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Space Research Centre
Polish Academy of Sciences
Warszawa, Poland

Javier CUADROS
Department of Mineralogy
Natural History Museum
London, UK

Jerzy DERA
Institute of Oceanology
Polish Academy of Sciences
Sopot, Poland

Evgeni FEDOROVICH
School of Meteorology,
University of Oklahoma
Norman, USA

Wolfgang FRANKE
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Université de Strasbourg et CNRS
Strasbourg, France

Truls JOHANNESSEN
Geophysical Institute,
University of Bergen
Bergen, Norway

Michael A. KAMINSKI
Department of Earth Sciences,
University College London,
London, UK

Andrzej KIJKO,
Aon Benfield
Natural Hazards Research Centre
University of Pretoria,
South Africa

Francois LEBLANC
Laboratoire Atmospheres, Milieux,
Observations Spatiales - CNRS/IPSL
Paris, France

Kon-Kee LIU,
Institute of Hydrological
and Oceanic Sciences,
National Central University Jhongli,
Jhongli, Taiwan

Teresa MADEYSKA
Institute of Geological Sciences,
Research Centre in Warsaw,
Warszawa, Poland

Stanisław MASSEL
Institute of Oceanology
Polish Academy of Sciences
Sopot, Polska

Antonio MELONI,
Instituto Nazionale di Geofisica
Rome, Italy

Evangelos PAPATHANASSIOU
Hellenic Centre for Marine Research
Anavissos, Greece

Kaja PIETSCH
AGH University of Science and Technology
Kraków, Poland

Dusan PLASENKA
Prı́rodovedecká fakulta UK
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Introduction

Processes of synchronization and interaction play a very special role in different

physical problems concerning the dynamics of the Earth’s interior; they are of

particular importance in the study of seismic phenomena, and their complexity is

strongly affected by the variety of geological structures and inhomogeneities of the

medium that hamper the course of these processes and their intensity. The attempt

to tackle these problems is a great challenge from experimental, observational and

theoretical point of view.

We present in this Monograph the theoretical and experimental results achieved

in the frame of the European Project “Triggering and synchronization of seismic/

acoustic events by weak external forcing as a sign of approaching the critical

point” (INTAS Ref. Nr 05-1000008-7889); in this Project, which was inspired by

Professor Tamaz Chelidze, our aim was to give grounds for better understanding

and interpretation of dynamical interactive processes of physical fields, both found

in the laboratory experiments as well as in field observations. One of the leading

problems – related to synchronization and interaction of different physical fields

in fracture processes � concerns triggering and initiation of rupture and displace-

ments within the Earth interior. From this point of view, the results from laboratory

studies on synchronization and interaction and those found and involved in field

observations, helped to improve the theoretical background. Reversely, some of

the presented new theoretical approaches have served to stimulate laboratory and

field studies.

The theoretical part of the Monograph deals with the synchronization and

interaction processes among the physical fields. Starting with a consideration on

complex nonlinear systems, as observed in the geophysical time series and in

laboratory experiments, like the study of frictional instabilities, we pass to the

theoretical background of triggering and synchronization processes.

In Chapter 1, the nonlinear dynamics is considered as a tool for revealing

synchronization and ordering in geophysical time series. The authors investi-

gate the case of Caucasus seismicity, where the analysis reveals highly nonlinear

structures in temporal, energy and space domains of seismic time series.
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In Chapter 2, Models of stick-slip motion: impact of periodic forcing,

the authors review the modern concept of seismic process relaying mainly on the

frictional instabilities which develop on preexisting tectonic faults; additional

external forcing provokes triggering and synchronization during stick-slip process

described by the nonlinear interaction of objects.

The interaction and synchronization processes are considered in Chapter 3,

Shear oscillations, rotations and interactions in an asymmetric continuum. In

this study the author focuses on his recently developed Asymmetric Continuum

Theory, in which synchronization may also take place between the fields shifted in

phase by p/2, e.g., between strains and rotations, as it occurs in the release and

rebound seismic processes.

In Chapter 4, processes in micro-fracture continuum are described as the

extended micro-fragmentation processes based on the double transport process.

The generalization of the Navier-Stokes transport approach, the derived nonlinear

equations and solitons are discussed.

Chapter 5, On a simple 1-D stochastic cellular automaton with avalanches –

simulation and analytical results, presents a very simple automaton for which

evolution equations may be derived and solved analytically. Next, the model is used

for the analytical derivation of the adequate Ito equation.

In Chapter 6, Ito equations as macroscopic stochastic models of geophysical

phenomena: construction of the models on the basis of time series, the authors

show that the Ito equations can be useful macroscopic models of phenomena in

which microscopic interactions are averaged in an adequate way. They arrive at this

result using the method of constructing Ito models from geophysical time series and

time series generated by cellular automata.

In Chapter 7, The importance of the privilege for appearance of long-tail

distributions, a unified description, by the privilege concept, is proposed for

origins of a wide range of observational long-tail distributions and patterns reveal-

ing a fractal form.

We trace the triggering and synchronization phenomena in the part related to

laboratory experiments: this is especially important when dealing with earth-

quake activity and the related experiments.

Based on the laboratory experiments on triggering and synchronization of

mechanical instabilities (slip events) by weak electromagnetic or mechanical forc-

ing, triggering and synchronization of stick-slip: experiments on a spring-

slider system (Chapter 8) are considered as connected with nonlinear interactions

close to the critical state. These instabilities were registered by the acoustic

emission (bursts) generated by slips in the spring-slider system. Using the tools of

nonlinear dynamics the dependence of strength of synchronization on the intensity

and frequency of forcing (Arnold’s tongue) was established. New effect of high

order synchronization of slip events, with various winding numbers has been

revealed in spring-slider system experiments.

In Chapter 9, Oscillating load-induced acoustic emission in laboratory

experiment, the authors analyze the characteristics of acoustic emissions in West-

erly granite samples (pre-fractured cores) under confining pressure of 160 MPa.
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Correlation between the acoustic response and sine load has been observed. The

acoustic activity, synchronized with the applied oscillating load, is probably due to

high strain-sensitivity in transient, unstable mode, while it almost disappears after

the “stick-slip” event.

Acoustic emission dynamics initiated by fluid infusion on laboratory scale

(Chapter 10) has been studied in heterogeneous laboratory samples subjected to an

axial load, lasting several months, and due to the repeatedly injected fluid. The

acoustic emission has drastically increased as a result of penetration of a small

volume of fluid. In the case of mechanical upload, the dynamics of relaxation

processes of acoustic emission differs significantly from that when the process

runs due to the injection of liquid. In the former case it complies with the Omori

law, while in the latter the intensity of acoustic emission passes through a strongly

marked maximum, similar to swarm seismicity.

In Chapter 11, Acoustic emission spectra classification from rock samples of

Etna basalt in deformation-decompression laboratory experiments, the authors

arrive at the cluster identification of acoustic emissions belonging to the same

experimental stage; this made it possible to discriminate the high and low frequency

events belonging to the two phases and to discover a new type of event, called

‘hybrid’, characterized by an intermediate distribution of frequencies.

In Chapter 12, Phase shifted fields: some experimental evidence, the authors

present examples of synchronization processes between the deformation and elec-

tric fields and between the acoustic waves and electric oscillations: these synchro-

nizations proceed with a phase shift of p/2 as expected due to the theoretical studies.
The final part of the Monograph presents the field observations related to some

synchronization mechanisms revealed.

In Chapter 13, Periodical oscillations of microseisms before the Sumatra

earthquake of December 26, 2004, the seismic broadband records were analyzed,

with the help of various methods, to detect the hidden periodicities, multiple

coherence effects and asymmetric low-frequency impulses. The main feature of

the synchronization between the microseismic oscillations on different seismic

stations was starting 53 hours before the Sumatra earthquake. It was found that

the main synchronizing period increases with time from values of the order of

minutes toward few tens minutes, i.e., it was detected that the period of collective

effect within the observed data has been gradually increasing.

In Chapter 14, Synchronizations of microseismic oscillations as the indica-

tors of the instability of a seismically active region the results are presented

showing that synchronization of microseismic oscillations at different stations was

detected starting several days before the Kronotskoe 05.12.1997 (M ¼ 7.8) and

Hokkaido 25.09.2003 (M ¼ 8.3) earthquakes; the synchronization intervals are

indicators of the unstable state of a seismically active region and could be regarded

as earthquake precursors.

In Chapter 15, Multifractal Parameters of Low-Frequency Microseisms, the

effects found are interpreted as an increase in the degree of synchronization of

microseismic noise on Japan’s islands after the September 25, 2003 Hokkaido

event. It could be a foreshock of an even stronger future earthquake, as follows
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from the well-known statement that synchronization is one of the signs of an

approaching catastrophe.

In Chapter 16, changes in dynamics of seismic processes around Enguri high

dam reservoir induced by periodic variation of water level were investigated

using nonlinear dynamics methods. The evidence is presented showing that an

increase of the order in dynamics of daily occurrence, as well as temporal and

energy distributions of earthquakes took place around Enguri high dam water

reservoir (Western Georgia) during the periodic variation of the water level in

the lake.

The dynamical complexity of water level variations in wells has been

analyzed in order to find strong earthquakes signatures (Chapter 17). Dependence

of dynamics on the presence of periodic components in the data records (time

series) was investigated. Modern tools of time series analysis (Lempel-Ziv com-

plexity measure and singular value decomposition technique) confirmed that these

variations are a response to different periodic, as well as non-periodic influences,

including earthquake-related strain generation in the earth crust.

In Chapter 18, Detecting quasi-harmonic factors synchronizing relaxation

processes: application to seismology, the solutions of equations corresponding

to relaxation oscillator discharge moments for stress processes reveal the “gaps”,

i.e., time intervals when discharge processes are forbidden. The discharges inside

the period of external forcing show that strong and long-time growing earthquakes

are related to wider gaps, while fast growth of stress gives birth to narrow gaps.

Chapter 19, Stacked analysis of earthquake sequences: statistical space-time

definition of clustering and Omori law behavior brings an analysis of the after-

shocks sequences. An extension of the definition of a sequence is proposed by

introducing space-time constrains for the analysis of decay rate and clustering. The

related catalogues have been analyzed even under their fractal dimension aspect,

correlated with the space and time clustering.

The final Chapter 20, Dynamical changes induced by strong electromagnetic

discharges in earthquakes’ waiting time distribution at the Bishkek test area

(Central Asia), describes the effect of releases of strong current pulses on the local

seismic regime, revealed by nonlinear dynamics approach; such experiments influ-

enced the dynamics of seismic process and increased the regularity in the waiting

times’ series.

We can conclude that the contributions included in this monograph deal with a

wide variety of topics, with emphasis on the synchronization and interactive

processes which reveal co-action or influence the dynamics of seismicity; the

laboratory experiments and theoretical new approaches presented help to under-

stand and tackle these problems.

xvi Introduction
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Theoretical Studies



Chapter 1

Nonlinear Dynamics as a Tool for Revealing

Synchronization and Ordering in Geophysical

Time Series: Application to Caucasus Seismicity

Teimuraz Matcharashvili and Tamaz Chelidze

1.1 Introduction

It is a common statement in scientific literature that the complexity of nature has

always been an inevitable problem in our efforts towards understanding spatial

forms of natural objects and temporal evolution of natural processes. “Complex”

and “complexity” are now quite popular scientific terms, though there is little

consensus on their official definitions and they still have a variety of meanings

depending on the context [Arecci, 1996; Shiner, 1999]. This is so because the study

of complexity in both dynamical and structural sense is in its infancy, being at the

same time a rapidly developing field in the forefront of many areas of science,

including mathematics, physics, geophysics, economics, biology, etc.

Natural systems and/or processes are complex mainly due to their nonlinearity,

an intrinsic property of the underlying laws conditioning the absence of deter-

minism of the Universe. The presence of this property is revealed in the specificity

of systems whose temporal behavior and spatial structures were named “complex”

[Kantz, 1997; Matcharashvili, 2000]. In order to avoid misunderstanding caused by

the tradition associating the term nonlinearity exclusively with dynamics, it should

be stressed that at present the terms nonlinearity and complexity are commonly

regarded as synonyms. This is convenient in order to address both complex

nonlinear temporal evolution and complex non-Euclidean spatial forms of natural

systems. As an inherent property, nonlinearity or complexity is revealed in the

absence of deterministic cause-effect relation observed on different spatial and

temporal scales. This property incorporates phenomena with a very broad diversity

T. Matcharashvili (*)
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of dynamical features. Generally speaking, this diversity manifests itself in a certain

kind of hierarchy of dynamical behavior, ranging from strict determinism to total

randomness. The most important is the fact that between these extremes there

are many intermediate states that reveal different degree of orderliness, such as,

e.g., periodicity, quasiperiodicity, deterministic chaos, low and high dimensional

dynamics, hyperchaos, etc. [Theiler, 1997; Kantz, 1997].

Until recently, neither a qualitative detection nor a quantitative evaluation

of these intermediate states has been possible because of the absence of a

corresponding mathematical formalism and appropriate data analysis methods. At

present, the time series nonlinear analysis universal technique has been elaborated

[Packard et al, 1980; Berge et al, 1984; Eckmann et al, 1987; Abarbanel et al, 1993;

Rapp et al, 1993; Kantz, Shreiber 1997], which often (but not always) enables us to

achieve correct qualitative and quantitative assessment of complex processes by

their dynamical characteristics.

It is necessary to mention that traditional linear methods are mostly not suitable

for complex processes of interest. This is why in different fields of science and

practice there has been an explosion of papers searching for methods aiming at

detection of peculiarities of complex systems evolution in order to achieve reliable

identification of processes by their dynamics. As the complex systems are charac-

terized by different transitions between regular, laminar, and chaotic behaviors, the

knowledge of these transitions is necessary for understanding the process. In this

respect, one of the fundamental problems is how to measure the complexity of both

local and global dynamical behaviors from the observed time series.

There are several main approaches to quantify the complexity of processes

by analyzing the measured time series [Boffetta, 2001]. Some of them have

roots in dynamical systems and fractal theory and include Lyapunov exponents,

Kolmogorov-Sinai entropy, and fractal dimensions [Eckmann et al. 1987]. These

methods are based on reconstruction and testing of phase space objects equivalent to

the unknown dynamics. The other methods stem from the information theory includ-

ing Shannon entropy [Shannon, 1948], algorithmic complexity [Shiner, 1999; Yao,

2004] etc., and are mostly based on symbolic dynamics.

For different complex systems, various approaches to complexity measurements

can be used. The common problem of many methods is the requirement of long,

high quality stationary data sets, which is not always easy to fulfill in analyses of

real natural or laboratory systems. To overcome these difficulties, new tests have

been proposed, such as recurrence plots (RP) and recurrence quantitative analysis

(RQA). These methods equip us for gaining new understanding on the complex

natural dynamics.

1.2 Overview of nonlinear data analysis methods

Most nonlinear data analysis methods are based on reconstruction and inspection of

the state or phase space of the investigated process. When the system of interest is

nonrandom, it has a property known as recurrence [Ruelle, 1994]. This means that

4 T. Matcharashvili and T. Chelidze



after some transients, the system comes back close to the same points in phase space

again and again. The character of time evolution of trajectory forms a phase space

structure or attractor of the system. The shape of attractor provides essential

information on dynamical features of the investigated process. Generally, a point

in a phase space is associated with a single state of the system which is fully defined

by a set of m dynamical variables. It is clear that to have a complete description of

the state of the dynamic system, these m physical quantities should all be measured,

at least in principle. Unfortunately, in most of experimental situations, not all (and

often only a single) physical quantities of state variable can be measured; all what

we have is an one-dimensional time series and from this series we have to learn as

much as possible about the system that generated the signal. According to Takens’

theorem it is possible to catch the essential dynamical properties of a system by a

reconstruction of its phase space by only one variable. Two- and three-dimensional

phase portraits encapsulating essential dynamical properties of the analyzed com-

plex process are used as qualitative tests of the process dynamics. They enable to

accomplish first qualitative visual inspection of unknown dynamics and uncover

general properties of the analyzed process. Qualitative analysis allows us to reveal

possible existence of specific attractors, e.g., strange ones which point to the

deterministic chaotic behavior.

Further, the phase space can be analyzed using quantitative methods.

For both qualitative and quantitative approaches, the phase space should be

reconstructed from measured (or simulated) data sets. Generally, the measurements

commonly result in discrete time series giðtÞ, where t ¼ iDt, and Dt is the sampling

rate. As a rule, the sampling rate is constant, forming equidistant time series but this

is not always the case. The time series taken at time intervals of different length, the

so-called unevenly sampled time series, are also quite common [Schreiber, 1999].

As far as system variables are coupled, a single component contains essential

information about the dynamics of the whole system [Rapp et al., 1993; Castro,

1997; Kantz, 1997]. Therefore, the trajectory reconstructed from this scalar time

series is expected to have the same properties as the trajectory embedded in the

original phase space, formed by all m state variables. Packard et al. (1980) and

Takens (1981) independently proposed the idea of using single sequence of mea-

surements to transform process dynamics into the phase space structure to gain

information on the unknown underlying dynamics from this structure. According to

the embedding theorem, there exists a one-to-one image of attractor in the embed-

ding space, if the embedding dimension is sufficiently high [Hegger, 1999]. The

idea was successfully realized after Takens proved that it is possible to reconstruct

from a single scalar time series a new attractor which is diffeomorphically equiva-

lent to the attractor in the original state space of the system under study. Essentially

two methods of reconstructions are available: delay coordinates and derivative

coordinates. Derivative coordinates were originally proposed by Packard et al.

(1980) and consist of using the higher order derivatives of the measured time series

as the independent coordinates. Since derivatives are more susceptible to noise,

this is usually not very practical for real data which are very noisy themselves.

Therefore, the method of delay coordinates was recognized as a more practical tool.

Delaying data by T helps to exclude distortions of analysed dynamics caused by
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temporal closeness of observations. The T value should be large enough to avoid

insubstantial functional dependence between data and not so large to make

them completely independent statistically. If these conditions are fulfilled, a set

of d-dimensional vectors in d-dimensional space can be reconstructed:

�XðiÞ ¼ ½xðiÞ; xðiþ TÞ; xðiþ 2TÞ;::::; xðnþ ðd � 1ÞTÞ�: (1.1)

According to Takens’ theorem, the reconstructed dynamics is equivalent to

the dynamics of the real underlying system [Packard, 1980; Takens, 1981]. Equiva-

lence of two dynamics means that their dynamical invariants (e.g., generalized

dimensions, the Lyapunov spectrum, recurrence characteristics, etc., to be shortly

described below) are identical. The delay time, T, for the reconstructions can be

calculated from the autocorrelation function or mutual information (MI) first

minimum. The averaged mutual information evaluates the amount of bits of

information shared between two data sets over a range of time delays is defined

as [Abarbanel,1993; Kantz, 1997; Cover, 1991; Kraskov, 2004]:

IðX; YÞ ¼
XN

ij

pði; jÞ log2
pði; jÞ

pxðiÞpyð jÞ ; (1.2)

where pxðiÞ and pyð jÞ are the probabilities of finding xðiÞ and xðiþ TÞmeasurements

in time series, respectively, pði; jÞ is a joint probability of finding measurements xðiÞ
and xðiþ TÞ in time series, and T is the time lag. It is important to mention that in

contrast to the linear correlation coefficient (which also can be used for delay time

calculation), MI is sensitive also to dependences which are not linear, i.e., do not

manifest themselves in the covariance. MI is zero if and only if the two random

variables are strictly independent. The MI calculation is also important as a tool to

provide information on phase space points probability distribution.

In order to define the correct value of embedding dimension de � 2da þ 1

(where de is the dimension of embedding space and da is attractor’s dimension)

one may use the so-called false nearest neighbor method [Kennel, 1992; Hegger,

1999]. The percentage of false nearest neighbors (phase points projected into

neighborhoods of points to which they would not belong in higher dimensions)

approaches zero as the dimension of the phase space increases.

Since phase space structure attractor or image of dynamics is formed, the twomost

popular ways for the quantitative evaluation of complexity of analyzed dynamics are:

quantification of the average evolution patterns of neighboring trajectories in the state

space, and/or quantification of the geometric patterns of the state space object.

Evolution of phase space trajectories could be analyzed by calculation of spectrum

of Lyapunov exponents or, as it is often done, by calculation of maximal Lyapunov

exponent lmax. Generally, Lyapunov exponents quantify the average exponential

rate of divergence of neighbouring trajectories in the state space, and thus provide

a measure of the system’s response to local perturbations [Rosenstein, 1993; Kantz,

1997]. For measured data sets, the maximum Lyapunov exponent lmax for a
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dynamical system can be determined from the equation: dðtÞ ¼ d0e
lmaxt, where d(t) is

the mean divergence between neighboring trajectories in the state space at time t and
d0 is the initial separation between neighboring points. There are several methods

[Wolf, 1985; Sato, 1987; Rosenstein, 1993] for estimating lmax which often suffer

from drawbacks that are serious for practical use, namely, the estimates of lmax are

unreliable for small data sets and need essential computational resources. Generally,

if l<0, phase trajectories are drawing together and the considered dynamical system

has an attractor in the form of a fixed point. When l¼0, the system tends to a stable

limit cycle. l>0 means that phase trajectories are moving away and such a system

may be chaotic or random (Rosenstein, 1993).

In order to characterize the unknown dynamics by the geometry of their recon-

structed phase structures, an algorithm for calculation of fractal dimensions of

phase space point sets should be used. It is known that the fractal dimension of

an attractor roughly characterizes the complexity and gives a lower bound for the

number of equations or variables needed for modeling the underlying dynamical

process. There are several such measures based on quantification of self-similar

properties of phase space objects. These measures are: the information dimension

(di), the Hausdorf dimension dH, etc. [Abarbanel, 1993; Kantz, 1997]. We shortly

describe here only the GPA method of computing correlation dimension or fractal

dimension as proposed by Grassberger and Procaccia [1983]. In spite of difficulties

in using it for real data sets, GPA remains to be the most popular and often

used method for quantifying geometrical features of phase space objects. This is

probably due to the simplicity of the algorithm [Bhattacharya, 1999] and the fact

that the same intermediate calculations are used to estimate both dimension and

entropy. The correlation sum, C(r, N), quantifies the way in which the density of

points in the state space scales with the size of the volume containing those points.

This approach is based on the idea of correlation sum. Correlation sum CðrÞ of set
of points in the vector space is defined as the fraction of all possible pairs of points

which are closer than a given distance r. The basic formula useful for practical

application is

Cðr;NÞ ¼ 2

ðN � wÞðN � wþ 1Þ
XN

i¼1

XN

j¼iþw

Yðr � xi � xj
�� ��Þ; (1.3)

where YðxÞ is the Heaviside step function, YðxÞ¼0 if x � 0 and YðxÞ¼1 if x � 0.

xi � xj
�� �� is the Euclidian norm. Points with i ¼ j are excluded. w is the Theiler’s

window for fractal systems for time series that are long enough. For small r,
CðrÞ / rn relationship is correct. Commonly, such a dependence is correct only

for the restricted range of r values, the so-called scaling region. Correlation

dimension n or d2 is defined as

n ¼ d2 ¼ lim
r!0

logCðrÞ
logðrÞ : (1.4)
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In practice, the d2 value is found from the slopes of logCðr;NÞ versus log r
curves for different phase space dimensions. In order to achieve appropriate linearity

of the relationship between log[C(r, N)] and log r, one has to determine local slopes,

or the so-called ‘‘local scaling exponents’’[Kantz, 1997]. The true correlation

dimension of an unknown process is the saturation value of d2, which does not

change by increasing phase space dimension. If saturation does not take place, the

correlation dimension is infinitely large which is typical for random processes.

For a correct analysis it is necessary to have data sequences that are long enough,

at least N � 10d=2, where N is a length of time series and d is the dimension of

attractor [Abarbanel, 1993]. The three dimensions mentioned above are related by

d2< di< dH, with equality when the points in the state space are distributed

uniformly over the attractor. In spite of popularity of d2 calculation method,

findings by GPA must be interpreted with great care as it is well known that linear

stochastic processes can also mimic low-dimensional dynamics [Theiler et al. 1992;

Rapp et al., 1993]. In other words, the saturation of a correlation dimension and the

existence of positive Lyapunov exponents cannot always be considered as a

proof of deterministic chaos, predictable in sense of patterns, which is closest to

quasi-periodic dynamical regime [Rapp et al. 1993; Kantz and Shreiber, 1997].

Since linear correlations lead to many spurious conclusions in nonlinear time series

analyses, it is important that the obtained results be verified using the so-called

surrogate data approach. This is a method to test the null hypothesis that the

analyzed time series are generated by a specific process with the known linear

properties [Theiler et al., 1992]. It should be stressed again that the above

phase space measures have strict restrictions in the sense of time series length

and are mostly relevant for low dimensional or deterministically chaotic systems.

When the dynamics of the investigated process is more complex or when

dimension of underlying attractor is moderately large, say d2>5, all the results of

dimensional analysis on finite amount of real data series are not grounded well

enough [Schreiber, 1999]. Moreover the real data series are often very noisy,

containing measurement noise as well as dynamical noise (noise interacting with

dynamics), and then the conventional estimates fail as well. Therefore, when we

deal with complex dynamics, a less ambitious and more realistic goal commonly

applied is to search for the inherent nonlinearity of the processes, or to rank them by

the extent of nonlinearity. The practical importance of this statement becomes clear

in the light of known facts that in most cases the dynamical behavior of natural

scale-invariant processes is non random, revealing nonlinear structure, while valid

evidences of deterministic chaotic type of dynamics are very seldom [Theiler,

1997; Marzocchi et al., 1997; Goltz, 1997].

The above-mentioned method of surrogate data equips us for testing the non-

linear structure of complex dynamics (Theiler, 1992). The surrogate data is inher-

ently a stochastic signal which mimics certain statistical properties, such as

temporal autocorrelation or Fourier power spectra of the original signal. The

surrogates can be constructed from the original time series on the basis of different

null hypotheses. The three types of most often used surrogates address the three

main hypotheses: temporally independent noise, linearly filtered noise, and
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nonlinear transformation of linear filtered noise. So whenever we try to quantify the

degree of nonlinearity, the results of calculation of the above measures should be

compared with the similar quantities for surrogate data sets. Phase randomized

surrogate sets (obtained by destroying the nonlinear structure through randomiza-

tion of the phases of a Fourier transform of the original time series and following

invert transformation) are often used to test the null hypothesis that the time series

are linearly correlated with Gaussian noise [Theiler et al., 1992]. Also a Gaussian

scaled random phase (GSRP) surrogate set can be generated to address the null

hypothesis that the original time series is a linearly correlated noise that has

been transformed by a static, monotone nonlinearity [Rapp et al., 1993, 1994]. The

GSRP surrogates are generated in a three-step procedure. At first, a Gaussian set of

random numbers is generated, which has the same rank structure as the original time

series. After this, the phase randomized surrogates of these Gaussian sets are con-

structed. Finally, the rank structure of original time series must be reordered accord-

ing to the rank structure of the phase randomized Gaussian set [Theiler, 1992].

Generally, these two methods of generation of surrogates are based on shuffling

of the original data set but, in the case of Gaussian scaled random phase surrogates,

the controlled shuffles [Rapp et al., 1994] can give more precise and reliable results

than the unstructured shuffles of the random phase surrogates.

Commonly, for testing the null hypothesis, d2 is used as the discriminating

metric. There are several ways to measure the difference between the discriminat-

ing metric measure of the original (given by Morig) and the surrogate (given by

Msurr) time series.

The most commonly used measure of the significance of the difference

between the original time series and the surrogate data is given by the criterion:

S ¼ jhMsurri-Morigj/ssurr, where ssurr denotes standard deviation of Msurr. The

details of the procedure, as well as an analytic expression for DS, the uncertainty

in S, are described in Theiler et al. [1992].

Alternatively, the Monte Carlo probability can be used, defined as:

PM ¼ (number of cases M � Morig)/(number of cases)

where PM is an empirical measure of the probability that a value ofMsurrwill be less

than Morig. It is particularly appropriate when the number of surrogates is small, or

when the distribution of values of M obtained with surrogates is non-Gaussian

(Rapp et al. 1994).

For rejecting the null hypothesis, the Barnard and Hope nonparametric test can

be used (Rapp et al. 1994). With this criterion, the null hypothesis is rejected at a

confidence level pc¼1/(Nsurrþ1), if Morig<Msurr for all the surrogates.

One of the serious problems in real data analyses is the influence of noises. It is

preferable to use the so-called nonlinear noise reduction (which in fact is phase

space nonlinear filtering) instead of common linear filtering procedures. The latter,

as it is well known, may destroy the original nonlinear structure of analyzed

complex processes [Hegger and Kantz 1999; Schreiber, 2000]. Nonlinear noise

reduction relies on the exploration of reconstructed phase space of the considered
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dynamical process instead of frequency information of linear filters [Hegger and

Kantz, 1999; Schreiber, 1993; Kantz and Schreiber, 1997].

As it was many times pointed out above, most methods of analysis need rather

long and stationary data sets, which is commonly not typical of the measured time

series. This was a strong impetus for a further development of new techniques to get

an insight into the complex processes, having not very long and rather noisy

observable time series. For this purpose, several measures of complexity, mostly

based on a symbolic dynamics approach, have been proposed, such as Renyi

entropies, the effective measure complexity, the e and Lempel-Ziv complexity

(LZC) measure, etc. [Lempel, 1976; Wackerbauer, 1994; Rapp, 2001]. The LZC

is especially suitable for relatively short real data sets because is not so demanding

as to the time series length as other methods [Zhang, 1999; Matcharashvili, 2001].

It is necessary to mention the approach based on the study of attractor’s organi-

zation, or testing of topology of phase space images of unknown dynamics. This

technique, oriented on exploration of phase space structure or image of dynamics, is

the method of recurrence plots (RP) [Eckmann et al., 1987]. Let us recall here that if

the dynamical system has any deterministic structure, an attractor appears in the

state space. As it was already mentioned, the attractor is a set of points in phase

space, towards which a dynamical path will converge. Again, the recurrence is a

fundamental property of nonrandom dynamical systems, the state of which,

although exponentially diverges under small disturbances, but after some time the

system will come back to a state that is arbitrarily close to a former state. Recur-

rence plots visualize such a recurrent behavior of dynamical system. Real processes

are usually characterized by complex dynamics to be embedded in high-dimen-

sional phase spaces. RP enables to investigate structure in these high-dimensional

phase spaces through a two-dimensional representation of its recurrences. It is most

important to say that the recurrence plot method is effective for nonstationary and

rather short time series [Gilmore, 1993, 1998].

Generally speaking, the recurrence plots are designed to locate hidden recurring

patterns and structure in time series and are defined as N � N symmetric matrix:

Ri; j ¼ Yðei � �xi � �xj
�� ��Þ; i; j ¼ 1; :::;N; (1.5)

where~xi; j are phase space vectors reconstructed using Takens’ time delay method.

Insofar, as the RP is based on Takens’ delay-coordinate embedding, when this

procedure is correctly carried out, the dynamical invariants of the true and recon-

structed dynamics are identical. Therefore, it is natural to assume that the RP of

a correctly reconstructed trajectory bears similarity to RP of the true dynamics.

In fact,~xi stands for the point in phase space at which the system is situated at time i,
ei is a predefined cut-off distance, YðxÞ is the Heaviside function. The cut-off

distance defines a sphere centered at ~xi. As far as recurrence of the phase space

trajectory to a certain state is a fundamental property of deterministic dynamical

system [Argyris, 1994; Ott, 1993; Marwan, 2002], the trajectory in the recon-

structed phase space returns at time i into the e-neighborhood of where it was at
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time j (i.e. if~xi is closer to~xj than the cut-off distance) Ri;j ¼ 1 and these two vectors

are considered to be recurrent. Otherwise Ri;j ¼ 0. According to Eckman et al.

[1987], the Ri;j values can be visualized by black and white dots, but often the

recurrence plot relates Ri;j distances to a color, e.g., the longer the distance, the

“cooler” the color. Thus, the recurrence plot is a solid rectangular plot consisting of

pixels whose colors correspond to the magnitude of data values in a two-dimen-

sional array and whose coordinates correspond to the locations of the data values in

the array.

The black points indicate the recurrences of the investigated dynamical system

revealing their hidden regular and clustering properties. By definition, RP is

symmetric and has black main diagonal (the line of identity) formed by distances

in matrix. In order to understand RP it should be stressed that it visualizes the

distance matrix which represents autocorrelation in the series at all possible time

(distance) scales. As far as distances are computed for all possible pairs, on the RP

plots the elements near the diagonal correspond to short range correlation, whereas

the long range correlations are revealed by the points distant from the diagonal.

Hence if the analyzed dynamics (time series) is deterministic (ordered, regular),

then the recurrence plot shows short line segments parallel to the main upward

diagonal. At the same time, if dynamics is purely random, the RP will not present

any structure at all. One of the crucial points in RP analysis is the selection

of cutoff distance e or radius. If e is selected too low no recurrent point will be

found. At the same time, it cannot be set too high as then every point will be

assumed as recurrent. Exhaustive overview on this subject can be found in Zbilut

[1998], Marwan [2003].

The primordial aim of RP testing was the visual inspection of structures located

in high dimensional phase spaces where the above-mentioned methods are useless,

especially when we deal with real data sets. The view of recurrence plots provides a

unique possibility to observe time evolution patterns of phase space trajectories,

both at large and short scales. According to Eckmann et al. [1987], by analysing the

large scale patterns or typology, recurrence plots can be characterized as homoge-

neous (dynamics with uniformly distributed characteristics), periodic (dynamics

with distinct periodic components), drift (dynamics with slowly varying para-

meters) and/or disrupted (dynamics characterized by abrupt changes). By small

scale inspection, patterns (or texture) of recurrence plots can be characterized as

single dots, diagonal lines, vertical lines and horizontal lines. The exact recurrent

dynamics causes long diagonal lines separated by a fixed distance. A large amount

of single isolated scattered dots and the vanishing amount of lines is typical for

heavily fluctuating dynamics under the influence of non correlated noises (by the

way, in this case insufficient dimension of embedding space is not excluded). The

non regular occurrence of short as well as long diagonal lines is characteristic

for low-dimensional chaotic processes, and the non regular occurrence of extended

uniform areas corresponds to irregular high-dimensional dynamics. In a more

general sense, the line structures in RP exhibit local time relationship between the

current phase space trajectory segments. The stationarity of the whole time series

requires that the density of line segments be uniform.
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As far as RP was developed for single data sets, Zbilut et al. [1998] have

expanded it by considering two different time series. The cross-recurrence between

two series, xi and yi, is defined as CRi;j ¼ Yðei � �xi � �xj
�� ��Þ. Here, the two time

series are embedded in the same phase space. The representation is analogous to

RP, and it is called a cross-recurrence plot (CRP) [Marwan, 2003].

Qualitative patterns of unknown dynamics presented as fine structure of RP or CRP

are often too difficult to be considered in detail. Zbilut andWebber [Zbilut, 1992] have

developed a tool which quantifies the structures in RPs, namely, the Recurrence

Quantitative Analysis (RQA). They define measures using the recurrence point

density, the length of diagonal, and vertical structures in the recurrence plot, the

recurrence rate, the entropy of recurrent points’ distribution, etc. Presently at least

8 different statistical RQA values are known [Zbilut, 1992; Ivanski, 1998; Marwan,

2003], practical meaning of which is not always quite clear. Computation of these

measures in small windows moving along the main diagonal of the RP reveal the time

dependent behavior of these variables making it possible to identify the unknown

dynamical patterns in time series [Zbilut, 1992; Marwan, 2002].

Here we will briefly touch only main RQA statistical values. The first of these

statistics, termed % recurrence (%REC), is simply the percentage of points on the

RP that are darkened or in other words those pairs of points whose spacing is

below the predefined cut-off distance ei. It quantifies the number of time instants

characterized by a recurrence in the signals’ interaction: the more periodic the

signal dynamics, the higherthe (%REC) value. Stochastic behavior causes very

short diagonals, whereas deterministic behavior causes longer diagonals.

The second RQA statistic is called % determinism (%DET); it measures

the percentage of recurrent points in a RP that are contained in lines parallel to

the main diagonal. The main diagonal itself is excluded from these calculations

because points there are trivially recurrent. Intuitively, %DET measures how

‘‘organized’’ the RP is. This variable discriminates between the isolated recurrent

points and those forming diagonals. Since a diagonal represents points close to each

other, successively forward in time, DET also contains the information about the

duration of a stable interaction: the longer the interactions, the higher the DET

value. Stochastic and heavily fluctuating data cause none or only short diagonals,

whereas deterministic systems cause longer diagonals.

The third often used RQA statistics, called entropy (ENT), is closely related to

%DET. ENT is Shannon information entropy of line distribution measured in bits

and is calculated by binning the diagonal lines according to their lengths and using

the following formula:

ENT ¼ �PN
k¼1 Pk log2 Pk

where N is the number of bins and Pk is the percentage of all lines that fall into bin k.
In other words, Pk is defined as the ratio between the number of k-point long
diagonals, and the total number of diagonals. ENT is measured in bits of informa-

tion, because of the base-2 logarithm. Thus, whereas DET accounts for the number

of the diagonals, ENT quantifies the distribution of the diagonal line lengths.
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The more different the lengths of the diagonals, the more complex the deterministic

structure of the RP. A more complex dynamics will require a larger number of bits

(ENT) to be represented.

The fourth RQA statistics, termed TREND, measures how quickly a RP goes

away from the main diagonal. As the name suggests, TREND is intended to detect

nonstationarity in the data. The fifth RQA statistics is called length of the maximal

deterministic line (MAXLINE) and is equal to the reciprocal of the longest line

length found in the computation of DET, or 1/linemax. Eckmann, Kamphorst, and

Ruelle claim that line lengths on RPs are directly related to the inverse of the largest

positive Lyapunov exponent [Eckmann et al., 1987]. Relatively small linemax

values are therefore indicative of chaotic behavior. In a purely periodic signal,

there is an opposite extreme, lines tend to be very long, so MAXLINE is very small.

The RQA technique gives a local view of the studied time series, based on the

single distance pairs in phase space and is suited for the detection of changes of

analyzed dynamics. This method is the most comfortable for qualitative discrimi-

nation between signals and random noise.

1.3 Investigation of dynamics of complex natural

process: Caucasus seismicity

The significant variability exhibited both in time and in space makes the problem of

identification and quantification of geophysical phenomena extremely complicated.

Therefore, the best way to understand dynamical features of complex geophysical

processes is to analyse the measured data sets using modern nonlinear methods.

Earthquakes are expression of the continuing evolution of the planet Earth and of

the deformation of its crust. Dynamics of seismic processes is viewed as extremely

complicated, so that the level of “turbulence” of the lithosphere exceeds that of the

atmosphere [Kagan, 1992, 1994, 1997].

During more than one hundred years of instrumental observations, several

important characteristics of spatial, temporal and energetic distributions of earth-

quakes have been revealed [Scholz, 1990; Keilis-Borok, 1990; Turcotte, 1992;

Goltz, 1997; Matcharashvili, 2000; Rundle, 2000]. Nevertheless, the question of

dynamics of seismic processes remains the subject of intense discussions because it

is directly tied with the problem of earthquake prediction. Opponents of earthquake

prediction [Kagan, 1992, 1994, 1997; Kanamori, 2001; Geller, 1999; Ben-Zion,

2008 etc.] regard seismic processes as completely random while proponents assume

them as complex and high-dimensional though not random [Main, 1997; Wyss,

1997; Chelidze, 1997; Knopoff, 1999]. Indeed, completely random processes are

unpredictable on any spatial and temporal scales. On the other hand, in processes

with nonrandom dynamical structure there always exist specific spatial and tempo-

ral scales for which the system is close to deterministic, i.e., it is predictable at least

for a not very far future. From this point of view, if seismic process has a

nonrandom structure it could not be regarded as unpredictable. Of course, it is
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clear that predictability in this sense does not necessarily mean “real” forecast of

every hazardous event in practically meaningful time scales. At present, evidence

of nonrandom structure of seismicity has mainly scientific importance because it

gives ground to efforts aimed at finding predictive markers. This is also important

for modern ideas on possible control of practically unpredictable seismic processes.

To bring some light into this problem, we consider dynamic structure of seismic

process in Caucasus.

As mentioned above, one of the most popular approaches to the problem of

identification of patterns of complex dynamics, including seismicity, is based on the

evaluation of nonlinear structures (or, just the same, of nonlinear structures of appro-

priate time series) [Theiler et al., 1992; Rapp et al., 1993]. In this way, it is possible to

achieve reliable detection of dynamical regime(s) of seismic process by calculating

their measurable characteristics. These characteristics can be calculated for a general

seismic process as well as prior to and after strong earthquakes. This is important in

search of possible earthquake predictive dynamical markers. It is known that from

both, qualitative and quantitative points of view, seismological data bases are as a rule

not sufficient for proper nonlinear evaluation of lithospheric dynamics, even for

relatively low-dimensional processes. Therefore, similar to other fields, evaluation

of nonlinear structure of geophysical data seems to be a more appropriate approach.

In order to answer the above question on the dynamical characteristics and

nonlinear structure of earthquake generation it is necessary to investigate dynami-

cal properties of seismic processes in all three domains: energetic, spatial and

temporal. For this purpose, “time series” of inter-event time intervals (waiting

times), magnitude sequences and inter-event distances, have been analyzed for

earthquakes in Caucasian region. Analyzed were also similar time series of smaller

regions of Greater Caucasus and Javakheti in1962–1993. All these time series were

taken from the earthquake catalogue for the Caucasus and the adjacent territories of

Northern Turkey and Northern Iran for the 1962–1993 time period (Seismological

Data Base of Institute of Geophysics, Tbilisi, Georgia).

It was shown that despite the fact that the size and temporal distributions

of earthquakes obey a power law, they are dynamically quite different. The

magnitude distribution of earthquakes in the Caucasian region is undoubtedly

high-dimensional, d2 as a rule is larger than 8 (d2 > 5 is assumed as a high

dimensionality threshold) [Sprott, 1997]. According to our results as well as reports

of other authors [Sadovsky, Pisarenko, 1991; Korvin, 1992] the fractal dimension

for the distribution of inter-earthquake distances is low (d2 < 2). Most interesting is

that the waiting times distribution reveals an obviously low dimensional nonlinear

structure (d2 of the order of 1.6–2.5 and lmax of the order of 0.2–0.7), although it

can not be recognized as a deterministic chaos [Matcharashvili, 2000] (see Fig. 1.1).

The low dimensionality of earthquakes temporal distribution is in complete agree-

ment with earlier results for other parts of the globe [Goltz, 1998].

The next main goal of investigation was a qualitative evaluation of earthquakes0

time and size distribution peculiarities, taking place before and after strongest

regional events as well as quantitative discrimination of dynamical characteristics

preceding and following largest regional earthquakes.

14 T. Matcharashvili and T. Chelidze



So as a next step on the way to a better understanding of the underlying dynamics

of earthquake generation, we have undertaken comparison of the properties of

waiting time distribution before and after large events. For this purpose we have

considered waiting time sequences of a seismic catalogue, separately before and

after the largest events, using the above-mentioned tests such as correlation dimen-

sion, Lyapunov exponent calculation as a measure of non-linearity.

We investigated dynamical characteristics of seismic processes before and after

four earthquakes of the Caucasian region (Daghestan, Paravani, Spitak and Racha)

that were the strongest in the considered period.

According to the results of our analysis, the general properties of dynamics

of earthquakes temporal distribution before and after the largest regional events

do not indicate a qualitative difference from the integral dynamics obtained by

consideration of time series from the whole original catalogues [Matcharashvili,

2002, 2007]. Indeed, correlation dimensions of all the considered waiting time

sequences from the original catalogue (containing all independent events and

aftershocks above the threshold magnitude), both preceding and following the

largest events in the Caucasus, converge to a limit value. At the same time it is

important that these values are not coinciding. Consequently, as long as all the

investigated time series have correlation dimension lower than the low dimensional

threshold (d2 < 5) [see also Goltz, 1998], it can be deduced that the temporal

distribution of earthquakes is characterized by a low-dimensional dynamics before,

as well as after the largest regional events. At the same time, in the energetic

domain earthquakes’ magnitude distribution remains high-dimensional before and

after strong events. As it was stressed above, the results of dimensional calculations,

especially when a low-dimensional process is detected, should be verified using

special methods.

While testing low-dimensional interevent time sequences, we have typical

problems, always encountered in testing real, usually short and noisy time series.

As it was already mentioned, in order to overcome discriminating problems, as in

the case of high-dimensional processes, one has to test time series for the evidence

of nonlinearity [Theiler and Prichard, 1997]. One additional reason why this approach

becomes popular, is that from the practical point of view the goal of detecting

nonlinearity in low dimensional data is easier than a confident identification of

chaotic dynamics [Theiler, 1992].
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It was found that in all cases the time interval sequences obtained from the

original catalogue above the threshold magnitudes before and after the largest

events reveal evidence of a nonlinear structure. In other words, the null hypothesis

that these sequences are generated by linearly correlated noise or by static mono-

tone nonlinearity should be rejected. The significance of differences of S-measure

of natural sequences before and after the earthquakes considered from the appro-

priate phase randomized (SPR) and Gaussian scaled random phases (SGSRP) surro-

gates are significant at p < 0.005 confidence level; thus the significance of

differences for waiting time sequences before and after Dagestan (M ¼ 6.6)

earthquake are SPR ¼ 55.6 � 0.27, SGSRP ¼ 15.9 � 0.20 and SPR ¼ 50.5 � 0.15,

SGSRP¼ 17.1� 0.13; for Paravani (M¼ 5.6) earthquake SRP¼ 51.1� 0.21, SGSRP¼
16.2 � 0.13 and SPR ¼ 64.2 � 0.27, SGSRP ¼ 11.5 � 0.17; for Spitak (M ¼ 6.9)

earthquake SPR¼ 49.2� 0.12, SGSRP¼ 11.4� 0.12 and SPR¼ 52.2� 0.27, SGSRP¼
15.2� 0.19; for Racha (M¼ 6.9) earthquake SPR¼ 57.6� 0.23, SGSRP¼ 16.3� 0.23

and SPR ¼ 51.5� 0.17, SGSRP ¼ 18.4� 0.11.

Besides, for a nonlinear structure testing, the RQA method is suitable for short

seismic data sets. As shown in Figs. 1.2 and 1.3, the extent of the order in magnitude

distribution of Caucasian earthquakes before and after M6.9 Racha earthquake has

been noticeably changed. Strictly speaking, the energetic distribution becomes

more regular while the temporal distribution becomes essentially irregular. It is
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worth to mention that a decrease of the order in earthquake temporal distribution is

distinctive for both strong Racha earthquakes, M6.9 and its aftershock M6.2. At the

same time, an increase of the order in energetic distribution is not so clear.

To understand the above-mentioned differences in the correlation dimension

values before and after largest earthquakes, we used a sliding windows technique.

We considered a sequence of 6695 events of Paravani earthquakes inter-event time

intervals. Here No ¼ 5300 is the ordinal number of the time interval which directly

precedes the largest earthquake. We have calculated d2 for 1000 event sliding

windows with a step of 50 events starting with event No ¼ 3200 up to event No ¼
5800. Hence, the first window consists of time interval sequences between

earthquakes in the range of ordinal numbers 3200–4200. As shown in Fig. 1.4,

values of d2 decrease for the windows following the largest event. The decrease

begins when a sliding window contains about 20 inter-event time intervals after the

largest event, and becomes significant when 40–50 such events are included in the

sequence. Note that the window 4310–5310, like the window 4300–5300, reveals

the background value of a correlation dimension for waiting time sequences

before the largest earthquake. It seems doubtful to expect that such an essential

change in the dynamical properties of the considered sequence could have been

caused by the addition of so few new data, unless there is a hidden regularity in the

sufficiently long waiting time sequence containing data preceding the largest event.

Next we used RQA approach to further quantify dynamical changes in earth-

quakes energetic and temporal distributions in Javakheti region. As shown in

Figs. 1.5 and 1.6, dynamical changes in earthquakes energetic and spatial distribu-

tions detected before and after Paravani earthquake are very similar to those found

before and after the Racha strong earthquake.
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Indeed, magnitude distribution before the M5.6 earthquake becomes more

regular while temporal distribution becomes noticeably irregular. Also, similar to

the Racha earthquake, changes were observed before the M5.1 earthquake which

may be regarded as an aftershock; namely a decrease in the order of temporal

distribution, while an increase of the order in magnitude distribution is not clear. It

is interesting to mention that the same situation was observed for M5.3 earthquake

preceding the main M5.6 event.

These results indicate that measuring of dynamical characteristics of seismic

time series may provide markers having in future a precursory value which

may help in developing modern earthquake prediction approaches [Matcharashvili

et al. 2002].

Thus it is clear that seismicity in two domains (temporal and spatial) out of three

(energetic, temporal and spatial) reveals low-dimensional nonlinear structure. This

and similar results lead to understanding that in spite of extreme complexity, the

processes related to the earthquake generation are characterized by some internal

dynamic structure and thus are not completely random [Smirnov, 1995; Goltz,

1998; Rundle et al. 2000; Matcharashvili et al. 2002]. Despite the proofs that

seismic activity is a non-random process, the physics of internal or external factors

involved is still poorly understood, but it can be asserted that the general problem of
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earthquake prediction and/or earthquake triggering, one of the most challenging

targets of nowadays science, should not be further considered as an “alchemy of

present time” [Geller, 1999]. In other words, the quest for earthquake predictive

markers or triggering factors should be recognized as obviously difficult, though

scientifically well grounded task related to the search for determinism in the

complex seismic process.
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Chapter 2

Models of Stick-Slip Motion: Impact

of Periodic Forcing

T. Chelidze and N. Varamashvili

Abstract The modern concept of seismic processes relays mainly on the model of

frictional instability, which develops on the preexisting tectonic fault, in contrast to

the earlier assumptions on the brittle fracture of the crust material attaining the

critical stress.

The Ditrich-Ruina equation for shear stress describes almost all main features of

slip, obtained in numerous experiments: it shows that the frictional force is not a

constant, but is time-dependent and undergoes complex evolution during the slip

event. The equation is nonlinear, and consequently the slip process should manifest

such properties as high sensitivity to weak external forcing, hysteresis effect, etc. It is

quite natural that the instabilities of friction excite vibrations, including acoustic

emission (AE). The AE is expected to occur during slips and be absent during stick

phase. We presume that acoustic measurements may reveal the fine details of friction

mechanism, which are beyond the reach of direct displacement-measuring techniques.

The additional forcing, which can be much smaller than the main driving force,

may provoke triggering and synchronization during stick-slip process, which means

that these phenomena are invoked by nonlinear interaction of objects. An attempt to

compile and analyze the rate- and state slip equation taking into account the

periodic forcing is made.

2.1 Introduction

It is well known from the surface physics that the friction (adhesion) force Ff is a
result of intermolecular and intersurface forces of mainly electromagnetic origin:

(i) purely electrostatic (Coulomb) forces, (ii) polarization due to the induced dipole

moments, and (iii) quantum-mechanical forces. Friction results in transmission and
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dissipation of energy. Kinetic energy of motion is converted into thermal energy

mostly by acoustic processes. Instability in sliding occurs when the friction pumps

to the system more energy than can be dissipated by the stationary process.

The modern concept of seismic process relays mainly on the model of frictional

instability, which develops on the preexisting tectonic fault, in contrast to the

earlier assumptions on the brittle fracture of the crust material at attaining

the critical stress. The first simple friction models suggested by Amonton and

Coulomb were refined by Hubert and Rubbey (1979), Brace and Byerlee (1966),

Burridge and Knopoff (1967), Dieterich (1979) and Ruina (1983): the capsule

story of friction models, showing main stages of development in this area, is

presented in Table 2.1.

Here t and sn are shear and normal stresses, respectively, m is the friction

coefficient, c is the adhesion term, Pp is the pore pressure, V and V0 are current

and initial velocities of drag, Y is the state variable, D0 is the critical slip distance,

and a and b are constants.

The last expression for shear stress describes almost all main features of slip,

obtained in numerous experiments: it shows that the frictional force is not a

constant, but is time-dependent and undergoes complex evolution during slip

event. The equation is nonlinear, and consequently the slip process should manifest

such properties as high sensitivity to weak external forcing, hysteresis effect, etc.

2.2 Main details of experimental stick-slip results

Depending on conditions (spring stiffness k, velocity of drag V, normal stress sn, slip
surface state y), three main types of friction are observed by displacement recording:

stick-slip, inertial regime, and stable regime. Figure 2.1 shows spring deflection dx,
top plate position x and its instantaneous velocity V during stick-slip motion.

The stick-slip regime is observed at relatively low velocities V and low stiffness.

At higher V, the transition to inertial periodic oscillations occurs; at still higher Vwe

have the stable sliding with fluctuations.

The single slip events were investigated in detail by Nasuno et al (1997): after

application of tangential force, the velocity of slip drastically increases and then

decreases (Fig. 2.2).

The instantaneous frictional force m(t)¼ Ff /Mg during the slip event experi-

ences hysteresis (Fig. 2.3): during the stick stage, m increases until the static

Table 2.1. A capsule story of friction models:

Time Arrow # Amonton, 1699 t ¼ snm
Coulomb, 1773 t ¼ c þ snm
Hubbert and Rubbey, 1959 t ¼ c þ m(sn � Pp) ¼ c þ smeff
Brace and Byerlee, 1966 t ¼ s0(m0 þ a ln(V/Vo) þ bln( VY/D0))
Burridge-Knopoff, 1967 dY/dt ¼ 1 � (VY/D0)
Dietrich, 1972,

Ruina, 1983
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threshold ms¼ Fs/Mg is attained, and the slip begins. During slip, m decreases to

its kinetic value; after this, at the deceleration stage it drops to the initial value m0
(Nasuno et al. 1998).
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Mean period of stick-slip motion T depends on the drive velocity V and spring

stiffness k; T � 1/V at low V and T decreases with increase of k (Fig. 2.4; Nasuno
et al. 1998).

For understanding the physics of stick-slip motion it is very interesting to note

that each slip is connected with relatively slow vertical displacement of Dv of the

(top) sliding plate relative to the fixed lower plate; it is evident that the maximum of

Dv precedes the maximum of tangential velocity Vt. This means that before the slip

in horizontal direction, the top plate is rising up; evidently, the plate is ascending

and the large asperities, which prevent slip and the slip displacement, occur

at reaching the critical number of contact points (threshold). This suggestion is

confirmed by the above-mentioned experimental evidence of small vertical dis-

placement preceding the slip event (Fig. 2.5), which means that the number of

contact points n decreases to some threshold value nc making possible the
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macroscopic tangential displacement. The mathematical formalism, similar to that

of percolation model of fracture, could be developed for the slip process (Chelidze,

1986). It seems that the percolation theory, namely, the model of percolation for

tangential shift of contacting fractal surfaces, may explain the transition of friction

coefficient from the static to kineticvalue at attaining some critical value of contact

points of shearing fractal surfaces. In Chelidze (1986) the guess is given about a

possibility of applying the percolation model of fracture to tectonic fault dynamics.

It is quite natural that the instabilities of friction excite vibrations, including

acoustic emission (AE). The reverse effects are also observed, namely, vibrations

affect the friction (Akay, 2002; Chelidze, Varamashvili et al., 2002; Chelidze and

Lursmanashvili, 2003; Chelidze, Gvelesiani et al., 2004; Chelidze, Matcharashvili

et al., 2005; Chelidze and Matcharashvili, 2007; Chelidze, Lursmanashvili et al.,

2006). We presume that acoustic measurements may reveal the fine details of

friction mechanism, which are beyond the reach of direct displacement-measuring

techniques. The situation is similar to brittle fracture studies, where AE is much

more sensitive to micro-fracturing than traditional stress-strain experiments.

In this connection, we presume that the so-called stable sliding is not stable at all,

but involves fast micro-events that can not be registered by (slow) displacement

sensors.

2.3 Mathematical models of friction

The mathematical expressions for the shear stress t, formulated by Dietrich and

Ruina (Table 2.1) are in agreement with the majority of observed data on stick-slip.

It is shown that for some critical stiffness kc the system undergoes Hopf bifurcation,

leading finally to instability. The solution of the system in this case demonstrates all

details, characteristic for (chaotic) nonlinear dynamics (Becker, 2000).

An analysis of the experimental data obtained by investigating of spring-slider

system motion has led to empirical law, named rate- and state-dependent friction
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law (Dieterich, 1979; Ruina, 1983). When the sliding velocity is changed in

laboratory friction experiments, two effects are seen to occur to the dynamic

coefficient of friction (Bureau et al, 2000; Kanamori and Brodsky, 2004; Boettcher

and Marone, 2004). First, there is a “direct” effect that opposes the change in

velocity. Hence, if the velocity is increased, the dynamic friction coefficient

will correspondingly rise (Fig. 2.2). If the sliding velocity is reduced, the dynamic

friction coefficient will drop. This can be described as “rate-dependent friction”.

The second effect refers to the fact that, after abrupt changes in velocity, the

frictional resistance evolves to a new steady state over a characteristic slip distance

D0; this is termed “evolution effect”.

The rate and state dependent friction can be quantified as follows (Dieterich,

1979; Ruina, 1983; Kanamori and Brodsky, 2004; Scholz, 1998).

t ¼ so mo þ a ln
V

Vo

� �
þ b ln

Voy
Do

� �� �
; (2.1)

where m0 is the initial coefficient of friction, V is the new sliding velocity, V0 is the

initial sliding velocity, y is the state variable, D0 is the critical slip distance, and a
and b are two experimentally determined constants.

The state variable varies according to:

dy
dt

¼ 1� Vy
Do

(2.2)

In the spring-slider model, dependence of upper sliding plate velocity on time

can be graphically presented as shown in Fig. 2.6:

For qualitative analysis of processes, in the transient area between stages 1 and

2 (near stage 2), the equation of motion for this system, under the assumption

of yV
D0

���
��� � 1, can be written as (Kanamori and Brodsky, 2004):

so mo þ a ln _xþ b ln yo � b

Do
x

� �
¼ �kxþ kxo; (2.3)

where _x represents displacement, x0 the spring elongation, and k the spring

stiffness.

By integration of (2.3) for the initial conditions x ¼ 0 and _x ¼ _x0 for t ¼ 0, we

obtain:

V

1 2

t
Fig. 2.6 Velocity vs. time

during a stick-slip motion
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_x ¼ 1

_xo
� Ht

a

� ��1

where H ¼ � k

so
þ b

Do
(2.4)

From (2.4) it follows that the sliding velocity spontaneously increases at the time

tf ¼ a
H ð1= _x0Þ: That is system’s destabilizing (relaxation) time. We can say that tf is

a period of stick-slip for our system.

In the case of addition of periodical normal forcing to the main driving force, we

can write the equation of motion for our system in the following way (Bureau et al.

2000; Varamashvili and Simonishvili, 2005; Varamashvili, 2006; Putelat et al.,

2007):

m
d2x

dt2
¼ kðVt� XÞ �W mo þ ao ln

V

Vo

� �
þ bo ln

yVo

Do

� �� �
(2.5)

dy
dt

¼ 1� yV
Do

� aW

bW
y (2.6)

whereW ¼ Woð1þ e cosðotÞÞ; W0e is the amplitude of forcing, o is the frequency

of forcing, and T ¼ 2p
o is the period of forcing.

In the received system we will solve equation (2.6) to obtain T and we will insert

the obtained solution into equation (2.5). For definite parameters from equation

(2.5) we obtain the following equation:

€xþ 0:1t _xþ 100t _xþ 100x� 45� 2 ln 1þ sec
t

4

� �2� �
¼ 0 (2.7)

We solved equation (2.7) using numerical method and the solution is presented

in graphic form in Fig. 2.7.

In Fig. 2.7, on the X axis is the current time, and on the Y axis the displacement.

From this figure it is evident that for the given parameters the displacement is

periodic and decreasing. In fact, experiments show that the stick-slip process has a

quasi-periodic character. To simulate the quasi-periodic process we enter periodic

normal pressure into equation (2.6) with one-order larger period than the period of

10 20 30 40 t50

0.5

0.6

0.7

X

Fig. 2.7. Periodic and

decreasing displacement of

sliding plate
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natural stick-slip at corresponding parameters. The idea is to simulate roughness of

adjoining surfaces by large period normal loading (we presume that the roughness

of surfaces leads to quasi-periodicity of stick-slip process). By means of change of

parameters we can try to simulate sliding surfaces of blocks. For definite parameters

in equation (2.5) we receive the following equation:

€x þ 6 logð _xÞ þ 1:7t _x þ 6:8x � 10:9 log sec
t

2

� �2� �
þ 3 cosð0:0999tÞ logð _xÞ

þ 3 cosð0:0999tÞt _x þ 3 cosð0:0999tÞ log sec
t

2

� �2� �
¼ 0 ð2:8Þ

By solving this equation numerically and presenting the solution graphically, we

get Fig. 2.8.

From Fig. 2.8 it is evident that for given parameters the stick-slip process has a

quasiperiodic character that reflects experimental data.

For further processing of the method we should try to go from the qualitative

agreement of theoretical data with experimental ones to their quantitative conformity.

For solving this system of differential equations (eqs. 2.5 and 2.6), we should

make it dimensionless. We introduce dimensionless variables in the following way:

dimensionless coordinate is x ¼ X
xs
, where xs is coordinate center of mass of the

upper plate in the steady state, dimensionless time is t ¼ t
T , where T is the period of

forcing, dimensionless velocity is v ¼ V
vs
, where vs is the velocity of the steady state,

dimensionless state variable is # ¼ y
ys
, where y ¼ D0

vs
is the state variable at the

steady state, characteristic length is l ¼ vsT. After making equations (2.5) and (2.6)

dimensionless we obtain:

d2x

dt2
¼ b1ðt

dx

dt
� xÞ � b2ð1þ e cosð2ptÞÞ 1þ a ln

v

vo

� �
þ b ln b3

#vo
do

� �� �
(2.9)

d#

dt
¼ T

ys
� #v

do
� ao
bo

#; (2.10)
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Fig. 2.8 Quasiperiodic

displacement of sliding plate

according to equation (2.8)
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with the dimensionless parameters

vo ¼ vo
vs
; a ¼ ao

mo
; b ¼ bo

mo
; do ¼ Do

i
;

b1 ¼
kT2

m
; b2 ¼

WomoT
2

mx5
; b3 ¼

ysvs
i

;

If the forcing amplitude is small as compared to the constant component ( e<< 1),

we can use perturbation theory and write the coordinate, velocity center of mass of

the upper plate, and the state variable as:

x ¼ 1þ dx; v ¼ 1þ dv; # ¼ 1þ d#

where dx, dv, d# are small additions.

After simple transformation, equation of the upper plate center mass motion in

first order of perturbation theory comes to the equation for harmonic oscillator with

variable external force and friction:

d€xþ g1ðtÞd _xþ g2ðtÞdx ¼ f ðtÞ (2.11)

where

g1 ¼ ½b1t� ab2ð1þ e cosð2ptÞÞ�;

g2 ¼
b

d0
b2ð1þ

do
b
þ e cosð2ptÞÞ;

f ðtÞ ¼ b1 þ b2ð1þ e cosð2ptÞÞ 1� a ln vo þ b ln
b3vo
do

þ b

d2o
e

1
do
t

�

�
ðt

o

dxe
1
do
tdtþ 2pea

b
e
�1
do

ðt

o

e
1
do
t sinð2ptÞ
1þ e cosð2ptÞdt

�
(2.12)

If the variable external forcing is zero, then one of the solutions of homogeneous

equation for harmonic oscillators presents Hermitian polynomial.

The general solution of inhomogeneous equation of second order is:

€zþ PðtÞ _zþ QðtÞz ¼ FðtÞ (2.13)

The general solution for homogeneous equation of harmonic oscillator is:

z0ðtÞ ¼ Az01ðtÞ þ Bz02ðtÞ
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where Z0
1 tð Þ presents Hermitian polynomial, and Z0

2 tð Þ can be expressed through

Z0
1 tð Þ using the known relation:

zo2ðtÞ ¼ zo1ðtÞWð0Þ
ðt

o

e
�
R t0

o
Pdt00

z1ðt0Þ2
dt0

where W is Wronskian.

The general solution of inhomogeneous equation (2.13) is the sum of partial

solution of inhomogeneous equation z1 tð Þ and general solution of homogeneous

equation z0 tð Þ:

zðtÞ ¼ z0ðtÞ þ zoðtÞ

where

z0ðtÞ ¼
ðt

0

z02ðtÞz01ðt0Þ � z01ðtÞz02ðt0Þ
W

Fðt0Þdt0

The solution of eq. (2.13) is quite complicated, but it can give new insights in the

dynamics of stick-slip motion.
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Chapter 3

Shear Oscillations, Rotations and Interactions

in Asymmetric Continuum

Roman Teisseyre

Abstract A concise asymmetric continuum theory including the relations between

stresses, strains, interaction fields and defects is presented. In the presented theory,

the motion equations for antisymmetric part of stresses replace the balance of angular

momentum. Considering the symmetric stresses, we present a new form of themotion

equations for the deviatoric part of strains, arriving at the definition of shear-

twist motion as the oscillation of the axes of shears and their amplitudes. With the

help of Dirac tensors we present an invariant form of these motions. The motions –

displacement and rotations – generated in source processes, e.g., in an earthquake

source, may be generated independently or with some phase shift due to the rebound

processes; therefore, in the presented asymmetric continuum theory we introduce the

phase shift index between the strains and rotations. The presented invariant system of

motion equations makes it possible to obtain solutions with the simultaneous strains

and rotation motion or those with the p/2 phase shift between them.

Further, we include in this asymmetric theory, besides the mechanical system,

some interaction fields, e.g., thermal and electric interaction.terms. The presented

interaction theory is equivalent to that given by Kröner, but it is practically much

simpler and includes new solutions with the simultaneous strains and rotation

motions or those with the phase shift between them.

3.1 Introduction

We present some elements of the asymmetric continuum theory with some

important applications; our consideration on the asymmetric continuum theory

includes:

R. Teisseyre
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– balance laws for the symmetric and antisymmetric stresses and related wave

fields

– fundamental relations between the asymmetric stresses and dislocation fields

– hypothesis of a synchronization process based on the rebound processes and

the wave

– solution with the phase shift between strains and rotations

– interaction of physical fields with a mechanical system; our consideration is

limited to the thermal and electric interaction.terms.

The presented theoretical study generalizes those presented by Teisseyre (2008),

Teisseyre (2009), and Teisseyre and Gorski (2009).

3.2 Asymmetric Continuum

Our asymmetric theory differs essentially from the other approaches; e.g., the

theory of asymmetric elasticity founded by Nowacki (1986); it includes the couple-

stresses introduced in a similar way as in the micropolar and micromorphic theories

(see: Eringen, 1999).

A search to improve the classic continuum theory is based on the numerous

defaults of the classic theory. We can add here one more example of such defaults,

as pointed out by Roux and Guyon (1985). Those authors compared various

numerical simulations with the experimental data related to electric and mechanical

coupling; some especially poor results concern the cases in which the momentum

effects play an essential role. The authors suggest that the angular elasticity should

be taken into account. Making the reference to the publication by Crandall et al

(1978), they suggest that the elastic energies related to normal and shear forces

should be supplemented by the terms including the flexion torque and torsion torque

when constructing a more general definition of the Hamiltonian.

Our version of the asymmetric theory includes the asymmetric stresses, symmetric

strains and rotations; it permits to include the phase shift between the displacement

and rotation motions. As regards the constitutive laws joining the antisymmetric

stresses and rotations we follow some ideas introduced by Shimbo (1975; 1995) and

related consideration on the friction processes and rotation of grains.

We have constructed our theory (Teisseyre, 2009) as based on the asymmetric

stresses, Skl, and deformations: symmetric strains,Ekl, and antisymmetric rotations,okl:

Skl ¼ SðklÞ þ S½kl�; Ekl ¼ EðklÞ; okl ¼ o½kl� (3.1)

We underline that the deformation energy becomes related also to rotation

motions:

E ¼ 1

2
Skl Ekl þ oklð Þ ¼ 1

2
SðklÞEkl þ 1

2
S½kl�okl

36 R. Teisseyre



Instead of the Kröner method (Kröner, 1981) based on the self-fields, we

introduce the material structure indexes, e0and w0, which may help us to join the

deformation fields, strains and rotations, with the observed displacement motions:

Ekl ¼ e0E0
kl ¼ e0

1

2

@

@xk
ul þ @

@xl
uk

� �
;

okl ¼ w0o0
kl ¼ w0

@

@xk
ul � @

@xl
uk

� � (3.2)

For e0 ¼ 1and w0 ¼ 0, we return to classic elasticity, while for e0 ¼ 0 and

w0 ¼ 1 we will have a continuum with rigid, densely packed spheres with friction

sensitive to an external moment load. The independent fields (Ekl; oklÞ lead us to

defects and extreme deformations.

In our theory, for solid elastic bodies we put:

e0 ¼ 1; Ekl ¼ E0
kl; okl ¼ w0o0

kl (3.3)

where the phase index w0 may vary from 0 to �1 or �i.

The Shimbo (1975) consideration helps us to present the constitutive relations:

SðklÞ ¼ ldklEss þ 2mElk; S½kl� ¼ 2mokl; SDðklÞ ¼ 2mED
kl; (3.4)

where symbols SDðklÞ and ED
kl mean the respective deviatoric tensors, e.g.,

SDðklÞ ¼ SðklÞ � 1
3
dklSss.

Now, we can consider the motion equations for asymmetric stresses (Teisseyre,

2009). The motion equation for the symmetric part of stresses, @SðklÞ=@xk ¼ r@2ul=

@t2 þ Fl � @p=@xl, leads to the relation:

@2

@xn@xl
lEssþm

@2

@xk@xk
Enlþ @2

@xl@xn
Ess

� �
¼ r

@2

@t2
Enlþ 1

2

@Fn

@xl
þ @Fl

@xn

� �
� @2

@xn@xl
p

(3.5)

This expression can be divided into the wave equations for the axial and

deviatoric strains:

lþ 2mð Þ @2

@xk@xk
Ess � r

@2

@t2
Ess ¼ � @2

@xk@xk
p at

@

@xs
Fs¼ 0 (3.6)

m
@2ED

nl

@xk@xk
� r

@2ED
nl

@t2
¼ � lþmð Þ @2Ess

@xn@xl
� dnl@2Ess

3@xk@xk

� �
þ 1

2

@Fn

@xl
þ @Fl

@xn

� �

� @2p

@xn@xl
� dnl@2p

3@xk@xk

� �
(3.7)

We shall note that in Teisseyre (2008 and 2009) the last relation was presented

with some mistakes.
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The balance relation for the antisymmetric stresses S½ni� can be deduced from the

balance of the stress moment (Teisseyre, 2009):

1

l2
@Mlk

@xk
¼ elki

@2

@xk@xn
S½ni� ¼ relki €oki þ elkiK½ki� ¼ relki €oki þ 1

2

@Fi

@xk
� @Fk

@xi

� �
(3.8)

where l is the characteristic Cosserat length, K½ki� is a couple of external forces and
an angular moment, Mlk, is defined as the gradient of the antisymmetric stresses,

Mlk ¼ elki @
@xn

S½ni�.
For the balance law we can write now:

@

l2@xk
Mlk ¼ elki@2

@xk@xn
S½ni� ¼ elki@2

@xn@xn
S½ki� ¼ relki €oki þ elkiK½ki�;

or

mDoki � r€oki ¼ K½ki� (3.9)

where the transformation we made, elki@2oni

@xk@xn
! elki@2oki

@xn@xn
, is valid for any

antisymmetric non-source fields, @os=@xs ¼ 0 (where ol ¼ 1=2elkioki) and at the

compatibility condition eimkejns @2

@xm@xn
oks ¼ 0.

The final relation (3.9) replaces that for the stress moment.

Experimental evidences for the appearance of rotation and shear oscillation

(sometimes called the shear-twist) in a seismic field is based on the records of

seismic rotation fields (see: Teisseyre at al.(eds), 2006; Teisseyre, 2009, Teisseyre

K.P., 2007).

3.3 Rotation and shear-twist motions

The rotation motion is governed by equations (3.9), while relation (3.7) for the

shear deviatoric strain, ED
ik, transformed to its off-diagonal form, achieved in a

special coordinate system, may be replaced by the shear-twist pseudo-vector, ~Es:

f ~Esg ¼ fED
23; ED

31; ED
12g

(3.10)

However, we can maintain this definition as an invariant form for any system

with the help of the Dirac tensors; the 4D invariant tensor, ~Elk, built initially in the

special system (3.10), may now be defined as:
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~Elk ¼ i ~E1g1 þ i ~E2g2 þ ~E3g3 ¼
0 ~E3 � ~E2 � ~E1

� ~E3 0 ~E1 � ~E2

~E2 � ~E1 0 � ~E3

~E1
~E2

~E3 0

2
664

3
775 (3.11)

where the values f ~Esg are treated as the scalars found in the off-diagonal form

(3.10); the Dirac tensors of the antisymmetric type, as used here, are given as

follows:

g1 ¼ i

0 0 0 1

0 0 �1 0

0 1 0 0

�1 0 0 0

2
664

3
775; g2 ¼ i

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

2
664

3
775; g3 ¼

0 1 0 0

�1 0 0 0

0 0 0 �1

0 0 1 0

2
664

3
775

We have chosen the antisymmetric Dirac tensors to enable a comparison with

the rotation field o. Using these definitions we can write for the antisymmetric

tensor ~Elk the relations equivalent to eq. 3.7 (Teisseyre, 2009):

mD ~Elk � r
@2

@t2
~Elk ¼ Ylk (3.12)

where according to (3.7) we will have

Ylk ¼ iY23g1 þ iY31g2 þ Y12g3 ¼

0 Y12 �Y31 �Y23

�Y12 0 Y23 �Y31

Y31 �Y23 0 �Y12

Y23 Y31 Y12 0

2
6664

3
7775

and

Ylq ¼ � lþmð Þ @2Ess

@xl@xq
� dlq@2Ess

3@xk@xk

� �
þ 1

2

@Fn

@xl
þ @Fl

@xq

� �
� @2p

@xl@xq

� �

Note that there remains an influence of the axial stresses on the deviatoric field.

The shear-twist, ~Es, means the off-diagonal oscillation of shear axes and its

amplitude as caused by internal processes. In the special coordinate system, in

which we have simplified the deviatoric strains to the off-diagonal form, ~Es, we

have now defined the shear-twist invariant vector form.

The rotation and twist motions form the complex rotation tensor; the related

relations joining these fields follow from the standard conservation law in 4D:

~olk ¼ olk þ i ~Elk;
@

@xk
~olk ¼ 4p

V
Jl; xl ¼ fx1; x2; x3; x4g; x4 ¼ iVt (3.13)
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or

@

@xk
olk ¼ 4p

V
Jl;

@

@xk
~Elk ¼ 0; xl ¼ fx1; x2; x3; x4g; x4 ¼ iVt (3.13a)

where we introduced the defect-related current field, Jk, and velocity, V, under the
condition that this velocity will be transformed according to the relativistic rules for

a sum of velocities.

This system of equations can be split into the twist and rotation Maxwell-like

equations:

rot o� d~o
Vdt

¼ 4pJ; rot ~oþ do
Vdt

¼ 0 (3.14)

where the related velocity depends on the interaction between the rotations and

the shear-twist pseudo-vector oscillations of the compression-dilatation axes (or the

shear axes shifted by p/4). Note that both fields, rotation and shear, have the

azimuth dependent amplitudes.

For the wave equations we obtain:

Do� @2

V2@t2
o ¼ � 4p

V
2npq

@

@xp
Jq; D~o� @2

V2@t2
~o ¼ 4p

V2
_Jn þ 4p

@

@xn
r (3.15)

where ~os � ~Es and os present the shear-twist and rotation vectors, respectively,

the current relates to defect flow, e.g., dislocations, and r relates to defect density.

The idea that the rotation-related amplitudes may differ from the P or S waves

arises after experimental study on the velocity of rotation waves (K.P. Teisseyre,

private communication, 2009). The relations (3.14) indicate that the rotation wave

velocity, V0, appears as an effect of the mutual interaction between the rotations and

shear-twist rotational oscillations.

After Teisseyre et al. (2008) we may write the local solution of the system (3.14)

for the twist and spin waves shifted mutually in phases:

os ¼ �i~os; os ¼ o0
s exp½iðkixi � �otÞ; ~os ¼ ~o0

s exp½iðkixi � �otÞ� (3.16)

where o0
s ¼ �i~o0

s :
The related waves, os and ~os help us to explain the synchronization of the

micro-fracture phenomena; these conjunct solutions show that one of these motions

will be delayed in phase by p=2: Figure 3.1 gives an example of such a synchroni-

zation (K.P. Teisseyre, 2007).

Finally, let us note that when comparing our theoretical approach with the

experimental measurements obtained, e.g., from the strain-meter or rotation-

seismograph systems (strain determination on one plane requires a set of 3 instru-

ments), we should transform these experimental data to the off-diagonal shear

values.
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3.4 Dislocations and disclinations: fragmentation and cracks

In our former papers (Teisseyre 2001, Teisseyre, 2008, Teisseyre and Boratyński

2003) we have introduced the definition of the twist-bend tensor, wmq:

wmq ¼ eksq
@omk

@xs
(3.17)

which differs from that introduced by Kossecka and DeWitt (1977); according to

their definition, the Burgers and Frank vectors would vanish when defining the

defects from the twist-bend tensor.

Our definitions, describing the dislocation nuclei, help to obtain the Burgers and

Frank vectors and dislocation and disclination densities directly from (3.17):

Bl ¼
I

Ekl þ okl½ �dlk and Oq ¼
I

wpqdlp ¼
ð ð

ypqdsp (3.18)

and with the definition

Bl ¼
ð ð �

apl � 1

2
dplass

�
dsp (3.19)

we obtain the expressions for the defect densities (cf., eq. 3.2):

106.5 107.5s

s

107

97.5 98.598

H

H

– 2

– 2

– 4

2

1

0

rad/s

rad/s

0

4

4

x 10–8

x 10–7

–H

–H

Fig. 3.1 An example of

synchronization between the

rotations and shear-twist

oscillations obtained by

applying the Hilbert

transform (H)
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apl � 1

2
dplass ¼ epmk

@

@ xm
Ekl þ okl

� � ¼ epmk
@

@ xm
e0E0

kl þ w0 o0
kl

� �
; ypq ¼ 0

(3.20)

and relation with stresses (Teisseyre, 2008),

apl � 1

2
dplass ¼ epmk

2m
@

@xm
SðklÞ � n

1þ n
dklSii þ S½kl�

� �
(3.21)

Another definition of the defect nuclei for the twist-bend tensor can introduce the

vortex defects with the specific dislocations and disclinations; when defining:

wmq ¼ 1

l
omq (3.22)

we obtain the same expression for dislocation field, but different for disclinations

(cf., eq. 3.20):

ypq ¼ epmk
@wkq
@ xm

¼ 1

l
epmk

@okq

@ xm
¼ 1

l
epmkekqs

@os

@ xm
¼ � 1

l

@op

@ xq
(3.23)

Disclinations related to gradient of rotation become the vortex-defects. An array

of the vortex-defects can help us to approximate the fragmentation/cracks (similarly

as an array of dislocations approximates a crack).

Finally, we obtain the relation for disclinations and antisymmetric stresses as

follows

ypq ¼ 1

l
epmk

@okq

@ xm
¼ 1

2m
epmk

@S½kq�
@ xm

(3.24)

3.5 Interaction fields

First, we recall that the two independent fields, Elk and okl, or equivalently,
~Elk and olk, subjected together to the equations of motions (eqs. 3.6, 3.7, 3.9 or

3.13), can be directly coupled by the phase-delayed solution as written in special

off-diagonal coordinate system (3.16):

ED
kl ¼ �iokl (3.25)

Presenting the theory of interaction processes we can write a very general form

of the constitutive laws (Teisseyre, 2008):
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SðklÞ ¼ 2m e0E0
kl þ e0dklH þ e00HðklÞ

� �
; S½kl� ¼ 2m w0o0

kl þ w0eklsGs þ w00G½kl�
� 	

(3.26)

where E0
kl ¼

�
@ul
@xk

þ @uk
@xl

�
; o0

kl ¼
�
@ul
@xk

� @uk
@xl

	
and H; HðklÞ; Gs; G½kl� are the non-

mechanical stress-influencing fields; the constants we introduced, e0; e0; e00 and
w0; w0; w00, are the phase constants which may vary from 0 to � 1or� i. According

to standard asymmetric theory, we relate the strain and rotation with displacements

according to eq. 3.2.

However, considering the specific cases separately we can assume that an

influence of the mechanical fields, E0
kl or o0

kl, on the other physical fields (e.g.,

electric ones) is direct; therefore, it will be enough to assume that the phase shift

constants are equal: e0 ¼ e0 ¼ e00 and w0 ¼ w0 ¼ w00. This assumption means that

the interaction between the deformations and non-mechanical fields proceeds

without a delay (no phase shift), while the coupling between the mechanical fields

themselves may occur with the phase delay, as given in relation (3.25) describing

the release-rebound process.

Therefore, further on, instead of (3.26), we write:

SðklÞ ¼ 2mEkl ¼ 2me0 E0
kl þ dklH þ HðklÞ

� �
;

S½kl� ¼ 2mokl ¼ 2mw0 o0
kl þ eklsGs þ G½kl�

� � (3.27)

Thus, in our approach the elastic deformation fields can be defined as follows:

Ekl ¼ e0 E0
kl þ dklH þ HðklÞ

� �
; okl ¼ w0 o0

kl þ eklsGs þ G½kl�
� 	

(3.28)

The symmetric and antysimmetric stresses remain to be given, in an elastic

regime, by relations (3.4).

We should keep in mind that, in the Kröner metod, the physically significant

elastic fields, Sks; Eks; oks, are given by the differences between the total fields,

S0ks; E
0
ks; o

0
ks (related directly to the displacement differentials), and the self fields,

SSks; E
S
ks; o

S
ks (related to internal interaction nuclei): Sks ¼ S0ks � SSks; Eks ¼ E0

ks � ES
ks;

oks ¼ o0
ks � oS

ks.

It is only the total field that preserves the usual symmetry properties: elastic and

self fields may be asymmetric. A comparison of our approach and that used used in

the Kröner method was given by Teissyere (2008); we recall here only that the

interaction fields in the Kröner theory enter through the self-nuclei whose fields

appear in the self- stress, self-strain and self-rotation fields; the relation between the

total, elastic and self fields is the following:

STks ¼ SEks þ SSks; ET
ks ¼ EE

ks þ ES
ks; oT

ks ¼ oE
ks þ oS

ks

In the Kröner theory, the elastic fields represent the physical fields; the total field

preserves the usual symmetry properties, while the elastic and self fields may be

asymmetric.

In our approach the stresses are asymmetric, as explained at the beginning.
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3.6 Direct relations between defect and electric fields

Returning to the derived relations (3.21) and (3.24) we rewrite them, by virtue of

(3.27), as:

e0epmk
@

@xm
E0
kl þ dklH þ HðklÞ

� �� n
1þ n

dkle0 E0
ii þ 3H þ HðiiÞ

� �� �
þ

w0epmk
@

@xm
o0

kl þ eklsGs þ G½kl�
� � ¼ apl � 1

2
dplass

(3.29)

and

w0epmk
@

@ xm
o0

kl þ eklsGs þ G½kl�
� � ¼ ypq (3.30)

These relations could be used as the differential equations for a chosen non-

mechanical field (selected from the set: H;HðklÞ; Gs; G½kl�) to estimate directly its

influence on the defect fields (given dislocation and disclination densities); or to

find an influence of defects on the non-mechanical fields.

3.7 Interaction examples

3.7.1 Thermal interaction

For a thermal field, we write a more generalized relation than that in the classic

elastic theory:

SðklÞ ¼ 2me0 E0
kl � dklathðT � T0Þ

� �
; S½kl� ¼ 2mw0o0

kl (3.31a)

Comparing with (3.27) we put

SðklÞ ¼ 2me0 E0
kl þ dklH

� �
; S½kl� ¼ 2mw0o0

kl (3.31b)

where H ¼ �athðT � T0Þ and where for e0 ¼ 1 and w0 ¼ 0 we return to the classic

case.

The equivalent relation between this thermal field and the dislocations becomes:

epml
@

@xm
E0
kl � e0ath

1� 2n
1þ n

ðT � T0Þ
� �

¼ aedgepl (3.32)

and there is no contribution from screw dislocations.
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3.7.2 Piezoelectric effects

The classical piezoelectric effect appears in anisotropic crystals, piezoelectric

dielectrics; after Toupin (1956; see: Mindlin, 1972, Teisseyre, 2001a) we write

the constitutive law as:

Sij ¼ 2mEkl �ekijEk (3.33a)

where Ek is the electric field, ekij are the piezoelectric stress constants.
We can rewrite this relation as follows:

SðijÞ ¼ ldijEss þ 2mEkl�ekðijÞEk; S½ij� ¼ 2mokl�ek½ij�Ek (3.33b)

According to our approach (3.28) we obtain:

Ekl ¼ e0 E0
kl þ hsdklEs þ esðklÞgEs

� �
; okl ¼ w0 o0

kl þ es½kl�gEs

� �
(3.33c)

where we have separated the piezoelectric constant into its symmetric and anti-

symmetric parts and introduced other definitions:

ekij ¼ �2m hkdij þ ekijg
� �

and Hdij ¼ hkdijEk; G½ij� ¼ ekijgEk (3.34)

The equivalent relation between this piezoelectric field and the defect densities

becomes:

e0epmk
@

@xm
E0
kl þ hsdklEs

� �� n
1þ n

dkl E0
ss þ 3hsEs

� �� �
þ w0epmk

@

@xm
o0

kl þ esklgEs

� �

¼ apl � 1

2
dplass

(3.35a)

epmk
@wkq
@ xm

¼ 1

l
w0epmk

@

@ xm
o0

kq þ eskqgEs


 �
¼ ypq (3.35b)

We note that the piezoelectric constants for various crystallographic classes have

been discussed by Nowacki (1983).

3.7.3 Polarization gradient theory

According to Mindlin (1972), the internal energy depends also on the polarization

gradient; we can write:
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Pij ¼ @Pi

@xj
(3.36)

where polarization, Pi ¼ Di � eEi, is defined by difference of electric displace-

ment, D, and electric field, E, with e being the permittivity of vacuum. The gradient

theory, related to electric polarization, makes use of the fact that, under the applied

load, the displacements of a moving dislocation core (electrically charged) influ-

ence the surrounding defect cloud (such a cloud shall have the opposite charge,

compensating that of a dislocation core).

The constitutive relations (Mindlin, 1972; Nowacki,1983) with the respective

material constants can be written as follows:

Sij ¼ 2mEij þ fkijPk þ dklijPkl (3.37)

and, according to relations (1-3), can be generalized for the asymmetric stresses to

the following form (cf., Teisseyre, 2001):

SðijÞ ¼ ldijEssþ2mEijþ fkðijÞPkþdklðijÞPkl; S½ij� ¼ 2moijþ fk½ij�Pkþdkl½ij�Pkl (3.38)

Now, we can present the contributions to the asymmetric strains and rotations

caused by the electric polarization coupling:

Eij ¼ e0 E0
ij þ

1

2m
fkðijÞPk þ 1

2m
dklðijÞPkl

� �
(3.39a)

oij ¼ w0 o0
ij þ

1

2m
fk½ij�Pkþ 1

2m
dkl½ij�Pkl

� �
(3.39b)

For the direct relation with defects we write according to (3.29) and (3.30):

e0epmk
@

@xm

�
E0
kl þ

1

2m
fkðijÞPk þ 1

2m
dklðijÞPkl

� �

� n
1þ n

dkle0
1

2m
fkðssÞPk þ 1

2m
dklðssÞPkl

� ��

þ w0epmk
@

@xm
o0

kl þ eklsGs þ G½kl�
� � ¼ apl � 1

2
dplass (3.40a)

w0epmk
@

@ xm
o0

kl þ eklsGs þ G½kl�
� � ¼ ypq (3.40b)

Moreover, note that some experiments (see: e.g., Hadijcondis and Mavromatou,

1994, 1995) indicate that the anomalous piezoelectric effects, observed in the

laboratory experiments, correspond to the time rate of the applied load.

The problem of magnetostrictive effects can be treated in a similar way.
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3.7.4 Interaction chains: electric and acoustic effects

Finally, we can note that the shear and axial stresses influence (cf., eq. 3.7) the

solution for the deviatoric stresses, ED
nl, and, further on, these strains can influence

the rotation field (cf., eq. 3.14 ); we can express this coupling also by one of possible

solutions of the system (3.16):

olk ¼ �i ~Elk (3.41)

It seems reasonable to believe that the coupling between the mechanical and

electric (or electric polarization) field proceeds in an instantaneous manner, because

such effects follow from the displacement of the ions. However, as shown in (3.29),

the interaction.between the mechanical fields can proceed with a phase delay due

to the release-rebound sequence. Hence, we can have different interaction chains

(cf., eqs 3.7 and 3.12) like, e.g., the following ones:

ED
nl ! ionl ! iPs (3.42a)

where the shears coupled to the phase-delayed rotations lead to polarization effects,

p ! ED
nl ! ionl ! iPs (3.42b)

where a pressure variation (mechanical forcing) initiates a similar chain,

Es ! onl ! iEnl (3.42c)

where the electric field variations force rotation effects and the micro-strain releases

revealed by the acoustic bursts occurring with the phase delay.

3.8 Conclusions

– We have presented the asymmetric continuum theory including different types

of material states: from elastic continuum to granulated/crushed material.

– We have assumed the balance relation for the antisymmetric stresses as equiva-

lent to that for the stress couple. We have defined the 4D invariant form of the

shear-twist field.

– The spin and the shear-twist oscillation of the off-diagonal shear axes led us to

the relations for the rotation and rotational shear-twist waves.

– We have presented a new definition for dislocation and disclination density field

permitting to derive the relations between the asymmetric stresses and linear

defect densities.
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– We have presented a new relation for the interaction between the strains and

rotations and other physical fields; these relations are more general than those

between the stresses and some physical fields as, in this new approach, we

consider the asymmetric fields and also we may include a phase shift when a

rebound process provoked by some energy release shall be considered.

– The direct relations are given between the defect densities and the non-

mechanical fields.

– Some examples are given for the interaction between the strains or rotations on

the one side, and the electric and electric polarization fields on the other.

– The experimental evidence for the appearance of spin and twist motion in a

seismic field is based on the records of the seismic rotation fields (see: Teisseyre

at al., 2006; Teisseyre K.P, 2007). Comparison between the experimental data

(e.g., strain variation in time as can be obtained from the strain-meter or

rotation-seismograph systems) and theoretical consideration on twist field

(shears in the off-diagonal system) require transformation of the obtained

theoretical twist motion values to the diagonal shear ones.

– The asymmetric continuum theory includes description of the states close to

micro-fracture processes; the hypothesis on the local synchronization, related to

the special complex solution for the rotation and twist fields, is confirmed by

some correlations observed between the recorded twist and spin seismic wave

groups.
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Chapter 4

Processes in Micro-Fracture Continuum

Roman Teisseyre and Zbigniew Czechowski

Abstract In the frame of the asymmetric continuum theory we present some

aspects of the micro-fracture processes. An extension of this theory, accommodat-

ing for a significant increase of external load, can describe some features of a

progressively granulated and fractured material. According to our theory, two kinds

of motions – displacements and rotations – in some source processes, e.g., in an

earthquake source, may be generated independently or with some phase shift due to

the rebound release processes. The asymmetric theory includes a possible phase

shift between the simultaneous solutions for the displacement and rotation motions.

Equivalently, we present the solutions with the simultaneous strain and rotation

motions or those with the p/2 phase shift between them. Such specific solutions can

explain the synchronization action in fracture processes.

Further, we describe on this basis some properties of the slip motion along a

fracture zone and micro-fragmentation appearing in the flattened vortex process.

Our approach relates to the processes under a very high confining load. The derived

nonlinear equations are discussed.

4.1 Introduction

We present some elements of the asymmetric continuum theory with important

applications; our consideration on the asymmetric continuum theory includes:

– balance laws for the symmetric and antisymmetric stresses and related wave fields,

– hypothesis of a synchronization process based on the rebound processes and the

wave solution with the phase shift between the strains and rotations,

– formation of a granulated (mylonite) zone during fracture processes.
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4.2 Asymmetric Continuum

One version of the asymmetric theories of elasticity has been founded by Nowacki

(1986); this theory includes the couple-stresses introduced similarly as in the

micropolar and micromorphic theories (see: Eringen, 1999). Our version of the

asymmetric theory includes the asymmetric stresses, symmetric strains and anti-

symmetric rotations and permits for a possible phase shift between the displace-

ment and rotation motions. For the constitutive laws joining the antisymmetric

stresses and rotations we follow some ideas introduced by Shimbo (1975; 1995) and

related considerations on the friction processes and rotation of grains.

Experimental evidences for the appearance of rotation and shear oscillation

(twist) in a seismic field are based on the records of seismic rotation fields (see:

Teisseyre et al.(eds), 2006; Teisseyre K.P., 2007).

4.2.1 Standard asymmetric continuum

We follow the asymmetric theory with the asymmetric stresses, Skl, and deforma-

tions, symmetric strains - Ekl and rotations - okl (Teisseyre, 2009; Teisseyre,

Chapter 3, this issue):

Skl ¼ SðklÞ þ S½kl�; Ekl ¼ EðklÞ; okl ¼ o½kl� (4.1)

Let us underline that the energy stored, E, becomes related also to rotational

deformation:

E ¼ 1

2
Skl Ekl þ oklð Þ ¼ 1

2
SðklÞEkl þ 1

2
S½kl�okl

Instead of the Kröner method (Kröner, 1981) based on the self-fields we intro-

duce the material structure indexes, e0 and w0, joining the deformation fields, strains

and rotations, with the displacement motions:

Ekl ¼ e0E0
kl ¼ e0

1

2

@

@xk
ul þ @

@xl
uk

� �
;

okl ¼ w0o0
kl ¼ w0

@

@xk
ul � @

@xl
uk

� �
:

(4.2a)

For w0 ¼ 0, e0 ¼ 1 we return to classic elasticity, while for e0 ¼ 0, w0 ¼ 1, we

would have a continuum with the rigid, densely packed spheres with friction

subjected to an external moment load.

The independent fields (Ekl; oklÞ lead us to defects and extreme deformations

(Teisseyre and Gorski, 2009).
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For solid elastic bodies we will put simply:

e0 ¼ 1; w0 ; Ekl ¼ E0
kl ; okl ¼ w0o0

kl ; (4.2b)

where the phase index w0 may vary from 0 to w0 ¼ f�1; � ig
The Shimbo consideration (1975) supplements the classical constitutive

relation:

SðklÞ ¼ ldklEss þ 2mEkl ; S½kl� ¼ 2mokl (4.3)

We will consider the simplified system of motion equations at a constant density

(Teisseyre, 2009);

lþ 2mð Þ @2

@xk@xk
Ess ¼ r

@2

@t2
Ess � @2

@xs@xs
p (4.4a)

m
@2ED

nl

@xk@xk
� r

@2ED
nl

@t2
¼ �ðlþ mÞ @2Ess

@xl@xn
� dnl

3

@2Ess

@xk@xk

� �
þYnl (4.4b)

where

Ynl ¼ 1

2

@Fn

@xl
þ @Fl

@xn
� @2p

@xn@xl
þ 1

3

@2

@xn@xl
p

� �
at

@Fn

@xn
¼ 0 and @uk=@xk ¼ 0

The field, ED
nl, can be used to define the shear-twist vector meaning the rotational

oscillations of the shear axes and its amplitude (cf., Teisseyre, 2009).

For the independent rotation we write, instead of the balance of the angular

moments

mDoki ¼ r
@2oki

@t2
þ K½ki� (4.5a)

where the balance of stress moments is replaced with that for the antisymmetric

stresses:

@

@xk
Mpk ¼ epkil2

@2

@xk@xn
S½ni� ¼ 2mepkil2

@2oki

@xn@xn
¼ 2mepkil2

@2oki

@xn@xn
(4.5b)

Here, we shall also note the important equivalence

epki
@2oni

@xk@xn
¼ epki

@2oki

@xn@xn
at the condition epki

@oki

@xp
¼ 0; or

@op

@xp
¼ 0 (4.5c)
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We can write that the force moment relates to the angular moment; this state-

ment leads to a definition employing an effective rotation motion, O:

@

@xk
Mpk ¼ 2mepkil2

@2oni

@xk@xn
! Mpk ¼ 2mepkil2

@oni

@xn
¼ 2mepkilOi; Oi ¼ l

@oni

@xn
(4.6a)

including the neighboring rotating elements with the adequately defined character-

istic Cosserat length. Instead of (4.5a) we write :

m
@2Oi

@xn@xn
¼ r

@2Oi

@t2
þ Ki (4.6b)

4.3 Slip and fragmentation transport in fracture

micro-continuum

In a solid continuum, the advanced deformations - slip and fragmentation processes -

could be described with the help of the Navier-Stokes transport idea; wemay explain

such processes with the help of the slip-transport, u, and fragmentation-transport ~u.
Considering a simple case with a constant density, we can transform the dis-

placement motion equation exchanging the partial time derivatives to the total ones:

@

@t
ui ! d

dt
ui ¼ @

@t
ui þ us

@

@xs
ui and

@2

@t2
ui ! d2

dt2
ui ¼ @

@t
þ us

@

@xs

� �
@

@t
ui þ us

@

@xs
ui

� �
(4.7)

and we arrive at a type of the Navier-Stokes transport equation related to slip in

solids:

r
d2

dt2
ui ¼ r

d

dt
ui ¼ ~�

@2

@xk@xk
ui � Fi

or

@2ui
@t2

þ @uk
@t

@ui
@xk

þ 2uk
@ui
@xk

þ uk
@us
@xk

@ui
@xs

þ ukus
@2

@xk@xs
ui ¼ m

r
@2ui

@xk@xk
� Fi

r
;

(4.8)

where in the particular case we may put ui ¼ @
@t ui.
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The obtained relation (4.8) describes transport process related to a slip micro-

fracture process.

For the fragmentation phenomena and fragmentation/transport we can introduce

the arcuate transport process. Thus, when in equation (4.6b) we consider the

rotation transport with a related characteristic length, l, serving as a rotation arm:

~uk ¼ eksnls
@On

@t
;

d

dt
! @

@t
þ ~us

@

@xs
; (4.9)

then we obtain (in a constant density case):

@2Oni

@t2
þ @~uk

@t

@Oni

@xk
þ 2~uk

@Oni

@xk
þ ~uk

@~us
@xk

@Oni

@xs
þ ~uk~us

@2Oni

@xk@xs
¼ m

r
DOni � K½ni�

r
:

(4.10)

Further, we focus on the vortex motions with the vortices oriented along the

z-axis. On the plane z ¼ const we may have some variable characteristic length, L,
related to a possible vorticity, while along the z-axis the characteristic length will

remain very small:

lk ¼ fL; L; lg; L>> l (4.11)

We pass to the cylindrical coordinate system; the transport (4.9) becomes as

follows:

~ur � L
@Oz

@t
; ~u’ � �L

@Oz

@t
; ~uz � L

@O’

@t
� @Or

@t

� �
(4.12)

Accordingly, the total time derivative becomes

d

dt
¼ @

@t
þ L

@Oz

@t

@

@r
� @

r@’

� �
þ @O’

@t
� @Or

@t

� �
@

@z

� �
(4.13a)

and for Or <<Oz; O’ <<Oz and Lðr; ’; zÞ

d2

dt2
¼ @

@t
þ L

@Oz

@t

@

@r
� @

r@’

� �� �
@

@t
þ L

@Oz

@t

@

@r
� @

r@’

� �� �

¼ @2

@t2
þ L2

@Oz

@t

� �2 @2

@r2
þ @2

r2@’2
� 2

@2

r@r@’

� �
þ 2L

@Oz

@t

@2

r@t@’
� @2

@t@r

� �

þ L
@2Oz

@t2
@

@r
� @

r@’

� �
þ L2

@Oz

@t

� �2
@Oz

@r
� @Oz

r@’

� �
@

@r
� @

r@’

� �

(4.13b)
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Thus, for the macroscopic rotation field (4.6b) (external forces omitted) we obtain:

~m
~r
DOz � @2Oz

@t2
�Mz ¼ 0 (4.14a)

where the constants ~m and ~r relate to a medium with the advanced micro-fracture,

and we have put the transport term:

Mz¼2L2
@Oz

@t

� �2 @2Oz

@r2
þ @2Oz

r2@’2
�2

@2Oz

r@r@’

� �
þ2L

@Oz

@t

@2Oz

@t@r
� @2Oz

r@t@’

� �

þL
@2Oz

@t2
@Oz

@r
�@Oz

r@’

� � (4.14b)

The obtained relation describes the overall transport processes in the micro-

fracture medium.

4.4 Local transport in sources of asymmetric elastic continuum

Maintaining the motion equations (4.4) and (4.6) we introduce into the source

definition the transport term, M, as defined in (4.14b); this form of a local transport

is based on hidden micro-transport elements related to a local slip or fragmentation.

Here, we will consider a problem in which the micro-fracture processes concen-

trated in a source concern a fragmentation (rotation effects) and can be expressed by

a source rotation moment introduced into equation (4.6); we put

MzðOz; LÞ ! Kz; and Kz ¼ K expð�atÞ; K ¼ M ¼ constant (4.15a)

where Oz follows from the solution (4.6) and the condition that K remains constant.

As mentioned above, the condition for K (to be constant), includes also some

material degradation effects and we have assumed that these local degradation

processes can be related to the transport phenomena concentrated in a source.

According to (4.15a) we put

Mz ¼ M expð�atÞ; Oz ¼ O expð�atÞ; (4.15b)

and for the variable vortex radius Lðr; zÞ, using (4.14b), we obtain the condition:

2L2a2O2 @
2O
@r2

þ 3a2LO
@O
@r

� a2O ¼ M (4.15c)

The solution for O shall be found from (4.6) or (4.14a) for M constant; under a

plane shear load rotation field, in solids, it shall depend on ’, however, we can
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express this dependance through the function sin2’ as follows from the consecutive

angular changes of the shears along a plane. We obtain from (4.15b):

@2O
@r2

þ @O
r@r

þ @2O
r2@’2

þ @2O
@z2

� a2~rO ¼ @2O
@r2

þ @O
r@r

� 4O
r2

þ @2O
@z2

� a2~rO ¼ 1

~m
M

(4.16)

The respective numerical solution of this equation may be used to compute from

(4.15c) the fragmentation arm changes, L, which enables us to present this fragmen-

tation similarly to a vortex structure (Fig. 4.1). The presented changes of this vortex

arm can be revealed when computing L from (4.15c) with the initial condition

L ¼ r0. As presented in this figure, this numerical solution is given with a change

of the scales along the vortex plane in comparison to the z-axis; we expressed this by
a change of the rigidity parameter m to ~m, as presented in eq. (4.6). In this way, we

take into account the fact that, due to fragmentation, the material parameters along

this plane undergo essential changes due to these micro-fracture processes.

We shall underline that the vortex process starts due to a point source, that is,

reversely than it is usually considered in the vortex problems. The vortex arm

increases up from a point source r ¼ 0, and the vortex is concentrated near the

fragmentation plane (this is quite different in comparison to vortices in fluids). This

follows from our assumption that the material properties in a fragmentation plane

have become changed, in comparison to those along the direction perpendicular to

it, while the material properties remain almost unchanged.

4.5 Shear and confining loads

In the local micro-fracture zones, the shear and confining loads lead to the transport

processes related to the displacement and rotation motions.

The transport relations for the displacement motions are especially important for

the slip processes under a shear load; in that case, the rotational transport can

sometimes be neglected (Fig. 4.2).
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2.55
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Fig. 4.1 Vortex structure concentrated in the vicinity of the source fragmentation plane
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Under a confining load, the fragmentation processes may be described by a

helical transport incorporated into the rotation field equations. The induced shear

micro-fractures appear in this case along the perpendicular slip fragments; the

related induced shears would be mutually compensated inside some micro-region

in which a common rotation sense will produce a micro-fragmentation circular

structure (Fig. 4.3). At the neighboring fragments, the rotation sense might be

opposite. However, the induced consecutive shears inside a particular fragmenta-

tion element will be manifested by the perpendicular micro-displacement couples;

these rotation couples, contrary to shear couples, result in a rotational micro-

fragment, while the resulting shear field will become compensated almost to null.

Thus, a fracture running according to this scenario, due to induced rotation couples,

leads to the material fragmentation and rotation; the directions of rotations can be

opposite inside the material under an applied confining load. This is an opposite

case to that of shear process, which leads to the shear nuclei, described by the

double couples in the conventional meaning.

Fig. 4.3 Confining load:

the induced opposite shears

inside the fragmentation

elements; the opposite shear

couples result in a rotation

of fragmented elements

Fig. 4.2 Shear load: sketch

of slip elements and the

opposite rotations as appear

along the main slip and a

double couple partner
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However, we shall notice that variable inner shear fields, caused by the inner

micro-fractures and related stress releases at the neighboring sites, may cause the

rotational oscillations of the main axes of these double couples; this kind of rotation

motion is called shear-twist (Teisseyre, 2009).

However, to get a better understanding of the fracture processes we may

consider jointly the micro-slip and micro-fragmentation processes. When approach-

ing the micro-fracture and fracture states we should consider also the consecutive

substantial changes in the material properties and in the governing equations. The

material properties undergo changes, e.g., from the elastic to plastic and, further on,

to crushed, granulated and even partly melted mylonite.

Moreover, an influence of the rotation processes of various nature and scale may

be of great importance when some vortex micro-structures will appear. To outline

such an approach we may follow the asymmetric continuum theory; we start with

the relations presented above (Eqs. 4.1– 4.5) as concerns the perfect elasticity.

During a further deterioration, related to plastic flow and micro-fracture processes,

we assume that the compressibility relation, expressed by means of the axial part of

stresses and strains, remains practically unchanged (however, some changes in the

value of compressibility can be easily included).

Under a shear load, the micro-fracture processes can proceed as follows: shear

stresses and related strains cause some changes in the angular molecule orienta-

tions, then the slip motion and break of the molecular bonds start with an immediate

drop of shears, and then there appears the rebound rotation retarded in phase. Under

a compression load, the induced defects cause an appearance of the opposite shear

centers, then some micro-breaks lead to the rotations and fragmentation process,

and then there appear the rebound slip motions retarded in phase. In the first case,

the shears create the dynamic angular deformations leading to the bond breaks

and slip propagation followed by the rebound rotations retarded in phase. In the

second case, the micro-fractures under compression lead to the opposite sense of

the induced shear motions: the twist motions and the related fragmentation and

granulation processes precede the slip rebounds retarded in phase.

4.6 Conclusions

The considered rotational (helical) transport processes are expected to occur in the

granulated structures or those undergoing the micro-fragmentation processes; the

presented new development in solid theory with the micro-fracture and fragmenta-

tion processes describes the independent rebound release processes occurring with

a possible phase shift between the rotation and shear-twist oscillations. Any torque

moment caused by the independent transport and micro-fracture may generate the

spin and shear-twist motions.

The slip-fracture and fragmentation processes caused by a joint action of shear

and confining loads may run with a mutual interaction. The equations for the joint
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slip-shear and fragmentation-pressure processes take into account a possible shift

between the related oscillations and the rebound release dynamics.

The obtained relations for the helical transport differ essentially from those

for fluids; here, we deal with the square time rates of the transport contributions;

this is related to the transition: @2=@t2 ! d2=dt2 and to the material changes due to

fragmentation process.
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Teisseyre R and Górski M, 2009, Fundamental Deformations in Asymmetric Continuum: Motions

and Fracturing, Bull. Seismol. Soc. Am., vol. 99, 2B, pp 1132–1136.

Teisseyre R, Górski M, 2008, Introduction to Asymmetric Continuum: Fundamental Point

Deformations. In “Physics of Asymmetric Continua : Extreme and Fracture Processes” Eds.

R. Teisseyre, H. Nagahama and E. Majewski, Springer, pp 3–15.

60 R. Teisseyre and Z. Czechowski



Teisseyre R, 2008, Asymmetric Continuum: Standard Theory, In “Physics of Asymmetric

Continua: Extreme and Fracture Processes” Eds. R. Teisseyre, H. Nagahama and E. Majewski,

Springer, pp 95–109.
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Chapter 5

On a Simple Stochastic Cellular Automaton with

Avalanches: Simulation and Analytical Results

Mariusz Białecki and Zbigniew Czechowski

5.1 Introduction

Cellular automata (CA) models are widely used in many natural and human sciences.

The rule that defines CA, which may be very simple, can lead to a very complicated

evolution of a system and rich structure of produced patterns. It often comes from

nonlinearity present in the system. The rule of the model encodes the crucial features

of the phenomenon under investigation. It contains the information about the beha-

viour of the automaton and usually is suggestive (convincing) reference point for

explanations of its properties. Instead of equations, the rule often plays a central role

in description of automata. CA are also convenient and hence attractive tools for

making computer simulations; being completely discrete, in principle, CA do not

require any approximation procedure for machine implementation.

There is also a complementary approach to CA models. The key idea is very

classical: write down equations and analyse them. In spite of a nonlinearity of the

equations that often makes the task complicated, it focuses attention of many

researches (see, for example, Chopard and Droz., 2005). An interesting example

of this approach in the domain of integrable systems is the soliton cellular automa-

ton (see Tokihiro, 2004). This elegant automaton is a completely discrete version of

a soliton equation, hence it is very special even among deterministic automata. It is

also to be noted that equations for automata can serve as natural basis for applying

both sophisticated mathematics and quite “exotic” mathematical structures to the

subject (see Białecki and Doliwa, 2005, and also Białecki, 2009, where an attempt

to present a deterministic evolution of some system over finite fields is presented in

a way allowing for direct comparison with possible experiments). Our aim is to
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extend this approach to the stochastic automat; in this chapter we are dealing with

the 1-dimensional domino automaton inspired by earthquakes. We point out that

studying properties of the system may be neater with equations than with numerical

experiments. It is also useful for finding theoretical explanations and providing

exact quantitative presentation of different features of a system. Still, to find a

system which can be satisfactorily described in this way is a challenge.

Earthquakes are extremely complex phenomena and thus it is very difficult to

fully reflect their properties by theoretical models. Such geophysical phenomena

are usually subjected to simplifications in order to retain some control on the

proposed physical/mathematical framework. However, even significant simplifica-

tions do not protect us from leaving the elegant domain of transparent formulas

and exact solutions. An interesting example of considerations of simple cellular

automaton in the context of earthquakes is given by Tejedor et al. (2008), where

the Gutenberg-Richter law is observed. The appearance of inverse-power distri-

butions is an interesting topic itself and was investigated in the broader context of

a privilege (see Czechowski, 2003) and also with connection to Ito equation (see

Czechowski and Rozmarynowska, 2008). The ideas presented here deliver a

method to advance the studies (see the next chapter in this monograph).

Here we propose and discuss stochastic domino automaton - another extremely

simple model inspired by earthquakes. The domino automaton inherits only two of

its characteristic features. One is the “pumping” of energy at a constant rate, which

reflects uniform stress increase as an effect of tectonic plates’ motion with constant

relative velocity. The second is the presence of relaxations, when the stress

increases above a threshold in some place, and the energy is released in a very

short period of time. The simplicity of the model leads, however, to the avalanche

distribution different from the Gutenberg-Richter law. These two effects are repre-

sented as follows. Each of the cells (discrete places on a line) can be empty or

contain one standing domino block (later called also a particle). In one time step,

one cell from all is randomly chosen. If the cell is empty, the domino block takes the

position. If the cell is occupied, the domino gives an impulse which falls down the

domino blocks in the cell and in all its adjacent neighbours if occupied (in both

directions). Fallen blocks are removed and that means an avalanche occurs. Then

the procedure repeats in the next time step. The precise definition of the domino

automaton is given in the next section.

Our aim in this chapter is twofold. The first is to present a new simple stochastic
cellular automaton model and the second is to apply the direct analytic approach to

this stochastic automaton. We prefer here an elementary approach to the description

of the automaton and we make no use of applicable Markov processes terminology.

In this context the domino automaton is discussed in the next chapter.

The structure of the paper is as follows. In Section 5.2 the definition of the

automaton is given and basic properties from the numerical experiment are pre-

sented. Next we derive the set of equations for the average values of the parameters

of the model in Section 5.3. Finally, in Section 5.4 we discuss the obtained results

and point out directions for future work.
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5.2 The random domino automaton

Consider one dimensional (line) model with N discrete number of places. In a single

time step, a particle (representing a portion of energy) is added to the system at the

randomly chosen place (called also cell). In our model every place is equally likely.

If the chosen cell is empty, it becomes occupied. If the chosen place is already

occupied, the incoming energy plays a role of a trigger and a relaxation takes place.

By a relaxation we mean an immediate removal of the particle from the chosen cell

and all its adjacent occupied cells. It produces an avalanche of a size equal to the

number of cells changing their state. An example of relaxation of the size four is

presented in the diagram below.
↓

time = t · · · · · ·

time = t+ 1 · · · ↓ ↓ ↓ ↓ · · ·

To study the evolution of the automaton, numerical experiments were per-

formed. In simulations we investigate the one-dimensional lattice of size N ¼ 500
cells. After an initial stage, in which the lattice is saturated, a stationary quasi-

equilibrium stage takes place. The first parameter to be monitored is the density

r(t), defined as the number of occupied cells in the instant t divided by the lattice

size N. As the model is invented in the context of earthquakes, it is interesting to

trace the avalanche sizes w(t). To skip the dull process of gradual increase of

density between avalanches, we present these quantities after each avalanche

only, as functions w(k) and r(k), where k is the number of avalanches.

Examples for w(k) and r(k) from numerical experiment is presented in Fig. 5.1.

The distribution of fluctuations for density r(k) resembles the Gaussian distribution

(see Fig. 5.2) with average <r> ¼ 0.3075 and variance s2 ¼ 0.000598. These

parameters are equal to parameters estimated from the time series. The primary aim

and the mainmotivation of the next section is to derive the value of<r> analytically.

5000 10000 15000 20000 25000 30000
i

w(i)r (i)

0.30

0.35

0.40

0 2000 4000 6000 8000 10000
i

2

4

6

8

10

12

Fig. 5.1 Simulation results for time series of system density r(k) and avalanche sizes w(k) of the
1D domino automaton with lattice size N ¼ 500. The parameter kmeans the number of avalanches
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5.3 Quasi-equilibrium equations

One of the evident properties of the domino automaton is its stochasticity, stipu-

lated in its definition. Thus, we are interested in its mean properties rather then

exact evolution. The numerical experiments suggest that the density of a system

oscillates in a random way around an average value. Note, the density is also a

probability of avalanche, hence the variations of density are subject to “u-shape”

potential. For high densities, the probability of their decrease by relaxation is

also high; for small densities their growth is more likely. Thus, we will describe

the behaviour of the automaton under the assumption that it reaches a quasi-

equilibrium and the parameters of the system, like density and others (defined

below), do not depend of time. The variables are treated as physical variables in a

sense of statistical physics.

Fix the size of the lattice N and assume periodic boundary conditions (regard the

first cell as adjacent to the last one). In the system, alter sequences of occupied and

empty cells. Such a sequence of i subsequent occupied cells are called the cluster of
the length i (shortly i-cluster); the sequence of i subsequent empty cells are called

empty cluster of the length i. The values of i can be 1, 2, . . ., and are bounded, at

least by the size N. Define by ni the number of i-clusters and by n0i the number of

empty i-clusters. Denote the total number of clusters by n, then

n ¼
X

i�1

ni¼
X

i�1

n0i (5.1)

because of the periodic boundary conditions. It is also straightforward from the

definitions that

r¼ 1

N

X

i�1

ini; (5.2)

and also

0.25

f(r)

0.30 0.35 0.40

5

10

15

r

Fig. 5.2 The distribution of

fluctuations f(r) for the
density r from the simulation

(dots) and fitted Gaussian

distribution (line). The

average density is

<r> ¼ 0.3075 and the

variance is s2¼ 5.98*10�4
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1

N

X

i�1

ðni þ n0i Þi¼ 1; (5.3)

which tells that any cell is either occupied or empty. The variables r and ni are our
basic objects.

In a single time step, the number of occupied cells may increase by one or

decrease by i in a case of an avalanche of size i. If the value of r on average does not

depend of time, there must be a balance between expected values of loses and gains

in the number of occupied cells. In other words, the stationarity condition requires

that flow in is equal to flow out. The expected value of increasing density is equal to

the probability of choosing an empty space, namely (1�r). The probability of

relaxation of any size i is ini
N , and since the avalanche of any possible size i can

contribute, then the stationarity condition gives

ð1�rÞ ¼ 1

N

X

i�1

nii
2: (5.4)

Using equation (5.2), it may be written as

N¼
X

i�1

niiðiþ 1Þ: (5.5)

The obtained equation gives a restriction for nis in a case of asymptotic behaviour,

where N ! 1.

To be solved, equation (5.2) requires extra relations. As a first rough step

consider the percolation approximation (see Stauffer and Aharony, 1992)

ni ¼ cð1� rÞ2r2: (5.6)

From equation (5.2) it follows

1

ð1� rÞ2
N

c
¼
X

i�1

ri�1i¼ d

dr

X

i�1

ri¼ d

dr
r

1� r
¼ d

dr
1

1� r

so c ¼ N and r is the only parameter of the family of distributions. The use of (5.6)

in condition (5.5) gives

1 ¼
XN0

i¼1

ð1� rÞ2riiðiþ 1Þ;
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where N0 is a upper size limit for clusters, hence (after manipulation like above)

one has

1

ð1� rÞ2 ¼ r
d2

dr2
r2ð1� rN0Þ

1� r
:

Finally, neglecting terms with N0 (if N0 � 100 the accuracy is better than 10�25) one

can obtain

1 ¼ 2r
ð1� rÞ or r ¼ 1

3
:

The automaton rule says that there is a “coupling” between the adjacent cells,

since the rule of relaxations takes out the whole cluster, so treating cells as indepen-

dent, like in (5.6), is erroneous. Thus, the percolation approximation gives the value

of r different by several percent from a value <r> � 0.3075 from numerical

simulation of the automaton. Better estimation of r needs an extra reasoning.

For the computations below we use a weaker assumption, namely clusters are
distributed independently, by which we mean that the length of the “next” cluster

does not depend on the length of the “previous” one. In other words, our investiga-

tions are done up to the order of clusters.

To write down equations for the numbers of clusters of length i, i.e., for ni s, we
consider all possibilities of losses of such clusters as well as their creation, and next

we claim that on average the gains and losses compensate each other.

Losses. There are two ways to destroy an i-cluster: by enlarging and by

provoking the avalanche depending on where an incoming particle is thrown.

(a) Enlarging. For any cluster there are two cells adjacent to its ends, so the

probability is

�2
ni
N

:

Here we just count the number of such empty cells. If a single empty cell is between

two clusters of length i it is counted twice, as it should be. Hit of such a cell reduces
the number of i-clusters by two.

(b) Relaxation. In this case it is enough to hit any of the occupied cells of the

cluster, so the probability is

� ini
N

:
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Gains. There are in general two possibilities to create i-cluster: enlarging (i�1)-

cluster and joining two smaller clusters.

(a) Enlarging. We need to consider cases i ¼ 1 and i � 2 separately.

Case i ¼ 1. There is only one way to form a solitary occupied cell: an incoming

ball must hit the empty place with two empty places on the both sides.

The probability is proportional to the number of interior cells in empty clusters of

the length three and bigger

�
X

i�3

ði� 2Þ
i

in0i
N
:

But the expression above can be simplified as follows
X

i�3

noi ði� 2Þ ¼
X

i�1

n0i ði� 2Þ þ n01 ¼ ð1� rÞN � 2nþ n01;

where we used equation (5.3). Finally the probability is

�ð1� rÞ � 2
n

N
þ n01

N
:

Case i � 2. An enlarging a (i�1)-cluster to the size i is possible if the adjacent
empty cluster is of the size bigger than one

�2
ni�1

N

P
i�2

n0i

n0
¼ 2

ni�1

N

ðn0 � n01Þ
n0

¼ 2
ni�1

N
ð1� n01

n
Þ;

where the multiplier 2 counts left and right cases.

(b) Joining two clusters. To create i-cluster from two smaller ones, a cluster of size

k 2 f1; 2; :::; ði� 2Þg and the other of the size (i�1)�k are necessary.

The probability is proportional to the number of empty 1-clusters between k-cluster
and (i�1�k)-cluster, hence

� n01
N

Xi�2

k¼1

nk
n
� ni�1�k

n
:
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The dot in the multiplication above underlines the independence assumption for the

order of clusters. The last equation introduces also an extra quadratic nonlinearity

into the system, so far nonlinearity was present via n.
The balance between gains and losses for clusters gives the following set of

equations for ni

n1 ¼ 1

3
ð1� rÞN � 2

3
nþ 1

3
n01; (5.7)

n2 ¼ 1

2
ð1� n01

n
Þn1; (5.8)

ni ¼ 1

iþ 2

�
2ni�1ð1� n01

n
Þ þ n01

Xi�2

k¼1

nkni�1�k

n2

�
for i � 3; (5.9)

where n ¼ P
i�1

ni and r ¼ 1
N

P
i�1

ini.

In the above set of equations there is one extra variable n01. But the system is

closed for variables {n01, n1, n2, n3, . . .} since we derived the balance equation for r,
which can be written in the form of equation (5.5)

N¼P
i�1

niiðiþ 1Þ.

Thus we derive the set of nonlinear equations exactly describing our model. It is

also possible to write down an analogous set of equation for empty clusters (see

Białecki and Czechowski, 2010). The numerical values of the density r, the average
size of cluster <i> and the average size of the avalanche <w> are compared

in Table 5.1 with percolation approximation results and with simulation results.

The agreement of the values in quasi-equilibrium description with numerical

experiment is striking.

From the set of equations, multiplying ni by (iþ2) for i ¼ 2, 3, . . . and summing

them up we obtain

X

i�2

niðiþ 2Þ ¼ 2ð1� n01
n
Þ
X

i�2

ni�1 þ n01
n2

X

i�3

Xi�2

k¼1

nkni�1�k:

Table 5.1 The average density <r>, the average size of a cluster

<i>, and the average size of an avalanche <w> for simulation

results, quasi-equilibrium model and percolation model

Simulation

results

Q-Equilibrium

model

Percolation

model

< r > 0.3075 0.308 1/3

< i > 1.5974 1.597 3/2

< w > 2.2487 2.252 2
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Using the identity

X

i�3

Xi�2

k¼1

nkni�1�k ¼ ðn1 þ n2 þ :::Þ2 ¼ n2

the above formula reduces to

N
X

i�1

ini ¼ 3n1 � n01 or n1 ¼ 1

3
ðNrþ n01Þ:

Comparing with the equation for n1 we obtain the following constraint

2n ¼ Nð1� 2rÞ: (5.10)

Note that from equations (5.1), (5.2) and (5.4) it follows that n/N, r, and
rhwi can be interpreted as the zeroth (m0 ¼ 1

N

P
ni), the first (m1 ¼ 1

N

P
ini)

and the second (m2 ¼ 1
N

P
i2ni) moment of the distribution of ni respectively.

The balance equation (5.5) is a relation between the first and the second moment.

Equation (5.10) relates the zero and the first moment. Thus, relations between

moments can be written as

m1 ¼ 1

2
� m0; (5.11)

m2 ¼ 1

2
þ m0: (5.12)

An average size of the cluster <i> is given by the relation <i> ¼ Nr
n , and from

equation (5.10) we get

<i>¼ 2r
ð1� 2rÞ : (5.13)

An average size of the avalanche <w> is given by

<w>¼ 1

rN

X

i�1

nii
2¼ 1� r

r
: (5.14)

These formulas are well consistent with the numerical data as presented in Table 5.1.

In the set of equations, the variables n1 and n2 are treated in a slightly different

way from the others ni, i.e., where i � 3. This fact and the form of equation (5.9)

suggest using the following formula

ni ¼ ke�ig for i¼ 3; 4;:::; (5.15)
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where k and g are some constants. After substitution to equation (5.9), for i � 6 one

gets

e�g ¼ 1

iþ 2

�
2cþ 1� c

n
ð2n1e�g þ 2n2e

�2g þ kði� 6ÞÞ
�
;

where c ¼ ð1� n0
1

n Þ. (For 3 � i � 5 there are different coefficients at n1 and n2.) For
a big n one obtains

e�g � k

n
ð1� cÞ ¼ kn01

n2
;

or simply

ni � kðkn
0
1

n2
Þi: (5.16)

It strongly resembles percolation dependence for ni. The value of k can be found

from equation (5.1)

n ¼ n1 þ n2 þ k
X

i�3

e�ig ¼ n1 þ n2 þ k
e�3g

1� e�g :

In our case N¼500, which gives k � 122. The approximation is surprisingly good

even for n2, as shown in Figure 5.3.

5.4 Summary and discussion

The proposed random domino cellular automaton exhibits a nice mathematical

structure. As presented above, it is possible to derive from first principles (elemen-

tary combinatorics) the set of equations (5.3) and (5.7)–(5.9) exactly describing

r = 0.308

2 3 4 5 6 7 8
i

n(i,r)

1.0
0.5

5.0
10.0

50.0
Fig. 5.3 Values of ni from
the equilibrium model (dots)

compared to the

approximation ke�ig
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the average values of the parameters of the model. These equations are highly

nonlinear, but without neglecting any terms, we derive formulas for an average

cluster size (5.13) and average avalanche size (5.14) in the model. Moreover, we

find an approximation formula (5.16), which displays intimate relation to the

percolation. Thus, our approach may be a substantial improvement of the other

percolation models as it proved to be here.

Another remarkable property of our system are relations between moments of

the distribution of ni. Equations (5.11) and (5.12) are of very simple and symmetric

form. They suggest it is possible to classify models according to the number of

moments (of successive orders) related to each other. For example, the domino

automaton has three moments related by two equations. In case of models with

generating function, it corresponds to the order of differential equation satisfied by

the generating function. Also, it is interesting to study relevance of a generating

function in our model.

The agreement with numerical data is evident, as already shown in Table 5.1.

Moreover, the theoretical formulas derived for the quasi-equilibrium state (and

thus characterized by the fixed value of density) look also valid when considered

as a function of density even quite far from the average value. To display this

property, we perform the following simulations. After each avalanche, apart from

calculation of density r(k), we calculate the number of clusters of succeeding

sizes. Then, after the cycle of n ¼ 60 000 avalanches, we group the clusters in

classes with the same r and in each class we find average of succeeding cluster

sizes. In this way we obtain values of function n(i, r), where cluster sizes i ¼ 1,

2, . . . , 13 and r 2 ð0:2; 0:4Þ. Three graphs of function n(i) for three chosen values
of r (i.e., equilibrium density r¼ 0.308, and two quite extreme values: r¼ 0.256

and r¼ 0.398) are presented in Figure 5.4. Simulation data (points) and analytical

formulas (continuous line) are in a very good agreement even for extreme values

of r. A scattering for bigger values of i may be a result of smaller number of data

for these values of r (see Fig. 5.1). Geometric size distribution nðiÞ ¼ ð1� rÞ2ri-
resulting from 1-D percolation model and represented by dashed line - differs

more significantly from simulation data. The fourth plot in Figure 5.4 shows that

the cumulative value of ni ¼
P
r
nði; rÞ does not differ much from n(i, r) selected

for the average value of r.
The above reasoning leads to the following argument related to possible experi-

mental verification of the model. Notice the equations of the model use the fixed

average values, defined for quasi-equilibrium state. To apply these relations to

observed data, one should restrict to the data from the region in which the actual

density is equal, or at least close to, the value of the average density. Hence to select

proper data one needs to know the actual microscopic state of the automaton. Such a

procedure is possible in simulation, but not in an experiment. Thus, the very small

differences |d(i)| between cumulative and equilibrium values of ni suggest that
variables in obtained equations can be approximated by cumulative values, which

can be collected without bothering of which density they are related to. Therefore,

unselected experimental data can be used for a test to find out if they obey relations

of the model or not.

5 On a Simple Stochastic Cellular Automaton with Avalanches 73



The proposed random domino cellular automaton is an extremely simplified

model of earthquakes and there is no surprise it does not give deep insight into

them. However, the presented method of analysis may lead to substantial improve-

ment in constructing and understanding models of various natural phenomena. The

advantage of the model is its transparent description without neglecting higher

terms and other approximations. The exact formulas can serve as a basis for testing

more complicated ideas like some application of the Ito equation to geophysics (see

the next chapter in this monograph).

Last but not least, we enumerate few straightforward generalizations. Each

element of the presented automaton - including the incidence rule - can be

subjected to various modifications. To be more specific, one can consider differ-

ent geometry of the array (for example, a tree shaped like Bethe lattice or any in

bigger dimension), different capacities of cells and different kinds of blocks

(particles) can be distributed to the system. Also there are many kinds of depen-

dence of energy release threshold (on space position, on states of cells in a

neighbourhood etc.) just to mention few ideas. We leave these possibilities for

further investigations.
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Fig. 5.4 The numbers of clusters n(i, r) for size i for three chosen densities r: the equilibrium
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difference |d(i)| between n(i,r) in equilibrium case and cumulative ni for all densities. Dots
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model and dashed line - percolation model
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Chapter 6

Ito Equations as Macroscopic Stochastic Models

of Geophysical Phenomena – Construction of the

Models on the Basis of Time Series

Z. Czechowski and M. Białecki

6.1 Introduction

Stochastic processes are commonly used to build macroscopic phenomenological

models of physical, geophysical, biological or economical systems. Earthquakes

are particularly predestinated to be described by stochastic processes. Occurring

in the crust, mechanisms which generate events are very complex and inaccessible

for a direct observation. We can register only some external phenomena such

as seismic waves, surface deformations or other indirect effects. However, the

construction of adequate macroscopic models (stochastic processes) describing

observable phenomena may help in understanding the intrinsic processes on the

microscopic level (i.e., the physical model of seismic source) and then in analysing

of such effects as synchronization or triggering.

Ordinarily, the microscopic description of the phenomenon can be given by a

system of nonlinear differential equations or, in computer simulations, by some

rules which govern the microscopic evolution of the model. Some simple stochastic

input may be included in both approaches.

The microscopic model may be a system of many degrees of freedom; however,

in many cases its macroscopic behaviour is characterized by one or two dominative

modes. Such a macroscopic variable (variables) can be given, for example, by an

average of some function of microscopic variables or even by a predominant (or

that which can be observed in practice) microscopic variable itself.

Therefore, a behaviour of the macroscopic variable may be governed by the

mixed stochastic process with additive/multiplicative fluctuations. Starting from a

microscopic description, these fluctuations arise from the elimination of the irrele-

vant degrees of freedom in favor of a small number of macroscopic variables.
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The form and parameters of the macroscopic stochastic equation are determined by

the complex action of intrinsic degrees of freedom on the evolution of the macro-

scopic variable.

The modeling of phenomena which have stochastic features can be performed

by using:

– linear stochastic models, e.g., ARMA, etc. . ., (Markov of order m),

– nonlinear deterministic models which lead to a deterministic chaos,

– nonlinear stochastic models, e.g., Ito, Fokker-Planck (Markov of order 1).

Physical systems (isolated) may be described by the Markov process, then all

microscopic variables comprise the vector y. Moreover, for some systems the

reduction in dimensionality can be performed and then the process is approximately

Markovian (on the macroscopic level).

Here, we consider only scalar stochastic processes and we assume that they can

be approximated by diffusive Markov processes.

One-dimensional diffusive Markov process Y(t) is governed by the Ito stochastic
differential equation [e.g. Oksendal 1998]

dy ¼ aðyÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðyÞdWðtÞ

p
; (6.1)

where a(y) and b(y) are known to be the drift and diffusion coefficients, respec-

tively, and W(t) is the Wiener process. The transition probability density of Y(t),
denoted by p(y,t) ¼ P(y, tjyt-dt, t-dt), is governed by the Fokker-Planck equation

[e.g. Risken 1996]

@

@t
pðy; tÞ ¼ � @

@y
aðyÞpðy; tÞ½ � þ 1

2

@2

@y2
bðyÞpðy; tÞ½ �: (6.2)

Physical interpretation of the Ito equation is simple: it is the modified diffusion

in the potential niche. Classical diffusion described by the term
ffiffiffi
b

p
dWðtÞ (additive

fluctuation) can be modified by the dependence on the current value of y, i.e.,ffiffiffiffiffiffiffiffiffi
bðyÞp

dWðtÞ (multiplicative fluctuation). The potential V(y) is given by the drift

term, V’(y) ¼ �a(y). The shape and slope of the potential niche V(y) and the

strength of the stochastic force
ffiffiffiffiffiffiffiffiffi
bðyÞp

dWðtÞ are an average effect of intrinsic

interactions in the microscopic level and of boundary conditions.

The histogram method [Siegert et al. 1998] of reconstruction of the Ito equation

from the time series data was tested successfully by their authors in cases of time

series generated by Ito equations only. However, for real, geophysical time series

the question arises whether the resulting Ito equation (in which both terms have

simple physical interpretations) is physically adequate to the phenomenon under

investigation [Czechowski and Rozmarynowska 2008, Rozmarynowska 2009].

The aim of the paper is to show that Ito equations may constitute quite good

macroscopic models of phenomena (where y is the variable which is measured) in
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which microscopic interactions are averaged in an adequate way. Then, the three

important questions arise:

1. How does the microscopic working of a model determine forms of functions a(y)
and b(y) in the related Ito equation?

2. Can we extract from the form of the Ito equation any conclusions concerning

microscopic aspects of the phenomena?

3. Can an unknown process be reliably described by 1-D Ito model?

In order to answer the first question we investigate (in Section 6.2) simple

microscopic toy models, whose full evolution is observed during computer simula-

tion. We choose some quantity in the model, which may be interesting for an outer

observer and we register its fluctuation as a time series. By using the histogram

method of reconstruction of the Ito equation on the basis of time series we obtain

adequate drift and diffusion terms.

Section 6.3 includes some answer to the second question. For the case of

geophysical time series we construct the Ito equation. An analysis of functions

a(y) and b(y) leads to some interesting conclusions concerning some microscopic

features of the phenomena.

In order to answer the third question, a simpler problem (in Section 6.4) is

considered: a geophysical phenomenon is replaced (modeled) by a simple cellular

automaton. The evolution of the model leads to the time series of some variable,

which is interesting for the observer. The aim is to derive analytically, on the basis

of automaton rules, the stochastic Ito equation for the variable and to compare the

equation with that reconstructed by the histogram method from time series gener-

ated by the cellular automaton.

In Section 6.5 two examples of the stochastic control are analyzed.

6.2 What do a(y) and b(y) consist of?

We are going to check how the microscopic working of a model determines forms

of functions a(y) and b(y) in the related Ito equation. In order to do it we construct

toy models whose working is simple and stationary. Then we choose some quantity

y which may be considered as a macroscopic observable. The toy model generates

the time series for this quantity. Next we use the histogram method to construct

functions a(y) and b(y) in the Ito equation. Because we can follow the microscopic

working of the model in detail, we may try to link it to the macroscopic behaviour of

drift and diffusion terms.

1. Random replacing of black and white cells on 2-D array

The model (we follow our paper, Czechowski and Rozmarynowska 2008)

aims at demonstration how the potential arises during the purely random process.

We start from a state of a square array (LxL cells) in which black (occupied) and
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white (empty) cells are randomly distributed. Then we fix an integer value k, which
is smaller than number L2 of all cells in the array. At each step of time evolution,

two integers n1 and n2 are randomly drawn from the interval [0, k]. Next, we define
the state replacing procedure. Two individuals jump by turns randomly on the array.

The first changes black cells on white (but white leaves white), the second white on

black (but black leaves black). The first jumps n1 times, the second n2 times. After

the step of the procedure we count the number of black cells on the grid (see

Fig. 6.1) – this is the first x1 in our time series. We repeat the procedure N times to

complete the time series x1, x2,. . ., xN. The transformed time series (see Fig. 6.1)

yi ¼ xi
L2

� 1

2
(6.3)

is analyzed. The histogram procedure calculates histograms of joint and stationary

distribution functions (Fig. 6.2) and leads to drift and diffusion functions in the form of
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Fig. 6.1 The toy model 1: an example of the array state (left), time series resulting from the

evolution of the model, N ¼ 10000
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Fig. 6.2 Histograms p(i,j) (left) and p(i) (right) constructed from the time series (Fig. 6.1), line –

Gaussian fit
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clouds of points (resulting from these histograms). We can see from Fig. 6.3 that a(y)
may be approximated by the decreasing linear function a(y)¼ �2.8423y and b(y) by
the constant b ¼ 0.0019.

It can be shown that the drift a(y) (or the potential V(y) ¼ 1.4217y2) does not
result from any external forces in the model but rather from the limitation of size of

the array. This resembles the Ehrenfest urn model [e.g. Feller 1966]. Fig. 6.4 shows

that when the size of the array is increasing, L ¼ 50, 100, 150, then the drift force

diminishes and the niche of potential is shallowing. Of course, the same effect may

be obtained for the fixed array (L¼ 50) and decreasing parameter k, k¼ 2500, 1000,

500, 200 and 50 (see Fig. 6.4). Fig. 6.5 explains this behaviour: for a small array

(L ¼ 50) and for k ¼ 50 random variables do not diffuse too far from the average

value and the process resembles the Rayleigh particle walk. However, for a big

array (L ¼ 150) distant excursions are possible, because then there is a greater

probability of creation of new areas with the same cell states, in comparison with

the previous step of the evolution procedure. Then the process resembles the

random walk (see Fig. 6.5c) but it is stationary. With L ! 1 the process tends to

the non-stationary random walk.
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Fig. 6.3 Illustration of coefficients a(y) and b(y) calculated (points) by the histogrammethod from

the time series (Fig. 6.1). Lines present fitted functions: a(y) ¼ �2.8423y and b(y) ¼ 0.0019
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Fig. 6.4 Potential niches: left - for increasing array size: 50x50, 100x100 and 150x150 with

assumed parameter k ¼ 50 for each case, right - for increasing parameter k ¼ 50, 200, 500, 1000,

and 2500 for the fixed array size 50x50
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2. Evolution of “forests”

The second, more complex model described the evolution of “forests”. We

constructed the model in such a way in order to demonstrate how multiplicative

fluctuations may be generated [see Czechowski and Rozmarynowska 2008].

We put the initial state of the array in the form of large primaeval forest (see

Fig. 6.6). Next we assume the two competitive processes:

– a random number r1 E [0, current perimeter size] of new trees (black cells) grows

only on the perimeter of forests,

– a random number r2 E [0, current number of trees] of trees disappears in random

places in forests.
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After each step including the two processes the number of black cells y(i) (the
surface of forests) is calculated. The process becomes stationary (see the state of the

array in Fig. 6.6 and the time series in Fig. 6.7) after an initial stage.

The time series is analyzed by the histogram procedure, and we obtain interesting

forms of functions a(y) and b(y) (see Fig. 6.8), the fitted polynomials are as follows:

aðyÞ ¼ 4255� 7:95yþ 0:053y2 � 0:0001y3 þ 3:67 � 10�8y4; (6.4)

bðyÞ ¼ 3145yþ 7:098y2: (6.5)

The potential niche is presented in Fig. 6.9. Here, the drift force a(y) contains,
apart of the influence of the array size, an average effect of the two competitive
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Fig. 6.6 The toy model 2: left – initial state (“primaeval forest”) of the array, right – an example

of the array state during stationary evolution stage of the model
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Fig. 6.7 Time series generated by the toy model 2 (oscillation of number of trees – black squares)
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processes. The diffusion term is dependent on the state of array, b(y) is a square

increasing function. The question is why random jumps,
ffiffiffiffiffiffiffiffiffi
bðyÞp

dWðtÞ, are longer (in
average) for a greater surface of forests. The appropriate construction of the toy

model let us to give a simple answer: then r1 and r2 are chosen from wider ranges

(current perimeter size and current number of trees are greater). It should be noted

that the perimeter of percolation 2-D cluster is, in average, proportional to the size

of the cluster [Stauffer and Aharony 1992].

3. Domino cellular automaton

We construct such a very simple 1-D toy model with avalanches which can be

described by analytical equations (see Chapter 5.1 of the monograph). This feature

will be useful in Section 6.4. The automaton rules are as follows: particles are added

and lost from the 1-D grid (of size N) according to the procedure:

– at each step a particle is randomly added to one of the boxes,

– if it hits an empty box it becomes occupied,

– when it hits an occupied box the whole cluster (chain of neighbouring occupied

boxes) is lost, i.e., the avalanche appears (see the time series in Fig. 6.10).
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Fig. 6.8 Graphs of functions a(y) and b(y) for the toy model 2. Points – calculation from the time

series, line – nonlinear fit: a(y)¼ 4255 – 7.95yþ 0.053y2– 0.0001y3þ 3.67*10-8y4, b(y)¼ 3145y þ
7.098y2
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Fig. 6.9 Potential V(y) for the toy model 2
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However here, not avalanche sizes w(i), but the density r(i) of occupied cells on
the grid (calculated after each avalanche) is considered (see the time series in

Fig. 6.10).

By using the histogram method we obtain adequate drift and diffusion terms

(see Fig. 6.11). The drift function is a linear decreasing function as in the above-

mentioned model of random replacing of black and white cells on 2-D array. The

diffusion function b(r) is not a quadratic increasing function (as in the forest

evolution toy model) but has a nonlinear decreasing shape.

Microscopic interpretation of these two functions is not simple. However, it can

be shown that here the potential V(r) is not a result of the limitation of the array size

(as in the above-mentioned random color replacing model), but arises from micro-

scopic rules of the automaton. The left potential wall appears because for r smaller

than req creating of new occupied boxes is more probable than starting a big

avalanche (so the effect of repulsive force, in direction towards the right, appears).

Similarly, the right potential wall can be explained by the fact that for big r the

probability of triggering an avalanche prevails over the tendency of increasing r
(the repulsive force to the left).

The size of diffusion jumps
ffiffiffiffiffiffiffiffiffi
bðrÞp

dWðtÞ is dependent on the density r, but in the
region req< r < 0.4 the function b(r) is nearly constant. Greater jumps for r < req

0 2000 4000 6000 8000 10000
i

2

4

6

8

10

12

w(i)

2000 4000 6000 8000 10000
i

140

160

180

200
r(i)

Fig. 6.10 The domino automaton: left – time series for avalanche sizes w(i), right – time series for

density r(i)
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Fig. 6.11 Graphs of functions a(y) and b(y) for the domino automaton. Points – calculation from

the time series, line – linear and nonlinear fit: a(y) ¼ 1 – 3.25y, b(y) ¼ 0.22 - 0.87y þ 1.17y2
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(the smaller the r the larger the jumps) mean that the randomness has a greater

influence on evolution in this region. However, the effective jumps will be executed

on the right (in average) because of prevailing influence of the potential left wall.

The analysis of the simple domino cellular automaton is a good initial point

for investigation of the avalanche time series (Fig. 6.10). Unfortunately, micro-

scopic interpretation of the avalanche behaviour is much more difficult because the

avalanche size is a complicated function of the array state and we can not join the

current avalanche with the previous one. Therefore, the choice of density r as an

observable was more appropriate for a microscopic interpretation. Here we restrict

our investigation of avalanches to extraction of the stationary probability and

functions a(y) and b(y) from the time series.

The stationary probability (Fig. 6.12, top line) may be approximated by the

exponential distribution (for i> 1). The function a(y) is a linear function (Fig. 6.12,
top line) and the function b(y) is an increasing (for y > 1) nonlinear function which
may be approximated by the polynomial b(y) ¼ 216 þ 27.8y þ 6y2 þ 6.2y3.

It is interesting to compare the results with that for the cellular automaton on the

Bethe lattice and the Bak-Tang-Wiesenfield (BTW, see Bak et al. 1988) cellular

automaton. For the three automata we observe similar behaviour (see Fig. 6.12):

a(y) are linear decreasing functions, b(y) are nonlinear (square) increasing functions
for larger y. The substantial difference is that for Bethe CA and BTW CA the

stationary distribution function has an inverse-power (not exponential) form (in its

central part).

6.3 Extracting microscopic information from a(y) and b(y)

In Section 6.2 we have shown that it is possible to construct such a toy model which

gives required characteristics of drift and diffusion function in the (re)constructed

(from the time series generated by the toy model) Ito equation. Here we will try to

discuss the opposite problem: can we deduce information about the microscopic

behaviour of the process from the forms of functions a(y) and b(y)? The problem is

difficult, the knowledge of these functions (and of course the stationary distribution

function and the transition distribution function) contains only averaged properties

of the system.

We are going to extract some information from the geophysical time series (see

Fig. 6.13): daily mean aerosol optical depths measured at wavelength 320 nm by the

Brewer spectrometer in the period 1992-1996 at Belsk Geophysical Observatory

(Poland) – summer seasons (Jarosławski et al. 2003).

By using the histogram method we obtain clouds of points (and fitted functions)

which illustrate p(y), a(y) and b(y) (see Figs. 6.13 and 6.14). We can divide the

range of y on two limits. For y < 0.4, b(y) is nearly constant and a(y) is a decreas-
ing linear function; this leads to the Gaussian stationary solution (see Table 1 in

Czechowski and Rozmarynowska 2008). In the second region, for y > 0.4, b(y)
becomes a square increasing function, therefore the exponential tail of the station-

ary distribution appears (Fig. 6.13). In the Gaussian regime there are additive
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fluctuations and the process of daily mean aerosol optical depths change is the

Ornstein-Uhlenbeck process. However, in the exponential regime a new mecha-

nism appears, and there are multiplicative fluctuations, which are increasing with

the current state y. Therefore, the process might be described by the modified

domino cellular automaton (compare Fig. 6.14 with Fig. 6.12): avalanches are a

manifestation of daily mean aerosol optical depths; the modification is that in the

Gaussian regime probability of hit a cluster will not depend on the cluster size. The

example shows that there are some prospects, but the topics needs further develop-

ment in specific case studies.

6.4 Analytical derivation of a(y) and b(y)

In Sections 6.2 and 6.3 we have used the histogram method to construct Ito

equations on the basis of time series. We have assumed silently that this macro-

scopic description is valid in these cases, i.e, that the processes might be approxi-

mated by the one-dimensional, Markov diffusion process. However, some of these
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Fig. 6.13 Left - daily mean aerosol optical depths time series measured at wavelength 320 nm in

period 1992–2006 at Belsk (only summer seasons: months April–September). Right - the stationary

distribution function p(y) for daily mean aerosol optical depths time series

0.4 0.6 0.8
y

-50

-40

-30

-20

-10

10

a(y) b(y)

0.0 0.2 0.4 0.6 0.8
y

5

10

15

20

Fig. 6.14 Graphs of functions a(y) and b(y) for the aerosol optical depths. Points – calculation

from the time series (Fig. 6.13), line – nonlinear fit: a(y) ¼ 13.5 – 23y – 34y2, b(y) ¼2.2 – 36.5
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models (phenomena) have been complex systems with few or more degrees of

freedom, so we are not sure if we are allowed to construct the Ito equation as a

reliable macroscopic model. Of course, it is very difficult to solve this problem in

general. However, it would be useful to derive analytically the Ito equation for a

case of simple cellular automaton.

Just to this aim we introduced the domino model (Section 6.2 and Chapter 5.1

of this monograph). We assumed a quite natural convention in the model: what

provokes us to investigate the lattice state are avalanches; therefore, we monitor

avalanche sizes and the density r of occupied cells in the lattice after each avalanche.

According to our convention the effective change of r is a result of growth of r in

unit steps before an avalanche starts, and a drop of r in the avalanche.

Let us derive the probability EG(k) of effective gain (an increase by k boxes) of
the number of occupied boxes calculated immediately after an avalanche:

EGðkÞ � P ri þ
k

N
; iþ 1jri; i

� �
¼

X1

s¼kþ1

ð1� rÞs � r � ws�kðrÞ; (6.6)

where (1- r)s is the probability of hit one after the other of s empty boxes, r is the

probability of hit of an occupied box in the next step, and ws-k(r) is the probability
that this occupied box is a part of the cluster of size s-k.

Similarly, we can derive the probability of effective loss EL(k):

ELðkÞ � P ri �
k

N
; iþ 1jri; i

� �
¼

X1

s¼k

ð1� rÞs�k � r � wsðrÞ; (6.7)

where the size of avalanche excels step gains before the avalanche. Due to the basic

assumption in the model that a hit of any occupied box belonging to a cluster of size

s triggers the avalanche of size s, we have

r � wsðrÞ ¼ s � nsðrÞ; (6.8)

where ns(r) is the number of s-clusters per lattice site (i.e. divided by N).

Formulas for probabilities EG(k) and EL(k) allow us to calculate the transfer

probability Pð~y; tþ t; y; tÞ needed in expressions for a(y) and b(y) (see Risken

1996):

a½yðtÞ� ¼ lim
t!0

ð1

�1

1

t
½~yðtþ tÞ � y�Pð~y; tþ t y; tj Þd~y; (6.9)

b½yðtÞ� ¼ lim
t!0

ð1

�1

1

t
½~yðtþ tÞ � y�½~yðtþ tÞ � y�Pð~y; tþ t y; tj Þd~y; (6.10)

where ~yðtþ tÞ is the solution of the Ito equation after time t (when the initial

condition in time t is ~yðtÞ ¼ yðtÞ) and Pð~y; tþ t y; tj Þ is the conditional distribution
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function. The distribution function is approximated by using histograms of joint

distribution function Pð~y; tþ t; y; tÞ and of stationary distribution function Pðy; tÞ
according to the formula

Pð~y; tþ t y; tj Þ ¼ Pð~y; tþ t; y; tÞ
Pðy; tÞ : (6.11)

Here we replace the integrals in (6.9) and (6.10) by sums and we omit limits. The

time increment t refers to the time step in time series. Therefore:

aðrÞ¼ u

t
k

N

� �
¼ u

t

X1

k¼1

P riþ
k

N
; iþ1jri; i

� �
�P ri�

k

N
; iþ1jri; i

� �� �
k

N
; (6.12)

bðrÞ ¼ u2

t
k

N

� �2
* +

¼ u2

t

X1

k¼1

P ri þ
k

N
; iþ 1jri; i

� �
þ P ri �

k

N
; iþ 1jri; i

� �� �
k

N

� �2

; (6.13)

where u ¼1/N. However, in formulas (6.6) and (6.7) with (6.8) we need an evident

expression for ns(r). If the automaton was as random as the 1-D percolation model,

then ns(r) would have the form [Stauffer and Aharony 1992]:

nsðrÞ ¼ rs � ð1� rÞ2: (6.14)

Then, we obtain the following analytical formulas:

P ri þ
k

N
; iþ 1jri; i

� �
¼ rð1� rÞ3�k

ð1� rþ r2Þ2 (6.15)

for k ¼ 0, 1, 2, . . . , and

P ri �
k

N
; iþ 1jri; i

� �
¼ rkð1� rÞ2ðk þ r� kr� r2 þ kr2Þ

ð1� rþ r2Þ2 (6.16)

for k ¼ 1, 2, . . . . They fulfill the normalization condition:

X1

k¼1

½EGðkÞ þ ELðkÞ� þ EGð0Þ ¼ 1: (6.17)

Then, it is easy to calculate the functions a(p) and b(p):

aðrÞ ¼ 1� 3r
rð1� rÞ : (6.18)
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bðrÞ ¼ 2� 9rþ 12r2 þ r3

r2ð1� rÞ2 : (6.19)

A comparison with simulations (see Section 6.2) shows (see Figs. 6.15 and 6.16)

that these functions behave in a similar way but they do not fit to simulation results:

the function a(r) is shifted upwards, the function b(r) decreases too fast.

According to the analysis in Chapter 5.1 we know that we have adopted an

improper formula for cluster distribution. Therefore, now we try to use analytical

recursive expressions (5.7), (5.8) and (5.9) for ni(r) derived in that chapter. They

are exact only in the equilibrium state, but for r away of req there is a reasonable
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Fig. 6.15 Comparison of analytical formulas for a(y) with simulation for the domino automaton.

Points – results from the time series, dashed line – percolation approximation (6.18), continuous

line – calculation by using analytical recursive expressions (5.7), (5.8) and (5.9)
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Fig. 6.16 Comparison of analytical formulas for b(y) with simulation for the domino automaton.

Points – results from the time series, dashed line – percolation approximation (6.19), continuous

line – calculation by using analytical recursive expressions (5.7), (5.8) and (5.9)
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correspondence between theoretical graphs and simulation data (see Fig. 6.17).

Resulting graphs for a(r) and b(r) are presented in Figs. 6.15 and 6.16 (we do not

write exact formulas here because of their great complexity). We observe much
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Fig. 6.17 Comparison of analytical formulas for n(i, r) where i¼ 1, 2, . . . , 8, with simulation for

the domino automaton. Points – results from simulations, dashed line – percolation approximation

(6.14), continuous line – analytical recursive expressions (5.7), (5.8) and (5.9)
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better conformability of these graphs (than functions given by the percolation

approximation) with a cloud of points (illustrating functions a(r) and b(r)) obtained
from time series.

The derivation of the Ito equation for the cellular automaton shows how the

complex nonlinear microscopic working of the model can be contained in the two

functions a(r) and b(r) which represent macroscopic (averaged) aspects of the

automaton. This result gives a hope that for some other complex systems the Ito

models may become good approximate descriptions.

6.5 Stochastic control in Ito models

When we have the appropriate macroscopic stochastic model of the phenomena

under investigation then we can study some interesting aspects, as for example the

stochastic control or the synchronization. Here we analyze some possibilities of the

stochastic control in order to reduce the probability of greater (more dangerous)

events. We study the two examples.

1. The process is described by the following Ito equation:

dyðtÞ ¼ 1

2
ð1� 2yÞDtþ

ffiffiffiffiffi
y2

p
WðtÞ (6.20)

for which (see Table 1 in Czechowski and Rozmarynowska 2008) the stationary

solution has the inverse-gamma distribution function (long tail). We would like to

introduce a small external force in order to shorten the long tail. The simplest

method is to use the small additional white noise term:

dyðtÞ ¼ 1

2
ð1� 2yÞDtþ

ffiffiffiffiffi
y2

p
WðtÞ þ eW1ðtÞ; (6.21)

where we assume e ¼ 0.1. By using the histogram method to time series generated

by the two Ito equations we calculate stationary distribution functions. Figure 6.18

shows that even such a simple random small term leads to the essential shortening

of the distribution tail.

2. In the second example we try to use the y-dependent control term. The following

Ito equation:

dyðtÞ ¼ � 1

2
ðy log y� yÞDtþ

ffiffiffiffiffi
y2

p
WðtÞ (6.22)

has the log-normal stationary distribution (see Table 1 in Czechowski and

Rozmarynowska 2008). Modified equation:

dyðtÞ ¼ � 1

2
ðy log y� yÞDtþ

ffiffiffiffiffi
y2

p
WðtÞ þ e

ffiffiffi
y

p
W1ðtÞ (6.23)
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gives the stationary solution with the reduced tail (see Fig. 6.19, e ¼ 0.1).

These simple cases show that Ito models and the histogram method are very

handy for different uses. The synchronization between two correlated stochastic

processes may be investigated by using the vector Ito equation.

6.6 Conclusions

There are two complementary methods of modeling of natural phenomena which in

general are hidden but manifest themselves by some observable effects. The first

consists creating a detailed deterministic microscopic model based on physical

premises. In the second method, we construct the stochastic model describing
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y
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Fig. 6.19 Stationary distribution function p(y): “* “ log-normal solution of the equation (6.22), “þ”

solution of the equation (6.23) with a reduced tail
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Fig. 6.18 Stationary distribution function p(y): “*” inverse-gamma solution of the equation

(6.20), “þ” solution of the equation (6.21) with a reduced tail
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macroscopic (or averaged) behaviour of the system. This model uses mainly the

information from time series of observable variables. This approach has advantages:

what is important is not a detailedmodel but rather effects which we experience. They

are results of collective or competitive interactions of system elements. Therefore, we

are interested in external, macroscopic evolution; particularly in some regularities or

statistical details which might help us in the prediction or the control.

In this paper we decided that promising stochastic macroscopic models of

phenomena are the Ito equations. Therefore, we were checking whether the com-

plex systems (toy models) could be described by the Ito equations and how

microscopic working of the model creates the form of drift and diffusion terms.

We showed also that, inversely, from the form of the Ito equation some microscopic

details of the geophysical phenomenon can be deduced.

The histogram method of construction of Ito equation from time series is simple

and effective – it always leads to clouds of points illustrating functions a(y) and
b(y). However, the efficiency may be fallacious. It appears that sometimes the time

series generated by the constructed Ito equation does not reflect characteristics of

the initial time series. This must be caused not by the scattering resulting from too

small number of data or from inaccurate fit of polynomials for a(y) and b(y), but
rather by the fact that in this case the time series can not be approximated by a

diffusion Markov process. For nonlinear processes it is difficult to deduce the

Markov property, but it is more difficult to ascertain whether they are diffusion

processes. Practically, we can only compare initial and generated time series – if

they behave in a similar way, we can state that the time series under investigation

may be approximated by the adequate diffusion Markov process.

However, in some simple examples one can try to derive analytically the Ito

equation directly from equations or rules defining the model. We succeeded in

achieving the purpose in the case of domino cellular automaton. Analytical deriva-

tion of the Ito equation for a simple cellular automaton advances the motivation for

using the Ito equations in description of external, macroscopic effects generated by

complex processes.

Ito equations have simple physical interpretation and compose handy models for

studying some interesting aspects, as for example the stochastic control or the

synchronization. The additional advantage of Ito models is their relevance to the

Fokker-Planck equations which describe the evolution of distribution function of

the process. In our opinion this topic deserves further detailed studies.
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Chapter 7

The Importance of Privilege for the Appearance

of Long-Tail Distributions

Zbigniew Czechowski

7.1 Introduction

Many geophysical phenomena, because of their complexity, manifest non-regular

and chaotic behaviour. It appears, however, that statistically some observational

distributions and patterns reveal that their nature is not purely random (here we

call a phenomenon to be purely random if it is characterized by the uniform,

Poisson, exponential or Gaussian distribution function). The patterns have a fractal

or multifractal structure and the distributions resemble long-tail inverse-power

form. Particularly, the fractal excitament, since Mandelbrot’s book (1982), caused

a spreading interest of this subjest.

Widespread appearance of power distributions in nature and human activity

raises self-evident questions about their reasons. Commonly, power distributions

were related to the following four cases: phase-transitions, large interactive sys-

tems, nonlinearities which lead to chaotic behaviour, and formation of fractals.

Applications of above-mentioned cases to geoscience and other branches of science

are very wide. However, apart from recovering some analogies between pheno-

mena in nature and the four cases, they did not explain causes for the appearance of

inverse-power distributions. Using the designation ‘inverse-power’ we mean not

only strictly inverse-power distributions but also those which resemble them over

some ranges of scale. Still, the majority of observed distributions show the inverse-

power behaviour for a limited range of scales only.

The aim of the chapter is to show that origins of inverse-power distributions in

these phenomena may be enclosed into an unified description – by the privilege

concept. Here, the privilege means the susceptibility of the state onto a change. The
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particular example of the privilege was the idea of preferential attachment (new

objects tend to attach to popular objects) introduced by Yule (1925) and explicated

by Simon (1955). A development of the idea for the case of cities growth was given

by Gabaix (1999). The privilege concept is intuitive. It can describe physical,

biological, psychological, geometrical and even abstract mechanism. In spite of

the lack of precise definition, the privilege concept illustrates the common feature

of phenomena leading to long-tail distributions. For a given mathematical descrip-

tion the privilege is defined more precisely.

The Gutenberg-Richter law, Omori’s law, the distribution of crack populations

and fault distributions are examples of such self-similar organizations over a

wide range of scales in seismology. It raises the question how deep the intrinsic

fractal structure exists in nature. It may only be the output phenomena that show

self-similarity, whereas the deep structure is purely random. On the other hand, if

properties of physical intrinsic processes were purely random it should generate

exponential (uniform, Poisson, Gaussian) distributions. However, nonlinearity of

the process can be responsible for the transformation of distributions.

In this chapter we present results, pertaining to the privilege concept, chosen

from our papers: Czechowski (1991, 1993, 1994, 1995, 1997, 1998, 2001, 2002,

2003, 2005), Czechowski and Rozmarynowska (2008). In Section 7.2 we show

what properties of mathematical non-linear models (black box) are sufficient to lead

to the transformation of random (exponential) distributions onto long-tail distribu-

tions. We find that quite a wide class of nonlinear functions (or equations) fulfills

this requirement. This may explain the universality of long-tail distributions in

nature. Section 7.3 introduces a simple model in which the privilege is taken into

account. We analyze the influence of a type of privilege on the form of solutions.

Due to the fact that the influence of the privilege on the output distribution depends

on the initial/boundary conditions in the phenomenon, we explain this problem in

Section 7.4. The correspondence of Ito equations with the privilege is discussed in

Section 7.5. In Section 7.6 we shortly refer to the multiplicative processes and their

relation to the privilege and the Ito equation. The theoretical approach presented in

the mentioned sections is applied (in Section 7.7) to geophysical, physical and other

problems in which long-tail distributions appear. Physical (geometrical, etc.) inter-

pretations of the privilege are given.

7.2 Nonlinear Transformations

Geophysical phenomena as well as many others may be modeled as a kind of black

box g which transforms input random variables x into the output random variable

y ¼ g(x) that is of interest (is observed) in a given phenomenon. Unknown para-

meters or some aspects of intrinsic structure of the model g can be used as the input
random variables. We assumed purely random (e.g., exponential) distribution

functions for them.
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The influence of the non-linearity of the model g on the output behaviour is

investigated. To be more exact, the kind of nonlinearity of a model that transforms

an input random variable xwith exponential (or uniform, normal) distribution into a

variable y with a long-tail distribution (see Fig. 7.1) over a wide range of scales is

analyzed. We follow our papers Czechowski (2001, 2002, 2008).

7.2.1 Transformation y ¼ g(x) of a random variable x

It was shown (Czechowski 2001) that the function g(x) ¼ aaexp(ax), where a ¼
1/(a�1), transforms the input random variable x with exponential distribution

function pX(x) ¼ e�x onto the output random variable y with the inverse-power

distribution pY(y) ¼ y�a. However, there also exists a wide class (shaded region in

Fig. 7.2) of nonlinear, adequately fast increasing functions g(x) which leads to

power-like distributions. The class includes functions between power one, g(x)¼ xk

for sufficiently large k, and those that increase very fast along a vertical asymptote.

Figure 7.2 shows graphs for the four examples:

pYðyÞ ¼ y�a for y ¼ gðxÞ ¼ aa expðaxÞ; (7.1)

input x

x y

p(x) p(y)

output y
Model
g(x)

Fig. 7.1 Illustration of the

black box model with the

input governed by the

exponential distribution and

the output characterized by

the long-tail distribution
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Fig. 7.2 Graphs of transformations y¼g(x) (left) and adequate distributions p(y) (right) for cases
(7.1) – (7.4). Here 2A and 2B correspond to the case (7.2) with k ¼ 4 and k ¼ 8 respectively
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pYðyÞ ¼ 1

k
y
1
k � 1 expð�y

1
kÞ for y ¼ gðxÞ ¼ xk; (7.2)

pYðyÞ ¼ expð� ffiffiffiffiffiffiffi
ln y

p Þ
2y

ffiffiffiffiffiffiffi
ln y

p for y ¼ gðxÞ ¼ expðx2Þ; (7.3)

pYðyÞ ¼
exp y

1þy

� �

ð1þ yÞ2 for y ¼ gðxÞ ¼ x

1� x
: (7.4)

This amazingly wide class of functions which transform purely random distribu-

tions into power-like output forms may lead to the explanation of the universality of

long-tail distributions in nature.

7.2.2 Transformations given by solutions of random
differential equations

The nonlinear transformation y¼ g(x) (executed by the black box) may be given by

a solution of random differential equation. We discuss some examples:

a) Random initial problem:

dy

dt
¼ BðyÞ; yð0Þ ¼ x: (7.5)

If B(y) ¼ aya then for a > 1 the solution yðt; xÞ ¼ x

½1� aða� 1Þxa�1t� 1=a�1

increases to infinity along the vertical asymptote and the distribution function has

an inverse-power form (for y big enough):

f ðy; tÞ ¼ 1

½1þ aða� 1Þya�1t� a=a�1
exp

�y

½1þ aða� 1Þya�1t� 1=a�1

� �
: (7.6)

The example corresponds to a simple (not time-dependent) case (7.4).

It should be noted that even for non-power form of B(y), but such which increases
faster than the linear function, the inverse-power solution is obtained; for example,

if B(y)¼y log(y) then y(t,x) ¼ xexp(t) and f ðy; tÞ ¼ AðtÞ exp½�yAðtÞ�yAðtÞ�1 has the

inverse-power 1/y tail for large t (where A(t) ¼ e-t).

b) Random additive force x:

dy

dt
¼ BðyÞ þ x; yð0Þ ¼ c (7.7)
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If B(y)¼aya then for a¼2 the solution yðt; xÞ ¼ a
ffiffiffi
x

p þ x tanð ffiffiffi
x

p
tÞffiffiffi

x
p � a tanð ffiffiffi

x
p

tÞ increases to

infinity along the vertical asymptote and the adequate distribution function has

an inverse-power form. The same behaviour is observed for other a>1 (see

Czechowski 2001).

c) Random multiplicative force x:

dy

dt
¼ xyðtÞ; yð0Þ ¼ c: (7.8)

Here, the solution is exponential, yðt; xÞ ¼ a expðtxÞ, and the distribution function

(according to (1)) is the inverse-power one.

According to the Liouville theorem (see, e.g., Sobczyk 1991), the initial problem

(7.5) corresponds to the Liouville equation:

@f ðy; tÞ
@t

þ @½ f ðy; tÞBðyÞ�
@y

¼ 0; f ðy; 0Þ ¼ e�y: (7.9)

The distribution function f(y, t) of the solution y(t, x) of eq. (7.5) satisfies the

Liouville equation. This equation may be interpreted as the Fokker-Planck equation

(see, e.g., Risken 1996):

@f ðy; tÞ
@t

þ @½ f ðy; tÞBðyÞ�
@y

� 1

2

@2½ f ðy; tÞBðyÞ�
@y2

¼ 0 (7.10)

without the diffusion term.

7.3 The Master Equation and the Privilege Concept

The nonlinear transformation y ¼ g(x) may be the result of working of a very

complex system for which it is very difficult to find the form of g(.). However, if the
process y(t) is the Markov one, the transformation can be described by some Master

equation.

The Master equation (see, e.g., Van Kampen 1987).

@f

@t
¼

ð
Wðy; y0Þf ðy0; tÞdy0 � f ðy; tÞ

ð
Wðy0; yÞdy0 (7.11)

describes the evolution of the distribution function f(y,t) of the Markov process y(t).
Here W(y;y’)dt is the probability of transfer from the state y’ to the state y in time

dt. The state vector y may contain many characteristic variables typical for

the process under investigation. However, due to difficulties with constructing the
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kernel W(y;y’) and with a nontrivial analysis of the equation (7.11) only scalar or

two-dimensional y is considered.

7.3.1 The Pure Birth Master equation

Let us assume that the evolution of the system is given by the Markov process with

continuous time and with discrete state space. Then the Master equation for the

unistep process (see, e.g., Van Kampen 1987) with steps on right only (pure birth

process) is given by

dpNðtÞ
dt

¼ �BðNÞpNðtÞ þ BðN � 1ÞpN�1ðtÞ (7.12)

where N ¼1, 2, . . . , denote states of the system, pN(t) is the probability that the

system is at state N at time t, and B(N)Dt is the probability of N changing to Nþ1 in

(t, t þDt). The equation is of the gain/loss type; the second term on the right hand

side describes gains (i.e., creating of the state N from the state N-1), the first term on

the right hand side describes losses (i.e., transforming of the state N into the higher

state). The function B(N) can be used for describing the privilege, when the

privilege is the susceptibility of a given state onto a change. For example, if

B(N2) > B(N1), then we acknowledge that the state N2 (if N2 > N1) is privileged.

There is no privilege when all states change with the same probability B(Ni)¼ const

for i ¼ 1, 2, . . ..
We showed (in Czechowski 2001, 2002) that the appropriate privilege of higher

states (which means that B(N) is sufficiently increasing function) may lead to the

inverse-power form of the density pN(t). Analyzing solutions of (7.12) we take into
account two cases: the initial problem, where we assume only the initial distribution

pN(0)¼ e�N, and the boundary problem of the source type, i.e., p1(t)¼ c¼ const for
t � 0 (the number of states 1 is maintained constant all the time) and pN(0) ¼ e�N.

Let us discuss the initial problem. For constant function B(N) ¼ c and for linear

function B(N)¼ cN, the solution is Poisson and geometrical (Fig. 7.3), respectively.

Only when B(N) � Na for a > 1 the solution has a long-tail inverse-power

distribution (Fig. 7.3) for a sufficiently long time t.
On the other hand, by introducing the boundary condition of the source type we

obtain steady-state solutions. These are inverse-power functions (see Fig. 7.4) for

B(N) � Na, where a > 0. For example, for linear function B(N) ¼ N (and p1(t) ¼ 1

for t � 0 and pN(0)¼ e�N for N > 1), the solution has the form (Czechowski 2002):

pNðtÞ ¼ 1

N
þ
XN

k¼2

ð�1Þk�1 ðN � 1Þ!
ðN � kÞ!

1

kðk � 2Þ!þ
Xk�1

j¼1

ð�1Þje�j

ðk � 1� jÞ!j!

" #
e�kt: (7.13)
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It tends asymptotically (for t ! 1) to steady state inverse-power solution

psN ¼ N�1.

Therefore, it was concluded (in Czechowski 2001, 2002) that for the boundary

condition even a very weak privilege given by B(N) � Na with 0 < a << 1 leads to
inverse-power solutions after sufficiently long time t.

The coagulation equation (Safronov 1972)

@f

@t
¼ 1

2

ðy

0

Bðy0; y� y0Þf ðy0; tÞf ðy� y0; tÞdy0 � f ðy; tÞ
ð1

0

Bðy; y0Þf ðy0; tÞdy (7.14)
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Fig. 7.4 Solutions p(N, t) of eq. (7.12) with the boundary conditions: p(1, t) ¼ 5, p(N, 0) ¼ e�N;

for some values of time, for two cases:

B(N) ¼ N1/2 (left),

B(N) ¼ N (right), For a power form of B(N) � Na with a > 0 (privilege) an inverse-power form of

solutions is observed for sufficiently long time, these are steady-state solutions
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Fig. 7.3 Solutions p(N, t) of eq. (7.12) with the exponential initial distribution p(N, 0) ¼ exp(–N),
for some values of time, for two cases:

B(N) ¼ N (left), for each time the exponential distribution is obtained,

B(N)¼ N2 (right), for t¼ 0.6 the power-like solution is obtained, for longer times solutions do not

change the power exponents of theirs tails
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may be treated as the macroscopic equation derived from the adequate Master

equation. Here f(y, t) is the size distribution function (y is the size of the object) in
time t and B(y, y’) is the probability of fusion of two objects with sizes y and y’.
This is a nonlinear equation but has the same loss/gain structure as the linear

Master equation (7.11). It was shown (Czechowski 1993, 2003) that for a constant

coagulation coefficient B(y,y’) ¼ B (there is no privilege – small and large objects

fuse with the same rate) the solution of (7.14) has the exponential form f(y, t) ¼
a(t) exp[b(t)y]. On the other hand, for B(y,y’) ¼ yþy’ (then the probability of

fusion for larger objects is greater that for smaller objects – the larger objects are

privileged) the solution is inverse-power, f(y,t) ¼ c(t) y-3/2 for large y (see

Safronov 1972).

7.3.2 The Fokker-Planck equation

The continuous version (discrete N! continuous y) of the master equation (7.12) is

the Fokker-Planck equation (van Kampen 1987):

@f ðy; tÞ
@t

þ @½f ðy; tÞBðyÞ�
@y

� 1

2

@2½f ðy; tÞBðyÞ�
@y2

¼ 0 (7.15)

It was shown (in Czechowski 2001, 2002) that the behaviour of solutions of the

equation for the initial problem as well for the boundary conditions is analogous

(see Fig. 7.5) to that in the discrete model (7.12). Because the Fokker-Planck

equation describes processes with steps on the right and on the left, the conclusions

concerning the privilege are valid in case of steps on both sides.

t=0 t=1 t=2 t=6t=0.06
t=8

t=0.8

1 2 5 10 20 50 100
y y

10–5
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f(y) f(y)

2 5 10 20 50 100

0.20

0.10
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0.02

0.01

Fig. 7.5 Solutions f(y, t) of the Fokker-Planck eq. (7.15) with:

- the exponential initial distribution f(y, 0) ¼ exp(-y), and B(y) ¼ y2 (left),
- the boundary conditions: f(1, t) ¼ 1, f(y, 0) ¼ exp(-y), and B(y) ¼ y (right). Compare with

Figs. 7.3 and 7.4
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7.4 The Role of Boundary Conditions

The goal of this section is to understand why the introduction of the boundary

condition of the source type leads to inverse-power solutions even for a very weak

privilege given by B(y) � ya, where 0 < a � 1.
The master equation (7.12) or the Fokker-Planck equation (7.15) was solved

with the initial conditions or, additionally, with the boundary condition of the

source type, i.e., we put f(yb, t) ¼ const for t � 0. The same conditions could be

assumed for the Liouville equation. However, the random equation (7.5), which

corresponds to the Liouville equation, can be considered only as an initial problem.

At first we will show how to include the boundary condition into the random

initial problem (7.5) (see Czechowski 2002). The linear case:

dy

dt
¼ yþ a; yð0Þ ¼ x (7.16)

has the solution

yðtÞ ¼ aðet � 1Þ þ xet: (7.17)

The boundary condition f(yb, t)¼ c is assumed for y¼ yb. The trajectory y(t, x) cuts
the line y ¼ yb at the time

t ¼ log
yb þ a

xþ a

� �
: (7.18)

From the corresponding Liouville equation:

@f ðy; tÞ
@t

þ @½ f ðy; tÞBðyÞ�
@y

¼ 0; (7.19)

where B(y) ¼ y þ a, we obtain

d

dt
log f � @

@t
þ _y

@

@y

� �
log f ¼ �1 (7.20)

along a trajectory (we used B(y) ¼ dy/dt and ∂B/∂y ¼ 1). Therefore, along the

trajectory:

f ðy; tÞ ¼ e�tf ðy; 0Þ: (7.21)

By inserting the boundary condition f(yb, t) ¼ c on y ¼ yb and the “time of cutting”

from (7.18) we obtain the initial distribution function in [0, yb]:

f ðx; 0Þ ¼ c
yb þ a

xþ a
: (7.22)
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This shows how the boundary condition f(yb, t) given on y ¼ yb coverts itself
onto the inverse-power initial condition f(x, 0) on x 2 [0, yb]. However, for x > yb
the initial distribution is exponential, i.e., f(x, 0) ¼ c exp(�x þ yb).

According to Fig. 7.6 we see that the initial distribution from [0, yb] carried on by
trajectories incoming from this sector has a greater and greater influence onto the

distribution function for some fixed time t’ > 0 because only these trajectories cut

this line t ¼ t’ (parallel to axis 0Y) on a wider and wider range y 2 [0, y(t)], where
y(t) ! 1 for t ! 1.

In the case of non-linear function B(y) we can not calculate the differential along
trajectory as in (7.20). Therefore, by transformation of variables z ¼ c(y) we put

(7.19) in the form

@ ~f ðz; tÞ
@t

þ @½z ~f ðz; tÞ�
@z

¼ 0; (7.23)

and follow eqs. (7.16) � (7.22). Then, we invert the transformation of variables in

order to obtain the formula for the initial condition f(x,0) on 0 � x � yb. For B(y) ¼
ya we obtain

f ðx; 0Þ ¼ c
yb
x

� �a
: (7.24)

We conclude (see Fig. 7.6) that the trajectories t(y) incoming from [0, yb] start
to dominate on a larger and larger range of y for sufficiently big t. For a < 1 this

time is very long. On the other hand, for a> 1we see that no trajectories incoming

from (yb, 1) reach some fixed value of time t ¼ t’ (see Fig. 7.6 for a ¼ 2). Of
course, this is connected to a very fast growth of the function y(t) along the

asymptote (explosion).

0 yb 2 4 6 8 10
y

0 yb 2 4 6 8 10
y

1

t’

3

4

t

0.5

t’

1.5

2
t

Fig. 7.6 Trajectories y(t) for B(y)¼ ya, where: a¼ 1 (left), a¼ 2 (right). The boundary condition
f(yb, t) ¼ c is assumed for y ¼ yb. Trajectories, which cut that line convert this information

backwards (to the axis OY) onto the inverse-power condition f(y, 0)¼ c(yb/y)
a, which is valid for

0 � y � yb. Note, that for yb>y the initial condition is exponential f(y,0)¼ exp(-y). Thick line

denotes the trajectory incoming from y(0) ¼ yb
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In this way we have shown why introducing the constant boundary condition

leads to inverse-power solutions even for a very weak privilege given by B(y) � ya

for 0 < a � 1. This boundary condition causes the existence of steady-state

solutions which have the inverse-power form for the power privilege B(y). The
Fokker-Planck equation has the same steady state solutions, so these conclusions

are valid also for equations with the diffusion term.

7.5 Ito Equations and the Privilege

The connection between the Ito equation and the Fokker-Planck equation may be

found by using the Ito Formula (see e.g., Gardiner 1985). Then, the Ito equation,

which corresponds to eq. (7.15), has the form

dyðtÞ ¼ BðyÞdtþ
ffiffiffiffiffiffiffiffiffi
BðyÞ

p
dWðtÞ (7.25)

whereW(t) is theWiener process. For the non-linear privilege B(y)¼ y2 the solution
y(t) is (see Czechowski 2002)

yðtÞ ¼ yð0Þ
eWðtÞ�t=2 1� yð0Þ R

t

0

eWðsÞ�s=2ds

� � : (7.26)

The stochastic process y(t) tends to 1 in a finite time, i.e., it “explodes” if

the denominator tends to 0. This is a similar behaviour as for the random initial

problem (7.5) where there is no diffusion term.

In general, the Ito equation is defined by two different functions a(y) and b(y):

dyðtÞ ¼ aðyÞdtþ
ffiffiffiffiffiffiffiffiffi
bðyÞ

p
dWðtÞ: (7.27)

The equation is not related to the Master equation (7.15); therefore, we can not

explain the privilege hidden in (7.27) by using (as in Section 7.3) the probability

B(.) of changing states. However, for some cases the Ito equation may correspond to

the product of probabilities.

In order to show this we assume that Ai denotes succeeding states of the system

and P(Ai|Ai-1) is the probability of transition from the state Ai-1 to the state Ai.

Therefore, if there is no privilege at all (each state evolve in the same way, i.e.,

P(Ai|Ai-1) ¼ p ¼ const, the probability P(N) of achieving the state AN by the system

has the geometric distribution:

PðNÞ ¼
YN

i¼2

PðAijAi�1Þ ¼ pN (7.28)
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However, by introducing the privilege in the form:

PðAijAi�1Þ ¼ 1� 1

i

� �a

; (7.29)

favouring higher states (the higher the state - the greater the probability of transfer

to the next state), we obtain the inverse-power distribution P(N) ¼ N�a.
In Czechowski and Rozmarynowska (2008) we showed that the discrete product

of probabilities corresponds to the following continuous case:

dPðyÞ
dy

¼ �qðyÞPðyÞ; (7.30)

where the transfer probability is given by 1� q(y)¼ 1 – a /y and fits in predominant

terms of expansion of (7.29) for large i. After differentiation in y, equation (7.30)

has the form of the steady-state Fokker-Planck equation:

@

@y
aðyÞpðyÞ½ � � 1

2

@2

@y2
bðyÞpðyÞ½ � ¼ 0; (7.31)

where a(y)¼� a/y and b(y)¼ 2. In this way we showed that the privilege described

by the transfer probability (7.29) is hidden in the Ito equation of the form

dy ¼ � a
y
dtþ

ffiffiffi
2

p
dWðtÞ: (7.32)

This conclusions can be widened (see Czechowski and Rozmarynowska 2008)

onto other Ito equations

dy ¼ � 1

2
b� að Þyb�1dtþ

ffiffiffiffiffi
yb

p
dWðtÞ: (7.33)

which also lead to the steady-state inverse-power distribution pst(y) ¼ y�a. Then,

the privilege for various a and b (i.e., for a> 1, 0� b< 2) may be explained by the

transfer probability

PðAijAi�1Þ ¼ 1� 1

i

� �g

; (7.34)

where g ¼ 2� 2a
2� b

� 1:

In cases of other Ito equations we can reduce them by the variable transformation

to the form with the constant diffusion function b(y)¼ 1. Therefore, the privilege is

described by the jump yk–yk-1¼ a(yk-1)dt þ dW(t). The stochastic component is
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identical for different a(.), so we investigate deterministic terms only. In Fig. 7.7 we

compare such functions a(y) which lead (Czechowski and Rozmarynowska 2008)

to the following distributions of stationary solutions of the Ito equation: normal,

exponential, lognormal, inverse-gamma, and inverse-power. All the functions have

negative values for a big enough y, which means that some positive quantity is

subtracted from the stochastic jump dW(t): the less is subtracted, the longer tail will
appear. For three cases, which lead to lognormal, inverse-gamma and inverse-

power distributions we observe the same behaviour: |a(y)| decreases with increasing
y. This describes the privilege: for greater y a smaller quantity is subtracted from the

random jump (in jumps greater states y lose less). This is an alternative meaning of

the privilege (by using jumps) presented in Section 7.3.

7.6 Multiplicative Processes and the Privilege

Multiplicative processes are defined by the law of proportionate effect

Yk ¼ FkYk�1 ¼ FkFk�1 	 ::: 	 F1Y0; (7.35)

where Y0 and Fj are random variables. The simple law describes some kind of

privilege; for higher states Yj, greater growths are more possible (because they are

proportional to the current state). This privilege leads to lognormal distribution

(according to the Central Limit Theorem applied to logarithms of random vari-

ables); however, it is known that even small changes, by introducing the source

(Sornette 1998), transport process (Manrubia and Zanette 1998) or boundary con-

straints (Kesten 1973) in the lognormal generative process, yield processes with

inverse-power distributions. They produce steady-state solutions, and because the

normal

exponential

lognormal

inverse–power
inverse–gamma

2 4 6 8 10
y

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

a(y)

Fig. 7.7 Deterministic components a(y) of jumps generated by Ito equations which lead to:

normal, exponential, lognormal inverse-gamma and inverse-power stationary solutions (see

Table 1 in Czechowski 2008)

7 The Importance of Privilege for the Appearance of Long-Tail Distributions 109



growth process is the same (Yk ¼ FkYk-1) at all scales, the final steady-state

distribution process should be scale-invariant.

It should be noticed that the multiplicative process

Yk ¼ ðNk þ 1ÞYk�1 ¼ Yk�1 þ NkYk�1 (7.36)

(where Nk is a normally distributed random variable) may be connected with a

simple Ito equation

dyðtÞ ¼ ydWðtÞ: (7.37)

It has the solution

yðtÞ ¼ exp WðtÞ � t

2

h i
yð0Þ (7.38)

with the lognormal time-dependent distribution

pðy; tÞ ¼ 1

y
ffiffiffiffiffiffiffiffi
2p t

p exp � 1

2t
log yþ t

2

� �2
� �

; (7.39)

which, however, has an inverse-power tail y-3/2 for large t (see Czechowski and

Rozmarynowska 2008). This case corresponds to the example (7.8) in Section 7.2

but here the input (i.e., Nk) has the normal distribution.

7.7 Applications

In this section we present some examples of applications of the considerations

given above.

7.7.1 Transformation y ¼ g(x)

We start from an example of derivation of nonlinear transformation y¼ g(x) for the
case of crack propagation problem. The equation of motion of the crack tip was

introduced by Kostrov (1966) (and Eshelby 1969, Freund 1972) and analysed by

Husseini et al. (1975), Rybicki (1995) and Rybicki and Yamashita (1998). How-

ever, in Czechowski (2001) we applied the model for the case of stochastic stress

drop field. In this way we obtained the nonlinear tranformation function y ¼ g(x1,
x2, x3), where y is the crack increment, and the vector x represents three character-

istics of the stress drop field. Different sets of distribution functions for three input x
components were taken into account, but even for three exponential distributions
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the distribution f(y) of output y had a long-tail form. If only one of xi had the

inverse-power distribution then f(y) would more resemble the inverse-power form.

If we claim that the cause of inverse-power distribution is some privilege, then

we should be able to show explicitly in different examples the form of the privilege

and its physical bases.

7.7.2 Multiplication of probabilities

Looking for the privilege in such a purely random process like the random walk

seems to be a nonsense. However, if we are interested in the time-to-the-origin

problem, the distribution function of the time T has the inverse-power form

f(T) ¼ T-3/2. In Czechowski and Rozmarynowska (2008) we resolved this problem

to the product of probabilities (see Section 7.5) where

PðAijAi�1Þ ¼ 1� 3

2i
: (7.40)

Graphically we can interpret the process as the changing of paths (which start from

the origin and end at the origin, not crossing 0) in time-distance space. The privilege

is connected with increasing number of possible paths for higher states.

Another example concerns the simple model of crack propagation by succeeding

breaking of bonds (de Arcangelis 1990). If the probability of breaking each of k
bonds is constant, the size distribution of cracks is the geometrical one. However, if

it depends on the current crack size N and has the form (Heimpel 1996)

PðANþ1jANÞ ¼ 1� 1

1þ ðN=CÞ3=2
; (7.41)

the inverse-power distribution is obtained. The form (7.41) corresponds to the

physical privilege that the probability of crack propagation is greater for longer

cracks; the exponent 3/2 results from the fact that the number of asperities along the

rupture contour is proportional to N and that the stress is proportional to N1/2,

according to the stress intensity factor.

7.7.3 The Master equation

Heimpel’s model (1996) may be supplemented by the time evolution element. We

constructed (Czechowski 2003) the model of sequentially breaking asperities on

the fault surface. The model has a form of the Master equation (7.12) where pN(t) is
the probability that the rupture area NDs is in state N at time t, and B(N)dt is the
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probability that the rupture grows by Ds in dt. Therefore, by using the Heimpel’s

formula (7.41) for B(N)we showed that solutions evolve from the initial shape up to

the power-like form.

The Master equation (7.12) is a handy model which was used (in Czechowski

2003) for explanation of long-tail distributions in percolation, simple cellular

automata and in the growth of the Cantor set. It should be noted that the percolation

processes are models of phase transitions, cellular automata are models of large

interacting systems, and the Cantor set is a simple example of a fractal. These cases

relate to known phenomena in which inverse-power distributions appear. In our

previous papers (Czechowski 2002, 2003) we showed that in these three cases we

can extract and explain the hidden privilege, and that we can include the privilege

into the Master-like equation.

For example, the process of growth of the Cantor set may be described by the

Master equation (7.12) with function B(N) ¼ Nlog2/log3, while pN(t) is a number of

rods of lengths N ¼ 3k which cover the fractal. The form of the privilege function B
(N) corresponds (Czechowski 2003) to the deterministic recipe for the fractal.

For the three cases of percolation we derived the following equation

dpNðrÞ
dr

¼ �BðN; rÞpNðrÞ þ BðN � 1; rÞpN�1ðrÞ þ CðN; rÞpN�1ðrÞ; (7.42)

where pN(t) is the probability of finding a cluster with size N (cluster size distri-

bution) and r is the density of occupied sites on the lattice. Functions B(N, r) and
C(N, r) depend on the dimensionality of the percolation problem. For 1-D lattice:

BðN; rÞ ¼ 2

1� r
and CðN; rÞ ¼ Nð1� rÞ � 2

1� r
; (7.43)

for the percolation on the Bethe lattice:

BðN; rÞ ¼ tðNÞ
1� r

and CðN; rÞ 
 N½4ð1� 1=NÞ5=2ð1� rÞ2 � 1� � 1

1� r
; (7.44)

and for 2-D percolation:

BðN; rÞ ¼ �tðNÞ
1� r

and

CðN; rÞ 
 N

r
1� 1

N

� �t

exp½�ðrc � rÞw � N � 1

r
½1� wrðrc � rÞw�1�;

(7.45)

where w ¼ 91/36 and t ¼ 187/91 for r ! rc and t ! 1 for r ! 0.

We have shown that the percolation process can be described by the Master

equation modified by the additional term C(N, r)pN-1(r). The function B(N)
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describing the privilege is given by the perimeter t(N) of the N-cluster. The longer
perimeter really means a greater probability of growth of the N-cluster on one

site, because each of t(N) empty sites on the perimeter may become the occupied

site when r increases to r þ dr. The perimeter t(N) ¼ 2 for 1-D percolation and

t(N) � N for the Bethe and 2-D percolation. Therefore, if we omit the term C(N, r)
pN-1(r), we obtain (see Section 7.3) the Poisson distribution for 1-D percolation and

the geometrical distribution for the Bethe and 2-D case. However, in the percolation

process the N-clusters can be created not only by growth of the (N-1)-cluster on
one site, but also by linking of neighbouring smaller clusters when a site on the

intersection of their perimeters will become occupied. This process is included in

the additional term C(N, r) pN-1(r). The function C(N, r) has a similar behaviour

for the three types of percolation: it is an increasing (approximately linear) function

of N. This additional privilege leads to geometrical distribution (which has a longer

tail than the Poisson distribution) for 1-D percolation and to the power-like dis-

tributions for the Bethe and 2-D percolation.

In the percolation theory, greater clusters are privileged because they have

longer perimeters and, additionally, they have more ways of creating greater

clusters in linking. The avalanches in cellular automata define some ‘potential’

dynamic clusters; the group of neighbouring boxes that will become unastable in

the event, if one selected box becomes unstable. Therefore, we may treat such

‘potential’ clusters in a similar way to the percolation cluster and adequate privilege

arguments should be valid (see Czechowski 2003).

It appears that a weak privilege B(N )¼ N0.63093 is sufficient for creation of a

fractal (Cantor set) because the boundary condition of the source type was taken

into account in this case. On the other hand, only initial condition can be used for

the percolation problem. Then, the linear privilege (for the Bethe lattice and 2-D

lattice) is too weak to create inverse-power distributions (it leads to the geometrical

distribution). We have shown that the inverse-power form of the number of

N-clusters is connected with the fact that clusters are not isolated on the grid, so

that larger clusters can form themselves by linking smaller clusters.

Another application of the continuous Master equation (7.11) to the crack

problem was that of Petrov et al. (1970). They introduced a distribution function

f(q,t) of generalized coordinates q (the vector q can represents coordinates of the

centre of the crack, dimensions, shape, orientation and other parameters of the

crack). The standard form of the equation for f(q,t) was used:

@f

@t
¼

ð

ð0;qÞ
Wðq0; q1; qÞf ðq0; tÞdq0 � f ðq; tÞ

ð

ð0;1Þ
Wðq; q1; q0Þdq0 þ Nðq; tÞ (7.46)

where N describes the nucleation of crack q andW(q’, q1;q)dqdt is the probability of
the transition of the crack from the state q’ into the state contained in (q, qþdq), by
joining a crack q1 during the time interval dt. However, due to the complexity of

these terms those authors used some assumptions: they considered a spatially

homogeneous case of parallel disk-shaped cracks, so that f(q, t) ¼ f(r, t), where
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r is the crack radius, and they assumed that nucleated cracks are unable to grow

independently. Then, they obtained the reduced form of the kinetic equation:

@f ðr; tÞ
@t

¼ nðtÞoðrÞ þ nðtÞs
ðr

0

oðr � r0Þf ðr0; tÞdr0 � nðtÞs f ðr; tÞ (7.47)

where the nucleation rate of microcracks is n(t), their distribution function is o(r)
(i.e., N(r,t) ¼ n(t) o(r)), and s is the volume of the region of mutual instability in

which two cracks are going to fuse. Equation (7.47) is a Volterra-type equation of

the first kind. Applying to this equation Laplace transformations, Petrov et al.

(1970) found the solution:

f ðr; tÞ ¼
ðt

0

nðt0Þe�l

"
oðrÞ þ l

1!

ðr

0

oðr0Þoðr � r0Þdr0

þ l2

2!

ðr

0

oðr0Þ
ðr�r0

0

oðr00Þoðr � r0 � r00Þdr00dr0 þ :::

#
dt0 (7.48)

where

lðtÞ ¼ s
ðt

t0

nðt0Þdt0 (7.49)

The results has a simple interpretation: the number of cracks of radius r is a

superposition of microcracks resulting from the coalescence of various numbers of

cracks into a single crack of a given radius. Their approach led to a very particular

model of rupture: under the applied stress the microcracks nucleate but are unable

to grow independently. The crack can grow only by joining the newly-nucleated

cracks in its region of mutual instability.

Lomnitz-Adler (1985, 1988) used two components characterizing the state of the

fault: stress s and a surface a (i.e. 2-dimensional vector y in (7.11)). By using the

percolation theory he derived the kernel W(s, a;s’, a’) in the Master equation

(7.11). Therefore, he obtained the Gutenberg-Richter formula with excess of the

strongest (characteristics) events and a time-dependent seismicity.

The coagulation equation was used by Safronov (1972) to planetesimals evolu-

tion. The physical details for the form of B(y, y’) � yþy’ for gravitational bodies
(planetesimals) are presented in his book. However, it is evident that gravitational

cross-section increases with growing body size. The example excellently joins the

physical privilege (given by gravitational forces) with the coefficient B(y, y’)
describing the rate of evolution of bodies.
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The asymptotic solution of the coagulation equation (7.14) was used by Vitya-

zev (1979) to derive theoretically the known empirical Gutenberg-Richter formula.

Another application of the coagulation equation in geophysics was the problem of

crack fusion (Czechowski 1991, 1993, 1997). It seems that for brittle materials, such

as rocks, the fusion cross-section may also be given by B(y, y’) � yþy’, because
larger cracks induce greater stresses around their tips. Therefore, the process of fusion

of numerous microcracks leads to the inverse-power distribution of crack sizes.

Experimental investigations (e.g. Mogi 1962; Scholz 1968; Hirata 1987) confirm

this form of the distribution in rocks and ceramics. On the other hand, for ductile

material, such as metals, the exponential form of the crack size distribution was

observed (see Curran et al. 1987), which suggests a weaker influence of tip stresses

on the crack fusion, probably due to the ductility.

The coagulation model was particularly fruitful in applications to the crack

evolution problem. In Czechowski (1997) we used it to the macrocrack propagation

model. A generalization of the kinetic model of crack fusion onto three component

mixture of cracks (i.e., shear cracks, tensile cracks and shear-tensile cracks) was

presented in Czechowski (1998). In our other papers (Czechowski 1991, 1993,

1994) we performed the discretization in the size space and reduced the coagulation

equation to the set of differential equations for hierarchical crack populations of the

Newman and Knopoff’s (1983, 1990) type. Analysis of the behaviour of successive

crack populations led us to explanation of physical basis of the time delay in the

Newman and Knopoff model and, moreover, to the linear logarithmic time to

fracture versus applied stress relationship (which was confirmed by experimental

data for rock (Kranz el al., 1982).

7.7.4 Multiplicative processes

We showed in Czechowski (2005) that the normalization model of resources

redistribution (introduced by Wilhelm and Hanggi, 2003) can be described by the

multiplicative process. Moreover, we also showed that it leads to the inverse-power

distribution (instead of the lognormal one) because logarithms of random variables

do not fulfill assumptions of the Central Limit Theorem; their variances increase

very fast to infinity with increasing state values. In this way the product of random

variables converges to the random variable with logexponential (i.e. inverse-power)

distribution. Here the privilege corresponds to the law of proportionate effect – the

‘richer’ gains more in this method of redistribution.

It is interesting to note that the process of redistribution can be treated as a

transformation of random variables (like those presented in Section 7.2). Therefore,

it was shown (Czechowski 2005) that the nonlinear transformation is of the type of

the rational function (7.4) increasing very fast along an asymptote. This important

conclusion joins the privilege approach, given by law of proportionate effect, with

the nonlinear transformation y ¼ g(x).
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7.7.5 Ito equations

Applications of the Ito (or Langevine, Fokker-Planck) equations were discussed in

Chapter 6.1. Here are additional three examples.

For an analytical investigation of cellular automata (spring-block model) with

long-range interactions, Klein et al. (1997, 2000) derived the Ito equation describing

stresses connected with “superblocks” (clusters of cells linking by long-range inter-

actions). They proved the existence of metastable states and adequate spinodals.

Other Ito equation was derived by Rundle et al. (1999) for slips in a given cell on

the grid. The authors investigated solutions of the equation in the vicinity of a

spinodal. They obtained structures, similar to percolation clusters, which were

created by cells in which the slip took place.

In these two approaches the Ito equation was derived to demonstrate spinodals

i.e., stability limits connected with strength thresholds on the fault. This is the Ito

equation which describes the approaching of the system to the state of the lowest

energy. For the spinodal case the effect of noise can be a strong enough to throw out

the system of the metastable state. Therefore, the system drops to a new metastable

state with lower energy, i.e., the first-order phase transition occurs.

In the third example (Matthews et al. 2002) the simple Ito equation for the

Brownian motion was used to construct a probability model for rupture times on a

recurrent earthquake source. The model was applied to long-term earthquake

forecasts for the San Francisco Bay region and inland faults in Japan.

7.8 Conclusions

In the face of generality of long-tail distributions and fractal patterns, the question

about their causes is very important. We have proposed a simple and physically

clear explanation – by the privilege concept. This concept encloses into a unified

description four phenomena in which inverse-power distributions were observed:

phase transitions, low-dimensional chaos, large interactive systems and fractals.

Due to the obvious complexity we have limited ourselves to simple cases (or

models) of these phenomena: percolations, simple nonlinear transformations, cell-

ular automata and the Cantor set. Next, by using the introduced mathematical

models we have shown the physical nature of the privilege in some geophysical

cases. For example, in the fault rupture problem the privilege is connected to the

stress field around the crack tip. A beautiful and a modeling example of the physical

privilege presents the model of planetesimal coagulation which explains the privi-

lege by the law of gravitational attraction. It it worth noting that the privilege effect

may be present even in such a purely random process as the random walk; we mean

the time-to-the-origin problem.

In our considerations we applied a typical mathematical stochastic apparatus: the

Master equation and the Ito (Fokker-Planck, Langevin) equation. These equations
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can be very useful in modeling of seismic and other geophysical phenomena. The

Ito equations were successfully advantaged in nonlinear modeling of stochastic

processes which are represented by time series (see Chapter 6).

Both Chapter 6 and the present one, suggest that the macroscopic behaviour of

many phenomena and some new macroscopic laws which are observed can be a

result of complex internal interactions or synchronization of various physical fields.

These processes may generate the adequate Ito equation on the macroscopic level.

Of course, for different mathematical models three different descriptions of the

privilege had to be given: as the susceptibility of a given state onto a change (in

Master, Fokker-Planck and coagulation equations), as the law of proportionate

effect (in multiplicative processes), and by using jumps (in the Ito equation).

However, they correspond to the same idea; in order for the long-tail distribution

to appear, states can not evolve the same way, an additional mechanism which

favours higher states is required.

We hope that the privilege concept brings some order to our knowledge about

the macroscopic rules and patterns in nature.
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Part II
Laboratory Experiments



Chapter 8

Triggering and Synchronization of Stick-Slip:

Experiments on Spring-Slider System

T. Chelidze, T. Matcharashvili, O. Lursmanashvili, N. Varamashvili,

N. Zhukova, and E. Meparidze

8.1 Introduction

Triggering and synchronization are the two faces of the same coin; both effects

imply that the additional forcing causing triggering and synchronization is much

smaller than the main driving force, which means that these phenomena are

connected with nonlinear interactions of objects, namely, with initiation of insta-

bility in systems that are close to the critical state. In a seismic process, the

main driving component is the tectonic stress; earthquakes are considered as

dynamic instabilities generated in the process of friction (stick-slip) between

faces of geological faults (Brace and Byerlee, 1966; Kanamori and Brodsky,

2004; Ben-Zion, 2008). The additional forcing is exerted by various external

impacts: tides, reservoir exploitation, big explosions, magnetic storms, etc.

Experimentally, triggering is revealed by correlation of some single external

impact and single seismic event with some delay; according to this definition,

statistics of triggering events is relatively small. Synchronization, on the other

hand, is defined as “the adjustment of rhythms due to an interaction” and this

means that it manifests itself not in rear solitary acts but in systematic multiple

process, which provides relatively rich statistics and allows applying rigorous

methods of assessment of the strength of synchronization.

We can illustrate the essence of synchronization phenomenon by considering

the relaxation or integrate-and-fire oscillator under periodic forcing (Fig. 8.1).
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The examples are numerous, from biology to electricity and mechanics. Such

oscillator exhibits interchange of the epochs of slow evolution, when accumulation

of energy Ur takes place and the rapid phase, when, on reaching some critical

threshold Uc, a fast discharge of accumulated energy occurs. The application

of periodic forcing aðsinotþ fÞ affects the process, as now the critical threshold

is Uc þ aðsinotþ fÞ. Accordingly, it changes the natural frequency T0 of relaxa-
tion oscillator to some other value Ts, which now becomes a characteristic

(synchronized) frequency of system.

8.2 Electromagnetic Triggering of Slip

Up to now, the problem of triggering and synchronization of seismic process is far

from being resolved and relevant publications are controversial due to the com-

plexity of natural processes (Beeler and Lockner, 2003; Scholz, 2003a; Grasso,

1998; Nikolaev A, 1994; Nikolaev V, 2003; Scholz, 2003; Kanamori and Brodsky,

2004; Ben-Zion, 2008). Understanding of main regularities can be obtained in

controllable experiments. We carried out laboratory experiments on the slider-

spring system with superimposed pulse or periodic electromagnetic (EM) forcing,

which is weak in comparison with the main dragging force of the spring. The use of

EM impact was prompted by experiments carried out in 1983-1988 by the Institute

of High Temperatures of Russian Academy of Sciences (IHT RAS) at the Bishkek

test area in Central Asia. After performing series of MHD soundings as well as

“cold” discharges, initially aimed at finding resisitivity precursors of strong earth-

quakes in upper layers of the Earth crust, an unexpected effect of micro-seismicity

activation by strong EM pulses has been discovered (Tarasov et al., 1999). We

reproduced the effect in laboratory conditions and it turns out that EM forcing is a

flexible tool for the study of triggering and synchronization phenomena in labora-

tory slider experiments (Chelidze et al., 2002; Chelidze and Lursmanashvili, 2003;

Chelidze, Matcharashvili, 2003; Chelidze et al., 2005; Chelidze et al., 2006;

Chelidze et al., 2007; Chelidze et al., 2008, Chelidze et al., 2009).

0

Uc
Ur

Uc – a sin(wt + f)

Ts

T0

Fig. 8.1 Scheme of synchronization of relaxation oscillator by periodic forcing: T0 is the period of
non modified relaxation process and Ts is the same for a synchronized one, Ur is the current value

of the voltage, Uc is the critical value of voltage for discharge of non synchronized generator and

Uc is the same for a synchronized one

124 T. Chelidze et al.



8.2.1 EM Triggering – Experimental Setup

The experimental setup has been designed in such a manner that the mechanical

system could be easily driven to the critical state where the triggering of mechanical

instability by some weak impact, such as electrical pulse, becomes more probable.

The system (Fig. 8.2) consists of two pieces of rock; the upper piece can slip on the

fixed supporting sample if a special frame tilts the latter one up to the critical

angle ac.
The electrical part consists of EM pulse generator and acoustic signals amplifier.

The signal from the standard generator of 0.5–5 V amplitude is applied to the input

of the amplifier and goes out from the output with the amplitude up to 1300 V. Up to

10 DC-pulses of this amplitude were applied to the sample. The duration of pulses

was from 5 to 10 s; interval between pulses was also from 5 to 10 s. The high

voltage source (discharger) was also used. Another amplifier was designed for

registration of acoustic signals from the sensors which respond to the slip events.

The amplifier’s output voltage was sufficient for registration of acoustic signals by

the sound card of PC. The scanning of the process was performed on the frequency

96 kHz, i.e., the sampling rate was 1/96 000 s.

Electrodes were applied in the following ways: (i) to the bottom of the support-

ing sample in a coplanar manner or to the sides of the supporting sample (the

first mode); (ii) to the upper surface of the sliding sample and the bottom of the

supporting one (the second mode). In the first case, the EM field is oriented roughly

parallel to the slip surface and in the last case current lines are normal to it. In most

cases, the supporting and the slipping blocks were prepared from basalt; these

samples were saw-cut and roughly finished. The slipping block is 10 cm long,

10 cm wide and 2 cm thick. Other samples, such as granite, labradorite, and glass,

which were better finished, were also tested. The height of surface protuberances

was in the range of 0.1–0.2 mm for basalt samples and 0.05–0.1 mm for other ones.

Fig. 8.2 Mechanical setup

for slip initiation on the

inclined surface:

1 – supporting (fixed) sample;

2 – slipping sample; 3 – slope

regulating unit; 4 – acoustic

emission sensor; 9 – shock

absorber
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The basalt samples were preferred because they do not contain significant quantity

of piezoelectric minerals.

8.2.2 EM Triggering Experiments

The main objective of experiments was to find out whether EM-pulse could indeed

displace the rock sample resting on the supporting sample at the slope of support,

less than but close to the critical slip angle. The details of experiments are presented

in (Chelidze et al., 2002; Chelidze et al., 2004).

Slip events were registered as acoustic bursts (Akay, 2002) by the sound card

of PC.

It should be noted that although high voltage was applied to the outer surfaces

of samples, the voltage in the gap between sliding surfaces was much less, of the

order of 1 V.

8.2.3 Experimental Procedure and Case Stories

After finding the critical angle (Fig. 8.3), the slope of support was decreased by

0.1–2�. In this state, the upper sample was stable for many hours (2 days), which

means that other sources of instability, such as building vibration by trucks,

elevator, wind, etc, were not strong enough to initiate the slip. The critical angle

for the rough surface varies from one test to another because it is impossible to

reproduce exactly the arrangement of asperities between the support and the
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Fig. 8.3 The critical angle of slip (degrees) for various samples on the same supporting material

versus number of experiment n. * – basalt, x – glass cylinder (diameter 14 cm, thickness 12 mm),

□ – glass cylinder (diameter 7.5 cm, thickness 10 mm), e – glass cylinder (diameter 2 cm,

thickness 10 mm).
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slipping blocks in different experiments. The scatter in values of critical angle for

the same sample is of the order of� 2.5� so we can define only the average value of
ac (Fig. 8.3), which changes from one test to another. Because of the critical angle

scatter, before the EM impact the sample was kept at the angle less than the

(average) critical one for 10 minutes, and only after this exposure it was subjected

to the EM-impacts also for 10 minutes.

That allows assessing correctly the statistics of EM-activation, as the probability

of slip in the time intervals without EM-impact can be compared with that in the

time intervals covering the whole EM-activation period. The activation period lasts

several minutes and it includes also the gaps between pulses. A sequence of pulses

applied in a single experiment and gaps between them will be related as a run.

Practically the probability of slip without EM-impact at a < ac was zero: no slip

was observed during any of 10 min. preliminary repose periods (500 min in total).

8.2.4 EM Triggering — The First Mode

We found that the application of EM-pulses in the first mode, i.e., to the coplanar

electrodes at the bottom of support, initiates slip in approximately 40 cases from

600 runs (i.e., the slip initiation probability is around 0.07) either during pulse (i.e.,

in the active phase), or after it (i.e., in the passive phase). The last observation

means that the polarization of the sample can be important for the slip initiation.

As the delay of slip after switching off the pulse sometimes was considerable

(seconds), our guess is that in this case polarization is related mainly to the

accumulation of the bulk charge near electrode surfaces. This phenomenon

(electrode polarization) is well known; it accompanies the application of high

voltage to ionic conductors and its relaxation is slow.

A typical recording of acoustic emission generated by the slip event is shown in

Fig. 8.4a and b for different time scales.

Besides the pulse generator, a second source of high voltage, namely the

electrical discharger TESLA OPOCMO TVI 200, has been used for initiation of

slip. In this case, the voltage applied was of the order of 10 kV. Again series

of pulses were applied to the sample in the first mode and in this case the probability

of slip initiation was much higher – around 0.2.

8.2.5 EM Triggering — The Second Mode

In the second mode, the electrodes were applied to the upper facet of the slipping

block and to the bottom side of support, i.e., in this case the applied electrical field

was oriented in the direction normal to the slip surface.

That means that when the EM is applied in the second mode, it increases

the friction force (EM field hampers the slip) according to electrostriction rule

(Tamm, 1956).
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8.2.6 Finding Mechanical Equivalent of EM Impact

For assessment of mechanical equivalent of electrical impact, both direct and

theoretical methods were used.

Fig. 8.4 (a) Recording of acoustic emission generated by the electromagnetically initiated slip of

the basalt sample (upper trace). Lower trace shows EM pulse switching on (thick line) and

switching off (thin line) periods. The slip was initiated just after the active period. y-axis shows

amplitude of the signal in db, x is the time axis. (b) The initial part of the same recording with the

stretched time axis
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In the first case, the mechanical force initiating slip at the same angle a<ac that
has been set in experiments with EM-impact, was measured by spring and torsion

dynamometers (accuracy of � 0.01 N and � 0.005 N, respectively). Both methods

gave comparable results. The force, equivalent to slip-initiating EM-impact, is of

the order of 0.2 N. Another way to get mechanical equivalent is to calculate it from

the general equation of balance of forces for a sample placed on the inclined plane:

F ¼ mgðm cos a� sin aÞ (8.1)

As long as m is known (for basalt samples m ¼ 0.47), slip-initiating force can be

calculated for any angle. For example, if ac equals 25�, at a ¼ 24�500 the initiating
force is 0.42 N. This value is of the same order as in direct experiments (0.2 N).

Thus, in the situation close to the critical one, even 0.2 N force can initiate the

slip of a sample weighting 700 g.

Our guess is that the EM impact is equivalent to the above value, i.e., it promotes

slip in the first mode and hampers it in the second mode by the additional force of

the order of 0.2–0.4 N.

8.3 Analysis of Recorded Acoustic Waveforms

The results of experiments, namely, acoustic signals emitted during initiated slip,

were recorded as *.wav files with 96 kHz sampling frequency at 8 bit resolution.

The 3D patterns of original signals were obtained using program WaveLab

(Figs. 8.6a, 8.7a in Chelidze et al., 2004). They show that some periodic components

span the whole time axis. As they are present even before slip initiation, we guess

that they are connected with weak vibrations due to computer and generator fans

and other alias sources.

For filtering the background noise and further analysis of recordings, *.wav files

were imported to the MatLab and their wavelet transform was performed. Mayer

wavelet with a compact support in the frequency domain was used. Calculated

wavelet coefficients were used for filtering of original signal. Namely, the wavelet

components related to frequency range of noise, quite different from these of slip

movement, were excluded. The de-noised signal reproduces the slip-generated

wave package quite satisfactorily. Resulted de-noised data were analysed again

using Wavelab, and filtered 3D images of frequency distribution in the time domain

during slip were obtained (Figs. 8.6b and 8.7b in Chelidze et al., 2004b).

The consideration of the above images shows that the emitted signals are

concentrated in 500–20,000 Hz frequency range and the manner of slip initiation

(EM or mechanical) does not change significantly the wavelet and spectral

patterns.
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8.4 The Elementary Theory of EM Coupling

with the Friction Force

In order to understand physics of EM-slip it is necessary to consider fundamentals

of surface phenomena. Intermolecular and intersurface forces, responsible for

adhesion and friction, can be loosely divided into three categories: (i) purely

electrostatic, arising from the Coulomb interaction between charges; (ii) polariza-

tion forces arising from the dipole moments, induced by internal (bound charges,

dipoles) or external electric field; (iii) quantum-mechanical forces, responsible for

covalent bonding and steric interactions. All these forces can act simultaneously,

resulting in some total adhesion (friction) force. For friction we have:

Ff ¼ mFn; (8.2)

where m the is friction coefficient and Fn is the normal component of force acting on

the body (gravity, compression).

From the above classification it can be deduced that in principle as far as

intersurface forces are of electromagnetic origin, external electrical field can affect

the adhesion (friction) forces, changing m and thus initiating slip of the body placed

on the inclined plane. We can rewrite (8.2) in the following way:

Ff ¼ mðFn þ FpÞ; (8.3)

where m is the friction coefficient and Fp is the increment (decrement) of normal

component of force due to the application of EM field.

Of course, coupling of EM-impact with friction in a sample containing piezo-

electric materials is a trivial phenomenon. However, the EM-activation of slip is

clearly observed on samples that are practically free of piezoelectric minerals

(basalts). That is why we exclude the piezoelectric effect as a principal mechanism

of EM-slip.

The elementary theoretical model of EM coupling with friction can be formu-

lated in the following way. It is well known that the application of EM field to a

dielectric invokes some forces acting upon molecules of the body; the resultant

force is called the electrostriction force Fpwhich is affecting the whole sample. The

force is proportional to the gradient of the field intensity squared and it carries away

the sample in the direction of the largest intensity. The tension tensor ~Tn operating
on the element of dielectric’s surface in EM field of intensity E on the assumption

that the sample of dielectric constant e is surrounded by the immobile dielectric

medium in ESU system is (Tamm, 1956):

~Tnp ¼ � eþ @e
@d d

8p
E2~n; (8.4)
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where the sign (þ) applies when the field ~E is parallel to the external normal~n to the
considered surface element, and the sign (�) when the field ~E is normal to ~n.

We can imagine that the elastic strings are stretched along field lines (Tamm,

1956): in our case, they pull together the surfaces of sliding and supporting samples

in the second mode or build the side thrust on each other according to (8.4). The

latter case corresponds to the first mode and the former one to the second mode of

EM-triggering.

The above equations can be simplified if the dielectric increment due to the

striction force is negligible: @e=@d ! 0ð Þ. Introducing the area of dielectric’s

surface S and taking into account the above assumption, the electrostriction force is:

~Fp ¼ � e
8p

E2~n ¼ � eS
8p

DV
d

� �2

~n (8.5)

where DV is the applied voltage and d is the distance between electrodes; the sign

depends on the mutual orientation of dielectric’s surface and electrical field.

Substituting into (8.5) the values: DV¼ 1200 Volt ¼ 4 ESU, e¼ 5; S¼ 100 cm2

and d ¼ 5 cm, which correspond to the capacitor, created by two electrodes we

obtain:

~Fp

�� ��¼ 0:5 dyne ¼ 5 10�6N

That is much less than the experimental values of electromagnetic pull force,

which is of order of 0.2 N. Here we have to note that the value of (DV/d), substituted
in (8.5), is an average value for the whole system and on the contact between two

blocks the gradient can be quite different. The matter is that the most part of the

voltage drop occurs in the gap and the local gradient of EM field in the gap between

samples can be much larger than for the whole system between electrodes. In order

to assess the forces acting in the narrow gap between slipping and supporting

samples, it is necessary to consider the gradient in the gap between the samples.

The inner surfaces of slipping and supporting samples carry bound charges, due to

the polarization of material, and thus create the local gradient of electrical field in

the gap. The opening of the gap itself is varying; we can introduce some effective

value of opening deff. Then, applying again the equation (8.6) to the “inner” capaci-
tor, we obtain the electrostriction force Fpi acting on the gap surfaces as follows:

~Fpi ¼ � eeff S
8p

DVeff

deff

� �2

~n; (8.6)

where DVeff /deff is the effective voltage gradient in the gap and eeff is the effective
dielectric constant of the gap, which is between values of e for the air and the

sample: 1<e < 5.
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Assuming eeff ¼ 2.5, S ¼ 100 cm2, we have to put in equation (8.6) the gradient

(DVeff /deff)) ¼ 0.07 V/cm in order to obtain the experimental values of

slip-initiating electrostriction force, namely, Fp � 0.2 N.
Thus the expression (8.7) can be written, taking into account (8.6):

Ff ¼ m Fn þ Fpi

� �
; (8.7)

which is similar to the expression for the friction force, taking into account the pore

pressure term (Sibson, 1994).

The above value of Fpi can be considered as an order of magnitude of electro-

striction force that promotes the slip in the first mode and hampers it in the second

mode, according to the expression (8.6) for the accepted set of parameters.

Both our experiments and theoretical considerations are related to the “dry”

environment, namely, to the 60� 20% humidity of the atmosphere at a temperature

of (20 � 5)�С.

It is interesting to note that somehow similar effect of synchronization of

acoustic vibrations (not stick-slip motion) in rock samples by the superimposed

EM forcing has been observed by Chernyak (1978).

In the “humid” environment, when the rock’s pore space is fully or partially

saturated with water, additional factors should be taken into account: (i) the pore

pressure increment (decrement) in the gaps, caused by the electrokinetic flow of

fluid at the application of EM field; (ii) the change of surface fracture energy of

cracks due to electroosmotic fluid inflow into the cracks of an undersaturated rocks

due to the EM impact. Both these factors can facilitate fracture process in water-

bearing rocks.

8.5 Synchronization of Stick-slip

8.5.1 Synchronization: Experimental Setup

Experimental setup in synchronization experiments represents a system of two

horizontally oriented plates of roughly finished basalt (Fig. 8.5). A constant pulling

force Fp of the order of 10 N was applied to the upper (sliding) plate; in addition, the

same plate was subjected to periodic mechanical or electric perturbations with

variable frequency and amplitude (from 0 to 1000 V), which was much weaker

(of order of 1 N) compared to the pulling force; the electric field was normal to the

sliding plane. Acoustic bursts accompanying slip events were registered by the

sound card of PC. Details of the setup and technique are given in (Chelidze and

Lursmanashvili, 2003).
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8.5.2 Signal Processing: Separation of AE Wave Trains

The first step of AE data analysis consists in signal conditioning and wave trains

separation. A relatively simple form of signal conditioning is calculation of its

envelope by the Hilbert transform (Kurz et al., 2004). The Hilbert transform

generating phase shift of p/2 is defined as:

R
^ ¼ 1

p

ð1

�1

RðtÞ
o� u

du ¼ HfRðtÞg (8.8)

It is a causal transfer function which behaves like a filter of a real time dependent

function R(t).
Then the envelope time function E(t) can be calculated:

EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðtÞ2 þ R

^ ðtÞ2
q

(8.9)

Squared and normalized envelope of the signal leads to suppression of noise of

lower amplitude and to increase of the signal content of higher amplitude (Fig. 8.6).

Then, the envelope can be used to estimate the onset of the signal or for correct

signal detection in general. Strictly speaking, in order to determine the onset time of

AE signal, AIC (Akaike Information Criterion) function was calculated according

to Maeda (1985). The minima of AIC function correspond to AE signal onsets;

afterwards, the onsets can be correlated with forcing signal phase (Fig. 8.7).

Fig. 8.5 Laboratory setup for synchronization experiments
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Typical examples of filtered AE recordings during various regimes of stick-slip

are presented in Fig. 8.8. The random sequence of AE, obtained for stiff springs,

probably corresponds to macroscopically “stable” sliding, and quasi periodic

sequences – to macroscopically “instable” process, characteristic for soft springs.

After such a processing, the catalogue of waiting times of acoustic bursts has

been compiled.

Besides, the catalogue of “magnitudes” of AE was also compiled. The energy

released by acoustic pulse (or the power of AE) was calculated as the plot area

delineated by a singled acoustic burst recording.
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8.5.3 Synchronization: Results

In our experiments the following parameters were varied: (i) the stiffness of the

spring, Ks; (ii) the frequency, f, of superimposed periodical perturbation; (iii) the

amplitude of the excitation (applied voltage Va); (iv) the direction of applied

electrical field; (v) the velocity of drag, vd; vi) the normal (nominal) stress sn.
The typical background behavior of the system with stiff spring during conven-

tional stick-slip is presented in Fig. 8.9a. It is evident that in these conditions AE

events do not manifest any visible periodicity at the time scale from several to

hundred milliseconds. In case of soft spring, the friction movement is realized by

quasi periodic slips (Fig. 8.9b).

Slip with superimposed periodic low-frequency EM field (f � 60 Hz) of varying

intensity, oriented normally to the slip surface, is presented in Figs. 8.10a, b, c. The

significant synchronization at this frequency occurs at Va � 500 V. Under EM

excitation the AE events (micro slips) occur twice per period (Fig. 8.10c). The

maxima of AE coincide (approximately) with the extreme points of oscillation.

Synchronization was observed only at some definite values of the set of para-

meters (Ks, f, Va). The “phase diagram” for variables f and Va, or the so-called

Arnold’s tongue (see Pikovsky et al., 2003) is presented in Fig. 8.11.
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It should be noted that the phenomenon of synchronization was observed only

with the EM field directed normally to the slip surface. When the EM field was

applied to the vertical sides of the slipping block, that is, roughly parallel to the slip

plane, we were not able to observe the effect of synchronization. We conclude that

the synchronization is related to “electromagnetic braking” of slip at passing the

extreme values of sinusoidal EM forcing and a sudden slip after the accumulation of

enough stress provided by spring pull.

Moistening of the slip surface by wetted blotting paper does not affect

the “mechanical’ synchronization, but practically kills the “electromagnetic”

synchronization.

We observe transition (bifurcation) in stick-slip from 1:2 or period doubling

synchronization, when two slip events occur per a period of EM forcing, to 1:1

synchronization, when one slip event occur per a period of forcing (Fig. 8.12) at

simultaneous action of direct V(0) and periodic V(p) voltages; transition occur at

V(0) > V(p).
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Synchronization affects not only waiting times, but also the frequency-energy

distribution: the amplitudes of bursts are much less scattered than in the absence of

periodic forcing.
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Fig. 8.9 Typical acoustic emission during slip without periodical impact: (a) stiff spring; practi-

cally random release of acoustic bursts. The stiffness of spring Ks ¼ 1000 N/m; sn ¼ 2 kPa.; the

mean drag velocity vd ¼ 2.5 mm/s; dragging force Fd ¼ 3.5 N; T ¼ 20oC; humidity W ¼ 40%;

(b) soft spring; quasi periodic acoustic bursts (without external periodical forcing) with the mean

waiting time 0.7 sec during natural slip; vd ¼ 1.45 mm/s; Fd ¼ 3 N; Ks ¼ 125 N/m; T ¼ 20oC;

W ¼ 50%. Here and in Figs. 8.10a, b, c; 8.12; 8.15a, b; 8.26; 8.27a; 8.28a; 8.29a; and 8.30a, b, the

amplitude of AE and synchronizing field is given in dB
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We tried to plot (Fig. 8.13) the slopes of distribution of number of AE events

versus reduced power of AE (that is, an analogue of Gutenberg-Richter plot) in

sequential windows (time intervals) using data of experiment with different inten-

sity of forcing (see Fig. 8.10 a).

The (negative) slope of the plot is maximal in the most synchronized part of

AE record on Fig. 8.10a, due to increasing contribution from small events leading

to appearance of plateau in the small energy section and decreasing of number

of strong events (see Fig. 8.11 in Chelidze et al., 2005). This means that the

energy is pumped from large events to some intermediate scale ones. As the

contribution from very large events is limited, the plot in this interval looks like

Fig. 8.10 (a) Acoustic emission during slip under periodical external voltage varying from zero to

1000 V; (b) the extended part of record with zero EM forcing; (c) the extended middle part of

record under maximal EM forcing. Note complete phase synchronization – PS
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magnitude-frequency distribution for characteristic earthquake model; hence,

the distribution of energies becomes less scattered due to increasing share of

“characteristic” events.

A decrease of contribution of extreme events at synchronization is confirmed by

calculation of the coefficient of variation CV (CV ¼ standard deviation/mean). As

shown in Fig. 8.14, the extent of the deviation from the mean value of released AE

power calculated for consecutive sliding windows decreases at synchronization.
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Fig. 8.13 Slopes of linear parts of magnitude-frequency (log cumulative value of number of AE

events versus reduced power of acoustic emission) plots versus the serial number of 300 data-

length sliding windows in the time series of AE. The data of experiment with different intensity of

forcing (Fig. 8.10a) were used. The (negative) slope of the plot is maximal in the most synchro-

nized part of AE record (Fig. 8.10c), due to increasing contribution from small events leading to

appearance of plateau in the small energy section and decreasing number of strong events

(Fig. 8.11 in Chelidze et al., 2005). The middle part of analyzed time series (window 6) was the
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This means that synchronization limits the energy release associated with indi-

vidual events (quantization effect). Sudden decrease or total cessation of synchro-

nizing forcing is followed by acoustic burst of much larger energy than during the

periodic forcing (Fig. 8.15a, b).
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8.6 Synchronization: Quantitative Analysis

Several tools for quantitative analysis of the strength of synchronization (Ditto,

1990; Zbilut, 1992; Rosenblum et al., 1996; Rosenblum et al., 1998; Kantz, 1997;

Quiroga et al., 2002; Pikovsky et al., 2003; see also Chapter 1) were tested on the

recordings of stick-slip process, where the superimposed periodic EM field inten-

sity was raised monotonously from zero to 1000 V and then decreased in the same

way to zero (Fig. 8.10a).

In order to assess synchronization in the qualitative manner we used the easiest

approach for estimating phases of acoustic signal: digitized waveforms were

transformed to sharp spikes to have well pronounced markers. Then time series

(catalogues) of time intervals between consecutive maximums (waiting times)

(Dt ¼ ti–ti-1) in wave trains for p periods of external sinusoid (Fig. 8.10c) were

composed (the time scale in Figs. 8.16 – 8.20 corresponds to sequential values of ti).
In order to achieve more reliable phase construction and precise synchroniza-

tion testing, various tools of nonlinear dynamics (synchronization) theory described

in Chapter 1 were applied to experimental data obtained under variable intensity

of forcing; the results are shown in Figs. 8.13–8.14 and 8.16–8.20. All these

approaches yield similar results.

In Fig. 8.17 we present the temporal evolution of phase difference Df obtained

from Hilbert transform of waiting times time series. Well-defined horizontal part of

Df versus t (Fig. 8.17) represents the time during which the acoustic emission

becomes phase synchronized to the external sinusoidal forcing in the wide range of

their amplitudes (from approximately 500 V to 1000 V). Clear phase synchroniza-

tion is especially obvious in Fig. 8.17, as long as in the most synchronized part of

the plot the phase difference variation Df does not exceed 10 radian (compare with

the total increment Df of 1800 radian during the whole experiment).
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Fig. 8.16 Time series of waiting times between consecutive maximal amplitudes of acoustic

signals in consecutive p-periods of external forcing for a whole record (compare with Fig. 8.10a)
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It is known that the probability density distribution must be narrower for the

synchronized signal compared to a non-synchronized one. As follows from

Fig. 8.18, the full width at half maximum (FWHM) of probability density distribu-

tion of phase differences between AE pulses and sinusoidal forcing is indeed much

narrower for the synchronized part of Fig. 8.10a.

Frequency locking, expressed as a minimum of the phase diffusion coefficient, is

also a quantitative measure of the phase synchronization (see Fig. 8.19).

Moreover, clear decrease of Shannon entropy value S indicates that dynamics of

acoustic emission becomes much more regular in the synchronized part of acoustic

emission data set (Fig. 8.20).

One of interesting methods of revealing synchronization in relaxation-type

processes is a “gap” technique (Lursmanashvili, 2001), which is described in detail
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in Chapter 18 and which has an analogue in the analysis of radio technical systems

(Blekhman, 1988). It is founded on the effect of concentration of slips (and

associated seismic/acoustic events) in the definite phases of forcing period.

Of course, this means that the occurrence of dynamic events in the remaining

phases of forcing is less probable (prohibited). The width of the prohibited zone

is larger for stronger synchronization. Of course, some intervals of silence can

occur just randomly, but these intervals are relatively short and are distributed

randomly relative to the forcing phase. These short gaps can be considered as a

noise; the gaps due to synchronization are much wider. The method has been tested

on the laboratory spring-slider model with mechanical forcing.
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Consider stick-slip as a nearly periodic relaxation process, where the stress is

accumulated for a long time in order to release it in a fast slip. As this last phase is

very short, the duration of a whole cycle is practically equal to that of accumulation

stage.

Assume that a periodic relaxation process with period t is exposed to also

periodic forcing of period T. Let us suppose that the forcing period is not known

exactly, but some preliminary guess on the range of periods can be made. Is it

possible to retrieve the unknown forcing period accurately from the observed

modified relaxation process? So, the objective is to find exact forcing period from

a given sequence of onsets of slips d(j), j¼ 1,2,3, . . . . m. Here m is the total number

of slips. We are looking for the forcing period inside the interval [Tmin; Tmax] of a
width DT ¼ Tmax- Tmin. We use a scanning window with the optimal length dT,
which is much less than DT. The window length dT is calculated by the following

empirical formula:

dT ¼ T2min=50t; (8.10)

where t is the duration of experiment. As a result we will have n ¼ DT/ dT (virtual)

periods to test inside the chosen interval of periods DT. For the T(i)-th trial (virtual)
forcing period we have:

TðiÞ ¼ Tmin þ i� dT; i ¼ 0; 1; 2; 3::::::n (8.11)

For revealing phase synchronization the times of slip occurrences d(j) are

divided by the corresponding period T(i):

dðjÞ=TðiÞ; j ¼ 1; 2; 3::: ::::m; i ¼ 1; 2; 3::: ::::n: (8.12)

Let us consider for each period T(i) the remainder of the above division F(j,i):

Fðj; iÞ ¼ remainderðdðjÞ=TðiÞÞ j ¼ 1; 2; 3:::::::m; i ¼ 1; 2; 3::::::n:

For revealing phase synchronization just the non integer part is essential as it

characterizes the distribution of phases of “discharges” inside the trial forcing

period. For convenience these values are normalized in the following way:

Fnðj; iÞ ¼ Fðj; iÞTðiÞ � 1000 (8.13)

After such a normalization, the considered values of Fn(j,i) do not depend on the
absolute value of trial period T(i) and are distributed inside the range [0;1000]. The
normalized phases are arranged according to their ascending values and the largest

free-of-slips interval between neighboring phases or the local maximal “gap” width

dFðj; iÞlocmax is found for each trial period T(i). As a result, two numerical sequences

for T(i) and dFðj; iÞlocmax are obtained. The graph of dFðj; iÞlocmax versus T(i) actually
forms a spectrum of local maxima of gaps widths for a chosen range of trial forcing
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periods. The largest gap (or the absolute maximum in the set of local ones) returns

the value of the sought forcing period.

The method has been tested on the laboratory spring-slider model with mechan-

ical forcing. The results are shown in Figs. 8.21–8.23.

In these experiments the forcing frequency (30 Hz) was known beforehand

and the objective was to retrieve it from the observed data as if it were unknown.

So the known forcing frequency was used only for validation of the gap method.

The amplitude of mechanical forcing was changed (namely, the excitation of

mechanical vibrator was realized by application of voltages of 4, 5 and 6 V
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respectively, in Figs. 8.21–8.23). Figs. 8.21a, 8.22a, 8.23a show the hidden period-

icity of slips (in particular, recurrence spectra of local maxima dFðj; iÞlocmax for each

trial period Ti) and Figs. 8.21b, 8.22b, 8.23b present gaps in distribution of slip

moments inside the genuine (Tig) period of forcing (returned from the value of

absolute maximum of the gap width dFðj; iÞabsmax, here 0.0332327 s), which is divided

into 1000 intervals.

From the analysis of the gap spectra we can conclude that synchronization

is present at the forcing frequency of 30 Hz and the genuine forcing period Tig ¼
1/f ¼ 0.0332327 can be extracted with no less than 0.01 Hz accuracy. It is evident

that the forcing frequency can be determined accurately from the observed

synchronized slip recurrence spectra.

The above approach has been tested on the Catalogue of Caucasian earthquakes

of M. Nodia Institute of Geophysics and some significant gaps related to tidal

effects were revealed (Chapter 18).

We hope that the methods applied in the present work to the laboratory data can

be used in future for detection and quantitative assessment of seismic process

synchronization strength induced by a weak external impact, such as tides, reservoir

loading, etc (Heaton, 1975; Nikolaev V. 2003; Grasso, 1998).

8.7 Phase Time Delay

The acoustic response lags behind the periodic forcing phase; the lag is inversely

proportional to the forcing intensity (Fig. 8.24a, b, c, d). The delay is quite similar

for both AE burst onsets and AE wave train maxima. The dependence of phase

delay on the intensity of periodic or pulse-like forcing points to a nonlinear

response of the system to a weak external impact.
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Fig. 8.23 (a) Recurrence spectrum of local maxima of gaps widths for a chosen range of trial

forcing periods spectrum of slips for exciting voltage 6 V: Y-axis — the local maxima of the gap

widths dFðj; iÞlocmax; X-axis — trial periods Ti · 1000; (b) The distribution of slip moments inside the

genuine forcing period Tig divided in 1000 intervals
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8.8 Synchronization by Mechanical Forcing

Of course, synchronization of stick-slip can be achieved by a weak mechanical

forcing also. Such experiments are quite numerous as the phenomenon of stick-slip

is ubiquitous in friction processes and it is considered as a negative factor, disturb-

ing the stable displacement of contacting surfaces. In order to achieve smooth

functioning of technical systems with friction, application of weak mechanical

vibrations of relatively high frequency is studied mainly as a tool for stabilization

of friction process (Bureau et al., 2000; Perfettini et al., 2001; Boissou et al., 1998).

It has been found that at some intensity of mechanical forcing (but still much less

than the main driving force) the stick-slip phenomenon is strongly reduced. At the

same time, it is clear from analysis of recordings (Fig. 8.25) that what is considered

as stabilization of friction is in fact the stick-slip of small amplitude synchronized

with the (high) frequency of forcing. Thus, the stabilization of motion is achieved

not by elimination of stick-slip, but by drastic decrease of amplitude of slips, which

occur much more frequently than in motion without forcing.
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The phenomenon can be considered as a “quantization” of slips, which has been

observed also in our experiments with EM forcing (Fig. 8.15). Thus, a single

dynamic instability (slip) of magnitude of the order of 3.5 mm in a non-modified

friction process is released in the same time interval by 12 small-scale events of

magnitude 0.2 mm in synchronized friction as result of quantization. In total, the

cumulative slip rate of 12 small displacements was 2.4 mm/s, which is close to the

one large slip rate of 3.5 mm/s.

It is unrealistic at present, but the quantization effect of periodic forcing can in

principle be considered as a tool for reducing the magnitude of impending strong

earthquake.

8.9 High Order Synchronization of Stick-Slip Process:

Experiments on Spring-Slider System

In the previous chapters we considered relatively simple synchronization regimes.

At the same time it is well known that when the processes of various timescales are

coupled, there is a possibility of high order synchronization (HOS). Namely, ifon is

the natural frequency of first (driven) oscillator,o is that of the second (forcing) one

and O is the resulting frequency of driven system under forcing, the system tends to

synchronize at different integer ratios of o/O. Such effects are observed, for
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Fig. 8.25 Time evolution of the loading spring elongation for v ¼ 8 mm/s and different modula-

tion amplitudes eeff indicated at the right end of each trace. The bifurcation sequence from stick-

slip to stable sliding is evident. The insert is a blow-up of the stable sliding trace showing the

remaining oscillating response at the frequency of the load modulation f ¼ 120 Hz, much higher

than the stick-slip frequency (Bureau, 2000). It seems that what is considered as stabilization is

indeed a synchronization of slips with quantization of slip amplitudes
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example, in biological systems, lasers, electronic relaxation generators, etc

(Pikovsky et al., 2003; Kantz, Schreiber, 1997).

Our experiments were aimed to reveal HOS in the frictional system, namely in

the stick-slip process of spring-slider setup, subjected to weak electromagnetic

(EM) or mechanical forcing.

8.9.1 High Order Synchronization

In the paper the following definitions are used: o0 – natural frequency of autono-

mous oscillator (here spring-slider system); T0 – corresponding natural period;

and o, T, and f — forcing frequency, period and phase, respectively; O, Tobs,
and fobs – frequency, period and phase, respectively, of autonomous oscillator

observed after application of forcing.

There are several kinds of synchronization between oscillating system with

natural frequency o0 and forcing frequency o ¼ 2pf. We are looking for the

phase synchronization (PS), when amplitudes are irregular and uncorrelated,

but the frequencies o and O are adjusted, i.e., there is a regular phase shift between

o and O.
High-order or (n:m) synchronization means that the observed and forcing

frequencies satisfy the equation (Pikovsky et al. 2003):

n o¼ m; or nTobs¼ mTf ; (8.14)

where n and m are some integer numbers. In our case, o is the EM or mechanical

forcing frequency and O is the observed frequency of AE bursts under forcing. The

ratio n/m is called the winding or rotation number r and is defined as:

r ¼ O=o ¼ Tf =Tobs: (8.15)

This condition of so-called high-order synchronization can also be incorporated

in the general framework of the frequency-locking model, using equation (8.14) ; in

this case the ratio n:m is the winding number: r ¼ n=m. The phase-locking can be

also expressed in terms of the oscillators’ phases:

nf� mfobsj j < const; (8.16)

where f is the phase of the forcing and O is that of the kicked oscillator.
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8.9.2 HOS Synchronization by Electromagnetic Forcing

Figure 8.12 represents actually the example of high order (n/m ¼ 1:2) synchroniza-

tion. The experiment shows that the addition to the high frequency EM signal

(40 Hz) of a strong enough component of the constant electric field invokes

transition from 1:2 to 1:1 synchronization.

The same 1:1 regime can be obtained also upon application of relatively low

frequency (T0 ¼ 0.5 s) signal (see the left part of Fig. 8.26). At still lower forcing

frequencies, for example, T0¼ 4.5 s, the stick-slip process demonstrates swarm-like

behavior: one EM forcing generates dozens of AE bursts (see the right part of

Fig. 8.26).

Figure 8.27 represents the HOS of stick-slip at EM forcing by pulses of different

duration. Both the onsets of swarms and these of the individual events within

sequences (swarms) turn out to be very well organized.

The onsets of swarms have almost the same delay relative to the times of onsets

of identical forcing (tif0; i¼ 1, 2 . . . . . k, where i is the number of forcing pulse) and

the events within swarms manifest regular phase difference. Besides, even small

difference in the duration of the forcing pulses causes regular changes in the delays,

number of AE bursts in the induced swarm and in phase differences. Characteristics

of EM forcing and AE response are as follows. Short forcing pulses: n:m ¼ 1/3;

mean duration t ¼ 0.618 s; mean delay tif0¼ 0.295 s; the AE response consists of

three consecutive bursts with mean phase differences of 0.258; 0.411; 0.537 s, and

St. Dev. of 0.037; 0.048; 0.034, respectively. Long forcing pulses: n:m¼ 1/4 or 1/5;

mean duration t¼ 0.82 s; mean delay tif0¼ 0.358 s; the AE response consists of four
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Fig. 8.26 Transition (bifurcation) in stick-slip from 1:1 synchronization to high order synchroni-

zation at increasing period of forcing from 0.5 s to 4.5 s (exp: Zura5). Note that in Figs. 8.26, 8.27a

and 8.28a the forcing signal was filled by high frequency (HF) oscillations in order to visualize the

low frequency forcing on the computer screen; the HF signal was applied only to computer and not

to the rock plates
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consecutive pulses with mean phase differences of 0.268; 0.467; 0.601; 0.736, and

St.Dev. of 0.046; 0.05; 0.07; 0.055; 0.046, respectively.

Figure 8.28 presents even more numerous AE swarms generated by longer EM

pulses; in this case the swarms contain up to 40 AE events, so n:m � 1/40. Again,

the AE bursts within the swarm are well organized. The first ten of bursts show

almost constant phase shift relative to the EM forcing onsets. The following bursts

demonstrate a regular small increase of the phase delay in sequential swarms.

So, it seems that the lower the frequency of forcing, the larger the number of

triggered synchronized events in the forcing-generated AE swarms. Probably the

same mechanism can lead to formation of seismic swarms.

Besides n<m coupling, we observe also n>m HOS (Fig. 8.29 a, b). Here the AE

bursts occur rarely in comparison with EM forcing pulses. The forcing pulse
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(repetition) rate was Tf ¼ 1.8 sec, AE delay relative to the pulse onset – 0.24 s. The

observed AE period was Tobs ¼ 25 s. Thus, in this case n>m, namely the winding

number is 14:1. Fig. 8.29 b presents the AE distribution relative to the forcing

period phase, which is very sharp though slips wait quite long (hundreds of forcing

periods) to occur.

8.9.3 HOS by Mechanical Forcing

We also investigated synchronization of the same spring-slider system under weak

periodic mechanical forcing (Chelidze et al., 2007; Varamashvili et al., 2008). The
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forcing EM pulses; note the stripe structure of synchrogram, which shows that the phase shift
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experiments were conducted for two modes of mechanical forcing: (i) the forcing is

applied normal to the slip surface and (ii) forcing is applied parallel to the slip

surface; for brevity we will refer to them as normal and tangential forcing, respec-

tively. In the case of normally directed forcing we calculated the maximum value of

mechanical forcing, which corresponds to the maximum measured voltage applied

to mechanical vibrator (i.e., when the voltage applied to the vibrator equals 6.5 V).

The mass of the oscillating element of the vibrator m is � 20 g, so we obtain for

oscillating element of the vibrator the natural frequency f: f ¼ ffiffiffiffiffiffiffiffiffi
k=m

p ¼ 5 Hz,

where k is the stiffness of the vibrator spring. Then k ¼ 25 m ¼ 0.5 N/m.

The maximum deflection xmax of the oscillating element at the applied voltage

6.5 V equals xmax � 4:10�3m, so the corresponding (maximal) intensity of forcing

Fmax is Fmax ¼ kxmax � 2:10�3N.

At smaller voltages, the forcing is much weaker – our assessment for 1V is �
5:10�4N. Thus, the forcing was always much less than the driving force F ¼ 4 N.
Similar numbers were obtained for tangential mechanical forcing. The forcing

frequencies were 30 Hz for the tangential and 20 Hz for the normal loading

cases. In both cases, the forcing rate was larger than the dragging rate, which

means that the synchronization of the process is possible.

Figure 8.30 a, b presents experimental records, when the mechanical forcing is

in the range (5:10�5 � 2:10�3) N, which corresponds to 4 V voltage applied to

the vibrator.

Distributions of the AE burst onsets relative to the phase (in decimals) of

mechanical forcing period for the normal forcing are presented in Fig. 8.31.

At low voltages (up to 1V) the onsets are more or less randomly distributed in the

decimals of the forcing period. Voltage increase results in concentration of the

offsets at a definite part of forcing period, namely in the first and the last decimals of

forcing phase. Evidently, increasing of voltage applied to mechanical vibrator
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promotes synchronization of AE offsets with external forcing. The same behavior is

observed for tangential mechanical forcing (Fig. 8.32).

Thus at low voltages (up to 2 V) the onsets are more or less randomly distributed

in the decimals of the forcing period (Figs. 8.31, 8.32). Voltage increase results in

concentration of the offsets at a definite part of forcing period, namely in the first

and the last decimals of forcing period for normal forcing; in the case of tangential

forcing (Fig. 8.32) synchronization is most pronounced in the interval 0.25–0.5 of

the forcing period and fills the gap observed for normal forcing (Fig. 8.31).

Alteration of the forcing frequency affects the phase distribution of AE.

Figure 8.33 (the left column) shows the AE distribution for tangential forcing at

frequency 80 Hz. It is evident that the maximum of AE shifts to other phases of

forcing period compared to the distribution for 20 Hz.
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Fig. 8.30 (a) The full record of AE bursts (upper channel) and mechanical forcing (lower

channel), sections 1 — total record of forcing, corresponding to the time scale, shown at the

upper side of figure; section 2— part of forcing record in the expanded form; here the time scale is

disregarded in order to visualize the form of forcing signal during synchronized stick-slip.

Mechanical forcing corresponds to vibration intensity generated by application of 4 V voltage to

the vibrator; (b) A single acoustic pulse and corresponding tangential mechanical forcing on the
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the AE pulse and the start of slow terminal phase as a pulse termination; these moments are marked
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Fig. 8.31 Distribution of acoustic emission onsets relative to mechanical forcing period phases

(in decimals) for different intensities of normal forcing. Forcing frequency – 20 Hz
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8.9.4 Synchronization of AE Signal Terminations

It was a surprise to discover that not only AE onsets can be synchronized by a weak

mechanical forcing; Fig. 8.33 (right column) illustrates that the terminal parts of the

signal also are synchronized by forcing with the same strength as the onsets.

We suppose that the forcing (here 80 Hz) can affect not only the phases of onsets

but also the phases of terminations of AE bursts, but their influence is realized in

quite different phases of forcing: presumably, the onsets are triggered by tangential

10

0
0.125 0.375

forcing period interval
0.625 0.875

A
E

0.1v

10

0
0.125 0.375

forcing period interval
0.625 0.875

A
E

1v

10

0
0.125 0.375

forcing period interval
0.625 0.875

A
E

3v

10

0
0.125 0.375

forcing period interval
0.625 0.875

A
E

5v

10

0
0.125 0.375

forcing period interval
0.625 0.875

A
E

0.5v

10

0
0.125 0.375

forcing period interval
0.625 0.875

A
E

2v

10

0
0.125 0.375

forcing period interval
0.625 0.875

A
E

4v

10

0
0.125 0.375

forcing period interval
0.625 0.875

A
E

6v

Fig. 8.32 Distribution of acoustic emission onsets number relative to the forcing period phase

(in decimals) for different intensities of tangential forcing. Forcing frequency – 30 Hz

8 Triggering and Synchronization of Stick-Slip 157



20

15

10

5

0
1 2 3 4 5

forcing period interval

A
E

1V.[a]

6 7 8 9 101112

20

15

10

5

0
1 2 3 4 5

forcing period interval

A
E

2V.[a]

6 7 8 9 101112

20

15

10

5

0
1 2 3 4 5

forcing period interval

A
E

3V.[a]

6 7 8 9 101112

20

15

10

5

0
1 2 3 4 5

forcing period interval

A
E

4V.[a]

6 7 8 9 101112

20

15

10

5

0
1 2 3 4 5

forcing period interval

A
E

5V.[a]

6 7 8 9 101112

20

15

10

5

0
1 2 3 4 5

forcing period interval

A
E

1V.[b]

6 7 8 9 101112

20

15

10

5

0
1 2 3 4 5

forcing period interval
A

E

2V.[b]

6 7 8 9 101112

20

15

10

5

0
1 2 3 4 5

forcing period interval

A
E

3V.[b]

6 7 8 9 101112

20

15

10

5

0
1 2 3 4 5

forcing period interval

A
E

4V.[b]

6 7 8 9 101112

20

15

10

5

0
1 2 3 4 5

forcing period interval

A
E

5V.[b]

6 7 8 9 101112

Fig. 8.33 Distribution of acoustic emission onsets (the left column) and terminations (the right

column) relative to the (mechanical) forcing period phase (in twelfths of the forcing period) for

different intensities of tangential forcing. Forcing frequency – 80 Hz

158 T. Chelidze et al.



forcing around the minimum area of forcing period and suppressed by forcing in the

maximum area of forcing period.

The standard deviation of onset and termination times regularly decreases with

increase of forcing intensity (Fig. 8.34).

Besides better synchronization of onsets and terminations, the increase in forc-

ing intensity also brings on regular shortening of duration of AE bursts (Fig. 8.35).

It is evident that increasing voltage applied to the vibrator promotes synchroni-

zation of AE offsets with external forcing.

It is striking that the AE bursts are well synchronized though the waiting interval

of bursts varies between 100-200 periods of forcing, i.e., to initiate the phase-

synchronized slip event the forcing oscillator should pump the energy of hundreds

of oscillations to the slider-spring system.

The important conclusion for the much discussed interaction between tidal

deformation and EQ-s (Beeler, Lockner, 2003; Scholz, 2003) is that in order to
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find it we should not only look for direct 1:1 correlation between events recurrence

frequency and forcing, namely for the increase of seismicity exactly at the tide

frequency (say, 12 h). The high order phase synchronization can occur at multiples

of tide frequency like it was shown in laboratory experiments. It is important to note

that HOS can be responsible for phase synchronization of AE or seismic events

irrelative to the duration of their nucleation; of course, the optimal condition of

synchronization (minimal forcing) should correspond to the forcing period, close to

natural event nucleation time. Additional complication arises from the phenomenon

of delay; the response can be shifted quite significantly for weak forcing. Thus, the

question of tidal forcing of earthquakes should be reconsidered taking into account

new experimental evidence.

8.10 EM Synchronization: Physical Mechanism of Period

Doubling

It is well known that the slider-spring system displays the stick-slip

behavior described by the nonlinear equations (Dietrich, 1979; Ruina, 1983;

Rice et al., 2001; Becker, 2000): t ¼ sn½m0 þYþ A lnðvd=vcÞ
; _Y ¼ ð�vd=dcÞ
½Yþ B lnðvd=vcÞ
, where t is the friction stress, sn is the normal stress, Y is the

surface state parameter, m0 is a nominal (constant) value of friction, dc is the

dimension of asperity, vd is the slip speed, v0 is the initial value of vd and A and B
are constants. Both theoretical solutions and experiments demonstrate a possibility

of very different behavior of the system depending on the conditions of the test.

For example, nonlinear analysis of a simple quasi-static slider-spring system with

rate- and state-dependent friction shows chaotic dynamics behavior in the deter-

ministic sense (Becker, 2000). In particular, at the critical value of spring stiffness,

the friction stress may undergo oscillations close to periodical.

On the other hand, it has been shown (Ott et al., 1990; Bocaletti et al., 2000) that

it is possible to control the behavior of chaotic systems using very small feedback

impact. The matter is that the attractor of a chaotic system contains an infinite

number of unstable periodic orbits. Given such an attractor, one can choose some of

the low-period orbits (or steady states) embedded in the attractor and use a feedback

perturbation of an accessible parameter P of the system in order to stabilize the

chosen orbit and thus improve the performance of the system, for example, convert

the chaotic behavior into periodic process. The extreme sensitivity of chaotic

systems to external impact allows to control the dynamic state of the physical

object by using a very small perturbation. Experimental control of chaos has been

successfully realized first by Ditto et al. (1990) on the parametrically driven

magnetoelastic ribbon and then by many others on mechanical, electronic,

biological and chemical systems (see Ott et al., 1994).

An alternative mathematical formalism for explanation of control phenomenon is

provided by synchronization theory (Blekhman, 1988; Lursmanashvili et al., 2001;
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Pikovsky et al., 2003). The crux of this approach is the existence of some critical

parameter in the system that causes its relaxation. Then small periodic impact can

synchronize relaxation of the whole system with the period of impact, if some force

regularly drives the system close to the critical state. Let us consider some relaxation

process in which the intensity Ur (it can be related to voltage, stress, etc) builds up

slowly to some critical value Uc; whenUr ¼ Uc, the intensity drops instantly to some

initial value. Then the application of synchronizing pulses of relatively small ampli-

tude Us and of very short duration may impose coherency of these drops with the

timing of pulses, as now the condition of criticality isUr þ Us ¼ Uc or, in the case of

sinusoidal impact, Ur þ a sinðotþ ’Þ ¼ Uc, where o, a and ’ are the angular

frequency, phase and amplitude of periodic impact, respectively. This means that

intensity drops occur, when the increasing value of Ur is equal to Uc – asin (otþf );
for details see Chapter 18. It has been shown (Blekhman, 1988; Pikovsky et al., 2003)

that synchronization may appear at even weak coupling between objects with signifi-

cantly different characteristic frequencies that implies nonlinear interaction of

objects.

What is the physical mechanism leading to synchronization? In case of mechani-

cal excitation, synchronization is connected with mechanical triggering of micro-

slips in the system that is close to critical state and thus reveals sensitive dependence

on (small) external perturbation.

In the case of EM forcing, the driving mechanism of triggering is electrostriction

(equations 8.5 and 8.6); synchronization occurs when the oscillating EM compo-

nent of Coulomb stress is strong enough.

We suppose that EM synchronization is connected with polarization of surfaces

of fixed and sliding samples. As the polarization forces arise at both polarities of

applied periodic field, it seems reasonable to expect that the synchronization

follows each reversal of EM field. As the mechanical instabilities synchronize

with both positive and negative sections of sinusoid (the response is symmetric)

we can postulate that the additional elastic strain, u, induced by forcing has a

quadratic dependence on the intensity of electrical field E ¼ Emsin ot:

u ¼ kE2 (8.17)

which is the well known expression of electrostriction in solids (compare with

expressions 8.3 and 8.4); here k is some proportionality constant depending on the

forcing frequency and physical properties of rock (Chernyak, 1978).

If the electromagnetic forcing contains, besides the periodic component, also a

constant one, that is:

E ¼ Ec þ Em sinot; (8.18)

then, after inserting (8.18) into (8.17), the elastic response becomes:

u ¼ klðEmÞ2 1þ 2 Ec=Emð Þ2þ4 Ec=Emð Þ sinot� cos 2ot
n o

; (8.19)
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where k1 is proportionality constant, which depends on the forcing frequency,

physical properties of rock and constant component intensity Ec. It is evident

that the stick-slip response to forcing in the latter case depends on the value of

ratio Ec/Em. At Ec/Em << 1 the cos2ot term of (19) is dominant, which means that

the slip events will occur with the double frequency of forcing, but at Ec/Em >> 1

the slip regime is governed by the sin ot term, that is, only one slip event occurs per

period of forcing. These conclusions are confirmed by experiments (Fig. 8.12).

8.11 Conclusions

The phase synchronization of stick-slip process induced by a weak electromagnetic

or mechanical periodic forcing was analyzed. Stick-slip events were identified as

acoustic emission (AE) bursts and recorded on the sound card of computer. The

onsets of acoustic events were picked by special program using Akaike criterion. For

quantitative measuring of synchronization strength, several modern tools of nonlinear

dynamics were used (mean effective phase diffusion coefficient, Shannon entropy

based characteristic phase synchronization measure (gH-Sh), recurrence plots, and

recurrence quantitative analysis RQA, namely, percent of determinism %DET, etc).

An application of varying frequencies and intensities of forcing allows to

compile Arnold’s tongue for EM forcing. We found that not only the onsets/

maxima of a definite kind of AE signals are synchronized with forcing, but also

AE wave train terminations.

The effect of high order synchronization of stick-slip events by weak electro-

magnetic or mechanical periodic forcing was discovered. There were two kinds of

high order synchronization: (i) one or more AE bursts during one forcing period and

(ii) one AE burst during many forcing periods.

It was found that the onset time of the synchronized slip events lags behind the

forcing phase; the delay is smaller for stronger forcing.

The results obtained point to possibility of revealing some new fine details in the

stick-slip process which can be very useful for refining the physical mechanism of

frictional motion in general. These findings can also help to find new regularities in

seismic time series.
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Chapter 9

Oscillating Load-Induced Acoustic Emission

in Laboratory Experiment

A. Ponomarev, D. Lockner, S. Stroganova, S. Stanchits, and V. Smirnov

Abstract Spatial and temporal patterns of acoustic emission (AE) were studied. A

pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa

confining pressure until stick-slip events occurred. The experiments were con-

ducted at a constant strain rate of 10�7 s�1 that was modulated by small-amplitude

sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the

oscillations was a few percent of the total load and was intended to simulate

periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic

acquisition system with 13 piezosensors recorded acoustic emissions that were

generated during deformation of the sample. We observed a correlation between

AE response and sinusoidal loading. The effect was more pronounced for higher

frequency of the modulating force. A time-space spectral analysis for a “point”

process was used to investigate details of the periodic AE components. The main

result of the study was the correlation of oscillations of acoustic activity synchro-

nized with the applied oscillating load. The intensity of the correlated AE activity

was most pronounced in the “aftershock” sequences that followed large-amplitude

AE events. We suggest that this is due to the higher strain-sensitivity of the failure

area when the sample is in a transient, unstable mode. We also found that the

synchronization of AE activity with the oscillating external load nearly disappeared

in the period immediately after the stick-slip events and gradually recovered with

further loading.
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Cosmic and meteorological forces can produce periodic changes in the Earth’s

crust. This periodicity in terrestrial processes is observed over a wide range of time

scales [Atlas. . ., 1998; 2002]. Seismicity, for example, contains periodic compo-

nents as well as random activity, due to both natural and man-made sources

[Gomberg et al., 1998]. Earth tides are a significant source of periodic stress and

deformation of the crust and under favorable conditions can influence the occur-

rence of earthquakes [Cochran et al., 2004]. Sadovsky et al. [1981] have shown that

micro-mechanical influence on deformed samples of different rock and artificial

materials favors the transformation from brittle rupture to plastic deformation and

thereby leads to release of elastic energy stored in the sample. Sobolev et al. [1996]

have shown in laboratory experiments on granite blocks under biaxial loading that

the addition of vibrational loads leads to a shortening of the time period between

consecutive unstable motions like stick-slip. Under 50 MPa confining pressure, a

strong correlation between the periodic forcing function and the occurrence of

model earthquakes was found by using granite cylinders containing precut bare

fault surfaces [Lockner and Beeler, 1999]. More recently, those researchers demon-

strated on laboratory-scale experiments that seismicity should correlate strongly

with the amplitude and frequency of small periodic stress of tidal magnitude if the

period exceeds the duration of earthquake nucleation [Beeler and Lockner, 2003].

The objective of the current study was to analyze acoustic emission time

series (considered an analogue of natural seismicity) generated in laboratory-

scale experiments to reveal variations in the sensitivity between periodic loading

and induced AE response. Unlike the preceding experiments, we used a pre-

fractured Westerly granite core of 76.2 mm diameter and 190 mm height under

confining pressure of 160 MPa (Fig. 9.1). The sample was loaded axially until stick-

slip events occurred. The experiments were carried out under constant strain rate of

10�7 s�1. The steady axial loading was modulated by sinusoidal oscillations of 175

and 570 second periods and with peak-to-peak amplitudes that were a few percent

of the applied load. This loading pattern was intended to simulate periodic loading

observed in nature (e.g., earth tides or other sources), although the stress variations

are more than 3 orders of magnitude larger than tidal stress oscillations. As

discussed in Lockner and Beeler [1999], correlations between tidal stresses and

natural seismicity are expected to be much smaller than the correlations observed in

this experiment. An ultrasonic acquisition system described in Lockner et al.

[1991], included 13 piezosensors and recorded arrival time and amplitude informa-

tion from induced AE events to provide a database for further analysis.

Loading history and variation of AE activity are shown in Fig. 9.2. The initial

stage of the experiment (before 310,000 s) was loaded at constant strain rate without

the addition of periodic forcing. In the range of 310,000-360,000 s, the constant

loading rate was modulated by the addition of a small-amplitude sine-wave with a

period of 175 s. In the range of 375,000 to 445,000s, the period of the modulating

signal was 570 seconds. The amplitude of the periodic loading was approximately

20 MPa in both cases.

Artificial fault surfaces used in laboratory studies are typically formed by

making an inclined saw cut that is surface ground to produce planar, well-mated
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Fig. 9.2 Axial load and recorded AE rate are plotted as a function of time. Broad bands in axial

stress between 500 and 600 MPa indicate amplitude of imposed sinusoidal stress oscillations
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Fig. 9.1 Schematic diagram

of the loading system (after

Lockner and Beeler, 1999)
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surfaces. A different technique was employed here to produce a more ‘natural’ fault

surface. In a separate procedure, before the experiment, a fracture was propagated

quasi-statically in an initially intact granite cylinder. An “AE feedback control”

technique was used in which the load was adjusted to maintain constant acoustic

activity [Lockner et al., 1991]. This loading style results in a narrow rupture zone

with complex surface roughness and abundant gouge that is more like a natural fault

than an artificial saw-cut surface. Locations of AE sources generated from initial

loading to 200,000 s are plotted in Fig. 9.3. These events, that have location

accuracy of approximately �3mm, are the result of re-activation of the existing

fault surface and provide an image of its shape. While AE activity is greater in the

central portion of the fault, there is activity over the entire fault surface. This

distributed activity indicates that during reloading of this pre-fractured sample,

the entire fault surface is reactivated and although the two fault blocks are locked

together by the applied normal stress (up to 260 MPa) a small amount of inelastic

strain is continuously occurring. The AE activity plotted in Fig. 9.3a indicates that

the lower portion of the fault has slight curvature and that the damage zone

associated with the fault is more than 1 cm in width.

Dynamic stick-slip events involve rapid motion on the entire fault surface

accompanied by a measurable stress drop and audible sound. Only a few such

stick-slip events occurred during this experiment and all were followed by periods

of increased AE activity. Variation in the relevant acoustic activity is shown

in Fig. 9.4 for two stick-slip events with differential stress drops of approximately

0

x

z

y

z

20mm

a b

Fig. 9.3 Locations of AE

events during initial loading

(before running time of

200,000 s) of sample. (a)

Sample viewed along strike of

the pre-existing fault. (b)

Sample view rotated 90� to
fault strike. Lower portion of

the fault has slight curvature.

Width of the damage zone, as

indicated by AE activity, is

more than 1 cm. The broadly

distributed AE activity

indicates that the entire fault

is undergoing inelastic strain

as it is loaded
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20 MPa. In both examples shown in Fig. 9.4, AE activity preceding stick-slip was

strongly correlated with the imposed stress oscillations. However, synchronization

of acoustic emission nearly disappears following the stick-slip events and the

associated stress drops. Then, after about 10,000 seconds, as the load rises, the

correlation between AE rate and periodic loading rate is gradually re-established.

Stress drops for the different stick-slip events were variable. The two events shown

in Fig. 9.4 had stress drops of approximately 20 MPa or only about 4 percent of the

applied differential stress. These stress drops were of the same magnitude as the

applied stress modulations. Notice in Fig. 9.4 that the decrease in ambient stress

level due to the stick-slip events resulted in an overall ½ decade decrease in AE rate

during the aftershock sequence that reached a minimum after about 5000 s. This

inverse-time transient decay in AE rate is the laboratory equivalent of an Omori

aftershock decay sequence and represents the time period in which AE rate is

insensitive to the imposed stress oscillations. Once the sample emerges from this

region of lowered stress, the AE rate again begins to correlate with the imposed

stress oscillations. This memory of past stress history is similar to the Kaiser effect

discussed, for example, in Lockner (1993) in which the induced AE rate remains

low until the previous maximum stress level is exceeded.

The change in correlation between stress oscillations and AE rate is shown more

clearly in Fig. 9.5. In these plots, AE activity occurring within an extended time

interval is binned according to time of occurrence relative to the peak in the

stressing cycle. Fig. 9.5a shows that in a 10,000 s interval prior to the stick-slip

event in Fig. 9.4a, AE activity has a strong correlation with and is in phase with the

stress oscillations. The number of AE events associated with peak stress is nearly

3 times more than the number of events occurring near the stress minimum. Plotted

“High” frequency load
modulation
(T=175 sec)

“Low” frequency load
modulation
(T=570 sec)

Stress
AE rate

Stress
AE rate
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Fig. 9.4 Acoustic activity associated with stick-slip events. Steady loading rate results in an

average AE rate of about 10 events per second. Rapid fluctuations in the AE rate prior to stick-slip

events indicates the response to applied stress oscillations. Each stick-slip event produces a sudden

increase in AE rate followed by a 1/time ‘aftershock’ decay and a ‘stress shadow’ where AE rate

drops to about 30% of the previous rate. During the aftershock decay, the correlation between AE

rate and stress oscillations is lost
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in this way, Fig. 9.5a approximates the probability density function for AE events

in this time interval. In contrast, Fig. 9.5b plots the AE activity during the 10,000 s

following the stick-slip event. The correlation between stress and AE rate is

essentially lost. However, in the next 4,000 s (Fig. 9.5c) the correlation between

peak stress and peak AE rate is re-established.

Another interesting feature of induced acoustic emission is that AE synchroni-

zation with external loading becomes apparent following large amplitude AE

events (events that are large enough to have their own aftershock sequences).
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Fig. 9.5 AE activity plotted relative to the peak in each stressing cycle (T ¼ 175 sec). Events for

each sampling interval are grouped in 30� bins. (a) AE activity for 10,000 sec time interval before

stick-slip event shown in Fig. 9.4a. Activity at peak stress is nearly 3 times as large as activity near

stress minimum. (b) AE activity during 10,000 sec following stick-slip event showing a loss of

correlation with stress cycling. (c) Activity during 4000 sec time interval following aftershock

sequence of stick-slip event. In this interval, the correlation between stress and AE rate is re-

established. (d) AE activity for 1000 sec aftershock sequence of a large amplitude AE event (see

text). In this case, correlation of AE activity with stress oscillations is greater than for the

background activity shown in Fig. 9.5a
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This is illustrated in Fig. 9.6. Similar to the aftershock sequence for stick-slip

events, these large AE event aftershocks diminish with an inverse-time rate depen-

dence. Unlike stick-slip aftershocks, however, aftershocks of large AE events show

strong correlation with stressing cycles. This characteristic is further illustrated in

Fig. 9.5d where the peak activity is more than 4 times the activity associated with

the stress minimum.

We suggest that the appearance of strong synchronization between imposed stress

oscillations and acoustic emission variations during laboratory-scale modeling is

the result of increased strain-sensitivity of the fault and indicates that the fault has

been driven into an unstable state. In Fig. 9.4, the stick-slip events involved slip of

the entire fault surface and resulted in an overall reduced stress state as measured by

Fig. 9.6 Acoustic activity synchronizes with applied stress oscillations after large amplitude

acoustic events that occur at times indicated by arrows. Interval of enhanced correlation is

approximately 1000 sec
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the applied axial load. This reduced stress state was characterized by a loss of

correlation between AE rate and imposed stress oscillations. In contrast, in Fig. 9.6,

while the AE events were large enough to produce their own aftershock sequences,

they did not reduce the overall stress on the fault as measured by the total applied

axial load. Instead, the drop in stress in the source region of the large AE events

simply transferred stress to the remainder of the fault surface resulting in a transient

increase in overall AE rate.

More than 65,000 AE events were recorded and located during this experiment.

AE activity associated with the stick-slip event at 346,023 sec is plotted in Fig. 9.7.

A very large amplitude AE event was recorded at the beginning of the aftershock

sequence (plotted as the star in circle) and may indicate the nucleation site of the

stick-slip event [Thompson et al., 2005]. Differences between locations of pre-stick-

slip AE and aftershocks are small. Activity in regions ‘A’ and ‘B’ decreased while

activity in ‘C’ increased. These changes may indicate evolution of highly stressed

zones or asperities due to fault slip. Otherwise, the broad distribution of AE both

before and after the stick-slip event indicates that the entire fault is stressed and

undergoing inelastic deformation. Figure 9.8 shows locations of AE events before

and after the large amplitude AE event described in Fig. 9.6a. The large event,

indicated by the star, occurred near the center of the sample. Once again, there is

little difference in location of preceding and immediately following the large ampli-

tude AE event. Apparently, the occurrence of the large event resulted in a sudden

increase in AE activity but not in a change in the spatial distribution of activity,

implying a relatively uniform increase in stress over the entire fault surface.

lðtÞ ¼ m � ð1þ a � cosðotþ ’ÞÞ

We employ a method described by Lyubushin et al. [1998] to extract the periodic

component from the AE time series that represents a ‘point’ process. The model

of acoustic intensity includes a Poisson process with a uniform purely random

part with intensity m (m>0) and a periodic component (frequency o, amplitude a
(0 � a �1) and phase ’). Thus the Poisson part of the intensity is modulated by a

harmonic oscillation.

The log-likelihood function for the set of observations is defined as

ln Lðm; a; ’ oj Þ ¼
X

ti

lnðlðtiÞÞ �
ZT

0

lðsÞds

and the increment of the log-likelihood function becomes

ln Lðmi; a; ’ oj Þ ¼
X

ti

lnð1þ a cosðoti þ ’ÞÞ þ N � lnðmi; a; ’ oj ÞÞ � N

D lnLða; ’ oj Þ ¼
X

ti

lnð1þ a cosðoti þ ’ÞÞ þ N � lnðmi; a; ’ oj ÞÞ
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The maximum of this function indicates which frequencies provide the greatest

increase in the log-likelihood function when compared to a purely random model.

Parameters a and o can be estimated.

A time-frequency diagram of the AE response (log-likelihood increments) for

the entire experiment is shown in Fig. 9.9. Horizontal red lines identify the portions
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Fig. 9.7 Plots of AE activity

associated with stick-slip

event at 346,023 s running

time. (a) and (b) show

locations of events in 10,000 s

interval before the stick-slip.

(c) and (d) show aftershocks

occurring for 10,000 s

following the stick-slip. Star

in circle indicates location of

an off-scale amplitude AE

event that coincides with the

time of the stick-slip and may

represent its nucleation site.

Groups of events ‘A’, ‘B’,

and ‘C’ show a change in

relative activity from before
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reflect evolution of the fault

surface due to co-seismic slip
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of the experiment in which the AE response had periodicity of 175 s (logT ¼ 2.24)

and 570 s (logT ¼ 2.75).

There is no periodic acoustic response during the initial stage of the experiment

because no sinusoidal load is added to the constant loading rate. In general, a

correlation between the sinusoidal loading and the AE response is observed over
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zAftershocks
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Fig. 9.8 Plots of AE activity

associated with the large

amplitude AE event described

in Fig.6a at 323,377 sec

running time. Location of this

event is indicated by star.

(a) and (b) Location of events

occurring 2000 sec before the

large AE. (c) and (d) Location

of aftershock events

occurring for 1000 sec

following the large AE.

Spatial distribution of AE

events does not appear to be

affected by the occurrence of

the large event. Only the AE

rate increased, suggesting that

the large event redistributed

stress relatively uniformly

over the entire fault surface
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the next part of the experiment. However, the magnitude of the response is not

stable – sometimes it becomes very small and almost disappears. This effect is seen

by a detailed examination of spectral-temporal diagrams (Fig. 9.10). Wide vertical

stripes of the high values of the log-likelihood function are the result of an abrupt

increase or decrease of acoustic activity due to rapid unloading of the sample,

including stick-slip events.

From this preliminary analysis we can draw the following conclusions.

1) Prior to stick-slip events that represent dynamic failure of the entire fault

surface, the AE rate correlates with the applied stress oscillations (periods of

175 s and 570 s). Omori-type aftershock sequences of these events lasted for a

few thousand seconds. During these time intervals, AE activity did not correlate

with the imposed stress oscillations. As AE activity increased due to reloading

of the sample following the co-seismic stress drop and aftershock decay, AE rate

again correlated with the imposed stress oscillations.

2) ‘Significant’ large-amplitude AE events were identified that produced Omori-

type aftershock AE activity but did not involve slip of the entire fault surface or

a drop in average stress. In this case, the aftershock activity showed an increased

correlation with imposed oscillating stress.

3) These observations are consistent with a model in which AE activity becomes

increasingly sensitive to stress perturbations as the stress level in the sample is

raised and the fault is driven close to failure. If this is a general property of

natural fault systems, it may be possible to identify instability and impending

failure by the response of the fault to periodic stressing. It would seem reason-

able to search for these effects during real aftershock series.
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Fig. 9.9 Plot of the log-likelihood function for the entire experiment. Light-grey background

indicates essentially random occurrence of AE activity. Dark regions indicate high values of log-

likelihood function. Horizontal red bands during second half of the experiment indicate periods

where AE activity correlates with the periodic stressing function. Vertical streaks are typically the

result of rapid stress changes, including stick-slip events
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Chapter 10

Acoustic Emission Dynamics Initiated by Fluid

Infusion on Laboratory Scale

A. Ponomarev, G. Sobolev, and Yu. Maibuk

10.1 Introduction

The influence of water on the increase of seismic activity has been investigated in

various seismotectonic environments, including the observations of the processes of

reservoir filling [Gupta, 1992; Simpson et al., 1988; Mirzoyev et al., 1988; Sobolev,

1993]. The physical interpretation considered was mainly related to increase of pore

pressure and the corresponding decrease of effective pressure according to modified

Coulomb-Moore law [Brace, Martin, 1968]. This effect is the basis of the Dilatation-

Diffusion (DD) model of the earthquake preparation [Scholz et al., 1973]. Quantitative

estimates of the dependence of this effect on various values of lithostatic and

hydrostatic pressure, temperature and rock permeability were made in [Miller

et al., 1999]. A review of possible induced seismicity mechanisms can be found

in the special issue of Pure Appl. Geophys. [Trifu (ed.), 2002]. The fractal properties
of the water-induced seismicity are investigated in [Smirnov, 1994]. Connection of

local seismic activity and small changes of water level in the reservoir (phase

synchronization) were detected in [Peinke et al, 2006]. It should be noted that

small changes in pore pressure also correlate with the variations of small earthquakes

activity. It is shown that seismicity in the zone adjacent to lake Baikal depends on

the seasonal variations of the water level in the lake, which change the pore pressure

by several millibars [Djadkov, 1997]. This paper investigates the influence of

relatively low water inflow on the acoustic emission in compressed samples.
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10.2 Experiment procedure

The biaxial compression experiments were conducted on samples consisting of basalt

sand and cement. The detailed description can be found in [Sobolev, Ponomarev,

1997; Sobolev, Ponomarev, 2003]. The model has the form of an edge brick: base of

205 mm, thickness of 85 mm, side of 266 mm, the angle between the long side and

base 25�. The model consisted of 3 equal-size layers parallel to the slanted sides. Two

outer layers had higher durability than the central one: therefore, the inner layer was

more prone to destruction. Basalt gravel with sizes from 2 to 20 mm was added to the

inner layer. Initial values of P-wave velocities were 3.5 km/sec in the outer layers and

1.7 km/sec in the inner layer.

Experiments were conducted on a mechanical (lever) press which can maintain

constant load over extended periods of time. The lateral load normal to the slanted

sides, was kept constant for all experiments at the level of 4 tons. The vertical load F

was increased stepwise by adding loads on the long arm of the lever. We call these

actions the “mechanical load-ons”. After each load step, the model was kept stable

for 1-3 days, while the acoustic emission caused by the load-on decreased to the

background levels.

Acoustic emission (AE) was collected by the 10-channel acquisition system

A–Line32D (manufactured by “INTERUNIS”, Russia). The dynamic range was

96 dB, sampling frequency was 5 MHz, and acoustic passband was 30-500 KHz.

Besides AE, the vertical load and mechanical shortening of the model were

measured and recorded every 10 seconds. The results presented here were obtained

in the course of experiments with 2 identical models. During the final stage of the

loading of the first model, when the vertical load exceeded 95%, water was infused

into the model. The 5 mm diameter hole was drilled to a depth of 10 cm, the hole

opening being located on the upper side. The hole was cased with a polyethylene

tube except for the lowest 5 mm, so the water penetrated the model only in hole-

bottom area. The 5 ml volumes of water which equaled to �0.1% of the model

volume were kept constant during the experiments. Figure 10.1a shows the view of

the model in the press, Fig. 10.1b shows the plot of vertical load F during two

consecutive infusions of water. Infusion of water caused significant increases of AE

activity, thus we will call these actions “initiations” infusion.

10.3 Experiment results

10.3.1 Initiation #1

Figure 10.2 shows the AE dynamics in the lower (I) and in the upper (II) parts of the

model. The initiation hole was located in the upper part. The starting point of the

X-axis corresponds to the moment of mechanical load-on. At this moment, the load

increased by 1.6% (up to 97% of the rupturing load). The water was infused into the

180 A. Ponomarev et al.



F

T
im

e,
ho

ur
s

18
.9

19
.0

19
.1

19
.2

19
.3

19
.4

19
.5

19
.6

19
.7

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0

Ex
p 

1

w
at

er

w
at

er

T
im

e,
ho

ur
s

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0

13
.3

13
.4

13
.5

13
.6

13
.7

F

Ex
p 

2

w
at

er

a
b

F
ig
.
1
0
.1

G
en
er
al
la
y
o
u
t
o
f
th
e
ex
p
er
im

en
t
w
it
h
th
e
m
o
d
el
in
th
e
p
re
ss
(a
)
an
d
th
e
d
ia
g
ra
m
o
f
lo
ad

F
at
th
e
m
o
m
en
ts
o
f
w
at
er
in
fu
si
o
n
(b
).
T
h
e
ar
ro
w
s
in
d
ic
at
e

th
e
m
o
m
en
ts
o
f
w
at
er

in
fu
si
o
n
d
u
ri
n
g
ex
p
er
im

en
ts
w
it
h
th
e
1
st
m
o
d
el

(#
1
,
#
2
)
an
d
w
it
h
th
e
2
n
d
m
o
d
el

(#
3
)

10 Acoustic Emission Dynamics Initiated by Fluid Infusion on Laboratory Scale 181



hole at 80828th second (marked by an arrow) and was absorbed by the model during

24 minutes (1440 seconds). Energy of AE events was estimated as the square of

amplitude of signal from the sensor nearest to the hypocenter. Averaging of energy by

all sensors reduced the computational stability due to the following two reasons. First,

the number of sensors used for hypocenter location varied from 4 to 8. Second, with

increasing distance between the sensor and the hypocenter, the frequency and

amplitude of the signal changed significantly due to absorption and scattering of

acoustic waves. A comparison of the upper and lower plots in Fig. 10.2 definitely

shows a considerable increase of AE activity following the water infusion into the

upper part of the model.

The epicenters of acoustic signals on the two faces of the model are shown in

Fig. 10.3. The two lower diagrams correspond to the time span between the load-on

F and the water infusion; the duration is 80827 seconds. The two upper diagrams

correspond to the time span after water infusion (80828 sec. – 323768 sec. in

Fig. 10.2, this is 67.48 hours). The following details must be noted: the intensity

of signals increased significantly in the upper part (II), and also, whereas the
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Fig. 10.2 The sequence of AE signals and their energy E in the zones I and II during the

experiment with Initiation #1. The arrow indicates the start of water infusion
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strongest acoustic events before water infusion happened in the lower part of the

model, the strongest activity migrated to the upper part of the model following

the water infusion (Fig. 10.2). The sources of acoustic signals were located inside

the model, i.e., the internal cracking took place. Usually during the loading of

specimens many cracks occur on the edges. In the current experiments, the internal

cracking, which better corresponds to the processes of earthquake origination, was

achieved due to lower durability of the inner layer of the model.

Now let us consider in greater detail the time interval immediately following the

water infusion. First signals in zone II were detected just 19 seconds after infusion

while in zone I scarce acoustic signals emitted only after 1308 s. In our previous

paper [Sobolev, Ponomarev et al., 2006] it was discovered that penetration of water

into the tip of an active crack causes an acoustic signal (crack extension) with the

time delay of no more than 5 seconds. The data on the first interval in Fig. 10.2

shows that before the water infusion area I exhibited even greater acoustic activity

than area II, i.e., there appeared to be more active cracks. Thus, the 1308 second

delay can be interpreted as the time needed for water to come to the remote area.

The low acoustic activity can be explained by the fact that, given the small amount

of water injected (0.1% of the model volume), the water did not penetrate all active

cracks in the area. At the same time the emergence of acoustic signals after 1308

seconds in the area I can be attributed to the influence of water. The indirect

evidence of this can be found in the results of AE locations. The hypocenters of

the signals on the upper plots in Fig. 10.3 are located in the upper part of this area

(I), i.e., closer to the hole than it is the case before the water infusion (lower plots in

Fig. 10.3).

The hypocenters of the first signals emerging in zone II immediately after

the water infusion in the time span of the first hundreds of seconds are located at

I

II

Fig. 10.3 Locations of the

AE epicenters onto the front

side and the perpendicular

side during the experiment

with Initiation #1; lower

plot – before the infusion,

upper plot – after the infusion.

The dotted line separates the

model into zones I and II.

Solid straight lines show the

hole projection onto the faces

of the model
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30-50 mm distances from the hole. In Fig. 10.3 one can see a cluster group of high

energy signals in the interval 1212–1225 seconds from the moment of water

infusion. Their sources lie at 40-60 mm distances from the hole; the strongest

signal (E ¼ 4.63) occurred close to the middle of the group; its coordinates are x

¼ 153 mm, y ¼ 40 mm, z ¼ 160 mm.

10.3.2 Initiation #2

The second infusion of water into the hole was conducted 4 days after the first one.

The starting point of X-axis in Fig. 10.5 corresponds to the moment of load-on

while F was increased by 2%. The total resulting load was equal to 20.1 tons, which

is 0.5 tons above the level maintained during the Initiation #1. The moment of water

infusion is marked by the arrow. Time interval between the moment of load-on and

the moment of water infusion was 62760 seconds (17.43 hours). The water was
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Fig. 10.4 Sequence of AE signals and their energies in the zones I and II after water infusion in

the experiment with Initiation #1
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absorbed by the sample through the hole-bottom area after 38 minutes, which is

16 minutes longer than for the previous initiation. There can be two possible

reasons for this effect. First, the moisture content of the model in the area adjacent

to the hole-bottom was elevated compared to the initial one as a result of the

previous initiation. Second, the number of active cracks where the water is actively

absorbed could decrease as a result of the first initiation. Figure 10.5 shows that in

the second initiation, just like it happened in the first one, the inflow of water

resulted in the increase of AE activity.

The lower plots in Fig. 10.6 show the epicenters of the AE events occurring

between the mechanical load-on and water infusion; the upper plots show the AE

activity during 274610 seconds following the water infusion. Most events occurred

in the area adjacent to the hole-bottom.

As one of significant differences between Initiations #1 and #2, we can mention

the lower number of AE signals occurring in the upper area (II) after water infusion.

So, during the same DT ¼ 48 hour interval, 548 AE signals occurred in Initiation
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Fig. 10.5 The sequence of AE signals and their energy E in the zones I and II during the

experiment with Initiation #2. The arrow indicates the start of water infusion
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#1, whereas only 255 occurred in Initiation #2. At the same time, the AE activity in

the remote area (I) was comparable in both Initiations.

The second notable difference is that in Initiation #2 the delays between the

water infusion and the start of AE pulses were longer and practically identical in

both parts of the model. This is shown in Fig. 10.7 where the events are plotted on a

more detailed time scale following the moment of water infusion. One can see

significant differences compared with Fig. 10.4. In the first case, the delays were 19

and 1308 seconds, in the second case being 2219 and 2000 seconds.

10.3.3 Initiation #3

It was interesting to find out whether the AE initiation effect would occur with the

lower stresses applied to the model, and whether there is any difference in the

manifestation of the effect. This was performed in experiment #2. The water was

infused when the load F equaled 13.8 tons, i.e., the load was 70% of the critical

instead of 97% in the previous experiment. The water infusion started 256683

seconds (71.3 hours) after the mechanical load-on by 3.4%. The water was absorbed

slower than in Initiation #1 (2 hours versus 24 minutes). This difference is probably

explained by the fact that the lower stress resulted in lower number of water-

containing microcracks. Figure 10.8 shows the significant increase in AE activity

around the hole location II; this area also exhibits the strongest events.

Figure 10.9 shows the epicenters of the AE events before water infusion (lower

plots) and after infusion (upper plots). One can see the increased density of events

I

II

Fig. 10.6 Locations of

the AE epicenters onto the

front side (slanted) and

the perpendicular side during

the experiment with Initiation

# 2; lower plot – before

the infusion, upper plot – after

the infusion. The dotted line

separates the model into areas

I and II. Solid straight lines

show the hole projection onto

the faces of the model
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around the hole location in area II after water infusion. Before the water infusion,

the events occurred practically with the same density in the upper and lower parts of

the model. The sources of AE signals were located inside the model, i.e., it was

internal cracking again.

Figure 10.10 shows an expanded plot of the interval immediately following the

water infusion; significant time delays of AE events relative to the moment of water

infusion are observed in both areas. First AE signals in area II emerge after 1909

seconds (32 min.), in area I the delay is 4269 seconds (71 min.). Since the intensity

of AE activity had been comparable in both areas prior to water infusion, it is

reasonable to assume that the greater delay in area I is basically the delay of water

arrival in the remote area. The lower AE activity compared to Initiation #1 is

probably caused by smaller number of active microcracks accumulated inside the

model by the moment of Initiation #3. Hypocenter locations of the first AE events

emerging in area I after water infusion show that these hypocenters are located

close to the upper limit of this area at 40-50 mm distances from the hole-bottom.
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Fig. 10.7 Sequence of AE signals and their energies in the zones I and II after water infusion in

the experiment with Initiation #2
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II

Fig. 10.9 Locations of

the AE signal epicenters

onto the front side (slanted)

and the perpendicular side

during the experiment with

Initiation # 3; lower plot –

before the infusion, upper

plot – after the infusion. The

dotted line separates the

model into zones I and II.

Solid straight lines show the

hole projection onto the faces

of the model
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Fig. 10.8 The sequence of AE signals and their energy E in the areas I and II during the

experiment with Initiation # 3. The arrow indicates the start of water infusion
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10.4 Discussion

From Figs. 10.2, 10.5, and 10.8 it follows that the patterns of AE relaxation after

mechanical load-ons and after water infusions are substantially different. In the first

case, the high activity decreased significantly during several hundreds of seconds

following the load-on. In the second case, the elevated activity was maintained at a

high level during several thousands of seconds. Additionally, this elevated activity

did emerge with a certain time delay relative to water infusion; see Figs. 10.4, 10.7,

and 10.10.

Another aspect of this difference in AE patterns can be seen in Figs. 10.11 and

10.12. In these figures the rate of change of AE activity dN/dt is plotted for the cases

of mechanical load (lower plots) and for water infusions during Initiations #1 and

#3 (upper plots). The number of events was divided by the time interval dt, which

was incremented logarithmically.

In both cases of AE excitation by a mechanical load-on, the relaxation process

conforms to the Omori law (slanted lines in the lower plots).
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Fig. 10.10 Sequence of AE signals and their energies in the zones I and II after water infusion in

the experiment with Initiation #3
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dN=dt ¼ C=ð1þ tÞp (10.1)

In particular, the “log-log” plot (a) in Fig. 10.11 corresponds to the equation

dN=dt ¼ 0:32=ð1þ tÞ0:58 (10.2)

with the determination factor R¼ 0.81, whereas plot (a) in Fig 10.12 corresponds to

the equation

dN=dt ¼ 1:1=ð1þ tÞ0:66; R ¼ 0:88 (10.3)

Fig. 10.11 Changes in the rate of AE activity dN/dt (per second) during the experiment with

Initiation #1. The lower plot shows the reaction to mechanical load-on, the upper plot – the

reaction to water infusion
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As it was already noted, the AE activity after water infusion occurred with a

certain time delay. Let us consider the process after the activity emergence — plots

(b) in Figs. 10.11 and 10.12. In both cases, during Initiations #1 and #3 the AE

activity decreased during the first 100 seconds after the emergence of the initial

signals; this was followed by a gradual activity increase and subsequent decrease.

This pattern cannot be described in terms of relaxation equation type (10.1). During

Initiation #2 the dynamic pattern was basically similar; however, it was not

processed statistically due to lower number of AE signals.

The decay in the activity within a short time interval, covering the first 100 s, is

hardly connected with the process of water infusion, which lasted dozens of

minutes. The physical sense of the decay in the acoustic activity is not clear so far.

Fig. 10.12 Changes in the rate of AE activity dN/dt (per second) during the experiment with

Initiation #3. The lower plot shows the reaction to mechanical load-on, the upper plot – the

reaction to water infusion
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In our previous paper [Sobolev, Ponomarev et al., 2006] the influence of water

injected directly into the cracks visible on the surface on the AE activity was

investigated; the model was similar in composition to the one described here. In

Fig. 10.13 one can see the layout of that experiment which lasted for more than

7 months. As an example, Fig. 10.14 shows the dynamics of the AE response to the

water infusion during stages I, II, III corresponding to increasing values of load F. It

was determined that the patterns of gradual increase and subsequent decrease of AE

activity can be described by the formula

dN=dt ¼ ðdN=dtÞ0 �exp½fðtÞ�CðtÞ� (10.4)

where the terms in the exponent expression are time dependent. Variations in

experimental data are accounted for by adjustment of factors a, k and V in the formula

dN=dt ¼ a�exp½tk�V=ð1þ tÞm� (10.5)
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Fig. 10.13 Layout of the experiment for water infusion into the cracks at different stages of

loading, I, II, and III, with the increasing load F on the model
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The physical interpretation of these effects must take into account several

concurrent processes. The increased rate of cracking can be caused by the decrease

of durability of the moistened area, by an increase of brittleness, or by an increase of

stresses. The effect of durability decrease in solids caused by absorption, chemi-

sorptions, wetting and other physical-chemical processes was discovered for solids

of various compositions (Rehbinder effect). This effect was discovered also for

rocks [Rehbinder, Schukin, 1972; Traskin et al, 1989]. The effect is caused by a

decrease of the free surface energy U on the liquid-solid surface. As determined by

the spectral analysis, the chemical composition of the model includes: MgO, Al2O3,

SiO2, P2O5, K2O, CaO, TiO2, Cr2O3, MnO, FeO. The chemical composition of the

water used in the experiments includes: HCO3, Cl, SO4, NO3, NO2, Na, Ca, Mg,

NH4.

Intensified destruction of brittle solids under the influence of surfactants

absorbed on the surfaces of the cracks is quantitatively treated in [Kornev, 2003].

However, the manifestation of this effect must gradually decrease due to the limited

number of cracks in metastable state, due to decrease of accumulated potential

energy as a result of AE, and due to exhaustion of water which causes the AE

activation.

We support the hypothesis that the number of cracks in metastable state is a

significant, and possibly the crucial factor determining the AE dynamics after an

external influence. The number of such cracks grows together with the growth of the

applied loads and (or) with the increased duration of load application. This can be

seen, for example, in the changes of curves plotted in Fig. 10.14. Along with the

increase of the load F from stage I to stage III (Fig. 10.13), the AE reaction to the

water infusion manifests itself as a general increase in activity and the occurrence of a

maximum soon after the infusion. This effect was discovered in various experiments

and is described in [Sobolev, Ponomarev et al., 2006]. With the low F values, the AE

decrease starts even with the increasing load. With the high F values, the AE

maximum occurs after the moment of reaching the maximum value of F and even

after the moment when F starts decreasing. The plots in Fig. 10.14 can be adequately

described by formula (10.5) under the assumption that the number of active cracks at

the current moment ti is decreased by the number of cracks which had already

generated the acoustic signals and had thus become inactive (not stressed to subcri-

tical level), i.e., calculations by formula (10.5) are amended by

dN=dt ¼ dN=dtðiÞ � dN=dtði�1Þ (10.6)

The structure of formulae (10.4, 10.5) resembles the equation of the kinetic

concept of the strength of solids [Zhurkov, 1984]. In the work [Stavrogin and

Protosenya, 1985], on the basis of numerous experiments it was established that

the creep of different rocks is described by the following equation

de=dt ¼e0�exp½ðgs�U0Þ=KT� (10.7)
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where e is the relative deformation, g the parameter sensitive to structure, s the

applied stress, U0 the activation energy, K the Boltzmann constant, and T is the

absolute temperature.

The parameter e0 indicates the maximum possible rate of deformation, which

coincides with the velocity of elastic waves. The authors of the work [Tamuzh and

Kuksenko, 1978] showed that with a similar type of equation it is possible to

describe the rate of destruction. In this case, the parameters of the equation contain

dN/dt
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Fig. 10.14 Examples of differential changes of the number of AE events per unit time after water

infusion during stages I, II, and III
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factors describing the gradual weakening in the undistorted bonds, and thus indica-

tive of the increase in the effective stress.

Besides the formal similarity of formulas (10.4), (10.5), and (10.7), there must

exist much more profound physical connections. The rate of crack formation in the

brittle material (like our models) is roughly proportional to the rate of relative

deformation: dN/dt � de/dt. In case of the initiation of AE by water infusion one

can assume that gs increases with time, for example due to the decreased friction

along the crack faces and associated growth of stresses in the tips of these cracks.

The U0 value, giving the level of energy barriers, also does not stay constant due to

changes in the material strength.

In Fig. 10.15 one can see examples of the use of equations (10.5), and (10.6) for

modeling plots of the Fig. 10.14 type. The plotted curve 1 was calculated with the

following parameters in (10.5): a¼ 10, k¼ 0.005, V¼ 20, m¼ 1. The low value of

k should be noted – it means that the first term in the exponent in (10.4), (10.5), and

(10.7) changes insignificantly with time. When m ¼ 1, the second term in exponent

changes according to the same law as in the Omori equation (10.1). Consequently,
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3

1
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Fig. 10.15 Evaluation of AE dynamics according to formulas (10.5) and (10.6):

1 – parameters: a ¼ 10, k ¼ 0.005, V ¼ 20, m ¼ 1;

2 – same values of parameters, but the delay of water arrival to metastable cracks is accounted for;

3 – same values of parameters k and V, but m ¼ 10-6, a ¼ 1010
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the growth or decrease of k results in the growth or decrease of the number of AE

signals per unit time, but the time position of the maximum for plot 1 in Fig. 10.15

does not change. On the other hand, the growth or decrease of m results in the shift

of the maximum along the time scale. Plot 3 corresponds to the value of m ¼ 10-6

with the values of k and V unchanged; the vertical scale is increased by a factor of

109. This plot can be described by the equation of type (10.1):

dN=dt ¼ 0:38=ð1þ tÞ0:98; R ¼ 0:99 (10.8)

Comparing the plots (b) in Figs 10.11, 10.12, and 10.14 it follows that in the

current experiment the AE reaction to the water infusion through the hole

(Figs. 10.11, 10.12) is reached later than in the previous experiments when water

was injected directly into the crack (Fig. 10.14). The probable reason is that water

coming through the hole-bottom only gradually reaches the metastable cracks. Plot

2 in Fig. 10.15 shows the shifting and flattening of the maximum in case when

calculations are done with the same values of a, k, V, m as for plot 1, but the certain

velocity of water propagation after infusion is taken into account. If the calculations

by formulas (10.5) – (10.6) are made under the assumption that the water will

access the active cracks not immediately, but 10 seconds later, the maximum dN/dt

time is shifted from 12.8 sec (plot 1) to 38.3 sec (plot 2). Slower water propagation

explains big time delays in plots (b) in Figs 10.11 and 10.12. It should also be noted

that after the local maxima, plots (b) in Figs. 10.11 and 10.12 can be quite

adequately described by the relaxation equations of type (10.1). The values of

parameters p are equal to 1.1 and 0.77, i.e., higher than the corresponding values

in equations (10.2) and (10.3). This must be understood as a steeper decrease of AE

rate after water initiation than after the mechanical load-on. The data obtained up to

now seems insufficient to explain the reason of this disparity.

It should be understood that the kinetic approach described by the equations

(10.4), (10.5), and (10.7) is probably not the only one possible. Real processes

inside heterogeneous medium subject to external influences must include various

nonlinear mechanisms. An adequate physical description must be based on addi-

tional experiments where the inner properties of media will be varied, as well as

external influences.

The above experiments also provided the answer to the following question: does

the shape of the seismograms and/or their spectra change after water infusion? To this

end, several signals were selected which occurred practically at the same locations

before and after water infusion. The search area was restricted by several centimeters

around the bottom of the hole. Another requirement was approximate amplitudes of

signals. With these quite rigid restrictions, several pairs of signals were selected.

Example of such signals can be seen in Fig. 10.16. The sources were located

about 2 cm from the hole; the hypocenters were coincident within 1 cm. The lower

oscillogram in Fig. 10.16 was recorded in the Initiation #1 before the water

infusion; the upper one – 6 minutes after the water infusion; the amplitudes of the

signals were practically identical. The structure of the oscillograms consists of

2 parts. In the first part, the high frequency oscillations can be seen during �30
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Fig. 10.16 Acoustic waveforms (1 and 2) and amplitude spectra for their initial parts (3 and 4)

before water infusion (1 and 3) and after water infusion (2 and 4). Arrows show the time interval

for spectra analysis
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microseconds. Then these oscillations become lower-frequency ones. Having

recorded and processed several hundreds of such signals, we came to the conclusion

that the first part of the seismogram carries more information about the signal

source and that information about the media is less pronounced in this part. The

frequency composition is widely variable within 103–102 kHz, depending on the

distance and azimuth between the source and the sensor. The second part basically

reflects the oscillations of the sensor and adjacent parts of the model. The frequen-

cies in this part of the signal were concentrated in the narrow 80–90 kHz range.

Two upper plots of Fig. 10.16 show the spectral densities calculated from the fist

parts of the oscillograms; the intervals are indicated with arrows near plot 1; the

spectral maxima are located near the �130 kHz frequencies. The maxima for the

second parts of oscillograms are equal to 86 kHz. Analysis of this pair and another

pairs of signals did not yield any substantial differences in the waveforms or in the

spectra of signals before and after the water infusion. This means that the influence of

water did result in the decreased values of strength or in the increased values of local

stresses, but dynamic “frictional sliding” occurred over the “dry” material, whose

properties did not change significantly after the water infusion. It should be stressed

that our experimental setup and conditions were substantially different from the

majority of other experiments (laboratory as well as field ones) which are routinely

conducted in the studies of hydrofractures. The effect of the pore pressure on the

strength was insignificant, if present at all. The AE initiation in our case was due to

the physical-chemical interaction of the solid and liquid interval for which the spectra

were calculated. In the experiments described here AE signals with high energy

always occurred after smaller events, aftershock activity was almost nonexistent, and

the activity itself had a clustered dynamics. The latter feature is probably caused by

the penetration of water into the areas of metastable cracks. The sizes of the AE

emitting cracks can be indirectly estimated as follows. In the paper [Kuksenko, 1983]

it was discovered that the length L of a crack developing with a constant velocity V is

directly proportional to the pulse build-up t of the AE signal thus emitted

LðmmÞ ¼ a�Cðmm=msÞ�tðmsÞ (10.9)

where a is some dimensionless factor close to 1. The pulse build-up of the majority

of AE signals in Fig. 10.16, depending on the amplitude of the signal, was in the

range 1-3 microseconds. Assuming the average velocity of crack development in

the weakened area of the model C �¼ 1 mm/microsecond, the crack sizes can be

estimated at 1-3 mm.

10.5 Conclusions

The series of long-term experiments show that at a constant stress level the infusion

of a relatively small volume of water (0.1% of the model) results in the activation of

AE emission, which does not contradict the theory of the triggered mechanism of

AE activation.
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AE emissions of greater energy emerge after the initial smaller events; the

sequence of different-energy events resembles the swarm which is observed in

seismically active areas.

The AE activity emerges at different moments in different areas of the deformed

model; this is caused by the different times of fluid inflow to the active cracks and

by differences in local stresses.

There are no significant differences in the waveforms and in the spectral

composition of AE signals recorded before and after the water infusion; this fact

suggests the local decrease of material strength and/or the local increase of stresses

near the metastable cracks.

The relaxation dynamics of AE processes after the load-ons and after initiation

by water infusion is substantially different. In the first case it corresponds to the

Omori law, whereas in the second case the AE activity has a clearly defined

maximum.

Applying the kinetic approach to a medium with the finite number of metastable

cracks allows to describe the AE dynamics caused by water infusion.
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Chapter 11

Acoustic Emission Spectra Classification from

Rock Samples of Etna Basalt in Deformation-

Decompression Laboratory Experiments

V. de Rubeis, S. Vinciguerra, P. Tosi, P. Sbarra, and P.M. Benson

Abstract Recent laboratory experiments on Etna basalt have permitted the gener-

ation of an extensive catalogue of acoustic emissions (AE) during two key experi-

mental phases. Firstly, AE have been generated during triaxial compressional tests

and formation of a complex fracture/damage zone. Secondly, rapid fluid decom-

pression through the damage/shear zone after failure. We report new results from an

advanced analysis method using AE spectrograms, allowing us to qualitatively

identify high and low frequency events, essentially comparable to seismicity in

volcanic areas. Our analysis, for the first time, quantitatively classifies ‘families’ of

AE events belonging to the same experimental stage without prior knowledge. We

then test the method using the AE catalogue for verification, which is not possible

with field data.

The FFT spectra obtained from AE are subdivided into equal log intervals for

which a local slope is calculated. Factor analysis has been then applied, in which we

use a data matrix of columns representing the variables considered (frequency data

averaged in bins) vs. rows indicating each AE data set. Factor analysis shows that

the method is very effective and suitable for reducing data complexity, allowing

distinct factors to be obtained.

We conclude that most of the data variance (information content) can be well

represented by three factors only, each one representing a well defined frequency

range. Through the factor scores it is possible to represent data in a lower dimension

factor space. Classification is then possible by identifying clusters of AE belonging to

the same experimental stage. This allows us to propose a deformation/decompression

interpretation based solely on the AE frequency analysis and to identify a third type of

AE related to fluid movements in the deformation stage.
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11.1 Introduction

An acoustic emission (AE) is defined as a transient elastic wave generated by the

rapid release of energy within a material. In the Earth sciences, studies of AE and

seismology show a significant overlap. Both approaches deal with the radiation of

elastic waves, although at different scales and frequencies. Generally, AE recorded

in the laboratory are generated by flaws at the grain size scale with source dimen-

sions between micron and millimeter scale and frequency ranges between 100 kHz

and 2 MHz [Lockner, 1993].

In the brittle regime, the damage evolution in a rock under load involves the

growth of microcracks from stress concentrators such as voids, inclusions and grain

contacts, resulting in both inelastic strain and acoustic emissions. The acoustic

signals that are spontaneously generated from the microcracking provide informa-

tion about the size, location and deformation mechanisms of the events as well as

properties of the medium through which the acoustic wave travels (e.g. velocity,

attenuation and scattering). Importantly, laboratory rock fracture and earthquake

rupture are processes obeying similar statistics for source dimensions over more

than eight orders of magnitude [e.g., Hanks, 1992; Zang et al., 1998].

The main goals of AE studies so far aimed to:

(a) Characterize individual AE events in terms of their frequency content, ampli-

tudes and durations, so that they can be related to the micro-mechanisms that

produce them. A temporal correlation between the onset of AE and dilation in

samples under loading was found, showing that dilation was caused by perva-

sive microcracking, primarily oriented parallel to the maximum compressive

principal stress [Brace, 1966; Scholz, 1968]. AE amplitudes and frequencies

have been observed to increase before failure [Zang et al., 1998, and references

therein]

(b) Locate the source of AE events in 3D in order to image the localization of failure

processes. Insights have been provided into the nucleation phase of fracture,

using AE source locations to map the temporal and spatial evolution of fracture.

Two different processes operate, a process zone in front of the fault tip and a

damage zone following the process zone (Lockner et al., 1992; Lei et al., 2000).

(c) Analyze the statistics of recorded events to gain insights into the deformation

processes and their rates. The Gutenberg-Richter relationship between fre-

quency and magnitude of earthquakes also applies to experimental rock failure

[Meredith et al., 1990; Sammonds et al., 1992; Ponomarev et al., 1996; Lei

et al., 2003]

(d) Study AE in the presence of fluid. The influence of fluid pressure on deforma-

tion has been investigated in drained conditions at constant pore pressure.

A weakening effect of water in the brittle faulting and cataclastic flow regime

has been found, because of reduction of both specific surface energy and

friction coefficient [Baud and Meredith, 1997; Baud et al., 2000].
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New directions are focussing on the fundamental similarity of the physical

processes involved in generating different frequency content seismic signals, such

as seismic tremor under the subduction zones in tectonic areas and volcanic tremor

and long-period events in volcanic areas. To date, comparisons have been made to

field scale seismicity by comparing the spectral character and frequency/size

scaling of acoustic emissions [e.g., Burlini et al., 2007, 2008; Benson et al.,

2008]. Frequency scaling offers the strongest argument to assess the equivalence

of the physical processes between laboratory experiments and natural volcanic

seismic signals. For example, experimental low frequency events and tremor have

frequency of about 100 kHz for intrusion lengths ranging between few tens to

100 mm. In natural earthquakes, dominant frequencies around 1-2 Hz are asso-

ciated with fracture lengths of some hundreds meters to 1 km. Considering that

dominant frequencies of earthquakes scale inversely with source dimension [Aki

and Richards, 1980], one may write d1 � f1 ¼ d2 � f2, where d1, d2 and f1, f2 are the
dimension and frequency of laboratory (subscript 1) and nature (subscript 2),

respectively. Comparing laboratory data with typical frequency (1-2 Hz) and size

(1 km) of low frequency earthquakes, we obtain d1/d2¼ 5�106 and f2/f1¼ 2.5-5� 106,

which indicates excellent agreement between laboratory information and natural cases

[Burlini et al., 2007; 2009; Benson et al., 2008]. Here, we present a new and

alternative analysis, aiming to quantitatively classify ‘families’ of AE through the

analysis of spectral ratios and associated factors, without a-priori knowledge of the

spatio-temporal evolution.

11.2 The data set

Samples of Etna basalt, Italy were deformed in using a triaxial cell installed

at the University of Toronto (Fig. 11.1). Two experimental stages are performed,

designed to separate the signals generated from deformation (stage 1) from those

specific to fluid movement (stage 2), as described in Benson et al. (2008).

Irrespective of the stage of experiment (deformation or decompression), events

are located on or in close proximity to the fault (Benson et al., 2008). During the

formation of the fault, waveforms show a distinctive, high frequency character

(600-900 kHz), exhibiting a rapid onset (i.e., rapid acceleration) and relatively

short duration (400 ms). These features are well known and understood from

rock physics studies on brittle processes in rock fracture. During the decompres-

sion stage, however, waveforms exhibit a much lower frequency component

(typically 80-100 kHz). The onsets of these waveforms are highly emergent,

and with longer duration, of the order of ms. In the following analysis we refer

to these characteristic signals as high frequency (HF) and low frequency (LF),

respectively.
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11.3 Method

Input data consist of AE FFT spectra. The aim of the analysis is to statistically apply

a classification method that is able to recognize different AE and their relation

within each of the dynamic parts of the experiment. A key point is to classify the set

of AE solely through spectral analysis, and then to test such classifications with

other experimental information as the occurrence time, load history, AE spatial

location, etc. We look for an AE classification showing a consistent interpretation.

If the interpretation is in agreement with the other experiment variables not

involved, then we interpret this to have yielded two methodological useful results:

we receive an independent confirmation of the reliability of classification method,

and can elucidate the dynamical process.

Our classification is based on the application of factor analysis [Davis, 2002, and

reference therein]. It consists of a statistical multivariate approach useful to high-

light relations among variables. Let us define the dataset as a matrix ½X�, in which

rows are the samples and columns are variables (n x m). The statistical assumption

Fig. 11.1 Scheme of the experimental setup (after Benson et al., 2008). Note that, for clarity, the

precise locations of the 16 AE sensors (12 lateral and 4 axial) have been omitted
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of the factor analysis is that the m variables, of the original dataset, derive from a

smaller number of p independent factors (p < m). The principal component

approach to factor analysis consists of the following steps:

l the original data matrix ½X�is standardized in respect of the variables simply

subtracting the mean and dividing each data by the standard deviation of the

corresponding variable, thus obtaining ½Xst�;
l a variance-covariance (correlation) matrix ½s2� is extracted from ½Xst� (note

that being extracted from standardized data, ½s2� is a correlation matrix). It is

symmetric and all diagonal elements are equal to unit;
l eigenvectors and eigenvalues are extracted from ½s2�; the eigenvectors define the

matrix ½U�, the square root of eigenvalues gives a diagonal matrix of singular

values ½l�; the sum of the eigenvalues represents the total variance (information

content) of data;
l eigenvectors are converted into factors using the relation: ½AR� ¼ ½U� � ½l�, where

½AR�is an ðm� mÞ-sizedmatrix, each column representing a factor whose elements

are referred to as factor loadings.

Due to the precise manner in which the factors are calculated, each factor

loading is weighted proportionally to the square root of the amount of variance

contributed by that variable to the factor. Looking at the proportion of variance

accounted for by each factor, it is possible to select a smaller number of factors (p)
accounting for most of the total variance in the dataset. The independence of

all factors is guaranteed by orthogonal decomposition of the correlation matrix,

given by the Eckart–Young theorem, through the extraction of eigenvalues and

eigenvectors. Therefore, we can reduce the size of ½AR� to ðm� pÞ.
The factor analysis results in factor scores ½ŜR�, which represent the values of any

single factor for every observation, as follows: ½ŜR� ¼ ½Xst� � ½AR� � ð½AR�T � ½AR�Þ�1
.

In this way it is possible to associate with each observation the value of a factor

score related to each one of the p factors. Summarizing the benefits of factor analysis

approach, we have a statistical tool able to reduce the complexity of a multi-variable

data set into few factors, which retain the biggest amount of variance. The key to

perform such a process is inside the idea that many original variables are redundant,

having a certain degree of mutual correlation. Moreover, by the factor model

application we can consider each original variable Xj as constituted by the composi-

tion of p factors f , following a specific loading a, plus a random variation e. If we
assume that p is less than the number of original variables we have reduced the

complexity of the problems and separate a small amount of system information,

which we consider random noise: Xj ¼
Pp

r¼1 ajrfr þ ej.
The specific application of factor analysis to AE spectra consists in the conver-

sion of the data into a ½X� matrix: the logarithmic amplitude of each spectrum is

standardized in order to remove any effect due to AE magnitude. The frequency

range is then subdivided into equal log intervals and a mean amplitude for each

interval is calculated. The columns of ½X� matrix thus represent the binned fre-

quency variables. The rows are each AE as recorded during the loading experiment.
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The assumption is that near frequencies may have the same behaviour, quantified

by their mutual correlation. The unknown is the extent of the similar-correlated

behaviour of contiguous frequencies. The method is to create frequencies variables

of short intervals in order to remove noise. Then, by the application of factor

analysis, the frequencies variables are grouped together as a function of their

mutual correlation and true independent groups are extracted. They represent the

true dimension of the process and give the basis for a useful data classification.

11.4 Results and discussion

The data matrix is constituted by 280 FFT spectra calculated on AE waveforms

in the frequency range 29 KHz – 493 KHz. The logarithmic amplitude of each

spectrum is standardized in order to remove any effect due to AE magnitude. The

range is then subdivided into 10 equal log intervals and mean amplitude for each

interval is calculated. Boundaries (in KHz) of each of the ten variables defined for

the analysis are shown in Table 11.1.

Figure 11.2 shows the variance percentage expressed by each factor; the first 3

factors account of about 74% of total data variance: this value is satisfactory,

ensuring a proper representation of the whole data set.

Figure 11.3 shows the factor loadings values for the three factors (the first,

second, and third, respectively). Factor loadings express the correlation of each

original variable – in this study the averaged frequency range – to each factor,

which represents the new variable.

The first factor shows a positive correlation of the low frequency range, up to

70 kHz, while a negative correlation is found related to the highest frequency range

(280-480 KHz). A moderate positive correlation occurs in the frequency interval

150-200 KHz (for the precise frequency interval see Table 11.1). The second factor

shows also a positive correlation in the frequency range 60-120 KHz, while a

negative correlation is found in the 200-370 KHz interval. Third factor is negatively

Table 11.1 Frequency boundaries of each of the ten variables defined for the

factor analysis

Variable Lower freq. limit (KHz) Upper freq. limit (KHz)

1 29.52 39.13

2 39.13 51.85

3 51.85 68.72

4 68.72 91.07

5 91.07 120.69

6 120.69 159.95

7 159.95 211.97

8 211.97 280.91

9 280.91 372.27

10 372.27 493.35
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correlated in the 90-200 KHz interval and positively in the highest frequencies

interval 370-500 KHz.

These factors represent different groups of interrelated frequency ranges. Posi-

tive and negative correlations allow interpreting the relationship among the differ-

ent frequencies. The first factor indicates that, when we have an AE where lower

frequencies (up to 70 KHz) prevail, higher frequencies (280-480 KHz) tend to

reduce, and vice versa. The second factor shows similar trends, but for the

frequency range of 60-120 KHz and 200-370 KHz, respectively. Finally, the third

factor mirrors the second, but correlations are shifted towards higher frequency

ranges (90-200 KHz and 370-500 KHz).

Through the factor scores, it is hence possible to represent data in a lower

dimension factor space and to see a similar behaviour of each AE associated in

specific factor space portion or clustered. Since the first factor is the most informa-

tive (Fig. 11.2), we show two scatter diagrams representing original AE spectra as

defined, respectively, by factors I-II and factors I-III (Fig. 11.4a, 11.4b).

In Fig. 11.4(a) and 11.4(b), all 280 AE samples are represented in the factor

space. Each factor holds the frequency spectral content discussed above (Fig. 11.3).

By construction, the factors are orthogonal, which means, they have no correlation:

in fact, points are distributed with zero linear correlation between the two factors. In

order to achieve a full understanding of the inter-factor relationship, we selected
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Fig. 11.2 Individual and cumulative variance of original data accounted by factors
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four binned spectra (a, b, c, d in Fig. 11.4a), which represent the end terms in the

factor space, i.e., the frequency ranges analyzed.

In detail, AE spectra a-d and c-b have similar factor I values, while spectra a-b and

c-d have similar factor II values. This similarity can be investigated by plotting the

log of spectral amplitude vs. the frequency bins (Fig. 11.5). AE spectra a-d and AE

spectra c-b show correspondent amplitudes (bins 1,2,3,7,9) in spectral frequencies

represented by factor I. AE spectra a-d hold low amplitudes in frequency bins 1,2,3,7

(positive correlation) and high amplitudes in bin 9 (negative correlation). AE spectra

c-b show an opposite behaviour. Analogous considerations apply for the factor II.

The factor analysis provides a quantitative tool to systematically discriminate

AE events generated during deformation phase of the experiment (dark dots in

Fig. 11.4) from those recorded during rapid decompression of the pore fluid
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Fig. 11.3 Factor loadings values for the first three factors as extracted by factor analysis. See text

for comments on ability of factors to represent original AE frequency bins

Fig. 11.4 All 280 FFT spectra represented on the factor space following factor I with factor II

scores (4a) and factor I with factor III scores (4b). In dark are the AE spectra recorded during

deformation phase, in open circles those recorded during rapid decompression of the pore fluid.

Four spectra (a,b,c,d) are marked (4a) in order to interpret their factor space position under their

spectral content. Compare with Figure 10.5 for complete interpretation
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(open dots in Fig. 11.4). High (HF) and low frequency (LF) events fill specific

sectors in the factors space. In detail, the LF events reflect the pure origin of fluid

driven events, due to the pore fluid flashing onto the damage/shear zone. No

reactivation of cracks in terms of shearing/propagation of existing microfractures

is triggered from the fluid propagation onto the fault plane, as no HF components

are found from the factor analysis. HF shows a wider range of the amplitudes

involved. This can be explained from the fact that the energy and size of HF events

increases over time as micron to mm scale cracks are involved in the early stage of

deformation, followed by cm scale faults formation at the failure.

The most intriguing observation is given from the position of several events

generated during deformation phase (where HF events only were believed to occur)

in the factor space domain of the LF events (dark dots in Fig. 11.4). This suggests

that these events were generated from analogous mechanisms, which led to the

formation of the LF, i.e., fluid migration onto the faults. We interpret this behaviour

due to the fact that the cracks open and shear during loading. At the same time,

pressurized fluids rapidly transit into the crack surfaces and generate same LF

signals, similarly to those generated from pure fluid decompression in stage 2

(red dots in Fig. 11.4).

Taken together, this emphasizes that the factor analysis applied to a given AE

data set can allow to highlight bulk AE patterns, that otherwise can not be easily

seen by a pure visualization of single events.

11.5 Conclusions

We have statistically analysed AE spectra generated during deformation and failure

of an Etna basalt sample (stage 1) and the subsequent rapid fluid decompression of

the pore pressure (phase 2). A factor analysis has been applied to 280 FFT spectra
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Fig. 11.5 Four binned log amplitude spectra from AE sample data (a,b,c,d samples as referred

into Fig. 11.4a) as original values (left) and normalized values (right). Normalized spectra are

represented to follow variables standardization applied to AE data matrix prior the extraction of

eigenvalues and eigenvectors, as operated by factor analysis. See text for further details
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calculated on AE waveforms in the frequency range of 29 KHz - 493 KHz. The first

3 factors account of about 74% of total data variance. Through the factor values we

reported data in a lower dimension factor space and we analysed the similar

behaviour of each AE associated in a specific factor space portion or clustered.

The factor analysis provides a quantitative tool to systematically discriminate

between HF and LF events generated during the two experimental stages (deforma-

tion and fluid movement), which essentially acts as to produce a higher proportion

of HF and LF AE, respectively. Importantly, several events generated during the

deformation phase occur in the factor space domain of the LF events. This suggests

the existence of LF events forming during phase 1, due to the fluid migration into

forming and propagating faults.
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Chapter 12

Phase-Shifted Fields: Some Experimental

Evidence

Roman Teisseyre, Tamaz Chelidze, and Krzysztof. P. Teisseyre

Abstract We present a comparison between some experimental results on the

interaction and synchronization of mechanical and electric fields; such a synchro-

nization may appear with the phase delay by p/2, as shown in recent theoretical

results. The solutions related to such a phase-shifted synchronization between some

fields follow from the Asymmetric Continuum Theory. This theory concerns not

only the mechanical fields, strains and rotations, but also other physical fields

entering into interaction with stresses.

12.1 Introduction

Some experiments have brought a light on mechanisms that lead to synchronization

between different dynamic processes under various kinds of applied loads and

additional external impulses. We present some examples related to the interaction

and synchronization processes between the deformations and applied loads with the

accompanied mechanical and electric field impacts. Our consideration is based on

both the new theoretical approach to the asymmetric continuum and on the experi-

mental evidence of such a synchronization, as given in some papers.
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12.2 Synchronization and interaction: experimental evidence

Chelidze et al. (2006) presented the synchronization and triggering effects observed
in samples subjected to a static basic load, close to a critical point (slip event

experiments) and additionally to the weak mechanical or electric perturbations as

an additional forcing.

These externally applied forces caused micro-slip episodes at the prepared

surface, observed as acoustic emission bursts. The samples system consisted of

two samples, stuck together with roughly polished neighboring surfaces; the gap

between them was of microscopic size and the slips occurred on these stuck

surfaces. The whole system serves as a simple model containing fracture zone or

an active fault, at which repetitive episodes of slip take place.

The acoustic emission synchronized with applied oscillations:

a) of mechanical load

b) of externally applied voltage, but only in the case when the electric field

direction was parallel to the gap between samples; perpendicularly applied

electric field gave hampering effect on the slips

The experimental setup is described in Chelidze et al. this issue (Chapter 8, this
issue). The acoustic emission (AE) and oscillating part of the externally applied

forces were recorded using Sony Sound Forge software.

Further, we focus on the experimental series in which the electric field, parallel

to the gap plane, acted as factor modifying response of the samples system to the

static loads.

Most probably, acoustic emissions have originated in the gap zone. But it is

obvious that processes in this zone were under control of the system of samples.

Thus, some hidden structural adaptations of the samples to the experiment condi-

tions permitted the observed repeated response to the stimuli. These adaptations

should be of various scales, sub-molecular included. After an abrupt change of the

conditions, the rise of the static part of externally applied electric field, the rhythm

of acoustic emission changed immediately and then underwent some variations, in

the time when a new pattern of repetitive acoustic bursts was gradually formed.

In our opinion, such a result shows an adaptation of the samples to new condition.

Chelidze et al. (2006) state that synchronization limits the energy release at an

individual event (burst). This was proven experimentally: “Sudden decrease or total

cessation of synchronizing (electric) forcing is followed by acoustic burst of much

larger energy than during periodic forcing”.

In the cited paper the authors observed the temporal evolution of phase differ-

ence between the maxima of acoustic emissions and external periodic forcing.

The applied electric field consisted of two components: the one oscillating from

þ 800V to –800V, and the constant one with initial constant voltage of 400V which

has increased to 1900V in the middle of the experiment (about 28.6 s from the

beginning). That is, it started to be bigger than the alternating field. This means that

in the experiment’s first part, the voltage of external field oscillated between
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þ1200V and – 400V, and in the second part – between þ2700V and þ1100V. For

these cases, the acoustic bursts were in different ways correlated to the oscillations

of the external electric field.

In the first part of the experiment, the AE bursts coincided with all the extrema of

the applied voltage; however, the entire burst started during the stage of the external

field increase. We should be aware that in these experiments, both the stimulating

impulses and the responses � acoustic emissions � did not oscillate in a sinusoidal

way; the vertical scale in the reproduced display was a kind of decibel scale: the

peaks were in fact more abrupt. Besides, a certain level of acoustic emission

persisted in the considered experiments, obscuring beginnings and ends of the

acoustic bursts. The response looks the same at “þ” and “–” part of the stimulus

curve; there is no visible hysteresis.

Further on, in the second part of the experiment with the increased static part of

electric field, there occur changes in the rhythm of acoustic bursts. These changes,

seen in Fig. 12.1, may be described as follows. The first very strong bursts consist-

ing of two joint parts coincide with the nearest maxima of the oscillating field: one

exactly, and the other with some phase shift, roughly p/2.
Subsequently, the AE bursts coinciding directly with the electric field maxima

gradually decrease in time and finally there remains only an evident correlation of

the bursts shifted in phase - by about p/2 - with the electric field maxima.

It is also worth to mention the observed synchronizations between the mechani-

cal stimuli and the seismic noise, as described by Saltykov (2008); the observations,

done in the region of Kamchatka and neighboring seas and islands, reveal the
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Fig. 12.1 Synchronization between the electric field oscillations and the acoustic bursts (after

Chelidze et al., 2006 - modified); the curve of oscillating voltage V(p) is copied on the plot of

acoustic emission (in grey), the vertical dotted line indicates a moment of increase of the static

voltage
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synchronization of the envelope of high frequency microseismic noise to the Earth

tidal O1 waves. Such a synchronization appears before most of the large earth-

quakes in that area. Almost always, certain phase shift occurs – the envelope is

delayed in relation to the Earth tides. This synchronization, of yet undisclosed

mechanism, suits as an earthquake precursor in the region.

We should also note that Busse and Wang (1981) have found other interesting

correlation effects; the two orthogonal acoustic waves shifted in phase by p=2,
acting on a small disc (as compared to the acoustic wavelength) with its axis

perpendicular to these waves produce a torque (acoustic torque). According to

those authors, this effect is related probably to the particles of gas moving circularly

over the disc (viscous effect rather than the Bernoulli pressure effect). This acoustic

torque effect seems to present one more example of interactions of different fields.

Moreover, we analyze the experiments on anomalous piezoelectric effects con-

ducted by V. Hadjicontis and C. Mavromatou (cf., Teisseyre et al., 2001) in

which the appearance of electric polarizations was observed depending on the

P

dP
dt

mV

Fig.12.2 An example of correlation between the pressure applied to a limestone sample and excited

electric polarization (upper part) and the numerical simulation results (lower part) (after Teisseyre, K.P.,

Hadjicontis, and Mavromatou, 2001)
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rate of load variations. For these experiments, the materials were chosen which do

not show electric polarization under constant load, that means, which are non-

piezoeletric in a common meaning. On other hand, the electric response of one of

these materials, the limestone, to load is found to be doubly anomalous – once,

because it depends on the load changes and, moreover, it shows a kind of some

reversal of the produced electric signal, a rebound release effect revealed by the

negative electric bays (see Fig. 12.2). In various numerical simulations conducted

to reproduce the experimental results, the main rules were as follows: each increase

in load causes an increment in the excited voltage, and this added part immediately

starts to decline (its decay has taken many steps of simulation).

The shape of the decaying part of the electric response to mechanical stimuli

suggests the concurrence of two or three relaxation phenomena, that is, one quick

process and one or two slow ones.

12.3 Theoretical interpretation of co-action

and synchronization effects

First, we will refer to the results of experiments done by Chelidze et al. (2006), as

discussed above. A general conclusion is that acoustic response occurs when

electric field variation, superimposed on the present conditions of externally

applied electric fields and mechanical stresses, cause a break of material bonds,

thus producing an acoustic emission. Episodes of acoustic emission cluster in the

acoustic emission burst. The experimenters observed temporal evolution of the

phase difference between the extrema of external electric field and the bursts of

acoustic emission.

As mentioned above, two modes of synchronization between the stick-slip

events (acoustic bursts) and the periodic electric field, V(periodic), were observed.
First, the doubling synchronization (1:2): each electric extreme amplitude

synchronized with acoustic bursts, this is the case when the applied direct V(0)
voltage is smaller than the periodic voltage, V(0) < V(periodic).

Second, the direct synchronization (1:1): the electric maxima synchronized with

acoustic bursts; it appears when the applied directV(0) voltage is greater than the

periodic voltage V(0) > V(periodic).
For V(0) < V(periodic) the micro-fracture processes appear when the resulting

field reaches maximum, that is, for the maxima of the periodic voltage. The fracture

processes appearing at these maxima of the periodic electric impulses become

immediately observed as the acoustic emission, the acoustic bursts, caused by the

breaks of bonds and released rotation motions. Induced by this fragmentation, the

series of single shear couples form the rotation couples where each of the two

perpendicular couples has opposite shears (the case quite opposite to the case of

shear double couple). Thus, the resulting shear field in this fragmentation process

appears almost compensated to minimum.
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For V(0) > V(periodic),when a constant electric field is high enough, we can

expect that each electric impulse can break the material bonds, but the process runs

due to the applied external shears; we may notice that first we observe the broad

acoustic peaks partly synchronized with the impulses and after some stabilization

there remain more narrow bursts occurring with the p=2 phase shift, as the related

slip process, released in a kind of slip avalanche, becomes delayed in time. Thus, at

first we probably deal with both the rotation and slip rebound processes, while after

stabilization only slip avalanche releases remain in sites where molecular bonds are

already broken.

Thus, the most important for our consideration on interaction between the

electric periodic impulses and micro-fractures is the fact that the acoustic emissions

(waiting time series) are observed in both synchronization modes. This means that

the synchronization modes are retarded in phase by p=2 (similarly as the results of

the Hilbert transform); we can underline an organization role of the electric

impulses on the response of the samples to the experimental conditions. This is

an important result for us, to be compared with the theoretical part describing the

interaction and synchronization processes in the Asymmetric Continuum Theory

(Teisseyre, 2009).

Worth mentioning are also some other effects that may appear when studying

various experimental results with the induced electric signals; we refer here to the

experimental results obtained by Hadjicontis and Mavromatou (1994 and 1995; cf.,

Teisseyre K.P, et al., 2001). Among other things, Hadjicontis and Mavromatou

(1994) have studied the transient electric signals appearing before the failure of

limestone or other rock samples. The samples were subjected to a uniaxial com-

pression; it was found that the emitted electric signals, attributed to stress-induced

polarization in rock samples, follow the variations of the first time derivatives of

load; this means, there is a correlation between the time derivatives of the pressure

load and the emitted signals of electric polarization.

Such immediate correlations between the time derivatives of the applied pressure

(corresponding to a sinusoidal pressure load shifted by p=2) and the electric signals,
as obtained by Hadjicontis’ group are presented here according to Teisseyre K.P.,

et al. (2001), in Figs. 12.2 and 12.3.

The presented examples of interaction and synchronization processes between

the deformation and electric fields or between the acoustic waves and electric

oscillations reveal synchronization with a phase shift of p/2; we intend to interpret

this phenomena on the basis of the Asymmetric Continuum Theory (Teisseyre, 2009)

and possible interaction processes included in it (Teisseyre, Chapter 3, in this issue).

Our theory explains the co-action and synchronization processes between the

displacement and rotation motions or, in another form, between the strains and

rotations; the phase shift of p/2 appears as a possible consequence of one of the

forms of the related solutions. Such processes are naturally explained by the release

and rebound co-action of these deformation fields.

Synchronization between the strain or acoustic oscillations and the electric field

appears to be more difficult for interpretation. However, according to the Theory,

the rotations can produce some anti-symmetric stress counterpart (stress moments)
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and strains shifted in phase, as observed by the acoustic effects; such a chain

follows from the synchronization of fields (cf., Teisseyre, Chapter 3, in this issue)

and, further, can lead to the electric effects.

However, we can assume an intermediate action of the rotation field which can

interfere and combine the strain or acoustic fields with an electric oscillation in

more natural synchronization processes. In the proposed approach (cf., Teisseyre,

Chapter 3, this issue) the electric and rotation fields can be directly synchronized

under electric oscillations acting on rotations; the rotations will coerce strain or

acoustic waves as is due to the appropriate synchronization solution. The reverse

process is possible as well, and starts from strain impact, to be followed by

rotations with a phase shift and an immediate electric response. The electromag-

netic field stimulates rotation motions and acoustic emission; such a stimulation

appears, among others, due to an increased mobility of the charge carriers. There-

fore, the mechanical forcing and applied electromagnetic field lead to acoustic

emission and spin motion. The latter releases the micro-displacements with the

phase shift of p/2 and then the direct correspondence of phases appears after Hilbert
transformation of the observed acoustic bursts.
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Fig. 12.3 Another example of correlation between the pressure applied to a limestone sample and

excited electric polarization (upper part) and the numerical simulation results (lower part) (after

Teisseyre, K.P., Hadjicontis, and Mavromatou, 2001)
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12.3.1 Conclusions

We have presented a new interpretation of the synchronization processes with the

shift of p/2. We have shown that in some experiments on the interaction and

synchronization of the mechanical and electric fields there appears such a phase

delay. In the very important experiments by Chelidze’s group, these synchroniza-

tions appear in the plot shifted by the Hilbert transform to the waiting time series

related to the acoustic emission. In the Theory presented in Chapter 3 (this issue),

such a case corresponds to the expected phase shift between the synchronized spin

and twist motions.

In searching for the interaction mechanism the interpretation we propose is

such that the electric impacts cause the molecular bonds breaking and, at higher

electric voltages, the rebound released micro-slips, which form an avalanche

(triggering effect).
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Part III
Field Observations



Chapter 13

Periodical Oscillations of Microseisms before

the Sumatra Earthquake of December 26, 2004

G. Sobolev and A. Lyubushin

13.1 Introduction

This work continues a series of papers published in Izvestiya, Physics of the
Solid Earth, in 2003–2006 and devoted to the detection and study of periodic

oscillations in the seismic flow and synchronization effects arising before strong

earthquakes [Sobolev, 2003, 2004; Sobolev et al., 2005; Sobolev and Lyubushin,

2006; Lyubushin and Sobolev, 2006]. These studies were essentially based on the

concepts of the dynamics of nonequilibrium media, including self-organization of

the seismic process [Nicolis and Prigogine, 1977; Bak et al., 1989; Sornette and

Sammis, 1995; Ott, 2002]. It is assumed that, in a metastable lithosphere immedia-

tely before an earthquake, natural periodic oscillations arise and/or oscillations from

external sources are selectively amplified, with the microseismic field showing

collective behavior.

Processing of 20-Hz records obtained at the Petropavlovsk IRIS station before

the Kronotskii earthquake revealed waves at periods of a few tens of minutes in the

microseismic flow (Fig. 13.1). These were observable during the last 2.5 days

before the main shock after the onset of foreshock activation (the arrow F in

Fig. 13.1) and after the two strongest (M > 5) foreshocks, Fa and Fb.

To analyze the periodic structure of microseisms, we examined the time series

of seismic pulses exceeding a certain level. The time series were processed with a

moving time window. Within each window, a low frequency trend was removed

from the records by an orthogonal polynomial of a fairly high order. After the

trend removal for a given window, we calculated a threshold equal to the product

of the absolute median deviation (the median of the modulus of deviations from

the median) and a certain coefficient (a parameter of the method), usually varying

from 1 to 4. This parameter depends on the intensity of pulses in the signal and is
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chosen experimentally. Next, we examined the sequence of the times of local

maximums of the record that exceeded this threshold. Thus, the initial time series

were reduced to a point process, a sequence of time moments. The latter are

similar to the sequence of events in a seismic catalog. Further, we applied the

method of the identification of periodic components in a sequence of events

proposed in [Lyubushin et al., 1998]. We considered the model of the intensity

of the event sequence (in the given case, the times of significant local maximums,

i.e., pulsations of a microseismic time series), presumably containing the harmonic

component

lðtÞ ¼ m � ð1þ a � cosðotþ ’ÞÞ; (13.1)

where the frequency o, amplitude a; 0 � a � 1, phase angle ’, ’ 2 ½0; 2p�, and
factor m � 0, (describing the Poisson part of the intensity) are model parameters.

Thus, the Poisson part of the intensity is modeled by harmonic oscillations. If a

richer intensity model (compared to that for a random flow of events) with a

harmonic component of a given frequency o is considered, the associated incre-

ment in the logarithmic function of likelihood is

DInLða; ’joÞ ¼
X

ti

lnð1þ a cosðoti þ ’ÞÞ

þ Nln oT=½oT þ aðsinðoT þ ’Þ � sinð’ÞÞ�ð Þ (13.2)

Here ti is the sequence of time moments of sufficiently large local maximums of

the signal within the window, N is their number, and T is the window width.

Fig. 13.1 Spectral–time diagram of the increment in the logarithmic function of likelihood DlnL
of microseisms at the Petropavlovsk (Pet) station. The vertical axes show the spectral period (on

the right) in minutes and its logarithm (on the left). The large arrow indicates the time of the

Kronotskii earthquake of December 5, 1997, with a magnitude of 7.8. The smaller arrows F, Fa,

and Fb indicate the onset of foreshock activation and the two strongest foreshocks with M > 5
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Let

RðoÞ ¼ max
a;’

DlnLða; ’joÞ; 0 � a � 1; ’ 2 ½0; 2p� (13.3)

Function (13.3) can be regarded as a generalization of the spectrum for a

sequence of events [Lyubushin et al., 1998]. The plot of this function illustrates

how advantageous the periodic intensity model is in comparison with the purely

random model. The maximum values of function (13.3) specify frequencies that are

present in the flow of events. Let t be the time of the right-hand end of the moving

time window of a given width TW . Expression (13.3) is actually a function of two

arguments, Rðo; tjTWÞ, that can be visualized as 2-D maps or a 3-D relief on the

plane of arguments ðo; tÞ. By using this frequency–time diagram, it is possible to

examine the dynamics of the appearance and development of periodic components

within the flow of events under study [Lyubushin, 2002; Sobolev, 2004]. It was

established [Sobolev et al., 2005] that waves appeared only at the Petropavlovsk

station, which was nearest to the Kronotskii earthquake epicenter (the epicentral

distance R�� 310 km), and were not identified in records of more remote stations

(Yuzhno-Sakhalinsk, Yakutsk, and Obninsk). As the time of the Kronotskii earth-

quake approached, the number of predominant periods at the Petropavlovsk station

decreased, so that the multimode spectrum was transformed into a unimodal

spectrum, with shorter periods disappearing; 1 h before the earthquake, a period

of 37 min was best expressed.

Another phenomenon recorded before the Kronotskii earthquake was the

appearance of asymmetric pulses, a few minutes long [Sobolev et al., 2005].

They were observed as pulses of predominantly negative polarity that arose five

days before the earthquake and three days before the onset of foreshock activation.

This type of anomaly was typical only of the station nearest to the epicenter

(Petropavlovsk).

13.2 Microseismic data

The Sumatra earthquake (M > 9), which caused a destructive tsunami, is one of the

strongest events in the entire history of instrumental seismic observations. In this

context, it was of interest to analyze whether this earthquake was preceded by short-

term anomalous phenomena in the structure of microseisms similar to those

detected before the Kronotskii earthquake. The RAS Geophysical Survey provided

data from broadband IRIS stations located around the epicenter of the Sumatra

earthquake (Fig. 13.2). The epicenter had the coordinates (3.32� N, 95.85� E), and
the coseismic rupture trended mainly NNW for more than 1000 km.

The stations nearest to the epicenter, CHTO in the north and COCO in the south,

were located at epicentral distances of 1770 and 1500 km, respectively. The CHTO

and KMI stations were closest to the northern end of the rupture (1100 and 1750 km,

respectively). Preliminary analysis of records of all stations sampled at a frequency
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of 20 Hz showed that the MBWA station in Australia did not operate during the

Sumatra earthquake, the records of the DGAR and PALK stations had defects and

gaps, and the DAV and QIZ stations in the Pacific region showed a completely

different structure of microseisms as compared with the stations in the Indian Ocean

region. Therefore, our analysis was mainly based on data from the CHTO, KMI,

XAN, COCO, and (in part) PALK stations. We used records of vertical components

with the exception of the COCO station, where this component was not recorded, so

that the COCO data on horizontal components were processed. The database used

for these stations encompassed the interval of December 16–26, 2004 (the 350th to

360th days from the beginning of the year). Since the Sumatra earthquake occurred

at 00:58:54 GMT on December 26, the records of December 26 were processed

only up to the first arrival time.

An unusual circumstance was the fact that, 2.5 days prior to the Sumatra

earthquake, another strong (M ¼ 7.9) earthquake occurred in the southern

Fig. 13.2 Position of the IRIS stations whose records were analyzed before the Sumatra

earthquake. The epicenter of the earthquake is shown by star
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hemisphere; its epicenter had the coordinates (49.31� S, 161.35� E) and was located
southwest of New Zealand (in the McQuary Ridge area). The vibrations generated

by this earthquake were hundreds of times stronger than the microseism level at the

aforementioned stations, and surface waves with periods of 300–500 s went around

the Earth a few times.

Figure13.3 clearly shows a sequence of such signals, particularly at low noise

stations KMI and CHTO. The interval between the successive signals going around
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Fig. 13.3 Succession of seismic waves in the range of periods 256–512 min after the McQuary

earthquake (marked by an arrow). The station codes are given to the right of the plots, and the

station locations are shown in Fig. 13.2
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the Earth in both NW and SE directions is 13 h. The records shown in the figure

were obtained after aggregation of the signal to a 1-s period, trend removal by

smoothing with Gaussian kernels and an averaging radius of 100 samples, and

band-pass frequency filtering in the band 256–512 s. The distances from the

McQuary earthquake epicenter to the aforementioned stations ranged from 7500

km for the nearest station (COCO) to 10100 km for the farthest station (PALK).

Accordingly, the time delay before the arrival of surface waves was about 0.5 h

(Fig. 13.3). Vibrations continued actually up to the time of the Sumatra earthquake.

Figure 13.4 shows the 10-h record intervals immediately preceding the arrival of

waves from this earthquake at the aforementioned stations. The records, from

which high frequency components with periods less than 1 min were removed,

are dominated by components with periods of 300–500 s but also contain waves

with lower and higher frequencies.

13.3 Results

Comparison of wave amplitudes at the same stations shown in Figs. 13.3 and 13.4

reveals the following. Within the time interval of 2.5 days between the McQuary

and Sumatra earthquakes, the amplitude of surface waves caused by the first

earthquake decreased by a few thousand times at the CHTO, KMI, and PALK

stations and only by a few tens of times at the COCO and XAN stations. Possibly,

the difference is due to the distinctions in lithosphere quality factors along traces of

waves traveling at different azimuths around the Earth. However, one may also

assume that the more rapid (by two orders of magnitude) amplitude decrease along

the traces of the CHTO, KMI, and PALK stations is caused by anomalously strong

absorption of waves in the source area of the future Sumatra earthquake.

Following the aforementioned procedure for identifying hidden periodic oscilla-

tions, we checked whether this earthquake was preceded by periodic oscillations in

the minute range of microseisms, as was the case before the Kronotskii earthquake.

Figures 13.5 and 13.6 present results of the analysis of data from the KMI and

CHTO stations. We calculated spectral–temporal plots of DlnL(3) by processing

records of these stations obtained in the period from December 15 to 26 (up to the

Sumatra earthquake). The arrows in the figure indicate the times of the Sumatra

(M ¼ 9.2) and the preceding McQuary (M ¼ 7.9) earthquakes. We examined the

range of periods from 20 to 60 min with a 180-min window moving at a 60-min

step. Prior to the calculations, the low frequency trend was removed by a third-order

polynomial. For noise suppression, the calculations were performed only for waves

whose amplitude exceeded the median value 1.5. Periodic oscillations arose after

the McQuary earthquake and continued for about 24 h. Comparison with Fig. 13.1

reveals a similar effect observed after the foreshock of the Kronotskii earthquake.

The records of the XAN, COCO, and PALK stations did not reveal any periodic

oscillations. This may be due to a higher noise level, particularly at the XAN and

COCO stations, which is evident from comparison of records in Fig. 13.3 with

228 G. Sobolev and A. Lyubushin



amplitudes of surface waves from the McQuary earthquake. In the case of the

Sumatra earthquake, we had a few stations located around the source area.

This provided the possibility of testing the hypothesis that the catastrophe was

preceded by intensification of collective effects in a nonequilibrium medium,

expressed in the synchronization of microseismic vibrations in the region surround-

ing the earthquake epicenter [Bak et al., 1989; Sornette and Sammis, 1995].

Unfortunately, a recording failure took place at the PALK station in the period

between the McQuary and Sumatra earthquakes. Therefore, our analysis used data

of only four stations: CHTO, KMI, XAN, and COCO. To analyze the effects of
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Fig. 13.4 Structure of seismic waves in the range of periods exceeding 1 min recorded 10 h before

the Sumatra earthquake. The station codes are given to the right of the plots, and the station

locations are shown in Fig. 13.2
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collective behavior in microseismic vibrations at these four stations in the minute

range of periods, the initial data sampled at a frequency of 20 Hz were first reduced

to a 30-s sampling interval by calculating the averages over successive nonoverlap-

ping intervals 600 samples long. The resulting time series were analyzed by two
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approaches based on the calculation of robust wavelet and spectral measures of

coherence in the moving time window. The use of different measures aimed to test

the stability of the final synchronization effect with respect to different methods of

representing the signals: their expansion in strongly nonstationary Haar wavelets

and the classic Fourier expansion.

The robust wavelet measure of coherence is a modification of the approach to the

analysis of multidimensional time series proposed in [Lyubushin, 2000; Lyubushin

and Kopylova, 2004]. The scale-dependent measure of coherent behavior in a

moving time window of a given width of N samples is constructed. The analysis

is performed independently for each position of the time window (moved to the

right by one sample). Before the wavelet decomposition of the analyzed time series

fragments present in the current time window, the following sequence of operations

is applied to each fragment: (i) the general linear trend within the time window is

removed; (ii) a sample estimate of the standard deviation is obtained, and each

value is divided by this estimate; (iii) the initial values are converted to the

increments between adjacent time values; (iv) the window fragment is complemen-

ted with zeros to the full length of M ¼ minf2m : 2m��Ng samples. Operation

(i) removes the strongest low frequency variations in signals, which cannot be

statistically representative within the window. The division of each signal within

the window by its standard deviation mutually adjusts different time series by

reducing the total energy of their variations to the same value. Operation (iii) of

the conversion to increments is standard in time series analysis and is intended to

enhance the stationarity of sample sets within narrow time windows if low frequen-

cies are predominant. Finally, the last operation (iv) is necessary for the subsequent

application of the fast discrete wavelet transform.

Let q �
�
3 be the total number of simultaneously analyzed time series, and let t�

be the position of the right-hand end of a moving time window N samples wide. We

denote as c
ðb;tÞ
j ðkÞ the coefficients of the discrete orthogonal wavelet transform

[Mallat, 1998] of the jth time series fragment in the current time window with the

position of the right-hand end t� at a detail level of the number b� after preliminary

operations (i)–(iv). We chose the Haar wavelet from the family of orthogonal

wavelets as the most compact and suitable for the analysis of the most abrupt

variations in signals. The index k successively enumerates the coefficients belong-

ing to the level b� ¼ 1; � � � ; m. The number m is an exponent of two in the

representation M¼ 2m such that it is the least number no smaller than the time

window width N. At each detail level, the total number of coefficients is equal to

Mb¼ 2(m–b). Each coefficient c
ðb;tÞ
j ðkÞ reflects the signal behavior in the frequency

band ½OðbÞ
min;O

ðbÞ
max� ¼ ½1=ð2ðbþ1ÞD sÞ; 1=ð2bD sÞ�, where Ds is the length of the

sampling interval, in the neighborhood of the sample with the number tðbÞk ¼
k � 2b; k ¼ 1; . . . ;Mb, measured from the position of the left end of the time

window. The width of this neighborhood (the temporal “zone of responsibility”

of the coefficient) is equal to 2b. The wavelet transforms yield a set of coefficients

c
ðb;tÞ
j ðkÞ, j ¼ 1; . . . ; q, b ¼ 1; . . . ; m, k ¼ 1; . . . ;Mb ¼ 2ðm�bÞ. However, some of

these coefficients can involve zero values complementing the data set via
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preliminary operation (iv). Therefore, the real number of coefficients at the level

b reflecting the signal behavior within the window is equal to Lb ¼ 2ðm�bÞ�
ðN=MÞ ¼ N � 2�b.

Now we address a time series j0 and construct the measure describing the

relationship between this series and all other signals within the current time

window. Naturally, this relationship depends on the scale of the variations in

question and, therefore, should be sought at various levels of detail between wavelet

expansion coefficients. The problem to be solved for this purpose is

XLb

k¼1

j cðb;tÞj 0
ðkÞ � d

ðb;tÞ
j 0
ðkjgÞj ! min

gj
; d

ðb;tÞ
j 0
ðkjgÞ ¼

Xq

j¼1; j 6¼j0

c
ðb;tÞ
j ðkÞ � gj (13.4)

We should emphasize that the second sum in (13.4) is a linear combination of

expansion coefficients of all time series except the chosen series j0. Finding the

vector g from the solution of problem (13.4), we obtain certain values of d
ðb;tÞ
j 0
ðkÞ.

Now we can find the correlation coefficient between samples of the values of

c
ðb;tÞ
j 0
ðkÞ and d

ðb;tÞ
j 0
ðkÞ for k ¼ 1; . . . ; Lb; however, instead of the classic formula

for calculating the sample value of the correlation coefficient, we use its robust

modification [Huber, 1981], according to which the correlation coefficient between

samples x(k) and y(k), k ¼ 1, . . ., n, can be calculated by the formula

rðx; yÞ ¼ SðZ_ 2Þ � SðZ^ 2Þ
SðZ_ 2Þ þ SðZ^ 2Þ

(13.5)

where Z
_ ðkÞ ¼ a � xðkÞ þ b � yðkÞ, Z

^ ðkÞ ¼ a � xðkÞ � b � yðkÞ, a ¼ 1=SðxÞ, b ¼
1=SðyÞ, SðxÞ ¼ medjx� medðxÞj. Here, med(x) is the median of the sample x and,
thereby, S(x) is the absolute median deviation of the sample x. Substituting x(k) for

c
ðb;tÞ
j 0
ðkÞ, yðkÞ for dðb;tÞj 0

ðkÞ, and n for Lb, we obtain the robust value we obtain the

robust value nj 0ðb; tÞ of the correlation coefficient describing the degree of connec-
tion of the process j0with all other signals. If we replace in (13.4) the sum of the

moduli of deviations by the sum of their squares, the problem can be reduced to

the classic Hotelling problem of canonical correlations [Rao, 1965]. Therefore, the

quantity nj 0ðb; tÞ is here referred to as the robust canonical correlation of the time

series j0. The need to replace the classic scheme of the calculation of canonical

correlations by its robust variant is dictated by the strong instability of the result of

the classic calculations with respect to outliers in wavelet coefficients. The presence

of such outliers is due to the well-known fact that the wavelet decomposition is

capable of accumulating maximum information about the signal behavior in a

relatively small number of wavelet coefficients. We should emphasize that the

method is robust in two procedures: the solution of minimization problem (13.4)

by the method of least moduli rather than by least squares and the calculation of the

correlation coefficient by formula (13.5).
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Note that the statistical significance of the estimated robust canonical correla-

tions depends on the number of terms Lb in formula (13.4). Therefore, it is natural to

introduce the parameter of statistical significance Lmin as the minimum possible

value of the number of wavelet coefficients Lb in formulas (13.4) and (13.5) that

allows one to calculate correlations at the bth detail level. Thus, it is possible to

determine the maximum possible detail level bmax defined by the formula

bmax ¼ maxfb : Lb � Lming.
Since, with an increase in the number of the detail level, the number of wavelet

coefficients involved in the estimation of nkðb; tÞ exponentially decreases, we

reduce statistical fluctuations in estimates by introducing additional averaging

over a certain number of coefficients obtained within preceding windows:

�n kðt; bÞ ¼
Xmb

s¼1

n kðt� sþ 1; bÞ=mb; mb ¼ 2b (13.6)

The higher the detail level, the deeper the averaging (13.6) over the past time

windows; this fact considerably decreases the dependence of the variance of

statistical fluctuations in estimation (13.6) on the detail level number and makes

this variance nearly the same for different values of b. According to formula (13.6),

the effective width of the time window becomes scale-dependent and equal to

N
ðbÞ
e ¼ N þ 2b � 1.

We define the robust wavelet measure of coherence by the formula

kðt; bÞ ¼
Yq

k¼1

j�n kðt; bÞj (13.7)

The values of measure (7) range from 0 to 1. The larger the value of (13.7), the

stronger the overall connection between all analyzed processes on scales

corresponding to the number b. We should emphasize that the value of (13.7) is

the product of q nonnegative values with moduli less than unity. Therefore, the

greater the number q of the series analyzed, the lower the absolute values of kðt; bÞ.
As a consequence, the absolute values of statistic (13.7) can be compared only for

the same number of series q. Most interesting are not the absolute values of measure

(13.7) but its relative values for different values of t. Thus, with a fixed Haar

wavelet in use, the method has two free parameters: the window width N and the

representativeness threshold Lmin.

The spectral measure of coherence was proposed in [Lyubushin, 1998] (see also
[Lyubushin and Sobolev, 2006]) and is based on the use of canonical coherences,

which extend the notion of the spectrum of coherence to the situation where, instead

of a pair of scalar time series, it is necessary to investigate the relationship between

two vector time series at various frequencies: an m-dimensional series X(t) and an

n-dimensional series Y(t). The quantity m21ðoÞ, which is called the squared modulus

of the first canonical coherence of the series X(t) and Y(t) and is used in this case
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instead of the ordinary coherence spectrum, is calculated as the maximum eigen-

value of the matrix [Brillinger, 1975; Hannan, 1970]

UðoÞ ¼ S�1
xx ðoÞ � SxyðoÞ � S�1

yy ðoÞ � SyxðoÞ: (13.8)

Here, t is the discrete time enumerating successive samples; o is the frequency;

SxxðoÞ is the spectral m	 m matrix of the time series X(t); and SxyðoÞ is a cross-

spectral rectangular m	 n, matrix, SyxðoÞ ¼ SHxyðoÞ, where the superscript H
means Hermitian conjugation.

The component canonical coherences n 2
i ðoÞ of the q-dimensional time series

Z(t) ðq�� 3Þare defined as the squared moduli of the first canonical coherence if the

series Y(t) in (13.8) is the ith scalar component of the q-dimensional series Z(t) and
the series X(t) is the (q–1)-dimensional series consisting of the other components.

Thus, the quantity n 2
i ðoÞ characterizes the correlation at the frequency o�o of

variations in the ith component with variations in all of the other components. We

define a frequency-dependent statistic lðoÞ characterizing the correlation at the

frequency. o between variations in all components of the vector series Z(t):

lðoÞ ¼
Yq

i¼1

niðoÞ (13.9)

Note that, by definition, the values of lðoÞ lie within the interval [0, 1] and the

closer the value of lðoÞ to unity, the stronger the correlation between variations in

the components of the multidimensional time series Z(t) at the frequencyo. If q¼ 2,

measure (13.9) is the ordinary squared modulus of the coherence spectrum. In order

to estimate the temporal variability in the measure of interaction between the

recorded processes, it is necessary to perform calculations in a moving time

window of a given width. Let t� be the time coordinate of a window N samples

wide. Calculating the spectral matrices for samples in the time window t� , we
obtain the two-parameter function lðt;oÞ, whose peaks define frequency bands and
time intervals of enhanced collective behavior of the jointly analyzed processes.

To implement this algorithm, it is necessary to have in each time window the

estimated spectral q	 q matrix Szzðt;oÞ. Below, we use the model of vector

autoregression [Marple, 1987]:

ZðtÞ þ
Xp

k¼1

Ak � Zðt� kÞ ¼ eðtÞ (13.10)

Here, Ak is the q	 q matrix of autoregressive parameters; p is the order of

autoregression; and e(t) is the q-dimensional time series of the remainders of

identification, which is assumed to be a series of independent Gaussian vectors

with a zero mean and an unknown covariance matrix P. Model (13.10) is estimated

after the preliminary operations of the elimination of the general linear trend,
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transition to increments (in order to increase the stationarity within narrow time

windows), and normalization of each scalar component to the unit variance. These

operations are performed independently in each time window and for each scalar

component of the multidimensional series. The spectral matrix is estimated by the

formula

SzzðoÞ ¼ F�1ðoÞ � P � F�HðoÞ; FðoÞ ¼ I þ
Xp

k¼1

Ak � expð�iokÞ (13.11)

Estimation (13.11) has a good resolution in frequency for short samples. In the

calculations, p was determined by the trial method as a minimum value such that

the further increase does not lead to a significant change in the main features of

the behavior of the dependence lðt;oÞ. Everywhere below, we use the value p¼ 3.

Thus, we see that the coherence measures kðt; bÞ and lðt;oÞ are constructed

according to the same principle but differ significantly in the signal representation

modes. Figures 13.7 and 13.8 plot estimates of these measures in a 12-h-wide

moving time window (1440 30-s samples). The wavelet measure kðt; bÞ was

estimated with the use of the Haar wavelet and the representativeness threshold

equal to Lmin ¼ 16. In estimating the spectral measure lðt;oÞ, the windows were
shifted at a 1-h step (120 samples).

Analysis of the plots in Fig. 13.7 leads to the following conclusions. The wavelet

measure of coherence kðt; bÞ drops after a seismic event; this is true of both the

McQuary event preceding the Sumatra earthquake and the Sumatra earthquake

itself. However, beginning from the 12 800-min time mark, the measure of coher-

ence at all levels increases; at the fifth to sixth detail levels, this increase exhibits an

obvious positive trend up to the time moment of the shock. At lower detail levels,

the measure of coherence reaches peak values approximately 1000–1500 min

before the earthquake. Moreover, with increasing detail level number, or “period,”

the peak of the coherence measure migrates toward the time moment of the shock;

i.e., the migration tends to increase the period.

The frequency–time diagram for the spectral measure of coherence lðt;oÞ in
Fig. 13.8 independently confirms this conclusion; moreover, as the spectral

approach makes it possible to trace more smoothly the frequency migration of the

coherence measure, Fig. 13.8 even more clearly displays the effect of the migration

of the coherence measure from high to low frequencies. However, the approach

using wavelet decomposition is more effective for “very low frequencies” (periods

longer than 10 min, detail levels 5 and 6 in Fig. 13.7). Thus, the application of both

methods of calculating the coherence revealed the scenario of synchronization,

which consists in the migration of the fundamental period (or time scale in the

wavelet analysis), characterized by maximum collective behavior, from short to

long periods.

Further, we attempted to identify asymmetry in the pulsed microseismic oscilla-

tions recorded before the Sumatra earthquake at the aforementioned stations. By

asymmetry, we mean unequal amplitudes of positive and negative oscillation
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phases, what was clearly expressed in the case of the Kronotskii earthquake

[Sobolev et al., 2005]. For this purpose, a program of their automatic identification

was developed (it was used in [Sobolev and Lyubushin, 2006]). Since the pulses of

interest belong to the middle range of periods, it was necessary first to pass from the

initial 0.05-s sampling interval to 1 s and then to eliminate low frequency (including

tidal) effects on records and (after the transition to 1-s sampling) high frequency

noise. These preliminary operations were effected through averaging and 20-fold

downsampling of records, removal of the low frequency Gaussian trend with the

scale parameter H ¼ 1000 samples (seconds), and subsequent calculation of the
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Fig. 13.7 Evolution of the robust wavelet measure of coherence kðt;bÞ calculated with a 12-h

wide moving time window of 1440 samples from XAN, KMI, CHTO, and COCO records after

transition to a 30-s sampling interval. The Haar wavelet was used with a representativeness

threshold of Lmin ¼ 16. The series were preliminarily converted to increments. Plots (a1–a6)

relate to detail levels 1–6, which correspond to time scales (periods, the parameter b) of 1–2, 2–4,
4–8, 8–16, 16–32, and 32–64 min. Time measured in minutes from the beginning of December 15,

2004, is plotted on the horizontal axis and corresponds to the right-hand end of the 12-h-wide

moving time window t of 1440 samples; the last time mark is 15975 min, i.e., 02:15 on Decem-

ber 26, 2004
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Gaussian trend with a scale parameter of 100 s. We should emphasize that the trend

is first removed at H ¼ 1000 s, after which deviations from the trend are removed

at H ¼ 100 s.

These preliminary operations yielded a signal with a sampling interval of 1 s

whose power spectrum lay in the range of periods approximately from 200 to

2000 s. It was necessary to automatically identify high amplitude pulses in this

signal. For this purpose, after the direct Haar wavelet transform [Mallat, 1998], we

left only a small preset part (1 – a) of the wavelet coefficients with maximum

moduli (the positive parameter a < 1 can be referred to as the compression level),

while the remaining coefficients were set to zero. Then, we performed the inverse

wavelet transform, yielding a sequence of pulses of sufficiently high amplitudes

that are usually separated by intervals of constant values previously filled with

noise. This operation is known as denoising in wavelet analysis. The selection of

the Haar wavelet for this operation is dictated by the simplicity of the subsequent

automatic identification of rectangular pulses. The choice of the compression level

determines the number of pulses being identified and the degree of denoising. Note

that a signal processed in this way already contains a sufficiently large number of

wavelet coefficients that are close or even equal to zero, simply because it was

obtained by the preliminary operations of the trend identification and removal. In

addition, the compression level obviously depends on the length of the data set

because the larger the set, the greater the number of coefficients.

In the time interval from December 15 to 26, we processed 24 h long sampling

sets (in all 86400 1-s samples) from all stations. The compression level was 0.9995,

yielding about 30 pulses per day. We then calculated the number of pulses of
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Fig. 13.8 Evolution of the spectral measure of coherent behavior lðt;oÞ calculated from XAN,

KMI, CHTO, and COCO records after transition to 30-s sampling intervals. The estimation is

made in a 12-h-wide moving time window for 1440 samples with a reciprocal shift of 120 samples

(1 h) strictly before the arrival from the Sumatra earthquake (AR(3) model and transition to

increments). The last time mark is 15900 min, or 01:00 on December 26, 2004
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negative and positive polarities; the two calculation runs included, respectively, all

pulses and the most significant pulses with amplitudes exceeding 1m, wherem is the

median of their distribution. Since the majority of high amplitude vibrations with

periods of 300–500 s were caused by the McQuary earthquake, the analysis was

conducted both in the range 200–2000 s and, with the suppression of these waves, in

the range 600–2000 s. In both cases and for all stations, we could not detect any

significant asymmetry in the shape of the pulses. On the whole, as can be seen from

Figs. 13.3 and 13.4, vibrations of positive and negative polarities are symmetric

relative to the zero line.

13.4 Discussion

Before the Sumatra earthquake, we did not detect any asymmetry in microseismic

amplitudes in the minute range of periods, as was observed before the Kronotskii

and Neftegorsk events [Sobolev et al., 2005; Sobolev and Lyubushin, 2006]. We

relate the asymmetry, expressed as the difference between amplitudes of positive

and negative polarities, to the imperfect elasticity of rocks containing fractures.

This is confirmed by laboratory experiments in which a sinusoidal signal is dis-

torted during its propagation through a sample subjected to deformation [Sobolev

and Ponomarev, 1997]. Phases of compressive and tensile stresses under these

conditions cause different deformations due to the difference in the strain moduli

under compression and extension. One should assume that either the lithospheric

region near the stations surrounding the source of the Sumatra earthquake did not

possess imperfect elasticity of this type or the epicentral distances (more than 1000 km)

were too great for this effect to be reflected in records of the stations. However, as

noted above, the attenuation of the surface waves produced by the McQuary

earthquake increased during their repeated propagation near the CHTO, KMI, and

COCO stations. A possible interpretation of the absence of wave asymmetry

notwithstanding significant wave attenuation is that the latter is caused by an

increase in the damping decrement due to an increase in the plasticity or water

saturation in the source area of the forthcoming Sumatra earthquake. The difference

between moduli under compression and extension conditions in plastic media is

known to decrease with increasing plasticity of the consolidated medium subjected

to deformation [Malinin, 1968].

As was noted in [Sobolev, 2004; Sobolev et al., 2005], foreshocks can provoke

periodic oscillations near the epicentral area of a future strong earthquake. This

phenomenon is a feature indicating an unstable state of the lithosphere. The analysis

of the Sumatra earthquake confirmed, to an extent, this hypothesis, with the

McQuary earthquake acting as a foreshock (Figs. 13.5, 13.6). This effect was also

observed before the Kronotskii earthquake, which occurred 27 days after an

earthquake in Tibet with M ¼ 7.7. During 3.5 h after the latter, the Petropavlovsk

station on Kamchatka recorded waves with periods of a few tens of minutes

[Sobolev, 2004].
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The second effect that was clearly observed before the Sumatra earthquake was

a gradual decrease in the predominant periods of premonitory vibrations in the

range from a few minutes to tens of minutes (Figs. 13.7, 13.8). Under the

assumption of an intraterrestrial mechanism of these vibrations, they can be related

to resonance effects in lithospheric blocks of increasingly larger scales and/or in

lithospheric and deeper layers of the Earth. The analysis of microseismic ampli-

tudes in the second range of periods showed that, at all of the aforementioned

stations in the time interval from December 15 to 26, the microseismic level was

virtually stationary, thereby ruling out the influence of atmospheric effects. This

phenomenon was previously noted in the range of very long periods (of the order

of one year) in the analysis of a seismic catalog and in a laboratory experiment

involving deformation and failure of a sample [Sobolev, 2003]; apparently, this is

a fundamental property of a nonequilibrium system approaching instability. In the

case of the Sumatra earthquake, the instability could have been triggered by

the McQuary earthquake, which caused propagation of deformation waves along

the future Sumatra rupture [Nikolaevskii, 1996]. A theoretical substantiation of the

decrease in the period of oscillatory processes in the same place of the lithosphere

was proposed by Dubrovskii [1988], who proved the following theorem. If a

system with a set of characteristic critical parameters is in an unstable equilibrium

separating the steady- and unsteady-state ranges of parameters, then the steady-

state system will produce waves whose frequency tends to zero if the system

approaches the critical state of unstable equilibrium and the dimensions of wave

disturbances are finite. Dubrovsky and Dieterich [1990] extended this approach to

the case of deformation waves propagating along a fault (trapped waves), giving

rise to instable slip of fault walls relative to each other. The development of this

instability (an earthquake or creep) is preceded by a decrease in the frequency of

these waves.

One cannot exclude the mechanism by which the waves under discussion

originate as a result of selforganization of the source area. The appearance of

rhythms is a common phenomenon in the evolution of nonequilibrium systems

[Nicolis and Prigogine, 1977]. If waves in blocks of different sizes are described by

nonlinear equations of the type (13.12) containing chaotic and periodic compo-

nents, and K is the coupling coefficient (e.g., between stresses in the blocks), such

systems will show the effects of phase synchronization and the frequency o range

of synchronization widens with an increase in K [Ott, 2002].

dx=dt ¼ FðxÞ þ K
PðotÞ (13.12)

One may suppose that the degree of the mutual influence of blocks (or seismi-

cally active faults) increases as macroscopic instability (an earthquake) is

approached. This is accompanied by enlargement of the geometric region of

collective behavior, in agreement with the concept of self-organized seismic criti-

cality [Bak et al., 1989; Sornette and Sammis, 1995]. In this case, the spectrum of

vibrations can evolve into the lower frequency range. We realize that, to gain more

substantiated ideas of the physical mechanisms responsible for the phenomena
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discussed in this paper, additional (and not only seismological) investigations are

required.

13.5 Conclusion

The analysis of records obtained at a few stations 60 h before the Sumatra

earthquake revealed periodic vibrations in the range of periods from 20 to 60 min

that arose after the McQuary earthquake and continued for about 24 hours.

This phenomenon was previously observed after the foreshocks preceding the

Kronotskii earthquake.

Synchronization of vibrations recorded at the stations began 53 h before the

Sumatra earthquake and continued up to its onset time, with the predominantperiod

gradually increasing from a few minutes to tens of minutes.

These phenomena are consistent with the hypothesis according to which the

radius of correlation and collective effects in the microseismic field increases prior

to an earthquake within the framework of the concepts of self-organized seismic

criticality.
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Chapter 14

Synchronizations of Microseismic Oscillations as

the Indicators of the Instability of a Seismically

Active Region

G.A. Sobolev, A.A. Lyubushin, and N.A. Zakrzhevskaya

14.1 Introduction

Nearly all models of earthquake preparation are known to indicate magnification of

the collective component in the behavior of geophysical fields in the preparation zone

as the moment the earthquake occurrence is approached. The geophysical monitoring

is aimed at the detection of the so-called synchronization signal in variations of

different geophysical parameters, as well as its duration and frequency range.

It is the synchronization and collective behavior of measured characteristics that

are relevant to the problems of monitoring and preparation of an earthquake or other

natural catastrophes. In this respect, certain methodological recommendations can be

suggested which result from the most general regularities of the system behavior; we

mean the regularities that draw a system nearer to a bifurcation, or catastrophe

[Nicolis, Prigogine; 1989]. An increase in the fluctuation correlation radius in the

bifurcation vicinity indicates that the system tends to be self-consistent throughout its

volume, thereby preparing for the collective transition to a new state. In the statistical

physics of fluids, such a behavior is known as “critical opalescence” or abnormal

dispersion, and is considered as a universal signal of the approaching catastrophe.

To extract hidden synchronization effects we applied the method using the esti-

mation of canonical coherences in a moving time window developed in [Lyubushin,

1998, 2007] for the detection of earthquake precursors from geophysical monitoring

data. This method was applied in [Lyubushin et al., 2003, 2004] to the analysis of

multivariate hydrological and oceanographic (water-level valued) time series. The

method consists in the estimation of the frequency dependent measure of the coherent

behavior of components of multivariate time series, and its essentials are outlined

below.
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A complex structure of geophysical data and a high level of noises of different

origin lead to the necessity of preprocessing time series and making a transition

from initial data to some other parameters, which describes the most general

properties of each time series. Here we take an argument providing maximum to

multi-fractal singularity spectra of initial monitoring signals as such a parameter. In

fractal analysis, this quantity is known as generalized Hurst exponent. The singu-

larity spectra are estimated within moving time window of a certain length. Thus,

there is a transfer from the analysis of variations of initial geophysical parameters to

the analysis of generalized Hurst exponent variations. This preprocessing step turns

to be rather efficient for detecting synchronization before strong earthquakes.

14.2 Initial data

We have taken broad-band vertical component seismic records with 20 Hz sampling

rate from IRIS stations before 3 strong events: Kronotskii (Kamchatka Peninsula)

M ¼ 7.7 earthquake of December 5, 1997, [54.64�N, 162.55�E] and Hokkaido

M ¼ 8.3 earthquake of September 25, 2003 [41.81�N, 143.91�E]. The initial data

were kindly provided by the Geophysical Service of the Russian Academy of

Sciences.

For the case of Kronotskii earthquake we studied records of seismic stations in

Petropavlovsk-Kamchatskii, (PET), Yuzhno-Sakhalinsk (YSS), Magadan (MAG),

Yakutsk (YAK) and Obninsk (OBN), whose location is shown in Fig. 14.1.

Fig. 14.1 Position of the IRIS stations whose records were analyzed before the Kronotski earth-

quakes. The epicenters of the earthquakes are shown by stars
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For the case of Hokkaido earthquake we have taken data from stations ERM,

MAJ, INC, MDJ, BJT, PET, YSS, which are shown in Fig. 14.2. All these stations

are located at distances from 70 up to 7160 km from epicenters under different

geological conditions.

The time intervals we have analyzed before earthquakes are the following:

– Kronotskii earthquake: November 05 – December 05 of 1997;

– Hokkaido earthquake: September 01 – 25 of 2003.

In previous studies [Sobolev et al., 2005; Sobolev, Lyubushin, 2006] we have

found that the main precursory information is contained within low-frequency

variations of microseismic background. Thus, for the transition to a minute range

of periods, the initial records were averaged and downsampled 600 times, which

gave time series with a sampling interval of 30 sec.

14.2.1 Brief description of the methods

14.2.1.1 Transforming to generalized Hurst exponent variations

Below we describe briefly the main points of estimating multi-fractal measure

of coherence which is based on the analysis of generalized Hurst exponent

Fig. 14.2 Position of the IRIS stations whose records were analyzed before the Hokkaido

earthquake. The epicenter of the earthquake is shown by star
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variations. More detailed description could be found in [Lyubushin, Sobolev, 2006;

Lyubushin, 2007].

The analysis of fractal and multifractal properties of geophysical monitoring

time series is a promising direction of data analysis in the physics of the solid Earth

[Currenti et al., 2005; Telesca et al., 2005; Lyubushin, 2007]. This is due to the fact

that the fractal analysis can effectively explore signals that, in terms of covariance

and spectral theory, are no more than white noise or Brownian motion.

Let XðtÞ be some signal. Let us define its variability measure mðt; dÞ on the time

interval ½t; tþ d�as the range:

mðt; dÞ ¼ max
t�s�tþd

XðsÞ � min
t�s�tþd

XðsÞ: (14.1)

A Holder-Lipschitz exponent hðtÞ for time moment t is defined as the limit:

hðtÞ ¼ lim
d!0

lnðmðt; dÞÞ
lnðdÞ (14.2)

i.e., in the vicinity of time moment t, variability measure mðt; dÞ tends to zero when

d ! 0according to the formula dhðtÞ.
Singularity spectrum FðaÞ is defined [Feder, 1989] as a fractal dimensionality of

the set of time moments t, for which hðtÞ ¼ a, i.e. having the same Holder-Lipschitz

exponent a. Singularity spectrum exists for scale-invariant signals XðtÞ. Let us
calculate a mean value of variability measure mðt; dÞ at the power q:

Mðd; qÞ ¼ Mfðmðt; dÞÞqg: (14.3)

The random process XðtÞ is scale-invariant if the value of Mðd; qÞ tends to zero

when d ! 0 according to the formula dkðqÞ, i.e., the following limit exists:

kðqÞ ¼ lim
d!0

lnMðd; qÞ
lnðdÞ : (14.4)

If the function kðqÞ is linear: kðqÞ ¼ Hq, where H ¼ const; 0 < H< 1, then the

process is called mono-fractal. For Brownian motion H¼0.5. The process XðtÞ is
called multi-fractal if function kðqÞ is nonlinear.

If the spectrum FðaÞ is estimated in a moving window, its evolution can give

information on the variation in the structure of chaotic pulsations of the series.

In particular, the position and width of the support of the spectrum FðaÞ, i.e., the
values amin; amax; Da ¼ amax � amin, and a�(Fða�Þ ¼ max

a
FðaÞ) are characteris-

tics of the noise. The value a� can be called a generalized Hurst exponent. In the

case of a mono-fractal signal, the quantity Da should vanish and a� ¼ H. As regards

the value of Fða�Þ, it is equal to the fractal dimension of points in the vicinity of

which the scaling relation (4) holds true. Usually Fða�Þ ¼ 1, but there exist win-

dows for which Fða�Þ < 1.
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To estimate the singularity spectrum FðaÞ, we used Detrended Fluctuation

Analysis (DFA) [Kantelhardt et al., 2002]. All details are described in [Lyubushin,

Sobolev, 2006; Lyubushin, 2007].

14.2.1.2 Spectral measure of synchronization

Spectral measure of synchronization lðt;oÞ is defined as a product of absolute

values of canonical coherences [Lyubushin, 1998, 2007]:

lðt;oÞ ¼
Yq

j¼1

jnjðt;oÞj (14.5)

Here q is the dimensionality of multiple time series, o the frequency, t the right-
hand end time coordinate of moving time window which is composed of a certain

number of adjacent samples, njðt;oÞ the canonical coherence of j-th scalar compo-

nent which describes the strength of linear relations of this component with all other

components of multiple time series. The value of jnjðt;oÞj2 is a generalization of the
usual squared coherence spectrum between 2 scalar time series for the case when the

2nd series is multidimensional but not scalar. The inequality 0 � jnjðt;oÞj � 1 takes

place and the closer the value of jnjðt;oÞj to unity, the stronger the linear relation

between variations of j-th scalar component at the frequency o within time window

with coordinate t and analogous variations of all other scalar components. Thus, the

value 0 � lðt;oÞ � 1 describes the effect of coherent (synchronous, collective)

behavior of all scalar signals included in the considered multiple time series.

Note that, by definition, the quantity lðt;oÞ lies in the interval [0, 1], and the

closer its value to unity, the stronger the coherence between variations of the

components of the multivariate series at the frequency o. We should emphasize

that the comparison of absolute values of the statistic lðt;oÞ is possible only for

the same number q of simultaneously processed time series because, by virtue

of formula (5), with increasing q, the value of lðt;oÞ decreases as the product of q
values smaller than unity. If q¼ 2, measure (5) is the ordinary squared modulus

of the coherence spectrum.

To implement this method it is necessary to have a spectral matrix estimate

within each time window. To calculate spectral matrix we used a vector autore-

gression model of 3rd order [Marple, 1987].

14.3 Synchronization of microseismic oscillations within

minute range of periods

Figure 14.3 presents variations of generalized Hurst exponent a� estimated within

moving time windows of the 12 h length (1440 samples with 30 s time interval)

taken with mutual shift of 1 h (120 samples) for 5 seismic stations with positions
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presented in Fig. 14.1. Scale-depended trends following from tidal and temperature

influences in DFA-technique were removed by local polynomials of 4th order. We

have taken an interval of 30 days length before the Kronotskii earthquake. A further

analysis provides estimation of spectral measure of synchronization (5) for time

series of a�-variations (Fig. 14.3). The length of moving time window for obtaining
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the maximum of the singularity spectrum of the micro-seismic background at all stations with the

estimation in a moving 12 h wide time window with a shift of 1 h. The coordinate of the right-hand

end of the moving time window is plotted on the time axis
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statistics lðt;oÞ was taken to be 109 samples. Because each a�-value is obtained

from time window of 12 h length with a shift of 1 h, this means that the length of

time window for the measure (5) is (109-1)·1þ12 ¼ 120 h ¼ 5 days.

Figure 14.4 presents time-frequency diagrams of statistics (5) for different

combinations of stations. A main burst of coherence is concentrated within range

of time marks 40000-42000 minutes, i.e., a few days before the earthquake. In the

process of approaching of moving time window to the moment of the main shock

the a�-variations coherence decreased although still remained at the level which is
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Fig. 14.4 Before the Kronotskii earthquake. Frequency–time diagrams of the evolution of the

spectral measure of coherence of a� variation spectral series with the estimation in the moving

time window 109 samples (5 days) long for a successively increasing number of simultaneously

analyzed stations. Maximum values of the coherence measure are shown in each diagram after the

codes of the stations analyzed
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higher than the background of statistical fluctuations. Time-frequency diagrams in

Fig. 14.4 testify that the length of time span of “coherence spot” increases with

increasing number of analyzed stations.

Series of diagrams lðt;oÞ were calculated to check the stability of the low

frequency coherence pulsation in the vicinity of the time mark 40000 min by

estimating the results of various combinations of three stations. Note that it is

admissible to compare maximum values of the coherence measure because the

number of simultaneously analyzed time series is the same. The highest peak of

coherence (0.65) is observed for the MAG, PET, and YAK stations, at Kronotskii

earthquake epicentral distances of 900, 350, and 2050 km, respectively; the peak is

the lowest (0.32) for the OBN, ARU, and YAK stations, which are the farthest from

the earthquake source (6800, 5900, and 2050 km, respectively). In all variants, the

coherence measure experiences a pulsation in the neighborhood of the time mark

40000 corresponding to the observation interval November 29–December 3, 1997, i.

e., three to seven days before the shock.

During data analysis before the Hokkaido earthquake, seismic records of stations

ERM and MAJ were not used because ERM was not working the last 4 days before

the shock, whereasMAJwas not working 7 days during time interval 2 weeks before

the event. A similar analysis (with the same parameters as for Kronotskii earthquake

data processing) combining multi-fractal singularity spectra estimates within

moving time window of 12 h length with further application of spectral measure

of synchronization to a�-variations was applied. The main result of this analysis is

0.008

0.006

0.004

0.002

10000 15000 20000 25000 30000 35000
Right-hand end of the moving time window of the length 5 days,
minutes from the beginning of September 01, 2003

M = 8.3

0.50
0.48
0.46
0.44
0.42
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24
0.22
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

F
re

qu
en

cy
, 1

/m
in

ut
es

Fig. 14.5 Before the Hokkaido earthquake. Frequency–time diagrams of the evolution of the

spectral measure of coherence of a� variation spectral series with the estimation in the moving
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successive time moments of 2 remote earthquakes (M¼6.6) and of Hokkaido earthquake (the
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that synchronization occurred 2 days before the Hokkaido event (interval 33000-

35000minutes from beginning of September 01, 2003). This synchronization covers

range of periods from 3 h on. When different variants of 3 stations were tested, the

strongest effect was observed for stations which are closest to the epicenter of future

shock. Time-frequency diagram, lðt;oÞ, for these stations (YSS, MDJ, INC) is

presented in Fig. 14.5. The following 3 peculiarities of this diagram should be

underlined: (1) synchronization at 3 h period (frequency � 0.005 min-1) began 9

days before the event (time mark 23000 minutes); (2) the brightest synchronization

within wide range of periods began 2 days before the shock (time marks 33000-

35000 minutes); (3) the gap in synchronization scenario within interval 29000-

31000 minutes of time marks is connected with 2 remote strong earthquakes

(indicated by red arrows) with magnitude 6.6. The first one has epicenter

[19.72�N, 95.46�E] and occurred on September 21 and the second one has epicenter

[21.16�N, 71.67�W] and occurred 10 hours later, on September 22. The arrival of

seismic waves from these earthquakes with different onset times to the analyzed

stations disturbed the synchronization pattern.

14.4 Conclusion

Estimates of spectral measure for variations of either low-frequency (in minute

range of periods) micro-seismic background oscillations or their generalized Hurst

exponents detect synchronization effect on large areas, 2-5 days before strong

earthquakes. This coherence effects between different stations manifest themselves

on periods: for Kronotskii earthquakes – more than 6 hours, for Hokkaido – more

than 3 hours, for Sumatra earthquake – within range 2-60 minutes. The coherence

measure is increasing when it is calculated for the set of stations which are closer to

the epicenter of future event.
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Chapter 15

Multifractal Parameters of Low-Frequency

Microseisms

A. Lyubushin

15.1 Introduction

Low-frequency microseismic oscillations serve as an important source of informa-

tion about processes proceeding in the crust, in spite of the fact that the main energy

of these oscillations is caused by processes proceeding in the atmosphere and ocean,

such as variations in the atmospheric pressure and the action of oceanic waves on the

coast and shelf. The relation of low-frequency microseisms having periods of 5–500 s

to the intensity of oceanic waves is comprehensively investigated in [Friedrich et al.,

1998; Kobayashi andNishida, 1998; Tanimoto et al., 1998; Tanimoto andUm, 1999;

Ekstrom, 2001; Tanimoto, 2001; 2005; Berger et al., 2004; Kurrle and Widmer-

Schnidrig, 2006; Stehly et al., 2006; Rhie and Romanowicz, 2004; 2006]. The

reverse influence of low-frequency microseisms with still longer periods (from

several tens to a few hundreds of minutes) on atmospheric pressure variations due

to slow wave-like deformations of the lithosphere were investigated in [Lin’kov,

1987; Lin’kov et al., 1990; Petrova et al., 2007]. Actually, the Earth’s crust is a

medium propagating the energy from atmospheric and oceanic processes, and since

the transmitting properties of the crust depend on its state, the statistical properties of

microseisms reflect changes in lithospheric properties.

This basically simple idea of the use of low-frequency microseismic oscillations

for monitoring the lithosphere, nevertheless, cannot be realized in a simple way. The

main difficulty consists in a strong influence of numerous uncorrelated sources on the

data. These sources are often diffusely distributed over the Earth’s surface. Therefore,

it is impossible in this case to investigate the transmitting properties of the lithosphere

by controlling input actions and responses. Additionally, the division into “signal” and

“noise” which is typical of the traditional methods used for data analysis, loses its
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sense when microseismic oscillations are processed. Only tidal variations in the

amplitude ofmicroseisms, as well as the arrivals and coda from the well-known strong

earthquakes, can be related to “signals”. For a long time, these signals have tradition-

ally been used in geophysics. All other microseism variations relate to “noise”.

If the terminology of orthogonal wavelet analysis is used, it will be quite

sufficient to retain 1% of the maximum in module wavelet coefficients and nullify
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marks the hypocenter of the September 25, 2003, earthquake (M ¼ 8.3) off the Hokkaido coasts
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all other coefficients in order to identify the signals listed above and remove noise

[Lyubushin, 2008]. Evidently, such an approach is too wasteful, and the remaining

99% of information deserve more careful study. This raises the problem of investi-

gating the statistical properties of low-frequency microseismic noise. Spectral

analysis traditionally used in the geophysical practice for investigating noise is

inapplicable in this case, because noise does not contain either monochromatic

components or narrow-band signals. Therefore, in this paper, we use for analysis

the apparatus ofmultifractal singularity spectra [Feder, 1988;Mandelbrot, 1982]. This

method allows the most complete description of the noise structure. To analyze

geophysical time series, the estimates of singularity spectra were used in [Kantelhardt

et al., 2002; Currenti et al., 2005; Ramirez-Rojas et al., 2004; Ida et al., 2005;

Telesca et al., 2005; Lyubushin and Sobolev, 2006; Lyubushin, 2007; 2008].

This paper continues the cycle of works on the analysis of low-frequency

microseismic oscillations and the search for new precursors of strong earthquakes

on their basis [Sobolev, 2004; Sobolev et al., 2005; 2008; Sobolev and Lyubushin,

2006; 2007; Lyubushin and Sobolev, 2006; Lyubushin, 2008]. The main feature of

this work is the use of long-term observations of low frequency microseisms based

on the information from 83 seismic stations of the F-net broadband network (Japan)

over the period from the beginning of 1997 through June 2008. Such large data

volume allowed us to investigate long-period trends of the evolution of singularity

spectrum parameters averaged both over the stations of the entire network and over

some subgroups of these stations.

15.2 Initial Data: F-net Network

Data of the F-net broadband seismic network are freely accessible on the internet at

the address: http://www.hinet.bosai.go.jp/fnet. The positions of all 83 stations of the

network are shown in Fig. 15.1. However, when the network started to function in

1997, it had only 17 stations. Subsequently, new stations were put into operation

(especially large number of stations in 2001), but at the same time, some of the old

stations (that had been in operation since 1997) were shut down. The data to be

analyzed, i.e., vertical components with a time step of 1 s (LHZ records) contain

intervals with gaps and incorrect data (such as constant zero values) due to

malfunctions of measuring and recording instrumentation.

Data were loaded in the form of 2-month long time fragments. For each station,

the loaded record began at 00:00:00 of the following day (month-day format): 01.01,

03.01, 05.01, 07.01, 09.01, and 11.01. If inside the 2-month fragment of data, the

record began not from these standard initial time marks, such a record was rejected.

Small gaps, no longer than 2 h, were filled in accordance with the signal behavior to

the right and to the left from the gap in time intervals of the same length as the gap

length. If the record contained longer gaps and malfunctions, we considered only the

initial part of such a record (preceding the first long gap). Such a choice corresponds

to the rules of functioning of the F-net database, according to which the user has the

15 Multifractal Parameters of Low-Frequency Microseisms 255

http://www.hinet.bosai.go.jp/fnet


right to load an indefinitely large amount of information, but in the form of discrete

portions, whose volume must not exceed 50 MB.

As a result, we accumulated an array of seismic records divided into 2-month

time fragments from the beginning of 1997 through June 2008. Each 2-month

fragment contains records from different stations that do not have long gaps and

begin synchronously. However, the lengths of these records can be different,

depending on the presence of large gaps and long faulty interval. Nevertheless, for

almost each 2-month fragment, there existed a fairly large number of stations

ensuring a complete and continuous covering of the entire fragment length by

their records. Additionally, records with a time step of 1 min were formed for

each 2-month fragment of the initial 1-s data through the calculation of consecutive

average values over 60 samples.

15.3 Parameters of the Singularity Spectrum

of Low-frequency Microseisms

Below, we briefly describe the technical details of the used singularity spectrum

estimates [Lyubushin and Sobolev, 2006; Lyubushin, 2007]. The elimination of

scale-dependent trends by local polynomials is an important element of this esti-

mate. Such a procedure makes it possible to get rid of some trends (in our case,

tidal and temperature variations) and investigate only relatively high-frequency

pulsations of a series, i.e., precisely the noise component.

Let XðtÞ be a random process. Define the range mXðt; dÞ ¼ max
t�s�tþd

XðsÞ�
min

t�s�tþd
XðsÞ as the measure mXðt; dÞ of the behavior of the signal XðtÞ in the interval

½t; tþ d� and calculate the average modulus of such measures raised to the power q:

Mðd; qÞ ¼ MfðmXðt; dÞÞqg (15.1)

A random process is scale-invariant if Mðd; qÞ � jdj kðqÞ, i.e., there exists the

limit:

kðqÞ ¼ lim
d!0

lnMðd; qÞ
ln jdj (15.2)

If the dependence kðqÞ is linear, kðqÞ ¼ Hq, where H ¼ const; 0<H< 1, then

the process is monofractal [Taqqu, 1988].

For calculating the function kðqÞ from a finite sampling from the time series

XðtÞ; t ¼ 1; : : : ;N, it is possible to apply the DFA method [Kantelhardt et al., 2002].

Let s be the number of samples associated with the varied scale ds: ds ¼ s � Dt. We

divide the sampling into nonoverlapping small intervals, s samples in length,

I
ðsÞ
k ¼ ft : 1þ ðk � 1Þ � s � t � k � s; k ¼ 1; :::; ½N=s�g (15.3)
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and let

y
ðsÞ
k ðtÞ ¼ Xððk � 1Þsþ tÞ; t ¼ 1; : : : ; s (15.4)

be the part of the time series XðtÞ corresponding to the interval IðsÞk . Let p
ðs;mÞ
k ðtÞ be a

polynomial of order m fitted by the least squares method to the signal y
ðsÞ
k ðtÞ.

Consider deviations from the local trend

Dyðs;mÞk ðtÞ ¼ y
ðsÞ
k ðtÞ � p

ðs;mÞ
k ðtÞ; t ¼ 1; : : : ; s (15.5)

and calculate the value

ZðmÞðq; sÞ ¼
X½N=s�

k¼1

ðmax
1�t�s

Dyðs;mÞk ðtÞ � min
1�t�s

Dyðs;mÞk ðtÞÞq
,

½N=s�
 !1=q

(15.6)

which will be regarded as an estimate for ðMðds; qÞÞ1=q. Now, we will define the

function hðqÞ as the coefficient of linear regression between the values

lnðZðmÞðq; sÞÞ and lnðsÞ: ZðmÞðq; sÞ � shðqÞ. It is evident that kðqÞ ¼ qhðqÞ, and for

a monofractal process hðqÞ ¼ H ¼ const.
After the determination of the function h(q), the next step in the multifractal

analysis [Feder, 1988] is the calculation of the singularity spectrum FðaÞ, which is

the fractal dimension of the time moments ta, which have the same value of the

local Holder–Lipshitz exponent: lðtÞ ¼ lim
d!0

lnðmðt;dÞÞ
lnðdÞ , i.e., lðtaÞ ¼ a. The standard

approach consists in the calculation of the Gibbs statistical sum

Wðq; sÞ ¼
X½N=s�

k¼1

ðmax
1�t�s

Dyðs;mÞk ðtÞ � min
1�t�s

Dyðs;mÞk ðtÞÞq (15.7)

and the determination of the mass indicator tðqÞ from the conditionWðq; sÞ � stðqÞ,
after which the spectrum FðaÞ is calculated by the formula

FðaÞ ¼ max f min
q

ðaq� tðqÞÞ; 0 g (15.8)

Comparing (15.6) and (15.7), it is easy to see that tðqÞ ¼ kðqÞ � 1 ¼ qhðqÞ � 1.

Thus, FðaÞ ¼ max f min
q

ðqða� hðqÞÞ þ 1; 0 g.
If the singularity spectrum FðaÞ is estimated in a moving time window; its

evolution provides information about changes in the noise structure. In particular,

the position and width of the support of the spectrum FðaÞ, i.e., the values

amin; amax; Da ¼ amax � amin, and a� (Fða�Þ ¼ max
a

FðaÞ) are the characteristics
of noise. The quantity a� is called the generalized Hurst exponent. For a mono-

fractal signal, the value of Da must be zero, and a� ¼ H. Usually, Fða�Þ ¼ 1, but
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there exist windows for which Fða�Þ<1. In the general case, Fða�Þ is equal to the

fractal dimension of the multifractal measure support [Feder, 1988].

In the calculation of Da and a�, we were guided by the following considerations.
The exponent q was varied within the interval q 2 ½�Q; þQ�, where Q is a certain

sufficiently large number, for example, Q ¼ 10. For each value of a within the

interval a 2 ½Amin; Amax�, where Amin ¼ min
q2½�Q;þQ�

dtðqÞ
dq , and Amax ¼ max

q2½�Q;þQ�
dtðqÞ
dq ,

we calculated the value ~FðaÞ ¼ min
q2½�Q;þQ�

ðaq� tðqÞÞ. If the value of a is close to

Amin then ~FðaÞ<0, and this value is unsuitable as an estimate of the singularity

Time, days from the beginning of the 2-months fragment (July 1, 2006)
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Fig. 15.2 Plots showing estimates for the singularity spectrum FðaÞ and variations in its parameters:

the generalized Hurst exponent a� and the singularity spectrum support width Da, at the KSK

station for the 2-month fragment (July 1–August 31, 2006): (a), (b), and (c) for 1-s data in the

consecutive intervals 30 min long (1800 samples); (d), (e), and (f) for 1-min data in the consecutive

intervals 24 h long (1440 samples); (a) and (d) are presented for one of the intervals specified above
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spectrum, which must be nonnegative. However, beginning from a certain a, the
value ~FðaÞ becomes non-negative, and this condition defines the amin value. At a

further a increase, the value ~FðaÞ increases, reaches its maximum when a ¼ a� then
begins to decrease, and finally attains a certain value amax <Amax, at which ~FðaÞ
again becomes negative if a> amax. Thus, FðaÞ ¼ ~FðaÞ provided that ~FðaÞ � 0,

which determines the interval of the singularity spectrum support a 2 ½amin; amax�.
The derivative

dtðqÞ
dq is calculated numerically from the values tðqÞ; q 2 ½�Q; þQ�,

and the accuracy of its calculation is of little significance, because this derivative is

used for a rough determination of an a priori interval of possible exponents q.
Below, in the analysis of low-frequency microseisms, we used the estimates of

singularity spectra in the following successive nonoverlapping time windows: for

the initial 1-s data, in the window 30 min long (1800 samples), and for 1-min data,

in the window 24 h long (1440 samples). In the first case, local trends were removed

by fourth-order polynomials, and in the second case, by eighth-order polynomials.

Additionally, for estimating the spectral measure of coherence between variations

in the singularity spectra parameters for 1-min data, we used the moving time

window 12 h long (720 samples) with the shift by 1 h (60 samples). In this case,

scale-dependent trends were removed by local fourth-order polynomials.

Most of the attention will be concentrated on changes in two parameters of the

singularity spectrum, namely, the generalized Hurst exponent a� and the singularity
spectrum support width Da. The quantity a� characterizes the most typical and often

met Holder–Lipshitz exponent, whereas Da reflects the diversity of the random

behavior of the signal, and, as will be discussed below, this quantity is a peculiar

measure for the number of hidden degrees of freedom of a stochastic system.

15.4 Variations in the Singularity Spectrum Support Width

Figure 15.2 shows examples of the plots of estimates of the singularity spectrum

FðaÞ in one of the windows for 1-s (Fig. 15.2a) and 1-min (Fig. 15.2d) data obtained

at one of the stations of the network (KSK). In addition, the plots of variations in

parameters a� and Da during the 2-month fragment (July 1–August 31, 2006) for 1-s

(Figs. 15.2b, 15.2c) and 1-min (Figs. 15.2e, 15.2f) are given below each plot of FðaÞ.
The sharp outliers in Figs. 15.2b and 15.2c reflect the influence of arrivals from

different close and remote earthquakes. These outliers are absent in Figs. 15.2e and

15.2f due to double averaging: first, in passing from the 1-s to 1-min time step, and

then in passing from the window length 30 min to the window length 24 h.

Consider the set of estimates of parameter Da for 1-s data (Fig. 15.2c). For each

30-min window in which these estimates were obtained, there exist a certain

number of stations supporting these estimates by their data. The number of such

stations changes from one 2-month fragment to another and inside each fragment.

We will calculate for each 30-min window the median of Da values over all

stations, whose data are suitable for analysis. The median is a robust (stable with

respect to the outliers) alternative to an ordinary average value.
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The sequence of medians Da over all stations will form one continuous time

series, whose total duration is 11.5 yr and the time step is 30 min. This time series is

a certain integral statistical characteristic of the field of the microseism. Let us

consider the behavior of this series at different types of smoothing. Gaussian trends

with definite optimal properties are chosen as the method of smoothing [Hardle,

1989]. The following quantity:

�X
�ðtjHÞ ¼

Zþ1

�1
Xðtþ HxÞ � cðxÞ dx

, Zþ1

�1
cðxÞ dx; �cðxÞ ¼ expð�x2Þ (15.9)

will be called the Gaussian trend �XðtjHÞ of the signal XðtÞ with the parameter

(radius) of smoothing H> 0.

For time series with discrete times, quantity (15.9) can be efficiently calculated

with the use of the fast Fourier transform. This method of averaging was applied to

the investigation ofmicroseisms in [Sobolev and Lyubushin, 2006; Lyubushin, 2007].
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Fig. 15.3 (a), (d). Identical sequences of magnitudes (M � 6) of seismic events in the rectangular

region between 20	–60	 N and 120	–160	 E. (b), (c), (e), and (f) Results of the Gaussian

smoothing of variations in the median of the singularity spectrum support width Da for 1-s data

in the consecutive intervals 30 min long: gray lines show the smoothing with a radius of 13 days

and the bold black lines, with a radius of 0.5 yr. The median is determined for: (b) all 83 stations

of the network; (c) 41 central stations (34	 � 39	 N); (e) 17 northern stations (� 39	 N);

(f) 25 southern stations ( � 34	 N). The vertical gray lines with the arrows mark the time moment

of the Hokkaido earthquake of September 25, 2003 (M ¼ 8.3)
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According to formula (15.9), the average value roughly relates to the interval with

the center at the point t with the radius H.
Two values of the radius: H ¼ 13 days and H ¼ 0.5 yr, were used for smoothing

the Da medians. The results of smoothing the medians over all stations are pre-

sented in Fig. 15.3b: the plots of smoothing with the radii 13 days and 0.5 yr are

shown by the gray and bold black lines, respectively. The synchronous sequence of

magnitudes (M � 6) of seismic events in the rectangular region 20	 � 60	 N and

120	 � 160	 E is presented in Fig. 15.3a. In this figure, the vertical gray line with

the arrow indicates the time moment of the Hokkaido earthquake of September 25,

2003 (M ¼ 8.3).

An important feature of the behavior of the Da value smoothed with H ¼ 0.5 yr

(Fig. 15.3b) is its considerable drop, which began early in 2003, half a year before

the Hokkaido event. The average level of the parameter attained after this event did

not return to its previous value. Additionally, one should pay attention to a clearly

pronounced annual periodicity in variations of the value smoothed with the radius

H ¼ 13 days (gray line in Fig. 15.3b): an outburst of this value, as a rule, falls on

July–August, which is especially clearly seen in 2000, 2002, and 2004–2006.

To check the stability of the result obtained, i.e., a decrease in the average

value of Da, analogous estimates were calculated for some stations of the network:

for 41 central stations with latitudes from 34	 to 39	 N (Fig. 15.3c); for 17 northern

stations with latitudes � 39	 N (Fig. 15.3e); and for 25 southern stations with

latitudes � 34	 N (Fig. 15.3f). Figure 15.3d is identical to Fig. 15.3a and is presented

here for convenience of comparing Figs. 15.3e and 15.3f with the seismic regime.

It is seen from Figs. 15.3c, e, and f that the average value of Da decreases

independently of the set of stations, for which it is calculated. The annual periodic-

ity at the smoothing with the radius H¼ 13 days (Figs. 15.3b, 15.3f) remains nearly

the same as for all stations (Fig. 15.3b). Note also that after the Hokkaido earth-

quake, annual variations in Da (Figs. 15.3b, c, f) became more clearly pronounced,

whereas the annual periodicity is pronounced less clearly for the northern stations.

15.5 Variations in the Generalized Hurst Exponent

We will now consider the median of estimates for the generalized Hurst exponent

a� obtained from different stations for 1-min data (Fig. 15.2e). The median is

calculated by the same method as in the preceding section, but instead of the

30-min window, the 24-h window (1440 minute samples) is used. As a result, we

obtain the time series of the a� medians, whose duration is 11.5 yr and the time step

is 24 h. This series is smoothed according to formula (15.9) with the radius H ¼ 13

days. The result is presented in Fig. 15.4. Just as in Fig. 15.3, Figs. 15.4a and d are

also identical to each other and depict the sequence of magnitudes of strong events

in the rectangular vicinity of Japan islands. Figures 15.4b, c, d, and f show the plots

of smoothed values of the a� median calculated, respectively, for all 83 stations of
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the network, consisting of 41 central stations, 17 northern stations, and 25 southern

stations.

The main feature of the plots presented in Fig. 15.4 is the behavior of the

seasonal component of the variations. This component is clearly pronounced before

the Hokkaido event (to a lesser degree for the southern stations (Fig. 15.4f)) but

decreases afterwards.

15.6 Variations in the Products of Cluster Canonical

Correlations

This and the next sections of the paper will be devoted to the investigation of

measures of correlation and coherence between variations in both the support width

Da and the generalized Hurst exponent a� estimated for 1-min data for different

parts of the network. The choice of 1-min data for this purpose was dictated by the

circumstance that, based on experience, the lower the frequency of the variations in
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Fig. 15.4 (a), (d) Identical sequences of magnitudes (M � 6) of seismic events in the rectangular

region between 20	–60	 N and 120	–160	 E. (b), (c), (e), and (f) Results of the Gaussian

smoothing of variations in the median of the generalized Hurst exponent a� for 1-min data in

the consecutive intervals 24 h long with the radius of smoothing 13 days. The median is deter-

mined for: (b) all 83 stations of the network; (c) 41 central stations (34	–39	 N); (e) 17 northern

stations (�39	N); and (f) for 25 southern stations (� 34	 N). The vertical gray lines with the

arrows mark the time moment of the Hokkaido earthquake of September 25, 2003, (M ¼ 8.3)
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singularity spectrum parameters, the greater the amount of coherence effects that

are observed in them. The main correlations and coherences during the investiga-

tion of 1-s data are caused by a trivial presence of traces of arrivals from large and

moderate earthquakes, which is of weak interest.

In our case, it is necessary to construct statistics that would more or less

objectively reflect an increase or a decrease in the total correlation or coherence

of the behavior of singularity spectrum parameters during the entire interval of

observations (1997–2008), in spite of the fact that some stations ceased operation

long before the end of the analyzed time interval, and some stations started to

operate after its beginning. In addition, due to malfunctions of the instrumentation

and recording systems, data from some or other station can be absent in the 2-month

fragment under consideration, in spite of their presence in the preceding and

subsequent fragments. The fragmentary character of the data from any station is a

substantial methodological barrier for a direct application of multidimensional spec-

tral coherence measures [Lyubushin, 1998; 2007; 2008; Lyubushin and Sobolev,

2006; Sobolev and Lyubushin, 2007] to the analysis of relations between the

readings of different stations, because the synchronism and continuity of data are

required for calculating the statistics of coherence.

However, the presence of a large number of stations allows us to overcome this

difficulty by considering cluster measures of the multidimensional correlation and

coherence. The essence of this approach is as follows: only the stations which

possess continuously recorded data throughout the entire 2-month fragment are

considered. Further, these stations are grouped to always form the same number of

spatial clusters. Below, the number of clusters was assumed to be five, i.e., all

stations with continuous records during the 2-month fragment under consideration
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Fig. 15.5 Examples of the division of stations, according to their positions, into five clusters

for two 2-month fragments: (a) for the fragment September 1– October 31, 1998, 23 stations; and

(b) for the fragment July 1 – August 31, 2002, 57 stations. The stations belonging to the same

cluster have identical numbers
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are always divided into five clusters in accordance with the spatial positions of the

stations. The number of clusters (five) was chosen, because this number is not too

large but sufficiently large for a more or less uniform covering of the seismically

active territory under consideration (Japan’s islands). The use of the same number

of clusters for all 2-month fragments eliminates the influence of dimensionality on

the values of the measures of correlation or coherence and allows their comparison

with each other, regardless of the number of suitable stations in some or other

2-month fragment.

Figure 15.5 shows two examples of the automatic division of the network

stations with continuous records for 2-month fragments into five clusters. The

stations belonging to the same spatial cluster are designated by the same numeral

(cluster number). Stations were automatically divided into five clusters by using the

method of hierarchical clusterization with the “far neighbor” metric [Duda and

Hart, 1973]. The use of this metric instead of the often used “nearest neighbor”

metric makes it possible to obtain compact “rounded” clusters and avoid long

“chain-like” clusters. The characteristic linear scale of the clusters obtained varied

from 120 to 350 km.

When cluster measures are considered, solitary stations must be excluded from

the analysis, because during the automatic division, they will always form individ-

ual clusters consisting of one element. In our case, there were six such stations

located on the remote islands, and they could be excluded from the analysis through

restricting the stations’ latitude to not less than 30	 N (Fig. 15.1).

After the division of stations into clusters, we calculated the average values of

parameters Da and a� in each time window (equal in this case to 24 h) for the

stations included in the same cluster. Thus, independently of the number of suitable

stations in the 2-month fragment, after the clusterization, we always obtained two

5-dimensional time series of variations in the average cluster values of Da and a�.
Such a method makes it possible, on the one hand, to take into account the

contributions of stations located in different subregions of a seismically active

region and, on the other hand, to compensate for the fragmentary character of

data caused by instrumental malfunctions.

We should stress once more that both the positions of the cluster centers and the

number of stations in each cluster vary, as a rule, from one 2-month fragment to

another. Only two factors remain unchanged: (15.1) the number of the output

average values of Da and a� is always equal to five, and (15.2) the clusters more

or less uniformly cover the territory under investigation. These circumstances allow

us to consider the multidimensional measures of the correlation or coherence

between the components of the obtained 5-dimensional time series as an integral

measure reflecting the general correlation of changes in the multifractal character-

istics of the field of low-frequency microseismic noise.

In order to obtain a multidimensional measure of the correlation of the average

values of Da or a� corresponding to a chosen 2-month fragment, we will use the

Hotelling construction of canonical correlations [Hotelling, 1936; Rao, 1965].

Let xjðtÞ; j ¼ 1; : : : ;m be an m-dimensional time series, and t ¼ 1; :::;N be discrete

time. In our case, m ¼ 5, xj are the average cluster values of Da or a�, and t is the

264 A. Lyubushin



index numbering the consecutive days inside the 2-month fragment. Let us select

the component with the number k and consider the regression model of the

influence of all the other components on the selected component xk

xkðtÞ ¼ ykðtÞ þ ekðtÞ; ykðtÞ ¼
Xm

j¼1; j 6¼k

gðkÞj � xjðtÞ (15.10)

The regression coefficients gðkÞj will be found from the condition of the minimum

of the sum of squared residuals
PN

t¼1

e2kðtÞ or the sum of moduli (robust variant)

PN

t¼1

jekðtÞj. After that, we will calculate the correlation coefficient mk between the

selected component xkðtÞ and the obtained regression contribution ykðtÞ. The

quantity mk is the canonical correlation of the k-th component with respect to all

other components. We perform these calculations successively for all k ¼ 1; : : : ;m
and then determine the quantity

k ¼
Ym

k¼1

jmkj (15.11)

It is obvious that 0 � k � 1 and the closer the quantity (15.11) to unity, the

stronger the mutual relation of the variations in the components of the multidimen-

sional time series xjðtÞ to each other. Having calculated quantities (15.11) for

the average cluster values of Da and a� for all 2-month fragments, we will obtain

the two sequences, kDaðxÞ and ka� ðxÞ, where x is the time mark corresponding to the

end of the 2-month fragment. The plots of these values are presented in Fig. 15.6

(thin lines with circles).

1998 2000 2002

a b

2004 2006 2008

Time, years

1998 2000 2002 2004 2006 2008
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Fig. 15.6 Plots of variations in the product of moduli of canonical correlations (a) kDaðxÞ and
(b) ka� ðxÞ between the average values of the singularity spectrum support width Da and the

generalized Hurst exponent a� calculated inside five spatial clusters of stations for 2-month

fragments. The singularity spectra were calculated for 1-min data in the consecutive time intervals

24 h long. The bold lines are results of the Gaussian smoothing with the radius of averaging 0.5 yr
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It is seen from these plots that, in spite of considerable fluctuations, the measure

of correlation generally rises for both Da and a�. Let us smooth the dependences

kDaðxÞ and ka� ðxÞ by the Gaussian kernel according to formula (15.9) with the

radius of averaging H¼ 0.5 yr. The results of the calculation of the Gaussian trends

are presented in Fig. 15.6 as bold lines. A general tendency toward an increase in

the measures of correlation after 2003 is seen. After the Hokkaido earthquake, the

average values of correlation measures did not return to their level before 2003.

Consequently, it can be inferred that the 2003 earthquake led to a prolonged

increase in the average correlation of the fluctuations of the multifractal parameters

of the field of low-frequency microseismic noise.

15.7 Variations in the Cluster Spectral Measure of Coherence

The measure of correlation (15.11) relates to the entire 2-month fragment under

consideration and does not discriminate between variation frequencies. At the same

time, the decomposition of this measure over different frequency bands and the

stability of the correlation inside a 2-month fragment are of interest. To answer

these questions, it is necessary to replace the product of the canonical correlations

(15.11) by the spectral measure of coherence proposed in [Lyubushin, 1998], which

was used, among other purposes, for the analysis of low-frequency microseisms

[Lyubushin and Sobolev, 2006; Sobolev and Lyubushin, 2007; Sobolev et al., 2008;

Lyubushin, 2008]. Numerous examples of the application of this measure not only

in the physics of the solid Earth, but also in hydrology, meteorology, and climatic

investigations are presented in [Lyubushin, 2007]. The same work contains all

technical details of the calculations, which are omitted here.

The spectral measure of coherence lðt;oÞ is constructed as the module of the

product of component-bycomponent canonical coherences

lðt;oÞ ¼
Ym

j¼1

jnjðt;oÞj (15.12)

Here, m � 2 is the total number of jointly analyzed time series; o is frequency;

t is the time coordinate of the right-hand end of the moving time window consisting

of a definite number of neighboring samples; and njðt;oÞ is the canonical coher-

ence of the j-th scalar time series, which describes the strength of coupling of this

series with all other series. The quantity jnjðt;oÞj2 is the generalization of the

ordinary squared spectrum of coherence between two signals for the case when the

second signal is not scalar but vector. The inequality 0 � jnjðt;oÞj �1 is fulfilled,

and the closer the value of jnjðt;oÞj to unity, the stronger the linear relation of

variations at the frequency o in the time window with the coordinate t of the j-th
series to analogous variations in all other series. Accordingly, the quantity

0 � lðt;oÞ � 1, due to its construction, describes the effect of the cumulative

coherent (synchronous, collective) behavior of all signals.
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Note that due to the construction of the quantity lðt;oÞ, its values belong to the
interval [0,1], and the closer the corresponding value to unity, the stronger the

relation between variations in the components of the multidimensional time series

at the frequency o for the time window with the coordinate t. It should be

emphasized that the comparison of absolute values of the statistics lðt;oÞ is

possible only for the same number m of simultaneously processed time series,

because, due to formula (15.12), if m increases, lðt;oÞ decreases as the product

ofm values smaller than unity. In our case, stations are clusterized at a fixed number

of clusters (five).

Since the spectral measure (15.12) was used for the analysis of the variability of

the cumulative coherence inside 2-month fragments, singularity spectra were esti-

mated for 1-min data in the moving time window 12 h long (720 samples) with a

shift of 1 h (60 samples). Further, we again calculated the average cluster values of

Da and a�, which thus formed five time series with a time step of 1 h (shift of the

moving time window).

Below, we present the results of the application of the spectral measure (15.12)

for the analysis of effects of the coherent behavior between the time series of

variations in the average cluster values of a�. The results for the support width

Da of the singularity spectrum are qualitatively analogous. To realize this method,

it is necessary to have an estimate of the spectral matrix of the initial multidimen-

sional series in each time window. Below, we prefer to use the model of vector

autoregression [Marple (Jr.), 1987] of the 3rd order. To obtain the dependence

lðt;oÞ, the time window length was assumed to be 5 days. Since each value of a�

was obtained in the time window 12 h long, and the shift of these windows was 1 h,

the time window length for estimating the spectral matrix will be 109 samples,

because (109 – 1)·1 þ 12 ¼ 120 h ¼ 5 days.

Six frequency–time diagrams of statistics (15.12) for different 2-month frag-

ments are presented in Fig. 15.7. These diagrams are constructed on the same scale

(unified color scale is shown on the right), depending on the position of the right-

hand end of the moving time window 5 days long (time is indicated in hours from

the beginning of the corresponding 2-month fragment). The sequences of magni-

tudes of the earthquakes with M � 5, which occurred in the rectangular vicinity of

Japan’s islands during the corresponding 2-month fragment, are shown above each

frequency–time diagram. The 2-month fragment presented in Fig. 15.7d corre-

sponds to the 2003 Hokkaido earthquake. A moderate coherence observed before

the earthquake, was previously noted in [Sobolev et al., 2008; Lyubushin, 2008]

from data of the IRIS broadband network. However, it should be noted that post-

seismic outbursts of the coherence are stronger than the precursory ones.

In addition, the outbursts of statistics (15.12), which can hardly be related to the

post-seismic or precursory coherence from some event, are seen in the frequency–

time diagrams of Fig. 15.7 in comparison with the seismic regimes. Such coherence

outbursts were noted in the work [Lyubushin, 2008], where the author suggested

that a simple hypothesis stating that the coherence of the variations in parameters of

the singularity spectrum of noise should be expected to increase before a strong

earthquake is groundless. Indeed, meteorological or oceanic factors, including
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oceanic waves in very remote regions, equally can be coherence sources. The idea

to investigate some scenarios of the behavior of outbursts of synchronization seems

more promising [Lyubushin, 2003]. The trend of increasing the average measure of

correlation presented in Fig. 15.3 is one such scenario. The use of spectral statistics

(15.12) allows us to find out whether such trends are present in different frequency

bands.

The values of statistics (15.12) for the sequence of 2-month fragments after its

averaging over frequencies from certain frequency bands are presented in Fig. 15.8.

Figure 15.8a corresponds to all frequencies; Fig. 15.8b to the band with boundary

periods from 8 to 32 h (containing tidal harmonics); Fig. 15.8c to the low-frequency

band with boundary periods of 32 and 100 h; and Fig. 15.8d to the high-frequency

band with boundary periods of 2 and 8 h. The Gaussian trends with a radius of

averaging of 0.5 yr are shown by the bold lines. It is seen that spectral measure

(15.12), as well as the simple measure of correlation (15.11), yields qualitatively the

same results for all frequency bands. The average coherence increases after 2003.

Thus, changes in the state of the lithosphere after the Hokkaido earthquake of

September 25, 2003, have resulted in a more correlated behavior of the multifractal
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Fig. 15.8 Thin lines with circles are the plots of the spectral measure of coherence between the

average cluster values of a� for the consecutive 2-month fragments averaged over four different

frequency bands restricted by their boundary periods (h). The bold lines are results of the Gaussian

smoothing with the radius of averaging 0.5 yr. The singularity spectra were calculated for 1-min

data in the consecutive time intervals 12 h long with a shift of 1 h
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characteristics of the field of microseismic noise in response to actions on the

Earth’s crust, which was also observed previously, in the period from 1997–2003.

15.8 Conclusions

The analysis showed that after the Hokkaido earthquake of September 25, 2003

(M ¼ 8.3), a considerable synchronization of the variations in the multifractal

parameters of the low-frequency microseismic field took place and is retained to

the present day. Thus, the 2003 Hokkaido earthquake, in its own way, is a crucial

point in the behavior of microseisms, and this fact may testify in favor of the

hypothesis that this event can be a foreshock of a still stronger earthquake.

The results presented in Figs. 15.3 and 15.4, even more clearly than the plots

showing the behavior of the average measures of correlation and coherence in

Figs. 15.6 and 15.8, indicate that the September 25, 2003 event is a kind of time

marker separating the behavior of the field of microseisms into two modes. Addi-

tionally, Fig. 15.3 estimates the time of preparation of this event at 0.5 yr. The

question arises as to how a decrease in the average value of Da is related to an

increase in the linear correlations between fluctuations of singularity spectrum

parameters. In this sense, the quantity D a reflects the degree of diversity of the

random behavior of the signal, and therefore its decrease is an indirect indicator of

the suppression (decrease) of certain degrees of freedom of the medium.

At the same time, it is possible to find more direct analogies with a decrease in

the number of degrees of freedom reflecting in the Da decrease. Singularity spectra
for the sequence of recurrence times in the Poincare cross-section for systems of

two coupled oscillators (Ressler and Lorenz oscillators) were numerically investi-

gated in the works of [Pavlov et al., 2003; Ziganshin and Pavlov, 2005]. In the

presence of a sufficiently strong coupling, these oscillators become synchronous. It

turned out that the synchronization of oscillators substantially decreases the singu-

larity spectrum support width Da. Consequently, the set of results presented as plots
in Figs. 15.3, 15.6, and 15.8 indicate that the field of microseismic oscillations in

Japan after the 2003 event became synchronous, and this state is retained to the

present day.

Based on the well-known statement of the theory of catastrophes that the

synchronization is one of the flags of an approaching catastrophe [Gilmore,

1981], it may be suggested that the Hokkaido event, notwithstanding its power

(M ¼ 8.3), could be only a foreshock of a still stronger earthquake forming in the

region of Japan’s islands.

As for the sharp decrease in seasonal variations of the parameter a� for 1-min

data after the September 25, 2003, earthquake, the interpretation of this result is not

so transparent as for Da. We can only suggest that this decrease also reflects a

blocking of some degrees of freedom of the medium, which were previously

responsible for annual changes in the state of the lithosphere. On the other hand,
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the situation for 1-s data on Da is the opposite: after the September 25, 2003, event,

the annual variations became more clearly pronounced.
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Chapter 16

Changes in Dynamics of Seismic Processes

Around Enguri High Dam Reservoir Induced

by Periodic Variation of Water Level

T. Matcharashvili, T. Chelidze, V. Abashidze, N. Zhukova, and E. Meparidze

Abstract The importance of elucidating the effects of small periodic influences on

the behavior of complex systems is well acknowledged. In the present research, a

possible impact of regular water level variations in large reservoir as an example of

small external influence (comparing to tectonic forces) on the dynamics of local

seismic activity was investigated.

In general, large reservoirs located in the seismically active zones are often

considered as a factor which quantitatively and qualitatively influences the earth-

quakes generation. It was many times reported that during impoundment or

immediately after it (namely from several months to several years), both the

number and the magnitude of earthquakes around reservoir significantly increased.

These changes in earthquake generation are named the reservoir induced seismicity

(RIS). After several years of regular seasonal load/upload of the reservoir, the

seismicity essentially decreases down to the level when lesser earthquakes occur

with lower magnitudes. To explain this decrease, the authors of the present paper

recently proposed a model of phase synchronization of local seismic activity by the

periodic variation of the water level – the reservoir-induced synchronization of

seismicity (RISS).

Generally speaking, RISS presumes a kind of control of local seismic activity by

synchronizing small external periodic influence and hence an increase of the order

in dynamics of regional seismic activity. To reveal these changes in dynamics of

phase-synchronized seismic activity around a large reservoir, field seismic and

water level variation data were analyzed in the present work. Data sets of laboratory

stick-slip acoustic emission, under a weak influence imposed as a model of natural

seismicity influenced by periodic water level variation, also were analyzed.

The evidence is presented showing that an increase of the order in dynamics of

daily occurrence, as well as temporal and energy distribution of earthquakes took
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place around Enguri high dam water reservoir (Western Georgia) during the

periodic variation of the water level in the lake.

It is shown that when the water level variation in a reservoir is close to periodic,

monthly frequency of earthquake occurrence reveals two maximums: in spring and

autumn. There is a clear asymmetry in the seismic response, possibly due to load/

unload response ratio (LURR) effect; the maximal release of seismic energy is

during loading, i.e., in the spring.

16.1 Introduction

It is known that the dynamics of natural systems may often be affected by a small

external influence [Pikovsky et al., 2003; Postnov et al., 2003]. Phase synchronization

is recognized as one of possible mechanisms when poorly correlated small interac-

tions could lead to essential dynamical changes in systems behavior. Phase syn-

chronization has been observed in many biological systems, numerical models

and laboratory experiments [Matcharashvili et al., 2008; Nascimento et al., 2004;

Pikovsky et al., 2003; Postnov et al., 2003]. At the same time, there are rare examples

when the phase synchronization effects in complex environmental processes have

been quantitatively evaluated using modern data analysis approaches.

In the present research we have investigated the character of dynamical changes

in the local seismic activity around a large reservoir under quasi periodic forcing

caused by water level variation during reservoir exploitation.

Generally, the scientific and practical importance of investigation of possible

mechanisms related to the dynamics of influence of high dam water reservoirs on

local earthquakes generation is well acknowledged [Simpson, 1986; Simpson et al.,

1988; Smirnov, 1995; Talvani, 1997]. Since the mid of the past century, the RIS has

been observed at many reservoirs located in seismically active areas. At the same

time, many aspects of changes in seismic process induced by water reservoir remain

subjects of intense scientific discussions and investigations [Assumpção, 2002;

Smirnov, 2005].

Namely, we still lack knowledge on geological, hydrological, or physical fea-

tures of relation between the observed increase of seismic activity and the impact of

water in the lake. Presently this relation is explained by changes in the ambient

stress condition due to the load (unload) of the water or, respectively, an increase of

interstitial pore pressure in the rock matrix beneath the reservoir due to downward

percolation of fluid. It is also supposed that the water reservoir-related changes in

the seismicity of surrounding area (the so-called reservoir-induced seismicity –

RIS), decrease after several years down to the level when even lesser earthquakes

may occur with lower magnitudes comparing to the basic level of local seismic

activity [Assumpção, 2002; Nascimento, 2004]. The problem of underlying dynam-

ics of this decrease of seismic energy release following the initial RIS activity is not

finally resolved.
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In our previous researches based on the field and laboratory data, the evidence

has been presented that the decrease of seismic energy release associated with RIS

may be caused by the quasi periodic variation of the water level in a large reservoir

[Matcharashvili, 2008; Peinke et al., 2006]. Based on the results of field (water

level variation, seismic catalogues) and model laboratory (stick-slip acoustic emis-

sion) data analysis, it was shown that small (compared to tectonic strain) periodic

influence on a complex seismic process may invoke phenomena which we call

reservoir induced phase synchronization of seismicity (RISS).

In the present work we continued investigation of the character of dynamical

changes in local seismic activity accompanying the above-mentioned synchroniza-

tion with the periodic variation of water level. As far as the proposed RISS is

regarded as a weakest form of synchrony – the phase synchronization [Nascimento

et al., 2004], the investigation of dynamics of seismic process under a small

periodic external influence acquires special importance in the light of the above-

mentioned lack of appropriate researches for real natural and technical systems.

16.2 Data and Methods Used

The data sets used in the present research have been collected in 1973–1995 at one

of the largest in Europe (272 m in height) Enguri high dam reservoir located in

Western Georgia, Caucasus (42.030 N, 42.775 E) (Fig. 16.1). Strictly speaking, the

data of daily water level variation in reservoir lake and daily number of

Fig. 16.1 Location of the Enguri high dam and patterns of local seismicity
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Fig. 16.2 (a) Record of the daily water level in the lake of Enguri dam from 1975 to 1993, (b)

daily number of earthquakes, (c) Log of normalized daily released seismic energy
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earthquakes that occurred in the above-mentioned period have been collected

(Fig. 16.2 a and b). The size of the area around Enguri high dam, which can be

considered as prone to reservoir influence, has been estimated based on the

concept of energy release acceleration in the seismically critical regions. Namely,

the minima of curvature parameter C (defined as C ¼ (power-law fit RMS

error)/(linear fit RMS error)) deduced from the Benioff strain EðtÞ ¼ PNðtÞ

i¼1

EiðtÞ1=2
[Bowman et al., 1998] was calculated. Here Ei is the energy of i-th event. Location

of the Enguri high dam reservoir was assumed as a “virtual epicenter of impending

strong earthquake” (for details see [Peinke et al., 2006], where it is shown that the

radius of the area around Enguri high dam, sensitive to the reservoir influence, is

about 90 km). Data sets of daily occurred number of earthquakes and released

daily seismic energy consist of seismic events above representative magnitude

threshold M � 1:6 within this 90 km area for 1973–1995. Besides these daily data,

time series of sequences of magnitudes and time intervals between consecutive

earthquakes (waiting times), unevenly sampled for the same time period and area,

also were analyzed.

The sets of water level variation and seismic data used in the present study are

available at the M. Nodia Institute of Geophysics (Tbilisi, Georgia).

Laboratory data of acoustic emission of stick-slip process have been collected on

the specially developed laboratory setup represented by a system of two roughly

finished basalt plates [Chelidze and Lurmanashvili, 2003; Chelidze et al., 2005]. To

model small external influences on complex stick-slip (model of earthquake gener-

ation) the external faces of plates in our laboratory set up were subjected to periodic

electric (48 Hz) perturbations (with amplitudes varying from 0 to 1000 V). The

impact of this relatively small movement, normal to plate, was superimposed on the

constant dragging force (normalized power of an external sinusoidal forcing is

shown in Fig. 16.3 a). The waveforms of both acoustic emission and the sinusoidal

EM field were digitized at 44 kHz. From the digitized waveforms of acoustic

emission data sets, the time series (catalogs) of power of emitted acoustic energy

were compiled (Fig. 16.3b). Specifically, the power of emitted during stick-slip

acoustic energy was calculated as the area between the acoustic signal curve and the

x-axis during the period of the superimposed external 48 Hz sinusoidal forcing

divided by the time duration of these 2p periods. Additionally, sequences of time

intervals between consecutive maximal amplitudes of acoustic signals (waiting

times) were analyzed.

Besides the characteristics that were formerly described in [Peinke et al., 2006],

the mean effective phase diffusion coefficient D ¼ d
dt

�
D’2
� �� D’h i2� was calcu-

lated as an additional statistical measure of the quality of synchronization between

water level variation and seismicity, as well as between external periodic forcing

and power of acoustic emission.

In order to investigate dynamical changes in analysed processes, Recurrence

Quantitative Analysis (RQA) was used [Marwan et al., 2002; Marwan, 2003; Zbilut

and Webber, 1992]. RQA is especially useful to overcome the difficulties often
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encountered while dealing with nonstationary and rather short real data sets. The

recurrence plots (RP) are defined as:

Ri; j ¼ Yðei � �xi �~xj
�� ��Þ;

where ei is a cut-off distance. YðxÞ is the Heaviside function. A correct choice of

cut-off distance e is one of the main problems of RQA. It is desirable to have e as
small as possible, but the presence of noise always necessitates larger values. There

are several suggestions how to set e correctly [Iwanski and Bradley, 1998; Marwan

et al., 2002; Marwan, 2003; Zbilut and Webber, 1992]. We selected the cut-off

distance as 10% (for waiting times and daily number of earthquakes) and 20% (for

magnitude sequence) of overall mean distance [Belaire-Franch et al., 2002; Marwan,

2003]. As a quantitative tool of complex dynamics analysis, RQA defines several

measures mostly based on diagonally oriented lines in the recurrence plots: recur-

rence rate, determinism, maximal length of diagonal structures, entropy, trend, etc

[Eckmann et al., 1987]. In the present work, the recurrence rate RRðtÞ and
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Fig. 16.3 Results of experiments on stick-slip, which is considered as a good laboratory model for

seismicity, affected by weak external perturbations: (a) Normalized power of the external sinu-

soidal forcing, Ps, superimposed on the constant drag force; (b) normalized power of acoustic

emission of stick-slip events, Pa
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determinism DETðtÞ — the measures based on an analysis of diagonally oriented

lines in the recurrence plot have been calculated [Marwan et al., 2002; Marwan,

2003]. Generally, the recurrence rate RRðtÞ is the ratio of all recurrent states

(recurrence points) to all possible states and is therefore a probability of the

recurrence of a certain state. The ratio of recurrence points forming diagonal

structures to all recurrence points is called the determinism DETðtÞ. The larger

values of RRðtÞ and DETðtÞ indicate the increase in regularity of the investigated

dynamics.

16.3 Results and Discussions

The fact that water level variations in Enguri reservoir lead to distinctive changes in

earthquake generation of local area is evident from Fig. 16.4. Almost uniform

distribution of earthquakes occurrence before water level periodic variation was

replaced by distribution with distinctive maximums in spring and autumn.

As it was mentioned in the previous section, several methods of quantitative

indication of phase synchronization in field and laboratory data have been used. For

example, the results of calculation of phase diffusion coefficient, D [Peinke et al.,

2006], between water level periodic variation and seismic activity around reservoir

are presented in Fig. 16.4. It follows from this figure that during the whole history of

lake construction and exploitation, beginning from the territory flooding (n ¼ 1668

in Fig. 16.2 a) and ending by regular regime (n � 5000), D is indeed minimal for

the time interval of periodic water level variation.

In the laboratory model of seismicity (acoustic emission accompanying stick-

slip process), it was also shown that phase diffusion coefficient D strictly decreases
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when acoustic emission time series are phase synchronized (Fig. 16.6). The same

conclusion follows from Fig. 16.7, showing essential increase of phase synchroni-

zation measure calculated for onsets and maximums of AE.
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Fig. 16.5 Variation of phase diffusion coefficient of phase differences between daily released

seismic energy and water level daily variations, calculated for consecutive sliding windows

containing 365 events, shifted by 365 events (periodic forcing begins from n � 5000)
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Fig. 16.6 Variation of phase diffusion coefficient of phase differences between power of external

sinusoidal forcing, Ps, and power of acoustic emission of stick-slip events, Pa, calculated for

consecutive sliding windows containing 200 events, shifted by 200 events (periodic forcing of

large enough amplitude begins from n � 2000)
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The decrease of seismic energy release shown in Fig. 16.2c which follows

the period of RIS, may be explained by phase synchronization of seismic activity

with quasi-periodic water level variation (it was mentioned above that we name

this effect RISS). RISS observed at Enguri reservoir can be considered as an

example of purposeful man-made influence on complex dynamics of seismic

process.

To have more grounds for such a statement it should be mentioned that accord-

ing to the present understanding the dynamics of earthquake-related processes in

the earth crust is recognized as non random, having both low and/or high dimen-

sional nonlinear structures [Iwanski and Bradley, 1998; Matcharashvili et al., 2000;

Rundle et al., 2000; Smirnov, 2005]. One of the characteristic features of such

processes in close-to-the-critical state is their high sensitivity to relatively weak

external influences. This general property of complex systems acquires special

significance for practically unpredictable seismic processes. Indeed, insofar as we

are not able to govern initial conditions of lithospheric processes, even principal

possibility of controlling dynamics of seismic process has immense scientific and

practical importance (e.g., to modify the release of accumulated seismic energy via

series of small or moderate earthquakes instead of one strong devastating event

using the specific external impact). The way towards understanding such a control

mechanism passes through investigation of dynamics of seismic processes, when a

small external influence leads to phase synchronization.

It is known that nonlinear dynamical systems often respond to such external

influences in a complicated way. One of possible responses is synchronization.

Since Huygens, synchronization is understood as a phenomenon when coupled

nonlinear systems become mutually adjusted. Presently, several types of synchro-

nization are known, e.g., identical, generalized, phase synchronization, etc.

[Calvo et al., 2004]. The phase synchronization between water level periodic

variation and seismic activity, observed in our previous and present researches, is
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recognized as the weakest form of synchrony when interacting nonlinear oscilla-

tors remain largely uncorrelated [Pazo et al., 2003; Rosenblum et al., 1996].

Generally, depending on the strength of coupling, interacting systems may have

different dynamical features [Pazo et al., 2003]. It is most important that contrary

to other forms of synchrony which lead to increase of order in the behavior of

synchronized system, the phase synchronization does not require strong coupling

between the processes involved. This in turn means that the presence of order and

the character of changes in dynamics of phase synchronized system are not

obvious.

This is why we aimed to investigate the character of dynamical changes in

seismic process when phase synchronization with periodic variation of water

level occurs. RQA, often used to detect changes in the dynamics of complex

systems [Iwanski and Bradley, 1998], is the most convenient data analysis tool

for this purpose. As follows from our RQA results, when the external influence on

the earth crust caused by a water reservoir becomes periodic, the extent of regular-

ity of earthquake daily distribution (evaluated as %REC and %DET) essentially

increases (see Fig. 16.8 a, bold line). This result was tested by comparing with the

surrogate data. Averaged results derived from RQA of 20 shuffled (asterisks) and

phase randomized (triangles) surrogates (Fig. 16.8 a), assure that the above-men-

tioned increase of regularity in earthquakes distribution should not be an artefact. It

is important to mention that an influence of increasing amount of water and its

subsequent periodic variation essentially affects also the character of earthquakes

magnitude and temporal distribution (see Fig. 16.8 b). The extent of order in

earthquakes temporal (black columns) and magnitude (grey columns) distribution,

calculated as value of %DET, substantially increases when the reservoir forcing

becomes periodic. Results of %DET calculation of corresponding surrogates are

always less than 50% to the original values (not shown here). It is interesting to

mention that the dynamics of temporal and energetic distributions of earthquakes

changes even under irregular variation of water level, though not so much as under

periodic variation.

The above conclusions regarding the increase of the order in seismic process

under the influence of periodic variation of water level using %DET measure-

ments are confirmed by calculation of other RQA measures (%REC, Entropy,

Laminarity).

As far as real field seismic data sets are short and incomplete, we carried out

similar analysis on the acoustic emission data sets, obtained on laboratory spring-

slider system under periodic electromagnetic (EM) forcing, which simulates the

periodical loading by reservoir. Stick-slip experiments are considered as a model

of a natural seismic process [Johansen et al., 1999; Rundle et al., 2000]. Time

series of the emitted acoustic power during consecutive cycles (2p periods) of

the external 48 Hz periodic forcing of stick-slip process were analyzed as well as

time intervals between consecutive maximal amplitudes of acoustic signals (wait-

ing times). As it is shown in Fig. 16.9 (circles), the extent of order increases both

in energetic distribution as well as in temporal distribution of acoustic emission

when synchronization is achieved (last windows in Fig. 16.8). The averaged
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results of 20 surrogates shown by triangles confirm the conclusion that the

observed changes are indeed related to ordering in dynamics of acoustic emission

under weak external forcing.
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16.4 Conclusions

The dynamics of seismic process during RISS has been investigated. Data sets of

daily water level variation and released seismic energy as well as waiting time and

magnitude sequences were analysed. As a model of natural seismicity, the
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laboratory stick-slip acoustic emission data were also analysed. Methods of phase

diffusion coefficient calculation and RQA were used.

Based on the results of investigation carried out both on field and experimental

time series, we conclude that the order in dynamics of earthquakes’ daily occur-

rence, as well as in earthquakes’ temporal and energetic distributions increases

when water level variations become periodic. Laboratory stick-slip acoustic emis-

sion data confirms the results of field data analysis.
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Chapter 17

Earthquakes’ Signatures in Dynamics of Water

Level Variations in Boreholes

T. Chelidze, T. Matcharashvili, and G. Melikadze

Abstract It is known that variations of water level represent an integral response of

aquifer to different periodic as well as non-periodic forcing, including earthquake-

related strain generation in the earth crust. Quantitative analysis of impacts of

separate components in the observed integral dynamics remains one of the main

geophysical problems. It is especially important for non-periodic processes related

to the earthquake generation, taking into account their possible prognostic value.

We can formulate the problem as a nonlinear analysis of hydrological anomalies

“triggered” by both the earthquake preparation and post-seismic processes.

In the present study, the dynamical complexity of water level variations has been

analyzed. The dependence of dynamics on the presence of periodic components in

the data records (time series) under study was investigated. Modern tools of time

series analysis such as complexity measure and singular value decomposition

technique have been used. Values of Lempel-Ziv complexity of water level records

before and after the Spitak and Racha earthquakes, both original and reconstructed

by singular value decomposition, were analyzed. The main purpose was to study

dynamical response of water level variation to increased seismic activity around

boreholes. Spectral characteristics, Shannon entropy and mutual information of

water level variation time series were calculated. It is shown that most of boreholes

are responding to changes caused by seismic activity, but some are not. This can be

explained by the complexity of geological and stress field structures. Sensitive

boreholes reveal some general features, such as an increase of the order in water

level variability in separate boreholes and a decrease of functional relationship

between water level variations in pairs of different boreholes before a strong

earthquake.
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17.1 Introduction

Generally speaking, the water level (WL) variation in deep boreholes is caused by a

number of different factors. One of the most important factors is a strain change in

the upper Earth crust. In fact, deep boreholes represent some kind of sensitive

volumetric strainmeters, where water level responds to the deformations of about

10�7 –10�8. Hence, it is obvious that the process of water level variations will reflect

also the integral response of aquifer to the earthquake-related strain redistribution in

the Earth crust (Kumpel, 1992; Gavrilenko et al., 2000). The network of water

regime boreholes existing in Georgia allows to create a spatial picture of the strain

field and observe its evolution in the time domain. The retrospective analysis of

materials shows that a characteristic annual course of levels of underground waters

is disrupted in the period of strong earthquakes (Spitak, 1988; Racha, 1991; Java,

1991; and Barisakho, 1992). The area of compression is characterized by under-

ground waters level increasing in comparison to the normal trend, and the area of

dilatation � by its decrease (Melikadze and Ghlonti, 2000). Therefore, investiga-

tion of water level variations may provide additional understanding of the dynamics

of processes related to earthquake preparation in the earth crust (Manga and Wang,

2009). Nevertheless, the problem of relationship between changes in dynamics of

water level variation and strong earthquake preparation still remains practically

unsolved (King et al., 1999).

In the present study we have investigated the dynamics of WL variation in the

network of deep boreholes on the territory of Georgia. The aim of research was to

clarify the character of influence of seismic processes on dynamics of water level

variation. Taking into account practical problems and scientific discussions related

to understanding of seismic processes, investigation of influence of seismic activity

on the dynamics of water level variation is important both from scientific and

practical points of view.

17.2 Methods of analysis

As the water level variation in deep boreholes is caused by a number of endogenous

and exogenous factors, we prepared a special programme for defining the tectonic

component; it calculates the theoretical signal composed of a sum of reduced values

of atmospheric pressure, tidal variations and precipitation. In order to extract the

geodynamical signal, correlation analysis between the real values of WL and the

theoretical signal has been made (Gavrilenko et al., 2000; Melikadze and Ghlonti,

2000). The program gives a possibility to calibrate values of deformation in 10�8

range by comparison of geodynamic signals with tidal variations.

The WL variation data sets of deep boreholes in Georgia have been analyzed

bymodernmethods of nonlinear dynamics. The network of undergroundwater regime

observations was set up in the Caucasus in 1985. Since that time, a network comprising
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50 sub-artesian boreholes of different depths (ranging from 250 m down to 3500 m)

has been functioning in the Caucasus. The Georgian network consists of 10 boreholes

and covers the entire territory of Georgia. The present study is based on analysis of

hourly water level variations time series of 6 boreholes, namely: Lisi (44.45 N, 21.45

E), Borjomi (43.27 N, 41.52 E), Akhalkalaqi (43.34 N, 41.22 E), Ajameti (42.49 N,

42.10 E), Marneuli (44.52 N, 41.26 E), and Kobuleti (41.48 N, 41.47 E) boreholes.

Typical records of hourly water level variations are presented in Fig. 17.1. Depending

on the availability and quality of data, time series of different length were analyzed.

The longest one covers approximately two years (01.03.1990 through 29.02.1992) and

the shortest one covers one month (11.10.1988 through 12.12.1988).

At first we calculated power spectrum as well as the power spectrum regression

exponent (Allegrini et al., 1995; Feder, 1988) of water level time series. In order to

evaluate the character of probability distribution, the Shannon entropy S:

S ¼ �
XN

i¼1

Pi logðPiÞ;

where Pi is the probability of an event to occur within box i, was calculated using

different time-span sliding windows (Kantz and Schreiber, 1997; Schreiber, 2000).

Then, in order to evaluate the strength of functional dependence between water level

variations in different boreholes we used a measure of statistical independence

between two variables, the averaged mutual information (Cover and Thomas, 1991;

Kantz and Schreiber, 1997):

IðTÞ ¼
XN

i¼1

PðxðiÞ; xðiþ TÞÞ log2
PðxðiÞ; xðiþ TÞÞ
PðxðiÞÞPðxðiþ TÞÞ

� �
;

where PðxðiÞÞ and P(x(iþ T )) are, respectively, the probabilities of finding xðiÞ and
x(i þ T) measurements in time series, PðxðiÞ; xðiþ TÞÞ is the joint probability of

finding measurements xðiÞ and xðiþ TÞ in time series, and T is the time lag.

In the present study we analyzed the integral dynamics of water level variability.

Therefore we avoid any linear filtration or signal separation, only nonlinear noise

reduction procedure (Kantz and Schreiber, 1997; Hegger et al., 1999) after zero

mean and unite variance normalization have been carried out.

17.3 Results and discussion

As follows from our analysis, the response of WL variation of analyzed boreholes

to the increased regional seismic activity varies from case to case. Indeed, it is

shown in Fig. 17.1 that the water level change coinciding in time with strong Racha

earthquake is essential for Lisi borehole. At the same time, during the same period,

amplitudes of variation of water level in Akhalkalaki and Kobuleti boreholes are
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rather small or even practically unchanged comparing to the Lisi borehole. This can

be explained by the complex character of stress field in the region (Melikadze and

Ghlonti, 2000).

Before the Spitak event, the infringement period of the background regime

appeared in separate wells at different times and with different intensities: in Lisi

from 25.11.88; in Borjomi from 28.11.88; in Lagodekhi from 28.11.88. First of all,

the infringements are seen on boreholes located in northern part of the structure, in

the zone of strongest compression, and later in the south. As a rule, the character

of anomaly in the compression zone has a positive bay shape (Lisi, Borjomi,

Lagodekhi, etc.), and in the stretching zone — the sawtooth or negative bay

(Marneuli, etc.). The above-mentioned sequence of infringement occurrence can

be caused by directional development of deformation processes.

The same is proved also by the materials of Racha earthquake (29.04.91)

obtained from the boreholes network. The anomalies in hydro-geo-deformation

field divide the Caucasus in two parts and have been precisely fixed before the

event. The division between the zones passed along a deep tectonic fault of sub-

meridian orientation. The zone of largest gradient specified the place of future

disaster, coinciding with the point of junction of the fault.

Deformation processes covered the whole observed territory of the Caucasus.

Despite the complicated geological structure of the territory and different strain-

sensitivity of boreholes, the general tendency of changes is noticed in the under-

ground waters regime. In boreholes located in the compression field, an abnormal

rise of water level is observed (in Akalkalaki from 01.02 by þ10 cm; in Marneuli

from 15.04 byþ25 cm; in Lisi from 02.04 byþ2 m; in Borjomi from 02.04 byþ1 m;

in Lagodekhi from 03.04 by þ50 cm; in Chargali from 10.04 by þ30 cm). The

greatest deformations are in the Lisi borehole. In boreholes located in the stretching

area, the water level decreases: Kobuleti from 20.04 by �10 cm; Gali from 10.04

by �0,5 meters; and Adjameti from 10.04 by �30 cm.

In the stress field, the transitive zone between deformations of different signs

extends along the above-marked deep fault and crosses the epicentral zone, where

the dipole deformation structure is created. Its presence confirms the existing ideas

about the strain distribution in the source area of earthquakes (Fig. 17.10).

In general, the water level variation dynamics before the Spitak earthquake

is also characterized by increased extent of regularity expressed by decreased

Shannon entropy value, though it is not so evident as for the Racha event;

there are still local minima (Fig. 17.3). At the same time, contrary to the Racha

earthquake, here, after the strong event, the dynamics of water level variability

in most cases becomes much more disordered than before: the Shannon entropy

increases.

During the Spitak earthquake preparation period, within several months, a

strong stretching sub-latitude deformation was formed in the future epicenter

area, and a compression area appeared to the north of it. The expanding zone

of stretching, besides the territory of Armenia, covers a part of southern

Georgia (boreholes Marneuli and Akhalkalaki) and western Azerbaijan (borehole

Sheki).
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Within three months, the decrease of water level on the borehole Akhalkalaki

against the annual “background” reached 20 cm, that makes a half of the maximal

amplitude of seasonal fluctuations. On the Marneuli borehole, the decrease was

much larger (up to 50 cm), and almost the whole amplitude of seasonal fluctuation

was leveled by tensile deformation. On the Sheki borehole, the difference was up to

30 cm. In the compression zone, there is located the Borjomi borehole, where

during six months the difference of the level, in comparison to the average, makes

þ1.5 meters, and Lisi, where it is up to þ1 meter. The Lagodechi borehole changes

are of the same order. During some period of time, the intensity increases; at the

critical point of deformation, the lunar-solar tidal variations disappear in the

underground waters, and the impact of barometric pressure disappears too. At this

time, the strong endogenous factors which influence the water bearing horizon

muffle the exogenous ones.

The appearance of anomalies before the Spitak event was distributed in time:

Lisi - from 25.11.88; Borjomi - from 28.11.88; Lagodechi - from 28.11.88; Sheki -

from 4.12.88; Novkhvani - from 4.12.88; Shemakha - from 6.12.88. It is evident

that the anomaly first of all manifests itself in the boreholes located in the northern

part of the structure, in the strongest compression zone, and later on in the south. As

a rule, the anomaly in the compression zone has a positive bay shape (Lisi, Borjomi,

Lagodekhi, Novkhvani, Shemakha etc.) and in the stretching zone it looks like the

sawtooth or negative deviation (Marneuli, Sheki etc.). Thus, there is some regular

pattern of the anomalous field evolution (Fig. 17.11).

All the changes described above are obviously related to the seismic activity,

because in most cases they concur with strong earthquakes. Such a relation is

evident from an analysis of the longest water level variability time series available

for us. In Fig. 17.4, Shannon entropy for time series containing 16300 readings

(01.03.1990 through 29.02.1992) analyzed by two-week span sliding windows are

presented. It is shown that the dynamics of water level variation undergoes clear

changes both before and after strong earthquakes. As it is presented in Fig. 17.4 a,

over about 9-5 month period of time before the strong Racha earthquake, water

level variation in Lisi borehole becomes strongly ordered. The Shannon entropy

value of water level variation noticeably decreases for this period clearly preceding

the strong earthquake. At the same time, immediately before the earthquake (over

30-15 days period) the water level variation became maximally disordered; the

entropy value has substantially increased.

Generally similar is the situation for the long time series of Akhalkalaki borehole

(Fig. 17.4 b), where about 8 months before the Racha earthquake the water level

variation for short time period has minimal (but higher than for the Lisi borehole

and for a much shorter time period) value of Shannon entropy.

Immediately before the strong earthquake, the water level variation in Akhalk-

alaki borehole also became maximally disordered and is characterized by practi-

cally the same extent of Shannon entropy as for the Lisi borehole. At the same time,

the water level variation in Kobuleti borehole does not show the features observed

for the other two boreholes (Fig. 17.4 c), which can be explained by a relatively

large epicentral distance (King et al., 1999).
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Thus, in two out of the three long time series analyzed, the dynamics of water

level variation becomes more irregular two-three weeks before a strong earthquake.

At the same time, it is important to mention that some boreholes may by insensitive

(King et al., 1999) to changes caused by regional seismic activity (see, e.g., the

results for Kobuleti borehole in Fig. 17.4 c).

In spite of the observed differences in absolute values of amplitudes of water

level in different boreholes, the dynamics of variation still reveals some interesting

features which may be related to regional seismic activity. All the water level

variation time series analyzed are characterized by a broadband power spectrum.

By their exponents of power spectrum regression, the process of water level

variation in 20.5-day duration time series (600 data), generally can be attributed

to the coloured type of noise, both before and after strong earthquakes (see, e.g.,

Tables 17.1 and 17.2). The obtained values of power spectrum exponents are

typical for processes where the low frequency events (taking place on long time-

scales) dominate in the total variability compared to the high frequency component

(Pimm and Redfearn, 1988). In this respect, as it follows from Tables 17.1 and 17.2,

there are no significant differences in spectral characteristics of water level varia-

tions during or after strong earthquakes (excluding water level variation in Ajameti

borehole for rhe Spitak and Borjomi borehole for the Racha earthquakes).

Thus, spectral characteristics of water level variability do not react on the level

of regional seismic activity which significantly increased for the analyzed time

period.

In spite of this integral insensitivity, we tried to clarify some details of the fine

dynamical structure of process of interest on the shorter time scales. For this

purpose, the Shannon entropy values of 10-day-span sliding windows of longer

water level variation data sets (including time periods both before and after large

earthquakes) have been calculated. In Fig. 17.2, it is shown that the dynamics of

water level variability on 10-day time scale undergoes noticeable changes both

before and after the Racha earthquake. The same is true for the aftershock of the

Table 17.2 Power spectrum regression exponents of water level variation before and after the

Racha earthquake

Axalkalaki Borjomi Ajameti Lisi

Before �1.81� 0.09 �1.57� 0.08 �1.84 � 0.05 �1.80 � 0.01

After �1.86 � 0.07 �1.79 � 0.05 �1.93� 0.08 �1.82 � 0.03

Table 17.1 Power spectrum regression exponents of water level variation before and after the

Spitak earthquake

Axalkalaki Borjomi Ajameti Lisi

Before �1.59 � 0.08 �1.69 � 0.09 �2.13�0.02 �1.74 � 0.08

After �1.66 � 0.08 �1.83 � 0.03 �1.87 � 0.07 �1.82 � 0.03
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Racha earthquake, M.6.2 Djava (15.06.1991) event. As shown in Fig. 17.2, in

almost all the cases, the Shannon entropy of water level variability approaches

their local extremes before the strong earthquake.
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It is also important to say that on the analyzed time scale and for the tested period

of observation, the WL variation after the strong earthquake comes back to the

background level.

As there are important similarities in dynamical responses of water level varia-

tions for different boreholes to regional seismic activity, we have investigated the

strength of functional dependence between them. For this purpose, we calculated

averaged mutual information, the well known measure of statistical independence

between two variables (Cover and Thomas, 1991; Kantz and Schreiber, 1997). The

mutual information value is the most suitable parameter for these purposes, because

unlike the linear correlation function, it takes into account nonlinear correlations

too (Hegger et al., 1999). It is shown in Fig. 17.5 that the strength of functional

relationship between water level variability in pairs of boreholes before, during, as

well as after strong earthquake undergoes noticeable changes. The water level

variability in different boreholes is maximally de-correlated over about two-to-

three weeks period before the Racha event (mutual information values have their

minima). It is important that this strong earthquake as well as its aftershock is

preceded by brief sharp changes in extent of interdependence of variability in

boreholes.

In most cases, the above-mentioned sharp changes are characteristic for func-

tional interdependence between water level variations in boreholes during seismic

activity related to the Spitak earthquake (see Fig. 17.6). At the same time, the

transition between functionally independent and dependent states are not as sharp

and clear as for the Racha earthquakes. It is interesting that after the Spitak

earthquake the dynamics of WL variation in different boreholes becomes more

functionally dependent than before (values of mutual information increase).

The above-mentioned features of dynamics of water level variations are espe-

cially noticeable for the longest available time series. Indeed, as shown in

Fig. 17.7 a and b, the dynamics of water level variability in Lisi borehole reveals

a clear decrease in the extent of functional interdependence for several months

before the strong earthquake. At the same time, as it was said above, some bore-

holes may be not sensitive to changes caused by seismic activity (King et al., 1999),

e.g., water level variability in Akhalkalaki and Kobuleti boreholes does not reveal

changes (Fig. 17.7 c), which can be explained by the character of regional stress

field during seismic activity.

Before and during Racha and Spitak earthquakes it became possible to monitor

spatial evolution of deformation processes and to define the anomalous zones

relative to the background daily course of underground waters level (Figs. 17.10

and 17.11). This analysis bears information on the seismic event’s approaching

time. In the Racha earthquake, the compression zone anomalies are expressed by

the suppression of tide effects, first of all in the boreholes located in the zone of

the strongest gradient (Lisi - from 10.03. Chargali - from 05.04. Marneuli – from

08.04.) and further on boreholes located to the east, in the deformation zone with

lesser gradient (from 15.04), and later on - to the east on the territory of Azerbaijan

(Fig. 17.10).
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The majority of data confirms the abnormal behavior of WL in boreholes on the

territory of the whole Caucasian region before and after strong earthquakes. The

example of regional effect is the identical behavior of boreholes Lisi and Esentuki,
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where compression processes adjusted the exogenous effects two months before the

Racha event.

In a transitive zone (borehole Adjameti), the strong anomalies were not found.

The presence of complex mosaic structure of deformation is a possible explanation
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Fig. 17.8 Graph of a tidal (the bottom line), atmospheric pressure (the top line) and the under-

ground water level (the middle line) variations in time. Vertical lines show earthquakes occurred in

this period
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of the fact that anomaly at the borehole Oni is fixed only one month before the

events - from 04.04.

In the stretching zone, the deviation from the background is marked as a weak

distortion of the tide effect (borehole Adjameti from 4.04; Gali from 03.04;

Sukhumi - 08.04). On boreholes Akalkalaki and Kobuleti, which are located far

from the epicenter, the amplitudes of barometric fluctuation and tide effects have

been gradually increasing since the beginning of March. According to the North-

Caucasian data, a similar anomaly was marked on the borehole Light-blue Lakes.

Such anomalies are caused by the amplification of aquifer’s reaction to exogenous

processes and easing of horizontal stress due to endogenous processes.

17.4 Conclusions

The dynamics of water level variability is strongly sensitive to the borehole and

earthquake source location. Therefore, not all the boreholes react similarly to the

Fig. 17.10 3-D and 2-D models of evolution of stress field during preparation of the Racha

earthquake of 29.04.1991 (red lines – main Caucasian faults)

Fig. 17.11 3-D and 2-D models of evolution of stress field during preparation of the Spirak

earthquake of 08.12.1988 (red lines – main Caucasian faults)
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changes caused by tectonic/seismic activity in the analyzed region. In sensitive

boreholes, dynamical changes both before as well as after strong earthquakes are

evident. When approaching time of earthquake occurrence, in most of the observed

cases, the water level variability becomes more and more regular comparing to the

preceding, seismically quiet time period. At the same time, the regularity in water

level variability is again distorted immediately prior to the earthquake occurrence.

In spite of observations of seismicity-related dynamical changes in water level

variability, there are essential qualitative and quantitative differences in the dynam-

ics of water level variability in separate boreholes, which supposedly are strongly

dependent on geological and strain field peculiarities of the considered area.
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Chapter 18

Detecting Quasi-Harmonic Factors

Synchronizing Relaxation Processes:

Application to Seismology

Otar Lursmanashvili, Tamar Paatashvili, and Lev Gheonjian

Abstract Investigations conducted during the last 20-30 years demonstrate some

very deep, fundamental regularity in the statistics of earthquakes’ time and space

distribution that lead to the concept that the earthquake phenomenon is a system-

defined complex of interacting events.

In the final stage of earthquake preparation, the epicentral area becomes sensitive

to weak global disturbances such as tides, geophysical disturbances caused by solar

activity, and variations of Earth rotation rate. One can consider the earthquake

source as an analogue of nonlinear relaxation oscillator, storing the energy during

dozens or hundreds of years. The “discharge”, i.e., an earthquake, happens suddenly,

when the stress on the fault reaches the critical value. Close to this limit, the

epicentral area becomes sensitive even to weak external disturbances. The additional

stresses caused by varying external factors contribute to premature “discharge” of

relaxation oscillator, i.e., earthquake. In seismically active regions, varying external

factors may operate as synchronizers of earthquake release moments.

Investigation of synchronizing effect of external factors in a certain region

requires development of special methods, because the data of earthquakes are

presented as unequally-spaced sequences of phenomena.

According to the synchronization theory of relaxation process, discharges (earth-

quakes) mainly happen when influencing external factor is in a certain phase. It is
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possible to determine these moments by means of analysis of discharge recurrence

and forms of distributions of event occurrence times’ moments. The distribution

corresponding to the period of an external synchronizing factor demonstrates a

characteristic gap or modulation. All external influencing periodicities may be

determined by an analysis of distributions for all virtual forcing periods and detec-

tion of typical characteristic forms.

A simple model describes the principles of the used approach. The stress PðtÞ ¼
Po þ bðt� t0Þ increases monotonically and undergoes the influence of external

small stress with amplitude, frequency and phase denoted by a; �o; and f , respectively.
The resulting stress and the critical stress Pm, determining the discharge moment,

which are connected by the equation P0 þ bðt� t0Þ þ a cosð�otþ f Þ ¼ Pm, will

be obtained. The initial moment of energy integration process is unknown. If

one examines a set of N different stress accumulation starting moments separated

by a step e, one will obtain N equations of type bðt� t0 þ enÞ ¼ Pm � P0�
a cosð�otþ f Þ; n ¼ 0; 1; 2; . . .N: The solutions of equations correspond to relaxa-

tion oscillator discharge moments for stress processes, started at different time

moments. Solutions obviously reveal the “gaps”, or time intervals when discharges

are forbidden, and also demonstrate that the width of the gap depends on the stress

growth velocity. The examination of the distribution of phases of discharges inside

the period of external forcing shows that strong and slowly growing earthquakes

triggered by a stable external forcing demonstrate wider gaps. Fast growth of stress

gives birth to narrow gaps or modulation of distribution. An analysis of distribu-

tions for different forcing frequencies and appearance of gaps or modulation is the

way for distinguishing different external synchronizing factors.

All of these considerations, and the validity of “gap” method for the discovery of

external synchronizing factors, are tested and confirmed in model laboratory

experiments on electromagnetic and mechanical control of slip, namely, laboratory

experiments with spring-slider system.

In order to investigate the influence of external factors triggering earthquakes,

the “gap” method was applied to Caucasus earthquakes. The results reveal a set of

regularities for strong earthquakes (the earthquakes withM> 6 that occurred during

the last 100 years). The spectrum of recurrence periods of earthquakes contains

19 components which have clear astronomical and geophysical meaning; spectral

distribution of time series of such earthquakes indicates that release mechanism of

tectonically prepared strong earthquakes correlates with different tidal effects - the

positional relationship of Sun, Earth and the Moon and periodicities of their orbital

movement.

18.1 Introduction

We consider the synchronization as the origin of frequency-phase dependence

between physically slightly coupled periodic processes. Synchronization of oscil-

lators is a ubiquitous phenomenon in many areas of science and engineering
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(Blechman, 1971; Pikovsky et al., 2003). Synchronization phenomenon depends on

the intrinsic mechanism of oscillation as well as on the nature of coupling; it has

been thoroughly studied for a variety of oscillators.

Relaxation oscillators have properties quite different from that of non-relaxation

ones. Relaxation oscillators need just a few or even one cycle to synchronize, and

the synchronization is stable in the presence of nonuniformity of natural frequen-

cies. Mathematical description of relaxation oscillator synchronisation process is

simple, vivid, and was solved more than half a century ago in engineering (Gulyaev,

1939; Vitkevich, 1945; Meerovich and Zelichenko, 1954). One can consider the

earthquake as an analogue of nonlinear relaxation oscillator, storing the energy

during tens or hundred of years. The “discharge” of energy, or the earthquake event,

happens suddenly, when tension in rocks exceeds friction resistance on the fault.

We consider the synchronization of a series of earthquakes (as a series of relaxa-

tion processes) by an external quasi-harmonic factor, as the origin of dependence

between time series of events and a well-expressed phase of external periodic

processes. Close to breaking limit, earthquake epicentre becomes sensitive even

to weak external disturbances. The additional tension caused by varying external

factors contributes to earlier “discharge” of relaxation oscillator, i.e., release of

earthquake. In seismically active regions, varying external factors operate as syn-

chronizers of earthquake release moments. It should be mentioned that from the

point of view of energetics, the earthquakes, represented as relaxation oscillators,

contain a quite wide dynamic range. Within this range, different external factors

may affect phenomena that belong to different energetic classes.

In seismology, the application of methods detecting quasi-harmonic factors

which synchronize the relaxation processes is highly actual in view of earthquake

prediction problem and contradictions in the results of the study of external factors.

Such phenomena include tides, a set of geophysical disturbances caused by solar

activity and variations of Earth rotation rate (tides, solar activity, as well as

peculiarities of Earth orbital movement participate in this phenomenon). Some of

researchers have found an external synchronizing influence (Allen, 1956; Hoffman,

1961; Tamrazian, 1968; Ryall et al., 1968; Heaton, 1975; Polumbo 1986; Dietrich,

1987; Weems and Perry, 1989; Grasso, 1992; Nikolaev, 1994; Tarasov et al., 1999;

Lursmanashvili, 2001; Perfettini and Schmittbuhl, 2001; Custodio et al., 2002;

Sobolev and Ponomarev, 2003; Scholz, 2003; Wang et al., 2004), others refuse it

(Knopoff, 1964; Simpson, 1967; Shlien, 1972; Vidale et al., 1998; Beeler and

Lockner, 2003).

Our objective is to comprehend rigorously the concept and routine methodology

widely used in electrical engineering and apply it to the study of possible earth-

quake synchronization processes in the Caucasus region (Lursmanashvili, 1973;

Lursmanashvili et al., 1987a, 1987b). This distribution is caused by the presence of

migratory waves of plastic deformation. Recent investigations (Ulomov et al.,

2006; Ulomov et al., 2007) confirm the importance of this factor of seismicity

and also point to the process of preparation of strong earthquakes in the Caucasus.

There is strong reason for further development of the concept to study this region

as an object of nonlinear dynamics (Matcharashvili, Chelidze, and Javakhishvili,
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2000). Laboratory model experiments confirm the idea of applying the synchroni-

zation concept to seismicity (Chelidze and Lursmanashvili, 2003; Chelidze et al.,

2005, 2006).

18.2 The model of relaxation oscillator synchronization

We present a simple model describing the principles of relaxation oscillator syn-

chronization approach we used. Let the charge of oscillator, or stress in the

epicentre of earthquake, PðtÞ, increase monotonically and undergo the influence

of external small stress (or forcing) with amplitude, frequency and initial phase

denoted a; �o ¼ 2p=T; ’, respectively. T represents the period of external oscillat-

ing stress. The resulting stress may be represented as

PcðtÞ ¼ PðtÞ þ a sinð�otþ ’Þ: (18.1)

The discharge stage of oscillator cycle will start at the moment when the

resulting stress will reach the breaking point of medium Pm, or

PcðtÞ ¼ PðtÞ þ a sinð�otþ ’Þ ¼ Pm: (18.2)

Assume that at the final stage of earthquake preparation, from the time moment

t ¼ t0 and corresponding stress P0, the stress increases linearly as

PðtÞ ¼ bðt� t0Þ: (18.3)

As a result of this assumption, we have the expression:

P0 þ bðt� t0Þ þ a cosð�otþ ’Þ ¼ Pm; (18.4)

or the equation describing the relation between time-dependent linearly increasing

stress and harmonically oscillating external stress:

bðt� t0Þ ¼ Pm � P0 � a cosð�otþ ’Þ: (18.5)

The initial moment of energy integration process is unknown. If we examine a

set of N different start moments, separated by step e, and, at least, covering the time

interval equal to the period of external oscillating stress, we will obtain N equations

bðt� t0 þ enÞ ¼ Pm � P0 � a cosð�otþ ’Þ; n ¼ 0; 1; 2; . . .N; (18.6)

and solving them, we will be able to determine all possible time moments of

discharges caused by external factor and positioned inside the time interval

corresponding to the period of external factor. The distribution of these moments
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inside the period corresponding to external oscillator time parameters, will repre-

sent the synchronizing properties of the phenomenon described by this model.

Figure 18.1 shows the external oscillating stress represented by the right side of

equation (18.6), and the family of lines represented by the left side. They corre-

spond to linearly increasing stress processes started at different time moments in the

past and progressing inside the time period of external stress near the final stage of

relaxation oscillator evolution. It is obvious that the curve and line intersection

moments correspond to possible discharge moments, in our case – time moments of

earthquakes. One can obviously see the time “gap”, or a set of time moments when

discharges are forbidden. It is also obvious that the width of the gap depends on the

stress growth velocity. In general case, the widths is determined by the velocity

relatively to external factor frequency. If one examines the distribution of earth-

quakes inside the period of external factor, it turns out that strong, slowly and long-

time growing earthquakes triggered by a stable external factor, will demonstrate

wider gaps. Fast growth causes narrow gaps or modulation of distribution. There-

fore, an analysis of discharge time distributions inside the forcing periods for

different frequencies and detection of gaps or modulation — is the way to the

discovery of external synchronizing factors which trigger discharges.

Figure 18.2 demonstrates distribution of discharge time moments inside the

period of forcing and the corresponding solutions of equations. Let us introduce

normalized variable t ¼ t=T and examine the distribution of roots of equation

(18.6). The equation will be transformed to a simple form

Aðtþ n=NÞ ¼ C� cos 2pt; n ¼ 0; 1; 2; . . .N; (18.7)

TIME

S
T

R
E

S
S

Fig. 18.1 The diagram demonstrating the principle of earthquakes synchronization by external

forcing
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where A ¼ b=a�o is the relative velocity of stress growth and C ¼ ðPm � P0Þ=a
is the constant determining the relative breaking point of relaxation oscillator.

Parameter A determines the inclination of lines represented in Fig. 18.3. The figure

illustrates four synchronization cases with different values of A. The corresponding
distributions are presented in Fig. 18.4. The increase of A causes a decrease of the

width of gap where oscillator discharges are forbidden and causes a change of the

corresponding distribution form, but the information on synchronizing factor is

retained even in the case when the gap vanishes.

The presented model shows the way to studying and discovering external factors

synchronizing earthquakes. It is useful to examine the general diagnostic diagram,

representing the roots of equation (18.7) for a set of values of parameter A. This
diagram, shown in Fig. 18.5, demonstrates all the above-mentioned properties of

synchronization. The increase of A causes deterioration of synchronization condi-

tions. The gap area of the diagram – the root-free area � decreases to zero, and for

A> 1 a discharge may occur for any value of phase. In this case, the information on

external synchronizing factor remains in the roots’ density variation and the

minimum of density corresponds to the value of phase equal to p=2.
It should be mentioned that, in reality, any seismoactive region should be

examined as a set of relaxation oscillators with different physical properties and

being on different stages of evolution. The set of external harmonics, in reality
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Fig. 18.2 Distribution of relaxation oscillator’s discharge moments inside the forcing period T
and the corresponding solutions of equations
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Fig. 18.3 Four relaxation oscillator synchronization cases with different values of relative

velocity parameter A
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Fig. 18.4 Relaxation oscillator discharge time moment distribution inside the period of external

synchronizing harmonic oscillator
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quasi-harmonic synchronizers, is complicated too. The problem became very

complicated and demands careful analysis and interpretation of data.

18.3 The compliance of synchronization model with statistical

requirements of data processing

The study and detection of external synchronizing factors demands data dis-

crimination and processing. The approach for the statistical estimation of the

reliability of detected gaps in discharge time moment distributions, or their modu-

lation, should be examined and proved as the necessary condition permitting to use

the developed model.

Our case is typical for the application of approach which uses binomial distribu-

tion. Expression (18.8) determines the probability to obtain n equal results in the set
of n probations:

Pðn; nÞ ¼ n!

n!ðn� nÞ! p
nqn�n: (18.8)

where p is the probability to obtain the desired result in one probation, and

q ¼ 1� p is the probability to obtain undesirable result. If the relative gap width
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Fig. 18.5 Diagnostic diagram of relaxation oscillator synchronization. Note the forbidden area
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inside the period is DT=T, one can estimate the probabilities to hit in gap and out-

side the gap. The corresponding probabilities for one probation are DT=T and

1� DT=T. If we examine the case of accidental gap existence, it means that for

all n probations we obtain equal results for hitting in 1� DT=T width interval. This

means that n ¼ n and expression (18.8) becomes simpler:

PðnÞ ¼ ð1� DT=TÞn: (18.9)

For example, if n ¼ 30 and DT=T is equal to 0.1, 0.2 and 0.3, the corresponding

probabilities of accidental appearance of gaps are 0.04, 0.001 and 0.00002. In this

way, the gap method proves reliability of developed synchronization. The appear-

ance of wide enough gap reliably reveals the existence of external synchronizing

factor.

Very fine tuning of virtual forcing frequency allows delineation of gaps in

earthquake distribution and determines the probability of accidental appearance

of a gap.

18.4 The study of strong earthquake synchronization

Investigations conducted during the last 20–30 years demonstrate some very deep,

fundamental regularity in the statistics of time and space distribution of earthquakes

that lead to the conclusion to study the earthquake phenomenon as a system-defined

complex of connected and interacting events (Knopoff, 1996). The external syn-

chronization influence phenomena come to light by the retro-statistical processing

of earthquake catalogue.

The investigation of synchronizing effect of external factors in a certain region

requires development of special methods, because catalogue data of earthquakes

are presented as unequally-spaced sequences of phenomena. One of these methods,

the “gap” method, has been examined above. From the point of view of energy,

earthquake phenomena cover quite wide dynamic range. Within this range, differ-

ent factors should affect phenomena that belong to different energetic classes.

In order to investigate the influence of external factors, the gap method was applied

to the catalogue of Caucasus earthquakes. The results pointed to a set of regularities

for strong earthquakes — the earthquakes with M> 6 that occurred during last

100 years (Lursmanashvili, 2001; 1973; 1987). Thirty strong earthquakes became

sensitive indicators of tectonic activity of the Caucasus. Investigations lead to

the following conclusions that make it possible to apply the gap approach to

analysis of seismic processes in the Caucasus: the Caucasus reveals strong regula-

rities in recurrence ofM> 6 earthquakes; the spectrum of recurrence of earthquakes

contains 19 components, which have clear astronomical and geophysical sense;

spectral distribution of time series of such earthquakes clearly indicated the fact

that release mechanism of tectonically prepared strong earthquakes depends on

tidal phenomena — on positional relationship of Sun, Earth and the Moon and
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periodicities of their orbital movement. Table 18.1 presents the information on 9

components with clear astronomical sense (Lursmanashvili, 2001).

The parameter “Gap width” represents the estimate of the period significance.

The sense of this parameter is described above. Spectral components of the set of

30 earthquakes with high precision manifest values of astronomical periods. The

probability of accidental distribution of 30 time moments of earthquakes in such a

way is practically zero.

As another evidence of tidal synchronization of earthquakes, we also present in

Figs. 18.6 and 18.7 two distributions demonstrating distinct gaps corresponding to

synchronization with long periods. The first is the distribution of angular distances

of the Sun from Ascending Node on the celestial sphere for the time moments of

30 strong earthquakes, the second is the distribution of angular distances of the

Sun from perigee on the celestial sphere for the time moments of the same earth-

quakes. They demonstrate the causal relationship of the Caucasus strong earth-

quakes with tides. The gap method reveals the 346-day period, which corresponds

to astronomical Dragon Year — the period between two transits of the Sun across

the node of Lunar orbit. Figure 18.6 demonstrates the distribution inside this period.

Figure 18.7 demonstrates the distribution inside the revealed synchronization

Table 18.1 Spectral components of quasi-harmonic synchronizing factors

Information on Spectral Components Comments

Period

(days)

Gap width

(DT=T%)

Astronomical sense Frequency

calculation

formula

27.303 34.2 Lunar sidereal month S Rotation

frequency of:

Moon – s,
Perigee – p,
Earth – h,
Ascending

Node – N

13.65 25.2 1=2 of Lunar sidereal month 2s
27.5449 27.9 Lunar anomalistic month s-p
29.513 30.0 Lunar synodical month s-h
347.93 31.6 Eclipse year hþN
173.56 25.7 1=2 of eclipse year 2(hþN)
411.18 30.2 Anomalistic year h-p
3177 21.5 Lunar orbit perigee revolution period P
1588.8 29.8 1=2 of Lunar orbit perigee revolution

period
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Fig. 18.6 The distribution of

angular distances of the Sun

from Ascending Node on the

celestial sphere for strong

earthquake time moments,

reveals the 346 day period,

which corresponds to

astronomical Dragon

Year — the period between

two transits of the Sun across

the node of Lunar orbit
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period corresponding to 411 days. With this period, the Sun crosses the line of

apsides of the Lunar orbit.

It is important to note that the spectrum of investigated phenomena gives a

possibility to reconstruct time series well suited for prediction, i.e., gives possibi-

lities to solve the inverse problem. With the help of time characteristics of revealed

external factors, the time intervals when influence of exogenous factors increases

(in other words the intervals of increased probability of release of prepared earth-

quakes) can be explicitly determined. During the last century, there were about 100

time intervals with high probability of strong earthquakes, and 32 strong events

occurred in these intervals. We guess that in the remaining 68 cases epicentres were

not prepared tectonically.

The spectral components obtained were used to synthesise the sequence of time

moments with favourable conditions for earthquake triggering during the 19-th

century. The time moments obtained coincide with all six strong earthquakes with

M � 6.

The tidal factors presented in Table 18.1 influence the precession of the Earth

rotation axis. Celestial mechanics also describes the very small contribution in

precession caused by planets. Our analysis reveals a set of combination frequencies

pointing possible planetary influence. Table 18.2 represents these frequencies. The

2468
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Fig. 18.7 The distribution of

angular distances of the Sun

from perigee on the celestial

sphere for strong earthquake

time moments, reveals

synchronization period

corresponding to 411 days.

The Sun crosses the line of

apsides of Lunar orbit with

this period

Table 18.2 Combination frequencies of possible planetary synchronizing influence

Period

(days)

Gap width

(DT=T%)

Frequency calculation

formula

Comments

39.58 24.9 s-Me Rotation frequency of:

Moon – s,
Earth – h,
Mercury – Me
Venus – V,
Mars – Ma,
Jupiter – J,
Saturn – St
Uranus – U

43.92 28.3 2Me
44.41 27.1 (s-h)-Me
175.14 30.1 (Me-V)-(h-Ma)-(J-U)
181.6 25.7 (Me-V)-(hMa)-(J-St)
184.73 25.8 (Me-V)-(h-Ma)-J
606.86 32.3 (V-h)-(St-U)
635.38 29.8 (V-h)-(J-St)
662.83 23.2 (V-h)-(J-U)
674.43 20.0 (V-h)-J
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frequency calculation formulas are derived by the use of algorithm similar to that

used by Melchior (1976) for decoding the spectrum of Luni-Solar tides. It seems,

the fact of the sensitivity to this very small influence may be a reflection of

complicated resonant phenomena in the Solar System (Grebennikov and Ryabov,

1978). The explanation and discussion of this result is beyond the objectives of this

paper, but it possibly points out that the synchronisation mechanism is tightly

connected with the variations in the Earth’s rotation axis direction.

18.5 The study of synchronization of weak earthquakes

As pointed out in section 18.2, an increase of parameter A, determining the relative

velocities of synchronization process, causes a decrease of the width of gap where

the oscillator discharges are forbidden and causes a change of corresponding distri-

bution form. The information on synchronizing factor persists in the corresponding

histogram even in the case when the gap vanishes and may be used for the study of

weak earthquakes synchronization. If one examines the values of possible external

synchronizing periods with a sufficiently small step, it is possible to obtain the

whole family of possible histograms. The study of their forms provides a possibility

to discriminate histograms that are different from accidental and close to harmonic

or pulse form. The difference from the accidental distribution may be determined

by w2 criterion. The harmonic or pulse form may be modeled and fitted to the histo-

gram by selection of its parameters and calculation of covariance as the measure of

model and histogram similarity. The obtained phase and covariance values deter-

mine the amplitude and therefore all model parameters of the histogram represent-

ing the distribution inside the period of required external forcing.

This approach was tested by the use of Caucasus earthquakes data. We select the

time interval from 1962 to 1987. During this period, the observational network of

seismographs operated in Georgia was unified and equipped with homogeneous

instrumental system. The objective was to study a possible tidal influence on weak

earthquakes in the Caucasus region.

We selected two sets of events: 102 earthquakes with M> 4:7 and 62 earth-

quakes with M> 5:0. These sets are optimal for the study. There is sufficient

amount of data and the energy growth velocity optimal for tidal influence study

in the range of periods from 25 to 30 days. Four Lunar months – synodical, sidereal,

anomalistic and draconic, with the corresponding periods of 29.53, 27.32, 27.55 and

27.21 days, represent the tide components in the selected period range.

The results of study are presented in Figs. 18.8 (M> 4:7) and 18.9 (M> 5:0).
Upper diagrams represent the covariance obtained by sinusoidal and pulse forms

and the middle one the amplitude of the same forms. The lower diagram represents

modified estimation of the non-randomness obtained by w2 criterion. For non-

random periods, the usual estimation gives values close to 1, and their perception

is not convenient. We used the value of 1=Pw2 — a modification which helps to

represent the result more distinctly. It points to the number of random distributions
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in which the given distribution may appear accidentally only once. The logarithmic

scale of 1=Pw2 represents the result better. For example, for the 29.53 day period, we

have the value of estimation parameter equal to 6. It means that in million

accidental distributions, a distribution corresponding to the synodical tide period

is obtained only once. This statistical approach provides the compliance of syn-

chronization model with the statistical requirements of data processing for the case

of gap absence.

Some gaps and the corresponding periods in covariance diagrams of Figs. 18.8

and 18.9 are not related to the tides. The increase of M and the estimation of the

non-randomness obtained by w2 criterion separates the periods related to the tides. It
is clear that the quakes of M> 5:0 represented in Fig. 18.9 better reveal the tidal

synchronization.

The period of 29.53 corresponds to the period of Lunar phase recurrence, or to

the period of highest tide recurrence, which is the sum of Lunar and Solar tidal

waves. One can determine the phase of tide for which the frequency of earthquakes

is maximal. The distribution of angular distances between the Moon and Sun,

corresponding to earthquakes moments and expressed in celestial coordinates, is

presented in Fig. 18.10. This distribution demonstrates the 2-5 day shift from the

moment of a new moon.
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Fig. 18.8 Covariance obtained by sinusoidal and pulse forms, the amplitude of the same forms

and modified estimation of the non-randomness obtained by w2 criterion for Caucasian earthquakes
of magnitude M> 4:7
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18.6 Synchronization in model laboratory experiments

All these considerations and the validity of “gap” method for the discovery of

external synchronizing factors are tested in model laboratory experiments

(Chelidze and Lursmanashvili, 2003, see also Chapter 8, this book). It is well
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Fig. 18.9 Covariance obtained by sinusoidal and pulse forms, the amplitude of the same forms

and modified estimation of the non-randomness obtained by w2 criterion for Caucasian earthquakes
of magnitude M> 5.0. The increase of M separates the periods related to the tides and reveals the

tidal synchronization better
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known that the slider-spring system displays stick-slip behavior. The goal of

experiment was to prove the possibility of a nonlinear control of slip.

The approach and the model described in section 18.2 fully explain the synchro-

nization phenomenon observed in stick-slip experiment. The core of this approach

is using the existence of some critical parameter in the system that causes its

relaxation. Then a small periodic impact can synchronize the relaxation of the

whole system with the period of impact, if some force regularly drives the system

close to the critical state.

The results obtained confirm in principle the possibility of controlling the regime

of the natural seismicity, at least in the temporal domain, by relatively weak natural

(magnetic storms, tides) excitations.

18.7 Discussion

The results described in sections 18.3 and 18.4, in particular the discovery of

synchronization of Caucasus earthquakes caused by tides, testify to the tidal

triggering and the effectiveness of the used method. In discussion of tidal trigger-

ing, we should point to all difficulties and remember that tidal impact in a point A
with geographical latitude ’ is determined by complicated gravitational potential

WðAÞ, which represents the set of spherical harmonics corresponding to different

types of tidal impact:

WðAÞ ¼ 3

4
Gm

r2

c2

��
cos2 ’ cos2 d cos 2H þ sin 2’ sin 2d cosH

þ 3ðsin2 ’� 1

3

��
sin2 d� 1

3

��
; (18.10)

where G is gravitational constant, m the mass of tide-making body (the Moon or

the Sun), r the distance from A to the center of the Earth, c the distance between the
Earth and tidal body centers, and d and H are the declination and hour angle. The

first term describes semidiurnal sectorial tidal wave, the second the diurnal tesser-

ial, and the third thelong period zonal wave.

The Lunar tide is approximately twice stronger than Solar. In any geographical

point we have a complicated picture as the sum of two components with different

values of d and H. The tidal force projections on vertical and two horizontal

directions may be calculated as:

FV ¼ 3

2
GmM

r

c3
cos2’cos2dcos2Hþsin2’sin2dcosHþ3

�
sin2’�1

3

��
sin2d�1

3

�� �

FNS¼ �3

4
GmM

r

c3
sin2’cos2dcos2H�2sin2dcos2’cosH�3sin2’

�
sin2d�1

3

�� �

FEW ¼ 3

2
GmM

r

c3
cos2dcos’sin2Hþsin2dsin’sinH
� �

; ð18:11Þ

where M is the mass of Earth.
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Long-period tidal waves modulate short-period ones. The interaction of waves

also complicates the tidal impact picture. There is one important consideration

(Kartvelishvili & Kartvelishvili, 1996) concerning the time of maximal tidal impact

on the seismic focus — the tidal impact depends on the mutual directions of tidal

force and stress vector in the epicenter of the earthquake under preparation, and the

time of tide maximum may differ from the time of maximal impact. Some epicen-

ters may be less sensitive or even insensitive to tidal impact. The fact that we reveal

tidal synchronization also points out that we have a regular tendency in distribution

of earthquakes mechanisms.

If we consider only tidal forces, formula (18.5) may be written as:

biðt� t0Þ ¼ Pmi � P0i � FLðtÞ cos giL � FSðtÞ cos giS i ¼ 1; 2; . . . ;N; (18.12)

where N is the number of developing sources, bi the stress linear increase velocity
in i-th epicenter, Pmi � P0i ¼ Ci the stress necessary for this epicenter discharge

and accumulated from the time moment t0. FLðtÞ and FSðtÞ are the modules of

Lunar and Solar tidal forces, and giL and giS determine mutual disposition of tidal

and stress vectors.

As we have mentioned above, the epicenters with low stress accumulation

velocity, low values of bi coefficients in the system of equations (18.12), better

“respond” to the external forcing.

The time moments of earthquakes and the corresponding values calculated for

tidal components are known. The tidal impact on seismic region will be revealed

at maximal values of tidal forces and their sum, and as better as close to each

other are the directions of stressess responsible for earthquakes. For the Caucasus

region, the maximal value of tidal force sum reveals the 29.53 day period for weak

earthquakes.

18.8 Conclusions

It follows from this investigation that the analysis of earthquakes time series by the

approach presented here, and determination of external synchronization impact,

gives a possibility to estimate the background for long-term prediction of time

intervals in which the probability of earthquake occurrence in the Caucasus region

is relatively high. Similar investigations with the same approach for other seismic

regions will be very useful for the creation of general picture of earth seismicity

tidal response. Knowledge about spatial distribution of earthquakes in a given

region should be also analysed for predicting probable location of earthquake

initiation and monitoring of variations and abrupt disturbances of different geo-

physical quantities, required for making short-term prediction.

The investigation presented here has the objective to make a contribution to

basic research on earthquake long-term and short-term prediction, valid for further

practical application.
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Chapter 19

Stacked Analysis of Earthquake Sequences:

Statistical Space–Time Definition of Clustering

and Omori Law Behavior

P. Tosi, V. De Rubeis, and P. Sbarra

Abstract The definition of the aftershocks sequence is still a debated topic. We

propose here a study of the spatial and temporal variation of the earthquakes

clustering and decay rate. We used five different seismic catalogues, characterized

by specific spatial and magnitude ranges. They are respectively: the world cata-

logue for a global analysis, and Greek, Japanese, Californian and Italian regional

catalogues in order to investigate different seismo-tectonic settings.

A stacking procedure has been applied to characterize a typical sequence

behavior which allowed the evaluation of changes over time intervals (t) and

distances (r) from the mainshock. The resulting decay rate pðr; tÞ has values

comparable to the modified Omori law: pðr; tÞ ’ 1 at small distances and inside

specific time ranges. It is then possible to define sequences into a particular spatial

range varying in time and reaching a maximum distance of 50-100 km. In a first

time period (until 10-20 days), the slope p is small before reaching the typical

sequence value (p ’ 1). The slope of the first period increases with increasing

threshold magnitude. This dynamics highlights the importance of looking at proper

space-time limits when analyzing the seismic decay after the mainshock. Different

decay domains have been evidenced: they depend on the threshold magnitude of the

catalog and are characterized by smooth variations in space.

Catalogues have been analyzed under the fractal dimension aspect as related to

the space and time clustering. Even in this case a pattern behavior of seismicity has

been evidenced. After the occurrence of an event there is a space-time domain

inside which the subsequent events are temporally related. Inside this domain the

seismic sequences drive temporal occurrences. Concerning the space correlation

dimension, results reveal the presence of a space clustering of hypocenters for

distances greater than few tenth of km and for time intervals less than hundreds

of days. At short distances, hypocenters are time clustered but there is no space

P. Tosi (*), V. De Rubeis, and P. Sbarra

Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

e-mail: patrizia.tosi@ingv.it

V. de Rubeis et al. (eds.), Synchronization and Triggering: from Fracture to Earthquake
Processes, GeoPlanet: Earth and Planetary Sciences 1,

DOI 10.1007/978-3-642-12300-9_19, # Springer-Verlag Berlin Heidelberg 2010

323



clustering. This zone is probably due to the activity of seismicity on the seismic

fault.

Relations between decay rate domains and clustering domains in space and time

are evidenced and discussed.

19.1 Introduction

Earthquakes are the answer to tectonic load; stress is redistributed through the

earthquakes, causing the aftershock sequence to develop in space and time. Trig-

gering of earthquakes may act at several spatial and time scales. Short-range

triggering (distance of the order of seismic fault size) is due to stress changes

induced by the main-shock and related aftershocks in a recursive process.

Long-range triggering is a more difficult aspect to explain. Experimental evi-

dences as well as physical explanations or synthetic earthquakes generation were

proposed. They include analysis for geothermal sites, Coulomb-stress modifica-

tions, the application of declustering algorithms, multiple stress transfer, cellular

automata behavior and the consideration that the crust is in a critical state

[Tosi et al, 2008; Hill et al., 1993; Husen et al., 2004; Brodsky et al., 2000; Godano

et al., 1999; King et al., 1994; Stein et al., 1994; Stein, 1999, Melini et al., 2002;

Marzocchi et al., 2003; Ziv, 2006; Bak and Tang, 1989]. Other authors have

attempted to find space-time relations of seismicity in order to study long-range

relations for both global and regional catalogues.

Influence ranges of the order of 100 km from mainshocks were recognized [e.g.,

Gasperini and Mulargia, 1989; Reasenberg, 1999]. For highest magnitude earth-

quakes of the last century, Lomnitz (1996) found a very long-range correlation.

Marsan et al. (2000) investigated space-time relations of scale-invariance of seis-

micity. They pointed out that space and time should not be considered separately,

but rather the spatial correlation structure is evolving in time. They considered

migration of aftershocks away from the mainshock in a form of a sub-diffusive

process.

Several questions arise from the complexity of results and interpretations.

Should the long range triggering be considered rare and peculiar to specific situa-

tions? Is the sequence extension in space constant, with the same parameters of the

Omori law? Is a sequence the result of multiple overlapping Omori functions with

shifted starting time, produced by remarkable aftershocks, as suggested in Ogata

et al. (2003)? Does aftershock duration scale with the mainshock size? Ziv (2006)

posed the question and found no correlation with magnitude of mainshock. What is

the origin of c Omori parameter? Is it physical or due to catalogue incompleteness?

What is the role of static and dynamic stress triggering?

To address these questions it is important to consider the spatial and temporal

aspects of the seismic process simultaneously, in a combined way. In this work we

apply a method of analysis [Tosi et al., 2008], suitable to point processes and based
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on space-time correlations among earthquakes. Like the previously cited authors,

we do not separate seismicity into main and aftershocks.

19.1.1 Data

A set of seismic catalogues has been chosen, covering different space and time

ranges. Although there is strong scale invariance in seismic activities, geophysical

constrains are present, like crustal thickness and the dimension of plate boundaries,

as well as instrumental limits, like time length of dense seismic station networks,

completeness of recordings etc.

In total, five different seismic catalogues have been analyzed. They have been

firstly investigated on their completeness. A reliable method to assess completeness

magnitude threshold is based on the application of the Gutenberg-Richter (GR) law

to magnitude distribution. It is given by: logN ¼ a� bM, where N is the cumula-

tive number of events with magnitude bigger or equal to M, a and b are constants.

Coefficient a is related to the seismic activity level, while b is a quite robust

parameter with values near 1. Assuming the validity of this law, a clear anomaly

of the distribution at lower magnitudes may indicate a lack of completeness in the

selected time range. After cutting earthquakes below the threshold magnitude

and for a depth greater than 50 km, the resulting catalogues are here summarized

(Figure 19.1).

l Global CMT catalogue (Centroid Moment Tensor, Harvard). It covers a time span

from January 1980 to December 2004, threshold magnitude of completeness is 5.5

and maximum recorded magnitude is 9.5. The number of events is 13268.
l Greece catalogue (Geophysical Laboratory, University of Thessaloniki). It cov-

ers a time span from January 1964 to September 2007, threshold magnitude of

completeness is 4.5 and maximum recorded magnitude is 7.5. The number of

events is 5865.
l Japan catalogue (selection of USGS NEIC catalogue). It covers a time span from

January 1980 to October 2008, threshold magnitude of completeness is 4.5 and

maximum recorded magnitude is 8.3. The number of events is 6698.
l South California catalogue (Southern California Earthquake Center, relocated

by Shearer et al., 2005). It covers a time span from January 1984 to December

2002, threshold magnitude of completeness is 2.0, but for this analysis we cut the

catalogue at 2.5. Maximum recorded magnitude is 7.3. The number of events is

23576.
l Italy catalogue (INGV CSI 1981-2002 and ISIDE 2002-2009). It covers a time

span from January 1988 to May 2009, threshold magnitude of completeness is

2.0, but for this analysis we cut the catalogue at 2.5. Maximum recorded

magnitude is 5.8. The number of events is 11860.

These catalogues represent seismic activity over very different tectonic settings

and spatial scales. The global catalogue reflects the activity of the whole planet,
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Fig. 19.1 Seismic catalogues used to analyze earthquake data. They are respectively:

a) Global CMT (Centroid Moment Tensor, Harvard). January 1980 - December 2004, 13268

events. b) Greece (Geophysical Laboratory, University of Thessaloniki). January 1964 – September

2007, 5865 events. c) Japan (selection of USGS NEIC catalogue). January 1980 – October 2008,

6698 events. d) South California (Southern California Earthquake Center, relocated by Shearer

et al., (2005) January 1984 – December 2002, 23576 events. e) Italy (INGV CSI 1981-2002 and

ISIDE 2002-2009), January 1988 – May 2009, 11860 events
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focusing to the highest magnitudes events. This catalogue is suitable to study the

activities related to high energy stress-strain relation due to global plate tectonics.

South California catalogue is a good example of regional transcurrent tectonics

seismic activity. Moreover, this catalogue derives from a good seismic network,

showing a very low completeness magnitude threshold. Among the other regional

catalogues, we chose the Italian region, which presents a seismic activity of medium

magnitudes, coming from heterogeneous tectonic settings, recorded by a good

seismic network too. Greece and Japan catalogues list medium-high magnitudes

events; dominating tectonics is plate subduction.

19.2 Space–Time Fractal Dimensions of Seismicity

The above-described catalogues have been analyzed under their space and time

clustering properties through the fractal dimension analysis. We apply the correla-

tion integral method, defined as:

CðlÞ ¼ 2

NðN � 1Þ
XN�1

i¼1

XN

j¼iþ1

Y l� xi � xj
�� ��� �

;

where l is the metric of the space considered, N is the total number of elements, x is

the coordinate vector and Y is the Heaviside step function. If CðlÞ scales like a

power law, CðlÞ / lD, the correlation dimension D can be defined by

dðlÞ ¼ d logCðlÞ
d log l

; D ¼ lim
l!0

dðlÞ:

Experimentally, the self-similarity can best be found by plotting the local slope d
of logCðlÞ versus log l. From this we can extend the correlation integral to a

combined space-time approach. It is defined as:

Ccðr; tÞ ¼ 2

NðN � 1Þ
XN�1

i¼1

XN

j¼iþ1

Y r � xi � xj
�� ��� � �Y t� ti � tj

�� ��� �� �
;

where the metrics of space and time are considered simultaneously (Tosi et al.,
2008).

Similarly to correlation dimension we define the time correlation dimension Dt

and its local slope dt as:

dtðr; tÞ ¼ @ logCc r; tð Þ
@ log t

; DtðtÞ ¼ lim
t!0

dtðr; tÞ;
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and the space correlation dimension Ds with its local slope ds as:

dsðr; tÞ ¼ @ logCc r; tð Þ
@ log r

; DsðrÞ ¼ lim
r!0

dsðr; tÞ:

The results show a statistical property of the different seismic catalogues that can

be interpreted as an average behavior of seismic events following each earthquake.

Figure 19.2 shows the local slope of time correlation dimension for all consid-

ered catalogues. The overall pattern is quite similar for all catalogues. The light

grey domain, corresponding to low dt values, identifies time clustering. This means

that, after the occurrence of each event, there is a space-time domain inside which

the subsequent events, probably belonging to the seismic sequence, have tempo-

rally clustered occurrences. The light grey domain has the greatest spatial extension

at 10 days for the global catalogue, while for regional one it reaches its maximum at

–1 –0.5 0 0.5 1 1.5 2 2.5 3

Log Time

–1 –0.5 0 0.5 1 1.5 2 2.5 3

Log Time

–1 –0.5 0 0.5 1 1.5 2 2.5 3

Log Time

–1 –0.5 0 0.5 1 1.5 2 2.5 3

Log Time

–1 –0.5 0 0.5 1 1.5 2 2.5 3

Log Time

1

1.5

2

2.5

3

3.5

4

Lo
g 

D
is

ta
nc

e

1

1.5

2

2.5

3

Lo
g 

D
is

ta
nc

e

1

1.5

2

2.5

3

Lo
g 

D
is

ta
nc

e

1

1.5

2

2.5

3

Lo
g 

D
is

ta
nc

e

1

1.5

2

2.5

3

Lo
g 

D
is

ta
nc

e

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

Fig. 19.2 Local slope dt of time correlation dimension Dt for all considered catalogues (cata-

logues correspond to the same position as Fig. 19.1). Time correlation dimension ranges from 0 to

1 as indicated on the graduated bar
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around one month. During the days after this time, the clustering domain spatially

shrinks, but it is still present after more than 8 years (less for global CMT

catalogue). Dark grey to black domains identify a relatively high time correlation

dimension. At distances and time interval corresponding to this domain, the earth-

quakes occurrence approaches a random process, denoting the disappearance of the

sequence or the overlapping of a sufficient number of independent sequences. This

happens for large distances and long time intervals as expected, but even shortly

after the reference earthquake (less than 10 days).

Comparing the analyzed catalogues, we note the different extension of the

clustering domain, reaching distances ranging at its maximum 130 km (for Italy)

to 500 km (for global catalogue). To test the effect of different magnitude threshold

we cut the Italian catalogue minimum magnitude to 2, 2.5, 3, and 3.5, respectively.

The comparison of time correlation dimension is shown in Figure 19.3. From the

figure it is evident how the clustering domain reaches longer distances as magnitude

threshold increases, even if this effect is partially blurred by the increase of noise,

due to the reduced number of data. On the other hand, catalogues of Greece and

Japan were analyzed with the same threshold (m ¼ 4.5); catalogues of California

and Italy have the threshold at m ¼ 2.5. For this reason the explanation of the

difference between members of each couple (sharing the same magnitude thresh-

old) could be linked to the strongest earthquake recorded in each catalogue, that is:

m ¼ 9.5 for global CMT, m ¼ 7.5 for Greece, m ¼ 8.3 for Japan, m ¼ 7.3 for

South California and m ¼ 5.8 for Italy.

Concerning the space correlation dimension ds (Figure 19.4), results reveal in

each catalogue the presence of a space clustering of hypocenters for distances

1

1.5

2

2.5

3

Lo
g 

D
is

ta
nc

e

1

1.5

2

2.5

3

Lo
g 

D
is

ta
nc

e

–1 –0.5 0 0.5 1 1.5 2 2.5 3

Log Time

–1 –0.5 0 0.5 1 1.5 2 2.5 3

Log Time

1

1.5

2

2.5

3

Lo
g 

D
is

ta
nc

e

–1 –0.5 0 0.5 1 1.5 2 2.5 3

Log Time

1

1.5

2

2.5

3

Lo
g 

D
is

ta
nc

e

–1 –0.5 0 0.5 1 1.5 2 2.5 3

Log Time

Fig. 19.3 Effects of different magnitudes threshold in local slope dt of time fractal dimension for

the Italian catalogue. Minimum magnitudes are respectively (from top left to down right, as

reading succession) m> 2:0, m> 2:5, m> 3:0, and m> 3:5
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greater than few tenth of km and for time intervals less than hundreds of days. For

longer time intervals, the disappearance of spatial clustering reveals the seismic

structures related to preexisting tectonic settings, such as plate boundaries for

bigger scales examples; after a sufficiently long time evolution, seismicity will

tend to fill these seismic structures up to dimensions of thousands of kilometers. At

short distances, ds values mark clearly the presence of a zone, around each source,

where hypocenters are not space clustered, but they tend to fill the space. The pairs

of events, belonging to this domain, are characterized by time clustering, as showed

before, for time intervals longer than 10 days. There is no clear demarcation of this

near-source domain, but when fixing the limit of clustering at as example ds ¼ 1:5,
it appears that the area with high correlation dimension is evolving with time. The

separation line defines a radius, slowly growing in time, within which seismic

events are spatially more uniformly distributed. This finding is in agreement with

the accepted migration of aftershocks away from a mainshock [Tosi et al., 2008].
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Even in this case the overall pattern is very similar for the various catalogues, but

the mean extension of the near source domain varies from 8 km (California and

Italy), 16 (Greece and Japan) to 40 km (global CMT). It is interesting to note that

the analysis of Italian catalogue at increasing magnitude threshold (Figure 19.5)

does not produce significant differences in the pattern. Only the increase of noise is

evident. Even maximum earthquake magnitude does not seem to drive ds pattern.
Probably the variation of the near-source extension is due to tectonic setting, as

Japanese, Greek and global seismicity are dominated by big thrust earthquakes,

whereas Italian and Californian have more direct and strike-slip faults.

19.3 Omori law analysis

This analysis is focused on time decay of seismic activity. Traditionally this

analysis is dedicated to the study of seismic sequence produced by a mainshock

[Omori, 1894]. Later Utsu (1961) defined the empirical, so-called modified Omori

law (MOL):

nðtÞ ¼ k

ðcþ tÞp ;

where nðtÞ is the number of earthquakes per day, t is time from the mainshock, k
reflects the seismic productivity and c is the “time offset” parameter; pmodifies the

decay rate and typically falls in the range 0.7–1.5.
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Fig. 19.5 Effects of different magnitudes threshold in local slope ds of space fractal dimension for

the Italian catalogue. Minimum magnitudes are respectively (from top left to down right, as

reading succession) m> 2:0, m> 2:5, m> 3:0, and m> 3:5
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The common approach is to take a big event as a mainshock. After having

defined a suitable area, comprising generally the seismogenic fault, all related

events following the mainshock are grouped inside a proper time unit (generally

one day) and counted.

We are interested in analyzing space-time relations of earthquakes triggered by

the main event. Assuming that every event can be a mainshock of its own sequence,

we count all succeeding events as a function of both time and space distances. This

space-time count is repeated for all N events and the result is a stacked generalized

count:

nðr; tÞ ¼ 1

NSDt
�
XN�1

i¼1

XN

j¼iþ1

Y R1ð Þ �Y R2ð Þ �Y T1ð Þ �Y T2ð Þð Þ;

where r and t represent, respectively, space and time distances from parent events.

S is the area normalization coefficient:

S ¼ p r þ Dr
2

� �2

� r � Dr
2

� �2
 !

;

Dr and Dt represent the size of, respectively, space and time windows for the events

counting. R1, R2, T1 and T2 are given by

R1 ¼ r þ Dr
2

� �
� xi � xj
�� ��;

R2 ¼ xi � xj
�� ��� r � Dr

2

� �
;

T1 ¼ tþ Dt
2

� �
� ti � tj
�� ��;

T2 ¼ ti � tj
�� ��� t� Dt

2

� �

and Y is the Heaviside step function.

It is worth to note that, taking into account different spatial distances, the number

of event pairs at bigger distances is simply increased according to the geometrical

expansion of the area embedding the events. To account for this effect, the number

of succeeding events is given normalized by the area of the circular annulus at a

given distance.

The result of the Omori count is given at three distance ranges, same for

all analyzed catalogues. Specifically, these ranges are: 3–10 km, 10–32 km and

32–100 km. In Figure 19.6, the results are displayed, respectively, for all five

catalogues.
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As expected, the closest range shows a quite similar behavior to the standard

Omori count, as made from a single main event. This feature has two specific

meanings: (a) the standard Omori count reflects the number of events decay at small

distances from the epicenter, as defined by the size of the seismic fault; (b) the
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Fig. 19.6 Log-log plot of the number of events for time (day) and space (km2) unit (stacked

Omori count) at three distance ranges, for all analyzed catalogues (refer to Fig. 19.1). Distance

ranges are: 3–10 km (upper curves), 10–32 km (middle curves) and 32–100 km (lower curves)
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stacked generalized count is in agreement with the standard Omori law in terms of

c and p parameters.

The behaviour of the stacked Omori counts, for each catalogue, can be influ-

enced by specific factors like: number of events, range of magnitudes present into

the catalogue (defined as mmax � mmin), minimum magnitude of catalogue, tectonic

settings of seismic area.

We can note common features in all five catalogues.

l A first part (times from parent shock occurrence until 1-10 days) in which the

decay rate is very low. This feature is usually modelled with the presence of the

c constant into the MOL. The California catalogue shows it in the clearest

fashion. This is due to the very low minimum completeness magnitude limit,

reflected by the highest number of events per unit area (slightly less than 10-1

events/km2 for the closest range). This first portion is present in all catalogues

for all distance ranges (sole exception is represented by 32-100 km range

(crosses) for the Italian catalogue).
l A medium part of power law decay typical of the Omori law and represented by

the exponent p. Time validity of this behavior is from 1 to 100 days for world and

Greek catalogues; from 1 to 300 days for Californian, Italian and Japanese

catalogues. Values of p constant are into the interval 0:87 <p < 1:36 for closest

range, 0:76 < p < 1:12 for intermediate range and 0:24 < p < 0:68 for longest

distant range.
l A last part where the decay is very low and normalized number of events is the

lowest and quite similar for all three spatial ranges.
l The behavior of two spatial ranges closest to the mainshock is similar, while the

farthest range is quite different: this feature applies to all five catalogues.

Spatial ranges discrimination of Omori analysis gives a further element to

establish the length of a sequence: in fact a sequence lasts until the rate decay of

events is present. Moreover, we can assume that a sequence lasts until there is a

marked difference of number of events per unit area at different distance ranges.

This is due to the fact that the presence of aftershocks is higher close to the

mainshock. In all five analyzed catalogues we can note that the difference of

number of events per unit area is biggest at times closest to mainshock occurrence,

and this difference tends to reduce in time. In fact, aftershocks are more concen-

trated near and at closest times to the mainshock. In time, the Omori law behavior

appears to be linked to spatial distances from the mainshock and it is followed by a

change of rate right before the end of the sequence.

An interesting result comes out from the comparison with the analysis of

temporal fractal dimension as a function of space and time. The temporal clustering

caused by an event lasts for longer time in respect to the end of the Omori power

law (see Figure 19.2). This suggests a different definition of a seismic sequence, in

dependence on the analyzed aspects: time, space and occurrence rate. In fact, while

the rate decay pertains to the seismic activity increase due to sequence triggering,

the temporal clustering takes account of occurrences disposition in the time axis.

The low time fractal dimension indicates time clustering of events. When the
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seismic sequence is characterized by an increased seismic activity, it is easily

recognizable. On the other side, time clustering in periods of normal or slightly

high background activity may indicate that the influence of the mainshock is still

present. This influence probably reflects the persisting of triggering by parent

events: the seismic activity, although at background rates, is not random, as it is

still driven by main-aftershocks relations embedded inside background activity.

Time clustering is due to clusters of events and voids caused by seismic shadows, as

frequently observed at long time scales [Marsan, 2006].

19.4 Conclusions

Seismic sequences have been traditionally defined in relation with the mainshock,

hence enclosing the succeeding events at limited spatial ranges. In general, all

events located in the seismic main fault have been considered related to the

mainshock. Such a definition allowed the early discovery of the decay law by

Omori [Omori 1894, Utsu 1961], which is a simple and interesting statistical

definition of a sequence. In this work we have proposed an extension of the

definition of a sequence by the introduction of space-time constrains for the analysis

of decay rate and clustering. To allow for such space-time analysis we have

operated a stacking procedure: it consisted in considering every event as a main-

shock and merging all subsequent seismic events in a stacked sequence. Davis and

Frohlich (1991) with Nyffenegger and Frohlich (1998) already applied the stacking

approach. We have used and analyzed five different seismic catalogues character-

ized by various space and magnitude ranges, spanning from a global catalogue to

regional ones.

Stacked approach, in the constitution and analysis of sequences, allowed a more

stable statistical analysis, as required by the added spatial distinction. Results are in

agreement with the standard Omori p values but more articulated. In fact, the slope

of the decay rate is small in the first time period after the mainshock (first 10–20

days) before the typical Omori values are reached. The behavior is influenced by

spatial distance: the p values are smaller when the distance from parent shock

increases. After a period of hundreds of days, the typical Omori p values disappear

in favor of little or no decay. This happens in conjunction with the disappearence of

differences as a function of distance. We interpret this as a closing of the typical

sequence period.

The space-time fractal dimension was analyzed as a mean behavior, maintaining

the same approach of stacking. After the occurrence of an event, there is, for all

investigated catalogues, a space-time domain inside which earthquakes are time

clustered, denoting close relationships among the events. Strong space clustering is

present but only at distances bigger than seismic faults size, otherwise space fractal

dimension is around 1.5, in agreement with fault fractal dimension. The time

clustering domain denotes that in a particular space-time range after the occurrence

of seismic events, earthquakes are not random.
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Interestingly, sequences maintain time clustering longer than the sequence end

indicated by the stacked Omori law result. The time clustering evidences that the

influence of the parent shock is still present even if seismicity is at a background

rate. This method could thus be used to detect seismic shadows after the end of the

sequence.

The space-time analysis of seismic sequences, allowed by stacking of seismicity

and considering every event as a mainshock, shows a more detailed analysis of

seismicity under triggering effects: the results are in agreement with standard

analysis of sequences and add a deeper insight into the topic. Influence area of

seismic activity, related to a mainshock, is dynamically sized, giving further

constrains to sequence modeling.
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Chapter 20

Dynamical Changes Induced by Strong

Electromagnetic Discharges in Earthquakes’

Waiting Time Distribution at the Bishkek Test

Area (Central Asia)

T. Chelidze, V. de Rubeis, T. Matcharashvili, and P. Tosi

Abstract From 1 August 1983 to 28 March 1990 at the Bishkek electromagnetic

(EM) test site (Northern Tien Shan and Chu Valley area, Central Asia), strong

currents, up to 2.5 kA, were released at a 4.5 km long electrical (grounded) dipole

by discharge of MHD or large batteries. This area is seismically active and a

catalogue with about 14100 events from 1975 to 1996 has been analyzed. The

seismic catalogue was divided into three parts: the first, 1975–1983, with no EM

experiments; the second, 1983–1988, during EM experiments; and the third part,

1988–1996, after the experiments. Qualitative and quantitative time series non

linear analysis was applied to waiting times of earthquakes to the above three

sub-catalogue periods. Qualitative and quantitative methods used include iterated

function systems (IFS), Lempel-Ziv algorithmic complexity measure (LZC), corre-

lation integral calculation, recurrence quantification analysis (RQA), and Tsallis

entropy calculation. General features of temporal distribution of earthquakes

around the test area reveal properties of dynamics close to low dimensional non-

linearity. Strong EM discharges lead to the increase of extent of regularity in

earthquakes’ temporal distribution. After cessation of EM experiments, the earth-

quakes’ temporal distribution becomes much more random than before the experi-

ments. To avoid non-valid conclusions, several tests were applied to our data set:

differentiation of the time series was applied to check the results that were not

affected by non-stationarity, followed by surrogate data approach in order to reject

the hypothesis that dynamics belongs to the colored noise type. Small earthquakes,

below the completeness threshold, were added to the analysis in order to check the

robustness of the results.
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20.1 Introduction

The dynamics of seismic process is far from being clearly understood and modeled;

under a multidisciplinary approach during last years, several aspects have arisen

showing that seismicity is certainly not a pure random process. Magnitude, waiting

time and spatial distribution of earthquakes present features of self-similarity or

fractal character, as evidenced by several authors [Turcotte, 1997; De Rubeis et al.,
1993]. On the other hand, seismicity cannot be deterministically explained although

efforts to show its quasi periodic character have been numerous. A direct conse-

quence of this situation is the almost complete impossibility to precisely predict

earthquakes [Main, 1999; Geller et al., 1997].
In the last years, nonlinear dynamics has offered several tools to analyze and

characterize the seismicity. These qualitative and quantitative tools may help to

distinguish between a purely random process and a complicate process driven by a

finite, limited set of rules. The enormous gap between “simple” linear deterministic

models and random, complicate and strongly unpredictable processes seems to be

filled with these new analytical tools. The aim is to render tractable, in a certain

way, phenomena and data, otherwise not clearly depicted.

In the present work, the influence of strong EM discharges on earthquakes

temporal distribution has been investigated.

Experiments on triggering effect of MHD (magnetohydrodynamic) soundings

on the microseismic activity of the region have been performed in 1975–1996 by

IVTAN (Institute of High Temperatures of Russian Academy of Sciences) in the

Central Asia test area [Tarasov, 1997; Tarasov et al., 1999; Jones, 2001]. During

these experiments, deep electrical sounding of the crust was carried out at the Bishkek

test site in the years 1983 to 1989. The source of electrical energy was MHD

generator, and the load was an electrical dipole of 0.4 Ohm resistance with electrodes

located at a distance of 4.5 km from each other. When the generator was fired, the

load current was 0.28–2.8 kA, the sounding pulses had durations of 1.7 to 12.1 s, and

the energy generated was mostly in the range of 1.2–23.1 MJ [Volykhin et al., 1993].

Evidences of some relationships between EM discharges and seismic activity

have been pointed out under a statistical aspect and in a time range of days after

EM experiments [Tarasov, 1997]. Here the general dynamical aspect is considered.

A good seismic catalogue of the area has been available well before, during and well

after this period. A simple causal relationship between the two processes is not clearly

evident. Relations appear to be present but the data noise is also relevant. It is useful to

investigate if the seismic dynamics, in periods before, during and after EM experi-

ments is influenced by the introduction of strong electric current into the ground.

20.2 Methods

Investigation was performed according to general scheme of time series nonlinear

analysis [Abarbanel et al. 1993; Sprott and Rowlands, 1995; Kantz and Schreiber,

1997; Goltz, 1998; Hegger and Kantz, 1999]. In general, data analysis can be
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performed firstly under a more qualitative and visual approach and successively a

more quantitative methodology can be applied.

Qualitative approach includes a visual inspection of the reconstructed phase

space. Namely, p-dimensional phase space from the scalar time sequences was

reconstructed by the method of time delay [Packard et. al, 1980, Takens, 1981].

According to Takens theorem, it is possible to catch the essential dynamical

properties of a system by a reconstruction of its phase space by only one variable.

Two- and three-dimensional phase space portraits, encapsulating the essential

dynamical properties of the analyzed complex process, were used as qualitative

tests. Other qualitative tools have also been used, such as Iterated Function Systems

(IFS) [Jeffrey, 1992] and Recurrence Plots (RP) [Eckman et al. 1987].

Generally, the recurrence analysis is a graphical method designed to locate

hidden recurring patterns and structure in time series. The recurring pattern (RP)

is defined as:

Ri; j ¼ Yðei � �xi �~xj
�� ��Þ; (20.1)

where ei is a cut-off distance (often e ¼ 0�1s,with s the standard deviation), and

YðxÞ is the Heaviside function. According to Eckman et al. (1987), the values one

and zero in this matrix are commonly visualized as black and white. The black

points indicate the recurrences of the investigated dynamical system revealing their

hidden regular and clustering properties. By definition, RP has black main diagonal

(line of identity) formed by distances in matrix compared to each other. In order to

understand RP it should be stressed that it visualizes distance matrix which repre-

sents autocorrelation in the series at all possible time (distance) scales. As far as

distances are computed for all possible pairs, elements near the diagonal on the RP

plots correspond to short range correlation, whereas the long range correlations are

revealed by the points distant from the diagonal. Hence, if the analyzed dynamics

(time series) is deterministic (ordered, regular), then the recurrence plot shows short

line segments parallel to the main diagonal.

Qualitative patterns of unknown dynamics presented as fine structure of RP are

often too difficult to be considered in detail. Therefore, one uses a modern

quantitative method of analysis of complex dynamics for RP approach (Recur-

rence Quantitative Analysis or RQA) [Zbilut and Webber, 1992]. RQA is espe-

cially useful to overcome the difficulties often encountered dealing with

nonstationary and rather short real data sets. As a quantitative tool of complex

dynamics analysis, RQA defines several measures mostly based on diagonally

oriented lines in the recurrence plots: recurrence rate, determinism, maximal

length of diagonal structures, entropy, trend etc. In the present work, recurrence

rate RRðtÞ and determinism DETðtÞ measures, based on an analysis of diagonal

oriented lines in the recurrence plot, have been calculated [Weber and Zbilut,

1994; Marwan et al., 2002].

Generally speaking, the recurrence rate RRðtÞ is the ratio of all recurrent states

(recurrence points) to all possible states and is therefore the probability of the

recurrence of a certain state. Stochastic behavior causes very short diagonals,

whereas deterministic behavior causes longer diagonals.
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The ratio of recurrence points forming diagonal structures to all recurrence

points is called the determinism, DETðtÞ. DETðtÞ is the proportion of recurrence

points forming long diagonal structures consisting of all recurrence points. Again,

stochastic and heavily fluctuating data cause none or only short diagonals, whereas

deterministic systems cause longer diagonals.

An Iterated Function System (IFS) is an iteration of Hutchinson operator for

every finite set of functions in some space which maps a set of points to another set

of points. If Hutchinson operator is repeatedly applied to a compact set, in the limit

it will render the unique attractor of the IFS [Peitgen et al., 1992]. For the purpose of

time series analysis, IFS attractors can be used as a qualitative measure of self

similarity of analysed dynamics (the greater the order in time series, the more

regular the structures in the IFS attractor). We use the IFS as an additional qualita-

tive tool for detection of hidden structure in the analysed time series [Sprott and

Rowlands, 1995].

These tests enable to accomplish first qualitative visual inspection of unknown

dynamics and helps to uncover general properties of analyzed process. Qualitative

analysis allows revealing possible existence of specific attractors, e.g., strange ones

which point to the deterministic chaotic behavior.

Among others, for quantitative analysis of earthquakes dynamics, correlation

integral calculation of the reconstructed phase space of temporal distribution has

been performed [Abarbanel et al., 1993; Kantz and Schreiber, 1997; Hegger and

Kantz, 1999]. This approach is based on the idea of correlation sum. Correlation

sum CðrÞ of set of points in the vector space is defined as the fraction of all possible
pairs of points which are closer to each other than a given distance r. The basic

formula useful for practical application is

CðrÞ ¼ 2

NðN � 1Þ
XN

i¼1

XN

j¼iþ1

Yðr � xi � xj
�� ��Þ; (20.2)

whereYðxÞ is the Heaviside step function,YðxÞ ¼ 0 if x < 0 andYðxÞ ¼ 1 if x � 0,

xi � xj
�� �� is the Euclidian norm, i ¼ j being excluded. For fractal systems, if the

time series are long enough and r is small, the CðrÞ / rnrelationship is correct.

Commonly, such a dependence is correct only for the restricted range of r values,
called the scaling region. Correlation dimension n or d2 is defined as

n ¼ d2 ¼ lim
r!0

logCðrÞ
logðrÞ : (20.3)

In practice, d2 value is found from the slopes of logCðrÞ versus log r curves for
different phase space dimensions. The correlation dimension of unknown process is

the saturation value of d2, which does not change by increasing the phase space

dimension.

In order to reduce possible spurious conclusions about considered dynamics, noise

reduction and surrogate testing methodologies were used [Kantz and Schreiber,1997;

Hegger and Kantz, 1999].
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The entropy calculation according to Tsallis [1988, 1998] has also been used as a

measure of the complexity in earthquakes time distribution

Sq ¼ k
1

q� 1
ð1�

Xw

i¼1
pqi Þ; (20.4)

where pi are the probabilities of the separate configurations (W) and q is intrinsic

parameter with a value greater than zero which demonstrates the correlation

between subsystems.

Besides, as an additional quantitative test for relatively short time series, Lempel-

Ziv’s algorithmic complexity measure (LZC) was calculated [Lempel and Ziv, 1976].

The LZC is based on the transformation of the original one-dimensional time series

into a finite symbol sequence and is defined as CLZ ¼ lim
N!1

sup
LðnÞ
N , where N is the

length of original time series, and LðNÞ � NwðNÞðlogb NWðNÞ þ 1Þ is the total length
of encoded sequence, with NwðNÞ � N being the total number of code words. Being

one of the tools for nonlinear analysis of time series, LZC is especially suitable

for relatively short real data sets because it is not so demanding as concerns the

time series length as other methods [Zhang and Thakor, 1999; Matcharashvili and

Janiashvili, 2001].

20.3 Data and Analysis

In the present study nonlinear analysis has been performed on about 14100 time

intervals (in seconds) between earthquakes contained in the IVTAN catalogue

(1975–1996). In the original catalogue, the energy of the events was expressed as

energy class, which we converted to magnitude using the following relation:

m ¼ E� 4

1:8
(20.5)

where m is magnitude and E is the energy class.

Completeness of the catalogue was investigated first by considering the reali-

zation of the Gutenberg-Richter relationship at low magnitudes: departure from

a straight line was interpreted as a lack of completeness at low magnitudes. As a

result, the catalogue was considered complete, under the sole magnitude aspect,

for m � 1:7. The Gutenberg-Richter b-value was found to be equal to 0.83 with

a reasonably good fit. Earthquakes with magnitude higher than 6 seem to show

behavior typical of characteristic events.

A second test was oriented to check the time completeness. As is well known,

a catalogue’s completeness changes with time, usually as a result of improving

seismic-network performance (e.g., by increasing the number of stations), leading

to greater magnitude sensitivity. The completeness analysis was performed by

employing the method of Mulargia et al. (1987). The method consists in separating
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all events into magnitude classes and plotting separately the cumulative number of

events versus time. Assuming that during the considered time interval the seismic-

ity had a constant rate, the flat behavior in the beginning of the time period may be

due to a lack of data; this is normal for low-magnitude ranges.

Only for magnitudes higher than 2.0 our catalogue is complete over the entire

time period (number of earthquakes n ¼ 5297). If a lower magnitude limit is

desired, the time period from year 1980 is more appropriate (Fig. 20.1). As a result

of the analysis performed, a relatively complete catalogue was obtained with a

lower magnitude threshold of 1.7 from the year 1980.

For the present study, the catalogue has been analyzed under the time aspect,

specifically on inter-event (waiting) times. The catalogue subset of waiting times

was used according to the completeness analysis, i.e., the whole time span and

m>2.0. Successively, in order to confirm the results and to test their robustness, all

data used were selected by the same procedure.

20.4 Results and discussion

In Fig. 20.2, the results of qualitative analysis of waiting times sequences above the

mentioned threshold are presented. The results of IFS clumpiness test presented in

Fig. 20.2 a, c, e, [Jeffrey, 1992; Sprott and Rowlands, 1995] and the recurrence plot

analysis in Fig. 20.2 b, d, f [Zbilut andWebber, 1992] reveal that after the beginning

of the experiments some structure in plots is visible, which points to the increased

amount of functional interdependence in earthquake temporal distribution.

As to the quantitative approach, the variation of correlation dimension vs.

dimension of phase space where the reconstructed dynamics is embedded (embed-

ding dimension) is presented in Fig. 20.3. The integral time series (5297 time inter-

vals) for the whole period of observation (1975-1996) containing time intervals

sequences between all events above the threshold reveals clear low correlation

dimension (d2 ¼ 1.22 � 0.43) (asterisks). Shorter time series were also considered.

Namely, 1760 waiting times data before (1975-1983), 1953 waiting times during

MHD experiments (1983-1988) and 1584 waiting times of the period after experi-

ments (1988-1992). Time series before and especially during MHD experiments

also have low correlation dimension (d2< 5). Namely, d2¼ 3.83� 0.80 before and

d2 ¼ 1.04 � 0.35 during experiments. On the other hand, in opposite to what was

mentioned above, after cessation of experiments (Fig. 20.3, triangles) correlation

dimension of waiting times sequences noticeably increases (d2 > 5.0), exceeding

low dimensional threshold (d2 ¼ 5.0). This means that after termination of experi-

ments the extent of regularity or extent of determinism in process of earthquake

temporal distribution decreases. The considered process becomes much more

random both qualitatively (Fig. 20.2. e, f) and quantitatively (Fig. 20.3, triangles).

For clarity, results for random number sequence are also shown in Fig. 20.3

(diamonds).

The found low correlation dimension of waiting interval time series is in good

accordance with the previously published results for the Caucasus [Matcharashvili,
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et al., 2000] as well as with the results of Goltz [1998] for other seismoactive

regions.

This result together with qualitative analysis results shown in Fig. 20.2, provide

evidence that after the beginning of EM discharges the temporal distribution of
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Fig. 20.1 (a) Cumulative number of events versus time for magnitude class step ¼ 0.5. Note that

cumulative number of events is rescaled among magnitude classes. (b) Log cumulative number of

earthquake versus magnitude (Gutenberg-Richter relation); values of regression fit the equation

Y ¼ �0.83� X þ 5.40. Coefficient of determination, R-squared ¼ 0.995
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IFS Clumpiness Test
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Fig. 20.2 Qualitative analysis of temporal distribution of earthquakes (complete catalogue,

M �1.7) before the beginning of EM experiments (1975-1983), during experiments (1983-1988)

and after accomplishing of experiments (1988-1992). IFS-clumpiness test for inter-event time

interval sequences: (a) before experiments, (c) during experiments, (e) after experiments. Recur-

rence plots analysis of waiting times sequences: (b) before experiments, (d) during experiments,

(f) after experiments. Note diagonal lines in IFS plot and compact structure in RP during

experiments
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earthquakes around IVTAN test area becomes more regular, or events of corres-

ponding time series become functionally much more interdependent.

At the same time, the absence of typical phase space structure (not shown here),

IFS and recurrence plot attractors (Fig. 20.2) do not allow to consider the process as

deterministically chaotic.

In order to reduce effects of possible noises, we analyzed waiting time series after

noise reduction procedure [Shreiber, 1993; Kantz and Schreiber, 1997]. Namely, we

used methodology of nonlinear noise reduction (which in fact is phase space

nonlinear filtering) instead of common linear filtering procedures. The latter, as it

is well known, may lead to destroying the original nonlinear structure of analyzed

complex processes [Hegger and Kantz, 1999; Schreiber, 2000]. Nonlinear noise

reduction relies on the exploration of reconstructed phase space of considered

dynamical process instead of frequency information of linear filters [Hegger and

Kantz, 1999; Schreiber, 1993; Kantz and Schreiber, 1997].

Correlation dimension vs. embedding space dimension of noise-reduced time

series is presented in Fig. 20.4. As follows from the obtained results, correlation

dimensions are not essentially affected by unavoidable noises. Therefore, the

results assure that the differences found in d2-phase space dimension (P) depen-

dence before, during, and after experiments (Fig. 20.3) are indeed related to

dynamical changes in temporal distribution of earthquakes after the beginning of

MHD discharges experiments.

When describing unknown dynamics of waiting times fluctuation, differentia-

tion of original time series can be useful to avoid improper conclusions related to

the effects of trends or non-stationarity in data sets, even when those are not clearly

visible (as in the case of considered time series) [Goltz, 1998]. As it is shown in

Fig. 20.5, differentiation of our time series, according to Goltz [1998], does not lead
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to significant changes of the obtained results (see Fig. 20.3). So our results could not

be affected by trends or non-stationarity in the data sets used.

Analysis of differenced time series may be important also in the sense of

inherent dynamical structure testing [Prichard et al., 1994]. Namely, the test is

based on the finding that estimated nonlinear measure (correlation dimension in our

case) for the differentiated series is larger than that estimated for original data, if the

structure of their dynamics is caused by a linear stochasticity. At the same time, for

chaotic (low dimensional) processes these measures are the same. From this point

of view, the analysis of differentiated time series before detailed surrogate testing

provides first additional evidence that variation of waiting times has inherent

nonlinear structure indeed, and that their dynamical properties are not caused by

linear relationships between data. Indeed, curves of Figs. 20.3 and 20.5 are char-

acterized by comparable values of correlation dimension.

Moreover, in order to have a basis for more reasonable rejection of spurious

conclusions caused by possible linear correlations in considered data sets, we have
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used the surrogate data approach to test the null hypothesis that our time series are

generated by a linear stochastic process [Theiler et al., 1992; Rapp et al., 1993, 1994;

Kantz and Schreiber, 1997]. In other words, we would like to reject reliably the

possibility that the revealed dynamics belongs to the colored noise type. Namely,

Random Phase (RP) and Gaussian Scaled Random Phase (GSRP) surrogate sets

for waiting times series were used [Matcharashvili et al., 2000]. The RP surrogate

sets are obtained by destroying the nonlinear structure through randomization of

phases of Fourier transform of original time series and then performing a backward

transformation. The GSRP surrogate sets were generated in a three-step procedure.

At first, a Gaussian set of random numbers was generated, which has the same rank

structure as the original time series. After this phase, randomized surrogates of these

Gaussian sets were constructed. Finally, the rank structure of original time series was

reordered according to the rank structure of the phase randomized Gaussian set

(Theiler, 1992).

In Fig. 20.6, the results are shown of surrogate testing of waiting time sequences

before (a) and during (b) experiments, using d2 as a discriminating metric. For each

of our data sequences, we have generated 75 of RP and GSRP surrogates. There are

several ways to measure difference between the discriminating metric measure of
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original (given by Morig) and surrogate (given by Msurr) time series [Rapp, 1994].

Investigators often use the significance criterion S¼jhMsurr i – Morigj/ssurr, where
ssurr is the standard deviation of Msurr [Theiler, et al, 1992].

The significance criterion S, according to Theiler et al. [1992], for analyzed time

series before experiments is significant: 22.4 � 0.2 for RP and 5.1 � 0.7 for GSRP

surrogates. Consequently, after the beginning of experiments the null hypothesis

that the original time series is a linearly correlated noise was rejected with signifi-

cant value of S criterion: 39.7 � 0.8 for RP and 6.0 �0.5 for GSRP surrogates.

These results can be considered as a strong enough evidence to prove that the

analyzed time series are not a linear stochastic noise and that the corresponding

processes of earthquakes’ temporal distribution before and especially during

experiments are characterized by inherent low-dimensional nonlinear structure.

According to the IVTAN catalogue, each considered time period contains one

large (M 	 6.1–6.3) earthquake. Therefore, in order to refine whether the above

results are caused by special properties of a separate large earthquake or reflect total

changes in dynamics caused by EM discharges, we have analyzed waiting time

sequences (above the appropriate threshold) after each largest event. Namely, 1000

consecutive waiting time intervals after 03.24.78 M ¼ 6.1 (K ¼ 15.0), 01.24.87

M¼ 6.3 (K¼ 15.3) and 798 time intervals after 12.30.93M¼ 6.1 (K¼ 15.0) events

were analyzed. It is important to note that each of these relatively short time series

is localized in the corresponding time periods named “before”, “during” and “after”

experiments.

It becomes clear from the results of IFS-clumpiness and RQA analysis

(Fig. 20.7) that qualitatively this situation is like that shown in Fig. 20.2, i.e.,

after the beginning of experiments the dynamics becomes more regular and after

accomplishing of experiments the dynamics is most random-like.

Quantitatively, it is shown in Fig. 20.8 that these short time series generally reveal

that after the experiments the dynamics has also become more random than before.

Some differences are noticeable in saturation values of correlation dimension (in

Fig. 20.8) before (circles, d2 ¼ 3.1 � 0.4) and during (squares, d2 ¼ 2.1 � 0.7)

experiments. The latter may be caused by the fact that the data length was too limited

for proper nonlinear analysis of these time series (untypical shape of the curve at high

embedding dimensions) as well as by artificially increased fraction of aftershocks in

short time series, which contains only the events after the largest earthquake.

In any case, our main conclusion about low-dimensional dynamical structure of

earthquake temporal distribution during experiments and increasing randomness

after termination remains valid even for periods of separate large earthquakes.

The above conclusion about the increase of regularity in earthquakes temporal

distribution after beginning of experiments is to some degree also confirmed by

results of Lempel and Ziv’s algorithmic complexity (CLZ) measure calculation

[Lempel and Ziv, 1976]. Indeed, CLZ is larger when the necessary code words are

longer, i.e., when regular patterns of analyzed time series are minor.

Indeed, measured values of Lempel-Ziv’s complexity before, during, and after

experiments for original time series above the threshold areCLZ ¼ 0.99� 0.07;CLZ ¼
0.87� 0.05; CLZ ¼ 1.00� 0.08, respectively.
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Fig. 20.7 Qualitative analysis of 1000 data waiting times sequences (complete catalogue),

after largest events before the beginning of EM experiments (1975-1983), during experiments

(1983-1988) and after accomplishing of experiments (1988-1992). IFS-clumpiness test for

inter-event time interval sequences: (a) before experiments, (c) during experiments, (e) after

experiments. Recurrence plots analysis of waiting times sequences: (b) before experiments, (d)

during experiments, (f) after experiments
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The same conclusion follows also from quantitative RQA results; namely

RRðtÞ ¼ 9.6, DETðtÞ ¼ 3.9 before the experiments, RRðtÞ ¼ 25, DETðtÞ ¼ 18

during, and RRðtÞ ¼ 3, DETðtÞ ¼ 1.5 after the experiments.

The increasing order in earthquake temporal distribution under the influence of EM

is confirmed for short time interval sequences above the threshold after the largest

earthquakes. Indeed, Lempel-Ziv’s complexity measure values were: CLZ ¼ 0.98

� 0.08; CLZ ¼ 0.74 � 0.05; CLZ ¼ 1.00 � 0.09 before, during, and after MHD runs,

respectively (note that CLZ ¼ 0.04 for periodic and CLZ ¼ 1 for random processes).

Also, the increasing order in temporal distribution is documented by RQA results for

the above-mentioned short time series; namely RRðtÞ ¼ 9.8, DETðtÞ ¼ 6.5 before the

experiments, RRðtÞ ¼ 19.5, DETðtÞ ¼ 49.3 during, and RRðtÞ ¼ 7.1, DETðtÞ ¼ 1.6

after the experiments.

In other words, for the situation where the shape of d2 (Fig. 20.8) is not

informative for finding changes in dynamics, possibly due to too short time series,

Lempel- Ziv and RQA analysis reveals the increase of regularity. The conclusion

from Tsallis entropy calculation is the same. As it is shown in Fig. 20.10, normal-

ized to the averaged S value calculated for randomized data sets, the entropy

decreases for time series 2, i.e., the extent of regularity in the earthquake temporal

distribution increased during MHD runs.

On the basis of results of previous research it is known that small earthquakes

play a very important role in general dynamics of earthquake temporal distribution

[Matcharashvili et al., 2000]. Therefore, we have additionally carried out an

analysis of time series containing all the waiting time sequences available from

the whole catalogue, including those between small earthquakes below the magni-

tude threshold. This test is also valid for checking the robustness of results in case of

adding a new, not necessarily complete set of data to our original set. The total

number of events in the whole catalogue increased up to 14100, while in the

complete catalogue for the three above-mentioned periods (before, during and

after MHD experiments) there were about 4000 data in each one.
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The results of IFS and recurrence plots tests of these time series are shown in

Fig. 20.9. Noticeable qualitative differences in waiting time distribution dynamics

during, as well as after accomplishment of experiments is obvious.

The results of correlation dimension calculation for these time series are presented

in Fig. 20.11. Practically, there are no differences from results obtained for the case

withm > 2.0 (Fig. 20.3). Namely, according to Fig. 20.11, integral time series (14100

time intervals) for the whole period of observation (1975–1996) reveals a clear

low correlation dimension (d2 ¼ 2.40 � 0.71) (diamonds). Time series before

the beginning of experiment (squares) is characterized by correlation dimension

d2 ¼ 3.50 � 0.63 which still is below the accepted low dimensional threshold

(d2 ¼ 5.0). During experiments (Fig. 20.11, triangles), the correlation dimension of

time interval sequence decreases noticeably (d2 ¼ 1.71 � 0.09) as compared to the

situation before. After termination of experiments, the correlation dimension of wait-

ing time interval sequences increases noticably (d2> 5.0), exceeding low dimensional

threshold (d2 ¼ 5.0). As in the case of complete catalogue, this means that after

termination of experiments the extent of determinism in process of earthquake

temporal distribution decreases. The considered process becomesmuchmore random,

both qualitatively (Fig. 20.9. c, f), and quantitatively (Fig. 20.11 circles).

Both the complete and whole catalogues of waiting time sequences reveal low-

dimensional nonlinear structure in temporal distribution of earthquakes before and

especially during experiments, which was confirmed by 70 surrogate testing ana-

lyses (Fig. 20.12). The significance criterion S for analyzed time series before the

experiments gives: 32.3 � 0.2 for RP and 5.3 � 0.6 for GSRP surrogates; conse-

quently, after the beginning of experiments the null hypothesis that the original time

series is a linearly correlated noise was rejected with significant value of S criterion:
46.2 � 0.5 for RP and 6.5 � 0.7 for GSRP surrogates.

The correlation dimension vs. embedding space dimension of noise-reduced

time series of the whole catalogue is presented in Fig. 20.13. It is clear from this

picture that calculated values of correlation dimension are not affected by noises as

for the complete catalogue. The results show that the differences found in the d2-
phase space dimension (P) relationship before and during experiments in both

catalogues are indeed caused by dynamical changes in temporal distribution of

earthquakes during EM experiments.

We also analyzed waiting time sequences after each largest (M 	 6.1–6.3) event

for the whole catalogue, namely, 1000 consecutive waiting time sequences after

03.24.78 M ¼ 6.1 (K ¼ 15.0), 01.24.87 M ¼ 6.3 (K ¼ 15.3) and 12.30.93 M ¼ 6.1

(K¼ 15.0) events. As it is shown in Fig. 20.14, these short time series generally reveal

dynamical characteristics similar to those of the time series obtained from the com-

plete catalogue. The differences which are noticeable in saturation values of correla-

tion dimension before (circles, d2¼ 2.0� 1.1 in Fig. 20.14) and during (squares, d2¼
3.2� 0.8, Fig. 20.14) experiments may be caused both by the shortness of these time

series or by the influence of increased fraction of aftershocks.

Thus, conclusions concerning the influence of hot and cold EM runs on general

characteristics of the dynamics of earthquakes’ temporal distribution remain valid

for small earthquakes too.
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TKB.DAT
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Fig. 20.9 Qualitative analysis of temporal distribution of earthquakes including small events

(whole catalogue, all events) before the beginning of EM experiments (1975-1983), during

experiments (1983-1988) and after accomplishing of experiments (1988-1992). IFS-clumpiness

test for waiting times sequences: (a) before experiments, (c) during experiments, (e) after experi-

ments. Recurrence plots analysis of inter-event time interval sequences: (b) before experiments,

(d) during experiments, (f) after experiments
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Fig. 20.10 The Tsallis entropies calculated for 3 windows (1–before, 2–during and 3–after MHD

runs) for various entropic indexes q
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It is interesting to note that on the laboratory scale the effect of triggering and

synchronization of acoustic emission during a slip imposed by strong EM field is

well documented in numerous experiments [Chelidze et al, 2002; Chelidze and

Lursmanashvili 2003; Chelidze et al, 2005].
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20.5 Conclusion

The question whether electromagnetic experiments on a specific site can influence

the dynamics of a seismic region is complex. A complete answer to it, if any could

be given, would involve a repeated set of analyses for different seismic regions over

a long period of time with and without EM experiments. A theoretical explanation

showing the cause-and-effect relationships between the two phenomena is also

fundamental. This paper has addressed the question under statistical aspect involv-

ing nonlinear dynamics methods. These methods have been chosen because there

are not trivial, simple and direct relations between the two phenomena: this means

that relations are of complicated nature. Moreover, seismicity is very probably a

critical process with a per se complicate evolution: under given conditions, possible

relations must not be direct and simple. With nonlinear methods, the time evolution

of seismicity has been investigated looking at relations with EM experiments.

Waiting times constitute the aspect analyzed. The whole time period has been

divided into three parts, the middle being the one when EM experiments took place.
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The phase space attractor, reconstructed with delay time technique, shows low

correlation dimension values for the whole time period; this indicates, at least, the

presence of few seismicity-driving processes. The same analysis on the three sub-

catalogues confirms the result, with the exception for the period after the EM experi-

ments: strong EMdischarges lead to the increase of extent of regularity in earthquakes

temporal distribution, while after the EM influence ceases, the earthquakes’ temporal

distribution becomes much more random than before the experiments. This is the

main result of the analysis and it has been confirmed by changing the conditions of the

analysis itself. Non-linear noise reduced time series has confirmed such results, as also

surrogate testing did. The middle period contains a large seismic event (January 24,

1987 M ¼ 6.3 derived from energy class K ¼ 15.3); this event has certainly a well-

identified aftershocks activity and this can be a strong factor influencing the time

dynamics. The root question is: is this event with its related sequence responsible of

the change of the dynamics of analyzed data? If the answerwould be yes we are forced

to answer immediately the new question: is this earthquake related to the EM

experiments? But it must be noted that inside the other two periods there are also

important events of comparable magnitudes and the analysis has been conducted on

the three sequences of catalogue after each strong event separately. General confir-

mation of results has been shown. Same results have been revealed with the use of the

whole catalogue, regardless of the completeness criteria.

This analysis is certainly not exhaustive: the seismic catalogue covers a broad

area and all complete data were used, with no distinction for space location of

seismic events. The energy aspect has not been fully considered: all events were

considered equal, regardless of their magnitude. These are strong simplifications

and the results must be considered under these constrains. However, the results

appear to be consistent: EM experiments influence seismic time dynamics to some

extent, increasing the regularity of waiting times. After the EM experiments,

seismic waiting times have increased their random character to a level higher

than before experiments.
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