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Preface

The aim of this volume is twofold. First, it is an attempt to simplify and
clarify the relativistic theory of the hydrogen-like atoms. For this purpose
we have used the mathematical formalism, introduced in the Dirac theory of
the electron by David Hestenes, based on the use of the real Clifford algebra
Cl(M) associated with the Minkwoski space–time M , that is, the euclidean
R4 space of signature (1,3). This algebra may be considered as the extension
to this space of the theory of the Hamilton quaternions (which occupies an
important place in the resolution of the Dirac equation for the central potential
problem).

The clarity comes from the real form given by D. Hestenes to the electron
wave function that replaces, in a strict equivalence, the Dirac spinor. This form
is directly inscribed in the frame of the geometry of the Minkwoski space in
which the experiments are necessarily placed. The simplicity derives from the
unification of the language used to describe the mathematical objects of the
theory and the data of the experiments.

The mathematics concerning the definition and the use of the algebra
Cl(M) are not very complicated. Anyone who knows what a vector space is
will be able to understand the geometrical implications of this algebra. The
lecture will be perhaps more difficult for the readers already acquainted with
the complex formalism of the matrices and spinors, to the extent that the
new language will appear different from the one that they have used. But
the correspondence between the two formalisms is ensured in the text at each
stage of the theory.

The second aim concerns a presentation of the theory of one-electron atoms
starting from its relativisitic foundation, the Dirac equation. The nonrelativis-
tic Pauli and Schrödinger theories are introduced as approximations of this
equation. One of the major purpose, about these approximations, has been
to display, on the one side, the enough good concordance between the Dirac
and the Pauli–Schrödinger theories for the bound states of the electron fur-
thermore, but to a weaker extent, for the states of the continuum close to
the freedom energy, and, on the other side, the considerable discordances for
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the high values of the continuum. A special attention has been drawn to the
verification of the numerical relativistic results by the comparison with those
obtained by means of the nonrelativistic approximations, when the compari-
son is acceptable, and also to the recourse to different mathematical methods
for the resolution of a same problem.

Bassan, Roger Boudet
August 2008
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1

Introduction

The present volume is devoted to the transitions in hydrogen-like atoms, also
called hydrogenic atoms. One means by hydrogenic atom, an atom considered
as owning one electron as the hydrogen atom. It is the case for an atom whose
all the electrons, except one, are not considered, either because they have been
thrown out or because their action is neglected.

Corrective terms taking into account this action, or the size of the nu-
cleus, may be used. But they are obtained by means of approximative instead
of exact calculations, and they will not be taken into consideration in our
elementary presentation.

So the problem, in its relativistic approach, is the first one of the reso-
lution of the Dirac equation for a central potential of the form eZ/r, where
e > 0 is the charge of a proton (with −e as the charge of the electron) and
Z is the number of protons in the nucleus of the atom. The question of the
transitions between two states of the electron is solved by taking into account
the two solutions of the Dirac equation corresponding to these states, by the
construction of the probability current of transition between these two states
and at least by the determination of the electromagnetic field at large dis-
tance associated with this current. The processes of the transition are also
to be taken into account: spontaneous emission in the absence of all external
field, stimulated transition in the presence of an external plane wave, and
multiplication of the transitions in the case where a magnetic field separates
into several levels of energy, the level common to the states corresponding to
a same level in the absence of a magnetic field (Zeeman effect).
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The Electromagnetic Fields Created
by Time-Sinusoidal Current

Abstract. This chapter is a recall of the properties of the long-range part of the
electromagnetic fields created by time-periodic currents, as they may be observed
in particular in the Zeeman effect. The aim of this part is also to place the vector
frame of these observations, that is, one of the spherical coordinates, which is in the
center of the presentation in the real formalism of the relativistic central potential
problem. This frame is the one in which are expressed the Dirac probability current,
associated with a state and with the transition between two states. But it is to notice
that, as a specificity of the real formalism, the form given by Hestenes to the wave
function of the electron, strictly equivalent to the Dirac spinor, may be presented,
in the case of central potential, as a combination of the vectors of this frame.

2.1 Properties of the Electromagnetic Field Emitted
by an Electron Bound in an Atom

The observation of the electromagnetic fields emitted by electrons bound in
an atom, achieved when a magnetic field is present (Zeeman effect), shows
that the field owns the following particularities:

1. The field is time-sinusoidal and polarized.
2. If the observation is orthogonal to the direction of the magnetic field, the

polarization appears as being linear along this direction.
3. If the observation is parallel to this direction, the polarization appears as

being circular and in a plane orthogonal to this direction.

Such data of the observations allow one to precise the general form of the
electric currents, which are the source of the field.

The extension of these particularities to the transitions where no magnetic
field is present, that is, spontaneous or stimulated emissions processes, is not
directly observable. But it is confirmed not only by other experimental data,
but also by the fact that the theoritical construction of the transition currents
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is deduced from the Darwin solutions of the Dirac equation, and that these
solutions give exactly (if one excepts the small variation called the Lamb shift)
the values of the levels of energy of an electron bound in an atom.

2.2 The Field at Large Distance of a Time-Periodic
Current

The calculation of the field that is used here is based on the pure laws of
Maxwell, without quantization. Indeed, using Quantum Field Theory is not
a necessity in the domain studied here. It leads exactly to the same results
(see [12]), with sometimes longer calculations.

We consider only the long-range part of the field by applying the following
theorem [41]. If the source of the field is negligible outside a small neighbour-
hood of the origin O, the long-range part of the field is deduced from the
integral formula of the retarded potential in such a way that

E(x0, r) = −q
∂

∂x0

∫
j⊥(x0 − R, r ′)

R
dτ ′, (2.1)

H(x0, r) = −q
∂

∂x0

∫
n × j⊥(x0 − R, r ′)

R
dτ ′, (2.2)

where the coordinates xμ are in the form (x0 = ct, r) and q is the charge of
the source.

The vector j⊥ is the component of the spatial part j = (j1, j2, j3) of the
space–time vector jμ, orthogonal to the vector n = R/R, where R = r − r′,
R = |R|. Note that the time component j0 of the current does not intervene.

In the theory of the electron, the vector jμ has the meaning of a current
of probability of the presence of the electron and q = −e is the charge.

We can notice furthermore that if jμ in time-independent, the long-range
part of the field is null. As it is the case of the Dirac probability current jμ

associated with the state of a bound electron, this explains the reason why no
electromagnetic field may be observed outside a passage from a state to one
another.

If the field is time-sinusoidal, the source current is of the form

q j(x0, r) = q [cos ωx0 j1(r) + sin ωx0 j2(r)], (2.3)

where the vectors jk are to be precised.
At large distance r from the origin O, we may replace r− r′ by r = rn in

(2.1) and write

E(x0, r) = −q

r

∂

∂x0

∫
j⊥(x0 − r, r′) dτ ′ (2.4)
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and so we can write

E(x0, r) = q
ω

r
[sin ω(x0 − r) U⊥

1 − cos ω(x0 − r) U⊥
2 ], (2.5)

where
U⊥

k =
∫

j⊥
k (r′) dτ ′, k = 1, 2 . (2.6)

2.3 Source Currents of Time-Sinusoidal Polarized Field

Let (e1,e2,e3) be an orthogonal frame of the three-space of the laboratory
galilean frame. The most convenient coordinates system for defining the cur-
rent is the (r, θ, ϕ) spherical coordinate system, in which the vector e3 defines
a privileged direction, the one of the magnetic field in the case of the presence
of this field,

u = cos ϕ e1 + sinϕ e2, v = − sin ϕ e1 + cos ϕ e2,

n = cos θ e3 + sin θ u, w = − sin θ e3 + cos θ u, r = rn. (2.7)

For taking into account the polarizations, the components j1, j2 of the current
may be then defined in the following way:

j1 = cos εϕ jI + sin εϕ jII , j2 = − sin εϕ jI + cos εϕ jII , (2.8)

where
jI = b(r, θ) v, jII = a(r, θ) u + c(r, θ) e3, (2.9)

and where ε may be taken equal to 0 or ±1. We consider the vector

U = cos ωx0 U1 + sin ωx0 U2, Uk =
∫

jk(r) dτ. (2.10)

2.3.1 Linear Polarization: ε = 0

In this casewehave j1 = jI and j2 = jII .The relations dτ = (r sin θdϕ)(rdθ)dr

and
∫ 2π

0
u dϕ = 0 =

∫ 2π

0
v dϕ give

U1 = 0, U2 = Ce3, C = 2π
∫ ∞

0

∫ π

0

c(r, θ)r2 sin θ drdθ U = sin ωx0 Ce3.

(2.11)

2.3.2 Circular Polarizations: ε = ±1

In this case we deduce immediately

j±
1 = (±a − b) cos ϕ sin ϕ e1 + (b cos2 ϕ ± a sin2 ϕ) e2 ± c sin ϕ e3,

j±
2 = (±b sin2 ϕ + a cos2 ϕ) e1 + (a ∓ b) cos ϕ sin ϕ e2 + c cos ϕ e3
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and after integration

U±
1 = (JI ± JII) e2, U±

2 = (±JI + JII) e1,

U+ = A(sin ωx0 e1 + cos ωx0 e2), A = JII + JI ,

U− = B(sin ωx0 e1 − cos ωx0 e2), B = JII − JI , (2.12)

JI = π

∫ ∞

0

∫ π

0

b(r, θ)r2 sin θ drdθ, JII = π

∫ ∞

0

∫ π

0

a(r, θ)r2 sin θ drdθ .

2.4 Flux of the Poynting Vector Through a Sphere
of Large Radius

Let us consider the flux F , per unit of time, through a sphere S of large radius,
of the Poynting vector of the field, created by the transition current between
two states, of an electron bound in an atom. If we consider the energy E
released at each transition, the ratio F/E gives the number of transitions per
second.

If no external field is present, the transition is called spontaneous emission.
The number of these transitions may be experimentally observed, and, for
comparison, the theoretical calculation presents an interest (see Chap. 7).

We consider that F is averaged on a period T = 2πω of the source current
and denoted by

〈X〉 =
1
T

∫ T

0

X dx0,

the average of X.
Because E and H = n×E are orthogonal to n, we can write for a sphere

S of center 0 of radius R

F =
c

4π

∫
S0

〈n · (E × H〉 R2dσ,

then
F =

c

4π

∫
S0

〈E2〉 R2dσ, (2.13)

where S0 is the sphere unity. Now

〈cos2 ω(x0 − R)〉 = 〈sin2 ω(x0 − R)〉 =
1
2
,

〈cos 2ω(x0 − R) sin ω(x0 − R)〉 = 0 .

In other respect, let (θ0, ϕ0) be the system of spherical coordinates of S0, such
that the axis of the poles is colinear with one of the vectors Uk.
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We can write (U⊥
k )2 = U2

k sin2 θ0 and∫
S0

(U⊥
k )2dσ =

∫ 2π

0

∫ π

0

[U2
k sin2 θ0] sin θ0 dϕdθ0 =

8π

3
U2

k, (2.14)

and taking into account the presence of 1/R2 in E2, we can replace in all the
cases of polarization (2.13) by the equation

F =
cω2e2

3
(U2

1 + U2
2). (2.15)

2.5 Units

The only constants we use are the three fundamental constants (revised in
1989 by B.N. Taylor):

1. The light speed c = 2.99 792 458 × 1010 cm s−1.
2. The electron charge magnitude e = 4.803 206 × 10−10 (e.s.u.).
3. The reduced Planck constant � = h/2π = 1.054 572× 10−27 erg s. In addi-

tion we use
4. the electron mass m = 9.109 389 × 10−28 g. All the other constants used

will be derived from these four ones, in particular,
5. the fine structure constant

α =
e2

�c
=

1
137.035 989

(e in e.s.u.) (2.16)

and as unit of length:
6. the “radius of first Bohr orbit”

a = �
2/(me2) = �/(mcα) = 5.291 772 × 10−9 cm . (2.17)

Note

In other respects, one introduces in the expression of the electromagnetic
potentials the factor 1/(4πε0) (the presence of 4π is due to the writing 4πjμ

instead of jμ in the current term of the Maxwell equations), where ε0 is the
permittivity of free space, and e is expressed in e.m.u:

ε0 = 8.854187 × 10−12 F m−1, e = 1.602 1777 × 10−19 (e.m.u.)

That gives (with c expressed in metres) the same value of α with the expression

α =
e2

4πε0�c
, (e in e.m.u.) (2.18)

For simplicity and to be in agreement with the largest part of the reference
articles and treatises mentioned here, we use the former expressions of the
potentials and the constant α, in preference to these last ones.



3

The Dirac Equation of the Electron in the Real
Formalism

Abstract. This chapter is a recall of the algebraic tool used in the real formalism
and the passage from the Dirac equation of the electron in the complex spinor
formalism to the real form given by Hestenes to this equation. It is completed by
the first paragraph of the Appendix of Part I, which allows a step-by-step traduction
of the complex formalism to the real one and vice versa.

3.1 Algebraic Preliminaries: A Choice of Formalism

The usual presentation of the Dirac theory of the electron uses, on the one
side, the σk and γμ Pauli and Dirac matrices, and on the other side, the Pauli
and Dirac spinors. The mathematical language of this presentation is faraway
from one of the experiments described in Chap. 2.

In contrary, the real formalism we present further uses the same mathe-
matical objects as the ones employed in this section. In particular, in the case
of the solutions of the Dirac equation for the central potential problem, the
wave function of the electron may be directly expressed by means of the same
vectors as in (2.7), that is, those of the frame of the spherical coordinates in
E3 = R3,0.

The Pauli and Dirac matrices may be related to the geometry of the E3

and the Minkowski M = R1,3 spaces, respectively. Despite their complex and
complicated forms, they obey relations similar to the gij ones verified by the
orthonormal frames of these real spaces.

Futhermore, it is well known that these matrices allow one to construct
spaces isomorphic to the so-called Clifford algebras Cl(E3) = Cl(3, 0) (or
ring of the biquaternions) and Cl(M) = Cl(1, 3), associated with E3 and M ,
respectively (see later).

These isomorphisms become identities as soon as the sets {σk} and {γμ}
are identified, as was implicitely made by some authors, to an orthonormal
frame of E3 and M , respectively.
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We recall (see Appendix D) that a Clifford algebra Cl(p, n − p) is a real
associative algebra, acting on the vectors of an euclidean space Rp,n−p, which
associates the signature of this space with the elements of the Grassmann
(or exterior) algebra ∧Rn in such a way that not only the elements of this
algebra are geometrical objects, but furthermore they may be used for defining
geometrical operations (in particular the isometries) upon these objects.

But the Pauli and the Dirac spinors remain abstract objects, implying the
use of a geometrically undefined “number”

√−1.
In a fundamental article [35], Professor David Hestenes has introduced

what he calls the Algebra of Space–Time (STA) in the Dirac theory of electron.
STA is the Clifford algebra Cl(M) considered for its applications in Quantum
Mechanics.

But, and that was entirely new, D. Hestenes replaces, in a strict equiva-
lence, the Dirac spinor Ψ by a pure real geometrical object ψ that we call for
its applications in Quantum Mechanics a Hestenes spinor: an element of the
even sub-algebra Cl+(M) of Cl(M). As a consequence, the set without any
proper structure of the Dirac spinors is replaced by a ring, and also the matri-
ces and the spinors are unified in a same structure, implying only geometrical
elements of the Minkowksi real space M .

The fact that the Pauli and the Dirac spinors (we repeat, spinors not
matrices) are nothing else but a decomposition in two and four “complex
numbers” of an element of Cl+(E3) and Cl+(M) is recalled in Appendix A.1
and A.2.

The ring Cl+(M) may be identified with the ring Cl(E3) of the biquater-
nions, by the fact that, if {eμ} is an orthonormal frame of M , the set of the
bivectors of M {ek = ek ∧ e0}, k = 1, 2, 3, generates a E3 space, used, for
example, in the writing F = E + iH of the electromagnetic field F ∈ ∧2M .

The subalgebra Cl+(E3) of Cl(E3) is the field of the Hamilton quaternions.
We see that this field plays an important role in the theory of the Dirac
electron in a central potential.

Let us consider the rings Cl(3, 0) 
 Cl+(1, 3) and Cl(1, 3) as algebraic con-
tinuations of the field Cl+(3, 0). Given the fact that the field of the Hamilton
quaternions Cl+(3, 0) is the only field that may be associated with a space Rn

for n > 2, one sees that the signature (1,3) of the R4 space and time appears
as algebraically priviledged.

More surprising is the fact that the stucture of all the objects, quarks,
and leptons, defined by means of the Dirac spinor–in the form given by D.
Hestenes–which fill this 4-space, also appears as algebraically priviledged.

It is to emphasize the simplification and the geometrical clarity that the use
of the real Hestenes formalism brings not only to Quantum Mechanics but also
to the other domains of physics with the name of Geometric Algebra [22,37].

All the observed phenomenas of the special relativity are necessarily placed
in the scope of the pure geometry of space–time, and all the mathematical
objects whose aim is to interprete these phenomenas are placed by the real
formalism directly in this scope.
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In particular, for the case of the central potential, all these objects and in
particular the Dirac spinor will be expressed, after a passage from Cl+(1, 3)
to Cl(3, 0), by means of vectors of R3,0.

However, the correspondence between this real formalism and the complex
one of the Pauli and Dirac matrices and spinors will be ensured here at each
step of the calculation, in such a way that a reader acquainted with one of
these two formalisms will be able to use the other.

Let us mention that biquaternionic solutions of the central potential prob-
lem had been already achieved by Sommerfeld (see [54]), but in the frame of
the complex formalism, the Dirac spinor being expressed by means of the Dirac
matrices γμ. Nevertheless, though, in particular, some ambiguities related to
the role of the “imaginary number”

√−1 in the complex formalism had been
removed in this work, the use of the pure real formalism of Hestenes brings
noticeable simplifications and above all the entire geometrical clarification of
the theory of the electron.

3.1.1 Quaternions and Biquaternions

1. The main properties of all Clifford algebra Cl(p, n−p) = Cl(E) associated
with a euclidean space E = Rp,n−p are recalled in Appendix D.

Let us mention that only Cl(E) is an associative algebra of dimension 2n

acting on the vectors of E and related to the following:

• The euclidean structure of E. If a1a2 · · · ap denotes the Clifford product
of vectors ak ∈ E, the scalar product a · b of two vectors verifies

a.b =
1
2
(ab + ba). (3.1)

• The Grassmann (or exterior algebra) ∧Rn. If the vectors ak are orthogonal,
the Clifford product a1a2 · · · ap is equal to their Grassmann product a1 ∧
a2 · · · ∧ ap (see Appendix D).

In particular, if two vectors a, b are orthogonal, one obtains the important
rule

a.b = 0 ⇒ ab = a ∧ b = −b ∧ a = −ba. (3.2)

These algebras, in particular, Cl(3, 0) (or ring of the biquaternions) and
Cl(1, 3), and their even subalgebras Cl+(3, 0) (or field of the quaternions),
Cl+(1, 3) 
 Cl(3, 0) (see later), may be used directly for the study of Quan-
tum Mechanics.

What follows in the present paragraph concerns readers already acquainted
with the complex formalism of the Pauli and Dirac matrices, in the purpose
to give an indication on the links of these matrices with these algebras.

For the lecture of the present work, the readers can refer directly to
Sect. 3.1.2 below, then to the real formalism of the Clifford algebras and avoid
all that concerns the correspondence between this formalism and the one of the
complex matrices and spinors. However, the knowlewge of this correspondence
is recommended.
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2. There exists a well known construction of the real Clifford algebra Cl(E3) =
Cl(3, 0), or ring of the biquaternions, associated with the space E3 = R3,0 by
means of the Pauli matrices σk (see [54], IV.5.1).

One considers a real space of dimension 1 + 3 + 3 + 1 = 8 but whose a
frame is composed by the following entities:

I

σ1, σ2, σ3

iσ1 = σ2σ3, iσ2 = σ3σ1, iσ3 = σ1σ2

i = σ1σ2σ3,

where I is the unit (2 × 2) matrix.
We say that this space may be considered as real because all element of

this space is a linear combination of the aforementioned entities with real
coefficients. This construction is based on the following joint properties.

Let {e1,e2,e3} be an orthonormal frame of E3. One may notice that the
Pauli matrices σk obey the same rule as the vectors ek in Cl(E3)

1
2
(σiσj + σjσi) = δijI, ei · ej =

1
2
(eiej + ejei) = δij ,

and an identification of these matrices to these vectors (the unit matrix I
being identified to 1) explains the possibility of the construction of Cl(E3) by
means of the matrices σk.

The subspaces generated by I, σk, iσk, i correspond to the subspaces of
∧R3, scalar, vector, bivector, and pseudo-scalar spaces of R3.

The space generated by I and iσk (scalars plus bivectors), whose dimension
is 1 + 3 = 4, corresponds to the even subalgebra Cl+(E3) of Cl(E3), that is
the field H of the Hamilton quaternions.

3. A real space of dimension 1 + 4 + 6 + 4 + 1 = 16 generated in the same
way by means of the Dirac matrices γμ and the similitude of the properties of
these matrices with the vectors eμ of an orthonormal frame of the Minkowski
space M = R1,3 explain the possibility of the construction of Cl(M) by means
of the matrices γμ (see [6], (2.5)).

The subspaces of this algebra correspond to the subspaces of ∧R4, scalar,
vector, bivector, pseudo-vector, and pseudo-scalar spaces of R4.

The sum of the scalar, bivector, pseudo-scalar spaces whose dimension is
1 + 6 + 1 = 8 is the even subalgebra Cl+(M) of Cl(M). It may be identified
to Cl(E3) by using the relation σk = γkγ0 (see Sect. 3.1.3).

The identifications

σk ⇐⇒ e3, γμ ⇐⇒ eμ

allow the identification of the spaces constructed by means of σk and γμ to
the entirely real spaces Cl(E3) and Cl(M).
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The links of the Pauli and the Dirac spinors with Cl+(E3) and Cl+(M) are
less evident. These spinors are eachone the decompostion into two and four
complex numbers of an element of Cl+(E3) and Cl+(M). These numbers
are written in the form a + ib in the complex formalism, but the “imaginary
number” i =

√−1 is in fact iσ3 = γ2γ1 (see Sect. 3.1.3) which becomes real
by the above identifications. The presence of γ2γ1, that is, the bivector of M ,
e2e1 = e2∧e1 (whose square in Cl(M) is equal to −1) in place of the imaginary
number i is closely related to the existency of the spin of the electron.

The conversion of the spinors in elements of Cl+(E3) and Cl+(M) has
been established in [35], and is recalled in detail in Appendix A, following the
method introduced in [28] and recalled in [44].

3.1.2 The Hamilton Quaternion and the Pauli Spinor

Following (with a change of sign upon i, j, k) the definition given in 1849 by
Hamilton, a quaternion q verifies the relations

q = d + ia + jb + kc, (a, b, c, d ∈ R), (3.3)

i2 = j2 = k2 = −1; i = kj = −jk, j = ik = −ki, k = ji = −ij, (3.4)

with the following geometrical interpretation

i = e2e3 = e2 ∧ e3, j = e3e1 = e3 ∧ e1, k = e1e2 = e1 ∧ e2 , (3.5)

where a ∧ b means the Grassmann (not the vector) product of a, b (see Ap-
pendix D). So a quaternion is a real object, the sum of a scalar and a bivector
of E3.

Using the Clifford product in Cl(E3), denoting

i = e1 ∧ e2 ∧ e3 = e1e2e3 (3.6)

one may write because, for example, e2
3 = 1, k = e1 ∧ e2 = e1e2 = ie3,

i = ie1, j = ie2, k = ie3. (3.7)

As a consequence, a quaternion may be written in the form q = d+ia, a ∈ E3.
It is easy to deduce from the relations iek = eki that

ia = ai, i2 = −1 (3.8)

We can notice that different real objects, i, j, k, i, may own the same important
property: their square is equal to −1.

The relation (see Appendix D)

ab = a · b + a ∧ b, a, b ∈ E3

shows that all Clifford product ab of two vectors of E3 is a quaternion.
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Let us denote by a×b the vector product in E3, as for example e3 = e1×e2,
from which we deduce ((3.5) and (3.7)) that e1 ∧ e2 = i(e1 × e2) and that we
can write

a ∧ b = i(a × b). (3.9)

So q takes the form q = a · b + i(a × b), a writing similar to a formula often
used in the theory of the Pauli matrices.

In what follows the bivector k = ie3 is going to take an important place,
and one of the reason lies in the fact that the e3-axe owns an important place
in the theory of the Dirac electron, in particular, when it is applied to the
study of hydrogenic atoms. Another reason, the fact that ie3 defines also a
bivector of spacetime (and we repeat that the presence of this bivector is
related to the existency of the spin of the electron), will be evoked later.

The identification of a Pauli spinor ξ ∈ C2 to a Hamilton quaternion q
(3.3) may be achieved (see Appendix A.1) by the following rule:

ξ = (u′
1, u

′
2) ⇐⇒ q = u1 − ju2,

√−1 ⇐⇒ k,

u′
1 ⇐⇒ u1 = d + kc, u′

2 ⇐⇒ u2 = −b + ka,

−jk = i = ie1, j = ie2, k = ie3. (3.10)

So the ring of the iσk Pauli matrices and the set without any proper structure
of the Pauli spinors may be unified in a single real field, the only field one can
associate with a real space Rn for n > 2.

3.1.3 The Hestenes Spinor and the Dirac Spinor

1. The field H = Cl+(3, 0) of the Hamilton quaternions may be extended to
the ring of the Clifford biquaternions Cl(3, 0), whose all element Q may be
written as

Q = q1 + iq2, qα = dα + iaα. (3.11)

Let {eμ} be an orthonormal frame of the Minkowski space M = R1,3.
The bivectors ek ∧ e0 of M may be associated with the vectors ek

e1 = e1 ∧ e0 = e1e0, e2 = e2 ∧ e0 = e2e0, e3 = e3 ∧ e0 = e3e0. (3.12)

They generate a space E3, associated with e0, which allows the identifica-
tion of Cl+(1, 3) = Cl+(M) to the ring Cl(3, 0) = Cl(E3) of the Clifford
biquaternions, with the rule

a ∈ M, a.e0 = 0 ⇒ a = a ∧ e0 = ae0 ∈ Cl+(M), a ∈ E3. (3.13)

We recall that such a rule allows one the well known writing F = E + iH of
the electromagnetic field F ∈ ∧2M .
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2. We use the following operation of reversion:

X ∈ Cl(M) → X̃ ∈ Cl(M), so that (XY )˜ = Ỹ X̃, (3.14)

with λ̃ = λ and ã = a if λ ∈ R, a ∈ M .
An important remark is the following. One can write, both in Cl(E3) and

Cl(M),

i = e1e2e3 = e0e1e2e3 ⇒ i2 = −1,

(ie3)2 = (e1e2)2 = (e2e1)2 = −1. (3.15)

It is also important to notice that

ia = ai, a ∈ E3, but ia = −ai, a ∈ M

3. We emphasize again that two quite different geometrical objects i and e2e1,
which play an important role in quantum mechanics, are both such that their
square in STA is equal to −1. They are both represented by the undefined
imaginary number

√−1 in the spinors formalism:

(a) The pseudo-scalar of M , i, corresponds to the i appearing in the V–A
vectors of the electroweak theory (and, we repeat, in the expression E + iH
of the electromagnetic field).

(b) The bivector of M , e2 ∧ e1 = e2e1 = ie3 corresponds to the i of the Dirac
theory. The hidden presence of a bivector in this theory corresponds to the
fact that the spin, or proper angular momentum, of the electron is a bivector.
It has been used in this theory in the form γ2γ1 by Sommerfeld, probably
from the beginning of the year 1930 (see [54]) and also in [39]. In fact (see
Appendix B.2) the bivector spin is in the form (�c/2)n2∧n1, where n1, n2 are
deduced from e1, e2 by the Lorentz rotation, which changes e0 into the unit
time-like vector v colinear to the Dirac current of the electron.

One of the major advantage, emphasized in [35], of the STA formalism is
to avoid the confusion between these two entities, a bivector and a pseudo-
scalar of M .

The identification of a Dirac spinor with a biquaternion Q ∈ Cl+(M) is
recalled in Appendix A.2 and A.3.

We denote ψ, that we call a Hestenes spinor, as a biquaternion when it
is applied to a wave function expressed by a Dirac spinor Ψ in Quantum
Mechanics.

One can deduce the equivalences, not at all evident (Appendix A.3),
established for the first time in [35]

Ψ ⇔ ψ, γμΨ ⇔ eμψe0, (3.16a)
i′Ψ = Ψi′ ⇔ ψe2e1, i′ =

√−1 ⇔ e2e1 = ie3, (3.16b)

which are the key of the conversion in STA of the Dirac spinor not only in
the theory of the electron but also in all the present theory of elementary
particles.
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The Dirac current j ∈ M associated with a Dirac spinor Ψ is given (Ap-
pendix A.3) by the equivalence

jμ = Ψ̄γμΨ ∈ R ⇔ j = jμeμ = ψe0ψ̃ ∈ M. (3.17)

3.2 The Hestenes Real Form of the Dirac Equation

For avoiding all ambiguity concerning the charge of the electron (see [43],
p. 98) in the presentation of the Dirac equation, we denote by q = −e (e > 0)
the charge of the electron.

Using (3.16a,b) in which ψ means the wave function of the electron, one
can pass immediately from the Dirac equation ([47], (43.1))

�cγμ∂μ(i′Ψ) − mc2Ψ − qAμγμΨ = 0, i′ =
√−1, q = −e, (e > 0), (3.18)

where ∂μ = ∂
∂xμ , to the form given to this equation in [36], (2.15),

�ceμ∂μψe2e1e0 − mc2ψ − qAψe0 = 0, A = Aμeμ ∈ M. (3.19)

One can find e1e2 in place of e2e1 in this equation ([35], (51.1)). These two
possibilities correspond to the states “up” and “down” of the electron and are
related with the orientation of the bivector spin (see Appendix B.2).

We work only with (3.19), the second equation giving comparable results.

3.3 The Dirac Equation in Real Biquaternion

The use of Cl(E3) instead of Cl+(M) is interesting for solving problems, in
particular, the one of the central potential.

Using e0e
0 = 1, e0e

k = −e0ek = eke0 = ek, ∇ = ek∂k, we can write

e0e
μ∂μ = ∂0 + ∇; A = Aμeμ ∈ M, A = Akek ⇒ e0A = A0 − A. (3.20)

Writing e2e1 = ie3 in (3.19), multiplying this equation on the right and left
by e0, then on the right by ie3, we obtain

∂0ψ + ∇ψ = − 1
�c

[mc2ψ̄ + q(A0 − A)ψ]ie3, ψ̄ = e0ψe0. (3.21)

3.4 Notations

In the notations of Hestenes, of his followers, and in some of our own previous
articles, the γμ means vectors of an orthonormal frame of M , σk = γkγ0 means
both vectors or E3 and bivectors of M . (Note that the γμ have been already
implicitely used with the above interpretation by Sommerfeld and in [39]).

For avoiding all confusion in the relations between the complex and the
real formalisms, we have reserved the notations γμ and σk to the matrices of
the complex formalism. Here i and ie3 correspond to the i and iσ3 of Hestenes,
respectively.
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The Solutions of the Dirac Equation
for the Central Potential in the Real Formalism

Abstract. This chapter concerns a presentation of the Darwin solutions of the
Dirac equation, in the Hestenes form of this equation, for the central potential
problem. The passage from this presentation to that of complex spinor is entirely
explicited. The nonrelativistic Pauli and Schrödinger theories are deduced as ap-
proximations of the Dirac theory.

4.1 General Approach

In the STA solutions corresponding to the one of Darwin’s [21], the use of field
H of the Hamilton quaternions brings notable simplifications with respect to
the standard presentation and a geometrical clarity, which cannot be reached
in the complex formalism.

A study of the solutions in the Hestenes real formalism has been achieved
in [29]. The following presentation is based on [9, 10,48].

Simplifications. In the form we give to ψ, the use of half integers, which
is a complication, is avoided. Only the integers m ∈ Z that appear in the
associated Legendre polynomials Pm

� and Pm+1
� are employed. Half integers

m′ = m + 1/2 appear, for example, in the formula implying the total angular
momentum operator of the electron (see Appendix C) and will be introduced
in the Zeeman-effect (Chap. 14).

But they do not intervene in the solution for the central potential and the
transition currents between two states and for this reason we prefer to use the
integers m.

The expression of the solution for a given state implies only the associated
Legendre polynomials Pm

l , Pm+1
l . The use of Pm

l±1, Pm+1
l±1 is avoided. Further-

more, a much more, simpler way of calculation, at least for the principal states
S1/2, P1/2, P3/2, D3/2, based on a relation of recurrence, is proposed.

The direct use of the frame of spherical coordinates brings important sim-
plifications in the calculations for the cases where two states are implied, as
will be seen in the second part.
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Geometrical clarity. The e3-axe conventionally chosen for the direction of
magnetic field in the Zeeman experiment plays a particular role also in the
Darwin solutions. So the most convenient coordinates system is the (r, θ, ϕ)
spherical one (2.7), in which the gradient operator ∇ is of the form

∇ = n∂r +
1
r

(
w∂θ +

v

sin θ
∂ϕ

)
(4.1)

and gives the relations, useful for what follows

r ∧∇ = n
(
w∂θ +

v

sin θ
∂ϕ

)
. (4.2)

Note that
i = e3e1e2 = e3uv = nwv (4.3)

The vectors {e3,u,v} or {n,w,v} are present in the expressions of the E3

space component of space–time vectors, as the Dirac current corresponding
to a state or the probability transition current between two states. But, with
the use of STA these vectors are also present in the expression of the wave
function ψ and allow for a simple and clear construction of these currents.

In addition, there exits a simple relation between the states, associated
with the quantum number κ ∈ Z∗. Each state may be defined by means of a
vector N in a form such that

κ ≤ −1, N = L(θ)e3+M(θ)u =⇒ κ ≥ 1, N = L(θ)n−M(θ)w, (4.4)

the functions L(θ),M(θ) being the same for a same value of |κ|.

4.2 The Biquaternionic Form of the Solutions
in Spherical Coordinates

4.2.1 A Biquaternionic System

In the case of the central potential we have A = 0. We look for a solution of
(3.21) in the form

ψ(x0, r) = φ(r) e−ie3(E/�c)x0
, (4.5)

where now ψ has the form of a element of Cl(E3), from which we deduce

∇φ =
1
�c

[−E0φ̄ + (E + V )φ]ie3, E0 = mc2, φ̄ = e0φe0, V (r) = −qA0.

(4.6)
Writing

φ = φ1 + iφ2 ⇒ φ̄ = φ1 − iφ2, (4.7)

where φ1, φ2 are Hamilton quaternions, we obtain

∇(φ1 + iφ2) =
1
�c

[−E0(φ1 − iφ2) + (E + V )(φ1 + iφ2)]ie3, (4.8)
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which gives the system

∇φ1 =
1
�c

(−E0 − E − V )φ2e3, (4.9a)

∇φ2 =
1
�c

(−E0 + E + V )φ1e3. (4.9b)

This system is equivalent to (12.4) of [5].

4.2.2 The Fundamental Quaternionic Equation

We can obtain a solution in the form

φ1 = g(r)S, φ2 = f(r)(−nSe3), g(r), f(r) ∈ R, S = F (θ, ϕ) ∈ H (4.10)

associated with the quaternionic equation

(r ∧∇)S = λS, λ = 1 + κ. (4.11)

The writing λ = 1 + κ corresponds to the introduction of a conventional
quantum number κ.

Note that this equation has already been considered by Sommerfeld ( [54],
p. 272), the quaternions being expressed in a complex form, but the solutions
presented here differ in the fact that they are directly expressed by means of
the vectors (u,v) or (n,−w), and (we recall) only the Legendre polynomials
Pm

l , Pm+1
l are employed, the use of Pm

l±1, Pm+1
l±1 being avoided.

4.2.3 The Radial Differential System

The following system [27] is to be associted with (11)

dg

dr
+

1 + κ

r
g =

1
�c

(E0 + E + V )f, (4.12a)

df

dr
+

1 − κ

r
f =

1
�c

(E0 − E − V )g (4.12b)

(see (14.10) of [5]).
The functions g(r) and f(r) are called great and f ine components, respec-

tively.
In the case of the atoms, the central potential is in the form

A0 =
Ze

r
, V = −qA0 =

e2Z

r
⇒ V

�c
=

αZ

r
, α =

e2

�c
, (4.13)

where the charge q = −e of the electron is expressed in e.s.u. and Ze is the
charge of the nucleus.
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We recall (Sect. 2.5) that if e is expressed in e.m.u., one writes A0 =
Ze/(4πε0r) and so α = e2/(4πε0), which gives the same value α 
 1/137 to
the fine structure constant α.

Indeed (4.12a) is deduced from (4.9a) in the following way. We multiply
on the left of (4.9a) by n, which gives, with the form (4.10) of φ1 and since
n2 = 1, e2

3 = 1,

n∇(gS) =
1
�c

(E0 + E + V )fS.

Taking into account (4.2) and (4.11)

n∇S = (n ∧∇)S =
(r ∧∇)S

r
=

1 + κ

r
S,

we obtain

n∇(gS) =
dg

dr
S + g

1 + κ

r
S =

(
dg

dr
+

1 + κ

r
g

)
S.

Equation (4.12a) is then obtained after the division by S.
Equation (4.12b) is deduced from (4.9b) and the form (4.10) of φ2, so that

∇(fnSe3) =
1
�c

(E0 − E − V )gSe3

and the relations

∇n =
2
r

, ∇(nS) = (∇n)S − n∇S =
1 − κ

r
S, (4.14)

which give

∇(fnSe3) =
(

df

dr
+

1 − κ

r
f

)
Se3.

Equation (4.12b) is then obtained after the division by Se3.

4.2.4 A General Biquaternionic Solution

One can look for a solution such that [9]

S = Ne3 eie3mϕ, N = L(θ)e3 + M(θ)u (4.15)

in such a way that
φ = (gNe3 − finN)eie3mϕ.
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4.2.5 The Dirac Probability Current and the Conditions
of Normalization

The Dirac probability current j ∈ M takes the form in the real formalism
(3.17) after the elimination of exp η, where η = ie3(mϕ− (E/�c)x0) and since
e0i = −ie0

j = ψe0ψ̃ = (gNe3 − finN)(ge3N + fNni)e0. (4.16)

The elimination of exp η comes from the relations ĩ = i, ẽ3 = −e3, η̃ = −η,
e0i = −ie0, and e0η = ηe0, from which one deduces (exp η)e0(exp η)˜ = e0.

We obtain then

j = [(g2 + f2)N2 + gfi(Ne3Nn − nNe3N)]e0

and, from (4.15), using in particular e2
3 = 1, ue3u = −e3, iue3 = v:

j = (j0 + j)e0,

j0 = (g2 + f2)N2, (4.17a)
j = 2gf [(M2 − L2) sin θ + 2LM cos θ]v. (4.17b)

The conservation ∂μjμ = 0 of the current j is easy to verify: ∂0j
0 = 0 and

n · v = 0, w · v = 0, v · u = 0 imply

n · ∂rj = 0, w · ∂θj = 0, v · ∂ϕj = 0.

The condition of normalization of the current in the frame {eμ} is∫
j0(r) dτ = 1 (4.18)

or, since
∫ 2π

0
v dϕ = 0, the important relation (see Sect. 13.1)∫

j(r)e0 dτ =
∫

(j0(r) + j(r)) dτ = 1. (4.18′)

Equation (4.18) gives

∫ ∞

0

∫ 2π

0

∫ π

0

(g2 + f2)N2 r2 sin θdrdϕdθ = 1 , which implies (4.19a)∫ ∞

0

(g2 + f2)r2 dr = 1, (4.19b)

2π

∫ π

0

N2 sin θ dθ = 1 ⇒
∫ π

0

N2 sin θ dθ =
1
2π

. (4.19c)
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4.3 The Solution of the Quaternionic Equation

4.3.1 The Differential System Implying the Angle Theta

We use (4.2) and (4.15) for the resolution of (4.11). After derivation, of the
division (4.11) by exp(ie3mϕ) and then the muliplication on the right by e3

give
nw∂θN +

nv

sin θ
[Mv + mN ie3] = (1 + κ)N . (4.20)

From nw = e3u, nv2 = n, nvi = w, we2
3 = w, and wue3 = n, we

deduce [10]

−dL

dθ
u +

dM

dθ
e3 +

1
sin θ

[(1 + m)Mn + mLw] = (1 + κ)(Le3 + Mu). (4.21)

Denoting N = Nm
1+κ, we deduce by projection upon e3,u, the system

(κ + 1 + m)Lm
1+κ =

dMm
1+κ

dθ
+ (1 + m) cot θMm

1+κ, (4.22a)

(−κ + m)Mm
1+κ =

dLm
1+κ

dθ
− m cot θLm

1+κ. (4.22b)

Suppose now that κ,m ∈ Z. In the case κ = 0,m = 0, a simple calculation
shows that

L0
1 = C, M0

1 = −C cot θ − K

sin θ
, (4.23)

which is an unacceptable solution, because of the singularity for θ = 0.
This gives the explanation to the fact that κ = 0 is a forbidden quantum

number. One takes
κ ∈ Z, κ �= 0 (4.24)

4.3.2 Properties of the Solutions of Equation (r ∧ ∇)S = λS

We denote now by Sm
λ a solution of (4.11) corresponding to λ = 1+κ, (κ �= 1)

and m, with
Nm

1+κ = Lm
1+κe3 + Mm

1+κu, (4.25)

where Nm
1+κ satisfies (4.19c). We deduce from (4.14), then from (4.11) with

λ = 1 − κ

r ∧∇(nSm
1+κe3) = rn∇(nSm

1+κ)e3 = (1 − κ)nSm
1+κe3 = (1 − κ)Sm

1−κ

and so

Sm
1−κ = nSm

1+κe3,⇒ Nm
1−κ = nNm

1+κe3 ⇒ Nm
1+κ = mNm

1+κe3. (4.26)

A consequence is the following simple passage from the solutions κ ≤ −1 to
the ones such that κ ≥ 1.
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Since ne2
3 = n, nue3 = −w, we obtain

κ ≤ −1 : Nm
1+κ = Lm

1+κe3 +Mm
1+κu ⇒ Nm

1−κ = Lm
1+κn−Mm

1+κw. (4.26′)

Otherwise, we deduce from the system (4.22) that we can write

N−m−1
1+κ = v × Nm

1+κ. (4.27)

4.3.3 Expression of the Solutions by Means of the Legendre
Polynomials

We use the normalized associated Legendre polynomials

Pm
l (x) = (−1)m

[
(l − m)!
(l + m)!

]1/2 [
2l + 1

2

]1/2 1
2ll!

[1 − x2]m/2 dm+l[(x2 − 1)l]
dxm+l

.

They verify the two relations (see [26], p. 45)

± d
dθ

Pm
l (cos θ) + m cot θPm

l (cos θ)

+[(l ± m)(l ∓ m + 1)]1/2Pm∓1
l (cos θ) = 0 (4.28)

and the recursion one

[(l + m + 1)(l − m)]1/2Pm+1
l (cos θ) + 2m cot θPm

l (cos θ)

+[(l − m + 1)(l + m)]1/2Pm−1
l (cos θ) = 0 . (4.29)

A General Rule.

If |m| > l, Pm
l = 0. So −l ≥ m ≤ l.

(1) Case. κ ≤ −1 (States S1/2, P3/2, . . . ), κ = −(l + 1), l = 0, 1, . . .

Lm
−l =

[
l + m + 1
2π(2l + 1)

]1/2

Pm
l (cos θ), (4.30a)

Mm
−l =

[
l − m

2π(2l + 1)

]1/2

Pm+1
l (cos θ). (4.30b)
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(2) Case. κ ≥ 1 (States P1/2, D3/2, . . . ): κ = l, l = 1, 2, . . .

Lm
l+1 =

[
l − m

2π(2l + 1)

]1/2

Pm
l (cos θ), (4.31a)

Mm
l+1 = −

[
l + m + 1
2π(2l + 1)

]1/2

Pm+1
l (cos θ). (4.31b)

Equations (4.30) and (4.31) may be immediately verified by deduction from
(4.22) after replacement of κ by −(l + 1) and l, respectively, which leads to
(4.28+) (in which m is replaced by m + 1), and to (4.28−).

4.3.4 Expression of the Solutions by Means of a Recursion Formula

We can write ([10])

[(κ − m − 1)(κ + m + 1)]1/2Nm+1
1+κ − 2∂θN

m
1+κ + v × Nm

1+κ (4.32)

− [(κ − m)(κ + m)]1/2Nm−1
1+κ = 0

associated with

Nm
1−κ = nNm

1+κe3, N−m−1
1+κ = v × Nm

1+κ (4.33)

and with the relations deduced from (4.22).

• If κ ≤ −1, κ ≤ m ≤ −κ − 1,

Γ1+κ =
[

2
4π

∫ π

0

sin−2κ−1 θdθ

]1/2

, N
−(1+κ)
1+κ = (−1)1+κΓ1+κ sin−1−κ θe3

(4.34)
• If κ ≥ 1, −κ ≤ m ≤ κ − 1,

C1+κ = Γ1−κ, N1−κ
λ = (−1)1+κC1+κ sinκ−1 θn. (4.35)

Equation (4.32) may be immediately verified by calculating ∂θN
m
1+κ by means

of (4.22), then for κ = −(l+1) and κ = l by projections upon e3 and u, which
give in each case (4.29), with m + 1 replacing m for the projection upon u.

For example, one obtains immediately from these relations (we omit a
factor [1/4π]1/2)

(1) States: κ ≤ −1.

• States S1/2, κ = −1: N0
0 = e3, N−1

0 = u
• States P3/2, κ = −2: N1

−1 = −[3/2]1/2 sin θe3, N−2
−1 = −[3/2]1/2 sin θu

N0
−1 = [1/2]1/2(2 cos θe3 − sin θu), N−1

−1 = [1/2]1/2(sin θe3 + 2 cos θu).
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(2) States: κ ≥ 1. They can be immediatly deduced from the previous ones
by the changes e3 → n and u → −w.

• States P1/2, κ = 1: N0
2 = n, N−1

2 = −w
• States D3/2, κ = 2: N1

3 = −[3/2]1/2 sin θn, N−2
3 = [3/2]1/2 sin θw,

N0
3 = [1/2]1/2(2 cos θn + sin θw), N−1

3 = [1/2]1/2(sin θn − 2 cos θw).

4.4 Solutions of the Radial Differential System
for the Discrete Spectrum

4.4.1 Solutions of the System

We have used the same notations for the energy as the ones in [5] and the
method of resolution followed in [43]. With V = αZ/r in the system (4.12),
the changes

G = rg, F = rf, ρ = 2λr, λ =
mc

�

√
1 − ε2, ε =

E

E0
(4.36)

lead to the system

1
[1 + ε]1/2

(
dG

dρ
+

κ

ρ
G

)
=

(
1
2

+
αZ

ρ

[
1 − ε

1 + ε

]1/2
)

F

[1 − ε]1/2
, (4.37a)

1
[1 − ε]1/2

(
dF

dρ
− κ

ρ
F

)
=

(
1
2
− αZ

ρ

[
1 + ε

1 − ε

]1/2
)

G

[1 + ε]1/2
(4.37b)

Asymptotic Behavior. In the case where the terms in 1/ρ are neglected, the
system gives

G 
 √
1 + ε e−ρ/2, F 
 −√

1 − ε e−ρ/2. (4.38)

We are looking for a solution in the form

G =
√

1 + ε ργ e−ρ/2(Q1 + Q2), (4.39a)
F =

√
1 − ε ργ e−ρ/2(Q1 − Q2). (4.39b)

Introducing the number

N =
αZ√
1 − ε2

, (4.40)

we obtain the system

ρQ′
1 + (γ + εN − ρ)Q1 + (κ + N)Q2 = 0, (4.41a)
ρQ′

2 + (κ − N)Q1 + (γ − εN)Q2 = 0, (4.41b)
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where the derivatives are taken with respect to ρ. When ρ = 0, (4.41) implies

κ2 − N2 = γ2 − ε2N2 ⇒ γ2 = κ2 − α2Z2. (4.42)

Taking into account this relation we obtain

ρQ′′
1 + (2γ + 1 − ρ)Q′

1 − (γ + 1 − εN)Q1 = 0, (4.43a)
ρQ′′

2 + (2γ + 1 − ρ)Q′
2 − (γ − εN)Q2 = 0. (4.43b)

Applying (4.62) and (4.61), one can write, introducing the constants C1, C2,

Q1 = C1F (γ + 1 − εN, 2γ + 1, ρ), (4.44a)
Q2 = C2F (γ − εN, 2γ + 1, ρ). (4.44b)

Because ρ = 0 implies Q1 = C1, Q2 = C2, one deduces from (4.41)

C1 = −γ − εN

κ − N
C2 (4.45)

compatible with (4.42).
A function F (A,C, ρ) may be reduced to a polynomial if A is taken equal

to a negative integer. Let us write

γ − εN = −n′, (4.46)

where n′ ≥ 0 is an integer.

(a) If n′ = 1, 2, . . . , each of the two functions of (4.44) is reductible to a
polynomial.

(b) If n′ = 0, (4.42) and (4.46) give both

κ = ±N, γ − εN = 0.

If κ < 0, (4.44) shows that because C1 = 0, Q1 = 0 and Q2 = C2. If κ > 0,
then C1 = −C2 necessarily, a relation that is to be excluded. So we obtain

n′ = 0, 1, 2, . . . for κ < 0, n′ = 1, 2, . . . for κ > 0 .

The condition of normalization (4.19a) allows one to calculate (see [I, Bechert,
1930]) the constant C2 and so C1 and to obtain the final normalized result

g, f =
±(2λ)3/2

Γ (2γ + 1)

[
(1 ± ε)Γ (2γ + 1 + n′)

4N(N − κ)n′ !

]1/2

(2λr)γ−1 e−λr

×[(N − κ)F (−n′, 2γ + 1, 2λr) ∓ n′F (1 − n′, 2γ + 1, 2λr)],

E0 = mc2, ε =
E

E0
, λ =

E0

�c

√
1 − ε2, N =

αZ√
1 − ε2

. (4.47)
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4.4.2 The Levels of Energy for the Discrete Spectrum

Equations (4.40), (4.42), (4.46) give

n′ =
αZε√
1 − ε2

−
√

κ2 − α2Z2, (4.48)

from which one deduces

ε =
E

E0
=

[
1 +

α2Z2

(n′ +
√

(κ2 − α2Z2)2

]−1/2

. (4.49)

One considers the integer n (principal quantum number)

n = n′ + |κ|. (4.50)

Then the energy E = εE0 = εmc2 is given by

E(n, κ) = mc2[1 +
α2Z2

(n − |κ| + √
(κ2 − α2Z2)2

]−1/2. (4.51)

The first terms of the Taylor development of the formula giving the energy
E(n, κ) of le level n, a state corresponding to the number κ, are

E(n, κ) 
 mc2

[
1 − α2Z2

2n2
− α4Z4

(
1

2n3|κ| −
3

8n4

)]
. (4.52)

An useful formula is the following [49]. Because mcα/� = 1/a,

E(n, κ)
�


 mc2

�
− α

c

a
Z2

[
1

2n2
+ α2Z2

(
1

2n3|κ| −
3

8n4

)]
. (4.53)

Labels Given to the State According to Their Levels of Energy. E depends
on Z and on the couple of numbers (κ, n). Using an half integer j so that
j + 1/2 = |κ|, one denotes, in particular, the states

κ = −1, j =
1
2

: nS1/2,

κ = −2, j =
3
2

: nP3/2,

κ = 1, j =
1
2

: nP1/2,

κ = 2, j =
3
2

: nD1/2 .

4.4.3 Case of the States 1S1/2, 2P1/2, and 2P3/2

For the expression of the radial functions we use the following numbers

γ =
√

1 − Z2α2, N =
√

2(1 + γ), δ =
√

4 − Z2α2. (4.54)



30 4 The Solutions of the Dirac Equation

1S1/2:

g =
[
2Z

a

]3/2 √
γ + 1√

2Γ (2γ + 1)
exp

(
−Zr

a

) [
2Zr

a

]γ−1

(4.55a)

f = −
√

1 − γ

1 + γ
g. (4.55b)

2P1/2:

C =
[

2Z

Na

]3/2 [
2 + N

8N(N − 1)(2γ + 1)Γ (2γ + 1)

]1/2

,

g = C exp
(
− Zr

Na

)[
(2γ + 1)(N − 2)

[
2Zr

Na

]γ−1

−(N − 1)
[
2Zr

Na

]γ
]

,(4.56a)

f = −
√

2 − N

2 + N
C exp

(
− Zr

Na

)[
(2γ + 1)N

[
2Zr

Na

]γ−1

− (N − 1)
[
2Zr

Na

]γ
]

.

(4.56b)

2P3/2:

g =
[
Z

a

]3/2 √
2 + δ

2
√

Γ (2δ + 1)
exp

(
−Zr

2a

)[
Zr

a

]δ−1

, (4.57a)

f = −
√

2 − δ

2 + δ
g. (4.57b)

4.4.4 Note: The Gamma and the Confluent Hypergeometric
Functions

The Gamma Function

The Gamma function Γ (z) of the complex variable z is defined by the integral

Γ (z) =
∫ ∞

0

e−ρρz−ρdρ, Re(z) > 0 (4.58)

and satisfies the property

Γ (z + 1) = Γ (z)z

in such a way that if p is an integer

Γ (z + p) = Γ (z)z(z + 1) · · · (z + p − 1). (4.59)

In particular, since Γ (1) = 1

Γ (p) = (p − 1) ! (4.60)
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The Confluent Hypergeometric Functions

The confluent hypergeometric function F (A,C, z) of the complex variable z
is defined by the series

F (A,C, z) = 1 +
A

C

z

1!
+

A(A + 1)
C(C + 1)

z2

2!
+ · · · (4.61)

so that C cannot be equal to 0 or a negative integer. This function is conver-
gent for all value of z and so defines an analytic function upon all the complex
plane. If A is a negative integer −p, the series is reduced to a polynomial of
degree p.

The function w = F (A,C, x) satisfies the differential equation

z
d2w

dz2
+ (C − z)

dw

dz
− Az = 0 (4.62)

(see [45], p. 268).

4.5 Solutions in the Pauli Approximation
and for the Schrödinger Equation

4.5.1 The Pauli Approximation

In the case of a central potential Ze/r, one can look for the approximation

2mc2 +
(

W +
Ze2

r

)

 2mc2, W = E − mc2 (4.63)

in such a way that the system equation (4.12a) is changed into

dg

dr
+

1 + κ

r
g =

2mc

�
f, (4.64a)

df

dr
+

1 − κ

r
f = − 1

�c

(
W +

Ze2

r

)
g (4.64b)

We have
κ(κ + 1) = l(l + 1) (4.65)

for the cases κ = l as well as κ = −(l + 1). The elimination of f gives the
equation

d2g

dr2
+

2
r

dg

dr
+

[
2m

�2

(
W +

Ze2

r

)
− κ(κ + 1)

r2

]
g = 0. (4.66)

Taking into account (4.65), this equation is similar to the one of the radial
solution for the Schrödinger equation (see [5], (1.12), also, in a clearer use of
the physical constants, [47], IX, (19), XI, (4)).
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Because �/mc = αa, (4.64a) shows that f is in order of αZ with respect
to g. If one considers that f2 is negligible with respect to g2 because in order
(αZ)2, the condition of normalization (4.19a) is reduced to∫ ∞

0

gr2 dr = 1 (4.67)

in such a way that g is exactly the same as for the Schrödinger equation.
We deduce from (4.52) and (4.53) that the value of the energy E is to be

considered as reduced in such a way that

E 
 mc2

[
1 − α2Z2

2n2

]
, and so

2mW

�2
= − 1

n2

[
Z

a

]2

. (4.68)

Equation (4.65) becomes

d2g

dr2
+

2
r

dg

dr
+

[
− 1

n2

[
Z

a

]2

+
2
r

[
Z

a

]
− κ(κ + 1)

r2

]
g = 0. (4.69)

The Pauli–Schrödinger Theory

Using system (4.64) associated with (4.66) and (4.67) may be called the Pauli–
Schrödinger theory of the electron. In this approach, the solutions are the same
as for the Dirac theory, except that the radial system is now defined by (4.64),
(4.66), and (4.67), with an energy E given by (4.68).

The use of this approximation of the Dirac theory is interesting for the
study of the transitions in the discrete spectrum, also in the photoeffect for
states of the continuum whose energy is close to mc2, but it is no longer
acceptable for the states of high energy.

When the Pauli–Schrödinger theory will be used, the states S1/2, P1/2, . . .
will be denoted as s1/2, p1/2, . . . .

4.5.2 Solution of the Schrödinger Equation

To be in agreement with the Schrödinger equation, where the number
√−1

is to be replaced by ie3, the term implying u must disappear, the vector N
must be in the form

N = L(θ)e3

and the wave function becomes

ψ(x0, r) = φ(r) e−ie3(E/�c)x0
, φ = gNe3 eie3mϕ. (4.70)

The conditions of normalization are then∫ ∞

0

g2r2 dr = 1, 2π

∫ π

0

L2 sin θdθ = 1 ⇒ L(θ) =
Pm

l (cos θ)√
2π

. (4.71)

A detailed study of the consistency in the formulation of the Dirac, Pauli, and
Schrödinger theories is achieved in [30].
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4.5.3 Case of the States s1/2, p1/2, and p3/2

The function g being deduced from (4.68), the function f is then

s1/2 : κ = −1, f =
αa

2
dg

dr
, (4.72)

p1/2 : κ = 1, f =
αa

2

(
dg

dr
+

2
r
g

)
, (4.73)

p3/2 : κ = −2, f =
αa

2

(
dg

dr
− 1

r
g

)
. (4.74)

Case of the States 1s1/2, 2p1/2, and 2p3/2

The functions g, f may be obtained by two different methods giving the same
results.

1. The function g is calculated as a solution of (4.69) and f is deduced from
the corresponding equation above.

2. The functions g, f are obtained by neglecting in (4.55)–(4.57) Z2α2 with
respect to unity. In particular, we can write

1 + γ 
 2,
√

1 − γ 
 Zα√
2
, N 
 2,

√
2 − N 
 √

2 − δ 
 Zα

2

and use furthermore the relation Γ (n) = (n − 1)! when n is an integer.

We obtain 1s1/2:

g =
[
Z

a

]3/2

2 exp
(
−Zr

a

)
, (4.75a)

f = −αZ

[
Z

a

]3/2

exp
(
−Zr

a

)
. (4.75b)

2p1/2:

g = −
[
Z

a

]3/2 1
2
√

6
exp

(
−Zr

2a

)
Zr

a
, (4.76a)

f = αZ

[
Z

a

]3/2 1
8
√

6
exp

(
−Zr

2a

) (
6 − Zr

a

)
. (4.76b)

2p3/2:

g =
[
Z

a

]3/2 1
2
√

6
exp

(
−Zr

2a

)
Zr

a
, (4.77a)

f = −αZ

[
Z

a

]3/2 1
8
√

6
exp

(
−Zr

2a

)
Zr

a
. (4.77b)
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The Dirac Transition Currents Between
Two States

Abstract. This chapter is devoted to the form of transition currents between two
states. One can remark that, independent of the choice, real or complex, of the initial
formalism, all that follows is placed in the real geometry of space–time.

5.1 Assumptions on the Source Current and the Release
of Energy

5.1.1 Assumptions on the Source Current

As an imperative necessity, the source current must express that the charge of
the electron associated with the state 2 is entirely found again as associated
with the state 1 after the transition.

So the probability current is to be conservative for the three consecutive
situations: state 2, transition 2 → 1, and state 1. Furthermore, it must corre-
spond to a solution of the Dirac equation, which satisfies the exterior problem
for the periods that concern the states 2 and 1.

The current j ∈ M is deduced from the wave functions ψ1, ψ2, which are
the solutions, normalized to unity, of the exterior problem, corresponding to
the states 1 and 2.

The current j is decomposed into three part, j2, j12, j1 corresponding to
the three (successive) periods: state 2, transition 2 → 1, state 1

j = j2 + j12 + j1, (5.1)

where
jk = ψke0ψ̃k,

∫
j0
k(r)dτ = 1, k = 1, 2, (5.2)

j12 = ψ1e0ψ̃2 + ψ2e0ψ̃1. (5.3)

We emphasize that because the two situations, state 2, state 1, are successive,
the right hand side of (5.3) is not to be multiplied by 1/2, as in the case where
the two situations would to be considered as simultaneous.
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We are able to know what happens to an electron bound in an atom only
by means of the long-range part of the electromagnetic field created by the
electron.

This part is null for the two currents j1 and j2, because these currents do
not depend on x0 and that explains why an electron does not radiate at large
distance during a stationary state. The period of time of the transition 2 → 1
is the only one that is able to manifest its existency.

Note that (see Appendix E)∫
j0
12(r) dτ = 0 . (5.4)

5.1.2 Assumptions on the Release of Energy

After the assumptions that have been made about the current, the only way
of calculation of the energy E released by one electron during the transition
is given by the relation

E = E2 − E1, (5.5)

where E2 and E1 are the levels of energy associated with the state 2 and 1.
In our elementary presentation of the transitions, we will not take into

account the small correction to each of these levels called the Lamb shift. So,
we adopt here for E1 and E2 the values given for each state 1 and 2 by the
bare solutions of the Dirac equation in the exterior problem.

5.2 The Transition Current Between Two States

We consider two states 1 and 2 of energy levels E1 and E2 and magnetic
numbers m1 and m2. Using (4.5) in which E is replaced by Ek and (4.15), we
denote

φk = (gkNke3 − fkinNk)ie3mkϕ, Nk = Lke3 + Mku (5.6)

and also

E = E2 − E1, ε = m1 − m2 = −1, 0, 1, ω = (E2 − E1)/�c . (5.7)

We deduce from (4.5), (4.15) and (5.3) that the transition current between
two states is of the form (see Appendix E)

j12 = cos(εϕ + ωx0)jI + sin(εϕ + ωx0)jII . (5.8)

This current verifies the conservation of the charge: eμ · ∂μj12 = 0 (see
Appendix F). We are interested only in the spatial component of j12 in the
form (see Appendix E)
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j = cos ω x0j1 + sin ω x0 j2, (5.9)

j1 = cos εϕ jI + sin εϕ jII , j2 = − sin εϕ jI + cos εϕ jII , (5.10)

and (see Appendix E)

jI = b(r, θ) v, jII = a(r, θ) u + c(r, θ) e3, (5.11)

where

a(r, θ) = 2[(f1g2 − g1f2)(L1L2 + M1M2) sin θ

+(g1f2 + f1g2)(L1M2 − M1L2) cos θ],

b(r, θ = 2(g1f2 + f1g2)[(L1M2 + M1L2) cos θ

+(M1M2 − L1L2) sin θ],

c(r, θ) = 2[(f1g2 − g1f2)(L1L2 + M1M2) cos θ

−(g1f2 + f1g2)(L1M2 − M1L2) sin θ] .

The functions a(r, θ) and c(r, θ) are deduced from

jII = P (r, θ)n + Q(r, θ)w, (5.12)

with

P (r, θ) = 2(f1g2 − g1f2)(L1L2 + M1M2),

Q(r, θ) = 2(f1g2 + g1f2)(L1M2 − M1L2) .
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The Field at Large Distance Created
by the Transition Currents

Abstract. This chapter concerns the emitted light and its polarization in the ab-
sence of an external field.

6.1 Polarization of the Emitted Light

We are going to calculate the vector

U = cos ωx0 U1 + sin ωx0 U2, Uk =
∫

jk(r) dτ . (6.1)

The vector (2.5)

E(x0,R) = e
ω

R
[sin ω(x0 − R) U⊥

1 + cos ω(x0 − R) U⊥
2 ], (6.2)

where U⊥
k is orthogonal to R is the field created by the current at a large

distance R from the source.
So, the behavior of the vector U allows one to define the polarization of

the emitted light.

(a) Linear polarization. U is parallel to the common direction of the polar
axis e3 chosen in (4.5) in the solutions giving each state, and time-sinusoidal
(see Sect. 2.3.1).

(b) Circular polarization. U describes a time-periodic circular motion in the
plane (e1,e2) (see Sect. 2.3.2).

We use the relations (see [5], (A.22), (A.20))

cos θPm
l =

[
(l + 1 − m)(l + 1 + m)

(2l + 1)(2l + 3)

]1/2

Pm
l+1

+
[

(l + m)(l − m)
(2l + 1)(2l − 1)

]1/2

Pm
l−1, (6.3)
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sin θPm
l = −

[
(l + 1 + m)(l + 2 + m)

(2l + 1)(2l + 3)

]1/2

Pm+1
l+1

+
[
(l − m)(l − 1 − m)

(2l + 1)(2l − 1)

]1/2

Pm+1
l−1 , (6.4)

6.2 The Forbidden and Allowed Transitions

We can easily deduce from (6.3) and (6.4), and the properties of orthonormal-
ity of the associated Legendre polynomials,∫ π

0

Pμ
j Pμ

k sin θdθ = δjk

that the vectors jI and jII are nonnull, and so the transition is observable
at large distance, only in the case where the l parameters of the two states,
used in the application of (4.30) and (4.31), differ only from unity. Then the
transition is called “allowed.” Otherwise, the transition is called “forbidden.”
However, additional forbidden transitions appear in what follows.

As an example, the transitions of the states P1/2(κ = 1) and P3/2(κ =
−2) to the states S1/2(κ = −1) are allowed transitions.

However, among the forbidden transitions, some transitions may be con-
sidered (as transitions of states κ = 2 and κ = −3 to the state S1/2), with
a more complicated definition as the one of the allowed transitions. But their
incidence is weak and their study is outside our elementary presentation.

6.3 Linear Polarization

We suppose m1 = m2 = m, and if l1 = l then l2 = l + 1.
Only the component of jII on e3 intervenes in the calculation of U . We

use (2.11) with the value of c(r, θ) given by (5.11) earlier. We have then to
calculate with help of the relations (6.3), (6.4)

c1 = 2π
∫ π

0

2(L1L2 + M1M2) cos θ sin θ dθ,

c2 = 2π
∫ π

0

2(L1M2 − L2M1) sin2 θ dθ,

and we will have

U1 = 0, U2 = Ce3,

C = (c1 + c2)
∫ ∞

0

g1f2r
2dr + (c2 − c1)

∫ ∞

0

g2f1r
2dr,

U = C sin ωx0e3 . (6.5)
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Several cases are to be considered. We obtain without difficulty:

1. κ1 = −(l + 1), κ2 = l + 1,

c1 + c2 =
2(1 + 2m)

2l + 1
, c2 − c1 =

2(1 + 2m)
2l + 3

.

2. κ1 = −(l + 1), κ2 = −(l + 2),

c1 + c2 = 0, c2 − c1 =
4[(l + 1 − m)(l + 2 + m)]1/2

2l + 3
.

3. κ1 = l, κ2 = l + 1,

c1 + c2 = −4[(l − m)(l + 1 + m)]1/2

2l + 1
c2 − c1 = 0.

4. κ1 = l, κ2 = −(l + 2),

c1 + c2 = 0, c2 − c1 = 0

(forbidden transition). As an example, let us calculate c1 + c2 and c2 − c1 in
the case 1.

For calculating 2(L1L2 + M1M2) cos θ we apply (4.30a) and (4.30b) on
one side and, on the other, (4.31a) and (4.31b), but by replacing in these
two last equations l by l + 1. Then we use (6.3). After integration, using∫ π

0
Pμ

i Pμ
j sin θ dθ = δij and the elimination of 2π, we obtain

c1 =
2(l + m + 1)(l + 1 − m) − (l − m)(l + m + 2)

(2l + 1)(2l + 3)
=

2(1 + 2m)
(2l + 1)(2l + 3)

.

In the same way, calculating 2(L1M2−M1L2) sin θ and using (6.4), we obtain

c2 =
2[(l + m + 1)(l + m + 2) − (l − m)(l + 1 − m)

(2l + 1)(2l + 3)]
=

4(l + 1)(1 + 2m)
(2l + 1)(2l + 3)

.

So, after elimination of 2l + 3 and 2l + 1, respectively, we obtain the above
value of c1 + c2 and c2 − c1.

6.4 Circular Polarizations

We assume that m1 − m2 = ±1, m1 = m, l1 = l, l2 = l + 1. Then

j1 = cos ϕ jI ± sin ϕ jII , j2 = ∓ sin ϕ jI + cos ϕ jII .

jI and only the component of jII upon u intervene and we deduce that U1,
U2 are in the form

U±
1 = (JI ± JII) e2, U∓

2 = (±JI + JII) e1.

JI and JII are given by (2.12), with the values of a(r, θ) and b(r, θ) given
by (5.11).
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(1) Case m1 − m2 = +1, m = m1. Using (6.3) and (6.4) we obtain

A = JI + JII = a1

∫ ∞

0

g1f2r
2 dr + a2

∫ ∞

0

g2f1r
2 dr, (6.6)

U+ = A (sin ωx0 eI + cos ωx0 e2). (6.7)

1. κ1 = −(l + 1), κ2 = l + 1,

a1 =
2[(l + 1 + m)(l + 1 − m)]1/2

2l + 1
, a2 =

2[(l + 1 + m)(l + 1 − m)]1/2

2l + 3
.

2. κ1 = −(l + 1), κ2 = −(l + 2),

a1 = 0, a2 =
2[(l + 1 − m)(l + 2 − m)]1/2

2l + 3
.

3. κ1 = l, κ2 = l + 1,

a1 = −2[(l − m)(l + 1 − m)]1/2
2l + 1

, a2 = 0.

4. κ1 = l, κ2 = −(l + 2),

a1 = a2 = 0

(forbidden transition).

(2) Case m1 − m2 = −1, m = m1. Using (6.3) and (6.4) we obtain

B = JII − JI = b1

∫ ∞

0

g1f2r
2 dr + b2

∫ ∞

0

g2f1r
2 dr (6.8)

U− = B (sin ωx0 eI − cos ωx0 e2) (6.9)

1. κ1 = −(l + 1), κ2 = l + 1,

b1 = −2[(l − m)(l + 2 + m)]1/2

2l + 1
, b2 = −2[(l − m)(l + 2 + m)]1/2

2l + 3
.

2. κ1 = −(l + 1), κ2 = −(l + 2),

b1 = 0, b2 =
2[(l + 2 + m)(l + 3 + m)]1/2

2l + 3
.

3. κ1 = l, κ2 = l + 1,

b1 = −2[(l + 1 + m)(l + 2 + m)]1/2
2l + 1

, b2 = 0.

4. κ1 = l, κ2 = −(l + 2),

b1 = b2 = 0

(forbidden transition).
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6.5 Sum Rules for the Intensities of the Emitted Light

For a fixed couple (E1, E2) of levels, the sums S, S+, S− of the squares C2,
A2, B2 of the modulus of the vectors U ,U+,U− verifies S/2 = S+ = S−.
These sums are calculated by taking into account all the transitions for which
m1 − m2 = 0, 1,−1, respectively.

This property may be checked, for example, in the case 1, where κ1 =
−(l + 1), κ2 = l + 1, by summing upon m:

m1 − m2 = 0 :
l∑

−(l+1)

(1 + 2m)2 = 2(l + 1)(2l + 1)(2l + 3)/3 = s,

m1 − m2 = +1 :
l∑
−l

(l + 1 + m)(l + 1 − m) = s/2,

m1 − m2 = −1 :
l−1∑

−(l+1)

(l − m)(l + 2 + m) = s/2 .

As a consequence, in application of (2.15), the total flux of the Poynting
vector is the same for each of the set of the transitions Δm = 0, 1,−1 since
for the linear polarization U2

1 = 0 and for the two circular polarizations
|U1|2 = |U2|2. So C2 on the one side and 2A2 and 2B2 on the other side
interverne in (2.15) and the number of transitions per unit of time is to be
considered as the same for each set.

Using the Pauli approximation of the functions g, f , one can find again
the well-known coefficients (see [3], Chap. 64) but now deduced directly from
an exact relativistic calculation.

Relation with the Zeeman Effect

The above properties of the transition currents are confirmed by the obser-
vation of the normal (nonrelativistic) and abnormal (relativistic) Zeemann
effect (see Part V), where the levels of energy are separated for all the values
of m1 and m2 (see (14.20)) in each state. Such an effect makes possible the
observation of the electromagnetic fields due to the separation of the energies
corresponding to the different values of the number m of a state associated
with a given value of the number κ. For this reason the number m is called
the magnetic number, though it is to be considered even in the absence of an
external magnetic field.

For the same reason the different solutions of the Dirac equation corre-
sponding to a same state have been called the Zeeman components of this
state.
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Case of the Transitions P1/2-S1/2
and P3/2-S1/2

Abstract. This chapter concerns the transitions P1/2–S1/2, P3/2–S1/2 and spon-
taneous emission for these states from level 2 to level 1.

7.1 General Formulas

For simplicity we consider only transitions such that the magnetic numbers
m1,m2 of the two states verify m1 = m2 = 0. Note that the cases m1 =
m2 = −1 give the same results (with a change of sign for the transitions
P1/2 − S1/2). Then the theorem of the sum rules may be applied for the
calculation of the intensities.

We denote ψ1 the wave function of a state S1/2 and ψ2 the wave function
of a state P1/2 and P3/2.

(a) Transitions P1/2–S1/2. We deduce from (6.5) and Case 1 in Sect. 6.3
with l = 0

U1 = 0, U2 = 2
∫ ∞

0

(
g1f2 +

1
3
g2f1

)
r2 dr e3. (7.1)

(b) Transitions P3/2–S1/2. We deduce from (6.5) and Case 2 in Sect. 6.3
with l = 0

U1 = 0, U2 =
4
√

2
3

∫ ∞

0

g2f1r
2 dr e3. (7.2)

7.2 The Pauli Approximation and the Schrödinger
Theory

Let
Ψ1 = φ1(r) e−i(E1/�c)x0

, Ψ2 = φ2(r) e−i(E2/�c)x0
(7.3)
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be the Schrödinger wave functions corresponding to two states of energy E1

and E2. The transition current is such that

j(x0, r) =
αa

i
(Ψ∗

2∇Ψ1 + Ψ∗
1∇Ψ2) , (7.4)

where αa = �/mc, which gives

j1(r) = 0, j2(r) = αa(φ1∇φ2 − φ2∇φ1). (7.5)

For the case S = Ψ1 and P = Ψ2, we can write

φ1(r) =
1√
4π

g1(r), φ2(r) =
√

3 cos θ√
4π

g2(r) .

So U1 = 0 and one obtains without difficulty for the U2 vector the vector Ua

such that

Ua =
∫

j2(r) dτ =
αa√

3

∫ ∞

0

(g1g
′
2 − g2g

′
1 +

2
r
g1g2)r2 dr e3. (7.6)

Let us denote U b and U c as the U2 vectors corresponding to the transitions
p1/2 − s1/2 and p1/2 − s1/2, respectively. We are going to establish the
important following relations [13].

U2
b =

U2
a

3
, U2

c =
2U2

a

3
, U2

a = U2
b + U2

c . (7.7)

(a) For the transitions p1/2 − s1/2 we can write, using (4.73) and (4.72),

−αa

∫ ∞

0

g2g
′
1r

2 dr = −2αa

∫ ∞

0

g2g
′
1r

2 dr + αa

∫ ∞

0

g2g
′
1r

2 dr,

= −2αa[g2g1r
2]∞0 + 2αa

∫ ∞

0

g1

(
g′2 +

2
r
g2

)
r2 dr + αa

∫ ∞

0

g2g
′
1r

2 dr,

where [g2g1r
2]∞0 = 0, and so

−αa

∫ ∞

0

g2g
′
1r

2 dr = 4
∫ ∞

0

g1f2r
2 dr + 2

∫ ∞

0

g2f1r
2 dr,

then from (7.6) and (7.1)

|Ua| = | 1√
3

∫ ∞

0

(6g1f2r
2 dr + 2g2f1r

2 dr| =
√

3|U b| . (7.8)

(b) For the transitions p3/2−s1/2 we can write, using (4.74), (4.72), (7.6), (7.2)

αa

∫ ∞

0

g1g
′
2r

2 dr = αa[g1g2r
2]∞0 − αa

∫ ∞

0

g2

(
g′1 +

2
r
g1

)
r2 dr

from which we deduce in a same way

|Ua| = | αa√
3

∫ ∞

0

2g2g
′
1r

2 dr| =
4√
3
|
∫ ∞

0

g2f1r
2 dr| =

√
3√
2
|U c|. (7.9)

So the relations (7.7) are verified.
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7.3 Spontaneous Emission

7.3.1 The Energy Balance

The fact that in the absence of all external field an electron bound in an atom
may pass from an energy state to a lower one is called spontaneus emission.
The passage to a higher energy state requires the presence of an incident wave.

We follow the method used in [13] based on the energy balance, quite
different from that used in [1], but which gives comparable results.

Consider two states, of energies E1 and E2 (E1 < E2), of an electron
bound in a hydrogen-like atom. Let us write

A =
F

E2 − E1
, (7.10)

in which F is the flux, per unit of time, through a sphere of large radius, of
the Poynting vector of the electromagnetic field created by the source (see
Sect. 2.4), E = E2 −E1 is the energy released by the source for one transition
from state 2 to state 1 and so A is the number of transitions per unit of time.

The number A of transitions per second and the mean life of a transition
T = 1/A may be deduced from (2.15) in the following way. Because

Ω =
E2 − E1

�
= ωc,

cω2e2

E2 − E1
=

E2 − E1

�
.
e2

�c
= αΩ,

we obtain

A =
αΩ

3
(U2

1 + U2
2), Ω =

E2 − E1

�
. (7.11)

Taking into account the equality of the flux of the Pontying vector for the
cases m1 −m2 = −1, 0, 1, it is sufficient to calculate the flux for m1 −m2 = 0.

7.3.2 Spontaneous Emission in the Transitions 2P1/2 − 1S1/2
and 2P3/2 − 1S1/2 for the Hydrogen Atom

We consider only the case of the hydrogen atom (Z = 1). For simplicity we
do the numerical calculation with the use of the Schrödinger approximation
for the transition 2p − 1s. The calculation for the transitions 2p1/2 − 1s1/2
and 2p3/2 − 1s1/2 of the Pauli–Schrödinger approximation will be deduced
by means of (7.7).

The common value in these approximations of Ω is given by (4.68) with
the help of (4.53), with n = 1, 2

Ω = α
c

a
· 3
8
. (7.12)
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(1) Transition 2p− 1s. The number A implies U2
a given by (7.6) in which g1,

g2 are given by (4.75a) and (4.76a) (or (4.77a)), respectively. We deduce from
(7.11)

U2
a = α28

[
2
3

]8

, A = α4 c

a

[
2
3

]8

, (7.13)

and so
A = 6.268 × 108 s−1, T =

1
A

= 1.595 × 10−9 s (7.14)

in agreement with the experimental value of T = 1.6 × 10−9 given in [20]
and the theoretical value T = 1.596 × 10−9 of Wiese et al. 1966, cited in this
article.

(2) Transition 2p1/2 − 1s1/2.

Ab = 2.089 × 108 s−1, Tb = 1.479 × 10−9 s. (7.15)

(3) Transition 2p3/2 − 1s1/2.

Ac = 4.179 × 108 s−1, Tc = 0.239 × 10−9 s. (7.16)

Note, as a verification, that the values of Ab Ac may be found again by means
of (7.8), (4.76) and (7.9), (4.77) associated with (4.75).

The relativistic value obtained in [1], we repeat by a quite different method,
are Ab = 2.088 × 108, Ac = 4.177 × 108, giving also T = 1.596 × 10−9.
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Interaction with Radiation



8

Interaction with an Incident Wave:
The Retardation

Abstract. In this chapter, the interactions with radiation in the so-called calcu-
lation with retardation (i.e., the fact that the action of an external plane wave is
taken into account) is studied. The relativistic processing of this last problem has
been considered for a long time as difficult, but we think that the pure geometrical
methods used here allow one to avoid a large part of the difficulties.

8.1 Matrix Element of a Transition

Part II has been devoted to the field created in a transition between two
states corresponding to the levels of energies E1, E2, and the phenomena of
spontaneous emission (in which the final level is lower), in the absence of all
external action.

Now we are going to take into account the effect of a monochromatic
electromagnetic wave with a propagation vector k of magnitude 2πν/c and a
polarization whose direction, orthogonal to k, will be represented by an unit
vector L.

When the light of quantum energy hν falls on an electron, bound in an
atom, whose energy is E1 > 0, a quantum may be absorbed and the electron
jumps into a state of energy E2 = E1 +hν. The energy E1 belongs to the dis-
crete spectrum and E2 may belong to the discrete (bound–bound transition)
or to the continuous spectrum (photoeffect).

The transition probability is related to what is called the matrix elements
of the transition (see [5], (59.3)), which are related to the transition probability
current between the two states ((5.7)–(5.10) of Chap. 5) and are defined by
the scalars

Dk,L
j =

1
2

∫
ei(k.r) jj(r) . Ldτ, (j = 1, 2), (8.1)

which are real numbers (see (9.12) later). A justification of the role of these
scalars is made in Appendix G.
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Note. The factor 1/2 is not present in the usual presentation of the matrix
elements, but is present in the usual definition of the transition currents. We
have introduced this factor in the above definition because it is absent in our
definition (5.3) of the current. We recall that the absence of the factor 1/2 in
the definition of the transition current has been justified in Chap. 5. It appears
as a necessity for the concordance of the theoretical calculation of spontaneous
emission and the experimental results concerning this phenomena.

Because L is orthogonal to k, the component of jj(r) upon the direction
of k does not intervene in (8.1) and we can write

Dk,L
j =

1
2

∫
ei(k.r) j⊥j (r) . Ldτ, (j = 1, 2), (8.2)

where X⊥ is the symbol of the component of the vector X orthogonal to k.
Let us introduce the vectors

T⊥
j (k) =

1
2

∫
ei(k.r) j⊥j (r) dτ, (j = 1, 2). (8.3)

It is to emphasize, as we prove in Chap. 9, (9.12), that these vectors are
real:

1
2

∫
sin(k.r) j⊥j (r) dτ = 0 ⇒ T⊥

j (k) =
1
2

∫
cos(k.r) j⊥j (r) dτ. (8.3′)

We can write
Dk,L

j = L.T⊥
j (k). (8.4)

Indeed, let I1 be an unit vector parallel to the vector T⊥
j (k), and so or-

thogonal to k. Let I2 be an unit vector orthogonal both to k and I1. Because
L is orthogonal to k, it intervenes in the integral only by its components L.I1

and L.I2. Because the integral of the component of exp(ik.r) j⊥j upon I2 is
null, only L.I1 is to be taken into account, and can be put outside the integral,
giving the relation (8.4).

As a consequence, we can deduce that the determination of the matrix
elements is reduced to the one of the vectors T⊥

j (k).
Nevertheless, the choice of the direction of the vector L is not innocent for

the determination of the value of a matrix element, and in particular, L can
be chosen in such a way that the matrix element cancels.

Otherwise, the average of [L.T⊥
j (k)]2 on all the directions of L may be

calculated by denoting

L = cos ηI1 + sin ηI2, so that [L.T⊥
j (k)]2 = [T⊥

j (k)]2 cos2 η,

and writing

1
2π

∫ 2π

0

[L.T⊥
j (k)]2 dη = [T⊥

j (k)]2
1
2π

∫ 2π

0

cos2 η dη =
1
2
[T⊥

j (k)]2. (8.5)
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Note. The Lamb shift. The vectors T⊥
j (k) intervene also in the form

[T⊥
1 (k)]2 + [T⊥

2 (k)]2 (8.6)

in the Lamb shift calculation by means of the so called Electrodynamics energy
term WD, which, in addition to the Electrostatic energy term WS, contributes,
after the correction by the mass renormalization term, to the shift (see [25,40]).
The level E1 belongs to the discrete spectrum and E2 may belongs to the
discrete or to the continuous spectrum.

So the problem of the determination of the matrix elements is exactly the
same for a transition in general and for the term WD of the Lamb shift.

8.2 The Retardation and the Dipole Approximation

The fact that the exponential is not taken into account in (8.3) is called the
“electric dipole approximation” (see Sect. 9.2.4). The fact that it is taken into
account is indicated for simplicity by the word “retardation” (see [5], p. 249).

For the bound–bound absorption–emission processes, the effect of the re-
tardation is negligible, as it is well known and as that may be confirmed
numerically in a precise way (see (9.38)–(9.40) later).

However, from a theoretical and also a practical point of view, several
teachings may be deduced. In particular, with the retardation, the Pauli ap-
proximation of the Dirac theory is no longer in strict agreement with the
Schrödinger theory, as it is the case with the dipole approximation, when for
example two states p1/2 and p3/2 are considered as unified in a single state p.
Such a feature has a nonnegligible incidence.

For the bound-free transitions (photoeffect), the relativistic calculation
with retardation becomes an imperative necessity for the high values of the
energy of the electron in the continuum.
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Relativistic Expression of the Matrix Elements

Abstract. In this chapter, the interactions with radiation in the so-called calcu-
lation with retardation (i.e., the fact that the action of an external plane wave is
taken into account) is studied. The relativistic processing of this last problem has
been considered for a long time as difficult, but we think that the pure geometrical
methods used here allow one to avoid a large part of the difficulties.

9.1 Geometrical Construction of the Vectors T⊥
j (k)

We use the method developed in [15]. It is based on the use of the spherical
system or coordinates defined by (2.7) and the expression of the vectors j1(r),
j2(r) of (5.10).

Let (I,J,K) be an orthonormal positive frame such that K = k/k, k = |k|.
There is no inconvenient to place the vectors K, I in the plane (e3, e1) in such
a way that

K = cos θ0 e3 − sin θ0 e1, I = sin θ0 e3 + cos θ0 e1, J = e2. (9.1)

Let vector n may be expressed in the frame (I,J,K):

n = cos θ̂ K + sin θ̂ U, U = cos ϕ̂ I + sin ϕ̂ J. (9.2)

One obtains immediately

k.r = kr cos θ̂, cos θ̂ = K.n = cos θ0 cos θ − sin θ0 cos θ cos ϕ, (9.3)

e⊥1 = cos θ0I, e⊥2 = 0, e⊥3 = sin θ0 I,

u⊥ = cos θ0 cos ϕ I + sin ϕ J, v⊥ = − cos θ0 sin ϕ I + cos ϕ J. (9.4)
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9.1.1 Integration in the Frame (e1, e2, e3)

Because the integrals in the form
∫ π

−π
f(cos ϕ) sinϕ dϕ are null, one deduces

from (9.3), (5.10), and (9.4) that the component of T⊥
1 (±k) upon I and the

component of T⊥
2 (±k) upon J are null for the three cases ε = m1−m2 = 0, 1,

or −1.
We deduce immediately from (9.4), (8.3), (5.10) and (5.11)

1. For m1 − m2 = 0

T⊥
1 (±k) =

1
2
[
∫

e±ikr cos θ̂b(r, θ) cos ϕdτ ] J, (9.5)

T⊥
2 (±k) =

1
2
[
∫

e±ikr cos θ̂(a(r, θ) cos ϕ cos θ0 + c(r, θ) sin θ0)dτ ]I. (9.6)

2. For m1 − m2 = ε = ±1

T⊥
1 (±k) =

1
2
[
∫

e±ikr cos θ̂(b(r, θ) cos2 ϕ + εa(r, θ) sin2 ϕ) dτ ] J, (9.7)

T⊥
2 (±k) =

1
2
[
∫

e±ikr cos θ̂((εb(r, θ) sin2 ϕ + a(r, θ) cos2 ϕ) cos θ0+

c(r, θ) cos ϕ sin θ0)dτ ] I. (9.8)

9.1.2 Necessity of the Integration in the Frame (I, J, K)

Because of the presence of cos ϕ, cos2 ϕ, sin2 ϕ, and the absence of sinϕ in the
integrand, the integration in the frame (e1, e2, e3) is not possible and we have
to make the integration in the frame (I,J,K) by using dτ = r2 sin θ̂ dθ̂ dϕ̂ dr,
with the help in particular of the formulas deduced from (9.1) and (9.2):

cos θ = n.e3 = cos θ̂ cos θ0 + sin θ̂ sin θ0 cos ϕ̂, (9.9)

sin θ cos ϕ = n.e1 = − cos θ̂ sin θ0 + sin θ̂ cos θ0 cos ϕ̂. (9.10)

Introducing the spherical Bessel functions

j0(ρ) =
sin ρ

ρ
, j2(ρ) =

(
−1

ρ
+

3
ρ3

)
sin ρ − 3

ρ2
cos ρ, (9.11)

we can write ∫ π

0

e±ikr cos θ̂ sin θ̂ dθ̂ = 2j0(kr) ∈ R, (9.12a)

∫ π

0

e±ikr cos θ̂(1 − 3 cos2 θ̂) sin θ̂ dθ̂ = 4j2(kr) ∈ R. (9.12b)
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Denoting
F (θ̂) = 1 − 3 cos2 θ̂

and since ∫ 2π

0

dϕ̂ = 2π,

∫ 2π

0

cos ϕ̂ dϕ̂ = 0,
∫ 2π

0

cos2 ϕ̂ dϕ̂ = π,

we can deduce from (9.1) and (9.2) the useful relations∫ 2π

0

cos2 θ dϕ̂ = π

(
2
3
− 2

3
F (θ̂) + F (θ̂) sin2 θ0

)
(9.13)

∫ 2π

0

cos θ sin θ cos ϕ dϕ̂ = πF (θ̂) cos θ0 sin θ0, (9.14)

∫ 2π

0

sin2 θ cos2 ϕ dϕ̂ = π

(
2
3

+
1
3
F (θ̂) − F (θ̂) sin2 θ0

)
, (9.15)

∫ 2π

0

sin2 θ sin2 ϕ dϕ̂ = π

(
2
3

+
1
3
F (θ̂)

)
. (9.16)

Let gi(r) (great) and fi(r) (fine) (i = 1, 2) be the radial components of
the Darwin solutions of the states Ψ1, Ψ2, we notice

Ls,ij(k) =
∫ ∞

0

js(kr)gi(r)fj(r)r2 dr. (9.17)

9.2 Case of the Transitions S1/2–P1/2 and S1/2–P3/2

9.2.1 Expression of the Vectors T⊥
j (k)

As an example, we detail the calculation for a transition between ψ2 = P1/2
and Ψ1 = S1/2, such that ε = m1 − m2 = 0. The calculations for the other
transitions are exactly of the same model.

Using (5.11) and also (4.30) with l = 0, m1 = 0, for the state S1/2 and
(4.31) with l = 1, m2 = 0, for the state P1/2, or, in a much more simpler way
the relations we have established in Sect. 4.2.4, we obtain immediately

a(r, θ) = 4f1g2 cos θ sin θ/4π,
b(r, θ) = 0,
c(r, θ) = 2(2f1g2 cos2 θ − (g1f2 + f1g2))/4π,
and from (9.5) and (9.6)

T⊥
1 (±k) = 0,

T⊥
2 (±k) =

1
2
[

1
4π

∫
e±ikr cos θ̂[4f1g2 cos θ sin θ cos ϕ cos θ0+

2(2f1g2 cos2 θ − (g1f2 + f1g2)) sin θ0]dτ ] I (9.18)
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and applying (9.14) and (9.13),

T⊥
2 (±k) =

1
4

[∫ ∞

0

[∫ π

0

e±ikr cos θ̂

[
2f1g2F (θ̂) cos2 θ0 sin θ0

+
(

2f1g2

(
2
3
− 2

3
F (θ̂) + F (θ̂) sin2 θ0

)

− 2(g1f2 + f1g2)
)

sin θ0

]
sin θ̂ dθ̂

]
r2dr

]
I (9.19)

and from (9.12) and (9.17), we deduce finally the relation (9.21).

1. Transitions P1/2 − S1/2: κ1 = −1, l1 = 0, κ2 = 1, l2 = 1.
(a) m1 = m2 = 0, (ε = 1) and m1 = m2 = −1, (ε = −1).

T⊥
1 (±k) = 0, (9.20)

T⊥
2 (±k) =

ε

3
[(3L0,12 + L0,21 − 2L2,21)(k)] sin θ0 I. (9.21)

(b) m1 = 0, m2 = −1, (ε = 1) and m1 = −1, m2 = 0, (ε = −1).

T⊥
1 (±k) =

ε

3
[(3L0,12 + L0,21 − 2L2,21)(k)] J, (9.22)

T⊥
2 (±k) =

1
3
[(3L0,12 + L0,21 − 2L2,21)(k)] cos θ0 I. (9.23)

2. Transitions P3/2 − S1/2: κ1 = −1, l1 = 0, κ2 = −2, l2 = 1.
(a) m1 = m2 = 0, (ε = 1) and m1 = m2 = −1 (ε = −1).

T⊥
1 (±k) = −ε

3√
2
[(L2,12 + L2,21)(k)] cos θ0 sin θ0 J, (9.24)

T⊥
2 (±k) =

√
2

6
[(4L0,21 − 3L2,12 + L2,21)(k)] sin θ0 I. (9.25)

(b) m1 = 0, m2 = −1, (ε = +1) and m1 = −1, m2 = 0, (ε = −1).

T⊥
1 (±k) =

√
2

3

[
(L0,21 − 3L2,12 − 2L2,21 +

9
2

sin2 θ0(L2,12+ L2,21))(k)
]
J,

(9.26)

T⊥
2 (±k) = ε

√
2

3
[(L0,21 − 3L2,12 − 2L2,21)(k)] cos θ0 I. (9.27)

(c) m1 = 0, m2 = 1, (ε = +1) and m1 = −1, m2 = −2, (ε = −1).

T⊥
1 (±k) =

√
2√
3

[
(L0,21 + L2,21 − 3

2
sin2 θ0(L2,12 + L2,21))(k)

]
J, (9.28)

T⊥
2 (±k) = −ε

√
2√
3
[(L0,21 + L2,21)(k)] cos θ0 I. (9.29)
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9.2.2 The Relativistic Retardation and the Sum Rules

We can establish a rule similar to the rule of the sum of intensities in the
normal [5], p. 254) and the anomal (Sect. 6.5) Zeemann components of the
transitions between two levels of energy E1, E2.

We consider the following number

S =
1
4π

∫ 2π

0

∫ π

0

([T⊥
1 (k)]2 + [T⊥

2 (k)]2) sin θ0 dϕ0dθ0 (9.30)

corresponding to an average over all the directions of the vector k for a given
value of k, and for two given states Ψ1, Ψ2.

It has been established in [8] that, in the Schrödinger theory, for a fixed
couple (E1, E2) of levels, the values of S are the same in the three cases
m1 − m2 = 0, m1 − m2 = 1, m1 − m2 = −1.

This property may be extended [15] to the Dirac theory in the following
way. Let us denote S(m1,m2) as the value of S corresponding to m1, m2.

(1) For the transitions S1/2 − P1/2 one has

S(0, 0) + S(−1,−1) = S(0,−1) = S(−1, 0). (9.31)

This can be seen on the relations (9.22), (9.23): the integrations over ϕ0 and
θ0 introduce a factor respectively equal to 4π and, because of the presence
of cos2 θ0 in the integrand, 4π/3, and so a factor equal to 16π/3 for the
calculation of S. One observes on (9.20), (9.21) that the factor is, because of
the presence of sin2 θ0 in the integrand, 8π/3, that is, the half. Since S(0, 0) =
S(−1,−1), (9.31) is verified.

(2) For the transitions S1/2 − P3/2 we have

S(0, 0) + S(−1,−1) = S(0,−1) + S(−1,−2) = S(−1, 0) + S(0, 1). (9.32)

Denoting

U = (L0,21 + L2,21)(k), V = (L2,12 + L2,21)(k), (9.33)

one deduces from (9.24) to (9.29)

S(0, 0) = S(−1,−1) =
8
27

(2U2 − 3UV ) +
14
15

V 2, (9.34)

S(0,−1) = S(−1, 0) =
4
27

(2U2 − 3UV ) +
16
15

V 2, (9.35)

S(0, 1) = S(−1,−2) =
12
27

(2U2 − 3UV ) +
12
15

V 2. (9.36)

As 8 × 2 = 4 + 12 and 14 × 2 = 16 + 12, we see that the property is verified.
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9.2.3 Case of the Transitions 1S1/2–2P1/2 and 1S1/2–2P3/2

We give the values for m1 = m2 = 0 of the calculation with retardation, in
the cases of the transitions 1S1/2− 2P1/2, 1S1/2− 2P3/2. For simplicity we
take the Pauli approximation of the radial functions:

Using (q a positive integer)

∫ ∞

0

e−λrrq

{
cos
sin

}
(kr) dr = q!

{
Re
Im

} [[
1

λ − ik

]q+1
]

(9.37)

and (4.75)–(4.77) we find without difficulty
1s1/2 − 2p1/2:

T⊥
2 (±k) = Zα

√
2√
3

[
2
3

]4 [1 + 4μ2k2]
[1 + μ2k2]3

sin θ0 I, μ =
2a

3Z
. (9.38)

1s1/2 − 2p3/2:

T⊥
1 (±k) = −Zα3

√
3

[
2
3

]4
μ2k2

[1 + μ2k2]3
cos θ0 sin θ0 J, μ =

2a

3Z
, (9.39)

T⊥
2 (±k) = Zα

1√
3

[
2
3

]4 [2 − μ2k2]
[1 + μ2k2]3

sin θ0 I, μ =
2a

3Z
. (9.40)

If we take the value of k = 3α/8a suitable to the simple absorption–
emission process and if we neglect the terms in α2, one finds again the formulas
of Chap. 7. So we have the confirmation that the retardation is quite negligible
for these transitions.

Note that in the photoeffect (see the tables of Chap. 12), the retardation
takes a considerable importance for the high values of the energy E of the
continuum.

9.2.4 Comparison with the Dipole Approximation

The formulas (9.20)–(9.29) may be verified by comparison with the values
they have in the dipole approximation in which k is taken equal to 0. They
are related to the total transition current vectors

Uj =
∫

jj(r) dτ

that we have calculated in chap. 6 for all relativistic transition.
In fact, the dipole approximation corresponds to the definition of these

vectors in the absence of an external fieid.
So θ0 = π/2 corresponds to the linear polarization (m1 − m2 = 0) along

the e3 axe and θ0 = 0 to the circular polarization (m1 − m2 = ±1) in the
plane orthogonal to e3.
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For k = 0 we have, since j0(0) = 1, j2(0) = 0

L0,12(0) =
∫ ∞

0

g1f2r
2 dr, L0,21(0) =

∫ ∞

0

g2f1r
2 dr, L2,12(0) = L2,21(0) = 0.

It is easy to verify that

U1 = 2T⊥
1 (0), U2 = 2T⊥

2 (0).

For example, in the case where m1−m2 = 0, replacing θ0 by π/2 in (9.21)
and (9.25), in such a way that I = e3, and multiplying by 2, we obtain (7.1)
and (7.2) for the transitions p1/2 − s1/2 and p3/2 − s1/2.

In the case m1−m2 = ±1, one can make the same verification by replacing
θ0 by 0 in (9.23), (9.27) and (9.29), in such a way that I = e1, and multiplying
by 2.
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The Photoeffect
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The Radial Functions of the Continuum

Abstract. The general formulas of the previous part are applied to the photoeffect,
that is, the jumping of the electron from a bound state (limited here to 1S1/2) to
a state of the continuum and in this purpose this chapter is devoted to the Darwin
solution for the continuum.

10.1 Solution of the Radial System

10.1.1 General Form of the Solution

In the Darwin solution of the Dirac equation for a hydrogenic atom, the radial
functions g(r) (great) and f(r) (fine) satisfy the system

d
dr

(gr) +
κ

r
(gr) =

[
1 + ε

αa
+

αZ

r

]
(fr), (10.1a)

d
dr

(fr) − κ

r
(fr) =

[
1 − ε

αa
− αZ

r

]
(gr), (10.1b)

where α = e2/�c is the fine structure constant and

1
αa

=
mc2

�c
, ε =

E

mc2
, (10.2)

whose solution is {
g
f

}
= ±C[1 ± ε]1/2e−λr(2λ)γrγ−1M±, (10.3)

M± = [(−κ +
η

ε
)F (γ − η, 2γ + 1, 2λr) ± (γ − η)F (γ + 1 − η, 2γ + 1, 2λr)],

where C is a constant depending on ε (we recall that F (a, c, z) means the
confluent hypergeometric function of z) and where
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γ = [κ2 − Z2α2]1/2, λ =
[1 − ε2]1/2

αa
, η =

Zαε

[1 − ε2]1/2
(10.4)

(as, e.g., in [43], Vol. 4, (36.11)).
It is to be noticed that Z and the Bohr radius a are eachone always to be

associated with α except in the ratio Z/a.

10.1.2 A Choice of Variable

For a level of energy E of the continuum one has 1 − ε < 0. We denote

[1 − ε]1/2 = i[ε − 1]1/2, n =
Zα

[ε2 − 1]1/2
. (10.5)

We emphasize that, in no way, the definition of the real number n implies an
approximation. It corresponds simply to the choice of a variable related to the
energy. We deduce

[ε2 − 1]1/2 =
Zα

n
, λ =

[(1 − ε)(1 + ε)]1/2

αa
=

i[ε2 − 1]1/2

αa
=

iZ
na

, (10.6)

η

ε
=

Zα

i[ε2 − 1]1/2
= −in, ε =

[n2 + Z2α2]1/2

n
. (10.7)

Introducing the real number ν whose role is important in what follows

ν = [n2 + Z2α2]1/2, we have η = −iν (10.8)

denoting
γ − η

−κ + η
ε

= ei2ξ =
γ + iν
−κ − in

, (10.9)

we obtain the radial functions in the normalization on the energy scale ε (see
Sect. 10.1.3){

g
f

}
= [ε ± 1]1/2 eνπ/2|Γ (γ + 1 − iν)|√n√

π
√

αa
√

αZ Γ (2γ + 1)

[
2Z

na

]γ

rγ−1

{
Re
Im

}
S, (10.10)

S = exp
[
−i

(
ξ +

Zr

na

)]
F

(
γ + iν, 2γ + 1, i

2Zr

na

)
(10.11)

This equation may be compared with the (36.19) of [43], Vol. 4), for ex-
ample, by taking into account that here there is a change of sign in (10.5), an
exchange between the real and the imaginary part of S due to our exchange
between cosine and sinus in the asymptotic definition of g and f , that the
normalization is made on the energy scale ε (see Sect. 10.1.3), and also that
the equation cited in reference contains an useless factor 2.

We can notice that

[ε − 1]1/2 =
αZ

n[ε + 1]1/2
. (10.12)
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10.1.3 Normalization on the Energy Scale

Denoting

C1 = Ciγ
(
−κ +

η

ε

)
eiξ (10.13)

we obtain {
g
f

}
= ±C1

{
[ε + 1]1/2

i[ε − 1]1/2

} [
2Z

na

]γ

rγ−1N±, (10.14)

N±= e−i Z
na

[
e−iξF

(
γ+ iν, 2γ+ 1, i

2Zr

na

)
± eiξF

(
γ+ 1 + iν, 2γ + 1, i

2Zr

na

)]
.

The asymptotic behavior.

Using the asymptotic expansion of F (a, c, z) for large |z| in which one
applies for R = r large R−(γ+1) � R−γ and denoting

Γ (γ + 1 ∓ iν) = |Γ (γ + 1 − iν)|e±iχ, (10.15)

we obtain for each ε > 0
{

g(R, ε)
f(R, ε)

}

 ±C1(ε)

{
[ε + 1]1/2

i[ε − 1]1/2

}
Γ (2γ + 1)

|Γ (γ + 1 − iν)|RL±, (10.16)

L± =

[
(−i)−γ−iν

[
2ZR

na

]−iν

e−i( ZR
na +χ+ξ) ± i−γ−iν

[
2ZR

na

]iν

ei( ZR
na +χ+ξ)

]
,

and because we can write

(−i)−γ−iν = eiγπ/2e−νπ/2, i−γ+iν = e−iγπ/2e−νπ/2,
ZR

na
� ν ln

2ZR

na
.

(10.17)
We obtain

{
g(R, ε)
f(R, ε)

}

 ±C1

{
[ε + 1]1/2

i[ε − 1]1/2

}
Γ (2γ + 1)e−νπ/2

|Γ (γ + 1 − iν)|R 2
{

cos
−i sin

} [
ZR

na
+ φ1

]
,

(10.18)
with φ1(ε) = χ + ξ − π

2
γ.

The conservation of the charge and the asymptotic behavior on the energy
scale ε = E/mc2.

On the one side, the conservation of the charge is given by

lim
R→∞

∫ ε1

ε0

[∫ R

0

(g(r, ε)g(r, ε′) + f(r, ε)f(r, ε′))r2 dr

]
dε′ = 1, ε0 < ε < ε1

(10.19)
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associated with the relation deduced of the system (10.1)

∫ R

0

(g(r, ε)g(r, ε′)+f(r, ε)f(r, ε′))r2 dr=
f(R, ε)g(R, ε′) − g(R, ε)f(R, ε′)

(ε′ − ε)
αaR2,

(10.20)

on the otherside, by the solution of this system in which the terms in 1/r have
been removed

{
g(R, ε)
f(R, ε)

}

 C2(ε)

[ε ± 1]1/2

√
αaR

{
cos
− sin

} [
[ε2 − 1]1/2 R

αa
+ φ2(ε)

]
(10.21)

Replacing in (10.20) g(R, ε), f(R, ε) by their above values and applying (after
convenient rearrangement and changes of variable) the Dirichlet theorem to
the relation (10.19), we obtain

π[C2(ε)]2[ε2 − 1]1/2 = 1 ⇒ C2(ε) =
1√

π[ε2 − 1]1/4
=

√
n√

π
√

αZ
. (10.22)

The comparison with (10.18) allows one to identify φ1 and φ2 and gives

C1 =
eνπ/2|Γ (γ + 1 − iν)|√n

2
√

π
√

αa
√

αZ Γ (2γ + 1)
. (10.23)

Applying F (a, c, z) = ezF (c − a, c,−z)

F

(
γ + 1 + iν, 2γ + 1, i

2Zr

na

)
= ei 2Z

na F

(
γ − iν, 2γ + 1,−i

2Zr

na

)
, (10.24)

we obtain

N± = 2
{

Re
Im

} [
exp

(
−i(ξ +

Zr

na
)
)

F

(
γ + iν, 2γ + 1, i

2Zr

na

)]
(10.25)

and eliminating the number 2 between (10.23) and (10.25) we deduce the
relation (10.10).

Note. When the normalization is made on the p-scale (see [43], Vol. 4
paragraph 36), where p = [ε2 − 1]1/2, dε′ is to be replaced in (10.19) by dp′,
and C2(ε) is to be replaced by Ĉ2(ε) such that

π[Ĉ2(ε)]2[ε2 − 1]1/2 dp

dε
= 1 ⇒ Ĉ2(ε) =

1√
πε

. (10.26)
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10.2 The Different Approximations of the Radial
Functions

Three kinds of approximations may be considered:

10.2.1 The Approximation Z2α2 � κ2

This approximation only implies that γ is replaced by |κ|:

γ 
 |κ|, e−iξ 
 e−iξ0 , e−iξ0 =
[
− κ + in
|κ| + iν

]1/2

. (10.27)

That gives{
g
f

}
= [ε ± 1]1/2 eνπ/2|Γ (|κ| + 1 − iν)|√n√

π
√

αa
√

αZ (2|κ|)!

[
2Z

na

]|κ|
r|κ|−1

{
Re
Im

}
S, (10.28)

S = exp
[
−i

(
ξ0 +

Zr

na

)]
F

(
|κ| + iν, 2|κ| + 1, i

2Zr

na

)
(10.29)

and where ε = [n2 + Z2α2]1/2/n and ν = [n2 + Z2α2]1/2 remain unchanged.

10.2.2 The Approximation Z2α2 � n2 or Pauli–Schrödinger
Approximation

It intervernes in addition to the previous one and leads to write

γ 
 |κ|, ε + 1 
 2, [ε2 − 1]1/2 
 [2(ε − 1)]1/2 =
Zα

n
, (10.30)

η

ε
= −in 
 η, ν 
 n, ξ 
 ξ0, ei2ξ0 = −|κ| + in

κ + in
. (10.31)

Using the relations

1. If κ = � > 0: F (a, c, x) − F (a − 1, c, x) = xF (a, c + 1, x)/c,
2. If κ = −(� + 1) < 0:

aF (a, c + 1, x) − (a + 1 − c)F (a, c, x) = (c − 1)F (a, c + 1, x),

it is a simple matter to show that g(r) becomes the solution R(r) of the
Schrödinger equation on the energy scale ε (see [5]], (4.20), (4.21), (4.23)).

R(r) =
enπ/2

√
2|Γ (� + 1 − in)|√n√

π
√

αa
√

αZ (2� + 1)!
Z

na

[
2Zr

na

]�

e−iZr/naF

(
� + 1 + in, 2� + 2, i

2Zr

na

)
. (10.32)
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Thus, this second approximation corresponds to the transformation of the
system (10.1) into the system of the radial functions in the Pauli approxima-
tion for which, in (10.1a) the left hand side is replaced by (2/αa)f(r), (10.1b)
remaining unchanged.

10.2.3 The Schrödinger Approximation

This approximation lies in the use of (10.32) for the radial function associated
with the form of the Schrödinger wave function.

10.2.4 Interest and Validity of the Approximations

Presently the use of computers allows the calculation of the exact relativistic
formulas of the photoeffect even when the effect on the formulas of the pres-
ence of the incident wave (the “retardation”) is taken into consideration. The
degree of exactitude depends only on the chosen precision in the numerical
calculation.

An interest of the above approximations lies in the fact that their common
relation Z2α2 � κ2 allows the use of the method of Laplace for the calculation
of the confluent hypergeometric functions and lead to analytic results. This
method has been for a long time the only way of calculation.

Another interest is the comparison between the relativistic and the nonrel-
ativistic approachs of the theory of the electron. These approachs give about
the same results concerning the bound–bound transitions, also in the pho-
toeffect when the energy in the continuum is close to the freedom one. The
good concordance of the results obtained by the two methods for the energies
of the continuum close to this energy will give a strong credit to the validity
of the relativistic results for the high energies, which differ widely from the
nonrelativistic ones.

The first approximation coincide with the Pauli approximation only for
the discrete spectrum, but not for the continuum. One can expect that the
first approximation has a weak incidence on the result, independently of the
level of energy considered in the continuum, but the second one is directly
related to the value of the number n in respect with Zα and may lead to
important differences for the weak values of n, that is, the high values of the
energy. So in what follows, we mainly use the first approximation, the second
one being devoted only to the verification of the results, by a passage to the
well known nonrelativistic expressions (see [5], Sect. 71) of the matrix elements
in the dipole approximation.
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Matrix Elements for the Transitions
1S1/2-Continuum

Abstract. This chapter concerns the transitions from the state 1S1/2 to the states
P1/2, P3/2 in the dipole approximation (i.e., the fact that the retardation is not
taken into account) and the transitions 1S-P with retardation in the Schrödinger
theory.

11.1 The transitions 1S1/2-Continuum in the Dipole
and Schrödinger Approximations

All the followings approximations use the relation Z2α2 � κ2 and cannot be
applied for large values of Z.

As it is schown in Sect. 9.1, (9.17) one has to calculate integrals in the form∫ ∞

0

J(kr)g1f2r
2dr or

∫ ∞

0

J(kr)f1g2r
2dr, (11.1)

where J(kr) is the spherical Bessel function j0(kr) or j2(kr) (which is reduced
to unity or zero in the case of the dipole approximation).

The radial functions g1, f1 corresponding to 1S1/2 in the Pauli approxi-
mation (4.69), (4.72)

g1 =
[
Z

a

]3/2

2e−Zr/a, f1 = −αZ

[
Z

a

]3/2

e−Zr/a. (11.2)

The functions g2, f2 correspond to a state of the continuum, and thus one
has to consider integrals in the form

I(A,C, p; k) =
∫ ∞

0

exp[−(1 +
i

n
)
Zr

a
]J(kr)rpF (A,C, i

2Zr

na
)dr, (11.3)

where A = |κ| + iν, C = 2|κ| + 1, p = |κ| + 1.
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The calculation of these integral may be achieved in two different ways:

(a) The Laplace method of the representation of a confluent hypergeometric
function (see Sect. 12.2).

(b) The direct integration term by term of the integrals (11.1) which may be
achieved by means of (11.30) below, leading to the calculation of hyper-
geometric series which may be reduced here to polynomials

We will not detail here the calculations. They are explicited in [16].

11.2 Transitions 1S1/2-P1/2 in the Dipole
Approximation

The interest of a calculation with the dipole approximation is to show, by com-
parison, the incidence of the retardation. It may be considered as negliglide
for the discrete spectrum and the values of the energy E in the continuum
close to the freedom energy. But this incidence becomes important and even
considerable for the high values of E.

In (9.17), j0(kr) and j2(kr) are to be replaced by 1 and 0, respectively.
We will consider the case where the difference between the magnetic quan-

tum number m1 and m2 is equal to zero.
One deduces from (9.20), (9.21) in which θ0 = π/2, and so I = e3

T⊥
1 (0) =

1
2
U1 = 0

T⊥
2 (0) =

1
2
U2 = [

∫ ∞

0

g1f2r
2dr +

2
3

∫ ∞

0

f1g2r
2dr] e3 (11.4)

in conformity with (7.1). Here |κ2| = 1. Using the relation

|Γ (2 − iν)| =
√

π
√

ν[1 + ν2]1/2

[
2

eνπ − e−νπ

]1/2

(11.5)

(see [5], (5.21)), replacing in (10.29) exp(−iξ0) by its value (10.27), eliminating
[1 + ν2]1/2, one obtains{

g2

f2

}
= [ε ± 1]1/2

[
Z

a

]1/2 √
2
√

νn

αa[1 − e−2νπ]1/2n

{
Re
Im

}
S (11.6)

S = i[(1 + in)(1 − iν)]1/2e−iZr/naF (1 + iν, 3, i
2Zr

na
) (11.7)

We obtain (see [16], (11.36)–(11.43))

|T⊥
2 (0)| = |2

√
2 n2

√
νn e−2ν cot−1 n

(1 + n2)2[1 − e−2νπ]1/2

[
2

n[ε + 1]1/2
Im[L] − [ε + 1]1/2

3
Re[L]

]
|

L = −[(1 + in)(1 − iν)]1/2(1 + in) (11.8)
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11.3 Transitions 1S1/2-P3/2 in the Dipole
Approximation

We will also consider the case m1 = m2 = 0.
We deduce from (9.24), (9.25) in which θ0 = π/2, and so I = e3

T⊥
1 (0) =

1
2
U1 = 0

T⊥
2 (0) =

1
2
U2 =

2
√

2
3

∫ ∞

0

f1g2r
2dr e3 (11.9)

in conformity with (7.2). From |κ2| = 2 and

|Γ (3 − iν)| =
√

π
√

ν[(1 + ν2)(4 + ν2)]1/2

[
2

eνπ − e−νπ

]1/2

(11.10)

replacing exp(−iξ0) in (10.29) by its value (10.27), eliminating [4+ν2]1/2, one
obtains{

g2

f2

}
= [ε ± 1]1/2

[
Z

a

]3/2 [1 + ν2]1/2
√

νn r

αa 3
√

2[1 − e−2νπ]1/2n2

{
Re
Im

}
S (11.11)

S = [(2 − in)(2 − iν)]1/2e−iZr/naF (2 + iν, 5, i
2Zr

na
) (11.12)

we obtain (see [16], (11.49)–(11.51), with a change of sign in the expression
of J1 and the correction of a priting erratum in the term 2ν(5 + 2ν2)n lying
in N below)

|T⊥
2 (0)| = |2[ε + 1]1/2 [1 + ν2]1/2

√
νn n2

[1 − e−2νπ]1/2
Re[S]|, (11.13)

where
S = [(2 − in)(2 − iν)]1/2 N

iν(2 − iν)(1 + ν2)

N = 1 − [3n4 + 6νn3 + 6(1 + ν2)n2 + 2ν(5 + 2ν2)n

+3(1 + 2ν2) − i4ν(ν2 + 1)]
e−2ν cot−1 n

3(1 + n2)2

We give an indication on the method based on the formulas of the Note
below, using the hypergeometric polynomials. We deduce from (11.3) that
because p = 2 + 1, and after the change ρ = Zr/a, we have to calculate an
integral in the form

L =
∫ ∞

0

exp[−(1 +
i
n

)]ρ3F (2 + iν, 5,
i2
n

ρ)dρ
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We apply the (11.30), below which introduces the functions

F (2 + iν, 4, 5,
i2

n + i
)

then (11.32) where appear

F (2 + iν, 4, 2 + iν,
in + 1
in − 1

), F (3 − iν, 1,−iν,
in + 1
in − 1

)

These two functions lead, by means of (11.31), to the polynomials

F (0,−2 + iν, 2 + iν,
in + 1
in − 1

) = 1, F (−3,−1 − ν,−iν,
in + 1
in − i

)

It is easy to verify that the first above polynomial, equal to 1 (it corresponds
to the residue at infinity in the integration by the Laplace method), gives, in
combination with the second polynomial, and with the help of the following
relation [

in − 1
in + 1

]ν

= e−2ν cot−1 n

the number N .

11.4 Transitions 1s-p in the Schrödinger Theory

We follows the method of calculation of [55]. The Schrödinger waves functions
ψ1 corresponding to 1s and ψ2 corresponding to p are in the form

ψ1(r) =
2√
4π

[
Z

a

]3/2

e−Zr/a, ψ2(r) =
√

3√
4π

cos θR(r), (11.14)

where R(r) is given by (10.32) in which � = 1, with the help of (11.5) in which
ν = n, so that

R(r) =
2

3αa

[
Z

a

]3/2 [1 + n2]1/2

n[1 − e−2nπ]1/2
re−iZr/anF (2 + in, 4, i

2Zr

na
) (11.15)

the definition of n with respect to the energy E2 = εmc2 being given by
(10.30).

Using the properties of the Schrödinger current we can write

T⊥(k) =
�

mc

∫
eik.r[ψ2∇ψ1]⊥dτ = − �

mc

∫
eik.r[ψ1∇ψ2]⊥dτ,

�

mc
= αa

(11.16)

Considering the frame I,J,K where K = k/k, defined in Sect. 9.1, the
relations
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n.e3 = cos θ = cos θ̂ cos θ0 + sin θ̂ sin θ0 cos ϕ̂

[∇(e−Zr/a)]⊥ = [n(e−Zr/a)′]⊥ = −Z

a
e−Zr/a sin θ̂ U (11.17)

dτ = r2 sin θ̂dθ̂dϕ̂dr,

∫ 2π

0

sin θ̂ cos θ u dϕ̂ = π sin2 θ̂ sin θ0I (11.18)

∫ π

0

e±ikr cos θ̂ sin3 θ̂dθ̂ = 4J(kr), J(kr) =
sin kr

(kr)3
− cos kr

(kr)2
(11.19)

and the definition (11.3), we deduces

T⊥(k) =
4√
3

[
Z

a

]4 [1 + n2]1/2

n[1 − e−2nπ]1/2
I(2 + in, 4, 3; k) sin θ0I (11.20)

from wich we deduce (see [16], (11.60)–(11.64))

T⊥(k) =
√

3e−2nΘ(2n2K cos nφ − (1 + n2 + n2K2) sin nφ)
n[1 + n2]1/2[1 − e−2nπ]1/2K3

sin θ0I, (11.21)

where

K =
ka

Z
, Θ =

1
2

(
cot−1

[
n

nK + 1

]
− cot−1

[
n

nK − 1

])

φ =
1
2

ln
[
n2 + (nK + 1)2

n2 + (nK − 1)2

]
.

To obtain the matrix element of the photoeffect, we have to give to k the value
k = (E2 − E1)/�c, with E2 − E1 = E2 − mc2 + mc2 − E1, where mc2 − E1 is
the ionisation energy Z2α2mc2/2, and so, using (10.30), to write

E2 − E1

�c
=

[
1 + n2

n2

]
Z2α2

2αa
, K =

[
1 + n2

n2

]
Zα

2
(11.22)

We see that for values of Z not too large, the retardation is not very important
in the photoeffect, at least in the non relativistic calculation.

11.5 A recapitulative Verification

1. We can obtain a verification of (11.22), in which θ0 = π/2 and so I = e3, by
the passage to the matrix element used in the calculation of the photoeffect
without retardation.

Using the relation the for small values of K

2n2K cos nφ − (1 + n2 + n2K2) sin nφ 
 8n4K3

3(1 + n2)
, (11.23)
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which may be proved by means of Taylor developments, we obtain the modulus
of the vector U of the transition in the Schrödinger approximation, that we
will denote Ua as in Sect. 7.2,

|Ua| = lim
k→0

|2T(k)| = Ua(n), Ua(n) = 2
8n3e−2n cot−1 n

√
3[1 + n2]3/2[1 − e−2nπ]1/2

(11.24)
then using

Ua

2
=

�

mc

∫
ψ2∇ψ1dr =

E1 − E2

�c

∫
ψ2rψ1dr, |X21| = |

∫
ψnrψ1dr|

(11.25)

(see [5], Eq. (59.4)) we obtain, with the value (11.22) of E2 − E1), the well-
known expression ([5], eq.(71.4))

|X21|2 =
28e−4n cot−1 n

3(1 − e−2nπ)

[
n2

1 + n2

]5 (αa)2

(Zα)4
(11.26)

used in the calculation of the photoeffect without retardation.
2. On the other hand, using the approximation ε+1 = 2, ν = n, equivalent

to the Pauli approximation of the Dirac radial functions, we see immediatly
on (11.8) and (11.13) that, denoting Ub and Uc the vector U2 corresponding
to the transitions s1/2 − p1/2 and s1/2 − p3/2 respectively, we can write

|Ub| =
1√
3
Ua(n), |Uc| =

√
2√
3
Ua(n) (11.27)

in conformity with the relation (7.7), which holds in the Pauli approximation
for all transitions s1/2− p1/2 and s1/2− p3/2, now including a state p of the
continuum

U2
a =

U2
b

3
, U2

a =
2U2

c

3
, U2

a = U2
b + U2

c (11.28)

We can deduce from relations established in Sect. 9.2 that a direct passage
of the vectors T⊥(k) of the transitions s1/2 − p1/2 and s1/2 − p1/2 to a
vector T⊥(k) of a transition s − p is not possible. In other words, one of
the effect of the retardation is to break the possibility to find an equivalence
between the Pauli approximation and the Schrödinger theory, and the reason
lies on the incidence of the retardation on the spherical parts of the Dirac
wave functions, related to the presence of the spin. The incidence is already
sensible, in the transitions of the discrete spectrum (see (9.38), (9.39), (9.40))
and this incidence may be amplified in the contribution of the continuum,
independently of the incidence of the chosen values for the radial functions.

Note : Integral formula implying the hypergeometric series.

The hypergeometric function, denoted F (A,B,C, z), is defined by the series

F (A,B,C, z) = 1 +
AB

C
.
z

1!
+

A(A + 1)B(B + 1)
C(C + 1)

.
z2

2!
+ .. (11.29)
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which:

– is reduced to a polynomial of degree p in z if A or B is a negative
integer −p,

– if not, is an holomorphic function defined on the disk of convergence |z| < 1
of the series.

In both case it allows the calculation of integrals by means of the following
formula ∫ ∞

0

e−λρρβ−1F (A,C, μρ)dρ =
Γ (β)
λβ

F (A, β,C,
μ

λ
) (11.30)

with, in the case (b), Re(β) > 0, Re(λ) > Re(μ) > 0 (see [45], p.278).
This formula is nothing else but the integration term by term of the series

e−λρρβ−1(1 +
A

C
.
μρ

1!
+

A(A + 1)
C(C + 1)

.
(μρ)2

2!
+ ..)

with the help of the relations ([45], p.9)∫ ∞

0

e−λρρβ+p−1dρ =
Γ (β + p)

λβ+p
, Γ (β + p) = Γ (β)β(β + 1)..(β + p − 1)

The following formulas are usefull :

F (A,B,C, z) = (1 − z)C−A−BF (C − A,C − B,C, z) (11.31)

F (A,B,C, z) = Γ (C)[
Γ (C − A − B)

Γ (C − B)Γ (C − A)
F (A,B,A + B − C + 1, 1 − z)

+(1 − z)C−A−B Γ (A + B − C)
Γ (A)Γ (B)

F (C − A,C − B,C − A − B + 1, z)]

(11.32)
(see [45], p. 47).
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Matrix Elements for the Relativistic
Transitions with Retardation 1S1/2-Continuum

Abstract. This chapter gives exact calculation of the matrix elements of the tran-
sition by the use of hypergeometric series and its verification by using the Laplace
method. The incidence of the diverse approximations with regard to the exact solu-
tion are drawn out numerically. A conclusion is the necessity of the use of retardation
and considerable divergence between relativistic and nonrelativistic approachs for
the high values of energy in the continuum.

12.1 General Formulas

The formulas established here allow us to calculate the matrix elements, up to
all wanted degree of precision. They concern any Z number, provided that the
potential created by the nucleus can be supposed of the form Ze/r. For large
Z, a high degree of precision would not be compatible with the absence of
corrections due to the size of the nucleus. However, concerning the transitions
to the continuum, these corrections are probably negligible.

For Z ≥ 2 a high degree of precision would require that the atom is
considered as strictly hydrogen-like. Precise results cannot be obtained, for
example, with the usual screening correction approximations to the value of
Z, which is made for the K shell. Nevertheless, experiments are made with
atoms whose all electrons except one have been drived away, and for these
experiments, except the question of the size of the nucleus, the calculation is
to be considered as suitable as for the hydrogen atom.

We will only consider here the transitions 1S1/2-continuum and the cases
where the variation in the transition of the magnetic number m is null.

The calculation for the others states of the discrete spectrum and for the
cases where the variation of m is equal to ±1 can be made on the same model.

We recall the formulas we need.

Ls,ij(k) =
∫ ∞

0

js(kr)gi(r)fj(r)r2dr, (12.1)
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where js(x) represents the spherical Bessel function such that s = 0 or s = 2
and gi(r), fi(r) (i = 1, 2) are the radial components of the Darwin solutions
of the states ψ1, ψ2.

1. Transitions S1/2 − P1/2: m1 = m2 = 0, (ε = 1) and m1 = m2 = −1,
(ε = −1).

T⊥
1 (±k) = 0 (12.2)

T⊥
2 (±k) =

ε

3
[(3L0,12 + L0,21 − 2L2,21)(k)] sin θ0 I (12.3)

2. Transitions S1/2 − P3/2: m1 = m2 = 0, (ε = 1) and m1 = m2 = −1,
(ε = −1).

T⊥
1 (±k) = −ε

3√
2
[(L2,12 + L2,21)(k)] cos θ0 sin θ0 J (12.4)

T⊥
2 (±k) =

√
2

6
[(4L0,21 − 3L2,12 + L2,21)(k)] sin θ0 I (12.5)

(a) The radial functions.

The radial functions g1, f1 corresponding to the state ψ1 = 1S1/2 ((17.14)
will be written here

g1(r) = C

[
Z

a

]3/2

2e−ρργ1−1, f1(r) = −CdαZ

[
Z

a

]3/2

e−ρργ1−1 (12.6)

with

γ1 = [1 − α2Z2]1/2, δ =
[
1 +

α2Z2

γ2
1

]−1/2

C = 2γ1−1

[
1 + δ

Γ (2γ1 + 1)

]1/2

, d =
2

αZ

[
1 − δ

1 + δ

]1/2

and
ρ =

Zr

a
(12.7)

Let us denote

γ = [κ2 − α2Z2]1/2, ε =
E

mc2
, n =

αZ

[ε2 − 1]1/2
, ν = [n2 + α2Z2]1/2

(12.8)
the parameters that are associated with the state ψ2.

Then the radial functions of a state ψ2 (energy E) in the continuum,
(10.10), is written

{
g(r)
f(r)

}
= [ε ± 1]1/2

[
Z

a

]3/2 eνπ/2|Γ (γ + 1 − iν)|√n

αZ
√

π Γ (2γ + 1)

[
2
n

]γ

ργ−1

{
Re
Im

}
S
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S =
[−κ − in

γ + iν

]1/2

e−iρ/nF (γ + iν; 2γ + 1; i
2ρ

n
) (12.9)

The allowed transitions are such that ψ2 is a state P1/2 (κ = 1) or a state
P3/2 (κ = −2).

(b) The integrals Ls,ij

Let us define
K =

ka

Z
(12.10)

The determination of the integrals (12.1) implies the calculation of integrals
in the form

Is(K,n) =
∫ ∞

0

exp[−(1+
i

n
)ρ]js(Kρ)ργ1+γF (γ + iν; 2γ +1; i

2ρ

n
)dρ, (12.11)

where s = 0, 2.
Using the equalities

[ε + 1]1/2 =
[ν + n]1/2

√
n

, [ε − 1]1/2 =
αZ√

n[ν + n]1/2
(12.12)

and denoting

H(n) = C
eνπ/2|Γ (γ + 1 − iν)|√n√

π Γ (2γ + 1)

[
2
n

]γ [−κ − in

γ + iν

]1/2

(12.13)

we can write

Ls,12(k) =
2√

n[ν + n]1/2
Im[H(n)Is(k, n)] (12.14)

Ls,21(k) = −d
[ν + n]1/2

√
n

Re[H(n)Is(k, n)] (12.15)

The substitution of these real numbers in the (12.2)–(12.5) (and (9.20)–
(9.29) for all the degenerencies) gives the values of the vectors T⊥

j (±k).
Note that for verifying the calculations which use the dipole approxima-

tion, we have to consider also the integral I0(0, n), in which j0(Kρ) is replaced
by unity.

12.2 Numerical Calculation of the Formulas

The calculation of H(n) does not present difficulties, but the one of integrals
in the form

Is(K,n) =
∫ ∞

0

e−λρρpjs(Kρ)F (a; c;μρ)dρ (12.16)
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with

j0(x) =
sin x

x
, j2(x) = 3

[
sin x

x3
− cos x

x2

]
− sin x

x
, (12.17)

where λ = 1 + i/n, a = γ + iν, p = γ1 + γ, c = 2γ + 1, μ = i2/n, requires
explanations.

These integrals imply confluent hypergeometric functions and two ways
may be envisaged for their calculation.

(a) Analytic calculation.

For a long time it has been the only way, by the use of the Laplace method.
Such a method is based on the representation in the complex plane of the
confluent hypergeometric functions and the use the residues theorem. But it
needs the approximation Z2α2 � κ2, which allows one to replace in (12.16)
the numbers a, c, p by integers.

This method is suitable only for small values of Z, but allows a verification
of the validity of the results obtained by the second way below. We recall that
it is the natural continuation of an approach initiated in [55] and which has
been used in the study of the photoeffect especially in [5, 32], Sect. 71.

We will not detail the calculation made in [18] and will only recall the
numerical results given by (12.41)–(12.48) of this article.

(b) Numerical calculation on computers.

The calculation of the integrals Ls,ij , (12.1), may be presently achieved by
means of sophisticated computer softwares.

Nevertheless, given the good convergence of the hypergeometric series, a
simple calculation can be made with the use of (11.31) (except for the calcu-
lation of L2,21, in the case of P1/2, which implies more elaborated processes,
but this integral is negligible for small values of the energy in the continuum).

12.3 Some Numerical Results

The numerical results presented here concern the square of the matrix ele-
ments deduced from (12.2), (12.3) for P1/2 and (12.4), (12.5) for P3/2, in
which θ0 = π/2, i.e. the number

L(k) = |T⊥
2 (k)|2, where k = |k| =

E − E1

�c
=

2π

λ
, k.e3 = 0 (12.18)

E1 is the energy of 1S1/2 and E the energy of a state P1/2 or P3/2 of the
continuum, λ the wave length of the incident wave.

The number L(k) is dimensionless but to be in conformity with the defi-
nition of [5], Eq. (73.1), it may be considered as a quantity expressed in unit
(mc2/�)2 = (1/αa)2.

The calculation gives results obtained by the Laplace method and their
comparison with the ones obtained by the use of the hypergeometric series.
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In the limit k → 0, (12.41)–(12.48) of [18] allow one to recover the ex-
pressions of the numbers L(0) = |T⊥

2 (0)|2 = |U2|2/4 (see (12.8), (11.13))
corresponding to the relativistic, non retarded case.

In the Pauli approximation (here ν = n in addition to Z2α2 � κ2) the
numbers L(0) satisfy the relations L(0) = |XE1|2/3 and L(0) = 2|XE1|2/3
for the transitions s1/2-p1/2 and s1/2-p3/2, respectively (see 11.29), where
|XE1|2 (see [5], Eq. (71.4)) is the matrix element of a transition 1s− p in the
Schrödinger theory. (We recall that this matrix element has been used for a
long time as the main element of the theoretical verification of the experi-
ments on the photoeffect ([5], Sect. 71)). This property has been analytically
verified on the relativistic non retarded formulas of the Sect. 12.10, and nu-
merically verified for the small values of k on the relativistic retarded formulas
of Sect. 11.4.

Here we compare L(k) with the non relativistic retarded matrix elements
of the transitions 1s− p established in conformity with the calculation of [55]
(see (11.22) with θ0 = π/2) (multiplied by 1/3 and 2/3 for the transitions
1s1/2-p1/2 and 1s1/2-p3/2, respectively). That gives the error made by the
use of the nonrelativistic retarded theory.

1. In Tables I, II, III, the line (a) gives the values Le(k) of L(k) calcu-
lated with the use of hypergeometric series, and which are obtained by means
of (11.31)

We emphasize that the high degree of precision allowed by this method
concerns only atoms considered strictly as hydrogenic and whose number Z
in not too large, in such a way that the corrections due to the presence of
other electrons or the size of the nucleus are not to be taken into account.

For simplicity, because the calculation of I2(K,n) for the transitions
1S1/2-P1/2 requires sophisticated numerical methods, we have leaved out
the calculation of this number. For the values of K = ak/Z not too large its
contribution is negligible. For the large values of K, the matrix elements of
these transitions are not mentioned.

Table 12.1 is relative to the numbers

Le(k) : hypergeometric series.
La(k) : Laplace method.
L(0), (k = 0) : relativistic non retarded (see (11.8) and (11.9)).
L0(k) : non relativistic (Schrödinger) retarded (see (11.22)) multiplied by

1/3 and 2/3 for the transitions 1s1/2 − p1/2 and 1s1/2 − p3/2, respectively.

The line (b) gives the ratios La(k)/Le(k) and allows a numerical comparison
between the two methods.

The line (c) gives the ratios L(0)/Le(k) and allows the evaluation of the
incidence of the retardation in the relativistic calculation.

The line (d) gives the ratios L0(k)/Le(k). It allows the estimation of the
errors which are made when the retarded non relativistic calculation is used.
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Table 12.1. Matrix elements L(k) (see [19])

λ(Å) E − mc2 (Kev) K = ak/Z 1S1/2 − P1/2 1S1/2 − P3/2

I:H(Z = 1)
828.42 0.00136 0.004 a 0.110973 0.221954

b 1.00005 1.00007
c 1.00004 1.00003
d 1.00005 1.00001

0.608 20.4 5.47 a 1.0997 × 10−8 2.3179 × 10−8

b 0.99988 0.99982
c 0.9357 1.0034
d 1.1080 1.0514

0.0091 1360.6 364.9 a 3.37 × 10−13 6.035×10−13

b 0.99963 1.0021
c 0.1479 0.3276
d 0.9434 1.0553

0.006 2040.8 547.3 a − 3.032×10−13

b − 1.0024
c − 0.1625
d − 0.093

9×10−5 136056 36487 a − 9.40×10−16

b − 1.001
c − 4.83×10−6

d − 2.44×10−11

II:Na(Z = 11)

7.457 0.0165 0.041 a 0.12723 0.25549
b 1.006 1.009
c 1.005 1.003
d 1.006 1.002

0.502 23.05 0.602 a 5.692 × 10−4 1.2282 × 10−3

b 1.0004 0.995
c 0.927 1.006
d 1.141 1.057

0.075 162 4.01 a 3.73 × 10−6 1.3317 × 10−5

c 0.585 0.997
d 2.6 1.45

0.015 821 20 a − 2.283 × 10−7

c − 0.611
d − 4.8

(Continued)
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Table 12.1. Continued

λ(Å) E − mc2 (Kev) K = ak/Z 1S1/2 − P1/2 1S1/2 − P3/2

III:Cs(Z = 55)
0.3 0.041 0.2 a 0.10806 0.24347

b 1.170 1.251
c 1.139 1.070
d 1.164 1.033

0.2 20.57 0.301 a 0.05 0.1226
c 1.067 1.071
d 1.301 1.038

0.03 370 2 a − 0.00219
c − 0.955
d − 1.8

L(k) = |T⊥
2 (k)|2, k = |k| =

E − E1

�c
=

2π

λ
, k.e3 = 0

Le(k) (hypergeometric series), La(k) (Laplace method), L(0) relativistic
non retarded, L0(k), non relativistic retarded.
a = Le(k), b = La(k)/Le(k), c = L(0)/Le(k), d = L0(k)/Le(k).

Comments.

For E close to mc2, i.e. for K small, and small values of Z, all the lines
(b) to (d) must be close to 1, as can be seen on Table I (Z = 1) for K=0.004.
That constitutes a very credible confirmation of the validity of all the formulas
used.

For small values of Z the line (b) must be close to 1 as that can be seen
on table I (Z=1) and II (Z = 11). So, for these values, the formulas (12.27)–
(12.34) whose running time on a computer is shorter than for the ones of the
hypergeometric series, can be used. But for large values of Z, the table III
shows that the Laplace method gives wrong results.

The incidence of the retardation, in the relativistic calculation, begins to
be important (for Z = 1) around E − mc2 = 300 Kev and then becomes very
large, as it is schown in the line (c).

The errors (line (d)) due to the use of the retarded non relativistic formulas,
with respect to the retarded relativistic ones, are not very large for E−mc2 <
1, 300 Kev (Z = 1), but then they increase fastly, and become considerable
for E very large. That shows the profound difference between the relativistic
and the nonrelativistic calculations. One can notice on Table 12.1 incidence
of the value of Z on these errors.

We recall that the nonrelativistic calculation cannot be applied in the cases
of degeneracies (for reasons analog to the differences between the normal and
anomal Zeeman effect), as it is schown by the formulas (9.20)–(9.29).
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12.4 Conclusion

We have a numerical confirmation of the validity of the formulas giving the
exact relativistic matrix elements with retardation of the photoeffect of hy-
drogenic atoms, by the good concordance, for small walues of Z, of the results
in the two ways of calculation which have been employed, the exact one, based
on the use of the hypergeomtric series, and the Laplace method which implies
the approximation α2Z2 � κ2.

An important point is the necessity of the use, in the photeffect, of the
relativistic calculation in place of the nonrelativistic one, even when the re-
tardation is taken into account in this last calculation.
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The Radiative Recombination

Abstract. This chapter concerns what is called the radiative recombination, that
is, the inverse of the photoeffect: one considers the emission of a plane wave after
the capture by a bare nucleus of an electron whose state is placed in the continuum.

13.1 Motivations and Definition of Cross Sections

The radiative recombination (RR) for an hydrogenic atom is the inverse of
the photoeffect. Instead of considering that a photon of energy hν = �ω falls
on the electron, bound in a state of energy E1, and that the electron jumps
to a state of the continuum of energy E2 = E1 + �ω, one supposes that an
electron in a state of the continuum of energy E2 may be captured by the
bare nucleus until a bound state of energy E1 with the simultaneous emission
of a photon whose energy is �ω.

The recent studies about this process has been achieved in particular by
Jörg Eichler and Akira Ichihara (see [24] and [38], named here [I/E]). Such
a process “plays an important role in plasma physics, in particular for the
spectroscopic analysis of fusion plasmas” ([I/E], p. 2).

Given the kinetic energy T of the incident electron, so that ([E/I], (13.7))

T = E2 − mc2 = �ω − ε (E1 = mc2 − ε, ε > 0) (13.1)

cross sections σRR for the study of RR are considered. We will follow the
definition given in [I/E], (13.11)

σRR =
σph

f
(13.2)

(a) σph is defined as ([I/E], (13.6))

σph =
8π2αmc2(λR

C)2

�ω(2j + 1)
L, (13.3)
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where j + 1/2 = |κ| and κ is the principal quantum number of the state of
energy E1, and λR

C = �/mc is the reduced Compton wavelength.
The number L is defined as

L =
1
4π

∫ 2π

0

∫ π

0

([T⊥
1 (k)]2 + [T⊥

2 (k)]2) sin θ0dϕ0dθ0 (13.4)

The vectors T⊥
j (k) allow one to define the matrix elements, (8.1), (8.3), of

the transition from the state of energy E2 to the state of energy E1. The
propagation vector k of the emitted wave is such that |k| = k = �ω and θ0,
such that K.e3 = cos θ0, (K = k/k), defines the angle between k and the e3

direction of the Darwin solutions of the Dirac equation. So (8.4) corresponds
to an average upon all the directions of the vector k.

Note that σph may be also written

σph = 2πα2 aλ

|κ|L, (λ =
2π�c

k
), (13.5)

where a = �/αmc is the Bohr radius and λ the wavelength of the emitted
photon.

If a and λ are both expressed in Angström (10−8cm) and σph in barn
(10−24 cm2), it is necessary to multiply the right hand part of (13.5) by a
conversion factor equal to (10−8)2 × 1024 = 108.

(b) The number f is defined ([I/E], Eq. (12)) as

f =
T̃ 2 + 2T̃
(T̃ + ε̃)2

, T̃ =
T

mc2
, ε̃ =

ε

mc2
, mc2 = 510.99906 keV (13.6)

in which T̃ , ε̃ and mc2 are expressed in Kiloelectronvolt.

13.2 Some Numerical Results

The values of σRR have been published in [I/E], p. 10-121, for the bound
states 1S1/2, 2S1/2,...3D5/2, from Z = 1 (1 ≤ T ≤ 5 × 104 eV) to Z = 112
(1 ≤ T ≤ 8 × 106 eV).

We give here the way of calculating these values for 1S1/2 by means of
the formulas established in the previous sections and gathered together in the
Chapter 11.

The number L will be considered as corresponding to the transitions P1/2-
1S1/2 and P3/2-1S1/2, in the case where the variation in the transition of
the magnetic number is null (linear polarization). Furthermore, L will be
considered in (13.4) as corresponding to the sum of these two transitions.

The radial functions g1, f1 of the state of energy E1 are given by (12.6)
where ε is given by (4.53) with n = 1, |κ| = 1 :

ε = mc2 Z2α2

2
(1 +

Z2α2

4
) (13.7)
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The radial functions g2, f2 for P1/2 and P3/2 are given by (12.9) (|κ| = 1
and |κ| = 2) by means of the suitable value of the number n of (12.8)
corresponding to the energy E2.

The value of the component of L for P1/2 is given by (12.2) and the (12.3)
with an integrating factor 8π/3, for P3/2 by (12.4) with a factor 8π/15 and
(12.5) with a factor 8π/3.

The values of σRR (expressed in barn) in function of T (expressed in eV )
are rounded off at three numerals in [I/E]. We give some values, rounded
off at four numerals, obtained by the way of calculation based on the use of
hypergeometric series (Sect. 12.2) and verified (for Z = 1, 2 only, for larger
values of Z the verification is less legitimated) by the Laplace method:

Z = 1 : 1 eV : 1088b, 10 eV : 75.93b, 100 eV : 1.652b
Z = 2 : 1 eV : 4512b, 10 eV : 406.6b, 100 eV : 19.80b
Z = 11 : 1 eV : 1.380 × 105b, 10 eV : 1.350 × 104b

These values are in agreement with those obtained by Professor Ichihara
(private communication, 2001).
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Interaction with a Magnetic Field
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The Zeeman Effect

Abstract. This chapter is relative to the calculation in other external fields, lim-
ited here to a weak magnetic field, giving one of the most important phenomena
associated with the Dirac theory, the anomalous Zeeman effect.

14.1 An Approximation Method for Time-Independent
Perturbation

We consider the electron of an hydrogenic atom that is submitted to a poten-
tial A ∈ M in the form

A = A0e0 + Ae0, eA0 = V (r) =
e2Z

r
(14.1)

We suppose that A is sufficiently small for considering its incidence as a
perturbation of the Darwin solution corresponding to a state, in the central
potential A0, of energy E. The energy E′ of the electron will be then written
in the form

E′ = E + ΔE (14.2)

The method of perturbation that we are going to use is based on the following
hypothesis.

1. The wave fonction ψ may be considered in the form
ψ(x0, r) = φ(r)e−ie3(E

′/�c)x0
(14.3)

in such a way that (4.6) becomes

∇φ =
1
�c

[−E0φ̄+(E +ΔE +V − eA)φ]ie3, E0 = mc2, φ̄ = e0φe0 (14.4)

2. Both φ(r) corresponds to the Darwin solution for the state whose energy
is E, and (14.4) is acceptable in average by means of an integration on the
E3 space of a formula in which the Dirac current

j = φe0φ̃ = j0e0 + je0

of the state intervenes (H. Krüger, 1991, private communication).
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Multiplying (14.4) on the right by e0ie3φ̃e0, taking into account (4.6) we
can write

ΔE

∫
φe0φ̃e0 dτ = e

∫
Aφe0φ̃e0dτ (14.5)

Applying (4.18))∫
φe0φ̃e0 dτ =

∫
je0 dτ =

∫
(j0 + j) dτ = 1

we obtain

ΔE = e
∫

A(j0 + j) dτ = e
∫

(j0A + A.j + A ∧ j) dτ. (14.6)

Since ΔE is a scalar, the right-hand part of this equation must be a scalar
and so the two following relations must be verified∫

j0A dτ = 0 (14.7)

∫
A ∧ j dτ = 0 (14.8)

Then we can write
ΔE = e

∫
A.j dτ. (14.9)

14.2 The Margenau Formula: The Landé Factor

We consider that the atom is submitted to a magnetic field in the form H =
He3 where H is constant. The corresponding potential A is such that we can
write

A =
H

2
(e3 × r) ⇒ H = ∇× A = He3 (14.10)

Indeed,

A =
H

2
r sin θv (14.11)

and, using (4.1), it is easy to verify that

H

2
∇× (r sin θv) = He3

Since j0 is independent of ϕ (4.17a) and
∫ 2π

0
vdϕ = 0, (14.7) is verified.

Since j is colinear to v (4.17b), (14.8) is also verified.
So if H is sufficiently weak in such a way that its effect may be considered

as a perturbation of the Darwin solution, (14.9) may be applied.
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The shift ΔE of the state of energy E is called the Zeeman effect, more
precisely “anomalous effect,” with respect to the shift obtained in the nonrel-
ativistic theory named “normal effect.”

We deduce from (14.9), (14.11), (4.17b),

ΔE = eH × I × J (14.12)

I = 2π
∫ π

0

((M2 − L2) sin2 θ + 2LM cos θ sin θ) sin θ dθ (14.13)

J =
∫ ∞

0

(gfr)r2 dr (14.14)

(a) Calculation of I.
We will use the fact that L,M are in the form

L =
C√
2π

Pm
l , M =

D√
2π

Pm+1
l

(4.30), (4.31) and the relation∫ π

0

P r
j P r

k sin θ dθ = δjk

Writting sin2 θ = 1 − cos2 θ in (14.13) and I = I1 + I2,

I1 = 2π
∫ π

0

(M2 − L2) sin θ dθ = D2 − C2 (14.15)

I2 = 2π
∫ π

0

(−(M2 − L2) cos2 θ + 2LM cos θ sin θ) sin θ dθ (14.16)

using (6.3), (6.4) for the integration of the terms (M cos θ)2, (L cos θ)2,
(L sin θ)(M cos θ) in I2, one obtains, after surprising simplifications in the
calculation of I2,

1. κ = −(l + 1) :

I1 = −2m + 1
2l + 1

, I2 =
2m + 1

(2l + 1)(2l + 3)

I = − (2m + 1)2(l + 1)
(2l + 1)(2l + 3)

=
(2m + 1)2κ

(2κ + 1)(2κ − 1)
(14.17)

2. κ = l

I1 =
2m + 1
2l + 1

, I2 =
2m + 1

(2l + 1)(2l − 1)

I =
(2m + 1)2l

(2l + 1)(2l − 1)
=

(2m + 1)2κ
(2κ + 1)(2κ − 1)

(14.18)
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(b) Calculation of J:
Deducing fgr from (4.12) we can write

J =
�

2mec

∫ ∞

0

[g2 + f2 + κ(g2 − f2) + (gg′ + ff ′)r]r2dr,

where me means the mass of the electron (for evoiding a confusion with
m ∈ Z). Since∫ ∞

0

(g2 + f2)r2dr = 1 ⇒ κ

∫ ∞

0

(g2 − f2)r2dr = κ(1 − 2
∫ ∞

0

f2r2dr)

∫ ∞

0

(gg′ + ff ′)r3dr =
1
2
[(g2 + f2)r2]∞0 − 3

2

∫ ∞

0

(g2 + f2)r3dr = −3
2

and because 1 + κ − 3/2 = κ − 1/2 we obtain

J =
�

2mec
[κ − 1

2
− 2κ

∫ ∞

0

f2r2dr] (14.19)

The Margenau formula:
Now we can deduce from (14.12)

ΔE = H
�

2mec
(2m + 1)

2κ

2κ + 1
[
1
2
− 2κ

2κ − 1

∫ ∞

0

f2r2dr] (m ∈ Z) (14.20)

i.e. the Margenau formula [46], expressed here by means of the principal quan-
tum number κ and the magnetic number m ∈ Z.

The consequence of this formula is that the levels of energy of the states
corresponding to the different values of the magnetic number m appear as sep-
arated. So the number of the transitions between two states whose energies
were E1 and E2 in the absence of a magnetic field is increased by new tran-
sitions between states of energies E1 + ΔE1(m1) and E2 + ΔE2(m2), where
ΔE1(m1) and ΔE2(m2) are given by (14.20).

For a given walue of Δm = m1 − m2, the correspondent transitions are
indescernible in an unperturbated experiment but, given the separation of the
levels, there are as many observable transitions as different couple of numbers
(m1,m2) when a magnetic field is present.

For the transitions P1/2 − S1/2 the couples (m1,m2) are

(0, 0), (−1,−1) − . − (0,−1) − . − (−1, 0)

For the transitions P3/2 − S1/2 the couples are

(0, 0), (−1,−1) − . − (1, 0), (0,−1) − . − (−1, 0), (−2,−1)

So two linear polarizations instead of one may be observed in the transitions
P1/2−S1/2 and P3/2−S1/2, and four circular polarizations instead of two
for the transitions P3/2 − S1/2,
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The Landé Factor:
Introduced in the Pauli theory, the Landé factor G is defined as follows

G =
j + 1

2

l + 1
2

, j +
1
2

= |κ| (14.21)

(see [5], Eqs (46.6), (14.28)).
Denoting

�

2mec
= μ0, m +

1
2

= m′ (m ∈ Z)

since

κ = −(l + 1), l + 1 = j +
1
2

⇒ 2κ

2κ + 1
=

l + 1
l + 1

2

=
j + 1

2

l + 1
2

κ = l, l = j +
1
2

⇒ 2κ

2κ + 1
=

l

l + 1
2

=
j + 1

2

l + 1
2

one can write as in [5], Eqs (47.1), in a form mixing the numbers j, l, κ but
including the Landé factor,

ΔE = Hμ0m
′ (

j + 1
2

l + 1
2

)[1 − κ

κ − 1
2

∫ ∞

0

f2r2dr] (14.22)
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The Contribution of the Discrete Spectrum
to the Lamb Shift of the 1S1/2 State

Abstract. This chapter is devoted, in close relation with Part III, to the relativistic
calculation of the contribution of the states of the discrete spectrum to the Lamb
shift of 1S1/2.

15.1 The Lamb Shift

A complete description of one of most complex calculation concerning the
hydrogenic atoms, the Lamb shift, is outside of the scope of our elementary
presentation. However, the matrix elements of the transition between two
states play an important role in this calculation, which cannot be omitted in
our presentation.

A precise observation of the levels of energy of an electron in an hydrogenic
atom shows a slight shift of the value of a level with respect to the one given by
the Darwin solution of the Dirac equation. This phenomena has been observed
for the first time by Lamb and Retherford [42] and is called the Lamb shift.

An interpretation of the shift of a level has been given by Bethe [4] as an
incidence of all the virtual states, belonging to the discrete spectrum and the
continuum, of the electron upon this level.

The calculation of the contribution of a state to the Lamb shift of a par-
ticular state is based on the consideration of three terms (see [25, 40]: the
Electrodynamics energy term WD, the Electrostatic energy term WS , and the
Electromagnetic mass operator WM , in such a way that the contribution is in
the form WD + WS − WM .

For the contribution of the states whose energy is low, in particular those
of the discrete spectrum, only the term WD is taken into consideration. We
will only consider this contribution.

The interest of the calculation of the contribution of the discrete spectrum
is to refine the usual calculation in which, for the low energy contribution, an
approximative formula is used.
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Another interest lies in the fact that this contribution could have some
importance in future experiments with atoms closed inside a cavity, in such
a way that the contribution of the continuum would not to be taken into
account (see [53] and [33]).

At least the study of the term WD will allow us to show the difference
of the values of this term between those obtained by the relativistic and
nonrelativistic calculations. This difference is weak for the contribution of the
discrete spectrum and the low levels of the continuum but becomes consider-
able (see Note below) for the ones of the continuum of high levels and explains
the necessity of the mass renormalization represented by the term WM .

We will consider only the case of the Lamb shift of the 1S1/2 state of the
hydrogen atom.

The formula giving the term WD of the contribution to the shift of a state
of energy E2 to a state of energy E1 is the following

ΔE12 =
α(E1 − E2)

4π2

∫
[T⊥

1 (k)]2 + [T⊥
2 (k)]2

E1 − E2 − �ck
�c dτ0, (Ad.1)

where the vectors T⊥
j (k) are defined by (8.3), k = |k|, and, following the

notations (ϕ, θ0) of sec. 8,∫
f(ϕ, θ0, k)dτ0 =

∫ 2π

0

∫ π

0

∫ ∞

0

f(ϕ, θ0, k) sin θ0dϕdθ0dk.

It is to emphasize that this integral is convergent whatever the values of
E1 and E2 may be.

15.2 Nonrelativistic Calculation

In the nonrelativistic calculation the Dirac equation is replaced by the
Schrödinger one. The formula that is obtained (see [2]), which is convergent, is,
if the dipole approximation is applied (i.e. T⊥

j (k) are replaced by T⊥
j (0)), the

formula used in [4] for the first calculation proposed for the explanation of the
Lamb shift. But this last formula is divergent and its use implies that the in-
tegration upon k is cut off for a k = kmax. In [23] the value of kmax = αmc2

has been proposed and was used in the following calculations of the Lamb
shift.

Here we are only interested in the calculation with retardation. A calcu-
lation of the contribution of the 2p state on the shift of 1s, in the case where
m1 = m2 has been achieved in [7], Eq. (37), and gives

ΔE12

�c
=

α4

aπ
.

27

38
[ln

4
α
− 11

12
] or ν = 85.6MHz (Ad.2)

This formula is deduced from (7.4), (7.5) for the construction of the vectors
T⊥

j (k).
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Exactly the same formula lies in [52], Eq. (16) but has been established
by J. Seke quite independently.

For taking into account also the cases where m1 − m2 = ±1, and so the
total contribution of the 2p states, this result is to be multiplied by 3 giving
256.8 MHz.

The total contribution of the p states of the discrete spectrum to the shift
of 1s have been calculated in [8] and also quite independently in [31].

The values of the cumulative contributions due to the states 2, 3, 4...∞
are in these two articles :
Blaive. 2: 256.95; 3: 325.37; 4: 353.28: ...∞: 395.01. MHz
Seke. 2: 257.04; 3: 325.49; 4: 353.40; ...∞: 395.76. MHz

These values are not very different from the ones (see below) obtained
in the relativistic calculation. But when the contribution of the continuum
is taken into account especially for the levels of energies greater than αmc2

the divergence is such that all comparison between the relativistic and the
nonrelativistic calculation is to be abandoned (see Note below).

15.3 Relativistic Calculation

We have calculate in [14] the contribution of 2P1/2 and 2P3/2 to the shift of
1S1/2. We have used (Ad.1) in the case where the magnetic numbers m1,m2

are null. For simplicity we have also used the Pauli-Schödinger approximation
which gives results very close to the exact relativistic ones in such a way that
E1 − E2 = 3α/8a and the expressions of T⊥

j (k) (9.20), (9.21) and (9.24),
(9.25), are reduced to Eqs (9.38), (9.39), (9.40). We obtain

-2P1/2 :

ΔE1
12

�c
=

α4

aπ
.

27

38
.

1
3
[ln

4
α
− 137

120
+

6
5
] or ν = 33.7MHz (Ad.3)

-2P3/2 :

ΔE2
12

�c
=

α4

aπ
.

27

38
.

2
3
[ln

4
α
− 137

120
− 3

32
] or ν = 53.7 MHz (Ad.4)

(note that the above number 137 is not to be confused with 1/α but comes
from (1+1/2+1/3+1/4+1/5)/2=137/120).

So the total contribution is ν = 33.7 + 53.7 = 87.34 MHz close to the non
relativistic 85.6.

The values obtained in [53] are about the same :
Table 9 : 101.073/3=33.69 MHz and Table 10 : 161.298/3=53.766 MHz.
In the same article J. Seke gives the values of the contributions of all the

discrete spectrum (including those corresponding to the electric and mag-
netic quadrupole transitions) to the shift of 1S1/2 and finds a total value of
429.7 MHz.
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We recall his values only for the contributions of the P1/2 and P3/2
(corresponding to the electric dipole transitions) :
Table 9. P1/2. 2: 101.073; 3: 128.168; 4: 140.162; ... ∞ : 157.491. MHz
Table 10. P3/2. 2: 161.298; 3: 203.900; 4: 221.205; ... ∞ : 247.499. MHz

The sum of the contributions of the P1/2 and P3/2 is then
P1/2+P3/2. 2: 263.37; 3: 332.07; 4: 361.37; ... ∞ : 404.99. MHz
It to emphasize the good concordance of results obtained quite indepen-

dently and despite the difference of the methods which have been used. On one
side, the real formalism and the employ of the pure law of Maxwell without
quantization. On the other, the spinors formalism and the use of the Quantum
Field Theory.

15.4 Note

The experiments on the shift of 1S1/2 give 8,173 MHz. A nonrelativistic cal-
culation, implying not only the contribution of the discrete spectrum but
also all the continuum, achieved by B. Blaive (see [17]) gives 396 + 4, 759 =
5, 146MHz. One could think that the passage to the relativistic calculation,
i.e. the use of (Ad.1) and the Dirac theory, would allow to reach the 8,173 MHz.
And so, as suggested by Bethe in his article of 1947 the relativity (associated
with the retardation) applied to the formula he proposed, could give the exact
way of the calculation of the Lamb shifts. We have achieved a calculation of the
contribution of the state P3/2 on the shift of 1/S1/2 upon all the continuum
and the result is around 108 MHz !. So the WD term must be corrected by a
renormalization as that was sensed by several authors only just some months
after the publication of the article of Bethe. Note that even if the terms WD,
WS , WM could be calculated separatively with a good precision, this precision
would not be right enough to give a small number as the difference of two very
large numbers. The calculation level by level of WD + WS −WM for the high
values of the continuum, which has been used until now (to our knowlegde)
seems a necessity.
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A

The Hestenes Spinor and the Pauli
and Dirac Spinors

Note. In what follows, the identification of the Hamilton quaternion q and
the Hestenes spinor ψ with the Pauli spinor ξ and the Dirac spinor Ψ is based
on the articles [28, 44]. Perhaps, it is not the shortest one, but it allows a
step-by-step conversion of Ψ into ψ and vice versa when Ψ is expressed by
means of its four complex components.

The spinors ξ and Ψ are defined as columns of complex numbers, without
any proper structure, and their properties follow only from the fact that the
matrices σk and γμ act on these columns.

In contrast, in the real formalism, the spinors are replaced by objects
already endowed with a proper structure, which do not need anything else for
their employ.

The following operations of identification are complicated by the ambigu-
ities of the complex formalism in which the “imaginary number”

√−1 may
correspond to two different real objects.

A.1 The Pauli Spinor as a Decomposition
of the Hamilton Quaternion

Using i = −jk, (2.4) may be written as

q = u1 − ju2, u1 = d + kc, u2 = −b + ka. (A.1)

Applying (2.5), we immediately obtain

iq = (ku2) − j(ku1), jq = u2 − j(−u1), kq = (ku1),−j(−ku2) (A.2)

and forgetting j, let us write q as a doublet of “complex numbers” (u1, u2) in
which the “imaginary” number

√−1 is replaced by k.
Now, we consider the Pauli spinor ξ = (u′

1, u
′
2), where u′

1 = d + i′c, u′
2 =

−b + i′a and i′ =
√−1. Introducing the matrices i′σk, we can write
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i′σ1ξ ⇐⇒ iq, i′σ2ξ ⇐⇒ jq, i′σ3ξ ⇐⇒ kq, i′ =
√−1 ⇐⇒ k . (A.3)

Note that i′u′
α = u′

αi′ as well as kuα = uαk. But this operation corresponds
to the change of q into qk, i.e., the multiplication of q, on the right (because of
the presence of j in (A.1)), by k. That cannot be seen by writing i′ξ = ξi′, and
though that the use of the standard formalism remains coherent; it forbids the
interpretation of the spinor ξ otherwise than an abstract entity instead of the
element of a field closely related to the group of the rotations in E3 = R3,0.

For convenience, we write now i = ie1, j = ie2, and k = ie3.
Multiplying in the relations (A.3) iq, jq, kq on the right by −k = −ie3 and

because −iekqie3 = ekqe3 and −(i′σkξ)i′ = σkξ, we obtain

σkξ ⇐⇒ ekqe3. (A.4)

A.2 The Dirac Spinor as a Decomposition
of the Biquaternion

We consider a Dirac spinor Ψ = (u′
1, u

′
2, u

′
3, u

′
4). We will suppose that each

u′
1, u

′
2, with i′ =

√−1, is in the form a + i′b, and, in the purpose to be in
agreement in particular with Bethe and Salpeter [5], we will suppose that
each u′

3, u
′
4 is in the form i′′(a + i′b) with also i′′ =

√−1.
For the traduction in the real formalism, Ψ is a biquaternion Q that, for

the while, we consider as an element of Cl(3,0). We will write

Q = q1 + iq2, q1 = u1 − ie2u2, iq2 = u3 − ie2u4, (A.5)

where each u1, u2 is in the form a + ie3b, identified to a + i′b, and each u3, u4

is in the form i(a + ie3b), identified to i′′(a + i′b) with ie3 ⇔ i′ and i ⇔ i′′.
However, the identification of the Dirac spinor Ψ to a biquaternion element
ψ of Cl+(1, 3) requires a justification. It lies through the consideration of the
action of the Dirac matrices γμ upon the Dirac spinor, for the while only
defined as an element of C4, more precisely as a doublet of elements of C2.

A.3 The Hestenes Spinor and the Dirac Matrices

As the γμ matrices use the σk ones, we are obliged to take the identification
(A.4) into consideration and now to introduce e3 inside Q.

Because iq = iqe2
3 = (qie3)e3, one can write a quaternion Q ∈ Cl(3, 0) in

the form
Q = q1 + iq2 = q1 + q̂2e3, q̂2 = q2ie3, (A.6)

with q1 = u1 − ie2u2, q̂2 = û3 − ie2û4, and, forgetting e3, consider Q as a
doublet (q1, q̂2) of quaternions.
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Note that u3, u4 are now replaced by û3e3, û4e3, and so u′
3, u

′
4 are replaced

by û′
3, û

′
4 each one in the form i′(a+i′b). But there is no matter in the complex

formalism to distinguish û′
3, û

′
4 from u′

3, u
′
4.

Now, we consider the quaternion Q as an element ψ of Cl+(1, 3) and look
for the concordance

ψ = q1 + q̂2e3 
 (q1, q̂2) ⇐⇒ Ψ = (ξ1, ξ2). (A.7)

Because e0iq2e
0 = −iqe0e0 = −q̂2e3 and ek = −ek = −eke0, we obtain

e0ψe0 = e0(q1 + q̂2e3)e0 = q1 − q̂2e3 ⇐⇒ (ξ1,−ξ2) = γ0Ψ,

ekψe0 = −eke0ψe0 = ek q̂2e3 − (ekq1e3)e3 ⇐⇒ (σkξ2,−σkξ1) = γμΨ,

and so
eμψe0 ⇐⇒ γμΨ . (A.8)

All the concordances (3.16) are justified.
Taking ψ in the form (A.7), identifying each component to the correspond-

ing one of Ψ , a simple calculation shows the concordance (3.17):

jμ = Ψ̄γμΨ ∈ R ⇔ eμ · (ψe0ψ̃) ∈ R. (A.9)

A.4 Solution for the Central Potential
Expressed by Means of the Dirac Spinors

Using (4.26), we can write

φ = (gNm
1+κe3 − f iNm

1−κe3)eie3mϕ (A.10)

and the introduction of Nm
1−κ is the explanation, as we are going to see, of

the presence of Pm
l±1, Pm+1

l±1 in the solutions written in spinor formalism.
The expression of the biquaternion φ in a Dirac spinor is the following:

φ = φ1 + iφ2 = u1 − ie2u2 + u3 − ie2u4. (A.11)

Note that in (A.10), Nm
1+κ and Nm

1−κ are each one to be calculated with the
help of (4.30), where l = 0, 1, . . . or (4.31), where l = 1, 2, . . . , so with values
of l which differ from 1, when in (A.11) the chosen values of l in the expression
of u1, u2 and u3, u4 are the same for these two couples of numbers.

We can write, using the relations ue3 = −iv, v = e2 exp(ie3ϕ),

Ne3 = L + Mue3 = L − M iv = L − M ie2eie3ϕ (A.12)

and so

gLm
1+κeie3mϕ = u1, gMm

1+κeie3(m+1)ϕ = u2,

−fLm
1+κeie3mϕi = u3, −fMm

1+κeie3(m+1)ϕi = u4 .
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Introducing the spherical functions Y m
l (θ, ϕ) in which

√−1 has been replaced
by ie3,

Y m
l (θ, ϕ) =

1√
2π

Pm
l (cos θ)eie3mϕ, (A.13)

we can write

Case (a). κ ≤ −1, m = m′ − 1/2

For this value of κ, we apply (4.30), and for κ′ = −κ = (l + 1) ≥ 2 we have
to apply (4.31) in which l is to be replaced by l + 1 (for respecting the fact
that the value of l in u1, u2 and u3, u4 is the same for these two couples of
numbers):

gLm
−l = g

[
l + m + 1

2l + 1

]1/2

Y m
l = g

[
l + m′ + (1/2)

2l + 1

]1/2

Y
m′−1/2
l = u1,

gMm
−l = g

[
l − m

2l + 1

]1/2

Y m
l = g

[
l − m′ + (1/2)

2l + 1

]1/2

Y
m′+1/2
l = u2,

−fLm
l+2 = −f

[
l + 1 − m

2l + 3

]1/2

Y m
l+1i = −f

[
l − m′ + (3/2)

2l + 3

]1/2

Y
m′−1/2
l+1 i= u3,

fMm
l+1 = f

[
l + m + 2

2l + 3

]1/2

Y m+1
l+1 i = f

[
l + m′ + (3/2)

2l + 3

]1/2

Y
m′+1/2
l+1 i = u4.

Case (b). κ ≥ 1, m = m′ − 1/2

For this value of κ one applies (4.31), and for κ′ = −κ = −l ≤ 0 we have
to apply (4.30) in which l is to be replaced by l − 1 (for respecting the fact
that the value of l in u1, u2 and u3, u4 is the same for these two couples of
numbers):

gLm
l+1 = g

[
l − m

2l + 1

]1/2

Y m
l = g

[
l − m′ + (1/2)

2l + 1

]1/2

Y
m′−1/2
l = u1,

gMm
l+1 = −g

[
l + m + 1

2l + 1

]1/2

Y m
l+1 = −g

[
l + m′ + (1/2)

2l + 1

]1/2

Y
m′+1/2
l = u2,

−fLm
1−l = −f

[
l + m

2l − 1

]1/2

Y m
l−1i = −f

[
l + m′ − (1/2)

2l − 1

]1/2

Y
m′−1/2
l−1 i = u3,

−fMm+1
1−l = −f

[
l − m − 1

2l + 3

]1/2

Y m+1
l−1 i=−f

[
l − m′ − (1/2)

2l − 1

]1/2

Y
m′+1/2
l−1 i=u4.

So, one can obtain the spinor expression of the solutions (14.3) and (14.4)
for the case (a), and (14.7) for the case (b) of Bethe and Salpeter [5] (with
a change of sign for u3 and u4 due to a change of the convention of the
orientation of the plane (e1,e2)).



B

The Real Formalism and the Invariant Entities

B.1 Properties of the Hestenes Spinor

Let ψ ∈ Cl+(M) such that ψψ̃ �= 0. We can write

ψψ̃ ∈ Cl+(M) ⇒ ψψ̃ = λ + B + iμ, λ, μ ∈ R,B ∈ ∧2M

and from (ψψ̃)˜= ψψ̃, B̃ = −B, ĩ = i, we deduce B = 0 and

ψψ̃ = λ + iμ = ρeiβ , ρ > 0, β ∈ R,

then [35]

ψψ̃

ρeiβ
= 1, R =

ψ√
ρeiβ/2

⇒ ψ =
√

ρeiβ/2R, RR̃ = R̃R = 1. (B.1)

So, R verifies R̃ = R−1 and corresponds to a representation of SO+(1, 3) in
Cl+(M). Because ai = −ia if a ∈ M ,

a ∈ M ⇒ b = RaR̃ ∈ M, ψaψ̃ = ρb ∈ M. (B.2)

If ψ is associated with a Galilean frame {eμ}, all the properties of invariance
met in the Dirac theory are immediately deduced, in particular the one of the
Dirac current

j = ψe0ψ̃ = ρv, ρ > 0, v2 = 1, (B.3)

where ρ expresses the invariant probability density.

B.2 The Proper Angular Momentum or Bivector Spin

The bivector spin σ is deduced from (B.2) by (see [36], (1.6))

σ =
�c

2
(n2 ∧ n1), nk = RekR̃ =

ψekψ̃

ρ
. (B.4)

The change e2e1 into e1e2 in the Dirac equation inverses the orientation of
the bivector spin.
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B.3 The Energy–Momentum Vector

The energy–momentum vector is the value p = T (v) ∈ M for v of the energy–
momentum (Tetrode) tensor ρT . We have shown (see [9]) that it is in the
form

p =
�c

2
� − eA, �μ = (∂μn2) · n1 = −n2 · (∂μn1), (B.5)

where � may be interpreted as expressing the infinitesimal rotation upon
itself of the “spin plane” π(x) = (n1, n2). Also, we have verified in [9] with
this geometrical interpretation of � that the energy

E =
�c

2
� · e0 =

�c

2
�0 = p0 + eA0 (B.6)

of the electron in the Galilean frame {eμ} where the nucleus is at rest is
effectively the E of (3.5) for the hydrogenic atoms.

So, the total angular momentum

J = x ∧ p + σ (B.7)

implies not only, inside σ, the direction of the plane π(x), but also, into p, the
proper infinitesimal rotation of this plane.

We recall that the group of the finite rotations upon itself of this plane
corresponds to the gauge U(1) in the theory of the electron, as it simply
deduced from (B.2) (see [35] but also, in the complex formalism, [31,39]).

So, three fundamental properties in the theory of the electron, the energy,
the spin, and the gauge, are directly related to a plane orthogonal to the Dirac
current.

Note. It is to emphasize that the above entities are independent of the proba-
bility density ρ, and so are relevant of the part DI (four real scalar equations)
of the Dirac equation D which is independent of ρ. Let DII (four real scalar
equations) be the part of D which depends on ρ. About the role of the den-
sity ρ with respect to these entities, we have established in [11] the following
theorem.

DII is implied by DI and the three conservation relations

∂μ(ρvμ) = 0, ∂μ(ρTμν) = ρfν , ∂μ(ρSμνξ) = ρ(T ξν − T νξ),

where f ∈ M is the Lorentz force, S = v ∧ σ ∈ ∧3M .



C

The Total Angular Momentum Operator

In the usual presentation of the Dirac theory, one considers the following
operator, here expressed in a STA form

�L = σ0 · (x ∧ ∂) − 1
2
σ0 (σ0 = e1 ∧ e2, ∂ = eμ∂μ). (C.1)

Writing x∧∂ = (x0e0+rn)∧(e0∂0+ek∂k), because σ0 ·(n∧e0) = 0, and noting
that ek = −ek, a, b ∈ M , a.e0 = 0 = b · e0 ⇒ a ∧ b = −a ∧ b, e1 ∧ e2 = −ie3,
we obtain

�L = −ie3 · (r ∧∇) +
1
2
ie3 = ∂ϕ +

1
2
ie3, ie3 = e2 ∧ e1. (C.2)

Taking S as in (4.15), because ∂ϕue3 = ve3 = ue3ie3, we obtain

�LS =
(

m +
1
2

)
Sie3, ie3 = e2 ∧ e1. (C.3)

Applying (A1.10), we have

�Lψ =
(

m +
1
2

)
ψe2e1, e2e1 = e2 ∧ e1, (C.4)

from which we deduce the relation

�c(�Lψ)ψ−1 =
(

m +
1
2

)
�c(n2 ∧ n1), m ∈ Z, (C.5)

which implies the bivector spin σ = (�c/2)n2 ∧ n1 and also the magnetic
number m ∈ Z.



D

The Main Properties
of the Real Clifford Algebras

The field H = Cl+(3, 0) of the Hamilton quaternions and the ring Cl(3, 0) of
the Clifford biquaternions are relevant of the general theory of the Clifford
algebra Cl(E) = Cl(p, n − p) associated with an euclidean space E = Rp,n−p.
They correspond to the initial construction of the Clifford algebras. Especially,
the field of the Hamilton quaternions plays an important role in the solution
of the central potential problem.

The general definition and properties of the Clifford algebras may be seen
in [34]. We simply mention here that Cl(E) is an associative real algebra acting
upon the elements of R and the vectors of E, in relation with the Grassmann
algebra ∧E.

We recall that the Grassmann (or exterior) algebra ∧Rn of Rn is an asso-
ciative algebra generated by R and the vectors of Rn such that the Grassmann
product a1 ∧ a2 ∧ · · · ∧ ap of vectors ak ∈ Rn is null if and only if the ak are
linearly dependent. If this product is non-null, it is called a simple (or de-
composable) p-vector and owns the geometrical meaning of a p-paralleloid (a
parallelogram if p = 2). The linear combination of simple p-vectors is called a
p-vector, and the set of the p-vectors is a sub-space, denoted ∧pRn, of ∧Rn.

One deduces easily that ∧Rn is the direct product of the sub-spaces
∧pRn (p = 0, 1, . . . , n), each one of dimension Cp

n, with ∧0Rn = R, and
so dim(∧Rn) = 2n.

Certainly, ∧Rn is the first algebra to be associated with Rn because it is
based on the notion of linear independence of vectors, which is in the founda-
tion of the definition of the vector spaces.

The elements of ∧pRn are presented in Physics as “tensors completely
antisymmetric of rank p,” but their use needs in this case the resort to a
frame of Rn, which is not necessary. Associated with a signature of Rn, they
have generally a physical meaning, as for example the electromagnetic field
F ∈ ∧2M .

The interest of the use of a real Clifford algebra Cl(E) of an euclidean
space E lies in the fact that the elements of this algebra are identified to the
ones of ∧E. Then, Cl(E) not only contains the geometrical elements of the
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space E but also can express the transformations of these elements, and so
by means of objects which are also geometrical elements of E.

Let us denote a ·b the scalar product of two vectors of a space E = Rp,n−p.
The Clifford product of two elements A,B of Cl(E) is denoted AB and

verifies the fundamental relation

a2 = a · a, ∀a ∈ E, (D.1)

from which we deduce

(a + b)2 = a2 + ab + ba + b2 = (a + b) · (a + b) = a · a + 2a · b + b · b

and so
a · b =

1
2
(ab + ba). (D.2)

Now,

ab =
1
2
(ab + ba) +

1
2
(ab − ba)

and identifying (ab − ba)/2 to a ∧ b, a convention that nothing forbids, one
can write

ab = a · b + a ∧ b (a, b ∈ E), (D.3)

in such a way that

a · b = 0 ⇒ ab = a ∧ b = −b ∧ a = −ba. (D.4)

We will not detail here the identification of the elements of Cl(E) to elements
of ∧E (see [34]). We only mention a property we need: if p vectors ai ∈ E are
orthogonal, their Clifford product verifies

a1 . . . ap = a1 ∧ · · · ∧ ap (ak ∈ E, ai · aj = 0, if i �= j). (D.5)

The even sub-algebra Cl+(E) of Cl(E) is composed by the sums of scalars
and elements a1 . . . ap such that p = 2q.

One can easily deduce from (D.5) that, using an orthonormal frame of E,
the corresponding frame of Cl(E) may be identified to the frame of ∧E and
that dim(Cl(E))=dim(∧E) = 2n, and dim(Cl+(E)) = 2n−1.

So the use of Cl(3, 0) or Cl+(1, 3) allows one to replace the manipulation of
the Pauli and Dirac matrices and spinors by vectors of E3 = R3,0 or M = R1,3

with a simple rule of an associative product on these vectors without the
obligation of resorting to a frame of E3 or M , which is a necessity in the
complex spinors formalism.

Note. Equation (D.3) is accepted with difficulty by many physicists. What
does that mean the sum of a scalar and a bivector?
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One may identify Cl+(E2) with the so well-known (and often used need-
lessly) field C of the complex numbers by the following relations:

e2 ∧ e1 = e2e1, (e2e1)2 = −1, e2e1 ⇐⇒ i (D.6)
⇒ ab = a · b + a ∧ b = ρ(cos θ + e2 ∧ e1 sin θ) ⇒ ee2e1θ ⇐⇒ eiθ,

which show that ab may be associated with a rotation in the plane E2.
In E3, ab is a Hamilton quaternion in which, associated with a frame of

E3, three different bivectors appear whose square is equal to −1, and may be
associated, as it is well known, with a rotation in E3.

So, the use of Cl+(E2) and Cl+(E3) may replace the use of U(1) and
SU(2).

What does that mean? That means that the imaginary number
√−1 is a

symbol which hides a geometrical object. And, this object may be different
following the use of this symbol: different bivectors, but furthermore, objects
of different geometrical nature as shown in (2.15).

In a general way, in all Cl(E), the Clifford product a1a2 . . . ap, where (ak ∈
E, a2

k �= 0), may be associated with an isometry in the space E, and so Cl(E)
may replace the general theory of the representations of the orthogonal group
O(E) in complex spaces.

Consider the relation

y = −bxb, b2 = b · b �= 0, b, x ∈ E . (D.7)

Let the decomposition x = x⊥ +x‖, where x‖ and x⊥ are parallel and orthog-
onal to b, respectively. Equation (D.4) allows one to write

y = b2(x⊥ − x‖) ∈ E,

and we see that the transformation x ∈ E → y ∈ E is a symmetry with
respect to the hyperplan orthogonal to b, followed by the multiplication by
the scalar b2. The relation z = −aya = abxba is a rotation followed by the
multiplication by the scalar a2b2. So, the relation

y = (−1)pIpxI−1
p , Ip = a1a2 . . . ap, I

−1
p = a−1

p . . . a−1
2 a−1

1 , a2
k �= 0, a−1

k =
ak

a2
k

(D.8)
defines an isometry in E. We see the tight links between the orthogonal group
O(E) of the space E and its Clifford algebra Cl(E). There exists a proof using
Cl(E) (H. Krüger 1998, private communication), quite different of the one of
Cartan-Dieudonné, of the Elie Cartan theorem by which all isometry in E is
the product of symmetries each one with respect to a non-isotropic hyperplan.

A combination of a1a2 . . . ap does not give necessarily an isometry but
some of them can lead to euclidean transformations (obtained with difficulty
by means of the complex formalism) whose role in Quantum Mechanics is
important (as the one associated with the angle of Yvon–Takabayasi–Hestenes
β of (AI.2.1)) (see [35,56,57]).
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The Expression of the Transition Current

We denote
ψk = Tkeie3(mkϕ−(Ek/�c)x0).

Since (ie3)̃ = −ie3 and e0ie3 = ie3e0, using the notations of Chap. 4 we
can write

ψ1e0ψ̃2 = cos(εϕ + ωx0)T1e0T̃2 + sin(εϕ + ωx0)T1ie3e0T̃2,

ψ2e0ψ̃1 = cos(εϕ + ωx0)T2e0T̃1 − sin(εϕ + ωx0)T2ie3e0T̃1.

We use the relation

X ∈ ∧1M + ∧3M ⇒ X + X̃ = [X]v,

where [Y ]v means the vector part of Y ∈ Cl(M). So, (5.8) is proved with the
vectors jI and jII in the form

jI = T1e0T̃2 + T2e0T̃1 = 2[T1e0T̃2]v

and because (ie3e0)̃ = −ie3e0

jII = T1ie3e0T̃2 − T2ie3e0T̃1,

jII = T1ie3e0T̃2 + [T1ie3e0T̃2 ]̃ = 2[T1ie3e0T̃2]v.

(a) The spatial parts jI and jII of jI and jII may be calculated in the fol-
lowing way.

(1) Since e0i = −ie0, we can write

jI = 2[(g1N1e3 − f1inN1)(g2e3N2 + f2N2ni)e0]v
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and since e2
0 = 1, we obtain

jI = [jIe0]V = 2[(g1N1e3 − f1inN1)(g2e3N2 + f2N2n)i]V ,

where [X]V means the vector part of X ∈ Cl(E3). Equation (5.11) may be
deduced without difficulty.

The coefficients of g1g2 and f1f2 are null as parts of elements of Cl+(E3),
and so sums of a scalar and a bivector.

We give, for example, the calculation of the coefficient of f1g2.
Using

ab = a · b + a ∧ b, a ∧ b = i (a × b),

we may write

−2[inN1e3N2]V = 2[−(i(n · N1) + n × N1)(e3 · N2 + i(e3 × N2)]V

with
[(n × N1)i(e3 × N2)]V = −i((n × N1) ∧ (e3 × N2)) = 0,

because n × N1 and e3 × N2 are each one colinear to v, and so we obtain

−2[inN1e3N2]V = 2[(n · N1)(e3 × N2) + (e3 · N2)(n × N1)]

= 2[(L1 cos θ + M1 sin θ)M2 + L2(M1 cos θ − L1 sin θ)]v.

The coefficient of f2g1 is obtained in the same way and the expression of
jI is proved.

(2) We can write

jII = [jIIe0]V = 2[(g1N1e3 − f1inN1)ie3(g2e3N2 + f2N2ni)]V .

The coefficients of g1g2 and f1f2 are null as vector parts of the sum of ele-
ments of ∧0E3, ∧2E3 and ∧3E3. Then

jII = 2[f1g2nN1N2 − g1f2N1N2n]V .

The coefficient of f1g2 is, because n(u ∧ e3) = n(ue3) = −w,

nN1N2 = n(N1 · N2 + N1 ∧ N2) = (L1L2 + M1M2)n + (L1M2 − L2M1)w.

The coefficient of f2g1 is calculated in the same way and (5.12) is proved.

(b) Concerning J0
I and J0

II , we obtain

J0
I = 2(g1g2 + f1f2)N1 · N2, J0

II = 0

and since N1 · N2 contains terms in the form Pμ
j Pμ

k with j �= k, and so∫ π

0
Pμ

j Pμ
k sin θdθ = 0, (5.4) is proved.
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Conservation of the Charge Transition Current

Let a ∈ M , X = V + T , where V ∈ ∧1M = M , T ∈ ∧3M . We can write

a · V = [aX]S , a · V = V · a = [Xa]S , [Y ]S + [Z]S = [Y + Z]S ,

where [Y ]S means the scalar part of Y ∈ Cl(M).
So if Lkj = ψke0ψ̃j , we can write

eμ · ∂μL12 = [eμ∂μψ1e0ψ̃2]S + [ψ1e0∂μψ̃2eμ]S

or taking into account (3.19)

eμ·∂μL12 =
1
�c

[(mc2ψ1e0+qAψ1)e1e2e0ψ̃2+ψ1e0e2e1(mc2e0ψ̃2+qψ̃2A)]S = 0,

since e1e2 = −e2e1 and since the term containing q is in the form [AX]S −
[XA]S = 0.

In the same way, one can write eμ · ∂μL21 = 0 and so eμ · ∂μj12 = 0.



G

An Approximation Method
for Time-Dependent Perturbation

For justifying the form (8.1)–(8.4) of the matrix elements, we will follow the
method of perturbation described in the Sects. 29 and 32 of [50]. But here,
this method will be directly applied to the Dirac theory of the electron and
with the use of the real formalism.

Let us consider a wave function ψ in the form

ψ(x0, r) =
∑

n

an(x0)ψn(x0, r), an(x0) ∈ R, (G.1)

where each ψn is the solution (4.5) of (3.19) for an electron in an hydrogenic
atom in a state of energy En.

We suppose that, at a time t = x0/c, a potential A = Akek is added to
the central potential A0e0 such that, as in (4.6), eA0 = V (r), (e = −q > 0).

Then, the function ψ obeys the relation

eμ∂μψ = − 1
�c

(mc2ψe0 − e(A0e0 + Akekψ)ie3). (G.2)

We suppose furthermore that this change of potential will affect only the
coefficients an and not the functions ψn. Such a supposition may be justified
by the fact that the effect of the perturbative potential is the passage from a
state of energy Ej to a state of energy Ek.

We can write

eμ∂μψ =
∑

n

(ȧne0ψn + aneμ∂μψn), (G.3)

where ȧn(x0) means the derivative of an(x0) with respect to x0.
Since ψn is a solution in the absence of the perturbating potential A, we

deduce from (G.2) and (G.3), multiplying on the left by e0 = e0,∑
n

ȧnψn =
e

�c

∑
n

Ake0ekanψnie3. (G.4)
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Considering the transition current between a state m and a state n

jmn = ψme0ψ̃n + ψne0ψ̃m ∈ M and j0
mn = jmn · e0, (G.5)

we deduce easily∑
n

ȧnj0
mn =

e

�c
Ak

∑
n

an[e0ekψnie3ψ̃m + ψme3iψ̃neke0] · e0. (G.6)

Using the relation

[e0ekX + X̃eke0] · e0 = [e2
0ekX]S + [X̃eke2

0]S = ek · [X + X̃],

we deduce ∑
n

ȧnj0
mn =

e

�c
Akek ·

∑
n

an(ψnie3ψ̃m + ψme3iψ̃n) (G.7)

and using the same methods as in (G.1)

∑
n

ȧnj0
mn =

e

�c
A ·

∑
n

angmn, A = Akek (G.8)

with

gmn = sin(ωmnx0)j1,mn − cos(ωmnx0)j2,mn, ωmn =
En − Em

�c
, (G.9)

where j1,mn and j2,mn are defined as in (5.10) and (5.11). So, a new time-
periodic vector g appears related to the spatial component j ((5.9) of the
transition current between two states).

Now, we use (4.18) and (5.4)

∫
j0
mndτ = δmn (G.10)

and we obtain

ȧm(x0) =
e

�c

∫
A ·

∑
n

an(x0)gmn(x0, r)dτ. (G.11)

We are going to use the perturbation approximation method (see Sect. 29
of [50]) which consists in replacing A by λA and expressing each an as power
series in λ:

an = a(0)
n + λa(1)

n + λ2a(2)
n + · · · . (G.12)

Each term of the series corresponds to an order of approximation. We will
consider only the first order.
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Equating the coefficients of equal power of λ, we obtain

ȧ(1)
m (x0) =

e

�c

∫
A ·

∑
n

cngmn(x0, r)dτ, (G.13)

where each cn is a constant. Indeed, (G.11) and (G.12) (with A replaced by
λA) give

ȧ(0)
m (x0) = 0 ⇒ a(0)

m = cm, (G.14)

and as (G.13) may be written for all index n, we can write a
(0)
n = cn for all n.

Now, we consider two particular states j and k. The first one will be
considered as the state of the electron before the beginning of the perturbation
and the second one as the expected final state.

Choosing the constants cn such that cn = δjk, we obtain

ȧ
(1)
j (x0) =

e

�c

∫
A · gjk(x0, r)dτ. (G.15)



H

Perturbation by a Plane Wave

In this case, the potential A is such that

eA = U cos(k · r − �x0 + ξ)L, (H.1)

k = �K, K2 = L2 = 1, K · L = 0,

where U is a constant and ξ is a phase constant.
The way that we follow here differs partially from the one of Schiff [50] but

leads to the same conclusion. It is applied here directly to the Dirac theory of
the electron instead of the Schrödinger one.

We denote now j = 1, k = 2 and use the notations of Sects. 4.2 and 7.1
with ω = (E2 − E1)/�c.

A simple calculation shows that (G.15) becomes

ȧ
(1)
1 (x0) = αUL ·

[∫
cos(k · r − �x0 + ξ)(sin(ωx0)j1 − cos(ωx0)j2)dτ

]
.

(H.2)

Taking into account (8.3) (in such a way that the terms containing sin(k·r)
may be omitted in the calculation), we obtain without difficulty, denoting
Ω = ω − �,

ȧ
(1)
1 (x0) = 2αUL · [sin(Ωx0 + ξ)T⊥

1 (k) − cos(Ωx0 + ξ)T⊥
2 (k)] + I, (H.3)

where I implies terms containing ω + � which will not be taken into account
(see Sect. 35 of [50]) because the probability of finding the system in the state
2 after the perturbation requires that ω − � is close to zero.

We consider the integration with respect to x0:

a
(1)
1 (x0) =

∫ x0

0

ȧ
(1)
1 (x)dx, (H.4)
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which gives

a
(1)
1 (x0) =

2αU

Ω
L · [(cos ξ−cos(ξ+Ωx0))T⊥

1 (k)+(sin ξ−sin(ξ+Ωx0))T⊥
2 (k)].

(H.5)
The average of [a(1)

1 (x0)]2 upon the phase factor ξ

〈[a(1)
1 (x0)]2〉 =

1
2π

∫ 2π

0

[a(1)
1 (x0)]2dξ

leads to the formula

〈[a(1)
1 (x0)]2〉 = 8α2U2

(
[L · T⊥

1 (k)]2 + [L · T⊥
2 (k)]2

) sin2((ω − �)x0)/2)
(ω − �)2

.

(H.6)
The average upon all the directions of the vector L gives (see (7.5))

〈〈[a(1)
1 (x0)]2〉〉 = 4α2U2([T⊥

1 (k)]2 + [T⊥
2 (k)]2)

sin2((ω − �)x0)/2)
(ω − �)2

. (H.7)

These formulas are similar to the one of (35.16) of [50]. They show that
the probability for the transition from the state of energy E1 to the state of
energy E2 is maximum (see Fig. 27 of [50]) when � = ω. Then, k = ωK
and the numbers L · T⊥

j (k) correspond to the matrix elements as they are
considered in Chap. 8.
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