 0.228 0.230 0.232 0.232 0.232 0.233 0.233 0.234 0.234 0.234 0.234
0.8 0.200 0.202 0.212 0.215 0.215 0.217 0.218 0.219 0.219 0.220 0.220 0.220
1.0 0.175 0.185 0.191 0.196 0.198 0.200 0.201 0.202 0.203 0.203 0.204 0.205
1.2 0.152 0.163 0.171 0.176 0.179 0.182 0.184 0.185 0.186 0.187 0.188 0.189
1.4 0.131 0.142 0.153 0.157 0.161 0.164 0.167 0.169 0.170 0.171 0.173 0.174
1.6 0.112 0.124 0.133 0.140 0.145 0.148 0.151 0.153 0.155 0.157 0.159 0.160
1.8 0.100 0.108 0.117 0.124 0.129 0.133 0.137 0.139 0.141 0.143 0.146 0.148
2.0 0.084 0.095 0.103 0.110 0.116 0.120 0.124 0.126 0.128 0.131 0.135 0.137
3.0 0.045 0.052 0.058 0.064 0.069 0.073 0.078 0.080 0.083 0.087 0.093 0.098
4.0 0.027 0.032 0.036 0.040 0.044 0.047 0.051 0.054 0.056 0.060 0.067 0.075
5.0 0.018 0.021 0.024 0.027 0.030 0.033 0.036 0.038 0.040 0.044 0.050 0.060
7.0 0.009 0.011 0.013 0.015 0.016 0.018 0.020 0.021 0.022 0.025 0.031 0.041

10.0 0.005 0.006 0.007 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.017 0.026



D

Values of β1, β2 in Fig 4.33 and factors A, B
in (4.88)

Table D.1. Data for construction of centre of the most dangerous slip arc when
soil has only coherence

Gradient of slope β1 β2

In degrees

1.73:1 29 40
1:1 28 37
1:1.5 26 35
1:2 25 35
1:3 25 35
1:5 25 37

Table D.2. Values of coefficients A, B for approximate computation of slope
stability

Gradient Slip surface Slip surface goes through base of slope and
of slope goes through has horizontal tangent in depth

lower edge of
slope

1:m l = h/4 l = h/2 l = h l = 1.5h
A B A B A B A B A B

1:1.00 2.34 5.79 2.56 6.10 3.17 5.92 4.32 5.80 5.78 5.75
1:1.25 2.64 6.05 2.66 6.32 3.24 6.62 4.43 5.86 5.86 5.80
1:1.50 2.64 6.50 2.80 6.53 3.32 6.13 5.54 5.93 5.94 5.85
1:1.75 2.87 6.58 2.93 6.72 3.41 6.26 4.66 6.00 6.02 5.90
1:2.00 3.23 6.70 3.10 6.87 3.53 6.40 4.78 6.08 6.10 5.95
1:2.25 3.18 7.27 3.26 7.23 3.63 6.56 4.90 6.16 6.18 5.98
1:2.50 3.53 7.30 3.46 7.62 3.82 6.74 5.08 6.26 6.26 6.02
1:2.75 3.59 8.02 3.68 8.00 4.02 6.95 5.17 6.36 6.34 6.05
1:3.00 3.59 8.91 3.93 8.40 4.24 7.20 5.31 6.47 6.44 6.09



E

Flow of Ideal Plastic Material in Cone

The vicinity of precise and approximate dependences (Fig. 4.41) allows to use
for practical purposes rigorous solution (4.104). Putting it into (4.105) we find

σχ = τyi(2nln(a/ρ) − J/ sin2 λ − 3Jo(χ))

where

Jo (χ) =

χ∫

0

sin 2ψdχ

Diagram Jo(λ) is given in Fig. E.1. Jntegral J has the same meaning as in
relation (4.106) but it must be computed so:

J =

λ∫

0

(2 cos 2ψ− 3Jo (χ)) sin 2χdχ. (E.1)

Curve J(λ) according to (E.1) is represented by broken line in Fig. 4.42 and
we can see that it is not far away from solid one. Consequently dependence
max τe/q in Fig. 5.22 is near the dotted line according to relation (4.106).

In the similar way we compute instead of (4.108)

P∗/π = (a + l)2(p ∗ −2nτyi ln(1 + l/a) sin2 λ) + τyi(l(l + 2a)(cosλ sin λ + J2/4
+((n − 3Jo(λ)) sin2 λ)

where (at n = 2.045 e.g. J2 = 6)

J2 =

λ∫

0

((
2 cos 2ψ− 3Jo(χ)

)
cos χ + sin 2ψ sin χ

)
sin χdχ
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Fig. E.1. Dependence Jo(χ)



F

Computation of Stresses at Anti-plane
Deformation of Massif with Crack

and Moving Punch

We put in (5.6) C − θ = x and rewrite solution of (5.4) as

4 ln (f/D) = ±((m − 1)/(m + 1)) ln((
√− (m − 1) cos x)/(

√
+ (m − 1) cos x))

+((
√

+ (m + 1) cos x)/(
√− (m + 1) cos x)) + ln sin2 x (F.1)

where √
=
√

(m + 1)2 − (m − 1)2 sin2x.

At x near zero we have from (F.1) at lower and (5.4) at upper signs

f = D1 (1/m)(m−1)/4(m+1)
√

2cos ((C − θ) /2) , f′

=
(
D1/

√
2
)

(1/m)(m−1)/4(m+1) sin ((C − θ) /2) (F.2)

Border demands for crack f′(0) = 0, f(0) = 1 give C = 0 and value D1(5.7).
Condition f(π) = 0 is fulfilled and from the second (F.2) we have

/f′(π)/ = D2
1.

At x near zero we have from (F.1), (5.4) at upper and lower signs respectively

f = D2m(m−1)/4(m+1)
√

2sin (C − θ) /2), f′ (0)

= (D2/
√

2m(m−1)/4(m+1) cos ((C − θ) /2) . (F.3)

The conditions f′(π) = 0, f(π) = 1 for the punch give C = 0,

D2 = (1/m)(m−1)/4/m+1) /
√

2 (F.4)

and f(0) = 0, f′(0) = D2
2.

Now we rewrite (5.8) for the crack as following

R1 (θ) =
(√

(mf/ (m + 1))2 + f′2
)m+1

/I (m) /f′ (π) /m (F.5)
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Table F.1. R1, R2 values

m 7 3 1 3 7

θ crack punch

0 0.04 0–34 0.32 0.12 0.03
π/4 0.13 0.38 0.32 0.60 0.12
π/2 0.08 0.26 0.32 0.45 5.86
3π/4 0.11 0.17 0.32 0.76 1.36
π 0.15 0.20 0.32 0.25 0.20

where
R1 = 2GΩ(t)(τe)m+1r/πτ2

ol. (F.6)

Relation (5.5) may be applied to the punch with replacement of f′(π) by f′(0)
with

R2 = 2GΩrτm+1
e /πlQ2.

The values of R1, R2 are given in the Table F.1 above and as we can see
from it the plastic zones may be big. Because of that we study them for one-
sided crack Fig. 5.2, b) in elastic-plastic material with hardening (see diagram
τ = τ(γ) in Fig. 5.2.a) where τ ≡ τe, in (2.52) and γ ≡ γm in (2.54) as well as

τx = τ(γ)γx/γ, τy = τ(γ)γy/γ. (F.7)

Instead of static (2.48) and compatibility (2.50) equations Rice /21/ used
reversed laws

∂x/∂τx + ∂y/∂τy = 0, ∂x/∂γy − ∂y/∂γx = 0. (F.8)

The second of these relations may be satisfied by the introduction of potential
function ψ as

x = ∂ψ/∂γx, y = ∂ψ/∂γy. (F.9)

Now we consider in plane γx,γy polar coordinates γ, ϕ where ϕ is calculated
from vertical axis γy. Then ψ = ψ(γ,ϕ) and using (F.9) as well as expressions
of transformation from γx, γy to γ, ϕ (in /51/ the simplified method of it is
represented) we receive

x = − sin ϕ∂ψ/∂γ − cos ϕ∂ψ/γ∂ϕ, y = cos ϕ∂ψ/∂γ − sin ϕ∂ψ/γ∂ϕ. (F.10)

Putting these relations in the first (F.8) we obtain differential equation

(τ(γ)/τ′(γ))∂2ψ/∂γ2 + ∂ψ/∂γ + ∂2ψ/γ∂ϕ2 = 0. (F.11)

We shall seek solution of (F.11) in form

ψ = f(γ) sin ϕ (F.12)

which gives linear differential equation of the second order for f(γ). At bound-
ary conditions f′(∞) = 0, f(γyi) = 1 and the rheological equation in Fig. 5.2a,
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it gives the solution
ψ = (γyi/γ)μ sin ϕ (F.13)

Putting (F.13) into (F.10) with border demand x = −l at ϕ = −π/2 we find
the boundary of plastic zone (γ = γyi)

x/l = m cos2 ϕ − sin2 ϕ, y/l = −0.5(μ + 1)m sin 2ϕ

which for m = 1, 3, 7 is given by solid, broken and interrupted by points curves
in Fig. 5.2b. (upper part must be constructed according to symmetry). We
can see that with a growth of m the plastic zone increases and moves out of
the crack.



G

Some Computations on Bending of Wedge

Some materials (including soils) have stress-strain diagram with μ > 1. We
consider the case μ = 2 when from (5.71) and boundary conditions we have

g cos 2ψ = Hsin θ.

Then from (5.70) we derive differential equation

dψ/dθ = sin(θ − 2ψ) cos 2ψ/(1 + sin2 2ψ) sin θ. (G.1)

We integrate (G.1) at different Θ(0) ≡ Θo by the finite differences method.
The diagrams ψ(θ) for Θo = 1, 2, 3, 4 are given in Fig. G.1 by curves 1, 2, 3,
4 respectively. The consequent values of λ are 40◦, 64◦, 87◦ and 117◦.

Then according to (5.69) we have

τ = (ωH2/r2))(sin θ/cos 2ψ)2 sin 2ψ

and with consideration of (5.72) and (G.1) we compute

max τe = MΘ2
o/2Jr2

where

J =

λ∫

0

(sin θ/cos 2ψ)2 sin 2ψdθ.

The diagram max τer2/M as a function of λ is given in Fig. 5.13 by interrupted
by points line and we can see that it is much higher than that one for m = 1.

As particular case of the general theory we take it for m = 2 when (5.78)
becomes

dΘ/dψ = −2Θ(1 − Θ)(1 + 2(1 − Θ)/Ψ) (G.2)

where Ψ = (1 + cos2 2ψ)/2. We integrate this equation at Θo equal to 0.5
and 1.249, and draw the curves ψ(θ) in Fig. G.2 with numbers 0.5 and 1.25
(for the case Θo = Θ = 1 we have straight line 1 with relation ψ = θ − π/4).
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Fig. G.1. Diagram ψ(λ) for μ = 2
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Fig. G.2. Curves ψ(0) for case μ = 0.5

For Θo > 1.25 we can not find λ since at small ψ θ → ∞ (e.g. curve 1.4
for Θo = 1.4 in the figure). Computing by (5.82) M-value we obtain max τe

according to (5.81) which is shown by pointed line in figure 5.13, and we can
see that it is near the solid curve (for m = 1) and, so, for Θo > 1.25 the latter
must be used as the first approach (similar to the case in Sect. 5.2.2).

In conclusion we derive similar to Sect. 5.2.2 an engineering solution.
We take with consideration of (5.66) rheological law like (5.30)

εθ = −3Ω(t)r−2mF(m−1)/2f′/4, γ = 3Ω(t)r−2mF(m−1)/2f

where F = f′2 +4f2 and put it into (2.71) which leads to non-linear differential
equation

(m − 1) ((m − 3) (f′′ + 4f)2 f
′2 + F

(
f′′′ + 4f′

)
f
′2 + 3F(f′′ + 4f) f′f′′ − 4mF2f′)

+ F2f′′′ + 4 (2m − 1)
(
(m − 1) F (f′′ + 4f) ff ′ + F2f′

)
= 0.

At m = 1 it gives the solution of Sect. 5.2.5. If we suppose f ′ = 0 in the
whole wedge we derive simple expression f′′′ = 0 which with consideration of



G Some Computations on Bending of Wedge 217

boundary conditions (5.72) and static demand (5.72) provides solution

f = 3M(θ2 − λ2)/4λ3.

The value of max τe takes place at θ = 0 and is

max τe = 3M/4r2λ. (G.3)

The computations show that at π/6 < λ < π/4 max τe is near the curves
for μ = 0, μ = 0.5, μ = 1 in Fig. 5.13 and at π/4 < λ < π/2 it is somewhat
below of the solid line (μ = 1). So, in these limits engineering relation (G.3)
can be used as the first approach.



H

Bases of Applied Creep Theory

As was shown in Sect. 4.2.2 a tension or a compression of a thin layer induces
at plane deformation almost equal triple-axial stress state with small shearing
components. It opens the way to the construction of the applied plasticity
theory /48/. In a similar manner the applied creep theory can be formulated.

We create it for the part I in Fig. 5.14. Since σx does not depend on y we
write down the first equation (2.59) at X = 0 as

dσx/dx − 2τ/h = 0

or after the use of the Coulomb’s law (4.44)

dσx/dx = −2fσy/h. (H.1)

As was shown in /49/ strain εx is a constant (its dependence on time is further
hinted) and according to (5.84) σx, σy are functions of x only. Putting (5.84)
into (H.1) and integrating we receive

σy = (σo − 4ω(t)(εx)μ)e2f(a−x)/h (H.2)

Now we find the specific pressure in y direction as following

N/2a = (l/a)

a∫

0

σy (x) dx.

Replacing here σy from (H.2) we have after integration relation

N/2a = (σo − 4ω(t)(εx)μ)h(e2fa/h − 1)/2fa (H.3)

from which the first expression (5.85) is received with compressing force N
taken according to its absolute value. To obtain the second law (5.85) (for
part II in figure 5.14) we must replace in (H.3) N/2a, εx, σo h, 2a by σo, εy,
0, (b-a), h respectively.
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In the same manner the case of material flow between slightly inclined
plates can be considered (/10, 49/).

The solutions in Sects. 3.2.2 and 4.2.2 (see Fig. 3.10) can be generalized
for pressed thin layer of hardening at creep material. From hypothesis of plane
cross-sections we have uy = uy(y). The incompressibility condition and (2.60)
give with a consideration of symmetry demand

ux = −u′
y(y)x, γ = −u′′

y(y)x (H.4)

From relations (5.34) and (5.17) with replacement in them r, θ by x, y we
have

σx = σy, τ = −ω(t)(u′′
y)μxμ (H.5)

and for thin layer
τ = −Aω(t)yxμ. (H.6)

where A is constant. Now we receive from static relation (2.59) at X = 0

σx = C − Aω(t)xμ +1/(μ + 1) (H.7)

where C may be found from integral equilibrium equation

h∫

−h

σx (l, y) dy = 0

m = 0

m = 1

–1

2
/σx //p

–1 0 1 x/I

Fig. H.1. Distribution of normal stresses in thin layer
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which gives with consideration of the first (H.5)

σx = σy = Aω(t)(xμ+1 − lμ+1)/(μ + 1). (H.8)

Another similar demand
l∫

0

σy (x) dx = −pl

(p = P/2l) reduces to
Aω(t)lμ+1 = (μ + 2)p

and hence instead of (H.5), (H.6) we have respectively

τxy = −(μ + 2)p/x/l/μy/l, σx = (μ + 2)p(/x/l/μ+1 − 1)/(μ + 1). (H.9)

For μ = 1, μ = 0 we receive solutions in Sects. 3.2.2 and 4.2.2 at y = h and
σx(0, h) = σy(0, h) = 0.

Plane deformation (εz = 0) gives σz = σx = σy and since for thin layer
h�l a material is in triaxial equal tension or compression under small shearing
stresses and to it the conclusion of Sect. 4.2.2 may be applied. We can also
see from Fig. H.1 that with growth of μ the distribution of normal stresses
becomes more even.



I

Inelastic Zones Near Crack in Massif
at Tension and Pressed Punch

We rewrite (5.99) as
R = Fm+1/I1(m) (I.1)

where for the crack at plane deformation (k = 1)

R = R1 = r(2τe)m+1GΩ1(t)/τ2πl,

Using border demands in Sect. 5.2.7 we derive for m = 3, 15 respectively

f = 0.383 cos0.4θ + 0.572 sin0.4θ + 0.616 cos0.915θ − 0.25 sin0.915θ,

f = −0.4616 cos0.232θ + 1432 sin0.232θ + 5.616 cos0.386θ − 8.62 sin0.386θ.

Putting f′′′(π). f′′(π) into expression for I1(m) in Sect. 5.2.7 we find I1(3) =
0.14, I1(15) = 0.033. According to (I.1) and (5.94) we compute R1 for some θ
(left part of Table I.1 and Fig. I.1)

Table I.1. Values of R1, R2

m 15 3 1 3 7 15

θ crack punch

0 0.0 0 0 0.200 0.022 0.002
π/4 0.058 0.840 0.08 0.857 0.471 0.097
π/2 3.197 2.755 0.16 1.843 2.481 2.365
3π/4 0.142 0.792 0.08 0.604 1.598 0.040
π 0.002 0.031 0 0 0 0

In similar way we use (I.1) for the punch when at

R = R2 = r(2τe)m+1ΩπGl/P2

at m = 3, m = 7, m = 15 we have
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1

Fig. I.1. Inelastic Zones Near Edges of Crack and Punch

f = −0.665 cos0.4θ − 0.183 sin0.4θ + 0.665 cos0.915θ + 0.08 sin0.915θ.

f = −2.266 cos0.31θ + 2.75 sin 0.31θ + 2.266 cos0.584θ − 1.46 sin0.584θ.

f = −4.616 cos0.232θ + 14.32 sinθ + 5, 616 cos0.386θ − 8.62 sin0.386θ

Putting f′′′(0), f′′(0) instead of f′′′(π), f′′(π) in expression for I1(m) at I1(3) =
0.206, I1(7) = 3. I1(15) = 0.06 we find R2 at the same θ as before are given
in Table and Fig. I.1 with solid, broken and interrapted by points line). The
values of R for m = 1 coincide and it is equal

R(1) = (sin2 θ)/2π.

From Table I.1 and Fig. I.1 we can see that with a growth of m the inelasic
zone changes its form and dimensions.



J

Inelastic Zones Near Crack and Punch
Ends at Transversal Shear

We rewrite (5.100) as

R(θ) = Fm+1/I(m)/f′(π)/m (J.1)

where for the plane deformation

R = 4r(2τe)m+1(GΩ(t)/τ2)π.

At m = 1 we have from (J.1) relation

R = (1 + 3cos2θ)/2π (J.2)

which coincides with equation for τe from (3.106).
For m = 3 we have I(3) = 3.33 and

f = 0.997cos0.342θ+0.555sin0.342θ−0.997cos1.873θ+0.461sin1.873θ. (J.3)

Then we find f′(θ), f′′(θ), /f′′(π)/3 = 29.28 and R (left part of Table J.1).
For m = 15 according to boundary conditions we detail (5.96) as

f = −1.04cos0.162θ − 0.515sin0.162θ + 1.04cos2.146θ − 0.505sin2.146θ.

Then we compute f′(θ), f′′(θ) and /f′′(π)/15 = 7.14 × 1010, I(15) = 15. The
values of R are given in Table J.1 and we can see that all the curves have
similar form. The computations show that the stresses are near to consequent
curve 1 in Fig. 3.21.

Relation (J.1) may be used to finding inelastic zones near punch edges
with f′′(0) instead of f′′(π) and

R = 2r(2τe)m+1πGΩ1l/Q2.

The computations show that the results are identical to the data in Table J.1
reversed about axis θ = π/2.
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Table J.1. Values of R(θ) at different m

m 1 3 15
θ Crack

0 0.64 1.24 0.20
π/4 0.40 0.52 0.10
π/2 0.32 0.38 0.17
3π/4 0.40 0.61 0.04
π 0.64 0.93 0.35



K

Flow of Material in Cone

In order to demonstrate the computations in general case we make them for
the option μ = 1/3 when equation (5.119) becomes

dΘ/dχ = Θ/ tanχ − (4/3) tan 2ψ+ (4 + Θ(1.5Θ − 5))(tan 2ψ)/3Ψ

−Θ(4 + 0.75Θ(tan2ψ/tanχ + 1 + 1/ sin2 χ)) sin 4ψ/3Ψ (K.1)

where according to (5.49)

3Ψ = 1 + 2 cos2 2ψ.

We integrate (K.1) at different Θ(0) = Θo and (5.118) at boundary condition
ψ(0) = 0 by the finite differences method. The curves ψ(χ) at Θo = 1, 2, 4 are
marked in Fig. K.1 by numbers 1, 2, 3 respectively.

Then we integrate the second expression (5.113) as

g = exp

⎛
⎝2

χ∫

0

(1/Θ − 1.5) tan 2ψdχ

⎞
⎠

neglecting an arbitrary multiplier because it is in numerator as well as in
denominator of (5.120). Lastly we compute J3 and use (5.120). The diagrams
of max τe(λ) is given in Fig. 5.22 by interrupted by points line and we can see
that it is near to that one at μ = 2/3.
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L

The Use of Hypotheses of Creep

We shall apply them to the case when (see sub-paragraph 1.5.5)

ε = Bσmtn (0 ≤ n ≤ 1). (L.1)

The validity of this expression at σ �= constant represents a time harden-
ing theory which is mainly used in this book. Differentiation of (L.1) at
σ = constant gives the flow hypothesis

dε/dt = Bnσmtn−1. (L.2)

Combination of (L.1) and (L.2) allows to formulate strain hardening theory
in relation

ε1/n−1dε/dt = nB1/nσm/n. (L.3)

The well-known heredity integral must be written as following:

ε = Bn

1∫

0

σm (ξ) (t − ξ)n−1 dξ (L.4)

At σ = constant equations (L.2)–(L.4) coincide with (L.1).
To appreciate the validity of these hypotheses we must use them for the

regimes with σ �= constant e.g. σ = ut where u = constant. In this case we
have a common expression

ε = KBσmtn (L.5)

where K is equal to 1, n/(m+n), (n/(m+n))n, Γ(m+1)Γ(n+1)/Γ(m+n+1)
for relations (L.1), (L.2), (L.3), (L.4) respectively. As for non-linear unsteady
creep m is big and n – small the flow hypothesis predicts negligible K-values
against other theories, e.g. for m = 3, n = 1/8 we receive K = 0.04, 0.67
and 0.8. The experiments /14/ give as a rule data between the predictions
of strain hardening and heredity hypotheses and in this situation a special
meaning receives the time hardening theory with its advantage of simplicity
for practical applications.
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To use the Hoff’s method we put in (L.2), (L.3) expression (1.42), (1.43)
and integrate in limits 0, t∞ and 0, ∞ for t, ε that gives respectively

t∞ = (mB(σo)m)−1/n, t∞ = n1−1/nΓ(1/n)(Bσm
o m)−1/n. (L.6)

At n = 1 (a steady creep) they coincide with (1.44). At n < 1 the first of them
leads to bigger values of the fracture time than the second one.

Lastly, we compute the fracture and critical times according to strain
hardening theory and (1.46) at α = 0, Ω(t) = Btn as

t∞/t∗ = n1/n−1e1/nΓ(1/n)

and we can see that at n = 1 value of t∞/t∗ is equal to e (the Neper’s number)
and with a fall of n this ratio increases.



M

Use of the Coulomb’s Law for Description
of Some Elastic-Plastic Systems

at Cycling Loading

In some productions, for example, at deep boring the special device is used. It
consists of the system of rings with conic polish sides (in Fig. M.1, a three such
rings are shown). The main difficulty of the use of similar devices is finding
such loading regimes at which the rings are sliding relatively to each other.
Here the results of experimental-theoretical study of the apparatus is made
(it was fulfilled by the author at Leningrad Polytechnic).

The experiments were provided on the Amsler’s press and cycling machine
CDM PU-100. At quasi-static loading the values of force P were taken from the
press scale and deformation k – from two indicators. The simultaneous record
of P and k at cycling loading was fulfilled by special electronic apparatus
90–16.2. To make the tests in liquid the device was situated in a cylinder.

The results of tests at quasi-static loading at different environment and
α are given in Fig.M.2 (solid lines 1 for air at α = 0.331, 2 – for lubricant
with graphite at α = 0.331, broken line 3 – for air at α = 0.262, interrupted
by points lines 4 – for oil at α = 0.262 and 5 – for oil at α = 0.296) and in
Table M.1 under the same numbers. The character of graphs P(k) which have
the form of triangles with upper sides responding to loading and vertical as
well as lower straight lines – to unloading shows an opportunity of theoretical
prediction of deformation characteristics of the device.

At the increase of upper or lower rings diameter Db (Fig. M.1a) on value
ΔDb the system becomes shorter on Δkb = 0.5ΔDb cot α. Similarly for other
rings we have Δκs = ΔDs cot α. As a result the whole shortening of the system
of n rings is

k = (ΔDb + (n − 2)ΔDs) cot α. (M.1)

When diameter D changes its value on Δ D the circumferential stresses appear.
They can be replaced by radial forces q on the unit length of the perimeter
(Fig. M.1b) as

q = 2EAΔDi/D2
i (i = b, s) (M.2)
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Fig. M.2. Results of experiments on quasi-static loading

where E is modulus of elasticity, A – area of cross-section of a ring (shaded
in Fig. M.1). Making a sum of projections of forces on axis x in Fig. M.1a we
have for upper or lower and middle rings respectively

−(P/πDb) cos α + qb sin α + f(qb cos α + (P/πDb) sin α) = 0,
−(P/πDs) cos α + 0.5qs sin α + f(0.5qs cos α + (P/πDs) sin α) = 0.

(M.3)
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Table M.1. Data of quasi-static loading

No a (MN/m) b (MN/m) f C (MN/m)

1 51.5 18.2 0.143 287
2 35 30 0.024 281
3 36 8 0.153 298
4 3ß 7.5 0.136 254
5 38 12.5 0.138 264

Here friction force T is found from the Coulomb’s law T = fN, f – coefficient
of friction and normal component N is computed according to the equilibrium
equation.

Replacing in (M.3) values qb, qs by relations (M.2) and putting values
ΔDb, ΔDs into (M.1) we find after transformations

P = Ck tan(α + πfsign(dk/dt)) tan α, (M.4)

where sign (dk/dt) reflects the difference of link between P, k at loading and
unloading, π f – angle of friction and C is a rigidity factor which at Ds = Db

is given by expression

C = pEA/(n − 1.5)D. (M.5)

When a, b are tangents of angles between straight lines and axis k in Fig. M.2
at loading and unloading respectively, friction coefficient and rigidity factor
can be found as

f2 − f(a + b)/(a − b) sin 2α + 1 = 0,

C2 − 0.5C(a + b) cot2 α − 1 − ab cot2 α = 0.
(M.6)

In the solutions we must take before square root sign minus for the first
relation and plus – for the second one.

Values a, b are also given in Table M.1 and we can see that f-values are
near to their meanings in reference books and mean value of C = 277MN/m
coincides with that for tested reams at n = 7, E = 2 × 105MN/m2

, A =
3.15 × 10−4m2, D = 0.13 m according to (M.5).

The analysis of the test results on quasi-static loading gives an opportunity
to suppose two work types of the device at cycling loading – with mutual slip
of rings and without it (as piece of tube) with rigidity coefficients much more
than follows from (M.4) as

C tan(α ± ϕ) tan α.

The latter regime takes place if at the beginning of loading the minimum value
of force in a cycle is more than force P∗ responding to the beginning of rings
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Table M.2. Data of cycling loading

No of Loop in Frequency (kN) ψ

regime figure in Hz P1 P2 Test Theory

I 1–4 21 25 5 0.72 0.68
II 5–8 21 35 5 0.21 0.30
III 9–12 21 55 5 0.22 0.18

0-A–B-0 statics any 0 0.08 0.08

slip at unloading. For P∗ we have from (N.4)

P∗ = P1(tan(α + ϕ))/ tan(α − ϕ) (M.7)

where P1 is maximum load in a cycle.
In Fig. M.3 as an example the test results for rings ream with α = 0.262

in oil at frequency 21 Hz in regimes I–III of Table M.2 together with broken
straight lines of loading OA and unloading OB at quasi-static deformation
are given. It is seen some difference of form and position of hysteresis loops at
quasi-static and quick loadings. It is the biggest for the regime with maximum
of amplitude that may be explained by the divergence from the Coulomb’s
law with growth of a velocity of mutual displacement of sliding surfaces.

Now we find absorption coefficient ψ as the ratio of hysteresis loop area
to potential energy 0.5 Ck2

a of the system where ka is amplitude of the
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deformation. Theoretical values of ψ are computed according to following
from (M.4) relation

ψ = 2((P1 + P2)0.5 sin 2α(P1 − P2)f)f sin α/((P1 − P2)0.5 sin 2α
−(P1 + P2))f/(1 − f2 tan2 α) cos3 α.

where P2 is minimum force in a cycle.
In conclusion we must notice that the difference between quick and slow

deformations of the ream is not big. Using the data on quasi-static loading we
can predict the character of the reams work including their dissipative losses
at cycling loading.

The received results may be used for explanation of behavior of other
elastic-plastic systems including some soils.



N

Investigation of Gas Penetration
in Polymers and Rubbers

Since polymers and rubbers are often used as shells and membranes (see
Sects 6.2.4 and 6.2.5) it is necessary to study gas penetration through them.
Herewith such investigation is made (it was fulfilled by the author in Leningrad
State University).

The process of gas penetration materials is often considered as successive
phenomena of absorption and diffusion that go into direction of decreasing
concentration gradient. Unsteady state of diffusion gas stream in a material
is described by differential equation similar to (1.12)

∂C/∂t = D∂2C/∂x2. (N.1)

Here D is diffusion coefficient, C – concentration of gas, x – coordinate in the
direction of its movement.

Steady state of diffusion stream subdues to relation

q = −D∂C/∂x (N.2)

where q – quantity of gas penetrating through unit surface area of a material
in unit time.

It is supposed that the gas absorption in polymers is described by the
Henri’s law

C = ßp. (N.3)

Here ß – absorption coefficient, p – gas pressure.
With consideration of (N.3) expression (N.2) may be represented in form

Q = DßΔpAt/h (N.4)

where Q is a volume of gas that is diffused through a sample of material with
thickness h and area A during time t at difference of pressures before and
after the plate Δp.
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If we define the penetration factor r as gas volume which goes through
unit area of cross-section in second at unit gradient of pressure that is

r = Qh/AtΔp (N.5)

constants r, D, ß will be linked by relation

r = Dß. (N.6)

Hence the gas penetration may be fully characterized by three constants – of
diffusion D, absorption ß and penetration r. They can be found experimentally
by different methods.

One of them allows to determine all the constants simultaneously from one
test as follows.

For the plate at initial and border conditions

C = Co at t = 0, 0 < x < h,

C = C1 at x = 0, C = C2 at x = h for all t

we have the following solution of (N.1) /52/

C(x, t) = C1 + (C2 − C1)x/h + (2/π)
∞∑

n=1

((C2 cos πn − C1)/n) sin(nπx/h)

× exp(−Dn2π2/h2) + (4Co/π)
∞∑

m=0

(2m + 1)−1 sin((2m + 1)πx/h)

× exp(−D(2m + 1)2π2t/h2). (N.7)

The gas stream through unit area of the plate cross-section into volume Vo is
determined by expression

Vo∂C/∂t = −D∂C/∂x|x=h. (N.8)

Differentiating (N.7) by x and putting the result at x = h into (N.8) we receive
after integration from 0 to t following relation for gas volume Q which went
through the plate at time t

Q = ßA((p1 − p2)Dt/h + (h/π2)(2
∞∑

n=1
(p1 − p2 cos πn)(cos nπ)

× (1 − exp(−Dn2π2t/h2))/n2 − 4(po/π2)
∞∑

m=0
(cos(2m + 1)π)

× (1 − exp((−D(2m + 1)2π2t/h2))/(2m + 1)2)

(N.9)

where po is the pressure at initial gas concentration Co in the plate, p1 and
p2 – pressures before and after the plate.

At big t after summation of series (N.9) becomes

Q = ßA((p1 − p2)Dt/h − (p1 + 2p2)h/6 + poh/2). (N.10)
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If Q = 0 we can find the “time of lagging” (at unsteady penetration) t1 as

t1 = h2(p1 + 2p2 − 3po)/6D(p1 − p2). (N.11)

At small p1 and po comparatively to p1 we receive

D = h2/6t1. (N.12)

So, when we have experimental dependence Q(t) for unsteady and steady state
of diffusion gas stream we can find with the help of relations (N.5), (N.12)
and (N.6) constants r, D and ß.

For the experiment a plant was created which gives an opportunity to test
material plates with thickness 0.1–1 cm and working area 110 cm2. Duration of
a test is determined by the time when the diffusion velocity becomes constant
and it is equaled usually 2t1. The volume of a gas for computation is found
according to the Clapeyron’s relation

Q = 3.6HΣΔQi/T (N.13)

where ΔQi is the gas volume at considered time, H-atmospheric pressure in
cm of a mercury pillar, T – temperature of test in ◦K. The diagrams Q(t) for
6 materials are given in Fig. N.1 and computed according to relations (N.5),
(N.12), (N.6) constants – in Table N.1.
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Fig. N.1. Diagrams Q(t)
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Table N.1. Test data

No Material Δp Number of h r × 1010 D × 107 ß × 103

(kn/cm2) samples (cm) (cm4/sN) (cm2/s) (cm2/N)

1 Rubber 0.5 4 0.22 5.76 1.64 3.54
2 Rubber 4 5 0.30 0.41 0.57 0.78
3 Polyvinilchlorid 0.5 5 0.23 4.26 1.29 3.33
4 Polypropilen 1 6 0.22 1.36 0.52 2.65
5 Polyethylene 0.5 5 0.31 0.08 0.92 1.36
6 Polycarbonate 2 5 0.27 0.47 0.22 1.93

The analysis of the results (here only a part of them is represented) shows
that the penetration of the materials falls with a growth of pressure difference.
It is also seen that the decrease of r takes place due to a decrease of D and ß.
The change of penetration should be taken into account at a construction of
rubber and polymer structures.



O

Fracture of Optimal Profile Rotating Disk

For this task we use the relation of rotation

∂(hrσr)/∂r = hσθδv2r2

where δ – density of material, v – angular velocity. Putting here relation
(6.14) and omitting multiplier 3/4 we receive in initial dimensions at σr(ao) =
σr(bo) = 0 instead of (6.15)

Ωμδv2

bo∫

ao

ho(ro)ro(ro + u)dro =

bo∫

ao

ho(ro)(1 + u/ro)
−1−αμ lnμ(1 + u/ro)dro.

(O.1)
We begin wth case ho = haa2

o/r2o (solid line for ρ = ro/ao and ha = ho(ao)
in Fig. O.1) when at

β = bo/ao, ζ = u/ao (O.2)

we obtain from (O.1)

Ωμδv2a2
o(β − 1 + ζ ln β) =

β∫

1

(1 + ζ/ρ)−1−αμ lnμ (1 + ζ/ρ) dρ/ρ2
. (O.3)

If α = 0 we get from (O.3) after integration

Ωμδv2a2
o = (ln1+μ(1 + ζ) − ln1+μ(1 + ζ/β))/ζ(1 + μ)(β − 1 + ζ ln β).(O.4)

Using criterion dζ/dt → ∞ we have critical time Ω(t∗) for ζ∗ as

Ω(t∗)μδv2a2
o = ((1 + ζ∗)

−1 lnμ(1 + ζ∗) − β−1(1 + ζ∗/β)−1

× lnμ(1 + ζ∗/β))/(β − 1 + 2ζ∗∗ ln β). (O.5)

The solution of the system must be made by the attempt method when for
real ζ = ζ∗ we obtain Ω(t∗) = Ω(t). Diagrams tu = t∗(β) where tu, t∗ are
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ultimate and critical times for μ = 1, μ = 0.5 are given in Figs.O.2 and O.3
by solid lines.

We investigate the role of parameter α for the case m = 1 when from (O.3)
we have after integration

Ωδv2a2
o = ((1 + ζ/β)−α(ln(1 + ζ/β) + 1/α) − (1 + ζ)−α

×(ln(1 + ζ) + 1/α))/α(ζ(β − 1) + ζ2 ln β). (O.6)

Using criterion dζ/dt → ∞ we find

Ωδv2a2
o = ((1 + ζ∗)

−1−α ln(1 + ζ∗) − β−1(1 + ζ∗/β)−1−α

× ln(1 + ζ∗/β))/(β − 1 + 2ζ∗ ln β). (O.7)

From Fig. O.2 where at α = 1 diagram t∗(β) is given by pointed line we can
see that with a growth of α the critical time diminishes.

In the same manner the case ho = haao/ro (broken line in Fig.O.1) may
be studied when from (O.1) at α = 0 with consideretion of (O.2) we derive

Ωμδv2a2
o =

⎛
⎝

β∫

1

(1 + ζ/ρ)−1 lnμ(1 + ζ/ρ)dρ/ρ

⎞
⎠/(β−1)(0.5(β+1)+ζ). (O.8)
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Using criterion dζ/dt → ∞ we compute

Ω(t∗)μδv2a2
o = ((1 + ζ∗)

−1 lnμ(1 + ζ∗) − (1 + ζ∗/β)−1

× lnμ(1 + ζ∗/β))/(β − 1)ζ∗. (O.9)

The dependence of t∗ on β for μ = 1 and μ = 0.5 is given in Figs. O.2 and O.3
by broken lines and we can see that they go lower consequent solid curves.

For the dick of constant thickness we have from (O.1), (O.2)

Ωμδv2a2
o = 6

⎛
⎝

β∫

1

(1 + ζ/ρ)1−αμlnμ(1 + ζ/ρ)dρ

⎞
⎠/(β−1)(2(β2+β+1)+3ζ(β+1)).

(O.10)
According to criterion dζ/dt → ∞ we compute

Ωμδv2a2
o =

β∫

1

((1 + ζ∗/ρ)−2−αμ(μ lnμ−1(1 + ζ∗/ρ)

− (1 + αζ∗μ) lnμ(1 + ζ∗/ρ))dρ/ρ)/(β2 − 1). (O.11)
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The diagrams according to (O.10), (O.11) for α = 0, μ = 1 and μ == 0.5
(broken lines) go somewhat lower respective curves for the previous case and
we can conclude that disk with ho = constant is not an economical one.

To compare the above results with ones received by the Hoff’s method
(according to criterion ζ → ∞ for fracture time t∞) we take from/17/

Ω(δv2ao
2)m =

∞∫

0

(((μβ+ζ)(β+ζ)−μ−(μ+ζ)(1+ζ)−μ/((1−μ)μ(Aζ+B)m)dt (O.12)

where A = (β2 − 1)/2, B = (β3 − 1)/3.
L. Kachanov recommends to solve (O.12) approximately that is difficult

to realize because of the infinity in the upper limit. However at m = 2 the
rigorous result is possible in the form

Ω∞(δao2)2 = (16/A2)(ln((
√

β + 1)4/16β) + (2 − d1/b1)(d1/b1) ln(βA/B)
+ (d2

1/b1 + d2
2/b2)/B + (d2/b2)(2 − d2/b2) ln(A/B)

+ 2(d1d2/b1b2)(1 +
√

βA/B) + (d1d2(b1 + b2)/b1b2
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− 2(d1+d2))(sin−1((b1 + b2)/(b1 − b2))

− ((sin−1 ((b1 + b2)B + 2b1b2) /B(b1 − b2))/
√
−b1b2).

(O.13)

Here

b1 = (β − 1)2(β + 2)/6, b2 = −(β − 1)2(2β + 1)/6,

d1 = −(β − 1)(β2 + β + 4)/12, d2 = −(β − 1)(4β2 + β + 4)/12.

Diagram of (O.13) is given by interrupted by points curve in Fig. O.3 and it
goes somewhat above the broken line.

The Hoff’s method gives somewhat simpler solution for more economical
profile ho = haao/ro when at Ω(t) = B1t (the so-called steady creep) we derive

(du/dt)μ
bo∫

ao

(ro + u)−μ−1dro = δv2B1

bo∫

ao

(ro + u)dro. (O.14)

For μ = 1, μ = 0.5 we compute respectively the fracture times

B1t∞δv2a2
o = 2(β − 1)−2ln((β + 1)2/4β),

B1t∞(δv2a2
o)

2 = 16(β − 1)−4(ln(β + 1)2/4β + 2(2
√

β/(β + 1) − 1)).

The diagrams of these expressions are given in Figs.O.2 and O.3 by inter-
rupted by points lines and we can see that they are above consequent broken
curves for this profile. So the Hoff’s method overestimates the strength of
the structure. Since diagram for μ = 0.5 is near to that at h = constant
we can suppose that at other μ the also near to each other. In conclusion
we must underline that curved profiles not only economical but they give more
ultimate time.
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Strength of Anisotropic Tubes at Different
Loadings. Construction of Potential Function

In order to receive the initial equations we use given in /38/ links between
true σs (s = x, y) and conditional σso stresses in form

σx = σxo(1 + 0.5no(exp 2εy − 1)) exp εx, σy = σyo exp(εx + 2εy) (P.1)

where x, y – axial and circumferencial direction, 0 ≤ no ≤ ∞ and the same
for n. Putting these expressions into (2.39), (2.43) we find equations describing
development of the tubes strains in time as

εxSy = εySx, exp(−αεeq)εy = Ω(t)(σxo)m−1Dm−1Sy (P.2)

where D = σeq(exp εx)/σxo and values of Sx, Sy depend on the interposition
of isotropy and loading planes in transversally isotropic tubes. For the cases
when z,x,y are axes of symmetry they are respectively

Sx = 1−0.5no + no(0.5 − k) exp 2εy, Sy = no(1 − 0.5k) exp 2εy + k(0.5no − 1),
Sx = (1 − k)(2 − no), Sy = 0.5no(1 + k) exp 2εy + (1 − k)(0.5no − 1),
Sx = 1 − 0.5no + no(k − 0.5) exp 2εy, Sy = (1 − k)(1.5no exp 2εy + 0.5no − 1).

Any stage of the deformation may be taken as allowable one but more con-
venient is the use of the infinite elongation rate when we get ultimate state
naturally. Applying it to (P.2) as dεy/dt → ∞ at no = constant we get
equation for critical strain εy = ε∗ as following

(ε∗)2m(2 − no)no(1 − k2) exp 2ε∗ − C∗Sy∗ε∗ + S2
y∗ = 0. (P.3)

If R = (m−1)dD/Ddεy +α(dεeq/dεy) the functions C(no, m, εy) for the cases
above are respectively

C = RSy + no((2 − k + m(0.5 − k))) exp 2εy + m(1 − 0.5no),
C = RSy + m(1 − k)(2 − no) + no(1 + k) exp 2εy, (P.4)
C = RSy + mSx + 3(1 − k)no exp 2εy.

The critical time may be got from (P.2) at εy = ε∗.
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Expressions (P.3), (P.4) do not contain t and hence can be used in the
conditions when the influence of time is negligible and the limit state is
appreciated in coordinates

Z∗ = mεe∗, n = no(exp 2εy)/(0.5no(exp 2εy − 1) + 1) (P.5)

where Z = (dεe/dσe)σe – the subtangent to the hardening curve σe(εe) (see
Fig. 2.6). As a result we have instead of (P.3) equation for Z∗:

(Z ∗
(√

3/2
√

Λ∗
)2

n∗ (2 − n∗)
(
1 − k2

)− Z∗
(√

3/2
√

Λ∗
)

c∗ + m = 0. (P.6)

Here according to the criterion of the maximum shearing stress at σeq = σy

and σeq = σx (upper and lower expressions respectively) we have at α = 0

c = 1 + 2n(1 − m)x
(1 − k + (2 − k)n)
(1 − 2nk + k2),

c = 2(1 − k + nk) + (m − 1)x (2k − 1 + 3n(1 − k))
(n2 + 2(1 − n)(1 − k)),

c = 1 + 2n(1 − k) + (m − 1)x
(2k − 1 + 3n(1 − k))

(1 − 2n(1 − k)(n − 1)).

From these relations we can see that at m = 1 the c-values do not depend
on σeq. At other m near limit meanings of n (0.∞) it is necessary to use the
conditions σeq = σx and σeq = σy respectively taking the least of two Z∗-
values. In Fig. P.1 in polar coordinates Z∗, a = tan−1

√
3n(2 − n) for k 0.5;

1, 0 − 1 the limit diagrams are constructed by solid, broken, interrupted by
points and pointed lines respectively for the cases m = 1 and m → ∞ (sign
b and A means validity for all m)- The crosses correspond tests on nikel /40/
and confirms the theory. It allows to reinforce properly similar objects.

For an isotropic materials we have from (2.33) at ki = kj = kk = 0.5 the ini-
tial basic equations (2.32). Here true stresses σx, σy are given by relations (P.1)
and τ can be computed as τ = τo exp(εv − εy). The second law (P.2) is valid
here with multiplier 0.25 in its right part and at Sy = no(1 + 3 exp2εy) − 2.

According to criterion dεy/dt → ∞ we receive expression (P.3) in which
multiplier 1 − k2 must be replaced by 12 and for C we have

C = 6no exp 2εy + 2m(2 − no) + ((m − 1)dD/Ddεy + α(dεeq/dεy))Sx. (P.7)

Similar to the anisotropic cases we can find the ultimate state in terms of
Z∗, k and f = τ/σy where fo = 2f(exp 2εy)/((2− n) exp 2εy + n). Putting this
relations and (P.5) into expression for ε∗ above we find

3n (2 − n) (Z∗)
2 − 2C1

√
1 − n + n2 + 3f2 Z∗ + 4m

(
1 − n + n2 + 3f2

)
= 0
(P.8)
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Fig. P.1. Diagram Z∗(a) for z-axis of symmetry

where in the case σeq = σe

C1 = 3 n + m(2 − n) + (2n − 1)(3(m − 1)(n2 − 2f2)/2(1 − n + n2 + 3f2)
+ α(dεeq/dεy)).

At m → ∞, α = 0 we find the ralations that were received earlier by Storak-
ers on the base of the Drucker‘s postulate. In our case we can find other
localization conditions at different σeq.

The tests on tubes at all three loading are rare. The case f = 0 is well
confirmed by experiments on metals and polymers (see e.g. /14, 38, 39/).
Very often the loading by axial force and torsion is used and for this option
we have from (P.8)

Z∗ =
√

1 + 3f2(1 + (3(m − 1)f2/(1 + 3f2) + α(dεeq/dεy))/2m)−1 (P.9)

In Fig. P.2 in coordinates τ
√

3, σx ≡ σ the lines 1, 4 1/0 ≡ ∞ are con-
structed at α = 0. It is seen that curves 4, ∞ are near to each other and this
justifies the use of classical criteria type /39/.and others which can be got
from our results at m → ∞ and different σeq.

It is also seen from Fig. P.2 that Z∗ increases with a growth of τ Such
phenomena are often occur in experiments e.g. for some steel /40/ (crosses
in Fig. P.2). Supposing εeq = ε1 (maximum elongation) and using notation
tan β =

√
3τ/σ we rewrite (P.2) as,

Z∗ = ((1 + ((m − 1)sin2β + 0.5α(1 + 3
√

3/

√
3 + 4 tan2β))/2m)cos β)−1.

(P.10)
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Fig. P.2. Comparison of theory and experiment for steel

Approximation of the first parts of creep curves gives m = 4 and the same
procedure for the third parts shows that the damage factorα is about 6. The
curve for these values is presented in Fig. P.2 by broken line and it is near the
experimental data.

The potenial function (see (2.63), (2.64), (4.43)) is often used while solving
practical problems (see e.g. /24/). At non-linear deformation when all invari-
ants of strain tensor Tε (2.13) depend on all invariants of Tσ these values are
linked by relations /53/

σe∂e/∂σe − K∂e/∂K = ∂(εe cos ω)/∂K, (P.11)

∂e/∂ξ = −∂(εe sin ω)/∂K, (P.12)

∂εe/∂ξ − K tan ω∂εe/∂K + σe tan ω∂εe/∂σe

= εe(K∂ω/∂K − (1 − ∂ω/∂ξ) tan ω − σe∂ω/∂σe) (P.13)

where e ≡ em (see (2.20)), σe, εe are given by relations (2.24), (2.25), K =
σm/σe, (see (2.21)) phase of similarity ω is equal to the difference of angles ξ,
ψ linked with the Lode‘s parameters μσ, με (see (2.34), (2.35)) by relations

tan ξ = μσ/
√

3, tanψ = με/
√

3.

Here equations (P.11), (P.13) are used for the costruction of functions εe(K, σe,
ξ), e(K, σe, ξ) for teflon-4 on the base of rheological law ω(K, σe, ξ) which
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Table P.1. Comparison of theoretical and test data

ξ K ε/εo
Tests Theory

π/6 −0.33 0.40 0.40
π/12 −0.17 0.45 0.51
0 0 0.55 0.68
−π/12 0.17 0.75 0.86
−π/6 0.33 1 1
−π/12 0.49 0.95 1.03
0 0.58 0.85 0.94
π/12 0.64 0.75 0.88
π/6 0.67 0.65 0.80

is taken in form
tan ω = ϕ(σe)(1 + βK)f(ξ). (P.14)

Since expression for ω(K, ξ) has identical character we put ϕ = 1. The diagram
f(ξ) is given in Fig. P.3. The points and crosses refer to the cases of one
compressive – one tensile (lines 1–4 in Table P.1) and two tensile (lines 5–9 in
the Table) stresses respectively.



252 P Strength of Anisotropic Tubes at Different Loadings

To construct function εe(K, σe, ξ) we put (P.14) into (P.13) which gives

∂εe/f∂ξ − K(1 + βK)∂εe/∂K + σe(1 + βK)∂εe/∂σe

= εe((1 + βK)2df/dξ − 1 − (1 + βK)3f2)(1 + (1 + βK)2f2)−1. (P.15)

To integrate (P.15) we find first function εe(σe, ξ) at K = 0 and initial
condition εe = Ωσm

e for ξ = ξo which leads to expression

εe = Ω
√

1 + f2σm
e F (ξ) (P.16)

where

F(ξ) exp

⎛
⎜⎝− (m + 1)

ξ∫

ξ

fdξ

⎞
⎟⎠

In this case the solution is

εe = Ω
√

1 + (1 + βK)2f2σm
e (1 + βK)mF (ξ) (P.17)

Similarity of curves εe(K, σe, ξ) allows to compare values εe/εo at certain
σe, where εo = εe for ξ = π/6 (simple tension). From columns 3, 4 of Table P.1
we can see the good agreement of the theory and the experiment at β = 0.2,
m = 3.5. It is interesting to notice that at the same ξ value εe/εo increases
with a growth of K that may be explainet by the influence of normal stresses
on slip planes (similar to the Coulomb‘s law).

Putting (P.14), (P.17) into (P.11), (P.12) we find after integration

e = Ωβ (1 + βK)m σm
e F (ξ) + G (σe, K).

With consideration of (P.14), (P.17) the last relation may be written in
form

e = βεe cos ω + G(σm)

from which we can see that the volume change summarizes the parts pro-
portional to mean ctress (2.21) and effective strain (2.21). The second one
is positive and material becomes more friable that is confirmed by direct
experiment.
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absorption coefficient, 230, 233
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angle of divergence, 110
angle of internal pressure, 17
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boundary conditions, 42
Boussinesq’s problem, 79
brittle fracture, 11
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coefficient of friction, 22, 231

coefficient of stability, 116
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conformal transformations, 52
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constant displacement, 75
constitutive laws, 36
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crack mechanics, 16
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creep phenomenon, 24

critical stress, 17
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cylindrical rigidity, 15
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damage parameter, 4, 26
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maximum shearing stress, 35
maximum strain, 38
media mechanics, 33
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slip arc, 117
slip element, 101
slip lines, 7, 94, 98
slopes stability, 2, 117
slope under one-sided load, 137
sluice, 150
solid core, 7
solution in series, 68
specific coherence, 117
specific gravity, 12
specific weight, 6
spherical coordinates, 47
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stability of footings, 2
stable crack, 71
statically determinate problem, 43, 45
statically indeterminate problem, 35
stick condition, 58
stratified soil, 38
strength condition for crack, 72
stress intensity coefficient, 72
stresses under rectangles, 81
stretching energy, 55
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sucker with holes, 11
summation “layer by layer”, 83
superposition method, 80
surface of stretching, 17

teflon-4, 248
tension under hydrostatic pressure, 167
tensor of strains, 35
tensor of stresses, 33
Terzaghi-Gersewanov model, 11
torus of revolution, 180
transversally isotropic plane, 39
transversally isotropic tube, 246
transversal shear, 74, 155
true strain, 25

ultimate plastic state theory, 17
ultimate plasticity, 190
unstable deformation, 4
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