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Preface

The aim of this book is to present a new approach to approximately an-
alyze beams and frames. The new approach has the following desirable
features:

• The approach is relatively short and simple, robust with good accu-
racy and is practically applicable to realistic problems. Some former
students who have learned these methods have reported that, in the
workplace, they have been able to complete an accurate approximate
analysis of a structure in the time it took their colleagues to enter a
description of the structure into a computer model.

• The approach is naturally amenable to parametric studies and results
presenting summaries and ranges of behavior covering a wide range
of situations are pervasive throughout the book. This builds a knowl-
edge base that a practitioner can use to anticipate the range of possible
results that may be encountered with a new structure.

• The approach has strong visual components, especially in the empha-
sis on consistent semi-quantitative sketching of deformed structures.
These sketches are especially useful as repositories and enhancements
to experience. The reason is that: i) There is a synergy between such
sketches and moment diagrams which are essential for design so that
experience in one translates into improvements in the other. ii) Both
deeper insight and more experience with the analysis of beam and
frame structures allows the user to be more accurate or to add more
details in the sketches of the deformed shapes. Having drawn such
improved sketches, the user then remembers and consolidates both
insight and experience. iii) Comparisons between the sketches of the
deformed structures and moment diagrams allows inconsistencies to
be detected and hence, reduces potential manual errors.

• The approach generally localizes all dimensional quantities in one or
a few factors so that the main parameters to be estimated are the rel-
evant relative stiffnesses. This non-dimensionalization also generally
leads to having all calculated non-dimensional quantities lying be-
tween negative and positive one. Both of these effects reduce the like-
lihood of manual error because the range of possible values become

ix



x Practical Approximate Analysis of Beams and Frames

rather limited and because one of the main sources of error is usually
in dimensional calculations and unit conversions. Extensive experi-
ence and practice with the method and with typical relative stiffnesses
also eventually leads to results being recalled, due to the limited range
of common non-dimensional results, rather than calculated which fur-
ther enhances the speed and accuracy of the user.

• In addition to moment diagrams, the approach also addresses how to
estimate deflections, influence lines and moments of inertia.

• The approach identifies a possible framework for the non-destructive
evaluation of framed structures. A specific experimental method
based on that framework is proposed and analyzed.

• The approach sheds light on the limits of applicability of the widely
used lumped-mass model for the dynamical analysis of structures. The
implications are presented and discussed.

For all the above reasons, we recommend this book to both students
and practitioners. However, we note that the proposed new approximate
approach must be complemented with other material in order to consti-
tute a good second course in structural analysis. For example, a good
second course would include the approximate approach in this book,
the direct stiffness method, training on the use of some structural analy-
sis software and, if time permits, exposure to one or two other advanced
structural analysis topics.

Finally, the main objective of this book is to provide students and
practitioners of structural mechanics with a new analysis approach that
complements the use of software but provides a critical role for the struc-
tural engineer. That role is necessarily at a higher conceptual level and
must cater to the strengths of humans which is the recognition of pat-
terns, preferably visible ones. The author hopes that this work would en-
courage others to refine and extend this approach or its essence to other
areas of structural engineering and indeed to most other topics where
software is displacing much of the skills that were previously provided
by people.
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Chapter 1

Approximate Analysis
of Beams and Frames
with No Sidesway

1.1 Introduction to Sketching
Throughout this book, we will be concerned with sketching the deforma-
tions of beams and frames. Such sketches, when qualitatively precise, il-
lustrate the behavior of structures in a visually rich and informative way.
For example, such sketches may be directly related to bending moment
diagrams which are a basis for design. By qualitatively precise sketches,
we mean that we will be mostly concerned with: i) getting the right sign
of the curvature at each point which implies ii) approximately identify-
ing the location of each inflection point which are locations of zero curva-
ture and hence zero moment, iii) getting the right sign of the slopes at the
ends of members and iv) getting the right sign of the displacements. In
general, we will greatly exaggerate the magnitude of the displacements
and place minor emphasis on the details of the deformed shape beyond
the above concerns.

To start our sketching program, we will observe the deformation of
a real but very slender beam. Specifically, we will consider the defor-
mations of a long slender straw shown in figures 1.1a–d. As long as the
material is linear elastic, the shape of that slender straw will be represen-
tative of any beam under similar loading conditions but the straw will
have relatively very large deformations. While sketching the deforma-
tion of a beam, we will talk of displacement, slope and curvature. For
a horizontal beam, positive displacement will be up, positive slope will
correspond to a counter-clockwise rotation from the horizontal and the
convention for positive and negative curvature is shown in figure 1.2.

1



2 Practical Approximate Analysis of Beams and Frames

(a) applied moment—fixed (b) applied moment—pinned

(c) applied moment—spring (d) applied moment—fixed then sheared

Figure 1.1. Loading of a simple slender beam.

positive curvature negative curvature

Figure 1.2. Convention for positive and negative curvatures.

Let’s start by sketching figure 1.1a in a way that is consistent with
our objectives. First we draw small straight line “stubs” at each end of
the beam as shown in figure 1.3a. At the left end, we draw a stub with
a positive slope and zero displacement while at the right end we draw
a stub with zero slope and zero displacement. Next, we notice that the
curvature near the left end is negative while the curvature at the right
is positive with the inflection point (ie. zero curvature) somewhat closer
to the right end. Based on calculations for the case shown in figure 1.1a,
the inflection point is calculated to be at one third the length from the
right end. Therefore, starting with the left stub, we draw a curve with
negative curvature and, starting with the right stub, we draw a curve



Practical Approximate Analysis of Beams and Frames 3

(a) Place slope stubs at the ends

(b) Lightly sketch the curvatures starting
from the ends

0.33 L

(c) Smoothly join the curves from each end
noting the inflection points

Figure 1.3. Steps in sketching the deformed shape of beam 1.1a.

with a positive curvature. We draw the left and right curves so that they
meet closer to the right end as shown in figure 1.1b. Finally, we smoothly
join the two curves while trying to make the location of zero curvature
to appear about one third the length from the right end as shown in
figure 1.1c. In general, these are the 3 steps in drawing a beam or col-
umn when there is no chord rotation. Specifically, we draw stubs at the
ends, lightly sketch curves with the right curvatures at different locations
and finally join the curves into one smooth curve.

We sketch the beams in figures 1.1b and 1.1c in the same way. In
figure 1.1b, there is zero curvature at the right end so that the curve on
the right is initially straight with the result shown in figure 1.4 and 1.5.
Based on calculations, we know that the rotation on the right is half the
rotation on the left and we must take care to approximately reproduce
that feature in sketching figure 1.4. In figure 1.1c, the intention is to pro-
vide some resistance in-between fully fixed with zero rotation and no
resistance as in figure 1.1b. The result is that the location of zero curva-
ture occurs between zero and one third the length from the right end and
the rotation on the right side is between zero and half the rotation of the
left end.
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(a) Place slope stubs at the ends

(b) Lightly sketch the curvatures
starting from the ends

(c) Smoothly join the curves from
each end noting the inflection
points

Figure 1.4. Sketching the deformed
shape of beam 1.1b.

(a) Place slope stubs at the ends

(b) Lightly sketch the curvatures
starting from the ends

(c) Smoothly join the curves from
each end noting the inflection
points

Figure 1.5. Sketching the deformed
shape of beam 1.1c.

1.2 Passive Members in Continuous
Beams and Frames

How does sketching the deformation and bending moment of single
members help us in doing the same for assemblies of such members such
as beams and frames? To explain, we will first define a passive part of a
structure to be that part, if any, that has no loads applied and that has no
sidesway in any of its members. Neglecting axial deformations, a loaded
beam or column connected to a passive part of a structure at a node will
experience the equivalent of a linear rotary spring at that node as illus-
trated in figure 1.6. In that figure, we see the effect of the passive struc-
tures on member AB being reduced to two rotary springs at the ends.
The behavior of the loaded member can then be sketched and analyzed
by knowing the behavior of a single loaded member (beam or column)
with hinges and rotary springs at each end.

After considering the behavior of the loaded member, we consider
the members in the passive structures (eg. the members to the left and
right of member AB in figure 1.6). We observe that every member of a
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A B

⇔
A B

and

and

Figure 1.6. Deconstructing a structure into active member and passive parts.

passive structure will behave approximately similar to a beam or col-
umn that is hinged on both sides, with a moment applied at one end
and a rotary spring at the other as shown in the isolated members BC,
BE and CF of figure 1.7. We can think of the effect of the loaded mem-
ber as propagating from the member outwards in both directions with
the nearer beams and columns being loaded first (see figure 1.7). We first
analyze the loaded member with the ends having rotational springs and
obtain the moments at either end (eg. the end moments in member AB in
figure 1.6). The end moments that are thus obtained are then distributed
onto the connected members in a way that is similar but not the same as
the moment distribution method (see discussion below). Each beam and
column in a passive part of the structure may be considered as being
hinged on both sides with an applied moment obtained from distribut-
ing a moment at the end closest to the loaded member and with a rotary
spring at the other end. Such a member is then analyzed and the moment
at the spring end is obtained. This moment is then again distributed to its
attached members. In this way, the whole structure may be sketched and
analyzed member by member by simply knowing the behavior of a sin-
gle loaded beam with rotary springs at each hinged end (eg. member AB
in figure 1.6) and by knowing the behavior of an unloaded hinged beam
with one end loaded by a moment and the other end having a rotary
spring (eg. the isolated members BC, BE and CF of figure 1.7).

The approach is mildly complicated by having loops (ie. box formed
by two beams and two columns). Practically, this will not matter be-
cause, as we will see, the bending moments and the deformations
decrease rapidly as we move farther away from the loaded member.
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G D

E B

F C

analyzed⇒

B

C

first do this

CF

fourth do this

BE

second do this

F

E

fifth do this

B

D

third do this

E

G

sixth do this

Figure 1.7. Decomposing a passive structure into successive members to be
analyzed.

However, the last member in a loop (eg. member EF in figure 1.7) may
be treated as a hinged beam or column with applied moments at each
end obtained from the influence of the previous members that are closer
to the loaded beam. Sketching the deformation and bending moment of
such a case is elementary. There is some ambiguity in which member in a
loop is to be analyzed last but this can be simply determined by consid-
ering the member in the loop with the smallest end moments to be the
last. This member can be determined by experience or by choosing be-
tween two alternatives. Alternatively, this last member may be arbitrar-
ily chosen. The important point to notice in analyzing a passive structure
is that, at each step, we analyze one member with fully specified condi-
tions before passing to the next. There is no iteration and each member
is considered once before moving to the next member.

For the above approach of analyzing a loaded member connected
to a passive structure, we need i) to determine or estimate the stiff-
nesses of the associated rotary springs, ii) to determine or estimate the
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end moments at the ends of loaded members attached to passive struc-
tures and iii) to quantitatively analyze a hinged member with an applied
moment at one end and a rotary spring at the other (see for example
figures 1.10). This will allow us to completely specify then analyze each
member of a passive structure. In the next section, we will address the
third point which is the analysis of the member shown in figure 1.11. In
the sections after that we will also address how to analyze various types
of loaded beams with rotational springs at each end. In this section, we
will address the question of how to handle the first point which is the
estimation of the stiffness of rotary springs representing the behavior of
passive structures.

The first point is how to estimate the value of an equivalent rotary
spring representing the behavior of a passive structure attached at the
end of a member. Here, we use the classic concept of stiffness and note
that in the absence of sidesway, the rotational stiffness at a node is the
sum of the rotational stiffnesses of the connected members. For example,
in figure 1.8a, the stiffness of the rotary spring at node B is the stiffness of
member 1 for the case shown in figure 1.10f (ie. fixed end). In figure 1.8b,
we have to add the effect of the stiffnesses of members 1 and 2 and in
figure 1.8c we also have to add the effect of member 3 where that mem-
ber has the stiffness shown in figure 1.10a (ie. hinged end). In each of
those cases, we can come up with a value of ‘k’ so that k × 4EI/L gives
the stiffness of the rotary spring at end B by solving for ‘k’ in the equation
shown above the spring. Note that ‘E,’ ‘I,’ and ‘L’ are the Young’s mod-
ulus, moment of inertia and length of member AB. The value of ‘k’ is the
ratio of the rotational stiffness of the connected members relative to the
rotational stiffness of the active member (eg. member AB in figures 1.8)
when that member has its far end fixed. For example, if members 1, 2, 3
and AB in figures 1.8 have the same Young’s modulus, moment of iner-
tia and length then the value of ‘k’ is 1, 2 and 2.75 in figures 1.8a, 1.8b
and 1.8c respectively. From now on, we will refer to ‘k’ as the k-value,
rotary stiffness factor or stiffness factor of the rotary spring at a node.
Typical rotary stiffness factors in structures are in the range of 0.75 to 3.
We may also consider the stiffness factors of 0 and∞ as being the special
cases of a hinged and fixed end respectively.

In the cases of figure 1.8, the stiffnesses of the connected members
can be exactly determined. In a more general case, such as in figure 1.9,
the rotational stiffness of one or more members connected to the active
member (ie. member AB) may not be available exactly. However, since all
members are passive (this includes loops or box configurations), the ro-
tational stiffness of any attached member whose Young’s modulus is E,
moment of inertia is I and length isLwill be between 3 to 4EI/Lwhere 3
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A
B

EI

L

EI1

L1

Mapplied

⇔ A
B

Mapplied
4

EI1
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EI

L

(a)

A B

EI1

L1

EI2L2
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Mapplied
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L1

+4

EI2
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L

(b)

A B

EI1

L1

EI2L2

EI3L3
Mapplied
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Mapplied
4

EI1

L1

+4

EI2
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+3

EI3

L3

= k ´ 4

EI

L

(c)

Figure 1.8. Determining the exact stiffness in special cases.

A B

EI1

L1
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L4

EI2L2

Mapplied

⇔
A B

EI1

L1

EI2L2

Mapplied

⇔

A
B

Mapplied
H3 to 4L

EI1

L1

+ 4

EI2

L2

= k ´ 4

EI

L ≈ A
B

Mapplied

4

EI1

L1

+ 4

EI2

L2

= k ´ 4

EI

L

Figure 1.9. Estimating the rotational stiffness at node B for member AB.
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0
M�Θ = 0.75´4

EI

L

(a)

0.75´4
EI

L

M�Θ = 0.86´4
EI

L

(b)

1.00´4
EI

L

M�Θ = 0.88´4
EI

L

(c)

1.50´4
EI

L

M�Θ = 0.90´4
EI

L

(d)

2.00´4
EI

L

M�Θ = 0.92´4
EI

L

(e)

¥
M�Θ = 1.00´4

EI

L

(f)

Figure 1.10. Effective bending stiffness at one end of a beam when a spring is
at the other end.

is for a hinged end and 4 is a for a fixed end as shown in figures 1.10a–f.
At this point, we could determine the exact rotational stiffness of a mem-
ber attached to a rotational spring as shown for some selected cases in
figures 1.10, but instead, we can get a good estimate by simply using
a value of 4EI/L for any such member. This will, of course, usually
overestimate the stiffness contribution of that member. This procedure
is illustrated in figure 1.9 where the contribution of member 1 to the ro-
tational stiffness at B is estimated as 4(EI1/L1). In the next section, the
analysis will indicate that such an estimate leads to a maximum error
of less than 4% for the transmitted moment relative to the applied mo-
ment at the other end (eg. error in moment at B relative to moment at A
of member AB in figure 1.9) and less than 2.5% for the distance of the
inflection point from the rotational spring relative to the length of the
beam (eg. the distance of the inflection point from node B in member AB
relative to the total length of AB of figure 1.9). Experience with using
such an estimate along with other associated approximations indicates
that the overall analysis of a structure using this method will give results
that are within 5 to 10% of the exact results in terms of bending moments
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except for moments that are small compared to the maximum moment in
the structure (ie. moments that are less than about 5% of the maximum).

The second point that was needed to analyze all members in a pas-
sive structure is to determine the end moment at the loaded ends of the
members in a passive structure. This is again done using the idea of
stiffness or of relative stiffness as is done in the classic method of mo-
ment distribution. The difference is that the active member is removed
from the joint and its presence is indicated by the moment transmitted
from the active member to that point. For example, the moment at B on
the passive structure BCDEFG in figure 1.7 will be distributed on mem-
bers BC, BE and BD with no contribution of the stiffness of member AB
(see figure 1.5). Again, we encounter the problem of not having available
the exact rotational stiffness of one or more members connected to the
active member. This will again be handled by replacing the rotational
stiffness of a connected member which is between 3 to 4EI/L by 4EI/L.
The maximum error on the distributed bending moment that is incurred
in such a procedure will be less than 7.2%. This maximum error can be
determined as follows:

Assume there is a node with several attached members where each
member has a possibly different rotational stiffness. Consider any mem-
ber in that group and call it member 1. We now apply a unit mo-
ment on the node. The moment that is distributed to member 1 will be
(k1/(k1 + krest) where k1 is the rotational stiffness of member 1 and krest
is the combined rotational stiffnesses of the rest of the members. We now
consider the maximum error incurred if we overestimate the rotational
stiffness of member 1 or of any of the other members by a factor of up
to (4/3) (ie. the difference of rotational stiffness between a hinged and
fixed far end). The result of such an optimization gives a maximum error
relative to the applied unit moment of 7.2%. Since member 1 was chosen
as any member in the group, this is then the maximum error that may be
incurred by any member due to distributing a moment over the atached
members. In practice, the error is much smaller than 7.2% because the
worst case occurs only when one member has a maximum overestima-
tion (ie. from hinged to fixed) while all the other members have no over-
estimation in their stiffness (ie. all other members have hinged far-ends).

We note that if we want to obtain better estimates in our analysis,
we simply have to use better estimates of the rotational stiffness of con-
nected members. If we use the exact rotational stiffnesses we will get
exact results, which, with the use of extensive tables or formulas may
be done by propagating the rotational stiffness from the supports back
to the loaded member. However, such a process can be quite long and
error prone. The rotational stiffnesses indicated in figures 1.10 illustrates
a short table of results while the appendices give more extensive tables
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as well as exact formulas. In practice, using the results of figure 1.10a,
1.10c and 1.10f and roughly estimating values in between those cases for
any given member gives negligible errors in the bending moments as
compared to exact results for most cases.

In summary, we have described the concept of an active member
connected to passive parts of a structure. The active member may be
analyzed by considering the member with its applied loads and with
rotational springs at its ends. We obtain the moments at the spring ends
and then distribute them over the attached members. Subsequently, each
member in a passive part of the structure may be analyzed by consider-
ing a member with one end having a hinge and an applied moment equal
to its distributed moment while at the other end having a hinge with a
rotary spring. The moment at this rotary spring is again distributed to its
attached members to eventually analyze the whole structure.

We have described how to distribute a moment onto the attached
members and how to estimate the stiffness of the rotary springs involved
in this process. In the next section, we will study the behavior of a mem-
ber with a hinge and an applied moment at one end and a hinge with
a rotary spring at the other and in subsequent sections we will describe
how to analyze a member with applied loads and with rotational springs
at both ends. This will then allow us to analyze any (single) active mem-
ber connected to a passive structure and by using the principle of super-
position to analyze any beam or frame that has no sidesway.

1.3 Beam with a Moment Applied at
One End and Resisting at the Other

In the last section, we found that the analysis of a member with a hinge
and an applied moment at one end and a hinge with a rotary spring at
the other (see figure 1.11) is basic to the approximate analysis of beams
and frames with no sidesway. In this section, we will fully analyze this
member.

In the following discussions, when referring to the beam shown in
figure 1.11, we will call the end where the moment is applied the near
end and the other the far end. What then are the analysis results that are
of interest and why? Referring to figure 1.11, the results of interest are
as follows:

i) The ratio of the far-end bending moment to the near end bending mo-
ment which is called the carry-over-factor for moments: We need this
to determine the moment at the far end once the moment at the near
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Figure 1.11. Beam with moment at near end and rotary spring at far end.

end has been obtained. This result is then essential in obtaining good
quantitative approximations for bending moment diagrams in the pas-
sive parts of a structure as described in the previous section.

Table 1.1 shows values of−Mfar/Mnear which are always zero or pos-
itive because, intuitively, the applied moment is resisted in the opposite
sense at the rotary spring. This ratio of moments increases monotoni-
cally from 0 (hinged) to 0.5 (fixed) as seen in figure 1.12. In case we need
to determine it precisely,−Mfar/Mnear = 2k/(3+4k) where ‘k’ is the stiff-
ness factor of the rotary spring. The carry-over factor for moments has
the value of 0.5 for a fixed end and corresponds to the usual value of the
carry over factor used in moment distribution. From the point of view of
moment distribution, the approximation method described in the previ-
ous section avoids iterations by using more accurate “carry over factors.”
In practice, we only need to memorize a few “carry-over-factors” such as

Table 1.1. Hinged Beam with Applied Moment at One End and Rotary Spring
at Other

k − Mfar
Mnear

Mnear
θnear4EI/L

− θfar
θnear

1− xinfl
L

xat max
L

umax
θnearL

0.000 0.000 0.750 0.500 0.000 0.423 0.192
0.500 0.200 0.833 0.333 0.167 0.392 0.176
0.750 0.250 0.857 0.286 0.200 0.384 0.172
1.000 0.286 0.875 0.250 0.222 0.377 0.168
1.500 0.333 0.900 0.200 0.250 0.368 0.164
2.000 0.364 0.917 0.167 0.267 0.362 0.161
3.000 0.400 0.938 0.125 0.286 0.355 0.158
4.000 0.421 0.950 0.100 0.296 0.350 0.156
∞ 0.500 1.000 0.000 0.333 0.333 0.148



Practical Approximate Analysis of Beams and Frames 13

EI

L

1-xI

0. 0.5 1. 1.5 2. 2.5 3. 3.5 4.
k0.

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

1-xI�L

0. 0.5 1. 1.5 2. 2.5 3. 3.5 4.
k0.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-Mat spring�Mapplied

Figure 1.12. Plots of inflection point location and carry-over-moment.

those at k = 0, 1, 3 and∞ and interpolate (or roughly estimate) values of
the “carry-over-factors” in between. Alternatively, we may use the exact
formula that was specified above.

ii) The rotary stiffness at the near end: We need this to distribute an
applied moment at a node to the attached members in proportion to
their stiffness. We may also need this if we want to more accurately
determine the effective stiffness of a member in a passive part of the
structure. The normalized stiffness factor varies between 0.75 for a
hinged end to 1 for a fixed end with most of the variation occuring
between k = 0 and k = 1. In practice, taking this stiffness factor to
be 0.75 for a hinge and 1 otherwise gives a good approximation for
most applications. In case we need an exact expression, the rotary
stiffness factor at the near end is given by (3 + 4k)/(4 + 4k) where
‘k’ is the stiffness factor at the far end.

iii) The ratio of the far end to the near end rotation: This is useful in
sketching the deformed shape of beams and frames. This result is
also essential in obtaining quantitative but approximate influence
lines for indeterminate frames and beams. The negative of the ra-
tio of rotations −θfar/θnear varies between 0 for a fixed end to 0.5 for
a hinged end and has the exact formula 1/(2 + 2k). We note that
even for a flexible passive structure (eg. k = 0.75), the rotation at
the far end is below 0.3 the rotation at the near end. This rotation
is then imposed on all connected members at that end which then
sets the scale for the deformations in those attached members. For
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Figure 1.13. Illustration of the decrease in deformation in a continuous beam
based on exact analysis.

example, if we have a continuous beam as shown in figure 1.13, then
the maximum deformation in member BC is less than 0.3 times the
maximum deformation in member AB. Similarly, the maximum de-
formation in member CD is less than about 0.3 × 0.3 = 0.09 the
maximum in AB. This indicates that there is approximately a geo-
metric progression for the decrease in deformations as the member
gets farther away from the active one. This rapid decrease in defor-
mations is even more pronounced in a frame than in a beam. The
reason is that in a frame, the effective rotary stiffness factor ‘k’ at
a node due to the combined resistance of all the attached members
will generally be larger than 1 and the decrease in deformation as
we go farther from the loaded member will then be even faster. In
addition, the moment transmitted in a member of a frame will usu-
ally be distributed on more than one member at the node due to the
attached columns which again further decreases the deformations
in subsequent members.

iv) The location of the inflection point: This is useful in sketching the
deformed shape of beams and frames because it identifies the loca-
tion where the beam changes curvature. Note that the crosses (×)
in figure 1.13 indicate the locations of inflection points. The loca-
tion of the inflection point may be inferred from the end moments
(or vice-versa) because the bending moment diagram is linear and
passes through zero at the inflection point. The relation between
bending moment and inflection point location measured from the
left is given by:

1− xinflection

L
=

∣∣∣ Mfar
Mnear

∣∣∣
1 +

∣∣∣ Mfar
Mnear

∣∣∣ (1.1a)

⇔
∣∣∣∣ Mfar

Mnear

∣∣∣∣ =
1− xinflection/L

xinflection/L
(1.1b)
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Figure 1.14. Inflection points marked with × as the rotary spring stiffness in-
creases (a) to (f).

The distance of the inflection point from the far end varies from 0
for a hinged end to 1/3 for a fixed end. Most of the change occurs
between k = 0 and k = 1 with relatively slow variation after k =
1. This result is plotted in figure 1.12 and illustrated in figure 1.14
where the the inflection point seems to jump left between k = 0
and k = 0.75 but then the movement is barely discernible between
k = 0.75 and k →∞. If needed, the exact expression for the location
of the inflection point is given by:

1− xinflection

L
=

2k

3 + 6k
(1.2a)

⇒
∣∣∣∣ Mfar

Mnear

∣∣∣∣ =
2k

3 + 4k
(1.2b)
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The above exact results are simple enough but the practitioner is ex-
pected to memorize a few values from table 1.1 and use those values
with interpolation between them rather than use the exact formula
each time. With practice, the use of those values becomes simple and
automatic.

v) The location at which the deflection is maximum: This is mildly use-
ful in sketching in the sense of knowing the general location where
the maximum occurs. In particular, we will not be sufficiently care-
ful in sketching deformations to require an accurate location for the
maximum. However, this location becomes important when sketch-
ing influence lines for indeterminate structures because it indicates
the location of maximum influence in the member. The location of
the maximum deflection always occurs closer to the near end and its
distance to the near end monotonically decreases from about 0.42 for
a hinged end to 1/3 (ie. becomes closer to the near end) for a fixed
far end.

vi) The magnitude of the maximum deflection: This will generally be
mostly neglected in sketching deformations since, for clarity, we will
generally greatly exaggerate the deformations. However, this result
is essential in approximating the influence lines of an indeterminate
structure. This maximum varies from about 0.19×θnearL for a hinged
far end and decreases monotonically to about 0.15×θnearL for a fixed
end.

Aside from the above results, we note that since there are no loads on
the member then the shear force in the member is constant, the bending
moment is linear, the slope varies parabolically and the displacement is
a cubic function. In particular, the shear force is then given by:

V =
(|Mnear|+ |Mfar|)

L
(1.3)

The above result always applies when there are no forces applied on the
member (except possibly at the ends) and we will repeatedly use it for
columns when studying sidesway in frames.

1.4 Example: Continuous Beam with
Moment Applied at Only One Node

In the first example, we consider the continuous beam shown in
figure 1.15 with a unit clockwise moment applied at node C. We will be
concerned with sketching the exaggerated deformed shape of the beam
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Figure 1.15. A continuous beam with an applied unit clockwise moment at
point C.

with particular attention to identify the location of the inflection points.
Next we will draw an approximate bending moment diagram with the
moments approximately calculated and indicated on that figure.

To sketch the continuous beam, we start with the node where the
external moment is applied which is node C. We choose a rotation at
that node (eg. about 60◦) in the same sense (ie. clockwise) as the applied
moment and we draw a short straight line to indicate that rotation (see
figure 1.15 at node C). That short straight line extends at both sides of
node C because the slope must be continuous at any point where there
is no internal hinge. The exact magnitude of the rotation at C does not
matter because we are only interested in indicating the shape of the de-
formations.

Next we indicate a rotation at node B using a straight line segment
in the opposite sense and at some fraction of the rotation at node C (see
figure 1.16 node B). The rotation at B is determined by considering mem-
ber BC and viewing member AB as equivalent to a rotary spring at B as
shown in figure 1.17a. From the previous section, we know that the ratio
of rotations at B relative to C will be less than 0.5. For a quick sketch,
we can take the rotation at B to be one quarter to one third that of C.
Alternatively, for a more precise sketch, we calculate the k-value for the
rotary spring at node B in member BC to get a k-value of 1.5. This k-value
is obtained by the ratio of rotary stiffness of an isolated member AB as
shown in figure 1.17b divided by the ratio of (EI/L)BC of member BC.

A
B

C

D E F

Figure 1.16. Straight line extensions placed at each node.
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Figure 1.17. Isolated members of the continuous beam shown in figure 1.15.

This more precise calculation gives a ratio of angles of 0.25 (see table 1.1)
which for a rotation at C of 60◦ means a rotation of 15◦ at node B. Of
course, such precision in manual sketching is impractical and unneces-
sary for our purposes.

To complete the rotational indications for the left side, we consider
member AB as shown in figure 1.17. For that member, the rotation at
node A is known to be −0.5 that of node B and we indicate that by a
short straight line at node A as shown in figure 1.16 at node A. This
process is then repeated for members CD then DE and EF. Member EF
has a fixed end and so there is no rotation at node F and we indicate this
by a short straight line at node F.

After sketching the short line segments shown in figure 1.16, we
now connect the lines using the procedures indicated in figure 1.3, 1.4
and 1.5 as applicable. We also place an “×” to highlight the location of
inflection points. These are obtained from the tables based on the val-
ues of the rotary spring k-values illustrated in figure 1.17. The result is
shown in figure 1.18. Note that the inflection point between CD would
be estimated to be at 0.17L from point D based on the discussion above;



Practical Approximate Analysis of Beams and Frames 19

0.25´L 0.16´L 0.08´L 0.33´L

Figure 1.18. Sketch of the deformed shape with inflection point locations.

however, the exact result of about 0.16L is shown in the figure. All other
obtained values are the same as the exact result to within the accuracy
shown in the figure (ie. 2 digits after the decimal). This difference is quite
acceptable for an approximate method.

Now, we focus our attention on sketching the bending moment di-
agram. Since there are no loads on the members, the bending moment
diagrams of each member will be a straight line. Hence, we only need
to calculate the values at the ends of those segments. To determine those
values, we start again with node C. The unit applied moment at node C
will be resisted by both members BC and CD at their ends as shown in
figure 1.19. The fraction of the applied unit moment distributed to the
members (ie. MCD and MCB) is obtained in proportion to their relative
stiffness. This gives MCB ≈ (EI/L)/

(
(EI/L) + (EI/(0.7L)

))
≈ 0.41 and

MCD ≈ (EI/(0.7L))/
(
(EI/L) + (EI/(0.7L)

))
≈ 0.59. To get a better ap-

proximation, we must use better estimates for the stiffnesses of members
BC and CD at C. The exact results are shown in figure 1.20 which agree
with the simple estimates to 2 significant digits.

Once the distributed moments at C are calculated, we proceed mem-
ber by member away from node C. The bending moment at the other

MCB

MCD

Mapplied = 1

C

Figure 1.19. A continuous beam with an applied unit clockwise moment at point C.
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Figure 1.20. The bending moment diagram for the continuous beam of figure 1.15.

end of each member may either be determined by using the location of
the inflection point or by referring back to the tables. As an example
of using the tables, we consider calculating the moment at B of mem-
ber BC. For that member, we have a k-value of 1.5 which from the tables
gives a “carry-over-moment” of 0.333; therefore, the moment at B will
be MCB × 0.333 ≈ 0.416 × 0.333 ≈ 0.139. The moments in all the other
members may be calculated similarly or by using similar triangles while
knowing the approximate location of the inflection point. The final result
is shown in figure 1.20.

1.5 Outline of Approximate Method
for Analyzing Structures
with No Sidesway

As the previous example shows, we can approximately analyze beams
and frames with no sidesway and with moments applied only at nodes.
This is done by the following steps:

i) Distribute the applied moment onto the connected members accord-
ing to their effective stiffness. Each of those effective stiffnesses may
be estimated by using table 1.1 as a guide. In any case, the error in
using a rough estimate for the stiffness (ie. EI/L of each member)
will be less than 7.2% as discussed previously.

ii) Consider each member in turn starting with the members connected
to the node with the applied moment. Model that member as a
hinged beam with an applied moment at one end and a rotary spring
at the other. By roughly estimating the stiffness of the rotary spring,
we can well approximate the inflection point and the end moments.

iii) The end moments at the rotary springs are considered as applied
moments on the nodes which are then distributed to their other con-
nected members using the same procedure as step (i). These three
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steps are then repeated until the whole structure is completed with-
out requiring iteration.

iv) In case of a loop, the last member in a loop will have specified
moments at both ends. Its deformed shape may easily be sketched
and the bending moment is a straight line connecting the two end
moments.

Applied moments at multiple nodes is handled through superposi-
tion. This means we analyze each applied moment when acting alone on
the structure and then we sum up the responses. We note that since the
effect of an applied moment decreases rapidly away from the point of
application (eg. figure 1.13), the moment at any node may be evaluated
by considering the superposition of the effects of only “nearby” applied
moments. This gives good approximate results when all the applied mo-
ments have comparable magnitudes. Further discussions and shortcuts
on how to analyze combined loads is discussed in a later section.

To proceed further, we must consider the response of loaded mem-
bers. As indicated in the section on passive members, a single loaded
member in a structure with no sidesway may be handled by isolating
the member and placing rotary springs of appropriate stiffness at each
end. Therefore, to analyze beams and frames with no sidesway and with
only one loaded member we do the following:

i) Analyze the loaded member with appropriate rotary springs at each
end. In particular, calculate the end moments at the rotary springs.

ii) Use the calculated moments at the ends of the loaded member as
if they were external moments applied on the rest of the members
connected at those ends. At that point, the rest of the structure on
the left and right of the loaded member can then be analyzed using
the four steps detailed above.

Beams or frames with more than one loaded member may be an-
alyzed by superposition. This means we analyze one loaded member
when acting alone on the structure and then we sum up the responses
due to all the loaded members. Again, since the effect of applied mo-
ments decreases rapidly away from the point of application, the mo-
ment at any node may be evaluated by considering the superposition
of the effects of only “nearby” loaded member when end moments of
each loaded member acting separately are comparable to end moments
of other loaded members acting separately.

Therefore, to be able to analyze any beam and frame with no
sidesway, we still need to know the response of a loaded beam with ro-
tary springs at each hinged end. We will consider only two special cases:
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i) a uniformly loaded beam and ii) a concentrated or point force any-
where on the beam. The point force solution may be approximately used
to analyze most other loading cases, especially at members other the the
one being loaded.

1.6 Beam with a Uniform Load
A beam with a uniform load is a special type of load but it is a type that
is often encountered in applications. We first consider three special end
conditions for a uniformly loaded beam as shown in figure 1.21. We will
refer to these cases as simply supported or hinged-hinged beam for fig-
ure 1.21a, fixed-fixed beam for figure 1.21b and hinged-fixed beam for
figure 1.21c. The deformations and bending moment diagrams associ-
ated with the special end conditions are shown in figure 1.22 and 1.23
respectively. Of course, the case of fixed-hinged beam will be a mirror
image of case figure 1.21c because we will assume that the members are
homogeneous and prismatic (ie. same properties and same cross-section
along the length). Because of that symmetry, the response for mirror im-
age supports will be mirror image responses (eg. mirror image deforma-
tions and moment diagrams).

EI
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q

(a)

EI

L

q

(b)

EI

L

q

(c)

Figure 1.21. Three special cases for the end conditions of a uniformly loaded
beam.
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(b)
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Figure 1.22. Deformations of the special cases for the end conditions of a uni-
formly loaded beam.

The simply supported beam in figure 1.21a has deformations with
no inflection points and its curvature is always positive as seen in
figure 1.22a. Consequently, its bending moment diagram is always pos-
itive and its shape is as shown in figure 1.23a. This bending moment
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Figure 1.23. Moment diagrams of the special cases for the end conditions of a
uniformly loaded beam.
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Figure 1.24. Uniformly loaded beam attached to passive structures on both sides.

reaches a maximum value of qL2/8 where ‘q’ is the magnitude of the
uniform load and ‘L’ is the length of the beam. By considering the gen-
eral case shown in figure 1.24a, we find that this is the maximum positive
moment that can occur in any uniformly loaded beam that is attached to
passive structures on both ends. Consequently, in tabulations and plots
of bending moments of a uniformly loaded beam, we will always present
those results as ratios of that maximum moment (ie. we normalize by that
maximum). This normalization is also useful in manual calculations be-
cause i) all the dimensional values are centralized in one place and thus
we only need to do a careful dimensional calculation once and ii) we
only need to remember a few non-dimensional values between 0 and 1
to get an acceptable approximation of most beams and frames with no
sidesway.

The fixed-fixed beam in figure 1.21b has deformations with two
inflections points and zero slopes or rotations at each end as seen in
figure 1.22b. Its bending moment diagram is as shown in figure 1.23b
where the negative moment at the ends is twice the positive in the mid-
dle. The sum of the absolute values of the positive moment in the mid-
dle and negative moment at an end equals qL2/8. This is always true
whenever the rotary spring stiffnesses at the ends are the same includ-
ing the limit of infinite stiffness of the fixed-fixed ends. The reason is
that we can view the symmetric end conditions as a superposition of the
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Figure 1.25. Superposition of moment diagrams for uniformly loaded beam.

hinged-hinged case (simply supported) and applied end-moments as
shown in figure 1.25. Thus when the end moments are the same then
we are superposing a uniform bending moment with the bending mo-
ment of a simply supported case and thus, for the symmetric case, we
get a downward vertical translation of the simply supported case.

The hinged-fixed beam in figure 1.21c has deformations with one
inflection point and zero slope or rotation at the fixed end as seen in
figure 1.22c. Its bending moment diagram is as shown in figure 1.23c
where the negative moment reaches a value of qL2/8. By considering the
general case shown in figure 1.24a, we find that this is the maximum
negative moment that can occur in any uniformly loaded beam that is
attached to passive structures on both ends. Thus the maximum positive
moment occurs in the hinged-hinged case and the maximum negative
moment occurs in the hinged-fixed case. Also using the general case in
figure 1.24a, we find that the distance of ‘0.25L’ of the inflection point
from the fixed end is the farthest that an inflection point can occur in a
uniformly loaded beam attached to passive structures on both ends.

Having considered some special cases, we now consider the general
case shown in figure 1.24. A representative sketch of the deformed shape
and the bending moment diagram are shown in figures 1.24b and 1.24c.
In order to sketch the deformed shape, we need to i) identify the ap-
proximate location of the inflection points and mark those by an ‘×,’
ii) roughly indicate the relative rotations of the left versus the right end
and iii) roughly indicate the right location of the maximum deflection.
Of these three requirements, only the inflection points need to be numer-
ically indicated since their location will be the basis for calculating the
approximate values of the bending moment diagram. We now discuss
each of these three requirements separately.

First we consider the locations of the inflection points. In general,
there are two inflection points in a uniformly loaded beam that is at-
tached to passive structures on both ends. The distance of an inflection
point from the nearest end increases as the stiffness factor of that end
increases. For example, if kR = 0 then the left inflection point is at x = 0
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when kL = 0 (ie. a hinge at the left end) and increases monotonically
with ‘kL’ to reach a value of 0.25L when kL → ∞. The location of an in-
flection point divided by the length of the beam (ie. normalized location)
depends only on the spring stiffness factors ‘kL’ and ‘kR’ (see figure 1.24).
To get some insight on this dependence, we draw a contour plot of the
location of the inflection point on the left versus the two stiffness factors
(see figure 1.26). We notice that the location of the left inflection point
is rather insensitive of the stiffness factor on the right (ie. ‘kR’). There-
fore, we consider obtaining a simple expression for the location of the
inflection points as a function of the stiffness factor near the end that
it occurs. This will allow us to avoid extensive tables for the inflection
point as a function of two variables which are the two stiffness factors.
This approximate expression will be presented and discussed next.
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Figure 1.26. Contour plot of the location of the left inflection point versus end
stiffnesses.

To get an approximate location for the inflection point at an end as
a function of the spring stiffness factor near that end, we calculate the
locations of the inflection points when both stiffness factors are the same,
curve fit the results using a simple rational expression and round to get
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Figure 1.27. Comparsion of inflection point location between exact (solid thin
lines) and approximate (dashed thick line).

simple numbers. The result is:

xIleft/L ≈
0.92kL
3 + 4kL

(1.4a)

1− xIright
/
L ≈ 0.92kR

3 + 4kR
(1.4b)

We compare the result of the approximate expression with the exact
one as shown in figure 1.27. That figure also shows error bars that are
±2.5% of the beam length away from the approximate results. If we
do an optimization to determine the exact maximum and minimum
errors, we get an error between about −2.34% when kL ≈ 1.76 and
kR → ∞, and 2% when kL → ∞ and kR = 0. Note that this is a
percentage error which is relative to the length of the beam while the
relative error relative to the location would be higher because we are
sometimes dealing with small numbers; specifically, the true relative
errors are about −38% when kL → 0 and kR → ∞ and 8% when
kL → ∞ and kR = 0. For the purposes of sketching and obtaining the
bending moment diagram, it is the error relative to the length that is
relevant. For example, when we are indicating the location of the in-
flection point on a sketch of the beam, the visual perception will be
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relative to the length of the beam. In that regards,±2.5% would be barely
discernible and about the thickness of the line drawn. Moreover, in a
manual sketch small features will be perceived relative to the length
of the beam and, in particular, the error in a manual indication of the
inflection points will usually exceed an error of ±2.5% relative to the
length.

The second point to be addressed in relation to sketching is to give
guidelines on how to sketch the relative rotations at the ends of a uni-
formly loaded beam. We note that we want to be consistent but not
much precise in this matter because we only want to do a ‘rough’ man-
ual sketch of the deformations. Also, unlike the location of the inflection
points, the effect of end rotations do not enter into the calculations of
the approximate bending moment diagram which is the basis for design.
The first guide related to end rotations is that, of course, the rotation at a
stiffer end will be lower than at the other end and that the slopes will be
the same when both ends have the same stiffness. To further guide our
sketching of end rotations or slopes, plots of the normalized end slopes
and of the relative end slopes are shown in figure 1.28. By considering
figure 1.28a, we note that the rotation at one end becomes progressively
less sensitive to the stiffness at the other end as its own stiffness increases.
By considering figure 1.28b, we note that the ratio of minimum to max-
imum slope varies between about 30% to about 90% for a difference in
stiffness factors between 0.5 and 4. From this result, we recommend that
for manual sketches, the figure should show the slope at the stiffer end
to be from about half to about the same as that of the other end with
half being associated with a larger difference in stiffness factors; the ex-
ception is when one end is fixed which always requires that end to be
shown with zero slope.
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Figure 1.28. Slopes and relative slopes at the ends of a uniformly loaded beam.
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Figure 1.29. Location and magnitude of the maximum displacement in a uniformly
loaded beam.

The third and final point to be addressed in relation to sketching
the deformed shape is to show a sketch with the location of the max-
imum displacement occuring at approximately the right location. For
that purpose, we plot the location of the maximum displacement for a
wide range of combinations of stiffness factors as shown in figure 1.29a.
We notice that this location remains relatively close to the middle. If we
optimize the location of the maximum displacement over all values of
(positive) stiffness factors, we obtain that the maximum should occur
at the middle with a maximum offset of about ±7.85%. As a guide to
sketching, we then should aim at showing the maximum to occur some-
where near the middle with a slight bias if any (eg. about 5%) to appear
nearer to the more flexible side. Of course, in ‘rough’ sketches, this bias
will barely be noticed but, for the careful viewer, this would indicate that
the figure was done by a knowledgeable analyst.

The approximate sketching of the bending moment diagram relies
on correctly identifying the location of inflection points. Once the in-
flection points have been determined, the maximum moment inside the
beam and the moments at the ends may be determined by statics. The
process of doing this is illustated in figure 1.30. Any uniformly loaded
beam with spring-hinged ends may be viewed as a simply supported
beam between the inflection points with two end pieces on the left and
right. The reason is that the bending moment at inflection points is zero
and therefore these locations may be viewed as having hinged sup-
ports on top of the remaining parts of the beam. The simply supported
beam and each of the ends may then be simply analyzed to obtain the
maximum internal bending moment and the end moments. These are
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Figure 1.30. Obtaining moment diagram by knowing the location of the inflection
points.

given by:

Min max =
qL2

effective

8
(1.5a)

Mleft =
qLeffective

2
× xIL +

qx2
IL

2
=
qxIL (Leff + xIL)

2
(1.5b)

Mright =
qLeffective

2
× (L− xIR) +

q (L− xIR) 2

2

=
q (L− xIR) (Leff + L− xIR)

2
(1.5c)

In addition to the above, we also deduce that the location of the max-
imum internal bending moment is at the center of the effective sim-
ply supported beam between the inflection points (ie. at (xIL + xIR)/ 2).
Finally, we can sketch the bending moment diagram. This diagram must
be a parabola because, from elementary mechanics of materials, the sec-
ond derivative of the moment is a constant equal to the uniform dis-
tributed load. In addition, this parabola has a negative curvature and
must pass through the inflection points which are locations where the
bending moment is zero. Finally, after drawing such a parabola, we can
mark the maximum internal bending moment and end moments from
the values calculated using formulas 1.5a to 1.5c).
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Figure 1.31. Error between bending moments obtained from exact versus ap-
proximate location of inflection points.

Of course, the errors in the calculated bending moments are related
to the errors in the approximate locations of the inflection points. If we
use formula 1.4a and 1.4b to estimate the location of inflection points
and we plot the error at the left end (right is analogous) and at the inner
maximum bending moment then we get the results shown in figure 1.31.
Note that those percent errors are relative to the maximum moment in
a simply supported beam. For the left end moment (right end is equiv-
alent), by optimizing the difference between the approximate and exact
results, we find that the maximum error is between−7.23% which occurs
when kL ≈ 1.33 and kR → ∞ and 8% which occurs when kL → ∞ and
kR = 0. Alternatively, we can characterize the relative error by constrain-
ing the smallest (absolute) value of the left end moment. Specifically,
if the approximately calculated left end moment is (in absolute value)
greater than 0.2 qL2

/
8 then the maximum relative error is between−8%

which occurs when kL → ∞ and kR = 0 and 31.7% which occurs when
kL ≈ 0.295 and kR →∞.

For the inner maximum moment, by optimizing the difference be-
tween the approximate and exact results, we find that the maximum er-
ror relative to qL2

/
8 is between −4.17% which occurs when kL → ∞

and kR →∞ and 3.04% which occurs when kL →∞ and kR = 0 (or vice
versa). Alternatively, we can characterize the relative error of the inner
maximum moment. Specifically, the relative error of the inner maximum
moment is between about −6.77% which occurs when kL ≈ 1.32 and
kR → ∞ and about 5.39% which occurs when kL → ∞ and kR = 0.
The approximate expression for the inner maximum moment has gen-
erally lower percent error than the one for the end moment because its
value never goes below about 0.33 qL2

/
8 while the end moments can

reach zero. In any case, these results show that this approximate analysis
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gives sufficient accuracy for preliminary design or to check the output of
computer calculations.

In sketching the bending moment diagram, it is useful to be con-
sistent and ‘roughly’ accurate in showing the location of the maximum
internal moment. For that purpose, we can estimate the location from the
location of the inflection points as previously indicated. Alternatively, we
sketch the location of maximum internal moment (figure 1.32) and note
that the maximum always occurs within±12.5% of the beam length from
the center and always occurs closer to the more flexible side. Figure 1.32
also shows the relative magnitude of the maximum internal bending mo-
ment for a wide range of end conditions which will be later useful in
studying multiple loadings. From figure 1.32, we suggest as a guide to
manual sketching that the location of the maximum should be shown
somewhere near the middle with a slight bias if any (eg. about 5%) to ap-
pear nearer to the more flexible side. Of course, in ‘rough’ sketches, this
bias will barely be noticed but, for the careful viewer, this would again
indicate that the figure was done by a knowledgeable analyst.
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Figure 1.32. Location of the maximum moment.

The above discussions presented extensive details of how to sketch
the deformed shapes and the bending moment diagrams of a uniformly
loaded beam that is attached to passive structures at both ends. This dis-
cussion involved features in the sketching and approximations that are
much more accurate than has previously been presented in the litera-
ture. To gain some practice and insight, we present and discuss a range
of results for the uniformly loaded beam.

We begin by considering the case of symmetry where the passive
structures at both ends provide about the same resistance to deforma-
tions. This is indicated by having kL = kR = k in table 1.2. Some of the
interesting results for this case include:
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Table 1.2. Uniformly Loaded Beam: Symmetric Spring Resistance.

EI

L

q
k

EI

L

k
EI

L

k xInfl/L at left 1− xInf/L at right −Mleft/
qL2

8
−Mright/

qL2

8
Min max/

qL2

8

0.000 0.000 0.000 0.000 0.000 1.000
0.500 0.092 0.092 0.333 0.333 0.667
0.750 0.113 0.113 0.400 0.400 0.600
1.000 0.127 0.127 0.444 0.444 0.556
1.500 0.146 0.146 0.500 0.500 0.500
2.000 0.158 0.158 0.533 0.533 0.467
3.000 0.173 0.173 0.571 0.571 0.429
4.000 0.181 0.181 0.593 0.593 0.407
∞ 0.211 0.211 0.667 0.667 0.333

i) k = 0 (simply supported): This gives the largest possible positive
moment for a uniformly loaded beam attached to passive structures
at both ends.

ii) k → ∞ (fixed-fixed): The negative moments at the ends are twice
those at the middle. Also, the inflection points are the farthest into
the beam of any symmetric case and occur at a distance of about
0.21L from each end.

iii) k = 1: This is the value we would use to approximate any non-
terminal span (ie. not occuring at either end) of a continuous beam
of equal spans. In this case, the internal maximum moment is about
0.56 that of the simply supported case and the negative moments at
the ends are about 0.44. Also, inflection points are at a distance of
about 0.13L from the ends.

iv) k = 1.5: At this value, the negative and positive moments are equal
in absolute values. If we minimize the maximum absolute value of
bending moments in a uniformly loaded beam for any uniformly
loaded beam attached to passive supports then we get this case.
For a material whose yield in tension is the same as in compres-
sion (eg. steel), this constitutes the end supports that would allow
the largest uniform load to be supported before failure.

Three examples of symmetric cases for the exact deformations and
exact bending moment diagrams are shown in figures 1.33 and 1.34
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Figure 1.33. Deformed shape of selected cases of unifomly loaded beam with
symmetric supports.

respectively. We note that the negative curvature part of the deforma-
tion is barely discernible and thus the importance of indicating (eg. in
the figures with an ‘×’) the location of the inflection points. Aside from
the magnitude of the deformations and the location of the inflection
points, the deformation shapes for the symmetric cases are about the
same over a wide range of stiffness factors. They all look somewhat like
parabolas with relatively short pieces at each end having slight negative
curvatures.

The moment diagrams shown in figure 1.34 all have the same shape
but with a vertical downward shift that increases with the stiffness factor
‘k.’ Of course, this causes the bending moments to intersect the zero line
at different locations which coincide with the location of the inflection
points.
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Figure 1.34. Moment diagrams of selected cases of uniformly loaded beam with
symmetric supports.

In comparison with the symmetric case, we first present a few cases
where the ends have unequal stiffness factors but neither end is a hinge
or a fixed end (see figures 1.35 and 1.36). From figure 1.35, we notice
that, aside from the location of inflection points, the shapes are still sim-
ilar to those of the symmetric cases. In particular, in manual sketches,
they would be indistinguishable. Therefore, we only need to learn how
to manually sketch one prototypical shape when neither end is a hinge
or a fixed end.



34 Practical Approximate Analysis of Beams and Frames

1 ´ 4

EI

L

2 ´ 4

EI

L

0.121 L
0.165 L

(a)

1 ´ 4

EI

L

4 ´ 4

EI

L

0.117 L
0.193 L

(b)

2 ´ 4

EI

L

4 ´ 4

EI

L

0.153 L 0.187 L

(c)

Figure 1.35. Deformed shape of selected cases of uniformly loaded beam with
non-symmetric supports.
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Figure 1.36. Moment diagrams of selected cases of uniformly loaded beam with
non-symmetric supports.

The bending moment diagrams (figures 1.36) for the unsymmetric
case differ from those of the symmetric ones only by their unequal val-
ues at the ends. As noted before and indicated in figure 1.32a, the loca-
tion of the maximum does not move much from the middle of the beam.
Therefore, as a guide to manual sketching, we suggest first marking the
location of the negative moments at the ends and the positive maximum
internal moment somewhere near the middle and then drawing an in-
verted parabola that passes through those points. Also, as much as pos-
sible in a manual sketch, the location of zero bending moment should
coincide with those of the inflection points.

After considering cases of the uniformly loaded beam where the end
conditions are neither a hinge nor a fixed end, we now consider each of
those possibilites. The cases where each end is either a hinge or a fixed
end have been discussed and are shown in figures 1.22 and 1.23 for the
deformed shape and bending moment diagrams respectively. The de-
formed shape of the simply supported case looks similar to the cases
shown in figures 1.33 and 1.35 except that there are no inflection points.
The new feature in the deformed shape only occurs at a fixed end; in
that case, there is a clear negative curvature portion and the slope is
zero at the fixed end. Those features can be manually drawn using a
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Table 1.3. Uniformly Loaded Beam: One End Hinged.

EI

L

q
k

EI

L

k xInfl/L at left 1− xInf/L at right −Mleft/
qL2

8
−Mright/

qL2

8
Min max/

qL2

8

0.000 0.000 0.000 0.000 0.000 1.000
0.500 0.000 0.100 0.000 0.400 0.810
0.750 0.000 0.125 0.000 0.500 0.766
1.000 0.000 0.143 0.000 0.571 0.735
1.500 0.000 0.167 0.000 0.667 0.694
2.000 0.000 0.182 0.000 0.727 0.669
3.000 0.000 0.200 0.000 0.800 0.640
4.000 0.000 0.211 0.000 0.842 0.623
∞ 0.000 0.250 0.000 1.000 0.563

technique similar to the one outlined in the introduction and illustrated
in figure 1.3. Based on extensive viewing of exact test cases, we note
that a clear negative curvature portion of the curve near a rotary spring
support only gradually occurs as the stiffness factor increases beyond
about 10 to 20. Such a stiffness factor is very high and may be practically
considered as equivalent to a fixed end. Finally, the bending moment di-
agrams for these special cases are similar to those shown in figures 1.34
and 1.36 except that the end with the hinge has zero moment and may
be manually sketched in the same way.

We now consider the case where one end is a hinge and the other is
connected to a passive structure. This is indicated by having kL = 0 and
kR = k in table 1.3. Some of the interesting results for this case include:

i) k = 0 (simply supported): This was discussed previously.

ii) k →∞ (hinged-fixed): This gives the maximum negative moment that
can occur in any uniformly loaded beam that is attached to passive
structures on both ends. Interestingly, that maxium equals (in absolute
value) the maximum possible positive moment. In addition, this case
also gives the largest distance that an inflection point can move away
from an end in a uniformly loaded beam attached to passive structures
at both ends. That distance is at 0.25L from the fixed end.

iii) k = 1: This is the value we would use to approximate a hinged end-
span of a continuous beam of equal spans. In this case, the normalized
internal maximum moment is about 0.74 that of the simply supported
case and the normalized negative moments at the spring-end is about
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0.57. Also, the inflection point is at a distance of about 0.14L from the
spring end.

iv) k ≈ 1.641 (not shown): At this value, the normalized negative and
positive moments are both equal to about 0.686 in absolute value. If
we minimize the maximum absolute value of bending moments in a
uniformly loaded beam for any uniformly loaded beam attached to
a hinge at one end and a passive support at the other, then we get
this case. For a material whose yield in tension is the same as in com-
pression (eg. steel), this constitutes the end support at the right with a
hinged left end support that would allow the largest uniform load to
be supported before failure.

Three examples of hinged-spring cases of table 1.3 for the ex-
act deformations and exact bending moment diagrams are shown in
figures 1.37 and 1.38 respectively. We note that the deformations look
similar to those of the symmetric cases except that there is no negative
curvature at the hinged end which is indicated by putting a ‘×’ at the
hinge. Again, we must indicate the location of the inflection point which
may be approximately calculated using formulas 1.4 or exactly obtained
from table 1.3.
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Figure 1.37. Deformed shape of selected cases of uniformly loaded beam with
hinge-spring supports.
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Figure 1.38. Moment diagrams of selected cases of uniformly loaded beam with
hinge-spring supports.
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Table 1.4. Uniformly Loaded Beam: One End Fixed.

EI

L

q
k

EI

L

k xInfl/L at left 1− xInf/L at right −Mleft/
qL2

8
−Mright/

qL2

8
Min max/

qL2

8

0.000 0.250 0.000 1.000 0.000 0.563
0.500 0.240 0.073 0.889 0.222 0.472
0.750 0.236 0.094 0.857 0.286 0.449
1.000 0.234 0.109 0.833 0.333 0.432
1.500 0.230 0.130 0.800 0.400 0.410
2.000 0.227 0.144 0.778 0.444 0.396
3.000 0.223 0.161 0.750 0.500 0.379
4.000 0.221 0.171 0.733 0.533 0.369
∞ 0.211 0.211 0.667 0.667 0.333

The moment diagrams shown in figure 1.38 all have the same shape
except for the magnitudes of the maximum and minimum. These can
be manually sketched as discussed before for the symmetric case or the
hinged-fixed case.

Finally, we now consider the case where one end is fixed and the
other is connected to a passive structure. This is indicated by having
kL → ∞ and kR = k in table 1.4. Some of the interesting results for
this case include:

i) k = 0 (fixed-hinged): This is the mirror image of the hinged-fixed case
which was discussed before.

ii) k → ∞ (fixed-fixed): This gives the fixed-fixed case. This gives the
lowest, in absolute value, bending moment at the fixed end. If we mini-
mize the maximum absolute value of bending moments in a uniformly
loaded beam for any uniformly loaded beam attached to a fixed end
at one end and a passive support at the other then we get this case.
For a material whose yield in tension is the same as in compression
(eg. steel), this constitutes the end support at the right with a fixed left
end support that would allow the largest uniform load to be supported
before failure.

iii) k = 1: This is the value we would use to approximate a fixed end-
span of a continuous beam of equal spans. In this case, the internal
maximum moment is about 0.43 that of the simply supported case and
the similarly normalized negative moments at the ends are about 0.83
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at the fixed end and 0.33 at the spring end. Also, the inflection points
are at a distance of about 0.23L from the fixed end and 0.11L from the
spring end.

iv) k ≈ 1.573 (not shown): At this value, the negative moment at the
spring end equals the maximum positive moment with a normalized
bending moment of about 0.408 in absolute value. Of course, the high-
est moment in absolute value is still the moment at the fixed end which
in this case equals a normalized value of about 0.796.

Three examples of fixed-spring cases of table 1.4 for the exact defor-
mations and exact bending moment diagrams are shown in figures 1.39
and 1.40 respectively. We note that the deformations look similar to those
of the fixed-hinged case except that there is an inflection point near the
hinge-spring end. Again, we must indicate the location of the inflection
points which may be approximately calculated using formulas 1.4 or ex-
actly obtained from table 1.4.
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Figure 1.39. Deformed shape of selected cases of uniformly loaded beam with
fixed-spring supports.
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Figure 1.40. Moment diagrams of selected cases of uniformly loaded beam with
fixed-spring supports.

The moment diagrams shown in figure 1.40 all have the same shape
as the fixed-hinge case except for the magnitudes of the maximum and
minimum. These can all be manually sketched as discussed before.



Practical Approximate Analysis of Beams and Frames 39

1.7 Example: Uniform Load
As an example of applying the methods developed so far, we consider
the structure shown in figure 1.41. We have only one member loaded
by a uniform load of magnitude one and all the members have length 5
units and the same moment of inertia ‘EI .’

EI

5

EI

5

EI

5

EI

5

EI

5

1

A B C D E

F

Figure 1.41. Example of a structure with no sidesway and one member uniformly
loaded.

As a first step, we decompose the structure into components (fig-
ure 1.42). We start with member CD (figure 1.42c). The stiffness factor on
the right is exactly 2 because the resistance on that side is provided by
two similar members that are fixed on the far end. The stiffness factor
on the left is somewhere between 0.75 and 1 (exactly about 0.86), but, for
simplicity, we take it to be equal to 1. Using formulas 1.4, we calculate
the approximate location of the inflection points, sketch the deformed
shape and indicate the approximate location of the inflection points with
‘×.’ Next we turn to the members left of member CD (figures 1.42b
then 1.42a). These are handled using the techniques discussed for a mem-
ber loaded with an end moment and connected to a passive structure at
the other end. Finally, we consider the members to the right of mem-
ber CD and again they are handled similar to those of the members to
the left.

If we compare the approximate and exact locations (figure 1.43) of
inflection points we find good agreement. The largest error occurs at the
inflection point in member CD near node C (9% of the beam length) and
we attribute this error more to the approximate estimation of the stiff-
ness factor at C where we used a round number of 1 instead of some
number between 0.75 and 1 (eg. the mean 0.88). If we had used a stiff-
ness factor at C of 0.88 then the error would have been about 6% of the
beam’s length.



40 Practical Approximate Analysis of Beams and Frames

A B

(a)

0.75 ´ 4

EI

L

1.00

B C

(b)

1 ´ 4

EI

L

2 ´ 4

EI

L

»0.65
0.85

C D

(c)

1.67

D E

(d)

1.67

D

F

(e)

Figure 1.42. Decomposition of structure shown in figure 1.41 with deformed
shapes.
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Figure 1.43. Exact shape of the deformed structure of figure 1.41.

Having obtained the approximate location of the inflection points,
we then get the bending moments for the uniformly loaded beam using
formulas 1.5 and for the end-moment loaded beams using formulas 1.1.
The results are shown in figure 1.44. We note the care in passing the lo-
cation of zero bending moment through the inflection points in each of
the members.

If we compare the approximate and exact values (figure 1.45) of max-
imum and minimum bending moments, we again find good agreement.
The largest error again occurs at node C (about 18% relative error). If we
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Figure 1.44. Decomposition of structure shown in figure 1.41 with moment dia-
grams.
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Figure 1.45. Exact shape of the moment diagram of figure 1.41.

had used a stiffness factor at C of 0.88 then the relative error would have
been about 10%. We note that the relative error in the maximum positive
and negative moments at the left and right ends which occur in member
CD are only about −5.5%, 17.9% and −2.2% respectively.

Finally, we note that there is no need to sketch each of the members
separately as shown in figures 1.42 and 1.44. We simply first sketch the
deformed shape while being aware of the process implied by figure 1.42
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and then do the same (on a separate sketch) for the bending moment dia-
gram. With practice, this process becomes quick so that we only need one
or two minutes (with the aid of a calculator) to sketch an approximate
deformed shape and bending moment diagram for figure 1.41 which
include approximate values for inflection points and bending moments
that are indicated on the sketches. This level is relatively quickly attained
if the practioner becomes familiar with the results (including numerical
values) shown in figures 1.33 to 1.40.

1.8 Beam with a Point Force
Loading a beam with a point force is another special type of loading
that is often encountered in applications. Similar to the uniformly loaded
beam we will, in general, have two stiffness factors on each side parame-
terizing the resistance of the attached passive structures. Unlike the uni-
formly loaded beam, we have a third parameter which is the location of
the point force. This third parameter will make the analysis slightly more
complex than that of the uniform load.

To start, we will again consider three special end conditions for a
centrally loaded beam as shown in figure 1.46. These cases are the sim-
ply supported or hinged-hinged beam for figure 1.46a, fixed-fixed beam
for figure 1.46b and hinged-fixed beam for figure 1.46c. The deforma-
tions and bending moment diagrams associated with the special end
conditions are shown in figure 1.47 and 1.48 respectively. Of course, the
case of fixed-hinged beam will be a mirror image of the case shown in
figure 1.46c because we will assume that the members are homogeneous
and prismatic (ie. same properties and same cross-section along the
length) and because the point force is centrally located. In such cases,
the response for mirror image supports will be mirror image responses
(eg. mirror image deformations and mirror image moment diagrams).

The simply supported beam in figure 1.46a has deformations with
no inflection points and its curvature is always positive as seen in

P

0.50 L

(a)

P

0.50 L

(b)

P

0.50 L

(c)

Figure 1.46. Three special cases for the end conditions of a a beam with a central
point force.
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Figure 1.47. Deformations of the special cases for the end conditions of a centrally
applied point force.

figure 1.46a. This deformed shape when normalized is nearly identi-
cal to that of a simply supported beam with a uniform load; the maxi-
mum difference in the normalized shapes is only about 2.6% and is neg-
ligible in a manual sketch. Corresponding to the deformed shape, the
bending moment diagram is always positive and its shape is as shown
in figure 1.48a. This bending moment reaches a maximum value of PL/4
where ‘P ’ is the magnitude of the point force and ‘L’ is the length of the
beam. By considering the general case shown in figure 1.52a, we find that
this is the maximum positive moment that can occur in any beam that is
attached to passive structures on both ends and loaded with a point force
that may be located anywhere on the beam. Consequently, in tabula-
tions and plots of bending moments of a uniformly loaded beam, we will
always present those results as ratios of that maximum moment (ie. we
will normalize by that maximum). This normalization is also useful in
manual calculations because i) all the dimensional values are centralized
in one place and thus we only need to do a careful dimensional calcula-
tion once and ii) we only need to remember a few non-dimensional val-
ues between 0 and 1 to do an acceptable approximate analysis of most
beams and frames with no sidesway.
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Figure 1.48. Moment diagrams of the special cases for the end conditions of a
centrally applied point force.
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The fixed-fixed beam in figure 1.46b has deformations with two in-
flections points and zero slopes or rotations at each end as seen in fig-
ure 1.47b. Again this deformed shape is similar to the equivalent uni-
formly loaded beam but is slightly sharper in shape with a maximum
difference in the normalized shapes of only 6.25%; this is again negligible
in a manual sketch. Corresponding to the deformed shape, the bending
moment diagram is as shown in figure 1.48b where the negative moment
at the ends is the same as the positive one in the middle; this is to be con-
trasted with a uniformly loaded beam where the negative moments at
the ends are twice the positive moment in the middle. The sum of the
absolute values of the positive moment in the middle and negative mo-
ment at an end equals ‘PL/4.’ This is always true for central loading and
whenever the rotary spring stiffnesses at the ends are the same including
the limit of infinite stiffness of the fixed-fixed ends. The reason is that we
can view the symmetric end conditions as a superposition of the hinged-
hinged case (simply supported) and of applied equal end-moments as
shown in figure 1.53. Thus when the end moments are the same, then
we are superposing a uniform bending moment with the bending mo-
ment of a simply supported case. This then implies that any symmetric
support case will have a bending moment diagram that is a downward
vertical translation of the bending moment diagram of the simply sup-
ported case.

The hinged-fixed beam in figure 1.46c has deformations with one
inflection point and zero slope or rotation at the fixed end as seen in
figure 1.47c. Again this deformed shape is similar to the equivalent uni-
formly loaded beam but is slightly sharper with a maximum difference in
the normalized shapes of only 7.8%; this is again negligible in a manual
sketch. Its bending moment diagram is as shown in figure 1.48c where
the negative moment reaches a value of 0.75PL/4. By considering the
general case shown in figure 1.52a, we find that this is not the maxi-
mum negative moment that can occur in a beam that is attached to pas-
sive structures on both ends and having a point force somewhere along
its span. That maximum does occurs for a hinged-fixed case but with
the location of the point force being at about 0.423L distance from the
fixed end (ie. 0.577L distance from the hinged end). The corresponding
maximum negative moment is about 0.77PL/4. Also using the general
case in figure 1.52a, we find that the maximum distance of an inflection
point from its nearest end also occurs for the hinge-fixed case and has
a value of one-third the beam length (≈ 0.333L). This case occurs in
the limit as the point force approaches but does not reach the hinged
end. We note that this limiting case is then equivalent to that of a beam
with an infinitesimal moment applied at one end and a fixed end at the
other.
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Figure 1.49. Four special cases for the end conditions of a beam with a non-
central point force.

Having considered centrally loaded cases with special end condi-
tions, we now consider similar special end conditions but with non-
centrally loaded cases as shown in figure 1.49. These are the simply sup-
ported beam with a load at a quarter the length from one support shown
in figure 1.49a, the fixed-fixed beam with a load at a quarter the length
from one support shown in figure 1.49b and the hinged-fixed beam with
a load at a quarter and at three-quarters the length from the hinged end
as shown figures 1.49c and 1.49d respectively.

What is interesting about the deformations in figure 1.50 is that they
all look similar to the corresponding cases of figure 1.46 except for a rel-
atively slight shift of the location of maximum deformation in the direc-
tion of the point force. Of course, the inflection points are still to the left
and to the right of the point force, even when the point force gets very
close to an end.

The bending moment diagrams corresponding to figures 1.49 are
shown in figures 1.51. As with the other cases, the maximum positive
moment always occurs at the location of the point force. This can be
simply understood from the relations between loading, shear force and
bending moment. The slope of the bending moment is the shear force
and the slope of the shear force is the distributed load at a point which
is zero except at the reactions and the location of the point force. There-
fore, the shear force diagram is piecewise constant and ‘jumps’ by the
value ‘P ’ which is the magnitude of the point force and at the location
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Figure 1.50. Deformations for the figure 1.49 having non-centrally applied point
forces.

of the point force. This then gives the moment diagram as a piecewise
linear and continuous plot which must then reach a maximum at the
point force.

The maximum positive moment in the simply supported case, such
as in figure 1.51a, has a simple relation equal to

(1− (xF /L)) (xF /L)PL = d̂F Right d̂F Left PL

where ‘xF ’ is the distance of the point force from the left end, ‘L’ is the
length of the beam, ‘P ’ is the magnitude of the point force and ‘d̂F Right’
and ‘d̂F Left’ are the normalized distances from the point force to the right
and left ends respectively. The normalization of the distances are with re-
spect to the length of the beam. From this expression for the bending mo-
ment, we can deduce that the maximum occurs when the point force is in
the middle of the beam. More generally, the maximum positive moment
always occurs at the middle of a beam when the end support conditions
are symmetric. This last observation includes the limit of fixed-fixed end
conditions shown in figure 1.51b. By contrast, the largest (in absolute
value) negative moment for the symmetric case never occurs when the
point force is at the middle of the beam but always occurs when the
point force is some distance between ‘L/3 ≈ 0.333L’ and ≈ 0.423L from
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Figure 1.51. Moment diagrams for the figure 1.49 having non-centrally applied
point forces.

an end. These limits occur as the stiffness factor goes from the limit at in-
finity (ie. fixed-fixed) to the limit at close to zero respectively. We say al-
most hinged-hinged because the hinged-hinged case has zero moments
at each end.

The hinged-fixed cases in figure 1.49c and d have non-symmetric
end conditions with xF = 0.25L and xF = 0.75L respectively. Due to the
non-symmetry of end conditions, their moment diagrams shown in fig-
ures 1.51c and 1.51d are not mirror images of each other. For the hinged-
fixed case, the maximum positive moment over all values of ‘xF ’ (ie. lo-
cation of the point force) occurs when the point force is at a distance of
≈ 0.366L from the hinged-end. We note that maximum positive moment
when the point force is at 0.25L from the hinge is larger than when the
point force is at the middle but smaller than when it is at 0.75L. The
largest value that the maximum positive moment can have in the hinge-
fixed case is when the point force is at ≈ 0.366L from the hinged end
and has a value of ≈ 0.696PL/4 . By comparison, the negative moment
at the fixed end in both figures 1.51c and 1.51d is smaller (in absolute
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value) than the corresponding one when the point force is at the middle.
The largest value that the negative moment can have in the hinge-fixed
case is when the point force is at ≈ 0.577L from the hinged end and
has a value of ≈ 0.770PL/4. This result is to be contrasted with the uni-
form loading case as follows. If we consider the total load on a uniformly
loaded beam to be P = qL then for the hinged-spring case, the largest
positive moments are≈ 0.281PL/4 and≈ 0.5PL/4 respectively. The sig-
nificantly larger values of ≈ 0.696PL/4 and ≈ 0.770PL/4 for the point
force in both cases respectively is due to concentrating the load at a more
influential point in the beam or, equivalently, due to the added flexibility
in choosing the location of the point force.

Having considered some special cases, we now consider the general
case shown in figure 1.52. A representative sketch of the deformed shape
and the bending moment diagram are shown in figures 1.52b and c. As
in the uniformly loaded case, in order to sketch the deformed shape, we
need to i) identify the approximate location of the inflection points and
mark those by an ‘×,’ ii) roughly indicate the relative rotations of the
left versus the right end and iii) roughly indicate the right location of
the maximum deflection. Of these three requirements, only the inflec-
tion points need to be numerically indicated since their location will be
the basis for calculating the approximate values of the bending moment
diagram. We now discuss each of the three requirements separately.
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Figure 1.52. General point force on a beam attached to passive structures on
both sides.

First we consider the locations of the inflection points. In general,
there are two inflection points in a point force loaded beam that is at-
tached to passive structures on both ends. These inflection points occur
one on each side of the point force. The distance of an inflection point
from its nearest end increases as the stiffness factor of that end increases
and decreases as the point force approaches that end. For example, if
kR = 0 and the point force is at the center (ie. xF = 0.5L) then the
left inflection point is at x = 0 when kL = 0 (ie. a hinge at the left
end) and increases monotonically with ‘kL’ to reach a value of 0.273L
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when kL → ∞. By considering the general case shown in figure 1.52a,
we find that for any beam attached to passive structures on both ends
and as the point force moves across the beam, the distance of an inflec-
tion point to its nearest end may not exceed one third the length of the
beam (ie. ≈ 0.333L). This limit case occurs for the hinged-fixed or fixed-
hinged case when the point force approaches the hinged end. In terms
of lower limit, the distance of an inflection point to its nearest end may
be zero when the nearest end is a hinge. These two limits may be sum-
marized by saying that the location of inflection points must always be
outside the middle third of the beam.

The location of an inflection point divided by the length of the beam
(ie. normalized location) depends only on the spring stiffness factors ‘kL’
and ‘kR’ and on the location of the point force (see figure 1.53). To get
some insight, we draw contour plots of the location of the left inflection
point versus the stiffness factors for various values of the coordinate ‘xF ’
(origin at left end) of the point force (see figures 1.54). We notice that the
location of an inflection point is rather insensitive to the stiffness factor
on the right (ie. ‘kR’). Therefore, we consider obtaining a simple expres-
sion for the location of the inflection points as a function of the stiff-
ness factor near the end that it occurs multiplied by a function that only
depends on the location of the point force ‘xF .’ This reduces the depen-
dence of the location of an inflection point from three to two parameters
at the expense of using an approximate expression. This approximate
expression will be presented and discussed next.
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Figure 1.53. Superposition of moment diagrams for a beam with a point force.

Relatively simple expressions for the approximate locations of the
inflection points for the beam shown in figure 1.52b are as follows:

xI Left/L ≈
3kL

2 + 4kL
× x̂F

1 + x̂F
(1.6a)

1− xI Right/L ≈
3kR

2 + 4kR
× (1− x̂F )

1 + (1− x̂F )
(1.6b)
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Figure 1.54. Contour plot of the location of the inflection point versus end stiff-
nesses for various locations of the point force.

where:

xI Left, xI Right, kL, kR and xF are illustrated in figures 1.52a and b.

L is the length of the beam

x̂F = xF /L , which is the normalized coordinate of the point force

P is the magnitude of the point force



Practical Approximate Analysis of Beams and Frames 51

0.5 1. 1.5 2. 2.5 3. 3.5 4.
kL

-2.5

-2.

-1.5

-1.

-0.5

0

0.5

1.

1.5

2.

2.5

3.

DxIL�L%

Inflection point: Exact vs approximate

kR = 80, 0.25, 0.5, 1, 2, 4, ¥<

xF = 80.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9<

Figure 1.55. Comparsion of inflection point location between exact and approxi-
mate.

The results of the approximate expression 1.6a for the location of
the left inflection point may be compared with the exact one and this is
shown in figure 1.55. In that figure, each possible pairs of values of kR
and xF where kR is selected from the first list and xF is selected from
the second list generate one curve. All these curves lie between −2.5%
and 3.5%. If we do an optimization to determine the maximum possible
difference between the approximate and the exact value for all values
of stiffness factors and for all locations of the point force, we get that
the maximum error is between about −3.0% and 4.1% and occur for the
cases of fixed-hinged with the location of the point force at xF = 0.302
and of fixed-fixed with the location of the point force xF → 1. Note that
this is a percentage error which is relative to the length of the beam while
the relative error relative to the location would be higher because we are
dealing with small numbers. For the purposes of sketching and obtain-
ing the bending moment diagram, it is the error relative to the length
that is relevant. For example, when we are indicating the location of the
inflection point on a sketch of the beam, the visual perception will be rel-
ative to the length of the beam. In that regards,±4% would be barely dis-
cernible. Moreover, in a manual sketch small features will be perceived
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relative to the length of the beam and, in particular, the error in a manual
indication of the inflection points may exceed an error of ±4% relative to
the length.

The second point to be addressed in relation to sketching is to give
guidelines on how to sketch the relative rotations at the ends of a uni-
formly loaded beam. We note that we want to be consistent but not
much precise in this matter because we only want to do a ‘rough’ manual
sketch of the deformations. Unlike the location of the inflection points,
the effect of end rotations do not enter into the calculations of the ap-
proximate bending moment diagram which is the basis for design. The
first obvious comment related to end rotations is that the rotation at an
end decreases as its stiffness factor increases and the rotation increases
as the point force gets closer to that end. For example, for symmetric
end conditions, the end closer to the point force will have a larger slope
while for a central point force, the end with the larger stiffness factor will
have a lower slope. To further guide our sketching of end rotations, we
consider the relative effects of the location of the point force versus the
stiffness factors. The location ‘xF ’ at which the left and right end rota-
tions are the same is given by xF = (1/2) + (kR − kL) /

(
2 (1 + kL + kR)

)
and is plotted in figure 1.56. For example, figure 1.56 indicates that when
kL = 2 and kR ≈ 1.17 then x̂F ≈ 0.4. In that case, if x̂F > 0.4 then the
rotation on the right will be larger while if x̂F < 0.4 then the rotation on
the left will be larger. From this result, we recommend that for manual
sketches, an awareness of the tradeoff between stiffness and location of
a point force should be clear in cases of symmetry but that in other cases
the sketch should be mostly guided by the general shape. In addition, the
case of a fixed end should always have a zero slope at its end. Finally, if
a sketcher wants to show (or show-off) a refined knowledge in this case,
then figure 1.56 would be useful.

The third and final point to be addressed in relation to sketching the
deformed shape is where to show the maximum displacement so that it
is ‘roughly’ in the right location. For that purpose, we plot the location of
the maximum displacement for a wide range of combinations of stiffness
factors and location of the point force as shown in figure 1.57a. We notice
that this location remains relatively close to the middle. If we optimize
the location of the maximum displacement over all values of (positive)
stiffness factors, we obtain that the maximum should always occur in
the middle third of the beam (ie. between about 0.333L and 0.667L). To
further guide our sketching of the location of maximum displacement,
we consider how the location of the maximum displacement depends
on the location of the point force and the stiffness factors. To that end
we plot contours where the maximum displacement occurs at the center
showing the tradeoff between the stiffness factors and the location of the
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Figure 1.56. Values of normalized xF at which the slopes at the ends are equal
for a point force loaded beam.

point force in keeping the location of maximum displacement centered
and this is shown in figure 1.57b. Of course, figure 1.57b shows that when
the stiffness factors are equal (ie. kR = kL), then the location of the point
force must be at the center so that the maximum displacement remains at
the center. This result simply means that, for a symmetric configuration,
the maximum displacement is at the center. For all cases, the contours
shows boundaries such that if the force is to the right of the value indi-
cated for the contour then the location of maximum displacement will
be to the right of center and vice versa. From these results, we recom-
mend that for manual sketches, the deformed shape should be mostly
guided by the examples shown in this section while making sure that
the maximum always occurs in the middle third of the beam. Finally, if
a sketcher wants to show (or show-off) a refined knowledge in this case,
then figure 1.57b would be useful.

The approximate sketching of the bending moment diagram relies
on correctly identifying the location of inflection points. Once the in-
flection points have been determined, the maximum moment inside the
beam and the moments at the ends may be determined by statics. The
process of doing this is illustated in figure 1.58. Any point force loaded
beam with spring-hinged ends may be viewed as a simply supported
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beam between the inflection points with two end pieces on the left and
right. The reason is that the bending moment at inflection points is zero
and therefore these locations may be viewed as having hinged sup-
ports on top of the remaining parts of the beam. The simply supported
beam and each of the ends may then be simply analyzed to obtain the
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maximum internal bending moment and the end moments while know-
ing that the maximum positive moment occurs at the location of the
point force. Referring to the notation shown in figure 1.58, the expres-
sions for the maximum positive moment and the end moments are then
given by:

Min max =
P (xF − xIL)

(
Leff − (xF − xIL)

)
Leff

=
P (xF − xIL) (xIR − xF )

Leff
= d̂F eff right d̂F eff left PLeff (1.7a)

Mleft = −P (xIR − xF )xIL

Leff
= − d̂F eff right PxIL (1.7b)

Mright = −P (xF − xIL) (L− xIR)

Leff
= −d̂F eff left P (L− xIR) (1.7c)

where Min max, Mleft and Mright are the bending moments shown in
figure 1.53

P is the magnitude of the point force

L is the length of the beam

Leff is the effective length of the beam which is illustrated in figure 1.58

xIL, xIR are the left and right coordinates of the inflection points

xF is the coordinate of the point force

dF eff right = xIR − xF is the distance from the point force to the right
inflection point

dF eff left = xF − xIL is the distance from the point force to the left in-
flection point

d̂F eff right = dF eff right/Leff and d̂F eff left = dF eff left/Leff

Finally, using these critical values of the bending moment, we can
construct the bending moment diagram. This diagram must be two
straight line segments of different slopes meeting at the location of the
point force as in figure 1.52c. The reason is that the second derivative of
the bending moment which equals the distributed load is zero since there
is no distributed load to the left or to the right of the point force. This sec-
ond derivative is, from elementary mechanics, equal to the bending mo-
ment. Also, at the point force, the bending moment must be continuous
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but has a discontinuity in slope equal to the discontinuity of the internal
shear force. This discontinuity in shear, from equilibrium, must equal
the magnitude of the point force. Finally, the straight line segments must
pass through zero at the inflection points. Therefore, in a manual sketch,
we choose a representative value for the maximum positive moment and
draw straight lines going down to the left and right and passing through
the corresponding left and right inflection points. We then mark the val-
ues of the maximum positive moment and the moments at each end as
in figure 1.52c.

Of course, the errors in the calculated bending moments are related
to the errors in the approximate locations of the inflection points. If we
use formula 1.6a and 1.6b to estimate the location of inflection points
and we plot the relative error at the left end (right is analogous) and
at the inner maximum bending moment then we get the results shown
in figures 1.59 and 1.60 respectively. Note that those percent errors are
relative to the exact moments. For the left end moment (right end is
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Figure 1.59. Error between left end bending moments obtained from exact versus
approximate location of inflection points.
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Figure 1.60. Error between maximum positive bending moments obtained from
exact versus approximate location of inflection points.

equivalent), we can obtain bounds on the relative error by optimizing the
relative difference between the approximate and exact results. By doing
this, we find that if the approximately calculated end moment is greater
or equal than 0.2PL/4, for any stiffness factors at the ends and any loca-
tion of the point force then the relative error is between −23.5% which
occurs when kL →∞, kR = 0 and xF ≈ 0.073L and 39.7% which occurs
when kL →∞, kR →∞ and xF ≈ 0.787L. These relative errors decrease
as the end moment gets larger or as the maximum stiffness factors at ei-
ther end decreases. For example, if the stiffness factors at either end is
less than 4 and the calculated approximate moment is greater or equal
than 0.1PL/4 (half the previous value) then the relative error is between
−20.3% and 38.0%. Finally, the absolute error in the end moments is al-
ways between −0.05PL/4 which occurs when kL → ∞, kR → ∞ and
xF ≈ 0.785L and 0.12PL/4 which occurs when kL → ∞, kR = 0 and
xF ≈ 0.284L.

For the inner maximum positive moment, by optimizing the dif-
ference between the approximate and exact results, we find that if the
point force remains within the middle half (ie. between 0.25L and 0.75L)
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then the relative error is between −3.60% which occurs when kL → ∞,
kR ≈ 0.510L and xF = 0.75L and 36.9% which occurs when kL → ∞,
kR = 0 and xF = 0.25L. The absolute error in the maximum positive mo-
ment is always (ie. for any stiffness factors and any location of the point
force) between −0.02PL/4 and 0.1PL/4.

Finally, we note that a more extensive inspection of the errors shows
that for most cases, the actual relative errors are usually much less than
the bounds given above. Figures 1.59 and 1.60 show that we can expect
good accuracy within about ±10% for a wide range of values of stiffness
factors and point force locations and that the worst errors occur when
either end has high stiffness or when we get too close to an end. In any
case, the bounds for both the end moments and the maximum positive
moments show that this approximate analysis gives sufficient accuracy
for preliminary design or to check the output of computer calculations.

Based on the above discussions, we can sketch the moment diagram
as two straight line segments meeting at the location of the point force
and having a maximum positive moment at that location. The straight
line segments must pass through zero at the location of the inflection
points on either side. Finally, we annotate the plots by showing the val-
ues of the maximum positive moment and the values of the negative mo-
ments at the ends. Both the inflection points and the bending moments
may be approximately calculated using the formulas presented.

One additional general point of interest related to the bending mo-
ment diagram is the following. If we are given a beam attached to pas-
sive structures on both ends as in figure 1.52, then where must we place
the point force in order to maximize either the postive or the negative
bending moment? Those locations of the point force would be the ones
most critical in designing the beam. We will start by considering the crit-
ical location of the point force that gives the largest positive moment.
In that case, figure 1.61 shows contours of the normalized critical loca-
tions. We start by noting that the largest positive moment always occurs
at the location of the point force. Furthermore, the largest positive mo-
ment will always occur when the point force is closer to the more flex-
ible side which is the one with the lower rotary stiffness factor. If both
sides have the same stiffness then the critical location of the point force
is at the center. Based on an optimization analysis of the critical location
of the point force, we find that the smallest distance of the point force
from the flexible support for all cases of passive supports is about 0.366L.
That smallest distance corresponds to the case of a hinge at the flexible
side and a fixed end at the other. Therefore, to estimate the largest posi-
tive moment on a beam with passive supports, we must place the point
force at a distance somewhere between 0.366L and 0.5L from the more
flexible support. The simplest strategy is to place the point force at the
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Figure 1.61. Contours of the normalized distance of a point force from the left
end when the positive moment is maximum for fixed stiffness factors.

center when the supports are symmetric and at 0.43L (ie. midway be-
tween 0.366L and 0.5L) from the flexible support otherwise. This simple
strategy guarantees that the estimated critical location is within about
±7% the length of the beam from the exact critical location and that the
corresponding maximum positive moment is always within about 4% of
the exact one.

We now consider the largest negative moment for a moveable point
force acting on a beam with specified passive supports. In that case, the
largest possible negative moment will always occur at the stiffer support.
Based on an optimization analysis of the critical location of the point
force, we find that the point force must always be at a distance of be-
tween 0.333L to 0.423L from the stiffer support. Surprisingly, while the
stiffness factor at an end affects the magnitude of the negative moment
at that end, the location of the point force at which the largest negative
moment occurs at that end (whether it is the overall maximum or not)
is unaffected by its own stiffness factor. That critical location only de-
pends on the stiffness factor of the opposing end. Therefore, we can plot
the critical location of the point force that gives the largest negative mo-
ment at the left end as a function of the stiffness factor at the right end
as shown in figure 1.62. As noted, the distance of the critical location of
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the point force is always between 0.333L to 0.423L. Based on figure 1.62,
we also note that the distance between the critical location of a point
force and the stiffer end decreases as the stiffness factor of the far end
increases. The limits of 0.333L and 0.423L occur when the more flexi-
ble support is either a fixed end or a hinge respectively. Based on this
discussion, we suggest that the simplest strategy to estimate the critical
location of the point force is to always place the point force at a distance
of 0.38L (ie. about midway between 0.333L and 0.423L) from the stiffer
support. This simple strategy guarantees that the estimated critical loca-
tion is always within about ±5% the length of the beam from the exact
critical location and that the corresponding maximum negative moment
is always within about 1.5% of the exact one. Of course, when one of the
supports is a hinge, we could choose to place the point force at the exact
critical distance of about 0.423L from the other end.

To gain further insight with sketching the deformation and bend-
ing moment diagrams, we present and discuss a range of results for the
point force loaded beam. We begin by considering the case of symme-
try where the passive structures at both ends provide about the same
resistance to deformations. This is indicated by having kL = kR = k in
tables 1.5 and 1.6. We start with the centrally loaded case of figure 1.5.
Some interesting values of the stiffness factor ‘k’ include:

i) k = 0 (simply supported): This gives the largest possible positive mo-
ment for a point force loaded beam attached to passive structures at
both ends.
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Table 1.5. Point Force Loaded Beam: Symmetric Spring Resistance (xF = 0.5L).

P
k´4

EI

L

k´4

EI

L

0.50 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4
−Mright/

PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 1.000
0.500 0.125 0.125 0.250 0.250 0.750
0.750 0.150 0.150 0.300 0.300 0.700
1.000 0.167 0.167 0.333 0.333 0.667
1.500 0.188 0.188 0.375 0.375 0.625
2.000 0.200 0.200 0.400 0.400 0.600
3.000 0.214 0.214 0.429 0.429 0.571
4.000 0.222 0.222 0.444 0.444 0.556
∞ 0.250 0.250 0.500 0.500 0.500

Table 1.6. Point Force Loaded Beam: Symmetric Spring Resistance
(xF = 0.25L ).

P
k´4

EI

L

k´4

EI

L

0.25 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4
−Mright/

PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 0.750
0.500 0.076 0.155 0.234 0.141 0.539
0.750 0.092 0.186 0.288 0.163 0.494
1.000 0.103 0.206 0.325 0.175 0.463
1.500 0.118 0.231 0.375 0.188 0.422
2.000 0.127 0.245 0.407 0.193 0.396
3.000 0.137 0.262 0.446 0.196 0.366
4.000 0.144 0.271 0.470 0.197 0.348
∞ 0.167 0.300 0.563 0.188 0.281

ii) k → ∞ (fixed-fixed): The negative moments at the ends are equal to
the positive one at the middle. If we minimize the maximum absolute
value of bending moments in a central point force loaded beam for any
beam attached to passive supports and loaded with a point force in the
middle then we get this case. For a material whose yield in tension is
the same as in compression (eg. steel), this constitutes the end supports
that would allow the largest central point force to be supported before
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failure. Also, for this fixed-fixed case, the inflection points are the far-
thest into the beam of any centrally loaded symmetric case and occur
at a distance of 0.25L from each end.

iii) k = 1: This is the value we would use to approximate any non-terminal
span (ie. not occuring at either end) of a continuous beam of equal
spans. In this case, the internal maximum moment is about 0.67 that of
the simply supported case and the negative moments at the ends are
about 0.33. Also, inflection points are at a distance of about 0.17L from
the ends.

Next we consider the symmetric case but the point force is at 0.25L
from the left end (table 1.6). Some interesting values of the stiffness factor
‘k’ include:

i) k = 0 (simply supported): The maximum positive moment is
0.75PL/4.

ii) k →∞ (fixed-fixed): The inflection points are at 0.167L and 0.3L from
the left and right ends respectively. The maximum positive moment
is 0.281PL/4 while the negative end moments are 0.563PL/4 and
0.188PL/4. The negative moment at the left end is the largest value
for any symmetric case when the load location is at 0.25L. However,
the maximum negative moment at the right has the largest value when
k ≈ 3.95 and has a value 0.197PL/4.

iii) k = 1: This is the value we would use to approximate any non-terminal
span (ie. not occuring at either end) of a continuous beam of equal
spans. In this case, the internal maximum moment is about 0.463PL/4
while the negative end moments are 0.325PL/4 and 0.175PL/4. Also,
inflection points are at a distance of about 0.103L and 0.206L from the
left and right ends respectively.

Three examples of symmetric cases for the exact deformations and
exact bending moment diagrams are shown in figures 1.63 and 1.64 re-
spectively. We note that the negative curvature part of the deformation is
barely discernible and thus the importance of indicating (eg. with an ‘×’)
the location of the inflection points. Note that the there are always two
inflection points, one to the left and one to the right of the location of
the point force and that is true no matter how close the point force ap-
proaches an end as long as that end has positive resistance (ie. anything
other than a hinge). Aside from the magnitude of the deformations and
the location of the inflection points, the deformation shapes for the sym-
metric cases are about the same over a wide range of stiffness factors
except for a slight but visible increase in the negative curvature parts at
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Figure 1.64. Moment diagrams of selected cases of uniformly loaded beam with
symmetric supports.

each end. They all look somewhat like parabolas with a short slightly
negative curvature parts at each end. As the point force moves closer
to one or the other end, we get an asymmetry that shifts the maximum
displacement slightly towards the side of the point force as seen in fig-
ures 1.63a and c. However, as noted in the discussions on the location of
the maximum displacement, this remains relatively close to the middle
and, in general, does not coincide with the location of the point force.

The moment diagrams shown in figure 1.64 all have the same shape
that is tilted left or right so that the maximum positive moment always
occurs under the point force. The moment diagrams for the point force is
easier to draw than the one for a uniform load because it always consists
of two straight line segments meeting at the location of the point force
and passing through the inflection points on either side.

In comparison with the symmetric resistance case, we present three
cases where the ends have unequal stiffness factors but neither end is a
hinge or a fixed end (see figures 1.65). From figures 1.65, we notice that,
aside from the location of inflection points, the shapes are still similar to
those of the symmetric cases except for a slightly more noticeable neg-
ative curvature at the stiffer end. In particular, in manual sketches, they
would be appear almost the same. Therefore, we only need to learn how
to manually sketch one prototypical shape where neither end is a hinge
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Figure 1.65. Deformed shape of selected cases of point force loaded beam with
non-symmetric supports.

or a fixed end. The effect of the point force in the non-symmetric case
is similar to that of the symmetric case with figures 1.65a and c being
typical.

The bending moment diagrams (figures 1.66) for the unsymmetric
case are similar to those of the symmetric ones. As with the symmetric
case, the maximum positive moment is always at the location of the point
force. The procedure for manually sketching the moment diagrams of the
non-symmetric cases is identical to that of the symmetric ones.
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Figure 1.66. Moment diagrams of selected cases of point force loaded beam with
non-symmetric supports.

The special case when one end is a hinge is next considered and the
deformations and bending moment diagrams are shown in figures 1.67
and 1.68 respectively. Aside from having no inflection point on the side
of the free hinge, the shapes, if manually sketched would appear similar
to the cases discussed above. For that reason, we will place a small ‘×’
at the hinge in that case to distinguish it from the other cases. Note that
in figures 1.67, the location of the right inflection point only varies from
about 0.11L to 0.21L as the point force moves from a distance of 0.25L
to 0.75L from the right support. As discussed previously, the inflection
point remains close to its nearest end and can never exceed a distance of
about 0.333L from its nearest end even if the point force is almost at the
opposite end (ie. in figures 1.67, this would be almost at the left end).
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Figure 1.67. Deformed shape of selected cases of point force loaded beam with
hinge-spring supports.

We show the bending moment diagrams of figures 1.67 in
figures 1.68. These figures indicate that the special case of one end be-
ing a hinge can only be distinguished from other cases by having a zero
moment at the hinged end. The rest of the procedure for sketching the
moment diagram remains the same as seen in figures 1.68.
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Figure 1.68. Moment diagrams of selected cases of point force loaded beam with
hinge-spring supports.

The special case when one end is fixed is next considered and the
deformations and bending moment diagrams are shown in figures 1.69
and 1.70 respectively. Aside from having zero slope and a more no-
ticeable negative curvature near the fixed end, the shapes, if manually
sketched would appear similar to the cases discussed above. Note that
again in figures 1.69, the location of either inflection point varies within a
relatively narrow range as the point force moves from a distance of 0.25L
to 0.75L from the either support. As discussed previously, the inflection
point remains close to its nearest end and can never exceed a distance of
about 0.333L from its nearest end even if the point force is almost at the
opposite end.
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Figure 1.69. Deformed shape of selected cases of point force loaded beam with
fixed-spring supports.
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Figure 1.70. Moment diagrams of selected cases of point force loaded beam with
fixed-spring supports.

Concerning the bending moment diagrams of figures 1.69 shown in
figures 1.70, the special case of one end being fixed is similar to the gen-
eral unsymmetric cases discussed in figures. Therefore, these cases can
be sketched in a manner similar to the previous cases.

1.9 Example: Point Force
As an example of applying the methods related to the point force, we
consider the structure shown in figure 1.71. We have only one member
loaded by a point force load of magnitude one and located at 1.75 units
from point C with all the members having length 5 units and the same
moment of inertia ‘EI .’

As a first step, we decompose the structure into components
(figure 1.72). We start with member CD (figure 1.72c). The stiffness fac-
tor on the right is exactly 2 because the resistance on that side is pro-
vided by two similar members that are fixed on the far end. The stiffness
factor on the left is somewhere between 0.75 and 1 (exactly about 0.86),
but, for simplicity, we take it to be equal to 1. Using formulas 1.6, we
calculate the approximate location of the inflection points, sketch the
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Figure 1.71. Example of a structure with no sidesway and one member point
force loaded.
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Figure 1.72. Decomposition of structure shown in figure 1.71 with deformed
shapes.

deformed shape and indicate the approximate location of the inflec-
tion points with ‘×.’ Next we turn to the members left of member CD
(figures 1.72b then 1.72a). These are handled using the techniques dis-
cussed for a member loaded with an end moment and connected to a
passive structure at the other end. Finally, we consider the members to
the right of member CD and again they are handled similar to those of
the members to the left.



68 Practical Approximate Analysis of Beams and Frames

EI

5

EI

5

EI

5

EI

5

EI

5

1

A B C D E

F

xF=1.75

1.00

0.60
1.17

1.67

1.67

Figure 1.73. Exact shape of the deformed structure of figure 1.71.

If we compare the approximate and exact locations (figure 1.73) of
inflection points we find good agreement. The largest error occurs at the
inflection point in member CD near node C (0.9% of the beam length)
and we attribute this error more to the approximate estimation of the
stiffness factor at C where we used a round number of 1 instead of some
number between 0.75 and 1 (eg. the mean 0.88). If we had used a stiffness
factor at C of 0.88 then the error would have been about 0.3% of the
beam’s length.

Having obtained the approximate location of the inflection points,
we then get the bending moments for the point force loaded beam using
formulas 1.7 and for the end-moment loaded beams using formulas 1.1.
The results are shown in figure 1.74. We note the care in passing the lo-
cation of zero bending moment through the inflection points in each of
the members.

If we compare the approximate and exact values (figure 1.75) of max-
imum and minimum bending moments, we again find good agreement.
The largest error again occurs at node C. We note that the relative er-
ror in the maximum positive and negative moments at the left and right
ends which occur in member CD are only about 2.7%, −10.3% and 2.4%
respectively.

Finally, we note that there is no need to sketch each of the members
separately as shown in figures 1.72 and 1.74. We simply first sketch the
deformed shape while being aware of the process implied by figure 1.72
and then do the same (on a separate sketch) for the bending moment dia-
gram. With practice, this process becomes quick so that we only need one
or two minutes (with the aid of a calculator) to sketch an approximate
deformed shape and bending moment diagram for figure 1.71 which
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Figure 1.74. Decomposition of structure shown in figure 1.71 with moment dia-
grams.
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Figure 1.75. Exact shape of the moment diagram of figure 1.71.

include approximate values for inflection points and bending moments
that are indicated on the sketches. This level is relatively quickly attained
if the practioner becomes familiar with the results (including numerical
values) shown in figures 1.63 to 1.70.
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1.10 Comments and Examples
on Multiple Loads

If we load a structure so that there is only one loaded member or node,
the magnitude of the response of a particular member in the structure de-
creases rapidly as that member gets farther from the loaded member or
node (see figure 1.13 and related discussion). The influence of the load is
highest on the loaded member or node, then on the members directly at-
tached to either end of the loaded member or node then on the members
directly attached to those members and so on. The reason for the rapid
decrease is primarily due to the carry over factor for moments which is
always less than half and usually around a third; as the member gets
farther from the loaded node or member, these carry over factors are
multiplied by each other and lead to a geometric type of decrease. The
decrease may also be due to the distribution of an applied moment at a
node over the attached members. This reduces the applied moment be-
cause each connected member gets a fraction of the applied moment; of
course, this last effect is not present if we have a continuous beam sup-
ported on rollers or hinges.

For linear analysis, we may superpose the response of single loads to
obtain the effect of simultaneously applied multiple loads as illustrated
in figure 1.77. Because of linear superposition and because of the rapidly
decreasing response when we load only a single member or node, the in-
teraction of multiple loads of comparable magnitude is significant only
when the loaded members or nodes are separated by at most one mem-
ber. In other cases, the deformations, bending moments or any response
of a member may be approximately evaluated as being only due to the
nearest loaded member; members that may happen to be at equal dis-
tances from two or more loads will generally have negligible values com-
pared to the other members. Therefore, we will consider only two exam-
ple cases, one with the loaded members separated by one member and
one with the loaded members being adjacent.

Before proceeding with the examples in obtaining the bending mo-
ment diagrams, we note the following basic observation in summing mo-
ment diagrams:

• The sum of the plots of two straight line segments is a straight line
segment. Therefore, when we add two straight line segments, it is suf-
ficient to sum the value at the ends of the segments.

• If we sum a piecewise straight line with a straight line segment, we
will obtain a piecewise straight line segment whose discontinuities are
at the same locations as the original one. Therefore, it is sufficient to
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sum values at each discontinuity point of the original straight line seg-
ment.

• If we sum a parabolic segment with a straight line segment, we will ob-
tain a parabolic segment. The location of the maximum of the resulting
parabolic segment may be different than the original one. However,
for the purpose of approximate analysis, we will assume that the lo-
cation is about the same. Therefore, it is sufficient to sum the value at
the ends of the segments and at the location of the maximum of the
original parabolic segment.

If other cases are encountered then it is helpful to sketch the bending
moment diagrams of each load case and estimate the location and values
of the maxima and minima from those sketches.

We now consider an example of the case of two loaded members
separated by one other member as shown in figure 1.76. There is a dis-
tributed load whose net force is 1 × 5 = 5 units and a point force of
4 units. To obtain the bending moment diagram, we will use superpo-
sition as illustrated in figure 1.77. We will obtain the bending moment
diagrams for the distributed load and the point force load acting sepa-
rately and add the separate values at each point to obtain their combined
bending moment diagram.
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Figure 1.76. Multiple loads of comparable magnitude (total load) separated by
one member.

First, we consider the structure loaded only with the distributed load
and, to approximately analyze it, we decompose the structure as shown
in figure 1.78. We start with member BC (figure 1.78b). The stiffness fac-
tor on the left and right are approximately (EI/3)/(EI/5) ≈ 1.67 and
≈ (EI/4 + EI/5)/(EI/5) = 2.25 respectively. Using formulas 1.4, we
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Figure 1.77. Superposition of multiple loads as the sum of separate single loads.
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Figure 1.78. Decomposition of structure shown in figure 1.76 with deformed
shapes when we only apply the distributed load.

calculate the approximate location of the inflection points, sketch the
deformed shape and indicate the approximate location of the inflection
points with ‘×.’ Next we turn to the members to the left (figure 1.78a) and
right of member BC (figures 1.78c, d, e and f). These are all handled using
the techniques discussed for a member loaded with an end moment and
connected to a passive structure at the other end. Note that the approx-
imate location of all inflection points are indicated on the sketch of the
deformed structures. After we have obtained the approximate location
of the inflection points, we then get the bending moments for the uni-
formly loaded beam using formulas 1.5 and for the end-moment loaded
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beams using formulas 1.1. The corresponding exact results are given in
one of the bending moment diagrams shown in the bottom left moment
diagram of figure 1.80. For comparison, if we consider the approximate
results for member BC then we get the following key values from left to
right as −1.55, 1.47 and −1.76 versus −1.56, 1.48 and −1.74 as shown in
figure 1.80 bottom left on member BC. This is excellent agreement for an
approximate analysis.

Next we consider the structure loaded only with the point force
load and, to approximately analyze it, we decompose the structure as
shown in figure 1.79. We start with member DE (figure 1.79d). The
stiffness factor on the left and right are ≈ (EI/4)/(EI/5) = 0.8 and
(EI/4)/(EI/4) = 1 respectively. Using formulas 1.6, we calculate the
approximate location of the inflection points, sketch the deformed shape
and indicate the approximate location of the inflection points with ‘×.’
Next we turn to the members to the left (figure 1.79a, b, c and e) and right
of member DE (figures 1.78f). These are all handled using the techniques
discussed for a member loaded with an end moment and connected to
a passive structure at the other end. Note that the approximate location
of all inflection points are indicated on the sketch of the deformed struc-
tures. After we have obtained the approximate location of the inflection
points, we then get the bending moments for the uniformly loaded beam
using formulas 1.7 and for the end-moment loaded beams using formu-
las 1.1. The corresponding exact results are given in one of the bending
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Figure 1.79. Decomposition of structure shown in figure 1.76 with deformed
shapes when we only apply the point force load.
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Figure 1.80. Exact shape of the moment diagram of figure 1.76 and when each
of the loads is applied separately.

moment diagrams shown in figure 1.80. For comparison, if we consider
the approximate results for member DE then we get the following key
values from left to right as −1.28, 2.44 and −1.04 versus −1.23, 2.47 and
−1.05 as shown in the bottom right moment diagram of figure 1.80 on
member DE. This is again excellent agreement for an approximate anal-
ysis.

Finally, we take the sum of the bending moment diagrams to get
the top moment diagram in figure 1.80. By following the guidelines de-
scribed above for summing moment diagrams, we get for member BC
the following key values from left to right as −1.62, 1.54 and −1.55 ver-
sus −1.6, 1.54 and −1.54 as shown in the top moment diagram of fig-
ure 1.80 on member BC. The corresponding comparison for member DE
is approximately −1.04, 2.54 and −1.11 versus −1.01, 2.59 and −1.14 as
shown in the top moment diagram of figure 1.18 on member DE. The
combined moment diagram again gives excellent agreement for an ap-
proximate analysis.

If we need to sketch the deformed shape for the combined loading
of figure 1.76, then we will use the moment diagram (figure 1.80 top mo-
ment diagram) as a guide. The location of inflection points may be ap-
proximated from visually estimating the location of the zero moments in
the bending moment diagram. In particular, since the bending moment
in member CD is always negative, it has no inflection points and has a
negative curvature that increases to the right. The resulting deformed
shape is shown in figure 1.81.

The deformed shape of figure 1.81 represents an example of a struc-
ture subject to combined loading where the loaded members are sepa-
rated by one other member. This deformed shape may vary in character
as we change the relative total load of the uniform load versus the point
force load. As an illustrution of this, we present the deformed shape for
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Figure 1.81. Exact deformed shape for the loading of figure 1.76.
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Figure 1.82. Examples of exact deformed shapes for the structure of figure 1.76
but with different magnitudes of the point force load.

four different load cases of the structure shown in figures 1.82. When
the magnitude of the point force is relatively small then the distributed
load dominates and we get only one inflection point on the member with
the point force load and one inflection point in the intermediate member
between them (see figure 1.82a). When the point force magnitude be-
comes comparable to that of the uniform load, we get the case shown
in figure 1.82b which is similar to that of figure 1.81. As the point force
magnitude increases further, we get an inflection point in the intermedi-
ate member between the loaded members as shown in figure 1.82c; this
inflection point is closer to the uniform loaded member which is in con-



76 Practical Approximate Analysis of Beams and Frames

trast with the case of figure 1.82a. If we further increase the magnitude
of the point force then the right side inflection point of the uniformly
loaded member will disappear as shown in figure 1.82d.

Having considered the case where there is one member separating
the loaded members, we now consider an example of the case of two
loaded members that are adjacent as shown in figure 1.83. There is a dis-
tributed load whose net force is 1×5 = 5 units and a variable point force
magnitude denoted by P . Since the bending moment diagram may be di-
rectly obtained once the inflection point locations have been identified,
we will only present the deformed shape including an indication of the
location of all inflection points.

EI

3

EI

5

EI

5

EI

4
EI

4
EI

4

A B C D E

F G

q = 1
P

xF = 3.25

Figure 1.83. An example of multiple loads that are adjacent.

In figures 1.84, we present the deformed shape for four different load
cases of the structure shown in figures 1.83. When the magnitude of the
point force is relatively small then the distributed load dominates and
we get only one inflection point on the member with the point force
load as shown in figure 1.84a. In that figure we also note that the mem-
ber with the point force load moves up counter to the direction of the
point force and this occurs because of the overwhelming influence of
the neighboring distributed load. When the point force magnitude be-
comes comparable to that of the uniform load, we get the cases shown
in figure 1.84b and c. In both those cases, each of the loaded members
have two inflection points but either the uniform load or the point force
load have a larger influence as shown in figure 1.84b and figure 1.84c
respectively. The load with the greater influence (ie. higher bending mo-
ment at the common end point) will cause the other member to move up
on some portion of its span that is adjacent to the other loaded member.
Finally, as the point force magnitude further increases, it will dominate
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Figure 1.84. Examples of exact deformed shapes for the structure of figure 1.83
with different magnitudes of the point force load.

the uniformly loaded member and we get only one inflection point in
that member as shown in figure 1.84d.

Finally, we consider the case of symmetry where both the structure
and loading are symmetric relative to a center line as for example shown
in figures 1.85 and 1.86. For the purposes of approximate analysis, we
note that we only need the conditions of symmetry to apply locally be-
cause, as previously discussed, the influence of loading and constraints
decreases rapidly with distance. This observation greatly increases the
scope of applicability of the case of symmetry. Similar to the general case,

q q

Symmetry

Line

⇔

q

Symmetry

Line

Figure 1.85. Example of a symmetric structure and loading where the members
attached to the line of symmetry are loaded.
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Figure 1.86. Example of a symmetric structure and loading where the centerline
passes through a middle unloaded member.

we need only consider cases where the loaded members are either adja-
cent as in figure 1.85 or separated by one other member as in figure 1.86.
Each of these cases will be discussed next.

First we consider the case when the structure is symmetric and the
loaded members are adjacent (eg. figure 1.85). In that case, the common
end cannot rotate right or left otherwise it violates the symmetry of the
response which must also be symmetric in linear analysis. Therefore, that
common end is equivalent to a fixed end for each side of the symmetric
structure as shown in figure 1.85. By analyzing either half of the structure
with the fixed end, we can analyze the structure with less effort than
otherwise.

Second we consider the cases when the structure is symmetric and
the loaded members are separated by one other unloaded member as
shown in figure 1.86. In that case, the rotation of the left end of the
central member must be equal and opposite to the right end. From ele-
mentary analysis, the apparent stiffness of that member relative to either
connected half of the structure is equivalent to attaching a similar mem-
ber but with twice the length and with a fixed support at the far end as
shown in figure 1.86. By analyzing either half of the structure with the
equivalent member, we can analyze the structure with less effort than
otherwise. If the middle member is loaded, we can use superposition to
analyze the case without the middle member unloaded and then with
only the middle member loaded.

1.11 Beam with Two or More Internal Hinges
In this section, we will discuss the effect of an internal hinge on the anal-
ysis of continuous beams or frames. In a figure, an internal hinge is indi-
cated by a hollow circle along the span of a member and corresponds to
an internal constraint that requires the bending moment to be zero at that
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location. While it is admissible to apply a point force at an internal hinge
we must be careful when specifying an applied point or concentrated
moment. When applying such a moment, we must specify whether that
moment is actually applied on the member to the left or to the right of
the internal hinge. In fact, it is admissible to apply two point moments,
one to the left and one to the right of the internal hinge and this kind of
loading has an important application in the study of influence lines.

We start by considering the case of three or more internal hinges in
a bending member. Such members are always statically unstable if we
apply any load on their span irrespective of the end conditions or sup-
ports. The reason is that a bending member must satisfy two boundary
conditions associated with the bending deformations at each end. These
conditions may be of the support (eg. no rotation), of the loading type
(eg. applied end moment) or of a combination of both. Two of those
boundary conditions must directly or indirectly constrain the rigid body
motion of the member. This then leaves only two ‘free’ equations to sat-
isfy other constraints. With three or more internal hinges, we have more
constraints than can be met by a bending member. Therefore, any mem-
ber with three or more internal hinges may be removed from the struc-
ture as being structurally irrelevant.

From the above, we deduce that we only need to consider the case of
one or two internal hinges. We start with the case of a bending member
with two internal hinges and we wil divide the discussion into two parts:
i) when the member is acting as part of a passive structure as shown in
figure 1.87 and ii) when the member is attached on both ends to passive
structures while being loaded over its span. By considering these two
cases, we can then use the methods developed previously to do an ap-
proximate analysis for any structure containing one or more members
each having two internal hinges.

To study the member having two internal hinges as part of a pas-
sive structure, we consider it under the conditions shown in figure 1.87.
The figure shows an applied rotation at one end and a rotary spring at

Θnear

Figure 1.87. A beam with two internal hinges considered as part of a passive
structure.
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the other. Such a member has zero stiffness at the near end (ie. the end
where the rotation is applied) and its deformation is indicated by the
solid gray line shown in figure 1.87. Each piece of that beam remains
rigid during deformation with the first two pieces rotating rigidly while
the third piece which is attached to the rotary spring remains immobile.
The shear force and the bending moments are uniformly zero across the
member and the deformations may be calculated from a pure consid-
eration of kinematics or geometry. These results are true as long as the
stiffness of the rotary spring shown in figure 1.87 is nonzero. When it is
zero, then the member is statically unstable and kinematically indeter-
minate. Finally, we note that the deformations indicated in figure 1.87
are appropriate only for small deformations while large deformations
are shown in figure 1.87. These large deformations are shown for clarity
but the reader must imagine all deformations to be small in order for the
small deformations theory of bending of straight members to be applica-
ble.

Based on the above discussion, if a member with two internal hinges
is part of a passive structure, then its stiffness contribution at a connec-
tion is zero and it cannot transmit a moment across its span. More gen-
erally, when a member with two internal hinges is part of a structure
and has no load applied on its span then it is structurally irrelevant and
may be omitted for the purposes of analysis as illustrated in figure 1.88.
For design purposes, a member with two internal hinges may be used
to structurally isolate the effects of loading one part of a structure from
another.

Mapplied ⇔ Mapplied

Figure 1.88. A two-hinged beam has zero bending stiffness and cannot transmit
a moment across its span.

We now consider the case when a member with two internal hinges
is attached on both ends to passive structures while being loaded over
its span. Such a member is statically determinate which means that the
largest and smallest bending moments within the span and the end mo-
ments may be determined from free body diagrams and statics. Once
the end moments have been determined, the rest of the passive structure
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may be approximately analyzed using the developed procedures. If ei-
ther end of a beam with two internal hinges is attached to a hinge with no
rotary stiffness then the beam is statically unstable and thus structurally
irrelevant. Such a beam must be free of any loading and may again be
omitted for the purposes of analysis.

The placement of internal hinges in a beam is usually by design but
may also be encountered in structural integrity assessments of partially
failed structures. If the internal hinges in a beam are to be introduced by
design then it is natural to ask where should we place them. The answer
depends on the type of loading that is applied on the span. If we consider
the case of a uniform load, then the lowest bending moment in absolute
value (ie. positive or negative) is obtained when the internal hinges are
at
(
2±
√

2
)
L/4 ≈ (0.146, 0.854)L and has a value of qL2

/
16. This op-

timal placement of the internal hinges is independent of the stiffness of
the passive structures attached to the ends of the beam because a beam
with two internal hinges is statically determinate. Of course, the passive
structures must provide non-zero stiffness at both ends to avoid load-
ing a statically unstable beam. If the beam was without internal hinges
then this optimal location of internal hinges correspond to the location of
the inflection points when the stiffness factors on the beam at both ends
equals 1.5.

If we consider a pont force loading that may occur anywhere on
the span, then the lowest bending moment in absolute value in a beam
with two internal hinges is obtained when the internal hinges are at
(1/4, 3/4)L and has a value of PL/8. This optimal placement of the in-
ternal hinges is independent of the stiffness of the passive structures at-
tached to the ends of the beam because a beam with two internal hinges
is statically determinate. Again, the passive structures must provide non-
zero stiffness at both ends to avoid loading a statically unstable beam. If
the beam was without internal hinges then this optimal location of inter-
nal hinges correspond to the location of the inflection points when the
point force is at the middle of the beam and the stiffness factors on the
beam at both ends are indefinitely large (ie. k →∞) which correspond to
fixed supports.

If we want to avoid the worst placement of two internal hinges in a
beam then the following results apply. For uniform loading or for point
force loading, the worst conditions in terms of getting the largest possi-
ble positive bending moment occurs when we place one internal hinge
at the left end and the other at the right end so as to effectively produce
a simply supported beam. This produces a maximum positive bending
moment of qL2

/
8 and PL/4 for the uniform load and point force load

respectively. However, the worst conditions for the largest possible neg-
ative bending moment or of the largest poosible absolute value of the
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bending moment occurs when we place both internal hinges infinites-
imally or very close to each other and infinitesimally or very close to
either end of the beam. This produces a maximum negative bending
moment of qL2

/
2 and PL for the uniform load and point force load

respectively. These values are four times larger than the correspond-
ing ones for maximum positive moment and they correspond to the
values obtained for a cantilever which is a member supported on only
one side.

How did the two internal hinges produce an effect equivalent to a
cantilever? When two internal hinges occur in a beam, the part of the
beam in between the internal hinges acts like a link providing zero verti-
cal stiffness and zero rotary stiffness to either of its attached ends. If we
make a very small link of this kind and place it near one end of the beam,
then that end will be structurally isolated from the rest of the beam since
it cannot affect the other side either through vertical or through rotary
resistance. The part of the beam from the internal hinges to the other
support then effectively becomes a cantilever and we get the largest pos-
sible bending moments for the loading cases considered. We note that
placing two internal hinges very close to each other appears to be ge-
ometrically similar to having one internal hinge. However, the effect of
two very close internal hinges is structurally different than one inter-
nal hinge. The reason is that we can transmit shear across one internal
hinge but not across a link member formed between two internal hinges.
Both the vertical and rotational isolation are needed to get the condi-
tions of a cantiliver which produce the largest bending moment under
the considered types of loading. Of course, the distance between two
internal hinges cannot be infinitesimal but must be constrained by phys-
ical and geometric considerations. However, the optimization result for
the largest negative moments provides a bound or limit which when ap-
proached leads to severe bending moments on a loaded beam.

Having considered the general behavior of a loaded beam with
two internal hinges attached to passive structures on each end, we will
discuss how to sketch the deformed shape and the bending moment
diagram of such a member. Such knowledge is needed to sketch the de-
formed shape and bending moment diagrams of a whole structure con-
taining one or more members of this type.

We start by considering a beam with two internal hinges loaded by
a uniform load and attached to passive structures on both ends. Exam-
ples of such deformations for various locations of the internal hinges
are shown in figure 1.89. The behavior of each piece of the beam from
one end to the nearest internal hinge is that of a uniformly loaded can-
tilever but with flexible support. Such a cantilever will have an initial
rotation at the support and a negative cuvature throughout its span. The
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Figure 1.89. Examples of the deformations of a beam with two internal hinges
loaded by a uniform load and attached to passive structures on both ends.

tip deflection of such a cantilever
(
qL4(1 + k)/8kEI

)
where ‘q’ is the dis-

tributed load, ‘E’ is Young’s modulus, ‘I’ is the moment of inertia, ‘L’
is the length of the cantilever and ‘k’ is the rotary spring stiffness factor
at the supported end. The important point to note is that the deflection
is proportional to the fourth power of the length of the beam so that if
the length doubles, the deflection increases by a factor of 16. This obser-
vation explains the relative deflections of the internal hinges shown in
figures 1.89d, e and f where the relative deflection at the internal hinges
changes rapidly with the ratio of their respective lengths. Finally, the
middle portion of the beam deflects like a simply supported beam but
whose supports are subsequently moved to match the deflection of the
internal hinges. For the same length and under a uniform load, the max-
imum deflection of a simply supported beam is 9.6 times less than that
of a cantilever of comparable length but with fixed support. That is why
the separation between the hinges must be relatively large compared to
either of the end pieces in order for the deflection of the middle portion
to appear significant as demonstrated by the examples in figures 1.89b,
c, d, e and f. When the length of the middle piece is less or equal to the
length of at least one end piece of the beam and when the stiffness factor
at the support of that end piece is less or equal to 2, then its deforma-
tion is relatively insignificant and the middle piece appears almost like a
straight line as illustrated in figures 1.89d and e.

The bending moment diagrams of a loaded beam with two inter-
nal hinges loaded by a uniform load and attached to passive structures
on both ends is always a parabola passing through each of the internal
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Figure 1.90. Bending moment diagrams of the beams shown in figure 1.89.

hinges. The value of this parabola at the end points and at the middle
support may be determined from statics. Its functional form is given
by (q/2)(x − xHL) (x− xHR) where ‘q’ is the magnitude of the uniform
load, ‘x’ is the coordinate of any point from the left end and ‘xHL’ and
‘xHR’ are the coordinates of the left and right internal hinges respectively.
The maximum positive moment always occurs at the midpoint between
the internal hinges and has a value of q (xHR − xHL) 2

/
8. As examples,

the bending moment diagrams corresponding to the cases shown in fig-
ure 1.89 are shown in figure 1.90.

We now consider a beam with two internal hinges loaded by a point
force load and attached to passive structures on both ends. Examples of
such deformations for various locations of the internal hinges and vari-
ous locations of the point force are shown in figure 1.91. When the point
force is applied at a location between a support and its nearest internal
hinge then that piece will behave like a cantilever but with flexible sup-
port, the middle piece will rotate rigidly while the other end piece will
remain immobile as for example in figures 1.91a, b and c. When the point
force is in the middle piece (ie. on the span between the internal hinges)
then the middle piece will behave like a simply supported beam subject
to that point force but whose supports are subsequently moved to match
the deflection of the internal hinges. In that case, both end pieces will be-
have like cantilevers with flexible supports and a point force applied at
their edges. Again, the maximum deflection of a simply supported beam
is generally much less than that of a cantilever of comparable length
but with fixed support. That is why the separation between the inter-
nal hinges must be relatively large compared to either of the end pieces
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in order for the deflection of the middle portion to appear significant as
demonstrated by the examples in figures 1.91d, e and f. In some cases,
the relative deformation of the middle piece might be so small that it
appears almost like a straight line.
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Figure 1.91. Examples of the deformations of a beam with two internal hinges
loaded by a uniform load and attached to passive structures on both ends.

The shape of the bending moment diagrams of a loaded beam with
two internal hinges loaded by a point force load and attached to passive
structures on both ends depends on the location of the point force. When
the point force is on either end piece (ie. piece of the member from an
end to its nearest internal hinge) then the moment diagram is a straight
line varying from a maximum at the end of the end pieces that is loaded
to a value of zero at the location of the point force; the rest of the beam
from the point force to the other end has a bending moment diagram
which is identically zero. Examples of this are shown in figures 1.92a,
b and c. When the point force is in the middle piece of the beam then
the bending moment diagram has the shape of a broken straight line
with a maximum at the location of the point force and passing through
zero at the internal hinges. Examples of this are shown in figures 1.92d,
e and f. The maximum positive moment always occurs at the location of
the point force and has a value of P (xF − xHL) (xHR − xF ) / (xHR − xHL)
where ‘P ’ is the magnitude of the point force, ‘xF ’ is the coordinate of the
point force and ‘xHL’ and ‘xHR’ are the coordinates of the left and right
internal hinges respectively.
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Figure 1.92. Bending moment diagrams of the beams shown in figure 1.91.

1.12 Beam with One Internal Hinge,
a Moment Applied at One End
and Resisting at the Other

In this section, we will discuss the effect of one internal hinge in a beam
on the analysis of continuous beams or frames. As before, we will divide
the discussion into two parts: i) when the member is acting as part of
a passive structure as shown in figure 1.93 and ii) when the member
is attached on both ends to passive structures while being loaded over
its span. By considering these two cases, we can then use the methods
developed previously to do an approximate analysis for any structure
containing one or more members each having one internal hinge.

To study the member having one internal hinges as part of a passive
structure, we consider it under the conditions shown in figure 1.93. The
figure shows an internal hinge at a distance ‘xH ’ from the near end, an
applied moment Mnear at the near (or left) end and a rotary spring with
stiffness factor ‘k’ at the other. This beam is statically determinate in that
the reactions, shear force and bending moments can all be determined by
using only statics. Using statics, we can determine the carry-over factor
for moments which is given by:

−Mfar/Mnear = (L− xH) /xH (1.8)

Note that the carry-over factor for moments is independent of the stiff-
ness factor ‘k’ or of any deformational properties of the beam such as
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Figure 1.93. A beam with one internal hinge considered as part of a passive
structure.

Young’s modulus. This carry-over factor may also be determined by
using similar triangles while knowing that the moment diagram is a
straight line that must pass through the location of the internal hinge
and whose value at the near end isMnear. The resulting formula for carry-
over factor is peculiar in that it has ‘xH ’ as a denominator and this may
take the value zero. This means that the carry-over factor tends to infin-
ity as the internal hinge approaches the near end. If that happens, then
any moment applied at the near end will be infinitely magnified at the
far end. The reason this happens is as follows. Consider that we apply a
moment Mnear at the near end. Using a free body diagram of the piece of
the beam from the near end to the internal hinge, we can determine that
the applied moment must be balanced by a shear force multiplied by the
length of that piece which is ‘xH .’ As ‘xH ’ decreases and the applied mo-
ment remains fixed then the shear force must increase indefinitely so that
the product of the shear times ‘xH ’ remains equal to Mnear. This indefi-
nitely increasing shear force acts like an applied force at the tip of a can-
tilever on the remaining piece of the member and hence the moment at
the rotary spring must be the product of an indefinitely increasing shear
force multiplied by ‘L − xH .’ This gives an indefinitely large resisting
moment at the spring end. Of course, there are physical and geometrical
limitations to this effect but it is still possible to get highly magnified re-
sisting moments at the far end by placing the internal hinge very close to
the near end. Note that this effect does not exist if the the internal hinge
is exactly at the near end because the applied moment will then be ap-
plied at a continous beam with no internal hinges as shown in figure 1.11
and such a beam always has a carry-over factor less than 0.5.

In addition to the carry over factor, we need to know the near end
rotary stiffness in order to determine the stiffness factor of a member
with one internal hinge that is acting passively and attached to another
member such as in figure 1.95. We also need this stiffness in order to
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distribute an applied moment at a node that is connected to multiple
members when one or more of these members has one internal hinge as
in figure 1.96. The near end rotary stiffness factor is given by:

Mnear

θnear 4EI/L
=

3k x2
H

(3 + 4k)L2 − 6(L+ 2kL)xH + 3(1 + 4k)x2
H

(1.9)

For any location of the internal hinge, this stiffness factor is always be-
tween 0 and (3 + 4k)/(4 + 4k) ≤ 1. The minimum near end stiffness
factor of zero is obtained when the internal hinge is infinitesimally close
to the near end while the maximum stiffness factor is obtained when
the internal hinge is at the inflection point of a beam with no internal
hinges but with the same spring at the far end. When the internal hinge
is at the far end then the near end stiffness factor is always 0.75 because
the beam becomes effectively freely hinged at the far end. Also, when
xH > (3+4k)/(3+8k), then the near end stiffness factor is always greater
or equal to 0.75. In practice, we can use this as follows. When the stiff-
ness factor ‘k’ is greater or equal to 0.75 then as long as the internal hinge
is within L/3 (ie. one third the length) away from the spring end then
we can take the near end stiffness factor to be approximately 1 instead of
some value between 0.75 and 1 which, as was seen in previous examples,
leads to good approximate results.

The formula for the near end stiffness factor 1.9 is relatively complex
and so we will present it graphically. Figure 1.94 shows a contour plot
of the normalized near end stiffness factor. This figure shows contours
of the near end stiffness factor given by formula 1.9 divided by the near
end stiffness factor of an equivalent beam but with no internal hinge.
We note that this normalized stiffness factor must be 1 when the internal
hinge is located at the coresponding location of the inflection point in a
beam with no internal hinge. The stiffness factor decreases as the internal
hinge approaches the near end and increases as the stiffness factor of the
far end (ie. ‘k’) increases.

Having discussed the near end stiffness factor, we note that as the in-
ternal hinge gets closer to the near end, the near end stiffness factor tends
to zero while the carry-over factor for the moment at the far end tends to
infinity. If we have a structure as shown in figure 1.95, then the moment
at B depends on the near end stiffness factor of member BC while the mo-
ment at C is the product of the moment at B multiplied by the carry-over
factor for moments of member BC. It is then natural to ask which has the
stronger effect, the stiffness factor at the near end or the carry-over factor
for moments? If we multiply the near end stiffness factor given in for-
mula 1.9 by the carry-over factor given in formula 1.8 and we consider
the limit as the internal hinge approaches the near end then we find that
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Figure 1.94. Contours of the normalized near end stiffness factor for the beam
shown in figure 1.93.

the limit is zero. In other words, in figure 1.95, the moment at B and at C
will both tend to zero as the internal hinge approaches node B.

Now we again consider the continuous beam shown in figure 1.95
and consider what can be the worst effect of having an internal hinge
on the moment at C. Our concern is of course with the possibly large
carry-over factor for moments in member BC due to the presence of the
internal hinge. Therefore, we ask where should we locate the internal
hinge so that either the moment at B or at C is a maximum. The mo-
ment at B is a maximum when the rotary stiffness at B is a maxi-
mum and this occurs when the internal hinge is placed at the inflection
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Mapplied A
B

C

Figure 1.95. Example of a beam with one internal hinge acting as a passive
structure in a continuous beam.
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point of member BC if that member had no internal hinges. The mo-
ment at C is a maximum when the location of the internal hinge is at
xH ≈ (3 + 5k)L/(3 + 9k) (maximum error < 1.6%) and the maximum
value is equal to

(
3 + 4k +

√
9 + 36k + 32k2

)/
(6+10k) times larger than

for a similar beam but with no internal hinge. This last magnification fac-
tor is always less than about 1.066. Therefore, we conclude that no matter
where we place the internal hinge in member BC, the moment at C can-
not be larger than about 6.6% what it would be if member BC had no
internal hinge. If the length of AB is allowed to vary from 0 to 10 times
the length of member BC then the maximum increase in the moment at C
cannot be larger than about 32.5% and occurs when the length of mem-
ber AB is 10 times that of BC. From this we deduce that when a member
with one internal hinge is acting as a passive member and is attached
to other passive members on the left and right then the transmitted mo-
ment across the member will, in general, not be much higher but may be
much less than if that member had no internal hinge.

If a member with an internal hinge is acting passively but has an
active member attached at one end then the situation is different then
when both sides have passive members. As an example, we consider the
structure shown in figure 1.96 where a uniform load is applied on mem-
ber DB which is then equivalent to having an applied momentMapplied on
the passive structure ABC. What is then the largest bending moment in
member BC at node B and and at node C? The bending moment at node B
on member BC is obtained by distributing the applied moment on the
two members AB and BC according to their relative stiffness or stiffness
factor at B. Specifically, if we call the stiffness factor of member BC at B to
be kBC (given by formula 1.9) and the ratio β = (EICL) / (EILC ) then the
bending moment at node B in member BC equals Mapplied kBC/ (kBC + β).
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Figure 1.96. Example of a beam with one internal hinge attached to another
member with an external moment applied at the common node.
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Therefore, the largest bending moment at B in member BC is obtained
when kBC is maximum and this occurs when the internal hinge is placed
at the inflection point of member BC if that member had no internal
hinges. By multiplying the bending moment at B in member BC by the
carry-over factor for moments given in formula 1.8, we get the bend-
ing moment at node C which is then given by Mapplied kBC/ (kBC + β)
(L− xH) /xH . The largest bending moment at C in member BC can then
be obtained by maximizing this last expression and will next be dis-
cussed.

The results of optimizing the location of the internal hinge in mem-
ber BC of figure 1.96 in order to obtain the maximum moment at C are
shown in figure 1.97. In figure 1.97a, we show a contour plot of the max-
imum bending moment at C at the optimized location of the internal
hinge divided by the bending moment at C that would have been ob-
tained if there was no internal hinge in member BC. This magnification
factor is generally large and increases indefinitely as the rotary stiffness
of the column at node B decreases (ie. as β decreases). For example, when
the column length, Young’s modulus and moment of inertia of the col-
umn is the same as that of the beam (ie. β = 1) and the stiffness factor
k = 1, then the magnification factor is about 2.25 and the corresponding
location of the internal hinge is at about 0.5L from B but when β = 0.1
(much lower column rotational stiffness at B) then the magnification

1.8

2

2.4
3

1 2 3 4 5 6 7 8 9 10
Β0.

0.5

1.

1.5

2.

2.5

3.

3.5

4.

k

Countours of HMCBLwith hinge�HMCBLno hinge

(a)

0.4 0.48
0.5

0.52

0.54

0.56

0.6
0.65

1 2 3 4 5 6 7 8 9 10
Β0.

0.5

1.

1.5

2.

2.5

3.

3.5

4.

k

Countours of xH�L at maximum

(b)

Figure 1.97. Results of optimizing the location of the internal hinge in figure 1.96
to obtain the largest bending moment at C.
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factor is about 4.36 and the internal hinge is at about 0.688L from B. The
location of the internal hinge that gives the worst case moment at C is
shown in a contour plot in figure 1.97b. These locations are always closer
to the node B than the location of the inflection point if the beam had no
internal hinge.

For sketching purposes, we give some examples of the deformed
shape of figure 1.93 for various specific locations of the internal hinge
and various values of the stiffness factor ‘k.’ We note that when the in-
ternal hinge is closer to the spring than the location of an inflection point
that would be present in a similar beam but with no internal hinge then
there is a kink (ie. sudden change in angle) at the internal hinge forming a
convex angle relative to the side containing the chord line (ie. the straight
line joining the end points) as seen in figure 1.98a, d, e and f. Otherwise,
the kink forms a reflex angle as seen in figure 1.98c. When the internal
hinge is exactly at the location of the infection point of the similar beam
but with no internal hinge then the deformation is continuous at the lo-
cation of the internal hinge as seen in figure 1.98b.

The bending moment diagrams corresponding to the cases shown in
figure 1.98 are shown in figure 1.99. These are all simple straight lines
passing through the internal hinge and whose values at the near end
equals the applied (counterclockwise) moment. Note that the spring stiff-
ness factor at the right end has no effect on the bending moment diagram
as seen by comparing figures 1.99a, b and c or by comparing figures 1.99d
and e. Finally, figure 1.99 illustrates a carry-over factor for the moment
that is greater than one and must always occur when the internal hinge
is closer to the end where the moment is applied.
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Figure 1.98. Example of deformed shapes for the beam shown in figure 1.93.
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Figure 1.99. Moment diagrams corresponding to the beams shown in figure 1.98.

1.13 Beam with One Internal Hinge
and a Uniform Load

We now consider the case when a member with one internal hinge is
attached on both ends to passive structures while being loaded over its
span. In order for the member to be statically stable, at least one of the
stiffness factors at the ends must be non-zero. When this condition ap-
plies, then in general, such a loaded member has one inflection point.
When we identify this inflection point then we can use statics in a man-
ner similar to that shown in figure 1.30 or in figure 1.58 with one internal
hinge replacing the role of the second inflection point. In addition, for-
mulas 1.5 or formula 1.7 may then be used to determine the maximum
positive moment and the end moments for a uniform load and a point
force load respectively with the location of the internal hinge replacing
the location of the second inflection point. We will start by discussing the
case of a uniform load.

For a uniform load on a beam with one internal hinge whose coor-
dinate is ‘xH ,’ beam length ‘L’ and left and right stiffness factors ‘kL’
and ‘kR’ respectively, there is one inflection point located at ‘xI ’ that is
given by:

xI =
kL
(
3 (L− xH) 2 + kR

(
3L2 − 8LxH + 6x2

H

))
3kR x2

H + kL

(
3 (L− xH) 2 + 4kR

(
L2 + 3xH (−L+ xH)

))L (1.10)

This formula is somewhat complex and involves three non-trivial
independent parameters all of which have non-negligible influence. We
note that when other factors are fixed, the inflection point gets closer to
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an end whenever the stiffness factor of that end decreases and gets far-
ther from an end as the internal hinge gets closer to that end. We can
also provide a guide in some particular but common cases. If the inter-
nal hinge is within 0.25L from one end and the stiffness factor at that
end is greater than 0.75, then formula 1.4 provides a good approxima-
tion for the location of the inflection point near the other end. Using that
formula, the maximum error in locating the inflection point is less than
about 0.083L and generally significantly better.

Concerning the bending moments in a beam with one internal hinge,
the maximum possible positive moment is 9(1 + k)2qL2/

(
8(3 + 4k)2

)
where ‘q’ is the magnitude of the uniform load, ‘k’ is the stiffness factor
at the end farthest from the internal hinge and ‘L’ is the length of the
beam. This maximum occurs when the internal hinge is at one end of
the beam. When the stiffness factor at the end farthest from the internal
hinge is zero then we get a simply supported beam and a maximum
positive moment of qL2

/
8.

The maximum possible negative moment is qL2
/

2 which is 4 times
what is possible without the internal hinge. This maximum negative
bending moment occurs when one end has zero stiffness factor and the
internal hinge is infinitesimally close to that end. This effectively makes
the rest of the beam into a cantilever but with flexible support. This result
is similar to what was discussed for the beam with two internal hinges. If
neither end has zero stiffness factor then the location of the internal hinge
which gives the largest negative end moment is given by a complex ex-
pression. The results for the maximum end moment at the left end and
the corresponding location of the internal hinge are shown in figure 1.100
and examples of configurations that give the maximum moment at the
left end for some choices of the stiffness factors are shown in figure 1.101.

For the purposes of sketching, we now present examples of the de-
formed shape of a uniformly loaded beam with one internal hinge and
passive structures attached at either end. These examples are shown in
figure 1.102. We note that when the location of the internal hinge does
not correspond to a location of an inflection point when the beam has
no internal hinges then there will be a kink (ie. sudden change in angle)
in the deformed shape as seen if figures 1.102b, c, d, e and f. The kink
forms a convex angle relative to the side containing the chord line (ie. the
straight line joining the end points) whenever the internal hinge is closer
to its nearest end than the inflection point that would have been present
without the internal hinge as seen in figures 1.102b, c and f. Otherwise,
the kink forms a reflex angle as seen in figures 1.102d and e. When the
internal hinge is exactly at the location of the infection point of a similar
beam but with no internal hinge then the deformation is continuous at
the location of the internal hinge as seen in figure 1.102a.
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Figure 1.100. Maximum moment at the left end and corresponding locations of
the internal hinge for a uniformly loaded beam as a function of the end stiffness
factors.
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Figure 1.101. Locations of the internal hinge that give the maximum end moment
at the left end for specific choices of the end stiffness factors when the beam is
loaded by a uniform load.
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Figure 1.102. Examples of deformed shapes for a uniformly loaded beam with
one internal hinge and passive structures attached at either end.

The bending moment diagrams corresponding to the cases shown in
figure 1.102 are shown in figure 1.103. These are all parabolas passing
through zero at the internal hinge and the inflection point. The location
of the maximum positive bending moment always occurs midway be-
tween the internal hinge and the inflection point. The values of the mo-
ments at either end and at the maximum positive bending moment may
all be calculated by statics using formulas 1.5 with the location of the
internal hinge calculated using formula 1.10 (or otherwise estimated) re-
placing the location of the second inflection point in that formula.
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Figure 1.103. Moment diagrams corresponding to the beams shown in
figure 1.102.
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1.14 Beam with One Internal Hinge
and a Point Force

For a point force load on a beam at location ‘xF ’ with one internal hinge
whose coordinate is ‘xH ,’ beam length ‘L’ and left and right stiffness
factors ‘kL’ and ‘kR’ respectively, there is one inflection point located at
‘xI ’ that is given by:

xI =



kL xF

×
(

(L3(3+4kR)+2kRxF (xF−3xH)xH

z1

+
3L(1+4kR)x2

H−6L2(xH+2kRxH))
z1

) xF ≤ xH

3LkR xF x
2
H+kL(L3(3+4kR)(xF−xH))

z2

−kL(2kRx
2
F (xF−3xH)xH)
z2

−kL(3L2(1+2kR)(xF−xH)xH)
z2

xF > xH

(1.11)

where

z1 = 3LkR xH (−xF + xH)

+ kL

(
L3 (3 + 4kR) + 2kRx

2
F (xF − 3xH)

+ 3L (1 + 4kR)x2
H − 6L2 (xH + 2kRxH)

)
z2 = 3LkR x

2
H

+ kL

(
−2kRx

2
F (xF − 3xH) + 3L2 (1 + 2kR) (xF − xH)

− 3L (1 + 4kR) (xF − xH)xH

)
This formula is somewhat complex and involves four non-trivial in-

dependent parameters all of which have non-negligible influence. We
note that when other factors are fixed, the inflection point gets closer to
an end whenever the stiffness factor of that end decreases and gets far-
ther from an end as the internal hinge gets closer to that end. We can
also provide a guide in some particular but common cases. If the inter-
nal hinge is within 0.25L from one end whose stiffness factor is greater
than 0.75 and the point force is within 0.6L from the other end, then
formula 1.6 provides a good approximation for the location of the inflec-
tion point near the other end. Using that formula, the maximum error in
locating the inflection point is less than about 0.1L and generally signifi-
cantly better.
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Concerning the bending moments in a beam with one internal hinge,
the maximum positive moment is always at the location of the point
force. The maximum possible positive moment for any location of the in-
ternal hinge and any values of the spring stiffness factors is PL/4 where
‘P ’ is the magnitude of the point force load and ‘L’ is the length of the
beam. This maximum occurs when the internal hinge is at one end of the
beam and the stiffness factor at the end farthest from the internal hinge is
zero. When both spring stiffness factors are non-zero, then the maximum
positive moment is well approximated by PL(1+k)/(4+6k) where ‘k’ is
the stiffness factor of the end opposite to the internal hinge and the dis-
tance of the point force from the internal hinge at which this maximum
positive moment occurs is well approximated by (1 + k)/(2 + 2.7k).

The maximum possible negative moment is PL which is 4 times
what is possible without the internal hinge. This maximum negative
bending moment occurs when one end has zero stiffness factor and the
internal hinge is infinitesimally close to that end. This effectively makes
the rest of the beam into a cantilever but with flexible support. This result
is similar to what was discussed for the beam with two internal hinges.
If neither end has zero stiffness factor then the location of the internal
hinge which gives the largest negative end moment occurs when the in-
ternal hinge is infinitesimally or very close to the end with the smaller
stiffness factor and the point force is at approximately 0.423L distance
from the other end. The location at which the point force gives the maxi-
mum negative moment is independent of the stiffness factors. However,
the magnitude of the maximum negative moment depends on the larger
of the stiffness factors at the two ends. Specifically, this maximum nega-
tive moment is approximately given by PL 4k/

(√
3(9 + 12k)

)
where ‘P ’

is the magnitude of the point force, ‘L’ is the length of the beam and ‘k’
is the maximum of the left and right stiffness factors.

For the purposes of sketching, we now present examples of the de-
formed shape of a point force loaded beam with one internal hinge and
passive structures attached at either end. These examples are shown in
figure 1.104 and 1.106. We first consider the case when the point force is
in the middle. We note that when the location of the internal hinge does
not correspond to a location of an inflection point when the beam has
no internal hinges then there will be a kink (ie. sudden change in angle)
in the deformed shape as seen if figures 1.104b, c, d, e and f. The kink
forms a convex angle relative to the side containing the chord line (ie. the
straight line joining the end points) whenever the internal hinge is closer
to its nearest end than the inflection point that would have been present
without the internal hinge as seen in figures 1.104b, c, e and f. Otherwise,
the kink forms a reflex angle as seen in figures 1.104d. When the internal
hinge is exactly at the location of the infection point of a similar beam but
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Figure 1.104. Examples of deformed shapes for a point force loaded beam with
one internal hinge and passive structures attached at either end.

with no internal hinge then the deformation is continuous at the location
of the internal hinge as seen in figure 1.104a. An additional observation
is that the internal hinge divides the beam into two pieces. The piece that
is free of the point force behaves like a cantilever with flexible support
unless the stiffness factor on its side is zero (ie. regular hinge) and then
it simply rotates rigidly as seen in figure 1.104b and c. The piece that has
the point force will, in general, have both positive and negative curva-
tures but a maximum displacement occurs in that hinge only if that piece
is signficantly longer than the other as seen in figures 1.104a and d. This
is due to the much higher flexibility of a cantilever relative to a beam
with some type of support at each end.

The bending moment diagrams corresponding to the cases shown in
figure 1.104 are shown in figure 1.105. These are all piecewise straight
lines passing through zero at the internal hinge and, when it exists,
the inflection point. The location of the maximum positive bending mo-
ment, if present, always occurs at the location of the point force as in
figures 1.105a, d and f. In some cases, there is no maximum positive mo-
ment because all the bending moments are negative or zero as seen in
figure 1.105b, c and e. This occurs when the piece that is free of the point
force has a zero stiffness factor at its end or when the point force is ap-
plied exactly at the internal hinge. When the last case occurs then both
sides behave like cantilevers with flexible support and the shape always
looks similar to figure 1.105e except that the relative magnitudes at the
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Figure 1.105. Moment diagrams corresponding to the beams shown in fig-
ure 1.104.

ends may differ. The values of the moments at either end and at the max-
imum positive bending moment may all be calculated by statics using
formulas 1.7 with the location of the internal hinge calculated using for-
mula 1.11 (or otherwise estimated) replacing the location of the second
inflection point in that formula.

The case when the point force is nearer to one end is similar to the
case when the point force is at the middle. Again, we note that when
the location of the internal hinge does not correspond to a location of
an inflection point when the beam has no internal hinges then there will
be a kink (ie. sudden change in angle) in the deformed shape as seen if
figures 1.106a, b, c, e and f. The kink forms a convex angle relative to the
side containing the chord line (ie. the straight line joining the end points)
whenever the internal hinge is closer to its nearest end than the inflection
point that would have been present without the internal hinge as seen in
figures 1.106a, b, c and e. Otherwise, the kink forms a reflex angle as
seen in figure 1.106f. When the internal hinge is exactly at the location of
the infection point of a similar beam but with no internal hinge then the
deformation is continuous at the location of the internal hinge as seen in
figure 1.106d. Again as in the case when the point force is in the middle,
the piece of the beam from the internal hinge to a support that is free of
the point force behaves like a cantilever with flexible support unless the
stiffness factor on its side is zero (ie. regular hinge) and then it simply
rotates rigidly as seen in figure 1.106a, b and c. The piece that has the
point force will, in general, have both positive and negative curvatures
but a maximum displacement occurs in that hinge only if that piece is
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Figure 1.106. Examples of deformed shapes for a point force loaded beam with
one internal hinge and passive structures attached at either end.

signficantly longer than the other as in figures 1.106d and f. This is due
to the much higher flexibility of a cantilever relative to a beam with some
type of support at each end.

Finally, the bending moment diagrams corresponding to the cases
shown in figure 1.106 are shown in figure 1.107. These are all piecewise
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Figure 1.107. Moment diagrams corresponding to the beams shown in fig-
ure 1.106.
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straight lines passing through zero at the internal hinge and, when it ex-
ists, the inflection point. The location of the maximum positive bending
moment, if present, always occurs at the location of the point force as
in figures 1.105d, e and f. In some cases, there is no maximum positive
moment because all the bending moments are negative or zero as seen
in figure 1.105a, b and c. This occurs when the piece that is free of the
point force has a zero stiffness factor at its end or when the point force
is applied exactly at the internal hinge. When the last case occurs then
both sides behave like cantilevers with flexible support and the shape
always looks similar to figure 1.107e except that the relative magnitudes
at the ends may differ. The values of the moments at either end and at
the maximum positive bending moment may all be calculated by stat-
ics using formulas 1.7 with the location of the internal hinge calculated
using formula 1.11 (or otherwise estimated) replacing the location of the
second inflection point in that formula.



Chapter 2

Approximate Analysis of
Frames with Sidesway

2.1 The Cantilever and the
Single Floor Portal Frame

In previous chapters, we have analyzed structures where the chord
(ie. the line joining end points or nodes) of every member remains either
at the same or at a parallel location relative to its original position. We say
that such structures have no sidesway. When a structure has sidesway,
we will consider the effect of applying transverse point forces at only the
nodes of members (ie. ends of members) with the effect of other loads
added later through superposition. By using superposition it is possible
to include the effect of other loads that may be present.

The approximate analysis of structures with sidesway depends on
a careful study of the stiffness of individual members relative to trans-
verse motion or sidesway. We will call this stiffness the shear stiffness in
contrast to the rotary stiffness that we considered previously. There are
several ways that shear stiffness may be defined. For members that are
free of transverse loads on their span, we define the shear stiffness as the
shear force in the member divided by the difference in transverse motion
between the ends of the member. This definition is consistent because
the shear force is uniform in such a member. We adopt this definition
because it is especially useful in analyzing buildings subject to sidesway.
The reason is that the shear forces in columns of the same floor are then
proportional to their respective shear stiffnesses. This means that by de-
termining or estimating the shear stiffness of columns, we can then de-
termine the shear force in them. By estimating the shear force in columns,
we can proceed to calculate or estimate end moments of all the members
in a structure subject to sidesway. Therefore, we will next study what
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affects the shear stiffness of members and then proceed to develop an
overall method of analyzing structures subject to sidesway.

We begin our study of shear stiffness by considering a cantiliver
attached to some passive structure and subject to a concentrated force
and moment at its end. An example of such a case is the one shown in
figure 2.1a. For such a cantiliver, the effect of the rest of the structure is
a rotary spring at the connection as shown in figure 2.1b. In the limit
when the connected passive structure is relatively very stiff, its effect
may be modeled as a fixed end as shown in figure 2.1c. A cantilever with
rotary spring supports is the most transversely flexible of any member
connected to a passive structure (assuming no transverse flexibility at the
connections) and can thus often be used in estimating the lower bound
on the shear stiffness of a member. The deflection ‘δ’ at the tip of such a
cantiliver is given by:

δ =

(
1

2
+

1

4k

)
L2

EI
Mapp +

(
1

3
+

1

4k

)
L2

EI
PL (2.1)

where ‘L’ is the length of the cantilever, ‘E’ is Young’s modulus, ‘I’ is
the moment of inertia and ‘k’ is the stiffness factor of the rotary spring
(see figure 2.1b). Note that this is the sum of the deflection of a cantilever
with a fixed end and the deflection of a rigid bar attached to a rotary
spring with stiffness k × 4EI/L. From this deflection, we can infer the
shear stiffness to be:

ksh =
k(

(6k + 3)
Mapp

PL
+ (4k + 3)

) 12EI

L3
(2.2)

The above shear stiffness is an apparent stiffness which depends on the
ratio of applied moment to applied transverse force times the member’s
length. This is important in later discussions but to highlight the role of
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Figure 2.1. Cantiliver attached to a rotationally flexible structure and the limit of
a fixed end.
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the passive structure on the shear stiffness we set the applied moment
‘Mapp’ to zero. The resulting shear stiffness is given by:

ksh,P only =
k

(4k + 3)

12EI

L3
(2.3)

This shear stiffness is sensitive to the rotary stiffness, especially at stiff-
ness factors between 0 and 3 which is expected to occur in practice for
cantilevers. At a stiffness factor of 1, 2 and 3, the tip deflection is about
75%, 37% and 25% more than for a fixed end. Therefore, a careful con-
sideration of the role of the connected members is important in approxi-
mately estimating the deflection of cantilevers.

As noted above, the shear stiffness given by formula 2.2 depends on
the applied moment. This means that our definition of shear stiffness re-
quires that we know the applied moment or at least that we estimate its
value or influence. In particular, we can have an apparent shear stiffness
that is either smaller or larger than when the applied force is acting alone.
Specifically the shear stiffness is smaller when the applied moment is
acting with the applied force and larger otherwise. It is even possible to
get infinite shear stiffness as well as negative shear stiffness. The infinite
and negative stiffnesses occur when the applied moment, if acting alone,
causes an opposing tip displacement that is either equal to or greater
than, respectively, the one produced by the applied force acting alone.
While infinite and negative stiffness seems to be an undesirable implica-
tion of our definition of shear stiffness, this definition along with the role
of the applied moment is crucial in understanding and in approximately
analyzing portals and multistory buildings as will be discussed next.

Consider the column shown in figure 2.2. Aside from the shear in the
beam ‘Vbeam,’ the column is similar to the cantilever shown in figure 2.1c;
to see this rotate the page 90◦ after you isolate the forces on the column.

−−−−−−−−−−−−→
isolating left column

Vcolumn
Mbeam

Vbeam

Figure 2.2. Portal frame and the role of the beam’s resisting moment.
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When the deformations are small, the shear in the beam only causes an
axial force in the column. Also, the axial force in the beam has already
been included in the shear in the column ‘Vcolumn.’ Therefore, the appar-
ent shear stiffness of the column is given by formula 2.2 with ‘k’ → ∞,
‘P ’ equal to the shear in the column ‘Vcolumn’ and the applied moment
‘Mapp’ equal to the moment from the beam at the connection ‘Mbeam.’
This moment ‘Mbeam’ acts to give a deformation in the opposite direction
as the shear in the column ‘Vcolumn.’ Therefore, the shear stiffness of the
column will be larger with the beam than without it. Using equation 2.2
with k →∞, the column shear stiffness is given by:

ksh,col =
1(

6 Mbeam
Vcolumn×Lcolumn

+ 4
) 12EIcolumn

L3
column

(2.4)

When the beam is extremely flexible, the moment in the beam is zero
(ie. Mbeam = 0) and we find from formula 2.4 that the column shear stiff-
ness is that of a cantilever which equals ‘3EIcolumn/L

3
column.’ By contrast,

when the beam is infinitely stiff it prevents all rotation at the connection
with the columns. In that case, both ends of the column cannot rotate
and must, by symmetry, have the same bending moment. Since by stat-
ics, the sum of the bending moments at the ends of a member with no
loads on its span must equal the shear times the length of the member,
we determine that the bending moment at the ends of each column will
be Mcolumn = (1/2) (Vcolumn × Lcolumn). By moment equilibrium (ie. stat-
ics) at the connection between the column and the beam, we deduce that
Mbeam = −Mcolumn = −(1/2) (Vcolumn × Lcolumn). With this value of mo-
ment in the beam, we use formula 2.4 to determine that the column shear
stiffness equals ‘12EIcolumn/L

3
column.’ This stiffness is four times the stiff-

ness when the beam is extremely flexible. This shows that most of the
shear stiffness of a portal is developed due to existence of the beams. For
the passive portal frame shown in figure 2.2, the resisting moment de-
veloped by the beam is between −1/2 and 0 so that the shear stiffness of
each column is between one and four times the shear stiffness of a can-
tilever. Although this provides valuable insight into the role of beams
in developing transverse stiffness in framed structures, we will prefer to
consider beams as providing rotary stiffness to the columns rather than
resisting moments in order to arrive at an effective approximate analysis.
The reason is that it is easier to estimate a rotary stiffness (as described
previously) rather than to estimate a resisting moment and we need to
estimate some parameters or variables in order to do an approximate
analysis.
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Figure 2.3. Effect of a beam attached to a column is modeled as a rotary stiffness.

We now study the stiffness of a column that is hinged or fixed at the
lower end and attached to a beam at the top as shown in figure 2.3. Of
course, the rotary stiffness of a beam or beams develop a resisting mo-
ment which, for a fixed lower support, we can use formula 2.4 to deter-
mine the column’s shear stiffness. However, we will develop a formula
for the shear stiffness of a column in terms of the rotary stiffness factor of
one or more attached beams. This rotary stiffness comes about when we
remove an attached beam and replace it by its rotary stiffness as shown
in figures 2.3b and e for the hinge and fixed supported columns respec-
tively. In the limit of a very stiff beam, the rotary spring becomes equiva-
lent to a sliding but non-rotating fixed end as shown in figures 2.3c and f.
Here the rotary stiffness factor ‘k’ is calculated in the same way as in the
framed structures with no sidesway. In the example of figure 2.3, the ro-
tatry stiffness factor ‘k’ has the exact value of ( (EIbeam/Lbeam)/ (EI/L)).
The shear stiffnesses for the column in figure 2.3b and e are given by:

ksh =


4k

(3+4k)
3EI
L3 hinge support (a)

(1+4k)
(4+4k)

12EI
L3 fixed support (b)

0 roller support (c)

(2.5)
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The above shear stiffnesses are seen to be sensitive to the stiffness of the
attached beam which increase with the stiffness of the attached beam.
In particular, the column with the hinged end of figure 2.3a or equiv-
alently 2.3b has zero stiffness if the beam has zero stiffness and hence
depends on the beam’s stiffness to provide any shear resistance. For
the column with the fixed end of figure 2.3b, formula 2.5 indicates that
the shear stiffness varies by a factor of 4 from 3EI

/
L3 to 12EI

/
L3 as

the stiffness of the attached beam varies from 0 to infinity. Note that if
more than one beam is attached to the column then this result still ap-
plies with the stiffness factor being the sum of the stiffness factors of
the attached beams. Sample values for the shear stiffness for these two
cases are given in table 2.1. As will be discussed later, the shear stiff-
nesses of formulas 2.5 are sufficient to approximately analyze any multi-
span, single floor portal subject to sidesway. However, to get good ac-
curacy we must do a good estimate of the stiffness factors due to the
beams.

Table 2.1. Shear Stiffness of a Column that is Hinged
or Fixed on One End and with Rotary Spring with
Stiffness Factor ‘k’ on Other End.

kshear/
(
EI
/
L3
)

kshear/
(
EI
/
L3
)

k (hinged end) (fixed end)

0.00 0.00 3.00
0.50 1.20 6.00
0.75 1.50 6.86
1.00 1.71 7.50
1.50 2.00 8.40
2.00 2.18 9.00
3.00 2.40 9.75
4.00 2.53 10.20
5.00 2.61 10.50
6.00 2.67 10.71
∞ 3.00 12.00

In addition to the shear stiffness we will also need to calculate the
end moments in the columns of figures 2.3a and d. We can express these
end moments in terms of the stiffness factors and the shear force in
the column. In addition, if needed, we can determine the location of
the inflection point either in terms of the end moments using a sim-
ple free-body-diagram or directly in terms of the stiffness factor of the
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beam or beams. The end moments and location of the inflection point
are given by:(

Minner top

Minner bottom

)
=

(
2k

1+4k

− (1+2k)
(1+4k)

)
PL (fixed end) (2.6a)

and (
Minner top

Minner bottom

)
=

(
1

0

)
PL (hinged end) (2.6b)

xI =
(1 + 2k)

(1 + 4k)
L (fixed end) (2.6c)

and
xI = 0 (or none) (hinged end) (2.6d)

where:

‘xI ’ is the location of the inflection point measured from the bottom and
‘L’ is the length of the column.

Minner top and Minner bottom are the inner moments at the ends of the col-
umn at the top and bottom respectively.

We consider Minner top and Minner bottom to be positive when counter-
clockwise and clockwise respectively in conformance with standard con-
ventions of bending moment diagrams.

Note that the difference between the bottom and top moment is al-
ways equal to the shear in the column multiplied by the length (ie. PL).
For a hinged support, there is no inflection point while for a fixed sup-
port, the inflection point occurs between ‘0.5L’ and ‘0.6L’ when the stiff-
ness factor is between 1 and ∞. Finally, for a roller support, the shear
force is zero and the bending moment is uniformly zero across the col-
umn. A roller support in a column is equivalent to having no column at
all in terms of shear stiffness.

While the structures shown in figure 2.3a and d are adequate for rep-
resenting the columns of single floor portals, the behavior of beams in a
portal are generally not passive. For example, in figure 2.4a, the existence
of a second column on the right exerts a clockwise moment on the right
end of the beam and this violates the assumption that the beam is act-
ing with passive resistance. However, because of symmetry, there is an
inflection point at the middle of the beam and this point remains at the
same level as the top of the columns. This means that the column on the
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⇔

P=1

L�2

(b)

Figure 2.4. Simple portal frame and effective equivalent length of an attached
passive beam.

left effectively sees a beam on a roller with half the length of the original
beam as indicated in figure 2.4b. By considering both the reduced effec-
tive length and the roller support, we conclude that the stiffness factor
of the attached beam is 1.5 times the stiffness factor of a passive mem-
ber that has the conditions of the ones shown in figures 2.3a and d. For
this reason, in the approximate method to be described in a later section,
we will magnify the stiffness factors of some of the beams connected to
columns by this 1.5 factor.

If we want to study the effective stiffness factors of attached beams
more carefully, we need to explicitly consider the effect of an active mo-
ment applied on the far end of an attached beam. Consider a simple por-
tal but with columns that may differ in their cross-sectional properties as
shown in figure 2.5a. The action of the left column on the beam may be
modeled as shown in figure 2.5b. Our aim is to determine the effective

P

EI

Lbeam

EIbeam

LEIc2

(a)

−−−−−−−−−−−−−−−→
beam apparent stiffness
relative to left column

Mapplied Mfar end

Lbeam

EIbeam

(b)

Figure 2.5. Effect of far end resisting moment on the apparent stiffness factors
of attached beams.
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rotary stiffness factor of such a beam relative to the left column when the
far end has a specified resisting moment ‘Mfar end.’ By solving the beam
problem shown in figure 2.5b, we can deduce:

kapparent =
3

4− 2
(
Mfar end/Mapplied

) (2.7a)

or

kapparent =
3 (xI/Lbeam)

6 (xI/Lbeam)− 2
(2.7b)

where ‘xI ’ is the distance of the inflection point from the left end.
We note that the apparent stiffness factor is 1 when the resisting

or far-end moment is half the applied one and this corresponds to a
non-rotating end at the right side as is the case in figures 2.3a and d.
Also the apparent stiffness factor is 1.5 when the ratio of far-end to ap-
plied moment is 1 which corresponds to the symmetry case considered
in figure 2.4a. Therefore, formula 2.7a allows us to model both passive
and non-passive resisting beams using a rotary spring as shown in fig-
ure 2.3e. However, for the purposes of doing an approximate analysis,
we note that at the beginning of an analysis the far-end to near-end ap-
plied moments in a beam are unknown and may be difficult to estimate.
By contrast, the geometry and approximate ratios of sectional properties
are either known or may be estimated and this allows us to estimate ro-
tary stiffness factors under the assumption of passive resisting beams.
For that reason, formula 2.7a is not very useful for approximate analy-
sis except if we intend to use an iterative approach. In an iterative ap-
proach, we start by assuming that the resisting beams are passive and
obtain initial estimates for the end moments in all beams using the ap-
proach outlined in the next section. With these estimated end moments,
we can use formula 2.7a to obtain updated estimates of the stiffness
factors for the beams and then proceed to do an updated approximate
analysis. This reanalysis may be done as many times as desired. How-
ever, this approach is not recommended because the added complexity
and effort of the iterative approach is generally not worth the improve-
ment in accuracy and the convergence properties of such an iterative
approach has not been fully studied. Instead of an iterative approach,
we recommend use of 2.7a as a guide to make better initial estimates
of the stiffness factor of attached beams. For that purpose, its is instruc-
tive to plot formulas 2.7a and 2.7b and these are shown in figures 2.6a
and 2.7b.

The results shown in figure 2.6a and b indicate several interest-
ing features. First, the effective rotary stiffness factor may be infinite
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Figure 2.6. Apparent stiffness factor for a member shown in figure 2.4b.

corresponding to a non-rotating end. This occurs when the far-end mo-
ment is twice the applied one or, equivalently, when the inflection point
is 1/3 times the length from the near end. Second, the effective rotary
stiffness factor may be negative when the far-end moment goes beyond
twice the near end one which causes the near-end to rotate in a sense that
is opposite to the applied moment. Both these effects may occur when the
ratio of shear stiffness between two adjacent columns is very large.
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Figure 2.7. Single story sidesway example used to illustrate ideas.

In the next section, we will use the above study of the cantilever and
portal and especially formula 2.5 to develop an effective approximate
method to analyze any single story multi-span building subject to a side
force. In subsequent sections, we will further study the response of a col-
umn subject to sidesway in order to develop an effective approximate
method for multi-story, multi-span buildings subject to side forces ap-
plied at the nodes.

2.2 Approximate Analysis of Single Floor
Frames Subject to a Horizontal Load

In the previous section, we have identified that formula 2.5 gives us the
shear stiffness of a column with either a fixed or a hinged lower support
and beams attached at the top that are characterized by an effective ro-
tary stiffness factor. We will use that formula to develop a method for
solving any single story multi-span building subject to a side force. The
outline of the method is as follows:

1. Start by estimating the effective rotary stiffness factors at the top of
each column.

2. Using the rotary stiffness factors, calculate the shear stiffness of each
column using formula 2.5 reproduced below:

ksh =


4k

(3+4k)
3EI
L3 hinge support

(1+4k)
(4+4k)

12EI
L3 fixed support

0 roller support

Using the shear stiffness of each column, calculate the shear force in
each column by dividing the net applied side force at that level over
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the columns in proportion to their shear stiffness. The net applied side
force at a level is the total of all side forces that occur anywhere above
the middle of the columns being considered.

3. Using formula 2.6, calculate the end moments and, optionally, the in-
flection point in each column.

4. Knowing the moment at the top end of each column, apply those mo-
ments as point moments on the nodes of the attached beams. Analyze
the resulting problem as a continuous beam with point moments on
the nodes but with no sidesway using the methods described previ-
ously.

In the rest of this section, we will discuss each of the steps of the
outline specified above using figure 2.7 as a specific example.

Estimating rotary stiffness factors of beams
We start by discussing how to estimate the rotary stiffness factors at the
top of each column. These factors are the sum of the stiffness factors of
the beams attached to the top of the columns. The difficulty in accurately
estimating these stiffness factors is due to the active nature of the beams.
By active we mean that both ends of the beam are acted upon by the
attached columns so that neither end behaves like a purely passive ro-
tary spring. In the estimation process, we will discuss a simple approach
that gives generally good results (< 15% error in shear forces) but the
errors in some cases may be more. A more careful estimation of the ef-
fective stiffness factor of the beams can give much more accurate results
(< 10%) but with more effort. Ideas on how to do a more careful estima-
tion will be discussed. However, we note that when the actual stiffness
factor is greater than 1 and 2 respectively then the maximum error in es-
timating the shear stiffness is about 42.9% and 27.3% respectively. Errors
in the shear stiffnesses in turn lead to less error in estimating the shear
forces in the columns due to the distribution process with all factors be-
ing less than one. Therefore, relatively large errors can only occur when
the stiffness factor at the top of a column is less than 1 which rarely oc-
curs in practical portals frames. In such cases, the large relative errors are
limited to the columns with low shear stiffness and these generally have
much lower shear forces and end moments than the other columns and
hence are less critical.

In the discussions, we will refer to the column under consideration
as the self-column and the beams and columns to the left and right of the
self column, if any, as the left beam, right beam, left column and right
column respectively as shown in figure 2.8.
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self column

left beam right beam

left colum right colum

Figure 2.8. Naming convention for a column where we require the stiffness factor
of the connected beams.

The stiffness factors may be estimated as follows:

stiffness factor k ≈∑
rigidly connected beams

(
fbeam × EIbeam at top/Lbeam at top

)
EIself column/Lself column

(2.8)

where: fbeam = 1.5.
In the above, the sum is taken over all beams that are rigidly con-

nected to the self column. A rigidly connected beam is a beam that does
not have an internal hinge at its connection with the self-column. In par-
ticular, if the self column has an internal hinge at its top then the stiff-
ness factor is zero for all the connected beams. The factor fbeam is taken
to be 1.5 because the inflection point in the beams is often near their
middle and in the previous section we saw that this gives an equivalent
rotational stiffness factor of 1.5 times the regular value.

In general, we get good results for the calculated shear forces in the
columns if we use formula 2.8 to estimate the stiffnes factors. However,
we can get a better approximation of the shear forces if we improve our
estimate of the stiffness factors. Some suggestions on getting better esti-
mates of stiffness factors include:

• If a beam is rigidly connected to the self column but has an internal
hinge at the other end then use fbeam = 0.75 for that beam.

• If a beam is rigidly connected to the self column and rigidly connected
to the neighboring column and the lower support of the self column
is a hinge but the neighboring column has a fixed support then use
fbeam =∞. This means that assume that the top of the self column has
a sliding support but allows no rotation (the stiffness factor→∞).
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• If a beam is rigidly connected to the self column and to the neighbor-
ing column and the lower support of the self column is fixed but the
neighboring column has a hinge or roller support then use fbeam = 1.

Using the simple formula 2.8, we can generate the stiffness factors at
the top of each column for the structure shown in figure 2.7. The result is
shown in table 2.2.

Table 2.2. Stiffness Factors at the Top of the Columns Shown in Figure 2.7.

Approximate analysis of a side loaded building

Preliminary calculations

Floor = 1

column 1 2 3 4 5

stiffness factor at top 3.000 4.083 5.417 0 0

stiffness factor at bottom ∞ 0 ∞ ∞ 0

Note that the stiffness factor of a column with a roller support at the
bottom is always 0.

Calculating shear stiffness and shear force
Once the stiffness factors of all the columns have been estimated, we can
directly calculate the shear stiffness of each column using formula 2.5.
This is organized and presented in the row titled “shear stiffness” in ta-
ble 2.3 with the total of the shear stiffness of all the columns shown in the
last column. Knowing the shear stiffness in the columns we can express
the shear force in each column as the shear stiffness times the sidesway
in that column. However, we note the following:

i) The difference between the sidesway of a column and its next neigh-
bor is the axial deformation of the beam between them.

ii) Axial deformations in beams are much smaller than the sidesway
bending deformations in columns. Therefore, we neglect the axial
deformations in beams.

These first two points imply that the sidesway of adjacent columns
are approximately the same.

iii) Since all columns in a portal are joined by beams and the sidesway
of adjacent columns are approximately the same then the sidesway
of all the columns in a portal are approximately the same.
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From the above, we conclude that the shear force in each column is
the shear stiffness of that column times a sidesway which is the same for
all the columns.

Next, we take a cut across all the columns at the bottom of the
columns to get the free body diagram shown in figure 2.9. From this free
body diagram and taking the sum of forces in the horizontal direction,
we deduce that the sum of the shear forces in all the columns equals
the total side forces applied above the cut; in the example of figure 2.7
and 2.9, the total is 8. Therefore, the total side forces equal the sum of the
shear stiffnesses multiplied by the sidesway.

P=8

A B C D E

F G H I J

V
AF

M
AF bot

V
BG

M
BG bot

V
CH

M
CH bot

V
DI

M
DI bot

V
EJ

M
EJ bot

Figure 2.9. Free body diagram (excluding vertical axial forces) of figure 2.7 by
taking cut just above the supports.

Symbolically, if we call the sidesway ∆, then we can express the ar-
gument described above symbolically as follows:

The total side forces equals the sum of the shear forces in the column:∑
(side forces above cut) =

∑
columns in floor

(shear force in column)

The sum of the shear forces is the sum of the shear stiffnesses multi-
plied by the common sidesway:∑

columns in floor

(shear force in column) =
∑

all columns

(ksh column ∆)

=

( ∑
all columns

ksh column

)
∆

Therefore, the total side forces above the cut equals the sum of shear
stiffnesses multiplied by the common sidesway:∑

(side forces above cut) =

( ∑
all columns

ksh column

)
∆
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We now solve the above equation to get the sidesway as follows:

∆ =

∑
(side forces above cut)∑

columns in floor kshcolumn
(2.9)

Once we have the sidesway in terms of the forces and the sum of shear
stiffnesses of the columns, we can calculate the shear force in each col-
umn in terms of that sidesway as follows:

shear force in a column = ksh column∆

= ksh column

∑
(side forces above cut)∑

columns in floor ksh column

We rearrange the above, putting the shear stiffness terms together to get:

shear force in a column =
ksh column∑

columns in floor kshcolumn

×
∑

(side forces above cut) (2.10)

Using formula 2.10, we can calculate the shear force in each column. The
process of calculating the shear force using formula 2.10 is organized
and presented in the rows labeled “relative shear stiffness” and “shear”
in table 2.3. For example, the shear force in column AF is given by P ×
ksh column AF/

∑
columns in floor ksh column = 8 × 9.750/30.169 ≈ 8 × 0.323 ≈

2.585.

Table 2.3. Calculation of Shear Stiffness, Shear Force and End Moments in the
Columns Shown in Figure 2.7.

Single floor results

Floor = 1

column number 1 2 3 4 5
shear stiffness 9.750 3.802 12.717 3.900 0 30.169
relative shear stiffness 0.323 0.126 0.422 0.129 0 1
shear 2.585 1.008 3.372 1.034 0 8
Internal moment at top 1.193 1.008 1.612 0 0
Internal moment at bottom −1.392 0 −1.760 −1.034 0

Calculating end moments in columns
Once the shear force in each column has been calculated, the end mo-
ments in the columns can be obtained using formula 2.6. In those equa-
tions, ‘P ’ is the shear force in the particular column. For example, in
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column AF, the lower support is fixed and so the top end moment
is given by Mtop = (2k/(1 + 4k))PL where ‘P ’ is interpreted as the
shear force in column AF. Substituting values for k, P and L we get:
Mtop = (2 × 3/(1 + 4 × 3)) × 2.585 × 1 ≈ 1.193. The end moment for all
the columns have also been calculated and arranged in the last two rows
of table 2.3.

The result of calculating the exact and approximate shear force and
end moments in each column for the frame shown in figure 2.7 is shown
in figure 2.10. In that figure, the approximate results are shown in paran-
thesis. We note that the maximum error in the shear force occurs in col-
umn BG and is about 13.3%.

A B C D E

F G H I J
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Figure 2.10. Shear forces and end moments in the columns of the structure
shown in figure 2.7. Note that the approximate results are shown in parentheses
under the exact results.

Calculating end moments in beams
Once the moments at the top of the columns are known, these moments
are placed as applied moments on the beams that are resting on top of
them. We note that those beams may be modeled as being supported on
rollers or hinges. This approach is schematically illustrated in figure 2.11.
The reason that we can assume that the beams are equivalently resting on
rollers or hinges is as follows: i) We can neglect the axial deformations in
the columns which implies that the beams at a given floor must remain at
the same height. ii) The sideway movement of the columns cause an es-
sentially rigid translation of all the beams together in the same direction.
This is so because, as discussed before, the sidesway of all the columns
are approximately the same. Therefore, since all the beams remain at the
same height and are only subject to a rigid translation sideways which
cause no bending deformations, the effect is equivalent to placing the
beams on rollers or hinges and applying point moments that are trans-
mitted from the tops of the columns.

Now we need to obtain the moments in a continuous beam resting
on rollers and hinges subject to point moments at the nodes. Such a
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col,1 col,2 col,3 col,4 col,5

P=8

↓ beams equivalently
analyzed as

Mtop col,1 Mtop col,2 Mtop col,3 Mtop col,4 = 0 Mtop col,5 = 0

Figure 2.11. Analyzing beams in portals as a continuous beam with no sidesway.

continuous beam has no sidesway and hence may be analyzed by the
methods described in the previous chapter. However, due to the way the
applied moments are generated and because all the applied moments
are usually in the same sense, there’s a quick but less accurate way to
estimate the end moments in the beams. This is simply to distribute the
applied moments at each node to the attached beams in proportion to
their relative nominal rotary bending stiffness. This approach usually
works because: i) for the extreme left and right ends of the continous
beam, the moments in the beams must match the applied moments and
ii) for internal nodes of the continuous beam, the influence of the applied
moments on the left and right neighboring nodes have an opposing ef-
fect to each other and therefore approximately cancel each other out. Of
course, this cancellation doesn’t always apply such as when the applied
moments vary greatly from node to node. In that case, one must revert
to the methods of the previous chapter.

Second example of portal frame
As a second example of the method presented, we consider the portal
frame shown in figure 2.12. In this problem, we have an internal hinge in
beam HI near node H as well as column JE that has zero shear stiffness
due to having both a hinge support and an internal hinge.

As in the previous example, we first prepare a table of the stiffness
factors at the top of the columns as shown in table 2.4. Note that in this
table the stiffness factor of column EJ is zero because of the internal hinge
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Figure 2.12. Single story sidesway example.

Table 2.4. Stiffness Factors at the Top of the Columns Shown in Figure 2.12.

Approximate analysis of a side loaded building

Preliminary calculations
Floor = 1

column 1 2 3 4 5
stiffness factor at top 0 4.000 2.000 4.000 0
stiffness factor at bottom 0 ∞ 0 ∞ 0

near joint J. Also, the contribution of beam HI to column CH is zero be-
cause of the internal hinge at H but this beam (beam HI) does give a
contribution to column DI. Note that we have used fbeam = 1.5 through-
out although more accurate results can be obtained following previous
discussed guidelines.

Once the stiffness factors at the top of the columns are obtained, we
calculate the relative shear stiffness (ie. shear stiffness over total shear
stiffness of all columns) and multiply those by the total side force of 10
to get the shear in each column. Finally, with the shear force and for-
mula 2.6, we obtain the end moments in all columns. The results are
shown in table 2.5 and illustrated in figure 2.13 with the approximate

Table 2.5. Calculation of Shear Stiffness, Shear Force and End Moments in the
Columns Shown in Figure 2.12.

Single floor results

Floor = 1
column number 1 2 3 4 5
shear stiffness 0 10.200 2.182 10.200 0 22.582
relative shear stiffness 0 0.452 0.097 0.452 0 1
shear 0 4.517 0.966 4.517 0 10
Internal moment at top 0 2.126 0.966 2.126 0
Internal moment at bottom 0 −2.391 0 −2.391 0
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Figure 2.13. Shear forces and end moments in the columns of the structure
shown in figure 2.12. Note that the approximate results are shown in parentheses
under the exact results.

results shown in parenthesis below the exact results. The moments in
the beams have not been shown because these may be obtained using
the methods discussed in the previous chapter.

2.3 Sketching Single Floor Portal Frames
Now that we’ve discussed how to calculate the shear and bending mo-
ments in the columns and beams of a structure subject to sidesway, we
turn to the matter of sketching the deformed shape of such structures.
In this regards, our objective is to identify the deformation patterns that
clarify how the overall structure distibutes the load and that illustrates
the relative stiffness of the members. We start with the column that has a
fixed lower support and that is subject to a side force which, by equilib-
rium, must equal the internal shear force. As discussed before, the contri-
bution of beams may be modeled as a rotary spring with stiffness factor
‘k’ whose values range from zero to infinity. We will next discuss the
deformations of columns at some representative values of the stiffness
factor of the beams and these are illustrated in figures 2.14a to f.

The case when the stiffness factor is zero corresponds to having an
internal hinge at the top of the column as for example is seen in col-
umn DI in figure 2.7. In that case, the bending moment is zero at the top
and has a value of ‘PL’ at the bottom where ‘P ’ is the applied force and
‘L’ is the length of the column. If we rotate the page so that the chord of
the column shown as a dashed line in figure 2.14a becomes horizontal
then we notice that this column becomes similar to a beam that is hinged
at both ends and has an applied moment of ‘PL’ at one end. We’ve stud-
ied this case before (see figure 1.14a) and we note that this member has
no inflection points. We also note that the rotation at the end where the
load is applied is twice that at the other end but in the opposite sense
relative to the horizontal. If we apply these observations to the column
of figure 2.14a, we deduce that the angle that the column makes relative
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Figure 2.14. Deformation of single floor columns with lower fixed support.

to the chord at the lower end must be twice the angle that it makes with
the chord at the top end. In addition, both ends of the column are at the
same side of the chord.

As the stiffness factor increases, and by analogy with the hinged
beams in figures 1.14, the slope of the column at the top gets closer to
the slope of the chord. These two slopes become equal when the stiffness
factor equals 0.5 as shown in figure 2.14b. In that case, if we view the col-
umn relative to the chord, the top end of the column is similar to a fixed
end relative to the equivalent beam problem in figure 1.14f. From this we
deduce that the inflection point must be one-third from the top or two-
thirds from the bottom as shown in figure 2.14b. We note that although
the case when the stiffness factor is 0.5 is interesting, this value rarely oc-
curs in practice because the bending stiffness of beams are usually com-
parable or higher than those of the connected columns and hence the
corresponding stiffness factors are expected to be larger than one.

Cases where the stiffness factor of the beams is larger than one are
shown in figure 2.14c to f. All these cases have two common features.
First, the top and bottom ends of the column start extending at opposite
sides of the chord so that the deformed shape of the column will intersect
the chord at some point between the top and bottom but closer to the top.
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Therefore, for all these cases, the slope of the column at the top is always
between the vertical and the chord. Typical values of stiffness factor usu-
ally imply a slope closer to the vertical than that of the column’s chord.
Second, the inflection point when the stiffness factor is greater than one
is always between 0.5L and 0.6L from the bottom where ‘L’ is the length
of the beam. However, we note that the inflection point is, in general,
different from the point of interesction of the column with the chord. In
fact, the inflection point usually occurs at the left side of the chord and
below the point of intersection of the column with the chord. The point
of intersection of the column with the chord equals the location of the
inflection point only when the stiffness factor is infinite which implies
highly rigid beams relative to the column as shown in figure 2.14f.

We now consider columns that have a hinged lower support and
that is subject to a side force which, by equilibrium, must again equal the
internal shear force. Again, the contribution of beams may be modeled
as a rotary spring with stiffness factor ‘ k’ whose values range from zero
to infinity. We will next discuss the deformations of columns at some
representative values of the stiffness factor of the beams and these are
illustrated in figures 2.15a to d.

P ® 0
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(d)

Figure 2.15. Deformation of single floor columns with lower hinged support.

The case when the stiffness factor is zero corresponds to having an
internal hinge at the top of the column as for example in column EJ of
figure 2.12. In that case, the bending moment is zero throughout the col-
umn which simply undergoes a rigid rotation and provides zero shear
resistance. As the stiffness factor increases from zero, the rotary spring
provides an increasing resistance to deformation and therefore a bend-
ing moment at the top while the hinge maintains a zero bending moment
at the bottom. If we again rotate the page so that the chord of the column
shown as a dashed line in any of the figures 2.15b to d becomes horizon-
tal then we notice that these columns are again similar to a beam that
is hinged at both ends and has an applied moment of ‘PL’ at one end.
However, by contrast with the previous case of the fixed lower support,
the applied moment is at the right side after rotating the page or at the
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top of the column before rotating the page. Again, this case is similar to
figure 1.14a which we’ve studied before but with the left and right ends
switched. If we apply the same observations as before to the columns
of figure 2.15, we deduce the following: For columns with hinged lower
support, the following is true: i) Both ends of the column always extend
from the same side of the chord which is to the right of the chord if the
column is sheared to the right and vice versa. ii) The rotation of the lower
end relative to the chord is half the rotation of the top end relative to the
chord and iii) as the applied moment increases, the rotation at the top
relative to the chord increases monotonically until in the limit of infinite
stiffness factor, the slope at the top of the column becomes vertical as
seen in figure 2.15d.

Based on the above discussion, we now discuss how to sketch the
deformation of portals. As a specific example, we again consider the por-
tal frame considered in figure 2.7. The steps in sketching the deformed
shape of a portal frame are illustrated in figure 2.16 and are as follows:

i) Draw the column and beam chords. In this step, we choose a value
of sidesway (ie. sideway movement) and move all the chords of the
beams by that amount of sidesway. The chords of these beams are
shown as FG, GH, HI and IJ in figure 2.16a. Note that the axial defor-
mation of the beams is neglected because it will be very small com-
pared to the magnitude of the sidesway. Also sketch the chords of all
the columns with supports that are either hinged or fixed as shown
for columns AF, BG, CH and DI in figure 2.16a. Note that because the
axial deformations are neglected, the chords of these columns are all
parallel. Also note that the chord of column EJ is not shown because
its support is a roller.

ii) Draw the directions or tangents to most columns and beams at the
nodes or connections. At fixed supports like nodes A, C and D of
figure 2.16b, the tangent must be vertical because the fixed sup-
ports restrain rotations. At the top of the columns, we have rotations
that must be consistent with the previous discussions. For example,
columns AF and CH will have tangents that lie between the vertical
and the chord in a manner consistent with figures 2.14c to d because
we expect the stiffness factors at the top to be close to the range corre-
sponding to those cases. By contrast, column DI must have a tangent
at the top that is similar to figure 2.14a because of the internal hinge
at the top.

In contrast to the columns with the fixed lower supports, the column
with the hinged lower support which is column BG, must have tangents
at the top and bottom that are similar to the figures 2.15b to d. We also
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Figure 2.16. Steps in sketching the deformed shape of problem 2.7.

note that column BG is attached to beams that are in turn attached to
columns on either side that are relatively much more rigid column BG.
This causes the inflection point in beams FG and GH to be closer to G
which gives an apparently high stiffness factors at the top of column BG.
The result is that the tangent at the top of column BG will be close to the
vertical and thus close to figure 2.15 which has no rotation at the top.

In order to draw the tangents to the beams, we first note that at rigid
connections, such as nodes F, G and H in figure 2.16b, the angles be-
tween columns and beams must be maintained after the deformation.
Since those connections were orthogonal (ie. 90◦) before the deformation
then the beams must remain orthogonal to the columns after the defor-
mation and we correspondingly draw the tangent to the beams at those
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Figure 2.16. (continued): Steps in sketching the deformed shape of problem 2.7.

nodes as shown at nodes F, G and H of figure 2.16b. Second, the nodes
that are not rigidly connected to columns must deform in a manner con-
sistent with the other beams and in view of the model of figure 2.11. For
example, node I is not subjected to a moment transmitted from the top
of the column and therefore will act passively in resisting the moment
transmitted from node H. This means that the rotation of the beams at
node I will be consistent with figure 1.11 with the moment at H viewed
as the applied moment and with node I providing a passive rotary stiff-
ness. Consequently, the beams at node I must have a rotation opposite to
the rotation of node H and with magnitude less than half the rotation at
node H. Finally, we have zero moment at node J because column EJ has
zero shear stiffness and thus member IJ is similar to figure 1.14a. This
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means the rotation at node J is exactly half the rotation at node I but in
the opposite sense than at node J. These are also sketched in figure 2.16b
along with the tangent at J to column EJ being orthogonal to the tan-
gent at J to beam IJ because the connection at J is rigid and beams IJ and
column EJ were orthogonal before the deformation.

iii) Draw the columns by using the tangents at the nodes and fig-
ures 2.14 and 2.15 as a guide. The result of sketching these columns
are shown in figure 2.16c. We also add an ‘x’ marker at the approxi-
mate location of the inflection points. Note that columns with fixed
lower supports have inflection points whenever the top of the col-
umn does not have an internal hinge while columns with a hinged
support have no inflection points in all cases.

iv) Draw the beams by using the tangents at the nodes as a guide. The
result of sketching these columns are shown in figure 2.16c. We also
add an ‘x’ marker at the approximate location of the inflection points.
Note that inflection points are placed closer to the columns with
lower shear stiffness.

v) Draw the column or columns with rollers using the tangents as a
guide and knowing that those columns must be subject to a rigid
rotation. The result of sketching the column is shown in figure 2.16e.

vi) Remove extraneous lines that were used in constructing the sketch
in order to get a better looking drawing of the deformed shape. In
this step, we recommend that the chords be kept because they help
to clarify the deformations of the columns and beams.

As a further example of sketching the deformation of portals sub-
ject to sidesway we consider the problem shown in figure 2.12. The de-
formed shape is shown in figure 2.17. Note that the steps in sketching
the deformed shape is similar to the previous case. We start by sketching

P=10

A B C D
E

F G
H I J

Figure 2.17. Sketch deformed shape of problem 2.12.
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the chords, followed by tangents at nodes and so on. Some of the new
features are as follows:

• Column EJ has a lower hing support and an internal hinge at the top.
Its deformation follows figure 2.15a so that the column rotates as a
rigid beam.

• The internal hinge in beam HI at H implies that the tangent at H to
beam HI will not be orthogonal to the tangent a H to column CH after
deformation. Node H of beam HI will have a rotation that is half the
rotation at node I because it behaves in a way similar to the beam in
figure 1.14a which we’ve studied before but with the left and right
ends switched.

• The internal hinge in the last column EJ implies that the moment in
the beam IJ at node J is also zero. This again implies that beam IJ will
behave like the beam in figure 1.14a with the rotation at node J being
have the rotation at node I.

Other features such as the deformation of the columns BG, CH, DI
and AF in figure 2.17 are similar to corresponding features in the previ-
ous problem shown in figure 2.16.

Finally, having described how to sketch the deformation of portals,
we note that this requires considerable knowledge of the deformation
of various columns and beams as well as an estimation of the relative
stiffness of different members. Consequently, as we sketch the deforma-
tion of portals, we gain a better understanding of their overall behav-
ior. Conversely, as we have more experience with portals, we can sketch
their deformations with more precise features. Therefore, sketching the
deformation of portals or of structures with sidesway is an excellent ed-
ucational tool because we gain a better understanding of the behavior of
portals and can demonstrate our increased understanding in ever more
precise details that further enhances our understanding. Furthermore,
we can quickly answer explorative design questions such as what hap-
pens if a support is changed from being fixed to hinged or the effect of
adding an internal hinge at any given location.

2.4 The Column with Rotary Springs
and Moments at Both Ends

Now that we have a method to approximately analyze a single story
portal frame, we will extend it to analyze multi-story frames subject to
sidesway. At first, we might think that nothing more is needed and that
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we can analyze multi-story frames in the same way that we have ana-
lyzed single story portals but on a floor-by-floor basis. The first problem
we encounter in trying to do this appears when we try to analyze the
second floor of a multi-story frame and notice that the lower supports of
the second floor columns are neither fixed nor hinged. In fact, the sup-
port for the second floor are the beams and columns of the first floor.
In addition, we notice that columns on the second floor and higher are
not only connected to beams but also to columns and that all columns
on floors other than the top also have their top columns connected to
columns as well as beams.

The problem of having the bottom of a column being connected to
beams instead of a hinge or fixed support may be handled by having a
lower hinge support with a rotary spring in a way similar to how we
handled the top of the column being connected to beams with the single
story portal frames. In particular, when the lower rotary stiffness factor
is zero or tends to infinity then we get the hinge and fixed supports re-
spectively. The rotary stiffness of the supports on the second floor and up
comes mainly from the beams and we can neglect the role of columns.
The reason is that the columns are subject to sidesway and the rotary
stiffness of a member subject to sidesway may generally be neglected as
will be discussed next.

Consider a column that is subject to sidesway with an applied mo-
ment at one end and a support that provides some rotary resistance
as shown in figures 2.18. In figure 2.18a and b, the rotary resistance is
infinite while in figures 2.18c and d we have a specified rotary stiffness
factor ‘kc.’ For each of these figures, we then calculate the rotation at the
node where the moment is applied and divide the applied moment by
that calculated rotation to get the rotary stiffness of the column. That ro-
tary stiffness is then given by:

rotary spring stiffness =

{(
EI
L

)
c

for fixed far-end (a)

4 kc
1+4kc

(
EI
L

)
c

for flexible far-end (b)

⇒

rotary stiffness factor

with sidesway

rotary stiffness factor

without sidesway

=

{
1
4 for fixed far-end (c)

4kc(1+kc)
(1+4kc)(3+4kc)

≤ 1
4

for flexible far-end (d)

(2.11)

The above result indicates that the rotary stiffness factor of a column
(or any member) that is subject to sidesway is less or equal to a quar-
ter what it would be if there were no sidesay. In other words, allowing
a member to have sidesway reduces its resistance to rotation by at least
a factor of four. Therefore, since the stiffness factors of beams are com-
parable to those of columns and because we are approximating stiffness
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Figure 2.18. Columns used to determine the rotary stiffness of members subject
to sidesway.

factors where a difference of a quarter rarely matters, we can neglect the
rotary resistance of columns that are undergoing sidesway. Exceptions to
this rule includes the case when there are beams and a column attached
to another column but the beams that are attached have an internal hinge
at that connection. This implies that all the resistance to rotation is pro-
vided by the attached column which although small can no longer be
neglected.

From the above discussion, we find that we can generally neglect
the rotary resistance of attached columns when we approximately an-
alyze frames with sidesway. Although the rotary resistance of attached
columns may be neglected, such columns can have a more significant
effect on the (apparent) shear stiffness of a column which we will now
explore. Consider a multi-story frame subject to sidesway such as the 3-
story frame shown in figure 2.19a. Assume we are interested in obtaining
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Figure 2.19. Effect of columns on their mutual shear stiffnesses.

the shear stiffness of column FJ in that figure. To that end, we isolate that
column as shown in figure 2.19b. In that figure, we note the curvature of
the beams and of the columns and beams attached to the top and bottom
nodes of column FJ. These curvatures indicate that the bending moments
in the beams are resisting the deformation while the bending moments
in the columns are increasing the deformation. We can see this better if
we isolate either node F or node J as shown in figure 2.19c and then refer
to the results associated with the cantilever of figure 2.1b. Physically, the
reason that attached columns increase the deformation is because they
are also subject to shearing and are not simply passively resisting rota-
tions.

So far, we have determined that beams that are attached at the top
or at the bottom of columns help to resist deformations while similarly
attached columns help to increase the deformations. In order to translate
these observations into results we could use in an approximate analysis,
we consider the column shown in figure 2.20. In that figure, the effect
of attached beams are modeled as rotary springs both at the top and at
the bottom. The effective stiffness factor of these springs at either the top
or bottom are determined in the same way that we determined the stiff-
ness factor at the top of the single floor portal. The special case when
the lower stiffness factor is zero or tends to infinity corresponds to the
column at the ground floor with either a hinge or a fixed support re-
spectively. By contrast with the beams, the effect of an attached column
either at the top or at the bottom is modeled as an applied moment cor-
responding to the bending moment at the connected end of the attached
column. We note that these moments are applied on both the column
and the rotary springs which can be understood by considering the mo-
ments on the nodes in figure 2.19c. For the special case when there is no
attached column at a connection such as when we consider the bottom
of a ground floor column or the top of a top floor column, then the corre-
sponding applied moment must be zero. This means that with reference
to figure 2.20, Mt = 0 at a top floor column and Mb = 0 at a ground floor
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Figure 2.20. Column subject to sidesway with the effect of attached beams and
columns at both the top and bottom modeled as rotary springs and applied
moments respectively.

column. Finally, we consider the special case where there is an internal
node at either end of the column. In that case and at any end where there
is an internal hinge in the column, the rotary stiffness of attached beams
provides no resistance and attached columns can apply no moment at
that end. This means that if we have an internal hinge at the top of a
column then we have to set kt = 0 and Mt = 0 irrespective of the char-
acteristics of any beams or columns attached at the top. Similiarly, if we
have an internal hinge at the bottom of a column then we have to set
kb = 0 and Mb = 0.

With the model considered in figure 2.20, we now quantitatively ex-
plore the effect of attached columns. There are two effects that are of
interest in doing an approximate analysis. These are the shear stiffness
of the column and the end moments in the column. The shear stiffness
‘ksh’ of column 2.20 is given by:

ksh = (kb+kt+4kb kt)

(3+4kb+4kt+4kb kt)+(3+6kb)
Mt
PL +(3+6kt)

Mb
PL

× 12EIL3 (2.12)

where:

‘E’ is Young’s modulus of the column

‘I’ is the moment of inertia of the column

‘L’ is the length of the column
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‘kb’ and ‘kt’ are the stiffness factors at the top and bottom respectively

‘P ’ is the shear in the column with P positive according to the conven-
tion of figure 2.20

‘Mb’ and ‘Mt’ are the moments applied at the top and bottom respec-
tivley with clockwise moments being positive.

We note that, as required, formula 2.12 reduces to formula 2.5a when
kt = k, kb = 0, Mb = Mt = 0 and to formula 2.5b when kt = k, kb → ∞,
Mb = Mt = 0. Also, we note that clockwise applied moments at ei-
ther the top or the bottom will increase the denominator in formula 2.12
which will therefore decrease the (apparent) shear stiffness of the col-
umn. Such clockwise moments are in the same sense as the moments
that attached columns would apply on the top and on the bottom con-
nections. Therefore, we generally expect our estimates of shear stiffness
to decrease when we include the effect of attached columns versus when
we neglect them. We will explore this matter quantitatively for ground
floor, middle floor and top floor columns separately.

Ground floor columns in a multistory frame have columns attached
only at their tops. We expect that these attached columns will have end
moments that are comparable to the ground floor ones and hence we
expect that Mt/PL . 0.5. The lower support of ground columns are
either fixed or hinged but in either case the moment at the bottom is
zero (ie. Mb = 0). We then plot in figures 2.21a and b the percentage de-
crease in stiffness for the fixed and hinge support respectively as a func-
tion of Mt/PL and for various values of the effective stiffness factor of
the top beams. Figures 2.21 indicate that when Mt/PL ≤ 0.5 then the
decrease in stiffness is less than about 40% in all cases. While this max-
imum is considerable, we note that all the columns in the ground floor
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Figure 2.21. Stiffness decrease in ground floor columns due to attached columns
at their top.
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will generally have a comparable decrease and we need to accurately es-
timate the relative shear stiffness rather than the absolute shear stiffness.
This means that the maximum error in estimating the shear stiffness will
translate into a much lower error in estimating the shear forces as will be
observed in the examples in the next section. In any case, the estimates of
the shear force will improve in a second iteration when we use estimates
of Mt/PL obtained from the results of the first iteration.

Top floor columns in a multistory frame have columns attached
only at their bottom ends. We expect that these attached columns will
have end moments that are comparable to the top floor ones, hence
Mb/PL . 0.5. The top of top columns are, by definition, not attached
to columns and hence the applied moment at the top is zero (ie. Mt = 0).
We then plot the percentage decrease in stiffness as a function of Mb/PL
and for various values of the effective stiffness factor of the bottom
beams for two typical values of the stiffness factor of the beams at the
top, specifically with kt = 1 and 3 for figures 2.22a and b respectively.
Figures 2.22 indicate that when Mt/PL ≤ 0.5 then the decrease in stiff-
ness is less than about 40% in all cases. While this maximum is consid-
erable, we note that all the columns in the top floor will generally have
a comparable decrease and we need to accurately estimate the relative
shear stiffness rather than the absolute shear stiffness. This means that
the maximum error in estimating the shear stiffness will translate into a
much lower error in estimating the shear forces as will be observed in the
examples in the next section. In any case, the estimates of the shear force
will improve in a second iteration when we use estimates of Mb/PL
obtained from the results of the first iteration.

Middle floor columns in a multistory frame have columns attached
at both their top and bottom ends. We expect that these attached columns
will have end moments that are comparable to their own moments at
their ends and hence Mt/PL ≈ Mb/PL . 0.5. We then plot the per-
centage decrease in stiffness as a function of Mt/PL ≈ Mb/PL and
for various values of the effective stiffness factor at the bottom and top
beams which we have taken to be approximately the same in figure 2.23a.
That figure indicates that when Mt/PL ≈ Mb/PL ≤ 0.5 then the de-
crease in stiffness is less than about 50% in all cases. While this maxi-
mum is considerable, we note that all the columns in the middle floor
will generally have a comparable decrease and we need to accurately es-
timate the relative shear stiffness rather than the absolute shear stiffness.
This means that the maximum error in estimating the shear stiffness will
translate into a much lower error in estimating the shear forces as will be
observed in the examples in the next section. In any case, the estimates of
the shear force will improve in a second iteration when we use estimates
of end moments obtained from the results of the first iteration. We have



136 Practical Approximate Analysis of Beams and Frames

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Mb�HPLL

10

20

30

40

50

60

Dksh�ksh%

Stiffness decrease; kt=1, Mt=0

kb = 6

kb = 3

kb = 2

kb = 1

kb = 0

(a)

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Mb�HPLL

10

20

30

40

50

60

Dksh�ksh%

Stiffness decrease; kt=3, Mt=0

kb = 6

kb = 3

kb = 2

kb = 1

kb = 0

(b)

Figure 2.22. Stiffness decrease in top floor columns due to attached columns at
their bottom.

also plotted in figure 2.23b the decrease in shear stiffness as a function of
the stiffness factor of the connected beams which are assumed to be the
approximately the same at the top and bottom of middle columns. These
plots indicate that the shear stiffness becomes less sensitive to the action
by the attached columns as the relative stiffness of the attached beams
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Figure 2.23. Stiffness decrease in top floor columns due to attached columns at
their bottom.

increases. The reason is that these attached beams will absorb more of
the moment applied by the attached columns and will therefore have a
reduced effect on the shear stiffness of the column.

The second effect that is of interest in doing an approximate anal-
ysis is an expression for the end moments of column 2.20. These end
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moments are given by:(
Minner top

Minner bottom

)
=

(
+ kt+2kbkt
kb+kt+4kbkt

− kb+2kbkt
kb+kt+4kbkt

)
PL+

(
+ kt
kb+kt+4kbkt

+ kt
kb+kt+4kbkt

)
Mb

+

(
− kb
kb+kt+4kbkt

− kb
kb+kt+4kbkt

)
Mt

(2.13)

Note that in the above formulas, the applied moments Mt and Mb are
considered positive when clockwise and the applied load P is consid-
ered positive when acting to the right. By contrast, the inner bending
moments Minner top and Minner bottom are considered to be positive when
counterclockwise and clockwise respectively in conformance with stan-
dard conventions of bending moment diagrams.

By inspective formula 2.13 we find that it reduces to formula 2.6a
when kt = k, kb → ∞, Mb = Mt = 0 and to formula 2.6b when kt = k,
kb = 0, Mb = Mt = 0. Formula 2.13 gives the end moments as the linear
superposition of the effect of each of the transverse force P , the applied
moment at the top Mt and the applied moment at the bottom Mb. If we
only apply a moment at one of the ends (ie. onlyMb or onlyMt), the shear
force in the member must be zero and therefore the column must be in
a state of pure bending. This means that the bending moment in the col-
umn is the same throughout the column. By considering moment equi-
librium at the node where the moment is applied, we note that the uni-
form bending moment plus the moment in the spring must equal the ap-
plied moment. This means that the applied moment must be distributed
according to the relative stiffness of the rotary spring versus the rotary re-
sistance of the column. The rotary resistance of a column subject to sides-
way is given by formula 2.11b. For example, for the moment applied at
the bottom, the moment in the column and spring must be in proportion
to kt/ (1 + 4kt) versus kb. The bending moment in the column is then
given by (kt/ (1 + 4kt)) / ((kt/ (1 + 4kt)) + kb) = kt/ (kb + kt + 4kbkt) as
indicated by the second terms of formula 2.13. The effect of the applied
moment at the top may be similarly verified.

The way that the applied moments affect the column indicates that
these will have a relatively small contribution. That will generally be true
because the rotary stiffness of a column subject to sidesway will have
a relatively low stiffness (as discussed in the context of formula 2.11)
relative to the attached beams. For an approximate analysis, this means
that most of the error in estimating the bending moments at the ends
of a column will be due to errors in estimating the shear force in the
column and therefore indirectly due to estimating the shear stiffness of
the column.
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Related to the end moments is the location of the inflection point
because we can deduce that location from the end moments. The location
of the inflection point measured from the bottom is given by:

xI = (kb+2kbkt)−kt(Mb/(PL))+kb(Mt/(PL))
(kb+kt+4kbkt)

L (on condition 0 ≤ xI ≤ L)
(2.14)

We note that, as required, formula 2.13 reduces to formula 2.6c when
kb → ∞. Also, when kb and kt are both greater than one, which is the
usual case, the inflection point is always between 0.4L and 0.6L when
Mb = Mt = 0. The effect of Mb and Mt act against each other so that Mb

causes the inflection point to shift down while Mt causes the inflection
point to shift up. However, in any case, the effect ofMb andMt on the in-
flection point location is small for the same reason that their effect on the
end moments are small (see previous discussion). However, it is possible
for unusually large values of Mb or Mt to cause the column to have no
inflection point at all. Although the conditions for this are unusual, these
can sometimes occur in a large number of floors multistory building at
either the top floor where Mb is acting alone and may be relatively large
or the ground floor where Mt is acting alone and may be relatively large.

2.5 Approximate Analysis of Multiple Floor
Frames Subject to Horizontal Loads

In the previous section, we have identified that formula 2.12 gives us the
shear stiffness of any column in a multi-story building with the attached
beams at the top and bottom modeled by effective rotary stiffness factors
and the attached columns modeled by applied moments. In addition, we
have formula 2.13 which gives us the end moments in each column when
given the same kind of information. We will use these two formulas to
develop a method for solving any multi-story building subject to a side
force. The outline of the method is as follows:

1. Start by estimating the effective rotary stiffness factors at the top and
bottom of each column at every floor. Note that the ground floor is
special so that the lower spring factor is taken to be infinite for a fixed
support or zero for a hinge support. Equivalently, we can use formula
2.5 for the ground floor columns.

2. In a first iteration, assume that columns do not apply moments on each
other (ie. Mb = Mt = 0 in formulas 2.12 and 2.13) and then use the
rotary stiffness factors from step 1 to calculate the shear stiffness of
each column using formula 2.12.
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Using the shear stiffness of each column and with each floor consid-
ered separately, calculate the shear force in each column of a specific
floor by dividing the net applied side force above that floor over the
columns in that floor in proportion to their shear stiffness. The net ap-
plied side force at a floor is the total of all side forces that occur any-
where above the middle of the columns of the floor being considered.

3. Using formula 2.13, calculate the end moments and, optionally, using
formula 2.14 calculate the inflection point in each column.

4. At this point, we have estimated the moments at the top and bottom
of each column. If we now isolate a node or connection joining one
or more beams with one or more columns, the moments applied by
the columns at a node are known. Because these column moments are
known, we can apply their algebraic sum as a point moment applied
on the beams at the nodes. To get the beam end moments at a given
floor, we then analyze all the beams at that floor as a continuous beam
with no sidesway and with known point moments on the nodes ap-
plied by the columns. This problem may be approximately analyzed
using the methods described in the previous chapter.

5. In a second optional iteration, use the end moments in the columns
obtained from step 3 as an estimate of what moment to apply on the
columns attached to them (ie. estimates of Mb and Mt). Again use for-
mula 2.12 to calculate an updated shear stiffness for each column.

Using the updated shear stiffness of each column and on each floor
considered separately, calculate the shear force in the same manner as
in step 2.

6. Repeat step 3 but with the updated shear force and applied moments.

7. Repeat step 4 but with updated estimates of column moments.

In the rest of this section, we will illustrate most of the steps of the
outline specified above using figure 2.24 as a specific example.

The first step is to estimate the effective rotary stiffness of the beams
on the ends of each column. This is done in the same way we did the sin-
gle floor portal with two new considerations. First, columns have other
columns attached to them as well as beams. In each case and based on
previous discussions, we simply neglect the rotary stiffness provided by
the columns. For example, at the top of column AD, the rotary stiffness
factor is 1.5 × (EIDE/LDE) / (EIAD/LAD) = 1.5 × (2/5)/(2/4) = 1.2.
We note that we neglect the stiffness of column DG when obtaining
this stiffness factor and the multiplier 1.5 is the same multiplier used
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Figure 2.24. Multi-story sidesway example used to illustrate ideas.

in obtaining stiffness factors in single floor portals. The second consid-
eration is that for all columns above the ground floor, we have to esti-
mate the stiffness factor at the bottom as well as at the top of the col-
umn. For example, at the bottom of column HE, the rotary stiffness fac-
tor is 1.5 × ((EIDE/LDE) + (EIEF/LEF)) / (EIAD/LAD) = 1.5 × ((2/5) +
(4/7))/(1.5/3) ≈ 2.914. We note again that we neglect the stiffness of the
attached column which is column EB in this case. The result of calcu-
lating the top and bottom stiffness factors for all the columns of all the
floors is conveniently organized in table 2.6. As in the single floor portal
frame, we note that we can obtain better estimates of the stiffness factors
using the same guidelines that were described in the section on single
floor portals.

Once we have estimated the rotary stiffness factors at the ends of
all columns, we proceed to calculate the shear stiffness for each column.
These shear stiffnesses are arranged by floor so that the relative shear
stiffness may be calculated on a floor by floor basis. Once the relative
shear stiffness is obtained, we determine the total force that must be re-
sisted by the sum of the shear forces in all the columns of the given floor.
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Table 2.6. Stiffness Factors at the Top of the Columns Shown in Figure 2.24.

Approximate analysis of a side loaded building

Preliminary calculations

Floor = 1
column 1 2 3
stiffness factor at top 1.200 2.914 1.714
stiffness factor at bottom ∞ 0 ∞

Floor = 2
column 1 2 3
stiffness factor at top 1.200 1.286 1.286
stiffness factor at bottom 1.200 2.914 0

Floor = 3
column 1 2 3
stiffness factor at top 1.800 0 1.286
stiffness factor at bottom 1.800 1.929 1.929

For example, for the second floor of figure 2.24, we consider the free body
diagram, with axial forces omitted for aesthetics, shown in figure 2.25.
From figure 2.25, we determine that the total force to be resisted by the
shear forces in the second floor columns is 8 + 6 = 14. This total force is
then multipied by the relative shear stiffness to obtain the shear force in
each column in that second floor. This process is done for each floor and
the calculations and results are conveniently organized in table 2.7. In
that table, in addition to the shear force in each column of each floor, we
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Figure 2.25. Free body diagram (excluding vertical axial forces) of figure 2.24 by
taking a cut just above the first floor beams.
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Table 2.7. First Iteration Calculations of Shear Stiffness, Shear Force and End
Moments in the Columns Shown in Figure 2.24.

Iteration number = 1

Floor = 1
column number 1 2 3
shear stiffness 0.247 0.075 0.271 0.593
relative shear stiffness 0.417 0.126 0.458 1
shear 7.501 2.263 8.236 18
Internal moment at top 12.415 9.051 14.376
Internal moment at bottom −17.589 0 −18.569

Floor = 2
column number 1 2 3
shear stiffness 0.296 0.368 0.105 0.769
relative shear stiffness 0.385 0.478 0.137 1
shear 5.392 6.692 1.916 14
Internal moment at top 8.088 9.186 5.747
Internal moment at bottom −8.088 −10.890 0

Floor = 3
column number 1 2 3
shear stiffness 0.242 0.080 0.226 0.549
relative shear stiffness 0.442 0.146 0.413 1
shear 3.533 1.166 3.301 8
Internal moment at top 5.300 0 4.708
Internal moment at bottom −5.300 −3.498 −5.193

also calculate the bending moment at the top and bottom of each column
of each floor using 2.13 with Mb = Mt = 0.

Once we are done with the first iteration, we may do a second itera-
tion. To decide whether a second iteration is needed we note the follow-
ing:

• In general, the first iteration will give an adequate approximation for
a preliminary analysis. If we evaluate the error in the shear force of
the columns with the largest such values in each floor then the relative
errors in the first iteration will be about 10% to 30%.

• The relative error in all columns decreases as the stiffness contrast be-
tween columns in the same floor decreases.

• A second iteration generally improves the results by a relative error of
about 10% to 15%.

• Relatively low errors of less than about 5% to 10% in all columns can be
achieved only if we carefully estimate and update the rotary stiffness
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contribution of the beams on the columns. We must improve such esti-
mates for all the columns simultaneously because if we only improve
such an estimate for only one column then we may actually increase
the errors in the shear stiffness contrast between columns. We note that
it is the shear stiffness contrast between columns that determines how
the total horizontal forces are distributed over the columns.

If we decide to do a second iteration then the process of doing this
is similar to the first iteration but with updated values of Mb and Mt in
formulas 2.12 and 2.13. We start by calculating the shear stiffness of each
column. To that end, for a given column, we use the top bending moment
in the column below it forMb or zero if it is the ground floor. Also, we use
negative the bottom bending moment of the column above it for Mt or
zero if it is the top floor. The reason we use positive the bending moment
from the column below but negative the bending moment from the col-
umn above in formulas 2.12 and 2.13 is because of conflicting sign con-
ventions. Formulas 2.12 and 2.13 consider clockwise applied moments to
be positive for both the top and bottom applied moments while the con-
vention used for bending moments at the ends of columns imply posi-
tive values for counterclockwise moments transmitted from above and
clockwise from below. Finally, we note that ‘P ’ in formulas 2.12 and 2.13
correspond to the shear force in the colums and this is estimated from
the shear force in the column obtained from the first iteration.

For example, for column DG, P = 5.392, Mb = 12.415 and Mt =
−(−5.300) = 5.300. Using formula 2.12 and the rotary stiffness factors
for column DG (ie. 1st column of 2nd floor in table 2.6), we get a shear
stiffness of ((1.2 + 1.2 + 4× 1.2× 1.2)/(3 + 4× 1.2 + 4× 1.2 + 4× 1.2×
1.2 + (3 + 6 × 1.2) × (5.300/(5.392 × 3)) + (3 + 6 × 1.2)(12.415/(5.392 ×
3))))

(
12× 1.5

/
33
)
≈ 0.1842. This value along with all the other shear

stiffnesses is organized and presented in table 2.8 which has the same
form as the table for the first iteration.

For comparison, figure 2.26 shows the exact and approximate (with
2 iterations) column shears and end moments for the problem of
figure 2.24. We note that most of the shear forces and end moments are
well approximated with errors that are less than about 10% to 20% with
the exception of column DG. In that column, the shear force and the end
moments are significantly overestimated. If we do a third iteration in a
similar way to the second iteration, we find that the errors remain about
the same with less than about 5% change in values. To understand the
source of error in column DG, we must look elsewhere.

To understand the source of error in column DG, we compare
the exact and approximate (with 2 iterations) shear stiffnesses of the
columns and these are shown in table 2.9. We note that most of the shear
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Table 2.8. Second Iteration Calculations of Shear Stiffness, Shear Force and End
Moments in the Columns Shown in Figure 2.24.

Iteration number = 1

Floor = 1
column number 1 2 3
shear stiffness 0.209 0.060 0.271 0.540
relative shear stiffness 0.387 0.111 0.503 1
shear 6.960 1.994 9.046 18
Internal moment at top 10.125 7.977 15.790
Internal moment at bottom −17.713 0 −20.395

Floor = 2
column number 1 2 3
shear stiffness 0.184 0.296 0.079 0.559
relative shear stiffness 0.329 0.529 0.141 1
shear 4.611 7.413 1.976 14
Internal moment at top 7.962 10.251 5.929
Internal moment at bottom −5.869 −11.988 0

Floor = 3
column number 1 2 3
shear stiffness 0.180 0.046 0.182 0.409
relative shear stiffness 0.441 0.113 0.447 1
shear 3.525 0.903 3.572 8
Internal moment at top 6.166 0 5.659
Internal moment at bottom −4.408 −2.708 −5.058

Table 2.9. Comparison Between the Exact and Approximate (2 Iteration) Shear
Stiffness of the Columns Shown in Figure 2.24.

shear stiffness column 1 column 2 column 3
exact (approx) exact (approx) exact (approx)

floor 1 0.207 (0.209) 0.062 (0.060) 0.261 (0.271)
floor 2 0.111 (0.184) 0.333 (0.296) 0.081 (0.079)
floor 3 0.126 (0.180) 0.032 (0.046) 0.160 (0.182)

stiffnesses are very well estimated with the biggest exception being col-
umn DG (ie. column 1 and floor 2). If then consider figure 2.26 and the
way in which we have estimated the rotary stiffness of the beams, we can
then account for most of this discrepancy. In particular, we have consid-
ered beam GH as providing 1.5 times its rotary stiffness to column DG
but since it has an internal hinge at end H, it can only provide 0.75 times
its rotary stiffness. Therefore, the shear stiffness should be much lower
than the standard but simple to apply estimate that we have used in
these calculations.
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Figure 2.26. Shear forces and end moments in the columns of the structure
shown in figure 2.24. Note that the approximate results are shown in parentheses
under the exact results.

In addition to column DG, table 2.9 reveals another large discrep-
ancy in the estimate of the shear stiffness. Specifically, column EB (ie. col-
umn 2 and floor 1) has a stiffness that is again overestimated. However,
this overestimate did not lead to the same relatively large errors as in col-
umn DG. The reason is that all the columns of the first floor, for different
reasons, have been overestimated and what is important in obtaining the
shear force and consequently the end moments is the relative shear stiff-
ness. If we apply the previously discussed recommendations on getting
improved estimates of the rotary stiffness of the resisting beams then we
would get much better overall shear stiffness, shear and end moment
estimates for column DG, EB as well as for all the other columns.

As a second example, we analyze the problem shown in figure 2.27.
The analysis steps are the same as in the previous example. First, we ob-
tain the effective rotary stiffness factors at the top and bottom of each
column at every floor and this is summarized in table 2.10. Next, we cal-
culate the shear stiffness using formula 2.12 from which we then obtain
the relative shear stiffness and the shear force in each column. With the
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Figure 2.27. Multi-story sidesway example used to illustrate ideas.

Table 2.10. Stiffness Factors at the Top of the Columns Shown in Figure 2.27.

Approximate analysis of a side loaded building

Preliminary calculations

Floor = 1
column 1 2 3 4
stiffness factor at top 1.200 2.700 3.500 2.000
stiffness factor at bottom ∞ ∞ 0 ∞

Floor = 2
column 1 2 3 4
stiffness factor at top 2.400 3.900 3.500 2.000
stiffness factor at bottom 1.200 0 3.500 2.000

shear force in each column known, we may then calculate the end mo-
ments using formula 2.13 with ‘P ’ in that formula being the shear force
in each respective column. At the beginning, the values of ‘Mb’ and ‘Mt’
in formulas 2.12 and 2.13 are taken to be zero for every column and the
results obtained using that assumption are identified as a first iteration
result and are shown in table 2.11.

At this point, the first iteration results may be considered as a rough
approximation that is suitable for preliminary analysis. In the problem
of figure 2.27, the maximum relative error in the shear forces in all the
columns is about 29% while the mean of the absolute value of the rela-
tive errors is about 16%. If we decide to do a second iteration analysis,
we will have to use updated values of ‘Mb’ and ‘Mt’ that we obtain from
the end moments in the columns of the first iteration. The result of doing
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Table 2.11. First Iteration Calculations of Shear Stiffness, Shear Force and End
Moments in the Columns Shown in Figure 2.27.

Iteration number = 1

Floor = 1
column number 1 2 3 4
shear stiffness 0.247 0.299 0.077 0.281 0.905
relative shear stiffness 0.273 0.331 0.085 0.311 1
shear 2.732 3.305 0.853 3.109 10
Internal moment at top 4.522 6.050 3.414 5.527
Internal moment at bottom −6.407 −7.171 0 −6.909

Floor = 2
column number 1 2 3 4
shear stiffness 0.349 0.140 0.467 0.381 1.336
relative shear stiffness 0.261 0.105 0.349 0.285 1
shear 2.609 1.046 3.493 2.852 10
Internal moment at top 4.224 3.139 5.240 4.277
Internal moment at bottom −3.603 0 −5.240 −4.277

Table 2.12. Second Iteration Calculations of Shear Stiffness, Shear Force and
End Moments in the Columns Shown in Figure 2.27.

Iteration number = 2

Floor = 1
column number 1 2 3 4
shear stiffness 0.202 0.299 0.061 0.240 0.802
relative shear stiffness 0.252 0.373 0.076 0.299 1
shear 2.518 3.730 0.758 2.994 10
Internal moment at top 3.546 6.828 3.032 4.848
Internal moment at bottom −6.525 −8.093 0 −7.129

Floor = 2
column number 1 2 3 4
shear stiffness 0.259 0.140 0.425 0.298 1.122
relative shear stiffness 0.231 0.125 0.379 0.266 1
shear 2.305 1.246 3.789 2.659 10
Internal moment at top 4.450 3.738 5.897 4.542
Internal moment at bottom −2.466 0 −5.471 −3.436

a second calculation is shown in table 2.12 and are compared with the ex-
act results in figure 2.28. By doing this second iteration, we find that the
maximum relative error in the shear force in all the columns is about 14%
(ie. a 15% improvement in the column shears) and the mean of the abso-
lute value of the relative errors is about 6% (ie. about 10% improvement
from the first iteration).



Practical Approximate Analysis of Beams and Frames 149

5 4 6

4

3

P=10

A B C D

E F G H

I J K L

V=2.462

H2.518L

V=2.024

H2.305L

V=3.878

H3.730L

V=1.378

H1.246L

V=0.773

H0.758L

V=4.084

H3.789L

V=2.887

H2.994L

V=2.514

H2.659L

Mc=-6.398

H-6.525L

Mc=3.451

H3.546L

Mc=-2.111

H-2.466L

Mc=3.960

H4.450L

Mc=-8.285

H-8.093L

Mc=7.226

H6.828L

Mc=0.000

H0.000L

Mc=4.135

H3.738L

Mc=0.000

H0.000L

Mc=3.091

H3.032L

Mc=-6.064

H-5.471L

Mc=6.188

H5.897L

Mc=-6.965

H-7.129L

Mc=4.585

H4.848L

Mc=-3.169

H-3.436L

Mc=4.374

H4.542L

Figure 2.28. Shear forces and end moments in the columns of the structure
shown in figure 2.27. Note that the approximate results are shown in parentheses
under the exact results.

Table 2.13. Comparison Between the Exact and Approximate (2 Iteration) Shear
Stiffness of the Columns Shown in Figure 2.27.

shear stiffness column 1 column 2 column 3 column 4
exact (approx) exact (approx) exact (approx) exact (approx)

floor 1 0.198 (0.202) 0.311 (0.299) 0.062 (0.061) 0.232 (0.240)
floor 2 0.222 (0.259) 0.151 (0.140) 0.449 (0.425) 0276 (0.298)

In order to identify the main source of the error in the problem of
figure 2.27, we again compare the exact versus (second iteration) ap-
proximate shear stiffness of the columns. This comparison is shown in
table 2.13. The results indicate that the maximum error in the shear force
and in the shear stiffness correspond to the same column. In order to im-
prove the results obtained, we will find that a third iteration will not be
effective. If we do a third iteration for the problem of figure 2.27, we will
get a maximum relative error in the shear forces in all the columns of
about 15% (a slight improvement of 1% over the second iteration) and a
mean of the absolute value of the relative errors of about 8% (a 2% wors-
ening over the second iteration). In fact, these iterations appear to con-
verge but not to the exact results unless we input better estimates of the
effective rotary stiffness provided by the beams to the columns. We note
that if we use the recommendations identified previously, the biggest
change in the effective rotary stiffness would be precisely in the columns
with the largest errors. By improving our estimates of the rotary stiffness
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factors, the shear stiffness estimates improve and consequetly the shear
force and all the other results improve as well.

2.6 A Note on the Lumped Mass
Model for Buildings

Before we consider how to sketch the deformed shape of frames sub-
ject to sidesway, we will discuss a particular model of a building subject
to side forces which will be useful in identifying the general deforma-
tion pattern of a frame subject to sidesway. That model is often used in
structural dynamics analysis and is called the lumped-mass model. The
lumped mass model simplifies a building so that each floor is modeled as
one mass and so that consecutive floors are attached to each other by lin-
ear springs in series. For example, the frame in figure 2.29 would be mod-
eled as four masses attached to springs in series as shown in figure 2.30a.
In addition to the springs, dashpot units may also be attached between
consecutive floors in a way similar to that of the springs. In this section,
we will use the concepts developed in previous sections to discuss those
aspects of the lumped-mass model associated with calculating the shear
stiffness in columns.
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Figure 2.29. Frame building type analyzed to compare lumped mass shear stiff-
ness with exact shear stiffness.

The basic assumption of the lumped-mass model is that the beams
attached to the columns are so stiff that the rotations at the ends of
columns are negligible. If we use formula 2.12, we find that this implies
that the shear stiffness of a column is 12EIc/L

3
c (see symbol definitions

below formula 2.12). To assess this assumption, we compare this stiff-
ness with the apparent shear stiffness of buildings like the one shown in
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Figure 2.30. Lumped-mass system for a framed building with the first two modes
of deformation assuming all columns have the same stiffness.

figure 2.29 having all its beams similar to each other and all its column
similar to each other and with exactly seven beam spans but with a vari-
able number of floors and with a variable ratio of the beam to column
rotary stiffness (ie. (EIc/Lc) / (EIb/Lb)).

When we do an exact analysis, we find that, unlike the mass model,
the shear stiffness of the columns depend on the pattern of applied side
forces ’Pi.’ The reason is that the shear stiffness of a column also de-
pends on the moments transmitted from the columns above and below
it (see figure 2.19 and 2.20) which in turn depends on the pattern of ap-
plied side forces. In order to decide on what pattern of side forces is
most relevant for analysis, we need to consider how we typically use
the lumped-mass model in structural dynamics. In structural dynamics,
after we obtain the parameters of the lumped-mass model, we usually
do a modal analysis. This modal analysis gives the natural frequencies
of the building and for each natural frequency we obtain a pattern of
deformation called an eigenmode. If we rank the frequencies and their
eigenmodes in order of increasing frequency, the one with the lowest
frequency is called the first mode, the second the second mode and so
on. For example, the first and second modes of the lumped-mass model
shown in figure 2.30a are shown in figures 2.30b and c for some typical
configurational parameters.

In many buildings, it is often considered sufficiently accurate to
consider relatively few eigenmodes when doing a structural dynamics
study. Therefore, to test the assumptions of the lumped-mass model, we
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will consider an applied load pattern that roughly corresponds to the
the first two modes of deformation. An example of such loads and the
response of the frame shown in figure 2.29 is shown in figure 2.31 for the
first mode and in figure 2.34 for the second mode. We will next discuss
how the shear stiffness of each of those modes compare with those of the
lumped-mass model.

P

P

P

P

Figure 2.31. Frame building type analyzed to compare lumped mass shear
stiffness with exact shear stiffness for an approximate first mode pattern of
deformation.

First we consider the first mode and to that purpose we consider
the loading shown in figure 2.31. By analyzing that frame, we find that
the shear stiffness of columns within one floor varies from column to
column. However, since the lumped-mass model uses a single spring
to represent a whole floor, we will compare the mean shear stiffness of
columns in a floor with the uniform value identified by the lumped-mass
model. The normalized mean shear stiffness (ie. shear stiffness divided
by EIc/L3

c) when the relative rotary stiffness of a beam to a column is 1
and 3 are shown in tables 2.14 and 2.15 respectively. In addition to the
normalized mean shear stiffness, the tables also show the ratio of the
maximum shear stiffness to the minimum shear stiffness in the columns
of each floor and these are shown in parenthesis. Those tables indicate
the following:

i) The shear stiffness factor is significantly less than 12 and we note that
the values of rotary stiffness considered are within the typical range
for buildings.

ii) The columns at the ground floor have higher stiffnesses than those at
the rest of the floors because of their fixed supports.
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iii) The columns at floors above the ground floor have approximately the
same mean shear stiffness (eg. about 4.5 and 7.5 when the relative ro-
tary stiffness of beams to columns is 1 and 3).

iv) The mean shear stiffness of columns at floors above the ground floor
are relatively insensitive to the number of floors.

Table 2.14. Mean and Maximum Over Minimum Ratios of the Normalized
Shear Stiffness of Columns by Floor for the Building Type Shown in Fig-
ure 2.29 for Various Number of Floors with Pi = P (Same) at all Floors and
(EI/L)beam/(EI/L)column = 1 for All Beams and Columns.

Normalized shear stiffness at floor (mean and max/min)

number of floors→ 1 2 3 4 5 6 7

floor = 7 4.14 (2.02)
floor = 6 4.14 (2.02) 4.33 (1.74)
floor = 5 4.14 (2.02) 4.33 (1.74) 4.34 (1.76)
floor = 4 4.15 (2.02) 4.34 (1.74) 4.34 (1.76) 4.35 (1.76)
floor = 3 4.21 (1.96) 4.38 (1.71) 4.38 (1.73) 4.37 (1.73) 4.37 (1.74)
floor = 2 4.58 (2.01) 4.65 (1.75) 4.62 (1.77) 4.59 (1.77) 4.58 (1.76) 4.57 (1.76)
floor = 1 8.60 (1.30) 7.77 (1.22) 7.40 (1.26) 7.22 (1.27) 7.12 (1.28) 7.05 (1.28) 7.00 (1.29)

Table 2.15. Mean and Maximum Over Minimum Ratios of the Normalized
Shear Stiffness of Columns by Floor for the Building Type Shown in Fig-
ure 2.29 for Various Number of Floors with Pi = P (Same) at All Floors and
(EI/L)beam/(EI/L)column = 3 for All Beams and Columns.

Normalized shear stiffness at floor (mean and max/min)

number of floors→ 1 2 3 4 5 6 7

floor = 7 7.38 (1.57)
floor = 6 7.38 (1.57) 7.46 (1.51)
floor = 5 7.38 (1.57) 7.46 (1.51) 7.46 (1.51)
floor = 4 7.38 (1.57) 7.46 (1.51) 7.46 (1.51) 7.46 (1.51)
floor = 3 7.39 (1.56) 7.47 (1.50) 7.47 (1.51) 7.47 (1.51) 7.47 (1.51)
floor = 2 7.53 (1.63) 7.56 (1.55) 7.55 (1.55) 7.54 (1.54) 7.54 (1.54) 7.54 (1.54)
floor = 1 10.43 (1.18) 9.89 (1.18) 9.68 (1.20) 9.58 (1.21) 9.52 (1.22) 9.48 (1.22) 9.45 (1.22)

Further parametric studies also indicate that the mean shear stiffness
of columns at floors above the ground floor are relatively insensitive to
the number of spans above 2 spans and relatively insensitive to the distri-
bution of side-forces as long as they are all in the same direction and the
top floor is loaded. Therefore, the lumped-mass model generally overes-
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timates the stiffness of a frame and the the error may not be fixed by sim-
ply multiplying the stiffness of all columns by some factor because the
ground floor columns have a different stiffness from those at the other
floors. However, if the building has many stories, the pattern of defor-
mation should match the exact one except for a possible discrepancy at
the first floor.

To get an indication of how the shear stiffness varies with the rel-
ative rotary stiffness of beams to columns, we plot in figure 2.32 the
normalized mean shear stiffness of the columns at the fifth floor in a
ten story building as a function of the relative beam to column stiff-
ness. As expected, this normalized stiffness tends to 12 as the beams be-
come infinitely stiff. However, the rate at which this happens is rather
slow with typical values of beam to column rotary stiffness having nor-
malized shear stiffness values that are significantly lower than the limit
of 12. We note that when the relative rotary stiffness of beams to columns
approaches zero, the normalized mean shear stiffness of columns ap-
proaches a small but non-zero value which, in the case of figure 2.32
is about 0.04. A rational expression curve fitted to the data of figure 2.32
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Figure 2.32. Mean normalized shear stiffness of 5th floor columns in a 10 floor
framed building as a function of the relative rotary stiffness of a beam versus a
column. Building system configuration assumes that Pi = P (same), all beams
have same sectional properties and all columns have same sectional properties.
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and to comparable data for the ground floor gives the following result
for the mean shear stiffness:

ksh mean =


(

1+72k
11+6k

)
× EIc

Lc
mid floor(

1+132k
9+11k

)
× EIc

Lc
ground floor

(2.15)

where: k = (EIb/Lb) / (EIc/Lc) and is the relative rotary stiffness of a
beam to a column.

The above formula 2.15 is qualitatively applicable and often approx-
imately accurate to spans above 3 and number of floors above 3 and to a
wide variety of side-force loading patterns.

In addition to the mean normalized shear stiffness, tables 2.14 and
2.15 also present the ratio of maximum to minimum shear stiffness in
the floors of a column. This ratio is relevant to another approximate
method used for portal frames and called the portal method. The portal
method assumes that all inner columns take twice the shear of the two
outer columns which is equivalent to assuming that the inner columns
have twice the stiffness of the outer columns. Based on the plot shown
in figure 2.33, this assumption has significant errors even for a highly
patterned building of the type shown in figure 2.29. Figure 2.33 indi-
cates that typical values of the ratio of inner to outer column shears is
somewhere between 1.4 and 1.7 but may reach a maximum of 1.92 at the
atypical rotary stiffness ratio of about 0.174. Of course, geometrical and
configurational variation of columns and beams cannot be addressed by
the portal method but can be simply analyzed using the methods previ-
ously discussed.

Next we consider the second mode and to that purpose we consider
the loading shown in figure 2.34. By analyzing that frame, we find that
the shear stiffness of columns within one floor varies from column to
column. However, since the lumped-mass model uses a single spring
to represent a whole floor, we will compare the mean shear stiffness of
columns in a floor with the uniform value identified by the lumped-mass
model. The normalized mean shear stiffness (ie. shear stiffness divided
by EIc/L3

c) when the relative rotary stiffness of a beam to a column is 1
and 3 are shown in tables 2.16 and 2.17 respectively. In addition to the
normalized mean shear stiffness, the tables also show the ratio of the
maximum shear stiffness to the minimum shear stiffness in the columns
of each floor and these are shown in parenthesis. Those tables indicate
the following:

i) The shear stiffness factor is significantly less than 12 and we note that
the values of rotary stiffness considered are within the typical range
for buildings.
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Figure 2.33. Maximum over minimum ratios of the shear stiffness of 5th floor
columns in a 10 floor framed building as a function of the relative rotary stiffness
of a beam versus a column. Building system configuration assumes that Pi = P
(same), all beams have same sectional properties and all columns have same
sectional properties.
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Figure 2.34. Frame building type analyzed to compare lumped mass shear stiff-
ness with exact shear stiffness for second mode.

ii) The columns at the ground floor have higher stiffness than those at
the rest of the floors because of their fixed supports. In one case, when
we have only two floors, the normalized mean shear stiffness of the
columns at the ground floor exceeds 12 and will be explained below.
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Table 2.16. Mean and Maximum over Minimum Ratios of the Normalized Shear
Stiffness of Columns by Floor for the Building Type Shown in Figure 2.29 for
Various Number of Floors with Ptop = P , Pmid = −1.6 P and Pother = 0 at All
Floors and (EI/L)beam/(EI/L)column = 1 for All Beams and Columns.

Normalized shear stiffness at floor (mean and max/min)

number of floors→ 2 4 6 8 10

floor = 10 5.13 (1.70)
floor = 9 4.42 (1.72)
floor = 8 5.13 (1.70) 4.37 (1.75)
floor = 7 4.44 (1.71) 4.49 (1.76)
floor = 6 5.15 (1.69) 4.49 (1.76) 6.06 (1.39)
floor = 5 4.57 (1.73) 6.06 (1.39) 8.24 (1.20)
floor = 4 5.33 (1.70) 6.08 (1.39) 8.25 (1.20) 4.59 (1.77)
floor = 3 6.19 (1.37) 8.31 (1.20) 4.61 (1.75) 4.39 (1.72)
floor = 2 7.49 (1.34) 8.84 (1.20) 4.79 (1.77) 4.55 (1.74) 4.52 (1.76)
floor = 1 17.22 (1.04) 7.25 (1.33) 6.79 (1.30) 6.73 (1.31) 6.73 (1.31)

Table 2.17. Mean and Maximum over Minimum Ratios of the Normalized Shear
Stiffness of Columns by Floor for the Building Type Shown in Figure 2.29 for
Various Number of Floors with Ptop = P , Pmid = − 1.6 P and Pother = 0 at All
Floors and (EI/L)beam/(EI/L)column = 3 for All Beams and Columns.

Normalized shear stiffness at floor (mean and max/min)

number of floors→ 2 4 6 8 10

floor = 10 8.22 (1.43)
floor = 9 7.49 (1.52)
floor = 8 8.22 (1.43) 7.46 (1.51)
floor = 7 7.49 (1.51) 7.51 (1.53)
floor = 6 8.22 (1.42) 7.51 (1.53) 8.85 (1.29)
floor = 5 7.54 (1.53) 8.85 (1.29) 10.11 (1.16)
floor = 4 8.27 (1.44) 8.86 (1.29) 10.11 (1.16) 7.54 (1.54)
floor = 3 8.89 (1.29) 10.12 (1.16) 7.54 (1.54) 7.47 (1.50)
floor = 2 9.88 (1.21) 10.22 (1.18) 7.60 (1.57) 7.52 (1.53) 7.52 (1.54)
floor = 1 13.37 (1.05) 9.40 (1.27) 9.29 (1.23) 9.29 (1.24) 9.29 (1.24)

iii) The columns at floors above the ground floor have approximately the
same mean shear stiffness (eg. about 4.5 and 7.5 when the relative ro-
tary stiffness of beams to columns is 1 and 3) except near the floor
where the reversal in deflection starts.

iv) The mean shear stiffness of columns at floors above the ground floor
are relatively insensitive to the number of floors except near the floor
where the reversal in deflection starts.
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Further parametric studies also indicate that the mean shear stiffness
of columns at floors above the ground floor are relatively insensitive to
the number of spans above 2 spans and relatively insensitive to the dis-
tribution of side-forces as long as there is one reversal in displacement
occuring at the same level in the building. Therefore, the lumped-mass
model generally overestimates the stiffness of a frame and the error may
not be fixed by simply multiplying the stiffness of all columns by some
factor because the ground floor columns have a different stiffness from
those at the other floors. Furthermore, even when the building has many
stories, the exact pattern of deformation may significantly differ from
that of the lumped-mass model and these two patterns may not be rec-
onciled by a simple scaling factor. The additional difficulty in this second
mode of deformation is that we do not know a-priori where the displace-
ment reversal will occur because this depends on the pattern of shear
stiffness between adjacent floors which the lumped-mass model assumes
up front. In that regards, we note that figure 2.19 and 2.20 and the associ-
ated formula 2.12 can be used to understand why the relative shear stiff-
ness increases in the columns of the floors where the displacement starts
to reverse. Specifically, when the displacement reverses, the moment at
the top of the column is acting to restrict and thus to stiffen the connected
column while such moments for the other columns enhance and thus re-
duce the stiffness of connected columns. In particular, when there is only
one story, the effect of restricting moment is more pronounced and leads
to column stiffnesses at the ground floor that may exceed a normalized
mean shear stiffness of 12.

In summary, the lumped-mass model overestimates the shear stiff-
ness of columns but may give acceptable patterns of deformation for the
first mode of deformation. Furthermore, by using some scaling factor,
it may be also possible to get a good approximation between this first
mode’s natural frequency and the exact one. Unfortunately, for modes
higher than one, this simple fix may not be reliably possible. However,
most of the deformation of a tall building (usually above 80%) may be
accounted for by the first mode of deformation so that the lumped-mass
model remains a useful model to study.

2.7 Sketching Multiple Floor Frames
Subject to Horizontal Loads

Now that we’ve discussed how to calculate the shear and bending mo-
ments in the columns and beams of a multi-story frame subject to sides-
way and we’ve discussed the relatively simpler lumped-mass model and
its deformation patterns, we turn to the matter of sketching the deformed
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shape of frames subject to sidesway. In this regards, we will extend the
procedure developed for sketching single floor portal frames. The steps
remain the same and these are repeated concisely below:

i) Draw the column and beam chords.

ii) Draw the directions or tangents to most columns and beams at the
nodes or connections.

iii) Draw the columns by using the tangents at the nodes and fig-
ures 2.14 and 2.15 as a guide for the ground floor and figure 2.20
for the other floors.

iv) Draw the beams by using the tangents at the nodes as a guide.

v) Draw the column or columns with rollers (if any) using the tangents
as a guide and knowing that those columns must be subject to a
rigid rotation.

vi) Remove extraneous lines that were used in constructing the sketch
in order to get a better looking drawing of the deformed shape. In
this step, we recommend that the chords be kept because they help
to clarify the deformations of the columns and beams.

In the above steps, we will give additional suggestions on how to
sketch the chords of columns and the deformed columns themselves.
This is additional information related to steps (i) and (iii) above. The rest
of the steps are similar to sketching the previously discussed single floor
portal.

We start by discussing how to sketch the column chords. In a single
floor portal, we simply choose a convenient slope for the chord of any
column and all the other chords of the columns must be parallel to that
one. This observation still applies on a floor by floor basis in a multi-story
frame. Once we choose the sidesway or slope of one of the chords of the
columns in a given floor then all the other chords of the columns on the
same floor must be parallel to that one. What remains to be discussed is
the relative slopes of the chords at different floors. In that regards, we
will find it useful to define a frame’s chord-line to be the line joining
a representative chord of a column from each floor connected to other
representative columns in successive floors all the way from the ground
to the top floor.

The shape of a frame’s chord-line depends on how the total shear
stiffness of all columns in a floor vary from floor to floor and on the pat-
tern of side loading. To estimate this shape, we can use the lumped-mass
model with the shear stiffness of the columns adjusted according to the
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methods of previous sections. We start by considering the deformation
pattern when we apply a side force at only the top floor of a regular
frame as shown in figures 2.35. In that case, the total shear force in the
columns of any given floor is the same for all floors. This total shear force
divided by the total shear stiffnesses of the columns in a given floor gives
the sidesway for that floor. When there is some regularity in the frame,
the total shear stiffness of the floors are all about the same with relatively
large deviation only at the ground floor. Therefore, the sidesway of the
floors will all be about the same and this leads to the frame chord-line
being approximately linear. This trend is apparent in all of figures 2.35
that have more than one floor with small deviations at the ground floor
due to the relatively large deviation in that floor’s shear stiffness.

P

P

P

P

P

P

Figure 2.35. Deformation pattern for side-loaded frames with only the top floor
loaded.

Next we consider the deformation pattern when we apply the same
side force at each floor of a regular frame as shown in figures 2.36. In
that case, the total shear force in the columns of any given floor decreases
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Figure 2.36. Deformation pattern for side-loaded frames with a uniform distribu-
tion of loads per floor.

linearly from the ground floor where this total shear force equals the total
of all side forces on the ground floor until the top floor where this total
shear force equals only the side force applied at the top floor. As before,
when there is some regularity in the frame, the total shear stiffness of
the floors are all about the same with relatively large deviation only at
the ground floor. Therefore, the sidesway of the floors will vary in an
approximately linear manner and this leads to the frame chord-line being
approximately parabolic. This trend is apparent in all of figures 2.36 that
have more than two floors with small deviations at the ground floor due
to the relatively large deviation in that floor’s shear stiffness.

Next we consider the deformation pattern when we only apply a
side force at the top floor but there is a discontinuity in shear stiffness in
one of the floors as shown in figures 2.37 and 2.38. The discontinuity in
figure 2.37 is due to placing internal hinges at the top of all the columns
of one of the floors which significantly reduces the shear stiffness of that
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Figure 2.37. Deformation pattern for side-loaded frames with only the top floor
loaded and all the columns of the middle floor have internal hinges at their tops.
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Figure 2.38. Deformation pattern for side-loaded frames with only the top floor
loaded and only outer columns of middle floor have internal hinges at their tops.

floor. In that case, we find that the slope before and after the more flexible
floor are the same as those of the frame without the internal hinges. In
comparison with that uniform frame, the main deviation is localized at
only the floor with the internal hinges as seen in figure 2.37. By contrast
to the frames of figure 2.37, the discontinuity in the frames of figure 2.38
is due to placing internal hinges at the top of only the outer columns of
one of the floors. This again causes a signficant reduction of shear stiff-
ness in that floor but about half of that than in the frames of figure 2.37.
The result in deformations of the frames of figure 2.38 are similar to those
of the frames of figure 2.37 but the localized deviation in slope is much
less than for the case of the frames of figure 2.37.



Practical Approximate Analysis of Beams and Frames 163

The next aspect that we will discuss concerns a detail in sketching
the individual columns of the floors after the column chords have been
sketched. In particular, we found that when the rotary stiffness factor at
the top of a column is larger than 0.5, which is almost always the case,
then the slope of the column at the top must be between the chord of the
column and the vertical. Do the slopes of the column tops and bottoms
also usually lie between the chord and the vertical when there is more
than one floor? When there is more than one floor, there are 4 possible
cases to consider (see figure 2.39) as follows:

kt´4
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L
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xI

(c)

kt´4
EI

L

MtP

(d)

Figure 2.39. Column cases considered in regards to sketching their deformations.

• The ground floor column with a fixed lower end as shown in fig-
ure 2.39a: In this case, in order for the top of the column to be along
the column chord, the value of the top rotary stiffness factor kt must
be related to the applied top moment Mt that is transmitted from the
column above it by the relation given in formula 2.16a and plotted in
figure 2.40a. Since the normalized applied top moment is usually be-
low 0.5, the top of the column will be between the chord and the verti-
cal whenever the rotary stiffness factor at the top kt is larger than 1.25
which is usually the case.
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Figure 2.40. Conditions where a column’s slope is tangent to the chord for the
cases of figure 2.39a, b and c. Figure 2.39d never has the column line tangent
to its chord. For figure 2.39c only the special case when Mb = Mt is shown.
(Continued below.)
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Figure 2.40. (Continued from above.) Conditions where a column’s slope is tan-
gent to the chord for the cases of figure 2.39a, b and c. Figure 2.39d never has
the column line tangent to its chord. For figure 2.39c only the special case when
Mb = Mt is shown.

• The top floor column with only an applied moment Mb at the bot-
tom as shown in figure 2.39b: In this case, in order for the bottom of
the column to be along the column chord, the relation between the
rotary stiffness factor at the top kt, at the bottom kb and the bottom ap-
plied moment Mb that is transmitted from the column below it must
be related by formula 2.16b and this is plotted for some parameters in
figure 2.40b. Since the normalized applied bottom moment is usually
below 1, the top of the column will be between the chord and the verti-
cal whenever the rotary stiffness factor at the bottom kb is larger than 2
which is often the case.

• The mid-floor column with an applied moment at the bottom Mb and
the topMt as shown in figure 2.39c: In this case, in order for the bottom
and top of the column to be along the column chord, the relation be-
tween the rotary stiffness factor at the top kt, at the bottom kb and the
applied moment at the top Mt and bottom Mb must be related by for-
mula 2.16c and this is plotted for some parameters and for the special
but important case when Mb = Mt in figure 2.40c. Since the moments
at the top and bottom are usually close to each other and both below a
normalized value of 0.5, the top and bottom of the column will be be-
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tween the chord and the vertical whenever the rotary stiffness factors
at the bottom kb and top kt are both larger than 1.25 which is usually
the case.

• The ground floor column with a hinged lower end as shown in fig-
ure 2.39b: In this case the slope at the top will always be between the
vertical and the chord and the slope at the bottom will always be be-
tween the chord and the horizontal.

To summarize, excluding the slope at a hinge support or at an in-
ternal hinge, the slopes of all columns at both the top and bottom will
usually be between the vertical and the chord of the column and should
usually be sketched in that manner. Conditions where the slope of a col-
umn is along the chord are given in formulas 2.16 below:

kt =
(1 + 3Mt)

2
(tangent at top) (2.16a)

kb =
kt + 3ktMb

2 (1 + kt)
(tangent at bottom) (2.16b){

kt = kb+3kbMt

2+2kb+3Mb
(tangent at top)

kb = kt+3ktMb

2+2kt+3Mt
(tangent at bottom)

(2.16c)

Having described the guidelines needed to sketch the deformed shape of
a frame subject to sidesway, we now consider specific examples. For that
purpose, we will again consider the frames shown in figure 2.24 and 2.27.

The steps in sketching the deformed shape of the frame of figure 2.24
are illustrated in figure 2.41. First we sketch the chords of the columns
and beams. For the given pattern of side forces, the frame’s chord-line
will be between a linear and parabolic shape. Since we only have three
floors, the disctinction will be minor and we will simply draw a linear
chord-line as shown in figure 2.41a. Next we sketch the column and
beam slopes using short stubs at either end of each member as shown
in figure 2.41b. In this regards and for all columns, we follow the recom-
mendation related to column slopes at all ends where there is neither an
internal hinge or a hinge support. Namely that the column slope at an
end must be between the vertical and the column chord. At an internal
hinge or at a hinge support, the slope of the member (beam or column)
at the hinge relative to the chord of the member is half the slope at the
other end. Using these guidelines we may sketch all the column slopes
or stubs. Next we discuss how to draw the stubs for the beams.

Whenever there is a rigid connection, the rotation of all the con-
nected stubs must be the same. This imposes a constraint on the column
slopes when they are attached to the same node and allows us to draw
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Figure 2.41. Steps in sketching the deformed shape of problem 2.24.

stubs at the ends of all beams where there is a rigid connection. At beam
ends that are connected to a node where all the attached columns have
an internal hinge at that connection (for example node K in figure 2.41),
the rotation of the beams at the connection is dictated by the beam rota-
tions at the other ends of those beams. In this regards, we need to use the
methods related to sketching the deformation of beams with no sides-
way because the beams of each floor behave as shown in figure 2.11.

Once the stubs at all beam and column endings have been sketched,
we then sketch the column lines. These follow the same guidelines as
those for the single floor portal and is shown in figure 2.41c. Finally, the
deformed shape of all beams are sketched using the methods of beams
with no sidesway and this is shown in figure 2.41d. By removing extrane-
ous lines including the stubs constructed in figure 2.41b, we get a cleaner
looking sketch of the deformed frame and this is shown in figure 2.42.

The steps in sketching the deformed shape of the frame of figure 2.27
are illustrated in figure 2.43. These are similar to the previous case. First
we sketch the column chords as shown in figure 2.43a. Second, we sketch
stubs indicating the slopes at the ends of all columns and beams. Unlike
the previous example, in this case the rotation of all beams are dictated
by the rotation of the columns and the result is shown in figure 2.43b.
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Figure 2.42. Sketch of deformed shape of problem 2.24.
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Figure 2.43. Steps in sketching the deformed shape of problem 2.27.
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Having sketched the stubs, it becomes simple to sketch first the col-
umn lines as shown in figure 2.43c and the beam lines as shown in fig-
ure 2.43d. Finally, by removing extraneous lines, we get a cleaner looking
sketch of the deformed frame and this is shown in figure 2.44.

P=10

A B C D

E F G H

I J K L

Figure 2.44. Sketch deformed shape of problem 2.27.

2.8 Notes on Sidesway Due to
Vertical Loads or Applied Couples

Having discussed sidesway due to side forces, we will now consider
some aspects of sidesway due to vertical loads and applied couples.
Specifically, we will consider the following three questions:

• When there is sidesway due to vertical loads or applied couples, how
do we approximately analyze the problem?

• When there is sidesway due to vertical loads or applied couples, what
is the direction of the sidesway? By knowing the direction of sides-
way, we may identify whether the bending moment in each member
of such frames will have a higher or lower value when sidesway is
either considered or neglected.

• Under what conditions may we neglect the effect of sidesway due to
vertical loads or applied nodal moments even when sidesway is pos-
sible? We will consider an answer to this question for a limited class of
frames but the results will be suggestive to other frames.

We start by describing how to approximately analyze a frame with
either vertical loads or with applied couples at nodes but the frame has
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Figure 2.45. Superposition to analyze a frame subject to a vertical load and that
may have sidesway.

no constraints on having sidesway such as in figure 2.45a. We analyze
such a problem using superposition by first applying a restraint against
the sidesway as shown in figure 2.45b and then we apply an equal and
opposite force to the reaction at the restraint as shown in figure 2.45c.
For a general frame, restraints must be applied at each floor in order to
inhibit the sidesway at each floor. The frame without sidesway may be
approximately analyzed using the techniques of the first chapter while
the frame with transverse point forces at only the nodes of the floors
may be analyzed using the methods of the current chapter. The only new
aspect is in how to determine the reaction forces at the restraints used to
inhibit sidesway and this will be discussed next.

Consider a frame with vertical forces that has an horizontal restraint
in order to inhibit sidesway such as the one shown in figure 2.46a. First,
we draw the free body diagram of the whole frame (eg. figure 2.46b)
from which we deduce that the restraining horizontal force (ie. Rx in fig-
ure 2.46b) equals negative the total shear forces in the columns. Note that
if we have more than one floor then we have to add the shear forces in
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Figure 2.46. Figures showing free body diagrams that are useful to identify which
side the frame moves if the horizontal roller at C is removed.
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all the columns above and below the floor under consideration. Finally,
to determine the shear forces in the columns, we use free body diagrams
such as the ones shown in figure 2.46c to deduce that the shear force in a
column is the sum of the end moments in that column divided by the col-
umn length. The reaction force in the horizontal direction at a constraint
is then given by:

Rx =



∑
all columns

(Mend points top+Mend point bottom)
Lcolumn

single floor∑
all columns

above and below

(Mend points top+Mend point bottom)
Lcolumn

multiple floors
(2.17)

where the reaction force is positive in the x-direction and the moment at
an endpoint is positive if it is counter-clockwise and negative if clock-
wise.

Having discussed how to approximately analyze frames with ver-
tical loads or applied moments, the question of determining the direc-
tion of sidesway becomes straightforward. Consider the illustration of
superposition shown in figure 2.45. This superposition applies to inter-
nal forces and moments as well as to displacements. In particular, the
deformation of the frame in figure 2.45c may include a sidesway but not
those of the frame of figure 2.45b. This implies that the direction of the
sidesway is opposite to the direction of the reaction force. Since the re-
action force is the sum of all the counter-clockwise end moments of all
the columns then the direction of sidesway of a floor is to the right if the
sum of the end moments of all the columns above and below the floor in
question when sidesway is inhibited is clockwise.

To clarify how the direction of sidesway may be determined, we will
consider a simple frame with three kinds of loading as shown in fig-
ures 2.47. In those frames, the sectional properties of all three members
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Figure 2.47. Cases considered in clarifying conditions that determine whether
the sidesway is to the left or to the right.
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may be different and the length of the columns and the beam may be
independently chosen. In addition, for figure 2.47c, the location of the
point force may vary across the beam. As a reference, we give the exact
result for the sidesway in those frames which is as follows:

∆ =



(kL−kR)
16z

LcL
3
b

EIb
q uniform load

(2kL−kR+2kLkR)
4z

LcLb

EIb
Mapp applied moment

(1− x̂F ) x̂F

×
(

(2kL−kR+2kLkR)
4z

− (kL+kR+4kLkR)x̂F

4z

)
LcL

2
b

EIb
P

point force
(2.18)

where:

z = 3kL + k2L + 3kR + 11kLkR + k2LkR + k2R + kLk
2
R

kL = (EIcL/Lc) / (EIb/Lb)

kR = (EIcR/Lc) / (EIb/Lb)

‘q’ is the magnitude of the uniform load

‘Mapp’ is the magnitude of the applied moment

‘P ’ is the magnitude of the point force

x̂ = xF/Lb where xF is the distance of the point force from the left end

In all the cases considered in figure 2.47, we note the following:

• In all cases, the top end moments of the left column are clockwise and
those of the top right column are counter-clocwise.

• In all cases, the bottom end moments of a column are half the top ones
and are of the same sign.

Therefore, in all cases, if the top end moment on the left column is
higher than the corresponding one on the right column then the sides-
way will be to the right and it will be to the left otherwise. We next con-
sider each of the three cases separately.

First we consider the frame in figure 2.47a with a clockwise applied
moment. For the three cases considered in figure 2.48, we note the fol-
lowing:

• The applied moment is distributed on the beam and on the left column
in proportion to their rotary stiffness which is approximately propor-
tional to the sectional property ‘EI’ where ‘E’ is Young’s modulus and
‘I’ is the moment of inertia.
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Figure 2.48. Cases considered in clarifying conditions that determine whether
the sidesway is to the left or to the right.

• The moment on the right column is equal to the moment on the right
end of the beam which is equal to the moment on the left end of the
beam times a carry-over factor. This carry-over factor depends on the
relative stiffness of the sectional property ‘EI’ of the column divided
by that of the beam. This carry-over factor increases with ‘EIcR’ and
reaches a maximum of a half.

With the above observation, we now consider each of the cases in
figure 2.48:

• When the sectional properties of the columns are the same (as in fig-
ure 2.48a), the moment distributed to the left column will be about half
the applied moment while that on the right column it will be less than
half (ie. carry-over factor) of half the applied moment (ie. applied mo-
ment distributed to the beam). Therefore, the end moments on the left
column are higher and the frame will move to the right.

• When the sectional properties of the column on the left is one-tenth
that of the beam (figure 2.48b), the moment distributed to the left col-
umn will be less than one-tenth the applied moment while that on the
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right column will be close to half of nine-tenth the applied moment.
Therefore, the end moments on the right column are higher and the
frame will move to the left.

• When the sectional properties of the column are as is shown in fig-
ure 2.48c, an approximate analysis of the frame with sidesway inhib-
ited gives end moments in the columns that are about the same. There-
fore, sidesway will be zero or negligible.

Next we consider the frame in figure 2.47b. For the three cases con-
sidered in figure 2.49, we note the following:

• The moments at the ends of the beam equal the moments at the top of
the columns.

• The moments at the ends of the beam are related to the rotary stiffness
factors at the ends. In particular, the end with the higher rotary stiff-
ness factor will have a higher end moment. This means that the end
with a higher value of ‘EI’ will have a higher end moment because
the length of the columns are identical.

With the above observation, we now consider each of the cases in
figure 2.49:
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Figure 2.49. Cases considered in clarifying conditions that determine whether
the sidesway is to the left or to the right.
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• When the sectional properties of the columns are the same as in fig-
ure 2.49a then the end moments on the columns are the same and
there is no sidesway. Note that, in this case, we could also have de-
duced this fact based on the simultaneous symmetry of the geometry,
material and loading.

• When the rotary stiffness of the left column is higher as in figure 2.49b
then the sidesway is to the right and when this is lower as in fig-
ure 2.49c then the sidesway is to the left.

Next we consider the frame in figure 2.47c with an applied point
force. For the six cases considered in figure 2.50, we note the following:

• The moments at the ends of the beam equal the moments at the top of
the columns.

• The moments at the ends of the beam are related to the rotary stiffness
factors at the ends. In particular, the end moment at an end increases
with the rotary stiffness factor at that end.

• The moments at the ends of the beam are also related to the location of
the point force. In particular, for the same material properties, as the
point force approaches an end, the moment at that end will tend to
increase relative to the other end.

• The above observations taken together imply that there are two com-
peting effects, the location of the point force and the relative rotary
stiffness factors of the columns.

With the above observation, we now consider each of the cases in
figure 2.50:

• When the sectional properties of the columns are the same and the
point force is at the middle of the beam as in figure 2.50a then the
end moments on the columns are the same and there is no sidesway.
Note that, in this case, we could also have deduced this based on the
simultaneous symmetry of the geometry, material and loading.

• When the sectional properties of the columns are the same and the
point force is closer to the left end of the beam as in figure 2.50b then
the end moments on the left columns are higher and sidesway is to the
right. This is because the rotary stiffness factor does not favor any side
in terms of higher internal moments but the point force favors the left
side column.
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Figure 2.50. Cases considered in clarifying conditions that determine whether
the sidesway is to the left or to the right.

• When the sectional properties of the columns are such that the rotary
stiffness factor on the right are higher than at the left and the point
force is at the middle of the beam as in figure 2.50b then the end mo-
ments on the right columns are higher and sidesway is to the left. This
is because the rotary stiffness factor favor the right hand column in
terms of higher internal moments but the point force does not favor
any side.

• The cases shown in figures 2.50d, e and f all have a competition be-
tween the effect of the location of the point force and the contrast in
rotary stiffness factors. For a moderate contrast between the rotary
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stiffness factors of the columns, the sidesway is to the left when the
point force is not sufficiently close to the left end as in figure 2.50d
and it is to the right when it gets sufficiently close to the left end as in
figure 2.50e. However, when the stiffness contrast between the rotary
stiffness factors of the columns is above a threshold as in figure 2.50f
then the effect of the location of the point force will always be weaker
than the effect of rotary stiffness contrast and the frame will always
have a sidesway to the left.

Finally, we consider the question of whether we can neglect the ef-
fect of sidesway due to vertical loads or applied nodal moments even
when sidesway is possible. In order to study this question, we consider
a single floor but multi-bay portal frame subject to either an applied mo-
ment at the leftmost end as in figures 2.51, or to an applied uniform load
on the leftmost beam as in figure 2.52, or to an applied point force on
the leftmost beam as in figure 2.54. In each case, we consider the internal
moment at the left end of the leftmost beam when the sidesway is inhib-
ited as in figures 2.51a, 2.52a and 2.54a and when sidesway is allowed
as in figures 2.51b, b and b. The reason we consider the internal moment
at the left end of the leftmost beam is that this is usually the largest (or
close to the largest) internal moment in the frame.
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Figure 2.51. A single floor regular portal frame with variable number of bays
subject to a point moment at only the leftmost node.

Lb
Lb

Lc

Lb
Lb

EIc EIc

EIb

EIc EIc EIcEIc

EIb EIbEIb

︸ ︷︷ ︸
(a) variable number of bays or spans

Lb
Lb

Lc

Lb
Lb

EIc EIc

EIb

EIc EIc EIcEIc

EIb EIbEIb

︸ ︷︷ ︸
(b) variable number of bays or spans

Figure 2.52. A single floor regular portal frame with variable number of bays
subject to a uniform load on only the leftmost span.
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Figure 2.53. Percent error between the leftmost moments of the leftmost beams
when the sidesway is neglected or when it is included versus the number of
bays or spans. Figure 2.53a is for an applied moment at the leftmost node and
figure 2.53b is for an applied uniform load on the leftmost span. In both figures,
0.5 ≤ (EIc/Lc) / (EIb/Lb) ≤ 2 and 0.8 ≤ Lb/Lc ≤ 2.

First, we consider the cases of an applied moment (figures 2.51) and
of an applied uniform load (figures 2.52). In those cases, there are effec-
tively two parameters that affect the relative error between the above
specified internal moment when there is and when there is no sides-
way. These parameters are the relative length of a column to a beam
(ie. Lb/Lc) and the relative rotary stiffness factor of a column to a beam
(ie. (EIc/Lc) / (EIb/Lb)). For each configuration, we consider the largest
positive and negative errors for any value of these parameters within
a range typical for those parameters (see related figure captions) and
plot the error range as a function of the number of bays as shown in fig-
ure 2.53a and b for the applied moment and for the uniform load cases
respectively. The results shown in the plots indicate that the error de-
creases as the number of bays increases so that if we allow a maximum
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Figure 2.54. A single floor regular portal frame with variable number of bays
subject to a point force on only the leftmost span.
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Figure 2.55. (Continued below.)

error of about 15% then we may neglect sidesway when the number of
bays is larger than four. The trend for these results may be understood
by noting the following:

i) The internal moments when sidesway is inhibited is largest in the
the first two leftmost columns (ie. nearest to the load) and decreases
rapidly relative to those values as we consider columns farther away
from those columns.
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Figure 2.55. (Continued from above.) Percent error between the leftmost mo-
ments of the leftmost beams when the sidesway is neglected or when it is in-
cluded versus the number of bays or spans. The figures are for an applied point
force on the leftmost beam with the location of the point force restricted to the
center for figure 2.55a, the middle third of the span for figure 2.55b and the middle
half of the span for figure 2.55c. In both figures, 0.5 ≤ (EIc/Lc) / (EIb/Lb) ≤ 2
and 0.8 ≤ Lb/Lc ≤ 2.

ii) Negative the restraining force inhibiting sidesway will be distributed
over all the columns when we superpose back the effect of the restrain-
ing force in order to get the unrestrained case (eg. see figure 2.45 and
related explanations).

The above two observations implies that the restraining force when
sidesway is inhibited changes relatively little as the number of bays in-
creases but negative this restraining force gets distributed over a larger
number of columns producing progressively less end moments in those
columns to be superposed back in order to get the unrestrained case.
Hence, the error between the cases when sidesway is inhibited and when
it is not inhibited will decrease with the number of bays.

For the case when a point force is applied on the leftmost beam as
in figures 2.54, we have an additional parameter which is the location of
the point force on the beam. For each configuration specified by (Lb/Lc),
(EIc/Lc) / (EIb/Lb) and (xF /Lb), we again consider the largest positive
and negative errors for any value of these parameters within a range
typical for those parameters (see related figure captions) and plot those
as a function of the number of bays as shown in figure 2.55a, b and c. The
cases differ in the range that is allowed for the location of the point force.
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The results shown in the plots indicate that the error again decreases as
the number of bays increases so that if we allow a maximum error of
about 15% then we may neglect sidesway when the number of bays is
about three for all three ranges of the location of the point force. The
trend for these results may be understood in the same way as those for
the applied moment or applied uniform load.
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Chapter 3

Estimating Displacements
in Beams and Frames

3.1 Maximum Vertical Displacements
in Beams

In this chapter, we will discuss deflections and rotations in beams and
frames. Some of the material will overlap with previous discussions re-
lated to the sketching of beams and frames but the emphasis here is on
calculating or estimating the maximum deflection or rotation. In this
section, we will graphically present deflection results in terms of stiff-
ness factors. To estimate the maximum deflection in any beam that is
attached to a passive structure, we first estimate the stiffness factors at
the ends and then use the appropriate plot or formula to obtain the
maximum displacement. For convenience, simpler approximate formu-
las are presented in this section with exact formulas being relegated to
the appendices.

We start our presentation with the case of an applied moment at
an end and a passive resistance at the other as shown in figure 3.1a.
In this case, the maximum deflection always occurs nearer to the end
where the moment is applied at a distance between about 0.333 and 0.423
times the length of the member and occur when the stiffness factor is 0
and ∞ respectively. The value of the maximum deflection is between
about 0.0370 and 0.0642 times MappL

2/EI where ‘Mapp’ is the magni-
tude of the applied moment, ‘L’ is the length of the beam and ‘EI’ is the
moment of inertia of the beam. We note that the largest maximum deflec-
tion is

√
3 (≈ 1.732) times the smallest maximum deflection. The results

of both the location and value of the maximum deflection are shown in

183
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Figure 3.1. Cases considered in calculating maximum deflections.
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Figure 3.2. Location and value of the maximum deflection for the case shown in
figure 3.1a.

figures 3.2. Finally, an aproximate formula for the maximum deflection is
given by:

umax Mapp ≈
(1 + 0.8k)

(16 + 22k)

Mapp L
2

EI
(3.1)

We note that the above approximate formula always underestimates the
deflection and has a maximum error that is always less than 1.82% which
occurs when k = 0.

The next case we consider is that of a uniform load with passive
supports on each side as shown in figure 3.1b. In this case the maxi-
mum deflection always occurs closer to the more flexible side (ie. the
side whose stiffness factor is lower) and always lies between about 0.422
and 0.578 times the length of the beam. In other words, the location of
the maximum is within about 7.84% of the length of the beam from the
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Figure 3.3. Location and value of the maximum deflection for the case shown in
figure 3.1b.

center. The value of the maximum deflection is between 1 and 5 times
q L4

/
(384EI) where ‘q’ is the magnitude of the uniform load, ‘L’ is the

length of the beam and ‘EI’ is the moment of inertia of the beam. We
note that the largest maximum deflection which occurs when the beam
is simply supported is 5 times the smallest maximum deflection which
occurs when both ends are fixed. The results of both the location and
value of the maximum deflection are shown in figures 3.3. Finally, an
aproximate formula for the maximum deflection is given by:

umaxUL ≈
(1 + 0.57kL + 0.57kR + 0.29kL kR)

(77 + 106kL + 106kR + 112kLkR)

qL4

EI
(3.2)

We note that the above approximate formula has a maximum error of
0.72% and occurs when one end is hinged and the other fixed.

The final case we consider is that of a point load with passive sup-
ports on each side as shown in figure 3.1c. In this case, the influence of
the location of the point force has the largest effect on the location of the
maximum deflection. However, the location of the maximum deflection
always lies in the middle third of the beam for any location of the point
force on the beam and for any passive supports at the ends. The maxi-
mum deflection occurs at one third of the beam’s length when the point
force is almost at one end of the beam, that end is hinged and the other



186 Practical Approximate Analysis of Beams and Frames

end is a fixed end. When the point force is within the middle third of
the beam, the location of maximum deflection is at most a distance of
one sixth the length from that of the point force for any passive sup-
ports. The value of the maximum deflection when the point force is at
the middle of the beam is between 2 and 8 times PL3/(384EI) (ie. be-
tween PL3/(192EI) and PL3/(48EI)) where ‘P ’ is the magnitude of the
uniform load, ‘L’ is the length of the beam and ‘EI’ is the moment of in-
ertia of the beam. These two limits occur for the simply supported beam
and the beam that is fixed at both ends. When the point force is not at the
middle of the beam, the expression of the maximum deflection is more
complex but generally decreases as the point force moves away from the
center with the maximum possible deflection being for the simply sup-
ported beam and central loading (ie. 8PL3/(384EI)). The value of the
maximum deflection remains about the same if the point force remains
close to the center. In other words, the variation of the maximum deflec-
tion is insensitive to the location of the point force when the point force
is near the center. For example, when the point force is within the mid-
dle 10% and 20% of the beam then the maximum deflection is always
within about 8.1% and 21.3% respectively of the maximum deflection
when the point force is at the middle. The results of the location of the
maximum deflection are shown in figures 3.4 and those of the value of
the maximum deflection are shown in figures 3.5 for selected values of
the location of the point force. Finally, an approximate formula for the
maximum deflection is given by:

umaxPF ≈
(

2.5kL (3− 2x̂F ) x̂F + 6kL kR (1− x̂F ) x̂F
z

+
(3− 2x̂F ) (1 + 2x̂F ) + 2.5kR (1− x̂F ) (1 + 2x̂F )

z

)
× (1− x̂F ) x̂F × PL3

EI
(3.3)

where z = 48 + 66kL + 66kR + 72kL kR
We note that the above approximate formula has a maximum error

of 8.77% when the max deflection is less than 0.2PL3/(48EI).
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Figure 3.4. Location of the maximum deflection for the case shown in figure 3.1c.
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Figure 3.5. Value of the maximum deflection for the case shown in figure 3.1c.
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3.2 Estimating Moment of Inertia
For an actual beam, we can, with practice or experience, make a good
estimate of its dimensions simply by looking at it. Also, by being famil-
iar with the concept of area and with some practice or experience, we
can also estimate areas of cross-sections by a visual inspection and some
minor calculations. For example, one approach to estimate areas is to
mentally rearrange the cross-section, without stretching or leaving gaps,
into an equivalent rectangle whose area we then calculate based on our
estimates of dimensions. By contrast, rules to estimate the moment of
inertia are not obvious but such a skill would be useful for a structural
engineer because formulas for deflections and bending stresses promi-
nently involve the moment of inertia. This is especially important in
optimization where we seek the relative advantage of different shapes
both in regards to constructability and in regards to providing the largest
moment of inertia for a given weight. In this section, we will develop
some guidance in estimating moments of inertia for arbitrary sections,
in quickly sorting various sectional shapes in terms of their moments
of inertia and in identifying what features in the shape most affect the
moments of inertia.

We will consider shape transformations that either do not change
the moment of inertia or change it in a simple and easy to calculate man-
ner. In this discussion, we will focus on the moment of inertia relative
to an horizontal axis. A similar discussion may be done for the moment
of inertia relative to a vertical axis which can be easily deduced after ro-
tating the page by 90◦. The first transformation we consider leaves the
moment of inertia relative to an horizontal axis invariant. That transfor-
mation consists of any shape change that maintains unchanged the net
width at every horizontal cut. Note that this transformation also leaves
the area invariant. For example, consider the shapes shown in figure 3.6.
By sliding the middle portions of the box section (figure 3.6a) from both
left and right towards the center, we get the I-beam (figure 3.6b) with the
net width at each height remaining the same. Furthermore, by sliding
the middle portion of the I-beam to the far right, we get the C-channel
(figure 3.6c). Therefore, we deduce that all three sections shown in fig-
ures 3.6 have the same moment of inertia relative to an horizontal axis.

A special case of the transformation discussed above is that of a lin-
ear sideways shearing. A uniform sideways shear leaves the net width
at each horizontal cut unchanged and therefore will also leave the mo-
ment of inertia unchanged. As an example, figures 3.7 shows an isosce-
les triangle (figure 3.7a) that is uniformly sheared into a right triangle
(figure 3.7b) and then into an obtuse triangle (figure 3.7c). Therefore,
the three triangles in figures 3.7 all have the same moment of inertia
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Figure 3.6. Shapes 3.6a, b and c above all have the same area, moment of inertia
about any horizontal axis and radius of gyration about any horizontal axis. These
sectional properties remain the same when the net width at every horizontal cut
remains the same.
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Figure 3.7. Shapes 3.7a, b and c above all have the same area, moment of
inertia about any horizontal axis and radius of gyration about any horizontal axis.
These sectional properties remain the same when there is uniform shearing in
the horizontal direction because such shearing leaves the net width at every
horizontal cut invariant.

relative to an horizontal axis. Note that the characteristic of a linear side-
ways shearing transformation is that straight lines are transformed into
straight lines of the same height. For example, transforming a rectangle
into a parallelogram of the same height and base also leaves the moment
of inertia invariant.

The third transformation we will consider changes the value of the
moment of inertia but in a simple manner. If we uniformly stretch or
contract (ie. scale) a cross-section horizontally so that the width at ev-
ery horizontal cut is multiplied or divided by the same factor then both
the area and the moment of inertia will be multiplied or divided by the
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Figure 3.8. Shapes 3.8a, b and c above have area, moment of inertia about any
horizontal axis and radius of gyration about any horizontal axis that scale with
the width. These sectional properties increase proportionately to the amount of
scaling in the horizontal direction.

same factor. As an example, we consider a disk that is either contracted
or stretched by a factor of 2 as shown in figures 3.8. In that case, the thin
ellipse in figure 3.8a will have half the area and half the moment of inertia
relative to an horizontal axis as that of the disk in figure 3.8b. Similarly,
the wide ellipse in figure 3.8c will have twice those same quantities as the
disk. We note that because this transformation scales both the moment of
inertia and the area by the same factor, then the radius of gyration which
is the square root of their ratio is invariant under this transformation. In
addition, since the height remains the same, the ratio of the moment of
inertia divided by the maximum moment of inertia also remains invari-
ant under this transformation. As will be discussed below, since this ra-
tio may be used as a measure of the efficiency of a given shape, therefore
an horizontal scaling does not change the efficiency of a cross-sectional
shape.

The next transformation we will consider relates the moment of in-
ertia of a symmetric section with that of an unsymmetric one. We start
with a cross-section that is symmetric relative to an horizontal axis but is
otherwise unconstrained as for example the cross-section shown in fig-
ure 3.9a. If we now remove an arbitrary piece of this cross-section, reflect
it relative to the horizontal axis of symmetry and add it to the reflected
side, we then get an unsymmetric cross-section. For example, we have
used this process to transform the cross-section of figure 3.9a into that of
figure 3.9b, however, we have additionally horizontally slid the reflected
piece in order to enhance clarity. Such a further horizontal sliding does
not affect the moment of inertia relative to an horizontal axis because it
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Figure 3.9. Transformation of a symmetric section into an unsymmetric section
by reflecting an arbitrary part from one side of the line symmetry to the other side.
For clarity, the part that is reflected is further slid horizontally to the edge of the
cross-section. Such an horizontal sliding does not change the moment of inertia
relative to a horizontal axis.

does not change the net width at any horizontal cut. The result of this
transformation leaves the area the same but changes both the center of
gravity and the moment of inertia. The moment of inertia of the unsym-
metric section ‘Iunsymmetric’ can be related to the symmetric one ‘Isymmetric’
as follows:(

Iunsymmetric/Imax

)
=
(
Isymmetric/Imax

)
− 4(∆A/A)2α2 (3.4)

where:

A is the area of the cross-section

∆A is the area of the piece that is reflected

h is the height of the cross-section

αh/2 is the the distance from the midline of the symmetric section to
the center of gravity of the reflected piece

Imax = Ah2/4 which is the maximum possible moment of inertia for
the specified area and height

As an example of using the above formula, consider a rectangular
section of height ‘b’ and width ‘h.’ The value of the ratio Isymmetric/Imax

is (bh3/12)/(bh h2/4) = 1/3. If we reflect all of the lower area which
equals half the area and reflect it to the top, we get a new rect-
angle with width ‘2b’ and height ‘h/2.’ This new cross section has
I/Imax = (2b(h/2)3/12)/(bh h2/4) = 1/12. The formula 3.4 gives
Iunsymmetric/Imax = 1/3− 4(1/2)2(1/2)2 = 1/12. Note that Imax is always
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relative to the original height even if all the area on one side is being
reflected.

There are several things that are interesting in formula 3.4 which in-
clude:

• The formula applies for both ∆A positive (removal then reflection of
area) as well as negative (adding then reflecting negative area).

• Iunsymmetric is always less than Isymmetric because the difference is always
negative. Note that this does not mean that all unsymmetric sections
have lower moments of inertia than symmetric ones. However, it does
mean that if an unsymmetric section can be related to a symmetric one
through such a transformation then the symmetric section will have
a higher moment of inertia. It also means that the above described
transformation always lowers the moment of inertia of a symmetric
section. Furthermore, the result can be used to prove that for a fixed
area and height, the maximum moment of inertia is that of the ideal
I-beam with all the areas being symmetrically placed at the farthest
allowable locations.

• If we remove and reflect a piece from only one side then (∆A/A) ≤ 1/2
and α ≤ 1. This implies that the difference between Iunsymmetric/Imax

and Isymmetric/Imax is always less or equal to one.

• The decrease in the moment of inertia is quadratic with ‘∆A/A’ and
with ‘α.’ Since these are both less than one if we are removing and
reflecting area from only one side then the change in moment of inertia
between a symmetric section and its associated unsymmetric section
will generally be a relatively small change. For example, if we remove
and reflect at most 20% of the area from one side (ie. 10% of the total
area) then the change in moment of inertia will be less than 24% for all
shapes that are at least as efficient as a diamond shape (see table 3.2
and related discussions).

To clarify the effect of this last transformation, we study two cross-
sectional shapes, namely the I-beam with a negligible web width but fi-
nite flange thickness and the rectangular cross-section. For the I-beam,
we use formula 3.4 to plot the ratio of moment of inertia of the unsym-
metric to the symmetric one versus the ratio of top to bottom flange
width. As expected, the maximum occurs for the symmetric section and
the variation is parabolic near that maximum and this is shown in fig-
ure 3.10a for (b/h)symmetric = 1 and in figure 3.10b for (b/h)symmetric = 2.
Note that even when the non-symmetric I-beam has a side whose width
is twice (or half) the other side, its moment of inertia is about 92.7% and
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Figure 3.10. Relation between the moment of inertia relative to an horizontal axis
and the deviation from symmetry of an ideal I-beam at fixed area and height.

91.1% that of the symmetric one for figures 3.10a and b respectively. This
shows that even with rather large deviations from symmetry we get rel-
atively small changes in the moment of inertia.

For the rectangular cross-section, we take a rectangular piece from
the top half and add it to the lower part and then shift areas horizon-
tally to obtain a symmetric section. Note that horizontally shifting areas
does not change the moment of inertia relative to a horizontal axis. The
net transformation gives an inverted T-beam. In this case, we again use
formula 3.4 to obtain a relation between the ratio of moment of inertia of
the unsymmetric to the symmetric one versus the ratio of the top width
of the unsymmetric sections over the width of the symmetric one. Sim-
plifying the expression for this case in terms of the parameters chosen
leads to the following formula which is surprisingly independent of the
aspect ratio of the associated symmetric rectangular section:

Iunsymm/Isymm = (1/4)
(

1 + 6
(
btop/btop sym

)
− 3

(
btop/btop sym

)
2
)

(for rectangular section)
(3.5)

The above formula 3.5 is plotted in figure 3.11 which again shows that
the maximum occurs for the symmetric section and that the variation is
parabolic near that maximum. Note that also in this case, large deviations
from symmetry cause a relatively small change in the moment of inertia.
For example, if we start with a rectangular section and reflect half the
area of the top to get the T-beams shown in figure 3.11 at btop/btop symm =
0.5 we get that the change in moment of inertia is only 18.75%.

In the final transformation, we consider the effect of adding a rectan-
gular area ‘∆A’ with height ‘∆h’ centered around the center of gravity
of the cross-section as for example shown in figure 3.12. The resulting
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Figure 3.11. Relation between the moment of inertia relative to an horizontal axis
of an inverted T-beam as it gets closer in shape to that of a rectangular section
of the same area and height.

Dhh

HaL HbL

Figure 3.12. The middle augmentation transform consists of adding a rectangular
area centrally located around the center of gravity.

moment of inertia is given by:

Inew/Imax = Iold/Imax + (1/3)(∆A/A)(∆h/h)2 (3.6)

This transformation is interesting because the increase in the moment
of inertia is usually negligible for the purposes of a rough estimate. For
example, if ∆A ≤ 1 (ie. up to doubling the area) and the height of the ma-
terial added is such that ∆h ≤ 0.2h (ie. less than 20% the overall height)
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then the change in moment of inertia will always be less than 10% for all
the shapes shown in table 3.2. For the same maximum change in area,
if the height of the material added is such that ∆h ≤ h/3 (ie. less than
one third the overall height) then the change in moment of inertia will
always be less than 26% for those same shapes. Therefore, this transfor-
mation can have quite substantial changes in the shape and area but will
produce relatively little change in the moment of inertia.

A summary of the above transformations, as well as one addition
(horizontal slide) is presented in table 3.1. All these transformations are
important because we can use them to estimate the moment of inertia of
a new shape by transforming that shape to some other known or close
to a known shape whose moment of inertia is known exactly or approxi-
mately. Of course, this assumes that we have familiarity with a family of
basic shapes with which to do the comparison. Therefore, we will next
consider such family of shapes and sort them according to their moments
of inertia.

Table 3.1. Shape Transformations and their Effect on the Moment of Inertia
Relative to an Horizontal Axis.

Transformation
name Description Effect on moment

of inertia

width invariant
transformation

Any shape change that maintains
unchanged the net width at every
horizontal cut

no change

horizontal slide Any horizontal slice may be rigidly
shifted horizontally by any amount no change

linear sideways
shearing

A uniform horizontal shearing such
that straight lines are transformed
into straight lines of the same height

no change

horizontal scaling

Uniformly stretch or contract
(ie. scale) a cross-section horizontally
so that the width at every horizontal
cut is multiplied or divided by the
same factor

Multiplied by same
factor multiplying

width

reflection from
symmetry

Remove an arbitrary piece of the
cross-section, reflect it relative to the
horizontal axis of symmetry and add
it to the reflected side

reduced by
(∆A/A)2α2Ah2

(see figure 3.9)

middle
augmentation

Add a rectangular area centered
around the center of gravity (see
figure 3.12)

increases by
(1/12)(∆A/A)
(∆h/h)2Ah2

(see figure 3.12)
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Table 3.2. Relation Between Shape, Radius of Gyration and Height of Cross-
Sections for Symmetric Sections. The Cross-Sectional Shapes are Rankedin
(Usually) Decreasing Order of I /Imax where ‘I ’ is the Moment of Inertia of the
Cross-Section Relative to an Horizontal Axis and Imax = Ah2/4 is the Maximum
Possible Moment of Inertia Relative to an Horizontal Axis for a Fixed Area ‘A’ and
Height ‘h.’

Note: In the table below, ‘A’ is the area, ‘b’ is the width, ‘h’ is the height, ‘ρ’ is the
radius of gyration around an horizontal axis through the center of gravity, ‘I ’ is the
moment of inertia around an horizontal axis through the center of gravity, ‘Imax’
is the maximum possible moment of inertia, ‘r’ is the radius of a circle (if present)
and ‘t’ is a thickness (if present).

Name Shape Area
(A) ρ/h I/Imax

ideal I-beam 2bt 1
2

= 0.5 1

I-beam(
Aweb � Aflange

) Aflange +
Aweb

≈ 1
2

(
1− 1

2
Aweb
Aflange

)
≈
(

1− Aweb
Aflange

)
hollow square ≈ 4ht ≈ 1

2
√

1.5

(
1− t

h

)
≈
(
1− 2 t

h

)
sharp-edged

parabolic hourglass
1
3
bh ≈ 1

2
√

1.842
= 0.368 ≈ 0.543

sharp-edged linear
hourglass

1
2
bh

1
2
√

2
≈ 0.354 1

2

hollow circular disk ≈ πrt ≈ 1
2
√
2

(
1− t

4r

)
≈ 1

2
(1− t

2r

)
rectangle bh

1
2
√

3
≈ 0.289 1

3

elliptic disk
(includes circular)

π
4
bh

1
2×
√

4
= 0.250 1

4

facing parabolas 2
3
bh

1
2
√

4.375
≈ 0.239 1

4.375

diamond 1
2
bh

1
2
√

6
≈ 0.204 1

6

parabolas-sided
diamond

1
3
bh

1
2
√

7
≈ 0.189 1

7

In order to compare and sort the moments of inertia we normalize
the moment of inertia relative to an horizontal axis by the maximum
possible moment of inertia which is Imax = Ah2/4. This gives a ratio
which is always between zero and one. Also, since the displacement is
inversely proportional to the moment of inertia, this ratio gives the rel-
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ative rigidity of a given cross-section for a fixed area and height. The
higher the ratio, the higher the rigidity of the cross-section with a ratio
of one corresponding to the shapes with the highest possible rigidity for
a given area and height. In addition, for symmetric cross-sections, the
maximum stress is also inversely proportional to the moment of inertia
for a fixed area, height and maximum bending moment. Therefore, the
ratio I /Imax also gives the relative strength of a symmetric cross-section
for a fixed area and height. For example, a diamond shape and a rectan-
gular shape (see table 3.2) have I /Imax equal to 1/6 and 1/3 respectively.
Therefore, a beam with a rectangular cross-section is (1/3)/(1/6) = 2
times as strong and as rigid as a diamond shaped cross-section for the
same area and height.

We start by discussing a set of cross-sectional shapes that are sym-
metric relative to a horizontal axis and these are shown in table 3.2 (sec-
ond column). From the definition of the moment of inertia, we expect
the moment of inertia for a given area to increase as more of the area
is placed as far as possible from the center of gravity. In the limit, we
get the ’ideal I-beam’ which has the area placed symmetrically at half
the height away from the center of gravity. This configuration gives the
highest possible moment of inertia so that I /Imax = 1. The next con-
figuration allows for a web or some material to be placed to connect the
two areas placed at the farthest point. This gives an I-beam that can actu-
ally be constructed and has a relatively lower moment of inertia than the
ideal I-beam. A shape that may be equivalent to a real I-beam in terms of
moment of inertia is the hollow square (see figure 3.6) and is shown as
the third entry in table 3.2. The next two shapes considered allow for
the width to taper as we get closer to the center of gravity. They are
both hour-glass shaped but one has parabolic borders and the one after
that has straight line borders. Both these hour-glass shaped cross-section
would need some small amount of material to be placed at and near the
center of gravity in order to have a well-connected section but these do
not much affect the moment of inertia. In any case, the parabolic and lin-
ear hour-glass I /Imax equal about 0.543 and 0.5 respectively. The next
shape is that of the hollow circular disk which, depending on its thick-
ness ‘t,’ may or may not be more efficient than the rectangular section
which has I /Imax = 1/3. The rectangular cross-section is a delimiting
case between the shapes that taper out as we get farther from the center
of gravity and those that taper in. Of course, shapes that taper out will
have relatively higher moment of inertia for the same area and height.
Among the rest of the shapes, we note the elliptic cross-sections which
include the disk and all of these sections have I /Imax = 1/4. We also
note the diamond shape with straight edges which has I /Imax = 1/6.
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Note that, with all the cross sections, if we have a specified height
and area, then this determines the width ‘b’ or thickness ‘t’ for a chosen
shape. In particular, for the elliptic cross-sections, if we specify the height
and area, the width is then determined and this will generally not corre-
spond to a disk or circular border. In any case, the formula for the area is
also given in order to obtain cross-sections that are comparable in terms
of the moment of inertia when we specify both the area and the height.
Finally, the radius of gyration relative to an horizontal axis is also given
since this could be useful in some applications.

Table 3.3. Relation Between Shape, Radius of Gyration and Height of Cross-
Sections for Non-Symmetric Sections with Monotonically Varying Width. The
Cross-Sectional Shapes are Ranked in (Mostly) Decreasing Order of I /Imax

where ‘I ’ is the Moment of Inertia of the Cross-Section and Imax = Ah2/4 is the
Maximum Possible Moment of Inertia for the Same Area ‘A’ and Height ‘h’ of the
Cross Section. The Result for a Rectangle is also Given as a Limiting Case of the
Trapezoid.

Note: In the table below, ‘A’ is the area, ‘b’ is the width, ‘h’ is the height, ‘ρ’ is the
radius of gyration around an horizontal axis through the center of gravity, ‘I ’ is the
moment of inertia around an horizontal axis through the center of gravity, ‘Imax’
is the maximum possible moment of inertia, ‘r’ is the radius of a circle (if present)
and ‘t’ is a thickness (if present).

Name Shape Area
(A) ρ/h I/Imax

rectangle bh
√

1
12

1
3

Trapezoid (bb+bt)
2

h

√
b2
b
+4bbbt+b

2
t√

9/8(bb+bt)

2
9

(b2b+4bbbt+b
2
t )

(bb+bt)
2

semi-elliptic π
4
bh

√
9π2−64
6π

≈√
1

14.31

1− 64
9π2 ≈ 1

3.58

outer-parabola 2
3
bh

√
1

14.59
1

3.65

triangle 1
2
bh

√
1
18

1
4.5

inner-parabola 1
3
bh ≈

√
1

18.92
≈ 1

4.73

⊥− beam (flange
thickness << h) Aw +Af ≈

√
1
12

√
Aw
A

≈ 1
3
Aw
A

⊥− beam
negligible web A ≈ 0 ≈ 0
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Finally, we discuss a set of cross-sectional shapes that are unsymmet-
ric relative to an horizontal axis and these are shown in table 3.3 (second
column). These shapes all have the property that the width is monoton-
ically decreasing (or more precisely non-increasing) with the height. Of
course, these are a small subset of all possible shapes but the reflection
from symmetry and the middle augmentation allows us to estimate a
much wider set of non-symmetric shapes. As a delimiting case, we first
consider the rectangular cross-section which remains constant through
the height direction. This case which has I /Imax = 1/3 is an upper
bound on all the other shapes in this set. For example, if we maximize
the value of I /Imax for the trapezoidal shape over all possible values of
bb (bottom width) and bt (upper width), we find that the maximum of
1/3 occurs only when those widths are equal which gives a rectangular
cross-section. Some interesting results in table 3.3 include:

• The semi-elliptic cross-section is about 10.55% more efficient than the
elliptic cross-section. Note that this does not violate the reflection from
symmetry because such a transformation cannot change an elliptic
into a semi-elliptic cross-section.

• The triangular cross-section is about 55.6% less efficient than the
straight-edged hour-glass but only 33.3% more effficient than the
straight-edged diamond both of which can be constructed from tri-
angles.

3.3 Relative Vertical Displacements
versus Strain in Beams

The formulas and results presented so far require a knowledge of both
the load magnitude and the moment of inertia in order to determine the
displacements. In some cases, such as during a visual inspection of a
built structure or in preliminary design, it may be sufficient to approx-
imately determine the range of displacements of a member. For such a
case, an approach that only uses geometrical variables (ie. dimensions
and strain) will be desirable and related formulas and discussions for
this purpose will be developed in this section.

To illustrate the basic idea, we start with a simply supported beam
subject to a uniformly distributed load (figure 3.1b with kL = kR = 0).
The maximum displacement for that case occurs at the middle and is
given by:

δapplied max =
5

384

qL4

EI
(simply-supported beam) (3.7)
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where:

δapplied max is the displacement at the middle of the beam which is the
maximum for this case

q is the magnitude of the unifrom load

L is the length of the beam

E is Young’s modulus

I is the moment of inertia

For that same case, the maximum bending stress also occurs at the
middle and has a magnitude given by:

σapplied max = 1
8
qL2

I
h
2β (simply-supported beam) (3.8a)

β =
dCG to farthest edge

h/2
(3.8b)

where:

σapplied max is the displacement at the middle of the beam

h is the height of the cross-section of the beam

dCG to farthest edge is the maximum vertical distance between the centroid
and the border of the cross-section

We note that β = 1 for all symmetric sections and is between 1
and 2 for an unsymmetric section. If we now divide the maximum stress
by Young’s modulue ‘E,’ we get the maximum applied bending strain
εapplied max. We now divide the maximum displacement by the maximum
applied strain and simplify to get:

δapplied max

h
=

5

24

(
L

h

)2
1

β

(
εapplied max

εmax

)
εmax

(simply-supported beam; uniform load) (3.9)

where:

εapplied max is the maximum strain in the beam due to the applied loads

εmax is the maximum strain that may be applied to the material of the
beam before yielding or failure



202 Practical Approximate Analysis of Beams and Frames

If we now repeat this analysis for a centrally located point force, we
get the following result:

δapplied max

h
=

1

6

(
L

h

)2
1

β

(
εapplied max

εmax

)
εmax

(simply-supported beam; central point force) (3.10)

If the point force is not centrally located then we get a displacement cor-
rection factor ‘γ’ as follows:

δapplied max

h
= γ (xF )

1

6

(
L

h

)2
1

β

(
εapplied max

εmax

)
εmax

(simply-supported beam; point force; any location) (3.11a)

γ (xF ) ≈ 1− 0.92

(
xF
L
− 1

2

)
2

(simply-supported beam; point force; any location) (3.11b)

where: xF is the location of the point force along the beam measured
from the left end (see figure 3.1c).

Note that the exact correction factor ‘γ’ in formula 3.11a for the sim-
ply supported beam with a central point force is such that 0.77 . γ ≤ 1.
The above analysis may be generalized for the uniform load to obtain
an expression that is applicable for all passive supports (see figure 3.1b)
with stiffness factors ‘kL’ and ‘kR’ as follows:

δapplied max

h
= γ (kL, kR)

5

24

(
L

h

)2
1

β

(
εapplied max

εmax

)
εmax

(uniform load) (3.12a)

γ (kL, kR) ≈ 15k2
L + 2k3

L + 4k2
LkR + 15k2

R + 4kL k
2
R + 2k3

R

15k2
L + 3k3

L + 7k2
LkR + 15k2

R + 7kL k2
R + 3k3

R

(uniform load) (3.12b)

γ(k, k) =
15 + 6k

15 + 10k

(uniform load; kL = kR = k) (3.12c)

The exact expression for γ (kL, kR) for the uniform load case is plotted
in figure 3.13. The results show that ‘γ’ varies slowly (note the logarith-
mic scale) and, by optimizing the values of ‘γ,’ we determine that ‘γ’ is
always between 0.6 and 1 for the uniform load case.
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Figure 3.13. Displacement correction factor for the uniform load. Note that the
value of γ is always between 0.6 and 1.

The analysis for a point force is somewhat more complicated and
simple expressions have not been obtained for the general case. For the
case of a centrally located support with symmetric supports (ie. kL =
kR = k), we get an exact result:

δapplied max

h
=γ (k, k, xF = L/2)

1

6

(
L

h

)2
1

β

(
εapplied max

εmax

)
εmax

(point force; central load; symmetric supports)
(3.13a)

γ(k, k, xF = L/2) =
2 + k

2 + 2k

(point force; central load; symmetric supports)
(3.13b)

The general case for the point force may be calculated and plotted and
the result is shown in figures 3.14 for three different values of ‘xF .’ The
results show that ‘γ’ varies slowly (note the logarithmic scale) and by
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Figure 3.14. (Continued below.)
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Figure 3.14. (Continued from above.) Displacement correction factor for the point
load. Note that the value of γ is always between about 0.444 and 1.

optimizing the values of ’γ,’ we determine that ‘γ’ is always between
4/9 ≈ 0.444 and 1 for the general point force location and between 0.5
and 1 for the centrally located point force.

Therefore, for either a uniform load or a point force, we get the fol-
lowing general form and constraints:

δapplied max

h
= cδ

(
L

h

)2
1

β

(
εapplied max

εmax

)
εmax

(all cases) (3.14a)

δmax

h
= cδ

(
L

h

)2
1

β
εmax

(all cases) (3.14b)

0.037

(
L

h

)2

εmax .
δmax

h
. 0.208

(
L

h

)2

εmax

(all cases) (3.14c)
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2

27
≤ cδ ≤

5

24
(ie. 0.0741 . cδ . 0.208) (3.14d)

β =

{
1 symmetric cross section
1 < β < 2 non-symmetric cross-section

(3.14e)

εapplied max

εmax
≤ 1 (3.14f)

where: δmax is the maximum possible displacement before the maximum
allowable strain ‘εmax’ is reached somewhere in the beam.

The formula 3.14a is interesting for several reasons including:

• The maximum displacement (δmax) is independent of Young’s mod-
ulus, the area of the cross-section, the width of the cross-section and,
for a symmetric cross-section, the moment of inertia. In particular, we
can avoid calculating the maximum load as an intermediate step in
determining the maximum displacement.

• The maximum over minimum value of cδ is about 2.8 so that all beams
with a uniform or a point force load and with any type of passive con-
nections will be within a relatively narrow range when the other vari-
ables in formula 3.14a are specified.

• An upper bound on the maximum displacement (δmax) depends only
on the ratio of length over height, height and material property ‘εmax.’
This means that if we can estimate the material property ‘εmax’ of
the beam and, by a simple visual inspection, estimate the length and
height of the beam, then we can estimate an upper bound on the max-
imum displacement.

Using the relations in 3.14 we can get upper bounds on the maxi-
mum displacement for different materials that may be encountered in
structural engineering. Typical values of ‘εmax’ for some of those mate-
rials are given in table 3.4. The table indicates that most materials have
a maximum strain in the range of 0.1% to 1%. This means that the max-
imum displacement for those materials must have an upper bound be-
tween 0.000037(L/h)2h and 0.0021(L/h)2h. If the length to height ratio
is between 5 to 20 then this means that the maximum possible displace-
ment must have an upper bound between 0.0009h and 0.85h. This is a
wide range but it covers a very wide range of materials, loading condi-
tions, length to height ratios and support conditions. For more precise
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Table 3.4. Range of Maximum Strain in Common Structural Materials.

Material Typical range
of εmax

note

Steel 0.1% to 0.3%
Based on yield strengths of
typical structural steels

Aluminum 0.1% to 0.7%
Based on yield strength of wide
range of Aluminum types

Concrete 0.3% to 0.5%
Based on ultimate strengths of
low to high strength concrete

Wood 0.02% to 0.08%
Based on the compression
proportionality limit of soft and
hard woods

Thermoplastics may be several
percent

Varies widely, may be several
percent

estimates, we may use a more specific formula from the ones presented
above.

For example, consider a steel beam with symmetric cross-section
with εmax = 0.001 subject to a centrally applied point force which is
half the maximum possible. In addition, the beam has a span of 5m and
height of 0.5m and it is connected to either side by identical beams. In
this case, the maximum deflection may be estimated as follows: We start
by using formula 3.13a with the stiffness factor k ≈ 1 and the ratio of
applied maximum to maximum possible strain

(
εapplied max/εmax

)
= 0.5.

Using formula 3.13b or figure 3.14c, we get that γ = 3/4 and this then
leads to an estimate of the maximum deflection to be (3/4) × (1/6) ×
(5m/0.5m)× 1× (0.5)× 0.001× 0.5m ≈ 0.0003125m = 0.3125mm. Note
that this is the maximum displacement due to half the failure load. For
the full failure load due to a point force, we get double the previous dis-
placement which is equivalent to 0.00125h (ie. within the bounds identi-
fied previously).

For completion, we also present the formula equivalent to 3.14 for a
cantilever that is either uniformly loaded or loaded by a point force at its
tip. The results are as follows:

δmax

h
=

1

2

(
L

h

)2
1

β

(
εapplied max

εmax

)
εmax

(uniform loaded cantilever) (3.15a)

δmax

h
=

2

3

(
L

h

)2
1

β

(
εapplied max

εmax

)
εmax

(point force at tip of a cantilever) (3.15b)
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Note that the result of the point force may be inferred from the central
point force on a simply supported beam by doubling the effective length
of the beam. The uniform load case cannot be similarly inferred because
doubling the length with symmetry does not give a simply-supported
beam with a uniform load. We note that the cantilever has a significantly
higher maximum displacement at any given strain level and, in particu-
lar, at failure than beams supported at both sides.

3.4 Side Displacements of Frames
Subject to Side Loads

In this section, we will describe how to estimate the sidesway in a regular
frame that would usually be part of a building. So far in our analysis, we
have assumed that axial deformations in the analysis of a frame may be
neglected since they are much smaller than the bending deformations.
While this will turn out to be true for most practical frames with fewer
than about 10 to 20 floors, we will investigate quantitatively the condi-
tions under which if we neglect axial deformations then we still obtain
good approximation for the sideway movement of a frame.

To explore the conditions where we can neglect axial deformations,
we consider a class of frames where all the beams have the same sectional
properties and all the columns have the same sectional properties such
as the frame shown in figure 3.15. In addition, all the columns have the
same height and all the beams have the same length with a single side
force applied at the top floor. We then consider the side deflection at the
point where the load is applied and compare that value to the one we
would obtain if we neglect the axial deformations or equivalently when
EAc →∞ in figure 3.15. Based on this, we define the shear deformation
fraction as the side deflection at the top floor when we neglect the axial
deformations divided by the same deflection when we do not neglect
those axial deformations. The shear deformation fraction must always
be between zero and one When this fraction is close to one then we may
neglect axial deformations and conversely, when this fraction is close to
zero then we may neglect shear deformations.

As a first step in our discussion, we derive an approximate expres-
sion for both the shear and bending deformations for the class of build-
ings depicted in figure 3.15. These expressions will be useful in clarifying
the mechanisms and non-dimensional parameters that affect the shear
deformation fraction and in providing a more convenient expression to
do parametric studies.

We start by considering the top floor displacements due to shear
deformations. This top floor displacement is the sum of the sidesways
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Figure 3.15. Class of building analyzed to identify contribution of bending versus
axial deformations due to horizontal loads.

(ie. difference in sideway movement of columns) of all the floors. In ad-
dition, using free body diagrams at each floor and considering horizontal
equilibrium, we find that the total of the shear forces in all the columns in
any given floor equals the same force ‘P ’ that is applied at the top floor.
Using the previously defined shear stiffness of a column, the sidesway
of a given floor is then given by ‘P ’ divided by the total of the column
shear stiffnesses in that floor (eg. refer to the derivation of formula 2.9).
Therefore, the horizontal displacement of one floor is given by:

sidesway of one floor ≈ P

stiffness of one floor

≈ 1

5 to 12

PL3
c

EIc
× 1

spans + 1
≈
(

11 + 6k

1 + 72k

)
PL3

c

EIc
× 1

spans + 1
(3.16)
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where:

P is the applied horizontal force at the top floor

Lc is the height of the columns

E is Young’s modulus

Ic is a column’s moment of inertia (assumed all uniform)

k is the ratio of a beam’s rotary stiffness divided by a column’s rotary
stiffness (ie. k = (EIb/Lb) / (EIc/Lc))

spans is the number of spans (or bays) and spans + 1 equals the number
of columns in each floor

Note that to estimate the stiffness of a column in a building, we
have used formula 2.15 in spite of its limited applicability. By using for-
mula 3.16 and summing over all floors, we get that the top floor displace-
ment is given by:

δsheartop ≈
(

11 + 6k

1 + 72k

)
PL3

c

EIc
× floors

spans + 1

=

(
11 + 6k

1 + 72k

)
PL2

cLb
EIc

×
(
H

W

)
spans

spans + 1
(3.17)

=

(
11 + 6k

1 + 72k

)
PL2

cLb
EIc

×
(
H

W

)
floors

floors + (H/W ) (Lb/Lc)

where:

δsheartop is the side deflection of the top floor due to shear deformations

floors is the number of floors in the frame

H is the total height of the frame or building

W is the total width of the frame or building

Using parametric studies with EAc being very large, we find that
formula 3.17 gives results that have usually less than a few percent error
in the range of values that are of interest in subsequent discussions. We
note that in all these studies, we assume that the axial elongations of the
beams are negligible even when the axial deformations in the columns
are taken into account.
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Having considered the shear deformations in the class of frames con-
sidered, we now focus on estimating the bending deformations in such
frames. To that purpose, we start by modelling the frame as an effective
cantilever subject to bending deformations only (ie. the usual Bernoulli
beam or column). The top deflection of such a cantilever is given by:

δbending top =
1

3

PH3

EIeff

where:

δbending top is the side deflection of the top floor due to bending deforma-
tions

Ieff is the effective moment of inertia of the frame at any given floor

Therefore, we need to determine the effective moment of inertia in
order to obtain the required expression. To that purpose, we start (na-
ively) to assume that each column acts like an area at a point with the
centroid being at the midpoint of any given floor. By summing up the
contribution of each column, we get the following result:

Ieff ≈ 1
2
AcW

2 (1 + spans)(2 + spans)

6 spans
(3.18)

Combining the above two expressions, we get:

δbending top ≈
2

3

PH

EAc

(
H

W

)2
6 spans

(1 + spans)(2 + spans)

=
2

3

PH

EAc

(
H

W

)3

× (3.19)

× 6 (Lb/Lc) floors(
floors + (Lb/Lc) (H/W )

)(
floors + 2 (Lb/Lc) (H/W )

)
Using parametric studies, we find that while the above formula often
gives the right trend but it can have relatively large errors in the range
of values that are of interest in subsequent discussions. Therefore, we
need to do a more careful study in order to obtain a more accurate ex-
pression. However, the conceptual development of the above formula is
simple and thus provides an overall idea of how we think about bending
deformations.

In order to get a more accurate expression for the bending deforma-
tions, we will consider a more detailed and discrete view of how bending



212 Practical Approximate Analysis of Beams and Frames

Lc�rGc = 5

Lc�rGc = 10

Lc�rGc = 20

Lc�rGc = 40

Lc�rGc = 80

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Normalized axial forces in ground floor columns

Lb�Lc = 1.5; HEIb�LbL�HEIc�LcL = 3

Floors = 20; Spans = 8

Figure 3.16. Axial force variation as the slenderness ratio varies from a (very)
short column to a slender column.

deformations develop in a frame. We start by considering the axial forces
in columns when a frame is subject to side forces. To get insight into
this problem we plot the normalized axial forces in the columns of the
ground floor of a frame with 20 floors and 8 spans and keeping other
parameters fixed, we vary the slenderness ratio of the columns as shown
in figure 3.16. For realistic values of the slenderness ratio, we find that
the distribution of axial deformations is far from linear. If we want to ap-
proximate the axial forces, a suitable assumption is to consider that the
only non-zero axial forces are in the two outer columns.

The observation that only the outer columns have appreciable axial
forces could be understood using the previously developed methods for
analyzing frames with sidesway. In particular, we note that for the type
of frame considered, and indeed for most frames that do not have inter-
nal hinges, the inner columns all carry approximately the same amount
of shear and, also, the shear in the outer columns are not much smaller.
This leads to end moments in the columns of the same floor being ap-
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proximately equal. This in turn leads to end moments in beams of the
same floor that are approximately equal. Since the shear force in a beam
equals the sum of end moments divided by the length of the beam, we
deduce that the shear force in beams at the same floor are all approxi-
mately equal. Using free body diagrams of the nodes, we can then de-
termine that the axial force in a column is the difference of shear forces
between adjacent beams plus the transmitted axial force from the column
above. Since the shear forces between adjacent beams approximately
cancel except at the outer columns where there is only one connected
beam, we deduce that the axial forces in the columns are approximately
zero except at the outer columns.

In order to verify the observation concerning axial forces in columns,
we do more extensive parametric studies and these are shown in
figure 3.17. These parametric studies show a wide variation in the pat-
tern of axial forces in the columns but do indicate that the assumption
that the outer columns have the only non-negligible axial forces is a
much better one than that of a linear variation in axial forces.

Based on the assumption that only the outer columns have non-zero
axial forces, we can approximately determine those axial forces in each
floor using equilibrium. To that end, we consider a free body diagram
of the frame with a cut at the middle of a specific floor. We choose the
cut to pass through the middle of the floor so that the cut approximately
passes through the inflection points of the columns. Hence, at that cut,
the bending moment in the columns are approximately zero and the mo-
ment developed by the side force at the top floor must approximately
equal the moment developed by the axial forces in the outer columns.
Therefore, the axial force in an outer column is given by:

Ffloor i ≈
H − (i− 1/2)Lc

W
P

where:

‘i’ is the floor number with i = 1 being the ground floor and i = floors
being the top floor

Ffloori is the axial force in an outer column in floor number ‘i’

The axial forces in the columns cause elongations in those columns
and the difference in elongations divided by the width of the frame gives
a floor rotation. This floor rotation multiplied by the distance from the
floor to the top contributes to a side displacement at the top floor. By
adding the effect of rotations at all the floors, we can obtain the top floor
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Figure 3.17. (Continued below.)
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Figure 3.17. (Continued from above and continued below.)
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Figure 3.17. (Continued from above.) Distributions of axial forces in the ground
floor columns for variable number of floors, spans and other configurational pa-
rameters. The parametric studies indicate that most of the resisting moment that
is due to the axial forces is developed by the outer columns and that the variation
of axial forces is far from linear.
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displacement. The rotation ∆θfloori at the ith floor is given by:

∆θfloor i ≈ 2
Ffloor iLc
EAc

/
W =

H − (i− 1/2)Lc
EAcW

2LcP

Multiplying this rotation by the distance from the floor to the top and
adding the effect of all floors gives the top displacement:

δbending top ≈
(1 + floors)(4 floors− 1)

6 floors2

PH

EAc

(
H

W

)2

(3.20)

Using parametric studies, we find that formula 3.20 gives results with
errors that are usually less than about 15% and generally much lower in
the range of values that are of interest in subsequent discussions. Based
on formulas 3.17 and 3.20, we obtain the shear deformation fraction as:

shear fraction =
δshear top

δtotal
=

δshear top

δshear top + δbending top

⇒ shear fraction ≈ 1

1 +
(floors +1)(4 floors−1)(spans +1)

6 floors2

(
1+72k
11+6k

)(
Lc

rGc

)2(
H
W

)2
⇒ shear fraction = z (3.21)

where:

z =
1

1 + 2
3

(floors+1)(floors− 1
4 )(floors+(H/W )(Lb/Lc))

floors2

(
1+72k
11+6k

)(
rGc

Lc

)2(
H
W

)(
Lc

Lb

)
and:

rGc is the radius of gyration of the column

(Lc/rGc) is the slenderness ratio

Parametric studies were done in order to determine the accuracy of
formula 3.21 for the class of frames represented by figure 3.15. Specifi-
cally, 500 cases were generated using the following rules:

• ‘k,’ the slenderness ratio and Lb/Lc were chosen randomly based on
uniform distributions between 1 and 5, between 10 and 100 and be-
tween 1 and 2 respectively.

• The number of floors was randomly chosen from the list (5, 10, 20, 40).
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Figure 3.18. Exact versus approximate shear stiffness factor for 500 cases of
buildings generated semi-randomly (see text). Note that the sum of probabilities
between −5 and 2 ≈ 0.9 (90%). This means that in 90% of the cases, the errors
are between −5% and 2%.

• H/W was chosen randomly based on a uniform distribution between
0.5 and 5 with the condition that the number of spans must be an inte-
ger between 1 and 10.

The result of the parametric studies are shown as a probability nor-
malized histogram in figure 3.18. The mean error is about −1.03% and
the standard deviation is about 4.3%. With these results, we considered
the accuracy of formula 3.21 to be sufficient for the following analysis.

Having formula 3.21, we can now quantitatively answer the question
of when we can neglect axial deformations. For the class of frames con-
sidered in figure 3.15, we will assume that we can approximately neglect
axial deformations when at least 80% of the deformation at the top floor
may be attributed to shear deformations. This means that we can ne-
glect the axial deformations when formula 3.21 gives a value above 0.8.
To explore the conditions under which this occurs, we plot contours
of constant value 0.8 for the shear deformation fraction as a function
of height over width (H/W ) of the frame and of the slenderness ratio.
In addition, separate contours are shown when the number of floors
is 5, 10, 20, 40 and 80 and different contour plots are given for various
combinations of the parameters ‘k’ and Lb/Lc as shown in figures 3.19.
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Figure 3.19. (Continued below.)
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Figure 3.19. (Continued from above.) Fraction of top-left displacement attributed
to shear in a building where only the top floor is loaded by a side-force. Curves
are labelled according to the number of floors (5, 10, 20, 40 and 80 floors) and
their pattern indicate the fraction that may be attributed to shear deformation.
The contours correspond to a shear deformation fraction of 80% of the total
deformation.
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To evaluate these results, we note the following:

• In figures 3.19, the points that lie to the right of each shown curve cor-
respond to having shear deformation fractions larger than 80%. Note
that each point in the plane of those figures corresponds to a building
with a particular combination of values of the column slendernesss ra-
tio and height over width. Therefore buildings associated with points
to the left of a specific curve is a building with that curve’s number of
floors and where that building may be approximately analyzed while
neglecting axial deformations. We note that for any number of floors,
axial deformations may be neglected if the slenderness ratio of the
columns are large enough or if the height over width of the building is
small enough. Of course, design constraints of real buildings preclude
some combinations of such pairs of values. Therefore as the number of
floors in a building increases, the region where axial deformations may
be neglected becomes smaller and, if we include design constraints,
it becomes gradually unfeasible to neglect axial deformations as the
height of a building increases.

• The aspect ratio of a building which correspond to H/W is generally
between 0 and 7. Skyscrapers with number of floors usually above 80,
generally have an aspect ratio above 4. For example, Dubai tower,
Taipei 101, the Empire state building and the Sears tower have as-
pect ratios of about 9.1, 5, 4.25 and 6.5 respectively and number of
floors 162, 101, 102 and 108 respectively. Regular high rise buildings
with number of floors between 20 and 60 generally have aspect ratios
below 4.5 while buildings with less than 20 floors usually have aspect
ratios less than about 3 or 4.

• Concrete and steel columns are considered slender when their slen-
derness ratio is above about 30 and 50 respectively.

With the above remarks and based on the results of figure 3.19, we
note that we may generally neglect axial or bending deformations for
frames or buildings with less than about 10 to 20 floors. In general, we
may use formula 3.21 to calculate the shear deformation fraction for a
proposed frame and based on that value, we can decide whether our
analysis may neglect bending deformations.

Finally, we note that the implications of whether bending deforma-
tions may be neglected has important consequences on the conceptual
design of a building. For example, if bending deformations are impor-
tant then we have already determined that only the outer columns con-
tribute significantly in resisting such deformations. Hence, one approach
in designing tall buildings is the so-called tubular design where a high
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percent of the area of all columns are preferentially positioned on the
outside of the building. Other approaches that use local or global cross-
bracings may also be used either to enhance the contribution of inner
columns or to provide an independent second system that is resistant to
bending. However, the design of tall buildings is outside the scope of this
book. Based on the above study, the methods presented in this book for
analyzing frames with sidesway are mostly suitable for buildings with
less than about 10 to 20 floors.

3.5 Obtaining Rotary Stiffness Factors
from Slope Measurements in Beams

In this book, we have extensively relied on the notion of rotary stiffness
factors in order to approximately analyze beams and frames. In this sec-
tion, we will consider how we can indirectly identify the stiffness factors
at the ends of a member in a beam or frame by measuring slopes on
that member. A procedure of this kind is important in providing a non-
destructive test to determine whether the assumptions used in designing
a continuous beam or a frame structure are actually realized in the built
structure. This procedure is also important in doing a structural integrity
assessment of a structure that may have been damaged due to environ-
mental factors such as earthquakes or due to man-made factors such as
accidents.

In designing a process to identify the stiffness factors, we must de-
cide on what to measure, what and how much load to apply and how
to process the data to obtain the rotary stiffness factors. We also need to
determine the accuracy of our results and especially their sensitivity to
measurement errors. We will discuss each of these items next.

First, we consider the choice of what to measure. In general, we need
to measure some aspect of deformation such as strain, displacements or
rotations. Preparing a member for strain measurements is tedious and
time-consuming especially on a built structure. On the other hand, dis-
placement measurements require some reliable fixed datum which may
be difficult to achieve. Finally, slope measurements seem to be both eco-
nomical and relatively fast. Of course, in any such choice, we will be mea-
suring changes in the chosen variable due to an applied load increment.
For slope measurements, we place an inclinometer (ie. device for measur-
ing slope), make a measurement before we apply a load increment and
this will be our datum. As a subsequent step, we load the member and
then get a new measurement. The change in slope due to the increment
in load that we have applied will be the measurement which we will use
to determine the rotary stiffness factors.



Practical Approximate Analysis of Beams and Frames 223

Since we are proposing to measure slope, it is useful to first iden-
tify the resolution with which the slope may be measured. This resolu-
tion will determine whether such an approach is feasible, the magnitude
of the incremental load to apply and the limits in accuracy with which
we can infer the stiffness factors. For example, if the maximum possi-
ble load increment causes failure at slopes below the resolution of the
available inclinometers then we cannot use slope measurements, at the
current technology, to indirectly measure rotary stiffness factors. As the
resolution gets sufficiently fine, we then get a trade-off between apply-
ing smaller load increments and having higher accuracy in the inferred
stiffness factors. If the load increment is too small then we may again fall
below the resolution of our measuring instrument. On the other hand,
we must generally stay well below the load at which failure occurs. It
would be useful in our analysis to specify a minimum load increment.
For this purpose, we choose a minimum load increment which should
be both convenient and safe to be around 20% of the maximum possi-
ble load. Of course, this value is somewhat arbitrary and for different
applications, this minimum load increment may be varied subject to an
analysis of the implied errors.

In order to determine whether a particular resolution in the measure-
ment of slope is sufficient, we compare it with the maximum possible
slope when subjected to the minimum load increment. For that purpose,
we can determine the maximum applied rotation in a beam in terms of
the maximum possible strain similar to what we have done in a previous
section with the maximum applied displacement. The result is given by:

θapplied max = cθ

(
L

h

)
1

β

(
εapplied max

εmax

)
εmax (3.22a)

1
4 ≤ cθ ≤

2
3 (ie. 0.25 . cδ . 0.667 ) (3.22b)

In addition, at the time of the writing of this book (late 2009), com-
mercially available and relatively cheap inclinometers have resolutions
of less than about 1.74 × 10−5 radians (ie. less than 0.001◦). Now that
we have a formula for the maximum proposed slope that we need to
measure and a resolution limit for available measuring devices, we can
compare the two to determine whether the proposed method is feasible.
For example, if we consider a beam with length over height of 8, with a
symmetric section, with a maximum load increment of 20% and a max-
imum possible strain of 0.001, then the maximum applied slope in the
beam must be less than (1/4) × (8) × (1) × (0.2) × 0.001 ≈ 0.0004. This
value is then 0.0004/0.0000174 ≈ 23 times the resolution limit. There-
fore, for this case, we expect slope increments over a considerable part
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of the span to be above the measurement resolution limit. However, the
resolution limit is about 4.35% of the maximum slope that we propose to
measure. Whether this implies an adequately low potential error to al-
low a determination of the stiffness factors within a sufficiently narrow
range is a subject of further study which will be partially addressed in
this section.

We now consider the setup and the process for doing the measure-
ments and for inferring the stiffness factors. As before, we consider a
beam with passive supports as shown in figure 3.20. We propose to mea-
sure the change in slopes at four locations due to a point force applied at
the middle of the beam. Specifically, the locations are at either end and
and at a quarter the length from each end as indicated in figure 3.20. The
procedure consists of the following steps: i) we measure the slopes before
any load is applied, ii) we apply a point force at the middle, iii) measure
the slopes again and iv) the change in slopes at each of the four locations
are the measurements we will use to infer the rotary stiffness factors.
Note that it is possible, but much more cumbersome and error prone,
to do the procedure with a single tiltmeter. This would require placing
the tiltmeter at each of the locations in turn, taking a reference or datum
measurement with no load applied anywhere on the beam, placing the
point force at the middle of the beam and repeating the measurements at
each location with the load kept in place.

kR´4

EI

L

kL´4

EI

L

xF=L�2

L

P

0.25L 0.25L
tiltmeter tiltmeter tiltmeter tiltmeter

Figure 3.20. Setup for experimentally identifying the stiffness factors kL and kR.

The reason for choosing the specific locations shown in figure 3.20 is
that, in this case, we can obtain each of the two stiffness factors separately
in terms of the measured changes in slope. We start by determining the
slopes in terms of the central point force which are given as:
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∆θ0 = − 3 + 2kR
48 + 64kL + 64kR + 64kL kR

PL2

EI
+ e0 (3.23a)

∆θ1/4 = − 18 + 13kL + 11kR + 8kL kR
384 + 512kL + 512kR + 512kL kR

PL2

EI
+ e1/4 (3.23b)

∆θ3/4 =
18 + 11kL + 13kR + 8kL kR

384 + 512kL + 512kR + 512kL kR

PL2

EI
+ e3/4 (3.23c)

∆θ1 =
3 + 2kL

48 + 64kL + 64kR + 64kL kR

PL2

EI
+ e1 (3.23d)

where:

∆θ0, ∆θ1/4, ∆θ3/4 and ∆θ1 are the four changes in slope from left to
right in figure 3.20

kL and kR are the left and right rotary stiffness factors

P is the magnitude of the point force applied at the middle of the beam

L is the length of the beam

E is Young’s modulus

I is the moment of inertia

e0, e1/4, e3/4 and e1 are the errors in measurements

Assuming for now that the errors e0, e1/4, e3/4 and e1 are zero, we
now calculate the following combinations of the changes in slopes:

mL = |∆θ0|
/(∣∣∆θ1/4

∣∣+
∣∣∆θ3/4

∣∣) = 2/(3 + 2kL) (3.24a)

mR = |∆θ1|
/(∣∣∆θ1/4

∣∣+
∣∣∆θ3/4

∣∣) = 2/(3 + 2kR) (3.24b)

where: | · | denotes the absolute value of a quantity
Note that since the stiffness factors must be positive, then the com-

binations mL and mR must be between 0 and 2/3. From formulas 3.24a
and b, we can solve for the stiffness factors as follows:

kL =
2− 3mL

2mL
(3.25a)

kR =
2− 3mR

2mR
(3.25b)
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Figure 3.21. Rotary stiffness factor ‘kL’ in terms of the slopes combination ‘mL’
given in formula 3.25a. The rotary stiffness factor ‘kR’ is similarly related to the
slopes combination ‘mR’ given in formula 3.25b.

The formula 3.25a for ‘kL’ is plotted in figure 3.21 while the plot for for-
mula 3.25b would be identical when ‘kL’ and ‘mL’ are replaced with ‘kR’
and ‘mR’ respectively. Note that the determination of ‘kL’ is highly sensi-
tive to the value of ‘mL’ when ‘mL’ is small (eg. less than about 3/12) and
much less sensitive at higher values. This means that small errors in ‘mL’
when ‘mL’ is relatively small leads to large errors in ‘kL.’ Fortunately,
we are generally interested in higher accuracy in the determination of
the rotary stiffness factors when these are relatively small (eg. less than
about 3) than when these rotary stiffness factors are large. The reason is
that the structural behavior of beams is much more senstive to changes
in the rotary stiffness factors at these smaller values.

Having described the measurements and the process of determin-
ing the rotary stiffness factors, we note that due to the choice of where to
measure the slopes and how to combine the measurements, we were able
to obtain rather simple expressions (ie. formulas 3.25) for each of the ro-
tary stiffness factors. In general, choosing a different set of locations for
the tiltmeters would require solving nonlinear equations to extract the
rotary stiffness factors. This would lead to more complex postprocessing
of the measured data but may possibly lead to results that are more ro-
bust against errors. For this study, we will use the locations specified in
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figure 3.20 and will next consider the role of errors, such as those due
to limited resolution in the slope measurements, on the determination of
the rotary stiffness factors.

In expressing the measured changes in slopes in formulas 3.23a to d,
we have included an error term for each. We note that the maximum
possible rotation or slope in a beam due to a centrally applied point force
is ‘(1/32)PL2/EI .’ If we now factor out that term from each expression,
we get:

∆θ0 =
(
− 6+4kR

3+4kL+4kR+4kL kR
+ e0

∆θref max

)
∆θref max (3.26a)

∆θ1/4 =
(
− 18+13kL+11kR+8kL kR

12+16kL+16kR+16kL kR
+

e1/4
∆θref max

)
∆θref max (3.26b)

∆θ3/4 =
(

18+11kL+13kR+8kL kR
12+16kL+16kR+16kL kR

+
e3/4

∆θref max

)
∆θref max (3.26c)

∆θ1 =
(

6+4kL
3+4kL+4kR+4kL kR

+ e1
∆θref max

)
∆θref max (3.26d)

∆θref max = 1
32
PL2

EI (3.26e)

With the above formulas, we can now calculate ‘mL’ and ‘mR’ again, but
we now include the error terms. We will assume that each of the error
terms divided by the reference value ∆θref max is bounded by a value
‘errmax.’ This means that:∣∣∣∣ e0

∆θref max

∣∣∣∣ , ∣∣∣∣ e1/2

∆θref max

∣∣∣∣ , ∣∣∣∣ e3/4

∆θref max

∣∣∣∣ and
∣∣∣∣ e1

∆θref max

∣∣∣∣ ≤ errmax (3.27)

This then implies that there is a range of values for the observed
slope combinations ‘mL’ and ‘mR’ in terms of ‘kL’ and ‘kR’ and the nor-
malized error terms ‘errmax.’ If we use this range of values of ‘mL’ and
‘mR’ in formulas 3.25a and b, we get a range of values of ‘kL’ and ‘kR.’
From this, we can finally determine the maximum error in either ‘kL’
and ‘kR’ in terms of ‘kL,’ ‘kR’ and ‘errmax.’ Some examples of the max-
imum error in ‘kL’ as a function of ‘kL’ and ‘kR’ are shown in the con-
tour plots of figure 3.22(a), (b), and (c) for a maximum normalized error
(ie. errmax = e /∆θrefmax ) of 1%, 2.5% and 5% respectively. The maximum
error in ‘kR’ (ie. maximum ∆kR) will have identical contour plots when
we switch ‘kL’ with ‘kR’ in the plots of figure 3.22.

Based on the results shown in figure 3.22, we make the following
observations:

• The error in determining the rotary stiffness factor ∆kL depends
mostly on kL and weakly on kR. Conversely, the error in determining
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the rotary stiffness factor ∆kR depends mostly on kR and weakly on
kL.

• The error in determining the rotary stiffness factor ∆kL increases with
kL and this is consistent with the observations made in regards to
figure 3.21.
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Figure 3.22. (Continued from above.) Maximum error in the left rotary stiffness
factor as a function of both the left and right rotary stiffness factors at three
different values of the upper bound on the maximum error divided by the reference
maximum rotation (ie. ∆θref max).
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• The values of ∆kL are neither expected errors nor confidence interval
width. They are bounds on the error in determining the rotary stiffness
factor when the errors have a strict upper bound. Thus, while these
results do not have a probabilistic interpretation, they are sufficient
for the purposes of giving an indication of the expected accuracy in
determining rotary stiffness factors due to a limitation in the resolution
of the measuring instruments.

Finally, based on the above study, we conclude that using current
technology, it is plausible to indirectly measure rotary stiffness factors
using tiltmeters and reasonable loads applied on beams that are part of a
larger structure. A process was outlined on how to do the measurements,
how to postprocess them and how to estimate errors in the determina-
tion of rotary stiffness factors due to possible measurement errors. What
is not available at this time is an experimental study that verifies these
statements. The usefulness of such a study in the structural integrity as-
sessment of framed structures could be significant.
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Chapter 4

Approximate Influence
Lines for Indeterminate
Beams

4.1 Introduction to Influence Lines
In structural analysis, we are often interested in the effect of moving
loads. For example, to design a bridge against failure, we would need to
know how the bending moment at its middle varies as a ‘standard’ car or
truck moves across its span. This requires consideration of the bending
moment at a fixed point for every possible location of the car or truck.
Using basic structural analysis, we would parametrize the location of the
car or truck on the bridge and then plot the bending moment at the center
versus this variable location. This plot would then constitute a succinct
description of the influence of the car or truck on the bending moment at
the middle of the bridge. If, in this process, we replace the car or truck by
a unit point force (ie. a single point force with magnitude one) then we
get the influence line for the bending moment at the middle point of the
bridge. Using that influence line, we can then use linear superposition to
obtain the previously considered influence of a car or truck.

In general, we consider a frame or continuous beam as shown in
figure 4.1 and a unit point force moving across that structure. As that
unit point force moves across the continuous beam ABCD, we monitor
or calculate a response at any chosen but fixed point E. We call the fixed
point E to be the point of influence or the influence point. If we plot
the response at point E as a function of the location of the unit point
force along the continuous beam then we get the influence line of that
response as shown in figure 4.1. In general, the choice of response may
be the displacement, the rotation, the shear or the bending moment at
the chosen point. In addition, if the response is at a support, then the
response may also be chosen as any of the reactions at that support.

231
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(a) Continuous beam with one internal hinge.
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(b) Influence line for the response at point E (in this example the bending
moment at E)

Figure 4.1. Figures explaining what is an influence line. In the figures above, as
a unit point force traverses the beam ABCD, we monitor the response at a fixed
point E. The resulting plot of response versus location of the unit load is called
an influence line for that response.

The definition of an influence line suggests a way to directly con-
struct it. We place the unit point force at successive locations from left
to right on the beam and for each position, we do a structural analy-
sis and calculate the desired response at the fixed point of interest. We
could choose a finite number of locations for the point force across the
beam and get a finite number of points to approximately plot the influ-
ence line. Alternatively, we could parametrically describe the position of
the point force and, using analytic techniques, we then get an analytic
expression for the influence line. Although both approaches are feasi-
ble they are both better-suited to computer implementations and we will
mainly focus on an alternative approach.

The alternative approach is based on the Müller-Breslau principle
which is in turn based on the reciprocity or Betti’s theorem. The reci-
procity theorem relates the external loads and external deformations of
two different set of loads applied separately on the same structure. To
describe the idea, we will use an example of a continuous beam ABCD
that is separately loaded by two point forces as shown in figure 4.2. Each
of these loads lead to distinct deformations. The reciprocity theorem then
asserts the following:

PE × uE due to PF
= PF × uF due to PE

(4.1)
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Point force at E
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uE due to PF

uF due to PF

Point force at F

Figure 4.2. The reciprocity theorem considers the same structure but under two
different set of loads. In the above, the work done by the point force at E over a
displacement at E due to point force F equals the work done by the point force
at F over a displacement at F due to point force E.

where the terms above are illustrated in figure 4.2 and are as follows:

PE is the magnitude of the force at point E

PF is the magnitude of the force at point F

uE due to PF
is the displacement at E due to the point force at F

uF due to PE
is the displacement at F due to the point force at E

Note that the displacements and forces are algebraic quantities that
may be positive or negative depending on the sense of the chosen coor-
dinate system. Also note that each of the terms in equation 4.1 has the
form of a work quantity but with the load and the corresponding de-
formations being taken from separate load cases applied on the same
structure. In general, the reciprocity theorem applies to all types of exter-
nal loads with their corresponding deformations. Specifically, the reci-
procity theorem states that if we are given two independently applied
set of loads with their corresponding deformations then the work done
from one set of loading on the corresponding deformations of the second
set equals work done from the second set of loading on the correspond-
ing deformations of the first. Note that the deformations corresponding
to a point force and a point moment are the displacement at the location



234 Practical Approximate Analysis of Beams and Frames

of the point force and the rotation at the location of the point moment
respectively.

While we will not present a proof of the reciprocity theorem, we
will indicate the scope of its applicability. First the reciprocity theorem
is based on the principle of virtual work. This principle requires that the
external and internal forces be in equilibrium. Furthermore, the princi-
ple of virtual work also requires that the internal deformation measures,
which are the beam and column curvatures, be compatible with the spec-
ified external supports such as rollers, hinges or fixed ends. In addition
to these requirements, the reciprocity theorem additionally requires that
the material responds in a linear elastic fashion. Fortunately, the specific
values of the linear elastic material parameters is immaterial to the the-
orem. An implication of this restriction is that the reciprocity theorem is
inapplicable when there is either material yielding or material cracking
or damage. Since the Müller-Breslau principle is based on the reciprocity
theorem, we may construct influence lines using this principle only when
the material is linear elastic and there is no yielding or damage in the
material.

The Müller-Breslau principle states that the influence line of a re-
sponse monitored at a specific point equals the displacement obtained
by applying a unit quantity of the work-associated variable. For exam-
ple, to construct the influence line for the displacement at point E in the
beam shown in figure 4.3a, we must first apply the work-assocatied vari-
able at point E. The work-associated variable to a displacement is a point
force at the same location. Therefore, we apply a unit force at point E
and calculate the resulting displacement as shown in figure 4.3a. That
displacement is numerically equal to the desired influence line at every
point on the beam. The reason the Müller-Breslau principle works in this
case may be directly inferred from the equation 4.1 by choosing both PE
and PF equal to one. The result is then:

uE due to PF
= uF due to PE

(4.2)

If we interpret the point F as a variable location for a unit point force,
then equation 4.2 is interpreted as follows. The displacement at point E
due to a unit moving load at any point F equals the displacement at that
point F due to a unit force applied at point E. Therefore, the influence
line for the displacement at point E is the displaced beam due to a unit
force applied at point E.

In a similar way, we can construct the influence lines for the force
reaction at point E (figure 4.3b), the shear force at point E (figure 4.3c)
and the bending moment at point (figure 4.3d). In each of those cases,
we apply a unit of the work-associated variable at point E and calculate
the displacements in the beam. There are some subtleties in applying
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Figure 4.3. Influence lines for the displacement (a), the vertical force reaction (b),
the shear force (c) and the bending moment (d) at point E. These influence
lines are the equal to the displacements of the beam when subject to the work-
associated variable and are illustrated in the figures above.
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the unit work-associated variable at point E. Specifically, we note the
following:

• For the influence line of the vertical reaction (see figure 4.3b), a unit
displacement is applied at the support with an associated unknown
reaction force. In particular, we do not apply an external point moment
at point E unless it also happens to have a fixed support.

• For the influence line of the shear force (see figure 4.3c), a unit jump
in the displacement is applied with an associated unknown equal and
opposite forces ‘V .’ This unit jump causes a discontinuity in the beam,
but the slope before and after point E must be the same. In addition,
there is an internal bending moment at point E. Also note that the jump
in displacement must be up when going from the left to the right of the
beam at point E and is implied by the shear force convention used in
this book. In addition, the individual displacements before and after
point E are unknown (ie. only the jump is known) and must be calcu-
lated using structural analysis.

• For the influence line of the bending moment (see figure 4.3d), a unit
change in the slope is applied with associated unknown equal and op-
posite moments ‘M .’ This unit change in slope causes a discontinuity
in the slope of the beam but there is no discontinuity in the displace-
ment. In addition, there is an internal shear force at point E. Also note
that the change in slope must be clockwise as shown in the figure when
going from the left to the right of the beam at point E and is based
on the bending moment convention used in this book. In addition,
the individual slopes before and after point E are unknown (ie. only
the change in slope is known) and must be calculated using structural
analysis.

In the next sections, we will use the Müller-Breslau principle to con-
struct influence lines for both statically determinate and statically inde-
terminate structures. The principle applies to both cases, but for statically
determinate structures, we can always manually construct the exact in-
fluence line. In the case of statically indeterminate structures, we will
describe methods to sketch an approximation to the influence lines with
approximate values calculated at notable points such as the maximum
and minimum values in each span.

Using the Müller-Breslau principle we can identify rules for con-
structing influence lines for both statically determinate and statically in-
determinate structures in the case of force reactions, shear forces and
bending moments. Some of these rules are specific for the considered
response variable and some are common. The common rules are as fol-
lows:
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1. The influence line passes through zero at all supports except for one
case. That case occurs only at one support on the beam and only
when we consider the influence line for the force reaction at that sup-
port. In that case, that particular support moves up by one unit (eg.
figure 4.3b).

2. The influence line is continuous (ie. no step jumps) except for one
case. That case occurs only at one location on the beam and only
when we consider the influence line for the shear force at that loca-
tion. In that case, the discontinuity is a unit step jump at that location
(eg. figure 4.3c).

3. The influence line away from internal hinges is smooth (ie. continuous
slope) except for one case. That case occurs only at one location on the
beam and only when we consider the influence line for the bending
moment at that location. In that case, there is a sudden change in slope
of one unit at that location (eg. figure 4.3d). Of course, there may be
changes in slopes at internal hinges.

In addition to the above rules, we have a rule that applies to all stat-
ically stable beams, specifically:

4. The influence line for statically stable beams is piecwise smooth. The
influence line is then a sequence of possibly distinct smooth lines
(ie. derivative is continuous) with possible step jumps and sudden
changes in direction between segments as outlined in the previous
rules.

In addition to the above rules, we have one additional rule that is a
special case of rule (4) above but only applies to statically determinate
beams, specifically:

5. For statically determinate beams, the influence line is piecwise linear.
The influence line is then a sequence of possibly distinct straight lines
with possible step jumps and sudden changes in direction between
segments as outlined in the previous rules.

It is this last rule that allows us to relatively easily construct the ex-
act influence lines for statically determinate beams in the case of force
reactions, shear forces and bending moments. Further details and exam-
ples for constructing the influence lines of statically determinate beams
is considered next.
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4.2 Exact Influence Lines for Statically
Determinate Beams

4.2.1 Introduction to Sketching the Influence Line
for Statically Determinate Beams

For statically determinate beams, it is relatively easy to construct the ex-
act influence lines for reactions, shear forces and bending moments using
the few simple rules considered above. However, we must first verify
that we are indeed trying to analyze a statically determinate beam be-
fore using those rules. The simplest statically determinate beams have
either a hinge and a roller support or have one fixed end (eg. see beams
in figures 4.4). If we add a roller support or a fixed support to a statically
determinate beam then we must also add one or two internal hinges re-
spectively or some equivalent internal constraints in order to maintain
the statical determinancy. Of course, as we add internal hinges, we must
be careful to maintain statical stability.

For our purposes in this section, we only need statical determinancy
as related to shear forces and bending moments. This means that, for the
cases considered in this section, we must be able to fully determine shear
forces and bending moments based on the equations of statics alone. In-
determinancy with respect to axial forces is immaterial to the discussions
of this section. Therefore, the rules for constructing influence lines re-
main the same as those of statically determinate beams if one or more
hinge supports are replaced with a horizontal roller as long as there re-
mains at least one reaction in the horizontal direction on the beam to
restrict horizontal translations.

In what follows, we will present examples and discuss them in or-
der to clarify how the identified rules may be used to construct influ-
ence lines. Note however that the examples considered are extensive but
not comprehensive of all possible configurations. The examples progress
from having no internal hinges to having one then two internal hinges.

4.2.2 Sketching Influence Lines for Vertical
Force Reactions

In the first examples of the influence lines for vertical reaction forces, we
consider statically determinate beams with no internal hinges as shown
in figure 4.4a and b. In such cases, the influence line for a vertical reaction
force is a single straight line. When there is a hinge and roller support,
the influence line has a value of one at the support considered and passes
through zero at the other support. Using the equation of a straight line or
equivalently using similar triangles, we can then determine the value of
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Figure 4.4. Influence lines for the vertical reaction force for statically determinate
beams with no internal hinges.
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the influence line at any other point. With a fixed end, the influence line
is constant and has a uniform value of one. The reason for that uniform
value is that when we move the fixed end support up by one unit, we
must still keep the moment reaction. Keeping the moment reaction at
that fixed end maintains the slope at zero and so we have a uniform
value of one.

Next consider statically determinate beams with one internal hinge
as shown in figures 4.5a and b. In such cases, the influence line for a
vertical reaction force is two connected straight lines with a change in
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Figure 4.5. Influence lines for the vertical reaction force for statically determinate
beams with one internal hinge. (Continued below.)
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Figure 4.5. (Continued from above.) Influence lines for the vertical reaction force
for statically determinate beams with one internal hinge.

slope occuring only at the internal hinge. Note that when the influence
line must pass through two non-moving consecutive supports with no
internal hinge between them, then that section of the beam will be zero
throughout until either the end of the beam or an internal hinge is met.
For example, this occurs in figure 4.5a for the influence line of the re-
action at B for the section CDEF with D and E being the non-moving
consecutive supports. For the case of one internal hinge with one fixed
end, the slope in the segment containing the fixed end must always be
zero and a change in slope may only occur at an internal hinge. For ex-
ample, this occurs in figures 4.5b for the influence lines of the reactions
both at A and at C.

In the last examples, we consider statically determinate beams with
two internal hinges as shown in figures 4.6a and b and in figure 4.7. In
such cases, the influence line for a vertical force reaction is a sequence of
up to three connected straight lines with two possible changes in slope
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Figure 4.6. Influence lines for the vertical reaction force for statically determinate
beams with two internal hinges and no fixed ends. (Continued below.)
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Figure 4.6. (Continued from above.) Influence lines for the vertical reaction force
for statically determinate beams with two internal hinges and no fixed ends.
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Figure 4.7. Influence lines for the vertical reaction force for statically determinate
beams with two internal hinges and one fixed end.
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that may only occur at the two internal hinges. Figures 4.6a and b gives
two sets of examples of a beam having a hinge and two rollers with two
internal hinges while figure 4.7 gives a set of examples of a beam with a
fixed end and two rollers with two internal hinges.

In all cases of statically determinate beams without fixed ends, we
can first determine the values at all points of the line segment containing
the support that is moved up by a unit. In that line segment, we know
the coordinates of two points which completely defines the equation of
the straight line segment. For example, in figures 4.6a we first determine
the line segment ABC, CDE, EFGH and EFGH for the influence line of
the reactions at B, D, F and G respectively. The first known coordinate in
those segments is the support being moved since its height is one unit
and its horizontal position is known. For the second known coordinate,
there are two possibilities. If there is a support adjacent to the support
being moved and such that there is no internal hinge between the two
supports then that adjacent support is the second coordinate with height
zero. That adjacent support must be connected by a straight line to the
support being moved because slope changes may only occur at inter-
nal hinges and it must have a height of zero because it is a support. For
example, in figures 4.6a for the influence lines of the reaction at F, the
nearest support with no internal hinge in-between is support G and for
the reaction at G, the nearest support with no internal hinge in-between
is support F. Similarly in figures 4.6b, the influence line for the reaction
at D, the moving support D has the nearest support point E with no in-
ternal hinge in-between. Also in figure 4.6b, for the influence line for the
reaction at E, the moving support E has the nearest support point D with
no internal hinge in-between. All those adjacent supports with no inter-
nal hinge in-between them and the moving support have zero height and
are connected to the moving support by a straight line segment as shown
in the corresponding figures.

In the second possiblity, we have either a free end or an internal
hinge on either side of the support being moved by one unit. If there
is one adjacent free end and one adjacent internal hinge then the inter-
nal hinge must have zero height otherwise the beam is statically unsta-
ble. For example, in figure 4.6a with the influence line for the reaction
at B, one side of the moving support B is free (point A) and the other is
an internal hinge (point C). Therefore, the internal hinge (point C) must
have zero height. A similar situation occurs in the examples for the in-
fluence lines for the vertical reactions at B and at G in figures 4.6b. If
the two adjacent ends have internal hinges then one and only one of
those internal hinges must have zero height. The one internal hinge with
the zero height is determined by considering the kinematics of the rest
of the beam. In figure 4.6b with the influence line for the reaction at D,
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both sides of the moving support D are internal hinges (points C and E).
Due to kinematic constraints on the right side of the beam, the right-
side internal hinge (point E) must have zero height. The kinematic con-
straint on the right consists of two adjacent supports with no internal
hinge between them and this necessarily means that the beam remains
at zero over that segment until an internal hinge or a free end is met at
either end.

In the case when we have a fixed end in a beam with two or more
internal hinges, then we consider two cases. First, if the fixed support
moves up by one unit then the line segment from that fixed support to
the nearest internal hinge must have a uniform value of one. The near-
est internal hinge must be nearer to the fixed end than the next support
otherwise the beam will not be statically determinate. In the second case,
if a roller moves up by one unit then the case is similar to having only
hinges and rollers as supports with the added condition that the internal
hinge nearest to a fixed end always has a height of zero. The reason for
the zero height is that the fixed end must have zero slope and zero height
and that the fixed end and nearest internal hinge must be connected by
a straight line. Those two condition imply a straight line between them
that is uniformly zero.

In all cases, once the first line segment has been constructed, the rest
of the line segments are similarly determined by starting at the ends
of a known line segment whose coordinates have already been found
and determining the equations of the adjacent segments. Those adjacent
segments are similarly determined by the coordinates of the known end
points and the coordinates of the next adjacent support with no internal
hinges in between. If an internal hinge occurs before then next adjacent
support then that internal hinge must have zero height otherwise the
beam is statically unstable. In all cases, the coordinates of adjacent line
segments are determined until the influence line of the whole beam is
constructed.

4.2.3 Sketching Influence Lines for Shear Forces

The influence lines for shear forces look similar to those of the vertical
force reactions except for the distinctive unit step jump at the monitored
location. For example, figure 4.8 shows the influence line for the shear
force at point P with the distinctive unit step jump. The jump below
and above zero at point P in figure 4.8 may be determined based on the
following conditions: i) the total jump has a value of one and ii) the slope
just before and just after the jump must be the same. Using these two
conditions and the fact that the influence line for a statically determinate
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Vbottom

Vtop

xP=Lleft
Lright

L

P

Figure 4.8. Influence line for the shear force at point P shows the distinctive unit
step jump at point P . The jump below and above zero (ie. Vbottom and Vtop) may
be computed using simple equations.

beam is piecewise linear, we get the following equations:

Vbottom + Vtop = 1 (4.3a)
Vbottom/Lleft = Vtop/Lright (4.3b)

⇒ Vbottom =
Lleft

L
=
xP
L

(4.3c)

Vtop =
Lright

L
= 1− xP

L
(4.3d)

where:

Vbottom and Vtop are the values of the influence line just before and just
after point P respectively

Lleft and Lright are the distances between the left support and point P
and between point P and the right support respectively

L is the length of the span containing point P

point P is the point at which we are calculating the influence line for
shear

xP is the abscissa (ie. x-coordinate) of point P when the origin is taken
at the left support of the span containing P

Note that the value of the influence line at just before point P de-
pends on the distance of point P from the left support. This value, de-
noted by Vbottom in figure 4.8, varies linearly with the location of point P
(ie. with xP ) as that location varies from being at the left support to being
at the right. Specifically, Vbottom is zero when point P is at the left support
and is one when point P is at the right support. The influence line at
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just after point P also varies linearly with location but starts at one at
the left support and ends at zero at the right support. Once the values of
the influence line at just before and at just after point P are determined,
we then use the same approach that we used for the influence lines for
vertical force reactions to construct the influence line for the shear force.
In what follows are examples that further clarify such a construction.

In the first examples of the influence lines for shear forces, we con-
sider statically determinate beams with no internal hinges as shown in
figure 4.9a and b. In such cases, the influence line for a shear force con-
sists of two consecutive straight line segments having the same slope and
with a unit discontinuity between them. Whenever the point of influence
is within an overhang (ie. a segment with a free end), the influence line is
uniform from the free end up to the point at which influence is calculated
and then the rest of the influence line is identically zero. In these cases
of the point of influence occuring in an overhang, the uniformity or zero
slope of the influence line is required to maintain slope continuity in the
beam before and after the point of influence. For example, in figure 4.9a,
the influence line for the shear force at B is minus one in segment AB and
zero for the rest of the beam. In this case, the shear force must be nega-
tive in the left portion AB because the unit step jump condition requires
a step up going left to right and the right part of the beam must remain at
zero due to having two consecutive supports with no internal hinge be-
tween them. By contrast, in figure 4.9a for the influence line for the shear
force at F and in figure 4.9b for the influence line for the shear force at B,
the left side of the beam before the point of influence is zero and the rest
is at positive one. This is again due to constraints imposed by the sup-
ports on the left side of the beam and the requirement of stepping up by
one unit from left to right at the point of influence. Finally, a case when
we need to calculate the influence between a hinge and a roller is shown
in figure 4.9a for the influence line for the shear force at D. The value of
the influence line just before and just after point D is calculated using
formulas 4.3c and d and the rest of the beam is constructed in a manner
similar to that described in the section for vertical force reactions.

Next consider statically determinate beams with one internal hinge
as shown in figures 4.10a and b. In such cases, the influence line for the
shear force is up to three connected straight lines with a change in slope
occuring only at the internal hinge. Again when the influence line must
pass through two non-moving consecutive supports with no internal
hinge between them, then that section of the beam will be zero through-
out until either the end of the beam or an internal hinge is met. For ex-
ample, this occurs in figure 4.10a for the influence line of the shear force
at D. As for the case of the influence line for the shear force in an over-
hang segment, a beam with any number of internal hinges is handled
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Figure 4.9. Influence lines for the shear force for statically determinate beams
with no internal hinges. (Continued below.)

exactly as before irrespective of the presence of the internal hinge. Of
course, an internal hinge may not occur in an overhang to avoid statical
instability.

Next we consider statically determinate beams with two internal
hinges as shown in figures 4.11 and in figure 4.12. In such cases, the influ-
ence line for a shear force is a sequence of up to four connected straight
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Figure 4.9. (Continued from above.) Influence lines for the shear force for stati-
cally determinate beams with no internal hinges.

lines with two possible changes in slope that may only occur at the two
internal hinges. Figures 4.11 gives two set of examples of a beam having
a hinge and two rollers with two internal hinges while figure 4.12 gives
a set of examples of a beam with a fixed end and two rollers with two
internal hinges.

In one of those examples, specifically figure 4.12 for the shear force
at B, we consider the influence line for a point between a left-end fixed
support and a roller support when the point monitored occurs to the
left of the internal hinge in that span. In that case, the influence line is
zero from the support (ie. point A) to the point of influence (ie. point B)
because the slope and value in that segment are constrained by the
fixed end. The influence line then jumps up to one at the point of in-
fluence (ie. point B) and maintains that uniform value of one until we
reach the internal hinge (ie. point D). This jump is required based on the
Müller-Breslau principle for shear forces and the uniform value implies
a zero slope which is required to match slopes before and after the jump.
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Figure 4.10. Influence lines for the shear force for statically determinate beams
with one internal hinge. (Continued below.)
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Figure 4.10. (Continued from above.) Influence lines for the shear force for stati-
cally determinate beams with one internal hinge.

Finally, at the internal hinge (ie. point C), the influence line changes di-
rection in order to meet the roller support (ie. point D) at zero.

The previous case considered is to be contrasted with the case in a
similar span with a left-end fixed support but when the point of influ-
ence occurs after the internal hinge such as in figure 4.10b for the shear
force at C. In that case, the influence line is zero until the internal hinge
which is again due to the fixed end constraints. At the internal hinge, the
influence line changes direction downwards until we reach the point of
influence (ie. point C). At the point of influence (ie. point C), the influence
line jumps up by one unit as required by the Müller-Breslau principle for
shear forces. Finally, the influence line then goes downwards again at the
same slope as before the jump in order to meet the roller support at zero.
Note that, in this case, a change in direction downwards at the internal
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Figure 4.11. Influence lines for the shear force for statically determinate beams
with two internal hinges and no fixed ends.
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Figure 4.12. Influence lines for the shear force for statically determinate beams
with two internal hinges and one fixed end.

hinge (ie. point B) is required in order to both have a jump at the point of
influence (ie. point C) and to maintain the same slope at either end of that
point. Also in this case, the values before and after the jump (ie. point C)
are given by formulas 4.3c and d on condition that we consider the loca-
tion of the internal hinge (ie. point B) to act like a second support. This
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means that the effective span ‘L’ is considered to be the distance between
the internal hinge and the roller support (ie. distance between B and D).
Cases when the fixed support is at the right are similar but with opposite
signs as those of fixed supports at the left that were discussed and may
be similarly reasoned and constructed.

Finally, we consider the special cases of influence lines for the shear
forces at the location of supports, shown in the examples of figures 4.13a
and b. In such cases, we must specify whether the point being monitored
is slightly to the left or slightly to the right of the support. If the support
is slightly to the left, as in figure 4.13a for the shear force at B−, then the
value just before the support equals minus one in order to have a jump of
one from left to right and to reach zero at the support. By contrast, if the
support is slightly to the right, as in figure 4.13a for the shear force at B+,
then the value just after the support equals one in order to have a jump
of one from the support which must always be at zero. If the support
is at the left end of the beam, such as in figure 4.13b for the shear force
at A, then we can only consider the shear force slightly to the right of
that support. In that case, the influence line for the shear force equals the
influence line for the vertical reaction at the support because the reaction
at that support equals the shear force slightly to the right of it when the
force is at any point to the right of that end point. The case for a support
at the right end of the beam is similar except that the influence line for the
shear force is negative that of the vertical reaction force at that support.
The reason has to do with the convention used to define negative and
positive shear forces in beams.

4.2.4 Sketching Influence Lines for Bending Moments

The influence lines for bending moments again look similar to those of
the vertical force reactions except for the distinctive change of direction
or kink at the monitored location. For example, figure 4.14 shows the
influence line for the bending moment at point P with the distinctive
kink. The value of the influence line at point P in figure 4.14 may be
determined based on the following conditions: i) the total change in an-
gle has a value of one at the kink and ii) the influence line is continuous
at P . Using these two conditions and the fact that the influence line for
a statically determinate beam is piecewise linear, we get the following
equation:

(Mat influence/Lleft) +
(
Mat influence/Lright

)
= 1 (4.4a)

⇒ Mat influence =
Lleft × Lright

L
= xP

L

(
1− xP

L

)
L (4.4b)
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Figure 4.13. Influence lines for the shear force for statically determinate beams
near supports.
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Figure 4.14. Influence line for the bending moment at pointP shows the distinctive
kink or change in direction at point P . The value of the infuence line at point P
(ie. Mat influence) may be computed using simple equations.

where:

Mat influence is the value of the influence line at point P

Lleft and Lright are the distances between the left support and point P
and between point P and the right support respectively

L is the length of the span containing point P

point P is the point at which we are calculating the influence line for
shear

xP is the abscissa (ie. x-coordinate) of point P when the origin is taken
at the left support of the span containing P

Note that the value of the influence line at point P depends on the
distance of point P from the left support. This value, which is denoted by
Mat influence in figure 4.14, varies parabolically with the location of point P
(ie. with xP ) as that location varies from being at the left support to being
at the right. Specifically, Mat influence is zero when point P is at the left
support, reaches a maximum of ‘L/4’ when point P is at the midpoint
of the span and is again zero when point P is at the right support. Once
the values of the influence line at point P is determined, we then use
the same approach that we used for the influence lines for vertical force
reactions to construct the influence line for the bending moment. In what
follows are examples that further clarify such a construction.

In the first examples of the influence lines for bending moments, we
consider statically determinate beams with no internal hinges as shown
in figure 4.15a and b. In such cases, the influence line for a bending mo-
ment consists of two consecutive straight line segments with a change in
slope or kink between them. Whenever the point of influence is within an



258 Practical Approximate Analysis of Beams and Frames

beam

0.5

0.2

1

0.3

0.3

0.15

A B C D E F G

Bending moment at B

0.0 0.5 1.0 1.5

-0.3
-0.15

0.
0.15

0.3

Bending moment at D

0.0 0.5 1.0 1.5

-0.3
-0.15

0.
0.15

0.3

Bending moment at F

0.0 0.5 1.0 1.5

-0.3
-0.15

0.
0.15

0.3

(a)

Figure 4.15. Influence lines for the bending moment for statically determinate
beams with no internal hinges. (Continued below.)

overhang (ie. a segment with a free end), the influence line is linear from
the end to the point of influence and then the rest of the influence line
is identically zero. In these cases of the point of influence occuring in an
overhang, the influence line at the point monitored is zero and the slope
is either minus or plus one between that point till the end of the beam.
For example, in figure 4.15a, the influence line for the bending moment
at B starts at A with a value of −0.2 and with a slope of one in order
to reach zero at point B which is the point of influence or point being
monitored. In that example, the rest of the beam from B to G is identically
zero. By contrast, in figure 4.15a for the influence line for the bending
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Figure 4.15. (Continued from above.) Influence lines for the bending moment for
statically determinate beams with no internal hinges.

moment at F and in figure 4.9b for the influence line for the bending
moment at B, the left side of the beam before the point of influence is
zero and the rest is a straight line with slope minus one and a value of
zero at the point of influence. Finally, a case when we need to calculate
the influence between a hinge and a roller is show in figure 4.15a for the
influence line for the bending moment at D. The value of the influence
line at point D is calculated using formula 4.4b and the rest of the beam
is constructed in a manner similar to that described in the section for
vertical force reactions.

Next consider statically determinate beams with one internal hinge
as shown in figures 4.16a and b. In such cases, the influence line for the
bending moment is up to three connected straight lines with a change
in slope occuring in the internal hinge and a unit change in slope occur-
ing at the point of influence. Again when the influence line must pass
through two non-moving consecutive supports with no internal hinge
between them, then that section of the beam will be zero throughout
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Figure 4.16. Influence lines for the bending moment for statically determinate
beams with one internal hinge. (Continued below.)
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Figure 4.16. (Continued from above.) Influence lines for the bending moment for
statically determinate beams with one internal hinge.

until either the end of the beam or an internal hinge is met. For example,
this occurs in figure 4.16a for the influence line of the bending moment
at D. The cases when we consider the influence line for the bending mo-
ment in an overhang part of a beam, we handle it the same as for the
examples of figure 4.15 irrespective of the number internal hinges in the
rest of the beam. Of course, as before, an internal hinge may not occur in
an overhang to avoid statical instability.

Next we consider statically determinate beams with two internal
hinges as shown in figures 4.18 and in figure 4.19. In such cases, the in-
fluence line for a bending moment is a sequence of up to four connected
straight lines with two possible changes in slope that may occur at the
two internal hinges and one mandatory unit change in slope that must
occur at the point of influence. Figures 4.18 gives two set of examples of
a beam having a hinge and two rollers with two internal hinges while
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Figure 4.17. Influence lines for the bending moment for statically determinate
beams with two internal hinges and no fixed ends.
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Figure 4.18. Influence lines for the bending moment for statically determinate
beams with two internal hinges and one fixed end.

figure 4.19 gives a set of examples of a beam with a fixed end and two
rollers with two internal hinges.

In one of those examples, specifically figure 4.18 for the bending mo-
ment at B, we consider the influence line for a point between a left-end
fixed support and a roller support when the point monitored occurs to
the left of the internal hinge in that span. In that case, the influence line
is zero from the support (ie. point A) to the point of influence (ie. point B)
because the slope and value in that segment are constrained by the fixed
end. The influence line then changes direction to have a slope of minus
one just after the point of influence (ie. point B) and maintains that slope
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Figure 4.19. Influence lines for the bending moment for statically determinate
beams near supports.
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until we reach the internal hinge (ie. point D). The resulting net change in
direction of one at the point of influence (ie. point B) is required based on
the Müller-Breslau principle for bending moments. Finally, at the inter-
nal hinge (ie. point C), the influence line changes direction again in order
to meet the roller support (ie. point D) at zero.

The previous case considered is to be contrasted with the case in a
similar span with a left-end fixed support but when the point of influence
occurs after the internal hinge such as in figure 4.16b for the bending mo-
ment at C. In that case, the influence line is zero until the internal hinge
which is again due to the fixed end constraints. At the internal hinge,
the influence line changes direction upwards until we reach the point of
influence (ie. point C). At the point of influence (ie. point C), the influ-
ence line changes slope by one unit as required by the Müller-Breslau
principle for bending moments. Finally, with the change in direction, the
influence line then goes downwards to meet the roller support at zero.
Note that, in this case, a change in direction upwards at the internal hinge
(ie. point B) is required in order to both have a unit change in slope at the
point of influence (ie. point C) and to subsequently meet the next support
(ie. point D) at zero. Also in this case, the value at the point of influence
(ie. point C) is given by formula 4.4b on condition that we consider the
location of the internal hinge (ie. point B) to act like a second support.
This means that the effective span ‘L’ is considered to be the distance
between the internal hinge and the roller support (ie. distance between B
and D). Cases when the fixed support is at the right are similar but with
opposite signs as those of fixed supports at the left that were discussed
and may be similarly reasoned and constructed.

Finally, we consider the special cases of influence lines for the bend-
ing moments at the location of supports as shown in the examples of
figures 4.19a and b. In such cases, and unlike the influence line for shear
forces, there is no difference whether the point of influence is slightly to
the left or slightly to the right of the support. In either case, as in fig-
ures 4.19a for the bending moments at B− and at B+, the only novel
feature is that the influence line at the point of influence must be zero at
the support. If the support is a hinge or roller that is at neither end of
the beam, then this will imply, for statically determinate beams, that the
slope is zero at one side of the point of influence and the slope is plus
or minus one at the other side depending on whether this slope occurs
before or after the support respectively.

If we consider the influence line for the bending moment at a sup-
port and that support is at either end of a statically determinate beam
then we have two cases. If the end support is a hinge or roller, then the
influence line for the bending moment is identically zero throughout the
whole beam. This may be simply understood by noting that the bending
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moment at a free hinge or roller support at either end of a beam must be
zero irrespective of any loads applied within the beam. The second case
considered is when the end support is a fixed end. In that case, we can
better understand the construction of the influence line if we consider the
point of influence to be a small distance away from the fixed end. This
case is then similar to figure 4.18 for the bending moment at B but with
point B being much close to point A. In the limit as the point of influence
tends towards the fixed end (eg. point B tends to point A in figure 4.18
for the bending moment at B), the horizontal line segment between the
fixed support and the point of influence is omitted and we get an imme-
diate change in slope of one at the fixed end as shown in figure 4.19b for
the bending moment at A. Incidentally, this influence line for the bend-
ing moment at the fixed support must be the same as the influence line
for the moment reaction at the fixed support except for sign (ie. positive
or negative) which depend on the chosen sign convention for bending
moments and moment reactions.

4.3 Approximate Influence Lines for
Statically Indeterminate Structures

4.3.1 Introduction to Sketching the Influence Line
for Statically Indeterminate Beams

In the introduction to influence lines, we detailed rules for constructing
the influence lines for statically determinate and indeterminate beams
using the Müller-Breslau principle. Based on that principle, sketching an
influence line is equivalent to sketching the deformed shape for a spe-
cific type of loading. The three types of loading of primary interest are
shown in figures 4.3b, c and d which are used to obtain the influence
lines for the vertical support reactions, the shear forces and the bending
moments respectively. Under these types of loading, the deformations of
statically determinate beams are piecewise linear while those for indeter-
minate ones are, in general, piecewise cubic. In addition, the magnitudes
and shapes of the deformed statically indeterminate beams depend on
the cross-sectional properties as well as on the length of the spans. Also
in these cases, exact calculation of the deformed shape requires exactly
solving statically indeterminate beams subject to the associated load-
ings. Since such solutions are, in general, complex and better suited for
computer implementations, we will develop approximate approaches to
sketch the deformations due to the special type of loadings identified in
figures 4.3b, c and d which then gives approximate influence lines for the
statically indeterminate beams.
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The approximate approach to sketch the deformation associated
with a desired influence line is as follows:

1. Isolate the part in which the special type of loading is present and
replace the rest of the passive structure by rotary springs. In the case
of influence lines for shear forces and moments, the isolated part is just
the member that contains the point of influence. Figure 4.29a, b and c
show examples for the influence line for the bending moment while
figure 4.26 shows an example for the influence line for the shear force.
In the case of influence lines for vertical reaction forces, the isolated
part depends on the location of the support. If the support is at either
end then the isolated part is the member containing the support as
shown, for example, in figures 4.20a and b. If the support is internal to
the beam then the isolated part are both members on either side of the
support as shown, for example, in figure 4.23.

2. Analyze the deformation of the isolated part to obtain the approximate
value and location of the maximum and minimum deformations in
that part. Also, obtain the rotations at both ends of that isolated part.

3. Based on known end rotations of the attached members, obtain the
approximate value and location of the maximum or minimum defor-
mation as shown in figure 4.32. Also, obtain the rotation at the oppos-
ing end of that member. With the new end rotations, this third step is
recursively used to obtain the deformations of all the rest of the mem-
bers.

In what follows, we will do the following:

1. For each of the three types of influence lines identified in figures 4.3b,
c and d, we will present an analysis of the isolated part. This includes
describing how to sketch the deformed shape of the isolated part and
to approximately identify maxima, minima and end rotations.

2. We will present and discuss the results needed to carry out the third
step above. This will apply to all types of influence lines for all mem-
bers outside the isolated part.

3. Finally, for each of the three types of influence lines considered, we
will present examples and discuss them in order to clarify how the ob-
tained results may be used to construct influence lines. Note however
that the examples considered are extensive but not comprehensive of
all possible configurations.
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4.3.2 Influence Line for Vertical Reaction
Forces in An Isolated Member

The first type of special loading we consider is that of a unit support
movement as shown in figures 4.20 and 4.21. As in other parts of this
book, the passive response of the rest of the structure is modeled by ro-
tary springs at the ends of the isolated member. This deformation corre-
sponds to the influence line for the vertical reaction force at the displaced
support. For this type of loading, we consider two cases, namely, when
the support is at an end of a beam as in figures 4.20a and b and when the
support is a middle support as in figure 4.21. When the support is at an
end of a beam, the maximum displacement and hence influence is right
at the support and has a value of one. The interpretation is simply that
the largest vertical reaction on an end support due to an applied point
force occurs when that point force is right on top of the support. Since
we are considering a unit point force, the maximum reaction equals one.

Θin
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L

L

(a)

Θin

1

k´4

EI

L

L

(b)

Figure 4.20. Influence lines for the vertical reaction at an end support of a beam
with a rotary spring at the other end . The end support may either be a hinge (a)
or a fixed support (b).

The shape of the deformation due to a unit movement of an end sup-
port differs depending on whether that support is a hinge or is a fixed
support. In the case of a hinge end support, the deformed shape always
has positive curvature and lies below the chord as shown in figure 4.20a
and the slope at the internal support (ie. θin in figure 4.20a is always less
or equal to one. Figures 4.21a, b, c and d show the range of behavior
obtained as a function of the rotary stiffness factor. When the rotary stiff-
ness factor is zero, we have a statically determinate simply supported
beam and the influence line for the vertical reaction force is simply a
straight line (see figure 4.21a). As the rotary stiffness factor increases, the
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Figure 4.21. Influence lines for the vertical reaction at a hinge end support of a
beam as the relative stiffness of the connected beam increases from zero (a) to
one (b) to three (c) and to infinity which leads to a fixed end (d).

slope at the connected end decreases from 1/L to 0 where ‘L’ is the length
of the span (see figures 4.21b, c and d).

By contrast with the hinge end support, when the end support is
fixed then the deformed shape starts with negative curvature at that
end and, in general, ends with a positive curvature at the inner support.
The exception is when the inner support is itself a hinge or roller, as
shown in figure 4.22a where the deformed shape has a negative curva-
ture throughout the beam. With a fixed end, the slope at the inner sup-
port (ie. θin in figure 4.20b) is always less than 1.5/L. The inner slope
is exactly 1.5/L when the rotary stiffness factor equals zero as shown
in figure 4.22a, and is exactly equal to 1/L and therefore tangent with
the chord, when the rotary stiffness factor equals half as shown in fig-
ure 4.22b. When the rotary stiffness factor is greater than half then the
inner slope is less than 1/L such as shown for a rotary stiffness factor of
one in figure 4.21c. In the limit of an infinite rotary stiffness factor and
hence a fixed inner support, the slope is zero at the inner support.
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Figure 4.22. Influence lines for the vertical reaction at a fixed end support of a
beam as the relative stiffness of the connected beam increases from zero (a) to
half (b) to one (c) and to infinity which leads to a fixed end (d). The case of a
rotary stiffness factor of half gives a slope at the inner end which is tangent with
the chord.

In order to approximately identify the maximum deformation of the
inner attached member, we need to quantitatively determine the slope at
the inner support. This is given by:

θin =


3

3 + 4k

1

L
hinge or roller support at end (4.5a)

3

2 + 2k

1

L
fixed support at end (4.5b)

where:

θin is the slope at the internal support (see figures 4.20)

k is the rotary stiffness factor at the internal support

L is the length of the beam
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Figure 4.23. Influence lines for the vertical reaction at an internal support of a
beam with rotary springs at both ends.

An example of the influence line for the vertical reaction force at an
internal support is shown in figure 4.23. The deformed shape, when the
sectional properties of the two beams are identical, is simply that of a
beam with passive supports at its ends, whose span is the sum of the
spans of the two beams and with a point force applied upwards at the
location of the middle support. Sketching such deformations was cov-
ered extensively in the first chapter. Note that the deformation and hence
influence line for a mid-reaction is always positive within the spans adja-
cent to the support considered. In this case, the maximum displacement
is generally greater than one and always occurs within the middle third
of the sum of the two spans. For the purposes of approximating the in-
fluence line, we need to identify the maximum displacement (ie. hmax)
and we also need to know the end slopes. The end slopes are needed in
order to construct the influence lines of the attached members.

The maximum influence (ie. hmax in figure 4.23) when the left and
right spans on either side of the support have the same sectional proper-
ties is approximately given by:

hmax ≈ 1 +

(
1−

(
Lright/Lleft

))2
5
(
Lright/Lleft

) =
Lright

5Lleft
+

Lleft

5Lright
+

3

5
(4.6)

where:

hmax is the maximum value of the influence line (see figure 4.3)

Lleft and Lright are the lengths of the left and right spans respectively
(see figure 4.23).

Note that formula 4.6 gives a value always greater or equal to one,
is symmetric with respect to Lleft and Lright and gives a maximum error
of 11% relative to the exact result when the ratio of the spans is between
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half and two (ie. neither span is longer than twice the other). In that case,
the exact value for the maximum possible influence equals about 1.23
and occurs when one span is twice the other with the shorter span being
fixed and the longer span being hinged. This also happens to be the case
where formula 4.6 has the largest errors relative to the exact results. In
general, formula 4.6 is more accurate when the stiffness factors on both
sides (ie. kL and kR in figure 4.23) are both one or larger in which case
the maximum error is always less than 5% when the ratio of the spans is
between half and two.

The other quantitative result we present for the case of the influence
line of the vertical reaction force at an internal support is that of the end
slopes. Approximate expressions for those end slopes are given by:

θleft ≈
3

4 + 4kL

(
1

Lleft
+

1

Lright

)
(4.7a)

θright ≈
3

4 + 4kR

(
1

Lleft
+

1

Lright

)
(4.7b)

where:

θleft and θright are the slopes of the left and right ends respectively (see
figure 4.21)

Lleft and Lright are the lengths of the left and right spans respectively
(see figure 4.21)

kL and kR are the rotary stiffness factors on the left and right respec-
tively (see figure 4.21). Note that these stiffness factors are relative to
the left and right spans respectively which would be different than for
those of the two combined spans

Note that formulas 4.7a and b give a maximum possible error of 25%
relative to the exact result when the ratio of the spans is between half
and two (ie. neither span is longer than twice the other). If in addition
the rotary stiffness factors on either side are larger than one then the
maximum possible error is reduced to 10%.

In order to gain some familiarity with the shape of the influence line
in this case, figures 4.24 and 4.25 provide some examples. In figures 4.24,
the beams on either side of the inner support are equal. When both sides
are hinged, the resulting shape is shown in figure 4.24a. As the stiff-
ness on either side increases, the slope decreases somewhat similar to
the cases shown for the fixed end support in figures 4.22. In each case,
formula 4.6 may be used to estimate the end slopes and formula 4.7 may
be used to estimate the slopes at either end.
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Figure 4.24. Influence lines for the vertical reaction at an internal support of a
beam with rotary springs at both ends. In all cases the beams on either side
of the inner support are equal with various combinations of the rotary stiffness
factors at each end shown. Even when one side is fixed and the other hinged, the
maximum displacement barely increases above one as shown in case (d).
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Figure 4.25. Influence lines for the vertical reaction at an internal support of a
beam with rotary springs at both ends. In all cases the inner beam on the right
is twice that on the left with various combinations of the rotary stiffness factors at
each end shown.
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In figures 4.25, the beams on the right are twice the length of those
on the left. These figures shows the range of shapes obtained as the ro-
tary stiffness factors change on either side. The largest deformation is
obtained when the side nearest the inner support is fixed and the other
side is hinged. Again, formula 4.6 may be used to estimate the end slopes
and formula 4.7 may be used to estimate the slopes at either end.

4.3.3 Influence Line for Shear Forces in an
Isolated Member

The second type of special loading we consider is that of a unit step
jump in the displacement as shown in figure 4.26. As in other parts of
this book, the passive response of the rest of the structure is modeled
by equivalent rotary springs at the ends of the loaded member. For this
type of loading, figure 4.22 shows the typical shape of the deformation.
This deformation corresponds to the influence line for the shear force
at the location of the jump. The influence line starts at zero at the left
support and decreases monotonically to reach a minimum that is always
greater or equal to negative one at the point of influence. This means the
influence line from the left support till the point of influence is always
negative. At the point of influence, the influence line jumps up by one
and always reaches a positive value less or equal to one. Finally, to the
right, the line is always positive and decreases monotonically from left
to right to reach zero at the right support.
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Figure 4.26. Influence lines for the shear force at a point with distance ‘xI ’ from
the left support of a beam with rotary springs at both ends.

For the purposes of approximating the influence line, we need to
identify the minimum and maximum values (ie. hbottom and htop in fig-
ure 4.22) and we also need to know the end slopes. The end slopes are
needed in order to construct the influence lines of the attached members.
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We start with the minimum and maximum values and these are exactly
given by:

hbottom =
xI
L

+
2 (kR + 2kLkR)

3 + 4kL + 4kR + 4kLkR

(
xI
L
− x3

I

L3

)
− 2 (kL + 2kLkR)

3 + 4kL + 4kR + 4kLkR

((
1− xI

L

)
−
(
1− xI

L

)3) (4.8a)

htop = 1− hbottom (4.8b)

where:

hbottom is the minimum value of the influence line and occurs slightly to
the left of the influence point

htop is the max value of the influence line and occurs slightly to the right
of the influence point

xI is the distance of the point of influence from the left support

L is the length of the beam

kL and kR are the rotary stiffness factors on the left and right respec-
tively (see figure 4.22)

Formula 4.8a is somewhat complicated but a significantly simpler
yet sufficiently accurate approximate expression is currently unavail-
able. Note that there is a remarkably interesting feature to formula 4.8.
Specifically, let ‘x’ be the coordinate of any point along the influence line
with origin at the left support. If we take negative ‘hbottom’ in formula 4.8a
and replace ‘xI ’ by ‘x’ then we get the function describing the influence
line from the left support until the point of influence. Similarly, if we
take ‘htop’ in formula 4.8b and replace ‘xI ’ by ‘x’ then we get the func-
tion describing the influence line from the point of influence to the right
support. Note that the shapes of the influence lines before and after the
point of influence are both independent of the location ‘xI ’ of that point
and that this location ‘xI ’ only affects where the jump or discontinuity
occurs. In particular, the slopes at the end supports are both indepen-
dent of the location ‘xI ’ of the point of influence and depend only on the
rotary stiffness factors. These end slopes are given exactly by:

θleft =
3 + 6kR

3 + 4kL + 4kR + 4kLkR
× 1

L (4.9a)

θright =
3 + 6kL

3 + 4kL + 4kR + 4kLkR
× 1

L (4.9b)
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where:

θleft and θright are the slopes at the left and right ends respectively (see
figure 4.22)

kL and kR are the rotary stiffness factors on the left and right respec-
tively (see figure 4.22)

This independence of the shape of the influence line before and after
the jump from the location of the point of influence is quite convenient
but is unfortunately absent from the influence lines of those for the ver-
tical reaction force at an internal support and for the bending moments.

In order to gain some familiarity with the shape of the influence line
for a shear force in an isolated part, figures 4.27 and 4.28 provide some
examples. In each of figures 4.27 and 4.28, we also show, as thick but light
gray lines, the envelope of values for the maximum and the minimum of
all influence lines at the given values of the rotary stiffness factors at the
ends. In each of these figures and at the associated rotary stiffness factors,
the influence line for the shear force may be obtained at any influence
point by sketching along the lower envelope from the left support until
the influence point, jumping to the upper envelope at the influence point
and then sketching along the upper envelope until we reach the right
support. Therefore, in each of these figures, the envelopes completely
specify the influence line for shear forces at any location of the influence
point on the beam but at the specified rotary stiffness factors. The solid
lines are the influence line of the shear force at a particular influence
point location.

In figures 4.27, the influence point is at the center of the beam. When
both sides are hinged, the resulting shape is shown in figure 4.27a and
correspond to the shape obtained for a statically determinate beam. The
value of the minimum relative to the maximum value of the influence
line depends on the relative rotary stiffness factors on either side. When
the two sides have the same rotary stiffness factor then the absolute value
of the minimum and maximum are the same as in the example shown
in figure 4.27b. In general, the side with the higher stiffness will have
a lower maximum or absolute value of the minimum on its side such
as shown in figure 4.27c. However, the smallest relative value between
maximum and absolute value of the minimum when the influence point
is in the middle of the beam occurs when one side is fixed and the other
hinged as in the example shown in figure 4.27d. In that case, the ratio of
the smaller of the maximum or absolute value of minimum to the largest
of the two equals about 0.31.
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(a) (b)

(c) (d)

Figure 4.27. Influence lines (solid black lines) for the shear force in the middle of
a beam with rotary springs at both ends. Examples having various combinations
of the rotary stiffness factors at each end are shown. Even when one side is fixed
and the other hinged, the value of the influence line at the jump on the side of the
fixed end is still appreciable and equals about 0.31. Note that the slopes at either
end of the beam scales or are multiples of 1/L where ‘L’ is the span of the beam
while the maximum and minimum values are dimensionless.

In figures 4.28, we present influence lines for the shear force at influ-
ence points other than the center. These figures show a range of shapes
obtained as the location of the influence point changes at fixed values
of the rotary stiffness factors. The maximum of one is always reached
when the influence point is at the left support as in figure 4.28d and the
minimum of minus one is always reached when the influence point is at
the right support. Note that because the rotary stiffness factors are held
fixed in figures 4.28, the left and right slopes are always the same for any
location of the influence point. This includes the cases when it is at the
left support as in figure 4.28d and when it is at the right support.
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(a) (b)

(c) (d)

Figure 4.28. Influence lines (solid black lines) for the shear force at various
locations in a beam with rotary springs at both ends. Examples having various
combinations of the rotary stiffness factors at each end are shown. When the
influence point is at a support, all the jump occurs on the side away from it as in
figure (d). Also, the slope before and after the jump must match so that although
the influence line of the shear is at the support, a non-zero slope will be enforced
on the adjacent member. Finally, note that the slopes at either end of the beam
are multiples of 1/L where ‘L’ is the span of the beam while the maximum and
minimum values are dimensionless.

4.3.4 Influence Line for Bending Moments
in An Isolated Member

The last type of special loading we consider is that of a unit change in
slope or unit kink as shown in figures 4.29. As in other parts of this book,
the passive response of the rest of the structure is modeled by equivalent
rotary springs at the ends of the loaded member. For this type of loading,
figure 4.29a shows one type of deformation and figures 4.29a and b show
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Figure 4.29. Influence lines for the bending moment at a point with distance ‘xI ’
from the left support of a beam with rotary springs at both ends. This influence
line may have only positive values as in figure (a) or both positive and negative
values as in figures (b) and (c).

another. In each case, these deformations correspond to the influence line
for the bending moment at the location of the kink. Each of those shapes
occurs under specific conditions which we will next discuss.

The first type of influence line of the bending moment is shown in
figure 4.29a. The value is always positive and reaches a maximum at the
location of the point of influence. This pattern of influence line for the
bending moment always occurs when the location ‘xI ’ of the point of
influence satisfies the following condition:

2kL
3+6kL

L ≤ xI ≤
(

1− 2kR
3+6kR

)
L (4.10)

⇒ influence line of bending moment has pattern of figure 4.29a.

where:

kL and kR are the rotary stiffness factors on the left and right respec-
tively (see figure 4.29a)

L is the length of the span

xI is the location of the point of influence relative to the left support as
origin (see figure 4.29a)

The second type of influence line of the bending moment is shown
in figures 4.29b and c. In that case, if the influence line is closer to the left
support, the influence line starts at zero at the left, increases to a maxi-
mum at the point of influence then decreases to reach a minimum that
has a negative value before increasing again to meet the right support at
zero. The pattern is analogous when the influence point is closer to the
right support and is shown in figure 4.29c. These patterns of influence
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lines for the bending moment always occurs when the location ‘xI ’ of
the point of influence satisfies either of the following conditions:

xI ≤ 2kL
3+6kL

L (4.11a)

⇒ influence line of bending moment has pattern of figure 4.29b

xI ≥
(

1− 2kR
3+6kR

)
L (4.11b)

⇒ influence line of bending moment has pattern of figure 4.29c

For the purposes of approximating the influence line, we need to identify
the minimum and maximum values (ie. hbottom and htop in figure 4.22),
the location of the minimum value and we also need to know the end
slopes. The end slopes are needed in order to construct the influence
lines of the attached members. We start with the maximum with the exact
result being given by:

hmax = xI

L

(
1− xI

L

)
×
(

(3 + 4kR) + (6kL − 2kR + 8kLkR) (xI/L) (4.12)

− 2 (kL + kR + 4kLkR) (xI/L)
2
)L
z

where:

z = 3 + 4kL + 4kR + 4kLkR

hmax is the maximum value of the influence line and occurs at the influ-
ence point (see any of figures 4.29)

xI is the distance of the point of influence from the left support

L is the length of the beam

kL and kR are the rotary stiffness factors on the left and right respec-
tively (see any of figures 4.29)

Formula 4.12 is somewhat complicated but a significantly simpler
yet sufficiently accurate approximate expression is currently unavail-
able. Of course, the formula reduces correctly to the solution for the max-
imum bending moment in a simply supported beam as a unit point force
location varies from left to right. In fact, we can obtain simple upper and
lower bounds on the maximum influence line value that correspond to
the cases when the beam is simply supported and fixed-fixed respec-
tively. The result is then:

2
(
xI

L

)2 (
1− xI

L

)2
L ≤ hmax ≤ xI

L

(
1− xI

L

)
L (4.13)



Practical Approximate Analysis of Beams and Frames 281

The expression for the minimum influence value is long and compli-
cated, but fortunately, a simpler approximate expression may be speci-
fied as:

hmin ≈


kL

1+kL

(1+kR)
(5+7kR)

(
1− (xI/L)

2kL/(3+6kL)

)2

L 0 ≤ xI ≤ 2kL
3+6kL

L

kR
1+kR

(1+kL)
(5+7kL)

(
1− (1−(xI/L))

2kR/(3+6kR)

)2

L 1− 2kR
3+6kR

≤ xI ≤ L
(4.14)

where:

hmin is the minimum value of the influence line (see figures 4.29b or c)

xI is the distance of the point of influence from the left support

L is the length of the beam

kL and kR are the rotary stiffness factors on the left and right respec-
tively (see any of figures 4.29)

Formula 4.14 is approximate and has a maximum absolute error of
0.01×L for all values of ‘kL,’ ‘kR’ and ‘xI .’ This error is usually negligible
for most cases as compared with the maximum of either the positive mo-
ment or the absolute value of the negative moment. The absolute value
of the minimum increases as the influence point gets closer to a support
and as the rotary stiffness factor of that support increases. A negative in-
fluence value corresponds to a negative bending moment in a beam with
an applied point force on the beam. Such negative bending moment and
associated negative curvature can only occur in statically indeterminate
beams. Therefore, the influence lines for bending moments in statically
indeterminate beams are distinguished from those of determinate ones
by the possibility of having negative values within the beam contain-
ing the influence point. Of course, both statically determinate and inde-
terminate beams may have negative influence values outside the beam
containing the influence point.

Associated with the minimum value of the influence line is the loca-
tion of that minimum, this is approximately given by:

xat min/L ≈

1− 3 (1−s)
(3−s)

(
1− 2f (1−s)

(2−s)

)
0 ≤ xI ≤ 2kL

3+6kL
L

3 (1−s)
(3−s)

(
1− 2f (1−s)

(2−s)

)
1− 2kR

3+6kR
≤ xI ≤ L

(4.15)

with: s =

{
(xI/L)

2kL/(3+6kL) 0 ≤ xI ≤ 2kL
3+6kL

L
1−(xI/L)

2kR/(3+6kR) 1− 2kR
3+6kR

≤ xI ≤ L
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f =

{
0.42+0.33kR

1+kR
0 ≤ xI ≤ 2kL

3+6kL
L

0.42+0.33kL
1+kL

1− 2kR
3+6kR

≤ xI ≤ L
where:

xat min is the location of the minimum value of the influence line from
the left support

xI is the distance of the point of influence from the left support

L is the length of the beam

kL and kR are the rotary stiffness factors on the left and right respec-
tively (see any of figures 4.29)

Note that formula 4.15 has absolute error less than 0.1×L. Although
this error is appreciable, it is sufficient for the purpose of approximately
and manually sketching the shape of the influence lines.

The last result we need in order to approximately but quantitatively
analyze influence lines for bending moments are expressions for the
slopes at the ends of the isolated part. These are exactly given by:

θleft =
(3 + 4kR)− (3 + 6kR) (xI/L)

3 + 4kL + 4kR + 4kLkR
(4.16a)

θright =
(3 + 4kL)− (3 + 6kL) (1− xI/L)

3 + 4kL + 4kR + 4kLkR
(4.16b)

where:

xI is the distance of the point of influence from the left support

L is the length of the beam

θleft and θright are the slopes at the left and right ends respectively (see
figure 4.22)

kL and kR are the rotary stiffness factors on the left and right respec-
tively (see figure 4.22)

Note that formulas 4.16 allows either slope to be both negative and
positive. If we start with a beam having non-zero rotary stiffness factors
at both ends and with the influence point in the middle of the beam then,
if we consider another influence point sufficiently close to one of the sup-
ports, negative values in the influence line will appear and the slope at
the support farthest from the influence point will switch sign.

In order to gain some familiarity with the shape of the influence line
for a bending moment in an isolated part, figures 4.30 and 4.31 provide
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Figure 4.30. Influence lines (solid black lines) for the bending moment in the
middle of a beam with rotary springs at both ends. Examples having various
combinations of the rotary stiffness factors at each end are shown. Note that
the slopes at either end of the beam are dimensionless while the maximum and
minimum values are multiples of ‘L’ where ‘L’ is the span of the beam.

some examples. In each of figures 4.30 and 4.31, we also show, as thick
but light gray lines, the envelope of values for the maximum and the
minimum of all influence lines at the given values of the rotary stiffness
factors at the ends. Note that in one case, that of the simply supported
beam which is statically determinate, the minimum is always zero as
is for example indicated in figure 4.30a by the lack of a lower negative
envelope. In general, there are two separate branches to the envelopes
of the negative minimum values. One is shown as a solid light gray line
and occurs when the influence point is nearer to the left support which
is opposite the side of the corresponding branch. The other branch is
shown as a dashed light gray line and occurs when the influence point is
nearer to the right support. Note that if the right support is a hinge, then
we do not get negative values for the influence line when the influence
point is near that right hinge and so the dashed light gray line will be
missing as in figure 4.30d and in figure 4.31d. An equivalent condition
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Figure 4.31. Influence lines (solid black lines) for the bending moment at various
locations of a beam with rotary springs at both ends. Examples having various
combinations of the rotary stiffness factors at each end are shown. Note that
the slopes at either end of the beam are dimensionless while the maximum and
minimum values are multiples of ‘L’ where ‘L’ is the span of the beam.

occurs when the left support is a hinge in which case the lower solid
gray line will be missing indicating an absence of a negative minimum
envelope when the influence point is near the left support.

Concerning the upper envelope, the influence line must always pass
through one of those points since there are always positive values of
the influence line. Furthermore, the maximum always occurs at the kink
which is the location of the influence point. The interpretation is that
for any beam with passive supports and loaded by a unit point force,
the maximum bending moment always occurs at the location of the unit
point force. Note that unlike the influence line for shear forces, the up-
per and lower envelopes generally match the influence line at only one
(ie. the maximum) or two points (ie. maximum and minimum) rather
than along whole segments. Finally, in all the figures for the influence
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line for bending moments, the solid lines are the influence line of the
bending moments at a particular influence point location.

In figures 4.30, the influence point is at the center of the beam. When
both sides are hinged, the resulting shape is shown in figure 4.30a and
correspond to the shape obtained for a statically determinate beam. In
that case, the values of the envelope of the maximum values (ie. the light
gray line with positive values in figure 4.30a) are also the upper bounds
for the influence line for any influence line having the same span. For all
the cases when the influence point is at the center, as the rotary stiffness
factors increase, the maximum influence value decreases from 0.25L to
0.125L (ie. a total of 50% decrease). The largest decrease occurs when the
rotary stiffness factors increase from zero to one on either side so that
when both sides have stiffness factor of one, as in figure 4.30b, then the
value of the influence line is about 0.17L (ie. 32% less than the simply
supported case). Beyond a rotary stiffness factor of one, the change in
maximum influence value decreases more gradually so that if we com-
pare figure 4.30b and figure 4.30c, where the rotary stiffness factor on the
right has increased from one to three with other parameters the same,
the maximum influence value only changes from about 0.17L to 0.15L
(ie. only by 12%). Finally, when the rotary stiffness factors on the ends
are not symmetric, the envelope of maximum influence value always oc-
curs closer to the end with the lower stiffness factor.

In figures 4.31, we present influence lines for the bending moment
at influence points other than the center. Some observations concerning
those examples are as follows:

• By comparing figures 4.31a and c, we note that the minimum decreases
with an increase in the rotary stiffness factor nearest to the point of
influence. Note that both influence lines in figures 4.31a and b achieve
their maximum at some point on the light gray dashed line which is
an envelope of minimum values when the influence point is closer to
the right support.

• When the influence point is at exactly a boundary value in the condi-
tions of formulas 4.11a and b, the influence line will be tangent to the
horizontal at one side. For example, figure 4.31c shows the influence
line for the bending moment when the influence line is at 0.222Lwhich
is at a boundary value in formula 4.11a. In that case, the influence line
on the right is tangent to the horizontal and the slope is exactly zero
at that end support. The implication is that a neighboring beam con-
nected at the right end will have zero influence at the specified point of
influence for any location of the unit point force on that beam. The rea-
son is that the boundary values in formulas 4.11a and b correspond to
an inflection point location in the beam with the influence point when



286 Practical Approximate Analysis of Beams and Frames

any load is applied to another beam attached on the right or on the left
of it respectively.

• Finally, if we consider an influence point that is at exactly the left or
at exactly the right support, then the influence values will all be nega-
tive as shown in example 4.31d where the influence point is exactly at
the left support. In those cases, the minimum influence value will be
the minimum value of either the left or the right lower envelope de-
pending on whether the influence point is at the right or left support
respectively. Also note that the slope at the end that is obtained by for-
mula 4.16a and b when an influence point is right at a support is the
slope of the neighboring member attached to that end rather than the
slope of the influence line itself. For example, in figure 4.31d, the slope
at the left support is identified to be zero based on formula 4.16a which
is the slope of the fixed end rather than the slope of the influence line
at that end.

4.3.5 Influence Line in a Transition Member for All Types

In the approach we present to obtain influence lines, we start by isolat-
ing the beam containing the influence point. When isolating that beam,
we model the rest of the structure attached to either end by equivalent
rotary springs. Once isolated, we sketch that beam’s influence line based
on the results presented in the previous sections. In addition, we obtain
the slopes at either end of that isolated beam. Those slopes are then ap-
plied at the ends of the beams attached to that isolated beam which in
turn may be attached to other beams. Therefore, each of the beams other
than the one containing the influence point has basically the same config-
uration if it has no internal hinges. Those beams are unloaded but have a
specified slope on one side and a passive structure attached to the other.
This implies that they may be modeled as shown in figure 4.32 with an
applied slope at one end which we call the near end and a rotary spring
at the other end whcih we call the far end. Based on the Müller-Breslau
principle if we determine the deformation of such a beam then this de-
formation corresponds to their influence line.

The beam shown in figure 4.32 is fundamental in this book and has
been analyzed and used several times in previous chapters. The current
focus is to obtain the following pieces of information:

• The maximum displacement ‘umax’ in terms of the applied slope ‘θnear’
(see figure 4.32). Note that in previous studies, we applied a moment
rather that a slope.
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Figure 4.32. Transition member used to sketch influence lines of the members
not containing the influence point.

• The approximate location ‘xat max’ of the maximum displacement. This
has been extensively done in a previous chapter

• The slope at the far end ‘θfar’ in terms of the applied or near end slope
‘θnear.’

First, we consider the slope at the far end which is exactly given by:

θfar/θnear =
1

2 + 2k
(4.17)

where:

θnear and θfar are the slopes at the ends of the beam where ‘θnear’ is con-
sidered as an applied slope (see figure 4.32)

k is the rotary stiffness factor at the far end (see figure 4.32)

Note that the ratio in equation 4.16 is a uniformly decreasing func-
tion of ‘k’ with the fastest decrease occuring between zero and one.

The next result is the maximum displacement ‘umax’ and this is ap-
proximately given by:

umax ≈ 0.19+0.15k
1+k θnearL (4.18)

where:

θnear is the applied slope at one end of the beam (see figure 4.32)

k is the rotary stiffness factor at the far end (see figure 4.32)

L is the span or length of the beam (see figure 4.32)
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We note that formula 4.18 has error less than 1.5% for any value of
‘k’ as compared with the exact result (see appendices). Also note that the
value of the maximum displacement varies monotonically from about
0.19 when the far end is a hinge to 0.15 when the far end is fixed. Finally,
the maximum displacement is always a multiple of the product of the
applied near slope ‘θnear’ and the length of the beam ‘L.’

Finally, the last result that is needed concerns the location of the max-
imum displacement and this is approximately given by:

xat max/L ≈ 0.42 + 0.33k

1 + k
(4.19)

where:

xat max is the location of the maximum displacement (see figure 4.32)

k is the rotary stiffness factor at the far end (see figure 4.32)

L is the span or length of the beam (see figure 4.32)

We note that formula 4.19 has error less than 1% for any value of
‘k’ compared to the exact result (see appendices). Also note that the
value of the location of the maximum displacement varies monotonically
from about 0.42 when the far end is a hinge to 0.33 when the far end is
fixed.

The above simple results, and particularly formulas 4.17 and 4.18,
imply that the influence lines of statically indeterminate beams that are
free of internal hinges will be strikingly different in at least one fea-
ture. That feature is as follows: If we consider a statically indeterminate
beams with no internal hinges and where no span is longer than twice
the other then the maximum absolute value of the level of the influence
line in beams will decrease faster than some geometric progression as we
move consecutively away from the beam containing the influence point.
In statically determinate beams, such a feature is possible but generally
does not occur. The geometric decrease in the level of influence lines fol-
lows because the ratio between the far and near slope is always less than
half and the span ratios is less than two. Since the product of the slope
at the near end and the length of the span sets the maximum level of the
deformation in a beam, consecutive beams away from the one contain-
ing the influence point will have a decrease faster than some geometric
progression. Note that this decrease will generally be quite fast because
even when the rotary stiffness factor is one, formula 4.17 gives a ratio of
one quarter.
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4.3.6 Examples of Sketching Influence Lines
for Vertical Force Reactions

In this section, we will present examples of sketching the influence lines
for vertical force reactions. The results in the figures shown are exact
results and we will describe how the discussions and approximations
developed in previous sections allow us to approximately sketch those
influence lines. For simplicity, we will start with examples where all the
spans are equal and have the same sectional properties as shown in fig-
ure 4.33. As specific examples, we will consider the influence line for the
vertical reaction at A and for the vertical reaction at C. The rest of the
cases shown in figure 4.33 may be similarly analyzed and are left as an
exercise for the reader.

beam
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A B C D E
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span xat min hmin xat max hmax

1 1 0 0 1

2 0.380 −0.079 1 0

3 0 0 0.377 0.021

4 0.333 −0.005 1 0

Figure 4.33. Influence lines for the vertical force reactions in a case where
all beams have the same span and the same sectional properties. (Continued
below.)



290 Practical Approximate Analysis of Beams and Frames

Vertical reaction at B
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Figure 4.33. (Continued from above and continued below.)
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Vertical reaction at D
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Figure 4.33. (Continued from above.) Influence lines for the vertical force reac-
tions in a case where all beams have the same span and the same sectional
properties.
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Considering figure 4.33, we first describe how to approximately con-
struct the influence line for the vertical reaction at A where there is a
support at the end of the beam. For that influence line, we start by isolat-
ing member AB which is the member containing the influence point A.
For that member AB, we estimate the rotary stiffness factor at B to be 1.
At this point, we may sketch the shape of the influence line for mem-
ber AB based on the patterns identified in figures 4.21. From the rotary
stiffness at B, we may calculate an estimate of the slope at B using for-
mula 4.5a which gives a slope of about 0.43. That slope is then applied
on member BC so that the sketch of member BC must have the identical
slope of 0.43 at B. Member BC is analyzed as a transition member with
an applied slope of 0.43 at point B and a rotary spring at C for which we
estimate the rotary stiffness factor to be 1. Using formula 4.18, we cal-
culate the maximum influence to be 0.073 which has an error of about
7.6% compared with the exact result of 0.079 given in the table next to
the influence line for the vertical reaction at A. Note that in that table,
span 2 refers to the second member from the left which is member BC.
Using formula 4.19, we calculate the location of that maximum influ-
ence to be 0.375 which has an error of about 1.32% compared with the
exact result of 0.380. Based on these calculations, we can quantitatively
sketch the influence line for member BC using figure 4.32 as a guide (also
see chapter 1). Finally, using formula 4.17, we calculate the slope at C to
be about 0.11. This slope is then applied on member CD which is again
modeled as a transition member like the one shown in figure 4.32. Once
we finish with member CD, we get the slope at D and sketch member DE
in a similar manner which then completes the whole sketch of the influ-
ence line for the vertical reaction at A. This sketch includes relatively
accurate approximations of maxima, minima and their locations.

Again considering figure 4.33, we next describe how to approxi-
mately construct the influence line for the vertical reaction at C where
there is an internal support. For that influence line, we start by isolating
the two beams BC and CD together with rotary springs at ends B and D.
We estimate the stiffness factors at B and D to be 0.75 and 1 respectively.
Based on the patterns identified in figures 4.24, we may approximately
sketch the influence line in the segment between B and D. In that seg-
ment, we also determine that the maximum influence is about 1. Next
we calculate the slopes at B and D using formula 4.7a and b which give
values of 0.86 and 0.75 respectively. These slopes are then used as im-
posed values on transition members on the left and the right. For mem-
ber AB on the left, the rotary stiffness factor is zero at A which using for-
mula 4.18 gives a maximum value of 0.19× 0.86 ≈ 0.163. This compares
well with the exact value of 0.167 which gives an error of only 2.5%. In re-
gards to the location of the maximum, formula 4.19 gives a value of 0.42
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from the location of the imposed slope which is point B or equivalently
1 − 0.42 = 0.57 from point A. This value again compares well with the
exact value of 0.577 corresponding to an error of only 1.21%. For mem-
ber CD on the right of the isolated segment BCD, the rotary stiffness fac-
tor is infinity at D due to the fixed end. Applying a slope at D of 0.75 and
using formulas 4.18 and 4.19, we get values of 0.15 × 0.75 ≈ 0.112 and
0.33 for the maximum influence and location respectively. These again
compare well with the exact values of 0.110 and 0.333 given for span 4 in
the table next to the exact influence line.

Next we consider the beam shown in figure 4.34 where the spans are
nonequal and the sectional properties are different. As specific examples,
we will consider the influence line for the vertical reaction at E and for
the vertical reaction at B. The rest of the cases may be similarly analyzed
and are left as an exercise for the reader.

Considering figure 4.34, we first describe how to approximately con-
struct the influence line for the vertical reaction at E where there is a
support at the end of the beam. For that influence line, we start by isolat-
ing member DE which is the member containing the influence point E.
For that member DE, we estimate the rotary stiffness factor at D to be
(1/1.5)/(0.8/0.75) ≈ 0.625. At this point, we may sketch the shape of
the influence line for member DE based on the patterns identified in fig-
ures 4.22. From the rotary stiffness factor at D, we may calculate an es-
timate of the slope at using formula 4.5b which gives a slope of about
1.231. That slope is then applied on member DC so that the sketch of
member DC must have the identical slope of 1.231 at D. Member DC
is analyzed as a transition member with an applied slope of 1.231 at
point D and a rotary spring at C for which we estimate the rotary stiff-
ness factor to be (0.8/0.75)/(1/1.5) ≈ 1.6. Using formula 4.18, we cal-
culate the maximum influence to be 0.305 which has an error of about
4.1% compared with the exact result of 0.318 given in the table next to
the influence line for the vertical reaction at D. Note that in that table,
span 3 refers to the third member from the left which is member CD.
Using formula 4.19, we calculate the location of that maximum influ-
ence to be 0.547 from the left support or 1.5 − 0.547 ≈ 0.953 from the
left support C which has an error of about 0.95% compared with the
exact result of 0.944. Based on these calculations, we can quantitatively
sketch the influence line for member CD using figure 4.32 as a guide
(also see chapter 1). Finally, using formula 4.17, we calculate the slope
at C to be about 0.237. This slope is then applied on member CB which is
again modeled as a transition member like the one shown in figure 4.32.
Once we finish with member CB, we get the slope at D and sketch
member AB in a similar manner which then completes the whole sketch
of the influence line for the vertical reaction at E. This sketch includes
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Figure 4.34. Influence lines for the vertical force reactions in a case where the
beams have different span and different sectional properties. (Continued below.)

relatively accurate approximations of maxima, minima and their
locations.

Again considering figure 4.34, we next describe how to approxi-
mately construct the influence line for the vertical reaction at B where
there is an internal support. For that influence line, we start by isolating
the two beams AB and BC together with a rotary springs at end C and
a hinge at end A. We estimate the stiffness factor C to be 0.625. Based
on the patterns identified in figures 4.25, we may approximately sketch
the influence line in the segment between A and C. In that segment, we
also determine that the maximum influence is about 1.053 which is very
close to the exact value of 1.064 Next we calculate the slope C using for-
mula 4.7b which gives a value of 0.977. This slope is then used as im-
posed value on the transition members on the right. For member CD on
the right, the rotary stiffness factor is 1.6 at D which using formula 4.18
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Figure 4.34. (Continued from above and continued below.)
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Figure 4.34. (Continued from above.) Influence lines for the vertical force re-
actions in a case where the beams have different span and different sectional
properties.
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gives a maximum value of 0.977 ∗ 1.5(0.19 + 0.15 ∗ 1.6)/(1 + 1.6) ≈ 0.242.
This compares well with the exact value of 0.262 which gives an error
of 7.6%. In regards to the location of the maximum, formula 4.19 gives a
value of 0.547 from the location of the imposed slope which is point C.
This value again compares well with the exact value of 0.550 correspond-
ing to an error of 0.55%. Next we use formula 4.17 to get the slope at D
which gives a value of 0.188. This slope is then applied at D on mem-
ber DE to sketch that member and to complete the influence line. This
sketch of the influence line includes relatively accurate approximations
of maxima, minima and their locations.

4.3.7 Examples of Sketching Influence Lines
for Shear Forces

In this section, we will present examples of sketching the influence lines
for shear forces. The results in the figures shown are exact results and
we will describe how the discussions and approximations developed in
previous sections allow us to approximately sketch those influence lines.
For simplicity, we will start with examples where all the spans are equal
and have the same sectional properties as shown in figure 4.35. As a spe-
cific example, we will consider the influence lines for the shear force at
point D. The rest of the cases shown in figure 4.35 may be similarly ana-
lyzed and are left as an exercise for the reader.

Considering figure 4.35, we describe how to approximately construct
the influence line for the shear force at D. For that influence line, we start
by isolating member CE which is the member containing the influence
point D. For that member CE, we estimate the rotary stiffness factors at C
and E to be 0.75 and 1 respectively. Next, using formula 4.8a and b we
calculate the values before and after the influence point D to be 0.514
and 0.486 respectively. These values have an error of 1.18% and 1.22% re-
spectively compared with the exact result shown in a table near the cor-
responding figure for the influence line at span 2 which is member CE
(ie. second span from the left). With these values and figures 4.27 and 4.28
as a guide, we can sketch the influence line for member CE. To proceed
further, we calculate the slopes at C and E using formula 4.9a and b
which give the values of 0.692 and 0.577 respectively. These slopes are
then used as imposed values on transition members on the left and the
right. For member AC on the left, the rotary stiffness factor is zero at A
which using formula 4.18 gives a maximum value of 0.19×0.692 ≈ 0.131
which is, to the specified precision, the exact result. The location of that
maximum is calculated using formula 4.19 which gives a value of 0.42
from the location of the imposed slope which is point C or equivalently
1 − 0.42 = 0.57 from point A. This value again compares well with the
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Figure 4.35. Influence lines for the shear forces in a case where all beams have
the same span and the same sectional properties. (Continued below.)

exact value of 0.577 corresponding to an error of only 1.21%. With this
information, we can then sketch the influence line for the member AC.
Next we consider the member on the right of the isolated member CE
which is member EG. Again we use the transition member shown in fig-
ure 4.32 with an applied slope obtained above as 0.577 at point E and
we estimate the rotary stiffness factor at G to be 1. Using formulas 4.18
and 4.19, we obtain the maximum influence value and location to be
0.098 and 0.375 respectively which compare well with the exact results
of 0.104 (ie. 5.8% error) and 0.377 (ie. 0.53% error) respectively. To finish
with member EG, we obtain the slope at G using formula 4.17 which
gives a value of about 0.14. Based on these calculations for member EG,
we can quantitatively sketch its influence line using figure 4.32 as a guide
(also see chapter 1). The influence line of the last member GI may be sim-
ilarly sketched using the imposed slope of 0.14 at point G, figure 4.32 as
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Figure 4.35. (Continued from above and continued below.)
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Figure 4.35. (Continued from above.) Influence lines for the shear forces in a
case where all beams have the same span and the same sectional properties.
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a guide with k → ∞ and with the formulas associated with that figure.
This then would complete the whole sketch of the influence line for the
shear force at D. This sketch includes relatively accurate approximations
of maxima, minima and their locations.

Next we consider the beam shown in figure 4.36 where the spans are
nonequal and the sectional properties are different. As specific examples,
we will consider the influence line for the shear forces at B+ and at F. The
rest of the cases may be similarly analyzed and are left as an exercise for
the reader.

Considering figure 4.36, we first describe how to approximately con-
struct the influence line for the shear force at a point just to the right of
point B which we refer to as point B+. For that influence line, we start
by isolating member BC which is the member containing the influence
point B+. For that member BC, we estimate the rotary stiffness factors
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Figure 4.36. Influence lines for the shear forces in a case where the beams have
different span and different sectional properties. (Continued below.)
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Figure 4.36. (Continued from above and continued below.)
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Figure 4.36. (Continued from above.) Influence lines for the shear forces in a
case where the beams have different span and different sectional properties.
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at B and C to be 0.563 and 0.625 respectively. Next, either based on kine-
matic constraints or using formula 4.8a and b we identify the values be-
fore and after the influence point D to be 0 and 1 respectively which are
the same as the exact results. With these values and figures 4.28d as a
guide, we can sketch the influence line for member BC. From the esti-
mates of the rotary stiffness factors at B and C, we may use formula 4.9a
to calculate estimates of the slopes B and C which give 0.983 and 0.928
respectively. Those slopes are applied on the neighboring members AB
and CD respectively using the transition model of figure 4.32. Starting
with member AB, we have the rotary stiffness factor at the left equal
zero because of the hinge at the end. Using formula 4.18 with the ap-
plied slope of 0.983 at B, we obtain the maximum influence value as 0.233
which is the exact result up to the precision of the calculations. As for the
location of that maximum value, formula 4.19 gives a value of 0.525 from
point B which is (1.25 − 0.525) = 0.725 from point A and is very close
to the exact result of 0.722. At this point, we use the calculated values to
sketch the influence line for member AB using figure 4.32 as a guide (also
see chapter 1). Next we consider member CE as a transition member with
an applied slope of 0.928 at C and a spring with rotary stiffness factor of
1.6 at E. Using formulas 4.18 and 4.19, we get the magnitude and loca-
tion of the maximum influence value to be 0.230 and 0.547 respectively
which are very close to the exact results of 0.237 (ie. about 2.5% error) and
0.550 (ie. about 0.55% error) respectively. With these values, member CE
can be sketched using figure 4.32 as a guide (also see chapter 1). Consid-
ering member CE, we can also calculate the slope at E using 4.17 which
gives a slope of 0.178 at point E. This slope is then imposed at point E
of member EG with the model of figure 4.32 in order to calculate values
and to sketch the influence line for member EG. This then completes the
sketch for the whole influence line for the shear force at point B+ and in-
cludes relatively accurate approximations of maxima, minima and their
locations.

Again considering figure 4.36, we next describe how to approxi-
mately construct the influence line for the shear force at F. For that in-
fluence line, we start by isolating member EG which is the member con-
taining the influence point F. For that member EG, we estimate the rotary
stiffness factor at the left to be 0.625 while that at the right is infinite due
to the fixed end. Next we use formula 4.8a and b to calculate the val-
ues before and after the influence point F which we find to be 0.485 and
0.515 respectively. These values compare well with the exact values of
0.490 (ie. about 1.02% error) and 0.509 (ie. about 1.18% error) respectively.
With these values and figures 4.27 and 4.28 as a guide, we can sketch the
influence line for member EG. With the same isolated member EG, we
may use formula 4.9a to calculate estimates of the slope at E which gives
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a slope of 1.23. This slope is applied on the neighboring member CE at
point E using the transition model of figure 4.32 and we estimate of the
rotary spring factor at point C to be 1.6. Using formulas 4.18 and 4.19,
we get the magnitude and location of the maximum influence value to
be 0.305 and 0.547 from the right end (ie. 0.953 from the left end) respec-
tively which are very close to the exact results of 0.318 (ie. about 4.1% er-
ror) and 0.944 (ie. about 0.95% error) respectively. Based on these calcula-
tions, we can quantitatively sketch the influence line for member CE us-
ing figure 4.32 as a guide (also see chapter 1). Finally, using formula 4.17,
we calculate the slope at C to be about 0.237. This slope is then applied
on member BC which is again modeled as a transition member like the
one shown in figure 4.32. Once we finish with member BC, we get the
slope at B and sketch member AB in a similar manner which then com-
pletes the whole sketch of the influence line for the shear force at F. This
sketch includes relatively accurate approximations of maxima, minima
and their locations.

4.3.8 Examples of Sketching Influence Lines
for Bending Moments

In this section, we will present examples of sketching the influence lines
for bending moments. The results in the figures shown are exact results
and we will describe how the discussions and approximations devel-
oped in previous sections allow us to approximately sketch those influ-
ence lines. For simplicity, we will start with examples where all the spans
are equal and have the same sectional properties as shown in figure 4.37.
As a specific example, we will consider the influence lines for the bend-
ing moment at point F. The rest of the cases shown in figure 4.37 may be
similarly analyzed and are left as an exercise for the reader.

Considering figure 4.37, we describe how to approximately construct
the influence line for the shear force at F. For that influence line, we start
by isolating member EG which is the member containing the influence
point F. For that member EG, we estimate the rotary stiffness factors at E
and G to be both equal to one. Next, using formula 4.12, we calculate the
value of the maximum positive value which always occurs at the point of
influence to be 0.048 which, up to the precision used, is the exact result.
At this point, we have to determine the shape pattern of the influence
line over that member. We may do that by checking each of formulas 4.10
and 4.11a and b where we find that condition 4.11b is true which implies
that the pattern of deformation is that of figure 4.29c. This also means
that we need to calculate the value and location of the minimum (ie. low-
ermost negative value). We do this using formulas 4.14 and 4.15 which
give 0.025 and 0.475 respectively. We compare these values with the exact
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Figure 4.37. Influence lines for the bending moments in a case where all beams
have the same span and the same sectional properties. (Continued below.)

results which are 0.035 (ie. about 28.6% error) and 0.467 (ie. about 1.71%
error). While the error in the minimum value is appreciable, it is suffi-
cient for an approximate analysis and the overall pattern of the influence
line for member EG is still well-represented. At this point, we may sketch
the influence line for member EG using the calculated values and either
figure 4.29c or figure 4.31b as a guide. To proceed further, we calculate
the slopes at E and G using formula 4.16a and b which give the values
of 0.073 and 0.407 respectively. These slopes are then used as imposed
values on transition members on the left and the right. For member GH
on the right, the rotary stiffness factor is infinity at H because of the fixed
end. Using formula 4.18 and 4.19 with the imposed slope of 0.407, we
get a maximum value and location of 0.061 and 0.33 respectively which
compare well with the exact results of 0.060 (ie. about 1.67% error) and
0.333 (ie. about 0.91% error) respectively. Based on these calculations for



Practical Approximate Analysis of Beams and Frames 307

Bending moment at D

0. 0.5 1. 1.5 2. 2.5 3. 3.5 4.
-0.05

0.

0.05

0.1

0.15

0.2

span xat min hmin xat max hmax

1 0.577 −0.038 1 0

2 0 0 0.500 0.173

3 0.377 −0.031 1 0

4 0 0 0.333 0.007

Bending moment at F

0. 0.5 1. 1.5 2. 2.5 3. 3.5 4.
-0.1

-0.05

0.

0.05

0.1

span xat min hmin xat max hmax

1 0.577 −0.004 1 0

2 0 0 0.616 0.014

3 0.467 −0.035 0.900 0.048

4 0.333 -0.060 1 0

Figure 4.37. (Continued from above and continued below.)

member GH, we can quantitatively sketch its influence line using fig-
ure 4.32 as a guide (also see chapter 1). For member CE on the left of
the member with the influence point, we have an imposed slope of 0.073
and we estimate the stiffness factor at point C to be 1. Using formula 4.18
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3 0 0 0.619 0.046

4 0.620 −0.170 1 0

Figure 4.37. (Continued from above.) Influence lines for the bending moments in
a case where all beams have the same span and the same sectional properties.

and 4.19 for member CE, we get a maximum value and location of 0.012
and 0.375 from the right (ie. 0.625 from the left) respectively which com-
pare well with the exact results of 0.014 (ie. about 14.3% error) and 0.616
from the left (ie. about 1.46% error) respectively. Based on these calcula-
tions for member CE, we can quantitatively sketch its influence line us-
ing figure 4.32 as a guide (also see chapter 1). To finish with member CE,
we obtain the slope at C using formula 4.17 which gives a value of about
0.018. This slope is imposed on member AC at point A and allows us
to calculate basic values for member AC and to sketch its influence line.
This then would complete the whole sketch of the influence line for the
bending moment at F. This sketch includes relatively accurate approxi-
mations of maxima, minima and their locations.

Next we consider the beam shown in figure 4.38 where the spans are
nonequal and the sectional properties are different. As specific examples,
we will consider the influence line for the bending moments at B and
at C. The rest of the cases may be similarly analyzed and are left as an
exercise for the reader.

Considering figure 4.38, we first describe how to approximately con-
struct the influence line for the bending moment at point B. Unlike the
case for the influence line for the shear force, the influence lines for the
points just before and just after point B are the same because the bending



Practical Approximate Analysis of Beams and Frames 309

beam
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0.75

EI=0.8
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EI=0.8

A B C D E F G

Bending moment at B

0. 0.5 1. 1.5 2. 2.5 3. 3.5 4.

-0.15

-0.1

-0.05

0.

0.05

span xat min hmin xat max hmax

1 0.722 −0.144 1.250 0

2 0.292 −0.053 0.750 0

3 0 0 0.550 0.031

4 0.250 −0.003 0.750 0

Figure 4.38. Influence lines for the bending moments in a case where the beams
have different span and different sectional properties. (Continued below.)

moment unlike the shear force is continuous across an external hinge
or roller support. For that influence line, we may start by isolating ei-
ther member AB or member BD because they both contain the influence
point B. In this discussion, we will start by isolating member AB and we
estimate the rotary stiffness factor at point B to be (0.8/0.75)/(1/1.25) ≈
1.33. The rotary stiffness factor at point A is zero due to the hinge support
at the end of the whole beam. Using formula 4.12 or simply kinematic
constraint, we determine the value of the maximum positive value to be
zero since the influence point is right at the support. Also, by checking
each of formulas 4.10 and 4.11a and b, we find that condition 4.11b is
true which implies that the pattern of deformation is that of figure 4.29c.
In fact, it is a limiting pattern of 4.29c when the maximum posiive value
is zero such as in figure 4.31d but with the influence point at the right
rather than on the left support. Therefore, to sketch the influence line
of member AB, we must calculate the magnitude and location of the
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Bending moment at C

0. 0.5 1. 1.5 2. 2.5 3. 3.5 4.

-0.1

-0.05

0.
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span xat min hmin xat max hmax

1 0.722 −0.057 1.250 0

2 0 0 0.375 0.138

3 0.550 −0.058 1.500 0

4 0 0 0.250 0.005

Bending moment at E
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0.05
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span xat min hmin xat max hmax

1 0.722 −0.006 1.250 0

2 0 0 0.458 0.011

3 0.753 −0.070 1.350 0.061

4 0.250 −0.035 0.750 0

Figure 4.38. (Continued from above and continued below.)
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Bending moment at G

0. 0.5 1. 1.5 2. 2.5 3. 3.5 4.
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span xat min hmin xat max hmax

1 0 0 0.722 0.005

2 0.458 −0.009 0.750 0

3 0 0 0.944 0.080

4 0.457 −0.131 0.750 0

Figure 4.38. (Continued from above.) Influence lines for the bending moments in
a case where the beams have different span and different sectional properties.

minimum over that member. Using formulas 4.14 and 4.15, we calcu-
late those values to be 0.143 and 0.725 respectively. These values com-
pare well with the exact results which are 0.144 (ie. about 0.69% error)
and 0.722 (ie. about 0.42% error). At this point, we use the calculated val-
ues to sketch the influence line for member AB using figure 4.29c and
figures 4.31 as a guide. To proceed further, we use formula 4.16b to cal-
culate the slope at B to be 0.361. Note that there are two slopes at B due
to the kink and that the calculated slope is to the right of point B which
is the slope to be imposed on the member attached to the right of B. That
member is BD which is modeled as a transition member with the rotary
stiffness factor at D estimated as (1/1.5)/(0.8/0.75) ≈ 0.625. With that
value of stiffness factor and an imposed slope at B of 0.361, we use for-
mulas 4.18 and 4.19 to get the magnitude and location of the maximum
influence in member BD to be 0.047 and 0.289 respectively. These values
are close to the exact results of 0.053 (ie. about 11.3% error) and 0.292
(ie. about 1.03% error) respectively. With these values, member BD can
be sketched using figure 4.32 as a guide (also see chapter 1). Considering
member BD, we can also calculate the slope at D using 4.17 which gives a
slope of 0.111. This slope is then imposed at point D of member DF with
the model of figure 4.32 in order to calculate values and to sketch the
influence line for member DF. A similar procedure is again done for to
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calculate basic values and to sketch the final member FG. This then com-
pletes the sketch for the whole influence line for the bending moment
at B and includes relatively accurate approximations of maxima, minima
and their locations.

Again considering figure 4.38, we next describe how to approxi-
mately construct the influence line for the bending moment at C. For
that influence line, we start by isolating member BD which is the mem-
ber containing the influence point C. For that member BD, we estimate
the rotary stiffness factor at the left and right to be 0.75 and 0.625 respec-
tively. Next, using formula 4.12, we calculate the value of the maximum
positive value which always occurs at the point of influence to be 0.133
which compares well with the exact value of 0.138 (ie. about 3.6%). At
this point, we have to determine the shape pattern of the influence line
over that member. We may do that by checking each of formulas 4.10
and 4.11a and b where we find that condition 4.10 is true which im-
plies that the pattern of deformation is that of figure 4.29a. This also
means that there are no negative values and we can proceed to sketch
the influence line over that member using figure 4.29a, figures 4.30 and
figures 4.31 as a guide. To proceed further, we calculate the slopes at B
and D using formula 4.16a and b which give the values of 0.205 and 0.217
respectively. These slopes are then used as imposed values on transition
members on the left and the right. For member AB on the left, the ro-
tary stiffness factor at B is zero because of the free hinged end. Using
formula 4.18 and 4.19 with the imposed slope of 0.205, we get a maxi-
mum value and location of 0.049 and 0.525 from the right (ie. 0.725 from
the left) respectively which compare well with the exact results of 0.057
(ie. about 14% error) and 0.722 (ie. about 0.42% error) respectively. Based
on these calculations for member AB, we can quantitatively sketch its
influence line using figure 4.32 as a guide (also see chapter1). For mem-
ber DF on the left of the member with the influence point, we have an
imposed slope of 0.217 and we estimate the stiffness factor at point F to
be 1.6. Using formula 4.18 and 4.19 for member DF, we get a maximum
value and location of 0.054 and 0.547 respectively which compare well
with the exact results of 0.058 (ie. about 6.9% error) and 0.550 (ie. about
0.55% error) respectively. Based on these calculations for member CE, we
can quantitatively sketch its influence line using figure 4.32 as a guide
(also see chapter 1). To finish with member DF, we obtain the slope at C
using formula 4.17 which gives a value of about 0.042. This slope is im-
posed on member FG at point F and allows us to calculate basic values
for member FG and to sketch its influence line. This then would complete
the whole sketch of the influence line for the bending moment at C. This
sketch includes relatively accurate approximations of maxima, minima
and their locations.



Appendix A

Beams—End-Moments
and Inflection Points

A.1 Moment End-Loaded Beam

EI

L

Θnear
Θfar

Mnear k ´ 4
EI

L

L - xInflection

x

umax

xat max

krotary spring stiffness at near =
Mnear

θnear
=

3 + 4k

4 + 4k
× 4× EI

L

⇔ krotary stiffness factor at near =
Mnear

4× EI
L
θnear

=
3 + 4k

4 + 4k

krotary spring stiffness at near =
3x̂inflection

6x̂inflection − 2

where: x̂inflection =
xinflection

L
(for 0 ≤ x̂inflection ≤ 1)

carry-over-moment =
Mfar

Mnear
=

2k

3 + 4k

1− xinflection
L =

2k

3 + 6k

313
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θfar

θnear
=

1

2 + 2k

xat max

L
=

3 + 4k −
√

3 + 6k + 4k2

3 + 6k
≈ 0.42 + 0.33k

1 + k

EIumax

MnearL2
=

3
√

3+6k+4k2+k(3+2k)(3+4k+2
√

3+6k+4k2)
27(1+2k)2(3+4k)

umax

θnearL
=

3
√

3+6k+4k2+k(3+2k)(3+4k+2
√

3+6k+4k2)
27(1+2k)2(1+k)

≈ 0.19 + 0.15k

1 + k

See table A.1.

Table A.1. Hinged Beam with Applied Moment at One End and Rotary Spring
at Other.

Mnear k´4

EI

L

L

L-xI

k − Mfar
Mnear

Mnear
θnear4EI/L

− θfar
θnear

1− xinfl
L

xat max
L

umax
θnearL

0.000 0.000 0.750 0.500 0.000 0.423 0.192
0.500 0.200 0.833 0.333 0.167 0.392 0.176
0.750 0.250 0.857 0.286 0.200 0.384 0.172
1.000 0.286 0.875 0.250 0.222 0.377 0.168
1.500 0.333 0.900 0.200 0.250 0.368 0.164
2.000 0.364 0.917 0.167 0.267 0.362 0.161
3.000 0.400 0.938 0.125 0.286 0.355 0.158
4.000 0.421 0.950 0.100 0.296 0.350 0.156
∞ 0.500 1.000 0.000 0.333 0.333 0.148
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A.2 Uniformly Distributed Load

EI

L

q
kL

EI

L

kR

EI

L

kL ´ 4

EI

L

kR ´ 4

EI

L

xInf Left

xInf Right

MLeft

Min max

Mright

kL ´ 4

EI

L

kR ´ 4

EI

L

(a) (b) (c)

xinf left

L
=

9 + 9kR + 3kL(5 + 4kR)

z

−
√

3
√

27(1+kR)2+k2L(27+8kR(5+2kR))+kL(54+10kR(9+4kR))

z

≈ 0.92kL
3 + 4kL

where z = 6
(
3 + 4kR + 4kL(1 + kR)

)
xinf right

L
=

9 + 9kR + 3kL(5 + 4kR)

z

+
√

3
√

27(1+kR)2+k2L(27+8kR(5+2kR))+kL(54+10kR(9+4kR))

z

≈ 1− 0.92kR
3+4kR

where z = 6
(
3 + 4kR + 4kL(1 + kR)

)
Mleft

qL2/8
= − 4kL(3 + 2kR)

9 + 12kL + 12kR + 12kL kR

Mright

qL2/8
= − 4(3 + 2kL)kR

9 + 12kL + 12kR + 12kL kR

Min max

qL2/8
=

27(1+kR)2+k2L(27+8kR(5+2kR))+kL(54+10kR(9+4kR))
3(3+4kR+4kL(1+kR))2

≈
(

1− 0.92kL
3 + 4kL

− 0.92kR
3 + 4kR

)2

EI × θnear

qL3
= − 6 + kR

144 + 48kL + 48kR + 12kL kR

EI × θfar

qL3
=

6 + kL
144 + 48kL + 48kR + 12kL kR

See tables A.2 through A.4.
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Table A.2. Uniformly Loaded Beam: Symmetric Spring Resistance.

EI

L

q
k´4

EI

L

k´4

EI

L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 1.000
0.500 0.092 0.092 0.333 0.333 0.667
0.750 0.113 0.113 0.400 0.400 0.600
1.000 0.127 0.127 0.444 0.444 0.556
1.500 0.146 0.146 0.500 0.500 0.500
2.000 0.158 0.158 0.533 0.533 0.467
3.000 0.173 0.173 0.571 0.571 0.429
∞ 0.211 0.211 0.667 0.667 0.333

Table A.3. Uniformly Loaded Beam: One End Hinged.

EI

L

q
k´4

EI

L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 1.000
0.500 0.000 0.100 0.000 0.400 0.810
0.750 0.000 0.125 0.000 0.500 0.766
1.000 0.000 0.143 0.000 0.571 0.735
1.500 0.000 0.167 0.000 0.667 0.694
2.000 0.000 0.182 0.000 0.727 0.669
3.000 0.000 0.200 0.000 0.800 0.640
∞ 0.000 0.250 0.000 1.000 0.563
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Table A.4. Uniformly Loaded Beam: One End Fixed.

EI

L

q
k´4

EI

L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.250 0.000 1.000 0.000 0.563
0.500 0.240 0.073 0.889 0.222 0.472
0.750 0.236 0.094 0.857 0.286 0.449
1.000 0.234 0.109 0.833 0.333 0.432
1.500 0.230 0.130 0.800 0.400 0.410
2.000 0.227 0.144 0.778 0.444 0.396
3.000 0.223 0.161 0.750 0.500 0.379
∞ 0.211 0.211 0.667 0.667 0.333

A.3 Point Force

P
kL ´ 4

EI

L

kR ´ 4

EI

L

xF

kL ´ 4

EI

L

kR ´ 4

EI

L

xInf Left xInf Right

xF

MLeft

Min max

Mright

kL ´ 4

EI

L

kR ´ 4

EI

L

xF

(a) (b) (c)

x̂F = xF /L

xinf left

L
= 2kL x̂F (2+2kR−(1+2kR)x̂F )

3+4kL+4kR+4kL kR+(4kL−2kR+4kL kR)x̂F−(2kL+2kR+8kL kR)x̂2
F

≈ 3kL x̂F
(2 + 4kL)(1 + x̂F )

xinf right

L
=

3 + 4kR + (6kL + 8kL kR)x̂F − (2kL + 4kL kR)x̂2
F

3 + 6kR + (6kL + 12kL kR)x̂F − (2kL + 2kR + 8kL kR)x̂2
F

≈ 1− 3kR(1− x̂F )

(2 + 4kR)(2− x̂F )
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Mleft

PL/4
= −

8kL
(
1− x̂F )x̂F (2 + 2kR − (1 + 2kR)x̂F

)
3 + 4kL + 4kR + 4kL kR

Mright

PL/4
= −8kR(1− x̂F )x̂F (1 + x̂F + 2kL x̂F )

3 + 4kL + 4kR + 4kL kR

Min max

PL/4
=

4(1−x̂F )x̂F (3+4kR+(6kL−2kR+8kL kR)x̂F−(2kL+2kR+8kL kR)x̂2
F )

3+4kL+4kR+4kL kR

EI × θnear

PL2
= − (1− x̂F )x̂F (2 + 2kR − (1 + 2kR)x̂F )

6 + 8kL + 8kR + 8kL kR

EI × θfar

PL2
=

(1− x̂F )x̂F (1 + x̂F + 2kL x̂F )

6 + 8kL + 8kR + 8kL kR

See tables A.5 through A.13.

Table A.5. Point Force on a Beam: Symmetric Spring Resistance.

P
k´4

EI

L

k´4

EI

L

0.25 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 0.750
0.500 0.076 0.155 0.234 0.141 0.539
0.750 0.092 0.186 0.288 0.163 0.494
1.000 0.103 0.206 0.325 0.175 0.463
1.500 0.118 0.231 0.375 0.188 0.422
2.000 0.127 0.245 0.407 0.193 0.396
3.000 0.137 0.262 0.446 0.196 0.366
∞ 0.167 0.300 0.563 0.188 0.281
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Table A.6. Point Force on a Beam: Symmetric Spring Resistance.

P
k´4

EI

L

k´4

EI

L

0.50 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 1.000
0.500 0.125 0.125 0.250 0.250 0.750
0.750 0.150 0.150 0.300 0.300 0.700
1.000 0.167 0.167 0.333 0.333 0.667
1.500 0.188 0.188 0.375 0.375 0.625
2.000 0.200 0.200 0.400 0.400 0.600
3.000 0.214 0.214 0.429 0.429 0.571
∞ 0.250 0.250 0.500 0.500 0.500

Table A.7. Point Force on a Beam: Symmetric Spring Resistance.

P
k´4

EI

L

k´4

EI

L

0.75 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 0.750
0.500 0.155 0.076 0.141 0.234 0.539
0.750 0.186 0.092 0.163 0.288 0.494
1.000 0.206 0.103 0.175 0.325 0.463
1.500 0.231 0.118 0.188 0.375 0.422
2.000 0.245 0.127 0.193 0.407 0.396
3.000 0.262 0.137 0.196 0.446 0.366
4.000 0.271 0.144 0.197 0.470 0.348
∞ 0.300 0.167 0.188 0.563 0.281
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Table A.8. Point Force on a Beam: One End Hinged.

P
k´4

EI

L

0.25 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 0.750
0.500 0.000 0.158 0.000 0.188 0.703
0.750 0.000 0.190 0.000 0.234 0.691
1.000 0.000 0.211 0.000 0.268 0.683
1.500 0.000 0.238 0.000 0.313 0.672
2.000 0.000 0.254 0.000 0.341 0.665
3.000 0.000 0.273 0.000 0.375 0.656
∞ 0.000 0.319 0.000 0.469 0.633

Table A.9. Point Force on a Beam: One End Hinged.

P
k´4

EI

L

0.50 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 1.000
0.500 0.000 0.130 0.000 0.300 0.850
0.750 0.000 0.158 0.000 0.375 0.813
1.000 0.000 0.176 0.000 0.429 0.786
1.500 0.000 0.200 0.000 0.500 0.750
2.000 0.000 0.214 0.000 0.545 0.727
3.000 0.000 0.231 0.000 0.600 0.700
∞ 0.000 0.273 0.000 0.750 0.625
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Table A.10. Point Force on a Beam: One End Hinged.

P
k´4

EI

L

0.75 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.000 0.000 0.000 0.000 0.750
0.500 0.000 0.080 0.000 0.263 0.553
0.750 0.000 0.099 0.000 0.328 0.504
1.000 0.000 0.111 0.000 0.375 0.469
1.500 0.000 0.127 0.000 0.437 0.422
2.000 0.000 0.137 0.000 0.477 0.392
3.000 0.000 0.149 0.000 0.525 0.356
∞ 0.000 0.179 0.000 0.656 0.258

Table A.11. Point Force on a Beam: One End Fixed.

P
k´4

EI

L

0.25 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.179 0.000 0.656 0.000 0.258
0.500 0.175 0.143 0.625 0.063 0.266
0.750 0.174 0.173 0.616 0.080 0.268
1.000 0.173 0.194 0.609 0.094 0.270
1.500 0.172 0.220 0.600 0.113 0.272
2.000 0.171 0.235 0.594 0.125 0.273
3.000 0.170 0.254 0.586 0.141 0.275
∞ 0.167 0.300 0.562 0.188 0.281
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Table A.12. Point Force on a Beam: One End Fixed.

P
k´4

EI

L

0.50 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.273 0.000 0.750 0.000 0.625
0.500 0.267 0.111 0.667 0.167 0.583
0.750 0.265 0.136 0.643 0.214 0.571
1.000 0.263 0.154 0.625 0.250 0.563
1.500 0.261 0.176 0.600 0.300 0.550
2.000 0.259 0.190 0.583 0.333 0.542
3.000 0.257 0.207 0.562 0.375 0.531
∞ 0.250 0.250 0.500 0.500 0.500

Table A.13. Point Force on a Beam: One End Fixed.

P
k´4

EI

L

0.75 L

k xInfl/L at left 1− xInf/L at right −Mleft/
PL
4

−Mright/
PL
4

Min max/
PL
4

0.000 0.319 0.000 0.469 0.000 0.633
0.500 0.316 0.067 0.375 0.188 0.516
0.750 0.315 0.083 0.348 0.241 0.482
1.000 0.313 0.095 0.328 0.281 0.457
1.500 0.312 0.111 0.300 0.338 0.422
2.000 0.310 0.121 0.281 0.375 0.398
3.000 0.308 0.133 0.258 0.422 0.369
∞ 0.300 0.167 0.187 0.563 0.281
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Column—Shear
Stiffness, End-Moments
and Inflection Points

B.1 Cantilever

k ´ 4

EI

L

P

Mapp

L

EI

Deflection of a cantilever:

δ =

(
1

2
+

1

4k

)
L2

EI
Mapp +

(
1

3
+

1

4k

)
L2

EI
PL

Shear stiffness:

ksh =
4k(

(6k + 3)
Mapp

PL
+ (4k + 3)

) 3EI

L3

If k =∞ (fixed support):

ksh =
4(

6
Mapp

PL + 4
) 3EI

L3

If k =∞ (fixed support) and Mapp = 0:

ksh =
3EI

L3
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B.2 Column for Single Story Building

k ´ 4

EI

L
P

LEI

k ´ 4

EI

L
P

LEI

hinge support fixed support

Shear stiffness:

ksh =


4k

(3+4k)
3EI
L3 (hinge support)

(1+4k)
(4+4k)

12EI
L3 (fixed support)

0 (roller support)

Moment at top and bottom of column:(
Minner top

Minner bottom

)
=

(
2k

1+4k

− (1+2k)
(1+4k)

)
PL (fixed support)

and (
Minner top

Minner bottom

)
=

(
1

0

)
PL (hinged support)

Inflection point measured from the bottom:

xI =
(1 + 2k)

(1 + 4k)
L (fixed support)

Note that in the above formulas, the inner bending moments
Minner top and Minner bottom are considered to be positive when counter-
clockwise and clockwise respectively in conformance with standard con-
ventions of bending moment diagrams.
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Table of Results of Column with Hinge Support.

k kshear/
(
EI
/
L3
)

0 0.00
0.5 1.20
0.75 1.50

1 1.71
1.5 2.00
2 2.18
3 2.40
4 2.53
5 2.61
6 2.67
∞ 3.00

Table of Results of Column with Fixed Support.

k kshear/
(
EI
/
L3
)

Mbottom/(PL) Mtop/(PL) xI/L

0 3.00 1.00 0.00 1.00
0.5 6.00 0.67 0.33 0.67
0.75 6.86 0.63 0.38 0.63

1 7.50 0.60 0.40 0.60
1.5 8.40 0.57 0.43 0.57
2 9.00 0.56 0.44 0.56
3 9.75 0.54 0.46 0.54
4 10.20 0.53 0.47 0.53
5 10.50 0.52 0.48 0.52
6 10.71 0.52 0.48 0.52
∞ 12.00 0.50 0.50 0.50
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B.3 Column for Multi-Story
Building—First Floor

kt´4
EI

L

MtP

xI

L

kt´4
EI

L

MtP

L

Shear stiffness:

ksh =

 1+4kt
(4+4kt)+6(Mt/(PL))

12EI
L3 (fixed)

4kt
(3+4kt)+3(Mt/(PL))

3EI
L3 (hinge)

Moment at top and bottom of column for fixed support:

(
Minner top

Minner bottom

)
=



(
+ 2kt

1+4kt

−1+2kt
1+4kt

)
PL+

(
− 1

1+4kt

− 1
1+4kt

)
Mt (fixed support)(

1

0

)
PL (hinged support)

Inflection point measured from the bottom (for fixed support):

xI = (1+2kt)+(Mt/(PL))
(1+4kt)

L (on condition 0 ≤ xI ≤ L)

Note that in the above formulas, the applied moment Mt is consid-
ered positive when clockwise and the applied load P is considered pos-
itive when acting to the right. By contrast, the inner bending moments
Minner top and Minner bottom are considered to be positive when counter-
clockwise and clockwise respectively in conformance with standard con-
ventions of bending moment diagrams.
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First Floor with Top Moment; Hinged Support; ksh/(3EI/L
3)

kt →
Mt/PL ↓ 0. 0.5 0.75 1 1.5 2 3 ∞

−0.5 0.000 0.571 0.667 0.727 0.800 0.842 0.889 1.000
0 0.000 0.400 0.500 0.571 0.667 0.727 0.800 1.000

0.25 0.000 0.348 0.444 0.516 0.615 0.681 0.762 1.000
0.5 0.000 0.308 0.400 0.471 0.571 0.640 0.727 1.000

0.75 0.000 0.276 0.364 0.432 0.533 0.604 0.696 1.000
1 0.000 0.250 0.333 0.400 0.500 0.571 0.667 1.000

1.5 0.000 0.211 0.286 0.348 0.444 0.516 0.615 1.000
2 0.000 0.182 0.250 0.308 0.400 0.471 0.571 1.000

First Floor with Top Moment; Fixed Support; ksh/(12EI/L
3)

kt →
Mt/PL ↓ 0. 0.5 0.75 1 1.5 2 3 ∞

−0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0 0.250 0.500 0.571 0.625 0.700 0.750 0.813 1.000

0.25 0.182 0.400 0.471 0.526 0.609 0.667 0.743 1.000
0.5 0.143 0.333 0.400 0.455 0.538 0.600 0.684 1.000

0.75 0.118 0.286 0.348 0.400 0.483 0.545 0.634 1.000
1 0.100 0.250 0.308 0.357 0.438 0.500 0.591 1.000

1.5 0.077 0.200 0.250 0.294 0.368 0.429 0.520 1.000
2 0.063 0.167 0.211 0.250 0.318 0.375 0.464 1.000

First Floor with Top Moment; Fixed Support; (Min b;Min t)/(PL)

kt →
Mt/PL ↓ 0. 0.75 1 2 3 ∞

−0.5 −0.500; 0.500 −0.500; 0.500 −0.500; 0.500 −0.500; 0.500 −0.500; 0.500 −0.500; 0.500

0 −1.000; 0.000 −0.625; 0.375 −0.600; 0.400 −0.556; 0.444 −0.538; 0.462 −0.500; 0.500

0.25 −1.250;−0.250 −0.688; 0.313 −0.650; 0.350 −0.583; 0.417 −0.558; 0.442 −0.500; 0.500

0.5 −1.500;−0.500 −0.750; 0.250 −0.700; 0.300 −0.611; 0.389 −0.577; 0.423 −0.500; 0.500

0.75 −1.750;−0.750 −0.813; 0.188 −0.750; 0.250 −0.639; 0.361 −0.596; 0.404 −0.500; 0.500

1 −2.000;−1.000 −0.875; 0.125 −0.800; 0.200 −0.667; 0.333 −0.615; 0.385 −0.500; 0.500

1.5 −2.500;−1.500 −1.000; 0.000 −0.900; 0.100 −0.722; 0.278 −0.654; 0.346 −0.500; 0.500

2 −3.000;−2.000 −1.125;−0.125 −1.000; 0.000 −0.778; 0.222 −0.692; 0.308 −0.500; 0.500

Note: Inflection point is at xI/L = −Min b from bottom subject to constraint (0 ≤ xI ≤ L).
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B.4 Column for Multi-Story Building—Top Floor
(Top and Bottom Beams Similar)

k´4
EI

L

Mb

k´4
EI

L

P

xI

L

Shear stiffness:

ksh =

(
2k + 4k2

)
(3 + 8k + 4k2) + 3(1 + 2k)(Mb/(PL)

12EI

L3

Moment at top and bottom of column:(
Minner top

Minner bottom

)
=

(
+1

2

−1
2

)
PL+

(
+ 1

2+4k

+ 1
2+4k

)
Mb

Inflection point measured from the bottom:

xI = 1
2 −

Mb/(PL)
(2+4k) L (on condition 0 ≤ xI ≤ L)

Note that in the above formulas, the applied moment Mb is consid-
ered positive when clockwise and the applied load P is considered pos-
itive when acting to the right. By contrast, the inner bending moments
Minner top and Minner bottom are considered to be positive when counter-
clockwise and clockwise respectively in conformance with standard con-
ventions of bending moment diagrams.
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Top Floor with Bottom Moment; ksh/(12EI/L
3)

k →
Mb/PL ↓

0. 0.5 0.75 1 1.5 2 3 ∞

−0.5 0.000 0.400 0.500 0.571 0.667 0.727 0.800 1.000

0 0.000 0.250 0.333 0.400 0.500 0.571 0.667 1.000

0.25 0.000 0.211 0.286 0.348 0.444 0.516 0.615 1.000

0.5 0.000 0.182 0.250 0.308 0.400 0.471 0.571 1.000

0.75 0.000 0.160 0.222 0.276 0.364 0.432 0.533 1.000

1 0.000 0.143 0.200 0.250 0.333 0.400 0.500 1.000

1.5 0.000 0.118 0.167 0.211 0.286 0.348 0.444 1.000

2 0.000 0.100 0.143 0.182 0.250 0.308 0.400 1.000

Top Floor with Bottom Moment; (Min b;Min t)/(PL)

k →
Mb/PL ↓ 0. 0.75 1 2 3 ∞

−0.5 −0.750; 0.250 −0.600; 0.400 −0.583; 0.417 −0.550; 0.450 −0.536; 0.464 −0.500; 0.500

0 −0.500; 0.500 −0.500; 0.500 −0.500; 0.500 −0.500; 0.500 −0.500; 0.500 −0.500; 0.500

0.25 −0.375; 0.625 −0.450; 0.550 −0.458; 0.542 −0.475; 0.525 −0.482; 0.518 −0.500; 0.500

0.5 −0.250; 0.750 −0.400; 0.600 −0.417; 0.583 −0.450; 0.550 −0.464; 0.536 −0.500; 0.500

0.75 −0.125; 0.875 −0.350; 0.650 −0.375; 0.625 −0.425; 0.575 −0.446; 0.554 −0.500; 0.500

1 0.000; 1.000 −0.300; 0.700 −0.333; 0.667 −0.400; 0.600 −0.429; 0.571 −0.500; 0.500

1.5 0.250; 1.250 −0.200; 0.800 −0.250; 0.750 −0.350; 0.650 −0.393; 0.607 −0.500; 0.500

2 0.500; 1.500 −0.100; 0.900 −0.167; 0.833 −0.300; 0.700 −0.357; 0.643 −0.500; 0.500

Note: Inflection point is at xI/L = −Min b from bottom subject to constraint (0 ≤ xI ≤ L).

B.5 Column for Multi-Story Building—
General Case

kb´4
EI

L

Mb

kt´4
EI

L

MtP

xI

L



330 Practical Approximate Analysis of Beams and Frames

Shear stiffness:

ksh = kb+kt+4kbkt
(3+4kb+4kt+4kbkt)+3(1+2kt)(Mb/(PL))+3(1+2kb)(Mt/(PL))

12EI
L3

Moment at top and bottom of column:(
Minner top

Minner bottom

)
=

(
+ kt+2kbkt
kb+kt+4kbkt

− kb+2kbkt
kb+kt+4kbkt

)
PL+

(
+ kt
kb+kt+4kbkt

+ kt
kb+kt+4kbkt

)
Mb

+

(
− kb
kb+kt+4kbkt

− kb
kb+kt+4kbkt

)
Mt

Inflection point measured from the bottom:

xI = (kb+2kbkt)−kt(Mb/(PL))+kb(Mt/(PL))
(kb+kt+4kbkt)

L

(on condition 0 ≤ xI ≤ L)

Note that in the above formulas, the applied moments Mt and Mb

are considered positive when clockwise and the applied load P is con-
sidered positive when acting to the right. By contrast, the inner bending
moments Minner top and Minner bottom are considered to be positive when
counterclockwise and clockwise respectively in conformance with stan-
dard conventions of bending moment diagrams.



Appendix C

Beams—Deflections
and Rotations

C.1 Displacements at Any Location

kL´4

EI

L

kR´4

EI

L

q

L

EI

uUL = qL4

EI
×
(

(6 + 4kR) x̂/
(
12 (12 + 16kL + 16kR + 16kL kR)

)
+ (6kL + 4kLkR) x̂2/

(
6 (12 + 16kL + 16kR + 16kL kR)

)
− (12 + 20kL + 12kR + 16kL kR) x̂3/

(
12 (12 + 16kL + 16kR + 16kL kR)

)
+ x̂4

24

)
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kL´4

EI

L

kR´4

EI

L

L

EI

P
xF

uPF = PL3

EI
×



(x̂ (1 − x̂F )) / (18 + 24kL + 24kR + 24kL kR)((
− (6 + 6kR) x̂F + (3 + 6kR) x̂2F

)
+ (− (12kL + 12kL kR) x̂F

+ (6kL + 12kL kR) x̂2
F

)
x̂

+ ((3 + 4kL + 4kR + 4kL kR)

+ (4kL − 2kR + 4kL kR) x̂F

− (2kL + 2kR + 8kL kR) x̂2F
)
x̂2
)

0 ≤ x̂ < x̂F

((1 − x̂) x̂F ) / (18 + 24kL + 24kR + 24kL kR)(
(3 + 4kL + 4kR + 4kL kR) x̂2F

+ (− (6 + 6kR) − (12kL + 12kL kR) x̂F

+ (4kL − 2kR + 4kL kR) x̂2F
)
x̂

+ ((3 + 6kR) (6kL + 12kL kR) x̂F

− (2kL + 2kR + 8kL kR) x̂2F
)
x̂2
)

x̂F ≤ x̂ ≤ 1



Practical Approximate Analysis of Beams and Frames 333

kL´4

EI

L

kR´4

EI

L

L

EI

M
xF

uM = ML2

EI
×



x̂/ (6 + 8kL + 8kR + 8kL kR)

((− (2 + 2kR)

+ (6 + 8kR) x̂F − (3 + 6kR) x̂2F
)

+ (− (4kL + 4kL kR)

+ (12kL + 16kL kR) x̂F

− (6kL + 12kL kR) x̂2F
)
x̂

+ (− (1 + 2kR) − (4kL + 8kL kR) x̂F

− (2kL + 2kR + 8kL kR) x̂2
F

)
x̂2
)

0 ≤ x̂ < x̂F

(1 − x̂) /(6 + 8kL + 8kR + 8kL kR)

((3 + 4kL + 4kR + 4kL kR) x̂2F

+ (− (2 + 2kR) − (8kL + 8kL kR) x̂F

+ (4kL − 2kR + 4kL kR) x̂2F
)
x̂

+ ((1 + 2kR) + (4kL + 8kL kR) x̂F

− (2kL + 2kR + 8kL kR) x̂2
F

)
x̂2
)

x̂F ≤ x̂ ≤ 1

Note:

• x̂ = x/L

• x̂F = xF /L



334 Practical Approximate Analysis of Beams and Frames

C.2 Rotations at Any Location

kL´4

EI

L

kR´4

EI

L

q

L

EI

θUL = 6+kR
z

+ 6kL+kL kR
z

x̂− 36+15kL+9kR+3kL kR
z

x̂2

+24+8kL+8kR+2kL kR
1z x̂3

z = 144 + 48kL + 48kR + 12kL kR

kL´4

EI

L

kR´4

EI

L

L

EI

P
xF

θPF =



(2+2kR)x̂F−(3+4kR)x̂2
F +(1+2kR)x̂3

F

6+8kL+8kR+8kL kR

+
(8kL+8kL kR)x̂F−(12kL+16kL kR)x̂2

F

6+8kL+8kR+8kL kR
x̂

+
(4kL+8kL kR)x̂3

F

6+8kL+8kR+8kL kR
x̂

+−(3+4kL+4kR+4kL kR)+(3+6kR)x̂F

6+8kL+8kR+8kL kR

+
(6kL+12kL kR)x̂2

F−(2kL+2kR+8kL kR)x̂3
F

6+8kL+8kR+8kL kR

0 ≤ x̂ ≤ x̂F

(2+2kR)x̂F +(4kL+4kL kR)x̂2
F +(1+2kR)x̂3

F

6+8kL+8kR+8kL kR

+
−(6+8kR)x̂F−(12kL+16kL kR)x̂2

F

6+8kL+8kR+8kL kR
x̂

+
(4kL+8kL kR)x̂3

F

6+8kL+8kR+8kL kR
x̂

+
(3+6kR)x̂F +(6kL+12kL kR)x̂2

F

6+8kL+8kR+8kL kR
x̂2

− (2kL+2kR+8kL kR)x̂3
F

6+8kL+8kR+8kL kR
x̂2

x̂F < x̂ ≤ 1
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kL´4

EI

L

kR´4

EI

L

L

EI

Mapp
xF

θPM =



2+2kR+(−6−8kR)x̂F +(3+6kR)x̂2
F

6+8kL+8kR+8kL kR

+ 8kL+8kL kR−(32kL kR+24kL)x̂F

6+8kL+8kR+8kL kR
x̂

+
(12kL+24kL kR)x̂2

F

6+8kL+8kR+8kL kR
x̂

+ (3+6kR)+(12kL+24kLkR)x̂F

6+8kL+8kR+8kL kR
x̂2

− (24kL kR+6kL+6kR)x̂2
F

6+8kL+8kR+8kL kR
x̂2

0 ≤ x̂ ≤ x̂F

2+2kR+(8kL+8kL kR)x̂F +(3+6kR)x̂2
F

6+8kL+8kR+8kL kR

+−(8kR+6)−(32kL kR+24kL)x̂F

6+8kL+8kR+8kL kR
x̂

+
(12kL+24kL kR)x̂2

F

6+8kL+8kR+8kL kR
x̂

+ (3+6kR)+(12kL+24kL kR)x̂F

6+8kL+8kR+8kL kR
x̂2

− (24kL kR+6kL+6kR)x̂2
F

6+8kL+8kR+8kL kR
x̂2

x̂F < x̂ ≤ 1

Note:

• x̂ = x/L

• x̂F = xF /L

• Rotations are clockwise when positive
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C.3 Uniform Load—Mid Displacements

kL´4

EI

L

kR´4

EI

L

q

L

EI

δmid =
60+8kL+8kR+kL kR

60+20kL+20kR+5kL kR
5

384
qL4

EI

k´4

EI

L

q

L

EI

δmid = 8+k
20+5k

5
384

qL4

EI

q

L

EI

δmid = 2
384

qL4

EI = 1
192

qL4

EI

q

L

EI

δmid = 1
384

qL4

EI

k´4

EI

L

q

L

EI

δmid = 60+8k
60+20k

5
384

qL4

EI

q

L

EI

δmid = 5
384

qL4

EI

Note:

• Maximum difference between mid displacement and maximum dis-
placement is ≈ 3.84% and occurs for fixed-hinge case
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• Continuous beam with equal spacing and only one member loaded
obtained with kL ≈ kR ≈ 1 for mid member or k ≈ 1 for edge member

• Continuous beam with equal spacing and all members uniformly
loaded obtained with fixed-fixed case

• Continuous beam with equal spacing and checker-board loading ob-
tained with kL ≈ kR ≈ 0.5 for mid member or k ≈ 0.5 for edge
member
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C.4 Point Force—Centrally Loaded—
Mid Displacements

0

kL´4

EI

L

kR´4

EI

L

L

EI

P
L�2

δmid =
12+7kL+7kR+4kL kR

12+16kL+16kR+16kL kR
1
48
PL3

EI

k´4

EI

L

L

EI

P
L�2

δmid = 7+4k
16+16k

1
48
PL3

EI

L

EI

P
L�2

δmid = 7
16

1
48
PL3

EI = 7
768

PL3

EI

L

EI

P
L�2

δmid = 1
192

PL3

EI

k´4

EI

L

L

EI

P
L�2

δmid = 12+7k
12+16k

1
48
PL3

EI

L

EI

P
L�2

δmid = 1
48
PL3

EI
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Note:

• Maximum difference between mid displacement and maximum dis-
placement is ≈ 2.17% and occurs for fixed-hinge case

• For same total load (qL = P ), we have:

– fixed-fixed case of point load is 2 times that of distributed load

– fixed-hinge case of point load is 1.75 times that of distributed load

– hinge-hinge case of point load is 1.6 times that of distributed load

• Continuous beam with equal spacing and only one member loaded
obtained with kL ≈ kR ≈ 1 for mid member or k ≈ 1 for edge member

• Continuous beam with equal spacing and all members uniformly
loaded obtained with fixed-fixed case

• Continuous beam with equal spacing and checker-board loading ob-
tained with kL ≈ kR ≈ 0.5 for mid member or k ≈ 0.5 for edge
member
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C.5 Point Force—Loaded Anywhere—
Mid Displacements

kL´4

EI

L

kR´4

EI

L

L

EI

P
xF

δat xF
= 16 (1− x̂F )

2
x̂2
F

×
(

3+3kR+4kL x̂F−2kRx̂F +4kL kRx̂F

3+4kL+4kR+4kL kR

+
−kL x̂2

F−kRx̂
2
F−4kL kRx̂

2
F

3+4kL+4kR+4kL kR

)
× 1

48
PL3

EI

δmid = x̂F

×
(

(9+6kR)+(18kL+12kL kR)x̂F

(3+4kL+4kR+4kL kR)

− (12+22kL+10kR+16kL kR)x̂2
F )

(3+4kL+4kR+4kL kR)

)
× 1

48
PL3

EI
0 ≤ x̂F ≤ 0.5

k´4

EI

L

L

EI

P
xF

δat xF
= 1

1+k4 (1− x̂F )
2
x̂3
F

(4 + 4k − x̂F − 4kx̂F ) 1
48
PL3

EI

δmid =
x̂2
F (9+6k−11x̂F−8kx̂F )

2(1+k)
1
48
PL3

EI 0 ≤ x̂F ≤ 0.5
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L

EI

P
xF

δat xF = 4 (1− x̂F )
2

(4− x̂F ) x̂3
F

1
48
PL3

EI

δmid = 1
2
x̂2
F (9− 11x̂F ) 1

48
PL3

EI
0 ≤ x̂F ≤ 0.5

L

EI

P
xF

δat xF
= 16(1− x̂F )3x̂3

F
1
48
PL3

EI

δmid = (3− 4x̂F )x̂2
F

1
48
PL3

EI 0 ≤ x̂F ≤ 0.5

k´4

EI

L

L

EI

P
xF

δat xF
= 1

3+4k16 (1− x̂F )
2

x̂2
F

(
3 + 3k − 2kx̂F − kx̂2

F

)
1
48
PL3

EI

δmid =
x̂F (9+6k−12x̂2

F−10kx̂2
F )

3+4k
1
48
PL3

EI 0 ≤ x̂F ≤ 0.5
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L

EI

P
xF

δat xF
= 16(1− x̂F )2x̂2

F
1
48
PL3

EI

δmid = (3x̂F − 4x̂3
F ) 1

48
PL3

EI
0 ≤ x̂F ≤ 0.5

Note:

• x̂F = xF /L

• Maximum difference between mid displacement and maximum dis-
placement is ≈ 15.63% and occurs for fixed-hinge case when the force
is very close to the hinge. The maximum difference depends on the
location of the point force but always occurs for the fixed-hinge case
with the point force being closer to the hinge. The figure below shows
the maximum relative error for those cases:

0. 0.1 0.2 0.3 0.4 0.5
x
`

F
0

2

4

6

8

10

12

14

16

% max error

% max error mid versus max displacement

• Continuous beam with equal spacing and only one member loaded
obtained with kL ≈ kR ≈ 1 for mid member or k ≈ 1 for edge member

• Continuous beam with equal spacing and all members uniformly
loaded obtained with fixed-fixed case

• Continuous beam with equal spacing and checker-board loading ob-
tained with kL ≈ kR ≈ 0.5 for mid member or k ≈ 0.5 for edge mem-
ber

• For x̂F > 1/2, switch kL with kR and x̂F with (1− x̂F )
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C.6 Point Moment—Loaded Anywhere—
Mid Displacements

kL´4

EI

L

kR´4

EI

L

L

EI

Mapp
xF

δat xF
= 16 (1− x̂F ) x̂F

×
(

1+kR−2x̂F +2kL x̂F−3kRx̂F +2kL kRx̂F

3+4kL+4kR+4kL kR

+
−4kL x̂

2
F +kRx̂

2
F−6KLkR x̂F 2kL x̂

4
F +4kL kR x̂

3
F

3+4kL+4kR+4kL kR

)
× 1

16
ML2

EI

δmid=
(

3+2kR+12kLx̂F +8kL kRx̂F−12x̂2
F

3+4kL+4kR+4kL kR

+
−22kLx̂

2
F−10kRx̂

2
F−16kL kR x̂

2
F

3+4kL+4kR+4kL kR

)
× 1

16
ML2

EI
0 ≤ x̂F ≤ 0.5

k´4

EI

L

L

EI

Mapp
xF

δat xF
= 4 (1− x̂F ) x̂2

F

× (2+2k−4x̂F−6kx̂F +x̂2
F +4kx̂2

F )
1+k

× 1
16
ML3

EI

δmid = (64k−11x̂F−8kx̂F )x̂F

2(1+k)
1
16
ML3

EI 0 ≤ x̂F ≤ 0.5

L

EI

Mapp
xF

δat xF
= 4 (1− x̂F ) x̂2

F

(
2− 4x̂F + x̂2

F

)
1
16
ML2

EI

δmid = 1
2 (6− 11x̂F ) x̂F

1
16
ML2

EI 0 ≤ x̂F ≤ 0.5
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L

EI

Mapp
xF

δat xF
= 8 (1− x̂F ) x̂2

F

(
1− 3x̂F + 2x̂2

F

)
1
16
ML2

EI

δmid = 2 (1− 2x̂F ) 1
16
ML2

EI
0 ≤ x̂F ≤ 0.5

k´4

EI

L

L

EI

Mapp
xF

δat xF
=

16(1−x̂F )x̂F (1+k−2x̂F−3kx̂F +kx̂2
F +kx̂3

F )
3+4k

× 1
16
ML2

EI

δmid =
3+2k−12x̂2

F−10kx̂2
F

3+4k
1
16
ML2

EI 0 ≤ x̂F ≤ 0.5

L

EI

Mapp
xF

δat xF
= 16

3 (1− x̂F ) x̂F (1− 2x̂F ) 1
16
ML2

EI

δmid = (1− 4x̂F ) 1
16
ML2

EI 0 ≤ x̂F ≤ 0.5

Note:

• x̂F = xF /L

• In general, neither δat xF
nor δmid is the maximum deflection

• Continuous beam with equal spacing and only one member loaded
obtained with kL ≈ kR ≈ 1 for mid member or k ≈ 1 for edge member
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• Continuous beam with equal spacing and all members uniformly
loaded obtained with fixed-fixed case

• Continuous beam with equal spacing and checker-board loading ob-
tained with kL ≈ kR ≈ 0.5 for mid member or k ≈ 0.5 for edge
member

• For x̂F > 1/2, switch kL with kR and x̂F with (1− x̂F )
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C.7 Cantilever—Various Special
Cases—Displacements

k´4

EI

L

q

L

EI

δat tip =
(

1
8

+ 1
2k

)
qL4

EI

q

L

EI

δat tip = 1
8
qL4

EI

k´4

EI

L

L

EI

P
xF

δat xF
=
(

3x̂3
F

4k + x̂F

)
1
3
PL3

EI

δat tip =
(

3x̂F

4k
+ 3−x̂F

2

)
x̂2
F

1
3
PL3

EI

L

EI

P

xF

δat xF
= x̂3

F
1
3
PL3

EI

δat tip =
(

3−x̂F

2

)
x̂2
F

1
3
PL3

EI

k´4

EI

L

L

EI

Mapp

xF

δat xF
=
(
x̂F

2k + x̂2
F

)
1
2

MappL
2

EI

δat tip =
(

1
2k + (2− x̂F ) x̂F

)
×1

2

MappL
2

EI
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L

EI

Mapp

xF

δat x̂F
= x̂2

F
1
2

MappL
2

EI

δat tip = (2− x̂F ) x̂F
1
2

MappL
2

EI

Note:

• x̂F = xF /L



This page intentionally left blank 



Appendix D

Useful Results for
Influence Lines

D.1 Influence Lines for Vertical
Force Reactions

Θin

1

k´4

EI

L

L

Θin

1

k´4

EI

L

L

(a) (b)

θin =

{
3

3+4k
1
L

hinge or roller support at end
3

2+2k
1
L fixed support at end

Θleft Θright

1 hmax

kL´4

EI

L

Lleft

kR´4

EI

L

Lright

349
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θleft ≈
3

4 + 4kL

(
1

Lleft
+

1

Lright

)
θright ≈

3

4 + 4kR

(
1

Lleft
+

1

Lright

)
Note that formulas for the slopes above give a maximum possible error
of 25% relative to the exact result when the ratio of the spans is between
half and two (ie. neither span is longer than twice the other). If in addition
the rotary stiffness factors on either side are larger than one then the
maximum possible error is reduced to 10%.

Exact formula for the slopes at the ends above are given by:

θleft =
3

2

(
1

Lleft
+

1

Lright

) (
Lleft + 2kRLleft + 2Lright + 2kR Lright

)
z

θright =
3

2

(
1

Lleft
+

1

Lright

) (
2Lleft + 2kL Lleft + Lright + 2kL Lright

)
z

where:

z = 3Lleft + 3kL Lleft + 4kR Lleft + 4kL kRLleft

+ 3Lright + 4kL Lright + 3kR Lright + 4kL kR Lright

Approximate expression for the maximum influence value is
given by:

hmax ≈ 1 +

(
1−

(
Lright/Lleft

))2
5
(
Lright/Lleft

)
Note that formula for hmax above gives a value always greater or equal
to one, is symmetric with respect to Lleft and Lright and gives a maximum
error of 11% relative to the exact result when the ratio of the spans is
between half and two (ie. neither span is longer than twice the other).
Exact solution of hmax is available but is too long and complex to be
useful except in computer implementations.
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D.2 Influence Lines for Shear Forces

Θleft

Θright

htop

hbottom

kL´4

EI

L

kR´4

EI

L

L

xI

hbottom =
xI
L

+
2 (kR + 2kL kR)

3 + 4kL + 4kR + 4kL kR

(
xI
L
− x3

I

L3

)
− 2 (kL + 2kL kR)

3 + 4kL + 4kR + 4kL kR

((
1− xI

L

)
−
(
1− xI

L

)3)

htop = 1− hbottom

θleft =
3 + 6kR

3 + 4kL + 4kR + 4kL kR

θright =
3 + 6kL

3 + 4kL + 4kR + 4kL kR

D.3 Influence Lines for Bending Moments

Θleft
Θright

hmax

kL´4

EI

L

kR´4

EI

L

L

xI

Θleft

Θright

hmax

hmin

kL´4

EI

L

kR´4

EI

L

L

xI

Θleft

Θright

hmax

hmin

kL´4

EI

L

kR´4

EI

L

L

xI

(a) (b) (c)
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2kL
3+6kL

L ≤ xI ≤
(

1− 2kR
3+6kR

)
L

⇒ influence line of bending moment has pattern of figure (a) above

xI ≤ 2kL
3+6kL

L

⇒ influence line of bending moment has pattern of figure (b) above

xI ≥
(

1− 2kR
3+6kR

)
L

⇒ influence line of bending moment has pattern of figure (c) above

hmax = xI

L

(
1− xI

L

)(
(3 + 4kR) + (6kL − 2kR + 8kLkR) (xI/L)

z

− 2 (kL + kR + 4kLkR) (xI/L)
2

z

)
L

where: z = 3 + 4kL + 4kR + 4kLkR.

Bounds on the value of hmax:

2
(
xI

L

)2 (
1− xI

L

)2
L ≤ hmax ≤ xI

L

(
1− xI

L

)
L

hmin ≈


kL

1+kL

(1+kR)
(5+7kR)

(
1− (xI/L)

2kL/(3+6kL)

)2

L 0 ≤ xI ≤ 2kL
3+6kL

L

kR
1+kR

(1+kL)
(5+7kL)

(
1− (1−(xI/L))

2kR/(3+6kR)

)2

L 1− 2kR
3+6kR

≤ xI ≤ L

Formula for hmin is approximate and has a maximum absolute error of
0.01× L for all values of ‘kL,’ ‘kR’ and ‘xI .’

xat min/L ≈

1− 3 (1−s)
(3−s)

(
1− 2f (1−s)

(2−s)

)
0 ≤ xI ≤ 2kL

3+6kL
L

3 (1−s)
(3−s)

(
1− 2f (1−s)

(2−s)

)
1− 2kR

3+6kR
≤ xI ≤ L
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with:

s =


(xI/L)

2kL/(3+6kL) 0 ≤ xI ≤ 2kL
3+6kL

L
1−(xI/L)

2kR/(3+6kR) 1− 2kR
3+6kR

≤ xI ≤ L

f =

{
0.42+0.33kR

1+kR
0 ≤ xI ≤ 2kL

3+6kL
L

0.42+0.33kL
1+kL

1− 2kR
3+6kR

≤ xI ≤ L

Above formula for the location of the minimum has absolute error less
than 0.1× L.

θleft =
(3 + 4kR)− (3 + 6kR) (xI/L)

3 + 4kL + 4kR + 4kL kR

θright =
(3 + 4kL)− (3 + 6kL) (1− xI/L)

3 + 4kL + 4kR + 4kL kR

D.4 Transition Member

Θnear

Θfar

umax

xat max

k´4

EI

L

L

An exact expression for ‘umax’ is given by:

umax =
3
√

3 + 6k + 4k2 + k(3 + 2k)
(
(3 + 4k) + 2

√
3 + 6k + 4k2

)
27(1 + k)(1 + 2k)2

θnearL

umax ≈
0.19 + 0.15k

1 + k
θnearL

Approximate expression for the maximum displacement has error
less than 1.5% for any value of ‘k’ as compared with the exact result.

xat max

L
=

3 + 4k −
√

3 + 6k + 4k2

3 + 6k

xat max/L ≈ 0.42 + 0.33k

1 + k
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Approximate expression of the location has error less than 1% for
any value of ‘k’ compared to the exact result.

Note: The above results are available in a different appendix but selected
results pertaining to influence lines are reproduced above.
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A

Aluminum, maximum
strain, 207

Approximate influence lines,
indeterminate
beams, 231–312

bending moments
influence lines, 258–64
isolated member, influence

line, influence lines,
283–84

shear force, influence
lines, 256

sketching influence lines,
influence lines,
306–11

reciprocity theorem, 233
shear forces, influence lines,

249–54
statically determinate beams,

exact influence lines,
238–66

bending moments, 255–66
shear forces, 246–55
statically determinate

beams, sketching
influence line, 238

vertical force reactions,
238–46

statically indeterminate
structures, 266–312

bending moments in
isolated member,
influence line,
278–86

bending moments
sketching influence
lines, 304–12

influence line, 266–67
shear forces, sketching

influence lines,
297–305

shear forces in isolated
member, influence
line, 274–78

transition member for all
types, influence line,
286–97

vertical reaction forces in
isolated member,
influence line,
268–74

transition member for all
types, influence line

transition member,
influence lines
sketch, 287

vertical force reactions,
influence lines,
289–91, 294–96

vertical force reactions,
vertical reaction
force, influence lines,
239–44

vertical reaction forces in
isolated member,
influence line,
vertical reaction,
influence lines,
268, 271

355



356 Index

B

Beams-end-moments, inflection
points, 313–22

moment-end-loaded beam,
313–14

point force, 317–22
one end fixed, 321–22
one end hinged, 320–21
symmetric spring

resistance,
318–19

uniformly distributed load,
315–17

one end fixed, 317
one end hinged, 316
symmetric spring

resistance, 316
Bending moments, 255–66

bending moment, influence
lines, 258–64

continuous beam, 17, 20
influence lines, 258–64,

283–84, 306–11,
351–53

isolated member, influence
line, 278–86

bending moment, influence
lines, 283–84

shear force, influence
lines, 256

sketching influence lines,
304–12

bending moments,
influence lines,
306–11

C

Cantilever, 323
single floor portal frame,

103–13
apparent stiffness factor,

110, 112

far end resisting moment,
apparent stiffness
factors, 110

portal frame, 105, 110
role of beam resisting

moment, 105
rotary stiffness, column

modeled, beam
attached, 107

rotationally flexible
structure, cantilever
attached to, 104

single story sidesway,
113

special cases-displacements,
346–47

Carry-over-factor for moments,
11–13

Central point force, end conditions
of beam, 42

Class of building, analysis, 209
Column-shear stiffness,

end-moments,
inflection points,
323–30

cantilever, 323
multi-story building, column

for, 329–30
multi-story building-first

floor, column for,
326–27

multi-story building-top floor,
column for, 328–29

single story building, column
for, 324–25

Comparable magnitude, separated
by one member, 71

Comparison between exact,
approximate shear
stiffness, 141, 145,
147, 149

Concrete, maximum
strain, 207
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Continuous beam
applied unit clockwise

moment, 19
moment applied at only one

node, 16–20
bending moment,

continuous beam, 17,
20

continuous beam, applied
unit clockwise
moment, 19

inflection point locations,
deformed shape, 19

isolated members of
continuous beam,
17–18

straight line extensions,
each node, 17

unit clockwise moment,
continuous beam, 17

Contour plot, inflection point vs.
end stiffness, 25, 50

Convention for positive, negative
curvatures, 2

D

Decomposition, deformed shapes,
39–40

Decomposition passive structure,
6

Deconstructing structure into
active member,
passive parts, 5

Decrease in deformation,
continuous beam, 14

Deformed shapes, 39–40, 92
decomposition, 67
uniformly loaded beam,

symmetric supports,
33

Displacements, 183–229
inertia moment, 189–200
maximum deflection

location, 184–85, 187
value, 184–85, 187–88

maximum vertical
displacements,
183–88

maximum deflections,
calculating, 184

moment of inertia, moment of
inertia, relative to
horizontal axis,
194–95

relative vertical displacements
vs. strain, 200–208

aluminum, maximum
strain, 207

concrete, maximum strain,
207

displacement correction
factor, uniform load,
203–4

steel, maximum strain, 207
structural material strain,

207
thermoplastics, maximum

strain, 207
wood, maximum strain, 207

rotary stiffness factors, slope
measurements,
222–29

side displacements, frames
subject to side loads,
208–22

class of building, analysis,
209

slenderness ratio, axial
force variation, 212

Distributed load, decomposition
of structure, 71–72

E

Effective bending stiffness, 9
End moments, 121–22

columns, 141, 146–47, 149
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End stiffness factors, loaded beam,
function, 95

Exact deformed shapes, 75, 77
Exact stiffness, determining, 8
Exact vs. approximate location,

inflection points,
moments obtained
from, 30

External moment, common node,
90

F

Far end resisting moment,
apparent stiffness
factors, 110

Far end to near end rotation, ratio,
13–14

First iteration calculations, 141,
143, 147–48

Fixed-spring supports, 38, 66
Frame building type, lumped

mass shear stiffness
vs. exact shear
stiffness, 150, 152

Free body diagram, 142

H

Hinge-spring supports, 36, 65
Hinged beam with applied

moment at one end,
rotary spring, 12

Horizontal load
multiple floor frames subject

to, 139–50
column cases, sketching

deformation, 163
comparison between exact,

approximate shear
stiffness, 141, 145,
147, 149

end moments, columns,
141, 146–47, 149

first iteration calculations,
141, 143, 147–48

free body diagram, 142
multi-story sidesway, 141,

147
second iteration calculation,

147–48
second iteration

calculations, 141, 145
shear forces, columns, 141,

146–47, 149
side-loaded frames

only top floor loaded,
deformation, 160,
162

uniform distribution of
loads per floor,
deformation, 161

sketching, 158–69
slope tangent to chord,

164–65
stiffness factors, 141–42, 147

single floor frames subject to,
113–22

end moments in beams
calculating, 119–20
portals, beams,

continuous beam, no
sidesway, 120

end moments in columns
calculating, 118–19
shear forces, end

moments, columns,
113, 119

rotary stiffness factor
estimation, 114–16

stiffness factor of
connected beams,
naming convention,
115

second portal frame, 120–22
end moments, 121–22
shear forces, 121–22
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shear stiffness, shear
force, end moments,
121

single story sidesway, 121
stiffness factors, 121

shear stiffness, shear force,
116–18

end moments, 113, 118
free body diagram, 117

I

Inertia moment, 189–200
Inflection point

beams-end-moments, 313–22
moment-end-loaded beam,

313–14
point force, 317–22
uniformly distributed load,

315–17
exact vs. approximate

location, 56
moment diagram, 54
point force

one end fixed, 321–22
one end hinged, 320–21
symmetric spring

resistance, 318–19
uniformly distributed load

one end fixed, 317
one end hinged, 316
symmetric spring

resistance, 316
Inflection point as rotary spring

stiffness increases, 15
Inflection point location, 14–16

carry-over-moment, 13
deformed shape, 19
between exact, approximate,

26, 51
Influence lines, 266–67, 349–54

bending moments, 351–53
shear force, 351

transition member, 353–54
vertical force reactions, 349–50

Internal hinge
moment applied at one end,

resisting at other,
96–93

deformed shapes, 92
external moment, common

node, 90
internal hinge part of

passive structure, 87
moment diagrams, 92–93
normalized near end

stiffness factor,
contours, 87, 89

optimizing location, 90–91
as passive structure,

continuous beam, 89
part of passive structure, 87
passive structures, deformed

shapes, 99, 101
point force loaded beam

beam with, 97–102
internal hinge, passive

structures, deformed
shapes, 99, 101

moment diagrams, 99–101
uniform load, 95

beam with, 93–96
end stiffness factors, loaded

beam, function, 95
moment diagrams, 96
uniformly loaded beam,

deformed shapes for,
passive structures, 96

Isolated members of continuous
beam, 17–18

L

Lack of sidesway, 1–102
analysis method, 20–22
beams, 83–84
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centerline through middle
unloaded member, 78

continuous beam, moment
applied at only one
node, 16–20

bending moment,
continuous beam,
17, 20

continuous beam, applied
unit clockwise
moment, 19

inflection point locations,
deformed shape, 19

isolated members of
continuous beam,
17–18

straight line extensions,
each node, 17

unit clockwise moment,
continuous beam, 17

decomposition of structure,
67, 69

end conditions, 45
exact vs. approximate

location, 56
fixed-spring supports, 66
internal hinge

moment applied at one end,
resisting at other,
96–93

uniform load, 95
lack of structure sidesway,

analysis method,
20–22

moment applied at one end,
resisting at other

beam with, 11–16
carry-over-moment, 13
decrease in deformation,

continuous beam, 14
hinged beam with applied

moment at one end,
rotary spring, 12

inflection point location,
13

inflection points as rotary
spring stiffness
increases, 15

location at which deflection
maximum, 16

location of inflection point,
14–16

magnitude of maximum
deflection, 16

moment at near end, beam
rotary spring, 12

ratio of far end bending
moment to near end
bending moment,
11–13

ratio of far end to near end
rotation, 13–14

rotary stiffness at near
end, 13

moment diagram, 54
multiple loads, 70–78

comparable magnitude,
separated by one
member, 71

distributed load,
decomposition of
structure, 71–72

exact deformed shapes,
75, 77

multiple adjacent loads, 76
point force load,

decomposition of
structure, deformed
shapes, 71, 73

sum of separate single
loads, 72

passive members in
continuous beams,
frames, 4–11

decomposing passive
structure, 6
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deconstructing structure
into active member,
passive parts, 5

determining exact stiffness
in special cases, 8

effective bending stiffness, 9
rotational stiffness,

estimating, 8
point force loaded beam,

42–66
central point force, end

conditions of beam, 42
centrally applied, end

conditions, 43
contour plot, inflection

point vs. end
stiffnesses, 50

deformed shapes,
decomposition, 67

example, 66–69
fixed-spring supports, 66
hinge-spring supports, 65
inflection point location

between exact,
approximate, 51

maximum displacement, 54
maximum positive bending

moments, inflection
points, 57

moment diagrams, 49,
67, 69

non-centrally applied, 47
non-symmetric supports, 64
normalized distance,

contours, 59
passive structures, 48
point force, right-end

stiffness factor, 60
symmetric spring

resistance, 61
symmetric supports,

uniformly loaded
beam, 63

sketching, 1–4
convention for positive,

negative curvatures,
2

loading of simple slender
beam, 2

sketching deformed shape
of beam, 4

sketching deformed shaped
of beam, 4

steps in sketching deformed
shape of beam, 3

symmetry loaded, 77
two/more internal hinges

beam with, 78–86
bending moment

diagrams, 86
internal hinges, passive

structure, 79
internal hinges loaded by

uniform load,
83, 85

zero bending stiffness,
two-hinged beam, 80

uniformly load beam, 22–38
contour plot, inflection

point vs. end
stiffness, 25

decomposition, deformed
shapes, 39–40

decomposition of structure
with, 39, 41

deformed shape, uniformly
loaded beam,
symmetric supports,
33

deformed structure shape,
39–40

end conditions, 22–23
exact vs. approximate

location, inflection
points, moments
obtained from, 30
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example, 39–42
fixed-spring supports, 38
hinge-spring supports, 36
inflection point location

between exact,
approximate, 26

location of inflection points,
moment diagram, 29

maximum displacement,
location, magnitude,
28

maximum moment
location, 31

moment diagrams, 24
non-symmetric supports, 34
one end fixed, 37
one end hinged, 35
passive structures, 23
slopes, relative slopes,

uniformly loaded
beam, 27

symmetric spring
resistance, 32

symmetric supports,
uniformly loaded
beam, 33

Lines of influence, 349–54
Loading of simple slender beam, 2
Location of inflection points,

moment diagram, 29
Lower fixed support, single floor

columns,
deformation, 123

Lower hinged support, single floor
columns,
deformation, 124

Lumped mass model for
buildings, 150–58

frame building type, lumped
mass shear stiffness
vs. exact shear
stiffness, 150

frame building type analyzed,

lumped mass shear
stiffness, exact shear
stiffness, 152

lumped-mass system, framed
building, 151

normalized shear stiffness,
mean maximum
over minimum
ratios, 150, 153, 157

M

Maximum deflection
calculating, 184
location, 184–85, 187
magnitude, 16
value, 184–85, 187–88

Maximum vertical displacements,
183–88

maximum deflection
location, 184–85, 187
value, 184–85, 187–88

maximum deflections,
calculating, 184

Moment applied at one end,
resisting at other

beam with, 11–16
carry-over-moment, 13
decrease in deformation,

continuous beam, 14
hinged beam, applied

moment at one end,
rotary spring, 12

inflection point location,
13–16

inflection points as rotary
spring stiffness
increases, 15

location at which deflection
maximum, 16

magnitude of maximum
deflection, 16

moment at near end, beam
rotary spring, 12
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ratio, far end, near end
rotation, 13–14

ratio of far-end bending
moment to near end
bending moment,
11–13

rotary stiffness, near end, 13
Moment diagrams, 49, 67, 69,

92–93, 96, 99–101
decomposition of structure,

67, 69
decomposition of structure

with, 39, 41
fixed-spring supports, 66

Moment-end-loaded beam, 313–14
Moment of inertia, relative to

horizontal axis, 194–95
Multi-story building

column for, 329–30
first floor, column for, 326–27
top floor, column for, 328–29

Multi-story sidesway, 141, 147
Multiple adjacent loads, 76
Multiple loads, 70–78

comparable magnitude,
separated by one
member, 71

distributed load,
decomposition of
structure, 71–72

exact deformed shapes, 75, 77
multiple adjacent loads, 76
point force load,

decomposition of
structure, deformed
shapes, 71, 73

sum of separate single loads, 72
symmetric structure, loading

centerline through middle
unloaded member, 78

symmetry loaded, 77
Mutual shear stiffnesses, columns,

132

N

No sidesway, 1–102
analysis method, 20–22
approximate analysis,

1–102
continuous beam, moment

applied at only one
node, 16–20

bending moment,
continuous beam,
17, 20

continuous beam,
applied unit
clockwise moment,
19

inflection point locations,
deformed shape, 19

isolated members of
continuous beam,
17–18

straight line extensions,
each node, 17

unit clockwise moment,
continuous beam, 17

internal hinge
moment applied at one

end, resisting at
other, 96–93

point force loaded beam
beam with, 97–102
internal hinge, passive

structures, deformed
shapes, 99, 101

moment diagrams,
99–101

uniform load, 95
beam with, 93–96
end stiffness factors,

loaded beam,
function, 95

moment diagrams, 96
uniformly loaded
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beam, deformed
shapes for, passive
structures, 96

internal hinge moment
applied at one end,
resisting at other

deformed shapes, 92
external moment,

common node, 90
internal hinge part of

passive structure, 87
moment diagrams, 92–93
normalized near end

stiffness factor,
contours, 87, 89

optimizing location,
90–91

as passive structure,
continuous beam, 89

lack of structure sidesway,
analysis method,
20–22

moment applied at one end,
resisting at other

beam with, 11–16
carry-over-moment, 13
decrease in deformation,

continuous beam, 14
hinged beam with

applied moment at
one end, rotary
spring, 12

inflection point, 14–16
inflection point location,

13
inflection points as rotary

spring stiffness
increases, 15

location at which
deflection
maximum, 16

magnitude of maximum
deflection, 16

moment at near end,
beam rotary spring,
12

ratio of far end, near end
rotation, 13–14

ratio of far-end bending
moment to near end
bending moment,
11–13

rotary stiffness, near
end, 13

multiple loads, 70–78
comparable magnitude,

separated by one
member, 71

distributed load,
decomposition of
structure, 71–72

exact deformed shapes,
75, 77

multiple adjacent loads,
76

point force load,
decomposition of
structure, deformed
shapes, 71, 73

sum of separate single
loads, 72

symmetric structure,
loading

centerline through
middle unloaded
member, 78

symmetry loaded,
77

passive members in
continuous beams,
frames, 4–11

decomposing passive
structure, 6

deconstructing structure
into active member,
passive parts, 5
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determining exact
stiffness in special
cases, 8

effective bending
stiffness, 9

rotational stiffness,
estimating, 8

point force loaded beam,
42–66

central point force, end
conditions of beam,
42

centrally applied, end
conditions, 43

contour plot, inflection
point vs. end
stiffnesses, 50

deformed shapes,
decomposition, 67

example, 66–69
fixed-spring supports, 66
hinge-spring supports, 65
inflection point location

between exact,
approximate, 51

inflection points
exact vs. approximate

location, 56
moment diagram, 54

maximum displacement, 54
maximum positive

bending moments,
inflection points, 57

moment diagrams, 49, 67,
69

decomposition of
structure, 67, 69

fixed-spring supports,
66

non-centrally applied, 47
end conditions, 45

non-symmetric supports,
64

normalized distance,
contours, 59

passive structures, 48
point force, right-end

stiffness factor, 60
symmetric spring

resistance, 61
symmetric supports,

uniformly loaded
beam, 63

sketching, 1–4
convention for positive,

negative curvatures,
2

loading of simple slender
beam, 2

sketching deformed
shape of beam, 4

sketching deformed
shaped of beam, 4

steps in sketching
deformed shape of
beam, 3

two/more internal hinges
beam with, 78–86
bending moment

diagrams, 86
beams, 83–84

internal hinges, passive
structure, 79

internal hinges loaded by
uniform load, 83

attached to passive
structures, 85

zero bending stiffness,
two-hinged beam, 80

uniform load beam
maximum displacement

location, 28
magnitude, 28

moment diagrams,
decomposition of
structure with, 39, 41
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uniformly load beam, 22–38
contour plot, inflection

point vs. end
stiffness, 25

decomposition, deformed
shapes, 39–40

deformed shape,
uniformly loaded
beam, symmetric
supports, 33

deformed structure
shape, 39–40

end conditions, 22–23
exact vs. approximate

location, inflection
points, moments
obtained from, 30

example, 39–42
fixed-spring supports, 38
hinge-spring supports, 36
inflection point location

between exact,
approximate, 26

location of inflection
points, moment
diagram, 29

maximum moment
location, 31

moment diagrams, 24
non-symmetric supports, 34
one end fixed, 37
one end hinged, 35
passive structures, 23
slopes, relative slopes,

uniformly loaded
beam, 27

symmetric spring
resistance, 32

symmetric supports,
uniformly loaded
beam, 33

centerline through middle
unloaded member, 78

continuous beam, moment
applied at only one
node, 16–20

bending moment,
continuous beam,
17, 20

continuous beam, applied
unit clockwise
moment, 19

inflection point locations,
deformed shape, 19

isolated members of
continuous beam,
17–18

straight line extensions,
each node, 17

unit clockwise moment,
continuous beam, 17

decomposition of structure,
67, 69

end conditions, 45
exact vs. approximate

location, 56
fixed-spring supports, 66
internal hinge

moment applied at one end,
resisting at other,
96–93

uniform load, 95
lack of structure sidesway,

analysis method,
20–22

moment applied at one end,
resisting at other

beam with, 11–16
carry-over-moment, 13
decrease in deformation,

continuous beam, 14
hinged beam with applied

moment at one end,
rotary spring, 12

inflection point location, 13
inflection points as rotary
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spring stiffness
increases, 15

location at which deflection
maximum, 16

location of inflection point,
14–16

magnitude of maximum
deflection, 16

moment at near end, beam
rotary spring, 12

ratio of far-end bending
moment to near end
bending moment,
11–13

ratio of far end to near end
rotation, 13–14

rotary stiffness at near end,
13

moment diagram, 54
multiple loads, 70–78

comparable magnitude,
separated by one
member, 71

distributed load,
decomposition of
structure, 71–72

exact deformed shapes, 75,
77

multiple adjacent loads, 76
point force load,

decomposition of
structure, deformed
shapes, 71, 73

sum of separate single
loads, 72

passive members in
continuous beams,
frames, 4–11

decomposing passive
structure, 6

deconstructing structure
into active member,
passive parts, 5

determining exact stiffness
in special cases, 8

effective bending stiffness, 9
rotational stiffness,

estimating, 8
point force loaded beam,

42–66
central point force, end

conditions of beam,
42

centrally applied, end
conditions, 43

contour plot, inflection
point vs. end
stiffnesses, 50

deformed shapes,
decomposition, 67

example, 66–69
fixed-spring supports, 66
hinge-spring supports, 65
inflection point location

between exact,
approximate, 51

maximum displacement,
54

maximum positive bending
moments, inflection
points, 57

moment diagrams, 49, 67,
69

non-centrally applied, 47
non-symmetric supports,

64
normalized distance,

contours, 59
passive structures, 48
point force, right-end

stiffness factor, 60
symmetric spring

resistance, 61
symmetric supports,

uniformly loaded
beam, 63
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sketching, 1–4
convention for positive,

negative curvatures, 2
loading of simple slender

beam, 2
sketching deformed shape

of beam, 4
sketching deformed shaped

of beam, 4
steps in sketching deformed

shape of beam, 3
symmetry loaded, 77
two/more internal hinges

beam with, 78–86
bending moment diagrams,

86
internal hinges, passive

structure, 79
internal hinges loaded by

uniform load, 83, 85
zero bending stiffness,

two-hinged beam, 80
uniformly load beam, 22–38

contour plot, inflection
point vs. end
stiffness, 25

decomposition, deformed
shapes, 39–40

decomposition of structure
with, 39, 41

deformed shape, uniformly
loaded beam,
symmetric supports,
33

deformed structure shape,
39–40

end conditions, 22–23
exact vs. approximate

location, inflection
points, moments
obtained from, 30

example, 39–42
fixed-spring supports, 38

hinge-spring supports, 36
inflection point location

between exact,
approximate, 26

location of inflection points,
moment diagram, 29

maximum displacement,
location, magnitude,
28

maximum moment
location, 31

moment diagrams, 24
non-symmetric supports, 34
one end fixed, 37
one end hinged, 35
passive structures, 23
slopes, relative slopes,

uniformly loaded
beam, 27

symmetric spring
resistance, 32

symmetric supports,
uniformly loaded
beam, 33

Non-centrally applied, 47
end conditions, 45

Non-symmetric supports, 34, 64
Normalized distance, contours, 59
Normalized near end stiffness

factor, contours, 87,
89

Normalized shear stiffness, mean
maximum over
minimum ratios, 150,
153, 157

O

Optimizing location, 90–91

P

Passive members in continuous
beams, frames, 4–11



Index 369

decomposing passive
structure, 6

deconstructing structure into
active member,
passive parts, 5

determining exact stiffness in
special cases, 8

effective bending stiffness, 9
rotational stiffness,

estimating, 8
Passive structures, 48
Point force, 317–22

one end fixed, 321–22
one end hinged, 320–21
right-end stiffness factor, 60
symmetric spring resistance,

318–19
Point force-centrally loaded-mid

displacements,
338–39

Point force load, 42–66
central point force, end

conditions of
beam, 42

centrally applied, end
conditions, 43

contour plot, inflection point
vs. end stiffnesses, 50

decomposition of structure,
deformed shapes,
71, 73

deformed shapes,
decomposition, 67

example, 66–69
fixed-spring supports, 66
hinge-spring supports, 65
inflection point location

between exact,
approximate, 51

inflection points
exact vs. approximate

location, 56
moment diagram, 54

maximum displacement, 54
maximum positive bending

moments, inflection
points, 57

moment diagrams, 49, 67, 69
decomposition of structure,

67, 69
fixed-spring supports, 66

non-centrally applied, 47
end conditions, 45

non-symmetric supports, 64
normalized distance,

contours, 59
passive structures, 48
point force, right-end stiffness

factor, 60
symmetric spring resistance,

61
symmetric supports,

uniformly loaded
beam, 63

Point force-loaded anywhere-mid
displacements,
340–42

Point moment-loaded
anywhere-mid
displacements,
343–45

Portal frame, 105, 110
Portals, beams, continuous beam,

no sidesway, 120

R

Reciprocity theorem, 233
Relative vertical displacements vs.

strain, 200–208
aluminum, maximum strain,

207
concrete, maximum strain,

207
displacement correction

factor, uniform load,
203–4
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steel, maximum strain, 207
structural material strain, 207
thermoplastics, maximum

strain, 207
wood, maximum strain, 207

Role of beam resisting moment,
105

Rotary springs, moments at both
ends

column with, 129–39
mutual shear stiffnesses,

columns, 132
rotary stiffness, members

subject to sidesway, 131
sidesway, column subject to,

effect of attached
beams, 133

stiffness decrease
ground floor columns, 134
top floor columns, 136–37

Rotary stiffness
column modeled, beam

attached, 107
factors, slope measurements,

222–29
members subject to sidesway,

131
at near end, 13

Rotational stiffness, estimating, 8
Rotationally flexible structure,

cantilever attached
to, 104

Rotations, beams-deflections,
331–47

cantilever-special
cases-displacements,
346–47

displacements, any location,
331–33

point force-centrally
loaded-mid
displacements,
338–39

point force-loaded
anywhere-mid
displacements,
340–42

point moment-loaded
anywhere-mid
displacements,
343–45

rotations, any location, 334–35
uniform load-mid

displacements,
336–37

S

Second iteration calculations, 141,
145, 147–48

Shear forces, 121–22, 246–55
columns, 141, 146–47, 149
end moments, columns,

113, 119
influence lines, 249–54, 256,

277–78, 298–303, 351
shear force, influence lines,

249–54
sketching influence lines,

297–305
shear forces, influence lines,

298–303
Shear forces in isolated member,

influence line,
274–78

shear force, influence lines,
277–78

Shear stiffness, shear force, 116–18
end moments, 113, 118, 121
free body diagram, 117

Side displacements, frames subject
to side loads, 208–22

class of building, analysis, 209
slenderness ratio, axial force

variation, 212
Side-loaded frames
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only top floor loaded,
deformation, 160,
162

uniform distribution of loads
per floor,
deformation, 161

Sidesway
column subject to, effect of

attached beams, 133
end moments in beams

calculating, 119–20
portals, beams, continuous

beam, no sidesway,
120

end moments in columns
calculating, 118–19
shear forces, end moments,

columns, 113, 119
frame cantilever, single floor

portal frame
apparent stiffness factor,

110, 112
far end resisting moment,

apparent stiffness
factors, 110

portal frame, 105, 110
role of beam resisting

moment, 105
rotary stiffness, column

modeled, beam
attached, 107

rotationally flexible
structure, cantilever
attached to, 104

single story sidesway,
113

frame horizontal load, single
floor frames subject to

rotary stiffness factor
estimation, 114–16

second portal frame, 120–22
shear stiffness, shear force,

116–18

frame horizontal loads,
multiple floor frames
subject to

column cases, sketching
deformation, 163

comparison between exact,
approximate shear
stiffness, 141, 145,
147, 149

end moments, columns,
141, 146–47, 149

first iteration calculations,
141, 143, 147–48

free body diagram, 142
multi-story sidesway, 141,

147
second iteration calculation,

147–48
second iteration

calculations, 141, 145
shear forces, columns, 141,

146–47, 149
sketching, 158–69
slope tangent to chord,

164–65
stiffness factors, 141–42, 147

frame lumped mass model for
buildings

frame building type,
lumped mass shear
stiffness vs. exact
shear stiffness, 150

frame building type
analyzed, lumped
mass shear stiffness,
exact shear stiffness,
152

lumped-mass system,
framed building, 151

normalized shear stiffness,
mean maximum
over minimum
ratios, 150, 153, 157
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frame rotary springs,
moments at both
ends

column with, 129–39
mutual shear stiffnesses,

columns, 132
rotary stiffness, members

subject to sidesway,
131

sidesway, column subject
to, effect of attached
beams, 133

frame single floor portal
frames

lower fixed support, single
floor columns,
deformation, 123

lower hinged support,
single floor columns,
deformation, 124

sketching, 122–29
sketching deformed shape,

steps, 126–27
frame vertical loads, applied

couples, sidesway
due to

frame subject to vertical
load, sidesway, 170

side frame moves, free
body diagrams, 170

sidesway to left or to right,
conditions
determining, 171,
173–74, 176

single floor regular portal
frame, variable
number of bays, 177

frames with, 103–81
cantilever, single floor

portal frame, 103–13
horizontal load, single floor

frames subject to,
113–22

horizontal loads, multiple
floor frames subject
to, 139–50

lumped mass model for
buildings, 150–58

vertical loads, applied
couples, sidesway
due to, 169–81

moment applied at one end,
resisting at other

deformed shapes, 92
external moment, common

node, 90
internal hinge part of

passive structure, 87
moment diagrams, 92–93
normalized near end

stiffness factor,
contours, 87, 89

optimizing location, 90–91
as passive structure,

continuous beam, 89
point force loaded beam

beam with, 97–102
internal hinge, passive

structures, deformed
shapes, 99, 101

moment diagrams, 99–101
rotary stiffness factor

estimation, stiffness
factor of connected
beams, naming
convention, 115

second portal frame
end moments, 121–22
shear forces, 121–22
shear stiffness, shear force,

end moments, 121
single story sidesway, 121
stiffness factors, 121

shear stiffness, shear force
end moments, 113, 118
free body diagram, 117
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side-loaded frames
only top floor loaded,

deformation, 160,
162

uniform distribution of
loads per floor,
deformation, 161

stiffness decrease
ground floor columns, 134
top floor columns, 136–37

uniform load
beam with, 93–96
end stiffness factors, loaded

beam, function, 95
moment diagrams, 96
uniformly loaded beam,

deformed shapes for,
passive structures, 96

Sidesway lack, 1–102
analysis method, 20–22
beams, 83–84
centerline through middle

unloaded member,
78

continuous beam, moment
applied at only one
node, 16–20

bending moment,
continuous beam, 17,
20

continuous beam, applied
unit clockwise
moment, 19

inflection point locations,
deformed shape, 19

isolated members of
continuous beam, 17–18

straight line extensions,
each node, 17

unit clockwise moment,
continuous beam, 17

decomposition of structure,
67, 69

end conditions, 45
exact vs. approximate

location, 56
fixed-spring supports, 66
internal hinge

moment applied at one end,
resisting at other,
96–93

uniform load, 95
lack of structure sidesway,

analysis method,
20–22

moment applied at one end,
resisting at other

beam with, 11–16
carry-over-moment, 13
decrease in deformation,

continuous beam, 14
hinged beam with applied

moment at one end,
rotary spring, 12

inflection point location, 13
inflection points as rotary

spring stiffness
increases, 15

location at which deflection
maximum, 16

location of inflection point,
14–16

magnitude of maximum
deflection, 16

moment at near end, beam
rotary spring, 12

ratio of far-end bending
moment to near end
bending moment,
11–13

ratio of far end to near end
rotation, 13–14

rotary stiffness at near end,
13

moment diagram, 54
multiple loads, 70–78
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comparable magnitude,
separated by one
member, 71

distributed load,
decomposition of
structure, 71–72

exact deformed shapes,
75, 77

multiple adjacent loads, 76
point force load,

decomposition of
structure, deformed
shapes, 71, 73

sum of separate single
loads, 72

passive members in
continuous beams,
frames, 4–11

decomposing passive
structure, 6

deconstructing structure
into active member,
passive parts, 5

determining exact stiffness
in special cases, 8

effective bending stiffness, 9
rotational stiffness,

estimating, 8
point force loaded beam,

42–66
central point force, end

conditions of beam,
42

centrally applied, end
conditions, 43

contour plot, inflection
point vs. end
stiffnesses, 50

deformed shapes,
decomposition, 67

example, 66–69
fixed-spring supports, 66
hinge-spring supports, 65

inflection point location
between exact,
approximate, 51

maximum displacement, 54
maximum positive bending

moments, inflection
points, 57

moment diagrams, 49, 67, 69
non-centrally applied, 47
non-symmetric supports, 64
normalized distance,

contours, 59
passive structures, 48
point force, right-end

stiffness factor, 60
symmetric spring

resistance, 61
symmetric supports,

uniformly loaded
beam, 63

sketching, 1–4
convention for positive,

negative curvatures,
2

loading of simple slender
beam, 2

sketching deformed shape
of beam, 4

sketching deformed shaped
of beam, 4

steps in sketching deformed
shape of beam, 3

symmetry loaded, 77
two/more internal hinges

beam with, 78–86
bending moment diagrams,

86
internal hinges, passive

structure, 79
internal hinges loaded by

uniform load, 83, 85
zero bending stiffness,

two-hinged beam, 80
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uniformly load beam,
22–38

contour plot, inflection
point vs. end
stiffness, 25

decomposition, deformed
shapes, 39–40

decomposition of structure
with, 39, 41

deformed shape, uniformly
loaded beam,
symmetric supports,
33

deformed structure shape,
39–40

end conditions, 22–23
exact vs. approximate

location, inflection
points, moments
obtained from, 30

example, 39–42
fixed-spring supports, 38
hinge-spring supports, 36
inflection point location

between exact,
approximate, 26

location of inflection points,
moment diagram, 29

maximum displacement,
location, magnitude,
28

maximum moment
location, 31

moment diagrams, 24
non-symmetric supports, 34
one end fixed, 37
one end hinged, 35
passive structures, 23
slopes, relative slopes,

uniformly loaded
beam, 27

symmetric spring
resistance, 32

symmetric supports,
uniformly loaded
beam, 33

Single floor portal frame
cantilever, 103–13

apparent stiffness factor,
110, 112

far end resisting moment,
apparent stiffness
factors, 110

portal frame, 105, 110
role of beam resisting

moment, 105
rotary stiffness, column

modeled, beam
attached, 107

rotationally flexible
structure, cantilever
attached to, 104

single story sidesway, 113
lower fixed support, single

floor columns,
deformation, 123

lower hinged support, single
floor columns,
deformation, 124

sketching, 122–29
sketching deformed shape,

steps, 126–27
Single story column, 324–25
Single story sidesway,

113, 121
Sketching, 1–4, 122–29, 158–69

convention for positive,
negative
curvatures, 2

deformed shape
beam, 3–4
steps, 126–27

loading of simple slender
beam, 2

Slenderness ratio, axial force
variation, 212
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Slope
relative slopes, uniformly

loaded beam, 27
tangent to chord, 164–65

Statically determinate beams
exact influence lines,

238–66
bending moments,

255–66
shear forces, 246–55
statically determinate

beams, sketching
influence line, 238

vertical force reactions,
238–46

sketching influence line, 238
Statically indeterminate structures,

266–312
bending moments, sketching

influence lines,
304–12

bending moments,
influence lines,
306–11

bending moments in isolated
member, influence
line, 278–86

bending moment, influence
lines, 283–84

influence line, 266–67
shear forces, sketching

influence lines,
297–305

shear forces, influence lines,
298–303

shear forces in isolated
member, influence
line, 274–78

shear force, influence lines,
277–78

transition member for all
types, influence line,
286–97

transition member,
influence lines
sketch, 287

vertical force reactions,
influence lines,
289–91, 294–96

vertical reaction forces in
isolated member,
influence line,
268–74

vertical reaction, influence
lines, 268, 271

Steel, maximum strain, 207
Steps in sketching deformed shape

of beam, 3
Stiffness decrease

ground floor columns, 134
top floor columns, 136–37

Stiffness factors, 121, 141–42, 147
apparent, 110, 112
connected beams, naming

convention, 115
Straight line extensions, each

node, 17
Strain, vs. relative vertical

displacements,
200–208

aluminum, maximum strain,
207

concrete, maximum strain, 207
displacement correction

factor, uniform load,
203–4

steel, maximum strain, 207
structural material strain, 207
thermoplastics, maximum

strain, 207
wood, maximum strain, 207

Symmetric spring resistance, 32, 61
Symmetric structure, loading

centerline through middle
unloaded member, 78

symmetry loaded, 77
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Symmetric supports, uniformly
loaded beam, 33, 63

T

Thermoplastics, maximum strain,
207

Transition member, influence
lines, 353–54

sketch, 287
Transition member for all types,

influence line,
286–97

transition member, influence
lines sketch, 287

vertical force reactions,
influence lines,
289–91, 294–96

Two/more internal hinges
beam with, 78–86
bending moment diagrams,

86
beams, 83–84

internal hinges loaded by
uniform load, 83

attached to passive
structures, 85

internal hinges passive
structure, 79

zero bending stiffness,
two-hinged beam, 80

U

Uniform load-mid displacements,
336–37

Uniformly distributed load,
315–17

one end fixed, 317
one end hinged, 316
symmetric spring resistance,

316
Uniformly loaded beam, 22–38

contour plot, inflection point
vs. end stiffness, 25

decomposition, deformed
shapes, 39–40

deformed shape, uniformly
loaded beam,
symmetric supports,
33

deformed shapes for, passive
structures, 96

deformed structure shape,
39–40

end conditions, 22–23
exact vs. approximate

location, inflection
points, moments
obtained from, 30

example, 39–42
fixed-spring supports, 38
hinge-spring supports, 36
inflection point location

between exact,
approximate, 26

location of inflection points,
moment diagram, 29

maximum displacement
location, 28

magnitude, 28
magnitude, 28

maximum moment location,
31

moment diagrams, 24
decomposition of structure

with, 39, 41
non-symmetric supports, 34
one end fixed, 37
one end hinged, 35
passive structures, 23
slopes, relative slopes,

uniformly loaded
beam, 27

symmetric spring resistance, 32
symmetric supports,

uniformly loaded
beam, 33
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Unit clockwise moment,
continuous beam, 17

V

Vertical displacements, 183–88
maximum deflection

location, 184–85, 187
value, 184–85, 187–88

maximum deflections,
calculating, 184

Vertical displacements vs. strain,
200–208

aluminum, maximum strain,
207

concrete, maximum strain,
207

displacement correction
factor, uniform load,
203–4

steel, maximum strain, 207
structural material strain, 207
thermoplastics, maximum

strain, 207
wood, maximum strain, 207

Vertical force reactions, 238–46
influence lines, 289–91,

294–96, 349–50
vertical reaction force,

influence lines,
239–44

Vertical loads, applied couples,
sidesway due to,
169–81

frame subject to vertical load,
sidesway, 170

side frame moves, free body
diagrams, 170

sidesway to left or to right,
conditions determining,
171, 173–74, 176

single floor regular portal
frame, variable
number of bays, 177

Vertical reaction, influence lines,
268, 271

Vertical reaction forces
influence lines, 239–44
isolated member, influence

line, 268–74
vertical reaction, influence

lines, 268, 271

W

Wood, maximum strain, 207

Z

Zero bending stiffness,
two-hinged beam

two/more internal hinges,
lack of sidesway, 80
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