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Preface

Quantum trajectory theory is largely employed in theoretical quantum optics and
quantum open system theory and is closely related to the conceptual formalism
of quantum mechanics (quantum measurement theory). However, even research
articles show that not all the features of the theory are well known or completely
exploited. We wrote this monograph mainly for researchers in theoretical quantum
optics and related fields with the aim of giving a self-contained and solid pre-
sentation of a part of quantum trajectory theory (the diffusive case) together with
some significant applications (mainly with purposes of illustration of the theory, but
which in part have been recently developed). Another aim of the monograph is to
introduce to this subject post-graduate or PhD students. To help them, in the most
mathematical and conceptual chapters, summaries are given to fix ideas. Moreover,
as stochastic calculus is usually not in the background of the studies in physics, we
added Appendix A to introduce these concepts. The book is written also for math-
ematicians with interests in quantum theories. Quantum trajectory theory is a piece
of modern theoretical physics which needs an interplay of various mathematical
subjects, such as functional analysis and probability theory (stochastic calculus),
and offers to mathematicians a beautiful field for applications, giving suggestions
for new mathematical developments. Appendix B presents the modern formalism of
quantum mechanics and has the double role of collecting notions and results used
throughout the book and of introducing to this subject peoples without a background
in the axiomatic of quantum mechanics.

The so-called stochastic Scrödinger equation and stochastic master equation,
which are the key equations of quantum trajectory theory, have been introduced also
in different contexts, such as dynamical reduction theories. So, we developed the
theory of such equations (existence of solutions, properties, etc.) also independently
of the theory of measurements continuous in time.

We thanks our students Mario Licciardo, Elena Di Bernardino, Caterina Covacev,
Paolo Di Tella, who tested the preliminary versions of the book and helped us with
their suggestions and feedback.

The first part of this book is based on the material of the course given by
A. Barchielli at the Third Winter School of Stochastic Analysis and Applications,
Valparaı́so, Chile, August 29 — September 2, 2005.

This work was supported by our institution,
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• Politecnico di Milano, Dipartimento di Matematica Francesco Brioschi,

and by

• INFN, Istituto Nazionale di Fisica Nucleare, Sezione di Milano.
• European Community’s Human Potential Programme under contract HPRN-CT-

2002-00279, QP-Applications.

Milano, Italy Alberto Barchielli
December 2008 Matteo Gregoratti
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Chapter 1
Introduction

1.1 Quantum Open Systems

Quantum mechanics started as a theory of closed systems: the state of the sys-
tem is a vector of norm one in a Hilbert space and it evolves in time according
to the Schrödinger equation (B.11). In order to describe also a possible uncer-
tainty on the initial state, a “statistical” formulation of quantum mechanics has
been developed: the states are represented by statistical operators (Sect. B.3.1), also
called density matrices, and their evolution is given by the von Neumann equation
(B.18). This statistical formulation revealed to be well suited also for open systems.
General evolution equations for density operators appeared under the names of mas-
ter equations and quantum dynamical semigroups [1–5] (Sect. B.3.3); these con-
cepts were generalised and gave rise to the theory of quantum Markov semigroups
[6, 7].

The contemporary successes of stochastic processes and stochastic differential
equations (SDEs) for classical systems gave a strong motivation to try some-
thing similar in quantum open system theory and two classes of SDEs were intro-
duced: quantum SDEs [8–11], driven by non-commuting noises, and classical SDEs
[12–15], driven by ordinary, commuting noises. All these descriptions of quan-
tum open systems are connected and one can shift from one approach to the other
[4, 5, 16–18, 37].

In this book we want to present the approach to quantum open system theory
based on classical SDEs, with particular emphasis on continuous measurements.

We speak of continuous measurements when a quantum system is monitored
with continuity in time. Traditional presentations of quantum mechanics consider
only instantaneous measurements, but continuous measurements on quantum sys-
tems are a common experimental practice; typical cases are the various forms of
photon detection. The statements of a quantum theory about an observable are of
probabilistic nature; so, it is natural that a quantum theory of continuous measure-
ments gives rise to stochastic processes. Moreover, a continuously observed system
is certainly open. All these arguments show that the development of a quantum
theory of continuous measurements needs quantum measurement theory, open sys-
tem theory, operator theory, quantum probability, quantum and classical stochastic
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processes, etc. The first consistent paper treating continuous measurements was
published in 1969 [20]. It concerns counting of quanta, but some ideas on quantum
counting formulae for photons had already been introduced before [21]. The main
field of applications was quantum optics, but applications of continuous measure-
ment theory are now becoming important also in quantum information and quantum
control.

1.2 Approaches to Continuous Measurements

There are essentially three approaches to continuous measurements [22–24]. The
first and the third one (chronologically) are “morally” equivalent and both give the
probability distribution of the output process together with the stochastic evolution
of the system, due to the interaction with the measuring apparatus and to the infor-
mation acquirement. The second approach to continuous measurements is set at a
higher level, as it introduces also a quantum description of the measuring apparatus
itself and of its interaction with the system. These approaches have received vari-
ous degrees of development, any one of them has its own merits and its range of
applicability; the three approaches are consistent and one can go from one to the
other and this feature is certainly at the bases of the flexibility and interest of the
theory.

The first approach [1, 25–29] is the operational one, which is based on positive
operator-valued measures or (generalised) observables and operation-valued mea-
sures or instruments [1, 22, 30–32]; very general results have been obtained inside
this approach by using the Fourier transforms of the operator measures and quantum
analogs of Markov semigroups [26, 33–38]. A variant of the first approach is based
on the Feynman integral [25, 38, 39].

The second approach [40–43] is based on quantum stochastic calculus and quan-
tum SDEs [8–11, 44]; it is connected to quantum Langevin equations and to the
notion of input and output fields in quantum optics [3, 11, 16, 45]. For a review of
this approach to continuous measurements see [46]. The book [47] explains how
quantum stochastic differential equations arise as suitable limits of more fundamen-
tal “Hamiltonian” descriptions.

The last approach [48–50] is based on classical SDEs and the notion of a
posteriori states [51]. It was originated by Belavkin’s work on quantum filtering
[43, 52–55] and it is related to notions appeared in quantum optics, such as quantum-
state diffusion models, quantum trajectories, Monte–Carlo wave function method,
unravelling of master equations [4, 17, 56–58].

The central aim of this book is to introduce the reader to this last formulation
of continuous measurement theory and to show how this approach is connected to
the operational one, where the general formulation of quantum mechanics explicitly
appears. We do not present the connections with the approach based on quantum
stochastic calculus, which can be found in [16, 19, 22, 59].
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1.3 Classical SDEs in Continuous Measurement Theory

In the theory of continuous measurements one meets four kinds of SDEs with two
kinds of noises.

The four kinds of equations are: (1) linear for non-normalised vectors in a
Hilbert space, (2) nonlinear for normalised vectors in a Hilbert space (the stochastic
Schrödinger equation), (3) linear for positive trace class operators, and (4) nonlin-
ear for density matrices (the stochastic master equation). A change of probability
measure underlies the passage from the linear case to the nonlinear one.

The two kinds of noises characterize the diffusive and the jump case. In the dif-
fusive case, we meet a Wiener processes W in the linear equations and a Wiener
process ̂W in the nonlinear equations (W and ̂W are connected by a Girsanov trans-
formation). In the jump case, we have n Poisson process in the linear equations and a
counting process in the nonlinear equations (the Poisson and the counting processes
are the same process under two different probability laws).

Let us stress the role of the stochastic equations in Hilbert spaces. Here the open
systems are no more treated by equations for statistical operators, but we go back
to a stochastic version of the Schrödinger equation. Moreover, from the numerical
point of view it is easier to work in Hilbert spaces rather than in matrix or operator
spaces and SDEs in Hilbert space give an efficient starting point for simulations of
time evolutions of open systems [5, 56, 57, 60, 61].

Here the focus is on open system theory and continuous measurements, but the
same type of SDEs arose in quantum mechanics also for other purposes. We already
quoted numerical simulations of master equations and quantum filtering, but they
were also introduced as modifications of quantum mechanics to give dynamical
descriptions of the von Neumann reduction postulate [14] and in the framework
of the so-called dynamical reduction theories [62–66].

This presentation is restricted to the cases in which the driving noises are Wiener
processes. For the cases with jumps see [16, 49, 50, 67–70]. Moreover, to take things
simpler we work in a finite dimensional Hilbert space. This avoids analytical com-
plications, but it contains the essential structure of the theory and is enough for the
simplest applications.

1.4 The Plan of the Book

The book is divided in two parts, one for the presentation of the theoretical struc-
ture of the theory and the other for applications. The two appendices are intended
to be a primary in stochastic differential equations (Appendix A) and in quantum
mechanics (measurement theory and open systems – Appendix B).

Chapter 2 is devoted to the Hilbert-space formulation of the theory and it is cen-
tred on the presentation of the stochastic Schrödinger equation. Chapters 3 and 5
present the formulation in terms of statistical operators; now the key concept is that
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of the stochastic master equation. While the observables of the theory, represented
by positive operator-valued measures, have already been introduced in Chap. 2, the
full connection of quantum trajectory theory with the general axiomatic structure of
quantum mechanics is given in Chap. 4. Here also the moments and the spectrum
of the output of the measurement are studied. Chapter 6 connects quantum trajec-
tory theory with quantum information. Measures of information, such as mutual
entropies, are introduced; they quantify the information extracted from the observed
quantum system by the continuous measurement.

Chapter 7 gives some ideas on how to construct concrete physical models,
mainly in quantum optics, and how to use the theory developed in the first part
in order to describe two types of photodetection: heterodyne and homodyne detec-
tion. A concrete model for a two-level atom stimulated by a monochromatic laser
is given in Chap. 8 and its heterodyne and homodyne spectra are studied in Chap.
9. Chapter 10 is devoted to the effects produced on the homodyne spectrum by
feedback and control; the first part of this chapter presents an interesting scheme,
due to Wiseman and Milburn [71], which allows to introduce feedback loops in
the theory. Chapters 9 and 10 present also many physical effects typical of differ-
ent quantum systems, such as squeezing, line narrowing, thermal and dephasing
broadening, etc.
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General Theory



Chapter 2
The Stochastic Schrödinger Equation

2.1 Introduction

In this chapter, we introduce the theory of measurements in continuous time (diffu-
sive case) starting from the particular but important case of complete observation.
This allows to present the Hilbert space formulation of the theory, where the state of
the observed quantum system is described by a vector in the Hilbert space H of the
system. Even if this is a special case of the more general theory presented in Chaps.
3, 4 and 5, it deserves a separate treatment for different reasons: it is instructive, it
uses only the Hilbert space formulation of quantum mechanics, it is of interest on its
own because the stochastic Scrödinger equation presented in this chapter has also
been used in different contexts [1–6], some mathematical results of the following
chapter will relay anyhow on the theory presented here, and Hilbert space SDEs are
the key starting point for efficient numerical simulations of the dynamics of open
quantum systems [1, 7].

First, we introduce the class of SDEs in Hilbert spaces which we are interested in
and we present their mathematical properties. After that, we discuss their physical
interpretation and start to develop the theory of continuous measurements.

Given the initial (pure) state ψ0 ∈ H of the measured quantum system, the aim
is to get two stochastic processes together with the probability distribution of their
trajectories:

• the output W (t) of the continuous measurement;
• the system state ̂ψ(t), whose evolution includes the continuous measurement and

which is continuously conditioned on the observed output;
• the physical probability distribution of the processes W (t) and ̂ψ(t).

The system state ̂ψ(t) is called a posteriori state, as it depends on the trajectory
observed for W (s) in the time interval 0 ≤ s ≤ t . The knowledge of the physical
probability distribution of W (t) and ̂ψ(t) allows to consider and to compute mean
values at a given time, just as correlations and multi-time moments.

There are two possible ways to develop the theory: to start from the nonlinear
evolution equation of the a posteriori states ̂ψ(t) or from the linear evolution equa-
tion of the so-called non-normalised a posteriori states ψ(t). We prefer to begin with

Barchielli, A., Gregoratti, M.: The Stochastic Schrödinger Equation. Lect. Notes Phys. 782,
11–49 (2009)
DOI 10.1007/978-3-642-01298-3 2 c© Springer-Verlag Berlin Heidelberg 2009



12 2 The Stochastic Schrödinger Equation

this second approach which is the direct generalisation of the traditional description
of an instantaneous measurement.

When a quantum system undergoes a “von Neumann measurement” of an observ-
able represented by a self-adjoint operator X with discrete eigenvalues xk and
eigen-projections Ek , one usually fixes the space Ω = {x1, x2, . . .} of the possible
outcomes and, for every xk ∈ Ω , uses the corresponding projection Ek to introduce
the linear state transformation (von Neumann reduction postulate):

ψ0 �→ ψ1(xk) := Ekψ0.

Then, ψ1(xk) gives both the physical probability distribution for the outcome X
and the a posteriori state ̂ψ1: if ψ0 is the initial system state, then

• ‖ψ1(xk)‖2 is the probability of observing X = xk ;
• ̂ψ1(xk) = ψ1(xk)/ ‖ψ1(xk)‖ is the a posteriori state when X = xk .

In order to generalise consistently such a representation of a measurement to the
continuous time case, we use the powerful mathematical tools of stochastic calculus
and thus we prefer to begin with their presentation.

Section 2.2 is devoted to the theory of homogeneous linear SDEs. To read this
section, one needs the notions of filtration, stochastic process, martingale, stochastic
integral with respect to a Wiener process and strong solution of an SDE; moreover,
familiarity with the Itô formula is essential. All these topics of stochastic calculus
are recalled in Sects. A.2, A.3 and A.4. In Sect. 2.3, the subclass of linear SDEs of
our concern is presented and studied. Here the notions of exponential martingale,
change of probability measure and Girsanov transformation are needed; they are
recalled in Sect. A.5.

The SDE approach to the quantum theory of open systems and of continuous
measurements is given in the rest of the chapter, starting from Sect. 2.4. In this
chapter, only the Hilbert space formulation of quantum mechanics is needed, as it
is presented in Sect. B.2. The key notion is “positive operator-valued measure”, a
mathematical object which represents a general quantum mechanical observable.

As already said in Sect. 1.3, we work in a finite dimensional Hilbert space, which
is enough to give the main ideas of the stochastic approach to open systems and
continuous measurements and to develop the simplest applications. For results and
examples in infinite dimensional Hilbert spaces, see [7–27].

2.2 Linear Stochastic Differential Equations

Assumption 2.1. The Hilbert space of the quantum system is H = C
n .

The SDEs we consider are driven by white noise, the derivative of the Wiener
process. So, let us introduce such a stochastic process and fix the framework needed
for SDEs.
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Assumption 2.2. We fix a stochastic basis
(

Ω,F, (Ft ),Q
)

satisfying usual condi-
tions (Sect. A.2.2) and a continuous d-dimensional Wiener process W = {W (t),
t ≥ 0}, with increments independent of the past (Definition A.21). We assume

F = F∞ :=
∨

t≥0

Ft . (2.1)

The symbol EQ indicates the expectation with respect to the probability Q.

2.2.1 An Homogeneous Linear SDE in Hilbert Space

Let us start by considering a generic homogeneous linear SDE with “multiplicative
noise” for an H-valued process ψ = {ψ(t), t ≥ 0}:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dψ(t) = K (t)ψ(t) dt +
d
∑

j=1

R j (t)ψ(t) dW j (t) ,

ψ(0) = ψ0 , ψ0 ∈ H.

(2.2)

Assumption 2.3. The initial condition ψ0 is non random. The coefficients R j (t),
K (t) are (non-random) linear operators on H. The functions t �→ K (t) and t �→
R j (t) are measurable and such that ∀T ∈ (0,+∞)

sup
t∈[0,T ]

‖K (t)‖ < +∞, sup
t∈[0,T ]

∥

∥

∥

∥

∑

j

R j (t)
∗R j (t)

∥

∥

∥

∥

< +∞. (2.3)

Theorem 2.4. Under Assumption 2.3, the linear SDE (2.2) admits strong solutions
in [0,+∞). Pathwise uniqueness and uniqueness in law hold. Moreover, for any
p ≥ 2 and T > 0, there exists a constant C(p, T ) such that

EQ

[

sup
t∈[0,T ]

‖ψ(t)‖p

]

≤ C(p, T )
(

1+ ‖ψ0‖p
)

. (2.4)

Proof. Let us make the identifications b(x, t) = K (t)x , σ j (x, t) = R j (t)x . We have
the estimates

‖b(x, t)‖ = ‖K (t)x‖ ≤ ‖K (t)‖ ‖x‖ ,
∑

j

∥

∥σ j (x, t)
∥

∥

2=
∑

j

∥

∥R j (t)x
∥

∥

2= 〈

x
∣

∣

∑

j R j (t)∗R j (t)x
〉 ≤

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x‖2 .

Obviously, we also have
∑

j

∥

∥σ j (x, t)− σ j (y, t)
∥

∥

2 = ∑

j

∥

∥σ j (x − y, t)
∥

∥

2
and

‖b(x, t)− b(y, t)‖ = ‖b(x − y, t)‖. Then, Hypotheses A.25, A.32 and A.34 hold
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with L(T ) = 2 max
{

supt∈[0,T ] ‖K (t)‖2, supt∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥

}

, M(T ) =√
2L(T ), and Theorems A.36 and A.38 give the statements. �
Let us recall that the existence of strong solutions means that (2.2) admits a

solution for every choice of the probability space, of the filtration and of the Wiener
process (see Definition A.27). For the notions of uniqueness see Definitions A.28
and A.29.

In our construction, the stochastic basis and the Wiener process are fixed by
Assumption 2.2. Then, by ψ we denote the continuous, adapted process (Itô pro-
cess – see Sect. A.3.4) satisfying

ψ(t) = ψ0 +
∫ t

0
K (s)ψ(s) ds +

d
∑

j=1

∫ t

0
R j (s)ψ(s) dWj (s) ; (2.5)

such a process is unique up to indistinguishableness (Sect. A.4.1).

Remark 2.5. In the following, the natural filtration of the increments of the Wiener
process and its augmented version will be important: for 0 ≤ s ≤ t , we define

Ds
t := σ {W (r )−W (s), r ∈ [s, t]}, D

s
t := Ds

t ∨N; (2.6)

N is the class of the Q-null sets in F.
Because of the properties of a Wiener process, the filtration {Ds

t , t ∈ [s,+∞)}
satisfies the usual conditions: D

s
t is independent of Fs and D

s
t ⊂ D

0
t ⊂ Ft ⊂ F,

for 0 ≤ s ≤ t .
Because of the existence of strong solutions and of the fact that the initial condi-

tion is non-random, the continuous (Ft )-adapted process ψ is also
(

D
0
t

)

-adapted.

2.2.2 The Stochastic Evolution Operator

Equation (2.2) being a linear equation, we can introduce a stochastic process of
operators A0

t (ω) giving the application ψ0 �→ ψ(t, ω). Indeed, let us consider the
operator-valued processes As

t , with t ≥ s ≥ 0, defined by the SDE

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dAs
t = K (t)As

t dt +
d
∑

j=1

R j (t)As
t dW j (t) ,

As
s = 1 .

(2.7)

This is a linear SDE for an n×n-dimensional complex process; so, exactly as for
(2.2), in

(

Ω,F, (Ft ),Q
)

there is a pathwise unique, continuous, adapted solution.
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Proposition 2.6. Under Assumption 2.3, the linear SDE (2.7) admits strong solu-
tions in [s,+∞), ∀s ≥ 0. Pathwise uniqueness and uniqueness in law hold. More-
over, for any p ≥ 2 and T > s, there exists a constant C(p, T ) such that

EQ

[

sup
t∈[s,T ]

∥

∥As
t

∥

∥

2
p

]

≤ C(p, T )
(

1+ n p/2
)

. (2.8)

Proof. Let us make the identifications b(a, t) = K (t)a, σ j (a, t) = R j (t)a, a ∈ Mn .
Now a, b, σ j are vectors whose components are labelled by a couple of indices;
then, the relevant norm is the Hilbert–Schmidt one (B.3). We have the estimates

‖b(a, t)‖2 = ‖K (t)a‖2
2 = Tr

{

a∗K (t)∗K (t)a
} = Tr

{

K (t)∗K (t)aa∗
}

≤ ∥

∥K (t)∗K (t)
∥

∥

∥

∥aa∗
∥

∥

1 = ‖K (t)‖2 Tr
{

aa∗
} = ‖K (t)‖2 ‖a‖2

2,

∑

j

∥

∥σ j (a, t)
∥

∥

2 =
∑

j

∥

∥R j (t)a
∥

∥

2
2 =

∑

j

Tr
{

a∗R j (t)
∗R j (t)a

}

= Tr
{

∑

j R j (t)∗R j (t)aa∗
}

≤
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖aa∗‖1

=
∥

∥

∥

∥

∥

∥

∑

j

R j (t)
∗R j (t)

∥

∥

∥

∥

∥

∥

‖a‖2
2.

Then, the proof goes on as in Theorem 2.4, exactly with the same constants. Note
that ‖1‖2

2 = Tr{1} = n. �

Because of the properties stated in the following proposition, As
t is called

stochastic evolution operator. In mathematical terms, A0
t is the fundamental matrix

of the linear equation (2.2), while in the physical literature the term propagator is
more used.

Proposition 2.7. For 0 ≤ s ≤ t , As
t is Q-independent of Fs and D

s
t -measurable.

Moreover, for every given 0 ≤ r ≤ s, almost surely (a.s.) we have

As
t Ar

s = Ar
t , ∀t ≥ s, (2.9)

ψ(t) = A0
t ψ0 , ∀t ≥ 0 . (2.10)

More explicitly, the continuous processes t �→ As
t Ar

s and t �→ Ar
t are indistin-

guishable; the same holds for the processes t �→ ψ(t) and t �→ A0
t ψ0.

Proof. Because of the existence of strong solutions and pathwise uniqueness, the
random variable As

t is D
s
t -measurable; then, the statement about the independence

follows from the independent increment property of the Wiener process.
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Let us fix s ≥ r ≥ 0 and set

Bt :=
{

Ar
t , if r ≤ t < s,

As
t Ar

s , if t ≥ s.

Then, by (2.7) we have for t ≥ s

Bt = As
t Ar

s = Ar
s +

∫ t

s
K (u)As

u Ar
s du +

∑

j

∫ t

s
R j (u)As

u Ar
s dW j (u)

= 1+
∫ s

r
K (u)Ar

u du +
∑

j

∫ s

r
R j (u)Ar

u dW j (u)+
∫ t

s
K (u)Bu du

+
∑

j

∫ t

s
R j (u)Bu dW j (u) = 1+

∫ t

r
K (u)Bu du +

∑

j

∫ t

r
R j (u)Bu dW j (u);

by the definition of B, the same equation holds also for t < s. Therefore, Bt and Ar
t

satisfy the same equation and, by uniqueness, they are indistinguishable. This proves
(2.9). Similarly ψ(t) and A0

t ψ0 satisfy the same equation and, so, (2.10) holds. �
Also the adjoint As

t
∗ of the stochastic evolution operator is a continuous, adapted

process and for t ≥ s it satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dAs
t
∗ = As

t
∗K (t)∗ dt +

d
∑

j=1

As
t
∗R j (t)

∗ dW j (t) ,

As
s
∗ = 1 .

(2.11)

2.2.2.1 The Stochastic Liouville Formula

It is important to prove other properties of the stochastic evolution operator and in
particular that the matrix As

t is a.s. invertible.

Proposition 2.8. For every given initial time s ≥ 0, the Wronskian determinant
Ds

t := det As
t is given by the stochastic Liouville formula

Ds
t = exp

(∫ t

s
Tr

{

K (r )− 1

2

∑

j

R j (r )2

}

dr+
∑

j

∫ t

s
Tr
{

R j (r )
}

dW j (r )

)

. (2.12)

This equality holds a.s. for every t ≥ s and, so, Q(Ds
t > 0, ∀t ≥ s) = 1. Then,

the operator As
t is a.s. invertible and the process (As

t )−1 satisfies the SDE

d(As
t )−1 = (As

t )−1
[

∑

j R j (t)2 − K (t)
]

dt −
d
∑

j=1

(As
t )−1 R j (t)dW j (t) . (2.13)
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Finally, for every 0 ≤ s ≤ t , the following representation holds a.s.:

As
t = A0

t (A0
s )−1. (2.14)

Proof. Let s ≥ 0 be a given initial time. By differentiating the explicit expression
of the determinant, which is a polynomial in the matrix elements of As

t , and by
using the Itô formula for products, in the proof of Theorem 2.2 in [28] the following
formula for the stochastic differential of Ds

t is obtained:

dDs
t =

[

Tr

{

K (t)− 1

2

∑

j

R j (t)
2

}

+ 1

2

∑

j

(

Tr
{

R j (t)
} )2

]

Ds
t dt

+
∑

j

Tr
{

R j (t)
}

Ds
t dW j (t) . (2.15)

But this is a one-dimensional linear SDE with initial condition Ds
s = 1. Again

the solution is pathwise unique and it is an exercise in stochastic calculus to verify
that (2.12) solves this linear SDE. Thus, Q(Ds

t > 0, ∀t ≥ s) = 1 and As
t is a.s.

invertible for every t ≥ s.
To prove (2.13), let us consider the equation

dZs
t = Zs

t

[

∑

j R j (t)2 − K (t)
]

dt −
d
∑

j=1

Zs
t R j (t)dW j (t) , Zs

s = 1 . (2.16)

Once more the solution is unique. By Itô formula for products one gets
d
(

Zs
t As

t

) = 0. Together with Zs
s As

s = 1 and continuity in t , this gives Zs
t As

t = 1

for every t ≥ s. By multiplying on the right by
(

As
t

)−1
, which exists, we get

Zs
t =

(

As
t

)−1
for every t ≥ s and (2.13) is proved.

By using (2.9), we have A0
t (A0

s )−1 = As
t A0

s (A0
s )−1 = As

t and (2.14) is proved.
�

2.2.3 The Square Norm of the Solution

Let us now study the behaviour of the norm of ψ(t), which will be a key object in
the whole construction.

Proposition 2.9. We have

‖ψ(t)‖2 = ‖ψ0‖2 +
∫ t

0

〈

ψ(s)
∣

∣

(

K (s)+ K (s)∗ +∑

j R j (s)∗R j (s)
)

ψ(s)
〉

ds

+
d
∑

j=1

∫ t

0
〈ψ(s)|(R j (s)+ R j (s)∗)ψ(s)〉dW j (s) . (2.17)
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Moreover, ∀T ≥ 0,

EQ

[ ∫ T

0

∑

j

∣

∣〈ψ(t)|(R j (t)+ R j (t)
∗)ψ(t)〉∣∣2 dt

]

< +∞, (2.18)

and the stochastic integral in (2.17) is a square-integrable continuous martingale.

Proof. By Itô formula, we get

d ‖ψ(t)‖2 = 〈ψ(t)|dψ(t)〉 + 〈dψ(t)|ψ(t)〉 + 〈dψ(t)|dψ(t)〉
= 〈ψ(t)|K (t)ψ(t)〉dt +

∑

j

〈ψ(t)|R j (t)ψ(t)〉dW j (t)+ 〈K (t)ψ(t)|ψ(t)〉dt

+
∑

j

〈R j (t)ψ(t)|ψ(t)〉dW j (t)+
∑

j

∥

∥R j (t)ψ(t)
∥

∥

2
dt

= 〈

ψ(t)
∣

∣

(

K (t)+ K (t)∗ +∑

j R j (t)∗R j (t)
)

ψ(t)
〉

dt

+
∑

j

〈ψ(t)|(R j (t)+ R j (t)
∗)ψ(t)〉dW j (t) ,

which gives (2.17).
For every x ∈ H, let Px be the one-dimensional orthogonal projection on the

Hilbert ray containing x and recall that R j (t)∗Px R j (t) ≥ 0 and R j (t)∗

(1− Px )R j (t) ≥ 0. Then, we have

∑

j

〈x |(R j (t)+R j (t)
∗)x〉2 ≤ 4

∑

j

∣

∣〈x |R j (t)x〉
∣

∣

2 = 4 ‖x‖2
∑

j

〈x |R j (t)
∗Px R j (t)x〉

≤ 4 ‖x‖2
∑

j

〈x |R j (t)
∗R j (t)x〉 ≤ 4 ‖x‖4

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ;

so, the following estimate holds: ∀x ∈ H,

∑

j

〈x |(R j (t)+ R j (t)
∗)x〉2 ≤ 4 ‖x‖4

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ . (2.19)

By using this inequality and the L p estimate (2.4) given in Theorem 2.4, we get

EQ

[ ∫ T

0

∑

j

〈ψ(t)|(R j (t)+ R j (t)
∗)ψ(t)〉2dt

]

≤ 4 sup
t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ T EQ

[

sup
0≤t≤T

‖ψ(t)‖4

]

≤ 4 sup
t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ T C(4, T )
(

1+ ‖ψ0‖4
)

< +∞,
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and (2.18) is proved. Then, the integrand process 〈ψ(t)|(R j (t) + R j (t)∗)ψ(t)〉
belongs to the space M2 for every j (Sect. A.3.1), and the stochastic integral in
(2.17) is a square-integrable continuous martingale (Sect. A.3.3). �

2.3 The Linear Stochastic Schrödinger Equation

For the physical interpretation anticipated in Section 2.1 and discussed in Sect. 2.4,
we are not interested in (2.2) in general, but only when ‖ψ(t)‖2 is a martingale of
mean one and can be interpreted as a probability density with respect to Q.

2.3.1 A Key Restriction

In order to reduce ‖ψ(t)‖2 to a martingale, we need the vanishing of the integrand
in the time integral in (2.17) for every initial condition, i.e.

K (t)+ K (t)∗ +
∑

j

R j (t)
∗R j (t) = 0,

which is equivalent to the following assumption.

Assumption 2.10. The operator K (t) has the structure

K (t) = −iH (t)− 1

2

d
∑

j=1

R j (t)
∗R j (t) , (2.20)

where H (t) is a self-adjoint operator on H, called effective Hamiltonian of the
system.

By Assumptions 2.3 and 2.10, the function t �→ H (t) is measurable and

∀T ∈ (0,+∞), sup
t∈[0,T ]

‖H (t)‖ < +∞ . (2.21)

Proposition 2.8 gives ‖ψ(t)‖ > 0 and we can define the continuous processes

̂ψ(t) := ‖ψ(t)‖−1 ψ(t) , (2.22)

m j (t) := 〈

̂ψ(t)
∣

∣

(

R j (t)+ R j (t)
∗)
̂ψ(t)

〉 = 2 Re
〈

̂ψ(t)
∣

∣R j (t)̂ψ(t)
〉

. (2.23)

Theorem 2.11. Under Assumptions 2.2 and 2.10, the square norm ‖ψ(t)‖2 of the
solution of the SDE (2.2) is a positive, continuous martingale and
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‖ψ(t)‖2 = ‖ψ0‖2 exp

{

∑

j

[∫ t

0
m j (s)dW j (s)− 1

2

∫ t

0
m j (s)2ds

]}

. (2.24)

Moreover, ∀p ≥ 1,

sup
0≤t≤T

EQ

[‖ψ(t)‖2p
] ≤ EQ

[

sup
0≤t≤T

‖ψ(t)‖2p

]

< +∞. (2.25)

Proof. Being an Itô process, ψ is continuous and this holds for its square norm.
By Assumption 2.10 and the definitions (2.22), (2.23), equation (2.17) reduces to

‖ψ(t)‖2 = ‖ψ0‖2 +
∑

j

∫ t

0
m j (s) ‖ψ(s)‖2 dW j (s). (2.26)

By Proposition 2.9, the positive continuous process ‖ψ(t)‖2 is a square-integrable
martingale. By taking m as given, (2.26) is a Doléans equation whose solution is
unique and given by (2.24) (cf. Proposition A.41 and (Eqs. (A.23), (A.24), (A.25),
(A.26)).

By inequality (2.19), we have

∑

j

m j (t)
2 ≤ 4

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ,

∫ T

0

∑

j

m j (t)
2dt ≤ 4 sup

t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ T . (2.27)

Then, the last statement follows from Proposition A.42. �

In the following, we shall call linear stochastic Schrödinger equation the original
SDE (2.2) for an H-valued process ψ under all Assumptions 2.1, 2.2, 2.3 and 2.10,
i.e.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dψ(t) =
⎛

⎝−iH (t)− 1

2

d
∑

j=1

R j (t)
∗R j (t)

⎞

⎠ψ(t) dt +
d
∑

j=1

R j (t)ψ(t) dW j (t) ,

ψ(0) = ψ0 , ψ0 ∈ H.

(2.28)

Of course, the solution is the continuous, adapted stochastic process ψ(t) =
A0

t ψ0, where the stochastic evolution operator As
t and its adjoint As

t
∗ still satisfy the

SDEs (2.7) and (2.11) with K (t) = −iH (t)− 1

2

d
∑

j=1

R j (t)
∗R j (t) and H (t) = H (t)∗.
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2.3.2 A Change of Probability

Assumption 2.12. The initial condition is normalised: ‖ψ0‖ = 1.

‖ψ(t)‖2 being a positive martingale with EQ

[‖ψ(t)‖2
] = 1 by the discussion in

Sect. A.5.3 and Remark A.46, we have the following.

Remark 2.13. For any T > 0 the equation

̂P
T
ψ0

(F) :=
∫

F
‖ψ(T, ω)‖2

Q(dω) ≡ EQ

[

1F‖ψ(T )‖2
]

, F ∈ FT , (2.29)

defines a new probability laŵP
T
ψ0

on (Ω,FT ) equivalent to QT , the restriction of Q

to FT . Let us denote by ̂ET
ψ0

the expectation with respect tôPT
ψ0

.

Moreover,
{

̂P
T
ψ0
, T > 0

}

is a consistent family of probabilities, in the sense that

0 < S < T, F ∈ FS ⇒ ̂P
T
ψ0

(F) =̂P
S
ψ0

(F) . (2.30)

Then, Girsanov theorem (Theorem A.45 and Proposition A.47) gives the follow-
ing fundamental result. The class of integrand processes L2 is defined in Sect. A.3.1.

Theorem 2.14. Under the laŵP
T
ψ0

defined by (2.29), the continuous processes

̂W j (t) := W j (t)−
∫ t

0
m j (s)ds, j = 1, . . . , d, t ∈ [0, T ], (2.31)

are independent, standard Wiener processes with respect to the filtration (Ft ).
Given d stochastically integrable processes G j (t), i.e. G j ∈ L2, the Itô integrals

∑

j

∫ t
0 G j (s)d̂W j (s) and

∑

j

∫ t
0 G j (s)dW j (s) are defined for every t ∈ [0, T ], each

one under its corresponding probability law, and we have Q-a.s. and̂PT
ψ0

-a.s.

d
∑

j=1

∫ t

0
G j (s)d̂W j (s) =

d
∑

j=1

∫ t

0
G j (s)dW j (s)−

d
∑

j=1

∫ t

0
G j (s)m j (s)ds, ∀t ∈ [0, T ] .

(2.32)

Proposition 2.15. The processes ̂ψ , m, ̂W are (D
0
t )-adapted.

Proof. The statement follows immediately from the definitions (2.22), (2.23), (2.31)
and Proposition 2.7. �

2.4 The Physical Interpretation

Let us begin with a list of the mathematical objects involved by the linear stochastic
Schrödinger equation (2.28) and their heuristic interpretation in the theory of con-
tinuous measurements, in analogy with the traditional representation of an instanta-
neous discrete measurement (Sect. 2.1).
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• ψ0 is the initial state of the quantum system;
• (Ω,F) is the measurable space of the possible outcomes of the experiment;
• Ft is the collection of events verifiable already at time t ;
• the d stochastic processes W j (t) are the output of the continuous measurement

and their derivatives Ẇ j (t) can be interpreted as instantaneous imprecise mea-
surements of the quantum observables R j (t)+ R j (t)∗ performed at time t ;

• D
0
t is the collection of events verifiable already at time t which effectively regard

the continuous measurement;
• the stochastic linear state transformation ψ0 �→ ψ(t) = A0

t ψ0 gives both the
probability of the events, which could occur up to time t , and the state of the
quantum system conditioned on the observation in the time interval [0, t]:

– ̂P
T
ψ0

is the physical probability law of the events which could occur in [0, T ];
– ̂ψ(t, ω) is the state of the system at time t , conditioned on having observed the

trajectory s �→ W (s, ω) up to time t .

When the canonical realisation of the Wiener process is used, i.e. when the only
output of the experiment is the diffusive process W , the outcome ω itself can be
identified with the trajectory of the output; indeed in this case we have W (s, ω) =
ω(s) (see Remark A.23). Then ψ(t, ω), ‖ψ(t, ω)‖ and ̂ψ(t, ω) depend only on ω(s)
for 0 ≤ s ≤ t . In particular, ‖ψ(t, ω)‖2 is the density of probability (with respect to
the Wiener measure) of observing W (s) = ω(s) in the time interval 0 ≤ s ≤ t .

When
(

Ω,F, (Ft ),Q
)

is bigger than the canonical realisation of the Wiener pro-
cess, still ψ(t, ω), ‖ψ(t, ω)‖ and ̂ψ(t, ω) depend only on W (s) for 0 ≤ s ≤ t

because the stochastic processes ψ(t), ‖ψ(t)‖ and ̂ψ(t) are adapted to (D
0
t ) and

thus ψ(t, ω) = ψ(t, ω′) if W (s, ω) = W (s, ω′) for 0 ≤ s ≤ t (maybe except for a
set of null probability).

Therefore, even if from a mathematical point of view it can be convenient to work
with a Wiener process W with increments independent of the past in an arbitrary

filtration (Ft ), from a physical point of view the relevant filtration is always (D
0
t ): it

contains all the events regarding the output W of the measurement and, moreover,
only these events really condition the system state ̂ψ .

What we have to do now is to show that this interpretation is consistent with the
general formulation of quantum mechanics. However, let us first add two further
remarks on the physical interpretation.

The use itself of linear SDEs to assign the evolution of ψ(t) implies a Markovian
hypothesis about the observed quantum system and the measurement process: for
every 0 ≤ s ≤ t , in spite of all the information available at time s (the initial state
ψ0 and all the events in Fs), the conditioned state ̂ψ(s) at time s is sufficient to
evaluate the conditional state ̂ψ(t) at time t (together with the output W in [s, t], of
course).

There are two typical but physically different interpretations of the linear stoch-
astic Schrödinger equation (2.28). Sometimes it is obtained by starting from a free
closed evolution of the quantum system and introducing the continuous measure-
ment as a perturbation, by adding a stochastic term in the evolution equation for
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every continuously monitored quantum observable R j (t)+ R j (t)∗. In this case, one
can think of possibly switching off the measurement (R j (t) ≡ 0), and the linear
stochastic Schrödinger equation (2.28) reduces to an ordinary Schrödinger equation
dψ(t) = −iH (t)ψ(t) dt . Other times, the linear stochastic Schrödinger equation
(2.28) is obtained by starting from an open evolution of the quantum system H

and introducing continuous measurements which acquire information on the system
without introducing extra perturbations (e.g. the continuous monitoring of an atom
by the detection of its fluorescence light). In this case, the “mean” evolution of the
quantum system is not modified by the continuous measurement, but it is “unrav-
elled” in many different trajectories according to the observed output W .

2.4.1 The POM of the Output and the Physical Probabilities

First, we introduce properly the positive operator-valued measure (see Defini-
tion B.1) associated with the continuous measurement in the time interval [0, T ].
Taking the stochastic evolution operator A0

T associated with the linear stochastic
Schrödinger equation (2.28), we can define

̂ET (F) :=
∫

F
A0

T (ω)∗A0
T (ω)Q(dω) ≡ EQ

[

1F A0∗
T A0

T

]

, F ∈ FT . (2.33)

Then, ̂ET is a positive operator-valued measure (POM) on the value space
(Ω,FT ). Indeed, it is positive and σ -additive by construction and, moreover,

〈ψ0|̂ET (Ω)ψ0〉 = EQ

[〈ψ0|A0∗
T A0

Tψ0〉
] = EQ

[‖ψ(T )‖2
] = ‖ψ0‖2, ∀ψ0 ∈ H,

which implies ̂ET (Ω) = 1 by the normalisation of ψ0.
The POM ̂ET assigns to each event in FT , according to the axioms of Sect.

B.2.1, just the probabilitŷPT
ψ0

that we called physical probability. Indeed, by (2.10)
and (2.33) we get

〈ψ0|̂ET (F)ψ0〉 = EQ

[〈ψ0|A0∗
T A0

Tψ0〉1F
] =

∫

F
‖ψ(T, ω)‖2

Q(dω) (2.34)

and, by (2.29),

〈ψ0|̂ET (F)ψ0〉 =̂P
T
ψ0

(F), ∀F ∈ FT , (2.35)

which is the standard formula for probabilities in the Hilbert space formulation of
quantum mechanics.

Moreover,
{

̂ET , T > 0
}

is a consistent family of POMs, in the sense that

0 < S < T, F ∈ FS ⇒ ̂ET (F) = ̂ES(F) . (2.36)
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Indeed, for every 0 < S < T , F ∈ FS , AS
T being independent of FS , one gets

̂ET (F) = EQ

[

1F A0∗
T A0

T

] = EQ

[

1F A0∗
S AS∗

T AS
T A0

S

]

= EQ

[

1F A0∗
S EQ

[

AS∗
T AS

T |FS
]

A0
S

]

= EQ

[

1F A0∗
S EQ

[

AS∗
T AS

T

]

A0
S

]

= EQ

[

1F A0∗
S A0

S

] = ̂ES(F).

Another way to look at (2.33) is to say that A0∗
t A0

t is the density (or Radon–
Nikodym derivative) of the POM ̂Et with respect to the probability measure

Qt := Q
∣

∣

Ft
. (2.37)

By recalling that A0∗
t A0

t is Ft -measurable, we can write

̂Et (dω)

Qt (dω)
= A0

t (ω)∗A0
t (ω) . (2.38)

We already discussed the fact that the filtration (Ft ) could be unnecessarily large:
the natural value space, when the output of the continuous measurement is the

process W in the time interval [0, t], is (Ω,D
0
t ). Moreover, we could perform the

measurement only in the time interval [s, t]. As in the evolution equations only
the increments of W appear (through the dW term), the natural candidate to be
the output in the time interval [s, t] is the process W (r ) − W (s), r ∈ [s, t], which
generates the set of events D

s
t . Thus, analogous to (2.33), we define a POM ̂Es

t on
the value space (Ω,D

s
t ) by

̂Es
t (F) :=

∫

F
As

t (ω)∗As
t (ω) Q(dω) ≡ EQ

[

1F As∗
t As

t

]

, F ∈ D
s
t . (2.39)

By this definition, we have that ̂E0
t is the restriction of ̂Et to D

0
t . Also the new

POMs (2.39) are consistent with respect to t . In order to use ̂Es
t for an arbitrary

s > 0 one needs to know the system state at time s.
By noticing that the positive operator-valued random variable As∗

t As
t is D

s
t -

measurable, we get that the analog of (2.38) is

̂Es
t (dω)

Q(dω)
∣

∣

D
s
t

= As∗
t (ω)As

t (ω) . (2.40)

Summing up, the POM representing the output of the continuous measurement
in the time interval [s, t] is ̂Es

t . Even if s = 0, the relevant POM is ̂E0
t , not ̂Et . We

can also say that the physical probability, the probability of the events determined
by the output in the time interval [0, T ], iŝPT

ψ0

∣

∣

D
0
t
.



2.4 The Physical Interpretation 25

The probability ̂P
T
ψ0

of events in the (augmented) natural filtration of W is
obtained from a POM, as prescribed by quantum mechanics, whose value space

is
(

Ω,D
0
T

)

. We interpret W as the output of a continuous measurement performed

on the quantum system H in the time interval [0, T ] and ̂PT
ψ0

as the corresponding
physical probability. Moreover, from Girsanov formula (2.31) we have

W (t) = ̂W (t)+
∫ t

0
m(s)ds, t ∈ [0, T ],

which says that the output process W (t) decomposes to the sum of a Wiener process
̂W (t) and a process

∫ t
0 m(s)ds with trajectories of bounded variation. Let us remark

that, even if it could be suggestive to interpret the two addenda as noise and signal,
the two processes are typically not independent.

Remark 2.16. Here it is worthwhile to be more precise on the notion of output of
the measurement. As already said, the choice of the two-time σ -algebras Ds

t or D
s
t ,

which are determined by the increments of W , reflects the fact that we consider as
events which can be observed in the time interval [s, t] only the events related to the
increments of W with extreme times inside [s, t], not the ones determined by W (r )
with r ∈ [s, t]. So, in this time interval, we observe the increments W (r ) − W (u),
s ≤ u < r ≤ t , or functionals of these increments. “Morally” the output is the
singular process Ẇ (r ), r ∈ [s, t]. In the whole book we always understand this
interpretation, even when we write that the output is W .

2.4.2 The A Posteriori States

Now we would like to justify the interpretation of ̂ψ(t) as the conditional state of the
system at time t , i.e. as a posteriori state at time t (cf. Sect. B.4.3.2). We shall do this
properly in Sect. 4.1.1, where, in a more general setup, we shall introduce explicitly
the instruments. In the present paragraph, we only show that this interpretation is
consistent with the present construction.

Let us consider an event F regarding the output in the time interval [s, t], that is
F ∈ D

s
t . If we evaluate its probability at the beginning of the experiment, when we

only know that the initial state of the system is ψ0, then we get̂PT
ψ0

(F). On the other
hand, if we reconsider the same event F at time s, when we have gathered all the
information coming from the measurement in the time interval [0, s], then its prob-
ability can be updated and it is given by ̂PT

ψ0
(F |Fs) = ̂E

T
ψ0

[1F |Fs] (Sect. A.1.2.2).
This is an Fs-measurable random variable, as it depends on what is observed up to
time s. The following proposition states that it can be computed using the POM ̂Es

t
defined by (2.39) and just ̂ψ(s) as the conditional state of the system at time s.

Proposition 2.17. For all F ∈ D
s
t , 0 ≤ s < t ≤ T , we have

̂P
T
ψ0

(F |Fs) = 〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉 =̂P
T
ψ0

(F |D0
s ). (2.41)
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Proof. For all Fs-measurable bounded random variables Y , we get

̂E
T
ψ0

[1F Y ] = EQ

[‖ψ(t)‖2 1F Y
] = EQ

[〈ψ0|A0∗
s As∗

t As
t A0

sψ0〉1F Y
]

= EQ

[〈ψ0|A0∗
s EQ

[

1F As∗
t As

t |Fs
]

A0
sψ0〉Y

]

= EQ

[〈ψ(s)|EQ

[

1F As∗
t As

t

]

ψ(s)〉Y ]

= ̂E
T
ψ0

[〈̂ψ(s)|EQ

[

1F As∗
t As

t

]

̂ψ(s)〉Y ] ;

we have used the equality ψ(t) = As
t A0

sψ0 and the independence of 1F As∗
t As

t from
Fs , which follows from Proposition 2.7. This computation proves that ̂ET

ψ0
[1F |Fs]

= 〈

̂ψ(s)
∣

∣EQ

[

1F As∗
t As

t

]

̂ψ(s)
〉

. By using the definition of ̂Es
t we havêET

ψ0
[1F |Fs] =

〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉

. By the fact that D
0
s ⊂ Fs and that

〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉

is D
0
s -

measurable, we have

̂E
T
ψ0

[

1F

∣

∣D
0
s

]

= ̂E
T
ψ0

[

̂E
T
ψ0

[1F |Fs]
∣

∣

∣D
0
s

]

= ̂E
T
ψ0

[

〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉

∣

∣

∣D
0
s

]

= 〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉

. �
Remark 2.18. As suggested in the presentation before the proposition, by comparing
(2.41) with (2.35), we see that we can interpret the state ̂ψ(s) as the conditional state
of the system at time s; we call ̂ψ(t) the a posteriori state at time t . Considering also
(2.34), we call ψ(t) the non-normalised a posteriori state at time t .

With this interpretation in mind, we consider again the output and, thanks to the
representation

W j (t) = ̂W j (t)+
∫ t

0

〈

̂ψ(s)
∣

∣

(

R j (s)+ R j (s)∗
)

̂ψ(s)
〉

ds, t ∈ [0, T ], (2.42)

we say that Ẇ j (t) is an imprecise measurement of the quantum observable R j (t)+
R j (t)∗. We shall consider again this interpretation in Sect. 4.3.

Remark 2.19 (A phase change). Let us consider now the normalised random vector
̂φ(t, ω) = eiα(t,ω)

̂ψ(t, ω), where {α(t), t ≥ 0} is an arbitrary (D
0
t )-adapted real

process. By substituting ̂φ(t) to ̂ψ(t) in (2.41), this formula continues to hold true.
This means that ̂φ(t) has the same right of ̂ψ(t) to the name of “a posteriori state”.
But this is nothing more than the stochastic version of the usual statement in quan-
tum mechanics that a phase change of the state vector does not alter any physical
quantity.

2.4.3 Infinite Time Horizon

Given the initial state ψ0, we have a consistent set of probabilities ̂PT
ψ0

, T > 0. As

stated by Theorem 2.14, each ̂PT
ψ0

modifies the properties of the stochastic process
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W , in the corresponding time interval [0, T ]. A natural question is whether it is
possible to have a unique probability for T → +∞. This would be useful, for
instance, to study the long-time behaviour of W under the physical probability. By
the discussion in Sect. A.5.5, we know that this is possible when the consistent
measures are defined on standard Borel spaces. Therefore, if we consider the new
probabilities restricted to D0

t , the natural (not augmented) filtration of W , we have a
consistent set of probabilities on standard Borel spaces and we get that there exists
a unique probabilitŷP∞ψ0

on D0
∞ :=∨

t>0 D0
t such that for every T > 0

̂P
∞
ψ0

(F) =̂P
T
ψ0

(F), ∀F ∈ D0
T . (2.43)

Nevertheless, even if we choose F = D0
∞, each augmented σ -algebra D

0
T is

strictly greater than D0
T and the limit probability ̂P∞ψ0

typically does not agree with

̂P
T
ψ0

on the whole D
0
T ⊂ D0

∞. In order to work inside the filtration (D0
t ), it is enough

to consider (D0
t )-adapted versions of the processes A0

t , ψ(t), ̂ψ(t), m(t), ̂W (t). What
we lose is that we are no more sure to have continuity in time for every ω.

Just to have an example of the differences, let us consider the POMs. By restrict-
ing ̂Es

t to Ds
t , we get from (2.40)

̂Es
t (dω)

∣

∣

Ds
t
= EQ

[

As∗
t As

t |Ds
t

]

(ω)Q(dω)
∣

∣

Ds
t
, (2.44)

but EQ

[

As∗
t As

t |Ds
t

]

(ω) = As∗
t (ω)As

t (ω), Q-a.s.

2.4.4 The Conservative Case

A very particular case is when the operators R j (t) are anti-selfadjoint [23]:

R j (t) = −iVj (t) , Vj (t)
∗ = Vj (t) . (2.45)

Equations (2.23), (2.26), (2.45) give m j (t) = 0 and (for ‖ψ0‖ = 1) ‖ψ(t)‖ = 1,
∀t . This implieŝPT

ψ0
= QT , ∀T > 0, so that the randomness does not depend on the

quantum system: the W j are pure noises and there is no true measurement on the
system.

The linear stochastic Shrödinger equation becomes

dψ(t) = −i

[

H (t)dt +
∑

j

Vj (t)dW j (t)

]

ψ(t)− 1

2

∑

j

Vj (t)
2ψ(t)dt , (2.46)

and one can check that (As
t )∗ and (As

t )−1 satisfy the same SDE: (As
t )∗As

t ≡ 1.
Thus the system undergoes a stochastic unitary evolution: the quantum system has a
unitary evolution in a random environment which determines the stochastic potential
acting on the system. Even if W is observed, the measurement does not acquire any
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information on the quantum system itself, but it only detects which unitary evolution
occurs among the possible ones.

This class of stochastic Shrödinger equations was introduced as a model of dis-
sipative evolution, with W not observed. In this case, all the physical quantities are
obtained with a mean with respect to W . For an example of this approach to quantum
open systems, see [2].

2.5 The Stochastic Schrödinger Equation

A key point of the theory is to show that the a posteriori states satisfy an SDE,
closed in ̂ψ(t) itself. The structure of such an equation is not of usual type, but it
is possible, after some work, to arrive at a theorem giving existence and uniqueness
of the solutions. Different approaches to the existence and uniqueness problem, in
finite and infinite dimensional Hilbert spaces, are given in [24, 27, 29, 30].

2.5.1 The Stochastic Differential of the A Posteriori State

Let us compute the stochastic differential of the a posteriori state ̂ψ(t) =
‖ψ(t)‖−1 ψ(t) under the physical probability ̂PT

ψ0
and in terms of the new Wiener

process ̂W . To put in full evidence the dependence of the differential on ̂ψ(t) itself,
it is useful to introduce the quantities

n j (t, x) := 〈x |R j (t)x〉 , t ∈ [0,+∞), x ∈ H . (2.47)

Note that

m j (t) = 2 Re n j
(

t,̂ψ(t)
)

. (2.48)

Proposition 2.20. Under the probability ̂P
T
ψ0

, the stochastic differential of ̂ψ(t),
0 ≤ t < T , is

d̂ψ(t) =
∑

j

[

R j (t)− Re n j
(

t,̂ψ(t)
)]

̂ψ(t) d̂W j (t)

+
⎡

⎣K (t)+
∑

j

(

Re n j
(

t,̂ψ(t)
))

R j (t)− 1

2

∑

j

(

Re n j
(

t,̂ψ(t)
))2

⎤

⎦̂ψ(t) dt .

(2.49)

Proof. It is enough to apply Itô rules to ̂ψ(t) = ‖ψ(t)‖−1 ψ(t) under the probability
̂P

T
ψ0

. By using (2.42) we can transform (2.2) into
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dψ(t) =
∑

j

R j (t)ψ(t) d̂W j (t)+
(

K (t)+
∑

j

m j (t)R j (t)

)

ψ(t) dt .

By using (2.24), (2.42) and the fact that ‖ψ(t)‖ > 0 with probability one, we get

‖ψ(t)‖−1 = exp

{

−1

2

∑

j

[∫ t

0
m j (s)dW j (s)− 1

2

∫ t

0
m j (s)2ds

]}

= exp

{

−1

2

∑

j

[∫ t

0
m j (s)d̂W j (s)+ 1

2

∫ t

0
m j (s)2ds

]}

;

by Itô formula, this gives

d ‖ψ(t)‖−1 = ‖ψ(t)‖−1

{

− 1

2

∑

j

[

m j (t)d̂W j (t)+ 1

2
m j (t)

2dt

]

+ 1

8

∑

j

m j (t)
2dt

}

= −1

2
‖ψ(t)‖−1

∑

j

[

m j (t)d̂W j (t)+ 1

4
m j (t)

2dt

]

.

Finally, by using the Itô rules for the differential of a product, we obtain

d̂ψ(t) =
∑

j

R j (t)̂ψ(t) d̂W j (t)+
(

K (t)+
∑

j

m j (t)R j (t)

)

̂ψ(t) dt

−1

2

∑

j

m j (t)̂ψ(t) d̂W j (t)− 1

8

∑

j

m j (t)
2
̂ψ(t) dt− 1

2

∑

j

m j (t)R j (t)̂ψ(t) dt

=
∑

j

[

R j (t)− m j (t)

2

]

̂ψ(t) d̂W j (t)

+
[

K (t)+
∑

j

m j (t)

2
R j (t)−

∑

j

m j (t)2

8

]

̂ψ(t) dt .

By using the notation n j (t, x) introduced in Definition (2.47), we get (2.49). �

2.5.1.1 A Stochastic Phase Change

Let us stress that no physical consequence depends on the phase of ̂ψ(t): consider
the presentation of quantum mechanics given in Appendix B, the POM (2.33), the
probabilities (2.35), the processes m j (2.23), the output W (2.42), etc. So, we are
allowed to make any change of phase on ̂ψ(t), even a stochastic one. In this order
of ideas, we introduce the new normalised vectors
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̂φ(t) : = exp

{

− i
∑

j

∫ t

0
Re n j

(

s,̂ψ(s)
)

Im n j
(

s,̂ψ(s)
)

ds

−i
∑

j

∫ t

0
Im n j

(

s,̂ψ(s)
)

d̂W j (s)

}

̂ψ(t) . (2.50)

The vectors ̂φ(t) have the same right to the name of “a posteriori states” as the
vectors ̂ψ(t). By applying Itô formula to (2.50) and by using the differential (2.49)
and the fact that n j

(

t,̂ψ(t)
) ≡ n j

(

t,̂φ(t)
)

, we get the stochastic differential of
̂φ(t):

d̂φ(t) =
∑

j

[

R j (t)− n j
(

t,̂φ(t)
)]

̂φ(t) d̂W j (t)

+
[

K (t)+
∑

j

n j
(

t,̂φ(t)
)

R j (t)− 1

2

∑

j

∣

∣n j
(

t,̂φ(t)
)∣

∣

2
]

̂φ(t) dt. (2.51)

Thus the choice (2.50) gives a simple expression for d̂φ(t) which is commonly
used in the literature, just as (2.49).

2.5.2 Four Stochastic Schrödinger Equations

Both equalities (2.49) and (2.51) are closed equations, in the stochastic processes ̂ψ
and ̂φ respectively, and both are known under the name of stochastic Schrödinger
equation [9]. However, we got them for normalised vector processes and thus if we
want to interpret them as SDEs for H-vector processes, we need to extend them also
to non-normalised vectors. There is not a unique way to do such an extension and
we present for each of them two extensions, the most natural ones.

Equalities (2.49) and (2.51) involve the quantities nj (t, x) for normalised x . The
first type of extension is to allow for a non-normalised x in the quadratic form (2.47)
defining nj ; in this way polynomial coefficients are obtained. The second type of
extension is to write nj (t, x)/ ‖x‖2 everywhere nj appears in the differentials of
normalised states and then to extend the resulting expressions in the natural way to
non-normalised x ; in this way we obtain coefficients with at most linear growth.

Thus, we obtain four nonlinear stochastic Schrödinger equations (
 = 1, 2, 3, 4)

⎧

⎨

⎩

dX 
(t) =
∑

j

L

j

(

t, X 
(t)
)

X 
(t) d̂W j (t)+ K 

(

t, X 
(t)
)

X 
(t) dt ,

X 
(0) = x0 , x0 ∈ H ,

(2.52)

where the quantities L

j (t, x) and K 
(t, x) are defined in the following; they are

introduced in order to write the four SDEs always in a compact form.
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The extension of the stochastic Schrödinger equation for ̂ψ with polynomial
coefficients is obtained by taking

L1
j (t, x) := R j (t)− Re n j (t, x), (2.53a)

K 1(t, x) := K (t)+
∑

j

(

Re n j (t, x)
)

R j (t)− 1

2

∑

j

(

Re n j (t, x)
)2

≡ −i

⎡

⎣H (t)+ i

2

∑

j

(

Re n j (t, x)
)(

R j (t)− R j (t)
∗)
⎤

⎦

−1

2

∑

j

L1
j (t, x)∗L1

j (t, x). (2.53b)

The extension of the stochastic Schrödinger equation for ̂ψ with linearly growing
coefficients is given by the choice

L2
j (t, x) := R j (t)− Re

n j (t, x)

‖x‖2 , (2.54a)

K 2(t, x) := K (t)+
∑

j

(

Re
n j (t, x)

‖x‖2

)

R j (t)− 1

2

∑

j

(

Re
n j (t, x)

‖x‖2

)2

≡ −i

⎡

⎣H (t)+ i

2

∑

j

(

Re
n j (t, x)

‖x‖2

)

(

R j (t)− R j (t)
∗)
⎤

⎦

−1

2

∑

j

L2
j (t, x)∗L2

j (t, x). (2.54b)

The extension of the stochastic Schrödinger equation for̂φ with polynomial coef-
ficients is the one with

L3
j (t, x) := R j (t)− n j (t, x), (2.55a)

K 3(t, x) := K (t)+
∑

j

n j (t, x) R j (t)− 1

2

∑

j

∣

∣n j (t, x)
∣

∣

2

≡ −i

⎡

⎣H (t)+ i

2

∑

j

(

n j (t, x) R j (t)− n j (t, x)R j (t)
∗)
⎤

⎦

−1

2

∑

j

L3
j (t, x)∗L3

j (t, x). (2.55b)
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Finally, the extension of the stochastic Schrödinger equation for ̂φ with linearly
growing coefficients is obtained by taking

L4
j (t, x) := R j (t)− n j (t, x)

‖x‖2 , (2.56a)

K 4(t, x) := K (t)+
∑

j

n j (t, x)

‖x‖2 R j (t)−
∑

j

∣

∣n j (t, x)
∣

∣

2

2 ‖x‖4

≡ −i

⎡

⎣H (t)+ i

2

∑

j

(

n j (t, x)

‖x‖2 R j (t)− n j (t, x)

‖x‖2 R j (t)
∗
)

⎤

⎦

−1

2

∑

j

L4
j (t, x)∗L4

j (t, x). (2.56b)

We are using the convention that

n j (t, x)

‖x‖2 = 0 for x = 0. (2.57)

When ‖x‖ = 1 we have L1(t, x) = L2(t, x) and K 1(t, x) = K 2(t, x) and the
SDE (2.52) for 
 = 1, 2 reduces to (2.49) when x0 = ψ0, if one proves that the
solution stays normalised for all t . However, the two equations are different when
the initial condition has no norm one. Similarly, for ‖x‖ = 1 we have L3(t, x) =
L4(t, x) and K 3(t, x) = K 4(t, x) and the SDE (2.52) for 
 = 3, 4 reduces to (2.51)
when x0 = φ0, if one proves that the solution stays normalised for all t .

2.5.2.1 The Conservative Case

This is the case R j (t)∗ = −R j (t) of Section 2.4.4, corresponding to dissipation, but
no effective measurement. By setting R j (t) = −iVj (t), with Vj (t)∗ = Vj (t), we find

Re n j (t, x) = 0 , (2.58)

L1
j (t, x) = L2

j (t, x) = −iVj (t) , (2.59a)

K 1(t, x) = K 2(t, x) = K (t) = −iH (t)− 1

2

∑

j

Vj (t)
2 , (2.59b)

L3
j (t, x) = −i

[

Vj (t)− 〈x |Vj (t)x〉
]

, (2.60a)

L4
j (t, x) = −i

[

Vj (t)− ‖x‖−2 〈x |Vj (t)x〉
]

, (2.60b)

K 3(t, x) = −iH (t)− 1

2

∑

j

L3
j (t, x)∗L3

j (t, x) , (2.60c)

K 4(t, x) = −iH (t)− 1

2

∑

j

L4
j (t, x)∗L4

j (t, x) . (2.60d)
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Then, for 
 = 1, 2 the stochastic Schrödinger equations (2.52) are linear and
they coincide with the corresponding linear stochastic Schrödinger equation (2.46),
while for 
 = 3, 4 they are nonlinear, but only due to a non-influent phase
factor.

2.5.2.2 A Peculiar Case of Continuous Measurement

In the literature, when the case is considered of usual observables followed with
continuity in time, a common choice is to take R j (t)∗ = R j (t) and to iden-
tify the continuously measured observables with 2R j (t). In this case, the four
stochastic Schrödinger equations (2.52) reduces to two, with a particularly simple
form:

Im n j (t, x) = 0 , (2.61)

L1
j (t, x) = L3

j (t, x) = R j (t)− n j (t, x) , (2.62a)

K 1(t, x) = K 3(t, x) = −iH (t)− 1

2

∑

j

[

R j (t)− n j (t, x)
]2
, (2.62b)

L2
j (t, x) = L4

j (t, x) = R j (t)− ‖x‖−2 n j (t, x) , (2.62c)

K 2(t, x) = K 4(t, x) = −iH (t)− 1

2

∑

j

[

R j (t)− ‖x‖−2 n j (t, x)
]2
. (2.62d)

2.5.3 Existence and Uniqueness of the Solution

We have introduced four nonlinear SDEs (2.52) of the type of (A.14) with drift
coefficients b(x, t) = K 
(t, x)x and diffusion coefficients σ j (x, t) = L


j (t, x)x ,

 = 1, . . . , 4, j = 1, . . . , d, given by (2.53), (2.54), (2.55) and (2.56).

Remark 2.21. For every finite time horizon T > 0 the following statements hold.

• The drift and the diffusion coefficients of the four SDEs (2.52) satisfy Hypothesis
A.25 (measurability condition).

• The expression 〈x |b(x, t)〉 + 1
2

∑

j

∥

∥σ j (x, t)
∥

∥

2
goes into

〈x |K 
(t, x)x〉 + 1

2

∑

j

∥

∥L

j (t, x)x

∥

∥

2

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−i〈x |H (t)x〉 + i
∑

j

(

Re n j (t, x)
)(

Im n j (t, x)
)

, 
 = 1,

−i〈x |H (t)x〉 + i

‖x‖2

∑

j

(

Re n j (t, x)
)(

Im n j (t, x)
)

, 
 = 2,

−i〈x |H (t)x〉, 
 = 3, 4.

(2.63)
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Therefore, the four sets of coefficients satisfy also the monotone condition
(Hypothesis A.35) with C(T ) = 0.

• By construction, the coefficients of the SDEs (2.52) with 
 = 2, 4 satisfy also
the linear growth condition (Hypothesis A.34).

Lemma 2.22. Let T be any finite time horizon. Then

• the coefficients of the SDEs (2.52) with 
 = 1, 3 satisfy the local Lipschitz con-
dition (Hypothesis A.33);

• the coefficients of the SDEs (2.52) with 
 = 2, 4 satisfy the global Lipschitz
condition (Hypothesis A.32).

Proof. The coefficients of the SDEs (2.52) with 
 = 1, 3 are polynomials in the
components of x ; together with the boundedness Assumption 2.3, this gives by
standard arguments that the local Lipschitz condition (A.17) holds.

Let us now consider the case 
 = 2, 4. Given two vectors x, y in H, let us set

x̂ := x

‖x‖ , ŷ := y

‖y‖ , Px := |x̂〉〈x̂ |, Py := |ŷ〉〈ŷ|, (2.64a)

x̂⊥ := (1− Py)x
∥

∥(1− Py)x
∥

∥

, ŷ⊥ := (1− Px )y

‖(1− Px )y‖ . (2.64b)

With these notations we can write

L4
j (t, x)x = (1− Px )R j (t)x , (2.65a)

L2
j (t, x)x = L4

j (t, x)x + i
[

Im n j (t, x̂)
]

x , (2.65b)

K 4(t, x)x = K (t)x + g(t, x)− 1

2
Px g(t, x) , (2.65c)

g(t, x) :=
∑

j

R j (t)Px R j (t)
∗x , (2.65d)

K 2(t, x) = K 4(t, x)+ i
∑

j

[

Im n j (t, x̂)
]

R j (t)x + 1

2

∑

j

[

Im n j (t, x̂)
]2

x .

(2.65e)

By using

‖x − y‖2 = ∥

∥(1− Py)x
∥

∥

2 + ∥

∥Py x − y
∥

∥

2 = ‖(1− Px )y‖2 + ‖Px y − x‖2 ,

‖y‖ = ‖y − x + x‖ ≤ ‖y − x‖ + ‖x‖ , ‖x‖ ≤ ‖x − y‖ + ‖y‖ ,

we get

∥

∥(1− Py)x
∥

∥ ≤ ‖y − x‖ , ∥

∥(1− Py)x̂
∥

∥ ≤ 1, |〈x̂ |ŷ〉| ≤ 1,

‖y‖ ∥∥(1− Py)x̂
∥

∥ ≤ ‖y − x‖ ∥∥(1− Py)x̂
∥

∥+ ∥

∥(1− Py)x
∥

∥ ≤ 2 ‖y − x‖ ,
‖(1− Px )y‖ ≤ ‖y − x‖ , ‖(1− Px )ŷ‖ ≤ 1, ‖x‖ ‖(1− Px )ŷ‖ ≤ 2 ‖y − x‖ ,
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∣

∣|〈ŷ|x̂〉|2 〈ŷ|x〉 − 〈ŷ|y〉∣∣ = ∣

∣〈ŷ|Px Py x〉 − 〈ŷ|y〉∣∣
= ∣

∣〈ŷ|Px Py x〉 − 〈ŷ|Px y〉 − 〈ŷ|(1− Px )y〉∣∣
≤ ∣

∣〈ŷ|Px Py(x − y)〉∣∣+ |〈ŷ|(1− Px )y〉|
≤ ‖x − y‖ + ‖(1− Px )y‖ ≤ 2 ‖x − y‖ ,

‖Ri (t)‖2 = ∥

∥Ri (t)
∗∥
∥ ‖Ri (t)‖ =

∥

∥Ri (t)
∗Ri (t)

∥

∥ ≤
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ .

Let us check the global Lipschitz condition for the various coefficients.
Consider first L4:

∑

j

∥

∥L4
j (t, x)x − L4

j (t, y)y
∥

∥

2 =
∑

j

∥

∥(1− Px )R j (t)x − (1− Py)R j (t)y
∥

∥

2

=
∑

j

∥

∥(1− Px )
[

R j (t)x − (1− Py)R j (t)y
]∥

∥

2

+
∑

j

∥

∥Px (1− Py)R j (t)y
∥

∥

2

=
∑

j

∥

∥(1−Px )
[

(1−Py)R j (t)(x−y)+Py R j (t)x
]∥

∥

2

+
∑

j

∣

∣〈(1− Py)x̂ |R j (t)y〉∣∣2 ;

we have

∑

j

∣

∣〈(1− Py)x̂ |R j (t)y〉∣∣2 ≤
∑

j

∥

∥(1− Py)x̂
∥

∥

2 ∥
∥R j (t)y

∥

∥

2

=
∑

j

∥

∥(1− Py)x̂
∥

∥

2 〈y|R j (t)
∗R j (t)y〉

≤
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥

∥

∥(1− Py)x̂
∥

∥

2 ‖y‖2 ≤ 4
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖y − x‖2

and

∑

j

∥

∥(1− Px )
[

(1− Py)R j (t)(x − y)+ Py R j (t)x
]∥

∥

2

≤
∑

j

(∥

∥(1− Px )(1− Py)R j (t)(x − y)
∥

∥+ ∥

∥(1− Px )Py R j (t)x
∥

∥

)2

≤
∑

j

(∥

∥R j (t)(x − y)
∥

∥+ ‖(1− Px )ŷ‖ ∣∣〈ŷ|R j (t)x〉
∣

∣

)2
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≤ 2
∑

j

(

∥

∥R j (t)(x − y)
∥

∥

2 + ‖(1− Px )ŷ‖2
∥

∥R j (t)x
∥

∥

2
)

≤ 2
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥

(‖x − y‖2 + ‖(1− Px )ŷ‖2 ‖x‖2)

≤ 10
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x − y‖2 ,

and so

∑

j

∥

∥L4
j (t, x)x − L4

j (t, y)y
∥

∥

2 ≤ 14 sup
t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x − y‖2 .

Therefore, L4
•(t, x)x is globally Lipschitz.

We now consider K 4: we have

‖g(t, x)− g(t, y)‖ =
∥

∥

∥

∑

j R j (t)
(

Px R j (t)∗x − Py R j (t)∗y
)

∥

∥

∥

≤
∥

∥

∥

∑

j R j (t)(1− Py)Px R j (t)∗x
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)Py Px (1− Py)R j (t)∗x
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)Py Px Py R j (t)∗(1− Py)x
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)
(

Py Px Py R j (t)∗Py x − Py R j (t)∗y
)

∥

∥

∥

=
{∥

∥

∥

∑

j R j (t)|x̂⊥〉〈x̂ |R j (t)∗ x̂〉
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)|ŷ〉〈x̂⊥|R j (t)∗ x̂〉
∥

∥

∥ |〈ŷ|x̂〉|

+
∥

∥

∥

∑

j R j (t)|ŷ〉〈ŷ|R j (t)∗ x̂⊥〉
∥

∥

∥ |〈ŷ|x̂〉|2
}

∥

∥(1− Py)x
∥

∥

+
∥

∥

∥

∑

j R j (t)|ŷ〉〈ŷ|R j (t)∗ ŷ〉
∥

∥

∥

∣

∣|〈ŷ|x̂〉|2 〈ŷ|x〉 − 〈ŷ|y〉∣∣

≤
{∥

∥

∥

∑

j R j (t)|x̂⊥〉〈x̂ |R j (t)∗ x̂〉
∥

∥

∥+
∥

∥

∥

∑

j R j (t)|ŷ〉〈x̂⊥|R j (t)∗ x̂〉
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)|ŷ〉〈ŷ|R j (t)∗ x̂⊥〉
∥

∥

∥

+2
∥

∥

∥

∑

j R j (t)|ŷ〉〈ŷ|R j (t)∗ ŷ〉
∥

∥

∥

}

‖x − y‖ ,

‖g(t, x)− g(t, y)‖ ≤ 5
∑

i

‖Ri (t)‖2 ‖x − y‖

≤ 5d sup
t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x − y‖ .
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Moreover,

∥

∥Px g(t, x)− Py g(t, y)
∥

∥

= ∥

∥Py Px g(t, x)+ (1− Py)Px g(t, x)− Py Px g(t, y)− Py(1− Px )g(t, y)
∥

∥

≤ ∥

∥(1− Py)Px g(t, x)
∥

∥+ ∥

∥Py(1− Px )g(t, y)
∥

∥+ ∥

∥Py Px
(

g(t, x)− g(t, y)
)∥

∥

= ∥

∥(1− Py)Px g(t, x)
∥

∥+ |〈̂y|(1− Px )g(t, y)〉| + ∥

∥Py Px
(

g(t, x)− g(t, y)
)∥

∥

≤ ∥

∥(1− Py)x
∥

∥ |〈x̂ |g(t, x̂)〉| + ‖(1− Px )y‖ ‖g(t, ŷ)‖ + ‖g(t, x)− g(t, y)‖
≤ 7d sup

t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x − y‖ .

Therefore, K 4(t, x)x is globally Lipschitz.
We now consider L2 and K 2, which are related to the previous coefficients by

(2.65). The differences with respect to the terms with 
 = 4 have similar structures;
it is enough to check one of such differences:

∥

∥n j
(

t, x̂
)

x − n j
(

t, ŷ
)

y
∥

∥ ≤ ∣

∣n j
(

t, x̂
)∣

∣ ‖x − y‖ + ∣

∣n j
(

t, x̂
)− n j

(

t, ŷ
)∣

∣ ‖y‖
≤ 2

∥

∥R j (t)
∥

∥ ‖x − y‖ + ∣

∣n j
(

t, x̂
) ‖y‖ − 〈ŷ|R j (t)x〉

∣

∣

≤ 2
∥

∥R j (t)
∥

∥ ‖x − y‖ +
∥

∥

∥ ‖y‖ x̂ − ‖x‖ ŷ
∥

∥

∥

∥

∥R j (t)
∥

∥ ≤ 3
∥

∥R j (t)
∥

∥ ‖x − y‖ .

Therefore, L2(t, x)x and K 2(t, x)x are globally Lipschitz. �
Theorem 2.23. Every one of the four SDEs (2.52) admits a strong solution in the
time interval [0,+∞). Pathwise uniqueness and uniqueness in law hold. Moreover,
the norm of the solutions of the equations with 
 = 2, 4 is conserved,

∥

∥X2(t)
∥

∥

2 = ∥

∥X2(0)
∥

∥

2
,

∥

∥X4(t)
∥

∥

2 = ∥

∥X4(0)
∥

∥

2
, (2.66)

while for 
 = 1, 3 we have

1− ∥

∥X 
(t)
∥

∥

2 =
(

1− ∥

∥X 
(0)
∥

∥

2
)

× exp

{

−2
∑

j

∫ t

0
Re n j

(

s, X 
(s)
) [

d̂W j (s)+ Re n j
(

s, X 
(s)
)

ds
]

}

. (2.67)

Proof. Uniqueness and existence of solutions is by Remark 2.21, Lemma 2.22 and
Theorem A.36.

By computations similar to those in (2.17), one gets

d
∥

∥X 
(t)
∥

∥

2 = 2
(

1− ∥

∥X 
(t)
∥

∥

2
)
∑

j

Re n j
(

t, X 
(t)
)

d̂W j (t) , for 
 = 1, 3,

d
∥

∥X 
(t)
∥

∥

2 = 0 , for 
 = 2, 4 .
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Then, the statements about the norm follow from Proposition A.41 applied to the
stochastic processes Z (t) = 1− ∥

∥X 
(t)
∥

∥

2
. �

Thus, in the case of polynomial coefficients (
 = 1, 3), the solutions X 
 of the
stochastic Schrödinger equation move inside the unit ball if

∥

∥X 
(0)
∥

∥ < 1, on the unit
sphere if

∥

∥X 
(0)
∥

∥ = 1 and outside the unit ball if
∥

∥X 
(0)
∥

∥ > 1. In the case of lin-
early growing coefficients (
 = 2, 4), the solutions X 
 of the stochastic Schrödinger
equation move on the corresponding spheres of radius

∥

∥X 
(0)
∥

∥.
If we take the four equations with the same normalised initial condition, by

uniqueness, we have that the solutions of the equations of number 1 and 2 coincide
and the same holds for the solutions of numbers 3 and 4. Moreover, the solutions of
1 or 2 and of 3 or 4 are connected by (2.50).

Of course, when the stochastic Schrödinger equation (2.52) is considered in the

probability space
(

Ω,FT ,̂P
T
ψ

)

for 
 = 1, 2 and normalised initial condition, its

solution ̂ψ is the normalisation (2.22) of the solution ψ of the linear stochastic
Schrödinger equation (2.28) in (Ω,FT ,Q).

2.5.4 The Stochastic Schrödinger Equation
as a Starting Point

By the results of the previous subsection, we have that both the SDEs for a posteriori
states (2.49) and (2.51) with initial condition ̂ψ(0) = ̂φ(0) = ψ0, ‖ψ0‖ = 1, have
a unique (pathwise and in law) strong solution with

∥

∥̂ψ(t)
∥

∥ = ∥

∥̂φ(t)
∥

∥ = 1. The
solutions of the two equations are connected by the relation (2.50).

This point is very important because it gives the possibility of starting the whole
theory from the nonlinear stochastic Schrödinger equation; we sketch this construc-
tion just below. For the theory of continuous measurements, this is only an alterna-
tive possibility, but conceptually this is needed when the nonlinear SDE is postulated
for some reason, as for a modification of quantum mechanics [3, 6, 15, 31], or it
is used for stochastic simulations of quantum dynamical semigroups as explained
in Sect. 3.2.3.2. The problem of strong solutions, in the more general context of
infinite dimensional Hilbert spaces and equations involving unbounded operators as
coefficients, was already studied in [32].

Every one of the four stochastic Schrödinger equations (2.52) can be taken as
starting point; let us choose the SDE with 
 = 2. Let us fix a stochastic basis
(

Ω,F, (Ft )t∈[0,+∞), P
)

in usual hypotheses and let ̂B be a continuous Wiener pro-
cess in this basis with increments independent of the past. Let ̂ψ be a solution of
(2.52), 
 = 2, with the Wiener process ̂B and initial condition ψ0 ∈ H, ‖ψ0‖ = 1.
By Theorem 2.23, the solution is unique and its norm is conserved:

∥

∥̂ψ(t)
∥

∥ = 1,
∀t ∈ [0,+∞). Due to the normalisation for every time, the stochastic differential of
̂ψ(t) reduces to (2.49), i.e.
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d̂ψ(t) =
∑

j

[

R j (t)− 1

2
m j (t)

]

̂ψ(t) d̂B j (t)

+
⎡

⎣K (t)+ 1

2

∑

j

m j (t)R j (t)− 1

8

∑

j

m j (t)
2

⎤

⎦̂ψ(t) dt, (2.68a)

m j (t) = 2 Re〈̂ψ(t)|R j (t)̂ψ(t)〉. (2.68b)

In the case of a continuous measurement, besides the stochastic evolution of the
state ̂ψ(t), we have to introduce also the stochastic output and its relation with ̂ψ(t).
The output is the stochastic process with components

B j (t) = ̂B j (t)+
∫ t

0
m j (s)ds. (2.69)

The physical probability is P. Notice that, having chosen the nonlinear stochastic
Schrödinger equation as a starting point, the system state ̂ψ(t) at time t depends on
̂B(s), 0 ≤ s ≤ t , which is not the observed output. Anyway we are still allowed
to interpret ̂ψ(t) as the system state at time t conditioned by the observation of the
output B(s) for 0 ≤ s ≤ t because the knowledge of B(s), 0 ≤ s ≤ t , is equivalent
to the knowledge of ̂B(s), 0 ≤ s ≤ t . Heuristically one can think that the knowledge
of the trajectory of B(s) in [0, t] determines the corresponding trajectory of ̂B(s) and
thus the value of ̂ψ(t). The correct mathematical statement is that the two processes
generate the same augmented filtration:

σ
{

B(s), s ∈ [0, t]
}

∨N = σ
{

̂B(s), s ∈ [0, t]
}

∨N. (2.70)

Indeed, the inclusion ⊂ is obvious because of (2.69) and because the process
̂ψ is adapted to the augmented natural filtration of ̂B thanks to Theorem 2.23. The
opposite inclusion ⊃ follows from the possibility of recovering the linear stochas-
tic Schrödinger equation and by its theorem of existence and uniqueness of strong
solutions. Let us show this fact.

Given the initial state ψ0 of the system, consider the positive continuous process

q(t) = exp

{

−1

2

∑

j

[∫ t

0
m j (s)d̂B j (s)+ 1

2

∫ t

0
m j (s)2ds

]}

. (2.71)

Its square q(t)2 is a positive P-martingale and

Q
t
ψ0

(dω) = q(t, ω)2
P(dω) (2.72)
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defines a new probability on (Ω,Ft ); the probabilities Q
t
ψ0

, t ≥ 0, are consistent. By
Girsanov theorem, under the law Q

T
ψ0

the process B(t), t ∈ [0, T ], with components
(2.69) is a multidimensional standard Wiener process.

Let us define

ψ(t) = q(t)−1
̂ψ(t) ; (2.73)

by Itô calculus we get, under Q
T
ψ0

, the linear stochastic Schrödinger equation
(2.28):

dψ(t) =
∑

j

R j (t)ψ(t)dB j (t)+ K (t)ψ(t)dt . (2.74)

Thus, Theorem 2.4 guarantees that ψ(t) is adapted to the augmented filtration of
B(t) and then the same is true for q(t) = ‖ψ(t)‖−1, ̂ψ(t) = q(t)ψ(t) and ̂B(t). This
completes the proof of (2.70).

Finally, the uniqueness in law of the solutions of all the equations involved guar-
antees that, for every finite interval of time [0, T ], the law of B under P and the law
of W under ̂PT

ψ0
coincide. So, the two approaches, the one starting from the linear

stochastic Schrödinger equation and the one starting from the nonlinear one, are
completely equivalent.

2.6 The Linear Approach Versus the Nonlinear One

As the theory can be formulated by starting either from the linear stochastic
Schrödinger equation, or from the nonlinear one, let us give here just some hints
of comparison between the two approaches.

• Advantages of the linear approach:

– Direct generalisation of the traditional description of an instantaneous mea-
surement.

– Clear analytical relation between the a posteriori state and the observed output:
if the canonical realisation of the Wiener process is used, then the a posteriori
states ψ(t) and ̂ψ(t) are explicitly functions of the trajectory of the output
W (s) for 0 ≤ s ≤ t .

• Characteristic features of the linear approach:

– The output process W is a fixed function from the sample space Ω to
Cd

0 (0,∞), the space of all R
d -valued continuous functions of a positive

variable. Its physical properties depend on the physical probability ̂P
T
ψ0

,
which changes on (Ω,F) according to the choice of the initial system
state ψ0.
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• Disadvantages of the linear approach:

– The linear stochastic Schrödinger equation is not suitable for numerical simu-
lations as the norm of the non-normalised a posteriori state ψ(t) can become
very small.

• Advantages of the nonlinear approach:

– The stochastic Schrödinger equation directly gives the a posteriori state ̂ψ(t).
– The stochastic Schrödinger equation is suitable for numerical simulations

[7, 32–35].

• Characteristic features of the nonlinear approach:

– The probability P on the measurable space (Ω,F) is fixed. The output B
is a function from the sample space Ω to Cd

0 (0,∞), the space of all R
d -

valued continuous functions of a positive variable, which changes accord-
ing to the choice of the initial system state ψ0 (thus modifying its physical
properties).

• Disadvantages of the nonlinear approach:

– Non-transparent relation between the a posteriori state ̂ψ(t) and the output
B(t).

2.7 Tricks to Simplify the Equations

In special cases, some peculiar time dependencies can be eliminated and/or more
compact forms of the stochastic Schrödinger equation can be obtained. Let us see
how.

2.7.1 Time-Dependent Coefficients and Unitary Transformations

A particularly interesting case is when the time dependence of the coefficients
in the linear stochastic Schrödinger equation (2.28) can be eliminated by using a
unitary transformation. Let us assume that there exists a self-adjoint operator H0

such that

eiH0t R j (t)e
−iH0t = R j (0) , eiH0t H (t)e−iH0t = H (0) . (2.75)

In the physical literature, this transformation is known as the use of a (suitable)
interaction picture. We define the “interaction Hamiltonian” HI := H (0)− H0 and

R0
j := R j (0) , K 0 := K (0)− iH0 ≡ −iHI − 1

2

∑

j

R0∗
j R0

j . (2.76)
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By setting

Φ(t) := eiH0t ψ(t) , (2.77)

we get dΦ(t) = iH0Φ(t)dt + eiH0t K (t)ψ(t)dt + eiH0t
∑

j R j (t)ψ(t)dW j (t). By
inserting before ψ(t) the identity 1 = e−iH0t eiH0t , we obtain the linear SDE with
time-independent coefficients

dΦ(t) = K 0Φ(t)dt +
∑

j

R0
jΦ(t)dW j (t) . (2.78)

We can now redo the whole construction of probabilities and a posteriori states
by starting from this equation instead of from (2.2). We have ‖ψ(t)‖2 = ‖Φ(t)‖2,
m j (t) = 2 Re〈̂ψ(t)|R j (t)̂ψ(t)〉 = 2 Re〈̂Φ(t)|R0

j
̂Φ(t)〉 and nothing changes for what

concerns the physical probabilities. We have only to recall that the a posteriori states
are given by ̂ψ(t) = e−iH0t

̂Φ(t).
In the example of Section 8.1, we use just this trick in order to simplify the time

dependence of the coefficients.

2.7.2 Complex Noise

When one of the coefficients R j (t) in the linear stochastic Schrödinger equation
(2.28) differs from another one only by a multiplicative factor i (imaginary unit),
the equations assume a simpler form by introducing complex Wiener processes [5,
33, 36–38]. Let us illustrate this fact in the case d = 2.

Assume that we have

R1(t) = 1√
2

R(t), R2(t) = i√
2

R(t). (2.79)

Then, we define the complex Wiener process

W (t) = 1√
2

W1(t)+ i√
2

W2(t), (2.80)

for which the Itô rules turn out to be dW (t)2 = 0, dW (t)dW (t) = dt . With these
notations the linear SDE (2.28) becomes

dψ(t) = R(t)ψ(t)dW (t)+ K (t)ψ(t)dt , K (t) = −iH (t)− 1

2
R(t)∗R(t).

(2.81)

Also the nonlinear stochastic Schrödinger equation assumes a simpler form in
this case, especially if we consider the a posteriori stateŝφ(t) with a changed phase:
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d̂φ(t) = [

R(t)− 〈̂φ(t)|R(t)̂φ(t)〉]̂φ(t) d̂W (t)

+
[

K (t)+ 〈̂φ(t)|R(t)∗̂φ(t)〉R(t)− 1

2

∣

∣〈̂φ(t)|R(t)̂φ(t)〉∣∣2
]

̂φ(t) dt, (2.82)

̂W (t) = 1√
2
̂W1(t)+ i√

2
̂W2(t) = W (t)−

∫ t

0
〈̂φ(s)|R(s)∗̂φ(s)〉ds. (2.83)

2.8 Summary: The Stochastic Schrödinger Equation

2.8.1 The Linear Stochastic Schrödinger Equation

2.8.1.1 Hilbert Space and System Operators

Assumptions 2.1, 2.3, 2.10.

• The Hilbert space of the quantum system under consideration is H = C
n .

• The effective Hamiltonian H (t) and the system operators R j (t), j = 1, . . . , d,
(dissipative terms) are non-random linear operators on H; H (t) is self-adjoint:
H (t)∗ = H (t).

• The functions t �→ H (t) and t �→ R j (t) are measurable and, for every T ∈
(0,+∞),

sup
t∈[0,T ]

‖H (t)‖ < +∞, sup
t∈[0,T ]

∥

∥

∥

∥

∑

j

R j (t)
∗R j (t)

∥

∥

∥

∥

< +∞.

• We use the shorthand notation: K (t) := −iH (t)− 1

2

d
∑

j=1

R j (t)
∗R j (t).

2.8.1.2 Reference Probability Space and Filtrations

Assumption 2.2, Remark 2.5.

•
(

Ω,F, (Ft ),Q
)

is a stochastic basis satisfying the usual conditions, which means
that (Ω,F,Q) is a probability space, (Ft ) is a filtration of sub-σ -algebras of F,
Ft =

⋂

s:s>t

Fs , Q(A) = 0 ⇒ A ∈ Ft , ∀t ≥ 0.

• F = F∞ :=
∨

t≥0

Ft , N := {B ∈ F : Q(B) = 0}.

• The symbol EQ indicates the expectation with respect to Q.
• W is a continuous d-dimensional Wiener process defined in

(

Ω,F, (Ft ),Q
)

. In
particular, the process W has increments independent of the past with respect to
the filtration (Ft ).

• The natural filtration of the increments of W : Ds
t := σ {W (u)−W (s), u ∈ [s, t]}.
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• The augmented natural filtration of the increments of W : D
s
t := Ds

t ∨N.
• The filtration {Ds

t , t ∈ [s,+∞)} satisfies the usual conditions: D
s
t is independent

of Fs and D
s
t ⊂ D

0
t ⊂ Ft ⊂ F, for 0 ≤ s ≤ t .

2.8.1.3 The Linear Stochastic Schrödinger Equation

Assumptions 2.2, 2.12, equations (2.2), (2.7), (2.11), Propositions 2.6, 2.7, 2.8,
Theorem 2.11.

• The linear stochastic Schrödinger equation (2.28):

dψ(t) = K (t)ψ(t) dt +
d
∑

j=1

R j (t)ψ(t) dW j (t) .

• Initial condition: a non-random ψ0 ∈ H, ‖ψ0‖ = 1.

• The solution is an H-valued process ψ , which is continuous and
(

D
0
t

)

-adapted.

• ‖ψ(t)‖2 is a mean one, continuous martingale.
• The stochastic evolution operator, or propagator, As

t is a continuous process in

t ≥ s, which is
(

D
s
t

)

-adapted and independent of Fs . It satisfies

dAs
t = K (t)As

t dt +
d
∑

j=1

R j (t)As
t dW j (t) , As

s = 1.

• The adjoint operator (As
t )∗ satisfies

d(As
t )∗ = (As

t )∗K (t)∗dt +
d
∑

j=1

(As
t )∗R j (t)

∗dW j (t) , (As
s)∗ = 1.

• ψ(t) = A0
t ψ0, Ar

t = As
t Ar

s for 0 ≤ r ≤ s ≤ t .

• det As
t > 0, As

t = Ar
t

(

Ar
s

)−1
for 0 ≤ r ≤ s ≤ t .

• The inverse operator (As
t )−1 satisfies

d(As
t )−1 = (As

t )−1

⎡

⎣

∑

j

R j (t)
2 − K (t)

⎤

⎦ dt −
d
∑

j=1

(As
t )−1 R j (t)dW j (t) ,

with (As
s)∗ = 1.
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2.8.1.4 The Physical Probability and the A Posteriori States

Equations (2.22), (2.23), (2.33), (2.39), (2.43), Theorems 2.11, 2.14, Proposition
2.17, Remarks 2.13, 2.16, 2.18.

• ψ(t) is the non-normalised a posteriori state at time t .
• ‖ψ(t)‖ > 0, ̂ψ(t) := ‖ψ(t)‖−1 ψ(t).
• ̂ψ(t) is the a posteriori state at time t .
• m j (t) := 〈

̂ψ(t)
∣

∣

(

R j (t)+ R j (t)
∗)
̂ψ(t)

〉 = 2 Re
〈

̂ψ(t)
∣

∣R j (t)̂ψ(t)
〉

.

• ‖ψ(t)‖2 = exp

{

∑

j

[∫ t

0
m j (s)dW j (s)− 1

2

∫ t

0
m j (s)2ds

]}

.

• The expression ̂PT
ψ0

(dω) = ‖ψ(T, ω)‖2
Q(dω)

∣

∣

∣

FT

defines the “physical” proba-

bility on (Ω,FT ). The expectation with respect to ̂P
T
ψ0

(dω) is denoted by ̂E
T
ψ0

.
The physical probability for the events regarding the output W up to time T is
̂P

T
ψ0

∣

∣

D
0
T
.

• The family of probabilities
{

̂P
T
ψ0
, T > 0

}

is consistent, which means that for any

choice of T > t ≥ 0 we havêPT
ψ0

(F) =̂P
t
ψ0

(F), ∀F ∈ Ft .

• There exists a unique probabilitŷP∞ψ0
on D0

∞ :=∨

t>0 D0
t such that

̂P
∞
ψ0

(F) =̂P
T
ψ0

(F), ∀T > 0, ∀F ∈ D0
T .

• Under the physical laŵP
T
ψ0

, the process with components

̂W j (t) := W j (t)−
∫ t

0
m j (s)ds, t ∈ [0, T ],

is a continuous Wiener processes with increments independent of the past. It is

(D
0
t )-adapted.

• The stochastic integrals with respect to W and ̂W are linked by (2.32).
• POMs and probabilities:

̂Es
t (F) :=

∫

F
As

t (ω)∗As
t (ω)Q(dω), ∀F ∈ D

s
t ,

̂P
T
ψ0

(F) = 〈ψ0|̂E0
T (F)ψ0〉, ∀F ∈ D

0
T .

• Consistency of the POMs:

0 ≤ r < s < t, F ∈ D
r
s ⇒ ̂Er

t (F) = ̂Er
s (F).

• For all F ∈ D
s
t , 0 ≤ s < t ≤ T , we have

̂P
T
ψ0

(F |Fs) = 〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉 =̂P
T
ψ0

(F |D0
s ).
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2.8.2 The Nonlinear Stochastic Schrödinger Equation

• Let
(

Ω,F, (Ft )t∈[0,+∞),P
)

be a stochastic basis in the usual hypotheses and ̂B
be a continuous Wiener process in this basis with increments independent of
the past.

• Both the nonlinear SDEs

d̂ψ(t) =
∑

j

[

R j (t)− Re〈̂ψ(t)|R j (t)̂ψ(t)〉] ̂ψ(t) d̂B j (t)+ K (t)̂ψ(t) dt

+
∑

j

[

(

Re〈̂ψ(t)|R j (t)̂ψ(t)〉) R j (t)− 1

2

(

Re〈̂ψ(t)|R j (t)̂ψ(t)〉)2
]

̂ψ(t) dt

and

d̂φ(t) =
∑

j

[

R j (t)− 〈̂φ(t)|R j (t)̂φ(t)〉]̂φ(t) d̂B j (t)+ K (t)̂φ(t) dt

+
∑

j

[

〈̂φ(t)|R j (t)̂φ(t)〉 R j (t)− 1

2

∣

∣〈̂φ(t)|R j (t)̂φ(t)〉∣∣2
]

̂φ(t) dt,

with initial condition ̂ψ(0) = ̂φ(0) = ψ0, ‖ψ0‖ = 1, have a unique (pathwise
and in law) strong solution with

∥

∥̂ψ(t)
∥

∥ = ∥

∥̂φ(t)
∥

∥ = 1. The solutions of the two
equations are connected by the relation

̂φ(t) = exp

{

− i
∑

j

∫ t

0
Re〈̂ψ(s)|R j (s)̂ψ(s)〉 Im〈̂ψ(s)|R j (s)̂ψ(s)〉 ds

− i
∑

j

∫ t

0
Im〈̂ψ(s)|R j (s)̂ψ(s)〉 d̂B j (s)

}

̂ψ(t).

• The output of the measurement is the process B(t), t ≥ 0, under the law P, with
components

B j (t) = ̂B j (t)+
∫ t

0
m j (s)ds ,

where

m j (t) = 2 Re〈̂φ(t)|R j (t)̂φ(t)〉 = 2 Re〈̂ψ(t)|R j (t)̂ψ(t)〉.

More precisely, the output is the collection of the increments of B in
the interval of observation; heuristically, the output is the time derivative
of B.
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• The square of

q(t) = exp

{

−1

2

∑

j

[∫ t

0
m j (s)d̂B j (s)+ 1

2

∫ t

0
m j (s)2ds

]}

is a positive P-martingale, and

Q
t
ψ0

(dω) = q(t, ω)2
P(dω)

defines a new probability on (Ω,Ft ); the probabilities Q
t
ψ0

, t ≥ 0, are consistent.
• Under the law Q

T
ψ0

the process B(t), t ∈ [0, T ], is a multidimensional standard
Wiener process.

• The random vector

ψ(t) = q(t)−1
̂ψ(t),

under the law Q
T
ψ0

, satisfies the linear SDE

dψ(t) =
∑

j

R j (t)ψ(t)dB j (t)+ K (t)ψ(t)dt .

• In particular cases, the SDEs involved in the theory can be simplified by some
tricks, for instance by using unitary transformations (in the case in Sect. 2.7.1) or
complex Wiener processes (in the case in Sect. 2.7.2).
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Chapter 3
The Stochastic Master Equation: Part I

A satisfactory theory of continuous measurements has to be developed according to
the axioms of quantum mechanics, that is by introducing, more or less explicitly, the
associated instruments (Sect. B.4). This approach requires the statistical formulation
of quantum mechanics (see Sect. B.3). This chapter generalises to this framework
the theory developed in Chap. 2 and it extends the results to the case of incomplete
measurements. Now, the key notions are “statistical operator”, “stochastic master
equation”, “master equation” and “quantum dynamical (or Markov) semigroup”.

3.1 From Hilbert Space to Statistical Formulation

Let us start by considering a continuous measurement described by the linear
stochastic Schrödinger equation (2.28) performed on a quantum system with a (pos-
sibly) mixed initial state. The situation could be described by using a random pure
initial condition (cf. Sect. A.4.4), but it is more instructive to use statistical opera-
tors, which represent the proper starting point to develop a measurement theory.

3.1.1 A Mixed Initial State

As done in Sect. B.3.1 for the general case, we introduce the statistical formulation
for the continuous measurements, step by step, by starting from the Hilbert space
formulation with uncertainty on the initial state and by using a Bayesian reasoning.

Let the initial state be ψα with probability p(α); we have ‖ψα‖ = 1, p(α) > 0,
∑

α p(α) = 1. We fix a time interval [0, T ] and all the times introduced in this
section are intended to be in this interval.

Let us think of the index α as the value of some classical random variable
observed at time zero. If we observe the value α, the initial state is ψα and, accord-
ing to the theory of Chapter 2, the density of the physical probability up to time t ,
given α, is

pt (ω|α) = ‖ψα(t, ω)‖2 ,

Barchielli, A., Gregoratti, M.: The Stochastic Master Equation: Part I. Lect. Notes Phys. 782,
51–75 (2009)
DOI 10.1007/978-3-642-01298-3 3 c© Springer-Verlag Berlin Heidelberg 2009
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where

ψα(t, ω) = A0
t (ω)ψα ; (3.1)

see (2.10) and (2.29). Then, the joint density is

pt (α,ω) = pt (ω|α)p(α) ,

and, by the formula of total probabilities, the marginal density for the continuous
output is

pt (ω) =
∑

α

pt (α,ω) =
∑

α

p(α) ‖ψα(t, ω)‖2 . (3.2)

This is the density of the physical probability if α is unknown. As ‖ψα(t)‖2 is
a Q-martingale (see Theorem 2.11 and Remark 2.13), also the linear combination
pt has this property and it forms a consistent family of probability densities when t
varies. Finally, the probability of α conditional on the output up to time t is

pt (α|ω) = pt (ω, α)

pt (ω)
= p(α) ‖ψα(t, ω)‖2

∑

β p(β)
∥

∥ψβ(t, ω)
∥

∥

2 . (3.3)

Let us now consider the a posteriori states. Conditionally on α and the continuous
output up to t , the system state in H is ̂ψα(t) = ψα(t)

‖ψα(t)‖ . In the language of the
statistical operators (recall that the set of statistical operators is S(H) defined by
(B.14)), such a state is represented by the one-dimensional projection (pure state)
|̂ψα(t, ω)〉〈̂ψα(t, ω)|. If we condition only on the continuous output, we have to
weight such a state with the conditional probabilities (3.3) and we get the mixed a
posteriori state

ρ̃(t, ω) =
∑

α

pt (α|ω)|̂ψα(t, ω)〉〈̂ψα(t, ω)|, (3.4)

which is the analog of (B.36). Note that ρ̃(0) is independent of ω and it is given by

ρ̃(0) =
∑

α

p(α)|ψα〉〈ψα| =: ρ0 ∈ S(H). (3.5)

If we do not observe the initial random variable with values α, we need only the
probability density pt and the a posteriori states ρ̃(t). The important point now is
that these two quantities depend only on ρ0 and not on its decomposition (3.5) in
terms of p(α) and ψα . Indeed, from (3.3) and (3.4) we get

ρ̃(t) =
∑

α

p(α) ‖ψα(t)‖2

∑

β p(β)
∥

∥ψβ(t)
∥

∥

2 |̂ψα(t)〉〈̂ψα(t)| =
∑

α p(α)|ψα(t)〉〈ψα(t)|
∑

β p(β)
∥

∥ψβ(t)
∥

∥

2 . (3.6)
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Then, if we define

σ̃ (t) = A0
t ρ0 A0∗

t , (3.7a)

equations (3.1), (3.2), (3.6) give

pt = Tr{σ̃ (t)} (3.7b)

and

ρ̃(t) = Tr {σ̃ (t)}−1 σ̃ (t). (3.7c)

We stress again that (3.7) shows that all the physical quantities, probability densi-
ties and a posteriori states depend only on ρ0 not on its decomposition. Therefore, ρ0

acquires the meaning of initial state of the quantum system, in agreement with the
statistical formulation of quantum mechanics given in Sect. B.3.1. Summarising,
we have that the construction of Chap. 2 can be reformulated in the language of
statistical operators and mixed initial states are allowed by substituting Assumption
2.12 with the following one.

Assumption 3.1. The initial state is a statistical operator ρ0 ∈ S(H).

Of course, Assumption 2.12 corresponds to the pure case ρ0 = |ψ0〉〈ψ0|.
Then, given the initial state ρ0, the continuous adapted stochastic process σ̃ (t)

(3.7a) is defined. The map ρ0 �→ σ̃ (t) is automatically linear and completely posi-
tive. The trace Tr{σ̃ (t)} is a positive Q-martingale of mean one which is interpreted
as the density of the physical probability.

By using this density, the physical probability distribution of the outcomes of the
continuous measurements is given by: ∀F ∈ Ft , t ≥ 0,

P
t
ρ0

(F) = EQ [1F Tr {σ̃ (t)}] . (3.8)

The family of probabilities
(

P
t
ρ0
, t ≥ 0

)

is consistent. Of course the physical
probability can be obtained also by using the initial state ρ0 and the POM ̂Et defined
by (2.33). Indeed, by using (3.7a) and the cyclic property of the trace we get

P
t
ρ0

(F) = Tr
{

̂Et (F)ρ0
}

, ∀F ∈ Ft , (3.9)

which is the analog of (B.16).
Finally, the a posteriori states at time t are given now by the random variable

ρ̃(t) : Ω → S(H), defined by the normalisation of σ̃ (t) (3.7c).
To complete the proof that the theory of continuous measurements is consistent

with the modern axiomatic formulation of quantum mechanics of Sect. B.4, we have
just to show that, actually, the map ρ0 �→

{

P
t
ρ0
, ρ̃(t)

}

defines an instrument. Then
ρ̃(t) will be the a posteriori state of that instrument.
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But that is not all. We want to show that, when t varies in [0, T ], we get a
continuous family of instruments which describes a continuous measurement, we
want to replace the linear stochastic Schrödinger equation (2.28) with a new starting
point coherent with the statistical formulation, and, of course, we want to study the
general properties of such a continuous measurement. Moreover, we want to develop
this program in the more general framework of an incomplete measurement, as when
not all components of W are really observed. This will take the present and the
following two chapters. We begin by studying the mathematical properties of the
process σ̃ and of the process σ which will be introduced by considering incomplete
observation.

3.1.2 The Linear Stochastic Master Equation – I

First of all, let us compute the stochastic differential of σ̃ . By Itô formula, the defi-
nition (3.7a) and the SDEs (2.7) and (2.11), we get

dσ̃ (t) = L(t)
[

σ̃ (t)
]

dt +
d
∑

j=1

R j (t)
[

σ̃ (t)
]

dW j (t), (3.10)

where R j (t) and L(t) are the linear maps on Mn , the space of n×n complex matrices
τ , defined by

R j (t)[τ ] := R j (t)τ + τ R j (t)
∗, (3.11)

L(t)[τ ] := −i[H, τ ]+ 1

2

d
∑

j=1

(

[R jτ, R∗j ]+ [R j , τ R∗j ]
)

. (3.12)

The map L(t) is a Liouville operator and (3.10), which turns out to be a closed
linear SDE in σ̃ , is called linear stochastic master equation.

3.2 The Master Equation

Before introducing the case of incomplete observations and studying the linear
stochastic master equation, we want to analyse the relation between the stochas-
tic Schrödinger equation (2.28) or (2.49) and the master equation associated to the
Liouvillian (3.12).

3.2.1 The Mean Statistical Operator

For every t ≥ 0, (3.7a) defines a random positive operator σ̃ (t) and, indepen-
dently of the interpretation in terms of continuous measurements, it is significant
to consider its mean with respect to the probability Q,
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η(t) := EQ

[

σ̃ (t)
] =

∫

Ω

σ̃ (t, ω) Q(dω). (3.13)

By construction, η(t) is a statistical operator. As a direct consequence of (3.8)
and (3.7c), we get also

η(t) = E
T
ρ0

[

ρ̃(t)
] =

∫

Ω

ρ̃(t, ω) P
T
ρ0

(dω), (3.14)

so that
{

P
T
ρ0
, ρ̃(t)

}

is a demixture of η(t) (Sect. B.3.1).
Since, in the case of continuous measurements, ρ̃(t) is the a posteriori state at

time t , by (3.14) η(t) has the physical meaning of unconditioned state of the system
at time t , which is the state of the system at time t if the continuous measurement is
performed without any filtering on the basis of the output W . Note that, even in the
case of pure initial state, the statistical formulation is needed in order to introduce
the notion of unconditioned state.

3.2.2 The Mean Dynamics

The study of the mean dynamics is interesting even without a physical interpretation
of η(t) in terms of continuous measurements.

3.2.2.1 The Master Equation

Since the stochastic integral in (3.10) is a matrix-valued martingale, with zero mean,
we get

η(t) = ρ0 +
∫ t

0
L(s)[η(s)]ds , (3.15)

and, at least almost everywhere in time, we obtain the master equation (cf. (B.21))

d

dt
η(t) = L(t)[η(t)], η(0) = ρ0. (3.16)

Therefore, the evolution of η(t) is memoryless and it is governed by the same
Liouvillian L(t) which appears in the linear stochastic master equation (3.10).

Equation (3.16) is linear and, so, we can define its evolution map. Let T (t, s),
0 ≤ s ≤ t , be the two parameters family of maps on Mn defined by the evolution
equation

T (t, s) = Idn +
∫ t

s
L(r ) ◦ T (r, s)dr , (3.17)
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where Idn is the identity map on Mn . Then, by the memoryless structure of this
equation, we have

T (t, r ) = T (t, s) ◦ T (s, r ) , 0 ≤ r ≤ s ≤ t , (3.18)

η(t) = T (t, 0)[ρ0]. (3.19)

The proof of (3.18) is simply to show that both its sides satisfy the same differ-
ential equation with respect to t ≥ s with the same initial condition.

3.2.2.2 Stochastic Representation of the Mean Dynamics

The dynamics T (t, s) admits the stochastic representation

T (t, s)[τ ] = EQ

[

As
t τ As∗

t

]

, ∀τ ∈ Mn , (3.20)

as one sees again from the fact that both sides of this equation satisfy the same dif-
ferential equation with the same initial condition. This representation immediately
shows that the evolution T is completely positive and, since we know that (2.33)
defines a POM, that the evolution T is trace preserving:

Tr {T (t, s)[τ ]} = Tr
{

EQ

[

As
t τ As∗

t

]} = Tr
{

EQ

[

As∗
t As

t

]

τ
} = Tr {τ } .

The composition law (3.18) can be seen also as consequence of the stochastic
representation (3.20) and of the composition law (2.9) of the operators As

t :

T (t, r )[τ ] = EQ

[

Ar
t τ Ar∗

t

] = EQ

[

EQ

[

As
t Ar

sτ Ar∗
s As∗

t

∣

∣D
s
t

]]

= EQ

[

As
t EQ

[

Ar
sτ Ar∗

s

∣

∣D
s
t

]

As∗
t

]

= EQ

[

As
t EQ

[

Ar
sτ Ar∗

s

]

As∗
t

]

= EQ

[

As
t T (s, r )[τ ]As∗

t

] = T (t, s) [T (s, r )[τ ]] .

Thus, from (3.7a), (3.13), we can represent the solution of the master equation
(3.16) as

η(t) = EQ

[

A0
t ρ0 A0∗

t

] =
∑

α

p(α) EQ [|ψα(t)〉〈ψα(t)|] , (3.21)

where A0
t satisfies the SDE (2.7) and ψα(t) the linear stochastic Schrödinger equa-

tion (2.28). By using the a posteriori states

̂ψα(t) = ‖ψα(t)‖−1 ψα(t) ,

we get also
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η(t) =
∑

α

p(α)̂ET
ψα

[|̂ψα(t)〉〈̂ψα(t)|] , (3.22)

where ̂ET
ψα

is the expectation with respect to the probability generated by the con-

sistent densities ‖ψα(t)‖2 (see the definition of ̂ET
ψ0

in Sect. 2.3.2).
Both (3.21) and (3.22) are stochastic representations of the dynamics with Liou-

villian L(t). Sometimes people say that the stochastic Schrödinger equation (2.49)
gives an unravelling of the master equation (3.16).

Let us stress that the operators H (t) and R j (t) determine L(t), but not vice versa:
given a unique master equation, many different unravellings are possible with SDEs
of diffusive type and many more if also SDEs with jumps are allowed.

3.2.3 Quantum Dynamical Semigroups

3.2.3.1 The Autonomous Case

When the operators H , R j are time independent, also L is time independent, the
solution of the evolution equation (3.17) is

T (t, s) = eL(t−s), (3.23)

and the solution of the master equation (3.16) is

η(t) = eLt [ρ0]. (3.24)

By comparing the expression of L given by (3.12) with (B.20), we see that L
is the generic generator of a quantum dynamical semigroup. Therefore, the dif-
ferential equation (3.16) satisfied by the mean statistical operator η(t) is a generic
time-independent quantum master equation.

The connection between linear SDEs and semigroups of operators eLt was
already noticed in [1] (independently of quantum mechanics and without our key
restriction (2.20)), while in [2, 3] our case was studied exactly (there the aim was
“dilations of quantum dynamical semigroups” and not continuous measurements).

3.2.3.2 Stochastic Representation of Quantum Dynamical Semigroups

In the autonomous case, the (3.21) and (3.22) give two stochastic representations of
a generic quantum dynamical semigroup.

Representations of the first kind,

eLt [ρ0] = EQ

[

A0
t ρ0 A0∗

t

] =
∑

α

p(α) EQ [|ψα(t)〉〈ψα(t)|] , (3.25)
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where A0
t satisfies the SDE (2.7) and ψα(t) the linear stochastic Schrödinger

equation (2.28), have been used to study quantum dynamical semigroups with
unbounded generators in infinite dimensional Hilbert spaces [4, 5].

Representations of the second kind,

eLt [ρ0] =
∑

α

p(α)̂ET
ψα

[|̂ψα(t)〉〈̂ψα(t)|] , (3.26)

where ̂ψα(t) satisfies the stochastic Schrödinger equation (2.52), are at the basis
of stochastic simulations of solutions of quantum master equations [6]. The master
equation (3.16) is a system of n2 deterministic linear differential equations, while a
nonlinear stochastic Schrödinger equation (2.52) involves only n components. From
the numerical point of view, it can be more cumbersome to solve n2 ordinary equa-
tions than to simulate n SDEs many times

(

in order to have an estimate of the mean
∑

α p(α)̂ET
ψα

)

.

3.3 An Incomplete Observation

In the statistical formulation, it is possible not only to consider mixed initial states
(Sect. 3.1.1), not only to decide wether to observe or do not the whole output W
(Sect. 3.2.1), but also to observe only some components of W , say the first m com-
ponents, 1 ≤ m ≤ d. Let us say that we have m observed channels and d–m unob-
served channels. What we have to do is to give the physical probabilities restricted
to this incomplete output and the associated a posteriori states.

To give the physical probability and the associated POMs, it is of course sufficient
to restrict the old ones to the new filtration. Let us introduce the natural filtration of
the first m components of the Wiener process:

Gs
t := σ

{

W j (r )−W j (s), r ∈ [s, t], j = 1, . . . ,m
}

; (3.27a)

we define also

G :=
∨

t≥0

G0
t , NG := {A ∈ G : Q(A) = 0} , (3.27b)

G
s
t := Gs

t ∨NG . (3.27c)

By comparing with the filtration D generated by all the components of the Wiener
process introduced in (2.6), we see that the following inclusions hold:

Gs
t ⊂ Ds

t ⊂ Ft , G
s
t ⊂ D

s
t ⊂ Ft .

We can now restrict the POM (2.39) to the observed events G
s
t :
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Es
t (G) := ̂Es

t (G) = EQ

[

1G As∗
t As

t

]

, G ∈ G
s
t . (3.28)

Let us note that, for G ∈ G
0
t , one has ̂E0

t (G) = ̂Et (G); then, the restriction of the
physical probability (2.33) to the observed events can be expressed as

P
t
ρ0

(G) = Tr
{

E0
t (G)ρ0

}

, G ∈ G
0
t . (3.29)

Regarding the a posteriori states, ρ̃(t) (3.7c) is the state of the system conditioned
on the observation of the whole output W1(s), . . . ,Wd (s), 0 ≤ s ≤ t , so that the
natural definition of a posteriori state at time t , conditioned on the observation only
of W1(s), . . . ,Wm(s), 0 ≤ s ≤ t , is

ρ(t) := E
T
ρ0

[

ρ̃(t)
∣

∣

∣G
0
t

]

. (3.30)

Note that, by the measurability properties of A0
t given in Proposition 2.7,

E
T
ρ0

[

ρ̃(t)
∣

∣

∣D
0
t

]

and ρ̃(t) are a.s. equal; so, ρ(t) reduces to ρ̃(t) when m = d and

their interpretations are consistent.
From ρ̃(t) we got ρ(t) by conditioning; analogously, we define

σ (t) := EQ

[

σ̃ (t)
∣

∣

∣G
0
t

]

. (3.31)

The map ρ0 �→ σ (t) is linear and completely positive, as σ (t) = EQ[A0
t ρ0 A0∗

t |G
0
t ].

Moreover, by (3.8), (3.29), (3.31) one has

P
t
ρ0

(G) = EQ [1G Tr {σ (t)}] , ∀G ∈ G
0
t . (3.32)

By positivity, we have Tr{σ (t)} = ‖σ (t)‖1; again Tr {σ (t)} is a Q-martingale and
P

t
ρ0

(G) gives rise to a consistent set of probabilities with respect to t ≥ 0. Obviously,
we have

E
T
ρ0

[ρ(t)] = E
T
ρ0

[̃ρ(t)] = EQ[σ (t)] = EQ[σ̃ (t)] = η(t) . (3.33)

Other properties of the various quantities we have introduced are collected in the
following proposition.

Proposition 3.2. Let ρ(t) and σ (t) be defined by (3.30) and (3.31), respectively.
Then, one has

σ (t) = EQ

[

σ̃ (t)
∣

∣G
]

, (3.34)

ρ(t) = (Tr{σ (t)})−1 σ (t), (3.35)
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P
t
ρ0

(

G
∣

∣G
0
s

) = Tr
{

Es
t (G)ρ(s)

}

, ∀G ∈ G
s
t , 0 ≤ s < t. (3.36)

Proof. Conditional expectations enjoy the following property [7, Exercise E3.2,
pp. 60, 285]:

• if X is a random variable in a probability space (Ω,F,P) and F1 and F2 are two
sub-σ -algebras of F such that F2 is independent of σ (X ) ∨ F1, then we have
E[X |F1 ∨ F2] = E[X |F1].

If we take σ̃ (t) for X and F1 = G
0
t , F2 = ∨

T :T>t G
t
T , the conditions of

the previous property are satisfied. Indeed, σ̃ (t) is D
0
t -measurable, which gives

σ (σ̃ (t)) ⊂ D
0
t , and we have G

0
t ⊂ D

0
t , which gives σ (σ̃ (t)) ∨ F1 ⊂ D

0
t . Moreover,

the increments of the Wiener process are independent of the past, which gives that

D
0
t and F2 are independent. Then, we have F1 ∨F2 = G and the equality of the two

conditional expectations (3.31) and (3.34) follows.

Equation (3.35) holds because, for all bounded G
0
t -measurable random variables

Y , we have

E
t
ρ0

[Yρ(t)] = E
t
ρ0

[

Y E
t
ρ0

[

ρ̃(t)
∣

∣

∣G
0
t

]]

= E
t
ρ0

[Y ρ̃(t)] = EQ [Y σ̃ (t)]

= EQ [Yσ (t)] = E
t
ρ0

[

Y
σ (t)

Tr{σ (t)}
]

.

Equation (3.36) is proved by the following equalities: for all G
0
s -measurable

bounded random variables Y

E
t
ρ0

[1GY ] = EQ [Tr{σ (t)}1GY ] = EQ [Tr{σ̃ (t)}1GY ]

= EQ

[

Tr
{

As
t σ̃ (s)As∗

t

}

1GY
] = EQ

[

Tr
{

1G As∗
t As

t σ̃ (s)
}

Y
]

= EQ

[

Tr
{

EQ[1G As∗
t As

t |Fs]σ̃ (s)
}

Y
] = EQ

[

Tr
{

EQ[1G As∗
t As

t ]σ̃ (s)
}

Y
]

= EQ

[

Tr
{

Es
t (G)σ̃ (s)

}

Y
] = E

t
ρ0

[

Tr
{

Es
t (G )̃ρ(s)

}

Y
] = E

t
ρ0

[

Tr
{

Es
t (G)ρ(s)

}

Y
]

.

�

Equation (3.36) reinforces the interpretation of ρ(t) as the a posteriori state at
time t of the continuous measurement under Assumption 3.1 and in the case of
incomplete observation. Equations (3.7c), (3.30), (3.31), (3.35) show that to get the
a posteriori states we can normalise and then to take the conditional expectation
with respect to the physical probability or to take the conditional expectation with
respect to the reference probability and then to normalise.

Let us compute the stochastic differential of σ . By linearity and the independence
of the components of the Wiener process, from the linear stochastic master equation
(3.10) we get
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⎧

⎪

⎨

⎪

⎩

dσ (t) = L(t)[σ (t)]dt +
m
∑

j=1

R j (t)[σ (t)]dW j (t),

σ (0) = ρ0 ,

(3.37)

where the linear maps R j (t) and L(t) are just those defined by (3.11) and (3.12).
Thus we have found a closed linear SDE for σ which generalises (3.10). Again,
we call it linear stochastic master equation. Now we want to show that the SDE
(3.37) can indeed be chosen as a starting point for the mathematical description of
continuous measurements.

3.4 The Statistical Formulation

Starting from the Hilbert space formulation of continuous measurement theory,
extending the evolution model from pure to mixed states and introducing incom-
plete observations, we have obtained the linear stochastic master equation (3.37).
In particular, the measured but unobserved outputs Wm+1, . . . ,Wd affect the system
evolution only through their incoherent contribution to the Liouvillian L(t) and thus
appear as generic dissipations into the external world. Therefore, in order to model
also continuous measurements in the presence of dissipative effects not related to the
measurement itself, but always in a Markovian regime, now we show that the linear
stochastic master equation itself can be chosen as a starting point. We change the
point of view and set the whole construction without direct reference to the Hilbert
space equations. We can say that we are presenting the quantum trajectory theory
(or the continuous measurement theory) in the statistical formulation [8–10].

3.4.1 The Linear Stochastic Master Equation – II

The starting point is the linear stochastic master equation for an operator-valued
process σ :

⎧

⎪

⎨

⎪

⎩

dσ (t) = L(t)[σ (t)] dt +
m
∑

j=1

R j (t)[σ (t)] dW j (t),

σ (0) = ρ0 ∈ S(H).

(3.38)

As in Assumption 2.2, W is a continuous m-dimensional Wiener process. The
Liouvillian L(t) and the maps R j (t) have already been introduced, but let us collect
here all the hypotheses on the coefficients appearing in (3.38).

Assumption 3.3. The process W is a continuous m-dimensional Wiener process
in a stochastic basis

(

Ω,F, (Ft ),Q
)

satisfying usual conditions (Sect. A.2.2) and
F = F∞ :=∨

t≥0 Ft ; W has increments independent of the past (Definition A.21).
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The maps R j (t), L(t) are linear operators over the space Mn of n × n complex
matrices τ with the structure

R j (t)[τ ] = R j (t)τ + τ R j (t)
∗, (3.39)

L(t) = L0(t)+ L1(t), (3.40a)

where

L1(t)[τ ] =
m
∑

j=1

(

R j (t)τ R j (t)
∗ − 1

2

{

R j (t)
∗R j (t), τ

}

)

, (3.40b)

L0(t)[τ ] = −i[H (t), τ ]+
d
∑

j=m+1

(

R j (t)τ R j (t)
∗ − 1

2

{

R j (t)
∗R j (t), τ

}

)

. (3.40c)

The coefficients R j (t), H (t) are (non-random) linear operators on H ≡ C
n and

H (t) = H (t)∗. The functions t �→ H (t) and t �→ R j (t) are measurable and such
that ∀T ∈ (0,+∞)

sup
t∈[0,T ]

‖H (t)‖ < +∞, sup
t∈[0,T ]

∥

∥

∥

∥

d
∑

j=1

R j (t)
∗R j (t)

∥

∥

∥

∥

< +∞. (3.41)

The mathematical and physical properties of the SDE (3.38) depend on the oper-
ators L0(t) and R j (t), j = 1, . . . ,m. The decomposition of L0(t) given in (3.40c)
is not unique and can be chosen at one’s convenience.

There are two typical but different physical interpretations of the linear stochastic
master equation (3.38). Sometimes it is obtained starting from the master equation

d

dt
η(t) = L0(t)[η(t)]

and introducing the continuous measurement as a perturbation, by adding in the
evolution equation the stochastic terms associated to the outputs W1, . . . ,Wm and
the corresponding L1(t). In this case the Liouvillian L0(t) is supposed to contain the
Hamiltonian part of the dynamics and any dissipative effect not related to the obser-
vation and one can think about switching off the measurement (R j (t) ≡ 0, ∀ j =
1, . . . ,m) so that the linear stochastic master equation (3.38) reduces to the original
ordinary master equation with Liouvillian L0(t). Other times the linear stochastic
master equation (3.38) is obtained starting from the master equation

d

dt
η(t) = L(t)[η(t)]
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and introducing a continuous measurement which acquires information on the
system without introducing extra perturbations (e.g. the continuous monitoring of
an atom by the detection of its fluorescence light). In this case the mean dynamics is
not modified by the continuous measurement, but it is “unravelled” in many different
trajectories according to the observed output W .

In any case, we say that the operator H (t) has a role of effective Hamiltonian of
the system and that the operators R j (t) with indexes j = m + 1, . . . , d characterise
the unobserved channels. On the other side we say that the operators R j (t) with
indexes j = 1, . . . ,m, appearing as coefficients in the diffusive part of SDE (3.38)
and in L1(t), characterise the observed channels. If m < d, that is if the Liouvillian
L0(t) is not simply Hamiltonian, we say that the measurement is incomplete.

3.4.1.1 The Stochastic Evolution Map

We consider also the fundamental solution A(t, s) of the linear SDE (3.38), defined
by

⎧

⎪

⎨

⎪

⎩

dA(t, s) = L(t) ◦A(t, s) dt +
m
∑

j=1

R j (t) ◦A(t, s) dW j (t),

A(s, s) = Idn.

(3.42)

We call A(t, s) the stochastic evolution map or, borrowing a terminology used in
theoretical physics, the propagator associated to the linear SDE.

3.4.1.2 The Natural Filtrations of W

We introduce the natural two-times filtrations of W :

Gs
t := σ

{

W j (r )−W j (s), r ∈ [s, t], j = 1, . . . ,m
}

, (3.43a)

G :=
∨

t≥0

G0
t , NG := {A ∈ G : Q(A) = 0} , (3.43b)

G
s
t := Gs

t ∨NG . (3.43c)

Let us note that

G ⊂ F, NG ⊂ N ≡ {A ∈ F : Q(A) = 0} , Gs
t ⊂ G

s
t ⊂ Ft .

Moreover,
(

Ω,G, (G
0
t ),Q

)

is a stochastic basis satisfying usual conditions.

Theorem 3.4. Under Assumptions 3.3, the linear stochastic master equation (3.38)
admits continuous strong solutions in [0,+∞). Pathwise uniqueness and unique-
ness in law hold. The solution σ (t) of (3.38), with initial condition σ (0) = ρ0 ∈
S(H), is non-negative. Moreover, p(t) := Tr{σ (t)} is a mean one Q-martingale, it
is a.s. strictly positive and it can be written as
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p(t) = Tr{σ (t)} = exp

{ m
∑

j=1

[∫ t

0
v j (s)dW j (s)− 1

2

∫ t

0
v j (s)2ds

]}

, (3.44)

where

v j (t) := Tr
{(

R j (t)+ R j (t)
∗) ρ(t)

} = 2 Re Tr
{

R j (t)ρ(t)
}

, (3.45)

ρ(t) := p(t) −1 σ (t) . (3.46)

The linear SDE (3.42) admits strong solutions in (s,+∞), for every s ≥ 0.
Pathwise uniqueness and uniqueness in law hold. A(t, s) is Q-independent of Fs , G

s
t -

measurable, completely positive and continuous in t . Moreover, for 0 ≤ r ≤ s ≤ t
one has a.s.

A(t, s) ◦A(s, r ) = A(t, r ), σ (t) = A(t, 0)[ρ0]. (3.47)

The master equation

T (t, s) = Idn +
∫ t

s
L(r ) ◦ T (r, s) dr (3.48)

admits a unique solution in [s,+∞), for every s ≥ 0. Moreover, the solution admits
the representation

T (t, s) = EQ [A(t, s)] , (3.49)

it is continuous in t , completely positive, trace preserving, and it satisfies the com-
position law (3.18),

T (t, r ) = T (t, s) ◦ T (s, r ) , 0 ≤ r ≤ s ≤ t . (3.50)

Proof. Equation (3.38) is for a (n×n)-dimensional process and (3.42) for a (n2×n2)-
dimensional one; in both cases we have finite dimensional processes. The bounds
(3.41) and the linearity give that the global Lipschitz condition A.32 and the linear
growth condition A.34 hold. Then, as the measurability condition A.25 trivially
holds, Theorem A.36 gives the existence of strong solutions and the uniqueness
statements for both SDEs. By completeness, let us check in detail Hypotheses A.32
and A.34 for t ∈ [0, T ]. Here below we use all the properties of the matrix norms
given by (B.2)–(B.9).

First of all, let us note that

∥

∥τ ∗τ
∥

∥

1 =
∥

∥ττ ∗
∥

∥

1 = ‖τ‖ 2
2 ,

which follows from the definitions of the two norms and from the positivity of τ ∗τ
and ττ ∗. Moreover, for any matrix A we have



3.4 The Statistical Formulation 65

‖Aτ‖ 2
2 = Tr

{

τ ∗A∗Aτ
} = Tr

{

A∗Aττ ∗
} ≤ ∥

∥A∗A
∥

∥

∥

∥ττ ∗
∥

∥

1 = ‖A‖2 ‖τ‖ 2
2 ,

so that

∥

∥Aτ A∗
∥

∥

2
2 = Tr

{

Aτ ∗A∗Aτ A∗
} = Tr

{

A∗Aτ ∗A∗Aτ
}

≤ ∥

∥A∗Aτ ∗
∥

∥

2

∥

∥A∗Aτ
∥

∥

2 ≤
∥

∥A∗A
∥

∥

∥

∥τ ∗
∥

∥

2

∥

∥A∗A
∥

∥ ‖τ‖2 =
∥

∥A∗A
∥

∥

2 ‖τ‖ 2
2 .

We also set


T := max

⎛

⎝ sup
0≤t≤T

‖H (t)‖ , sup
0≤t≤T

∥

∥

∥

∥

∥

∥

d
∑

j=1

R j (t)
∗R j (t)

∥

∥

∥

∥

∥

∥

⎞

⎠ ; (3.51)

by (3.41), 
T < +∞. Since
∑

j R j (t)∗R j (t) is a sum of positive operators, we have
also

∥

∥R j (t)
∥

∥

2 = ∥

∥R j (t)
∗R j (t)

∥

∥ ≤ 
T . (3.52)

In the case of (3.38) the relevant norm, needed in Hypotheses A.32 and A.34, is
the Hilbert–Schmidt norm. We have

‖L(t)[τ ]‖2 ≤ 2 ‖H (t)τ‖2 +
d
∑

j=1

∥

∥R j (t)τ R j (t)
∗∥
∥

2 +
∥

∥

∥

∥

∥

∥

d
∑

j=1

R j (t)
∗R j (t)τ

∥

∥

∥

∥

∥

∥

2

≤ 2 ‖H (t)‖ ‖τ‖2 +
d
∑

j=1

∥

∥R j (t)
∗R j (t)

∥

∥ ‖τ‖2 +
∥

∥

∥

∥

∥

∥

d
∑

j=1

R j (t)
∗R j (t)

∥

∥

∥

∥

∥

∥

‖τ‖2

≤ (3+ d)
T ‖τ‖2 ,

m
∑

j=1

∥

∥R j (t)[τ ]
∥

∥

2
2 ≤ 2

m
∑

j=1

(

∥

∥R j (t)τ
∥

∥

2
2 +

∥

∥τ R j (t)
∗∥
∥

2
2

)

≤ 4
m
∑

j=1

∥

∥R j (t)
∥

∥

2 ‖τ‖ 2
2 ≤ 4m
T ‖τ‖ 2

2 . (3.53)

These two estimates imply both Hypothesis A.32 and Hypothesis A.34.
The proof of existence and uniqueness of the solution of SDE (3.42) is com-

pletely similar and it is based on the estimates

n
∑

k,l=1

‖L(t) ◦A(t ; s)[|k〉〈l|]‖ 2
2 ≤ (3+ d)2
 2

T

n
∑

k,l=1

‖A(t ; s)[|k〉〈l|]‖ 2
2 ,
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n
∑

k,l=1

m
∑

j=1

∥

∥R j (t) ◦A(t ; s)[|k〉〈l|]∥∥ 2
2 ≤ 4m
T

n
∑

k,l=1

‖A(t ; s)[|k〉〈l|]‖ 2
2 ,

where {|k〉}nk=1 is a basis in H.
The continuity in t of σ (t) and A(t, s) comes from the fact that we are working in

a stochastic basis in usual hypotheses and it is included in Definition A.27 of strong
solution.

Because of the existence of strong solutions and pathwise uniqueness, the
random variable A(t, s) is G

s
t -measurable; then, the statement about the Q-

independence of Fs follows from the independent-increment property of the Wiener
process. Moreover, the two sides of the composition law in (3.47) satisfy the same
SDE (3.42) for t ≤ s and so they are equal by the uniqueness statement of Theorem
A.37. Analogously, σ (t) and A(t, 0)[ρ0] are a.s. equal because they satisfy the same
SDE (3.38) with the same initial condition.

Once the operators H (t) and R j (t) appearing in (3.40) have been fixed and the
stochastic evolution operator As

t solution of the SDE (2.7) with K (t) given by (2.20)

has been constructed, one can check that the map EQ

[

As
t •A

s∗
t

∣

∣G
s
t

]

satisfies the same

SDE as A(t, s). Since a conditional expectation is a completely positive map and

the same is true for a map of the type ρ �→ AρA∗, the map EQ

[

As
t •A

s∗
t

∣

∣G
s
t

]

is

completely positive. Therefore, by the uniqueness in law of the solution of the SDE
(3.42), A(t, s) is completely positive, too. Let us stress that this part of the proof is
not direct but goes through the Hilbert space representation.

We can see the master equation (3.48) as a particular case of SDE; by the prop-
erties of the coefficients and Theorem A.36, for every s ≥ 0 the solution is unique.
Moreover, by Theorem A.37, the mean of A(t, s) exists and the stochastic integral
in (3.42) has mean zero, so that EQ [A(t, s)] is well defined and satisfies (3.48). For
what concerns the composition law, the two sides of (3.50) satisfy the same equa-
tion with the same initial condition; they are equal by uniqueness of the solution.
The continuity in t follows from the integral representation (3.48), the complete
positivity from the same property of A(t, s) and the trace preserving property from
the structure of any Liouville operator, which guarantees Tr{L(r )[τ ]} = 0 for every
operator τ .

The complete positivity of A(t, 0) and ρ ≥ 0, imply σ (t) ≥ 0. By taking the
trace of the linear stochastic master equation (3.38), we get

Tr{σ (t)} = 1+
m
∑

j=1

∫ t

0
2 Re

(

Tr{R j (s)σ (s)}) dW j (s). (3.54)

By the bound (3.41) and the estimate of Theorem A.37 for the process σ , we have
that the integrand in the equation above is in the class M2; therefore, the stochastic
integral is a Q-martingale. Let ρ� be a fixed statistical operator and let us define
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ρ(t) =
{

(Tr{σ (t)})−1 σ (t), if Tr{σ (t)} > 0,

ρ�, if Tr{σ (t)} = 0.

Then, (3.54) can be written as

Tr{σ (t)} = 1+
m
∑

j=1

∫ t

0
Tr{σ (s)}v j (s) dW j (s),

where v j is given by (3.45). The solution of this Doléans equation is unique and it
is given by (3.44). Being of exponential form, it is strictly positive with probability
one. �
Remark 3.5. Let us recall that the adjoint O∗ of a linear map O on Mn is defined by
Tr {τO∗[a]} = Tr {O[τ ]a}, ∀τ, a ∈ Mn . If the map O is completely positive, also
O∗ is such. Note that Tr {τO∗[1]} = Tr {O[τ ]}. See Sect. B.1.2, (B.7), and Section
B.4.1.

Remark 3.6. By the previous remark, the maps A(t, s)∗ and T (t, s)∗ are completely
positive and the trace preserving property of T (t, s) is equivalent to

T (t, s)∗[1] = 1. (3.55)

Remark 3.7. Another important and intuitive property is

EQ

[

σ (t)
∣

∣G
s
t

] = A(t, s)[η(s)]. (3.56)

Indeed, by (3.47) and the fact that A(t, s) is G
s
t -measurable, we have

EQ[σ (t)|Gs
t ] = A(t, s)

[

EQ[σ (s)|Gs
t ]
]

. By the fact that the noises have indepen-

dent increments, we have that σ (s) is independent from G
s
t and EQ[σ (s)|Gs

t ] =
EQ[σ (s)] = η(s). This gives (3.56).

3.4.2 The Physical Probabilities, the A Posteriori
and the A Priori States

Starting from the linear stochastic master equation (3.38) we introduce the physical
probabilities, the a posteriori states and the a priori states. Let us recall that the initial
state at time zero is the statistical operator ρ0 ∈ S(H).

Definition 3.8. We define the quantities

Es
t (G) :=

∫

G
A(t, s;ω)∗[1]Q(dω) ≡ EQ

[

1GA(t, s)∗[1]
]

, G ∈ G
s
t , (3.57)
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P
t
ρ0

(G) := Tr
{

E0
t (G)ρ0

} = EQ [1G Tr {σ (t)}] , G ∈ G
0
t . (3.58)

Proposition 3.9. Es
t is a positive operator-valued measure on the value space

(

Ω, G
s
t

)

and P
t
ρ0

is a probability measure on the value space
(

Ω, G
0
t

)

. The family

of probability measures
{

P
t
ρ0
, t > 0

}

is consistent, i.e. P
t
ρ0

(G) = P
s
ρ0

(G) for any

G ∈ G
0
s with 0 < s < t . Analogously, we have the consistency of the POMs:

0 ≤ s < t < T, G ∈ G
s
t ⇒ Es

t (G) = Es
T (G). (3.59)

Let T be an arbitrary positive time. Under the probability P
T
ρ0

, the processes

̂W j (t) := W j (t)−
∫ t

0
v j (s)ds, j = 1, . . . ,m, t ∈ [0, T ], (3.60)

are independent, (G
0
t )-adapted, standard Wiener processes.

Proof. By the properties of A(t, s) we have

0 ≤ EQ

[

1GA(t, s)∗[1]
] ≤ EQ

[

A(t, s)∗[1]
] = T (t, s)∗[1] = 1. (3.61)

Then, from the Definition (3.57) one can check that all the properties characterising
a POM hold. The consistency of the POMs follows from the composition
property of the propagator A, the independence of 1GA(t, s)∗ and A(T, t)∗ and
T (T, t)∗[1] = 1:

Es
T (G) = EQ

[

1GA(T, s)∗[1]
] = EQ

[

1GA(t, s)∗ ◦A(T, t)∗[1]
]

= EQ

[

1GA(t, s)∗ ◦ T (T, t)∗[1]
] = EQ

[

1GA(t, s)∗[1]
] = Es

t (G).

E0
t being a POM and ρ0 a state, (3.58) defines a probability measure. Consistency

follows from the fact that Tr{σ (t)} is a martingale or from the consistency of the
POMs.

The statement on ̂W (t) is Girsanov theorem. �
The interpretation is the one we have announced in the previous sections.
The observables of the theory are represented by the POMs E0

t and the pre-
measurement state by ρ0. Then, the physical probabilities are defined by (3.58) and
their structure in terms of a POM and a state guarantees that the usual axioms of
quantum mechanics are not violated. Moreover, we can write

P
t
ρ0

(dω) = Tr {σ (t, ω)}Q(dω)
∣

∣

∣

G
0
t

. (3.62)

The value space of the POM E0
t is

(

Ω,G
0
t

)

, but G
0
t is generated by W and this

allows to identify the m-dimensional process W with the output. The output of the
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measurement has to be considered under the physical probability P
T
ρ0

. By Girsanov
formula (3.60), we can see the output as the sum of a Wiener process and of a
process with trajectories of bounded variation,

W j (t) = ̂W j (t)+
∫ t

0
v j (s)ds , j = 1, . . . ,m . (3.63)

Apart from trivial cases, the two terms are not independent.
Furthermore, as in Section 2.4.3, one has that it exists a unique probability Pρ0

on G such that Pρ0

∣

∣

∣

G0
t

= P
t
ρ0

∣

∣

∣

G0
t

, ∀t > 0.

The random statistical operator ρ(t) defined in (3.46) can be consistently inter-
preted as the state of the system at time t conditional on the output observed up to

time t : for every 0 ≤ s ≤ t ≤ T , the conditional probability ̂PT
ρ0

(G|G0
s ) of an event

G ∈ G
s
t (Sect. A.1.2.2) can be computed using the POM Es

t defined by (3.57) and
just ρ(s) as the conditional state of the system at time s. Indeed, taken G ∈ G

s
t , for

all G
0
s -measurable random variables Y we have

E
T
ρ0

[1GY ] = EQ [Tr{σ (t)}1GY ] = EQ

[

Tr
{

EQ[1GA(t, s)|G0
s ]σ (s)

}

Y
]

= EQ

[

Tr
{

EQ[1GA(t, s)]σ (s)
}

Y
] = EQ

[

Tr
{

EQ[1GA(t, s)∗[1l]]σ (s)
}

Y
]

= EQ

[

Tr
{

Es
t (G)σ (s)

}

Y
] = E

T
ρ0

[

Tr
{

ρ(s)Es
t (G)

}

Y
]

.

This proves that Tr
{

ρ(s)Es
t (G)

}

is the conditional expectation of 1G given G
0
s . So,

we have: ∀G ∈ G
s
t , 0 ≤ s ≤ t ≤ T ,

P
T
ρ0

(G|G0
s ) = Tr

{

ρ(s)Es
t (G)

}

. (3.64)

The random state ρ(t) is called a posteriori state.
With this interpretation in mind, we consider again the output W and, thanks

to the representation (3.63), (3.45) we say that Ẇ j (t) is an imprecise measurement
of the quantum observable R j (t) + R j (t)∗ at time t . We shall consider again this
interpretation in Section 4.3.

The mean of the a posteriori state

η(t) := E
T
ρ0

[ρ(t)] = EQ[σ (t)] (3.65)

is the state to be assigned to the system when the result of the observation is not
known or not taken into account; it is known as a priori state. We have

η(0) = ρ0, η(t) = T (t, 0)[ρ0]. (3.66)
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Thus the non-selective dynamics associated to the continuous measurement
(3.38) is governed by the ordinary master equation of Liouvillian L(t).

By using the composition property A(t, 0) = A(t, s) ◦ A(s, 0) and the fact that
A(t, s) and A(s, 0) are Q-independent, we obtain for 0 ≤ s < t ≤ T

EQ[σ (t)|Fs] = T (t, s)[σ (s)], E
T
ρ0

[ρ(t)|Fs] = T (t, s)[ρ(s)]. (3.67)

3.4.3 Back to the Hilbert Space Formulation

Even when the continuous measurement is represented by the SDE (3.38) with coef-
ficients (3.39) and (3.40), where L0 contains dissipative terms not necessarily linked
to the measurement itself, from a mathematical point of view it is always possible
to associate such terms to the unobserved output of some additional measurements
and to go back to the Hilbert space formulation. Of course, there is no uniqueness
in this representation and, eventually, the stochastic basis

(

Ω,F, (Ft ),Q
)

needs to
be enlarged.

Given the linear stochastic master equation (3.38), one fixes a representation for
L0(t) as (3.40c), thus getting the operators H (t) and R j (t), j = m + 1, . . . , d.
Then, one introduces a further (d–m)-dimensional Wiener process, independent of
the previous m-dimensional one and forms a d-dimensional Wiener process W . If
the original stochastic basis is too small to accommodate the new components of the
Wiener process, one has to enlarge the filtration (Ft ) or even the sample space Ω .

Finally, one associates also Wm+1, . . . ,Wd to a continuous measurement on the
quantum system by postulating the stochastic Schrödinger equation (2.28) for its
evolution. This is the unravelling of the stochastic master equation.

By this procedure, one constructs also the stochastic evolution operators As
t in

the Hilbert space H and, by the strong existence and the pathwise uniqueness of the
solutions of the linear stochastic master equation (3.38), one gets

σ (t) = A(t, 0)[ρ0] = EQ

[

A0
t ρ0 A0 ∗

t

∣

∣G
0
t

]

= EQ

[

σ̃ (t)
∣

∣G
0
t

]

, (3.68a)

ρ(t) = E
T
ρ0

[

ρ̃(t)
∣

∣G
0
t

]

. (3.68b)

3.5 The Stochastic Master Equation

By differentiating (3.46) we get a stochastic evolution equation for the a posteriori
states, known in the physical literature as stochastic master equation.

Proposition 3.10. Under the physical probability P
T
ρ0

, the a posteriori states satisfy
the nonlinear SDE

dρ(t) = L(t)[ρ(t)]dt +
m
∑

j=1

[

R j (t)ρ(t)+ ρ(t)R j (t)
∗ − v j (t)ρ(t)

]

d̂W j (t) (3.69)

with initial condition ρ(0) = ρ0 ∈ S(H).
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The quantities v j (t) are real random variables which depend on ρ(t) and are given
by (3.45).

Proof. By using (3.38) and (3.63) we can express the stochastic differential of σ (t)
in terms of the new noise ̂W :

dσ (t) = L(t)[σ (t)]dt +
m
∑

j=1

(

R j (t)σ (t)+ σ (t)R j (t)
∗)d̂W j (t)

+
m
∑

j=1

(

R j (t)σ (t)+ σ (t)R j (t)
∗)v j (t) dt .

From formula (3.44) we have immediately

(Tr{σ (t)})−1 = exp

{

−
m
∑

j=1

[∫ t

0
v j (s)dW j (s)− 1

2

∫ t

0
v j (s)2ds

]}

= exp

{

−
m
∑

j=1

[∫ t

0
v j (s)d̂W j (s)+ 1

2

∫ t

0
v j (s)2ds

]}

;

by Itô formula we get

d (Tr{σ (t)})−1 = − (Tr{σ (t)})−1
m
∑

j=1

v j (t)d̂W j (t).

Finally, by Itô formula for products we get (3.69). �
Let us stress that our starting point was the linear SDE (3.38) for σ (t) in the

stochastic basis
(

Ω,F, (Ft ),Q
)

. Then, we constructed the a posteriori states ρ(t)

by (3.46) and the stochastic basis
(

Ω,G,
(

G
0
t

)

,PT
ρ0

)

. Finally, we showed that, in

this new stochastic basis, ρ(t) satisfies (3.69). So, we have by construction that the
nonlinear SDE (3.69) has a solution in a particular stochastic basis: according to
Definition A.26 we have shown that (3.69) has a weak solution. In Chap. 5 we shall
show that the SDE (3.69) can be extended from S(H) to the whole Mn , has strong
solutions, and can be taken as starting point of the whole theory.

3.6 Summary of Linear Quantum Trajectories

3.6.1 The Master Equation

• The Hilbert space of the quantum system under consideration is H = C
n . The

set of statistical operators is S(H) = {

ρ ∈ Mn : ρ ≥ 0, Tr{ρ} = 1
}

.
• The effective Hamiltonian H (t) and the system operators R j (t), j = 1, . . . , d,

(dissipative terms) are non-random linear operators on H; H (t) is self-adjoint:
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H (t)∗ = H (t). The functions t �→ H (t) and t �→ R j (t) are measurable and,
∀T ∈ (0,+∞),

sup
t∈[0,T ]

‖H (t)‖ < +∞, sup
t∈[0,T ]

∥

∥

∥

∥

∑

j

R j (t)
∗R j (t)

∥

∥

∥

∥

< +∞.

• Let us take 1 ≤ m ≤ d; we introduce the Liouville operator as L(t) = L0(t) +
L1(t), where, ∀τ ∈ Mn ,

L1(t)[τ ] =
m
∑

j=1

(

R j (t)τ R j (t)
∗ − 1

2

{

R j (t)
∗R j (t), τ

}

)

,

L0(t)[τ ] = −i[H (t), τ ]+
d
∑

j=m+1

(

R j (t)τ R j (t)
∗ − 1

2

{

R j (t)
∗R j (t), τ

}

)

.

• The master equation and the composition law:

T (t, s) = Idn +
∫ t

s
L(r ) ◦ T (r, s) dr ,

T (t, r ) = T (t, s) ◦ T (s, r ) , 0 ≤ r ≤ s ≤ t ;

T (t, s) is continuous in t , completely positive and trace preserving.

3.6.2 Reference Probability Space and Filtrations

•
(

Ω,F, (Ft ),Q
)

is a stochastic basis satisfying the usual conditions. We take also

F = F∞ :=
∨

t≥0

Ft . The symbol EQ indicates the expectation with respect to Q

and we set N := {B ∈ F : Q(B) = 0}.
• W = {W (t), t ≥ 0} is a continuous m-dimensional Wiener process defined in

(

Ω,F, (Ft ),Q
)

. The process W has increments independent of the past with
respect to the filtration (Ft ).

• The natural filtration of the increments of W is Gs
t = σ

{

W j (r )−W j (s), r ∈ [s, t],
j = 1, . . . ,m

}

. We set also G := ∨

t≥0 G0
t and NG = {A ∈ G : Q(A) = 0}. The

augmented natural filtration of W in
(

Ω,G,Q
)

is G
s
t := Gs

t ∨NG.

• The filtration {Gs
t , t ∈ [s,+∞)} satisfies the usual conditions; G

s
t is independent

of Fs and G
s
t ⊂ G

0
t ⊂ Ft ⊂ F, for 0 ≤ s ≤ t .
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3.6.3 The Linear Stochastic Master Equation
for Non-normalised States

• The linear stochastic master equation:

⎧

⎪

⎨

⎪

⎩

dσ (t) = L(t)[σ (t)]dt +
m
∑

j=1

R j (t)[σ (t)]dW j (t),

σ (0) = ρ0 ∈ S(H),

R j (t)[τ ] := R j (t)τ + τ R j (t)
∗ , ∀τ ∈ Mn .

• p(t) = Tr{σ (t)} is a mean one Q-martingale, is a.s. strictly positive and can be
written as

p(t) = Tr{σ (t)} = exp

{ m
∑

j=1

[∫ t

0
v j (s)dW j (s)− 1

2

∫ t

0
v j (s)2ds

]}

,

v j (t) := Tr
{(

R j (t)+ R j (t)
∗) ρ(t)

} = 2 Re Tr
{

R j (t)ρ(t)
}

.

• A posteriori states: ρ(t) := (Tr{σ (t)})−1 σ (t).
• The stochastic evolution map and its properties:

dA(t, s) = L(t) ◦A(t, s) dt +
m
∑

j=1

R j (t) ◦A(t, s) dW j (t), A(s, s) = Idn.

A(t, s) is Q-independent of Fs , G
s
t -measurable, completely positive and continu-

ous in t . For 0 ≤ r ≤ s ≤ t one has a.s.

A(t, s) ◦A(s, r ) = A(t, r ), σ (t) = A(t, 0)[ρ0].

• Mean dynamics and a priori states:

T (t, s) = EQ [A(t, s)] , η(t) = EQ[σ (t)] = T (t, 0)[ρ0].

• Master equation:
d

dt
η(t) = L(t)[η(t)].

• Conditioning: 0 ≤ s < t

EQ[σ (t)|Fs] = T (t, s)[σ (s)], EQ

[

σ (t)
∣

∣G
s
t

] = A(t, s)[η(s)].
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3.6.4 The Physical Probability and the POMs

• The POM on the value space
(

Ω, G
s
t

)

:

Es
t (G) = EQ

[

1GA(t, s)∗[1]
]

, G ∈ G
s
t .

The POMs are consistent: 0 ≤ s < t < T , G ∈ G
s
t ⇒ Es

t (G) = Es
T (G).

• The physical probability on the value space
(

Ω, G
0
t

)

:

P
t
ρ0

(G) = EQ [1G p(t)] = Tr
{

E0
t (G)ρ

}

, G ∈ G
0
t .

The physical probabilities are consistent: 0 < s < t , G ∈ G
0
s ⇒ P

t
ρ0

(G) =
P

s
ρ0

(G).
• The new Wiener process and the output: under the law P

T
ρ0

, the processes

̂W j (t) := W j (t)−
∫ t

0
v j (s)ds, j = 1, . . . ,m, t ∈ [0, T ],

are independent, (G
0
t )-adapted, standard Wiener processes. The output is the pro-

cess W (t), 0 ≤ t ≤ T , under the physical probability P
T
ρ0

. More precisely, the
output is the set of the increments of W as explained in Remark 2.16.

• Conditioning: 0 ≤ s < t ≤ T ⇒ E
T
ρ0

[ρ(t)|Fs] = T (t, s)[ρ(s)].

3.6.5 The Nonlinear Stochastic Master Equation
for Normalised States

• The a posteriori states ρ(t) satisfy the stochastic master equation

dρ(t) = L(t)[ρ(t)]dt +
m
∑

j=1

[

R j (t)ρ(t)+ ρ(t)R j (t)
∗ − v j (t)ρ(t)

]

d̂W j (t),

with ρ(0) = ρ0 ∈ S(H).
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Chapter 4
Continuous Measurements and Instruments

In this chapter we complete the task of showing that the SDE approach can be
reduced to the usual formulation of quantum mechanics. The last notion which we
need is the one of “instrument”; its definition, meaning and properties are presented
in Sect. B.4.

We give also the important concept of characteristic operator, a kind of Fourier
transform of the instruments, we show that it satisfies an evolution equation, in some
sense similar to a master equation, and we show how to obtain explicit formulae for
the moments of the output by means of this characteristic operator.

Finally, we introduce the notion of spectrum of a stochastic process and we study
the spectrum of the output of the continuous measurement.

Recall that H = C
n (Assumption 2.1).

4.1 The Instruments

In this section we show how the theory of continuous observations can be reformu-
lated in terms of instruments.

4.1.1 The Construction of the Instruments

Let us start from the formulation based on the linear stochastic master equation, pre-
sented in Sect. 3.4.1. The main equation is the SDE (3.38) for σ (t), its fundamental
solution A(t, s) satisfies Eq. (3.42), all the coefficients are given in Assumption 3.3
and equations (3.39), (3.40) and the natural filtration Gs

t of the m-dimensional
Wiener process W (t) and its augmentation G

s
t are given by (3.43).

Definition 4.1. By using the stochastic evolution map A(t, s), t > s ≥ 0, we define
the map Is

t (G), G ∈ G
s
t , by

Is
t (G) [τ ] := EQ

[

1GA(t, s) [τ ]
]

, ∀τ ∈ Mn . (4.1)
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Proposition 4.2. Equation (4.1) defines an instrument Is
t on the value space

(Ω,G
s
t ). For t > s > r ≥ 0, the following composition law holds:

Ir
t (G1 ∩ G2) = Is

t (G2) ◦ Ir
s (G1) , ∀G1 ∈ G

r
s , ∀G2 ∈ G

s
t . (4.2)

Proof. To see that Is
t is an instrument is easy. By inequality (3.61) and by the lin-

earity and the complete positivity of A(t, s) and of the expectation, Is
t (G) is an

operation. The normalisation is equivalent to the trace preserving property of the
mean dynamics (3.49). The σ -additivity property comes from the properties of the
indicator functions 1G and the continuity of expectations.

By the properties of independence and measurability of A(t, s) given in Theorem
3.4 and by the composition property (3.47), we get

Ir
t (G1 ∩ G2) [τ ] = EQ

[

1G1∩G2A(t, r )[τ ]
]

= EQ

[

EQ

[

1G1 1G2A(t, s) ◦A(s, r ) [τ ]
∣

∣G
s
t

]]

= EQ

[

1G2A(t, s)
[

EQ

[

1G1A(s, r ) [τ ]
∣

∣G
s
t

]]]

= EQ

[

1G2A(t, s)
[

EQ

[

1G1A(s, r )[τ ]
]]]

= EQ

[

1G2A(t, s)
[

Ir
s (G1)[τ ]

]] = Is
t (G2)

[

Ir
s (G1)[τ ]

]

.

�
Remark 4.3.

1. By comparing (4.1) with Eq. (3.57), we see that

Is
t (G)∗ [1] = Es

t (G) ; (4.3)

by (B.30) it means that the positive operator-valued measure (the generalised
observable) associated with the instrument Is

t is the POM Es
t discussed in

Proposition 3.9.
2. By comparing (4.1) with Eq. (3.49) we get the connection of the instrument with

the mean dynamics:

Is
t (Ω) = T (t, s) . (4.4)

3. From Eqs. (4.2) and (4.4), we get, for 0 ≤ r ≤ s < t ≤ u and G ∈ G
s
t ,

Ir
u (G) = I t

u (Ω) ◦ Is
t (G) ◦ Ir

s (Ω) = T (u, t) ◦ Is
t (G) ◦ T (s, r ). (4.5)

4. From the previous points, we get a generalised consistency property for the
POMs:

0 ≤ r ≤ s < t ≤ u, G ∈ G
s
t ⇒ Er

u(G) = T (s, r )∗
[

Es
t (G)

]

. (4.6)
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5. Let us consider now the initial state at time zero ρ0 ∈ S (H) and the physical

probabilities (3.58): we can write for all G ∈ G
0
t

I0
t (G)[ρ0] = EQ[1G σ (t)], (4.7)

P
t
ρ0

(G) = EQ [1G Tr {σ (t)}] = Tr
{

E0
t (G)ρ0

} = Tr
{

I0
t (G)[ρ0]

}

. (4.8)

Remark 4.4. When the equation for matrices are obtained from the Hilbert space
SDEs of Chap. 2, as done in Sections 3.1–3.3, by the uniqueness properties of the
solutions of Eqs. (3.38), (3.42), we have

Is
t (G) [τ ] = EQ

[

1G As
t τ As ∗

t

]

, ∀G ∈ G
s
t , ∀τ ∈ Mn .

4.1.1.1 A Priori States

By Eqs. (3.66) and (4.4), we get the identification

η(t) = T (t, 0)[ρ0] = I0
t (Ω)[ρ0], (4.9)

which says that the a priori state η(t), already introduced in Sect. 3.4.2, is indeed the
a priori state for the instrument I0

t with pre-measurement state ρ0, according to the
general definition (B.33).

4.1.1.2 A Posteriori States

By Eqs. (3.46), (4.8), (4.7), we get ∀G ∈ G
0
t

∫

G
ρ(t, ω)Pt

ρ0
(dω) = E

t
ρ0

[1G ρ(t)] = EQ[1G σ (t)] = I0
t (G) [ρ0] , (4.10)

which says that the a posteriori state ρ(t), already introduced in Eq. (3.46) and
discussed in Sect. 3.4.2, is indeed the a posteriori state for the instrument I0

t with
pre-measurement state ρ0, according to the general definition (B.34).

4.1.2 Interpretation of the Instruments and the Output

4.1.2.1 The Composition Law

Let us consider n events G j ∈G
t j−1

t j
, 0≤ t0< t1< · · ·< tn≤ T . Then, the composition

law (4.2) gives

I0
T (G1 ∩ G2 ∩ · · · ∩ Gn) = T (T, tn) ◦ I tn−1

tn (Gn) ◦ · · · ◦ I t0
t1 (G1) ◦ T (t0, 0) , (4.11)
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P
T
ρ0

(G1 ∩ G2 ∩ · · · ∩ Gn) = Tr
{

I0
T (G1 ∩ G2 ∩ · · · ∩ Gn) [ρ0]

}

= Tr
{

I tn−1
tn (Gn) ◦ · · · ◦ I t0

t1 (G1) [η(t0)]
}

. (4.12)

By comparing this with Eq. (B.41), we can say that, when we have events related
to disjoint time intervals, the continuous measurement can be seen as a time-ordered
sequence of measurements (cf. Sect. B.4.3). Indeed, the class of continuous mea-
surements described in this book were originally obtained just as a limit of repeated
measurements at discrete times [1–3].

Equation (4.11) is a kind of “independence property” at the operator level, but
this does not imply that the physical probabilities (4.12) factorise nor that the output
process is Markovian.

By Eq. (B.42), we have also that the conditional state ρt (G) at time t , given the
result G ∈ G

s
t , 0 ≤ s ≤ t , is

ρt (G) = I0
t (G) [ρ0]

Pt
ρ0

(G)
. (4.13)

By Eq. (4.10), the connection between the conditional state ρt (G) and the a pos-
teriori state ρ(t) is

ρt (G) =
∫

Gρ(t, ω)Pt
ρ0

(dω)

Pt
ρ0

(G)
. (4.14)

If G ∈ G
r
s , 0 ≤ r < s ≤ t , Eqs. (4.9), (4.11), (4.13) give

ρt (G) = T (t, s) ◦ Ir
s (G) [η(r )]

Ps
ρ0

(G)
. (4.15)

4.1.2.2 The Observables of the Continuous Measurement

Let us consider the instrument Is
t and the POM Es

t ; they are measures on the value
space (Ω,G

s
t ). The σ -algebra G

s
t is generated by the increments of the process W

with times inside [s, t], not by the process itself. From the results of the measure-
ment represented by Is

t we cannot reconstruct any information on W (r ), r ∈ [s, t],
unless s = 0 just because we decided that W (0) = 0. As already discussed in
Remark 2.16, the output of the continuous measurement is not exactly the process
W , but the set of all its increments. At a heuristic level, this means that, in an
infinitesimal time interval around t , the output is its time derivative Ẇ (t). However,
Ẇ (t) at a fixed time t is not well defined, because the typical trajectories of the
Wiener process are not differentiable. In this section we show that Ẇ has meaning
as generalised stochastic process. A generalised stochastic process [4, 5] is a linear
random functional on a suitable test function space, as Schwartz space. We can
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say that generalised stochastic processes are the random analog of distributions; as
for distributions, a generalised notion of derivative can be introduced for such pro-
cesses. Our process Ẇ is the first (generalised) derivative of a well behaving process
(the Wiener process under Q), and we know that we can integrate L2-functions; so,
we can use as test functions a space larger than Schwartz space.

Test Functions

Let us introduce L2
loc := L2

loc(R+; R
m), the space of the locally square integrable

functions k from R+ into R
m ; k ∈ L2

loc means that, for all finite t > 0, we have
1(0,t)k ∈ L2((0, t); R

m) =: L2
t . From now on a test function is any element of

L2
loc(R+; R

m).

Observables

Let us take k ∈ L2
loc and 0 ≤ s < t ≤ T . We define the random variables

Xs
t (k) :=

m
∑

j=1

∫ t

s
k j (r ) dW j (r ). (4.16)

By Proposition A.47, the integral above is well defined either under the probability
Q or under P

T
ρ0

. Let us note that Xs
t (k) is G

s
t -measurable and that

Xs
t (k) = X0

T (1(s,t)k).

Either under Q or under P
T
ρ0

, Xs
t (•) is a linear random functional on L2

loc and, so,
it is a generalised stochastic process.

Remark 4.5. Heuristically, (4.16) can be written as Xs
t (k) =∑m

j=1

∫ t
s k j (r )Ẇ j (r )dr

and the generalised process Xs
t (•) is what gives a rigourous meaning to the process

Ẇ . We can say that the time-smoothed quantities (4.16) are the true observables
of the continuous measurement: the output in the time interval [s, t] is the sin-
gular process {Ẇ (r ),r ∈ [s, t]}, which we identify with its rigourous formulation
{Xs

t (k), k ∈ L2
loc}.

Note that a constant k is a possible test function and that, for ki (r ) = δi j , i =
1, . . . ,m, one has Xs

t (k) = W j (t) − W j (s). So, the increments of W are of type
(4.16) and all the other random variables (4.16) are limits of linear combinations
of increments. By this, the two sets of random variables {Xs

t (k), k ∈ L2
loc} and

{W j (r )− W j (s), r ∈ [s, t]} generate the same (augmented) σ -algebra and both can
represent the whole output of the continuous measurement in the time interval [s, t].
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4.1.2.3 Finite Dimensional Laws and Finite Dimensional Instruments

Under the reference probability Q, the real random variable Xs
t (k) is independent

of G
0
s and is normally distributed with zero mean and variance

∑m
j=1

∫ t
s

∣

∣k j (r )
∣

∣

2
dr

(it can be easily obtained by the Itô isometry). More generally, the random vector
(

X0
T (k(1)), . . . , X0

T (k(q))
)

is Gaussian with zero means and covariance matrix

CovQ[X0
T (k(i)), X0

T (k( j))] = 〈k(i)|k( j)〉L2
T
. (4.17)

When the test functions k(1), . . . , k(q) are linearly independent, the covariance
matrix with elements (4.17) is not singular and the distribution of the vector
(

X0
T (k(1)), . . . , X0

T (k(q))
)

has a density with respect to the Lebesgue measure on R
q .

However, we are interested in the random variables (4.16) under the physical
probability P

T
ρ0

. Let us consider a single variable Xs
t (k); by the definition of the

instruments and Eq. (4.12), its cumulative distribution function is given by

P
T
ρ0

[

Xs
t (k) ≤ x

] = Tr
{

I0
T

(

Xs
t (k) ≤ x

)

[ρ0]
} = Tr

{

Is
t

(

Xs
t (k) ≤ x

)

[η(s)]
}

.

(4.18)

This distribution is diffuse on the whole real line and a similar statement hold also
for

(

X0
T (k(1)), . . . , X0

T (k(q))
)

, as the following proposition says.

Proposition 4.6. For 0 ≤ s < t ≤ T and k �= 0, the distribution of Xs
t (k) under P

T
ρ0

is absolutely continuous with respect to the Lebesgue measure on R and its closed
support is R, i.e. there exists a density fXs

t (k)(x) > 0, ∀x ∈ R, such that

P
T
ρ0

[

Xs
t (k) ≤ x

] =
∫ x

−∞
fXs

t (k)(y)dy , ∀x ∈ R.

If k(1), . . . , k(q) are linearly independent elements of L2
T , the distribution of

(

X0
T (k(1)), . . . , X0

T (k(q))
)

under P
T
ρ0

is absolutely continuous with respect to the
Lebesgue measure on R

q and its density can be taken strictly positive ∀x ∈ R
q .

Proof. Let us introduce the laws of Xs
t (k) under Q and P

T
ρ0

:

QX (A) := Q[Xs
t (k) ∈ A], PX (A) := P

T
ρ0

[Xs
t (k) ∈ A], ∀A ∈ B(R).

The probability measures Q and P
T
ρ0

are equivalent, because of Theorem 3.4, and
this implies the equivalence of the two laws; indeed, we have

0 = QX (N ) = Q[Xs
t (k) ∈ N ] ⇔ 0 = P

T
ρ0

[Xs
t (k) ∈ N ] = PX (N ).

The measure QX is a normal distribution on R and, so, it is equivalent to the
Lebesgue measure; then, also PX is equivalent to the Lebesgue measure and has a
density with respect to it.
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By recalling that the closed support of a probability is the smallest closed set
with probability one, we have that the support of PX is the whole real line as for
the normal distribution QX . Then, the density of PX with respect to the Lebesgue
measure can be taken strictly positive everywhere.

The proof of the second part of the proposition follows exactly the same steps as
the first one. �
Remark 4.7.

• The distribution of the random vector
(

X0
T (k(1)), . . . , X0

T (k(q))
)

under P
T
ρ0

is said
to be a finite dimensional law of the generalised stochastic process {X0

T (k), k ∈
L2

T , T ≥ 0}.
• Analogously, we can define the finite dimensional instruments. Let us take the

test functions k(1), . . . , k(q) in L2
loc. Then, the relation

Is
t

(

A; k(1), . . . , k(q)
)

:= Is
t

((

Xs
t (k(1)), . . . , Xs

t (k(q))
) ∈ A

)

, A ∈ B(Rq ),

defines an instrument Is
t

(

•; k(1), . . . , k(q)
)

with value space (Rq ,B(Rq )).
• Obviously, the distribution of

(

X0
T (k(1)), . . . , X0

T (k(q))
)

can be obtained from the
initial state ρ0 and the finite-dimensional instruments by

P
T
ρ0

((

X0
T (k(1)), . . . , X0

T (k(q))
) ∈ A

) = Tr
{

I0
T

(

A; k(1), . . . , k(q)
)

[ρ0]
}

. (4.19)

4.2 Characteristic Functional and Characteristic Operator

An essential tool in probability theory is the notion of characteristic function of a
distribution on some R

q , say. The analogous notion is useful also in the infinite-
dimensional case and for operator-valued measures.

4.2.1 Characteristic Function

4.2.1.1 Characteristic Function of a Distribution

The characteristic function of a joint distribution on R
q is its Fourier transform; so,

if P is a probability measure on
(

R
q ,B(Rq )

)

, the characteristic function of P is

g(k) =
∫

Rq

eik·x
P(dx), k ∈ R

q . (4.20)

Bochner theorem says that there is a one-to-one correspondence between prob-
ability distributions and characteristic functions, which are the complex functions
g such that g(0) = 1, k �→ g(k) is continuous, g is positive definite, which means
∑m

i, j=1 ci g(k(i) − k( j))c j ≥ 0 for any choice of the integer m, of the complex num-
bers ci , and of the vectors k(i).

Another important property is that g ∈ L1
(

R
q ,B(Rq ), dx

)

if and only if the
probability is absolutely continuous with respect to the Lebesgue measure dx :
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P(dx) = f (x)dx . In this case f ∈ L1
(

R
q ,B(Rq ), dx

)

and

g(k) =
∫

Rq

eik·x f (x)dx , f (x) = 1

(2π )q

∫

Rq

e−ik·x g(k)dk . (4.21)

4.2.1.2 Characteristic Function of a Random Vector

Also the notion of characteristic function of a random variable is used; it is sim-
ply the characteristic function of its distribution. Let X be a q-dimensional random
vector: X :

(

Ω,F,P
) → (

R
q ,B(Rq )

)

. The characteristic function φX of X is by
definition the characteristic function of PX (Sect. A.1.1.4) or φX (k) = E

[

eik·X ].
Obviously, from φX one can reobtain only PX , by anti-Fourier transform; from the
characteristic function of a random variable it is not possible to reconstruct the prob-
ability space

(

Ω,F,P
)

and the random variable X itself, as a function on Ω .
When the moments of order r of X exist, then its characteristic function is dif-

ferentiable up to order r and for 1 ≤ m ≤ r

E[X j1 · · · X jm ] = (−i)m ∂mφX (k)

∂k j1 · · · ∂k jm

∣

∣

∣

k=0
. (4.22)

4.2.1.3 Fourier Transform of an Instrument

Similar properties hold for the Fourier transform of an instrument on R
q . Let I be

an instrument with value space
(

R
q ,B(Rq )

)

and define the map on Mn

G(k) =
∫

Rq

eik·xI(dx), k ∈ R
q ; (4.23)

G(k) can be called the characteristic operator of the instrument I.
An analogous of Bochner theorem holds: there is a one-to-one correspondence

between instruments and characteristic operators. Characteristic operators are char-
acterised by the properties: G(0) is trace preserving, k �→ G(k) is continuous,
G is completely positive definite, which means

∑m
i, j=1 ci G(k(i) − k( j))c j is com-

pletely positive for any choice of the integer m, of the complex numbers ci , and of
the vectors k(i). These statements are a finite-dimensional version of Theorem 2.2
in [6].

4.2.2 Characteristic Functional and Finite Dimensional Laws

When processes and generalised processes are involved, the notion of characteristic
functional enters into play, but the situation is much more complicated [5]. Here we
introduce the various notions and results only in the case of our interest.

Let us start by considering the finite-dimensional distributions of Sect. 4.1.2.3.
We fix the test functions k( j) ∈ L2

T , j = 1, . . . , q, with k(1), . . . , k(q) linearly
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independent, and we denote by λ = (λ1, . . . , λq ) the indeterminate in R
q . By setting

Y j := X0
T (k( j)) we obtain a random vector Y = (

Y1, . . . ,Yq
)

in the probability space
(

Ω,G
0
T ,P

T
ρ0

)

, whose characteristic function is

φY (λ) = E
T
ρ0

[

eiλ·Y ] . (4.24)

By Proposition 4.6 and Eq. (4.21), the probability distribution of Y has a density,
given by

fY (y) = 1

(2π )q

∫

Rq

e−iy·λΦY (λ) dλ1 · · · dλq . (4.25)

Now, we have that the observables (4.16) are linear in the test function and we

have λ · Y = ∑q
j=1 λ j X0

T (k( j)) = X0
T

(

∑q
j=1 λ j k( j)

)

. So, if we know the char-

acteristic function of the random variable X0
T (k) as a functional of k, we know in

principle all the finite dimensional distributions; what we obtain in this way is the
notion of characteristic functional.

We define the characteristic functional of the generalised process {Ẇ j , j =
1, . . . ,m} under the probability P

T
ρ0

by

Φt (k|ρ0) := E
T
ρ0

⎡

⎣exp

⎧

⎨

⎩

i
m
∑

j=1

∫ t

0
k j (s)dW j (s)

⎫

⎬

⎭

⎤

⎦ , T ≥ t ≥ 0, (4.26)

or, by using the observables (4.16),

Φt (k|ρ0) = E
T
ρ0

[

eiX0
t (k)

]

. (4.27)

We are considering Φt (k|ρ0) as a functional of the test function k ∈ L2
loc; obvi-

ously, it is a function also of t ≥ 0 and of ρ0 ∈ S(H), but not of T by the consistency
of the probabilities.

Then, the characteristic function of the random vector Y given above is

φY (λ) = φT

(

∑q
j=1 λ j k( j)

∣

∣

∣ ρ0

)

(4.28)

and the characteristic functional gives all the finite-dimensional distributions of
X0

T (•) introduced in Remark 4.7.
As we can take test functions of the form ki (t) = δi j∗1[0,t∗](t) for all possible

choices of j∗ and t∗, we have that the characteristic functional Φt (•|ρ0) determines
all the finite-dimensional distributions of the continuous process W and, by Remark
A.13, the whole law of W as a random variable with values in the trajectory space
(

Cm
0 (0, t),Ct

)

.
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4.2.3 Characteristic Operator

The notion of characteristic operator was introduced and exploited in [1, 2, 7], where
the theory of continuous measurements of diffusive type was firstly established; for
applications and developments, see also [6, 8–13]. The definition of this new notion
is strictly parallel to the definition of characteristic functional.

Definition 4.8. For k ∈ L2
loc we define the characteristic operator G(t, r ; k) of the

continuous measurement, defined by the instrument Ir
t and by the output {Ẇ (s), s ∈

[r, t]}, by: ∀a, τ ∈ Mn

Tr {a G(t, r ; k)[τ ]} =
∫

Ω

exp

{

i
m
∑

j=1

(

∫ t

r
k j (s)dW j (s)

)

(ω)

}

Tr
{

a Ir
t (dω)[τ ]

}

.

(4.29)

First of all, the characteristic operator is connected to the characteristic functional
(4.26) by

Φt (k|ρ) = Tr {G(t, 0; k)[ρ0]} . (4.30)

From the definition of characteristic operator (Definition 4.8) and Eqs. (4.7),
(4.10) we have also

G(t, 0; k)[ρ0] = EQ

⎡

⎣exp

⎧

⎨

⎩

i
m
∑

j=1

∫ t

0
k j (s)dW j (s)

⎫

⎬

⎭

σ (t)

⎤

⎦

= E
T
ρ0

⎡

⎣exp

⎧

⎨

⎩

i
m
∑

j=1

∫ t

0
k j (s)dW j (s)

⎫

⎬

⎭

ρ(t)

⎤

⎦ .

(4.31)

Let us now study the properties of the characteristic operator. By using the rep-
resentation of the instrument given in Definition 4.1 or the one given in Remark 4.4,
we obtain

G(t, r ; k)[τ ] = EQ

[

eiXr
t (k)A(t, r )[τ ]

] = EQ

[

eiXr
t (k) Ar

t τ Ar∗
t

]

. (4.32)

For k ≡ 0, we get immediately from Eqs. (4.29) and (4.4)

G(t, r ; 0) = Ir
t (Ω) = T (t, r ) . (4.33)

Proposition 4.9. The characteristic operator is normalised, in the sense that
G(t, r ; 0) preserves the trace, i.e. Tr {G(t, r ; 0)[τ ]} = Tr {τ }, ∀τ ∈ Mn.

The characteristic operator is completely positive definite, which means that the
maps

∑q
i, j=1 ci G(t, r ; k(i) − k( j))c j are completely positive for any choice of the

integer q, of the complex numbers ci , and of the test functions k(i).
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Proof. The normalisation follows from Eq. (4.33) and the fact that the mean dynam-
ics is trace preserving (Theorem 3.4).

By the definition of characteristic operator we get
q
∑

i, j=1

ciG(t, r ; k(i) − k( j))c j

=
∫

Ω

∣

∣

∣

∣

∣

q
∑

i=1

ci exp

{

i
m
∑


=1

(

∫ t

r
k(i)

 (s)dW
(s)

)

(ω)

}

∣

∣

∣

∣

∣

2

Ir
t (dω) (4.34)

and the second statement follows from the complete positivity of the instrument.
�

Proposition 4.10. Let us take t>s>r≥0 and k∈ L2
loc. The characteristic operator

satisfies the composition law

G(t, r ; k) = G(t, s; k) ◦ G(s, r ; k) (4.35)

and the linear equation

G(t, r ; k) = Idn +
∫ t

r
Λs

(

k(s)
) ◦ G(s, r ; k) ds , (4.36)

Λt (k) := L(t)+
m
∑

j=1

(

ik jR j (t)− 1

2
k2

j Idn

)

, (4.37)

where Idn is the identity operator on Mn and R j (t)[ρ] = R j (t)ρ + ρR j (t)∗, as
already defined in Eq. (3.39). The solution of (4.36) is unique.

Proof. By the properties of independence and measurability of A(t, s) given in The-
orem 3.4 and by the composition property (3.47), we get

G(t, r ; k)[τ ] =EQ

[

exp

{

i
m
∑

j=1

∫ t

r
k j (u)dW j (u)

}

A(t, s) ◦A(s, r )[τ ]

]

=EQ

[

exp

{

i
m
∑

j=1

∫ t

s
k j (u)dW j (u)

}

×A(t, s)

[

EQ

[

exp

{

i
m
∑

j=1

∫ s

r
k j (u)dW j (u)

}

A(s, r )[τ ]

∣

∣

∣

∣

G
s
t

]]]

= EQ

[

exp

{

i
m
∑

j=1

∫ t

s
k j (u)dW j (u)

}

×A(t, s)

[

EQ

[

exp

{

i
m
∑

j=1

∫ s

r
k j (u)dW j (u)

}

A(s, r )[τ ]

]]]
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= EQ

[

exp

{

i
m
∑

j=1

∫ t

s
k j (u)dW j (u)

}

A(t, s)
[

G(s, r ; k)[τ ]
]

]

= G(t, s; k)
[

G(s, r ; k)[τ ]
]

.

To prove (4.36), let us introduce the matrix-valued stochastic process

x(t) := exp

{

i
m
∑

j=1

∫ t

r
k j (s)dW j (s)

}

A(t, r )[τ ].

By Itô formula and Eq. (3.42), we get

dx(t) =
∑

j

{

ik j (t)x(t)dW j (t)− 1

2
k j (t)

2x(t)dt

}

+ L(t)[x(t)]dt

+
∑

j

{(

R j (t)x(t)+ x(t)R j (t)
∗) dW j (t)+ ik j (t)

(

R j (t)x(t)+ x(t)R j (t)
∗) dt

}

.

By the bounds in Assumption 3.3 and the fact that the exponential factor in
x(t) has modulus one, the stochastic integrals have zero mean. By the fact that
EQ[x(t)] = G(t, r ; k)[τ ], we get (4.36), (4.37).

Uniqueness of the solution follows from the fact that (4.36) is a linear equation
in a finite-dimensional space and from all the bounds given on the time growth of
the coefficients. �
Remark 4.11. In the continuity points t of Λt

(

k(t)
)

, we can also write

d

dt
G(t, s; k) = Λt

(

k(t)
) ◦ G(t, s; k) , G(s, s; k) = Idn . (4.38)

We can say that the Fourier transform of the instruments describing the continu-
ous measurement satisfies a kind of modified master equation (recall that Λt (0) =
L(t)).

The fact that the characteristic operator satisfies an evolution equation is the first
big advantage with respect to the characteristic function. The second one is that it
determines the instruments.

4.2.4 One-to-One Correspondence Between Characteristic
Operators and Instruments

Remark 4.12. As the characteristic functional determines the finite-dimensional
distributions of {X0

T (k), k ∈ L2
T , T ≥ 0}, by the discussion in Sect. 4.2.1.3
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the characteristic operator (4.29) determines the finite-dimensional instruments
Is

t

(

A; k(1), . . . , k(q)
)

introduced in Remark 4.7.

Equation (4.1) defines the instruments Is
t with value space (Ω,G

s
t ). This is an

abstract value space. We started with a continuous, standard, m-dimensional Wiener
process W living in a stochastic basis with sample space Ω and we constructed the
two-times, augmented, natural filtration G

s
t of W . The whole construction implicitly

says that no physical consequence depends on the arbitrariness in the choices of
Ω, W , etc. We can obtain uniqueness of the correspondence between characteristic
operators and instruments only by fixing in some ‘canonical’ way the value space of
the instrument. Let us consider here the canonical realisation of the Wiener process
described in Remark A.23.

Remark 4.13. Let Y := Cm
0 (0,∞) be the space of all R

m-valued continuous func-
tions y on [0,+∞) starting from the origin at time 0. Let us introduce the canonical
projections Π (t) : Y → R

m , Π (t, y) := y(t), 0 ≤ t < +∞ and the σ -algebras
FΠ (r, t) := σ (Π (s) −Π (r ), s ∈ [r, t]). We can also consider the Wiener measure
PW on

(

Y, FΠ (0,∞)
)

and its null sets; with these things, we introduce also the

augmented σ -algebras F
Π

(r, t).

Then, we have the following theorem.

Theorem 4.14. Given a family of operators G(t, r ; k), 0 ≤ r ≤ t , k ∈ L2
loc, defined

by Eqs. (4.36) and (4.37), there exists a unique instrument ̂Ir
t on Mn with value

space
(

Y,FΠ (r, t)
)

such that, ∀a, τ ∈ Mn,

Tr {a G(t, r ; k)[τ ]} =
∫

Y

exp

{

i
m
∑

j=1

(

∫ t

r
k j (s)dΠ j (s)

)

(y)

}

Tr
{

âIr
t (dy)[τ ]

}

.

Moreover, for t > s > r ≥ 0, the following composition law holds:

̂Ir
t (F1 ∩ F2) = ̂Is

t (F2) ◦̂Ir
s (F1) , ∀F1 ∈ FΠ (r, s), ∀F2 ∈ FΠ (s, t). (4.39)

The instrument ̂Ir
t has a unique extension to

(

Y,F
Π

(r, t)
)

and the analog of the

composition property (4.39) holds.

We do not give the proof here; we only say that the statement can be obtained by
putting together (i) Theorem 2.2 in [6] about characteristic operators for instruments
on spaces of distributions, (ii) the fact that Cm(0, T ) is a ‘measurable’ subset of the
distribution space on (0, T ) [5, p. 21], and (iii) the uniqueness of the solution of
Eq. (4.36).

Remark 4.15. The instruments introduced in the theorem above are connected to
the instruments (4.1) by the following construction: for any A ∈ FΠ (r, t) we
define the event G A := {ω ∈ Ω : (s �→ W (s, ω)−W (r, ω), s ∈ [r, t]) ∈ A}; then,
̂Ir

t (A) = Ir
t (G A). Moreover, the instruments ̂Ir

t and Ir
t give rise to the same finite-

dimensional instruments.
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4.3 Moments

When one has to do with random variables or stochastic processes, the moments
play often a key role, for theoretical developments and practical applications. The
output of a continuous measurement is a stochastic process (in the classical sense)
and, so, its moments can be introduced in the usual way for stochastic processes,
without any ad hoc “quantum” definition; in particular, the mean and covariance
functions can be studied. Our approach through the characteristic operator gives
an elegant way of obtaining the expressions of the moments of the output of the
continuous measurement [1, 2, 6, 9, 10, 14].

4.3.1 The Mean

By Proposition 3.9 and Eq. (3.63) we get

E
T
ρ0

[W j (t)] = E
T
ρ0

[

̂W j (t)+
∫ t

0
v j (s)ds

]

=
∫ t

0
E

T
ρ0

[v j (s)]ds ;

then, by Eqs. (3.45), (3.46), (3.58), (3.65), we obtain

E
T
ρ0

[v j (s)] = EQ

[

Tr
{(

R j (s)+ R j (s)∗
)

σ (s)
}]

= Tr
{(

R j (s)+ R j (s)∗
)

EQ [σ (s)]
} = Tr

{(

R j (s)+ R j (s)∗
)

η(s)
}

.

So, we have

E
T
ρ0

[W j (t)] =
∫ t

0
Tr
{(

R j (s)+ R j (s)∗
)

η(s)
}

ds , (4.40)

or

d

dt
E

T
ρ0

[W j (t)] = Tr
{(

R j (t)+ R j (t)
∗) η(t)

}

, (4.41)

which is the “quantum mean” on the a priori state of the self-adjoint operator R j (t)+
R j (t)∗; we call (4.41) the a priori mean.

From these equations we get the mean of an observable defined by the Wiener
integral (4.16):

E
T
ρ0

[

X0
T (k)

] =
m
∑

j=1

∫ T

0
k j (s) Tr

{(

R j (s)+ R j (s)∗
)

η(s)
}

ds . (4.42)

Also the conditional means are of interest; by (3.67) we get
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E
T
ρ0

[W j (t)−W j (s)|Fs] =
∫ t

s
E

T
ρ0

[v j (r )|Fs]dr

=
∫ t

s
Tr
{(

R j (r )+ R j (r )∗
)

T (r, s)[ρ(s)]
}

dr. (4.43)

Finally, by derivative and limit we get the a posteriori means

lim
s↑t

d

dt
E

T
ρ0

[W j (t)−W j (s)|Fs] = Tr
{(

R j (t)+ R j (t)
∗) ρ(t)

}

. (4.44)

By the fact that ρ(t) is the a posteriori state at time t , we interpret Ẇ j (t) as an
imprecise measurement of the quantum observable R j (r ) + R j (r )∗ at time t , as
already anticipated in Sect. 2.4.

4.3.2 Higher Moments

The best way to have the higher moments is to go through the characteristic func-
tional (4.26) and to obtain them by functional differentiation:

E
T
ρ0

[

Ẇ j1 (t1)Ẇ j2 (t2) · · · Ẇ jq (tq )
] = (−i)q δqΦt (k|ρ0)

δk j1 (t1) δk j2 (t2) · · · δk jq (tq )

∣

∣

∣

k=0
. (4.45)

By choosing for k a step function, different from zero only in suitable “small
intervals”, and by using the composition law (4.35) and the expression of Λt (k), we
can compute the functional derivatives above. The result for the mean is obviously
Eq. (4.40), while for the second moments we get

E
T
ρ0

[Ẇ j (t)Ẇi (s)] =δi j δ(t − s)

+ 1(0,+∞)(t − s) Tr
{

R j (t) ◦ T (t, s) ◦Ri (s) ◦ T (s, 0)[ρ0]
}

+ 1(0,+∞)(s − t) Tr
{

Ri (s) ◦ T (s, t) ◦R j (t) ◦ T (t, 0)[ρ0]
}

.

(4.46)

Let us take k, h ∈ L2
loc; then, from (4.46) we get

E
T
ρ0

[

X0
T (k)X0

T (h)
] =

m
∑

j=1

∫ T

0
k j (s)h j (s)ds

+
m
∑

i, j=1

∫ T

0
dt
∫ t

0
ds h j (t)ki (s) Tr

{

R j (t) ◦ T (t, s) ◦Ri (s)[η(s)]
}

+
m
∑

i, j=1

∫ T

0
dt
∫ T

t
ds h j (t)ki (s) Tr

{

Ri (s) ◦ T (s, t) ◦R j (t)[η(t)]
}

,
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E
T
ρ0

[

X0
T (k)X0

T (h)
] =

m
∑

j=1

∫ T

0
k j (s)h j (s)ds +

m
∑

i, j=1

∫ T

0
dt
∫ t

0
ds
[

h j (t)ki (s)

+ hi (s)k j (t)
]

Tr
{

R j (t) ◦ T (t, s) ◦Ri (s)[η(s)]
}

. (4.47)

In particular, we have

E
T
ρ0

[W j (t)Wi (s)] = (t ∧ s) δi j +
∫ t∧s

0
dr1

∫ r1

0
dr2 Tr

{[

R j (r1) ◦ T (r1, r2) ◦Ri (r2)

+Ri (r1) ◦ T (r1, r2) ◦R j (r2)
] ◦ T (r2, 0)[ρ0]

}

+ 1(0,+∞)(t − s)
∫ t

s
dr1

∫ s

0
dr2 Tr

{

R j (r1) ◦ T (r1, r2) ◦Ri (r2) ◦ T (r2, 0)[ρ0]
}

+ 1(0,+∞)(s − t)
∫ s

t
dr1

∫ t

0
dr2 Tr

{

Ri (r1) ◦ T (r1, r2) ◦R j (r2) ◦ T (r2, 0)[ρ0]
}

,

(4.48)

E
T
ρ0

[W j (t)
2] = t + 2

∫ t

0
dr1

∫ r1

0
dr2 Tr

{

R j (r1)

◦ T (r1, r2) ◦R j (r2) ◦ T (r2, 0)[ρ0]
}

. (4.49)

A rigourous proof of the formulae giving the first two moments, avoiding con-
cepts as functional derivatives of time-ordered products, is based on the following
proposition.

Proposition 4.16. Let us set

J (t, k) :=
∑

j

k j (t)R j (t); (4.50)

then, the following identities hold:

− i
d

dλ
G(t, r ; λk)

∣

∣

∣

λ=0
=
∫ t

r
T (t, s) ◦ J (s, k) ◦ T (s, r ) ds, (4.51)

−∂
2 Tr {G(t, r ; λ1k + λ2h)[τ ]}

∂λ1∂λ2

∣

∣

∣

λ=0
=

m
∑

j=1

∫ t

r
k j (s)h j (s)ds Tr{τ }

+
∫ t

r
ds

∫ s

r
du Tr {J (s, k) ◦ T (s, u) ◦ J (u, h) ◦ T (u, r )[τ ]}

+
∫ t

r
ds

∫ s

r
du Tr {J (s, h) ◦ T (s, u) ◦ J (u, k) ◦ T (u, r )[τ ]} . (4.52)
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Proof. Let us set X (t, r, k) := ∫ t
r T (t, s)◦J (s, k)◦T (s, r ) ds and use the evolution

equation (3.48) for T (t, s); we get

X (t, r, k) =
∫ t

r
ds

(

Idn +
∫ t

s
duL(u) ◦ T (u, s)

)

◦ J (s, k) ◦ T (s, r )

=
∫ t

r
ds J (s, k) ◦ T (s, r )+

∫ t

r
du L(u) ◦

∫ u

s
ds T (u, s) ◦ J (s, k) ◦ T (s, r )

=
∫ t

r
ds J (s, k) ◦ T (s, r )+

∫ t

r
ds L(s) ◦ X (s, r, k).

Let us set

Y(t, r, k) := −i
d

dλ
G(t, r ; λk)

∣

∣

∣

λ=0

and note that

G(s, r ; λk)
∣

∣

∣

λ=0
= T (s, r ), Λt

(

λk(t)
)∣

∣

λ=0 = L(t),

−i
d

dλ
Λt

(

λk(t)
)

∣

∣

∣

λ=0
= J (t, k).

Then, from Eq. (4.36) we get

Y(t, r, k) =
∫ t

r
ds J (s, k) ◦ T (s, r )+

∫ t

r
ds L(s) ◦ Y(s, r, k).

Finally we have

X (t, r, k)− Y(t, r, k) =
∫ t

r
ds L(s) ◦ (X (s, r, k)− Y(s, r, k)) .

By the uniqueness of the solution of such a linear equation we get X (t, r, k) −
Y(t, r, k) = 0, which is the identity (4.51).

By using Tr {L(t)[τ ]} = 0 and Eq. (4.51) we obtain

−i
∂

∂λ1
Tr {G(t, r ; λ1k + λ2h)[τ ]}

∣

∣

∣

λ1=0

=
∫ t

r
ds Tr

{

[J (s, k)+ iλ2k(s) · h(s)] ◦ G(s, r ; λ2h)[τ ]

− i

[

iλ2J (s, h)− 1

2
λ2

2 |h(s)|2
]

◦ ∂

∂λ1
G(s, r ; λ1k + λ2h)[τ ]

∣

∣

∣

λ1=0

}

.

By taking the derivative also with respect to λ2 we get
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− ∂2

∂λ1∂λ2
Tr {G(t, r ; λ1k + λ2h)[τ ]}

∣

∣

∣

λ=0
=
∫ t

r
ds Tr

{

J (s, k)

◦ X (s, r ; h)[τ ]+ k(s) · h(s) T (s, r )[τ ]+ J (s, h) ◦ X (s, r ; k)[τ ]

}

;

T (s, r ) being trace preserving, we get the last identity. �
Let us note that

E
T
ρ0

[

X0
T (k)

] = −i
d

dλ
ΦT (λk|ρ0)

∣

∣

∣

λ=0
= Tr

{

−i
d

dλ
G(T, 0; λk)

∣

∣

∣

λ=0
[ρ0]

}

.

By using Eq. (4.51) and the fact that T (T, s) is trace preserving, we get again the
expression (4.42) for the mean value.

Moreover, we have

E
T
ρ0

[

X0
T (k)X0

T (h)
] = −∂

2ΦT (λ1k + λ2h|ρ0)

∂λ1∂λ2

∣

∣

∣

λ=0

= −∂
2 Tr {G(T, 0; λ1k + λ2h)[ρ0]}

∂λ1∂λ2

∣

∣

∣

λ=0
.

By using Eq. (4.52), we get the expression (4.47) for the second moment.

4.4 Classical Post-measurement Processing

Up to now we have considered as ideal output of the measurement the generalised
process Ẇ (t), t ≥ 0, but it is possible that the true signal is some functional of it
due to some post-measurement processing or to some imperfections in the measur-
ing apparatus, which modifies in some way the output and eventually loses some
information. We can say that there is a classical transformation of the output when
the true output X (t) is a functional of {Ẇ (s), 0 ≤ s ≤ t}, in particular a linear
functional, which is the case we shall consider in the following subsections.

4.4.1 Time-Local Transformations

Let us start by transformations which are local in time. Let the output be given by
the generalised process Ẋi (t) =

∑m
j=1 Ci j (t)Ẇ j (t) + ai (t), i = 1, . . . ,m ′, or, in

integral form,

Xi (t) =
m
∑

j=1

∫ t

0
Ci j (s)dW j (s)+

∫ t

0
ai (s)ds , i = 1, . . . ,m ′ , (4.53)
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where Ci j (t), ai (t) ∈ R and the functions t �→ C(t) and t �→ a(t) are measurable
and bounded in any finite interval.

Obviously, the distribution of the new output up to time T can be obtained from
the physical probability P

T
ρ0

. To get information on this distribution it is convenient
to study the expression of the characteristic operator of the continuous measurement
with output Ẋ , which can be defined by analogy with (4.29).

Let us define the integrals with respect to dXi (s) as an integral with respect to
a Wiener process and an integral with respect to time, either under the physical
probability or under the reference probability, i.e. for k ∈ L2

loc

∫ t

r
k j (s)dX j (s) =

∫ t

r
k j (s)

[ m
∑

i=1

C ji (s) dWi (s)+ a j (s) ds

]

=
∫ t

r
k j (s)

[ m
∑

i=1

C ji (s)d̂W j (s)+
( m
∑

i=1

C ji (s)vi (s)+ a j (s)

)

ds

]

.

(4.54)

Then, the characteristic operator for the output Ẋ in the time interval [r, t] is
defined by: ∀a, τ ∈ Mn

Tr {a GX (t, r ; k)[τ ]} :=
∫

Ω

exp

{

i
m ′
∑

j=1

(

∫ t

r
k j (s)dX j (s)

)

(ω)

}

Tr
{

a Ir
t (dω)[τ ]

}

.

(4.55)
In particular, we have

GX (t, 0; k)[ρ0] = E
T
ρ0

[

exp

{

i
m ′
∑

j=1

∫ t

0
k j (s)dX j (s)

}

ρ(t)

]

= EQ

[

exp

{

i
m ′
∑

j=1

∫ t

0
k j (s)dX j (s)

}

σ (t)

]

. (4.56)

By Itô calculus, exactly as in the proof of Proposition 4.10, one gets that
GX (t, r ; k) satisfies an evolution equation analogous to (4.36) with generator

ΛX
t (k) := L(t)+ i

m ′
∑

j=1

k j

[

m
∑

i=1

C ji (t)Ri (t)+ a j (t)Idn

]

− 1

2

m ′
∑

i, j=1

ki
(

C(t)C(t)T)

i j k j Idn . (4.57)

Note that (4.57) is only a slight generalisation of the generator (4.37); this form
was found in the original papers [1, 2, 7, 13]. It is possible even to have “infinitely
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many” observed channels, with a discrete or continuous label. For instance the label
denoting the channel could be the direction of propagation of the photons emitted
by the system.

Propositions 4.9, 4.10 and Theorem 4.14 hold true also for the characteristic
operator GX (t, r ; k), with the only change that m is substituted everywhere by m ′.
In particular, GX (t, r ; k) satisfies the composition law (4.35) and determines in a
unique way a family of instruments on the canonical space of continuous trajectories
Y := Cm ′

0 (0,∞).

4.4.1.1 Invertible Transformations

Let us now consider the case in which the transformation (4.53) is invertible, i.e.
m ′ = m and

|det C(t)| > c > 0 , ∀t ≥ 0 . (4.58)

By the invertibility of C , we have

W j (t) =
m
∑

i=1

∫ t

0

(

C(s)−1)

j i [dXi (s)− ai (s)ds] .

Then, observing X or W is the same: the natural σ -algebras of W and X coincide,
the measurement is represented by the same family of instruments on Ω and the a
posteriori states are the same.

4.4.1.2 Rotation and Translation of the Output

Let us now show that pure rotations of the output and translations can always be
reabsorbed in a change of the model.

Let D(t) be a rotation matrix on R
m : D(t)T = D(t)−1; we introduce also α(t) ∈

C
m . The functions t �→ D(t) and t �→ α(t) are measurable and such that

sup
t∈[0,T ]

m
∑

j=1

∣

∣α j (t)
∣

∣

2
< +∞ , ∀T > 0 .

Let us define

˜R j (t) :=
m
∑

i=1

D ji (t)Ri (t)+ α j (t), (4.59)

˜H (t) := H (t)+ i

2

m
∑

i, j=1

D ji (t)
[

α j (t)Ri (t)
∗ − α j (t)Ri (t)

]

, (4.60)
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˜W j (t) :=
m
∑

i=1

∫ t

0
D ji (s)dWi (s); (4.61)

˜W is an m-dimensional Wiener process under the original reference probability Q.
Let us construct again all our objects (physical probabilities, a posteriori states,

output, etc.), but everywhere we make the substitutions

R j (t) → ˜R j (t) , j = 1 . . . ,m, H (t) → ˜H (t) , W → ˜W .

Then, we get that the dynamics does not change,

˜L(t) = L(t) , ˜T (t, s) = T (t, s) ,

and that the characteristic operator of the output d˜W j/dt, j = 1, . . . ,m, turns out
to be generated by

˜Λt (k)[τ ] = ˜L(t)[τ ]+
m
∑

j=1

(

ik j ˜R j (t)[τ ]− 1

2
k2

j τ

)

= L(t)[τ ]

+ i
m
∑

j=1

k j

[

m
∑

i=1

D ji (t)Ri (t)[τ ]+ 2
(

Reα j (t)
)

τ

]

− 1

2

m
∑

j=1

k 2
j τ . (4.62)

So we have ˜Λt (k) = ΛX
t (k) with the choice

Xi (t) =
m
∑

j=1

∫ t

0
Di j (s)dW j (s)+ 2 Re

∫ t

0
αi (s)ds , i = 1, . . . ,m . (4.63)

The conclusion is that the new model with the -̃quantities and output {d˜W j/dt,
j = 1, . . . ,m} gives the same physical results (probabilities and a posteriori states)
as the original model with output Ẋ (4.63), which in turn is equivalent to the original
model with output {Ẇ j , j = 1, . . . ,m}, because of the invertibility of the rotations
D(t).

4.4.1.3 Rotation and Loss of Information

In Sect. 3.4.2 we considered the possibility that not all the d channels are observed;
the observed channels were the first m ones. A similar situation happens when there
is first a rotation of the output and then some component is ignored.

Let us take the situation described above with αi (t) = 0; we have a pure rota-
tion of the output. The generator associated to the model with the rotated out-
put

∑m
i=1 D ji (t)Ẇi (t) is given by (4.62) without the α’s. Then, we assume that

1 ≤ r < m and that the last m−r components of the transformed output are ignored.
To ignore a component of the output is to take equal to zero the corresponding
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component of the test function in the characteristic operator. So, the generator of
the resulting model is

˜Λt (k)[τ ] =˜L(t)[τ ]+
r
∑

j=1

(

ik j ˜R j (t)[τ ]− 1

2
k2

j τ

)

=L(t)[τ ]+ i
r
∑

j=1

k j

m
∑

i=1

D ji (t)Ri (t)[τ ]− 1

2

r
∑

j=1

k 2
j τ , (4.64)

where

˜R j (t) =
m
∑

i=1

D ji (t)Ri (t), ˜H (t) = H (t). (4.65)

4.4.1.4 Decoupled Channels

There are situations in which some of the channels do not carry any information on
the quantum system, but are pure noise. A typical situation is when

R j (t) = β j (t)R(t), (4.66)

where R(t) is an operator and the β j (t)’s are complex functions.

Case Reβ(t) Parallel to Imβ(t)

If the vector with components Reβ j (t) is parallel to the vector with components
Imβ j (t) it is possible to reduce the model to one effective channel and m − 1
pure noises. Indeed, it is possible to find a rotation D(t) such that D(t)β(t) =
(ζ (t), 0, . . . , 0)T and this gives the generator

˜Λt (k)[τ ] = L(t)[τ ]+ ik1
(

ζ (t)R(t)τ + ζ (t)τ R(t)∗
)− 1

2

m
∑

j=1

k 2
j τ , (4.67)

which says that the components from 2 to m of the rotated output are pure Wiener
processes also under the physical probabilities.

Case Reβ(t) Not Parallel to Imβ(t)

Now Reβ(t) and Imβ(t) span a bi-dimensional space and it is possible to find a
rotation D(t) such that D(t)β(t) = (ζ1(t), ζ2(t), 0, . . . , 0)T. In this case we obtain
two effective channels and m − 2 channels decoupled from the quantum system:
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˜Λt (k)[τ ] = L(t)[τ ]+ i
2
∑

j=1

k j
(

ζ j (t)R(t)τ + ζ j (t)τ R(t)∗
)− 1

2

m
∑

j=1

k 2
j τ . (4.68)

4.4.2 Response with Time Delay

In physical applications it is likely that the apparatus has not a perfect time resolu-
tion, but that it gives some time-smoothing of the output and some time delay. The
typical form of the output process is something like

Yi (t) =
m
∑

j=1

∫ t

0
Ci j (t, s)dW j (s)+

∫ t

0
ai (t, s)ds , i = 1, . . . ,m ′ , (4.69)

where Ci j (t, s) and ai (t, s) are deterministic functions. Here we mean that the output
at time t is exactly Y (t), not its time derivative. The matrix C can be called the
response function of the apparatus.

Apart from the deterministic additive term
∫ t

0 ai (t, s)ds, the random variables
Yi (t), i = 1, . . . ,m ′, t ≥ 0, defined in (4.69), are a subset of the observables (4.16).
We can say that the response of the apparatus eventually introduces some restrictions
on the possible test functions. If the σ -algebra generated by the process (4.69) is
strictly smaller than the σ -algebra generated by W we are losing information due to
the imperfections of the apparatus. If the two σ -algebras are equal (4.69) gives only
a transformation of the output, equivalent to W or to the whole set of observables
(4.16); the set of a posteriori states does not change.

A good model for the response with time delay is an exponential. Let us take Eq.
(4.69) with m = m ′, ai (t, s) = 0, Ci j (t, s) = e−�i (t−s) Di j , �i > 0, D invertible;
then, we have that the physical output is

Yi (t) =
m
∑

j=1

∫ t

0
e−�i (t−s) Di j dW j (s) , i = 1, . . . ,m . (4.70)

But this transformation is invertible; indeed, we have

W j (t) =
m
∑

i=1

(D−1) j i

∫ t

0
[dYi (s)+ �i Yi (s)ds] . (4.71)

This implies that the natural filtrations of Y and W coincide and there is no loss of
information in considering only the physical response with time delay. Then, there
is no change in the equations for a posteriori states.

The constant � controls the time resolution. For �i ↓ 0 we get Yi (t) →
∑m

j=1 Di j W j (t), a very bad time resolution. For �i ↑ +∞ we get the formal limit



100 4 Continuous Measurements and Instruments

�i Xi (t) →
∑m

j=1 Di j Ẇ j (t), a perfect time resolution (but the resulting process is
singular).

4.5 Autocorrelation and Spectrum of the Output Process

4.5.1 The Spectrum of a Stationary Process

4.5.1.1 Mean and Autocorrelation

A real process X with times taking values in the whole real line is said to be strictly
stationary if all its finite-dimensional distributions depend only on the differences
of times and it is said to be second order stationary if this is true only for the one-
and two-dimensional distributions. For such processes, if the second moments exist,
we have that the mean is independent of time

E[X (t)] = E[X (0)] =: m , ∀t ∈ R , (4.72)

and that the second moment is invariant under time translations

E[X (t + s)X (s)] = E[X (t)X (0)] =: RX (t), ∀t, s ∈ R . (4.73)

The function RX (t), t ∈ R, is called the autocorrelation function of the pro-
cess. A process for which Eqs. (4.72) and (4.73) hold true is said to be wide
sense, second order stationary. The autocorrelation RX (t) is an even function of
t ; indeed, by a −t translation and the symmetry of the second moment, we get
RX (t) = E[X (t)X (0)] = E[X (0)X (−t)] = E[X (−t)X (0)] = RX (−t). Obviously,
we have

Cov [X (t), X (s)] = RX (t − s)− m2 . (4.74)

4.5.1.2 Spectral Density

The spectrum (or spectral density) of a wide sense, second order stationary stochas-
tic process X is the Fourier transform of its autocorrelation function:

SX (μ) :=
∫ +∞

−∞
e−iμt RX (t) dt . (4.75)

This formula has to be intended with care, at least in the sense of distributions or
in weak sense, see [14, pp. 518–526]. This means that the spectrum is defined by:
for any compact support, C∞-function h
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∫ +∞

−∞
h(μ)SX (μ)dμ : = lim

T→+∞

∫ +∞

−∞
dμ h(μ)

∫ +T

−T
e−iμt RX (t) dt

=
∫ +∞

−∞
̂h(t)RX (t)dt, (4.76)

where

̂h(t) :=
∫ +∞

−∞
e−iμt h(μ) dμ.

If Cov [X (t), X (0)] ∈ L1(R), we can write

SX (μ) = 2πm2δ(μ)+
∫ +∞

−∞
e−iμt Cov [X (t), X (0)] dt . (4.77)

By the properties of the covariance, the function Cov [X (t), X (0)] is posi-
tive definite and, by the properties of positive-definite functions, this implies
∫ +∞
−∞ e−iμt Cov [X (t), X (0)] dt ≥ 0; then, also SX (μ) ≥ 0.

The expression of the spectrum can be rewritten in a form suitable for generali-
sations.

Proposition 4.17. For a wide sense, second order stationary stochastic process X
the spectral density (4.75) can be written as

SX (μ) = lim
T→+∞

1

T
E

[

∣

∣

∣

∣

∫ T

0
e−iμt X (t) dt

∣

∣

∣

∣

2
]

; (4.78)

the limit has to be understood in weak sense.

Proof. By the second order stationarity we have

1

T
E

[

∣

∣

∣

∣

∫ T

0
e−iμt X (t) dt

∣

∣

∣

∣

2
]

= 1

T

∫ T

0
ds

∫ s

0
dt e−iμ(s−t)

E [X (s)X (t)]

+ 1

T

∫ T

0
ds

∫ T

s
dt e−iμ(s−t)

E [X (s)X (t)]

= 1

T

∫ T

0
dt
∫ t

0
ds

{

e−iμ(t−s)
E [X (t − s)X (0)]+ eiμ(t−s)

E [X (0)X (t − s)]
}

= 1

T

∫ T

0
dt
∫ t

0
dr

{

e−iμr
E [X (r )X (0)]+ eiμr

E [X (0)X (r )]
}

=
∫ T

0
dr

(

1− r

T

)

{

e−iμr
E [X (r )X (0)]+ eiμr

E [X (0)X (r )]
}

=
∫ T

−T
dt

(

1− |t |
T

)

e−iμt RX (t).
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By considering the limits in weak form, we have

lim
T→+∞

∫ +∞

−∞
dμ h(μ)

{

∫ T

−T
e−iμt RX (t) dt − 1

T
E

[

∣

∣

∣

∣

∫ T

0
e−iμt X (t) dt

∣

∣

∣

∣

2
]}

= lim
T→+∞

∫ +∞

−∞
dμ h(μ)

∫ T

−T
dt
|t |
T

e−iμt RX (t)

= lim
T→+∞

∫ +∞

−∞
dμ h(μ)

∫ T

0
dt

i

T

(

∂e−iμt

∂μ
− ∂eiμt

∂μ

)

RX (t)

= lim
T→+∞

i

T

∫ T

0

[

̂h′(−t)− ̂h′(t)
]

RX (t) dt = 0.

�

4.5.2 The Spectrum of an Asymptotically Stationary Process

4.5.2.1 Autocorrelation and Spectrum “up to Time T”

Inspired by Eq. (4.78), given a generic real stochastic process X ≡ {X (t), t ≥ 0}
(defined only for positive times), we can define the autocorrelation function of the
process up to time T by

RX
T (t) = 1

T

∫ T

0
E [X (s + |t |)X (s)] ds , (4.79)

and the spectrum by

SX
T (μ) = 1

T
E

[

∣

∣

∣

∣

∫ T

0
e−iμt X (t) dt

∣

∣

∣

∣

2
]

≥ 0 , μ ∈ R . (4.80)

Remark 4.18. Properties of SX
T (μ).

1. We can write also

SX
T (μ) =

∫ T

−T
e−iμt

(

1− |t |
T

)

RX
T−|t |(t) dt. (4.81)

Indeed, we have

∫ T

−T
e−iμt

(

1− |t |
T

)

RX
T−|t |(t) dt =

∫ T

0
e−iμt

(

1− t

T

)

RX
T−t (t) dt + c.c.,
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∫ T

0
e−iμr

(

1− r

T

)

RX
T−r (r ) dr

=
∫ T

0
dr e−iμr 1

T

∫ T−r

0
dt E [X (t + r )X (t)]

= 1

T

∫ T

0
dr

∫ T

r
ds e−iμr

E [X (s)X (s − r )]

= 1

T

∫ T

0
ds

∫ s

0
dr e−iμr

E [X (s)X (s − r )]

= 1

T

∫ T

0
ds

∫ s

0
dt e−iμ(s−t)

E [X (s)X (t)] ,

∫ T

0
e−iμr

(

1− r

T

)

RX
T−r (r ) dr = 1

T

∫ T

0
ds

∫ s

0
dt eiμ(s−t)

E [X (s)X (t)]

= 1

T

∫ T

0
dt
∫ T

t
ds eiμ(s−t)

E [X (s)X (t)]

= 1

T

∫ T

0
ds

∫ T

s
dt e−iμ(s−t)

E [X (s)X (t)] .

2. By rewriting Eq. (4.80) as

SX
T (μ) = 1

T

∫ T

0
dt
∫ T

0
ds e−iμ(t−s)

E[X (t)X (s)]

and by expressing the second moment as the covariance and the product of the
means, we get the decomposition of the spectrum:

SX
T (μ) = 1

T

∣

∣

∣

∣

∫ T

0
e−iμt

E [X (t)] dt

∣

∣

∣

∣

2

+ 1

T

∫ T

0
dt
∫ T

0
ds e−iμ(t−s) Cov[X (t), X (s)]. (4.82)

Sometimes, the contribution with the product of the means is called the coher-
ent part of the spectrum, while the contribution of the covariance is called the
incoherent part.

3. Moreover, we have also

SX
T (μ)− 1

T

∣

∣

∣

∣

∫ T

0
e−iμt

E [X (t)] dt

∣

∣

∣

∣

2

= 1

T

∫ T

0
dt
∫ T

0
ds eiμ(t−s) Cov[X (t), X (s)] ≥ 0. (4.83)
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Indeed, if we set ZT := 1√
T

∫ T
0 e−iμt X (t) dt , we get

1

T

∫ T

0
dt
∫ T

0
ds e−iμ(t−s) Cov[X (t), X (s)]

= Cov
[

ZT , ZT
] = Var [Re ZT ]+ Var [Im ZT ] ≥ 0.

4. An interesting case is when one has asymptotic stationarity (second order, wide
sense):

lim
t→+∞E[X (t)] = m , (4.84a)

lim
T→+∞

1

T

∫ T

0
Cov[X (s + |t |), X (s)]ds = C(t) ∈ L1(R) . (4.84b)

Then, we have

lim
T→+∞

SX
T (μ) = 2πm2δ(μ)+

∫ +∞

−∞
e−iμt C(t)dt .

When limT→+∞ SX
T (μ) exists (at least in a weak sense), as in the case of point 4

above, we can take this limit as a good definition of the spectrum of the process X .

4.5.3 The Spectrum of the Output of the Continuous Measurement

The definition (4.80) can be generalised also to the case of singular processes, as
one of the outputs Ẇ j (t) of the continuous measurement:

S j
T (μ) := 1

T
E

T
ρ0

[

∣

∣

∣

∣

∫ T

0
e−iμt dW j (t)

∣

∣

∣

∣

2
]

. (4.85)

From (4.46), giving the second moments, we get

S j
T (μ) = 1+ 2

T

∫ T

0
dt
∫ t

0
ds cosμ(t − s)

× Tr
{

R j (t) ◦ T (t, s) ◦R j (s) ◦ T (s, 0)[ρ0]
}

; (4.86)

recall that R j (t)[τ ] = R j (t)τ + τ R j (t)∗ and T (s, 0)[ρ0] = η(s).
As in the case of generic stochastic processes, it is often useful to isolate the

contribution to the spectrum of the “fluctuations” (the incoherent part, due to the
covariance) by defining
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˜S j
T (μ) = S j

T (μ)− 1

T

∣

∣

∣

∣

E
T
ρ0

[∫ T

0
e−iμt dW j (t)

]∣

∣

∣

∣

2

= 1+ 2

T

∫ T

0
dt
∫ t

0
ds cosμ(t−s)

× (

Tr
{

R j (t) ◦ T (t, s) ◦R j (s)[η(s)]
}− Tr

{

R j (t)[η(t)]
}

Tr
{

R j (s)[η(s)]
})

.

(4.87)

4.5.3.1 Heisenberg Uncertainty Relations

In this subsection, let us consider a family of models in which the operator R j

depends on a phase ϑ j : R j (t) is replaced by R j (t ;ϑ j ) = eiϑ j R j (t). We can say
that to change ϑ j is to change measuring apparatus without changing the mean
dynamics. Indeed, it is easy to see that the mean dynamics T (t, s) does not depends
on ϑ j , while it is the probability law of the output which depends on such phases.
In particular, such a dependence is seen in the moments and, so, in the spectrum:

S j
T (μ;ϑ j ) = 1+ 2

T

∫ T

0
dt
∫ t

0
ds cosμ(t − s)

× Tr
{

R j (t ;ϑ j ) ◦ T (t, s) ◦R j (s;ϑ j ) ◦ T (s, 0)[ρ0]
}

. (4.88)

Then, for the spectrum of the fluctuations, the following uncertainty relation
holds [16]:

˜S j
T (μ;ϑ j )˜S

j
T (μ;ϑ j ± π/2) ≥ 1. (4.89)

The proof of this needs the use of the formulation of the theory of continuous
measurements based on quantum stochastic calculus. Then, it is a consequence of
the Heisenberg–Scrödinger–Robertson uncertainty relations.

Let us stress that the definition of spectrum is the classical one, as given in the
theory of stochastic processes. Similarly, the decomposition in coherent and inco-
herent parts is purely classical, as it is due to the writing of the second moment
as product of the means and covariance. On the contrary, the uncertainty relation
(4.89) is of pure quantum origin, from Heisenberg principle. What is important to
note is that, from a classical probabilistic point of view, Eq. (4.89) connects two
quantities referring to two different probabilistic models, as two different values for
the phase ϑ j means two different physical probabilities. It is quantum mechanics
which connects the two classical models in a unique quantum model [11, 16] (and
the proof of (4.89) is based on the construction of such a quantum model).

4.5.3.2 Cross-Correlations

Sometimes a linear combination of the outputs is of interest, such as the complex
process

Xc(t) =
m
∑

i=1

ci Wi (t), ci ∈ C i = 1, . . . ,m. (4.90)
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The spectrum of complex processes is defined similarly to the one of real pro-
cesses [15] and, in a finite time horizon, it is given by

Sc
T (μ) = 1

T
E

T
ρ0

[

∣

∣

∣

∣

∫ T

0
e−iμt dXc(t)

∣

∣

∣

∣

2
]

=
∑

i j

ci Si j
T (μ)c j , (4.91)

where we have introduced the spectrum of the cross-correlations

Si j
T (μ) := 1

T
E

T
ρ0

[∫ T

0
eiμt dWi (t)

∫ T

0
e−iμs dW j (s)

]

. (4.92)

Let us stress that, by its definition, the spectrum of a real process is symmetric in
μ, while this is not necessarily true for a complex process.

Note that S j j
T (μ) ≡ S j

T (μ) and that

Si j
T (μ) = S ji

T (μ),
∑

i j

ci Si j
T (μ)c j ≥ 0, ∀ci ∈ C i = 1, . . . ,m. (4.93)

From Eqs. (4.46), (4.9) we get the expression

Si j
T (μ) = δi j + 1

T

∫ T

0
dt
∫ t

0
ds
(

eiμ(t−s) Tr
{

Ri (t) ◦ T (t, s) ◦R j (s)[η(s)]
}

+ e−iμ(t−s) Tr
{

R j (t) ◦ T (t, s) ◦Ri (s)[η(s)]
}

)

. (4.94)

4.5.3.3 Infinite Time Horizon and Ergodic Properties

Also in our case we can rise questions such as the one of point 4 of Remark 4.18.
This is the question of the existence of the true spectrum, in an infinite time horizon:
does the limit

Si j (μ) = lim
T→+∞

1

T
E

T
ρ0

[∫ T

0
eiμt dWi (t)

∫ T

0
e−iμs dW j (s)

]

exist? A further question is about the possibility of estimating the spectrum from a
single trajectory: does the ergodic property

lim
T→+∞

1

T

∫ μ2

μ1

dμ
∫ T

0
eiμt dWi (t)

∫ T

0
e−iμs dW j (s) =

∫ μ2

μ1

Si j (μ) dμ

hold, P-a.s. or in some other sense? Here P is the physical probability and the time
horizon is infinite. Obviously the answers to these two questions depend on the
Liouvillian and on the operators R j (t). We touch only the first problem in the case
our output is stationary or asymptotically stationary. In Chapters 9 and 10 concrete
physical examples will be given.
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Stationary Case

Let us assume that there exists a quantum dynamical semigroup Ť (t), having an
invariant state ηeq : Ť (t)[ηeq] = ηeq, and a time-independent map Ř j [τ ] = Ř jτ +
τ Ř∗j such that

Tr
{

Ri (t) ◦ T (t, s) ◦R j (s) ◦ T (s, 0)[ηeq]
} = Tr

{

Ři ◦ Ť (t − s) ◦ Ř j [ηeq]
}

.

With this assumption, when the initial state is ρ0 = ηeq, the second-order quan-
tum correlation functions appearing inside the integral in (4.94) become time homo-
geneous.

Then, we define

mi := Tr
{

Ři [ηeq]
}

, C ji (t) := Tr
{

Ř j ◦ Ť (t)[τi ]
}

, τi := Ři [ηeq]− miηeq.

and we assume tC ji (t) to be integrable in (0,+∞). This gives

Si j
T (μ)− δi j = 1

T

∫ T

0
dt
∫ t

0
ds
(

eiμs Tr
{

Ři ◦ Ť (s) ◦ Ř j [ηeq]
}

+ e−iμs Tr
{

Ř j ◦ Ť (s) ◦ Ři [ηeq]
}

)

=
∫ T

0
dt

(

1− t

T

)

×
(

eiμt Tr
{

Ři ◦ Ť (t) ◦ Ř j [ηeq]
}+ e−iμt Tr

{

Ř j ◦ Ť (t) ◦ Ři [ηeq]
}

)

=
∫ T

0
dt

(

1− t

T

)

(

2mi m j cosμt + eiμt Ci j (t)+ e−iμt C ji (t)
)

= 4mi m j

(

sin μT
2

)2

Tμ2
+
∫ T

0

(

1− t

T

)

(

eiμt Ci j (t)+ e−iμt C ji (t)
)

dt

and, by using

lim
T→+∞

2 (sinμT/2)2

πμ2T
= δ(μ),

we get the existence of the spectrum in the infinite horizon limit:

Si j (μ) := lim
T→+∞

Si j
T (μ) = δi j + 2πmi m jδ(μ)

+
∫ +∞

0

(

eiμt Ci j (t)+ e−iμt C ji (t)
)

dt. (4.95)
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4.6 Summary

• Instruments: t > s ≥ 0, G ∈ G
s
t , Is

t (G) = EQ

[

1GA(t, s)
]

.

– Associated POMs: Is
t (G)∗[1] = Es

t (G).
– Normalisation: Is

t (Ω) = T (t, s).

– Composition property: G j ∈ G
t j−1

t j
, S ≤ t0 < t1 < · · · < tn ≤ T ,

I S
T (G1 ∩ G2 ∩ · · · ∩ Gn) = T (T, tn) ◦ I tn−1

tn (Gn) ◦ · · · ◦ I t0
t1 (G1) ◦ T (t0, S) .

– Generalised consistency of the POMs:

0 ≤ r ≤ s < t ≤ u, G ∈ G
s
t ⇒ Er

u(G) = T (s, r )∗[Es
t (G)].

• Instruments and probabilities: I0
t (G)[ρ0] = EQ[1G σ (t)],

P
t
ρ0

(G) = EQ [1G Tr {σ (t)}] = Tr
{

E0
t (G)ρ0

} = Tr
{

I0
t (G)[ρ0]

}

.

• A priori states: η(t) = T (t, 0)[ρ0] = I0
t (Ω)[ρ0].

• A posteriori states:

∫

G
ρ(t, ω)Pt

ρ0
(dω) = E

t
ρ0

[1G ρ(t)] = EQ[1G σ (t)] = I0
t (G)[ρ0].

• Test functions: L2
loc = L2

loc(R+; R
m), L2((0, t); R

m) =: L2
t .

• Observables: k ∈ L2
loc, 0 ≤ s < t ≤ T , Xs

t (k) =
m
∑

j=1

∫ t

s
k j (r ) dW j (r ).

• Diffusive property: if k(1), . . . , k(q) are linearly independent elements of L2
T , the

distribution of
(

X0
T (k(1)), . . . , X0

T (k(q))
)

under P
T
ρ0

is absolutely continuous with
respect to the Lebesgue measure on R

q and its density can be taken strictly posi-
tive ∀x ∈ R

q .

• Characteristic operator: G(t, s; k) =
∫

Ω

eiXs
t (k) Is

t (dω) = EQ

[

eiXs
t (k)A(t, s)

]

.

– G(t, 0; k)[ρ0] = EQ

[

eiX0
t (k)σ (t)

]

= E
T
ρ0

[

eiX0
t (k)ρ(t)

]

.

– Evolution equation:
d

dt
G(t, s; k) = Λt

(

k(t)
) ◦ G(t, s; k) , G(s, s; k) = Idn .

– Generator of the characteristic operator:

Λt (k) = L(t)+
m
∑

j=1

(

ik jR j (t)− 1

2
k2

j Idn

)

.

– Composition law: t > s > r ≥ 0, G(t, r ; k) = G(t, s; k) ◦ G(s, r ; k) .



References 109

• Characteristic functional: Φt (k|ρ) = Tr {G(t, 0; k)[ρ0]}.
• Moments:

E
T
ρ0

[

Ẇ j1 (t1)Ẇ j2 (t2) · · · Ẇ jq (tq )
] = (−i)q δqΦt (k|ρ0)

δk j1 (t1) δk j2 (t2) · · · δk jq (tq )

∣

∣

∣

k=0
.

– Mean function: E
T
ρ0

[Ẇ j (t)] = Tr
{(

R j (t)+ R j (t)∗
)

η(t)
}

.
– Second moments:

E
T
ρ0

[Ẇ j (t)Ẇi (s)] = δi j δ(t − s)

+ 1(0,+∞)(t − s) Tr
{

R j (t) ◦ T (t, s) ◦Ri (s) ◦ T (s, 0)[ρ0]
}

+ 1(0,+∞)(s − t) Tr
{

Ri (s) ◦ T (s, t) ◦R j (t) ◦ T (t, 0)[ρ0]
}

.

• Spectrum of the output: S j
T (μ) = 1

T
E

T
ρ0

[

∣

∣

∣

∣

∫ T

0
e−iμt dW j (t)

∣

∣

∣

∣

2
]

,

S j
T (μ) = 1+ 2

T

∫ T

0
dt
∫ t

0
ds cosμ(t − s)

× Tr
{

R j (t) ◦ T (t, s) ◦R j (s) ◦ T (s, 0)[ρ0]
}

.

• Spectrum of the cross-correlations:

Si j
T (μ) = 1

T
E

T
ρ0

[∫ T

0
eiμt dWi (t)

∫ T

0
e−iμs dW j (s)

]

,

Si j
T (μ) = δi j + 1

T

∫ T

0
dt
∫ t

0
ds
(

eiμ(t−s) Tr
{

Ri (t) ◦ T (t, s) ◦R j (s)[η(s)]
}

+ e−iμ(t−s) Tr
{

R j (t) ◦ T (t, s) ◦Ri (s)[η(s)]
}

)

.
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Chapter 5
The Stochastic Master Equation: Part II

In Chap. 3, starting from the linear formulation of the quantum trajectory theory, it
has been shown that the a posteriori states satisfy the nonlinear SDE (3.69). Now
we show that this equation can be taken as starting point of the whole theory and we
study some of its properties.

5.1 Quantum Trajectories: The Nonlinear SDE Formulation

In this chapter we show how to found the whole theory on the stochastic master
equation (3.69). Let us recall the properties of the operators appearing in (3.69),
which we assume to hold through the whole chapter.

Assumption 5.1. The maps R j (t), L(t) are linear operators over the space Mn of
n × n complex matrices τ with the structure

R j (t)[τ ] = R j (t)τ + τ R j (t)
∗, L(t) = L0(t)+ L1(t), (5.1a)

where

L1(t)[τ ] =
m
∑

j=1

(

R j (t)τ R j (t)
∗ − 1

2

{

R j (t)
∗R j (t), τ

}

)

, (5.1b)

L0(t)[τ ] = −i[H (t), τ ]+
d
∑

j=m+1

(

R j (t)τ R j (t)
∗ − 1

2

{

R j (t)
∗R j (t), τ

}

)

. (5.1c)

The coefficients R j (t), H (t) are non-random linear operators on H ≡ C
n and

H (t) = H (t)∗. The functions t �→ H (t) and t �→ R j (t) are measurable and such that

supt∈[0,T ] ‖H (t)‖ < +∞, supt∈[0,T ]

∥

∥

∥

∥

∑d
j=1 R j (t)∗R j (t)

∥

∥

∥

∥

< +∞, ∀T ∈ (0,+∞).

Barchielli, A., Gregoratti, M.: The Stochastic Master Equation: Part II. Lect. Notes Phys. 782,
111–123 (2009)
DOI 10.1007/978-3-642-01298-3 5 c© Springer-Verlag Berlin Heidelberg 2009
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5.1.1 The Nonlinear SDE

In analogy with the Hilbert space case treated in Sect. 2.5, we extend the nonlinear
SDE (3.69) from the set of states to the space of all matrices, in a way which
allows for application of the standard theorems of existence and uniqueness of the
solutions.

For all matrices τ we define

n j (t ; τ ) :=
{

Tr{R j (t)[τ ]}
‖τ‖1

, if τ �= 0,

0, if τ = 0,
(5.2a)

n̂ j (t ; τ ) := R j (t)[τ ]− n j (t ; τ )τ, (5.2b)

where the trace norm ‖•‖1 is given in (B.4). Let us note that

Tr
{

n̂ j (t ; τ )
} = Tr

{

R j (t)[τ ]
}

(

1− Tr {τ }
‖τ‖1

)

, (5.3)

which gives Tr
{

n̂ j (t ; τ )
} = 0 for τ ≥ 0, because ‖τ‖1 = Tr{τ } by positivity.

Moreover,

∣

∣n j (t ; τ )
∣

∣ ≤ 2
∥

∥R j (t)
∥

∥ , ∀τ ∈ Mn, (5.4)

which follows from (B.9), and, for τ ∈ S(H),

n j (t ; τ ) = Tr
{

R j (t)[τ ]
}

, n̂ j (t ; τ ) = R j (t)[τ ]− Tr
{

R j (t)[τ ]
}

τ, (5.5)

because ‖τ‖1 = 1.

Theorem 5.2. Let ̂B j (t), j = 1, . . . ,m, t ≥ 0, be a standard Wiener process. Under
Assumption 5.1 the nonlinear SDE

⎧

⎨

⎩

dξ (t) = L(t)[ξ (t)]dt +
m
∑

j=1

n̂ j (t ; ξ (t)) d̂B j (t)

ξ (0) = ξ0 ∈ Mn

(5.6)

admits strong solutions in the time interval [0,+∞); pathwise uniqueness and
uniqueness in law hold.

Proof. Trivially, measurability conditions A.25 of the coefficients hold. In the proof
of Theorem 3.4 we have already proved that the global Lipschitz condition A.32
and the linear growth condition A.34 hold for the coefficient L(t)[τ ]. So, we have to
check the same properties on n̂ j (t ; τ ). Recall that, in order to apply Theorem A.36,
the relevant norm is the Hilbert–Schmidt one and that we have to fix a finite time
interval [0, T ].

Let us recall Eqs. (3.52) and (3.53):
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∥

∥R j (t)
∥

∥

2 = ∥

∥R j (t)
∗R j (t)

∥

∥ ≤ 
T ,

m
∑

j=1

∥

∥R j (t)[τ ]
∥

∥

2
2 ≤ 4m
T ‖τ‖ 2

2 ,

where 
T is the constant (3.51). Moreover, inequalities (B.8), (B.9) give

‖τ‖2 ≤ ‖τ‖1 ≤ n ‖τ‖2 , |Tr{τ }| ≤ ‖1‖ ‖τ‖1 = ‖τ‖1 .

Here and below, we are using also the trivial inequality (a + b)2 ≤ 2a2 + 2b2.
From the inequalities above and (5.4), we obtain

m
∑

j=1

∥

∥n̂ j (t ; τ )
∥

∥

2
2 ≤ 2

m
∑

j=1

(

∥

∥R j (t)[τ ]
∥

∥

2
2 +

|Tr {τ }|2
‖τ‖ 2

1

∣

∣Tr
{

R j (t)[τ ]
}∣

∣

2 ‖τ‖ 2
2

)

≤ 2
m
∑

j=1

(

∥

∥R j (t)[τ ]
∥

∥

2
2 + 4

∥

∥R j (t)
∥

∥

2 ‖τ‖ 2
2

)

≤ 16m
T ‖τ‖ 2
2 .

So, the linear growth condition A.34 holds for all the coefficients of the SDE (5.6).
Finally, we prove the global Lipschitz condition for the nonlinear part of the

coefficients; then, the statements on existence and uniqueness follow from Theorem
A.36. Let us take two matrices x �= 0, y �= 0 (if one of the two matrices x or y
vanishes, the following proof is trivial); we set also x̂ := x

‖x‖1
, ŷ := y

‖y‖1
. Then, we

have

∥

∥n̂ j (t ; x)
∥

∥ − n̂ j (t ; y)2 ≤
∥

∥R j (t) [x − y]
∥

∥

1

+ ∥

∥Tr
{

R j (t) [x − y]
}

x̂ + Tr
{

R j (t) [ŷ]
} (‖y‖1 x̂ − y

)∥

∥

1

≤ 2
∥

∥R j (t)
∥

∥

(

2 ‖x − y‖1 +
∥

∥

(‖y‖1 − ‖x‖1

)

x̂ + x − y
∥

∥

1

)

≤ 2
∥

∥R j (t)
∥

∥

(

3 ‖x − y‖1 +
∣

∣‖y‖1 − ‖x‖1

∣

∣

)

≤ 8
∥

∥R j (t)
∥

∥ ‖x − y‖1 ≤ 8
√


T n ‖x − y‖2 .

This ends the proof of existence and uniqueness. �
Assumption 5.3. Let us fix a stochastic basis

(

Ω,F, (Ft ),P
)

in usual hypotheses,
where ̂B is a continuous Wiener process with increments independent from the past.
Let ξ (t) be the continuous solution of (5.6) with initial condition ξ0.

Moreover, we define the processes

z(t) := exp

{ m
∑

j=1

[∫ t

0
n j (s; ξ (s))d̂B j (s)+ 1

2

∫ t

0
n j (s; ξ (s))2ds

]}

, (5.7)

ζ (t) := z(t) ξ (t) . (5.8)
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Proposition 5.4. Under Assumptions 5.1, 5.3, the process 1/z(t) is a complex
P-martingale and the stochastic differential of ζ (t) turns out to be

dζ (t) = L(t)[ζ (t)]dt +
m
∑

j=1

R j (t)[ζ (t)]
[

d̂B j (t)+ n j (t ; ξ (t))dt
]

. (5.9)

If ξ ∗0 = ξ0, the process ξ (t) is self-adjoint and 1/z(t) is a positive P-martingale
with mean 1.

Proof. By inequality (5.4) we get

m
∑

j=1

∫ T

0

∣

∣n j (t ; ξ (t))
∣

∣

2
dt ≤ 4

m
∑

j=1

∫ T

0

∥

∥R j (t)
∥

∥

2
dt ≤ 4m
T T .

By Proposition A.42, 1/z(t) is a complex martingale. By direct application of Itô
calculus, we get the stochastic differential (5.9).

In the case of a self-adjoint initial condition, ξ ∗(t) follows the same equation
as ξ (t) (B.5) and by pathwise uniqueness the two processes are indistinguishable.
In this case z(t) is positive, 1/z(t) is a positive martingale and EP[1/z(t)] =
EP[1/z(0)] = 1, because the mean of a martingale is constant and z(0) = 1. �

Finally, we can prove that the SDE (5.6) is positivity preserving.

Theorem 5.5. Let the initial condition be positive, i.e. ξ0 ≥ 0, ξ0 �= 0. Under
Assumptions 5.1, 5.3, the process ξ (t), solution of (5.6), is positive and ‖ξ (t)‖1 =
‖ξ0‖1.

Proof. Let us fix a time interval [0, T ], with an arbitrary final time T > 0.
Let us define Q(dω) := z(T, ω)−1

P(dω). By Proposition 5.4 and the discussion
in Sect. A.5.3, Q is a new probability measure. By Girsanov theorem A.45, under
the probability Q, the process B j (t) := ̂B j (t) +

∫ t
0 n j (s; ξ (s))ds, t ∈ [0, T ], j =

1, . . . ,m, is a standard m-dimensional Wiener process.
By Proposition 5.4, the process ζ satisfies, under Q, the linear SDE

dζ (t) = L(t)[ζ (t)]dt +
m
∑

j=1

R j (t)[ζ (t)]dB j (t),

which coincides with (3.38). By Theorem 3.4 and the positivity of the initial con-
dition, we get ζ (t) ≥ 0. Being z(t) > 0, we obtain ξ (t) ≥ 0. By (5.3), Eq. (5.6) is
trace preserving when the solution is positive, as one can check by taking the trace.
By positivity, the conservation of the trace coincides with the conservation of the
trace norm. �
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5.1.2 Stochastic Master Equation, A Posteriori States and Output

Now we can state the uniqueness of the solution of the stochastic master equation
(3.69). Moreover, we have that the existence is in strong sense, because the stochas-
tic basis is arbitrary.

Theorem 5.6. Under Assumption 5.1, the stochastic master equation

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dρ(t) = L(t)[ρ(t)]dt +
m
∑

j=1

(

R j (t)[ρ(t)]− Tr
{

R j (t)[ρ(t)]
}

ρ(t)
)

d̂B j (t)

ρ(0) = ρ0 ∈ S(H)

(5.10)
admits a pathwise unique continuous solution with ρ(t, ω) ∈ S(H). Uniqueness in
law holds.

Proof. By Theorems 5.2 and 5.5, Eq. (5.6) has a (pathwise and in law) unique solu-
tion ξ (t), which is state-valued when the initial condition is a state. Moreover, if
ξ (t) is a state, by (5.5), we have n̂ j (t ; ξ (t)) = R j (t)[ξ (t)] − Tr

{

R j (t)[ξ (t)]
}

ξ (t).
Therefore, (5.10) coincides with (5.6) particularised to the case of a state as ini-
tial conditions and, so, the statements of the theorem follow from Theorems 5.2
and 5.5. �
Assumption 5.7. The initial state is ρ0 ∈ S(H) and ρ(t) is the continuous state-
valued solution of (5.10) with initial condition ρ0. The stochastic basis is fixed by
Assumption 5.3.

In Sect. 3.5 we obtained the stochastic master equation by a normalisation and a
change of probability starting from the linear stochastic master equation. We expect
that it is possible to go back by the inverse transformations, starting now from ρ(t)
interpreted as a posteriori state. So, we take P as physical probability, {ρ(t), t ≥ 0}
as a posteriori states and the process

B j (t) = ̂B j (t)+
∫ t

0
Tr
{

R j (s) [ρ(s)]
}

ds , j = 1, . . . ,m, (5.11)

as output. However, we have to show that this interpretation allows to recon-
struct the continuous measurement consistently with the linear structure of quan-
tum mechanics. Let us start by showing that it is possible to go back to the linear
stochastic master equation.

5.1.3 The Linear SDE

We define

p(t) = exp

{ m
∑

j=1

[∫ t

0
n j (s; ρ(s))d̂B j (s)+ 1

2

∫ t

0
n j (s; ρ(s))2ds

]}

; (5.12)
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1/p(t) is a positive P-martingale by Proposition 5.4. Then,

Q
T
ρ0

(dω) = p(T, ω)−1
P(dω)

∣

∣

∣

FT

(5.13)

defines a new probability on (Ω,FT ). By the martingale property of 1/p(t),
Girsanov theorem and Itô formula for a product, we immediately have the following
results.

Proposition 5.8. The probabilities Q
t
ρ0

, t ≥ 0, are consistent. Under the law Q
T
ρ0

the
process B(t), t ∈ [0, T ], defined by (5.11), is a multidimensional standard Wiener
process. The matrix-valued process

σ (t) := p(t)ρ(t), (5.14)

under the law Q
T
ρ0

, satisfies the linear SDE (3.38):

dσ (t) = L(t)[σ (t)]dt +
m
∑

j=1

R j (t) [σ (t)] dB j (t). (5.15)

5.1.4 Characteristic Functional and Instruments

We can use the analog of Eq. (4.31) to introduce the characteristic operator:

G(t, 0; k)[ρ0] = EP

⎡

⎣exp

⎧

⎨

⎩

i
m
∑

j=1

∫ t

0
k j (s)dB j (s)

⎫

⎬

⎭

ρ(t)

⎤

⎦ . (5.16)

Next proposition says that (5.16) defines a linear map on Mn , that it coincides
with the one introduced in Sect. 4.2.3 and, so, that it is really the characteristic
operator of some instrument.

Proposition 5.9. Equation (5.16) defines a map on S(H) which respects convex
combinations and, so, which can be extended uniquely to a linear map G(t, 0; k)
on Mn. Moreover, G(t, 0; k) satisfies the linear evolution equation of Proposition
4.10.

Proof. Recall that the generator Λt (k) is defined by Eq. (4.37). Let us set

x(t) = exp

⎧

⎨

⎩

i
m
∑

j=1

∫ t

0
k j (s)dB j (s)

⎫

⎬

⎭

ρ(t).

By Itô formula we get
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d exp

⎧

⎨

⎩

i
m
∑

j=1

∫ t

0
k j (s)dB j (s)

⎫

⎬

⎭

= exp

⎧

⎨

⎩

i
m
∑

j=1

∫ t

0
k j (s)dB j (s)

⎫

⎬

⎭

×
∑

i

[

iki (t)d̂Bi (t)+ iki (t)ni (t ; ρ(t))dt − 1

2
ki (t)

2dt

]

,

dx(t) = Λt
(

k(t)
)

[x(t)]dt +
∑

j

(

R j (t)[x(t)]− n j (t ; ρ(t))x(t)+ ik j (t)x(t)
)

d̂B j (t).

By taking the mean value (which exists, because all the coefficients are bounded
due to Assumption 5.1) we get

G(t, 0; k)[ρ0] = ρ0 +
∫ t

0
Λs

(

k(s)
)[

G(s, 0; k)[ρ0]
]

ds,

which is a linear equation and has a unique solution. Then, the statements of the
proposition follow. �

By this proposition, the characteristic operator constructed here and the one
constructed in the previous chapter coincide. By Remark 4.12 they determine
uniquely the same ‘finite dimensional instruments’ and, by Theorem 4.14, also
the “canonical” instruments on the trajectory space of Remark 4.13 coincide. This
allows to conclude that the two approaches, the one starting from the linear SDE and
the one starting from the nonlinear one, are completely equivalent from the point of
view of physical predictions.

By putting together Remarks 4.13, 4.15, Theorem 4.14, Proposition 5.9 and the
definition of the characteristic operator G given in (5.16), we get the expression of

the instrument on
(

Cm
0 (0,∞), F

Π
(0, t)

)

in terms of the a posteriori states ρ(t) and
the physical probability P.

Proposition 5.10. Given the family of operators G(t, 0; k), 0 ≤ t , k ∈ L2
loc,

defined by Eqs. (5.16), there exists a unique instrument ̂Ir
t on Mn with value space

(

Y,FΠ (r, t)
)

such that, ∀τ ∈ Mn,

G(t, r ; k)[τ ] =
∫

Y

exp

{

i
m
∑

j=1

(

∫ t

r
k j (s)dΠ j (s)

)

(y)

}

̂Ir
t (dy)[τ ]. (5.17)

For every A ∈ F
Π

(0, t) we define G A =
{ω ∈ Ω : (s �→ B(s;ω), s ∈ [0, t]) ∈ A}. Then, we have G A ∈ Ft and

̂I0
t (A)[ρ0] =

∫

G A

ρ(t, ω)P(dω). (5.18)

Proof. The first statement is due to Theorem 4.14 and Proposition 5.9, as already
discussed.
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By arguments similar to those of Sect. 2.5.4, we get that the σ -algebras generated
by the processes ̂B and B up to some time t coincide. Moreover, the map which
associates to a continuous process its trajectory is measurable by Proposition A.12.
These two facts give G A ∈ Ft . By comparing Eqs. (5.16) and (5.17), we get
(5.18) for a set A of the type

(

X0
t (k(1)), . . . , X0

t (k(q))
) ∈ B, B ∈ B(Rq ), X0

t (k) =
∑

j

∫ t
0 k j (s)db j (s). This kind of sets and the null sets generate the full σ -algebra

F
Π

(0, t) and the equality (5.18) between matrix-valued measures can be extended
to it. �

Let us note that we know that ̂I0
t is an instrument by Theorem 4.14. In particular

̂I0
t (A) is a completely positive, linear map on Mn . This fact is not at all evident

from the right hand side of Eq. (5.18), where there is a nonlinear dependence on ρ0

through ρ(t) and also the set G A depends on ρ0 because B is defined by Eq. (5.11),
which contains ρ(s) for s ∈ [0, t].

From the construction of this section we see that to obtain the consistency with
the axiomatic formulation of quantum mechanics (linear structure, instruments, etc.)
is much easier and clearer by starting from the linear stochastic master equation
rather than from the nonlinear one. However, in the literature the stochastic mas-
ter equation is often taken as a starting point for the quantum trajectory theory,
for dynamical reduction theories and for unravelling of quantum dynamical semi-
groups. So, it is useful to know that it is a solid starting point, because of existence
and uniqueness of the solutions and because the interpretation in terms of contin-
uous measurement is always possible in agreement with the axiomatic of quantum
mechanics. Another advantage of the stochastic master equation is that it allows to
study the asymptotic properties for large times of the a posteriori states, as done in
the next section.

5.2 Purification of the A Posteriori States

In the case of a complete measurement, which means m = d in Eqs. (5.1) (cf. Sects.
3.1.2 and 3.3), the equation for the a posteriori states preserves pure states [1] and
under suitable conditions tends to purify initial mixed states [2, 3].

5.2.1 Preservation of Pure States

By the whole construction of Chaps. 2 and 3 we already know that a stochastic
master equation with m = d is equivalent to a stochastic Schrödinger equation and,
so, it preserves pure states. Nevertheless, it is instructive to obtain this result directly
from the stochastic master equation itself without the long construction through
SDEs in Hilbert spaces.

We recall that in the convex set S(H) the pure states are the one-dimensional
projections, the extreme points of S(H). A measure of “purity” of a state ρ is the
so-called linear entropy Tr{ρ(1 − ρ)} [ 4, p. 82]. This quantity is continuous with
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respect to ρ, it always belongs to the interval [0, 1), and it is 0 if and only if ρ is a
pure state. In the problem we are studying we shall consider the linear entropy g(t)
and the mean linear entropy G(t) of the a posteriori state ρ(t):

g(t) := Tr {ρ(t)(1− ρ(t))} ≡ 1− Tr
{

ρ(t)2
}

, G(t) := E[g(t)].

For every random statistical operator ρ(t) we have 0 ≤ G(t) < 1; moreover,
G(t) = 0 if and only if ρ(t) is a.s. a pure state. So the study of the behaviour of the
linear entropy is a way to analyse whether the stochastic master equation preserves
pure states or not.

Proposition 5.11. Under Assumptions 5.1, 5.7, when m = d, Eq. (5.10) preserves
pure states, in the sense that ρ(t) is a.s. a pure state for every pure initial condition.

Proof. By applying Itô formula to the mean linear entropy we obtain

G(t)− G(0) = −
d
∑

j=1

∫ t

0
ds E

[

Tr
{

(

R j (s)+ R j (s)∗ − n j (s; ρ(s))
)

× ρ(s)
(

R j (s)+ R j (s)∗ − n j (s; ρ(s))
)

ρ(s)
}]

. (5.19)

But ρ(s) ≥ 0 because it is a state; therefore, the right hand side of the equation
above is not positive. So, we have 0 ≤ G(t) ≤ G(0) ≤ 1. If the initial state ρ is
pure, we have G(0) = 0 and, so G(t) = 0, ∀t ≥ 0. �

5.2.2 From Mixed to Pure States

Let us take the stochastic master equation (5.10) under the hypothesis m = d to
guarantee that the equation preserves pure states; we want to study if it is possible
to assure also that (5.10) maps asymptotically mixed states into pure ones [3, 5].

Theorem 5.12 ([2, Theorem 2.1]). Let Assumptions 5.1, 5.7 holds and let us take
m = d and R j (t) = eiω j t R j (0), ω j ∈ R. If for every time t it does not exist a
bi-dimensional projection Pt such that, ∀ j ,

Pt
(

R j (t)+ R j (t)
∗) Pt = z j (t)Pt (5.20)

for some numbers z j (t), then Eq. (5.10) maps asymptotically, for t → ∞, mixed
states into pure ones, in the sense that for every initial condition the linear entropy
vanishes for long times:

lim
t→∞Tr {ρ(t) (1− ρ(t))} = 0, a.s. (5.21)

Proof. By applying Itô formula to the linear entropy g(t), we obtain
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g(t) = g(0)−
∫ t

0
y(s)ds

− 2
d
∑

j=1

∫ t

0
Tr
{

ρ(s) 2
(

R j (s)+ R j (s)∗ − n j (s; ρ(s))
)}

d̂B j (s) (5.22)

with y(t) =∑d
j=1 Tr

{

(√
ρ(t)

[

R j (t)+ R∗j (t)− n j (s; ρ(s))
]√
ρ(t)

)2
}

.

Apparently, y(t) is non-negative; then, from Eq. (5.22) g(t) is a supermartingale
and, being bounded between 0 and 1, it is a.s. convergent to some random variable
g∞. Let us study now the process y(t); if y(t) = 0, then, by positivity, we have
necessarily

√

ρ(t)
[

R j (t)+ R j (t)
∗ − n j (t ; ρ(t))

]
√

ρ(t) = 0, ∀ j. (5.23)

But this would only be possible if an orthogonal projection Pt existed such
that (5.20) holds for some numbers z j (t); then for every ρ(t) such that ρ(t) =
Ptρ(t)Pt Eq. (5.23) holds. The state ρ(t) could be mixed only if Pt was at least
bi-dimensional. Then, the condition on the non-existence of a bi-dimensional pro-
jection Pt given in the statement of the theorem is a sufficient condition to guarantee
y(t) > 0 unless ρ(t) be pure.

Let us consider now the mean linear entropy G(t); by bounded convergence we
have

lim
t→∞G(t) = E

[

g∞
]

(5.24)

and by Eq. (5.22)

0 ≤ G(t) = G(0)−
∫ t

0
E
[

y(s)
]

ds < 1. (5.25)

Moreover, by the previous discussion, E
[

y(s)
] = 0 only if ρ(s) is a.s. a pure

state; but if for a certain s, ρ(s) is a.s. pure, then G(s) = 0 and by (5.25) it remains
zero for all t > s and the a posteriori state remains pure. Also if lim

t→∞G(t) = 0, the

statement of the theorem follows immediately from (5.24). So it remains to show
that we can exclude the case in which lim

t→∞G(t) = K > 0.

Let us assume by contradiction that lim
t→∞G(t) = K > 0; this implies, because

of the monotonicity of the function G(t), that lim
t→∞

d

dt
G(t) = 0 and so there exists a

sequence of times tk such that

lim
k→∞

d
∑

j=1

Tr

{

(
√

ρ(tk)
[

R j (tk)+ R j (tk)∗ − n j (tk ; ρ(tk))
]
√

ρ(tk)
)2
}

= 0 a.s.

(5.26)

We prove that this implies limk→∞ Tr {ρ(tk) (1− ρ(tk))} = 0 a.s. Let us set
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A j (t) = R j (t)+ R j (t)
∗ − n j (t ; ρ(t)); (5.27)

then from (5.26) we have that ∀ε > 0, ∃ k0 such that ∀k ≥ k0

d
∑

j=1

Tr

{

(
√

ρ(tk)A j (tk)
√

ρ(tk)
)2
}

< ε. (5.28)

Let us denote by λt the maximum eigenvalue of ρ(t), and by Qt a mono-
dimensional projection on a subspace of the eigenspace related to λt . Let us recall
that we have λt ≥ 1

n . Let us assume λt < 1, otherwise ρ(t) is already a pure state.
We can decompose ρ(t) in the following way:

ρ(t) = λt Qt + (1− λt )ρ(t)⊥, (5.29)

where

ρ(t)⊥ = (1− Qt )ρ(t)(1− Qt )

Tr {(1− Qt )ρ(t)(1− Qt )} .

By using this decomposition, we deduce from (5.28) that ∀ε > 0, ∃ k0 such that
∀k ≥ k0

d
∑

j=1

(

λ 2
tk Tr

{

(

Qtk A j (tk)Qtk

)2
}

+ (

1− λtk

)2
Tr

{

(
√

ρ(tk)⊥ A j (tk)
√

ρ(tk)⊥
)2
}

+ 2λtk

(

1− λtk

)

Tr
{

Qtk A j (tk)ρ(tk)⊥A j (tk)Qtk

}

)

< ε . (5.30)

Because of the positivity of the elements in Eq. (5.30) we can say that definitively

d
∑

j=1

Tr
{

(

Qtk A j (tk)Qtk

)2
}

<
ε

λ2
tk

≤ εn2. (5.31)

Let us recall that our aim is to prove that lim
t→∞(1− λt ) = 0. We assume by con-

tradiction that ∃ h > 0 such that definitively (1− λt ) > h, so that we have also

d
∑

j=1

Tr
{

Qtk A j (tk)ρ(tk)⊥A j (tk)Qtk

}

<
ε

2λtk (1− λtk )
≤ εn

2h
, (5.32)

d
∑

j=1

Tr

{

(
√

ρ(tk)⊥ A j (tk)
√

ρ(tk)⊥
)2
}

<
ε

(1− λtk )2
≤ ε

h2
. (5.33)
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Now, let us denote by μt the maximum eigenvalue of ρ(t)⊥ and by St , a mono-
dimensional projection on a subspace of the eigenspace related to μt . With the same
argument we deduced (5.31), we can prove from (5.33) that definitively

d
∑

j=1

Tr
{

(

Stk , A j (tk)Stk

)2
}

<
ε

h2μ 2
tk

≤ ε(n − 1)2

h2
. (5.34)

From Eq. (5.32), by using the decomposition analogous to (5.29), ρ(t)⊥ = μt St+
(1− μt )̃ρ(t)⊥, we have also that definitively

d
∑

j=1

Tr
{

Stk A j (tk)Qtk A j (tk)Stk

}

<
εn

2hμtk

≤ εn(n − 1)

2h
. (5.35)

So, we have that definitively

d
∑

j=1

∥

∥(Qtk + Stk )A j (tk)(Qtk + Stk )
∥

∥

2 ≤
d
∑

j=1

Tr
{

[

(Qtk + Stk )A j (tk)(Qtk + Stk )
]2
}

=
d
∑

j=1

Tr
{

(Qtk A j (tk)Qtk )2 + (Stk A j (tk)Stk )2 + 2Qtk A j (tk)Stk A j (tk)
}

< ε

(

n + n − 1

h

)2

, (5.36)

where Qt + St is a bi-dimensional projection. So, by (5.27) and (5.36) for every
ε > 0 a bi-dimensional projection Pε

tk (ε) and some numbers zεj (tk) would exist such
that

∥

∥Pε
tk (ε)

(

R j (tk(ε))+ R j (tk(ε))∗
)

Pε
tk (ε) − zεj (tk)Pε

tk (ε)

∥

∥ < ε , ∀ j.

Now, because of the compactness of the subset of bi-dimensional projections
on a finite dimensional Hilbert space, and because zεj (tk) is a bounded sequence
of numbers, we can take a sequence εm ↓ 0 such that the subsequences Pεm

tk (εm ),
zεm

j (tk) are convergent. If the sequence of times
{

tk(εm)
}

m is convergent to a limit
t̂ , we obtain a bi-dimensional projection Pt̂ (limit of the convergent subsequence
Pεm

tk (εm )), a time t̂ and some numbers z j (t̂) such that Pt̂

(

R j (t̂)+ R j (t̂)∗
)

Pt̂ = z j (t̂)Pt̂ ,
∀ j , which is in contradiction with the hypothesis (5.20). If the sequence tk(εm) is
divergent, we can extract a subsequence such that eiω j tk j is convergent to a suitable
eiω j θ and this gives us again the contradiction.

So if there exists a sequence of times tk such that (5.26) holds, then we must have
also for this sequence that
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lim
k→∞

Tr {ρ(tk) (1− ρ(tk))} = 0 a.s. (5.37)

and because Tr {ρ(tk) (1− ρ(tk))} is a bounded sequence, from (5.37) we can
deduce that limn→∞ E [Tr {ρ(tk) (1− ρ(tk))}] = 0. This implies that lim

t→∞G(t) can-

not be a positive quantity. �
Let us note that (5.20) appears to be a technical hypothesis, needed in the proof

of the theorem. However, it has also the meaning that the interaction with the mea-
suring apparatus is strong enough and produces always information on the quantum
system. Indeed, this hypothesis excludes the extreme case in which the R j (t) are
pure numbers (no interaction between quantum system and apparatus) or the con-
servative case of Sect. 2.4.4 in which there is dissipation, but no information on the
quantum system.
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Chapter 6
Mutual Entropies and Information Gain
in Quantum Continuous Measurements

6.1 Introduction

We already saw that there exist peculiar cases (Sects. 2.4.4, 2.5.2.1) in which no
information on the quantum system is extracted by the continuous measurement.
Obviously, in other cases we get some information on the system, but the question
arises of how to quantify the gain in information. The answer coming out from the
whole development of classical and quantum information theory is that this can be
obtained by means of entropy-like quantities [1–3].

The typical quantity which measures the gain of information is the mutual
entropy, which is the relative entropy of a state of a composed system (a bipartite
system) with respect to the product of its marginals (the reduced states of the sub-
systems). Such a system can be a classical one, composed of two, or more, classical
subsystems, or a quantum one composed of quantum subsystems. But it can be
a system of mixed type, composed of classical and quantum subsystems. This is
our case: the quantum subsystem is the observed quantum system and the classical
subsystem is the output of the measurement [4–6].

The first step will be to formalise the last statement and to show that our σ (t), the
solution of the linear stochastic master equation, is the state of a classical/quantum
system. All these things need the notions of states on algebras (von Neumann alge-
bras in our case) and of relative entropy for such general states [2]. We shall try
to keep the theory to a minimum, to give only some hints; as a consequence, this
chapter is not fully self-contained and some experience of the reader in quantum
information is required.

Another key point will be that any quantum measurement (any instrument) is a
channel, a completely positive map from the quantum states (density operators) to
classical/quantum states (probabilities for the output and post-measurement density
operator) [4–6].

Various types of entropies and bounds on informational quantities can be intro-
duced and studied in connection with continuous measurements [7–10]. A possi-
ble point of view is one of the transmission of classical information, discussed in
Sect. 6.6: the quantum system is the carrier of the information, which is encoded
in its initial state; the continuous measurement represents the decoding apparatus
[9]. Another point of view is to consider the quantum system in itself, not as a

Barchielli, A., Gregoratti, M.: Mutual Entropies and Information Gain in Quantum Continuous
Measurements. Lect. Notes Phys. 782, 125–142 (2009)
DOI 10.1007/978-3-642-01298-3 6 c© Springer-Verlag Berlin Heidelberg 2009
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transmission channel, and we propose and study a couple of mutual entropies giving
two indexes of how good the continuous measurement is in extracting information
about the quantum system [10] (see Sects. 6.4 and 6.5).

6.2 States and Entropies in the Discrete Case

In this book we have considered only quantum systems associated to finite dimen-
sional Hilbert spaces. However, the output is a whole trajectory and we were com-
pelled to introduce probabilities on general measurable spaces. Anyway, as a first
step let us introduce the new notions in the case in which also the output is dis-
crete and finite. Let H = C

n be the Hilbert space of the quantum system and
X = {x1, . . . , xN } the space of the possible outcomes of the measurement.

6.2.1 Algebras and States

First, we need to introduce the spaces C(X; Mn) of the functions from X into Mn

and C(X) ≡ C(X; C), which are finite C∗-algebras, as Mn; note that C(X; Mn) �
C(X)⊗Mn . A state on a finite C∗-algebra is a normalised, positive linear functional
on the algebra and in our cases we have

• A state ρ on Mn is identified with a statistical operator, i.e. ρ ∈ S(H), and ρ

applied to an element a of Mn is given by 〈ρ, a〉 = Tr{ρa}; this is the usual
quantum setup.

• A state p on C(X) is a discrete probability density on X and 〈p, a〉 =∑N
i=1 p(xi )

a(xi ), for a ∈ C(X); this is the classical setup.
• A state Σ on C(X; Mn) is itself an element of C(X; Mn) such that Σ(x) ≥ 0

and
∑N

i=1 Tr{Σ(xi )} = 1; the action of the state Σ on an element a ∈ C(X; Mn)
is given by 〈Σ, a〉 = ∑N

i=1 Tr{Σ(xi )a(xi )}. Note the quantum/classical hybrid
character of this case.

6.2.2 Entropies and Relative Entropies

Entropies and relative entropies can be defined in very general situations [2].
Entropies and relative entropies are non-negative; the relative entropy can be infi-
nite. In the case of our three C∗-algebras the general definitions reduce to

• For ρ1, ρ2 ∈ S(H), the entropy is

S(ρi ) = −Tr{ρi ln ρi } =: Sq(ρi ) (6.1a)

(the von Neumann entropy), and the relative entropy of ρ1 with respect to ρ2 is

S(ρ1‖ρ2) = Tr{ρ1(ln ρ1 − ln ρ2)} =: Sq(ρ1‖ρ2) . (6.1b)
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• In the classical case, for two states p1, p2 on C(X), the entropy is

S(pi ) = −
N
∑

j=1

pi (x j ) ln pi (x j ) =: Sc(pi ) (6.2a)

(the Shannon information), and the relative entropy is

S(p1‖p2) =
N
∑

j=1

p1(x j ) ln
p1(x j )

p2(x j )
=: Sc(p1‖p2) (6.2b)

(the Kullback–Leibler informational divergence).
• For two states Σ1,Σ2 on C(X; Mn) we have

S(Σi ) = −
N
∑

j=1

Tr
{

Σi (x j ) lnΣi (x j )
} = Sc(pi )+

N
∑

j=1

pi (x j )Sq
(

πi (x j )
)

, (6.3a)

S(Σ1‖Σ2) =
N
∑

j=1

Tr
{

Σ1(x j )
(

lnΣ1(x j )− lnΣ2(x j )
)}

= Sc(p1||p2)+
N
∑

j=1

p1(x j )Sq
(

π1(x j )
∥

∥π2(x j )
)

, (6.3b)

pi (x) := Tr {Σi (x)} , πi (x) := Σi (x)

pi (x)
. (6.4)

In both Eqs. (6.3a) and (6.3b) the first step is by definition and the second one by
simple computations; in (6.4), when pi (x) = 0, πi (x) is defined arbitrarily.

In the previous formulae we have used the subscripts “c” for “classical” and “q”
for “quantum” to emphasise the cases in which the entropy and the relative entropy
are of pure classical character or of pure quantum one. Having used the natural
logarithm in these definitions, the entropies are in nats. To obtain entropies in bits
one has to divide by ln 2.

6.2.3 Mutual Entropy and χ-Quantities

In classical information theory a key concept is that of mutual information of two
random variables X and Y , which is the relative entropy of the joint distribution pXY

with respect to the product of its marginals pX , pY :
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Sc(pXY‖pX ⊗ pY ) :=
∑

x,y

pXY (x, y) ln
pXY (x, y)

pX (x)pY (y)

≡
∑

x

pX (x) Sc(pY |X (•|x)‖pY )

≡
∑

y

pY (y) Sc(pX |Y (•|y)‖pX ) , (6.5)

pX (x) :=
∑

y

pXY (x, y), pY (y) :=
∑

x

pXY (x, y), (6.6a)

pY |X (y|x) := pXY (x, y)

pX (x)
, pX |Y (y|x) := pXY (x, y)

pY (y)
. (6.6b)

The idea of mutual information can be generalised to all the situations when
one has states on a tensor product of algebras. Let Ci , i = 1, 2 be two finite C∗-
algebras; let Π12 be a state on C1 ⊗ C2. The marginals Πi are the restrictions of
Π12 to the two factors in the tensor product: Πi := Π12

∣

∣

Ci
. More explicitly, Π1

is the state on C1 defined by 〈Π1, A〉 = 〈Π12, A ⊗ 1〉, ∀A ∈ C1, and, similarly,
〈Π2, A〉 = 〈Π12,1 ⊗ B〉, ∀B ∈ C2. Then, the mutual information or the mutual
entropy of the joint state Π12 is its relative entropy with respect to the tensor product
of its marginals: S(Π12‖Π1 ⊗Π2).

For instance, in the case C1 = C(X), C2 = Mn , a stateΣ on C1⊗C2 � C(X; Mn)
has marginals p and π :=∑N

j=1 Σ(x j ) =
∑N

j=1 p(x j )π (x j ), where p(x) and π (x)
are defined as in Eq. (6.4). Then, by Eq. (6.3b) the mutual entropy of Σ with respect
to this factorisation is

S(Σ‖p ⊗ π ) =
N
∑

j=1

p(x j )Sq
(

π (x j )
∥

∥π
) ≡ Sq(π )−

∑

j=1

p(x j )Sq
(

π (x j )
)

. (6.7)

In quantum information theory, a couple {p, π} of a probability p (let us say on
the set X) and a family of statistical operators π (x) is known as an ensemble and

π =
N
∑

j=1

p(x j )π (x j ) (6.8)

is the average state of the ensemble. Trivially, the ensemble {p, π} is equivalent to
the state Σ = {p(x)π (x)} on C(X; Mn); the mutual entropy of this state is a key
object in quantum information and quantum statistics and it is called the Holevo’s
χ -quantity of the ensemble [3, p. 531]:

χ{p, π} :=
N
∑

j=1

p(x j )Sq
(

π (x j )
∥

∥π
) = S(Σ‖p ⊗ π ). (6.9)

Note that a χ -quantity is not negative by the non-negativity of relative entropies.
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6.3 The Continuous Measurement as a Channel

Now we go back to the case of the continuous measurements considered in this
book.

6.3.1 von Neumann Algebras and Normal States

The Hilbert space is finite dimensional, H = C
n , and the quantum algebra is again

Mn as in the previous section. In the finite dimensional case, Mn has a double role.
First, Mn is the linear span of the states, S(H) ⊂ Mn; in this role the relevant
norm is the trace-norm ‖•‖1. But also the usual observables, represented by self-
adjoint operators, and the effects are contained in Mn and they span it by linear
combinations; now the relevant norm is the operator norm ‖•‖∞ ≡ ‖•‖.

What we have to change is the “classical algebra”. The space of the possible out-

puts, up to time t , is the measurable space
(

Ω,G
0
t

)

on which a reference probability

measure Q is given; moreover, all the physical probabilities have a density with
respect to Q. The possible outcomes of the measurement are the points of Ω and we
can process such outcomes as we want, so that we can think the functions on Ω as
the possible observables. In the role of “space of the observables”, the algebra C(X)

has to be substituted by L∞
(

Ω,G
0
t ,Q

)

, which is a commutative von Neumann

algebra. Then, we have to consider together classical output and quantum system

and we have to replace C(X; Mn) by L∞
(

Ω,G
0
t ,Q; Mn

)

� L∞
(

Ω,G
0
t ,Q

)

⊗Mn ,

which is again a von Neumann algebra, but no longer commutative.
Now, notions from the theory of von Neumann algebras become relevant; we

recall only a few facts and notions in our concrete cases, without mathematical
explanations and proofs, and we suggest the book [2] to the interested reader. Just
to recall the terminology, a von Neumann algebra or W ∗-algebra M is a C∗-algebra
which is the topological dual of a Banach space, which is called the predual M∗
of M. A state on M is a continuous, positive, normalised functional on M; this
state is called normal if it enjoys some more restrictive continuity properties (w∗-
continuity) or, equivalently, if it can be represented by an element of M∗.

A normal state on L∞
(

Ω,G
0
t ,Q

)

is simply a probability density with respect to

Q and the linear span of such densities is L1
(

Ω,G
0
t ,Q

)

, which substitutes C(X) in

the role of the space where the states live. The space L∞
(

Ω,G
0
t ,Q

)

is the topolog-

ical dual of L1
(

Ω,G
0
t ,Q

)

.

Similarly, a normal stateΣ on L∞
(

Ω,G
0
t ,Q; Mn

)

is a matrix-valued density:Σ

is a measurable Mn-valued function on Ω (or, better, an equivalence class of func-
tions) such that Σ(ω) ≥ 0 and

∫

Ω
Tr {Σ(ω)}Q(dω) = 1. Therefore, the function

p(ω) := Tr {Σ(ω)}
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is a probability density with respect to Q(dω), or a state on L∞
(

Ω,G
0
t ,Q

)

, and

π (ω) := p(ω)−1Σ(ω)

is a state on Mn (it belongs to S(H)). We identify Σ with the ensemble {p, π}. The
quantum state

∫

Ω

Q(dω)π := p(ω)π (ω)

is called the average state of the ensemble Σ ≡ {p, π}.

Remark 6.1. Let us consider the solution σ (t) of the linear stochastic master equa-
tion at a fixed time t . By the discussion above, σ (t) is a normal state on the von

Neumann algebra L∞
(

Ω,G
0
t ,Q; Mn

)

� L∞
(

Ω,G
0
t ,Q

)

⊗ Mn (a bipartite clas-

sical/quantum system) and it is identified with the ensemble {p(t), ρ(t)} (physical
probability density and a posteriori states) whose average state is the a priori state
η(t). The density p(t) and the a priori state η(t) are the classical and the quantum

marginals of the state σ (t) on the composed algebra L∞
(

Ω,G
0
t ,Q

)

⊗ Mn .

6.3.2 Entropies

For what concerns the quantum system, nothing is changed and the definitions of
von Neumann entropy and quantum relative entropy are always given by Eqs. (6.1).

However, in the classical continuous case there is no natural analog of the Shan-
non information (6.2a). For states on general von Neumann algebras the key notion
is that of relative entropy. Here we give the definition only in the cases of our
interest.

Let p1 and p2 be two normal states on L∞
(

Ω,G
0
t ,Q

)

, i.e. two Q-densities. The

definition of relative entropy, or Kullback–Leibler divergence, of p1 with respect to
p2 is similar to (6.2b) and it is given by

Sc(p1‖p2) =
∫

Ω

p1(ω) ln
p1(ω)

p2(ω)
Q(dω). (6.10)

As in the discrete case the relative entropy is non-negative and can take the value
+∞.

In the case of the composed system with algebra L∞
(

Ω,G
0
t ,Q; Mn

)

let us con-

sider two states Σi = {pi , πi }, i = 1, 2. The definition of relative entropy of Σ1

with respect to Σ2, analogous to (6.3b), is
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S(Σ1‖Σ2) =
∫

Ω

Tr
{

Σ1(ω)
(

lnΣ1(ω)− lnΣ2(ω)
)}

Q(dω)

= Sc(p1‖p2)+
∫

Ω

p1(ω)Sq
(

π1(ω)
∥

∥π2(ω)
)

Q(dω). (6.11)

Let us now consider the ensemble Σ = {p, π} with average state π . Its

marginals on the algebras L∞(Ω,G
0
t ,Q) and Mn are p and π , respectively. In

analogy with Eq. (6.7), we can consider the relative entropy of Σ with respect to the
product of its marginals and we get the mutual entropy

S (Σ‖p π ) =
∫

Ω

p(ω)Sq
(

π (ω)‖π)Q(dω)

= Sq(π)−
∫

Ω

p(ω)Sq
(

π (ω)
)

Q(dω) = χ{p, π}. (6.12)

As already seen in Sect. 6.2.3 in the discrete case, Eq. (6.12) gives the χ -quantity
of the ensemble of states {p, π}.

6.3.3 Channels

Let M1 and M2 be two von Neumann algebras. A linear map Λ from the predual
M1∗ to the predual M2∗ is said to be a (quantum) channel if it is completely positive
and sends states into states (normalisation) [2, p. 137]. The composition of channels
gives again a channel. Channels are usually introduced to describe noisy quantum
evolutions, but also an instrument can be identified with a channel, as we shall see
in the case of continuous measurements.

For instance, a channel from Mn to itself is a completely positive linear map
which transforms statistical operators into statistical operators and, so, it is the same
as the dynamical map defined in Sect. B.3.3. On the other side, a channel from

L1(Ω,G
0
t ,Q) into itself is simply a linear map which sends densities into densities

(then, in this case, complete positivity is automatic).
A key result which follows from the convexity properties of the relative entropy is

Uhlmann monotonicity theorem [2, Theorem 1.5 p. 21], which implies that channels
decrease the relative entropy.

Theorem 6.2. If Σ and Π are two normal states on M1 and Λ is a channel from
M1∗ →M2∗, then S(Σ‖Π) ≥ S(Λ[Σ]‖Λ[Π]).

6.3.3.1 The Channels Associated to the Continuous Measurement

Let us consider the stochastic propagator A(t, 0) defined by Eq. (3.42); its properties
are given in Theorem 3.4. Let us recall that A(t, 0;ω) is a completely positive linear
map on Mn for every ω. As a function of ω, it can be seen as a linear map from Mn

into L1(Ω,G
0
t ,Q; Mn), which transforms an initial condition ρ0 ∈ S(H) into the
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state σ (t) ∈ L1(Ω,G
0
t ,Q; Mn). It can be shown that A(t, 0) is completely positive

also as a map with range in the enlarged space; therefore, it is a channel. The same
is true, with the obvious changes, for A(t, s).

Remark 6.3. For t ≥ s ≥ 0, the map A(t, s) : Mn → L1
(

Ω,G
s
t ,Q; Mn

)

is a
channel.

In Chap. 4 (Definition 4.1) we have seen that the channel A(t, s) defines the
instrument Is

t . It is a general result that any instrument is equivalent to a channel
from quantum states to classical/quantum states [4–6].

6.4 A Classical Continuous Information Gain

The aim of this section is to introduce a measure of the effectiveness of the continu-
ous measurement in extracting classical information on the quantum system under
measurement. Classical information is measured by relative or mutual entropies for
probability densities. So, our idea is to introduce a reference probability with density
q(t) with respect to Q such that the Kullback–Leibler divergence

Sc
(

p(t)‖q(t)
) = E

t
ρ0

[

ln
p(t)

q(t)

]

(6.13)

is a good measure of the classical information gain in the time interval (0, t). We
want to show that a good choice for the reference density q(t) is

q(t) = exp

{

∑

j

[∫ t

0
n j (s) dW j (s)− 1

2

∫ t

0
n j (s)2 ds

]}

, (6.14)

where the n j (t) are the a priori quantum means

n j (t) = Tr
{(

R j (t)+ R j (t)
∗) η(t)

} = E
t
ρ0

[

v j (t)
]

. (6.15)

Let us note that the functions n j are deterministic. By Girsanov theorem, under
q(T, ω)Q(dω) the processes W j have independent increments, as it is under Q (so,
they can be interpreted as noises), but the means have been changed and made equal
to the means they have under P

T
ρ0

. Precisely, the processes W j (t) −
∫ t

0 n j (s) ds are
independent, standard Wiener processes.

We want to show also that, in some sense, q(t, ω)Q(dω) is a continuous prod-
uct of marginals of P

t
ρ0

(dω) = p(t, ω)Q(dω) and, so, the classical relative entropy
Sc
(

p(t)‖q(t)
)

can be considered as a mutual entropy of P
t
ρ0

with respect to a contin-
uous factorisation.
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6.4.1 Product Densities

Let us consider any time s in the time interval (0, t) and let us decompose

the von Neumann algebra L∞(Ω,G
0
t ,Q) as L∞(Ω,G

0
t ,Q) = L∞(Ω,G

0
s ,Q) ⊗

L∞(Ω,G
s
t ,Q). Now, the density p(t) can be seen as a state on L∞(Ω,G

0
t ,Q) and

we can consider its marginals p(0, s) and p(s, t) on the two factors L∞(Ω,G
0
s ,Q)

and L∞(Ω,G
s
t ,Q), respectively. These marginals are given by

p(0, s) = EQ

[

p(t)

∣

∣

∣

∣

G
0
s

]

, p(s, t) = EQ

[

p(t)

∣

∣

∣

∣

G
s
t

]

. (6.16)

By using the fact that {p(t), t ≥ 0} is a martingale and by taking the trace of
Eq. (3.56), we get

p(0, s) = p(s) , p(s, t) = Tr{A(t, s)[η(s)]} . (6.17)

By comparing the last equality with p(t) = Tr{σ (t)} = Tr{A(t, 0)[η(0)]}, we see
that p(s, t) is similar to p(t), but with s as initial time, instead of 0, and with η(s) as
initial state, instead of η(0). By this remark and Eq. (3.44), we get

p(s, t) = exp

{

∑

j

[∫ t

s
v j (u, s) dW j (u)− 1

2

∫ t

s
v j (u, s)2 du

]}

, (6.18)

where

v j (t, s) = Tr
{(

R j (t)+ R j (t)
∗) ρ(t, s)

}

, ρ(t, s) = 1

p(s, t)
A(t, s)[η(s)].

(6.19)

The random state ρ(t, s) is the a posteriori state for the instrument Is
t and the

pre-measurement state η(s). Note that v j (t, 0) = v j (t), already defined in (3.45).
Then, we can consider the mutual entropy Sc

(

p(t)‖p(0, s)p(s, t)
)

. But the sig-
nificance of this quantity is dubious, because the time s is completely arbitrary and,
moreover, we could divide the time interval into more pieces. For instance, we

can take the decomposition L∞(Ω,G
0
t ,Q) = L∞(Ω,G

0
r ,Q) ⊗ L∞(Ω,G

r
s ,Q) ⊗

L∞(Ω,G
s
t ,Q) and we recognise that p(0, r )p(r, s)p(s, t) is the product of the

marginals of p(t) related to this decomposition. Taking a finer generic partition of
(0, t) with t0 = 0 and tn = t , we recognise that

∏n
j=1 p(t j−1, t j ) is again a product of

marginals of p(t). To eliminate arbitrariness, let us consider finer and finer partitions
and let us go to a continuous product of marginals.

Let us note that we have lims↑t v j (t, s) = n j (t), a.s. Then, for an infinitesimal
interval we get
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p(s, s + ds) = exp

⎧

⎨

⎩

∑

j

[

n j (s) dW j (s)− 1

2
n j (s)2ds

]

⎫

⎬

⎭

(6.20)

and, so, the density q(t) (6.14) is the continuous product of marginals of p(t).
The fact that it is possible to consider a “continuous product of marginals” is

not so unexpected; indeed, the theory of continuous measurements is connected to
infinite divisibility [11–15].

We have already seen that the marginals of p(t) with respect to the decomposition
of the time interval (0, t) into (0, s) and (s, t) are p(0, s) = p(s) and p(s, t) given
by Eq. (6.18). The analogous marginals for q(t) are q(0, s) = q(s) and

q(s, t) = exp

⎧

⎨

⎩

∑

j

[∫ t

s
n j (u) dW j (u)− 1

2

∫ t

s
n j (u)2 du

]

⎫

⎬

⎭

= q(t)

q(s)
. (6.21)

6.4.2 The Classical Information Gain

The density q(t) is no more dependent on some arbitrary choice of intermediate
times and the measure q(T, ω)Q(dω) has a distinguished role and can be considered
as a reference measure. So, we can introduce the relative entropy (6.13). The density
q(t) is a product of marginals of p(t), even the finest product of marginals; then, the
quantity (6.13) is a mutual entropy and can be taken as a measure of classical infor-
mation on the measured system extracted in the time interval (0, t). If we assume
that the initial state and the generator of the master equation are completely known,
then q(t) is known a priori and we can interpret Sc

(

p(t)‖q(t)
)

as the measure of
the mean classical information that we gain when we perform the random exper-
iment described by our continuous measurement and we register the trajectory of
the output up to time t . Other reasons can be given to reinforce the interpretation of
measure of the information extracted from the observed system.

Proposition 6.4. The information gain (6.13) enjoys the properties: for 0 ≤ s ≤ t

Sc
(

p(t)‖q(t)
) = Sc

(

p(s)‖q(s)
)+ Sc

(

p(t)‖p(s)q(s, t)
)

, (6.22)

0 ≤ Sc
(

p(s)‖q(s)
) ≤ Sc

(

p(t)‖q(t)
)

, (6.23)

Sc
(

p(t)‖p(s)q(s, t)
) = EQ

[

p(s) EQ

[

p(t)

p(s)
ln

p(t)/p(s)

q(t)/q(s)

∣

∣

∣

∣

G
0
s

]]

. (6.24)

Proof. By Eqs. (3.44), (6.18), (6.14), (6.21) we have p(0, t) = p(t), q(0, t) =
q(t), q(u) = q(t)q(t, u), for 0 ≤ t ≤ u. By direct computation of the difference
Sc
(

p(t)‖q(t)
) − Sc

(

p(s)‖q(s)
)

we get (6.22). Then, by the positivity of relative
entropies, this equation gives the inequalities (6.23).
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By (6.13) and (6.21) we have

Sc
(

p(t)‖p(s)q(s, t)
) = EQ

[

p(t) ln
p(t)

p(s)q(s, t)

]

= EQ

[

p(t) ln
p(t)/p(s)

q(t)/q(s)

]

= EQ

[

p(s)
p(t)

p(s)
ln

p(t)/p(s)

q(t)/q(s)

]

= EQ

[

p(s) EQ

[

p(t)

p(s)
ln

p(t)/p(s)

q(t)/q(s)

∣

∣

∣

∣

G
0
s

]]

.

�
Equation (6.23) says that Sc

(

p(t)‖q(t)
)

is non-negative and not decreasing in
time, as should be for a measure of an information gain in time. Note that we have
also Sc

(

p(0)‖q(0)
) = 0.

The expression (6.24) can be interpreted as a conditional relative entropy

[1, pp. 22–23]. The quantity EQ

[

p(t)
p(s) ln p(t)/p(s)

q(t)/q(s)

∣

∣

∣G
0
s

]

has the same structure as

Sc
(

p(t)‖q(t)
)

, but it refers to the interval (s, t) and it is constructed with the condi-
tional densities. We can say that Eq. (6.22) expresses in a consistent way a kind of
“additivity property” of our measure of information.

Having the explicit exponential forms of the densities p(t) and q(t), we can com-
pute the explicit expression of the information gain.

Proposition 6.5. The explicit expression of the classical mutual entropy (6.13) is

Sc
(

p(t)‖q(t)
) = 1

2

∑

j

∫ t

0
VarPt

ρ0
[v j (s)]ds. (6.25)

Proof. By Eqs. (3.44) and (6.14) we get

ln
p(t)

q(t)
=
∑

j

[∫ t

0

(

v j (s)− n j (s)
)

dW j (s)− 1

2

∫ t

0

(

v j (s)2 − n j (s)2
)

ds

]

=
∑

j

[∫ t

0

(

v j (s)− n j (s)
)(

dW j (s)− v j (s)ds
)+ 1

2

∫ t

0

(

v j (s)− n j (s)
)2

ds

]

=
∑

j

[∫ t

0

(

v j (s)− n j (s)
)

d̂W j (s)+ 1

2

∫ t

0

(

v j (s)− n j (s)
)2

ds

]

.

The first term has zero mean under P
T
ρ0

(or under P
t
ρ0

, by consistency). Therefore,
Eq. (6.25) follows by taking the P

t
ρ0

-mean of ln p(t)/q(t) and by taking into account
Eq. (6.15). �
Remark 6.6.

1. Note that

d

dt
Sc
(

p(t)‖q(t)
) = 1

2

∑

j

VarPt
ρ0

[v j (t)] ≥ 0. (6.26)
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The positivity of this time derivative follows also from Eq. (6.23).
2. By the properties of relative entropy, E

T
ρ0

[

Sq
(

ρ(t)‖η(t)
)] = 0 is equivalent to

ρ(t) = η(t), P
T
ρ0

-a.s. By Eqs. (6.15), (6.26), this last relation implies the vanish-
ing of the quantity (6.26). So, we have

E
T
ρ0

[

Sq
(

ρ(t)‖η(t)
)

]

= 0 ⇒ d

dt
Sc
(

p(t)‖q(t)
) = 0 . (6.27)

3. From the definition of v j (t) (3.45) we see that, if R j (t) + R j (t)∗ ∝ 1, then
VarPt

ρ0
[v j (t)] = 0. This says that in this case no information is extracted from the

system by the measurement in channel j , whatever the initial state is.

Other measures of information gain can be proposed, depending on what is con-
sidered unknown about the system. For instance in [16] the situation of a dynamics
with unknown parameters is considered and some measures are proposed and stud-
ied for the information gain on these parameters obtained by various schemes of
continuous observation.

6.4.3 An Upper Bound on the Increments of the Classical
Information gain

Lemma 6.7. For 0 ≤ t ≤ u, we have the bound

0 ≤ Sc
(

p(u)‖p(t)p(t, u)
) ≤ E

u
ρ0

[

Sq
(

ρ(t)‖η(t)
)− Sq

(

ρ(u)‖ρ(u, t)
)]

, (6.28)

and the identity

Sc
(

p(u)‖q(u)
)− Sc

(

p(t)‖q(t)
) = Sc

(

p(u)‖p(t)p(t, u)
)+ Sc

(

p(t, u)‖q(t, u)
)

.

(6.29)

Proof. Consider the relative entropy S
(

σ (t)‖p(t)η(t)
)

, which will be studied in Sec-
tion 6.5, and apply to both states the channel A(u, t). By Theorem 6.2 and Definition
(6.19) we get the inequality

E
t
ρ0

[

Sq

(

ρ(t)‖η(t)
)] = S

(

σ (t)‖p(t)η(t)
) ≥ S (A(u, t)[σ (t)]‖A(u, t)[p(t)η(t)])

= S
(

p(u)ρ(u)‖p(t)p(t, u)ρ(u, t)
)

= E
u
ρ0

[

Tr
{

ρ(u)
(

ln p(u)+ ln ρ(u)− ln
(

p(t)p(t, u)
)− ln ρ(u, t)

)}]

= Sc

(

p(u)‖p(t)p(t, u)
)+ E

u
ρ0

[

Sq

(

ρ(u)‖ρ(u, t)
)]

,

and this gives (6.28).
By Eqs. (3.44), (6.18), (6.14), (6.21) and explicit computation we get (6.29). �

Theorem 6.8 (The bound on the derivative of Sc
(

p(t)‖q(t)
)

). The following
bound holds, for every t for which the derivatives in the right hand side exist:
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0 ≤ d

dt
Sc
(

p(t)‖q(t)
) ≤ − d

du
E

T
ρ0

[

Sq
(

ρ(u)‖ρ(u, t)
)]

∣

∣

∣

u=t+

≡ d

dt
E

T
ρ0

[

Sq
(

ρ(t)
)]− d

du
E

T
ρ0

[

Sq
(

ρ(u, t)
)]

∣

∣

∣

u=t+
. (6.30)

Proof. From Eqs. (6.20) and (6.21) we get immediately

lim
u↓t

Sc
(

p(t, u)‖q(t, u)
)

u − t
= 0 .

Then, the second summand in the expression (6.29) of the increment of informa-
tion becomes negligible with respect to the first when u ↓ t . Therefore, from (6.28)
we obtain (6.30). �

What is important in (6.30) is not the precise form of the bound, but the fact
that the rate of a classical information d

dt Sc
(

p(t)‖q(t)
)

is bounded by the quantum
quantity in the right hand side. The output is a classical stochastic quantity, the infor-
mation we gain in observing the output is measured by a classical mutual entropy,
but after all the observed system is a quantum one and its “quantumness” poses
bounds on the quantity of information that can be extracted.

Remark 6.9. We already saw in Remark 6.6 that E
T
ρ0

[

Sq
(

ρ(t)‖η(t)
)] = 0 is equiva-

lent to ρ(t) = η(t), P
T
ρ0

-a.s.; but this implies ρ(u)=ρ(u, t),∀u ≥ t , P
T
ρ0

-a.s., because
in this case these two stochastic processes, which satisfy the same equation, have
the same initial condition at time t . Therefore we have E

T
ρ0

[

Sq
(

ρ(u)‖ρ(u, t)
)] = 0,

∀u ≥ t , and

E
T
ρ0

[

Sq
(

ρ(t)‖η(t)
)] = 0 ⇒ − d

du
E

T
ρ0

[

Sq
(

ρ(u)‖ρ(u, t)
)]

∣

∣

∣

u=t+
= 0. (6.31)

6.5 The Information Embedded in the A Posteriori States

Another interesting measure of information is the relative entropy of the ensemble
σ (t) = {p(t), ρ(t)} with respect to the product of its marginals p(t) and η(t); it
turns out to be

S
(

σ (t)‖p(t)η(t)
) =

∫

Ω

Tr
{

σ (t, ω)
(

ln σ (t, ω)− ln p(t, ω)η(t)
)}

Q(dω)

= E
t
ρ0

[

Sq
(

ρ(t)‖η(t)
)] = Sq

(

η(t)
)− E

t
ρ0

[

Sq
(

ρ(t)
)]

= χ{p(t), ρ(t)}. (6.32)

According to the terminology introduced in Sect. 6.2.3, it is a mutual entropy of
mixed classical/quantum type and it is also the Holevo’s χ -quantity of the ensemble
σ (t) ≡ {p(t), ρ(t)}.
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This mutual entropy is a sort of quantum information embedded by the measure-
ment in the a posteriori states. When the measurement is not informative, we have
ρ(t, ω) = η(t) and S

(

σ (t)‖p(t)η(t)
) = 0. It is zero also if for any reason it happens

that η(t) is a pure state. For instance, if T (t, 0) has a unique equilibrium state which
is pure, then limt→+∞ S

(

σ (t)‖p(t)η(t)
) = 0 even if the measurement is “good”.

Let us note that from Eq. (6.32) we have the bound

S
(

σ (t)‖p(t)η(t)
) ≤ Sq

(

η(t)
)

. (6.33)

When the von Neumann entropy of the a priori state is not zero, an instantaneous
index of “goodness” of the measurement could be S

(

σ (t)‖p(t)η(t)
)/

Sq
(

η(t)
)

, while

a “cumulative” index could be
∫ T

0

S
(

σ (t)‖p(t)η(t)
)

Sq
(

η(t)
) dt .

Remark 6.10. The two mutual entropies (6.13) and (6.32) can be obtained from a
unique mutual entropy

S(σ (t)‖q(t)η(t)) =
∫

Ω

Q(dω) Tr
{

σ (t, ω)
(

ln σ (t, ω)− ln q(t, ω)η(t)
)}

. (6.34)

Indeed, by direct computation, we get

S
(

σ (t)‖q(t)η(t)
) = S

(

σ (t)‖p(t)η(t)
)+ Sc

(

p(t)‖q(t)
)

= E
t
ρ0

[

Sq
(

ρ(t)‖η(t)
)]+ Sc

(

p(t)‖q(t)
)

. (6.35)

6.6 Gain of Information on the Initial State: The Input/Output
Classical Information

Let us consider a typical setup of quantum communication theory. A message is
transmitted by encoding the letters in some quantum states, which are possibly cor-
rupted by a quantum noisy channel; at the end of the channel the receiver attempts
to decode the message by performing measurements on the quantum system. So,
one has an alphabet A and the letters α ∈ A are transmitted with some a priori
probability Pi. Each letter α is encoded in a quantum state and we denote by ρi(α)
the state associated to the letter α as it arrives to the receiver, after the passage
through the transmission channel. So, ρi(α) is the unknown initial state for the
possible measurements performed by the receiver. While it is usual to consider a
finite alphabet, also general continuous parameter spaces are acquiring importance
[17–19]. The same setup describes a problem in quantum statistics. The parameter
α ∈ A is unknown and we want to estimate it by performing measurements on
the quantum system; the problem is afforded in the Bayesian formulation and the a
priori probability Pi is known. Now, we assume that we have at disposal only the
continuous measurement described in the previous chapters and that by means of
that measurement we want to decode the transmitted message (to recognise the state
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ρi(α)) or to estimate the parameter α. The quantity which measures the effectiveness
of the measurement in distinguishing among the possible initial states is the classical
input/output information.

Summarising, the possible initial states are the statistical operators ρi(α) ∈ S(H),
α ∈ A, with probability distribution Pi(dα); some σ -algebra A is understood.
Equivalently,

(

ρi(α), Pi(dα)
)

is the initial ensemble with average initial state ηi =
∫

A Pi(dα)ρi(α). Therefore, the possible initial states for the continuous measurement
are the statistical operators ρi(α), α ∈ A, and ηi.

First of all, we can form the physical probability when the initial state is ρi(α)
and we interpret it as the conditional probability on Ω given α:

Pt (dω|α) = p(t, ω|α)Q(dω), p(t, ω|α) = Tr {A(t, 0;ω)[ρi(α)]} . (6.36)

As we know the a priori probability on A, we can form the unconditional proba-
bility, which coincides with the physical probability when the initial state is ηi:

Pt (dω) = p(t, ω)Q(dω), p(t, ω) =
∫

A
p(t, ω|α)Pi(dα) = Tr {A(t, 0;ω)[ηi]} .

(6.37)
Similarly, we can form the physical joint probability on A ×Ω

Pt (dα × dω) = Pt (dω|α)Pi(dα) = p(t, ω|α)Pi(dα)Q(dω), (6.38)

and the conditional probability on A given ω

Pt (dα|ω) = Pt (dω|α)Pi(dα)

Pt (dω)
= p(t, ω|α)

p(t, ω)
Pi(dα). (6.39)

The input/output information is the relative entropy of the joint probability
Pt (dα × dω) with respect to the product Pi(dα)Q(dω) of its marginals, that is

I (t) :=
∫

A×Ω
Pt (dα × dω) ln

Pt (dα × dω)

Pi(dα)Pt (dω)

=
∫

A
Pi(dα)

∫

Ω

Q(dω) p(t, ω|α) ln
p(t, ω|α)

p(t, ω)
. (6.40)

By using the densities p(t, ω|α), 1, p(t, ω) with respect to Pi(dα)Q(dω), Pi(dα),
Q(dω), respectively, we can write

I (t) = Sc
(

p(t |•)‖p(t)
)

. (6.41)

Now we introduce some useful quantities, namely, the a posteriori state and the
a posteriori mean starting from ρi(α)
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ρ(t, ω|α) = A(t, 0;ω)[ρi(α)]

p(t, ω|α)
, (6.42a)

v j (t, ω|α) = Tr
{(

R j (t)+ R j (t)
∗) ρ(t, ω|α)

}

, (6.42b)

and the a posteriori state and a posteriori mean starting from ηi

ρ(t, ω) = A(t, 0;ω)[ηi]

p(t)
, v j (t, ω) = Tr

{(

R j (t)+ R j (t)
∗) ρ(t, ω)

}

. (6.43)

By using these quantities, as for (3.44), we obtain

p(t) = exp

⎧

⎨

⎩

m
∑

j=1

[∫ t

0
v j (s)dW j (s)− 1

2

∫ t

0
v j (s)2ds

]

⎫

⎬

⎭

, (6.44a)

p(t |α) = exp

⎧

⎨

⎩

m
∑

j=1

[∫ t

0
v j (s|α)dW j (s)− 1

2

∫ t

0
v j (s|α)2ds

]

⎫

⎬

⎭

. (6.44b)

From (6.44) we get the explicit expression of the input/putput information:

I (t) = 1

2

∫ t

0
ds

∫

A×Ω
Pt (dα × dω)

∑

j

(

v j (s, ω|α)− v j (s, ω)
)2
. (6.45)

Independently from the time-continuous measurements, the input/output infor-
mation is known to be limited by the famous Holevo bound. Such a bound goes
back to a paper by Holevo [20] for the discrete case; the proof for the general
case was given by Yuen and Ozawa [18]. Later, Schumacher, Westmoreland and
Wootters [21] gave a new formulation of the bound which takes into account also
the information left in the a posteriori states. Their work was limited to a very
special instrument; the result for a general discrete instrument was obtained in [4]
and developed in [5, 22]. The proof for a general instrument, not necessarily dis-
crete, was given in [6] and the result was applied to time-continuous measurements
in [9].

Theorem 6.11 (The Holevo & SWW bound). The classical input/output informa-
tion I (t), introduced in (6.40), is bounded by

0 ≤ I (t) ≤ χ (0)− χ (t), (6.46)

where

χ (t) :=
∫

Ω

Pt (dω)
∫

A
Pt (dα|ω) Sq

(

ρ(t, ω|α)‖ρ(t, ω)
)

. (6.47)
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Proof. The mutual entropy of the initial ensemble is

S(ρi‖ηi) =
∫

A
Pi(dα) Tr {ρi(α) (ln ρi(α)− ln ηi)}

=
∫

A
Pi(dα) Sq

(

ρi(α)‖ηi
) = χ (0).

By recalling that A(t, 0) is a channel and by applying the Uhlmann monotonicity
theorem 6.2, we get

S(ρi‖ηi) ≥ S
(

A(t, 0)[ρi]‖A(t, 0)[ηi]
)

.

But the we have

S
(

A(t, 0)[ρi]‖A(t, 0)[ηi]
) =

∫

A
Pi(dα)

∫

Ω

Q(dω)p(t, ω|α)

×Tr {ρ(t, ω|α) (ln p(t, ω|α)ρ(t, ω|α)− ln p(t, ω)ρ(t, ω))}

=
∫

A
Pi(dα)

∫

Ω

Q(dω)p(t, ω|α)

{

ln
p(t, ω|α)

p(t, ω)

+Sq
(

ρ(t, ω|α)‖ρ(t, ω)
)

}

= I (t)+ χ(t),

which ends the proof. �

The expression
∫

A Pt (dα|ω) Sq
(

ρ(t, ω|α)‖ρ(t, ω)
)

is a random chi-quantity;
then, χ (t) is a mean chi-quantity, which represents the information about the initial
state left in the a posteriori states.

Moreover, for t = 0 we get

χ (0) =
∫

A
Pi(dα) Sq

(

ρi(α)‖ηi
)

, (6.48)

which is the Holevo’s chi-quantity of the initial ensemble. The positivity of χ (t)
gives that (6.46) implies

I (t) ≤ χ (0), (6.49)

which is the Holevo bound. Note that the bound (6.49) is independent of the
type of the measurement, while the features of the measurement we are consid-
ering appear in the counter-term −χ (t) in (6.46) through the a posteriori states
ρ(t, ω|α) and ρ(t, ω) and the density p(t, ω|α) which appears in the joint probability
Pt (dα|ω)Pt (dω) = Pt (dα × dω) = p(t, ω|α)Pi(dα)Q(dω).
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Part II
Physical Applications



Chapter 7
Quantum Optical Systems

7.1 How to Construct Physical Models

Up to here we have seen the abstract theory, which involves a certain number of
operators on H. The choice of H and of these operators fixes the physical model.
This section provides some hints on how to do this choice.

7.1.1 From the Full Quantum Level to the Reduced
Description by SDEs

The construction of physically sensible models of continuously observed quantum
systems is not a simple problem. Some useful hints are given by the second approach
to continuous measurements described in Chap. 1, the one based on the quantum
stochastic differential equation of Hudson and Parthasarathy. In that approach one
has to introduce interactions between the quantum system of interest and some
quantum fields. Then, the quantum stochastic approach can be translated into the
approach with SDEs, as explained in [1, 2]. A more physically oriented presentation
can be found in [3], where the authors present both the approaches (with quantum
and with classical stochastic differential equations) together with various physical
applications.

In the formulation of continuous measurements using classical SDEs, the math-
ematical model is completely determined when the operators R j (t) and H (t) are
given (cf. Sect. 2.8.1). The translation from the quantum SDEs to the classical SDE
formulation gives us a structure for these operators in terms of some fundamental
bricks, coming out from the system operators involved in the system/field interac-
tion, the functions characterising the state of the quantum field (say d-dimensional)
and some functions involved in the measuring procedure:

• Dk , system operators responsible for the emission of quanta of the fields;
• Sk j , system operators such that

∑

k S ∗
k j Ski =

∑

k S jk S ∗
ik = δi j ; S is a unitary

matrix of system operators and is involved in terms responsible for scattering of
quanta;

Barchielli, A., Gregoratti, M.: Quantum Optical Systems. Lect. Notes Phys. 782, 145–150 (2009)
DOI 10.1007/978-3-642-01298-3 7 c© Springer-Verlag Berlin Heidelberg 2009
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• H0 = H∗
0 , the free Hamiltonian of the system;

• fk(t), functions describing some coherent external stimulation (the “state of the
fields”);

• hk(t), with |hk(t)| = 1, a time-dependent phase factor appearing when the mea-
suring apparatus uses some interference mechanism, as in the so-called “hetero-
dyne” and “homodyne” photon-detection techniques.

The final result for the operators characterising the reduced description in terms
of SDEs is the following structure for Rk(t) and H (t):

Rk(t) = hk(t)

[

Dk +
d
∑

j=1

Sk j f j (t)

]

, (7.1a)

H (t) = H0 + 1

2

∑

k j

[

i fk(t)S ∗
jk D j − iD∗

j S jk fk(t)
]

. (7.1b)

In order to justify a concrete choice of hk , f j , Dk , Sk j , H0, one could study the
physical consequences of the model; this would eventually provide a phenomeno-
logical justification. A better justification would be to construct first the “quantum
stochastic” model (the one based on Hudson–Parthasarathy equation). At this higher
level, the system–field interaction is physically more transparent, mainly for quan-
tum optical systems. However, this is out of the aims of the present work, as it needs
the whole formalism of quantum stochastic calculus.

7.1.2 Observed and Unobserved Channels — The Generators

The operator H (t) represents the effective Hamiltonian of the system, the set of
operators Rk(t), k = 1, . . . ,m, are involved in the “observed channels” and the set
of operators Rk(t), k = m + 1, . . . , d, are involved in the “unobserved channels”
and in the dissipative interaction with the external world, as a thermal bath. The
linear and nonlinear Hilbert stochastic Schrödinger equations (2.28), (2.49), (2.52)
depend on all the features of such operators. However, due to the presence of the
unobserved channels, the physical consequences of the theory are determined by the
stochastic master equations (3.37), (3.69) or, equivalently, by the generator (4.37)
of the characteristic operator.

The generator of the characteristic operator can be written in the form: ∀τ ∈ Mn ,

Λt (k)[τ ] := L(t)[τ ]+
m
∑

j=1

(

ik j
(

R j (t)τ + τ R j (t)
∗)− 1

2
k2

j τ

)

, (7.2a)

L(t)[τ ] = L0(t)[τ ]+
m
∑

j=1

(

R j (t)τ R j (t)
∗ − 1

2

{

R j (t)
∗R j (t), τ

}

)

, (7.2b)
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L0(t)[τ ] = −i[H (t), τ ]+
d
∑

k=m+1

(

Rk(t)τ Rk(t)∗ − 1

2

{

Rk(t)∗Rk(t), τ
}

)

, (7.2c)

where H (t) and Rk(t) are given by Eqs. (7.1). However, the Hamiltonian H (t) and
the operators Rk(t), k = m+ 1, . . . , d, involved in the “unobserved channels”, con-
tribute to the physical quantities (probabilities and a posteriori states) only through
the reduced Liouville operator (7.2c): to change H (t), Rk(t), k = m + 1, . . . , d,
without changing L0(t) does not modify the physical model.

In particular, an unobserved channel contributes to the physical model only
through the expression Rk(t)•Rk(t)∗ − 1

2 {Rk(t)∗Rk(t), •}, from which the phase fac-
tor hk(t) disappears. This means that the functions hk(t), k = m + 1, . . . , d, can
be chosen as one wants, for instance in order to produce some simplification in the
form of the stochastic Schrödinger equation.

Moreover, in the finite dimensional case, in which we are working, the best rep-
resentation of a quantum Liouville operator is often obtained by using only traceless
operators in the dissipative part [4]. Therefore, we define

gk(t) := 1

n
Tr{Dk} + 1

n

d
∑

j=1

Tr{Sk j } f j (t), (7.3)

Lk(t) := Dk +
d
∑

j=1

Sk j f j (t)− gk(t), (7.4)

by which we have Tr{Lk(t)} = 0 and Rk(t) = hk(t) [Lk(t)+ gk(t)]. By inserting
these expressions and (7.1b) into (7.2b), (7.2c), we obtain (∀τ ∈ Mn)

L(t)[τ ] = −i[H0 + H f (t), τ ]+
d
∑

k=1

(

Lk(t)τ Lk(t)∗ − 1

2

{

Lk(t)∗Lk(t), τ
}

)

, (7.5)

H f (t) = − i

2

d
∑

k, j=1

D∗
k

(

Sk j + 1

n
Tr
{

Sk j
}

)

f j (t)

+ i

2n

d
∑

k=1

Tr
{

D∗
k

}

(

Dk +
d
∑

j=1

Sk j f j (t)

)

+ i

2n

d
∑

i, j,k=1

fi (t) Tr
{

S∗ki

}

Sk j f j (t)+ h.c.; (7.6)

here “+ h.c.” means “plus the Hermitian conjugate terms”. An interesting special
case is when Tr {Dk} = 0 and Sk j = δk j ; in such a case we have
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gk(t) = fk(t), Lk(t) = Dk , (7.7a)

H f (t) =
d
∑

k=1

[

i fk(t)Dk − iD∗
k fk(t)

]

. (7.7b)

7.2 Heterodyne and Homodyne Detection

In order to fix the various quantities entering into play via Eqs. (7.1), we need to
be more specific about the physical situation. Typical measuring schemes giving
rise to a stochastic description of diffusive type, as the one treated in this book, are
the so-called heterodyne and homodyne detection. We start from the description of
such a measuring apparatus, which in particular determines the functions hk(t) in
the observed channels.

7.2.1 The Measurement Scheme

The system of interest is some source of light; think of an atom stimulated by a laser,
which is the case illustrated in Fig. 7.1. Part of the fluorescence light coming out
from the atom is made to interfere with a high-intensity laser signal of frequency
ν (the local oscillator). The interference between fluorescence light and the local
oscillator is obtained by means of a beam splitter (a half-transparent mirror). Then,
the light coming out from the splitter is detected by photoelectron counters. The
scheme of Fig. 7.1 is called balanced homodyne detection [5–8]: each photo-counter
receives the light coming out from one of the two output ports of the beam splitter
and the two currents are then subtracted. This setup with two photo-counters reduces
the noises in the final current.

Photocounter b
Ib(t)

Ia(t)

−
I(t)

atom

output field

channel      2

output field

channel 1

output port b

output

port a
Photocounter a

beam

splitter

stimulating laser

e−iωt

local oscillator

e−iνt

Fig. 7.1 Balanced heterodyne/homodyne detection



7.2 Heterodyne and Homodyne Detection 149

Not the whole fluorescence light reaches the beam splitter, it is partly lost in the
surrounding free space. Let the light reaching the beam splitter be described by the
channel number 1 and the lost light by channel 2. Usually the stimulating laser is
directed in such a way that its light does not impinge directly on the beam splitter,
so we can say that it acts on channel number 2. Following [9] we can call channel
number 2 the forward channel and channel number 1 the side channel.

The formulation of homodyne/heterodyne detection in terms of quantum stochas-
tic calculus has been given in [10, 11]. Here we give the translation in the formalism
of the previous sections.

• The effect of the local oscillator of frequency ν is to fix the function h1(t) in
Eq. (7.1a): h1(t) = eiνt h1(0). The constant phase factor h1(0) can be included in
the definitions of the operator D1 and of the function f1(t), so that we can take
h1(0) = 1.

• The output current is proportional to the rate of variation of the signal W1(t), but
with some time delay depending on the particular features of the apparatus. By
representing the response of the apparatus in the simplest natural way, the output
current can be written as

I (t) =
∫ t

0
F(t − s)dW1(s) , (7.8a)

where F is a detector response function, say

F(t) = k1

√

�

4π
exp

{

−�
2

t
}

, � > 0, k1 �= 0. (7.8b)

The constants k1 and � depend on the measuring apparatus; k1 has the dimensions
of a current and 1/� the dimensions of a time.
The constant � controls the time resolution, see Sect. 4.4.2. For � → +∞, the
current I (t) becomes formally proportional to the singular process Ẇ1(t), the past
times are not involved: a big value of � gives a good time resolution.

• The electrical power carried by the current I is proportional to its square, say

P(t) = k2 I (t)2, (7.9)

where k2 > 0 has the dimensions of a resistance.

Physically, when the local oscillator is not perfectly monochromatic, the phase
factor h1(t) can have some more complicated form and can be stochastic too. More-
over, if the experimenter is able to fine tune the probing laser acting as local oscilla-
tor, the functional form of h1 can be varied; in this way it is the type of measurement
which is changed, not the reduced dynamics of the quantum system. This freedom
can be used to produce adaptive measurements which give better information on the
system and allow to better control it, for instance via a feedback mechanism.
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7.2.2 Homodyning Versus Heterodyning

The terms heterodyning and homodyning come from radio technique. The term
homodyne detection is reserved for the case in which the local oscillator is in reso-
nance with the carrier frequency of the field reaching the detector. When the local
oscillator is out of resonance the term heterodyne detection is used. In the case of
an atomic system stimulated by monochromatic light of frequency ω, the carrier
frequency in the output is just ω and we can speak of homodyne detection when
ν = ω, where ν is the frequency of the local oscillator.

In a real implementation, homodyning needs also to maintain over the time the
coherence between the stimulating laser and the local oscillator. Due to the presence
of imperfections and randomness in the real laser light, it is nearly impossible to
reach this coherence by using two different sources. Therefore, in order to realise
a good homodyne detection in the laboratory, one has to split the light coming out
from a single laser into two parts and to use one beam as local oscillator and the
other one as stimulating input for the atom [10, 12].
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Chapter 8
A Two-Level Atom: General Setup

8.1 A Two-Level Atom Stimulated by a Laser

A two-level atom is perhaps the simplest quantum system, but in spite of this it has a
very rich behaviour. So, it represents an ideal physical system to illustrate the theory
presented so far [1].

The fluorescence spectrum of a two-level atom stimulated by an intense mono-
chromatic laser is highly non-trivial; it presents a typical three-peaked structure,
which is now known as Mollow spectrum [2]. A measurement scheme which allows
to obtain the spectrum is the heterodyne detection, which we discussed in Chap. 7.
This simple quantum system presents also another typical quantum phenomenon,
the “squeezing” of the fluorescence light, which can be revealed by homodyne
detection [3].

The basic assumption is that the frequencies, the polarisations and the energies
involved are such that a good description of the dynamics of the atom can be given
by using only two non-degenerate levels. This fixes the Hilbert space:

H = C
2 . (8.1)

8.1.1 The Pauli Matrices

A very convenient way to treat with operators on C
2 is to use the so-called Pauli

matrices:

σx ≡ σ1 :=
(

0 1
1 0

)

, σy ≡ σ2 :=
(

0 −i
i 0

)

, σz ≡ σ3 :=
(

1 0
0 −1

)

.

To face computations involving the Pauli matrices, it is useful to recall the follow-
ing commutation and anti-commutation rules, which are the characteristic properties
of these matrices:

[σi , σ j ] = 2i
∑

k

εi jkσk , {σi , σ j } = 2δi j , (8.2)

Barchielli, A., Gregoratti, M.: A Two-Level Atom: General Setup. Lect. Notes Phys. 782,
151–182 (2009)
DOI 10.1007/978-3-642-01298-3 8 c© Springer-Verlag Berlin Heidelberg 2009
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where εi jk is the Ricci symbol

εi jk =

⎧

⎪

⎨

⎪

⎩

1, if i jk is an even permutation of 123,

−1, if i jk is an odd permutation of 123,

0, in the other cases.

Another way of giving the algebraic properties of the Pauli matrices is through the
product rule

σiσ j = i
∑

k

εi jkσk + δi j , (8.3)

which is equivalent to (8.2).
Other useful matrices are the “lowering” operator σ−, the “rising” operator σ+,

the projection on the “up state” P+ and the projection on the “down state” P−:

σ− =
(

0 0
1 0

)

, σ+ =
(

0 1
0 0

)

, P+ =
(

1 0
0 0

)

, P− =
(

0 0
0 1

)

.

Let us note that

σ+ = σ ∗
− , P+ = σ+σ− , P− = σ−σ+ ,

2σ± = σx ± iσy , 2P± = 1± σz .

8.1.2 The Bloch Representation

The matrices 1, σx , σy , σz are linearly independent and form a basis in M2 called
the Pauli basis. Then, any τ ∈ M2 can be written as

τ = 1

2

(

c01+ "d · "σ
)

, c0 = Tr{τ } ∈ C, "d = Tr {"στ } ∈ C
3. (8.4)

As can be easily checked, every positive definite, trace one, 2×2 complex matrix
ρ (a statistical operator) can be represented as

ρ = 1

2

(

1+ z x − iy
x + iy 1− z

)

= 1

2
(1+ "x · "σ ) . (8.5)

This formula defines a statistical operator if and only if "x ∈ R
3 and |"x | ≤ 1. The

state ρ is pure (ρ2 = ρ) if and only if |"x | = 1.
So, the statistical operators are represented by the points in the unit sphere in the

three-dimensional real space, which takes the name of Bloch sphere and the pure
states are represented by the points in the surface of this sphere. Given ρ, the Bloch
vector "x is obtained by



8.1 A Two-Level Atom Stimulated by a Laser 153

xi = Tr{σi ρ}, i = 1, 2, 3. (8.6)

By using the Bloch representation the distance in trace norm (B.4) between two
statistical operators ρ(i) = 1

2

(

1+ "x (i) · "σ ) becomes very simple and significant; by
using (8.3) one obtains easily

∥

∥ρ(1) − ρ(2)
∥

∥

1 =
∣

∣"x (1) − "x (2)
∣

∣ . (8.7)

8.1.3 The System Operators

The first problem in constructing a physically sensible model is the choice of all the
operators and functions involved in the theory and which have been introduced in
abstract terms in Sect. 7.1.

8.1.3.1 The Free Hamiltonian

The free Hamiltonian of the atom can be only a self-adjoint operator with two dis-
tinct eigenvalues; the traditional choice is to take it proportional to σz .

• The Hamiltonian of the free atom is

H0 = 1

2
ω0 σz , ω0 > 0 . (8.8)

Thus, the canonical basis of C
2 is identified with the eigenvectors of H0 and this

justifies the names given to σ−, σ+, P−, P+. The parameter ω0 is the resonance
frequency of the atom.

8.1.3.2 The Electromagnetic Channels

The second step in constructing the model is to consider the interaction of the atom
with the electromagnetic field. The operator matrix S can be used to describe some
kind of scattering of light [4]; but, when the predominant effect responsible for the
scattering of light is only emission/absorption, the operator matrix S can be taken to
be the identity. Here we consider only this simplified situation; so, we take

• Sk j = δk j , ∀k, j .

When stimulated, the atom emits light in the whole solid angle, but it is enough to
distinguish two channels for the outgoing light as schematised in Fig. 7.1: one for the
light which reaches the measuring apparatus (the beam splitter and the detectors),
say channel 1, and the other one for the light which is lost in the surrounding free
space, say channel 2. Usually the laser is well collimated and it involves a small
solid angle in the forward direction (channel 2), but as we have already said, in
channel 2 we include also all other “forward” or “lateral” directions along which
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the light does not reach the detection apparatus. Instead, channel 1 is made up of all
the light rays which reach the detector, eventually after some focussing by lenses
and mirrors.

In the so-called electric dipole and rotating wave approximations [3, pp. 200,
202], when a photon is emitted into the external electromagnetic field, the atom
makes a transition from the upper to the lower level, which means to take the emis-
sion operators proportional to σ−.

• The “emission operators”, in the dipole and rotating wave approximation, are
given by

Dk = √γ αkσ− ,
2
∑

k=1

|αk |2 = 1 , γ > 0, αk ∈ C k = 1, 2 .

The quantity γ has the dimensions of 1/time and represents the natural linewidth
of the atom. The quantities |α1|2 and |α2|2 are the proportions of light in the side
and in the forward channels, respectively.

The physical meaning of γ , αk and of all the other parameters we are introducing
can appear not obvious at this stage; only the full analysis of the mathematical model
can clarify the role of the various terms and parameters.

As sketched in Fig. 7.1, the stimulating laser acts only in the forward channel; so
we take:

• The stimulating laser is perfectly coherent and monochromatic with frequency
ω > 0: fk(t) = δ2kλe−iωt , λ ∈ C.

The laser is said to be in resonance with the atom when ω = ω0 and out of resonance
or “detuned” when ω �= ω0. The intensity of the laser is proportional to |λ|2, while
the phase of λ gives the phase of the laser at time 0 in the location of the atom.

• The following quantity Δω is called detuning:

Δω := ω0 − ω . (8.9)

As already said, the phase factor h1(t) is produced by the interference with a
probing laser, the local oscillator, which is monochromatic of frequency ν and acts
in the side channel; moreover, the initial phase factor h1(0) is included in the defini-
tion of D1. In the unobserved forward channel, the phase factor has no influence on
the physical results and can be chosen to simplify some intermediate equation, such
as the stochastic Schrödinger equation; we chose h2(t) equal to the phase factor of
channel 1.

• h1(t) = h2(t) = e−iνt ; ν is the frequency of the local oscillator.

However, as we shall see in the following computations, what is important is
some relative phase between laser and atomic characteristics and the intensity of the



8.1 A Two-Level Atom Stimulated by a Laser 155

laser as seen by the atom. Concretely, λ will appear in the final results only through
suitable combinations with α1, α2.

The Contributions of Channels 1 and 2

Let us summarise the contributions of these two first channels.
According to (7.1a) we have

R1(t) = eiνt√γ α1σ− , (8.10a)

R2(t) = eiνt√γ α2σ− + λe−i(ω−ν)t1 . (8.10b)

Only R1(t) has a direct physical meaning, because the only observed channel is the
number 1. The operator R2(t) contributes to the model only through its role in L0(t)
(7.2c).

Let us stress that we are in the case Tr{Dk} = 0, Sk j = δk j ; then, Eqs. (7.5), (7.7)
hold and the contribution to L(t) of channels 1 and 2 reduces to

−i
[

H f (t), τ
]+

2
∑

k=1

(

DkτD∗
k −

1

2

{

D∗
k Dk, τ

}

)

= −i
[

H f (t), τ
]+ γ σ−τσ+ − γ

2
{P+, τ } , ∀τ ∈ Mn , (8.11)

H f (t) = i f2(t)D2 − iD∗
2 f2(t) = √γ eiωt iλα2 σ− −√γ e−iωt iλα2 σ+ .

• The following quantity Ω is called Rabi frequency:

Ω := 2
√
γ |λ| |α2| . (8.12)

Let us stress that of the parameters Ω , |λ|, |α2|, the physical ones are Ω and |α2|.
Indeed, as we shall see, in the mean dynamics only the parameter Ω appears, not |λ|
and |α2| by themselves. We already said that |α2|2 is the percentage of the lost light.
If the percentage |α2|2 of lost light is changed by changing the measuring apparatus,
the laser/atom interaction does not change and the mean dynamics cannot change;
so, |λ| has to be changed to maintain Ω constant.

About the phases of λ and α2, let us note that in Dirac notation we can write
σ− = |down〉〈up| and by redefining the relative phase of the two states we can
absorb into σ− the constant phase of the factor multiplying it. This means that,
without loss of generality, we can assume

arg
(

iλα2
) = 0. (8.13)
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Now we have no more freedom in changing phases. The phase of α1 will be partic-
ularly important in discussing the phenomenon of squeezing in Sect. 9.2, so we put
it in evidence.

• An important phase:

ϑ := arg (α1) . (8.14)

Finally we can rewrite the Hamiltonian contribution H f (t) as

H f (t) = Ω

2

(

eiωt σ− + e−iωt σ+
)

. (8.15)

8.1.3.3 Other Dissipative Effects

As already said, unobserved channels can be used also to introduce any kind of dis-
sipative effect. We use the example of the two-level atom to show how to introduce
the effect of the interaction with a thermal bath and the “dephasing” effect. In all
these terms there is no contribution like fk and they appear only in the dissipative
part of the Liouville operator; so their phases are not important and the coefficients
can be taken positive.

• Terms simulating a thermal bath:

D3 =
√

γ n σ− , D4 =
√

γ n σ+ , n ≥ 0 .

• Dephasing term: D5 =
√
γ kd σz , kd ≥ 0.

The coefficient
√
γ has been introduced in all the terms just by dimensional reasons;

in this way kd and n result to be dimensionless. The justification of the form of the
terms related to the thermal bath comes from the form of the equilibrium state in
the case of no external laser stimulating the atom, cf. Eqs. (8.42), (8.43). Instead,
the effect of the dephasing term is to suppress the off-diagonal (with respect to the
eigen-basis of the energy H0) matrix elements of the statistical operator without
touching the diagonal ones. This is often called also “decoherence”.

As discussed in Sect. 7.1.2, the phase factors hk(t) in the unobserved channels
have no effect and can be chosen arbitrarily. We take

h3(t) = e−iνt , h4(t) = eiνt , h5(t) = 1. (8.16)

8.1.3.4 The Final Model

From Eqs. (2.20), (7.1), (7.7b), (8.8), (8.10), (8.11), (8.12), (8.13), (8.14), (8.15),
(8.16) we get
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R1(t) = eiνt√γ α1σ− , (8.17a)

R2(t) = eiνt√γ α2σ− + λe−i(ω−ν)t1 , γ > 0, (8.17b)

R3(t) = eiνt
√

γ n σ− , R4(t) = e−iνt
√

γ n σ+ , n ≥ 0, (8.17c)

R5(t) ≡ R5 =
√

γ kd σz , kd ≥ 0, (8.17d)

arg
(

iλα2
) = 0, |α1|2 + |α2|2 = 1, α1 = |α1| eiϑ , (8.17e)

Ω = 2
√
γ |λ| |α2| ≥ 0, (8.17f)

K (t) = − i

2
ω0σz − γ

2
P+ − γ (n + kd)+ |λ|2

2
1− i

2
Ωe−iωtσ+ . (8.17g)

The Generator of the Reduced Dynamics

Then, the generator of the reduced dynamics (7.5) becomes

L(t)[τ ] = − i

2

[

ω0σz +Ω
(

eiωtσ− + e−iωtσ+
)

, τ
]+ γ kd (σzτσz − τ )

+ γ (n + 1)

(

σ−τσ+ − 1

2
{P+, τ }

)

+ γ n

(

σ+τσ− − 1

2
{P−, τ }

)

.

(8.18)

The Generator of the Characteristic Operator

According to Proposition 4.10 and Theorem 4.14, the characteristic operator deter-
mines the instruments and, so, the measurement and the dynamics. Therefore, the
whole model is determined by its generator (7.2), which in this case is

Λt (k)[τ ] = L(t)[τ ]+ ik
(

R1(t)τ + τ R1(t)∗
)− 1

2
k2 τ. (8.19)

8.2 The Reduced Dynamics of the Two-Level Atom

Let us start by studying the average dynamics of the system (see Sects. 3.2 and
3.2.2). The a priori state η(t) satisfies the master equation

d

dt
η(t) = L(t)[η(t)], η(0) = ρ0 , (8.20)

where the Liouville operator is given by Eq. (8.18).
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8.2.1 The Reduced Dynamics and the Rotating Frame

A peculiar feature of the master equation (8.20) is that any explicit time dependence
can be eliminated by a suitable unitary transformation. Let us define the transformed
a priori states by

η̌(t) := e
i
2ωtσzη(t)e−

i
2ωtσz . (8.21)

The transformation (8.21) can be seen as a time-dependent rotation of a spin around
the z-axis; in this sense it is usual to say that a rotating frame is used.

Proposition 8.1. The transformed a priori states (8.21) satisfy the master equation

d

dt
η̌(t) = Ľ [η̌(t)] , η̌(0) = η(0) = ρ0 ∈ S(H), (8.22)

where Ľ is the generator of a quantum dynamical semigroup and has the explicit
expression

Ľ[τ ] = −i[Ȟ , τ ]+ γ (n + 1) σ−τσ+ − γ

2
P+τ − γ

2
τ P+

+ γ nσ+τσ− + γ kdσzτσz − γ (n + kd) τ, (8.23)

Ȟ = 1

2
Δωσz + 1

2
Ωσx . (8.24)

Given the transformed a priori states η̌(t), the true a priori states η(t) are

η(t) = e−
i
2ωtσz η̌(t)e

i
2ωtσz =

(

η̌11(t) e−iωt η̌12(t)
eiωt η̌21(t) η̌22(t)

)

. (8.25)

Proof. By using

e
i
2ωtσzσ−e−

i
2ωtσz = e−iωtσ− , (8.26)

the adjoint relation and the unitarity of e±
i
2ωtσz , we obtain Eq. (8.25).

By differentiating (8.21) we get

d

dt
η̌(t) = i

ω

2

[

σz, e
i
2ωtσzη(t)e−

i
2ωtσz

]

+ e
i
2ωtσzL(t)[η(t)]e−

i
2ωtσz

= i
ω

2
[σz, η̌(t)]+ e

i
2ωtσzL(t)

[

e−
i
2ωtσz η̌(t)e

i
2ωtσz

]

e−
i
2ωtσz ;
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by defining, ∀τ ∈ Mn ,

Ľ[τ ] := i
ω

2
[σz, τ ]+ e

i
2ωtσz L(t)

[

e−
i
2ωtσzτe

i
2ωtσz

]

e−
i
2ωtσz , (8.27)

we get (8.22). By this definition of Ľ and the fact that L(t) has a Lindblad structure,
one has that also Ľ can be written in Lindblad form and, being also time indepen-
dent, it generates a quantum dynamical semigroup. By the explicit expression of
L(t) and (8.26) again, we obtain (8.23), (8.24). �
Remark 8.2. The operator (8.23) can be written in many ways in the Lindblad form;
for instance, it can be written as

Ľ[τ ] = −i[Ȟ , τ ]+
3
∑

k=1

(

VkτV ∗
k −

1

2
{V ∗

k Vk, τ }
)

, (8.28a)

V1 :=
√

γ (n + 1) σ− , V2 :=
√

γ n σ+ , V3 :=
√

γ kd σz . (8.28b)

8.2.2 The Bloch Equations

The best way of studying master equations when H = C
2 is to use the Bloch repre-

sentation of the statistical operators (8.5). In the following we shall need to solve the
master equation (8.22) not only when the initial condition is a statistical operator,
but also when it is a generic 2× 2 complex matrix. Let us parameterise eĽt [τ ] as in
(8.4) by writing

τ (t) := eĽt [τ ] = 1

2

(

c01+ "d(t) · "σ
)

. (8.29)

We know that c0 is independent of time because a quantum dynamical semigroup
preserves the trace.

By applying Ľ, given by Eqs. (8.23) and (8.24), to the Pauli basis, we get

Ľ[1] = −γ σz , Ľ[σz] = −Ωσy − γ (2n + 1) σz ,

Ľ[σx ] = Δωσy − γ

2
(2n + 1+ 4kd) σx ,

Ľ[σy] = −Δωσx +Ωσz − γ

2
(2n + 1+ 4kd) σy .

By these results and the parametrisation (8.29), the master equation (8.22) becomes

⎧

⎪

⎨

⎪

⎩

ḋ1(t) = −Δωd2(t)− γ

2 (2n + 1+ 4kd) d1(t)

ḋ2(t) = Δωd1(t)−Ωd3(t)− γ

2 (2n + 1+ 4kd) d2(t)

ḋ3(t) = Ωd2(t)− γ (2n + 1) d3(t)− γ c0

(8.30)
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or, in matrix form,

"̇d(t) = −A"d(t)− γ c0

⎛

⎝

0
0
1

⎞

⎠ , (8.31)

A =
⎛

⎝

γ (2n+1+4kd)
2 Δω 0

−Δω γ (2n+1+4kd)
2 Ω

0 −Ω γ (2n + 1)

⎞

⎠ . (8.32)

It is easy to check that

γ > 0 ⇒ det A > 0. (8.33)

The solution of Eq. (8.31) is

"d(t) = e−At "d(0)− γ c0

∫ t

0
ds e−A(t−s)

⎛

⎝

0
0
1

⎞

⎠ , (8.34)

which gives, for det A �= 0,

"d(t) = e−At "d(0)− γ c0
1− e−At

A

⎛

⎝

0
0
1

⎞

⎠ . (8.35)

In the case of a statistical operator as initial condition, which is the case of the
transformed a priori states

η̌(t) = 1

2
(1+ "x(t) · "σ ) , (8.36)

we have the Bloch equations1:

⎧

⎪

⎨

⎪

⎩

ẋ(t) = −Δωy(t)− γ

2 (2n + 1+ 4kd) x(t),

ẏ(t) = Δωx(t)−Ωz(t)− γ

2 (2n + 1+ 4kd) y(t),

ż(t) = Ωy(t)− γ (2n + 1) z(t)− γ,

(8.37)

whose solution in matrix form is

"x(t) = e−At "x(0)− γ
1− e−At

A

⎛

⎝

0
0
1

⎞

⎠ . (8.38)

1 Felix Bloch and Edward Mills Purcell, Nobel prize in physics 1952 “for their development of new
methods for nuclear magnetic precision measurements and discoveries in connection therewith”.
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Let us stress that the reduced dynamics in the rotating frame depends only on the
parameters

γ > 0, Δω ∈ R, Ω ≥ 0, n ≥ 0, kd ≥ 0.

Finally, the a priori states are given by Eq. (8.25), which gives

η(t) = 1

2

{

1+ [x(t) cosωt − y(t) sinωt] σx

+ [x(t) sinωt + y(t) cosωt] σy + z(t)σz
}

. (8.39)

8.2.2.1 The Rabi Frequency

To understand the meaning of the parameterΩ , let us consider the limit caseΩ > 0,
but γ = 0; moreover, we take also Δω = 0, n = 0, kd = 0. This means that we
have no detuning, no dephasing and zero temperature, and the emission of pho-
tons is not taken into account. The master equation (8.22) looses all the dissipative
terms and only an Hamiltonian contribution survives; the Bloch equations (8.37)
reduce to

ẋ(t) = 0 , ẏ(t) = −Ωz(t) , ż(t) = Ωy(t) ,

whose solution is x(t) = x(0),

y(t) = y(0) cosΩt − z(0) sinΩt , z(t) = z(0) cosΩt + y(0) sinΩt .

So, the stimulating laser of intensity proportional to Ω2 induces oscillations of fre-
quency Ω , which takes the name of Rabi frequency in honour of I. I. Rabi.2

8.2.2.2 No Detuning

Let us consider the case of no detuning, Δω = 0, but now emission is not forgotten,
γ > 0. In this case the eigenvalues of A are easily computed and turn out to be

a0 = γ

2
(2n + 1+ 4kd) ,

a± = γ

4
(6n + 3+ 4kd)±

√

γ 2

16
(2n + 1− 4kd)2 −Ω2 .

The real parts of all the eigenvalues are greater than γ /2; more precisely, one has

2 Isidor Isac Rabi, Nobel prize in physics 1944 “for his resonance method for recording the mag-
netic properties of atomic nuclei”.
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Re a+ ≥ Re a− ≥ γ

2
(2n + 1) > 0 , a0 ≥ γ

2
> 0 .

Having the matrix A eigenvalues with strictly positive real parts, we get from
Eq. (8.38)

"xeq ≡ lim
t→+∞ "x(t) = − γ

A

⎛

⎝

0
0
1

⎞

⎠ ,

i.e.

lim
t→+∞ x(t) = 0 ,

lim
t→+∞ y(t) = Ωγ

Ω2 + a0γ (2n + 1)
,

lim
t→+∞ z(t) = −a0γ

Ω2 + a0γ (2n + 1)
.

(8.40)

One can check that, being γ > 0, the final state is pure, i.e. lim
t→+∞ |"x(t)|2 = 1, if

and only if Ω = 0 and n = 0. In this case there is only decay to the ground state,
lim

t→+∞ η(t) = lim
t→+∞ η̌(t) = P−.

If we need also the transient part of the solution, note that the Bloch equations
(8.37) give x(t) = e−a0t x(0) and

ẏ(t) = −Ωz(t)− a0 y(t) , ż(t) = Ωy(t)− γ (2n + 1) z(t)− γ .

The associated homogeneous linear system is

u̇(t) = −Ωv(t)− a0u(t) , v̇(t) = Ωu(t)− γ (2n + 1) v(t) ,

and, when 4Ω �= γ |2n + 1− 4kd|, it has the general solution

u(t) = u+e−a+t + u−e−a−t , v(t) = v+e−a+t + v−e−a−t ,

u± = ±Ωv(0)+ (a0 − a∓) u(0)

a+ − a−
, v± = ∓

Ωu(0)+ [

a∓ − γ (2n + 1)
]

v(0)

a+ − a−
.

Then, the general solution of the Bloch equations (in the subcase 4Ω �=
γ |2n + 1− 4kd|) is

x(t) = e−a0t x(0), y(t) = u(t)+ yeq , z(t) = v(t)+ zeq ,

u(0) = y(0)− yeq , v(0) = z(0)− zeq .
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8.2.2.3 No Laser Stimulation

Let us consider the case of no laser acting on the atom, Ω = 0; again the emission
is not forgotten, γ > 0. In this case the eigenvalues of A are

γ (2n + 1) and
γ

2
(2n + 1+ 4kd)± iΔω. (8.41)

All the eigenvalues have real parts not less than γ /2. Let us stress that for Ω = 0
the laser frequency ω has no physical meaning and we can take Δω = 0, so that this
is a subcase of the previous one.

As in the previous case we get from (8.38) lim
t→+∞ "x(t) = − γ

A

⎛

⎝

0
0
1

⎞

⎠, i.e.

lim
t→+∞ x(t) = 0 , lim

t→+∞ y(t) = 0 , lim
t→+∞ z(t) = − 1

2n + 1
.

This gives

lim
t→+∞ η̌(t) = n

2n + 1
P+ + n + 1

2n + 1
P− .

From the form of the eigenvalues (8.41), one sees that the main role of the dephasing
term is to decrease the decay time of the off-diagonal matrix elements of the a priori
states.

In the case n = 0 the atom decays in the ground state P−. In the case n > 0 we
can use the black-body like parametrisation

n = 1

eω0/(K T ) − 1
, (8.42)

where K is the Boltzman constant. Then we can write

lim
t→+∞ η̌(t) = lim

t→+∞ η(t) = e−H0/(K T )

Tr
{

e−H0/(K T )
} (8.43)

and T represents the absolute temperature of a thermal bath in contact with the atom.
Equation (8.43) says that the equilibrium state of the atom is the canonical state at
temperature T for a system with Hamiltonian H0 and this justifies the form of the
dissipative terms used to model the interaction with a thermal bath.

8.2.3 The Evolution in the Generic Case

Let us now consider the case of the full matrix A, with possibly all the parameters
different from zero: γ > 0, Ω ≥ 0, n ≥ 0, kd ≥ 0, Δω ∈ R. The eigenvalues
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are given by the solutions of a third order algebraic equation for which an explicit
formula exists, but it is not easy to use when parameters are present. It is better to
look for qualitative results.

Lemma 8.3. Let us assume γ > 0 and define

B := γ (2n + 1) b1− A , b := min

{

1,
1

2
+ 2kd

2n + 1

}

≥ 1

2
.

Then, eBt is a semigroup of contractions, i.e.

∣

∣eBt "x∣∣ ≤ |"x | , ∀"x ∈ R
3.

Proof. We have

d

dt

∣

∣eBt "x∣∣2 = 〈eBt "x | (B + BT
)

eBt "x〉,

B + BT = 2γ (2n + 1) b1− A − AT = diag
(

ε′, ε′, ε′′
)

;

from the explicit expressions of ε′ and ε′′ one can check that ε′ ≤ 0, ε′′ ≤ 0. So, we
have

d

dt

∣

∣eBt "x∣∣2 ≤ 0, ∀"x ∈ R
3, ∀t ≥ 0

and this gives the result. What we have proved is a very particular case of the connec-
tion between dissipative operators in Hilbert spaces and semigroups of contractions
[5, pp. 82–88]. �

In the following we shall need many times the resolvent of the matrix A.

Lemma 8.4. Let us assume γ > 0. For ζ ∈ C with Re ζ ≥ 0, we have

det (A + ζ ) = N (ζ )

4
, (8.44)

N (ζ ) := 2Ω2 (4γ kd + ζ )+ [γ (2n + 1)+ ζ ]

× {

4Δω2 + 2Ω2 + [γ (2n + 1+ 4kd)+ 2ζ ]2} , (8.45)

(

N (ζ )

A + ζ

)

11

= 4Ω2 + 2 [ζ + γ (2n + 1)] [2ζ + γ (2n + 1+ 4kd)] , (8.46a)

(

N (ζ )

A + ζ

)

12

= −4 [ζ + γ (2n + 1)]Δω ,

(

N (ζ )

A + ζ

)

13

= 4ΩΔω , (8.46b)
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(

N (ζ )

A + ζ

)

21

= 4 [ζ + γ (2n + 1)]Δω , (8.46c)

(

N (ζ )

A + ζ

)

22

= 2 [ζ + γ (2n + 1)] [2ζ + γ (2n + 1+ 4kd)] , (8.46d)

(

N (ζ )

A + ζ

)

23

= −2Ω [2ζ + γ (2n + 1+ 4kd)] , (8.46e)

(

N (ζ )

A + ζ

)

31

= 4ΩΔω , (8.46f)

(

N (ζ )

A + ζ

)

32

= 2Ω [2ζ + γ (2n + 1+ 4kd)] , (8.46g)

(

N (ζ )

A + ζ

)

33

= 4Δω2 + [2ζ + γ (2n + 1+ 4kd)]2 . (8.46h)

Proof. By direct computations we get

4 det (A + ζ ) = 4
[γ

2
(2n + 1+ 4kd)+ ζ

]2
[γ (2n + 1)+ ζ ]

+ 4Ω2
[γ

2
(2n + 1+ 4kd)+ ζ

]

+ 4Δω2 [γ (2n + 1)+ ζ ]

= [γ (2n + 1)+ ζ ]
{

4Δω2 + 2Ω2 + [γ (2n + 1+ 4kd)+ 2ζ ]2}

+2Ω2 (4γ kd + ζ )

and Eqs. (8.46). �

8.3 The Equilibrium State ηeq

For γ > 0, the model we have constructed has a unique equilibrium state in the
rotating frame. As already said, we take always γ > 0, which implies det A > 0
and that (8.38) holds.

8.3.1 Convergence to Equilibrium

Let us summarise the situation for the a priori states; we have
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η(t) = e−
i
2ωtσz η̌(t)e

i
2ωtσz , η̌(t) = 1

2
(1+ "x(t) · "σ ) , (8.47)

η(0) = η̌(0) = ρ0 = 1

2
(1+ "x(0) · "σ ) ∈ S(H), |"x(0)| ≤ 1, (8.48)

"x(t) = e−At
("x(0)− "xeq

)+ "xeq, "xeq := − γ
A

⎛

⎝

0
0
1

⎞

⎠ . (8.49)

Then, we define

ηeq := 1

2

(

1+ "xeq · "σ
)

. (8.50)

Proposition 8.5. In the hypotheses above, we have ηeq ∈ S(H) and

lim
t→+∞ η̌(t) = lim

t→+∞ eĽt [ρ0] = ηeq , ∀ρ0 ∈ S(H). (8.51)

Moreover, the following identities hold:

∥

∥

∥η(t)− e−
i
2ωtσzηeqe

i
2ωtσz

∥

∥

∥

1
= ∥

∥η̌(t)− ηeq

∥

∥

1 =
∣

∣"x(t)− "xeq

∣

∣ . (8.52)

For the convergence to the equilibrium we have the estimates

∣

∣"x(t)− "xeq

∣

∣ ≤ e−γ (2n+1)bt
∣

∣"x(0)− "xeq

∣

∣ ≤ e−
γ

2 (2n+1)t
∣

∣"x(0)− "xeq

∣

∣ , (8.53)

where

b := min

{

1,
1

2
+ 2kd

2n + 1

}

.

Proof. By using expression (8.7) for the trace norm of the difference and the Bloch
representations (8.39), (8.47), (8.50), we get Eq. (8.52).

With the notations of Lemma 8.3 we have −A = B − γ (2n + 1) b1; then, Eq.
(8.49) gives

∣

∣"x(t)− "xeq

∣

∣ = ∣

∣e−At
("x(0)− "xeq

)∣

∣ = e−γ (2n+1)bt
∣

∣eBt
("x(0)− "xeq

)∣

∣ .

By using the fact that eBt is a contraction and that b ≥ 1/2, we have the inequalities
(8.53).

Equations (8.52) and (8.53) give (8.51). η̌(t) being a state for all t , then ηeq too
is a state. �
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The proposition above says that there is a unique equilibrium state ηeq (8.50) for
the quantum dynamical semigroup exp{Ľt}. By equilibrium state we mean that it is
a stationary state, i.e.

eĽt [ηeq] = ηeq , (8.54)

which follows from (8.49) for "x(0) = "xeq, and that it is reached for large times,
whatever the initial state be, as Eq. (8.51) says. We have also some information
on the velocity of convergence to the equilibrium. Equations (8.52) and (8.53) say
that the states η̌(t) go to the equilibrium state exponentially with exponent at least
γ (2n + 1) b, while the a priori states η(t) go to a limit cycle in the same way.

8.3.2 The Explicit Expression of ηeq

To write down the explicit expression of ηeq it is useful to introduce some shorthand
notations:

˜Γ 2 := Γ 2 + 8Ω2kd

2n + 1
, Γ 2 := 2Ω2 + γ̃ 2 , (8.55a)

γ̃ := γ (2n + 1+ 4kd) . (8.55b)

Then, Lemma 8.4 and Eq. (8.49) give

4 det A = N (0) = γ (2n + 1)
(

4Δω2 + ˜Γ 2
)

, (8.56)

(

N (0)

A

)

13

= 4ΩΔω ,

(

N (0)

A

)

23

= −2Ωγ̃ ,

(

N (0)

A

)

33

= 4Δω2 + γ̃ 2 ,

"xeq ≡ lim
t→+∞ "x(t) = − γ

A

⎛

⎝

0
0
1

⎞

⎠ = −1

(2n + 1)
(

4Δω2 + ˜Γ 2
)

⎛

⎝

4ΩΔω
−2Ωγ̃

4Δω2 + γ̃ 2

⎞

⎠ . (8.57)

The way in which ˜Γ appears in the denominator allows to interpret it as the width
of the response in function of the detuning.

By Eqs. (8.50) and (8.57) we get the matrix elements of the equilibrium state:

(

ηeq
)

11 =
Ω2 (1+ 4kd)+ n

(

4Δω2 + Γ 2
)

(2n + 1)
(

4Δω2 + ˜Γ 2
) , (8.58a)
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(

ηeq
)

12 =
−Ω (2Δω + iγ̃ )

(2n + 1)
(

4Δω2 + ˜Γ 2
) = (

ηeq
)

21, (8.58b)

(

ηeq
)

22 =
(n + 1)

(

4Δω2 + γ̃ 2
)+Ω2 (2n + 1+ 4kd)

(2n + 1)
(

4Δω2 + ˜Γ 2
) . (8.58c)

8.3.3 Some Properties of ηeq

The three components of the vector (8.57) or the three matrix components (8.58)
determine completely the equilibrium state ηeq. There exist some functions of these
components which are particularly significative and which play a relevant role in the
study of the properties of the light emitted by the atom.

Let us start by recalling some traditional terminology [6, p. 148]. Given a state
ρ = 1

2

(

1 + "x · "σ ), the matrix elements ρ11 = 1
2 (1+ z) and ρ22 = 1

2 (1− z) are
called the populations of the excited and the ground state levels, respectively. The
off-diagonal elements ρ12 = 1

2 (x − iy) and ρ21 = 1
2 (x + iy) are called coherences.

Then, z = ρ11 − ρ22 is the population difference. In usual situations the ground
state is more populated than the excited one, which means z < 0; for instance in
a thermal state, which corresponds to our equilibrium state with Ω = 0, one has
z = − 1

2n+1 < 0. In contrast to the usual situations, when z > 0 one says that there
is a population inversion.

By inspection of (8.57) we see that for the equilibrium state of the model of
this chapter the coherences vanish only if Ω = 0 and that there is not an inversion
of population for the possible choices of the parameters. We shall see a case with
population inversion in Chap. 10.

Let us now introduce other interesting parameters.

8.3.3.1 The Vertical and Equatorial Components of the Bloch Vector

Two interesting quantities are the lengths of the vertical and equatorial components
of the Bloch vector,


‖ := ∣

∣zeq

∣

∣ = 4Δω2 + γ̃ 2

(2n + 1)
(

4Δω2 + ˜Γ 2
) , (8.59)


⊥ :=
√

x2
eq + y2

eq =
2Ω

√

4Δω2 + γ̃ 2

(2n + 1)
(

4Δω2 + ˜Γ 2
) . (8.60)

Let us note that 2Ω
‖ =
√

4Δω2 + γ̃ 2 
⊥.
The maximum of 
⊥, as a function of Ω2, is for
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2Ω2

(

1+ 4kd

2n + 1

)

= 4Δω2 + γ̃ 2. (8.61)

Under this constraint we have

4Δω2 + ˜Γ 2 = 2
(

4Δω2 + γ̃ 2
)

,
(

ηeq
)

11 =
1

4
+ n

2 (2n + 1)
,


⊥2 ≡ x2
eq + y2

eq =
1

2 (2n + 1) (2n + 1+ 4kd)
,


‖2 ≡ z2
eq =

1

4 (2n + 1)2 , zeq = − 1

2 (2n + 1)
.

The maximum of 
⊥ with respect to all the parameters is for

2Ω2 = 4Δω2 + γ 2, n = 0, kd = 0.

Under this constraint we have x2
eq + y2

eq = 1
2 and z2

eq = 1
4 .

8.3.3.2 Linear Entropy

The purity of a state can be measured by the von Neumann entropy (6.1a) which is
non-negative and which is zero if and only if the state is pure. But a much easier
measure of the purity of a state ρ = 1

2

(

1+ "x · "σ ) is the linear entropy [6, p. 82]

LEρ := Tr {ρ(1− ρ)} = 1

2

(

1− |"x |2
)

. (8.62)

In the case of a pure state the linear entropy is zero, while the maximum 1
2 is reached

for the completely mixed state 1
2 1: 0 ≤ LEρ ≤ 1/2.

The Linear Entropy of the Equilibrium State

In the case of the equilibrium state we have

LEηeq =
1− ∣

∣"xeq

∣

∣

2

2
≡ 1− (


⊥2 + 
‖2
)

2

= 2n (n + 1)

(2n + 1)2 +
2Ω2

[

Ω2 + 4kd
2n+1

(

4Δω2 + Γ 2 + 4Ω2kd
2n+1

)]

(2n + 1)2 (4Δω2 + ˜Γ 2
)2 . (8.63)

Let us note that the equilibrium state is not pure unless Ω = 0 and n = 0.



170 8 A Two-Level Atom: General Setup

In the case n = 0, kd = 0, the linear entropy reduces to

LEηeq =
2Ω4

(

4Δω2 + Γ 2
)2 ≡

2Ω4

(

4Δω2 + 2Ω2 + γ 2
)2 . (8.64)

8.3.3.3 Atomic Squeezing

In [7] Walls and Zoller suggested to define the concept of “atomic squeezing” by
starting from the Heisenberg–Robertson uncertainty relations for σx and σy .

Let ρ = 1
2

(

1+ "x · "σ ) be a fixed state and, for any self-adjoint operator a, let us

denote by 〈a〉 := Tr{ρa} the quantum mean of a and by Δa :=
√

Tr{ρa2} − 〈a〉2
its quantum standard deviation. Then, the commutation relations (8.2) give the
Heisenberg uncertainty relations Δσx Δσy ≥ 1

2

∣

∣〈[σx , σy]〉∣∣ = |〈σz〉|, which become
√

(1− x2)(1− y2) ≥ |z| in terms of the component of the Bloch vector. Let us
denote by σ⊥ and σ$ two orthogonal equatorial components of "σ such that σ⊥ has
the minimal quantum variance on ρ. Then, one has

Δσ⊥Δσ$ ≥ |〈σz〉| = |z| (8.65)

and

Δσ 2
⊥ := inf

n 2
1+n 2

2=1

[

Tr
{

ρ
(

n1σx + n2σy
)2
}

− (

Tr
{

ρ
(

n1σx + n2σy
)})2

]

= 1− sup
n 2

1+n 2
2=1

[n1x + n2 y]2 .

The minimum is reached for (n1, n2) = ± (x,y)√
x2+y2

and we get

Δσ 2
⊥ = 1− [

x2 + y2
]

.

According [7], we say that we have atomic squeezing in ρ when

Δσ 2
⊥ < |〈σz〉| ≡ |z| ;

this gives 1− x2 − y2 < |z|. We can call the quantity

ASρ := 1− (

x2 + y2
)− |z| (8.66)

the atomic squeezing parameter of the state ρ = 1
2

(

1 + "x · "σ ) and we say that we
have atomic squeezing in this state when ASρ < 0. It is easy to check that

min
ρ

ASρ = −1

4
(8.67)
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and that this minimum is reached in a state with x2 + y2 = 3
4 and z2 = 1

4 , which is
necessarily a pure state and, so, has zero entropy.

For a pure state x2 + y2 + z2 = 1 holds and we get ASρ = |z| (|z| − 1), which is
always strictly negative, but in the poles, z = ±1, and on the equator, z = 0, where
it vanishes. Therefore, by representing the states on the Bloch sphere, we see that
we have atomic squeezing for states belonging to the region delimited by the surface
of the sphere and the surface ASρ = 0, or x2 + y2 + |z| = 1. Another way to see
this region is: fix |z| ∈ (0, 1); then, ASρ < 0 for

√
1− |z| <

√

x2 + y2 ≤ √1− z2.
Let us note that

ASρ = 0 ⇔ LEρ = 1

2
|z| (1− |z|) , (8.68a)

ASρ < 0 ⇔ LEρ <
1

2
|z| (1− |z|) ⇒ LEρ <

1

8
. (8.68b)

The Atomic Squeezing of the Equilibrium State

In the case of ηeq we have zeq < 0 and

ASηeq = 1− ∣

∣"xeq

∣

∣

2 + zeq
[

1+ zeq
] = 1− 
2

⊥ − 
‖

= −
(

4Δω2 + γ̃ 2
) [

2n
(

4Δω2 + Γ 2
)+ 2Ω2 (1+ 4kd)

]

(2n + 1)2 (4Δω2 + ˜Γ 2
)2

+ 4n (n + 1)

(2n + 1)2 +
4Ω2

[

Ω2 + 4kd
2n+1

(

4Δω2 + Γ 2 + 4Ω2kd
2n+1

)]

(2n + 1)2 (4Δω2 + ˜Γ 2
)2 . (8.69)

In the case n = 0, kd = 0, the atomic squeezing parameter reduces to

ASηeq =
2Ω2

(

4Δω2 + γ 2 + 2Ω2
)2

(

2Ω2 − 4Δω2 − γ 2
)

. (8.70)

In this case the condition ASηeq < 0 for atomic squeezing becomes

0 < 2Ω2 < 4Δω2 + γ 2, (8.71)

while the minimum value of ASηeq is−1/8 and it is reached for 6Ω2 = 4Δω2+ γ 2.
Note that we have

LEηeq =

⎧

⎪

⎨

⎪

⎩

0, for Ω2 = 0,
1
32 , for 6Ω2 = 4Δω2 + γ 2,
1
8 , for 2Ω2 = 4Δω2 + γ 2.

(8.72)
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While suggestive, the definition of atomic squeezing given in [7] has been crit-
icised and a different definition of spin squeezing or of squeezing of systems with
many two-level atoms has been proposed [8]. This alternative definition is very use-
ful and widely used in the literature by its links with “entanglement”, but it gives
that a single two-level atom cannot be spin squeezed, while the definition of the
parameter ASηeq is at least useful in discussing some global squeezing properties of
the emitted light (see Eq. (9.70)), as already found in [7].

8.4 The SDEs for the Two-Level Atom

In order to illustrate the theory, we want to write down explicitly the various SDEs
introduced in the previous chapters, just to show them in a concrete case, even if
they cannot be solved explicitly.

8.4.1 The SDEs in the Hilbert Space

8.4.1.1 The Linear Stochastic Schrödinger Equation

The starting point, the linear stochastic Schrödinger equation (2.28), is

dψ(t) = K (t)ψ(t) dt +
5
∑

j=1

R j (t)ψ(t) dW j (t) . (8.73)

By passing to the rotating frame as done in Sect. 8.2.1, it is possible to eliminate
part of the time dependence: we set

ϕ(t) := e
i
2ωtσz ψ(t) . (8.74)

By differentiation we get

dϕ(t) = Ǩϕ(t) dt +
5
∑

j=1

Ř j (t)ϕ(t) dW j (t) , (8.75)

with

Ǩ := iω

2
σz + e

i
2ωtσz K (t)e−

i
2ωtσz , (8.76a)

Ř j (t) := e
i
2ωtσz R j (t)e

− i
2ωtσz . (8.76b)

By using eiεσz =
(

eiε 0
0 e−iε

)

, we can compute the explicit expressions of Ǩ and

Ř j (t) and we get
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Ǩ = − i

2
Δωσz − γ

2
P+ − 1

2

[

γ (n + kd)+ |λ|2]1− i

2
σ+ , (8.77a)

Ř5(t) = R5 =
√

γ kd σz , Ř j (t) = √γ α j (t)σ− , j = 1, 3, (8.77b)

Ř2(t) = √γ α2(t)σ− + λei(ν−ω)t1 , Ř4(t) = √γ α3(t) σ+ , (8.77c)

α j (t) := ei(ν−ω)tα j , j = 1, 2, α3(t) := ei(ν−ω)t
√

n . (8.77d)

By using the components, Eq. (8.75) is

dϕ1(t) = −1

2

[

iΔω + γ (n + 1+ kd)+ |λ|2]ϕ1(t) dt − i

2
Ωϕ2(t) dt

+ λei(ν−ω)tϕ1(t)dW2(t)+√γ α4(t)ϕ2(t) dW4(t)+
√

γ kd ϕ1(t) dW5(t) ,

(8.78a)

dϕ2(t) = 1

2

[

iΔω − γ (n + kd)− |λ|2]ϕ2(t) dt + λei(ν−ω)tϕ2(t)dW2(t)

+√γϕ1(t)
3
∑

j=1

α j (t) dW j (t)−
√

γ kd ϕ2(t) dW5(t) . (8.78b)

It seems very difficult to succeed in getting a solution of this equation in closed
form, even in the simplest non-trivial cases:
(1) Δω = 0, ν = ω, kd = 0, n = 0

dϕ1(t) = −1

2

(

γ + |λ|2)ϕ1(t) dt − i

2
Ωϕ2(t) dt + λϕ1(t)dW2(t) , (8.79a)

dϕ2(t) = −|λ|
2

2
ϕ2(t) dt + λϕ2(t)dW2(t)+√γϕ1(t)

2
∑

j=1

α j dW j (t) ; (8.79b)

(2) Δω = 0, ν = ω, kd = 0, Ω = 0

dϕ1(t) = −γ (n + 1)

2
ϕ1(t) dt +√γ α3(0)ϕ2(t) dW4(t) , (8.80a)

dϕ2(t) = −γ n

2
ϕ2(t) dt +√γ ϕ1(t)

3
∑

j=1

α j (0) dW j (t) . (8.80b)
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8.4.1.2 The Probability Density and the New Wiener Process

The density of the physical probabilitŷPt
ψ0

is given by the square norm of the solu-
tion of the linear SDE and the new Wiener process is determined by the functions
m j (t), see Eqs. (2.23), (2.24), (2.31). Let us note that both quantities (density and
new Wiener process) are the same either if we start from the original SDE (8.73) or
if we use the rotated SDE (8.75); indeed, by Eqs. (8.74) and (8.76b) we get

‖ψ(t)‖2 = ‖ϕ(t)‖2 , (8.81)

m j (t) = 2 Re
〈ψ(t)|R j (t)ψ(t)〉

‖ψ(t)‖2 = 2 Re
〈ϕ(t)|Ř j (t)ϕ(t)〉

‖ϕ(t)‖2 . (8.82)

8.4.1.3 The Stochastic Schrödinger Equation

Just to have an example of a nonlinear SDE for Hilbert space vectors, let us concre-
tise in our case Eq. (2.52) of type 
 = 4, always in the rotating frame:

dX1(t) = −1

2
[iΔω + γ (n + 1)] X1(t) dt − i

2
ΩX2(t) dt

− γ
|X2(t)|2 |X1(t)|2

2 ‖X (t)‖4 X1(t)dt − X2(t)X1(t)2

‖X (t)‖2

√
γ

3
∑

j=1

α j (t)d̂W j (t)

+ γ (n − 2kd)
|X2(t)|4
‖X (t)‖4 X1(t)dt + i

ΩX1(t) Re
(

X1(t)X2(t)
)

2 ‖X (t)‖2 dt

+√γ α3(t)
|X2(t)|2 X2(t)

‖X (t)‖2 d̂W4(t)+ 2
√

γ kd
|X2(t)|2 X1(t)

‖X (t)‖2 d̂W5(t) ,

dX2(t) = i

2
ΔωX2(t) dt − i

2
ΩX1(t) dt − γ

2
n X2(t)dt

+γ |X1(t)|2 X2(t)
(

2 |X1(t)|2+|X2(t)|2)

2 ‖X (t)‖4 dt+ iΩX2(t) Re
(

X1(t)X2(t)
)

2 ‖X (t)‖2 dt

+|X1(t)|2 X1(t)

‖X (t)‖2

√
γ

3
∑

j=1

α j (t) d̂W j (t)+ γ (n − 2kd)
|X1(t)|4
‖X (t)‖4 X2(t)dt

−√γ α3(t)
X1(t)X2(t)2

‖X (t)‖2 d̂W4(t)− 2
√

γ kd
|X1(t)|2 X2(t)

‖X (t)‖2 d̂W5(t) .

If X (0) = ϕ(0) and ‖ϕ(0)‖ = 1 the solution of this nonlinear SDE is linked to
ϕ(t) by
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X (t)=exp

{

−i
5
∑

j=1

∫ t

0
Re n j (s) Im n j (s) ds−i

5
∑

j=1

∫ t

0
Im n j (s) d̂W j (s)

}

1

‖ϕ(t)‖ ϕ(t),

n j (t) = √γ α j (t)ϕ2(t)ϕ1(t)

‖ϕ(t)‖2 , j = 1, 3,

n2(t) = √γα2(t)
ϕ2(t)ϕ1(t)

‖ϕ(t)‖2 − λei(ν−ω)t ,

n4(t) = √γ α3(t)ϕ1(t)ϕ2(t)

‖ϕ(t)‖2 , n5(t) =
√

γ kd
|ϕ1(t)|2 − |ϕ2(t)|2

‖ϕ(t)‖2 ,

d̂W j (t) = dW j (t)− 2 Re n j (t) dt ,

cf. Eqs. (2.22), (2.23), (2.47), (2.50), (2.51).
We recall that, when explicit analytic solutions are not viable, the nonlinear

stochastic Schrödinger equation is the best starting point for numerical simulations.

8.4.2 The Stochastic Master Equation

From the theoretical point of view the linear and nonlinear stochastic master equa-
tions are very important because they contain the whole information on probabilities
and a priori and a posteriori states of the continuously observed quantum system;
moreover, they involve only physically relevant parameters.

8.4.2.1 The Linear Stochastic Master Equation

Let us start from the linear stochastic master equation for trace-class operators; again
the transformation to the rotating frame eliminates some explicit time dependence
in the coefficients. By defining

σ̌ (t) := e
i
2ωtσzσ (t)e−

i
2ωtσz , (8.83)

we get the linear SDE in operator form

dσ̌ (t) = Ľ [σ̌ (t)] dt + [

Ř1(t)σ̌ (t)+ σ̌ (t)Ř1(t)∗
]

dW1(t). (8.84)

Because of the unitarity of the transformation (8.83), to use σ (t) or σ̌ (t) to con-
struct the probability density is the same; the probability density, giving the physical
probabilities P

t
ρ0

, is
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p(t) := Tr{σ (t)} = Tr {σ̌ (t)} . (8.85)

By using the representation on the Pauli basis

σ̌ (t) = [

p(t)+ "s(t) · "σ ] , (8.86)

the linear SDE (8.84) becomes

dp(t) = √γ [s1(t) Reα1(t)+ s2(t) Imα1(t)] dW1(t), (8.87a)

d"s(t) = −A"s(t) dt −
⎛

⎝

0
0

γ p(t)

⎞

⎠ dt

+√γ
⎛

⎝

[p(t)+ s3(t)] Reα1(t)
[p(t)+ s3(t)] Imα1(t)

− [s1(t) Reα1(t)+ s2(t) Imα1(t)]

⎞

⎠ dW1(t), (8.87b)

where

α1(t) = ei(ν−ω)t+iϑ |α1| . (8.88)

8.4.2.2 The Nonlinear Stochastic Master Equation for Density Matrices

Let us now consider the a posteriori states

ρ(t) = 1

p(t)
σ (t) = e−

i
2ωtσz ρ̌(t)e

i
2ωtσz , (8.89)

where

ρ̌(t) = 1

p(t)
σ̌ (t) . (8.90)

As in the general case, we get the nonlinear SDE in operator form

dρ̌(t) = Ľ [ρ̌(t)] dt + (

Ř1(t)ρ̌(t)+ ρ̌(t)Ř1(t)∗ − v(t)ρ̌(t)
)

d̂W1(t), (8.91)

where

v(t) = 2 Re Tr {R1(t)ρ(t)} = 2 Re Tr
{

Ř1(t)ρ̌(t)
}

, (8.92)

and

̂W1(t) = W1(t)−
∫ t

0
v(s) ds (8.93)
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is a Wiener process under the physical probability.
By using the Bloch representation

ρ̌(t) = 1

2

[

1+"r(t) · "σ ] , (8.94)

we get

v(t) = √γ [r1(t) Reα1(t)+ r2(t) Imα1(t)] (8.95)

and

d"r(t) = −A"r(t) dt −
⎛

⎝

0
0
γ

⎞

⎠ dt

+√γ
⎛

⎝

[1+ r3(t)− r1(t)2] Reα1(t)− r1(t)r2(t) Imα1(t)
[1+ r3(t)− r2(t)2] Imα1(t)− r1(t)r2(t) Reα1(t)
−[1+ r3(t)] [r1(t) Reα1(t)+ r2(t) Imα1(t)]

⎞

⎠ d̂W1(t).

(8.96)

8.4.3 Linear Entropy and Atomic Squeezing

We have two typical parameters for states, the linear entropy (8.62) and the atomic
squeezing (8.66), and four types of states, a priori and a posteriori states both before
and after the transformation to the rotating frame, Eqs. (8.47), (8.89), (8.94). But
the linear entropy is invariant under unitary transformations, which gives

LEη(t) = LEη̌(t) = 1

2

(

1− |"x(t)|2
)

, (8.97a)

LEρ(t) = LEρ̌(t) = 1

2

(

1− |"r(t)|2
)

, (8.97b)

and the atomic squeezing parameter is invariant under rotations around the z-axis,
which gives

ASη(t) = ASη̌(t) = 1− (

x(t)2 + y(t)2
)− |z(t)| , (8.97c)

ASρ(t) = ASρ̌(t) = 1− (

r1(t)2 + r2(t)2
)− |r3(t)| . (8.97d)

Let us introduce the means of the a posteriori linear entropy and atomic squeezing
parameter:

〈LE〉(t) := E
t
ρ0

[

LEρ̌(t)
]

, 〈AS〉(t) := E
t
ρ0

[

ASρ̌(t)
]

. (8.98)
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Then, we get easily

〈LE〉(t) = LEη̌(t) −
3
∑

j=1

Vart
ρ0

[

r j (t)
] ≤ LEη̌(t) , (8.99a)

〈AS〉(t) = ASη̌(t) −
2
∑

j=1

Vart
ρ0

[

r j (t)
]− (

E
t
ρ0

[|r3(t)|]− ∣

∣E
t
ρ0

[r3(t)]
∣

∣

) ≤ ASη̌(t) .

(8.99b)

Linear Entropy and Purification

The stochastic differential of the a posteriori linear entropy is

dLEρ̌(t) = 1

2

{

−γ̃
[

1− |"r(t)|2
]

+ γ |α2|2 [1+ r3(t)]2 + 2nγ
(

1+ r3(t)2
)

+ 4kdγ
(

1− r3(t)2
)+

[

1− |"r(t)|2
]

v(t)2
}

dt −
[

1− |"r(t)|2
]

v(t) d̂W1(t) .

Recall that |"r(t)|2 ≤ 1 and |α1(t)|2 = |α1|2 ≤ 1 , which implies

[r1(t) Reα1(t)+ r2(t) Imα1(t)]2 ≤ |α1|2
[

r1(t)2 + r2(t)2
] ≤ |"r(t)|2 ≤ 1 .

Then, the time derivative of the mean a posteriori linear entropy is given by

d

dt
〈LE〉(t) ≤ −γ

2
|α1|2 E

t
ρ0

[(

1− |"r(t)|2
)

(

1− r1(t)2 − r2(t)2
)

]

+ γ

2
|α2|2 E

t
ρ0

[

|"r(t)|2 + r3(t)2 + 2r3(t)
]

+ nγE
t
ρ0

[

|"r(t)|2 + r3(t)2
]

+ 2kdγE
t
ρ0

[

r1(t)2 + r2(t)2
]

.

In the case α2 = 0, kd = 0, n = 0 we have

d

dt
〈LE〉(t) ≤ 0 and

d

dt
〈LE〉(t) = 0 ⇔ |"r(t)| = 1 a.s.

Moreover, the hypotheses of Theorem 5.12 hold and

lim
t→+∞〈LE〉(t) = 0,

which means that the a posteriori states become pure a.s.



8.5 Summary 179

8.4.4 The Instruments in the Rotating Frame

Equation (8.84) shows that, in the rotating frame, the only possible non-
homogeneity in time is in Ř1(t), defined by Eqs. (8.77b) and (8.88):

Ř1(t) = √γ |α1| ei(ν−ω)t+iϑσ−. (8.100)

This is true also for instruments and characteristic operators.
In analogy with Eq. (4.10)

Ǐ0
t (G)[ρ0] = EQ[1G σ̌ (t)], G ∈ G

0
t , (8.101)

where G
0
t is the augmented natural filtration of W1. Then, by Eqs. (8.84), (8.83),

(8.101), the original instruments, whose characteristic operator is generated by the
operator (8.19), are given by

I0
t (G)[ρ0] = EQ[1G σ (t)] = e−

i
2ωtσz Ǐ0

t (G)[ρ0]e
i
2ωtσz . (8.102)

Finally, by (4.29) one can introduce the characteristic operator Ǧ(t, 0; k) of the
instruments Ǐ0

t (•) and its generator turns out to be

Λ̌t (k)[τ ] = Ľ[τ ]+ ik
(

Ř1(t)τ + τ Ř1(t)∗
)− 1

2
k2 τ. (8.103)

8.5 Summary

8.5.1 Bloch Representation of States and Terminology

• A statistical operator in the Bloch representation:

ρ = 1

2

(

1+ z x − iy
x + iy 1− z

)

= 1

2
(1+ "x · "σ ) , "x ∈ R

3, |"x | ≤ 1.

• Population of the excited state level: ρ11 = 1
2 (1+ z).

• Population of the ground state level: ρ22 = 1
2 (1− z).

• Population difference: z = ρ11 − ρ22.
• Coherences: ρ12 = 1

2 (x − iy) and ρ21 = 1
2 (x + iy).

• Atomic squeezing parameter: ASρ := 1− (

x2 + y2
)− |z|.

• Linear entropy: LEρ := Tr {ρ(1− ρ)} = 1
2

(

1− |"x |2
)

.
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8.5.2 The Model and the Parameters

In the following all the formulae are given in the rotating frame.

8.5.2.1 The A Priori Dynamics

• Liouville operator:

Ľ[τ ] = −i[Ȟ , τ ]+ γ (n + 1) σ−τσ+ − γ

2
P+τ − γ

2
τ P+

+ γ nσ+τσ− + γ kdσzτσz − γ (n + kd) τ.

• Effective Hamiltonian: Ȟ = 1
2 Δωσz + 1

2 Ωσx .
• Coefficient of the thermal disturbance: n ≥ 0.
• Coefficient of the dephasing disturbance: kd ≥ 0.
• Resonance frequency of the atom: ω0 > 0.
• Frequency of the stimulating laser: ω > 0.
• Detuning: Δω = ω0 − ω.
• Rabi frequency: Ω ≥ 0.
• Natural linewidth: γ > 0.
• A priori states: η̌(t) = 1

2 (1+ "x(t) · "σ ).

• Master equation:
d

dt
η̌(t) = Ľ[η̌(t)].

• Bloch equations:
d

dt
"x(t) = A"x(t)− γ

⎛

⎝

0
0
1

⎞

⎠.

• Evolution matrix: (γ > 0 ⇒ det A > 0)

A =
⎛

⎝

γ (2n+1+4kd)
2 Δω 0

−Δω γ (2n+1+4kd)
2 Ω

0 −Ω γ (2n + 1)

⎞

⎠ .

8.5.2.2 The Equilibrium State

• Equilibrium state: ηeq = 1
2

(

1+ "xeq · "σ
)

,

"xeq ≡ lim
t→+∞ "x(t) = − γ

A

⎛

⎝

0
0
1

⎞

⎠ = −1

(2n + 1)
(

4Δω2 + ˜Γ 2
)

⎛

⎝

4ΩΔω
−2Ωγ̃

4Δω2 + γ̃ 2

⎞

⎠ .

• Some short hand notations: γ̃ = γ (2n + 1+ 4kd),

Γ 2 = 2Ω2 + γ̃ 2 , ˜Γ 2 = Γ 2 + 8Ω2kd

2n + 1
.
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• Matrix elements of the equilibrium state:

(

ηeq
)

11 =
Ω2 (1+ 4kd)+ n

(

4Δω2 + Γ 2
)

(2n + 1)
(

4Δω2 + ˜Γ 2
) ,

(

ηeq
)

12 =
−Ω (2Δω + iγ̃ )

(2n + 1)
(

4Δω2 + ˜Γ 2
) = (

ηeq
)

21,

(

ηeq
)

22 =
(n + 1)

(

4Δω2 + γ̃ 2
)+Ω2 (2n + 1+ 4kd)

(2n + 1)
(

4Δω2 + ˜Γ 2
) .

• Lengths of the vertical and equatorial components of the Bloch vector:


‖ := ∣

∣zeq

∣

∣ = 4Δω2 + γ̃ 2

(2n + 1)
(

4Δω2 + ˜Γ 2
) ,


⊥ :=
√

x2
eq + y2

eq =
2Ω

√

4Δω2 + γ̃ 2

(2n + 1)
(

4Δω2 + ˜Γ 2
) .

• Linear entropy:

LEηeq =
1− ∣

∣"xeq

∣

∣

2

2
≡ 1− (


⊥2 + 
‖2
)

2

= 2n (n + 1)

(2n + 1)2 +
2Ω2

[

Ω2 + 4kd
2n+1

(

4Δω2 + Γ 2 + 4Ω2kd
2n+1

)]

(2n + 1)2 (4Δω2 + ˜Γ 2
)2 .

• Atomic squeezing parameter:

ASηeq = 1− ∣

∣"xeq

∣

∣

2 + zeq
[

1+ zeq
] = 1− 
2

⊥ − 
‖

= −
(

4Δω2 + γ̃ 2
) [

2n
(

4Δω2 + Γ 2
)+ 2Ω2 (1+ 4kd)

]

(2n + 1)2 (4Δω2 + ˜Γ 2
)2

+ 4n (n + 1)

(2n + 1)2 +
4Ω2

[

Ω2 + 4kd
2n+1

(

4Δω2 + Γ 2 + 4Ω2kd
2n+1

)]

(2n + 1)2 (4Δω2 + ˜Γ 2
)2 .

8.5.2.3 The Measurement

• Generator of the characteristic operator:

Λ̌t (k)[τ ] = Ľ[τ ]+ ik
(

Ř1(t)τ + τ Ř1(t)∗
)− 1

2
k2 τ.
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• Side channel, the channel of the detected light: channel 1.
• Forward channel, the channel of the lost light and of the stimulating laser: chan-

nel 2.
• Detection operator: R1(t) = ei(ν−ω)t√γ α1σ−.
• Measurement phase: ϑ = argα1.
• Proportions of light in the side and in the forward channels:
|α1|2 and |α2|2 with |α1|2 + |α2|2 = 1.

• Frequency of the local oscillator: ν.
• Output current: I (t) = ∫ t

0 F(t − s)dW1(s).
• Detector response function: F(t) = k1

√

�
4π exp

{− �
2 t
}

, � > 0, k1 �= 0.
• Electrical power carried by the current I (t): P(t) = k2 I (t)2, k2 > 0.
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Chapter 9
A Two-Level Atom: Heterodyne
and Homodyne Spectra

In this chapter we study the atomic spectra, a concept which depends on the detec-
tion type, heterodyning or homodyning. These spectra give information on the atom,
the atom/field interaction and the properties of the emitted light. In particular we
shall see the important phenomena of dynamical Stark effect and of squeezing of
the fluorescence light. Heterodyne and homodyne spectra are essentially connected
to the second moments of the output current I (t) (7.8), whose expression we write
again here:

I (t) =
∫ t

0
F(t − s)dW1(s) , (9.1a)

F(t) = k1

√

�

4π
exp

{

−�
2

t
}

, � > 0, k1 �= 0. (9.1b)

9.1 Heterodyne Detection and Mollow Spectrum

We consider first the case of heterodyne detection: the stimulating laser has fre-
quency ω and the local oscillator has frequency ν and it is produced by a different
source, see Fig. 7.1. The frequency ν can be changed by tuning the source producing
the light for the local oscillator or by changing such a source, but this amounts to a
change of measuring apparatus.

9.1.1 The Output Current and the Electrical Power

In Eq. (9.1a) the output current is written in terms of the output signal dW and of
the detector response function F (9.1b). The electrical power carried by the current
I is proportional to its square and it is given by (7.9). In the formulation of the
theory based on the linear stochastic master equation there is no explicit dependence
on ν in the stochastic processes I (t) and P(t), while it is the physical probability,
determined by the linear SDE of Sect. 8.4.2, which depends on ν. Let us denote the

Barchielli, A., Gregoratti, M.: A Two-Level Atom: Heterodyne and Homodyne Spectra. Lect.
Notes Phys. 782, 183–220 (2009)
DOI 10.1007/978-3-642-01298-3 9 c© Springer-Verlag Berlin Heidelberg 2009
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expectation with respect to the physical probability up to a large time T and with
initial state ρ0 by E

T,ν
ρ0

. By the consistency of the probabilities, we have for the mean
power

E
T,ν
ρ0

[P(t)] ≡ E
t,ν
ρ0

[P(t)] , 0 ≤ t ≤ T .

Now we want to study the large time behaviour of the mean power as a function
of ν. In the heterodyne detection scheme the local oscillator and the stimulating
light come out from two different lasers; it is impossible to maintain a stable rel-
ative phase between the two. Neither the stimulating laser of frequency ω nor the
local oscillator of frequency ν is perfectly monochromatic and coherent and some
smoothing effect is always present. To take into account such a smoothing effect
also in our idealisation of the lasers, the limit for large times has to be taken in the
sense of distributions, and this kills the rapidly oscillating terms. Then, the mean
power at large times for heterodyne detection is

Phet(ν) = lim
t→+∞E

t,ν
ρ0

[P(t)] = lim
t→+∞ k2E

t,ν
ρ0

[

I (t)2
]

limit in the sense of distributions in ν. (9.2)

As a function of ν, Phet(ν) is the mean observed power spectrum.
In the case of the two-level atom we can get an analytic expression for Phet(ν).

9.1.1.1 The Moments of the Output Current and the Mean Power

The first two moments of the current are of particular importance and suffice to get
the mean observed power. From Eq. (4.42) we get the mean of the current

E
t,ν
ρ0

[I (t)] =
∫ t

0
ds F(t − s) Tr {R1(s) ◦ T (s, 0)[ρ0]}

= k1

√

�

4π

∫ t

0
ds exp

{

−�
2

(t − s)
}

Tr
{(

R1(s)+ R1(s)∗
)

η(s)
}

. (9.3)

The autocorrelation function of the current is obtained from Eq. (4.47):

4π

k 2
1

E
t,ν
ρ0

[I (t)I (s)] = e−
�
2 |t−s| − e−

�
2 (t+s)

+
(

∫ s∨t

s∧t
dt ′

∫ s∧t

0
ds ′ + 2

∫ s∧t

0
dt ′

∫ t ′

0
ds ′

)

�e−
�
2 [(t+s)−(t ′+s ′)]

× Tr
{(

R1(t ′)+ R1(t ′)∗
)

T (t ′, s ′)
[

R1(s ′)η(s ′)+ η(s ′)R1(s ′)∗
]}

. (9.4)

Then, the mean output power is given by
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E
t,ν
ρ0

[P(t)] = k2E
t,ν
ρ0

[

I (t)2
]

= k 2
1 k2

4π

(

1− e−�t
)+ k2

1k2�

2π

∫ t

0
ds

∫ s

0
dr e−�[t−(s+r )/2]

×Tr
{(

R1(s)+ R1(s)∗
)

T (s, r )
[

R1(r )η(r )+ η(r )R1(r )∗
]}

.(9.5)

By introducing the variance of I (t) under the physical probability we have also

0 ≤ k2 Vart,ν
ρ0

[I (t)] = E
t,ν
ρ0

[P(t)]− k2
(

E
t,ν
ρ0

[I (t)]
)2 = k2

1k2

4π

(

1− e−�t
)

+ k2
1k2�

2π

∫ t

0
ds

∫ s

0
dr e−�[t−(s+r )/2] Tr

{

(

R1(s)+ R1(s)∗ − 2 Re Tr{R1(s)η(s)})

× T (s, r )
[

R1(r )η(r )+ R1(r )∗η(r )− 2 Re Tr{R1(r )η(r )}η(r )
]

}

. (9.6)

9.1.1.2 The Power Spectrum

Proposition 9.1. The mean observed power spectrum (9.2) can be written as

Phet(ν) = k 2
1 k2

4π
+ k 2

1 k2 |α1|2 Σ(ν − ω) , (9.7)

where

Σ(μ) = γ

π
Re

∫ +∞

0
e−( �

2+iμ)t Tr
{

eĽt
[

σ−ηeq
]

σ+
}

dt . (9.8)

Proof. Let us recall that we have ρ0 = η(0) = η̌(0), α1(t) = ei(ν−ω)tα1, and

R1(t) = eiνt√γα1σ− , Ř1(t) = e
i
2ωtσz R1(t)e−

i
2ωtσz = α1(t)σ− ;

moreover, we set Ř(t)[τ ] = Ř1(t)τ + τ Ř1(t)∗.
Then, from Eq. (9.5) we get

E
t,ν
ρ0

[P(t)] = p1(t)+ p2(ν, t)+ 2 Re p3(ν, t)+ 2 Re p4(ν, t),

where

p1(t) = k 2
1 k2

4π

(

1− e−�t
)

, (9.9)
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p2(ν, t) = k 2
1 k2�

2π

∫ t

0
ds

∫ s

0
dr e−�(t− s+r

2 )

×Tr
{

Ř(s) ◦ eĽ(s−r ) ◦ Ř(r )
[

eĽr [ρ0]− ηeq

]}

, (9.10)

p3(ν, t) = k 2
1 k2�γ |α1|2

2π

∫ t

0
ds

∫ s

0
dr e−�(t− s+r

2 )+i(ν−ω)(s−r )

×Tr
{

σ−eĽ(s−r )
[

ηeqσ+
]

}

= k 2
1 k2�γ |α1|2

2π

∫ t

0
ds1

∫ t−s1

0
ds2

×e−�(s2+s1/2)+i(ν−ω)s1 Tr
{

σ−eĽs1
[

ηeqσ+
]

}

= p1
3(ν, t)− p2

3(ν, t),

p1
3(ν, t) = k 2

1 k2γ |α1|2
2π

∫ t

0
ds e(− �

2+i(ν−ω))s Tr
{

σ−eĽs
[

ηeqσ+
]

}

, (9.11)

p2
3(ν, t) = k 2

1 k2γ |α1|2
2π

∫ t

0
ds1 e−�(t−s1/2)+i(ν−ω)s1 Tr

{

σ−eĽs1
[

ηeqσ+
]

}

= k 2
1 k2γ |α1|2

2π
e(− �

2+i(ν−ω))t
∫ t

0
ds e−( �

2+i(ν−ω))s Tr
{

σ−eĽ(t−s) [ηeqσ+
]

}

, (9.12)

p4(ν, t) = k 2
1 k2�γα

2
1

2π

×
∫ t

0
ds

∫ s

0
dr e−�(t− s+r

2 )+i(ν−ω)(s+r ) Tr
{

σ−eĽ(s−r )
[

σ−ηeq
]

}

= k 2
1 k2�γα

2
1

2π

∫ t

0
ds1

∫ t−s1

0
ds2 e−�(s2+s1/2)+i(ν−ω)(2t−2s2−s1)

×Tr
{

σ−eĽs1
[

σ−ηeq
]

}

= p1
4(ν, t)− p2

4(ν, t),

p1
4(ν, t) = k 2

1 k2γα
2
1 �

2π [� + 2i(ν − ω)]

×
∫ t

0
ds1 e−

�
2 s1+i(ν−ω)(2t−s1) Tr

{

σ−eĽs1
[

σ−ηeq
]

}

= e2i(ν−ω)t p3
4(ν, t),
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p3
4(ν, t) = k 2

1 k2γα
2
1 �

2π [� + 2i(ν − ω)]

∫ t

0
ds e−

�
2 s−i(ν−ω)s Tr

{

σ−eĽs
[

σ−ηeq
]

}

, (9.13)

p2
4(ν, t) = k 2

1 k2α
2
1 �γ

2π [� + 2i(ν − ω)]

∫ t

0
ds1 e−�(t−s1/2)+i(ν−ω)s1

×Tr
{

σ−eĽs1
[

σ−ηeq
]

}

= k 2
1 k2α

2
1 �γ

2π [� + 2i(ν − ω)]
e(− �

2+i(ν−ω))t

×
∫ t

0
ds e−( �

2+i(ν−ω))s Tr
{

σ−eĽ(t−s) [σ−ηeq
]

}

. (9.14)

Summarising, we have

E
t,ν
ρ0

[P(t)] = p1(t)+ p2(ν, t)

+2 Re
[

p1
3(ν, t)− p2

3(ν, t)+ e2i(ν−ω)t p3
4(ν, t)− p2

4(ν, t)
]

,

where the various contributions are given by Eqs. (9.9), (9.10), (9.11), (9.12), (9.13),
(9.14).

Because � is strictly positive and the quantity Tr
{

σ−eĽt
[

ηeqσ±
]

}

is bounded

in t , we get

p1(t)
t→+∞−−−−→ k 2

1 k2

4π
, p2

3(ν, t)
t→+∞−−−−→ 0 , p2

4(ν, t)
t→+∞−−−−→ 0 ,

p1
3(ν, t)

t→+∞−−−−→ k 2
1 k2γ |α1|2

2π

∫ +∞

0
ds e(− �

2+i(ν−ω))s Tr
{

σ−eĽs
[

ηeqσ+
]

}

.

Moreover, we have

|p2(ν, t)| ≤ 2k 2
1 k2�γ |α1|2

π

∫ t

0
ds

∫ s

0
dr e−�(t− s+r

2 )
∥

∥

∥eĽr [ρ0]− ηeq

∥

∥

∥

1

= 4k 2
1 k2γ |α1|2

π

∫ t

0
dr

(

e−�(t−r )/2 − e−�t
)

∥

∥

∥eĽr [ρ0]− ηeq

∥

∥

∥

1

≤ 4k 2
1 k2γ |α1|2

π

∫ t

0
ds e−�s/2

∥

∥

∥eĽ(t−s)[ρ0]− ηeq

∥

∥

∥

1

t→+∞−−−−→ 0.

Finally, by Lebesgue lemma, for every Schwartz function h, we have

lim
t→+∞

∫ +∞

−∞
h(ν)p1

4(ν, t) dν = lim
t→+∞

∫ +∞

−∞
h(ν)e2i(ν−ω)t p3

4(ν,+∞) dν = 0 .

(9.15)
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Therefore, only the contributions from p1(t) and p1
3(t) survive in the limit and

we get Eq. (9.1) with

Σ(μ) = γ

π
Re

∫ +∞

0
e(− �

2+iμ)s Tr
{

σ−eĽt
[

ηeqσ+
]

}

dt ,

which can be rewritten in the form (9.8) by taking the complex conjugate under the
operation of taking the real part. �

Equation (9.15) is the only point where the limit in the sense of distributions
is needed. Such a limit washes out the rapidly oscillating terms with ν �= ω and
considers irrelevant the term with exactly ν = ω; this is physically justified for
heterodyne detection. On the contrary, homodyne detection would mean to consider
important just the term with ν = ω, as we shall see in Sect. 9.2.

It is important to note that the limit is independent of the initial state ρ0 and it
depends only on the mean dynamics through Ľ and ηeq.

9.1.1.3 The Shot Noise

The constant term k 2
1 k2

4π in Phet(ν) is a white noise contribution and it is of quantum
origin. When the atom is not stimulated, Ω2 = 0 and n = 0, we get ηeq = P− and
ηeqσ+ = σ−ηeq = 0; then, Eq. (9.8) gives Σ(μ) ≡ 0. In this case only the noise

term k 2
1 k2

4π survives in Phet(ν). Only the photons coming out from the local oscillator
can reach the counters and, so, it is interpreted as shot noise.

9.1.2 The Fluorescence Spectrum

The functionΣ(μ) is interpreted as the fluorescence spectrum; recall thatμ = ν−ω.
Note that to change ν one needs to change the probing laser, so we can say that a
change of ν is a change of measuring apparatus.

Equation (9.8) can be easily transformed to

Σ(μ) = γ

2π

∫ +∞

−∞
e−iμt e−�|t |/2

(

1[0,+∞)(t) Tr
{

eĽ|t |
[

σ−ηeq
]

σ+
}

+1(−∞,0)(t) Tr
{

σ−eĽ|t |
[

ηeqσ+
]

})

dt. (9.16)

This new expression says that the spectrum of the fluorescence light is, apart from
the smoothing factor e−�|t |/2, the Fourier transform of

1(−∞,0)(t) Tr
{

σ−eĽ|t |
[

ηeqσ+
]

}

+ 1[0,+∞)(t) Tr
{

eĽ|t |
[

σ−ηeq
]

σ+
}

,

which is called “the two-times dipole–dipole atomic quantum correlation function
at equilibrium”. This is the traditional way to present the spectrum, without relating
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it to a POM or to an instrument representing the measuring scheme. The above
expression is in turn derived from suitable quantum correlations for the outgoing
electromagnetic field; see, for instance, the presentation given in Sect. 11.2 in [1].

By integrating Eq. (9.16) over μ (note that the integrand in (9.16) is continuous
in t) we obtain

∫ +∞

−∞
Σ(μ) dμ = γ Tr

{

P+ηeq
} ≡ γ

2

(

1+ zeq
)

. (9.17)

The quantity Tr
{

P+ηeq
} = (

ηeq
)

11 is the population of the excited state level
(Sect. 8.3.3) and, by multiplying it by γ , we get the rate of emission of photons
in the equilibrium state. The choice of the normalisation of Σ(μ) is to have the
integral exactly equal to the rate of emission and not only proportional to it.

As already said in Sects. 4.4.2 and 7.2.1, a big value of � gives a good time
resolution. However, from (9.16) we see that a big value of � tends to mask the
dependence of the frequency μ and gives a flat spectrum Σ(μ). To have a good
frequency resolution we need a small �. So, we can say that in heterodyne detection
� represents an instrumental width.

9.1.2.1 A Decomposition of the Spectrum

In order to obtain the explicit expression of the spectrum Σ(μ) from Eq. (9.8) we
have to compute eĽt

[

σ−ηeq
]

. Moreover, it is useful to decompose σ−ηeq in a part

proportional to ηeq, which is left invariant by eĽt , and in the remaining part, which
is sent to zero by the dynamical semigroup for t → +∞. To do this, let us define
some useful shorthand notations:

τ := σ−ηeq − Tr
{

σ−ηeq
}

ηeq, (9.18)

"d(0) := Tr {"στ } = 1

2
"a(1) + i

2
"a(2), (9.19)

"a(1) :=

⎛

⎜

⎝

1+ zeq − x 2
eq

−xeq yeq

−xeq
(

1+ zeq
)

⎞

⎟

⎠
, "a(2) :=

⎛

⎜

⎝

xeq yeq

− (

1+ zeq
)+ y 2

eq

yeq
(

1+ zeq
)

⎞

⎟

⎠
. (9.20)

By construction we have Tr {τ } = 0 and we get c0 = 0 in Eq. (8.29); then,
Eqs. (8.29), (8.34) give

"d(t) := Tr
{

"σeĽt [τ ]
}

= e−At "d(0), eĽt [τ ] = 1

2
"d(t) · "σ . (9.21)

Proposition 9.2. The fluorescence spectrum (9.8) can be decomposed as

Σ(μ) = Σel(μ)+Σinel(μ), (9.22)
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where

Σel(μ) = �γ
∣

∣Tr
{

σ−ηeq
}∣

∣

2

2π |q|2 = Σel(−μ) , (9.23)

Σinel(μ) = γ

π
Re

∫ +∞

0
e−qt Tr

{

eĽt [τ ] σ+
}

dt , (9.24)

q := �

2
+ iμ . (9.25)

We have also

Σinel(μ) = 1

2π
Re

[(

γ

A + q
"d(0)

)

1

+ i

(

γ

A + q
"d(0)

)

2

]

= γ

4π

2
∑

i=1

(

1
(

A + �
2

)2 + μ2
"c(i)(μ)

)

i

, (9.26)

"c(1)(μ) =
(

A + �

2

)

"a(1) + μ"a(2), "c(2)(μ) = −
(

A + �

2

)

"a(2) + μ"a(1). (9.27)

Proof. By writing σ−ηeq = τ + Tr
{

σ−ηeq
}

ηeq, we get

eĽt [σ−ηeq] = eĽt [τ ]+ Tr
{

σ−ηeq
}

ηeq.

By inserting this expression into (9.8) we obtain Eqs. (9.22), (9.23), (9.24), (9.25).
By using (9.21) we get the first equality in (9.26). Finally, by using

1

A + q
= A + �

2 − iμ
(

A + �
2

)2 + μ2

and the fact that A has real matrix elements, we get the second equality
in (9.26). �

The Elastic and Inelastic Parts of the Spectrum

The term Σel(μ) is interpreted as the elastic part of the spectrum. From Eq. (9.23),
we get that for � ↓ 0 the quantity Σel(μ) becomes proportional to a Dirac delta
δ(μ) ≡ δ(ν − ω). This means that the energy of the photons is conserved in the
processes responsible for this part of the spectrum and this fact justifies the attribute
of “elastic” given to this part of the spectrum. Instead, the other part of the spec-
trum does not develop any singularity even in the limit � ↓ 0 and, so, it is termed
inelastic.
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Proposition 9.3. The explicit expressions of the elastic and inelastic parts of the
spectrum are

Σel(μ) = γ 
⊥2�

8π |q|2 =
γΩ2

(

4Δω2 + γ̃ 2
)

(

4Δω2 + γ̃ 2
)2

(2n + 1)2

�

2π
(

μ2 + �2

4

) , (9.28)

Σinel(μ) = γ

π (2n + 1)2 (4Δω2 + ˜Γ 2
)2 Re

4Ω2 N1(q)+ N2(q)

N (q)
, (9.29)

where

N1(q) := [

Ω2 (2n + 1+ 4kd)+ n
(

4Δω2 + γ̃ 2
)]

× [

Ω2 (2n + 1+ 4kd)+ 4nΔω2 + (n + 1) γ̃ 2 + q (γ̃ − 2iΔω)
]

+4Δω2
[

Ω2 (2n + 4kd)+ n
(

4Δω2 + γ̃ 2
)]− 2iΩ2Δωγ̃ , (9.30a)

N2(q) := (2q + γ̃ + 2iΔω) [q + γ (2n + 1)]
{

2n (2n + 1)
(

4Δω2 + Γ 2)2

+ 4Ω2
[

Ω2 (1+ 4kd)2 + n
(

4Δω2 + Γ 2
)

(1+ 8kd)+ 2kd
(

4Δω2 + γ̃ 2
)

]}

.

(9.30b)

Moreover, we have

Σel(ν − ω) = 1

k 2
1 |α1|2

lim
t→+∞

(

E
t,ν
ρ0

[I (t)]
)2
, (9.31a)

Σinel(ν − ω) = 1

k 2
1 |α1|2

lim
t→+∞Vart,ν

ρ0
[I (t)]− 1

4π |α1|2
; (9.31b)

the limits are again in the sense of the distributions in ν.
WhenΔω = 0, the inelastic spectrum is an even function of μ and can be written

as

Σinel(μ) = Ω2 + nγ γ̃

2Ω2 + (2n + 1) γ γ̃
· γ (γ̃ + �)

π
[

(γ̃ + �)2 + 4μ2
]

+ γ

4π

(

B

B2 + μ2

(

1+ zeq − y2
eq

−yeq
(

1+ zeq
)

))

1

, (9.32a)

B =
(

γ̃+�
2 Ω

−Ω (2n + 1) γ + �
2

)

, (9.32b)
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yeq = 2γΩ

2Ω2 + (2n + 1) γ γ̃
, 1+ zeq =

2
(

Ω2 + nγ γ̃
)

2Ω2 + (2n + 1) γ γ̃
. (9.32c)

The quantities N (•), Γ 2, ˜Γ 2, γ̃ were already defined by Eqs. (8.45), (8.55), but we
write them again here:

N (q) = 2Ω2 (2q + γ̃ )+ [γ (2n + 1)+ q]
[

4Δω2 + (2q + γ̃ )2
]

, (9.33)

˜Γ 2 = γ 2 + 8Ω2kd

2n + 1
, γ 2 = 2Ω2 + γ̃ 2 , γ̃ = γ (2n + 1+ 4kd) . (9.34)

Proof. The explicit expressions in (9.28) are easily obtained from (9.23) by using
(8.50), (8.60).

By the results in Lemma 8.4 and the first equality in (9.26), we have

π |N (q)|2 Σinel(μ) = γ Re N (q)
{

2Ω2d1(0)

+ (2q + γ̃ + 2iΔω) [(q + γ (2n + 1)) (d1(0)+ id2(0))− iΩd3(0)]
}

,

Then, we set

N1(q) := (2n + 1)2

4Ω

(

4Δω2 + ˜Γ 2
)2

[2Ωd1(0)− i (2q + γ̃ + 2iΔω) d3(0)] ,

N2(q) := (2n + 1)2 (4Δω2 + ˜Γ 2
)2

× (2q + γ̃ + 2iΔω) (q + γ (2n + 1)) (d1(0)+ id2(0)) ;

by Eqs. (8.57), (9.19) and by direct computations we find the expressions (9.29),
(9.30).

By using lim
t→+∞ eĽs [ρ0] = ηeq and μ = ν − ω, we get the mean value of the

current:

E
t,ν
ρ0

[I (t)] =
∫ t

0
ds F(t − s)

d

ds
E

t,ν
ρ0

[W1(s)]

= 2k1

√

�γ

4π
|α1|Re

∫ t

0
ds e−

�
2 (t−s)+i(ν−ω)s Tr

{

σ−eĽs [ρ0]
}

t→+∞% 2k1

√

�γ

4π
|α1|Re Tr

{

σ−ηeq
} 1

q

(

e−�t/2 − ei(ν−ω)t
)

.
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From this equation we have, in the sense of distributions,

1

k 2
1 |α1|2

lim
t→+∞

(

E
t,ν
ρ0

[I (t)]
)2 = �γ

4π

2
∣

∣Tr
{

σ−ηeq
}∣

∣

2

|q|2 ;

by comparing with (9.23) we get (9.31a).
By Eqs. (9.2), (9.7), (9.22), (9.31a) we get easily (9.31b).
Let us now consider the case Δω = 0. From Eq. (8.40) we get xeq = 0 and

(9.32c). We insert these expressions in Eqs. (9.19), (9.27) and use the second expres-
sion of the spectrum in Eq. (9.26). The fact that now the matrix A (8.32) is block-
diagonal gives the splitting of the spectrum in two terms; explicit computations give
the result. �

The Coherent and Incoherent Parts of the Spectrum

Equations (9.31) give rise to a second interpretation of the decomposition of the
spectrum. Equation (9.31b) says that the inelastic part of the spectrum is purely due
to fluctuations and by this it is also called the incoherent part. Similarly, the elastic
part of the spectrum is due to the square of the mean value of the current and it is
called the coherent part.

The Lorentz Shape

In the following sections we shall study the heterodyne spectrum, then the homo-
dyne one. Sometimes we shall have to compare the shapes of the various spectral
densities for the two-level atom with the Lorentzians; so, here we recall what is this
curve. The Lorentzian is the most common shape for atomic spectral lines and it is
given by

ν �→ a
c/2π

(ν − ν0)2 + c2/4
, a > 0, c > 0.

The area below the curve is a, the height is 2a
πc and the linewidth (the width at half

height) is c.
When used as a probability density, the function ν �→ c/2π

(ν−ν0)2+c2/4 is called
Cauchy density. Note that this density is symmetric around ν0, but no moment exists.

9.1.2.2 Examples

Remark 9.4. From Proposition 9.3 we get easily the expression of the spectrum in
some extreme cases.

• Case n = 0, kd = 0, Ω > 0. From Eqs. (9.28), (9.29), (9.30) we obtain

N (q) = 2Ω2 (2q + γ )+ (γ + q)
[

4Δω2 + (2q + γ )2
]

,
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Σel(μ) = �γΩ2
(

4Δω2 + γ 2
)

2π |q|2 (4Δω2 + Γ 2
)2 , (9.35a)

Σinel(μ) = 4γΩ4

π
(

4Δω2 + Γ 2
)2 Re

Ω2 + 2(q + γ )2

N (q)
. (9.35b)

Note that in this case, under the transformation μ → −μ, one has q → q ,
N (q) → N (q); this implies

Σinel(μ) = Σinel(−μ).

– In the limit � ↓ 0 we get the original result by Mollow [2]:

Σel(μ)
�=0= γΩ2

(

4Δω2 + γ 2
)

(

4Δω2 + Γ 2
)2 δ(μ), (9.36a)

Σinel(μ)
�=0= 4γ 2Ω4

(

Ω2 + 2γ 2 + 2μ2
)

π
(

4Δω2 + γ 2
) |N (iμ)|2 , (9.36b)

|N (iμ)|2 = γ 2
(

Γ 2 + 4Δω2 − 8μ2
)2 + μ2

(

2Γ 2 + 3γ 2 + 4Δω2 − 4μ2
)2
.

(9.36c)
– In resonance (Δω = 0) the incoherent Mollow spectrum becomes

Σinel(μ)
�=0= 4γ 2Ω4

(

Ω2 + 2γ 2 + 2μ2
)

π
(

2Ω2 + Γ 2
) |N (iμ)|2 , (9.37a)

|N (iμ)|2 = γ 2
(

Γ 2 − 8μ2
)2 + μ2

(

2Γ 2 + 3γ 2 − 4μ2
)2
. (9.37b)

Moreover, for small Ω , we get the very simple expression

lim
Ω↓0

Σinel(μ)

Ω4

�=0= 1

2π
(

μ2 + γ 2/4
)2 , (9.38)

which is a squared Lorentzian.

• Case Ω = 0, n > 0: γ̃ = γ (2n + 1+ 4kd), Σel(μ) = 0,

Σinel(ν − ω) = 2γ n (� + γ̃ )

π (2n + 1)
[

(� + γ̃ )2 + 4 (ν − ω0)2
] , (9.39a)
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Σinel(ν − ω)
�=0= 2γ n γ̃

π (2n + 1)
[

γ̃ 2 + 4 (ν − ω0)2
] . (9.39b)

Note the shape which is purely Lorentzian with thermal and dephasing
broadening.

As we shall see in the plots, the inelastic fluorescence spectrumΣinel(μ) develops
a typical three-peaked structure for a large intensity of the stimulating laser. In hon-
our of Mollow, who predicted this behaviour before the experimental verification
[2], the heterodyne spectrum of a two-level atom is often called Mollow spectrum.
The insurgence of the three-peaked structure is also called dynamical Stark effect.

To take into account also the shot noise and to have a better way to compare the
results of heterodyne and homodyne detection schemes, let us consider the mean
observed power spectrum Phet(ν) for k 2

1 k2 = 4π (in order to set the noise level
to 1). So, we write

Phet(μ− ω)
∣

∣

k 2
1 k2=4π = 1+ 4π |α1|2 Σ(μ) =: |α2|2 + |α1|2 Shet(μ), (9.40a)

Shet(μ) = Sel
het(μ)+ Sinel

het (μ), (9.40b)

Sel
het(μ) := 4πΣel(μ), Sinel

het (μ) := 1+ 4πΣinel(μ). (9.40c)

These definitions are given to have Shet(μ), Sel
het(μ), Sinel

het (μ) all independent from
|α1|2, as in the extreme case when all the light reaches the beam splitter.

Remark 9.5. From Eqs. (9.40), the positivity of Phet and (9.31b), we get

Sel
het(μ) ≥ 0, Sinel

het (μ) ≥ 0, (9.41)

but not Σinel(μ) ≥ 0, which however holds in all the examples. Only going through
homodyne detection we get Eq. (9.61), which gives

Σinel(μ)+Σinel(−μ) ≥ 0. (9.42)

So, Σinel(μ) is surely positive at least when it is an even function of μ.

In Fig. 9.1 the total spectrum Shet(μ) is given for some choices of the parameters
in the case of no temperature, no dephasing and response parameter � = 0.4. In
all the figures the natural linewidth γ is taken equal to one in order to fix the scale.
Experimental results, confirming the three-peaked structure, are given in [3–7].

When only the inelastic part of the spectrum Sinel
het is considered, the limit of

vanishing � can be taken; some examples are plotted in Fig. 9.2.
In the case Ω = 0, the spectrum is given by a pure Lorentzian curve with a

temperature-dependent width γ̃ , see Eq. (9.39b). When Ω2 is relatively big, the
effect of temperature and dephasing is of “smoothing” and distortion of the spec-
trum, as can be seen from the examples of Fig. 9.3. The case with n > 0, but
Δω = 0, kd = 0, was studied (inside the traditional approach) also in [8].
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Fig. 9.1 The spectrum Shet(x) for γ = 1, � = 0.4, Δω = 0 or 2, Ω2 = 10 or 50, n = 0, kd = 0
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Fig. 9.2 The inelastic spectrum Sinel
het (x) for γ = 1, � = 0, Δω = 0 or 2, Ω2 = 10 or 50, n = 0,

kd = 0
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Fig. 9.3 The inelastic spectrum Sinel
het (x) for γ = 1, � = 0, Δω = −1, Ω2 = 12, and (1) n = 0

kd = 0; (2) n = 0.3 kd = 0; (3) n = 0 kd = 0.2; (4) n = 0.3 kd = 0.2

Other features of the heterodyne spectrum are discussed in Sect. 9.2.2.2; see the
comments to Fig. 9.8.

The power spectrum can be obtained also directly from the quantum stochastic
formulation of the continuous measurements, without going through the classical
SDEs [9–11]. This treatment is presented in [12], where the spectrum is studied
also in the case of a non-perfectly monochromatic stimulating laser and of S �= 1,
but with n = 0, kd = 0. While theoretical results can be obtained in different ways,
the approach with classical SDEs allows for numerical simulations. As soon as one
needs a more elaborated model, say when more than two atomic levels are involved
in an essential way, immediately analytical computations become unfeasible. In this
case the approach with SDEs gives a way to simulate the processes ̂ψ(t), W (t) and
to obtain numerically the moments needed for quantities like the power (9.2).

9.1.2.3 Intensity

Let us consider now the total intensity of the spectrum (the integral over all the
frequencies of its difference from the noise level) and the intensities of its elastic
and inelastic components. In order to have dimensionless quantities we define

ΠTOT(Ω,Δω) := 1

2πγ

∫ +∞

−∞
[Shet(μ)− 1] dμ = 2

γ

∫ +∞

−∞
Σ(μ) dμ , (9.43a)

Πel(Ω,Δω) := 1

2πγ

∫ +∞

−∞
Sel

het(μ) dμ = 2

γ

∫ +∞

−∞
Σel(μ) dμ , (9.43b)
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Πinel(Ω,Δω) := 1

2πγ

∫ +∞

−∞

[

Sinel
het (μ)− 1

]

dμ = 2

γ

∫ +∞

−∞
Σinel(μ) dμ

= ΠTOT(Ω,Δω)−Πel(Ω,Δω) . (9.43c)

By Eqs. (8.59), (8.60), (8.69), (9.17), (9.28) we get

ΠTOT(Ω,Δω) = 1+ zeq = 1− 
‖ = 2
Ω2 (1+ 4kd)+ n

(

4Δω2 + Γ 2
)

(2n + 1)
(

4Δω2 + ˜Γ 2
) , (9.44a)

Πel(Ω,Δω) = x2
eq + y2

eq

2
= 
2

⊥
2
= 2Ω2

(

4Δω2 + ˜Γ 2
)

(2n + 1)2 (4Δω2 + ˜Γ 2
)2 , (9.44b)

Πinel(Ω,Δω) = 1− 
‖ + ASηeq

2
= 1− ∣

∣"xeq

∣

∣

2 + (

1+ zeq
)2

2

= 2

(2n + 1)2

{

n (n + 1)+
Ω2

[

Ω2 + 4kd
2n+1

(

4Δω2 + Γ 2 + 4Ω2kd
2n+1

)]

(

4Δω2 + ˜Γ 2
)2

+
[

Ω2 (1+ 4kd)+ n
(

4Δω2 + Γ 2
)]2

(

4Δω2 + ˜Γ 2
)2

}

. (9.44c)

Once again we see that ˜Γ plays the role of width with respect to the detuning.
In the case of n = 0 and kd = 0, these formulae become simpler:

ΠTOT(Ω,Δω) = 2Ω2

4Δω2 + γ 2 + 2Ω2
, (9.45a)

Πel(Ω,Δω) = 2Ω2
(

4Δω2 + γ 2
)

(

4Δω2 + γ 2 + 2Ω2
)2 , (9.45b)

Πinel(Ω,Δω) = 4Ω4

(

4Δω2 + γ 2 + 2Ω2
)2 . (9.45c)

Note that the total intensity, as a function of the frequency ω of the stimulating laser,
is a Lorentzian γ whose width is Γ =

√

γ 2 + 2Ω2.
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9.2 Homodyne Detection

We continue to consider the ideal case of perfectly coherent and monochromatic
stimulating laser and local oscillator, but now in the homodyne case. This means that
we have exactly ν = ω and that the light stimulating the atom and the light feeding
the local oscillator come out from the same source to maintain phase coherence
during the time.

In the rotating frame, for ν = ω, any explicit time dependence disappears in
all the coefficients, see Eqs. (8.87), (8.88), (8.96). In particular, Eq. (8.88) gives
α1(t) = α1(0) = |α1| eiϑ , where the phase ϑ is defined by Eq. (8.14).

The results on squeezing and homodyne spectrum were obtained in [13–17].

9.2.1 The Spectrum of the Homodyne Current

In Section 9.1 we have studied the mean power Phet(ν) in heterodyne detection,
mainly for small values of � (bad time resolution). Let us study now the spectrum
of the homodyne current I (t) according to the general approach of the theory of
stochastic processes of Sect. 4.5. As we shall see in the following, to have significant
spectra we shall need a good time resolution in the expression of I (t) (big values
of �). Let us stress also that in the case of the heterodyne detection what has been
studied is the power of the output signal I (t), which means a quantity proportional
to I (t)2 for large times. Instead, in the case of homodyne detection the signal is
processed by a spectrum analyser and the Fourier transform of I (t) is obtained.

According to the definition of spectrum of an asymptotically stationary stochastic
process given in Sect. 4.5.2, the spectrum of the output current I (t) is given by

SI(μ;ϑ) := lim
T→+∞

1

T
E

T,ω
ρ0

[

∣

∣

∣

∣

∫ T

0
eiμt I (t) dt

∣

∣

∣

∣

2
]

; (9.46)

the limit has to be taken in the sense of distributions, as discussed in Section 4.5.

Proposition 9.6. The spectrum of the homodyne current can be expressed as

SI(μ;ϑ) = k 2
1 �

π
(

�2 + 4μ2
) Shom(μ;ϑ), (9.47)

where

Shom(μ;ϑ) = lim
T→+∞

1

T
E

T,ω
ηeq

[

∣

∣

∣

∣

∫ T

0
eiμs dW1(s)

∣

∣

∣

∣

2
]

; (9.48)

Shom(μ;ϑ) is independent of � and of the initial state ρ0.

Proof. By using the expression of the current (9.1) we get
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∫ T

0
eiμt I (t) dt = k1

√

�

4π

∫ T

0
dW1(s)

∫ T

s
dt eiμt− �

2 (t−s)

= k1
√
�√

π (� − 2iμ)

∫ T

0

(

eiμs − e(iμ− �
2 )T e

�
2 s
)

dW1(s).

By inserting this expression into (9.46) and by using the second moment formula
(4.46), expressed in the rotating frame, we have

π
(

�2 + 4μ2
)

k 2
1 �

SI(μ;ϑ)− Shom(μ;ϑ)

= lim
T→+∞

1

T
E

T,ω
ρ0

[

∣

∣

∣

∣

∫ T

0

(

eiμs − eiμT− �
2 (T−s)

)

dW1(s)

∣

∣

∣

∣

2
]

− lim
T→+∞

1

T
E

T,ω
ηeq

[

∣

∣

∣

∣

∫ T

0
eiμs dW1(s)

∣

∣

∣

∣

2
]

= lim
T→+∞

1

T

{∫ T

0

[

∣

∣eiμs − eiμT− �
2 (T−s)

∣

∣

2 − 1
]

ds

+ 2 Re
∫ T

0
dt
∫ t

0
ds

[

(

e−iμt − e−iμT− �
2 (T−t)

) (

eiμs − eiμT− �
2 (T−s)

)

× Tr
{

Ř1 ◦ eĽ(t−s) ◦ Ř1[η(s)]
}

− e−iμ(t−s) Tr
{

Ř1 ◦ eĽ(t−s) ◦ Ř1[ηeq]
}

]}

= lim
T→+∞

[Δ1(T, μ)+Δ2(T, μ)+Δ3(T, μ)] ,

where

Ř1[τ ] = √γ |α1|
(

eiϑσ−τ + e−iϑτσ+
)

,

Δ1(T, μ) = 1

T

∫ T

0

(

e−�(T−s) + 2 Re e(iμ− �
2 )(T−s)

)

ds

= 1

T

(

1− e−�T

�
+ 2 Re

1− e(iμ− �
2 )T

�
2 − iμ

)

t→+∞−−−−→ 0,

Δ2(T, μ) = 2

T
Re

∫ T

0
dt
∫ t

0
ds

(

e−�(T− t+s
2 ) − eiμ(T−t)− �

2 (T−s)

−e−iμ(T−s)− �
2 (T−t)

)

Tr
{

Ř1 ◦ eĽ(t−s) ◦ Ř1[η(s)]
}

,
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Δ3(T, μ) = 2

T
Re

∫ T

0
dt
∫ t

0
ds e−iμ(t−s) Tr

{

Ř1 ◦ eĽ(t−s) ◦ Ř1[η(s)− ηeq]
}

.

By using

∥

∥Ř1

∥

∥ ≤ 2 |α1|√γ ≤ 2
√
γ ,

∥

∥

∥eĽ(t−s)
∥

∥

∥ = 1, ‖η(s)‖1 = 1, (9.49)

we get
∣

∣

∣Tr
{

Ř1 ◦ eĽ(t−s) ◦ Ř1[η(s)]
}∣

∣

∣ ≤ 4γ . Then, we have

|Δ2(T, μ)| ≤ 8γ

T

∫ T

0
dt
∫ t

0
ds

(

e−�(T− t+s
2 ) + e−

�
2 (T−s) + e−

�
2 (T−t)

)

= 16γ

T�2

(

1− e−
�
2 T
) t→+∞−−−−→ 0.

The limit on Δ3(T, μ) needs to be done explicitly in the sense of distribu-
tions. Let h be any Schwartz function and consider its Fourier transform ̂h(t) =
∫ +∞
−∞ eiμt h(μ)dμ. Then, also ̂h is a Schwartz function and

∫ +∞
0

∣

∣̂h(t)
∣

∣ dt< + ∞.
Then, we have

∫ +∞

−∞
h(μ)Δ3(T, μ)

= 1

T

∫ T

0
ds

∫ T

s
dt̂h(t − s) Tr

{

Ř1 ◦ eĽ(t−s) ◦ Ř1[η(s)− ηeq]
}

+ c.c.

= 1

T

∫ T

0
ds

∫ T−s

0
dr̂h(r ) Tr

{

Ř1 ◦ eĽr ◦ Ř1[η(s)− ηeq]
}

+ c.c.

By (8.52), (8.53), (9.49) we get

∣

∣

∣Tr
{

Ř1 ◦ eĽr ◦ Ř1[η(s)− ηeq]
}∣

∣

∣ ≤ 4γ e−
γ

2 t
∣

∣"x(0)− "xeq

∣

∣

and then we have
∣

∣

∣

∣

∫ +∞

−∞
h(μ)Δ3(T, μ)

∣

∣

∣

∣

≤ 2

T

∫ T

0
ds

∫ T−s

0
dr

∣

∣̂h(r )
∣

∣ 4γ e−
γ

2 s
∣

∣"x(0)− "xeq

∣

∣

≤ 8γ

T

∣

∣"x(0)− "xeq

∣

∣

∫ +∞

0

∣

∣̂h(r )
∣

∣ dr
∫ T

0
e−

γ

2 s ds

= 4

T

∣

∣"x(0)− "xeq

∣

∣

∫ +∞

0

∣

∣̂h(r )
∣

∣ dr
(

1− e−
γ

2 T
)

t→+∞−−−−→ 0.

Finally, the existence of the limit in the definition (9.48) of Shom(μ;ϑ) follows
from the explicit computations of Propositions 9.7 and 9.9. �
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We have defined the homodyne spectrum Shom(μ;ϑ) by eliminating the inessen-
tial modulating pre-factor from the expression of SI(μ;ϑ). Note that we have also

Shom(μ;ϑ) = lim
�→+∞

π�

k 2
1

SI(μ;ϑ). (9.50)

While we started from the definition of SI, which is the spectrum of the regular
process I (t), by eliminating the pre-factor we ended with Shom given by (9.48), in
agreement with the definition (4.85) in Section 4.5.3 of the spectrum of a singular
process.

By expressing the second moments as square of the mean plus variance, we get
the usual decomposition into the coherent (elastic) part and the incoherent (inelastic)
one:

Shom(μ;ϑ) = Sel
hom(μ;ϑ)+ Sinel

hom(μ;ϑ), (9.51a)

Sel
hom(μ;ϑ) := lim

T→+∞
1

T

∣

∣

∣

∣

E
T,ω
ρeq

[∫ T

0
eiμs dW1(s)

]∣

∣

∣

∣

2

, (9.51b)

Sinel
hom(μ;ϑ) := lim

T→+∞
1

T

(

E
T,ω
ρeq

[

∣

∣

∣

∣

∫ T

0
eiμs dW1(s)

∣

∣

∣

∣

2
]

−
∣

∣

∣

∣

E
T,ω
ρeq

[∫ T

0
eiμs dW1(s)

]∣

∣

∣

∣

2
)

. (9.51c)

9.2.1.1 The Spectrum of the Mean Current

Proposition 9.7. The elastic part of the homodyne spectrum is given by

Sel
hom(μ;ϑ) = 2πγ |α1|2

∣

∣Tr
{(

eiϑσ− + e−iϑσ+
)

ηeq
}∣

∣

2
δ(μ)

= 2πγ |α1|2
(

xeq cosϑ + yeq sinϑ
)2
δ(μ)

= |α1|2 8πΩ2γ (−2Δω cosϑ + γ̃ sinϑ)2

(2n + 1)2 (4Δω2 + ˜Γ 2
)2 δ(μ). (9.52)

Moreover, the following relation with the elastic part of the heterodyne power spec-
trum holds:

1

2π

∫ 2π

0
Sel

hom(μ;ϑ) dϑ = 4π |α1|2 Σel(μ)
∣

∣

∣

�=0
= |α1|2 Sel

het(μ)
∣

∣

∣

�=0
. (9.53)
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Proof. By recalling that

lim
T→+∞

2 (sinμT/2)2

πμ2T
= δ(μ)

and by using the expression of the mean function of W1 and the fact that the initial
state is the equilibrium one, we get

1

T |α1|2
∣

∣

∣

∣

E
T,ω
ρeq

[∫ T

0
e−iμs dW1(s)

]∣

∣

∣

∣

2

= γ

T

∣

∣

∣

∣

∫ T

0
dt e−iμt 2 Re Tr

{

η̌(t)σ−eiϑ}
∣

∣

∣

∣

2

= 4γ (sinμT/2)2

μ2T

∣

∣Tr
{(

eiϑσ− + e−iϑσ+
)

ηeq
}∣

∣

2

T→+∞−−−−→ 2πγ
∣

∣Tr
{(

eiϑσ− + e−iϑσ+
)

ηeq
}∣

∣

2
δ(μ)

= 8πγ
(

Re eiϑ
(

ηeq
)

12

)2
δ(μ) = 2πγ |α1|2

(

xeq cosϑ + yeq sinϑ
)2
δ(μ)

= 8πΩ2γ (−2Δω cosϑ + γ̃ sinϑ)2

(2n + 1)2 (4Δω2 + ˜Γ 2
)2 δ(μ).

The last statement follows by comparing this result with Eqs. (9.28), (9.40) in
the limit � ↓ 0. �
Remark 9.8. The elastic component of the homodyne spectrum is a δ-spike around
μ = 0 whose peculiar feature is the dependence of its intensity on ϑ .

Let us note that the intensity of the elastic component vanishes for Ω = 0 or for
γ̃ sinϑ = 2Δω cosϑ .

As discussed in Section 8.1.3, the angle ϑ is a relative phase among the laser
light, the local oscillator and the fluorescence light. Therefore, it can be varied by
changing the optical paths from the laser source to the atom, from the laser source
to the beam splitter and from the atom to the beam splitter.

9.2.1.2 The Spectrum of the Fluctuations of the Current

Proposition 9.9. The inelastic part of the homodyne spectrum can be written as

Sinel
hom(μ;ϑ) = |α2|2 + |α1|2 Sred

hom(μ;ϑ), (9.54)

where the “reduced” inelastic homodyne spectrum Sred
hom(μ;ϑ) is not negative and

does not depend on α1 and α2.
The explicit expression of the reduced component is given by

Sred
hom(μ;ϑ) = 1+ "u(ϑ) ·

(

2γ A

A2 + μ2
"t(ϑ)

)

, (9.55)
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"u(ϑ) = (cosϑ, sinϑ, 0) , (9.56)

"t(ϑ) = Tr
{"σ (eiϑτ + e−iϑτ ∗

)} =

⎛

⎜

⎜

⎜

⎝

(

1+ zeq − x2
eq

)

cosϑ − xeq yeq sinϑ
(

1+ zeq − y2
eq

)

sinϑ − xeq yeq cosϑ

− (

1+ zeq
) (

xeq cosϑ + yeq sinϑ
)

⎞

⎟

⎟

⎟

⎠

,

(9.57)
with τ = σ−ηeq − Tr

{

σ−ηeq
}

ηeq.
An alternative expression of the reduced inelastic homodyne spectrum is

Sred
hom(μ;ϑ) = 1

2

[

Sinel
het (μ)+ Sinel

het (−μ)
]

�=0 + Re
[

e2iϑb(μ)
]

, (9.58)

where

b(μ) := (1, −i, 0) ·
(

2γ A

A2 + μ2
"d(0)

)

. (9.59)

Proof. By using the definition (9.51c) and the expression of the second moments
(4.46), we get

Sinel
hom(μ;ϑ) = lim

T→+∞
1

T

∫ T

0
dt
∫ T

0
ds e−iμ(t−s) ∂

2

∂t∂s
CovT,ω

ρeq
[W1(t),W1(s)]

= 1+ 2γ |α1|2 lim
T→+∞

∫ T

0

(

1− t

T

)

g(t) cosμt dt,

g(t) := Tr
{

σϑeĽt [eiϑτ + e−iϑτ ∗]
}

, σϑ := eiϑσ− + e−iϑσ+.

By the definition (9.54) of Sred
hom(μ;ϑ), we get from the result above

Sred
hom(μ;ϑ) = 1+ 2γ lim

T→+∞

∫ T

0

(

1− t

T

)

g(t) cosμt dt.

From here we see that the reduced component depends on γ and on all the
parameters appearing in Ľ and ηeq; therefore, it does not depend on α1 and α2. By
its definition, the quantity Sinel

hom(μ;ϑ) is not negative for any choice of the param-
eters, in particular for α1 and α2. By taking α2 = 0 and, therefore, |α1| = 1
in Eq. (9.54), we get that also Sred

hom(μ;ϑ) is not negative for any choice of the
parameters.

By using the Bloch representation, we get



9.2 Homodyne Detection 205

g(t) = "u(ϑ) · (e−At"t(ϑ)
)

.

By Lemma 8.3, g(t) decays exponentially and the term with t/T vanishes for T →
+∞; so, we obtain

Sred
hom(μ;ϑ)− 1 = γ

∫ +∞

0
dt
(

eiμt + e−iμt
) "u(ϑ) · (e−At"t(ϑ)

)

= γ "u(ϑ) ·
[(

1

A − iμ
+ 1

A + iμ

)

"t(ϑ)

]

.

By using

1

A + iμ
+ 1

A − iμ
= 2A

A2 + μ2
,

we get the expression (9.55).
By comparing (9.19) and (9.57) we get

"t(ϑ) = 2 cosϑ Re "d(0)− 2 sinϑ Im "d(0).

By inserting this and the explicit expression of "u(ϑ) in (9.55), we obtain

Sred
hom(μ;ϑ)− 1 = Re

[

(

1+ e2iϑ , i
(

1− e2iϑ) , 0
) ·

(

2γ A

A2 + μ2
"d(0)

)]

. (9.60)

By comparing this expression with Eqs. (9.26), (9.27) we obtain Eqs. (9.58), (9.59).
�

Other Approaches

The spectrum of the fluorescence light was already obtained in [13], for the case
Δω = 0, n = 0, kd = 0 (see also [1, Sect. 11.4]), and in [14], for the case n = 0.
The quantities which are studied in those papers are, in our notations, Sred

hom(x ; 0)−1
and Sred

hom(x ;π/2)− 1. The approach of [1, 13, 14] does not use quantum measuring
theory and, so, there is no proof of positivity of Sred

hom(x ;ϑ) (the fluctuation spectrum
with shot noise included). However, the final formulae are the same, apart from a
different normalisation and the fact that shot noise is not included. The approach
used in [1, 13, 14] is similar to the traditional one for the case of heterodyne spec-
trum: a suitable quantum correlation function for the outgoing electromagnetic field
is defined and the spectrum is by definition its Fourier transform; then, the fields are
eliminated in favour of the atomic variables and the “quantum regression theorem”
[1, p. 118] is used to get the final result.
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9.2.1.3 Uncertainty Relations

From Eq. (9.58) one obtains immediately that Sred
hom(μ;ϑ) is periodic in ϑ of period

π and that

1

2

[

Sred
hom(μ;ϑ)+ Sred

hom(μ;ϑ + π/2)
] = 1

2

[

Sinel
het (μ)+ Sinel

het (−μ)
]

�=0 ≥ 1. (9.61)

In Remark 9.4 we have seen that for n = 0, kd = 0 the inelastic heterodyne spec-
trum Sinel

het is an even function of μ. In this case we get

Sinel
het (μ)

∣

∣

�=0 =
1

2

[

Sred
hom(μ;ϑ)+ Sred

hom(μ;ϑ + π/2)
]

. (9.62)

As discussed in Sect. 4.5.3.1, by using the approach to continuous measurements
of [12], (based on quantum stochastic calculus) and the Heisenberg uncertainty rela-
tions, one can obtain also the uncertainty relation for spectra (4.89) [16], which for
the inelastic homodyne spectrum becomes

Sred
hom(μ;ϑ) Sred

hom(μ;ϑ + π/2) ≥ 1. (9.63)

9.2.2 Examples of Spectra and Squeezing

Let us comment the main features of the inelastic homodyne spectrum. Recall the
notation

Γ 2 = 2Ω2 + γ̃ 2 , γ̃ = γ (2n + 1+ 4kd) .

9.2.2.1 Noise and Thermal Light

No Signal

For Ω = 0 and n = 0 we get Sinel
hom(μ;ϑ) = Sred

hom(μ;ϑ) = 1. In this case there is
no fluorescence light in the long run and we see the spectrum of a pure white noise
(shot noise due to the local oscillator).

Pure Thermal Light

For Ω = 0 and n > 0 we get b(μ) = 0 and, so, there is no dependence on ϑ . Then,
from Eq. (9.39b), we obtain

Sred
hom(μ;ϑ) = 1+ 4γ

n

2n + 1

[

γ̃

γ̃ 2 + 4 (μ−Δω)2 +
γ̃

γ̃ 2 + 4 (μ+Δω)2

]

> 1.

(9.64)
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In this case there is only thermal light with carrier frequency ω0, while the local
oscillator is at frequency ω. The result are two temperature-dependent Lorentzian
peaks at μ = ±Δω. The white noise contribution is always present.

Squeezing of the Fluorescence Light

When Ω > 0, Sinel
hom(μ;ϑ) and Sred

hom(μ;ϑ) become ϑ-dependent. This phase depen-
dence is the first peculiar feature which differentiates homodyne and heterodyne
detection. Moreover, it is possible that the spectrum goes below the shot noise level
(which is 1 by our choice of normalisation). This is a typical quantum phenomenon
known as squeezing. From the probabilistic point of view, this fact means that in
the decomposition dW1(t) = d̂W1(t) + v1(t)dt some negative correlation between
the white noise component d̂W1(t) and the smooth contribution v1(t)dt has been
developed.

The minimal value of Sred
hom(μ;ϑ) with respect to ϑ is given by

Smin
hom(μ) := min

ϑ
Sred

hom(μ;ϑ) = 1+ 2π [Σinel(μ)+Σinel(−μ)]�=0 − |b(μ)| . (9.65)

To have Smin
hom(μ) < 1 implies obviously that Sred

hom(μ;ϑ) < 1 for some ϑ and it
says that the light in the modes around μ is squeezed [16]. So, the condition for
squeezing is

|b(μ)| > 2π [Σinel(μ)+Σinel(−μ)]�=0 .

Let us stress that, due to the positivity of Sred
hom(μ;ϑ), we have always

|b(μ)| ≤ 1+ 2π [Σinel(μ)+Σinel(−μ)]�=0 . (9.66)

Global Squeezing

Let us define

Πhom(ϑ) := 1

2πγ

∫ +∞

−∞

[

Sred
hom(μ, ϑ)− 1

]

dμ; (9.67)

we get

Πhom(ϑ) = 2 Re
(

Tr{σ+τ } + e2iϑ Tr{σ−τ }
)

= 2 Tr{P+ηeq} − 2
∣

∣Tr{σ−ηeq}
∣

∣

2 − 2 Re
(

eiϑ Tr{σ−ηeq}
)2
,

or

Πhom(ϑ) = 1− (

xeq cosϑ + yeq sinϑ
)2 + zeq . (9.68)
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From Eqs. (9.43c), (9.61), (9.67), or from Eqs. (9.44), (9.68), we relate Πhom with
the heterodyne inelastic intensity Πinel(Ω,Δω):

1

2
[Πhom(ϑ)+Πhom(ϑ + π/2)] = Πinel(Ω,Δω) = 1+ zeq −

x 2
eq + y 2

eq

2
. (9.69)

As a synthetic index of squeezing, let us introduce the minimum value of
Πhom(ϑ) with respect to ϑ :

Πhom := inf
ϑ
Πhom(ϑ) = 2 Tr{P+ηeq} − 4

∣

∣Tr{σ−ηeq}
∣

∣

2

= 1− ∣

∣"xeq

∣

∣

2 + zeq
(

1+ zeq
) = ASηeq . (9.70)

The quantity Πhom can be positive or negative. We can say that we have “global
squeezing” in the fluorescence light when Πhom < 0; note that this condition is
equivalent to the condition of atomic squeezing (8.69). Indeed, the first theoretical
predictions of squeezing of the fluorescence light were based on equations of the
type of (9.68), (9.70), which were obtained in the approximation of a two-level
atom interacting with a single-mode quantum field [18–20].

Let us study the case n = 0 and kd = 0, in which we have

Πhom =
2Ω2

[

2Ω2 − (

4Δω2 + Γ 2
)]

(

4Δω2 + Γ 2
)2 .

It is easy to check that Πhom < 1 and to find its minimum with respect to Ω . This
minimum is reached for 6Ω2 = 4Δω2 + γ 2, where Πhom takes the value −1/8. In
the same point we have zeq = −3/4, x2

eq + y2
eq = 3/8, 1− ∣

∣"xeq

∣

∣

2 = 1/16.

So, for n = 0 and kd = 0, we have − 1
8 ≤ Πhom < 1. The maximum of x2

eq +
y2

eq is for 2Ω2 = 4Δω2 + γ 2, the minimum of Πhom is for 6Ω2 = 4Δω2 + γ 2;
an intermediate choice is Ω2 � Δω2 and as a matter of fact this is a working
choice for obtaining a good squeezing in the spectra, when Δω is not too small (see
Figs. 9.4, 9.5).

Let us stress that one can have local squeezing, in the sense of the previous para-
graph, also when the condition for global squeezing is violated, see Fig. 9.6.

9.2.2.2 Some Homodyne Spectra

Pure Fluorescence

For kd = 0, n = 0, Ω > 0, Σinel(μ)
∣

∣

�=0 is given by Eq. (9.36b) and it is an even
function of μ. Moreover, by some long computations, one gets

b(μ) = c(μ)+ c(−μ), (9.71a)
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Fig. 9.4 Sred
hom(x ;ϑ) with γ = 1, Ω = 4.3709, Δω = −4.1455, n = 0, kd = 0. The minimum is

0.7358 at μ = ±6 for ϑ = 0.0609
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Fig. 9.5 Sred
hom(x ;ϑ) with γ = 1, n = 0, kd = 0 and (1) ϑ = −0.3480, Δω = 0.8279, Ω = 0.7445,

value of the minimum 0.7742; (2) ϑ = −0.1204, Δω = 2.1469, Ω = 2.1649, value of the
minimum 0.7449; (3) ϑ = −0.0729, Δω = 3.2746, Ω = 3.6357, value of the minimum 0.7373;
(4) ϑ = −0.0522, Δω = 4.8191, Ω = 5.1055, value of the minimum 0.7349
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Fig. 9.6 Sred
hom(μ;−0.1786) with γ = 1, n = 0, kd = 0,Δω = 2,Ω = 4; the value of the minimum

is 0.8299 at μ = ±4.6239

−5 0 5
1

1.2

1.4

1.6

θ = 0 θ = π/4

−5 0 5
1

1.05

1.1

1.15

1.2

θ = π/2

0.7

0.75

0.8

0.85

0.9

0.95

1

−5 0 5

θ = π/3

−5 0 5
0.92

0.94

0.96

0.98

1

Fig. 9.7 Sred
hom(x ;ϑ) with γ = 1, Ω = 0.2976, Δω = 0, n = 0, kd = 0. The minimum is 0.7195

for ϑ = π/2
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c(μ) := 4γΩ2

(

4Δω2 + Γ 2
)2

N (iμ)

[

2Ω4 − 2μΩ2 (2Δω + iγ )

+ (2Δω + iγ )2 (iγ + 2Δω − 2μ) (iγ − μ)
]

, (9.71b)

N (iμ) = 2iμΩ2 + (γ + iμ)
[

4Δω2 + 2Ω2 + (γ + 2iμ)2
]

. (9.71c)

Resonance fluorescence

For kd = 0, n = 0, Δω = 0, Ω > 0, we get

4πΣinel(μ)
�=0= 8γ 2Ω4

(

Γ 2 + 3γ 2 + 4μ2
)

Γ 2 |N (iμ)|2 , (9.72a)

b(μ) = 8γ 2Ω2

Γ 4 |N (iμ)|2
[

Γ 2
(

γ 4 + 2Ω4
)

+ μ2 (γ 4 + μ2Γ 2 + 4μ2Ω2 − 6Ω2Γ 2 − 4Ω4)
]

, (9.72b)

|N (iμ)|2 = γ 2
(

Γ 2 − 8μ2
)2 + μ2

(

2Γ 2 + 3γ 2 − 4μ2
)2
, (9.72c)

Sred
hom(μ;ϑ) = 1+ 4πΣinel(μ)

∣

∣

�=0 + b(μ) cos 2ϑ. (9.72d)

An example of the resulting spectrum is given in Fig. 9.7, where the parameters are
chosen to have a good squeezing in μ = 0, which happens for ϑ = π/2.

By (9.72d) or by (9.62) and (9.40c) we get

0 ≤ Sinel
het (μ)− 1 = Sred

hom(μ;ϑ)− 1

2
+ Sred

hom(μ;ϑ + π/2)− 1

2
. (9.73)

With the choice of parameters done in Fig. 9.7 one has Sred
hom(μ;0)−1

2 > 0 and
Sred

hom(μ;π/2)−1
2 < 0; so, Sinel

het (μ)− 1 is the difference of two positive quantities and this
combination must give a particularly narrow line. As noticed in [21], the presence
of squeezing in the homodyne spectrum must be associated to the narrowing of the
lines in the heterodyne spectrum; this happens in resonance for small Ω . To see this
effect in Fig. 9.8 we plot the heterodyne inelastic spectrum with the parameters of
Fig. 9.7 and the heterodyne inelastic spectrum with a very small Ω and we com-
pare them with the same spectrum with Ω = 1 and with a Lorentzian with natural
linewidth (γ = 1); all the curves are normalised to unit area. So, in Fig. 9.8 line

(1) is 1/2π
μ2+1/4 , while line (2), (3) and (4) are (2Ω2+γ 2)2

2γΩ4 Σinel(μ) for � = 0, γ = 1,
Δω = 0, n = 0, kd = 0 and line (2) with Ω = 1, line (3) with Ω = 0.2976, line (4)
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Fig. 9.8 Line (1) is the Lorentzian μ �→ 1/2π
μ2+1/4 . The other lines are the normalised heterodyne

inelastic spectrum (with γ = 1, Δω = 0, n = 0, kd = 0, � = 0) for: (2) Ω = 1; (3) Ω = 0.2976;
(4) Ω = 0.01

with Ω = 0.01. Note the heavy tails of the Lorentzian, with respect to the spectral
lines, and the sharpness of lines (3) and (4).

Δω �= 0: tunable squeezing

An example of the inelastic homodyne spectrum is plotted in Fig. 9.4 for four val-
ues of ϑ . The choice of the parameters ϑ , Ω and Δω is to have a region with a
pronounced squeezing around μ = ±6. Note that Ω = 4.3709 is near |Δω| =
4.1455, while the maximum global squeezing is at

√

2Δω2/3+ γ 2/6 � 3.409 and
the limit for vanishing global squeezing is at

√

2Δω2 + γ 2/2 � 5.9051.
Another example is given in Fig. 9.5, where the parameters are chosen to have

the minima in μ = ±1, ±3, ±5, ±7. The possibility of choosing the position of
the minima by controlling the laser parameters is very important; following [14], we
say that the two-level atom can produce tunable two-mode squeezed light.

Local Squeezing Versus Global Squeezing

As already stressed, we can have local squeezing even when there is no global
squeezing, see Fig. 9.6 where 2Ω2 = 32 > 17 = 4Δω2 + γ 2.

The best global squeezing, which is for 6Ω2 = 4Δω2+ γ 2, does not correspond
to the best local squeezing, see Fig. 9.9.

The Effect of the Thermal Bath and of the Dephasing Term

An example of the homodyne spectrum with and without n and kd is given in
Fig. 9.10. The parameters n and kd are fixed a priori (their true values depend on
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Fig. 9.9 The homodyne spectrum Sred
hom(μ;ϑ) for γ = 1, n = 0, kd = 0, and (1) withΔω = 3.1151,

Ω = 2.5760 =
√

2Δω2/3+ 1/6, ϑ = −0.0816, the value of the minimum is 0.7525 at μ = ±4;
(2) with Δω = 2.8077, Ω = 2.9001 �= 2.3285 =

√

2Δω2/3+ 1/6, ϑ = −0.0909, the value of
the minimum is 0.7399 at μ = ±4
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Fig. 9.10 Sred
hom(x ;ϑ) with γ = 1 and (1) n = 0, kd = 0, ϑ = −0.0909, Δω = 2.8077, Ω =

2.9001; (2) n = 0.05, kd = 0, ϑ = −0.0918, Δω = 2.5762, Ω = 3.0980; (3) n = 0, kd = 0.1,
ϑ = 0.0742, Δω = 3.2347, Ω = 2.9225; (4) n = 0.05, kd = 0.1, ϑ = 0.3710, Δω = 3.8009,
Ω = 3.7841

the experimental conditions) and the other are chosen to have the best minimum in
μ = ±4. From this figure one sees that the squeezing is very sensitive to any small
perturbation.
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9.3 Summary

9.3.1 Atomic and Measurement Quantities

Here we recall some results and notations of Chaps. 7 and 8.

• Equilibrium state: ηeq := 1
2

(

1+ "xeq · "σ
)

.
• Side channel, the channel of the detected light: channel 1.
• Forward channel, the channel of the lost light and of the stimulating laser:

channel 2.
• Detection operator: R1(t) = ei(ν−ω)t√γ α1σ−.
• Output current: I (t) = ∫ t

0 F(t − s)dW1(s).
• Detector response function: F(t) = k1

√

�
4π exp

{− �
2 t
}

.
• Electrical power carried by the current I (t): P(t) = k2 I (t)2.
• Parameters and notations:

– Coefficient of the thermal disturbance: n ≥ 0;
– Coefficient of the dephasing disturbance: kd ≥ 0;
– Resonance frequency of the atom: ω0 > 0;
– Frequency of the stimulating laser: ω > 0;
– Detuning: Δω = ω0 − ω;
– Rabi frequency: Ω ≥ 0;
– Natural linewidth: γ > 0;
– Measurement phase: ϑ = argα1;
– Proportions of light in the side and in the forward channels:
|α1|2 and |α2|2 with |α1|2 + |α2|2 = 1;

– Frequency of the local oscillator: ν;
– Instrumental width: � > 0;
– Response constants: k1 �= 0, k2 > 0;
– Atomic squeezing parameter at equilibrium:

ASηeq = 1−
(

x2
eq + y2

eq

)

− ∣

∣zeq

∣

∣;

– Linewidth with thermal and dephasing broadening: γ̃ = γ (2n + 1+ 4kd);
– Width of the response to the detuning:

˜Γ 2 = Γ 2 + 8Ω2kd
2n+1 , Γ 2 = 2Ω2 + γ̃ 2.

9.3.2 Heterodyne Spectral Density

The atom and the local oscillator are driven by two distinct lasers; the phase coher-
ence cannot be maintained. The observed quantity is the electrical power at large
times, without any spectral analysis. No spectral quantity depend on the angle ϑ . To
have a good spectrum � must be small.

• Mean power spectrum (limit in the sense of distributions in ν):

Phet(ν) = lim
t→+∞E

t,ν
ρ0

[P(t)] = lim
t→+∞ k2E

t,ν
ρ0

[

I (t)2
] = k 2

1 k2

4π
+k 2

1 k2 |α1|2 Σ(ν−ω).
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• Shot noise: k 2
1 k2

4π .
• Fluorescence spectrum (suitably normalised to be independent of k1, k2, |α1|2):

Σ(μ) = γ

π
Re

∫ +∞

0
e−( �

2+iμ)t Tr
{

eĽt
[

σ−ηeq
]

σ+
}

dt = Σel(μ)+Σinel(μ) .

• Elastic or coherent part of the fluorescence spectrum:

Σel(μ) = 1

k 2
1 |α1|2

lim
t→+∞

(

E
t,μ+ω
ρ0

[I (t)]
)2

= γΩ2
(

4Δω2 + γ̃ 2
)

(

4Δω2 + ˜Γ 2
)2

(2n + 1)2

�

2π
(

μ2 + �2

4

) .

• Inelastic or incoherent part of the fluorescence spectrum: (q = iμ+ �/2)

Σinel(μ) = 1

k 2
1 |α1|2

lim
t→+∞Vart,μ+ω

ρ0
[I (t)]− 1

4π |α1|2

= γ

π (2n + 1)2 (4Δω2 + γ̃ 2
)2 Re

4Ω2 N1(q)+ N2(q)

N (q)
,

N1(q) = [

Ω2 (2n + 1+ 4kd)+ n
(

4Δω2 + γ̃ 2)]

× [

Ω2 (2n + 1+ 4kd)+ 4nΔω2 + (n + 1) γ̃ 2 + q (γ̃ − 2iΔω)
]

+4Δω2
[

Ω2 (2n + 4kd)+ n
(

4Δω2 + γ̃ 2
)]− 2iΩ2Δω˜Γ ,

N2(q) = (2q + γ̃ + 2iΔω) [q + γ (2n + 1)]
{

2n (2n + 1)
(

4Δω2 + Γ 2
)2

+ 4Ω2
[

Ω2 (1+ 4kd)2 + n
(

4Δω2 + Γ 2
)

(1+ 8kd)+ 2kd
(

4Δω2 + γ̃ 2
)

]}

,

N (q) = 2Ω2 (2q + γ̃ )+ [γ (2n + 1)+ q]
[

4Δω2 + (2q + γ̃ )2
]

.

• Parity: Σel(μ) is an even function of μ; the condition Δω = 0 or the condition
n = 0 and kd = 0 imply that also Σinel(μ) is an even function of μ.

• Normalised heterodyne spectrum:
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Phet(μ− ω)
∣

∣

k 2
1 k2=4π = 1+ 4π |α1|2 Σ(μ) = |α2|2 + |α1|2 Shet(μ),

Shet(μ) = Sel
het(μ)+ Sinel

het (μ),

Sel
het(μ) = 4πΣel(μ), Sinel

het (μ) = 1+ 4πΣinel(μ).

• Positivity: Sel
het(μ) ≥ 0, Sinel

het (μ) ≥ 0, Σinel(μ)+Σinel(−μ) ≥ 0.
• Intensities:

ΠTOT(Ω,Δω) = 1

2πγ

∫ +∞

−∞
[Shet(μ)− 1] dμ = 2

γ

∫ +∞

−∞
Σ(μ) dμ = 1+ zeq ,

Πel(Ω,Δω) = 1

2πγ

∫ +∞

−∞
Sel

het(μ) dμ = 2

γ

∫ +∞

−∞
Σel(μ) dμ = x2

eq + y2
eq

2
,

Πinel(Ω,Δω) = 1

2πγ

∫ +∞

−∞

[

Sinel
het (μ)− 1

]

dμ

= 2

γ

∫ +∞

−∞
Σinel(μ) dμ = 1− ∣

∣"xeq

∣

∣

2 + (

1+ zeq
)2

2
.

• The power spectrum Phet(ν), the fluorescence spectrum Σ(μ) and the normalised
heterodyne spectrum Shet(μ) are independent of the initial state ρ0.

9.3.2.1 Particular Cases of the Heterodyne Spectral Density

• For Ω = 0, n > 0, Σel is zero and Σinel reduces to a single Lorentzian (9.39)
centred on ω0, of width γ̃ + �, and intensity (area below the curve) γ n

2n+1 .
• For n = 0, kd = 0, the spectrum goes from a single line for small Ω to a triplet

structure for large Ω , see Eqs. (9.35) and Fig. 9.1.
• For n = 0, kd = 0, � = 0, the spectrum Σ is known as Mollow spectrum, see

Eqs. (9.36) and Fig. 9.2.
• For n = 0, kd = 0, � = 0, and Ω small, the inelastic spectrum presents a single

line with sub-natural narrowing, see Fig. 9.8.
• If n and kd are not too big with respect to Ω/γ , their effect is of smoothing and

distorting the spectrum, see Fig. 9.3.

9.3.3 Homodyne Spectral Density

The atom and local oscillator are driven by a single laser; the phase coherence is
maintained. The observed quantity is the output electrical current at large times and
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it is processed by a spectrum analyser. To have a good spectrum � must be big. No
quantity depends on k2.

• Homodyne detection: ν = ω.
• Spectral density of the homodyne current:

SI(μ;ϑ) = lim
T→+∞

1

T
E

T,ω
ρ0

[

∣

∣

∣

∣

∫ T

0
eiμt I (t) dt

∣

∣

∣

∣

2
]

= k 2
1 �

π
(

�2 + 4μ2
) Shom(μ;ϑ).

• Normalised homodyne spectrum (independent of k1 and �):

Shom(μ;ϑ) = lim
�→+∞

π�

k 2
1

SI(μ;ϑ) = lim
T→+∞

1

T
E

T,ω
ρ0

[

∣

∣

∣

∣

∫ T

0
eiμs dW1(s)

∣

∣

∣

∣

2
]

= Sel
hom(μ;ϑ)+ Sinel

hom(μ;ϑ).

• Elastic or coherent part of the homodyne spectrum:

Sel
hom(μ;ϑ) = lim

T→+∞
1

T

∣

∣

∣

∣

E
T,ω
ρ0

[∫ T

0
eiμs dW1(s)

]∣

∣

∣

∣

2

= 2πγ |α1|2
∣

∣Tr
{(

eiϑσ− + e−iϑσ+
)

ηeq
}∣

∣

2
δ(μ)

= 2πγ |α1|2
(

xeq cosϑ + yeq sinϑ
)2
δ(μ)

= |α1|2 8πΩ2γ (−2Δω cosϑ + γ̃ sinϑ)2

(2n + 1)2 (4Δω2 + ˜Γ 2
)2 δ(μ).

• Connection with the elastic part of the heterodyne power spectrum:

1

2π

∫ 2π

0
Sel

hom(μ;ϑ) dϑ = 4π |α1|2 Σel(μ)
∣

∣

∣

�=0
= |α1|2 Sel

het(μ)
∣

∣

∣

�=0
.

• Inelastic or incoherent part of the homodyne spectrum:

Sinel
hom(μ;ϑ) = lim

T→+∞
1

T

(

E
T,ω
ρ0

[

∣

∣

∣

∣

∫ T

0
eiμs dW1(s)

∣

∣

∣

∣

2
]

−
∣

∣

∣

∣

E
T,ω
ρ0

[∫ T

0
eiμs dW1(s)

]∣

∣

∣

∣

2
)

= |α2|2 + |α1|2 Sred
hom(μ;ϑ).

• Reduced inelastic homodyne spectrum (independent of |α1|2):
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Sred
hom(μ;ϑ) = 1+ "u(ϑ) ·

(

2γ A

A2 + μ2
"t(ϑ)

)

, "u(ϑ) = (cosϑ, sinϑ, 0) ,

"t(ϑ) =

⎛

⎜

⎜

⎜

⎜

⎝

(

1+ zeq − x2
eq

)

cosϑ − xeq yeq sinϑ
(

1+ zeq − y2
eq

)

sinϑ − xeq yeq cosϑ

− (

1+ zeq
) (

xeq cosϑ + yeq sinϑ
)

⎞

⎟

⎟

⎟

⎟

⎠

.

• Connection with the inelastic part of the heterodyne power spectrum:

1

2

[

Sred
hom(μ;ϑ)+ Sred

hom(μ;ϑ + π/2)
] = 1

2

[

Sinel
het (μ)+ Sinel

het (−μ)
]

�=0 ≥ 1.

• Normalised shot noise level: 1.
• Parity: both the elastic and inelastic parts of the homodyne spectrum are even

functions of μ.
• Positivity: Sel

hom(μ;ϑ) ≥ 0, Sred
hom(μ;ϑ) ≥ 0.

• Uncertainty relations: Sred
hom(μ;ϑ) Sred

hom(μ;ϑ + π/2) ≥ 1.
• Squeezing: Sred

hom(μ;ϑ) < 1 for some μ and ϑ .
• Intensity:

Πhom(ϑ) = 1

2πγ

∫ +∞

−∞

[

Sred
hom(μ, ϑ)− 1

]

dμ = 1−(xeq cosϑ + yeq sinϑ
)2+zeq ;

1

2
[Πhom(ϑ)+Πhom(ϑ + π/2)] = Πinel(Ω,Δω) = 1+ zeq −

x 2
eq + y 2

eq

2
;

Πhom = inf
ϑ
Πhom(ϑ) = 1− ∣

∣"xeq

∣

∣

2 + zeq
(

1+ zeq
) = ASηeq .

• ASηeq < 0 ⇔ Πhom < 0 ⇒ Sred
hom(μ, ϑ) < 1 for some μ and ϑ , i.e. the fluores-

cence light is squeezed.
• All the spectral densities SI(μ;ϑ), Shom(μ;ϑ), Sred

hom(μ;ϑ) are independent of the
initial state ρ0.

9.3.3.1 Particular Cases of the Homodyne Spectral Density

• For Ω = 0, n > 0, Sel
hom is zero and Sred

hom reduces to the sum of shot noise and
two Lorentzians (9.64).

• For Δω = 0, n = 0, kd = 0, and Ω not too large, there is some squeezing around
μ = 0, see Fig. 9.7.
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• Tunable squeezing: the parameters can be chosen to have squeezing around a
preassigned value of μ, see Figs. 9.4 and 9.5. The minima are symmetric with
respect to μ = 0.

• Squeezing is possible also if Πhom > 0, see Fig. 9.6.
• The best local squeezing does not correspond to the minimum of Πhom, see

Fig. 9.9.
• If n and kd are not too big with respect to Ω/γ , their effect is of smoothing the

spectrum and of cancelling the squeezing, see Fig. 9.10.
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Chapter 10
Feedback

10.1 Introduction

The larger part of this chapter is devoted to applications (again a two-level atom is
used as a prototype), but first some general theoretical issues are developed, namely
feedback and control of quantum systems.

10.1.1 Feedback and Control of Quantum Systems

When in a dynamical system, classical or quantum, deterministic or stochastic, the
experimenter can change some part of the dynamics, or at least some parameter,
this freedom can be used to obtain some behaviour of the system, to keep its state in
some region. . . This is control.

When the experimenter (the controller) decides a priori how to use his freedom
in modifying the dynamics, one speaks of open loop control. In the previous chapter
we assumed to have the freedom of changing the intensity and frequency of the laser
and of changing the optical paths; we can say that we were assuming to have control
on Ω , Δω and ϑ . Then, we used this freedom to enforce the best possible squeezing
around a frequency chosen a priori, as done in Figs. 9.4, 9.5, 9.9; so, that was a case
of open loop control.

When the system produces an output, we can use the output, directly or after
some processing, to change the dynamics of the system: this is called feedback.
When one uses some feedback mechanism to control the system, one speaks of
closed loop control or feedback control. A typical situation of this type is when the
system is observed and the control strategy is decided on the basis of the observed
output. If the output is stochastic, likely the control strategy will be stochastic: this
is stochastic control through feedback.

Open loop control has been developed also for closed and open quantum sys-
tems: one assumes that there is some freedom in choosing the Hamiltonian or the
Liouville operator of the system and studies the problem of using this freedom
to enforce a prescribed behaviour to the system. The theory of quantum contin-
uous measurements, which gives the stochastic output of the observation and the

Barchielli, A., Gregoratti, M.: Feedback. Lect. Notes Phys. 782, 221–262 (2009)
DOI 10.1007/978-3-642-01298-3 10 c© Springer-Verlag Berlin Heidelberg 2009
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evolution equation for the conditional state, opens the possibility of closed loop
control in continuous time for quantum systems [1].

10.1.2 Feedback Control of a Quantum Optical System

The first step of a control problem is to establish what can be controlled by the
experimenter and what is unalterable. Of course, a good mathematical model has to
reflect what can be really done in the laboratory. In this chapter we study one of the
various feedback schemes on the atom evolution, based on the outgoing photocur-
rent, which have been proposed [2–5].

Next section introduces an important model of closed loop control, the
Markovian feedback scheme à la Wiseman and Milburn [2–4]. The evolution of
a continuously observed open quantum system is modified on the basis of the out-
put by an additional Hamiltonian action with intensity proportional to the instanta-
neous signal. Then, Sect. 10.3 shows that such a feedback control can be reasonably
realised for a quantum optical system.

More precisely, we consider a continuously observed open quantum system
described by the formalism of Sect. 7.1. We suppose that the experimenter wants
to control the system to a certain extent, but that he is not entitled to change the
intrinsic dynamics of the system; so, he cannot change the emission operators Dk ,
the scattering operators Sk j and the free Hamiltonian H0. In order to control the
quantum system, he can change the input signal f (or at least some of its compo-
nents), as done for instance in [6, 7]. But also the phase factors hk(t) can be adjusted
to some extent by the experimenter, as discussed in Sect. 7.2.1.

When controls depend on the past measured signal, the functions f , h become
stochastic processes and the involved SDEs eventually need to be generalised by
including intrinsically stochastic coefficients [8]. A physical overview of quantum
control based on the stochastic master equation is given in [9].

In this framework, suitable choices produce just a stochastic effective
Hamiltonian and realise a Wiseman–Milburn feedback control of the quantum opti-
cal system. We show this fact in the case of a two-level atom monitored by detecting
its fluorescence light and, then, we present three applications: control of the atom
dynamics, driving the atom to a preassigned asymptotic state or to a preassigned
asymptotic unitary dynamics [5, 10]; control of the squeezing properties of the fluo-
rescence light; [11, 12] and control of the atomic decay rates that is of the linewidth
of the homodyne spectrum [12].

10.2 The Feedback Scheme of Wiseman and Milburn

Let us present the very ideal scheme of fast feedback due to Wiseman and Milburn
[2–4]. The original derivation [4] was partly based on quantum Langevin equa-
tions (quantum stochastic differential equations); to be consistent with the rest of
the book, here we base the presentation only on the classical SDEs of quantum
trajectory theory. We use an heuristic approach based on an analysis of the dynamics
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in infinitesimal time intervals; the advantage of this approach is that it guarantees
that the feedback acts on the system after the events that produced it and that, so,
causality is respected.

10.2.1 Observation Without Feedback

Let us analyse what happens in an infinitesimal interval in the situation of Chapter
3. We use a tilde for the quantities related to the case without feedback.

The fundamental equation is the linear stochastic master equation (3.38) with
Liouville operator given by (3.40a), (3.40b), (3.40c). The stochastic evolution map
(or propagator) ˜A(t, s) of such an SDE satisfies Eq. (3.42) and the composition
property (3.47). Let us consider now an infinitesimal time interval (t, t + dt). The
evolution of the non-normalised a posteriori states σ̃ (t) is given by

σ̃ (t + dt) = ˜A(t + dt, t)[σ̃ (t)], (10.1)

where the infinitesimal propagator satisfies

˜A(t + dt, t)− Idn = ˜L(t)dt +
m
∑

j=1

˜R j (t)dW j (t), (10.2)

which is the infinitesimal version of (3.42). By the Itô rules, we have that (10.2) is
equivalent to

˜A(t + dt, t) = exp

⎧

⎨

⎩

˜L(t)dt − 1

2

m
∑

j=1

˜R j (t)
2dt +

n
∑

j=1

˜R j (t)dW j (t)

⎫

⎬

⎭

. (10.3)

The Liouville operator appearing here is given by ˜L(t) = ˜L0(t)+ ˜L1(t),

˜L1(t)[τ ] =
m
∑

j=1

(

˜R j (t)τ˜R j (t)
∗ − 1

2

{

˜R j (t)
∗
˜R j (t), τ

}

)

,

˜L0(t)[τ ] = −i[˜H (t), τ ]+
d
∑

j=m+1

(

˜R j (t)τ˜R j (t)
∗ − 1

2

{

˜R j (t)
∗
˜R j (t), τ

}

)

,

while ˜R j (t)[τ ] = ˜R j (t)τ + τ˜R j (t).
The a posteriori states (3.46) are obtained by normalisation,

ρ̃(t + dt) = Tr
{

˜A(t + dt, t)[̃ρ(t)]
}−1

˜A(t + dt, t)[̃ρ(t)],

and the probability density (3.62) can be written as

Tr {σ̃ (t + dt)} = Tr
{

˜A(t + dt, t)[σ̃ (t)]
} = Tr

{

˜A(t + dt, t)[̃ρ(t)]
}

Tr {σ̃ (t)} .
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So, we can say that the contribution of the interval (t, t + dt) to the probability
density is Tr

{

˜A(t + dt, t)[̃ρ(t)]
}

.

10.2.2 Introduction of the Feedback

The idea of Wiseman and Milburn is to introduce a feedback proportional to the
instantaneous observed signal. Considering only the output of channel 1, the instan-
taneous signal is formally Ẇ1(t), which can be positive or negative; this allows
only for a feedback of Hamiltonian type. So, the contribution of the feedback to
the propagator in an infinitesimal interval is assumed to be eM(t)dW1(t) with

M(t)[τ ] = −i[M(t), τ ], M(t)∗ = M(t). (10.4)

Typically, the Hamiltonian M(t) depends on some control parameters which allow
to tune the effects of the feedback.

By taking into account that the feedback must act after the signal was produced,
the new infinitesimal propagator will be

A(t + dt, t) = eM(t)dW1(t) ◦ ˜A(t + dt, t). (10.5)

As before, the a posteriori states are given by

ρ(t + dt) = (Tr {A(t + dt, t)[ρ(t)]})−1 A(t + dt, t)[ρ(t)]

and the probability density satisfies

Tr {σ (t + dt)} = Tr {A(t + dt, t)[σ (t)]} = Tr {A(t + dt, t)[ρ(t)]}Tr {σ (t)} .

The contribution of the interval (t, t + dt) to the probability density is

Tr {A(t + dt, t)[ρ(t)]} = Tr
{

˜A(t + dt, t)[ρ(t)]
}

.

To compute the new evolution linear SDE we take into account (10.2) and

eM(t)dW1(t) − Idn =M(t)dW1(t)+ 1

2
M(t)2dt.

We obtain

A(t + dt, t)− Idn = ˜L(t)dt +
m
∑

j=1

˜R j (t)dW j (t)+M(t)dW1(t)

+ 1

2
M(t)2dt +M(t) ◦ ˜R1(t)dt = L(t)dt +

m
∑

j=1

R j (t)dW j (t),
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with

R j (t) = ˜R j (t)+ δ j1M(t), R j (t) = ˜R j (t)− iδ j1 M(t), (10.6)

L(t) = ˜L(t)+ 1

2
M(t)2 +M(t) ◦ ˜R1(t) = L0(t)+ L1(t), (10.7)

L0(t) = ˜L0(t), (10.8)

L1(t)[τ ] = − i

2

[

M(t)˜R1(t)+˜R1(t)∗M(t), τ
]

+
m
∑

j=1

(

R j (t)τ R j (t)
∗ − 1

2

{

R j (t)
∗R j (t), τ

}

)

. (10.9)

Thus, both the a posteriori and the a priori evolutions are still Markovian and the
key equation is still the linear stochastic master equation (3.38), but with the new
operators given above.

It is just a peculiar feature of the Wiseman–Milburn feedback scheme to mod-
ify only the operators in the linear stochastic master equation, without altering the
structure of the dynamics. This allows to study the effectiveness of feedback and the
role of control parameters using just the theory already developed.

Next section goes back to consider our two-level atom and shows how a
Wiseman–Milburn feedback can be realised.

10.3 The Two-Level Atom with Feedback

As an example of a quantum system with control and feedback, we consider a two-
level atom stimulated by a laser. The feedback acts on the laser through an electro-
modulator [10, 13]. The ideal experimental configuration is given in Fig. 10.1.

The measuring apparatus is made by two homodyne detectors. Part of the emitted
light reaches the detectors and part is lost in the free space. The fraction of light
detected by one of the detectors depends on its efficiency, on the spanned solid

homodyne detector

I2(t)

I1(t)

atom

forward  channel

side

channel 1

side

channel 2
homodyne detector

electromodulator

laser

Fig. 10.1 Channel 0: forward channel with laser; channel 1: side channel with feedback; channel 2:
side channel without feedback
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angle and can eventually be enhanced by using a focussing mirror, as suggested in
[10], where the ideal experimental setup is described in the case of a single detector.
So, the fluorescence light is divided into three parts according to the direction of
propagation; following the terminology introduced in Chap. 9, we call side channel
k (k = 1, 2) the directions reaching the detector k, and forward channel, or channel
0, the directions of the lost light. The stimulating laser is well collimated in such
a way that it does not hit the detectors; so, we can say that it acts in the forward
channel. We denote the effective fractions of light emitted in the forward and in the
two side channels by |α0|2, |α1|2, |α2|2, respectively; obviously,

|α0|2 + |α1|2 + |α2|2 = 1.

For k = 1, 2, we can also interpret |αk |2 as the total efficiency of the detector k.
Moreover, the initial phase of the local oscillator in each detector is denoted by ϑk

and it is included in the parameter αk ∈ C by setting

ϑk = argαk .

To change ϑk means to change the measuring apparatus. The output current I1(t)
from channel 1 is used to drive the electromodulator. The light in channel 2 can be
analysed by homodyne detection or can be used for any other scope. With respect to
the situation of the previous chapters, we can say that the old channel 2 splits into
channel 0 and the new channel 2.

10.3.1 The Model

The free Hamiltonian and the contributions of the unobserved channels 3, 4, 5 are
as in Chap. 8, Eqs. (8.8), (8.17). Therefore, we have

H0 = ω0

2
σz , (10.10)

while the channels 3, 4, 5 contribute only to the dissipative part of the Liouvillian
with the term (cf. Eqs. (8.18))

γ kd(σzτσz − τ )+ γ n(σ−τσ+ + σ+τσ− − τ ).

10.3.1.1 No Feedback

In the case of no feedback, the contribution of channel 1 too is as in Chap. 8, with
ν = ω,

˜R1(t) = eiωt√γ α1σ− . (10.11)
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The old contribution of channel 2, R2(t) = eiωt√γ α2σ− + λ1, splits into the
contributions of channel 0 and channel 2

˜R0(t) = eiωt√γ α0σ− + λ1, ˜R2(t) = eiωt√γ α2σ− . (10.12)

Now, we have

αi = eiϑi |αi | , |α0|2 + |α1|2 + |α2|2 = 1. (10.13)

Channel 0 contributes to the Hamiltonian part of the Liouvillian with

H f (t) = √γ eiωt iλα0 σ− −√γ e−iωt iλα0 σ+ (10.14)

and to the dissipative part with |α0|2 γ
(

σ−τσ+ − 1
2 {P+, τ }

)

.
By setting Ω = 2

√
γ |λ| |α0| and by taking arg

(

iλα0
) = 0, we get

H f (t) = Ω

2

(

eiωt σ− + e−iωt σ+
)

, ˜L(t) = ˜L0(t)+ ˜L1(t), (10.15a)

˜L1(t)[τ ] =
2
∑

j=1

(

˜R j (t)τ˜R j (t)
∗ − 1

2

{

˜R j (t)
∗
˜R j (t), τ

}

)

= (|α1|2 + |α2|2
)

γ

(

σ−τσ+ − 1

2
{P+, τ }

)

, (10.15b)

˜L0(t)[τ ] = −i[H0 + H f (t), τ ]+ |α0|2 γ
(

σ−τσ+ − 1

2
{P+, τ }

)

+ γ kd (σzτσz − τ )+ γ n (σ−τσ+ + σ+τσ− − τ ) . (10.15c)

10.3.1.2 The Feedback

The feedback changes the laser through the electromodulator. We consider a very
ideal situation. As in Sect. 10.2.2, we suppose that the output current is just I1(t) =
Ẇ1(t) (infinite time resolution) and that the feedback can be instantaneously based
on Ẇ1(t). We assume that the feedback modifies the function ˜fk(t) = δ0kλe−iωt ,
describing the stimulating laser, to fk(t) = δ0k

(

λ+ gẆ1(t)
)

e−iωt . Then, the effect
of the feedback is summarised by the replacement λ → λ + gẆ1(t) inside H f (t).
So, we get an Hamiltonian feedback à la Wiseman and Milburn:

H f (t) −→ H f (t)+ M(t)Ẇ1(t), (10.16)

M(t) = c
√
γ ei(ωt+ϕ) σ− + h.c., c ∈ R, ϕ ∈ [0, π ). (10.17)
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We have introduced the feedback control parameter c and the feedback phase ϕ by
the following rule. Take arg (ig α0) ∈ [0, 2π ); then, if arg (ig α0) ∈ [0, π ) define
c = |g| |α0| and ϕ = arg (ig α0), while, if arg (ig α0) ∈ [π, 2π ) define c = − |g| |α0|
and ϕ = arg (ig α0)− π .

According to Eqs. (10.6), (10.7), (10.8), (10.9), we have

R1(t) = ˜R1(t)− iM(t), R2(t) = ˜R2(t), (10.18a)

R0(t) = ˜R0(t), L0(t) = ˜L0(t), (10.18b)

L(t) = ˜L(t)+ 1

2
M(t)2 +M(t) ◦ ˜R1(t) = L0(t)+ L1(t), (10.18c)

L1(t)[τ ] = − i

2

[

M(t)˜R1(t)+˜R1(t)∗M(t), τ
]

+
m
∑

j=1

(

R j (t)τ R j (t)
∗ − 1

2

{

R j (t)
∗R j (t), τ

}

)

. (10.18d)

Of course, the same feedback based on heterodyne detection in channel 1 (ν �= ω)
also leads to a Wiseman–Milburn feedback scheme, but with a different time depen-
dence of the modified operators. The choice of homodyne detection in channel 1
gives a particularly simple time dependence which allows for a successful introduc-
tion of the rotating frame.

Let us remark also that, even if the feedback is based on the singular stochas-
tic process Ẇ1, the mathematical formulation of the model is not affected by this
singularity, essentially because we do not observe the light directly in the forward
channel.

Rotating frame

As in the previous chapters it is possible to eliminate any explicit time dependence
by passing to the rotating frame. By inserting the explicit expressions of the various
operators in Eqs. (10.18) and by passing to the rotating frame we get the coefficients
of the observed channels

Ř1 = √γ
(

α1 σ− − ic σϕ
)

, Ř2 = √γ α2 σ− , (10.19)

and the Liouville operator

Ľ[ρ] = −i

[

Δωc

2
σz + Ω

2
σx , ρ

]

+ γ kd (σz ρ σz − ρ)

+ γ n

(

σ+ ρ σ− − 1

2
{P− , ρ}

)

+ γ (n + 1− |α1|2)
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×
(

σ− ρ σ+ − 1

2
{P+ , ρ}

)

+ γ (α1 σ− − ic σϕ) ρ (α1 σ+ + ic σϕ)

− γ

2

{(

|α1|2 − 2c|α1| sin(ϑ1 − ϕ)
)

P+ + c2 , ρ
}

,

(10.20)

Δωc := Δω + γ c |α1| cos(ϑ1 − ϕ). (10.21)

Here and in the following we are using the notation

"u(θ ) :=
⎛

⎝

cos θ
sin θ

0

⎞

⎠ , (10.22)

σθ := eiθσ− + e−iθσ+ = σx cos θ + σy sin θ = "u(θ ) · "σ . (10.23)

10.3.2 A Priori States

Let us start by studying the mean dynamics; we use the Bloch representation of the
a priori states, as in Sect. 8.2.2:

η̌(t) = 1

2
(1+ "x(t) · "σ ) . (10.24a)

Then, the master equation

d

dt
η̌(t) = Ľ[η̌(t)]

gives

"x(t) = e−At "x(0)+ γ [2c |α1| sin(ϑ1 − ϕ)− 1]
∫ t

0
ds e−A(t−s)

⎛

⎝

0
0
1

⎞

⎠ , (10.24b)

where

A =
⎛

⎝

a11 a12 0
a21 a22 Ω

0 −Ω a33

⎞

⎠ , k = 4kd + 2n + 1, (10.25a)

a11 = γ

2
k + 2γ c2 sin2 ϕ + 2cγ |α1| sinϕ cosϑ1

= 2γ kd + γ n + γ

2

[

1− |α1|2 cos2 ϑ1 + (2c sinϕ + |α1| cosϑ1)2
] ≥ 0,

(10.25b)
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a22 = γ

2
k + 2γ c2 cos2 ϕ − 2cγ |α1| cosϕ sinϑ1

= 2γ kd + γ n + γ

2

[

1− |α1|2 sin2 ϑ1 + (2c cosϕ − |α1| sinϑ1)2
] ≥ 0,

(10.25c)

a33 = γ (1+ 2n)+ 2γ c2 − 2cγ |α1| sin(ϑ1 − ϕ)

= 2γ n + γ

2

[

2− |α1|2 sin2(ϑ1 − ϕ)+ (2c − |α1| sin(ϑ1 − ϕ))2
]

≥ 2γ n + γ

2
> 0, (10.25d)

a12 = Δω + 2cγ |α1| sinϕ sinϑ1 − γ c2 sin 2ϕ, (10.25e)

a21 = −Δω − 2cγ |α1| cosϕ cosϑ1 − γ c2 sin 2ϕ. (10.25f)

Let us note the relation

a11 + a22 = a33 + 4γ kd . (10.26)

As for the case without control, it is useful to study the symmetric part of the
matrix A. Now, we have

1

2
(a12 + a21) = −γ c |α1| cos(ϑ1 + ϕ)− γ c2 sin 2ϕ , (10.27a)

1

2

(

A + AT
) =

(

B 0
0 a33

)

, (10.27b)

B =
(

a11
1
2 (a12 + a21)

1
2 (a12 + a21) a22

)

, (10.27c)

det B = γ 2c2
(

k − |α1|2
)+ γ 2

(

k

2
+ c |α1| sin (ϕ − ϑ1)

)2

≥ 0, (10.27d)

det

(

a11 a12

a21 a22

)

= det B +Δωc
2, (10.27e)

det A = a33
(

det B +Δωc
2
)+Ω2a11 ≥ 0 , (10.27f)

det
1

2

(

A + AT
) ≡ a33 det B ≥ 0 . (10.27g)

If det A > 0, then

"x(t) = e−At "x(0)+ γ [2c |α1| sin(ϑ1 − ϕ)− 1]
1− e−At

A

⎛

⎝

0
0
1

⎞

⎠ . (10.28)
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The asymptotic behaviour of the a priori state η̌(t) depends on the determinant of
A, which is related to the determinant of B. Equations (10.25b) and (10.25d) give
a11 ≥ 0, a33 > 0; then, from (10.27f), one has

det A = 0 ⇒ det B = 0. (10.29)

The case det B > 0

det B > 0 implies that

• aii > 0, B ≥ 0,
• det

(

A + AT
)

> 0, A + AT ≥ 0,
• det A > 0,
• −A is a dissipative operator.

In this case, for every initial preparation ρ0 of the atom, the a priori state
η̌(t) asymptotically reaches the stationary state ηeq, which will be computed in
Eq. (10.33).

The case det B = 0

det B = 0 is equivalent to

n = 0, kd = 0, |α1| = 1, 2c sin(ϑ1 − ϕ) = 1. (10.30)

In this case we have

a33 > 0, |c| ≥ 1

2
, "x(t) = e−At "x(0), (10.31a)

cos 2(ϑ1 − ϕ) = 1− 1

2c2
, cos2(ϑ1 − ϕ) = 1− 1

4c2
, (10.31b)

a11 = γ

2
+ γ c2 [cos 2(ϑ1 − ϕ)− cos 2ϑ1] = 2γ c2 sin2 ϑ1, (10.31c)

a22 = γ

2
+ γ c2 [cos 2(ϑ1 − ϕ)+ cos 2ϑ1] = 2γ c2 cos2 ϑ1, (10.31d)

a33 = 2γ c2, (10.31e)

a12 = Δω + γ c cos(ϑ1 − ϕ)− γ c2 sin 2ϑ1, (10.31f)

a21 = −Δω − γ c cos(ϑ1 − ϕ)− γ c2 sin 2ϑ1, (10.31g)

1

2
(a12 + a21) = −γ c2 sin 2ϑ1 , (10.31h)

det A = 2γ c2 [Ω2 sin2 ϑ1 + (Δω + γ c cos(ϑ1 − ϕ))2] . (10.31i)
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The case det B = 0, det A > 0

Lemma 10.1. When n = 0, kd = 0, |α1| = 1, 2c sin(ϑ1 − ϕ) = 1, det A �= 0, the
real parts of the eigenvalues of the matrix A are strictly positive.

Proof. The characteristic polynomial p(x) of the matrix A is

− p(x) := x3 − 4γ c2x2 + {

Ω2 + 4γ 2c4 + [Δω + γ c cos(ϑ1 − ϕ)]2
}

x

− 2γ c2
{

Ω2 sin2 ϑ1 + [Δω + γ c cos(ϑ1 − ϕ)]2
}

.

The coefficients all being real, the three roots xi , i = 1, 2, 3, can be all real or one
real and two complex conjugate;1 moreover, one has

x1 + x2 + x3 = 4γ c2,

x1x2 + x2x3 + x3x1 = Ω2 + 4γ 2c4 + [Δω + γ c cos(ϑ1 − ϕ)]2 ,

x1x2x3 = 2γ c2
{

Ω2 sin2 ϑ1 + [Δω + γ c cos(ϑ1 − ϕ)]2
}

.

By the third equation all the roots are different from zero.
Let us consider the case of real roots. By the third equation the roots are all

positive or one positive and two negative. Let us assume x3 ≤ x2 < 0, x1 > 0.
By the first equation x1 > 4γ c2, by the second one x2x3 > Ω2 + 4γ 2c4 +
[Δω + γ c cos(ϑ1 − ϕ)]2 and by inserting these two results into the third equation
we get

Ω2
(

1+ cos2 ϑ1
)+ 8γ c2 + [Δω + γ c cos(ϑ1 − ϕ)]2 < 0,

which is false. So, in the case of three real roots, all the roots are positive.
Let us consider the case of x1 real and x3 = x2. Then, we have

x1 + 2 Re x2 = 4γ c2,

2x1 Re x2 + |x2|2 = Ω2 + 4γ 2c4 + [Δω + γ c cos(ϑ1 − ϕ)]2 ,

x1 |x2|2 = 2γ c2
{

Ω2 sin2 ϑ1 + [Δω + γ c cos(ϑ1 − ϕ)]2
}

.

By the third equation x1 > 0. Let us assume Re x2 ≤ 0. By the first equation
x1 ≥ 4γ c2, by the second one |x2|2 ≥ Ω2 + 4γ 2c4 + [Δω + γ c cos(ϑ1 − ϕ)]2 and
by inserting these two results into the third equation we get

Ω2
(

1+ cos2 ϑ1
)+ 8γ c2 + [Δω + γ c cos(ϑ1 − ϕ)]2 ≤ 0,

which is false too. So, the real parts of all the roots are positive. �

1 For third order algebraic equations and many other things visit the web site: EqWorld: The World
of Mathematical Equations, http://eqworld.ipmnet.ru
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Also in this case, for every initial preparation ρ0 of the atom, the a priori state
η̌(t) asymptotically reaches the stationary state (10.33), but now "xeq = "0 and, so,

ηeq = 1

2
1.

10.3.3 The Case of Many Stationary States

Let us consider the case det A = 0, which, by (10.29), (10.30), (10.31i), is equiva-
lent to

n = 0, kd = 0, |α1| = 1, Ω sinϑ1 = 0, (10.32a)

2c sin(ϑ1 − ϕ) = 1, Δω = −γ c cos(ϑ1 − ϕ). (10.32b)

In this case we also have

4Δω2 + γ 2 = 4γ 2c2,

a11 = 2γ c2 sin2 ϑ1, a22 = 2γ c2 cos2 ϑ1,

a33 = 2γ c2, a12 = a21 = −γ c2 sin 2ϑ1.

Subcase with Ω = 0

In this case we get

A = 2γ c2

⎛

⎝

sin2 ϑ1 − sinϑ1 cosϑ1 0
− sinϑ1 cosϑ1 cos2 ϑ1 0

0 0 1

⎞

⎠ .

Then, any state with Bloch vector ε

⎛

⎝

cosϑ1

sinϑ1

0

⎞

⎠, ε ∈ [−1, 1], is invariant.

Moreover, the Liouville operator (10.20) reduces to

Ľ[ρ] = γ c2
((

eiϑ1σ− + e−iϑ1σ+
)

ρ
(

eiϑ1σ− + e−iϑ1σ+
)− ρ

)

.

Subcase with sinϑ1 = 0

In this case we get

A =
⎛

⎝

0 0 0
0 2γ c2 Ω

0 −Ω 2γ c2

⎞

⎠ .

Then, any state with Bloch vector

⎛

⎝

ε

0
0

⎞

⎠, ε ∈ [−1, 1], is invariant.
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Moreover, the Liouville operator (10.20) reduces to

Ľ[ρ] = − iΩ

2
[σx , ρ]+ γ c2 (σx ρ σx − ρ) .

10.3.4 Equilibrium

By the results of Sect. 10.3.2, we have that when det A > 0 there is a unique stable
stationary state. Such an equilibrium state is given by

ηeq = 1

2

(

1+ "xeq · "σ
)

, "xeq := γ

A

⎛

⎝

0
0

2c|α1| sin(ϑ1 − ϕ)− 1

⎞

⎠ . (10.33)

Parameters

The choice of γ fixes the scale; we take γ = 1.
The dynamical matrix A (10.25) and the equilibrium Bloch vector "xeq depend on

Δω ∈ R, Ω ≥ 0, kd ≥ 0, n ≥ 0,

c ∈ R, |α1| ∈ [0, 1], ϑ1 ∈ (−π, π ], ϕ ∈ [0, π ).

The sign of zeq

Obviously, we have zeq = 0 iff 2c|α1| sin(ϑ1 − ϕ) = 1. Let u be a real vector; then,

〈u|A−1u〉 = 1

2
〈A−1u|(AT + A)A−1u〉 ≥ 0.

But we have zeq = γ [2c|α1| sin(ϑ1 − ϕ)− 1] 〈u|A−1u〉 with u =
⎛

⎝

0
0
1

⎞

⎠. Therefore,

zeq > 0 iff 2c|α1| sin(ϑ1 − ϕ) > 1. (10.34)

10.3.5 The Nonlinear Stochastic Master Equation

The a posteriori state ρ̌(t) is governed by the nonlinear stochastic master equation

dρ̌(t) = Ľ[ρ̌(t)]dt +√γ D(α1 σ− − ic σϕ)[ρ̌(t)]d̂W1(t)

+√γ D(α2 σ−)[ρ̌(t)]d̂W2(t),
(10.35)
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where the map D(a) is

D(a)[ρ] = a ρ + ρ a∗ − Tr
{

(a + a∗)ρ
}

ρ. (10.36)

By using the Bloch representation

ρ̌(t) = 1

2

[

1+"r(t) · "σ ] , (10.37)

we get the nonlinear SDE

d"r(t) = −A"r(t) dt + γ

⎛

⎝

0
0

2c |α1| sin(ϑ1 − φ)− 1

⎞

⎠ dt

+√γ
2
∑

k=1

|αk |
⎛

⎝

[1+ r3(t)− r1(t)2] cosϑk − r1(t)r2(t) sinϑk

[1+ r3(t)− r2(t)2] sinϑk − r1(t)r2(t) cosϑk

−[1+ r3(t)] [r1(t) cosϑk + r2(t) sinϑk]

⎞

⎠ d̂Wk(t)

+ 2c
√
γ

⎛

⎝

r3(t) sinϕ
−r3(t) cosϕ

r2(t) cosϕ − r1(t) sinϕ

⎞

⎠ d̂W1(t). (10.38)

Moreover, the two output signals can be written as

Ik(t) = d

dt
̂Wk(t)+√γ |αk | [r1(t) cosϑk + r2(t) sinϑk] . (10.39)

10.4 Control of the Atomic State

In the field of quantum communication and quantum computing it is important to
be able to manipulate q-bits (two-state systems). In the case of our atom, we can ask
if it is possible to prepare it in any pure state, chosen a priori, that is to choose the
control parameters in such a way that, in the rotating frame, the atom is frozen in a
preassigned pure state h0 ∈ C

2. More precisely, the problem is to find a set of values
for the free parameters such that, in the rotating frame, both the a priori state η̌(t)
and the a posteriori state ρ̌(t) asymptotically reach ηeq = |h0〉〈h0|, ‖h0‖ = 1. This
problem was raised and studied in [5, 10, 13]; with respect to that papers we have
more freedom in the choice of parameters, but we allow only for fast feedback of the
homodyne signal and we do not consider a feedback based on the full knowledge of
the a posteriori state. Next proposition gives the possible choices of the parameters
which accomplish this task.

Proposition 10.2. Suppose that det A > 0. Then the atomic state can be driven to
a preassigned asymptotic pure state ηeq = 1

2

(

1+ "xeq · "σ
)

,
∣

∣"xeq

∣

∣ = 1, provided that
the control parameters are chosen as follows:
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• ηeq = P−, i.e. "xeq = (0, 0, −1)T, if and only if n = 0, Ω = 0, c = 0, which
corresponds to the Liouville operator

Ľ[ρ] = − iΔω

2
[σz , ρ]+ γ kd (σz ρ σz − ρ)+ γ

(

σ− ρ σ+ − 1

2
{P+ , ρ}

)

;

• ηeq = P+, i.e. "xeq = (0, 0, 1)T, if and only if |α1|2 = 1, n = 0, Ω = 0, |c| = 1,
sin(ϑ1 − ϕ) = c, which corresponds to the Liouville operator

Ľ[ρ] = − iΔω

2
[σz , ρ]+ γ kd (σz ρ σz − ρ)+ γ

(

σ+ ρ σ− − 1

2
{P− , ρ}

)

;

• yeq �= 0, if and only if |α1|2 = 1, kd = 0, n = 0,

cos(ϑ1 − ϕ) =
cos(ϑ1 + ϕ)

(

x2
eq − y2

eq

)

+ 2 sin(ϑ1 + ϕ)xeq yeq

(1+ zeq)2
, (10.40a)

1

c
= sin(ϑ1 − ϕ)+

2xeq yeq cos(ϑ1 + ϕ)− sin(ϑ1 + ϕ)
(

x2
eq − y2

eq

)

(1+ zeq)2
, (10.40b)

Ω =
γ
(

1− z2
eq

)

2yeq
(1− 2c sin(ϑ1 − ϕ)) , (10.40c)

Δω = γ c cos(ϑ1 − ϕ)−Ω
xeqzeq

1− z2
eq

. (10.40d)

A pure equilibrium state with yeq = 0, zeq �= ±1 cannot be reached by any choice
of the parameters.

Proof. As det A > 0, the necessary and sufficient condition to have a pure state
ηeq = P0 = |h0〉〈h0|

( ‖h0‖ = 1
)

as equilibrium state is

Ľ[P0] = 0. (10.41)

Let h1 be a normalised vector, orthogonal to h0
(〈hi |h j 〉 = δi j

)

. By the fact that Ľ
preserves self-adjointness and annihilates the trace, the condition (10.41) is equiva-
lent to

〈h1|Ľ[P0]h1〉 = 0, 〈h1|Ľ[P0]h0〉 = 0. (10.42)

By explicit computations we get from (10.20)
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〈h1|Ľ[P0]h1〉 = γ kd |〈h1|σzh0〉|2 + γ n |〈h1|σ+h0〉|2

+ γ
(

n + 1− |α1|2
) |〈h1|σ−h0〉|2 + γ

∣

∣〈h1|
(

α1σ− − icσϕ
)

h0〉
∣

∣

2
, (10.43)

〈h1|Ľ[P0]h0〉 = − iΔωc

2
〈h1|σzh0〉 − iΩ

2
〈h1|σx h0〉 + γ kd〈h1|σzh0〉〈h0|σzh0〉

+ γ n

(

〈h1|σ+h0〉〈h0|σ−h0〉 − 1

2
〈h1|P−h0〉

)

+ γ
(

n + 1− |α1|2
)

(

〈h1|σ−h0〉〈h0|σ+h0〉 − 1

2
〈h1|P+h0〉

)

+ γ 〈h1|
(

α1σ− − icσϕ
)

h0〉〈h0|
(

α1σ+ + icσϕ
)

h0〉
− γ

2

(|α1|2 − 2c |α1| sin(ϑ1 − ϕ)
) 〈h1|P+h0〉.

By the positivity of the terms in (10.43) and the fact that γ > 0, we get that condi-
tions (10.42) are equivalent to

kd〈h1|σzh0〉 = 0, n〈h1|σ+h0〉 = 0, (10.44a)

(

n + 1− |α1|2
) 〈h1|σ−h0〉 = 0, 〈h1|

(

α1σ− − icσϕ
)

h0〉 = 0, (10.44b)

iΔωc〈h1|σzh0〉 + iΩ〈h1|σx h0〉 + γ (1− 2c |α1| sin(ϑ1 − ϕ)) 〈h1|P+h0〉 = 0.
(10.44c)

When P0 = P−, we get immediately n = 0, c = 0, Ω = 0 and the expression of
the Liouvillian follows from (10.20).

When P0 = P+, we get easily n = 0, |α1|2 = 1, α1 = iceiϕ , Ω = 0, from which
we have the statement of the proposition for this case.

When P0 �= P±, we take h0 =
(√

1− |β|2
β

)

, h1 =
( −β
√

1− |β|2
)

, with

0 < |β|2 < 1. By "xeq = 〈h0|"σh0〉 we obtain the correspondence

xeq = 2
√

1− |β|2 Reβ, yeq = 2
√

1− |β|2 Imβ,

zeq = 1− 2 |β|2 , β = xeq + iyeq√
2(1+ z)

.

This gives

2〈h1|P+h0〉 = 〈h1|σzh0〉 = −2β
√

1− |β|2 �= 0, 〈h1|σ+h0〉 = −β2 �= 0,
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〈h1|σ−h0〉 = 1− |β|2 �= 0, 〈h1|σx h0〉 = 1− |β|2 − β2.

Then, conditions (10.44) are equivalent to

kd = 0, n = 0, |α1|2 = 1

and

(

1− icei(ϕ−ϑ1)
) (

1− |β|2)+ icβ2e−i(ϕ+ϑ1) = 0,

iΩ
(

1− β2 − |β|2)− 2iΔωβ
√

1− |β|2 − γβ

√

1− |β|2 (1+ 2icei(ϑ1−ϕ)
) = 0.

The last two equations can be written as

(1+ zeq)2 cos(ϑ1 − ϕ) = Re
[

e−i(ϑ1+ϕ)
(

x2
eq − y2

eq + 2ixeq yeq

)]

, (10.45a)

1

c
= sin(ϑ1 − ϕ)+

Im
[

e−i(ϑ1+ϕ)
(

x2
eq − y2

eq + 2ixeq yeq

)]

(1+ zeq)2
, (10.45b)

γ
(

1+ 2icei(ϑ1−ϕ)
) = 2iΩ

xeqzeq − iyeq

1− z2
eq

− 2iΔω. (10.45c)

In the case yeq = 0, zeq �= ±1 we get

1 = 2c sin(ϑ1 − ϕ), γ c cos(ϑ1 − ϕ) = Ω
xeqzeq

1− z2
eq

−Δω,

sin(ϑ1 − ϕ) = − sin(ϑ1 + ϕ)x2
eq

(1+ zeq)2
, cos(ϑ1 − ϕ) = cos(ϑ1 + ϕ)x2

eq

(1+ zeq)2
.

But the last equations imply zeq = 0, xeq = ±1 and, then, we get ϑ1 = 0, Δω =
−γ c cosφ, 1+ 2c sinφ = 0, which corresponds to det A = 0 and it is excluded by
det A > 0.

In the case yeq �= 0, which implies zeq �= ±1, Eqs. (10.45) give (10.40). �
Apart from the trivial case P0 = P−, it is possible to freeze the atom in a pure

state in an exact way only in the very ideal case |α1| = 1. This is an ideal case not
only because it is nearly impossible to collect all the fluorescence light in channel
1, as needed to have |α1| = 1, but also because this implies |α0| = 0, so that there is
no room in the forward channel for the stimulating laser. To reach |α1| = 1 without
Ω = 0 and c = 0, one has to think that the intensity of the laser goes to infinity to
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compensate for |α0| → 0. A less ambitious task, which we do not develop here, is to
take the value of |α1|2 as given by the experimental situation and to use control to get
the maximal purity obtainable in any fixed direction in the Bloch sphere [5, 10, 13].

Another subject in quantum information is the one of the “decoherence free sub-
spaces”. Any quantum system which one could use in quantum computations or
quantum communication is inevitably open and suffers decoherence (loss of purity,
loss of “entanglement”) due to dissipation. One can try to reduce dissipation by
better isolating the system, or by finding some subspaces of the Hilbert space of the
system free from dissipation. A single two-level atom is a very poor model from the
point of view of the structure of the Hilbert space; however, we can use it to give a
toy model with decoherence free subspaces.

Let us consider the case det A = 0, presented in Sect. 10.3.4. Again it is a very
ideal case because we need |α1| = 1, n = 0, kd = 0.

In the case sinϑ1 = 0, 2c sin(ϑ1−ϕ) = 1, Δω = −γ c cos(ϑ1−ϕ), the Liouville
operator reduces to

Ľ[ρ] = − iΩ

2
[σx , ρ]+ γ c2 (σx ρ σx − ρ) .

The master equation with such a generator leaves invariant any state of the form
1
2 (1+ xσx ). At the Hilbert space level, the two subspaces of the eigenvectors of σx

are decoherence free.
In the case Ω = 0, 2c sin(ϑ1 − ϕ) = 1, Δω = −γ c cos(ϑ1 − ϕ), the Liouville

operator reduces to

Ľ[ρ] = γ c2
((

eiϑ1σ− + e−iϑ1σ+
)

ρ
(

eiϑ1σ− + e−iϑ1σ+
)− ρ

)

and the decoherence free subspaces are the eigenspaces of eiϑ1σ− + e−iϑ1σ+.

10.5 Control of the Squeezing of Fluorescence Light

Feedback, besides controlling the atomic state, can be used to control the light emit-
ted by the atom; in particular we are interested in the squeezing properties of the
light in the side channels 1 and 2. With the help of the incoherent spectrum of
the homodyne photocurrents we can analyse the squeezing properties of the light
detected in the two side channels, and thus we can investigate the effect of the
control parameters [11, 12].

When |α2|2 = 0, the fluorescence light which is not lost in the forward channel
is gathered in a unique side channel, so that the squeezing is analysed just for that
light which is also detected for the feedback loop. This means that the eventually
squeezed light would not be available for other purposes. Thus in this case a unique
homodyne detector is employed and |α1|2 is its efficiency. When |α2|2 > 0, the
fluorescence light which is not lost in the forward channel is split in the two side
channels. The homodyne detection of the light in channel 1 allows either to do
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the spectral analysis and to detect squeezing, or to make the feedback control. The
light in channel 2 is detected for squeezing analysis, and it could be employed for
different uses.

To have the spectrum we need a stationary output process, at least for large times.
So, we want to have an equilibrium state and we need det A > 0. We assume also
that there is always some light in the forward channel, where the laser acts, and
some light in the side channel 1, to be used for feedback.

Assumption 10.3. We assume |α0|2 > 0 and |α1|2 > 0.

This implies that |α1|2 cannot reach the value 1 and, due to the conditions (10.32),
that det A > 0.

10.5.1 The Spectral Densities

Now we have two channels and, so, the spectra of the two outputs and the spectrum
of the cross-correlations. By defining

mi := Tr
{

Ři [ηeq]
}

, C ji (t) := Tr
{

Ř j ◦ Ť (t)[τ̌i ]
}

, τ̌i := Ři [ηeq]− miηeq,

by Eq. (4.94) we get the spectra

Si j (μ) = Sel
i j (μ)+ Sinel

i j (μ), Sel
i j (μ) = 2πmi m jδ(μ), (10.46a)

Sinel
i j (μ) = δi j +

∫ +∞

0

(

eiμt Ci j (t)+ e−iμt C ji (t)
)

dt. (10.46b)

In the present case we have

Ř1 = √γ
(

α1σ− − icσϕ
)

, Ř2 = √γ α2σ− , (10.47)

mi = √γ |αi |
(

xeq cosϑi + yeq sinϑi
)

. (10.48)

Here below, in the computations of the spectra, the following notation will be
used:

τ := σ−ηeq − Tr
{

σ−ηeq
}

ηeq = 1

2
"d(0) · "σ , (10.49)

"d(0) := Tr {"στ } = 1

2

⎛

⎝

1+ zeq − xeq
(

xeq − iyeq
)

−i
[

1+ zeq − iyeq
(

xeq − iyeq
)]

−(1+ zeq
)(

xeq − iyeq
)

⎞

⎠ . (10.50)
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10.5.2 Channel 1: The In-Loop Light

The spectrum of the light in the channel used for feedback has a peculiar status;
for this light the Heisenberg like relation (9.63) does not hold, because the involved
phase ϑ1 now appears also in the dynamics, due to the feedback loop. When the
spectrum is below 1 we keep on speaking of “squeezed” in-loop light, but, perhaps,
it would be better to speak of sub-shot noise spectrum of the in-loop light.

By making the previous expressions more explicit, the elastic and inelastic com-
ponents of the homodyne spectrum of output 1 are

Sel
11(μ) ≡ Sel

1 (μ;ϑ1) = 2πγ |α1|2
∣

∣Tr
{

σϑ1ηeq
}∣

∣

2
δ(μ)

= 2πγ |α1|2
(

xeq cosϑ1 + yeq sinϑ1
)2
δ(μ)

= 2πγ |α1|2
("xeq · "u(ϑ1)

)2
δ(μ),

(10.51)

Sinel
11 (μ) ≡ Sinel

1 (μ;ϑ1) = 1+ 2γ |α1|2
∫ +∞

0
cosμt Tr

{

σϑ1 eĽt [τ1]
}

dt

= 1+ 2 |α1|2
(

γ A

A2 + μ2
"t1
)

· "u(ϑ1), (10.52)

where

τ1 = eiϑ1τ + e−iϑ1τ ∗ + ĩc[ηeq, σϕ], c̃ =
{

c
|α1| , if α1 �= 0,

0, if α1 = 0,
(10.53)

"t1 = Tr{τ1 "σ } =

⎛

⎜

⎜

⎜

⎝

(

1+ zeq − x2
eq

)

cosϑ1 − xeq yeq sinϑ1

(

1+ zeq − y2
eq

)

sinϑ1 − xeq yeq cosϑ1

−(1+ zeq
)(

xeq cosϑ1 + yeq sinϑ1
)

⎞

⎟

⎟

⎟

⎠

+ 2̃c "u(ϕ)× "xeq .

(10.54)
Examples of the inelastic spectrum of output 1 are given in Figs. 10.2 and 10.3.

The choice of the linewidth is γ = 1 and the percentage of fluorescence light in
channel 1 is taken to be |α1|2 = 0.45 which is a reasonable value.

In Fig. 10.2 the parameters are chosen to have big squeezing in predetermined
positions; the “smoothing” effect of n and kd is also shown. The strategy has been to
consider kd and n assigned by external conditions and to fix the position where we
want the minimum; then, the other parameters are taken by numerically minimising
the spectrum in the fixed position. The best squeezing for the in-loop light turns
out to be always for Ω = 0. Moreover, lines (1)–(4) are for the case n = 0 and
kd = 0 and lines (5) and (6) for the case in which these parameters are small, but
not vanishing: n = 0.01 and kd = 0.05. The values of the parameters are given in
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the caption of Fig. 10.2; for what concerns the minima, the situation is summarised
by the following table, where the numbers in brackets are the numbers of the lines
in the figure:

Position of the minimum Value of the minimum Value of the minimum

n = 0, kd = 0 n = 0.01, kd = 0.05
μ = 0 (1) 0.4354 (5) 0.5019
μ = ±1 (2) 0.5617 (6) 0.6078
μ = ±2 (3) 0.5887 (7) 0.6367
μ = ±4 (4) 0.5998 (8) 0.6494

Other examples of spectra below and above shot noise are given in Fig. 10.3.
Here the parameters are optimal for squeezing in channel 2 and are taken from
Fig. 10.4. This figure shows that a situation of optimal squeezing in channel 2 does
not necessarily correspond to sub-shot noise in channel 1 or, at least, not to optimal
sub-shot noise.
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Fig. 10.2 Ω = 0. (1) kd = 0, n = 0, Δω = 0, c = 0.2936, ϑ1 = −π/2, ϕ = 0, value of the
minimum 0.4354 at μ = 0; (2) kd = 0, n = 0, Δω = 1.0386, c = 0.3700, ϑ1 = −1.2763,
ϕ = −0.1236, value of the minimum 0.5617 at μ = ±1; (3) kd = 0, n = 0, Δω = 2.0540,
c = 0.3765, ϑ1 = −1.3145, ϕ = −0.0846, value of the minimum 0.5887 at μ = ±2; (4) kd = 0,
n = 0, Δω = 4.0372, c = 0.3776, ϑ1 = −1.3790, ϕ = −0.0211, value of the minimum 0.5998
at μ = ±4; (5) kd = 0.05, n = 0.01, Δω = 0, c = 0.3255, ϑ1 = −π/2, ϕ = 0, value of the
minimum 0.5019 at μ = 0; (6) kd = 0.05, n = 0.01, Δω = 1.0335, c = 0.4020, ϑ1 = −1.2864,
ϕ = −0.1136, value of the minimum 0.6078 at μ = ±1; (7) kd = 0.05, n = 0.01, Δω = 2.0715,
c = 0.4115, ϑ1 = −1.3001, ϕ = −0.0799, value of the minimum 0.6367 at μ = ±2; (8)
kd = 0.05, n = 0.01, Δω = 4.0534, c = 0.4138, ϑ1 = −1.3611, ϕ = −0.0189, value of the
minimum 0.6494 at μ = ±4
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Fig. 10.3 (1) Δω = 0, Ω = 0.2698, c = −0.0896, ϑ1 = −π/2, ϕ = 0; (2) Δω = 0.7781,
Ω = 0.7967 c = −0.1123, ϑ1 = −0.5315, ϕ = 1.0393; (3) Δω = 1.3852, Ω = 1.5464,
c = −0.1301, ϑ1 = −0.3722, ϕ = 1.1986; (4) Δω = 2.6310, Ω = 3.0721, c = −0.1348,
ϑ1 = −0.2305, ϕ = 1.3403; (5) Δω = 0, Ω = 0.2976, c = 0, ϑ1 = −π/2; (6) Δω = 0.8279,
Ω = 0.7445, c = 0, ϑ1 = −0.3480; (7) Δω = 1.4937, Ω = 1.4360, c = 0, ϑ1 = −0.1784; (8)
Δω = 2.8077, Ω = 2.9001, c = 0, ϑ1 = −0.0909

10.5.3 Channel 2

With channel 2, two new parameters enter into play: ϑ2 ∈ (−π, π ] and |α2| with
0 < |α1|2 + |α2|2 < 1.

We get again the elastic and inelastic components of the homodyne spectrum

Sel
22(μ) ≡ Sel

2 (μ;ϑ2) = 2πγ |α2|2
∣

∣Tr
{

σϑ2ηeq
}∣

∣

2
δ(μ)

= 2πγ |α2|2
(

xeq cosϑ2 + yeq sinϑ2
)2
δ(μ)

= 2πγ |α2|2
("xeq · "u(ϑ2)

)2
δ(μ), (10.55)

Sinel
22 (μ) ≡ Sinel

2 (μ;ϑ2) = 1+ 2γ |α2|2
∫ +∞

0
cosμt Tr

{

σϑ2 eĽt [τ2]
}

dt

= 1+ 2 |α2|2
(

γ A

A2 + μ2
"t2
)

· "u(ϑ2), (10.56)

where

τ2 = eiϑ2τ + e−iϑ2τ ∗, (10.57)
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Fig. 10.4 (1) Δω = 0, Ω = 0.2698, c = −0.0896, ϑ1 = −π/2, ϑ2 = −π/2, ϕ = 0, value of
the minimum 0.8259 at μ = 0; (2) Δω = 0.7781, Ω = 0.7967 c = −0.1123, ϑ1 = −0.5315,
ϑ2 = −0.2498, ϕ = 1.0393, value of the minimum 0.8647 at μ = ±1; (3) Δω = 1.3852,
Ω = 1.5464, c = −0.1301, ϑ1 = −0.3722, ϑ2 = −0.1105, ϕ = 1.1986, value of the minimum
0.8565 at μ = ±2; (4) Δω = 2.6310, Ω = 3.0721, c = −0.1348, ϑ1 = −0.2305, ϑ2 = −0.0497,
ϕ = 1.3403, value of the minimum 0.8530 at μ = ±4; (5) Δω = 0, Ω = 0.2976, c = 0,
ϑ2 = −π/2, value of the minimum 0.8738 at μ = 0; (6) Δω = 0.8279, Ω = 0.7445, c = 0,
ϑ2 = −0.3480, value of the minimum 0.8984 at μ = ±1; (7) Δω = 1.4937, Ω = 1.4360, c = 0,
ϑ2 = −0.1784, value of the minimum 0.8898 at μ = ±2; (8) Δω = 2.8077, Ω = 2.9001, c = 0,
ϑ2 = −0.0909, value of the minimum 0.8830 at μ = ±4

"t2 = Tr{τ2 "σ } =

⎛

⎜

⎜

⎜

⎝

(

1+ zeq − x2
eq

)

cosϑ2 − xeq yeq sinϑ2
(

1+ zeq − y2
eq

)

sinϑ2 − xeq yeq cosϑ2

−(1+ zeq
)(

xeq cosϑ2 + yeq sinϑ2
)

⎞

⎟

⎟

⎟

⎠

. (10.58)

Examples of the inelastic spectrum of output 2 are given in Figs.10.4 and 10.5
for γ = 1, |α1|2 = |α1|2 = 0.45, kd = 0, n = 0. In Fig. 10.4 the parameters are
chosen to have optimal squeezing in predetermined positions; the case c = 0 is also
shown to see the effect of feedback. The situation of the minima is the following
one:

Position of the minimum Value of the minimum Value of the minimum
c > 0 c = 0

μ = 0 (1) 0.8259 (5) 0.8738
μ = ±1 (2) 0.8647 (6) 0.8984
μ = ±2 (3) 0.8565 (7) 0.8898
μ = ±4 (4) 0.8530 (8) 0.8830
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Fig. 10.5 As Fig. 10.4 with ϑ2 shifted by π/2

In Fig. 10.5 the same parameters are used, but ϑ2, which is shifted by π/2 to see
the effect of the uncertainty relation (9.63). Figures 10.4 and 10.5 give the spectra
of two complementary quadrature of the electromagnetic field.

10.5.4 The Spectrum of the Cross-Correlations

As discussed in Sect. 4.5.3, when linear combinations of the outputs are studied,
also the spectrum of the cross-correlations (4.92) enters into play. In the present
case from Eq. (4.94) we get

Sel
12(μ) = Sel

21(μ) = 2πγ |α1| |α2|
(

xeq cosϑ1 + yeq sinϑ1
)

× (

xeq cosϑ2 + yeq sinϑ2
)

δ(μ), (10.59)

Sinel
12 (μ) = Sinel

21 (μ)

= γ |α1| |α2|
[

"u(ϑ1) ·
(

1

A − iμ
"t2
)

+ "u(ϑ2) ·
(

1

A + iμ
"t1
)]

, (10.60a)

Re Sinel
12 (μ) = "u(ϑ1) ·

(

γ |α1| |α2| A

A2 + μ2
"t2
)

+ "u(ϑ2) ·
(

γ |α1| |α2| A

A2 + μ2
"t1
)

, (10.60b)

Im Sinel
12 (μ) = "u(ϑ1) ·

(

γ |α1| |α2|μ
A2 + μ2

"t2
)

− "u(ϑ2) ·
(

γ |α1| |α2|μ
A2 + μ2

"t1
)

. (10.60c)
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Let us note that the positivity condition (4.93) implies that the two eigenvalues

of the matrix

(

Sinel
11 (μ) Sinel

12 (μ)
Sinel

21 (μ) Sinel
22 (μ)

)

are real and non-negative:

Sinel
11 (μ)+ Sinel

22 (μ)

2
±
√

(

Sinel
11 (μ)− Sinel

22 (μ)

2

)2

+ ∣

∣Sinel
12 (μ)

∣

∣

2 ≥ 0. (10.61)

10.5.4.1 Alternative Expressions

The expressions of all the spectral densities introduced in this chapter can be written
in a unified manner also as

Sel
i j (μ) = 2πγ |αi |

∣

∣α j

∣

∣

("xeq · "u(ϑi )
) ("xeq · "u(ϑ j )

)

δ(μ), (10.62)

Sinel
i j (μ) = δi j + γ |αi |

∣

∣α j

∣

∣

[

"u(ϑi ) ·
(

1

A − iμ
"t j

)

+ "u(ϑ j ) ·
(

1

A + iμ
"ti
)]

.

(10.63)

10.5.5 Global Squeezing of Light and Atomic Squeezing

10.5.5.1 Global Squeezing Parameter of the Light

As in the previous chapter, we can introduce the global squeezing parameter for the
two channels:

Πk(ϑk) = 1

2πγ

∫ +∞

−∞

[

Sinel
k (μ;ϑk)− 1

]

dμ = |αk |2 "tk · "u(ϑk). (10.64)

Channel 2

The explicit expression of the global squeezing parameter is

Π2(ϑ2) = |α2|2
[

1+ zeq −
("xeq · "u(ϑ2)

)2
]

. (10.65)

This channel is as the observed channel of the previous chapter: the phase ϑ2 appears
only in the spectrum, not in the dynamics. So, one can minimise with respect to ϑ2

and an expression for the best global squeezing can be obtained:

Σ2 = min
ϑ2

Π2(ϑ2) = |α2|2
[

1+ zeq −
(

x2
eq + y2

eq

)]

= |α2|2
[

ASηeq + zeq +
∣

∣zeq

∣

∣

]

. (10.66)
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The difference with respect to the situation of the previous chapter is that feedback
allows also for cases in which zeq is positive and there is atomic squeezing. As we

have always 1−
(

x2
eq + y2

eq

)

≥ 0, we have

zeq ≥ 0 ⇒ Σ2 ≥ 0. (10.67)

So, when the equilibrium state is in the upper hemisphere of the Bloch sphere, there
is no global squeezing in channel 2, even if the atomic state is squeezed.

Channel 1

The explicit expression of the global squeezing parameter is now more complicate:

Π1(ϑ1) = |α1|2
[

1+ zeq −
("xeq · "u(ϑ1)

)2
]

+ 2c |α1| "xeq ·
("u(ϑ1)× "u(ϕ)

)

= |α1|2
[

1+ zeq −
("xeq · "u(ϑ1)

)2
]

− 2c |α1| zeq sin(ϑ1 − ϕ). (10.68)

10.5.5.2 Fluorescence Light Squeezing Versus Atomic Squeezing

The feedback loop can be really efficient also to enhance the atomic squeezing. For
example, in the ideal situation |α1| = 1, kd = n = 0, with γ = 1, Δω = 3, Ω = 4,
ϑ1 = π/2, c = 1.3372, ϕ = −π/40, we get ASηeq = −0.2414, which is very close
to the bound −1/4. In this case ηeq is almost pure so that also the a posteriori state
ρ(t) is frozen in a neighbourhood of ηeq and ASρ(t) is minimised, too.

There are no simple relations among the squeezing properties of fluorescence
light in channel 1, of fluorescence light in channel 2, of atomic a priori equilibrium
state and of atomic a posteriori state. Indeed, by changing the parameters of our
model, we can observe a wide variety of behaviours.

The only clear link is the one mentioned above: if ASηeq � −1/4, then ηeq is
almost pure and ρ(t) is frozen in a neighbourhood of ηeq, so that ASρ(t) is minimised,
too, and the fluorescence light squeezing disappears as there is no incoherent scat-
tering of light. One can check that actually only the coherent scattering survives,
giving a δ-contribution in μ = 0 to the complete spectrum. If the freezing of the
atom is only approximate, one can check that all the spectra tend to become flatter
and the fluorescence light squeezing tends to disappear.

There is also the link (10.66) between ASηeq and Σ2. This gives a direct relation
between atomic and fluorescence light squeezing in the absence of feedback. Indeed,
in this case we have zeq ≤ 0, so that Σ2 = |α2|2 ASηeq , and we can consider the case
|α1| = 0, so that |α2|2 is the fraction of the whole detected light. This relation is
essentially the same as found by Walls and Zoller considering a single mode for the
emitted light [14]. However, the relation is not fundamental, as the feedback loop
can give zeq > 0 and in this case we have always Σ2 ≥ 0 even if ASηeq < 0.

There is no relation between fluorescence light squeezing revealed in channel 1
and in channel 2, even if we fix the constraint |α1| = |α2|. For example, the lowest
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minima of Sinel
1 are found for c > 0 and Ω = 0, but, every time Ω = 0, the light in

channel 2 is not squeezed as it can be proved that Sinel
2 ≥ 1 for every μ and every ϑ2.

Another example is the one of Fig. 10.3, which we already discussed. This figure
gives the plots of the incoherent spectrum with the parameters which are optimal
for squeezing in channel 2 and it shows that with these parameters the squeezing in
channel 1 is far from optimality.

It is worth mentioning also the ideal case |α1| = 1, γ = 1, kd = n = 0, with
Δω = 0, Ω = 0, ϑ1 = π/2, c = 1.2818, ϕ = 0. Then we have an extremely
visible squeezing in channel 1 (Sinel

1 reaches 0.3183), there is no squeezing of the
atomic a priori equilibrium state (ASηeq = 0.0922), while numerical simulations
show that the a posteriori state ρ(t) tends to become pure (as |α1| = 1) with ASρ(t)

stochastically moving between −1/4 and 0.

10.5.5.3 No Feedback

When c = 0, the two channels 1 and 2 are completely equivalent, apart from the
possibility of different detection parameters α1 and α2. Being c = 0, each channel,
taken singularly, is equivalent to the observed channel of Sect. 9.2; what is new here
is the presence of the cross-correlations with their spectrum. In this case, the matrix
A is given by Eq. (8.32), the equilibrium state by Eqs. (8.49), (8.50) and

"t j =
(

1+ zeq
) "u(ϑ j )− "xeq · "u(ϑ j )

⎛

⎝

xeq

yeq

1+ zeq

⎞

⎠ .

Note that we are in the case of mutually proportional detection operators, the
situation of Sect. 4.4.1.4, Eq. (4.66): Ř j = √γα jσ−, j = 1, 2. If ϑ1 − ϑ2 = 0, π ,
with a rotation, the output (W1, W2) can be transformed in a new output with a
component which reduces to pure noise. Otherwise, we have two effective channels,
also after any rotation.

10.6 Control and Line Narrowing

After the first observation of squeezing, Gardiner predicted that stimulating a two-
level atom with squeezed light would inhibit the phase decay of the atom. The
squeezed light would break the equality between the transverse decay rates for the
two quadratures of the atom and one decay rate could be made arbitrarily small,
producing an observable narrow line in the spectrum of the atom’s fluorescence
light. This was seen as a “direct effect of squeezing” and thus as a measure of the
squeezing of the incident light [15]. With our notation, the “transverse decay rates”
are the decay rates of the x and y components of the Bloch vector of the a priori
states and, so, they are a11 and a22, at least when a12 = a21 = 0.

Later, Wiseman showed that this atomic line narrowing is not only characteris-
tic of squeezed light, but also can be produced by immersing a two-level atom in
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“in-loop squeezed” light [16]. The difference is that in the Gardiner case the other
decay rate becomes larger, while in the Wiseman case it is left unchanged.

Actually, the same atomic line narrowing can be obtained stimulating a two-level
atom even with non-squeezed light, that is with a coherent monochromatic laser
in presence of a (Wiseman–Milburn) feedback scheme based on the (homodyne)
detection of the fluorescence light, which is the case studied in this chapter. The
presentation of this phenomenon is particularly clear in two special cases in which
the matrix A turns out to be block-diagonal; the next two subsections are dedicated
to such two cases.

It is interesting to note that the atomic master equation in [16] and our equation
for a priori states, in the case Δω = 0, Ω = 0, ϕ = π/2, ϑ1 = π , are equal, in spite
that Wiseman’s results refer to a different physical situation.

10.6.1 A First Case of Line Narrowing

The first way to have A in block-diagonal form is to take Ω = 0; we ask also
a12 = a21, ∀c. As we have 0 < |α1| < 1 and γ > 0, this condition is equivalent
to Δω = 0 and ϑ1 − ϕ = ±π/2, as one sees by using the expressions (10.25e),
(10.25f) of a12 and a21. By changing the signs to c and to the free angles, the two
cases can be seen to be physically equivalent and we fix the upper sign. So, we have

γ > 0, 0 < |α1| < 1, Ω = 0, Δω = 0, ϕ = ϑ1 − π

2
. (10.69)

Under these conditions we get that the matrix A is positive definite and block-
diagonal:

A =
(

B 0
0 a33

)

≥ 0, B =
(

a11 a12

a21 a22

)

≥ 0, (10.70a)

a11 = γ

2
k + 2γ c (c − |α1|) cos2 ϑ1 , (10.70b)

a22 = γ

2
k + 2γ c (c − |α1|) sin2 ϑ1 , (10.70c)

a12 = a21 = 2γ c (c − |α1|) sinϑ1 cosϑ1 , (10.70d)

a33 = γ (1+ 2n)+ 2γ c2 − 2γ c|α1|. (10.70e)

Recall that k = 4kd + 2n + 1.
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By direct computation we get the eigenvalues and the eigenvectors of B:

b1 = γ

2

[

k − |α1|2 + (2c − |α1|)2] > 0, "e1 =
(

cosϑ1

sinϑ1

)

; (10.71a)

b2 = γ

2
k > 0, "e2 =

(

sinϑ1

− cosϑ1

)

. (10.71b)

10.6.1.1 Transverse Decay Rates and Eigenvalues of B

The matrix B gives the evolution of the x, y components of the a priori state, which
in this case is decoupled from the evolution of the z component; moreover, B being
symmetric and positive, these two eigenvalues represent the two transverse decay
rates. Note that for c = 0 these two rates are equal and their value is γ k/2 (γ /2
for n = kd = 0). When c is different from 0 and from |α1|, this equality is broken,
b2 maintains the original value and b1 can become smaller or bigger. The smallest
transverse decay rate is obtained for c = |α1| /2 and its value is b1 = γ

2

(

k − |α1|2
)

,
which reduces to b1 = γ

2

(

1− |α1|2
)

for n = kd = 0.

10.6.1.2 Equilibrium State and Global Squeezing

Again by direct computation we obtain the equilibrium state and the global squeez-
ing parameters of the fluorescence light, which turn out to be all independent of ϑ1

and ϑ2:

xeq = 0, yeq = 0, zeq = −1+ 2c|α1|
2n + 2c2 + 1− 2c|α1| , (10.72)

Π1 ≡ Π1(ϑ1) = |α1|2
(

1+ zeq
)− 2c |α1| zeq =

c |α1| + |α1|2
(

n − c2
)

n + c2 + 1
2 − c|α1|

, (10.73)

Π2 ≡ Π2(ϑ2) = |α2|2
(

1+ zeq
) = |α2|2

(

n + c2
)

n + c2 + 1
2 − c|α1|

≥ 0. (10.74)

10.6.1.3 Spectral Densities

The quantities appearing in the expressions of the spectral densities can be com-
puted; we have in particular

"t1 =
(

1+ zeq − 2̃czeq
) "u(ϑ1), "t2 =

(

1+ zeq
) "u(ϑ2).

Then, we get the expressions of the spectra.
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First of all, with these choices of the parameters all the elastic spectral densities
vanish:

Sel
1 (μ;ϑ1) = 0, Sel

2 (μ;ϑ2) = 0, Sel
12(μ) = 0.

Then, the inelastic spectral densities become:

Sinel
1 (μ;ϑ1) = 1+Π1

2γ b1

b 2
1 + μ2

, (10.75a)

Sinel
2 (μ;ϑ2) = 1+Π2

[

2γ b1

b 2
1 + μ2

cos2 (ϑ1 − ϑ2)+ 2γ b2

b 2
2 + μ2

sin2 (ϑ1 − ϑ2)

]

,

(10.75b)

Re Sinel
12 (μ) =

( |α1|Π2

|α2| + |α2|Π1

|α1|
)

γ b1

b 2
1 + μ2

cos (ϑ1 − ϑ2) , (10.75c)

Im Sinel
12 (μ) =

( |α1|Π2

|α2| − |α2|Π1

|α1|
)

γμ

b 2
1 + μ2

cos (ϑ1 − ϑ2) . (10.75d)

All the spectra are linear combinations of white noise and Lorentzians of widths b1

and b2; the possible presence of squeezing is controlled by the signs of the coeffi-
cients.

10.6.1.4 Best Line Narrowing

The width b2 is independent of the control parameters and we get the best line
narrowing by minimising b1. The smallest value of b1 is reached when c = |α1| /2;
so, we have

b1 = γ

2

(

k − |α1|2
)

, b2 = γ

2
k. (10.76)

The other relevant quantities are given by

zeq = − 1− |α1|2
1+ 2n − |α1|2/2

,
2n

1+ 2n
< 1+ zeq < 1 , (10.77)

Π1 = |α1|2 , Π2 =
|α2|2

(

4n + |α1|2
)

2+ 4n − |α1|2 = |α2|2
(

1+ zeq
)

. (10.78)
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The case ϑ1 = ϑ2

When we have also ϑ1 = ϑ2, only the sharpest Lorentzian survives in the spectrum
of the light in channel 2 and we have

Sinel
1 (μ;ϑ1) = 1+ |α1|2 2γ b1

b 2
1 + μ2

, (10.79a)

Sinel
2 (μ;ϑ1) = 1+ |α2|2

(

1+ zeq
) 2γ b1

b 2
1 + μ2

, (10.79b)

Sinel
12 (μ) = Sinel

21 (μ) = |α1| |α2| γ
b 2

1 + μ2

[

2b1 + zeq (b1 + iμ)
]

. (10.79c)

Figures 10.6 (lines 2 and 3) and 10.7 give the spectra of the fluctuations of the
light in the channels 1 and 2 and the real and imaginary parts of the spectrum of the
cross-correlations. Both channels present positive Lorentzian peaks, but the cross
correlations are strong, a fact which suggest to study the spectrum of some linear
combination of the two outputs.

We choose to diagonalise the matrix of the spectra at μ = 0. Let us denote by

"w± the eigenvectors of the matrix

(

Sinel
11 (0) Sinel

12 (0)
Sinel

21 (0) Sinel
22 (0)

)

and by Sinel
± (0) the eigenvalues

(10.61); we have

−3 −2 −1 0 1 2 3
1

1.5

2

2.5

3

3.5

4

4.5
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5.5

μ

(1)
(2)
(3)

Fig. 10.6 Ω = 0, Δω = 0, |α1|2 = |α2|2 = 0.45, γ = 1, ϕ = ϑ1 − π
2 , c = |α1| /2, ϑ1 = ϑ2,

n = 0, kd = 0: (1) Sinel
+ (μ); (2) Sinel

11 (μ); (3) Sinel
22 (μ)
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−8 −6 −4 −2 0 2 4 6 8
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Fig. 10.7 The spectrum of cross-correlations for Ω = 0, Δω = 0, |α1|2 = |α2|2 = 0.45, γ = 1,
ϕ = ϑ1 − π

2 , c = |α1| /2, ϑ1 = ϑ2, n = 0, kd = 0: (1) Im Sinel
12 (μ); (2) Re Sinel

12 (μ)

Sinel
± (0) = 1+ γ

b1

{

|α1|2 + |α2|2
(

1+ zeq
)

±
√

[|α1|2 + |α2|2
(

1+ zeq
)]2 + |α1|2 |α2|2 z 2

eq

}

, (10.80a)

w±1 =
h

√

h2 + 
 2±
, w±2 =


±
√

h2 + 
 2±
, h = |α1| |α2|

(

2+ zeq
)

, (10.80b)


± = |α2|2
(

1+ zeq
)− |α1|2

±
√

[|α1|2 + |α2|2
(

1+ zeq
)]2 + |α1|2 |α2|2 z 2

eq. (10.80c)

Then, we introduce the spectra related to these two eigenvectors:

Sinel
± (μ) :=

2
∑

i, j=1

w±i Sinel
i j (μ)w±j . (10.81)

Figure 10.6 (line 1) gives the plot Sinel
+ (μ), which presents a positive narrow pick,

as Sinel
11 (μ) and Sinel

22 (μ). On the contrary Sinel
− (μ), plotted in Fig. 10.8, presents a

sub-shot noise narrow pick.
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μ

Fig. 10.8 Ω = 0, Δω = 0, |α1|2 = |α2|2 = 0.45, γ = 1, ϕ = ϑ1 − π
2 , c = |α1| /2, ϑ1 = ϑ2,

n = 0, kd = 0: Sinel
− (μ)

We have shown that it is possible to have the line narrowing by stimulating the
atom with coherent, non-squeezed light (but with feedback). However, Fig. 10.8
shows that, as a matter of fact, sub-shot noise fluctuations are present, at least in the
emitted light, together with line narrowing.

Diagonalising the matrix of the spectra at a different value of μ can give rise
to very different forms for the spectra. Let us choose the position of the half-
height of the Lorentzian, μ = b1. We denote by "v± the eigenvectors of the matrix
(

Sinel
11 (b1) Sinel

12 (b1)
Sinel

21 (b1) Sinel
22 (b1)

)

and by˜Sinel
± (b1) the eigenvalues; we have

˜Sinel
± (b1) = 1+ γ

2b1

{

|α1|2 + |α2|2
(

1+ zeq
)

±
√

[|α1|2 + |α2|2
(

1+ zeq
)]2 + 2 |α1|2 |α2|2 z 2

eq

}

, (10.82a)

v±1 =
g

√

|g|2 + l 2±
, v±2 =

l±
√

|g|2 + l 2±
, g = |α1| |α2|

(

1+ zeq
1+ i

2

)

,

(10.82b)

l± = 1

2

{

|α2|2
(

1+ zeq
)− |α1|2

±
√

[|α1|2 + |α2|2
(

1+ zeq
)]2 + 2 |α1|2 |α2|2 z 2

eq

}

. (10.82c)
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Then, we introduce the spectra related to these two eigenvectors:

˜Sinel
± (μ) :=

2
∑

i, j=1

v±i Sinel
i j (μ)v±j . (10.83)

Figure 10.9 gives the two spectra˜Sinel
± (μ) which are clearly asymmetric and present

a narrow pick and a sub-shot noise well.
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Fig. 10.9 Ω = 0, Δω = 0, |α1|2 = |α2|2 = 0.45, γ = 1, ϕ = ϑ1 − π
2 , c = |α1| /2, ϑ1 = ϑ2,

n = 0, kd = 0: (1)˜Sinel
+ (μ); (2)˜Sinel

− (μ)

10.6.1.5 Good Squeezing

BeingΠ2 ≥ 0, there is no squeezing in channel 2, while the in-loop light is squeezed
when Π1 < 0, which happens for

c /∈
[

1

2
−
√

1

4
+ |α1|2 n,

1

2
+
√

1

4
+ |α1|2 n

]

,

which becomes c /∈ [0, 1] for n = 0. Good in-loop squeezing is obtained for c near
−|α1|

2 , but if we take ϕ = ϑ1 + π/2 the good squeezing is for positive c. Indeed,
Figure 10.2 shows good squeezing for Ω = 0, Δω = 0, ϕ = 0, ϑ1 = −π/2,
|α1|2 = |α2|2 = 0.45: line (1) with n = 0, kd = 0, c = 0.2936 and line (5) with
n = 0.01, kd = 0.05, c = 0.3255.
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If we take exactly

c = −|α1|
2

(10.84)

we get

b1 = γ

2

(

k + 3 |α1|2
)

, b2 = γ

2
k, (10.85a)

xeq = 0, yeq = 0, zeq = − 1+ |α1|2
1+ 2n + 3|α1|2/2

, (10.85b)

Π1 ≡ Π1(ϑ1) = |α1|2
(

1+ 2zeq
) = |α1|2

(

2n − 1− |α1|2 /2
)

1+ 2n + 3|α1|2/2
, (10.85c)

Π2 ≡ Π2(ϑ2) = |α2|2
(

1+ zeq
) = |α2|2

(

2n + |α1|2 /2
)

1+ 2n + 3|α1|2/2
, (10.85d)

|α1|Π2

|α2| + |α2|Π1

|α1| = |α1| |α2| (4n − 1)

1+ 2n + 3|α1|2/2
, (10.85e)

|α1|Π2

|α2| − |α2|Π1

|α1| = |α1| |α2|
(

1+ |α1|2
)

1+ 2n + 3|α1|2/2
. (10.85f)

The inelastic spectrum is given by Eqs. (10.75). For γ = 1, |α1|2 = |α2|2 = 0.45
(which gives c � −0.3354), n = 0, kd = 0, we obtain Sinel

11 (0) � 0.4398, which is
comparable with the minimum of 0.4354 for line (1) in Fig. 10.2.

Note that for Ω = 0 the presence of sub-shot noise in channel 1 is connected to
line broadening, as shown by the expression of b1 in (10.85a).

10.6.2 A Second Case of Line Narrowing

In order to have the dynamical matrix A of block-diagonal form for all possible
values of c and Ω , we have to ask a12 = a21 = 0, ∀c. Under 0 < |α1| < 1 and
γ > 0, this condition is equivalent to Δω = 0, ϕ = 0, ϑ1 = ±π/2 or to Δω = 0,
ϕ = π/2, ϑ1 = 0, π , as one see immediately from Eqs. (10.25e), (10.25f).

Under this condition the matrix A is block-diagonal with a11 isolated from the
block (2,3); this isolated element is responsible for a Lorentzian peak of width a11
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in the inelastic spectrum. With the first choice of the angles we get a11 = γ

2 k, while
the second choice gives a11 = γ

2 k + 2γ c2 ± 2γ c |α1|. So, only with the second
choice we can control the linewidth of the peak. Moreover, by changing the sign to
c one sees that the two possibilities for ϑ1 are physically equivalent and we fix the
case ϑ1 = π . So, we take

γ > 0, 0 < |α1| < 1, Δω = 0, ϕ = π

2
, ϑ1 = π . (10.86)

Under these conditions we get (recall that k = 4kd + 2n + 1)

A =
(

a11 0
0 C

)

, C =
(

a22 Ω

−Ω a33

)

, (10.87a)

a11 = γ

2
k + 2γ c2 − 2γ c |α1| , a22 = γ

2
k, (10.87b)

a33 = γ (1+ 2n)+ 2γ c2 − 2γ c|α1|, (10.87c)

xeq = 0, yeq = γΩ (1− 2c |α1|)
a22a33 +Ω2

, zeq = −γ a22 (1− 2c |α1|)
a22a33 +Ω2

,

(10.87d)

Π2(ϑ2) = |α2|2
(

1+ zeq − y 2
eq sin2 ϑ2

)

, (10.87e)

Π1(π ) = |α1|2
(

1+ zeq
)− 2c |α1| zeq. (10.87f)

Then, the spectral densities become

Sel
1 (μ;π ) = 0, Sel

2 (μ;ϑ2) = 2γ |α2|2 y 2
eq sin2 ϑ2 δ(μ), (10.88a)

Sinel
1 (μ;π ) = 1+ |α1|

[|α1|
(

1+ zeq
)− 2czeq

] 2γ a11

a 2
11 + μ2

, (10.88b)

Sinel
2 (μ;ϑ2) = 1+ |α2|2

{

(

1+ zeq
) 2γ a11

a 2
11 + μ2

cos2 ϑ2 + sin2 ϑ2

×
[

(

1+ zeq − y 2
eq

)

(

2γ A

A2 + μ2

)

22

− (

1+ zeq
)

(

2γ A

A2 + μ2

)

23

]}

, (10.88c)
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Sinel
12 (μ) = −2γ |α2| cosϑ2

a 2
11 + μ2

{[|α1|
(

1+ zeq
)− czeq

]

a11 + iμczeq
}

. (10.88d)

10.6.2.1 The Subcase with c = |α1| /2, ϑ2 = π

By taking c = |α1| /2 we obtain the minimal value for the transverse decay rate a11,
while for ϑ2 = π only the sharpest Lorentzian survives in channel 2. Now, we get

a11 = γ

2

(

k − |α1|2
)

, a22 = γ

2
k, a33 = γ

(

1+ 2n − |α1|2
2

)

, (10.89a)

xeq = 0, yeq =
γΩ

(

1− |α1|2
)

a22a33 +Ω2
, zeq = −

γ a22
(

1− |α1|2
)

a22a33 +Ω2
, (10.89b)

Π1(π ) = |α1|2 , Π2(π ) = |α2|2
(

1+ zeq
)

, (10.89c)

Sel
1 (μ;π ) = 0, Sel

2 (μ;π ) = 0, (10.90a)

Sinel
1 (μ;π ) = 1+ |α1|2 2γ a11

a 2
11 + μ2

, (10.90b)

Sinel
2 (μ;π ) = 1+ |α2|2

(

1+ zeq
) 2γ a11

a 2
11 + μ2

, (10.90c)

Sinel
12 (μ) = γ |α1| |α2|

a 2
11 + μ2

[(

2+ zeq
)

a11 + iμzeq
]

. (10.90d)

Note that |α1|2
2−|α1|2 ≤ 1+zeq < 1 and that the supremum of this quantity is 1, which

is reached for Ω2 →+∞.
One of the eigenvalues of the 2× 2 matrix

(

Sinel
i j (0)

)

is slightly below 1; the case
of

(

Sinel
i j (a11)

)

is similar. This means that there exist linear combinations of the two
outputs whose spectra go slightly below the shot noise, as in the case of Sect. 10.6.1.

10.7 Summary

We summarise only what concerns the two level atom, not the general introduction
of the feedback. We give only quantities in the rotating frame.
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10.7.1 Atomic and Measurement Quantities

• Forward channel, the channel of the lost light and of the stimulating laser:
channel 0.

• Side channel 1, the channel of the detected, in-loop light: channel 1.
• Side channel 2, the channel of the free, detectable light: channel 2.
• Detection operators: Ř1 = √γ

(

α1 σ− − ic σϕ
)

, Ř2 = √γ α2 σ−.
• Coefficient of the thermal disturbance: n ≥ 0.
• Coefficient of the dephasing disturbance: kd ≥ 0.
• Resonance frequency of the atom: ω0 > 0.
• Frequency of the stimulating laser and of the local oscillator: ω > 0.
• Detuning: Δω = ω0 − ω.
• Rabi frequency: Ω ≥ 0.
• Natural linewidth: γ > 0.
• Measurement phases: ϑi = argαi ∈ (−π, π ], i = 1, 2.
• Proportions of light in the two side channels and in the forward channel:
|α0|2, |α1|2 and |α2|2 with |α0|2 + |α1|2 + |α2|2 = 1, 0 < |α1|2 < 1.

• Feedback control parameter: c ∈ R.
• Feedback phase: ϕ ∈ [0, π ).
• σθ = eiθσ− + e−iθσ+ = "u(θ ) · "σ ; "u(θ ) = (

cos θ sin θ 0
)T

.

• Dynamical matrix: A =
⎛

⎝

a11 a12 0
a21 a22 Ω

0 −Ω a33

⎞

⎠, det A > 0, k = 2n + 1+ 4kd,

– a11 = γ

2 k + 2γ c2 sin2 ϕ + 2cγ |α1| sinϕ cosϑ1 ≥ 0,
– a22 = γ

2 k + 2γ c2 cos2 ϕ − 2cγ |α1| cosϕ sinϑ1 ≥ 0,
– a33 = γ (1+ 2n)+ 2γ c2 − 2cγ |α1| sin(ϑ1 − ϕ) ≥ 2γ n + γ

2 > 0,
– a12 = Δω + 2cγ |α1| sinϕ sinϑ1 − γ c2 sin 2ϕ,
– a21 = −Δω − 2cγ |α1| cosϕ cosϑ1 − γ c2 sin 2ϕ,
– a11 + a22 = a33 + 4γ kd.

• Equilibrium state: ηeq := 1

2

(

1+"xeq · "σ
)

, "xeq := γ

A

⎛

⎝

0
0

2c|α1| sin(ϑ1 − ϕ)− 1

⎞

⎠.

• Sign of zeq: zeq > 0 iff 2c|α1| sin(ϑ1 − ϕ) > 1.

10.7.2 Homodyne Spectral Densities

We have three homodyne spectra: the spectrum of the in-loop light in channel 1, the
spectrum of the free light in channel 2 and the spectrum of the cross-correlations.

• Si j (μ) = Sel
i j (μ) + Sinel

i j (μ), i, j = 1, 2. When c = 0, Sii , Sel
i i and Sinel

i i become
identical to the spectral densities Shom, Sel

hom and Sinel
hom of the previous chapter.

• Normalised shot noise level: 1.
• Elastic or coherent densities:
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Sel
i j (μ) = 2πmi m jδ(μ), mi = √γ |αi |

(

xeq cosϑi + yeq sinϑi
)

.

• Inelastic or incoherent spectrum for channel 1, the in-loop light:

Sinel
11 (μ) ≡ Sinel

1 (μ;ϑ1) = 1+ 2γ |α1|2
∫ +∞

0
cosμt Tr

{

σϑ1 eĽt [τ1]
}

dt

= 1+ 2 |α1|2
(

γ A

A2 + μ2
"t1
)

· "u(ϑ1),

τ1 = eiϑ1τ + e−iϑ1τ ∗ + ĩc[ηeq, σϕ], c̃ =
{

c
|α1| , if α1 �= 0,

0, if α1 = 0,

"t1 = Tr{τ1 "σ } =

⎛

⎜

⎜

⎝

(

1+ zeq − x2
eq

)

cosϑ1 − xeq yeq sinϑ1
(

1+ zeq − y2
eq

)

sinϑ1 − xeq yeq cosϑ1

−(1+ zeq
)(

xeq cosϑ1 + yeq sinϑ1
)

⎞

⎟

⎟

⎠

+ 2̃c "u(ϕ)× "xeq .

• Inelastic or incoherent spectrum for channel 2, the free-space light:

Sinel
22 (μ) ≡ Sinel

2 (μ;ϑ2) = 1+ 2γ |α2|2
∫ +∞

0
cosμt Tr

{

σϑ2 eĽt [τ2]
}

dt

= 1+ 2 |α2|2
(

γ A

A2 + μ2
"t2
)

· "u(ϑ2),

τ2 = eiϑ2τ + e−iϑ2τ ∗,

"t2 = Tr{τ2 "σ } =

⎛

⎜

⎜

⎝

(

1+ zeq − x2
eq

)

cosϑ2 − xeq yeq sinϑ2
(

1+ zeq − y2
eq

)

sinϑ2 − xeq yeq cosϑ2

−(1+ zeq
)(

xeq cosϑ2 + yeq sinϑ2
)

⎞

⎟

⎟

⎠

.

• Spectrum of the inelastic cross-correlations:

Re Sinel
12 (μ) = "u(ϑ1) ·

(

γ |α1| |α2| A

A2 + μ2
"t2
)

+ "u(ϑ2) ·
(

γ |α1| |α2| A

A2 + μ2
"t1
)

,

Im Sinel
12 (μ) = "u(ϑ1) ·

(

γ |α1| |α2|μ
A2 + μ2

"t2
)

− "u(ϑ2) ·
(

γ |α1| |α2|μ
A2 + μ2

"t1
)

.
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• Positivity: Sinel
11 (μ)+Sinel

22 (μ)
2 ±

√

(

Sinel
11 (μ)−Sinel

22 (μ)
2

)2
+ ∣

∣Sinel
12 (μ)

∣

∣

2 ≥ 0.

• Intensity:

Πk(ϑk) = 1

2πγ

∫ +∞

−∞

[

Sinel
k (μ;ϑk)− 1

]

dμ = |αk |2 "tk · "u(ϑk). (10.91)

• Global squeezing parameter in channel 2:

Σ2 = min
ϑ2

Π2(ϑ2) = |α2|2
[

ASηeq + zeq +
∣

∣zeq

∣

∣

]

; (10.92)

in the case with feedback the direct proportionality between the global squeezing
parameter of the light and the atomic squeezing parameter is lost, because zeq can
be positive.

10.7.3 Important Features of the Homodyne Spectral Densities

• Tunable squeezing: the parameters can be chosen to have squeezing around a
preassigned value of μ, see Figs. 10.2 and 10.4. The minima are symmetric with
respect to μ = 0.

• In channel 1 it is possible to have spectra with big shot-noise wells, see Fig. 10.2.
• Feedback can enhance the squeezing of the light in channel 2, see Fig. 10.4.
• There is no evidence of particular connections between squeezing in the two

channels, see Fig. 10.3
• The Heisenberg-type relations hold for the light in channel 2, see Fig. 10.5.
• Cross-correlations can be strong, see Fig. 10.7.
• Feedback can produce line narrowing, see Fig. 10.6. We say that there is line

narrowing when the spectrum presents a peak of width less than the standard
width γ k.

• Cross-correlation can connect the line narrowing and the presence of sub-shot
noise, see Figs. 10.8 and 10.9.
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Appendix A
Ordinary SDEs

We collect in this appendix some notions and theorems in Itô stochastic calculus
and SDEs needed in our presentation of the theory of quantum open systems and
continuous measurements. We use as sources the books [1–3], but one can find
these notions in any good book on SDEs.

In probability theory it is usual to consider only real processes. However, we want
to apply stochastic calculus to quantum mechanics, where complex Hilbert spaces
enter into play. Therefore, we shall present directly SDEs for complex processes;
with respect to our sources [1–3], this nearly amounts to a mere change of notations.

A.1 Probability Spaces and Random Variables

Let us start by recalling the terminology and a few notions of probability theory.

A.1.1 Probability Spaces

A probability space is a triple (Ω,F,P), where (Ω,F) is a measurable space and
P is a probability measure on F. The set Ω consists of all the possible results ω
of a classical random experiment and it is called the sample space. The set F is
called the space of the events and it consists of subsets A of Ω, each A describing
an event which occurs every time the experiment produces an outcome ω ∈ A.
Before the experiment, P(A) evaluates the probability that an event A occurs. After
the experiment, a single ω has been produced, all the events A with ω ∈ A have
occurred and the others have not.

A.1.1.1 Measurable Spaces

A measurable space is a couple (E,E), where E is a non-empty set and E is a
σ -algebra of subsets of E . A σ -algebra, called also σ -field, is a family of subsets of
E such that

263
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(a) E ∈ E,
(b) A ∈ E⇒ E \ A ∈ E,
(c) {A j , j = 1, . . .} ⊂ E⇒⋃∞

j=1 A j ∈ E.

If E is the total set, E \ A is the complement of A and it is also denoted by Ac.
Let us recall that the intersection of σ -algebras is a σ -algebra. If A is a collection

of subsets of A, we denote by σ (A) the σ -algebra generated by A, i.e. the smallest
σ -algebra containing all the sets in A. When more classes of sets are involved,
say A, B, . . ., we use the notations A ∨ B ∨ · · · ≡ σ (A,B, . . .) for the σ -algebra
generated by the union A ∪ B ∪ . . ..

Borel σ -Algebra

If E is a topological space, the Borel σ -algebra B(E) is the σ -algebra generated by
the open sets. We always understand that the spaces C

d or R
d are equipped with the

Borel σ -algebras B(Cd ) or B(Rd ). If A is a subset of C
d , we denote by B(A) the

σ -algebra A∩B(Cd ), i.e. all the subsets of A of the form A∩C for some C ∈ B(Cd ).
We call B(A) again the Borel σ -algebra of A.

Product σ -Algebra

Let (E,E) and (E ′,E′) be two measurable spaces. By E⊗E′ we mean the σ -algebra
on E × E ′ generated by the rectangles: E⊗ E′ := σ

(

A × B : A ∈ E, B ∈ E′
)

.

Measurable Function

Let (E,E) and (E ′,E′) be two measurable spaces. A function f : E → E ′ is said
to be measurable, or E/E′-measurable, if the inverse image of any measurable set is
measurable, i.e. A ∈ E′ ⇒ f −1(A) ∈ E. To declare the measurability of a function,
we also write f : (E,E) → (E ′,E′).

Theorem A.1. Let (E,E) and (E
′
,E

′
) be measurable spaces.

1. If f : (E,E) → (E
′
,E

′
) and g : (E

′
,E

′
) → (E

′′
,E

′′
), then g ◦ f : (E,E) →

(E
′′
,E

′′
).

2. If f : E → E ′, A′ ⊂ E′ with σ (A′) = E′, and f −1(A′) ∈ E, ∀A′ ∈ A′, then f is
E/E′-measurable.

Borel Isomorphic Spaces

Let (E,E) and (E
′
,E

′
) be measurable spaces. An invertible function f from E to

E ′ is called bimeasurable if both f and its inverse are measurable. Two measurable
spaces are said to be Borel isomorphic (B-isomorphic) if there exists a bimeasurable
map from one of the spaces to the other. The Borel isomorphism is an equivalence
relation.
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A.1.1.2 Standard Measurable Spaces

The notion of standard measurable space (or standard Borel space) is needed for the
composition of instruments (Sect. B.4.3), for the dilation of instruments (Theorem
B.10), for the separability of L p spaces (Remark A.4), for Kolmogorov’s extension
theorem [4, p. 18] and the related problems of extension of probabilities discussed
in Sect. A.5.5 [4].

Definition A.2. A measurable space is called standard (also standard Borel space)
if it is B-isomorphic to a Borel subset of R with its Borel σ -algebra.

Theorem A.3.

1. Every standard measurable space is B-isomorphic to a compact subset of R.
2. Every standard measurable space is B-isomorphic to one of the following stan-

dard measurable spaces: [0, 1], N, {1, 2, . . . , n} (n = 1, 2, . . .).
3. Let E be a Polish space (complete, separable, metric space). Then,

(

E,B(E)
)

is
standard.

4. Let (E,E) and (E ′,E′) be two standard measurable spaces. Then, the measur-
able space (E×E ′, E⊗E′) is standard. This statement holds also for the product
of countably many standard measurable spaces.

A.1.1.3 Probability Measures

A probability measure P on F, or on (Ω,F) if we want to underline also the sample
space, is a non-negative, σ -additive measure with mass 1, i.e.

(a) P : F → [0, 1],
(b) P(Ω) = 1,

(c) {A j , j = 1, . . .} ⊂ F with Ai ∩ A j = ∅ for i �= j ⇒ P

(

⋃∞
j=1 A j

)

=
∑∞

j=1 P
(

A j
)

.

A property p is said to hold almost surely (a.s.) or with probability one in Ω if
∃A ∈ F such that A ⊃ {ω : p is false at ω} and P(A) = 0.

The expression “almost surely” in probability theory corresponds to the expres-
sion “almost everywhere” in measure theory.

A.1.1.4 Random Variables

• Given a probability space (Ω,F,P), a random variable X with values in a
measurable space (E,E) is a F/E-measurable function from Ω to E , i.e. X :
(Ω,F) → (E,E).

• The distribution or law of the random variable X is the probability measure PX

on (E,E) defined by PX (A) := P[X ∈ A] ≡ P[{ω ∈ Ω : X (ω) ∈ A}], A ∈ E.

The random variable X describes a quantity, observed during the random experi-
ment, taking a value x ∈ E which depends on the general outcome ω ∈ Ω. At the
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end of the experiment, if ω is observed, then we know that X has taken the value
x = X (ω), while a priori evaluations on X are given by its distribution.

• Given a function X : Ω → (E,E), the smallest σ -algebra in Ω making X mea-
surable is σ (X ) = {X−1(A)|A ∈ E}; σ (X ) is called the σ -algebra generated by
the random variable X . Similarly, the σ -algebra generated by a family of random
variables is σ (Xi , i ∈ I ) :=∨

i∈I σ (Xi ).

The symbol X−1(A) denotes the inverse image of A ∈ E, i.e. X−1(A) = {ω ∈ Ω :
X (ω) ∈ A}. The image of a set F is X (F), i.e. X (F) = {e ∈ E : ∃ω ∈ FwithX (ω)
= e}. Let us note that these definitions give

∀A ∈ E : PX (A) = P[X−1(A)], (A.1a)

∀F ∈ σ (X ) : PX
(

X (F)
) = P[F]. (A.1b)

Independence

Given the probability space (Ω,F,P), the events Fi , i ∈ I , are said to be indepen-
dent if

P[Fi1 ∩ · · · ∩ Fik ] = P[Fi1 ] · · ·P[Fik ] (A.2)

for all choices of the integer k ≥ 2 and of the indices i1, . . . , ik ∈ I . The sub-σ -
algebras Fi , i ∈ I , are said to be independent if equality (A.2) holds for all choices
of the integer k ≥ 2, of the indices i1, . . . , ik ∈ I and of the events Fi1 ∈ Fi1 , . . . ,
Fik ∈ Fik . The random variables Xi , i ∈ I , are said to be independent if the σ -
algebras σ (Xi ), i ∈ I , generated by them are independent.

A complex or real random variable X is said to be integrable if
∫

Ω
|X (ω)|P(dω) < +∞. Then its mean value (expectation) exists, we denote it

by E[X ] and it is given by

E[X ] =
∫

Ω

X (ω)P(dω) =
∫

C

z PX (dz) =
∫

R

x PRe X (dx)+ i
∫

R

y PIm X (dy).

The mean provides a very synthetic a priori evaluation on X . If X is a C
d -valued ran-

dom variable, by E[X ] we denote the vector of the mean values of the components
of X .

L p-spaces

As usual, two random variables are considered to be equivalent if they are equal a.s.
and we denote by L p(Ω,F,P), p ∈ [1,∞), the Banach spaces of the (equivalence
classes of) p-integrable complex random variables. Recall that the norm in L p is
E[|X |p]1/p and that L2 is a Hilbert space with inner product 〈X |Y 〉 = E[X Y ].
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Moreover, L∞(Ω,F,P) is the Banach space of the (equivalence classes of) essen-
tially bounded complex random variables with the supremum norm. When F =
G ∨ N, where G is a σ -algebra and N is a collection of events of probability zero,
we have L p(Ω,F,P) = L p(Ω,G,P) by a natural identification.

Remark A.4. If P is a probability on a standard measurable space (Ω,F), then the
spaces L p(Ω,F,P), p ∈ [1,∞), are separable. The same statement holds if F =
G ∨N, where (Ω,G) is a standard measurable space and N is a collection of events
of probability zero [4, p. 20].

A.1.2 Densities, Absolute Continuity, Conditional Expectations

A.1.2.1 The Radon-Nikodym Theorem

Given a measurable space (Ω,F) and two measures P and Q on it, the measure
Q is said to be absolutely continuous with respect to P, and we write Q ( P, if
P(F) = 0 implies Q(F) = 0. When Q ( P and P ( Q, the two measures are said
to be equivalent, and we write Q ∼ P.

Given a probability space (Ω,F,P), a non-negative random variable Z with
E[Z ] = 1 can be used as a density to define a new probability measure Q on (Ω,F):

∀F ∈ F Q(F) :=
∫

F
Z (ω) P(dω) ≡ E[Z1F ]. (A.3)

As P(F) = 0 implies Q(F) = 0, then Q ( P. The Radon–Nikodym theorem for
probabilities gives the reverse statement: if P and Q are two probability measures
on (Ω,F) such that Q ( P, then there exists a random variable Z ≥ 0 such that Eq.
(A.3) holds; Z is unique P-a.s. The random variable Z is called Radon–Nikodym
derivative and the following notation is used:

Z (ω) = Q(dω)

P(dω)
. (A.4)

Let us denote by EQ the expectation with respect to Q. Then, we have that X ∈
L1(Q) if and only if X Z ∈ L1(P) and that EQ[X ] = E[X Z ], for X ∈ L1(Q). If
Z �= 0 P-a.s., let us define Z−1 to be the reciprocal of Z over the set {Z �= 0} and
zero elsewhere. Then, Z−1 is a non-negative random variable with

EQ[Z−1] =
∫

{Z �=0}
Z−1(ω)Q(dω)

=
∫

{Z �=0}
Z−1(ω) Z (ω) P(dω) = P(Z �= 0) = 1,

and, for every F ∈ F, we have
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P(F) = E[1F∩{Z �=0}] = E[Z Z−11F ] = EQ[Z−11F ] =
∫

F
Z (ω)−1

Q(dω) .

Therefore, one has also P ( Q and the two probability measures P and Q are equiv-
alent: P ∼ Q. In this case, given two random variables, the notions of equivalence
with respect to P and Q coincide.

A.1.2.2 Conditional Expectations

A key tool in the theory of stochastic processes is the notion of conditional expecta-
tion. Let (Ω,F,P) be a probability space, X a (complex or real) integrable random
variable and G a sub-σ -algebra of F. If F consists of all the events regarding a
random experiment, then G could be a subset of events whose occurrence is already
known at an intermediate experimental step, before the experiment comes to its
end. In this case the a priori expectation E[X ] is updated at the intermediate step
on the basis of the acquired information described by G. Mathematically, such an
updated expectation is found by looking for a random variable Y (because it is not
known before of the experiment), G-measurable (because it can depend only on
the information described by G), such that

∫

G Y (ω)P(dω) = ∫

G X (ω)P(dω) for all
G ∈ G (because it has to describe the expectation for X on the basis of the a priori
evaluations on the experiment P and of the new information G). By the Radon–
Nikodym theorem there exists a P-a.s. unique, integrable, G-measurable random
variable Y satisfying these properties. This random variable Y is denoted by E[X |G]
and it is called the conditional expectation of X given the σ -algebra G. In a more
symbolic way:

if X ∈ L1(Ω,F,P), the conditional expectation of X given G is defined by
E[X |G] ∈ L1(Ω,G,P) and E

[

1G E[X |G]
] = E[1G X ] for all G ∈ G.

When only square-integrable random variables are considered, conditional expec-
tations can be seen as orthogonal projections. The space L2(Ω,G,P) is a closed
subspace of the Hilbert space L2(Ω,F,P) and E[•|G] is the orthogonal projection
from L2(Ω,F,P) to L2(Ω,G,P). For a presentation of the main properties of con-
ditional expectations see [2, p. 9] or [3, pp. 51–56].

Analogously, we can update the probability of an event F ∈ F. If the probability
of F is evaluated with P(F) before of the experiment, then, once all the information
described by G ⊂ F is acquired, the probability of F is updated with

P(F |G) := E[1F |G]. (A.5)

This is a random variable and it is G-measurable as it depends on the events in G

which occur.
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A.2 Filtrations and Processes

A.2.1 Stochastic Processes

A stochastic process is a family X = {X (t), t ∈ I } of random variables defined
in some probability space (Ω,F,P) and with values in some measurable space (the
state space). As for any family of random variables, σ

(

X (t), t ∈ I
)

denotes the
σ -algebra generated by the process. Two or more processes are said to be inde-
pendent if the σ -algebras generated by them are independent. A stochastic process
provides the mathematical model of a quantity observed continuously in time during
a random experiment.

We consider only (real or complex) finite dimensional stochastic process, with
the time t in [0,+∞) or sometimes in [t0, T ]. If X is a stochastic process and ω ∈ Ω

a sample point, the function t �→ X (t, ω) is a sample path realisation or trajectory
of the process X . A process X is continuous if all its trajectories are continuous
functions, right continuous if all its trajectories are right continuous functions, etc.
A process X is integrable if X (t) ∈ L1(Ω,F,P) for all t .

Definition A.5. Two d-dimensional processes X and Y , defined in two possibly dif-
ferent probability spaces (Ω,F,P) and (Ω′,F′,P′), are said to have the same law if
they have the same finite dimensional distributions, i.e. for any choice of the integer
n and of the times 0 ≤ t1 < t2 < · · · < tn the random vectors (X (t1), . . . , X (tn))
and (Y (t1), . . . ,Y (tn)) have the same distribution on C

nd (or R
nd ).

When (Ω,F,P) = (Ω′,F′,P′), the process Y is said to be a modification or
version of X if Y (t) and X (t) are equivalent random variables for every t:

P[X (t) = Y (t)] = 1 , ∀t ≥ 0 .

The two processes are called indistinguishable if almost all their sample paths
agree, i.e. the complement of the set

{

ω ∈ Ω : X (t, ω) = Y (t, ω), ∀t ≥ 0
}

is
contained in a measurable set of probability zero.

Here above we give the definition of equality in law of processes, based on finite
dimensional distributions. The following proposition gives some other justification
of such a notion.

Proposition A.6 (see [3, Prop. 1.12, p. 28]). Let us have a d-dimensional process
X (t), t ∈ [0, T ] (eventually T = +∞), defined on (Ω,F), but considered under two
probabilities P1 and P2. Assume that X has the same finite dimensional distributions
under both probabilities. Then, P1 and P2 coincide on the σ -algebra σ

(

X (t), t ∈
[0, T ]

)

.

When {ω ∈ Ω : X (t, ω) = Y (t, ω), ∀t ≥ 0} is measurable, which is usually true
when some regularity properties hold for the trajectories of the two processes, we
can say that X and Y are indistinguishable if

P[X (t) = Y (t), ∀t ≥ 0] = 1 .
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If X and Y are indistinguishable, then one is a modification of the other. When Y
is a modification of X , then the two processes have the same law.

If X and Y are one the modification of the other and both are a.s. continuous,
then they are indistinguishable.

A.2.2 Filtrations

Let (Ω,F,P) be a probability space. A filtration is a family (Ft )t≥0 of increasing
sub-σ -algebras of F, i.e. Fs ⊂ Ft ⊂ F for 0 ≤ s < t < +∞. Sometimes,
(

Ω,F, (Ft ),P
)

is said to be a stochastic basis. Typically a filtration describes the
accumulation of information during time: each Ft is the collection of all the events
which we can decide whether they have been verified or not up to time t .

Let us denote by N the class of all P-null sets in F, i.e.

N := {A ∈ F : P(A) = 0} .

• The filtration is said to be right continuous if Ft = Ft+ for all t ≥ 0, where Ft+ is
the σ -algebra of events decidable immediately after t , i.e.

Ft+ :=
⋂

s:s>t

Fs . (A.6)

• The stochastic basis (or the filtration) is said to satisfy the usual conditions if
the filtration is right continuous and F0 contains N. Obviously N ⊂ F0 implies
N ⊂ Ft , ∀t ≥ 0.

Given a stochastic basis
(

Ω,F, (Ft ),P
)

we can construct a stochastic basis
(

Ω,F,
(˜Ft ),P

)

, satisfying the usual conditions, by setting ˜Ft := Ft+ ∨N. In the following
we shall try to emphasise where usual conditions are useful.

A.2.3 Adapted Processes

Definition A.7. A stochastic process X is said to be adapted to a filtration (Ft ) if,
for all t ≥ 0, the random variable X (t) is Ft -measurable. In this case also the
expression “non-anticipating process” is used.

The notion of adapted process has both a technical and a physical meaning. It
catches the idea of not anticipating the future.

The request that F0 contains N is useful when we want to modify a process to
gain some good property, but without loosing the property of being adapted with
respect to (Ft ): if Y is a modification of an (Ft )-adapted process X , then Y is guar-
anteed to be (Ft )-adapted provided F0 contains all P-null sets. For instance, let Y be
a continuous modification of an adapted process X . This means that Y is a process
with continuous trajectories such that P[Xt = Yt ] = 1 for all t . To know that X is
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adapted does not allow to conclude that Y is adapted, because Xt and Yt could differ
over a set not belonging to Ft . But if N ⊂ Ft this is not possible and Y turns out to
be adapted.

A.2.3.1 Natural Filtration and Augmented Natural Filtration

Given a process X let us define FX
t := σ (X (s) : 0 ≤ s ≤ t), i.e. FX

t is the smallest
σ -algebra with respect to which X (s) is measurable for every s ∈ [0, t]:

(

FX
t

)

is
called the natural filtration generated by X . A process is always adapted to its natu-
ral filtration (FX

t ) and it is adapted to another filtration (Ft ) if and only if Ft ⊃ FX
t .

It is often useful to add the P-null sets N to the natural filtration
(

FX
t

)

of a process

X : the filtration
(

F
X
t

)

, defined by F
X
t := FX

t ∨ N, is called the augmented natural

filtration of X . There is an important difference between the natural filtration of a
process and its augmentation. To define FX

t we need the sample space Ω, the state
space E with its σ -algebra E and the functions Xs : Ω → E with s ∈ [0, t]. To

define F
X
t we need also N, the events with zero probability, and, so, we need also

the σ -algebra F and the probability P.

Definition A.8. A process X is called measurable if the function [0,+∞) × Ω *
(t, ω) �→ X (t, ω) is B([0+∞))⊗ F-measurable.

We need the joint measurability in t and ω, for instance, when we want to exchange
an integral over time and an expectation by invoking Fubini theorem (see Sect.
A.3.2).

Definition A.9. A process X is called progressively measurable or progressive if
for every T ≥ 0 the function [0, T ] × Ω * (t, ω) �→ X (t, ω) is B([0, T ]) ⊗ FT -
measurable.

Trivially, a progressive process is adapted and measurable. The converse is true
up to a modification; moreover, an adapted process having trajectories with cer-
tain regularity properties is progressively measurable [1, Propositions 1.12 and 1.13
p. 5].

Proposition A.10. If the stochastic process X is measurable and adapted to the
filtration (Ft ), then it has a progressively measurable modification.

If the stochastic process X is adapted to the filtration (Ft ) and every sample
path is right continuous or else every sample path is left-continuous, then X is also
progressively measurable with respect to (Ft ).

With respect to the idea of adapted process, the notion of progressive process is
more technical, but it is not so much restrictive due to the proposition above. It is
useful to have a progressive process when one has to consider the stopped process
(see Remark A.17) or the integral over time of a process and the result has to be
adapted (see Sect. A.3.2).
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A.2.4 The Law of a Continuous Process

Any continuous process can be represented in the space of continuous functions (the
space of its possible trajectories) and this fact can be used to interpret such a process
as a single random variable [3, Exercise E1.4, pp. 29–30, 275]. By enlarging the
trajectory space, also processes with jumps could be treated [4, pp. 20–22], but we
do not need them in this book. As we have always to do with continuous processes
starting from zero, we impose this condition, while it is trivial to extend the whole
construction to the generic case.

Remark A.11 (The canonical trajectory space for a continuous process starting from
zero). Let I be the finite interval [0, T ] for some T > 0, or I = [0,+∞). Let Cd

0 (I )
be the space of all R

d -valued continuous functions on I starting from zero. Then,
let us define the coordinate mapping process Π(t, c) := c(t), t ∈ I , c ∈ Cd

0 (I ).
The σ -algebra FΠ generated by the process Π(t), t ∈ I , is the

σ -algebra CI generated by the cylinder sets, i.e. the sets of the form
{

c ∈ Cd
0 (I ) :

(

c(t1), . . . , c(tn)
) ∈ A

}

, n ≥ 1, A ∈ B(Rd×n). Moreover, it is possi-
ble to define a metric on Cd

0 (I ) which makes it a complete separable metric space
with Borel σ -algebra B

(

Cd
0 (I )

) = CI = FΠ (the topology is the one of uniform
convergence on the compact sets). Then, by Theorem A.3, the measurable space
(

Cd
0 (I ), CI

)

is standard.

Proposition A.12 (A continuous process as a single random variable). Let X (t),
t ∈ I , be a continuous, adapted, d-dimensional real process in the stochastic basis
(

Ω,F, (Ft ),P
)

with X (0) = 0. Let us introduce the application ΞX : Ω → Cd
0 (I )

by ΞX (ω) = {t �→ X (t, ω)}, i.e. ΞX associates to every sample point ω the relative

trajectory of X. Then, ΞX is a random variable with values in
(

Cd
0 (I ), CI

)

.

We can say that the map ΞX identifies the process X with the coordinate mapping
process Π.

Remark A.13. We can call law of the continuous process X the distribution of the
random variable ΞX ; the distribution of a random variable is defined in Sect. A.1.1.4.
It turns out that the distribution of ΞX is uniquely determined by finite dimensional
distributions of the process X and, so, this definition of law is equivalent to the
definition of law of a process as the collection of the finite dimensional distributions
(Definition A.5).

A.2.5 Martingales and Stopping Times

Definition A.14. A one-dimensional complex process X is said to be an (Ft )-
martingale if it is (Ft )-adapted, integrable and

E[X (t)|Fs] = X (s) P-a.s., for every 0 ≤ s < t .
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When the process X is real, adapted and integrable, it is called a supermartingale if
E[X (t)|Fs] ≤ X (s), and it is called a submartingale if E[X (t)|Fs] ≥ X (s).

We can interpret E[X (t)|Fs] by saying that past and present (the present is s)
are frozen and we take the mean of X (t) only with respect to all the stochasticity
entering into play in the future.

Remark A.15. The mean value of a martingale is constant in time. Moreover (see [2]
Theorem 3.13 p. 16), if the filtration satisfies the usual conditions, every martingale
has a modification, which is again a martingale, having right continuous trajectories
with left limits.

Definition A.16. A random variable τ : Ω → [0,+∞] is called a stopping time,
or, better, an (Ft )-stopping time, if {τ ≤ t} ∈ Ft for all t ≥ 0.

A stopping time describes the occurrence instant of a random phenomenon
observed during the random experiment related to (Ft ).

Remark A.17. If τ is a finite stopping time and X is a measurable process, then
ω �→ X (τ (ω), ω) is a random variable. In this statement the joint measurability in
(t, ω) of X is crucial in order that X (τ ) be F-measurable. Moreover, if τ is a stopping
time, then τ ∧ t ≡ min{τ, t} is a finite stopping time and, if X is a progressive
process, X (t ∧ τ ) is an Ft -measurable random variable and the stopped process
{X (t ∧ τ ), t ≥ 0} is a progressive process. Again the progressive character of X is
crucial in order that the stopped process be adapted.

Definition A.18. A process X is a local martingale, with respect to a filtration (Ft ),
if there exists an increasing sequence of stopping times τn such that τn −→

n→+∞ +∞
a.s. and {X (t ∧ τn), t ≥ 0} is an (Ft )-martingale for all n.

Remark A.19. Every martingale is a local martingale; it is enough to take τn = +∞
for all n. If X is a local martingale, X (0) is integrable; indeed, X (0) = X (0 ∧ τn)
and X (• ∧ τn) is a martingale. However, we do not know if X (t) is integrable. There
exist either non-integrable local martingales or integrable local martingales which
are not martingales. Under usual conditions, by modification, every local martingale
can be taken right continuous, and so progressive.

Proposition A.20. A non-negative local martingale is a supermartingale. It is a
martingale if and only if its mean is constant in time.

A.2.6 The Wiener Process

A Wiener process W is a Gaussian process, with independent and stationary incre-
ments, with mean zero and variance proportional to t , or covariance matrix propor-
tional to t1 in the multidimensional case. It is usual to take it exactly equal to t1
(standard Wiener process). At the price of a modification, it is always possible to
obtain continuous trajectories. Moreover, for the developments of stochastic calcu-
lus, where adapted processes are integrated with respect to Wiener processes, it is
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convenient to include the filtration in the definition of Wiener process, in order to
allow the filtration (Ft ) to be bigger than (FW

t ). Without loss of generality, we have
the following definition.

Definition A.21. Let
(

Ω,F, (Ft ),P
)

be a stochastic basis. A d-dimensional Wiener
process W ≡ {W j (t), t ≥ 0, j = 1, . . . , d} is a continuous, R

d -valued, adapted
process with the following properties:

(i) W (0) = 0 a.s.;
(ii) for 0 ≤ s < t < +∞ the increment W (t) − W (s) is normal with vector of

means 0 and covariance matrix (t − s)1;
(iii) for 0 ≤ s < t < +∞ the increment W (t)−W (s) is independent of Fs .

It would be equivalent to define a one-dimensional Wiener process and to say that
a d-dimensional Wiener process is a collection of d independent one-dimensional
Wiener processes.

Remark A.22. Let W be a Wiener process in
(

Ω,F, (Ft ),P
)

. Then W is a Wiener

process also in
(

Ω,F, (FW
t ),P

)

and in
(

Ω,F, (F
W
t ),P

)

. The stochastic basis
(

Ω,F,

(F
W
t ),P

)

automatically satisfies the usual conditions [3, pp. 58–60].

The following remark summarises the canonical construction of the Wiener pro-
cess; see for instance [1, pp. 59-60, 71].

Remark A.23. Let
(

Cd
0 (0,∞), C∞

)

be the trajectory space of the d-dimensional

continuous functions starting from zero and let Π be the coordinate mapping pro-
cess, both introduced in Remark A.11. There exists a unique probability measure PW

(the Wiener measure) on
(

Cd
0 (0,∞), C∞

)

such that Π is a d-dimensional Wiener

process with respect to the filtration (FΠ
t ) and thus also with respect to the filtration

(F
Π

t ), where we mean the augmentation with respect to
(

Cd
0 (0,∞), C∞, PW

)

.

In the mathematical literature, what we are calling Wiener process is termed
also Brownian motion. However in the physical literature the Brownian motion is
a physical phenomenon which can be described by various mathematical models
(even quantum models); the simplest and most famous mathematical model of the
Brownian motion is a process proportional to Wiener process, with a temperature
dependent variance.

A.3 Stochastic Calculus

Let us take now W to be a d-dimensional, continuous, standard Wiener process
defined in a stochastic basis

(

Ω,F, (Ft ),P
)

satisfying the usual conditions.
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A.3.1 Classes of Integrands

For complex-valued measurable adapted processes X , we want to introduce the
integrals

∫ b
a X (t)dt and

∫ b
a X (t)dW j (t) for b ≥ a ≥ 0, j = 1, . . . , d. These

two integrals will define Fb-measurable random variables, up to equivalence. The
integrals will not change if the integrand process X is replaced with a process
X ′ such that X ′(t, ω) = X (t, ω) almost everywhere with respect to “Lebesgue
measure” ⊗ P. Therefore two complex measurable adapted processes X and X ′

are called equivalent if X ′(t, ω) = X (t, ω) almost everywhere with respect to
“Lebesgue measure”⊗ P, that is if

P

[ ∫ +∞

0

∣

∣X (t)− X ′(t)
∣

∣ dt = 0

]

= 1 .

Notice that if X ′ is a measurable modification of X , then X ′ is equivalent to X .
Then, thanks to Proposition A.10, without loss of generality we can always con-
sider progressively measurable integrands and we introduce the following spaces
for p ≥ 1.

• Mp is the linear space of the (equivalence classes of) progressively measurable
complex processes X such that

∫ t

0
E
[|X (s)|p] ds < +∞ , ∀t ≥ 0 . (A.7)

• Lp is the linear space of the (equivalence classes of) progressively measurable
complex processes X such that

P

[ ∫ t

0
|X (s)|p ds < +∞

]

= 1 , ∀t ≥ 0 . (A.8)

Of course Mp ⊂ Lp, and for p < p′ we have Mp′ ⊂ Mp and Lp′ ⊂ Lp. As usual,
we do not distinguish between an equivalence class and a single representative of
the class.

A.3.2 Integrals on Time

When X ∈ L1, by the definition of L1, the trajectories of X are Lebesgue measur-
able and there exists a set ΩT such that P(ΩT ) = 1 and

∫ T
t0
|X (s, ω)| ds < +∞

for ω ∈ ΩT . Moreover, by the continuity of the usual integrals over time, the
function [t0, T ] * t �→ ∫ t

t0
X (s, ω)ds is continuous for ω ∈ ΩT . By Fubini the-

orem, ω �→ ∫ t
t0

X (s, ω)ds is an a.s. finite measurable function (t ≥ t0). By usual
hypotheses, we have that ΩT ∈ F0 ⊂ Ft ; then, we can modify the definition of
this integral over time by taking it to be zero on ΩT

c and in this way we obtain a
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process which is (Ft )-adapted, finite everywhere and continuous as a function of t .
Let us stress that the Ft -measurability condition needs the progressive character of
X ; adaptedness and measurability would imply only that the integral is a.s. equal to
a random variable having this property.

When
(

Ω,F, (Ft ),P
)

satisfies the usual conditions, as we assume, and X ∈ L1,
by t �→ ∫ t

t0
X (s)ds we always mean a (everywhere defined) continuous, adapted

(and, so, progressive) version of the process.
When X ∈ M1, the mean value of the integral exists and, thanks to the joint

(t, ω)-measurability and Fubini theorem,

E

[∫ t

t0

X (s)ds

]

=
∫ t

t0

E[X (s)]ds .

A.3.3 Stochastic Integrals

A process G is said to be simple if there exist a sequence of times 0 = t1 < t2 < · · ·
(without finite limit points) and a sequence of random variables G1,G2, . . . such
that Gα is Ftα -measurable and G(t) =∑+∞

α=1 Gα1[tα,tα+1)(t). For a simple process the
stochastic integral with respect to a component W j of the Wiener process is defined
by

∫ t

0
G(s)dW j (s) =

n(t)−1
∑

α=1

Gα

[

W j (tα+1)−W j (tα)
]+ Gn(t)

[

W j (t)−W j (tn(t))
]

,

(A.9)
where n(t) is the integer such that tn(t) ≤ t < tn(t)+1; if the initial time is not zero we
define

∫ t

t0

G(s)dW j (s) =
∫ t

0
1[t0,t](s)G(s)dW j (s) , t ≥ t0 ≥ 0 .

The crucial point in Eq. (A.9) is that Gα and
[

W j (tα+1)−W j (tα)
]

are indepen-
dent random variables. Then, by suitable limits, the integral is defined as an Ft -
measurable random variable for any G ∈ L2 and every t . As a function of t the
integral process is a local martingale. When G ∈ M2, the integral process turns out
to be a square-integrable martingale. Moreover the integral process has a contin-
uous modification and, as discussed in Sect. A.2.3, when F0 contains all the null
events (as in the case of the usual conditions which we assume), this continuous
modification can be taken to be adapted.

Let us collect the main results on the Itô integral, under usual conditions.

1. When G ∈ L2 and t ≥ t0 ≥ 0, the stochastic integral
∫ t

t0
G(s)dW j (s) is a well-

defined complex-valued random variable (up to equivalence), and

a. the stochastic integral is linear in G;
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b. the process t �→ ∫ t
t0

G(s)dW j (s) is a continuous, adapted (and so progressive)
local martingale;

c.
∫ t

t0
ZG(s)dW j (s) = Z

∫ t
t0

G(s)dW j (s) for any Ft0 -measurable random vari-
able Z .

2. When G,G ′ ∈M2

a. the process t �→ ∫ t
t0

G(s)dW j (s) is a continuous square-integrable martingale,

b. E

[

∫ t
t0

G(s)dW j (s)
]

= 0,

c. E

[

∫ t
t0

G(s)dW j (s)
∫ t

t0
G ′(r )dWi (r )

]

= δi j
∫ t

t0
E
[

G(s)G ′(s)
]

ds and, in partic-

ular, E

[

∣

∣

∣

∫ t
t0

G(s)dW j (s)
∣

∣

∣

2
]

= ∫ t
t0

E
[|G(s)|2] ds.

Property 2(c) is known as Itô isometry.

A.3.4 Itô Formula

A process {X (t), t ≥ t0 ≥ 0} is called Itô process if it is a continuous, adapted
process such that, for every t ≥ t0,

Xi (t) = Xi (t0)+
∫ t

t0

Fi (s) ds +
d
∑

j=1

∫ t

t0

Gi j (s) dW j (s) , i = 1, . . . , n,

with Xi (t0) being Ft0 -measurable and Fi ∈ L1, Gi j ∈ L2. It is usual to say that X
has initial value Xi (t0) and it admits the stochastic differential

dXi (t) = Fi (t) dt +
d
∑

j=1

Gi j (t) dW j (t) .

The stochastic differential is unique, up to an equivalence. The product of Itô
processes is an Itô process and we have

Xi (t)Xk(t) =Xi (t0)Xk(t0)+
∫ t

t0

[

Fi (s)Xk(s)

+ Xi (s)Fk(s)+
d
∑

j=1

Gi j (s)Gk j (s)

]

ds

+
d
∑

j=1

∫ t

t0

[

Gi j (s)Xk(s)+ Xi (s)Gk j (s)
]

dW j (s) . (A.10)
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We can remember this formula by saying that the stochastic differential of the
product is

d
(

Xi (t)Xk(t)
) = Xi (t)

(

dXk(t)
)+ (

dXi (t)
)

Xk(t)+ (

dXi (t)
)(

dXk(t)
)

, (A.11)

where the last term, called the Itô correction, has to be computed by using the
expressions of the two differentials dXi (t) and dXk(t) and the Itô product table:

(dt)2 = 0 , dt dW j (t) = 0 , dW j (t) dW
(t) = δi
 dt . (A.12)

Equation (A.10) is Itô formula for a product. By generalising it to polynomials
and by using Taylor expansions and suitable limits one gets the general Itô formula.

Theorem A.24. Let Xi (t0) be a real Ft0 -measurable random variable, let Fi ∈ L1

and Gi j ∈ L2, i = 1, . . . , n, j = 1, . . . , d, be real processes for t ≥ t0 ≥ 0 and let
X be the Itô process with components

Xi (t) = Xi (t0)+
∫ t

t0

Fi (s) ds +
d
∑

j=1

∫ t

t0

Gi j (s) dW j (s) .

Let f (x, t), x ∈ R
n, t ∈ [t0,+∞) be a complex function twice continuously

differentiable in x and once in t. Let us set

ft (x, t) := ∂ f (x, t)

∂t
, fi (x, t) := ∂ f (x, t)

∂xi
, fik(x, t) := ∂2 f (x, t)

∂xi∂xk
.

Then f
(

X (t), t
)

is an Itô process and for t ≥ t0 ≥ 0

f
(

X (t), t
) = f

(

X (t0), t0
)+

∫ t

t0

[

ft
(

X (s), s
)+

∑

i

fi
(

X (s), s
)

Fi (s)

+ 1

2

∑

ik j

fik
(

X (s), s
)

Gi j (s)Gk j (s)

]

ds (A.13)

+
∑

i j

∫ t

t0

fi
(

X (s), s
)

Gi j (s) dW j (s) .

Note that in this theorem the “spatial” variables are real. If we have a function of
an n-dimensional complex process X and we want to apply Itô formula, it is enough
to consider X as a 2n-dimensional real process.
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A.4 Ordinary Stochastic Differential Equations

In this appendix we consider two types of stochastic differential equations (SDEs)
for processes X taking values in a finite dimensional complex Hilbert space. Here
we introduce the first type, an SDE with coefficients which are non-random func-
tions of the unknown process taken only at the last time. The second type of SDEs
we consider is the Doléans equation (A.26).

A.4.1 The Main Class of SDEs

Hypothesis A.25. Let b and σ j , j = 1, . . . , d, be (Borel) measurable deterministic
functions from C

n × [t0, T ] to C
n .

We consider the SDE

dX (t) = b
(

X (t), t
)

dt +
d
∑

j=1

σ j
(

X (t), t
)

dW j (t) (A.14)

for processes X with values in C
n ≡ H. The term in dt is called the drift and b is

the drift coefficient, and the term in dW (t) is called the diffusion term and σ is the
diffusion coefficient.

We can assume that the Wiener process and the stochastic basis are given and that
they are the ones introduced at the beginning of Sect. A.3. Then, an initial condition
at time t0 for (A.14) is an Ft0 -measurable, H-valued random variable η.

A solution of (A.14) with initial condition X (t0) = η is an Itô process satisfying
(a.s., ∀t ≥ t0)

X (t) = η +
∫ t

t0

b
(

X (s), s
)

ds +
d
∑

j=1

∫ t

t0

σ j
(

X (s), s
)

dW j (s). (A.15)

This solution is said to be unique if any other Itô process X ′ satisfying (A.15) is
indistinguishable from X .

A.4.2 Types of Solutions

There is another way to see at SDE (A.14). Usually, by the physical problem, by the
situation to be modelled, only b, σ and the law of the initial condition are given; the
whole probabilistic structure has to be constructed. Now, we can distinguish among
different concepts of existence and of uniqueness.

Definition A.26. A weak solution of the SDE (A.14) with an initial condition with
law μ is a stochastic basis

(

Ω,F, (Ft ),P
)

satisfying the usual conditions, with a
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Wiener process W , an H-valued Ft0 -measurable random variable η ∼ μ and an
adapted, continuous process X such that for every t ≥ t0 Eq. (A.15) holds.

Definition A.27. The SDE (A.14) admits strong solutions if, for any choice of a
stochastic basis satisfying usual conditions with a Wiener process W and for every
x0 ∈ H, there exists a continuous adapted process X such that Eq. (A.15) holds
with η = x0.

Definition A.28. The solution of the SDE (A.14) is unique in law if, taken any two
solutions

(

Ω,F, (Ft ), P
)

, W , η, X and
(

Ω′,F′, (F′t ), P ′
)

, W ′, η′, X ′, with η ∼ η′,
then the processes X and X ′ have the same law.

Definition A.29. The solution of the SDE (A.14) is pathwise unique if, taken any two
solutions

(

Ω,F, (Ft ), P
)

, W , η, X and
(

Ω,F, (Ft ), P
)

, W , η, X ′, then the processes
X and X ′ are indistinguishable.

Remark A.30.

• Pathwise uniqueness implies uniqueness in law.
• The inclusion of the usual conditions in the definition of solution is only to have

a sufficient condition to guarantee that the solution can be taken both continuous
and adapted.

• In the case of strong solutions with deterministic initial condition x0, it is always

possible to take
(

F
W
t

)

as filtration. In this case there exists a modification X ′ of
X which is

(

FW
t

)

-adapted. This fact can be interpreted by saying that X ′(t) is a
functional of x0 and of the increments W (s)−W (t0) for s ∈ [t0, t].

• When a weak solution X exists, but the equation does not admit strong solutions,

X is adapted to a filtration which is strictly greater than
(

F
W
t

)

.

Proposition A.31 ([1, Prop. 3.20 and Cor. 3.23, pp. 309–311]). The existence of
weak solutions and pathwise uniqueness imply strong existence.

A.4.3 Sufficient Conditions for Existence and Uniqueness

There are various sufficient sets of hypotheses which imply existence and unique-
ness of the solution of our SDE. Let us collect the hypotheses and the main results
we need.

Hypothesis A.32 (Global Lipschitz condition). There exists a constant L(T ) > 0
such that

‖b(x, t)− b(y, t)‖2 +
∑

j

∥

∥σ j (x, t)− σ j (y, t)
∥

∥

2 ≤ L(T ) ‖x − y‖2 (A.16)

for all x, y ∈ C
n and t ∈ [t0, T ].

Hypothesis A.33 (Local Lipschitz condition). For every N > 0 there exists a con-
stant L(N , T ) > 0 such that
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‖b(x, t)− b(y, t)‖2 +
∑

j

∥

∥σ j (x, t)− σ j (y, t)
∥

∥

2 ≤ L(N , T ) ‖x − y‖2 (A.17)

for all t ∈ [t0, T ] and for all x, y ∈ C
n with ‖x‖ ≤ N , ‖y‖ ≤ N .

Hypothesis A.34 (Linear growth condition). There exists a constant M(T ) > 0
such that

‖b(x, t)‖ +
(

∑

j

∥

∥σ j (x, t)
∥

∥

2
)1/2

≤ M(T ) (1+ ‖x‖) (A.18)

for all x ∈ C
n and t ∈ [t0, T ].

Theorem A.35 (Monotone condition [2, pp. 58–59]). There exists a constant
C(T ) ≥ 0 such that

Re〈x |b(x, t)〉 + 1

2

∑

j

∥

∥σ j (x, t)
∥

∥

2 ≤ C(T )
(

1+ ‖x‖2
)

(A.19)

for all x ∈ C
n and t ∈ [t0, T ].

• The linear growth condition A.34 implies the monotone condition A.35.
• The global Lipschitz condition A.32 implies the local Lipschitz condition A.33.
• For time independent coefficients, i.e. b(x, t) = b(x) and σ j (x, t) = σ j (x), the

global Lipschitz condition A.32 implies the linear growth condition A.34.

Theorem A.36 ([2, Theor. 3.5, p. 58];[1, Prop. 3.20, p. 309]). Under Hypothe-
ses A.25, A.33, A.35 the SDE (A.14) admits strong solutions in [t0, T ]. Pathwise
uniqueness and uniqueness in law hold. If Hypotheses A.25, A.33, A.35 hold for
every T > 0, then the SDE (A.14) admits a unique strong solution in [t0,∞).

When the assumptions of the existence-and-uniqueness theorem hold for every
T > 0, the unique strong solution in [t0,∞) is called a global solution.

A.4.4 L p-Estimates on the Solution

Let us consider again a fixed stochastic basis
(

Ω,F, (Ft ),P
)

satisfying the usual
conditions and a standard continuous Wiener process W defined in this stochastic
basis.

Theorem A.37 ([2, Theorem. 3.5, p. 58]; [3, Theorem. 8.10, p. 169]). Under
Hypotheses A.25, A.33, A.35 the SDE (A.15) with initial condition η ∈
L2(Ω,Ft0 ,P; H) has a pathwise unique solution X in [t0, T ]. The solution satisfies

∫ T

t0

E
[‖X (t)‖2

]

dt < +∞ . (A.20)
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Theorem A.38 ([3, Propositions 8.13, 8.15, p. 172]; [2, Theor. 4.3, 4.4, p. 61]).
Let p ≥ 2 and η ∈ L p(Ω,Ft0 ,P; H). If Hypotheses A.25, A.34 hold and it exists a
pathwise unique solution X of (A.15), then there exists a constant c

(

p, T, M(T )
)

such that, for all t0 ≤ s < t ≤ T ,

E

[

sup
t0≤t≤T

‖X (t)‖p

]

≤ c
(

p, T, M(T )
) (

1+ E
[‖η‖p

])

. (A.21)

E
[‖X (t)− X (s)‖p

] ≤ c
(

p, T, M(T )
) (

1+ E
[‖η‖p

])

(t − s)p/2 . (A.22)

A.5 Change of Measure and Girsanov Transformation

As for the whole appendix, also the content of this section is standard in the theory
of stochastic processes and in stochastic calculus. See for instance [1, pp. 156–158,
191–196, 198–201]; [2, 270–272]; [3, pp. 78, 144–149, 180–181]. However, due
to the relevance of this material in the theory of continuous measurements and to
the fact that it is not well known among peoples working in quantum measurement
theory, we think that it is useful and instructive to recall at least some of the proofs.

A.5.1 A Characterisation of the Wiener Process

The following theorem is essentially the same as the Lévy characterisation of the
Wiener process; it only avoids to introduce explicitly the notion of “quadratic vari-
ation of a local martingale”. We take it from [3, Theorem 4.26, p. 78].

Theorem A.39. Let B(t), t ≥ 0, be a continuous d-dimensional adapted real pro-
cess defined in a stochastic basis (Ω,F, (Ft ),P). Let us assume that B(0) = 0

and that the complex process exp
{

i
∑

j λ j B j (t)+ 1
2 |λ|2 t

}

is a martingale for all

λ ∈ R
d . Then, B is a d-dimensional Wiener process with respect to (Ω,F, (Ft ),P).

If B is not continuous, but the stochastic basis satisfies usual conditions, then there
is a continuous modification of B which is a Wiener process.

Proof. The martingale property

E

[

exp

{

i
∑

j

λ j B j (t)+ 1

2
|λ|2 t

}∣

∣

∣

∣

Fs

]

= exp

{

i
∑

j

λ j B j (s)+ 1

2
|λ|2 s

}

can be rewritten as

E

[

exp

{

i
∑

j

λ j
(

B j (t)− B j (s)
)

}∣

∣

∣

∣

Fs

]

= exp

{

− 1

2
|λ|2 (t − s)

}

,
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which implies the independence of the increments from the past and their “Gaus-
sianity” with covariance matrix t times the identity. Therefore, if B is continuous,
all the properties which characterise a Wiener process hold. Otherwise, under usual
conditions, there exists a continuous, adapted modification of B which is a Wiener
process. �

A.5.2 Exponential of Itô Processes

Let W be a d-dimensional Wiener process defined in a stochastic basis
(

Ω,F, (Ft ),P
)

satisfying the usual conditions.

A.5.2.1 A Doléans SDE

Let us take some stochastic processes F ∈ L1, G j ∈ L2, j = 1, . . . , d, and let us
introduce the complex Itô process

X (t) :=
d
∑

j=1

∫ t

0
G j (s) dW j (s)+

∫ t

0
F(s) ds . (A.23)

Then, we consider the exponential of X times a generic constant:

Z (t) := z0 exp {X (t)} , z0 ∈ C. (A.24)

The process Z is an Itô process by Theorem A.24 and, by Itô formula, we get

Z (t) = z0+
d
∑

j=1

∫ t

0
Z (s)G j (s) dW j (s)+

∫ t

0
Z (s)

[

F(s)+1

2

d
∑

j=1

G j (s)2

]

ds , (A.25)

that is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dZ (t) =
d
∑

j=1

Z (t)G j (t) dW j (t)+ Z (t)

[

F(t)+ 1

2

d
∑

j=1

G j (t)
2

]

dt ,

Z (0) = z0 .

(A.26)

Remark A.40. The integrals in Eq. (A.23) are well defined and, so, P[|X (t)| <
+∞] = 1. For z0 �= 0, this implies P[Z (t) = 0] = 0 and, so, Z (t)−1 is a bona fide
random variable. Obviously, Z (t)−1 = exp{−X (t)}/z0 and by Itô formula we get
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Z (t)−1 = 1

z0
−

d
∑

j=1

∫ t

0
Z (s)−1G j (s) dW j (s)

+
∫ t

0
Z (s)−1

[

−F(s)+ 1

2

d
∑

j=1

G j (s)2

]

ds . (A.27)

Formula (A.26) can be seen as a stochastic equation for Z . However, it is not
of the type (A.14) because the coefficients are intrinsically random and not only
through the solution. In particular, the stochastic basis is implicitly a priori assigned
together with F and the G j ’s. Therefore, given a stochastic basis

(

Ω,F, (Ft ),P
)

satisfying the usual condition, with a Wiener process W and the processes F ∈ L1,
G j ∈ L2, a solution of the SDE (A.26) is a an adapted, continuous process Z satisfy-
ing (A.25) for every t ≥ 0. One-dimensional linear equations like (A.26) are known
as Doléans equations (the general Doléans equation involves also contributions with
jumps). The solution of the SDE (A.26) is unique in law if any two solutions Z and
Z ′ have the same law. The solution of the SDE (A.26) is pathwise unique if any
two solutions Z and Z ′ are indistinguishable. By construction we already have the
existence of a solution of (A.26). The pathwise uniqueness can be obtained from
a simple direct proof, without invoking a general theory of stochastic differential
equations with random coefficients.

Proposition A.41. For F ∈ L1, G j ∈ L2, j = 1, . . . , d, the process Z, defined by
Eqs. (A.23), (A.24), is the pathwise unique solution of the Doléans equation (A.26).

Proof. Let Y be another solution of (A.26). This means that Y is a continuous,

adapted process, that Y G j ∈ L2, Y
[

F + 1
2

∑d
j=1 G j

2
]

∈ L1 and that (A.25)

holds with Z replaced by Y . Then Y (0) exp{−X (0)} = z0, and Itô formula and Eq.
(A.27) imply d

(

Y (t) exp{−X (t)}) = 0. Being continuous processes we obtain that
Y (t) exp{−X (t)} = z0 for every t ≥ 0 a.s., so that Y and Z are indistinguishable. �

A.5.2.2 Exponential Martingales

Let us take now z0 = 1 and F = − 1
2

∑d
j=1 G j

2. From Eqs. (A.23), (A.24), (A.26),
(A.27) we get

Z (t) = exp
d
∑

j=1

{∫ t

0
G j (s) dW j (s)− 1

2

∫ t

0
G j (s)2 ds

}

, (A.28)

Z (t)−1 = exp
d
∑

j=1

{

−
∫ t

0
G j (s) dW j (s)+ 1

2

∫ t

0
G j (s)2 ds

}

, (A.29)
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Z (t) = 1+
d
∑

j=1

∫ t

0
Z (s)G j (s) dW j (s) , (A.30)

Z (t)−1 = 1−
d
∑

j=1

∫ t

0
Z (s)−1G j (s) dW j (s)+

d
∑

j=1

∫ t

0
Z (s)−1G j (s)2ds . (A.31)

By (A.30), Z reduces to a stochastic integral plus a constant and, so, it is a continu-
ous local martingale.

Proposition A.42 ([3, Propositions 7.19 and 7.20, p. 145]). If G j ∈ L2, j =
1, . . . , d, and for some positive constants T and K one has

∑d
j=1

∫ T
0

∣

∣G j (s)
∣

∣

2
ds ≤

K , then {Z (t), t ∈ [0, T ]}, defined by (A.28), is a square-integrable complex mar-
tingale and

E

[

sup
t∈[0,T ]

|Z (t)|p
]

< +∞ , ∀p ≥ 1 . (A.32)

If the processes G j are real, Z is a non-negative local martingale and, by Propo-
sition A.20, it is a supermartingale. It is possible to give sufficient conditions to have
a martingale, less restrictive than those of Proposition A.42. One of the best known
is the following Novikov condition.

Theorem A.43. If G j ∈ L2, j = 1, . . . , d, are real processes such that

E

[

exp

{

1

2

∑

j

∫ T

0
G j (t)

2 dt

}]

< +∞ , ∀T ∈ [0,+∞), (A.33)

then Z, defined by (A.28), is a positive real martingale.

The proofs of Proposition A.42 and Theorem A.43 are technical and require mar-
tingale inequalities and estimates on stochastic integrals.

A.5.3 Positive Martingales and Change of Measure

Consider now a stochastic basis
(

Ω,F, (Ft ),P
)

and a non-negative martingale Z =
{Z (t), t ≥ 0} with E[Z (t)] = 1. For every fixed t ≥ 0, the random variable Z (t)
can be used as a density to define a new probability measure Qt on (Ω,Ft ) (cf. Eq.
(A.3)):

∀F ∈ Ft Qt (F) :=
∫

F
Z (t, ω)P(dω) ≡ E[Z (t)1F ]. (A.34)
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Let us denote by Pt the restriction of P to Ft . Because in the definition of Qt the set
F belongs to Ft , we can write Qt (F) = ∫

F Z (t, ω)Pt (dω). Therefore, Qt is abso-
lutely continuous with respect to Pt : Qt ( Pt . Let us denote by EQt the expectation
with respect to Qt , while E is the mean with respect to P or Pt .

Being Z a martingale, all the probabilities Qt , t ≥ 0, are consistent, in the sense
that

Qt (F) = Qs(F) , ∀t, s : t ≥ s ≥ 0 , ∀F ∈ Fs . (A.35)

Indeed, 1F is Fs-measurable and one has

Qt (F) = E[Z (t)1F ] = E
[

E[Z (t)1F |Fs]
]

= E
[

E[Z (t)|Fs]1F
] = E[Z (s)1F ] = Qs(F) .

Proposition A.44. Fixed T > 0, let Z and QT be as above. Let Y be an adapted,
complex process. The process {Y (t), t ∈ [0, T ]} is a QT -martingale if and only if
{Z (t)Y (t), t ∈ [0, T ]} is a PT -martingale.

Proof. Let ZY be a PT -martingale. Then, ∀t, s : T ≥ t ≥ s ≥ 0, ∀F ∈ Fs , we have

EQT

[

1F EQT [Y (t)|Fs]
] =EQT [1F Y (t)] = E[Z (t)1F Y (t)]

=E
[

1F E[Z (t)Y (t)|Fs]
] = E[1F Z (s)Y (s)]

=EQT [1F Y (s)],

which implies EQT [Y (t)|Fs] = Y (s).
Let Y be a QT -martingale. Then, ∀t, s : T ≥ t ≥ s ≥ 0, ∀F ∈ Fs , we have

E
[

1F E[Z (t)Y (t)|Fs]
] =E[1F Z (t)Y (t)] = EQT [1F Y (t)]

=EQT

[

1F EQT [Y (t)|Fs]
] = EQT [1F Y (s)]

=E[Z (s)1F Y (s)],

which implies E[Z (t)Y (t)|Fs] = Z (s)Y (s). �

A.5.4 Girsanov Theorem

Let W be a d-dimensional Wiener process defined in a stochastic basis
(

Ω,F, (Ft ),P
)

satisfying the usual conditions.

Theorem A.45. Assume that the processes G j ∈ L2, j = 1, . . . , d, are real and
such that Z (t) defined by Eq. (A.28) is a martingale and introduce the probabilities
Qt by Eq. (A.3). Define a continuous processes ̂W by

̂W j (t) := W j (t)−
∫ t

0
G j (s)ds , j = 1, . . . , d, 0 ≤ t < +∞ . (A.36)
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Then, for each fixed T ≥ 0,
{

̂W (t), t ∈ [0, T ]
}

is a d-dimensional Wiener process
in
(

Ω,FT , (Ft ),QT
)

.

Proof. We take the proof from [3, pp. 146–147].
By Theorem A.39 it is enough to prove that Yλ(t) := exp

∑

j

[

iλ j ̂W j (t)

+ 1
2 λ j

2t
]

is a QT -martingale, ∀λ ∈ R
d . By Proposition A.44, we have to check

whether Xλ(t) := Z (t)Yλ(t) is a P-martingale.
By Eqs. (A.28) and (A.36) we have

Xλ(t) = exp
∑

j

{∫ t

0
G j (s) dW j (s)

− 1

2

∫ t

0
G j (s)2 ds + iλ j W j (t)− iλ j

∫ t

0
G j (s) ds + 1

2
λ j

2t

}

= exp
∑

j

{∫ t

0

[

G j (s)+ iλ j
]

dW j (s)− 1

2

∫ t

0

[

G j (s)+ iλ j
]2

ds

}

.

By Eq. (A.30), Xλ(t) is a local martingale and we already know that it is a martingale
for λ = 0.

If the random variable
∑

j

∫ T
0

∣

∣G j (s)
∣

∣

2
ds is bounded, Xλ(t) is a P-martingale by

Proposition A.42. Otherwise, we can prove that Xλ(t), 0 ≤ t ≤ T , is a martingale
by “localisation” techniques.

We introduce the stopping times

τn := inf

{

t ≤ T :

∣

∣

∣

∣

∑

j

∫ t

0
G j (s) dW j (s)

∣

∣

∣

∣

+
∑

j

∫ t

0

∣

∣G j (s)
∣

∣

2
ds > n

}

; (A.37)

when the set of times in the right hand side is empty, we take τn = T . Then, we
have

lim
n→+∞ τn = T , P-a.s. (A.38)

Let us define

Gn
j (s, ω) := 1[0,τn (ω))(s) G j (s, ω) , (A.39)

Xn
λ(t) := exp

∑

j

{∫ t

0

[

Gn
j (s)+ iλ j

]

dW j (s)− 1

2

∫ t

0

[

Gn
j (s)+ iλ j

]2
ds

}

. (A.40)

Due to the structure (A.40) and the definitions (A.37), (A.39), Xn
λ(t) is a martingale

and by (A.38) it converges a.s.:
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E
[

Xn
λ(t)

∣

∣Fs
] = Xn

λ(s) , 0 ≤ s ≤ t ≤ T , (A.41)

lim
n→+∞ Xn

λ(t) = Xλ(t) P-a.s. (A.42)

If we prove that Xn
λ(t) converges in L1 too, we can take the limit in the martingale

relation (A.41) and we conclude that Xλ is a P-martingale.
To prove this L1-convergence, let us consider Z (t ∧ τn) and define

Y n
λ (t) := exp

∑

j

{

iλ j W j (t)− iλ j

∫ t

0
Gn

j (s) ds + 1

2
λ j

2t

}

.

Then, we have

Xn
λ(t) = Z (t ∧ τn)Y n

λ (t) , (A.43)

lim
n→+∞ Y n

λ (t) = Yλ(t) P-a.s., |Yλ(t)| = ∣

∣Y n
λ (t)

∣

∣ = exp

{

1

2
‖λ‖2 t

}

, (A.44)

lim
n→+∞ Z (t ∧ τn) = Z (t) P-a.s., (A.45)

E[Z (t ∧ τn)|Fs] = Z (s ∧ τn) , E[Z (t)] = E[Z (t ∧ τn)] = 1 . (A.46)

By setting Hn(t) := min {Z (t ∧ τn), Z (t)}, we have limn→+∞ Hn(t) = Z (t) a.s.
But 0 ≤ Hn(t) ≤ Z (t) and, by Lebesgue theorem,

lim
n→+∞E[Hn(t)] = E[Z (t)]. (A.47)

By (A.46) and (A.47) we get

E [|Z (t)− Z (t ∧ τn)|] = E
[(

Z (t)− Hn(t)
)+ (

Z (t ∧ τn)− Hn(t)
)]

= 2 E [Z (t)− Hn(t)] −→
n→+∞ 0 .

Therefore,

L1- lim
n→+∞ Z (t ∧ τn) = Z (t) . (A.48)

By the two conditions (A.44) and the L1-convergence (A.48), we get the L1-
convergence L1- limn→+∞ Z (t ∧ τn)Y n

λ (t) = Z (t)Yλ(t) or L1- limn→+∞ Xn
λ(t) =

Xλ(t), which is what we needed. �
Remark A.46. In the hypotheses of Theorem A.45, according to the discussion of
Sect. A.5.3, the probability measures {Qt , t ∈ [0, T ]} are consistent and Qt ∼ Pt .
In particular, given T > 0, let us consider the two equivalent probability measures
P = PT and QT on the σ -algebra FT . As said in Sect. A.1.2, given two random
variables, the notions of equivalence with respect to PT and QT coincide. Similarly,
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given two stochastic processes, the notions of modification, indistinguishableness
and equivalence with respect to PT and QT coincide, as well as the spaces of inte-
grand processes Lp do not change if PT is replaced by QT ∼ PT .

At this point we can introduce integrals with respect to d̂W j (t) with two pos-
sible interpretations: we can consider this integral as an Itô integral in the proba-
bility space (Ω,FT ,QT ) or we can write d̂W j (t) = dW j (t) − G j (t)dt and we can
interpret the integral as the sum of an Itô integral with respect to the probability
P plus a Lebesgue integral. The two interpretations coincide, [5, pp. 195–196], [2,
pp. 270–272].

Proposition A.47. Assume the hypotheses of Theorem A.45 and suppose that X ∈
L2. We define under P the Itô process

∫ t
0 X (s)dW j (s) and under QT the Itô process

∫ t
0 X (s)d̂W j (s), 0 ≤ t ≤ T . For j = 1, . . . , d we have

∫ t

0
X (s)d̂W j (s) =

∫ t

0
X (s)dW j (s)−

∫ t

0
X (s)G j (s)ds,

∀t ∈ [0, T ], P-a.s. and QT -a.s. (A.49)

By this proposition, if X (t) is the solution of the SDE

dX (t) = b
(

X (t), t
)

dt +
d
∑

j=1

σ j
(

X (t), t
)

dW j (t) , 0 ≤ t ≤ T ,

in (Ω, (Ft ),F,P), then it solves also the new SDE, for 0 ≤ t ≤ T ,

dX (t) =
⎡

⎣b
(

X (t), t
)+

d
∑

j=1

G j (t)σ j
(

X (t), t
)

⎤

⎦ dt +
d
∑

j=1

σ j
(

X (t), t
)

d̂W j (t) ,

in (Ω, (Ft ),F,QT ).

A.5.5 Extension of the Local Probability Measures

Let us introduce the final σ -algebra

F∞ :=
∨

t>0

Ft ⊂ F .

An interesting problem is to see if it is possible to extend the consistent probabilities
Qt , t > 0, to a unique probability Q on F∞.

A case in which we have a positive answer is when there exists a random vari-
able Z∞ ∈ L1(Ω,F∞,P) such that Z (t) = E[Z∞|Ft ]. By the Doob’s martingale
convergence theorem this is equivalent to the uniform integrability of the martingale
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Z [2, p. 13] or to the fact that Z (t) converges a.s. and in L1 as well, for t → ∞.
Indeed, by setting Q(dω) = Z∞(ω)P(dω) over (Ω,F∞) we get immediately
Q
∣

∣

Ft
= Qt and Q is the wanted extension. But our martingale Z is given by Eq.

(A.28) and the existence of Z∞ implies the existence, in some sense, of the integrals
∑

j

∫ +∞
0 G j (s)2ds and this can be a too restrictive requirement.

A typical example for which the extension of the probabilities Qt to F∞ does not
exist is the following one. Let us take d = 1 and G(s) = μ ∈ R, μ �= 0. This gives
Z (t) = exp

{

μW (t)− 1
2 μ

2t
}

, which is a mean-one martingale, converging to zero
a.s. (but not in L1). We get also ̂W (t) = W (t)−μt , which is a Wiener process under
the new probabilities.

Let us consider the sets

A =
{

lim
t→∞

1

t
W (t) = 0

}

,

B =
{

lim
t→∞

1

t
̂W (t) = 0

}

=
{

lim
t→∞

1

t
W (t) = μ

}

⊂ Ω \ A .

By the law of large numbers, we have

P(A) = 1 , P(B) ≤ P(Ω \ A) = 0 .

By usual conditions we have A, Ω \ A, B, Ω \ B ∈ F0 ⊂ Ft ⊂ F∞. Since Qt is
equivalent to P

∣

∣

Ft
, we have also

Qt (A) = 1 , Qt (B) = 0 . (A.50)

On the other end, if a probability Q on F∞ extending Qt would exist, we should
have, again by the law of large numbers,

Q(A) = 0 , Q(B) = 1 .

But this is in contradiction with Eq. (A.50) and Q cannot exist.
A less ambitious program is to extend the law of {W (t), 0 ≤ t ≤ T } under

QT to a unique law for {W (t), 0 ≤ t < +∞}. To obtain this result we use the
representation of a continuous process as a single random variable with values in the
trajectory of the continuous functions with the σ -algebra generated by the canonical
projections, see Sect. A.2.4 and Remark A.23.

By hypothesis {W (t), 0 ≤ t < +∞} has continuous trajectories starting from
zero. In Remark A.11 the trajectory space Cd

0 (0,∞) =: C was introduced; with
the σ -algebra B(C) =: C, the measurable space (C, C) is standard. By Proposition
A.12 the map ΞW : Ω → C, defined by ΞW (ω) = {t �→ W (t, ω)} is FW

∞/C-
measurable, where (FW

t ) is the natural (not augmented) filtration of the process W
and FW

∞ = ∨

t>0 FW
t . Under P the law of the random variable ΞW is the Wiener

measure (Remark A.23).
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In C the canonical projections Π(t) : C → R
d , Π(t ; c) = c(t) were introduced;

we set Ct = σ {Π(s), s ∈ [0, t]}. By the arguments given in [1, p. 192], one shows
that F ∈ FW

t ⇔ ∃A ∈ Ct : {ΞW ∈ A} = F . By defining Q
W
T (A) := QT (ΞW ∈

A), A ∈ CT , one constructs a consistent set of probabilities on C. By a version of
Kolmogorov’s extension theorem, which holds for standard Borel spaces [4, p. 18],
one gets that there exists a unique probability Q

W on (C,C) such that Q
W
∣

∣

CT
= Q

W
T .

By the correspondence F ∈ FW
∞ ⇔ ∃A ∈ C : {ΞW ∈ A} = F , one induces a

probability Q on (Ω,FW
∞) and it turns out Q

∣

∣

FW
T
= QT

∣

∣

FW
T

. The conclusion is that

there exists a unique probability Q on (Ω,FW
∞) such that, for any fixed T , Q and QT

coincide when restricted both to FW
T .

References

2. I. Karatzas, S. E. Shreve, Brownian Motion and Stochastic Calculus, Graduate text in Mathe-
matics 113 (Springer, Berlin, 1991). 263, 273, 296, 299, 301

3. X. Mao, Stochastic Differential Equations and Applications (Horwood, Chichester, 1997). 263
1. P. Baldi, Equazioni differenziali stocastiche e applicazioni, Quaderno UMI 28 (Pitagora,

Bologna, 2000). 263, 299, 301, 304, 309
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Appendix B
Some Notions of Quantum Mechanics

B.1 Notations

The axiomatic formulation of quantum mechanics involves complex separable
Hilbert spaces and operators over them. We work only in finite dimensional Hilbert
spaces, in order to avoid the analytical complications of operator theory.

B.1.1 The Hilbert Space H = C
n

Let H be a complex Hilbert space of finite dimension n. Choosing a basis {ei }ni=1,
H is identified with C

n and every vector ψ ∈ H is identified with the n-tuple of
its coordinates (ψi ), where ψ = ∑n

i=1 ψi ei . For ψ, ϕ ∈ H, the inner product,
conjugate linear in the first variable and linear in the second one, is

〈ϕ|ψ〉 =
n
∑

i=1

ϕi ψi ,

where the overbar denotes the complex conjugation. Then, the square norm is

‖ψ‖2 = 〈ψ |ψ〉 =
n
∑

i=1

|ψi |2 .

B.1.2 Operators

With the same choice as above of a basis in H, a linear operator A on H is identified
with an n× n complex matrix: (Aψ)i =

∑

j Ai j ψ j . We denote by Mn the set of the
n × n complex matrices and by 1 the identity operator: 1i j = δi j .

The adjoint operator A∗ of A, defined by 〈ϕ|Aψ〉 = 〈A∗ϕ|ψ〉, ∀ψ, ϕ ∈ H, is
given by the transposed, complex-conjugated matrix (A∗)i j = A ji .
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An orthogonal projection P is a self-adjoint idempotent operator, i.e. P∗ = P ,
P2 = P . It has only 0 and 1 as eigenvalues.

A self-adjoint operator A∗ = A has real eigenvalues, say ak , and can be written
as A = ∑

k ak Pk , with ak �= al for k �= l, and where the operators Pk are its
eigen-projections: Pk

2 = Pk = Pk
∗, Pk Pl = δkl Pl ,

∑

k Pk = 1.
A positive operator A ≥ 0 is an operator such that 〈ψ |Aψ〉 ≥ 0 for all ψ ∈ H,

or, equivalently, a self-adjoint operator with non-negative eigenvalues.

B.1.2.1 Trace, Commutator and Anti-Commutator

The trace of an operator A is Tr{A} =∑

i Aii , which does not depend on the chosen
basis. Recall that, for every a, b ∈ C,

Tr{a A + bB} = a Tr{A} + b Tr{B}, Tr{AB} = Tr{B A}.

Given two operators, a very important quantity is the commutator between them:

[A, B] := AB − B A . (B.1)

We shall use the commutator only as a useful notation, but its importance comes
from its analogies with the Poisson brackets in classical mechanics. Another useful
shorthand notation is the anti-commutator:

{A, B} := AB + B A .

B.1.2.2 Norms and Duality

Three useful norms can be introduced on Mn . Of course, as Mn is finite dimensional,
they are all metrically equivalent and induce the Euclidean topology. The first one
is the operator norm, which is denoted in two different ways, according to the
context:

‖A‖ ≡ ‖A‖∞ := sup
ψ∈H:‖ψ‖=1

‖Aψ‖ ; (B.2)

it is equal to the square root of the greatest eigenvalue of A∗A. The second one is
the Hilbert-Schmidt norm:

‖A‖2 :=
√

Tr{A∗A} =
√

∑

i j

∣

∣Ai j

∣

∣

2
. (B.3)

The third one is the trace norm:

‖A‖1 := Tr
{√

A∗A
}

. (B.4)
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Note that

B ≥ 0 ⇒ ‖B‖1 = Tr{B}.

Moreover, one has

∥

∥A∗
∥

∥ = ‖A‖ , ∥

∥A∗
∥

∥

2 = ‖A‖2 ,
∥

∥A∗
∥

∥

1 = ‖A‖1 . (B.5)

Every operator A defines a linear functional on Mn under the correspondence
A �→ Tr{A•}. This correspondence allows to identify (Mn, ‖•‖∞) with the dual
space of (Mn, ‖•‖1). Then, we have

‖A‖∞ = sup
B∈Mn :‖B‖1=1

|Tr{AB}| , ‖B‖1 = sup
A∈Mn :‖A‖∞=1

|Tr{AB}| . (B.6)

Coherently, the adjoint of a linear map O : (Mn, ‖•‖1) → (Mn, ‖•‖1) is the linear
map O∗ : (Mn, ‖•‖∞) → (Mn, ‖•‖∞),

Tr{O∗[A] B} = Tr{AO[B]}, ∀A, B ∈ Mn . (B.7)

B.1.2.3 Inequalities

The following inequalities hold:

‖A‖ = ‖A‖∞ ≤ ‖A‖2 ≤ ‖A‖1 ≤ n ‖A‖∞ , (B.8)

|〈ϕ|Aψ〉| ≤ ‖A‖ ‖ψ‖ ‖ϕ‖ , |Tr{AB}| ≤
{

‖A‖ ‖B‖1 ,

‖A‖2 ‖B‖2 .
(B.9)

B.1.3 Dirac Notations

If ψ is a vector in H, the “ket” |ψ〉 denotes ψ itself thought as a column vector and
the “bra” 〈ψ | denotes the transposed conjugated vector:

|ψ〉 =

⎛

⎜

⎜

⎜

⎝

ψ1

ψ2
...
ψn

⎞

⎟

⎟

⎟

⎠

, 〈ψ | = (

ψ1 ψ2 . . . ψn

)

.

Therefore, |ψ〉〈ψ ′| is the rank-one operator ϕ �→ 〈ψ ′|ϕ〉ψ with matrix elements

(|ψ〉〈ψ ′|)i j = ψi ψ
′
j .

Note that, for every operator A, Tr{A |ψ〉〈ϕ|} = 〈ϕ|Aψ〉.
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If ψ ∈ H and ψ �= 0, |ψ〉〈ψ |‖ψ‖2 is the orthogonal projection on the Hilbert ray
containing ψ .

B.2 The Hilbert Space Formulation of Quantum Mechanics

Let us start with the Hilbert space formulation of quantum mechanics: a state of
the quantum system is represented by a normalised vector ψ in H. The initial state
depends on the way the system has been experimentally prepared and it determines
the probability distributions of every measurement performed on the system.

B.2.1 Observables

A measurement on a quantum system can produce different results with some proba-
bility distribution depending on the stateψ . An event regarding such a measurement,
which can occur or cannot, is represented by an effect E : a self-adjoint operator E
such that 0 ≤ E ≤ 1 [2]. We denote by [0,1] the set of all effects. Obviously,
E ≤ 1 means 1 − E ≥ 0. Denoting by the same symbol E both the event and the
associated effect, the probability that E occurs, with the system in the state ψ , is

P[E] = 〈ψ |Eψ〉.

Note that, for every effect E , the operator 1 − E is the effect associated to the
complementary event ¬E .

The two effects E and ¬E represent the simplest experiment, often called a
yes–no experiment: the measurement has two possible outcomes, the outcome
‘yes’ associated with the effect E and the outcome ‘no’ associated with the effect
¬E . P[E] = 〈ψ |Eψ〉 gives the probability of the outcome ‘yes’ when the
pre-measurement state is ψ and P[¬E] = 1 − P[E] is the probability of the
outcome ‘no’.

A first generalisation is to have a discrete set of possible outcomes xk ; this exper-
iment is represented by a collection of effects Ek , such that

∑

k Ek = 1. Then,
the probability of observing the outcome xk , with the system in the state ψ , is
P[xk] = 〈ψ |Ek ψ〉.

More generally, the possible outcomes of an experiment form a set Ω and the
possible events are the elements of a σ -algebra F of subsets of Ω . Then, the exper-
iment is represented by a normalised effect-valued measure or positive operator-
valued measure on the measurable space (Ω,F); the acronyms POV measure, or
POVM, or POM are used.

Definition B.1. Let (Ω,F) be a measurable space; a positive operator-valued mea-
sure is a map E from F into the set of the effects such that it is normalised and
σ -additive, i.e. E(Ω) = 1 and for any sequence F1, F2, . . . of incompatible events
(disjoint sets) one has E

(⋃∞
k=1 Fk

) =∑∞
k=1 E (Fk).
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The interpretation is: the probability of an outcome in F , for a set F ∈ F, with
the system in the state ψ , is

Pψ (F) = 〈ψ |E(F)ψ〉. (B.10)

Note that Pψ (•) is indeed a probability distribution on (Ω,F).
The random outcomes of the experiment can be also thought as the values of

some observable X . In this case, we often write P[X ∈ F] = 〈ψ |E(F)ψ〉, we
interpret it as the probability that the observable X takes a value in the set F and
we call X the output of the measurement. With this interpretation in mind the POM
itself is called observable or generalised observable. It is always possible to think
the possible outcomes of an experiment as the values of an observable X ; so, we
indifferently speak of an observable X or of a POM E , of the outcomes of an exper-
iment or of the values of an observable.

The measurable space (Ω,F) is called the value space of the observable X , or of
the POM E . For the notion of measurable space and for its use in probability theory
see Section A.1.1. Of course, every effect E determines the Bernoulli observable X
which is 1, if E occurs, and 0, if ¬E occurs.

Remark B.2.

• For every real θ , the states ψ and eiθψ assign the same distribution to any observ-
able X and thus there is no experimental way to distinguish between the two
states.

• In infinite dimensional Hilbert spaces H the series in Definition B.1 has to be
strongly convergent.

• In finite or infinite dimensional Hilbert spaces H, if one adds the requirement
that all the elements of a POM are orthogonal projections, it turns out that all
the elements of the POM commute. The resulting measure is called a projection-
valued measure (pvm). The Spectral Theorem gives a bijective correspondence
between real observables X associated to pvms E on

(

R,B(R)
)

and self-adjoint
operators A in H:

A =
∫

R

x E(dx).

By restricting the theory to pvms only, we go back to the old formulation of quan-
tum mechanics: observables are associated to self-adjoint operators and probabil-
ities are obtained through spectral measures. In this case, the Spectral Theorem
gives also a direct formula for the moments of a real observable X : denoted by
Eψ the expectation with respect to Pψ and taken a measurable real function g,
we have

Eψ [g(X )] = 〈ψ |g(A)ψ〉.
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• In a finite dimensional Hilbert space a pvm is necessarily discrete, but this does
not hold for a generic POM in any kind of Hilbert space nor for a pvm in the
infinite dimensional case.

• Let us consider a pvm E on
(

R
d ,B(Rd )

)

and define

Ak :=
∫

Rd

xk E(dx1 · · · dxd ).

It turns out that the operators Ak are self-adjoint and commuting. Moreover, E
is the joint spectral measure of such operators. By restricting the theory to pvms
only and going back to the old formulation of quantum mechanics, only observ-
ables associated to commuting self-adjoint operators can be jointly measured.

B.2.2 The Abstract Schrödinger Equation

The Schrödinger equation gives the evolution of the state vector in the Hilbert space
of the system. For a closed system the abstract Schrödinger equation is dψ(t)

dt =
− i

�
Hψ(t), where H is a self-adjoint operator called Hamiltonian, which depends

on the system itself and on the experimental conditions, and � = h/(2π ) is the
reduced Planck constant. It is usual in theoretical physics to choose the units in such
a way that � = 1. When the evolution is not autonomous, but without dissipation,
one simply introduces a time-dependent Hamiltonian and the Schrödinger equation
becomes

dψ(t)

dt
= −iH (t)ψ(t) , H (t) = H (t)∗ , ψ(0) = ψ ∈ H , ‖ψ‖ = 1 .

(B.11)
The map ψ �→ ψ(t) defines a unitary operator for every t .

A possible way to introduce evolutions with dissipation is the use of stochastic
Hamiltonians or of SDEs of the type discussed in Section 2.4.4. However, a more
traditional approach is the use of evolution equations for “statistical operators”, as
discussed in the remaining of this appendix.

B.3 The Statistical Formulation of Quantum Mechanics

Any physical statement is a probabilistic one, and probabilities are obtained from
effects and states. Anyway, there are situations which are not well described by a
unit vector and require a generalisation of the notion of state. For example, this
happens when a preparation procedure introduces some classical uncertainty on the
initial state, when the system undergoes some noisy evolution due to the interaction
with the external world, when a measuring apparatus acts on the system, or when
(see, for example, [2 Sect. 2.2]) the system under consideration is a subsystem of
a composite quantum system whose state is pure but not factorised. The need to
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include such situations in the mathematical description leads to the statistical for-
mulation of quantum mechanics [1, 2, 4, 5].

B.3.1 Statistical Operators

Let us consider now the case in which there is uncertainty on the initial state of the
system. Let us say that the state is one of the normalised vectors ψα with probability
p(α); obviously, p(α) ≥ 0,

∑

α p(α) = 1.
Let E be any effect. According to the rules of Sect. B.2.1, the probability that E

occurs, conditioned on knowing that the state is ψα , is P[E |α] = 〈ψα|Eψα〉. Then,
the unconditional probability will be

P[E] =
∑

α

P[E |α]p(α) =
∑

α

p(α)〈ψα|Eψα〉

=
∑

α

p(α) Tr {|ψα〉〈ψα| E} = Tr

{

∑

α

p(α)|ψα〉〈ψα| E

}

.

By introducing the projections Pα = |ψα〉〈ψα| and by setting

ρ =
∑

α

p(α)|ψα〉〈ψα| =
∑

α

p(α)Pα , (B.12)

for every event E we can write

P[E] = Tr{ρE}. (B.13)

Thus the operator ρ defined by Eq. (B.12) determines the probability P[E] of any
event E regarding any measurement on the quantum system and hence it can rep-
resent the preparation of the system itself. The operator ρ is self-adjoint, positive
of trace one. Vice versa, any operator ρ with these three properties can be written
in the form (B.12), even if this decomposition is not unique. One of the choices is
to take the spectral decomposition of ρ. Being self-adjoint, ρ has eigenvalues λk

and eigen-projections Pk ; if some eigenvalue is degenerate, repeat it according to
its multiplicity and chose mutually orthogonal one-dimensional eigen-projections.
Then, we can write ρ =∑

k λk Pk ; this decomposition is of the form (B.12) because
ρ ≥ 0 ⇒ λk ≥ 0 and Tr{ρ} = 1 ⇒ ∑

k λk = 1. We call an operator with these
three properties a statistical operator or density matrix.

Let us denote by S(H) the set of all statistical operators on H:

S(H) := {

all operators ρ on H such that: ρ∗ = ρ, ρ ≥ 0, Tr{ρ} = 1
}

. (B.14)

S(H) is a closed convex set. This means that, if Q is a probability measure on a
measurable space (A,A) and ρ(α) a measurable family of statistical operators, then
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ρ =
∫

A
ρ(α) Q(dα) ∈ S(H). (B.15)

The pair {Q, ρ(•)} is called a demixture of ρ and it describes a possible uncertainty
mechanism which produces the state ρ.

Remark B.3 (Pure and mixed states). In the language of statistical operators, each
vector state ψ clearly corresponds to the one-dimensional projection |ψ〉〈ψ | ∈
S(H), with no more ambiguity about the state phase. These are called pure states
because they do not admit any non-trivial demixture. All the other states are called
mixtures or mixed states. Since a projection belongs to S(H) if and only if it is
one-dimensional, a state ρ is pure if and only if ρ2 = ρ.

Summarising, a state of a quantum system is represented by a statistical operator
ρ ∈ S(H), an event related to a measurement on the system is represented by an
effect E ∈ [0,1], and the probability that it occurs is Tr{ρE}. Then, if we have a
generic measurement represented by a POM E , Eq. (B.10) becomes

Pρ(F) = Tr{ρE(F)}. (B.16)

B.3.2 The von Neumann Equation

Let us consider now a quantum system which evolves without dissipation accord-
ing to the Schrödinger equation (B.11), but let us take the mixture (B.12) as initial
state. Every vector ψα evolves into ψα(t), with dψα(t)

/

dt = −iH (t)ψα(t). Then, ρ
evolves into

ρ(t) =
∑

α

p(α)|ψα(t)〉〈ψα(t)|. (B.17)

Note in particular that the map ρ �→ ρ(t) is well defined for every t , because it
is independent of the decomposition (B.12); thus the map turns out to respect the
convex structure of S(H), that is it admits a linear extension to Mn .

Thanks to the self-adjointness of H (t), by differentiation we get the von
Neumann equation

d

dt
ρ(t) = −i[H (t), ρ(t)]. (B.18)

Because of the analogy of the commutator in quantum mechanics with the Poisson
brackets in classical mechanics, Eq. (B.18) is the quantum analog of the Liouville
equation in classical mechanics and, by this, it is called also the Liouville–von Neu-
mann equation and the operator −i[H (t), •] is called the Liouvillian.
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B.3.3 Master Equation and Quantum Dynamical Semigroups

Let us consider now an open quantum system which evolves interacting with the
external world. If it is possible to predict the final system state on the basis of its
initial state, this general dynamics has to be represented by a linear map T on Mn

which sends statistical operators into statistical operators. In particular, such a map
has to be positive (T [τ ] ≥ 0, ∀τ ≥ 0), but, due to some physical and mathemati-
cal considerations [2], one asks something more, the so-called complete positivity
[6, 7].

Definition B.4. A linear map A from Mn into itself is completely positive if for all
integers m and for all choices of vectors φi , ψi , i = 1, . . . ,m, one has

m
∑

i, j=1

〈φi |A[|ψi 〉〈ψ j |]φ j 〉 ≥ 0 . (B.19)

Thus, a general state transformation for a quantum open system is represented
by a dynamical map T , which is a trace preserving, completely positive, linear
map on Mn . In this order of ideas, a memoryless evolution in continuous time for
an autonomous quantum open system is represented by a semigroup of dynamical
maps T (t) = eLt , t ≥ 0, which is called quantum dynamical semigroup or quan-
tum Markov semigroup. The most general infinitesimal generator L of a quantum
dynamical semigroup in the case of a finite dimensional Hilbert space (which is our
case) was found in [8]. In the case of a separable Hilbert space, the most general
infinitesimal generator of a uniformly continuous quantum dynamical semigroup
was found in [9], while important results on the generator of an arbitrary quantum
dynamical semigroup can be found in [1, 10].

Theorem B.5. A map L is the infinitesimal generator of a quantum dynamical semi-
group on Mn if and only if it has the structure: ∀τ ∈ Mn,

L[τ ] = −iHτ + iτH + 1

2

d
∑

j=1

(

2R jτ R∗j − R∗j R jτ − τ R∗j R j
)

= −i[H, τ ]+ 1

2

d
∑

j=1

(

[R jτ, R∗j ]+ [R j , τ R∗j ]
)

,

(B.20)

where d is some integer, R j , H are operators on H, H is self-adjoint.

When the evolution is memoryless, but the system is not autonomous, the dynam-
ical generator becomes time dependent and the time change of the state is given by
the so-called (quantum) master equation

d

dt
ρ(t) = L(t)[ρ(t)], ρ(0) = ρ ∈ S(H) , (B.21)
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where L(t) has the structure (B.20) for any t . Let us stress that a quantum master
equation is a direct generalisation of the Liouville–von Neumann equation to the
case in which dissipation is involved. Again, L(t) is called Liouville operator or
Liouvillian.

B.4 Instruments

If we want to perform more than one measurement on a quantum system, its ini-
tial state ρ and the POM associated to the first measurement alone do not give a
description exhaustive enough of the first measurement: they give the probability
distribution of the first outcome, but not the system state after the first measurement,
conditioned on the response, which is needed to evaluate the conditional probability
distribution of the outcome of an arbitrary second measurement. We have to push the
mathematical description of the measurement process at a higher level, introducing
the action of the measurement on the system itself, i.e. giving the transformation
from the pre-measurement state ρ to the post-measurement state conditioned on an
arbitrary event E , which could occur in the experiment. This state describes the
preparation of the system consisting of a preliminary preparation ρ, followed by the
measurement and by the discarding of the system if E does not occur. Or else, in
the frequency interpretation of probability, this state describes the sub-ensemble of
independent systems prepared according to ρ, subjected to the measurement process
and filtered on the occurrence of E .

B.4.1 Operations and Events

Let us consider again an event E related to a measurement on the system. If we want
not only the probability of E , but also the state after the measurement conditioned
on the response, an effect is no more enough. Now the fundamental object is an
operation.

Definition B.6. An operation is a completely positive, linear map O : Mn → Mn

such that Tr{O[τ ]} ≤ Tr{τ }, ∀τ ≥ 0.

To ask that the completely positive map O is trace decreasing is equivalent to the
request that O∗[1] is an effect. If the map O is completely positive, also O∗ is such.
The structure of the operations is given by the following theorem and it is known as
Kraus decomposition.

Theorem B.7. Any operation O on Mn can be represented as

O[τ ] =
∑

k

Akτ Ak
∗, ∀τ ∈ Mn , (B.22)

with Ak ∈ Mn and
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∑

k

Ak
∗Ak ≤ 1 . (B.23)

On the contrary, if Eq. (B.23) holds, then Eq. (B.22) defines an operation. Of course,
O∗[1] =∑

k Ak
∗Ak.

The symbol
∑

k denotes a converging series or a finite sum. Given an operation, the
Kraus decomposition is not unique. Being Mn an n2-dimensional space, at most n2

elements Ak are needed to represent an operation. The Kraus decomposition holds
also in the case of a separable Hilbert space; in this case the series in Eq. (B.23) has
to be strongly convergent.

The operator O∗[1] is the effect associated to the event E , while the whole map
O describes the state change. Indeed, the physical interpretation is the following
one. Let ρ ∈ S(H) be the pre-measurement state; then, the probability of the event
E is

P[E] = Tr{O[ρ]} = Tr{O∗[1]ρ}, (B.24)

and the post-measurement state, conditioned on the occurrence of E , is

ρ(E) := O[ρ]
/

Tr{O[ρ]} ∈ S(H). (B.25)

The meaning of the post-measurement state is apparent when a sequence of two
measurements is considered, because it allows to construct the joint probabilities.
Let E ′ be a generic effect, which is measured after the measurement represented by
the operation O. For systems with pre-measurement state ρ we have a probability
P[E] = Tr{O[ρ]} of observing E in the first measurement and, after a first measure-
ment with E occurred, the state is ρ(E). According to the usual rule (B.13), now the
probability that E ′ occurs in the second measurement is Tr

{

ρ(E) E ′
}

. This is the
conditional probability of E ′ in the second measurement given E in the first one, so
we have

P[E ′|E] = Tr
{

ρ(E) E ′
} = Tr

{

O[ρ] E ′
}

P[E]
. (B.26)

Having the conditional probability P[E ′|E] and the probability P[E] of the condi-
tioning event, we construct the joint probability of the event E in the first measure-
ment and of the event E ′ in the second one by

P[E, E ′] = P[E ′|E] P[E] = Tr
{

O[ρ] E ′
} = Tr

{

O∗[E ′] ρ
}

. (B.27)

Obviously, the probability of the complementary event ¬E in the first measure-
ment is P[¬E] = 1 − P[E] = 1 − Tr{O[ρ]}, but the post-measurement state,
conditional on the event ¬E , is not uniquely determined by O: one needs a second
operation Õ such that Õ∗[1] + O∗[1] = 1 and many choices with this property
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are possible; just as many different operations O are associated to a same effect
E = O∗[1].

Note that an operation O is linear, but the map ρ �→ ρ(E) is not. Given a mixed
pre-measurement state

ρ = p(1) ρ1 + p(2) ρ2, (B.28)

the post-measurement state, conditioned on the occurrence of E , is

ρ(E) = p(1)Pρ1 [E]

p(1)Pρ1 [E]+ p(2)Pρ2 [E]
ρ1(E)+ p(2)Pρ2 [E]

p(1)Pρ1 [E]+ p(2)Pρ2 [E]
ρ2(E)

=p(1|E) ρ1(E)+ p(2|E) ρ2(E), (B.29)

that is, if the quantum system is prepared in the state ρα with probability p(α), then,
after the occurrence of E , the state of the system ρ(E) is the convex combination
of the post-measurement states ρα(E) with the probabilities p(α|E) of the cases α
conditioned by the occurrence of E .

B.4.2 Instruments and Observables

If we want the system state after the measurement of an observable X , then the
notion of instrument enters into play. An instrument gives both the probability dis-
tribution for X and the state change due to the measurement [1, 11, 12].

Definition B.8. Let (Ω,F) be a measurable space. An instrument I is a normalised
operation-valued measure, i.e.

1. I(F) is an operation, ∀F ∈ F,
2. (normalisation) Tr {I(Ω)[τ ]} = Tr {τ }, ∀τ ∈ Mn,
3. (σ -additivity) for every countable family {Fi } of disjoint sets in F

I
(
⋃

i

Fi

)

=
∑

i

I(Fi ).

From the previous properties and Definition B.1, the map

EI (F) := I(F)∗[1] (B.30)

turns out to be a POM, which is interpreted as the observable X associated with the
instrument I. Thus, for every set F ∈ F, given the pre-measurement state ρ, the
probability of a result X ∈ F is denoted by Pρ(F) and it is given by

Pρ(F) = Tr {ρ EI (F)} = Tr
{

ρ I(F)∗[1]
} = Tr{I(F)[ρ]} . (B.31)
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Moreover, the instrument gives the state after the measurement, conditioned upon
the result X ∈ F . It is the conditional state [compare with (B.25)]

ρ(F) := I(F)[ρ]

Pρ(F)
, (B.32)

which is a statistical operator if ρ is a state.
Many different instruments I are associated to a same observable X , as well as

many different operations O are associated to a same effect E , reflecting the fact
that many different experimental procedures can measure the same observable, but
they may perturb the system in different ways.

B.4.2.1 A Priori and A Posteriori States

When we take the whole Ω in the role of F , we get Pρ(Ω) = 1 and the conditional
state becomes

ρ(Ω) = I(Ω)[ρ]. (B.33)

We can call ρ(Ω) the a priori state: if we know the pre-measurement state ρ and
the instrument I, then ρ(Ω) is the state we can “a priori” attribute to our system
soon after the measurement, if we do not know the result of the measurement,
that is, if we do not filter on the basis of the observed results. Note that I(Ω) is a
dynamical map.

Let us now consider the case when in (B.32) the set F shrinks to an “infinitesi-
mally small” set dω around the value ω ∈ Ω: the quantity ρ(ω) = I(dω)[ρ]/Pρ(dω)
represents the state conditioned upon the result X ∈ dω. The quantity ρ(ω) is the
state one can attribute to those systems for which the result ω has been actually
found in the measurement and for this reason we call it the a posteriori state [13].
Note that, while the conditional state ρ(F) is a function defined on F, the a poste-
riori state ρ(ω) is a function defined just on Ω . The mathematical definition, due to
Ozawa [13], is the following one.

Definition B.9. A family of statistical operators {ρ(ω), ω ∈ Ω} is said to be a family
of a posteriori states, for a pre-measurement state ρ and an instrument I with value
space (Ω,F), if the function ω �→ ρ(ω) is measurable and, ∀F ∈ F,

∫

F
ρ(ω) Pρ(dω) = I(F)[ρ]. (B.34)

For any instrument I and any pre-measurement state ρ, a family of a posteriori
states ρ(ω) always exists and it is unique Pρ-a.s. [14] (the statement holds also in an
infinite dimensional Hilbert space).

From a probabilistic point of view, the F-measurable function ρ : Ω → S(H)
is a random variable, the random a posteriori state, which is not known in advance,
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but which will depend on the possible outcomes ω, occurring with probability dis-
tribution Pρ . Let us note that the a priori state is the expectation of the a posteriori
state with respect to Pρ :

I(Ω)[ρ] =
∫

Ω

ρ(ω) Pρ(dω) .

With the terminology introduced after Eq. (B.15), we can say that
{

Pρ, ρ(•)
}

is a
demixture of the a priori state I(Ω)[ρ].

Let us stress that Eq. (B.34) defines the a posteriori states once the instrument
I and the pre-measurement state ρ are given. On the contrary, if ρ(ω) and Pρ(dω)
are given for any pre-measurement state ρ and are known to come out from an
instrument, then, Eq. (B.34) allows to reconstruct the instrument I.

Note that, just as for operations (Sect. B.4.1), the map ρ �→ ρ(ω) is not linear. It
can easily be checked that, given a mixed pre-measurement state

ρ = p(1) ρ1 + p(2) ρ2,

the a posteriori states are

ρ(ω) = p(1)
Pρ1 (dω)

Pρ(dω)
ρ1(ω)+ p(2)

Pρ2 (dω)

Pρ(dω)
ρ2(ω), (B.35)

where Pρα (dω)/Pρ(dω) is the Radon–Nikodym derivative (Sect. A.1.2.1) of the
probability Pρα with respect to the probability Pρ = p(1)Pρ1 + p(2)Pρ2 . Of course,
Pρα ( Pρ . The interpretation is similar to Sect. B.4.1: if the quantum system is
prepared in the state ρα with probability p(α), then, after the occurrence of the result
ω, the state of the system ρ(ω) is the convex combination of the post-measurement
states ρα(ω) with the probabilities of the cases α conditioned by the occurrence of
X = ω. In this book we are often interested in the case Pρ ∼ Q for every ρ in S(H),
where Q is some mathematical reference probability. Than we also have

ρ(ω) = p(1)
Pρ1 (dω)

Q(dω)

Q(dω)

Pρ(dω)
ρ1(ω)+ p(2)

Pρ2 (dω)

Q(dω)

Q(dω)

Pρ(dω)
ρ2(ω). (B.36)

B.4.2.1.1 Von Neumann Instruments

An example of instrument is given by the von Neumann measurement postulate. In
the case of an observable X with values xk and pvm Ek = |k〉〈k|, k = 1, . . . , n, that
is Ω = {x1 . . . , xn} and F = P(Ω) (the set of the parts of Ω), the von Neumann
instrument is

I(F)[τ ] :=
∑

xk∈F

Ek τ Ek ≡ |k〉〈k|τ |k〉〈k|, F ⊆ Ω,
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and, for every initial state ρ, the a posteriori states are always the pure states

ρ(xk) = |k〉〈k|.

In the case of degenerate spectrum (when some eigenspace has dimension greater
than 1), the Ek become multi-dimensional projections. By restating the von
Neumann–Lüders postulate in modern language, again the instrument is I(F)[τ ] :=
∑

xk∈F Ek τ Ek , but now the a posteriori state given the result xk is ρ(xk) = EkρEk

Tr{Ekρ} ,
which is not necessarily pure, unless ρ is pure.

B.4.2.2 Joint Distributions

When the measurement of an observable X is described by an instrument, and not
simply by a POM, the conditional states after the measurement are available to
construct the probability distribution of any other measurement X ′ following the
measurement of X , together with the joint distribution of X and X ′. The construc-
tion is similar to the one given in Eqs. (B.24), (B.25), (B.26), (B.27) in the case of
operations.

Let X ′ be given by the POM E ′ on (Ω ′,F′). Then, for systems with pre-measu-
rement state ρ and first outcome X ∈ F , the conditional probability Pρ(F ′|F) of a
second result X ′ ∈ F ′ is

Pρ(F ′|F) = Pρ(F)(F ′) = Tr
{

ρ(F) E ′(F ′)
} = Tr

{

I(F)[ρ] E ′(F ′)
}

Pρ(F)
. (B.37)

Thus, for every F ∈ F, we get the conditional distribution Pρ(•|F) on (Ω ′,F′) for
X ′, with the following interpretation. Before the measurement process starts, the a
priori evaluation on the result of X ′ is given by Pρ(•|Ω). Nevertheless, if after the
first measurement we know that X ∈ F , then we attribute the state (B.32) to the
system between the first and the second measurement, and we update the evaluation
on the result of X ′ with the conditional distribution Pρ(•|F).

Obviously, having the conditional probability Pρ(F ′|F) and the probability
Pρ(F) of the conditioning event, we construct the joint probability Pρ(F, F ′) of
the result X ∈ F in the first measurement and of the result X ′ ∈ F ′ in the second
one by

Pρ(F, F ′) = Pρ(F ′|F) Pρ(F) = Tr
{

I(F)[ρ] E ′(F ′)
} = Tr

{

I(F)∗[E ′(F ′)] ρ
}

.

(B.38)

This formula defines the joint probability distribution of X and X ′ on the rectangles
F × F ′ ⊂ Ω ×Ω ′ for every F ∈ F and F ′ ∈ F′. By standard arguments it can be
proved that this probability has a unique extension to the whole σ -algebra F ⊗ F′

generated by the rectangles. In particular, with the aid of the a posteriori states, the
existence of the extension can be obtained with the same techniques which allow to
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generate the multi-time probabilities of a Markov process from its initial law and its
transition probabilities.

B.4.2.3 Dilations of Instruments

Ozawa [12] proved the following dilation theorem for instruments (it holds also
when H is infinite dimensional and separable). The formulation of the theorem and
its interpretation need the notions of tensor product of Hilbert spaces, product states,
partial trace and composite quantum systems [2, Sect. 2.2]. But we do not use this
theorem in the main text; it is given here only for interpretation and as an hint for
further developments (it is essential to understand the construction of continuous
measurements via quantum stochastic differential equations). For these reasons we
do not give all the implied definitions here.

Theorem B.10. Let I be an instrument with a standard Borel space (Ω,F) as value
space. Then, there exist a separable Hilbert space K, a projection-valued measure
E on K with the same value space, a statistical operator σ on K, a unitary operator
U on H⊗K such that

I(F)[ρ] = TrK
{

(1⊗ E(F)) U (ρ ⊗ σ ) U ∗} , ∀F ∈ F , ∀ρ ∈ S(H).
(B.39)

Conversely, the right hand side of Eq. (B.39) defines an instrument for any choice
of K, E, σ, U; E can be also a generic POM on K.

The value space (Ω,F) has been taken standard Borel (see p. 265) to prove that
the Hilbert space K can be taken separable.

The interpretation of such a dilation is the following. The measuring apparatus
is a quantum system represented in the Hilbert space K and prepared in the state
σ . The system of interest is prepared in a generic state ρ, completely uncorrelated
with the measuring apparatus, so that the initial state of the composed system is
ρ ⊗ σ . Measured system and measuring apparatus interact and evolve during some
time interval as a closed system; the unitary evolution is represented by U . Then,
some observable E(•) of the apparatus is measured. Such an observable plays the
role of a pointer and gives information on the system of interest. Such a scheme is
sometimes referred to as indirect measurement. Note that E can always be taken to
be a projection-valued measure. Therefore, we can say that, by introducing indirect
measurements, the old formulation of quantum mechanics can be recovered (cf. the
last point of Remark B.2).

The second approach to continuous measurements quoted in Sect. 1.2, but not
treated here, is indeed based on a dilation of the type (B.39): quantum stochastic dif-
ferential equations are used to construct U and Bose fields are used to construct E(•).



Appendix B: Some Notions of Quantum Mechanics 309

B.4.3 A Sequence of Measurements

To understand measurements in continuous time (the main topic of this book), it
is perhaps useful to start from the case of measurements at discrete times and to
consider sequences of instruments.

B.4.3.1 Two Instruments

Let us consider now the measurement of an observable X1 followed by the mea-
surement of a second observable X2, under the hypothesis that both of them are
represented by an instrument, say I j on (Ω j ,G j ) for X j . We assume any time spec-
ification to be included in the definition of the instruments. The joint probability
(B.38) is equivalently given by

Pρ(F1, F2) = Tr {I2(F2) ◦ I1(F1)[ρ]} . (B.40)

In this situation it is natural to look not only for the joint distribution of X1 and X2,
but also for an instrument I12 on (Ω1 ×Ω2,G1 ⊗ G2), such that

I12(F1 × F2) = I2(F2) ◦ I1(F1), ∀Fj ∈ G j .

In this way the entire measurement process is described by a single instrument. Nev-
ertheless, the existence of I12 is usually get under some extra condition. A sufficient
and not very restrictive one is the requirement that (Ω1,G1) and (Ω2,G2) are both
standard Borel spaces. Standard Borel spaces are presented in Sect. A.1.1.2; the
composition of instruments is discussed in [1, 4].

B.4.3.2 Many Instruments

Let us consider a sequence of measurements of n observables X j represented by the
instruments I j with value spaces (Ω j ,G j ). We assume that the measurements are
performed in the natural order (I2 after I1 and so on) and that any time specification
is included in the definition of the instruments. Then, the space of the results is
Ω = Ω1 ×Ω2 × · · · ×Ωn , with the σ -algebra F = G1 ⊗ G2 ⊗ · · · ⊗ Gn . According
to Eq. (B.40), the joint probability Pρ(F1, F2, . . . , Fn) of the sequence of results
X1 ∈ F1, X2 ∈ F2, . . . , Xn ∈ Fn , with Fj ∈ G j , when the pre-measurement state is
ρ, is

Pρ(F1, F2, . . . , Fn) = Tr {In(Fn) ◦ · · · ◦ I2(F2) ◦ I1(F1)[ρ]} . (B.41)

By assuming that the measurable spaces (Ω j ,G j ) are standard, we get the exis-
tence of an instrument ITot = In ◦ · · · ◦ I1 on (Ω,F) such that

ITot(F1 × F2 × · · · × Fn) = In(Fn) ◦ · · · ◦ I2(F2) ◦ I1(F1), ∀Fj ∈ G j .
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Similarly, the composition It ◦ · · · ◦ I1 defines a single instrument also for t ≤ n.
Having a sequence of n measurements, we can consider any step between the

first and the last measurement. Therefore, for every t = 1, . . . , n, we consider the
conditional probability of the results Xt+1 ∈ Ft+1, . . . , Xn ∈ Fn , given the previous
results X1 ∈ F1, . . . , Xt ∈ Ft ,

Pρ(Ft+1, . . . , Fn|F1, . . . , Ft ) =Pρ(F1, F2, . . . , Fn)

Pρ(F1, . . . , Ft )

=Pρ(F1,...,Ft )(Ft+1, . . . , Fn)

=Tr {In(Fn) ◦ · · · ◦ It+1(Ft+1)[ρ(F1, . . . , Ft )]} ,

where the conditional state

ρ(F1, . . . , Ft ) = It (Ft ) ◦ · · · ◦ I1(F1)[ρ]

Pρ(F1, . . . , Ft )
(B.42)

represents the system state after the first t measurements conditioned upon the
results X1 ∈ F1, . . . , Xt ∈ Ft .

Shrinking again the sets Fj to sets dω j around the values ω j ∈ Ω j , we find the
state

ρ(ω1, . . . , ωt ) = It (dωt ) ◦ · · · ◦ I1(dω1)[ρ]

Pρ(dω1, . . . , dωt )
,

that is the a posteriori state at step t , which can be attributed to those systems for
which the instrument It ◦· · ·◦I1 has measured the value (ω1, . . . , ωt ) for the observ-
able (X1, . . . , Xt ).

When t goes from 1 to n and the length of the outcome (ω1, . . . , ωt ) increases,
instead of considering an increasing sequence of spacesΩ1,Ω1×Ω2, . . . , it is useful
to take always the same space Ω = Ω1 ×Ω2 × · · · ×Ωn and to introduce here the
increasing family of σ -algebras Ft = (G1 ⊗ G2 ⊗ · · · ⊗ Gt ) × (Ωt+1 × · · · ×Ωn),
1 ≤ t ≤ n. This is an example of filtration of σ -algebras in discrete time; the
analogous notion in continuous time is presented in Sect. A.2.2.

Then, all the a posteriori states can be defined on the same space Ω by

ρ(t, ω) := ρ(ω1, . . . , ωt ) ,

where, as a function of the complete result ω = (ω1, . . . , ωn), each ρ(t) depends
only on the first t coordinates of ω. Thus each ρ(t) is measurable with respect to
the corresponding σ -algebra Ft , and, from a probabilistic point of view, the family
of random states ρ(t) : (Ω,F,Pρ) → S(H), is a discrete time stochastic process
adapted to the filtration Ft (cf. Definition A.7). The filtration describes the increas-
ing acquirement of information during the measurement steps, while the stochastic
process describes the evolution of the a posteriori state, due to the action of the
instruments. The evolution is therefore related to the experimental results observed
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so far. The index t is discrete because this measurement consists of n independent
instruments applied one after the other. A generalisation of this probabilistic struc-
ture to continuous time allows to describe measurements with an output continuous
in time. Such a generalisation leads to consider a space of results Ω consisting of
trajectories ω(t), t ≥ 0, with its natural (cylindric) σ -algebra F and its natural fil-
tration Ft , t ≥ 0, where each Ft is generated by ω(s), 0 ≤ s ≤ t (cf. Remark A.23).
Then, for every pre-measurement state ρ ∈ S(H), a probability distribution Pρ is
introduced on (Ω,F) together with a stochastic process ρ(t) : (Ω,F,Pρ) → S(H)
of a posteriori states which, for every t ≥ 0, will allow to reconstruct the instrument
acting on the system during the time interval [0, t]. Roughly speaking, as the process
is adapted, every ρ(t, ω) actually depends only on ω(s), 0 ≤ s ≤ t , and it is the state
which can be attributed at time t to those systems, with pre-measurement state ρ,
for which the trajectory ω(s), 0 ≤ s ≤ t , has been observed so far.
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E
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T
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Idn identity map on Mn

Lp a class of processes, see Sect. A.3.1
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T (t, s) propagator of the quantum master equation
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