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Preface

This series of reference books describes sciences of different fields in and around
geodesy with independent chapters. Each chapter covers an individual field and
describes the history, theory, objective, technology, development, highlights of
research and applications. In addition, problems as well as future directions are
discussed. The subjects of this reference book include Absolute and Relative
Gravimetry, Adaptively Robust Kalman Filters with Applications in Navigation,
Airborne Gravity Field Determination, Analytic Orbit Theory, Deformation and
Tectonics, Earth Rotation, Equivalence of GPS Algorithms and its Inference, Marine
Geodesy, Satellite Laser Ranging, Superconducting Gravimetry and Synthetic
Aperture Radar Interferometry. These are individual subjects in and around geodesy
and are for the first time combined in a unique book which may be used for teaching
or for learning basic principles of many subjects related to geodesy. The material is
suitable to provide a general overview of geodetic sciences for high-level geodetic
researchers, educators as well as engineers and students. Some of the chapters are
written to fill literature blanks of the related areas. Most chapters are written by
well-known scientists throughout the world in the related areas.

The chapters are ordered by their titles. Summaries of the individual chapters and
introductions of their authors and co-authors are as follows.

Chapter 1 “Absolute and Relative Gravimetry” provides an overview of the
gravimetric methods to determine most accurately the gravity acceleration at given
locations. The combination of relative and absolute gravimeters allows the survey-
ing of local, regional and global networks which can be used to monitor short-term
and long-term gravity variations. As an example of the present state-of-the-art abso-
lute and relative gravimeters, the main characteristics and accuracy estimates for the
Hannover instruments are presented. The observational g-values are reduced for the
time-dependent and position-dependent gravity variations due to Earth’s body and
ocean tides, atmospheric mass redistributions and polar motion. Usually hydrologi-
cal effects are not reduced but they may become a target signal to monitor changes in
aquifers and deep water reservoirs. The gravimetric surveying of the crustal defor-
mation in northern Europe is still a main focus of the ongoing absolute gravimetry
activities. It serves to study the postglacial isostatic adjustment of Fennoscandia.

v
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The author of Chap. 1 is Dr. Ludger Timmen. Ludger Timmen works at
the Leibniz Universität Hannover (LUH), Germany, where he has lectured in
gravimetry since 2005 (since 1996 as a guest lecturer). He holds a Dipl.-Ing. degree
in surveying engineering and obtained a Ph.D. from the University of Hannover
(now LUH) in 1994. As a research assistant at the Institut für Erdmessung (IfE)
of LUH, he specialised in precise gravimetry and its application to geodynamic
research (tectonics, Earth tides). From 1995 to 1999, he held a scientist position at
GFZ Potsdam, the German geoscience research center, focussing on airborne gravi-
metric techniques and coordinating the international airborne gravimetry projects
of GFZ. Back at IfE since 2002, his main research interest is the improvement and
application of relative and absolute gravimetry to measure small temporal gravity
variations on the timescale from some days to a few decades. He organized and per-
formed various gravimetry campaigns in China, South America and northern Europe
and participated in two German Antarctic expeditions.

In Chap. 2 “Adaptively Robust Kalman Filters with Applications in Navigation”,
the main achievements of the adaptively robust filter are summarized from the pub-
lished papers in recent years. In Sect. 2.1, the background and developments of
adaptive filters are summarized. The principle of the adaptively robust filter is pre-
sented and the estimators are derived in Sect. 2.2. The special cases of the new
adaptively filter are also given. In Sect. 2.3, the properties of the adaptive Kalman
filter are analysed. After that the establishment of four kinds of learning statistics for
judging the kinematic model errors, which include state discrepancy statistic, pre-
dicted residual statistic, variance component ratio statistic and velocity discrepancy
statistic are given in Sect. 2.4. And in Sect. 2.5, four adaptive factors for balancing
the contribution of kinematic model information and measurements are presented,
which include three-segment function, two-segment function, exponential function
and zero and one function for state component adaptation. In Sect. 2.6, two fad-
ing filters and adaptively robust filter are compared and computation examples are
included. In Sect. 2.7, the Sage adaptive filter and an adaptively robust filter are also
compared; the problems of the Sage adaptive filter are analysed. The last section
presents some application examples of the adaptively robust filter.

The author of Chap. 2 is Prof. Yuanxi Yang. Yuanxi Yang, Academician of
Chinese Academy of Science, is a professor. He graduated in Geodesy in 1980 and
1987 from the Zhengzhou Institute of Surveying and Mapping (ZISM) with BSc and
MSc degrees. He obtained his doctorate from Institute of Geodesy and Geophysics,
the Chinese Academy of Science, in 1991. He worked as associate professor and
professor in ZISM from 1990 to 1992 and from 1992 to 1998, respectively. He has
been a deputy director and chief engineer of Xi’an RISM since 1998. He was a vis-
iting scholar of Center for Space Research of University of Texas, USA in 1995.
From 1996 to 1997 he was a scientist in Institute of Theoretical Geodesy of Bonn
University in Germany under a Humboldt fellowship. He is a member of Chinese
Union of Geodesy and Geophysics since 1997, second secretary of Section IV, IAG
from 1999 to 2003, and member of ICCT, IAG since 1999. His main research field
includes geodetic data processing, navigation and geodetic coordinate system, etc.
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He has published more than 100 papers on robust estimation and adaptive Kalman
filtering.

Chapter 3 “Airborne Gravity Field Determination” outlines some of the basic
principles of airborne gravimetry, with special focus on geodetic applications, and
gives some examples from recent large-scale surveys. For geodesy, the main focus
is more on absolute accuracy and long-wavelength stability, since long-wavelength
errors in gravity transforms to large geoid errors; for geophysical exploration focus
is mainly on the short-wavelength performance and ultimately making reliable
detection and mapping of small, elusive gravity signatures. The chapter starts with
an introduction and describes principles of airborne gravimetry and filtering tech-
nique of airborne gravity. Some results of large-scale government airborne surveys
are given in Sect. 3.4 and downward continuation of airborne gravimetry are dis-
cussed in Sect. 3.5. Geoid determination and conclusions are given in the sixth
section and the last, respectively.

The author and co-author of Chap. 3 are state scientist Rene Forsberg and
Dr. Arne V. Olesen.

Rene Forsberg is the state geodesist and head of the Department of Geodynamics
of the National Space Institute of Denmark, formerly known as the Danish National
Space Center. He obtained MSc degrees in both geophysics and geodesy from
University of Copenhagen during 1980s before joining the Danish Geodetic Institute
as research geodesist with working fields as gravimetry, satellite geodesy and
Greenland survey projects. From 1983 to 1984 he was a visiting scientist of Ohio
State University and University of Calgary (1984–1985). Rene Forsberg has been
an external lecturer at University Copenhagen since 1989. He is a project coordina-
tor or participant in numerous ESA, EU and research council projects, focusing on
gravity field determination or cryosphere measurement. In addition, he is a mem-
ber of the scientific advisory board for the ESA Cryosat mission, chairman of the
IAG International Gravity Field Service, the vice president of the International
Gravity and Geoid Commission and a member of the International Association
of Geodesy Restructuring Committee since 1999. He was elected as the chair-
man of IAG Special Working Group “Local Gravity Field Modelling” (1987–1995)
and appointed as section president (Gravity field Determination) of IAG (1995–
1999). Rene Forsberg is a world-renowned scientist in the field of aerogravimetry.
Several PhD studies were completed under his supervision and he is the author and
co-author of more than 250 scientific papers in journals, proceedings and reports.

Arne V. Olesen is a senior scientist in National Space Institute of Denmark.
He obtained his doctorate 2001 in University of Copenhagen and worked as sci-
entist in National Survey and Cadastre, Denmark, since 1997. He has been working
very intensively on aerogravimetry research and field campaigns as well as GPS
investigation since many years and authored and co-authored many scientific papers.

The Chap. 4 “Analytic Orbit Theory” describes the satellite orbit theory in a con-
densed way. The perturbed equations of satellite motion are discussed first. Then
singularity-free and simplified equations are given. The solutions of extraterrestrial
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disturbances such as solar radiation pressure, atmospheric drag and the disturbance
of the sun, the moon and planets are then outlined. Solutions of geopotential dis-
turbances are given with examples. Numerical and analytical orbit determination is
dealt with before the summary and discussions.

I (Guochang Xu) am the author of Chap. 4. After graduating in mathemat-
ics and geodesy from Wuhan University and the Chinese Academy of Sciences
(CAS) in 1982 and 1984, respectively, I obtained Dr.-Ing. degree from the Technical
University (TU) Berlin in 1992. Having worked as a research associate at the TU
Berlin from 1986 to 1993, as a scientist at the GeoForschungsZentrum (GFZ)
Potsdam from 1993 to 1998 and as a senior scientist at the National Survey and
Cadastre, Denmark, from 1998 to 1999, I returned to the GFZ as a senior scientist
in 1999. I have been involved in geodetic research since 1983 and have authored and
co-authored several scientific books and software. From 2003 to 2008 I was an over-
seas assessor, adjunct professor and winner of overseas outstanding scholar fund of
CAS. I am an adjunct professor of ChangAn University since 2003, overseas com-
munication assessor of Education Ministry China since 2005, an adjunct professor
of National Time Service Center, CAS, since 2009 and national distinguished expert
of China Academy of Space Technology since 2010.

The Chap. 5 “Deformation and Tectonics” addresses some aspects of the use
of the GPS system in the study of plate tectonics. After a short summary on the
evolution of models of the angular velocities of plate tectonics using geophys-
ical, geological and geodetic data, the best methodologies to define a reference
frame using GPS base stations are explained and the problem of mapping the
GPS solutions to accurately obtain the position of a station with respect to the
most recent International Terrestrial Reference Frame solution (ITRFxxxx) is dis-
cussed in Sect. 5.3. In the next section, the geophysical signals that need to be
subtracted from the GPS observations to clearly distinguish the secular tectonic
plate motion are referred. In Sect. 5.5 the problem of estimating the plate motion
using those preprocessed GPS time-series is described. The contribution of the
GPS technique to unravel the geodynamics features of a plate boundary zone is
exemplified using research carried out in the Azores Triple Junction region. The
importance of a full integration of all available GPS data, both continuous and
episodic, possible evolutions in the exploitation of the GNSS technology, including
the benefits of a multi-technique approach, as well as the need for a proper inte-
gration of geodetic, geophysical and geological information are stressed in the last
section.

The author and co-authors of Chap. 5 are Dr. Luisa Bastos, Dr. Machiel Bos and
Dr. Rui Manuel Fernandes.

Luisa Bastos is a senior researcher at the University of Porto and since 1997
director of the Astronomical Observatory of the Faculty of Sciences. Since 2002
she is a member of CIIMAR (Centre of Marine and Environmental Research of the
University of Porto). She graduated as surveying engineer in 1976 at the University
of Porto where she received a Ph.D. degree in 1991 with a work focused on GPS
application to geodynamics. Her main interest is on precise GNSS applications and
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in the last 20 years she has been involved not only in projects related with geody-
namics studies, but also in the development of applications based in the integration
of GNSS with other sensors and its exploitation for airborne, terrestrial and marine
applications, namely airborne gravimetry and mobile mapping. She has been super-
vising or co-supervising M.Sc. and Ph.D. thesis on these topics. From 1999 to 2004
she acted as president of the WEGENER project and is presently a member of the
WEGENER inter-commission. She is currently working on research projects that
involve the exploitation of satellite-based systems and multi-sensor integration for
geodynamics studies, environmental monitoring and coastal dynamics.

Machiel Bos studied aerospace engineering at Delft University of Technology,
The Netherlands. After his graduation in 1996 he performed his Ph.D. research
at Proudman Oceanographic Laboratory, Liverpool, United Kingdom. In 2001 he
spent 7 months as post-doc at Onsala Space Observatory, Sweden. From 2001 to
2003 he worked as a post-doc at the Faculty of Geodesy of Delft University of
Technology. From 2003 to 2008 he held a post-doc position at the Astronomical
Observatory of Porto, Portugal, and he is working at CIIMAR since 2008 (Centre of
Marine and Environmental Research of the University of Porto). His main scientific
interests are ocean tide loading, GPS time-series analysis and the geoid.

Rui Manuel Fernandes has a doctoral degree in earth and space sciences from
Technical University of Delft (The Netherlands). He is assistant professor in the
University of Beira Interior (UBI), Covilhã, Portugal, and associated researcher
of Institute Geophysical Infante D. Luíz (IDL), Lisbon, Portugal. He is the head
of SEGAL (Space & Earth Geodetic Analysis Laboratory), a collaborative project
between UBI and IDL. He has been an active researcher in the use of GNSS for mon-
itoring geophysical signals and for the definition of reference frames. In this respect,
he has published several papers at peer-reviewed international journals and he is
member of technical and scientific committees of EUREF and AFREF (European
and African Reference Frames).

Chapter 6 “Earth Rotation” provides an overview of the state-of-the-art theoret-
ical and observational aspects on Earth rotation. It is organised in five parts. The
first section describes theoretical foundations of space-fixed and Earth-fixed refer-
ence systems, their mutual relation and the consequences of the implementation of
the new IAU2000 resolutions. The second and third sections describe the results of
astrometric and space geodetic observations of polar motion and length-of-day vari-
ations, respectively. The presented time-series are analysed in time and space with
regard to signatures of gravitational and other geophysical processes in the Earth
system. The fourth section deals with the physical foundations of Earth rotation
models that are based on the balance of angular momentum in the Earth system.
After theoretical considerations, various approaches for numerical Earth rotation
models are presented. In Sect. 6.5, the chapter concludes with a discussion of the
relation between modelled and observed variations of Earth rotation.

The author and co-author of Chap. 6 are Prof. Florian Seitz and Prof. Harald
Schuh.
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Florian Seitz studied geodesy at the Technische Universität München (TUM),
Germany. After his graduation in the year 2000 he joined the Deutsches
Geodätisches Forschungsinstitut (DGFI) in Munich, where he collaborated in var-
ious projects in the fields of Earth rotation, gravity field and surface geometry. In
addition to theoretical studies, his main focus during his time at DGFI was the devel-
opment of a numerical Earth system model for the simulation of atmospheric and
hydrospheric effects on Earth rotation and gravity field, for which he obtained his
doctorate from the TUM with distinction in 2004. During 2006 he joined NASA’s
Jet Propulsion Laboratory, Pasadena, USA, for a research visit for several months.
He returned to the TUM as a professor for Earth Oriented Space Science and
Technology in 2007. His main scientific interest is the integrated analysis of data
of Earth observation satellites and space geodetic techniques and their application
for numerical studies and models of the Earth system. At present he is chair of the
study group SG-3 “Configuration Analysis of Earth Oriented Space Techniques” of
IAG’s Inter-commission Committee on Theory (2007–2011) and secretary of IAU
Commission 19 ‘Rotation of the Earth’ (2009–2012).

Harald Schuh is a full professor and Director of the Institute of Geodesy and
Geophysics, Vienna University of Technology, Austria. Major areas of scientific
interest are very long baseline interferometry (VLBI), Earth rotation, investigations
of the troposphere and ionosphere. He graduated in 1979 from Bonn University,
Germany and received his PhD in 1986. He occupied the following positions:
Scientific assistant and associate professor at Bonn University (1980–1988); pro-
gram scientist at the German Air and Space Agency (1989–1995); senior scientist
and head of the Earth Rotation Division at DGFI, Munich (1995–2000); chair of
the IVS Directing Board since 2007; president of IAU Commission 19 “Rotation
of the Earth” (2009–2012); president of the Austrian Geodetic Commission since
2008 and president of the Austrian National Committee of the IUGG since 2009;
member of the IAG executive committee and of various directing and governing
boards; editorial board of the Journal of Geodesy (2003–2007); served as president,
chair, member or consultant of various commissions, sub-commissions and working
groups in geodesy (IAG) and astronomy (IAU); coordinator of the German Research
Group on Earth Rotation (1999–2003); supervisor, co-supervisor, or examinator of
more than 20 dissertations.

Chapter 7 is entitled “Equivalence of GPS Algorithms and its Inference”. The
equivalence principle of differential and un-differential GPS algorithms, combined
and un-combined GPS algorithms as well as their mixtures are discussed. The prin-
ciple can be alternatively argued as follows. As soon as the GPS data are measured,
the information contents of the data are definitive ones. If the model used is the same
and the principle of the adjustment and filtering is also the same, the obtained results
should be equivalent. Advantages and disadvantages of different algorithms are rel-
ative and balanced. Based on the equivalence principle, the topic of independent
parameterisation of the GPS observation model is discussed which points out where
the singularity problem comes from. The consequences of the equivalence principle
are important beyond the principle itself. The diagonalisation algorithm could be
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extremely useful even for classic adjustment for reducing parameters. Separability
of any observation equation and its normal equation may lead to an apparently
unsolvable problem to be solvable or an accumulated one and later solvable one.
Optimal criterion for ambiguity search may clear a decade-long confusion of the
ambiguity searching criterion caused by the so-called LSSA method.

The author and co-authors of Chap. 7 are Dr. Guochang Xu (see Chap. 4), Prof.
Yunzhong Shen, Prof. Yuanxi Yang (see Chap. 2), Prof. Heping Sun, Prof. Qin
Zhang, Dr. Jianfeng Guo and Prof. Ta-Kang Yeh.

Yunzhong Shen is a professor in Department of Surveying and Geo-informatics
Engineering of Tongji University. He received his Ph.D. from the Institute of
Geodesy and Geophysics, Chinese Academy of Sciences in 2001. He is now an
editor of “Acta Geodetica et Cartographica Sinica”. His main research interests are
theory of geodetic data processing, satellite positioning and satellite gravimetry.

Heping Sun graduated in geophysics from University of Science and Technology
of China in 1980. He obtained his doctorate from Catholique University of Louvain
in Belgium in 1995. Having worked as a research assistant at the Institute of
Seismology of the China Earthquake Prediction Administration in Wuhan from
1980 to 1991, Royal Observatory of Belgium from 1991 to 1996, he is a research
professor in Institute of Geodesy and Geophysics, Chinese Academy of Sciences
since 1997, and is director of the Institute since February 2005. He has been involved
in gravity research, including theoretical study, data process and its application in
Geodynamics; he has authored and co-authored more than 30 research papers.

Qin Zhang graduated in geodesy and survey engineering from Wuhan University
in 1982 and 1994, respectively. She obtained her doctorate from Wuhan University
in 2002. Having worked as a lecturer at the Wuhan University from 1982 to 1984
and as an associate professor at the Chang’an University, Xian, from 1984 to 2000,
she works as a professor and vice dean at the Chang’an University since 2000.
Prof. Zhang has been involved in GPS research since 1991 and has authored and
co-authored several books. She is also an adjunct professor at Tianjin Institute of
Urban Construction and an editor of some Chinese core journals. Several part-time
positions are held by her, for example, as commissioner for Chinese Society for
Geodesy, Photogrammetry and Cartography, executive commissioner and director
for Society for Geodesy Photogrammetry and Cartography of Shaanxi province.

Jianfeng Guo is an associate professor at Information Engineering University
(IEU), China. He obtained a B.Sc. in Mathematics from Xi’an Jiaotong University
(XJTU) and an M.Sc. in Geodesy from IEU and a Ph.D. in Geodesy from Institute
of Geodesy & Geophysics, Chinese Academy of Sciences (CAS). His research
interests include geodesy and GNSS positioning and navigation.

Ta-Kang Yeh graduated in civil engineering and surveying engineering from
National Chiao Tung University at Taiwan in 1997 and 1999, respectively. He
also obtained his doctorate in geomatics from National Chiao Tung University at
Taiwan in 2005. Having worked as an associate engineer at Industrial Technology
Research Institute from 2000 to 2005, he has been an assistant professor at Ching
Yun University since 2005. After working for 4 years he passed the promotion appli-
cation and has been an associate professor since 2009. Moreover, he is the CEO of
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e-GPS research center of Ching Yun University from 2008. He has been involved
in GPS research since 1997 and has authored and co-authored several books and
papers. He is also a member of International GNSS Service (IGS), International
Association of Geodesy (IAG) and American Geophysical Union (AGU).

Chapter 8 “Marine Geodesy” presents an overview of geodetic contributions to
the scope of the marine environment. After a brief introduction to the acquisition
and use of hydrographic data the basic principles of hydroacoustics are presented.
The importance of precise navigation is discussed and some examples are explained.
The focus is put on the estimation of ship dynamic parameters and the contribution
of geodesy to ship dynamics. A newly developed method for ship squat observa-
tion is described in detail which provides high precise data that allow discussing
the correlation of trim and squat and furthermore the optimisation of ship under-
keel clearance by considering the static trim and the squat-related dynamic trim
change.

The author of Chap. 8 is Prof. Joerg Reinking. Joerg Reinking studied geode-
tic engineering at the Technical University (TU) Berlin, Germany, and received his
diploma in 1988. Since 1988 he has worked as a research associate at TU Berlin and
Technical University (TU) Braunschweig, Germany. He obtained his doctorate from
TU Braunschweig in 1993 and worked as a scientist at the GeoForschungsZentrum
(GFZ) Potsdam from 1993 to 1997. Since 1997 he has been a professor of geodesy,
adjustment techniques and hydrographic surveying at the Jade University of Applied
Sciences in Oldenburg, Germany. During the last decade he was engaged in the
development of geodetic observation and analysis strategies for ship dynamic anal-
ysis (squat, trim and roll) and founded the Institute of Metrology and Adjustment
Techniques and is a member of the Institute of Martime Studies in Elsfleth,
Germany’s largest nautical school.

Chapter 9 “Satellite Laser Ranging” introduces the reader to this space geodetic
technique and covers the basics of instrumentation, error sources both in the mea-
sured and in calculated range, leading up to determination of observed-computed
residuals, which provides an indication of “best-fit” orbit to the observations.
Initially a range model is developed, which includes additional signal delays expe-
rienced by the transmitted laser pulse due to the atmosphere and general relativity.
A description of centre-of-mass correction is given using LAGEOS as an example.
Station range and time bias are discussed, highlighting the reasons for range bias
variability while cautioning its application or interpretation as a station error with-
out consideration of its diverse constituents. Following the measured range model,
a simple orbit and force model are described, which includes the effects of gravity
and its temporal changes, n-body perturbations, general relativity, atmospheric drag,
solar and Earth radiation pressure as well as empirical forces. A calculated range
model is then described, which makes allowance for station position variations due
to solid Earth processes as well as other necessary adjustments. A brief overview
of a typical SLR station is given, using MOBLAS-6 as an example. Operational
aspects are covered with reference to the important role of the International
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Laser Ranging Service (ILRS) and the global network of participating SLR
stations.

The author of Chap. 9 is Dr. Ludwig Combrinck. Ludwig Combrinck is emp-
loyed at the Hartebeesthoek Radio Astronomy Observatory (HartRAO) located
near Krugersdorp, South Africa. HartRAO is a facility of the National Research
Foundation (NRF). Ludwig was awarded a PhD by the University of Cape Town
in 2000, his thesis focussed on GNSS applications for precise positioning. He
is responsible for the Space Geodesy Programme at HartRAO, which includes
the NASA satellite laser ranging station, MOBLAS-6. In 2009 he was appointed
professor-extraordinaire at the University of Pretoria and research associate at the
University of South Africa where he lectures part-time. His main research inter-
ests currently include applications of space geodetic techniques, reference frame
development for Africa and the development of a new high-accuracy satellite and
lunar laser ranger for South Africa. His diverse interests in the applications of space
geodesy have resulted in the establishment of geodetic stations throughout Africa,
Marion Island and Antarctica, in collaboration with international partners.

Chapter 10 “Superconducting Gravimetry” is related to measuring, evaluation
and interpretation of superconducting gravimeter data. It gives an overview of
the instrument, the data processing techniques including pre-processing and Earth
tide analysis and its application in geodynamics, combined with the correction of
environmental influences (atmosphere, hydrosphere and ocean). The corresponding
sections of this chapter include the description of the instrument, site selection and
observatory design, calibration of the gravity sensor, noise characteristics, descrip-
tion and modelling of the principal constituents of the gravity signal, analysis of
different surface gravity effects, combination of ground-and satellite-derived gravity
variations, co-seismic gravity changes, up to future applications.

The author of Chap. 10 is Dr. Jürgen Neumeyer. Jürgen Neumeyer graduated
in electrical engineering at Technical University Ilmenau in 1965. He obtained
his first Ph.D. in electrical engineering at University of Ilmenau in 1971 and his
second Ph.D. in geophysical measurement technique at Academy of Sciences of
GDR in 1989. Since 1978 he has been dealing with geo-sciences. He worked from
1978 to 1991 at “Central Institute Physics of the Earth” Potsdam in the fields of
gravimetry, seismology and remote sensing. From 1992 to 2007 he was working
at “GeoForschungZentrum Potsdam” in the field of superconducting- and airborne-
gravimetry and GPS. During this time he published his scientific results in several
papers.

Chapter 11 “Synthetic Aperture Radar Interferometry” introduces the principles
and data processing of the SAR interferometry including differential SAR interfer-
ometry, corner reflector SAR interferometry (CR-INSAR) and some of the practical
applications. In Sect. 11.2 the basics of the SAR imaging are briefly reviewed
to understand the SAR imaging process and SAR image feature, which also is
the background of the SAR interferometry. Section 11.3 describes the principle
and data processing of the SAR interferometry for digital elevation model (DEM)
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generation. Section 11.4 deals with the differential SAR interferometry. In
Sect. 11.5 the differential interferometry of the persistent coherent is discussed.

The author of Chapter 11 is Dr. Ye Xia. Ye Xia received the Dr.-Ing. degree
in navigation from the University of Stuttgart, Germany, in 1995, the M.S. degree
in electrical engineering from Hunan University, China, in 1982, and the B.A.
degree in electrical engineering from Shanghai Jiao Tong University, China, in 1968.
He is currently a senior scientist at the Geo-Research Center Potsdam, Germany.
His research interests include electrocircuit theory, active filter design, imaging
and interferometry of the synthetic aperture radar and the INSAR applications in
geography survey and geological disasters monitoring.

The book has been subjected to an individual review of chapters. I am grate-
ful to reviewers Prof. Aleksander Brzezinski of the Space Research Centre of the
Polish Academy of Sciences, Prof. Wu Chen of HongKong Polytech University,
Prof. Alexander Härting of the University of Applied Sciences Oldenburg,
Prof. Urs Hugentobler of Technical University Munich, Dr. Corinna Kroner,
Dr. Svetozar Petrovic and Dr. Ludwig Grunwaldt of GFZ, Prof. Xiaohui Li
of National Time Service Center in Xi’an, Prof. Zhiping Lü and Dr. Jianfeng
Guo of Information Engineering University (IEU) in Zhengzhou, Prof. Yunzhong
Shen of Tonji University in Shanghai, Prof. Heping Sun and Prof. Jikun Ou of the
Institute of Geodesy and Geophysics (IGG) in Wuhan, Dr. Tianhe Xu of GFZ and
the Institute of Surveying and Mapping (ISM) in Xi’an, Prof. Ta-Kang Yeh of Ching
Yun University of Taiwan, Dr. Walter Zürn of University Karlsruhe. As editor of this
book I made a general review of the whole book. A grammatical check of technical
English writing has been performed by Springer Heidelberg.

I wish to thank sincerely the key authors of the individual chapters: Dr. Ludger
Timmen of University Hannover, Prof. Yuanxi Yang of ISM in Xi’an, state scien-
tist Rene Forsberg and Dr. Arne V. Olesen of Danish Space Center in Copenhagen
University, Dr. Luisa Bastos and Dr. Machiel Bos of University of Porto, Dr.
Rui Manuel Fernandes of University of Beira Interior (UBI), Prof. Florian Seitz
of Technische Universität München, Prof. Harald Schuh of Vienna University of
Technology, Prof. Yunzhong Shen of Tonji University in Shanghai, Prof. Heping
Sun of IGG in Wuhan, Prof. Qin Zhang of ChangAn University in Xi’an, Dr.
Jianfeng Guo of IEU in Zhengzhou, Prof. Ta-Kang Yeh of Ching Yun University of
Taiwan, Prof. Joerg Reinking of University of Applied Sciences in Oldenburg, Dr.
Ludwig Combrinck of Hartebeesthoek Radio Astronomy Observatory, Dr. Jürgen
Neumeyer of Potsdam, Dr. Ye Xia of GFZ. Without their consistent efforts such
a book will be never available. I also wish to thank sincerely scientists who made
great efforts for enriching this book. They are Prof. Jürgen Kusche of University
Bonn, Dr. Oscar Colombo of NASA and Prof. Tianyuan Shih of Central University
of Taiwan.

I wish to thank sincerely the former directors Prof. Dr. Ch. Reigber and Prof.
Dr. Markus Rothacher of GFZ for their support and trust during my research activ-
ities at the GFZ and for granting me special freedom of research. I also wish to
thank sincerely Prof. Yuanxi Yang of ISM in Xi’an, Prof. Qin Zhang of ChangAn
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University in Xi’an, Prof. Heping Sun, Prof. Jikun Ou and Prof. Yunbin Yuan of
IGG in Wuhan for their friendly support by organising the International Geodetic
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1.1 Introduction

Absolute and relative gravimetry allow the determination of gravity acceleration,
usually just called gravity, for specific positions as well as the detection of gravity
changes with time at a given location. For high-accuracy demands, the geometrical
position of a gravity point has to be defined very accurately, e.g. in geodynamic
research projects, at a height along the vertical above a ground mark. Geodetic net-
works with local, regional or global extent can be surveyed to monitor short-term
and long-term gravity variations.

This chapter refers particularly to experience gained at the Institut für
Erdmessung (IfE), Leibniz Universität Hannover (LUH). In the following, an
overview of relative and absolute gravimetry (instrumental techniques, observation
equations, accuracies, etc.) is given. Exemplarily for present state-of-the-art abso-
lute and relative gravimeters, the main characteristics and accuracy estimates for the
Hannover instruments are presented.

Because of the dynamics within the Earth’s system (tectonics, climate change,
sea-level rise), the national and international base networks are not stable with
time. With the high accuracies of modern geodetic techniques, combined with the
high quality of the base net stations (stable environment, customised facilities), the
networks serve more and more as control systems for environmental changes and
surface deformations.

The recommended unit of acceleration in the Système International d’Unités
(SI) is the unit m/s2 (BIPM 2006). In geodesy and geophysics, the non-SI unit Gal
(1 Gal = 1 cm/s2 = 0.01 m/s2) is also used to express acceleration due to gravity. In
order to provide gravity differences and to describe small deviations or uncertainties
of the measurements, the following units are helpful:

1 mGal = 10−5m/s2 = 10−6g and 1 μGal = 10−8m/s2 = 10−9g . (1)

1.2 Characteristics of Absolute Gravimetry

1.2.1 General Aspects

To realise the advantages of absolute gravimetric measurements, some particular
features of the gravity acceleration g, usually just called gravity g, for a defined
geometrical point should be explained first. The gravity acceleration at a surface
point depends on the following:

1. The position relative to the Earth’s masses and their density distribution (integral
effect caused by the gravitational force of the Earth’s masses)

2. The position relative to the Earth’s rotation axis (effect caused by the centrifugal
force due to the Earth’s rotation)
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The g-value of a point at the Earth’s surface (e.g. bench mark attached to a pier)
changes with the following:

• Varying distance to the centre of masses of the Earth (geocentre) caused by ver-
tical movements of the measuring point, e.g. due to crustal deformations, and
by secular variations of the position of the geocentre (subtle effect, requires
long-time measuring series)

• Mass shifts and redistributions within the system Earth (including atmosphere
and hydrosphere) and especially with near-surface variations within the crust (e.g.
groundwater changes, sediment compaction)

• Changing distance to the Earth’s rotation pole due to lateral movements (subtle
effect, e.g. due to plate tectonics)

Absolute gravity measurements are most sensitive to height changes and provide
an obvious way to define and control the vertical height datum. No additional refer-
ence points (connection points) at the Earth’s surface and no observations of celes-
tial bodies (quasars, stars, planets, moon) or satellites are needed. Shortcomings of
relative gravimetry, like calibration problems and deficiencies in the datum level
definition, can be overcome. The accuracy of an absolute gravity net is independent
of geographical extension which allows applications on local, regional and global
scales with consistent measurement quality. An independent verification of dis-
placements measured geometrically with GPS (Global Positioning System), VLBI
(Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging) is possible.
A combination of gravimetric and geometric measurements may enable discrim-
ination among subsurface mass movements associated with or without a surface
deformation.

1.2.2 Objectives of Geo-scientific and State-geodetic Surveys

The benefit of absolute gravimetry has already been exploited in different scientific
projects. The International Absolute Gravity Basestation Network (IAGBN) serves,
among other purposes, for the determination of large-scale tectonic plate movements
(Boedecker and Fritzer 1986; Boedecker and Flury 1995). The recommendations of
the Interunion Commission on the Lithosphere on mean sea level and tides pro-
pose the regular implementation of absolute gravity measurements at coastal points,
1–10 km away from tide gauges (Carter et al. 1989). The height differences between
gravity points and tide gauges have to be controlled by levelling or GPS. In Great
Britain, the main tide gauges are controlled by repeated absolute gravity determi-
nations in combination with episodic or continuous GPS measurements (Williams
et al. 2001). Torge (1998a, b) describes the changing role of gravity reference net-
works due to the modern approach to realising the network standards by absolute
observations.

Overall, absolute gravimetry can be an important research tool for studying
geodynamic processes, especially land uplift effects due to postglacial rebound
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(PGR). Lambert et al. (1996) give an overview of the capability of absolute gravity
measurements in determining the temporal variations in the Earth’s gravity field. In
Lambert et al. (2001), the gravimetric results for the research of the Laurentide post-
glacial rebound in Canada are described. Mäkinen et al. (2007) compare observed
gravity changes in Antarctica with modelled predictions of the glacial isostatic
adjustment as well as of the glacier mass balance.

Since 1986, several gravimetric projects were performed by IfE with the abso-
lute gravimeters JILAg-3 (e.g. Torge 1990, 1993; Timmen 1996) and FG5-220
(Gitlein et al. 2008; Timmen et al. 2006a). These activities served the following
main objectives:

• Establishing and improving international and national gravity reference net-
works to realise a homogeneous gravity standard (datum definition in level and
scale) of regional to global extent; calibration systems for relative gravimetry are
needed

• Installing and strengthening regional and local networks in tectonically active
areas with absolute gravimetric measurements and following re-observations;
such monitoring systems may serve for geophysical research on the mechanism
of crust formation and on the rheology of Earth’s mantle and crust

• Monitoring the vertical stability of tide gauge stations to separate sea-level
changes from land surface shifts; this serves to constrain parameters related to
global climatic change

With the initiation of the GRACE satellite experiment (Gravity Recovery and
Climate Experiment, e.g. Wahr and Velicogna 2003; Tapley et al. 2004), a new
requirement has arisen for absolute gravimetry:

• To provide the most accurate “ground truth” for GRACE

The results from both data sets describe changes of the gravity field at the Earth’s
surface or at the geoid. The terrestrial data can not only be used to validate the
GRACE products (Müller et al. 2006) but may also serve as a completion of the
satellite results.

In the future, two additional tasks may become important applications:

• Monitoring of human-caused changes in aquifers and deep water reservoirs by
water extraction

• Contributing to the definition of ground-based geodetic reference networks
within the activities for the Global Geodetic Observing Systems (GGOS) of the
International Association of Geodesy (IAG)

GGOS will provide the observational basis to integrate the different geodetic
techniques. The purpose of the globally collected geodetic data is to collate and
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analyse information about global processes and changes which are important for
world societies. An overview and further details about GGOS can be obtained from
Pearlman et al. (2006). In Ilk et al. (2005), detailed information about mass transport
processes in the Earth system is given.

1.3 Measurements with Free-Fall Absolute Gravimeters

In January 1986, the Institut für Erdmessung (IfE), Leibniz Universität Hannover
(LUH), received the absolute gravimeter JILAg-3 which was the first transportable
system located in Germany (Torge et al. 1987). The free-fall system was devel-
oped at the Joint Institute of Laboratory Astrophysics (JILA, Faller et al. 1983)
of the University of Colorado. The so-called JILAg-3 was the third gravimeter
of a series of six JILA instruments and was successfully employed by IfE in
more than 130 absolute gravity determinations at about 80 different stations (South
America, China, Greenland, Iceland, central and northern Europe). In December
2002, IfE had received a new FG5 absolute gravity meter (FG5-220) from Micro-g
Solutions, Inc. (now Micro-g LaCoste, Inc., Erie, Colorado), which was a state-of-
the-art instrument (Niebauer et al. 1995) and replaced the older JILAg-3. Based
on the JILA design, the FG5 generation has overcome several constructively pre-
defined shortcomings and represents an essential improvement in operation and
accuracy. The first fully operational FG5 instrument (FG5-101) was already avail-
able in 1993, manufactured by AXIS Instruments Company in Boulder, CO (Carter
et al. 1994). The achievement of AXIS became possible after the National Institute
of Standards and Technology (NIST, Boulder, USA) and the former Institute of
Applied Geodesy (IfAG, now Federal Agency for Cartography and Geodesy, BKG,
Frankfurt, Germany) joined forces in 1990 to produce an advanced instrument
capable of providing more stringent data constraints on geophysical investigations.

The FG5 series represents the currently most advanced instruments and has to be
assumed as the best instrumental realisation to measure the absolute gravity accel-
eration. Besides the FG5 meter for most accurate applications, a portable absolute
gravimeter for harsh field environments has been developed by Micro-g LaCoste,
Inc., called A10 (Niebauer et al. 1999, see also the Micro-g LaCoste internet pages).
This unique instrument allows a data sampling rate of 1 Hz and provides a precision
of 10 μGal after 10 min of measurements at a quiet outdoor field site. An absolute
accuracy of 10 μGal can be achieved for a station determination. Liard and Gagnon
(2002) tested their new A10 in 2001 at the International Comparison of Absolute
Gravimeters in Sèvres, France. The investigations of Schmerge and Francis (2006)
confirm the accuracy specifications of the manufacturer.

Figure 1.1 shows the two types of the Hannover absolute gravimeters, the instru-
ments JILAg-3 and FG5-220. During the period from 1986 to 2000, the JILAg-3
gravimeter was used by IfE for absolute gravity determinations on more than 80
different sites worldwide. The measurements with the presently employed FG5-220
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Fig. 1.1 The two absolute gravimeters of the Leibniz Universität Hannover: left JILAg-3
employed from 1986 to 2000 (here reference measurements in Hannover), right FG5-220 operated
since 2003 (tent measurements in Denmark)

started in 2003, and more than 40 different sites in central and northern Europe have
already been visited.

1.3.1 Principles of FG5 Gravimeters

Modern absolute gravity measurements are based on time and distance measure-
ments along the vertical to derive the gravity acceleration at a specific position on
the Earth, cf. Torge (1989). The expression “absolute” is based on the fact that the
time and length standards (rubidium clock, helium–neon laser) are incorporated
as components of the gravimeter system. No external reference like a connecting
point is required. The FG5 series is presently the most common gravimeter model,
which may be considered as the successor system of the JILA generation (Carter
et al. 1994; Niebauer et al. 1995). The influence of floor vibration and tilt on the
optical path could largely be removed by the improved interferometer design. The
iodine-stabilised laser, serving as the primary length standard, is separated from the
instrumental vibrations, caused by the free-fall experiments (drops), by routing the
laser light through a fibre optic cable to the interferometer base; see Fig. 1.2.

During a drop, the trajectory of a test mass (optical retro-reflector) is traced by
laser interferometry over the falling distance of about 20 cm within an evacuated
chamber. The “co-falling” drag-free cart provides a molecular shield for the dropped
object. The multiple time–distance data pairs collected during the drop (FG5: 700
pairs at equally spaced measuring positions, JILAg: 200) are adjusted to a fitting
curve (almost parabolic) as shown in Fig. 1.3, giving the gravity acceleration g for
the reference height above floor level (FG5: ~1.2 m, JILAg: ~0.8 m).



1 Absolute and Relative Gravimetry 7

Fig. 1.2 Schematic diagram
of the FG5 absolute
gravimeter, after Micro-g
Solutions, Inc. (1999),
courtesy of Micro-g Lacoste,
Inc.

Fig. 1.3 The free-fall in a
time–distance diagram

1.3.2 Observation Equation

In a uniform gravity field, the motion of a freely falling mass m can be expressed
with the following equation of motion:

m
d2z

dt2
= m z̈ = m g. (2)

Figure 1.3 shows the time–distance diagram with the axis t and z where the z-axis
coincides with the direction of gravity. Eliminating m in (2), the integration yields
an equation for the velocity
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ż = ż0 + g t, with ż0 = v0, (3)

and thereafter for the position

z = z0 + v0 t + g

2
t2 (4)

of a body during a free fall. The initial parameters, displacement z0 and velocity
v0, are adjustment unknowns valid at the time t = 0. For most accurate gravity
determination, the non-uniformity of the Earth’s gravitational field has to be taken
into account. Along the plumb line, the gravity acceleration g varies with height.
This can be considered as a linear gravity change along the free-fall trajectory during
an experiment with an absolute gravimeter. Hence formula (2) is extended with a
constant vertical gravity gradient γ :

mz̈ = m(g0 + dg

dz
z) = m(g0 + γ z). (5)

The acceleration g0 is defined for the position z = 0 which is, in common practice
with FG5 and JILA meters, the resting position of the gravity centre of the test mass
at the start of the free-fall experiment (“top-of-the-drop”). Neglecting the initial
parameters and double integration of (5) gives (Cook 1965)

z = g0

γ
(cosh γ 1/2t − 1) , with z0 = v0 = 0 . (6)

Because the initial parameters z0 and v0 have to be included, the variable z is
expanded to the power series

z = f (t) = c0 + c1(t − t0) + c2(t − t0)2 + c3(t − t0)3 + · · · . (7)

With t0 = 0 the following equations are deduced:

z = c0 + c1 t + c2 t2 + c3 t3 + · · · , z(t = 0) = c0 ⇒ c0 = z0, (8)

ż = c1 + 2c2t + 3c3t2 + · · · , ż(t = 0) = c1 ⇒ c1 = v0, (9)

z̈ = 2c2 + 6c3t + · · · . (10)

Inserting these series in (5) yields

2c2 + 6c3t + 12c4t2 + 20c5t3 + · · · = g0 + γ (c0 + c1t + c2t2 + c3t3 + · · · ) . (11)

Comparing the coefficients on the left side of the equation with the right side, the
constants are obtained as
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c2 = 1

2
g0 + 1

2
z0γ , c3 = 1

6
γ v0 , c4 = 1

24
γ g0 + 1

24
γ 2z0 , . . . . (12)

Considering the terms up to the order t4, (8) can be re-written as

z(t) = z0

(
1 + 1

2
γ t2 + 1

24
γ t4
)

+ v0

(
t + 1

6
γ t3
)

+ 1

2
g0

(
t2 + 1

12
γ t4
)

. (13)

Equation (13) is the observation equation which is used in absolute gravime-
try to derive a g-value from the multiple time–distance measurement pairs in a
least-squares adjustment. Because of its subtle contribution, the t4 term in the z0-
dependent expression can be neglected. The finite velocity of light c must be taken
into account by adding the term z/c to the observed (raw) time values t’ before the
least-squares adjustment is carried out:

t = t′ + z

c
. (14)

The reference height (position z = 0) of the derived free-fall acceleration g0 depends
on the setup of the instrument and should be defined by the operators with an accu-
racy of ±1 mm to preserve the accuracy of the measurement system. For further
theoretical considerations about the equation of motion in absolute gravimetry, it is
recommended to study, e.g. Cook (1965) and Nagornyi (1995).

In Torge (1993), a simple formula is given to assess the required accuracy for the
time and distance measurements:

dg

g
= dz

z
− 2

dt

t
. (15)

Equation (15) is obtained by the differentiation of (4) and setting z0 and v0 to
zero. Asking for a relative accuracy dg/g = 10−9 (≡dg = 1 μGal) and consid-
ering a falling path of 0.2 m with a falling time of about 0.2 s, the accuracy
requirement for the time and distance measurements is 0.2 nm and 0.1 ns, respec-
tively. For state-of-the-art absolute gravimeters, this accuracy level is provided
by the simultaneously performed atomic time and laser interferometric distance
measurements.

1.3.3 Operational Procedures with FG5-220

Within the operational procedures with FG5-220, as employed at IfE, the time inter-
val between two drops is 10 s which includes the reset of the falling corner cube
and the online adjustment. For the reduction of local noise and other disturbances,
1,500–3,000 computer-controlled drops are performed per station determination.
Generally, the measurements are subdivided into sets of 50 drops each and dis-
tributed over 1–3 days. The result of a station determination is the average of all
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drops, reduced for gravity changes due to Earth’s body and ocean tides, polar motion
and atmospheric mass movements, as explained in Sect. 1.5.

Relative gravimetric measurements are still highly important to transfer the abso-
lute gravimetry results to network points at floor level or to another height level
along the vertical that has been agreed on, e.g. for comparisons of different absolute
gravity determinations. However, to preserve the accuracy of the absolute measure-
ments for present and future investigations and applications, the absolute gravity
result should not be affected by uncertainties in the vertical gradient due to mea-
surement errors from relative gravimetry or deteriorated by unknown non-linearities
in the gradient (Timmen 2003). These demands are fulfilled by defining the refer-
ence height close to a position where the influence of an uncertainty in the vertical
gravity gradient becomes almost zero (“dead-gradient-point”); see Fig. 1.4. The cor-
responding position is approximately one-third of the falling distance below the first
measured position of the free-fall trajectory as used in the adjustment computation
(FG5-220: ~1.21 m above floor level). Therefore, all gravity determinations with
the current Hannover FG5 instrument are referred not only to the ground floor mark
but also to the reference height of 1.200 m above floor level or above the ground
mark.

For the reduction of the absolute gravity value to the floor mark, the observed
gravity difference (hereafter called gradient) is needed. Following the IfE stan-
dard procedure, the vertical gravity gradient is determined with two LaCoste
and Romberg gravimeters with integrated feedback systems (Schnüll et al. 1984)
or with a Scintrex Autograv CG3M (since 2002) using a tripod of about l m
height. By observing the difference 10 times with each relative meter, the gravity

Fig. 1.4 Depending on the
setup, the instrumental height
of FG5-220 is around 1.29 m
(top-of-the-drop). For
geodynamic research, the
g-value is referred to the fixed
height 1.200 m above
measuring mark to avoid
uncertainties from the
gradient assumption
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difference is normally obtained with a standard deviation of about 1 μGal. Referring
the gravity difference to a height difference of 1.000 m, the vertical gravity gradi-
ent γ is obtained. Here, a linear gravity change with height is assumed (constant
gradient). For geodynamic research, often a more accurate knowledge about the
vertical gravity change is required by considering a second-degree polynomial
for the height dependency. In those cases, gravity differences �g are measured
between variable height levels h above the ground mark (cf. Fig. 1.5). A least-
squares adjustment of observation equations provides an overconstrained solution
for the coefficients γ 1 and γ 2 describing the linear and quadratic part of the
polynomial:

�g(hi, hj) = γ1(hj − hi) + γ2(h2
j − h2

i ). (16)

With (16), an observed absolute gravity value with its defined reference height
can be referred to any position within the perpendicular above the ground mark up
to about 1.5 m (highest relative gravity measurement position).

For the site selection, preferences are given to buildings with a stable envi-
ronment inside the observation room (stable temperature, no direct sun, relative
humidity below 70%) and a solid foundation like a concrete pier, a reinforced
concrete base slab or a concrete slab attached to bedrock.

Fig. 1.5 Measurement of the
non-linear vertical gravity
change along the
perpendicular with a Scintrex
relative gravimeter. Tripods
are used for variable setup
heights
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1.3.4 Accuracy and Instrumental Offset

The manufacturers of the JILAg and of the FG5 systems performed an error
budget analysis to determine the single instrumental uncertainty contributions
through calculations and measurements of known physical effects. Niebauer (1987)
derived a total error of 3 μGal for JILAg instruments. In Niebauer et al. (1995) a
total uncertainty of 1.1 μGal is obtained from the FG5 instrumental error budget
(Table 1.1).

To assess the accuracy of the transportable absolute gravimeters from the user
point of view, the experiences with the Hannover instruments JILAg-3 and FG5-
220 are used to derive an empirical accuracy estimate. For both instruments, the
accuracy and stability have been continuously controlled by comparisons with other
absolute gravity meters and with repeated measurements in several stations after
time intervals of some months to a few years. A rigorous control of the absolute
accuracy with respect to a “true” gravity value at the moment of an absolute grav-
ity measurement is not possible. The real g-value with a superior accuracy is not
known, and a “standard” absolute gravimeter which is superior to the state-of-the-
art FG5 meters does not exist. Therefore, the empirical accuracy estimates have to

Table 1.1 Instrumental error budget of FG5 gravimeter and gravitational “noise” due to incom-
plete modelling and reduction of gravity variations with time, after Niebauer et al. (1995)

FG5 error source Uncertainty [μGal]

Residual air pressure 0.1
Different temperature 0.1
Magnetic field gradient 0.1
Electrostatics 0.1
Attraction of apparatus 0.1
Verticality 0.1
Air-gap modulation 0.6
Laser wavelength 0.1
Corner-cube rotation 0.3
Coriolis effect 0.4
Floor recoil and tilt 0.1
Electronic phase shift 0.6
Frequency standard 0.2
Glass wedges 0.3
Diffraction limit 0.2

Total uncertainty (r.m.s.) 1.1

Gravitational “noise”

Solid Earth tides 0.2–0.5
Equilibrium ocean load 0.2
Tidal swell and surge 5
Atmospheric attraction and loading 1–5
Groundwater table variations Site-dependent
Polar motion 0.01
Microseisms (<100 Hz) 0
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be understood as describing the agreement of the instruments’ measuring level and
their time stability with regard to the international absolute gravity datum defini-
tion. Here, the international datum is defined by the physical standards (time and
length) and, in addition, as the average result obtained from all operational absolute
gravimeters participating in the international comparison campaigns.

For JILAg-3, Torge (1991) estimated the short-term and long-term accuracy
of a station determination between 5 and 10 μGal. On average, an accuracy esti-
mate of 7 μGal was obtained. The instrumental precision by itself is assumed to be
4–5 μGal, which does not consider errors introduced by real gravity changes, e.g.
due to subsurface water variation. For FG5-220, a realistic mean accuracy esti-
mate seems to be about 3 μGal (cf. Timmen et al. 2006b; Francis and van Dam
2006; Francis et al. 2010; Bilker-Koivula et al. 2008). These empirical estimates
incorporate

• Instrumental errors, e.g. due to instrumental vibrations or laser instabilities
• Gravitational “noise” due to incomplete modelling and reduction of gravity

variations with time

Because most of the IfE measurements serve for local and regional gravimetric
control, especially for geodynamic investigations in tectonically active areas, the
long-term measuring stability of the two gravimeters is a major concern. To com-
pare the results of JILAg-3 with recent observations of FG5-220, no systematic
difference due to the gravimeters themselves should exist, or the instrumental offset
should be well known. Within this context the instrumental offset should be under-
stood as a mean measuring offset (bias) valid for a long time period, e.g. some years
or even the gravimeters’ lifetime. One possibility for detecting such an offset is
to compare observation series of both instruments performed at a reference station
where long-term stable gravity acceleration can be assumed (no significant secu-
lar change). The JILAg-3 reference station Clausthal in the Harz Mountains (stable
bedrock) was occupied by FG5-220 at four different epochs in 2003 (January, May,
June and October) to derive a reliable mean g-value for 2003 which is only slightly
affected by seasonal hydrological changes. In Table 1.2, the mean result is com-
pared with the mean from 29 gravity determinations with JILAg-3 performed in the

Table 1.2 Mean gravity values for station Clausthal (Germany) derived with JILAg-3 (n = 29
occupations, 1986–2000) and FG5-220 (n = 4 in 2003). The given si are standard deviations for a
single gravity determination

JILAg-3/FG5-220
comparison Remarks Gravimeter Period

Mean g-result
[μGal]

Clausthal (Harz
mountains)

IfE reference
station for
JILAg-3,
reference height
0.000 m

JILAg-3 1986–2000 981,115,734.5
si = 4.9, n = 29

FG5-220 January–October
2003

981,115,725.1
si = 2.3, n = 4
�g = +9.4
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Table 1.3 Gravity differences (JILAg-3 minus FG5-101) obtained from the International
Comparisons of Absolute Gravimeters (ICAG) in Sèvres 1994 and 1997 and during the surveying
of the national German base network DSGN94 (five identical stations) and from three comparisons
at the Clausthal reference station, after Torge et al. (1999)

Comparisons of JILAg-3 (IfE) and
FG5-101 (BKG) Discrepancy [μGal]

ICAG94, BIPM, pier A0 +9.0
ICAG97, BIPM, pier A +8.1
DSGN94 +8.2
Clausthal reference station +9.4

period 1986–2000. The standard deviation of the mean values is in both cases about
1 μGal. An obtained discrepancy of +9.4 μGal indicates a significant offset between
the measuring levels of these two absolute gravimeters. Similar discrepancies have
also been reported by Torge et al. (1999) when comparing measurements from FG5-
101 (BKG) and JILAg-3 performed in the years 1994–1997. These comparisons
showed a discrepancy varying between +8.1 and +9.4 μGal (Table 1.3). Figure 1.6
shows the time series of absolute gravity determinations at station Clausthal (point
522) observed with the two Hannover instruments (offset correction applied). The
decline in the four observed g-values at the Clausthal station in 2003 should be con-
nected to the very dry season in northern Germany. A similar but much stronger
gravity change was measured in Hannover when the groundwater table fell 70 cm
accompanied by a gravity decrease of about 13 μGal, see also Sect. 1.6.1.

By taking the offset correction of −9 μGal into account for all JILAg-3 obser-
vations, a stable measurement level for a time span of more than 20 years is
assumed to be available with the two Hannover instruments. This is in accordance
with the present knowledge that the FG5 series is presently the best instrumental
realisation of absolute gravimeters. Nevertheless, to meet the accuracy require-
ments for long-term research over many decades and for comparability with
other instruments, the observation level of the JILAg-3–FG5-220 couple has to
be verified by comparisons with other absolute gravimeters. Since the 1980s,
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Fig. 1.6 Absolute gravity determinations with JILAg-3 and FG5-220 at station Clausthal
(CLA522, trend −0.1 ± 0.2 μGal/year). An instrumental offset of −9 μGal (±1 μGal) was applied
to the JILAg-3 results
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International Comparisons of Absolute Gravimeters (ICAG) are performed at the
Bureau International des Poids et Mésures (BIPM) in Sèvres and since 2003, with a
4-year time interval, also at the European Centre of Geodynamics and Seismology
(ECGS) in Walferdange, Luxembourg. Such extensive comparison campaigns with
a large number of absolute gravimeters may reveal biases not only between single
instruments but also between different instrumental developments and technolog-
ical realisations. Table 1.4 summarises the results from the comparisons ICAG89
(Boulanger et al. 1991), ICAG94 (Marson et al. 1995) and ICAG97 (Robertsson
et al. 2001). In 1989, five JILA-type instruments and five individual developments
participated. The JILAg-3 result differed from the mean of the JILA group by
+1.8 μGal, from the mean of the group with individual developments by +3.3 μGal
and in the average by +2.4 μGal from the mean of all 19 stations’ determinations
performed by the 10 instruments. In 1994, for the first time FG5 instruments con-
tributed to the comparison, and the discrepancy of JILAg-3 to the mean result of
all 11 meters was +2.8 μGal. These two comparisons may indicate a small offset
of about +2 or 3 μGal for JILAg-3. In 1997, the situations changed somewhat. The
sites A and A2 were observed, and for both points the JILAg-3 result was +5.5 μGal
above the average of all instruments. In addition to these external comparisons
with other gravimeters, the lower part of Table 1.4 shows an internal comparison
for JILAg-3. Looking at the Clausthal series with respect to the whole time span
(1986–2000), and the two periods 1986–1996 and 1997–2000, a systematic change
in the measuring level cannot be detected. The Clausthal series neither confirms
nor contradicts the ICAG97 experience. Both results are consistent considering the
precision estimate of 4–5 μGal for a single station determination with JILAg-3.

From Table 1.4, it may be concluded that JILAg-3 was well embedded in the
international absolute gravity definition. Overall, a larger discrepancy with other
instrument groups did not really become obvious during the international compar-
isons. But a bias to the international standard, here defined as the average of all
participating gravimeters at BIPM, of up to +5 μGal cannot be excluded. From the
ICAG94 and ICAG97 comparisons, a measurement offset of +9 μGal becomes vis-
ible when just comparing JILAg-3 with FG5-101 as already mentioned. Thus, from
the Hannover point of view, the offset correction for JILAg-3 has mainly to be con-
sidered as a bias with respect to the gravimeters FG5-220 and FG5-101 and not to
the international standard. Interpreting the results of the international comparisons
in Sèvres with respect to the instrument groups, a systematic error, inherent in the
instrumental design of the JILAg or FG5 gravimeters, does not exist or is within the
1–2 μGal accuracy level. Nevertheless, temporary biases for single instruments are
possible, e.g. due to undetected changes within the instrumental adjustments.

To investigate the stability of the presently employed gravimeter FG5-220 of
IfE, Table 1.5 gives the results from the international comparisons in Walferdange
(Luxembourg) 2003 and 2007 (external comparisons, Francis and van Dam 2006;
Francis et al. 2010) and FG5-220 reference measurements in Bad Homburg (sta-
tion of BKG, Wilmes and Falk 2006) from 2003 to 2008. Within 2 μGal, the
Hannover FG5 instrument agrees with the internationally realised measuring level.
With respect to the FG5-220 observations in Bad Homburg, it has to be mentioned
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Table 1.5 FG5-220 absolute gravimeter controlled by external (international) and internal
(repetition) comparisons to ensure consistent long-term measurement accuracy

FG5-220 external
comparison Remarks Epoch

�g [μGal] (FG5-220
– mean g)

ICAG2003, ECGS
(Francis and van
Dam 2006, Table 16)

13 absolute meters,
14 points,
52 determinations

November 2003 −1.9 standard
deviation (single
instrument) 1.8

ICAG2007, ECGS
(Francis et al. 2010,
Table 3)

19 absolute meters,
16 points, 73
determinations

November 2007 +2.4 standard
deviation (single
instrument) 2.0

FG5-220 internal
comparison Remarks Epoch

�g (FG5-220) [μGal]
(Single – mean g)

Bad Homburg
(gravimetry lab of
BKG, Wilmes and Falk
2006)

Reference station
for FG5-220 since
2003, point BA

February 2003 +0.9
November 2003 −0.8
April 2005 +1.2
April 2006 +0.7
November 2007 +0.2
September 2008 −2.1

that the differences between the single epochs also contain real gravity changes
due to time-varying environmental effects like seasonal hydrological variations. As
shown in Table 1.5, the six stations’ determinations agree very well, better than
expected from empirical estimates, with a mean scatter of 1.1 μGal only (root-
mean-square difference, r.m.s.). An instrumental instability cannot be identified.
A similar experience is also gained from the yearly repetition surveys and from
the comparisons with the other FG5 absolute gravimeters involved in the Nordic
absolute gravity project, to determine the Fennoscandian land uplift, cf. Timmen
et al. (2006b) and Bilker-Koivula et al. (2008).

1.4 Relative Gravimetry

The determination of gravity differences and variations requires a composite
employment of absolute and relative instrumental techniques and observation meth-
ods. The optimal choice of the different types of available sensors allows one to
organise the work in a most efficient way with respect to accuracy and economy.
Relative gravimetry contributes among others to the following geodetic tasks:

• Support of absolute gravimetry (centring to safety points, national net points or
to adjacent absolute points; measurement of vertical and horizontal gradients)

• Monitoring of temporal gravity changes in investigation areas with short trans-
portation time spans between the measuring points

• Densification of national gravity reference networks
• Providing dense point data to improve regional geoids
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Fig. 1.7 Scintrex Autograv
CG-3 (right) and CG-5 (left)
and a LaCoste–Romberg
model G with carrying case
(in front)

The accuracies one strives for are in the order of one to a few tens of microgals.
For high-precision relative gravimetry, LaCoste–Romberg (LCR) spring gravime-
ters have been employed nearly exclusively over decades. For about 20 years,
Scintrex has offered a different type of spring gravimeter, the Autograv CG-3, e.g.
see Hugill (1988), and since 2003 the new CG-5. Figure 1.7 shows a LCR and two
Scintrex meters. Based on the inventions of L. LaCoste and A. Romberg, the com-
pany ZLS Corporation, Austin, TX, USA, designed the automated Burris Gravity
Meter (ZLS 2007). The instrumental investigations described in Jentzsch (2008)
showed excellent results for the ZLS meter which may also be considered as a
state-of-the-art instrument.

1.4.1 Principles of Spring Gravimeters

The principle of a vertical spring balance explains the general operation of a relative
gravimeter. An elastic spring is used to generate a counterforce which keeps the
sensor’s test mass in equilibrium with the gravitational force, see left part in Fig. 1.8.

Fig. 1.8 The principle of a
vertical spring balance (left)
and of a lever spring balance
(right)
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For a translational system, which is in accordance with Hooke’s law, the condition
of equilibrium is given by

mg = k(l − l0). (17)

The spring constant k is the proportion of the stretching force, with mass m and
gravity g, to the elongation (l–l0) of the spring (l: spring length under load, l0: length
without load). To determine a gravity difference �g, the small change in the spring
length �l has to be measured:

�g = k

m
�l . (18)

For that, a reading system with an extremely high resolution is required. To achieve
a measuring precision of better than 10 μGal, the mechanical sensitivity of about
0.1 nm is needed with a corresponding time stability of the spring force. A precise
knowledge of the calibration factor k/m can nowadays be obtained by measurements
between well-known absolute gravity points.

The right part of Fig. 1.8 shows the general lever spring balance. The equilibrium
condition for the torques generated by gravitational force mg and spring force k(l–l0)
can be expressed with

mga sin(α + δ) = k(l − l0)h = k(l − l0)b
d

l
sinα. (19)

The equation shows a non-linear relation between gravity g and angle α. With the
conditions

l0 = 0 (“zero-length spring”) and α + δ = 90◦ , (20)

(19) simplifies to

mga = kbd sinα. (21)

Choosing the angles

α → 90◦ and δ → 0◦ (22)

increases the mechanical sensitivity considerably (“astatisation”).
The requirements in (20) and (22) are implemented in the design of LaCoste–

Romberg gravimeters with a counterspring made of metal (Krieg 1981). To achieve
a measuring precision of better than 10 μGal, a pick-off system with a resolution of
a few hundred nanometers is needed only. Measurements with LCR meters require
a very accurate alignment of the mass-beam part to the horizontal orientation. Due
to a gravity change, the test mass diverges from the horizontal position which can be
restored by turning a dial which moves the suspension point of the spring up or down
(zero-method, “nulling” the beam). The whole transmission system consists of the
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dial, a set of gear wheels, the measuring screw and a lever system. The difference
between two readings of the dial, which is combined with a counter, corresponds
to a gravity difference. In addition to this mechanical compensation for restoring
the zero position, an electronic feedback system is used nowadays. The moveable
middle part of a three-plate capacitor is attached to the test mass, which allows an
electrical pick-off of the sensor position and a restoring to the zero position. The
electronic feedback systems help to avoid periodical errors due to imperfections in
the gear-screw construction (Schnüll et al. 1984; Röder et al. 1988).

With the technical advances in the 1980s, the company Scintrex, Concord,
Ontario, Canada, was able to design a new relative gravimeter using the principle
of the vertical spring balance. The Scintrex CG-3 and CG-5 gravimeters are non-
astatised systems with a quartz spring which covers the worldwide gravity range and
operates without any micrometer screw or gearbox. The capacitive transducer and
electronic feedback system allows a pick-off resolution of 0.2 nm (Scintrex 1998).
Besides the non-existence of periodic errors, an additional advantage of the linear
spring system is that the sensitivity is independent of the inclination. The new Burris
Gravity Meter from ZLS Corporation, which is based on the LCR astatisation prin-
ciples with a lever spring balance, is equipped with a digital feedback system of
about 50 mGal range to null the beam. The zero-length spring is made by a metal
alloy and is characterised by its low drift (Jentzsch 2008).

For more details and a more extensive overview about the principles of relative
gravimeters, refer to other available literature, e.g. Torge (1989).

1.4.2 Observation Equation

To transfer a raw gravimeter reading, here given in counter units, to a gravity value,
the calibration has to be known. In addition, a time-dependent instability of the
counterforce (fading of the spring tension) should be considered in the observa-
tion equation. Environmental disturbances, e.g. small temperature changes within
the sensor case or mechanical impulses caused by transportation, may change the
gravimeter’s reading considerably. This instrumental drift can be modelled by a low-
order polynomial and requires repeated measurements, temporally well distributed
over the measuring period, of at least some of the network points. The following
equation gives the connection between the raw reading and the resulting g-value for
a LCR gravimeter:

g = N0 +
p∑

j=1

dj(t − t0) j+
m∑

k=1

Ykzk+
n∑

l=1

Al cos (ωlz − ϕl), (23)

with N0 = instrument level, dj = drift parameter of degree j, t0 =starting time
(e.g. first daily measurement), Yk = calibration coefficient of degree k, z = read-
ing in counter units, Al = amplitude, ωl = frequency, φl = phase of the periodic
term of degree l. Often the so-called �g adjustment of a gravity network is applied,
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Table 1.6 Maximum and mean amplitude of the periodic calibration terms as derived for 21
LaCoste–Romberg model G gravimeters in the gravimeter calibration system Hannover

Periods Up to LCR-G457 1.00 7.88 35.47 70.94
[CU] From LCR-G458 1.00 7.33 36.67 70.33

Maximum amplitude 8.1 15.2 21.5 18.0
Mean amplitude in [μGal] 2.5 5.2 5.9 8.0

which introduces gravity differences between two successive point measurements.
The advantage is the elimination of the unknown N0-parameter in the observation
equation. For Scintrex CG meters, the periodic terms in (23) do not exist.

Table 1.6 summarises the magnitude of periodic errors for 21 LCR gravimeters as
determined in the gravimeter calibration system Hannover. Neglecting these errors,
an additional uncertainty (systematic error) of a few tens of microgals can be pos-
sible for gravity differences. Comparisons of the results for three LCR instruments
from IfE, all three employed in the calibration systems Hannover and Wuhan/China
(different gravity ranges), showed significant discrepancies for the polynomial and
periodical calibration parameters (Xu et al. 1988). Therefore, for highly accurate
measurements it is advised to examine the meter’s calibration when transferring
the parameters to different gravity ranges (recommendation from the author: for
distances of more than 0.5 Gal away from the calibration system).

1.4.3 Regional and Local Surveys with Scintrex SC-4492

In 2001, IfE obtained the new Scintrex CG3 gravimeter no. 4492. The following
investigations of this state-of-the-art relative gravimeter were focussed on the cali-
bration (time stability and gravity range dependency). The study was performed over
a time period of about 4 years and covered a gravity range of almost 1.5 Gal. In addi-
tion, other publications can be recommended to achieve a more general overview
about the quality of the Scintrex Autograv CG-3 system, e.g. Hugill (1988), Jousset
et al. (1995), Falk (1995), Rehren (1997) and Everaerts et al. (2002). With respect to
instrumental precision, accuracy and drift, the IfE investigations confirm the results
of the references given above.

Most of the surveys with the SG-4492 were carried out in the gravimeter calibra-
tion system Hannover; see Fig. 1.9. This was established between 1976 and 1982 for
the determination of calibration functions for LCR gravimeters with 1 μGal accu-
racy (Kanngieser et al. 1983). The system serves for the analysis of polynomial and
periodic calibration terms, with the intent of improving the manufacturer’s calibra-
tion tables which usually provided accuracies of 10−3 to 10−4 only. Over 13,000
gravity differences measured with 47 LCR instruments and 12 absolute gravity
determinations were included in the adjustment of the calibration system. The esti-
mated mean standard deviations for the adjusted gravity differences are 2 μGal for
the Cuxhaven–Harz line (~9 mGal intervals) and 1 μGal for the vertical calibration
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Fig. 1.9 The station distribution of the gravimeter calibration system Hannover (Cuxhaven–Harz
Mountains, 300 mGal, and vertical calibration line Hannover, 20 mGal), cf. Torge (1989)

line Hannover (staircase of a 20-storied building, point intervals of 0.02, 0.2 and
1 mGal).

From November 2001 to September 2005, the SC-4492 has been employed
in different projects in northern Germany and in Scandinavia; see Fig. 1.10. In
most cases the instrument has been transported not only by hand but also by car.
In general, the measurements were done using the step method to allow an opti-
mal drift control, e.g. with a point sequence A-B-A-B-C-B-C-D-C-D. Each tie
between neighbouring points was measured three times or more with a time span of
5–60 min between the two successive point occupations. Only during the absolute
gravimetry campaigns in Fennoscandia in 2004 and 2005, the relative measurements
between the absolute stations were observed once with a long time span of up to 10 h
between the two successive readings. For each occupation three registrations with a
read time (RT) of 60 s and a cycle time (CT) of 80 s were carried out. The seismic
filter option of the online software was selected. The average of the second and third
cycle was used for the post-processing with the program system GRAV from Wenzel
(1993). The least-squares adjustment provides accuracy estimates for the single
gravity difference observations in the order of 4–10 μGal when excluding the two
long-distance campaigns in Fennoscandia. Measuring gravity ties with short trans-
portation ways, points can be connected within an accuracy level of about 1 μGal.
The points in the Harz Mountains (461–571) show small discrepancies between the
calibration line reference values and the recent results from SC-4492. The differ-
ences vary between −3.8 and +3.1 μGal with an r.m.s. discrepancy of 2.4 μGal.
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Fig. 1.10 Absolute gravity stations in the Fennoscandian land uplift area occupied by FG5-220
in 2004 (red dots). Lines show the ties used to control the calibration of the relative gravimeter
SC-4492

For the northern part of the calibration line, the differences are much larger (maxi-
mum +6.5 μGal and minimum −11.4 μGal, r.m.s. 6.8 μGal). Besides measurement
errors, the large discrepancies can also be caused by groundwater and soil moisture
effects and/or secular gravity changes during the last 20 years.

Table 1.7 summarises the calibration results obtained for SC-4492, standing as
an example for a present-day advanced relative gravimeter. Polynomial calibration
terms of higher degree were not found. The calibration factors E (improvement
of the manufacturer calibration) were obtained with a precision between 2 and
8 × 10−5 and are varying within a range of 3 × 10−4. Calculating a mean fac-
tor and expressing the single deviations from the mean in gravity discrepancies (last
column), disagreements up to almost 20 μGal were found. But these values cannot
be assigned to instabilities or gravity range dependencies of the calibration fac-
tor. The uncertainties in the reference gravity values and, moreover, the subsurface
water mass changes (groundwater, soil moisture, crevasses and clefts in rock filled
with water) can introduce errors of more than 10 μGal. Therefore, a time-dependent
instability of the calibration in the order of 1 × 10−4 cannot be excluded but is also
not proven. In addition, the calibration results show no correlation with the different
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gravity ranges which lead to the conclusion that no gravity range dependence exists
over the total investigation range of 1,470 mGal.

1.4.4 Microgravimetric Measurements

Highest accuracy can be expected for measurements in a small network with
points distributed in one room or in a single building (short time spans between
measurements, meter transportation manually (shock prevention), no wind, stable
temperature). In an extensive survey, the vertical calibration line in Hannover has
been measured with SC-4492 (31 points, 328 gravity difference observations), cf.
Table 1.8. The standard deviation for a single gravity difference measurement is
just 3.7 μGal. Figure 1.11 reveals a systematic discrepancy between the calibration
line reference values and the new determined figures. The differences for the points
above ground floor show a height and gravity dependence which can be interpreted
as a linear scale error of about 3 × 10−4 (≡6.0 μGal). After these investigations with
SC-4492, it cannot be excluded that the vertical calibration line is deteriorated by a
small-scale error. Additional investigations with another CG-3 or CG-5 are needed
to clarify this issue. One reason for the discrepancies of points below ground floor
may be due to the different gravimeter setups. The LCR meter has normally an aver-
age sensor height of about 6 cm above floor level. The CG-3 system with its tripod
measures the gravity at a height of about 27 cm. The points are all in corners very
close to the walls, only 20 cm away. The not well-known gravity gradients along the
vertical, with their non-constant behaviour, disturb the comparison of the different
gravimeter systems. The r.m.s. discrepancy between the recent SC-4492 results and
the reference values is 2.3 μGal.

The determination of vertical gravity gradients is important, because the combi-
nation of instruments with different reference heights strongly needs a highly precise
centring of the measured gravity values to a common reference. Vertical gradients
were observed at the two absolute gravity stations of IfE, Hannover and Clausthal,
and at stations of the Fennoscandian uplift area, cf. Tables 1.8 and 1.9. With the
help of a tripod of 1 m height, the gravity difference is measured to determine the
gradient, cf. Fig. 1.5. Because of the sensor height difference between the LCR and
the CG-3 systems (about 21 cm), the results from the two kinds of meters can differ
by some 1 μGal. The LCR meters of IfE are equipped with the SRW-feedback sys-
tems, which eliminates the problems with periodic errors and gravity dependencies
for small gravity differences (Röder et al. 1985). Figure 1.12 shows the absolute
gravity meter setup on the pier in the basement of station Clausthal. A mesh of nine
points with a spacing of 40 cm has been surveyed with SC-4492 to determine the
horizontal gravity field above the pier surface. The result (Fig. 1.12, right) seems
to be reasonable. With distance to the wall (cf. Fig. 1.12, left), gravity increases by
about 2.5 μGal per 10 cm.

The obtained accuracies for all microgravimetric surveys are in the order of
1–2 μGal. In Table 1.9, three vertical gradients are compared with LCR results. In
all cases the obtained results from SC-4492 are smaller than the LCR results which
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Fig. 1.11 Differences
between the reference values
of the vertical calibration line
and the new determined
gravity values with SC-4492

Table 1.9 Comparison of the SC-4492 results with reference results (all determined with LCR
gravimeters)

Project Comparative figures Difference to SC-4492

Vertical gravity calibration
line Hannover

Calibration line reference values ±2.3 μGal (r.m.s.)

Vertical gravity gradient at
absolute station Hannover

Five LCR SRW-feedback meters in
1993/1994, mean: 303.1 μGal/m

+1.8 μGal/m

Vertical gravity gradient at
absolute station
Clausthal/Harz

Four LCR SRW-feedback
gravimeters in 1987, mean:
266.0 μGal/m

+3.0 μGal/m

Vertical gravity gradient at
absolute station Vaasa
(AB)

Simultaneous observation with
LCR-G709 SRW-feedback
gravimeter in 2003:
330.7 μGal/m

+2.8 μGal/m

are reasonable for these stations considering the different sensor heights above the
massive concrete piers.

1.4.5 Instrumental Drift

The gravimeter drift can be differentiated into two parts: stationary drift mainly
due to spring aging and the transportation drift which may be caused by small
shocks, vibrations, temperature effects or hysteresis effects after sudden changes of
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Fig. 1.12 The FG5-220 occupying the absolute gravity point at station Clausthal; contour plot of
the horizontal gradient field above the pier with 1 μGal intervals

Fig. 1.13 Long-term drift (composition of stationary and transport drift) of SC-4492

the spring load (e.g. mechanical unclamping of the lever). A long-term drift (com-
position of stationary and transportation drift) of the meter is shown in Fig. 1.13. On
8 different days within a time span of 100 days, the first reading in the morning on a
common starting point has been used to derive this long-term behaviour. The figure
depicts a nearly linear behaviour.

Table 1.10 summarises the adjusted linear drift factors from daily field surveys
obtained on 14 different days. It becomes clear that the drift behaviour of SC-4492
during the field surveys is significantly not linear. The drift can vary enormously.
Therefore, for precise geodetic measurements a drift behaviour has to be taken into
account as a non-linear temporal change of the zero level of the gravimeter’s read-
ings. The drift is determined by repeated point occupations during a day which
allows a modelling by a low-order polynomial with time; see (23). Depending on
the network structure, the instrumental behaviour and the required accuracy, dif-
ferent measurement methods can be applied to control and determine the drift of
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Table 1.10 Adjusted linear daily drift factors from daily field surveys with SC-4492

Date
Number of
points

Number of �g
observations

Measuring
time [h] Drift [μGal/d]

05.11.02 11 14 8 436
14.11.02 5 12 9 361
15.11.02 7 19 6 532
20.11.02 2 10 2 433
28.11.02 3 10 6 383
05.12.02 2 20 2 177
04.01.03 2 9 5 309
21.01.03 4 6 4 378
22.01.03 2 4 2 592
23.01.03 4 5 6 69
05.02.03 3 6 6.5 78
12.02.03 4 9 6.5 −49
15.02.03 2 10 3 412
27.02.03 2 3 6.5 469

Mean 327±189

Fig. 1.14 Measuring procedures for drift control: (a) profile method with weak drift control,
(b) step method with strong drift control (three times each tie and overlaps)

an instrument which is shown in Fig. 1.14. In general, the step method is used for
most precise surveys. For example, the Hannover gravimetry group applies the five
times step method to calibrate gravimeters with electronic feedback systems using
the vertical calibration line in the 20-storied university building.

1.5 Reduction of Non-tectonic Gravity Variations

The Earth’s gravity field varies continuously with time which is explained in detail,
e.g. by Torge (1989). For geodynamics research, the establishment of regional grav-
ity control networks and the establishment of globally distribute absolute gravity
stations serve to reveal gravity changes of long-term or secular character. Such
changes may occur together with tectonic plate movements, with postglacial iso-
static compensation processes, with tectonic processes like mountain building or
with compactions in sediment basins. Local gravity changes of short-term or even
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abrupt character may become detected by gravity monitoring nets covering areas
with volcanism or earthquakes. In addition, human activities can cause significant
variations in the Earth’s gravity field (large constructions, withdrawal of water,
oil, gas, etc.). All gravimetric measurements are subject to irregular and periodic
changes caused by tides, groundwater and other hydrological processes (e.g. soil
moisture variations), atmospheric mass movements and polar motion. These effects
of non-tectonic causes are superimposed on the target signal and have to be removed
as well as possible. Generally, gravimetric measurements are freed from effects
of the tides, the atmospheric mass redistributions and the small movements of the
Earth’s rotation axis within the Earth. The transfer function between changes in the
groundwater table and the related gravity effect at the measurement point is often
not well known, and therefore the latter is not a standard reduction in gravimetry.
Torge et al. (1987) describe the reductions for absolute gravity measurements with
the Hannover JILA absolute meter.

1.5.1 Earth’s Body and Ocean Tides

The tidal deformation of the Earth is an elastic response of its body to the gravi-
tational accelerations produced by the Moon, the Sun and, to a slight extent, also
by the planets (Wang 1997; Wenzel 1997). At mid-latitudes periodical deformations
over a day occur with an amplitude range of up to 40 cm. The maximal gravity
variation remains below 300 μGal. The solar tides amount to 46% of the lunar
tides.

In the Earth’s centre of mass, the gravitation of the other celestial bodies is com-
pletely compensated by the centrifugal accelerations due to the orbital motion of
the Earth. Figure 1.15 shows a simplified version of the Earth–Moon system with a
non-rotating Earth and the Moon as a point mass. The motion of the Earth around
the barycentre of the two-body system generates the orbital acceleration −b0 which
is a constant for all points within the body and on the surface of the Earth. Because
of the spatial extension of the Earth, the gravitation vector b differs from position to
position. The tidal acceleration bt for point P on the Earth’s surface is the sum of the
gravitation b and the orbit acceleration −b0. Applying Newton’s gravitational law,
the tidal acceleration vector for the Moon is given by

Fig. 1.15 Tidal acceleration
as the sum of the Earth’s
orbital acceleration and lunar
gravitation
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bt = b − b0 = GMm

l2m

lm
lm

− GMm

r2
m

rm

rm
, (24)

where Mm is the mass of the Moon, G the gravitational constant, lm and rm the
distances between point P and the Moon and between the Earth’s centre of gravity
0 and the Moon, respectively.

Because of the Earth’s rotation and the continuously varying distances of the Sun
and the Moon from the Earth, a large number of waves (partial tides) have to be con-
sidered to model the theoretical tides for a rigid (not deformable) Earth’s body. The
ephemerides of the celestial bodies are well known from astronomy which allows
the precise calculation of the rigid Earth tides. The tidal spectrum comprises a long-
periodic part with half-monthly, monthly, semi-annual, annual and longer periods
and short-periodic waves with the main power in the daily and half-daily periods.
The longest wave with 20,942 years is the period of the mean ecliptic longitude of
the sun’s perigee. The widely available harmonic developments of the tidal poten-
tial follow the spectral representation as chosen by Doodson (1921). In the more
recent literature, a detailed mathematical description can be found, among others,
in Wenzel (1997). Tidal potential catalogues with different accuracies contain up to
more than 1,000 waves. The most common catalogues are from Cartwright, Taylor
and Edden (Cartwright and Taylor 1971; Cartwright and Edden 1973) with 505 par-
tial tides (accuracy better than 0.1 μGal) and from Tamura (1987) with 1,200 waves
(0.01 μGal). The model from Hartmann and Wenzel (1995) with 12,935 waves also
includes coefficients due to the nearby planets and to the flattening of the Earth. An
extensive description of the principal waves of the theoretical tides (rigid Earth) is
given in Zürn and Wilhelm (1984).

Gravimetric Earth tide measurements show large differences with respect to the
theoretical tides which can be explained by the non-rigid behaviour of the Earth’s
body and by effects from the ocean tides. The astronomical tide generating forces
cause an elastic deformation of the solid Earth. Compared to the model of the rigid
Earth, the amplitudes of the partial tides of the solid Earth are amplified and a phase
shift takes place. In addition, the ocean tides affect the gravity measurements by the
direct attraction of the moving water masses and indirectly by the resulting defor-
mation of the crust due to the water load (ocean load tides). In general, close to the
ocean the tidal loading effect is much smaller than the body tides but still affects
gravity to very large distances from the coast (Jentzsch 1997). The ocean loading
signal is not in phase with the body tides.

To reduce gravimetric measurements for Earth’s body and ocean tides, the gravi-
metric tidal reduction as a compound tidal signal can be described as a sum of
periodic terms:

�gtid = −
n∑

i=1

δi Ai(theor) cos (ωit + �i(theor) + ��i) (25)

with amplitude factor δi = Ai ÷ Ai(theor) (26)
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Table 1.11 Principal gravimetric partial tides and the measured amplitude factors and phase leads
(station Hannover: ϕ = 52.389◦, λ = 9.714◦). The Earth tide registrations with spring gravimeters
in Hannover did not allow the evaluation of long-periodic tidal waves due to the instrumental drift
behaviour. The partial tide with 18.6 years (6,798.4 days) has no special symbol

Tide symbol
Period [solar
days/h]

Amplitude
(theor) [μGal]

Amplitude factor
δ [ ]

Phase lead ��

[◦]

Constant lunar and solar tides
M0S0 ∞ 26.7 – –
Long-period tides
– 6,798.4 days 2.4 – –
Sa 365.26 days 0.4 – –
Ssa 182.62 days 2.6 – –
Mm 27.55 days 2.9 – –
Mf 13.66 days 5.6 – –
Diurnal tides
Q1 26.87 h 5.8 1.151 0.05
O1 25.82 h 30.0 1.150 0.15
P1 24.07 h 14.0 1.149 0.11
K1 23.93 h 42.3 1.140 0.13
Semidiurnal tides
N2 12.66 h 5.4 1.176 2.34
M2 12.42 h 28.0 1.186 1.68
S2 12.00 h 13.0 1.189 0.41
K2 11.97 h 3.5 1.191 1.07
Terdiurnal tides
M3 8.28 h 0.3 1.068 0.47

and phase lead ��i = �i − �i(theor). (27)

The frequencies of the partial tides ωi = 2π/Ti (T: period), the amplitudes Ai(theor)
and the phases �i(theor) are already derived from the models for the theoretical
tides. The amplitude factor δ is also called gravimetric factor and can be deter-
mined together with the phase lead �� by comparing the results of a continuously
recording relative gravimeter with the rigid (theoretical) Earth tides. Table 1.11 sum-
marises the results of Earth tide registrations in Hannover with five LCR gravimeters
equipped with SRW-feedback systems (Timmen and Wenzel 1994). In the past, the
global factor δ = 1.16 was often used for all tidal waves in case of not existing
observed parameters.

In contrast to tidal observations, the gravimetric tides can be computed on the
basis of a model of the Earth’s body determined from seismology, e.g. Preliminary
Reference Earth Model (PREM) from Dziewonski and Anderson (1981), and using
a global ocean model derived from satellite altimetry or from tide gauge obser-
vations as done by Schwiderski (1980). The latter used tidal observations of tide
gauges along the continental coasts and on islands and developed a hydrographical
interpolation model. For the first time, a global model was available describing the
tidal response of the ocean’s water masses. With the successful satellite altimetry



34 L. Timmen

missions like Geosat (1985–1990), TOPEX/Poseidon (1992–2006) and some oth-
ers, direct measurements of the ocean’s surface height were evaluated to provide
accurate ocean tide models. Because Schwiderski’s model is still accurate enough,
it is widely used for the tidal reduction in absolute and relative gravimetry.

At IfE in Hannover, the series development from Tamura (1987) delivers the
tidal effects for the solid Earth, with synthetic tidal parameters (amplitude factors
and phase shifts) interpolated from a worldwide l◦ × l◦ grid (Timmen and Wenzel
1995) to take the Earth’s elastic behaviour into account. This grid was computed
from

• Body tide amplitude factors using the Wahr–Dehant model (Wahr 1981; Dehant
1987) of an ocean-free, uniformly rotating and ellipsoidal Earth with inelastic
mantle, liquid outer core and elastic inner core

• Ocean tide gravitation and load (Agnew 1997) derived from a l◦ × l◦ ocean tide
model (Schwiderski 1980)

For the time-constant M0S0 tides, the amplitude factor l.000 and a zero phase
shift are used according to the IAG standards (Rapp 1983, “zero-tidal gravity”).
For absolute gravity measurements the uncertainties in the geographical coordinates
should be less than 10" with a height accuracy of better than 100 m. The time of a
gravity observation can easily be recorded with better than 10 s UTC. Because the
measurements of a station determination are distributed over 1–3 days, the average
result can only be affected by residual errors of some 0.1 μGal (Timmen 1994).
Near the coasts, larger uncertainties are possible.

1.5.2 Polar Motion

The Earth’s rotation vector varies its orientation with respect to the Earth’s crust. The
penetration points of the rotation vector through the Earth’s surface, the poles, are
subject to motions of several metres per year. Figure 1.16 depicts the winding curve
of the instantaneous North Pole relative to the reference pole of the International
Earth Rotation and Reference Systems Service (IERS). The plotted xp and yp pole
coordinates are provided by IERS on their internet pages. They are defined in a
plane tangential to the pole with the x-axis in the direction of the Greenwich mean
meridian and the y-axis points to the 90◦W meridian. The polar motion consists
mainly of two periodic components and a long-term irregular drift (cf. Figs. 1.16
and 1.17):

• The Chandler period (wobble) of 435 days has an amplitude of about 0.1" to 0.2"
(3–6 m). This free oscillation is due to the dynamical flattening of the Earth and is
excited when the instantaneous rotations axis deviates from the principal axis of
inertia (figure axis). The mass displacements in the atmosphere and in the oceans
exert torques on the solid Earth and excite the Chandler wobble continuously. An
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Fig. 1.16 Polar motion plotted with the IERS pole coordinates from 1962 to 2008 as published by
the International Earth Rotation and Reference Systems Service on the internet

effect of earthquakes on the Chandler wobble is discussed in literature but is not
proven up to now.

• An annual period is superimposed on the Chandler wobble with amplitudes of
0.05" to 0.1" and is caused by seasonal variations in the atmosphere and in the
oceans.

• A secular motion of the North Pole is directed to the 70◦W meridian with a mag-
nitude of about 0.003" (0.1 m) per year (Fig. 1.17). The postglacial land uplifts
in northern Canada and Europe are assumed to be the main causes for the pole
drift presently. In addition, the lithosphere plates move horizontally against each
other on the less viscous asthenosphere (plate tectonics) which appears as a pole
drift (polar wander).

The interaction between Earth rotation and global geodynamical processes is
comprehensively explained in Schuh et al. (2003). The superposition of Chandler
and annual period induces a modulation (beating) period of 6 years which is clearly
seen in Fig. 1.16.
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Fig. 1.17 Polar motion 2003–2007 and mean yearly motion calculated for the time points 1,900.0–
2,000.0 as viewed from the North Pole (pole coordinates provided by IERS)

The variations of the Earth’s rotation vector change the centrifugal acceleration
at any measuring point on the Earth’s surface. For station Hannover (φ = 52.44◦N,
λ = 9.71◦E) the gravity effects are normally within ±5 μGal, but attained a maxi-
mum of +7.3 and a minimum of −8.6 μGal around 1950. From Fig. 1.17 it becomes
obvious that nowadays and in the future the polar motion effect for stations located
along the positive direction of the y-axis (North and South America) would be
obtained with a positive sign.

The polar motion reduction (Wahr 1985) for absolute gravimetry measurements
are given as

�gpol = −δpol ω
2r sin 2ϕ (xp cos λ − yp sin λ) , (28)

with the Earth’s angular velocity ω and radius r, and the geographical latitude ϕ

and longitude λ of the measuring position. The amplitude factor δpol considers the
elastic response of the solid Earth as compared to a rigid Earth’s body. As for the
Earth tide amplitudes in the past, the factor 1.16 is applied here for the lack of
better knowledge. The daily pole coordinates xp and yp of IERS (Bulletin A) are
provided as predicted values, which can be used during the online data evaluation
of absolute gravity measurements, and as finals which improve the gravity results
by post-processing. The high accuracy of the IERS coordinates (±0.0003", Reigber
and Feissel 1997) keeps the residual error of this reduction below 0.1 μGal (Timmen
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1994). The position coordinates are required with an accuracy of a few kilometres
only.

1.5.3 Atmospheric Mass Movements

Gravity variations due to atmospheric mass variations may be subdivided into a
direct effect of air mass attraction and an indirect (loading) effect due to the defor-
mation of the Earth’s crust and the sea surface. The surface deformation at the
gravimeter site can be more than 1 cm. The variations in the local gravity accel-
eration and atmospheric pressure are known to be correlated with an admittance
of −0.3 to −0.4 μGal/hPa depending on the local, regional and global weather
situation (air mass distribution) and on the location of the gravimetry station,
e.g. vicinity of the sea. During relative and absolute gravity measurements, the
local air pressure is observed to reduce the atmospheric effect from the gravity
results. In accordance with the IAG resolution No. 9, 1983 (IGC 1988), the factor
α = −0.3 μGal/hPa should be applied as a global mean if no better information is
available. The reduction formula

�gair = −α (p − pn)[hPa] (29)

refers the actual atmospheric pressure p to the normal atmospheric pressure pn
which is defined by

pn = 1013.25

(
1 − 0.0065 H[m]

288.15

)5.2559

[hPa] . (30)

The reduction applies the US Standard Atmosphere, 1976, as a reference atmo-
spheric model. The station height H (above sea level) should be introduced with an
accuracy of better than 10 m for precise absolute gravity determinations.

Absolute gravimetry is more sensitive to atmospheric variations than relative
gravimetry because of the short time intervals between two successive relative read-
ings of a gravity difference. Assuming an air pressure variation of more than 30 hPa,
the actual coefficient α should be known with an accuracy of better than 5% to
ensure a reduction uncertainty of less than 0.5 μGal. But that requirement can often
not be fulfilled especially when just using the general factor −0.3 μGal/hPa.

At IfE, a more accurate reduction is applied for all FG5 measurements performed
in the Fennoscandian land uplift project since 2003. The attraction and deforma-
tion effects for a local (spherical distance ≤ 0.5◦), regional (0.5–10◦) and global
(10–180◦) zone with corresponding resolutions of 0.005◦, 0.1◦ and 1.125◦ are cal-
culated. The global data are available from the European Centre for Medium-Range
Weather Forecasts (ECMWF) and are provided to IfE by the University of Cologne
in cooperation with the German Computing Centre for Climate and Earth System
Research. The calculation procedure is explained in Gitlein and Timmen (2006).
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This improved reduction for absolute gravity measurements with global atmo-
spheric weather data is very costly in terms of labour and needs the development
of gravimetric software which is not available in the open market. An improvement
of 0.5–1 μGal can be expected (Gitlein 2009) but a residual error in the order of
0.5 μGal can still not be excluded for all gravimetric station determination.

1.5.4 Groundwater Variations

Gravity changes caused by groundwater variations are predominantly a direct grav-
itational effect of the water masses. Smaller indirect effects are accompanied with a
vertical displacement of the measuring position: elastic deformation of the crust due
to the water load and sediment consolidation due to a decrease in the water table
level and a consequent decline of the pore volume (Romagnoli et al. 2003). Such
effects can partly be avoided by selecting stations in mountain areas and bedrock.
Temporary water storage is still possible in clefts, crevasses and pockets but the void
volume should be much less than 5%, whereas in glacial sediment layers the free
volume might be more than 30%. In general, a seasonal behaviour of the groundwa-
ter table becomes visible in continuous registrations of water depth gauges. Hence
it might be helpful to perform absolute gravity measurements always in the same
season of a year to determine secular gravity changes.

For regions with homogeneous sediment layers, a Bouguer-plate model often
gives a first approximation for the dependency between changes in gravity and water
table readings (Torge 1993):

�ggw = 2π G ρw P δH = 42 P δH[m] [μGal], (31)

where G is the gravitational constant and ρw is the water density which is
1,000 kg/m3. Assuming a pore volume of 30% in the sediment layer (P = 0.30)
and a water table shift δH of 1 m, a gravity effect of 12.6 μGal is obtained.

For the absolute reference station Hannover, a vertical sediment profile was deter-
mined from the drilling of the water gauge close to the gravimetry laboratory. It
revealed an average pore volume of 38%. Modelling the change of the groundwater
table with a tilted plane (0.4% to the receiving river) and a mean water level depth
of 3.7 m, an admittance factor of 15 μGal/m was derived (Timmen 1994). A sim-
ilar relation is obtained from the statistical correlation of the water table readings
with the absolute gravity measurements performed with the Hannover FG5 meter
since 2003 (Sect. 1.6.1). The resulting regression factor with 17 μGal/m considers
not only the primarily affecting Newtonian attraction but also the indirect effects
accompanied with a vertical position shift (load and sediment consolidation).

Successful experiments and modelling of gravity effects due to soil moisture and
groundwater changes were already described in Mäkinen and Tattari (1988). But, in
general, a reduction for hydrological variations is still not applied in absolute and
relative gravimetry.
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1.6 Gravity Changes: Examples

Some examples for gravimetric applications of IfE are given in Torge (1993)
describing projects in tectonically active areas in northern Iceland, the Venezuelan
Andes and in the Yunnan (China) earthquake study area. Gitlein et al. (2008)
describe the gravimetric survey of the Fennoscandian postglacial rebound which
is an isostatic uplift of the Earth’s crust due to the melting of the ice sheet after the
glacial maximum of the last ice age. The IfE gravimetry projects in the Nordic coun-
tries are all part of a long-term survey task. In close cooperation with the national
Nordic surveying agencies and research institutions, IfE has performed gravity
observations in Scandinavia since 1986. The monitoring of crustal deformations
in northern Europe is still the main focus of the ongoing cooperations.

As already mentioned in Sect. 1.2.2, an important future application may be the
monitoring of changes in the hydrosphere, especially if such variations mean some
serious consequences for the water supply. To demonstrate the potential of gravime-
try as a tool for groundwater monitoring, the situation in Hannover is presented as
an example.

1.6.1 Hydrology: Groundwater Variations in Hannover

Figure 1.18 shows the time series of absolute gravity determinations in Hannover
(point 103) observed with the two Hannover instruments. The station is located on
glacial sediments with a thickness of about 500 m (sand, clay and marl of low con-
solidation). The free-fall experiments are severely affected by natural (wind forces
on the adjacent buildings) and man-made (machines, traffic) seismic noise. The
history of the Hannover measurements reveals a linear gravity decrease of about
25 μGal over a period of 21 years, whereas in Clausthal (Fig. 1.6) no significant sec-
ular gravity variation can be found. An explanation for the phenomenon in Hannover
is not yet available and requires discussions with other experts, e.g. from hydro-
sphere research. Figure 1.19 illustrates the scatter in the time histories which is not

Fig. 1.18 Absolute gravity determinations with JILAg-3 (offset corrected) and FG5-220 at
stations Hannover (HAN103, trend −1.2 ± 0.1 μGal/year)
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Fig. 1.19 Groundwater table at the gravimetry laboratory in Hannover and absolute gravity deter-
minations with FG5-220 since 2003. The transfer function from gravity to groundwater change,
with the linear coefficient 17 μGal/m (correlation 80%), has been applied to the absolute gravity
determinations to convert the g-values to groundwater readings

only caused by measurement uncertainties but also by real gravity variations. For
example, from February to December 2003 the groundwater table at the gravime-
try laboratory in Hannover fell about 70 cm due to the very dry season in northern
Germany. This was accompanied by a gravity decrease of 13 μGal. Checking the
groundwater readings for the period 1986 to the present, a declining trend over the
years is not visible. But these readings from the groundwater gauge consider only
the upper aquifer of the subsurface hydrology around the gravimetry laboratory and
not the deeper aquifers. Thus, it cannot be excluded that the long-term trend in the
gravity series might be caused by a change in the subsurface water content.

1.6.2 Tectonics: Isostatic Land Uplift in Fennoscandia

In the Fennoscandian land uplift area, the Earth’s crust has been rising continu-
ously since the last glacial maximum in response to the deloading of the ice. This
process is an isostatic adjustment of the Earth’s elastic lithosphere and underlying
viscous mantle. For a general overview Wolf (1993) gives a historical review about
the changing role of the lithosphere in models of glacial isostasy.

The Fennoscandian rebound area is dominated by the Precambrian basement
rocks of the Baltic Shield, which is part of the ancient East European Craton
and comprises south Norway, Sweden, Finland, the Kola Peninsula and Russian
Karelia. The region is surrounded by a flexural bulge, covering northern Germany
and northern Poland, the Netherlands and some other surrounding regions. The
bulge area was once rising due to the Fennoscandian ice load and, after the melt-
ing, sinking with a much smaller absolute value than the uplift rate in the centre of
Fennoscandia. Denmark is part of the transition zone from the uplift to the subsi-
dence area. The maximum spatial extension of the uplift area is about 2,000 km in
northeast–southwest direction; see Fig. 1.20 for the approximate shape (after Ågren
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Fig. 1.20 Map of the postglacial uplift of Fennoscandia in mm/year after Ågren and Svensson
(2007) derived from model NKG2005LU, courtesy of Ågren. The dots indicate the positions of
gravity stations of the Nordic Absolute Gravity Project

and Svensson 2007). Presently, the central area around the northern part of the Gulf
of Bothnia is undergoing an uplift at a rate of about 1 cm/year.

The Trans-European Suture Zone (TESZ) is a main tectonic boundary in Europe,
separating the East European Craton from the Phanerozoic terrains in the west
and southwest (Palaeozoic western Europe and Meso-Europe). The Sorgenfrei-
Tornquist Zone is part of the TESZ and crosses Denmark north of Copenhagen
in the immediate vicinity of the absolute gravity station Helsingør; see Fig. 1.10
for the station names and locations. Among other stations, the absolute gravity sta-
tions Copenhagen/Vestvolden, Helsingør, Onsala and Borås belong to the Nordic
Geodetic Observing System (NGOS) and constitute the central part of a north–south
profile crossing perpendicularly the graben system of the suture zone between the
Baltic Shield and the younger Palaeo-Europe.

Four east–west profiles across the Fennoscandian postglacial rebound area have
been utilised by relative gravimetry and levelling. They follow approximately the
latitudes 65◦N (observed 1975–2000), 63◦N (1966–2003), 61◦N (1976–1983) and
56◦N (1977–2003); see Ekman and Mäkinen (1996) or Mäkinen et al. (2004). The
east–west directions were chosen to ensure only small gravity differences between
the relative gravimetry points (less than 1 mGal). This requirement avoids errors
from uncertainties of the gravimeter calibrations. With the availability of trans-
portable absolute gravimetry in Central Europe, the 56◦ profile (Denmark–Sweden)
was supported with JILAg-3 (in 1986) and FG5-220 (2003, 2005) measurements.
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Fig. 1.21 Linear gravity changes for three stations in Fennoscandia derived from absolute grav-
ity measurements of IfE and compared with the trends from the NKG2005LU model (Fig. 1.20,
conversion factor −1.7 μGal/cm applied) and from the model predictions provided by Klemann
(2004). The grey lines beside the IfE trends indicate the standard deviation of the corresponding
trend line
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Repeated observations with the FG5-220 from IfE were performed at 11 stations
in Fennoscandia nearly every year from 2003 to 2008 (Gitlein et al. 2008). From
these results, linear gravity changes were calculated for each station (Gitlein 2009).
The trends for three stations are presented exemplarily in Fig. 1.21. A decrease
in gravity due to land uplift is evident at almost all stations. The largest gravity
changes were found around the uplift centre (e.g. Kramfors). In Copenhagen, close
to the zero uplift line in Fig. 1.20, the obtained gravity rate is nearly zero. Overall,
the regional rebound signal is clearly visible, but still seems to be disturbed by envi-
ronmental mass variations, e.g. at station VaasaAB. From the experiences over the
last 5 years, the hydrological changes are considered as a main contributor, which
is also indicated by the water level observations of the reservoirs and wells close to
some of the absolute stations.

In Fig. 1.21 the observational trends are compared with the results derived from
the NKG2005LU model (Ågren and Svensson 2007), which is mainly based on
levelling and GPS results, and with predicted rates of a glacial rebound model pro-
vided by Klemann (2004). The computations were based on solution algorithms
developed by Martinec (2000) and Hagedoorn et al. (2007) and use a global ice
model with SCAN-II (Lambeck et al. 1998) for Fennoscandia. Overall, the trends
observed by absolute gravimetry since 2003 or 2004 are in good agreement with
the other results. The obtained standard deviations seem to be realistic estimates for
the accuracy of the deduced secular gravity changes. The disturbances caused by
unaccounted hydrological effects are cancelled out in the trends to some extent due
to the annual gravity measurements. Thus, absolute gravimetry has shown its capa-
bility to observe the Fennoscandian land uplift within the rather short time span of
4–5 years.
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A new adaptively robust Kalman filtering was developed in 2001. The main achieve-
ments of the adaptively robust filter are summarized from the published papers
in recent years. These include the establishment of the principle of the adaptively
robust filter, the derivation of the corresponding state parameter estimator, the devel-
opments of four adaptive factors for balancing the contribution of kinematic model
information and measurements, which include three-segment function, two-segment
function, exponential function and zero and one function for state component adap-
tation, and the establishment of four kinds of learning statistics for judging the
kinematic model errors, which include state discrepancy statistic, predicted resid-
ual statistic, variance component ratio statistic and velocity discrepancy statistic.
The relations of the adaptively robust filter with standard Kalman filter, robust filter
and some other adaptive Kalman filters as well as some related adjustment methods
are depicted by a figure. Other developments of the adaptively robust filter are also
presented.

2.1 Introduction

Applications of the Kalman filter in dynamic or kinematic positioning have some-
times encountered difficulties which have been referred to as divergences. These
divergences can often be traced to three factors: (1) insufficient accuracy in mod-
elling the dynamics or kinematics (functional model errors of the state equations);
(2) insufficient accuracy in modelling the observations (functional model errors of
observation equations); and (3) insufficient accuracy in modelling the distributions
or the priori covariance matrices of the measurements and the updated parameters
(stochastic model errors) (Yang et al. 2001a).

The current basic procedure for the quality control of Kalman filter consists of

• Functional model compensation for model errors by introducing uncertain
parameters into the state and/or the observation equations. Any model error term
can be introduced into the models arbitrarily. One could then augment the state
(Jazwinski 1970, p. 308). A similar approach is developed by Schaffrin (1991, pp.
32–34). He partitions the state vector into h groups, each being affected by a com-
mon scale error. Then an h × 1 vector of scale parameters is introduced into the
models. This kind of approach may, of course, lead to a high-dimensional state
vector which, in turn, greatly increases the filter computational load (Jazwinski
1970, p. 305).

• Stochastic model compensation by introducing a variance–covariance matrix
of the model errors. In taking this approach to prevent divergence, one has to
determine what covariance matrix to add. A reasonable covariance matrix may
compensate for the model errors. An ineffective covariance matrix, however, adds
the model divergence. For instance, when the model is accurate in some dynamic
or kinematic periods, an unsuitable increasing of the covariance matrix of model
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error will degrade the state estimators. An effective covariance matrix for model
errors can only be determined by trial and error.

• DIA procedure – detection, identification and adaptation (Teunissen 1990). It
uses a recursive testing procedure to eliminate outliers. In the detection step one
looks for unspecified model errors. In the identification step one tries to find the
cause of the model error and its most likely starting time. After a model error has
been detected and identified, the bias in the state estimate caused by the model
error has to be eliminated as well. This model recovery from errors is called
adaptation (Salzmanm 1995). The identification of the model, however, is quite
difficult, especially when the measurements are not accurate enough to detect the
unspecified model errors.

• Sequential least squares procedure. A quite different procedure that has been
frequently used for kinematic positioning does not use the dynamic model
information at all but determines discrete positions at the measurement epochs
(Cannon et al. 1986). In this case, no assumption on dynamic model is made;
only the measurements at discrete epoch are employed to estimate the state
parameters. The model error, therefore, does not affect the estimates of new
state parameters. Usually, this method is presented as a sequential least squares
algorithm (Schwarz et al. 1989). The current limitation of this approach is that
it wastes the good information of the state model when the model accurately
describes the dynamic process in cases.

• Sage adaptive Kalman filtering. This kind of adaptive filter evaluates the
variance–covariance matrices of the kinematic model error vector and the mea-
surement error vector by windowing method (Sage and Husa 1969). In the
applications, an innovation-based adaptive Kalman filtering for an integrated
INS/GPS is developed by Mohamed and Schwarz (Mohamed and Schwarz 1999;
Wang et al. 2000). The problem is that the algorithm needs to collect the residuals
of the measurements or the update series to calculate the underlined variance–
covariance matrices; thus it requires that the measurement dimensions and types
at all epochs be the same.

• Fading Kalman filtering. In order to control the influences of prior state errors
or kinematic model errors on the present estimated state parameters, the fading
filters, using the fading factors to restrict the memory length of Kalman filter
and to make the most use of present measurements, were developed in the field
of statistics as early as the 1960s and 1970s (Fagin 1964; Sorenson and Sacks
1971). We have analysed the basic properties of the fading filter, the abilities in
controlling the influences of the kinematic model errors on the state parameter
estimates and the problems possibly existing in the practical applications (Yang
and Gao 2006c).

• Robust filter based on min–max robust theory. The deviation of observation error
distribution from the Gaussian one may also seriously degrade the performance
of the Kalman filtering. Thus, there appears to be considerable motivation for
considering filters which are robustised to perform fairly well in non-Gaussian
environments. Facing this problem, Masreliez and Martin (1977) applied the
influence function of min–max robust theory to replace the score function
of the standard Kalman filter. The basic disadvantages associated with this
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kind of robust filter are that the estimator requires the unknown contaminating
distribution to be symmetric and it cannot work as well as the standard Kalman
filter in Gaussian noise.

• Robust filter based on M estimation theory (Huber 1964) and Bayesian statis-
tics. To resist the bad influences of both state model errors and measurement
outliers, a robust M–M filter is developed (Yang 1991, 1993, 1997, 1999; Zhou
et al. 1997, p. 299) by which the measurement outliers are controlled by robust
equivalent weights of the measurements, and the model errors are resisted by
the equivalent weights of the update parameters according to the divergence of
the predicted parameters and the estimated ones. Furthermore, a robust filter for
rank-deficient observation models was developed by Koch and Yang (1998) by
Bayesian statistics and by applying the robust M-estimate.

Different from Sage–Husa adaptive filtering (see Deng 2003, pp. 162–173;
Mohamed and Schwarz 1999; Wang and Kubik 1993; Wang et al. 2000) and lim-
ited memory filter (Panozzo et al. 2004) as well as the mentioned adaptive filters,
a new adaptively robust filter was developed by combining the adaptive Kalman
filter and robust estimation (Yang et al. 2001a), which applies a robust estimation
principle for measurement vector to resist its outlier effects and introduces an adap-
tive factor for the model predicted state vector to control its outlying disturbance
influences.

After adaptively robust filtering was developed, four learning statistics and four
adaptive factors have been set up based on experiences and have been proved effec-
tive in practical applications. An accompanying adaptive factor with a three-segment
descending function and a learning statistic constructed by using the discrepancy
between the predicted state from the kinematic model and the state estimated from
the measurements have been established. Three other kinds of adaptive factors have
been developed, which are a two-segment descending function (Yang et al. 2001b),
an exponential function (Yang and Gao 2005) and a zero and one function for state
component adaptation (Ou et al. 2004; Ren et al. 2005). Three additional learning
statistics have also been set up, which include a predicted residual statistic (Xu and
Yang 2000; Yang and Gao 2006a), a variance component ratio statistic from both
the measurements and the predicted states (Yang and Xu 2003) and a velocity dis-
crepancy between the predicted velocity from the kinematic model and the velocity
evaluated from the measurements (Cui and Yang 2006).

Two optimal adaptive factors are established, which satisfy the conditions that
the theoretical uncertainty of the predicted state outputted from the adaptive filter-
ing equals or nearly equals its actual estimated uncertainty, and/or the theoretical
uncertainty of the predicted residual vector equals or nearly equals its actual esti-
mated uncertainty (Yang and Gao 2006b). Furthermore, an adaptively robust filter
with classified adaptive factors is developed (Cui and Yang 2006) which is more
effective in tracking the disturbances of the vehicle movements. And an adaptively
robust filter with multi-adaptive factors is also set up (Yang et al. 2006), which is
more general in theory and contains the adaptively robust filters with single adaptive
factor and classified adaptive factors.
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The new adaptively robust filter is more or less based on the assumption that the
measurements at each epoch should be reliable. If it is not true, then the detection
and identification and adaptation procedure can be employed (Teunissen 1990) or
a robust Kalman filter can be applied (Koch and Yang 1998; Schaffrin 1991, pp.
32–34; Yang 1991, 1997; Zhou et al. 1997).

2.2 The Principle of Adaptively Robust Kalman Filtering

Let the linear dynamic system be given by

Xk = �k,k−1Xk−1 + Wk, (1)

where Xk denotes m × 1 state vector at epoch tk, �k,k−1 the u × u transition matrix
and Wk the state noise vector. The observational model at epoch tk reads

Lk = AkXk + ek, (2)

where Lk represents nk × 1 observation vector, Ak the nk × m design matrix and ek

the observational noise vector. Let the covariance matrices of Wk and ek be taken
as �Wk and �k, respectively, and Wk, Wj, ek and ej be mutually uncorrelated and
meet:

E(ek) = 0, E(Wk) = 0, (3)

E(ekeT
k ) = �k, E(WkWT

k ) = �wk . (4)

Assume that the residual vector is denoted by Vk and the predicted state vector is
Xk; then the error equation and the predicted state vector are

Vk = LkX̂k − Lk, (5)

Xk = �k,k−1X̂k−1, (6)

with

�Xk
= �k,k−1�X̂k−1

�T
k,k−1

+ �wk , (7)

where X̂k and X̂k−1 are the estimated state vectors at epochs tk and tk−1.
By using the least squares principle,

VT
k PkVk + (X̂k − Xk)TPXk

(X̂k − Xk) = min, (8)

where Pk = �−1
k and PXk

= �−1
Xk

are the weight matrices of Lk and Xk, respec-

tively; we obtain the estimator of the standard Kalman filter (Koch and Yang
1998):



54 Y. Yang

X̂k = (AT
k PkAk + PXk

)−1(PXk
Xk + AT

k PkLk). (9)

Or equivalently

X̂k = Xk + Kk(Lk − AkXk), (10)

with

Kk = �X̄k
AT

k (Ak�Xk
AT

k + �k)−1, (11)

�X̂k
= [I − KkAk]�Xk

. (12)

Changing a little bit of the score function of (8), like

nk∑
i = 1

piρ(vi) + αk(X̂k − Xk)TPXk
(X̂k − Xk) = min, (13)

where ρ is a convex and continuous function, αk is an adaptive factor with values in
0 < αk ≤ 1, we get the estimator of the adaptive filter (Yang et al. 2001a):

X̂k = (AT
k P̄kAk + αkPXk

)−1(αkPXk
Xk + AT

k P̄kLk), (14)

or equivalently (Yang et al. 2001b; Xu 2007)

X̂k = Xk + K̄k(Lk − AkXk), (15)

where K̄k is an adaptive gain matrix:

K̄k = 1

αk
�X̄k

AT
k (

1

αk
Ak�X̄k

AT
k + �̄k)−1. (16)

The posterior covariance matrix of the estimated state vector is

�X̂k
= (I − K̄kAk)�X̄k

/αk. (17)

With the variations of adaptive factor αk and the equivalent weight matrix, the
adaptively robust filter will change into various estimators.

Case 1: if αk = 0 and �̄k = �k or P̄k = Pk, then

X̂k = (AT
k PkAk)−1AT

k PkLk, (18)

which is an LS estimator by using only the new measurements at epoch tk. This
estimator is suitable to the case that the measurements are not contaminated by out-
liers and the updated parameters are biased so much that the information of updated
parameters should be forgotten completely.
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Case 2: if αk = 1 and �̄k = �k, then the standard Kalman filter estimators (8),
(9) and (10) are obtained.

Case 3: if αk changes between 0 and 1, and P̄k = Pk, then

X̂k = (AT
k PkAk + αkPXk

)−1(AT
k PkLk + αkPX̄k

Xk), (19)

which is an adaptive LS estimator of Kalman filter. It balances the contribution of
the updated parameters and the measurements. The only difference between (17)
and (8) is the weight matrix of Lk. The former uses the equivalent weight matrix
and the latter uses the original weight matrix of Lk.

Case 4: if αk = 0, then we obtain

X̂k = (AT
k P̄kAk)−1AT

k P̄kLk, (20)

which is a robust estimator by using only the new measurements at epoch tk.
Case 5: if αk = 1, then

X̂k = (AT
k P̄kAk + PXk

)−1(AT
k P̄kLk + PXk

Xk), (21)

which is an M-LS filter estimator (Yang 1997).
The relations of the adaptively robust filter with other estimators are shown in

Fig. 2.1, in which ARF denotes the adaptively robust filter.
If the covariance matrices of the measurement vector Lk and the predicted state

vector Xk are evaluated by Sage windowing method (see Deng 2003), denoted as
�̂k and �̂Xk

, respectively, that is,

k =1

k=0~1

ARF
System

LS Adjustment

Robust Adjustment

Kalman Filter

Robust Filter

Adaptive Filter

Adaptively Robust Filter

k=0

Pk

Pk

Pk

Pk

Pk

Pk 

α

α

α

Fig. 2.1 Adaptively robust filter
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�̂k = 1

m

m∑
j = 0

V̄k−jV̄
T
k−j − Ak�Xk

AT
k , (22)

�̂�X = 1

m

m∑
j = 0

�Xk−j�XT
k−j, (23)

where

V̄k = AkXk − Lk, (24)

�Xk = X̂k − Xk, (25)

then the adaptively robust filter can include the adaptive Sage filter.

2.3 Properties of the Adaptive Kalman Filter

2.3.1 Difference of State Estimate

Rewriting (9) and (14) as normal equations, and only considering the least squares
situation, that is, P̄k = Pk, we have

(AT
k PkAk + PXk

)X̂k = PXk
Xk + AT

k PkLk, (26)

(AT
k PkAk + αkPXk

)X̂ad = αkPXk
Xk + AT

k PkLk, (27)

where X̂k and X̂ad denote the state estimates by using standard Kalman filter and
adaptive filter, respectively. Let

X̂k − X̂ad = δX̂k, (28)

then (27) is changed into

(AT
k PkAk + αkPXk

)X̂k − (AT
k PkAk + αkPXk

)δX̂k = αkPXk
Xk + AT

k PkLk. (29)

Subtracting (29) from (26), we have

(1 − αk)PXk
X̂k + (AT

k PkLk + αkPXk
)δX̂k = (1 − αk)PXk

Xk (30)

or

(AT
k PkAk + αkPXk

)δX̂k = (1 − αk)PXk
(X̄k − X̂k). (31)

Denote

Xk − X̂ad = δX̄k. (32)
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Factually, δX̄k can be looked as the bias of the predicted state, and (31) is changed
into

(AT
k PkAk + αkPXk

)δX̂k = (1 − αk)PXk
(δX̄k + X̂ad − X̂k). (33)

Finally we have

(AT
k PkAk + PXk

)δX̂k = (1 − αk)PXk
δX̄k, (34)

δX̂k = (AT
k PkAk + PXk

)−1(1 − αk)PXk
δX̄k. (35)

It is easy to see that if αk = 1, then δX̂k = 0, that is, X̂ad = X̂k; in this case the state
estimate of the adaptive filter is equivalent to that of the standard Kalman filter; if
αk = 0, then

X̂ad = (AT
k PkAk)−1AT

k PkLk. (36)

In this case, X̂ad is equivalent to the estimate of the least squares estimation not
considering the information of the state equation, and the error of the predicted state
Xk will not affect the updated estimate of the state.

2.3.2 The Expectation of the State Estimate of the Adaptive Filter

Considering that the observational vector is unbiased, that is ELk = AkXk, then the
expectation of X̂ad from (27) is

EX̂ad = (AT
k PkAk + αkPXk

)−1(αkPXk
EXk + AT

k PkLkXk). (37)

If the predicted state vector Xk is also unbiased, that is EXk = Xk, then

EX̂ad = (AT
k PkAk + αkPXk

)−1(AT
k PkAk + αkPXk

)Xk = Xk. (38)

It is obvious that if the observational vector Lk and the predicted state vector Xk are
not affected by abnormal biases, then the estimate of the adaptive filter is unbiased.

If the predicted state vector Xk is biased, and the biased vector is denoted by bX̄k
,

that is,

EXk = Xk + bXk

= Xk, (39)

then

EX̂ad = (AT
k PkAk + αkPXk

)−1(αkPXk
Xk + αkPXk

bXk
+ AT

k PkAkXk), (40)
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then we have

EX̂ad = Xk + (AT
k PkAk + αkPXk

)−1αkPXk
bXk

(41)

or

bX̂ad
= EX̂ad − Xk = (AT

k PkAk + αkPXk
)−1αkPXk

bXk
. (42)

Equation (42) gives the influence of the bias bXk
of Xk on the bias bX̂ad

of the esti-
mate expectation of the adaptive filter. Equation (42) also tells us that bX̂ad

changes
with the variations of αk and bXk

, especially when bXk
is beyond a particular region;

αk tends to zero and, in this case, bX̂ad
also tends to zero. In other words, the bias

of the state estimate of the adaptive filter is controlled by the adaptive factor αk.
Usually the larger the bias bXk

of the predicted state, the smaller the adaptive factor
αk.

Similarly, when EXk 
= Xk, the expectation of the state estimate of the standard
Kalman filter is

EX̂k = (AT
k PkAk + PXk

)−1(PXk
Xk + PXk

bXk
+ AT

k PkAkXk) (43)

or

EX̂k = Xk + (AT
k PkAk + PXk

)−1PXk
bXk

. (44)

Let

bX̂k
= EX̂k − Xk,

(
bias of X̂k

)
. (45)

Then

bX̂k
= (AT

k PkAk + PXk
)−1PXk

bXk
. (46)

2.3.3 Posterior Precision Evaluation

By applying the variance propagation law we obtain the covariance matrices of
the estimated state vectors of the adaptive filter and the standard Kalman filter,
respectively, as

�X̂ad
= (AT

k PkAk + αkPXk
)−1(α2

kPXk
+ AT

k PkAk)(AT
k PkAk + αkPXk

)−1σ̂2
ad, (47)

�X̂k
= (AT

k PkAk + PXk
)−1σ̂2, (48)
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in which

σ̂2
ad = αkδX̂

T
adPXk

δX̂ad + VT
adPkVad

rk
, (49)

σ̂2 = δX̂
T
k PXk

δX̂k + VT
k PkVk

rk
, (50)

where rk is redundant number of the observations, Vad and Vk are residual vectors
of the observations with respect to X̂ad and X̂k, respectively.

In practice, the posterior precision is evaluated by the mean-square error (Xu and
Rummel 1994), that is,

MSE(X̂ad) = E(X̂ad − Xk)T (X̂ad − Xk), (51)

where Xk denotes the true value of the state vector. Changing (51) as

MSE(X̂ad) = E(X̂ad − EX̂ad + EX̂ad − Xk)T (X̂ad − EX̂ad + EX̂ad − Xk), (52)

letting

X̂ad − EX̂ad = eX̂ad

(
true error vector of X̂ad

)
(53)

and considering

EXk = Xk, E
(

X̂ad − EX̂ad

)
= 0, (54)

we get

MSE(X̂ad) = trE(eX̂ad
· eT

X̂ad
) +
∣∣∣∣∣∣bX̂ad

∣∣∣∣∣∣2 . (55)

On the other hand, we have

E
(

ex̂ad · eT
x̂ad

)
=
∑

x̂ad

(
covariance matrix of x̂ad

)
, (56)

which then yields

MSE(X̂ad) = tr�X̂ad
+ αk

∥∥∥(AT
k PkAk + αkPX̄k

)−1PX̄k
(EXk − Xk)

∥∥∥2
. (57)

It is seen from (57) that

1. If the predicted state vector Xk is unbiased, that is bXk = 0, then X̂ad is unbiased,
or bX̂ad

= 0; in this case, the MSE of X̂ad is the trace of its covariance matrix,

MSE(X̂ad) = tr(�X̂ad
). (58)
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2. If Xk is biased, but αk = 0, (57) is still valid, that is the adaptive factor αk controls
the bias of the outputs of the adaptive filter.

Therefore, when the predicted state Xk has any abnormal bias due to some sudden
disturbance of the vehicle, the adaptive factor αk will be decreased, which leads to
the bias bX̂ad

of the state estimate of the adaptive filter to decrease, and the mean-

square error of X̂ad tends to the trace of the covariance matrix of X̂ad.
In conclusion, the differences between the adaptive filter and the standard

Kalman filter depend on the adaptive factor αk. When the predicted states are accu-
rate, then αk tends to 1, and the state differences estimated from the adaptive filter
and the standard Kalman filter are small.

The unbiasedness of the estimated state vector outputted by adaptively filter is
controlled by the adaptive factor αk; if αk tends to zero, X̂ad is unbiased.

The MSE of the estimated state vector outputted by the adaptive filter is also
controlled by the adaptive factor αk; if αk tends to zero, the MSE of X̂ad tends to the
trace of its covariance matrix.

The robustness of the adaptive filter outputs has been described in Yang et al.
(2001a, b) and Yang and Xu (2003). It has been demonstrated by theory and practical
experiments that the adaptive factor plays significant roles in controlling the influ-
ences of the outlying disturbances of the dynamical information on the estimated
state vector and its MSE.

2.4 Three Kinds of Learning Statistics

2.4.1 Learning Statistic Constructed by State Discrepancy

In the beginning of the development of the adaptively robust Kalman filter, a learn-
ing statistic of the kinematic model errors was constructed by using the difference
between the state estimated from measurements and that predicted from the kine-
matic model at epoch tk (Yang et al. 2001a, b). If the number of measurements at
epoch tk is larger than that of the state components, then the estimated state vector is
obtained by using measurement vector Lk, based on the robust estimation principle,
that is,

X̃k = (AT
k P̄kAk)−1AT

k P̄kLk, (59)

where P̄k denotes the equivalent weight matrix of Lk, which can be obtained by
the Huber function (Huber 1981), three-segment functions (Yang 1994, 1999; Yang
et al. 2002a, b; Zhou 1989),etc.

The discrepancy between X̃k from (59) and Xk from (6) can be measured by
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∥∥∥X̃k − Xk

∥∥∥ =
(
�X̃

2
k1

+ �X̃
2
k2

+ · · · + �X̃
2
km

) 1
2

. (60)

Then the learning statistic expressed by the state discrepancy is set up:

∣∣∣�X̃k

∣∣∣ =
∥∥∥X̃k − Xk

∥∥∥√
tr(�Xk

)
, (61)

where “tr” denotes trace.
It is noted that (1) the number of measurements at computation epoch should be

larger than the number of state components, otherwise the statistic
∣∣∣�X̃k

∣∣∣ cannot

be constructed; (2) the estimated state vector X̃k should be accurate, otherwise the

statistic
∣∣∣�X̃k

∣∣∣ cannot reflect the kinematic model errors; and (3) the learning statis-

tic
∣∣∣�X̃k

∣∣∣ can only reflect the integrated error of the kinematic model; any disturbing

of the components of the predicted state vector is treated as the whole state outlier.

2.4.2 Learning Statistic Constructed by Predicted Residual Vector

If the measurement vector Lk is reliable, then the predicted residual vector V̄k will
reflect the error of predicted state vector Xk. A learning statistic constructed by the
predicted residual vector is (Xu and Yang 2000; Yang and Gao 2006a)

�V̄k =
(

V̄
T
k V̄k

tr(�V̄k
)

)1
2

. (62)

If there are nk measurements at epoch tk, then �V̄k can be expressed as

�V̄k =

⎛
⎜⎜⎜⎝

nk∑
i = 1

V̄
2
ki

nk∑
i = 1

σ 2
V̄ki

⎞
⎟⎟⎟⎠

1
2

. (63)

It is noted that (1) using the learning statistic constructed by predicted residual �V̄k,
we do not need to evaluate the state vector before filtering; (2) it is not necessary
that the number of measurements be larger than that of state components; and (3)
�V̄k contains more measurement error influence than the state discrepancy statistic∣∣∣�X̃k

∣∣∣.
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2.4.3 Learning Statistic Constructed by the Ratio of Variance
Components

If Lk and Xk are treated as two groups of observations at epoch tk, their variance
components should reflect their accuracies. Thus we can construct a new learning
statistic by the ratio of the variance components to judge the kinematic model relia-
bility. The Helmert variance component for Lk and Xk is respectively expressed as
(Koch 2000; Koch and Kusche 2002)

σ̂2
0k = VT

k PkVk

rk − tr(N−1Nk)
, (64)

σ̂2
0X̄k

=
VT

Xk
PXk

VXk

mk − tr(N−1PXk
)
, (65)

where σ̂2
0 k and σ̂ 2

0Xk
denote the estimates of variance components of Lk and Xk,

respectively, nk is the number of measurements at epoch tk, mk is the number of
predicted parameters of the state vector, Vk is the residual vector of Lk expressed
by (5) and VXk

is the residual vector of Xk, that is,

VXk
= X̂k − Xk = X̂k − �k,k−1X̂k−1 (66)

and

Nk = AT
k PkAk, N = Nk + PXk

= AT
k PkAk + PXk

. (67)

The approximate estimates of the Helmert variance components σ̂2
0 k and σ̂ 2

0Xk
are

σ 2
0 k ≈ VT

k PkVk

nk
(68)

and

σ2
0X̄k

≈
VT

Xk
PXk

VXk

mk
. (69)

The ratio of σ̂ 2
0Xk

and σ̂2
0 k is defined as the learning statistic

Sk =
σ2

0Xk

σ2
0 k

≈
VT

Xk
PXk

VXk

mkσ
2
0 k

. (70)

It is noted that (1) the computation of the learning statistic Sk should have redun-
dant observations, otherwise the learning statistic will not reliably reflect the model
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errors; (2) Vk and VXk
should correspond to the same estimated state vector X̂k; and

(3) the computation burden is heavier than the other two learning statistics,
∣∣∣�X̃k

∣∣∣
and �V̄k, if the iterative computation procedures are applied.

2.4.4 Learning Statistic Constructed by Velocity

Based on the robust estimate X̃k of the position parameter vector from the measure-
ments, the estimate X̂k−1 of the state estimate at epoch tk−1 and the sample interval
tk − tk−1, we obtain the predicted velocity vector (Cui and Yang 2006)

˜̇Xk = X̃k − X̂k−1

tk − tk−1
. (71)

Then the learning statistic for judging the kinematic model disturbing corresponding
to the predicted velocity information is constructed as

� ˜̇Xk =
∥∥∥ ˜̇Xk − ¯̇Xk

∥∥∥
/√

tr(� ¯̇Xk
), (72)

where ¯̇Xk denotes the predicted velocity vector from the kinematic model and � ¯̇Xk
is its covariance matrix.

It is noted that (1) if � ˜̇Xk is significant outlying, then it indicates that the pre-
dicted velocity is outlying or that the kinematic model has large errors and (2) the

computation of the learning statistic � ˜̇Xk should also have redundant observations,
otherwise X̃k cannot be obtained.

2.5 Four Kinds of Adaptive Factors

2.5.1 Adaptive Factor by Three-Segment Function

An adaptive factor αk of a three-segment function is combined by three parts, that
is, if a learning statistic is smaller than a particular criterion, then the adaptive factor
αk is equal to 1, if the learning statistic is significantly outlying, then the adaptive
factor αk is equal to 0, otherwise αk decreases with the statistic growing. We employ

the learning statistic
∣∣∣�X̃k

∣∣∣ as an example to express the adaptive factor (Yang et al.

2001a):
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Xk

1 

c0 

αk

c1

Fig. 2.2 Adaptive factor of
three-segment function

αk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1,
∣
∣
∣�X̃k

∣
∣
∣ ≤ c0,

c0∣
∣
∣�X̃k

∣
∣
∣

(
c1−

∣
∣
∣�X̃k

∣
∣
∣

c1−c0
)2, c0 <

∣∣∣�X̃k

∣∣∣ ≤ c1,

0,
∣∣∣�X̃k

∣∣∣ > c1,

(73)

where c0 and c1 are two criterion constants, with practical values of c0 = 1.0 − 1.5
and c1 = 3.0 − 4.5.

Obviously, if the value of
∣∣∣�X̃k

∣∣∣ increases, αk decreases. αk changes between

[0, 1] (see Fig. 2.2). This kind of adaptive factor is a redescending function, because

αk descends to zero when the statistic
∣∣∣�X̃k

∣∣∣ is larger than the rejection boundary
c1.

2.5.2 Adaptive Factor by Two-Segment Function

We still employ the learning statistic
∣∣∣�X̃k

∣∣∣ as an example to express the two-

segment adaptive factor (Yang et al. 2001b):

αk =

⎧⎪⎨
⎪⎩

1,
∣∣∣�X̃k

∣∣∣ ≤ c,
c∣∣∣�X̃k

∣∣∣ ,
∣∣∣�X̃k

∣∣∣ > c,
(74)

where c is a constant, the optimal value being 1.0 (Yang and Gao 2006a). It is a
descending function; see Fig. 2.3.

2.5.3 Adaptive Factor by Exponential Function

An adaptive factor of exponential function is (Yang and Gao 2005)
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Xk
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c 0

αk

Fig. 2.3 Adaptive factor of
two-segment function

Xk

1

c 0

αk

c1

Fig. 2.4 Adaptive factor of
exponential function

αk =
{

1,
e−(

∣∣�X̃k
∣∣−c)2

,

∣∣∣�X̃k

∣∣∣ ≤ c,∣∣∣�X̃k

∣∣∣ > c,
(75)

where c is the same as in (74). It is also a descending function; see Fig. 2.4.

2.5.4 Adaptive Factor by Zero and One

If a state parameter is normal then the adaptive factor equals 1, otherwise it equals
0 (Ou et al. 2004; Ren et al. 2005):

αk =
⎧⎨
⎩

1,
∣∣∣�X̃ki

∣∣∣ ≤ c,

0,
∣∣∣�X̃ki

∣∣∣ > c,
(76)

where �X̃ki is the ith component of the discrepancy state vector.
We can use another two learning statistics, �V̄k from the predicted residual

vector and Sk from the ratio of variance components of the predicted state and
measurements, to construct the same kinds of adaptive factors.
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Fig. 2.5 Position relative to
fixed receiver

2.5.5 Actual Computation and Analysis

The computation example is the same as that in Yang et al. (2001a). A data set
was collected by using a Trimble 4000SSE receiver mounted on an aircraft with the
reference receiver fixed at a site about 1 km from the initial aircraft location. After
about 10 min of static tracking, the aircraft took off for a flight time of about 90 min;
see Fig. 2.5.

In order to analyse the roles of the adaptive factors in adaptive filtering, the
highly precise results from double-differenced carrier measurements were used as
“true values” for comparing with the results from the code measurements. The
constant-velocity model of the Kalman filtering was employed. The initial vari-
ances for positions, velocities and P2-code measurements were selected separately
as 0.2m2, 9 × 10−5m2/s2and 1.0 m2. The spectral density for velocities was chosen
to be 0.01 m2/s2. The selected dynamic model covariance matrix was the same as
that used in Schwarz et al. (1989), Yang et al. (2001a), Yang and Xu (2003) and
Yang and Wen (2003).

The following four schemes were carried out:

• Scheme 1: Classical Kalman filtering (KF)
• Scheme 2: Adaptive Kalman filtering based on the three-segment function of the

state discrepancy (AKF1)
• Scheme 3: Adaptive Kalman filtering based on the two-segment function of the

state discrepancy (AKF2)
• Scheme 4: Adaptive Kalman filtering based on the exponential function of the

state discrepancy (AKF3)

The computation results are shown in Figs. 2.6, 2.7, 2.8 and 2.9 and Table 2.1.

From the calculation results above, we find that



2 Adaptively Robust Kalman Filters with Applications in Navigation 67

0 2000 4000 6000
–10

–5

0

5

10

Epoch Number

X
(m

)

Fig. 2.6 Errors of classical Kalman filtering
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a Errors of AKF1. b  Actual αk determined by three segment
     function, where c0 = 1.5, c1 = 4.5
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Fig. 2.7 (a) Errors of AKF1. (b) Actual αk determined by three-segment function, where
c0 = 1.5 and c1 = 4.5

b  Actual αk determined by two segment
     function, where c = 1.5
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Fig. 2.8 (a) Errors of AKF2. (b) Actual αk determined by two-segment function, where c = 1.5

Table 2.1 Comparison of RMS (unit: m)

KF AKF1 AKF2 AKF3

X 1.1630 0.5648 0.5948 0.5839
Y 1.5070 0.4438 0.5119 0.4766
Z 1.5455 0.7804 0.8201 0.8028
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B  Actual αk determined by exponential
     functiovn, where c = 1.5
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Fig. 2.9 (a) Errors of AKF3. (b) Actual αk determined by exponential function, where c = 1.5

(1) The influences of the disturbances of the fly around the epoch 1,000 and during
the epoch 3,000 through 4,000 on the Kalman filtering are very significant;
see Fig. 2.6. The RMS of the position are 1.1630, 1.5070 and 1.5455 m,
respectively.

(2) The adaptive filtering based on the three kinds of adaptive factors gives reason-
able results, and the influences of the disturbances of the fly are controlled.

(3) It is shown, by the theoretical and practical charting curves of the adaptive
factors, that the result corresponding to the three-segment function is superior
to those corresponding to the two-segment function and the exponential func-
tion. The reason is that the three-segment function decreases the adaptive factor
quickly when the errors of the predicted state increase and gives the signifi-
cant outlying predicted state zero factor; this kind of outlying predicted state
from the kinematic model does not have any effect on the filtering results; see
the second, third and fourth columns of Table 2.1 (AKF1, AKF2 and AKF3),
respectively.

2.6 Comparison of Two Fading Filters and Adaptively Robust
Filter

In order to control the influences of prior state errors or kinematic model errors on
the present estimated state parameters, the fading filters, using the fading factors to
restrict the memory length of Kalman filter and to make the most use of present mea-
surements, were developed in the field of statistics as early as the 1960s and 1970s
(Fagin 1964; Sorenson and Sacks 1971). The basic properties of the fading filter
have been analysed, and the abilities in controlling the influences of the kinematic
model errors on the state parameter estimates and the possibly existing problems in
the practical applications have been discussed, respectively (Yang and Gao 2006c).
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2.6.1 Principles of Two Kinds of Fading Filters

Assume that the estimated state vector and the residual vector are, respectively,
X̂k−1 and VX̂k−1

at epoch tk−1; the corresponding re-estimated state vector of Xk−1

by using new measurement vector Lk at epoch tk is denoted by ˆ̂Xk−1; then the
corresponding error equations are, respectively,

VX̂k−1
= ˆ̂Xk−1 − X̂k−1, (77)

ŵk−1 = X̂k − �k,k−1
ˆ̂Xk−1. (78)

The fading filtering result is the same as (10).
If the covariance matrix of the estimated state vector X̂k−1 at epoch tk−1 is

inflated, and the X̂k−1 is treated as a stochastic vector which is like the observa-
tional vector, then the corresponding risk function is like (Yang and Gao 2006c)

�(k) = VT
k �−1

k Vk + 1

λk
VT

X̂k−1
�−1

X̂k−1
VX̂k−1

+ ŵT
k �−1

wk
ŵk = min, (79)

where λk is the fading factor which satisfies λk ≥ 1. The corresponding covariance
matrix �X̂k−1

follows:

�Xk
= λk�k,k−1�X̂k−1

�T
k,k−1 + �Wk , (80)

where �X̂k−1
is the covariance matrix of the state estimated at epoch tk−1, which

results in fading filtering.
The obvious difference between the fading filter and the standard Kalman filter

is that the prior state covariance matrix in the fading filter is inflated by λk times in
order to reduce the contribution of the prior state and strengthen the contribution of
the present measurements on the last state estimate.

Another fading filter is based on the following risk function:

�(k) = VT
k �−1

k Vk + VT
X̂k−1

�−1
X̂k−1

VX̂k−1
+ 1

λk
ŵT

k �−1
wk

ŵk = min . (81)

Then

�X̄k
= �k,k−1�X̂k−1

�T
k,k−1 + λk�Wk . (82)

The two fading filters above are very similar, and both of them are different from
the standard Kalman filter with the risk function (8) or

�(k) = VT
k �−1

k Vk + VT
X̂k−1

�−1
X̂k−1

VX̂k−1
+ ŵT

k �−1
wk

ŵk = min . (83)



70 Y. Yang

The key problem of fading filter is to construct a reasonable fading factor. Two
kinds of fading factors, based on the optimization theory, are established (Fagin
1964; Fang 1998), one of which is expressed as

λk = max{1,
1

n
tr(NkM−1

k )}, (84)

where tr[·] denotes the trace of matrix. Mk and Nk are defined as

Mk = Ak�k,k−1�X̂k−1
�T

k,k−1AT
k , (85)

Nk = �V̄k
− Ak�Wk AT

k − �k, (86)

where �v̄k is the covariance matrix of the predicted residual vector V̄k (Yang et al.
2001; Yang and Xu 2003):

�V̄k
= E(V̄kV̄

T
k ). (87)

Usually �v̄k is calculated by windowing estimation method (Xia et al. 1990), similar
to the Sage filtering (Yang and Xu 2003), that is,

�̂V̄k
= 1

k − 1

k∑
i = 1

V̄iV̄
T
i . (88)

One simpler expression of (84) is defined as follows (Sorensen and Sacks 1971):

λk = max{1, tr(Nk/Mk)}. (89)

Theoretically, the fading factor λk above is optimal. Increasing the predicted
residual vector V̄X̄k

will increase the covariance matrix �v̄k based on (88) and results
in an optimal fading factor λk.

Formula (88) can be improved as (Fang 1998)

�V̄k
=

⎧⎪⎨
⎪⎩

λk−1v̄k v̄T
k

1+λk−1
, k > 1,

1
2 v̄0v̄T

0 , k = 1,

(90)

where v̄0 is the predicted residual vector when k = 0.
The improved �v̄k expressed by (90) is more sensitive than (88) in reflecting the

kinematic model errors at present epoch, since �v̄k in (90) does not average the
historical information, which uses the present information directly.
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airplane movement

2.6.2 Comparison of Fading Filter and Adaptive Filter

The adaptively robust filter mentioned above is intermediate between fading filter
and standard Kalman filter. It does not distinguish the errors of X̂k−1 from the kine-
matic model errors. It treats the predicted state vector Xk as a whole and adopts the
principle that αkVT

Xk
�−1

Xk
VXk

is a minimum, in which the adaptive factor αk changes

between [0, 1]. When the kinematic model error increases or the vehicle movement
is in an unstable state (Fig. 2.10), αk is smaller than 1 or even equals 0. When
the kinematic model error is small enough, αk equals 1, and the adaptive filtering
changes into the standard Kalman filtering.

Analysing the adaptively robust filtering and fading filtering, we find that the
primary differences are as follows:

1. The adaptively robust filtering adopts the principle of robust estimation, and it
can control the influences of the measurement outliers on the estimated state
vector.

2. The adaptive factor αk acts on the covariance matrix of the predicted state vec-
tor Xk, while the fading factor acts on the covariance matrix of the previous
estimated state vector X̂k−1.

3. In the fading factor, the matrix Nk expressed by (86) may be indefinite, which
usually leads to the failure of the filter. If the adaptive filter is expressed by (14),
the adaptive factor can be changed in [0, 1]. If the adaptive filter is expressed
by (15) and (16), then the adaptive factor can be changed in [0, 1]. The adaptive
factor is determined by observational information and state predicted informa-
tion, which is capable of adapting in real time. Because the adaptive factor is
constructed by the discrepancy between the predicted state vector and the esti-
mated state vector by measurements, it has strong adaptation ability and real time
flexibility.
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2.6.3 Actual Computation and Analysis

The actual data was collected by using two Trimble 4000SSI receivers mounted
on an aircraft. To analyse the roles of the adaptive factors in the adaptive filter-
ing, the highly precise results from double-differenced carrier measurements were
used as “true values” to compare with the results from the code measurements. The
constant-velocity model of the Kalman filtering was employed. The initial variances
for positions, velocities and C/A-code were selected separately as 0.2 m2, 9 × 10−5

m2/s2 and 1.0 m2, respectively. The spectral density for velocities was chosen to be
0.01 m2/s2. The selected kinematic model covariance matrix was the same as that
used in Jazwinski (1970) and the following three schemes were carried out:

• Scheme 1: Standard Kalman filtering (SKF)
• Scheme 2: Fading Kalman filtering (FKF)
• Scheme 3: Adaptively robust Kalman filtering (ARKF)

The errors of the X axis of the three schemes relative to the “true values” are
plotted in Figs. 2.11, 2.12 and 2.13. Because the errors in the X, Y and Z axes are
similar, only the errors of the X axis are given. The comparison of RMS is shown in
Table 2.2.

From the calculation results above, we find that

1. The influences of the disturbances during the flight on the standard Kalman
filtering are very significant; see Fig. 2.11 and Table 2.2.

2. From Figs. 2.11 and 2.12 and Table 2.2, we find that the fading filtering can
control the influences of the kinematic model disturbances on the navigation
results to a certain extent, and the results are obviously superior to the standard
Kalman filtering.

3. The results of adaptively robust Kalman filtering are slightly superior to the fad-
ing filtering. The adaptively robust Kalman filtering can not only control the
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Table 2.2 Comparison of RMS (unit: m)

CKF FKF ARKF

X 2.006 1.415 1.331
RMS Y 1.338 0.759 0.675

Z 1.936 1.539 1.452

influences of the kinematic model disturbances but also control the influences of
the measurement outliers on the navigation results; see Fig. 2.13 and Table 2.2.
The results of the adaptively robust filtering are very stable and robust, and the
calculation is very flexible.

In conclusion, the fading filtering can control the influences of the kinematic
model disturbances on the navigation results to some extent, and its results are obvi-
ously superior to standard Kalman filtering. The fading filtering uses the fading
factor to inflate the covariance matrix of the estimated state vector at the former
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epoch in order to reduce the influences of the state model errors on the new esti-
mated results, but it is difficult to distinguish the model errors from the errors of
the former estimated state vector. When the disturbances of the kinematic model are
large enough, it is difficult to control their influences by the fading factor λk.

2.7 Comparison of Sage Adaptive Filter and Adaptively Robust
Filter

In the adaptive Kalman filtering algorithms, use of the Sage–Husa filter (Sage and
Husa 1969) is very popular for approaching the variance–covariance matrices by the
windowing method (see Jazwinski 1970) and keeping a good consistency between
the predicted residuals and the corresponding statistics. A windowing approach of
innovation-based adaptive estimation has been studied by Mehra (1970). It makes
the covariance matrices of the observation equation and the state errors adapt to the
observation information (Mohamed and Schwarz 1999).

The principle of the Sage adaptive filter is

�(k) = VT
k �̂

−1
k Vk + VT

Xk
�̂

−1
Xk

VXk
= min, (91)

where �̂k and �̂Xk
are estimated by window method.

If the covariance matrix of the current observational errors is computed by the
innovation vectors from the previous m epochs, then the adaptive filter is called IAE
(innovation-based adaptive estimation) filter. If the covariance matrix is computed
by the residual vectors, then the adaptive filter is called RAE (residual-based adap-
tive estimation) filter. These two adaptively windowing estimations have appeared
many times in the literature (Mohamed and Schwarz 1999; Wang et al. 1999; Hu
and Ou 1999).

2.7.1 IAE Windowing Method

Suppose that the observational errors are normally distributed. If the width of mov-
ing windows is chosen as m, the estimators �̂Vk

of the covariance matrix �Vk
can

be given by

�̂Vk
= 1

m

m∑
j = 0

V̄k−jV̄
T
k−j. (92)

Considering (24) we have the relation of the covariance matrices of the measurement
vector, predicted residual vector and predicted state vector as

�k = �Vk
− Ak�Ak

AT
k . (93)
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Substituting (92) into (93), we obtain the covariance matrix �̂k of observation
information at epoch tk as

�̂k = �̂Vk
− Ak�̂Xk

AT
k . (94)

2.7.2 RAE Windowing Method

Similar to (92), the covariance matrix of the observational residual vector Vk can be
expressed as

�̂Vk = 1

m

m∑
j = 0

Vk−jVT
k−j. (95)

From (95), we can estimate the covariance matrix �k of the observational vector at
epoch tk as

�̂k = �̂Vk + Ak�̂X̂k
AT

k . (96)

In order to estimate adaptively �̂k from (96), �̂X̂k
and residual vector Vk at epoch

tk are required, while to estimate �̂Xk
we must first have �̂k. Therefore, the covari-

ance matrix of the observational vector at epoch tk can only be computed using the
measurement residuals from the previous m epochs before tk−1:

�̂Vk−1 = 1

m

m + 1∑
j = 1

Vk−jVT
k−j. (97)

Then (96) can be changed into

�̂k = �̂Vk−1 + Ak−1�X̂k−1
AT

k−1. (98)

After having �̂k, the weight matrix, Pk, of the observational vector at epoch tk is
computed.

Comparing the IAE estimators (92) and (93) with the RAE estimators (97) and
(98), we can make following inferences:

1. The covariance matrix �̂k estimated by IAE includes the errors of predicted state
vector Xk. The larger the error of Xk, the larger the error of V̄k, which leads to a
poor reliability of the covariance matrices �̂V̄k

and �̂k.

2. The covariance matrix �̂k estimated by RAE is indeed the covariance matrix
�̂k−1 at epoch tk−1. In order to compute �̂V̄k

and �̂k by using the residual vec-

tor Vk, we have to compute X̂k at first, while to compute X̂k we must have �̂k.
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Thus we have to use the residuals before the epoch tk−1. The reliability of this
prediction depends on the consistency between the measurement accuracy of
the current epoch and those of the previous epochs. Otherwise, the representa-
tion and reliability of the covariance matrix from this prediction can hardly be
ensured.

3. The covariance matrix �̂k estimated by IAE is likely to be negative-definite, that
is, the covariance matrix �̂V̄k

is possibly smaller than Ak�Xk
AT

k .

4. In general, the covariance matrix �̂V̄k
computed from (92) is far smaller than

�̂V̄k
computed from (90).

5. The computation of �̂k based on IAE or RAE needs the measurement residuals
or the innovation vectors from the previous m epochs, which increases the stor-
age load of previous information. In addition, the width of moving window m is
difficult to determine.

6. The covariance matrix �̂k computed from (93) or (96) is an average of previous
accuracy information, which is almost impossible to use to describe the undula-
tions of the observations at the present epoch. So this kind of adaptive estimation
is difficult to use for realizing a real self-adaptation.

7. To estimate the covariance matrix �̂k whether using IAE or RAE requires that
observational vectors not only have the same dimension at all epochs but also be
the same observation type. Otherwise it is impossible to compute the covariance
matrix �̂k using (93) or (96). It is a fatal weakness of IAE or RAE to estimate
�̂k. In turn, it makes IAE or RAE hard to apply in kinematic positioning or
navigation.

2.7.3 The Problems of the Windowing Estimation for Covariance
Matrix of Kinematic Model

Let the correction vector of the predicted state vector be given by �Xk; then

�Xk = X̂k − Xk. (99)

It is easy to deduce that

�Wk = ��Xk + �X̂k
− �k,k−1�X̂k−1

�T
k,k−1. (100)

It should be noted that E(�Xk) = 0; then the covariance matrix of �Xk can be
expressed as

�̂�X = 1

m

m∑
j = 0

�Xk−j�XT
k−j. (101)

The estimate �̂Wk of �Wk can be obtained as
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�̂Wk = �̂�Xk + �X̂k
− �k,k−1�X̂k−1

�T
k,k−1. (102)

The estimation of �̂Wk with (102) encounters the following problems: (1) the
expression of �̂Wk includes the covariance matrix �

X̂k
of the state parameter esti-

mates at epoch tk; however, the computation of �
X̂k

needs �̂Wk ; (2) the expression

of �̂Wk includes �̂�Xk , which is computed by using the �Xj = X̂j − Xj from m

epochs and involves X̂k − Xk at epoch tk which also needs �̂Wk ; (3) even if we can
estimate �̂�Xk−1 and �̂Wk−1 using the previous �Xj of m epochs from epoch tk−1

and take the latter as an approximation of �̂Wk , it is hard to make �̂Wk adapt to
the real kinematic noise level of the motion of the vehicle because the state distur-
bance at epoch tk cannot be reliably reflected by the disturbances from the previous
m epochs. It is the same case that �̂�Xk−1 estimated with the average of �Xj�XT

j
of m epochs cannot reflect the state noise level at epoch tk, especially when there is
a notable sudden change in state.

In order to avoid the problems mentioned above, we directly estimate �̂Wk .
Considering (4), (8) and (20), we express �Xk as

�Xk = −KkV̄k. (103)

Then

��Xk = Kk�V̄k
KT

k . (104)

Once the estimate of �̂V̄k
is obtained with (92), we can estimate ��Xk as

�̂�Xk = Kk�̂V̄k
KT

k . (105)

In the stable state, �̂Wk can be approximately substituted by �̂�Xk , that is,

�̂Wk = Kk�̂V̄k
KT

k . (106)

It should be mentioned that there exists another pair of contradictions in the above
adaptive filtering process. Increasing the covariance matrix of state noise using the
adaptive estimation is equal to decreasing the covariance matrix of observation
noise, and vice versa. So if �Wk and �k are increased or decreased at the same
time, a contradiction arises, which sometimes makes an infinite loop and leads to
divergence.

2.8 Some Application Examples

Example 1. A flight experiment is chosen as an example. The data sets were col-
lected by using Trimble 4000SSE on a flight (Yang et al. 2001a, b). The available
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measurements are C/A-code, P2-code pseudoranges, L1 and L2 carrier phases and
Doppler measurements with 1s data rate. The rover receiver was mounted on an
aircraft, and the reference receiver was fixed at a site about 1 km from the initial
aircraft location. After about 10 min static tracking, the aircraft took off, and the
flight time was about 90 min. The flight states have two notable sudden changes,
one is close to epoch 1,000 since the plane takes off and the other is between epoch
3,000 and 4,000 since the flight turns round.

The double-differenced C/A-code and P2-code measurements are employed in
the test performance. The constant-velocity model of Kalman filter is employed. An
initial variance of 0.2 m2 for positions, of 9 × 10−6m2s−2 for velocities, of 1 m2

for code measurements, and with spectral density of 0.2 m2s−3 for velocities are
selected. The dynamic model covariance matrix is chosen as (Schwarz et al. 1989)

�t�Wt�
T
t =

⎡
⎣

1
3 Q2�t3 1

2 Q2�t2

1
2 Q2�t2 Q2�t

⎤
⎦ ,

where Q2 denotes the spectral density for velocities and �t denotes a sampling time
interval.

The highly precise results from double-differenced carrier measurements are
used only as “true values” for comparing with the results from the code measure-
ments, in which the ambiguities are resolved on the fly using LAMBDA method
(Teunissen et al. 1997). The following two schemes are performed:

• Scheme 1: Standard Kalman filtering, i.e. αk= 1 and P̄k = Pk; see Fig. 2.14
• Scheme 2: Adaptive Kalman filtering, in which the adaptive factor αk is deter-

mined by (73) and P̄k = Pk; see Fig. 2.15

Figures 2.14 and 2.15 show that the two unstable states of the flight are obviously
reflected in the results of the standard Kalman filtering (Fig. 2.14) and the adaptively
robust filter does resist the influences of the dynamic model errors (Fig. 2.15).
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Fig. 2.14 Standard Kalman
filtering
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Fig. 2.16 Trajectories by differential positioning (right), adaptively robust filtering (middle) and
receiver navigation (left)

Example 2. Road information updating by GPS: A GPS receiver is mounted on
a vehicle, and a referenced GPS is fixed on a known station (Yang et al. 2004). The
pseudorange measurements are employed in the test. Two schemes are performed:

• Scheme 1: Differential GPS positioning
• Scheme 2: Adaptively robust filtering

The two kinds of results and the navigation trajectory results are shown in an
image map with the scale 1/50,000; see Fig. 2.16.

Figure 2.16a, b explicitly shows that the receiver navigation results and the dif-
ferential positioning results have significant systematic errors. If the differential
measurements number is less than the number of states, the differential positioning
method will not give any position result or give an outlying result. The adaptively
robust filtering usually gives reasonable results.

Theoretical analyses and many applications have illustrated that the adaptively
robust filter with the corresponding adaptive factors and learning statistics can not
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only resist the influences of the measurement outliers but also have a strong ability to
control the influences of the state disturbances. It is flexible in computation because
the adaptively robust filter is very similar to the standard Kalman filter.

The adaptively robust filter can be applied in some other fields, for example, in
crustal deformation, in which the adaptive factor can be used with the geophysical
deformation model information, and the robust equivalent weights can be employed
with the repeated measurements (e.g. GPS).
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3.1 Introduction

Airborne measurement of gravity has long been a goal for geodesy and geophysics,
both to serve geodetic needs (such as geoid determination) and in order to provide
efficient and economic mapping of gravity anomalies for geophysical exploration.
Although airborne gravimetry has been attempted since the 1960s (LaCoste 1967), it
is only in the 1990s, with the development of carrier-phase kinematic GPS methods,
that the accuracy has reached a useful level. In later years new gravity acceleration
sensors and improved GPS processing methods have resulted in airborne survey
accuracies of 1 mGal (10–5 m/s2) or less at a resolution of a few kilometers for
several commercial operators (Williams and MacQueen 2001), typically operating
in relatively small regions for geophysical exploration and flying during optimal
conditions (e.g., at night when turbulence is minimal). For geodesy, however, the
need for airborne gravity is more large scale, with airborne gravity providing not
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only an obvious means of gravity field data over large, inaccessible regions, such as
polar and mountainous areas, but also an opportunity for seamless surveys across
land and marine areas, giving the possibility of accurate geoid models across the
coastal zones, useful for both geodetic surveying and oceanographic determination
of mean dynamic topography.

The first long-range airborne gravity survey of a continental-scale region was the
airborne survey of Greenland in 1991–1992 by the group of the US Naval Research
Laboratory, in cooperation with NOAA, NIMA, and the Danish National Survey
(Brozena 1992). The survey reached an estimated accuracy level of 4–5 mGal at
12–15 km resolution and was flown at high altitude (4,100 m) and relatively high
speed with a large, long-range P3 aircraft. The NRL airborne gravity activities have
since been continued and improved in accuracy, with major surveys in 1992–1999
covering large parts of the Arctic Ocean, with an accuracy level of around 2 mGal
for the later years (Brozena et al. 1996). Also Russian operators have been per-
forming routine airborne gravity observations, especially over Antarctica and the
Arctic, but early surveys such as the work of the Russian Antarctic Expeditions
in the 1980s and 1990s (Aleshkova et al. 2000) and the Polar Marine Geological
Research Expeditions (PMGRE, Lomonosov) in the Arctic did not apply kinematic
GPS methods (positioning was instead based on barometric heights and radion-
avigation systems), and accuracies were often quite low (5–10 mGal or more).
Figure 3.1 shows some of the typical aircrafts used in the 1980–1990s large-aircraft
geophysical surveys in the Arctic and Antarctica. Operation of aircraft of this size
obviously limited early applications of airborne gravimetry to large countries and
organizations.

Implementation of airborne gravity survey systems in smaller aircrafts was done
by several research groups in the 1990s, as well as by several commercial com-
panies. Some first applications with modern kinematic GPS positioning were the
CASERTZ Antarctic Program (Bell et al. 1992) and the airborne gravity survey
of Switzerland (Klingele et al. 1995). In parallel with this several commercial
companies such as Carson Geophysics and LCT developed airborne gravity surveys
based on smaller aircrafts such as the DHC-6 Twin-Otter or the Cessna Caravan
(Fig. 3.2).

Airborne gravity at 1–2 mGal r.m.s. accuracy level in small aircrafts is now fully
operational and allows the collection of high-quality airborne gravity data at a typ-
ical resolution around 4–6 km. Some private companies, using specially developed

Fig. 3.1 Left: Orion P-3 aircraft used in the US NRL airborne gravity program; right: IL-76 geo-
physical laboratory used in the PMGRE Russian polar airborne gravity program. Photos courtesy
J. Brozena (NRL) and M. Sorokin (PMGRE)
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Fig. 3.2 Twin-Otter (left) and Cessna Caravan (center) are the most popular aircrafts used for
airborne gravity today, due to their excellent performance at low air speeds. Right picture shows
a typical cabin layout with power conditioner, GPS units, navigation display, and gravimeter in
protection box. DTU-Space photos (Jan Mayen Island and Mongolia)

gravity sensors (either modified airborne gravimeter systems, or custom-made, or
Russian INS-based systems) now routinely may obtain sub-mGal accuracies for
geophysical exploration purposes (Elieff and Ferguson 2008). For high-resolution
gravity field mapping, development and application of airborne gravity gradiome-
ters is currently a very active commercial development area for a couple of large
companies, as only the use of gravity gradients will allow the very high resolution
required for mining applications.

In this chapter we will outline some of the basic principles of airborne gravime-
try, with special focus on geodetic applications, and give some examples from recent
large-scale surveys. For geodesy, the main focus is more on absolute accuracy
and long-wavelength stability, since long-wavelength errors in gravity transform
to large geoid errors. For geophysical exploration, focus is mainly on the short-
wavelength performance, and ultimately making reliable detection and mapping of
small, elusive gravity signatures.

With the advent of geodetic satellites such as GRACE and GOCE, the geodetic
role of airborne gravity is very much to fill-in the intermediate wavelength bands
between satellite gravity (with resolution of hundreds of kilometers) and the resolu-
tion of a long-range airborne gravity survey, which could typically be in the 5–10 km
range depending on aircraft speed and the needed along-track filtering. For a rough
estimate of the variability of the geoid in this wavelength band, the Kaula rule can
be used to give an estimate of the omission errors. Based on the Kaula rule, the
r.m.s. geoid variation above harmonic degree nmax will be

σN ≈ 64

nmax
[m]. (1)

This corresponds for spherical harmonic degree 200 (the expected resolution of
GOCE) to around 32 cm r.m.s. and with an airborne survey of 10 km resolution
(harmonic degree 2,000) to 3 cm r.m.s. It should be pointed out, however, that the
Kaula rule is for the global average behavior of the gravity field and that typical
regions for an airborne survey could have a much higher local variability.
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3.2 Principles of Airborne Gravimetry

The basic principle of airborne gravimetry is relatively simple. Acceleration mea-
surements in an aircraft will be due to both gravitational attraction g and the
ficticious forces f due to vehicle movement, so an accelerometer triad will measure
an apparent force

f = g − r̈. (2)

If the position vector r of the aircraft is known at all times, e.g., from kinematic GPS,
the gravitational acceleration g can be found. Equation (2) only holds in an inertial
system of reference; in a rotating system, such as the conventional east, north, up
(E,N,U) local level system, the equation will be of the form

f = g − r̈ − � × � × r + 2� × ṙ + �̇ × r. (3)

Here the first correction term is the centrifugal force, and the last two terms are
the Coriolis and Euler terms. � is the rotation vector. Equations (2) and (3) are
also the basic equations for inertial navigation, where g is assumed known, and
the position and velocity instead found from measurements of f and � measured
(by ring laser gyros) or mechanically controlled and computed from position (by a
gyrostablilized platform). Alternatively both r and g can be determined by systems
aided by independent position measurements (e.g., by GPS), giving rise to inertial
vector gravimetry. We will not treat these issues here, as all systems applied for
gravimetry in practice until now only are concerned with the vertical component
(“scalar gravimetry”). A recent review of the principles of inertial navigation and
gravimetry can be found in Jekeli (2000).

For the vertical component, with a conventional change of the gravity and accel-
eration measurement coordinate axis to be positive down, Eq. (3) becomes of the
form

gD = aD − v̇U − (λ̇ + 2ωie)cosϕ · vE − ϕ̇ · vN , (4)

where ϕ and λ are latitude and longitude, respectively, and ω the sideral earth
rate. The Euler term has here been neglected (rotation rate assumed constant); the
centrifugal force due to earth’s movement is included in normal gravity.

In the commonly used gravimeter systems, the vertical acceleration measurement
is done on a gyrostabilized platform. Such a platform would never be perfectly
horizontal and have small tilts, which means that the measurement of aD will be
biased. Expressing the gravity gD as the sum of normal gravity γ and the free-air
anomaly �g,

gD = γ + �g = γ0 − ∂γ

∂h
H + �g ∼= γ0 − 0.3086 [mGal/m]H + �g, (5)
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and noting that gravity is always measured as a relative measurement, the funda-
mental formula for airborne gravity measurement becomes

�g = a − h′′ − δgeot − δgtilt − y0 + g0 − γ0 + 0.3086(h − N), (6)

with the notation

a: the measured acceleration along the vertical
h": vertical acceleration derived from GPS
a0: airport base reading (zero level of the gravimeter)
g0: airport reference gravity value
h: GPS ellipsoidal height
H: orthometric height
δgtilt: gravimeter platform tilt correction (due to the non-verticality of the

acceleration sensor)
δgeot: Eotvos correction (due to the movement of the platform over a curved,

rotating earth)
γ 0: normal gravity at sea level
N: geoid height

The advantage of formulating Eq. (6) by free-air anomalies is that �g opposed
to g itself only varies relatively weakly with height. It is a common misconception,
especially in geophysics, that the free-air anomaly refers to gravity at sea level;
free-air anomalies are in the modern view a full three-dimensional quantity, and
the variation of the free-air anomaly with altitude is to first order equivalent to the
vertical gravity gradient, which can vary strongly in mountainous topography. Since
heights in airborne gravimetry can be many kilometers, it is usually not sufficient
to use a constant free-air gradient (–0.3086 mGal/m), and the more exact height
dependence for normal gravity must be used:

γ = γ0 + ∂γ

∂h
· (H − N) + ∂2γ

∂h2
· (H − N)2, (7)

with the gradient terms slightly depending on latitude, with the first term –0.30877
(1 – 0.00242 sin2ϕ) and the second for the GRS80 reference field –0.75×10–7h2

[mGal/m2] for the GRS80 ellipsoid. The difference between the formulas at h =
4 km is more than 1 mGal and therefore significant. When gravity anomalies are
to be used for geoid determination, an atmospheric correction must also be applied.
This amounts to +0.87 mGal at sea level, but changes with height and is only +0.53
mGal at h = 4 km.

The Eotvos correction of the fundamental equation (6) contains a large heading-
dependent term and a smaller centrifugal force term and may on a sphere be
expressed as

δgeot = −2ω cosϕvE − (v2
N

+ v2
E

)/R, (8)
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where ω is the earth rotation rate, R the earth radius, ϕ the geographic latitude, and
vN and vE north and east velocity components. For a typical small-aircraft survey
speed of 140 knots (e.g., a Twin-Otter), this gives a correction of 1,127 mGal for an
E–W flight on the equator. Although large, the correction only changes slowly and
may be determined with kinematic GPS with high accuracy.

The off-level correction δgtilt is closely related to the mechanics of the gyrostabi-
lized platform with the gravimeter sensor. Figure 3.3 illustrates the basic principle.
Two horizontal accelerometers provide a measurement of apparent horizontal accel-
eration in two orthogonal directions x and y, but if the platform has tilt angles εx and
εy, the tilt error due to non-vertical measurement of gravity may be shown to be

δgtilt = a2 − q2

2 g
, (9)

with a =
√

a2
x + a2

y being the measured acceleration and q =
√

q2
E + q2

N the true

horizontal acceleration. The latter can be measured with GPS, and in principle δgtilt
can thereby be determined directly; however, the term is non-linear and therefore
subject to a serious bias in connection with the necessary filtering. An alternative
formulation of the tilt correction problem may be found in Olesen (2002), where
a careful modeling of the platform attitude errors gives more linear tilt correction
errors.

The careful modeling of the tilt correction is the key for bias-free airborne grav-
ity; in principle most gravimeter sensors, especially of the LCR type, show very low
drift (Fig. 3.4). With proper modeling of the correction terms there is therefore in

Fig. 3.3 Principle of gyrostabilized platform for the LCR gravimeter. From Valliant (1991)
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Fig. 3.4 Example of gravimeter drift of an LCR gravimeter (S-99) during 2 month-long airborne
gravity campaigns in Mongolia (DTU-Space)

principle no specific need for the widespread use of crossover adjustment of sur-
vey results; the sensor by itself is inherently stable at the 1-mGal level. In practice,
however, crossover adjustment may eliminate residual, unmodeled errors and often
provide the only realistic estimate of survey accuracy since comparisons to ground
data are complicated by upward continuation errors.

Other errors include internal measurement and calibration errors, especially the
cross-coupling error of lever-beam-type gravimeters such as the LCR S-type marine
gravimeter. These corrections are specific to the individual instruments and usually
computed in real time, based on in situ calibrations; for details see Valliant (1991).
Other sources of errors are in the measurement of acceleration itself; LCR uses a
combination of beam drift and spring tension for an overdamped beam, both subject
to calibration and unmodeled nonlinearities.

Modern INS-grade accelerometers, such as the ones that were used in the Russian
GT-1A gravimeter system (marketed in the west by Canadian MicroGravity) and
the Canadian AirGrav system (Sander Geophysics), do not show cross-coupling
and related errors. With enhanced INS-style processing and enhanced linearity and
sensor performance, such instruments currently provide some of the best results
for airborne gravity and may even be used for non-level “draped” survey flights
(Studinger et al. 2008). Long-term sensor drift stability can, however, be a major
issue for INS-based instruments, with drifts up to many mGal for a flight, as seen
in early experiments with strapdown inertial measurement units for gravimetry
(Glennie and Schwarz 1999; Glennie et al. 2000).

3.3 Filtering of Airborne Gravity

Inherent to all types of airborne gravity is the need for filtering. GPS can just not
measure the double derivative of GPS height h" in Eq. (6) with sufficient accuracy.
The terms a and h" are typically two orders of magnitude larger than the wanted
quantity �g; for an example see Fig. 3.5. The magnitude of the ambient vertical
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Fig. 3.5 Example of vertical accelerations with and without weak filtering for a smooth flight
(Twin-Otter over Disko Bay, Greenland). x-axis is time in seconds, y-axis acceleration in mGal

accelerations, and inherently the accuracy of airborne gravity, is highly dependent
on aircraft type, autopilot performance, and especially the degree of turbulence.
Commercial airborne surveys for geophysical exploration are thus often flown at
night, where many regions experience more stable air; obviously low-level night
flying can be quite dangerous and for large-scale surveys often impossible due to
airport restrictions and logistics.

The filtering of airborne gravity is basically a trade-off between resolution and
accuracy and must be applied consistently on all terms in Eq. (6). A zero-phase filter
is required to avoid shifting of anomalies, and popular types include combinations
of forward–backward RC or Butterworth filters or more advanced frequency domain
filters. The advantage of the RC and Butterworth filters is that they are very simple
sequential filters, readily implemented in just a few lines of code. An example of a
typical filter response is shown in Fig. 3.6. For more smooth flight conditions LCR
meters are typically processed with filter resolutions around 150–160 sec, corre-
sponding to a 4–5 km resolution (half-wavelength). For comparison, the INS-based
gravimeters are typically processed with filters at resolution around 100 sec. This
resolution level tends to be the shortest level of filtering used in practice; for shorter
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Fig. 3.6 Example of a triple forward/backward Butterworth typical filter for turbulent conditions
(200 sec)
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filters GPS vertical acceleration errors often rapidly increase beyond 1 mGal.

3.4 Some Results of Large-Scale Government Airborne Surveys

This section outlines results of some selected large-scale airborne surveys covering
very different regions of the earth. We use the internal crossover statistics as the
indicator for internal accuracy. For the DTU-Space (formerly DNSC) surveys, this
crossover analysis is used only for error studies; we find that the airborne gravity
performance is sufficiently stable so that no crossover adjustment is necessary in
the final results (Olesen et al. 2000). This has large practical advantages, limiting
the need for “cross-tie” flights and minimizing the inherent aliasing of errors in the
crossover adjustment, an error source of special worry in geoid determination.

The first example is the major airborne surveys of Arctic Ocean regions, carried
out in the years 1992–2003 by the NRL, USA, using a large P-3 Orion aircraft
(Brozena et al. 1996), and DTU-Space (in cooperation with Canada and Norway),
using a Twin-Otter (Forsberg et al. 2001). Figure 3.7 shows the airborne tracks, with
all marine flights done at low elevation. Both groups used a LCR model S marine
gravimeter, modified by Ultrasys.

Tables 3.1 and 3.2 show the results, based on the statistics that are for the
crossovers; therefore the estimate of track noise, assuming uncorrelated errors, will
be the r.m.s. divided by

√
2. An accuracy of just below 2 mGal is demonstrated.

The increasing accuracy of the NRL results from the large-aircraft surveys in the
central Arctic Ocean illustrates the improved performance due to the development
of GPS and processing. The error results for both data sets have been confirmed by
extensive comparisons to ground data.

Table 3.3 shows some results from surveys which DTU-Space has carried out
over other regions of the world (Olesen and Forsberg 2007). The error estimates are
based on internal crossover errors and by comparison to GRACE data (GGM03S,

Fig. 3.7 Flight tracks of DTU-Space (right) and NRL (left) Arctic Ocean and Greenland marine
airborne surveys
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Table 3.1 Crossover errors for the NRL Arctic surveys (J. Brozena, personal communication)

Data set
Number of
x-overs r.m.s. misfit r.m.s. error

1998 86 1.8 1.3
1999 74 2.5 1.8
2000 96 2.8 2.0
2001 66 2.6 1.8
2002 101 2.6 1.8
2003 46 2.1 1.5

All years 670 2.5 1.8

Table 3.2 Crossover errors
for the DTU-Space Arctic
surveys

Data set r.m.s. misfit r.m.s. error

1992 4.5 3.2
1994 3.0 2.1
1995 4.1 2.9
1996 2.0 1.4
1997 1.9 1.3
1998 2.6 1.8
1999 2.2 1.6

Table 3.3 Crossover error statistics (mGal) for different large surveys

Data set
No. of
crossovers

Line spacing
(km)

r.m.s.
crossover

Inferred r.m.s.
error

Bias to
GRACE

Bias to
EGM08

Malaysia
2002–2003

1965 5 2.6 1.8 –0.8 0.1

Mongolia
2004–2005

504 18 3.1 2.2 0.5 0.2

Ethiopia
2006–2007

386 18 3.7 2.6 0.6 0.4

Korea
2008–2009

449 10 2.3 1.6 2.4 0.8

Tapley et al. 2007) and combination models (EGM08, Pavlis et al. 2008). The
surveys include Malaysia (in cooperation with JUPEM, Malaysia), Mongolia (in
cooperation with Mongolian Geodetic Survey, MonMap, and NGA, USA), Ethiopia
(in cooperation with Ethiopian Mapping Agency and NGA), and South Korea (in
cooperation with University of Seoul). All surveys were challenging large-scale
operations over mountainous areas with highly changing weather and turbulence
conditions and were flown by either Twin-Otter or Cessna Caravan aircraft. The
results show that airborne gravity routinely gives results at 2 mGal accuracy and,
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especially, that data are essentially bias-free, making them suitable for geoid deter-
mination (some areas like Korea are too small for GRACE to give a reliable bias). It
should be noted that the airborne survey results rely solely on gravity ties to the ref-
erence airports; no crossover adjustment or other fitting procedures have been used,
and no continuation to a common height level has been done (only Korea was flown
at near-constant altitude).

3.5 Downward Continuation of Airborne Gravimetry

With airborne gravity data available as along-track filtered gravity values at altitude,
most geodetic applications such as geoid determination would require the gravity
data to be downward continued, either to the surface of the terrain or the geoid.
This is especially important if some surface data already exist; then many geodetic
applications would in practice require a joint grid of gravity values to be made. This
can be quite a challenge, since the resolution and accuracy of the surface data might
be superior to the airborne data; on the other hand, over large regions, surface data
might be of varying quality and age and may often be biased. Airborne gravity is
well suited to detect such biases and – especially in the marine domain – make older,
doubtful gravity data useful again through an adjustment process, where bias-free
airborne data can be used to fix bias problems in marine surveys. An example of
such application of airborne gravity can be found in Forsberg et al. (2004).

When a dense and quality-controlled distribution of surface data exist, then sur-
face data may alternatively be upward continued. The use for this process would
typically be to provide independent gravity values at altitude, mainly for qual-
ity control of the airborne data, but could also be used directly for (quasi) geoid
computations at altitude, with a subsequent downward continuation to zero level.
This quasigeoid downward continuation is more stable than downward continuation
of gravity.

Upward or downward harmonic continuations of gravity data are applications of
classical geodetic boundary value problems and may be evaluated by many different
techniques (e.g., pointmass modeling, Fourier methods, or optimal estimation). For
an overview see the classical textbooks of Heiskanen and Moritz (1967) or Moritz
(1980).

The downward continuation of airborne gravimetry is especially required for the
typical large-scale airborne surveys, where flight line elevations may be changing
over a wide range dependent on the underlying topography and where already some
surface gravity data exist; in this case the method of choice would be least-squares
collocation, which is able to use all available data in a consistent way. After doing a
downward continuation, either to the geoid level or to the surface of the topography,
the airborne data may be handled by standard methods of physical geodesy, for e.g.,
geoid determination.

For the basic principle of airborne gravimetry downward continuation, let �g and
�g∗ be the gravity anomalies at altitude h and the geoid level (h = 0), respectively.
By taking the two-dimensional Fourier transform of �g,
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F(�g) =
∫ ∫

�g(x, y)e−i(kxx+kyy)dxdy, (10)

the gravity anomalies at the geoid are obtained by

F(�g∗) = ekhF(�g), k =
√

k2
x + k2

y . (11)

It is clear that noise in �g at larger wavenumbers kx and ky is strongly amplified
by this operation, and direct use of Fourier domain methods is thus mainly done for
upward continuation, not downward continuation. For a review of the use of Fourier
transformation methods in geodesy, see Schwarz et al. (1990).

To stabilize the downward continuation process by Fourier methods, it may be
utilized that the earth’s gravity field in general follows the Kaula rule. This empir-
ical spherical harmonic decay law implies for the power spectral density of �g to
proportionality with k–4. Assuming data noise to be white, the optimal Wiener filter
downward continuation operator (Nash and Jordan 1978) becomes of the form

F(�g∗) = F(�g)
ekh

1 + ck4
. (12)

Here c is a resolution parameter, depending on the ratio of noise to gravity sig-
nal covariance (Forsberg and Solheim 1988). In practice the c parameter is chosen
on an empirical basis to obtain a suitable smooth downward continued field; some
stabilization is implicitly originating gridding of the airborne gravity data onto a reg-
ular grid by collocation, since the collocation (grid) estimate by default generates a
smooth function, depending on assumed standard deviations of data.

The drawback of the FFT methods (and equivalent integral methods) is that vary-
ing altitudes of the airborne data are not easily taken into account, and existing
surface data cannot be readily utilized. Therefore least-squares collocation with full
spatial covariance models is the method of choice for downward continuation in
practice.

In least-squares collocation the gravity anomaly signal s at a ground grid point is
estimated from a vector x containing all available surface and airborne data by

ŝ = Csx[Cxx + D]−1. (13)

Covariances Cxx and Csx are taken from a full, self-consistent spatial covariance
model, and D is the (diagonal) noise matrix. Because the gravity field of the earth is
known to follow Kaula rule, it is important to select covariance models which have
an implied PSD decay in accordance with this. An example of such a self-consistent
covariance model on a spherical earth is the Tscherning–Rapp model (Tscherning
and Rapp 1974) and for a flat earth the simpler planar logarithmic covariance
model (Forsberg 1987). In the latter model, the gravity covariance between gravity
anomalies at two altitudes is of the form

C(�gh1 ,�gh2 ) = −
∑

k

αk log(Dk +
√

s2 + (Dk + h1 + h2)2), (14)
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where αk are weight factors combining terms relating to depth values (Dk = D +
kT), with the “free parameters” D and T taking the role analogous to the Bjerhammar
sphere depth of spherical collocation and a “compensating depth” attenuation fac-
tor. The attenuation of long wavelengths in the model is necessary when a spherical
harmonic reference model (EGM) is used. Figure 3.8 shows a typical example of an
empirical covariance function and the associated fit by planar logarithmic model. In
practice there is a rather large range of D and T parameters which could give a rea-
sonable fit to the data, and thus give more or less the same results of the downward
continuation.

For stabilizing the downward continuation, it is essential to use remove–restore
methods. This means that the gravity field is split into three terms

�g = �g1 + �g2 + �g3 , (15)

where the first term is due to a spherical harmonic reference field (e.g., EGM08
to a suitable degree), the second term due to the terrain, and the third term due to
the residual field. Only the residual terrain-corrected term �g3 is then processed
in the collocation downward continuation process, with the EGM and terrain terms
rigorously computed either at the airborne point locations (for the “remove” step)
or on ground (for the “restore”).

A suitable terrain correction type to be used is the RTM (residual terrain model)
effects. In this method the terrain is removed relative to a reference surface corre-
sponding to the average terrain surface already implicitly present in the EGM term
Δg1, cf. Fig. 3.9. The terrain effects of gravity both aloft and on the ground may
be readily computed by either prism integration techniques or Fourier methods, for
details see Forsberg (1984) or Schwarz et al. (1990). When applying a terrain reduc-
tion to the airborne gravity data, it is important to realize that the terrain effects must
be filtered with an equivalent filter to the one used for the airborne gravity process-
ing, e.g., with a filter as shown in Fig. 3.6. This means in practice that the results
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Fig. 3.8 Example of empirical covariance functions for gravity data in Mongolia and the fitted
covariance function to airborne data (D = 10 km, T = 49 km). The longer correlation length of
the airborne data is mostly due to the inherent filtering of the airborne data and the attenuation of
short-wavelength signals at flight altitude, but also contains signatures of “new” information at the
medium wavelengths. Terrain effects and EGM96 removed



96 R. Forsberg and A.V. Olesen

Fig. 3.9 Principle of the RTM terrain reduction. Topography above a smooth reference surface is
computationally removed and valleys filled at a reference density of 2.67 g/cm3 to smooth the data.
Integration by rectangular prism elements (right) is usually the method of choice

of a prism integration of dense measurement points along a flight track must be fol-
lowed by an along-track filtering process, where the speed of the aircraft must be
taken into account. It can therefore be quite a complicated setup to do the complete
downward continuation process.

In the downward continuation process by least-squares collocation, the airborne
gravity data represent along-track weighted averages, and the covariance functions
used in the least-squares collocation setup must in principle, therefore, also be sim-
ilarly filtered. A final major constraint in applying least-squares collocation for a
large region is that the number of equations to be solved in Eq. (13) may be exces-
sive. A practical solution to this can be to subdivide the area in question into blocks
(e.g., 1◦ × 1◦ blocks with a 0.5◦ overlap to neighboring blocks), then do collocation
on a blockwise basis, and finally stitch together the computed blocks. This works
usually well, in practice, for the downward continuation (but not for direct colloca-
tion geoid estimation), as the downward continuation process is essentially a (slight)
high-pass filtering operation, whereas the direct geoid computation by collocation
is a low-pass filtering operation, much more sensitive to the individual block biases.

3.6 Use of Airborne Gravimetry for Geoid Determination

With a successful downward continuation of airborne gravity data, and possible
merging with available surface gravimetry data, the computation of a geoid from the
airborne data is equivalent to a conventional geoid computation. Standard methods
of physical geodesy can therefore be applied, such as Stokes or Molodensky inte-
gration or Fourier methods. These methods all represent variants of the fundamental
Stokes integral for obtaining the geoid or quasigeoid, classically for the geoid

N = R

4πγ

∫ ∫
�gS(ψ)dσ . (16)

In practice when removing a spherical harmonic reference gravity field, the used
integral should use modified Stokes kernels, e.g., as the modified Wong–Gore kernel
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Smod (ψ) = S (ψ) −
N2∑

n=2

α (n)
2n + 1

n − 1
Pn cos (ψ), (17)

where

α (n) =
⎧⎨
⎩

1 for 2 ≤ n ≤ N1
N2−n

N2−N1
for N1 ≤ n ≤ N2

0 for N2 ≤ n
, n = 2, . . . , N . (18)

The coefficients α prevent the local gravity data to “override” the information inher-
ent in the longer wavelengths in the reference field, which is nowadays determined
with very high accuracy from GRACE.

The basic Stokes integral is readily implemented by fast Fourier transforms, e.g.,
in the “multiband spherical FFT” method, where formula (16) may be virtually
exactly evaluated on a sphere, assuming a regular grid in latitude and longitude
is available, e.g., from the downward continuation collocation. The basic equation
for the geoid determination is of the form

N3 = Smod,ref(ψ(ϕ,�λ)) ∗ [�g3(ϕ, λ) sinϕ] = F−1[F(Sref)F(�g sinϕ)], (19)

where ∗ is a space-domain convolution and F the two-dimensional Fourier trans-
form, for details see Forsberg and Sideris (1993).

3.6.1 Case Story of Mongolian Geoid

In the sequel we will use the Mongolian airborne survey 2004–2005 to illustrate a
practical geoid computation. The Danish National Space Center (now DTU-Space)
carried out the geoid project in cooperation with the Mongolian Administration
of Land Affairs, Geodesy and Carthography (A. Munkhtsetseg), MonMap (M.
Saandar), and the University of Bergen, Norway, with support from NGA, USA.
The primary purpose of the airborne survey was to provide data for global earth
gravity models (EGM08) as well as to provide data for a new geoid of Mongolia, as
part of the ongoing GPS modernization of the geodetic infrastructure.

The airborne gravity surveys (Fig. 3.10) were carried out using an Air Greenland
Twin-Otter in 2004 and a Cessna Caravan aircraft in 2005. A total of 420 flight hours
were flown at a track spacing of 10 nautical miles, with an estimated error of the
processed gravity anomaly at the flight level of 2.2 mGal (Table 3.3). Because of the
rough topography of Mongolia (Fig. 3.11), flight elevations of individual flight lines
varied between 2,100 and 4,800 m, necessitating a formal downward continuation.
This was done by least-squares collocation using the planar logarithmic covariance
function, as outlined in Section 3.5.

Figure 3.12 shows the processed airborne gravity anomalies at altitude. The
correlation of free-air anomalies to topography is evident
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Fig. 3.10 Airborne gravity survey tracks for Mongolia, showing the 2004 (western area) and 2005
(eastern) flights. Flight heights on individual lines range from 2,135 to 4,780 m

In Mongolia older surface data sets were also available, based on earlier Russian
and Mongolian gravimetry measurements (Fig. 3.13). The surface data had prob-
lems with biases, but were especially useful in supplementing the airborne data
along the borders where flights were not possible.

All gravity data were reduced by subtracting a spherical harmonic field to degree
360 (EGM96 blended with GRACE-derived field GGM02S), rigorously computed
as a function of latitude, longitude, and height and terrain effects removed by prism
integration using the RTM method. The results of this reduction process are shown
in Table 3.4. It can be seen that the terrain and EGM96-GRACE reductions very
nicely reduce both the data bias and the standard deviations. It is also evident
that the surface data are strongly biased, likely due to lack of information on the

Fig. 3.11 Topography of Mongolia from SRTM data. The elevations range from 4,500 m in
western Mongolia to 600 m in the easternmost plains
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Fig. 3.12 Free-air anomalies at flight altitude from the airborne gravity survey. Color scale is from
–75 to 75 mGal

Fig. 3.13 Location of surface gravimetry data in Mongolia. Thick dots mark the national refer-
ence points and small dots data from a GETECH compilation, available only as a 5′ Bouguer
gravity grid, and original data locations, from which free-air anomalies were back-interpolated
using SRTM data

gravity reference system; the surface data were therefore fitted to the airborne data
by subtracting the 12.9 mGal mean offset.

For the downward continuation by collocation, the planar logarithmic model is
used, and collocation solutions run blockwise in 1◦ × 1◦ blocks expanded with
a 0.6◦ × 0.8◦ border around the block. Standard errors were assigned to data as
follows: airborne gravity 2 mGal, GETECH surface data 3 mGal, and 1 mGal for the
national reference station data. Two basic collocation 3′-reduced free-air anomaly
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Table 3.4 Statistics of the gravity data reductions (mGal)

Data Mean Standard deviation

Airborne gravity data at altitude 17.1 25.9
Airborne minus EGM96/GRACE field 0.2 19.5
Airborne minus EGM96/GRACE and RTM 0.1 11.9
Effect of downward continuation to geoid 0.0 2.5
GETECH interpolated surface gravity data 9.0 19.0
Surface gravity minus EGM96 and RTM 12.9 11.4

grids at the topographic surface were produced: one using all data and one using
airborne data only, to study the effect of adding the surface data to the geoid. In
addition, the airborne gravity data alone were continued to a common height level
grid (3 km), in order to allow a consistent crossover error analysis. The computation
was done so that both airborne and surface were downward continued to sea-level
anomalies �g∗, i.e., the downward continued harmonic values, shown in Fig. 3.14.
Table 3.4 shows that the effect of continuation was relatively minor on average.

Using the reduced gravity data, gravimetric geoid models were subsequently
computed by the multiband spherical FFT method. A modified Wong–Gore Stokes
kernel (17) was used, so that only spherical harmonics above degree 40–50 were
allowed to modify the underlying GRACE reference field. This process results then
in the computation of the reduced quasigeoid at sea level ξ∗

3 , to which EGM96 (ζ 1)
and RTM terrain effects (ζ 2, Fig. 3.15) are added to give the final gravimetric quasi-
geoid (Fig. 3.16), after a correction for the difference of quasigeoid between zero
height and the terrain level (ζ – ζ ∗ ≈ –δg/γ .H). The statistics of the geoid “restore
steps” are shown in Table 3.5.

As two geoid solutions were done (one based on airborne gravity data only and
one based on both surface and airborne gravity data), the difference of these two

Fig. 3.14 Downward continued airborne gravity data and surface data (mGal)



3 Airborne Gravity Field Determination 101

Fig. 3.15 Terrain restore effects (ζ2 ) on the geoid, computed from a DEM by FFT (m)

Fig. 3.16 Computed gravimetric quasigeoid of Mongolia from airborne and surface data

solutions will show the changes of adding the (bias fitted) surface data. This is
shown in Fig. 3.17. It is seen that the differences are restricted to the border zones,
where airborne data were not available, and that the surface and airborne data are
otherwise consistent.

For an independent check of the geoid quality, GPS-leveling data points may be
used. In Mongolia a set of 58 GPS points on first-order leveling benchmarks were
available, giving independent quasigeoid values ζ = hGPS – Hnormal. The compari-
son statistics showed mean = 1.14 m and standard deviation = 0.20 m. These values
mainly reflect the datum offset of the Kronstadt (Baltic) leveling datum of Mongolia,
as well as known loop closing errors in the Mongolian first-order leveling network.
The GPS-leveling data are therefore not useful for airborne geoid validation.
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Table 3.5 Statistics of the geoid restore effects (m)

Geoid grid Mean
Standard
deviation

Fourier transformation of
reduced data

0.00 0.27

Terrain effects on geoid 0.01 0.28
Final quasigeoid –35.94 16.98

Fig. 3.17 Difference between geoid from all data and geoid from airborne data alone (m)

3.7 Conclusions and Outlook

Airborne gravity is a useful geodetic tool and is a cost-effective way to cover large
areas with medium-wavelength gravity data, especially for the purpose of geoid
determination, and to map major data gaps in the global terrestrial gravity database,
notably in tropical and mountainous regions, the coastal zone, and the polar regions
(especially Antarctica). With airborne gravity resolution typically in the range of
3–5 km and upward, the data provide a very useful augmentation of satellite grav-
ity data (GRACE and GOCE) in the spherical harmonic mid-wavelength bands
(degrees 90–2,160 and higher) and is a requirement for getting anywhere close to
the centimeter-geoid, unless dense surface gravity data are available.

The operational procedures and processing of the airborne gravity data are still
a major factor in determining gravity accuracy, and great care must be taken in,
e.g., modeling of platform tilt errors to obtain the near-bias-free results indicated
in some of the results shown in the present chapter. Some of these processing and
operational aspects are closely related to the commonly used LCR platform sys-
tem. For other systems with more advanced inertial-grade airborne gravity sensors
and more rigorous state-space error modeling, e.g., by Kalman filtering and optimal
smoothing, more robust and accurate results could be obtained. Such systems could
hopefully with time become more widespread and available and within economic
bounds of geodetic use.
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Ongoing developments of vector gravimetry, taking place in both the commer-
cial and science domains (e.g., Jekeli and Kwon 1999), could potentially make
geoid determination more accurate. This is especially true in border regions, where
flights close to or beyond a national border are frequently impossible. Unpublished
best commercial data on test measurements of horizontal gravity anomalies (i.e.,
deflections of the vertical) indicate potential accuracies at the 1–2 mGal level (cor-
responding to 0.2"–0.4" for the deflections). Such accuracies would be most useful
for border and line geoid determination, as geoid heights determined from deflec-
tions only require simple along-track line integrals of deflections and do not need
area integrals like Stokes integral.
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4.1 Introduction

The desire to understand the orbits of the planets has a history as long as that
of mankind. How and why the planets orbit around the Sun are questions in
two categories. One focuses on geometry and the other on physics. Johannes
Kepler (1571–1630) answered first the how with his laws of planetary motion in
Astronomia nova (1609). Isaac Newton (1643–1727) answered both the how and
why with his universal gravitation and laws of motion in Principia Mathematica
(1687).

Johannes Kepler found that, first, the orbits of the planets in our solar system are
elliptical, second, the area velocity (area swept by radius vector within unit time) of a
planet is a constant, and third, the ratio of the squares of the period with respect to the
cube of the radius is a constant. All three Kepler’s laws may be derived theoretically
with Newton’s laws of planetary motion.

The Keplerian orbit describes the satellite (or planet) motion under the attraction
of the central force of the Earth (or the Sun). It is obvious that for satellite orbit of the
Earth, the Keplerian orbit is the first approximation. Because of the complication of
the Earth’s gravitational field and the extraterrestrial disturbances, precise analytic
orbit theory is very difficult to derive. The first satellite was launched in 1957. The
first-order solution of the equation of satellite motion disturbed by geopotential per-
turbations was given by William Kaula (1926-2000) in Theory of Satellite Geodesy
(1966).

Recall Kaula’s solution to satellite motion under the influence of the geopotential
field. The equations of satellite motion are represented in an inertial coordinate sys-
tem according to Newton’s law. However, the geopotential function is represented in
the Earth-fixed system. To transform the geopotential function from the Earth-fixed
system to the inertial one, a so-called Kaula’s function is created, which is extremely
complicated and leads to an extremely complicated solution. Some expressions of
the solution are implicit. It is very difficult even to try to get the explicit expressions
of the C20 solutions from Kaula’s solution.

After Kaula’s theory, studies on orbit theory are mostly based on alternative vari-
ables and transformations partly due to the singularity problem in the solution. Many
scientists devoted themselves to the second-order orbit solution of geopotential dis-
turbances. The complexity of the theory is such that only a few people understand
the theory, and the theory, in turn, is rarely applied in practice. Apparently most stud-
ies of the orbit theory are focused on the solution of the geopotential disturbances.
Therefore, there exists a blank in the literature on the solution of extraterrestrial
disturbances.

Numerical orbit determination is developed directly to meet the needs of the
satellite missions and to overcome the problem caused by the missing of analysis
solutions of the equations of satellite motion. It appears that the numerical algo-
rithms are very robust and are not affected much by the obvious unphysical models
and by the singularity caused by the parameterisation of the problem.

The traditional adjustment model of the solar radiation used in numerical orbit
determination is investigated and considered not reasonable physically, and a new
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adjustment model is proposed in Xu (2004, 2007). Indeed, one of the ways to obtain
the solutions of the extraterrestrial disturbances of the satellite motion is found dur-
ing that investigation. However, it was not realised until 2007. After the solutions
of the extraterrestrial disturbances of the equation of satellite motion were found,
great efforts were then made to derive the related solutions of geopotential dis-
turbances. Thereafter, alternative solutions of the extraterrestrial disturbances were
found by using different means (also approximated potential function and Gaussian
disturbed equations in addition to discretisation). To simplify the solutions, the sim-
plified disturbed equations were proposed. To solve the problem of singularity, the
singularity-free theory was also developed. Thanks to the great research freedom
granted by GFZ, the complete solution of the orbit equation of motion was found.
Based on such a theory, the algorithms of orbit determination can be renewed; a
deeper insight into the physics of disturbances becomes possible and the way to a
variety of new applications and refinements is opened.

To describe a complete theory of the satellite orbit in a condensed way, perturbed
equations of satellite motion are discussed first (Sect. 4.2) after an introduction
(Sect. 4.1). Then singularity-free and simplified equations are given (Sect. 4.3). The
solutions of extraterrestrial disturbances, such as solar radiation pressure, atmo-
spheric drag and the disturbance of the Sun, the Moon and planets, are then given
(Sect. 4.4). Solutions of geopotential disturbances are given in Sect. 4.5. Numerical
and analytical orbit determinations are dealt with (Sects. 4.6 and 4.7) before
summary and discussions (Sect. 4.8).

The purpose of this chapter is to outline the solutions of the equation of satellite
motion. For further details, Kaula (1966/2001) and Xu (2008) are recommended.

4.2 Perturbed Equation of Satellite Motion

Satellites are attracted not only by the central force of the Earth, but also by the non-
central force of the Earth, the attracting forces of the Sun and the Moon and the drag
force of the atmosphere. They are also affected by solar radiation pressure, Earth
and ocean tides, general relativity effects and coordinate perturbations. Equations
of satellite motion have to be represented by perturbed equations. In this section,
after discussions of the perturbed equations of motion, emphasis is given to the
attracting forces and the order estimation of the disturbances.

The perturbed equation of satellite motion is described by Newton’s second law
in an inertial Cartesian coordinate system as

m�̈r = �f , (1)

where �f is the summated force vector acting on the satellite and �r is the radius vector
of the satellite with mass m. �̈r is the acceleration. Equation (1) is a second-order
differential equation. For convenience, it can be written as two first-order differential
equations as follows:
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d�r
dt

= �̇r
d�̇r
dt

= 1

m
�f .

(2)

Denoting the state vector of the satellite as

�X =
(�r

�̇r
)

, (3)

(2) can be written as
�̇X = �F, (4)

where

�F =
( �̇r

�f /m

)
. (5)

Equation (4) is called the state equation of the satellite motion. Integrating (4) from
t0 to t, one has

�X(t) = �X(t0) +
t∫

t0

�F dt, (6)

where �X(t) is the instantaneous state vector of the satellite, �X(t0) is the initial state
vector at time t0 and �F is a function of the state vector �X(t) at time t. Denoting the ini-
tial state vector as �X0, the perturbed satellite orbit problem turns out to be a problem
of solving the differential state equation under the initial condition as

{
�̇X(t) = �F

�X(t0) = �X0
. (7)

4.2.1 Lagrangian Perturbed Equation of Satellite Motion

If the force �f includes only the conservative forces, then there is a potential
function V so that

�f
m

= gradV =
(
∂V

∂x

∂V

∂y

∂V

∂z

)
=
(
∂V

∂r

∂V

∂ϕ

∂V

∂λ

)
, (8)

where (x,y,z) and (r,ϕ,λ) are Cartesian coordinates and spherical coordinates,
respectively. Denoting R as the disturbance potential and V0 as the potential of the
centred force �f0,



4 Analytic Orbit Theory 109

R = V − V0,
�f − �f0

m
= grad R, (9)

the perturbed equation of satellite motion (2) in Cartesian coordinates is then

dx

dt
= ẋ

dy

dt
= ẏ

dz

dt
= ż

dẋ

dt
= −μ

r3
x + ∂R

∂x
dẏ

dt
= −μ

r3
y + ∂R

∂y
dż

dt
= −μ

r3
z + ∂R

∂z

, (10)

where μ is the gravitational constant of the Earth. The state vector (�r, �̇r) of the
satellite corresponds to an instantaneous Keplerian ellipse (a,e,ω,i,�,M) (i.e. semi-
major axis a, eccentricity of the ellipse e, argument of perigeeω, inclination angle i,
right ascension of ascending node�, mean anomaly M). Using the relationships
between the two sets of parameters (for detail see Chap. 3 of Xu 2008), the perturbed
equation of motion (10) can be transformed into a so-called Lagrangian perturbed
equation system (see, e.g., Kaula 1966/2001):

da

dt
= 2

na

∂R

∂M
de

dt
= 1 − e2

na2e

∂R

∂M
−

√
1 − e2

na2e

∂R

∂ω

dω

dt
=

√
1 − e2

na2e

∂R

∂e
− cos i

na2
√

1 − e2 sin i

∂R

∂i

di

dt
= 1

na2
√

1 − e2 sin i

(
cos i

∂R

∂ω
− ∂R

∂�

)

d�

dt
= 1

na2
√

1 − e2 sin i

∂R

∂i

dM

dt
= n − 2

na

∂R

∂a
− 1 − e2

na2e

∂R

∂e

. (11)

On the basis of this equation system, Kaula derived the first-order perturbed anal-
ysis solution (see Kaula 1966/2001). In the case of a small e (e<<1), the orbit is
nearly circular, so that the perigee and the related Keplerian elements f and ω are not
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defined (this is not to be confused with the force vector �f and true anomaly f ). To
overcome this problem, let u = f +ω, and a parameter set of (a, i,�, ξ , η, λ) can be
used to describe the motion of the satellite, where

ξ = e cos ω

η = −e sin ω

λ = M + ω

. (12)

The related disturbed equations of motion can be derived (see Sect. 4.4.1.1 of Xu
2008); however, the new variables of (12) do not have clear geometric meanings.
Another alternative is to use the Hill variables (see, e.g., Cui 1990).

4.2.2 Gaussian Perturbed Equation of Satellite Motion

Considering the non-conservative disturbance forces such as solar radiation and
air drag, no potential functions exist for use; therefore, the Lagrangian perturbed
equation of motion cannot be directly used in such a case. The equation of motion
perturbed by non-conservative disturbance force has to be derived.

Considering any force vector �f=(fx, fy, fz)T in ECSF (Earth-Centred Space-
Fixed) coordinate system, one has

⎛
⎝ fx

fy
fz

⎞
⎠ = R3(−�)R1(−i)R3(−u)

⎛
⎝ fr

fα
fh

⎞
⎠ , (13)

where (fr, fα, fh)T is a force vector with three orthogonal components in an orbital
plane coordinate system, the first two components are in the orbital plane, fr is the
radial force component, fα is the force component perpendicular to fr and pointed in
the direction of satellite motion and fh completes a right-handed system. Rk is the
rotational matrix around the axis k (see Sect. 4.2.2 of Xu 2008). For convenience,
the force vector may also be represented by tangential, central components in the
orbital plane (ft, fc) as well as fh (see Fig. 4.1). It is obvious that

⎛
⎝ fr

fα
fh

⎞
⎠ = R3(−β)

⎛
⎝ ft

fc
fh

⎞
⎠ , (14)

where

tan β = r
df

dr
= a(1 − e2)

1 + e cos f

df

a(1 − e2)

(1 + e cos f )2
e sin f df

= 1 + e cos f

e sin f
(15)
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Fig. 4.1 Relation of radial
and tangential forces

or

sin β = 1 + e cos f√
1 + 2e cos f + e2

cos β = e sin f√
1 + 2e cos f + e2

. (16)

To replace the partial derivatives ∂R/∂σ by force components, the relationships
between them can be derived (see Sect. 4.4.1.2 of Xu 2008), where σ is a symbol for
all Keplerian elements. Putting the relations into Lagrangian perturbed equations of
motion (11), the so-called Gaussian perturbed equations of motion are then

da

dt
= 2

n
√

1 − e2

[
e sin f · fr + (1 + e cos f ) · fα

]

de

dt
=

√
1 − e2

na

[
sin f · fr + (cos E + cos f ) · fα

]
dω

dt
=

√
1 − e2

nae

[
− cos f · fr + 2 + e cos f

1 + e cos f
sin f · fα

]
− cos i

d�

dt

d i

dt
= (1 − e cos E) cos u

na
√

1 − e2
· fh

d�

dt
= (1 − e cos E) sin u

na
√

1 − e2 sin i
· fh

dM

dt
= n − 1 − e2

nae

[
−
(

cos f − 2e

1 + e cos f

)
· fr + 2 + e cos f

1 + e cos f
sin f · fα

]

.

(17)



112 G. Xu

The force components of (fr, fα, fh) are used. Using (14), the Gaussian perturbed
equations of motion can be represented by a disturbed force vector of (ft, fc, fh).

4.2.3 Keplerian Motion

The simplified satellite orbiting is called Keplerian motion, and the problem is called
the two-bodies problem. The satellite is supposed to move in a central force field (i.e.
the disturbance potential in (11) or the disturbance force in (17) are zero).

In this case the satellite will orbit in an orbital plane of the mass centre of
the Earth. In addition, the moving equation of satellite in the orbital plane is an
ellipse, i.e.

r = a(1 − e2)

1 + e cos f
. (18)

The Keplerian motion can be described by six Keplerian elements: inclination
angle i, right ascension of ascending node�, semi-major axis a, eccentricity of the
ellipse e, argument of perigeeω and mean anomaly M. Parameters i and � decide
the place of the orbital plane, a and e decide the size and shape of the ellipse and
ω decides the direction of the ellipse (see Fig. 4.2). Mean anomaly M describes
the satellite motion along the ellipse. Three anomalies (eccentric, true and mean
anomaly) are equivalent (see Fig. 4.3 and so-called Keplerian equation, Xu 2007).

Fig. 4.2 Orbital geometry
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Fig. 4.3 Eccentric and true
anomalies of satellite

4.3 Singularity-Free and Simplified Equations

Section 4.2 covered the equations of satellite motion in different forms and the
Keplerian orbit. The solutions of equations of motion are given and the singularity-
free theory is proposed in Xu (2008). Here the singularity-free theory and simplified
equations will be given.

The singularity problem of the solutions of the geopotential disturbances is dis-
cussed first. Then the singularity-free disturbed Lagrangian equations of motion are
given for three cases, i.e. for the circular orbit, equatorial orbit, circular and equa-
torial orbit, respectively. If the singularity-free disturbed equations of motion are
used, then the derived orbit solutions are singularity-free. Similar discussions are
given for the Gaussian equations.

4.3.1 Problem of Singularity of the Solutions

The solutions of Lagrangian and Gaussian equations of (11) and (17) are singular in
the cases of e = 0 and/or sin i = 0. In other words, the solutions are not valid for the
satellite with a circular or an equatorial orbit. An alternative method to overcome
the problem of circular orbit has already been discussed in Sect. 4.2.1 by introducing
new variables – see (12). The new variables do not have clear geometric meanings
and were used to replace the variables (ω, f), which could not be defined in a circular
orbit. In the alternative equation of disturbance (cf. Xu 2008), the e factor in the
dividend is then eliminated, i.e. the singularity of e = 0 disappears. Using another
set of variables (a, h = sin i cos �, k = –sin i sin �, ξ = e cos(ω + �), η = –e sin
(ω + �), λ = M + ω + �), both the singularities caused by e = 0 and sin i = 0 may
disappear. This means that the singularity is not a real problem of the orbits, but
a consequence of poor parameterisation of the orbits. Another method to overcome
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the singularity problem is the canonical transformation. All these methods overcome
the singularity problem on the one hand and pay the price of losing the geometric
meanings of the orbital variables on the other.

In the cases of e = 0 and/or sin i = 0, the orbits become simpler in practice.
However, the equations used to describe a simpler problem become more com-
plicated. This is in conflict with basic scientific philosophy and common sense.
A simpler problem should be able to be described in simpler terms.

Looking into the solutions given in Chaps. 5 and 6 of Xu (2008) carefully, it
is obvious that the singular problem is not created by the partial derivations of the
potential function with respect to the Keplerian variable. In other words, the singu-
larity problem exists from the beginning in the Lagrangian- and Gaussian perturbed
equation systems (11) and (17). This may be verified by derivations of (11) (see
Kaula 1966/2001).

4.3.2 Disturbed Equations in the Case of Circular Orbit

In the case of a circular orbit, the eccentricity of the ellipse e is a constant of zero; the
eccentric anomaly E, true anomaly f and mean anomaly M are identical. Note that in
such a case the perigee of the orbit is arbitrary. Then the argument of the perigee ω

and the true anomaly f (i.e. mean anomaly M) cannot be separated from each other.
However, ω + f, i.e. ω + M are defined and have the meaning of argument of the
perigee plus true anomaly (or mean anomaly) counted from the ascending node of
the orbit. For convenience, we write ω and M further separated; in practice, they
should be added together. In this special case the orbit is simpler than the general
one. The disturbed equations of motion – similar to (11) – can be similarly derived
and have accordingly the following simpler forms:

da

dt
= 2

na

∂R

∂M
de

dt
= 0

dω

dt
= − cos i

na2 sin i

∂R

∂i

(19)

di

dt
= − 1

na2 sin i

(
cos i

∂R

∂ω
− ∂R

∂�

)
.

d�

dt
= 1

na2 sin i

∂R

∂i
dM

dt
= n − 2

na

∂R

∂a
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4.3.3 Disturbed Equations in the Case of Equatorial Orbit

In the case of an equatorial orbit, sin i, the sine function of inclination angle i, is a
constant of zero. Note that in such a case the ascending node is arbitrary. Then the
right ascension of the ascending node � and the argument of the perigee ω cannot
be separated from each other. However, � + ω are defined and have the mean-
ing of right ascension of the ascending node plus argument of the perigee counted
from the vernal equinox. For convenience, we write � and ω further separated;
in practice, they should be added together. In this special case the orbit is simpler
than the general one. Especially, the transformed geopotential function with orbital
variable is greatly simplified in such a case. The disturbed equations of motion –
similar to (11) – can be similarly derived and have accordingly the following simpler
forms:

da

dt
= 2

na

∂R

∂M

de

dt
= 1 − e2

na2e

∂R

∂M
−

√
1 − e2

na2e

∂R

∂ω

dω

dt
=

√
1 − e2

na2e

∂R

∂e
di

dt
= 0

d�

dt
= 0

dM

dt
= n − 2

na

∂R

∂a
− 1 − e2

na2e

∂R

∂e

. (20)

4.3.4 Disturbed Equations in the Case of Circular and Equatorial
Orbit

In the case of a circular and an equatorial orbit, the eccentricity of the ellipse e is
a constant of zero; the eccentric anomaly E, true anomaly f and mean anomaly M
are identical; sin i, the sine function of inclination angle i, is a constant of zero.
Note that in such a case both the perigee and the ascending node are arbitrary. Then
the right ascension of the ascending node � and the argument of the perigee ω as
well as the true anomaly f (i.e. mean anomaly M) cannot be separated from each
other. However, � + ω + f, i.e. � + ω + M are defined and have the meaning of
right ascension of the ascending node plus argument of the perigee plus the true
anomaly (or mean anomaly) counted from the vernal equinox. For convenience, we
write � and ω as well as M further separated; in practice, they should be added
together. In this special case, the orbit is the simplest one compared with the others.
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The disturbed equations of motion – similar to (11) – in this case can be similarly
derived and have accordingly the following simpler forms:

da

dt
= 2

na

∂R

∂M
de

dt
= 0

dω

dt
= 0 .

di

dt
= 0

d�

dt
= 0

dM

dt
= n − 2

na

∂R

∂a

(21)

4.3.5 Singularity-Free Disturbed Equations of Motion

Define two delta functions as

δe =
{

1
e2

if e 
= 0
if e = 0

and δi =
{

1
sin2 i

if sin i 
= 0
if sin i = 0

. (22)

Then one has the singularity-free disturbed equations of motion

da

dt
= 2

na

∂R

∂M
de

dt
= 1 − e2

na2e

∂R

∂M
δe −

√
1 − e2

na2e

∂R

∂ω
δe

dω

dt
=

√
1 − e2

na2e

∂R

∂e
δe − cos i

na2
√

1 − e2 sin i

∂R

∂i
δi

di

dt
= 1

na2
√

1 − e2 sin i

(
cos i

∂R

∂ω
− ∂R

∂�

)
δi

d�

dt
= 1

na2
√

1 − e2 sin i

∂R

∂i
δi

dM

dt
= n − 2

na

∂R

∂a
− 1 − e2

na2e

∂R

∂e
δe

. (23)

Equations (23) are the singularity-free disturbed equations of motion. The solu-
tions derived from these equations are singularity-free. For some reasons, the
solutions given in Xu (2008) are mostly derived from (11). To obtain the singularity-
free solutions one has to add the two factors of the delta functions (22) to the given
solutions and the interested readers may easily attempt these themselves.
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4.3.6 Simplified Singularity-Free Disturbed Equations of Motion

The simplified singularity-free disturbed Lagrange equations of motion can be
derived and written as

da

dt
= 2

na

∂R

∂M
de

dt
= 1 − e2

2ae

da

dt
δe −

√
1 − e2

na2e

∂R

∂ω
δe

dω

dt
=

√
1 − e2

na2e

∂R

∂e
δe − cos i

d�

dt
di

dt
= 1

na2
√

1 − e2 sin i

(
na cos i√

1 − e2

(
1 − e2

2

da

dt
− ae

de

dt

)
− ∂R

∂�

)
δi

d�

dt
= 1

na2
√

1 − e2 sin i

∂R

∂i
δi

dM

dt
= n − 2

na

∂R

∂a
− √

1 − e2

(
dω

dt
+ cos i

d�

dt

)

. (24)

It is obvious that such equations will lead to a simplified process of solving the
problems.

4.3.7 Singularity-Free Gaussian Equations of Motion

Similarly, singularity-free Gaussian perturbed equations of motion are then (cf. (17),
(22) and (23)):

da

dt
= 2

n
√

1 − e2

[
e sin f · fr + (1 + e cos f ) · fα

]

de

dt
=

√
1 − e2

na

[
sin f · fr + (cos E + cos f ) · fα

]
dω

dt
=

√
1 − e2

nae

[
− cos f · fr + 2 + e cos f

1 + e cos f
sin f · fα

]
δe − cos i

d�

dt
.

(25)

d i

dt
= (1 − e cos E) cos u

na
√

1 − e2
· fh

d�

dt
= (1 − e cos E) sin u

na
√

1 − e2 sin i
δi · fh

dM

dt
= n − 1 − e2

nae

[
−
(

cos f − 2e

1 + e cos f

)
· fr + 2 + e cos f

1 + e cos f
sin f · fα

]
δe
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The solutions derived from (25) are singularity-free. For some reasons, the solu-
tions given in Xu (2008) are partly derived from (17). To obtain the singularity-free
solutions one has to add the two factors of the delta functions (22) into the
given solutions and interested readers may easily attempt these themselves. Similar
simplified equations can be derived if one wishes.

4.4 Solutions of Extraterrestrial Disturbances

Solutions of the extraterrestrial disturbances of the attracting forces of the Sun, the
Moon and planets, the drag force of the atmosphere and solar radiation pressure are
given in this section.

4.4.1 Key Notes to the Problems

It is well known that the Keplerian motions of the satellite under the influence of the
centre force of the Earth are perfectly and exactly described with mathematical for-
mulas. As soon as it is found by derivation that the satellite is moving in an orbital
plane, the equations of motion are re-represented in the plane and the Keplerian
motion is then derived. Note that even in the centre force field, it would be nearly
impossible to derive the solution without the step of coordinate transformation. This
indicates the importance of the selection of the coordinate system. The transforma-
tion of the coordinate system is allowed because the frame remained an inertial one
after a series of constant rotations.

The use of an alternative coordinate system is the first key to the solution of the
equation of motion influenced by extraterrestrial disturbances. Xu (2004) introduced
the so-called disturbance coordinate system by proposing an adjustment model of
solar radiation (see Sect. 4.4.2.4 of Xu 2008). However, the coordinate system is not
an orthogonal Cartesian one and its axis changes direction with time and therefore
the coordinate system is not an inertial one. An approximation of the expression of
the solar radiation model is the second key to the solution. The approximation allows
the position of the satellite with respect to the Earth to be neglected in the case of
solar radiation under special conditions. For a properly selected time interval, the
disturbance coordinate system may be considered a frame that has constant rota-
tional relations with respect to the inertial one. In such a case, the coordinate system
can be considered approximately “inertial”. Then Newton’s second law can be used
and the orbital disturbance of the solar radiation can be solved. The approximation
can be made as precise as required.

The orbits of the satellite can be considered a central motion (Keplerian motion)
plus a series of disturbances. According to the order estimation discussed in
Sect. 4.4.2.7 of Xu (2008), extraterrestrial perturbations are of second order. These
are important for the approximation measure taken during the derivation.

For convenience during later discussions, the definition of the so-called distur-
bance coordinate system is given again (see Sect. 4.4.2.4 of Xu 2008). The origin is
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the geocentre and the three axes are defined by �r (radial vector of the satellite), �n (the
Sun–satellite unit vector) and �p (the atmospheric drag unit vector). These three axes
are always in the main disturbance directions of the indirect solar radiation (reflected
from the Earth’s surface), direct solar radiation and atmospheric drag, respectively.

4.4.2 Solutions of Disturbance of Solar Radiation Pressure

Solar radiation pressure is a force caused by sunlight acting on the satellite’s surface.
The radiation force can be represented as (see (4.70) of Xu 2008)

�fsolar = mγPsCr
S

m

r2
sun

|�r − �rsun|2
�nsun, (26)

where

�ez = − �r
|�r| , �ey = �ez × �nsun

|�ez × �nsun| , �ex = �ey × �ez and �nsun = �r − �rsun

|�r − �rsun| ,

(27)

where γ is the shadow factor, Ps is the luminosity of the Sun, Cr is the surface reflec-
tivity, rsun is the geocentric distance of the Sun, S/m is the surface to mass ratio of
the satellite and �r and �rsun are the geocentric vectors of the satellite and the Sun.
Usually, Ps has the value of 4.5605×10–6 N/m, Cr has values from 1 to 2, 1 is for the
complete absorption of the sunlight, and for aluminium, Cr = 1.95.

Three Approximations

The solar radiation force vector is pointed from the Sun to the satellite. If the shadow
factor is known exactly, and the luminosity of the Sun and the surface reflectivity of
the satellite are considered constants, then the length of the solar force vector can
be considered a constant because (see (4.73) of Xu 2008)

r2
sun

(rsun + r)2
≤ r2

sun

|�r − �rsun|2
≤ r2

sun

(rsun − r)2
. (28)

For GPS and GEO satellites there are

r2
sun

(rsun ± r)2
=
(

rsun

rsun ± r

)2

≈
(

1 ∓ r

rsun
± · · ·

)2

≈ 1 ∓ 2r

rsun
≈ 1 ∓ 3.5 × 10−4

and
r2

sun

(rsun ± r)2
=
(

rsun

rsun ± r

)2

≈
(

1 ∓ r

rsun
± · · ·

)2

≈ 1 ∓ 2r

rsun
≈ 1 ∓ 5.6 × 10−4,

(29)

respectively. That is, the solar radiation force vector can be considered approxi-
mately a vector, with constant length and changing direction. The approximation
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has a precision of better than third order and is precise enough for our purposes. For
convenience, this approximation is called the first approximation later on.

The unit solar vector of the satellite �nsun can be approximated by

�nse = �rse

|�rse| , (30)

where index se denotes that the vector is pointing from the Sun to the centre of
the Earth. For GPS and GEO satellites the maximal angles between the above two
unit vectors are 1.77 × 10–4 and 2.8 × 10–4 rad, respectively. Therefore, such an
approximation (called the second approximation) is allowed and is precise enough.

The third approximation is made for suitable time duration of �t = t′k − t′k−1 by

�nse(t) ≈ �nse(tk), tk = (t′k + t′k−1)/2, t ∈ [t′k−1, t′k]. (31)

The discrete vector in this equation may be called an average vector of the time
duration �t. For �t = 5 min, the third approximation has a precision of 3 × 10–5 rad.

Note that the order of the solar radiation disturbance on a GPS satellite is about
50 m. For GPS satellite, all the three approximations will lead to a precision of
millimetre level. For the other satellite, the precision of the approximations should
be individually estimated.

Discretisation and Solution

Denote the satellite period as T and shadow access and exit points as ta and
te, respectively. The local noon is selected as the starting point of counting (see
Fig. 4.4). A so-called sign function can be defined as

δ(t) =
{

1
−1

0 ≤ t < T/2
T/2 ≤ t ≤ T

. (32)

The sign function shows that the solar radiation accelerates the satellite during the
first half period and decelerates it during the second half period with respect to

Fig. 4.4 Solar radiation
pressure
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the nominal motion of the satellite. Then the duration of one period of 0–T can
be equally divided by �t, i.e. by t′0, t′1, . . . , t′k, . . . , T . The acceleration of the solar
radiation of (26) is then discretised as

�asolar(t) = γPsCr
S

m
�nse(tk). (33)

The disturbed velocity caused by the solar radiation is then

�vsolar(t) =
k∑

i=1

γPsCr
S

m
�nse(ti)δ(ti)�t. (34)

It is obvious that the disturbed velocity of the satellite is not zero during the
passing of the shadow. The disturbed position caused by the solar radiation is then

�ρsolar(t) =
k∑

j=1

�vsolar(tj)�t. (35)

Equation (35) is the solution of the solar radiation disturbance on the orbit of the
satellite.

Properties of the Solution

The integration (or summation) of the acceleration of the solar radiation within a
period T is nearly zero. However, the position disturbed by the solar radiation during
a period T is not zero. In other words, the disturbance of the solar radiation has non-
conservative behaviour. The disturbance may not be a periodic function of the orbit.
The parameters of the force model, if they are not well known, can be determined
using the expressions of the solution.

4.4.2.1 Solutions via Gaussian Perturbed Equations

Gaussian Perturbed Equations

Equation (33) is the approximated solar radiation force (acceleration) vector with
constant length, which can be written as

�fsolar(t) = mγPsCr
S

m
�nse(t) (36)
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or

�fsolar(t) =
⎛
⎝ fx

fy
fz

⎞
⎠ = ξ

⎛
⎝nx

ny

nz

⎞
⎠ , (37)

where solar-Earth unit vector (30) in ECSF frame can be computed by the the-
ory given in Sect. 4.7.8 of Xu (2008); ξ represents the constant length of the solar
radiation force vector.

The force vector in the ECSF frame can be transformed to the orbital coordinate
system (see (13)) using

⎛
⎝ fr

fα
fh

⎞
⎠ = R3(f )R3(ω)R1(i)R3(�)

⎛
⎝ fx

fy
fz

⎞
⎠ , (38)

where
R3(ω)R1(i)R3(�) =⎛
⎝ cosω cos� − sinω cos i sin� cosω sin� + sinω cos i cos� sinω sin i

− sinω cos� − cosω cos i sin� − sinω sin� + cosω cos i cos� cosω sin i
sin i sin� − sin i cos� cos i

⎞
⎠

Denote these elements of the matrix with Rij and

⎛
⎝ n1

n2
n3

⎞
⎠ = ξ

⎛
⎝R11nx + R12ny + R13nz

R21nx + R22ny + R23nz

R31nx + R32ny + R33nz

⎞
⎠ , (39)

then one has ⎛
⎝ fr

fα
fh

⎞
⎠ = R3(f )

⎛
⎝n1

n2
n3

⎞
⎠ =

⎛
⎝ n1 cos f + n2 sin f

−n1 sin f + n2 cos f
n3

⎞
⎠ . (40)

There are relations (see (4.23) of Xu 2008)

(1 − e2)

1 + e cos f
= (1 − e cos E) (41)

and

cos E = (e + cos f )

1 + e cos f
. (42)
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Putting all these formulas into (17), the Gaussian disturbed equations are

da

dt
= 2

n
√

1 − e2

[
e sin f (n1 cos f + n2 sin f )

+(1 + e cos f )(−n1 sin f + n2 cos f )

]

de

dt
=

√
1 − e2

na

⎡
⎣ sin f (n1 cos f + n2 sin f )

+
(

e + cos f

1 + e cos f
+ cos f

)
(−n1 sin f + n2 cos f )

⎤
⎦

dω

dt
=

√
1 − e2

nae

⎡
⎣− cos f (n1 cos f + n2 sin f )

+2 + e cos f

1 + e cos f
sin f (−n1 sin f + n2 cos f )

⎤
⎦ − cosi

d�

dt

d i

dt
=

√
1 − e2 cos u

na(1 + e cos f )
n3

d�

dt
=

√
1 − e2 sin u

na sini(1 + e cos f )
n3

dM

dt
= −1 − e2

nae

⎡
⎢⎢⎣

−
(

cos f − 2e

1 + e cos f

)
(n1 cos f + n2 sin f )

+2 + e cos f

1 + e cos f
sin f (−n1 sin f + n2 cos f )

⎤
⎥⎥⎦

. (43)

Characters of Gaussian Perturbed Equations

1. There exist long and short periodic perturbations.

Note that

sin 2f = 1 − cos2 f

2

cos 2f = 1 + cos2 f

2

(44)

1

1 + e cos f
≈ 1 − e cos f + · · · (45)

and
cos u = cos ω cos f − sin ω sin f
sin u = cos ω sin f + cos f sin ω

. (46)

Obviously, all six Gaussian perturbed equations include the long periodic term
perturbations, which are formed by terms without f (in other words, constant terms
are created by terms of sin2f and cos2f), and the remaining terms are short periodic
terms. Remember that by integration variable transformation from t to f or M for
solving the short periodic C20 perturbations, long periodic terms will also be created
(see Sect. 4.5.2 of Xu 2008). Therefore, no effort will be made to separate the long
and short periodic terms.



124 G. Xu

2. Concerning time variable (nx, ny and nz) in (43) the variables n1, n2 and n3 are
functions of (ω, �, i) and (nx, ny, nz). (ω, �, i) are long periodic variables and they
are considered constants in short periodic integrations. However, the unit vector (nx,
ny, nz) of solar-Earth is also time variable. In the discussion in Sect. 4.4.3 the (nx,
ny, nz) can be considered constants within 5 min. The maximum change of the unit
vector around its average is ca. 0.5◦/day, that is, the maximum of change rate is
about 0.0086 rad/day. In other words, the unit vector (nx, ny, nz) can be represented
by an average plus a drift term, and the drift term compared with the average term
is about one order smaller and in some cases is allowed to be neglected. As soon as
the vector (nx, ny, nz) is considered constant, (43) can be solved by integration as
shown in Chaps. 5 and 6 of Xu (2008).

In cases where change of the unit vector is not allowed to be neglected, the inte-
gration interval has to be made shorter so that the assumption will be valid and then
the integrated solution should be summated to obtain the complete solutions.

Solutions of Gaussian Perturbed Equations

For simplifying the disturbed equations, denote

n4 = n3e

sin i
, n5 = n4 cos i, n6 = n5

n4
, g1 = 2

n
√

1 − e2
, g2 =

√
1 − e2

na
,

g3 = g2, g4 =
√

1 − e2

nae
, g5 = g4, g6 = −1 − e2

nae
.

(47)
Omitting the factors gj (j = 1, . . .,6) in the disturbing equations (of course, after the
equations are solved, the factors shall be multiplied back), one has

da

dt
=
[

e sin f (n1 cos f + n2 sin f )
+(1 + e cos f )(−n1 sin f + n2 cos f )

]

de

dt
=
⎡
⎣ sin f (n1 cos f + n2 sin f )

+
(

e + cos f

1 + e cos f
+ cos f

)
(−n1 sin f + n2 cos f )

⎤
⎦

dω

dt
=
⎡
⎣− cos f (n1 cos f + n2 sin f )

+2 + e cos f

1 + e cos f
sin f (−n1 sin f + n2 cos f )

⎤
⎦ − d�

dt
n6

d i

dt
= cos u

1 + e cos f
n3

d�

dt
= sin u

1 + e cos f
n4

dM

dt
=

⎡
⎢⎢⎣

−
(

cos f − 2e

1 + e cos f

)
(n1 cos f + n2 sin f )

+2 + e cos f

1 + e cos f
sin f (−n1 sin f + n2 cos f )

⎤
⎥⎥⎦

. (48)
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Let

ω1 = ω + n6�, M1 = −M + ω1,
1

1 + e cos f
≈ 1 − e cos f , (49)

and (48) can be further simplified as

da

dt
=
[

e sin f (n1 cos f + n2 sin f )
+(1 + e cos f )(−n1 sin f + n2 cos f )

]

de

dt
=
[

sin f (n1 cos f + n2 sin f )
+(e + (2 − e2) cos f − e cos2 f )(−n1 sin f + n2 cos f )

]

dω1

dt
=
[− cos f (n1 cos f + n2 sin f )

+(2 + e cos f )(1 − e cos f ) sin f (−n1 sin f + n2 cos f )

]

d i

dt
= cos u(1 − e cos f )n3

d�

dt
= sin u(1 − e cos f )n4

dM1

dt
= [−2 e(1 − e cos f )(n1 cos f + n2 sin f )

]
.

(50)

Simplified Gaussian perturbed equations (50) may be solved using symbolic com-
putational software. The infinite integrations of the differential equations can be
represented by

(�σj(M))M = bj

(
dj(ω,�)M +

16∑
k=1

Ajk cos kM +
16∑

k=1

Bjk sin kM

)
, (51)

where j is the index of Keplerian elements, bj includes the omitted factors gj and the
factor caused by the variable transformation from t to M (see (5.24) of Xu 2008) as
well as the factors hj given below:

h1 = (1, 152 × 210)−1, h2 = (55, 296 × 2, 310)−1, h3 = h1

h4 = h1, h5 = (2654, 208 × 60, 060)−1, h6 = (576 × 210)−1,
(52)

where hj factors are introduced to simplify the derivations of (51). The first term on
the right-hand side of (51) is symbolic and represents the long periodic perturbation
of

∫
dj(ω,�) dM. (53)

dM can be transformed to d(nω+m�) depending on the form of dj according to (53).
Formulas of dj, Ajk and Bjk are given in detail in Xu (2008).
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Properties of the Solution

Disturbances of the solar radiation consist of both the long periodic and short peri-
odic terms. The orientation of the orbital ellipse is subjected to higher frequency
disturbance than that of the other Keplerian elements.

4.4.3 Solutions of Disturbance of Atmospheric Drag

Atmospheric drag, caused by the air, is the disturbance force acting on the satellite’s
surface. Air drag force can be represented as (see (4.75) of Xu 2008)

�fdrag = −m
1

2

(
CdS

m

)
σ

∣∣∣�̇r − �̇rair

∣∣∣2 �na, �na = �̇r − �̇rair∣∣∣�̇r − �̇rair

∣∣∣ , (54)

where S is the cross section (or effective area) of the satellite, Cd is the drag factor,
m is the mass of the satellite, �̇r and �̇r air are the geocentric velocity vectors of the
satellite and the atmosphere, respectively, and σ is the density of the atmosphere.
Usually, S has a value of 1/4 of the outer surface area of the satellite, and Cd has
labour values of 2.2±0.2. The unit vector �na is the direction of the air drag force.
For CHAMP satellite, with an orbit height of 400 km, the air drag force unit vector

�na changes its direction about 1.2 × 10–3 rad/s. The amount of
∣∣∣�̇r −�̇rair

∣∣∣2 changes

slower than the direction. In such a case the acceleration of the air drag can be
discretised by

�adrag = −1

2

(
CdS

m

)
σ

∣∣∣�̇r(tk) − �̇rair(tk)
∣∣∣2 �na(tk). (55)

The disturbed velocity caused by the atmospheric drag is then

�vair drag(t) =
k∑

i=1

−CdS

2m
σ

∣∣∣�̇r(ti) − �̇rair(ti)
∣∣∣2 �na(ti)�t. (56)

The disturbed position caused by the solar radiation is then

�ρair(t) =
k∑

j=1

�vair drag(tj)�t. (57)

Equation (57) is the solution of the solar radiation disturbance on the orbit of the
satellite.

For all satellites, with an orbit height higher than 1,000 km, the atmospheric drag
is nearly zero; therefore this effect does not need to be taken into account.
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4.4.3.1 Solutions via Gaussian Perturbed Equations

Air Drag Force Vector for Gaussian Perturbed Equations

Air drag force is given in (54) (using ξ to represent the coefficient part of the air
drag force vector)

�fdrag = ξ

∣∣∣�̇r − �̇rair

∣∣∣ (�̇r − �̇rair). (58)

Using (38) the air drag force vector can be rotated from the ECSF to the orbital
coordinate frame by

⎛
⎝ fr

fα
fh

⎞
⎠ = R3(f )R3(ω)R1(i)R3(�)

⎛
⎝ fx

fy
fz

⎞
⎠ . (59)

Satellite position and velocity vectors in orbital frame are (see (3.41) and (3.42) of
Xu 2008)

�q =
⎛
⎝ a(cos E − e)

a
√

1 − e2 sin E
0

⎞
⎠ =

⎛
⎝ r cos f

r sin f
0

⎞
⎠ , (60)

�̇q =
⎛
⎝ − sin E√

1 − e2 cos E
0

⎞
⎠ na

1 − e cos E
=
⎛
⎝ − sin f

e + cos f
0

⎞
⎠ na√

1 − e2
. (61)

They can be rotated from the orbital frame to the ECSF frame (see (3.43) of Xu
2008):

(�r
�̇r
)

= R3(−�)R1(−i)R3(−ω)

( �q
�̇q
)

. (62)

Air velocity in the ECSF frame is given in (4.76) of Xu (2008):

�̇rair = k �ωe × �r = kωe

⎛
⎝−y

x
0

⎞
⎠ = kωe

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ = kωeR4�r, (63)

where ωe is the angle velocity of the Earth’s rotation. Thus in the ECSF frame
there is

�̇r − �̇rair = R3(−�)R1(−i)R3(−ω)�̇q − kωeR4R3(−�)R1(−i)R3(−ω)�q. (64)

Denote the following matrix as R:
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R3(ω)R1(i)R3(�)R4R3(−�)R1(−i)R3(−ω) = R3(ω)R1(i)R4R1(−i)R3(−ω)

= R3(ω)

⎛
⎝ 0 − cos i sin i

cos i 0 0
− sin i 0 0

⎞
⎠R3(−ω) =

⎛
⎝ 0 − cos i sin i cos ω

cos i 0 − sin i sin ω

− sin i cos ω sin i sin ω 0

⎞
⎠

(65)
and note that the length of a vector is invariable under rotational transformations;
one has

⎛
⎝ fr

fα
fh

⎞
⎠ = ξ

∣∣∣�̇r − �̇rair

∣∣∣R3(f )( �̇q − kωeR�q) = ξ

∣∣∣�̇q − kωeR�q
∣∣∣R3(f )( �̇q − kωeR�q). (66)

The force vector (66) is represented completely in Keplerian elements.

Gaussian Perturbed Equations and the Solutions

The air drag force vector (66) has to be further simplified. Denote the elements of
the matrix R with Rij; then one has approximately

�̇q − kωeR�q = na√
1 − e2

⎛
⎝ − sin f

e + cos f
0

⎞
⎠− kωR(1 − e2)

⎛
⎝ cos f

sin f
0

⎞
⎠ (1 − e cos f )

=
⎛
⎝ b11 sin f + b13 sin f cos f

b22 cos f + b24 cos2 f + b25

b31 sin f + b32 cos f + b33 sin f cos f + b34 cos2 f

⎞
⎠

,

(67)
where coefficients bij can be obtained by comparison.

For convenience, the simplified Gaussian disturbed equations of motion can be
written as shown below (see (50), (49) and (47)):

da

dt
= [e sin f · fr + (1 + e cos f ) · fα

]
de

dt
= [sin f · fr + (e sin2 f + (2 − e2) cos f ) · fα

]
dω1

dt
= [− cos f · fr + (2 + e cos f )(1 − e cos f ) sin f · fα

]
di

dt
= cos u(1 − e cos f ) · fh

d�

dt
= sin u(1 − e cos f )

e

sin i
· fh

dM1

dt
= [−2e(1 − e cos f ) · fr

]

. (68)

Putting the air drag force vector and other mathematical relations into the simpli-
fied Gaussian disturbed equations (68), the equations could be solved (see Xu et al.
2010b).
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4.4.4 Solutions of Disturbance of the Sun

The solutions of the disturbance of the Sun may be similarly derived by the dis-
cretisation demonstrated in Sect. 4.4.2. However, analytic solutions are preferred in
theoretical and practical aspects.

Potential Function of the Sun

The disturbance forces of multiple point masses acting on the satellite are (see (4.50)
of Xu 2008)

�fmul = −m
∑

j

Gm(j)

[
�r − �rm(j)∣∣�r − �rm(j)

∣∣3 + �rm(j)

r3
m(j)

]
, (69)

where Gm(j) are the gravitational constants of the Sun and the Moon as well as the
planets. The disturbance acceleration of the Sun is then

�fs = −mμs

(
1

|�r − �rs|2
�nss + 1

|�rs|2
�ns

)
, �nss = �r − �rs

|�r − �rs| , �ns = �rs

|�rs|

= −mμs

[
r

|�r − �rs|3
�nr +

(
1

r2
s

− rs

|�r − �rs|3
)

�ns

]
, �nr = �r

r

. (70)

The unit vectors �nss, �ns and �nr represent the vector from the Sun to the satellite,
the geocentric vectors of the Sun and satellite, respectively. The force vector of the
Sun is a vector summated from two vectors in directions of �nr and �ns (see Fig. 4.5).
According to the geometric relations of the vectors one has (cf. Fig. 4.6)

�r = �rs + (�r − �rs)
|�r − �rs|2 = r2

s + r2 − 2rrs cos α

cos α = �nr · �ns

, (71)

nr1

nsβ
β

nr1 2

nsβ2

β −Fig. 4.5 Disturbance force
vector and its two
components (two β with
indices are lengths)

rsr −r

rs

α
Fig. 4.6 Triangle
relationship between the
geocentric vectors of the
satellite and the Sun
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where α is the angle between the geocentric vectors of the satellite and the Sun and
cos α is the inner product of the two unit vectors. Using the mathematic formula

q
√

(1 + x)p = 1 + p

q
x + p(p − q)

q · 2q
x2 + · · · |x| ≤ 1, p > 0 or q > 0, (72)

the lengths of the two vectors in (70) can be approximated by

r

|�r − �rs|3
≈ r

r3
s

(
1 + 3

r

rs
cos α

)

1

r2
s

− rs

|�r − �rs|3
≈ r

r3
s

(
−3 cos α − 1.5

r

rs
(5 cos2 α − 1)

) . (73)

The geocentric distance rates of GPS and GEO satellites to the Sun are about 1.77
× 10–4 and 2.8 × 10–4, respectively. Therefore, for all satellites which are lower
than the GEO satellite, above two approximations in (73) are precise enough to take
only the first term into account and then one has

�fs = −mμs

(
r

r3
s
�nr − 3r cos α

r3
s

�ns

)
. (74)

The potential function of the disturbing force of the Sun (74) is then

Vs = −mμs
r

r3
s

+ mμs
3

2r3
s

(�ns · �r)2. (75)

The correctness of the potential function can be verified directly by making gra-
dient operation on (75) and comparing the results with the force vector (74). The
computation shows that for GPS satellite within 3 days the force vector (70) and its
approximation (74) have differences of 3 × 10–10 (that is one order smaller than that
of the computed by using (70)).

Disturbed Equation of Motion and the Solutions

Denote the first term of the potential function (75) as Vs1 and note that Vs1 is the
function of the three Keplerian elements (a,M,e). The derivatives of the potential
function with respect to Keplerian elements are then

∂Vs1

∂a
= ∂Vs1

∂r

∂r

∂a
= 1

a
Vs1,

∂Vs1

∂�
= ∂Vs1

∂i
= ∂Vs1

∂ω
= 0,

∂Vs1

∂e
= Vs1

r

∂r

∂e
= −a cos f

r
Vs1

and
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∂Vs1

∂M
= Vs1

r

∂r

∂M
= ae sin f

r
√

1 − e2
Vs1. (76)

Substituting the above derivatives and Vs1 into the equation of motion (11), one has

da

dt
= −2mμs

nr3
s

e sin f√
1 − e2

,

de

dt
= −mμs

√
1 − e2

na

sin f

r3
s

,

dω

dt
= mμs

√
1 − e2

nae

cos f

r3
s

,

di

dt
= 0,

d�

dt
= 0, (77)

dM

dt
= 2

na

mμs

r3
s

(1 − e2)

1 + e cos f
− 1 − e2

nae

mμs cos f

r3
s

= mμs(1 − e2)

naer3
s

(
2e

1

1 + e cos f
− cos f

)

= mμs(1 − e2)

naer3
s

(2e − (1 + 2e2) cos f )

.

Geocentric distance of the Sun can be considered a daily constant. There are (see
Liu and Zhao 1979 and (5.22) of Xu 2008)

sin f =
(

1 − 7

8
e2
)

sin M + e

(
1 − 7

6
e2
)

sin 2 M + 9

8
e2 sin 3 M + 4

3
e3 sin 4 M,

cos f +e =
(

1 − 9

8
e2
)

cos M+e

(
1 − 4

3
e2
)

cos 2 M+9

8
e2 cos 3 M+4

3
e3 cos 4 M.

(78)Denote

δS = ∫ sin f dt = ∫ sin f

(
dM

dt

)−1

0
dM =

(
dM

dt

)−1

0
·

(
−
(

1 − 7

8
e2
)

cos M − e

2

(
1 − 7

6
e2
)

cos 2 M − 3

8
e2 cos 3 M − 1

3
e3 cos 4 M

)

δC = ∫ (cos f + e)dt = ∫ (cos f + e)

(
dM

dt

)−1

0
dM =

(
dM

dt

)−1

0
·((

1 − 9

8
e2
)

sin M + e

2

(
1 − 4

3
e2
)

sin 2 M + 3

8
e2 sin 3 M + 1

3
e3 sin 4 M

)
.

(79)
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Then the solutions are

�a = −2mμs

nr3
s

e√
1 − e2

δS,

�e = −mμs
√

1 − e2

nar3
s

δS,

�ω = mμs
√

1 − e2

naer3
s

(−et + δC),

�i = const., �� = const., (80)

�M = mμs(1 − e2)

naer3
s

(e(3 + 2e2)t − (1 + 2e2)δC).

The orbital parameters ω and M are partly linearly perturbed by the Sun.
Denote the second term of the potential function (75) as Vs2 and note (cf. (62))

�r = R3(−�)R1(−i)R3(−ω)r

⎛
⎝ cos f

sin f
0

⎞
⎠ = rR

⎛
⎝ cos f

sin f
0

⎞
⎠

= r

⎛
⎝ cos � cos i cos ω − sin � sin ω − cos � cos i sin ω − sin � sin ω cos � sin i

sin � sin i cos ω + cos � sin ω − sin � sin i sin ω + cos� cos ω sin � sin i
− sin i cos ω sin i sin ω cos i

⎞
⎠
⎛
⎝ cos f

sin f
0

⎞
⎠

= r

⎛
⎝ R11 cos f + R12 sin f

R21 cos f + R22 sin f
R31 cos f + R32 sin f

⎞
⎠

(81)

�ns =
⎛
⎝ns1

ns2
ns3

⎞
⎠ ,

r cos α = �ns · �r = r(A cos f + B sin f ), (82)

where coefficients are

A = ns1R11 + ns2R21 + ns3R31
B = ns1R12 + ns2R22 + ns3R32

, (83)

where R with a single index k is rotational matrix around the axis k; R with two
indices are elements of the total rotational matrix R and they are triangle functions of
(�, i, ω); solar-related elements are denoted with index s; nsk is the k-th component
of the geocentric unit vector of the Sun; A and B are functions of sinus and cosines
of (�, i, ω) as well as components of the geocentric solar unit vector. Then one has
derivatives of the second-term potential function with respect to Keplerian elements
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∂Vs2

∂σj
= mμs

3

r3
s

r cos α
∂r cos α

∂σj
, (84)

where σ with index j denotes the j-th Keplerian element. Explicitly the partial
derivatives are (cf. (4.24) in Xu 2008)

∂Vs2

∂a
= mμs

3

r3
s

r2

a
cos2 α, (85)

∂Vs2

∂�
= mμs

3

r3
s

r2 cos α(A� cos f + B� sin f ), (86)

∂Vs2

∂i
= mμs

3

r3
s

r2 cos α(Ai cos f + Bi sin f ), (87)

∂Vs2

∂ω
= mμs

3

r3
s

r2 cos α(Aω cos f + Bω sin f ), (88)

∂Vs2

∂e
= mμs

3

r3
s

r cos α

(
cos α(−a cos f ) + r(−A sin f +B cos f )

2 + e cos f

1 − e2
sin f

)
,

(89)
and

∂Vs2

∂M
= mμs

3

r3
s

cos α

(
ae√

1 − e2
r cos α sin f + (−A sin f + B cos f )a2

√
1 − e2

)

(90)
where A and B with indices of (�, i, ω) are partial derivatives of A and B with
respect to the related indices. Putting (85), (86), (87), (88), (89) and (90) into (11)
and taking the following approximation (terms with order e2 are neglected) into
account (cf. (72))

r = a(1 − e2)

1 + e cos f
≈ a(1 − e cos f + · · · ), (91)

r2 = a2(1 − e2)2

(1 + e cos f )2
≈ a2(1 − 2e cos f + · · · ),

1

sin i
= 1√

1 − cos2 i
≈ 1 + 1

2
cos2 i + 3

8
cos4 i + 5

16
cos6 i + · · ·

the Lagrangian equations of satellite motion can be transformed
in terms of cosm f sink f and then in terms of multiplications of
{cos mM, cos kM, sin mM, sin kM}; and at the end they can be reduced to
functional series of {cos mM, sin kM}; which can be integrated with respect to M
to obtain the short periodic terms solutions. The terms nothing to do with M are long
periodic terms which can be reduced to triangle functions of (k�+mi+lω) and long
(non-periodic) terms. Where k, m and l, that are integers. The transformation can be
carried out by using mathematic symbol operation software such as Mathematica
or Maple and the solutions have the form of
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�σj = dj +
∑

k=1,...

bjk cos kM + cjk sin kM,

dj = Lj +
∑
k,m,l

gjkml cos(k� + mi + lω) + hjkml sin(k� + mi + lω), (92)

where d, b, c are functions of (�, i, ω, a, e) and g, h, L are functions of (a, e). All
terms of b and c are short periodic terms; all terms of g and h are long periodic
terms; and L terms are the long-term effects. Due to the length of the formulas, b
and c, g and h will not be given here (for detail see Xu et al. 2010a). Selecting the
integration interval as k2π (k is any integer), integrations of short periodic terms
are zero. Selecting the minimum common periods of the long-term effects, integra-
tions of long periodic terms are zero. Then there exists a minimum common interval
over that the integration of all periodic terms are zero. The d for the first Keplerian
element (a) is zero; i.e. the semi-major axis is not perturbed by the solar attracting
force long periodically. The most important terms are the long-term effects which
are represented in L and which are zero except the following two terms:

L3 =
√

1 − e2

n

3mμs

r3
s

(−1, 823

16, 384
n1n2 + 9

16
n2

1 + 9

16
n2

2 + 3

8
n2

3

)
t

=
√

1 − e2

n

3mμs

r3
s

(−1, 823

16, 384
n1n2 + 9

16
− 3

16
n2

3

)
t

,

L6 = −3

n

mμs

r3
s

(
21

16
n2

1 + 21

16
n2

2 + 7

8
n2

3

)
t = −3

n

mμs

r3
s

(
21

16
− 7

16
n2

3

)
t. (93)

The results of the long-term perturbations are coincidently similar with that of the
solutions of the part one given in (80); however, with different signs. Comparing
(80) with (93) it is notable that the linear terms in (80) are generally (with a factor of
1/a) smaller than that of (93). That is the linear effects are dominated by (93) under
the solar attracting force perturbation. The orientation of the ellipse will rotate with
a constant velocity in direction of increasing ω; whereas the mean anomaly (M)
decreasing constantly.

Because the Gaussian equations are derived from the Lagrangian equations and
there exist potential functions of the approximated disturbing force of the Sun, solu-
tions via Gaussian equations must be the same and do not need to be discussed for
multi-body disturbances.

4.4.5 Solutions of Disturbance of the Moon

The disturbance acceleration of the Moon is (see (69))

�fm = −mμm

(
1

|�r − �rm|2 �nsm + 1

|�rm|2 �nm

)
, �nsm = �r − �rm

|�r − �rm| , �nm = �rm

|�rm| . (94)
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The unit vectors �nsm and �nm represent the vectors from the Moon to the satellite
and the geocentric vector of the Moon, respectively. The only difference between
(75) and (94) is the index; instead of “s” for the Sun, “m” is used for the Moon.
However, the maximum geocentric distance rate of GPS satellite to the Moon is
about 6 × 10–2. This fact has to be taken into account and the discussions can be
made similarly as did in Sect. 4.4.4. The force vector can be approximated by

�fm = −mμm

(
r

r3
m

(
1 + 3

r

rm
cosα

)
�nr − r

r3
m

(
3 cosα + 3r

2rm
(5 cos2 α − 1

)
�nm

)
.

(95)
The potential function of the disturbing force of the Sun is then

Vs = −mμm
r

r3
m

+ mμm
3

2r3
m

(�nm · �r)2 − mμm
1

2r4
m

(−5r3 cos3 α + 3r3 cos α). (96)

The solutions of Lagrangian equations related to the first two terms of potential
function (96) are already derived in Sect. 4.4.4 and can be used directly. The solu-
tions related to the last term can be derived similarly in principle and the discussions
are omitted here (see Xu et al. 2010a).

Discretisation and Solution

Denote the satellite period as T. The local noon of the Moon is selected as the
starting point of counting. A so-called sign function can be defined as

δ(t) =
{−1

1
0 ≤ t < T/2
T/2 ≤ t ≤ T

. (97)

The sign function shows that the attracting force of the Moon decelerates the satellite
during the first half period and accelerates during the second half period with respect
to the nominal motion of the satellite. Then the duration of one period of 0 ∼ T
can be equally divided by �t, i.e. by t′0, t′1, . . . , t′k, . . . , T . The acceleration of the
disturbance of the Moon (94) is then discretised as

�am(t) = −μm

(
1

|�r(tk) − �rm(tk)|2 �nsm(tk) + 1

|�rm(tk)|2 �nm(tk)

)
.

The disturbed velocity caused by the Moon is then

�vm(t) = −
k∑

i=1

μm

(
1

|�r(ti) − �rm(ti)|2
�nsm(ti) + 1

|�rm(ti)|2
�nm(ti)

)
�t.

The disturbed position caused by the Moon is then
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�ρm(t) =
k∑

j=1

�vm(tj)�t. (98)

Equation (98) is the discrete solution of the disturbance of the Moon on the orbit of
the satellite.

4.4.6 Solutions of Disturbance of Planets

The disturbance acceleration of a planet is (see (69))

�fp = −mμp

(
1∣∣�r − �rp
∣∣2 �nsp + 1∣∣�rp

∣∣2 �np

)
, �nsp = �r − �rp∣∣�r − �rp

∣∣ , �np = �rp∣∣�rp
∣∣ . (99)

The unit vectors �nsp and �np represent the vectors from the planet to the satellite
and the geocentric vector of the planet, respectively. The geocentric distance of the
planet is far greater than that of the Moon. The discussions in Sect. 4.4.5 can be
directly used here. Because the disturbances of the planets are of the third order; the
influences are need to be considered only in case of third-order solutions.

4.4.7 Summary

Solutions of the extraterrestrial disturbances of the attracting forces of the Sun and
the Moon, as well as the planets, the drag force of the atmosphere and solar radiation
pressure are derived in this section.

The solar radiation is a non-conservative disturbing force; of course, the distur-
bances of the orbit are also non-conservative ones. They are generally non-periodic
effects.

The disturbance of the Sun has long-term effects on the orientation of the ellipse
and the position of the satellite as well as short periodic effects on the semi-axis of
the satellite and the shape of the ellipse. The effects of the Moon and planets are
similar to that of the Sun.

4.5 Solutions of Geopotential Perturbations

The principle of the derivation of geopotential perturbations will be discussed first.
The general solution of the perturbations of Clm and Slm is derived. Because of the
length of the formulas, examples will be not given here. Interested reader may find
them in Xu (2008) and on going publications.
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Principle of the Derivations

From the solution process of the equation of satellite motion perturbed by the geopo-
tential term C20 given in Chap. 5 of Xu (2008), one notices that the derivation is very
complicated, even if the potential function of the perturbation is relatively simple.
An alternative method is to use symbolic mathematical operation software such as
Mathematica, Maple. However, the principle and strategy of the derivation have still
to be carefully created.

For simplification, geopotential disturbance function of l order and m degree can
be written as (see (4.35) of Xu 2008)

Rlm = μ

r

(ae

r

)l _
Plm(sinϕ)

[
Clm cos mλ + Slm sin mλ

]
. (100)

Let

Clm = Dlm cos mλlm

Slm = Dlm sin mλlm,
λ = λ − λlm

(101)

where

Dlm =
√

C
2
lm + S

2
lm

cos mλlm = Clm

Dlm
,

sin mλlm = Slm

Dlm

(102)

then (100) is

Rlm = blm

rl+1
Plm(sin ϕ) cos(mλ), (103)

where blm = μal
eDlm.

To transform the geographic coordinates into the Keplerian variables, the
following relations are needed (see (5.2) of Xu 2008):

sin ϕ = sin i sin u,
λ = α − � − λlm = (� − � − λlm) + (α − �),

cos(α − �) = cos u

cos ϕ
,

sin(α − �) = sin u cos i

cos ϕ
.

(104)

Further more there are (see Wang et al. 1979)
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cos(my) =
[m/2]∑
j=0

(−1) j
(

m
2j

)
(cos y)m−2j(sin y)2j,

sin(my) =
[(m−1)/2]∑

j=0

(−1) j
(

m
2j + 1

)
(cos y)m−2j−1(sin y)2j+1, (105)

where [z] is the integer part of z and the binomial form has the well-known
expression of

(
m
k

)
= m!

k!(m − k)! . (106)

Let

� = � − � − λlm
y = α − �

, (107)

then

cos mλ = cos(m� + my) = cos m� cos my − sin m� sin my

= 1

cosm ϕ

[m/2]∑
j=0

(−1)j cos m�

(
m
2j

)
(cos u)m−2j(sin u cos i)2j−

1

cosm ϕ

[(m−1)/2]∑
j=0

(−1)j sin m�

(
m

2j + 1

)
(cos u)m−2j−1(sin u cos i)2j+1.

Note that there is a factor of cosmϕ in the expression of P̄lm(sinϕ); therefore, let

q(�, u, i) =
[m/2]∑
j=0

(−1)j cos m�

(
m
2j

)
(cos u)m−2j(sin u cos i)2j−

[(m−1)/2]∑
j=0

(−1)j sin m�

(
m

2j + 1

)
(cos u)m−2j−1(sin u cos i)2j+1

(108)

Qlm(x) = Plm(x)/(1 − x2)m/2

= Nlm

K∑
k=0

Tlmkxl−m−2 k,
(109)

where K is the integer part of (l–m)/2 and the factors are

Nlm =
√

(l − m)!(2 l + 1)(2 − δ0m)

(l + m)! ,
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Tlmk = (−1)k(2 l − 2 k)

2lk!(l − k)!(l − m − 2 k)! . (110)

One has

Rlm = blm

rl+1
Qlm(x)q(�, u, i), (111)

and then

∂Rlm

∂a
= ∂Rlm

∂r

∂r

∂a
= −(l + 1)

a
Rlm ,

∂Rlm

∂�
= blm

rl+1
Qlm(x)

∂q(�, u, i)

∂�
,

∂Rlm

∂ i
= blm

rl+1

∂Qlm(x)

∂x

∂x

∂i
q(�, u, i) + blm

rl+1
Qlm(x)

∂q(�, u, i)

∂i
,

∂Rlm

∂ω
= blm

rl+1

∂Qlm(x)

∂x

∂x

∂u
q(�, u, i) + blm

rl+1
Qlm(x)

∂q(�, u, i)

∂u
,

∂Rlm

∂e
= blm(−l − 1)

rl+2

∂r

∂e
Qlm(x)q(�, u, i) + blm

rl+1

∂Qlm(x)

∂x

∂x

∂u

∂u

∂e
q(�, u, i)

+ blm

rl+1
Qlm(x)

∂q(�, u, i)

∂u

∂u

∂e
and

∂Rlm

∂M
= blm(−l − 1)

rl+2

∂r

∂M
Qlm(x)q(�, u, i) + blm

rl+1

∂Qlm(x)

∂x

∂x

∂u

∂u

∂M
q(�, u, i)

+ blm

rl+1
Qlm(x)

∂q(�, u, i)

∂u

∂u

∂M
,

(112)

where

∂q(�, u, i)

∂�
= m

[m/2]∑
j=0

(−1)jb1(m, j) sin m�(cos u)m−2j(sin u cos i)2j

− m
[(m−1)/2]∑

j=0

(−1)jb2(m, j) cos m�(cos u)m−2j−1(sin u cos i)2j+1

b1(m, j) = −
(

m
2j

)

b2(m, j) =
(

m
2j + 1

)
,

(113)
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∂q(�, u, i)

∂u
=

[m/2]∑
j=0

(−1) j cos m�̄

(
b3(m, j)(cos u)m−2j−1(sin u)2j+1

+b4(m, j)(cos u)m−2j+1(sin u)2j−1

)
(cos i)2j

−
[(m−1)/2]∑

j=0
(−1) j sin m�̄

(
b5(m, j)(cos u)m−2j−2(sin u)2j+2

+b6(m, j)(cos u)m−2j(sin u)2j

)
(cos i)2j+1

b3(m, j) = −
(

m
2j

)
(m − 2j)

b4(m, j) =
(

m
2j

)
2j

b5(m, j) = −
(

m
2j + 1

)
(m − 2j − 1)

b6(m, j) =
(

m
2j + 1

)
(2j + 1),

(114)

∂q(�, u, i)

∂i
=

−
[m/2]∑
j=0

(−1)jb4(m, j) cos m�(cos u)m−2j(sin u)2j(cos i)2j−1 sin i

−
[(m−1)/2]∑

j=0
(−1)jb6(m, j) sin m�(cos u)m−2j−1(sin u)2j+1(cos i)2j sin i

(115)

∂Qlm(x)

∂x
= Nlm

K∑
k=0

Wlmkxl−m−2 k−1

Wlmk = Tlmk(l − m − 2 k)
, (116)

x = sin ϕ = sin u sin i, (117)

∂x

∂u
= cos u sin i, (118)

∂x

∂i
= sin u cos i, (119)

sin u = sin(f + ω) = sin f cos ω + cos f sin ω

cos u = cos(f + ω) = cos f cos ω − sin f sin ω.
(120)

Further more, there is

1

rN
= 1

aN(1 − e2)N
(1 + e cos f )N = 1

aN(1 − e2)N

N∑
n=0

(
N
n

)
en cosn f , (121)

∂f

∂(e, M)
=
(

2 + e cos f

1 − e2
sin f ,

(a

r

)2√
1 − e2

)
, (122)

∂r

∂(a, e,ω, i,�, M)
=
(

r

a
, −a cos f , 0, 0, 0,

ae√
1 − e2

sin f

)
. (123)
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These derivations lead to simplified formulas for the perturbation function and are
necessary and enough to transform the differential equations of motion into func-
tions of Keplerian variables. They are used to derive the solutions of perturbations
of geopotential function in order and degrees of 2 × 0, 2 × 1, 2 × 2, 3 × 0 and
are the basis for deriving the general solution of the perturbation of l order and m
degree.

4.6 Principle of Numerical Orbit Determination

Recalling the discussions made in Sect. 4.2, the perturbed orbit of the satellite is the
solution (or integration)

�X(t) = �X(t0) +
t∫

t0

�F dt, (124)

which can be obtained by integrating the differential state equation under the initial
condition

{
�̇X(t) = �F

�X(t0) = �X0
, (125)

where �X(t) is the instantaneous state vector of the satellite, �X(t0) is the initial state
vector at time t0 (denoted by �X0), �F is a function of the state vector �X(t) and time t
and

�X =
(�r

�̇r
)

and �F =
( �̇r

�f /m

)
,

where �f is the summated force vector of all possible force vectors acting on the
satellite, m is the mass of satellite, and �r, ˙̄r are the position and velocity vectors of
the satellite.

If the initial state vector and the force vectors are precisely known, then the
precise orbits can be computed through the integration in (124). Expanding the
integration time t into the future, the so-called forecasted orbits can be obtained.
Therefore, suitable numerical integration algorithms are needed (see Sect. 4.8.2 in
Xu 2008).

In practice, the precise initiate state vector and force models, which are related
to the approximate initial state vector and force models, have to be determined.
These can be realised through suitable parameterisation of the models in the GPS
observation equations and then the parameters can be solved by adjustment or
filtering.

We generally denote both the range and range rate together by ρ; their partial
derivatives with respect to the orbit state vector (see Xu 2007) have the forms
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∂ρ

∂�r ,
∂ρ

∂ ˙̄r or
∂ρ

∂ �X .

Therefore, the orbit parameter-related parts in the linearised GPS observation
equation are

∂ρ

∂(�r, ˙̄r)

∂(�r, ˙̄r)

∂�y ��yT or
∂ρ

∂ �X
∂ �X
∂�y ��yT, (126)

where
�y = (�X0, �Y), ��yT = (��X0,��Y)T ,

∂ �X
∂�y = ∂ �X

∂(�X0, �Y)
,

where �X, �Y are the state vector of satellite and the parameter vector of the force
models, and index 0 denotes the related initial vectors of time t0. �y is the total
unknown vector of the orbit determination problem, the related correction vector
is ��y = �y − �y0 and ��X0 is the correction vector of the initial state vector. The
partial derivative of �X with respect to �y is called transition matrix which has the
dimension of 6 × (6 + n), where n is the dimension of vector �Y . The partial deriva-
tives of the equation of motion of the satellite (see (126)) with respect to the vector
�y are

∂ �̇X(t)

∂�y = ∂ �F
∂�y = ∂ �F

∂ �X
∂ �X
∂�y +

(
∂ �F
∂�y

)∗
, (127)

where the superscript ∗ denotes the partial derivatives of �F with respect to the
explicit parameter vector �y in �F and

D(t) =
(
∂ �F
∂ �X

)
=
⎛
⎝ 03×3 E3×3

1

m

∂�f
∂�r

1

m

∂�f
∂�̇r

⎞
⎠ =

(
03×3 E3×3
A(t) B(t)

)
,

C(t) =
(
∂ �F
∂�y

)∗
=
⎛
⎝03×6 03×n

03×6
1

m

∂�f
∂ �Y

⎞
⎠ =

(
03×(6+n)

G(t)

)
, (128)

where E is an identity matrix; the partial derivatives can be found in Xu (2008).
Notable that the force parameters are not functions of t. Therefore the order of the
differentiations can be exchanged. Denoting the transition matrix by Φ(t,t0), then
(128) turns out to be

dΦ(t, t0)

dt
= D(t)Φ(t, t0) + C(t). (129)

Equation (129) is called a differential equation of the transition matrix or
variation equation (see, e.g., Montenbruck and Gill 2000). Denoting
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Φ(t, t0) =
(
Ψ (t, t0)
Ψ̇ (t, t0)

)
, (130)

an alternate expression of (129) can be obtained by substituting (130) and (128) into
(129):

d2Ψ (t, t0)

dt2
= A(t)Ψ (t, t0) + B(t)

dΨ (t, t0)

dt
+ G(t). (131)

The initial value matrix is (initial state vector does not depend on force parameters):

Φ(t0, t0) = ( E6×6 06×n ). (132)

That is, in the GPS observation equation, the transition matrix has to be obtained
by solving the initial value problem of the variation equation (129) or (131). The
problem is traditionally solved by integration. An algebraic solution is derived by
Xu (2003).

Limitations of the Numerical Orbit Determination

Real-time ability of the numerical orbit determination is limited first by the
adjustment or filtering algorithms used.

If the classic least squares adjustment algorithm is used to solve the parameters
of the orbit determination problem, it is not possible to obtain the solution in real
time because of the size and dimension of the equations. The equations of IGS orbit
determination are formed and solved daily. It takes from less than 1 h to several
hours to compute the results depending, of course, on the computer used. The so-
called rapid IGS orbits are partly computed using 23 h past data and 1 h updated
data. In general, the classic least squares adjustment algorithm is not suitable for
real-time purpose.

Sequential least squares algorithm and Kalman filtering technique are partly
developed for real-time applications. The sequential least squares algorithm is a
special case of the Kalman filtering, therefore, the discussions will be focused on
the filtering method. Kalman filtering solves the equations of every epoch or every
epoch-block by taking into account the information from the past to obtain the
results. In this way the problem can be solved epoch-wise or epoch-block-wise
depending on the property of the problem. For equations of orbit determination the
problem is not solvable (or singular) for a few epochs because of the dimension of
the unknowns. The equations of orbit determination are generally solvable in half
an hour (see Xu 2004) or longer. That is, the filtering technique and the property of
the equations of orbit determination make the real-time application of the numerical
orbit determination very difficult.
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Furthermore, in numerical orbit determination, the numerical integration algo-
rithms have to be used to integrate the orbits and to solve the variation equations.
The numerical integrator usually has a so-called integrator length. The selection of
the integrator length depends on the accuracy requirement and the physical proper-
ties of functions that will be integrated and therefore is not free of choice. Usually in
IGS orbit determination, the integrator length is selected as 5 min. This also restricts
the real-time application of the numerical orbit determination.

Because of the adjustment and filtering techniques and the use of the numer-
ical integrator as well as the properties of the physical problem, numerical orbit
determination is difficult to be in real time.

4.7 Principle of Analytic Orbit Determination

Orbit determination aims to determine the initial orbital elements (i.e. the initial
state vector of the satellite) and the unknown model parameters. The technique of
numerical orbit determination is developed in a situation that, on one hand, one
needs the technique; however on the other hand, one does not have analytic solu-
tions of the disturbed equations of satellite motion. The key difference between the
numerical and the analytic orbit determination is that the orbits are represented in
the former algorithm by differential equations and in the latter algorithm by analytic
formulas.

The perturbed orbit of the satellite is the solution (or integration) (see discussions
in Chaps. 5, 6 and 7 of Xu 2008)

σj(t) = σj(t0) + (Gj(t) − Gj(t0)) where Gj(t) − Gj(t0) =
t∫

t0

Fj dt, (133)

where Gj(t) are the infinite integrations of the right functions of the equations of
motion and are given explicitly by analytic formulas. Equations (133) have been
obtained by integrating the disturbed equations of motion

{
σ̇j(t) = Fj

σj(t0) = σj0
, (134)

where σj(t) is the j-th Keplerian element, σj(t0) is the related initial value at time t0,
Fj is the related right function of the differential equation and is a function of
disturbing forces.

If the initial Keplerian elements and the force functions are precisely known,
then the precise orbits can be computed by using (134). Computing for time t in the
future, the so-called forecasted orbits can be obtained. That is, for orbit determina-
tion using analytic solutions, the traditional numerical integration algorithms are not
necessary any more (because the differential equations are theoretically integrated
by deriving the solutions).
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In practice, the precise initial Keplerian elements are not known exactly and the
parameters of the force models have to be co-determined. These can be realised
through suitable parameterisation of the models in the GPS observation equations
and then solved by adjustment or filtering.

We generally denote both the range and range rate together by ρ; their partial
derivatives with respect to the orbit state vector (see Xu 2003, 2007) have the form

∂ρ

∂�r ,
∂ρ

∂ ˙̄r . (135)

Therefore, the orbit parameter-related parts in the linearised GPS observation
equation are then

∂ρ

∂(�r, ˙̄r)

∂(�r,˙̇̄r)

∂(σj, j = 1, ..6)

∂(σj, j = 1, . . . 6)

∂�y ��yT, (136)

where

�y = (�σ0, �Y), ��yT = (��σ0,��Y)T. (137)

�σ , �Y are the Keplerian element vector and the parameter vector of the force models
and index 0 denotes the related initial vectors of time t0. �y is the total unknown vec-
tor of the orbit determination problem, the related correction vector is ��y = �y − �y0
and ��σ0 is the correction vector of the initial Keplerian element vector. The partial
derivatives of the satellite state vector with respect to the Keplerian element vector
are known and can be found in Sect. 4.5.4 of Xu (2008). The partial derivative of
the Keplerian element vector with respect to �y is called the transition matrix which
has the dimension of 6 × (6 + n), where n is the dimension of vector �Y . Because of
the analytic solutions of the disturbed equations of motion, the partial derivatives of
the Keplerian elements with respect to the vector �y are almost given by the solutions
explicitly. That is to say, by analytic orbit determination, the transition matrix is
represented by analytic formulas instead of the so-called variation equations in the
numerical algorithm. The variation equation has disappeared from the orbit deter-
mination process, so the numerical integration algorithms traditionally used to solve
the variation equation are not necessary any more.

Note that the orbit disturbances are mostly linear functions of the parameters of
the force models. Therefore, the partial derivatives of Keplerian element vector with
respect to parameter vector �y of the force models are directly the coefficients of the
related force parameters. No special derivations of the partial derivatives are needed.

Compared to numerical orbit determination (Chap. 8 of Xu 2008), in analytic
orbit determination, no variation equations need to be solved; no numerical integra-
tion algorithms are necessary; no special orbit-related partial derivatives have to be
derived. These significant advantages should lead to more efficient algorithms and
more accurate orbit determination.
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Real-Time Ability of Analytic Orbit Determination

Using the analytic orbit theory the observation equation of the orbit determina-
tion problem can be formed easily epoch-wise. The equations are solvable for an
epoch-block. Taking past information into account, the solvable equations of an
epoch-block can be formed and solved in real time. Taking the information before
the solved epoch-block into account, Kalman filtering technique can be used to
determine the orbit in real time. This is very significant for applications of satellite
technology nowadays and should be further studied intensively.

Properties of Analytic Orbit Determination

Initial Time Selection

In numerical orbit determination, the initial time is a matter of free choice. For
numerical integration, it really does not matter from which time point one starts to
integrate. However, in analytic orbit solution, nearly half of the formulas are func-
tions of initial time point (another half of the formulas are infinite integrations and
functions of instantaneous time). In turn, the functions of the initial time point are
in terms of sines and cosines. Of course, theoretically the initial time point of orbit
determination can be freely selected. However, if the initial time point is selected at
that point such that the sines or cosines of mean anomaly are zero, the intensity of
the computations can be reduced by 25%. That is, a suitable initial time selection is
very important for analytic orbit determination.

Using General Models for Second-Order Geopotential Disturbances

As shown in Chap. 6 of Xu (2008), the solutions of the second-order geopotential
disturbances are very long. Theoretically, any order and any degree of the distur-
bances can be derived; however, to program all the formulas into software will
definitely be a problem. For orbit determination the second-order geopotential dis-
turbances are small terms and they can be dealt with like corrections to the initial
and nominal orbit. For short periodic terms, the solutions are formed by a set of
functions of

{sin nM, cos nM, n = 1, . . . , N}, (138)

where M is the mean anomaly of the orbit; n is an integer index and has a truncation
number N.

Similarly, for the long periodic terms of the second-order geopotential distur-
bances, the solutions can be formed by the following sets of functions:

{sin nω, cos nω, n = 1, . . . , I},
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{sin n�, cos n�, n = 1, . . . , J},
{sin(nω + m�), cos(nω + m�), n, m = 1, . . . , K}, (139)

where m is an integer index; I, J and K are truncation numbers.
The general models of the solutions of the second-order geopotential distur-

bances are then

N∑
n=1

(An cos nM + Bn sin nM) +
I∑

n=1
(Cn cos nω + Dn sin nω)

+
J∑

n=1
(En cos n�+Fn sin n�)+

K∑
n,m=1

(Gnm cos(nω + m�) + Hnm sin(nω + m�),

(140)
where coefficients (An, Bn, Cn, Dn, En, Fn, Gnm, Hnm) can be considered as unknown
and should be co-determined by orbit determination. The truncation numbers of
(I, J, K) are generally much smaller than N because of the long periodic properties
and shall be suitably selected through practical experiments.

4.8 Summary and Discussions

Summary

Complete theory of the satellite orbit is described in a condensed way in this chapter.
Perturbed equations of satellite motion are discussed first; then singularity-free and
simplified equations are given. The solutions of extraterrestrial disturbances, such as
solar radiation pressure, atmospheric drag and the disturbance of the Sun, the Moon
and planets, are derived; then solutions of geopotential disturbances are discussed.
Numerical and analytical orbit determinations are dealt with before the summary
and discussions.

Discussions

Simplified Singularity-Free Equations of Motion

As seen above (Sect. 4.3), the singularity problem has been solved by using sim-
plified and singularity-free equations. The simplified orbit problem is described
using simplified coordinates. The geometric meanings of the variables remain the
same. The use of the traditional and partly non-geometric sensed variable set of
(a, h = sin i cos �, k = –sin i sin �, ξ = e cos(ω+�), η = –e sin(ω+�), λ =
M+ω+�) is obviously not an ideal choice. One of the important reasons for using
the canonical transformation to represent the orbit equations is that the canonical
equations are also singularity-free. After the disturbed equations of motion (24) or
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(25) are singularity-free, the advantages of the use of canonical equations have to be
carefully re-evaluated.

Analytic Solution vs. Numeric Solution

Solutions of the extraterrestrial disturbances are sometimes given both in analytic
and numerical form (see, e.g., Sects. 4.4.2 and 4.4.6). The formulas of the discrete
solutions are very easy to use for computation; however, they do not have clear
geometric explanations for the effects of the disturbances.

Potential Functions of the Sun, Moon and Planets

An approximation has been used in the derivation of the potential function of the
disturbing force of the Sun. Similar means have been used for the Moon and can
also be used for the planets. Therefore, the related solutions are derived under a
precondition that the approximation is allowed.

Confusion of Non-conservative Force with Conservative Effect

Solar radiation is a non-conservative disturbing force. It is said that such a non-
conservative force has a conservative effect. This is confusing and is shown in
Fig. 4.7 with an example of solar disturbance on a GEO satellite. One of the pos-
sible reasons for such confusion may come from the adjustment model of the solar
radiation used in the numerical orbit determination. The models used in traditional
orbit determination (see (4.72) of Xu 2008) are periodic functions of the orbit. No
matter what results are obtained from the adjustment, the results are periodic (or
conservative). If the determined models are used to interpret the effects of the solar
radiation, confusion is then the consequence. This shows that the parameterisation
is very important and the parameterisation should be physically reasonable.

Fig. 4.7 Solar radiation disturbance on a GEO satellite
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Long-Term Effects in Extraterrestrial Disturbances

There exist long-term effects in extraterrestrial disturbances (see (51)). The long-
term perturbations have to be taken into account in the transformation of integral
variables. This shall be particularly noticed in practical applications.

Long-Term and Long Periodic Effects in Short Periodic Disturbances

There exist long-term and long periodic effects in the short periodic geopotential dis-
turbances (see (5.34) of Xu 2008). The long-term and long periodic effects derived
in Sect. 4.5.2 of Xu (2008) are not unique and not the complete effects. Note that all
the long-term and long periodic effects have to be accumulated if the relations are
to be used.

Further Studies

Further studies have to be carried out on the analytic solutions of the Gaussian equa-
tions disturbed by the air drag, on the use of the simplified equations of motion, on
the applications of the analytic theory (especially on the analytic orbit determina-
tion), on the study of the correlation of the geopotential disturbances on the orbits,
and on the third-order solutions disturbed by the Earth and ocean tides as well as
relativity disturbance.
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5.1 Introduction

The use of space-geodetic techniques to study geodynamic processes began with
Very Long Baseline Interferometry (VLBI) in the early 1970s. By measuring the
delay in arrival time of the signal from distant celestial objects, the distances
between stations that are hundreds of kilometres apart can be derived with mil-
limetre accuracy. A review of the first 20 years of this technique is given by Ryan
and Ma (1998). Around the world there are nowadays more than 100 VLBI stations.
Another technique that has been available since the early 1970s is Satellite Laser
Ranging (SLR). As the name implies, this technique determines the distance to a
satellite by measuring the round trip time of a light pulse that is sent to the satel-
lite (Degnan 1993). Today, there are about 60 SLR stations operational around the
world.

SLR and VLBI provided a fundamental contribution to clarify the kinematics
of the tectonic plates on a global scale. During the 1980s, a quite extensive use of
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mobile VLBI and SLR systems was made in dedicated campaigns to monitor some
specific regions of the world with more significant tectonic activity (Vermaat et al.
1998). In addition VLBI technique was, and still is, an important tool to support the
realisation of an accurate and stable celestial reference system. SLR has an impor-
tant role in the determination of the Earth’s geocentre and in calibrating geodetic
microwave techniques. The limitations for a wider use of VLBI and SLR for geo-
dynamic purposes are their relative lack of portability, high cost and operational
complexity.

The quick development of satellite technology has led to the rise, in the early
1980s, of Global Navigation Satellite Systems (GNSS), such as GPS (Global
Positioning System) and GLONASS (GLObal NAvigation Satellite System). GPS
rapidly started to be applied for geodynamic applications, whereas GLONASS, due
to difficulties in achieving its full operational implementation, has not yet been used
in many geodynamic studies.

In the 1990s, radio satellite systems like DORIS (Doppler Orbitography and
Radiopositioning Integrated by Satellite) started to give useful information for the
study of regional and global geodynamics issues. Soudarin and Grétaux (2006)
present a recent geodynamic study using 57 DORIS stations.

Actually, the most commonly used space-geodetic technique for geodynamic
studies is still GPS. A thorough description of the GPS technique can be found
in Hoffman-Wellenhof et al. (1997) and Parkinson et al. (1996).

To achieve the very high accuracy needed for deformation studies, one needs to
look at a wide range of aspects related to GPS processing. Examples are satellite
dynamics, reference frame definition, Earth orientation, ionospheric and tropo-
spheric delay corrections, ambiguity resolution on a global scale, tidal and other
loading effects, multipath and antenna phase centre variation. A review of the use
of GPS for geodetic applications was written 10 years ago by Herring (1999). Other
review works related to geodynamic applications can be found in Blewitt (1993) and
Segall and Davis (1997). Here we extend such reviews to the current day, putting
the emphasis on the use of GPS to observe plate tectonic motions.

Until the early 1990s basically only campaign data were used to monitor the
Earth’s surface deformation and centimetre accuracy was foreseen. It was already
then demonstrated that the goal of measuring horizontal deformations with an accu-
racy of 5 mm/year should be soon achieved. Repeatability of the observed position
was a measure of accuracy of the GPS technique.

The continuous developments in GPS receiver technology, and a drop in equip-
ment cost, have led to a rapid change in the observation methodology. In the early
1990s the campaign type approach started to be replaced by the permanent network
approach with great impact on the study of the dynamics of the Earth. Examples of
permanent networks that started to be deployed in the early 1990s are the Permanent
GPS Geodetic Array (PGGA) in California (Bock et al. 1993) and a nationwide
network established in Japan with hundreds of GPS stations (Tsuji et al. 1995;
Miyazaki et al. 1996). Shimada and Bock (1992) reported some of the earliest results
from a permanent GPS network.

The most well-known permanent network of GPS stations is operated by the
IGS (International GPS Service, today called International GNSS Service) (Beutler
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1996), with a worldwide coverage, which has a major role in defining the reference
frame for all different applications of GNSS. The 1992 IGS Test Campaign served
as the proof of concept for IGS. Two main goals led to the establishment of IGS: the
need from the geodetic community for precise orbit determination and the need for
other products such as Earth orientation parameters and a reference frame.

There are now 336 active permanent (GPS and GPS+GLONASS) stations con-
tributing to the IGS. In Europe the EUREF permanent network (EPN) consists
of around 190 continuously operating GPS reference stations (EPNCB 2008).
Figure 5.1 shows the present-day distribution of permanent GPS, SLR, VLBI and
DORIS stations that contribute to the realisation of the International Terrestrial
Reference Frame.

Permanent networks reveal their usefulness to detect deformations between
plates (inter-plate) and deformations inside the tectonic plate (intra-plate) as well.
With continuous GPS data it is possible to study a wide range of transient deforma-
tion processes associated with seismotectonic activity and other geophysical signals
that were not possible with episodic GPS field campaigns. Daily solutions from
permanent stations yield more accurate estimates of average deformation rates than
those derived from periodic campaign measurements. In Sect. 5.2 we discuss how
GPS is contributing to clarify these aspects.

Absolute plate model velocities are given with respect to a global reference
frame. The realisation of such a frame is not trivial. The current method is to use
a global set of geodetic stations that are on stable plates, far away from the bound-
aries, as the realisation of the reference frame. Each station of this set has been
given a position and velocity. In Sect. 5.3 we explain how a new geodetic station
with unknown position and velocity can be mapped into this reference frame.

Fig. 5.1 Present-day distribution of VLBI, SLR, DORIS and GPS stations that contribute to the
realisation of the international reference frame



158 L. Bastos et al.

An assumption that is always implicitly made is that geodetic stations repre-
sent the velocity of the tectonic plate on which they are located. Now that the
accuracy has reached the millimetre level, one has to correct for many geophysical
phenomena, which are mainly periodic, before this is true. In addition to periodic
motions that may affect a station position, there are deformations due to the elastic
response of the Earth to changes of atmospheric pressure, the nearly secular motions
associated with post-glacial rebound and the occasional episodic motions associated
with earthquakes. The degree of accuracy achieved in the determination of a site
motion demands careful analysis of all different aspects involved in the GPS pro-
cess, including a deep understanding of all the underlying geophysical phenomena.
The geophysical corrections involved in the interpretation of a GPS time-series are
described in detail in Sect. 5.4.

As mentioned before, the GPS observing strategy has evolved from the so-called
campaign mode to the permanent network approach. In spite of the good accuracy
achieved on the basis of epoch-type campaigns, this approach does not allow the
discrimination between continuous deformations and instantaneous displacements
associated with seismic or volcanic activity. Local or regional networks of per-
manently operating systems are more effective. This has also allowed for better
investigation of the noise properties within the GPS time-series. As a result, also
the way of estimating the tectonic motion from the GPS position time-series has
evolved during the last decade. A summary of this history is given in Sect. 5.5.

A few examples of the impact of GPS-derived information in the study of the
kinematics of the Azores region are presented in Sect. 5.6. Finally, future prospects
in the exploitation of space-geodetic techniques to study the Earth’s deformation are
referred to.

5.2 Plate Tectonic Models

Alfred Wegener suggested at the beginning of the last century that the continents
were once one large land mass that has undergone processes that gave rise to several
tectonic plates, which drifted to their current locations. This theory could only be
confirmed by the mid-1950s, when paleomagnetic data became available.

By the 1970s, several plate motion models, based on geophysical and geologi-
cal data, were presented (Chase 1978; Minster and Jordan 1978) and these started
to be adopted by the scientific community in general. These early models and,
more recently, NUVEL-1 (DeMets et al. 1990) and its updated version, NUVEL-1A
(DeMets et al. 1994), were computed using geological and geophysical data, such
as ocean floor magnetic anomalies, transform faults and earthquake slip vectors,
averaging over a period of 3–5 million years.

When published, NUVEL-1A was considered to provide the best estimate of
the angular velocity for major plates and it is still used intensively these days.
However, this model shows some deficiencies, in particular by lacking values for
some tectonic blocks, which have been clearly identified in recent years as separate
units. In addition, it only provides estimates of the angular velocities for 14 large



5 Deformation and Tectonics 159

plates when more recent research shows a significant larger number of independent
tectonic units. This is the case of PB2002 (Bird 2003), which is a compilation of a
total of 52 tectonic plates.

However, even this figure is not final. With the densification of observation sys-
tems, more plates have been identified. A good example is the African continent,
which was considered to be a single unit in NUVEL-1A and in PB2002 was divided
into two blocks (Nubia and Somalia) as depicted in Fig. 5.2. In a more recent pub-
lication, Stamps et al. (2008) have identified (and quantified) another separate unit,
namely the Victoria Block. The availability of space techniques allowed an assess-
ment of the actual plate movements and brought in new information that was highly
relevant for the clarification of some of these aspects.

The global models of plate motions, based on geophysical and geological data
averaged over the past few million years, are a useful reference for comparison with
motions estimated from space-geodetic measurements, averaged over the past few
decades (not more than one decade for many plates). However, a timescale issue
has to be considered when comparing current day plate boundary configuration
from GPS measurements with that deduced from plate tectonic models that integrate
the past few million years. For many plates it has been observed that a significant
distinctive motion between geological/geophysical and geodetic predicted angular
velocities exists (Norabuena et al. 1998; Sella et al. 2002). This probably reflects a

Fig. 5.2 The boundaries of the tectonic plates of the NUVEL-1A model (DeMets et al. 1994)
are shown by the thick gray lines. The plate boundaries of the PB2002 model (Bird 2003) are
represented by the thin black lines. Wide deformation areas (orogens) are shown with the squared
pattern
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change in the angular velocities due to processes not clearly understood at present.
Plate tectonic models can also be biased by local effects (inter- and intra-plate
movements), and reveal inconsistencies, especially in boundary zones. GPS obser-
vations give motions over a short time interval, a few years, showing aspects of
present-day plate tectonics with consequences in the definition of boundaries and
present-day behaviour. In other words, if the secular motions of tectonic plates can
change over time, then the geophysical/geological models will provide the average
motion over a few million years, and consequently they will not depict exactly the
present-day velocities, whereas geodetic-based models provide estimations of the
secular motions based on only a few years. Nevertheless, geophysical/geological
models like NUVEL-1, and successors, still provide useful information to study
present-day kinematics in areas, such as oceans, where geodetic measurements are
not available. On the other hand, GPS solutions in deformation zones within the
continents are providing more reliable information about the kinematic constraints
than that provided by geological/geophysical plate motion models. This information
is also contributing to revealing to what extent inter- and intra-plate deformations
occur in a continuous or episodic manner.

The coverage provided by space geodesy, with networks implemented world-
wide, gave a global perspective that allowed the establishment of new geodetic-
based plate models such as Larson et al. (1997), REVEL (Sella et al. 2002),
DEOSVEL (Fernandes et al. 2003) and ITRF2005 (Altamimi et al. 2007). Since
the mid-1990s these models are being continuously improved, both in the number
of described plates and in the number and length of the time-series used. Table 5.1
illustrates the previous discussion by showing the differences in the estimated
angular velocities and position of the rotation vector on the Earth’s surface (also
known as the Euler pole) provided by the different models.

The values for three major plates, North America, Eurasia and Nubia (western
part of Africa), are presented in Table 5.1. The boundaries of the North American
plate are well identified, whereas the limits of the Eurasian and Nubian plates
changed significantly in the last years with the identification of other blocks.

The comparison of the solutions clearly shows that the estimated angular veloc-
ities for most plates are currently reaching robust values. With the exception of
AM1-2, the predictions provided by all models for these plates are similar. Notice
that no uncertainties are provided with the values displayed in Table 5.1. The reason
is that the associated uncertainties provided by most models do not reflect the real
uncertainty in the computed values. The published values are usually too optimistic
since they were computed using the formal errors that are directly obtained from
the least-squares approach used to compute the time-series. When least-squares are
used, it is normally assumed that only white noise processes affect the coordinate
positions, which is not true since they are also affected by a multitude of system-
atic errors (monument, orbits, etc.). This is discussed in more depth in Sect. 5.5. As
a consequence, the formal uncertainty only depends on the number of used posi-
tion solutions and their associated formal error. It does not transmit how good the
data fit the model (in this case, how close the daily solutions are to the estimated
secular trend).



5 Deformation and Tectonics 161

Table 5.1 Solutions provided by different models: AM1-2 (Minster and Jordan 1978), NUVEL-
1A (DeMets et al. 1994), Larson et al. (1997), REVEL (Sella et al. 2002), DEOSVEL (Fernandes
et al. 2003), ITRF2005 (Altamimi et al. 2007) for three major plates North America, Eurasia and
Nubia (Africa = Nubia + Somalia in AM1-2 and NUVEL1-A). Latitude is denoted by ϕ, longitude
by λ and the angular velocity by ω

Solution North America Eurasia Nubia (W. Africa)

AM1-2 ϕ = −58.31◦
λ = −40.67◦
ω = 0.247◦/Myr

ϕ = 0.70◦
λ = −23.19◦
ω = 0.038◦/Myr

ϕ = 18.76◦
λ = −21.76◦
ω = 0.139◦/Myr

NUVEL-1A ϕ = −2.429◦
λ = −86.035◦
ω = 0.2064◦/Myr

ϕ = 50.655◦
λ = 112.562◦
ω = 0.2336◦/Myr

ϕ = 50.656◦
λ = −74.081◦
ω = 0.2906◦/Myr

LARSON ϕ = −0.4◦
λ = −84.5◦
ω = 0.22◦/Myr

ϕ = 56.3◦
λ = 102.8◦
ω = 0.26◦/Myr

ϕ = 50.0◦
λ = −86.8◦
ω = 0.26◦/Myr

REVEL ϕ = −2.39◦
λ = −79.08◦
ω = 0.199◦/Myr

ϕ = 58.27◦
λ = 102.21◦
ω = 0.257◦/Myr

ϕ = 52.25◦
λ = −80.18◦
ω = 0.253◦/Myr

DEOSVEL ϕ = −4.574◦
λ = −83.150◦
ω = 0.1945◦/Myr

ϕ = 54.614◦
λ = −103.876◦
ω = 0.2485◦/Myr

ϕ = 50.861◦
λ = −81.475◦
ω = 0.2610◦/Myr

ITRF2005 ϕ = −4.291◦
λ = −87.385◦
ω = 0.192◦/Myr

ϕ = 56.330◦
λ = −95.979◦
ω = 0.261◦/Myr

ϕ = 49.955◦
λ = −82.501◦
ω = 0.269◦/Myr

Bastos et al. (2005) showed that, when enough GPS solutions exist (as is the case
for the plates shown in Table 5.1), the implication of choosing different error mod-
els in the computation of the velocity solutions used to derive the angular velocity
model is not significant. In particular they analysed the implications of the chosen
noise model on the estimation of the angular velocities for the Nubia and Somalia
tectonic plates using a network of continuously operating GPS stations.

They used three different error models: the usual formal uncertainties (directly
obtained from the least-squares adjustment); the WRMS of the residuals divided
by the observation span in years (Fernandes et al. 2004), which is an empirical
formulation; and a power law + white noise model (Williams et al. 2004), which
takes into account the existing noise signals in the trend.

The differences between the estimated angular velocities for Nubia (14 sites)
using the three approaches were smaller than 0.7º and 0.003º/Myr. These differences
were significantly larger for the Somalian plate, where only four sites were available,
reaching 3.8º and 0.010º/Myr. However, the implications on the predictions given by
the tectonic models are not very significant, as can be observed in Fig. 5.3 which
shows the relative motion of the stable part of the Somalian plate with respect to
Nubia (Bastos et al. 2005).

It is worth mentioning that including a seasonal signal during the estimation of
the GPS velocity vectors can change the Euler pole by up to 0.5º and 0.002º/Myr.
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Fig. 5.3 Comparison between the relative angular velocity of Somalia with respect to Nubia by
using different noise models for the used horizontal velocities (Bastos et al. 2005)

The definition of a plate model is also relevant for the realisation of a Reference
Frame as it is used as its kinematic reference. The model should fulfil the condi-
tion of no-net-rotation which states that the integral over the Earth’s surface of all
plate motions should be zero. To perform this integral it is necessary to know the
plate boundaries which are inferred from geological/geophysical information. The
current practice is to align the geodetic plate models to a geological/geophysical
plate model to ensure that the no-net-rotation condition is satisfied (Kreemer et al.
2006).

5.3 Mapping Issues

To align daily (or combined) GPS solutions with any realisation of the International
Referential Reference System (currently, ITRF2005 – Altamimi et al. 2007), the
usual first requirement is to process the network of interest together with a sub-set
of stations with well-known position and velocity estimates in the desired refer-
ence frame. These reference stations are then used to compute the transformation
parameters to project the daily (or combined) “unknown” reference frame onto our
reference frame.
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The selection of the reference stations is a fundamental step of the mapping pro-
cess. Although ITRF2005 represents a large improvement in comparison with the
previous ITRF versions, the amount and distribution of GPS stations (typically IGS
stations) with well-determined ITRF2005 position/velocity representation is still not
optimal. The problem is noteworthy for many regions since, although the existence
of a significant improvement was seen in recent years, more than half of the reliable
IGS stations are still located in Europe and North America.

We demonstrate here the implications of using different sets of reference sta-
tions to align the daily solutions into the reference frame of interest. Different
sub-sets of regional stations have been used in Europe to compute the daily trans-
formation parameters since January 1996. Figure 5.4 shows the distribution of the
selected stations. First, a global distribution of stations was considered with a spa-
tial distribution as uniform as possible. Second, for the regional reference network,
the same sub-set of 13 stations chosen by EUREF (EPNCB 2008) to map the
EPN weekly solutions into ITRF2005 has been selected. EPN is a dedicated net-
work created to define a unified European reference frame (ETRS89) (Bruyninx
2000). It currently counts approximately 200 stations concentrated in Europe and

Fig. 5.4 Four different configurations of reference networks (RN) used for these tests: global RN
(a); RN used to compute the EPN weekly solutions (b); RN used by the EUREF Special Project
“Time-Series” (c); a sub-regional network located in the Central Europe (d)
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surrounding regions. Third, since 1996, different sets of reference stations have
been used to tie the EPN combined solution to the successive ITRS realisations.
The last set was selected since it is assumed that this set has been fully tested
and provides the most accurate link of the EPN stations into ITRF2005 on a
European scale. We will call this the “Regional Time-Series” set since they were
used by EPN in a special project to compute time-series. Fourth, a sub-set of five
reference stations localised on Central Europe was selected to compute another
set of transformation parameters, considered here as a sub-regional reference
network.

These different reference networks were used to compute time-series for KOSG
(Kootwijk, the Netherlands). This station has been selected since an unexpected
event occurred at this station in 2003 (the mast was hit by a car causing a jump
on the time-series). In fact, the analysis of the derived time-series (see Fig. 5.5)
illustrates some important issues:

• The jump due to the event is clearly visible in the Global/EPN weekly/Regional
Time-Series.

• However in the sub-regional network, that jump is masked by the few number of
stations used in the mapping. Furthermore, the time-series for KOSG, particularly
for the sub-regional, are dictated by the fact that this station is a reference station
among five (also more visible in the EPN and Regional Time-series than in the
global mapping).

• Periodical signals in the time-series are better visible (and cleaner) on the global
solution than in the other solutions.

The consequences of using different types of reference networks are also evi-
dent in Fig. 5.6. It depicts the solutions for Maspalomas (MAS1), located on
Canary Islands, i.e. outside of the limits defined by the EPN Weekly, Time-Series
project, and sub-regional reference network stations. Consequently, the computed
transformation parameters were extrapolated for this station when these networks
were used. The degradation in the estimated signal is clearly observed. In fact,
the amplitude of the noise prevents to compute any reliable solution for the three
components of the position when the sub-regional network is used. The EPN
Weekly and Time-Series project solutions are also clearly noisier than the global
solution.

The antenna accident at KOSG also reveals the consequences of the use of a small
number of reference stations. No correction has been added intentionally. Two facts
are evident from the comparison of the time-series between the global and the sub-
regional solutions: as already mentioned, the signal is well identified on the global
solution but it is almost not detected on the sub-regional solution, independently of
the fact that KOSG is used in both solutions as reference station.

Inversely, no consequences are observed in the global time-series of MAS1,
whereas all weekly sub-regional solutions for MAS1 are considered outliers after
that date.
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Fig. 5.5 Time-series of KOSG using different mapping reference networks

The conclusion is that the number of stations influences significantly the estima-
tion of the transformation parameters; when a small number of stations are used,
an error on one station position affects the entire solution, whereas those effects are
mitigated when a large number of stations are used (more than 60 stations were used
on the global solution).
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Fig. 5.6 Time-series of MAS1 using different mapping reference networks
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5.4 Geophysical Corrections for the GPS-Derived
Station Positions

In the previous section we described how to map GPS solutions for the position of a
station over time within the International Terrestrial Reference Frame (ITRF). Each
particular realisation of the ITRF, such as ITRF2000 (Altamimi et al. 2002) or more
recently ITRF2005 (Altamimi et al. 2007), consists of a global set of geodetic sta-
tions for which one defines a position X0 at time t0 and a velocity V0. These values
represent our best fit of the tectonic plate motions to our observations. Consider now
the following equation:

X(t) = X0 + V0 · (t − t0) +
N∑

i=1

�Xi(t). (1)

Here X(t) is the instantaneous position of the geodetic reference station that is
observed with GPS, given in ITRF coordinates, at time t. The last summation con-
tains all the geophysical corrections that should be added to the plate motion to
obtain the real instantaneous position and these are the subjects of this section.
The conventions of the International Earth Rotation Service (IERS) prescribe which
geophysical corrections should be applied during the GPS analysis to ensure homo-
geneity between all published GPS results (McCarthy and Petit 2004). If these
geophysical corrections are subtracted from the estimated instantaneous position,
one obtains a mean station position that should correspond better to the tectonic
plate motion one wants to investigate. The current custom is to analyse batches
of 1 day of GPS data which means that one obtains a time-series of mean daily
positions.

The largest geophysical correction is the tidal deformation of the solid Earth, also
called the body tide, caused by the gravitational attraction of the Moon and Sun. It
produces periodic variations of tens of centimetres in the position in a time span of
several hours. The current model of the body tide assumes that the deformation of
the Earth is linear with the tidal forces and that it is for around 99% instantaneous.
For the most dominant period of 12.42 h, called harmonic M2, the body tide lags
with 0.204◦± 0.047◦ (Ray et al. 2001) behind the tidal forcing. The elasticity of
the Earth is also dependent on the period of the tidal forcing, especially near the
resonance period of the free core nutation, which is close to one sidereal day. Despite
these complexities, the body tide can be modelled to better than 1 mm accuracy
(McCarthy and Petit 2004; Watson et al. 2006).

The second largest geophysical correction is due to the loading of the ocean
tides on the ocean floor. This deformation continues land inwards and can reach
centimetre level. For the dominant tidal harmonic M2 the accuracy of this correction
is mostly smaller than 0.4 mm for inland sites but can reach up to 3 mm at some
coastal sites.

The Earth not only deforms due to the tidal forces of the Sun and Moon, but
also changes its orientation in space. This is called nutation, and IERS prescribes a
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very accurate model to correct for this (McCarthy and Petit 2004). The ocean tides
also change the orientation of the solid Earth because the total angular moment of
the whole Earth system must remain constant over time. Therefore, a change in the
angular momentum of the oceans, due to tidal currents and change in tidal elevation,
must be compensated by a change in the rotation of the solid Earth. The effect can
be as large as 10 mm and the model uncertainty is about 0.2 mm, mostly in the
horizontal position.

Since tides have their largest influence at the semi-diurnal and diurnal periods,
their influence on the secular motion of the station is small because most of this sig-
nal averages out over a period of 1 day. However, studies by Stewart et al. (2005) and
Penna et al. (2007) show that one still needs to be cautious and that one must apply
accurate tidal corrections since any error in these corrections can cause significant
spurious periodic signals at longer, such as annual, timescales.

The orientation of the Earth in space is also affected by changes in angular
momentum in the atmosphere and due to non-tidal currents (Gross et al. 2003). This
is called polar motion and at the moment no model exists to predict it; only observed
values are available that must be inserted into the GPS analysis. Polar motion has
its largest effect at the yearly period and the Chandler period which is around 14
months. The maximum radial displacement due to polar motion is approximately
25 mm, and the maximum horizontal displacement is about 7 mm.

The atmospheric pressure also loads and deforms the Earth surface in the same
way as ocean tide loading and causes deformations that can reach several millime-
tres. Atmospheric loading has its largest effect at the annual period which means
that this effect does not average out as quickly as the tidal corrections. The atmo-
spheric loading values are provided by the Special Bureau for Loading (http://www.
sbl.statkart.no/). The uncertainty of the atmospheric corrections is mostly due to the
errors in the surface pressure data and is estimated to have an RMS of 0.75 mm
and a maximum value of 3 mm. An extra complication is the dynamic response of
the oceans due to variations in the atmospheric pressure. One mostly assumes that
the response is instantaneous and that the sea level is inversely proportional to the
pressure changes above it. This is called the inverted barometer assumption but it is
only valid for periods longer than 10–30 days.

In addition, ground water level and thermal expansion can also induce varia-
tions in the stations position, mostly with a period of 1 year (Zerbini et al. 2001).
However, no conventions exist to deal with these phenomena. Residual annual sig-
nals are mostly estimated when analysing the GPS position time-series as explained
in Sect. 5.5.

Since the last ice age, some 20,000 years ago, the Earth’s crust is still slowly
recovering in some places from the deformation caused by the kilometres thick ice
layers that were covering areas such as Scandinavia and Canada. The vertical uplift
of this post-glacial rebound can be as large as 1 cm/year (Scherneck et al. 2003).
There are also horizontal deformations of several millimetres per year associated
with this phenomenon because the uplift causes a horizontal flow of mass. There
exist models for this post-glacial rebound effect but these are not part of the standard
corrections that are advised by IERS.
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Finally, corrections are available for the effect caused by the movement of the
centre of mass of the solid Earth with respect to inertial space. According to IERS,
the ITRF is defined to have its origin in the centre of mass of the solid Earth. Due
to the mass distribution in the ocean due to tides, and to the non-tidal currents and
mass distributions in the atmosphere due to weather, the solid Earth moves several
millimetres with respect to an inertial reference frame to keep the centre of mass
of the whole system constant. The satellites that support space-geodetic techniques,
such as SLR, DORIS and GPS, orbit around the centre of mass of the whole Earth
which includes the atmosphere and the oceans. For this reason, IERS prescribes to
use atmospheric and ocean tide loading corrections that have the associated geocen-
tre motion added to them. Although the geocentre motion of several millimetres,
mostly at the yearly period, has been clearly observed with SLR, DORIS and GPS
(Chavet et al. 2003; Feissel-Vernier et al. 2006), the differences between the space-
geodetic techniques are significant and further research is needed to resolve these
discrepancies.

5.5 Time-Series Analysis

After obtaining a time-series of mean daily positions derived from GPS observa-
tions, one can estimate the station motion from these data. This motion is thus
assumed to be equal to the plate motion on which the station is located. An example
of such a time-series is given in the top panel of Fig. 5.7 which contains the varia-
tion in the position towards the north at KOSG given in IRTF2000. In the top figure

Fig. 5.7 The variation of the GPS positions over time at KOSG, north component. The top panel
shows the original time-series while the bottom panel shows the time-series after subtracting a
linear trend and a correction for the jump in the data
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one can see clearly a linear motion over the years. In addition, in 2003 there was, as
mentioned before, an accident which caused the antenna to be displaced by several
millimetres.

The KOSG station is a core station of ITRF2000. Therefore, by definition the
north velocity of this station should be exactly equal to 15.3 mm/year. As was
described in Sect. 5.3, due to measurement errors and errors between the real and
defined ITRF velocities, this fit is not perfect and one obtains time-series like that
presented in Fig. 5.7 with a trend value of 15.76 ± 0.14 mm/year.

The standard method for estimating this linear motion from these data is ordi-
nary least-squares. However, ordinary least-squares only gives optimal results when
all observations are independent and normally distributed. One of the first papers
that emphasised that the assumption of independent GPS observations is invalid
was by Johnson and Agnew (1995). To be precise, after subtracting the esti-
mated linear motion from the estimated GPS positions, one obtains a time-series
of residuals that is assumed to represent the noise in the observations. If the obser-
vations were independent, the correlations between the residuals should be zero
which is not the case. The work of Johnson and Agnew was the result of ear-
lier studies by Agnew (1992) who showed earlier that temporal correlations also
exist in tide gauge and laser strain data. Recently, temporal correlations have also
been identified/demonstrated in time-series of absolute gravity measurements (van
Camp et al. 2005). Therefore, it is more unusual to find a geodetic time-series
that does not show temporal correlations than to find one which does. In addi-
tion, the temporal correlations have been shown in all cases to decrease only
very slowly with increasing time span between each pair of observations and are
for that reason called long-range correlations (Beran 1994). Since it is assumed
that the noise at time t depends on a weighted sum of all previous noise values,
these long-range correlations can produce a noise that is not stationary; actually
it gets larger over time. The most famous example is random walk behaviour
which has actually been observed in two colour electronic distance measurements
(Langbein 2004). In GPS observations, the long-range correlations are less strong
but still cause the noise to grow on average over time instead of being a stationary
signal.

The non-stationary noise can easily be confused with the tectonic motion that
one wants to investigate. This is the reason why the real uncertainty in the estimated
tectonic motion can be much larger than that predicted by using ordinary least-
squares which ignores this effect. For many years, most researchers using ordinary
least-squares were well aware that their error bars were too small. To overcome the
associated consequences they applied a scaling factor that used the variance of the
GPS residuals as observation error instead of those provided by the GPS analysis
software. However, Mao et al. (1999) showed that this can still cause an underesti-
mation of the real error in the trend by a factor of 5–11 because one still assumes
that the observations are independent. Bos et al. (2007) showed that the underes-
timation is even slightly larger, 6–13 times. A realistic error bar on the estimated
trend value is extremely important when one tries to determine whether two sets of
estimated plate motions are significantly different.
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Fig. 5.8 The power spectrum
of the GPS north residuals at
KOSG (grey circles). The
solid line represents the
power law plus white noise
model fitted to the power
spectrum

One method to investigate the temporal correlations is by looking at the power
spectrum of the residuals. Figure 5.8 shows the power spectrum computed using the
GPS residuals of the north component at the KOSG station.

A time-series of independent random variables has the same power at all fre-
quencies. This is also called white noise. One can see that the high frequencies in
Fig. 5.8 are well described by a constant power. On the other hand, the power of
the lower frequencies in Fig. 5.8 seems to increase exponentially with decreasing
frequency. This is called power-law behaviour and is the result of the long-range
correlations in the GPS observations. In mathematical notation this behaviour of the
power spectrum can be expressed as

P(f ) = P0

(
1

f

)α

, (2)

where P0 is a constant, f is the frequency and α is called the spectral index (Kasdin
1995).

The first authors to present this type of evaluation of the power spectra for GPS
observations were Zhang et al. (1997) and Mao et al. (1999). Mao et al. also showed
that maximum likelihood estimation (MLE) provides the most accurate estimate of
the trend and the values of the noise parameters. In their case these noise parameters
were the variance of the white noise and the variance of the power-law noise. The
value of their spectral index of the power-law noise was fixed to one which is also
called flicker noise. Williams (2003a) generalised the noise model by also estimating
the spectral index α value in the MLE process. However, experience has shown
that the spectral index of the power-law noise component in all GPS time-series is
always close to one and that therefore fixing it a priori to this value is generally
an acceptable practice (Williams et al. 2004). No explanation for the fact that the
spectral index is always around one has yet been given.

The MLE provides the values of the trend motion and the noise parameters that
are the most likely to have occurred for the given data set. Since the problem is
not linear, due to the noise parameters, one must use a numerical maximisation
algorithm to determine the best likelihood value (Williams 2003a; Williams et al.
2004; Langbein 2004; Bos et al. 2007).
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The MLE described above is implemented in the CATS software (Williams 2008)
that is becoming a popular choice for analysing GPS time-series, being used for
example by EUREF in the analysis of their permanent network.

Besides temporal correlations, there exist correlations between the time-series of
the North, East and up component. However, these correlations are mostly neglected
because the effect of the temporal correlations on the accuracy of the estimated trend
values is much larger.

In addition, there exist spatial correlations between the time-series of stations
that are closely located to one another (Wdowinski et al. 1997). As an example we
present in Fig. 5.9 the spatial correlation between the residual time-series, north
component, of 24 permanent GPS stations located on the Iberian Peninsula.

One can see that the correlation is significantly different from zero and that the
correlation decreases with increasing distance between the stations. The exact cause
of this correlation is still unknown but it could be due to errors in the orbit which
propagate into similar station position errors.

Figure 5.10 shows that taking those correlations into account has an impact on
the computation of the velocity field for the region.

It has already been mentioned that the spectral index of the power-law noise has
always been observed to be close to one. Williams et al. (2004) investigated whether
the variances of the power law and white noise depend on the type of geodetic mon-
uments. This is an important topic since reducing noise levels in geodetic data is crit-
ical for the interpretation and modelling of geophysical interesting signals. As was
to be expected, the highest variance was observed for GPS antenna’s installed on
oil platforms. The second worst type of monument was the common concrete pillar.
However, this last result has been contradicted by Beavan (2005). He concluded that
differences between the monument types are not a dominant influence on the noise,
implying that the relatively cheap concrete pillar monuments are still a valid choice.

Unfortunately, most GPS time-series contain outliers which, by using common
sense, should be removed from the data set in order to avoid getting nonsense results.
A simple but robust method for outlier removal is to compute the median and the
25 and 75% interquartile. Anything that is smaller than three times the value of the

Fig. 5.9 The spatial
correlation in the north
component between all pairs
of residual time-series of 24
permanent GPS stations
located in the Iberian
Peninsula as function of the
distance between the stations
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Fig. 5.10 Velocity field (w.r.t. Nubia) before (grey) and after filter (white) (Bastos et al. 2006)

median minus the 25% interquartile and anything that is larger than three times the
75% interquartile minus the median is considered to be an outlier.

In addition, one has to look for offsets in the data and tell the analysis software
that, on that particular epoch, it must also estimate an offset. Currently, the time at
which offsets occur is mostly determined by visual inspection of the time-series.
Williams (2003b) has shown that it is virtually impossible to detect all offsets in the
time-series because some could be smaller than the noise. A result could be that over
very long time spans the noise in the GPS time-series will be dominated by random
walk noise, caused by the accumulation of offsets, instead of flicker noise. However,
even at stations with more than 10 years of GPS data, no random walk noise has yet
been observed which assures us that the stability of most GPS monuments is quite
robust over the years.

At the plate boundaries one has to check whether the tectonic motion is the same
before and after an offset. When the source of the accident is known to be a dis-
placement of the GPS antenna, as was the case at KOSG, the tectonic motion will
clearly be unaffected. However, in other cases, such as station LDES in California,
USA, which is located at a plate boundary, one has observed a quite distinct change
in the velocity after an earthquake. Figure 5.11 shows the time-series of the north
component for the continuous GPS station LDES. The Hector Mine earthquake in
1999 caused an 18-cm offset in the north component which has already been cor-
rected for. Next, one can see some period after the earthquake where the position
seems to experience an exponential relaxation before assuming a new linear tectonic
motion (Pollitz 2003).
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Fig. 5.11 The GPS position, north component at the LDES station (SOPAC Refined Model GPS
site Position Time Series, http://sopac.ucsd.edu)

So far we have only discussed continuous GPS observations. However, in some
areas only GPS campaign data are available with intervals of around 1 year or more.
Time-series of several years of GPS campaign data can clearly show the tectonic
motion as was described in Sect. 5.1. On the other hand, the large gaps in time
between each campaign severely limit the application of the MLE method described
in this section to determine the noise properties because there is mostly too little data
available. This is still an area of current research but one could probably assume
a conservative a priori power law plus white model which is observed at a nearby
permanent station and use this model in the trend estimation from the GPS campaign
data.

5.6 GPS and Geodynamics – An Example

We present in this section an example of the use of GPS for studying the Earth’s
deformation due to geodynamic processes in the Azores Triple Junction Region.
Such an example does not intend to give an exhaustive representation of all the
research done in this field since it is already more than 20 years that GPS has become
the main tool to directly observe present-day tectonic motions.

Most of the initial GPS-based geodynamic projects were developed at a regional
level. Among others, we can refer the works from Dong and Bock (1989) and Larsen
and Reilinger (1992) in the California region; Straub and Kahle (1995), Noomen
et al. (1996), Reilinger et al. (1997) and Kahle et al. (1995) in the Mediterranean
area; and Feigl et al. (1993), Tsuji et al. (1995) and Miyazaki et al. (1996) in
Japan. In parallel, projects with a broader geographical (intercontinental) scope
also started to be developed. Examples are the CASA UNO (Kellogg and Dixon
1990) in Central and South America and the TANGO (Bastos et al. 1991) in the
Azores-Gibraltar region, which were among the first GPS networks established to
support geodynamic studies.

The TANGO project, established in 1988 with GPS stations in the European and
North American continent, included a network on the Azores Archipelago, shown
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Fig. 5.12 TANGO network installed in 1988. The inset shows the stations installed on the five
islands of the Central Group of Azores Archipelago in the framework of other collaborating
projects since 1999

in Fig. 5.12, located near the mid-Atlantic ridge in the area of the so-called Azores
Triple Junction (ATJ). The object of this project was to contribute to the description
of the complex tectonic features of this region where three large tectonic plates meet:
the North American, Eurasian and Nubian plates. Several authors have tentatively
drawn a geodynamical model for the ATJ aiming to resolve the configuration of the
boundary between the Eurasian and Nubian plates.

The spatial distribution of the deformation associated with the Eurasia–Nubia
plate boundary is as yet poorly understood. The fine scale geometry of this active
plate boundary area is still unclear, and the information derived from the GPS
observations is giving a unique and decisive contribution to understand its broad
structure.

Presently, a record of 20 years of periodic GPS campaign data in the Azores
area exists. Complementary projects have meanwhile been developed (Navarro et al.
2003; Fernandes et al. 2004) providing a much better spatial coverage, in particular
in the Central Group, with the installation of dense campaign networks per island
between 1999 and 2001. The TANGO network is now quickly evolving towards a
permanent approach.

Results from the initial TANGO network for the period 1988–1997 were pre-
sented by Bastos et al. (1998), showing accuracy at the few centimetre level.
Consequently, a period of about 10 years with periodic campaigns was thought to
be sufficient to draw definitive conclusions about the intensity and direction of the
plate motion in the different islands.

This is clearly depicted in Fig. 5.13 extracted from Fernandes et al. (2006), which
shows the horizontal velocities at the Terceira, Pico and S. Jorge islands. It is pos-
sible to observe large differences between the velocities of the stations located on
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Fig. 5.13 Horizontal motions for the three islands in Central group. Estimated motions for initial
sites (TANGO circles) and recent sites (Extended-TANGO, squares). Also drawn are the pre-
dicted motions according to the DEOS2k (stars) plate model and the NUVEL-1A (triangles) plate
model
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the same island. The distribution of these differences is random, without a correla-
tion between observed motions and known tectonic features. However, the averaged
absolute velocity of all these velocities on each island is close to the solution given
for the TANGO site at each island, respectively.

The conclusion is that the TANGO sites already provide enough accurate solu-
tions to support tectonic motion modelling of the Azores region on a large scale,
but that the recent stations still do not provide enough information to allow us to
distinguish intra-island deformations due to their small relative magnitude.

In fact, Fig. 5.13 also shows that, independently of the tectonic model used,
DEOSVel or NUVEL1-A, the relative deformations in the entire area of the plate
boundary cannot be larger than 4–5 mm/year (at the islands it is expected to be at
the millmetre/year level at the most).

Figure 5.14 shows an example of a model obtained from this kind of data
(motions derived from geodetic observations). This model used a segment pattern
deduced from magnetic data on the one hand and bathymetric and topographic fea-
tures on the other in a multidisciplinary approach. The best configuration for the
segment pattern was chosen by evaluating an elastic model which used the veloci-
ties provided by DEOSVEL as boundary conditions. One can see that Corvo on the
North American plate is moving away from Graciosa and Santa Maria at a rate of
23.1 and 18.7 mm/year, respectively, which is due to the spreading of the plates at
the mid-Atlantic ridge. In addition, one can also see that Graciosa and Santa Maria
are separating from each other at a rate of 2.1 mm/year.

Permanent GPS data have been available in some of the Azores stations since
1999, allowing a more robust estimation of the secular motion at their locations.
In order to complete the information from the limited number of available perma-
nent stations, in our results we have incorporated solutions derived from periodic

Fig. 5.14 Schematic model of the present-day kinematics of the Azores Triple Junction
(Fernandes 2004)
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Fig. 5.15 Detrended time-series for TERC (permanent station since October 2001). Solutions
considered outliers are crossed (Fernandes 2004)

observations that have been being carried out in the region since 1988 (Fernandes
2004).

After estimating the secular motion, one can subtract this motion from the obser-
vations and these detrended time-series for one of the TANGO stations (TERC)
are given in Fig. 5.15. White stars show the residuals with respect to the estimated
motion only with the TANGO campaign epochs. Dashed lines show the variation
on the best-fit trend-line considering only the permanent data. Since the dashed
lines differ from the horizontal, one can see that the derived velocity changed when
changing to the permanent observation approach. This also allowed a significant
improvement in the error assessment.

The campaign data provided reliable information to determine the tectonic
motions due to the long time span of observations. The permanent GPS observations
give more information about the seasonal variations in the position. To minimise
these effects in data from episodic campaign the observations should be repeated at
the same time of the year. In permanent data, such seasonal effects can be mitigated
using estimated annual periodical signals. According to Blewitt and Lavallée (2002),
the use of a minimum of 2.5 years of continuous observations is recommended in
order to filter out the seasonal effects. We got an improvement in the confidence of
the estimated motion using this approach.

The space-geodetic measurements can also be used to derive the geometry of an
earthquake rupture. As an example, we show in Fig. 5.16 the displacement model
computed for the Faial 1998 earthquake using the inverted coseismic displacements
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Fig. 5.16 Coseismic displacement fields at the Faial area. The solution for the N253E solution is
shown above; the N165E solution is shown below

obtained from GPS. Two basic solutions were studied using the GPS solutions of
30 stations (Fernandes et al. 2002). Due to the location of the stations (all situated
west of the epicentre), no absolute conclusion was drawn about the orientation of the
rupture fault (left-lateral or right-lateral strike-slip). Nevertheless, the work showed
the viability of such modelling, confirming that geodetic information can give a
unique contribution to unravel the geometry of a fault rupture.

GPS has proven to be a valuable tool to study the present-day kinematics of plate
boundaries, being particularly relevant in regions, such as the Azores, where geo-
graphical constraints (relative small percentage of emerged land) limit the design of
an optimal spatial coverage demanding, and even more, the use of multidisciplinary
approaches.

5.7 Further Developments

The development of the GNSS technology in the last two decades pulled up a most
significant change in our way of studying the dynamics of the Earth’s surface, with
new and important findings leading to innovative aspects on the methodologies used
and to a better comprehension of the phenomena involved.

The increased density of some existing GPS networks (e.g. in the USA, Europe
and Asia) is providing unprecedented spatial and temporal sampling of crustal defor-
mation. In spite of the evolution towards the permanent network approach, there
are still a great number of GPS observations available, acquired in campaign mode
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with episodic occupations of sites, which are of scientific interest. Furthermore, in
several regions, the desired densification is only feasible with this type of obser-
vation methodology. Strategies for optimal combination of permanent and episodic
data providing high temporal resolutions with spatially dense campaign should be
developed.

While the accuracy of the GPS results is improving, new features which are not
completely understood start to emerge. A good way to try to explain these features
is through an intercomparison with other geodetic techniques. This can be either
other space-geodetic techniques such as InSAR, SLR or VLBI or ground-based
techniques such as levelling and absolute gravity measurements.

Terrestrial gravity observations differ from the other techniques since they pro-
vide information about the mass variations underneath the surface and not only
the displacement of the Earth’s surface. These observations are complemented by
new space missions such as GRACE and GOCE that are bringing new insights
concerning the Earth’s gravity field, with impact on the geodetic and geodynamic
applications.

Actual and new GNSS will provide data at sampling rates of 1 Hz and higher.
This will especially make a major contribution to real-time geodynamic appli-
cations. However, in order to improve the accuracy of the measured high-rate
displacements for applications such as seismology, it is important to reduce sys-
tematic errors at seismic frequencies. Developments are being made towards the
use of high-rate GNSS to recover coseismic displacements. This will have a major
impact on earthquake/volcano monitoring and tsunami early warning systems.

The use of GLONASS and of the future Galileo system for this type of applica-
tions will demand further developments in modelling the periodic signals. Special
attention must be given to sub-daily effects present in the observations.

The spatial coverage of space-geodetic measurements is currently adding to the
density needed to map the strain-rate distribution and to associate features in the
deformation field with specific tectonic structures. These new data will allow very
significant improvements in our understanding of coseismic, postseismic and inter-
seismic deformation as well as substantial insights into the rheology of the crust and
mantle.

GNSS will make a decisive contribution to the unravelling of earthquake
generation processes and will undoubtedly be a strong basis for hazard risk
assessments.
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The rotation of the Earth varies continuously. Its rotation axis changes its orien-
tation with respect to both a space-fixed and an Earth-fixed reference system, and
the angular velocity of the rotation fluctuates with time. The knowledge and there-
with the continuous observation of Earth rotation variations is important for various
reasons. It is fundamental for the realisation of time systems, the accurate deter-
mination of reference frames and precise navigation by providing the link between
an Earth-fixed and a space-fixed coordinate system. Moreover, time series of Earth
rotation parameters are of great interest for various disciplines of geosciences and
astronomy since their changes are related to gravitational and geodynamic pro-
cesses in the Earth system. In this way, Earth rotation monitoring contributes
significantly to the understanding of the dynamics of the Earth system and the inter-
actions between its individual components, e.g. the exchange of angular momentum
between atmosphere, ocean and solid Earth, or the coupling mechanism between
the Earth’s core and mantle. Today the metrological basis for this highly interdisci-
plinary research is provided by precise space geodetic techniques such as Very Long
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Baseline Interferometry (VLBI), Satellite/Lunar Laser Ranging (SLR/LLR), Global
Navigation Satellite Systems (GNSS) and ring laser gyroscopes.

6.1 Reference Systems

Generally speaking the rotation of the Earth can be interpreted as a change of the
orientation of an Earth-fixed reference system H relative to a space-fixed reference
system I.

The rotation vector of the Earth ω changes its orientation and its absolute value
with respect to either system. Independent of the coordinate system, the rotation
vector is the vector that provides the direction of the instantaneous rotation axis.
Its absolute value equals the instantaneous angular velocity of Earth rotation. The
temporal variations of the Earth rotation vector in the space-fixed reference system
are known as precession and nutation. Both are caused by lunisolar gravitational
torques which can be described as functions of time by series expansions with high
accuracy. The effects of precession and nutation have been known for centuries from
astronomical observations. The change of the direction of the Earth rotation vector
with respect to an Earth-fixed reference system is referred to as polar motion and
was not observed before the end of the nineteenth century. Different to precession
and nutation, polar motion and the variation of the Earth’s angular velocity are not
easily predictable since they are affected by a multitude of irregular geodynamic
processes.

According to a fundamental theorem of rotational dynamics, the temporal deriva-
tive of the rotation vector of a rotating body is equal with regard to a body-fixed and
a space-fixed reference system. The temporal derivative dx

dt of an arbitrary vector x
with respect to a body-fixed system and its temporal derivative Dx

Dt with respect to a
space-fixed system are related by

Dx

Dt
= dx

dt
+ ω × x . (1)

If the Earth rotation vector ω is introduced instead of x, the equation turns into

Dω

Dt
= dω

dt
+ ω × ω = dω

dt
. (2)

The equality of the derivatives means that the derivative of both the orientation of the
rotation vector and its absolute value is identical in the two systems. Consequently
the variations of the orientation of the Earth rotation axis in the space-fixed and
in the Earth-fixed reference system are not independent of each other. The relation
between the coordinates of the Earth rotation vector with regard to a space-fixed or
Earth-fixed system and the temporal derivatives of the orientation parameters are
expressed by Euler’s kinematical equations (Moritz and Mueller 1987).
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Let eHi and eIi (i = 1, 2, 3) be the orthonormal base vectors of the two above-
mentioned reference systems. The orientation of the Earth-fixed system with respect
to the space-fixed system can then be written as

eHi = R eIi , (3)

where R means a time-dependent rotation matrix which is customarily composed of
four parts (Richter 1995, McCarthy and Capitaine 2002):

R = W S N P . (4)

The matrices P and N stand for precession and nutation, respectively. The matrix
S = R3(θ ) is a spin at the so-called Earth rotation angle θ around the axis of the
Celestial Intermediate Pole. W accounts for the components x and y of polar motion.

The transition from the space-fixed system I to the Earth-fixed system H is
depicted as follows:

I Z E F HP N S W

space-fixed
system

mean
celestial

equator system

true
celestial

equator system
terrestrial

equator system
Earth-fixed

system

Today’s fundamental astronomical space-fixed reference system is the
International Celestial Reference System (ICRS) which was established by the
International Astronomical Union (IAU) in 1997 (Feissel and Mignard 1998). The
ICRS is a kinematically non-rotating coordinate system of high precision. Its origin
is defined to be at the barycentre of the solar system. The ICRS which replaced the
previous Fundamental Catalogue FK5 (Fricke et al. 1988) is realised in the radio fre-
quency domain by the International Celestial Reference Frame (ICRF). The ICRF
is described by equatorial coordinates of extragalactic and compact radio sources
which are estimated from VLBI observations (Ma et al. 1998). At optical wave-
lengths the ICRS is realised by the Hipparcos catalogue. In 1998 the ICRF contained
coordinates of 608 radio sources, and up to now 109 additional sources have been
added by two extensions ICRF-Ext.1 and ICRF-Ext.2 (Fey et al. 2004; Gontier et al.
2006). A total of 212 very compact sources are used in order to define the axes of
the reference frame (so-called defining sources). Presently the ICRF sources are
observed with an accuracy of about 0.1 mas. VLBI is not capable of realising a geo-
centric ICRS, since it is a purely geometrical observation technique which does not
provide any relation to the Earth’s centre of mass. A Geocentric Celestial Reference
Frame (GCRF) can be computed by combining VLBI and satellite observations or
by referencing VLBI stations in a satellite-based geocentric reference frame (Seitz
2009). If the origin of the ICRS is shifted from the barycentre of the solar sys-
tem into the Earth’s centre of mass (under consideration of relativistic effects), the
system experiences slight accelerations due to the motion of the Earth around the
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Sun. Strictly speaking, such a Geocentric Celestial Reference System (GCRS) is no
longer an inertial system. Commonly it is referred to as a quasi-inertial system.

As a consequence of its rotation the Earth is flattened at the poles. Since the
Sun and Moon are generally located above or underneath the equatorial plane, a
gravitational torque forces the equatorial plane towards the ecliptic (Torge 2001).
Due to Earth rotation, this external force results in the precession of the Earth axis
around the pole of the ecliptic, around which the rotation axis revolves on a cone
with an apex angle of 23.5◦. The vernal equinox that marks the intersection point of
equatorial plane, ecliptic plane and the celestial sphere performs a clockwise motion
at a rate of approximately 50.3′′ per year along the ecliptic. In about 25,800 years,
one so-called Platonic year, the vernal equinox performs one complete revolution
around the celestial sphere. The precession matrix P describes the transition from
the quasi-inertial GCRS into the mean celestial equator system Z (Capitaine et al.
2002; Rothacher 2002).

Precession is superposed by the lunisolar nutation, which causes variations of the
Earth rotation axis in the mean celestial equator system. Lunisolar nutation is a con-
sequence of the periodically changing positions of the Moon and Sun relative to the
Earth. It is composed of various oscillations with different amplitudes and periods
between few days and 18.6 years with respect to the space-fixed system (Mathews
et al. 2002). The most prominent fraction of nutation is caused by the inclination
of the lunar orbit by about 5◦ with respect to the ecliptic (Torge 2001). The orbital
node, i.e. the intersection line of the lunar orbital plane and the ecliptic, moves with
a period of 18.6 years along the ecliptic. As a consequence, the normal vector of
the lunar orbital plane revolves along a cone around the ecliptic normal vector. The
torque exerted by the Moon on the flattened Earth varies with the same period: it
is maximum when the node of the lunar orbit coincides with the intersection line
of equatorial plane and ecliptic and the Moon reaches its maximum declination of
+28.5◦ or −28.5◦. Further nutation terms are caused by the motion of the Moon
and Sun between the northern and southern hemispheres. They feature periods of
half a month and half a year, respectively (Torge 2001). With an apex angle of less
than 10′′, nutation is significantly smaller than precession. The nutation matrix N
describes the transformation between the mean celestial equator system and the true
celestial equator system E .

The pole of the true celestial equator system is also known as the Celestial
Intermediate Pole (CIP). According to resolution B1.7 adopted by the IAU in the
year 2000 the CIP has superseded the previously used Celestial Ephemeris Pole
(CEP) since 1 January 2003 (Capitaine 2002; McCarthy and Petit 2004). In pur-
suance of this IAU resolution, the CIP is defined as the axis with respect to which
the Earth rotation angle is defined. The location of the CIP in the Earth-fixed refer-
ence system is provided by the International Earth Rotation and Reference Systems
Service (IERS) on the basis of space geodetic observations and underlying mod-
els. The CIP is defined in such a way that it performs motions with periods longer
than 2 days with respect to the space-fixed reference system. In the Earth-fixed sys-
tem, retrograde motions of the CIP with frequencies between 0.5 and 1.5 cycles per
sidereal day are allocated to nutation, whereas all other motions are interpreted as
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polar motion. The change of the concept from the CEP to the CIP required the intro-
duction of the revised model for precession and nutation IAU 2000A (Souchay et al.
1999; Mathews et al. 2002) according to resolution B1.6 of the IAU in the year 2000
(McCarthy and Petit 2004). A comprehensive overview of the IAU 2000 resolutions
and their implications is given by Kaplan (2005).

If the Earth were solid and external torques were neglected, its instantaneous
rotation axis would be directed towards the CIP. But in reality there is a small
deflection between the CIP and the instantaneous rotation axis which is known as
Oppolzer motion (Schödlbauer 2000; Capitaine 2004). As a consequence of preces-
sion and nutation, the Earth rotation axis changes its direction with respect to the
space-fixed reference system as a function of time. Associated variations of right
ascension and declination of fixed stars must be taken into account in astronomical
observations from the Earth surface. The (true) latitude of a station, i.e. the angle
between the true equatorial plane and the zenith of the station, is unaffected by pre-
cession and nutation. Matrices P and N can be modelled and predicted on the basis
of lunar and solar ephemerides with high accuracy (Lieske et al. 1977; Wahr 1981;
Seidelmann 1992). Small corrections to the current model (celestial pole offsets)
are routinely published by the IERS on its internet site (http://www.iers.org). They
account for model imperfections as well as for unpredictable geophysical signals
such as the free core nutation or the quasi-annual oscillation of the S1 thermal tide
(Dehant et al. 1999; Vondrak et al. 2005). Together with the precession–nutation
model IAU 2000A, the celestial pole offsets allow for a precise computation of the
location of the CIP in the space-fixed GCRF as illustrated in Fig. 6.1 (coordinates
X and Y).

The transformation between E and the Earth-fixed system H is carried out on the
basis of the so-called Earth rotation parameters. The rotation matrix S describes the
diurnal rotation around the z-axis of the true celestial equator system. It is applied
in order to transform between the true celestial equator system and the terrestrial
equator system F . Before 1 January 2003 the matrix S was related to the Greenwich
Apparent Sidereal Time (GAST), i.e. the apparent hour angle of Greenwich with
respect to the true vernal equinox. GAST is related to the Greenwich Mean Sidereal

CIP

IRP

m

PITRS/ITRF

d x

y

p

PGCRS/GCRF

X

Y

PN

Fig. 6.1 Poles of reference
with regard to the coordinate
systems ITRS and GCRS
(and their respective
realisations ITRF/GCRF),
and correspondence between
model values m(t) and
published polar motion values
p(t) (Mendes Cerveira et al.
2009)
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Time (GMST), i.e. the Greenwich hour angle of the mean vernal equinox, by the
equation of equinoxes. From GMST universal time UT1 can be accessed (Aoki
et al. 1982). According to the IAU resolution B1.8 (2000) and its supplement (IAU
resolution B2, 2006), the vernal equinox as the direction of reference for the side-
real rotation of the Earth is now replaced by the so-called Celestial Intermediate
Origin (CIO) in the space-fixed reference system (Capitaine 2002, 2008; McCarthy
and Petit 2004). The CIO represents a non-rotating origin (Guinot 1979; Aoki and
Kinoshita 1983) and is defined in such a way that the rotation vector of the celestial
equator system with regard to a space-fixed reference system has no component in
the direction of the CIP. The motion of the CIO relative to the space-fixed reference
system has no component along the equator but a perpendicular one. Analogously a
Terrestrial Intermediate Origin (TIO) is defined: the rotation vector of the terrestrial
equator system with regard to an Earth-fixed reference system has no component in
the direction of the CIP, and the motion of the TIO relative to the Earth-fixed ref-
erence system has solely a component perpendicular to the equator (Guinot 2002).
In this concept GAST is replaced by the Earth rotation angle θ that is defined as
the angle measured along the equator of the CIP between the unit vectors directed
towards CIO and TIO. Since the direction of reference for UT1 moves uniformly
along the equator, UT1 and θ are linearly related. The implementation of the IAU
resolution B1.8 (2000) allows for a rigorous definition of the sidereal rotation of
the Earth and for describing the rotation of the Earth independently from its orbital
motion (McCarthy and Petit 2004).

The last part of the rotation matrix R, the polar motion matrix W, describes the
transformation from the terrestrial equator system into the Earth-fixed system H.
The z-axis of the terrestrial equator system F is directed towards the CIP, while
the z-axis of the terrestrial system is directed towards the Conventional Terrestrial
Pole (CTP). Today the defined CTP is the IERS Reference Pole, which replaced the
Conventional International Origin in the year 1967. The Conventional International
Origin is identical with the mean direction of the Earth rotation axis between 1900
and 1905. The IERS Reference Pole differs from the Conventional International
Origin by a maximum ±0.03′′ and is realised by coordinates of globally distributed
geodetic markers by means of space geodetic observations. Today’s conventional
Earth-fixed system H is the International Terrestrial Reference System (ITRS). Its
origin is defined to be in the centre of mass of the Earth including atmosphere
and ocean, and the z-axis of the right-hand system is directed towards the IERS
Reference Pole. The orientation of the x-axis of the ITRS was originally defined by
the Bureau International de l’Heure (BIH) for the epoch 1984.0. From this time, the
evolution of the orientation was ensured by a no-net-rotation condition with regard
to horizontal tectonic motions over the whole Earth (McCarthy and Petit 2004). The
ITRS is realised by the determination of three-dimensional positions and velocities
of geodetic observatories using space geodetic techniques. The most recent reali-
sation of the ITRS is the ITRF2008. For details regarding the ITRF computation
strategy see Altamimi et al. (2007).

Both the orientation of the rotation axis with respect to the CTP and the angu-
lar velocity of Earth rotation are influenced by transient, episodic and periodic
exogenous and endogenous processes in the Earth system. Therefore the rotation
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matrices S and W cannot be described or even predicted by models with satisfy-
ing accuracy. The IERS publishes different sets of Earth Orientation Parameters
(EOP) in its circulars as well as on its internet site. Among the available param-
eters are the previously mentioned celestial pole offsets, the pole coordinates xp
and yp and �UT = UT1 − UTC. The pole coordinates xp and yp represent the
misalignment between CIP and IERS Reference Pole, where the orientation of the
xp-axis is consistent with the x-axis of the ITRS, and the yp-axis is directed towards
90◦ western longitude. The parameters xp and yp allow for the transformation
between the terrestrial equator system F and the Earth-fixed system H. Due to polar
motion, the (true) latitude and longitude of a station on the Earth’s surface vary with
time.

Except for a constant offset due to the consideration of leap seconds, the coordi-
nated universal time UTC corresponds to the uniform Temps Atomique International
TAI which is realised by a set of worldwide distributed atomic clocks (BIPM 2007).
Alternative to the parameter �UT, the expression excess length-of-day (�LOD) is
common. �LOD is related to the absolute value of the Earth rotation vector in the
terrestrial equator system and denotes the length of a solar day (length-of-day, LOD)
expressed in UTC or TAI reduced by 86,400 s (Moritz and Mueller 1987):

�LOD = LOD − 86, 400 s . (5)

�LOD and �UT are related according to

�LOD = − d

dt
�UT · 86, 400 s . (6)

Figuratively speaking, the term �LOD expresses the variation of the Earth’s angular
velocity due to geophysical and gravitational influences as a variation of the effec-
tive time for one full revolution. In former times �UT was observed by astronomical
methods. Nowadays this parameter is unambiguously determined by VLBI due to
its connection to the quasi-inertial reference frame of extragalactic radio sources.
Global Navigation Satellite Systems (GNSS) allow for a precise observation of
�LOD on short time scales.

6.2 Polar Motion

Figure 6.2 shows the Earth’s polar motion between 1962 and 2009 as observed
by astrometric and space geodetic observation techniques. The displayed values
are taken from the well-known series EOP 05 C04 (Bizouard and Gambis 2009),
in which the IERS publishes Earth orientation parameters together with respective
formal errors at daily intervals since 1962. Values in this series are provided with
respect to the precession–nutation model IAU 2000A and are consistent with the
ITRF2005. Today polar motion can be determined with an accuracy of better than
0.1 mas (IERS 2008).
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Fig. 6.2 Observations of polar motion from the EOP 05 C04 series of the IERS between 1962 and
2009

A clear beat with a period of 6.3 years is obvious. It is caused by the superposition
of a signal component with annual period (approx mean amplitude 0.09′′) and an
oscillation with a period of about 1.2 years (approx mean amplitude 0.17′′). The
resulting beat amplitude is up to 0.25′′ which corresponds to approximately 9 m on
the Earth’s surface.

While the annual oscillation can be explained by gravitational and geophysical
effects within the Earth system, the oscillation with a period of 1.2 years is a free
rotational mode of the Earth. It was discovered by Chandler (1891, 1892) and is
therefore known as Chandler oscillation. The Chandler oscillation originates from
a misalignment of the polar principal axis of inertia (figure axis) and the rotation
axis of the Earth (Schödlbauer 2000). This causes a tumbling motion of the flattened
Earth gyro, in which the rotation vector revolves on a cone around the figure axis.
The Chandler oscillation is a prograde polar motion, i.e. counter-clockwise when
seen from the North Pole. The existence of such a free oscillation of the Earth had
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earlier been predicted by Euler (1765). From theoretical computations for a solid
body with the Earth’s dimension, he determined a period of 304 days (Euler period)
for one revolution. Since the Earth is deformable, the actual period is lengthened to
about 432 days (Chandler period) (see Sect. 6.4.2.1).

Signal decomposition of observed polar motion by means of wavelet filtering
(Seitz and Schmidt 2005) allows for splitting the entire signal into its two main
constituents, i.e. the Chandler oscillation and the annual oscillation. The resulting
time series (x-components) are shown in Fig. 6.3 for a period of 150 years between
1860 and 2009. Since both signal components are almost circular, the y-components
look very similar. Displayed values for polar motion are taken from the long-term
C01 series, in which the IERS provides observations made since 1846 in a temporal
resolution of 0.1 years (1846–1889) and 0.05 years (1890–2009). During the first
decades the observations were based on optical astrometry and are comparatively
inaccurate (standard deviations up to σ = 0.16′′). The top panel of Fig. 6.3 shows
the x-component of the time series C01 (after removal of a linear trend) together
with the 3σ error margin. The Chandler oscillation (middle) features much stronger
amplitude variations than the annual signal (bottom) which has been rather uni-
form during the last century (the first and the last years in the plot should not be
interpreted due to boundary effects of the applied filter). Although the accuracy of
the older astrometrical data is rather poor, the displayed amplitude variations are
significant since the signal exceeds some 100 mas.

1860 1900 1940 1980

[a
s] 0

0.5

–0.5

[a
s] 0

0.5

–0.5

[a
s] 0

0.5

–0.5

Year

Fig. 6.3 Long-term observations of polar motion (x-component, linear trend removed) between
1860 and 2009 together with the 3σ error margin plotted in grey (top) and Chandler (middle) and
annual (bottom) signal component determined by wavelet filtering
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The origin of the strong amplitude variations and therewith the causative mech-
anism for the evocation of the Chandler oscillation have been under discussion
for many years. As a consequence of the anelasticity of the Earth mantle and the
associated dissipation due to friction, the Chandler oscillation is a damped oscil-
lation. But the observations indicate that the amplitude of the free polar motion is
excited by some mechanism which counteracts the damping. In numerous publica-
tions this matter has extensively been discussed. It has been investigated whether
atmospheric or hydrologic mass redistributions (Wahr 1983; Hameed and Currie
1989; Sidorenkov 1992; Furuya et al. 1996, 1997) or processes in the Earth’s interior
(Souriau and Cazenave 1985; Gross 1986; Hinderer et al. 1987) are the hurriers of
the oscillation. Since the Chandler oscillation is a resonance oscillation of the Earth,
potential excitation mechanisms require energy in a band close to the Chandler fre-
quency in order to excite the free polar motion and thus to counteract its damping.
In recent years a number of studies came to the conclusion that the Chandler oscil-
lation is excited by the combined effect of atmosphere and ocean (Gross 2000;
Brzezinski and Nastula 2000; Seitz and Schmidt 2005). However, the individual
contributions of these two subsystems could still not be fully assessed, since all
investigations are naturally dependent on imperfect model assumptions of atmo-
spheric and oceanic processes and their related mass transports. Furthermore, minor
effects from continental hydrosphere, cryosphere and other subsystems must also be
taken into account in order to close the budget of polar motion excitation.

The annual signal of polar motion originates similarly to a number of further
significant higher and lower frequencies from gravitational and internal geophysi-
cal excitations, causing mass redistributions and mass motions within and between
the Earth’s subsystems. An overview of important drivers and the corresponding
signatures in polar motion (amplitudes and periods) is given by Chao (1994) and
Gross (2007). As mentioned above, there are also singular and non-periodic contri-
butions from transient and episodic geophysical effects, such as earthquakes (Chao
and Gross 1987, 2005) or El Niño situations (Kosek et al. 2001). Forced variations
of polar motion and the free Chandler oscillation are closely linked. Variations of
the Earth rotation vector induce a change of the Earth’s centrifugal potential which
leads to additional mass redistributions in the solid Earth and the ocean (so-called
rotational deformations). This back-coupling effect causes a motion of the principal
axis of inertia that affects the Chandler oscillation (see Sect. 6.4.2.1).

Figure 6.4 shows the polar motion curve in units of metres on the Earth surface in
more detail for a time interval of 6 months (Schreiber et al. 2004). The large circle
results from the superposition of signal components with comparatively long peri-
ods (especially the prograde Chandler and pro- and retrograde annual oscillations),
whereas the small circles with magnitudes of approximately 0.01′′ are nearly diurnal
retrograde polar motion components which are related to corresponding precession
and dominant nutation terms in the space-fixed reference system (Oppolzer terms).
The pronounced beat effect with a period of 13.7 days results from the superposition
of oscillations that correspond to precession (period 0.997 days in the Earth-fixed
reference system) and the largest nutation term (period 1.076 days in the Earth-fixed
reference system). Variations of the beat amplitude are caused by further signal com-
ponents that correspond to other nutation terms with approximately diurnal period
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in the Earth-fixed system (McClure 1973). In analogy to precession and nutation
in the space-fixed system, the retrograde nearly diurnal polar motion in the terres-
trial system originates from lunisolar gravitational torques on the equatorial bulge
of the Earth. Earth rotation causes a daily variation of the gravitational forces which
results in the almost circular motion of the rotation pole in the direction opposite
to the rotation. Nearly diurnal retrograde polar motion cannot be directly assessed
by observations of VLBI, SLR/LLR and GNSS since these techniques are sensitive
only to the complete rotation matrix from the Earth-fixed to the space-fixed refer-
ence frame from which no discrimination between celestial pole offsets and nearly
diurnal retrograde polar motion is possible. An inertial rotation sensor on the Earth’s
surface is sensitive to the diurnal retrograde polar motion since the angle between
the axis of the instrument and the rotation axis of the Earth changes with a period
of 1 day. In this way, ring laser gyroscopes allow for the direct observation of the
position of the instantaneous rotation axis and therewith for the assessment of the
diurnal polar motion (Schreiber et al. 2004).

Beside the periodic and irregular fluctuations, polar motion is characterised by a
secular trend at a present rate of 3.3 mas/a in the direction of 76◦–78◦ western lon-
gitude (Vondrak et al. 1995; Schuh et al. 2001). Although the reason is not entirely
understood yet, there is evidence that this secular motion is caused by postglacial
rebound and sea-level variations (Milne and Mitrovica 1998).

6.3 Variations of Length-of-Day and �UT

The variation of the length of a solar day (�LOD) can be determined from the
observations of modern space geodetic techniques with an accuracy of 20μs (IERS
2008). As shown in (6) �LOD is directly related to �UT. While accurate short-
term time series of �LOD, i.e. of the derivative of �UT, can be estimated with
high temporal resolution from GNSS observations, mid-term and long-term stability
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of �LOD as well as �UT series can only be guaranteed by VLBI, providing the
connection to the quasi-inertial reference frame. All satellite-based techniques, such
as GPS or Glonass, meet the problem that Earth rotation cannot be distinguished
from a uniform rotation of the satellite orbit nodes (Ray 1996).

Figure 6.5 (top panel) displays the observed variations of length-of-day from
the EOP 05 C04 of the IERS for the period between 1962 and 2009. The curve
is dominated by a secular signal of the order of milliseconds that is superposed
by significant variations with annual and semi-annual periods due to mainly atmo-
spheric effects and tidal signals with periods of several days. In contrast to polar
motion, there is no free variation of length-of-day due to rotational deformations
(Wahr 1985). The decadal variability of �LOD is ascribed to the exchange of angu-
lar momentum between the Earth’s core and mantle (Liao and Greiner-Mai 1999).
This assumption is supported by strong correlations between the decadal varia-
tions of �LOD with fluctuations of the Earth’s magnetic field (Schuh et al. 2003).
Four potential mechanisms of core–mantle coupling (CMC) are presently under
discussion: topographic, electromagnetic, viscoelastic and gravitational coupling.
Available models of topographic coupling are rather inaccurate since the knowl-
edge of the topography at the core–mantle boundary is insufficient. But presumably
this coupling mechanism does not provide enough energy in order to excite the
strong variations of �LOD (Ponsar et al. 2002). Holme (1998) showed that the
electromagnetic CMC seems to be the most important excitation mechanism. It is
based on variations of the geomagnetic field due to dynamo processes, which exert a
torque on conductive regions of the lower mantle via the Lorentz force (Schuh et al.
2003). Viscoelastic and gravitational coupling are inferior. In the frame of its Special
Bureau for the Core (SBC) of the Global Geophysical Fluids Center (GGFC), the
IERS provides model time series that describe the effects of CMC on �LOD. In
Fig. 6.5b the results of three different models are compared with a moving average
of the observations over 5 years. One of the model data sets (according to Jackson,
Bloxham and Gubbins, JBG) has a temporal resolution of 1 year (Jackson 1997);
the other two models (according to Petrov and Dehant, PD1 and PD2) are available
for intervals of 5 years. All data sets are based on the frozen flux hypothesis (Jault
et al. 1988). While JBG is a free model, PD1 and PD2 are based on observations
of the magnetic field. The comparison of the various models provided by the SBC
reveals significant differences. To a certain extent the data series correspond with
the moving average (especially in the case of PD2), but the temporal resolution is
much too coarse to explain the decadal variations of �LOD with sufficient accuracy
and thus to exclude other causative processes.

Variations of �LOD on annual, seasonal and shorter time scales are highly cor-
related with angular momentum fluctuations within the atmosphere (mainly due to
zonal winds) and, to a minor extent, due to ocean currents. The two strongest signal
components induced by those processes, i.e. the annual and semi-annual oscillation,
feature almost equal amplitudes of approximately 0.36 ms. In addition, there is a
weak quasi-biennial oscillation (QBO) due to irregular variations of zonal winds
and temperatures in the tropical troposphere and stratosphere (Trenberth 1980). Its
amplitude varies from cycle to cycle. In general it is smaller than 0.1 ms (Höpfner
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Fig. 6.5 Variations of length-of-day (�LOD) for the time frame between 1962 and 2009. (a)
Observation time series EOP 05 C04. (b) Moving average over 5 years in comparison with three
models for the influence of core–mantle interaction (dots: JBG; stars: PD1; diamonds: PD2; see
text). (c) Effect of solid Earth tides. (d) Annual and semi-annual signal component. (e) Residual
time series (a-b-c-d)

2001). The most important periods induced by solid Earth tides are 9.13 days
(amplitude 0.07 ms), 13.63 days (0.15 ms), 13.66 days (0.35 ms) and 27.55 days
(0.19 ms) (Yoder et al. 1981; McCarthy and Petit 2004). In contrast to solid Earth
tides, the influence of ocean tides on �LOD is small (Lambeck 1980; Gross 1993),
but not negligible in high-precision space geodesy.

The residual signal of �LOD (Fig. 6.5e), i.e. after reduction of the decadal sig-
nal, the annual and semi-annual oscillations and the tidal effects feature transient
increases of the length-of-day during 1983 and (somewhat less pronounced) during
1997. These episodic signals can be explained by strong El Niño events (Rosen et al.
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1984; Chao 1989). Like polar motion, �LOD is characterised by a secular change.
Especially as a consequence of tidal friction, the length of a solar day increases by
2.3 ms per century (Morrison and Stephenson 1998).

6.4 Physical Model of Earth Rotation

6.4.1 Balance of Angular Momentum in the Earth System

From a physical perspective, Earth rotation can be interpreted as the rotary motion
of a multitude of individual and interrelated mass elements about one common axis.
This rotary motion is comparable to that of a physical gyroscope. Therefore the-
oretical and numerical studies on temporal variations of Earth rotation are based
on equations of gyroscopic motion which follow from the balance of angular
momentum in the Earth system. With respect to an Earth-fixed, i.e. rotating, ref-
erence system, the balance between the Earth’s angular momentum H and external
torques L due to, e.g., lunisolar and planetary gravitational forces is described by
the dynamic Euler equation (Lambeck 1980):

d

dt
H + ω × H = L . (7)

In this equation ω denotes the rotation vector of the Earth with respect to the rotating
reference system. The angular momentum of a rotating rigid body equals the product
of its tensor of inertia I and the rotation vector ω:

H = I · ω . (8)

The symmetric tensor of inertia describes the mass distribution in the system
(Lambeck 1980). In the case of a rigid body it is invariant with respect to body-fixed
axes:

I =
∫ ∫ ∫

ρ(x, y, z)

⎛
⎝y2 + z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2 + y2

⎞
⎠ dV , (9)

where ρ(x, y, z) is the density at the three-dimensional position (x, y, z). In the
case of a rotating deformable body, the angular momentum H is split into two
parts: one fraction corresponds to the angular momentum of the rotating rigid body
(8), but with the difference that the tensor of inertia is now time variable due to
deformability. The second fraction can be viewed as angular momentum h relative
to the body rotation. It follows from the motion of mass elements with velocity vrel

relative to the rotating reference system, in which the rotation is described:

h =
∫ ∫ ∫

ρ(x, y, z) · (r × vrel) dV , (10)
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where r denotes a three-dimensional position vector. Consequently the angular
momentum of a rotating deformable body is (Schneider 1988)

H = I · ω + h , (11)

where the first summand is also referred to as mass term, the second one as motion
term. Insertion of (11) into (7) yields

d

dt
(I · ω + h) + ω × (I · ω + h) = L . (12)

In this form the equation is also known as Euler–Liouville or in short Liouville
equation (Munk and MacDonald 1960). In the context of Earth rotation studies, the
term deformability not only refers to deformations of the Earth’s body but also to
mass redistributions within and between the various components of the Earth sys-
tem. In particular, atmospheric and oceanic transport processes and related mass
changes are very important on time scales from hours and days to several years.
While the time-variable mass distribution in the system influences the tensor of iner-
tia I, motions of mass elements with respect to the reference system cause relative
angular momenta h. Consequently all elements of the Liouville equation are time
variable:

I = I(t), h = h(t), ω = ω(t), L = L(t) . (13)

Angular momentum is exchanged among the individual components of the Earth
system via mass transfer processes and torques. The occurrence of relative angu-
lar momenta is not necessarily linked to the appearance of variations of the tensor
of inertia. Certainly most of the relevant processes influence both the mass and the
motion term simultaneously. For instance, the atmospheric flow is generally related
to variations of atmospheric pressure, and ocean circulation is usually accompa-
nied by variations of ocean bottom pressure. But on the other hand mass motions
are conceivable that do not influence the mass distribution in the Earth system and
consequently the tensor of inertia. This is the case if one mass element is instan-
taneously replaced by a subsequent one (e.g. in a ring-like ocean current) or if the
Earth’s core experiences an acceleration with respect to the Earth’s mantle. Vice
versa vertical deformations of the Earth as a consequence of loading or the time-
variable snow coverage could be mentioned as examples of mass redistributions
without a significant influence on the motion term.

In theoretical studies on Earth rotation, the quantities in the Liouville equation are
often related to a rotating reference system, according to which the mass elements
of a rotating rigid body are invariant with respect to their position at all times. For a
deformable Earth such a system can be defined by a minimum condition (Schneider
1988). An example is the Tisserand system (Tisserand 1891), for which the inte-
gral effect of the relative motions of mass elements with respect to the reference
system is minimised (h = 0). The application of the Tisserand system simplifies
the Liouville equation (12) considerably. But on the other hand the definition of the
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Tisserand system is hypothetical, since relative angular momenta (especially in the
Earth’s interior) are not accessible from observations on the Earth’s surface (Engels
and Grafarend 1999).

Numerical investigations are commonly performed in a geocentric terrestrial ref-
erence system. Its rotation axis is oriented towards the polar moment of inertia C
of the Earth, its x-axis is directed towards the Greenwich meridian and its y-axis
towards 90◦E. The terrestrial system performs a uniform rotation about its z-axis
with angular velocity � = 2π/86, 164 s. Temporal variations of the instantaneous
Earth rotation vector ω(t) are viewed as small deviations of the uniform rotation. In
coordinates of the terrestrial system the Earth rotation vector is expressed as (Munk
and MacDonald 1960)

ω(t) = � ·
⎛
⎝ m1(t)

m2(t)
1 + m3(t)

⎞
⎠ , mi � 1 . (14)

The dimensionless quantities mi(t) (i = 1, 2, 3) represent slight disturbances of the
uniform rotation (Munk and MacDonald 1960). The two components m1(t) and
m2(t) describe the time-variable orientation of the rotation axis with respect to the
z-axis of the terrestrial system (polar motion). Deviations of the Earth’s angular
velocity with respect to � are associated with changes of the length-of-day. They
follow from the temporal variation of the absolute value of the Earth rotation vector
|ω(t)| (Lambeck 1980; Schneider 1988):

|ω(t)| = �

√
m1(t)2 + m2(t)2 + (1 + m3(t))2 ≈ � (1 + m3(t)) . (15)

The error of �LOD due to this approximation is 10−16 s and therefore negligible.
The Earth’s tensor of inertia I(t) can be interpreted as the sum of two components

I0 and �I(t) (Lambeck 1980), where I0 is an approximate tensor. If the axes of the
reference system coincide with the principal axes of inertia, the approximate tensor
has a diagonal structure:

I0 =
⎛
⎝A 0 0

0 B 0
0 0 C

⎞
⎠ , (16)

where A and B are the equatorial principal moments of inertia and C is the axial
principal moment of inertia of the Earth (C > B > A). But the axes of the princi-
pal moments of inertia differ from the axes of the previously described terrestrial
reference system by approximately 15◦ in the equatorial plane (Marchenko and
Schwintzer 2003). This divergence has to be taken into account by means of a rota-
tion. Consequently I0 does not have a diagonal structure with respect to the axes of
the applied terrestrial system.

Due to mass redistributions in the Earth system, small time-dependent devia-
tions �I(t) of the approximate tensor I0 arise (Moritz and Mueller 1987). With the
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tensor elements (so-called deviation moments) cij(t) � A, B, C (i, j = 1, 2, 3) the
symmetric tensor �I(t) reads

�I(t) =
⎛
⎝c11(t) c12(t) c13(t)

c22(t) c23(t)
sym. c33(t)

⎞
⎠ . (17)

If deviations of the tensor cij(t), relative angular momenta h(t) and external
torques L(t) are provided from models or observations, the solution of the Liouville
Equation for ω(t) allows for the forward computation of Earth rotation variations.
The relation between modelled values mi(t) and geodetic observations will be
discussed in Sect. 6.5.

Two different approaches, the angular momentum approach and the torque
approach, are in principle applicable for the set-up and solution of the Liouville
equation. Theoretically both approaches are equivalent, but they differ conceptually
with respect to their view of the Earth system. Accordingly, the procedures of mod-
elling effects of the Earth’s fluid components (e.g. atmosphere, ocean, continental
hydrosphere) on Earth rotation are different (De Viron et al. 2005).

6.4.1.1 Angular Momentum Approach

The angular momentum approach is the classical approach for modelling Earth rota-
tion. It has been described in various publications (Munk and MacDonald 1960;
Lambeck 1980; Barnes et al. 1983; Moritz and Mueller 1987). The rotating body
for which the Liouville equation is set up comprehends the solid Earth, atmosphere,
hydrosphere and all other subsystems. In the absence of external lunisolar and (much
smaller) planetary torques, this system of mass elements is viewed to be isolated, i.e.
the right-hand side of (12) is zero, and the total angular momentum of the rotating
body is conserved. Fractions of angular momentum can be transferred between the
individual system components by redistributions and motions of masses. Changes
of the angular momentum due to atmospheric, oceanic and other dynamic processes
are associated with an opposite change of angular momentum of the solid Earth
which is accompanied by variations of the Earth rotation vector ω(t).

In the angular momentum approach, solely gravitational torques from external
celestial bodies act on the rotating Earth. If the Sun, Moon and planets are viewed
as point masses, the gravitational torque L(t) on the right-hand side of the Liouville
equation (12) can be written as (Moritz and Mueller 1987; Beutler 2005)

L(t) =
∑

j

3GMj

r5
ej(t)

⎛
⎝yj(t) zj(t) (C − B)

xj(t) zj(t) (A − C)
xj(t) yj(t) (B − A)

⎞
⎠ . (18)

In this equation G is the gravitational constant, and index j stands for the respec-
tive celestial body with the (point-)mass Mj; its geocentric distance is denoted
with rej(t); xj(t), yj(t), zj(t) are its coordinates in the rotating reference system. In



202 F. Seitz and H. Schuh

its conventions the IERS recommends the use of the solar, lunar and planetary JPL
Development Ephemeris DE405/LE405 (Standish 1998; McCarthy and Petit 2004).

Each relocation of mass elements within the system leads to an instantaneous
change of the tensor of inertia �I(t). Deviation moments cij(t) for the solid Earth
result from deformations of the Earth’s body as reaction to a tide generating poten-
tial, rotational variations and surface mass loads (Moritz and Mueller 1987; Seitz
et al. 2004) (see Sect. 6.4.2). Relative angular momenta h(t) are due to the motion
of individual mass elements relative to the terrestrial reference system.

The angular momentum approach corresponds to an abstract balance of angu-
lar momentum of all subsystems. Their individual contributions to the angular
momentum budget are linearly superposed:

I(t) = I0 + �I solid Earth(t) + �I atmosphere(t) + �I ocean(t) + · · ·,
h(t) = h solid Earth(t) + h atmosphere(t) + h ocean(t) + · · · .

(19)

Variations of the tensor of inertia can be computed from modelled or observation-
based mass balances of the Earth’s subsystems. Relative angular momenta are
derived from fluxes from global atmosphere and ocean circulation models.

6.4.1.2 Torque Approach

In the torque approach the effects of the Earth’s fluid components, atmosphere
and ocean, on the balance of angular momentum are modelled as (quasi-)external
torques (Wahr 1982). That is, the integral effect of direct atmospheric and oceanic
forces on the solid Earth appears in the vector L(t) on the right-hand side of the
Liouville equation (12). Similar to the angular momentum approach, variations of
the tensor of inertia �I(t) are due to deformations of the solid Earth caused by
tides, surface mass loads and rotational variations. Since atmosphere and ocean are
viewed as external systems, their mass redistributions do not affect the tensor of
inertia. Likewise there are no relative angular momenta h(t) due to atmospheric and
oceanic currents.

Torques between atmosphere/ocean and the solid Earth are assessed on the basis
of global atmosphere and ocean circulation models. The acting torque is composed
of three parts: pressure torque, gravitational torque and friction torque (De Viron
et al. 2001). The pressure torque acts on the Earth’s topography. It is derived from
fields of surface and ocean bottom pressure and the gradient of the topography.
The gravitational torque is a result of the interaction between the mass distributions
within atmosphere/ocean and the solid Earth. The friction torque results from the
relative motion of atmosphere and ocean currents with respect to the Earth surface.
Since the friction drag of the Earth’s surface is widely unknown it is particularly
difficult to model (De Viron and Dehant 2003a). In a study on the influence of the
atmospheric torque on polar motion De Viron et al. (1999) demonstrated that the
time derivatives of the equatorial atmospheric angular momentum and the sum of the
atmospheric equatorial torques agree well in the spectral range of longer than 1 day.
Furthermore this study revealed that the magnitude of the equatorial components of
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pressure and gravitational torque are almost equal (but with opposite signs) and that
both contribute significantly stronger to polar motion than the friction torque.

The effects of atmospheric and oceanic pressure torque, gravitational torque and
friction torque are superposed to the previously described external gravitational
torque exerted by Sun, Moon and planets (18). Therefore the total torque L(t) can
be written as

L(t) = L pressure(t) + L gravitation(t) + L friction(t) + L external(t) . (20)

Since lunisolar and planetary torques have a discrete spectrum in narrow vicinity
of the diurnal retrograde frequency, they can be modelled quite well via harmonic
expansion. Atmospheric and non-tidal oceanic torques, however, have a continu-
ous spectrum and are thus unpredictable. Consequently, the modelling has to be
performed in the time domain.

From the viewpoint of physical understanding, the torque approach is superior to
the angular momentum approach. By modelling explicit interactions between atmo-
sphere/ocean and the solid Earth via particular forces, it is possible to tell which
specific processes lead to a change of the angular momentum budget and thus cause
variations of Earth rotation. The torque approach is ideal for geographical studies
since it allows for a direct identification of regions in which the interaction between
atmosphere, ocean and the solid Earth is stronger than in others (De Viron and
Dehant 2003b). In this way, the approach provides valuable physical insights into
dynamic interactions in the Earth system.

The largest limitation for the torque approach is the lack of sufficiently accu-
rate numerical models for the computation of the torques due to atmospheric and
oceanic pressure, gravitation and friction. While model errors are not so crucial in
the case of the angular momentum approach (where the errors smooth out due to the
computation of one global value), the torque approach is highly sensitive to errors
(De Viron and Dehant 2003b). As stated above, many of the parameters which are
necessary for the computation of torques are not well known, e.g. the friction drag
between air and Earth surface or between water and ocean bottom. Furthermore,
the computation of the pressure torque is unsatisfactory due to the comparatively
coarse spatial resolution of available orography models (De Viron et al. 1999; Stuck
2002).

Due to these data problems, atmospheric and oceanic angular momentum values
presently appear to be more reliable for the interpretation of geodetic observations
of Earth rotation. Nevertheless the torque approach is promising in the light of future
model advancements.

6.4.2 Solid Earth Deformations

Mass redistributions and corresponding variations of the tensor of inertia are also
caused by deformations of the solid Earth as a consequence of its reaction to
the lunisolar and planetary tide generating potential, variations of the centrifugal
potential due to polar motion and mass loads on the Earth surface.
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Theoretical considerations on the effects of solid Earth and ocean tides on Earth
rotation are provided together with elaborate instructions for numerical computa-
tions in the conventions of the IERS (McCarthy and Petit 2004). For particulars
the reader is referred to this publication and the references therein. The following
section will focus on the deformations induced by rotational variations and surface
mass loads.

6.4.2.1 Rotational Deformations

Temporal variations of the rotation vector ω(t) lead to variations of the Earth’s
centrifugal potential. This causes deformations of the solid Earth and the ocean
which are also known as rotational deformations. While vertical deformations due
to variations of the angular velocity of the rotation are below 0.5 mm at the Earth
surface (Wahr 1985) and therefore negligible, the effects due to polar motion are
up to 25 mm (Gipson and Ma 1998). These changes of the Earth’s geometry are
accompanied by variations of the tensor of inertia that are superposed to other devi-
ations cij(t) (i, j = 1, 2, 3) due to mass redistributions induced by gravity and other
geophysical effects. The back coupling from polar motion to the tensor of iner-
tia influences the Earth’s rotational dynamics significantly: it is well known that
rotational deformations are responsible for the prolongation of the Euler period
of 304 days (which is the period of the free oscillation of a rigid body with the
Earth’s dimensions) to the observed period of the free oscillation of about 432 days
(Chandler period) (Moritz and Mueller 1987).

The effect of polar motion on the Earth’s centrifugal potential is referred to as
pole tide. Parameters m1(t) and m2(t) of the Earth rotation vector are related to tem-
poral variations of the coefficients �C21(t) and �S21(t) of the spherical harmonic
expansion of the geopotential (McCarthy and Petit 2004):

�C21(t) = − �2a3

3GME

(
�(k2) · m1(t) + �(k2) · m2(t)

)
,

�S21(t) = − �2a3

3GME

(
�(k2) · m2(t) − �(k2) · m1(t)

)
,

(21)

where a and ME stand for mean equatorial radius and total mass of the Earth. The
effect of polar motion on rotational deformations and therewith on the variation of
the geopotential depends on the Earth’s rheological properties. In (21) the rheology
is described by the complex pole tide Love number k2 = �(k2) + i�(k2), where �
and � stand for real part and imaginary part, respectively.

The coefficients �C21(t) and �S21(t) are directly linked to the elements of c13(t
and c23(t) of the tensor of inertia (Lambeck 1980):

�C21(t) = −c13(t)

a2ME
,

�S21(t) = −c23(t)

a2ME
.

(22)
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If the Earth was a rigid body, i.e. if the tensor of inertia was invariant with respect
to time and there were no relative angular momenta, the Earth would rotate freely
at the Euler period of 304 days as stated above. In an extensive study Smith and
Dahlen (1981) discussed the consequences of deformability for the period of the
free polar motion and derived an appropriate numerical value of the pole tide Love
number k2 in the light of mantle anelasticity and the dynamics of core and ocean.
In a first step Smith and Dahlen (1981) approximated the Earth as a purely elastic
body and neglected the dynamic response of core and ocean. The pole tide Love
number was introduced with the (preliminary) numerical value of k∗

2 = 0.30088,
which was computed from the hydrostatic ellipsoidal Earth model 1066A (Gilbert
and Dziewonski 1975). It was shown that the period of the free rotation of a fully
elastic Earth would amount to 447 days, i.e. 143 days longer than that of a rigid
body.

In order to refine the Earth’s reaction on rotational variations, the effects of the
dynamic fluid core, the equilibrium ocean pole tides and the mantle anelasticity
must be taken into account for the computation of rotational deformations. In the
following a simple Earth model will be discussed which consists of an anelastic
mantle and a spherical liquid core. Both are assumed to be completely decoupled.
Basic considerations on the application of such a model body for studies on Earth
rotation can be found in, e.g. Moritz and Mueller (1987) and Brzezinski (2001). It
is similar to the models introduced by Molodensky (1961) and Sasao et al. (1980),
but in contrast to the latter studies, the approach does not account for the exchange
of angular momentum between core and mantle. While the effects of core–mantle
coupling on polar motion are significant mainly on subdaily time scales, there are
huge decadal variations of �LOD due to the interaction of core and mantle (see
Sect. 6.3). As a consequence of the decoupling, the principal moments of inertia A,
B and C which are the parameters of the approximate tensor of inertia I0 (16) of
the entire Earth have to be replaced by Am, Bm and Cm, which are attributed to the
mantle alone. Since the core is assumed to be spherical, the principal moments of
inertia used for the computation are derived from Am = A − Ac, Bm = B − Ac, and
Cm = C − Ac, where Ac denotes the principal moment of inertia of the spherical
core. Its value is derived from (Sasao et al. 1980)

Ac = A
ξ

γ
, (23)

where ξ and γ are constants accounting for the rheology of mantle and core.
The values provided by Sasao et al. (1980) are ξ = 2.300 × 10−4 and
γ = 1.970 × 10−3. In a later study, Mathews et al. (1991) computed
ξ = 2.222 × 10−4 and γ = 1.965 × 10−3 from the Preliminary Reference Earth
Model PREM (Dziewonski and Anderson 1981). The non-participation of the core
in the rotation shortens the period of the free polar motion by approximately 50.5
days (Smith and Dahlen 1981). That is, the period of the free rotation of a fully
elastic Earth with liquid core would be around 396 days.

In order to account for the effects of ocean pole tides and mantle anelasticity,
surcharges to the above given value for the elastic pole tide Love number k∗

2 are
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added (Smith and Dahlen 1981). The effective pole tide Love number k2 becomes

k2 = k∗
2 + �kO

2 + �kA
2 , (24)

where �kO
2 and �kA

2 denote the incremental corrections of the elastic pole tide Love
number due to ocean pole tides and the anelastic response of the Earth’s mantle.
Following Smith and Dahlen (1981) and a more recent study by Mathews et al.
(2002) the appropriate addend for the contribution of equilibrium ocean pole tides
amounts to �kO

2 = 0.044. Thereby the period of the free oscillation is lengthened
by about 29.8 days (Smith and Dahlen 1981).

The reaction of the Earth’s mantle on variations of the centrifugal potential is not
ideally elastic. Due to friction, rotational deformations of the mantle are a dissipative
process which is equivalent to an attenuation of the free polar motion. That means, in
the absence of a counteracting excitation mechanism, the rotation axis of the Earth
would dislocate towards its figure axis within a few decades (Moritz and Mueller
1987). The effect of mantle anelasticity causes an extension of the period of the free
rotation by another 8.5 days (Wilson and Haubrich 1976). It is considered by the
complex surcharge �kA

2 = 0.0125+0.0036i to the Love number k∗
2 (Mathews et al.

2002; McCarthy and Petit 2004).
Summing up the effects of ocean, core and mantle, the value of the pole tide Love

number is k2 = 0.35+0.0036i (McCarthy and Petit 2004). This value is appropriate
for a deformable Earth with a spherical liquid core, taking into account the effects
of ocean pole tides and mantle anelasticity. When k2 was applied in a numerical
simulation with a dynamic Earth system model, the resulting Chandler period was
431.9 days (Seitz et al. 2004) which coincides with geodetic observations. The result
of the simulation for the x-component of polar motion over a period of 100 years is
displayed in Fig. 6.6 Since neither gravitational effects nor mass redistributions and
motions in the Earth’s fluid components have been considered in this experiment,
the curve reflects the free polar motion under the influence of mantle anelasticity
or – mathematically speaking – under the influence of the imaginary part of the pole
tide Love number �(k2). The curve is provided in normalised representation since
the choice of the initial values is arbitrary. The damping of the Chandler amplitude
is obvious, and after already 22 years the amplitude is reduced by half.

Year

–1

0

1

1900 1920 1940 1960 1980 2000

Fig. 6.6 Damped Chandler oscillation (x-component) derived from a simulation study with a
dynamic Earth system model over 100 years regarding ocean pole tides and mantle anelasticity
(Seitz et al. 2004)
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The damping function c(t) is the envelope of the oscillation

c(t) = c0 · e−δ(t−t0) , (25)

where c0 is the initial amplitude of the oscillation and δ is the damping coefficient.
The damping coefficient is derived from the proportion of two subsequent maxima
of the oscillation ci(ti) and ci+1(ti+1):

δ = ln (ci/ci+1)

(ti+1 − ti)
. (26)

Usually the damping of the Chandler oscillation is expressed in terms of a quality
factor Q. The reciprocal value Q−1 represents the specific dissipation, i.e. the loss
of energy at the Chandler frequency (Munk and MacDonald 1960). The specific
dissipation is related to the damping coefficient:

Q−1 = δ (ti+1 − ti)

π
. (27)

The numerical value of the quality factor that corresponds to the curve displayed
in Fig. 6.6 (k2 = 0.35 + 0.0036i) is Q = 82. In Table 6.1 values of period and
quality factor of the Chandler oscillation from various studies are provided. They
were computed from geodetic observations and models using different methods.
Especially the quality factor is characterised by a high level of uncertainty.

If effects of gravitational and other geophysical processes are superposed, i.e. if
torques, relative angular momenta and further deviations of the tensor of inertia are
regarded in the Liouville equation, an interaction between forced and free oscillation
occurs due to rotational deformations. While the impacts on the Chandler frequency
are negligible (Okubo 1982; Jochmann 2003), the Chandler amplitude is strongly
affected by the excitations (see Sect. 6.2).

Table 6.1 Periods and quality factors Q (with 90% confidence interval) of the Chandler oscillation
from different studies

Chandler period Q [Interval] Source

434.0 ± 2.5 days 100 [50, 400] Wilson and Haubrich (1976)
431.7 days 24 Lenhardt and Groten (1985)
433.3 ± 3.6 days 179 [47, >1,000] Wilson and Vicente (1990)
439.5 ± 1.2 days 72 [30, 500] Kuehne et al. (1996)
433.7 ± 1.8 days 49 [35, 100] Furuya and Chao (1996)
413 – 439 days Schuh et al. (2001)
434.1 days 69 Seitz and Kutterer (2005)
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6.4.2.2 Deformations Due to Surface Loads

Various processes in the subsystems of the Earth, such as the motion of atmospheric
high-pressure and low-pressure systems, ocean bottom pressure changes or hydro-
logic variations over the continents due to flooding and snow, exert time-variable
surface mass loads on the solid Earth. In this way they cause deformations of the
Earth’s body which are up to few centimetres in the vertical and several millime-
tres in the horizontal (Rabbel and Zschau 1985; Sun et al. 1995). The change of
the surface geometry entails the redistribution of mass elements within the solid
Earth which has a significant effect on both the Earth’s gravity potential and its
rotation. Consequently expedient information about atmosphere loading (van Dam
and Herring 1994), non-tidal ocean loading (van Dam et al. 1997) and continen-
tal water storage variations (van Dam et al. 2001; Schuh et al. 2004) is required
for an advanced interpretation and analysis of space geodetic observations (Rabbel
and Schuh 1986; Manabe et al. 1991; Haas et al. 1997; Boehm et al. 2009). The
surface forces exerted by time-variable mass distributions are in contrast to gravi-
tationally induced body forces. While the latter cause large-scale and very regular
deformations of the Earth that are well predictable, the effects of surface mass loads
are mostly restricted to a few 100 km. Since they are irregular, they are hardly
predictable (van Dam et al. 1997).

Vertical surface deformations of the solid Earth are usually computed following
the theory of Farrell (1972). Pressure variations p(λ,ϕ) (units of [Pa]) are related to
time-variable surface mass loads q(λ,ϕ) (units of [kg/m2]) by

q(λ,ϕ) = p(λ,ϕ)

g
, (28)

where g is the gravitational acceleration. The radial displacement dr(P) of the Earth
at a position P(ϕP, λP) caused by surface mass loads qQ at locations Q(ϕQ, λQ) on
the Earth’s surface area σQ is estimated by (Moritz and Mueller 1987)

dr(P) = a3

M

∫∫
σQ

qQ

∞∑
n=0

h′
nPn(cosψPQ) dσQ . (29)

In this equation h′
n denotes the degree n load Love number. The spherical dis-

tance between P and the location Q(ϕQ, λQ) of an individual (point-)mass load
is given by ψPQ which is the argument of the degree n Legendre Polynomial
Pn(cosψPQ). More compact (29) can be written as

dr (P) = a2
∫∫
σQ

qQG
(
ψPQ

)
dσQ , (30)

where the abbreviation
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G
(
ψPQ
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M

∞∑
n=0

h′
nPn
(
cosψPQ

)
(31)

is the Green’s function for the vertical displacement (Farrell 1972). Function
G(ψPQ) acts as a weighting operator which relates an individual surface mass load
to the associated deformation of the solid Earth according to the spherical distance.
Figure 6.7 shows the Green’s function for continental crust computed from load
Love numbers based on the previously mentioned Earth model PREM (Dziewonski
and Anderson 1981; Scherneck 1990). The strong variability of the dotted curve
truncated at n = 350 reflects the truncation error.

Figure 6.8 shows the time-variable deformations of the solid Earth for a period
of two weeks in February 1994 as caused by atmosphere loading, non-tidal ocean
loading and water storage variations over the continents (Seitz 2004). For the atmo-
sphere and the ocean fields of surface mass loads qQ(ϕQ, λQ) were computed from a
consistent combination of atmosphere surface pressure variations from reanalysis at
the National Centers for Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) (Kalnay et al. 1996) and ocean bottom pressure variations
from the constrained version kf049f of the global ocean circulation model ECCO
(Fukumori 2002). Outputs of both models are provided in daily intervals; spatial
resolutions are 2.5◦ × 2.5◦ for NCEP/NCAR (globally) and 1◦ × 1◦ for ECCO
(between 70◦ N/S; densification of the grid around the equator). Since atmosphere
pressure forcing is not taken into account by ECCO, an inverse barometric cor-
rection is applied to the NCEP/NCAR fields, i.e. air pressure is set to zero over
the ocean. Variations of continental hydrology are taken from the land dynamics
model (LaD; version Euphrates) (Milly and Shmakin 2002). LaD data comprehends
monthly values of global water and groundwater storage as well as snow loads per
1◦ × 1◦ grid cell. While the deformations over the continents are up to 2 cm, the
influence of ocean bottom pressure variations on the surface geometry of the Earth
is marginal.

In order to assess the effect of the deformations on Earth rotation, the verti-
cal surface displacements have to be transformed into variations of the tensor of
inertia �I(t). Since this two-step procedure, i.e. the computation of global load
deformations and the subsequent transformation of the deformations into deviations
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Fig. 6.8 Deformations of the solid Earth due to anomalies of atmospheric surface pressure, ocean
bottom pressure, and continental water storage (Seitz 2004)

of the tensor of inertia (Dill 2002; Seitz 2004), is laborious and time-consuming,
the indirect effect of mass redistributions on Earth rotation is commonly computed
from changes of the geopotential associated with the mass load and the surface
deformation.

The variation �Udef of the Earth’s gravity potential U due to a surface defor-
mation is proportional to the perturbing potential u of the surface mass load. The
proportionality factor is the potential Love number k′ (Moritz and Mueller 1987):

�Udef = k′u . (32)

In general, the gravity potential u of a loading (point-)-mass m equals (Heiskanen
and Moritz 1967)

u = Gm

l
= Gm

a

∞∑
n=0

(
a − dr

a

)n

Pn(cosψPQ) , (33)

or, since the vertical deformation dr is small compared to the Earth radius a:

u = Gm

a

∞∑
n=0

Pn(cosψPQ) . (34)

According to (32), the related change of the geopotential due to the induced
surface deformation is
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δUdef = Gm

a

∞∑
n=0

k′
nPn(cosψPQ) . (35)

If the point mass m is substituted by the (global) surface mass load qQ, this equation
turns into

δUdef = Ga
∫∫
σQ

qQ

∞∑
n=0

k′
nPn(cosψPQ) dσQ , (36)

and the gravity potential u of the loading mass is

u = Ga
∫∫
σQ

qQ

∞∑
n=0

Pn(cosψPQ) dσQ . (37)

Following the derivation given by Moritz and Mueller (1987), (37) can be written
as

u = Ga
∞∑

n=0

4π

2n + 1
qQn , (38)

where qQn is the Laplace surface harmonic of degree n of the function qQ, i.e.

qQ =
∞∑

n=0

qQn . (39)

If accordingly the Laplace surface harmonic un of function u is introduced, the
gravity potential of degree n of the surface mass load can be written as

un = Ga
4π

2n + 1
qQn . (40)

Since the variations of the tensor of inertia �I(t) are solely related to potential
variations of degree 2 (Rochester and Smylie 1974; Chen et al. 2005; see also (22)),
it is sufficient to evaluate (40) for n = 2. The temporal variation of δU2(t) due to the
surface deformation is

δU2(t) = k′
2Ga

4π

5
qQ2 (41)

with k′
2 = −0.308 (Dong et al. 1996). The relation between the spherical harmonic

coefficients of degree 2 and the elements of the Earth tensor of inertia is linear
(Chen et al. 2005). Therefore tensor variations due to the indirect effect �Idef(t)
are computed simply by multiplying the direct tensor variations by the load Love
number k′

2:
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�Idef(t) = k′
2 · �̂I(t) , (42)

where �̂I(t) denotes the direct tensor variations due to the mass redistributions
within atmosphere, ocean and other subsystems that are causative for the Earth’s
surface deformations.

Given the above, the total (direct and indirect) effect of mass redistributions on
the Earth’s tensor of inertia is (Barnes et al. 1983)

�I(t) = (1 + k′
2) · �̂I(t) . (43)

Thus, the direct effect is attenuated by about 30% due to the deformation of the
solid Earth. Note that this is only valid for mass redistributions that actually load
the Earth’s surface. For processes that are not accompanied by surface deformations
(e.g. mass redistributions in the mantle) the load Love number k′

2 must be set to
zero in this equation (Gross 2007).

6.4.3 Solution of the Euler–Liouville Equation

In order to compute variations of Earth rotation from angular momentum changes
and torques, the Liouville equation (12) has to be solved for the unknown quanti-
ties mi(t) of the Earth rotation vector ω(t). In general two different approaches, an
analytical and a numerical approach, are applicable for the solution of the coupled
system of the three first-order differential equations. Both methods will be discussed
in the following.

Less compact the Liouville equation (12) can be written as

İ ω + I ω̇ + ḣ + ω × I ω + ω × h = L , (44)

where the dot denotes the derivative with respect to time. The individual terms read
explicitly

İ ω =
⎛
⎝ ċ11 ċ12 ċ13

ċ12 ċ22 ċ23
ċ13 ċ23 ċ33

⎞
⎠ · �

⎛
⎝ m1

m2
1 + m3

⎞
⎠ , (45)

I ω̇ =
⎛
⎝A + c11 c12 c13

c12 B + c22 c23
c13 c23 C + c33

⎞
⎠ · �

⎛
⎝ ṁ1

ṁ2
ṁ3

⎞
⎠ , (46)

ḣ =
⎛
⎝ ḣ1

ḣ2

ḣ3

⎞
⎠ , (47)

ω × I ω = �

⎛
⎝ m1

m2
1 + m3

⎞
⎠×

⎛
⎝A + c11 c12 c13

c12 B + c22 c23
c13 c23 C + c33

⎞
⎠ · �

⎛
⎝ m1

m2
1 + m3

⎞
⎠ , (48)
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ω × h = �

⎛
⎝ m1

m2
1 + m3

⎞
⎠×

⎛
⎝h1

h2
h3

⎞
⎠ . (49)

The traditionally applied analytical approach has been described and discussed in
various publications (e.g. Munk and MacDonald 1960; Lambeck 1980; Wahr 1982;
Barnes et al. 1983; Moritz and Mueller 1987; Gross 2007). Therefore only its basic
principle shall be sketched in the following. In the numerical ansatz, the non-linear
equation system is solved directly via numerical integration.

6.4.3.1 Linear Analytical Approach

In order to allow for a closed solution of the coupled system of differential equations
(44), the following simplifications are commonly introduced (Lambeck 1980):

• With adequate accuracy, the Earth can be viewed as a biaxial, i.e. rotationally
symmetric, body, so that the principal components A and B can be substituted
by their average value A′ = (A + B)/2. (Indeed the quotient of the difference
between A and B and the absolute value of either of them amounts to only
2.2 × 10−5; see Gross 2007.)

• Terms that contain products of the small quantities mi(t), cij(t) and hi(t) or their
derivatives with respect to time are negligible (linearisation).

With these assumptions, the expansion of the expressions (45), (46), (48) and
(49) results in

İ ω = �

⎛
⎝ ċ13

ċ23
ċ33

⎞
⎠ , (50)

I ω̇ = �

⎛
⎝A′ ṁ1

A′ ṁ2
C ṁ3

⎞
⎠ , (51)

ω × I ω = �2

⎛
⎝ m2(C − A′) − c23

−m1(C − A′) + c13
0

⎞
⎠ , (52)

ω × h = �

⎛
⎝−h2

h1
0

⎞
⎠ . (53)
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Insertion into the Liouville equation (44) yields

�

⎛
⎝ ċ13

ċ23
ċ33

⎞
⎠+ �

⎛
⎝A′ ṁ1

A′ ṁ2
C ṁ3

⎞
⎠+

⎛
⎝ ḣ1

ḣ2

ḣ3

⎞
⎠

+ �2

⎛
⎝ m2(C − A′) − c23

−m1(C − A′) + c13
0

⎞
⎠+ �

⎛
⎝−h2

h1
0

⎞
⎠ =

⎛
⎝L1

L2
0

⎞
⎠ ,

(54)

or component-by-component

ṁ1 · A′

�(C − A′)
+ m2 = 1

�2(C − A′)
·
[
L1 + �2c23 − �ċ13 + �h2 − ḣ1

]
=: �2 ,

(55)

ṁ2· A′

�(C − A′)
−m1 = 1

�2(C − A′)
·
[
L2 − �2c13 − �ċ23 − �h1 − ḣ2

]
=: −�1 ,

ṁ3 = 1

�C
· [−�ċ33 − ḣ3

] =: �̇3 . (57)

The terms containing the time-variable equatorial components of the external
torques L1(t) and L2(t) as well as the quantities cij(t), hi(t) or their derivatives with
respect to time are referred to as excitation functions �i (i = 1, 2, 3) (Munk and
MacDonald 1960). Note that L3 = 0 due to A = B; see (18). Variations of the ten-
sor elements c13(t), c23(t) and c33(t) describe the sum of all direct effects of mass
redistributions in the various system components and the effects of solid Earth defor-
mations due to tides, polar motion and surface loads. For the principal moments of
inertia A′ and C numerical values have to be introduced that account for the effect
of core–mantle decoupling as discussed in Sect. 6.4.2.1.

Due to the linearisation, only three of the six components of the tensor of inertia
appear in the excitation functions. Deviation moments c11(t), c22(t) and c12(t) are
neglected in the analytical approach. The axial component m3(t) of the Earth rotation
vector ω(t) is decoupled from the horizontal components. With adequate accuracy
�LOD(t) can be calculated independently from polar motion (see (15)). For the
computation of polar motion, the first two differential equations are transformed into
a complex equation (Lambeck 1980). Defining m(t) = m1(t) + im2(t) and �(t) =
�1(t) + i�2(t) yields

i ·
(

ṁ
A′

�(C − A′)

)
+ m = � , (58)

where i = √−1. For a rigid body and in the absence of external torques � equals
zero. Then the solution of (58) is

m = m0e iσ t , (59)
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with the abbreviation σ = �
(C − A′)

A′ and the complex coordinate m0 = m(t0) as

initial condition for the epoch t0. The free polar motion of a rigid Earth would be
a prograde and undamped oscillation with amplitude

∣∣m0
∣∣ and frequency σ , which

corresponds to a period of 304 days (Euler period).
The observed frequency of the free polar motion (Chandler frequency) differs

from the Euler frequency due to the deformability of the Earth’s body. As a con-
sequence of mantle anelasticity, rotational deformations are accompanied by a loss
of energy due to friction (see Sect. 6.4.2.1). In order to account for this effect, σ is
substituted by the complex quantity σCW (Lambeck 1980):

σCW = σ0

(
1 + i

2Q

)
. (60)

Here σ0 is the Chandler frequency and Q denotes the quality factor that describes the
damping of the Chandler amplitude due to dissipation. Both quantities are explicitly
predetermined in the analytical approach. Therefore the result is directly dependent
on the choice of the numerical values of σ0 and Q (Wilson and Haubrich 1976). Due
to the assumption of rotational symmetry (A = B), the resulting free polar motion is
circular. For a deformable Earth the solution of the Liouville equation follows from
the convolution

m = eiσCWt
[

m0 − iσCW

∫ t

−∞
�(τ )e−iσCWτdτ

]
. (61)

Alternative to the explicit computation of polar motion from the excitation functions
�1(t) and �2(t), an indirect method is commonly applied, in which the so-called
geodetic excitation is derived by an inverse convolution from the observed polar
motion (Chao 1985; Brzezinski 1992). The comparison between the gravitational
and geophysical processes and the geodetic observations is then performed on the
basis of the excitation functions �1(t) and �2(t) without calculating m1(t) and m2(t).
Since the Chandler oscillation is a priori reduced from the observations in the course
of the computation of the geodetic excitation, the indirect method is just like the
direct method dependent on the choice of the parameters σ0 and Q.

6.4.3.2 Non-linear Numerical Approach

In the non-linear numerical approach the system of the three differential equations
(44) is solved numerically. In contrast to the analytical approach, the Chandler
oscillation is not explicitly predetermined with respect to its period σ0 and qual-
ity factor Q. Instead, the free polar motion is modelled by considering the effect of
the back-coupling mechanism of rotational deformations in �I(t). As described in
Sect. 6.4.2.1, frequency and damping of the Chandler oscillation are closely related
to the value of the complex Love-number k2 in this case (Seitz and Kutterer 2005).

No set-up of linearised excitation functions is required when the system of dif-
ferential equations is solved numerically. This is a major difference compared to the
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analytical approach: the tensor of inertia I(t), the vector of angular momenta h(t)
and the vector of the external torques L(t) are directly introduced into the Liouville
equation. Therefore the temporal variations of the deviation moments c11, c22 and
c12 are also considered in the tensor of inertia, and the previously neglected higher-
order terms are contained in the solution. As a consequence, the first two differential
equations are not decoupled from the third one, i.e. polar motion and �LOD(t) are
solved simultaneously.

Furthermore the numerical approach allows for the introduction of a triaxial
approximate tensor I0(A 
= B 
= C). The free polar motion of such an unsym-
metrical gyro is no longer circular. But since the discrepancy between A and B is
small, the numerical eccentricity of the ellipse described by the Earth rotation vec-
tor with respect to the Earth-fixed reference frame is only 0.10 if all gravitational
and geophysical excitations are neglected. Its semi-minor axis is oriented towards
the direction of the smallest principal moment of inertia A.

The Liouville equation is reformulated as a coupled system of three ordinary
differential equations of the general form

ṁ (t) = f (t, mi (t)) , (62)

(i = 1, 2, 3) with

ṁ (t) =
⎛
⎝ ṁ1 (t)

ṁ2(t)
ṁ3(t)

⎞
⎠ , (63)

and

f (t, mi (t)) =
⎛
⎝ f1(t, m1(t), m2(t), m3(t))

f2(t, m1(t), m2(t), m3(t))
f3(t, m1(t), m2(t), m3(t))

⎞
⎠ . (64)

Function f (t, mi (t)) comprehends the tensor of inertia I(t), relative angular
momenta h(t) and torques L(t). Due to rotational deformations, the tensor of iner-
tia includes deviations, which are dependent on m1 and m2 (cf. (21) and (22)).
Consequently derivatives of these parameters with respect to time ṁi appear in both
terms I ω̇ and İ ω of the Liouville equation (44). In order to solve the Liouville
equation for the unknown quantities mi, their derivatives are assembled on the left-
hand side of the differential equation. Therefore the tensor of inertia İ is divided into
two parts: one component, İR, describes the effect of rotational deformations and
depends on ṁi; the second component İG includes the geophysically induced mass
redistributions in the fluid system components and in the solid Earth due to tidal
deformations and load deformations. This second component İG is independent of
ṁi. Consequently the Liouville equation can be written as

İR ω + I ω̇ = L − İG ω − ḣ − ω × h − ω × I ω . (65)
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If the products of the mi with the (very small) derivatives ṁi are neglected, the term
İR ω equals

İR ω = �3a5

3G

⎡
⎣�(k2) · ṁ1 + �(k2) · ṁ2

�(k2) · ṁ2 − �(k2) · ṁ1
0

⎤
⎦ (66)

≈ �3a5

3G
�(k2)

⎡
⎣ ṁ1

ṁ2
0

⎤
⎦ . (67)

Since the real part of k2 is two orders of magnitude larger than its imaginary part,
the products of �(k2) with ṁi are neglected, too. The left-hand side of system (65)
turns into

İR ω + I ω̇ =
⎛
⎝ �3a5

3G
�(k2)

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦+ � I

⎞
⎠
⎡
⎣ ṁ1

ṁ2
ṁ3

⎤
⎦ (68)

=: F

⎡
⎣ ṁ1

ṁ2
ṁ3

⎤
⎦ , (69)

and the Liouville equation can be converted into

ṁ = F−1 (L − İG ω − ḣ − ω × h − ω × I ω
)

. (70)

This coupled system of three first-order differential equations is solved as an initial
value problem. Just as in the analytical approach, the tensor of inertia is composed of
all contributions from direct mass effects in the components of the Earth system and
from the deformations of the solid Earth induced by tides, polar motion and loading.
The effect of core–mantle decoupling is regarded by the adoption of appropriate
values of the principal moments of inertia A, B, C; see Sect. 6.4.2.1.

The introduction of initial values for the epoch t0

m0 =
⎛
⎜⎝

m0
1

m0
2

m0
3

⎞
⎟⎠ (71)

allows for a unique computation of special solutions for the unknown functions
mi = mi(t) by which the initial conditions mi(t0) = m0

i are fulfilled. Respective
values m0

i are deduced from observations of polar motion and �LOD. For the cor-
respondence between the geodetic observations and the quantities mi(t), see Sect.
6.5.

The efficiency of the numerical solution is naturally linked to the quality of
both the applied initial conditions and the integrator. Using the previously men-
tioned dynamic Earth system model (see Sect. 6.4.2.1), Seitz and Kutterer (2005)
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studied the effect of inaccurate initial values on the numerical solution. They con-
cluded from 30 test runs that the variation of the initial values within an interval of
±3σi (where σi is the standard deviation of the respective observation) is uncritical.
However, if the applied initial values differ substantially from the geodetic observa-
tions (e.g. if m0

i = 0 is assumed), the results are contaminated over many decades. In
this case the model time series are not interpretable before a steady state is reached,
i.e. before the influence of the initial conditions falls below the level of the model
accuracy. Studies on the reliability of the solution from an algorithmic point of view
showed little dependence of the results on the choice of a specific solver: Seitz
(2004) applied various one-step and multi-step solvers as well as an extrapolation
method in the dynamic Earth system model and performed runs over more than two
decades with identical initial values and forcing conditions. It was shown that the
RMS differences between all runs were in the order of 1 mas for polar motion and
1–2 μs for �LOD. In contrast, the absolute accuracy of the model, i.e. the RMS
difference between the simulation and the geodetic observations, was in the order
of 30 mas for polar motion and 120 μs for �LOD.

More details on the non-linear approach, numerical model results from the
dynamic Earth system model and comparisons between modelled and observed
time series for polar motion and �LOD can be found in Seitz (2004) and Seitz
and Schmidt (2005).

6.5 Relation Between Modelled and Observed Variations
of Earth Rotation

The parameters mi(t) of the Earth rotation vector ω(t) in the Liouville Equation
(12) are related to the geodetically observed time series of polar motion
[xp(t), yp(t)],�UT(t) and length-of-day variations �LOD(t). The time-variable
angular misalignment between the instantaneous rotation vector ω(t) and the z-axis
of the terrestrial reference frame in x- and y-direction is described by the two com-
ponents m1(t) and m2(t), respectively (see (14)). On the other hand, the coordinates
xp and yp published by the IERS represent the misalignment between the CIP and
the IERS Reference Pole (i.e. the z-axis of the ITRF).

Both coordinate systems differ with respect to the direction of the positive y-
axis: the terrestrial system, to which the rotation vector ω(t) refers to, is a right-hand
system. The system used by the IERS for the publication of the coordinates xp(t) and
yp(t), however, is a left-hand system (yp-axis directed towards 90◦W; see Sect. 6.1).
Therefore the coordinates [p1(t), p2(t)] are defined, in order to describe the position
of the CIP with respect to the IERS Reference Pole in a right-hand system:

p1(t) = xp(t) ,

p2(t) = −yp(t) .
(72)

The relation between [m1(t), m2(t)] and [p1(t), p2(t)] follows from the transforma-
tion between the true celestial equator system and the Earth-fixed system. According
to Sect. 6.1, the rotation matrix A(t) that transforms between both systems accounts
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for the daily spin around the axis of the CIP and polar motion:

A(t) = W(t) S(t) . (73)

The coordinates ω1(t),ω2(t),ω3(t) of the Earth rotation vector ω(t) in the terrestrial
system are the elements of the skew-symmetric matrix B(t):

B(t) =
⎛
⎝ 0 ω3(t) −ω2(t)

−ω3(t) 0 ω1(t)
ω2(t) −ω1(t) 0

⎞
⎠ = Ȧ(t)AT(t) . (74)

Since matrix W(t), and accordingly matrix A(t), do not include the previously men-
tioned Oppolzer motion, the Earth rotation vector ω(t) resulting from (74) does
not account for the subdaily retrograde deflection between the instantaneous rota-
tion axis and the direction to the CIP. In order to include this effect, a vector
that describes the departure between CIP and the instantaneous rotation pole (IRP)
would have to be added to the product Ȧ(t)AT(t) (see below).

For time scales longer than 1 day, the comparison of the coefficients of matrix
B(t) with the result of the product Ȧ(t)AT(t) leads to the relation between the ele-
ments of the Earth rotation vector ω(t) and the coordinates p1(t) and p2(t). To the
first order, this relation is (Brzezinski 1992; Gross 1992)

ω1(t) = � p1(t) + ṗ2(t) ,

ω2(t) = � p2(t) − ṗ1(t) ,
(75)

or with ω1(t) = � m1(t) and ω2(t) = � m2(t)

m1(t) = p1(t) + 1

�
ṗ2(t) ,

m2(t) = p2(t) − 1

�
ṗ1(t) .

(76)

The connection between modelled and observed polar motion is illustrated in
Fig. 6.1 following Mendes Cerveira et al. (2009). The published polar motion values
p(t) refer to the position of the CIP in the ITRF, where p(t) = xp(t) − iyp(t) =
p1(t) + ip2(t). As stated above, the model values m(t) = m1(t) + im2(t) represent
polar motion of the IRP in the terrestrial frame that differs from the CIP by the effect
of the Oppolzer motion (vector d in Fig. 6.1) (Capitaine 2002; Mendes Cerveira et al.
2009). For completeness, the axes of the space-fixed reference frame (GCRF) are
also sketched. The coordinates X(t) and Y(t) of the CIP in the GCRF are derived
from the precession–nutation (PN) model IAU 2000A and the published celestial
pole offsets as described in Sect. 6.1.

The correspondence between the variation of the absolute value of the Earth rota-
tion vector ω(t) and the observed quantities �LOD(t) and �UT(t) results directly
from the definition of �LOD(t), meaning the time span of one full revolution of the
Earth reduced by 86,400 s (see (5)):
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�LOD (t) = 2π κ

|ω(t)| − 86, 400 s , (77)

where

κ = �

2π
· 86, 400 s = 86, 400

86, 164
. (78)

The introduction of the absolute value of ω(t) (15) delivers (Schneider 1988)

�LOD t = 2π κ

�(1 + m3(t))
− 86, 400 s = −m3(t) · 86, 400 s , (79)

and according to the relation between �LOD (t) and �UT (t) (6) (Gross 1992)

d

dt
�UT (t) = m3(t) . (80)

Following the derivations in this section, physical model results and published val-
ues of Earth orientation parameters from space-geodetic observation techniques can
be uniquely related to each other. In this way, physical models of Earth rotation
can contribute significantly to the interpretation of the observations in terms of
geophysical processes in the Earth system. Studies of the Earth’s reaction on gravi-
tational and other geophysical excitations, e.g. processes and interactions within and
between atmosphere, hydrosphere and solid Earth can be performed using theoret-
ical forward models. As described in Sect. 6.4, such models comprehend physical
transfer functions that relate gravitational and geophysical model data and/or obser-
vations to time series of geodetic parameters of rotation, gravity field variations and
changes of the surface geometry of the Earth. In forward models, observations of
Earth rotation are used as a reference in order to examine the quality of geophys-
ical data sets by balancing modelled angular momentum variations in the Earth’s
subsystems with the observed integral signal. Forward models have also been used
for the prediction of geodetic parameters, e.g. in the context of global change, when
climate predictions are introduced as forcing (Winkelnkemper et al. 2008).

Vice versa, observed time series of Earth orientation parameters can be used
in order to support and improve theoretical models via inverse methods. In this
way, the geodetic observations can contribute directly to an improved understand-
ing of Earth system dynamics. Inverse methods have been developed for many years
in geodesy. They are directed towards the gain of knowledge from precise geode-
tic observations about geophysical parameters (Marchenko and Schwintzer 2003),
individual dynamic processes or interactions in the Earth system. While numerous
recent studies deal with the assessment of the Earth’s mass redistribution from an
inversion of the time-variable gravity field from GRACE (Chao 2005; Ramillien
et al. 2005), time series of geometric surface deformations from GPS (Wu et al.
2003) or combination of both (Wu et al. 2002; Kusche and Schrama 2005), there
are hardly any approaches for the inversion of Earth rotation up to now. But due to
the long observation records of polar motion and �LOD, due to the high accuracy
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of the measurements and due to the large spectral range from hours to decades that
is covered by the observations, the development of inverse Earth rotation models is
a highly promising challenge for the future.
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7.1 Introduction

In the past decade of GPS research, advantages and disadvantages of the differ-
ential and un-differential GPS have been discussed in detail in many publications.
First in 2002 it was algebraically pointed out that the un-differential and differential
algorithms of GPS are equivalent (Xu 2002a). Various combined and uncombined
methods of GPS algorithms were discussed in detail too to show the advantages of
some combining ways. However, again the combined and uncombined algorithms
were proved to be equivalent (Xu et al. 2006a, 2007). The equivalence principle can
now be easily explained and accepted, because the used GPS data and model are the
same and the used adjustment principle is also the same. The information contents
are the same; therefore the results one may obtain should also be equivalent.

If one accepts that the different GPS algorithms of differencing or combining
are equivalent, then several problems arising from the equivalence principle should
be studied too. One of the most important consequences is that the un-differential
GPS model is a rank-deficient one. An independent parameterisation method is
then developed (Xu et al. 2006b, 2007). Based on the above three developments,
an equivalence theorem can be summarised (Xu et al. 2006c, 2007).

One of the most important by-products of the equivalence principle is the diag-
onalisation algorithm (Xu 2003a, 2007). It is even important for classic sequential
adjustment in case of parameter reduction. The separability of any observation equa-
tion and its normal equation is another inference of the equivalence principle (Xu
2007). The optimal criterion of ambiguity search is the third (Xu 2002b, 2007).

The above factors formed part of the very important theoretical developments
on GPS theoretical research, which are described in Xu (2007) in different sections
throughout the book. A summary of the equivalence principle and emphasis of the
basic principle are still important. This is the purpose of this chapter.

This chapter consists of seven sections. The equivalence of the differencing
and undifferenced GPS algorithms is outlined theoretically in the second section.
The by-product of the theory is that a unified GPS data processing method is
proposed which may include all undifferenced and differencing algorithms into a
unique one and any algorithm can be realised by using a switch. Such equivalence
is soft and the definition is given. The differencing includes single-differencing
methods, double-differencing methods and triple-differencing methods, as well as
user-defined differencing. Incidentally, the triple-difference equations are equivalent
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to the others only for real-valued ambiguities, since the equivalence principle is not
applicable to the integer parameters.

The equivalence properties of the un-combined and combining GPS data pro-
cessing algorithms are verified theoretically in the third section. The solution vector
and the covariance matrix of the solutions are identical regardless of the algo-
rithms adopted. The correct choice of special algorithms will lead to a better and
easier dealing of the data and solving of the problem. Such equivalence is an
exact one.

An independent parameterisation method of GPS observation model is discussed
in the fourth section. Two sets of evidence of the singularity of the undifferenced
GPS observation models are given to show the need for the study on the parameteri-
sation problem. Then a general method to model the bias parameters independently
is proposed through analysis. A geometry-free illustration is given to show the prob-
lem of singularity of the bias parameterisation. A correlation analysis in the case of
a phase–code combination is also discussed to emphasise that the singularity will
not change much because of the lower weight of the code.

The equivalence of the mixtures of the combining and differencing methods is
discussed in the fifth section. A derivation is given to show that the traditional com-
binations are non-equivalent algorithms due to the inexact bias parameterisation.
Equivalence property of the GPS data processing algorithms is summarised based on
the equivalence of the uncombined and combining, undifferenced and differencing
algorithms, as well as their mixtures.

Inferences of the equivalence principle are discussed in the sixth section, includ-
ing the diagonalisation algorithm, the separability of any observation equation and
its normal equation, the optimal criterion of ambiguity search. A short summary is
given at the end.

7.2 Equivalence of Undifferenced and Differencing Algorithms

A unified GPS data processing method based on equivalently eliminated equations
is described and the equivalence between undifferenced and differencing algorithms
is proved in this section. The theoretical background of the method is given. By
selecting the eliminated unknown vector as a zero vector, a vector of satellite clock
error, a vector of all clock error, a vector of clock and ambiguity parameters or
a vector of user-defined unknowns, the selectively eliminated equivalent observa-
tion equations can be formed. The equations are equivalent to the zero-differencing,
single-differencing, double-differencing, triple-differencing or user-defined differ-
encing equations. The advantage of such a method is that the different GPS data
processing methods are unified to a unique one, wheras the observational vector
remains the original one and the weight matrix keeps the un-correlated diagonal
form. In other words, by using this equivalent method, one may selectively reduce
the unknown number; however, one does not have to deal with the complicated
correlation problem. Several special cases of single-, double- and triple-difference
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are discussed in detail to illustrate the theory. The reference-related parameters are
dealt with using the a priori datum method.

7.2.1 Introduction

In GPS data processing practice, the commonly used methods are so-called zero-
difference (un-differential) methods, single-difference methods, double-difference
methods and triple-difference methods (Hofmann-Wellenhof et al. 2001; Leick
2004; Remondi 1984; Strang and Borre 1997; Parkinson and Spilker 1996; Cannon
et al. 1997; Petovell0 2006; Sien-Chong and William 1993; Sjoeberg 1999). It
is well known that the observation equations of the differencing methods can be
obtained by carrying out a related linear transformation to the original equations. As
soon as the weight matrix is similarly transformed according to the law of covari-
ance propagation, all methods are equivalent, theoretically. A theoretical proof of
the equivalence between the un-differential and differential methods can be found
in Schaffrin and Grafarend (1986). A comparison of the advantages and disadvan-
tages of the un-differential and differential methods can be found, e.g., in de Jong
(1998). The advantage of the differential methods is that the unknown parameters
are fewer so that the whole problem to be solved becomes smaller. The disadvantage
of the differential methods is that there is a correlation problem, which appears in
cases of multiple baselines of single-difference methods and all double-difference
as well as triple-difference methods. The correlation problem is often complicated
and not easy to deal with exactly (compared with the un-correlated problem). The
advantages and disadvantages reach a balance. If one wants to deal with a reduced
problem (cancellation of many unknowns), then one has to deal with the correlation
problem. As an alternative, we use the equivalent observation equation approach to
unify the un-differential and differential methods, while keeping all the advantages
of the un-differential and differential methods.

In the next sections, the theoretical basis of the equivalently eliminated equations
will be given based on the derivation of Zhou (1985). Several detailed cases are
then discussed to illustrate the theory. The reference-related parameters are dealt
with using the a priori datum method. A summary of the selectively eliminated
equivalent GPS data processing method is outlined at the end.

7.2.2 Formation of Equivalent Observation Equations

For the convenience of later discussion, the method to form an equivalently elim-
inated equation system is outlined here (cf. Sect. 7.6 of Xu 2007). In practice,
sometimes only one group of unknowns is of interest; it is better to eliminate
the other group of unknowns (called nuisance parameters), for example because
of their size. In this case, using the so-called equivalently eliminated observation
equation system could be very beneficial (Zhou 1985). The nuisance parameters
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can be eliminated directly from the observation equations instead of from the normal
equations.

The linearised observation equation system can be represented using the matrix

V = L − (A B)

(
X1
X2

)
and P , (1)

where L is an observation vector of dimension n, A and B are coefficient matrices
of dimensions n×(s–r) and n×r, X1 and X2 are unknown vectors of dimensions s–r
and r, V is residual error, s is the total number of unknowns and P is the weight
matrix of dimension n×n.

The related least squares normal equation can then be formed as

(
A B

)T
P
(

A B
) (X1

X2

)
= (A B

)T
PL (2)

or M11X1 + M12X2 = B1 and (3)

M21X1 + M22X2 = B2, (4)

where
B1 = ATPL , B2 = BTPL and(
ATPA ATPB
BTPA BTPB

)
=
(

M11 M12
M21 M22

)
. (5)

After eliminating the unknown vector X1, the eliminated equivalent normal equation
system is then

M2X2 = R2, (6)
where

M2 = −M21M−1
11 M12 + M22 = BTPB − BTPAM−1

11 ATPB and (7)

R2 = B2 − M21M−1
11 B1 . (8)

The related equivalent observation equation of (6) is then (cf. Sect. 7.6 of Xu 2007;
Zhou 1985)

U2 = L − (E − J)BX2, P, (9)
where

J = AM−1
11 ATP. (10)

E is an identity matrix of size n, L and P are the original observation vector and
weight matrix, respectively, and U2 is the residual vector, which has the same prop-
erty as V in (1). The advantage of using (9) is that the unknown vector X1 has been
eliminated; however, L vector and P matrix remain the same as the original.

Similarly, the X2-eliminated equivalent equation system is
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U1 = L − (E − K)AX1 and P, (11)
where

K = BM−1
22 BTP , M22 = BTPB

and U1 is the residual vector (which has the same property as V).
We have separated the observation equation (1) into two equations, (9) and (11);

each equation contains only one of the unknown vectors. Each unknown vector can
be solved independently and separately. Equations (9) and (11) are called equivalent
observation equations of (1).

The equivalence property of (1) and (9) is valid under three implicit assump-
tions. The first is that the identical observation vector is used. The second is that the
parameterisation of X2 is identical. The third is that the X1 is able to be eliminated.
Otherwise, the equivalence does not hold.

7.2.3 Equivalent Equations of Single Differences

In this section, the equivalent equations are formed to eliminate the satellite clock
errors from the original zero-difference equations first, then the equivalency of the
single differences (in two cases) related to the original zero-difference equations is
proved.

Single differences cancel all the satellite clock errors out of the observation equa-
tions. This can also be achieved by forming equivalent equations where satellite
clock errors are eliminated. Considering (1), the original observation equation, and
X1, the vector of satellite clock errors, the equivalent equations of single differences
can be formed as outlined in Sect. 7.2.2 (cf. Xu 2007).

Suppose n common satellites (k1,k2,. . .,kn) are observed at stations i1 and i2.
The original observation equation can then be written as

(
Vi1
Vi2

)
=
(

Li1
Li2

)
−
(

E Bi1
E Bi2

)
·
(

X1
X2

)
and P = 1

σ 2

(
E 0
0 E

)
, (12)

where X1 is the vector of satellite clock errors and X2 is the vector of other
unknowns. For simplicity, clock errors are scaled by the speed of light c and directly
used as unknowns; then the X1-related coefficient matrix is an identity matrix, E.

Comparing (12) with (1), one has (cf. Sect. 7.2.2)

A =
(

E
E

)
, B =

(
Bi1
Bi2

)
, L =

(
Li1
Li2

)
and V =

(
Vi1
Vi2

)
,

and

M11 = (E E
) 1

σ 2

(
E 0
0 E

)(
E
E

)
= 2

σ 2
E ,
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J =
(

E
E

)
σ 2

2
E
(

E E
)

P = 1

2

(
E E
E E

)
,

E2n×2n − J = 1

2

(
E −E

−E E

)
and

(E2n×2n − J)B = 1

2

(
Bi1 − Bi2
Bi2 − Bi1

)
.

So the equivalently eliminated equation system of (12) is

(
Ui1
Ui2

)
=
(

Li1
Li2

)
− 1

2

(
Bi1 − Bi2
Bi2 − Bi1

)
· X2, P = 1

σ 2

(
E 0
0 E

)
, (13)

where the satellite clock error vector X1 is eliminated, and the observable vector and
weight matrix are unchanged.

Denoting Bs = Bi2 – Bi1, the least squares normal equation of (13) can then be
formed as (cf. Chap. 7 of Xu 2007) (supposing (13) is solvable)

1

2

(−BT
s BT

s

) · P ·
(−Bs

Bs

)
· X2 = (−BT

s BT
s

) · P ·
(

Li1
Li2

)

or

BT
s Bs · X2 = BT

s (Li2 − Li1). (14)

Alternatively, a single-difference equation can be obtained by multiplying (12) with
a transformation matrix Cs:

Cs = (−E E
)

,

giving

Cs ·
(

Vi1
Vi2

)
= Cs ·

(
Li1
Li2

)
− Cs ·

(
E Bi1
E Bi2

)
·
(

X1
X2

)

or

Vi2 − Vi1 = (Li2 − Li1) − (Bi2 − Bi1)X2 (15)

and

cov(SD(O)) = Csσ
2
(

E 0
0 E

)
CT

s = 2σ 2E and Ps = 1

2σ 2
E, (16)

where Ps is the weight matrix of single differences, and cov(SD(O)) is the covari-
ance of the single differences (SD) observational vector (O). Supposing (15) is
solvable, the least squares normal equation system of (15) is then

(Bi2 − Bi1)T(Bi2 − Bi1)X2 = (Bi2 − Bi1)T(Li2 − Li1). (17)
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It is obvious that (17) and (14) are identical. Therefore in the case of two sta-
tions, the single-difference equation (15) is equivalent to the equivalently eliminated
equation (13) and consequently equivalent to the original zero-difference equation.

Suppose n common satellites (k1, k2, . . ., kn) are observed at stations i1, i2 and
i3. The original observation equation can then be written as

⎛
⎝Vi1

Vi2
Vi3

⎞
⎠ =

⎛
⎝Li1

Li2
Li3

⎞
⎠−

⎛
⎝E Bi1

E Bi2
E Bi3

⎞
⎠ ·
(

X1
X2

)
and P = 1

σ 2

⎛
⎝E 0 0

0 E 0
0 0 E

⎞
⎠ . (18)

Comparing (18) with (1), one has (cf. Sect. 7.2.2)

A =
⎛
⎝E

E
E

⎞
⎠ , B =

⎛
⎝Bi1

Bi2
Bi3

⎞
⎠ , L =

⎛
⎝Li1

Li2
Li3

⎞
⎠ and V =

⎛
⎝Vi1

Vi2
Vi3

⎞
⎠ ,

and

M11 = ATPA = 3

σ 2
E,

J = A
σ 2

3
EATP = 1

3

⎛
⎝E E E

E E E
E E E

⎞
⎠ ,

E3n×3n − J = 1

3

⎛
⎝ 2E −E −E

−E 2E −E
−E −E 2E

⎞
⎠ and

(E3n×3n − J)B = 1

3

⎛
⎝ 2Bi1−Bi2−Bi3

−Bi1+2Bi2−Bi3
−Bi1−Bi2+2Bi3

⎞
⎠ .

So the equivalently eliminated equation system of (18) is

⎛
⎝Ui1

Ui2
Ui3

⎞
⎠ =

⎛
⎝Li1

Li2
Li3

⎞
⎠− 1

3

⎛
⎝ 2Bi1−Bi2−Bi3

−Bi1+2Bi2−Bi3
−Bi1−Bi2 + 2Bi3

⎞
⎠ ·X2, P = 1

σ 2

⎛
⎝E 0 0

0 E 0
0 0 E

⎞
⎠, (19)

and the related least squares normal equation can be formed as

1

3

⎛
⎝ 2Bi1−Bi2−Bi3

−Bi1+2Bi2−Bi3
−Bi1−Bi2+2Bi3

⎞
⎠

T⎛
⎝ 2Bi1−Bi2−Bi3

−Bi1+2Bi2−Bi3
−Bi1−Bi2+2Bi3

⎞
⎠X2

=
⎛
⎝ 2Bi1−Bi2−Bi3

−Bi1+2Bi2−Bi3
−Bi1−Bi2+2Bi3

⎞
⎠

T⎛
⎝Li1

Li2
Li3

⎞
⎠ .

(20)
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Alternatively, for the equation system (18), single differences can be formed using
transformation (cf. Sect. 6.6.1 of Xu 2007):

Cs =
(−E E 0

0 −E E

)

and

Ps = [cov(SD)]−1 = 1

3σ 2

(
2E E
E 2E

)
.

The correlation problem appears in the case of single differences of multiple
baselines. The related observation equations and the least squares normal equation
can be written as

(
Vi2 − Vi1
Vi3 − Vi2

)
=
(

Li2 − Li1
Li3 − Li2

)
−
(

Bi2 − Bi1
Bi3 − Bi2

)
X2, Ps and (21)

(
Bi2 − Bi1
Bi3 − Bi2

)T (2E E
E 2E

)(
Bi2 − Bi1
Bi3 − Bi2

)
X2

=
(

Bi2 − Bi1
Bi3 − Bi2

)T (2E E
E 2E

)(
Li2 − Li1
Li3 − Li2

)
.

(22)

Equations (20) and (22) are identical. This may be proved by expanding both equa-
tions and comparing the results. Again, this shows that the equivalently eliminated
equations are equivalent to the single-difference equations, however, without the
need to deal with the correlation problem.

7.2.4 Equivalent Equations of Double Differences

Double differences cancel all the clock errors out of the observation equations. This
can also be achieved by forming equivalent equations where all clock errors are
eliminated. Considering (1), the original observation equation, and X1, the vector
of all clock errors, the equivalent equation of double differences can be formed as
outlined in Sect. 7.2.2.

In the case of two stations, supposing n common satellites (k1, k2, . . ., kn) are
observed at stations i1 and i2, the equivalent single-difference observation equation
is then (13). Denoting Bs1= Bi2 – Bi1, the station clock error parameter as δti1–δti2
(cf. (6.89), (6.90), (6.91) and (6.92) of Xu 2007) and assigning the coefficients of
the first column to the station clock errors, i.e. Bs1= (In×1 Bs), (13) turns out to be

(
Ui1
Ui2

)
=
(

Li1
Li2

)
− 1

2

(−In×1 −Bs

In×1 Bs

)(
Xc

X3

)
and P = 1

σ 2

(
E 0
0 E

)
, (23)
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where Xc is the station clock error vector, X3 is the other unknown vector, Bs is the
X3-related coefficient matrix, In×1 is a 1 matrix (where all elements are 1), and clock
errors are scaled by the speed of light.

Comparing (23) with (1), one has (cf. Sect. 7.2.2)

A = 1

2

(−In×1

In×1

)
, B = 1

2

(−Bs
Bs

)
, L =

(
Li1
Li2

)
and V =

(
Ui1
Ui2

)
,

and

M11 = 1

4

(−IT
n×1 IT

n×1

) 1

σ 2

(
E 0
0 E

)(−In×1
In×1

)
= n

2σ 2
,

J =
(−In×1

In×1

)
σ 2

2n

(−IT
n×1 IT

n×1

) · P = 1

2n

(
In×n −In×n

−In×n In×n

)
and

(E2n×2n − J)
1

2

(−Bs
Bs

)
= 1

2

⎛
⎜⎝

−En×n + 1

n
In×n

En×n − 1

n
In×n

⎞
⎟⎠Bs.

So the equivalently eliminated equation system of (23) is

(
Ui1
Ui2

)
=
(

Li1
Li2

)
−1

2

⎛
⎜⎝

−En×n + 1

n
In×n

En×n − 1

n
In×n

⎞
⎟⎠BsX3 and P = 1

σ 2

(
E 0
0 E

)
, (24)

where the receiver clock error vector Xc is eliminated, and observable vector and
weight matrix are unchanged. The normal equation has a simple form of

BT
s

(
En×n − 1

n
In×n

)
BsX3 = BT

s

(
En×n − 1

n
In×n

)
(Li2 − Li1). (25)

Alternatively, the traditional single-difference observation equations (15) and (16)
can be rewritten as

Vi2 − Vi1 = (Li2 − Li1) − ( In×1 Bs
) (Xc

X3

)
or (

V1
i2 − V1

i1

Vk
i2 − Vk

i1

)
=
(

L1
i2 − L1

i1

Lk
i2 − Lk

i1

)
−
(

1 B1
s

Im×1 Bk
s

)(
Xc
X3

)
, (26)

and

cov(SD(O)) = Csσ
2
(

E 0
0 E

)
CT

s = 2σ 2E and Ps = 1

2σ 2
E,
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where m = n – 1, and the superscripts 1 and k denote the first row and remain-
ing rows of the matrices (or columns in case of vectors). The double-difference
transformation matrix and covariance are (cf. (6.116)–(6.118) of Xu 2007)

Cd =
(

−Im×1 E m×m

)
,

cov(DD(O)) = Cd cov(SD(O))CT
d = 2σ 2CdCT

d = 2σ 2 (Im×m + Em×m) and

Pd = [cov(DD(O))]−1 = 1

2σ 2n
(nEm×m − Im×m) .

The double-difference observation equation and related normal equation are

Cd

(
V1

i2 − V1
i1

Vk
i2 − Vk

i1

)
= Cd

(
L1

i2 − L1
i1

Lk
i2 − Lk

i1

)
− Cd

(
1 B1

s

Im×1 Bk
s

)(
Xc
X3

)

or

Cd

(
V1

i2 − V1
i1

Vk
i2 − Vk

i1

)
= Cd

(
L1

i2 − L1
i1

Lk
i2 − Lk

i1

)
− Cd

(
B1

s

Bk
s

)
X3,

i.e.

Cd(Vi2 − Vi1) = Cd(Li2 − Li1) − CdBsX3 (27)
and

BT
s CT

d PdCdBsX3 = BT
s CT

d PdCd(Li2 − Li1), (28)

where

CT
d PdCd = 1

2σ 2n

(
−Im×1 E m×m

)T
(nEm×m − Im×m)

(
−Im×1 E m×m

)
, (29)

(
−Im×1 E m×m

)T
(nEm×m − Im×m) =

(
−Im×1 nE m×m − Im×m

)T
(30)

and (
−Im×1 nE m×m − Im×m

)T (−Im×1 E m×m

)
= nEn×n − In×n. (31)

The above three equations can be proved readily. Substituting (29), (30) and (31)
into (28), (28) turns out to be the same as (25). So the equivalency between the
double-difference equation and the directly formed equivalent equation (23) is
proved.

7.2.5 Equivalent Equations of Triple Differences

Triple differences cancel all the clock errors and real-valued ambiguities out of the
observation equations. This can also be achieved by forming equivalent equations
where all clock errors and real-valued ambiguities are eliminated. Considering (1),
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the original observation equation, and X1, the parameter vector of all clock errors
and real-valued ambiguities, the equivalent equations of triple differences can then
be formed as outlined in Sect. 7.2.2.

It is well known that traditional triple differences are correlated between adja-
cent epochs and between baselines. In the case of sequential (epoch by epoch) data
processing of triple differences, the correlation problem is difficult to deal with.
However, using the equivalently eliminated equations, the weight matrix remains
diagonal. The GPS observables remain the original ones.

7.2.6 Method of Dealing with the Reference Parameters

In differential GPS data processing, the reference-related parameters are usually
considered known and are fixed (or not adjusted). This may be realised by the a
priori datum method (for details cf. Sect. 7.8.2 of Xu 2007). Here we just outline
the basic principle.

The equivalent observation equation system (9) can be rewritten as

U = L − (D1 D2
) (X21

X22

)
and P , (32)

where

D = (D1 D2
)

and X2 =
(

X21
X22

)
.

Suppose there are a priori constraints of (cf., e.g. Xu 2007)

W = X22 − X22 and P2 , (33)

where X22 is the “directly observed” parameter sub-vector, P2 is the weight matrix
with respect to the parameter sub-vector X22 and W is a residual vector, which has
the same property as U. Usually, X22 is “observed” independently, so P2 is a diag-
onal matrix. If X22 is a sub-vector of station coordinates, then the constraint of (33)
is called a datum constraint. (This is also the reason why the name a priori datum is
used.) We consider here X22, a vector of reference-related parameters (such as clock
errors and ambiguities of the reference satellite and reference station). Generally,
the a priori weight matrix P2 is given by covariance matrix QW and

P2 = Q−1
W . (34)

In practice, the sub-vector X22 is usually a zero vector; this can be achieved through
careful initialisation by forming observation equation (1).

The least squares normal equation of the a priori datum problem of (32) and
(33) can be formed. Compared with the normal equation of (32), the only difference
between the two normal equations is that the a priori weight matrix P2 has been
added to the normal matrix. This indicates that the a priori datum problem can be
dealt with simply by adding P2 to the normal equation of observation equation (32).
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If some diagonal components of the weight matrix P2 are set to zero, then the
related parameters (in X22) are free parameters (or free datum) of the adjustment
problem (without a priori constraints). Otherwise, parameters with a priori con-
straints are called a priori datum. Large weight indicates strong constraint and small
weight indicates soft constraint. The strongest constraint is to keep the datum fixed.
The reference-related datum (coordinates and clock errors as well as ambiguities)
can be fixed by applying the strongest constraints to the related parameters, i.e.
by adding the strongest constraints to the datum-related diagonal elements of the
normal matrix.

7.2.7 Summary of the Unified Equivalent Algorithm

For any linearised zero-difference GPS observation equation system (1)

V = L − (A B
) (X1

X2

)
and P , (35)

the X1-eliminated equivalent GPS observation equation system is then (9)

U2 = L − (E − J)BX2 and P, (36)

where
J = AM−1

11 ATP , M11 = ATPA, (37)

where E is an identity matrix, L is original observational vector, P is original weight
matrix and U2 is residual vector, which has the same property as V.

Similarly, the X2-eliminated equivalent equation system is (11)

U1 = L − (E − K)AX1 and P , (38)
where

K = BM−1
22 BTP , M22 = BTPB (39)

and U1 is the residual vector (which has the same property as V).
The fixing of the values of sub-vector X22 (of X2) can be realised by adding

the strongest constraints to the X22-related diagonal elements of the normal matrix
formed by (36). Alternatively, we may apply the strongest constraints directly to the
normal equation formed by (35) first. In this way, the reference-related parameters
(clock errors, ambiguities, coordinates, etc.) are fixed. And then we may form the
equivalently eliminated observation equation (36). In this way, the relative and dif-
ferential GPS data processing can be realised by using (36) after selecting X1 to be
eliminated.

The GPS data processing algorithm using (36) is then a selectively eliminated
equivalent method. Selecting X1 in (35) as a zero vector, the algorithm is identical to
the zero-difference method. Selecting X1 in (35) as the satellite clock error vector,
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the vector of all clock errors, the clock error and ambiguity vector and any user-
defined vector, the algorithm is equivalent to the single-difference method, double-
difference method, triple-difference method and user-defined eliminating method,
respectively. The eliminated unknown X1 can be solved separately if desired.

The advantages of this method are (compared with un-differential and differential
methods) the following:

• The un-differential and differential GPS data processing can be dealt with in an
equivalent and unified way. The data processing scenarios can be selected by a
switch and used in a combinative way.

• The eliminated parameters can be also solved separately with the same algorithm.
• The weight matrix remains the original diagonal one.
• The original observations are used; no differencing is required.

Meanwhile, it is obvious that the described algorithm has all the advantages of
all un-differential and differential GPS data processing.

7.3 Equivalence of the Uncombined and Combining Algorithms

Uncombined and combining algorithms are standard GPS data processing methods,
which can often be found in the literature (cf., e.g. Leick 2004; Hofmann-Wellenhof
et al. 2001). Different combinations have different properties and are beneficial for
dealing with the data and solving the problem in different cases (Hugentobler et al.
2001; Kouba and Heroux 2001; Zumberge et al. 1997). The equivalence between
the undifferenced and differencing algorithms was proved and a unified equivalent
data processing method was proposed by Xu (2002a, cf. Sect. 7.2). The question
of whether the uncombined and combining algorithms are also equivalent is an
interesting topic and will be addressed here in detail (cf. Xu et al. 2006a, 2007).

7.3.1 Uncombined GPS Data Processing Algorithms

7.3.1.1 Original GPS Observation Equations

The original GPS code pseudo-range and carrier-phase measurements represented
in Xu (2007) ((6.44) and (6.45) in Sect. 7.6.5) can be simplified as

Rj = Cρ + δion ( j), (40)

λjΦj = Cρ + λjNj − δion ( j ), j = 1, 2 (41)

where

Cρ = ρ − (δtr − δtk)c + δtrop + δtide + δrel + εi, i = c, p (42)



7 Equivalence of GPS Algorithms and Its Inference 243

δion(j) = A1

f 2
j

= Az
1

f 2
j

F = f 2
s B1

f 2
j

= f 2
s Bz

1

f 2
j

F, (43)

where R is the observed pseudo-range, Φ is the observed phase, c denotes the
speed of light and δtr and δtk denote the clock errors of the receiver and satellite,
respectively. The terms δion, δtrop, δtide and δrel denote the ionospheric, tropospheric,
tidal and relativistic effects, respectively. Tidal effects include Earth tide effects and
ocean-loading tide effects. The multipath effect is omitted here. The ρ is the geomet-
ric distance. All terms have units of length (meters). j is the index of the frequency f
and wavelength λ. A1 and A1

z are the ionospheric parameters in the path and zenith
directions; B1 and B1

z are scaled A1 and A1
z with fs2 for numerical reason. Index

c denotes code. Cρ is called geometry and Nj is the ambiguity. For simplicity, the
residuals of the codes (and phases) are denoted with the same symbol εc (and εp)
and have the same standard deviations of σ c (and σ p). Equations (40) and (41) can
be written in a matrix form with weight matrix P as (Blewitt 1998)

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 f 2
s /f 2

1 1

0 0 f 2
s /f 2

2 1

1 0 −f 2
s /f 2

1 1

0 1 −f 2
s /f 2

2 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ , P =

⎛
⎜⎜⎝

σ 2
c 0 0 0
0 σ 2

c 0 0
0 0 σ 2

p 0
0 0 0 σ 2

p

⎞
⎟⎟⎠

−1

. (44)

7.3.1.2 Solutions of Uncombined Observation Equations

Equation (44) includes the observations of one satellite viewed by one receiver at
one epoch. Alternatively, (44) can be considered as a transformation between the
observations and unknowns and the transformation is a linear and invertible one.
Denoting

a = f 2
1

f 2
1 − f 2

2

, b = −f 2
2

f 2
1 − f 2

2

, g = 1

f 2
1

− 1

f 2
2

, q = gf 2
s , (45)

one has relations of

1 − a = b,
1

f 2
1 g

= b,
1

f 2
2 g

= −a (46)

and ⎛
⎜⎜⎜⎜⎝

0 0 f 2
s /f 2

1 1

0 0 f 2
s /f 2

2 1

1 0 −f 2
s /f 2

1 1

0 1 −f 2
s /f 2

2 1

⎞
⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎝

1 − 2a −2b 1 0
−2a 2a − 1 0 1
1/q −1/q 0 0
a b 0 0

⎞
⎟⎟⎠ = T , (47)

where a and b are the coefficients of the ionosphere-free combinations of the observ-
ables of L1 and L2. The solution of (44) has a form (multiplying (44) by the
transformation matrix T) of
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⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 − 2a −2b 1 0
−2a 2a − 1 0 1
1/q −1/q 0 0
a b 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ . (48)

The related covariance matrix of the above solution vector is then

Q = cov

⎛
⎜⎜⎝

λ1N1

λ2N2

B1

Cρ

⎞
⎟⎟⎠ = T

⎛
⎜⎜⎝

σ 2
c 0 0 0
0 σ 2

c 0 0
0 0 σ 2

p 0
0 0 0 σ 2

p

⎞
⎟⎟⎠ TT

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − 2a)2 + 4b2 + σ 2
p

σ 2
c

4a2 − 4ab − 2a + 2b
1 − 2a + 2b

q
a − 2a2 − 2b2

4a2 − 4ab − 2a + 2b 8a2 − 4a + 1 + σ 2
p

σ 2
c

1 − 4a

q
−2a2 + 2ab − b

1 − 2a + 2b

q

1 − 4a

q

2

q2

a − b

q

a − 2a2 − 2b2 −2a2 + 2ab − b
a − b

q
a2 + b2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

σ 2
c .

(49)
Equation (49) can be simplified by using the relation of 1–a=b and neglecting

the terms of (σ p/σ c)2 (because (σ p/σ c) is less than 0.01) as well as letting fs=f1
(so that q=1/b). Taking the relationships of ratios of the frequencies into account
(f1=154f0 and f2=120f0, f0 is the fundamental frequency), one has approximately

cov

⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

26.2971 33.4800 11.1028 −15.1943
33.4800 42.6629 14.1943 −19.2857
11.1028 14.1943 4.7786 −6.3243

−15.1943 −19.2857 −6.3243 8.8700

⎞
⎟⎟⎠ σ 2

c . (50)

The precisions of the solutions will be further discussed in Sect. 7.3.3. The
parameterisation of the GPS observation models is an important issue and can be
found in Sect. 7.4 or Blewitt (1998) and Xu (2004) if interested.

7.3.2 Combining Algorithms of GPS Data Processing

The ionosphere-free combinations, geometry-free combinations, ionosphere-free
and geometry-free combinations, diagonal combinations and wide-lane and narrow-
lane combinations can be formed by multiplying the following transformation
matrices to (44). The transformations and the transformed (i.e. combined) equations
are listed below.

Ionosphere-free transformation and combinations are
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T1 =

⎛
⎜⎜⎝

1 −1 0 0
a b 0 0
0 0 a b

1/2 0 1/2 0

⎞
⎟⎟⎠ , and

T1

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 q 0
0 0 0 1
a b 0 1

1/2 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ . (51)

The ionosphere parameter in (51) is free in the last three equations, which are
traditionally called ionosphere-free combinations.

Geometry-free transformation and combinations are

T2 =

⎛
⎜⎜⎝

a b 0 0
1 −1 0 0
0 0 1 −1

−1 0 1 0

⎞
⎟⎟⎠ , and

T2

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 1
0 0 q 0
1 −1 −q 0
1 0 −2f 2

s /f 2
1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ . (52)

The geometric component in (52) is free in the last three equations, which are
traditionally called geometry-free combinations.

Ionosphere-free and geometry-free transformation and combinations are

T3 =

⎛
⎜⎜⎝

1 −1 0 0
a b 0 0

−a −b a b
1/2 − a −b 1/2 0

⎞
⎟⎟⎠ , and T3

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 q 0
0 0 0 1
a b 0 0

1/2 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ .

(53)

The ionosphere and geometry are both free in the last two equations, which are
called ionosphere-geometry-free combinations.

Diagonal transformation and combinations are

T4 =

⎛
⎜⎜⎝

1 −1 0 0
a b 0 0

−2ab b(2a − 1) 0 b
1/2 − a −b 1/2 0

⎞
⎟⎟⎠ , and T4

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 q 0
0 0 0 1
0 b 0 0

1/2 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ .

(54)

In the above equation, the ionosphere and geometry as well as the ambiguities are
diagonal to each other. Such combinations are called diagonal ones.
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Wide-lane and narrow-lane transformation and combinations are

T5 =

⎛
⎜⎜⎝

0 0 −1/bλ2 2/λ1
0 0 1/bλ2 2/λ1

−1/2 0 0 0
0 1 0 0

⎞
⎟⎟⎠T4, and T5

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

N1 − N2
N1 + N2

B1
Cρ

⎞
⎟⎟⎠ .

7.3.2.1 General Combinations

For arbitrary combinations, as soon as the transformation matrix is an invertible
one, the transformed equations are equivalent to the original ones based on algebra
theory. Both the solution vector and the variance–covariance matrix are identical.
That is, no matter what kinds of combinations are used, neither different solutions
nor different precisions of the solutions will be obtained. Therefore, all the above
combinations have the same results of (48). The different combinations lead to an
easier dealing of the related special problems.

7.3.3 Secondary GPS Data Processing Algorithms

7.3.3.1 In the Case of More Satellites in View

Up to now, the discussions have been limited for the observations of one satellite
viewed by one receiver at one epoch. The original observation equation is given in
(44). The solution vector and its covariance matrix are given in (48) and (49), respec-
tively. The elements of the covariance matrix depend on the coefficients of (44), and
the coefficients of the observation equation depend on the way of parameterisation.
For example, if instead of B1, B1

z is used, then (44) turns out to be

⎛
⎜⎜⎝

R1(k)
R2(k)

λ1Φ1(k)
λ2Φ2(k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 Fkf 2
s /f 2

1 1

0 0 Fkf 2
s /f 2

2 1

1 0 −Fkf 2
s /f 2

1 1

0 1 −Fkf 2
s /f 2

2 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

λ1N1(k)
λ2N2(k)

Bz
1

Cρ(k)

⎞
⎟⎟⎠ , (55)

where k is the index of the satellite. Ionospheric mapping function Fk is dependent
on the zenith distance of the satellite k. The solution vector of (55) is then similar to
that of (48):

⎛
⎜⎜⎝

λ1N1(k)
λ2N2(k)

Bz
1

Cρ(k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 − 2a −2b 1 0
−2a 2a − 1 0 1
1/qk −1/qk 0 0

a b 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

R1(k)
R2(k)

λ1Φ1(k)
λ2Φ2(k)

⎞
⎟⎟⎠ , Q(k), (56)



7 Equivalence of GPS Algorithms and Its Inference 247

where qk=qFk and Q(k) is the covariance matrix, which can be similarly derived
and given by adding the index k to q in Q of (49). The terms on the right-hand side
can be considered secondary “observations” of the unknowns on the left-hand side.
If K satellites are viewed, one has the observation equations of one receiver:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1N1(1)
λ2N2(1)

Bz
1

Cρ(1)
...

λ1N1(K)
λ2N2(K)

Bz
1

Cρ(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2a −2b 1 0 · · · 0 0 0 0
−2a 2a − 1 0 1 · · · 0 0 0 0
1/q1 −1/q1 0 0 · · · 0 0 0 0

a b 0 0 · · · 0 0 0 0
...

...
...

... . . .· · ·
...

...
... :

0 0 0 0 · · · 1 − 2a −2b 1 0
0 0 0 0 · · · −2a 2a − 1 0 1
0 0 0 0 · · · 1/qK −1/qK 0 0
0 0 0 0 · · · a b 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1(1)
R2(1)

λ1Φ1(1)
λ2Φ2(1)

:
R1(K)
R2(K)

λ1Φ1(K)
λ2Φ2(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(57)
and variance matrix

QK =
⎛
⎜⎝

Q(1) · · · 0
... · · · ...
0 · · · Q(K)

⎞
⎟⎠ . (58)

Multiplying a transformation matrix

T(K) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1/K 0 · · · 0 0 1/K 0
0 0 0 1 · · · 0 0 0 0
...

...
...

... . . .· · ·
...

...
...

...

0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(59)

to (57), one has the solutions of GPS observation equations of one station:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1N1(1)
λ2N2(1)

Bz
1

Cρ(1)
...

λ1N1(K)
λ2N2(K)
Cρ(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= T(K)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2a −2b 1 0 · · · 0 0 0 0
−2a 2a − 1 0 1 · · · 0 0 0 0
1/q1 −1/q1 0 0 · · · 0 0 0 0

a b 0 0 · · · 0 0 0 0
...

...
...

... . . .· · ·
...

... : :
0 0 0 0 · · · 1 − 2a −2b 1 0
0 0 0 0 · · · −2a 2a − 1 0 1
0 0 0 0 · · · 1/qK −1/qK 0 0
0 0 0 0 · · · a b 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1(1)
R2(1)

λ1Φ1(1)
λ2Φ2(1)

:
R1(K)
R2(K)

λ1Φ1(K)
λ2�2(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(60)
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and the related

Q = T(K)QK(T(K))T, (61)

where mapping function is used to combine the K ionosphere parameters into one.
Similar discussions can be made for the cases of using more receivers. The original
observation vector and the so-called secondary observation vector are

⎛
⎜⎜⎝

R1(k)
R2(k)

λ1Φ1(k)
λ2Φ2(k)

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

λ1N1(k)
λ2N2(k)

B1(k)
Cρ(k)

⎞
⎟⎟⎠ . (62)

Both vectors are equivalent as proved in Sect. 7.3.2 and they can be transformed
uniquely from one to the other. Any further data processing can be considered
processing based on the secondary “observations”. The secondary “observations”
have the equivalence property whether they are uncombined or combining ones.
Therefore the equivalence property is valid for further data processing based on the
secondary “observations”.

7.3.3.2 GPS Data Processing Using Secondary “Observations”

A by-product of the above equivalence discussions is that the GPS data processing
can be performed directly by using the so-called secondary observations. Besides
the two ambiguity parameters (scaled with the wavelengths), the other two sec-
ondary observations are the electronic density in the observing path (scaled by
square of f1) and the geometry. The geometry includes the whole observation
model except the ionosphere and ambiguity terms. For a time series of the sec-
ondary “observations”, the electron density (or, for simplicity, “ionosphere”) and
the “geometry” are real-time observations, whereas the “ambiguities” are constants
in case no cycle-slip occurs (Langley 1998a, b). Sequential adjustment or filter-
ing methods can be used to deal with the observation time series. It is notable that
the secondary “observations” are correlated with each other (see the covariance
matrix (49)). However, the “ambiguities” are direct observations of the ambigu-
ity parameters, and the “ionosphere” and “geometry” are modelled by (42) and
(43), respectively. The “ambiguity” observables are ionosphere-geometry free. The
“ionosphere” observable is geometry-free and ambiguity-free. The “geometry”
observable is ionosphere-free. It is notable that some algorithms may be more effec-
tive; however, the results and the precisions of the solutions are equivalent no matter
which algorithms are used. It should be emphasised that all the above discussions
are based on the observation model (44). The problem concerning the parameterisa-
tion of the GPS observation model will not affect the conclusions of the discussions
and will be further discussed in Sect. 7.4.
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7.3.3.3 Precision Analysis

If the sequential time series of the original observations is considered time-
independent as they traditionally have been, then the secondary “observations” and
their precisions are also independent time series. From (50), the standard devia-
tions of the L1 and L2 ambiguities are approximately 5.1281σ c and 6.5317σ c. The
standard deviations of ionosphere and geometry “observations” are about 2.1860σ c
and 2.9783σ c, respectively. That is, the precisions of the “observed” ambiguities
are worse than those of the others at one epoch. If the standard deviation of the P
code is about 1 dm (phase smoothed), then the precisions of the ambiguities deter-
mined by one epoch are worse than 0.5 m. However, an average filter of m epoch
data will raise the precisions by a factor of sqrt(m) (square root of m). After 100
or 10,000 epochs, the ambiguities can be determined with precisions of about 5 cm
or 5 mm. “Ionosphere” data are observed with better precision. However, due to
the high dynamics of the electron movements, ionosphere effects may not be easily
smoothed to raise the precision. The “geometry” model is the most complicated one
compared with the others, and discussions can be found in numerous publications
for static, kinematic and dynamic applications (cf., e.g. ION proceedings, Chap. 10
of Xu 2007).

7.3.4 Summary of the Combining Algorithms

The equivalence properties between uncombined and combining algorithms are
proved theoretically by algebraic linear transformations. The solution vector and
the related covariance matrix are identical, no matter which algorithms are used.
Different combinations can lead to a more effective and easier dealing with the data.
The so-called ionosphere-geometry-free combination and diagonal combination are
derived, which have better properties than those of the traditional combinations.
A data processing algorithm using the uniquely transformed secondary “observa-
tions” is outlined and used to prove the equivalence. Because of the unique property
of the solutions of different combinations, any direct combinations of the solutions
must be equivalent to each other. None of the combinations will lead to better solu-
tions or better precisions of the solutions than those of the others. From this aspect,
the traditional wide-lane ambiguity fixing technique may lead to a more effective
search of ambiguity, but it will not lead to a better solution and precision of the
ambiguity.

7.4 Parameterisation of the GPS Observation Model

The equivalences of combining and differencing algorithms are discussed in
Sects. 7.3 and 7.2, respectively. The equivalence of the combining methods is
an exact one, whereas the equivalence of the differencing algorithms is slightly
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different. The parameters are implicitly expressed in the discussions; therefore, the
parameterisation problems of the equivalent methods have not been discussed in
detail. At that time, this topic was considered one of the remaining GPS theoretical
problems (Xu 2003b, pp. 279–280; Wells et al. 1987, p. 34), and it will be discussed
in the next section.

Three pieces of evidence of the parameterisation problem of the undifferenced
GPS observation model are given first. Then the theoretical analysis and numerical
derivation are made to show how to parameterise the bias effects of the undiffer-
enced GPS observation model independently. A geometry-free illustration and a
correlation analysis in the case of a phase–code combination are made. At the end,
conclusions and comments are given.

7.4.1 Evidence of the Parameterisation Problem
of the Undifferenced Observation Model

7.4.1.1 Evidence from Undifferenced and Differencing Algorithms

Suppose that the undifferenced GPS observation equation and the related LS normal
equation are

V = L − (A1 A2
) (X1

X2

)
, P (63)

(
M11 M12
M21 M22

)(
X1
X2

)
=
(

W1
W2

)
, (64)

where all symbols have the same meanings as that of (1) and (5). Equation (64) can
be diagonalised as (cf. Sect. 7.6.1 of Xu 2007)

(
M1 0
0 M2

)(
X1
X2

)
=
(

B1
B2

)
. (65)

The related equivalent observation equation of the diagonal normal equation (65)
can be written as

(
U1
U2

)
=
(

L
L

)
−
(

D1 0
0 D2

)(
X1
X2

)
,

(
P 0
0 P

)
, (66)

where all symbols have the same meanings as that of (7.142) and (7.140) of Xu
(2007). If X1 is the vector containing all clock errors, then the second equation of
(65) is the equivalent double differencing GPS normal equation. It is well known
that in a double differencing algorithm, the ambiguity sub-vector contained in X2
must be the double differencing ambiguities; otherwise, the problem will be gener-
ally singular. It is notable that X2 is identical with that of the original undifferenced
observation equation (63). Therefore, the ambiguity sub-vector contained in X2 (in
(63)) must be a set of double differencing ambiguities (or an equivalent set of
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ambiguities). This is the first piece of evidence (or indication) of the singularity of
the undifferenced GPS observation model in which the undifferenced ambiguities
are used.

7.4.1.2 Evidence from Uncombined and Combining Algorithms

Suppose the original GPS observation equation of one viewed satellite is (cf. (44))

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 f 2
s /f 2

1 1

0 0 f 2
s /f 2

2 1

1 0 −f 2
s /f 2

1 1

0 1 −f 2
s /f 2

2 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠, P; (67)

then the uncombined or combining algorithms have the same solution of (cf. (48))

⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 − 2a −2b 1 0
−2a 2a − 1 0 1
1/q −1/q 0 0
a b 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ , (68)

where all symbols have the same meanings as that of (44) and (48). Then one notices
that the ionosphere (B1) and geometry (Cρ) are functions of the codes (R1 and R2)
and are independent from phases (�1 and �2) in (68). In other words, the phase
observables do not have any contribution to the ionosphere and geometry. And this
is not possible. Such an illogical conclusion is caused by the parameterisation of the
ambiguities given in the observation model of (67). If one takes the first evidence
discussed above into account and defines that, for each station, one of the satellites in
view must be selected as reference and the related ambiguity has to be merged into
the clock parameter, then the phases do have contributions to ionosphere and geom-
etry. One notices again that the parameterisation is a very important topic and has
to be discussed more specifically. An improper parameterisation of the observation
model will lead to incorrect conclusions through the derivation from the model.

7.4.1.3 Evidence from Practice

Without using a priori information, a straightforward programming of the GPS data
processing using an undifferenced algorithm leads to no results (i.e. the normal
equation is singular, cf. Xu 2004). Therefore an exact parameterisation description
is necessary and will be discussed in the next section.

7.4.2 A Method of Uncorrelated Bias Parameterisation

We restrict ourselves here to discussion of the parameterisation problem of the bias
parameters (or constant effects, i.e. the clock errors and ambiguities) only.
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Recalling the discussions of the equivalence of undifferenced and differencing
algorithms in Sect. 7.2, the equivalence property is valid under three conditions:
observation vector L used in (63) is identical; parameterisation of X2 is identical
and X1 is able to be eliminated.

The first condition is necessary for the exactness of the equivalence because of
the fact that, through forming differences, the unpaired data will be cancelled out in
the differencing.

The second condition states that the parameterisation of the undifferenced and
differencing model should be the same. This may be interpreted as the following:
the rank of the undifferenced and differencing equations should be the same if the
differencing is formed by a full rank linear transformation. If only the differencing
equations are taken into account, then the rank of the undifferenced model should
equal the rank of the differencing model plus the number of eliminated independent
parameters.

It is well known that one of the clock error parameters is linearly correlated
with the others. This may be seen in the proof of the equivalence property of the
double differences, where the two receiver clock errors of the baseline may not be
separated from each other and have to be transformed to one parameter and then
eliminated (cf. Sect. 2 or Xu 2002a). This indicates that, if in the undifferenced
model all clock errors are modelled, the problem will be singular (i.e. rank defect).
Indeed, Wells et al. (1987) noticed that the equivalence is valid if measures are
taken to avoid rank defect in the bias parameterisation. Which clock error has to be
kept fixed is arbitrary. Because of the different qualities of the satellite and receiver
clocks, a good choice is to fix a satellite clock error (the clock is called a reference
clock). In practice, the clock error is an unknown; therefore there is no way to keep
that fixed except to fix it to zero. In such a case, the meaning of the other bias
parameters will be changed and may represent the relative errors between the other
biases.

The third condition is important to ensure a full-ranked parameterisation of the
parameter vector X1 which is going to be eliminated.

The undifferenced equation (63) is solvable if the parameters X1 and X2 are not
over-parameterised. In the case of single differences, X1 includes satellite clock
errors and is able to be eliminated. Therefore, to guarantee that the undifferenced
model (63) is not singular, X2 in (63) must not be over-parameterised. In the case of
double differences, X1 includes all clock errors except the reference one. Here we
notice that the second observation equation of (63) is equivalent to the double differ-
encing observation equation and the second equation of (64) is the related normal
equation. In a traditional double differencing observation equation, the ambiguity
parameters are represented by double differencing ambiguities. Recall that, for the
equivalence property, the number (or rank) of ambiguity parameters in X2 that are
not linearly correlated must be equal to the number of the double differencing ambi-
guities. In the case of triple differences, X1 includes all clock errors and ambiguities.
The fact that X1 should be able to be eliminated leads again to the conclusion that
the ambiguities should be linearly independent.
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The two equivalent linear equations should have the same rank. Therefore, if
all clock errors except the reference one are modelled, the number of independent
undifferenced ambiguity parameters should be equal to the number of double
differencing ambiguities. According to the definition of the double differencing
ambiguity, one has for one baseline

Nk1,k2
i1,i2 = Nk2

i2 − Nk2
i1 − Nk1

i2 + Nk1
i1 ,

Nk1,k3
i1,i2 = Nk3

i2 − Nk3
i1 − Nk1

i2 + Nk1
i1 ,

Nk1,k4
i1,i2 = Nk4

i2 − Nk4
i1 − Nk1

i2 + Nk1
i1 ,

...

Nk1,kn
i1,i2 = Nkn

i2 − Nkn
i1 − Nk1

i2 + Nk1
i1 ,

(69)

where i1 and i2 are station indices, kj is the jth satellite’s identification, n is the com-
mon observed satellite number and is a function of the baseline and N is ambiguity.
Then there are n–1 double differencing ambiguities and 2n undifferenced ambi-
guities. Taking the connection of the baselines into account, there are n–1 double
differencing ambiguities and n new undifferenced ambiguities for any further base-
line. If i1 is defined as the reference station of the whole network and k1 as the
reference satellite of station i2, then undifferenced ambiguities of the reference sta-
tion cannot be separated from the others (i.e. they are linearly correlated with the
others). The undifferenced ambiguity of the reference satellite of station i2 cannot
be separated from the others (i.e. it is linearly correlated with the others). That is,
the ambiguities of the reference station cannot be determined, and the ambiguities of
the reference satellites of non-reference stations cannot be determined. Either they
should not be modelled or they should be kept fixed. A straightforward parameteri-
sation of all undifferenced ambiguities will lead to rank defect and the problem will
be singular and not able to be solved.

Therefore, using the equivalence properties of the equivalent equation of GPS
data processing, we come to the conclusion that the ambiguities of the reference sta-
tion and ambiguities of the reference satellite of every station are linearly correlated
with the other ambiguities and clock error parameters. However, a general method
of parameterisation should be independent of the selection of the references (station
and satellite). Therefore, we use a two-baseline network to further our analysis. The
original observation equation can be written as follows:

Lk1
i1 = · · · δi1 + δk1 + Nk1

i1 + · · · ,

Lk2
i1 = · · · δi1 + δk2 + Nk2

i1 + · · · ,

Lk3
i1 = · · · δi1 + δk3 + Nk3

i1 + · · · ,

Lk4
i1 = · · · δi1 + δk4 + Nk4

i1 + · · · , (70)

Lk5
i1 = · · · δi1 + δk5 + Nk5

i1 + · · · ,

Lk6
i1 = · · · δi1 + δk6 + Nk6

i1 + · · · ,
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Lk1
i2 = · · · δi2 + δk1 + Nk1

i2 + · · · ,

Lk2
i2 = · · · δi2 + δk2 + Nk2

i2 + · · · ,

Lk3
i2 = · · · δi2 + δk3 + Nk3

i2 + · · · ,

Lk4
i2 = · · · δi2 + δk4 + Nk4

i2 + · · · , (71)

Lk5
i2 = · · · δi2 + δk5 + Nk5

i2 + · · · ,

Lk7
i2 = · · · δi2 + δk7 + Nk7

i2 + · · · ,

Lk2
i3 = · · · δi3 + δk2 + Nk2

i3 + · · · ,

Lk3
i3 = · · · δi3 + δk3 + Nk3

i3 + · · · ,

Lk4
i3 = · · · δi3 + δk4 + Nk4

i3 + · · · ,

Lk5
i3 = · · · δi3 + δk5 + Nk5

i3 + · · · , (72)

Lk6
i3 = · · · δi3 + δk6 + Nk6

i3 + · · · ,

Lk7
i3 = · · · δi3 + δk7 + Nk7

i3 + · · · ,

where only the bias terms are listed and L and δ represent observable and clock error,
respectively. Observation equations of stations i1, i2 and i3 are (70), (71) and (72).
Define that the baselines 1, 2 are formed by stations i1 and i2, as well as by i2 and i3,
respectively. Select i1 as the reference station and then keep the related ambiguities
fixed (set to zero for simplification). For convenience of later discussion, select δi1
as the reference clock (set to zero, too) and select k1, k2 as reference satellites of the
stations i2, i3 (set the related ambiguities to zero), respectively. Then (70), (71) and
(72) become

Lk1
i1 = · · · δk1 + · · · ,

Lk2
i1 = · · · δk2 + · · · ,

Lk3
i1 = · · · δk3 + · · · ,

Lk4
i1 = · · · δk4 + · · · , (73)

Lk5
i1 = · · · δk5 + · · · ,

Lk6
i1 = · · · δk6 + · · · ,

Lk1
i2 = · · · δi2 + δk1 + · · · ,

Lk2
i2 = · · · δi2 + δk2 + Nk2

i2 + · · · ,

Lk3
i2 = · · · δi2 + δk3 + Nk3

i2 + · · · ,
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Lk4
i2 = · · · δi2 + δk4 + Nk4

i2 + · · · , (74)

Lk5
i2 = · · · δi2 + δk5 + Nk5

i2 + · · · ,

Lk7
i2 = · · · δi2 + δk7 + Nk7

i2 + · · · ,

Lk2
i3 = · · · δi3 + δk2 + · · · ,

Lk3
i3 = · · · δi3 + δk3 + Nk3

i3 + · · · ,

Lk4
i3 = · · · δi3 + δk4 + Nk4

i3 + · · · ,

Lk5
i3 = · · · δi3 + δk5 + Nk5

i3 + · · · , (75)

Lk6
i3 = · · · δi3 + δk6 + Nk6

i3 + · · · ,

Lk7
i3 = · · · δi3 + δk7 + Nk7

i3 + · · · .

Differences can be formed through linear operations. The total operation is a full
rank linear transformation, which does not change the least squares solution of the
original equations. Single differences can be formed by the following ((73) remains
unchanged and therefore will not be listed again):

Lk1
i2 − Lk1

i1 = · · · δi2 + · · · ,

Lk2
i2 − Lk2

i1 = · · · δi2 + Nk2
i2 + · · · ,

Lk3
i2 − Lk3

i1 = · · · δi2 + Nk3
i2 + · · · ,

Lk4
i2 − Lk4

i1 = · · · δi2 + Nk4
i2 + · · · , (76)

Lk5
i2 − Lk5

i1 = · · · δi2 + Nk5
i2 + · · · ,

Lk7
i2 = · · · δi2 + δk7 + Nk7

i2 + · · · ,

Lk2
i3 − Lk2

i2 = · · · δi3 − δi2 − Nk2
i2 + · · · ,

Lk3
i3 − Lk3

i2 = · · · δi3 − δi2 + Nk3
i3 − Nk3

i2 + · · · ,

Lk4
i3 − Lk4

i2 = · · · δi3 − δi2 + Nk4
i3 − Nk4

i2 + · · · ,

Lk5
i3 − Lk5

i2 = · · · δi3 − δi2 + Nk5
i3 − Nk5

i2 + · · · , (77)

Lk6
i3 = · · · δi3 + δk6 + Nk6

i3 + · · · ,

Lk7
i3 − Lk7

i2 = · · · δi3 − δi2 + Nk7
i3 − Nk7

i2 + · · · ,

where two observations are unpaired due to the baseline definitions. Double
differences can be formed by
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Lk1
i2 − Lk1

i1 = · · · δi2 + · · · ,

Lk2
i2 − Lk2

i1 − Lk1
i2 + Lk1

i1 = · · · Nk2
i2 + · · · ,

Lk3
i2 − Lk3

i1 − Lk1
i2 + Lk1

i1 = · · · Nk3
i2 + · · · ,

Lk4
i2 − Lk4

i1 − Lk1
i2 + Lk1

i1 = · · · Nk4
i2 + · · · , (78)

Lk5
i2 − Lk5

i1 − Lk1
i2 + Lk1

i1 = · · · Nk5
i2 + · · · ,

Lk7
i2 − Lk1

i2 + Lk1
i1 = · · · δk7 + Nk7

i2 + · · · ,

Lk2
i3 − Lk2

i2 = · · · δi3 − δi2 − Nk2
i2 + · · · ,

Lk3
i3 − Lk3

i2 − Lk2
i3 + Lk2

i2 = · · · Nk3
i3 − Nk3

i2 + Nk2
i2 + · · · ,

Lk4
i3 − Lk4

i2 − Lk2
i3 + Lk2

i2 = · · · Nk4
i3 − Nk4

i2 + Nk2
i2 + · · · ,

Lk5
i3 − Lk5

i2 − Lk2
i3 + Lk2

i2 = · · · Nk5
i3 − Nk5

i2 + Nk2
i2 + · · · , (79)

Lk6
i3 = · · · δi3 + δk6 + Nk6

i3 + · · · ,

Lk7
i3 − Lk7

i2 − Lk2
i3 + Lk2

i2 = · · · Nk7
i3 − Nk7

i2 + Nk2
i2 + · · · .

Using (78) and (73), (79) can be further modified to

Lk2
i3 − Lk2

i2 + (Lk1
i2 − Lk1

i1 ) + (Lk2
i2 − Lk2

i1 − Lk1
i2 + Lk1

i1 ) = · · · δi3 + · · · ,

Lk3
i3 − Lk3

i2 − Lk2
i3 + Lk2

i2 + (Lk3
i2 − Lk3

i1 − Lk1
i2 + Lk1

i1 ) − (Lk2
i2 − Lk2

i1 − Lk1
i2 + Lk1

i1 ) = · · · Nk3
i3 + · · · ,

Lk4
i3 − Lk4

i2 − Lk2
i3 + Lk2

i2 + (Lk4
i2 − Lk4

i1 − Lk1
i2 + Lk1

i1 ) − (Lk2
i2 − Lk2

i1 − Lk1
i2 + Lk1

i1 ) = · · · Nk4
i3 + · · · ,

Lk5
i3 − Lk5

i2 − Lk2
i3 + Lk2

i2 + (Lk5
i2 − Lk5

i1 − Lk1
i2 + Lk1

i1 ) − (Lk2
i2 − Lk2

i1 − Lk1
i2 + Lk1

i1 ) = · · · Nk5
i3 + · · · ,

Lk6
i3 − Lk6

i1 = · · · δi3 + Nk6
i3 + · · · , (80)

Lk7
i3 −Lk7

i2 −Lk2
i3 +Lk2

i2 +(Lk7
i2 −Lk1

i2 +Lk1
i1 )−(Lk2

i2 −Lk2
i1 −Lk1

i2 +Lk1
i1 ) = · · ·−δk7+Nk7

i3 +· · ·

or

Lk2
i3 − Lk2

i1 = · · · δi3 + · · · ,

Lk3
i3 − Lk3

i1 − Lk2
i3 + Lk2

i1 = · · · Nk3
i3 + · · · ,

Lk4
i3 − Lk4

i1 − Lk2
i3 + Lk2

i1 = · · · Nk4
i3 + · · · , (81)

Lk5
i3 − Lk5

i1 − Lk2
i3 + Lk2

i1 = · · · Nk5
i3 + · · · ,

Lk6
i3 − Lk6

i1 − Lk2
i3 + Lk2

i1 = · · · Nk6
i3 + · · · ,

Lk7
i3 − Lk2

i3 + Lk2
i1 = · · · − δk7 + Nk7

i3 + · · · .

From the last equations of (78) and (81), it is obvious that the clock error and
the ambiguities of satellite k7, which is not observed by the reference station, are
linearly correlated. Keeping one of the ambiguities of the satellite k7 at stations i2 or
i3 is necessary and equivalent. Therefore, for any satellite that is not observed by the
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reference station, one of the related ambiguities should be kept fixed (station selec-
tion is arbitrary). In other words, one of the ambiguities of all satellites has to be kept
fixed. In this way, every transformed equation includes only one bias parameter and
the bias parameters are linearly independent (regular). Furthermore, the differenc-
ing cannot be formed for the unpaired observations of every baseline. However, in
the case of an undifferenced adjustment, the situation would be different. We notice
that the equation for k6 in (80) can be transformed to a double differencing one in
(81). If more data are used in the undifferenced algorithm than in the differencing
method, the number of undifferenced ambiguity parameters will be larger than that
of the double differencing ones. Therefore, we have to drive the so-called data con-
dition to guarantee that the data are able to be differenced or, equivalently, we have
to extend the way of double differencing forming so that the differencing will be not
limited by special baseline design. Both will be discussed in Sect. 7.5.2.

The meanings of the parameters are changed by independent parameterisation,
and they can be read from (73), (74) and (75). The clock errors of the satellites
observed by the reference station include the errors of receiver clock and ambi-
guities. The receiver clock errors include the error of ambiguity of the reference
satellite of the same station. Due to the inseparable property of the bias parameters,
the clock error parameters no longer represent pure clock errors, and the ambiguities
no longer represent pure physical ambiguity. Theoretically speaking, the synchroni-
sation applications of GPS may not be realised using the carrier-phase observations.
Furthermore, (81) shows that the undifferenced ambiguities of i3 have the meaning
of double differencing ambiguities of the stations i3 and i1 in this case.

Up to now, we have discussed the correlation problem of the bias parameters
and found a method of how to parameterise the GPS observations regularly to avoid
the problem of rank defect. Of course, many other ways to parameterise the GPS
observation model can be similarly derived. However, the parameter sets should be
equivalent to each other and can be transformed from one set to another uniquely as
long as the same data are used.

7.4.3 Geometry-Free Illustration

The reason why the reference parameters have to be fixed lies in the nature of range
measurements, which cannot provide information of the datum origin (cf., e.g. Wells
et al. 1987, p. 9). Suppose d is the direct measurement of clock errors of satellite k
and receiver i, i.e. dk

i = δi + δk, no matter how many observations were made and
how the indices were changed, one parameter (i.e. reference clock) is inseparable
from the others and has to be fixed. Suppose h is the direct measurement of ambi-
guity N and clock errors of satellite k and receiver i, i.e. hk

i = δi + δk + Nk
i , the

number of over-parameterised biases is exactly the number of total observed satel-
lites and used receivers. This ensures again that our parameterisation method to fix
the reference clock and one ambiguity of every satellite as well as one ambiguity
of the reference satellite of every non-reference station is reasonable. The case of
combination of d and h (as code and phase observations) will be discussed in the
next section.
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7.4.4 Correlation Analysis in the Case of Phase–Code
Combinations

A phase–code combined observation equation can be written by (cf. Sect. 7.5.2 of
Xu 2007)

(
V1
V2

)
=
(

L1
L2

)
−
(

A11 A12
A11 0

) (
X1
X2

)
and P =

(
wpP0 0

0 wcP0

)
, (82)

where L1 and L2 are the observational vectors of phase (scaled in length) and code,
respectively; V1 and V2 are related residual vectors; X2 and X1 are unknown vectors
of ambiguity and others; A12 and A11 are related coefficient matrices; P0 is a sym-
metric and definite weight matrix; and wp and wc are weight factors of the phase
and code observations.

The phase, code and phase–code normal equations can be formed respectively
by

(
N11 N12
N21 N22

) (
X1
X2

)
=
(

R1
R2

)
,

N11X1 = Rc and

(
M11 M12
M21 M22

) (
X1
X2

)
=
(

B1
B2

)
, (83)

where
M11 = (wp + wc)AT

11P0A11 = (wp + wc)N11,

M12 = MT
21 = wpAT

11P0A12 = wpN12,

M22 = wpAT
12P0A12 = wpN22, (84)

B1 = AT
11P0(wpL1 + wcL2) = wpR1 + wcRc and

B2 = wpAT
12P0L1 = wpR2.

The covariance matrix Q is denoted as

Q =
(

M11 M12
M21 M22

)−1

=
(

Q11 Q12
Q21 Q22

)
, (85)

where (Gotthardt 1978)

Q11 = (M11 − M12M−1
22 M21)−1,

Q22 = (M22 − M21M−1
11 M12)−1, (86)

Q12 = M−1
11 (−M12Q22) and
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Q21 = M−1
22 (−M21Q11),

i.e. Q11 = ((wp + wc)N11 − wpN12N−1
22 N21)−1,

Q22 = (wpN22 − w2
p(wp + wc)−1N21N−1

11 N12)−1 and (87)

Q21 = −N−1
22 N21((wp + wc)N11 − wpN12N−1

22 N21)−1.

Thus the correlation coefficient Cij is a function of wp and wc, i.e.

Cij = f (wp, wc), (88)

where indices i and j are the indices of unknown parameters in X1 and X2. For wc =
0 (only phase is used, X1 and X2 are partly linear correlated) and wc = wp (X1 and
X2 are uncorrelated), there exist indices ij, so that

Cij = f (wp, wc = 0) = 1 and Cij = f (wp, wc = wp) = 0. (89)

In other words, there exist indices i and j, the related unknowns are correlated if
wc = 0 and uncorrelated if wc = wp. In the case of a phase–code combination, wc
= 0.01wp can be selected, and one has

Cij = f (wp, wc = 0.01wp), (90)

whose value should be very close to 1 (strong correlated) in the discussed case.
Equations (88), (89) and (90) indicate that, for the correlated unknown pair ij, the
correlation situation may not change much by combining the code to the phase
because of the lower weight of the code related to the phase. A numerical test
confirmed this conclusion (Xu 2004).

7.4.5 Conclusions and Comments on Parameterisation

In this section, the singularity problem of the undifferenced GPS data processing is
pointed out and an independent parameterisation method is proposed for bias param-
eters of the GPS observation model. The method is implemented into software, and
the results confirm the correctness of the theory and algorithm. Conclusions can be
summarised as follows:

1. Bias parameterisation of undifferenced GPS phase observations with all clock
errors except the reference one and all undifferenced ambiguities are linearly
correlated. The linear equation system of undifferenced GPS is then singular and
cannot be solved theoretically.
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2. A linear independent bias parameterisation can be reached by fixing the reference
clock of the reference station, fixing one of the ambiguities of every satellite of
arbitrary station (called reference station of every satellite) and fixing the ambi-
guities of the reference satellite of every non-reference station. The selections
of the references are arbitrary; however, the selections are not allowed to be
duplicated.

3. The linear independent ambiguity parameter set is equivalent to the parameter
set of double differencing ambiguities, and they can be transformed from one to
another uniquely if the same data are used.

4. The physical meanings of the bias parameters are varied depending on the way
of parameterisation. Due to the inseparable property of the bias parameters, the
synchronisation applications of GPS may not be realised using the carrier-phase
observations.

5. The phase–code combination does not change the correlation relation between
the correlated biases significantly.

Due to the facts regarding the use of the undifferenced algorithm, it is worth
giving some comments:

1. In the undifferenced algorithm, the observation equation is a rank defect one if
the over-parameterisation problem has not been taken into account. The numeri-
cal inexactness introduced by eliminating the clock error parameters and the use
of a priori information of some other parameters are the reasons why the singular
problem is solvable in practice so far.

2. Using the undifferenced and differencing methods, solutions of the common
parameters must be the same if the undifferenced GPS data modelling is really
an equivalent one and not over-parameterised.

3. A singular undifferenced parameterisation may become regular by introducing
conditions or by fixing some of the parameters through introducing a priori
information.

7.5 Equivalence of the GPS Data Processing Algorithms

The equivalence theorem, an optimal method for forming an independent base-
line network and a data condition, and the equivalent algorithms using secondary
observables are discussed in this section (cf. Xu et al. 2006c).

7.5.1 Equivalence Theorem of GPS Data Processing Algorithms

In Sect. 7.2 the equivalence properties of uncombined and combining algorithms
of GPS data processing are given. Whether uncombined or combining algorithms
are used, the results obtained are identical and the precisions of the solutions are
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identical, too. It is notable that the parameterisation is very important. The solu-
tions depend on the parameterisation. For convenience, the original GPS observation
equation and the solution are listed as (cf. Sect. 7.3)

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 f 2
s /f 2

1 1

0 0 f 2
s /f 2

2 1

1 0 −f 2
s /f 2

1 1

0 1 −f 2
s /f 2

2 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ , P =

⎛
⎜⎜⎝

σ 2
c 0 0 0
0 σ 2

c 0 0
0 0 σ 2

p 0
0 0 0 σ 2

p

⎞
⎟⎟⎠

−1

,

(91)
and

⎛
⎜⎜⎝

λ1N1
λ2N2

B1
Cρ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 − 2a −2b 1 0
−2a 2a − 1 0 1
1/q −1/q 0 0
a b 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

R1
R2

λ1Φ1
λ2Φ2

⎞
⎟⎟⎠ , (92)

where the meanings of the symbols are the same as that of (44) and (48).
In Sect. 7.2 the equivalence properties of undifferenced and differencing algo-

rithms of GPS data processing are given. Whether undifferenced or differencing
algorithms are used, the results obtained are identical and the precisions of the
solutions are equivalent. It is notable that the equivalence here is slightly differ-
ent from the equivalence in combining algorithms. To distinguish them, we call the
equivalence in differencing case a soft equivalence. The soft equivalence is valid
under three so-called conditions. The first is a data condition, which guarantees that
the data used in undifferenced or differencing algorithms are the same. The data
condition will be discussed in the next section. The second is a parameterisation
condition, i.e. the parameterisation must be the same. The third is the elimination
condition, i.e. the parameter set to be eliminated should be able to be eliminated.
(Implicitly, the parameter set of the problem should be a regular one.) Because of the
process of elimination, the cofactor matrices of the undifferenced and differencing
equations are different. If the cofactor of an undifferenced normal equation has the
form of

(
M11 M12
M21 M22

)−1

= Q =
(

Q11 Q12
Q21 Q22

)
, (93)

then we call the diagonal part of the cofactor

Qe =
(

M1 0
0 M2

)−1

=
(

Q11 0
0 Q22

)
(94)

an equivalent cofactor. The equivalent cofactor has the same diagonal element
blocks as the original cofactor matrix Q and guarantees that the precision relation
between the unknowns remains the same. The soft equivalence is defined as fol-
lows: the solutions are identical and the covariance matrices are equivalent. Such a
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definition is implicitly used in the traditional block-wise least squares adjustment.
It is notable that the parameterisation is very important and the rank of the normal
equation of the undifferenced observation equation must be equal to the rank of the
normal equation of the differencing observation equation plus the number of the
eliminated independent parameters. For convenience, the original GPS observation
equation and the equivalent differencing equation can be generally written as (cf.
(63) and (66))

V = L − (A1 A2
) (X1

X2

)
, P (95)

(
U1
U2

)
=
(

L
L

)
−
(

D1 0
0 D2

)(
X1
X2

)
,

(
P 0
0 P

)
. (96)

In Sect. 7.4 the way to parameterise the GPS observables independently is pro-
posed. A correct and reasonable parameterisation is the key to a correct conclusion
by combining and differencing derivations. An example is given in Sect. 7.4.1 where
an illogical conclusion is derived due to the inexact parameterisation.

For any GPS survey with a definitive space–time configuration, observed GPS
data can be parameterised (or modelled) in a suitable way and listed together in a
form of linear equations for processing. Combining and differencing are two linear
transformations. Because the uncombined and combining data (or equations) are
equivalent, differencing the uncombined or combining equations is (soft) equiva-
lent. Inversely, the combining operator is an invertible transformation; making or
not making the combination operation on the equivalent undifferenced or differenc-
ing equations (95) and (96) is equivalent. That is, the mixtures of the combining and
differencing algorithms are also equivalent to the original undifferenced and uncom-
bined algorithms. The equivalence properties can be summarised in a theorem as
follows:

Equivalence Theorem of GPS Data Processing Algorithms
Under the three so-called equivalence conditions and the definition of the so-called soft
equivalence, for any GPS survey with definitive space–time configuration, GPS data
processing algorithms – uncombined and combining algorithms, undifferenced and differ-
encing algorithms, as well as their mixtures – are at least soft equivalent. That is, the results
obtained by using any algorithm or any mixture of the algorithms are identical. The diag-
onal elements of the covariance matrix are identical. The ratios of the precisions of the
solutions are identical. None of the algorithms are preferred in view of the results and pre-
cisions. Suitable algorithms or mixtures of the algorithms will be specifically advantageous
for special kinds of data dealings.

The implicit condition of this theorem is that the parameterisation must be the
same and regular. The parameterisation depends on different configurations of the
GPS surveys and strategies of the GPS data processing. The theorem says that if
the data used are the same and the model is parameterised identically and regularly,
then the results must be identical and the precision should be equivalent. This is a
guiding principle for the GPS data processing practice.
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7.5.2 Optimal Baseline Network Forming and Data Condition

It is well known that for a network with n stations there are n−1 independent
baselines. An independent baseline network can be stated in words: all stations
are connected through these baselines, and the shortest way from one station to
any other station is unique. Generally speaking, a shorter baseline leads to a bet-
ter common view of the satellites. Therefore, the baseline should be formed so
that the length of the baseline falls as short as possible. For a network, an optimal
choice should be that the summation of weighted lengths of all independent base-
lines should be minimal. This is a specific mathematic problem called a minimum
spanning tree (cf., e.g. Wang et al. 1979).

Algorithms exist to solve this minimum spanning tree problem with software.
Therefore, we will just show an example here. An IGS network with ca. 100 sta-
tions and the related optimal and independent baseline tree is shown in Fig. 7.1.
The average length of the baselines is ca. 1,300 km. The maximum distance is ca.
3,700 km.

In the traditional double differencing model, the unpaired GPS observations of
every designed baseline have to be omitted because of the requirement of differenc-
ing. (In the example of Sect. 7.4.2, two observations of k6 will be omitted. However,
if the differencing is not limited by baseline design, no observations have to be can-
celled out.) Therefore, an optimal means of double differencing should be based
on an optimal baseline design to form the differencing first, then, without limi-
tation of the baseline design, to check for the unpaired observations in order to
form possible differencing. This measure is useful for raising the rate of data used
by the differencing method. An example of an IGS network with 47 stations and
one day’s observations has shown (Xu 2004) that 87.9% of all data are used in
difference forming based on the optimal baseline design, whereas 99.1% of all data

Fig. 7.1 Independent and optimal IGS GPS baseline network (100 stations)
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are used in the extended method of difference forming without limitation of the
baseline design. That is, the original data may be nearly 100% used for such a means
of double differencing.

In the undifferenced model, in order to be able to eliminate the clock error param-
eters it is sufficient that every satellite is observed at least at two stations (for
eliminating the satellite clock errors) and at every station there is a satellite com-
bined with one of the other satellites that are commonly viewed by at least one of
the other stations (for eliminating the receiver clock errors). The condition ensures
that extended double differencing can be formed from the data. The data have to be
cancelled out if the condition is not fulfilled or the related ambiguities have to be
kept fixed.

For convenience, we state the data condition as follows:

Data condition: all satellites must be observed at least twice (for forming single differences)
and one satellite combined with one of the other satellites should be commonly viewed by
at least one of the other stations (for forming double differences).

It is notable that the data condition above is valid for single and double differenc-
ing. For triple differencing and user-defined differencing the data condition may be
similarly defined. The data condition is one of the conditions of the equivalence of
the undifferenced and differencing algorithms. The data condition is derived from
the difference forming; however, it is also suggested to use it in undifferenced meth-
ods to reduce the singular data. The optimal baseline network forming is beneficial
for differencing methods to raise the rate of used data.

7.5.3 Algorithms Using Secondary GPS Observables

As stated in Sects. 7.3 and 7.4, the uncombined and combining algorithms are equiv-
alent. A method of GPS data processing using secondary data is outlined in Sect.
7.3.3. However, a concrete parameterisation of the observation model is only pos-
sible after the method of independent parameterisation is discussed in Sect. 7.4.
The data processing using secondary observables leads to equivalent results of any
combining algorithms. Therefore the concrete parameterisation of the GPS obser-
vation model has to be specifically discussed again. The observation model of m
satellites viewed at one station is (cf. (67))

⎛
⎜⎜⎝

R1(k)
R2(k)

λ1Φ1(k)
λ2Φ2(k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 f 2
s /f 2

1 1

0 0 f 2
s /f 2

2 1

1 0 −f 2
s /f 2

1 1

0 1 −f 2
s /f 2

2 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

λ1N1(k)
λ2N2(k)

B1(k)
Cρ(k)

⎞
⎟⎟⎠ , k = 1, . . . , m, (97)

where the relation

Bz
1 = 1

m

m∑
k=1

B1(k)/Fk (98)
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can be used to map the ionospheric parameters in the path directions to the parameter
in the zenith direction. The meanings of the symbols are the same as stated in Sect.
7.3. Solutions of (97) are (similar to (68))

⎛
⎜⎜⎝

λ1N1(k)
λ2N2(k)

B1(k)
Cρ(k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 − 2a −2b 1 0
−2a 2a − 1 0 1
1/q −1/q 0 0
a b 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

R1(k)
R2(k)

λ1Φ1(k)
λ2Φ2(k)

⎞
⎟⎟⎠ , Q(k), k = 1, . . . , m, (99)

where the covariance matrix Q(k) can be obtained by variance–covariance propaga-
tion law. The vector on the left-hand side of (99) is called the secondary observation
vector. In the case where K satellites are viewed, the traditional combinations of
the observation model and the related secondary solutions are the same as (97) and
(99), where m = K. However, taking the parameterisation method into account, at
least one satellite has to be selected as reference and the related ambiguities cannot
be modelled. If one were to suppose that the satellite of index K is the reference
one, then the first m = K–1 observation equations are the same as (97). The satellite
K-related observation equations can be written as

⎛
⎜⎜⎝

R1(k)
R2(k)

λ1Φ1(k)
λ2Φ2(k)

⎞
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⎛
⎜⎜⎜⎝

0 0 f 2
s /f 2

1 1

0 0 f 2
s /f 2

2 1

0 0 −f 2
s /f 2

1 1

0 0 −f 2
s /f 2

2 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

λ1N1(k)
λ2N2(k)

B1(k)
Cρ(k)

⎞
⎟⎟⎠ , k = K, (100)

where the ambiguities are not modelled and the constant effects will be absorbed by
the clock parameters. Solutions of (100) are

⎛
⎜⎜⎝

λ1N1(k)
λ2N2(k)

B1(k)
Cρ(k)

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

1/q −1/q −1/q 1/q
1/2 1/2 1/2 1/2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

R1(k)
R2(k)

λ1Φ1(k)
λ2Φ2(k)

⎞
⎟⎟⎠ , Q(K). (101)

It is notable that the solutions of the traditional combinations are (99) with m = K,
whereas for the combinations with independent bias parameterisation, the solutions
are the combinations of (99) with m = K–1 and (101). It is obvious that the two
solutions are different. Because the traditional observation model used is an inexact
one, the solutions of the traditional combinations are also inexact. The bias effects
(of ambiguity) that are not modelled are merged into the clock bias parameters. Due
to the fact that the bias effects cannot be absorbed into the non-bias parameters, only
the clock error parameters will be different in the results and the clock errors will
have different meanings. Further, the ionosphere-free combinations and geometry-
free combinations are correct under the independent parameterisation.

It shows that through exact parameterisation, the combinations are no longer
independent from satellite to satellite. For surveys with multiple stations, through
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correct parameterisation the combinations will no longer be independent from
station to station. Therefore, traditional combinations will lead to incorrect results
because of the inexact parameterisation.

The so-called secondary observables on the left-hand side of (99) and (101)
can be further processed. The original observables can be uniquely transformed to
secondary observables. The secondary observables are equivalent and direct mea-
surements of the ambiguities and ionosphere as well as geometry. Any further GPS
data processing can be based on the secondary observables (cf. Sect. 7.3).

7.5.4 Non-equivalent Algorithms

As stated in the equivalence theorem of GPS algorithms, the equivalence proper-
ties are valid for GPS surveys with definitive space–time configuration. As long as
the measures are the same and the parameterisation is identical and regular, the
GPS data processing algorithms are equivalent. It is notable that if the surveys
and the parameterisation are different, then the algorithms are not equivalent to
each other. For example, algorithms of single-point positioning and multi-points
positioning, algorithms of orbit-fixed positioning and orbit co-determined position-
ing, algorithms of static and kinematic as well as dynamic applications, etc. are
non-equivalent algorithms.

7.6 Inferences of Equivalence Principle

7.6.1 Diagonalisation Algorithm

In the above discussion, one group of unknowns is eliminated by matrix partitioning
to obtain an equivalently eliminated normal equation system of the other group of
unknowns. Using the elimination process twice for the two groups of unknowns, the
normal equation can be diagonalised. The algorithm can be outlined as follows.

A linearised observation equation and the normal equations can be represented
by (1) and (2). From (3), one has

X1 = M−1
11 (B1 − M12X2). (102)

Setting X1 into (4), one gets an equivalently eliminated normal equation of X2:

M2X2 = R2, (103)
where

M2 = M22 − M21M−1
11 M12,

R2 = B2 − M21M−1
11 B1.

(104)

Similarly, from (4), one has

X2 = M−1
22 (B2 − M21X1). (105)
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Setting X2 into (3), one gets an equivalently eliminated normal equation of X1:

M1X1 = R1, (106)
where

M1 = M11 − M12M−1
22 M21,

R1 = B1 − M12M−1
22 B2.

(107)

Combining (106) and (103) together, one has

(
M1 0
0 M2

) (
X1
X2

)
=
(

R1
R2

)
, (108)

where (cf., e.g. Xu 2007, p. 143)

Q11 = M−1
1 , Q22 = M−1

2 ,
Q12 = −M−1

11 (M12Q22), Q21 = −M−1
22 (M21Q11).

(109)

It is obvious that (2) and (108) are two equivalent normal equations. The solu-
tions of the both equations are identical. Equation (108) is a diagonalised normal
equation related to X1 and X2. The process of forming (108) from (2) is called the
diagonalisation process of a normal equation.

As discussed in Sect. 7.2, the equivalently eliminated observation equation of the
second equation of (108) is (9). Similarly, the equivalently eliminated observation
equation of the first equation of (108) is (11). Denote

D1 = (E − K)A and (110)

D2 = (E − J)B (111)

in (9) and (11), then write them together

(
U1
U2

)
=
(

L
L

)
−
(

D1 0
0 D2

)(
X1
X2

)
,

(
P 0
0 P

)
. (112)

Equation (112) is derived from the normal equation (108); therefore, it is true
inversely, i.e. (108) is the least squares normal equation of the observation equa-
tion (112). So (112) is an equivalent observation equation of (1). Equations (108)
and (112) are called diagonalised equations of (2) and (1), respectively.

In the sequential adjustment and Kalman filtering, there is a problem which has
not been described exactly and theoretically in the literature before, that is, how to
give up the nuisance parameter-related information from the past. For a real-time
data processing, it is especially important to keep the updated problem as small as
possible. This so-called diagonalisation algorithm is proposed initially for deriving
an equivalent ambiguity search criterion and then used for giving up the nuisance
parameter-related information (Xu 2003a).
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Fig. 7.2 Unknown numbers in non-diagonalised and diagonalised algorithms

Suppose the past surveying information is presented in a normal equation system
(

M11 M12
M21 M22

)(
X1
X2

)
=
(

W1
W2

)
, (113)

and the normal equation of the present epoch block consists of only the parameter
sub-vector X2, then (113) can be diagonalised by

(
M1 0
0 M2

)(
X1
X2

)
=
(

B1
B2

)
, (114)

so that one just needs to accumulate the X2 related part in (114) into the present
normal equation and then solve the problem. In such a way X1 is considered as a
nuisance parameter sub-vector and is given up during the sequential data processing
so that the data processing problem could be kept as small as possible.

Figure 7.2 shows the relationship between unknown number and time for a
sequential solution of IGS network with 47 stations and fixed orbit for a network
monitoring problem. Without the diagonalisation algorithm, the parameter number
increases to 2,300 whereas with the diagonalisation algorithm, the parameter num-
ber remains around 500. Without such an algorithm an exact and effective real-time
data sequential processing and filtering is not realistic.

7.6.2 Separability of the Observation Equation

For any observation equation (1), instead of forming the least squares normal equa-
tion (2), one may form the equivalent observation sub-equations of (112). Then the
normal equations of (112) are (108). The total equation (1) is separated into two sub-
equations. If the observation equation (1) is not solvable due to the huge number of
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unknowns and the capacity limit of the computer, after a suitable separation, the sub-
equations may become solvable. To form the two observation sub-equations is more
complicated than to form (1) straightforward. However, an unsolvable problem is
turned out to be solvable using the proposed separation algorithm.

In practice, the normal equation is first formed from every observation equa-
tion and then accumulated. In the separation algorithm, however, the observation
equations first have to be formed until the equations can be separated (elim-
inated), and then the normal equation can be formed and accumulated. The
processes of equation-forming and eliminating and then normal equation-forming
and accumulating have to be repeated until the complete equations are formed.

That is, any observation equation and its normal equation are separable by using
linear algebra operations. Any observation equation can be separated into two sub-
equations. The original observation equation may not be solvable sometimes due
to the huge number of unknowns and the capacity limit of the computer. However,
after a suitable separation, the sub-equations may become solvable.

7.6.3 Optimal Ambiguity Search Criteria

The ambiguity search criterion has been a controversial topic in international GPS
research community for a few years.

Suppose GPS observation equation is (1) and its least squares normal equation is
(2), where X2 = N (N is the ambiguity sub-vector) and X1 = Y (Y is the rest unknown
sub-vector). The least squares ambiguity search (LSAS) criterion (Teunissen 1995;
Leick 2004; Hofmann-Wellenhof et al. 2001; Euler and Landau 1992; Han and
Rizos 1997) is

δ(dN) = (N0 − N)Inv(Q22)(N0 − N), (115)

where N0 is the float solution of the ambiguity sub-vector, dN = N0 – N. The ambi-
guity search is a process to find out a vector N in the searching area so that the value
of δ(dN) reaches the minimum.

The so-called general ambiguity search criterion is derived in Xu (2002b) and
has a form of

δ(dX) = (X0 − X)TInv(Q)(X0 − X), (116)

where X = (Y N)T, X0 = (Y0 N0)T, dX = X0 – X and index 0 denotes the float
solution. The search is a process to find out a vector X (includes N in the searching
area and Y computed) so that the value of δ(dX) reaches the minimum. The optimal
property of this criterion can be found in Xu (2002b).

For the equivalent (or diagonalised) normal equation (114), the related equivalent
criterion is

δ1(dX) = (Y0 − Y)TInv(Q11)(Y0 − Y) + (N0 − N)Inv(Q22)(N0 − N),
= δ(dY) + δ(dN)

(117)
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where index 1 is used to distinguish the equivalent criterion from the general one
given in (116). It is obvious that the equivalent criterion is not an exact one theoret-
ically. Expanding (116) and comparing the results with (117), one may notice that
two correlation terms are missing (Cai et al. 2007). Numerically, the omission of the
two terms may possibly be allowed (Morujao and Mendes 2007).

It is worth mentioning that the well-known ambiguity function (AF) method
is mathematically incorrect (cf. Xu 2003b, pp. 280–283) and the so-called least
squares (LS) criterion is generally not optimal (cf. Xu 2003b, pp. 153–172). For
information to the readers, a brief discussion is given below concerning the LS
criterion.

An excellent summary of the derivation of the ambiguity search LS criterion
is given in Verhagen (2004). In terminology of Teunissen (1995) the observation
model is

y = A a + B b + e, Qy (118)

and the solution of (118) can be obtained by the following minimization problem:

min
a,b

‖y − Aa − Bb‖2
Qy

, a ∈ Zn, b ∈ Rn. (119)

Equation (119) can be orthogonalised by

‖y − Aa − Bb‖2
Qy

= ∥∥ê
∥∥2

Qy
+ ∥∥â − a

∥∥2
Qy

+
∥∥∥b̂(a) − b

∥∥∥2

Qy
. (120)

The explanations of the symbols can be found in Verhagen (2004). The solution of
(119) is then obtained in three steps: (1) compute the float solution of (118); (2)
minimise the second term (denoted by δa for later convenience) on the right-hand
side of (120) and set the third term (denoted by δb) to zero to get the fixed ambiguity;
(3) compute the fixed coordinates using fixed ambiguity.

The key problem is that δb is not allowed to be set to zero. The significant
opposite arguments are listed below (Xu 2004):

• To set δb to zero or any constant is equivalent; however, the δb is neither zero nor
constant for all coordinate vectors computed from all to-be-searched ambiguity
candidate vectors. Therefore to set δb to zero is indeed to omit the term δb in
(120). (In other words, in the second step the effect of the term δb has never been
taken into account in this way.)

• To omit the term δb in the minimisation problem (120) is allowed only if the
following assumption is true, i.e. a minimum δa will lead to a minimum δb and
therefore lead to a minimum of (δa + δb). However, theory and numerical exam-
ples have shown that such an assumption cannot be generally true (cf. Xu 2002b).
The omission of the term δb in (120) destroys the equivalence between (119) and
(120). The problem of minimisation of (δa + δb) is degraded to a problem of min-
imisation of δa. In this way the obtained solution cannot be generally the same as
the solution obtained directly from (119).
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• Noting optimality und uniqueness properties of the solution of (118), the solution
obtained by minimising δa cannot generally be the optimal ones of (118). Any
indication obtained by such non-optimal results may not really be true.

• To set δb to zero is the same as to set b as float solution (then δb is zero). However,
b cannot be the float solution. Proof: according to the summarised method select
b = float coordinate solution; through the minimisation of δa one gets the vector
a, then one can compute b using a; because a is not the float ambiguity, b is not
the float coordinate solution. So the result of b states that b does not equal float
coordinate solution; this is in conflict with the assumed starting value.

• To set δb to a constant is not allowed either. Proof: for b = float coordinate solu-
tion + any constant vector (e.g. b = 0 or b = float solution + constant vector
of 1,000 km) one has δb = constant, then following mini(δa + δb) = mini(δa);
the sought for results are the same by using the summarised method, no matter
the computation is started from given float position or 1,000 km farther away.
Therefore setting δb = constant would be incorrect.

7.7 Summary

Differential and un-differential GPS algorithms, combined and un-combined GPS
algorithms as well as their mixtures are equivalent. As soon as the GPS data are
measured, the information contents of the data are definitive ones. If the models
used are the same and the principle of the adjustment and filtering are also the same,
the results obtained should be equivalent. Advantages and disadvantages are relative
and balanced. From the equivalence principle, a very important topic of independent
parameterisation of the GPS observation model is discussed which points out where
the singularity problem comes from. The inferences of the equivalence principle are
important beyond the principle itself. Diagonalisation algorithm could be important
even for classic adjustment for reducing parameters. Separability of any observation
equation and its normal equation may lead to a non-solvable problem becoming
a solvable one. The optimal criterion for ambiguity search may clear a confusion
caused by the so-called LSSA method. More studies of the equivalence principle
are available (Shen and Xu 2007; Shen et al. 2008).
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8.1 Introduction

Taking a look at our planet, we can easily realize that more than 70% of the Earth’s
surface is covered by oceans and coastal waters. These waters have been the driving
force of the climatic changes during the history of the planet. It is also the place
where life started to develop and still the largest biosphere.

Oceans and coastal waters are not only important from the ecological point of
view but from the aspect of economics. Many gas and oil fields have been discovered
and exploited during the last century and the role of methane hydrate, which can
be found on the floor of almost all oceans, for industrial use has not even been
identified. The globally increased demand for all kinds of seafood has created a
large and still growing fishing industry which will satisfy their claims in national and
international waters. Furthermore, more than 90% of all goods that are exchanged
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on the global market are nowadays transported in seagoing ships that are getting
bigger and bigger.

These few simple facts should be sufficient for geodesists to include the hydro-
sphere in their scope of work. Actually there are many scientists and engineers of
our branch working in this field but most of them do not know that all their activities
can be summarized under the term “marine geodesy”.

Marine geodesy covers a very wide range of work that is related to oceans and
coastal waters. It is hard to define at least some main topics from the large variety of
activities without ignoring some important areas. To get an overview on what geode-
sists are working on, this chapter will focus only on two main topics – bathymetry
and hydrography and precise navigation.

8.2 Bathymetry and Hydrography

In bathymetry and hydrography, the object under investigation is generally the
seabed. By use of modern hydrographic surveying methods the depth is deter-
mined from hydroacoustic observations. In combination with determinations of the
horizontal and vertical position of a survey vessel, the seafloor topography and
morphology is derived.

The depth of the seafloor is described in relation to a defined reference surface.
The definition of this surface is strongly linked to the application of the survey
results. If, for example, the hydroacoustic data are used for scientific investigations
on the geological seafloor structure, the reference surface can be chosen with the
only limitation being steadiness in time. The focus is mainly put on the information
about depths in relation to the identical surface and not on an exact vertical datum
definition. Those observations are often carried out in deep sea areas and they are
typically called bathymetric measurements.

On the other hand, if the results should be used, for example, to guide a ship
safely through an approach channel with tidal influence, the reference surface must
be connected to the lowest possible water level. The definition of the vertical datum
is strongly limited by the users’ needs. Depth observation with a strongly restricted
definition of a vertical datum should be referred to as hydrographic measurements.
That means that hydrography also has to include the estimation of tides, currents
and waves.

8.2.1 Scope of Work

While bathymetric results attempt to give the best representations of the actual
seabed that can be used for scientific and other purposes, hydrographic products
tend to overrepresent least depths and ignore the actual submarine topography
because they are often used as the mariner’s tools to avoid accidents. Although
there are still some differences in their outcome, the working areas of bathymetry
and hydrography should be considered as a unit because of the use of very similar
observation and analysis methods.
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The work area of bathymetry and hydrography encloses many different activities
and the description of them would go beyond the scope of this chapter. Therefore
only some important and interesting aspects will be presented in this context.

8.2.1.1 Echo Soundings of Oceans and Coastal Waters

The observation of water depth is the most important task in bathymetry and hydrog-
raphy. The depth is nowadays observed by hydroacoustic echo sounders that are
described later on. The transceiver of an echo sounder is commonly installed in a
ship’s hull near the keel.

The distance between the echo sounder and the bottom of the sea is measured by
the time of travel of an acoustic signal. To derive the water depth related to a vertical
datum this measurement must be corrected for the actual height of the sounder. If a
precise GPS system is used on board the ship, the soundings could be related to a
reference height system by the resulting GPS height and the distance between the
sounder and the GPS antenna (Fig. 8.1a).

Fig. 8.1 Geometry of hydrographic survey (a) (top) related to GPS heights and (b) (bottom)
related to actual water level
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If no precise GPS height is available, the sounding has to be related to the actual
water level that must be derived from tide gauge readings and oceanographic mod-
els of the sea surface. Additionally the static and dynamic draught and the wave-
and swell-induced vertical movement of the ship (described as heave) have to be
observed and taken into account (Fig. 8.1b).

The definition of the vertical datum depends on the intended purpose of the
resulting data. Bathymetric observations are often simply related to an ellipsoid
and the depths are presented as ellipsoidal heights. This is sufficient for a detailed
description of the seabed, i.e. for scientific analysis. Hydrographic data are fre-
quently used as navigational information and mariners are interested in knowledge
of the minimum water depth for a safe passage. Therefore the vertical datum is com-
monly connected to the lowest possible water level and defined in most nations as
the lowest astronomical tide (LAT).

8.2.1.2 Seafloor Maps

For the creation of seafloor maps, depths from echo soundings have to be related to
the horizontal position of the measurement. Fortunately, the quality demands for the
positions are not as strict as for geodetic surveys on land. Concerning hydrographic
surveys, the accuracy standards are defined by the International Hydrographic
Organization (IHO) as 2–5 m for harbours or coastal areas and 20–150 m in offshore
areas (95% confidence level) (IHO 1998). This accuracy can be achieved sufficiently
with DGPS or GPS code solutions.

The quality of the map depends strongly on the needs of the map user and the
purpose of the mapping. Common bathymetric maps show a detailed structure of the
seafloor which could be used for scientific investigation and boundary demarcation
(Fig. 8.2a). Hydrographic maps are widely used in navigation and therefore the
seafloor information is generalized to the essential depth data and, particularly in
open waters, only some important least depths are displayed (Fig. 8.2b).

8.2.1.3 Scientific Investigations

Particularly bathymetric data are often used in scientific investigation related to
geology, geophysics and glaciology. Precise results from deep sea echo sounding
give information on seafloor faults and seamount structures as well as on the
behaviour of glaciers in past times and the morphology of subduction zones.

The last research cruise of the German research vessel SONNE, for example, was
used to carry out bathymetric observations at the continental margin of Sumatra
(Fig. 8.3). The resulting data helped to answer geological questions concerning pos-
sible canyons crossing the continental shelf of Sumatra that are probably created by
underwater rivers. Additionally these data are to be used for the positioning of GPS
tsunami buoys.
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Fig. 8.2 (a) Bathymetric map (Schenke et al. 1998) and (b) hydrographic map (BSH Chart 3
Ansteuerung Helgoland, 2004)

8.2.1.4 Boundary Demarcation and Determination

The marine boundaries of nations are defined by the United Nations Convention on
the Law of the Sea (UNCLOS). The sovereignty of a coastal state extends up to 12
nautical miles from the baseline of the state. The baseline of the territorial sea is the
low waterline along the coast which has to be observed by hydrographic methods
(UNCLOS 2006).

An exclusive economic zone (EEZ) is an area beyond and adjacent to the ter-
ritorial sea. The coastal state has sovereign rights for the purpose of exploring
and exploiting, conserving and managing the natural resources. The EEZ shall not
extend beyond 200 nautical miles from the baselines of the territorial sea. States
with overlapping EEZ have to define the limit of the EEZ by mutual agreements.
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Fig. 8.3 Three-dimensional model from bathymetric survey of Sumatra (Ladage et al. 2006)

The economic influence area therefore strongly depends on the results of hydrog-
raphy. The importance of marine geodesy is easily realized if we take a look at,
e.g., Australia (Fig. 8.4a). The total land area of this state is approximately 7.7
million km2 but the EEZ with an area of 8.1 million km2 is larger than the whole
“country”.

Particularly the rights of exploitation and exploration are of great economic inter-
est. According to UNCLOS, states can extend their claims up to the limit of the
continental shelf (CS). This limit is defined by different slope, distance and sediment
thickness criteria and ends at least 350 nm from the baseline or at a depth of 2,500 m.
All those definitions are only applicable if sufficient hydrographic and bathymetric
data are available. In the case of Australia, the CS adds some 2 million km2 to its
zone of economic interest (Fig. 8.4b).

(a) (b)

Fig. 8.4 (a) Australia and its EEZ and (b) Australia and its continental shelf. © Geoscience
Australia (2006). All rights reserved
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8.2.2 Hydroacoustic Measurements

Hydroacoustic measurement is the most important observation technique in
bathymetry and hydrography. It is not only used for the determination of water
depths but also in current profiling and underwater positioning.

At the beginning of the twentieth century, the German physicist Dr. Alexander
Behm was one of the pioneers in underwater sound propagation. After the accident
of the TITANIC in April 1912 he worked on an iceberg warning system based on the
sound transmission from a ship to the sea. Unfortunately the echoes from icebergs
were very poor and the system did not work well in iceberg detection but he rec-
ognized strong reflection from the seafloor. So he invented the echo sounder more
or less by chance and patented it in 1913. Although the technique of echo sounders
developed rapidly during the last 100 years, the basic principles of hydroacoustic
measurements are still valid.

8.2.2.1 Basic Principles

Hydroacoustic depth measurements are based on the observation of travel time of
acoustic waves in water. An acoustic pulse is generated by a transmitter and for-
warded to a receiver/transmitter (T/R) switch. The T/R switch passes the power
to a transducer commonly mounted in a ship’s hull. The transducer converts the
electrical power into acoustic power and sends it in the form of an acoustic signal
into the water. The signal propagates beam-shaped in the water with an opening
angle depending on the emitted signal frequency and the transducer’s diameter. It is
reflected by the seafloor and the echo is received at the transducer which converts
it into an electrical signal. The signal is sent through the T/R switch to the receiver
which amplifies the signal and sends it to the recorder and display unit. The recorder
controls the signal emission, measures the travel time of the acoustic signal, stores
the data and converts time intervals into ranges (Fig. 8.5) (according to De Jong et al.
2002).

A quartz clock inside the transmitter is used to obtain the operating frequency
of the transducer and to measure the time intervals between the signal transmission
and reception. The depth is simply calculated from

d = �t

2
× cw

where �t is the two-way travel time and cw is the speed of sound in the water.
The speed of sound mainly depends on the salinity and the temperature of the
water and in greater depth additionally on the pressure. Different empirical formu-
lae have been developed to calculate the speed of sound, depending on parameters
mentioned above. The speed of sound reaches values of 1,450 m/s in a depth of
500 m in fresh water with a temperature of 10◦C and 1,495 m/s for ocean water
with a salinity of 3% under the same depth and temperature conditions. For larger
depth it is strongly recommended to use a sound speed profile that varies according
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Fig. 8.5 Basic principle of hydroacoustic depth measurement

to the depth. A very efficient way to produce a current sound speed profile is to
use a sound velocity probe which measures the travel time of a sound over a fixed
distance. Standard instruments are able to operate autonomously so they can be
deployed to different water depths on a line and observe a complete sound velocity
profile.

A very important basic fact in hydroacoustics is that the reflection of a sig-
nal depends on the frequency of the emitted sound signal as well as on the
density of the reflecting bottom’s material. As a rule of thumb we should keep
in mind that high frequencies will be better reflected at material with low den-
sity and vice versa. Frequencies of 10–50 kHz are best reflected by rocks and
very hard sediments. Transducer emitting frequencies of 100 kHz are used to
observe the upper surface of sands and with 200 kHz they will receive the sig-
nal from soft sediments and also sea grass. Signals of higher frequencies of up
to 1,000 kHz are reflected by particles suspended in the water and used for
acoustic Doppler current profiling (ADCP). The fact of the frequency-depending
reflectivity is used in the latest developments of hydroacoustic components.
Newly developed sub-bottom profilers provide a complete tomography of the
seafloor.

The resolution and the quality of depth measurements depend on the width of
the beam angle that is transmitted by the transducer. A larger beam angle increases
the possibility of depth errors due to reflections from the beam’s edge. Therefore
hydrographic echo sounders should have beams with angles less than 30◦. Common
transducers produce beam angles between 2 and 30◦. The beamwidth depends on
the diameter of the transducer and the emitted frequency. For a circular transducer,
the beamwidth (in degrees) is roughly given as

β ≈ 65◦ × cw

d
× 1

f
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Fig. 8.6 Beamwidth vs. diameter

The higher the frequency the narrower the beamwidth for a given transducer size
(Fig. 8.6). If a transducer is to transmit a sound with a frequency of 10 kHz and the
beam angle is to be kept below 30◦, the transducer’s diameter must not be less than
35 cm. For higher frequencies the transducer’s size can be kept much smaller.

8.2.2.2 Singlebeam Echo Sounders

Singlebeam echo sounders produce only one single beam that is commonly sent
vertically into the water. They are frequently used to obtain depths directly under
the vessel, thus avoiding wide-beam biases caused by underwater slopes. This depth
is used either for safety of navigation or for seafloor mapping. Larger depths have
to be corrected for roll and pitch motion of the vessel observed by a suitable kind of
heave–roll–pitch sensor.

The beamwidth of conventional singlebeam echo sounders is usually of the order
of 30◦. However, narrow beam echo sounders with beam angles of less than 5◦ have
also been available since the mid-1980 s. To produce a narrow beam, larger size
transducers are needed than for a wide beam as can be seen from Fig. 8.6. The
equipment becomes bulky and expensive (De Jong 2002).

Singlebeam sounders (Fig. 8.7) are frequently used as two-frequency systems,
e.g. 30 and 200 kHz. This provides good checking possibilities and additional data
even in areas with large sediment transport and muddy seafloor like tide-influenced
estuaries.

In comparison to multibeam sounders the purchasing costs of survey echo
sounders with a single beam are much lower. They produce a smaller and easier
to handle amount of data than multibeam sounders and are less influenced by roll
and pitch motion in shallow waters. Especially for high-quality surveys, singlebeam
echo sounders are still the most important and most widely used tool in hydrography.
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Fig. 8.7 Singlebeam echo sounder (left), transducer (middle, Reson) and record and display unit
(right, Fahrentholtz)

8.2.2.3 Multibeam Echo Sounders

Multibeam echo sounders increase the bottom coverage by using a fan of beams
or swath instead of a single beam. Consequently they increase the productivity of
hydrographic and bathymetric observation cruises. Particularly in large-scale bathy-
metric surveys, where accurate depth measurements for many neighbouring points
on the seafloor have to be obtained so that an exact picture of the bottom profile can
be established, this technique is much more appropriate than singlebeam sounding
(Fig. 8.8a).

(DEOS, TU Delft).

a b

Fig. 8.8 (a) Swath of a multibeam echo sounder and (b) transducer field of a multibeam echo
sounder
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For a reliable result the beams have to be formed and received in a precise way
that allows the clear identification of the direction of the beam. Beams are com-
monly formed by a field of transducers which produce overlapping signals. In the
overlapping area points of constructive and destructive interference are created.
The signals are received by an array of hydrophones which only receive signals
created at the constructive interference points. Due to the different phases of the
received signal from different directions, the signals from different hydrophones
add destructively. Collectively, the hydrophone array is not sensitive to sounds from
this direction (Fig. 8.8b) (L-3 2000).

Each of the narrow beams produced yields a resolution of the bottom equivalent
to that of a narrow singlebeam echo sounder. The measurement accuracy is not bet-
ter than that of singlebeam echo sounders, however. In fact, accuracy decreases as
the swath angle increases (De Jong 2002). The available frequencies range from 100
to 450 kHz (Blacquiere and van Woerde 1998). These frequencies lead to smaller
transducer sizes that are necessary for a small field of transducers. The fan is nar-
row in the fore and aft direction, typically 1.5◦, and wide in the port and starboard
direction with a typical swath angle of 120◦ and up to 160◦.

Due to the wide swath angle the beams at the outer end of the swath are very sen-
sitive to attitude changes of the survey vessel. Therefore very good information on
the present roll, pitch and yaw angle either from INS- or GPS-based attitude sensors
are necessary. Simple and cheap attitude systems often fail during passages with
slight changes of sailing direction or curved tracks, and consequently the attitude
sensor should be carefully chosen. Although the outer beam data are often neglected
in data processing, not all remaining errors resulting from uncertain attitude angles
can be eliminated.

8.2.2.4 Side-Scan Sonar

A side-scan sonar reveals information about the seafloor composition by taking
advantage of the different sound absorbing and reflecting characteristics of different
materials and bottom shapes. Reporting the strength of echoes is essentially what a
side-scan sonar is designed to do.

In contrast to a singlebeam echo sounder, a side-scan sonar records not only
the reception time of the first echo but also the reception times of the following
echoes. Additionally, the amplitude of the received signal is registered together
with its reception time. If the amplitude is plotted against the time of reception
(Fig. 8.9a), a shaded image of the ground and all objects in the water is produced
(Fig. 8.9b).

A single signal sent into the water will propagate as a spherical pulse front. Thus,
only the range of a reflection can be observed but not the direction to the reflector if
only one single transducer is used. Most side-scan sonars deal with this problem by
introducing some directivity into their projected pulses. This is done by using a line
array of transducers. The long axis of the line array is oriented parallel to the direc-
tion of travel of the survey vessel (L-3 2000). The transducer array is commonly
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Fig. 8.9 (a) (top) Amplitude vs. time plot and (b) (bottom) shaded image of the ground and objects

a b

Fig. 8.10 (a) Towfish and (b) Towfish towed in the water

installed in a towfish (Fig. 8.10a) which is towed in the water somewhat below the
surface – ideally in a height of 10% of the range above the bottom – behind a survey
vessel (Fig. 8.10b).

8.2.2.5 Sub-bottom Profilers

Parametric echo sounders using non-linear acoustics are nowadays used to profile
the sub-bottom of the sea. Basically a low-frequency signal will penetrate the soil
on the seafloor deeper than a higher frequency signal. Unfortunately, very large
transducer sizes are necessary to form a narrow beam on low frequencies.
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Parametric echo sounders transmit two signals of slightly different high frequen-
cies at high sound pressures (primary frequencies). Because of non-linearities in
the sound propagation at high pressures, both signals interfere and new frequencies
arise (Fig. 8.11). Due to the use of high-frequency signals the transducer size can be
kept small also for a narrow beam (Wunderlich and Müller 2003).

The so-called secondary frequency (difference of the transmitted frequencies) is
low and penetrates the sea bottom. The primary frequencies may be used for exact
determination of water depth even in difficult situations. Modern systems are able
to work in water depth up to 1,500 m with a penetration depth of 50 m. Commonly,
primary frequencies of 100 kHz are used and low secondary frequencies between 4
and 15 kHz are produced with very small beam angle of up to 2◦.

Sub-bottom profilers can be used in a manifold of applications. Figure 8.12 shows
the result from a shallow water survey with the task to detect an embedded pipeline.

Fig. 8.11 Signal interference
of a sub-bottom profiler
(Wunderlich/Müller)

Fig. 8.12 Shallow water survey using sub-bottom profiler (Wunderlich/Müller)
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The pipe diameter was 30 cm and the pipe was detected over the whole area under
a covering layer of 1–2.5 m.

8.3 Precise Navigation

The contribution of marine geodesy to precise navigation is to ensure safe and
efficient navigation of ships in open waters as well as in coastal areas and
approach channels. The manifold applications cover the scopes of simple position-
ing by means of GPS, the production and use of analogue and digital maps, the
navigational-oriented GIS application, ships attitude determination and investiga-
tions on ship’s hydrodynamics.

8.3.1 Maps of Coastal Waters and Approach Channels

Although the development of electronic navigation systems has reached a very high
level, classical paper charts are still in use on every ship as the basis of navigation.
The International Maritime Organization (IMO) regulation requires all ships to carry
nautical charts to plan and display the ship’s route for the intended voyage and to
plot and monitor positions throughout the voyage. The ship must carry paper charts
at least as a back-up arrangement if electronic charts are used.

A nautical chart is a graphic representation of the marine environment show-
ing the form of the coast, the general configuration of the sea bottom including
water depths, locations of hazards to navigation, locations and characteristics of
man-made aids to navigation and other features useful to the mariner. Additionally,
special “roads”, such as traffic separation schemes, in areas with high volume of
traffic are exactly displayed (Fig. 8.13).

Nautical charts are produced by national hydrographic services which are respon-
sible for all charts covering the EEZ of a state. Many national services also publish
maps of other national and international waters so that some areas are covered by
charts from different hydrographic services. Nowadays some hydrographic services
like NOAA offer nautical charts as print-on-demand (POD) version. They are equiv-
alent to the traditional paper charts with the significant enhancement that the charts
are updated continuously with Notice-to-Mariner corrections.

8.3.2 ENC and ECDIS

Electronic navigational charts (ENC) are vector-based digital files containing
marine features suitable for marine navigation. They are commonly based on the
International Hydrographic Organization (IHO) S-57 standard. Similar to paper
charts, ENCs are produced by national hydrographic services (Fig. 8.14a).

ENC are used in Electronic Chart Display and Information System (ECDIS).
Technically similar to GIS – used for many applications on land – ECDIS is a
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Fig. 8.13 Example of nautical map (BSH Chart 87, Int 1413, 2004)

computer-based navigation information system that complies with International
Maritime Organization (IMO) regulations. The system displays ENCs and integrates
information from GPS and other sources such as radar and automatic identification
systems (AIS). It may also display additional navigation-related information, such
as waypoints, distances and bearings (Fig. 8.14b).

The primary function of an ECDIS is to contribute to safe navigation. It
combines different safety-relevant information from a variety of sources in a sin-
gle display system and, if applied correctly, can warn the user of dangerous
situations.

8.3.3 Ship’s Attitude

Precisely determined heading, roll and pitch angles are primary parameters for sev-
eral scientific instruments and can also be essential to safe navigation. Ship motion
measurement systems are used in many applications. Helideck monitoring sys-
tems, for example, are developed to provide full information about the helideck
movements to both heliports and land-based operators.

Other systems are used for compensation of vessel motions to satellite dish sta-
bilization in rough weather conditions. Ship’s attitude information is the basis of
automatic control systems of marine vehicles particularly used on supply ships
for oil platforms (“dynamic positioning”). Up-to-date systems for real-time wave
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Fig. 8.14 (a) (top) ENC of ports of New York and (b) (bottom) ECDIS display of northern Norway
(reproduced from NOAA’S National Ocean Service Chart 12345, not for use in navigation, Fugawi
View ENC © 2007 Northport Systems Inc.)
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roll error pitch error

Fig. 8.15 Effects of roll and pitch errors on multibeam echo soundings

monitoring (Nieto Borge et al. 2004) can also be used on moving platforms if pre-
cise attitude information is available. Those systems might be able to support ship
routing systems that are used to define best and safest passages.

In bathymetry and hydrography, multibeam echo sounders require real-time atti-
tude data as an input to rotate the frame of reference of their measurements from
ship-relative to earth coordinates (Fig. 8.15). Roll and pitch frequencies of small
vessels are of the order of 1/10 Hz or higher. The measurement rate of a swath sys-
tem depends on the water’s depth and is commonly of the order of 20–40 profiles per
second. Consequently, the attitude determination system should be able to provide
the roll and pitch information with a frequency of at least 10 Hz or better.

In the past, INS were generally used to derive the ship’s attitude because they
were able to produce data sets with a frequency of typically 100 Hz. Since the
advent of precise GPS-on-the-fly solutions based on real-time phase observation
with sample rates of up to 0.05 s, more and more GPS-based attitude systems have
been used to derive corrections for multibeam observations (Andree et al. 2000).
The advantage of GPS-based systems is that their solutions are less deteriorated by
disturbing accelerations, e.g. from following curved tracks.

8.3.4 Hydrodynamics of Ships

The contribution of marine geodesy to scientific investigations in ship’s hydrody-
namics is based on full-scale observation of the ship’s behaviour under particular
hydrodynamic conditions by means of precise GPS and additional hydraulic
parameters, i.e. waves, tides, currents and seafloor morphology and topography.

During the last decade, significant progress has been achieved, especially in
full-scale squat observation and dynamic trim measurements. The results of these
observations are used as an important input to the description of a ship’s behaviour
in confined and open waters. Recent developments show that data derived from
marine geodesy will be used in real time under-keel-clearance estimation of ships
and might also improve the efficiency of ships, waterways and harbours (O’Brien
and O’Brien 2004).
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8.3.4.1 Basics of Squat

According to the principle of Archimedes, an object partially submerged in a fluid
displaces a volume of fluid that weighs the same as the apparent loss in weight of the
object. This means that the draught of a ship in static equilibrium is directly related
to its displacement (Fig. 8.16a). Depending on the distribution of ballast water and
cargo, the draught of a ship might be greater at bow (negative trim) or stern (positive
trim) or equal at the forward and aft perpendiculars (trimmed on even keel).

As a ship starts to move through water she creates a system of streamlines around
her hull which in turn, according to Bernoulli’s equation, change the distribution of
pressure. This simple picture is enough to understand how, in principle, the bow and
stern waves and the trough alongside a moving ship are generated. The immersion
of the ship will still be according to its static draught and trim but now the ship is
affected by its own wave system. Due to the lowering of the surrounding water level
in comparison to the undisturbed surface there is an apparent increase of draught
and trim. The change of draught and trim of the moving ship with respect to the
unperturbed water level is called ship squat (Fig. 8.16b).

As the cross section available for the streamlines is reduced in shallow waters
and narrow channels, the water alongside the ship is accelerated more intensely and
the squat effect is more pronounced. Awareness of squat in the shipping community
has been roused in recent decades as more and more large size ships use restricted
waterways to their limits. It is not uncommon in these cases to allow for a squat
effect of more than 1 m.

Since the squat reaches values of this scale it is a serious influencing factor par-
ticularly for traffic of merchant ships. From the point of view of security it has to be
taken into account very carefully to avoid groundings. Port and waterway authorities
commonly endeavour to guarantee the highest possible safety level for passages by
restricting transits, especially in waterways with tidal influence. Additional draught
restrictions for very large ships are also common. In an economic perspective the
draught of a ship should be as large as possible for an efficient use of the capacity
of waterways and harbours. To ensure a safe and efficient use of the entire maritime
infrastructure the squat of a ship has to be known and predicted up to a scale of
some centimetres.

Essentially, the amount of squat depends on speed-through-water, size and shape
of the ship’s hull and the cross section of the waterway. Detailed numerical calcula-
tions based on methods of computational fluid dynamics (CFD) are numerically

Fig. 8.16 (a) Ship in static state and (b) moving ship and accelerated water
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Fig. 8.17 Squat derived from different empirical formulae

very demanding and yield a result only for one particular stationary condition.
A rather successful analytical approach has been made by Tuck (1966). Yet, for
practical purposes, it is customary to use empirical formulae (PIANC-IPAH 1997)
that were developed in the 1970 s from few experimental data available then. Some
of these formulae are only valid for restricted ranges of parameters and, in cases
where comparisons are possible, results differ substantially (Fig. 8.17).

It is easy to see that empirical formulae have to be improved for a reliable use
on board a ship. Enhanced formulae can only be expected if high-quality data sets
from full-scale experiments are used as the basis for investigations.

8.3.4.2 SHIPS Method

Since the advent of high-precision satellite navigation the direct measurement of
squat has become more promising. In 1998 the SHIPS (SHore-Independent Precise
Squat observation) method was introduced by the University of Applied Sciences in
Oldenburg (Härting and Reinking 1999) and has been improved since (Dunker et al.
2002). The principle of the SHIPS method is illustrated in Fig. 8.18.

Three GPS receivers are operated on the ship such that, apart from the overall ver-
tical movement which will be described by the height change of a ship’s reference
point (LCF, longitudinal centre of floatation), changes in trim and list can also be
observed. Another GPS receiver is installed on a small escort craft travelling ahead,
outside the ship’s wave system. The purpose of the escort craft is to represent the
unperturbed water level at the measurement position. The receiver on the escort
craft is used as a mobile reference station and the carrier-phase DGPS solution for
the receivers on the ship is computed directly with respect to the escort craft. Thus,
with the SHIPS method, the squat is determined independent of tide gauges and
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Fig. 8.18 Principle of SHIPS method

shore-based reference stations, assuring a high-quality carrier-phase DGPS solu-
tion by a short baseline between receivers, even if the experiment is run over large
distances.

To derive squat information from observed height changes and to allow a proper
data analysis, some corrections must be taken into account:

1. The speed-over-ground is obtained from GPS observations with adequate accu-
racy. The speed-through-water and current information is obtained from ADCP
observations on board the escort craft.

2. The draught of a ship depends on the density of the water. Therefore samples
of salinity and temperature have to be taken during the experiment, especially if
they are carried out in estuaries.

3. In areas with tidal influence the water surface gradient must be derived from an
average tide wave model or from tide gauge readings.

Additionally, the height of the escort craft is influenced by the squat behaviour of
the boat and by its wave- and swell-induced heave. To determine the speed depen-
dence of the GPS antenna height on board the escort craft, a calibration experiment
has to be carried out. The boat can be driven at various speeds, stopping (and turn-
ing) in between in the vicinity of a land-based reference station or better a reference
station on a floating platform while GPS observations are performed. Figure 8.19a
shows an example data set of a calibration experiment with variable speeds (lower
graph) and resulting height changes (upper graph) plotted over seconds of GPS day.
Since the manoeuvres of the small boat require only a few seconds, the height dif-
ferences between stationary speed and drifting can be assigned to the “squat” at that
speed (Fig. 8.19b).

The wave-induced height variations in hydrographical measurements are fre-
quently corrected for by using heave–roll–pitch sensors. However, if such a sensor is
not installed on the escort craft, height variations can also be determined using pre-
cise onboard GPS receivers. For this, height changes between successive epochs
are computed by epoch-to-epoch GPS–phase differences (Reinking and Härting
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Fig. 8.19 (a) (top) Data from calibration and (b) (bottom) resulting calibration function

2002/1). This is easily done under the assumption that atmospheric effects can be
neglected if the time difference between the epochs is short. The vertical move-
ment can be calculated by cumulating the height changes but unfortunately the
neglected atmospheric effects are leading to artificial long-term variations. Tests
have shown that the application of a sixth-order high-pass Butterworth filter with a
20-s cutoff period reduces or eliminates these long-term variations without spoiling
the information about the vertical movement induced by short-period waves. The
result is a high-quality wave correction that fits exactly to GPS observation epochs
and positions (Reinking and Härting 2002/2) (Fig. 8.20).

In total, 18 observation campaigns have been conducted during the last few years
using the SHIPS method. The results have clearly demonstrated that the ship’s squat
can be derived with an accuracy of about 2–4 cm by this method. An experiment of
particular interest was carried out in October 2004 at the Rio de La Plata starting in
Buenos Aires on the outgoing journey of the container vessel CAP FINISTERRE.
The Rio de La Plata estuary shows an average depth of 4–5 m but the dredged
approach channel to Buenos Aires has a maintained depth of 10.1 m. Only very few



296 J. Reinking

– 0.5

0.0

0.5

1.0

1.5

52000

time in UTC-sec

sq
u

at
 [

m
]

– 0.5

0.0

0.5

1.0

1.5

sq
u

at
 [

m
]

time in UTC-sec

60000580005600054000 52000 60000580005600054000

Fig. 8.20 Squat results without (left) and with (right) application of GPS-derived heave correction
(La Plata experiment: wave height approx. 1 m)

tide gauges and land-based GPS reference stations are available in this area so that
in this region the SHIPS method is unbeatable.

The experiment was driven up to pilot change at Ensenada on a total trip dis-
tance of about 48 km. Due to technical problems of the escort craft which was
contributed by the Servicio Hidrografia Naval of Argentina, the trial had to stop
before reaching the expected end of the test track at Punta Indio, 130 km away from
Buenos Aires. The outcomes are plotted over GPS time in seconds and presented in
Fig. 8.21 with comparable results from squat calculations using different empirical
formulae.

It can clearly be realized that none of the empirical formulae is able to describe
the squat behaviour correctly; in particular the performance at 59,000 s is com-
pletely ignored by these squat functions. The reduction of speed at this stage

Fig. 8.21 Results from squat experiment on Rio de La Plata
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could be a result of the reduced under-keel-clearance leading to a squat reduc-
tion and not influenced by manoeuvres on board the vessel under investigation.
Dynamic processes similar to this are not predictable by means of simple squat
formulae.

8.3.4.3 Squat and Trim

Taking the results of the above-mentioned experiment and plotting the squat over
the dynamic trim angle, which is not only a result of hydrodynamic forces but also
influenced by pitch and acceleration effects, a clear correlation between squat and
trim can be found (Fig. 8.22).

The present dynamic trim of a ship can be observed in real time by means
of low-cost GPS-phase observations up to an accuracy level of some centimetres.
Consequently, the question arises as to whether it would be possible to observe and
use the dynamic trim as an additional parameter for the improvement of empiri-
cal squat formulae. This question is not easy to answer and needs some additional
investigations, particularly on the interaction between the ship and the detailed
morphology of the waterway.

Future research will have to use 4D modelling of the observations from full-scale
experiments including the detailed seabed structure and the ship’s actual motion to
compare these findings in parts of particular interest with results from complex CFD
calculations.

It is a well-known fact that the squat also depends on the static trim of a ship.
Yet it is not completely understood whether a suitably selected static trim leads to
a reduction of squat or not. Some results from experiments in Germany show that
a positive static trim reduces an additional bow squat for specific ship in particular
waterways (Fig. 8.23).
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Upcoming researches will focus on the question of how the squat can be opti-
mized by a well-chosen static trim. Additional full-scale experiments are foreseen
in which the static trim will be steered in a safe but significant manner. It is envis-
aged to generalize the resulting facts for a group of ships and to set up a set of
rules for static trim recommendations that might be used as a standard on board
a ship.

8.4 Conclusion

Marine geodesy has a very wide scope of work with a large variety of activities. It
has become a nearly independent field of research with relations to many other areas
of geodesy and influences from geology, geophysics, glaciology and navigation. The
results of marine geodesy contribute to numerous fields like politics, economics and
ecology.

We should not forget that all the work done by people involved in marine geodesy
is not only interesting from a scientific point of view but marine geodesy is also a
good business area for geodesists.
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9.1 Background

Determining the range to a satellite in orbit around the earth utilising the technique
of satellite laser ranging (SLR) was pioneered in the early 1960s. The first suc-
cessful ranging experiment was reported in the 3 December 1964 issue of Flight
International (Smith 1964). Dr. Henry H. Plotkin of Goddard Space Flight Centre
led a NASA team to track the Beacon-B (also known as Explorer-22) satellite for
ten successful sessions during the period 11 October to 13 November 1964. A
team from General Electric Co. (Valley Forge, Pennsylvania) also participated from
Phoenix, Arizona. Using a telescope mounted with a ruby laser, expected range
accuracy was about 3 m. Current accuracy is at the level of 1–2 cm.

9.1.1 Introduction

Future applications of SLR were recognised quickly after the initial success, and an
obvious supplementation and future replacement application of SLR involved the
network of Baker–Nunn cameras (Henize 1957), which had an effective limiting
magnitude of about 16 for 30-s exposures (Solomon 1967). These cameras were
used to track satellites and record rocket stages firing amongst other applications.

Results from a series of experiments throughout 1966, at the Smithsonian
Astrophysical Observing Station, Organ Pass, New Mexico, using a pulsed ruby
laser, indicated how lasers may be used to supplement the then worldwide network
of Baker–Nunn cameras in obtaining precise satellite orbits for geodesy and other
purposes (Anderson et al. 1966). The network of cameras was subsequently phased
out during the late 1970s as SLR stations were established during the 1970s. Some
of these decommissioned Baker–Nunn cameras were utilised for other suitable
functions, such as comet hunting and photometry.

The 1960s radar observations of satellites as well as observations using the
Baker–Nunn network allowed station positions to be determined, but these posi-
tions were only accurate to within about 100 m. In order to exploit satellite orbital
information to determine station position accurately enough, so as to enable the eval-
uation of models which calculated dynamic processes of the Earth which affected
station positions such as Earth-tides and plate tectonic motion, the accuracy of SLR
measurements would have to be at the centimetre level. These dynamic processes
displace station positions at the centimetre level from sub-diurnal to continuous
time scales. The success with ranging to the Beacon satellite led to the launch in
1965 of GEOS 1 (Geodetic Earth Orbiting Satellite) by NASA. This satellite was
exclusively designed for geodetic studies and was equipped with SLR reflectors as
well as a radio range transponder, a range and range rate transponder, Doppler bea-
cons and four optical beacons. GEOS 1 was tracked by Smithsonian Astrophysical
Observatory and NASA SLR stations. The array of instrumentation on the satellite
was used to determine three-dimensional station positions with an accuracy of 10 m,
Earth’s gravity field structure and also improvements of the locations and magnitude
of gravity anomalies. In addition, an inter-comparison of the accuracy of the various
systems equipped on the satellite was done.
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Fig. 9.1 LAGEOS, a 60-cm
diameter sphere covered with
426 retroreflectors. Launched
on 4 May 1976, it will remain
in its near circular orbit for
many decades. Source: NASA

Not only is SLR a valuable tool to measure these small centimetre-level station
position variations resulting from geophysical processes, but from early on it pro-
vided important contributions to the development of gravity models of the Earth. For
instance, SLR data from GEOS-1 (20 January 1977 through to 14 December 1978)
were included in gravity model EGM96. Satellite laser ranging is a unique tech-
nique for observing the slow-varying geodynamic processes of Earth and the long
wavelength components of the gravity field and their variation in time; satellites
such as LAser GEOdynamics Satellite (LAGEOS, see Fig. 9.1) (Smith and Dunn
1980) have a very long lifetime and will be studied (and augmented with others) for
many years to come, making it an ideal and stable long-term scientific tool. The SLR
technique is a critical component in establishing an accurate global reference frame
(Tapley et al. 1993). In addition, SLR contributes to an absolute scale factor for orbit
determination, through using LAGEOS ranging data to determine the gravitational
constant (Dunn et al. 1999). As SLR contributes (in conjunction with other tech-
niques) to orbital calibration of satellites equipped with radar altimeters, it has and
is making a valuable contribution to space oceanography (Bonnefond et al. 1995;
Luthcke et al. 2003). New applications are being developed and the regular ranging
horizon is being extended from Earth orbiting satellites to the Moon (one-way tests
have been done to Mars Orbiter Laser Altimeter in 2005), with the launch of the
Lunar Reconnaissance Orbiter (LRO) during 2009, which will be tracked (one-way
ranging) with SLR for orbit calibration purposes (Smith et al. 2006); MOBLAS-6 at
HartRAO will also participate in this historical event.

9.1.2 Basic Principles

The basic principles of SLR are quite simple. Figure 9.2 describes the main com-
ponents of an SLR system. A satellite equipped with a corner cube reflector (or an
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Fig. 9.2 Basic components of a satellite laser ranging system, describing signal paths

array of CCRs) is tracked by an optical telescope which has a sensitive light detector
at its receiving end. In parallel and co-aligned, a transmit telescope emits short laser
pulses at a rate of, say, 5 Hz. The departing laser pulses trigger an interval counter
at a certain time (epoch of data); the laser pulses are reflected and the received laser
light pulses are registered by a sensitive light-detecting device. The detector per-
mits a stop signal to be sent to the interval counter. Utilising these round-trip time
intervals (time-of-flight) and the speed of light, the range is half of this two-way
range. Most SLR systems do require some form of human intervention to operate
successfully. This is basically due to the fact that the combination of mechanical
misalignment, clock offsets, instrumental and orbital biases as well as instrument-
specific requirements creates a situation where the laser might be pointing slightly
off target. The operator then has to make allowance for three offsets: along-track and
cross-track biases, as well as time bias. These offsets are recorded on the computer
and could serve as a starting point for subsequent satellite passes.

Apart from having to point in exactly the correct direction, other adequate con-
ditions concerning laser power level, receiving telescope aperture and atmospheric
conditions amongst others are required to receive successfully photons back from
the satellite CCRs. The success of receiving returns can be estimated by the radar
range equation (Degnan 1993), where the mean number of photoelectrons recorded
by the SLR detector Npe is given by

Npe = ηq

(
ET

λ

hc

)
ηtGtσsat

(
1

4πR2

)2

ARηrT2
a T2

c . (1)
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In (1), ηq is the detector quantum efficiency (the fraction of the total radiation inci-
dent that is actually detected), ET is the pulse power (average power divided by pulse
repetition rate), λ is the wavelength of the laser, h is Planck’s constant, c is the speed
of light in a vacuum, ηt is the efficiency of the transmitter optics, Gt is the transmit-
ter gain, the satellite optical cross-section is given by σsat and R is the slant range
to the satellite. The effective area of the SLR telescope receiving aperture is AR , ηr

is the efficiency of the receive optics, Ta is the one-way atmospheric transmission
and if cirrus cloud (thin, wispy cloud, occurring at altitudes >6 km, composed of ice
crystals) is present, Tc is the one-way transmissivity of cirrus cloud. Slant range can
be calculated (Degnan 1993) using the equation

R = − (RE + hl) cos θzen +
√
(RE + hl)

2 cos2 θzen + 2RE (hs − hl) h2
s − h2

l . (2)

Here the radius of the Earth is given by RE and hl and hs are the altitudes of the
station and satellite above sea level, respectively. The zenith angle of the satellite
(complement of the elevation angle) θzen is as observed from the SLR station. A
general expression for transmitter gain (Degnan 1993), which takes into account the
effects of radial truncation of the Gaussian beam caused by some limiting aperture
(such as the main transmitter primary) and central obscuration (normally caused by
the secondary mirror of a Cassegrain telescope) is given by

Gt = 4πAt

λ2
gt (αt,β, γt, X) . (3)

In (3) the transmitting aperture is given by At = πa2
t and gt (αt,β, γt, X) depends on

geometrical factors such as whether the collimating telescope is perfectly focussed
and whether the target is in the far field of the transmitter. More details are to be
found in Klein and Degnan (1974) and Degnan (1993). Considering MOBLAS-6
and utilising these equations for a clear day with no cirrus clouds present and mak-
ing some assumptions concerning good and bad weather conditions (atmospheric
transmittance of 0.8 and 0.02, respectively), one finds that the maximum number
of received photoelectrons could vary between 641 and 0.04 per pulse. This clearly
illustrates the weather dependency of this technique. The location of an SLR station
is therefore a critical factor; however, this matter seems to have carried less weight
than other factors in the installation of several stations, e.g. collocation advantages
with other space geodetic techniques as was the case with installing MOBLAS-6 at
Hartebeesthoek Radio Astronomy Observatory in South Africa. If there are no other
compelling reasons, a site with minimum cloud and high atmospheric transparency
will yield better results and more data than an inferior site and should be given
preference.

In Fig. 9.2, a very important subsystem is the frequency standard; this unit as well
as the time and frequency distribution throughout the other subsystems of the SLR
is extremely important. An example will make this clear; the velocity of a satellite
frequently used for different applications of SLR, LAGEOS, during a test analysis
of a 1-day arc (∼6.3 orbital revolutions) indicated a minimum velocity of 5,645 m/s
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and a maximum velocity of 5,806 m/s. This means that a timing precision of 1.7 ×
10−7 or 0.17 μs is required to register the epoch of the observation. If the accuracy,
i.e. how close the timing value is to the real value, is not exact, a small time bias
can develop as the epoch of the observation can then be either too late or too early.
Generally, SLR station time bias values are at the few microseconds level, and this
is normally detected during post-analysis of the tracking data and corrected during
the analysis. With regard to determining the range to the satellite, the velocity of
light

(∼ 3 × 108 m/s
)

gives one a two-way range precision of 0.15 mm/ps (ps =
picosecond), so that in order to reach a few millimetres, a precision of at least 20 ps
should be reached.

Currently, the objective of the SLR community is to reach millimetre accuracy in
ranging, indicating that an improvement factor of 10 will be required. Therefore new
systems, e.g. the 1-m SLR/LLR system being developed by HartRAO (South Africa)
in collaboration with OCA (France), will require timing systems (event timer or
interval counter) with 1- to 2-ps precision. This is a very demanding requirement;
even so, several high-precision timing systems are being developed which approach
these accuracies (Artyukh 2007).

9.2 Range Model

Armed with the short background material of the previous section, this section will
describe how the real range to the satellite can be determined. Table 9.1 gives a
good overall view of some of the accuracies and precisions to be found in a modern
SLR station. An average of 6- to 9-mm precision is achieved to a single CCR, 7- to
12-mm single-shot precision (1–3 mm for a normal point) for a geodetic satellite,
with overall accuracy at 8–18 mm, i.e. ∼1–2 cm. Normal points are made from
a number of single shots, according to ILRS-prescribed guidelines; MOBLAS-6
averages about 66 shots (data points) per NP for LAGEOS. Limitations of space in
this chapter preclude the discussion of all factors involved at great depth, but some
of the issues involved in determining the range between the SLR station reference
point and the satellite being tracked will become clear. The LAGEOS satellites will
be used as example; principles involved will be more or less the same for other
satellites.

An SLR station provides data in a specific format, as agreed to from time to
time by the International Laser Ranging Service (ILRS) community (Pearlman
et al. 2002). These data are uploaded to data centres and are consequently utilised
to determine the range to a satellite; the ranges can then be used in a modelling
process to estimate other parameters (Earth orientation, station position, grav-
ity coefficients, etc.). The ranging data basically consist of information such as
satellite identification number, system-specific details such as wavelength of laser
(532 nm in case of MOBLAS-6), calibrated system delay (two way in picoseconds),
pass RMS (picoseconds) and epoch of laser firing in 0.1-μs units. Included is the
main observable which is the two-way time-of-flight corrected for system delay in
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Table 9.1 Laser ranging error budget for the French SLR stations at the turn of the century.
These values are still representative of most modern SLR stations. Adapted from Exertier et al.
(2000)

Origin Precision (mm) Accuracy (mm)

Laser 4–5
pulse 1
width 4–5

Detector 3–6
start 1–3
return 3–5

Timer 2–3
Clock 1–2
Calibration 1 2–6

geometry 1–2
electronic 1–4

Depend. (Az, El) 1–3
Instrument 6–9 2–6
Atmosphere 3–5 5–8

pressure 1–2
temperature 1
humidity 4–5

Target signature
LAGEOS (COM, etc.) 1–3 1–3
Single shot 7–12
Normal point 1–3 8–18

picoseconds. Other data are required to model the atmosphere and are also recorded,
such as surface pressure, temperature and humidity. Raw ranges (taken at the trans-
mit rate of the SLR, 5 Hz in the case of MOBLAS-6) are compressed to form a
normal point.

The normal point (NP) data at a given epoch is taken here as the point of depar-
ture. This NP is converted easily to a normal point range in metres using the equation

NPRi =
(

NPtofi

1 × 1012
× c

)/
2 (m), (4)

where NPtofi is the normal point time-of-flight (picoseconds) recorded at a cer-
tain epoch and c is (Kaplan 2005) the velocity of light (299,792,458.0 m/s). The
range found in (4) needs to be corrected by taking into account the effects of the
atmosphere (�ai in (5)), the centre-of-mass correction (CoM) of the satellite (0.251
m for LAGEOS 2), SLR station range bias and a relativistic correction. A range
equation (5) can then be written as

NPRi =
(

NPtofi
1 × 1012

× c

)/
2 − �ai + �CoMi − �Rbi − �GRi − �εi, (5)
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where NPRi (m) is the normal point range, i.e. the observed range. The centre-of-
mass correction is �CoMi and the range bias, general relativity correction and a
correction for unknown random errors are �CoMi, �Rbi and �εi, respectively.
In Sect. 9.4 this observed range per normal point will be utilised to calculate the
observed–calculated (O–C) residuals as part of the SLR data analysis process.

9.2.1 Atmospheric Delay Correction

At laser (optical) wavelengths the troposphere is dispersive and a correction for an
additional delay due to the troposphere must be made. An often-used correction
for atmospheric delay is given by Marini and Murray (1973). A modification of
this approach is implemented by Mendes et al. (2002), which implements newly
derived mapping functions for optical wavelengths, using a large database of ray
tracing radiosonde profiles. These functions are optimised for a wavelength com-
monly used in SLR systems (532 nm) and are valid for elevation angles greater than
3◦, if one neglects the contribution of horizontal refractivity gradients. Typical SLR
data processing rejects data captured below a certain specified elevation, and soft-
ware generally makes provision for a variable setting for rejection of data below any
selected elevation. Rejecting data at low elevation will however reduce the geomet-
rical strength of the measurements and increase the correlation between errors in the
vertical coordinate and measurement biases.

At low elevations, this delay can be large (several metres), and therefore the
model used for correcting the range should be very accurate. A current atmo-
spheric delay model (Mendes and Pavlis 2004), adopted in October 2006 by the
Analysis Working Group of the ILRS, which is also used in the SLR Data Satellite
Analysis Software package developed at HartRAO (Combrinck and Suberlak
2007), makes provision for the different laser wavelengths used by current SLR
equipment.

In order to demonstrate the model by Mendes and Pavlis (2004), Fig. 9.3 is a
plot of atmospheric delay as a function of elevation for a 7-day arc of 11 SLR sta-
tions. Laser wavelengths at 423, 532 and 846 nm and a range of relative humidity,
pressure and temperatures at ground level are represented, creating a band of cor-
rections. Elevation cut-off was set at 15◦, at which corrections are more than 8 m.
The importance of accurate atmospheric modelling cannot be overstated and is an
active area of research to improve accuracies. Two-colour lasers could be used to
determine the delay in a similar way as dual frequency GNSS, DORIS and VLBI is
used, but this is still in an experimental stage.

The atmospheric delay in the zenith direction (McCarthy and Petit 2003, 22 June
2007 update) experienced by the laser can be described by

d z
atm = d z

h + d z
nh = 10−6

∫ ra

rs

Nh dz + 10−6
∫ ra

rs

Nnh dz, (6)
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Range increase due to atmospheric delay
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Fig. 9.3 The increase in range due to atmospheric delay, based on Mendes et al. (2002) and
Mendes and Pavlis (2004), is the largest correction in the range model

when divided into hydrostatic
(
dz

h

)
and non-hydrostatic

(
dz

nh

)
components. In (6) the

total group refractivity of moist air is denoted by N = (n − 1) × 106, n is the total
refractive index of moist air, the hydrostatic (termed dry as it results from refractivity
of dry gases in the troposphere, although it contains the non-dipole component water
vapour refractivity) and non-hydrostatic (wet) components of the refractivity are
given by

(
d z

h

)
and

(
d z

nh

)
, respectively. The geocentric radius of the laser station is

rs, while ra is the geocentric radius of the top of the neutral atmosphere; d z
atm and dz

have length units.
Mendes and Pavlis (2004) provide closed-form expressions to enable calculation

of the zenith delay. The zenith hydrostatic component (in metres) is given by

d z
h = 0.002416579

fh (λ)

fs (φ, H)
Ps, (7)

where Ps is the surface barometric pressure (normally accurate to 0.1 hPa). The
dispersion equation fh (λ) in (7) for the hydrostatic component is provided as

fh (λ) = 10−2 ×
[

k∗
1

(
k0 + σ 2

)
(
k0 − σ 2

)2 + k∗
3

(
k2 + σ 2

)
(
k2 − σ 2

)2
]

Cco2 , (8)

where in (8), k0 = 238.0185 μm−2, k2 = 57.362 μm−2, k∗
1 = 19, 990.975 μm−2

and k∗
3 = 579.55174 μm−2.

The wave number σ = λ−1, with the wavelength λ in micrometres.
Following IAG recommendations, a CO2 content (xc) of 375 parts per million

(ppm) should be used, so that parameter Cco2 in (8) is given by

Cco2 = 1 + 0.534 × 10−6 (xc − 450) = 0.99995995. (9)

The denominator function of (7) for the zenith hydrostatic component is
given by

fs (φ, H) = 1 − 0.00266 cos 2φ − 0.00000028H, (10)
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with φ being the geodetic latitude of the SLR station and H its geodetic height in
metres. Considering the non-hydrostatic component d z

nh, in metres, the equation

d z
nh = 10−4 (5.316 fnh (λ) − 3.759 fh (λ))

es

fs (φ, H)
(11)

is given where es is the water vapour pressure at the surface, which can be calculated
from the relative humidity and temperature (in degree Celcius) as

es =

[
6.1078 ×

(
7.5 × t

237.3 + t

)10
]

× RH

100
. (12)

Equation (12) includes relative humidity RH as a percentage. In (11) the dispersion
formula for the non-hydrostatic component can be determined by

fnh (λ) = 0.003101
(
ω0 + 3ω1σ

2 + 5ω2σ
4 + 7ω3σ

6
)

, (13)

with ω0 = 295.235, ω1 = 2.6422 μm2, ω2 = −0.032380 μm4and ω3 =
0.004028 μm6. Once the total atmospheric delay in the zenith direction has been
calculated, it needs to be mapped to the elevation at which the laser beam is being
fired towards the satellite which is being tracked.

As the contribution to atmospheric refraction by water vapour is relatively small
(at laser wavelengths) compared to the total refraction, a single mapping function
can be used for SLR purposes (McCarthy and Petit 2003), so that the atmospheric
delay in the direction of ranging datm is given by

datm = d z
atm · m (e) , (14)

where d z
atm is the total zenith propagation delay and m(e) is the total mapping func-

tion (MF). The MF by Mendes et al. (2002) is based on a truncated form of the
Marini (1972) continued fraction in terms of 1

/
sin (e), normalised to unity. Until

quite recently (at least until 2005), the Marini and Murray (1973) formulation for
atmospheric delay was the IERS recommended standard for SLR. Mendes et al.
(2002) provide the formulation where m(e) is given as

m(e) =

1 + a1

1 + a2

1 + a3

sin e + a1

sin e + a2

sin e + a3

. (15)

Incorporating the values in Table 9.2 for the coefficients ai (i = 1, 2, 3), using the
formulation for ai as

ai = ai0 + ai1ts + ai2 cosφ + ai3H, (16)
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Table 9.2 Coefficients for
FCULa (Mendes et al. 2002) aij Coefficients

a10 0.00121008
a11 1.7295e–6

a12 3.191e–5

a13 –1.8478e–8

a20 0.00304965
a21 2.346e–6

a22 –1.035e–4

a23 –1.856e–8

a30 0.068777
a31 1.972e–5

a32 –0.003458
a33 1.06e–7

where ts is the temperature logged at the SLR station in degree Celcius (contained
in normal point data file) and H is the station height in metres, it is then possible
to make the atmospheric delay correction for the SLR range. As example, utilising
the delay model described in this section, at a laser wavelength of 532 nm, relative
humidity of 40%, pressure of 983.8 mb, a temperature of 29.41◦C, an elevation
change from 45.1 to 45.2◦ creates a decrease in range delay correction from 3.363 m
to 3.357 m, i.e. a total of 6 mm with a 0.1◦ step in elevation.

9.2.2 Centre-of-Mass Correction

When the laser pulse reflects off the front face of the satellite, e.g. LAGEOS, there is
still some distance from the face to the centre-of-mass point. The point of reflection
is not clearly defined either, so that the reflected pulse is a convolution of the returns
from the individual CCRs, each of which exhibits a different cross-section. The laser
pulse therefore arrives at slightly different times (related to the planar wavefront
first reaching the nearest CCR) at each individual CCR, which causes a broaden-
ing (about twice the 200-ps pulse length of MOBLAS-6) of the received pulse. In
addition, a random phase delay is introduced by the differential delay between the
individual CCRs, which could cause target “speckle”. Such a speckle effect will
occur if the temporal profiles from the CCRs overlap when received by the SLR
detector, causing a random interference pattern (and random intensity) between the
electric fields. This delayed return process is described very well in Degnan (1993),
where it is assumed that, on average, the return waveform behaves as if the CCR is
an incoherent source, so that the interference effect is ignored. Here we will discuss
only the essentials required to understand the centre-of-mass correction required for
our range model, using Fig. 9.4 as point of departure.

Following Degnan (1993), Fig. 9.4 describes some quantities necessary to dis-
cuss satellite impulse response; again we assume LAGEOS as an example of a
typical geodetic satellite. A CCR’s reflection centre is given by Arnold (1978) as
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Fig. 9.4 Sketch of typical
geodetic satellite such as
LAGEOS, defining
parameters required to
discuss satellite impulse
response. Adapted from
Degnan (1993)

�R (θinc) = nL

√
1 −

(
sin θinc

n

)2

= nL cos θref, (17)

where �R (θinc) is taken as the distance between the centre of the CCR’s front face
to the reflection point Pr, the vertex of the CCR to its front face distance is denoted
by L, the refractive index of the CCR material is n, the angle of incidence is θinc
and the corresponding refraction angle is θref. The reason for the broadening of the
received pulse is clearly illustrated in Fig. 9.4 by the distance δR−nL, which can be
ascribed to the fact that CCR2 is located at an incident angle θinc to the laser pulse,
which results in a time delay (Degnan 1993) �t (θinc), where

�t (θinc) = 2

c
{Rs − [Rs − �R (θinc)] cos θinc}

= 2Rs

c

{
1 − cos θinc

[
1 − nL

Rs
cos θref

]} (18)

compared to CCR1 where θinc = 0. In (18), with reference to Fig. 9.4, Rs is the
radius of the satellite (0.298 m in the case of LAGEOS). Utilising this simple model
it is then possible to determine an average (basically the convoluted response on
a short laser pulse) satellite temporal response through the addition of the returns
from each of the CCRs.

This is described in detail by Degnan (1993) and here we will therefore continue
to the result, which finds that if a centre-of-mass correction is calculated from the
centre of the impulse response profile, a value 250.2 mm is obtained for LAGEOS.

This is in good agreement with the current ILRS accepted value for a wavelength
of 532 nm, which is 251 mm as determined by Otsubo and Appleby (2003). The
ILRS maintains a web page which lists appropriate corrections for different SLR
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LAGEOS Centre of Mass correction as a function of 
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Fig. 9.5 ILRS recommended centre-of-mass (CoM) corrections for LAGEOS vs. laser pulse
length

stations; these data can be incorporated as a set-up file for analysis software. The
value quoted for MOBLAS-6 is 247 mm.

The 251 mm is an average value, as the returned signal will always be a convo-
lution of the individual returns from the satellite, and slight deviations of ±2 mm
will occur during actual ranging as LAGEOS rotates and therefore changes the inci-
dent angles θinc of the laser pulse. The deviation from 251 mm could be affected
by station-specific parameters such as type of detector, laser frequency and pulse
length and transmit power.

In Fig. 9.5 the data for CoM corrections as published on the ILRS website are
plotted as a function of laser pulse length, capturing the 251 mm as a constant in
the equation of the line. In general, a shorter pulse length requires a larger CoM
correction, with the exception of Herstmonceux when operating at 1 kHz and 10-ps
pulse length and when operating at Hertz level and 100-ps pulse length, causing
two outliers and distortion of the function. The complexity of CoM is illustrated
in Fig. 9.5; many different factors contribute to making up the CoM correction for
a specific station. This plot is generated from LAGEOS_CoM_Table_081023.pdf,
source: http://ilrs.gsfc.nasa.gov/docs/.

9.2.3 SLR Station Range and Time Bias

An additional correction to the range which has to be incorporated is the station
range bias. This station range bias is a bit open to interpretation and differ-
ent implementation. Most of the time, it would be more correct to use the term
computationally determined range bias and in fact does not always refer to a real
station-dependent error.

On the long term, averaged over several months, independent range biases from
different processing centres should agree at some level. Short arc range bias, how-
ever, could be problematic due to the correlation between range bias and station
position, especially the vertical coordinate. A positive range bias (say +5 mm) means
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the range measured is too long and should be subtracted. A time bias of 5μs means
the epoch of registering the observation is 5μs late and should be subtracted from
the NP time tag.

Heuristically speaking, range bias should be a station-dependent error; therefore
it should be due to some non-linearities in the interval counter (creating a non-
linear bias) or errors in the barometric pressure, temperature and relative humidity
sensors (these last three parameters affecting atmospheric delay modelling). The
determined station position (ITRF point), an error in system delay, an error in the tie
(eccentricity) between the station coordinate reference point and the SLR telescope
reference point could be added to the range error budget.

Unstable calibration targets can produce induced range biases between passes, as
the apparent calibrated “system delay” determined by pre- and post-system calibra-
tions will be affected. Typical rms values for MOBLAS-6 obtained while calibrating
the SLR system using reference piers equipped with CCRs are ∼0.4 cm. Husson
(1993) reports other factors as well, such as insertion of neutral density (ND) filters,
which could induce systematic biases of 1–2 mm.

Another example quoted by Husson (1993) is range bias of several millimetres
due to signal strength issues. This effect is due to the fact that the length of the pulse
is related to the range in that, when the return signal is weak, the probability of
detection is a function of the total pulse width. This signal strength variation-induced
bias varied from pass to pass and had slight elevation dependence, low-elevation
data being biased longer by some millimetres than higher elevation data. The effect
of signal strengths was reduced after calibration techniques were improved and a
new photo multiplier was installed.

The telescope reference point is determined by the intersection of the telescope
axes (if XY mount) or the axis offset and its right-angle projection from the elevation
axis onto the azimuth axis (if an Az–El mount). Site and system calibration should
find any systematic or other errors to millimetre accuracy. The SLR eccentricity
is supposed to be accurate within 1 mm; however, this is very difficult to achieve
in practice. One can therefore assume that most, if not all, SLR stations have a
small bias between the fixed to bedrock reference marker (the ITRF reference point)
and the virtual SLR system reference point (eccentricity). Nevertheless, one also
assumes that all effort was undertaken to determine these different distances and
offsets as accurately as possible.

When processing the normal point data from a station, the station reference point
in the ITRF (at a certain epoch, say ITRF2005) plus an adjustment for station veloc-
ity due to tectonic plate motion is taken as the observation epoch. This adjustment
is approximated by

Xoe = XI + ((OMJD − ITRFMJD) /365.25) × �Xyr,

Yoe = YI + ((OMJD − ITRFMJD) /365.25) × �Yyr,

Zoe = ZI + ((OMJD − ITRFMJD) /365.25) × �Zyr.

∣∣∣∣∣∣∣
(19)
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In (19) Xoe, Yoe, Zoe are the station reference coordinates at observation epoch,
XI , YI , ZI are the station reference coordinates in the ITRF at the particular ITRF
epoch, OMJD is the epoch of observation, ITRFMJD is the ITRF epoch, (say both in
modified Julian day for computational convenience) and �Xyr,�Yyr,�Zyr are the
site velocities determined in the ITRF. This is a linear approximation and does not
take into account rotation of the tectonic plate; this can be accommodated by includ-
ing a factor for angular rotation. If processing centres utilise different ITRF epochs
or velocities, range bias differences will result.

During processing, an attempt will be made to determine the small offset due
to any one or combination of the above-mentioned errors. This can be done in
various ways; for instance, it can be estimated as a solve-for parameter during a
least-squares adjustment of the observed–computed residuals. It is very difficult to
separate the range bias from station position related errors if the tracking data are
not sampled uniformly across the sky, i.e. from horizon to horizon. Sometimes oper-
ators track a satellite when it comes into view, but switch over to another satellite
before the satellite has moved past its zenith point.

As an example, if the satellite was moving towards the observer, and there is a
negative range bias of say –5 mm, assuming the vector from observer to satellite
is biased by a 5-mm positional error, the ranging would indicate first short, then
too long after the satellite passed zenith. The ±5 mm could help indicate positional
error. If the operator switched to another satellite or stopped tracking for a lunch
break, only a short range would be recorded, as if there were a constant negative
bias. The range bias is also related to the station time bias, which exists due to the
small (microsecond) offset between true time (UTC) and station time (UTC + offset)
and any uncalibrated instrumental phase delays.

Figure 9.6 illustrates the concepts of range and time bias. If a complete pass is
available, enough information exists to determine slopes, fit slope parameters, etc.;
otherwise the results are FTb and FRb, false time and range biases. The determina-
tion of range biases is also absorbed into the analysis process and will be different
for alternative analysis software and even different for alternative a priori conditions
for the same software. It is easy to see why; range bias is also dependent on the
computed orbit, and the assumptions made to compute the propagation of this orbit;
these assumptions include pre-set solve-for parameters, their a priori estimates and
errors, gravity model used and a vast number of alternative processing strategies.

It is therefore no wonder that, for the same SLR stations, tracking the same
satellite, i.e. for the same data, different and sometimes opposite sign values are
determined by processing. Determining Rb utilising the NP tracking data is there-
fore not so straightforward. Apart from solving for it by adding it to the number
of solve-for parameters, it can be done quite easily pass by pass or arc by arc by
obtaining the average observed–computed (O–C) residuals per station. It can also
be obtained by fitting high-order polynomials to the observed and calculated ranges
and calculating the difference at minima. This value so obtained can be re-inserted
into the least squares process or into whatever adjustment procedure is used. The
time bias Tb can be obtained from the slopes of the observed and calculated ranges.
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Fig. 9.6 The concept of
range and time bias
illustrated. It is clear that a
complete pass, i.e. ascending
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of pass, is preferable when
trying to estimate either a
range or a time bias. Short
passes lead to erroneous
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Care needs to be exercised, however, to avoid erroneous values being fed back
into the solution. For instance, if less than 8 NPs have been collected for a pass,
the HartRAO SDAS software does not estimate a time bias, as the polynomials that
fit to the observed and computed ranges cannot capture the true slope with partial
information. The recording and characterisation of the ILRS network biases is a
necessary and arduous task; it is critical to the analysis of SLR data if millimetre
accuracy is to be achieved. To this extent, the ILRS has developed a standard SINEX
(Software INdependent EXchange) format for documenting biases.

9.2.4 Relativistic Range Correction

This is the last correction to the range to be discussed; it is at the level of range bias
corrections and is about 7 mm for LAGEOS. The correction is described in IERS
(2003) in detail. Following IERS (2003):

t2 − t1 = |�x2 (t2) − �x1 (t1)|
c

+
∑

J

2GMJ

c3
ln

(
rJ1 + rJ2 + ρ

rJ1 + rJ2 − ρ

)
, (20)

where t2 − t1 is the total time delay when a laser pulse at coordinate x1 is transmit-
ted at time t1 and the return pulse is received at coordinate x2 at time t2. In (20),
rJ1 = ∣∣−→x1 − −→xJ

∣∣ , rJ2 = ∣∣−→x2 − −→xJ
∣∣ and ρ = ∣∣−→x2 − −→x1

∣∣ is the range. In this for-
mulation the sum is carried over all bodies J with mass MJ centred at xJ. Following
Ries et al. (1988), in the case of SLR the only body to be considered for near-Earth
satellites is the Earth, as analysis is done in the geocentric frame of reference. In
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practice, ρ is the range between receiver and transmitter before the correction for
relativity is applied, but after the other corrections have been applied.

9.3 Force and Orbital Model

There are many applications of SLR data, and most are dependent on ILRS products
such as SLR station position and velocities in the International Terrestrial Reference
Frame, Earth orientation parameters (length of day and polar motion), coefficients
of Earth’s gravity field and their variation in time and highly accurate (within cen-
timetres) satellite ephemerides. Some of the applications are in fields other than
space geodesy, which illustrate the diverse and multidisciplinary fundamental sup-
port to science provided by SLR. As an example, the current international scientific
agenda to support long-term studies which relate to Earth system change (ocean
levels, global climate, etc.) is supported by SLR products as it supports the monitor-
ing of the Earth system by providing orbital calibration of remote sensing and other
satellites.

The SLR products also support studies of the three-dimensional deformation of
the solid Earth, measurement of the variation in Earth’s liquid volume (ocean cir-
culation, mean sea level, ice sheet thickness) amongst a list of applications. Other
applications such as intercontinental time transfers, T2L2 (time transfer by laser
link) using SLR, initiated by the Observatoire de la Côte d’Azur (France) are being
developed (Vrancken et al. 2008) which will improve the synchronisation of remote
clocks on Earth by at least an order of magnitude. This technique is based on the
propagation of light pulses in space which is better characterised than propagation
of radio waves.

9.3.1 Introduction

Several scientific software packages are in use by the scientific community to
analyse SLR data and perform precise orbit determination (POD) and geodetic
parameter estimation. Notable amongst these are GEODYN II (Pavlis et al. 1999),
developed at NASA Goddard Space Flight Centre (GSFC), which is a bench-
mark software for POD, and a commercial version of GEODYN II, MicroCosm R©,
a very comprehensive high-precision orbit and geodetic parameter determination
software system (http://www.vmsi-microcosm.com). Other software such as the
SATellite ANalysis (SATAN) software (Sinclair and Appleby 1986) developed at
Royal Greenwich Observatory, Herstmonceux, is being utilised for SLR analysis
and POD.

These and other POD packages are constantly being developed and expanded
to include new models and new applications. HartRAO has been developing an
SLR POD and geodetic parameter estimation software package (named SLR Data
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Analysis Software, SDAS), which uses SLR data through a development and exten-
sion of the spaceflight dynamics library provided by Montenbruck and Gill (2001)
of the Deutsches Zentrum für Luft- und Raumfahrt (DLR), Germany.

9.3.2 Orbital Modelling

This chapter can only devote minimal space to force and orbital modelling, so this
section is brief, and will concentrate more on the adjustments and compensations
required that will minimise the O–C residuals than on orbital propagation methods
and techniques. Nevertheless, it will hopefully provide a quick glance at some of
the main issues involved.

9.3.3 Force Model

A satellite orbiting a spherical Earth undergoes acceleration as described by
Newton’s law of gravity:

�̈r = −GM⊕
r3

�r, (21)

where �̈r is the acceleration in a geocentric reference frame (the fraction −�r/r in (21)
is the unit vector from the satellite to the geocentre), GM⊕ is the product of Earth’s
gravitational constant and its mass, �r is the position vector of the satellite and r is
the geocentric range given by

√
(�r · �r). Due to the fact that Earth is not spherical and

that there are many different forces acting on the satellite and thereby affecting its
orbit, one has to model these forces and account for them in the orbital calculations.
Equation (21) can therefore be expanded to

�̈r = −GM⊕
r3

�r + �f , (22)

where (following and extending the notation of Tapley et al. 2004) the perturbing
force �f is made up of a range of forces acting on the satellite:

�f = �fNS + �fTC + �f3B + �fg + �fDrag + �fSRP + �fERP + �fother + �fEmp. (23)

In (23) �fNS is the force resulting from the uneven mass distribution on the earth and is
found from the gradient of the gravitational potential U; it also includes the variation
of Earth’s mass distribution due to ocean and earth-tides. In addition to the static
gravity field, the contribution of the temporal variations of the static gravity field
is included in �fTC. A three-body (n-body) perturbation caused by the gravitational
forces from the Moon, Sun and planets are denoted by �f3B, the effects of general
relativity is accommodated by �fg, �fDrag is the drag caused by the atmosphere, �fSRP is
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the solar radiation force contribution, �fERP is the earth radiation pressure and �fOther
contains other forces such as thermal, satellite rotation-dependent effects. Empirical
corrections, normally expressed in a local frame, split into radial, tangential and
normal (RTN) components are denoted as �fEmp. In the following sections, a brief
discussion of these perturbing forces is made; the literature contains adequate and
in-depth discourses (cf. Hoffman-Wellenhof and Moritz 2005), so only essentials
are discussed here following the notation of Tapley et al. (2004) for convenience.

9.3.3.1 Gravitational Perturbations
(�fNS

)

The gravitational potential between two point masses can be described by

U = GM1M2

r
, (24)

where r is the distance between the two masses. Using the gradient of U, one can
obtain the gravitational force on M2:

�F = ∇U = −GM1M2�r
r3

, (25)

where �r = x�ux + y�uy + z�uz is the position vector of M2 in relation to M1, and
∇ = ∂

∂x �ux + ∂
∂y �uy + ∂

∂z �uz. Here �ux, y�uy and z�uz are unit vectors.
Considering the gravitational potential U(Tapley et al. 2004) affecting a point

mass, m′, at a location external to a body M, with M having an arbitrary mass
distribution and being modelled as a collection of point masses, one can write

U = m′
∫∫∫

Gγ dx dy dz

ρ
, (26)

with γ representing the mass density of mass element dm, the differential volume
is dx dy dz, ρ is the distance between dm, and m′. The potential as per (26) can be
written in compact form if the external mass is taken as unity so that m′ = 1 and the
integral notation is taken to be over the complete mass of the body so that

U =
∫
M

G dm

ρ
. (27)

Equation (27) can then be written as an infinite series:

U = G

r

∫
M

∞∑
l=0

(
R

r

)l

Pl (cos S) dm, (28)

with the distance between the origin of the total mass M and the differential mass
dm denoted by R. The Legendre polynomial of degree l is Pl. The argument of Pl is
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cos S, where S is the angle between the vector �R(origin to dm) and �r(origin to m′).
In order to evaluate the integral of (28), the Legendre polynomial can be expanded
into spherical harmonics:

U = μ

r
+ U′,

U′ = − μ∗

r

∞∑
l=1

(ae

r

)l
Pl (sinφ) Jl

+ μ∗

r

∞∑
l=1

l∑
m=1

(ae

r

)l

Plm (sinφ) [Clm cos mλ + Slm sin mλ] .

(29)

In (29), m′ has spherical coordinates (r,φ, λ) , which can be written as

x = r cosφ cos λ,
y = r cosφ sin λ,
z = r sinφ,

(30)

where the (x, y, z) system is fixed in the body at its origin O. In (29), a reference
distance ae and reference mass (μ∗ = GM∗) are included ( M∗ is the mass of the
Earth in our case) as scale factors to non-dimensionalise Clm and Slm, the mass
coefficients. Legendre’s associated functions are denoted by Plm of degree and order
l and m , respectively. The spherical harmonic coefficients Jl, Clm and Slm represent
mass properties of the body. Coefficients that describe the part of the potential that
does not depend on longitude are called zonal coefficients, and these are related to
Cl,m through the relation Jl = −Cl,0. Tesseral harmonics refer to Clm and Slm with
l 
= m and the coefficients are termed sectorial harmonics if l = m. The geopotential
coefficients vary over a large range of ten or more orders of magnitude. In order to
cope with this, the coefficients can be normalised, so that they are more of the same
magnitude. Gravity models commonly used for SLR such as the GRACE model
GGM02 (Tapley et al. 2005) are published in normalised format. The normalised
coefficients are defined as (Montenbruck and Gill 2001)

{
C̄lm

S̄lm

}
=
√

(l + m)!
(2 − δ0m) (2 l + 1) (l − m)!

{
Clm

Slm

}
. (31)

If normalised coefficients are used, a normalised set of Legendre functions must
be used. In the HartRAO SDAS software, the normalised coefficients are converted
back to unnormalised coefficients; modern computers and compilers do not have
a problem in processing the large range of numbers. Since the degree one terms
(J1, C11 and S11) are directly related to the offset from the origin O to the centre
of mass of the body, in the case of geocentric coordinate systems such as commonly
used in SLR POD, the degree one terms are zero. When the z axis is aligned with
the maximum moment of inertia, then C21 = 0 and S21 = 0. If we assume that m′
represents a satellite one can write (Tapley et al. 2004)
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�̈r = ∇U = −GM⊕
r3

�r + �f NS, (32)

as m′/M is very small. In (32) the force contribution by non-spherical terms are
presented by f NS, i.e. ∇U′. If the acceleration term is expressed in body-fixed and
the gravitational potential in spherical coordinates we have

∇U = ∂U

∂r
�ur + 1

r

∂U

∂φ
�uφ + 1

r cosφ

∂U

∂λ
�uλ, (33)

where the gradient gives force components in spherical coordinates. These can be
rotated via a coordinate transformation into (x, y, z) components using

Txyz
rφλ =

⎡
⎣ cosφ cos λ − sinφ cos λ − sin λ

cosφ sin λ − sinφ sin λ cos λ

sinφ cosφ 0

⎤
⎦ . (34)

If one wants to provide �̈r in a non-rotating system, then an additional transformation
is required, e.g. if the two axes Z and z coincide and need to be rotated through an
angle α, the required transformation is

T XYZ
xyz =

⎡
⎣ cosα − sinα 0

sinα cosα 0
0 0 1

⎤
⎦ . (35)

Therefore, the portion of the perturbing force contributed by the mass distribution
of Earth is written as (Tapley et al. 2004)

�f NS = T XYZ
xyz Txyz

rφλ∇U′, (36)

if �r is in the non-rotating system (X, Y , Z) . In practical terms, as most calculations
during POD estimation are done in an inertial reference system, complex transfor-
mations need to be made to transform from the Earth-fixed geocentric system as
described here to the J2000 Earth-centred-inertial (ECI) system.

If Txyz
XYZ is the transformation matrix from J2000 to Earth-fixed, then

⎡
⎣ x

y
z

⎤
⎦

ECF

= Txyz
XYZ

⎡
⎣X

Y
Z ECI

⎤
⎦ , (37)

where the transformation matrix can be expanded into

Txyz
XYZ = WS′NP, (38)

where P applies precession from a specified epoch to current time, N applies nuta-
tion to the current time, S′ applies the rotation to allow for sidereal time and W
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applies polar motion to align the true pole (z axis) with the pole of the ECF system.
These matrices are described in detail in Tapley et al. (2004), Montenbruck and Gill
(2001), Kaplan (2005) and McCarthy and Petit (2003).

9.3.3.2 Temporal Changes of the Gravity Field
(�fTC

)

Gravitational forces from the Sun and Moon result in a time-varying change of the
shape of Earth; changes to the solid body are termed Earth-tides and the response
of oceans due to lunisolar tidal perturbations we know as ocean-tides. In addition,
the contributions of the solid Earth pole-tide and ocean pole-tide can be considered,
which we will not discuss here; a description can be found in McCarthy and Petit
(2003). These shape deformations of the earth modulate the static gravity field.

Changes resulting from solid Earth-tides can be modelled as variations in the
standard geopotential coefficients Clm and Slm(Eanes et al. 1983; Montenbruck and
Gill 2001; McCarthy and Petit 2003). Corrections to the unnormalised geopotential
coefficients can be calculated using the formulation (Sanchez 1974; Montenbruck
and Gill 2001)

{
�Clm

�Slm

}
= 4kl

(
GM

GM⊕

)(
R⊕
s

)(l−1)
√

(l + 2) (l − m)!3
(l + m)!3 Plm (sin θ)

{
cos (mλ)

sin (mλ)

}
,

(39)
where kl are the Love numbers for a given degree l. The distance to the tide gen-
erating body is s, R⊕is the geocentric radius of the Earth (6,378.1366 km), the
Earth-fixed latitude and longitude of the disturbing body is φ and λ, respectively.
A detailed description of the computations required can be found in McCarthy and
Petit (2003).

In addition to the solid Earth-tides, ocean-tides need to be accounted for; both
these effects on the static gravity field are complex and suffice it to say that the
ocean-tide contribution can be incorporated in the normalised coefficients by spher-
ical harmonic expansion of an ocean-tide potential (Eanes et al. 1983; Montenbruck
and Gill 2001; McCarthy and Petit 2003):

{
�Clm

�Slm

}
= 4πGR2⊕ρw

GM⊕
1 + k′

l

2 l + 1

⎧⎪⎪⎨
⎪⎪⎩

∑
s(l,m)

(
C +

slm + C−
slm

)
cos θs + (S+

slm + S−
slm

)
sin θs

∑
s(l,m)

(
S+

slm + S−
slm

)
cos θs + (C+

slm + C−
slm

)
sin θs

⎫⎪⎪⎬
⎪⎪⎭

,

(40)
where k′

l
(
k′

2 =−0.3075, k′
3 =−0.195, k′

4 =−0.132, k′
5 =−0.1032, k′

6 =−0.0892
)

are the load deformation coefficients and ρw is the density of seawater(
1, 025 kg m−3

)
. Ocean-tide coefficients (m) for the tide constituent s are

denoted by C±
slm and S±

slm. The argument of the tide constituent s as defined in
the solid tide model presented in McCarthy and Petit (2003) is denoted by θs, the
weighted summation of the six Doodson variables which are closely related to the
arguments of the nutation theory (cf. (5) of McCarthy and Petit 2003).
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9.3.3.3 Three-Body Perturbing Acceleration
(�f3B

)

The satellite being tracked by the SLR station undergoes acceleration caused by the
gravity of the Sun, Moon and planets. Considering the three-body perturbing force
contribution to (22), where the equation of motion was described, one can write
(Tapley et al. 2004), assuming that the additional bodies are point masses:

�f3B =
np∑

j=1

GMj

( ��j

�3
j

− �rj

r3
j

)
, (41)

where the summation is from one to the number of additional bodies (Sun, Moon,
planets). In (41) a specific body is denoted by j, the gravitational parameter of each
body j is represented by GMj , ��j is the position vector of the body j relative to the
satellite, �rj is the position vector of the body j relative to Earth.

In practice, the position vectors of the additional bodies are found using pre-
cise ephemerides in the form of Chebyshev approximations such as JPL DE405
(Standish 1998), which is also utilised in the HartRAO SLR analysis software. This
ephemeris is based on the International Celestial Reference Frame (ICRF) and is
within 0.01 arc-seconds of the frame (cf. http://ssd.jpl.nasa.gov/).

9.3.3.4 General Relativity Contribution to the Perturbing Force
(�fg

)

The IERS 2003 (McCarthy and Petit 2003) recommendations as on 15 October
2004 discuss the relativistic correction to the acceleration of a satellite in Earth orbit
where

��̈r =GM⊕
c2r3

{[
2 (β + γ )

GM⊕
r

− γ
(�̇r · �̇r

)]
�r + 2 (1 + γ )

(
�r · �̇r
) �̇r
}

+

(1 + γ )
GM⊕
c2r3

[
3

r2

(
�r × �̇r

) (�r · �J)+
(�̇r × �J

)]
+

{
(1 + 2γ )

[
�̇R ×

(
−GMs �R

c2R3

)]
× �̇r
} (42)

is the correction which includes as

• first term, the non-linear Schwarzschild field of the Earth
(≈ 10−9 m s−2

)
• second term, Lense–Thirring precession (frame dragging)

(≈ 10−11 m s−2
)

• third term, de Sitter (geodesic) precession
(≈ 10−11 m s−2

)

Here the approximate magnitude of acceleration refers to LAGEOS as calculated
by the HartRAO SDAS software. In (42), c is the speed of light, β, γ are the PPN
parameters which equal 1 in general relativity, �r is the position of the satellite rel-
ative to the Earth, �R is the position of the Earth relative to the Sun, �J is the Earth’s
angular momentum per unit mass (

∣∣�J∣∣ ∼= 9.8 × 108 m2 s−1), GM⊕ is the gravita-
tional coefficient of Earth and GMs the gravitational coefficient of the Sun. These



324 L. Combrinck

effects are small, but cannot be ignored for POD purposes as there are some long-
term periodic and secular effects (Huang and Liu 1992) of the orbit. In particular,
the Schwarzschild effect causes perigee precession; de Sitter precession can lead
to long-period variations of some of the orbital elements (�, ω, M) and Lense–
Thirring precession causes secular rates (Ciufolini and Wheeler 1995) in the orbital
elements � and ω.

9.3.3.5 Atmospheric Drag
(�fDrag

)

Atmospheric drag decelerates a satellite, especially low-altitude satellites. Model-
ling of the forces resulting from the satellite moving through the atmosphere is
difficult for several reasons. Upper atmosphere densities are not well known, the
interaction of neutral gas and charged particles with the satellite surfaces is com-
plex and the change in orientation of the satellite in relation to the atmospheric
particle flux has to be considered. For an in-depth discussion see Montenbruck and
Gill (2001). Here we present the basic equation which can be used to approximate
the negative acceleration experienced by the satellite. In (23),

�fDrag = −1

2
CD

A

m
ρv2

r �ev, (43)

where CD is a dimensionless quantity that describes the satellite’s interaction with
the atmosphere. Typical values (Montenbruck and Gill 2001) for the drag coefficient
ranges from 1.5 to 3.0. In (43), m is the mass of the satellite and the direction of the
acceleration due to drag is parallel but opposite to the satellite velocity vector as
described by the unit vector �ev = �vr

/
vr. The atmospheric density is denoted by ρ.

For satellites at the height of LAGEOS (∼6,000 km), the effect of atmospheric drag
is negligible, but needs to be taken into account if very high accuracies are required,
e.g. for the estimation of relativistic effects.

9.3.3.6 Solar Radiation Pressure
(�fSRP

)

When a satellite is exposed to solar radiation, it absorbs and reflects photons; this
imparts a force �fSRP on the satellite causing acceleration which is dependent on the
solar flux, the satellite’s mass m and cross-section A. Many complex models are
used for specific satellites, but for the purpose of this chapter we assume that the
satellite has an uncomplicated shape (no parabolic reflectors, solar panels, etc.) and
that the surface normal points to the Sun. With reference to (23), one can then write
(Vallado 2001; Montenbruck and Gill 2001) the solar pressure force contribution to
the total perturbive acceleration as

�̈r = −νPeCR
A

m

�re

r3
e

AU2. (44)
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In (44), Pe is the radiation flux from the Sun
(≈ 4.56 × 10−6 N m−2

)
, �re is the

geocentric position of the Sun and ν is a shadow function to cope with partial or
total eclipses when the satellite moves into shadow. The conditions for the shadow
functions are ν= 0 if the satellite is in the shadow region (umbra), ν = 1 if the
satellite is in full sunlight and 0 < ν < 1 if the satellite is in partial shadow
(penumbra). As example, an accepted value for LAGEOS is CR = 1.13. This
value can be used as a priori start-up value for SLR data analysis. The reflection
coefficient can be estimated as a free parameter, which allows estimation of CR to
some degree of accuracy and without a priori knowledge of satellite orientation and
reflectivity.

9.3.3.7 Earth Radiation Pressure
(�fERP

)

An additional force
(�fERP

)
imparted to the satellite is due to the reflection and

scattering of solar radiation incident on the Earth’s surface back onto the surface
of the satellite. The amount of reflected light as a fraction of the incident shortwave
solar radiation (see Fig. 9.7) is termed the albedo factor, a, which for the Earth has
an average value of 0.34. Rubincam and Weiss (1986) list a number of factors which
make modelling of the reflected solar pressure difficult:

• The irradiance on the satellite is dependent on the distance as well as on the
orientation of the reflecting surface element (of the Earth).

• The irradiance depends on the solar zenith angle as well.
• The force is made up only of contributions from the elements illuminated by the

Sun and, of these, only those visible by the satellite.

Fig. 9.7 Global albedo over Earth’s land surfaces (0.0–0.4). Red is most reflective, followed by
intermediate yellows and greens, blues and violets indicate relatively dark surfaces, white areas
have no data available. No values for the oceanic areas are provided. Epoch of image is 7–22
April 2002. Source: NASA Visible Earth, http://visibleearth.nasa.gov, image credit, Crystal Schaaf,
Boston University, based upon data processed by the MODIS Land Science Team
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• Atmospheric reflection and scattering are included.
• The orientation and surface properties of the satellite affect the force.

Other factors such as variable cloud cover will also compound the problem.
Following Montenbruck and Gill (2001), one can sum the acceleration compo-
nents from the different Earth elements, where j (j = 1, . . . , N) are individual terms,
which correspond to the elements dAj:

�̈r =
N∑

j=1

CR

(
νjaj cos θE

j + 1

4
∈j

)
Pe

A

m
cos θ s

j
dAj

πr2
j

�ej, (45)

where the orientation of the force from element to satellite is determined by �ej,
which is the unit vector pointing from the satellite to the Sun, νj is the Earth element
shadow function and θE

j and θ s
j are the surface normal angles of Earth and satellite

to the incident radiation, respectively.

9.3.3.8 Other Forces
(�fOther

)

Other non-gravitational forces affect the satellite orbit, such as Yarkovsky thermal
drag. The Yarkovsky thermal drag occurs due to hemispheric temperature imbal-
ances between the satellite’s Earth facing and opposite hemispheres. Other effects
have been investigated as well, some of which are difficult to model properly as they
depend to some extent on the spin-orientation of the satellite. More details can be
had from Rubincam (1988, 1990) and Scharroo et al. (1991).

9.3.3.9 Empirical Forces
(�fEmp

)

Empirical forces can be modelled to account for small unmodelled forces in the
POD software being used. Nine parameters can thus be included in the orbital esti-
mation as solve-for parameters; they take the form (Montenbruck and Gill 2001)

r̈ = �E (�a0 + �a1 sin ν + �a2 cos ν) (46)

and are modelled as once-per-cycle-per-revolution accelerations, where �a0 is a
constant acceleration bias, �a1 and �a2 are the coefficients describing the 1 CPR
components and the orbit true anomaly is denoted by ν. The empirical accelera-
tions are normally applied to the radial, transverse and normal components (RTN)
in a local orbital frame and need to be transformed back into ECI through matrix
�E. These empirical accelerations can absorb mismodelling, but can also produce
degraded estimates of other parameters, even though the rms error of the O–C resid-
uals seems to be smaller. Typically they are of the order of ≈ 10−12 m s−2, or less.
Larger values will influence other parameters (e.g. gravitational zonal rate value for
J2 ∼ 3 × 10−11 year−1).
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9.4 Calculated Range

During the processing of SLR data, a calculated range must be found, which
uses some orbit propagation routine which includes the previously discussed
perturbations, starting with an a priori satellite coordinate and velocity. A
variety of integration methods are used in orbit calculation routines, such as
Runge–Kutta, multistep and extrapolation methods. These will not be discussed
here.

Before the calculated range can be determined, the station position needs
to be corrected for certain variations. The station position must be adjusted to
its position at the epoch of the SLR measurements, utilising a procedure such
as already described in (19). Other adjustments to the station position include
adjustments for Earth-tide, ocean loading, atmospheric loading and pole-tide.
These all affect the position of the station and produce a three-dimensional
displacement of the SLR station, with the effect that even if the ITRF coordi-
nates have been adjusted for plate velocity, the “true” coordinates at the epoch
of SLR ranging data being captured have not been found. In addition, a sta-
tion’s position can be affected by atmospheric loading (0.5–3 mm) and mass
redistribution in continental water reservoirs, e.g. groundwater, soil moisture and
snow.

The majority of these position disturbing processes are described in detail in
McCarthy and Petit (2003), in the section on the displacement of reference points (as
updated). Updates to the IERS conventions are detailed (containing all corrections to
IERS 2003) at http://tai.bipm.org/iers/convupdt/convupdt.html. Different ocean-tide
models are available at http://www.oso.chalmers.se/loading.

One can compute the ocean-tide loading displacements for a given SLR site,
given the amplitude Acj and phases φcj, where 1 ≤ j ≤ 11, as generated by the web-
site. This is easily implemented utilising FORTRAN code (hardisp.f) (developed by
Duncan Agnew, University of California, San Diego, La Jolla), which determines
local dU, dS, dW displacements considering a total of 342 constituent tides using a
spline interpolation of the tidal admittances. The model precision is about 0.1%.
Amplitudes for ocean loading vary from millimetre to the few centimetre level.
The HartRAO SDAS utilises hardisp.f, but we have converted it from FORTRAN
to C.

Solid Earth-tides can cause a displacement of tens of centimetres at certain loca-
tions, and displacement due to pole-tide can amount to several centimetres and has
to be accounted for. A complete description is given in the IERS conventions for
both Earth-tide and pole-tide.

Once these adjustments to the SLR station position have been made, the range
is found through iterative solutions of two light-time equations for the uplink and
downlink paths, and this is fully described in Montenbruck and Gill (2001). For the
uplink path a fixed-point iteration with

τ (i+1)
u = 1

/
c·
∣∣∣�r (t − τd) − �R

(
t − τd − τ (i)u

)∣∣∣ (47)
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is executed in a loop until τu reaches a predefined accuracy threshold. Similarly for
the downlink, starting from an initial value of τ0 = 0, consecutive determinations
are done using the fixed-point iteration

τ
(i+1)
d = 1

/
c· ∣∣�r (t − τ i)− �R (t)

∣∣ . (48)

The two-way range is then determined from the average of ρu and ρd, so that

ρ = 0.5 (ρu + ρd) . (49)

In (47) and (48), −→r is the satellite position vector and
−→
R is the SLR station position

vector.
Finally then, after calculating the range, the observed–computed (O–C) resid-

uals can be formed in a least squares solution where the force model parameters
are adjusted against the observation model as determined by the SLR range obser-
vations. An example is given in Fig. 9.8, a screen capture of the HartRAO SDAS.
Manipulation of the number of solve-for parameters, a priori set-up values and pro-
cessing strategy will change these values as solve-for of orbital, geophysical and
empirical parameters are adjusted. Additional examples from the ILRS processing
centres can be found at the ILRS website.

Fig. 9.8 Example of observed–computed residuals; a 1-day arc of LAGEOS 2, clearly showing
unmodelled effects, where the range as observed and the range as calculated disagree; rms value
of fit is ∼3 cm
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9.5 SLR System and Logistics

There are many different system configurations and each SLR station will have
instrumental, configuration and system-specific set-ups which will differ in detail
from other stations. The exception, perhaps, to some degree is contained within the
eight-station NASA SLR network that includes five Mobile Laser Ranging Systems
(MOBLAS 4–8). Other NASA network SLR systems are the two Transportable
Laser Ranging Systems (TLRS 3 and 4) and the McDonald Laser Ranging System
(MLRS), which are also used for Lunar Laser Ranging (LLR).

The MOBLAS stations are located at Monument Peak, California (MOBLAS-4),
Yarragadee, Australia (MOBLAS-5), Hartebeesthoek, South Africa (MOBLAS-6),
Greenbelt, Maryland, at the Goddard Space Flight Center (MOBLAS-7 as well
as TLRS-4), and Tahiti, French Polynesia (MOBLAS-8). Other NASA stations
are in Arequipa, Peru (TLRS-3), and the LLR capable station near Ft. Davis,
Texas (MLRS). These stations operate in a global network, the International Laser
Ranging Service (ILRS), which has certain station and data quality requirements
before allowing a station to become a member of the network. In Sect. 9.5.1 a quick
review is made of a typical SLR system to describe some of the main subsystems.
Thereafter (Sects. 9.6.1 and 9.6.2), some network and logistical issues are discussed
very briefly.

9.5.1 System Configuration

The system configuration, software and operational procedures for the MOBLAS
systems are the same to a large degree. Even so, there are times when some
MOBLAS stations have received upgrades and others are still in pre-upgrade con-
figuration. It is probably fair to say that all SLR stations are unique in one way or
another. These sub-assemblies as depicted in Fig. 9.9 are typical of SLR systems,
and most will be found in all SLR systems in one form or another.

Typical assemblies are

• Laser assembly: the laser table and peripheral equipment, such as cooling system,
power supplies and monitoring equipment

• Tracking and mount control: telescope optics and telescope pointing and steering
• Data measurement: measurement and Laser Range Controller (LRC) logic
• Timing: produces timing and synchronisation signals
• Controller: PC controlling all the subsystems
• Processor: PC for processing data and sending or receiving files
• Safety: safety features integrated into the system

9.5.1.1 Laser Assembly

Different laser assemblies are found throughout the ILRS network and limited space
precludes discussing all of them, so MOBLAS-6 is used as an example. The laser



330 L. Combrinck

Fig. 9.9 Basic sub-assemblies of MOBLAS-6

is located inside the mobile trailer, but isolated from the structure and located on a
massive pier tied to bedrock. The isolation is of such a nature that any movement of
the pad on which the trailer is located, or any motion of the trailer itself, does not
adversely affect the stability (and position) of the laser table. In Fig. 9.10 the current
optical table layout of the MOBLAS-6 is depicted. This system is cavity dumped
and has active/passive mode locking. The laser head is component [6a], which con-
sists of a liquid cooled Nd:YAG rod and a linear flash-tube assembly, which pumps
the rod. Pumping generates a family of pulses, and one of these pulses needs to be
selected for further amplification and processing through the laser system. A pulse-
slicer [11a] is triggered by an adjustable detector [11b], which provides a signal for
the avalanche switch [11d]. The avalanche switch in turn excites a crystal in the
pulse-slicer [11a], causing a phase shift suitable for reflection at [15c] (polariser).

Thereafter the polariser outputs the phase-shifted pulse from the cavity resonator
made up of components between [18a] and [8]. Mode locking is accomplished by
a radio frequency (∼29 MHz) modulated crystal [7]. Calibration is done via He–
Ne laser [1], which is routed through the optics via mirrors [2a] and [2b], allowing
accurate optical alignment. After reflection at the polariser, the beam is directed
through a beam expander [10], where the beam is expanded slightly to match the
larger diameter of the rod in the amplifier assembly [17].

The maximum output of this system is 120 mJ at 532 nm, at a repetition rate of
5 Hz. A zero-degree turning mirror [18b] provides for double-pass (pumped twice)
amplification. Consequently the polariser [15d] selects a pulse to be passed on to
the frequency doubler [20], which converts the infra-red (1,064 nm) to green light
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Fig. 9.10 Schematic of the Nd:YAG laser of MOBLAS-6, illustrating the main components.
Current power output of this system is 120 mJ at a pulse rate of 5 Hz

(532 nm). Efficiency of the frequency doubler is about 50%, so that a large amount
of energy is lost at this point in the optical train.

Two dichroic mirrors (a and b) reflect the green light mostly; this light is then
detected by a photodiode [22] which provides the electrical pulse for the start-of-
flight measurement (to determine the transmit epoch a phase delay has to be added).
Consequently the laser pulse is passed through a beam expander, which expands the
laser beam to approximately 100 mm, from where it passes via two mirrors into the
Coudé path. This Coudé path allows the laser pulse to be routed to the exit optical
assembly (another beam expander) via an assembly of mirrors (some which rotate
with the elevation and azimuth axes), which is mounted (in the case of MOBLAS-6)
on the side of the main tube of the 0.76-m telescope.

9.5.1.2 Tracking and Mount Control

Similar to many other SLR systems, such as the Borowiec SLR located in Poznan,
Poland, MOBLAS-6 (Fig. 9.11) has an azimuth–elevation type mount with separate
transmit and receive optics. The receive optics consists of a 76.2-cm main mirror
in Cassegrain configuration and a photomultiplier tube located at the focal point
of the hyperbolic subreflector (secondary mirror). The primary reflector is an f/1.5
parabolic mirror. In total (primary plus secondary) the telescope is an f/5 system.
Also attached to the main telescope is a guide telescope; this is a 127-mm (f/10)
Schmidt–Cassegrain reflector. The guide telescope is equipped with an illuminated
reticle and a CCD camera; it can therefore be used remotely by the SLR operator
to position the receive telescope for tracking or collimation. Similar arrangements
have been used to create models for mount errors (Schillak 2004).
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Fig. 9.11 Moblas-6 ranging
to a satellite during night
time; the 532-nm laser is
clearly visible due to the
camera integrating the
individual 200-ps pulses.
Photo credit: Michael
Gaylard, Hartebeesthoek
Radio Astronomy
Observatory

Consolidated Prediction Format (CPF) (previously Inter-range Vectors, IRVs)
satellite position predictions are provided to enable an SLR system to track a
given satellite. These data are converted and used to provide azimuth and eleva-
tion positioning signals which are in turn applied to the T&MC subsystem servo
interfaces. The Mount Positioning And Control System (MPACS) readout chassis
in the T&MC subsystem is a signal conditioning system that processes the induc-
tosyn inputs. This readout chassis generates corresponding azimuth and elevation
angle information for display. Another unit, the Servo Control Chassis, receives
inputs from the controller computer and inductosyn assemblies, whereupon it gen-
erates the corresponding drive signals to position the mount. Positioning is done
by two independent drive motors on azimuth and elevation axes, using direct-drive,
brushless d.c. motors via class A amplifiers.

9.5.1.3 Data Measurement

The Data Measurement Subsystem (DMS) is synchronised with the station’s stan-
dard frequency generator (timing subsystem in Fig. 9.12). Detection and recording
of the time interval between the transmit pulse and the reflected receive pulse are
the main functions of the DMS. In addition it analyses transmit and receive pulses
and provides the required outputs to the controller computer for ranging compu-
tations and recording. The DMS interfaces with other subsystems to provide the
controller subsystem computer with the data required to resolve the range measure-
ment. The Laser Ranging Control (LRC) is contained within the DMS and provides
the electrical pulses to the laser subsystem which enables a 5-Hz firing rate.
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Fig. 9.12 The timing subsystem of MOBLAS-6. A 5-MHz signal is distributed to various
subsystems which require accurate time and frequency

9.5.1.4 Timing

Time and frequency are critical components of any SLR system. At HartRAO we
have access to a Hydrogen MASER clock used for VLBI, but for SLR purposes a
rubidium frequency standard (typically excellent short-term stability (∼2 × 10–11

Allan variance (1 s)) and long-term drift (∼5 × 10–11/month)) steered by GPS are
utilised.

In order to count the time interval between receive and transmit, a time inter-
val counter (TIC) is used; some stations utilise the Stanford SR620 TIC units, the
MOBLAS stations use a HP5370B and many other TIC units have been and are
in use by other stations. Figure 9.12 describes the timing subsystem. A Truetime
rubidium frequency standard is maintained close to UTC as its long-term drift is
corrected regularly via GPS; this frequency standard provides a 1-pulse-per-second
(PPS) and 5-MHz signal. The 1 PPS signal is used to compare the SLR station time
to the CNS clock (also steered by GPS) and to determine the system delay through
the distribution amplifier and time code generator via the Agilent 53131 TIC. The
SLR system utilises the 5-MHz reference signal via the distribution amplifier which
maintains an adequate signal level throughout the system. A time code generator
utilises the 5 MHz to produce time code data in a standard NASA 35-bit 1-s format
as well as 1, 20 and 40 PPS. Various subsystems are fed from the timing subsystem,
including the radar (slaved with the SLR telescope) and the Laser Ranging Control
circuits. Very precise event timers have been developed recently (which time tags
the transmit and receive epochs instead of counting the time interval), e.g. Samain
et al. (2007) report the development of an event timer with a precision better than
2 ps, linearity in the range of 1 ps and thermal drift of below 1 ps/ ◦C.
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9.5.1.5 Controller

The controller subsystem is a real-time, computer-controlled data handling system
that controls the T&MC subsystem servo control section to position the SLR tele-
scope mount for ranging operations. In addition, the controller computes, formats
and records the ranging data based on the computer program and inputs from the
other subsystems. Mount positional data from the shaft angle encoders are compared
with the programmed positioning data. The controller subsystem makes the com-
parison and generates a correction (error) signal that it sends to the Servo Interface
Chassis to reposition the mount.

9.5.1.6 Processor

On-site data analysis is performed by the processor subsystem. Data received
(required for accessing the satellites) from NASA SLR headquarters are processed,
and SLR data are returned for upload to the Crustal Dynamics Data Information
System (CDDIS) (Noll and Dube 2004) and other data banks where these data are
accessible for scientific community use. After a pass is complete, the controller
computer transmits the pass data to the processor. The processor then converts the
data into appropriate formats and performs post-pass analyses. The performance
analyst can use this information to determine the quality of the pass data, how well
the equipment operated and how to correct malfunctions.

9.5.1.7 Safety

Some SLR systems are eye-safe, such as the newly developed NASA SLR2000
system (Degnan 1994). However, most current systems are not eye-safe due to the
high-power lasers used for ranging. Based on ANSI Z136.1 – 1986 requirements, the
MOBLAS laser beams are capable of causing blind spots in unprotected eyes at up
to 39 km. Safety is therefore extremely important and the system has been designed
to ensure eye safety. Two main safety components are integral to the system: the
safety interlock and its peripheral equipment and a radar system slaved with the SLR
telescope. The use of motion sensors, pressure pads, mount position sensors and a
video camera ensures operator and other personnel safety. Aircraft are detected by
the radar system and disable the laser upon detection.

9.6 Network and International Collaboration

Satellite laser ranging is an international effort and is such a large undertaking that a
single country cannot operate and maintain a global network; therefore international
cooperation and collaboration is of paramount importance. Currently there are 22
operational and 16 associate stations in the ILRS network. There are more than these
38 SLR stations; however, all of them are not part of the ILRS network. In order to
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qualify as an operational station, a set of criteria relating to number of passes and
tracking accuracy need to be met over a specified period.

9.6.1 Tracking Network

The distribution of the SLR network is not uniform, which results in geometrical and
coverage weaknesses, with more stations located in the northern hemisphere than
the southern hemisphere. In addition, data quantity is station dependent, with some
stations routinely providing a large volume of high-quality data, while others may
produce less data based on weather conditions, staffing levels and operational status.
A map of the current network is presented in Fig. 9.13; this map is available on the
ILRS website (http://ilrs.gsfc.nasa.gov) and is maintained by NASA personnel (Noll
and Torrence 2008).

9.6.2 International Laser Ranging Service

The ILRS (Pearlman et al. 2002) is one of the space geodetic services of the
International Association of Geodesy (IAG) and “provides global satellite and lunar

Fig. 9.13 Map of the distribution of the ILRS SLR network (Source: http://ilrs.gsfc.nasa.gov)
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laser ranging data and their related products to support geodetic and geophysical
research activities as well as IERS products important to the maintenance of an
accurate International Terrestrial Reference Frame (ITRF)”. A comprehensive and
very well maintained website can be found at http://ilrs.gsfc.nasa.gov. This IAG
service is the main hub of the different activities of the laser ranging community.

9.7 Summary

Satellite laser ranging makes a unique contribution to space geodesy by being the
only optical space geodesy technique with 1- to 2-cm ranging accuracy capability.
Uses of the technique are expanding beyond the regular tracking of Earth satellites
or the tracking of the Moon, through the development of laser transponders, which
will soon allow regular tracking and other applications (e.g. optical communications
and time transfer) in the solar system. Products such as Earth orientation parame-
ters, station position and velocity, as well as orbit calibration facilitate a large range
of applications in diverse fields of orbital dynamics, geophysics and geodynam-
ics, reference frame establishment and fundamental physics. Utilising range data
determined from the time-of-flight of a laser pulse from an SLR station to a satel-
lite and back, it is possible to adjust force model parameters and estimate a range
of parameters which are of interest to different fields of science and applications.
In combination with the other space geodetic techniques, SLR is contributing to
the maintenance and improvement of the ITRF. The SLR technique continues to
be improved in terms of observational and technical aspects, working towards a
sub-centimetre accuracy level. Active working groups continuously evaluate and
improve the analysis and interpretation of its observables. Furthermore, it is an inte-
gral component of the Global Geodetic Observing System (GGOS), a project of the
International Association of Geodesy (IAG) through its contributions to the three
fundamental geodetic observables and their variations – the shape of the Earth,
its gravity field and rotational motion. The ILRS plays an instrumental and guid-
ing role through setting tracking priorities and standards; it also provides channels
of communication and promotes international collaboration through working group
activities and international meetings.
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10.1 Introduction

The objective of gravimetry (Torge 1989) is the determination of the gravity field
of the Earth and the surface gravity effects as functions of position and time by
measurements of the gravity intensity which is the magnitude of the gravity accel-
eration g on the Earth’s surface. The gravity g and its variation depend on the mass
attraction (law of gravitation) according to the arrangement of the terrestrial and
exterritorial masses (celestial bodies) and the Earth rotation (centrifugal accelera-
tion). Mass distribution and rotation are subject to variations in time. Examples for
gravity changes δg are

• Differences due to the position (equator–pole): ∼ 5 × 10−2m/s2

• Differences due to the elevation (high mountains–deep sea): up to ∼ 5 ×
10−2m/s2

• Periodic tidal effects: up to ∼ 3 × 10−6m/s2

• Mass redistribution in the atmosphere: up to ∼ 2 × 10−7m/s2

• Long-term terrestrial mass displacements: in the order of ∼ 10−7m/s2

Two principal measurement methods are in use: absolute (g) and relative (δg)
gravity measurements. For absolute gravity measurements the free fall method is
mostly applied, e.g. the FG5 absolute gravimeter (Niebauer et al. 1995). The mass-
spring system is the most common one for relative gravity measurements, e.g.
LaCoste and Romberg (Torge 1989) or Scintrex (Timmen and Gitlein 2004) spring
gravimeters, and the superconducting gravimeter (SG) where the spring is replaced
by a magnetic suspension of the proof mass having the form of a hollow sphere.

The superconducting gravimeter is presently the most sensitive relative instru-
ment with the lowest drift rate which can be modelled and corrected. Therefore,
it is used for measuring and detecting weak gravity effects in a period range from
minutes to years.

The SG is, like mass-spring gravimeters, a gravity sensor measuring gravity
variations, δg, associated with mass movements in its near and far surroundings.
According to the law of gravitation the gravity sensor, a proof mass, is sensitive to
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changes of and squared distance changes to the source mass. Because matter has
the properties of gravity and inertia, the gravity sensor (a proof mass) reacts to time
variations of

1. Gravitational forces (Newtonian attraction) caused by redistribution and density
variations of all surrounding masses

2. Inertial forces caused by accelerations, i.e. the second time derivative of the
vertical position of the gravimeter site

Therefore, the SG recordings contain not only the tidal gravity from the Moon
and Sun as well as from other celestial bodies, but also the gravity effects induced by
various geophysical and geodynamic sources on global, regional and local scales.

The gravimeter measures the sum of gravity changes caused by these different
sources. It cannot separate them. For separating the different gravity effects spe-
cial models, analysis methods and additional data are necessary, e.g. meteorological
and hydrological data. In many cases research is focused on global gravity effects
such as Earth tides, seismic normal modes, core modes, nearly diurnal-free wobble
(NDFW) and Chandler wobble. To investigate one individual effect, all the other
components have to be removed from the gravity data. The other constituents are
disturbing signals in this case.

One disturbing contribution consists of accelerations (vibrations) usually consid-
ered as noise (seismic, industrial and ocean noise), which can be reduced by low-
or band-pass filtering (if the particular frequency bands are known). Supplementary
instrumental effects (drift, offsets and instrumental noise) superimpose the gravime-
ter signal. Most of these effects can also be removed from the data. Another
contribution usually treated as disturbing signals are environmental influences. To
remove them, they have to be modelled and hence accurate data of the atmosphere
and hydrosphere (e.g. atmospheric pressure, groundwater level, soil moisture) must
be available. For investigation of one individual gravity effect the other gravity
effects must be removed from the gravity data precisely. The better the different
gravity effects can be modelled and reduced from the gravity data, the better the
remaining individual effect can be investigated because it is less or not superposed
by the other effects.

In Table 10.1 the main global surface gravity effects recorded by the SG are
summarized. All these effects are included in the raw gravity data. Depending on
the SG location, additional local or regional gravity effects can be contained in the
gravity signal mainly caused by the hydrosphere, or other effects like co- and post-
seismic gravity changes, crustal deformation in tectonic active zones, postglacial
rebounds.

Besides measuring, analysing and interpreting the above surface gravity effects,
SG gravity measurements and analysis results can be used for

• Earth tide reduction for relative and absolute gravity measurements and other
precise measurements like satellite positioning, GPS, laser ranging or radiointer-
ferometric methods

• Verification of global Earth tide models



342 J. Neumeyer

• Validation of satellite-derived gravity variations
• Validation of global and regional ocean tide models
• Validation of global and regional hydrological models
• Investigation of changes in the tidal parameters

Further applications for SG measurements are

• Pre-, co- and post-seismic gravity changes
• Studying the local, regional and global hydrological cycle in combination with,

e.g., satellite-derived gravity variations and hydrological models
• Gravity changes in tectonic active areas
• Silent earthquakes
• Volcanic activities
• Post-glacial rebounds etc.

Table 10.1 Main surface gravity effects (period ranges and gravity effects are average peak
indicators depending on site and event)

Period range Physical source Gravity effect

∼0.1–10 s Microseismic (natural or
man-made) noise

Up to 10 μGal (10–8 m/s2)

∼0.1–100 s Earthquakes Up to multiple measurement range of
SG

Minutes to 1 h Earth’s free oscillation <1 μGal
4–8 h (expected) Translational oscillation of

the inner core (Slichter
modes)

<0.1 nGal (10–11 m/s2) expected

6 h–1 year Body tides Up to 280 μGal
6 h–1 year Tidal ocean loading Up to 10 μGal
Hours to years Non-tidal ocean loading Up to 2 μGal
Minutes to years Atmospheric pressure

variations
Up to 20 μGal

Minutes to years Groundwater level and soil
moisture variations

Up to 10 μGal/m

Up to ∼435 days Polar motion Up to 10 μGal
∼430 days Earth’s nearly diurnal-free

wobble (NDFW)
Affects Earth tides

Months to years Different sources of secular
gravity variations

μGal range

Months to years Sea level changes <0.1 μGal range

Measuring and analysing of these effects are now directly addressed to the
“Global Geodynamic Project” (GGP) (Crossley et al. 1999; Crossley 2004; Hinderer
and Crossley 2004), a network of presently 23 worldwide distributed SG sta-
tions (Fig. 10.1) equipped with similar hardware and software for data acqui-
sition. It is in operation since July 1997. More information about the status
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Fig. 10.1 GGP SG network

of the SG stations and the instruments can be found in the GGP home page
(http://www.eas.slu.edu/GGP/ggphome.html). The recorded SG and environmental
data are available in the GGP database (http://ggp.gfz-potsdam.de).

10.2 Description of the Instrument

The first fundamental design of a superconducting gravimeter was reported by
Prothero and Goodkind in 1968. With this operational prototype the SG has been
deployed for application in science. This design principle is still in use. However,
numerous modifications and improvements have been made by GWR Instruments,
San Diego, California, to achieve the present performance of the SG (Warburton
and Brinton 1995; Richter and Warburton 1989; Warburton et al. 2000; Hinderer
et al. 2007). Figure 10.2 shows the components of the SG: the liquid helium-filled
dewar with the gravity sensing unit (GSU) (1) and the coldhead (2), the flexible
tubes to the helium liquefying compressor (3) and the data acquisition and control
electronics (4).

The superconducting gravimeters belong to the family of relative mass-spring
gravimeters. In contrast to the classical mass-spring gravimeter, e.g. LaCoste and
Romberg (LCR) (Torge 1989), the SG has no spring. It is replaced by a “vir-
tual spring design” using magnetic levitation of the proof mass rather than a
spring. Therefore, the SG performance is not limited by the disadvantages inher-
ent to mechanical springs and it almost completely solves the drift problem having
mechanical mass-spring systems (SG some microgalileos per year (nearly linear),
e.g. LCR several microgalileos per month).
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Fig. 10.2 Components of the
SG (photo from GWR
Instruments). 1 = dewar with
gravity sensing unit (GSU); 2
= coldhead SHI SDRK 101;
3 = flexible tubes to the
compressor; 4 = electronic
rack with data acquisition and
control electronics; 5 =
coldhead support frame; 6 =
micrometer; 7 =
thermo-mechanical levellers

10.2.1 Gravity Sensing Unit

The basic element of the gravity senor of the SG is a superconducting sphere housed
in the gravity sensing unit (GSU) (Fig. 10.3), which is located in a helium bath of a
super-insulated dewar (Fig. 10.2). The superconducting sphere made from niobium
(diameter = 2.54 cm, weight = about 5 g) levitates in an ultra-stable magnetic field
generated by the lower and the upper superconducting coils made from niobium
wire. The current in the coils is permanently constant and the resistance of the coils
is practically zero as long the superconducting coils remain below their supercon-
ducting temperature (9.2 K for niobium). On the other hand, the levitation force
varies with temperature roughly by 10 μGal/mK (Goodkind 1999). Therefore, the
elements of the GSU are in a vacuum can surrounded by the liquid helium bath
contained in the SG’s dewar. The temperature within the GSU is adjusted and con-
trolled to 4.2 K within a few microkelvin using an electronic control unit including
a germanium thermometer and the heater for temperature control. This regulated
temperature is about 0.1 K above the liquid helium bath. Because of these operating
conditions the SG gravity sensor is almost completely isolated from environmental
effects caused by changes in external temperature, humidity and atmospheric pres-
sure in contrast to the mechanical mass-spring gravimeters which operate near room
temperature and are more affected by environmental effects.

The levitation force of the sphere results in an interaction between the magnetic
field from the superconducting coils and its induced current in the surface area of
the sphere designed as hollow sphere with a small material thickness.

The levitation force can be adjusted by stepwise setting of the current (between 4
and 6A) in the two coils by the levitation electronic. It allows independent adjusting
of both the levitation force and the magnetic gradient (corresponds to the spring
constant in a mass-spring system). A weaker gradient gives a larger displacement of
the sphere than a stronger one for the same gravity (acceleration) change. The SG



10 Superconducting Gravimetry 345

Fig. 10.3 Gravity sensing unit (drawing from GWR Instruments)

is designed with a weak restoring force to have relatively large displacements for
small changes in gravity.

The displacement of the sphere which is proportional to gravity changes is mea-
sured by a capacitive transducer. The capacitive sensing plates of the transducer
border the sphere with 1 mm clearance. The capacitive transducer in a Wheatstone
bridge is part of a feedback system that holds the sphere in zero position rel-
ative to the gravity-sensing plates. A deviation from the sphere’s zero position
(capacitive bridge in equilibrium, null) caused by gravity changes generates a DC
voltage proportional to the displacement (gravity change) that generates a current
in the magnetic feedback coils. The resulting force brings the sphere back into
zero position. The feedback system guarantees a linear transfer function between
sphere displacement (gravity change) and the generated DC voltage for the entire
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dynamic range of the sensor (~0.1 nGal–1.5 mGal). This DC voltage filtered by an
anti-aliasing filter is input for the data acquisition system.

To avoid parasitic magnetic influences of the Earth’s magnetic field and other
sources on the superconducting elements the GSU is shielded with MU-metal.
Additionally it has a superconducting shield and insulating support rods.

Because of the finite horizontal restoring force of the sphere, it can move in a
horizontal direction too. Therefore, an orbital motion, an oscillation of the sphere,
is generated by tilting the instrument. This oscillation appears as the sphere reso-
nance with a period between 60 and 120 s depending on the instrument. The sphere
resonance can be seen in the data, e.g. after local earthquakes (Imanishi 2005). For
most of the SG applications this effect can be neglected because it can be filtered out.

10.2.2 Tilt Compensation System

The SG only measures the vertical component of gravity gv exactly, if the verti-
cal gravity sensor axis is aligned in the direction of the gravity vector. If there
is a misalignment (angle θ ) between both directions, the measured gravity gm is
gm = gv(cos θ ) and the tilt signal gT = gv(1 − cos θ ) ∼ gv × θ2/2. If the tilt sig-
nal gT is smaller than 1 nGal, the tilt angle θ must be ≤1.4 μrad (Goodkind 1999).
Therefore, the SG is equipped with an automatic tilt compensation system, which
minimizes the tilt angle θ . It consists of two vertical sensitive pendulum tilt sen-
sors orthogonally arranged (X and Y) within the gravity sensing unit of the SG (see
Fig. 10.3). They are component parts in two separated feedback electronics which
control the associated thermo-mechanical levellers X and Y (Fig. 10.2). The SG has
three dewar support posts, a fixed one and the two adjustable X and Y, which corre-
spond to tilt in X and Y directions (tiltX and tiltY). In the SG setup procedure the tilt
angle is preset to a minimum by the two micrometer screws (Fig. 10.2). During SG
operation the automatic tilt compensation system holds the tilt angle at a minimum
by aligning the instrument (dewar) with the two thermo-mechanical levellers, which
are unfortunately temperature sensitive. Therefore, the room temperature of the SG
should be stable within the range smaller than ±1.5◦C. Checking of the tilt can be
performed by the tilt (X and Y) power and balance signals which are proportional
to the tilt angle. They are recorded by the data acquisition system of the SG. The tilt
compensation system corrects the tilt signal gT to about 1 nGal, which corresponds
to about ±5 mV variation in the tilt balance signals.

10.2.3 Dewar and Compressor

The operation of the GSU at liquid helium temperature requires a refrigeration sys-
tem that compensates heat conduction between the operation temperature of 4.2 K
and room temperature. It must compensate the heat conduction of the dewar which is
small compared to those caused by the GSU (less 0.1 mW). This heat energy leads to
evaporation and a loss of the liquid helium. A compressor and a coldhead, mounted
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in the neck of the dewar, reduce the consumption of liquid helium. Presently for
the SG the compressor CAN 11 and the coldhead RDK-101 from Sumitomo Heavy
Industries (SHI) are used. The coldhead has two temperature stages around 60 and
4 K. It produces a cooling power of about 0.2 W at the 4 K (lower stage). This
is a closed-cycle cryogenic system where the helium gas condenses in the neck at
the lower stage and drips back into the dewar (Richter and Warburton 1989). It can
liquefy about 1 L/day. The compressor needs a power of 1.3 kW and it is air cooled.

The compressor including the coldhead causes vibrations of about 2 Hz up
to hundreds of Hertz. These vibrations must not bias the dewar with the GSU.
Consequently the coldhead is suspended on a separate frame which is vibration
insulated from the floor of the SG pillar. The coldhead is arranged in such a way
that it does not touch the neck of the dewar.

Different dewar sizes were in use in the past (Hinderer et al. 2007). Presently the
most manufactured dewar for the SG has a volume of 35 L for the liquid helium.
This volume of liquid helium allows an operation of about 20 days in case of failure
of the compressor or coldhead.

10.2.4 Gravimeter Electronic Package

The gravimeter electronic package (GEP) consists of the control electronics for
gravity, temperature and tilt; the data acquisitions system; and a current supply for
the sphere levitation. The data acquisition system records gravity, the SG operation
parameters and the environmental parameters, e.g. atmospheric pressure.

For gravity recording the analogue anti-aliasing filter is designed for a 1-s sam-
pling rate (GGP filter). It has a damping of – 160 dB/decade, a corner frequency
of 61.5 mHz and a time delay of 8.4 s. It is in use for all SGs as standard. The
analogue gravity signal with a dynamic range of ±10 V is digitized by a digital
voltmeter with a resolution of 7.5 digits, which corresponds to the smallest signifi-
cant voltage change of 0.3 μV. With the ratio of 100 μGal/V (calibration coefficient
around 70 μGal/V) the significant change of gravity is 0.03 nGal. This is the resolu-
tion (quantization) limit of the data acquisition system. It is above the SG’s gravity
resolution.

The data acquisition system includes the remote control capability of the instru-
ment. It allows setting of all control parameters for gravity, temperature and tilt and
the data acquisition parameters. Moreover, the levitation of the sphere can be carried
out remotely.

10.2.5 SG Performance

The SG is characterized by a resolution of about 0.1 nGal in the frequency domain.
The precision can be estimated only by means of analysed known gravity effects,
because there is no reference gravity better than from the SG itself. The precision is
frequency dependent and differs in frequency and time domain. In frequency domain
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gravity signals of 1 nGal and better can be detected in the band from the free oscil-
lation of the Earth to the diurnal Earth tides (~10–0.01 mHz). In time domain the
precision is better than 0.05 μGal depending on the noise level at the site (Hinderer
et al. 2007).

The SG recordings cover a period range from minutes to years with a linear
transfer function (constant gain = 1). The drift behaviour shows an initial exponen-
tial drift followed by a linear drift rate of some microgalileos per year depending on
the instrument.

The dual sphere SG has the same parameters for each sensor as the single
sphere SG. Additionally the dual sphere system measures the gravity gradient with
a resolution of about 0.5 μGal/m (5 Eötvös).

More details about the behaviour of the dual sphere instrument can be found in
Kroner et al. (2005) and more design details of the instrument in Goodkind (1999).

In Table 10.2 the main SG performance parameters are summarized.

Table 10.2 Summary of the main SG performance parameters

Resolution 0.1 nGal
Precision in frequency domain <1 nGal
Precision in time domain <0.05 μGal
Period range Minutes to years
Measurement range ∼0.1 nGal–1.5 mGal
Accuracy calibration factor ∼±0.05 μGal/V (∼±0.2%)
Gravity time shift (standard) 8.4 s
Gravity filter corner frequency (standard) 61.5 mHz
Drift rate Some microgalileos per year

10.3 Site Selection and Observatory Design

The site selection depends first on the scientific goals the SG shall be used for.
According to these goals (cf. Sect. 10.1), e.g. investigation of global surface gravity
effects, local and regional hydrology, silent earthquakes, tectonic movements, those
sites should be selected where the largest signal of the gravity effect of interest is
expected. Furthermore, for the site selection some other aspects have to be consid-
ered, which can corrupt the recorded gravity signal by overlaying with a disturbing
signal:

• Industrially induced seismicity (traffic, industry, mining activities, etc.)
• Natural seismicity (microseismic activities, trees in windy areas, etc.)
• Earthquakes
• Ocean noise close to the coast
• Uncontrolled groundwater level changes
• Bad coupling of the pillar to the ground
• Tectonic motions
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Therefore, before constructing the observatory the disturbing signals should be
estimated by studying the

• Noise, recorded with a broadband seismometer
• Geological situation (geological province and characteristics, depth of bedrock)
• Hydrological situation (groundwater variations, water pumping stations, lakes

and rivers in the surrounding)

The knowledge of these factors gives the first estimation of the disturbing
signal in the gravity data and this knowledge can be very helpful in fixing the
location of the site. Of course, the site selection depends mostly on the scien-
tific goals, but the disturbing signal must be smaller than the expected signal of
interest.

The SG requires a stable well-grounded platform and a temperature-controlled
measurement chamber. The SG fits comfortably on a concrete (or granite) pillar
of 80 cm × 80 cm. The electronics and data acquisition system are fitted into
one small electronic rack, which is temperature controlled. This rack is a standard
19" width rack. It is 28" high and 24" deep. The minimum overhead clearance
to transfer liquid helium is 180 cm. The cables connecting the GEP electronics
to the dewar head are about 2.5 m long. They must, however, be routed loosely
between the electronics and dewar in a way so that they do not touch the cold-
head or coldhead frame. This usually requires that the electronic rack should be
placed between 0.5 and 1 m away from the dewar. The power requirement is at least
about 2 kW.

For the SG installation only one pillar of about 80 × 80 cm is necessary. But
it is to be considered that absolute gravimeter measurements (e.g. with FG5) are
necessary for exact calibration of the SG. Therefore, it is recommended to build a
second pillar (about 90 × 90 cm) for the absolute measurements or enlarge the pillar
to about 200 × 100 cm. To avoid disturbances on the SG, a second pillar should be
the better solution.

For housing of the SG, a small building or container with two rooms is suffi-
cient: one room for the SG (measuring chamber) and the second one for the SG
electronics, compressor and air-conditioning equipment.

The measuring chamber contains the SG pillar and the pillar for absolute mea-
surements. The SG room should be air conditioned and the temperature should be
stable within about ±1.5◦C. The room temperature depends on the location of the
SG site. Presently the SG sites have a working temperature for the SG below of
about 25◦C. The humidity in the room should be stable within ±10%. To minimize
temperature variations, the measuring chamber should be covered with insulat-
ing material. For reducing environmental influences like temperature changes and
strong wind that causes noise, the measuring chamber can also be built into the
ground.

Figure 10.4 shows a design example for a SG observatory layout similar to the
SG station in Sutherland (SU) in South Africa (32.3814◦S, 20.8109◦E and height
1,791 m).
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Fig. 10.4 Design example observatory layout

The compressor is placed a few metres away from the SG to avoid noise in the
SG data. For avoiding this noise the compressor can stand on a damping material
like a rubber plate.

The pillar is the coupling element between the SG and the Earth. Therefore, it
must be constructed very stably, e.g., of concrete with reinforcement and with three
or four drill holes (Fig. 10.5). If bedrock is available, the pillar should be placed on
it. It is not recommended to build the pillar on a floating ground. The pillar should
be displaced from the floor of the measuring chamber to avoid noise coming from
the floor and the observatory building.

Fig. 10.5 Design example (section) of the measurement pillar
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Fig. 10.6 Design example SG observatory

Figure 10.6 shows a design example of a SG observatory with the arrangement
of the meteorological and hydrological sensors, also including GPS antennas for
time keeping and positioning. The location of borehole 2, 3, etc. and soil moisture
sensors 2, 3, 4, etc. depends on the hydrological conditions and the topography at
the site (cf. Sect. 10.6.3).

10.4 Calibration of the Gravity Sensor

The data acquisition system records the voltage of the feedback system of the gravity
sensor, which is proportional to the gravity changes. Therefore, the collected raw
gravity data must be calibrated in amplitude by multiplication with the calibration
(scaling) factor. It has to be determined individually for each instrument. Besides
the amplitude calibration, the recorded SG signal has a phase delay caused by the
gravity sensor and its electronic including the analogue anti-aliasing filter and the
analogue to digital converter (ADC). This phase delay also has to be determined and
the recorded gravity data must be corrected in time.

10.4.1 Calibration Factor

The state of the art in calibration of a SG is the derivation of the calibration factor
from a parallel gravity registration of SG and absolute gravimeter (e.g. FG5) or
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a well-calibrated spring gravimeter (e.g. LaCoste and Romberg or Scintrex). The
calibration experiment should be carried out for at least about 5 days.

For determination of the calibration coefficient, the data should be corrected for
outliers (e.g. 3σ ) and big disturbances, e.g. earthquakes should be extracted from
both data sets. By a linear regression of parallel recorded SG and absolute gravime-
ter data sets, the calibration factor can be estimated with an accuracy of about ±0.1
μGal/V, which corresponds to about ±0.15% (Hinderer et al. 1998; Francis and van
Dam 2002). With the inertial calibration platform (BKG Frankfurt, Germany), an
accuracy of ±0.02 μGal/V could be achieved (Falk et al. 2001).

A theoretical approach for determination of the scaling (calibration) factor is
based on theoretical Earth tides as reference. The determination of the scaling factor
is performed by linear regression between the raw SG gravity data and the theoret-
ical Earth tides at the SG location, based on the Hartmann–Wenzel tidal catalogue
HW95, which has an accuracy of 1 nGal, (Hartman and Wenzel 1995a, b) and the
Wahr–Dehant Earth tide model (WD model) (Dehant 1987) by using, e.g., the pro-
gram PREDICT (Wenzel 1996). Gravity variations caused by the atmosphere, the
hydrosphere, the ocean and the polar motions, according to Sects. 10.6.2–10.6.5,
should be added to the theoretical Earth tides, because the raw gravity data also
include these signals.

Figure 10.7 shows as example the calibration of the dual sphere SG D037 at
Sutherland station in South Africa (Neumeyer et al. 2002). Three different methods
were applied:

Fig. 10.7 Calibration results for SG D037 (lower sensor)

1. The first calibration factor was determined by linear regression between the the-
oretical tides added to gravity induced by the atmosphere (single admittance, cf.
section “Single Admittance”), polar motion (cf. Sect. 10.6.5) and the ocean tides
(cf. Sect. 10.6.4.2) for the SU site and the output gravity signal of the SG for a
time from July to December 2000.

2. Parallel registration of the SG and the LaCoste and Romberg feedback gravime-
ter D02 which has been calibrated at the Hanover calibration line (Rehen 1997).
The calibration factor was determined by comparison of the Earth tide analysis
results of both data sets. The SG calibration factor was varied in the SG Earth
tide analysis until the amplitude factor for the partial tide O1 had the same value
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Fig. 10.8 Recorded SG (red) and FG5 (blue) data

as the O1 amplitude factor determined by the LaCoste and Romberg Gravimeter
Earth tide analysis (reference).

3. Parallel registration of the SG and an absolute gravimeter. In February and March
2001 a parallel registration was carried out with the absolute gravimeters:

a. FG5 from “Ecole et Observatoire des Sciences de la Terre”, Strasbourg,
France, from 1 to 9 February 2001

b. JILAg5 from “Finnish Geodetic Institute”, Masala, Finland, from 21 to 29,
March 2001

From both time series the absolute gravimeter and the raw SG data outliers
larger than 3σ and the linear trend were removed. Figure 10.8 shows the paral-
lel recorded SG and FG5 data used for determination of the calibration factor. It
was performed by a linear least square fit between the absolute gravimeter and the
SG data. Figure 10.9 shows the plot of FG5 (Y) vs. SG (X) data Y = f (X) and
the regression line r(X) = b0 + b1X. The factor b1 corresponds to the calibration
coefficient.

As the final calibration factor the mean of the parallel registrations of the absolute
gravimeters FG5 (a), JILAg5 (b) and the SG, CFag = –68.945 μGal/V was selected.
The calibration factor was determined with a standard deviation of ±0.15%.

Remarkable is the difference between the two absolute gravimeter results of 0.77
μGal/V (0.5%) and the good agreement between the calibration factors based on
theoretical tides and the mean of the two absolute gravity measurements. The differ-
ence between the scaling factor based on theoretical tides, CFTh = –68.92 μGal/V
and CFag is 0.025 μGal/V, which lies within the error bar of the measured calibra-
tion coefficient CFag. This result shows that the scaling factor determination based
on theoretical tides is in good agreement with the calibration based on absolute
gravimeter recordings.
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Fig. 10.9 Regression between FG5 and SG data (black) and regression line (white)

10.4.2 Phase Shift

The phase shift is the delay of the recorded gravity signal with respect to original
time of this signal. This time delay is caused by the gravity sensor and its electronics
including the anti-aliasing filter, which has a nominal time delay of 8.4 s, and the
analogue to digital converter. The determination of the phase shift is necessary for
the exact time assignment of the gravity signal.

The phase shift determination is based on an additional step or sine voltage in the
feedback coil. This voltage corresponds to a gravity signal. It can be added by an
adder circuit incorporated into the feedback circuitry. In this way the complex trans-
fer function and the time delay of the SG can be determined (Richter and Wenzel
1991; Wenzel 1995a; van Camp et al. 2000).

For a step voltage as input signal the complex transfer function of the SG,
Ĥ(ω) = Re(H(ω)) + Im(H(ω)), can be determined by Fourier transform of the dif-
ferentiated recorded step response voltage (Bendat and Piersol 1986). From Ĥ(ω),
the amplitude transfer function (gain) G(ω) and the phase shift ϕ(ω) can be derived
according to (1) and (2):

G(ω) =
√

[Re(H(ω))]2 + [Im(H(ω))]2, (1)

ϕ(ω) = arc tan
Im(H(ω))

Re(H(ω))
. (2)

The frequency-dependent time shift ts(ω) can be determined by (3) with T = period
of the relevant frequency range, e.g. the Earth tides:

ts(ω) = ϕ(ω)

360◦ T (3)
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Fig. 10.10 Amplitude transfer function of SG D037 (G1l = lower and G2u = upper sensor)

An example for the determination of the transfer function and time delay is given
for SG D037 at SU station. The signal added to the feedback circuitry was generated
by a low-frequency function generator. The new electronic package GEP includes
a function generator for a step and sine wave experiment to determine the complex
transfer function and time shift of the SG.

In a step response experiment the time delay of the lower sensor was determined
as ts = 8.7 s. The calculation of the amplitude transfer function G(ω) and the phase
shift ϕ can be carried out, e.g., by the programs ETSTEP (Wenzel 1996) or TSOFT
(Van Camp and Vauterin 2005). The phase shift can be determined with an accuracy
of about 0.01◦.

Figure 10.10 shows the amplitude transfer function for the lower and upper sen-
sors of SG D037. The different transfer functions result in the different gradients
(lower sensor (G1l) weak and upper sensor (G2U) stiff gradient) which were gen-
erated during the setup procedure of the SG. The gradient corresponds to the spring
constant of a mass-spring gravimeter.

10.5 Noise Characteristics

The investigation of weak gravity effects requires a high signal to noise ratio, which
characterizes the quality of the data. The signal to noise ratio of the recorded gravity
data depends on the noise at the site and the noise of the instrument. Because the
instrumental noise is small in the inspected frequency band, the noise level at the
site mostly determines the quality of the data.

10.5.1 Noise Magnitude

To estimate the noise level at a SG site in the high-frequency range, the noise mag-
nitude (NM) is often used (Banka and Crossley 1999). The NM can be calculated by
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NM = 10 log(PSD) (related to
m/s2

√
Hz

, in dB). (4)

The power spectral density (PSD) is normally calculated from 1 s sampled raw grav-
ity data, corrected for air pressure-induced gravity. The quality of the SG site can
be estimated by comparison of the calculated noise magnitude with the New Low
Noise Model (Peterson 1993). Rosat et al. (2004) compared the noise magnitude of
19 SG sites of the GGP network. Because of the different locations and environment
conditions at the sites the noise magnitudes differ up to about 20 dB.

As an example, the noise magnitudes were calculated for the SG stations in SU
in South Africa (one of the low-noise stations according to Rosat et al. 2004) and
MunGyung (MG) site in South Korea (36.6402◦N, 128.2147◦E and height 107.5 m).
The used data were for the SU site from 15 to 31 May 2005 (lower gravity sensor),
and for the MG site from 1 to 16 January 2007.

The PSD was computed with a subdivision length of the raw gravity data of 12 h
and an overlapping of 50%, and the data were multiplied with a Hanning window.
The loss of energy in using the Hanning window was compensated by multiplication
of the Fourier components in the PSD computation with a factor of

√
8/3 (Bendat

and Piersol 1986).
In Fig. 10.11 the PSD (left axis) and the associated NM (right axis) are shown

as functions of frequency in millihertz. For comparison the NM, according to the
NLNM, is added.

A comparison between the noise magnitudes of the SG sites and the NLNM
shows that the NM of the SU site is close to the NLNM below 10 mHz and even a
little smaller below 1 mHz, whereas the NM at the MG site is higher than at the SU
site within this frequency range. Above 10 mHz the NM at the MG site is smaller.

Fig. 10.11 Power spectral density (PSD) and noise magnitude (NM) at SU and MG sites in
comparison with the New Low Noise Model (NLNM)
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The peak of the NM in the range from about 30 to 100 mHz is mainly caused by the
ocean noise. This frequency range is normally filtered out because the interesting
gravity signals of the SG observations begin at frequencies below 10 mHz (free
oscillations of the Earth).

This comparison with the NLNM model and the results of the other analysed
SG sites by Rosat et al. (2004) emphasize that the SG recordings on a quiet site
offer excellent conditions for high-precision gravity measurements and the detection
of weak gravity signals in the frequency range below 10 mHz, e.g. for the free
oscillation of the Earth and the translational oscillation of the solid Earth core.

10.5.2 Noise Caused by Misaligned Instrumental Tilt

If the tilt compensation system does not work properly, the tilt changes cause noise
in the gravity data. This behaviour was observed by Imanishi (2005) and Kim et al.
(2009).

The influence of the misaligned tilt on gravity recordings is shown for the MG
station in Korea (Kim et al. 2009). Since the automatic tilt system of the SG at MG
site was found not to work properly, it was newly adjusted and the air blowing of the
air-conditioning system to the thermo-mechanical levellers was drastically reduced
on 14 June 2006 (Event #1). In addition, the SG was covered with a polystyrene box
to maintain the ambient temperature more stable on 21 September 2006 (Event #2).
Figure 10.12 shows the recording of tiltY power and balance signals before and after
Events #1 and #2.

There is a small decrease of tilt power variation after Event #1 and a decrease
from about ±50 to ±20 mV after Event #2. The tilt balance signal comes up to
about ±25 mV before Event #1 and after it was reduced to about ±10 mV. A further
decrease of the balance signal could be achieved by box installation (Event #2),
which results in a medium tilt balance signal of ±5 mV. This is the nominal value

Fig. 10.12 TiltY power and balance recordings



358 J. Neumeyer

Fig. 10.13 Power spectral density of the gravity residuals δgres before and after Events #1 and #2

for a correctly working tilt compensation system. TiltX power and balance signals
showed very similar behaviour like that of tiltY.

The influence of the misaligned tilt on gravity recordings is shown in Fig. 10.13.
It displays the PSD of the gravity residuals (δgres = δgraw – ET – δgair – δgol – δggwl)
(cf. Sect. 10.7.7) 7 days before and after Events #1 and #2. The PSD was calculated
with a subdivision length of the gravity residuals of 7 h, an overlapping of 50%
and the data were multiplied with a Hanning window. There are peaks at the same
periods (between 4 and 7, 8 and 9, and around 12 min), as in the spectrum of tilt bal-
ance calculated previously. These peaks became smaller or disappeared after Event
#1. After Event #2, only a remarkable reduction of the peaks between 4 and 5 min
was achieved. This result confirms that the tilt balance signal should be ±5 mV or
smaller to avoid disturbances in the gravity signal.

10.6 Modelling of the Principal Constituents
of the Gravity Signal

The SG measures gravity variations according to Newton’s law of gravitation result-
ing from mass movements in its near and far surroundings. Therefore, the SG signal
includes gravity effects from the Moon and Sun as well as from other celestial
bodies, the Earth tides and gravity effects induced by various geophysical and geo-
dynamic sources within the Earth’s system on global, regional and local scales.
Figure 10.14 shows a typical example of the gravity signal recorded with the SG
at station Metsahovi (ME), Finland (60.2172◦N, 24.3958◦E and height 55.6 m),
from April 2002 to July 2003 and the modelled principal constituents of the gravity
signal:



10 Superconducting Gravimetry 359

Fig. 10.14 Gravity signal and its principal constituents (station Metsahovi, Finland): (a) raw grav-
ity data (δgraw); (b) theoretical Earth tides due to WD model (ET); (c) atmospheric pressure effect
(δgair); (d) pole tide based on IERS data (PT); (e) local groundwater level effect (δggwl); (f) ocean
loading based on FES2002 model (δgol) and (g) instrumental drift (dr)
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1. Recorded raw gravity data (δgraw)
2. Theoretical Earth tides due to the WD model (ET)
3. Atmospheric pressure effect (δgair)
4. Pole tide (PT) due to IERS data
5. Local groundwater level effect (δggwl)
6. Ocean loading due to FES2002 model (δgol)
7. Instrumental drift (dr)

The recorded raw gravity which includes all gravity signals has peak to peak
amplitude of 213.12 μGal (Fig. 10.14a). The largest signal in the raw gravity data
is caused by the Earth tides (ET). They are calculated according to the HW95 tidal
catalogue (Hartmann and Wenzel 1995a, b) and WD model (Dehant 1987) with the
ETERNA package (Wenzel 1996) shown in Fig. 10.14b. The ET signal has peak
to peak amplitude of 210.08 μGal. Large signals are induced by the mass redistri-
bution in the atmosphere (Fig. 10.14c). In this example the gravity variations are
22.45 μGal calculated with a single admittance coefficient of –0.313 μGal/hPa as
described in section “Single Admittance”. The hydrologically induced gravity effect
caused by groundwater level changes in the surrounding of the SG (Fig. 10.14e)
comes to 4.85 μGal. It was calculated with an admittance coefficient of 3.3 μGal/m
(cf. Sect. 10.6.3.3). The polar motion-induced gravity effect (Fig. 10.14d) calcu-
lated according to Sect. 10.6.5 reaches 7.0 μGal. Figure 10.14f shows the ocean
tide loading effect with peak to peak amplitude of 1.94 μGal calculated according
to Sect. 10.6.4. Not negligible is the instrumental drift of 4.2 μGal/year (cf. Sect.
10.6.6).

10.6.1 Theoretical Earth Tides and Tidal Acceleration

The changing gravitational forces from Sun, Moon and the planets affect the gravity
acceleration g at the Earth. In the Earth’s centre of mass this gravitational force Fgr
is compensated by the centrifugal force Fc due to the motion of the Earth around
the Sun and due to the motion of the Earth around the barycentre (BC) of the Earth–
Moon and Earth–planet system, respectively, which is illustrated for a two-body
system (e.g. Earth–Moon) in Fig. 10.15. The centrifugal acceleration (ac) is constant
in every point of the Earth but the gravitational acceleration (agr) is different due to
the spatial extent of the Earth. The small resulting acceleration �atid is called tidal
acceleration which causes an elastic deformation of the Earth, the Earth tides.

The calculated tidal acceleration �atid can be determined at point P according
to (5) with �a0 = gravitational acceleration at the geocentre, GM = gravitational
constant times mass of the celestial body:

�atid = �aP − �a0 = GM

(
d

d3
− s

s3

)
(5)

As we see in Fig. 10.15, the tidal acceleration �atid is distributed symmetrically;
therefore no additional acceleration of the whole Earth is generated. Because of the
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Celestial body

FgrFc

Fc Fc
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Fig. 10.15 Earth tides. Fgr = gravitational force of the celestial body (Sun, Moon, planets), Fc =
centrifugal force, Ftid = tidal force, BC = barycentre, s = distance between mass centres of the
Earth and the celestial body, d = distance of the mass centre of the celestial body to point P at the
Earth’s surface, ψ = geocentric zenith angle of Moon, Sun or a planet, r = geocentric distance of
the attracted point (on the Earth’s surface r~R)

declination of the Earth rotation axis � (ecliptic) the tidal acceleration is changing
at any position of the Earth with time. The largest Earth tides have diurnal and
semidiurnal periods.

For calculation and prediction of the theoretical Earth tides the tidal potential has
been introduced based on spherical harmonic expansion of the tidal potential. The
tidal acceleration vector �atid is the gradient of the tidal potential V:

�atid = grad V = ∂V

∂�r . (6)

The solution for this differential equation results in (7) for V = 0 in the geocentre
by using the Legendre polynomial expansion P! cos(ψ):

V = GM

s

∞∑
!=2

( r

s

)!
P!(cos ψ). (7)

Because of the fast convergence of the spherical harmonic expansion, degree ! = 6
for the Moon, ! = 3 for the Sun and ! = 2 for the planets are sufficient.
For separation of the latitude and time-dependent parts of the tidal potential, the
geocentric zenith angle ψ is expressed by the spherical coordinates of point P
(see Fig. 10.15) and the celestial body. Additionally, the Legendre polynomials
P! cos(ψ) are decomposed in normalized spherical harmonics P!,m of degree ! and
order m:

V(t) = GMPl

∞∑
!=2

!∑
m=0

r!

s!+1

1

(2! + 1)
P!,m(cos θ )P!,m(cos �Pl(t)) cos(m(λ−�Pl(t)))

(8)
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with the geocentric spherical coordinates θ , λ at point P, and �, " at the centre of
mass of the celestial body (Wenzel 1995b).

For the Hartmann–Wenzel tidal catalogue HW95 (Hartmann and Wenzel 1995b),
(9) has been used for calculation of the tidal potential V(t):

V(t) =
!max∑
!=1

!∑
m=0

( r

a

)!
P!,m(cos θ )

∑
i

[
C!,m

i (t) cos(αi(t)) + S!,m
i (t)(sin(αi(t))

]
(9)

with the major semiaxis of the Earth a = 6378136.3 m and time t from J2000 in
Julian centuries. The time-dependent tidal potential coefficients are given by

C!,m
i (t) = C0!,m

i + t C1!,m
i , (10)

S!,m
i (t) = S0!,m

i + t S1!,m
i . (11)

The arguments αi(t) are computed from

αi(t) = m λ +
11∑

j=1

ki, j argj(t) with ki1 = m. (12)

The potential coefficients Ci
!, m, Si

!, m and the integer coefficients k are given in the
HW95 catalogue, while the 11 arguments argi(t) can be computed from polynomials
in time, given in Hartman and Wenzel (1995b).

The different components of the tidal acceleration �atid can be calculated by partial
differentiation of the tidal potential with respect to the spherical coordinates (r,θ ,λ).
The radial component of the tidal acceleration atid-r can be calculated from (13) for
any frequency (tidal wave) contained in the catalogue (e.g. i = 12,935 (HW95) and
i = 1,200 (Tamura 1987) tidal waves):

atid−r = ∂V

∂r
=

!max∑
!=1

!
r !−1

a !

!∑
m=0

P!,m (cos θ )
∑

i

[
C!,m

i (t) cos(αi(t))+S !,m
i (t) sin(αi(t))

]
.

(13)

Because the tidal acceleration is needed for an ellipsoidal coordinate system
of the Earth, the angular difference β between the ellipsoidal and the geocentric
latitude must be considered according to

aEtid−r = sin(β) atid−r + cos(β) atid−r. (14)

The changes of the tidal acceleration aEtid-r cause a deformation of the Earth, the
Earth body tides. This deformation causes an altitude change combined with a mass
movement at a fixed point P at the Earth’s surface. The Earth tides cannot be mea-
sured directly. However, they can be determined by the response of the Earth to the
tidal acceleration. This response can be measured with a gravimeter in amplitude
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and phase and compared to the calculated theoretical tidal acceleration aEtid-r. The
deviation of the amplitude and phase of a partial Earth tide wave ETi at point P
of the Earth’s surface due to altitude change and mass movement compared to the
theoretical tidal acceleration aEtid-r can be expressed by

ETi(t) = δi Athi cos(ω t + δ�i) (15)

with Athi = amplitude of theoretical tidal acceleration aEtid-r, δ�i = �obsi − �thi

phase shift and δi = Aobsi
Athi

the gravimetric factor (amplitude factor). The relation

between the gravimetric factor and the Love numbers h! (for the displacement due
to elastic deformation) and k! (for the potential of the deformed mass) is given by

δ! = 1 + 2

!
h! − ! + 1

!
k!. (16)

For ! = 2 it follows δ2 = 1.16 with h! = 0.61 and k! = 0.3. In Dehant (1987) one
can find the Wahr–Dehant (WD) model tidal parameters for an elliptically uniformly
rotating Earth with elastic inner core, a liquid inner core and an inelastic mantle. It
is still in use for many applications. The most recent tidal models are the DDW
model (Dehant et al. 1999) and the MAT01 (Mathews 2001; Mathews et al. 2002).
Ducarme et al. (2002) compared these models and found the discrepancies between
the models to be of the order of 0.1%.

The tidal deformation on the Earth’s surface ξ at point P can be roughly
expressed by

ξ = R h2

2 δ2 g
δgET, (17)

with R = radius of the Earth, g = gravitational acceleration and δET the gravity
change due to the Earth tides at point P (Hinderer and Legros 1989; Hinderer et al.
1991).

The program PREDICT (Wenzel 1996) calculates the tidal acceleration and the
theoretical Earth tides based on model tidal parameters (δ and κ) for different tidal
potential catalogues (e.g. HW95 and Tamura).

Besides the time dependency, the Earth tides are also latitude dependent.
Figure 10.16 shows as example the diurnal wave M1, the semidiurnal wave M2
and the long-period wave Mf. The sectorial semidiurnal waves have their maximum
at the equator (φ = 0◦) whereas the maximum of the tesseral diurnal waves is at
φ = 45◦. The long-period waves have a minimum at about φ = 34◦.

The Earth tides are composed of the different partial tidal waves. Figure 10.17
shows four long-period theoretical tidal waves SA, SSA, MM and MF for Potsdam
site (φ = 52.3806◦N, λ = 13.0682◦E, h = 81 m) and the resulting long-periodic
tidal waves (LP) calculated with the program PREDICT from the ETERNA package
(Wenzel 1996) using the Tamura tidal catalogue (Tamura 1987).
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Fig. 10.16 Latitude dependency of the tidal waves

Fig. 10.17 Long-periodic model tides

The Earth tides are the largest signal in the recorded gravity data. They can reach
up to ~280 μGal. Figure 10.14b shows an example for the ME station.

10.6.2 Gravity Variations Induced by the Atmosphere

The continual redistribution of air masses in the Earth’s atmosphere causes temporal
gravity variations. These variations highly correlate with the atmospheric pressure
variations that can be measured and used for calculating this gravity effect. The
period range of the ground pressure changes varies from minutes to years and may
reach up to 60 hPa, which causes about 20 μGal gravity variations. This means the
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magnitude of the air-masses-induced gravity variations can reach more than 10% of
the tidal gravity effect. The redistribution of air masses affects the gravimeter sensor
in two different ways:

1. Gravity changes due to the direct Newtonian attraction of the air masses
(attraction term), rough estimation –0.43 μGal/hPa

2. Gravity changes due to vertical displacement of the gravimeter on the deformed
Earth and the redistribution of masses caused by deformation (elastic deforma-
tion term), rough estimation 0.13 μGal/hPa

Both effects sum up to –0.3 μGal/hPa (Torge 1989). In the past, different methods
for modelling the atmospheric pressure effect were developed which generally fall
into two categories:

1. Empirical approaches

These methods use the local atmospheric pressure for determining the single and
complex admittance between atmospheric pressure and gravity data based on
regression and cross-spectral methods (Warburton and Goodkind 1977; Crossley
et al. 1995; Neumeyer 1995).

2. Physical approaches

(a) 2D model
These methods use global atmospheric pressure and temperature data mea-
sured at the Earth’s surface and a standard altitude-dependent air density
distribution. The physical approaches (Merriam 1992; Sun 1995; Kroner
1997; Boy et al. 1998; Kroner and Jentzsch 1998; Neumeyer et al. 1998;
Vauterin 1998; Boy et al. 2002) based on atmospheric models determine
the attraction and deformation terms according to Green’s function (Farrell
1972).

(b) 3D model
These models use 3D global atmospheric pressure, humidity and tempera-
ture data for modelling of the attraction term (Neumeyer et al. 2004, 2007;
Boy and Chao 2005; Klügel and Wziontek 2009). The deformation term is
calculated according to the loading Green’s function.

10.6.2.1 Empirical Methods

Because of the good correlation between the recorded local atmospheric pressure
δap and the gravity δg variations, empirical mathematical methods can be used for
the determination of the pressure–gravity admittance.

Single Admittance

The simplest method for the determination of the atmospheric pressure–gravity
admittance admap involves a linear regression between the atmospheric pressure
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and the gravity variations. The atmospheric pressure-induced gravity variations δgair
can be calculated by δgair = δap × admap. The reduction of the atmospheric pres-
sure effect with the single admittance coefficient delivers adequate results for many
applications. However, it captures about 90% of the total effect only (Sun 1995).
The goal is to capture the complete effect by applying other methods.

Figure 10.14c shows an example of the atmospheric pressure-induced grav-
ity δgair for the ME station calculated with an admittance coefficient of –0.313
μGal/hPa determined by means of linear regression.

Complex Admittance

This method determines the frequency-dependent atmospheric pressure–gravity
admittance function cadm(fn) in amplitude and phase. It is based on the cross-
spectral analysis. For a single input–single output model the transfer function Ĥ(f )
as a function of frequency can be calculated after Bendat and Piersol (1986) by

Ĥ(fn) = Ĝxy( fn)

Ĝxx( fn)
(18)

with the autospectral density Ĝxx and the cross-spectral density Ĝxy of the input
series xn and the output series yn, sampled at equally spaced time intervals �t. For
evaluation of Ĝxx and Ĝxy, the data records xn and yn must be divided into nb blocks
each consisting of N data values. The block size N should be a power of 2, and then
one can use the faster Cooley–Tukey procedure of fast Fourier transform (fft). If
needed to suppress side-lobe leakage, the data values in each block can be tapered
by applying an appropriate window, e.g. the Hanning window.

The averaged autospectral density estimates from the nb blocks of data can be
calculated by the fast Fourier transform according to

Ĝxxk = 2

nb N

∑
i

[
fft(xi)n

]2 (19)

with i = 0,1,. . .,nb–1 and k = 0,1,. . .N/2. The frequency is calculated by fk =
k/(�t × N).

The averaged raw cross-spectral density estimates from the nb blocks of data can
be calculated by

Ĝxyk = 2

nb N

∑
i

[
fft(xi)

∗
n fft(yi)n

]
. (20)

The first term (∗) is the complex conjugate of the Fourier transform of the record xn

and the second term the Fourier transform of the record yn.
In this application the record xi corresponds to the measured atmospheric pres-

sure variations δap. The record yi corresponds to δgSG = δgpre − ET (δgpre=
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pre-processed gravity data, ET = theoretical Earth tides calculated with the local
or WD model Earth tide parameters).

From the auto- and cross-spectral density the complex frequency admittance
function cadm(fn) can be calculated. The complex auto Ĝxx(fk) and cross-spectral
density Ĝxy(fk) can be split into their real and imaginary parts and used for
calculation of the gain cadmA(fn) and the phase cadmφ(fn):

cadmA(fk) =
{[

Re(Gxy(fk))
]2 + [Im(Gxy(fk))

]2}1/2

Ĝxx(fk)
, (21)

cadmφ(fk) = tan−1
(

Im(Gxy(fk))

Re(Gxy(fk))

)
. (22)

The admittance function cadm(fk) is shown in Fig. 10.18. After determination of the
frequency response function, the frequency-dependent atmospheric pressure correc-
tion can be carried out for the gravity data. This is possible in the frequency domain
using fft techniques. The fft transforms the gravity data δgSG and the atmospheric
pressure data δap into the frequency domain, where the correction is done on the
gravity data according to the complex admittance function. After that the inverse
fast Fourier transform ifft retransforms the corrected gravity data δg_corr_ap back
into time domain:

δg_corr_ap = ifft
[
fft(δgres) − fft(δap) cadm

]
. (23)

The complex admittance gives improved correction of the atmospheric pressure
effect over the total tidal band compared to the single admittance coefficient.

Fig. 10.18 Admittance function for gravity-atmospheric pressure (cadm(f))
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10.6.2.2 Physical Models

Physical models are based on the Newtonian attraction of the air masses on the proof
mass of the gravimeter and the Earth’s elastic deformation due to the atmospheric
loading. The accurate modelling of the attraction and deformation terms requires
the knowledge of

• Air density distribution in space and time
• Atmospheric loading distribution in combination with a suitable Earth model

2D Model

This model is based on the calculation of gravity changes caused by a column
load on the Earth’s surface using the appropriate Green’s functions, describing the
response of a given elastic Earth model to a point load on its surface (Farrell 1972).
The atmosphere is subdivided into columns and the altitude-dependent air density
is considered by the standard atmosphere for mid-latitudes. The Green’s functions
for the Newtonian attraction GN(ψ) and deformation GE(ψ) terms have been cal-
culated and tabulated by Merriam (1992) and Sun (1995) with ψ as the angular
distance between the footprint centre of the column load on the Earth’s surface and
the gravimeter site.

If we inspect the Green’s function (Fig. 10.19) for the attraction term, we notice
a pronounced change of GN(ψ) in the range from ψ = 0 to about ψ = 0.5◦ (local
zone). Normally the atmospheric pressure data have a spacing of 0.5◦ and therefore
the data must be interpolated.

In the local zone the attraction term is dominant. For a distance of ψ = 1.1◦
the attraction and deformation terms are equal and there is no effect. For angular
distances ψ >1.1◦ the deformation term becomes dominant and the attraction term is

Fig. 10.19 Green’s functions for attraction and deformation term (Sun 1995)
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zero near ψ = 2.7◦. For ψ >40◦ the deformation effect is small and can be neglected
depending on the research goal.

The variations of the attraction and deformation term δgair can be calculated from
the Green’s function according to (Sun 1995)

δgair(t,ψ) =
[

GN(ψ) + GE(ψ)

105ψ

dS

2π [1 − cos(1◦)]

]
δap(t,ψ , dS) (24)

with GN(ψ) and GE(ψ) = tabulated Green’s functions for the Newtonian attraction
and elastic deformation terms, ψ = angular distance from gravimeter to the air
column in radian, dS = footprint of the air column and the surface atmospheric
pressure variation δap at distance ψ for the surface area dS in radian2.

The disadvantage of this method consists in using the standard altitude-
dependent air density distribution. It does not consider the real air density variations.

3D Model

The 3D model considers the real altitude-dependent mass (density) distribution in
the atmosphere for calculation of the attraction term. The deformation term can be
calculated with 2D atmospheric pressure data according to the load Green’s function
for elastic deformation (cf. (24)).

From European Centre for Medium-Range Weather Forecasts (ECMWF) global
3D atmospheric pressure, humidity and temperature data are available with a
spacing of 0.5◦ up to 60 km height and an interval of 6 h.

For determining the air masses, the air density ρ must be known. From the hydro-
static equations of dry air and water vapour (Etling 2002), (25) can be derived for
calculating the air density ρ:

ρ = p

RL T
〈
1 − q + q

ε

〉 . (25)

Input data for calculation of ρ are the ECMWF data for atmospheric pressure p,
specific humidity q and air temperature T. The gas constant for dry air is RL =
287 J/kg/K, and ε = 0.622 is the ratio of RL and RW (gas constant for water vapour).
With this air density the attraction term can be calculated using an appropriate
model.

Point Mass Model

This model (Neumeyer et al. 2004, 2007), based on the law of gravitation, calcu-
lates the gravitational acceleration at the gravimeter proof mass caused by mass
redistribution within the atmosphere. For calculation the atmosphere is divided into
spherical air segments sV. These air segments are approximated by point masses at
segment centre positions (see Fig. 10.20).
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Fig. 10.20 Spherical air
segment for calculating the
air masses attraction; r =
geocentric distance,
ϑ = (90 − ϕ) = polar
distance, ϕ = geocentric
latitude, λ = geographical
longitude, GS = gravimeter
site, sV = air volume segment

The air density ρ of the air segments is calculated from ECMWF atmospheric
pressure, humidity and temperature data (25). These data are dedicated to height h,
latitude ϕ and longitude λ with the running indices !, m, n. Equation (26) describes
the vertical component of the gravitational acceleration δgair which acts on the proof
mass of the gravimeter caused by mass redistributions within the atmosphere:

δgair!,m,n = −G

⎡
⎣∑

!,m,n

ρ!,m,n sV!,m,n A!,m,n

⎤
⎦

A!,m,n = RGS − r! [sin ϑGS sin ϑm(cos λGS cos λn + sin λGS sin λn) + cos ϑGS cos ϑm]〈
R2

GS + r2
! − 2RGSr! [sin ϑGS sin ϑm(cos λGS cos λn + sin λGS sin λn) + cos ϑGS cos ϑm]

〉 3
2

,

(26)

where G = gravitational constant, ρ = density of the air segment, sV = spherical
air volume segment, RGS = Earth radius at the gravimeter station, r! = RGS + h!,
θGS = co-latitude of the gravimeter site, λGS = longitude of the gravimeter site, θ
and λ = coordinates of sV.

Potential Model

This attraction model has been derived from the gravitational potential of the air
masses. For calculation the atmosphere is divided into spherical air segments sV and
for mathematical reasons (transformation of the spherical into a Cartesian coordi-
nate system) a coordinate system is introduced in such a way that the north pole
of this system coincides with the gravimeter site (GS). The gravitational poten-
tial of the air masses is calculated with respect to the gravimeter site. By partial
derivation of the gravitational potential of the air masses and summation of overall
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spherical air segments we obtain the vertical component of the gravitational accel-
eration δgair(RGS, 0, 0) (27) caused by mass redistributions within the atmosphere.

Because of the wide spacing (0.5◦) the ECMWF data must be interpolated, which
is accomplished by a two-dimensional (in θ and λ) bi-linear interpolation. The
amount of interpolated points of 10 × 10 can be regarded as adequate. More details
can be found in Neumeyer et al. (2004, 2007):

δgair(RGS, 0, 0) = −G
∑
!,m,n

ρ!,m,n(λn − λn−1)
1

6R2
GS

B!,m, (27)

B!,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
r2
!−1 + R2

GS − 2r!−1RGS cosϑm−1 ·
(

2r2
!−1 − R2

GS + 2RGSr!−1 cosϑm−1 + 3R2
GS cos 2ϑm−1

)

−
√

r2
!

+ R2
GS − 2r!RGS cosϑm−1 ·

(
2r2

!
− R2

GS + 2RGSr! cosϑm−1 + 3R2
GS cos 2ϑm−1

)
−
√

r2
!−1 + R2

GS − 2r!−1RGS cosϑm ·
(

2r2
!−1 − R2

GS + 2RGSr!−1 cosϑm + 3R2
GS cos 2ϑm

)

+
√

r2
!

+ R2
GS − 2r!RGS cosϑm ·

(
2r2

!
− R2

GS + 2RGSr! cosϑm + 3R2
GS cos 2ϑm

)

−1n
[
r!−1 − RGS cosϑm−1 +

√
r2
!−1 + R2

GS − 2r!−1RGS cosϑm−1

]
6R3

GS cosϑm−1 sin2 ϑm−1

+1n
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√
r2
!
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]
6R3
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√
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]
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√
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]
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GS cosϑm sin2 ϑm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where G = gravitational constant, ρ = air density as function of the spherical
coordinates (r, θ , λ), RGS = Earth radius at gravimeter’s site.

Results of 3D Attraction Models

By applying the point mass and potential model it could be shown that point and
potential model deliver the same results within small error bars of about ±0.1%.

The application of the 3D attraction model indicates a seasonal surface pressure-
independent (SPI) gravity effect caused by movements of air masses without
changes of the surface atmospheric pressure (Meurers 1999; Simon 2002). In
the summer season the air masses move up and the atmospheric attraction term
decreases, whereas in winter the air masses move down, causing a larger attraction
term. Figure 10.21 illustrates this.

The gravity effect caused by mass relocation is different above and to the side of
the gravimeter. When we assume a mass relocation from point 1 to point 2 above the
gravimeter, the attraction term becomes smaller (gair_2 < gair_1). When we assume
a mass relocation from point 1a to point 2a to the side of the gravimeter the vertical
component of the attraction term, which acts on the gravimeter proof mass, becomes
larger (gair_2a > gair_1a). This effect is altitude dependent.

By applying the 3D attraction model (Neumeyer et al. 2004, 2007), it could be
shown that the gravity variations induced by mass redistribution in the atmosphere
include the SPI gravity effect in the order of 1–2 μGal. Figure 10.22 shows an exam-
ple of the SPI effect at the same ground pressure of 1001.25 ± 0.25 hPa calculated
for the coordinates of the Metsahovi (ME) SG station.
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Fig. 10.21 Mass relocation within the atmosphere

Fig. 10.22 Surface pressure-independent gravity effect (SPI) at surface pressure of 1,001.25 ±
0.25 hPa at SG site ME

Recent studies (Klügel and Wziontek 2009) showed that the seasonal SPI effect
becomes smaller or disappears when using atmospheric data up to 84 km height. The
accuracy of the calculation of the attraction and deformation term strongly depends
on the accuracy of the atmospheric model (e.g. ECMWF).

10.6.3 Hydrology-Induced Gravity Variation

Any redistribution of water masses induces changes of the Earth’s gravity field.
Precipitation (rain and snow) causes mainly changes in soil moisture and groundwa-
ter level and also in surface water, e.g. in Amazon area. One part of this precipitation
evaporates at the surface of the Earth and in the ground. Another part increases the



10 Superconducting Gravimetry 373

groundwater level or drains off. The water circulation in the surroundings of the
gravimeter causes gravity variation by gravitational attraction on the proof mass of
the gravimeter and the deformation of the Earth’s surface. Both terms result in grav-
ity variation similar to that due to the atmosphere. The attraction term reflects the
local and the global hydrological changes. The deformation term is mostly caused
by global hydrological changes.

For calculation of the hydrology-induced gravity variations, different models are
in use. These models can be divided into empirical and physical approaches.

The empirical methods can generally be divided into Bouguer plate modelling
and the determination of an admittance coefficient between gravity residuals and
groundwater level variations or soil moisture, etc.

The physical methods use the local and global water mass redistributions from
local measurements or local and global hydrological models. They calculate the
Newtonian attraction of the water mass changes on the proof mass of the gravimeter
(attraction term) and the deformation of the Earth caused by the changes of the
water masses at global scale (deformation term). The most challenging problem is
obtaining usable data from the water mass changes. The changes of the water masses
around the SG at local or global scale are measured by groundwater level (gwl)
and soil moisture (sm) changes as well as precipitation. These measurements and
additional meteorological, terrain and ground parameters are input for the local and
global hydrological models which deliver the water mass changes for the local or
global area in an adequate gridding. Up to now mainly global hydrological models
are available.

10.6.3.1 Bouguer Plate Model

A first estimation of δggwl can be calculated by the Bouguer plate modelling (Torge
1989):

δggwl = 2 π G ρw Ps δh_gwl (28)

with the gravitational constant G = 6.673 × 10−11m3/kg/s2, the water density ρW
=1 gcm3, the water-filled pore space Ps and the groundwater level changes δh_gwl.
If we assume δh_gwl = 1 m and Ps = 10%, δggw reaches 4.2 μGal. This corre-
sponds to an admittance of admgwl = 4.2 μGal/m. With the same equation the soil
moisture-induced gravity effect can be estimated when we replace δh_gwl by the
thickness of the moist layer and Ps by the percentile soil moisture change. The prob-
lem of this method consists in the very imprecise estimation of the water-filled pore
space.

10.6.3.2 Precipitation Model

Groundwater level accumulation caused by precipitation as rainfall δh_rain can be
modelled according to (29) and (30) (Crossley and Su 1998):

δh_r(t, t1) = rain(t1) (1 − e(t1−t)/τ1) e(t1−t)/τ2 (29)
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Fig. 10.23 Modelling of precipitation

with rain = amount of rain at time t1 = 0. . .tn, time t = 0. . .tn, τ1 = recharging time
constant, τ2 = discharging time constant and the additional condition δh_r(t,t1) =
0 if δh_r(t,t1)<0 which yields

δh_rain(t) =
∑

t1

δh_r(t, t1). (30)

The gravity caused can be calculated according to (28) by the Bouguer plate
model. Figure 10.23 shows an example where the accumulated groundwater level
δh_rain and δg_rain are calculated from rainfall data for τ1 = 6 h and τ2 = 8
days. The time constants τ1 and τ2 must be adapted empirically depending on the
geological structure of the site and its surrounding. This model yielded satisfactory
results at some SG stations (Crossley and Su 1998; van Dam and Francis 1998;
Lambert et al. 2006).

10.6.3.3 Single Admittance Model

Groundwater level changes δh_gwl, normally the main part of the water masses
change, soil moisture changes δsm and precipitation correlate with the SG-measured
gravity variation δgSG. Therefore the groundwater level admittance on gravity
admgwl can be determined by a linear regression analysis and the groundwater level-
induced gravity variation δggwl can be calculated by δggwl = δh_gwl× admgwl. The
same calculation can be carried out for soil moisture.

Presently, most of the SG stations are equipped with a borehole for measuring
groundwater level variations. In many cases a good correlation between gravity and
groundwater level variations could be shown (Kroner 2001; Harnisch and Harnisch
2002; Virtanen 2001, 2006). The gravity effect of these variations was determined
by the regression analysis. The admittance coefficient can reach several micro-
galileos per metre depending on the hydrological conditions. This is a simple model,
which does not reflect the real hydrological gravity signal very accurately.
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While suitable approaches exist for atmospheric signals (cf. Sect. 10.6.2.2), the
problem is much more difficult and not yet satisfactorily solved when regarding
hydrological signals. Both soil moisture and groundwater level data reflect local
effects as well as signals on regional or continental scale. Additionally, topography
and local hydrological structure have a big impact on hydrological gravity effects
(e.g. Boy et al. 2005; Virtanen et al. 2005; Kroner and Jahr 2006; Meurers et al.
2005, 2007).

Figure 10.14e shows the hydrological gravity effect based on groundwater level
variations near the SG station calculated with the admittance coefficient of 3.3
μGal/m.

10.6.3.4 Global Hydrological Models

Global hydrological models can be used to derive the associated gravity variation
for a SG site at global scale. The global hydrological models try to represent both
the spatial distribution and the changes of continental water budget with time. The
water budget change (wbc) of all global hydrological models is based on precipita-
tion (prec), runoff (roff) and evapotranspiration (evpt) expressed by the very simple
fundamental relation:

wbc = prec − roff − evpt. (31)

However, the implementation brings difficulties, since the water stocks cannot be
measured directly. As a consequence different hydrological models could be quite
different, especially from the point of view of reflecting entirely the redistribution
of water masses. Several hydrological models are available, e.g. Water Gap Global
Hydrology Model (WGHM) (Döll et al. 2003), Leaky-Bucket Model (H96) (Huang
et al. 1996; Fan and Van den Dool 2004), Land Dynamics Model (LaD) (Milly and
Shmakin 2002).

The output of these three models is available in the form of gridded data sets rep-
resenting monthly averages of water storage expressed as equivalent water columns
in millimetre or centimetre. The grid step in geographical latitude and longitude
is 0.5◦ for the first two models and 1◦ for the third one. The models are updated
regularly so that the current data are available with a delay of several months. It
should be stressed that the depth of the considered groundwater in different models
differs; the snow is taken into account only partially and in different ways, and the
modelling of ice shields is, according to the authors, very incomplete and unreliable.

The hydrologically induced gravity variations (global attraction and deformation
terms) can be derived from the global hydrological models as follows. Changes
in terrestrial water storage expressed in equivalent water thickness are expanded
into spherical harmonics, transformed into potential coefficients (e.g. up to degree
!max = 10) and then used for calculating the gravity changes at the SG location
(Neumeyer et al. 2006).

Input data for each epoch are given on a regular geographical grid as equivalent
water thickness δh(ϕ, λ) which represents deviations from some reference state of



376 J. Neumeyer

the water budget in the considered block. Since δh(ϕ, λ) does not represent some real
water column, but an equivalent of complete water mass excess or deficit contained
in groundwater, surface water, soil moisture and other considered components, it is
reasonable to regard it as surface mass using the relation

δσ (ϕ, λ) = ρWδh(ϕ, λ), (32)

where ρW is the density of fresh water.
In order to compute the gravitational effects, a numerical integration of the

surface mass density δσ is necessary. This can be done according to Wahr et al.
(1998). Furthermore, the variation δr of the radial position of the SG station caused
by the load must be considered. The equation for gravity variations derived from
hydrological model δgHM then takes the form

δgHM(ϕ, λ) =GM

R2

!max∑
!=0

(! + 1 − 2h′
!)

!∑
m=0

[
δC

HM
!m cos(mλ) + δS

HM
!m sin(mλ)

]

P!m(sinϕ),
(33)

where ϕ, λ are the spherical geocentric coordinates of the computation point (lon-
gitude, latitude), R is the reference radius (mean equatorial radius of the Earth),
GM is the gravitational constant times mass of the Earth, !, m are degree and order
of the spherical harmonics, !max is chosen maximum degree in practical calcula-
tions (any natural number, !max < ∞), h′

! are degree-dependent load Love numbers
(Farrell 1972; Zürn and Wilhelm 1984; Hinderer and Legros 1989). P!m are the
fully normalized Legendre functions and C!m, S!m are the fully normalized Stokes’
coefficients. Superscript HM is related to spherical harmonic coefficients based on
gravity variations derived from hydrological model. More details can be found in
Neumeyer et al. (2006).

For arbitrary !max degree-0 (! = 0) and degree-1 (! = 1) terms cannot be
used in (33), since the hydrological models cannot and do not contain mass con-
servation, which does not exist on the level of continental water budget alone, and
since hydrologically derived geocentre variations are not interpretable for the same
reason.

Figure 10.24 shows the gravity variations δgHM derived from different hydrology
models calculated according to (33) up to !max = 10 at the SG station Bad Homburg
(BH), Germany (50.2285◦N, 8.6113◦E and 190 m). The differences among the three
models show the difficulties in modelling the gravity effect based on global hydro-
logical models and point to their uncertainties. However, they give an estimation of
the global hydrological signal, which can be interpreted as the global attraction and
deformation term of the hydrological effect (Boy and Hinderer 2006). The attrac-
tion term is underestimated because of the smoothing of the local hydrological data
(spherical harmonic expansion up to some low degree (!max = 10).The deformation
term is well considered because of using the global hydrological loading (global
hydrological data).
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Fig. 10.24 Gravity variations δgHM derived from hydrology models WGHM, H96 and LaD at the
SG site Bad Homburg, Germany

For comparison, the deformation effect, the hydrological loading, was calculated
independently with the mass loading Green’s function GE(ψ) (cf. Fig. 10.19) and
the data from the global hydrological model (WGHM). These data are delivered as
millimetre water column (1 mm water column corresponds to 1 kp/m2 = 0.981 hPa).
Equation (24) was used to calculate the deformation term due to the hydrological
loading δgHM_load (Fig. 10.25). The deformation term is more than 50% of the total
effect (attraction plus deformation term).

Global and, for some areas, regional hydrological models are presently the
models for calculating the deformation term, whereas the attraction term can be
modelled according to the 3D model (e.g. point mass model) for the atmosphere

Fig. 10.25 Gravity variations derived from hydrology model WGHM, at the SG site Bad
Homburg, Germany. δgHM = global attraction and deformation term, δgHM_load = global
deformation term
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(cf. section “Potential Model”). Unfortunately, usually less data are available. To
obtain the data a local hydrology model is required around the SG site, which
considers the local hydrological cycle (Creutzfeldt et al. 2008; Kroner and Jahr
2006).

10.6.4 Ocean Tide Loading Gravity Effect

The ocean contributes to the noise at the site and causes the ocean loading effect, an
elastic deformation of the Earth, combined with a gravity effect at the SG site. By
low-pass filtering the ocean noise can be reduced considerably. The loading effect
caused by the ocean tides superimposes the gravity signal as perturbation. Therefore,
it is necessary to remove it as completely as possible from the gravity data before
they are used for the study of geophysical and geodynamical effects.

The modelling of the ocean tide loading is based on global ocean tide models like
FES2002 (Lefevre et al. 2002; Le Provost et al. 2002), NAO99b (Matsumoto et al.
2000, 2001) and the Green’s function. The calculation of the ocean tides gravity
effect at the SG site can be carried out according to

olj(ϕ, λ) = ρW

N∑
i=0

(
G(ψi)Zi,j(ϕ′, λ′)dSi

)
, (34)

where olj is the gravity effect of the ocean tide wave j, e.g. M2 at the SG site with the
coordinates ϕ and λ, ρW is the mean density of seawater, G(ψ) Green’s function for
gravity acceleration or radial displacement, ψ angular distance between the ocean
point mass load with the coordinates ϕ′ and λ′and the SG site with the coordinates
ϕ and λ, Z(ϕ′, λ′) = Zeiph is the complex form of the ocean tide (amplitude Z and
phase ph) and dS is the surface area of the mass load.

For the numerical evaluation of (34) the ocean is divided into a set of cells with
assigned ocean tide amplitude and phase Z(ϕ′, λ′) = Zeiph for each cell, which
corresponds to a column load at the surface area dS. This information is provided
by the ocean tide models as co-tidal maps for the main tidal waves with a gridding
(distance) of the cells of 0.5◦ × 0.5◦, and N is the total number of the oceanic cells.

The Green’s functions represent the response of the Earth to a point load using an
appropriate Earth model, e.g. PREM model. Figure 10.26 shows the Green’s func-
tions which are used for calculation of the ocean loading in the program LOAD 97
(Francis and Mazzega 1990). The Green’s functions determine how much the Earth
is deformed due to the point load of 1 kg as function of the angular distance to the
SG station.

Figure 10.14f shows the calculated gravity variations induced by the ocean
loading (δgol) using data from the ocean tidal model FES2002.

More information and programs for calculation of the ocean loading can be found
at http://www.oso.chalmers.se/~loading/index.html and http://www.miz.nao.ac.jp/
staffs/nao99/index_En.html

Penna et al. (2008) give an assessment of the accuracy of ocean tide loading.
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Fig. 10.26 Mass loading Green’s function for the PREM Earth model (surface loading 1 kg)

Fig. 10.27 Ocean tidal loading amplitudes and phases at SG stations in SU, WU and MG

10.6.4.1 Ocean Tide Loading Correction of the Tidal Parameters

The ocean tidal loading can be modelled and adjusted for the tidal parameters
according to a suitable ocean tide model. Based on the global ocean tide models,
e.g. FES2002 (Lefevre et al. 2002; Le Provost et al. 2002), NAO99b (Matsumoto
et al. 2000, 2001), the ocean loading vectors for various tidal waves in diurnal-,
semidiurnal- and long-periodic bands can be calculated with the program LOAD97
(Francis and Mazzega 1990). Figure 10.27 shows examples for the ocean tidal
loading vectors for the SG stations in SU and Wuhan (WU) in China (30.5159◦E,
114.4898◦N and height 80 m) and MG.

The relations among the vectors (e.g. for the tidal wave M2), observed tide
�A (A, α), theoretical tide �R (�R,α = 0

)
, ocean tide loading �L (L, λ), observed residu-

als �B (B,β) and the remaining residuals �X (X, ξ) after ocean loading correction, are
given in Fig. 10.28.

After subtraction of the ocean tidal loading gravity vector �L (L, λ) from the
observed tidal vector �A (A,α), the remaining final residuals �X (X, ξ) are still sig-
nificant. Their amplitudes and phases can be calculated according to (35) and (36).
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Fig. 10.28 Vector diagram of
Earth tide and ocean loading
vectors. �R (�R,α = 0

) =
theoretical tides, �A (A,α) =
observed tides, �B (B,β) =
observed residuals, �L (L, λ) =
ocean loading, �Ac (Ac,αc) =
corrected tides, �X (X, ξ) =
corrected residuals

It can also be seen that the residuals �X (X, ξ) are smaller than the observed residuals
�B (B,β) and the corrected observed tidal vector �Ac(Ac,αc) is closer to the theoretical
tides in amplitude and phase:

Xi =
[
B2

i + L2
i − 2BiLi cos(βi − λi)

]1/2
, (35)

ξi = tan−1
[

Bi sin βi − Li sin λi

Bi cos βi − Li cos λi

]
. (36)

With the residual vector �X (X, ξ), the WD model tidal amplitude Rth and the
model δth factor, the ocean loading-corrected Earth tide parameters δc and κc can be
calculated with (37) and (38) (Melchior et al. 1981; Sun et al. 1999):

δc
i = δth

i

⎡
⎣1 +

(
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i δth

i
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+ 2

(
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i
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⎤
⎦

1/2

, (37)

κc
i = tan−1

[
Xi sin ξi

Rth
i δth

i

+ Xi cos ξi

]
. (38)

Several analyses (e.g. Sun et al. 1999; Ducarme et al. 2002; Neumeyer et al.
2005) demonstrate that the main reasons for the remaining residuals �X (X, ξ) are
the load vectors �L (L, λ), which are not well determined due to the inaccuracy of
the global ocean tide models, the lack of regional models and the complicated bay
coastal lines which induce a kind of special shallow sea tidal phenomena (Francis
1992; Sun et al. 2002a). This means that the ocean models do not reflect well the
real ocean tidal phenomena. The remaining residual vector �X (X, ξ) after ocean load-
ing correction can be of the order of some microgalileos for the main tidal waves
depending on the SG location (e.g. 1.8 μGal for M2 at SG station in Sutherland).
To improve the loading correction and reduce the discrepancy between observed
and predicted ones, additional tide gauge measurements can be helpful. This is rec-
ommended for SG stations near the ocean with a strong ocean influence (Khan and
Hoyer 2004; Sun et al. 2006).
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Fig. 10.29 Different ocean loading corrections of the tidal parameters in comparison with the WD
model parameters. White = WD model, black = no ocean loading correction, dark grey = NAO99b
and FES2002 (OL model), light grey = NAO99b and FES2002 and additional tide gauge ocean
loading (OL model + TG), station Rio Carpintero, Cuba

In Neumeyer et al. (2005), analysis results are shown with additional tide gauge
measurements. Precise tidal gravity (LaCoste and Romberg gravimeter) and atmo-
spheric pressure observations were carried out at station Rio Carpintero, Cuba, in
combination with tide gauge measurements at the coast of Santiago de Cuba. It
was found that the ocean loading influence can reach about 3% in the diurnal band
and 2% in the semidiurnal tidal band. Therefore, additional tide gauge measure-
ments were carried out to improve the ocean loading correction. This improvement
is based on the admittance (cf. section “Complex Admittance”) between the tide
gauge measurements and the gravity residuals corrected for the ocean loading based
on the NAO99b and FES2002 models. Figure 10.29 shows as example different
ocean loading corrections of the tidal parameters at station Rio Carpintero in com-
parison with the WD model parameters. Here the additional tide gauge corrected
tidal parameters are much closer to the WD model parameters than those corrected
with ocean tide models only. Because this is an empirical model only, a local ocean
model should deliver better results.

10.6.5 Polar Motion

The main components of the polar motion are the free oscillation of the Chandler
wobble with a period of about 435 days and an annual enforced oscillation mainly
caused by seasonal mass redistributions in the atmosphere and the ocean (Gross
et al. 2003).

When we assume the Earth to be a gyroscope, the polar motion can be explained
according to Fig. 10.30 with the space-fixed angular momentum axis H, the figure
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Fig. 10.30 Polar motion
(Chandler wobble)

axis of the Earth F and the instantaneous Earth rotation axis �. The angular momen-
tum axis is assumed as fixed. The instantaneous rotation axis � describes one cone
around the figure axis F (body cone) and a second one (space cone) around the
axis of angular momentum H. The motion can be described by a winding of the
body cone around the space cone without slipping. The axes �, H and F are always
coplanar. For an oblate gyroscope like the Earth the � axis and the figure axis F
span a plane which revolves around the axis of angular momentum. The instanta-
neous rotation axis � is located where the two cones touch each other. The motion
of the figure axis describes the Chandler wobble. The angles of the cones represent
the amplitudes of wobble and nutation.

Whereas the Chandler wobble has a long period of 435 days, its nutation has a
short period and small amplitude. The polar motion causes changes in centrifugal
acceleration at the SG site, which can be measured with the SG.

The recording of the polar motion is carried out with VLBI, LLR, SLR and GPS
measurements. The International Earth Rotation and Reference Systems Service
(IERS) (http://www.iers.org) provides a smoothing of these measurements with a
resolution of 1 day. From the IERS polar motion data XP(t) and YP(t) (in terrestrial
frame) the gravity effect of the polar motion can be calculated for the SG station
with co-latitude θ and longitude λ according to (Torge 1989)

δgPol(θ , λ, t) = Rω2δPol sin(2θ ) [XP(t) cos(λ) − YP(t) sin(λ)] (39)

with R = radius of spherical Earth model, ω= angular velocity of the Earth accord-
ing to the IERS Conventions 2003 (McCarthy and Petit 2004) and δPol= 1.16
gravimetric factor of long periodic tides (Wahr 1985; Xu et al. 2004). The polar
motion can reach a gravity effect of up to ~10 μGal which corresponds to about
1.2 arcs. For mid-latitudes θ = 45◦ dgPol has a maximum. An example of the polar
motion calculated for IERS data is shown in Fig. 10.14d for the Metsahovi station.
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10.6.6 Instrumental Drift

In spite of high persistent magnetic field levitating the proof mass (sphere) of the
SG and the stabilized feedback system which brings the sphere in zero position,
the SG has a drift of some microgalileos per year. The drift of the SG shows—after
about 2 months of installation—an exponential behaviour. Shortly after this the drift
curve becomes practically linear. As the main reasons for the drift, the magnetic
field variations, gas adsorption on the levitating sphere or helium gas pressure vari-
ations around the sphere within the gravity sensing unit are assumed (Van Camp and
Francis 2007). Because the drift biases long-term gravity variations, the drift must
be determined and subtracted from the gravity signal.

As drift can be assumed, the remaining gravity signal cannot be associated to
known gravity signals. For the drift estimation, all known gravity effects must be
removed from the raw gravity data according to

δgSG_res = δgraw − ET − δgair − δgol − δghy − δgpol (40)

The drift is simulated by a first-order polynomial dr(t) = a0 + a1 × t and the drift
parameters a0 and a1 are determined by a linear fit of δgSG_res. Because of some
uncertainties in removing all gravity effects, the drift estimation can contain a real
gravity signal too. To reduce the influence of insufficiently removed gravity effects,
e.g. seasonal gravity effects from the hydrosphere, the drift estimate from a time
series longer than 1 year gives a more realistic result.

More accurate, the drift estimation is realized by comparison with absolute
gravity measurements for an interval of about 1 year.

Figure 10.14 g shows an example for the drift estimation at Metsahovi station.
The calculated drift rate is 4.2 μGal/year.

10.7 Analysis of Surface Gravity Effects

For separating the different gravity effects, special analysis methods have been
developed using gravity as well as additional meteorological and hydrological data.
These analysis methods are based on different models for Earth and ocean tides,
gravity variations induced by the atmosphere and hydrosphere, etc. Before analysing
one specific effect such as Earth tides, seismic normal modes, core modes, nearly
diurnal-free wobble (NDFW), or Chandler wobble, the disturbing signals must be
removed.

One disturbing part consists of accelerations (vibrations) usually considered as
noise (seismic, industrial and ocean noise), which can be reduced by low- or band-
pass filtering (if the particular frequencies are known). Supplementary instrumental
effects (drift, offsets and instrumental noise) superimpose the gravimeter signal.
Most of these effects can be removed from the data. Another part usually treated
as disturbing signals are environmental influences. To remove them, they have
to be modelled and hence the environmental parameters of the atmosphere and
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hydrosphere (e.g. atmospheric pressure, groundwater level, soil moisture) must be
measured precisely.

Before analysis of a specific gravity effect (e.g. Earth tides), the gravity effects
caused by the atmosphere, hydrosphere and the ocean are normally removed from
the data as much as possible.

10.7.1 Pre-processing

The SG gravity data are recorded as raw data (unit: Volts) with a sampling rate of
usually 1 s. Before analysis the data must be calibrated and exempt from spikes, off-
sets and drift. Short data gaps up to a few days can be filled by theoretical tides. The
reasons for offsets are strong earthquakes, refilling of liquid helium (older instru-
ments), instrumental causes, etc. Spikes result from high-frequency disturbances
caused by different natural or man-made events and instrumental effects.

The pre-processing of the gravity data can be divided into different steps:

• Calibration of the data
• Phase (time) shift correction
• Computation of the preliminary gravity residuals
• Removing of spikes, steps and interfering signals
• Filling of short data gaps by theoretical tides
• Decimation to the required sampling rate for data analysis (e.g. 1 min for the free

oscillation of the Earth or 1 h for tidal analysis)
• Drift correction

The calibration is done by multiplication of the data with the prior determined
calibration factor (e.g. –68.945 μGal/V). Furthermore, according to the time shift
determination (e.g. 8.7 s) the correct time must be assigned to the data.

Depending on the data quality, spikes larger than about 0.2 μGal (depending on
the noise level of the data) and steps in the microgalileos range that do not have their
origin in atmosphere or groundwater level-induced gravity variations are removed.
Of special importance is the correction of steps in the raw data. This must be carried
out with great care because steps in the data series influence the long-term result
directly. Short data gaps can be filled by theoretical Earth tides in order to have a
continuous data series. The gravity residuals are then zero at the time of the gap.

Data filtering should be performed according to the period range of the gravity
effect, which shall be investigated. The filters must be from type zero phase shift,
to avoid a phase shift of the data. The damping of the filter must be adapted to the
dynamic range of the data, which depends on the dynamic range of the analogue to
digital converter (ADC) in the data acquisition system. For an ADC with a 24-bit
resolution, the damping of the filter must be 140 dB according to

D = 20 log(2b−1) + 2, (41)

where D = damping of the filter and b = bit resolution of the ADC.
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Fig. 10.31 FIR filter: (a) coefficients and (b) transfer function

A decimation filter should adequately cut off all frequencies higher than the
Nyquist frequency, e.g. for 1 min data the Nyquist frequency fN = 1/(2�t) yields
fN = 0.00833 Hz. The number of filter coefficients determines the length of the
filter. Figure 10.31 shows an example of two typical filters with 241 and 1,225 coef-
ficients and the respective transfer functions at a sampling rate of 1 s. The lengths of
the filters are at 1 s sampling rate, 4 and 20.4 min, respectively. These filters can be
used as decimation filters, e.g. from 1 s to 1 min. The filters can also be used at other
sampling rates, and then the period in Fig. 10.31 is changing by multiplication with
the sampling period. More decimation filters can be found on the GGP webpage
(http://www.eas.slu.edu/GGP/ggpfilters.html).

The programs TSOFT (Van Camp and Vauterin 2005) and PRETERNA (Wenzel
1996) are tools capable of performing the above steps of the data pre-processing
including data repair and filtering.

10.7.2 Earth Tides

The general goals of the tidal analysis consist of getting information (tidal parame-
ters) of the response of the Earth due to the tidal acceleration. By using a multiple
input–single output system this can be derived by a multiple regression model:

y(t) =
n∑

i=1

Hi Ai cos(fit + �i + ��i) +
∑

m

Rm zm(t) (42)

with y(t) = observations with the SG, Hi = amplitude factor, ��i = phase shift,
Ai = amplitude and �i = phase of the tidal wave with the frequency fi, zm(t) = addi-
tional signal (e.g. atmospheric pressure), Rm regression parameter for the additional
signal.

The unknown parameters Hi, ��i and Rm are normally determined by least
square fit of the observations (Wenzel 1995c).
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The recorded and pre-processed data series of the SG δgpre(t) consists not only
of the tidal gravity signal ET(t) due to the tidal acceleration in a fixed point P. It
also contains further information:

δgpre(t) = ET(t) + dr(t) + adm a(t) + res(t), (43)

where term dr(t) describes the drift of the gravimeter; term a(t) is a time series
with meteorological or hydrological data and adm describes the influence of this
additional channel onto the gravity measurement. Further signals and measurement
errors are combined in term res(t), the gravity residuals.

An analysis program optionally corrects the observed signal δgpre(t) by eliminat-
ing the drift series and the influence of the meteorological and hydrological signals.
A comparison between the theoretical tidal acceleration (cf. Sect. 10.6.1) and the
observed tidal gravity signal is used to estimate a set of tidal parameters (amplitude
factor δ and phase lead κ) for the station. The tidal parameters amplitude factor and
phase lead cannot be determined for each wave noted in the tidal potential catalogue.
Following the Rayleigh criterion the waves of the used tidal potential catalogue are
stacked together to wave groups. For each of these groups the tidal parameters,
amplitude factor and phase lead are estimated. The Earth tides are the largest signal
in the gravity recordings.

For the Earth tide analysis, three programs ANALYZE (Wenzel 1996), VAV
(Venedikov et al. 2001) and BAYTYP-G (Tamura 1990) are in use. All three pro-
grams deliver results within very similar error bars (Dierks and Neumeyer 2002).
The ANALYZE program is based on the least squares method using different tidal
potential catalogues. The most used very accurate catalogue is the HW95 with a
resolution of 1 nGal (Hartmann and Wenzel 1995a, b).

10.7.2.1 Program ANALYZE

The program is based on a method developed by Chojnicki (1973) and improved by
Schüller (1976) and Wenzel (1996). A least squares adjustment is used to estimate
the tidal parameters, the meteorological and hydrological regression parameters, the
pole tide regression parameters and the Tschebyscheff-polynomial bias parameters
for drift determination. The amount of data is nearly unlimited. Every kind of earth
tide data (gravity, strain, tilt and displacement) and up to eight channels with mete-
orological and hydrological data can be analysed. The user can determine the range
of up to 85 tidal wave groups. One tidal potential catalogue out of seven including
the very accurate from Hartmann and Wenzel (1995a, b) can be chosen to calculate
the theoretical tidal signal. The model used for least square adjustment is

! (t) + v (t) =
q∑

j=1

(X̂j COj + Ŷj SIj) +
∑

k

D̂k Tk(tn) +
∑

m

R̂m zm(t) (44)

with !(t) = observed gravity signal, v(t) = corrections of the observations, Xi ,
Yi = linear form of the unknown tidal parameters Hi (amplitude factor) and ��i
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(phase lead) for each wave group j with

Xi = Hi cos(��i), (45)

Yi = Hi sin(��i), (46)

where COj, SIj = factors of theoretical tidal parameters Aj (amplitude) and �j

(phase) for each wave i in the wave group j, starting with wave ai and ending with
wave ei:

COj =
ei∑

i=ai

H∗
i Ai cos(2π fit + �i),

SIj =
ei∑

i=ai

H∗
i Ai sin(2π fit + �i)

(47)

with H∗
i = amplification factor from digital high-pass filter (equal to 1 if the drift is

approximated by polynomials), Dk, Tk = coefficients (Dk) of Tschebyscheff poly-
nomials Tk and degree k and Rm, zm = regression coefficients (Rm) of additional
channel number m (zm).

A possible drift in the data is eliminated by high-pass filtering or is approximated
by Tschebyscheff polynomials (Tk) whose coefficients (Dk) are also estimated in the
least square adjustment. The filter coefficients for different numerical digital filters
are included in the ETERNA package (Wenzel 1996). However the method of high-
pass filtering can only be used when no long periodic waves shall be determined.
Together with the analysis of long periodic waves the drift can be eliminated by an
approximation through Tschebyscheff polynomials.

The influence of the air pressure data (or other meteorological or hydrological
signals zm(t)) onto the gravity measurement is determined by a linear regression. In
the case of high-pass filtering the air pressure data are filtered too and the regression
is computed with the filtered data.

The accuracy of each parameter is estimated in the least square adjustment in the
form of standard deviations. The standard deviations of the tidal parameters are too
optimistic and therefore corrected. They are multiplied by a factor which is derived
from the spectrum of the gravity residuals for the different frequency bands.

10.7.2.2 Program BAYTYP-G

This program is based on a method called Bayesian prediction, developed by
Harrison and Stevens (1976). The method has been modified for the use with Earth
tide data. All kinds of Earth tide data can be analysed, three additional channels with
meteorological or hydrological data are possible. The arrangement of the tidal wave
groups is done automatically depending on the length of the time series, but the user
can change the wave group boundaries by editing the corresponding file (Tamura
1990; Tamura et al. 1991). The tidal potential catalogues from Tamura (1987) and
others can be used.
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Tidal parameters drift and meteorological parameters are estimated through an
iterative method similar to least square adjustment by minimizing the function in
(Tamura 1990):

n∑
i=1

[
yi −

M∑
m=1

(AmCmj + BmSmj) − di −
kmax∑
k=0

bk xi−k�t

]2

+D2
n∑

i=1

[
di − 2di−1 + di−2

]2

+WEIGHT2
M∑

m=2

(
(Am − Am−1)2 + (Bm − Bm−1)2

)
,

(48)

where Am and Bm are the linear expressions of the unknown amplitude factor and
phase lead for each m of the M wave groups, respectively. Cmj and Smj are computed
from the tidal potential catalogue using all j waves contained in the mth wave group.
This tidal part is subtracted from each observation yi (δgpre(t)) together with the drift
value di and the term describing the influence of additional channels x(t) onto the
measurement (cf. (7.2.2c)). D and WEIGHT are called hyper-parameters and can be
defined in the parameter file.

The second line of (48) is used for drift computation. Within this program the
drift is not approximated by low-degree polynomials. Here the drift is computed
separately in each data point. The drift behaviour is characterized by the formula

di = 2di−1 − 2di−2 + ui, (49)

where ui is the stochastic part denoting a white noise sequence, di is the drift value
at the current data point and di–1 and di–2 are the drift values in the two previous
data points. The hyper-parameter D can be used to fit the drift model to the data. A
large value for parameter D selects an almost linear drift model; a small value leads
to a drift model bending close to the data.

A similar possibility is given with hyper-parameter WEIGHT in the third line of
(48). Here the variability of the tidal parameters can be chosen. However this option
is only useful if too many tidal parameters shall be estimated from too poor data.
The influence onto gravity measurement is computed by regression for maximum
three additional signals.

Within the iterative search the hyper-parameter D is adjusted to get the best com-
bination between parameters, measured data and tidal parameters. At the end of
each turn an ABIC value (ABIC = AKAIKE Bayesian Information Criterion) is
computed. The solution with the smallest ABIC value is the final one where data,
parameter and drift fit each other best. This ABIC value is also the accuracy state-
ment. A standard deviation is computed, but following the author of this program,
it is simply derived from the ABIC value. So this standard deviation is not directly
comparable to standard deviations from the other programs.
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10.7.2.3 Program VAV

The program VAV is based on a method called MV66 (Venedikov 1966a, b) and is
an improvement of the program NSV (Venedikov et al. 1997). The data file can be
adopted from program ANALYZE, but program VAV has its own format for data
files and uses own input files for tidal wave grouping and parameter settings. The
wave group arrangement is done automatically depending on the length of the data
set. Also a grouping variant can be chosen from a special input file.

The fundamental idea of the program NSV (Venedikov et al. 1997) is a filtering
of the original data containing an elimination of the drift and the separation into
several pairs of series (step 1). Each pair contains signals from one main tidal con-
stituent in diurnal, semidiurnal and terdiurnal band. The unknown tidal parameters
for each tidal constituent are determined simultaneously (step 2). This leads also
to a frequency-dependent accuracy estimate (AKAIKE Information Criterion (AIC
value) and standard deviation). Both steps are also contained in program VAV but
the separation in step 1 is not restricted to main tidal constituents. Here a wide spec-
trum of frequencies can be chosen by the user. Step 2 is using all the separated tidal
constituents in a single least square adjustment. An improvement of program VAV
is the possibility to use data with different sampling rates and with several gaps in
the same run without the need for interpolation (Venedikov et al. 2001).

The observed data sets are divided into N intervals yi of equal length. Each set
contains n data points. n differs between the intervals, if the data are unequally
spaced. Tidal parameters and air pressure regression coefficient are determined in a
least square fit together with the drift polynomial coefficients.

Besides the standard deviation from the least square adjustment, an AIC value is
computed. This value is used to compare different solutions for the same data set
with different parameter settings. The solution with the smallest AIC value is the
best one.

10.7.2.4 Analysis Results

The high-precision estimation of the gravitational amplitude factor δ and phase κ

for the different partial tidal waves, which represent the response of the Earth body
to tidal forces are mainly used for

• Earth tide reduction for relative and absolute gravity and other precise measure-
ments like satellite positioning, GPS-, laser-, radio-interferometric methods

• Investigation of Earth tide models
• Investigation of changes of the tidal parameters
• Determination of the resonance effect of the liquid core (nearly diurnal-free

wobble)
• Verification of the Love numbers h and k by gravity (SG) and GPS, VLBI or other

measurements
• Verification of global and regional ocean tide models (Baker and Boss 2003)
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The accuracy of the tidal parameters depends on the SG calibration accuracy and
the reduction of the other gravity effects in this period range (atmosphere, hydrology
and ocean). With a calibration accuracy of 0.2% the tidal factors can be determined
to �δ = ±0.002. The time shift of the SG can be determined with an accuracy better
than 1 s. From this follows that the phase shift can be determined better than 0.01◦
(calculated for diurnal tidal waves).

Figure 10.32 shows the determined tidal parameters calculated from SG data
(March 2000 to December 2004) of the SU station. For comparison the WD model
(white columns) and the observed amplitude factors (grey columns) are presented.
The deviations from the model can be seen clearly. One reason for the deviations is
the influence of the ocean loading. Therefore the ocean loading correction has been
calculated with LOAD97 and the co-tidal map from model FES2002 for the diurnal
partial tides Q1, O1, P1 and K1 and the semidiurnal partial tides N2, M2, S2 and
K2. The black columns show the ocean loading-corrected amplitude factors. One
can see that the ocean loading-corrected amplitude factors come closer to the model
values for the semidiurnal waves N2, M2, S2, K2 and the diurnal waves P1 and
K1. For the diurnal waves Q1 and O1 the ocean loading-corrected amplitude factors
depart from the model values. The reason for this behaviour is the ocean loading
model also shown in Ducarme et al. (2002).

The model phase is zero. Larger deviations from the model phase show the
semidiurnal waves 2N2, N2, M2, L2, S2, K2 and the diurnal wave S1. The ocean-
corrected phase leads for the diurnal waves N2, M2, S2 and K2 give a good
improvement close to zero (observed values near 5◦ phase lead). The ocean-
corrected phase lead for the diurnal waves Q1, O1, P1 and K1 becomes larger than
the uncorrected value. The strong deviation (δ and κ) of the S1 wave from the model
is mainly caused by the influence of the daily variations of the atmospheric pressure,

Fig. 10.32 Earth tide parameters δ and κ for the SU station, South Africa. White columns: WD
model parameter δ; grey columns: calculated parameters δ and κ; black columns: ocean loading
(model FES2002) corrected parameters δ and κ
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Fig. 10.33 Nearly
diurnal-free wobble (NDFW)

which are not corrected completely. More analysis results from the GGP network
can be found in Ducarme et al. (2002, 2004) and Sun et al. (2003).

10.7.3 Nearly Diurnal-Free Wobble

The nearly diurnal-free wobble (NDFW) is a small retrograde motion of the Earth’s
instantaneous rotation axis � about the figure axis F with a period close to 1 sidereal
day, connected with the free core nutation (FCN), a retrograde motion of the rotation
axis in space with respect to the angular momentum axis H with a period of around
430 sidereal days (Fig. 10.33). The figure axis of the mantle and the instantaneous
rotation axis of the inner core are misaligned due to the tidal forcing. The mantle
tries to impose its shape on the core. Restoring pressure torques arise at the core
mantle boundary which try to realign the two axes. As a result, the Earth reacts as
a gyroscope with a nutation in space and a wobble with respect to the Earth figure
axis (Neuberg 1987).

The NDFW resonantly amplifies nearly diurnal tides and annual and semi-annual
nutation. The tides which are mostly affected are P1, PI1, K1 PSI1 S1 and PHI1.
Their amplitudes are influenced, because their frequencies are close to the eigenfre-
quency of the NDFW. Figure 10.34 shows the amplitude factors of the WD model
around the eigenfrequency.

The eigenfrequency of the NDFW can be determined according to analytic solu-
tions (Florsch et al. 1994; Florsch and Hinderer 2000; Lei and Xu 2002) or by
least square fit estimation according to the model of a damped harmonic oscillator
(Neuberg et al. 1987; Defraigne and Dehant 1994; Sun et al. 2002a; Ducarme et al.
2002). According to Defraigne and Dehant (1994) the complex amplitude factor can
be expressed by

δ(σ ) = δ0 + A

σ − σ nd
(50)
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Fig. 10.34 Diurnal tidal waves influenced by the NDFW (amplitude factors from WD model)

with δ0 = 1 + h0 − 3
2 k0, where h0 and k0 are the static Love numbers, σ nd is the

eigenfrequency of the NDFW, σ the frequency of the tidal wave close to σ nd with
the amplitude factor δ(σ ) and A the resonance strength depending on the geomet-
ric shape of the Earth and the rheological properties of the Earth mantle. With the
assumption that the tidal wave O1 is not influenced by the resonance, because the
O1 frequency is too far away from the resonance frequency, the tidal gravimetric
factor δO1 is then subtracted from (50). This results in the model for determination
of the complex number σ nd = Re(σnd) + i × Im(σnd) by least square adjustment of
the parameters A and λnd:

δ(σ ) − δ(σO1) =
(

A

σ − σ nd

)
−
(

A(O1)

σ (O1) − σ nd

)
. (51)

To solve (51) the Marquardt algorithm of linearized iteration can be used to
minimize the error function χ2:

χ2 =
∑
λ,j

ω(σ , j)

[
δ(σ , j) − δ(λO1, j) −

(
Aj

σ − σ nd
− A(O1)

σ (O1) − σ nd

)]2

(52)

with ω(σ , j) = 1
ε(σ ,j) the weight function, where ε(σ , j) is the standard deviation

of the amplitude factor of the tidal wave with the frequency σ at the jth station
(Defraigne and Dehant 1994; Xu et al. 2002).

The eigenperiod of the FCN TFCN and the quality factor Q can be determined by
(53) and (54):

TFCN = 1

Re(σnd) + �
, (53)
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where � ~ 1 cpsd (cycle per sidereal day) is the sidereal frequency of the Earth’s
rotation and

Q = Re(σnd)

2 Im(σnd)
. (54)

For selection of the tidal waves for determination of the eigenfrequency of the
NDFW the following criteria have to be considered. The tidal waves should be close
to the eigenfrequency (highly affected by the resonance) and the tidal parameters
must be determined with high accuracy. This means that the tidal waves must be cor-
rected for the ocean loading effect (cf. Sect. 10.6.4. 1) and the tidal wave S1, which
is strongly affected by the solar-heated atmospheric tide, should not be considered.

Good results could be achieved with the tidal waves O1 (very well determined
tidal parameters), K1 (close to the resonance and well determined) and PSI1 (closest
wave to the resonance, but because of the small amplitude not very well determined).

With the GGP network, using the stacking method (Neuberg et al. 1987), the
FCN period has been determined, e.g. by Sato et al. (2004) to 429.7 ±1.4 sidereal
days or Ducarme et al. (2007) to 429.7 ±2.4 sidereal days. It is close to the MAT01
model (Mathews et al. 2002) of 430 sidereal days.

10.7.4 Polar Motion

The gravity effect of the polar motion can be measured directly with the SG and
compared with the polar motion derived from the IERS data. Some of the SG
stations deliver very similar results like the IERS observations. The determined
gravimetric amplitude factor δPol ranges from 1.1 to 1.18. For some stations it is
close to the WD model value of 1.16 (Hinderer and Crossley 2000; Harnisch and
Harnisch 2006).

For measuring the polar motion all the other gravity effects must be removed
from the SG data according to

PT(t) = δgraw(t) − ET(t) − δgair(t) − δgol(t) − δghy(t) − dr(t). (55)

Figure 10.35 shows an example of the polar motion measured with the SG at
Sutherland site, South Africa, in comparison with the calculation from IERS data.

The polar motion is used for the determination of the orientation of the Earth’s
rotation axis, the separation of the annual and Chandler wobble part, verification of
the polar motion measured with space techniques, determination of the gravimetric
amplitude factor δPol, etc.

10.7.5 Free Oscillation of the Earth

By a large earthquake the Earth is set into its natural oscillations (Earth’s free
oscillation). This oscillation is free and there are two independent types:
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Fig. 10.35 Polar motion measured with the SG at SU site and calculated from IERS data

• Toroidal oscillations (T): the displacement for toroidal oscillations is always per-
pendicular to the radius vector. These oscillations involve only the crust and the
mantle. They are equivalent to the Love waves.

• Spheroidal oscillations (S): the displacement for spheroidal oscillations has both
radial and tangential components. They are equivalent to the Rayleigh waves.

Both types of oscillations have an infinite number of modes. The SG can clearly
detect the S modes. Because of coupling effects on the rotating elliptical Earth,
T modes can be detected by the SG too. Below 0.6 mHz the SG has the highest
signal to noise ratio and it produces the best spectra and splitting of these modes
(especially 0S2, 2S1 and 0S3). Based on this splitting the 3D density structure in the
Earth’s mantle and core can be investigated (Widmer-Schmidrig 2003). Figure 10.36
shows an example of the free oscillation after the Peru earthquake (latitude 16.14◦S,
longitude 73.312◦W, depth 33 km) on 23 June 2001 at 20:33:14.14 with a magnitude
of 8.4 recorded by the SG at SU station.

The data of this earthquake have been analysed for detection of the free oscil-
lation modes of the Earth. For this purpose a data set of 96 h after the earthquake
has been corrected for atmospheric pressure using the single admittance coefficient.
An improvement of the atmospheric pressure correction can be achieved by spe-
cial models adapted to this frequency range (Zürn 2002; Zürn and Wielandt 2007).
After low-pass filtering (corner frequency 6 mHz) of the data, the mode spectrum
has been calculated by using a Hanning window (Fig. 10.36). Above the spectrum
the spheroidal modes are listed. Their frequencies are at the vertical grid lines. The
spectrum shows the model modes up to the frequency of 0S10. In particular, the
long-periodic modes 0S3, 2S1 and 0S2 are very well marked after this earthquake
and less disturbed because of the low noise site. Further results can be found in
Virtanen (1996), van Camp (1999), Nawa et al. (2000), Rosat et al. (2004, 2005)
and Lei et al. (2005) where several earthquakes are analysed and the splitting of the
modes is shown.
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Fig. 10.36 Spheroidal free oscillation modes after the Peru earthquake on 23 June 2001

10.7.6 Translational Oscillations of the Inner Core
(Slichter Triplet)

Slichter (1961) first pointed out that some of the Earth’s free oscillations might
consist principally of translational oscillations of the inner core about its equilibrium
position at the mass centre of the Earth. Unlike Earth’s other free oscillations, the
restoring force on the inner core is primarily gravitational rather than elastic. Due
to the Earth’s rotation, a single mode is split into three different polarizations (the
Slichter triplet): one along the axis of rotation and two in the equatorial plane (one
prograde and one retrograde with respect to the sense of the Earth’s rotation). Of
all Earth’s free oscillations, perhaps the translational motions of the solid inner core
are the most exclusive. The signal of these oscillations at the Earth’s surface will
be a small periodic change in gravity below the nanogalileos level. Observational
identification depends on the detection of all three distinct periods in time series
from different sites.

The periods of the Slichter triplet are very sensitive to deep interior properties
(e.g. the density jump at ICB (inner core boundary), viscosity of outer fluid core)
and hence credible observational identification provides valuable information about
the Earth’s inner structure. Depending on the Earth model and the authors, different
triplets for the modes were calculated and observed (Smylie et al. 1992, 2001; Rosat
et al. 2004, 2006; Sun et al. 2004; Guo et al. 2006). The theoretical values of the
frequencies of the Slichter modes are given, e.g. by Rogister (2003) for the Earth
model 1066A (Gilbert and Dziewonski 1975) with 4.777, 5.229 and 5.813 cpd for
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the prograde, axial and retrograde modes, and 4.006, 4.521 and 5.031 cpd for the
PREM model.

Up to now the Slichter triplet has not been detected with high significance
because their magnitude is close to the noise level of the SG data.

The SG network is the only configuration for detecting the Slichter triplet. The
general method for detecting the modes consists in stacking of the data (Courtier
et al. 2000) of different SG stations applying the product spectrum (Smylie et al.
1993) or frequency-sensitive algorithms.

10.7.7 Co-seismic Gravity Change

Gravity changes due to earthquakes have been observed with absolute gravimeters
(e.g. Tanaka et al. 2001) and superconducting gravimeters (Goodkind 1999 and
Imanishi et al. 2004). Tanaka et al. (2001) observed gravity changes of 6 μGal
after an earthquake of magnitude 6.1 with an absolute gravimeter. Goodkind (1999)
analysed SG gravity changes at Fairbanks, Alaska, corresponding to an earthquake
within 500 km distance to the SG. He analysed a decreasing of gravity before the
earthquake (16 May 1993, magnitude 4.0, depth 106 km, distance 126 km) and
arising after the earthquake. These measured gravity changes accounted for some
microgalileos, but were in contradiction to the straightforward models of earth-
quakes (Lambert and Bower 1991). The large gravity changes could be caused
by gravity variations of other sources. Nevertheless, this study gave input to fur-
ther studies. Imanishi et al. (2004) observed co-seismic gravity changes from the
Tokachi-oki earthquake on 25 September 2003 at 19:50:08 with a magnitude of 8 at
location φ = 41.78◦N, λ = 144.079◦E close to the Hokkaido Island at a depth of
32 km. Co-seismic gravity changes have been recorded at the SG stations of Essashi
(0.58 μGal, distance 3.4◦), Matsushiro (0.1 μGal, distance 6.9◦) and Kyoto (0.07
μGal, distance 9.4◦). These results are in good agreement with the calculated results
of dislocation models.

Generally, we have to consider that the sphere (prove mass) of the SG is partly
out of feedback and recording range during strong earthquakes. The measurement
range of the SG covers about ±900 μGal. The automatic resetting of the sphere into
range may also cause an offset. This is the uncertainty in interpreting co-seismic
gravity changes measured with SGs. On the other hand, the analysis period should
not be too large, in order to reduce an interaction with gravity variations of other
sources.

In Kim et al. (2009) four earthquakes within a distance of about 100 km to
the MG station were analysed. During the largest earthquake EQ1 (20 January
2007 at 11:56:33 with a magnitude of 4.8 at location φ = 37.68◦N, λ = 128.59◦E
with a depth of 13.1 km) the maximal seismic signal was 811 μGal, close to
the end of scale but still in feedback. The signals of the other earthquakes were
within feedback too. Therefore, we can exclude an instrumental effect caused
by out of feedback of the sphere as reason for the gravity change during the
earthquake.
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The recorded raw gravity data of the earthquakes (1 s sampling rate) were
reduced for theoretical Earth tides, air pressure-induced gravity, ocean loading
effect, polar motion and the linear drift. For detection of a co-seismic gravity change,
an offset in the data close to the event time of the earthquake, a data set for about 1 h
before and after the earthquake was selected. The data were divided into two blocks.
Block 1 starts 1 h before the earthquake and ends 1 sample (1 s) before recording
of the earthquake (event time t0). Block 2 starts 2 min after the event time and ends
after 1 h. The first 2 min of the recorded earthquake was not used for fitting because
of the large amplitudes. After 2 min the amplitudes were ±2.5 μGal in maximum.
The data of the two blocks were separately fitted by a quadratic function (56) to
consider the different nonlinear trends before and after the earthquake:

y(t) = a + bt + c t2. (56)

Then the gravity of the fitted functions at event time t0 for block 1, y1(t0), and block
2, y2(t0), was calculated. The co-seismic gravity change �gco - seis was determined
by

�gco-seis = y2(t0) − y1(t0). (57)

The calculated gravity change is ∂gco-seis = 0.06 μGal. Figure 10.37 shows the
recorded earthquake EQ1 and the fitted curves before and after the earthquake.
Because other effects can cause a gravity change, the atmospheric pressure and the
groundwater level data were analysed for a step at and around the event time of the
earthquake. A step could not be found in these data.

Of course, for confirmation of the observation results, modelling with a disloca-
tion model should also be carried out. But this is an example where the sphere was

Fig. 10.37 Earthquake EQ1 recorded at MG station (black) and fitted quadratic function before
and after the earthquake (white)
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in feedback during the earthquake. A pre-seismic signal could not be detected for
this earthquake.

10.7.8 Gravity Residuals

After reduction of the known gravity effects from the raw gravity data, the remaining
part, the gravity residuals δgres (58), cannot normally be associated to a specific
gravity effect:

δgres(t) = δgraw(t) − ET(t) − PT(t) − δgair(t) − δgol(t) − δghy(t) − dr(t). (58)

If we do not subtract all the known gravity effects in (58), the resulting gravity
residuals can be used for further investigation of these other gravity effects (e.g.
pole tide, hydrology-induced gravity). In Fig. 10.38 an example is shown where all
the known gravity effects are reduced except the effect of the global hydrology δghy.

From the gravity variations δgSG monthly arithmetic means δgmSG are calculated
for comparison with GRACE or hydrological models-derived gravity variations (cf.
Sect. 10.8.2).

For further analysis of the gravity residuals least square fit, cross-spectral anal-
ysis, product spectrum, power spectrum, frequency analysis (modified Fourier
analysis), principal component analysis, etc. are in use.

Figure 10.39 shows an example (Kim et al. 2009) for detection of unknown fre-
quencies in the gravity residuals δgres at MunGyung station in Korea (September
2005 to January 2007) by means of the power spectrum. It was applied with a sub-
division length of the gravity residual data of 18 days and an overlapping of 70%,
and the data were multiplied with a Hanning window.

The power spectrum shows strong peaks at frequencies 1–7 and 11 cpd. The same
peaks can be found in the power spectral density of the atmospheric pressure. These
are the well-known peaks in gravity residuals (cf. Kroner 1997). They correspond
to the harmonics of the solar-heated atmospheric wave S1. These waves could not

Fig. 10.38 Gravity residuals (Metsahovi station, Finland)
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Fig. 10.39 Power spectrum of gravity residuals (September 2005 to January 2007) at MunGyung
station, Korea

be taken into account by using the single admittance coefficient for calculation of
the air pressure-induced gravity. Therefore, they remain in the gravity residuals.
By using the frequency-dependent admittance these waves also cannot be removed
completely from the gravity residuals (Crossley et al. 1995; Neumeyer 1995).

For checking frequencies which do not have their origin in the ocean loading,
the power spectrum of tide gauge measurements (TG) from the Korean station East
Hoopo (36◦ 40′ 28′′N; 129◦ 27′ 20′′E) with a distance to the MG station of 109 km
was added. Local tide gauge measurements correlate well with the ocean loading
and can improve the ocean loading correction compared to global ocean tide models
(Neumeyer et al. 2005). The power spectrum of TG shows the diurnal (1 cpd) and
semidiurnal (2 cpd) ocean tides which are not completely removed in the gravity
residuals δgres. Moreover, around 3 and 4 cpd and at larger frequencies are peaks
in both spectra mainly caused by atmospheric and ocean loading. More detailed
studies about this subject were done, e.g. by Anderson (1999), Boy et al. (2004) and
Khan and Hoyer (2004).

Furthermore, there are several peaks in δgres outside these frequencies, e.g. f1 =
1.3543 cpd, f2 = 5.5743 cpd, f3 = 6.47053 cpd, f4 = 7.38707 cpd, f5 = 8.47461 cpd,
f6 = 8.71401 cpd, f7 = 9.89047 cpd and f8 = 11.8262 cpd. These peaks cannot
be found in the spectra of the atmospheric pressure, groundwater level and ocean
loading-induced gravity. The sources for these frequencies are unknown. They must
be further investigated.

10.8 Combination of Ground (SG) and Space Techniques

The space techniques, e.g. GPS (Global Positioning System) and GRACE (Gravity
Recovery and Climate Experiment) (Tapley and Reigber 2001), have achieved
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a resolution at the millimetre level for the vertical surface displacement and in
microgalileos level for the vertical gravity changes. This remarkable resolutions
used for many applications in geodynamics can also be used for comparison with
ground-based (SG) measurements with the goal of validating different techniques.

10.8.1 Combination of SG and GPS Measurements

The GPS technique can achieve a positioning precision in the millimetre range for
displacement variation (altitude variation) of a point on the Earth’s surface, e.g. for
the SG site. To get this precision, one needs a GPS network of at least two stations.
One station is the reference station, which is assumed as fixed and error free, and
the coordinate variations of the other station, which is located at the SG site can
be determined. Adding more reference stations can improve the precision of the
result. The coordinates of the reference station must be known before processing to
better than 1 cm. This can be achieved by using data of the IGS (International GPS
Service) GPS network or by using IGS stations as reference stations. The distance
between the GPS stations should be between 100 and 800 km approximately. The
minimal observation time can be a few days only but a parallel registration to the
SG allows the detection of long-term variations.

One can get the precision in the millimetre range with a static GPS solution only.
If a dynamic solution is applied, the precision will be only in the centimetre range
(Xu 2003). The comparison between SG and GPS measurements offers the separa-
tion of gravity variations caused by vertical displacements and the associated mass
redistributions. In Zerbini et al. (2001) good correlations between gravity measured
with the SG and GPS measured altitude variations can be found.

10.8.2 Comparison of SG, GRACE and Hydrological
Models-Derived Gravity Variations

One objective of the satellite gravity mission GRACE is the recovery of tempo-
ral Earth gravity field variations. The results of GRACE data evaluation show a
gravity resolution in the microgalileos range at a half wavelength λ/2 spatial res-
olution of about 1,500 km for a temporal resolution of 1 month (Schmidt et al.
2005). Because of this remarkable gravity resolution, the comparison and validation
of satellite-derived temporal gravity variations with ground gravity measurements
is of fundamental interest. For a satellite the gravity resolution is connected with
the spatial resolution. With higher degree !, the gravity resolution decreases and the
spatial resolution becomes finer. For comparison with SG measurements monthly
solutions up to !max= 20 (gravity resolution ~ 2.5 μGal and λ/2 ~ 1,000 km) can
be applied. Since the time variations contained in the GRACE solutions range from
1 month to the life time of GRACE, terrestrial gravity measurements must have a
long-term stability, which can be fulfilled by SGs only.
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A combination of satellite-derived with ground-measured temporal gravity
variations requires representative data sets with the same sources of gravitation and
comparable spatial resolutions. This can be achieved by

• Reduction of the same gravity effects in both data sets (SG and GRACE) using the
same models. Both data sets must represent the same sources of gravitation and
the same spatial resolution. Therefore, all local gravity effects must be removed
from the ground measurements.

• In contrast to the SG, the satellite is not coupled to the Earth’s surface and
therefore not sensitive to a vertical surface shift (altitude variation). This shift
is described by the body Love numbers h! and the load Love numbers h′

!. This
fact must be considered for reducing the different gravity effects.

• Adaptation of the SG gravity variations to the spatial resolution of the satellite.
• Consideration of effects that are unique to each method.

Located on the Earth’s surface, an SG measures, besides the gravitational mass
attraction, the gravity effect due to elastic deformation (vertical surface shift)
(e.g. Pick et al. 1973; Vanicek and Krakiwsky 1982) and the deformation poten-
tial (mass redistribution due to vertical surface shift). A satellite is not coupled to
the Earth’s surface and hence is only sensitive to the change in potential. It measures
the mass redistributions only. The reductions of Earth and pole tide, as well as the
loading effects of atmosphere and hydrosphere, are different for SG and GRACE.
The body Love numbers h! and load Love numbers h′

!, which describe the altitude
variations, are only relevant for the SG data processing.

After reduction of known gravity effects, the spatial resolution for the remaining
gravity variation is still different for SG (point measurements) and GRACE (used
spatial resolution between 1,000 and 2,000 km). The SG measurements include all
gravity variations from short to long-periodic spatial distribution. For comparison,
only the gravity variations related to the spatial resolution of GRACE should be
taken into account. The present way for adapting the remaining SG gravity vari-
ations to the spatial resolution of GRACE consists in removing the local gravity
effects, mainly induced by local hydrology, from SG data.

10.8.2.1 Preparing of the Data Sets

Before comparing SG and GRACE satellite-derived gravity variations, the SG mea-
surements must be reduced for the same gravity effects that have been applied in the
GRACE data processing. These effects are

• Earth tides
• Pole tide
• Gravity variations induced by the atmosphere
• Ocean tidal loading
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The same models are used for both sets of gravity variations to reduce these
effects. The hydrosphere-induced gravity variations are not corrected in the monthly
GRACE solutions, which are used for comparison. Therefore, they are also not
reduced in the SG data.

In addition to the direct gravity field variations, the SG also measures the gravity
changes due to the load-induced variations of the radial position of the SG, whereas
the satellite-derived models naturally do not contain this effect. To compare the
satellite-derived gravity variations with that measured by the SG, it is necessary to
add to the gravity variations from GRACE (δgG) the altitude-induced loading part
(changing of the SG’s vertical position) (δgload) which is included in the SG data. It
can be described by

δgG + load(ϕ, λ) = δgG + δgload =
GM
R2

!max∑
!=0

(! + 1 − 2h′
!)

!∑
m=0

[
δC

G
!m cos(mλ) + δS

G
!m sin(mλ)

]
P!m(sin ϕ),

(59)

where ϕ, λ are the spherical geocentric coordinates of the computation point (lon-
gitude, latitude), R is the reference radius (mean equatorial radius of the Earth),
GM is the gravitational constant times mass of the Earth, !, m are degree and order
of the spherical harmonics, respectively, !max is chosen maximum degree in prac-
tical calculations (any natural number, !max < ∞) and h′

! are degree-dependent
load Love numbers (Farrell 1972; Zürn and Wilhelm 1984; Hinderer and Legros
1989). P!m are the fully normalized Legendre functions and C!m, S!m are the fully
normalized Stokes’ coefficients. Superscript G is related to spherical harmonic coef-
ficients of GRACE gravity variations. More details can be found in Neumeyer
et al. (2006).

Time series of the monthly GRACE-only models are developed, pro-
cessed and archived in the Science Data System (SDS) (available at GFZ
Information System and Data Center (ISDC) http://isdc.gfz-potsdam.de/grace or
at the International Centre for Global Earth Models (ICGEM) http://icgem.gfz-
potsdam.de/ICGEM/ICGEM.html.) shared between the Jet Propulsion Laboratory
(JPL), the University of Texas, Center for Space Research (UTCSR) and the
GeoForschungsZentrum Potsdam (GFZ). These time series of the monthly GRACE-
only models are labelled as Release (RLnn). The Release number (nn) points out the
improved processing and extended time series, e.g. RL03 consisting of 41 monthly
models in the period from February 2003 to August 2006. Missing are the fields
for June 2003 and January 2004 due to limitations in the amount of useable data
in these 2 months. The available models are expanded up to degree and order 120.
General aspects of the gravity recovery from GRACE can be found in Reigber et al.
(2005), Schmidt et al. (2005) and Neumeyer et al. (2006).

As an example, the assigned GRACE values are taken from the monthly global
gravity field solutions GFZ RL03, and the GRACE-derived gravity variations with
added loading part δgG+load (59) are calculated for the coordinates of the SG site Bad
Homburg (Fig. 10.40). The spherical harmonic coefficients are low-pass filtered by
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Fig. 10.40 Gravity variations derived from SG (δgSG_res), GRACE (δgG+load) and hydrological
model WGHM (δgHM) for the site at Bad Homburg, Germany

Gaussian averaging in the space domain up to !fl = 15, which corresponds to a
damping of the spherical harmonic coefficients by a Gaussian bell-shaped function
(Jekeli 1981).

For comparison, the SG data were processed as follows. In a pre-processing
procedure, spikes and steps due to instrumental and other perturbations such as
earthquakes were carefully removed from the raw SG recordings. Spikes larger than
0.2 μGal and steps that do not have their origin in atmosphere or groundwater level-
induced gravity variations were removed. Of special importance is the correction of
steps in the raw data which are associated with instrumental problems (e.g. liquid
helium transfer). This must be carried out with great care because steps in the data
series influence the comparison result directly. Then, the data were low-pass filtered
with a zero-phase shift filter (corner period 300 s) and reduced to 1 h sampling rate.
From these pre-processed gravity data (δgraw), which include gravity variations of
different sources, the same gravity effects were subtracted as in the GRACE data
processing.

The Earth tide reduction was performed with the WD model (Dehant 1987).
The tidal parameters from this model were used for calculating the tidal gravity
effect (ET) applied for semidiurnal to long-periodic constituents (tidal frequencies
3.190895–0.00248 cpd).

The gravity effect of the polar motion (PT) was calculated according to (39)
based on IERS polar motion data.

For calculating the atmospheric pressure effect (δgair = δgair_attr+δgair_def), three-
dimensional atmospheric pressure data from ECMWF were used. Because this
gravity effect consists of both the attraction and the deformation parts, the cal-
culation of the attraction term (δgair_attr) was performed according to (27). The
deformation term (δgair_def) was calculated according to the Green’s function for
atmospheric loading (Merriam 1992; Sun 1995) due to (24).
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Based on the global ocean tide model FES2002 (Lefevre et al. 2002; Le Provost
et al. 2002), the ocean loading (δgol) for the main waves in semidiurnal, diurnal and
long-periodic bands were calculated based on Francis and Mazzega (1990).

The local hydrology gravity effect (δggwl) was derived from groundwater level
measurements in a borehole close to the SG site by the linear regression model (cf.
Sect. 10.6.3.1). This method is a very simple one, because the reduction of the local
hydrological gravity effect based on groundwater level variations near the SG sta-
tion may also include a part of the global effect. The reduction of the gravity effect
caused by the local hydrology possibly raises some problems. If the hydrology sig-
nal is a very local one, we must correct the effect. If the local hydrology effect
contains components of the global hydrology, we would reduce the signal we want
to compare. It is difficult to distinguish between local and global hydrological sig-
nals. Separating local from regional/global hydrological signals is still a challenge
for interpreting temporal gravity variations.

The series of the GRACE monthly solutions are assumed as drift free. However,
the SG has an almost linear instrumental drift, which can be calculated according to
Sect. 10.6.6.

After reduction of all these gravity effects from the raw gravity data, the remain-
ing part can be assumed to be mainly of mass changes in terrestrial water storage
δgSG_res:

δgSG_res(t) = δgraw(t) − ET(t) − PT(t) − δgair(t) − δgol(t) − δggwl(t) − dr(t) (60)

From gravity variations δgSG_res, monthly arithmetic means δgmSG are calculated
for comparison with GRACE and hydrological models-derived gravity variation.

The gravity variations δgHM derived from global hydrology model WGHM (Döll
et al. 2003) were calculated according to (33) up to !fl = 15.

10.8.2.2 Comparing Results

One example of comparison is displayed in Fig. 10.40. It shows the gravity varia-
tions derived from SG (δgmSG), GRACE (δgG_load) and hydrology model WGHM
(δgHM) for the Bad Homburg site. The error bars at the SG graph do not repre-
sent measurement errors; they show the variations of gravity within this month. All
curves show a good agreement within their estimated error bars. The correlations
between SG and GRACE, SG and WGHM, GRACE and WGHM are around 0.8.

In Neumeyer et al. (2008) it could be shown that the comparison between
GRACE, SG and global hydrology model-derived gravity variations shows a
noticeable agreement for many SG stations of the GGP network, except for SG
underground stations. For these stations the modelling of the hydrological effect
above the station is difficult and not very accurate.

The comparison results give suggestions for further investigations of each data
series. They show furthermore that SG measurements of the GGP SG network can
contribute to validate GRACE and further gravity satellite missions. In addition,
field SG measurements should be carried out for further validation in areas with
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large or very small gravity variations, e.g. the Amazon area, where seasonal gravity
changes can be observed in the order of some 10 μGal or in the Atacama desert with
a very small hydrological signal. The SG as well as the GRACE measurements can
also contribute to improve the hydrological models.

More investigations on this subject can be found in Wahr et al. (2004), Crossley
et al. (2005), Schmidt et al. (2006) and Hinderer et al. (2006)

10.9 Future Applications

Besides measuring the global gravity effects, the SG can also be used for measuring
special regional and local gravity effects, because it is possible to remove all the
other effects from the data, which can be well separated by special analysis and
modelling methods. Some examples and proposals are

• Measuring of local hydrology signals for solving interesting hydrologic ques-
tions like area-averaged water storage, storage change, infiltration time, aquifer
heterogeneity. The project of the University of Austin measures the hydrologi-
cal signal with a transportable SG at different places at the Edwards Aquifer of
Central Texas (Wilson et al. 2007).

• Volcano observations by combination of SG and GPS measurements for detecting
mass transport (mass redistribution) and caused ground deformation through this.
By combination of both measurements, a separation of mass transport (SG) and
deformation (SG and GPS) is possible. The deformation can be determined with
GPS stations in the millimetre range. A correlation of the combined signal (SG
and GPS) with seismic, electromagnetic, chemical measurements, etc. can yield
new information.

• Mass transport and crustal deformation in tectonic active zones.
• Investigation of the structure of the Earth’s deep interior.
• Detection of silent earthquakes by a combination of SG, GPS and seismic mea-

surements. For instance, in the Cascadian subduction zone, where displacements
in the centimetre range on the Earth’s surface have been observed (Rogers and
Dragert 2003).

The present measuring and modelling precision including the separation of the
different global and local gravity effects is sufficient for SG-based investigation of
regional gravity effects such as secular gravity variations from postglacial rebounds,
postseismic deformations, mass transport in tectonically active areas, hydrology
signals, volcano activities, silent earthquakes.
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11.1 Introduction

In the past two decades INSAR technique (synthetic aperture radar interferometry)
has been quickly developed and widely used for the study of topography (digital
elevation model generation) and deformation (Earth surface monitoring). Synthetic
aperture radar (SAR) is a coherent active microwave image instrument, which is
used for mapping the scattering properties of the Earth’s surface in the respective
wavelength domain. The intensity (grey value) of each pixel in an SAR image rep-
resents the physical and geological property and geometric parameters of the imaged
scene. In the late 1970s the first space-borne SAR system in the world (NASA
satellite SEASAT) was launched for Earth observation. This mission pioneered the
application of the SAR technology to mapping the Earth’s surface, acquiring infor-
mation about physical and geological properties such as topography, morphology,
moisture, and finding underground water. The space-borne SAR systems operate
in the microwave range and therefore work on all days and all meteorological
conditions.

Compared to optical imagery, besides intensity the SAR images provide the sec-
ond physical value for each of their pixel: phase, which represents the time delay of
the radar pulse from the illuminated object. The phase difference of two SAR images
acquired in same scene, but at different sensor positions, may offer the possibility to
extract the topography and detect the displacement of the acquired surface. Based
on the concept, the principle and applications of the SAR interferometry technology
became popular recently. In the 1980s the first results were published (Goldstein and
Zebker 1987; Goldstein et al. 1988). Since 1991, after the launch of the ESA satel-
lite ERS-1, followed by ERS-2 (1995), large numbers of SAR data sets have been
offered to investigators for their scientific research and applications. Then more and
more publications about the SAR interferometry method and applications have been
published. Now SAR interferometry becomes an extremely powerful tool for map-
ping the Earth’s surface topography and detecting associated movement over a large
spatial scale with centimetre, and even millimetre, accuracy. Today differential SAR
interferometry (D-INSAR) is one of the most important methods for earthquake and
volcanic deformation research, for glaciology and ice sheet monitoring, for moni-
toring of land surface subsidence due to mining, gas or groundwater extraction,
landslide and other geologic hazards.

The purpose of this chapter is to introduce the principles and data processing of
SAR interferometry including differential SAR interferometry, corner reflector SAR
interferometry (CR-INSAR) and some practical applications. First, in Sect. 11.2 the
basics of SAR imaging are briefly reviewed to understand the SAR imaging process
and SAR image feature, which is also the background of the SAR interferometry.
Section 11.3 describes the principle and data processing of SAR interferometry for
digital elevation model (DEM) generation. Section 11.4 deals with differential SAR
interferometry. In this section differential interferometry of the persistent coherent
scatterers is mainly introduced for monitoring of the subsidence in the area covered
by vegetables.
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11.2 Synthetic Aperture Radar Imaging

Imaging radar is classified into real aperture radar (RAR) and synthetic aperture
radar (SAR). RAR transmits a narrow angle beam of microwave pulse in the range
direction at right angles (side-looking) to the flight direction (azimuth direction) and
receives the backscattering from the targets which will be transformed to a radar
image from the received signals. Usually the reflected pulse will be arranged in the
order of return time from the targets, which corresponds to the range direction scan-
ning. Figure 11.1 shows the RAR illumination geometry. The resolution in the range
direction ρr depends on the pulse width. However, if the pulse width is made small,
in order to increase the resolution, the S/N ratio of the return pulse will decrease
because the transmitted power also becomes low. Therefore, the transmitted pulse
is modulated to chirp with a high power but wide band, which is received through a
matched filter, with reverse function of transmission, to make the pulse width very
narrow and high power. The resolution in the azimuth direction ρa is equal to the
radar aperture Ls, i.e. multiplication of the beam width β and the distance to a target
R shown in Fig. 11.2. The beam width is determined by the ratio of the wavelength
λ and the antenna length D. Therefore, the resolution in the azimuth direction ρa

increases with shorter wavelength and bigger antenna size:

ρa = Ls = λ

D
R, (1)

where λ is the wavelength, D is the radar antenna length in flight direction and R is
the distance of the target away from radar. However, it is difficult to attach a large
antenna. For example, in order to obtain 5-m resolution in azimuth direction with
C band (λ = 5 cm) and 850 km distance from a target, an antenna with 8.5-km
diameter is needed. The real aperture radar therefore has a technical limitation for
practical application.

Compared to real aperture radar, synthetic aperture radar (SAR) synthetically
increases the antenna’s size or aperture to increase the azimuth resolution through

Fig. 11.1 Real aperture radar
geometry
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D

R

ρa=Ls

Fig. 11.2 Aperture of the
RAR

the same pulse compression technique as explained for range direction. In this sec-
tion we will briefly discus how to reconstruct an SAR image from raw data and
how to increase synthetically the antenna’s size (aperture) to improve the azimuth
resolution, as well as how to understand the SAR image features.

Like other remote sensing systems, an imaging radar sensor may be carried on
either an airborne or a space-borne platform. As with any aircraft, the airborne radar
will be susceptible to variations in velocity and other motions of the aircraft as well
as to environmental (weather) conditions. In order to avoid image artefacts or geo-
metric positioning errors due to random variations in the motion of the aircraft, the
radar system must use sophisticated navigation/positioning equipment. The space-
borne radars are not affected by motion of this type, and the geometry of their
orbits is usually very stable and their positions can be accurately calculated. In this
and following sections we discus about space-borne SAR only and the main radar
parameters are from ESA ENVISAT ASAR.

11.2.1 Radar Transmitted and Received Signal

A space-borne SAR, having the viewing geometry shown in Fig. 11.3, consists of a
sensor path and an illuminated surface (Xia 1996). The radar transmitted signal is a
swept linear frequency modulated (FM) pulse, which can be expressed as

s(t) = rect

(
t

τp

)
× e

j2π
(

f0t+ 1
2 kt2

)
, (2)

where rect() is a rectangular window function being unity over the pulse duration τp

and zero elsewhere, which is also called range pulse window, and f0 is the radar car-
rier frequency, which is modulated with a frequency rate of k. Typical SAR currier
wavelength (light speed/f0) are approximately 3 cm (X band), 6 cm (C band), 9 cm
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Fig. 11.3 Simplified SAR geometry

(S band) and 24 cm (L band). The band width B of the transmitted FM is kτ , which
significantly improves the range resolution of the SAR.

Assume that a point target with a backscatter coefficient σ is located on the
Earth’s surface; the shortest distance between the radar along-track and the point
target is R, so the echo signal from the point target is

se(t) = rect

(
t − τ

τp

)
× ej2π f0(t−τ ) × ejπk(t−τ )2

, (3)

where τ is the delay of the radar signal and depends on the range (radar–target
distance) r:

τ = 2r
c

≈ 2R
c

(
1 + x2

2R2

) , (4)

where x is the location of the radar on its along-track and is equal to vt, and v is
the radar’s speed. Because the radar transmits a train of FM pulse with a period of
1/PRF, PRF is the pulse repetition frequency. Usually the period is about hundreds of
microseconds; therefore, the radar–target distance variation r can be seen as a slow-
varying function over the pulse period relative to change of the radar transmitted
waveform. Hence, the echo signal can be expressed as a two-dimensional signal:

se(x, t) = rect

⎛
⎜⎝

t − 2R

c
τp

⎞
⎟⎠× e

j
(

2π f0t− 4πR
λ

)
× e−j 2π

λR x2 × e
jπk
(

t− 2R
c

)2

. (5)

When we only consider this case, in which the shortest distance between radar and
target is R, after demodulation the echo train se(x, t) received by the radar can be
expressed as
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se(x, t : R) = rect

(
t

τp

)
× e−j 4πR

λ × e
jπk
(

t− 2R
c

)2

× e−j 2π
λR x2

. (6)

Equation (6) represents a point target response of the synthetic aperture radar with
a parameter R being the shortest range distance between sensor and the point target
and from which the unit impulse response of the SAR can be derived.

11.2.2 Impulse Response of SAR

According to the linear system theory, the impulse response of a linear system is the
autocorrelation function of input signal of the linear system (optimal filter). Suppose
SAR is a linear system, whose impulse response can be represented as follows:

h(x, t; R) = e−j 4πR
λ ×

τp
2∫

τp
2

Ls
2∫

Ls
2

[
ejπk(t′)2× e−j 2π

λR x′2
]
×
[

e−jπk(t′+t)2×e j 2π
λR (x′+x)2

]
×dt′ dx′

= e−j 4πR
λ ×

τp
2∫

τp
2

[
e jπk(t′)2 ×e−jπk(t′+t)2

]
×dt′

Ls
2∫

− Ls
2

[
e−j 2π

λR x′2

× e j 2π
λR (x′+x)2

]
×dx′

= e−j 4πR
λ × τp e−jπkt2 sin(πkτpt)

πkτpt
× Ls e j 2π

λR x2
sin
(

2π
λR Lsx

)
2π
λR Lsx

= e−j 4πR
λ × τp e−jπkt2

sin
(
π t

ρr

)
π t

ρr

× Ls e j 2π
λR x2

sin
(
π x

ρa

)
π x

ρa
(7)

where range resolution ρr=1/kτ = 1/B, depending on the band width of the radar
transmitted FM signal, and azimuth resolution ρa = λR/2Ls = D/2, Ls is the aperture
of the antenna with the length D; see Fig. 11.2. Now we can compare the azimuth
resolution of the real aperture radar and the synthetic aperture radar. The length
of their antennas is the same, but the azimuth resolution of the SAR is half of the
antenna length and independent of the radar–target distance, while that of the RAR
is equal to real aperture Ls depending on the shortest radar–target distance R. The
range resolution ρr in (7) is defined in time domain, which can be converted to
spatial domain, i.e. ρr = c/2B; here c is the speed of light, by ERS satellite, B is
15 MHz, so that the slant range resolution is about 10 m; the corresponding ground
range resolution is about 25 m.

The impulse response (7) can be rewritten as

h(x, t : R) = hr(x, t : R) × ha(x, t : R), (8)

where τp and Ls are neglected, and⎧⎨
⎩

hr(x, t : R) = e−j 4πR
λ × sin c

(
π t
ρr

)
ha(x, t : R) = ej 2π

λR x2
sin c

(
πx
ρa

) (9)
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The SAR’s impulse response then consists of two terms with two separable variables
x and t: impulse response in the range and azimuth direction, respectively. Note that
the radar–target distance r is a function of t, the target field can be expressed as σ (x,
r) and radar impulse responses can be given by hr(x, r) and ha(x,r). Therefore it
is clear that the targets σ (x, r) can be reconstructed by sequentially correlating the
return signal by the responses hr(x, r) and ha(x,r). We can see that if a point target
has a shortest radar–target distance R, the output of the SAR or, say, the pixel value
of this point target in the SAR image will include the phase −4πR/λ, which is a
function of the SAR geometry and the topography of the point target. It is precisely
due to the phase information of the SAR image that the SAR interferometry tech-
nique has been quickly developed and widely used in many scientific and practical
engineering areas.

11.2.3 Pulse Compression (Focus) and Doppler Frequency

Equation (9) is a mathematic model of the SAR system only. In fact, an SAR image
is produced by convolving the return signal se(x, t: R) (6), first with the radar trans-
mitted chirp (FM signal), called range compression or range focus, and then with
an azimuth matched filter called azimuth compression. This is similar to those of
range compression. The output of the range compression is also an FM signal, called
Doppler signal, but an exception is that the FM rate and the centred frequency vary
with the range distance. The pulse compression process is also called focus.

11.2.3.1 Range Compression

As given above, in the simplest form, the received demodulated radar signal from a
single point target can be generally expressed as

se(t) = rect

(
t

τp

)
× e−j 4πr(t)

λ × ejπkt2 . (10)

Based on the optimal filter theory, the matched filter for the range compression is

h(t) = s∗(−t)

= rect
(

t
τp

)
× e−jπkt2 . (11)

After convolving the return signal by the matched filter, assume that the radar–target
distance r(t) is constant during the pulse duration, and neglect the amplitude being
a constant related to the chirp duration τ p and FM rate k, the output signal of the
matched filter is approximately given by

sa(t) = e−j 4πr(t)
λ × sin c(πkτpt). (12)
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The radar can capture the point target in a range of Ls, in which the radar–target
distance varies with the azimuth time t, or say low time compared to range time.
Because of flight of the satellite on its along-track, which causes variation of
the radar–target distance, the azimuth signal is a two-dimensional signal, and this
distance variation is called range migration.

11.2.3.2 Azimuth Compression

Concerning the azimuth signal, (11), this is a train of compressed pulses, of which
envelope is a sinc function. Now consider the azimuth phase only:

ϕ(t) = −
4π
∣∣∣−→r(t)

∣∣∣
λ

, (13)

where
−→
r(t)is the distance vector and

−→
r(t) = −→

r(0) + −→
V t + 1

2

⇀

A t2, (14)

where
⇀

V and
⇀

A are the velocity and acceleration vectors of the sensor, respectively.
The amplitude of the distance vector is given as

∣∣∣−→r(t)
∣∣∣ ≈

∣∣∣−→r(0)
∣∣∣+

∣∣∣−→r(0)
∣∣∣× ∣∣∣−→V ∣∣∣∣∣∣−→r(0)
∣∣∣ t +

∣∣∣−→r(0)
∣∣∣× ∣∣∣−→A ∣∣∣+ ∣∣∣−→V

∣∣∣2
2
∣∣∣−→r(0)

∣∣∣ t2. (15)

The Doppler frequency, caused by the relative motion between radar and target, is
derived as

fd(t) = 1

2π
× dϕ(t)

dt

= −2

λ
×
∣∣∣−→r(0)

∣∣∣× ∣∣∣−→V ∣∣∣∣∣∣−→r(0)
∣∣∣ − 2

λ
×
∣∣∣−→r(0)

∣∣∣× ∣∣∣−→A ∣∣∣+ ∣∣∣−→V ∣∣∣2
2
∣∣∣−→r(0)

∣∣∣ t

= fdc + fdrt

. (16)

Equation (16) suggests that the Doppler signal is also a frequency modulated pulse,
fdc is the Doppler frequency centroid and fdr is the Doppler frequency rate. The
azimuth compression process is similar to those of range compression, but with dif-
ferent frequency centres and frequency rates. In order to design the azimuth matched
filter, the accurate estimation of the Doppler centroid and Doppler frequency rate is
essential. It is also to be noted that in the azimuth compression process the range
migration has to be corrected exactly. According to the theory of the linear system,
synthetic aperture radar can be considered as a cascade-connected system consisting
of two matched filters, the range matched filter and the azimuth matched filter; the
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input is the raw radar data and the output is the processed SAR image. The image
amplitude shows the physical backscatter characteristics of the illuminated targets,
while the image phase provides the distance information between the sensor and
the illuminated targets. Later it will be described how to use the SAR image phase
information to measure the topography and change of the Earth’s surface.

It is known that the radar can capture a target located on the Earth’s surface only
in a certain segment of the along-track limited by the corresponding synthetic aper-
ture and the transmitted centre pulse is perpendicular to the flight path; this geometry
and operating type is called strip mode of the SAR resulting in a strip map with a
certain swath. The achievable azimuth resolution in the strip-mode SAR is equal to
one-half of the width of the antenna. An important condition that accompanies this
resolution limit, however, is that pulses have to be transmitted with spacing along
flight track, which is equal to the resolution. There are two other SAR-operating
modes: the spotlight mode and the scan mode, the former being for improving the
azimuth resolution with fewer collected radar pulses compared to the conventional
strip-mode SAR, while the latter for increasing the width of the radar scanning
swath without increasing the antenna size. The principle and performance of the
new modes will be briefly described as follows, because the main goal of the chapter
is not for practical and detailed SAR imaging data process, but only for understand-
ing them and then to use them for establishing the SAR interferometry foundation
and performing the interferometric data process. Figure 11.4 is an ENVISAT ASAR
image of Tianjin region including Tianjin, Langfang and Tanggu; the coverage area
is 100 km ×100 km with a resolution of 30 m acquired on 2007-02-23-022552.

11.2.4 Spotlight Mode

In spotlight-mode collection, the radar antenna is continuously steered to keep the
pulse beam always on the targets in a small region. Figure 11.5 shows the flight
geometry of the spotlight-mode radar collection. The name for this mode comes
from the fact that the radar is actually spotlighting the targets for a long time, causes
a longer synthetic aperture and can therefore achieve a higher azimuth resolution.
In order to understand the spotlight-mode SAR principle for higher azimuth reso-
lution at the expense of coverage, the projection-slice theorem in tomography has
to been introduced (Jakowatz et al. 1996). Assume that the function g(x, y, z) rep-
resents the three-dimensional radar reflectivity function for a portion of the Earth’s
surface illuminated by the radar. The collection geometry of Fig. 11.6 shows that
an azimuth angle θ and an incidence angle ψ together represent a direction from
which the radar transmits a pulse and receives the return. Based on the local coordi-
nate system (u, v, w) the projection function associated with viewing angles (θ , ψ)
along the line u, slant range, is the integration of g[x(u, v, w), y(u, v, w), z(u, v, w)]
in the (v, w) plane, e.g. as

pθ ,ψ (u) =
∫∫

g
[
x(u, v, w), y(u, v, w), z(u, v, w),

]
dv dw. (17)
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Fig. 11.4 ENVISAT ASAR strip-mode image of the city of Tianjin in China
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Fig. 11.5 Spotlight-mode SAR geometry

The waveform transmitted by the radar is the linear FM pulse with the carrier
frequency ω0, the chirp duration τ p and the FM chirp rate k, as
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s(t) = rect

(
t

τp

)
e

j
(
ω0t+ 1

2 kt2
)
. (18)

At the position (θ , ψ) the return signal is

rθ ,ψ (t) =
u1∫

−u1

pθ ,ψ (u) × s
(

t − 2(R+u)
c

)
du

=
u1∫

−u1

pθ ,ψ (u) × e
j

[
ω0

(
t− 2(R+u)

c

)
+ 1

2 k
(

t− 2(R+u)
c

)2
]
du

after quadrature modulation:

rθ ,ψ (t) =
u1∫

−u1

pθ ,ψ (u) × e−jω0
2R
c × e

−j 2
c

[
ω0+k

(
t− 2R

c

)]
u
du

= e−jω0τ0 Pθ ,ψ (U)
∣∣∣U= 2

c [ω0+k(t−τ0)] ,
(19)

where Pθ ,ψ (U) is the Fourier transformation of the projection function pθ ,ψ (u), R is
the slant range from the scene centre to the radar, u1 is the maximum slant range for
any target illuminated by the beam, τ 0 is the delay term given by 2R/c and c is the
velocity of light. The result of the slant plane collection is a set of samples lying on
a polar raster imposed on an annulus in the slant plane. According to the projection-
slice theorem, the return signal is a portion of the Fourier transformation of the
reflection function g(x, y, z). Therefore it is possible to reconstruct the reflection
function g(x, y, z) and to implement SAR interferometry with the phase term caused
by the delay τ 0.
Concerning the slant range and azimuth resolution, consider an annulus shown
in Fig. 11.7. The entire annulus is offset from the origin by an amount equal to
2ω0/c = 4π/λ. The azimuth bandwidth is determined by the radius 4π/λ and the
extended annulus �θ so that
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�X = 4π

λ
�θ .

The bandwidth in slant range is determined by impulse bandwidth B:

�Y = 2πB

c/2
.

The resulting range and azimuth resolution are, respectively,

ρx = 2π

�X
= c

2B
and ρy = 2π

�Y
= λ

2�θ
. (20)

It is obvious that the slant range resolution is the same as that in strip-mode SAR,
but the azimuth resolution limit of D/2 is lifted by spotlight-mode SAR.

Figure 11.8 is a TerrarSAR-X spotlight-mode image of the Tanggu region near
the city of Tianjin. The coverage is 10 km in ground range and 5 km in azimuth
direction. The resolution is only 1 m. The shape of the buildings, bridges, streets,
cars, ships and other constructs may be clearly recognized.

11.2.5 ScanSAR Mode

The usually used SAR imaging geometry is known as the strip mode with a swath
width of 100 km. An important alterative mode to improve the azimuth resolution
is the spotlight mode as introduced above. Another important and interesting mode
of SAR is the ScanSAR mode (ESA, ASAR Product Handbook). In this case, the
radar periodically transmits bunches of pulses also called bursts. In the time between
bursts the look angle of the antenna beam is changed in order to illuminate a swath
parallel to the previous one. This means that the radar is on for a period of time,
then off, then on again, and so on, effectively imaging the region of interest in a
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Fig. 11.8 TerraSAR-X spotlight-mode image of Tanggu acquired on 1 Jan. 2008

FlightFlightFig. 11.9 Geometry of the
typical ScanSAR mode

series of bursts, where each burst consists of a certain number of echoes. The imag-
ing operation is split into a series of bursts of pulses, each burst providing returns
from one of the subswaths, getting coverage for a strip that is 400-km wide on the
ground. The ScanSAR geometry is shown in Fig. 11.9. In the case of ENVISAT,
each target in the scene is observed at least three times, in three different bursts and
at different times, so that the azimuth frequency of the target in the burst image is not
continuous, only three portions of the true azimuth spectrum. Certainly, the azimuth
resolution will be decreased because of the reductive azimuth spectrum.

Figure 11.10 is an ENVISAT ScanSAR-mode image of the area including the city
of Beijing, the city of Tianjing, province Hebei and province Sandong; the coverage
area is 400 km × 400 km with a resolution of 100 m acquired on 22 March 2006.
The resolution of the ScanSAR image is very low, but the coverage area is very
large. The images of this mode can be used when the displacement monitoring or
topographic measurement for a very large area is required.
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Fig. 11.10 ENVISAR SAR ScanSAR-mode image of the Beijing–Tianjin region in China

11.3 SAR Interferometry

As noted above, a synthetic aperture radar image provides the distance between
the radar and the illuminated targets. As a result, an interesting possibility arises
when two SAR images are produced from the same scene using very close geome-
try. It seems to be possible to interfere the two images in such a way and to obtain
the geometric information that contains the scene topography transduced by the
image data. This is the initial ideal of the SAR interferometry. In the past almost two
decades, space-borne SAR interferometry was extensively developed as a powerful
technique to measure the topography and deformation of the Earth’s surface. In the
terrain-mapping technique, the very short wavelength employed by the SAR system,
some centimetres, is used as a measurement scale for the elevation derived from
the SAR geometry, and therefore the accuracy afforded can be quite exceptional.
Basically, there are two different configurations of the SAR interferometry system:
single-pass and repeat-pass interferometric modes. In single-pass mode, two radar
antennas separated by a short distance are installed on the same satellite and oper-
ated simultaneously. One transmits FM pulses to the Earth’s surface and receives the
return signal, while the other receives the echo pulses only. Two SAR images can
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therefore be obtained at the same time. Because the return signals for the two SAR
images are from the same pulses and received at the same time, they are very highly
coherent and usually used for topography mapping. This mode was first proposed
by L. Graham in 1974 (Graham 1974) and realized by NASA in the SRTM mis-
sion. The Shuttle Radar Topography Mission (SRTM) obtained elevation data on a
near-global scale to generate the most complete high-resolution digital topographic
database of the Earth. SRTM consisted of a specially modified radar system that
flew on board the Space Shuttle Endeavour during an 11-day mission in February
2000.

In repeat-pass interferometric mode, only one radar antenna is operated, which
has two jobs at the same time: transmitter and receiver. The several SAR images
acquired for a same area are obtained through the repeat illuminations of the SAR at
different positions and times. Although this interferometric mode can also be used
for topography measurement, due to the changes of the Earth’s surface with the
time and the consequential temporal decorrelation, the repeat-pass mode is more
suitable for deformation monitoring, for example monitoring the coseismic defor-
mation, subsidence, landslide ice movement, etc. In the following, the principle of
the SAR interferometry will first be introduced, followed then by interferometric
data processing.

11.3.1 Principle of SAR Interferometry

Consider Fig. 11.11 that shows space-borne SAR interferometric geometry. Assume
that P is a point target on the Earth’s surface, its height relative to a reference surface
is h, and acquired by the radar two times at position S0 and S1, respectively. Just
through the two acquisitions, two SAR images are processed and presented by f0
and f1, master and slave image, respectively. H is the height of the satellite S0, the
distances (slant range) between the satellites S0 and the target P are R0 and R1 and θ

is the incidence angle of the radar. Usually the ellipsoid model surface of the Earth
is used as the reference surface.

Based on the description of the SAR imaging principle in Sect. 11.2 and
the INSAR geometry shown in Fig. 11.11, the SAR images f0 and f1 can be
expressed as

fi = e−j 4πRi
λ i = 0, 1. (21)

Here the reflectivity of the target is assumed to be unity. The interferometric process
means that the master image is multiplied by the conjugated slave one, resulting in
an interferogram g: g = f0 × f ∗

1 , its phase is φ and represented as

φ =− 4π (R−R1)
λ

=− 4π
λ

B sin(θ − α)
, (22)
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Fig. 11.11 Geometry of SAR interferometry

where B is the distance between satellite S0 and S1 called baseline and α is the angle
of the baseline B relative to the horizontal direction. Given P0 as a point on the
reference surface, P0 and P1 have the equal distance R to satellite S0, so P0 is seen
as the reference point of the point P1 located on the reference surface. The incidence
angle of the radar to point P0 is then reduced to θ0. Assume that the point P0 is also
illuminated by the satellite at the position S0 and S1, and the distance between P0
and S1 is R1,0, then the interferometric phase of the point P0 in the interferogram g
is expressed as

φ0 = −4π (R − R1,0)

λ

= −4π

λ
B sin(θ0 − α)

. (23)

In fact, the term B sin(θ−α) in (22) is the horizontal component B1|| of the baseline
B projected on the radar–target line SP1, and the term B sin(θ0–α) in (23) is the
component B|| of the baseline B projected on the radar–target line SP0. Phase φ0 is
called the interferometric phase of the reference surface, also called fringe pattern,
and can be accurately calculated by use of the satellite orbit vector. Subtracting φ0
from φ, i.e. flattening the interferogram, the phase difference is

�φ =−4π

λ
B cos(θ0 − α) sin(θ − θ0)

=− 4πh

λR sin θ0
× B⊥

or

h =−λR sin θ0

4πB⊥
× �φ

, (24)
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where B⊥ is the perpendicular baseline of the INSAR system. In (24) it is assumed
that R sin(θ–θ0) ≈ PP0 = h/sinθ0. If the interferometric phase of the reference
surface is removed from an interferogram, the height of the target can be easily
derived from (24). The phase of an interferogram is calculated from an argument
computation; hence only principal value of phase [–π , π ) is generally available.
Corresponding to the phase principal value, the height ambiguity h2π , i.e. the height
resulting in a phase change of one fringe 2π , is given by

h2π = λR sin θ0

2B⊥
. (25)

The height ambiguity h2π can be used to characterize the sensitivity of the INSAR
system for terrain mapping. The larger baseline will cause the smaller height
ambiguity, i.e. the higher system sensitivity. Concerning the accuracy of the topog-
raphy derived from INSAR, it mainly depends on the estimation error of the
interferometric phase:

�h = −λR sin θ0

4πB⊥
× δ(�φ). (26)

Equation (25) indicates that the larger the baseline, the better. But a large baseline
will cause decorrelation of the interferometric image pair. Differentiating the inter-
ferometric phase of the reference surface in (24) with respect to incidence angle θ0
yields

δφ0 =−4π

λ
B cos(θ0 − α)δθ0

=−4π

λ
B cos(θ0 − α) × δR

R tan θ0

=− 4πB⊥
λR tan θ0

δR

, (27)

where δR is the increase of the slant range R caused by the incidence angle variation
δθ0, and approximately equals R tan θ0 δθ0.

The range frequency of the fringe pattern is then derived from (27):

fR =
1

2π
× δφ0

δR

=
2B⊥

λR tan θ0

. (28)

Obviously, the local range frequency of the fringe pattern represents the frequency
difference, or spectral shift, of the two SAR images in slant range, which increases
with the baseline. If the spectral shift exceeds the frequency bandwidth BR of the
SAR system in slant range, the two images will be decorrelated. The range fre-
quency bandwidth BR of the SAR system is related to the bandwidth B of the radar
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transmitted FM signal and is represented as

BR = 2B

c
, (29)

where c is the velocity of light. In the case of ESA’s satellites, ERS-1/2 and
ENVISAT, the radar signal bandwidth is about 15 MHz, the wavelength is 6 cm,
the nominal slant range and incidence angle is 850 km and 23◦, respectively, and
based on these parameters the allowable baseline is about 1,100 km. Taking account
of the baseline decorrelation effect and its phase sensitivity to time, the suitable
baseline should be 200–600 m for the digital elevation model generation.

11.3.2 Phase Unwrapping

The phase unwrapping problem has a long history in a number of scientific research
fields and applications. This problem appears in cases where a physical quantity is
transduced to the phase of a complex signal. Because the phase measurement or
calculation usually results from an argument computation, only the principal value
of phase, or wrapped value, is generally available. For example, although phase φ(t)
is a linear function of time t, its value can be computed only in an interval from –π
to π , as shown in Fig. 11.12; in other words, the computed phase ψ (t) is modulo–2π
of φ(t). The process of recovering the continuous phase from its principal value is
known as phase unwrapping. For a one-dimensional signal, assume that the wrapped
phase array of φi is ψ i, −π < ψ i ≤ π , and the goal of the phase unwrapping process
is to find an integral number array ki meeting

φi = ψi + 2kiπ . (30)

Fig. 11.12 Modulo-2π of
phase φ
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The problem is solved as follows. We begin with the first sample ψ0, and let φ0 =
ψ0 within a constant offset, then add or subtract a multiple of 2π to the next sample,
so that the absolute value of the phase difference between the second and the first
sample is less than π . This procedure continues for all the available samples until
the entire one-dimensional array is unwrapped. Mathematically, the phase unwrap-
ping of the one-dimensional array is always consistently implemented, when the
condition holds: all the phase differences between φi+1 and φi are either less than π

or larger than –π :

|φi+1 − φi| < π for all i. (31)

Thus the phase unwrapping for the one-dimensional array can be expressed as

�i = ψi+1 − ψi

φi+1 =
⎧⎨
⎩
φi + �i − π < �i ≤ π

φi + �i − 2π �i > π

φi + �i + 2π �i < π

. (32)

The result of (32) is always consistent; this means that the phase difference between
two arbitrary points φi+1 and φi is independent of the integral path from one point
to another. This consistence is ensured because there is only one possible integral
path between any two points in the unwrapped array.

The phase of an SAR interferogram is a two-dimensional matrix. In this situa-
tion the phase unwrapping process becomes significantly more complicated. Let the
wrapped interferogram phase be ψ i, j; then its unwrapped phase should be

φi,j = ψi,j + 2ki,jπki,j : integer. (33)

In the case of two-dimensional array, many possible unwrapping paths between any
two points can be available. If the condition in (31) is still satisfied here, note that the
phase distributed along any integral path becomes a one-dimensional array, so that
the result of the two-dimensional phase unwrapping process is also always consis-
tent, i.e. independent of unwrapping path. Unfortunately, in the practical situation of
noise measurements, of absent data and of aliased data, it is generally impossible to
obtain a consistent solution with the integral path method. Below we will introduce
some methods of two-dimensional phase unwrapping for practical applications.

11.3.2.1 Least-Squares Method

Two-dimensional phase unwrapping is a most important and most difficult pro-
cessing step in SAR interferometry. A least-squares solution can be obtained by
minimizing the differences between the discrete partial derivatives of the wrapped
phase and those of the unwrapped solution. It has been shown that this least-squares
solution is equivalent to the solution of Poisson’s equation on a rectangular grid
with Neumann boundary conditions (Hunt 1974; Ghiglia and Romero 1989). Given
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the wrapped phase ψ i, j on a discrete rectangular grid, our goal is to determine
the unwrapped phase φi,j at the same grid locations with the aspect that the phase
differences of the φi,j agree with those of the ψ i, j in the least-squares sense.

Define a wrapping (modulo-2π ) operator W based on (33):

W(φij) = ψi,ji = 0 . . .M − 1 and j = 0 . . .N−1 (34)

and

�x
i,j = W(ψi+1,j − ψi,j) i = 0...M − 2, j = 0...N − 1

�
y
i,j = W(ψi,j+1 − ψi,j) i = 0...M − 1, j = 0...N − 2

�x
i,j = �

y
i,j = 0 otherwise.

. (35)

The solution φi,j, which minimizes the sum

M−2∑
i=0

N−1∑
j=0

(φi+1, j − φi,j − �x
i,j)

2 +
M−1∑
i=0

N−2∑
j=0

(φi,j+1 − φi,j − �
y
i,j)

2 (36)

is the least-squares solution. Differentiating the sum with respect to φi,j in (36) and
setting the result equal to zero yield the following system of linear equation:

(φi+1,j − 2φi,j + φi−1,j) + (φi,j+1 − 2φi,j + φi,j−1) = ρi,j, (37)

where ρi j is defined by

ρi,j = �x
i,j − �x

i−1,j + �
y
i,j − �

y
i,j−1. (38)

It is easy to see that (38) is a discretization of Poisson’s equation on an M × N grid:

∂2

∂x2
φ(x, y) + ∂2

∂y2
φ(x, y) = ρ(x, y).

Equation (38) is valid in the entire rectangular grid, and the Neumann boundary
condition is already included in (35).

Mathematically, a discrete Poisson’s equation can be solved by means of FFTs.
In order to use FFTs for solving the phase unwrapping problem (Pritt and Shipman
1994), the function ψ i, j has to be extended to a periodic function by performing
a mirror reflection about the linei = M and j = N in the plane. Now applying the
two-dimensional Fourier transformation on the grid defined by 0 ≤ i < 2M and 0 ≤j
< 2N to both sides of (37) yields the equation

�mn = Pmn

2 cos(πm/M) + 2 cos(πn/N) − 4
, (39)
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where �mn and Pmn are the two-dimensional Fourier transformations of φi,j and
ρi,j, respectively. The expected solution φi,j is then obtained by applying the inverse
Fourier transform to (39) and by restricting the result to the original M × N grid.

11.3.2.2 Branch Cuts Method

If the original scene is sampled often enough so that the true phase will not change
by as much as π per sample point, the summation of the phase difference around
any closed path should be zero (irrotational field). In this case, the result of phase
unwrapping will be consistent, i.e. correct and independent of the integral paths.
Often, in practice, this summation taking the closed multiple of 2π gives an incon-
sistent result around these points called residues. Assume that a closed wrapped
phase path consists of n elements. The maximum gradient per element is π for all
elements, except the last one having maximum value modulo-2π of [−(n−1)]π .
The residue of the closed wrapped phase path will reach its maximum value as

|Rmax| = (n − 1)π + W[−(n − 1)π ]. (40)

Consider that an interferogram is a rectangular grid, in which the smallest closed
path consists of four adjacent points. The residue is computed by (41), such that the
residue may be −2π , 0 or 2π and located in the centre of the closed path shown in
Fig. 11.13:

R = W(ψi,j+1 − ψi,j) + W(ψi+1,j+1 − ψi,j+1)
+W(ψi+1,j − ψi+1,j+1) + W(ψi,j − ψi+1,j)

. (41)

Positive residues have a residual “charge” of +1 and negative residues −1 for a
clockwise phase, when the residues are scaled by 2π .

Goldstein et al. (1988) introduced a phase unwrapping method to avoid the incon-
sistency caused by the residues. He has suggested that connection of the residues

Fig. 11.13 Residue location
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by “branch cuts” to create neutralized “tree” localized the phase jumps to occur
across the cuts. Under ideal circumstances, these branches lie in regions that will
be excluded from unwrapping. The unwrapping process begins by searching for an
unvisited residue to form the start of a tree. The next step is to search other residues
around each residue of the tree and then set cuts to other residues until the tree
is neutralized, i.e. has the same number of positive and negative residues. At each
stage the region surrounding each residue is searched up to a certain distance. Once
all the residues in the current tree have been searched, the size of the search radius
is increased and areas around all members of the tree are rescanned. This process
continues until the tree is neutralized or the size of the search area exceeds a prede-
termined bound. Repeat this process to search a new unvisited residue, build the new
tree and grow it. In an interferogram some trees cannot be neutralized, the reason
being that the rest residues, which neutralize the tree, may lie outside the scene. In
this situation set a branch cut between the tree edge and the image bound. Once all
the possible trees have been constructed, the phase unwrapping is implemented by
simple integration of the phase differences along any paths, which don’t cross any
branch cut. As a simple example, Fig. 11.14 shows an interferogram with 7 × 5 pix-
els. The phase unit is π . After the searching process (integrate the phase differences
around each point), two positive (solid) and two negative (empty) residues are found
and are connected by two branch cuts. The phase unwrapping can then be correctly
implemented along any integral paths with the limitation that these paths don’t cross
any branch cut.

11.3.2.3 Minimizing Cost Flow Method

As mentioned above, branch cuts phase unwrapping method by integrating the dif-
ferences of the wrapped phase along paths, avoids the regions where these phase
derivatives are inconsistent. The problem of building cuts delimiting these regions
is very difficult to deal with and the resulting phase unwrapping algorithm is very
expensive computationally. In the least-squares method, unwrapping is achieved by
minimizing the mean square differences of the derivatives between the unwrapped

Fig. 11.14 Example of residues and branch cuts
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and wrapped phases. The least-squares method is very efficient computationally,
but the results are not very accurate. Costantini (1996) proposed a new unwrapping
method by formulating the phase unwrapping problem as the problem of minimizing
the weighted deviations between the estimated and the unknown discrete deriva-
tives of the unwrapped phase with the constraint that the deviations must be integer
multiples of 2π . This is a minimizing problem with integer variables. In this method
the phase unwrapping problem is equated to the problem of finding the minimum
cost flow on a network.

In this section, we combine Costantini’s idea of minimizing cost flow and
Goldstein’s Branch Cut method to introduce a modified two-dimensional phase
unwrapping method. The modified phase unwrapping method consists of three
steps: constructing residue network with regular or irregular grid, building branch
cuts in the grid by means of a minimizing cost flow algorithm and finally
unwrapping the phase.

Constructing a residue network is the first step of the modified method. Assume
that an interferogram has line number of M + 1 and each line has pixel number of
N + 1. Assume also that all the residues are calculated by (22) with a scale of 1/2π
and located as in Fig. 11.13. When considering all the computed residues, i.e. the
entire scene, the residue network is a regular rectangular grid with M lines and
N columns. The residues in the grid are also called the nodes. Each pair of two
adjacent residues is connected by an arc. In order to neutralize all the residues, a
common node is added to the network and connected to all the nodes lying on the
two boundary lines and two boundary columns. All the nodes and arcs compose
the residue network. Positive residue charge (+1) means a supply node and negative
residue charge (−1) means a demand node. Based on the definition above, in the
constructed network the number of nodes is M × N + 1 and coded from Node0
to NodeM×N , and the number of arcs is 2MN + M + N − 4 and coded from Arc1to
Arc2MN+M+N−4. Each node has four associated arcs, but corner node has only three.
Each arc has two associated nodes: start node and end node. Moreover, it should
be noticed that the supply or demand of the common node is dependent on the
difference of the total supplies and total demands. The regular residue network is
shown in Fig. 11.15, in which all the boundary nodes are connected to the added
node Node0 that is not shown in the figure.

The second step is building the branch cuts by means of network programming,
i.e. minimum cost flow approach. As each supply has to be transported from a supply
node to a demand node along a path consisting of several arcs, we can let Ci and Si
be the unit cost and shipment or flow on the Arci, respectively, so that the total cost
is represented as

I∑
i=0

CiSi, (42)

where I = 2MN +M+N −4. Minimizing (42) under the constraint that each supply
must be transported to a demand node, and all the demands must be satisfied, we
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Fig. 11.15 Regular residue network

can obtain the shipment distribution of the network with the minimum cost. The
collection of all the arcs with non-zero shipments is therefore a realization of the
expected branch cut trees. At the end of the second step all the positive and negative
residues are properly connected.

Finally, in the third step, we can unwrap the phase from any point to another by
integrating the wrapped gradients along any path connecting the two points and not
crossing any cut.

11.3.3 Image Registration

The interferogram is the interferometric result from a complex SAR images acquired
by radar for a same area but at different radar positions, such that the image coor-
dinates of a same target in the two images are different. This means that there is
an offset between the two images. After analysing the SAR geometry, we know
that the offset, i.e. the image coordinate difference of same target, depends on the
SAR geometry, satellite orbit, radar timing parameter and the topography of the
target. In order to generate a correct interferogram the slave image must be reg-
istered to the master image, such that each target in the two images has identical
coordinates (exactly same range and azimuth position). The aim of the coregistra-
tion is to find a transformational model between master and slave image. Usually,
the four-coefficient polynomials used to model the range and azimuth offsets are
expressed as
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�Ri,j = a0 + a1 × i + a2 × j + a3 × i × j
�Ai,j = b0 + b1 × i + b2 × j + b3 × i × j

, (43)

where �Ri,j and �Ai,jare the range and azimuth offsets of the target located at (i, j) in
the master image, respectively, i is azimuth line number and j is range pixel number.

Usually, conventional techniques to estimate the offset vector (�Ri,j,�Ai,j) are
based on the cross-correlation of the amplitude images with a moving window.
Oversampling of the slave image is required for a coregistration accuracy of bet-
ter than 0.2 pixels. Due to temporal decorrelation caused by surface change, the
cross-correlation degree is very low sometimes or in some local regions. Therefore,
over the entire image, for a large number of windows, the offsets are estimated in
least-square sense and only those cross-correlation results with higher degree are
used for solving (43).

After computing the range and azimuth offsets, the slave image is then resam-
pled with the offset estimation; this process is also called image fitting. Because of
the variation of the offset with the pixel position, the resampling accuracy is also
necessarily to be guaranteed.

11.3.4 Coherence of SAR Images

A condition guaranteeing the implementation of SAR interferometry and the accu-
racy of its result is that the master and slave images must be highly coherent. The
coherence is mainly regarded as an estimation of the phase stability of the illumi-
nated targets during the two acquisitions. Because the two images are acquired by
radar at different time spanning a few days or months, even several years, the sur-
face changes have certainly appeared during the time span resulting in the low image
coherence and decrease the interferometric measurement accuracy.

The normalized coherence γ is defined as the complex correlation between two
co-registered complex images:

γ =
〈
f1 × f ∗

2

〉
√〈

f1 × f ∗
1

〉 〈
f2 × f ∗

2

〉 , (44)

where the brackets <> indicate the ensemble average and ∗ denotes the conjugate
multiplication. Equation (44) is only a definition of coherence. In practice, the coher-
ence is estimated by averaging the complex value over a window with a finite size
and is shown in the following equation:

∧
γ =

M∑
i=1

N∑
j=1

f1 × f ∗
2

√
M∑

i=1

N∑
j=1

f1 × f ∗
1 ×

√
M∑

i=1

N∑
j=1

f2 × f ∗
2

. (45)
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Usually, the absolute value of
∧
γ is used and gives coherence value in the range

[0, 1].

11.4 Differential SAR Interferometry

It is well known that topography is the interferometric result of an SAR image
pair, i.e. derived from an interferogram. This SAR image pair is acquired over the
same region and at the same time (single-pass INSAR). If the two SAR images
are acquired at different times (repeat-pass INSAR) and in order to obtain the true
topography, the radar-illuminated surface has to be absolutely stable, no changes
appearing during the two acquisitions. However, the reality is often not the case.
Some human activities (construction project) or natural factors (geologic hazard)
will cause changes to the Earth’s surface. Certainly, if an interferogram simulta-
neously contains information on both topography and changes (displacement or
movement), and in some way, the topography may be subtracted from the inter-
ferogram, for example using another interferogram containing topography only, or
using an existing digital elevation model, the changes can be retrieved. This process
can also be seen as interferometry of two interferograms and is called differential
SAR interferometry (D-INSAR).

11.4.1 Principle of D-INSAR

Consider Fig. 11.11 again. Sometimes the point P is naturally or artificially moved
to P′ and presents on the second slave image f2 shown in Fig. 11.16. At this time,
the radar is located at S2, and the distance between P′ and the radar becomes R2+ρ;
here R2 is the distance between S2 and point P, and ρ is the increment of the slant
range. In the second interferogram g2 = f0 × f ∗

2 consisting of the master and the
second slave image, the phase of the point P′ is

�2 = −4π (R0 − R2 − ρ)

λ
= −4π (R0 − R2)

λ
+ 4π

λ
ρ. (46)

Obviously, the contribution of the movement ρ in the interferogram is indepen-
dent of the baseline. As with the first interferogram, the second interferogram also
includes information of the phase of the reference surface. Subtracting the phase of
the reference surface, the topography and the movement components remain:

��2 = − 4πh

λR sin(θ0)
B2,0⊥ + 4π

λ
ρ. (47)
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Fig. 11.16 Geometry of differential SAR interferometry

Consider the topographic components in the two interferograms (24) and (47); their
difference only lies in their different scales. If the first interferogram (24) is multi-
plied by a factor B2,0⊥/B1,0⊥ and subtracted from the second interferogram (47), the
movement component can be obtained:

4π

λ
ρ = ��2 − B2,0⊥

B1,0⊥
��1, (48)

which is the basic principle of differential SAR interferometry for detecting a
small movement or displacement. Here the moving ρ is the projection of the true
movement on the radar–object line only. To find the true movement vector some
preexistent knowledge or other additional measurement is needed. The phase com-
ponent of the topography in (47) can also be extracted from other existing DEM,
for example from SRTM and precise orbit data. For each pixel of an interferogram
the corresponding satellite orbit time and range time are known, and the satellite
position and distance between the satellite and the pixel can be calculated by use
of precise orbit data. Therefore, the phase component of the topography may be
synthesized and then removed from the interferogram.

11.4.2 Persistent Scatterer SAR Interferometry

As described above, the phase of a pixel in an interferogram indicates the summed
result of topography and displacement of an observed target, associated atmospheric
delay and other changes at the time of the acquisitions. Their individual phase
components are superimposed in the interferogram. In some cases, the phase com-
ponents of other changes can be practically neglected or independently estimated,
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and the interferometry is therefore successfully applied. However, in most cases,
due to temporal and geometrical decorrelation, the phase unwrapping process is
very difficult, usually even impossible. The permanent scatterer (PS) technique has
been developed by Ferretti et al. (2001) to overcome these problems. PS technique
utilizes all archived but suitable data of a certain area, stacks differential interfero-
grams co-registered to a common master one. Instead of analysing the phase in the
spatial domain in the entire scene, the phase of isolated coherent points is analysed
as a function of time and space. The PS technique is protected by a patent of Ferreti
et al. and the term “Permanent Scatterer Technique” is trademarked. Therefore many
scientists use another term – “Persistent Scatterer Technique” – with the same idea
but with some small differences (Werner et al. 2003).

11.4.2.1 Selection of Master Image

All the available images on the same track and frame must be co-registered to
a master image. The master image is selected for decreasing the dispersion of
the perpendicular baselines of all the possible interferometric combinations, and
the acquisition time of the master image lies in or near the middle of the entire
acquisition time range. In this chapter only those images from same sensor will
be considered, so that the difference of Doppler centroid frequency is very small
and therefore will not be considered. When the master image has been chosen,
all the interferograms between the master image and slave images will be gener-
ated. Before the interferogram generation all the images including master and slave
images are oversampled by a factor of two in range and azimuth direction in order
to avoid aliasing of the complex interferometric signal.

11.4.2.2 Generation of Differential Interferograms

A reference digital elevation model (DEM) and precise orbit data are used to obtain
the simulated interferometric phase induced by topography. The differential inter-
ferograms are then generated by subtracting the simulated interferometric phase of
topography from the interferograms. In fact, the interferometric phase of topogra-
phy can be computed from a subset of the available images, preferably with large
perpendicular and small temporal baselines, if these images are highly coherent
everywhere.

11.4.2.3 Modelling of Differential Interferometric Phase

The differential interferometric phase for each point in the kth differential interfero-
gram, if unwrapped, can be modelled (Werner et al. 2003; Colesanti et al. 2003) as

φk = φk
defo + φk

topo + φk
atmo + φk

noise, (49)
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where φk
defo is the phase caused by point deformation, φk

topo is the phase due to

inaccuracy of the reference DHM, φk
atmo is the phase induced by atmospheric delay

and the last term φk
noise is the phase due to decorrelation and other noise. The topo-

graphic phase is a linear function of the perpendicular baseline and can be expressed
as

φk
topo = 4πBk⊥

λR sin θ0
× �h, (50)

where �h is the height of the point relative to the reference surface, referred to as
DEM error. The phase φk

atmo is a random variable in the temporal domain and inde-
pendent of the INSAR system, but can be neglected by considering phase difference
between nearby points. The noise term is a high-pass signal and contains all other
phase contributions. The displacement component for each point can be considered
as a linear function of the acquisition time. If the acquisition time difference of the
kth differential interferogram is Tk and the average displacement rate of the point is
ρ, the displacement phase can be written as

φk
defo = 4π

λ
× Tk × V . (51)

The estimation of the average displacement rate V and DEM error �h is not accom-
plished for the entire scene, but only for those coherent points with point target like
scattering characteristics, e.g. the persistent scatterers.

11.4.2.4 Preliminary Estimation of Persistent Scatterer Candidates (PSCs)

The permanent or persistent scatterers in the differential interferograms should be
those points which have very small phase dispersion with time. The process identi-
fying the PS points by analysing their phase behaviour only is not possible because
the phase still contains unknown signal contributions. Ferretti et al. (2001) have
shown that the estimation of the phase stability on the amplitude dispersion holds
very well for standard phase deviation σφ < 0.25 radius resulting in a numerical
simulation using 5,000 series with 33 SAR images. An amplitude dispersion index
Da is defined as a ratio of the amplitude standard deviation σa over the amplitude
mean a for certain points and equals the phase standard deviation σφ :

σφ = σa

a
= Da. (52)

This relation means that a point having similar, relatively large, amplitude during
all acquisitions is expected to have a small phase dispersion. This enables detection
of isolated points, which is not possible if the detection is based on a spatially esti-
mated coherence value. The points with a smaller amplitude dispersion index are
considered to have smaller phase dispersion. Typically, the threshold of Da is set to
be about 0.25. Thus, a point is selected as a candidate if its amplitude dispersion
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index is below the threshold. In order to ensure that the amplitude dispersion index
is correctly estimated, more than 30 images are needed; this condition usually can’t
be satisfied in most areas in the world.

Werner has suggested a method to generate persistent scatterer candidates with
“point target characteristics” in her INSAR software “gamma”. This is implemented
based on a single SLC image and based on the spectral diversity. The idea of
Werner is that the energy of a point target remains more or less the same when
processing different looks with fractional azimuth and range bandwidth. Based
on this low spectral diversity, respectivity based on correlation values above the
indicated threshold potential point targets can be identified. The physical basis for
the methodology used is that point targets do not exhibit the speckle observed for
extended targets. For a point target almost the same backscattering intensity is found
when processing different looks with fractional azimuth and range bandwidth. The
mean to standard deviation ratio (MSR) between the spectral looks is used as the
(inverse) measure of the spectral variability. Lower spectral variability corresponds
to higher MSR values and 1.2 might be a possible threshold to use. For a series of
co-registered SLC all the selected point candidates have to be wise-merged.

Before detecting PS candidates, all the images have to be radiometrically cal-
ibrated in order to ensure that the calibrated images are comparable and allow
for correct estimation of σa and a. The calibration is usually based on annotated
radar system parameters given in the leader file. In practice, the histograms of the
intensity images can also be used for the calibration process. The variation of the
modes of the histograms must be less than an expected value, for example 1 dB.
Otherwise the histograms should be shifted by multiplication of the intensity with a
proper constant to ensure that the difference between the modes of the histograms is
small enough. The histogram should be calculated in a high coherence area to avoid
random changes of the illuminated scatterers.

11.4.2.5 Estimation of Linear Deformation

As the phase of the differential interferogram is wrapped, the estimation of the dis-
placement rate and the DEM error is a non-linear inversion problem. Assume that
there are N differential interferograms and each PS candidate has a phase series with
N elements. Starting from a previously known true persistent scatterer n, the follow-
ing complex ensemble coherence in time is used as a measure of the phase stability
of a nearby PS candidate m and hence an indicator of whether the candidate is a true
PS relative to the true PS n:

γm,n = 1

K

K∑
k=1

exp

{
j

[
φk

m,n − 4π

λ

(
TkVm,n − B⊥

R sin θ0
�hm,n

)]}
. (53)

Here n indicates a true PS near the PS candidate m, φk
m,n is their phase difference,

Vm,n is their displacement rate difference and �hm,n the difference of the DEM
error. All the terms related to atmospheric delay and noise approximately are zero
by assuming that the nearby points (distance is not larger than 1 km) have the same
atmospheric delay, and noise is a white random noise in time, too. The amplitude
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of the complex coherence is less than or equal to 1, and therefore if a candidate
has the coherence value over a threshold, say 0.8, by maximizing the absolute of
γm,n with the arguments Vm,n and �hm,n, this point is determined as a true PS with
the estimated Vm,n and �hm,n. All the currently existing true PS are then used for
detecting other true PS and their displacement rate and DEM error difference.

11.4.3 Example: Coseismic Deformation Measurement of Bam
Earthquake

On 26 December 2003 an earthquake (Mw = 6.5) shook a large area of the Kerman
province in Iran. The epicentre of the devastating earthquake was located near the
city of Bam. Almost all the buildings of Bam were damaged and over 30,000 people
died. This example described the application of differential synthetic aperture radar
interferometry (D-INSAR) and ENVISAT ASAR data to map the surface deforma-
tion caused by the Bam earthquake including the interferometric data processing
and results in detail (Xia 2005; Wang et al. 2004). Based on the difference of the
coherence images before and after the event and edge search of the deformation
field, a new fault ruptured on the surface was detected and used as a data source
for parameter extraction of a theoretical seismic modelling. The simulated deforma-
tion field from the model perfectly coincides with the result derived from the SAR
interferometric measurement.

11.4.3.1 Radar Data

The European Space Agency (ESA) supplied an ENVISAT ASAR data set on Bam
area including four descending pass single look complex images: orbits 6687, 9192,
9693 and 10194, acquired on 11 June 2003, 3 Dec. 2003, 7 Jan. 2004 and 11 Feb.
2004, respectively, and three ascending pass SLC images, acquired on 16 Nov. 2003,
25 Jan. 2004 and 29 Feb. 2004, respectively. In the descending pass data set, the first
two passes are acquired before the event, while the last two passes are acquired after
the event; therefore each pair can be used to generate a digital elevation model. Any
combination of an image acquired before the earthquake and another one acquired
after the earthquake can be used for measuring the coseismic displacement informa-
tion caused by the Bam earthquake on the satellite-object line. Because the Doppler
frequency centre shift of the data acquired on 25 Jan. 2004 is too large, this image is
not used in this chapter. All the data are sorted by orbit direction and co-registered
before data processing.

11.4.3.2 Baseline Estimation

The baseline estimation is very important in the INSAR data processing. It may
be known by the front analysis that the phase of a pixel in an interferogram equals
the sum of the reference points’ interferometric phase on the reference plane and the
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phase produced from the point’s height, if we don’t take the movement into account.
The two addends are even scaled by the horizontal and the vertical components of
the baseline. It should be noted that the point on the surface and its reference point
on the reference plane are not the same, but they appear at the same position in the
master image. Therefore, the baseline estimation needs to calculate the horizontal
and vertical baseline for each pixel and suppose that all the pixels lie on the ref-
erence plane. In the master image, each azimuth line corresponds to a determinate
position of the satellite. The azimuth line is defined in the master image. In the co-
registered slave image, the pixels of an azimuth line may come from several original
lines. In other words, an azimuth line in the co-registered slave image should corre-
spond to different positions of the radar in flying. Because of the difference of the
depression angle and distance of the radar for each point on an azimuth line and the
non-parallelity of the satellite orbits, every pixel on a same azimuth line has its own
horizontal and vertical baseline and the variation is in addition not linear. Some of
the literature said that the baseline for an azimuth line is the same and perpendicular
to the orbit but this is not correct. During the flying of the satellite for a standard
ENVISAT ASAR product, usually 16 s, the variation of the baseline may reach
several metres, even more than 10 m. The ENVISAT ASAR product also provides
the corresponding satellite orbit data and other auxiliary data but no precise orbit
data such as ERS-1/ERS-2, its former generation, which provided ERS precise orbit
data with an accuracy of some 10 cm (Reigber et al. 1996). For the interferogram
generation the baseline should be corrected and refined.

In fact, the estimation of the baseline needs to know the coordinates of all the
pixels on the reference surface and the corresponding satellite’s space locations.
Based on the satellite orbit data and the associated acquisition time, one can first
determine the space coordinates of the satellite for each azimuth line in the master
image, then the coordinates of each pixel on the azimuth line. Usually the surface
of an ellipsoid model of the Earth is selected as the reference surface (for example
WG84); this means that all the reference points have to be located on the ellipsoid
model surface. The distance between the reference point and the satellite depends on
the width of the radar’s receiving time window and is perpendicular to the satellite
orbit. Each pixel is located at the position when its Doppler frequency is zero. Under
the conditions mentioned above, the coordinates (xp, yp, zp) for each pixel have to
satisfy the following equation system (Curlander 1982):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
x2

p + y2
p

)
R2

e
+ z2

p

R2
p

= 1

2

λRs
(�Vs − �Vp) × (�S − �P) = 0

√
(�S − �P) × (�S − �P) = Rs

(54)

In this equation system, Rs is the distance between satellite and reference point, Re

and Rp are the major and minor axis of the Earth ellipsoid, Vs is the satellite’s veloc-
ity vector, Vp is the velocity vector caused by the Earth’s rotation, S is the coordinate
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Table 11.1 Interferometric pairs of ENVISAT data and corresponding baseline

Orbit number Acquisition date Orbit direction Baseline B⊥ (m)

9192/6687 3 Dec. 2003/11 June 2003 Descending 484.1 to 468.6
10194/9693 11 Feb 2004/7 Jan. 2004 Descending –540.6 to –508.3
9192/10194 3 Dec. 2003/11 Feb. 2004 Descending 3.1 to 3.4
10459/8956 29 Feb. 2004/16 Nov. 2003 Ascending –13.6 to –20.7

vector of the satellite and P is the coordinate vector of a pixel (xp, yp, zp) on the ref-
erence surface. After the coordinate vector (xp, yp, zp) is solved, one can draw a
perpendicular line from the reference point to the orbit of the slave satellite and get
the coordinate vector of the slave satellite. If all the coordinate vectors of the satellite
and reference points are known, the baseline may be easily and directly computed
and then applied in the flat removing and differential interferometric process; see
(44) and (48).

Table 11.1 shows all the interferometric pairs with their orbit number, acquisition
date and baseline estimation for the near range and far range.

11.4.3.3 Interferogram and Elevation Model

Figure 11.17a shows the radar intensity image of the city of Bam and its surround-
ing (radar coordinate) with an area of 42 km× 42 km. The city of Bam is located at
the left upper side of the image centre. Figure 11.17b, c shows two interferograms
after flattening and are derived from the data pair 9192/6687 (before event) and
10194/9693 (after event). Each fringe indicates a phase variation of 2π or a height
variation of about 17 and 19 m, respectively. Figure 11.18a, b shows the integrals of
Fig. 11.17b, c, namely the results after phase unwrapping. They represent the accu-
mulation of the phase variation, or say, a scale of the true topography. Figure 11.18c
is the differential result of Fig. 11.18a, b. It is not necessary to transfer the phase
into the height in the differential process; see (48). The homogeneous result of the
differential process proves that the topography in this area doesn’t change before
the earthquake or after the earthquake. Both images, Fig. 11.18a, b, may be used as
an elevation model. In addition, the homogeneous result of the differential process
(Fig. 11.18c) proves that the integral of Fig. 11.17b, c has no error and the baseline
estimation is also correct. In all the three images in Fig. 11.18, the phase is repre-
sented with colour, but the intensity and the saturation are modulated with the radar
intensity and the coherence value for highlighting the information of the relative
location.

11.4.3.4 Differential Interferometry and Surface Deformation

If an interferogram is calculated from two scenes of radar data acquired, respec-
tively, before and after the earthquake, this interferogram contains the topography
information and moreover includes the deformation information caused by the
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Fig. 11.17 (a) Radar intensity map. (b, c) Interferograms after flattening

Fig. 11.18 (a, b) Unwrapped phase of the interferograms. (c) Phase difference of (a) and (b)

earthquake. Using the orbit 9192 and 10194 as an interferometric pair, the cor-
responding acquisition date is 3 Dec. 2003 and 11 Feb. 2004; subtracting the
topography represented in Fig. 11.18a from this interferogram, the phase due to the
deformation remains in the result of the differential interferometry and is shown in
Fig. 11.19a after geocoding. In Fig. 11.19a the topography is all subtracted, and only
the phase variation from the deformation remains. A colour period still indicates a
phase variation of 2π , but in this case, the phase variation means the deformation,
which equals half wavelength, 2.8 cm: see (47). The deformation appears mainly
in the city of Bam and in the surrounding of about 25 km apart from the city. As
mentioned earlier, the deformation measured from the D-INSAR is the projection
of the true deformation vector on the line of satellite (LOS) only. With respect to
the descending orbit of ENVISAT and the Bam region the direction cosine vector
is (–0.066, 0.384, 0.920). In the deformation field only two plum blossom petals
may be seen, half of four, which are located in the right side of the image, one in
the north and one in the south. The south petal lifts 30 cm, while the north one goes
down 18 cm. Figure 11.19b is the deformation field derived from the ascending orbit
data pair 10459/8956. The corresponding direction cosine vector is (–0.057, –0.332,
0.492). In Fig. 11.19b three plum blossom petals may be seen, but the amplitude is
relatively small. The northwest petal lifts 12 cm, the northeast one goes down 6 cm,
while the southeast one lifts 18 cm. Because the position of the southwest petal



11 Synthetic Aperture Radar Interferometry 449

Fig. 11.19 Coseismic deformation: (a, b) before phase unwrapping; (c, d) after phase unwrapping

exceeds this ascending image, only a small arc of it can be seen, but shows that it
is down. Analysing the distribution of the uplifting and subsiding of all the petals,
one may conclude that the fault should be south-north trend. The distribution of the
plum blossom petals indicates that this event is a right-lateral strike-slip earthquake.
The fault seems to consist of several segments. The main portion of the deformation
arises from the relative horizontal south-north slip, which is even perpendicular to
the LOS in the space. This makes the contribution of the horizontal displacement
in Fig. 11.19a, b negligible. Figure 11.19c, d shows the integrals of the images at
Fig. 11.19a, b, namely the deformation after phase unwrapping and marked with the
geographical coordinates (geocoded). The deformation appears mainly near the city
of Bam and has reduced to 0 besides 25 km apart from the epicentre.

11.4.3.5 Determination of the Location and Shape of the Ruptured Fault

The Bam earthquake arose because of a fault break. If there had also arisen a fissure
(a type of damage) on the ground, the relative displacement quantity of the points
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nearest the fault should be the greatest. Thus, the location and shape of the fault may
be determined by means of detecting the fissure. The first method is to compare the
three coherence images: acquired before the earthquake, after the earthquake and
before/after the earthquake. The fissure may appear only in the coherence image
derived from the data pair acquired before and after the earthquake. Because of lim-
ited space, here only the third coherence image is given and used for the colour
modulation in Figs. 11.18 and 11.19. In these images the dark line in the north and
south of the city of Bam indicates the new fissure. In the coherence image before or
after the earthquake this dark line does not exist. In the city of Bam, the fissure can-
not be detected since the coherence value here is too small. It may be noted that the
new fissure must cross the city. The second method is the use of the Edge Detection
Filter. Figure 11.20 shows the output of the filtering process. The shape and the loca-
tion of the fault are revealed very clearly. Evidently it is roughly from 3 segments,
the southern segment, the northern segment and the middle one. The middle segment
in the city of Bam is out of order. The locations of the end points of the north-
ern section are 58◦21′57.68′′E/29◦11′36.00′′N and 58◦22′10.29′′E/29◦7′36.78′′N,
about 6 km; the locations of the end points of the southern segment are
58◦20′19.91′′E/29◦4′57.30′′N and 58◦20′45.14′′E/28.58′27.46′′◦N, about 13 km.
The middle segment disappeared below the city area of Bam, where a lack of coher-
ence prevents its tracking. This segment may be imagined as a join line from the
southern end of the northern segment to the northern end of the southern segment,
about 5 km.

Fig. 11.20 Detection of ruptured fault
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11.4.3.6 Estimation of the Theoretical Model for the Earthquake Source

The deformation field, the shape and the location of the fault measured from the
differential SAR interferometry may help geophysicists to deepen their research
and simulation for the theoretical modelling of the earthquake source. Dr. Wang
Rongjiang, scientist at the Geo-Research Center, Potsdam, estimated the earthquake
source parameters using the elastic half-space theoretical model provided by Prof.
Okada (Japan) and the deformation field derived from this chapter as well as the
least-squares method. Figure 11.21a, b shows the modelling results for the surface
deformation of the Bam earthquake from the descending and ascending data, respec-
tively. Comparing Fig. 11.21a with Fig. 11.19a and Fig. 11.21b with Fig. 11.19b
shows that they are very consistent. Variance is around 2 cm; greater discrepancy
is near the fault only and is only a few centimetres. It is possible that the theoreti-
cal model and parameters cannot completely describe the tiny structure of the fault.
Referring to the geological map of the Bam region, it may be seen that the north-
ern section of the fault coincides with an old fault (Bam fault), although it does not
extend like the old fault to the southeast, but turns to the southwest, crosses the city
of Bam, and then extends south, forming a brand new southern fault. This brand new
fault is nearly parallel to the old Bam fault and approximately 5 km away. The sim-
ulated result of Dr. Wang shows that the length and the trend of the northern, middle
and southern fault plane are 7 km/0◦, 5 km/35◦ and 14 km/357◦, respectively.

The northern section of the fault inclines 55◦ to the west, the slip is very little,
about 20–70 cm, while the middle and southern sections incline to the east near 80◦,
the southern section slips 1–2 m, maximally reaching 2.75 m. The middle one is
a transitional zone. Evidently, more than 80% of the seismic moment was released
from the southern section and the epicentre should be in the southern section. This
is also one of the major reasons for the crushing damage in the city of Bam.

Fig. 11.21 (a, b) The modelling results for the surface deformation of the Bam earthquake from
the descending and ascending data
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11.4.4 Example: Subsidence Monitoring in Tianjin Region

Land subsidence is a well-recognized environmental problem in some provinces in
China, for example in the city of Tianjin in provinces Hebei and Jiangsu. The prin-
cipal cause of the subsidence is continuous and excessive extraction of groundwater
to fulfil the demands of fast development of industry and agriculture in both regions.
For urban development and protection, it is necessary to monitor and measure the
subsidence with very high vertical accuracy and spatial continuity at regular time
intervals. Tianjin city in province Hebei and Wuxi, Suzhou, Changzhou region are
chosen as the working area. The Tianjin municipality is situated on the coast of
China on 117◦15′ east, 39◦10′ north about 200 km southeast of Beijing. It cov-
ers an area of about 3,000 km2. Tianjin is a major Chinese city (“city province”)
with 9 million inhabitants. It is the main harbour for Beijing and is in the north
of China. After the Shanghai and Beijing municipalities, Tianjin is economically
the third most important centre of China. Subsidence due to groundwater extrac-
tion has become a major problem in this municipality. Governmental regulation has
resulted in decreased subsidence. In the coastal areas outside Tianjin the subsidence
rate is still high. The levelling data consist of point measurements with a density of
approximately one point per 4 km2. Continuous subsidence maps are produced by
interpolation between the points. The collection of this information puts very high

Fig. 11.22 Subsidence map of the Tianjin region (2005–2006)
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demands on financial resources: in the order of US $1 million per year. For this rea-
son the Tianjin Control Land Subsidence Office has actively been considering the
potential of new technologies to improve the cost to benefit ratio of their work. One
of these new techniques is the use of the Global Positioning System (GPS). In 1998
a GPS measuring network has been established in part of the area. Another relatively
new technique with a high potential in this respect is SAR interferometry (INSAR).
We used the ENVISAT ASAR data and D-INSAR technique to measure the subsi-
dence in this region. Figure 11.22 shows the subsidence map of Tianjin from 2005 to
2006 derived from the differential SAR interferometry. Because the area to measure
is relatively large, and only a few data sets (10) are provided for INSAR imple-
mentation, the conventional PS method is not suitable. Here the method used to
estimate the average subsidence rate is still based on (53), but the PS candidates
are substituted by coherent multi-looked points, which have relatively high coher-
ence value, so that the phase stability can be ensured. The other advantage of using
coherent multi-looked points is that the inaccuracy of the orbit parameters can be
seen in each differential interferogram and therefore corrected and removed, while
by conventional PS method it is “blended”.

11.5 SAR Interferometry with Corner Reflectors (CR-INSAR)

The conventional differential INSAR technique has the potential for monitoring
centimetre-scale ground motion in an accurate and cost-effective manner. The most
important limiting factor in the application of INSAR is temporal change in the com-
plex reflectivity of the ground surface during the period between radar acquisitions.
This can be due to changes in parameters such as moisture content or vegetation.
The persistent point scatterer techniques can take INSAR a step further by estimat-
ing atmospheric, orbital and DEM errors to derive very precise displacement and
velocity measurements at specific points on the ground, but is limited only to the
urban-like regions. The stable artificial corner reflectors can be identified from long
temporal series of INSAR images even with large baselines and therefore decrease
the risk of image decorrelation. In this section we represent the third INSAR analysis
method: SAR interferometry based on the corner reflectors (Xia et al. 2002). This
technique (CR-INSAR) is typically used for measuring and monitoring displace-
ment of small-scale objects such as landslides and some specific civil engineering
structures, e.g. water reservoirs, dams, bridges and buildings. We will discuss the
following questions: (1) How to get the true location and phase of a corner reflec-
tor in an SAR complex image? (2) How to co-register the corner reflector pixels,
if the coherence of its surrounding area is extremely low? (3) How to compute the
interferometric phase of the corner reflectors without flat earth term and corners’
height contribution? (4) How to estimate the CR’s movement velocity? In order
to demonstrate the results some practical examples of landslide monitoring in the
Three Gorges area in China are given. The square trihedral offers an increased RCS
(radar cross section) at the same beamwidth as the triangular trihedral, but is not as
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Fig. 11.23 Photo and schematic diagram of corner reflector

stable, especially in an environment where wind stress may produce plate bending.
In this section we discuss the triangular trihedral corner reflectors only.

Figure 11.23 shows a schematic diagram of a corner reflector and the photo of a
physical corner (made by the GeoForschungsZentrum, Potsdam) consisting of three
flat triangular and perfect electric conductor planes orthogonal to each other. The
corner reflector’s actual radar cross section (RCS) is controlled by two angles φ

and θ as well as the edge length l of the corner reflector aperture. The plane contain-
ing the line of radar sight and the crossing line from the corner reflector’s common
angle to peak point c is defined as the depression plane, and the plane perpendicular
to the depression plane containing the radar sight line is called the datum plane. The
angle between the radar sight line and the project line of the symmetry axis of the
corner reflector on the datum plane is the azimuth angle θ , and the angle between
the symmetry axis and its projected line on the datum plane is called aspect angle φ.
Along the direction of the symmetry axis (θ = 0, φ = 0, namely the radar sight line
and the symmetry axis over each other) the radar cross section (or backscattering
coefficient) of the corner reflector reaches its maximum value (Uraby 1987):

σmax = 4π l4

3λ2
. (55)

Generally, the radar cross section value will decrease if both angles θ and φ are
not equal to zero at the same time. Because the 3-dB beamwidths in the θ plane
(if φ = 0) and in the φ plane (if θ = 0) are the same, about 30◦, the corner reflectors
are very suitable for INSAR application. For ENVISAT satellite ASAR with wave-
length λ = 5.63 cm and a small corner reflector with an edge of 1 m, the maximum
radar cross section of the corner reflector σmax= 30 dB, which is easy to identify
against its vegetative surroundings. Usually, in order to recognize a corner reflector
in an SAR image, the difference of the backscattering coefficients of corner reflector
and its surrounding should be larger than 20 dB; otherwise larger corner reflectors
have to be used.
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11.5.1 Orientation of the Corner Reflectors

As mentioned above, the 3-dB beamwidth of the aspect and azimuth angles is about
30◦; this means that the radar can easily capture the corner reflector in a larger
scope. However, orientation of the reflectors relative to radar has still to be carefully
determined and measured in order to reach the maximum radar cross section, and
guarantee that the radar sight line and the symmetry axis overlap with each other
(i.e. φ = 0 and θ = 0). Therefore, the tilt angle of the corner reflector has to be
adjusted relative to satellite’s incidence angle (for example 19–26◦ by ERS and
ENVISAT swath IS2). The azimuth angle of the radar sight line ϑ depends on the
inclination of the orbital plane α and the geodetic latitude of the corner reflector ζ
(Curlander and Robert 1991) and can be shown to be approximately

ϑ = arc sin

(
cos α

cos ζ

)
. (56)

The approximation in (56) is strictly valid only for nadir pointing instruments
and the location of the installed corner reflectors should be not too far from the
equator (latitude < 60◦). A more accurate approach to derive the azimuth angle ϑ is
to use the location algorithm to determine the geocentric location of the satellite. It is
known that the azimuth and aspect angles of the radar sight line may be derived from
its direction cosine vector, i.e. the line connecting satellite and the corner reflector.
Later, in Sect. 11.5.4 we will discuss how to get the location vectors of the corner
reflectors and satellite where the corner reflector has just been acquired by radar.

11.5.2 Interpolation Kernel Design and Co-registration

Rate changes are useful in many applications, such as interconnecting digital pro-
cessing systems operating at different rates and image co-registration. Sampling rate
increase is accomplished by interpolation, that is, the process of inserting additional
samples between the original low-rate samples. The inserted or interpolated sam-
ples are calculated by a so-called oversampling digital filter. Usually that is a FIR
digital filter, because it operates at a fast rate. With respect to the fast timescale, the
low-rate samples may be thought of as being separated by several zero samples. The
job of the FIR filter, or interpolation kernel, is to replace the zeros by the calculated
interpolated values. If a new sampling rate of L times higher than the low rate fs is
required, the corresponding FIR filter is called an L-fold interpolator and operates at
f ′
s = Lfs. For the low-pass signal, the ideal L-fold interpolator filter should be a low-

pass filter, operating at the fast rate f ′
s , with cutoff frequency equal to the low-rate

Nyquist frequency fc = fs/2 = f ′
s/2L, if expressed in units of the digital frequency,

then ω′ = 2π f /f ′
s , ω′

s = 2π and ω′
c = π/L, and the passband gain is taken to be

L instead of unity. The ideal impulse response coefficients are easily obtained from
the inverse Fourier transform
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d(k′) = 1

2π

∫ π/L

−π/L
L ejω′k′

dω′ = sinc

(
πk′

L

)
(57)

Let x(n) denote the low-rate input samples, and let xup(n′) be high-rate or upsam-
pled input samples consisting of the low-rate samples separated by L–1 zeros. With
respect to the high-rate time index n′, the low-rate samples occur once every L
high-rate ones, that is, at integral multiples of L:

xup(nL) = x(n)

or

xup(n′) =
{

x(n), if n′ = nL
0, otherwise

. (58)

The output of the ideal FIR interpolator is obtained by the convolution of the
upsampled input samples xup(n′) with the impulse response d(k′):

y(n′) =
∑

d(k′)xup(n′ − k′). (59)

The ideal interpolator (57) and processes (58) and (59) ensure that the spectra of
the input and output samples in passband are identical, but with different length
of zero samples. The interpolation (59) can be done by zero-padding the Fourier
transformation of the input signal followed by an inverse Fourier transformation to
convert data back to spatial or time domain.

Because the corner reflectors are used in the case of very low coherence, the
co-registration process of corners by means of searching the maximum coherency
value with a moving window is impossible. In order to overcome this difficulty, a
new method is suggested, namely searching the maximal amplitude value for each
corner by means of interpolation in each image. For example, each piece of 32 × 32
pixel containing a corner in each image is interpolated using the interpolator men-
tioned above and the upsampling factor is taken to 16. After the interpolation, a
process searching maximal amplitude is accomplished to determine the location of
the corner with an accuracy of 1/16 pixel. In this case, it is not needed to co-register
all complex SAR images to a unique master, but all the corners are one-to-one co-
registered. The phase of each corner in each image is then extracted individually. If
all corners are one-to-one co-registered and their phases are extracted individually,
the next step is to calculate the phase pattern of flat terrain for each corner in an
interferometric data pair.

11.5.3 Phase Pattern of Flat Terrain

The mathematical representations of the orbits (position and velocity) for the master
and the slave satellites are identical, but with different coefficients:



11 Synthetic Aperture Radar Interferometry 457

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =
4∑

n=0
antn

y(t) =
4∑

n=0
bntn

z(t) =
4∑

n=0
cntn

. (60)

The coefficients are derived from the precision orbit ephemeredes, such as one
produced by GFZ/D-PAF in accordance with the image acquisition time for ERS
(Reigber et al. 1996; Xia 2001) and ASAR Doris Orbit product from ESA for
ENVISAT.

Starting from the acquisition time t0 for the first pixel at the first azimuth line in
the master image and (60) as well as PRF (pulse repetition frequency), the master
satellite’s position and velocity corresponding to each azimuth line can be deter-
mined. By means of the orbital state (position vector �S and velocity vector �Vs) and
using equations from Curlander (Curlander and Robert 1991), the pixel coordinate
vector P(xp,yp,zp) in an SAR image should satisfy the following non-linear equation
system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x2

p + y2
p

)
R2

e
+ z2

p

R2
p

= 1 ellipsoid

2

λRs
(�Vs − �Vp) × (�S − �P) = fd doppler

√
(�S − �P) × (�S − �P) = Rs distance

, (61)

where Re, and Rp are the radius of the earth at the equator and polar, respectively, �S
and �Vs are the position and velocity vector of the master satellite, respectively, �P is
the position vector of target P, �Vp is the velocity vector of target P, which depends
on the target’s position and the earth’s rotational velocity, namely �V = ω̄x�P, fd is
Doppler centre frequency and Rs is the distance between the target P and orbit and
can be determined from the slant range time.

Suppose that the target P lies on the perpendicular line to the slave orbit, the
position of the slave satellite S′ related to the object P can then be obtained by
solving an equation indicating the minimal distance between the target P and the
slave orbit.

Now we have the position vector �P(xp, yp, zp) of the target P, the master satellite
position vector �S (x(t), y(t), z(t)), and the corresponding slave satellite position vector
�S′ (x′

(t), y′
(t), z′

(t)). We can calculate the flat earth surface phase term for each corner
with its position in an image for each line and pixel index:

φflat = 4π

λ
(
−→
SP − −→

S′P). (62)
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In this step, the three-dimensional location vectors �P, �S, and �S′ belonging to corner
reflector and master as well as slave satellite, respectively, are known. Connecting

corner reflector and satellite we get the vector
−→
SP(x(t)−xp,y(t)−yp,z(t)−zp) and its direction

cosine cos α, cos β and cos γ ; then the azimuth angle of the satellite sight line with
respect to any corner reflector can be determined:

ϑ = tan−1 cos β

cos α
. (63)

11.5.4 Elevation-Phase-Relation Matrix Ch and Phase
Unwrapping

The element of the matrix Ch presents the relation between the interferometric phase
of a corner and its elevation under a given interferometric geometry condition. Using
this coefficient one can calculate the phase contribution of a corner due to its eleva-
tion in an interferogram. Because all the corners’ coordinates and orbital vectors are
known, we can easily determine the satellites’ coordinates corresponding to each
individual corner. In fact, the solution of the non-linear equation system (61) is the
coordinate vector of a point target on the Earth’s surface, whose elevation is zero.
In order to find the elevation-phase relation we have to modify the first equation in
(61) as follows:

h =
√

x2
p + y2

p

cos ϕ
− Re√

1 − R2
e − R2

p

R2
e

sin2 ϕ

, (64)

where

ϕ = tan−1
zp + R2

e − R2
p

Rp
sin3 θ

√
x2

p + y2
p − R2

e − R2
p

Re
cos3 θ

and

θ = tan−1 zpRe√
x2

p + y2
pRp

.

If we set h = hi and h = hi +1, respectively, for a certain corner reflector with the
elevation hi, substitute (64) to the first equation of (61), using (62) we can obtain the
phase φh for h = hi and h = hi +1, respectively. The matrix Ch is then constructed
from these phase differences for all the reflectors.
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Corner reflectors are used only in the case that the coherence value is extremely
low, and therefore the phase unwrapping of an interferogram is usually impossible.
So far we have dealt with phase unwrapping of corner reflectors only on a sparse
grid. Because all the corner reflectors are isolated points, the integration of phase
difference can be done only from one corner to its nearest one with a priori informa-
tion, that is, the elevation of all corners must be known first. In fact, this elevation
data for all corners can be easily obtained by means of GPS surveying.

Let φi be the phase of the corner CRi, and φj be the phase of the corner CRj,
which is the nearest neighbour of the corner CRi. Considering the goal of the phase
unwrapping procedure is to determine an integer k for all corners, k has to satisfy
the following elevation difference equation:

Cj(φj + 2kjπ ) − Ci(φi + 2kiπ ) = hj − hi. (65)

Here, h is height of corner reflector and C is height-phase coefficient, which indi-
cates the height change per radian in an interferogram at a determined image
coordinate. Each corner reflector has its own different C in different interfero-
grams. The corner index i is starting at 0 meaning the reference point, and k0 = 0 is
assumed.

We calculate each k always from its nearest neighbour, in order to decrease the
atmospheric effects.

11.5.5 Differential Interferogram Modelling

Suppose there are M + 1 SAR images and N + 1 corners. Select one image as master
and one corner reflector as reference point. If possible, the corner reflector selected
as a reference point should be installed in a previously known stable area. Starting
from the M + 1 images and N + 1 corners, M interferograms consisting of the phase
differences for all the N + 1 corners can be generated. Now the reference point’s
phase can be subtracted from the other N corners and can be expressed by the
following equation:

φ = ClL
T + CpPT + ChHT + 4π

λ
R + E, (66)

where φ is interferometric phase matrix without flat surface contribution, containing
M columns and N rows; each column belongs to a corresponding corner and each
row belongs to a related interferogram; hence it is N × M-dimensional; L is azimuth
line index (referred to the reference point) vector for all the corners in co-registered
image (M-dimensional); P is slant range pixel index vector (referred to the reference
point) for all the corners in co-registered image (M-dimensional); H is relative ele-
vation vector (referred to the reference point) for all the corners (M-dimensional);
R is deformation matrix containing M columns and N rows; each column refers
to a corresponding corner and each row refers to a related interferogram (N × M-
dimensional); Cl is slope vector, linear phase components along the azimuth line
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(N-dimensional); Cp is slope vector, linear phase components along the slant range
pixel direction (N-dimensional); Ch is elevation-phase-relation matrix containing
the phase contributed to a unit elevation for each corner and each interferogram, and
depending on orbital data and corners’ geophysical coordinates as well as their ele-
vation (N × M-dimensional); λ is wavelength of the radar carrier, constant; and E is
residue phase matrix including atmospheric effects and noise (N × M-dimensional).

In (66), φ, L, P, Ch and H are given; the unknown R, displacements for all
the reflectors in each interferogram, can be solved by minimizing the norm of the
matrix E:

MIN
(Cl,Cp,R)

‖E‖L∞ . (67)

As soon as the phase unwrapping process is finished, the corresponding move-
ment or movement rate of each corner reflector may be estimated directly from
the unwrapped phase or by means of a phase regression analysis. In most cases, the
differential phase difference between two corner reflectors is larger than π or less
than −π , so that the phase unwrapping process is unavailable.

A more effective way to determine the CR’s displacement is the estimation of the
movement rate of the corner reflectors with the following modelling:

φim = 4πrim

λ
+ 4πBmhi

λR sin θ
+ φim,atmo + φim,noise. (68)

In (68), φim is the phase of the ith corner in the mth differential interferogram, rim

is displacement of the ith corner in the mth differential interferogram, Bm is the
baseline, hi is height error of the ith corner, θ is the incidence angle and φim,atom
and φim,noise are the phases caused by atmospheric delay and noise, respectively.
As mentioned above, the estimation of the displacement with the aid of phase
unwrapping in space domain is very difficult, usually impossible. However, if the
displacement for each corner reflector varies approximately linearly with time, in
most cases the assumption holds, and (68) may be rewritten as

φim = 4πViTm

λ
+ 4πBmhi

λR sin θ
+ φim,atmo + φim,noise. (69)

Here Vi is the displacement rate of the ith corner and Tm is the time span of the mth
interferogram. In addition, considering a corner reflector is installed at a previously
known stable place, the phase of the reference corner can then be subtracted from
(69). After subtracting the reference phase, each physical variable related to a corner
in (69) now represents a relative one. Stacking the M interferograms will build N
phase time series marked by φij, i = 1, 2, . . ., N and j = 1, 2, . . ., M. Because the
area of a landslide is usually not large, the distance of any two corners is not far
apart, the atmospheric delay can be seen as same, so that (17) becomes as follows:

φi = 2π fivt + 2π fihb + φi,noise, (70)
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where fiv= 2Vi/λ, t = Tm, fih= 2hi/λR sin θ , b = Bm and φi,noise is an indepen-
dent Gaussian noise with a zero mean. Equation (70) indicates that, for each corner
reflector, its phase time series is a two-dimensional resonant signal with the domains
time span t and baseline distribution b. Therefore the problem of the displacement
estimation has been transferred to the problem of the spectrum estimation. There
are many methods to solve the two-dimensional spectrum estimation problem, in
which four important 2D spectral estimation methods are periodogram, autocorre-
lation method, covariance method and modified covariance method. In our case, the
two domains, time span t and baseline distribution b, are usually irregularly sam-
pled. In order to avoid the request of the phase unwrapping process, we select the
periodogram method to estimate the frequency fiv related to displacement rate and
fih related to height error, if we have enough differential interferograms.

Based on (70), for each corner reflector we can construct a periodogram:

E(fv, fh) =
∣∣∣∣∣

1

M

M∑
m=1

(ej2π fvtm+j2π fhbm−jφm)

∣∣∣∣∣
2

. (71)

Obviously, the amplitude of E(fv, fh) will reach its maximum value 1 when both
frequency variables approach their real value that suggests that the estimation of the
frequencies (fv, fh) can be done by maximizing (71).

11.5.6 CR-INSAR Example: Landslide Monitoring in Three
Gorges Area

As the biggest water conservancy project in China, the Three Gorges Project attracts
more and more attention of the world. The reservoir is of a canyon and a river-
like reservoir with a total length of about 600 km and average width of 1.1 km.
The storage capacity of the reservoir reaches 39.3 billion m3 with the normal pool
level at 175 m. The length of the reservoir bank, the reservoir capacity, the number
of resettlement and ecological influence are matchless up to now. A great number of
the geological hazards such as landslide and rock-fall occurred along the banks of
the Yangtze River, and many of them are in an active stage at present. The variations
of the geological, ecological and atmospheric environments, especially the landslide
and rock-fall phenomena in the Three Gorges area after the storage, have to be
investigated. Three landslides, Xintan, Shuping and Kaziwan in the Three Gorges
area in China, are chosen as the working area; see their radar image in Fig. 11.24.

A great landslide occurred at Xintan Town, Zigui County, Hubei Province, on
12 June 1985 (Liu 1988). Xintan landslide was 1,900 m long south-northwards and
210–710 m wide east-westwards. The landslide volume was about 30,000,000 m3.
The lands and stone that fell into the river were about 2,600,000 m3. The tail skirt
of the landslide and the boundary of the west part were bedrocks cliff composed
of Devonian Permian sandstones and lime rocks. The east boundary was the fis-
sure surface cut by the accumulation layers of the slope; here the accretions were
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Fig. 11.24 Locations of Xintan, Shuping and Kaziwan landslides and installed reflector corners.
Left: Shuping, 12 corners; middle: Kaziwan, 9 corners; right: Xintan, 4 corners. Acquisition time:
2003–2007; data: ENVISAT ASAR

30–40 m thick; some were 110 m thick. The residual body of the landslide passed
through adjustment deformation for a few years, the lands and stones were fixed
with time, subsidence and displacement decreased, and it seems to have a tendency
of stabilizing. But the normal pool level will be 140–175 m, and one needs to know
whether the stability of the residual landslide body can hold. Shuping and Kaziwan
are another two active landslides not far from Xintan. The aim of choosing the three
landslides as the working area is to verify the ability of the CR-INSAR technique
that can measure not only the stable but also the moving landslides with higher
accuracy and lower costs in large areas.

In order to monitor the stability of the Xintan landslide and the movement
of the Shuping and Kaziwan landslides, 4 reflector corners were installed on the
Xintan landslide in 2000, 9 corners in Kaziwan in August 2005 and 12 corners in
Shuping in September 2005, respectively. Because of the cliff in the west bound-
ary of Xintan landslide, the descending satellite orbit has been chosen and all the
corners have been oriented to face the southeast according to (56). The photos
of the three landslides and some corner reflectors are shown in Fig. 11.25. Each
corner was then positioned by means of GPS measurement. Therefore the three-
dimensional coordinates for each corner are known and used for computing its
differential interferometric phase.

Up to now we have received more than 30 ENVISAT single look complex data
sets delivered by ESA. In some images several corners disappeared because of
unknown reasons; in addition, the corners on Shuping and Kaziwan landslides were
installed later than on Xintan, and therefore not all the data can be available for
the CR-INSAR studying in the area. Figure 11.26 is the radar intensity image of
Xintan landslide, the corner 4 installed on a stable area was selected as reference,
the results of another three corners from almost 4 years monitoring (see Fig. 11.27)
indicating that the landslide at Xintan is very stable, in agreement with other field
measurement result from GPS, conventional levelling, and trigonometric levelling
in total station instruments.
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Fig. 11.25 Photos of the landslides and reflector corners

Fig. 11.26 Radar intensity of
the landslide at Xintan and
four installed corners

Figure 11.28 is the distribution map of the corner reflectors in Kaziwan landslide.
Reflector R2 and R1 are installed on the stable area as reference and validation,
respectively. The results of the INSAR measurement are drawn in Fig. 11.29. The
result of R1 shows it is really very stable. Corner R3 and R4 are located in front of
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Fig. 11.27 Movements of the corners on the landslide at Xintan (20030817/20070617)

Fig. 11.28 Landslide at Kaziwan and corner distribution

the landslide faced to the river. As expected, they have large movements, while R7,
R8 and R9 move slowly.

In Shuping landslide 12 corners are installed, see Fig. 11.30. In fact, there are two
sub-landslides here together, noted as block #1 and block #2; R6 and R8 are installed
on the stable area, relative to reference corner R8, R6 shows stable, landslide #2 has



11 Synthetic Aperture Radar Interferometry 465

Fig. 11.29 Movements of the corners on the landslide at Kaziwan (20050821–20070617). Both
R2 and R1 are installed on the stable area as reference and validation, respectively. The result of R1
shows it is really very stable. Corner R3 and R4 are located in front of the landslide facing the river
and, as expected, they have large movements, while R7, R8 and R9, that stay, are moving slowly
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Fig. 11.30 Landslide at Shuping and corner distribution

Fig. 11.31a Movements of the corners on the landslide at Shuping (20050925/20070617)
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Fig. 11.31b (continued)
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small displacement, 1–3 cm/year, while landslide #1 is moving relatively quickly.
It is interesting that the results of the CR-INSAR here indicate that the movement
of R11, in the front of the landslide #1, is quite large, but the R7, R9 and R10 in the
back of the landslide slide more quickly. The results of all the corners, indicated in
Fig. 11.31a, b, coincide with the results by other local field measurements.

11.6 High-Resolution TerraSAR-X

TerraSAR-X is Germany’s first national remote sensing satellite to be implemented
in a public–private partnership between the German Aerospace Centre (DLR) and
EADS Astrium GmbH. TerraSAR-X was launched on 15 June 2007 and went into
operation on 7 Jan. 2008. DLR owns and operates the satellite and the payload
ground segment (PGS) and holds the rights for the scientific exploitation of the data.
Company Astrium holds the exclusive rights for the commercial exploitation of the
data products. TerraSAR-X operates in three different modes: strip mode, spotlight
mode and scan mode, with different resolution and coverage. For the aim to monitor
landslide, the strip-mode data with 3-m resolution and 30-km image width have been
selected. Spotlight-mode data have 1-m resolution, but the coverage is quite small
and the cost is too expensive, while scan-mode data have large coverage, but lower
resolution, so that the landslides in the image occupy only very few pixels. Some
important system and orbit parameters are summed up in Table 11.2. Compared
to ERS and ENVISAT, the TerraSAT-X data are suitable for landslide monitoring
due to its high resolution (3m) and short repeat acquisition cycle (11 days). In most
cases, the dimension of a landslide is several hundred metres long and wide, so that
a landslide in an ERS or ENVISAT image covers only a few pixels after multi-
look average processing. TerraSAR-X has higher resolution against the previous
sensors; its high resolution benefits from the increase in radar bandwidth. Such a
high level of image resolution and wide bandwidth make the traditional INSAR

Table 11.2 System and orbit parameters of TerraSAR-X

System and orbit parameters

Radar carrier frequency 9.65 GHz
Wavelength 3.1067 cm
Nominal orbit height at the equator 514 km
Incidence angle range 20–45◦ (full performation) (15–60◦accessible)
Polarizations HH, VV, HV, VH
Antenna length 4.8 m
Nominal look direction Right
Antenna width 0.7 m
Pulse repetition frequency (PRF) 2.0–6.5 kHz
Chirp bandwidth 150 MHz max. (300 MHz experimental)
Resolution 1 m (spotlight), 3 m (strip) and 16 m (scan)
Orbits/day 152/11



11 Synthetic Aperture Radar Interferometry 469

method to be applied for monitoring landslide, even with large baseline of over
3,000 m. This limit can be derived by use of (72), (73) and radar system parameters
from Table 11.2.

It is known that the fringe frequency in slant range (the derivative of the inter-
ferometric phase to slant range distance) can be represented as a function of
perpendicular baseline B⊥, wavelength λ, slant range R and incidence angle θ :

fr = 2B⊥
λR tan(θ )

. (72)

This fringe frequency indicates a spectral frequency shift between the two acquisi-
tions caused by orbit offset, namely so-called baseline. The critical baseline will be
determined by the maximum allowable fringe spectral shift fr,max, which depends on
the wave velocity c and radar chirp bandwidth B (inverse of the pulse duration):

fr,max = 2B

c
. (73)

The critical baseline in the case of TerraSAR-X might be several thousands of
metres derived from (72) and (73), while by ERS/ENVISAT C-band sensors it is
only about 800 m. The traditional D-INSAR method can’t be effectively applied to
landslide monitoring, if only ERS or ENVISAT data are used (Xia et al. 2004). In the
cases of ERS and ENVISAT, the repeat cycle is 35 days and the resolution is 30 m.
The long repeat cycle and low resolution will cause the de-coherence phenomenon,
especially in the vegetated Three Gorges area. On the one hand, by contrast, the
second advantage of the TerraSAR-X data is their short repeat acquisition cycle.
In a short time interval more data sets can be delivered for persistent targets anal-
ysis. On the other hand, maybe just some events happen in the 11-day cycle; if
so, these events can be monitored on time with no major delays. The TerraSAR-X
data are very suitable for deformation monitoring applications, such as landslide
and subsidence, because of their short wavelength (increasing the measurement
performance) and short repeat cycle (capturing the movements on time).

Up to now, 18 TerraSAR-X strip-mode single look complex images covering
the working area have been delivered by DLR. The data acquisition interval is
from 21 July 2008 to 4 Feb. 2009. As mentioned above, due to height resolution
and short repeat acquisition cycle, the TerraSAR-X strip-mode data are very suit-
able for global monitoring in short intervals. Using the classic D-INSAR method,
namely a two-pass differential interferometry approach, the stability or instability
of the landslides in the considered area covered by SAR images may be continu-
ously monitored in a short period. For global landslide monitoring, all the possible
differential interferograms were calculated. Thanks to the TerraSAR-X operating
control, the baselines of all the possible interferometric data pairs are quite small,
less than 450 m. Hereby SRTM 3-arc-second DEM was used as height reference.
In order to demonstrate the results of the classic D-INSAR technique by use of
TerraSAR-X strip-mode data for landslide monitoring in the area, six differential
interferograms are selected and shown in Figs. 11.32, 11.33, 11.34, 11.35, 11.36 and
11.37 to validate the effectiveness of the TerraSAR-X interferometry for landslide
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Fig. 11.32 Differential interferogram of data pair 20080721/20080914; time interval is 55 days
and baseline is 10 m. Colour cycle from red via yellow to blue represents a displacement of 1.5 cm

Fig. 11.33 Differential interferogram of data pair 20080914/20081017; time interval is 33 days
and baseline is 20 m

Fig. 11.34 Differential interferogram of data pair 20081017/20081119; time interval is 33 days
and baseline is 111 m
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Fig. 11.35 Differential interferogram of data pair 20081119/20090113; time interval is 55 days
and baseline is 67 m

Fig. 11.36 Differential interferogram of data pair 20080721/20090113; time interval is 176 days
and baseline is 13 m. Clearly, the displacement in this interferogram is a sum of the displace-
ments in the former four interferograms. The interferogram series shows that in the 176-day
monitoring interval, the displacement of the mountain slope happened mainly from September
to mid-November, just corresponding to the water filling period. Each colour cycle indicates 2π
phase difference, meaning a displacement difference of 1.5 cm. The increasing direction is from
red via yellow and green to blue

monitoring and show the displacements derived from this technique or instability
of the whole working area. These six differential interferograms are organized in
chronological order to show the displacement history. According to traditional prac-
tice, the interferometric phase is represented by colour, each colour cycle meaning a
phase difference of 2π , which corresponds to a displacement of 1.55 cm in line-of-
sight. Figure 11.32 is the differential interferogram of data pair 20080721/20080914
with a baseline of 10 m. In the 55 days there were small displacements to see.
Figure 11.33 is the differential interferogram from data pair 20080914/20081017
with a baseline of 20 m. In this 33-day time interval, large movement happened
almost everywhere, the most obvious being in the landslide at Fanjiaping, Xintan,
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Fig. 11.37 Differential interferogram of data pair 20090102/20090204; time interval is 33 days
and baseline is 47 m. On and after 2 Nov. 2008 the water level began to decrease. In the downing
period, compared to filling period, the direction of the movement grad is inverted. From the top to
the foot of a mountain the colour cycle rank is from red via yellow, green to blue, which means the
displacement at mountain foot is larger than the displacement on mountain top

and on some mountain slopes, such as the left bank of Xiangxi river and the slope
of the opposite mountain. The land surface displacement of this area in the time
span of 20081017/20081119 – see Fig. 11.34 – is like that in Fig. 11.33 with same
time interval, but large baseline of 111 m. Figure 11.35 is the differential interfero-
gram of data pair 20081119/20090113 with a baseline of 67 m. Unlike the former
three interferograms, this interferogram shows that in the 55-day interval almost no
movement happened except the Fanjiaping landslide. Figure 11.36 is the differen-
tial interferogram of data pair 20080721/20090113 with a baseline of 13 m. Clearly,
the displacement in this interval is the sum of the former four interferograms. In
fact, the Three Gorges Project is a multi-functional water control system. Its key
functions include flood control and power generation. The project has been con-
structed in three phases. Storing water at the 175-m level is a requirement for the
last phase of the dam construction. From September to November, the time inter-
val of the data acquisitions, the State Council’s Three Gorges Project Construction
Committee raised the water level to 175 m to test the storing function that began in
late September. The committee expects the higher water level would not cause mas-
sive silting, nor lead to serious natural disasters in nearby areas. The results of these
TerraSAR-X interferometries show, however, that despite no serious natural disas-
ters happening, potential risks are everywhere to be seen. In the interferogram of
data pair 20080721/20090113, Fig. 11.36, one colour cycle on the landslide Xintan
and several colour cycles on the landslides Fanjiaping indicate that the movements
of the two landslides were increasing with time. Because the landslides at Shuping
and Kaziwan are covered by vegetations and fruit trees, radar signal was not coher-
ent, so there was no sufficient and clear interferometric phase to see. Certainly, the
differential interferometric phase contains not only the contribution of the displace-
ments, but also the contribution of the orbit inaccuracy. According to INSAR theory,
the phase contribution caused by orbit error in these five interferograms should be
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Fig. 11.38 Differential interferograms of landslide at Fanjiaping derived from a data pair series
of 20090102/20090113 (a), 20090102/20090124 (b) and 20090102/20090204 (c) showing the
landslide mass movement history and accumulation

excluded, because the interferometric phase or fringes are not correlated with the
corresponding baselines. Therefore, the contribution of the displacements must be
dominant in the differential interferograms. Figure 11.37 is a differential interfer-
ogram in the water level downing period, showing that the displacement of the
mountain slopes was increasing from mountain top to mountain foot, just inverted
if compared to the water level filling period. Figure 11.38 is a differential interfer-
ogram series of a region with a size of about 3 × 4 km2 and 11-, 22- and 33-day
intervals, respectively. Landslide Fanjiaping is located in the area. The displacement
history and distribution of the whole landslide are very clearly exhibited. The small
displacement rate, but with larger gradient, took place in front of the landslide. There
are many other different landslide survey methods and techniques, but none of them
may produce such a detailed landslide movement map.
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