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Preface

In the literature, theory of magnetism is available in books at two levels. At the
beginners level it is dealt as a chapter in books on solid state physics. There certain
basic facts about magnetism are presented and some of the theoretical ideas are
mentioned almost in passing. If one wants to persue the subject in depth then one
has to refer to the books at the higher level. At this level there already do exist excel-
lent books which have either a large canvas or limit the area but go to considerable
depth. These books, however, are useful to those who already are practitioners of
theoretical research in magnetism and are not exactly suitable for those who want
to prepare themselves for research. In other words, we find that to our knowledge,
there does not exist a book on the quantum theory of magnetism which serves as
a text book and also one which helps and guides one in self-study. That is, a book
where every step is worked out in detail and also contains a number of problems
which help in self-assessment and also which supplement the material dealt with in
the text of the book. It is precisely to fill this gap, we have attempted to write this
book. This need was felt by one of the authors (WN) while giving special courses
to advanced students almost two decades ago. As a result he published a book with
exactly the same title but in German. The book was well received and many a reader
has been asking since then if there is a revised edition. As a result, the present book is
an english, thoroughly revised and updated version of the original German version.
The book presumes the reader to have certain basic understanding of the concepts
and techniques of quantum mechanics and statistical mechanics. Except for that, the
book is, we hope, self-contained in the sense that every single step has been worked
out both in the main text and also in the solutions to the problems. Some of the prob-
lems have rather long solutions. Then, these represent the results which most often
are assumed to be well known but in fact they need to be worked out somewhere.
Some of the problems are such that the solutions impart considerable training to
one who wants to start out on research and helps him in learning certain “standard”
tricks in order to understand some seminal papers and also in implementing his own
research programme.

The first chapter introduces, starting from Maxwell’s equations, certain basic
facts about magnetism such as magnetic moment, magnetization and susceptibility
and also contains a section on thermodynamics as applicable to magnetic systems.
If one wants to understand magnetism of materials, one has to be first clear about
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the magnetism of individual atoms. This purpose is served by Chap. 2 (Atomic mag-
netism), in which all the important magnetic properties of atoms are discussed. We
derive the electron spin and spin–orbit interaction from the relativistic Dirac equa-
tion and investigate the behaviour of an atomic electron in the field of the nucleus
and also in the presence of an external magnetic field. The third chapter is devoted
to “diamagnetism” which is a property possessed by all materials, which, however,
is observable only when it is not overwhelmed by some other forms of magnetism
(para-, ferro-, ferri- or antiferromagnetism). Diamagnetism in some measure can be
explained as an induction effect, particularly because of the negative susceptibility.
Chapter 4 deals with paramagnetism, which in contrast to diamagnetism, presumes
the existence of permanent magnetic moments. These moments can either be local-
ized stemming from partially filled electron shells of the ions in solid or they can be
the moments of the quasi-freely moving band electrons. An external magnetic field
tries to order them, whereas the thermal motion opposes the ordering tendency. The
result is a positive susceptibility which in general is temperature dependent. Param-
agnets are characterized by the fact that a direct interaction between the permanent
moments, to a good approximation, can be neglected. In contrast to this, collective
magetism (ferro, ferri and antiferromagnetism) is characterized by a spontaneous
ordering of the magnetic moments below a critical temperature, and therefore a
necessary precondition for this is the existence of a microscopic interaction between
the moments. The so-called exchange interaction even though has its origin in pure
electrostatic interaction cannot be understood from classical point of view. The
general experience is that for a beginner this poses certain conceptual difficulties
but, at the same time, it is the basis of understanding collective magnetism. There-
fore exchange interaction has been discussed in considerable detail in Chap. 5. The
so-called direct exchange interaction is determined via the overlap integrals of the
wavefunctions of the participating magnetic ions. As a result it is of very short range
and therefore is seldom realized in nature as compared to certain indirect exchange
interactions which use the electrons in the conduction band (RKKY interaction)
or the diamagnetic ions (superexchange, double exchange) as “catalysts” for an
interaction between the localized moments. The coupling mechanisms are explained
using simple cluster models and it is shown that ultimately all the interactions have
the same operator form (Heisenberg model).

Having established the required conceptual basis, the last three chapters are
devoted to the three important models of magnetism, namely, the Ising, the Heisen-
berg and the Hubbard model, respectively. In these chapters, an attempt has been
made to present material such that the approach is pedagogic and at the same time
gives the latest results available in literature. In doing this care is taken to derive all
the results systematically and in every detail. Some of the important derivations are
treated as problems whose complete solutions are given. While discussing quantum
theory of magnetism it is imperative that one uses the techniques of many-body
theory. In order to famialiarize the reader with these techniques, two appendices are
added. The first one deals with the formalism of second quantization where all the
results are worked out and to provide sufficient training to the self-learner, a set of
problems is added. The second apendix is concerned with the many-body theory.



Preface vii

The topics in this appendix are so chosen that they are directly relevant to the theory
of magnetism. Again in this appendix, too, problems are provided, some of which
elucidate certain further results which are left out in the actual text.

The preperation of this book took about 3 years during which the authors were
able to get together at either Berlin or Warangal for short periods, the financial
support for which was provided by the Volkswagen Foundation and Kakatiya Uni-
versity. It is a pleasure to acknowledge the help of Dr. G. Gangadhar Reddy in
various forms during the entire period of writing the book.

Berlin, Germany W. Nolting
Warangal, India A. Ramakanth
July 2009
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Chapter 1
Basic Facts

Before we start the explanation and discussion of the characteristic features of the
phenomenon “magnetism”, we have to fix the notation and define the key terms of
magnetism. We use the SI units and begin with a non-controversial definition of
quantities such as the magnetic moment, magnetization and magnetic susceptibility,
which are important for the theory of magnetism.

1.1 Macroscopic Maxwell Equations

Magnetism is a phenomenon observed in matter. Therefore we need the Maxwell’s
equations in matter. Matter is made up of charged or neutral particles, which are
either bound or quasi-free. The charged particles respond to external fields in a
complex manner which leads to induced multipoles and consequently to additional
fields in matter.

Postulate: Maxwell’s equations of vacuum are universally valid microscopically!
Denoting the microscopic fields with small letters, using the customary notation, we
have the well-known microscopic Maxwell’s equations:

∇ × e = −ḃ ∇ · b = 0
∇ · e = ρ/ε0 ∇ × b = μ0 j + ε0 μ0 ė

(1.1)

ε0 = 8.854188 × 10−12 As
V m

μ0 = 4π × 10−7 V s
A·m

c2 = 1
μ0 ε0

(1.2)

here ε0 is the permittivity, μ0 the free-space permeability, and c is the velocity
of light in vacuum. The problem becomes unsolvable because of the fact that, in
matter, there are, on an average about 1023 molecular (atomic, subatomic) par-
ticles per cm3 which are in constant motion (lattice vibrations, orbital motion
of the atomic electrons, etc.) creating both in space and time rapidly oscillating
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2 1 Basic Facts

fields e and b whose determination appears to be a hopeless undertaking. On the
other hand, a macroscopic measurement means a rough sampling of a microscopic
area. That means, the measurement of a field quantity automatically implies an
averaging over a finite space–time element which smoothens the rapid fluctua-
tions. Typical variations in space are of the order of 1 Å(10−10 m) and typical
variations in time are of the order of 10−17 s (nucleons) and of 10−13 s (atomic
electrons).

Therefore, a theory is meaningful only for average quantities. A microscopically
exact theory is impossible but, fortunately, it is also not necessary since it would
contain superfluous information which is not accessible to experiment. Now the
question is how does one theoretically describe the averaging process involved in
the experiment?

Let us assume

f (r, t) is a microscopic field quantity,
v(r) is a microscopically large and macroscopically small sphere with centre

at r, for example, a volume 10−6 cm3 which still has about 1017 particles.

Defintion: Phenomenological average value:

f (r, t) = 1

v(r)

∫
v(r)

d3r ′ f (r′, t) (1.3)

In view of the large number of particles in the macroscopic volume v(r), the
average is simultaneously over space and time. Fast microscopic fluctuations are
automatically smoothened by the space averaging. It should be noted that (1.3) is
not the only possible way of averaging; fortunately this averaging does not require
the specifying of the weight function (here it is 1/v).

For the following discussion, we make use of the fundamental assumptions that
the processes of differentiation and averaging are interchangeable:

∂

∂t
f̄ = ∂ f

∂t
; ∇ f̄ = ∇ f (1.4)

This is obviously satisfied by the averaging process (1.3).
We now define macroscopic fields by averaging the microscopic fields,

E(r, t) = e(r, t) ; B(r, t) = b(r, t) (1.5)

so that we obtain the macroscopic Maxwell’s equations

∇ × E = −Ḃ ∇ · B = 0
∇ · E = ρ̄/ε0 ∇ × B = μ0 j̄ + ε0 μ0 Ė

(1.6)
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If we use the continuity equation,

∇ · j̄ + ˙̄ρ = 0 (1.7)

the quantity still to be determined is the average current density j̄. It is made up of
two terms, namely, j f originating from the free charge carriers (electrons) and jbound

originating from the localized ions:

j̄ = j f + jbound (1.8)

For the contribution of the free charges, we write

j f = ρ f · v (1.9)

which we call free current density, where ρ f is the respective charge density of the
free charges.

The current density due to ions, which we call the bound current density, can be
again split into two terms:

jbound = jp + jm (1.10)

(1) jp is the current density of polarization charges which results from the time-
dependent dipole moments, charge displacements in ions, etc. In order to determine
this, we start by recapitulating certain results of basic electrodynamics.

Potential of the jth ion:

4πε0 φ j (r) = q j∣∣r − R j

∣∣ + P j
r − R j∣∣r − R j

∣∣3 + · · · . (1.11)

where R j is the position vector, q j the charge and P j the dipole moment of the j th
ion (Fig. 1.1).

The contribution of (1.11) must be summed over all particles. Here, we are inter-
ested only in the second summand which we reformulate in terms of the microscopic
dipole density,

Π(r) =
∑

j

P j · δ(r − R j ) (1.12)

and obtain

4πε0 φp(r) =
∫

d3r ′ Π(r′) · r − r′

|r − r′|3 =
∫

d3r ′ Π(r′). ∇r′
1

|r − r′| .
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Fig. 1.1 Schematic plot for the definition of the scalar ion-potential.

From this it follows that

4πε0 · φp(r) = 1

v

∫
|x |≤R

d3 x
∫

d3r ′ Π(r′) ∇r′
1

|r + x − r′|
= 1

v

∫
d3 x

∫
d3 r ′′ Π(r′′ + x) ∇r′′

1

|r − r′′|
=
∫

d3r ′′ Π(r′′) ∇r′′
1

|r − r′′| . (1.13)

where r′′ = r′ − x. v(r) is the averaging volume which is taken as a sphere with
radius r .

We define the macroscopic polarization P(r) as

P(r) = Π(r) = 1

v

∑
j∈v

P j (1.14)

From (1.13), by taking gradient, we obtain the electric field Ep(r) created by the
polarization:

4πε0 Ep(r) = −∇r

∫
d3r ′′P(r′′) ∇r′′

1

|r − r′′| (1.15)
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which can further be rewritten as

4πε0 ∇ · Ep(r) = −
∫

d3r ′′P(r′′) ∇r′′ �r
1

|r − r′′|︸ ︷︷ ︸
−4πδ(r−r′′)

= −4π ∇r

∫
d3r ′′P(r′′) δ(r − r′′)

= −4π ∇ · P(r)

This helps us in defining the polarization density ρp as

ρp = −∇ · P(r) (1.16)

From the corresponding continuity equation, we get the current density

jp = ∂

∂t
P(r) (1.17)

(2) jm is the magnetization current density. It results from the internal motion of
the atomic electrons in their stationary orbits. Here stationary means equal amount
of charge flows into and out of a given volume:

∫
∂V

df · jm =
∫

V
d3r ∇ · jm = 0. (1.18)

where
∫
∂V indicates integral over the surface that encloses the volume V . Since the

volume V can be arbitrarily chosen, (1.18) is equivalent to

∇ · jm = 0 (1.19)

For magnetic considerations, jm is the primarily important quantity, since it defines
the magnetic moment mi of the ion localized at Ri :

mi = 1

2

∫
d3r (r − Ri ) × j(i)

m (1.20)

The index i indicates the lattice point.
It is instructive to evaluate (1.20) for a known example. Assuming that the mag-

netic moment is affected only by the electrons (assumed to be point charges) and
not by the motion of the nucleus, we can write for the current density

jm = −e
p∑

j=1

v j δ(r − r j ). (Ri = 0) (1.21)
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The summation is over the p atomic electrons. Substituting in (1.20) we get the
moment

m = − e

2

∑
j

r j × v j = − e

2m

∑
j

l j (1.22)

where l j is the angular momentum of the j th electron. This is the well-known rela-
tion between the angular momentum and the magnetic moment.

Eqs. (1.19) and (1.20) are fulfilled by the following generalized representation of
the current density:

j(i)
m = −mi ×∇ f (|r − Ri |) = ∇ × (mi · f (|r − Ri |)) (1.23)

Note that mi is a particle property and therefore not space dependent. Here the
function f (|r − Ri |) is almost arbitrary. It should, however, satisfy two conditions:

(a) f ≡ 0 outside the ion at Ri

(b)
∫

I on
d3r f (|r − Ri |) = 1 (1.24)

That j(i)
m in the form of (1.23) indeed satisfies (1.19) and (1.20) can easily be checked

by substitution (Problem 1.1).
We now define

jm(r) = ∇ × (m · f (|r − R|)) = ∇ × M(r) (1.25)

and therewith

M(r) = m · f (|r − R|) (1.26)

where M(r) is called the magnetization.
With these definitions, we can now gather the macroscopic Maxwell equations:

∇ × B = μ0 (j f + jp + jm) + ε0 μ0 Ė

= μ0 j f + μ0 Ṗ + μ0 ∇ × M + ε0 μ0 Ė

This can be further rearranged as

∇ × (B − μ0 M) = μ0 j f + μ0 (ε0 Ė + Ṗ) (1.27)

Similarly, when we denote the macroscopic charge density by ρ, we find

∇ · E = 1

ε0
(ρ + ρ p) = 1

ε0
(ρ − ∇ · P) (1.28)
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so that we have

∇ · (ε0 E + P) = ρ (1.29)

We can now summarize as follows:
Material equations:

B = μ0 (H + M) ; D = ε0 E + P (1.30)

Maxwell equations:

∇ × E = −Ḃ ∇ · B = 0
∇ · D = ρ ∇ × H = j f + Ḋ

(1.31)

We want to recall the fact that a charge q moving with a velocity v, placed in an
electric field E and a magnetic field B experiences a force, known as the Lorentz
force given by

F = q · (E + v × B) (1.32)

One should pay attention to the fact that a charged particle actually “sees” E and
B since they are the actual physical fields. In contrast, H and D are only auxiliary
quantities.

1.2 Magnetic Moment and Magnetization

The relationships for m and M derived so far are rather inconvenient to handle.
Therefore, we will now try to express them in terms of the energy W of the magnetic
system. W is defined through the magnetization current density jm and not through
the free current density, which produces a magnetic field in which the magnetic sys-
tem finds itself. First we consider the magnetic energy of a single ion, starting with
a classical treatment. How does the energy of an ion change when a magnetic field
B0 is switched on? A change in energy appears due to the work done by the external
field on the magnetization current density. This happens through the E-field induced
by B0:

∇ × E = −Ḃ0 B0 = μ0H (1.33)



8 1 Basic Facts

Denoting the change in energy of the ion in time dt by dW , we find

dW =
∫

ion
jm · E d3rdt

= −dt
∫

ion
(m ×∇ f (|r − R|)) · E d3r

= −dt m ·
∫

ion
(∇ f × E) d3r

= −dt m ·
∫

ion
(∇ × ( f E) − f ∇ × E) d3r

= −m ·
∫

ion
dB0 · f d3r

In the second step we have used (1.23), in the third step, we use the fact that m is a
space-independent intrinsic particle property, and in the fourth step, the well-known
vector formula

∇ × (φ a) = φ ∇ × a − a ×∇φ

where a is a vector field and φ is a scalar field. In the last step we exploit the property
(a) in (1.24) and the generalized Gauss theorem (a: arbitrary vector field)

∫
V

d3r ∇ × a =
∫

∂V
dS × a

where
∫
∂V indicates integral over the surface that encloses the volume V . Finally,

the Maxwell equation (1.31) is inserted.
dB0 is certainly constant over the dimensions of an ion and therefore can be

brought out of the integral. Exploiting the normalization of the function f (property
(b) in (1.24)), the magnetic moment of the ion is then given by

m = − ∂W

∂B0
= −∇B0 W (1.34)

So far we have calculated classically. The quantum mechanical generalization is
quite straight forward.

Starting from the Schrödinger equation

(Ĥ − W )|ψ〉 = 0 ; 〈ψ |ψ〉 = 1 (1.35)

where Ĥ is the Hamiltonian of the ion, by differentiating with respect to the external
field B0, we obtain

(
∂ Ĥ

∂B0
− ∂W

∂B0

)
|ψ〉 + (Ĥ − W )| ∂ψ

∂B0
〉 = 0 (1.36)
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By multiplying from the left with the bra 〈ψ | we get

〈ψ | ∂ Ĥ

∂B0
|ψ〉 = ∂W

∂B0
− 〈ψ |(Ĥ − W )| ∂ψ

∂B0
〉 (1.37)

The last term in the above equation vanishes since Ĥ is Hermitean. Comparing
this expression with (1.35) and exploiting the quantum mechanical correspondence
principle we get for the magnetic moment operator

m̂ = − ∂

∂B0
Ĥ (1.38)

As an example, we will now evaluate m̂ for an ion in a homogeneous magnetic
field. For this purpose, we need the Hamiltonian Ĥ whose exact derivation is dealt
with in the next section. Here we consider only the atomic electrons, treating the
nucleus to be at rest which only provides the charge neutrality, and, in particular,
does not influence the external magnetic field B0 = μ0H appreciably. The (com-
plicated) interaction among the electrons, the interaction with the nucleus and the
spin–orbit coupling effects will not be needed in detail for the moment. We are
mainly interested in the terms that arise due to the external magnetic field. We
choose the vector potential A such that

B0 = ∇ × A ; ∇ · A = 0 (Coulomb gauge) (1.39)

This can be fulfilled by

A = 1

2
B0 × r (1.40)

The kinetic energy of the electrons without field is given by

T0 =
p∑

i=1

p2
i

2m
(1.41)

where p is the number of atomic electrons. We denote the charge of the electron by
(−e) so that e > 0. In the presence of the field, we must distinguish the canonical
momentum pi from the mechanical momentum mvi :

pi = m vi − e A(ri ) (1.42)

The kinetic energy in the presence of the field is then given by
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T = 1

2m

p∑
i=1

(pi + e A(ri ))
2

= 1

2m

p∑
i=1

[
p2

i + e (pi · A(ri ) + A(ri ) · pi ) + e2 A2(ri )
]

One should pay attention that, in general, the operators pi and A(ri ) do not com-
mute. In the Coulomb gauge, however, they do commute as can be seen from the
following:

pi · A(ri ) = �

i
∇i · A(ri ) = �

i
(∇ · A︸ ︷︷ ︸

=0

+A · ∇i )

= A(ri ) · pi (1.43)

Therefore, we finally get the following expression for the kinetic energy:

T = T0 + e

m

p∑
i=1

A(ri ) · pi + e2

2m

p∑
i=1

A2(ri ) (1.44)

Let the homogeneous magnetic field be oriented in the z-direction:

B0 = (0, 0, B0) (1.45)

Substituting in (1.40), the vector potential A is given by

A = B0

2
(−y, x, 0) (1.46)

The scalar product Ai · pi appearing in (1.44) can then be expressed by the orbital
angular momentum li of the i th electron:

Ai · pi = B0

2
(−yi pix + xi piy) = 1

2
B0 li z

= 1

2
B0 · li (1.47)

Introducing the total orbital angular momentum L of the atomic electrons, which is
given by

L =
p∑

i=1

li (1.48)

Equation (1.44) eventually reduces to
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T = T0 + 1

�
μB L · B0 + e2 B2

0

8 m

p∑
i=1

(
x2

i + y2
i

)
(1.49)

where μB the Bohr magneton is given by

μB = e�

2m
= 9.274 ∗ 10−24 J

T

= 0.579 ∗ 10−4 eV

T
(1.50)

The total magnetic moment of the atomic electrons due to their orbital angular
momenta follows by inserting (1.49) in (1.38),

mL = −1

�
μB L (1.51)

in agreement with (1.22). That means, the magnetic moment and angular momentum
are always oriented antiparallel to each other. The reason for this is the negative
charge of the electron. The energy is minimum when the moment and the field are
parallel or when the field and the angular momentum are antiparallel.

So far, we have not taken the spin of the electron into account. The existence
of spin is experimentally established, for example, by the Einstein–de Haas experi-
ment. Its rigorous proof needs the Dirac theory (see Sect. 2.3).

A magnetic moment is also associated with the total spin S of the atomic elec-
trons:

mS = −1

�
μB ge S (1.52)

where ge is the Lande’s g-factor given by

ge = 2
(

1 + α

2π
+O(α2)

)
≈ 2.0023, (1.53)

and α ≈ 1
137 is the Sommerfeld’s fine structure constant. For our purpose, it is

always enough to take ge ≈ 2. The interaction of mS with the field gives one more
term in the Hamiltonian:

Hs = ge
1

�
μB S · B0 (1.54)

Denoting by Ĥ0 the Hamiltonian in the absence of the field, absorbing, e.g. the
electron–electron and the electron–nucleus interaction, which we consider as field
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independent, the Hamiltonian of the ion in the presence of the field is given by

Ĥ = Ĥ0 + μB

�
(L + 2S) · B0 + e2 B2

0

8m

p∑
i=1

(
x2

i + y2
i

)
(1.55)

Using (1.38) we can now evaluate the magnetic moment:

m = −μB

�
(L + 2S) − e2

4m
B0

p∑
i=1

(x2
i + y2

i ) (1.56)

This result is valid only when the spin–orbit coupling is completely neglected. Also,
only in this case can one uniquely define L and S (see Chap. 2). One recognizes that
the second term in (1.56) corresponds to an induced magnetic moment, disappearing
as soon as the field is switched off. On the contrary, the first term is a permanent
moment that is present as long as (L+ 2S) does not vanish. This requires an incom-
pletely filled electron shell (Chap. 2).

We now come to the concept of magnetization. According to (1.26), to evaluate
the magnetization, we have to average the magnetic current density over a volume
v(r) which is macroscopically small but still contains a large number of ions in it.
This is the basic problem of every theory of magnetism. The motion of the charge
carriers is strongly correlated and therefore it is a genuine many-body problem
which can be handled only in certain limiting cases, namely, for

(a) strongly localized moments where the currents are restricted to particular lattice
cells (localized magnetism);

(b) itinerant moments which are carried by quasi-free conduction electrons (band
magnetism).

It is not always possible to classify magnetic materials into one or the other of
these two classes. In addition, even these limiting cases are not completely under-
stood, either.

For the localized moments (a), we have

M(r) = m · f (|r − R|) = 1

v(r)

∫
v

d3r ′m f

= 1

v(r)

N (v(r))∑
i=1

mi

∫
vi

d3r ′ f (|r′ − Ri|)
︸ ︷︷ ︸

=1

where N (v(r)) is the number of localized moments located in v(r) and vi denotes a
volume containing only the i th ion:
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M(r) = 1

v(r)

N (v(r))∑
i=1

mi (1.57)

This expression further simplifies if we assume identical ions. Then the averaging
over many identical ions in different states can be replaced by thermodynamic aver-
age over a single ion:

M(r) = n(r)〈m〉 (1.58)

here n(r) = N (v(r))/v(r) is the ion density and 〈· · · 〉 means the thermodynamic
average wherein lies the magnetic field and the temperature dependence. The eval-
uation of the magnetization M(r) under given assumptions is, therefore, actually a
thermodynamic averaging over the individual ion moment.

1.3 Susceptibility

We introduce a further important quantity in the field of magnetism, the knowledge
of which provides a lot of information. This is one of the so-called response func-
tions. A response function describes the response of a system to external perturba-
tions. In the case of magnetism, the perturbation is the external magnetic field H and
the response is the magnetization M(r, t). These two are related by susceptibility. In
this section, we will restrict ourselves only to some definitions.

One distinguishes linear media where the response is directly proportional to
the perturbation so that the susceptibility is independent of the field, and non-linear
media where the higher powers of the perturbation are not negligible so that the
susceptibility is field dependent.

Every magnetic material has a so-called linear response region for sufficiently
small external perturbations, where the higher powers of the perturbation do not
play any role. This is in general the case for “normal” experimentally realizable
fields. One of the non-linear effects is, for example, the phenomenon of hysteresis.

Using the Fourier transforms of the magnetization and the field,

M(r, t) = 1

2π V

∑
q

∫
dω M(q, ω) ei(q·r−ωt) (1.59)

H(r, t) = 1

2π V

∑
q

∫
dω H(q, ω) ei(q·r−ωt) (1.60)

one defines the generalized susceptibility χ :

Mα(q, ω) =
∑

k

∫
dω̄
∑

β

χαβ(q, k; ω, ω̄) Hβ(k, ω̄) (1.61)

α, β ∈ {x, y, z}
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This is the most general case where χ is a field and temperature-dependent tensor.
For the (r, t)-dependent Fourier transforms, we have

M(r, t) =
∫ ∫

d3r ′dt ′χ (r, r′ ; t, t ′) H(r′, t ′) (1.62)

χ(r, r′ ; t, t ′) = 1

2πV

∑
k,q

∫ ∫
dω dω̄ χ (q, k; ω, ω̄) eiq·(r−r′) ∗

∗e−i ω(t−t ′) ei(q−k)·r′ e−i(ω−ω̄)t ′ (1.63)

Under certain preconditions, this expression takes a simpler form. For example,
if the translational invariance and a stationary medium are imposed, then χ can
depend only on the differences (r − r′) and (t − t ′). That means

χ(q, k; ω, ω̄) = χ (q, ω) δkq δ(ω − ω̄) (1.64)

This is actually the case, with which we will in general be concerned:

M(r, t) =
∫ ∫

d3r ′dt ′χ(r − r′, t − t ′) H(r′, t ′) (1.65)

χ(r − r′, t − t ′) = 1

2πV

∑
q

∫
dω χ(q, ω) ei(q(r−r′)−ω(t−t ′)) (1.66)

χ (q, ω) is the dynamic susceptibility and χ (q, ω = 0) is the static susceptibility.
If we further assume that the field is homogeneous and static, so that H is not

dependent on r and t and that the magnetizable medium is homogeneous so that M
is also not dependent on r and t , then we are left with the tensor

χ = χ (q = 0, ω = 0) (1.67)

the elements of which are given by

χαβ =
(

∂ Mα

∂ Hβ

)
T

α, β ∈ {x, y, z}

Obviously, χ may depend on T and H:

χαβ = χαβ(T, H) (1.68)
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This quantity is eminently suitable to classify solid materials based on their mag-
netic properties. This will be demonstrated in the next section of this introductory
chapter.

1.4 Classification of Magnetic Materials

One can classify the magnetic phenomena into three main groups.

1.4.1 Diamagnetism

It is defined by

χdia < 0 ; χdia = const. (1.69)

It has to do basically with an induction effect. The external field induces magnetic
dipoles, which, according to the Lenz’s law, are oriented antiparallel to the field and
therefore χ is negative (see the second term in (1.56)).

Diamagnetism is a property displayed by all materials. However, one speaks of
diamagnetism only when no other, i.e. neither paramagnetism nor collective mag-
netism is present, because if any other magnetism is present, then diamgnetism,
which is weak, is buried under the stronger effects.

Examples:

1. Almost all the organic substances
2. Metals like Bi, Zn and Hg
3. Nonmetals like S, J and Si
4. Superconductors for T < TC are perfect diamagnets, i.e. χdia = −1 (Meissner–

Ochsenfeld effect)

1.4.2 Paramagnetism

Typical for this class is

χ para > 0 ; χ para = χ para(T ) (1.70)

The essential requirement for paramagnetism is the existence of permanent mag-
netic dipoles, which are, more or less, oriented by the field H and this orientation is
opposed by the thermal motion. Paramagnetism can be of two types depending on
whether the permanent moments are localized or itinerant.
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1.4.2.1 Localized Moments

The moments arise due to one of the inner partially filled electron shells.

Examples:

3d: transition metals
4f: rare earths
5f: actinides

Paramagnetism of these materials is the so-called Langevin paramagnetism. In
this case, we have

χ para = χ para(T ) (1.71)

At high temperatures the well-known Curie’s law is satisfied:

χ (T ) = C

T
(1.72)

1.4.2.2 Itinerant Moments

Quasi-free conduction electrons carry a permanent moment of one Bohr magneton
(1μB) each. In this case, we have Pauli-paramagnetism, where χ Pauli , to a first
approximation, is temperature independent (due to Pauli’s principle). Schematically
one can distinguish the two types (1.4.2.1) and (1.4.2.2) from Fig. 1.2 (in general,
however, χ Pauli � χ Langevin).

1/χ

χPauli

χLangevin

T

Fig. 1.2 Schematic plot of the inverse susceptibility as a function of temperature for a localized
(χ Langevin) and for an itinerant (χ Pauli ) magnetic moment system (paramagnetism)
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1.4.3 Collective Magnetism

The susceptibility in this case is in general a complicated function of the field, tem-
perature, and also often of the pre-treatment of the sample:

χC = χC (T, H, history) (1.73)

Collective magnetism arises due to a characteristic, only quantum mechanically
explainable exchange interaction between the permanent magnetic dipoles. That
leads to a critical temperature T ∗ below which there exists a spontaneous mag-
netization, i.e. a spontaneous, not forced externally, ordering of the dipoles. The
permanent magnetic dipoles can again be either localized (Gd, EuO, Rb2MnCl4,
etc.) or itinerant (Fe, Co, Ni, etc.). Collective magnetism can be further divided into
three sub-classes.

1.4.3.1 Ferromagnetism

In this case the critical temperature is called the Curie temperature:

T ∗ = TC (1.74)

For temperatures 0 < T < TC the permanent moments have a preferential orien-
tation. At absolute zero T = 0, all the moments are oriented parallel to each other
(Figs. 1.3 and 1.4).

Fig. 1.3 Ferromagnetic order at 0 < T < TC

Fig. 1.4 Ferromagnetic order at T = 0

1.4.3.2 Ferrimagnetism

In this case the lattice is divided into two sub-lattices A and B with different, nor-
mally antiparallel magnetizations MA and MB such that (Fig. 1.5)

MA �= MB (1.75)

and

MA + MB �= 0 f or T < TC (1.76)



18 1 Basic Facts

Fig. 1.5 Ferrimagnetic order at T = 0

1.4.3.3 Antiferromagnetism

The critical temperature is called the Neel temperature:

T ∗ = TN (1.77)

It is a special case of ferrimagnetism (Fig. 1.6):

|MA| = |MB | �= 0 ; MA = −MB f or T < TN . (1.78)

Fig. 1.6 Antiferromagnetic order at T = 0

The total magnetization M = MA + MB is therefore always zero.
Above the critical temperature T ∗, collective magnetism goes into paramag-

netism with the characteristic behaviour of the inverse susceptibility sketched in
Fig. 1.7. θ is the so-called paramagnetic Curie temperature.

The different features, listed above, will all be derived in the course of this book.

TT*θ

1/χ

Antiferro

Ferri

Ferro

Fig. 1.7 Characteristic temperature behaviour of the inverse susceptibility for antiferromagnetic,
ferrimagnetic and ferromagnetic localized moment systems. θ is the paramagnetic Curie tempera-
ture



1.5 Elements of Thermodynamics 19

1.5 Elements of Thermodynamics

We presume that the reader is familiar with the basic principles of Thermodynamics
and Statistical Mechanics. We therefore refer here only to some peculiarities of the
magnetic system which are vital for the consistency of later derivations.

For a magnetic system the first law of thermodynamics can either be written as

dU = T d S − V Md B0 + μ d N (1.79)

or

dU = T d S + V B0d M + μ d N (1.80)

where U is the internal energy, defined as the statistical expectation value of the
Hamiltonian Ĥ of the system,

U = 〈Ĥ〉 (1.81)

T , S, B0, M , V , μ and N are, respectively, temperature, entropy, magnetic induc-
tion, magnetization, volume, chemical potential and particle number.

The existence of two different Eqs. (1.79) and (1.80) for the internal energy
means that the magnetic analogue to the volume work (−pdV , p : pressure) of the
fluid system is not unique. The difference lies in the energy stored in the magnetic
field. Shall this contribution be counted or not? Both versions are correct and do not
lead to any contradiction. The version (1.80) has the advantage that according to

p ←→ B0 (intensive)
V ←→ −m = −V M (extensive)

intensive and extensive thermodynamic variables correspond to each other.
However, the total internal energy contains the pure field energy, too. That is

accounted for by the version (1.79). The change of the corresponding free energy,

F = U − T S,

reads in this case

d F = −SdT − V Md B0 + μ d N (1.82)

That means the magnetic induction B0 is one of the natural variables of the ther-
modynamic potential F :

F = F(T, B0, N ) (1.83)

We will use this version rather exclusively in the following chapters due to the fol-
lowing two reasons. First, the free energy then depends on the variables (T, B0, N)
which are most convenient for magnetic systems since they are related to the usual
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experimental situation. Second, it fits the definition (1.81) of the internal energy U
as the expectation value of the system Hamiltonian. This can be seen as follows.

On switching on a magnetic field at T = 0, the internal energy changes by

ΔU = 〈Ĥ (B0) − Ĥ (0)〉 (1.84)

According to our definition (1.38) of the magnetic moment this means

dU = 〈∇B0 Ĥ〉d B0

= −〈m̂〉d B0

= −V Md B0 (1.85)

For T = 0 and N = const. this is just (1.79)
For the free energy F = F(T, B0), we can derive a fundamental relationship to

the canonical partition function :

Z N = Z N (T, B0) = T re−β Ĥ (1.86)

We inspect for a system with N = const.

d(−βF) = F

kB T 2
dT + 1

kB T
(SdT + V Md B0)

= β

(
U

T
dT + V Md B0

)

= β

(
1

T
〈Ĥ〉dT − 〈∇B0 Ĥ〉d B0

)

From the definition (1.86) of the partition function one gets immediately

〈Ĥ〉 = 1

Z N
T r
(

e−β Ĥ Ĥ
)

= − ∂

∂β
ln Z N (T, B0)

= kB T 2 ∂

∂T
ln Z N (T, B0) (1.87)

〈∇B0 Ĥ〉 = 1

Z N
T r
(

e−β Ĥ∇B0 Ĥ
)

= − 1

β

∂

∂ B0
ln Z N (T, B0) (1.88)
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It follows

d(−βF) =
(

∂

∂T
ln Z N

)
B0

dT +
(

∂

∂ B0
ln Z N

)
T

d B0

and therewith the fundamental relation between free energy and canonical partition
function:

F(T, B0) = −kB T ln Z N (T, B0) (1.89)

The magnetization M(T, B0) can then be derived with (1.82)

M(T, B0) = − 1

V

(
∂ F

∂ B0

)
T,N

= kB T

V

(
∂

∂ B0
ln Z N (T, B0)

)
T

(1.90)

Let us repeat the above considerations for the grand canonical ensemble. Central
thermodynamic potential in this case is the grand canonical potential

Ω = F − G (1.91)

where G is the Gibbs enthalpy. Using the Gibbs–Duhem relation, G = μN , one
gets with (1.82)

dΩ = d F − μd N − Ndμ

= −SdT − V Md B0 − Ndμ (1.92)

That means

Ω = Ω(T, B0, μ)

Since the particle number is not fixed, N is to be read as N = 〈N̂ 〉, where N̂ is the
particle number operator and 〈· · · 〉 is now the grand canonical average

〈N̂ 〉 = 1

Ξ
T r
(

e−β(Ĥ−μN ) N̂
)

(1.93)

where Ξ is the grand partition function,

Ξ = T r
(

e−β(Ĥ−μN )
)

= Ξμ(T, B0) (1.94)
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One recognizes

〈N̂ 〉 = 1

β

∂

∂μ
ln Ξμ(T, B0) (1.95)

〈∇B0 Ĥ〉 = − 1

β

∂

∂ B0
ln Ξμ(T, B0) (1.96)

U = 〈Ĥ〉 = − ∂

∂β
ln Ξμ(T, B0) + μ〈N̂ 〉 (1.97)

We inspect now

d(βΩ) =
= − Ω

kB T 2
dT − 1

kB T

(
SdT + V Md B0 + 〈N̂ 〉dμ

)

= −U − μ〈N̂ 〉
kB T 2

dT − 1

kB T
(V Md B0 + 〈N̂ 〉dμ)

= −
(

∂

∂T
ln Ξμ(T, B0)

)
μ,B0

dT −
(

∂

∂ B0
ln Ξμ(T, B0)

)
T,μ

d B0

−
(

∂

∂μ
ln Ξ(T, B0)

)
T,B0

dμ

Except for an unimportant constant we therefore get

Ω(T, B0, μ) = −kB T ln Ξμ(T, B0) (1.98)

The magnetization now reads

M(T, B0) = − 1

V

(
∂Ω

∂ B0

)
T,μ

= kB T

V

(
∂

∂ B0
ln Ξμ(T, B0)

)
T,μ

(1.99)

Equations (1.98) and (1.99), derived in the grand canonical ensemble, are fully
equivalent to the “canonical” expressions (1.89) and (1.90). All the four will be
frequently used in the later chapters.

1.6 Problems

Problem 1.1 According to classical electrodynamics, the magnetization current j(i)
m

inside a particle (e.g. electrons in atomic shells) produces a magnetic moment
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mi = 1

2

∫
d3r (r − Ri ) × j(i)

m

Here Ri is the position vector of the centre of the particle. Show that this relation is
equivalent to

j(i)
m = ∇ × (mi f (|r − Ri |))

where the function f , which is differentiable sufficient number of times, can be
chosen “almost arbitrarily” so long as it satisfies the following conditions:

1. f ≡ 0 outside the i-th particle,
2.
∫

particle f (|r − Ri |)d3r ≡ 1.

Problem 1.2 Let Ĥ be the Hamiltonian of a magnetic system which is placed in a
homogeneous magnetic field B0. The operator for the magnetic moment m̂ is defined
by

m̂ = − d

d B0
Ĥ

m̂ refers to a permanent moment and diamagnetic components are neglected. That
means

d

d B0
m̂ = 0

The magnetization M and susceptibility χT are mainly determined by the statistical
average of the magnetic moment:

M = 1

V
〈m̂〉 ; χT = μ0

(
∂ M

∂ B0

)
T

where μ0 is the permeability of vacuum. Verify the following relation between the
susceptibility and the fluctuations of the magnetic moment (fluctuation–dissipation
theorem):

χT = 1

kB T

μ0

V
〈(m̂ − 〈m̂〉)2〉

Problem 1.3 A small magnet of dipole moment m is suspended at r0 = (x0, 0, 0)
such that it can freely rotate in the x–y plane. A homogeneous magnetic field B0 =
B0ex acts on it. In addition to that, let there be a magnetic field BI due to a line of
current I flowing in the z-direction. Calculate the angle α the dipole makes with the
x-axis.
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Problem 1.4 The ideal paramagnet is characterized by the Curie law (1.72):

M

H
= C

T
C : Curie constant

Calculate the work done on an ideal paramagnet when the applied magnetic field H
is isothermally increased from H1 to H2 > H1.

Problem 1.5 For not very low temperatures, the Curie law (1.72) represents the
equation of state of an ideal paramagnet.

1. Show that for the heat capacities

cM,H = T

(
∂S

∂T

)
M,H

holds

cM =
(

∂U

∂T

)
M

; cH =
(

∂U

∂T

)
H

+ μ0
V

C
M2

M , magnetization; H , magnetic field; V = const., volume; S, entropy; C , Curie
constant; μ0, permeability of vacuum.

2. For adiabatic change of states, derive the following relation:

(
∂ M

∂ H

)
S

= cM

cH
· μ0V M − ( ∂U

∂ H

)
T

μ0V H − ( ∂U
∂ M

)
T

Problem 1.6 Assume that a paramagnetic substance with known heat capacity cH

satisfies the Curie law

M

H
= C

T
C : Curie constant

For a reversible adiabatic change of state calculate

(
∂T

∂ H

)
S



Chapter 2
Atomic Magnetism

2.1 Hund’s Rules

We consider a single atom or an ion, which, in addition to completely filled elec-
tronic shells, has exactly one partially filled shell.

We denote by l the orbital angular momentum quantum number of the partially
filled shell and by p the number of electrons in this shell (p < 2(2l + 1)).

When there are no interactions, the degeneracy of the ground state will be equal
to the degeneracy corresponding to the possible distributions of the p-electrons into
2(2l + 1) levels. This degeneracy will be partially lifted by the Coulomb interaction
HC and the spin–orbit coupling HSO .

Under certain conditions for the relative magnitudes of these interactions, namely,
if

HC � HSO ; (“light” nuclei) (2.1)

very simple rules are valid in order to find energetically lowest energy terms. First
we will simply list them up. A more detailed discussion of the cases that do not
satisfy (2.1) will be done in later sections.

2.1.1 Russell–Saunders (LS-) Coupling

This is realized, when, to a first approximation, the spin–orbit interaction is negligi-
ble. Then the Hamiltonian can be written to a good approximation as

H ≈
p∑

i=1

(
p2

2m
+ V (ri )

)
+ 1

2

i �= j∑
i, j

e2

4πε0 ri j
; ri j = |ri − r j | (2.2)

In this case, the total orbital angular momentum L and the total spin angular momen-
tum S which are given by

W. Nolting, A. Ramakanth, Quantum Theory of Magnetism,
DOI 10.1007/978-3-540-85416-6 2, C© Springer-Verlag Berlin Heidelberg 2009
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L =
p∑

i=1

li ; S =
p∑

i=1

si (2.3)

commute with H :

[S , H ]− = 0 ; [L , H ]− = 0 (2.4)

Equation (2.4) is valid because, firstly, H does not contain S at all and then H is
rotationally invariant. Further it is always valid that

[J , H ]− = 0 (2.5)

where J is the total angular momentum of the shell:

J = L + S (2.6)

Physically it means that

L =
p∑

i=1

m(i)
l , S =

p∑
i=1

m(i)
s and J (2.7)

are good quantum numbers. m(i)
l and m(i)

s are the magnetic quantum numbers of the
individual electrons. In other words, there exists a simultaneous set of eigenstates
for the operators

H, J 2, Jz, L2, Lz, S2, Sz

and the states can be labelled by the corresponding quantum numbers:

| · · · 〉 = |J, MJ , L , ML , S, MS〉 (2.8)

That means for example,

J 2| · · · 〉 = �
2 J (J + 1)| · · · 〉 Jz| · · · 〉 = �MJ | · · · 〉

J = |L − S|, · · · , L + S −J ≤ MJ ≤ +J
(2.9)

The other angular momentum operators also operate in exactly similar fashion. For
the Hamiltonian we have

H | · · · 〉 = E (0)
J L S | · · · 〉 (2.10)

The energy eigenvalues will depend on J , L , S, but, in the absence of a magnetic
field, they will degenerate with respect to MJ , ML and MS .



2.1 Hund’s Rules 27

2.1.2 Hund’s Rules for LS Coupling

For given L and S all the possible levels build the so-called LS multiplet. For the
energetically lowest of them, the following rules are valid:

1. Maximum S, as far as being consistent with Pauli’s principle.

S = 1

2
[(2l + 1) − |2l + 1 − p|] (2.11)

2. Maximum L, as far as being consistent with both the Pauli’s principle and with
(1):

L = S |2l + 1 − p| (2.12)

For magnetic problems, only the multiplet built according to (1) and (2) is
meaningful. All the other multiplets, i.e. those which correspond to different
(L , S)-values, lie, in general, energetically much higher (> 1 eV, compare with
kB TR ≈ 1/40 eV (TR : room temperature), μB B ≤ 10−2 eV).
Notation:

L = 0 1 2 3 · · ·
X = S P D F · · ·

“T erm ′′ : 2S+1 X J (2.13)

Every multiplet constructed according to (1) and (2) further contains

L+S∑
J=|L−S|

(2J + 1) = (2S + 1)(2L + 1) (2.14)

distinct states. Among these, again, often, though not always, only those states
are important which satisfy the third Hund’s rule:

3. J = |L − S| in case the shell is less than half-filled (p ≤ (2l + 1))
J = L + S in case the shell is more than half-filled (p ≥ (2l + 1))
which means

J = S |2l − p| (2.15)

A special case is represented by the completely filled shell with p = 2(2l + 1).
This is because, in this case, all the angular momenta vanish. A consequence of
this is, on the other hand, that the total angular momentum of the whole atom is
identically equal to the angular momentum of the partially filled shell.
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Attention!

Let us conclude this section with an important remark! From (1.52) and (1.57)
we know that as a consequence of the negative electron charge, angular momen-
tum and magnetic moment are oriented antiparallel to each other. In a magnetic
field, e.g. the energetically favoured orientation of the magnetic moment is par-
allel and that of the corresponding angular momentum is antiparallel to the field.
Nevertheless, in almost all textbooks, the different sign of moment and momentum
is disregarded. Although being, strictly speaking, wrong, it does not change any
relevant physical statement. In order not to confuse the reader, when referring to
other textbooks, we will follow the trend and disregard the different sign of moment
and momentum. As an example, we will assume that a spin up electron (spin pro-
jection + 1

2 ) has a lower energy in the magnetic field than a spin down electron
(spin projection − 1

2 ). This has already been used in (2.7) and (2.11) as well as in
Table 2.1.

Table 2.1 Atomic term scheme for an f-shell occupied by p electrons (e.g. 4f-shell of a rare earth
atom). Here ↑ represents spin projection 1/2 and ↓ spin projection −1/2

p
ml

3 2 1 0 −1 −2 −3 S L J Term

1 ↑ 1/2 3 5/2 2 F5/2

2 ↑ ↑ 1 5 4 3 H4

3 ↑ ↑ ↑ 3/2 6 9/2 4 I9/2

4 ↑ ↑ ↑ ↑ 2 6 4 5 I4

5 ↑ ↑ ↑ ↑ ↑ 5/2 5 5/2 6 H5/2

6 ↑ ↑ ↑ ↑ ↑ ↑ 3 3 0 7 F0

7 ↑ ↑ ↑ ↑ ↑ ↑ ↑ 7/2 0 7/2 8 S7/2

8 ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 3 3 6 7 F6

9 ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ 5/2 5 15/2 6 H15/2

10 ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↑ 2 6 8 5 I8

11 ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↑ 3/2 6 15/2 4 I15/2

12 ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↑ 1 5 6 3 H6

13 ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ 1/2 3 7/2 2 F7/2

14 ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ 0 0 0 1 S0

2.2 Dirac Equation

We now want to discuss, more quantitatively, the ideas that were presented rather
qualitatively so far. In particular, we are concerned with establishing a rigorous basis
for the electron spin. The starting point for this is the Dirac equation which is a result
of the linearization of the relativistic generalization of the Schrödinger equation.
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The Dirac equation describes

1. Relativistic electrons
2. Spin 1/2 particles
3. Magnetic moment of spin
4. Spin–orbit coupling

Thus, even the spin–orbit coupling is basically a relativistic effect. We will consider,
in the following, a single electron.

The energy equation for a free classical relativistic particle is given by

E2 = c2p2 + m2c4 (2.16)

where m is the mass of the electron, p = γ (vx , vy, vz) is the relativistic mechanical
momentum with γ = (1 − v2/c2)1/2 and c is the velocity of light. From (2.16) one
can obtain the wave equation using the Schrödinger’s correspondence rule

E → i�
∂

∂t
; p → �

i
∇. (2.17)

This can be written compactly in relativistically covariant four-dimensional form:

pμ → i� ∂μ (2.18)

where

pμ = (E/c, γ m vx , γ m vy, γ m vz) = (E/c, γ m v) (2.19)

is the four-momentum and

∂μ =
(

1

c

∂

∂t
, −∇

)
(2.20)

is the contravariant four-gradient.
With this we obtain the so-called Klein-Gordon equation which is the relativistic

generalization of the Schrödinger equation:

(
Δ − 1

c2

∂2

∂t2
− m2c2

�2

)
ψ = 0 (2.21)

There is a problem with (2.21). It is a differential equation of second order in t .
Therefore, its solution requires two initial conditions, namely, for ψ and ψ̇ . In con-
trast, the non-relativistic Schrödinger equation is obviously linear in t . Therefore
one should question, whether inclusion of the relativistic effects should lead to such
drastic changes in the requirement on the initial information.
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Dirac’s idea was to linearize the wave equation (2.21):

(
E − c

∑
i αi pi − β m c2

) (
E + c

∑
j α j p j + β m c2

)
= 0

i, j ∈ {x, y, z}
(2.22)

This equation is identical to (2.16) provided the operators (!) αi and β are so chosen
to satisfy the following relations:

αi α j + α j αi = 2 δi j · 1 (2.23)

αi β + β αi = 0 (2.24)

β2 = 1 (2.25)

Further, α’s and β’s must commute with p. Every solution of the linearized equa-
tions

(
E ± c

∑
i

αi pi ± β m c2

)
ψ = 0 (2.26)

is also a solution of the Klein–Gordon equation; the converse is, however, not nec-
essarily true. We thus have the Dirac equation for a free particle:

(
i�

∂

∂t
− c α · p − β m c2

)
ψ = 0. (2.27)

This form of the wave equation is satisfying from the relativistic view point, too. The
special theory of relativity is typically known to treat the space and time components
on equal footing. Therefore, a relativistic wave equation is expected to possess the
symmetry between the space coordinates and time, which means, it should be of
first order in the space coordinates, too. Obviously, that is the case here!

The above considerations can easily be extended to the case, where the particle
is in the presence of an electromagnetic field, yielding the Dirac equation for an
electron in an electromagnetic field.

{
i�

∂

∂t
− c α · (p + eA) − β m c2 + e φ

}
ψ = 0 (2.28)

It is obtained by the usual substitutions:

p → p + e A (2.29)
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E → E + e φ (2.30)

They can be expressed in the covariant form by

pμ → pμ + e Aμ (2.31)

where Aμ is the four-potential

Aμ ≡ (A,
1

c
φ) (2.32)

The conditions (2.23), (2.24), and (2.25) on α’s and β’s cannot be satisfied by nor-
mal c-numbers. Rather similar relations are obeyed by the Pauli’s spin matrices:

σ = (σx , σy, σz) (2.33)

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(2.34)

Eqs. (2.23), (2.24), and (2.25) are satisfied by the following 4 × 4 matrices (see
Problem 2.2):

α̂ =
(

0 σ

σ 0

)
; β̂ =

(
1l2 0
0 −1l2

)
(2.35)

Here 1l2 indicates a 2 × 2 unit matrix. The wavefunction also naturally will be a
four-component object:

ψ =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ (2.36)

According to (2.27), the Dirac’s Hamiltonian H (0)
D for the free electron, which is

defined by

i�
∂

∂t
ψ = H (0)

D ψ (2.37)

satisfies the equation

H (0)
D = c α̂ p + β̂ m c2 (2.38)
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H (0)
D is given in the matrix form by

H (0)
D =

⎛
⎜⎜⎝

mc2 0 cpz c(px − i py)
0 mc2 c(px + i py) −cpz

cpz c(px − i py) −mc2 0
c(px + i py) −cpz 0 −mc2

⎞
⎟⎟⎠ (2.39)

Obviously,

[
H (0)

D , p
]
−
= 0 (2.40)

which means we can choose the eigenfunctions of H (0)
D as momentum eigenfunc-

tions. These are the plane waves whose direction of propagation may be chosen as
the z-axis (px = py = 0, pz = p):

ψ ≡ â e
i
�

(pz−Et) (2.41)

Here â is a spinor with four position-independent components ai :

â =

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ (2.42)

Now we have to solve the eigenvalue equation

⎛
⎜⎜⎝

mc2 − E 0 cp 0
0 mc2 − E 0 −cp

cp 0 −mc2 − E 0
0 −cp 0 −mc2 − E

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ = 0 (2.43)

where p is no longer an operator but a c-number. The condition that the secular
determinant should vanish gives the energy eigenvalues

E = εE p ; ε = ±1 ; E p =
√

c2 p2 + m2 c4 (2.44)

Each eigenvalue is doubly degenerate, i.e. for every eigenvalue there exist two lin-
early independent eigensolutions. As a reasonable result, we retrieve the relativistic
energy law which is to be expected.
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For the un-normalized spinors, we can easily find
ε = +1

â(+)
1 ≡

⎛
⎜⎜⎝

1
0

c p
E p+mc2

0

⎞
⎟⎟⎠ ; â(+)

2 ≡

⎛
⎜⎜⎝

0
1
0

− c p
E p+mc2

⎞
⎟⎟⎠ (2.45)

ε = −1

â(−)
1 ≡

⎛
⎜⎜⎝
− c p

E p+mc2

0
1
0

⎞
⎟⎟⎠ ; â(−)

2 ≡

⎛
⎜⎜⎝

0
c p

E p+mc2

0
1

⎞
⎟⎟⎠ (2.46)

The general solution will be a linear combination

ψ (±) =
(

A± â(±)
1 + B± â(±)

2

)
exp[

i

�
(p z − E t)] (2.47)

We now define the Dirac spin operator

ŝ = �

2
σ̂ ; σ̂ =

(
σ 0
0 σ

)
(2.48)

where σ̂ is the four-component relativistic generalization of the Pauli spin operator
σ = (σx , σy, σz). In particular, it holds

σ̂z =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ (2.49)

Then it directly follows that

ŝz â(±)
1 = +�

2
â(±)

1 (2.50)

ŝz â(±)
2 = −�

2
â(±)

2 (2.51)
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The four-component spinors distinguish themselves through a “new” quantum num-
ber, which we call from now onwards as spin:

â(+)
1 ⇔ (+E p, +�

2

)
â(+)

2 ⇔ (+E p, −�

2

)
â(−)

1 ⇔ (−E p, +�

2

)
â(−)

2 ⇔ (−E p, −�

2

)
(2.52)

It should be noted that the general solution ψ (±) is not an eigenfunction of ŝz . This
is obvious because ŝz does not commute with H (0)

D (see Problem 2.5).

2.3 Electron Spin

In the last section, from the Dirac equation, we have obtained an indication about a
new quantum number, namely the spin. We now want to show, at first more or less
qualitatively, that this new degree of freedom is something like an angular momen-
tum.

We extend the Dirac’s Hamiltonian operator H (0)
D (2.38) by including a central

potential V (r ).

H (V )
D = c α̂ · p + β̂ m c2 + V (r ) (2.53)

Non-relativistically, we expect that in a central potential, the orbital angular momen-
tum

l = r × p (2.54)

of the electron is a constant of motion. However, one finds (Problem 2.5) that

[
l , H (V )

D

]
−
�= 0 (2.55)

As an example, we explicitly calculate the commutator (2.55) for the x-component
lx = ypz − zpy . The other components behave analogously.

[
lx , H (V )

D

]
−
= c

3∑
i=1

[lx , αi pi ]− + mc2 [lx , β]− + [lx , V (r )]−

= c
3∑

i=1

αi

(
[ypz , pi ]− − [zpy , pi

]
−
)

= c
(
αy
[
y , py

]
− pz − αz [z , pz]− py

)
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This finally results in

[
lx , H (V )

D

]
−
= i�c

(
αy pz − αz py

)
(2.56)

For the other components we analogously get (see Problem 2.5)

[
ly , H (V )

D

]
−
= i�c (αz px − αx pz) (2.57)

[
lz , H (V )

D

]
−
= i�c

(
αx py − αy px

)
(2.58)

A theory is certainly not satisfactory, if it violates the principle of conservation of
angular momentum, when the force is a central force. The reason probably is that
the orbital angular momentum is not the total angular momentum. Therefore, let us
examine the Dirac’s spin operator (2.48),

ŝ = �

2
σ̂ (2.59)

and consider again the x-component:

ŝx = �

2

(
σx 0
0 σx

)
= �

2

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ (2.60)

In calculating the commutators of ŝx with the Dirac’s Hamiltonian operator H (V )
D ,

we exploit the fact that ŝx commutes with pi . Then we have

[̂
sx , H (V )

D

]
−
= c

3∑
i=1

[̂sx , αi ]− pi + mc2 [̂sx , β]− (2.61)

Using the matrix representation (2.35) for β, we find that

ŝx β = �

2

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ = β ŝx (2.62)

Therefore, the second summand in (2.61) vanishes:

[̂sx , β]− = 0 (2.63)
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Using the definition of αx (2.35), we get

ŝx αx = �

2

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ = αx ŝx (2.64)

Therefore, we have

[̂sx , αx ]− = 0 (2.65)

Only the commutators of ŝx with αy and αz give non-zero contributions. We note
that

ŝx αy = �

2

⎛
⎜⎜⎝

0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0

⎞
⎟⎟⎠ = −αy ŝx = + i

�

2
αz (2.66)

Therefore, we have

[̂
sx , αy

]
− = + i � αz (2.67)

Analogously we also get from

ŝx αz = �

2

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ = −αz ŝx = − i

�

2
αy (2.68)

the third commutator:

[̂sx , αz]− = −i � αy (2.69)

Thus, we finally have

[̂
sx , H (V )

D

]
−
= i � c

(
αz py − αy pz

)
(2.70)

We can calculate analogously for the other components:

[̂
sy , H (V )

D

]
−
= i � c (αx pz − αz px ) (2.71)

[̂
sz , H (V )

D

]
−
= i � c

(
αy px − αx py

)
(2.72)
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Neither ŝ nor l commutes with H (V )
D but we have

[
l , H (V )

D

]
−
= −

[̂
s , H (V )

D

]
−

(2.73)

so that the sum of spin and orbital angular momentum does commute with H (V )
D .

This leads to the following interpretation:

l + ŝ = l + �

2
σ̂ − T otal angular momentum operator

ŝ = �

2
σ̂ − Spin operator (2.74)

Therefore, the spin, which follows quite naturally from Dirac’s theory can obviously
be interpreted as angular momentum. The total angular momentum l + ŝ is, in a
central field, a conserved quantity.

We now return to the problem of Dirac particle in an electromagnetic field.
According to (2.28) the Hamiltonian is

HD = cα̂ · (p + eA) + β̂mc2 − eφ (2.75)

The field could be due to the nuclear charge. From now onwards, we will consider
only the positive energy solutions (electrons).

It is convenient to split the four-component Dirac spinor into two components.

ψ =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

(
ψ+
0

)
+
(

0
ψ−

)
(2.76)

with

ψ+ =
(

ψ1

ψ2

)
; ψ− =

(
ψ3

ψ4

)
(2.77)

At the moment, it is only another way of writing, where both the summands are the
eigenstates of the operator β with eigenvalues ±1, respectively:

β̂

(
ψ+
0

)
=
(

ψ+
0

)
; β̂

(
0

ψ−

)
= −

(
0

ψ−

)
(2.78)

The motivation for this splitting is the following. We are ultimately interested in the
non-relativistic limit v � c of the Dirac’s theory. In this limit, the energy eigenvalue
of the free particle differ from the rest energy mc2 only by a small amount. The
difference
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T = E p − mc2 =
√

c2 p2 + m2c4 − mc2

= mc2

(
1 + p2

m2c2

)1/2

− mc2

≈ p2

2m
(2.79)

is just the same as the well-known expression for the kinetic energy. We can estimate
the relative magnitudes of the individual components â(+)

1,2 (2.45) of the solution for
the free Dirac particle:

(
a(+)

13

a(+)
11

)2

=
(

a(+)
24

a(+)
22

)2

= cp2

(E p + mc2)2

= E2
p − (mc2)2

(E p + mc2)2

= E p − mc2

E p + mc2

= T

T + 2mc2
= O

(
v2

c2

)
� 1 (2.80)

In the non-relativistic limit, the two components a(+)
13 and a(+)

24 are negligibly small.
Even when a “normal” electromagnetic field is switched on, these order of mag-
nitude estimates will not change. On the other hand, a(+)

13 and a(+)
24 determine the

corresponding components ψ−. Thus, in the limit v � c, between ψ− and ψ+, there
will be an order of magnitude difference. This is actually the motivation for the
above-performed splitting, so that, in the non-relativistic limit, the Dirac’s theory
reduces to a two-component theory (Pauli’s theory).

Using (2.75) for HD and (2.35) for α̂ and β̂, we can write the Dirac equation in
the following form:

HD

(
ψ+
ψ−

)
= c (p + eA)

(
σ ψ−
σ ψ+

)
+ mc2

(
ψ+
−ψ−

)

− eφ

(
ψ+
ψ−

)
.= E

(
ψ+
ψ−

)
(2.81)

This matrix equation means that we have to solve the following system of equations:

(E − mc2 + eφ)ψ+ = c (p + eA) · σ ψ− (2.82)

(E + mc2 + eφ)ψ− = c (p + eA) · σ ψ+ (2.83)

From the second equation, it follows that



2.3 Electron Spin 39

ψ− = (E + mc2 + eφ)−1c (p + eA) · σ ψ+ (2.84)

Once again from this, the orders of magnitude are clear.

ψ−︸︷︷︸
small

≈ “v′′

c
ψ+︸︷︷︸

large

(2.85)

Within the framework of the Pauli’s theory, which represents the non-relativistic
limit of Dirac’s theory, that is, if

(E − mc2), eφ,
1

2m
(p + eA)2 � mc2 (2.86)

we can write up to an error of order of magnitude v2/c2

ψ− ≈ 1

2mc
(p + eA) · σ ψ+ (2.87)

The system of Eqs. (2.82) and (2.83) can then be written within the corresponding
error as eigenvalue equation for ψ+ by inserting (2.87) into (2.82):

Hp ψ+ = (E − mc2) ψ+ (2.88)

with

Hp = 1

2m
[(p + eA) · σ ][(p + eA) · σ ] − eφ (2.89)

The Pauli’s Hamiltonian is then a 2 × 2 matrix. Using the identity (proof as Prob-
lem 2.6)

(a · σ )(b · σ ) = (a · b)1 + i(a × b) · σ (2.90)

we can further rewrite (2.89). For that we have to evaluate

(p + eA) × (p + eA)ψ = (p × p + e2A × A) ψ

+ e (A × p + p × A) ψ

= e
�

i
(A ×∇ψ +∇ × (Aψ))

= e
�

i
(∇ × A) ψ

With ∇ × A = B0 and s = �

2 σ , we then have
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Hp = 1

2m
(p + eA)2 + 2

μB

�
(s · B0) − eφ (2.91)

This is the Hamiltonian of a particle of mass m, the charge e and magnetic eigen-
moment

m̂s = −2
μB

�
s (2.92)

We now summarize the important results of this section:

1. s = �

2 σ is classified as angular momentum with the name, “spin” with eigenval-
ues ± �

2 .
2. Magnetic eigenmoment of the electron is established with a Lande’s g-factor

ge = 2.

2.4 Spin–Orbit Coupling

Spin–orbit coupling is a relativistic effect and therefore it must be derived from
the Dirac’s theory, which we will do in the following. However, the essence of the
argument can already be recognized based on a simple-minded physical estimate.
Therefore, we will first present this estimate before undertaking the exact deriva-
tion. The electron moves in the rest system of the charged nucleus which creates an
electrostatic field

E = −∇φ (2.93)

Since the electron moves with respect to the nucleus, it “sees” a magnetic field B
which according to relativistic electrodynamics is given by

B̄ = γ

(
B − 1

c
β × E

)
− γ 2

γ + 1
β (β · B) (β = 1

c
v) (2.94)

Here E and B shall be the fields in the rest frame of the nucleus (B = 0) and Ē and
B̄ are the fields in the rest frame of the electron. Since v � c, γ ≈ 1, we are left
with

B̄ ≈ − 1

c2
v × E (2.95)

If we postulate the existence of a spin moment, then, due to this field, there is an
additional term in the Hamiltonian (2.91) of the electron:

H̄SO = 2
μB

�
B̄ · s = e

mc2
(E × v) · s (2.96)
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If we assume a spherically symmetric nuclear potential,

E = −r
r

dφ

dr
(2.97)

then we get using l = r × p = m r × v,

H̄SO = − e

m2c2

(
1

r

dφ

dr

)
(l · s) (2.98)

This extra term clearly describes the coupling of the electron spin with the orbital
motion in the field of the nucleus. However, it comes out that, HSO is too large by a
factor of 2.

For the rigorous derivation of spin–orbit interaction, we make use of the non-
relativistic limit of the Dirac’s theory. Now, however, we have to extend the approx-
imation a step further as compared to what we have done in the last section. In
discussing the spin magnetic moment, we have neglected the terms of the order
of (v2/c2). It was done, so that, in the limit v � c, the “small” component ψ−
can be eliminated and the theory can be reduced from a four-component theory to
a two-component theory, which is the normal situation in non-relativistic physics.
However, neglecting ψ− might possibly lead to an error in the normalization of the
wavefunction. This we examine more carefully now.

ψ =
(

ψ+
ψ−

)
⇒ ψ∗ψ = ψ∗

+ψ+ + ψ∗
−ψ−. (2.99)

When we go over to a two-component theory, the normalization should be con-
served. Therefore, we start with the following ansatz:

ψ+ = Nχ (2.100)

The normalization constant will be fixed by the condition

ψ∗ ψ
!= χ∗ χ = N 2 χ∗ χ + ψ∗

− ψ− (2.101)

χ is now the “new” wavefunction of the two-component theory. Let the electron
move in the E-field (B0 = 0) created by the nucleus. Then we have according to
(2.84)

ψ− = c

E + mc2 + eφ
(p · σ ) ψ+ (2.102)

The quantity, which is “small” in the non-relativistic limit is not E but

T = E − mc2 (2.103)
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Therefore, we substitute appropriately in (2.102) and expand in powers of v/c:

ψ− = 1

2mc

(
1 + T + eφ

2mc2

)−1

(p · σ ) ψ+

= 1

2mc

(
1 − T + eφ

2mc2
+O(v4/c4)

)
(p · σ )N χ (2.104)

Substituting this in the normalization condition (2.101),

χ∗χ = N 2χ∗χ
(

1 + 1

4m2c2
(p · σ )2 +O(v4/c4)

)
(2.105)

and using the vector identity (2.90) to evaluate the scalar product,

(p · σ )2 = p2 + i(p × p) · σ = p2 (2.106)

finally yields for the normalization constant N

N =
(

1 + p2

4m2c2
+O(v4/c4)

)−1/2

= 1 − p2

8m2c2
+O(v4/c4) (2.107)

With this, we have the following intermediate result for ψ+:

ψ+ ≈
(

1 − p2

8m2c2

)
χ (2.108)

Substituting this in (2.104) we get for ψ−

ψ− ≈ 1

2mc

(
1 − T + eφ

2mc2

)
(p · σ )

(
1 − p2

8m2c2

)
χ

and finally

ψ− ≈ 1

2mc

(
(p · σ ) − (p · σ )

p2

8m2c2
− T + eφ

2mc2
(p · σ )

)
χ (2.109)

Compared to the result in Sect. 2.3, the last two terms in the above equation are
extra. We will substitute this expression for ψ− in (2.82) which is still exact and
which is rewritten as

(T + eφ) ψ+ = c (p · σ ) ψ− (2.110)

By doing this, we have transformed a four-component theory into a two-component
one. With (2.108) and (2.109), we then obtain an eigenvalue equation for χ :
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(T + eφ)

(
1 − p2

8m2c2

)
χ ≈ 1

2m

[
(p · σ )2

(
1 − p2

8m2c2

)

− (p · σ )
T + eφ

2mc2
(p · σ )

]
χ (2.111)

We will expand T + eφ also in powers of v/c:

T + eφ =
√

c2 p2 + m2c4 − mc2

= mc2

[(
1 + p2

m2c2

)1/2

− 1

]

= mc2

[
1 + p2

2m2c2
− 1

8

p4

m4c4
− 1 +O(v6/c6)

]

≈ p2

2m
− p4

8m3c2
(2.112)

This simplifies our eigenvalue equation for χ :

(T + eφ)χ ≈
[

p2

2m
− (p · σ )

T + eφ

4m2c2
(p · σ )

]
χ (2.113)

When proceeding further, we have to take into account the fact that φ, which is a
function of r , and p do not commute with each other. In contrast, T is treated as the
energy eigenvalue and therefore as a c-number (see (2.115)). Then we have

(p · σ )
T + eφ

4m2c2
(p · σ ) = T + eφ

4m2c2
p2 + �

i

e

4m2c2
(∇φ · σ )(p · σ )

≈ p4

8m3c2
+ �

i

e

4m2c2
[(∇φ · p) + i(∇φ × p) · σ ]

The last step is obtained by again using the vector identity (2.90). We define an
operator, which, we from now on, will interpret as spin–orbit interaction, which is
given by (s = �

2 σ )

HSO = −e

2m2c2
[(∇φ × p) · s] (2.114)

Then, we have the following eigenvalue equation for χ :

H̃χ = T χ (2.115)

where

H̃ = p2

2m
− p4

8m3c2
− eφ + i�e

4m2c2
(∇φ · p) + HSO (2.116)
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The individual terms have the following meaning:
p2

2m Non-relativistic kinetic energy of the electron

− p4

8m3c2 First relativistic correction to kinetic energy
−eφ Potential energy of the electron in the Coulomb field of the

nucleus, e.g. 4πε0φ(r ) = Z∗e
r Z∗ = Effective nuclear

charge
i�e

4m2c2 (∇φ · p) Darwin term, relativistic correction to the potential energy
of the electron (which has no classical analogue)

HSO Spin–orbit interaction
HSO is different from the “phenomenological” result H̄SO (2.98) exactly by a

factor of 1/2:

HSO = 1

2
H̄SO (2.117)

For a spherically symmetric potential φ(r ), i.e. ∇φ(r ) = r
r

dφ

dr , HSO can be rewritten
as

HSO = − e

2m2c2

(
1

r

dφ

dr

)
(l · s) (2.118)

or using the simple expression

4π ε0 φ(r ) = Z∗e

r

it can be written as

HSO = λ (l · s) ; λ = 1

8πε0m2c2
· Z∗e2

r3
(2.119)

HSO decreases rapidly with increasing nuclear distance r .
We discuss a few consequences of spin–orbit coupling:

1. HSO is the reason why even in the absence of an external magnetic field (B0 =
0) l and s do not commute with HD (see Sect. 2.3). One can easily show that
(Problem 2.8)

[l · s , l]− = i� (l × s) = − [l · s , s]− (2.120)

On the other hand,

[l · s , j]− = 0 ; j = l + s (2.121)

and further we have
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[l · s , j2]− = [l · s , l2]− = [l · s , s2]− = 0 (2.122)

It means that the energy eigenstates can be classified by j , m j , l and s (good
quantum numbers) but not by ml and ms . HSO couples (hybridizes) the states
with different ml and ms .

2. HSO partially lifts the degeneracy of the L S-multiplets (here the doublet, since
our treatment is valid only for one electron: j = l ± 1/2). Because of

j = l + s ⇒ 2(l · s) = j2 − l2 − s2

HSO produces a fine structure of the energy terms:

E (0)
nl j = E (0)

nl + λnl �
2 [ j ( j + 1) − l (l + 1) − s (s + 1)] (2.123)

Here n is the principal quantum number and E (0)
nl is the energy in the absence of

the spin–orbit coupling. The spin–orbit coupling constant is given according to
(2.119) by

λnl = − e

2m2c2
〈nls|1

r

dφ

dr
|nls〉 (2.124)

Because of the spin–orbit coupling, the terms j = l±1/2 have different energies
for l �= 0. However, the 2 j + 1-fold degeneracy due to m j still remains.

2.5 Wigner–Eckart Theorem

Using Dirac equation, we were able to explain the existence of electron spin and the
appearance of the spin–orbit coupling. We are now interested in the behaviour of the
electron in the presence of the nuclear field and an external magnetic field. That is,
we want to find out which of the energy levels are available, in the presence of these
two fields, to the electron. This is certainly a non-trivial problem. For this purpose,
we first discuss the so-called Wigner–Eckart theorem, which, at first glance, appears
to be highly specialized but turns out to be very useful, particularly, in the context
of the magnetic problems with which we are here concerned. In order to formulate
and later apply the theorem, we first present a few necessary pre-considerations.

2.5.1 Rotation

Let Σ and Σ̄ be two coordinate systems which have a common origin and are rotated
with respect to each other. Let their axes be defined through the unit vectors

ei , ēi ; i = 1, 2, 3
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The ēi can be written as a linear combination of ei :

ēi =
3∑

j=1

R ji e j (2.125)

The coefficients R ji which are given by

R ji = (e j · ēi ) (2.126)

are uniquely fixed by the angle and the axis of rotation. As a result of rotation, a
vector r in Σ transforms itself as follows:

r = (x1, x2, x3) → r̄ = (x̄1, x̄2, x̄3) (2.127)

In the co-rotated coordinate system Σ̄, we naturally have

r̄ = (x1, x2, x3) (2.128)

That means

r̄ = R [r] =
∑

j

x j ē j =
∑

i

x̄i ei

and therefore,

x̄i =
∑

j

Ri j x j (2.129)

Ri j are the elements of the 3 × 3 rotation matrix with the well-known properties:

1. Ri j = R∗
i j

2. R̃ = R−1 (R̃: transposed matrix)
3. det R = 1

Example: Rotation through an angle φ about the z-axis:

Rz(φ) =
⎛
⎝ cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎠ (2.130)

That means

x̄1 = x1 cos φ − x2 sin φ

x̄2 = x1 sin φ + x2 cos φ

x̄3 = x3

(2.131)
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2.5.2 Rotation Operator

We now want to consider, quantum mechanically, the rotation of a physical system.
Let |ψ〉 and |ψ̄〉 denote the state of the system before and after the rotation. They
are related by

|ψ̄〉 = R |ψ〉 (2.132)

where R is the rotation operator. The states |ψ〉 and |ψ̄〉 obey the condition that the
results of a measurement in the state |ψ̄〉 follow from the rotation of the results of
the same measurement done in the state |ψ〉. As an example, let us consider the
measurement of position. Suppose in the state |ψ〉, the result of measurement being
r1 has the probability density |ψ(r1)|2 and the result of the same measurement in the
state |ψ̄〉 being r has the probability density |ψ̄(r)|2. If (2.132) is valid, it is required
that

r = R [r1] ; |ψ̄(r)|2 = |ψ(r1)|2 (2.133)

In order to satisfy this, it is sufficient to have

ψ̄(r) = R ψ(r) = ψ(R−1 r) (2.134)

Since normalization should not be affected by rotation, the rotation operator must
necessarily be unitary:

R† R = R R† = 1l ⇔ R† = R−1 (2.135)

With this, the behaviour of the states under rotation is clear. Now the question is,
How do the observables behave? Rotation of an observable means nothing but the
rotation of the measuring instruments. Logically, the measurement of A in the state
|ψ〉 must mean the same as the measurement of Ā in the state |ψ̄〉. That is,

〈ψ |A|ψ〉 != 〈ψ̄ | Ā|ψ̄〉 = 〈ψ |R† A R|ψ〉 (2.136)

which means

A = R−1 Ā R

(2.137)

Ā = R A R−1

We conclude that the observables under rotation have the same transformation prop-
erties as the states.

There are two types of operators which are of special interest, namely, the scalar
operator S which remains uninfluenced by rotation, i.e.
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S̄
!= S = R S R−1 ⇔ [R , S]− = 0 (2.138)

and the vector operator V = (V1, V2, V3) with the components

Vi = V · ei (2.139)

which transforms under rotation as follows:

V̄i = V · ēi =
∑

j

R ji V · e j =
∑

j

R ji Vj (2.140)

Comparing this with (2.129) we see that the components of a vector operator behave
under rotation R as the components of a vector under R−1.

2.5.3 Angular Momentum

We now consider the special rotation (2.130):

Rz(φ) ψ(x, y, z) = ψ (R−1
z (φ) r)

= ψ(x cos φ + y sin φ, −x sin φ + y cos φ, z) (2.141)

If φ is an infinitesimally small angle, φ → ε = 0+, we can replace cos φ by 1 and
sin φ by φ = ε and perform a Taylor expansion:

Rz(ε) ψ(x, y, z) = ψ(x + ε y, −ε x + y, z)

= ψ(x, y, z) + ε

(
∂ψ

∂x
y − ∂ψ

∂y
x

)
+ · · ·

=
(

1 − i

�
ε lz

)
ψ(x, y, z)

This leads to the following important relation:

Rz(ε) = 1 − i

�
ε lz (2.142)

where lz is the z-component of the orbital angular momentum operator

l = r × p (2.143)

A more general form of the relation (2.142) is, when n denotes the unit vector in the
direction of the axis of rotation,

Rn(ε) = 1 − i

�
ε (n · l) (2.144)
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A complete generalization of these results to an arbitrary system defines the total
angular momentum j.

Rn(ε) = 1 − i

�
ε (n · j) (2.145)

The above definition of j is meaningful because, it is supported by the fact that the
well-known commutation relations for j can be derived from it. That can be shown
as follows:

Let us consider the infinitesimal rotation of the vector V about the axis n

V̄ = V + dV

From Fig. 2.1, we can see that dV can be written as

dV = ε n × V

Therefore, we have

V̄ = V + ε n × V (2.146)

Now let

K =
3∑

i=1

Ki ei (2.147)

be an arbitrary vector operator. Using (2.137) and (2.145), we find that the compo-
nents Ki transform as

K̄i = Rn(ε) Ki R−1
n (ε) ≈ Ki + i

�
ε [Ki , n · j]− (2.148)

Fig. 2.1 Rotation of a vector
V by a small angle ε about
the axis n

V

V

ε

dV

n
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where we could neglect the terms of the order of ε2. On the other hand, using (2.146)
we also have

K̄i = K · ēi = K · (ei + ε n × ei )

= Ki + ε K · (n × ei ) (2.149)

Comparing with (2.148), we get the important relation

[(n · j) , (ei · K)]− = i � (n × ei ) · K (2.150)

Substituting K = j we get, as stated above, the fundamental commutation relations
for the angular momentum j.

From (2.145) it follows that the angular momentum of a system is defined by its
transformation behaviour under an infinitesimal rotation of the coordinate system.
This is, of course, also valid for finite rotations. In order to show that, we exploit the
relation

Rn(φ + dφ) = Rn(dφ) Rn(φ)

=
(

1 − i

�
dφ(n · j)

)
Rn(φ)

which can also be written as a differential equation

d

dφ
Rn(φ) = − i

�
(n · j) Rn(φ)

which can be easily integrated to give

Rn(φ) = exp

(
− i

�
(n · j) φ

)
(2.151)

2.5.4 Rotation Matrices

Let |p; j m〉 be the eigenstates of the angular momentum operators j2 and jz . p
is a set of some quantum numbers that are necessary to specify the states but are
not concerned with the angular momentum. The following relations are well known
from elementary quantum mechanics:

j2 |p; j m〉 = �
2 j( j + 1) |p; j m〉 (2.152)

jz |p; j m〉 = � m |p; j m〉 (2.153)

j± = jx ± i jy (2.154)

j±|p; j m〉 = �

√
j( j + 1) − m(m ± 1) |p; j m ± 1〉 (2.155)



2.5 Wigner–Eckart Theorem 51

We denote by H( j) the space spanned by the 2 j+1 states |p; j m〉 corresponding
to a given j . Then, in the space H( j), we have

∑
m

|p; j m〉〈p; j m| = 1l (2.156)

From the special form of the rotation operators, it is obvious that the space H( j)

is invariant under rotations. An application of the operator Rn(φ) affects only the
magnetic quantum number m. The following equation:

R |p; j m〉 =
∑
m ′

|p; j m ′〉〈p; j m ′|R|p; j m〉

=
∑
m ′

|p; j m ′〉 R( j)
m ′m (2.157)

defines the (2 j + 1)-dimensional rotation matrix

R( j)
m ′m = 〈p; j m ′| R |p; j m〉 (2.158)

H( j) is called an irreducible space. What it means is that, all the vectors R |ψ〉,
which result from the application of the rotation operator R on an arbitrarily chosen
vector |ψ〉 in this space, are sufficient to span this space. Even if there exists only
one vector |φ〉, such that {R |φ〉} spans the space only partially, then the space is
reducible under rotations. In H( j) such a |φ〉 does not exist.

As examples, we consider three special rotation matrices:
Let ε again be an infinitesimal rotation angle.

(a) Rz(ε) = 1 − i
�

ε jz
Using (2.153), it directly follows that

(Rz(ε))( j)
m ′m = δm ′m (1 − iε m) (2.159)

(b) Rx (ε) = 1 − i
�

ε jx :
Since jx = 1

2 ( j+ + j−) and using (2.155), it follows that

(Rx (ε))( j)
m ′m = δm ′m − iε

2

√
j( j + 1) − m(m + 1) δm ′,m+1

− iε

2

√
j( j + 1) − m(m − 1) δm ′,m−1 (2.160)

(c) Ry(ε) = 1 − i
�

ε jy

With jy = 1
2i ( j+ − j−) and again using (2.155), it follows that
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(
Ry(ε)

)( j)
m ′m = δm ′m − ε

2

√
j( j + 1) − m(m + 1) δm ′,m+1

+ ε

2

√
j( j + 1) − m(m − 1) δm ′,m−1 (2.161)

2.5.5 Tensor Operators

A tensor is defined by its transformation properties under a coordinate transforma-
tion. A tensor of rank k in an n-dimensional space consists of a group of nk numbers
which transform linearly under rotation, according to specific laws:

k = 0 : Scalar x̄ = x
k = 1 : Vector of n-components xi with x̄i =

∑
j Ri j x j

k = 2 : n2-components Fi j with F̄i j =
∑

l,m Ril R jm Flm

The transition from a tensor to a tensor operator is exactly analogous to the one from
vector to vector operator.

Tensor operator: A group of operators (components) which transform linearly
within among themselves under a rotation.

For our purpose, in the following, only the irreducible tensor operators are inter-
esting. These are the tensor operators which operate in an irreducible space. One can
now show that an irreducible tensor operator of rank k consists of a set of (2k + 1)
operators (standard components)

T (k)
q , q = −k, −k + 1, · · · , +k

which under rotation transform as

R T (k)
q R−1 =

+k∑
q ′=−k

R(k)
q ′q T (k)

q ′ (2.162)

We notice that they follow the same transformation laws as the states | j, m〉 in
H( j) (2.158). All this appears to be a very special case, but actually, it is of wide
applicability, i.e. there exist many physically relevant operators which belong to
this class.

The relation (2.162) is valid if and only if it is valid for every infinitesimal
rotation. If we substitute R for such a rotation and use the rotation matrices that
were evaluated as examples (2.159), (2.160), and (2.161), then we recognize that
the above definition is strictly equivalent to the following commutation relations
(Problem 2.9):
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[
jz , T (k)

q

]
− = � q T (k)

q[
j± , T (k)

q

]
− = �

√
k(k + 1) − q(q ± 1) T (k)

q±1

Therefore, one can treat these “handy” commutation relations also as definitions.
Examples:

1. T̂ (0): Scalar operators are irreducible tensor operators of rank zero. They com-
mute with the angular momentum j .

2. T̂ (1): Every vector operator K is an irreducible tensor operator of rank one with
the standard components

T (1)
0 = Kz (2.163)

T (1)
±1 = ∓ 1√

2
(Kx ± i Ky) (2.164)

With the help of the general relation (2.150), one can easily prove and verify
the commutation relations (Problem 2.10). The angular momentum j itself is a
special example:

j0 = jz ; j±1 = ∓ 1√
2

j± (2.165)

3. T̂ (l): One can formally treat the spherical harmonics Ylm(θ, φ) to be operators.
Then they fulfil the commutation relations for the irreducible tensor operators
of rank l.

[
j± , Ylm

]
− = [l± , Ylm

]
−

= l± Ylm − Ylm l±
= (l± Ylm) + Ylm l± − Ylm l±
= �

√
l(l + 1) − m(m ± 1) Yl m±1 (2.166)

Analogously we find

[ jz , Ylm]− = � m Ylm (2.167)

Therefore, T (l)
m = Ylm is an irreducible tensor operator of rank l.

2.5.6 Wigner–Eckart Theorem

Tensors have their own algebra with a number of theorems. One of the most useful
among them is, surely, the Wigner–Eckart theorem which we present here with-
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out proof. It is concerned with the matrix elements of the standard components of
irreducible tensor operators in the space H( j):

〈p ; j m j |T (k)
q |p′ ; j ′ m j ′ 〉 = T (k)

red (p j ; p′ j ′)〈 j ′ k m j ′q| j m j 〉 (2.168)

T (k)
red (p j ; p′ j ′) is called the reduced matrix element of the tensor T̂ (k). It is indepen-

dent of the quantum numbers m j ′ , m j and q. 〈 j ′ k m j ′q| j m j 〉 is a Clebsch–Gordon
coefficient known in connection with the addition of two angular momenta:

| j1 j2, j m j 〉 =
∑

m1,m2

| j1 m1〉| j2 m2〉〈 j1 j2 m1 m2| j m j 〉 (2.169)

Here we have

m j = m1 + m2 ; | j1 − j2| ≤ j ≤ j1 + j2 (2.170)

That means the matrix elements (2.168) is different from zero only if

q = m j − m j ′ ;
∣∣ j − j ′

∣∣ ≤ k ≤ j + j ′ (2.171)

The actual meaning of the theorem lies in the factorization that is achieved by
(2.168). The Clebsch–Gordon coefficient is independent of T and T (k)

red is indepen-
dent of m j , m j ′ and q. That means the matrix elements of the standard components
of tensor operators with the same rank are proportional to each other. In the fol-
lowing discussion, we will exploit this fact very often .

We will be specially interested in tensor operators of rank one, i.e. in vector
operators. Therefore, we want to discuss these operators in more detail. For the
angular momentum j , and for its standard components jq , in view of (2.165), the
Wigner–Eckart theorem becomes

〈p; j m j | jq |p′; j m j ′ 〉 = jred (p j ; p′ j ′)δpp′ δ j j ′ 〈 j ′ 1 m j ′ q| j m j 〉 (2.172)

We can, as a result from the beginning, restrict ourselves to the matrix elements
which are diagonal in p and j . Then, for an arbitrary tensor operator of rank one,
we have

〈p; j m j |T (1)
q |p; j m j ′ 〉 = T (1)

red (p j)

jred (p j)
〈p; j m j | jq |p; j m j ′ 〉 (2.173)

The forefactor is determined from the scalar product

T (1) · j =
0, 1, −1∑

q

T (1)
q j †q (2.174)
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The scalar product T (1) · j must be direction independent. Therefore, for the purpose
of the calculation, we can assume any arbitrary m j :

〈T (1) · j〉 = 〈p j m j |T (1) · j|p j m j 〉
=
∑

q

∑
p′ j ′m j ′

〈pjm j |T (1)
q |p′ j ′m j ′ 〉 〈p′ j ′m j ′ | j †q |pjm j 〉︸ ︷︷ ︸

∼δpp′ δ j j ′

= T (1)
red (p j)

jred (p j)

∑
q,m j ′

〈pjm j | jq |pjm j ′ 〉〈pjm j ′ | j †q |pjm j 〉

= T (1)
red (p j)

jred (p j)
〈p j m j |j2|p j m j 〉︸ ︷︷ ︸

�2 j( j+1)

Here we have exploited (2.165): j2 = ∑q jq · j †q . With this, we get the following
important relation:

〈p j m j |T (1)
q |p j m j ′ 〉 = 〈T (1) · j〉

�2 j( j + 1)
〈p j m j | jq |p j m j ′ 〉 (2.175)

which holds of course only in the subspace of fixed p and j .

2.5.7 Examples of Application

1. T̂ (1) = l + 2s = j + s
This operator is important in connection with the Zeeman effect, which will
be discussed towards the end of the chapter. We are interested in the q = 0
component:

T (1)
0 = lz + 2sz = jz + sz (2.176)

In (2.175) we require the expression

〈(T (1) · j)〉 = 〈 j2 + s · j〉 = 〈 j2 + s2 + s · l〉
= 〈 j2 + s2 + 1

2
( j2 − l2 − s2)〉

= 〈 j2 + 1

2
( j2 − l2 + s2)〉

If we restrict ourselves to the space in which, simultaneously, j2, l2 and s2 are
diagonal, then, we have
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〈(T (1) · j〉 = �
2

{
j( j + 1) + 1

2
[ j( j + 1) − l(l + 1) + s(s + 1)]

}
(2.177)

At this point, we define the Lande-factor

g j (l, s) = 1 + j( j + 1) − l(l + 1) + s(s + 1)

2 j( j + 1)
(2.178)

With this, we finally get

〈p j m j |(lz + 2sz)|p j m j ′ 〉 = g j (l, s) � m j δm j m j ′ (2.179)

When q = 0, then, because of (2.171), naturally m j = m j ′ .

2. T̂ (1) = s
Here also, we will be interested only in the q = 0 component

T (1)
0 = sz (2.180)

We again require the scalar product

T (1) · j = s · j = s2 + 1

2
( j2 − l2 − s2) = 1

2
( j2 − l2 + s2)

Substituting this in (2.175) we get under the same conditions as in (1),

〈p j m j |sz|p j m j ′ 〉 = (g j (l, s) − 1) � m j δm j m j ′ (2.181)

This result agrees of course with (2.179) in example (1).
In the space of the states |ls, j m j 〉 with fixed l, s, j obviously

sz = (g j (l, s) − 1) jz (2.182)

is an operator identity. That is the reason, why, in many models of mag-
netism, only “interacting spins” are considered (see the Heisenberg model
which appears later) even though, in general, the total angular momentum is
involved.

2.6 Electron in an External Magnetic Field

After the background prepared in the earlier sections, we already have at least a
rough picture of how the Hamiltonian should look for an electron moving in

(a) a nuclear field E = −∇φ,
(b) a homogeneous external magnetic field B0 = (0, 0, B0).
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We will assume, for the moment, that the nuclear field is spherically symmetric
(the nucleus is treated as approximately a positive point charge). The deviations
from this simplifying assumption will be discussed in later sections. The Hamil-
tonian without the relativistic corrections, in this case, should have the following
form:

H = p2

2m
+ V (r ) + Hdia + HSO + μB

�
(l + 2s) · B0 (2.183)

The individual terms have the following meaning:

(a) H0 = p2

2m + V (r ): This describes the motion of a spinless particle of mass m and
charge −e in the field of the positively charged nucleus (V (r ) = −e φ(r )). This
is considered to be solved (hydrogen atom problem in basic quantum mechan-
ics). That means, we presume the energy levels E (0)

nl as known. Here n is the
principal quantum number and l the orbital angular momentum quantum num-
ber.

(b) Hdia = e2 B2
0

8m

(
x2 + y2

)
: This is the diamagnetic part, which has been derived in

Sect. 1.2. It results from the substitution p → p + eA which is necessary in
the presence of an electromagnetic field. This term is usually very small and is
meaningful only when the other terms do not play any role. Therefore, in this
section we will not take into account Hdia . We will discuss diamagnetic effects
in considerable detail in Chap. 3.

(c) HSO = λ (l · s): The spin–orbit coupling was already discussed in Sect. 2.4. It
produces a fine structure of the terms, i.e. the energy levels E (0)

nl are split into an
(l, s)-multiplet for j �= 0:

E (0)
nl j = E (0)

nl + 1

2
λnl �

2{ j( j + 1) − l(l + 1) − s(s + 1)} (2.184)

which, in our one-electron system, is naturally a doublet.

j = l ± 1

2
(2.185)

That means, the spin–orbit interaction lifts the j-degeneracy. The following
commutators, which have already been evaluated, are important:

[
HSO , j2

]
− = 0[

HSO , l2
]
− = 0[

HSO , s2
]
− = 0

[HSO , jz]− = 0 (2.186)

[HSO , lz]− �= 0

[HSO , sz]− �= 0
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These commutation relations show that only j , m j , l and s are “good” quantum
numbers and not ml and ms .

(d) Hz = −μB

�
(l+2s)·B0 = −μB

�
(lz+2sz) B0: This term will be called the Zeeman

term. With respect to the sign before the scalar product we refer to the remark at
the end of Sect. 2.1.One can easily show that j2 and sz do not commute.

[
j2 , sz

]
− = −2 i � (lx sy − lysx ) �= 0 (2.187)

From this it follows that

[
j2 , Hz

]
− = μB

�
B0
[

j2 , sz
]
− �= 0 (2.188)

Therefore, when the external field is switched on, j is also not a good quantum
number. But it is still valid that

[ jz , Hz]− = 0 (2.189)

and, therefore, m j still remains a good quantum number. As a result, the energy
eigenstates can still be classified, as before, by (n, m j , l, s) though not by
j, ml, ms . Physically, that means that the external field forces transitions between
states with different j but with the same m j . The energy eigenstates will therefore
be corresponding linear combinations:

|ψ〉 = α+

∣∣∣∣ j = l + 1

2
m j

〉
+ α−

∣∣∣∣ j = l − 1

2
m j

〉
(2.190)

We use the following shorthand notation:

|+〉 =
∣∣∣∣ j = l + 1

2
m j

〉
; |−〉 =

∣∣∣∣ j = l − 1

2
m j

〉
(2.191)

Then we have to solve the following Schrödinger equation:

H |ψ〉 = α+ H |+〉 + α− H |−〉 = E |ψ〉 (2.192)

Since

〈+|+〉 = 〈−|−〉 = 1 ; 〈+|−〉 = 〈−|+〉 = 0

from (2.192) it follows that

E α+ = α+〈+|H |+〉 + α−〈+|H |−〉
(2.193)

E α− = α+〈−|H |+〉 + α−〈−|H |−〉
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With the notation

E± = 〈±|H |±〉 ; η = 〈−|H |+〉 (2.194)

the solvability condition for the system of homogeneous equations

(E − E+) α+ − η∗ α− = 0

−η α+ + (E − E−) α− = 0

gives the required energy eigenvalues:

E1, 2(l s m j ) = 1

2

[
(E+ − E−) ±

√
(E+ − E−)2 + 4 η2

]
(2.195)

We calculate the matrix elements E+, E− and η with the help of the Wigner–Eckart
theorem:

E± =
〈

j = l ± 1

2
, m j |(H0 + HSO )| j = l ± 1

2
, m j

〉
−

− μB

�
B0

〈
j = l ± 1

2
, m j |(lz + 2sz)| j = l ± 1

2
, m j

〉
(2.196)

The first summand is exactly E (0)
nl j=l± 1

2
and is therefore known from (2.184). The sec-

ond summand was evaluated as an application example of Wigner–Eckart theorem.
The result is given in (2.179). So, we have

E± = E (0)
nl j=l± 1

2
− μB m j B0 g j=l± 1

2
(l, s) (2.197)

The Lande-factor, defined in (2.178), becomes in this case

g j=l± 1
2
= 1 ± 1

2l + 1
(2.198)

Further, we find with (2.184),

E (0)
nl j=l+ 1

2
= E (0)

nl + 1

2
λnl �

2 l (2.199)

E (0)
nl j=l− 1

2
= E (0)

nl − 1

2
λnl �

2 (l + 1) (2.200)

With this, we have determined the matrix elements E+ and E−:
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E+ = E (0)
nl + 1

2
λnl �

2 l − μB B0 m j
2l + 2

2l + 1
(2.201)

E− = E (0)
nl − 1

2
λnl �

2 (l + 1) − μB B0 m j
2l

2l + 1
(2.202)

The “mixed” matrix element η can also be easily evaluated using Wigner–Eckart
theorem. From the definition (2.194) we have

η = 〈 j = l − 1

2
, m j |(H0 + HSO )| j = l + 1

2
, m j 〉 − μB

�
B0 ×

× 〈 j = l − 1

2
, m j |(lz + 2sz)| j = l + 1

2
, m j 〉 (2.203)

The first summand vanishes because for (H0 + HSO ), j is a good quantum number,
i.e. (H0+HSO ) is diagonal in the | j, m j 〉 space. In the second summand, if (lz +2sz)
is replaced by ( jz + sz), then the matrix element also vanishes for the term with jz .
Therefore, what remains is

η = −μB

�
B0〈 j = l − 1

2
, m j |sz| j = l + 1

2
, m j 〉 (2.204)

This is, in general, unequal to zero since sz induces transitions. According to the
definition of sz given in (2.34) it holds

s2
z = �

2

4
1l (2.205)

This can be exploited as follows:

�
2

4
= 〈 j m j |s2

z | j m j 〉 =
∑
j ′,m j ′

〈 j m j |sz| j ′ m j ′ 〉〈 j ′ m j ′ |sz| j m j 〉

Since the commutator [sz, jz]− = 0, both the factors contribute only if m j = m j ′ .
So what remains is

�
2

4
=
∑

j ′
〈 j m j |sz| j ′ m j 〉〈 j ′ m j |sz| j m j 〉 (2.206)

For j = l + 1
2 and j ′ = l ± 1

2 , we have, in particular,

�
2

4
=
∣∣∣∣〈l + 1

2
, m j |sz|l + 1

2
〉
∣∣∣∣
2

+
∣∣∣∣〈l − 1

2
, m j |sz|l + 1

2
, m j 〉

∣∣∣∣
2

(2.207)

The second summand is identical with η (2.204) except for the factors. Therefore,
we get
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�
2

μ2
B B2

0

|η|2 = �
2

4
−
∣∣∣∣〈 j = l + 1

2
m j |sz| j = l + 1

2
m j 〉
∣∣∣∣
2

(2.208)

The remaining matrix element has been evaluated as an application example for
Wigner–Eckart theorem. From (2.181) and (2.198) we get for η

|η|2 = μ2
B B2

0

(
1

4
− m2

j

(2l + 1)2

)
(2.209)

Substituting (2.209) along with (2.201) and (2.202) in (2.195), we obtain, for the
given (n, l), a somewhat complicated expression for the 2(2l + 1) possible levels,
which are available for an electron in a magnetic field:

E1,2(lsm j ) =
(

E (0)
nl − 1

4
�

2 λnl − μB B0 m j

)

± 1

2

√
λ2

nl �4

(
l + 1

2

)2

− 2 m j λnl�
2μB B0 + μ2

B B2
0 (2.210)

We will now discuss certain limiting cases:

1. Weak fields: μB B0 � λnl

In this case, one can neglect the terms containing B2
0 and therefore also |η|2.

That means (2.195), E± are already the solutions. In this approximation, j2

commutes with H and, therefore, j remains a good quantum number.

Enl jm j = E (0)
nl j − g j (l, s) m j μB B0 (2.211)

This result is known as anomalous Zeeman effect which is characterized by the
linear dependence of the energy levels on the field.

2. Strong fields: μB B0 � λnl

Now, to a first approximation, we can neglect the spin–orbit coupling so that ml

and ms are still good quantum numbers.

m j = ml± 1
2
Enlml ms = E (0)

nl − (ml + 2ms) μB B0 (2.212)

This result is known as the normal Zeeman effect which also has linear field
dependence.

3. Intermediate fields: μB B0 ≈ λnl

Now we must apply the full expressions for E1,2(l, m j ). Then the field depen-
dence is not linear anymore. A special case is worth mentioning, namely

∣∣m j

∣∣ = l + 1

2
⇔ |η|2 = 0 (2.213)

In this case, (2.211) is valid independent of the strength of the magnetic field.
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2.7 Nuclear Quadrupole Field

So far we have treated the influence of the nucleus on the electron motion in the
simplest form, namely, we considered the nucleus to be a positive point charge. The
potential energy of the electron in the field of the nucleus is then given by

V (r ) = −eφ(r ) = − 1

4πε0

Z∗e2

r
(2.214)

Strictly speaking, that is too simple because, we are neglecting the higher multi-
pole moments of the nucleus. We will now treat this more rigorously. However, we
will continue to assume that the electron remains outside the region where nuclear
charge and nuclear currents are appreciable. This assumption is naturally a little
problematic for s-electrons which have a finite probability of existence within the
nucleus. We denote by R(R,Θ,Φ), the position vector within the nucleus and by
r(r, θ, φ), the position vector outside the nucleus (Fig. 2.2). Then the general solu-
tion for the nuclear potential φ(r) is given by

4πε0 φ(r) =
∫

(nucl)
d3 R

ρ(R)

|r − R| (2.215)

We have assumed here that the nuclear charge is confined to a finite volume. From
electrodynamics, we know the corresponding multipole expansion:

4πε0 φ(r) =
∞∑

l=0

4π

2l + 1

1

rl+1

+l∑
m=−l

Qlm Ylm(θ, φ) (2.216)

Fig. 2.2 Schematic plot of
the nuclear charge density
seen by the atomic electron
e−

x

y

z

r

R

− e 

ρ (R)
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The nuclear coordinates are present exclusively in the spherical multipole moments:

Qlm =
∫

d3 R Y ∗
lm(Θ,Φ) ρ(R) Rl (2.217)

Since we can assume that r � R, we can restrict ourselves to the first summands of
the expansion. Using

Y00(Θ,Φ) = Y ∗
00(Θ,Φ) = 1√

4π
(2.218)

and
∫

d3 R ρ(R) = Ze (2.219)

we get for the monopole moment (l = 0)

4πε0 φ(0)(r) = Ze

r
(2.220)

This is nothing but the potential of a point charge at the origin. The simplest way to
evaluate the dipole moment (l = 1) is by using the addition theorem for the spherical
harmonics, which is given by

+l∑
m=−l

Y ∗
lm(Θ,Φ) Ylm(θ, φ) = 2l + 1

4π
Pl (cos γ )

l=1−→ 3

4π
cos γ (2.221)

γ is the angle between the space directions (Θ,Φ) and (θ, φ) and therefore is given
by

cos γ = r · R
r R

(2.222)

Using the definition of the dipole moment P

P =
∫

d3 R ρ(R) R (2.223)

the (l = 1) summand of the multipole expansion (2.216) can be written as

4πε0 φ(1)(r) = r · P
r3

(2.224)

One knows that the electric dipole moment of a nucleus is in general zero. Therefore,
we must consider the multipole expansion one step further, i.e. to the quadrupole
moment (l = 2):
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4πε0 φ(2)(r) = 4π

5

1

r3
(Q20Y20 + Q21Y21 + Q2−1Y2−1 +

+ Q22Y22 + Q2−2Y2−2) (2.225)

With the spherical harmonics

Y20(Θ,Φ) = 1

2

√
5

π

1

R2
(3Z2 − R2)

Y2±1(Θ,Φ) = ∓
√

15

8π

Z

R2
(X ± iY ) (2.226)

Y2±2(Θ,Φ) = 1

4

√
15

2π

1

R2
(X ± iY )2

we get the following expressions for the components of the electric quadrupole
moment (R = (X, Y, Z )):

Q20 = 1

2

√
5

4π

∫
d3 R ρ(R) (3Z2 − R2)

Q2±1 = ∓
√

15

8π

∫
d3 R ρ(R) Z (X ± iY ) (2.227)

Q2±2 = 1

4

√
5

2π

∫
d3 R ρ(R) (X ± iY )2

We can now summarize the quadrupole part of the potential in the familiar form

4πε0 φ(2)(r ) = 1

2

∑
i, j

qi j
xi x j

r5

(2.228)

qi j =
∫

d3 R ρ(R) (3Xi X j − δi j R2)

With this, we have actually completed the discussion. The nuclear quadrupole field
appears in the Hamiltonian in the form HQ = −e φ(2)(r). It is, of course, obvious
that it will not be very simple to evaluate the eigenvalues, eigenstates and matrix
elements for such an operator.

We will therefore, with the help of the Wigner–Eckart theorem, formulate an
equivalent Hamiltonian in terms of the angular momentum operators I and j.

I: Operator for the total nuclear spin
j: Operator for the total angular momentum of the electron

The procedure adopted here is based on the following idea: Since Q2m ∼ Y ∗
2m ,

Q̂2 is an irreducible tensor operator of rank two with the standard components Q2m
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(see Example (3) with (2.162)). We now construct a special tensor operator of rank
two out of a combination of nuclear spin operators. In the space, in which I 2 and
Iz are diagonal, their matrix elements are, according to the Wigner–Eckart theorem,
proportional to the matrix elements of the quadrupole operator.

How do we find the above-mentioned combinations? According to (2.162), they
must obey the following relations:

[
I± , T (2)

q

]
− =

√
6 − q(q ± 1) � T (2)

q±1 (2.229)[
Iz , T (2)

q

]
− = � q T (2)

q (2.230)

The structure of Q20 (2.227) suggests the following ansatz:

T (2)
0 = I 2 − 3I 2

z (2.231)

We can immediately see that

[
Iz , T (2)

0

]
−
= 0 (2.232)

and therefore (2.230) is satisfied. Using

I± = Ix ± i I y (2.233)

we also have

T (2)
0 = 1

2

(
I− I+ + I+ I− − 4I 2

z

)
(2.234)

so that we get

[
I± , T (2)

0

]
−
= ± 3 � (Iz I± + I± Iz)

.=
√

6 � T (2)
±1

The last step is required by (2.229). Therefore, we have to choose

T (2)
±1 = ±1

2

√
6 (Iz I± + I± Iz) (2.235)

We then evaluate
[

I± , T (2)
±1

]
−
= −

√
6 � I 2

±
.= √

6 − 2 � T (2)
±2

and define

T (2)
±2 = −1

2

√
6 (I±)2 (2.236)
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By verifying the commutation relations (2.229) and (2.230), we finally show that,
T (2)

0 , T (2)
±1 and T (2)

±2 are actually the standard components of an irreducible tensor of
rank two (see Problem 2.11). One should notice that these operators have a structure
similar to that of Q2m (2.227).

We now exploit the Wigner–Eckart theorem whose main statement is about the
proportionality of the matrix elements of different tensor operators of the same rank.
Let |I, M〉 be the eigenstates of the nuclear operators I 2 and Iz . Then, we have

〈I M |Q+
2m |I M ′〉 = αk〈I M |T (2)

m |I M ′〉 (2.237)

Here the proportionality constant αk is independent of M , M ′ and m! One normally
defines the quadrupole moment of the nucleus by

+ e Q = αk〈I I |T (2)
0 |I I 〉 (2.238)

As far as we are concerned, here, Q is an experimentally determined parameter. αk

is fixed by this parameter:

+ e Q = αk 〈I I |(I 2 − 3I 2
z )|I I 〉 = αk �

2 {I (I + 1) − 3I 2} (2.239)

For I = 1/2, we have Q = 0. For I �= 1/2, one can solve this equation for αk :

αk = −eQ

�2 I (2I − 1)
(2.240)

In the space, in which I is a good quantum number, one can treat (2.237) as an
operator identity:

Q2m = −eQ

�2 I (2I − 1)

(
T (2)

m

)†
(2.241)

With this, we have fixed the nuclear part of the quadrupole term in the Hamiltonian:

4πε0 φ(2)(r) = 4π

5

1

r3

+2∑
m=−2

Q2m Y2m(θ, φ)

=
+2∑

m=−2

[
4π

5

1

r3
Y2m(θ, φ)

]
︸ ︷︷ ︸

ele. contribution

[
αk
(
T (2)

m

)†]
︸ ︷︷ ︸

nucl. contribution

(2.242)

Since the electronic part is proportional to Y2m(θ, φ), it can also be considered as an
irreducible tensor operator of rank two, and we can repeat the same procedure for
the electronic part as we have done for the nuclear part. The only difference is that,
now, we have to replace I and M by j and m j . With
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t̂ (2) : t (2)
±2 = −1

2

√
6 j2

±

t (2)
±1 = ±1

2

√
6 ( jz j± + j± jz) (2.243)

t (2)
0 = j2 − 3 j2

z

we obtain the following quadrupole term:

4πε0 φ(2)(r) = αe αk

+2∑
m=−2

t (2)
m

(
T (2)

m

)†
(2.244)

Here αe is proportional to the reduced matrix element of the electronic tensor t̂ (2).
Finally, by substituting and rearranging the expressions for t (2)

m and T (2)
m , we

obtain the quadrupole contribution to the Hamiltonian as

HQ = −e φ(2)(r)

= αe

4πε0

e2 Q

�2 I (2I − 1)

{
6(j · I)2 + 3�

2(j · I) − 2I2 · j2
}

(2.245)

The quadrupole field is, in general, small compared to the other fields which act on
the electron.

From the derivation it is clear, that, if the nuclear quadrupole interacts not with a
single electron but with an arbitrarily complicated charge, a completely analogous
expression will be obtained. In that case only the forefactor which, in any case is
unknown, will be different.

2.8 Hyperfine Field

We have to take into account a second influence of the nucleus on the movement
of the electron, which originates because of the motion of the nuclear charges, i.e.
because of the nuclear current density j(R). This creates a vector potential AN (r),
which, according to electrodynamics, is given by

AN (r) = μ0

4π

∫
nucl

d3 R
j(R)

|r − R| (2.246)

Since r � R we can approximate

1

|r − R| ≈
1

r
+ r · R

r3
(2.247)
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The first summand does not contribute in the case of a localized current density j(R)
(Problem 2.13). The first non-vanishing term then has the form

AN (r) ≈ μ0

4π

mN × r
r3

= μ0

4π
∇ ×

(
1

r
mN

)
(2.248)

Here mN is the nuclear moment (see (1.20)):

mN = 1

2

∫
d3 R (R × j(R)) (2.249)

The vector potential originating from the nuclear moment has naturally the same
action as the one originating from an external magnetic field. That means, it appears
in the kinetic energy of the electron

p2

2m
→ 1

2m
(p + eAN )2

= p2

2m
+ e

m
p · AN +O(A2

N ) (Coulomb gauge!)

and in the Zeeman energy through

2
μB

�
S · (∇ × AN ) (2.250)

This gives two extra terms in the Hamiltonian

HH F = H (1)
H F + H (2)

H F (2.251)

The individual terms have to be now evaluated. H (1)
H F acts on the orbital motion of

the electron,

H (1)
H F = e

m
p · AN = μ0

4π

e

m

1

r3
p · (mN × r)

= μ0

4π

e

m

1

r3
mN · (r × p) (2.252)

and gives the so-called orbital hyperfine interaction:

H (1)
H F = 2

μB

�

1

r3

μ0

4π
(mN · l) (2.253)

This part, obviously, vanishes when the electron is in a pure s-state.
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Now, we will consider the second part of the hyperfine interaction. For that let us
first evaluate (Δ: Laplace operator)

∇ × AN = μ0

4π
∇ × ∇ ×

(
1

r
mN

)

= μ0

4π

[
∇
(
∇ ·
(

1

r
mN

))
− Δ

1

r
mN

]

= μ0

4π

[
∇
(

mN · ∇ 1

r

)
− mN Δ

1

r

]

We can neglect the last term because

Δ
1

r
= −4π δ(r)

and we always have r � R. Then what remains is

∇ × AN = −μ0

4π
∇
(

1

r3
r · mN

)
(2.254)

We calculate the x-component:

d

dx

(r · mN

r3

)
= (mN )x

r3
− r · mN

r4
3

x

r

The other components can be evaluated analogously so that we get

∇ × AN = μ0

4π

3r(mN · r) − mN r2

r5
(2.255)

This is of course not a surprising result. It is nothing but the dipole field created by
the nuclear moment mN . The magnetic spin moment of the electron

ms = −2
μB

�
s

interacts with this field and gives the dipolar hyperfine interaction

Hdip = 2
μB

�

μ0

4π
s ·
(

3 r (mN · r)

r5
− mN

r3

)
(2.256)

The expressions for H (1)
H F and Hdip were derived under the assumption that the elec-

tron is always outside the nucleus (r � R). This assumption is, of course, not
realistic for s-electrons, since it is well known that there is a finite probability for
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the s-electrons to exist inside the nucleus. This plays no role in the case of H (1)
H F

because the matrix elements any way vanish for l = 0. For Hdip, however, it means
a restriction. That is why we would like to investigate this term once more in some
more detail, so that the corresponding term in the Hamiltonian appears, at least,
plausible.

Let ψ(r) be the wavefunction of the electron (without the spin part). We leave
out the unimportant pre-factors and evaluate the expectation value of s · (∇×AN ) in
the state ψ(r). Let the nucleus be inside a fictitious, small sphere of radius R. Then
we can split the expectation value, which we want to evaluate, into two parts:

∫
d3r ψ∗(r)[s · (∇ × AN )]ψ(r)

=
∫

r<R
d3r ψ∗(r)[s · (∇ × AN )]ψ(r) +

+
∫

r>R
d3r ψ∗(r)[s · (∇ × AN )]ψ(r) (2.257)

The second term gives the dipolar hyperfine interaction derived above. The new
thing is therefore only the first term. Using

∇ · (AN × s) = s · (∇ × AN ) − AN · (∇ × s) = s · (∇ × AN )

and assuming that the modulus square of the wavefunction |ψ(r)|2 changes only a
little within the volume of the nucleus, we can write

∫
r<R

d3r ψ∗(r)[s · (∇ × AN )]ψ(r) ≈

≈
∫

r<R
d3r∇ · ((AN × s)|ψ(r)|2)

=
∫

SR

df · (AN × s)|ψ(R|2

= s ·
∫

SR

df × AN |ψ(R)|2

SR means the surface of the sphere of radius R. Let the sphere of radius R, on the one
hand, be so small that one can assume the electron wavefunction |ψ(R)|2 ≈ |ψ(0)|2
and, on the other hand, be so large that we can use the expression (2.248) for AN (R).
Then, if the direction of the nuclear moment mN defines the z-axis, we further have
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∫
r<R

d3rψ∗(r)[s · (∇ × AN )]ψ(r)

= s ·
∫

SR

R2 dΩ
R
R

×
(

μ0

4π

mN × R
R3

)
|ψ(0)|2

= μ0

4π
|ψ(0)|2 1

R2
s ·
∫ ∫

d cos Θ dΦ(mN · R2 − R(R · mN ))

= μ0

4π
|ψ(0)|2 s ·

∫ ∫
dΦ d cos Θ m N ∗

∗ {(0, 0, 1) − cos Θ(sin Θ cos Φ, sin Θ sin Φ, cos Θ)}
= 2

3
μ0 (mN · s) |ψ(0)|2

In operator form, this leads to the following contribution to the hyperfine interaction:

Hcont = 4

3
μ0

μB

�
(s · mN ) δ(r) (2.258)

This is called the contact hyperfine interaction which comes into play, obviously,
only for s-electrons. The interaction of the electron spin s with the magnetic field
created by the nuclear currents is then given by

H (2)
H F = Hdip + Hcont (2.259)

Expressing the nuclear moment mN in terms of the nuclear spin I

mN = gN
μN

�
I (2.260)

where μN is the nuclear magneton and gN is the nuclear g-factor, the total contribu-
tion of the nucleus to the Hamiltonian of the electron can be written as

HH F = μ0

2π

μB

�2
gN μN

[
1

r3
(I · l) +

(
3(s · r) (I · r)

r5
− s · I

r3

)

+ 8π

3
(s · I)δ(r)

]
(2.261)

This is known as the hyperfine interaction. The interaction consists of the contribu-
tion due to the orbital angular momentum l as well as the spin s of the electron with
the nuclear spin I. HH F is responsible for the hyperfine structure of the electron
terms. Since μN ≈ 10−3μB (μN = e�

2m p
; m p is the mass of the proton), HH F is

hardly important for static magnetism, even though, it is important for frequency
shifts in resonance experiments.
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2.9 Magnetic Hamiltonian of the Atomic Electron

For a better overview, we want to summarize, in the form of a list, all the influences
that we have discussed till now, which “probe” an electron.

(a) Spinless particle:
In a spherically symmetric central field and in a homogeneous magnetic field
B0 = (0, 0, B0), the Hamiltonian operator consists of three parts:

Ha = H0 + Hdia + Horb (2.262)

H0 consists of the kinetic energy of the electron and its potential energy in the
central field:

H0 = p2

2m
+ V (r ) (2.263)

The diamagnetic part

Hdia = e2 B2
0

8m
(x2 + y2) (2.264)

and the interaction of the field with the orbital moment of the electron

Horb = −μB

�
(l · B0) (2.265)

appear because of the substitution p → p+ eA, if the vector potential is chosen
such that

A = 1

2
B0 (−y, x, 0) (2.266)

and the Coulomb gauge ∇ · A = 0 is satisfied. Because of the
(b) spin of the electron

there appear two additional terms

Hb = HSO + Hz (2.267)

namely, the spin–orbit interaction

HSO = − e

2m2c2

(
1

r

dφ

dr

)
(l · s) = λ (l · s) (2.268)

which causes a fine structure of the terms, and the Zeeman term

Hz = −2
μB

�
s · B0 (2.269)
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which results from the interaction of the spin moment with the field, and induces
transitions between states with different j but the same m j . Note that we have
agreed to assume the parallel orientation of the spin relative to the field as the
energetically favoured orientation (see the remarks at the end of Sect. 2.1)
A full relativistic calculation adds mainly two more terms as

(c) relativistic corrections:

Hc = H0,rel + HD (2.270)

H0,rel represents a relativistic correction to the kinetic energy

H0,rel = − p4

8m3c2
(2.271)

whereas the so-called Darwin term does not permit a simple-minded explanation
and is given by

HD = e�
2

4m2c2
(∇φ · ∇) (2.272)

In case the assumption of a spherically symmetric, electrostatic nuclear poten-
tial, as it appears in (2.263), is not acceptable, then four more terms have to be
taken in to account, which are classified as

(d) nuclear effects:

Hd = HQ + Horb + Hdip + Hcont (2.273)

HQ originates because of the nuclear quadrupole field:

HQ = α

4πε0

(
6(j · I)2 + 3�

2(j · I) − 2I 2 j2
)

(2.274)

I is the nuclear spin and α is a constant. The existence of the nuclear spin still
leads to an orbital hyperfine interaction

Horb = μ0 gN
μB

2π

μN

�2

(I · l)
r3

(2.275)

and to the dipolar hyperfine interaction

Hdip = μ0 gN
μB

2π

μN

�2

[
3(s · r)(I · r)

r5
− s · I

r3

]
(2.276)

For s-electrons, which have a finite probability of existing inside the nucleus,
finally, we have to take into account one more interaction, namely, the contact
hyperfine interaction:

Hcont = μ0 gN
4μB μN

3�2
(s · I) δ(r) (2.277)
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2.10 Many-Electron Systems

Till today, an exact theory for atoms with Z > 1 electrons has not been possible.
Therefore, one has to depend on more or less drastic approximations whose only
justification is derived from a comparison with experiments. Completely filled elec-
tron shells pose no difficulties, since they lead to spherically symmetric potentials,
which do not shift the individual energy terms against each other. Since only the
energy differences are measurable, a rigid shift of the complete energy spectrum by
a spherically symmetric potential is not interesting.

We consider an atom with Z electrons out of which p are in a partially filled
shell. What are the problems in treating such a system?

1. There is no Dirac’s theory for many-electron systems. Therefore, one has prob-
lems in treating the spin–orbit interaction correctly.

2. The Coulomb interaction among the electrons has to be taken into account.

For the moment, we restrict ourselves to a more or less qualitative discussion of
the relevant interacting systems.

2.10.1 Coulomb Interaction

This consists of two parts, namely the interaction HN of the electrons with the pos-
itively charged nucleus and the interaction He of electrons among themselves.

HC = HN + He (2.278)

If we neglect higher order corrections (nuclear quadrupole field and nuclear cur-
rents), then we have

HN = −Ze2

4πε0

p∑
i=1

1

ri
(2.279)

He = e2

4πε0

1

2

p∑
i, j=1(i �= j)

1

|ri − r j | (2.280)

He makes the problem in general unsolvable. The theory must therefore accept
approximations. Often one takes recourse to the so-called central field approxima-
tion, where the p-electrons move independent of each other in a central potential
(Hartree-potential).

Hcf = −e φc f (r) = −e φc f (r ) (2.281)
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Fig. 2.3 Schematic of the
ground state term scheme of
carbon (1s22s22p1)

(1s2 2s2) 2p2

3P

1D

1S

Central
field approximation

Perturbational
correction

This is a sum of the usual nuclear potential HN and an average repulsive poten-
tial. The skill in the choice of the repulsive potential determines the quality of the
approximation. Predominantly, the presence of the other electrons has the effect of
screening the Coulomb field of the nucleus from the electron under consideration.

In the next stage of the approximation, one writes instead of (2.278),

HC = Hcf + H1 (2.282)

where

H1 = (HN + He) − Hcf (2.283)

and obtains the spectrum of HC perturbatively from Hcf . In general, the eigenvalues
of Hcf are highly degenerate and the degeneracy is either fully or partially lifted
by H1. One diagonalizes H1 in the eigenspace spanned by the eigenstates |E0,α〉
belonging to the degenerate ground state energy E0. The condition on the secular
determinant

det
(〈E0,β |H1|E0,α〉 − E δαβ

) .= 0 (2.284)

yields an improved ground state and the first few excited states. On the whole, HC

determines the rough structure of the terms. Such a calculation, e.g. done for the
ground state of carbon (1s2 2s2 2p2) gives the schematic result of (Fig. 2.3).

The 4s-electrons occupy the closed shell. Therefore, it is necessary only to take
care of the two p-electrons. We will present a more complete picture later.

2.10.2 Spin–Orbit Coupling

There appear two types of spin–orbit couplings, namely between the

1. spin and orbit of the same electron ∼ (li · si ), and between the
2. spin and orbit of different electrons ∼ ((li · s j ).
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One can easily see that the two couplings may be of different weightage. Seen
from the rest system of the electron, in the case of “normal” spin–orbit coupling,
the positively charged nucleus moves around the electron and builds a strong ring
current, which creates a magnetic field, to which the magnetic spin moment couples.
This interaction will have the same sign at all times and, therefore, will be of con-
siderable magnitude. On the contrary, the interaction between two electrons moving
around in different orbits, may, during one period, change sign many times. As a
result, the contribution of (2) in comparison to (1) will be small.

That is why, one neglects (2) and compensates the error to a certain degree by
replacing the potential φ by an effective potential which results in a modification of
the forefactor for the spin–orbit coupling (1).

HSO = λ̃ (l · S) (2.285)

λ̃ = − e

2m2c2

(
1

r

dφ̃

dr

)
(2.286)

This approximation, at least for not so light atoms, has proved to be useful.

2.10.3 Further Couplings

We have discussed in Sect. 2.8, the coupling between the electron spin and the
nuclear spin. Exactly the same arguments are valid for the coupling between the
spin of the i th and the j th electron.

3
(si · ri j )(s j · ri j )

r5
i j

− si · s j

r3
i j︸ ︷︷ ︸

dipolar interction

+ 8π

3
(si · s j )δ(ri j )︸ ︷︷ ︸
contact term

ri j = ri − r j

Since here also we must average over the orbits of different electrons, this term also
will be dominated by the other contributions in the Hamiltonian and, therefore, turns
out to be relatively uninteresting. The same is also valid for orbit–orbit coupling,
which, in the simplest form, can be assumed to be ∼ (li · l j ).

In the lowest approximation, nuclear effects can be included additively from the
ones derived in Sect. 2.7 and 2.8 for a single electron. Since μN ≈ 10−3μB , they
are small and, therefore, will be taken into account only when “necessary”.

Furthermore, relativistic corrections to the kinetic energy (2.271) or the Darwin
term (2.272) are, for our purposes, unimportant.

So, finally, the Hamiltonian, for p-electrons in a partially filled shell reads as
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H (0) =
p∑

i=1

(
p2

i

2m
− e φN (ri ) + λ̃(ri ) (li · si )

)

+ 1

2

p∑
i, j=1

e2

4πε0 |ri − r j |
= H0 + HSO + He (2.287)

The first three summations can be separated according to the individual electrons so
that, in the absence of the fourth summation, we simply would have to sum over the
results obtained in the last section. But, even then, the problem at hand here, is more
complicated. This is because, with

L =
p∑

i=1

li total angular momentum

S =
p∑

i=1

si total spin (2.288)

we are no more interested in the quantum numbers l and s of the individual electrons
but in the quantum numbers L and S of the incompletely filled shell. One immedi-
ately realizes that, because of the spin–orbit interaction, L2 and S2 do not commute
with H (0). This is different from the case of a single electron (2.121). The reason for
this is, e.g. L2 is not simply equal to

∑p
i=1 l2i . That means, HSO induces transitions

between the L S-multiplets. The question is, how strong are these “state mixtures”
(hybridizations), that is, how probable are such transitions. This in turn depends on
the relative strength of the individual terms in the Hamiltonian. One distinguishes
two limiting cases:

He � HSB :

⎧⎨
⎩

L =∑i li , S =∑i si

L S − coupling
J = L + S

HSB � He :

⎧⎨
⎩

ji = li + si

j j − coupling
J =∑i ji

According to estimates, the details of which we will not go into here, He goes
as ∼ Z1/2, whereas HSO goes as Z2. The L S-coupling is, therefore, an excel-
lent approximation for light and medium heavy nuclei. In case of heavy nuclei,
j j-coupling dominates. From Pb onwards, He and HSO are of the same order of
magnitude. Let us now consider the
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(a) LS Coupling (Russell–Saunders Coupling)

in somewhat more detail. Because He � HSO , L and S are still good quantum num-
bers. The energy differences between the L S-multiplets are about one or two orders
of magnitude larger than the internal multiplet splittings. Therefore, one can, to a
first approximation, neglect the transitions into the higher multiplets. The possible
basis states can be labelled by the quantum numbers γ , L , S, ML and MS:

|γ L SML MS〉

Here γ is the set of quantum numbers that is additionally necessary to specify the
configuration. We will discuss the spin–orbit interaction in the space of a fixed L S
pair. In this case again, the Wigner–Eckart theorem plays a decisive role. Using the
above basis we can write

p∑
i=1

〈γ L SML MS|λ̃i (li · si )|γ L SM ′
L M ′

S〉

=
p∑

i=1

0,±1∑
q

∑
M ′′

L M ′′
S

〈γ L SML MS|lqi |γ L SM ′′
L M ′′

S 〉 ∗

∗ 〈γ L SM ′′
L M ′′

S |λ̃i (sqi )
†|γ L SM ′

L M ′
S〉 (2.289)

The sum over q runs over the three standard components ((2.163) and (2.164)) of
the vector operators l and s. For both the matrix elements in the above equation, we
make use of the Wigner–Eckart theorem. The matrix element

〈γ L SML MS|lqi |γ L SM ′′
L M ′′

S 〉 = 〈γ̄ L ML |lqi |γ̄ L M ′′
L〉 (2.290)

is certainly unequal to zero only for MS = M ′′
S because li commutes with S =∑i si .

As a result, γ̄ does not, in principle, contain M ′′
S at all. Because of the Wigner–

Eckart theorem, we can use the proportionality of the matrix elements (2.290) to the
respective matrix element of the total angular momentum:

〈γ̄ L ML |lqi |γ̄ L M ′′
L〉 = α(γ̄ , L)〈γ̄ L ML |Lq |γ̄ L M ′′

L〉 (2.291)

The coefficient α does not depend on M ′′
L and M ′′

S .
The same procedure can be applied for the second matrix element of (2.289).

〈γ L SM ′′
L M ′′

S |(sqi )
†|γ L SM ′

L M ′
S〉 = 〈 ¯̄γ SM ′′

S |(sqi )
†| ¯̄γ SM ′

S〉 (2.292)

Now ¯̄γ does not contain M ′′
L . We can now use the Wigner–Eckart theorem to bring

the total spin S into play.

〈 ¯̄γ SM ′′
S |λ̃(sqi )

†| ¯̄γ SM ′
S〉 = β( ¯̄γ, S)〈 ¯̄γ SM ′′

S |S†
q | ¯̄γ SM ′

S〉 (2.293)
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Substituting (2.291) and (2.293) in (2.289), we can pull the coefficients α and β out
of the summation into the front. That means finally

〈γ L SML MS|HSO |γ L SM ′
L M ′

S〉 ∼ 〈γ L SML MS|(L · S)|γ L SM ′
L M ′

S〉 (2.294)

From this we can, in the space of a given (L S)-multiplet, read off an operator iden-
tity:

HSO = Λ(γ, L S)(L · S) (2.295)

This form of the spin–orbit coupling is valid only if the transitions to other (L S)-
multiplets can be neglected.

The consequences of the spin–orbit coupling in this case are completely analo-
gous to those of one-electron system:

J2 = (L + S)2 ⇒ L · S = 1

2
(J 2 − L2 − S2) (2.296)

One can easily evaluate the following commutators:

[
(L · S) , J 2

] = 0 ⇒ [
H (0) , J 2

] = 0 (2.297)

[(L · S) , Lz] = − [(L · S) , Sz] �= 0 (2.298)

That means J , MJ , L and S are good quantum numbers and ML and MS are not
good quantum numbers. Therefore, HSO is not diagonal in the |γ L SML MS〉 repre-
sentation but it is diagonal in |γ L S J MJ 〉 representation. HSO splits the degenerate
L S multiplet depending on the value of J ,

|L − S| ≤ J ≤ L + S (2.299)

and causes a fine structure of the terms:

E (0)
γ L S J = E (0)

γ L S +
1

2
�

2Λ(γ, L S){J (J + 1) − L(L + 1) − S(S + 1)} (2.300)

We can now complete the solution for the ground state of carbon sketched in Fig. 2.3
(Fig. 2.4). According to (2.301), in case L and S are not equal to zero, HSO intro-
duces an additional splitting:

In (2.300), one recognizes the famous Lande’s interval rule, which makes a
statement about the energy difference between two neighbouring terms in an L S
multiplet:

ΔE = E (0)
γ L S J − E (0)

γ L S J−1 = �
2 Λ(γ, L S) J (2.301)
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Fig. 2.4 Extended term
scheme of carbon
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This relation can be used both as an experimental criterion for L S coupling as well
as for determining Λ.

Since

−J ≤ MJ ≤ +J

every E (0)
γ L S J is still (2J + 1)-fold directionally degenerate. This remaining degen-

eracy can be either fully or partially lifted by an external field.
The effect of an external magnetic field can be easily built into our Hamiltonian.

H = H (0) − μB

�
(Lz + 2Sz) B0 (2.302)

The same complications appear now as were discussed in Sect. 2.6 for a single-
electron system.

[
H , J 2

]
− �= 0 ⇒ J is no more a good quantum number

[H , Jz]− = 0 ⇒ M j remains a good quantum number

In the region of validity of the Russell–Saunders coupling, the magnetic field
induces transitions between the states with different J but with the same MJ . The
energy levels can be calculated according to the same scheme as was done in
Sect. 2.6 for the single-electron system. We only have to replace the small letters
by the corresponding capital letters. Naturally the limiting cases are also same.

1. Weak fields: μB B0 � Λ(γ, L S)
J can still be treated as a good quantum number: The non-diagonal elements of
the Hamiltonian in J are negligible:

Eγ L S J MJ = E (0)
γ L S J + gJ (L , S) MJ μB B0 (2.303)

gJ (L , S) = 1 + J (J + 1) − L(L + 1) + S(S + 1)

2J (J + 1)
(2.304)

This situation is known as the anomalous Zeeman effect.
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2. Strong fields: μB B0 � Λ(γ, L S)
Now ML and MS are still good quantum numbers.

Eγ L S J MJ = E (0)
γ L S J + (ML + 2MS) μB B0 (2.305)

This situation is known as the normal Zeeman effect.
3. Transition region: μB B0 ≈ Λ(γ, L S)

In this case, the field dependence is complicated, which, in principle can be
evaluated as in Sect. 2.6. For S > 1/2, however, more non-diagonal elements
appear as compared to the doublet case of Sect. 2.6.

(b) jj-Coupling

jj-coupling is realized in the “heavy” atoms which lie in the right bottom corner of
the periodic table:

He � HSO (2.306)

To a first approximation, there is no coupling between different electron. Every elec-
tron is “a system by itself” with the total angular momentum

ji = li + si (2.307)

HSO lifts the degeneracy of the single-particle states, every level with l �= 0 is split
into two levels with j = l ± 1/2 and the corresponding states are labelled by the
quantum numbers (γ l j m j ).

Because of He, strictly speaking, only J remains a good quantum number, ji
only approximately. The Hund’s rules discussed in Sect. 2.1 are valid only for LS
coupling and are not applicable for the j j-coupling.

(c) Intermediate Coupling

For the intermediate coupling,

He ≈ HSO , (2.308)

which is realized in the middle of the periodic table, there exists practically no appli-
cable theory. This case poses mathematically the most complicated problem.

2.11 Problems

Problem 2.1 How many states belong to a given (L , S)-multiplet? Check your
answer with Eq. (2.14).

Problem 2.2 Show that the Pauli’s spin matrices σx , σy, σz have the following
properties:
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1. σ 2
x = σ 2

y = σ 2
z = 1l2

2.
[
σx , σy

]
+ = [σy, σz

]
+ = [σz, σx ]+ = 0

3.
[
σx , σy

]
− = 2iσz ;

[
σy, σz

]
− = 2iσx ; [σz, σx ]− = 2iσy

4. σxσyσz = i1l2

Problem 2.3 Show that the Dirac matrices

α̂ =
(

0 σ

σ 0

)
; β̂ =

(
1l2 0
0 −1l2

)

satisfy the conditions (2.23), (2.24) and (2.25).

Problem 2.4 Show that the cartesian components of the Dirac’s spin operator
(2.59),

ŝx,y,z = �

2

(
σx,y,z 0

0 σx,y,z

)
σx,y,z : Pauli’s spin matrices,

satisfy the fundamental commutation relations of angular momentum.

Problem 2.5 For a free Dirac electron, calculate the commutators

[̂
s, H (0)

D

]
−

;
[
l, H (0)

D

]
−

,

where ŝ is the Dirac’s spin operator and l is the orbital angular momentum operator.

Problem 2.6 Let a and b be two vector operators which commute with all the three
Pauli’s spin matrices. Prove the following relation:

(σ · a)(σ · b) = a · b 1l2 + iσ · (a × b)

Problem 2.7 For a (relativistic) electron in an external electromagnetic field (vec-
tor potential A(r, t), scalar potential ϕ(r, t)) derive the equations of motion of the
observables position r and mechanical momentum pm = p + eA (Heisenberg pic-
ture). Show that the time-dependent operators satisfy the classical Lorentz force law

d

dt
pm = −e(E + ṙ × B)

(Ehrenfest theorem!).
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Problem 2.8 For the operator of the spin–orbit interaction

HSB = λ(L · S)

calculate the following commutators:

1. [HSB, L]−
2. [HSB, S]−
3.
[
HSB, L2

]
−

4.
[
HSB, S2]

−
5.
[
HSB, J2

]
− (J = L + S)

Problem 2.9 Let J = (Jx , Jy, Jz) be an angular momentum operator and T̂ (k) be an
irreducible tensor operator with (2k + 1) standard components T (k)

q , q = −k,−k +
1, . . . ,+k. Show that the following commutation relations must hold:

1.
[
Jz, T (k)

q

]
− = �qT (k)

q

2.
[
J±, T (k)

q

]
− = �

√
k(k + 1) − q(q ± 1)T (k)

q±1

(J± = Jx ± i Jy)

Problem 2.10 Show that every vector operator K = (Kx , Ky, Kz) is an irreducible
tensor operator of rank one T̂ (1) with the standard components.

T (1)
0 = Kz

T (1)
±1 = ∓ 1√

2
(Kx ± i Ky)

Problem 2.11 Let I = (Ix , Iy, Iz) be the nuclear spin operator and I 2 its square.
Show that the combinations

T (2)
0 = I 2 − 3I 2

z

T (2)
±1 = ±1

2

√
6(Iz I± + I± Iz)

T (2)
±2 = −1

2

√
6(I±)2

with I± = Ix ± i Iy are the standard components of an irreducible tensor of rank
two. In doing this verify the commutation relations:

[
I±, T (2)

q

]
− = �

√
6 − q(q ± 1)T (2)

q±1[
Iz, T (2)

q

]
− = �qT (2)

q
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Problem 2.12 Let T (2)
q be the standard components of the tensor T̂ (2) of rank two

related to the nuclear spin I from Problem 2.11. The standard components t (2)
q of the

tensor t̂ (2) are defined exactly analogously, where only in place of the nuclear spin
components, the components of the electron angular momentum J = (Jx , Jy, Jz)
appear:

t (2)
0 = J 2 − 3J 2

z

t (2)
±1 = ±1

2

√
6(Jz J± + J± Jz)

t (2)
±2 = −1

2

√
6J (2)

±

Express the scalar product

A =
+2∑

q=−2

t (2)
q · (T (2)

q

)†

in terms of I 2, J 2 and (J · I).

Problem 2.13 Let the current density j be bounded in space and be free of sources
(div j = 0; magnetostatics). Let f (r) and g(r) be differentiable but otherwise arbi-
trary scalar fields.

1. Show that

D =
∫

d3r ( f (r)j · ∇g(r) + g(r)j · ∇ f (r)) = 0

2. Show that
∫

d3r j(r) = 0

3. Let a be an arbitrary vector. Verify the following vector identity:

∫
d3r (a · r)j(r) = 1

2

{
a ×

∫
(r × j(r))d3r

}



Chapter 3
Diamagnetism

3.1 Bohr–van Leeuwen Theorem

Usually diamagnetism is explained as an induction effect (see Sect. 1.4), as the
magnetism of moving charges treated within a classical, easily picturizable, vec-
tor atom model. The Larmor precession of the orbital angular momentum about
the direction of the magnetic field induces an extra moment, which according to
the Lenz’s law, is in the direction opposite to that of the applied field. In reality,
there are inconsistencies hidden in this derivation, i.e. certain “quantum mechanical
elements” are buried underneath the arguments. For there exists a theorem known
as the Bohr–van Leeuwen theorem, which can be proved rigorously. The theorem
states

Magnetism is a quantum mechanical effect. Strictly classically, there cannot be
either dia-, para- or collective magnetism.

Proof Let the solid consist of identical ions and possess translational symmetry.
Then, according to (1.58), the magnetization is given by

M = N

V
〈m〉 (3.1)

where m is the magnetic moment of the individual ion. N is the number of ions in
volume V . Then according to (1.34), we have

m = − ∂W

∂B0
= − ∂ H

∂B0
(3.2)

Here H is the classical Hamiltonian function of a single ion. The classical average
is built in the following way:

〈m〉 = 1

Z∗

∫
· · ·
∫

dx1 · · · dx3Ne dp1 · · · dp3Ne m e−β H (3.3)

W. Nolting, A. Ramakanth, Quantum Theory of Magnetism,
DOI 10.1007/978-3-540-85416-6 3, C© Springer-Verlag Berlin Heidelberg 2009
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Z = 1
Ne!h3Ne Z∗ is the classical partition function given by

Z∗ =
∫

· · ·
∫

dx1 · · · dx3Ne dp1 · · · dp3Ne e
−β H (3.4)

Ne is the number of electrons per ion. Using (3.1) and (3.2), we get

〈m〉 = 1

βZ

∂ Z

∂B0
(β = 1

kB T
) (kB = 1.3805 10−23 J/K ) (3.5)

The Bohr–van Leeuwen theorem is proved, if we can show that even when an exter-
nal field is switched on, Z does not depend on this field.

In the presence of a magnetic field B0 = ∇ × A, H has the general form

H = 1

2m

3Ne∑
i=1

(pi + eAi )
2 + H1(x1, · · · x3Ne ) (3.6)

where H1 is the term representing the electron interactions. The partition function
(3.4) can then be written as

Z∗ =
∫

· · ·
∫

V
dx1 · · · dx3Ne e

−β H1(x1,···x3Ne ) ∗

∗
∫ +∞

−∞
· · ·
∫ +∞

−∞
dp1 · · · dp3Ne exp

(
− β

2m

3Ne∑
i=1

(pi + eAi )
2

)

(3.7)

Decisive is the fact that the momentum integration runs from −∞ to +∞. We can
then substitute

ui = pi + eAi (3.8)

without changing the limits of integration.

Z∗ =
∫

· · ·
∫

V
dx1 · · · dx3Ne e

−β H1(x1,···x3Ne ) ∗

∗
∫ +∞

−∞
· · ·
∫ +∞

−∞
du1 · · · du3Ne exp

(
− β

2m

3Ne∑
i=1

u2
i

)
(3.9)

This means, obviously, that, Z is in fact, field independent.

Z �= Z (B0) (3.10)

As a result, according to (3.5), the average magnetic moment vanishes in all cases.
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〈m〉 ≡ 0 (3.11)

Thus, rigorously, classically, there is no magnetism. We will therefore, right from
the beginning, argue quantum mechanically and refrain from using any semiclassi-
cal models.

Matter consists of charged particles in motion and so respond to an external
magnetic field B0. We have to distinguish between two situations. (a) The system
already contains permanent magnetic moments. Then, they will order themselves
in a field. This gives rise to collective phenomena, namely para-, ferro-, antiferro-
and ferrimagnetism, which will be discussed later. (b) The field itself induces mag-
netic moments. This phenomenon, called diamagnetism is a characteristic of all
materials, being, however, observable only when (a) is not present. We will now
be concerned with this phenomenon. There are qualitative differences between the
diamagnetism of insulators (Larmor diamagnetism) and the diamagnetism of metals
(Landau diamagnetism). Therefore, we will discuss them separately.

3.2 Larmor Diamagnetism (Insulators)

Diamagnetism is a property of all systems, but it is observable only if the given
system does not exhibit, in addition to diamagnetism, any one of the para-, ferro-,
ferri- or antiferromagnetism. Let us, therefore, consider a solid which is made up of
ions with completely filled electron shells. Then, for the ground state, we have

J|0〉 = L|0〉 = S|0〉 = 0 (3.12)

The condition that diamagnetism is observable only if the electron shells are com-
pletely filled is classically not understandable. Here already, one recognizes the
advantage of the correct quantum mechanical description when compared to the
“picturizable” semiclassical description.

We now switch on an external magnetic field on a diamagnet. Let the magnetic
field be given by

B0 = μ0 H = (0, 0, B0) (3.13)

We look for the response of the system to this field, which means, the field-induced
magnetic moment or in other words, the magnetization.

Let the solid we are considering be an insulator, i.e. all the electrons are strictly
localized. Then we can write

M(B0) = N

V
〈0|m|0〉 (3.14)

N is the number of ions in volume V . Magnetic energies (≈ μB B0) are in general so
small that the system remains in the ground state even when the field is switched on.
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That is why we can, while performing the average, restrict ourselves to the ground
state |0〉.

There are two terms in the Hamiltonian, which contain the magnetic field (see
Sect. 2.10).

Hz = −μB

�
(Lz + 2Sz) B0 (3.15)

Hdia = e2 B2
0

8m

Ne∑
j=1

(x2
j + y2

j ) (3.16)

Ne is the number of electrons in the ion or the atom. In order to obtain m, we must
differentiate with respect to B0. Because of the completely filled shells, in view of
(3.12),

〈0|∂ Hz

∂ B0
|0〉 = 0 (3.17)

So, what remains is

M(B0) = − N

V
〈0|∂ Hdia

∂B0
|0〉 (3.18)

Because of the spherical symmetry of the individual ion (noble gas configuration),
we have

Ne∑
j=1

〈0|x2
j |0〉 =

Ne∑
j=1

〈0|y2
j |0〉 =

Ne∑
j=1

〈0|z2
j |0〉 =

1

3

Ne∑
j=1

〈0|r2
j |0〉 (3.19)

This gives for the z-component of the magnetization (x- component and y-component
vanish!)

M(B0) = − Ne2

6mV
B0

Ne∑
j=1

〈r2
j 〉 (3.20)

By differentiating once more with respect to B0, we finally get for the diamagnetic
susceptibility

χdia = μ0

(
∂ M

∂ B0

)
T

= − Ne2μ0

6mV

Ne∑
j=1

〈0|r2
j |0〉 (3.21)

The negative susceptibility is typical for diamagnets (see Sect. 1.4). A diamagnet
is always repulsed by a magnetic pole. The negative sign can be understood as the
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expression of the Lenz’s law. The external field induces a moment whose field is
directed opposite to that of the applied field. Let us estimate the order of magnitude
of χdia . In literature, usually, the numbers are given for the molar susceptibility:

χdia
m = χdia NA

N/V

(
cm3

mol

)
(3.22)

where NA = 6.022 × 1023/mol is the Avogadro number. For the estimation, we
introduce the average ion radius

〈r2〉 = 1

Ne

Ne∑
j=1

〈0|r2
j |0〉 (3.23)

and express it in units of the Bohr radius:

aB = 4πε0 �
2

me2
= 0.529 Å (3.24)

Then we get for the molar susceptibility

χdia
m = −0.995 × 10−5 Ne〈r2/a2

B〉
(

cm3

mol

)
(3.25)

The average value 〈r2/a2
B〉 is of the order of 1. Therefore, χdia

m is very small. That
is why, diamagnetism is observable only when it is not buried under either the para-
magnetism or collective magnetism.

Examples for diamagnets are

(a) Noble gases
(b) Simple ionic crystals (alkali halides)

In the latter case, to a first approximation, the contributions from both the ions
add up.

Table 3.1 Examples for the diamagnetic molar susceptibility χdia
m in 10−6(cm3/mol)

He: −1.9 Li+: −0.7

F− : −9.4 Ne : −7.2 Na+ : −6.1
Cl− : −24.2 Ar : −19.4 K+ : −14.6
Br− : −34.5 K : −28.0 Rb+ : −22.0
J− : −50.6 Xe : −43.0 Cs+ : −35.1

From Table 3.1, we can note the following trends:
(a) In the table, in each column, the electron number increases from top to bottom

and so does |χ | in conformity with (3.21).
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(b) In a given row, the electron number is the same but the nuclear charge num-
ber Z increases from left to right. That means an increasing attractive force on the
electron shell which results in decreasing the size of the ion from left to right. 〈r2〉 is
a measure of the ion size and therefore again the trend is in conformity with (3.21).

The evaluation of the average ionic radius 〈r2〉 is a non-trivial quantum mechani-
cal problem. For this purpose, one often uses the following semi-empirical method:
Let us consider an electron in a state with the principal quantum number n and
orbital quantum number l. Then, using the exactly known eigenfunctions of hydro-
gen atom [1], we get

〈r2
nl〉 =

a2
B n2

2Z2
(5n2 + 1 − 3l (l + 1)) (3.26)

Due to the spherical symmetry of the electron shells, the magnetic quantum number
does not play any role. In the case of many electrons, one has to take into account
the screening of the nuclear charge. That is done to a first approximation by defining
an effective nuclear charge seen by the electron to be

Z∗ = Z − σnl (3.27)

where σnl is to be treated as a parameter which has to be determined by other
independent measurements. In addition, if we take into account the 2(2l + 1)-fold
degeneracy of the levels we get

χdia = − Ne2μ0

6mV
a2

B

∑
n

∑
l

(2l + 1) n2 (5n2 + 1 − 3l (l + 1))

(Z − σnl)2
(3.28)

The summations run over all the occupied shells.

3.3 The Sommerfeld Model of a Metal

Metallic solids have two “sources of diamagnetism”, namely

1. the completely filled shells of the ion core (∼ Larmor),
2. the freely moving conduction electrons (∼ Landau).

The contribution of (1) was discussed in Sect. 3.2. We will refer to the contribu-
tion of (2) in Sect. 3.4.

Since the conduction electrons have a spin and therefore a permanent magnetic
moment, when a magnetic field is applied, there appear both para- and also diamag-
netic effects. The coupling of the field to the spin leads to paramagnetism and the
coupling of the field to the orbital motion leads to diamagnetism. The two couplings
cannot, however, be separated. There exist interference terms, which, depending on
the strength of the field, show either paramagnetic or diamagnetic behaviour. There-
fore, we find that the isothermal magnetic susceptibility χT of conduction electrons
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is made up of three additive terms:

χT = χPauli + χLandau + χosc (3.29)

The Pauli susceptibility χPauli is clearly due to the electron spin and is positive.
χLandau is negative (diamagnetism!) and is a consequence of the orbital motion of
the electrons. χosc is an oscillatory function of the applied field and leads to the de
Haas-von Alphen effect (see Sect. 3.5)

In order to calculate the susceptibility (3.29), we will describe the conduction
electrons within the framework of the so-called Sommerfeld model. As the model
has extensive applications even in later chapters, we will at first present a detailed
discussion of the most important aspects of this model.

3.3.1 Properties of the Model

The Sommerfeld model, to a good approximation, explains the properties of the
so-called “simple metals” such as Na, K, Mg, Cu, Ag, Au. The model is defined by
the following assumptions:

1. Ideal Fermi gas in volume V = L3

2. Periodic boundary conditions on the volume V
3. Lattice potential V (r) ≡ const.

We will list out the most important properties of the model.

3.3.1.1 Eigenfunctions and Eigenenergies

Because of (1) and (3), the plane waves

ψkσ (r) = 1√
V

eik·rχσ (3.30)

where

χ↑ =
(

1
0

)
; χ↓ =

(
0
1

)
(3.31)

are, in the volume V , the eigenfunctions of the Hamiltonian

H = H0 = − �
2

2m
∇2 (3.32)

The eigenenergies are then given by

ε(k) = �
2 k2

2m
(3.33)
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For the wavefunction, the assumption of periodic boundary conditions means

ψkσ (x, y, z) = ψkσ (x + L , y, z) = ψkσ (x, y + L , z)

= ψkσ (x, y, z + L) (3.34)

Because of (3.30), this is satisfied only for certain wave vectors

kx,y,z = nx,y,z
2π

L
, nx , ny, nz ∈ N (3.35)

The density of allowed k-vectors in k-space is not arbitrarily large any more. The
volume occupied by each allowed k-vector is

Δk = (2π )3

V
(3.36)

Of course, there will be two spin-degenerate states for each of these allowed k-
vectors. As a result, the energy levels are discrete:

ε(k) = �
2

2m
(k2

x + k2
y + k2

z ) = 2π2
�

2

m L2
(n2

x + n2
y + n2

z ) (3.37)

The sum in the bracket is a non-negative integer.

3.3.1.2 Ground State of the Ne-Electron System

In the ground state (T = 0) the electrons occupy all the states with energy

ε(k) ≤ εF = �
2 k2

F

2 m
(3.38)

εF is called the Fermi energy, which is the energy of the highest occupied energy
level at T = 0. All the levels below and including this level are each occupied by two
electrons with oppositely oriented spins. All the levels above this are unoccupied.
In view of the isotropic energy dispersion, ε(k) = ε(k), the electrons in the ground
state occupy all the states within the Fermi sphere (Fig. 3.1). The radius of the Fermi
sphere defines the Fermi wavevector kF . kF is fixed by the number of electrons Ne:

Ne = 2
k≤kF∑

k

1 = 2

Δk

∫
k≤kF

d3k = 2V

8π3

4π

3
k3

F (3.39)

This gives us the important relations

kF =
(

3π2 Ne

V

)1/3

(3.40)
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Fig. 3.1 Fermi sphere in k-space

εF = �
2

2m

(
3π2 Ne

V

)2/3

(3.41)

One can easily calculate (Problem 3.2) the average energy per electron to be

ε̄ = 2

Ne

k≤kF∑
k

�
2k2

2m
= 3

5
εF (3.42)

A few typical values for simple metals are given in Table 3.2. The last column is the
so-called Fermi temperature:

TF = εF

kB
(3.43)

3.3.1.3 Density of States

Density of states is a fundamental quantity of solid state physics, which is defined
as

ρ(E)d E = number of states in the energy interval [E, E + d E].
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Table 3.2 Typical data, calculated within the Sommerfeld model, for simple metals.

Ne/V [cm−3] kF [cm−1] vF [cms−1] εF [eV] TF [K]

Li 4.6 × 1022 1.10 × 108 1.30 × 108 4.7 5.5 × 104

Na 2.50 0.90 1.10 3.1 3.7
K 1.34 0.73 0.85 2.1 2.4
Rb 1.08 0.68 0.79 1.8 2.1
Cs 0.86 0.63 0.73 1.5 1.8
Cu 8.50 1.35 1.56 7.0 8.2
Ag 5.76 1.19 1.38 5.5 6.4
Au 5.90 1.20 1.39 5.5 6.4

That means

ρ(E)d E = 2
1

Δk

∫
shell(E,E+d E)

d3k (3.44)

The integration is to be performed in k-space, over a shell which contains the k-
vectors, all of which belong to energies between E and E + d E . In terms of the
phase volume

φ(E) =
∫

ε(k)≤E
d3k (3.45)

we can also write

ρ(E)d E = 2V

(2π )3

(
d

d E
φ(E)

)
d E (3.46)

For the Sommerfeld model, φ(E) can easily be calculated.

φ0(E) = 4π

3
k3

∣∣∣∣
ε(k)=E

= 4π

3

(
2m E

�2

)3/2

(3.47)

Differentiating this expression with respect to E ,

dφ0

d E
= 2π

(
2m

�2

)3/2 √
E

and substituting in (3.46), we get

ρ0(E) =
{

d E1/2, i f E ≥ 0
0 otherwise

(3.48)

with
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d = V

2π2

(
2m

�2

)3/2

= 3Ne

2ε
3/2
F

(3.49)

The
√

E-dependence of the density of states is typical for the Sommerfeld model
(Problem 3.4). Since

ρ0(εF ) = 3Ne

2εF
(3.50)

we can also write

d = ρ0(εF )
1√
εF

(3.51)

3.3.1.4 Occupation Probability

In Statistical Mechanics, the grand canonical partition function is defined by

Ξ(T, V, μ) = T r
(

e−β(H−μN̂ )
)

(3.52)

μ is the chemical potential and N̂ is the particle number operator. The simplest way
to evaluate the trace is in the energy representation.

Ξ(T, V, μ) =
∞∑

N=0

∑
n

e−β(E (N )
n −μN ) (3.53)

N is now the particle number and E (N )
n is the nth eigenenergy of the N -particle

system. For a non-interacting system, these quantities can be expressed in terms of
the single-particle energies εi and their occupation numbers ni .

N =
∑

i

ni ; E (N )
n =

∑
i

niεi (3.54)

The index i runs over all the single-particle states. With the help of (3.54), we can
reformulate the partition function.

Ξ(T, V, μ) =
∞∑

N=0

∑
{ni }∑
ni=N

exp

(
−β
∑

i

ni (εi − μ)

)
(3.55)

The second summation runs over all the conceivable distributions of the N particles
into the available single-particle levels. With
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exp

(
−β
∑

i

ni (εi − μ)

)
= Πi exp (−βni (εi − μ))

and

∞∑
N=0

∑
{ni }∑
ni=N

→
∑

n1

∑
n2

∑
n3

· · ·
∑

nr

· · ·

we can write Ξ as

Ξ(T, V, μ) =
∏

r

(∑
nr

exp (−βnr (εr − μ))

)
(3.56)

In our case, the particles are electrons, i.e. Fermions for which the allowed occupa-
tion numbers are either 0 or 1. So we get

Ξ(T, V, μ) =
∏

r

(1 + exp(−β(εr − μ))) (3.57)

It is well-known that, in Statistical Mechanics, the expectation value of an observ-
able is defined as

〈 Â〉 = 1

Ξ
T r
(

Â e−β(H−μN )
)

(3.58)

The occupation probability of a particular level of a Fermi system is the same as the
expectation value of occupation number operator n̂r :

〈̂nr 〉 = 1

Ξ
T r
(
n̂r e−β(H−μN )

)

= 1

Ξ

∞∑
N=0

∑
{ni }∑
ni=N

nr exp

⎛
⎝−β

∑
j

n j (ε j − μ)

⎞
⎠ (3.59)

Comparing this with (3.55) one gets the simple relation

〈̂nr 〉 = − 1

β

∂

∂εr
ln Ξ (3.60)

For the explicit calculation, we use (3.57) and obtain

〈̂nr 〉 = {1 + exp(β(εr − μ))}−1 (3.61)
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This is the well-known Fermi function f−(εr ), which gives the probability for the
occupation (0 ≤ 〈̂nr 〉 ≤ 1) of the level εr at temperature T . 1 − f−(εr ) is then the
probability that the state is unoccupied. At T = 0, f−(εr ) is a step function

f−(E ; T = 0) = θ (εF − E) (3.62)

which is in conformity with the fact that, at T = 0 all the states below the Fermi
energy εF = μ(T = 0) are occupied and all the states above εF are empty. For T >

0, the Fermi function smoothens out around the Fermi edge. For all temperatures it
holds

f−(E = μ) = 1

2
(3.63)

The smoothening out takes place symmetrically, i.e. the state with energy μ + ΔE
has the same probability for occupation as the state with energy E − ΔE has the
probability, for being empty (Fig. 3.2).

f−(μ + ΔE) = 1 − f−(μ − ΔE) (3.64)

With (3.63) and

d f−
d E

E→μ−→ − 1

4kB T
, (3.65)

we can estimate the width of the smoothened Fermi layer to be about 4kB T . From
Table 3.2, one recognizes that even at room temperature, the layer constitutes, at the
most, 1% of the total distribution.

The high-energy tail of the distribution reproduces the classical
Maxwell–Boltzmann distribution:

f−(E) ≈ exp(−β(E − μ)) i f E − μ � kB T (3.66)

Fig. 3.2 Fermi distribution as
a function of reduced energy
E/μ. μ is the chemical
potential

f−

Ε/μ

0.5

T = 0

T > 0 

4kBT

1.0
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3.3.1.5 Thermodynamics of the Sommerfeld Model

The product of the density of states and the Fermi function gives the density of the
occupied states (Fig. 3.3). Now, if an integral of this product over energy is taken,
we get the total electron number Ne:

Ne =
∫ +∞

−∞
d E f−(E) ρ0(E) (3.67)

The relation between the internal energy and the density of the occupied states lies
on hand:

U =
∫ +∞

−∞
d E E f−(E) ρ0(E) (3.68)

With this result, we have in principle, the complete thermodynamics of the Som-
merfeld model is fixed. For example, the specific heat is given by

cV =
(

∂U

∂T

)
V

(3.69)

and the free energy (Problem B.10) by

F(T, V ) = U (0) − T
∫ T

0
dT ′ U (T ′) − U (0)

T ′2 (3.70)

or the entropy by

S = −
(

∂ F

∂T

)
V

= U (T ) − U (0)

T
+
∫ T

0
dT ′ U (T ′) − U (0)

T ′2

= 1

T
(U − F) (3.71)

Fig. 3.3 Density of states ρ0

and density of occupied states
ρ0 f− as functions of the
reduced energy E/μ in the
Sommerfeld model

T = 0

T > 0 

Ε/μ

ρ0 

. ρf− 
0

1
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The integrals that are required to be evaluated in order to determine U or Ne are of
the type

I (T ) =
∫ +∞

−∞
d E g(E) f−(E) (3.72)

where f−(E) is the Fermi function. This integral is different from its T = 0 value

I (T = 0) =
∫ εF

−∞
d E g(E) (3.73)

by an expression which practically is determined exclusively by the behaviour of
the function g(E) in the “Fermi layer”. As this is small, power series expansions
should be very promising.

3.3.2 Sommerfeld Expansion

We will now discuss as an insert, the Sommerfeld expansion, which is extremely
useful in calculating integrals like (3.72), which are typical for solid state physics.

Let the function g(E) satisfy three conditions:

1. g(E) is non-singular in the Fermi layer
2. g(E) → 0 as E → −∞
3. For E → ∞, g(E) diverges at the most like a power of E

Then we have (proof is given below)

I (T ) =
∫ +∞

−∞
d E g(E) f−(E)

=
∫ μ

−∞
d E g(E) +

∞∑
n=1

αn(kB T )2n g(2n−1)
∣∣

E=μ
. (3.74)

The coefficients αn are given by

αn = 2

(
1 − 1

22n−1

)
ζ (2n) (3.75)

where ζ (n) is the Riemann’s ζ -function given by

ζ (n) =
∞∑

p=1

1

pn
(3.76)
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A few special values of this function are

ζ (2) = π2

6
; ζ (4) = π4

90
; ζ (6) = π6

945
· · ·

The usefulness of the expansion is particularly clear, if the function g(E) has the
behaviour

g(n)(E)
∣∣

E=μ
≈ g(μ)

μn
(3.77)

which is the case, for example, in the integrals for Ne and U (T ). Then, the series
converges very fast, because the ratio of the successive terms is of the order of(

kB T
μ

)2
� 1. In such a case, it is sufficient to restrict the sum to the first few terms:

I (T ) =
∫ μ

−∞
d E g(E) + π2

6
(kB T )2g′(μ) + 7π4

360
(kB T )4g′′′(μ)

+ O
((

kB T

μ

)6
)

(3.78)

Before deriving the Sommerfeld expansion, we want to discuss a few of its applica-
tions.

3.3.2.1 Chemical Potential μ

We can find the temperature dependence of the chemical potential easily using
the Sommerfeld expansion in the expression for Ne (3.67). The density of states
ρ0(E) of the Sommerfeld model (3.48) satisfies all the conditions of the Sommerfeld
expansion. We substitute in (3.74) or (3.78) g(E) = ρ0(E) and obtain

Ne =
∫ μ

−∞
d E ρ0(E) + π2

6
(kB T )2 ρ ′

0(μ) (3.79)

Using (3.48) and (3.49) one gets immediately

Ne ≈ Ne

(
μ

εF

)3/2

+ π2

6
(kB T )2 3

4
Ne

1

ε
3/2
F μ1/2

The particle number gets cancelled and so we have

1 ≈
(

μ

εF

)3/2
[

1 + π2

8

(
kB T

μ

)2
]

(3.80)
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The second summand in the bracket is typically <10−4 and therefore we can expand
to get

μ

εF
≈ 1 − 2

3

π2

8

(
kB T

μ

)2

(3.81)

which finally leads to the well-known result of Statistical Mechanics:

μ = εF

[
1 − π2

12

(
kB T

εF

)2
]

(3.82)

Under normal conditions, in the case of a “degenerate” electron system, the temper-
ature dependence of the chemical potential is practically negligible.

3.3.2.2 Internal Energy U

The function E ρ0(E) in (3.68) satisfies the preconditions for the Sommerfeld
expansion

U (T ) ≈
∫ μ

0
d E E ρ0(E) + π2

6
(kB T )2 [μ ρ ′

0(μ) + ρ0(μ)]

= 2

5
μ2 ρ0(μ) + π2

4
(kB T )2 ρ0(μ)

= d
2

5
ε

5/2
F

[(μ

ε

)5/2
+ 5π2

8

(
kB T

εF

)2 (
μ

εF

)1/2
]

In view of the estimated orders of magnitude, we can simplify

(
μ

εF

)n

≈ 1 − n
π2

12

(
kB T

εF

)2

(3.83)

With U (0) = 3
5 NeεF , it follows that

U (T ) = U (0)

[
1 − 5π2

24

(
kB T

εF

)2

+ 5π2

8

(
kB T

εF

)2

+ O
([

kB T

εF

]4
)]

Finally, we get

U (T ) = U (0)

[
1 + 5π2

12

(
kB T

εF

)2

+O
([

kB T

εF

]4
)]

(3.84)
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3.3.2.3 Specific Heat cV

cV =
(

∂U

∂T

)
V

= U (0)
5π2

6

(
kB

εF

)2

T (3.85)

The characteristic feature is the linear temperature dependence, which is uniquely
experimentally confirmed:

cV = γ T wi th γ = a

εF
= b ρ0(εF ) (3.86)

a = 1

2
Ne π2 k2

B ; b = 1

3
π2 k2

B (3.87)

3.3.2.4 Proof of the Sommerfeld Expansion

We want to calculate

I (T ) =
∫ +∞

−∞
d E g(E) f−(E) (3.88)

For that, we define

p(E) =
∫ E

−∞
dη g(η) ⇔ g(E) = dp(E)

d E
(3.89)

Using this in (3.88) and integrating by parts

I (T ) = p(E) f−(E)|+∞
−∞ −

∫ +∞

−∞
d E p(E) f ′−(E) (3.90)

The first term vanishes at the upper limit due to f−(E) and the precondition (3) and
at the lower limit due to p(E).

We now use the Taylor expansion of p(E) around E = μ, which is allowed
because of the precondition (1):

p(E) = p(μ) +
∞∑

n=1

(E − μ)n

n!
p(n)(μ) (3.91)

The first summand gives the following contribution:

I0(T ) = −p(μ)
∫ +∞

−∞
d E f ′−(E) = −p(μ) f−(E)|+∞

−∞ = +p(μ) (3.92)
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In the sum in (3.91), only the terms with even powers of (E − μ) contribute to the
integral I (T ), because

f ′−(E) = − β

4 cosh2
(

1
2 β (E − μ)

) (3.93)

is an even function of (E − μ). Then we have the intermediate result

I (T ) = I0(T ) + β

∞∑
n=1

1

(2n)!
g(2n−1)(μ) I2n(T ) (3.94)

where we have abbreviated,

I2n(T ) =
∫ +∞

−∞
d E (E − μ)2n eβ(E−μ)

(
eβ(E−μ) + 1

)2

= β−(2n+1)
∫ +∞

−∞
dx x2n ex

(ex + 1)2

= −2β−(2n+1)

[
d

dλ

∫ ∞

0
dx

x2n−1

eλx + 1

]
λ=1

= −2β−(2n+1)

[
d

dλ
λ−2n

∫ ∞

0
du

u2n−1

eu + 1

]
λ=1

= 4 n β−(2n+1)
∫ ∞

0
du

u2n−1

eu + 1
(3.95)

We now recognize the Riemann ζ -function which is defined by

ζ (n) =
∞∑

p=1

1

pn
= 1

(1 − 21−n)Γ(n)

∫ ∞

0

xn−1

ex + 1
dx (3.96)

With this, the integral I2n(T ) can be written as

I2n(T ) = 4 n β−(2n+1)
(
1 − 21−2n

)
Γ(2n) ζ (2n)

= 2

(
1 − 1

22n−1

)
(2n)! ζ (2n) β−(2n+1) (3.97)

After substituting this relation in (3.94), the proof of Sommerfeld expansion is com-
plete:

I (T ) = p(μ) + 2
∞∑

n=1

(
1 − 1

22n−1

)
ζ (2n) (kB T )2n g(2n−1)(μ)
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3.4 Landau Diamagnetism (Metals)

After this excursion into the Sommerfeld model, we come back to our actual prob-
lem of the diamagnetism of solid metals. We will calculate the susceptibility of
the conduction electrons within the Sommerfeld model, using a procedure that was
suggested by Landau [2]. This was later generalized by Peierls [3] by taking into
account the periodic lattice potential. However, we will not discuss this part here, as
the Landau theory itself contains all the important features.

We first want to solve the Schrödinger equation for the free electrons in the
presence of a homogeneous static magnetic field. From the results obtained for
the eigenstates and eigenenergies, we will calculate the grand canonical partition
function Ξ(T, B0, μ),

Ξ(T, B0, μ) = T r
(

e−β(H−μN̂ )
)

From the partition function, we find the grand canonical potential Ω(T, B0, μ)

Ω(T, B0, μ) = −kB T ln Ξ(T, B0, μ) (3.98)

dΩ = −SdT − m d B0 − N dμ (3.99)

and from Ω(T, B0, μ), we get the susceptibility

χT = −μ0

V

(
∂2Ω

∂ B2
0

)
T

(3.100)

This is the programme for the next sections.

3.4.1 Free Electrons in Magnetic Field (Landau Levels)

In the presence of an external magnetic field specified by the vector potential A(r),
the Hamiltonian of a system of Ne non-interacting electrons is given by

H = 1

2m∗

Ne∑
i=1

(pi + eA(ri ))
2 (3.101)

The effective mass m∗ should, in first approximation, take care of the lattice poten-
tial which will otherwise be neglected. However, it should be noted that m∗ appears
only in the orbital motion of the electrons and not in the spin interactions. When
considering the latter, we have to use only the bare mass m. Since the electrons are
not correlated with each other, we can limit our considerations to a single electron.
We choose the vector potential such that
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∇ × A = B0 = B0 ez (3.102)

∇ · A = 0 (Coulomb − gauge) (3.103)

These conditions are fulfilled if we choose

A(r) = (0, B0 x, 0) (3.104)

Substituting (3.104) in (3.101) and using (3.103), the Hamiltonian H0 of a single
electron is

H0 = 1

2m∗ (p + eA)2 = 1

2m∗ (p2 + 2eA · p + e2A2)

= 1

2m∗
(

p2
x + p2

z + p2
y + 2e B0 x py + e2 B2

0 x2
)

This can be further rewritten as

H0 = 1

2m∗
(

p2
x + p2

z + (py + e B0 x)2
)

(3.105)

For solving the Schrödinger equation

H0 ψ(x, y, z) = E ψ(x, y, z) (3.106)

we choose the ansatz

ψ(x, y, z) = eikz zeiky y U (x) (3.107)

This gives the eigenvalue equation

[
− �

2

2m∗
d2

dx2
+ 1

2m∗
(
� ky + e B0 x

)2]
U (x) =

(
E − �

2 k2
z

2m∗

)
U (x) (3.108)

We will now introduce the cyclotron frequency

ω∗
c = eB0

m∗ (�ω∗
c = 2μ∗

B B0) (3.109)

and change the variable from x to ρ given by

ρ = x + 1

ω∗
c

� ky

m∗ (3.110)

Then the eigenvalue equation to be solved becomes

[
− �

2

2m∗
d2

dρ2
+ 1

2
m∗ω∗2

c ρ2

]
U (ρ) =

(
E − �

2 k2
z

2m∗

)
U (ρ) (3.111)
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We recognize that, this is the eigenvalue equation for a harmonic oscillator with
a frequency ω∗

c . The solution is well known. The eigenfunctions are the Hermite
polynomials with the eigenvalues:

En(kz) = � ω∗
c

(
n + 1

2

)
+ �

2 k2
z

2m∗ n = 1, 2, · · · (3.112)

These energies are called the Landau levels. They describe

(a) the quantized motion of the electron in the plane perpendicular to the field
(orbital quantization) and

(b) the unperturbed motion in the direction of the field.

In order to take into account the spin, we have to add one more term, namely the
Zeeman term:

Eσ
n (kz) = En(kz) − zσ μB B0 (3.113)

zσ is a sign factor:

zσ = δσ↑ − δσ↓ (3.114)

μB = e�

2m is the “bare” Bohr magneton. Equations (3.112) and (3.113) can be sum-
marized in the term scheme of Fig. 3.4:

Let the electron be enclosed in a rectangular box of the edge lengths Lx , L y, Lz

so that V = Lx L y Lz and let us assume that the periodic boundary conditions are
fulfilled. Then the allowed wave vectors are given by

ky = ny
2π

L y
; kz = nz

2π

Lz
; ny, nz ∈ N (3.115)

An important point for the following discussion is the degeneracy of the Landau
levels. The energies En(kz) are not dependent on ky and are therefore degenerate

Fig. 3.4 Term scheme for a
free electron in a
homogeneous magnetic field
(Landau levels). The left part
disregards the electron spin,
the right part shows
additional Zeeman splitting
due to the electron spin kz

E

B0 = 0 

0

1

2

3

4

2μBB0

ms = + 1/2
ms = − 1/2

h ω*c
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with respect to the possible values of ky . The number of the possible ky-values is
exactly the degree of degeneracy gy of the Landau level. gy is obtained by dividing
the difference between the largest and the smallest values of the allowed ky-values
by the difference between adjacent ky-values:

gy = kmax
y − kmin

y

2π/L y
(3.116)

kmax
y and kmin

y are determined as follows: The particle finds itself in a box whose

side along the x-direction has a length Lx . Therefore, we have − Lx
2 ≤ x ≤ + Lx

2
and as a result, in view of (3.110),

Lx

2
+ ρ ≥ �ky

eB0
≥ ρ − Lx

2

what gives kmax
y and kmin

y as

kmax
y = eB0

�

(
Lx

2
+ ρ

)
; kmin

y = eB0

�

(
− Lx

2
+ ρ

)

Therefore, the degree of degeneracy reads

gy(B0) = eLx L y

2π�
B0 (3.117)

Each of the Landau levels is gy(B0)-fold degenerate, where the degree of degeneracy
is, interestingly, proportional to the magnetic field B0. For a better interpretation, let
us, for the moment, consider a two-dimensional electron gas. At a very large field,
all the electrons occupy the lowest Landau level (n = 0). A further increase of the
field makes, because of ω∗

c , the total energy W increase linearly with the field while
the magnetization remains constant. On the other hand, when the field is decreased,
starting from a critical field B(0)

0 which is decided by the condition

Ne = 2gy(B(0)
0 ) (3.118)

electrons have to shift to the n = 1-Landau level. The factor two stands for the spin
degeneracy. Consequently, the energy of the system will first increase a little bit.
For B0 < 1

2 B(0)
0 , the n = 2-Landau level will be populated and so on (Fig. 3.5). The

critical field for which the nth Landau level is filled is given by

B(n)
0 = 1

n + 1
B(0)

0

If the external field is between two critical fields, B(n−1)
0 ≥ B0 ≥ B(n)

0 then the
energy is given by
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Fig. 3.5 Schematic plot of
the energy of the
two-dimensional electron gas
as a function of the magnetic
field. B(0)

0 : Critical field
above which only the n = 0
Landau level is occupied

B0/B0
(0)1/4 1/3 1/2 1

W
Neμ*BB0

1

E(B0) = Neμ
∗
B B0(2n + 1 − n(n + 1)B0/B(0)

0 )

(see Problem 3.6). This yields the field dependence, schematically plotted in Fig. 3.5.
Since m = − ∂W

∂B0
, these oscillations of the energy must manifest themselves

as oscillations in the magnetization. This will be investigated in more detail in
Sect. 3.4.3.

How does the quantization (3.112) appear in k-space? Since the kinetic energy
of a non-interacting electron gas does not change in a magnetic field, the energy
remains purely kinetic even if a magnetic field is switched on and therefore, the
following correspondence must be valid:

�
2

2m∗
(
k2

x + k2
y

)⇔ �ω∗
c

(
n + 1

2

)
(3.119)

The originally regularly spaced k-values, in the field, condense onto the surfaces
of cylinders whose axes coincide with the field direction (Figs. 3.6 and 3.7). The
radius of the cylinder increases proportional to

√
B0, since the cross-sectional area

of the cylinder is given according to (3.119) by

S(E) = π
(
k2 − k2

z

) = π

(
2m∗En

�2
− k2

z

)
= 2π

(
n + 1

2

)
eB0

�
(3.120)

The number of states will naturally not change by the application of the magnetic
field.

Fig. 3.6 k-states of a
two-dimensional electron gas
with and without magnetic
field. Spin splitting is
neglected

(B0 = 0) (B0 > 0) 

kx

ky

kx

ky
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Fig. 3.7 Landau cylinders
within the Fermi sphere for,
respectively, strong (a) and
weak (b) magnetic fields.
Spin splitting is not shown

0
1
2
3

n = 0

n = 1

(b)(a)

3.4.2 Grand Canonical Potential of the Conduction Electrons

We now know the allowed energy eigenvalues and the corresponding degeneracies
so that we can calculate the grand canonical potential of the conduction electrons:

Ω(T, B0, μ) = −kB T ln Ξ(T, B0, μ) (3.121)

where μ is the chemical potential and Ξ is the grand canonical partition function. In
the case of an ideal Fermi gas (e.g. non-interacting electrons), we have already seen
(3.57) that

Ξ(T, B0, μ) =
∏

i

(1 + exp(−β(εi − μ))) (3.122)

The index i runs over all states, that means, an energy εi is counted as many times
as its degree of degeneracy.

So, the starting point is the following expression for the grand canonical potential
of the non-interacting electrons:

Ω(T, B0, μ) = −kB T
∑

i

ln
(
1 + e−β(εi−μ)

)
(3.123)

Here, εi are the Landau levels Eσ
n (kz) (3.113). Because of the terms �

2 k2
z /2m∗,

at least in the thermodynamic limit, these levels lie arbitrarily close to each other.
Therefore, we replace the summation by an integration. We denote by

φσ (E) = the number of σ -states with Eσ
n ≤ E

ρσ (E)d E = the number of σ -states in the energy interval [E, E + d E]
ρσ (E) is the spin-polarized density of states with

ρσ (E) = d

d E
φσ (E)

Therewith, we can write instead of (3.123):

Ω(T, B0, μ) = −kB T
∑

σ

∫ ∞

···
ln
(
1 + e−β(E−μ)

)
ρσ (E) d E (3.124)
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The lower limit is given by φσ (E) = 0 and need not be specified here. Integrating
by parts we have

∫ ∞

···
ln
(
1 + e−β(E−μ)

)
ρσ (E)d E = φσ (E) ln

(
1 + e−β(E−μ)

)∣∣∞
···

−
∫ ∞

···
d E φσ (E)

−βe−β(E−μ)

1 + e−β(E−μ)

The first term vanishes because φσ (E) at the lower limit and the logarithm at the
upper limit are equal to zero. In the integrand of the second term, we recognize the
Fermi function:

Ω(T, B0, μ) = −
∑

σ

∫ ∞

···
φσ (E) f−(E)d E (3.125)

The main problem now is to find out φσ (E). For a given n how many eigenvalues are
there such that Eσ

n (kz) ≤ E ? Using (3.112), we can write this inequality as follows

k2
z ≤ 2m∗

�2

{
E − �ω∗

c

(
n + 1

2

)
− zσμB B0

}

That means, there exists a maximum and a minimum kz . The difference between the
two, divided by the spacing 2π/Lz gives the number of the “appropriate” eigenval-
ues:

kmax
z − kmin

z

2π/Lz
=

√
2m∗

�

Lz

π

√
{· · · }

We still have to take into account the degree of degeneracy gy(B0) and sum over the
“appropriate” n:

φσ (E) =
√

2m∗ V

2π2 �2
e B0

nmax∑
n=0

√
E − � ω∗

c (n + 1/2) − zσ μB B0 (3.126)

nmax is determined from the condition that the quantity under the square root
must remain positive. The “usual” density of states ρσ (E) (see Sect. 3.3.1) is then
obtained as

ρσ (E) = dφσ (E)

d E
. (3.127)

We will, however, use φσ (E) further. For a shorthand notation, we introduce the
following reduced quantities:

ε = E

� ω∗
c

; μ̃ = μ

� ω∗
c

; β̃ = � ω∗
c

kB T
= β � ω∗

c (3.128)
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f̃−(ε) = {1 + exp(β̃(ε − μ̃))}−1 (3.129)

Defining

α = 8

3
V

(μB m B0)5/2

m∗ π2 �3
(3.130)

and using (3.126) in (3.125), we get for the grand canonical potential

Ω(T, B0, μ) = −3

2
α
∑

σ

∫ ∞

···
dε f̃−(ε)

nmax∑
n=0

√
ε − n − 1

2
− zσ

m∗

2m
(3.131)

The integral can be exactly evaluated. It can be integrated by parts, where the inte-
grated part vanishes because at the upper limit ε = ∞, the Fermi function is zero
and at the lower limit, the sum is zero (φσ (E) = 0). With

η = ε − zσ

m∗

2m
(3.132)

it then follows that

Ω(T, B0, μ) = α
∑

σ

∫ +∞

−∞
dη f̃ ′−

(
η + zσ

m∗

2m

) nmax∑
n=0

(
η − n − 1

2

)3/2

(3.133)

f̃ ′− has the character of a δ-function at ε = μ̃ (≈ Fermi edge) which certainly lies
above the lower limit of the integration. Therefore, we can use −∞ as the lower
limit of integration.

For the sum in the integrand we can write

Σ(η) =
nmax∑
n=0

(
η − n − 1

2

)3/2

=
∫ ∞

0
dx(η − x)3/2

nmax∑
n=0

δ(x − (n + 1

2
)) (3.134)

nmax has to be chosen so that, η ≥ n + 1
2 for n ≤ nmax . Therefore, we have

Σ(η) =
∫ η

0
dx(η − x)3/2

+∞∑
n=−∞

δ(x − (n + 1

2
)) (3.135)

Through the special choice of the limits of integration, we can let the summation to
run from −∞ to +∞. The sum on the right-hand side can be written as a Fourier
series (Problem 3.8):

+∞∑
n=−∞

δ(x − (n + 1

2
)) =

+∞∑
p=−∞

e2π i p(x− 1
2 ) =

+∞∑
p=−∞

(−1)pe2π i px
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Then we get

Σ(η) =
+∞∑

p=−∞
(−1)p

∫ η

0
dx(η − x)3/2e2π i px =

+∞∑
p=−∞

(−1)p Ip(η) (3.136)

For p = 0, it is easy to evaluate Ip(η):

I0(η) = 2

5
η5/2 (3.137)

For p �= 0, however, the calculation is more involved. It is convenient to substitute
u = √

η − x , and after integrating by parts twice, we get

Ip �=0(η) = − η3/2

2π i p
+ 3η1/2

8π2 p2
− 3e2π i pη

8π2 p2

∫ √
η

0
due−2π i pu2

(3.138)

When we substitute this in Σ(η), the first term vanishes in the sum over p. For the
second summand, we use

+∞∑
p=−∞

(−1)p

p2
= −π2

6
(3.139)

Then we get the intermediate result

Ω(T, B0, μ) = α
∑

σ

∫ +∞

−∞
dη f̃ ′−

(
η + zσ

m∗

2m

)
Σ(η) (3.140)

with

Σ(n) = 2

5
η5/2 − 1

16
η1/2 − 3

4π2

∞∑
p=1

(−1)p

p2
Re

[
e2π i pη

∫ √
η

0
due−2π i pu2

]
(3.141)

The first two summands are relatively harmless to evaluate. Using (3.132) for η, we
have to evaluate the integral

Ω0 = α
∑

σ

∫ +∞

−∞
dε f̃ ′−(ε)

{
2

5

(
ε − zσ

m∗

2m

)5/2

− 1

16

(
ε − zσ

m∗

2m

)1/2
}

(3.142)

We use the series expansion
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(
ε − zσ

m∗

2m

)5/2

= ε5/2

{
1 − 5

2
zσ

m∗

2m

1

ε
+ 5 · 3

2 · 4

m∗2

4m2

1

ε2
+ · · ·

}

and

(
ε − zσ

m∗

2m

)1/2

= ε1/2

{
1 − 1

2
zσ

m∗

2m

1

ε
+ · · ·

}

Because of the sign factor zσ , the linear terms in zσ will disappear after the summa-
tion over σ . The decisive factor is the fact that in the integrand of Ω0, f̃ ′−(ε) has the
character of a δ-function

f̃ ′−(ε) ≈ −δ(ε − ε0) (3.143)

Further, in the case of normal metallic electron densities (μ: a few eV) and normal
effective masses (�ω∗

c = 2μ∗
B B0: a few 10−3 eV)

ε ≈ μ̃ = μ

�ω∗
c

� 1

Therefore, we can terminate the series expansion after a few terms:

Ω0 = −αμ̃ 5/2

(
4

5
+ 3

8

m∗2

m2ε2
+ · · ·

)
+ 1

8
ε1/2(1 − · · · )

The first three terms of the grand canonical potential are then given by

Ω0 ≈ −α

{
4

5
μ̃ 5/2 − 1

8
μ̃ 1/2

(
1 − 3

(
m∗

m

)2
)}

(3.144)

This part of the grand canonical potential leads to Landau diamagnetism and Pauli
paramagnetism, whereas the remaining part, which is oscillating and has to be still
evaluated, is responsible for the de Haas-van Alphen effect.

The integral, that has to be still evaluated, has the form of an error integral

Ap(η) =
∫ √

η

0
due−2π i pu2 = 1

2
√

2i p

2√
π

∫ √
2π i pη

0
dx e−x2

= 1

2
√

2i p
er f

(√
2π i pη

)
(3.145)

which can be expanded into a fast converging series. This is because it appears in the
integrand for the grand canonical potential (3.140), wherein, again, the δ-function
character of f̃ ′ sees to it that we can assume η ≈ μ̃ � 1. We can show that
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er f (z) = 1 − er f c(z) = 1 − 2√
π

∫ ∞

z
dte−t2

(3.146)

the asymptotic representation (see [4]: formulae 7.1.1, 7.1.2, 7.1.14)

er f (z) = 1 − e−z2

z
√

π

(
1 − 1

2z2
+ 3

4z4
+ · · ·

)
(3.147)

Using this, we get for the integral A,

Ap(η) = 1

23/2
√

i p

(
1 − e−2π i pη√

2π2i pη

(
1 − 1

4π i pη
+ 3

4(2π i pη)2
+ · · ·

))

With

1√
i
= e−i π

4

we can finally estimate

Ap(η) = e−iπ/4

2
√

2p
+O(η−1/2/p) ; (p > 0) (3.148)

For the oscillatory part of Σ(η) (3.141), we then have the intermediate result

Σosc(η) ≈ − 3

4π2 23/2

∞∑
p=1

(−1)p

p5/2
cos(2πpη − π/4) (3.149)

That means, for the grand canonical potential, according to (3.140), if we remove
the substitution (3.132) and perform the spin summation:

Ωosc(T, B0, μ) = − 3α

4π2
√

2

∞∑
p=1

(−1)p

p5/2
cos

(
pπ

m∗

m

)
∗

∗
∫ +∞

−∞
dε f̃−

′
(ε) cos(2πε − π/4) (3.150)

The still remaining integral can be further worked out. However, we cannot now
replace f̃ ′(ε) by simply a δ-function, since the integrand strongly oscillates in the
interesting region. But, the integral can be exactly evaluated using the residue theo-
rem. That we will do as an auxiliary calculation.
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According to (3.93), it holds for the derivative of the Fermi function:

f̃ ′−(ε) = − β̃

4 cosh2
(

1
2 β̃(ε − μ̃)

) (3.151)

We substitute ρ = β̃(ε − μ̃) and then we have to evaluate the real part of

∫ +∞

−∞
dε f̃ ′−(ε)e2π i pε−iπ/4 = −e2π i pμ̃−iπ/4

∫ +∞

−∞
dρ

exp
(

1
β̃

2π i pρ
)

4cosh2( 1
2 ρ)

(3.152)

Let the integral be denoted by J (p). We solve it with the help of the residue theorem,
where, since p > 0, we close the path of integration in the upper half-plane. Since
cosh( 1

2ρ) = cos(i 1
2ρ), the integrand has poles at

ρn = i (2n + 1) π (3.153)

Only the poles with n ≥ 0 lie inside the region of integration. Further, we have

cosh

(
1

2
ρ

)
= i sinh

(
1

2
(ρ − ρn)

)
(−1)n

= i

2
(ρ − ρn)

(
1 + 1

24
(ρ − ρn)2 + · · ·

)
(−1)n

It follows as Taylor expansion

1

cosh2
(

1
2ρ
) = −4

(ρ − ρn)2

(
1 − 1

12
(ρ − ρn)2 + · · ·

)
(3.154)

Thus the integrand of J (p) has, at ρn , a pole of second order with the residue

Resρn = lim
ρ→ρn

d

dρ

[
(ρ − ρn)2 e

2π i pρ
β̃

4 cosh2
(

1
2ρ
)
]

= − lim
ρ→ρn

d

dρ

[
exp

(
2π i p

β̃
ρ

)(
1 − 1

12
(ρ − ρn)2 + · · ·

)]

= −β̃−12π i p e−
2π2

β̃
(2n+1)p (3.155)

From the residue theorem, we eventually get
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J (p) = +4π2 β̃−1 p
∞∑

n=0

exp

(
−2π2

β̃
(2n + 1) p

)

= 4π2 p β̃−1exp

(
−2π2

β̃
p

) ∞∑
n=0

exp

(
−4π2

β̃
n p

)

= 4π2 p β̃−1exp

(
−2π2

β̃
p

)(
1 − exp

(
−4π2

β̃
p

))−1

That means

J (p) = 2π2 p

β̃ sinh
(

2π2 p
β̃

) (3.156)

This we use in (3.152)

∫ +∞

−∞
dε f̃ ′(ε) cos (2πpε − π

4
) = −2π2 p

β̃

cos(π
4 − 2πpμ̃)

sinh(2π2 p
β̃

)
(3.157)

By substituting (3.157) in (3.150), the oscillatory part of the grand canonical poten-
tial is completely determined.

Ωosc(T, B0, μ) = 3α

23/2 β̃

∞∑
p=1

(−1)p

p3/2
cos

(
pπ

m∗

m

)
cos
(

π
4 − 2πpμ̃

)
sinh

(
2π2 p

β̃

) (3.158)

Going back to the original notation, finally, we get the grand canonical potential of
the conduction electrons as

Ω(T, B0, μ) = Ω0(T, B0, μ) + Ωosc(T, B0, μ) (3.159)

with

Ω0(T, B0, μ) = − N

(
μ

εF

)3/2 {2

5
μ+

+ 1

4μ

(
μ∗

B B0
)2
(

3

(
m∗

m

)2

− 1

)}
(3.160)
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Ωosc(T, B0, μ) = 3

2
kB T

N

ε
3/2
F

(
μ∗

B B0
)3/2 ∗

∗
∞∑

p=1

(−1)p

p3/2
cos

(
pπ

m∗

m

) cos
(

π
4 − p πμ

μ∗
B B0

)

sinh
(

p π2kB T
μ∗

B B0

)

(3.161)

In deriving this, we have used

μ∗
B = e�

2m∗ = m

m∗μB

and

εF = �
2

2m∗

(
3π2 Ne

V

)2/3

We have thus determined the grand canonical potential of the conduction electrons
completely as a function of T and B0. From this, now, the magnetization and the
susceptibility can be derived.

3.4.3 Susceptibility of the Conduction Electrons

We obtain the magnetization M from the relation (3.99)

M(T, B0) = − 1

V

(
∂Ω

∂ B0

)
T,μ

(3.162)

Thereby, we have to express the chemical potential μ by T, B0 and the (fixed)
particle number. For this purpose, we exploit (3.99)

N = −
(

∂Ω

∂μ

)
T,B0

(3.163)

The partial differentiation is easily performed on (3.159):
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N = N

ε
3/2
F

{
μ3/2 +

(
μ∗

B B0
)2

8μ1/2

(
3

(
m∗

m

)2

− 1

)}
−

− 3

2
kB T

N

ε
3/2
F

(
μ∗

B B0
)3/2

∞∑
p=1

(−1)p

p1/2
cos

(
pπ

m∗

m

)
∗

∗ p
π

μ∗
B B0

sin
(

π
4 − p πμ

μ∗
B B0

)

sinh
(

p π2kB T
μ∗

B B0

) (3.164)

Rearranging leads to

(
μ

εF

)3/2

= 1 − γ1(B0)

(
3

(
m∗

m

)2

− 1

)

+ 3

2
γ2(T, B0)

∞∑
p=1

(−1)p cos
(

pπ m∗
m

)
p1/2

sin
(

π
4 − p πμ

μ∗
B B0

)

sinh
(

p π2kB T
μ∗

B B0

) (3.165)

The coefficients γ1 and γ2

γ1(B0) = (μ∗
B B0)2

8 μ1/2 ε
3/2
F

(3.166)

γ2(T, B0) = π

(
kB T

εF

)(
μ∗

B B0

εF

)1/2

(3.167)

are both very small compared to 1, as can be seen from the following: For a degen-
erate electron gas we can assume

1 eV ≤ εF ≤ 10 eV (3.168)

Using furthermore,

μB = 0.579 × 10−4 eV

T
; kB = 0.862 × 10−4 eV

K
(3.169)

we can estimate

γ1 � 1 ; γ2 � 1

That means that, μ ≈ εF . Therefore, in (3.165), we can, without much error,
replace μ by εF on the right-hand side. Then what remains is an expression of the
form



3.4 Landau Diamagnetism (Metals) 119

μ

εF
= (1 − x)2/3 with x � 1

which we can further approximate by

μ

εF
≈ 1 − 2

3
x

That leads to the following result for the field dependence of the chemical potential:

μ = εF

[
1 − 2

3
γ1(B0)

(
3

(
m∗

m

)2

− 1

)
+

+ γ2(T, B0)
∞∑

p=1

(−1)p

p1/2
cos

(
pπ

m∗

m

) sin
(

π
4 − p πεF

μ∗
B B0

)

sinh
(

p π2kB T
μ∗

B B0

)
⎤
⎦ (3.170)

If we want to compare this expression with the well-known result of Statistical
Mechanics for the temperature dependence of μ (3.82)

μ(T ) ≈ εF

(
1 − π2

12

(
kB T

εF

)2
)

we have to remember that, in the present calculation, the correction term cannot
appear, since we have, in several places, replaced the derivative f ′− by the δ-function.
The finite width of f ′− around μ, however, produces the temperature effect. For the
oscillating third summand in (3.170), however, this simplification has not been used.

The result (3.170) for μ along with the estimates for γ1 and γ2 makes it clear
that, for our purpose, we can take, with sufficient accuracy,

μ ≈ εF (3.171)

Using this, we will now calculate the magnetization resulting from the non-oscillating
part of the grand canonical potential (3.144). The oscillating part will be considered
especially in Section 3.5.

M0(T, B0) = − 1

V

(
∂Ω0

∂ B0

)
T,μ=εF

= N

2V

μ∗2
B

εF

(
3

(
m∗

m

)2

− 1

)
B0 (3.172)

From this we directly get the susceptibility of the conduction electrons that we are
looking for:

χ0 = μ0

(
∂ M0

∂ B0

)
T

= 3

2

N

V
μ0

μ2
B

εF

(
1 − 1

3

(
m∗

m

)2
)

(3.173)
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Here we have used μB/μ∗
B = m∗/m. We see that χ0 contains diamagnetic and

paramagnetic components:

χ0 = χPauli + χLandau (3.174)

χPauli = 3

2

N

V
μ0

μ2
B

εF
> 0 (3.175)

χLandau = −1

2

N

V
μ0

μ∗2
B

εF
< 0 (3.176)

The term χPauli describes the so-called Pauli spin paramagnetism. It originates
because of the permanent magnetic spin moment −2μB/�s of the conduction elec-
trons. We will discuss this contribution in more physical detail in Chap. 4.

χLandau is a diamagnetic component. It is known as the Landau–Peierls diamag-
netism which results from the quantization of the orbital moments in the presence
of an external magnetic field. We want to add a few remarks on the result (3.174):

1. For really free electrons, naturally m∗ = m, so that, with (3.175) and (3.176)
we have

χ
(0)
Landau = −1

3
χ

(0)
Pauli (3.177)

For many metals, however, m∗ is distinctly different from m, so that the dia-
magnetic component can outweigh the paramagnetic component (e.g. Bi). In
general, the diamagnetic and the paramagnetic components are of the same
order of magnitude.

2. The concept of effective isotropic mass m∗ is quite problematic (relatively good
for the alkali metals). The effective mass is, in general, an (anisotropic) tensor:

(
1

m∗

)
i j

= 1

�2

∂2εn(k)

∂ki∂k j
; i, j ∈ {x, y, z} (3.178)

Therefore, in the expressions in this section, m∗ is always a quantity, which is
some kind of an average performed over the “Fermi layer”.

3. The Coulomb interaction of the band electrons, their scattering by phonons and
imperfections and also other temperature effects have been neglected. There are
only few improvements that exist in literature in this direction. Often, one takes
recourse to using phenomenological damping terms.

4. Measurements always give χtotal , which is a sum of χLandau , χPauli , χLarmor

and χosc, so that separate measurements of χLandau are not so simple.
Calculations show that χLandau is very small (Table 3.3).
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Table 3.3 Diamagnetic contributions to the susceptibility of the alkali metals. In the first column
are given the effective masses calculated by Ham [5]. The second column gives the Landau suscep-
tibility calculated for m∗ = m and the third column the value obtained by making the correction
using the first column

m∗/m −χ
(0)
Landau .106 −χLandau .106

Li 1.66 3.41 2.05
Na 1.00 4.99 4.99
K 1.09 7.62 6.99
Rb 1.21 8.71 7.20
Cs 1.76 10.21 5.80

5. The fact that χPauli as well as χLandau are, to a first approximation, independent
of temperature as well as the magnetic field is confirmed by experiment.

6. The derivation restricted itself to the s-electrons. In other situations, the orbital
motion can also lead to paramagnetic effects [6].

3.5 The de Haas–Van Alphen Effect

The oscillations of the magnetic susceptibility χ as a function of the external mag-
netic field B0 (more precisely 1/B0) is the de Haas–van Alphen effect. Similar
oscillations are also observed in many other physical quantities (in particular, the
transport quantities), e.g. in thermal and electrical conductivity, magnetostriction,
Hall effect. Here we discuss only the oscillations of the magnetic susceptibility.

3.5.1 Oscillations in the Magnetic Susceptibility

These oscillations naturally arise from the not yet evaluated oscillatory part of the
grand canonical potential:

χosc = −μ0

V

(
∂2Ωosc

∂ B2
0

)
T,μ=εF

(3.179)

The calculation is simple but laborious. With the notation

α(T, B0) = 3

2

kB T

εF

(
μ∗

B B0

εF

)1/2

(3.180)

β(T, B0) = π2kB T

μ∗
B B0

(3.181)

γ (B0) = εFπ

μ∗
B B0

(3.182)

Dr (p) = N

V
(−1)p pr cos

(
pπ

m∗

m

)
μ∗

B (3.183)
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we first write the magnetization as

Mosc(T, B0) = − 1

V

(
∂Ωosc

∂ B0

)
T,μ=εF

= M1 + M2 + M3 (3.184)

The three summands are defined as follows:

M1 = −3

2
α

∞∑
p=1

D−3/2(p)
cos(π/4 − pγ )

sinh(pβ)
(3.185)

M2 = γ α

∞∑
p=1

D−1/2(p)
sin(π/4 − pγ )

sinh(pβ)
(3.186)

M3 = −β α

∞∑
p=1

D−1/2(p)
cos(π/4 − pγ )

sinh(pβ)
coth(pβ) (3.187)

Differentiating once again gives the susceptibility:

χosc = μ0

(
∂ Mosc

∂ B0

)
T

= χ1 + χ2 + χ3 (3.188)

χ1 = μ0

⎡
⎣− 3α

4B0

∞∑
p=1

D−3/2
cos(π/4 − pγ )

sinh(pβ)

+ 3αγ

2B0

∞∑
p=1

D−1/2
sin(π/4 − pγ )

sinh(pβ)

− 3αβ

2B0

∞∑
p=1

D−1/2
cos(π/4 − pγ )

sinh(pβ)
coth(pβ)

⎤
⎦ (3.189)

χ2 = μ0

⎡
⎣− αγ

2B0

∞∑
p=1

D−1/2
sin(π/4 − pγ )

sinh(pβ)

+ αγ 2

B0

∞∑
p=1

D1/2
cos(π/4 − pγ )

sinh(pβ)

+ αβγ

B0

∞∑
p=1

D1/2
sin(π/4 − pγ )

sinh(pβ)
coth(pβ)

⎤
⎦ (3.190)
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χ3 = μ0

⎡
⎣ αβ

2B0

∞∑
p=1

D−1/2
cos(π/4 − pγ )

sinh(pβ)
coth(pβ)

+ αβγ

B0

∞∑
p=1

D1/2
sin(π/4 − pγ )

sinh(pβ)
coth(pβ)

− αβ2

B0

∞∑
p=1

D1/2
cos(π/4 − pγ )

sinh3(pβ)
(1 + cosh2(pβ))

⎤
⎦

(3.191)

Inspite of the extremely simple model (Sommerfeld model), the response function χ

turns out to be a rather complicated expression. If we assume that all the summations
that appear in the expressions are of the same order of magnitude, then the pre-
factors provide the real meaning of the terms. In general, however, these pre-factors
have different orders of magnitude.

With the values given in (3.169) for μB and kB and the value for εF , for normal
fields and not too high temperatures, we get

γ � β � α (3.192)

Therefore, it is sufficient to consider only the term proportional to γ 2:

χosc ≈ μ0
αγ 2

B0

∞∑
p=1

D1/2(p)
cos(π/4 − pγ )

sinh(pβ)
(3.193)

We want to discuss this expression a little further.

1. D1/2(p) contains cos(pπ m∗
m ). This term can be traced back to the electron spin.

The other parts are associated with the orbital motion. That means the orbital
and spin susceptibilities are not simply additive. Therefore, they cannot be han-
dled separately.

2. Because of sinh(p β), the series converges very fast. As a result, often it is
sufficient to consider only the p = 1 summand:

χosc ≈ −μ0
3

2
NkB T

1

V

1

B2
0

π2

(
εF

μ∗
B B0

)1/2

cos

(
π

m∗

m

)
×

× cos(π/4 − πεF/μ∗
B B0)

sinh(π2kB T/μ∗
B B0)

(3.194)

Caution should be exercised in case m∗ � m, which means, μ∗
B � μB . Then,

it might be necessary to take into account more summands.
3. The characteristic of the de Haas–Van Alphen effect is the χ -oscillations with

the period Δγ
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p Δγ
!= 2π = p

πεF

μ∗
B

Δ

(
1

B0

)
(3.195)

Thus, χ oscillates as a function of 1/B0 with the period

Δ(1/B0) = p−1 2μ∗
B

εF
(3.196)

Δ(1/B0) does not depend on temperature. p = 1 is the ground oscillation.
4. The oscillations are naturally easier to observe if the period Δ is larger. This

is the case if the Fermi energy εF is as small as possible, that is, if εF =
�

2

2m∗ (3π2ne)3/2 is as small as possible. That means the electron density ne =
Ne/V should be small.

5. The amplitude of the oscillations decreases for small fields as

exp

(
−p π2 kB T

μ∗
B B0

)

The above-mentioned facts have been clearly confirmed by experiment.

3.5.2 Electron Orbits in Magnetic Field

We want to understand the physical origin of the oscillations and discuss the pos-
sibility of applications. In order to do this it is necessary to first understand a few
related things. First, we will consider the motion in k-space.

3.5.2.1 Motion in k-Space

The equation of motion of an electron state of wave number k under the influence
of a magnetic field fulfils, at least approximately, the classical equation:

�k̇ = −e v × B0 (3.197)

Here v = �
−1∇kε(k) is the group velocity of the wave packet built from the

Bloch functions. Equation (3.197) says that, dk is perpendicular to B0, v and ∇kε(k)
(Fig. 3.8). Further, ∇kε(k) is perpendicular to the surface ε = const. Therefore, the
end of the k-vector moves along the curve given by the intersection of the plane
ε = const. with a plane perpendicular to B0. If the constant energy surface is a
simply connected plane, then the electron moves in the k-space along a closed curve.
The integrals of motion are thereby

(a) energy
(b) kz = component of k, parallel to the field
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Fig. 3.8 Illustration for the
connection of real space and
k-space for the movement of
an electron in a homogeneous
magnetic field

B0

k

dk

Δ

ε = hv
.

In the reduced-zone scheme, the k-vector folds back as soon as it reaches the zone
boundary (open orbit). When the zone boundary is not reached, then it is called
closed orbit. In the periodic zone scheme, the “umklappen” of k is identical with
crossing the boundary of the Brillouin zone. In such a situation, both closed and
also open orbits may appear. The direction of a closed orbit depends on whether the
energy increases outward or inward.

The connection between v = ṙ and k̇ in (3.197) expresses a close relationship
between the k-space motion and the motion in the real space.

3.5.2.2 Motion in the Real Space

Let ez be the unit vector in the direction of the homogeneous field. Then,

r⊥ = r − (r · ez) ez (3.198)

is the projection of the position vector on the plane perpendicular to B0. We will use
this fact in the following reformulation:

ez × k̇ = − e

�
ez × ṙ × B0 = − e

�
(ṙ (ez · B0) − B0 (ez · ṙ))

= −eB0

�
(ṙ − ez (ez · ṙ)) = −eB0

�
ṙ⊥

On integrating we get

r⊥(t) − r⊥(0) = − �

eB0
ez × (k(t) − k(0)) (3.199)
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The vector (k(t) − k(0)) lies in a plane which is perpendicular to B0. The vector
product of the unit vector ez with a vector perpendicular to it gives a vector whose
length is unchanged but is rotated by π/2 about the direction of the field.

We see that, the motion in real space, projected onto the x–y plane, corresponds
exactly to the motion in the k-space, if this is rotated by π/2 about the field direction

and scaled by a factor
(
− �

eB0

)
.

It is not possible to make any statements regarding the z-direction. The orbits (in
position- as well as in k-space) are called cyclotron orbits. Only for free electrons
these orbits are circular.

In this connection we introduce the important concept of cyclotron mass.

3.5.2.3 Cyclotron Mass

We consider two orbits in k-space of constant energy, namely for E and E + ΔE
where Δk is the perpendicular vector between these two surfaces (Fig. 3.9). We
should distinguish this from (Δk)⊥, which is the perpendicular distance in the xy
plane. Then the energy difference ΔE can be expressed in terms of (Δk)⊥:

ΔE = (∇kε(k)) · (Δk)⊥ = (∇ε)⊥ · Δk⊥ (3.200)

With this, we now calculate the time the electron needs to travel on the orbit from
k1 to k2:

t2 − t1 =
∫ t2

t1

dt =
∫ 2

1

dk

|k̇| =
�

2

e

∫ 2

1

dk

|∇kε(k) × B0|

= �
2

e

∫ 2

1

dk

(∇ε)⊥B0
= �

2

eB0

1

ΔE

∫ k2

k1

dk · Δk⊥

The integral represents the area ΔS1,2 from k1 to k2 between the two orbits in the
plane of the k-space which is perpendicular to B0. In the limit ΔE → 0, it follows
that

Fig. 3.9 Two electron orbits
in k-space perpendicular to
the magnetic field B0 with
constant energies E and
E + ΔE , respectively

Ε + ΔΕ

E

B 0
.

S

ΔS

dk

(Δ )⊥ 

k

.

k
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t2 − t1 = �
2

eB0

∂S1,2

∂ E
(3.201)

In the cases of closed orbits, the period of revolution τ is given by

τ = �
2

eB0

∂S(E, kz)

∂ E
= 2π

ωc
(3.202)

ωc is called the cyclotron frequency. As a simple example, let us consider the case
of free electrons. In this case, we have

ε(k) = �
2k2

2m

That is, the surfaces of constant energy are the surfaces of spheres. The orbits of

constant energy in the x–y plane are then circles of the radius
√

k2 − k2
z . Then, we

immediately have

S0(E, kz) = π (k2 − k2
z ) = π

(
2m

�2
E − k2

z

)

and

∂S0

∂ E
= 2mπ

�2
τ0 = 2mπ

eB0
= 2π

ω
(0)
c

(3.203)

In analogy with this special case, using (3.203), one defines

mc(E, kz) = �
2

2π

∂S(E, kz)

∂ E
(3.204)

as the cyclotron mass. Therefore, in general, we have

τ = 2π

eB0
mc ⇔ ωc = eB0

mc
(3.205)

Normally, the cyclotron mass mc is different from the effective mass m∗. Only for

an isotropic dispersion
(
ε(k) = �

2k2

2m∗

)
, it holds m∗ = mc.

3.5.2.4 Landau Cylinder

We found that the electron motion in a magnetic field in the plane perpendicular to
the field is quantized. For the cross-sectional area of the nth Landau cylinder, we
have according to (3.113)
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Sσ
n (kz) = π

(
k2

x + k2
y

) = π

(
2m∗

�2
Eσ

n (kz) − k2
z

)

= π

(
(2n + 1) − zσ

m∗

m

)
eB0

�
(3.206)

We can now calculate the annular area between two adjacent cylinders

ΔS σσ ′ = Sσ
n+1(kz) − Sσ ′

n (kz) (3.207)

as

ΔS σσ ′ = 2πe

�
B0

(
1 − (zσ − zσ ′)

m∗

m

)
(3.208)

The annular area is thus independent of the Landau quantum number n. It increases
linearly with the field.

If there were no field,

2
ΔS σσ

4π2/(Lx L y)
= 2

Lx L y

2π�
eB0 = 2gy(B0)

states would have been in ΔSσσ . The factor 2 takes care of the spin degeneracy.
Therefore, on a “Landau circle”, in the x–y plane, there are exactly the same number
of states as there are without field in the corresponding annular area. The annular
area increases with the field by the same amount as the degree of degeneracy gy of
the Landau levels. According to (3.5.2.1) and (3.5.2.2), the k-values on a Landau
cylinder do not remain constant but rotate with the frequency

ωc = 2π
eB0

�2

(
∂S

∂ E

)−1

= 2π
eB0

�2

�
2

2πm∗ = eB0

m∗ = ω∗
c (3.209)

Now it is clear, what happens inside the Fermi sea, when the magnetic field B0 is
switched on. The regularly ordered points in the k-space in the absence of the field
(one point per grid volume Δk = 2π3

V ) arrange themselves on cylinders and rotate
on these with the cyclotron frequency. The number of the states, however, does not
change.

3.5.3 Physical Origin of the Oscillations

For the cross-sectional area of the nth Landau cylinder, we can according to (3.206)
write

Sσ
n = 2π (n + φσ )

eB0

�
(3.210)
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φσ is an undetermined constant. In the next section, we will show that, Sσ
n in this

form is valid not only for the Sommerfeld model but is valid in general.
The oscillations in the grand canonical potential and the susceptibility are related

to the successive emptying of the Landau cylinders. This will now be discussed in
a little more detail. If by changing of the field, every electron would stay put in
its Landau level, then, since �ω∗

c ∼ B0, the energy of the system would increase
proportional to B0. By increasing field (at T = 0), what actually happens is the
following: Since the degree of degeneracy on the cylinder increases,

1. the electrons may shift from outer to inner cylinder
2. the electrons on a cylinder may drop from larger to smaller |kz| (Fig. 3.10).

Because of (1) and (2), the total energy at T = 0 will remain at its lowest possible
value. Therefore, on the whole, mainly, a rearrangement of the occupation of the
states inside the Fermi body takes place. When a Landau cylinder goes out of the
Fermi body, it will be emptied. Let A0 be the maximum cross-sectional area of the
Fermi body perpendicular to the field B0. The nth cylinder empties itself at the field
strength B(n)

0 , exactly when the frontal area of the Landau cylinder equals A0:

Sσ
n

(
B(n)

0

)
= A0 (3.211)

In view of (3.210), it means

1

B(n)
0

= 2π (n + φσ )
e

�

1

A0
(3.212)

Then, the (n − 1)th cylinder empties itself when

Sσ
n−1

(
B(n−1)

0

)
= A0 (3.213)

Fig. 3.10 Landau cylinders
within the Fermi sphere

0B
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That is, when

1

B(n−1)
0

= 2π (n − 1 + φσ )
e

�

1

A0
(3.214)

This gives a period, which is independent of the Landau quantum number:

Δ

(
1

B0

)
= 1

B(n)
0

− 1

B(n−1)
0

= e

�

2π

A0
(3.215)

It is determined directly from the cross-sectional area A0 of the Fermi sea. In the
case of the Sommerfeld model, which has been used so far, it is simple to obtain:

A0 = πk2
F = 2m∗π

�2
εF = π

εF

μ∗
B

e

�
(3.216)

From this we get the period

Δ(1/B0) = 2μ∗
B

εF
(3.217)

which agrees exactly with the oscillations in χ (3.196). This result is also valid even
if the Fermi sea is not a simple sphere. Measurement of the period of oscillations
in χ automatically provides the extremal cross-sectional area perpendicular to the
field. By varying the field direction, one can obtain valuable information about the
shape of the Fermi surface. This is actually, the real practical significance of the de
Haas–Van Alphen effect.

Why the extremal (also the minimal) cross-sectional area of the Fermi body
determines the period can be qualitatively understood in the following way:

The derivation of the grand canonical potential in Sect. 3.4.2 clearly shows that,
the oscillations are essentially related to level density ρσ (E), that is, the number of
states in the energy interval between E and E +ΔE . In the various summations and
integrations, the derivative of the Fermi function f ′− ∼ δ(E − εF ) plays a special
role, whose δ-function character sees to it that the level density is important mainly
at E = εF .

Since the density of states in the z-direction is constant, the contribution of a
Landau cylinder is proportional to the shaded area in the Fig. 3.11.

This area is quite obviously maximal when the cross section of the Landau cylin-
der equals the maximal cross-sectional area of the Fermi body (Fig. 3.12). This is
also true in the case of minimal cross-sectional areas as one can easily see from
Figs. 3.13 and 3.14.

The density of states is always then maximal, when Sσ
n is equal to the extremal

cross-sectional area A0. That explains why the oscillations and their period are
related to A0. Many electronic properties depend on the density of states ρσ (E)
at the Fermi edge εF . All these properties show the above-discussed oscillatory
behaviour as a function of 1/B0.
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Fig. 3.11 Graphic
representation of the states
with energies in between E
and E + ΔE which
simultaneously are to be
found on a Landau cylinder

E + dE

E

Landau cylinder

Fig. 3.12 The same as in
Fig. 3.11 but now for a
maximum of states on the
Landau cylinder with
energies in between E and
E + ΔE

E + dE

E

Landau cylinder

3.5.4 Onsager Argument

The Landau theory, discussed so far, is based on the Sommerfeld model for quasi-
free electrons, characterized by spherically shaped Fermi surfaces. The generaliza-
tion to arbitrarily shaped simply connected Fermi surfaces is done by Onsager [7].
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Fig. 3.13 The same as in
Fig. 3.11, but now for a
different shape of the
E = const. area

E + dE

E

Landau cylinder

Fig. 3.14 The same as in
Fig. 3.12, but now for a
different shape of the
E = const. area

E + dE

E

Landau cylinder

In Sect. 3.5.2, we have seen that the electron motion in real space follows a
closed orbit in the plane perpendicular to the direction of the field. This motion can
be quantized according to the Bohr–Sommerfeld condition:

∮
p · dr =

∮
(� k − e A(r)) · dr = (n + φ) h (3.218)
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This rule is valid for very large quantum numbers n, i.e. in the neighbourhood of the
classical limit. This limit is ensured here because, with

n � ω∗
c = 2μ∗

B B0 n
!≤ εF

(μB ≈ 0.579 × 10−4 eV/T ; εF = 1 · · · 10 eV ) (3.219)

in normal fields, about 103–104 Landau levels are involved. φ is an undetermined
constant between 0 and 1, and n ∈ N. We will calculate the two summands of the
integrand in (3.218) separately. From the Stoke’s theorem, it follows that

e
∮

∂ F
A · dr = e

∫
F
∇ × A · df = eB0 ·

∫
df = eB0 F⊥ (3.220)

F⊥ is the projection of the plane of motion of the electron onto the x–y plane.
With the appropriate choice of the reference point in position- and momentum-

space, according to (3.199), we have

r⊥(t) = − �

eB0
ez × k(t) (3.221)

Here, k(t) must lie in the x–y plane so that we can solve for k(t).

k(t) = −eB0

�
(r⊥ × ez) = −eB0

�
(r × ez) (3.222)

With this, we evaluate

∮
� k · dr = −eB0

∮
(r × ez) · dr = −eB0 ez ·

∮
(dr × r)

= +2e B0 F⊥ (3.223)

The Bohr–Sommerfeld condition now reads

(n + φ)h = 2e B0 F⊥ − e B0 F⊥

from which finally we get

F⊥ = (n + φ) h

eB0
(3.224)

This is the area in real space, which has still to be scaled by
(− eB0

�

)2
in order to get

the area in the k-space:

Sn = (n + φ)h

eB0

e2 B2
0

�2
= 2π (n + φ)

eB0

�
(3.225)
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This is exactly the expression (3.210), which we have derived for the frontal area of
the Landau cylinder within the Landau theory, which we have now derived without
assuming free electrons. So, the expression for the χ -period, Δ(1/B0) (3.217),

Δ(1/B0) = e

�

2π

A0
(3.226)

is in general valid.
Up to now we have not taken into account the influence of the phonons (T �=

0), impurities, etc. The scattering processes related to them can make the electrons
move in orbits which are not closed. If τ is the average collision time, then the
uncertainity in the energy is ΔE ∼ �/τ .

When ΔE is larger than the separation between the Landau levels, then the
oscillatory behaviour is washed out. In order that the de Haas–Van Alphen effect
is observable, we must demand that ΔE � �ω∗

c . That means pure metals, low
temperatures and large fields.

3.6 Problems

Problem 3.1 For the Larmor diamagnetism of insulators determine the magnetic
moment induced by a homogeneous field B0 = B0ez and the corresponding diamag-
netic susceptibility χdia . To do this, use the classical picture that the electrons of the
concerned atom move classically in stable orbits. The orbital angular momentum l
associated with the orbital motion executes a Larmor precession about the direction
of the field with a frequency ωL = eB0

2m (−e: electron charge, m: electron mass).
Compare the result with the quantum mechanically correct expression (3.21). Is
there a contradiction to Bohr–van Leeuwen theorem?

Problem 3.2 Verify that in the Sommerfeld model, the average energy of an electron
at T = 0 is given by

ε̄ = 3

5
εF (εF : Fermi energy)

gilt.

Problem 3.3 For the Sommerfeld model of simple metals, calculate

1. the grand canonical partition function Ξμ(T, V )
2. the average occupation number of the single-particle level ε(k):

〈n̂kσ 〉 =
〈
a+

kσ akσ

〉
(σ =↑,↓: spin projection)

3. the entropy

S = ∂

∂T

(
kB T ln Ξμ(T, V )

)
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Verify the third law!

Problem 3.4 Within the Sommerfeld model, calculate the density of states of a

1. one dimensional
2. two dimensional
3. d-dimensional

metal.

Problem 3.5 Consider the Sommerfeld model for extreme relativistic, non-interacting
Fermions in volume V . One-particle energies are

√
c2 p2 + m2c4 → cp = c�k = ε(k)

1. Calculate the density of states ρ0(E)!
2. What is the temperature dependence of the chemical potential μ?
3. How does the heat capacity depend on temperature?

Compare with the results of the non-relativistic case.

Problem 3.6 Consider two-dimensional electron gas in the presence of a perpendic-
ular field B0 = B0ez . According to Sect. 3.4.1, in the ground state, the Ne electrons
occupy the Landau levels

En = �ω∗
c

(
n + 1

2

)
; n = 0, 1, 2, . . .

�ω∗
c = 2μ∗

B B0

The spin splitting is neglected here.

1. What is the smallest field B0 = B(0)
0 at which all the electrons are placed in the

n = 0 level?
2. What is the field B0 = B(n0)

0 ≤ B(0)
0 at which the Ne electrons are uniformly

distributed in the Landau levels up to the quantum number n0?
3. If the field B0 lies between the two critical fields B(n0)

0 and B(n0−1)
0

B(n0−1)
0 ≥ B0 ≥ B(n0)

0

Calculate the total energy E(B0) of the Ne-electron system!
4. What do you get for the special case E

(
B(n0)

0

)
?

Problem 3.7 Consider a system of N spinless electrons which are interacting with
each other placed in a homogeneous field B0 = B0ez .

1. Calculate the canonical partition function Z1 of a single electron.
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2. The temperature be so high that Boltzmann statistics can be applied to the
N -electron system to a good approximation. This means, in particular, for the
canonical partition function:

Z N = Z N
1

N !

Calculate the average magnetic moment m.

Problem 3.8 Show that

f (x) =
+∞∑

n=−∞
δ

[
x −

(
n + 1

2

)]

can be written as a Fourier series as follows:

f (x) =
+∞∑

p=−∞
(−1)p ei2πpx
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Chapter 4
Paramagnetism

The subject of “paramagnetism” deals with the reaction of permanent magnetic
moments to an external magnetic field. The permanent magnetic moments can be
formed by

(a) the moments of partially filled atomic electron shells as, e.g. in

3d: transition metals
4f: rare earths
5f: actinides

In such a case, the moments are localized at definite lattice points (insulators).
(b) The moments can also be due to itinerant conduction electrons in metallic solids,

in which case,

ms = −2
μB

�
s

Let us remind the reader to what we have agreed upon after Table 2.1. In the follow-
ing we will disregard the different sign of magnetic moment and spin.

In this chapter, we assume that there is no interaction worth mentioning among
the moments, so that, in the absence of an external field, the total magnetization
vanishes. In the presence of an external magnetic field B0 = μ0H, the moments try
to orient themselves parallel to the field in order to minimize the internal energy U
of the system. Against this works the temperature, which by creating the maximum
possible disorder, tries to maximize the entropy S. The requirement

F = U − T S
!= Minimum

where F is the free energy, finally determines the total magnetization. Therefore,
we expect the susceptibility of a paramagnet to be

χ > 0 ; χ = χ (T )

In paramagnetism also, there are qualitative differences between insulators and met-
als. That is why, they will be considered separately.

W. Nolting, A. Ramakanth, Quantum Theory of Magnetism,
DOI 10.1007/978-3-540-85416-6 4, C© Springer-Verlag Berlin Heidelberg 2009
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4.1 Pauli Spin Paramagnetism

We begin with the paramagnetism of the conduction electrons. The susceptibility of
the conduction electrons was discussed in detail in Sects. 3.4 and 3.5 and is given
by

χ = χLandau + χPauli + χosc (4.1)

χLandau is negative and so is a diamagnetic component, which arises due to the
orbital motion of the conduction electrons. χPauli is positive and so is a paramag-
netic component, which is ascribed to the spin of the electrons. χosc oscillates with
the field between positive and negative values and is connected with both the orbital
motion and the spin.

We are here interested in χPauli for which we have already found that (3.175)

χPauli = 3

2

N

V
μ0

μ2
B

εF
(4.2)

This expression is normally derived in a considerably simpler way than was done
in Sect. 3.4, which is, on the other hand, physically more insightful. This simpler
method will, therefore, be followed now. As mentioned at the beginning of this chap-
ter, the susceptibility should be temperature dependent. However, we see from the
above expression that χPauli is independent of temperature. This has to be justified.
In order to do that, we calculate the maximal corrections which give the temperature
dependence. The starting point is the Sommerfeld model which was introduced in
Sect. 3.3.

4.1.1 “Primitive” Theory of the Pauli Spin Paramagnetism

We split the density of states ρ(E) of the conduction electrons into two parts

ρ(E) = ρ↑(E) + ρ↓(E) (4.3)

ρ↑ is the density of states for the electrons with spin parallel to the field
(ms = + 1

2 ), and ρ↓ for the electrons with spin antiparallel (ms = − 1
2 ). If the field

is switched off, then both the densities of states are equal

ρ↑(E) = ρ↓(E) = 1

2
ρ0(E) (4.4)

That means the system contains equal number of ↑-electrons as ↓-electrons. That is
why, the total magnetization is zero (Fig. 4.1).

When the field is switched on (B0 �= 0), the band states are shifted from their
original position by the energy (Fig. 4.2)
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Fig. 4.1 Schematic plot of
the spin-polarized densities of
states, ρ↑ and ρ↓ of the
Sommerfeld model as
functions of the energy, at
T = 0 and a vanishing
external magnetic field B0

ρ

ρ
T = 0

E
εF

←

←

ΔEσ = −zσ μB B0 (4.5)

zσ = δσ↑ − δσ↓ (4.6)

In the field, the ↑-electrons have lower energy than the ↓-electrons (see remark
after Table 2.1). The density of states ρ↑ and ρ↓ are shifted rigidly with respect to
each other so that we have

ρσ (E) = 1

2
ρ0(E + zσμB B0) (4.7)

For the moment, we leave out the orbital quantization (Landau levels, see Sect. 3.4.1)
from consideration. We will consider only the shift in energy, for which the electron
spin is responsible. Because of this shift, the ↓-electrons will flow out into the ↑-
states so that a new common Fermi edge is formed. That results in, for B0 �= 0,
N↑ > N↓, where Nσ is the number of electrons with spin projection σ . Then, the
total moment is given by

Fig. 4.2 The same as in
Fig. 4.1 but now with a finite
external field (B0 �= 0)

ρ

ρ

E

←

←

T = 0 

ε
F
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mtot = μB(N↑ − N↓) (4.8)

which is no more equal to zero. Now, the job is to find the electron numbers N↑↓:

Nσ =
∫ +∞

−∞
d E f−(E) ρσ (E)

= 1

2

∫ ∞

−zσ μB B0

d E f−(E) ρ0(E + zσμB B0)

= 1

2

∫ ∞

0
dη f−(η − zσμB B0) ρ0(η) (4.9)

In the region, where the Fermi function ( f−) distinctly deviates from either one or
zero, μB B0 is, in general, very small compared to η. Therefore, a Taylor expansion
of the Fermi function can be terminated after the linear term:

Nσ ≈ 1

2

∫ ∞

0
dη

{
f−(η) − zσ μB B0

∂ f

∂η

}
ρ0(η) (4.10)

With this, we get for the magnetization

M = μB

V
(N↑ − N↓) = −μ2

B

V
B0

∫ ∞

0
dη

∂ f−
∂η

ρ0(η) (4.11)

The susceptibility then has the form

χPauli = μ0

(
∂ M

∂ B0

)
T

= − 1

V
μ0 μ2

B

∫ ∞

0
d E f ′−(E) ρ0(E) (4.12)

To a good first approximation, according to (3.65), we can write

f ′−(E) ≈ −δ(E − εF ) (4.13)

At T = 0, this relation is exact. Then we have for χPauli ,

χPauli = 1

V
μ0 μ2

B ρ0(εF ) = 3

2

Ne

V
μ0

μ2
B

εF
(4.14)

This is exactly the expression that we have derived in another way as Eq. (3.175) in
Sect. 3.4.3. In the last step, we have used ρ0(εF ) = 3

2 Ne/εF (3.50).
Because of the Pauli’s principle, only a very small fraction of the electrons, which

are in the thin Fermi layer can respond to the field B0. This explains the order of
magnitude (∼ 10−6) and the almost temperature independence of the Pauli suscep-
tibility.



4.1 Pauli Spin Paramagnetism 141

4.1.2 Temperature Corrections

The Pauli susceptibility derived above is independent of temperature. This is essen-
tially due to the fact that in (4.13), we have replaced the derivative of the Fermi
function by a δ-function. Now, with the help of the Sommerfeld expansion, we will
improve this result. The starting point is Eq. (4.12), which we first integrate by parts,
and note that the integrated part vanishes. Then what remains is

χPauli (T ) = μ0μ
2
B

1

V

∫ ∞

0
d E f−(E)ρ ′

0(E) (4.15)

The integrand satisfies the preconditions for the Sommerfeld expansion (3.74).
Therefore, we can use the result of this expansion:

χPauli ≈ μ0 μ2
B

1

V

[∫ μ

0
d E ρ ′

0(E) + π2

6
(kB T )2 ρ ′′

0 (μ)

]

≈ μ0 μ2
B

1

V

[
ρ0(μ) + π2

6
(kB T )2 ρ ′′

0 (μ)

]

≈ μ0 μ2
B

1

V

[
ρ0(εF ) + (μ − εF ) ρ ′

0(εF ) + · · ·

+ π2

6
(kB T )2 ρ ′′

0 (εF )

]
(4.16)

The term (μ − εF ) which stems from a Taylor expansion of ρ0(μ) around μ = εF ,
must be carefully determined, because it is of the same order of magnitude as the
third summand. In the third term, we can replace ρ ′′

0 (μ) by ρ ′′
0 (εF ) because of the

already very small pre-factor. We now exploit the fact that the electron number Ne

is, of course, temperature independent.

Ne(T = 0)
!= Ne(T �= 0) (4.17)

At T = 0 we have

Ne(T = 0) =
∫ εF

−∞
d E ρ0(E) (4.18)

and at T �= 0,
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Ne(T �= 0) =
∫ +∞

−∞
d E ρ0(E) f−(E)

=
∫ μ

−∞
d E ρ0(E) + π2

6
(kB T )2ρ ′(μ) + · · ·

=
∫ εF

−∞
d E ρ0(E) + (μ − εF ) ρ0(εF ) + · · ·

· · · + π2

6
(kB T )2ρ ′(εF ) + · · · (4.19)

In view of (4.17) and (4.18) we get from (4.19)

μ − εF ≈ −π2

6
(kB T )2 ρ ′

0(εF )

ρ0(εF )
(4.20)

Substituting this in (4.16), we get

χPauli = χ
(0)
Pauli

[
1 + π2

6
(kB T )2

{
ρ ′′

0 (εF )

ρ0(εF )
−
(

ρ ′
0(εF )

ρ0(εF )

)2
}]

(4.21)

The above relation holds rather generally. Using the density of states of the Som-
merfeld model (3.48) it simplifies to

χPauli = χ
(0)
Pauli

[
1 − π2

12

(
kB T

εF

)2
]

(4.22)

Thus, the temperature corrections in the susceptibility in normal metals are very
small and normally can be neglected.

4.1.3 Exchange Corrections

In this section, we want to begin to take into account, at least in a simple approxi-
mation, the Coulomb interaction among the conduction electrons, which we have so
far neglected. In the process, we will know about the so-called exchange interaction,
which will play a central role in the collective magnetism to be discussed later. The
discussion will be limited to the T = 0 case and as we have seen in the last section,
the temperature corrections are not expected to be important.

The solution of the problem consists of three steps:

1. The total energy E (at T = 0, it is the same as the free energy) is calculated as
a function of the electron numbers N↑ and N↓.

2. E is varied with respect to N↑↓. The minimum fixes the “true” N↑ and N↓.
3. E is expressed in terms of the “true” N↑ and N↓ and using this the susceptibility
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χ = −μ0

V

(
∂2 E

∂ B2
0

)
T=0

(4.23)

is calculated.

We demonstrate the procedure first using the Sommerfeld model.

4.1.3.1 Sommerfeld Model

On the application of an external field B0, the density of states becomes spin depen-
dent (4.7). To calculate the internal energy, we must add both the spin parts:

E (0) = 1

2

∑
σ

∫ +∞

−∞
d E E f−(E) ρ0(E + zσμB B0) (4.24)

Making simple rearrangements and exploiting (4.9) for the electron number, we get

E (0) = −
∑

σ

zσμB B0 Nσ + 1

2

∫ ∞

0
dη ηρ0(η)

∑
σ

f−(η − zσμB B0) (4.25)

At T = 0, the Fermi function is a step function, therefore

E (0) = −
∑

σ

zσμB B0 Nσ + 1

2

∑
σ

∫ εσ
F

0
dη ηρ0(η) (4.26)

Substituting (3.48) for ρ0, we finally get

E (0) = −
∑

σ

zσμB B0 Nσ + d

2

2

5

∑
σ

(
εσ

F

)5/2
(4.27)

εσ
F is determined exactly as εF was done in (3.41), when one fills a sphere in k-space

with Nσ electrons:

εσ
F = �

2

2m

(
kσ

F

)2
; kσ

F =
(

6π2 Nσ

V

)1/3

(4.28)

The constant d is defined in (3.49):

1

5
d
(
εσ

F

)5/2 = 3�
2

10m

(
6π2

V

)2/3

N 5/3
σ
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With this, the total energy is given by

E (0) = 3�
2

10m

(
6π2

V

)2/3 (
N 5/3
↑ + N 5/3

↓
)
− μB B0(N↑ − N↓) (4.29)

In this, N↑ and N↓ are still unknown. The influence of the field is certainly very
small. Therefore, we write

Nσ = Ne

2
+ zσ x (4.30)

Without the field, naturally, we have Nσ = 1
2 Ne. With the field, however, x will be

unequal to zero, even though, it will be very small compared to Ne. So, we can use
a series expansion

N 5/3
σ =

(
Ne

2

)5/3 (
1 + 2zσ

Ne
x

)5/3

=
(

Ne

2

)5/3 (
1 + 5

3

2zσ

Ne
x + 5

9

4z2
σ

N 2
e

x2 + · · ·
)

In (4.29), we require

∑
σ

N 5/3
σ ≈

(
1

2
Ne

)5/3

2

(
1 + 20

9

x2

N 2
e

+ · · ·
)

(4.31)

Without the field, we have

E (0)
0 = 3�

2

10m

(
6π2

V

)2/3

2

(
Ne

2

)5/3

= 3

5
NeεF

and with the field

E (0)
x = E (0)

0 + 4

3
εF

x2

Ne
− 2μB B0x (4.32)

In equilibrium, x will take such a value that E (0) is minimal. From the condition

0
!= ∂ E (0)

x

∂x

∣∣∣∣
x=x0

we get

x0 = 3

4
Ne

μB B0

εF
(4.33)
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Substituting this in (4.32) gives

E (0) = E (0)
x=x0

= E (0)
0 − 3

4
Ne

(μB B0)2

εF
(4.34)

From this we can now calculate the susceptibility:

χPauli = −μ0

V

(
∂2 E (0)

∂ B2
0

)
T=0

= 3

2
μ0

Ne

V

μ2
B

εF
(4.35)

which is again our old result (3.175) for the Pauli susceptibility. We will now follow
the same procedure, in order to obtain information about the interacting electron
system. For this we use the so-called Jellium model.

4.1.3.2 Jellium Model

This model of a metallic solid is defined by the following assumptions:

1. There are Ne electrons in volume V = L3 which interact among themselves via
the Coulomb interaction

Hc = 1

2

i �= j∑
i, j

e2

4πε0|ri − r j | (4.36)

2. There are singly charged positive ions

Ne = Ni (4.37)

3. The charge of the ions is “uniformly smeared out” to give

(1) charge neutrality
(2) lattice potential V (r) = const.

4. Periodic boundary conditions on the volume V .

This model is not exactly solvable. The following treatment has the character
of a first-order perturbation theory for the ground state. The starting point is the
following Hamiltonian:

H = He + H+ + He+ (4.38)

He is the electronic part, which will be discussed below in more detail . H+ describes
the uniformly smeared out charge of the ions. “Uniformly smeared out” means that
the ion density n(r) is independent of the position:
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n(r) → Ni

V
(4.39)

Then, it is easy to evaluate H+:

H+ = 1

2

e2

4πε0

∫ ∫
d3r d3r ′

n(r)n(r′)
|r − r′| e−α|r−r′ |

→ 1

2

e2

4πε0

(
Ni

V

)2 ∫ ∫
d3r d3r ′

e−α|r−r′ |

|r − r′|

e−α|r−r′ | is a factor that ensures convergence. We finally get (the integral is solved
as Problem 4.3),

H+ = 1

2

e2

4πε0

N 2
i

V

4π

α2
(4.40)

Because of the assumption (4), we need the thermodynamic limit (Ni → ∞, V →
∞, Ni/V = const.). In such a case the Coulomb integrals diverge. That is the
reason for introducing the convergence factor.

The procedure is, first, all the integrals are evaluated for α > 0 and finite Ni and
finite V . Then the thermodynamic limit is taken. Only at the end the limit α → 0
is applied. In the limit α → 0, H+ as given by (4.40), diverges, but it will be
compensated by other terms which are still to be calculated.

The term He+ in (4.38) describes the interaction of the electrons with the uniform
positive background.

He+ = − e2

4πε0

Ne∑
j=1

∫
d3r

n(r)

|r − r j |e
−α|r−r j |

→ − e2

4πε0

Ni

V

Ne∑
j=1

∫
d3r

e−α|r−r j |

|r − r j |

Here r j is treated as a classical variable. The integral can be easily evaluated to give
(Problem 4.3)

He+ = − e2

4πε0

Ni

V

Ne∑
j=1

4π

α2
= − e2

4πε0

4π

α2

Ni Ne

V
(4.41)

Since Ni = Ne, we have altogether

H = He − 1

2

e2

ε0α2

N 2
i

V
(4.42)
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The second summand still diverges in the limit α → 0, but, finally, we will see that
it will be exactly compensated by a part of He.

We will now discuss the really interesting term He,

He =
Ne∑
j=1

p2
j

2m
+ Hc (4.43)

which consists of the kinetic energy of the electrons plus the Coulomb interaction
among them. We want to perform the first-order perturbation calculation, which
means, calculating the expectation value of Hc in the ground state of the non-
interacting, indistinguishable electrons. As a consequence of the Pauli’s principle,
we have to deal with the totally antisymmetrized product of Ne single-particle states.
Let |ψ (μ)

αr
〉 be the orthonormal single-particle state, where αr is a set of quantum

numbers and μ is a particle number. Then, we can write the ground state as (see
Appendix A)

|ψ0 〉 = |ψα1 · · ·ψαN 〉(−) = 1√
N !

∑
P

(−1)p P
{|ψ (1)

α1
〉 · · · |ψ (N )

αN
〉} (4.44)

The summation is over all the permutations of the particle indices given as super-
scripts. p is the number of transpositions in the permutation P .

Because of the assumption (3) of the Jellium model, the single-particle states for
this model are simply the plane waves multiplied by s = 1/2 spinors. We write this
symbolically as follows:

|ψ (μ)
αr

〉 ≡ |kμ, σμ〉 = |kμ〉|σμ〉 = |kμ〉 (4.45)

Since the Coulomb interaction Hc is a two-particle interaction, the matrix element
Ec, constructed with Ne-particle states, can be expressed exclusively in terms of
two-particle states:

Ec = 1

2

e2

4πε0

∑
k,k ′

(−)〈kk ′| 1

|̂r(1) − r̂(2)| |kk ′〉(−) (4.46)

r̂(i) is the position operator in the Hilbert’s space of the i th particle. In (4.46), the
summation is over all the occupied states, indicated by the prime on the sum. The
antisymmetrized two-particle state is given by

|k, k ′〉(−) = 1√
2

(|k1〉|k ′
2〉 − |k2〉|k ′

1〉) (4.47)

where now the lower indices 1, 2 number the particles. The matrix element consists
of four summands out of which two each give the same contribution:
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Ec = Edir + Eex (4.48)

We will discuss the two terms in the above equation separately. The first summand
is called the direct coulomb interaction.

Direct Coulomb Interaction

This term is characterized by the fact that the particle indices in the bra- and the ket-
states of the matrix element (4.46) are the same:

Edir = 1

2

e2

4πε0

∑
k,k ′

′ 〈k1|〈k ′
2|

1

|̂r(1) − r̂(2)| |k1〉|k ′
2〉 (4.49)

The operator (|̂r(1) − r̂(2)|)−1 acts only on the space part and not on the spin part.
The spin parts are orthonormal.

Edir = e2

8πε0

∑
σ,σ ′

∑
k,k′

∫ ∫
d3r1 d3r2 ×

× 〈k(1)|〈k′(2)| 1

|̂r(1) − r̂(2)| |r1〉|r2〉〈r1|k(1)〉〈r2|k′(2)〉

Here, we have inserted a complete set of position eigenstates. This makes the appli-
cation of the operator (|̂r(1) − r̂(2)|)−1 trivial:

Edir = e2

8πε0

∑
σ,σ ′

′∑
k,k′

′
∫ ∫

d3r1 d3r2 ∗

∗ 1

|r1 − r2| 〈k|r1〉〈k′|r2〉〈r1|k〉〈r2|k′〉

= e2

8πε0

1

V 2

∑
σ,σ ′

′∑
k,k′

′
∫ ∫

d3r1 d3r2
1

|r1 − r2|

Here we have used the plane-wave representation:

〈r|k〉 = 1√
V

eik·r

Just as in obtaining (4.40), the double integral must be solved with a convergence
factor. Then, we finally have

Edir = 1

2

e2

ε0α2

N 2
e

V
(4.50)
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Since Ni = Ne, the “direct” interaction exactly compensates the still remaining
divergent part (α → 0) (4.42) of the positive background due to the ions.

The second summand in (4.48) is called the exchange interaction.

Exchange Interaction

The notation is due to the fact that the particle indices in the bra- and ket-states of
the matrix element are interchanged:

Eex = −1

2

e2

4πε0

∑
k,k ′

′ 〈k1|〈k ′
2|

1

|̂r1 − r̂2| |k2〉|k ′
1〉 (4.51)

In classical physics, there is no concept of indistinguishable particles. Therefore,
there is no classical analogue to this matrix element. In view of the orthogonality of
the spin states, we must have σ = σ ′. Then

Eex = −1

2

e2

4πε0

k,k ′≤kσ
F∑

k,k′,σ

∫ ∫
d3r1d3r2 ∗

∗ 〈k(1)|〈k′(2)| 1

|̂r1 − r̂2| |r1〉|r2〉〈r2|k(2)〉〈r1|k′(1)〉

= −1

2

e2

4πε0

1

V 2

k,k ′≤kσ
F∑

k,k′,σ

∫ ∫
d3r1d3r2

1

|r1 − r2|e
−i(k−k′)(r1−r2)

kσ
F is defined in (4.28). As is usually done, we convert the sum into an integral,

∑
k

→ V

(2π )3

∫
d3k (4.52)

and get as an intermediate result

Eex = −e2

8πε0(2π )6

∫ ∫
d3r1d3r2

∑
σ

∗

∗
∫

k≤kσ
F

∫
k ′≤kσ

F

d3kd3k ′ e
−i(k−k′)·(r1−r2)

|r1 − r2| (4.53)

In terms of the relative and centre of mass coordinates

r = r1 − r2 ; R = 1

2
(r1 + r2) (4.54)

Equation (4.53) becomes

Eex = − e2V

8πε0(2π )6

∫
d3r
∑

σ

∫ ∫
k,k ′≤kσ

F

d3kd3k ′ e
−i(k−k′)·r

r
(4.55)
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The k-integrations can be performed without any difficulty (Problem 4.4).

∫
k≤kσ

F

d3keik·r = 4π

r

∫ kσ
F

0
dk k sin kr = −4π

kσ
F r cos kσ

Fr − sin kσ
Fr

r3
(4.56)

Then, we have for the exchange energy

Eex = − e2 V

32π5 ε0

∑
σ

∫
d3r

1

r7

(
kσ

F r cos kσ
F r − sin kσ

F r
)2

or after the substitution x = rkσ
F :

Eex = − e2V

8π4ε0

{∫ ∞

0
dx

1

x5
(x cos x − sin x)2

}∑
σ

(
kσ

F

)4
(4.57)

The integral inside the braces can be solved elementarily (Problem 4.4).

∫ ∞

0
dx

1

x5
(x cos x − sin x)2 = 1

4
(4.58)

With this, the exchange energy has the simple form

Eex = − e2V

32π4ε0

∑
σ

(kσ
F )4 (4.59)

We substitute (4.28) for kσ
F and get

Eex = − 3e2

16π2ε0

(
6π2 1

V

)1/3∑
σ

N 4/3
σ (4.60)

We again make the ansatz,

Nσ = Ne

2
+ zσ x

and expand up to the quadratic term in x :

N 4/3
σ ≈

(
Ne

2

)4/3 (
1 + 8

3

zσ x

Ne
+ 2

9

4x2

N 2
e

+ · · ·
)

In the summation over σ , the linear term in x vanishes so that

∑
σ

N 4/3
σ ≈ 2

(
Ne

2

)4/3 (
1 + 2

9

4x2

N 2
e

)
. (4.61)
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We have, thus, determined the exchange energy as a function of x :

Eex (x) = − 3e2

8πε0
Ne

(
3Ne

8πV

)1/3 (
1 + 8x2

9Ne

)
(4.62)

This is also, at the same time, the total contribution of the Coulomb interaction to
the energy of the ground state of the Jellium model within the first-order perturba-
tion theory. The contribution of the kinetic energy has already been calculated in
connection with the Sommerfeld model (4.32). Adding them together, we get the
energy of the ground state as a function of x:

E0(x) = E (0)
x + Eex (x)

= E (0)
0 − 3e2

8πε0
Ne

(
3Ne

8πV

)1/3

+ 4

3
εF

x2

Ne
− 2μB B0x − e2

3πε0

(
3Ne

8πV

)1/3 x2

Ne
(4.63)

According to this, the ground state energy without the field (x = 0) is given by

E00 = E0(x = 0) = E (0)
0 − 3e2

8πε0
Ne

(
3Ne

8πV

)1/3

(4.64)

Before proceeding further, we introduce some standard notation:

ne = Ne/V average electron densi ty
ve = 1

ne
average volume per electron

(4.65)

One defines a dimensionless parameter called the density parameter rs via

ve = 4π

3
(aBrs)3 (4.66)

where

aB = �
24πε0

me2
= 0.529 Å

is the Bohr radius. The smaller the rs is, the larger is the electron density. Typi-
cal values of rs for metals lie between 1 and 6. In a similar way, we introduce a
parameter for energy (Rydberg):

1 r yd = 1

4πε0

e2

2aB
= 13.605 eV (4.67)
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With the abbreviation

α =
(

9π

4

)1/3

= 1.92

one gets the following expression for the Fermi energy of the Sommerfeld model:

εF =
(

e2

8πε0aB

)
α2

r2
s

= α2

r2
s

[r yd] (4.68)

According to (3.42), 3
5εF is the average kinetic energy per electron:

E (0)
0 = 2.21

r2
s

Ne [r yd] (4.69)

One can further, easily show that

3e2

8πε0
Ne

(
3Ne

8πV

)1/3

= e2

8πε0aB
Ne

3α

2πrs

With this, one gets for the total ground state energy of the Jellium model without
field

E00/Ne =
(

3

5

α2

r2
s

− 3α

2πrs

)(
e2

8πε0aB

)
=
(

2.21

r2
s

− 0.916

rs

)
[r yd] (4.70)

This is, of course, the result in the first-order perturbation theory, only. Let us discuss
this expression a little further (Fig. 4.3).

Fig. 4.3 Ground state energy
of the Jellium model as a
function of the density
parameter rs

E00
min = −0.095 [ryd]

         = −1.29  [eV]

E00 / Ne [ryd]

−0.1

0.1

0.2

0.3

24 4 6 8 10

rs0 = 4.83

rs
rs0
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The minimum in energy which is found at rs = 4.83 with Emin
00 = −0.095[r yd] =

−1.29 eV indicates an optimal density, which actually means an optimal inter-ionic
distance, and with that, one explains, e.g. the phenomenon of metallic bonding.

Since this is a result of a perturbation theory approximation, it is usually gener-
alized in the following manner:

E00

Ne
= 2.21

r2
s

− 0.916

rs
+ εcorr [r yd] (4.71)

The first summand is the kinetic energy per electron and the second summand is the
exchange energy. As it is made clear in the derivation, it is a consequence of the
indistinguishability of the particles and so it is a consequence of the Pauli’s prin-
ciple. This takes care of the fact that electrons with parallel spins do not come too
close to each other and therefore automatically causes a reduction in the Coulomb
interaction energy of particles of like charge. It explains the negative sign. The last
summand is called the correlation energy. It is the deviation of the perturbation
theory result from the exact result and therefore is naturally unknown. The conven-
tional methods of perturbation theory fail to determine εcorr . The modern methods
of many-body theory have led to the following expression [1]:

εcorr = 2

π2
(1 − ln 2) ln rs − 0.094 +O(rs ln rs) (4.72)

We will now return to our actual problem. In terms of the new variables that we have
introduced, the ground state energy of the Jellium model in the presence of the field
(4.63) is

E0(x) = E00 − 2μB B0x + e2

8πε0aB

4α

3πrs

(
πα

rs
− 1

)
x2

Ne
(4.73)

The third and fourth summands are the modifications to the kinetic energy and
exchange energy, respectively, caused by the field. This expression is varied with
respect to x .

∂ E0(x)

∂x
= −2μB B0 + e2

4πε0aB

4α

3πrs

(
πα

rs
− 1

)
x

Ne

We get the extremum value at x = x0 where

x0 = 3πrs

4α
Ne

μB B0

e2

8πε0aB

(
πα
rs

− 1
) (4.74)

With this, we get for the ground state of the Jellium model in the presence of an
external field as
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E0(x = x0) ≡ E0 = E00 − 2μB B0 x0 + μB B0 x0

E0 = E00 − 3

4
Ne

(μB B0)2

e2

8πε0aB

α2

r2
s

(
1 − rs

πα

)

= E00 − 3

4

Ne

εF

(μB B0)2

1 − rs
πα

(4.75)

In the last step, we used the expression for εF given in (4.68). Now it is simple to
calculate the exchange corrected susceptibility:

χex = −μ0

V

∂2 E0

∂ B2
0

= 3

2
μ0 μ2

B

Ne

V

1

εF

1

1 − rs
πα

(4.76)

If we substitute the earlier result (4.35) for the non-interacting electron system, we
finally get

χex = χPauli
1

1 − rs
πα

(4.77)

The smaller the value of rs , the larger is the electron density and the more exact
are the results of the simple Sommerfeld model. At first glance, this appears to be
a surprising fact, but it is a consequence of the screening effects in an interacting
electron gas.

In view of the facts, πα ≈ 6.03 and 1 < rs < 6, the influence of the exchange
interaction, which actually means the Coulomb interaction, can be quite consid-
erable for typical metals. One observes, however, that the drastic changes in χ

caused by Eex are, to a large extent, again annulled by the correlation energy
Ecorr = Neεcorr (Table 4.1).

The main effect of Ecorr is felt while taking into account the correlation between
the electrons of antiparallel spins, because Eex is calculated using the states of the
Sommerfeld model, which, due to the Pauli’s principle, includes only the correla-
tions between parallel spins. The calculation of Ecorr is extremely difficult. One
knows, however, a series expansion (4.72) in rs .

Table 4.1 Pauli susceptibility of conduction electrons described by the Jellium model. The fifth
column contains the results of Silverstein [2] which were obtained by approximately taking into
account the correlation energy. The sixth column of the table gives the experimental values of
Schumacher and Vehse [3]

106× χPauli χPauli (m∗) χex χcorr χexp

Li 10 17 150 27.8 26.6 ± 1.3
Na 15 15 43 19.6 25.8 ± 2.6
k 23 25 195 31.7



4.2 Paramagnetism of the Localized Electrons 155

4.2 Paramagnetism of the Localized Electrons

We now discuss the paramagnetism of insulators. The electrons which are responsi-
ble for the paramagnetism are strictly localized on fixed lattice points and produce
a permanent magnetic moment there. Rare earths and their compounds are almost
ideal examples of this picture, and they are normally called the “4 f -systems”. The
electron configuration of the neutral rare earth atom corresponds to the stable noble
gas configuration of xenon, plus additional 4 f - and 6s-parts:

[Xe](4 f )p(6s)2 (4.78)

In the periodic table, the rare earths start with the element La and from then on,
successively add electrons in the 4 f -shell. So, they differ from each other by the
number p of electrons in the 4 f -shell of the rare earth element. In the compounds, in
general, the rare earth atom gives away three electrons, namely the two 6s-electrons
and one of the 4 f -electrons:

RE → (RE)3+ + {(6s)2 + (4 f )1} (4.79)

These three electrons, in the case of insulators, participate in the bonding and in
metals, they become the quasi-free conduction electrons.

The partially filled 4 f -shell is situated inside the xenon core and is strongly
screened by the completely filled (5s)2- and (5p)6-shells, which lie outside the
xenon core. For this reason, the 4 f -wavefunctions of the neighbouring rare earth
ions practically do not overlap. Therefore, the 4 f -shells and the magnetic moments
produced by them are strongly localized at the respective lattice points. Such a sys-
tem can be described by the following extremely simple model: We assume that
there are N identical, independent ions (atoms) in a volume V , and we are interested
only in the magnetic moment produced by these ions (atoms). In view of the strong
intra-atomic correlations, one can assume that the localized magnetic moment is
determined by the Hund’s rules of the atomic physics (see Sect. 2.1). Thus, the
calculation of the temperature and field dependence of the magnetization M and the
susceptibility is essentially an atomic problem (Fig. 4.4).

In addition to the 4 f -systems, this model is also relevant to certain 3d- and
5 f -systems. Another decisive presumption shall be the LS-coupling, which was

Fig. 4.4 Paramagnetic local
moment system in an external
magnetic field

0B
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discussed in Sect. 2.10. The distances between different (L ,S)-multiplets are so
large that the transitions among them are improbable and therefore we assume that
the quantum numbers L and S of the 4 f -shell belonging to the squares L2 and S2

of total orbital angular momentum and total spin, respectively, are good quantum
numbers. The magnetic moment localized at the lattice site R j is given by

m j = −μB

�
(L j + 2S j ) = −μB

�
(J j + S j ) (4.80)

According to the remark made in Sect. 2.1 (after Table 2.1), we disregard in the
following the minus sign in the definition (4.80) of the magnetic moment.

We start with the model Hamiltonian

H =
N∑

j=1

(
H ( j)

0 + H ( j)
SO − m j · B0

)
=

N∑
j=1

H ( j)
1 (4.81)

H ( j)
0 determines the term scheme of the j th ion based on the Coulomb interac-

tion of the electrons with the nucleus and also among themselves and therefore,
in some sense, fixes the coarse structure of the terms. Since we want to restrict
ourselves to a single (L S)-multiplet, H ( j)

0 by itself is not important for us. H ( j)
SO is

the spin–orbit coupling in the j th ion, which determines the fine structure of the
terms. The last summand in parenthesis in (4.81) represents the Zeeman energy.
The relative strength of the last two interactions is decisive in the calculation of the
magnetization.

M = n〈m〉 n = N

V
(4.82)

The angular brackets 〈· · · 〉 means a quantum statistical average, which actually
involves two averaging processes, namely
(a) the quantum mechanical expectation value of the operator in the given state of

the atom
and

(b) the thermal average over all the states of the atom.
In general, the average value of an observable A is given by

〈A〉 = 1

Z
T r
(

Ae−β H
)

(4.83)

Here Z is the canonical partition function

Z = T r
(
e−β H

) = Z N
1 (4.84)

which has been factorized for our model (4.81) into a product of single-particle
partition functions
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Z1 = T r
(
e−β H1

)
(4.85)

because there does not exist any interaction among the moments.
Let there be a homogeneous magnetic field B0 applied in the z-direction. Then

naturally the x and y components of magnetization of the paramagnet vanish and
we have to calculate only Mz = M :

M = n
1

Z1
T r
(
me−β H1

) = kB T n
∂

∂ B0
ln Z1 (4.86)

That means, once we determine the single-particle partition function Z1, the prob-
lem is solved. The calculation of the trace cannot, however, be done for a general
situation; therefore, we will do it for particular situations and consider the limiting
cases. Three factors influence M :

1. Thermal energy kB T : This is of course obvious since it appears explicitly in the
formulae.

2. Spin–orbit interaction: According to (2.295), we have

HSO = Λ(γ, L S) (L · S) (4.87)

HSO splits the (LS)-multiplet according to J (2.300)

E (0)
γ L S J = E (0)

γ L S +
1

2
�

2Λ(γ, L S){J (J + 1) − L(L + 1) − S(S + 1)} (4.88)

The coupling constant Λ determines the separation between the individual
terms of a multiplet.

3. Magnetic field:

Hz = −μB

�
(Jz + Sz)B0 (4.89)

We have shown in Sect. 2.10 that Hz does not commute with J 2,

[
Hz , J 2

]
− �= 0

so that, after the magnetic field is switched on, J is no more a good quantum
number. That is, the magnetic field induces transitions among the individual
terms of the (L S)-multiplets.

We can determine the partition function Z1 in only those cases, where there is
orders of magnitude difference among (1), (2) and (3).
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4.2.1 Weak Spin–Orbit Interaction

Weak spin–orbit interaction means

�
2 Λ(γ, L S) � kB T (4.90)

in the just interesting region of temperature. We have to further differentiate the
situations with respect to the field. If the field energy also is very much larger than
the spin–orbit coupling,

4.2.1.1 �
2 Λ(γ, LS) � kB T, μB B0

then we can assume two things:

1. The preconditions of the normal Zeeman effect are fulfilled (2.305)
2. All the terms of the (L S)-multiplet are occupied with almost equal probability.

In this case, ML and MS are “still good” quantum numbers, i.e. the eigenstates
and eigenenergies can be classified according to these quantum numbers. In contrast,
J is not a good quantum number.

Eγ L SML MS = E (0)
γ L S − (ML + 2MS)μB B0 (4.91)

E (0)
γ L S are the energies without the field and without the spin–orbit coupling, which

means, E (0)
γ L S are the eigenenergies of H0. In order to calculate the trace that appears

in the partition function Z1, we naturally choose the energy representation:

Z1 = exp
(
−βE (0)

γ L S

) +L∑
ML=−L

+S∑
MS=S

eβμB B0(ML+2MS ) (4.92)

The pre-factor will be very small for the higher (L S)-multiplets, and therefore, as
agreed upon earlier, we restrict ourselves only to the lowest of them. With the nota-
tion

b = βμB B0 > 0 (4.93)

we calculate

+L∑
ML=−L

ebML = ebL
2L∑

n=0

(e−b)n = ebL 1 − e−b(2L+1)

1 − e−b

= eb(L+1/2) − e−b(L+1/2)

e1/2b − e−1/2b
(4.94)

The summation over the orbital magnetic quantum number therefore gives
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+L∑
ML=−L

exp (−β μB B0 ML ) = sinh(βμB B0(L + 1
2 ))

sinh( 1
2βμB B0)

(4.95)

Exactly analogously we also get

+S∑
MS=−S

exp (2βμB B0 MS) = sinh(βμB B0(2S + 1))

sinh(βμB B0)
(4.96)

so that the partition function reads

Z1 = e−βE (0)
γ L S

sinh(βμB B0(L + 1
2 )) sinh(βμB B0(2S + 1))

sinh( 1
2βμB B0) sinh(βμB B0)

(4.97)

By differentiating the logarithm of the partition function with respect to the field,
we obtain the magnetization of a paramagnet (4.86):

∂

∂ B0
ln Z1 = 1

Z (L)
1

∂ Z (L)
1

∂ B0
+ 1

Z (S)
1

∂ Z (S)
1

∂ B0

We will explicitly evaluate the first summand:

1

Z (L)
1

∂ Z (L)
1

∂ B0

= sinh( 1
2 b)

sinh(b(L + 1
2 ))

{
sinh( 1

2 b)βμB(L + 1
2 ) cosh(b(L + 1

2 ))

sinh2( 1
2 b)

−
1
2βμB cosh( 1

2 b) sinh(b(L + 1
2 ))

sinh2( 1
2 b)

}

= βμB

(
L + 1

2

)
coth

(
b

(
L + 1

2

))
− 1

2
βμB coth

(
1

2
b

)

(4.98)

We now introduce a function, the so-called Brillouin function, which is central to
the theory of magnetism:

BD(x) = 2D + 1

2D
coth

(
2D + 1

2D
x

)
− 1

2D
coth

( x

2D

)
(4.99)

Through this function, the magnetization given by (4.86) can be written in the fol-
lowing form:

M(T, B0) = nμB{L BL (βμB B0L) + 2SBS(2βμB B0S)} (4.100)
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Fig. 4.5 Brillouin function
BD(x) as a function of x for
various parameters D

D = 1/2

D = 1

D = 3/2

D = ∞

1.0

0.5

D

x

B

We will first discuss a few general properties of the Brillouin function (Fig. 4.5):

1. D = 1
2 : In this special case,

B1/2(x) = tanh x (4.101)

2. D → ∞: In this limit, the Brillouin function reduces to the Langevin function
L(x),

BD→∞(x) ≡ L(x) = coth x − 1

x
(4.102)

which appears in the classical treatment of paramagnetism, where the space
quantization of the orbital angular momentum is ignored.

3. small x : From the expansion of coth x , one obtains,

BD(x) = D + 1

3D
x − D + 1

3D

2D2 + 2D + 1

30D2
x3 + · · · (4.103)

which means, in particular,

BD(0) = 0 (4.104)

Because of this property, according to (4.100), the magnetization of a paramag-
net is zero, if either B0 = 0 or T = ∞. Physically that means, a paramagnet
does not possess spontaneous magnetization.

4. BD(−x) = −BD(x): This means that, when the direction of the magnetic field is
reversed, the direction of the magnetization is also reversed, which is physically
obvious.

5. limx→∞ BD(x) = 1: The magnetization shows saturation for B0 → ∞ or for
T → 0. Physically that means that all the moments are oriented parallel to the
field.

M → M0 = nμB(L + 2S) (4.105)
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The high-temperature behaviour of the magnetization (4.100) is interesting. With
the starting precondition, it means

Λ(γ, L S) � μB B0 � kB T

or

βμB B0 � 1

In this case, the argument of the Brillouin function is small, and therefore we can
terminate the series expansion (4.103) after the linear term:

M ≈ nμ2
B

3kB T
B0{L(L + 1) + 4S(S + 1)} (4.106)

The susceptibility

χ = μ0

(
∂ M

∂ B0

)
T

shows a characteristic 1/T behaviour, which is called the Curie law.

χ (T ) = C1

T
(4.107)

C1 is the so-called “Curie constant”, which is given by

C1 = n
μ0μ

2
B

3kB
(L(L + 1) + 4S(S + 1)). (4.108)

A purely classical calculation (see (4.102)) would have given a similar high-
temperature behaviour

χcl = Ccl

T
; Ccl = n

μ0μ
2

3kB
(4.109)

where μ is the magnetic moment. In analogy, one therefore defines

μe f f = μB pef f pe f f =
√

L(L + 1) + 4S(S + 1) (4.110)

where pef f is called the effective number of magnetons.
Till now, we have assumed that, in addition to the thermal energy, the field energy

is also large compared to the spin–orbit interaction. Now we will consider the situ-
ation.
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4.2.1.2 �
2Λ(γ, LS), μB B0 � kB T

Let the spin–orbit coupling be as before small but of the same order of magnitude
as the magnetic energy. Then, we are no more in the region of the “normal” Zeeman
effect. The spin–orbit coupling cannot be neglected any more.

In the partition function, Hz and HSO appear, respectively, in the form βHz

and βHSO so that eβ H can be expanded up to the linear terms in βHz and βHSO .
Since H0 commutes with (Hz + HSO ), we can write exp(−β(H0 + Hz + HSO )) =
exp(−βH0)exp(−β(HSO + Hz) and expand the second exponential up to the linear
terms:

M ≈ n
μB

�

T r
{
(Jz + Sz)(1 − βHz − βHSO )e−β H0

}
T r
{
(1 − βHz − βHSO )e−β H0

} (4.111)

To calculate the trace, we choose the eigenstates of H0, J 2 and Jz . The contribution
from e−β H0 then cancels out and therefore need not be considered any more. Only
one (LS)-multiplet will be considered, i.e. the operator e−β H0 gives only one eigen-
value. We want to evaluate the individual terms in (4.111) separately. First, because
of the Wigner–Eckart theorem, we have

〈γ L S; J MJ |(Jz + Sz)|γ L S; J MJ 〉 ∼ 〈γ L S; J MJ |Jz|γ L S; J MJ 〉
∼ MJ (4.112)

That means

T r (Jz + Sz) ∼
∑

J

CJ

+J∑
MJ=−J

MJ = 0 (4.113)

Therefore, it follows also

T r (Hz) = 0 (4.114)

The fine structure of the terms caused by HSO leads to

T r (HSO ) = �
2

2
Λ
∑

J

∑
MJ

(J (J + 1) − L(L + 1) − S(S + 1))

= �
2

2
Λ
∑

J

(2J + 1)(J (J + 1) − L(L + 1) − S(S + 1))

Without any loss of generality, we can assume that L > S; then J runs over the
values J = L − S, L − S + 1, · · · . L + S. That means the trace is given by
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T r (HSO ) ∼
+S∑

n=−S

(2L + 2n + 1)((L + n)(L + n + 1)

−L(L + 1) − S(S + 1))

Using the formula (Problem 4.5)

+S∑
n=−S

n2 = 1

3
S(S + 1)(2S + 1) (4.115)

it follows that

T r (HSO ) = 0 (4.116)

This means that the spin–orbit interaction, which is responsible for the fine structure
splitting, does not, however, shift the centre of gravity of the multiplet!

In (4.111), we still need the term

T r ((Jz + Sz)HSO ) ∼ �
2

2
Λ
∑

J

[J (J + 1) − L(L + 1)

−S(S + 1)]CJ

+J∑
M j=−J

MJ = 0 (4.117)

Here we have exploited (4.112) and the fact that the trace is built with the eigenstates
of HSO . The trace of the unit matrix gives the dimension of the Hilbert space under
consideration:

T r (1) =
L+S∑

J=|L−S|
(2J + 1) = (2L + 1)(2S + 1) (4.118)

This is, of course, valid only because we are in the space of a particular (L S)-
multiplet in which, H0 has only one eigenvalue.

Then, according to (4.111) what remains for the magnetization is

M = −n
μB

�
β

T r ((Jz + Sz)Hz)

(2L + 1)(2S + 1)
= n

μ2
B

�2
βB0

T r (Jz + Sz)2

(2L + 1)(2S + 1)
(4.119)

The trace is independent of the basis. We choose as an appropriate set of states

|γ L S, ML MS〉

which represents a complete basis. These are, however, not the eigenstates of the
Hamiltonian:
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M = n
μ2

B B0β

�2(2L + 1)(2S + 1)
�

2
+S∑

Ms=−S

+L∑
ML=−L

(ML + 2MS)2 (4.120)

Using (4.115), the double sum can be easily evaluated:

+S∑
MS=−S

+L∑
ML=−L

(ML + 2MS)2

= (2S + 1)
∑
ML

M2
L + 4(2L + 1)

∑
MS

M2
S

= 1

3
(2S + 1)(2L + 1)(L(L + 1) + 4S(S + 1)) (4.121)

Substituting this in (4.120), we finally get for the magnetization

M = n
μ2

B

3kB T
B0 {L(L + 1) + 4S(S + 1)} (4.122)

For the susceptibility, for high temperatures, one gets exactly the same result as in
case (a) (4.106):

χ = n μ0
μ2

B

3kB T
{L(L + 1) + 4S(S + 1)} (4.123)

Therefore, up to the linear term in β = 1
kB T , if the spin–orbit coupling is weak,

there is no change in the regions of μB B0 � �
2Λ (normal Zeeman effect) and

μB B0 ≈ �
2Λ. The change appears only for higher powers of β.

4.2.2 Strong Spin–Orbit Coupling

We now demand that

�
2Λ(γ, L S) � kB T, μB B0

This is the case, which is discussed normally as the Langevin paramagnetism, which
is realized for the 4 f -systems in normal fields. One does not have a uniform dis-
tribution over the fine structure terms of the (L S)-multiplets any more but, only the
lowest term is actually occupied to a certain degree. Further, we are in the region of
anomalous Zeeman effect, the non-diagonal terms of Sz play only a marginal role
(see Sect. 2.6) and J is still a “good” quantum number.

For the energies in question, we have according to (2.303),

Eγ L S J MJ = E (0)
γ L S J + gJ (L , S) MJ μB B0 (4.124)
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With this, we get for the partition function

Z1 = e−βE (0)
γ L S J

+J∑
MJ=−J

e−βgJ MJ μB B0 (4.125)

Because of the assumption made above, it is necessary to take into account only
one J , namely the one which is energetically most favourable according to the third
Hund’s rule. The partition function Z1 is then calculated in the same manner as
demonstrated for (4.97):

Z1 = e−βE (0)
γ L S J

sinh(βgJ μB B0(J + 1
2 ))

sinh( 1
2βgJ μB B0)

(4.126)

This results in the magnetization

M = M0 BJ (βgJ J μB B0) (4.127)

M0 = n J gJ μB (4.128)

M0 is the saturation magnetization.
The susceptibility is obtained, as usual, by differentiating with respect to the field

B0. Again, what is interesting is the high-temperature behaviour, which, just as in
(4.107), gives the Curie law (βμB B0 � 1)

χ = C

T
(4.129)

C = n μ0

p2
e f f

3kB
μ2

B (Curie constant) (4.130)

The interpretation of the effective magneton number is of course now different:

pef f = gJ

√
J (J + 1) (4.131)

The Curie law is experimentally uniquely confirmed. It is interesting to compare the
order of magnitudes of the Pauli paramagnetism which was discussed in Sect. 4.1
and the Langevin paramagnetism. From (4.14), (4.129), and (4.130) we have

χPauli

χLangevin
= 9

2

1

g2
J J (J + 1)

kB T

εF
(4.132)

Therefore, in general, χLangevin � χPauli .
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4.2.3 Van Vleck Paramagnetism

We want to close this chapter by discussing another special, however, somewhat
subtle issue of paramagnetism. This is about the van Vleck paramagnetism, which
leads, in the first approximation, to a temperature-independent susceptibility. This is
observed in systems, where the localized magnetic moment arises due to an electron
shell, which is one electron short of being half-filled. That means, the ground state
term

J = S|2l − p| = 0 (4.133)

is non-magnetic (p = 2(2l + 1) means completely filled shell). This is the case,
e.g. for Eu3+ in Eu2 O3, where, there are six 4 f -electrons. Van Vleck’s paramag-
netism can be understood, if the preconditions of the last section are, to some extent,
relaxed, i.e. when the fine structure splitting is not very large compared to kB T any
more. In this situation, one has to note that

(a) the higher terms of the multiplets cannot be neglected any more;
(b) the operator Sz (in Hz) induces transitions among the fine structure terms.

Since we can, as before, restrict ourselves to a single multiplet, the partition
function is given by

Z1 = e−βE (0)
γ L S T r

(
e−β(HSO+Hz )

)
(4.134)

The fine structure splitting shall be, even though not large compared to kB T , but
still large compared to μB B0. We, therefore, expand the exponential in the trace up
to the linear term in B0, that is, up to the linear term in Hz . We denote by EJ (Λ) the
eigenvalues of HSO ,

E J (Λ) = �
2

2
Λ(γ, L S)(J (J + 1) − L(L + 1) − S(S + 1)) (4.135)

so that we get

Z1 = e−βE (0)
γ L S

∞∑
n=0

(−β)n

n!

∑
J,MJ

〈J MJ |(HSO + Hz)
n|J MJ 〉

≈ · · · 〈J MJ |(H n
SO +

n−1∑
r=0

H n−1−r
SO Hz Hr

SO )|J MJ 〉

= e−βE (0)
γ L S

∞∑
n=0

(−β)n

n!
∗

∗
∑

J

⎧⎨
⎩(2J + 1)En

J (Λ) + nEn−1
J (Λ)

+J∑
MJ=−J

〈J MJ |Hz|J MJ 〉
⎫⎬
⎭
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As shown in (4.113), the last term vanishes. Therefore, what remains for the parti-
tion function is

Z1 ≈ e−βE (0)
γ L S

∑
J

(2J + 1)e−βE J (Λ) (4.136)

In order to calculate the magnetization,

M = n
1

Z1
T r
(
me−β H1

)

we now need another trace of the form

T r
(
Hze

−β(HSO+Hz )
) ≈

∞∑
n=0

(−β)n

n!

∑
j,MJ

〈J MJ |(Hz H n
SO

+ Hz

n−1∑
r=0

H n−1−r
SO Hz Hr

SO )|J MJ 〉 (4.137)

The action of HSO on the state |J MJ 〉 is known. On the other hand, the action of Hz

is not known because of the presence of Sz .

∑
J,MJ

〈J MJ |Hz H n
SO |J MJ 〉 =

∑
J

En
J (Λ)

∑
MJ

〈J MJ |Hz|J MJ 〉 = 0 (4.138)

With this, it follows that

T r
(
Hze

−β(HSO+Hz )) ≈
∞∑

n=0

(−β)n

n!
∗

∗
∑
J MJ

J ′MJ ′

〈J MJ |Hz|J ′MJ ′ 〉〈J ′MJ ′ |Hz|J MJ 〉
n−1∑
r=0

En−1−r
J ′ (Λ)Er

J (Λ)

The first matrix element, since Hz and Jz commute, is unequal to zero only for
MJ = MJ ′ . The rest reduces to

T r
(
Hze−β(HSO+Hz )

) =∑
J,J ′
MJ

|〈J MJ |Hz|J ′MJ 〉|2 e−βE J ′ − e−βE J

E J ′ − E J
(4.139)

The operator Hz induces transitions between the terms with J and J ′ = J ±1. With
the help of Wigner–Eckart theorem, one can see that no other quantum numbers
come into the picture. Sz is an irreducible operator of rank one (k = 1). So its
matrix elements are unequal to zero, according to (2.172), only when
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|J − J ′| ≤ k ≤ J + J ′

is satisfied. Therefore, only J = J ′ and J ′ = J ± 1 come into question.

(a) J ′ = J : Because of the quotients, this must be understood as a limit

lim
J ′→J

e−βE J ′ − e−βE J

E J ′ − E J
= −βe−βE J (4.140)

The remaining matrix element has been calculated, with the help of Wigner–
Eckart theorem, in (2.179) :

|〈J MJ |Hz|J MJ 〉|2 = (gJ μB MJ )2 B2
0 (4.141)

Therefore, the total contribution of the summand with J ′ = J in (4.138) is

−
∑
J MJ

e−βE J β(gJ μB MJ )2 B2
0

The non-diagonal elements
(b) J ′ = J ± 1: are more difficult to evaluate:

∑
J MJ

〈J MJ |Hz|J ± 1MJ 〉|2 e−βE J±1 − e−βE J

E J±1 − E J

=
∑
J̄ MJ̄

|〈 J̄ ∓ 1MJ̄ |Hz| J̄ MJ̄ 〉|2
e−βE J̄

E J̄ − E J̄∓1

−
∑
J MJ

|〈J MJ |Hz|J ± 1MJ 〉|2 e−βE J

E J±1 − E J

Substituting this in (4.139), we get

∑
J MJ

∑
J ′=J±1

|〈J MJ |Hz|J ′MJ 〉|2 e−βE J ′ − e−βE J

E J ′ − E J

= −2
∑
J MJ

e−βE J

{ |〈J + 1MJ |Hz|J MJ 〉|2
E J+1 − E J

+ |〈J MJ |Hz|J − 1MJ 〉|2
E J−1 − E J

}
(4.142)

The non-diagonal matrix elements of Hz are not as easy to calculate as the diag-
onal matrix elements in (a). The procedure is the same as was used in Sect. 2.6.
We give here only the result [4]:
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|〈J MJ |Hz|J − 1MJ 〉|2 = μ2
B

�2
B2

0 |〈J MJ |Sz|J − 1MJ 〉|2

= μ2
B B2

0 (J 2 − M2
J )

(J 2 − (L − S)2)((L + S + 1)2 − J 2)

4J 2(2J + 1)(2J − 1)
(4.143)

If we substitute J = l+ 1
2 , S = 1

2 , L = 1 and MJ = m, we reproduce our earlier
result (2.209). The other non-diagonal matrix element is obtained from (4.142)
by replacing J by J + 1.

We now have everything in order to find the magnetization of the paramagnet.
The summations over MJ can be performed easily with the help of (4.115):

+J∑
MJ=−J

M2
J = 1

3
J (J + 1)(2J + 1) (4.144)

+J∑
MJ=−J

(J 2 − M2
J ) = 1

3
J (2J + 1)(2J − 1) (4.145)

+J∑
MJ=−J

((J + 1)2 − M2
J ) = 1

3
(2J + 1)(J + 1)(2J + 3) (4.146)

Using the following shorthand notation,

V (J ) ≡ μ2
B

{
(J 2 − (L − S)2)((L + S + 1)2 − J 2)

6J (2J + 1)(EJ−1 − E J )

+ ((J + 1)2 − (L − S)2)((L + S + 1)2 − (J + 1)2)

6(J + 1)(2J + 1)(EJ+1 − E J )

}

we now finally have the magnetization

M = nB0

∑L+S
J=|L−S|(2J + 1)e−βE J

{
J (J+1)
3kB T (gJ μB)2 + V (J )

}
∑L+S

J=|L−S|(2J + 1)e−βE J
(4.147)

This result was derived under the precondition

�
2Λ(γ, L S), kB T � μB B0

but not necessarily,

�
2Λ � kB T
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The susceptibility here is simply μ0 M/B0. The temperature-independent correc-
tion V (J ) is actually responsible for Van Vleck paramagnetism. Let us, for simplic-
ity, assume that the multiplet splitting given by Λ is so large, that, only the lowest
term is appreciably occupied. Then, we can restrict ourselves to the first term in the
sum. This term, however, because of the non-diagonality of Sz , already contains an
admixture of the higher J -levels which are hidden in V (J ):

χ ≈ nμ0

{
J (J + 1)

3kB T
(gJ μB)2 + V (J )

}
(4.148)

The first summand is exactly the result obtained in the last section (Curie law
(4.129)) wherein, we have, from the start, neglected the non-diagonal elements of
Sz . J is the quantum number of the ground state.

According to the Lande’s interval rule (2.302), we have

E J+1 − E J = �
2Λ(γ, L S)(J + 1) ; EJ−1 − E J = �

2Λ(γ, L S)J (4.149)

That means that, the Van Vleck term V (J ) is smaller by a factor

�
2 Λ(γ, L S)

kB T

compared to the first term in the bracket of the above expression, which is, the
Langevin paramagnetism discussed in the preceding section. This factor is, in gen-
eral, very much smaller than 1 and therefore can be neglected. That is why, Van
Vleck paramagnetism is clearly observable, only, if the ground state has J = 0,
because, in that case, the first summand vanishes. This is always the case, if the
electron shell falls short by one electron from being half-filled. Figure 4.6 shows the
example of Eu3+ in Eu2 O3.

Fig. 4.6 Susceptibility of the
Van Vleck paramagnet
Eu2 O3 as a function of
temperature (after [5])

5

7

9

100 200 300 T (K)

χ (10−3 cm/mol)

Eu2O3
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At high temperatures, χ is calculated using the complicated formula (4.147),
which takes into account, the excited states also. At low temperatures, only the
ground state has a role to play and the temperature-independent Van Vleck para-
magnetism becomes noticeable.

4.3 Problems

Problem 4.1 As a result of the periodic boundary conditions on the volume

V = Lx L y Lz

the wavenumbers k become discrete:

qx,y,z = 2π

Lx,y,z
nx,y,z with nx,y,z ∈ Z

Deduce the orthogonality relation

1

V

∫
V

d3r ei(q−q′)·r = δq,q′

Problem 4.2 Consider a crystalline solid, i.e. the surface effects do not play a role.
Let a1, a2 and a3 be the primitive translation vectors of the Bravais lattice from
which the lattice vectors

Rn =
3∑

i=1

ni ai

are constructed, where n = (n1, n2, n3) holds and ni are integers. Due to the
assumed translational symmetry, we can imagine the solid to be a parallelpiped
spanned by the three vectors Ai = Ni ai with Ni � 1 and even. That means for the
lattice vectors: ni = 0, 1, 2, · · · , Ni − 1.

1. The solutions (Bloch functions) for the non-interacting electrons should satisfy
the periodic boundary conditions of the crystal on the surface. What does it mean
for the allowed wavevectors k? Which wavevectors lie within the first Brillouin
zone?

2. Deduce the orthogonality relation

1

N

∑
n

ei(k−k′)·Rn = δk,k′

3. Deduce the orthonormality relation
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1

N

1.B Z∑
k

eik·(Rn−Rm) = δn,m

Problem 4.3 Calculate the following frequently used integrals:

1.

I1 =
∫

V
d3r
∫

V
d3r ′

e−α|r−r′ |

|r − r′| ; α > 0

2.

I2 =
∫

V
d3r
∫

V
d3r ′

ei(q·r+q′ ·r′)

|r − r′|

In both the cases let V be finite with V → ∞.

Problem 4.4 In the ground state, Ne electrons occupy the states within a Fermi
sphere of radius kF (Sommerfeld model). For this, calculate the following integral:

I =
∫

d3r
∫

F S
d3k
∫

F S
d3k ′ ei(k−k′)·r

r

Here the position integral should be taken over the entire space and the wavevector
integral over the occupied states of the Fermi sphere (FS).

Problem 4.5 Let S be the spin of a partially filled electron shell so that it is either
an integer or half-integer. Then show that the following holds:

+S∑
n=−S

n2 = 1

3
S(S + 1)(2S + 1)

Problem 4.6 A classical thermodynamic system consists of N atoms in volume V .
Each of the atoms carries a magnetic moment μi (| μi |= μ ∀ i). The Hamiltonian
function is composed of two parts,

H (q, p) = H0(q, p) + H1(q, p)

out of which H0(q, p) describes the system in the absence of a magnetic field, while
H1(q, p) describes the influence of a homogeneous magnetic field B = Bez.

1. How does the field term H1 read?
2. Calculate the canonical partition function.
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3. Determine the temperature and field dependences of the average total magnetic
moment:

m = 〈
N∑

i=1

μi 〉

4. Discuss the total magnetic moment in the limits βμB � 1 and βμB � 1.
(Classical Langevin paramagnetism).

Problem 4.7 Assume that a paramagnetic substance has the susceptibility χT =
M
H = χT (T ).

1. Calculate magnetization dependence of the free energy.
2. Derive from that the corresponding dependencies of the internal energy and

entropy.
3. Show that the Curie law is in conflict with the third law of thermodynamics, i.e.

it cannot be valid for arbitrarily low temperatures.

Problem 4.8 Let a magnetic moment system be specified by the variables tempera-
ture T , magnetic field H and magnetization M . (The pressure p and the volume V
be constant and irrelevant for the following).

1. Assume that the internal energy U = U (T, M) and the equation of state of the
form M = f (T, H ) are known. Formulate the difference of the heat capacities
cH − cM .

2. What is the result specially for the ideal paramagnet?

M = C

T
H ;

(
∂U

∂ M

)
T

= 0 C : Curie constant

3. Prove the following relations:

(a)

(
∂S

∂ M

)
T

= −μ0V

(
∂ H

∂T

)
M

(b)

(
∂S

∂ H

)
T

= μ0V

(
∂ M

∂T

)
H

(c)

(
∂S

∂ M

)
T

= 1

T

[(
∂U

∂ M

)
T

− μ0V H

]
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4. With a part of the above results, verify the relation

cH − cM = −μ0V T

(
∂ H

∂T

)
M

(
∂ M

∂T

)
H

5. For calculating cH − cM use the equation of state

H = 1

C
(T − TC ) M + b M3

C , TC and b are positive quantities!
6. Show that for such an equation of state cM can not depend on M!
7. From the equation of state given in 5., calculate the free energy F = F(T, M)

and the entropy S = S(T, M).
8. Show that the equation of state given in 5., in a certain temperature region, for

H → 0 in addition to the obvious solution M = 0, also has a non-trivial solution
M = MS �= 0. Discuss the stability of the two solutions by comparing the free
energies!

9. Calculate the temperature dependence of the isothermal susceptibility χT and the
difference cH − cM of the heat capacities in the limit H → 0!

Problem 4.9 For the ideal paramagnet (M = C
T H , cM (T, M = 0) = γ T ) discuss

adiabatic demagnetization

1. The paramagnet is placed in a heat bath B(T1). What is the heat released when
the magnetic field is increased from zero to H �= 0?

2. The system is decoupled from the heat bath and the field is switched off adiabat-
ically reversibly. Calculate the final temperature T f .
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Chapter 5
Exchange Interaction

We could understand the concepts of diamagnetism and paramagnetism without
assuming any explicit interaction among the magnetic moments (or among the elec-
trons that build these moments). Even though the interactions may lead to drastic
corrections (see Sect. 4.1.3), the basic phenomena themselves are not affected by it.
It is completely different in the case of

Ferromagnetism
Ferrimagnetism
Antiferromagnetism

The signature of these forms of magnetism is the existence of spontaneous order-
ing of the magnetic moments in a solid at a temperature below a critical temperature
T ∗. The critical temperature is given different names as follows.

For both ferro- and ferrimagnetism, T ∗ = Tc is called the Curie temperature and
for antiferromagnetism, T ∗ = TN is called the Neel temperature.

Above T ∗, the spontaneous ordering vanishes and the material behaves like a
normal paramagnet. These magnetic phenomena cannot be explained without inter-
actions. That is why one speaks of cooperative or collective phenomena.

The interactions which are decisive for the collective magnetism are called
exchange interactions.

As we have already learnt in Sect. 4.1.3, the interaction is essentially the electro-
static Coulomb interaction. The matrix elements of this interaction, constructed with
completely antisymmetrized wavefunctions, contain terms which are classically not
understandable and correspond to an exchange of the indices of the identical parti-
cles (Fermions). Such exchange phenomena were discovered independently in 1926
by Dirac and Heisenberg to be decisive for the collective magnetism. This chapter
is focussed on these fundamental phenomena.

Till today, there exists no closed theory of magnetism which can describe the
totality of all the phenomena in a unified manner.

Model building is unavoidable and the models are, in general, relevant only for
particular special features of magnetism.

To get a better overview, we begin with a kind of classification.

W. Nolting, A. Ramakanth, Quantum Theory of Magnetism,
DOI 10.1007/978-3-540-85416-6 5, C© Springer-Verlag Berlin Heidelberg 2009
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At the outset, there is a necessary precondition for collective magnetism in solids
(liquid (anti) ferromagnets are not considered here)

There must exist permanent magnetic moments.
Just like in the cases of dia- and paramagnets, we distinguish between the mag-

netism of insulators and metals.

Insulators

The magnetism is produced by localized magnetic moments of a partially filled
electron shell, e.g 3d-, 4d-, 4f- and 5f-shells.

Examples:
Ferro: Cr Br3, K2CuF4, EuO , EuS, CdCr2Se4, Rb2CrCl4, etc.
Antiferro: EuT e, MnO , RbMnF3, Rb2 MnCl4, etc.
Ferri: EuSe, etc.

These substances are very well described by the Heisenberg model:

H f = −
∑
i, j

Ji j Si · S j

where Ji j is the exchange integral. The Heisenberg model will be studied in detail
in Chap. 7.

The physical justification of the coupling constants Ji j will be the central theme
of this chapter.

The Heisenberg Hamiltonian should be understood as an effective operator. The
spin–spin interaction Si · S j acting on the corresponding spin states, simulates the
contribution of the exchange matrix elements of the Coulomb interaction, which are
believed to be responsible for the spontaneous magnetization (Fig. 5.1).

Ri Rj
Rk

Jij Jjk

Si Sj
Sk

Fig. 5.1 Schematic plot of a linear Heisenberg chain of localized spins, coupled by exchange
interaction Ji j . Si : spin operators, Ri : lattice sites

Metals

Band Magnetism

Typical for this class is the fact that the same electrons are responsible for the electri-
cal conduction and also for the magnetism. Examples are Fe, Co, Ni and their alloys.
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Energy

EF

Density of states

ρ

←

ρ←

Fig. 5.2 Spin-polarized densities of states of a band-ferromagnet for a temperature below Tc

Here the exchange interaction produces a spin-dependent band shift for T < Tc so
that one particular spin orientation becomes preferred for the band electrons.

The simplest, even though, not exactly solvable model for this class is the Hub-
bard model

Hs =
∑
i jσ

Ti j c†iσ c jσ + 1

2
U
∑
iσ

niσ ni−σ

where c†iσ is the creation operator for an electron of spin σ at the lattice site Ri ,
c jσ the annihilation operator for an electron of spin σ at the lattice site R j and
niσ = c†iσ ciσ is the electron occupation number operator at the lattice site Ri .

In this model, the Coulomb interaction is taken into account in a simplified,
intra-atomic version because a strong and strongly screened Coulomb interaction
is considered as being responsible for the spin-dependent splitting of the relevant
energy band (see Fig. 5.2). The influence of the lattice potential is present in the
so-called “hopping integrals” Ti j . The Hubbard model is investigated in detail in
Chap. 8.

Localized Magnetism

If magnetism and electrical conduction are carried by different groups of electrons,
then one speaks of “localized” or “local-moment” magnetism (Fig. 5.3). Example
for this type is the metallic 4f-system Gd. An appropriate model for this situation is
the s-f model, sometimes also called Kondo-lattice model
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E
F

Energy

J

i i
j jS  R

S  R

J J J

Fig. 5.3 Schematic plot of a local-moment system exchang-coupled to itinerant band electrons

H = Hs + H f − J
∑

i

σi · Si

where σi is the spin operator for the conduction electron at the position Ri and Si is
the localized spin. J is the corresponding coupling constant, which can be positive
as well as negative.

5.1 Phenomenological Theories

5.1.1 The Exchange Field

We want to understand the physical origin of the interaction, which forces a ferro-
magnet into an ordered state below Tc. In the case of paramagnets, such an ordering
is caused by an external magnetic field. Therefore, it is reasonable to assume that,
inside a ferromagnet, an internal magnetic field is produced, which, from now on,
we call the exchange field, which orients the existing permanent magnetic moments.
Before we inquire into the origin of this field, we want to make an estimate of its
magnitude.

The temperature Tc, at which the phase transition ferromagnetism ⇔ paramag-
netism takes place, is derived from the general thermodynamic condition on the free
energy:

F = U − T S
!= minimum (5.1)
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Two influences are decisive

(a) exchange field Bex → order → U minimal
(b) temperature → disorder → S maximal

so that we can assume by plausibility:

T
<
> TC ⇔ (a)

>
< (b)

At TC , the thermal energy kB TC and the field energy μB Bex obviously balance each
other. Thus, TC is a measure of the strength of the ferromagnetic coupling, whose
order of magnitude can be found out with a simple consideration:

Eex ≈ μB Bex ≈ kB TC (5.2)

With

μB = 0.579 ∗ 10−4 eV

T
; kB T = 0.862 ∗ 10−4 eV

K
(5.3)

one can estimate Bex with the help of the experimentally known values of TC (see
Table 5.1).

It should be noted that the largest fields created in the laboratory are 10 T <

B0 < 20 T . Thus, the exchange fields are enormous. So, what is the origin of the
exchange field? Since the system contains permanent magnetic moments, the first
possibility is that it is a result of the classical dipole–dipole interaction. A simple
estimate makes it immediately clear that this classical interaction cannot be the
cause of ferromagnetism.

The dipole field at Ri due to a moment m j localized at R j is given by

μ0

4π

[
3(m j · ri j )ri j − r2

i j m j

r5
i j

]
; ri j = Ri − R j

Then, the moment mi localized at Ri , in the field of all the other moments, has the
energy

Table 5.1 Estimation of the exchange field Bex from the Curie temperature of some prominent
ferromagnets. The numbers for Bex follow from (5.2)

Tc(K ) kB Tc(meV ) Bex (T )

Fe 1043 89.907 1552.79
Co 1393 120.077 2073.86
Ni 631 54.392 939.42
Gd 290 24.998 431.74
EuO 69.33 5.976 103.22
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E (i)
D = −mi · BD(Ri )

= μ0

4π

∑
j

′ r2
i j (mi · m j ) − 3(mi · ri j )(m j · ri j )

r5
i j

(5.4)

The lattice sum that is appearing in the above equation can be exactly performed for
simple lattices. We restrict ourselves here to a simple estimate

∣∣∣E (i)
D

∣∣∣ ≈ μ0

4π

(pef f μB)2

r3
z = 0.5371 × 10−4

z p2
e f f

r3
eV Å

3
(5.5)

where z is the number of the nearest neighbours, pef f is the effective number of
magnetons, r ≈ 2Å is the typical distance between nearest neighbours. With this,
we get

∣∣∣E (i)
D

∣∣∣ ≈ 10−4eV (=̂1.16K , =̂1.73T ) (5.6)

From this estimate, it is clear that dipole interaction cannot be the origin of fer-
romagnetism. It can only be a correction to the actual exchange interaction and
represents an anisotropic effect which has importance in itself for many practical
applications. However, it has nothing to do with the origin of ferromagnetism. The
concept of the “exchange field” obviously fails. Nevertheless, we will see in the
next section that it can help in a good qualitative description of ferromagnetism,
however, not in an explanation of it.

5.1.2 Weiss Ferromagnet

The first phenomenological theory of a ferromagnet, which is able to qualitatively
explain the phase transition “ferromagnetism ⇔ paramagnetism”, is due to P. Weiss
[1]. Without knowing about the exchange interaction in detail, or even wanting to
investigate it, its existence is simply postulated in the form of an exchange field Bex .

5.1.2.1 Weiss Model

The postulates of the Weiss model are as follows:

1. There exists an exchange field Bex = μ0Hex , which is proportional to the
macroscopic magnetization M

Bex = λμ0M (5.7)

2. The permanent magnetic moments of the ferromagnet respond to Bex just as
the moments in a Langevin paramagnet (see Sect. 4.2.2) respond to an external
field.
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Point (2) means according to Eq. (4.127),

M(T ) = M0 BJ (β JgJ μB Bex ) = M0 BJ (β JgJ μBμ0λM(T )) (5.8)

M0 = N

V
JgJ μB “saturation magneti zation” (5.9)

The assumption of the Brillouin function B j is of course “historically incorrect”
because P. Weiss had to use the classical (!) Langevin function L (4.102). Equa-
tion (5.9) is an implicite equation to determine M(T ), which we will now investigate
in detail.

(a) M(T ) = 0 is always a solution since BJ (0) = 0. Do other solutions exist?
(b) Graphical solution: Since limM→∞ BJ → 1, a solution M �= 0 exists only if

the initial slope of the M0 BJ curve is greater than 1 (Fig. 5.4). That provides a
criterion for spontaneous magnetization MS(T ):

d

d M
(M0 BJ )

∣∣∣∣
M=0

!≥ 1 (5.10)

From this condition, we can derive a relation for TC . M → 0 means according
to (4.103)

M(T ) ≈ M0
J + 1

3J
β JgJ μBμ0λM = λ C

M

T
(5.11)

where C is the Curie constant (4.130)

C = n μ0

p2
e f f μ

2
B

3kB
; pef f = gJ

√
J (J + 1) (5.12)

Y

M0

Y = M0Bj

Ms (T) M

T const.

Y = M 

Fig. 5.4 Graphical determination of the spontaneous magnetization of a Weiss ferromagnet
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The criterion for ferromagnetism is the following. There exists a finite tempera-
ture with

λC

TC
= 1 ⇔ TC = λC (5.13)

at which the magnetic phase transition takes place:

T < TC → λC
T > 1 → f erromagnetism

T > TC → λC
T < 1 → paramagnetism

(5.14)

The exchange parameter λ is fixed by the experimentally measured quantity TC .
If there exists a solution MS > 0, then −MS is also a solution, so that one

has a total of three solutions, namely, M = 0, ±MS . With the help of a simple
thermodynamic argument, one can see that the magnetic solutions ±MS must be
stable. The free energy F takes the extremal values at the points of solution (see
Problem 5.5). Further, the free energy as a function of M diverges at ±M0, since
the magnetization cannot be greater than M0 (or less than −M0 as the case may
be). Therefore, F has a maximum at M = 0 and has minima at ±MS . Therefore,
the latter ones are the stable solutions (Fig. 5.5).

(c) Low temperature behaviour: The magnetization curve MS = MS(T ) for T ≤ TC

can be easily found graphically. We define

x = β JgJ μBμ0λMS(T )

Therewith we can represent the normalized spontaneous magnetization in two
different ways as a function of x :

A

M0

T = const.

−M −M
S0 MS

Fig. 5.5 Schematic plot of the free energy of the Weiss ferromagnet as a function of the magneti-
zation M
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Y1 = MS(T )

M0
= BJ (x) ; Y2 = MS(T )

M0
= x

J + 1

3J

T

TC
(5.15)

The points of intersection of the curves Y1(x) and Y2(x) give the magnetization
curve (Fig. 5.6).

(d) High temperature behaviour: For T > Tc, there is no solution with MS �= 0. The
system shows paramagnetic behaviour. For T > TC , M �= 0 can be achieved
only through an external field:

M(T, B0) = M0 BJ

(
β JgJ μBμ0(λM + 1

μ0
B0)

)
(5.16)

At high temperature (βμB B0 � 1) we can expand BJ (x) and get

M(T, B0) ≈ C

T

(
λ M(T, B0) + 1

μ0
B0

)

which gives

M(T, B0) ≈ 1

μ0
B0

C

T − TC

From this follows the Curie–Weiss law for the susceptibility:

χ (T ) = μ0

(
∂ M

∂ B0

)
T

= C

T − TC
(5.17)

The Curie–Weiss law for the high-temperature behaviour of the susceptibility is
experimentally uniquely established. It can be extrapolated in order to experi-
mentally determine the Curie temperature TC (Fig. 5.7).

Y1

Y2(T/Tc = 0.3)

Y2(T/Tc = 0.8)

x

Y

T/TC
0.3 0.8

1.0

S (T)/M0M

Fig. 5.6 Graphical solution of the spontaneous magnetization in the Weiss model
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Fig. 5.7 Temperature
behaviour of the inverse
susceptibility of a
ferromagnet and a
paramagnet, respectively, at
high temperatures.

−1χ

T

Ferro

Para

5.2 Direct Exchange Interaction

The Weiss model of ferromagnetism provides, qualitatively, rather good results
(magnetization curve, Curie–Weiss law). Looked into, in detail, naturally, it is too
simple. Not only that, it does not explain how the ferromagnetic coupling comes
into being, but simply postulates the coupling in the form of the exchange field,
which is proportional to M .

The exchange interaction, which is responsible for the spontaneous magnetiza-
tion, cannot be explained classically. It is of pure quantum mechanical origin, but
at the same time, it is purely electrostatic in nature. It is a direct consequence of
the Pauli’s principle. The Pauli principle demands that the matrix elements of the
electrostatic Coulomb interaction between charged particles in a solid should be
constructed with fully antisymmetrized wavefunctions. Among these matrix ele-
ments, there are certain of them, which correspond in a sense, to the exchange of
the particle indices. As we will see, these are responsible for the phenomenon of
collective magnetism. That is why we can say that

origin of ferromagnets: electric fields
action of ferromagnets: magnetic fields

In explaining ferromagnetism, one can, to a good approximation, neglect the
magnetic fields that are actually present in a solid (e.g. the dipole fields). We want
to probe the phenomenon with a few qualitative considerations.

5.2.1 Pauli’s Principle

We first consider a band magnet, i.e. a ferromagnetic metal. The Pauli’s principle
takes care that the electrons with spins parallel to each other, if they belong to the
same energy band, therewith having otherwise the same set of quantum numbers, do
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not come too close to each other. This leads to a reduction in the Coulomb repulsion
of particles of like charge, and consequently there is a gain in the potential energy
ΔE pot :

ΔE pot ≈ E pot (↑↓) − E pot (↑↑) (5.18)

Then, the question is, if complete spin ordering is so energetically advantageous,
why is it that not all the metals are ferromagnetic? The answer lies in the kinetic
energy, for which in general, ferromagnetic ordering is not advantageous because of
an increase in single particle energies (Fig. 5.9 in comparison to Fig. 5.8). So there
is a counteracting competition between the potential and the kinetic aspects.

For some materials of appropriate band structure, the reduction in the potential
energy can be greater than the increase in the kinetic energy, so that an ordered
state is energetically favourable compared to the disordered state. An appropriate

E

ρρ

EF
←

←

Fig. 5.8 Density of states of a paramagnetic metal, the structure of which is inconvenient to ferro-
magnetism

E

ρρ

EF

←
←

Fig. 5.9 Artificial spin polarization of metallic electrons to demonstrate the increase of single
particle energy
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EF

ρρ ←
←

E

Fig. 5.10 Convenient model density of states for the appearance of band ferromagnetism in accor-
dance with the Stoner criterion (5.20)

density of states would be such that the Fermi energy lies within a distinct peak
of the density of states (Fig. 5.10). That is because, then, relatively many electrons
can flip their spins without gaining too much single particle (kinetic) energy. That
is the qualitative explanation for ferromagnetism. That can be summarized by the
so-called Stoner criterion

Uρ(εF ) > 1 (5.19)

which we will later derive explicitly. This criterion says that if the intra-atomic
Coulomb interaction is large and strongly screened, then, the loss in the potential
energy is large being favourable for ferromagnetism, and at the same time, a sharp
density of states at the Fermi level is convenient because then, relatively large num-
ber of ↓-electrons can be “converted” into ↑-electrons without increasing the kinetic
energy by too large an amount.

We want to demonstrate now with a simple example of a two-electron system,
how the Pauli’s principle can lead to magnetic effects, even though, the Hamiltonian
is spin independent, therefore being unable to describe a direct interaction between
the magnetic moments. The two electrons are identical Fermions. Therefore, the
total wavefunction must be antisymmetric against the interchange of particle labels.
Since the Hamiltonian

H =
2∑

i=1

p2
i

2m
+ V (r1, r2) (5.20)
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is spin independent, the wavefunction |ψ〉 must be a product of the space and the
spin parts:

|ψ〉 = |q〉(±) |S; mS〉(∓) (5.21)

Here the space part is |q〉 and the spin part is |S; mS〉. The spin part can be explicitly
given. In a two-electron system, we have two possibilities S = 0 and S = 1. Then
we can construct an antisymmetric singlet state

|0; 0〉 = 1√
2

(| ↑↓〉 − | ↓↑〉) (5.22)

and a symmetric triplet state

|1; 1〉 = | ↑;↑〉
|1; 0〉 = 1√

2
(| ↑↓〉 + | ↓↑〉)

|1;−1〉 = | ↓↓〉
(5.23)

The symmetry of the spin part fixes the symmetry of the corresponding space part
|q〉, since the total wavefunction |ψ〉 must be antisymmetric. There are altogether
four eigensolutions:

|ψ1〉 = |q〉(+)|0; 0〉
|ψ2(mS)〉 = |q〉(−)|1; mS〉 ; mS = 0, ±1

(5.24)

H operates only on the space part

H |q〉(±) = E±|q〉(±) (5.25)

If

E+ �= E− (5.26)

a case about which we will learn in the next section, then spin ordering becomes
automatically preferred which means there exists a spontaneous magnetic order.
This immediately indicates that we can replace a spin-independent Hamiltonian by
an effective Hamiltonian H̃ , which, instead of operating exclusively on |q〉, operates
exclusively on both electron spins. If we choose H̃ such that

H̃ |0; 0〉 = E+|0; 0〉
H̃ |1; mS〉 = E−|1; mS〉 (5.27)

is valid, then, obviously H̃ and H are equivalent in their action. How should such
an operator look? Let si be the spin of the i th electron (i = 1, 2). Then we have
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s2
i = �

2si (si + 1) = �
2 3

4

and for the total spin

S2 = (s1 + s2)2 = S(S + 1)�2 = s2
1 + s2

2 + 2s1 · s2

= 3

2
�

2 + 2(s1 · s2) (5.28)

so that for the scalar product we get

1

�2
s1 · s2 = 1

2
S(S + 1) − 3

4
=
{− 3

4 i f S = 0
1
4 i f S = 1

(5.29)

From this we see that the operator

H̃ = 1

4
(E+ + 3E−) − (E+ − E−)

1

�2
(s1 · s2) (5.30)

gives exactly the same eigenvalues as the actual Hamiltonian H when applied to the
states |ψ1〉 and |ψ2(mS)〉:

H̃ |ψ1〉 = E+|ψ1〉
H̃ |ψ2(mS)〉 = E−|ψ2(mS)〉 (5.31)

H̃ defined as above describes the molecular Heisenberg model

H̃ = J0 − J12S1 · S2 (5.32)

J12 = 1

�2
(E+ − E−) (5.33)

If J12 > 0, then the spin coupling is obviously ferromagnetic, and if J12 < 0, then
it is antiferromagnetic.

5.2.2 The Heitler–London Method

In continuation of the discussion of the last section, we want to demonstrate with the
help of an example, that, in fact, it is possible to have E+ �= E−. For this purpose,
we investigate, following the Heitler–London method, as a simple example, the two-
electron system of H2-molecule, in order to get at least a qualitative understanding of
the intra-atomic exchange interaction. We note in passing that the same procedure
is also followed in order to understand the covalent bonding.

Let the two protons be fixed at Ra and Rb (which means that we assume ma =
mb = ∞) and let the two nuclei be in their ground state (Fig. 5.11).



5.2 Direct Exchange Interaction 189

a b
R RRab

e1
− e2

−

r1a

r2b

r1b r2a

r12

Fig. 5.11 Distances in the H2 molecule

We split the Hamiltonian of the total system into an unperturbed part H0 and a
perturbation H1:

H = H0 + H1 (5.34)

H0 = 1

2m
(p2

1 + p2
2) − e2

4πε0

(
1

r1a
+ 1

r2b

)
(5.35)

H1 = e2

4πε0

(
1

Rab
+ 1

r12
− 1

r1b
− 1

r2a

)
(5.36)

Since H does not contain any spin parts, the eigenfunction to be determined can be
factorized:

|ψs〉 = |q〉(+)|0; 0〉
|ψt 〉 = |q〉(−)|1; mS〉 (5.37)

The problem cannot be solved exactly. The unperturbed problem H1 = 0 is realized
by making the separation between the nuclei to be infinite. Then, we have the exactly
solvable problem of two uncoupled hydrogen atoms. The solution is known from the
basic quantum mechanics course:

(
p2

1

2m
− e2

2πε0r1a

)
|φ(1)

a 〉 = Ea|φ(1)
a 〉

(5.38)(
p2

2

2m
− e2

2πε0r2b

)
|φ(2)

b 〉 = Eb|φ(2)
b 〉

Then, the symmetrized space part of the “unperturbed” two-electron state must be
given by

|q〉(±) = 1√
2

(
|φ(1)

a 〉|φ(2)
b 〉 ± |φ(2)

a 〉|φ(1)
b 〉
)
≡ 1√

2
(|q1〉 ± |q2〉) (5.39)
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The last step is only a short-hand notation. We can now write

H0 |q〉(±) = (Ea + Eb) |q〉(±) (5.40)

When the space part is combined with the spin states, the energy Ea + Eb is four-
fold degenerate. The single particle wavefunctions centred at the nuclei a and b,
respectively, do not overlap because Rab → ∞:

〈φ(1,2)
a |φ(1,2)

b 〉 =
∫

d3rφ∗
a (r)φb(r) = 0 (5.41)

Therefore, |q1,2〉 are orthogonal to each other:

〈q1|q2〉 = 0 (5.42)

This will not be true any more when we bring the nuclei near to each other so that
the separation between them is finite, that is, when we switch on the perturbation.
For H1 �= 0, the problem can be solved only approximately. We choose the variation
method to solve the problem for the ground state (Ea = Eb = E0). Since not only
H0, but also the total Hamiltonian is symmetric against the interchange of particles,
the following variation ansatz appears reasonable:

|q〉 = c1|q1〉 + c2|q2〉 (5.43)

c1, c2 shall be real numbers. Here |q1,2〉 is defined as in (5.39), but they are not
orthogonal to each other any more , since, due to the finiteness of the separation
between the nuclei, the so-called overlap integral

L = 〈φ(1,2)
a |φ(1,2)

b 〉 =
∫

d3rφ∗
a (r)φb(r) (5.44)

is not equal to zero any more. The above ansatz neglects “polar” states of the form

|φ(1)
a 〉|φ(2)

a 〉 ; |φ(1)
b 〉|φ(2)

b 〉

which describe situations, where both the electrons reside on the same atom.
Because of the repulsive Coulomb interaction, the configurations such as these
should be energetically unfavourable, and therefore may not be so important. In the
case of bonding, they fix the “rest ionicity” of the covalent (homopolar) bonding.

For the variation ansatz, we further might demand the symmetry in the particle
indices, so that it would be necessary to set c1 = ±c2, and the coefficients were
fixed by the normalization condition. Here, however, we will treat the c1 and c2 as
variation parameters and through the condition

∂ EV

∂c1,2

!= 0 (5.45)
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where

EV = 〈q|H |q〉
〈q|q〉 = EV (c1, c2) (5.46)

We will fix the optimal c1 and c2. The variation energy EV determined in this way
in any case sets an upper limit to the actual ground state energy.

While calculating EV , there appear certain characteristic integrals.
Coulomb integral:

V ≡ 〈q1|H |q1〉 = 〈q2|H |q2〉 =
∫ ∫

d3r1d3r2 H |φa(r1)|2 |φb(r2)|2 (5.47)

Exchange integral:

X ≡ 〈q1|H |q2〉 = 〈q2|H |q1〉
=
∫ ∫

d3r1d3r2φ
∗
a (r1)φ∗

b (r2)H1φa(r2)φb(r1) (5.48)

With these definitions, we now calculate the variational energy EV . First the denom-
inator,

〈q|q〉 = c2
1〈q1|q1〉 + c2

2〈q2|q2〉 + c1c2(〈q1|q2〉 + 〈q2|q1〉)
= c2

1 + c2
2 + 2c1c2L2 (5.49)

and then in similar way the numerator

〈q|H0|q〉
〈q|q〉 = 2E0 (5.50)

〈q|H |q〉 = (c2
1 + c2

2)V + 2c1c2 X (5.51)

This finally yields

EV = (c2
1 + c2

2)V + 2c1c2 X

(c2
1 + c2

2) + 2c1c2L2
(5.52)

The variation condition (5.45) leads to

(c2
1 − c2

2)(X − V L2) = 0 (5.53)

The second factor is, in general, unequal to zero, so that using the normalization
condition c2

1 + c2
2 = 1 we get

c1 = c2 = 1√
2

(5.54)
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With this, the variation ansatz (5.43) for |q〉 satisfies automatically all the symmetry
requirements. With these c1 and c2, the ground state energy is given by

E± = V ± X

1 ± L2
(5.55)

When X and L are unequal to zero, then the condition E+ �= E−, which is necessary
for the preferred spin ordering as discussed in the last section, is realized.

In that case, we can replace the “true” Hamiltonian H by an effective exchange
Hamiltonian H̃ :

H̃ = J0 − J12S1 · S2 (5.56)

J12 = 1

�2
(E+ − E−) = − 2

�2

V L2 − X

1 − L4
(5.57)

The sign of J12 depends on the relative strengths of the integrals L , V and X . In
general, however, L � 1 and X < 0, so that J12 is negative, i.e. the singlet state is
energetically the lowest.

H̃ is of the type, which we require for our magnetic problems. We thus have
found a quantum mechanical mechanism, which prefers a particular spin orientation.

Postulate: H̃ can be generalized to N multi-electron-atoms.

This leads to the Heisenberg model

H = −
∑

i j

Ji j Si · S j (5.58)

Discussion

1. The sign and the magnitude of the coupling constants J12 depend on the relative
magnitudes of the integrals V , L and X . The deciding parameter is therewith
the internuclear distance Rab which determines the degree of overlap of the
hydrogen wavefunctions |φa〉 and |φb〉. If we use the 1s wavefunctions of the
hydrogen atom to calculate the integrals, then we get the result shown in the
Fig. 5.12, which means that J12 is always negative or the “antiferromagnetic”
singlet state is stable.

2. The Heitler–London method does not converge! This is essentially because
of the non-orthogonality of the eigenstates |φa,b〉 of hydrogen atoms centred
on different nuclei. The corresponding non-orthogonality integrals appear with
increasing power in the secular equation of the eigenenergies, as the number of
electrons participating in the “exchange” increases. This leads to a divergence,
which is called the non-orthogonality catastrophe.

3. Sometimes, one tries to get round the problem of (2), by using, instead of non-
orthogonal, orthogonal variation states. For the states |q1,2〉, we only have to
require that they should be products of single particle states, which for Rab →
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Fig. 5.12 Eigenenergies and the effective exchange integrals of the H2-molecule calculated with
1s-eigenfunctions of the hydrogen atom

∞ go over to the hydrogen atom wavefunctions |φa〉 and |φb〉:

|q1,2〉 = |u(1,2)〉|v(2,1)〉
|q〉(±) = 1√

2
(|q1〉 ± |q2〉) (5.59)

So far, we have used for |u〉 and |v〉 the hydrogen wavefunctions. Another pos-
sibility is to use the following ansatz:

|u〉 = α+|φa〉 + α−|φb〉 ; |v〉 = α+|φb〉 + α−|φa〉 (5.60)

With

α± = 1

2
(1 + 〈φa|φb〉)−1/2 ± 1

2
(1 − 〈φa|φb〉)−1/2 (5.61)

these states indeed approach, respectively, |φa〉 and |φb〉 for Rab → ∞ because

lim
Rab→∞

α+ → 1 ; lim
Rab→∞

α− → 0 (5.62)
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One can easily show that |u〉 and |v〉 are orthonormal:

〈u|u〉 = 〈v|v〉 = 1 ; 〈u|v〉 = 0 (5.63)

With a calculation, which is completely analogous to the one carried out above,
where only |φa〉 is replaced by |u〉 and |φb〉 is replaced by |v〉, we get

L = 0 ; J12 = 2

�2
X = 2

�2

∫ ∫
d3r1d3r2u∗(r1)v∗(r2)Hu(r2)v(r1) (5.64)

This integral, when calculated with 1s-wavefunctions of hydrogen is always
positive.
This consideration shows that the actual form of J12 should not be taken too
seriously. The coupling constants Ji j of the Heisenberg model should be treated
as parameters. It is actually pointless to want to calculate the exchange param-
eters J12 in a solid, based on a molecular model no matter how sophisticated the
model may be.

4. It is important and it can be proved exactly that J12 is determined by the overlap
integrals. If wavefunctions of the participating electrons do not overlap, then
there is no ferromagnetism.

5. The polar states of the type

|φ(1)
a 〉|φ(2)

a 〉 and |φ(1)
b 〉|φ(2)

b 〉

are not included in the variational ansatz. That means, it is implicitly assumed
that, always, one electron belongs to proton a and another to proton b. As a
consequence, the model is applicable only to insulators, and certainly not for
band magnets like Fe, Co and Ni.

6. The points (4) and (5) actually exclude each other. On the one hand, the model
is good, only when the concerned wavefunctions have practically no overlap,
and on the other hand, if there is no overlap, there is no exchange. In reality, the
coupling mechanism in magnetic insulators is therefore different, in general,
of the type, called the superexchange, which will be described in Sect. 5.3.2.
In this situation, there is, in general, a diamagnetic ion between two magnetic
ions, and it mediates the coupling (prototype: MnO (Fig. 5.13)). The separation
between the magnetic ions is so large that a “direct exchange” is not possible.
The coupling is transmitted through the diamagnetic ion. As we will see, this
again leads to a model Hamiltonian of the Heisenberg type, but of course, the
interpretation of the coupling constants J12 will then be completely different.
The ferromagnetic metals of the class Localized Magnetism mentioned at the
beginning of this chapter can also be understood only when an indirect exchange
(RKKY interaction) mediated by the conduction electrons is invoked. This will
be discussed in more detail in Sect. 5.3.1.
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Mn2+ O2− Mn2+

Fig. 5.13 Schematic plot which illustrates the superexchange between the Mn2+ ions mediated by
the O2− ion

5.2.3 Dirac’s Vector Model

The “derivation” of the Heisenberg Hamiltonian using the Heitler–London method
has the advantage that it gives a certain insight into the physical basis for the
exchange interaction. The discussion in the last section, however, makes it also
clear that the exchange interaction does not have a such universal character as, for
example, the Coulomb’s law or the Newton’s axioms.

That of course does not at all mean that the whole concept of the Heisenberg
Hamiltonian is questionable. There are series of other deductions, which lead to the
same operator form. In this section, we want to discuss one such suggestion from
Dirac, where we will show that the normal Coulomb interaction, in the first-order
perturbation theory, leads to an effective Hamiltonian of the Heisenberg type. This
time, however, we need not restrict ourselves to a two-electron system.

We consider an ensemble of N indistinguishable Fermions, which, without the
presence of any interaction, occupy the single particle states

|α1〉, |α2, 〉, · · · , |αN 〉

The αi s stand for a set of quantum numbers. The states |αi 〉 can be assumed, from the
beginning, to be orthogonal. Since they have to be occupied by N Fermions, they
should be necessarily pairwise different from each other. A possible unperturbed
state |ψ〉 for the whole ensemble is then,

|ψ〉 = |α(1)
1 〉|α(2)

2 〉 · · · |α(N )
N 〉 (5.65)

where the superscript enumerates the N Fermions (see Appendix A). The Hamilto-
nian,

H = H0 + H1 (5.66)

and also separately H0 and H1 themselves, is symmetric against the particle inter-
changes. Therefore, the application of an arbitrary permutation P on the state |ψ〉
results in a new state P|ψ〉 which also belongs to the same energy as |ψ〉. The new
state can be written as
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P |ψ〉 = |α(r )
1 〉|α(s)

2 〉 · · · |α(z)
N 〉 (5.67)

Obviously, there are N ! such unperturbed states with the same energy E0,

H0 |ψ〉 = E0 |ψ〉
H0 P |ψ〉 = E0 P |ψ〉, · · ·

which span the so-called “eigenspace” H0 corresponding to E0. Following the usual
perturbation theory for a system with degeneracy, we have to set up the perturbation
matrix in this eigenspace. The elements of the matrix are of the type

〈ψ |Pα H1Pβ |ψ〉

and the eigenvalues of this matrix represent the energy corrections in the first order.
We can formally distinguish between two types of permutations, namely, the

type Pα which we have so far used and which acts on the superscript (particle),
and the type Pα , which acts on the subscript, i.e. which changes the ordering of the
states. Naturally, Pα is meaningfully defined, only when, as was assumed in (5.65),
the single particle states in the N -particle state are arranged in a particular order
according to some criterion.

It is obvious that every Pα commutes with every Pβ :

Pα Pβ = Pβ Pα (5.68)

It is equally obvious that, for |ψ〉 given by (5.65),

Pα Pα|ψ〉 = 1 · |ψ〉 (5.69)

This operation changes only the sequence of the factors in |ψ〉.
Since all the |αi 〉 are orthogonal to each other, |ψ〉 and P|ψ〉 are also orthogonal

to each other, provided P is not the identity operator. That means

〈ψ |Pα Pβ |ψ〉 = δαβ (5.70)

when it is assumed that |ψ〉 is normalized.
Now, let C(P) be some scalar quantity, which depends on the particular distribu-

tion of the N particles into the N single particle states |αi 〉. Then obviously

C(Pα) =
∑

β

C(Pβ)〈ψ |Pβ Pα|ψ〉 (5.71)

The sum runs over all the N ! permutations Pβ for a given Pα . We now define special
coefficients

(H1)(P) ≡ 〈ψ |H1P|ψ〉 (5.72)
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for which, naturally, the above relation (5.71) is valid. We notice that |ψ〉 and P|ψ〉
are the eigenstates of H0 but not of H1. Therefore, in general, (H1)(P) �= 0. The
perturbation H1 is, however, symmetric against particle interchange, otherwise they
would not have been “indistinguishable”. As a result, for an arbitrary permutation,
we have

H1P = PH1 (5.73)

Then we can write

〈ψ |Pα H1Pβ |ψ〉 = 〈ψ |H1PαPβ |ψ〉 = (H1)(PαPβ)

=
∑

γ

(H1)(Pγ )〈ψ |PγPαPβ |ψ〉

=
∑

γ

(H1)(Pγ )〈ψ |PαPγPβ |ψ〉

This relation is valid for arbitrary states Pα,β |ψ〉 of the eigenspace H0. Therefore,
we have, in this space, an operator identity

H1 =
∑

γ

cγ Pγ (5.74)

when we interpret the scalar coefficient cγ by

cγ = (H1)(Pγ ) (5.75)

Therefore, the perturbation operator H1 can be written in this space as a linear com-
bination of permutation operators Pγ .

We now want to apply this general theory to a system of electrons. Let the per-
turbation operator H1 be given by the Coulomb interaction. It is important here to
remember that the electron has a spin. The main consequence is not the possibility
of coupling of the magnetic moment due to the spin with an external magnetic field,
but the fact that according to the Pauli’s principle the spin doubles the number of
occupiable states. Electrons are specified by two types of variables, namely, the spin
variables σx , σy, σz and the position variables x, y, z. The two types of variables
correspond to two types of permutations, Pσ for the spin variables and Px for the
orbit variable. The operators Pγ , which were used in the general theory discussed
above, encompass, naturally, the totality of all the dynamic variables:

Pγ → (Px Pσ )γ

Electrons are Fermions and so they are described by antisymmetric N -particle states
|ψ〉(−):
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(Px · Pσ )γ |ψ〉(−) = ±|ψ〉(−) (5.76)

The sign + or − depends on whether the permutation is even or odd. If we restrict
ourselves right from the beginning in H0 to the appropriate antisymmetrized states
|ψ〉(−), then we can treat

(Px Pσ )γ = ±1 (5.77)

also as an operator identity. This has important consequences. Since the perturba-
tion H1 consists only of the usual Coulomb interaction, the Hamiltonian does not
contain the spin explicitly. Therefore, we must above all investigate (Px )γ . Because
of the above operator identity, however, we can also start with the simpler problem
of (Pσ )γ , which then uniquely fixes (Px )γ .

We first show that Pσ can be expressed in terms of the spin operators s

s = �

2
σ , σ = (σx , σy, σz) (5.78)

The components of σ are the Pauli spin matrices:

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
(5.79)

One can easily verify the following relations (Problem 2.2):

σ 2
i = 1 ; i = x, y, z (5.80)

σi σ j = i σk ; (i, j, k) = (x, y, z) and cyclic (5.81)

[σi , σ j ]+ = σi σ j + σ j σi = 2 δi j · 1 (5.82)

With these relations, we can further show that (Problem 5.6)

(
σ (1) · σ (2)

)2 = 3 − 2 (σ (1) σ (2)) (5.83)

where the superscripts are the particle indices. We now define the following opera-
tor:

Q12 = 1

2
(1 + σ (1) · σ (2)) (5.84)

whose square is given by

Q2
12 = 1

4
(1 + 2σ (1) · σ (2) + (σ (1) · σ (2))2) = 1 (5.85)

In view of this relation, Q12 satisfies an important property of a transposition oper-
ator. From the defining equation for Q12, one further sees that
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Q12 σ (1)
x,y,z = σ (2)

x,y,z Q12

which actually means

Q12 σ (1) Q−1
12 = σ (2) ; Q12 σ (2) Q−1

12 = σ (1) ; Q12 = Q−1
12 (5.86)

Thus, the operator Q12 interchanges the spins of the particles 1 and 2 and therefore,
it can be different from (Pσ )12, the transposition operator, at the most by a scalar
factor:

(Pσ )12 = α Q12 (5.87)

Here, because of the fact that (Pσ )2
12 = Q2

12 = 1, α can be only either +1 or −1. The
sign is decided as follows: With reference to the spin variables of the two-electron
system, there are three possible symmetric states

|m(1)
S =↑〉|m(2)

S =↑〉 ; |m(1)
S =↓〉|m(2)

S =↓〉
|m(1)

S =↑〉|m(2)
S =↓〉 + |m(1)

S =↓〉|m(2)
S =↑〉 (5.88)

and one antisymmetric state

|m(1)
S =↑〉|m(2)

S =↓〉 − |m(1)
S =↓〉|m(2)

S =↑〉 (5.89)

Therefore, (Pσ )12 has the eigenvalues 1, 1, 1, −1. The scalar product σ (1) ·σ (2) has
the eigenvalues 1, 1, 1, −3, in the same sequence and so Q12 has the eigenvalues
1, 1, 1, −1 (Problem 5.6). Therefore we must have α = +1. Then we can write

(Pσ )12 = 1

2
(1 + σ (1) · σ (2)) (5.90)

Then for the transposition operator for the position observables also we have

(Px )12 = −1

2
(1 + σ (1) · σ (2)) (5.91)

The perturbation H1, which is the Coulomb interaction of the electrons, consists of
a sum of two-electron interactions. Among the matrix elements cγ = (H1)(Pγ ), in
the general expression for H1 (5.74), only those will be unequal to zero, for which
Pγ is either identity or it is a transposition operator for two electrons. Due to this
reason, H1 has the following form:

H1 =
∑
i< j

ci j (Px )i j + Ec (5.92)



200 5 Exchange Interaction

where Ec is a constant. In the first-order perturbation theory, the eigenvalues of the
operator

H1 = Ec − 1

2

∑
i< j

ci j (1 + σ (i) · σ ( j)) (5.93)

in the eigenspace H0 represent the correction to energy, which we are looking for.
In this form, H1 provides the justification for the Heisenberg Hamiltonian. For, if

we assume that, for all the pairs of electrons in the partially filled shells which are,
respectively, localized at Ri and R j , the matrix elements ci j are equal in the first
approximation, then, we can treat all the electron spins in such a shell together as a
total spin Si , whose index i now refers to the lattice site Ri . By still suppressing the
unimportant constants, we eventually get the exchange operator:

H = −
∑
i, j

Ji j Si · S j (5.94)

Just as in Sect. 5.2.2, here also, H is the result of perturbation theory in the first
order for the “normal” electron–electron Coulomb interaction. The coupling con-
stants Ji j correspond to the classically incomprehensible exchange matrix elements
〈ψ |H1 P i j |ψ〉 of the Coulomb interaction, where |ψ〉 is a nonsymmetrized N -
particle state.

5.3 Indirect Exchange Interaction

The direct exchange mechanism, as presented in Section 5.2 and in particular in
Sect. 5.2.2, is frequently not acceptable as a coupling mechanism for magnetic
materials for the reason that the separation between the magnetic ions is too large.
Because of the large inter-ion separation, the overlap integrals are too small to medi-
ate a sufficiently strong coupling. There are, however, a number of indirect exchange
mechanisms which, within the framework of second-order perturbation theory, lead
to an effective Hamiltonian of the Heisenberg type. They are different from the
direct exchange because the direct exchange discussed in Sect. 5.2 is a result of
perturbation theory of first order.

The concept of indirect exchange is not uniquely defined. In this section, we will
discuss three different types of indirect coupling.

5.3.1 Rudermann–Kittel–Kasuya–Yosida (RKKY) Interaction

We begin with an indirect interaction between magnetic ions, which is mediated by
quasi-free, mobile electrons of the conduction band. It is a type of coupling, which
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is observed, in particular in metallic 4f-systems like Gd, and therefore, it belongs to
the class (Localized Magnetism) mentioned in the introduction of Chap. 5.

The idea goes back to M.A. Rudermann and C. Kittel [2], who discussed the
long-range coupling between nuclear spins, on the basis of the contact hyperfine
interaction between a nuclear spin and the spin of an s-conduction electron, which
we have learned about in Sect. 2.8. The nuclear spin polarizes the conduction elec-
tron spin in its neighbourhood. Because of the Pauli’s principle, the polarization
cloud is not exclusively localized near the nuclear spin, rather, it will be a sequence
of alternating “rarefactions” and “condensations”. As a result, the spin polarization
of the conduction electrons will have an oscillatory behaviour as a function of the
distance from the polarizing nucleus. This “information” is “felt” by a neighbouring
spin, from which, an effective coupling between the two nuclear spins results.

Completely analogous to this effective nuclear spin coupling, an exchange inter-
action between the localized electrons of partially filled electron shells of different
ions in a solid and the quasi-free conduction electrons should lead to an effective
coupling between the localized moments.

The idea of such a coupling mechanism in ferromagnetic metals goes to the
credit of T. Kasuya [3] and K. Yosida [4]. This idea was provoked by very inter-
esting experimental observations. When paramagnetic Mn2+-ions ((3d)5 ⇒ S =
5/2, L = 0) are doped into a non-magnetic Cu matrix, then, depending on the
concentration of Mn, completely different phenomena are observed:

1. Quenching of 3d-moments.
2. Kondo behaviour: The conduction electrons of Cu are perturbed by the mag-

netic Mn-moments and this leads to an anomalous behaviour of resistivity.
3. Spin glass behaviour: A statistical distribution of the Mn ions in the Cu matrix

leads to a coupling between the Mn ions which varies in sign and magnitude.
That can mean that, the Mn spin cannot satisfy all the exchange interactions
(frustration).

4. Ferromagnetic ordering of the 3d spins.
5. Antiferromagnetic ordering.

In order to understand such a rich variety of phenomena, the starting point is the
following model.

Two ions located at Ri and R j , which are not directly coupled, are embedded in a
“sea” of conduction electrons of a non-magnetic metal (Fig. 5.14). The conduction
electrons are described by the simple Sommerfeld model (Sect. 4.1.1)

Hs =
∑
k,σ

ε(k)c†kσ ckσ (5.95)

Here c†kσ (ckσ ) is the creation (annihilation) operator of an electron of wavevector k
and spin σ (σ =↑, ↓) and energy ε(k). The localized spins shall not directly interact
with each other. Therefore, we can set the Hamiltonian that describes the interaction
of the localized spins equal to zero:
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Fig. 5.14 Two localized spins Si and S j at the lattice sites Ri and R j in a “sea” of conduction
electrons

H f ≡ 0 (5.96)

The exchange interaction between the localized spin Si and the conduction electron
spin s is treated as the perturbation and is taken to be of Heisenberg type, as an
intra-atomic exchange: J is the corresponding coupling constant.

Hs f = −J
2∑

i=1

si · Si = −J
2∑

i=1

{
sz

i Sz
i +

1

2

(
s+i S−

i + s−i S+
i

)}
(5.97)

Hs f has the same structure as the hyperfine interaction Hcont (see Sect. 2.8) between
a nuclear spin and the spin of an s-electron and therefore can be justified on the
same basis (see also Problem 5.8). The electron spin operators can be expressed in
terms of creation and annihilation operators:

sz
i = �

2
(c†i↑ ci↑ − c†i↓ ci↓) (5.98)

s+i = � c†i↑ ci↓ (5.99)

s−i = � c†i↓ ci↑ (5.100)

c†iσ (ciσ ) creates (annihilates) an electron of spin σ at the position Ri . Using the
fundamental commutation relations for Fermion operators ([A , B]+ = AB + B A
is the anticommutator, see Appendix A)

[
ciσ , c jσ ′

]
+ =

[
c†iσ , c†jσ ′

]
+
= 0 (5.101)

(ciσ )2 =
(

c†iσ

)2
= 0 (Pauli ′s principle!) (5.102)[

ciσ , c†jσ ′

]
+
= δi jδσσ ′ (5.103)
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one can easily verify that the usual commutation relations for the spin operators are
fulfilled (Problem 5.1):

[
s+i , s−j

]
−
= 2 δi j � sz

i (5.104)
[
sz

i , s±j
]
−
= ± δi j � s±i (5.105)

One should pay attention that [· · · ]− is a commutator and [· · · ]+ is an anticommu-
tator.

It is still recommendable to transform the operators c†iσ and ciσ into the wavevec-
tor space:

ciσ = 1√
N

∑
q

eiq·Ri cqσ (5.106)

c†iσ = 1√
N

∑
q

e−iq·Ri c†qσ (5.107)

The perturbation operator then reads as

Hs f = − J�

2N

∑
i

∑
k,q

e−iq·Ri

{
Sz

i

(
c†q+k↑ck↑ − c†q+k↓ck↓

)

+ S+
i c†k+q↓ck↑ + S−

i c†k+q↑ck↓
}

(5.108)

Without the perturbation, the conduction electrons exist in their unpolarized ground
state. In addition, since they do not interact with each other, the unperturbed electron
ground state can be written as the antisymmetrized product of single-electron states

|k(i)
i , m(i)

si
〉 ≡ |k(i)

i 〉|m(i)
si
〉 (5.109)

where the spin magnetic quantum number m(i)
si

takes the values ± 1
2 . k(i)

i is a
wavevector, where the superscript refers to the particle number. Further, since we
want to treat the conduction electrons as s-electrons, which excludes spin–orbit
interaction, we can separate the spin and the space parts. Let

|0; f 〉 ≡ |0〉| f 〉 (5.110)

be the “unperturbed” ground state of the total system, where, the spin state | f 〉
is specified by the relative orientation of the N spins. Since there does not exist
any direct interaction between the spins, | f 〉 should be a linear combination of all
possible relative orientations. |0〉 symbolizes the unpolarized ground state of the
conduction electrons (“filled” Fermi sphere):
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|0〉 = 1

N !

∑
P

(−1)p P|k(1)
1 m(1)

s1
, k(2)

2 m(2)
s2

, · · ·k(N )
N m(N )

sN
〉 (5.111)

P is the permutation operator which acts on the particle superscripts. p is the num-
ber of transpositions which build up the permutation P .

|0; f 〉 is an eigenstate of H0 = Hs + H f and therefore it is an eigenstate of Hs :

Hs |0; f 〉 = E (0)
0 |0; f 〉 (5.112)

We want to consider the effect of Hs f using the perturbation theory. First, it is easy
to see that the energy correction in the first order

E1)
0 = 〈0; f |Hs f |0; f 〉 (5.113)

does not contribute. For example, we have

〈0; f |Sz
i (c†↑ c↑ − c†↓ c↓)|0; f 〉 = 0 (5.114)

because, without the perturbation, the electron system is not polarized. There are
exactly the same number of ↑-electrons as ↓-electrons. In addition, 〈 f |Sz

i | f 〉 =
0. Since in each of the sub-systems, in the absence of the coupling, the spin is
conserved, we also have

〈0; f |S+
i c↓ c↑|0; f 〉 = 0 (5.115)

〈0; f |S−
i c↑ c↓|0; f 〉 = 0 (5.116)

Therefore, the s–f interaction is not noticeable in the first order:

E (1)
0 ≡ 0 (5.117)

For the second-order correction, the following expression has to be calculated:

E (2)
0 =

∑
(A, f )�=(0, f )

|〈0; f |Hs f |A; f ′〉|2
E (0)

0 − E (0)
A

(5.118)

Here

|A〉 = 1

N !

∑
P

(−1)p P|k′(1)
1 m

′(1)
s1

, k′(2)
2 m

′(2)
s2

, · · ·k′(N )
N m

′(N )
sN

〉 (5.119)

is an excited state of the unperturbed electron system with energy E (0)
A .

The electron part of the perturbation operator consists exclusively of single elec-
tron operators. Due to the orthonormality of the single particle states, the matrix
element splits into expressions of the form
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〈0|O|A〉 → 〈k′m ′
s |︸ ︷︷ ︸

f rom |0〉

O |k′′m ′′
s 〉︸ ︷︷ ︸

f rom |A〉

(5.120)

In particular, we have

〈k′m ′
s |(c†k+q↑ ck↑ − c†k+q↓ ck↓)|k′′m ′′

s 〉

= Θ(kF − |k + q|) Θ(|k| − kF )δk,k′′ δk+q,k′
2

�
〈m ′

s |sz|m ′′
s 〉

(5.121)

i.e. only those states |k′′m ′′
s 〉 contribute which represent particle–hole excitations of

the originally filled Fermi sphere. If we treat |ms〉 to be a two-component spinor,

(
1
0

)
or

(
0
1

)

then, σz = 2
�

sz is a 2 × 2 Pauli spin matrix (5.79). The step functions,

Θ(x) =
{

1 i f x > 0
0 i f x < 0

(5.122)

come into play because, the state |k′m ′
s〉 should be part of the ground state |0〉 and

the state |k′′m ′′
s 〉 should be part of the excited state |A〉. In order that the matrix

element needed for E (2)
0 is unequal to zero, we must have

|k′| = |k + q| ≤ kF ; |k′′| = |k| > kF

With the notation

Θk,k+q = Θ(kF − |k + q|) Θ(|k| − kF ) (5.123)

we obtain completely analogously,

〈k′m ′
s |c†k+q↑ ck↓|k′′m ′′

s 〉 → Θk,k+q δk,k′′ δk′,k+q
1

�
〈m ′

s |s+|m ′′
s 〉

〈k′m ′
s |c†k+q↓ ck↑|k′′m ′′

s 〉 → Θk,k+q δk,k′′ δk′,k+q
1

�
〈m ′

s |s−|m ′′
s 〉

The spin operators s± are defined as usual, in terms of the Pauli spin matrices
σx , σy, σz (sx, y, z = �

2 σx, y, z):

s+ = �

2
(σx + iσy) = �

(
0 1
0 0

)
; s− = �

2
(σx − iσy) = �

(
0 0
1 0

)
(5.124)
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The action of s+ and s− on the spinors is easy to see

s+

(
1
0

)
= 0 ; s+

(
0
1

)
= �

(
1
0

)
(5.125)

s−

(
1
0

)
= �

(
0
1

)
; s−

(
0
1

)
= 0 (5.126)

The energy differences in the denominator of the energy correction E (2)
0 (5.118) are

obviously

E (0)
0 − E (0)

A = (ε(k + q) − ε(k))

We now have the perturbation correction in the second order as

E (2)
0 = J 2

4N 2

∑
k,q

Θk,k+q

ε(k + q) − ε(k)

∑
i, j

∑
m ′

s ,m
′′
s

∑
f ′

e−iq·(Ri−R j )

×〈 f | (2Sz
i 〈m ′

s |sz|m ′′
s 〉 + S+

i 〈m ′
s |s−|m ′′

s 〉 + S−
i 〈m ′

s |s+|m ′′
s 〉
) | f ′〉

×〈 f ′|
(

2Sz
j 〈m ′′

s |sz|m ′
s〉 + S+

j 〈m ′′
s |s−|m ′

s〉 + S−
j 〈m ′′

s |s+|m ′
s〉
)
| f 〉

(5.127)

This expression can be somewhat simplified by exploiting the two completeness
relations

∑
f ′

| f ′〉〈 f ′| = 1l (5.128)

∑
m ′′

s

|m ′′
s 〉〈m ′′

s | = 1l (5.129)

Using them, we get as an intermediate result:

E (2)
0 = J 2

4N 2

∑
k,q

∑
i, j

∑
m ′

s

Θk,k+qe−iq·(Ri−R j )

ε(k + q) − ε(k)
∗

∗
[
〈 f |〈m ′

s |
{

Sz
i (4Sz

j (sz)
2 + 2S+

j (szs−) + 2S−
j (szs+))

+ S+
i (2Sz

j (s−sz) + S+
j (s−)2 + S−

j (s−s+))

+ S−
i (2Sz

j (s+sz) + S+
j (s+s−) + S−

j (s+)2)
}
|m ′

s〉| f 〉
]

(5.130)
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One can easily see that the following relations are valid:

s2
z = �

2

4
; s2

+ = s2
− = 0 (5.131)

s+ s− = �
2

(
1 0
0 0

)
; s− s+ = �

2

(
0 0
0 1

)
(5.132)

s+ sz = �
2

2

(
0 −1
0 0

)
; sz s+ = �

2

2

(
0 1
0 0

)
(5.133)

s− sz = �
2

2

(
0 0
1 0

)
; sz s− = �

2

2

(
0 0
−1 0

)
(5.134)

Then, while calculating the trace
∑

m ′
s
〈m ′

s | · · · |m ′
s〉, a number of terms vanish. What

remains of (5.130) is

E (2)
0 = J 2

�
2

4N 2

∑
k,q

∑
i, j

Θk,k+qe−iq·(Ri−R j )

ε(k + q) − ε(k)

× 〈 f |2Sz
i Sz

j + S+
i S−

j + S−
i S+

j | f 〉 (5.135)

The sum is exactly the double of the scalar product (Si · S j ). Therefore

E (2)
0 = J 2

�
2

2N 2

∑
k,q

∑
i, j

Θk,k+q e−iq·(Ri−R j )
〈 f |Si · S j | f 〉

ε(k + q) − ε(k)
(5.136)

Therefore, the energy correction in the second order can obviously be considered as
the eigenvalue of an effective Hamiltonian, which is of Heisenberg type:

H RK K Y
f = −

∑
i, j

J RK K Y
i j Si S j (5.137)

We have therefore shown that the electron gas mediates an indirect coupling between
the localized moments.

The coupling constants J RK K Y
i j show an oscillatory behaviour as a function of

the separation |Ri − R j |:

J RK K Y
i j = − J 2

�
2

2N 2

∑
k,q

2∑
i, j=1

∑
m ′

s

Θk,k+q
e−iq·(Ri−R j )

ε(k + q) − ε(k)
(5.138)

We want to evaluate this expression in the effective mass approximation:

ε(k) = �
2k2

2m∗ ; εF = �
2k2

F

2m∗ (5.139)
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For this, we first convert the two summations into integrals:

1

N 2

∑
k,q

→ V 2

N 2(2π )6

∫
d3k
∫

d3q

Taking k′ = k + q, we have to evaluate

J RK K Y
i j = m∗ J 2 V 2

N 2 (2π )6

∫
k ′≤kF

d3k ′
∫

k≥kF

d3k
e−iq·(Ri−R j )

k2 − k ′2 (5.140)

In the polar coordinates, treating Ri j = Ri − R j as the polar axis, the integration
over the angles is straight forward:

∫ +1

−1
dxe±ik Ri j x = 2 sin(k Ri j )

k Ri j

Using this, we have the intermediate result

J RK K Y
i j = m∗ J 2 V 2

N 2 4π4 R2
i j

∫ kF

0
dk ′ k ′

∫ ∞

kF

dk k
sin(k ′Ri j ) sin(k Ri j )

k2 − k ′2 (5.141)

In the second integral, the lower limit can be set to zero because the double integral

∫ kF

0
dk ′ k ′

∫ kF

0
dk k · · · = 0

is antisymmetric with respect to the interchange k ↔ k ′. Further, we have (Prob-
lem 5.7)

∫ ∞

0
dk k

sin(k Ri j )

k2 − k ′2 = π

2
cos(k ′Ri j ) (5.142)

We still have to evaluate

∫ kF

0
dk ′ k ′ sin(k ′Ri j ) cos(k ′Ri j ) = 1

2

∫ kF

0
dk ′ k ′ sin(2k ′Ri j )

= −1

4

d

d Ri j

∫ kF

0
dk ′ cos(2k ′Ri j )

= −1

8

d

d Ri j

1

Ri j
(sin(2kF Ri j )

= 1

2
k4

F 4R2
i j

sin(2kF Ri j ) − 2kF Ri j cos(2kF Ri j )

(2Ri j kF )4

We define F(x) (Fig. 5.15)
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F(x) = sin x − x cos x

x4
(5.143)

by which we can express the RKKY-coupling constant:

J RK K Y
i j = J 2 k6

F

εF

�
2 V 2

N 2 (2π )3
F(2kF Ri j ) (5.144)

The exchange constant J RK K Y
i j gets an oscillatory behaviour through the function

F(x) as a function of the distance between the magnetic ions, i.e. depending on
the separation, the interaction is either ferromagnetic or antiferromagnetic. This
explains the different behaviour, listed at the beginning of this section, for the alloys
CuMn, CuFe, etc., where the concentration of Mn or Fe, respectively, decides the
average distance R̄i j between the magnetic ions.

Remarkable thing to notice is the relatively large range of the RKKY interaction
which, for large distances goes as

J RK K Y
i j ∼ 1

R3
i j

. (5.145)

In contrast, the direct exchange interaction decreases exponentially with the distance
and therefore is of short range.

The RKKY-interaction is a second-order effect

J RK K Y
i j ∼ J 2 (5.146)

which very sensitively depends on the electron density ne = Ne/V of the non-
magnetic matrix. Since

kF = (3π2ne)1/3 ; εF = �
2

2m∗ (3π2ne)2/3

we see that in the effective mass approximation, approximately

J RK K Y
i j ∼ n4/3

e (5.147)

Notice, however, that the electron density also determines via kF the period of
oscillation.

5.3.2 Superexchange

The RKKY mechanism is an example for an indirect exchange in a metallic Heisen-
berg magnet, which is realized in metallic compounds of rare earths such as Gd
(see class Localized Magnetism at the beginning of this chapter). Now we want to
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X

Fig. 5.15 The function F(x) (5.143), which determines the oscillatory behaviour of the (indirect)
RKKY exchange integrals

introduce a mechanism which is relevant to magnetic insulators. An interaction of
the RKKY-type does not come into question, since J RK K Y

i j ∼ n4/3
e and the density ne

of the conduction electrons in an insulator is zero. The name superexchange is given
because of the relatively large distance over which the exchange interaction operates
(Fig. 5.16). This interaction appears to be realized, in particular, in magnetic oxides
or difluorides of transition metals such as,

MnO, Ni O, MnF2, FeF2 CoF2, · · ·

The partially filled, and therefore magnetic d-shells of Mn2+, Ni2+, Fe2+ or Co2+-
ions are separated from each other, in general, by more than 4 Å, so that the direct
overlap of the d-wavefunctions is negligibly small. The actual exchange coupling
results via non-magnetic ions like either oxygen or fluorine ions that lie in between
the magnetic ions. This interaction, as a rule, is always antiferromagnetic for the
above substances. With the help of a simple cluster model, we would like to under-
stand how the diamagnetic ion can mediate a coupling between the magnetic ions.

The cluster consists of two magnetic ions such as, for example, Mn2+ with S =
5/2 located, respectively, at R1 and R2 and a diamagnetic ion such as O2− located in
between them at R0 (Fig. 5.16). The p-wavefunction of the anion overlaps (“mixes”)

Mn2+ O2− Mn2+

.
R0 R2.R1

0 S2 = 5/2S1 = 5/2

Fig. 5.16 Mn2+O2−-cluster model to explain the mechanism of superchange
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very strongly with the d-wavefunction of the cations. Because of this, electronic
transitions are possible, however, with the following restrictions:

1. The O2− does not like to accept an extra electron, whereas it rather readily gives
up an electron to the neighbouring ion.
The Mn2+ ion, on the other hand, rather readily accepts an electron, but does
not like to give up an electron.

2. Hund’s rules (Sect. 2.1) must be satisfied. Since the 3d-shell of the Mn2+ is
already half-filled, the electron that is “hopping” from O2− to Mn2+ must orient
its spin antiparallel to the spin of Mn2+-spin.

The above mentioned facts are used to construct the following semi-classical
model:

(a) The magnetic Mn2+-ions are treated as classical spins of constant length but of
variable orientation:

S1 · S2 = S 2 cos ϑ (5.148)

(b) In view of (1) and (2), only the two p-electrons of the O2−-ion come into play for
the hopping process. Their spins are antiparallel to each other and are oriented
antiparallel to the Mn2+-spins at R1 and R2, respectively.

To (b), some more remarks have to be added. S1 and S2 are oriented with respect
to each other at an angle ϑ . We assume that the direction of S1 defines the z-axis. In
view of (2), the p-electron at S1 is in the spin state:

(
0
1

)

Now, how does the spin state of the electron look, when the electron “hops” to
R2 and orients itself antiparallel to S2? Remember that S2 is at an angle ϑ with
the z-axis fixed by S1. We find the spin state of the electron from the eigenvalue
equation:

(σ · e)

(
χ1

χ2

)
= λ

(
χ1

χ2

)
(5.149)

(σ · e) is the projection of the electron spin operator σ

σ ≡ (σx , σy, σz) (5.150)

onto the direction e of S1:

e = (sin ϑ cos φ, sin ϑ sin φ, cos ϑ) (5.151)
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Since φ can be chosen arbitrarily, we set φ = 0. With the Pauli’s spin matrices σx,y,z

given by (5.79), it immediately follows that

(σ · e) =
(

cos ϑ sin ϑ

sin ϑ − cos ϑ

)
(5.152)

The eigenvalues λ are given by the secular equation

det(σ · e − λ1l)
!= 0 = − cos2 ϑ + λ2 − sin2 ϑ (5.153)

As is to be expected, we get

λ = ±1 (5.154)

The electron spin at R2 can also, naturally, take the values ± �/2 only. We need the
eigenstate for the eigenvalue λ = −1. For this, in view of (5.149) and (5.152), we
have

(cos ϑ + 1) χ1 + sin ϑ χ2 = 0

which means
χ1

χ2
= − sin ϑ

1 + cos ϑ
= − tan

ϑ

2

so that the normalized state |χ〉(−) is given by

|χ〉(−) ≡
(

sin ϑ/2
− cos ϑ/2

)
(5.155)

We now come back to our cluster model. The following are the cluster configura-
tions allowed within our simple model:

1. Both the p-electrons reside at the diamagnetic anion:

|1〉 = |φ(r1 − R0)〉
(

0
1

)
⊗ |φ(r2 − R0)〉

(
1
0

)
(5.156)

Let this state have the energy

E1 = ε (5.157)

Note that our semiclassical model disregards the indistinguishability of the two
electrons.

2. One of the p-electrons is at the cation 1:

|2〉 = |φ(r1 − R1)〉
(

0
1

)
⊗ |φ(r2 − R0)〉

(
1
0

)
(5.158)
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Let the energy of this state be

E2 = ε + U (5.159)

U is something like the energy of the Coulomb interaction of the p-electron
with the d-electrons of Mn2+.

3. The p-electron is at the cation 2. This in comparison to (2) is not a new situation.
Now, S2 defines the z-direction.

|3〉 = |φ(r1 − R2)〉
(

0
1

)
⊗ |φ(r2 − R0)〉

(
1
0

)
(5.160)

Let the energy of this state be

E3 = ε + U (5.161)

4. The two p-electrons reside at the two Mn2+ ions, one at each of them:

|4〉 = |φ(r1 − R1)〉
(

0
1

)
⊗ |φ(r2 − R2)〉

(
sin ϑ/2

− cos ϑ/2

)
(5.162)

Let the energy of this state be

E4 = ε + U + V (5.163)

Within the framework of the cluster model, the states |1〉 to |4〉 are considered to
constitute a complete set. The eigenstate of the Hamiltonian will be a linear combi-
nation of these states.

Let us consider the matrix elements of H in this basis:

H12 = 〈1|H |2〉 = H21 = H13 = 〈1|H |3〉 = H31 = t (5.164)

t is the so-called transfer matrix element, which is certainly small because it involves
transitions, which are “virtual”, i.e. energetically costly:

H24 = 〈2|H |4〉 = H42 = t (1 0)

(
sin ϑ/2

− cos ϑ/2

)
= t sin ϑ/2 (5.165)

sin ϑ/2 is the probability that the ↑-p-electron orients itself at R2 antiparallel to S2.
We naturally also have

H34 = 〈3|H |4〉 = H43 = t sin ϑ/2 (5.166)

We consider the simultaneous hopping of both p-electrons as unlikely, i.e. H14 =
H41 ≈ 0. Furthermore, the double hopping of a p-electron from the left Mn2+ to
the right Mn2+ or vice versa may be negligible, i.e. H23 = H32 ≈ 0. In view of the
above, the model Hamiltonian, in the basis |1〉, · · · |4〉, has the following form:
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H ≡

⎛
⎜⎜⎝

ε t t 0
t ε + U 0 t sin ϑ/2
t 0 ε + U t sin ϑ/2
0 t sin ϑ/2 t sin ϑ/2 ε + U + V

⎞
⎟⎟⎠ (5.167)

We obtain the eigenvalues E from the 4 × 4 secular determinant

det(H − E)
!= 0 (5.168)

This condition, with the following notation,

x = E − ε ; 1 − cos ϑ = 2 sin2 ϑ

2
(5.169)

can be written after a lengthy but straight forward evaluation as

0
!= (x − U )[x3 − x2(2U + V ) − x(t2(3 − cos ϑ)

− U (U + V )) + 2t2(U + V )]. (5.170)

One can immediately see that one of the four solutions is

x4 = U (5.171)

To solve the remaining cubic equation, we use the fact that the transfer integral t
defined in (5.164) is a small quantity. So, we make a polynomial ansatz for x and
arrange according to the powers of t . For t = 0, we have the following equation:

x3 − x2(2U + V ) + xU (U + V )
!= 0 (5.172)

whose solutions are, of course

x (0)
1 = 0 ; x (0)

2 = U ; x (0)
3 = U + V (5.173)

Since we can take

U, V � t (5.174)

and also since we are interested for t �= 0, only in the ground state, we can confine
ourselves to the solution which comes out of x (0)

1 . Therefore we make the ansatz

x1 =
∞∑

n=1

αn tn (5.175)

With this, we successively solve the cubic equation
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0 = x3 − x2(2U + V ) − x(t2(3 − cos ϑ) − U (U + V )) + 2t2(U + V ) (5.176)

From the term linear in t we get

0 = α1 t U (U + V ) ⇔ α1 = 0 (5.177)

For the terms ∼ t2, it holds

0 = α2 t2 U (U + V ) + 2t2(U + V ) ⇔ α2 = − 2

U
(5.178)

We get α3 from the equation

0 = α3 t3 U (U + V ) ⇔ α3 = 0 (5.179)

The terms ∼ t4 satisfy the equation

0 = −α2
2 t4 (2U + V ) − α2 t4 (3 − cos ϑ) + α4 t4 U (U + V )

Substituting for α2 gives

0 = − 4

U 2
(2U + V ) + 2

U
(3 − cos ϑ) + α4U (U + V )

= − 2

U 2
(U + 2V + U cos ϑ) + α4U (U + V )

From this we get

α4 = 2

U 2

(
U + 2V

U (U + V )
+ cos ϑ

U + V

)
(5.180)

The term ∼ t5 does not have any contribution:

0 = +α5 t5 U (U + V ) ⇔ α5 = 0 (5.181)

Then the solution for the ground state energy is given by

E0 =
[
ε − 2t2

U
+ 2(U + 2V )t4

U 3(U + V )

]
+ 2

(
t2

U

)2
cos ϑ

U + V
+O(t6) (5.182)

The rest O(t6) contains an additive term ∼ cos2 ϑ . We can express cos ϑ in terms
of the scalar product S1 · S2 of the two spins. Then we can write E0 as

E0 = E (0)
0 + 2

(
t2

U

)2 S1 · S2

S2(U + V )
+O(t6) (5.183)
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Here E (0)
0 is an unimportant constant

E (0)
0 = ε − 2t2

U
+ 2(U + 2V )t4

U 3(U + V )
(5.184)

For insulators, the transfer integral t is naturally small. Therefore, the energy cor-
rection to the ground state energy up to t5 is quite a reasonable approximation. If
we accept this approximation, then the Hamiltonian of the cluster model can be
replaced by the following effective Heisenberg Hamiltonian:

HSE = −J SE
12 S1 · S2 ; J SE

12 = − 2

S2

t4

U 2(U + V )
. (5.185)

We recognize that the superexchange mechanism that we have discussed here leads
to an indirect antiferromagnetic coupling between the localized spins S1 and S2:

J SE
12 < 0 (5.186)

The important thing is that even though a direct exchange between the spins is ruled
out because of the large separation, the model operator obtained here is again of the
Heisenberg type.

We want to close this section with a few concluding remarks:

1. The rest O(t6) neglected in E0 contains a cos2 θ term. This leads to a correction
which includes (S1 · S2)2 in the model Hamiltonian. Therefore, we should treat
the effective exchange operator as the lowest order term in an expansion in
powers of (S1 · S2).

2. In the literature, there exist a number of modifications and extentions to the
superexchange mechanism that we have discussed here within the framework
of a semiclassical cluster model. Kanamori and Goodenough [5, 6], e.g. have
proposed the model Fig. 5.17:
One of the p-electrons of the anion A2−shifts to the cation C2+ and orients itself,
according to the Hund’s rule with respect to the spin there. The remaining p-
electron makes the anion paramagnetic and, therefore, allows a direct exchange
with the other magnetic cation. This leads to an indirect coupling of the two
C-spins, which can be either ferro- or antiferromagnetic.

2+  C2–
A2+C

Fig. 5.17 Alternative cluster model according to J. Kanamori [5] and J.B. Goodenough [6] to
explain the superexchange mechanism
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5.3.3 Double Exchange

In this section, we discuss a third type of indirect exchange interaction, which leads
to a model Hamiltonian which also has the characterestic scalar product (Si · S j ). It
contains, however, not only the bilinear term (Si · S j ), but also higher powers of it.
The highest power is determined by the magnitude of the localized spin:

HDE ∼
2S∑

n=0

Jn(S)(Si · S j )
n (5.187)

The “double exchange” is typical for systems, for which, the magnetic ion can exist
in two different valence states. Jonker and van Sauten [7, 8] have discovered com-
pounds of the form

(La1−x Mx )MnO3 ; M = Ba, Ca, Sr

which had unusual electric and magnetic properties. When the concentration x of the
divalent nonmagnetic (!) M2+ becomes larger than a critical value xc, the electrical
conductivity increases and the sample, which was originally nonmagnetic, suddenly
becomes ferromagnetic. Today these materials are under intensive investigation
as the so-called “CMR systems” because of their “colossal magneto-resistance”-
behaviour due to the simultaneous metal–insulator and ferromagnetic–paramagnetic
transition [9].

When in the compound

La3+Mn3+O3 (x = 0)

a trivalent La3+-ion is substituted by a divalent alkaline earth M2+ ion, then this ion
contributes only two electrons to the bonding. Therefore the required third electron
must be taken from a Mn3+-ion. That means, in such a compound, the manganese
exists in a valence mixture of Mn3+ and Mn4+:

(La3+
1−x M2+

x ) Mn3+
1−x Mn4+

x O3 (x �= 0)

The sudden appearance of ferromagnetism for x ≥ xc was first ascribed by Zener
[10] to an electron hopping between Mn3+ and Mn4+. This electron motion, in a
way analogous to the RKKY interaction (Sect. 5.3.1), leads to an indirect coupling
of the Mn spins, which, as a rule, turns out to be ferromagnetic. We will discuss this
mechanism, again using a cluster model (Fig. 5.18)

The hopping of the “excess” electron with spin s does not take place directly
but via the diamagnetic O2− ion, which lies in between the two magnetic Mn ions.
We denote the mobile electron by 1 ↑ and the two O2−-electrons by 2 ↑ and 3 ↓,
respectively. Then, we can think of two equivalent transfer processes, which con-
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O2− Mn2+

21 SS

S1 = S2 = S

s

2+Mn

Fig. 5.18 Pictorial representation of a cluster to explain the double exchange mechanism

serve the negative charge of the oxygen atom. The two processes are symbolically
represented in the following.

The first proposal was by Zener [10]:

Mn4+︸ ︷︷ ︸
−

O2−︸ ︷︷ ︸
2↑,3↓

Mn3+︸ ︷︷ ︸
1↑

−→ Mn3+︸ ︷︷ ︸
2↑

O2−︸ ︷︷ ︸
3↓,1↑

Mn4+︸ ︷︷ ︸
−

Since this involves two simultaneous electron jumps, it is called the double
exchange.

The second proposal was by Anderson and Hasegawa [11]:

Mn4+︸ ︷︷ ︸
−

O2−︸ ︷︷ ︸
2↑,3↓

Mn3+︸ ︷︷ ︸
1↑

−→ Mn3+︸ ︷︷ ︸
2↑

O−︸︷︷︸
3↓

Mn3+︸ ︷︷ ︸
1↑

−→ Mn3+︸ ︷︷ ︸
2↑

O2−︸ ︷︷ ︸
3↓,1↑

Mn4+︸ ︷︷ ︸
−

(5.188)

Both the processes finally achieve the same, namely, the transfer of the mobile elec-
tron from one Mn ion to the other. At the Mn site, the electron spin interacts with
the localized Mn spin via the “local exchange”, which was already discussed in
Sect. 5.3.1 and is given by (5.97):

Hs f = −J
2∑

i=1

si · Si (5.189)

That means, the electron should not be arranged, as in the case of superexchange
(Sect. 5.3.2), according to the Hund’s rule in the d-shell, but, as in the case of RKKY
mechanism (Sect. 5.3.1), as a quasi-free electron interacting with a localized spin.
The difference in comparison to RKKY coupling is that, now, we cannot treat Hs f as
a perturbation. Since we are dealing with a bad conductor, the intra-atomic coupling
is very much stronger than the “hopping” matrix element. Perturbation theory with
respect to Hs f is not applicable.

The electron spin si and the localized Mn spin Si can couple to give SeM = S± 1
2 .

The corresponding energies can be easily calculated. From
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S2
eM = �

2SeM (SeM + 1) = (s + S)2 = 3

4
�

2 + S(S + 1)�2 + 2(s · S)

it follows that

s · S = �
2

2

{− (S + 1) i f SeM = S − 1/2
+ S i f SeM = S + 1/2

(5.190)

The exchange interaction between the mobile electron and the magnetic ion there-
fore has the energies

εα = − 1

2
�

2 J S ; εβ = + 1

2
�

2 J (S + 1) (5.191)

Let the spin S1 define the z-axis. Then, the energies εα and εβ belong to the following
spin states of the mobile electron at S1:

|α〉 =
(

1
0

)
; |β〉 =

(
0
1

)
(5.192)

One can easily see that |α〉 and |β〉 are not the eigenstates of the Hamiltonian. If the
angle between the spins S1 and S2 is ϑ , then the corresponding states at the second
Mn ion are given by

|α′〉 =
(

cos ϑ/2
sin ϑ/2

)
= cos(ϑ/2) |α〉 + sin(ϑ/2) |β〉

|β ′〉 =
(

sin ϑ/2
− cos ϑ/2

)
= sin(ϑ/2) |α〉 − cos(ϑ/2) |β〉

(5.193)

Within the framework of our simple cluster model, we treat the following four states
as a complete basis:

|1〉 = |1α〉 Electron at atom 1 in state |α〉
|2〉 = |1β〉 Electron at atom 1 in state |β〉
|3〉 = |2α′〉 Electron at atom 2 in state |α′〉
|4〉 = |2β ′〉 Electron at atom 2 in state |β ′〉

Therewith it is implicitly assumed that the jump process of the excess electron takes
place without a spin flip. The existence of the O2−-ion is, within this model, no
more relevant. It only catalyses the jump process. The matrix elements of the model
Hamiltonian

H = H0 + Hs f , (5.194)

where H0 describes the kinetic energy of the mobile electron, can be easily given, if
as was done in Eq. (5.164), we introduce the transfer integral:
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〈1α, β|H |2α′, β ′〉 = 〈1α, β|H0|2α′, β ′〉 = t〈α, β|α′, β ′〉 (5.195)

Here we have used the fact that Hs f acts only locally. On the other hand, the diagonal
elements of the full Hamiltonian are relatively simple (〈i, αβ|H0|i, αβ〉 = 0, i =
1, 2):

H11 = εα = −1

2
�

2 J S = H33 ; H22 = εβ = −1

2
�

2 J (S + 1) = H44 (5.196)

For the non-diagonal elements, we get

H12 = 〈α|β〉 = 0 = H21 = H34 = H43

H13 = t〈α|α′〉 = t cos ϑ/2 = H31

H14 = t〈α|β ′〉 = t sin ϑ/2 = H41 (5.197)

H23 = t〈β|α′〉 = t sin ϑ/2 = H32

H24 = t〈β|β ′〉 = −t cos ϑ/2 = H42

We thus have the following Hamiltonian matrix:

H ≡

⎛
⎜⎜⎝
− 1

2 �
2 J S 0 t cos ϑ/2 t sin ϑ/2

0 1
2 �

2 J (S + 1) t sin ϑ/2 −t cos ϑ/2
t cos ϑ/2 t sin ϑ/2 − 1

2 �
2 J S 0

t sin ϑ/2 −t cos ϑ/2 0 1
2 �

2 J (S + 1)

⎞
⎟⎟⎠ (5.198)

Since the basis |i〉, i = 1, · · · , 4 does not consist of eigenstates, H is not diagonal
in this representation. The eigenvalues are again obtained from the secular determi-
nant:

det(H − E 1l) =

=
{(

E − �
2 J

4

)2

−
(

t cos
ϑ

2
− �

2 J

2

(
S + 1

2

))2

− t2 sin2 ϑ

2

}

∗
{(

E − �
2 J

4

)2

−
(

t cos
ϑ

2
+ �

2 J

2

(
S + 1

2

))2

− t2 sin2 ϑ

2

}

(5.199)

Let us define

γ± =
√(

t cos ϑ/2 ± 1

2
�2 J

(
S + 1

2

))2

+ t2 sin2 ϑ/2 (5.200)
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Then, from the condition that the secular determinant vanishes, we get the following
four eigenenergies of our model Hamiltonian:

E−− = 1
4 �

2 J − γ− ; E−+ = 1
4 �

2 J − γ+
E+− = 1

4 �
2 J + γ− ; E++ = 1

4 �
2 J + γ+

(5.201)

Just as in the case of the superexchange in Sect. 5.3.2, we will try to express the
angle dependence (cos ϑ/2, sin2 ϑ/2) in terms of the spin vectors S1 and S1. That is
quite simple in a semiclassical vector model (Fig. 5.19):

|S1| = |S2| = S ; cos ϑ/2 =
1
2 |S1 + S2|

S
= Stot

2S
(5.202)

When the spin of the mobile electron is included, then the possible values are

S0 = Stot ± 1

2
(5.203)

Since the semiclassical model becomes correct in the limit S → ∞, it is a good
approximation to set

cos ϑ/2 ≈ S0

2S
(5.204)

A quantum mechanically correct treatment of the problem [11], whose details we
will not go into here, leads to the same Hamiltonian as in (5.198) when we simply
set

cos ϑ/2 = S0 + 1
2

2S + 1
(5.205)

θ

1

2

tot
S

S

S

.

Fig. 5.19 Composition of two semiclassical spins S1 and S2 into a total spin Stot



222 5 Exchange Interaction

Other than this, everything else remains unchanged. S0 can take half-integer values
between 1/2 and 2S + 1/2. Using this expression, we will calculate further.

The prototype materials for “double exchange” as presented at the beginning of
this section are bad electric conductors, i.e. the “hopping” matrix element t is a small
quantity. Therefore, we can assume �

2 J � t , and then simplify the expression for
γ±:

γ± =
{

t2 ± �
2 J

(
S + 1

2

)
t cos ϑ/2 + 1

4
(�2 J )2

(
S + 1

2

)2
}1/2

≈ 1

2
�

2 J

(
S + 1

2

){
1 ± 4t cos ϑ/2

�2 J (S + 1
2 )

}1/2

≈ 1

2
�

2 J

(
S + 1

2

){
1 ± 2t cos ϑ/2

�2 J (S + 1
2 )

}

≈ 1

2
�

2 J

(
S + 1

2

)
± t cos ϑ/2 (5.206)

This gives for the energies

E−− ≈ − 1
2 �

2 J S + t cos ϑ
2 E−+ ≈ − 1

2 �
2 J S − t cos ϑ

2
E+− ≈ 1

2 �
2 J (S + 1) − t cos ϑ

2 E++ ≈ 1
2 �

2 J (S + 1) + t cos ϑ
2

(5.207)

To be concrete, we take

t > 0 ; J > 0 (5.208)

Then, E−+ is the ground state energy (ϑ ≤ π ), on which alone, we will concentrate
ourselves further on:

E−+ = E0 ≈ −1

2
�

2 J S − t
S0 + 1

2

2S + 1
(5.209)

The rest of the effort is directed at the derivation of an effective Hamiltonian, whose
ground state energy is the same as E0:

S0 = Stot + 1

2
⇒ E0 = −1

2
�

2 J S − t

2S + 1
− t

Stot

2S + 1

S0 = Stot − 1

2
⇒ E0 = −1

2
�

2 J S − t
Stot

2S + 1

The two cases are different from each other only by an unimportant constant t
2S+1 .

For this reason, we consider only the simpler second case. The constant (− 1
2 �

2 J S)
is also, naturally, not important, so, we are actually looking for an effective Hamil-
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tonian, whose eigenvalues coincide with

E = −t
Stot

2S + 1
(5.210)

We first try to express Stot in terms of S1 and S2:

S2
tot = (S1 + S2)2 = �

2 Stot (Stot + 1)

= �
2

((
Stot + 1

2

)2

− 1

4

)

= S2
1 + S2

2 + 2(S1 · S2)

= 2S(S + 1) �
2 + 2 (S1 · S2)

With this, we get

Stot = −1

2
+ 1

2

√
1 + 8S(S + 1) + (8/�2) S1 · S2 (5.211)

This finally leads to the double exchange Hamiltonian, we are looking for, when we
further ignore unimportant constants:

H = −t

2(2S + 1)

√
1 + 8S(S + 1) + (8/�2) S1 · S2 (5.212)

In this form, H is not of Heisenberg type. If we expand the square root in a series,
then, in principle, all powers of (S1 ·S2) appear. Therefore, we can adapt the follow-
ing ansatz [12]:

HS = −t
∞∑

n=0

Jn(S) (S1 · S2)n (5.213)

However, not all the powers of (S1 · S2) are independent of each other. This we
demonstrate taking two examples:

(a) S = 1
2

In this case, there are two possibilities:

Stot = 0, 1 (5.214)

That means

1

�2
(S1 · S2) = 1

2
Stot (Stot + 1) − S(S + 1) =

{− 3
4 f or Stot = 0

+ 1
4 f or Stot = 1

(5.215)
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With these values, we can uniquely determine the parameters α and β in the
ansatz

1

�4
(S1 · S2)2 = α + β

1

�2
(S1 · S2) (5.216)

9
16 = α − 3

4 β
1

16 = α + 1
4 β

Then (5.216) becomes

1

�4
(S1 · S2)2 = 3

16
− 1

2�2
(S1 · S2) (5.217)

This is a relation, which we already used in Sect. 5.2.3. With the above relation,
the infinite series appearing in H terminates with the linear term itself, because,
all the higher powers can be expressed in terms of the linear term. This leads to
a new ansatz for our model Hamiltonian:

H1/2 = −t (J0(1/2) + J1(1/2) (S1 · S2)) (5.218)

This operator should, in view of (5.210), give the eigenvalues

E = −t

{
0 f or Stot = 0
1/2 f or Stot = 1

(5.219)

This results in two equations that determine J0 and J1:

−t (J0 − 3
4 J1�

2) = 0
−t (J0 + 1

4 J1�
2) = − 1

2 t

from which it follows that

J0(1/2) = 3

8
; J1(1/2) = 1

2 �2
(5.220)

Thus, for S = 1/2, H has the usual Heisenberg structure:

H1/2 = −3

8
t − 1

2
t

1

�2
(S1 · S2) (5.221)

The procedure is completely analogous for

(b) S = 1
Now the possibilities are

Stot = 0, 1, 2 (5.222)
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With this, we uniquely determine the coefficients α, β and γ in the ansatz

1

�6
(S1 · S2)3 = α + β

�2
(S1 · S2) + γ

�4
(S1 · S2)2 (5.223)

With the analogous relation to (5.216), we get now three possible values for
(S1 · S2):

1

�2
(S1 · S2) =

⎧⎨
⎩
−2 f or Stot = 0
−1 f or Stot = 1

1 f or Stot = 2
(5.224)

This leads to

1

�6
(S1 · S2)3 = 2 + 1

�2
(S1 · S2) − 2

�4
(S1 · S2)2

Thus the series for HS=1 terminates after the quadratic term, giving the following
expression:

HS=1 = −t (J0(1) + J1(1) (S1 · S2) + J2(1) (S1 · S2)2) (5.225)

This operator should according to (5.210) have the eigenvalues

E = − t

3

⎧⎨
⎩

0 f or Stot = 0
1 f or Stot = 1
2 f or Stot = 2

(5.226)

With the above relation for S1 · S2, we get the following equations to determine
J0, J1 and J2

0 = J0 − 2�
2 J1 + 4�

4 J2
1
3 = J0 − �

2 J1 + �
4 J2

2
3 = J0 + �

2 J1 + �
4 J2

with the solutions

J0(1) = 5

9
; J1(1) = 1

6�2
; J2(1) = − 1

18�4
(5.227)

The double exchange Hamiltonian HS=1 is now not of Heisenberg type anymore:

HS=1 = −5

9
t − t

6�2
(S1 · S2) + t

18�4
(S1 · S2)2 (5.228)

For any arbitrary S, one can calculate HS in a very similar manner. For S > 1/2,
HS is no more bilinear but biquadratic, bicubic and so on. The highest power



226 5 Exchange Interaction

of (S1 · S2) in HS is 2S. Even though the coefficients Jn decrease with n for all
S, the convergence is rather slow. In case Jn(S) for n ≥ 2 are not negligible,
then, HS is not of Heisenberg type. However, the bilinear term, which always
dominates, is always ferromagnetic!

In this chapter, we have learnt about a number of exchange mechanisms, which
lead to model Hamiltonians, which in principle can describe collective magnetism.
Whether a particular model shows the phase transition paramagnetism ⇔ ferromag-
netism or not is, for finite temperatures, not decided by the internal energy U = 〈H〉,
but by the free energy F = U−T S. In the next chapter, special attention will be paid
to the considerations, under what conditions, the models developed so far, actually
give TC,N > 0.

5.4 Problems

Problem 5.1 c†iσ (ciσ ) is the creation operator (annihilation operator) of an electron
with spin σ (σ =↑,↓) at the lattice site Ri . The following Fermi commutation
relations are valid:

[
ciσ , c jσ ′

]
+ =

[
c†iσ , c†jσ ′

]
+
= 0

[
ciσ , c†jσ ′

]
+
= δi jδσσ ′

[. . . , . . . ]+ is the anticommutator.

1. Show that spin operators can be defined by

Sz
i = �

2

(
ni↑ − ni↓

)
; niσ = c†iσ ciσ

S+
i = �c†i↑ci↓

S−
i = �c†i↓ci↑

Verify the commutation relations for the above operators.
2. Transform the operators c†iσ , ciσ by

cqσ = 1√
N

∑
i

exp(−iq · Ri )ciσ

onto the wavenumbers q of the first Brillouin zone. Show that c†qσ and cqσ are
also Fermi operators.
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Problem 5.2 Calculate the free energy and the free enthalpy for a ferromagnetic
material which satisfies the Curie–Weiss law. First show that the heat capacity cM

depends only on temperature and then assume that cM (T ) is known.

Problem 5.3 For the ferromagnetic material in Problem 5.2, additionally

cM (T, M = 0) = γ T (γ > 0)

shall be valid.

1. How do F(T, M), S(T, M), S(T, H ) and U (T, M) read?
2. Calculate the heat capacities cM and cH and also the adiabatic susceptibility χS .

Problem 5.4 Let the crystal lattice consist of two chemically completely equiva-
lent sublattices 1 and 2, which by themselves order ferromagnetically below the
Neél temperature TN . Let the spontaneous magnetizations of the two sublattices be
antiparallel to each other and equal in magnitude (antiferromagnet):

M1S(T ) = −M2S(T ) �= 0 for T < TN

The sublattice magnetizations can be expressed in terms of the exchange fields:

B(1)
A = μ0(λM1 + ρM2)

B(2)
A = μ0(ρM1 + λM2)

Temperature and magnetic field dependence are determined by the Brillouin func-
tion:

M1,2(T, B0) = M0 BJ

(
β JgJ μB(B0 + B(1,2)

A )
)

M0 = N

2V
gJ JμB

Mi S(T ) = lim
B0→0+

Mi (T, B0) (i = 1, 2)

1. Express the Neél temperature in terms of the exchange constants λ and ρ.
2. Discuss the high-temperature behaviour of the susceptibility χ and determine the

paramagnetic Curie temperature Θ (Curie–Weiss law).
3. Necessary condition for the antiferromagnetic structure is

ρ < 0

Discuss the behaviour of

− Θ

TN

for the cases λ > 0 and λ < 0!
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Problem 5.5 Discuss the critical behaviour of the Weiss ferromagnet made up of
localized moments mi = m ∀i at the lattice sites Ri .

1. Show that with the reduced quantities

M̂ = M

M0
; b = mμ0 H

kB T
; ε = T − Tc

Tc

(M0 = N

V
m = Saturation magnetization)

the equation of state can be written as follows:

M̂ = L

(
b + 3M̂

ε + 1

)

L is the Langevin function:

L(x) = coth x − 1

x

2. Calculate the critical exponent β of the order parameter MS .
3. What is the value of the critical exponent δ of the critical isotherm?
4. Derive the critical exponents γ , γ ′ and determine the behaviour of C

C ′ of the
critical amplitudes.

Problem 5.6 Let σ be the Pauli spin operator with the components

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)

These have the properties proved in Problem 2.2 (5.81), (5.82) and (5.82). Let σ (i),
i = 1, 2 be the spin operator for the particle i .

1. Show that

(
σ (1) · σ (2))2 = 31l − 2

(
σ (1) · σ (2))

holds
2. Verify that the operator

Q12 = 1

2

(
1l + σ (1) · σ (2)

)
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interchanges the spins of the particles 1 and 2:

Q12 σ (1) Q−1
12 = σ (2)

Q12 σ (2) Q−1
12 = σ (1)

3. In a system of two-spin- 1
2 -particles, the spins can couple to give a total spin

S = 1 and S = 0. The eigenstates are the symmetric triplet (5.88) and the anti-
symmetric singlet (5.89). Show that these are also the eigenstates of the operator
Q12 with the eigenvalues 1,1,1 and −1.

Problem 5.7 Calculate the integral

R =
∫ ∞

0
dx x

sin x

x2 − y2

Problem 5.8 If the Coulomb interaction of the electrons in a solid is considered to
be intra-atomic, then

H1 = 1

2

∑
iσσ ′

∑
μμ′νν ′

v(μν; μ′ν ′) c†iμσ c†iνσ ′ciν ′σ ′ciμ′σ

holds (see (8.23)). i indexes the lattice sites and μ, ν, μ′, ν ′ are the band indices.
As far as the collective magnetism is concerned all the matrix elements are not
equally important. Normally one restricts oneself to the scattering processes where
at the most two different bands are involved and to the so-called direct terms and
exchange terms ((8.24),(8.25)):

Ĥ1 = 1

2

∑
iσσ ′

∑
μν

[
(1 − δμνδσσ ′)Uμνniμσ niνσ ′ + (1 − δμν)Jμν c†iμσ c†iνσ ′ciμσ ′ciνσ

]

Here niμσ = c†iμσ ciμσ is the occupation number operator.

1. Show that Ĥ1 can be split as follows:

Ĥ1 = HU + Hd + Hex

Here HU is an intraband Coulomb interaction corresponding to a multi-band
Hubbard model (Chap. 8)

HU = 1

2

∑
iσ

∑
μ

Uμμniμσ niμ−σ

Hd describes a direct interband Coulomb interaction

Hd = 1

2

μ �=ν∑
iμν

(Uμν − 1

2
Jμν) niμ niν ; niμ =

∑
σ

niμσ



230 5 Exchange Interaction

Hex is an interband exchange term which can also be written as spin–spin inter-
action:

Hex = − 4

�2

μ �=ν∑
iμν

Jμν siμ · siν

The spin operator s is defined as in (5.78).
2. Using the result of (1), justify the Kondo-Lattice Model (sf-model) as a theoreti-

cal model to describe the local moment systems such as Gd, EuO, Ga1−x Mnx As,
. . . .

Problem 5.9 Conduction electrons, which interact with antiferromagnetically ordered
localized spin system, are described by the following simplified model Hamiltonian:

H = H0 + H1

H0 =
∑
kσαβ

εαβ(k)c†kσαckσβ

H1 = −1

2
J
∑
kσα

zσ 〈Sz
α〉c†kσαckσα (zσ = δσ↑ − δσ↓)

α, β = A, B indicate two chemically equivalent ferromagnetic sublattices A and B.
For the sublattice magnetizations

〈Sz
A〉 = −〈Sz

B〉 = 〈Sz〉

holds.
The Bloch energies

εAA(k) = εB B(k) ≡ ε(k)

εAB(k) = ε∗B A(k) ≡ t(k)

are assumed to be known, where k is a wavevector in the first Brillouin zone of the
sublattice.

1. Calculate the eigenstates and eigenenergies of the unperturbed part H0.
2. Using the Schrod̈inger perturbation theory, calculate the energy corrections in

the first and second order due to H1.
3. Repeat it with Brillouin–Wigner perturbation theory.
4. Compare the results of (2) and (3) with the exact eigenenergies.

Problem 5.10 The Weiss model of the ferromagnet starts with a single spin in a
self-consistent exchange field (5.7). A reasonable extension of the model that could
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be investigated is the one where an exchange coupled pair of spins is in the presence
of such an exchange field:

H = −J S1 · S2 − gμB

�

(
Sz

1 + Sz
2

)
B̂

Here the effective field B̂ consists of an external and an exchange field. The latter
should again be proportional to the magnetization of the ferromagnet:

B̂ = B0 + Bex = B0 + λμ0 M

For simplicity, all the fields are assumed to be homogeneous and oriented along the
z-direction.

1. Derive the partition function of the two-spin system assuming S1 = S2.
2. For the special case of S1 = S2 = 1

2 give the determinig equation for the magne-
tization. How does this result differ from the Weiss result (5.8)?
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Chapter 6
Ising Model

In Sect. 5.2 and 5.3, we have learnt about one of the most important models of
magnetism, namely the Heisenberg model. It was conceptualized specially for mag-
netic insulators, but as we have argued in Sect. 5.3.1, it is also applicable to mag-
netic metals with localized magnetic moments. The decisive precondition for the
applicability of Heisenberg model is the existence of localized permanent mag-
netic moments. The coupling which leads to either a direct or an indirect inter-
action between moments can, of course, be a variety of physical origins. From the
conceptual point of view, the Heisenberg model is not applicable to the classical
band magnets Fe, Co and Ni, since for these materials, the magnetism is due to the
itinerant and therefore completely delocalized band electrons. Therefore for band
magnets, we have to develop new concepts, which will be done in Chap. 8.

The Heisenberg model permits a few special cases if the scalar product Si · S j is
expressed in terms of weighted components:

H = −
∑
i, j

Ji j

{
α
(

Sx
i Sx

j + Sy
i Sy

j

)
+ β Sz

i Sz
j

}

α = β = 1 : Heisenberg model
α = 0 ; β = 1 : Ising model
α = 1 ; β = 0 : XY-model

If the localized moments are not due to pure spins Si but due to the total angular
momentum Ji , then we have to, according to the Wigner–Eckart theorem (see the
application example (2) in Sect. 2.5), replace Si by

Si → (gJ − 1) Ji

where gJ is the Lande’s g-factor. The structure of the Hamiltonian remains
unchanged.

Before we discuss the Heisenberg model in detail in Chap. 7, we want first to
investigate the Ising model in the context of the paramagnetism ⇔ ferromagnetism
phase transition.

W. Nolting, A. Ramakanth, Quantum Theory of Magnetism,
DOI 10.1007/978-3-540-85416-6 6, C© Springer-Verlag Berlin Heidelberg 2009
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6.1 The Model

Till today, the Ising model is the only somewhat realistic model of a many-body
system that has shown a phase transition and has been evaluated mathematically
rigorously at least in lattice dimensions of d = 1 and d = 2. Actually speaking,
this model should be called “Lenz model”. Around 1920, that is, before quantum
mechanics was developed, Wilhelm Lenz gave his student E. Ising this problem
to solve. Later the model became known as the Ising model. At that point of time
the only theory of magnetism that existed was the Weiss’ theory (see Sect. 5.1.2),
which showed a phase transition paramagnetism ⇔ ferromagnetism independent
of the lattice dimensionality. Lenz expected the same result from the Ising model,
which contains already rather realistic microscopic interactions. The dissertation of
Ising was, therefore, disappointing on two counts. First, Ising could show that the
one-dimensional model shows no phase transition and second, he could not solve
the model in two and three dimensions.

Even today, the Ising model is treated as a classical model. Every one of the N
lattice points on a d-dimensional (d = 1, 2, 3) periodic array is assigned a spin
variable Si , which is a c-number and can take only the values ± 1:

Si = ± 1 ; i = 1, 2, · · · , N (6.1)

The model is then characterized by the following Hamiltonian function:

H = −
∑
i, j

Ji j Si S j − μB B0

∑
i

Si (6.2)

The possible applications of this model are extremely large. We list, in the following,
the important ones:

1. Model for magnetic insulators: This was the original goal. The applicability is
naturally restricted because of the simplification when compared to the more
realistic Heisenberg model. The restriction to only the z-component of the spin
operators can be justified only in magnetic systems with strongly uniaxial sym-
metry, where the permanent moments are confined to a particular space direc-
tion. However, there exist such systems in reality:
Dy P O4, CoCs3Cl, CoRb3Cl5, etc.

2. General demonstration model of statistical mechanics: As the simplest micro-
scopic model which shows a phase transition, the Ising model is at the centre of
the current discussion on phase transitions and critical phenomena.

3. Model for binary alloys: The Ising model is also useful for many non-magnetic
problems. The statistical distribution of the two kinds of atoms in a lattice in the
case of a binary alloy can be simulated by the two possible orientations of the
Ising spins.
S = +1 ⇔ Atom type A ; Si = −1 ⇔ Atom type B
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4. Lattice gas model for fluids: One divides the volume V of the fluid into small
cells of volume Δv, which is roughly the volume of a molecule. One can intro-
duce a cell variable ni such that

ni =
{

1 i f cell i is occupied
0 i f cell i is unoccupied

(6.3)

Then one can immediately recognize the equivalence to the Ising model:

Si = 2ni − 1 (6.4)

The phase transition is recognized as follows. For T > Tc (gas phase), taking
any volume ΔV of macroscopic dimension (Fig. 6.1), we find a statistical dis-
tribution of the occupied cells. In contrast, for T < Tc, we find macroscopic
regions which are either fully occupied or completely empty. This corresponds
to liquid phase. As the model does not contain the gravitational potential, there
is, of course, no interface between the “gas” and the “liquid”.

5. Model for ferroelectrics: Ferroelectrics are characterized by a spontaneous elec-
tric polarization, which below a critical temperature Tc has two orientations. The
equivalence to the Ising model is obvious.

6. Model for biological systems: This is a fast developing field where the Ising
model is extensively applied in the area of “synergetics”. We only make a men-
tion of it. For more details one should refer to the corresponding literature.

In the following sections, we will discuss the Ising model extensively. The inter-
est in the Ising model is because it gives a host of exact results, which is rather
unusual for many-body models:

d = 1: Exact solution is possible

(a) with and without field B0

(b) for nearest neighbour interactions

Fig. 6.1 Lattice gas model as
a special Ising model Δv

ΔV
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Ji j =
{

J i f Ri and R j are nearest neighbours
0 otherwise

(6.5)

and for

Ji j ∼ ∣∣Ri − R j

∣∣−(d+α)
(α > 0) (6.6)

There is no phase transition (Tc = 0).

d = 2: Exact solution is possible

(a) without field
(b) for nearest neighbour interactions.

There is a phase transition (Tc > 0).

d = 3: A full exact solution is not available till now. However, there exist
extrapolation methods, which can be treated for all purposes to be quasi-
exact. The existence of phase transition is rigorously proved.

6.2 The One Dimensional Ising Model

6.2.1 Spontaneous Magnetization

We consider a linear chain of N spins (Fig. 6.2), first without switching on a field:

H = −
N−1∑
i=1

Ji Si Si+1 (6.7)

The interaction is only between the nearest neighbours: Ji,i+1 → Ji . We are inter-
ested in the question, whether a system defined by the above Hamiltonian function
shows a phase transition, that is, whether there is a temperature Tc below which
spontaneous magnetization sets in. To answer this question, we first calculate the
canonical partition function Z N . From this we derive the spin correlation function
〈Si Si+ j 〉 which directly gives the spontaneous magnetization Ms .

We make the substitution

ji = Ji

kB T
= β Ji (6.8)

1 2 3 NN−1

Fig. 6.2 Schematic plot of the one-dimensional Ising model consisting of localized spins



6.2 The One Dimensional Ising Model 237

Every spin has two possible orientations. Therefore, there are 2N possible spin
orderings and so the same number of distinct states which are to be considered
for the calculation of the canonial partition function.

Z N = Z N ( j1, j2, · · · , jN−1) =
±1∑
S1

±1∑
S2

· · ·
±1∑
SN

exp

(
N−1∑
i=1

ji Si Si+1

)
(6.9)

To obtain a recursion relation, we extend the chain by one more spin:

Z N+1 =
±1∑
S1

±1∑
S2

· · ·
±1∑
SN

exp

(
N−1∑
i=1

ji Si Si+1

) ±1∑
SN+1

exp( jN SN SN+1) (6.10)

We see that

±1∑
SN+1

exp ( jN SN SN+1) = 2 cosh( jN SN ) = 2 cosh( jN )

The last step results from the fact that SN can take only the values ±1 and that cosh
is an even function. We now have the recursion formula that we are looking for

Z N+1 = 2 Z N cosh( jN ) (6.11)

If Z1 is the partition function of a single spin, then, obviously we can write,

Z N+1 = Z1 2N
N∏

i=1

cosh( ji ) (6.12)

A single spin has two possible orientations and no interactions. Therefore,

Z1 =
±1∑
S1

e0 = 2 (6.13)

With this we have the canonical partition function of the one-dimensional Ising
model as

Z N (T ) = 2N
N−1∏
i=1

cosh

(
Ji

kB T

)
(6.14)

Making the usual assumption

Ji = J f or all i (6.15)
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we get

Z N (T ) = 2N coshN−1(β J ) (6.16)

From the partition function one can derive all the physically important quantities,
for example, the spin correlation function.

〈Si Si+ j 〉 = 1

Z N

∑
{S}

Si Si+ j exp

(
N−1∑
k=1

jk Sk Sk+1

)
(6.17)

The summation is over all the 2N possible spin configurations. One can now write

∂

∂ ji

∂

∂ ji+1
· · · ∂

∂ ji+ j−1
Z N

=
∑
{S}

(Si Si+1)(Si+1︸ ︷︷ ︸
+1

Si+2) · · · (Si+ j−1︸ ︷︷ ︸
+1

Si+ j ) ∗

∗exp

(
N−1∑
k=1

jk Sk Sk+1

)

=
∑
{S}

(Si Si+ j )exp

(
N−1∑
k=1

jk Sk Sk+1

)

= Z N 〈Si Si+ j 〉

With the expression (6.14) for the partition function Z N (T ), we can further write

〈Si Si+ j 〉 =

= 2N cosh( j1) · · · cosh( ji−1) sinh( ji ) · · · sinh( ji+ j−1) · · · cosh( jN−1)

2N cosh( j1) · · · cosh( jN−1)

We have thus obtained the expression for the spin correlation function:

〈Si Si+ j 〉 =
j∏

r=1

tanh (β Ji+r−1) (6.18)

Thus, eventhough the interaction within the Ising system is of very short range
(nearest neighbours), this yields a very long range correlation among the spins. If
we break the Ising chain at some place i0, that is, if we set Ji0 = 0, and if i0 lies
between i and i + j , then 〈Si Si+ j 〉 = 0, because tanh(β Ji0 ) = tanh(0) = 0. If i0

does not lie between i and i + j , then the correlation function remains unaffected
by the fact that the chain is broken.
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In the usual case where the coupling constants Ji = J , the correlation function
is independent of i . Only the distance between the spins plays a role:

〈Si Si+ j 〉 = tanh j (β J ) (6.19)

With the help of the correlation function, we can now answer the question, whether
for T �= 0, spontaneous magnetization appears in the one-dimensional Ising model.
For that, we make use of the fact that two spins, infinite distance apart do not “know”
of each other:

〈Si Si+ j 〉 → 〈Si 〉〈Sj 〉 f or |i − j | → ∞ (6.20)

This limiting case is, of course, meaningful only in the thermodynamic limit. As a
consequence of the translational symmetry, the expectation value is same for all the
spins 〈Si 〉. This provides a possible definition of the spontaneous magnetization:

M2
s (T ) = μ2

B〈S〉2 = μ2
B lim

j→∞
〈Si Si+ j 〉 (6.21)

We know that | tanh x | ≤ 1, where the equality is for x → ±∞. That leads to

lim
j→∞

〈Si Si+ j 〉 =
{

0 i f β �= ∞
1 i f β = ∞ (6.22)

or

Ms(T ) = μB

{
0 i f T �= 0
1 i f T = 0

(6.23)

The one-dimensional Ising model has a phase transition at T = 0. There is no
spontaneous magnetization at finite temperature (Fig. 6.3).

Whether there is a phase transition or not is decided by the free energy F =
U − T S. There are two competing tendencies, namely the orientation of the spins,
which minimizes U and the statistical distribution of the spin orientations (disorder),
which maximizes the entropy S. In the one-dimensional model, the tendency to

Fig. 6.3 Phase diagram of the
one-dimensional Ising model MS

T

μ
B
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orient is always weak, as there do not exist sufficient number of nearest neighbours.
Qualitatively, one can understand this as follows: Let us assume that in the one-
dimensional Ising model with nearest neighbour interactions, there is a Tc > 0, that
is, there is a phase transition. Then, in the ordered phase (0 < T ≤ Tc), we break the
chain at some place and we rotate one part of the chain into the opposite direction.
For that, we require an energy ΔU = 2J , because, by doing this, we are actually
increasing the coupling energy only at one place, namely where we are breaking the
chain. The breaking of the chain can be done at N distinct places. Therefore, there
are N possibilities of realization and consequently the entropy will increase by a
term proportional to ln N . We see that, for T �= 0, the entropy term dominates in the
free energy and the free energy itself decreases. That means at T �= 0, the ordered
state becomes unstable against such breaking of the chain and the disordered state is
always stable. Due to this reason, even for an infinitely long Ising chain with short
range interaction, there cannot be a phase transition.

6.2.2 One Dimensional Ising Model in External Field

We now want to investigate the field dependence of the partition function of the
one dimensional Ising model. For this, we make use of the famous transfer matrix
method, which was introduced by Onsager in 1944 in his solution of the two-
dimensional Ising model. This method will be demonstrated here for the one-
dimensional case. With the substitutions

j = β J ; b = βμB B0 (6.24)

and the assumption that the nearest neighbour interactions for all the pairs of spins
are equal, we write

βH = − j
N∑

i=1

Si Si+1 − b
N∑

i=1

Si (6.25)

We make use of the periodic boundary condition by making the chain into a ring as
shown in Fig. 6.4. Then we have

Fig. 6.4 One-dimensional
Ising model as a ring with
periodic boundary conditions S S

S2

S3

N 1= SN+1
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SN+1 ≡ S1 (6.26)

In order to solve the problem, we now introduce the so-called transfer function:

fi,i+1 = exp

(
+ j Si Si+1 + 1

2
b (Si + Si+1)

)
(6.27)

using which, we can write,

exp(−β H ) = f1,2 f2,3 · · · fN ,1 (6.28)

Here we have to make use of the periodic boundary condition (6.26). To the transfer
function, we now define the corresponding transfer matrix. With the spin states

|Si = +1〉 =
(

1
0

)
; |Si = −1〉 =

(
0
1

)
(6.29)

and

〈Si |T̂ |Si+1〉 = fi,i+1 (6.30)

we get the transfer matrix T̂ :

T̂ ≡
(

e j+b e− j

e− j e j−b

)
(6.31)

Exploiting the periodic boundary condition and the completeness of the spin states,
the canonical partition function (1.86) is given by

Z N (T, B0) = T r
(
e(−β H ))

=
±1∑
S1

±1∑
S2

· · ·
±1∑
SN

f1,2 f2,3 · · · fN ,1

=
±1∑
S1

· · ·
±1∑
SN

〈S1|T̂ |S2〉〈S2|T̂ |S3〉 · · · 〈SN |T̂ |S1〉

=
±1∑
S1

〈S1|T̂ N |S1〉 (6.32)

If E+ and E− are the eigenvalues of the 2 × 2 matrix T̂ , then the partition function
is given by

Z N (T, B0) = T r
(
T̂ N
) = E N

+ + E N
− (6.33)
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The energy eigenvalues as given by the condition

det(T̂ − E 1) = 0

are (see Problem 6.1)

E± = e j

(
cosh b ±

√
cosh2 b − 2 e−2 j sinh(2 j)

)
(6.34)

Obviously, E+ > E− so that in the thermodynamic limit, only E+ has a role to play:

Z N (T, B0) = E N
+

(
1 +

(
E−
E+

)N
)

→ E N
+ as N → ∞ (6.35)

From this we can evaluate all the thermodynamically important quantities. For
example,

(a) free energy per spin

f (T, B0) = −kB T lim
N→∞

1

N
ln Z N (T, B0)

= −kB T ln E+
= −J − kB T ln {cosh(βμB B0)+
+
√

cosh2(βμB B0) − 2e2β J sinh(2β J )

}
(6.36)

From this, we get, according to (1.90), the
(b) magnetization per spin

m(T, B0) = −
(

∂

∂ B0
f (T, B0)

)
T

(6.37)

This yields a relatively complicated expression for m(T, B0) from which one
can recognize the competition between the “ordering” tendency of the field and
the “disordering” tendency of the thermal motion (see Problem 6.2):

m(T, B0) = μB
sinh(βμB B0)√

cosh2(βμB B0) − 2e2β J sinh(2β J )
(6.38)

This result makes it once more clear that in the one-dimensional Ising model
spontaneous magnetization is not possible (Fig. 6.5).

m(T �= 0, B0 = 0) = 0 (6.39)

For very large fields B0, m goes into “saturation”, ms = ±μB .
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Fig. 6.5 Magnetization per
spin as a function of the
magnetic induction in the
one-dimensional Ising model

T1 T2

1T < T 2

m

B0

μB

B−μ

(c) The special case B0 = 0: In this limit the results for the Ising ring should actu-
ally coincide with those for the Ising chain (Sect. 6.2.1).
For B0 = 0, the eigenenergies of the transfer matrix become

E± = eβ J ± e−β J (6.40)

so that the partition function takes the form

Z N (T, 0) → E N
+ = 2N coshN (β J ) f or N � 1 (6.41)

In the thermodynamic limit (N → ∞), the thermodynamic potentials derived
from Z N agree with each other for the chain and the ring. For example,

f (T, B0) = −kB T ln(2 cosh(β J )) (6.42)

from which we can obtain the
(d) entropy per spin

S(T, B0 = 0) = −
(

∂ f

∂T

)
B0=0

= kB{ln(2 cosh(β J )) − β J tanh(β J )} (6.43)
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Fig. 6.6 Schematic plot of
the entropy per spin as a
function of temperature in the
one-dimensional Ising model kBln2

S/N

T

One can immediately see the following limiting cases:

limT→∞ S = kB ln 2
limT→0 S = 0

(6.44)

The second limiting case is the third law of thermodynamics. For T → ∞ all
the 2N spin states are equivalent and therefore we must have S = 1

N kB ln 2N

(Fig. 6.6).
(e) Specific heat

CB0=0 = T

(
∂S

∂T

)
B0=0

= kB
β2 J 2

cosh2(β J )
(6.45)

For T → ′′T ′′
c = 0, the specific heat is not “critical”. It actually goes to zero

satisfying the third law of thermodynamics (Fig. 6.7).
(f) Susceptibility: From (6.38) one can calculate the isothermal magnetic suscepti-

bility (Problem 6.2):

χT = μ0

(
∂m

∂ B0

)
T, B0→0

= β μ2
B μ0 e2β J (6.46)

Fig. 6.7 Specific heat in zero
field as a function of
temperature in the
one-dimensional Ising model

CB0

T

B0 = 0
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Fig. 6.8 Magnetic
susceptibility of the
one-dimensional Ising model
as a function of temperature

χ −1
T

T

The susceptibility diverges for T → ′′T ′′
c = 0 and apparently satisfies the Curie

law for high temperatures. As is to be expected for a paramagnet, χT is always
positive (Fig. 6.8).

6.3 The Phase Transition of Two-Dimensional Ising Model

In contrast to the one-dimensional Ising model, the two-dimensional model shows a
phase transition ferromagnetism ⇔ paramagnetism at a finite transition temperature
Tc > 0. In this section, we will prove the existence of the phase transition, via a
chain of estimates, without actually determining Tc. We follow the idea of Peierls
[1] who, long before Onsager [2] presented an exact derivation of the free energy,
could demonstrate the phase transition of the two-dimensional Ising model. The
original work of Peierls, however, contained a few erroneous conclusions, which
were later corrected by Griffiths [3]. Now this idea of Peierls is known as the “Peierls
argument”.

6.3.1 The Method of Proof

Let X be a finite lattice. In connection with this we will use the following free
energies:

f (X ; T, B0): The free energy per spin for the lattice X without any special
boundary conditions.

f̃ (X ; T, B0): The free energy per spin for the lattice X with special boundary
conditions.

f (T, B0) = limX→∞ f (X ; T, B0): The free energy per spin in the thermody-
namic limit.

The corresponding magnetizations are

M(X ; T, B0) = −
(

∂ f (X )

∂ B0

)
T

(6.47)
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the magnetization of the finite lattice X without any boundary conditions,

M̃(X ; T, B0) = −
(

∂ f̃ (X )

∂ B0

)
T

(6.48)

the magnetization of the finite lattice X with special boundary conditions,

M(T, B0) = −
(

∂ f (T, B0)

∂ B0

)
T

(6.49)

the magnetization in the thermodynamic limit.
The spontaneous magnetization is responsible for the phase transition.

Ms(X ; T ) = lim
B0→0

M(X ; T, B0) (6.50)

This is the spontaneous magnetization of a finite system without boundary condi-
tions. One shows rigorously that

Ms(X ; T ) ≡ 0 (6.51)

In a finite system without any boundary conditions, there is no phase transition.
However, for a finite system with appropriate boundary conditions, it is quite possi-
ble that there is a phase transition. That is,

M̃S(X ; T ) = lim
B0→0

M̃(X ; T, B0) (6.52)

can be unequal to zero. Actually, what decides about the phase transition is the
spontaneous magnetization in the thermodynamic limit:

Ms(T ) = lim
B0→0

M(T, B0) (6.53)

In the above, we have introduced all the quantities that are important for the follow-
ing discussion.

The existence of the phase transition will be proved in three steps:

1. We define a finite spin lattice X with “suitable” boundary conditions and esti-
mate the probability that a definite value (+1 or −1) of the spin variables Si is
realized at a temperature T .

2. We show that the spontaneous magnetization of the system X has a lower bound
m > 0:

M̃s(X ; T ) ≥ m > 0, i f T < T ∗(m, J )
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3. We prove that m also represents the lower bound for the spontaneous magneti-
zation in the thermodynamic limit:

Ms(T ) ≥ m > 0, i f T < T ∗(m, J )

This will complete the proof.

6.3.2 Finite Ising Lattice with Special Boundary Conditions

The important “trick” in the derivation is that, the free energy of a finite system is
calculated with so constructed boundary condition that Ms(X ; T ) �= 0, which is not
possible with free boundary conditions. At the same time, the boundary conditions
should be chosen in such a way that they do not play any role in the thermodynamic
limit.

Figure 6.9 represents a finite lattice X . Here we mean

+ ⇔ Si = +1 − ⇔ Si = −1

Fig. 6.9 Two-dimensional
lattice of spins, oriented in
positive (+) and negative (−)
z-directions, with “walls”
which separate (+) and (−)
spins
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+

+

+ + + + +
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+
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We agree upon the boundary condition that the surface layer ∂ X should contain
only (+)-spins.

For a given spin configuration, we now introduce “walls” in the lattice. A “wall”
is the line of separation between (+) and (−) sites.

When two walls intersect, at the point of intersection (“knot”) there is non-
uniqueness (Fig. 6.10). At these points, the walls are to be bent towards the side
of the (−) places as shown in Fig. 6.10. As a consequence of the special boundary
condition, the “walls” always build closed polygons Γ.

6.3.3 Probabilities

We define two probabilities:
wi (T ): probability that at temperature T the site i is occupied by spin (−).
WΓ(T ): probability that at temperature T , the polygon Γ exists.
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Fig. 6.10 The breakup of
“knots” in the spin lattice of
Fig. 6.9
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Because of the special boundary condition, the (−) site i lies always inside some
polygon Γ. That is, i cannot be a site on the surface. The converse is of course not
true, because (+) place can also lie inside a polygon. Then, we can estimate

wi (T ) ≤
∑
Γ⊃i

WΓ(T ) (6.54)

The summation is over all the conceivable polygons which enclose the site i . WΓ

does not concern only the (−) possibility for i . That is why the sign ≤.
The above estimate is surely very weak for the sites that lie deep inside the lattice

X . It is increasingly sharp as the site lies more and more towards the boundary. For
the sites which lie in the layer that is directly neighbouring to the surface layer, even
the equality sign holds because, due to the boundary condition, these sites can lie
inside a polygon only when they are themselves (−)-sites.

WΓ(T ) can be calculated exactly. Let us define the lattice X ′ as the lattice X
without the boundary layer ∂ X :

X ′ = X − ∂ X (6.55)

Then there are a total of 2N (X ′) possible spin configurations, since the spins in the
boundary layer ∂ X are fixed with S = +1. Let us denote by

∑
{S}: sum over all the 2N (X ′) spin configurations,∑
{C}: sum over all the spin configurations, in which Γ is realized.

Then, we obviously have

WΓ(T ) =
∑

{C} exp(−βH (C))∑
{S} exp(−βH (S))

(6.56)

H is the Hamiltonian function of the Ising model with nearest neighbour interac-
tions where we set the external field B0 = 0

H = −J
∑
(i, j)

Si S j (6.57)
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After building the walls, the spin configuration C contains the special polygon Γ.
We construct from C a new configuration C∗ by reversing all the spins (Si → −Si )
within Γ. The exchange ↑↑⇔↓↓ or ↑↓⇔↓↑ for the nearest neighbour pairs does
not change the energy of the system. In going from C to C∗, the energy of the system
changes only because of the spin pairs which are separated by Γ. This is because, in
C , they are antiparallel, whereas they are parallel in C∗. The change in energy per
spin pair is (−2J ). If |Γ| is the length of Γ measured in units of the lattice constants,
then we have

H (C∗) = H (C) − 2J |Γ| (6.58)

This gives us

∑
{C∗}

exp(−βH (C∗)) = e2Jβ|Γ|∑
{C}

exp(−βH (C)) (6.59)

From the exact relation for WΓ(T ) (6.56), if we leave out a few of the positive
definite summands in the denominator, we obtain an upper bound :

WΓ(T ) ≤
∑

{C} exp(−βH (C))∑
{C∗} exp(−βH (C∗))

= e−2Jβ|Γ| (6.60)

With this we have obtained an intermediate result for the probability that a site is
occupied by a (−)-spin at temperature T :

wi (T ) ≤
∑
Γ⊃i

exp(−2β J |Γ|) (6.61)

We will now try to perform the summation.

6.3.4 Realization Possibilities for the Polygons

We want to call two polygons to be of the same type, if they are related to each other
by a rigid translation in the lattice (Fig. 6.11). We define:

ρ(m, n): the number of realization possibilities for polygons with 2m vertical and
2n horizontal “wall units” (=”rod” between nearest neighbours in the wall). In this
the individual realizations shall, pairwise, be of different type.

It is obvious that for every polygon, the number of vertical (horizontal) individ-
ual wall units is always even. First, we want to make a rough estimate of ρ(m, n).
Suppose we build Γ stepwise from 2m vertical and 2n horizontal wall units. At any
lattice site j , there are three independent possibilities to place the next wall unit
(“backwards” is not allowed) (Fig. 6.12). Therefore, we have

ρ(m, n) ≤ 32m+2n (6.62)
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Fig. 6.11 Two polygons Γ1

and Γ2 of the same type

Γ

2

1

Γ

The perimeter of the polygon is (2m + 2n) units. We have ≤ because, due to
the surface, every lattice point does not have three independent possibilities. Let us
denote by

ηi (m, n): the number of possible polygons Γ built from 2m vertical and 2n hori-
zontal wall units, and which enclose the site i .

Now let Γ
(0)
i be a special (2m, 2n)-polygon that contains i . Let g(Γ(0)

i ) be the
number of polygons of the same type as Γ

(0)
i which also contain i . First, we want to

estimate this number:
Γ

(0)
i contains a maximum of (m · n) lattice points, that is, when it is a rectangle.

That means, we can rigidly shift Γ
(0)
i in a maximum of (m ·n) ways, keeping i within

the polygon.

g(Γ(0)
i ) ≤ m · n (6.63)

We can now estimate ηi (m, n):

ηi (m, n) ≤ (m · n) ρ(m, n) (6.64)

This is again a very rough estimate because, in ρ on the right-hand side of the
inequality, those polygons are also counted, which do not contain i at all. Using the

Fig. 6.12 Three allowed
possibilities at site j to place
the next wall unit

2

3

j

1
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estimate for ρ given by (6.62) we have

ηi (m, n) ≤ (m · n) 32m+2n (6.65)

With this, we can now further limit the probability wi (T ) as given by (6.61) that the
i th lattice site contains a spin (−) at temperature T

wi (T ) ≤
∑
Γ⊃i

exp(−2β J |Γ|)

≤
∞∑

m=0

∞∑
n=0

η i (m, n) exp(−2β J (2m + 2n)) (6.66)

On the right-hand side there are only non-negative summands. Therefore, we can
allow the sums to extend from 0 to ∞ eventhough for a finite lattice X , for every Γ,
m and n must be finite and ≥1. In addition, we have used |Γ| = 2m + 2n. Finally,
we use the estimate for ηi (m, n) so that we get

wi (T ) ≤ φ(β, J ) (6.67)

with

φ(β, J ) =
[ ∞∑

n=0

n
(
3e−2β J

)2n

]2

(6.68)

The series converges for J > 0 (ferromagnet!):

φ(β, J ) =
⎡
⎣ ∞∑

n=0

n

⎛
⎝9e−4β J︸ ︷︷ ︸

≡y

⎞
⎠

n⎤
⎦

2

(β such that y < 1)

=
[(

d

dy

∞∑
n=0

yn

)
y

]2

=
[

y
d

dy

(
1

1 − y

)]2

= y2

(1 − y)4

For a sufficiently large β (i.e. small T ), φ(β, J ) can be made smaller than any arbi-
trary, finite value:

φ(β, J ) =
[

9e−4β J

(
1 − 9e−4β J

)2
]2

(6.69)
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6.3.5 Magnetization of the Finite Lattice

We are now in a position to estimate the spontaneous magnetization M̃s(X, T ) of
the finite spin lattice:

M̃s(X, T ) = μB
1

N (X )

∑
i∈X

〈Si 〉B0=0

= μB

N (X )
(〈N+(X )〉 − 〈N−(X )〉)

= μB

N (X )
(N (X )(1 − wi (T )) − N (X )wi (T ))

= μB(1 − 2wi (T )) (6.70)

When we impose an upper bound for wi (T ), then we get a lower bound for the
spontaneous magnetization:

M̃s(X ; T ) ≥ μB(1 − 2φ(β, J )) (6.71)

For β → ∞, i.e. for T → 0, φ(β, J ) can be made to lie below any arbitrary finite
limit. With this we complete the first part of the proof.

For every 0 < m < μB and for every J > 0, there exists a critical temperature

T ∗ = T ∗(m, J ) (6.72)

such that for all T ≤ T ∗ holds,

M̃s(X, T ) ≥ m > 0

This is valid for a finite but in principle arbitrarily large spin lattice. Considering the
fact that Ms(X ; T ) for a finite system without boundary conditions is always zero,
it must be concluded that the boundary condition for the surface, independent of the
size of the system X does produce a volume effect.

6.3.6 Thermodynamic Limit

We have, so far, discussed the spontaneous magnetization M̃s(X, T ) of a finite Ising
lattice. For this case, we have (6.52)

M̃s(X ; T ) = lim
B0→0

M̃s(X, T, B0) = − lim
B0→0

(
∂ f̃ (X )

∂ B0

)
T

(6.73)

For T ≤ T ∗, this expression is ≥ m. For T �= T ∗, the thermodynamic potential
f̃ (X ) must be an analytical function, i.e. it should be continuous and differentiable
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any number of times. Then it follows from

−
(

∂ f̃ (X )

∂ B0

)
T,B0=0

≥ m (6.74)

for sufficiently small fields B0:

f̃ (X ; T, B0) − f̃ (X ; T, 0) ≤ −m B0 (T < T ∗) (6.75)

So far we have discussed only the free energy f̃ (X ) of the finite lattice X with
its special boundary conditions. We do not know the corresponding function f (X )
without the boundary conditions. Since the free energy is an extensive quantity, the
two functions must coincide in the thermodynamic limit, as the boundary conditions
influence only the now irrelevant surface term:

f̃ (X ; T, B0) → f (T, B0) as X → ∞
f (X ; T, B0) → f (T, B0) as X → ∞ (6.76)

Using this limiting case in the inequality (6.75), the right-hand side remains unaf-
fected. Thus it holds also

f (T, B0) − f (T, 0) ≤ −m B0 (T < T ∗, B0 → 0) (6.77)

Finally, it follows from this that

Ms(T ) =
(
− ∂ f

∂ B0

)
T,B0=0

≥ m ≥ 0 i f T ≤ T ∗(m, J ) (6.78)

It is shown in the above that, below a critical temperature T ∗, the two-dimensional
Ising model has spontaneous magnetization. Therefore, the existence of a phase
transition in two-dimensional Ising model is proved.

Here we have shown the phase transition only for d = 2. The generalization to
d = 3 is straightforward. In place of polygons, one chooses polyhedrons. Except
for that, the steps to be followed in the proof are exactly the same.

The theory presented above makes statement only about the existence of the
phase transition. Because of some of the very rough estimates, naturally, we can-
not give any explicit value or expression for the Curie temperature. The critical
temperature

T ∗
c = T ∗(m = 0+, J ) (6.79)

will be smaller than the actual Tc. T ∗
c is given by the condition (6.71)

1 − 2φ(β∗
c , J )

!= 0+ ⇔ φ(β∗
c , J ) = 1

2
(6.80)
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From this it is easy to get

β∗
c J = 1

4
ln

9

(1 + 1/
√

2) −
√

1/2 +√
2
= 0.8314 (6.81)

The exact solution of Onsager (19440) gives

βc J = 0.4407 (6.82)

That means, T ∗
c is, as expected, smaller than Tc:

T ∗
c = 0.5301 Tc (6.83)

The deviation, in view of the drastic estimates used, is, however, not very dramatic.

6.4 The Free Energy of the Two-Dimensional Ising Model

In the last section with the help of the Peierls argument we could show exactly, the
existence of a phase transition in the two-dimensional Ising model. The proof was
based on estimates which did not involve any complicated mathematical effort, and
proved that when the temperature becomes less than a critical temperature T ∗, there
exists a spontaneous magnetization Ms(T ) > 0. However, the estimates, which are
partly quite rough, did not permit an exact determination of the Curie temperature
Tc. In this section, we will accomplish that by a detailed discussion of the free energy
of the two-dimensional Ising model [4].

The starting point is as in (6.57), the Hamiltonian function of the Ising model for
the case of the nearest neighbour interaction of the spins and in the absence of an
external field (B0 = 0):

H (S) = −J
∑
(i, j)

Si S j (6.84)

The exact analytical derivation of the free energy for B0 �= 0 has so far not been
achieved. (i, j) means the summation is over only the nearest neighbour pairs. We
consider a square lattice containing N spins. Then we have to calculate the canoni-
cal partition function

Z N (T ) =
∑
{S}

exp(−β H (S)) (6.85)

The sum runs over all the 2N spin configurations

S = (S1, S2, · · · , SN ) (6.86)
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The calculation will first be done for the finite system. To find the phase transition
from the free energy, we naturally need to take the thermodynamic limit. The signa-
ture of the phase transition, in case it exists, will be noticed from an “irregularity”
in the free energy per spin

f (T ) = lim
N→∞

[
−kB T

N
ln Z N (T )

]
(6.87)

For a better overview, we would like to divide the derivation of the free energy into
a number of steps.

6.4.1 High-Temperature Expansion

Since the spin variables Si can take only the values +1 or −1, it holds for an arbitrary
n ∈ N :

(Si S j )
2n = 1 ; (Si S j )

2n+1 = Si S j (6.88)

In the series expansion of the exponential function, we can immediately see the
following relation:

exp(β J Si S j ) = cosh(β J ) + (Si S j ) sinh(β J )

We define

v = tanh(β J ) (6.89)

This is a useful variable for the high-temperature expansions, since for high temper-
atures β and therefore v are small:

exp(β J Si S j ) = cosh(β J )(1 + v(Si S j )) (6.90)

In a square lattice every lattice point has four nearest neighbours. Neglecting the
surface effects, which anyway is allowed when we go over to the thermodynamic
limit, there are 4N pairs of nearest neighbours out of which, however, there are
two pairs of them which are equal. Thus there are 2N distinct pairs of nearest spin
neighbours.

Using (6.90), we get a high-temperature expansion of the canonical partition
function (6.85)
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Z N (T ) =
∑
{S}

exp

⎛
⎝β J

∑
(i, j)

Si S j

⎞
⎠

= cosh2N (β J )
∑
{S}

(1 + vSi1 Sj1 ) · · · (1 + vSi2N S j2N ) (6.91)

After rearranging according to the powers of v, we can write

Z N (T ) = cosh2N (β J )
∑
{S}

[
1 + v

2N∑
ν=1

Siν Sjν+

+ v2
2N∑

ν,μ=1
ν �=μ

(Siν Sjν )(Siμ Sjμ ) + · · ·

⎤
⎥⎦ (6.92)

6.4.2 Spin Products as Graphs

We will symbolically indicate the Ising interactions between pairs of neighbouring
spins by lines connecting the corresponding lattice points.

Every line carries a factor v. The lines connect only the nearest neighbours in the
lattice. The points in these graphs are called the vertices. The order of the vertex is
defined as the number of coupled interactions. Therefore, there are orders from 1 to
4 (Fig. 6.13).

On the spin products that appear in (6.92), we can make the following statement:

∑
{S}

(Siα Sjα ) · · · (Siρ Sjρ ) =
{

2N i f all vertices of even order
0 otherwise

(6.93)

Fig. 6.13 Graphical
representation of spin
products
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Fig. 6.14 Spin graphs with
only even vertices

l = 4 l = 8

Since the spin variables can take values of only ±1, an even power of a spin variable
is always equal to +1. The sum runs over the 2N different spin configurations. That
explains the first part of (6.93). In contrast, if only one of the vertices is odd, then,
there exist among the {S} always two terms, which differ from each other only such
that, at the corresponding vertex, once S = 1 and another time S = −1. Therefore,
the summands compensate each other.

Using (6.93) in (6.92), we get the following intermediate result for the canonical
partition function:

Z N (T ) = cosh2N (β J ) 2N
∞∑

l=0

glv
l (6.94)

gl is the number of graphs made of l lines with exclusively even vertices

g0 ≡ 1 (6.95)

Now what remains is to determine gl . The requirement that the graphs of interest
must all contain even vertices says that these graphs must be made up of closed set
of lines, for example, as shown in Fig. 6.14.

6.4.3 Loops

We introduce two further concepts: We denote as a knot a vertex of fourth order
(Fig. 6.15), while a loop is a closed set of lines without knots. The simplest example
is shown in Fig. 6.16.

Fig. 6.15 Knot as a vertex of
fourth order
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Fig. 6.16 The simplest
example of a “loop”

In order to avoid ambiguities, we should fix a procedure for dissolving knots. The
possibilities are shown in Fig. 6.17. We dissolve the knots in three different ways.
We call the last possibility in Fig. 6.17 self-intersection and in short, denote by SI .

The described procedure of dissolving the knots, splits a graph with k knots into
3k families of loops (see Fig. 6.18 for k = 1).

The dissolving of the knots multiplies the number of diagrams. This will be cor-
rected by introducing a weight factor η for the loops while counting gl :

η(loop) = (−1)number of SI (6.96)

η( f amily) =
∏

[ η(loop) ]

= (−1)number of SI in the f amily (6.97)

Proposition : gl is the sum of weights of all families of loops built from a total of l
lines.

Proof :

1. Every graph without knots gives exactly one family of loops without any SI
and therefore has a weight of (−1)0 = +1 in the counting.

2. For a graph with k knots, there are

(
k
j

)
possibilities to choose j knots from the

k knots, which, after dissolution, have one SI . Then, there remain (k− j) knots,
which, after dissolution do not lead to a SI . For the latter, there are always two
possibilities according to Fig. 6.17.

Fig. 6.17 The method of
“dissolving knots”

; ;

Fig. 6.18 A closed graph
with one knot decomposed
into three families of loops
according to the procedure
illustrated in Fig. 6.17
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Therefore, there are 2k− j

(
k
j

)
possibilities to construct a family with j S I out

of a graph with k knots. Each of these families carries a weight of (−1) j .
The total weight of all the families of loops constructed from a given graph with

k knots is given by

k∑
j=0

(
k
j

)
2k− j (−1) j = (2 − 1)k = 1

With this, we have proved the proposition. The number of diagrams, after dissolving
into families of loops, has of course increased many times. The weights, however,
take care that all the families arising out of the dissolution of a given graph add up
to a total weight of 1.

We now introduce a new quantity

Dl ≡ Sum of the weights o f all the loops wi th l lines (6.98)

We can connect Dl with gl . Every family is made up of one or more loops. There-
fore, we have

g0 = 1

gl =
∞∑

n=1

1

n!

∑
l1 ,··· ,ln∑

li=l

Dl1 Dl2 · · · Dln (l �= 0) (6.99)

The product of Dli captures all the possible splittings of a family with l lines into
loops with the added condition

∑
li = 1. Every weight, which appears only because

of an interchange of Dli , corresponds to the same set of families and so, should be
counted only once. This is taken care of by the factor 1/n!. The summation over n
can run up to ∞ because for li < 4, Dli = 0 in any case.

(6.99) as it appears is not yet quite correct. Since the summations li run inde-
pendently, the double occupations of individual lines are allowed as illustrated in
Fig. 6.19. Such diagrams correspond to forbidden loops, i.e. they do not represent
any summand in either (6.92) or (6.94) and therefore should not contribute in our
new counting. We take care of this by adapting the procedure shown in Fig. 6.20 to
dissolve the double occupations. In (6.99), we allow two types of double occupa-
tions, type (a) carries a weight of (+1) since there are no SI . Type (b) has exactly
one self-intersection and so carries a weight of (−1). Therefore, the total weight
is zero, i.e. even though the double occupations are formally counted, they do not
contribute to (6.99). From the forbidden diagram (Fig. 6.19) described above, the
contributions shown in Fig. 6.21 appear.

With this procedure, now (6.99) has become unique and we get the following
intermediate result:
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Fig. 6.19 Double occupancy
of a line in a certain spin
graph evaluated according to
(6.99)

+

(a) (b)

Fig. 6.20 Method of handling double occupancies of lines

gl vl =
∞∑

n=1

1

n!

∑
l1 ,··· ,ln∑

li=l

(
Dl1v

l1
) · · · (Dln v

ln
)

(l �= 0) (6.100)

For (6.99), we have to sum this expression over all l from 0 to ∞. When we
do this, the li summations become independent of each other and their condition∑

li = l becomes superfluous.

∞∑
l=0

gl vl = 1 +
∞∑

n=1

1

n!

{ ∞∑
m=1

Dm vm

}n

= exp

{ ∞∑
m=1

Dm vm

}
(6.101)

Fig. 6.21 The two
possibilities of evaluating the
double occupancy in the
diagram of Fig. 6.19

D8D4

D4

η = (+ 1).(+ 1) = 1 η = − 1
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Substituting (6.101) in (6.94) we get a further intermediate result for the canonical
partition function:

Z N (T ) = 2N cosh2N (β J )exp

{ ∞∑
m=1

Dm vm

}
(6.102)

The remaining job is to determine Dm , i.e. the weight of all loops which one can
construct with m lines.

6.4.4 Directed Paths

The real problem is to count the self-intersections of a loop. We get round the prob-
lem by introducing directed paths: For this purpose, we define

Single step P = (z, α)
z = x1 + i x2 : starting point of the single step
α = 1, i, −1, −i : direction of the single step
z + α : end point of the single step

Imagine a two-dimensional Ising lattice in the complex plane. Every lattice point
is represented by a complex number with real and imaginary parts x1 and x2 being
integer numbers (Fig. 6.22).

We denote as path from z to z′ in m steps, a series of m single steps:

(z, α) = P0, P1, P2, · · · , Pm = (z′, α′) (6.103)

with zi + αi = zi+1 and αi+1 �= −αi

With the condition αi+1 �= −αi retracing points are forbidden. We define the
weight of the path

Fig. 6.22 Introduction of
directed paths
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η(path) = exp

[
i

2

(
arg

α1

α0
+ · · · + arg

αm

αm−1

)]
(6.104)

where

αi+1

αi
= 1, ±i ⇔ arg

αi+1

αi
= 0, ±π

2
(6.105)

arg αi+1

αi
is the angle between the (i + 1)st and the i th single step.

We introduce a matrix Mm whose meaning becomes clear from the definition of
the matrix elements:

〈P|Mm |P ′〉 = sum of the weights of all paths from P to P’

in m steps (6.106)

The matrix element should be zero if P ′ is not reachable from P in m steps. If
m = m1 + m2, then we can also write

〈P|Mm |P ′〉 =
∑
P ′′

〈P|Mm1 |P ′′〉〈P ′′|Mm2 |P ′〉 (6.107)

This corresponds to the matrix product

Mm = Mm1 Mm2 (6.108)

Obviously, the decomposition can be continued,

Mm = Mm
1 (6.109)

For N lattice points and four possibilities for α, M1 is a (4N × 4N ) matrix which
contains a lot of zeros, since only those P’s contribute, which are connected by a
single step.

We are looking for the relation between the matrix Mm and the Dm which is
required in (6.102). We expect that relation to be of the following form:

Dm = − 1

2m

∑
P

〈P|Mm |P〉 = − 1

2m
T r
(
Mm

1

)
(6.110)

This expectation will be justified in three steps:

1. Dm captures only closed paths (loops). That means, only the diagonal elements
P = P ′ can play a role.

2. In the sum over P , every one of the m loop points can be a starting point once.
Further, a given loop can be run in two directions. But, such a loop should be
counted only once. That is why, there is the factor 1

2m .
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Fig. 6.23 Two diagrams with
no self-intersection

3. For a closed path, the total angle of rotation is an integral multiple of 2π :

φ = arg
α1

α0
+ arg

α2

α1
+ · · · + arg

αm

αm−1
= n 2π n ∈ Z

That means η(path) = ±1.

For an even number of self-intersections, φ = ±2π , and for an odd number,
φ = 0. Examples are given in Figs. 6.23, 6.24 and 6.25.

Comparing with (6.96), we get finally

η(path) = −η(loop) (6.111)

That explains the − sign in (6.110).

Fig. 6.24 Two diagrams with
one self-intersection
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Fig. 6.25 A diagram with
two self-intersections

Let λ1, λ2, · · · , λn be the eigenvalues of the matrix M1. Then we have

T r
(
Mm

1

) =
n∑

j=1

(
λ j
)m

(6.112)

For the calculation of the canonical partition function (6.102), we require

∞∑
m=1

Dm vm = −1

2

n∑
j=1

∞∑
m=1

(λ j v)m

m

= 1

2

n∑
j=1

ln(1 − vλ j )

= ln

⎧⎨
⎩

n∏
j=1

(1 − vλ j )
1/2

⎫⎬
⎭

= ln{det(1 − vM1)}1/2

This leads to the following intermediate result for the canonical partition function:

Z N (T ) = 2N cosh2N (β J ){det(1 − vM1)}1/2 (6.113)

6.4.5 Matrix M1

In order to avoid the surface points, we now introduce the periodic boundary con-
ditions. The error caused by that is a surface term, which becomes irrelevant in the
thermodynamic limit (N → ∞). The periodic boundary conditions are allowed
only now, because otherwise the counting would be wrong. A path that runs from
the left end to the right end of a finite Ising lattice would become a loop for a torus.
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The elements of the matrix M1 are easily given by

〈P|M1|P ′〉 = exp

(
i

2
arg

α

α′

) (
1 − δα,−α′

)
δz+α,z′ (6.114)

The first factor according to (6.104) is the weight of a single step. The second factor
avoids the retrace points and the third one guarantees that only a single step from z
to z′ is being considered.

Due to the periodic boundary conditions, there is translational symmetry, i.e. the
matrix element (6.114) for given α and α′ depends only on the separation z − z′.
Then, we can perform a Fourier transformation:

z = x1 + i x2; xi = 1, · · · , Ni ; i = 1, 2, ; N = N1 · N2 (6.115)

q = q1 − iq2 ; qi = 2π

Ni
(1, 2, · · · , Ni ) (6.116)

The elements of M̃1, the Fourier-transformed matrix of M1, are then given by

〈qα|M̃1|q ′α′〉 = 1

N

∑
z,z′

e−i Re(qz)〈zα|M1|z′α′〉ei Re(q ′z′)

= 1

N

∑
z

e−i Re((q−q ′)z)ei Re(q ′α)e
i
2 arg α

α′ (1 − δα,−α′ )

= δq,q ′ei Re(q ′α) e
i
2 arg α

α′ (1 − δα,−α′ ) (6.117)

M̃1 thus clearly breaks into (4 × 4) blocks along the diagonals

〈qα|M̃1|q ′α′〉 = δqq ′ 〈α|m(q)|α′〉 (6.118)

〈α|m(q)|α′〉 = ei Re (qα)e
i
2 arg α

α′ (1 − δα,−α′ ) (6.119)

There is no change in the determinant that is required in (6.112) after Fourier trans-
formation. Therefore, we have

det(1 − vM1) ≡ det(1 − vM̃1) =
∏

q

det(1 − vm(q)) (6.120)

Substituting in (6.113) leads to a noticeably simple intermediate result for the canon-
ical partition function:

Z N (T ) = 2N cosh2N (β J ){
∏

q

det(1 − vm(q))}1/2 (6.121)
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Now we only have to evaluate the determinant of a 4×4 matrix. Using α as the row-
and α′ as the column index and with the following notation:

λ = ei π
4 ; Q1 = eiq1 ; Q2 = eiq2 (6.122)

the matrix in question is the following:

(1 − vm(q)) ≡

⎛
⎜⎜⎝

1 − vQ1 −vλQ1 0 −vλ∗Q1

−vλ∗Q2 1 − vQ2 −vλQ2 0
0 −vλ∗Q∗

1 1 − vQ∗
1 −vλQ∗

1
−vλQ∗

2 0 −vλ∗Q∗
2 1 − vQ∗

2

⎞
⎟⎟⎠ (6.123)

It is simple to calculate the determinant of this matrix. Doing that, we get the fol-
lowing form for the canonical partition function:

Z N (T ) = 2N cosh2N (β J ){
∏

q

[ (1 + v2)2 −

−2v(1 − v2)(cos q1 + cos q2) ] }1/2 (6.124)

6.4.6 Free Energy per Spin

In the thermodynamic limit, the free energy per spin of the two-dimensional Ising
model is given according to (6.87) and (6.124) by

−β f (T ) = ln 2 + 2 ln(cosh(β J )) +
+ lim

N→∞
1

2N

∑
q1,q2

ln
[
(1 + v2)2 − 2v(1 − v2)(cos q1 + cos q2)

]

(6.125)

We are allowed to write the double sum as a double integral:

lim
N→∞

1

N

∑
q1,q2

F(q1, q2) → 1

4π2

∫ 2π

0

∫ 2π

0
dq1dq2 F(q1, q2)

Further, using, according to (6.89)

cosh(β J ) = 1√
1 − v2

we can write
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2 ln(cosh(β J )) = 1

2
ln(1 − v2)−2

= 1

8π2

∫ 2π

0

∫ 2π

0
dq1dq2 ln(1 − v2)−2

Using this the free energy can be written as

− β f (T ) = ln 2 + 1

8π2

∫ 2π

0

∫ 2π

0
dq1dq2 ln

[(
1 + v2

1 − v2

)2

− 2v
1

1 − v2
(cos q1 + cos q2)

]
(6.126)

With

(
1 + v2

1 − v2

)
= cosh2(2β J ) = (1 − sinh(2β J ))2 + 2 sinh(2β J )

and

2
v

1 − v2
= sinh(2β J )

we finally have the expression for the free energy per spin:

− β f (T ) = ln 2 + 1

8π2

∫ 2π

0

∫ 2π

0
dq1dq2 ln[(1 − sinh(2β J ))2

+ sinh(2β J )(2 − cos q1 − cos q2)] (6.127)

This integral cannot be solved in a closed form.

6.4.7 Curie Temperature Tc

A phase transition must be noticeable from a non-analyticity of the free energy.
Looking at (6.127), we see that such a thing is possible for T �= 0 only if the
argument of the logarithm becomes zero. Since both the summands in the logarithm
are non-negative, both must vanish. That is, a phase transition is to be expected only
if

q1 = q2 = 2π (6.128)

and

sinh(2β J ) = 1 (6.129)
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simultaneously. Equation (6.129) determines the critical point Tc. This gives the
already cited result (6.82):

J

kB Tc
= 1

2
ln(1 +

√
2) = 0.44069 (6.130)

Equation (6.130) is only an indication that a phase transition is possible. What type
of phase transition this is becomes clear only by investigating the specific heat CB0=0

and the spontaneous magnetization Ms .

6.4.8 Specific Heat

The specific heat is mainly given by the second derivative of the free energy with
respect to temperature.

CB0=0(T ) = −T
d2 f (T )

dT 2
(6.131)

We want to investigate the behaviour of the specific heat around the critical point
Tc. By a Taylor expansion around Tc, we get

sinh(2β J ) ≈ sinh(2βc J ) + (T − Tc) cosh(2βc J )

(
− 2J

kB T 2
c

)
+ · · ·

= 1 − T − Tc

Tc

2J

kB Tc
cosh(2βc J ) + · · ·

= 1 − c ε

Here c is a number of order of magnitude 1 and

ε = T − Tc

Tc
(6.132)

Free energy can become critical if at all, only, when q1 = q2 = 2π . Therefore, in
the neighbourhood of the critical point, we can write

2 − cos q1 − cos q2 ≈ +1

2
(q̄2

1 + q̄2
2 ) (q̄i = qi − 2π )

From (6.127), we see that the critical behaviour of the free energy is determined by
the following integral:

I =
∫ ···

0

∫ ···

0
dq̄1dq̄2 ln

[
c2ε2 + (1 − cε)

1

2
(q̄2

1 + q̄2
2 )

]
(6.133)

Introducing polar coordinates

q̄1 = q cos φ ; q̄2 = q sin φ ; dq̄1 dq̄2 = q dq dφ (6.134)
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the integral I becomes

I =
∫ π/2

0
dφ

∫ a(φ)

0
dq q ln

[
c2ε2 + 1

2
(cεq2)

]

It is further simplified by the following substitutions

x = 1

2
q2 ; η = c ε

I =
∫ π/2

0
dφ

∫ b(φ)

0
dx ln[η2 + (1 − η)x] (6.135)

I does not show any special behaviour as η → 0. The free energy is therefore
continuous as T → Tc. This is also valid for the first derivative of f (entropy!):

d I

dη
=
∫ π/2

0
dφ

∫ b(φ)

0
dx

2η − x

η2 + (1 − η)x
η→0→ −

∫ π/2

0
dφ b(φ)

One does not see any critical behaviour in the first derivative. Therefore, the phase
transition cannot be of first order!

For the second derivative, we have

d2 I

dη2
=
∫ π/2

0
dφ

∫ b(φ)

0
dx

2(η2 + (1 − η)x) − (2η − x)2

(η2 + (1 − η)x)2

η→0→
∫ π/2

0
dφ

∫ b(φ)

0
dx

(
2

x
− 1

)η

=
∫ π/2

0
dφ{2 ln b(φ) − 2 “ ln 0” − b(φ)} (6.136)

The second derivative thus shows a logarithmic divergence for T → Tc. That means,
it is also true for the specific heat CB0=0. We conclude that the two-dimensional Ising
model displays a phase transition of second order at T = Tc. The critical exponent
for the specific heat is

α = 0 (6.137)

corresponding to a logarithmic divergence.

6.4.9 Spontaneous Magnetization

We give here only the exact result

Ms(T ) =
{

0 f or T ≥ Tc

(1 − x−4)1/8 f or T < Tc
(6.138)
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Here is

x = sinh

(
2J

kB T

)
(6.139)

Since the free energy with field B0 �= 0 could not be calculated, the magnetization
was determined using (6.21). The critical exponent of the order parameter Ms is
therefore given by

β = 1/8 (6.140)

6.5 Problems

Problem 6.1 For the one-dimensional Ising model, determine the eigenvalues of the
transfer matrix T̂ (6.31).

Problem 6.2 For the one-dimensional Ising model, calculate the magnetization
(magnetic moment per particle (spin)) m(T, B0) and the isothermal susceptibility.
Study the latter in particular for B0 → 0.

Problem 6.3 For the Ising model, show that the free energy F(T, m) is an even
function of the magnetic moment m = μ

∑
i Si .

Problem 6.4 A magnetic system is described by the Ising model (N localized
spins).

1. Express the canonical partition function Z N (T, B0) in terms of the moments ml

of the Hamilton function H .

ml = T r (Hl)

T r (1l)
; l = 1, 2, 3, · · ·

What is the meaning of T r (1l) for the Ising system?
2. Show that for the heat capacity cB0 the high-temperature expansion

cB0 =
1

kB T 2

(
m2 − m2

1

)+O(1/T 3)

is valid.

Problem 6.5 Consider a spin system described by the Ising model with the magnetic
moment

m̂ = gμB

∑
i

Si
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1. Express the isothermal susceptibility χT by the spin correlation function 〈Si S j 〉.
For that use the fluctuation–dissipation theorem which was proved in Prob-
lem 1.2.

2. Use the fluctuation–dissipation theorem of part 1. to calculate the field-free sus-
ceptibility of an “open” chain of N Ising spins. Obtain χT as a function of
v = tanh β J .

3. Discuss the result in the thermodynamic limit N → ∞ and compare it with the
results of Sect. 6.2.

Problem 6.6 1. For the one-dimensional Ising model (linear open chain) without
the external magnetic field, calculate the four-spin correlation function.

〈Si Si+1Sj S j+1〉

2. Using the result of 1. calculate the heat capacity cB0=0.
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Chapter 7
Heisenberg Model

This model, which was justified in great detail in Sects. 5.2 and 5.3 can be consid-
ered to be, till today, the most intensely worked and also the best understood model
of magnetism. Its region of applicability is fixed by the ideas used in the deriva-
tion given in Chap. 5. The model presumes the existence of permanent, localized
moments, which interact with each other via either a direct or an indirect exchange
mechanism. Therefore this model is best realized in magnetic insulators

EuO, EuS, EuT e, RbMnF3, MnO, Cr Br3, · · ·

In addition, the magnetic metals in Chap. 5, where the magnetism is also due to
localized moments, are successfully described by this model, so long as one is inter-
ested only in their magnetic properties.

In this chapter, we want to investigate the statements one can make, using
the Heisenberg model, on the magnetic phenomena. The amount of exact solu-
tions available till the present time is, however, much smaller than in the case
of the Ising model. When comparing experiment and theory, one has to always
take into account two sources of errors. The model itself is not appropriate for
describing the given situation or the model is appropriate but has been solved too
approximately.

7.1 Model Hamiltonian

7.1.1 Spin Operators

Many problems in handling the Heisenberg model

H = −
∑
i, j

Ji j Si · S j (7.1)

W. Nolting, A. Ramakanth, Quantum Theory of Magnetism,
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arise due to the “inconvenient” commutation relations of the spin operators:

[
Sx

i , Sy
j

]
−
= i � Sz

i δi j[
Sy

i , Sz
j

]
−
= i � Sx

i δi j[
Sz

i , Sx
j

]
−
= i � Sy

i δi j

(7.2)

The commutation relations can be formally summarized as

S × S = i � S (7.3)

We presume that the angular momentum algebra is known from the basic course on
quantum mechanics and simply lists out the relations which are important for the
following discussion.

We will be applying the operators

S± = Sx ± i Sy (7.4)

which are known as “step up”, “step down” operators and sometimes called “spin-
flip” operators. For these operators, one can easily verify the following operator
identities:

Sx
i = 1

2
(S+

i + S−
i ); Sy

i = 1

2i
(S+

i − S−
i ) (7.5)

[
Sz

i , S±
j

]
−
= ±� δi j S±

i (7.6)
[

S+
i , S−

j

]
−
= 2 � δi j Sz

i (7.7)

S±
i S∓

i = �
2 S(S + 1) ± � Sz

i −
(
Sz

i

)2
(7.8)

+S∏
mS=−S

(Sz
i − � mS) ≡ 0 (7.9)

(
S+

i

)2S+1 = (S−
i

)2S+1 ≡ 0 (7.10)

The spin operators for S = 1
2 form a special case. For these operators, the relations

(5.79), (5.81), (5.82), (5.82), (5.83) and (5.84) are valid.
The scalar product Si · S j of the Heisenberg Hamiltonian (7.1) can be expressed

in terms of the components as

Si · S j = 1

2

(
S+

i S−
j + S−

i S+
j

)
+ Sz

i Sz
j (7.11)
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With the usual practice

Ji j = Jji ; Jii = 0 (7.12)

the Hamiltonian of the Heisenberg model can be formulated as

H = −
∑
i, j

Ji j

(
S+

i S−
j + Sz

i Sz
j

)
(7.13)

This form turns out to be specially useful. Using (7.6) and (7.7), in addition one can
easily show that

[
Si · S j , Si

]
− = i � Si × S j (i �= j) (7.14)

and by interchanging the indices also show that

[
Si · S j , S j

]
− = − i � Si × S j (i �= j) (7.15)

From this it follows that the total spin
∑

i Si commutes with the Heisenberg Hamil-
tonian and therefore is a conserved quantity.

Often, it is convenient to transform the rather cumbersome spin operators into the
creation and annihilation operators of the second quantization (Appendix A). The
most important possibilities of doing this will now be presented.

7.1.1.1 Pauli Operators (S = 1/2)

The Pauli operators are defined by the following relations:

1

�
S+

i = bi ,
1

�
S−

i = b†
i ,

1

�
Sz

i = 1

2
− ni (7.16)

bi (b†
i ) annihilates (creates) locally, a spin deviation. ni is the number operator for

such spin deviations.

ni = b†
i bi (7.17)

The commutation relations (7.6) and (7.7) for the spin operators imply the corre-
sponding commutation relations for the Pauli operators:

[
bi , b†

j

]
−
= (1 − 2ni ) δi j (7.18)

[
bi , b j

]
− =

[
b†

i , b†
j

]
−
= 0 (7.19)
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b2
i = (b†

i )2 = 0 (7.20)

Thus they represent neither pure Fermi nor pure Bose operators. They have the
properties of Bose operators for different (i �= j) lattice sites and those of Fermi
operators for the same (i = j) lattice site ([bi , b†

i ]+ = 1).
In terms of these new operators, the Heisenberg Hamiltonian has the following

form:

H = −�
2

4
J0 N −

∑
i, j

�
2(Ji j − J0 δi j ) b†

j bi −
∑
i, j

�
2 Ji j ni n j (7.21)

We have introduced a new quantity J0 which is defined by

J0 =
∑

i

Ji j =
∑

j

Ji j (7.22)

The last term in (7.21) represents an interaction in a quasiparticle system which is
defined by the other terms. When transformed into wavenumber representation, the
first three terms of the Hamiltonian describe harmonic oscillators which we will
interpret in Sect. 7.2.2 as free spin waves.

The Pauli operators are rarely used because of the restriction to S = 1/2 and also
because, even after this restriction, the commutation relations are not very much
simplified.

In Eqs. (5.99), (5.100) and (5.101) the spin operators for S = 1
2 were expressed

in terms of the Fermi operators ciσ and c†iσ . This representation is in general much
more convenient than the representation by Pauli operators.

7.1.1.2 Holstein–Primakoff Transformation (S ≥ 1/2)

Holstein and Primakoff [1] have introduced the following representation for the spin
operators:

1

�
Sz

i = S − n̂i (7.23)

1

�
S+

i =
√

2S φ(̂ni ) ai (7.24)

1

�
S−

i =
√

2S a†
i φ (̂ni ) (7.25)

Here as in (7.17) ni is defined by
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n̂i = a†
i ai (7.26)

and

φ(̂ni ) =
√

1 − n̂i

2S
(7.27)

When the eigenvalue ni of n̂i , the number of spin deviations, exceeds 2S, the for-
malism becomes obviously unphysical. In actual calculations, therefore, only the
physical states (ni = 0, 1, 2, . . . , 2S) have to be taken into account. This is of
course a condition which cannot always be easily enforced. The definitions (7.23),
(7.24) and (7.25) satisfy the commutation relations (7.6) and (7.7) if the operators
a†

i and ai are treated as Bose operators which obey the fundamental commutation
relations (Problem 7.8):

[
ai , a†

j

]
−
= δi j (7.28)

[
ai , a j

]
− =

[
a†

i , a†
j

]
−
= 0 (7.29)

The corresponding Fourier-transformed operators

aq = 1√
N

∑
i

e−iq·Ri ai (7.30)

a†
q = 1√

N

∑
i

eiq·Ri a†
i (7.31)

will be interpreted later (Sect. 7.2.2) as the annihilation and creation operators for
quasiparticles, the so-called magnons, which are the characteristic elementary exci-
tations in magnetism. In terms of these new operators, the Heisenberg Hamiltonian
has the following form:

H = −N �
2 S2 J0 + 2S �

2 J0

∑
i

n̂i

− 2S �
2
∑
i, j

Ji j φ (̂ni ) ai a†
j φ(̂n j )

− �
2
∑
i, j

Ji j n̂i n̂ j

(7.32)

Compared with (7.21), through φ(ni ), a second interaction term comes into play.
Explicit working with this Hamiltonian requires an expansion of the square root in
φ (̂ni ):
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φ(̂ni ) = 1 − n̂i

4S
− n̂2

i

32S2
− n̂3

i

128S3
− · · · (7.33)

Substituting (7.33) in (7.32) leads to a series expansion of the Hamiltonian:

H = −N �
2 S2 J0 +

∞∑
n=1

H2n (7.34)

H2n contains terms which are composed of 2n construction operators, i.e. n creation
and n annihilation operators. We demand that all terms H2n have the operators in the
normal ordering, i.e. all the creation operators are to the left and all the annihilation
operators are to the right. The possibilities for approximate treatment open up by
terminating the infinite series (7.34) after a finite number of terms.

Normally, one is forced to restrict to the first two terms. Using

n̂2
i = n̂i + (a†

i )2 a2
i

and (7.33), we can write

φ(̂ni ) = 1 − (1 −
√

1 − 1/2S) n̂i + “higher terms ′′ (7.35)

Then, the bilinear part is given by

H2 = 2S �
2 J0

∑
i

n̂i − 2S �
2
∑
i, j

Ji j a†
i a j (7.36)

and the biquadratic part by

H4 = − �
2
∑
i, j

Ji j n̂i n̂ j + 2S �
2 (1 −

√
1 − 1/2S) ∗

∗
∑
i, j

Ji j (a
†
j n̂i ai + a†

j n̂ j ai ) (7.37)

The disadvantage of the Holstein–Primakoff transformation is obvious. One needs a
physical justification for terminating the infinite series. The simplest approximation
in this sense is the so-called spin wave approximation

HSW = −N �
2 S2 J0 + H2 (7.38)

which will be discussed and justified later. After transformation to wavevector rep-
resentation, it becomes diagonal

HSW = −N �
2 S2 J0 +

∑
q

� ωq a†
q aq (7.39)
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and describes a system of uncoupled harmonic oscillators (“magnons”) where

� ωq = 2S �
2(J0 − J (q)) (7.40)

J (q) = 1

N

∑
i, j

Ji j eiq·(Ri−R j ) (7.41)

The difficulties mentioned about the Holstein–Primakoff transformation do not
appear in the Dyson–Maleév transformation.

7.1.1.3 Dyson–Maleév Transformation (S ≥ 1/2)

1

�
S+

i =
√

2Sαi (7.42)

1

�
S−

i =
√

2S α
†
i

(
1 − n̂i

2S

)
(7.43)

1

�
Sz

i = S − n̂i (̂ni = α
†
i αi ) (7.44)

α
†
i and αi are Bose operators and therefore obey (7.28) and (7.29). This transfor-

mation has the advantage that the Heisenberg Hamiltonian now has only a finite
number of terms (Problem 7.11):

H = −N �
2 S2 J0 + H2 + H4 (7.45)

H2 = 2S �
2 J0

∑
i

n̂i − 2S �
2
∑
i, j

Ji j αi α
†
j (7.46)

H4 = −�
2
∑
i, j

Ji j n̂i n̂ j + �
2
∑
i, j

Ji j αi α
†
j n̂ j (7.47)

A decisive disadvantage, however, is that S+
i and S−

i are no more adjoint to each
other. As a result, H is not Hermitean any more!

7.1.2 Model Extensions

We want to discuss a few simple generalizations of the Heisenberg model which
become necessary when, in addition to the isotropic exchange interaction, other
effects play a role.
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7.1.2.1 Zeeman Term Hz

When an external homogeneous magnetic field along z-direction is applied, the
rotational symmetry is destroyed. The Hamiltonian has an extra term, namely, the
Zeeman term:

Hz = −gJ
μB

�
B0

N∑
i=1

Sz
i (7.48)

If the localized moments are pure spin moments, then gJ is naturally equal to 2.
Otherwise, in place of Sz

i one has to take J z
i and gJ is given by the Lande factor

gJ = 1 + J (J + 1) − L(L + 1) + S(S + 1)

2J (J + 1)
(7.49)

The justification for writing (7.48) in this somewhat imprecise form stems from the
Wigner–Eckart theorem (2.180). Further, we assume that we are in the region of
“anomalous” Zeeman effect, i.e. the field energy μB B0 is small compared to the
spin–orbit interaction energy �

2 Λ(L , S) (2.304) so that J is still a good quantum
number.

7.1.2.2 Dipole Interaction

The interaction of the localized moments with the dipole fields of the other moments,
even though is not the origin of the collective magnetism as was estimated in
Sect. 5.1.1, still is an important correction which leads to anisotropy effects. Accord-
ing to (5.4), the dipole interaction is taken into account by introducing an extra term
in the Hamiltonian which is given by

HD =
i �= j∑
i, j

Di j {Si · S j − 3(Si · ei j )(S j · ei j )} (7.50)

The coupling constants

Di j = μ0

8π

g2
J μ2

B

�2|Ri − RJ |3 (7.51)

are, as was estimated in Sect. 5.1.1, very much smaller than the exchange integrals
Ji j . However, it should be kept in mind that the dipole interaction is of very much
longer range than the exchange interaction, so that the inequality Di j � Ji j is valid
only for not too large separations |Ri − R j |. The vectors ei j in (6.50) are the unit
vectors defined as follows:

ei j = Ri − R j

|Ri − R j | (7.52)
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We will discuss a few consequences of the dipole interaction in Sect. 7.4.4.

7.1.2.3 Spin–Orbit Interaction

The assumption that was made in 7.1.2.1 that the replacements, respectively, in the
exchange term

S → (gJ − 1)J (7.53)

and in the Zeeman term

2 Sz → Sz + J z → gJ J z (7.54)

should be made is strictly speaking not quite correct. The Hamiltonian must be
extended by an explicit spin–orbit coupling term. This term, according to Sect. 2.4
or 2.10, should have the following form:

HSO = Λ

N∑
i=1

Si · Li (7.55)

The meaning of Λ is same as in Sect. 2.4 (see 2.286). The assumption that Λ is an
intra-atomic parameter that remains constant throughout the Wigner–Seitz cell is to
be considered as a serious simplification.

In the following sections, we will not consider HSO any more. We, as was done
in the case of Langevin paramagnets (Sect. 4.2.2), will assume that the fine structure
splitting is so strong that we are allowed to restrict our treatment only to the lowest
level. In that case (7.55) becomes irrelevant.

7.1.2.4 Magnetic Anisotropy

Collective magnetism is a characteristic property of crystalline solids. It is known
that in crystals, physical properties are in general anisotropic, i.e. they are different
in different crystallographic directions. This is also true about a part of the mag-
netic properties. The important quantities such as the Curie temperature TC and the
saturation magnetization are, however, always isotropic. In contrast, the M − B0

isotherms are most of the time anisotropic. For example, one speaks of easy and
hard directions of magnetization.

Possible reasons for the magnetic anisotropy are

1. the dipole interaction (7.1.2.2) and
2. the coupling of the electron orbits to the crystalline electric field.

The concrete operator form of the magnetic crystal anisotropy is determined by
the symmetry group of the magnetic lattice. However, some general statements can
be made, because the exchange operator must remain invariant under a canonical
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transformation of the spin operators of the type

Sα
j → −Sα

j ; i → −i (α = x, y, z) (7.56)

which retains the commutation relations unchanged. In the lowest order, the anisotropy
term in the Hamiltonian should have the following form:

(a) Uniaxial ferromagnet

HA = −
∑
i, j

Ki j Sz
i Sz

j (7.57)

(b) Ferromagnet with cubic symmetry

HA = −
∑

i, j,k,l

(x,y,z)∑
α �=β

Ki jkl (Sα
i Sα

j )(Sβ

k Sβ

l ) (7.58)

The additional condition α �= β is actually responsible for the anisotropy.
The diagonal term (i = j) in (7.57) and the term i = j = k = l in (7.58) are

called single-ion anisotropy.

(a) Uniaxial ferromagnet

HA = −
∑

i

Ki (Sz
i )2 (7.59)

(b) Ferromagnet with cubic symmetry

HA = −
∑

i

Ki

∑
α

(Sα
i )4 (7.60)

In the last expression, the unimportant constants have been left out. From (7.58), for
i = j = k = l we actually have

∑
i

Kiii i

∑
α �=β

(Sα
i )2(Sβ

i )2

=
∑

i

Kiii i

∑
α,β

(Sα
i )2(Sβ

i )2 −
∑

i

Kiii i

∑
α

(Sα
i )4

=
∑

i

Kiii i �
4 (S(S + 1))2 −

∑
i

Kiii i

∑
α

(Sα
i )4

For a few phenomena (for example, the resonance experiments), taking into account
the single-ion anisotropy is already completely sufficient. The anisotropy constants
are, then, in general, temperature dependent.
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In a further approximation, for uniaxial anisotropy, one may frequently consider
only an effective anisotropy field which is described in a rough approximation by

HA ≈ −gJ
μB

�
BA

∑
i

Sz
i (7.61)

This simple ansatz is applied in particular for uniaxial antiferromagnets.

7.2 Exact Statements

In spite of the simple structure of the Hamiltonian for the Heisenberg model, there
are very few exact statements possible. Without attempting to be complete, in this
section, we will discuss a few of the most important exact solutions. We start with
the following

7.2.1 Mermin–Wagner Theorem

This theorem states [2]
In one and two dimensions, the isotropic Heisenberg model does not have any

spontaneous magnetization.
Statements and proofs of this nature have a certain tradition. For example,

Van Hove [3]: “There is no phase transition in a one dimensional gas with hard-
core interactions of finite range”.

Griffiths [4]: “The two- and three-dimensional Ising model shows a phase transi-
tion” (see Sect. 6.3).

Hohenberg [5]: “Normal superconductivity and superfluidity are impossible in
one- or two-dimensional systems”.

For the proof, Hohenberg used an inequality of Bogoliubov [6] which is also
the starting point of Mermin and Wagner. Therefore, we want to first prove this
inequality. The inequality is

1

2
β 〈[A , A† ]+〉 〈[[C , H ]− , C†]−〉 ≥ |〈[C , A]−〉|2 (7.62)

H : Hamiltonian, A, C : arbitrary operators, β = 1
kB T . One should note that

[· · · ]+ is an anticommutator and [· · · ]− is a commutator.
The idea of the proof is to define an appropriate scalar product and then exploit

the Schwarz inequality.
Let |n〉 be the eigenstates of the Hamiltonian with the eigenenergies En . Then,

using

En = 〈n|H |n〉; Wn = e−β En

T r (e−β H )
(7.63)
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we can show that

(A, B) =
En �=Em∑

n,m

〈n|A†|m〉〈m|B|n〉 Wm − Wn

En − Em
(7.64)

is a positive semidefinite scalar product. Here A and B can be any operators. We
verify the axioms:

(α) (A, B) is a complex number with

(A, B) = (B, A)∗ (7.65)

This is valid since (Wm − Wn)/(En − Em) is a real number and

(〈n|B†|m〉〈m|A|n〉)∗ = 〈n|A†|m〉〈m|B|n〉

(β) The linearity properties of the scalar product,

(A, α1 B1 + α2 B2) = α1(A, B1) + α2(A, B2) (7.66)

with α1, α2 ∈ C follow directly from the linearity properties of the matrix
element 〈m|B|n〉.
(γ ) Since (Wm − Wn)/(En − Em) ≥ 0, and 〈n|A†|m〉〈m|A|n〉 = |〈m|A|n〉|2 it is
always true that

(A, A) ≥ 0 (7.67)

(δ) From A = 0 it naturally follows that (A, A) = 0. The converse is, however,
not true. For example, (H, H ) = 0 even though H �= 0. Therefore, we are
dealing with a “semidefinite” scalar product.

We have thus, by verifying the axioms, shown that (7.64) is a scalar product.
We now specially choose

B = [C† , H
]
− (7.68)

and calculate the scalar product (A, B).

(A, B) =
En �=Em∑

n,m

〈n|A†|m〉〈m|[C† , H ]−|n〉Wm − Wn

En − Em

=
∑
n,m

〈n|A†|m〉〈m|C†|n〉(Wm − Wn)

Because of the bracket on the right, we can now include the diagonal term En = Em

in the summation. Using the completeness relation and the definition (7.63) for Wn ,
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we can further write

(A, B) =
∑

m

Wm〈m|C† A†|m〉 −
∑

n

Wn〈n|A† C†|n〉

= 〈C† A† − A† C†〉

With (7.68) for B we then have

(A, B) = 〈[C† , A†]−〉 (7.69)

If we substitute A = B = [C† , H ]− in the above expression, we get

(B, B) = 〈[C† , [H , C]−]−〉 ≥ 0 (7.70)

The inequality on the right is the general property (7.67) of the scalar product.
For the Schwarz inequality, we still require (A, A). That we get in the following

way:

0 <
Wm − Wn

En − Em

= (T r
(
e−β H

))−1 e−βEm + e−βEn

En − Em

e−βEm − e−βEn

e−βEm + e−βEn

= Wm + Wn

En − Em
tanh

(
β

2
(En − Em)

)

Since tanh x < x for x > 0 and therefore (En − Em)−1 tanh( β

2 (En − Em)) <
β

2 for
En �= Em , we can see that

0 <
Wm − Wn

En − Em
<

β

2
(Wn + Wm) (7.71)

With this we can now estimate the scalar product (A, A):

(A, A) <
1

2
β

En �=Em∑
n,m

〈n|A†|m〉〈m|A|n〉(Wn + Wm)

≤ 1

2
β
∑
n,m

〈n|A†|m〉〈m|A|n〉(Wn + Wm)

= 1

2
β
∑

n

Wn(〈n|A† A|n〉 + 〈n|A A†|n〉)

This finally leads to the inequality
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(A, A) ≤ 1

2
β 〈[A , A†]+〉 (7.72)

We now substitute the expressions (7.72), (7.70) and (7.69) in the Schwarz
inequality

|(A, B)|2 ≤ (A, A)(B, B) (7.73)

and recognize that it is exactly the Bogoliubov inequality (7.62). Thus the Bogoli-
ubov inequality is proved.

We now, using (7.62), want to find out whether the isotropic Heisenberg model
gives a spontaneous magnetization. For that, we first calculate the magnetization of
the spin system in the presence of an external homogeneous magnetic field B0 =
B0ez and then set B0 → 0. The starting point for this is, according to (7.1) and
(7.48), the following Hamiltonian:

H = −
∑
i, j

Ji j Si · S j − b
∑

i

Sz
i e−iK·Ri (7.74)

b is given by

b = gJ
μB

�
B0 (7.75)

With the help of the factor e−iK·Ri , we can distinguish the different spin structures. If
K ≡ 0 then it is the case of a normal ferromagnet. On the other hand, if we want to
discuss, for example, the simplest antiferromagnet, namely the AB-type (sometimes
called G-type), which can be considered to be made up of two ferromagnetic sub-
lattices where each atom of one sub-lattice has as its nearest neighbours only atoms
of the other sub-lattice, then we have to choose K = 1

2 Q. Here Q is the smallest
reciprocal vector so that e−ik·Ri is equal to +1 if Ri refers to one sub-lattice and
equal to −1 if it refers to another sub-lattice.

We first calculate the magnetization

M(T, B0) = gJ
μB

�

∑
i

e−iK·Ri 〈Sz
i 〉T,B0 (7.76)

The factor e−iK·Ri takes care of the fact that, in the case of an antiferromagnet,
M(T, B0) represents the sub-lattice magnetization. The total magnetization of an
antiferromagnet is naturally always equal to zero.

The question whether the Heisenberg model shows a phase transition or not is
finally answered by the spontaneous magnetization

Ms(T ) = lim
B0→0

M(T, B0) (7.77)
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For the following analysis, we assume that the exchange integrals Ji j decrease suf-
ficiently fast with the increasing distance |Ri − R j | so that Q defined by

Q = 1

N

∑
i, j

|Ri − R j |2 |Ji j | (7.78)

remains finite. This is actually a weak condition which does not require that one
should restrict oneself to the nearest neighbour interactions.

We are now ready to prove the Mermin–Wagner theorem:
For the isotropic one- and two-dimensional Heisenberg model holds

Ms(T ) ≡ 0 i f Q < ∞ and T > 0 (7.79)

For the proof we make use of the Bogoliubov inequality (7.62) for the following
operators:

A = S−(−k + K) ⇔ A† = S+(k − K) (7.80)

C = S+(k) ⇔ C† = S−(−k) (7.81)

The spin operators in k-space which were introduced in the above equations are
given by

Sα(k) =
∑

i

Sα
i e−ik·Ri (α = x, y, z, +, −) (7.82)

Using (7.6) and (7.7) one can easily verify the following commutation relations:

[
S+(k1) , S−(k2)

]
− = 2 � Sz(k1 + k2) (7.83)

[
Sz(k1) , S±(k2)

]
− = ± � S±(k1 + k2) (7.84)

Using (7.80) and (7.81) we now evaluate the individual terms of the inequal-
ity (7.62).

(a) 〈[C , A]−〉

〈[C , A]−〉 = 〈[S+(k) , S−(−k + K)
]
−〉

= 2 � 〈Sz(K)〉
= 2 �

∑
i

e−iK·Ri 〈Sz
i 〉 (7.85)

This means, from (7.76)

〈[C , A]−〉 = 2 �
2 N

gJ μB
M(T, B0) (7.86)
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(b) 〈[A , A†]+〉
This term is easy to evaluate.

∑
k

〈[A , A†]+〉 =
∑

k

〈[S−(−k + K) , S+(k − K)]+〉

=
∑

k

∑
i, j

ei(k−K)·(Ri−R j ) 〈S−
i S+

j + S+
j S−

i 〉

= 2N
∑

i

〈(Sx
i

)2 + (Sy
i

)2〉
≤ 2N

∑
i

〈S2
i 〉 (7.87)

so that in (7.62) we can substitute

∑
k

〈[A , A†]+〉 ≤ 2 �
2 N 2 S(S + 1) (7.88)

The third term requires a little more effort to evaluate.
(c) 〈[[C , H]− , C†]−〉

First we will evaluate the commutator of S+
m with H using (7.74).

[
S+

m , H
]
− = −�

∑
i

Jim
{
2S+

i Sz
m − Sz

i S+
m − S+

m Sz
i

}

+ � b S+
m e−iK·Rm (7.89)

Using this, we evaluate the following double commutator:

[[
S+

m , H
]
− , S−

p

]
−
= 2�

2
∑

i

Jip δmp
{

S+
i S−

p + 2Sz
i Sz

p

}

− 2�
2 Jmp

{
S+

m S−
p + 2Sz

m Sz
p

}
+ 2�

2 b δmp Sz
p e−iK·Rp (7.90)

This leads to the following intermediate result for the expectation value we are look-
ing for:

〈[[C , H ]− , C†]
−〉

=
∑
m,p

e−ik·(Rm−Rp)〈
[[

S+
m , H

]
− , S−

p

]
−
〉

= 2 �
2 b
∑

p

〈Sz
p〉 e−iK·Rp

+ 2 �
2
∑
m,p

Jmp
(
1 − e−ik·(Rm−Rp)

) 〈S+
m S−

p + 2 Sz
m Sz

p〉 (7.91)
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According to (7.70), this expression cannot be negative. That is also valid for the
corresponding expression evaluated with C̄ = S+(−k) in place of C = S+(k). In
this case, in (7.91) one has to only replace k by (−k) on the right-hand side. Since
this is also non-negative, we obtain an upper bound for the expectation value if we
add it to the right-hand side of (7.91):

〈[[C , H ]− , C†]
−〉

≤ 4 �
2 b
∑

p

〈Sz
p〉e−iK·Rp

+ 4 �
2
∑
m,p

Jmp (1 − cos(k · (Rm − Rp)))〈Sm · Sp + Sz
m SZ

p 〉

(7.92)

The right-hand side is positive, so that we get by use of the triangle inequality

〈[[C , H ]− , C†]
−〉

≤ 4 �
2 b N

∣∣〈Sz
p〉
∣∣+ 4 �

2
∑
m,p

|Jmp| |1 − cos(k · (Rm − Rp))| ∗

∗ (∣∣〈Sm · Sp〉
∣∣+ ∣∣〈Sz

m SZ
p 〉
∣∣)

≤ 4 �
2 b N

∣∣〈Sz
p〉
∣∣

+ 4 �
2
∑
m,p

|Jmp| |1 − cos(k · (Rm − Rp))| (�2S(S + 1) + �
2S2
)

≤ 4 �
2 b N

∣∣〈Sz
p〉
∣∣+ 8�

2S(S + 1) ∗
∗
∑
m,p

|Jmp| |1 − cos(k · (Rm − Rp))| (7.93)

Therewith we have found

〈[[C , H ]− , C†]
−〉

≤ 4 �
2 |B0 M(T, B0)|

+ 8 �
2 S(S + 1)

∑
m,p

|Jmp|1
2

k2|Rm − Rp|2 (7.94)

Using (7.78) we finally get the following inequality:

〈[[C , H ]− , C†]
−〉 ≤ 4 �

2 |B0 M | + 4 N k2
�

4 Q S(S + 1) (7.95)

We now substitute the expressions (7.86), (7.88) and (7.95) in the Bogoliubov
inequality (7.62) and sum over all the wavevectors k of the first Brillouin zone:
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β S(S + 1) ≥ M2

(gJ μB)2

1

N 2

∑
k

1

|B0 M | + k2 �2 N Q S(S + 1)
(7.96)

Using this inequality, we will now prove the Mermin–Wagner theorem (7.79). For
that we will again convert the sum into an integral. Let the system be in a d-
dimensional “volume” Vd = Ld and contain Nd = nd spins. In the thermodynamic
limit, let the specific volume Vd/Nd approach the constant value vd . The integrand
on the right-hand side of the inequality is positive. Therefore, we can replace the
integration over the first Brillouin zone by an integration over a sphere of radius k0

which lies completely inside the Brillouin zone:

S(S + 1) ≥ m2 vd Ωd

β (gJ μB)2 (2π )d

∫ k0

0

kd−1 dk

|B0 m| + k2 �2 Q S(S + 1)
(7.97)

Here d is the dimension of the lattice and Ωd is the surface area of the d-dimensional
“unit sphere” (see Problem 3.4)

Ω1 = 2 Ω2 = 2π Ω3 = 4π (7.98)

Furthermore, we have introduced the average magnetic moment per site m = M/N .
The integral on the right-hand side of (7.97) can be easily evaluated:

d = 1

S(S + 1) ≥ m2 v1

2π β (gJ μB)2

arctan
(

k0

√
Q �2 S(S+1)

|B0 m|
)

√
Q �2 S(S + 1) |B0 m|

(7.99)

We are specially interested in the behaviour of the magnetization for small
fields B0:

|m(T, B0)| ≤ const.
B1/3

0

T 2/3
as B0 → 0 (7.100)

d = 2
For the two-dimensional lattice from (7.97) we get

S(S + 1) ≥ m2 v2

2π β (gJ μB)2

ln
(

Q �
2 S(S+1)k2

0+|B0 m|
|B0 m|

)

2 Q �2 S(S + 1)
(7.101)

from which for small fields B0 we get as B0 → 0

|m(T, B0)| ≤ const1

(
T ln

(
const2 + |B0 m|

|B0 m|
))−1/2

(7.102)
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From the two inequalities (7.100) and (7.102) it is clear that the spontaneous mag-
netization

ms(T ) = lim
B0→0

m(T, B0) = 0 for T �= 0 and d = 1, 2 (7.103)

Thus, the Mermin–Wagner theorem is proved.
In the following, we add a short interpretation of the theorem:

1. The proof is valid only for T > 0. For T = 0 the inequalities (7.100) and
(7.102) do not make any predictions. Just as in the case of one-dimensional
Ising model (Sect. 6.2.1), for T = 0 spontaneous magnetization is not excluded.

2. The factor exp(−iK · Ri ) which was introduced in the definition of the mag-
netization does not appear in the inequalities (7.100) and (7.102). Therefore,
the theorem forbids even the long-range antiferromagnetic order in one- or two-
dimensional spin lattices.

3. No prediction is possible for d = 3.
4. The theorem is valid for arbitrary spin S.
5. The theorem is valid only for the isotropic Heisenberg model. The proof is not

valid even for a weak anisotropy. This explains the existence of a number of
two-dimensional Heisenberg ferromagnets and antiferromagnets like

K2CuF4, Cr Br3, Rb2 MnF4, . . .

as well as high-Tc superconductors (cuprates), which show a phase transition.
Distinct anisotropy in these materials makes the Mermin–Wagner theorem irrel-
evant to them.

6. The theorem is restricted only to the non-existence of spontaneous magneti-
zation. It does not necessarily exclude other types of phase transitions. High-
temperature expansions occasionally indicate a divergence in the isothermal
magnetic susceptibility χT (Fig. 7.1). A divergence in χT at a critical temper-
ature T ∗ is normally an indicator for a transition into a collectively ordered
phase. In the case of two-dimensional-Heisenberg model, however, it appears
that the following conditions may be simultaneously valid [7]:

Ms(T ) ≡ 0

χT = limB0→0

(
μ0

(
∂ M(T,B0)

∂ B0

)
T

)
T→T ∗→ ∞ (7.104)

7. The Mermin–Wagner theorem can be proved also for other models like the Hub-
bard model, s-f (Kondo-lattice) model, X–Y model.

7.2.2 One-Magnon States of a Ferromagnet

There exist interesting analogies between the elementary excitations in a ferromag-
net and an elastic solid. The oscillations of the ions in the lattice about their mean
positions can be analysed in terms of the normal modes. Their amplitudes are quan-



292 7 Heisenberg Model

Fig. 7.1 Critical temperature
behaviour of the isothermal
magnetic susceptibility χT

χT

TT*

tized. The quantum unit in this case is called the phonon. In a complete analogy,
the oscillations of the ferromagnet are, following Bloch, called spin waves and their
unit of quantization is the magnon. The ground state of a ferromagnet corresponds
to the total alignment of all the spins. We shall see that magnons represent the spin
deviations, i.e. they cause a destruction of the collective spin ordering. One-magnon
states are exact eigenstates of the Heisenberg Hamiltonian. We will prove and dis-
cuss this in the following.

We use the model Hamiltonian in the form (7.13) including the Zeeman term
(7.48), but we will write it in terms of wave vectors using (7.82) and (7.41):

H = − 1

N

∑
k

J (k){S+(k) S−(−k) + Sz(k) Sz(−k)}

− gJ
μB

�
B0 Sz(0) (7.105)

The sum runs over all the wavevectors in the first Brillouin zone. Note that S+(k)
and S−(k) are no longer adjoints and Sz(k) is not Hermitian!

(
S+(k)

)† = S−(−k);
(
Sz(k)

)† = Sz(−k)

Let the state |0〉 be the state where all the spins are oriented parallel to the external
field. This is the ground state of the operator H (ferromagnetic saturation). We will
first calculate its eigenvalue. The working of the spin operators on the state |0〉 is of
course obvious:

Sz
i |0〉 = � S|0〉

Sz(k)|0〉 = � S|0〉
∑

i

e−ik·Ri = � N S|0〉 δk,0 (7.106)

S+
i |0〉 = 0 ⇒ S+(k)|0〉 = 0 (7.107)

With these relations, the working of H on |0〉 is also clear (Problem 7.6):
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H |0〉 = E0|0〉; E0 = −N �
2 J0 S2 − N gJ μB B0 S (7.108)

In E0, the first term stems from the exchange interaction and the second is due to
the external field. We will show that the state

S−(k)|0〉

is also an eigenstate of H . For that, using the commutation relations (7.83) and
(7.84), we will first calculate

[
H , S−(k)

]
−

= − 1

N

∑
q

J (q)
{[

S+(q) , S−(k)
]
− S−(−q)

+ [
Sz(q) , S−(k)

]
− Sz(−q) + Sz(q)

[
Sz(−q) , S−(k)

]
−
}

− 1

�
gJ μB B0

[
Sz(0) , S−(k)

]
−

= − 1

N

∑
q

J (q)
{
2�Sz(k + q)S−(−q) − �S−(k + q)Sz(−q)

− �Sz(q)S−(k − q)
}+ gJ μB B0S−(k)

= − 1

N

∑
q

J (q)
{−2�

2S−(k) + 2�S−(−q)Sz(k + q)

− �S−(k + q)Sz(−q) + �
2S−(k) − �S−(k − q)Sz(q)

}
+ gJ μB B0S−(k)

Therewith we can write

[
H , S−(k)

]
− = gJ μB B0 S−(k)

− 2�

N

∑
q

J (q){S−(−q) Sz(k + q)

− S−(k + q) Sz(−q)} (7.109)

In view of (7.12), we have used several times

1

N

∑
q

J (q) = Jii = 0; J (q) = J (−q) (7.110)

The commutator (7.109) is itself an operator. Using (7.106), the application of this
operator on the ground state |0〉 gives

[
H , S−(k)

]
− |0〉 = {gJ μB B0 − 2�

2 S (J (k) − J0)}S−(k)|0〉 (7.111)
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Using (7.108) and (7.111) we can now write

H (S−(k)|0〉)
= S−(k)H |0〉 + [H , S−(k)

]
− |0〉

= {E0(B0) + gJ μB B0 + 2S�
2(J0 − J (k))}S−(k)|0〉

(7.112)

Thus we see that S−(k)|0〉 is indeed an eigenstate of H . This state can be normalized
by

〈0|S+(−k) S−(k)|0〉 = 〈0|(S−(k) S+(−k) + 2�Sz(0))|0〉
= 2�

2 N S (7.113)

provided the ground state |0〉 is itself normalized. With this, we have found the
following important result. The normalized one-magnon state

|k〉 = 1

�
√

2SN
S−(k)|0〉 (7.114)

is an eigenstate with the energy

E(k) = E0(B0) + �ω(k) (7.115)

That corresponds to an excitation energy of

�ω(k) = gJ μB B0 + 2S�
2(J0 − J (k)) (7.116)

The energy quantum �ω(k) is ascribed to the quasiparticle magnon. From the field
term gJ μB B0, one recognizes that the total magnetic moment of the system in
the state |k〉 is, when compared to that in the ground state |0〉, reduced by gJ μB .
Therefore, one can ascribe spin 1� to the quasiparticle magnon. Thus magnons are
bosons!

One can obtain further information about this new quasiparticle by looking at
the expectation value of the local operator Sz

i in the one-magnon state |k〉. Using
(7.114) and (7.107) one has (Problem 7.7)

〈k|Sz
i |k〉 = �(S − 1

N
) (7.117)

This is a remarkable result. The right-hand side is independent of i and also of k,
i.e. the spin deviation of 1� in the state |k〉 is distributed uniformly on all the lattice
sites. At each lattice site, the deviation of the local spin from the totally ordered
state (〈0|Sz

i |0〉 = �S for all i) is �/N . This fact leads inescapably to the concept
of spin waves. This is a collective excitation |k〉, in which all the localized spins
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Fig. 7.2 Semiclassical
picture of a local spin after
one magnon has been excited

z

Si

Si

z
h(S−1/N)=

participate equally. The excitation of a spin wave means a spin deviation of one unit
of angular momentum 1� for the whole lattice. It is characterized by a propagation
vector k. Its quantization unit is the magnon. In a picturized, quasiclassical vector
model, a spin wave is represented by the precession of every localized spin about
the z-axis. The angle the spin makes with the z-axis is such that the projection of
the spin vector onto the z-axis is �(S− 1

N ) (Fig. 7.2). The adjacent spin vectors have
a constant phase difference determined by the propagation vector k = 2π/λ. With
this phase difference, they build the spin wave which is indexed by the wavevector
k. k = 0 means all the spins precess about the z-axis with a phase difference of
zero. From (7.116) one sees that for B0 → 0 one can excite spin waves with almost
no cost in energy. That means the small thermal energy is sufficient to produce devi-
ations from the saturation magnetization in the Heisenberg spin system by exciting
spin waves. In contrast, the reversing of an individual spin costs considerably more
energy (Fig. 7.3).

An obvious ansatz for the many-magnon states would be

|ψ〉 ∼
∏

k

(
S−(k

)nk |0〉 (7.118)

Fig. 7.3 Semiclassical model
of a spin wave
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where nk is the number of the spin waves with the propagation vector k. However,
one can easily show that these states are not eigenstates. This fact indicates that the
interactions among the spin waves, i.e. among the magnons, has to be taken into
account. This will be discussed in later sections.

7.3 Molecular Field Approximations

In the last section, we could treat exactly some special aspects of the Heisenberg
model

H = −
∑
i, j

Ji j

(
S+

i S−
j + Sz

i Sz
j

)
− gJ

μB

�
B0

∑
i

Sz
i (7.119)

The general eigenvalue problem could not be solved rigorously up till now. As a
result, one has to depend on approximations. The simplest approximation is con-
structed by linearizing the Hamiltonian. For that, the starting point is the following
identity for the product of two operators A and B:

A · B = A〈B〉 + 〈A〉B − 〈A〉〈B〉 + (A − 〈A〉)(B − 〈B〉) (7.120)

The angular brackets symbolize again the thermodynamic average. The molecular
field approximation (MFA) consists of the neglect of the fluctuations of the observ-
ables from their mean values:

A · B
M F A−→ A〈B〉 + 〈A〉B − 〈A〉〈B〉 (7.121)

As an operator equation this approach looks rather strange. However, since we need
these operators normally in averaging processes, e.g. when calculating the magne-
tization, such a procedure may be roughly acceptable. Applying this approximation
to the operator products in (7.119), one sees that the “spin-flip terms” S+

i S−
j are

completely suppressed.

S+
i S−

j
M F A−→ 0 (7.122)

This is because of the conservation of the z-component of the total spin (7.14) and
(7.15).

〈S+
i 〉 = 〈S−

i 〉 = 0 (7.123)

Equation (7.122) must be seen as the distinct disadvantage of the molecular field
approximation. The approximation (7.121) leads to the following model Hamilto-
nian:
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HM F A = −
∑
i, j

Ji j

{
Sz

i 〈Sz
j 〉 + 〈Sz

i 〉Sz
j

}
− gJ

μB

�
B0

∑
i

Sz
i + D(T, B0) (7.124)

D(T, B0)) is a temperature-dependent c-number

D(T, B0) =
∑
i, j

Ji j 〈Sz
i 〉〈Sz

j 〉 (7.125)

which can, most of the time, be neglected. The decisive simplification achieved
in (7.124) is that the original many-spin problem (7.119) is reduced to a one-spin
problem. As a result, the ferro-, the ferri- or the antiferromagnet will be described
as a paramagnet in an effective temperature-dependent field. Therefore, we can take
over many results directly from Sect. 4.2, if we replace in the respective formu-
lae the external field by the sum of the external and the effective fields. The exact
form of the effective field is of course determined in the last analysis by the spin
configuration of the Heisenberg magnet.

7.3.1 Ferromagnet

First we will consider a homogeneous ferromagnet for which case the translational
symmetry is present.

〈Sz
i 〉 = 〈Sz〉 ∀ i (7.126)

This reduces the Hamiltonian to be

HM F A = D̂(T, B0) −
(

2J0〈Sz〉 + gJ
μB

�
B0

)∑
i

Sz
i (7.127)

The c-number

D̂(T, B0) = N J0〈Sz〉2
T,B0

(7.128)

does not appear in the calculation of most of the interesting quantities such as mag-
netization. However, for example, if one wants to calculate the specific heat, one
should not neglect this term.

In the molecular field approximation, the Heisenberg Hamiltonian has the same
form as the Hamiltonian of an ideal paramagnet:

HM F A = D̂(T, B0) − gJ
μB

�
(BA + B0)

∑
i

Sz
i (7.129)

when one interprets BA as an effective field, which is called the exchange field.
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BA = 2J0 �

gJ μB
〈Sz〉T,B0 = BA(T, B0) (7.130)

In view of the expression for the magnetization

M(T, B0) = n gJ
μB

�
〈Sz〉T,B0 (n = N/V ) (7.131)

we notice that BA is proportional to the magnetization

BA = μ0 λ M (7.132)

where

λ = 2J0 �
2

n μ0 (gJ μB)2
(7.133)

Thus the molecular field approximation of the Heisenberg model is fully equivalent
to the phenomenological Weiss model of a ferromagnet (Sect. 5.1). Equation (7.132)
is identical to (5.7). However, in addition, we now have the possibility to provide a
microscopic meaning, through (7.133), to the exchange parameter λ.

In the following we will recover most of the results of Sect. 5.1 by deriving the
physical quantities using HM F A. The latter are essentially the same as those of the
Weiss ferromagnet. This holds especially for the magnetization

7.3.1.1 Magnetization

The magnetization is given by (5.8) or (4.127)

M(T, B0) = M0 Bs(β S gJ μB(B0 + BA)) (7.134)

Bs is the Brillouin function defined in (4.99) and M0 is the saturation magnetization

M0 = n S gJ μB (7.135)

In the molecular field approximation, the Heisenberg spin system shows a phase
transition independent of the lattice dimension, i.e. there exists a critical temperature
TC below which the spontaneous magnetization Ms(T ) = M(T, B0 = 0+) is non-
zero. The MFA therefore violates the Mermin–Wagner theorem.

T > TC : Ms(T ) ≡ 0 “paramagnetism ′′

T < TC : Ms(T ) �= 0 “ f erromagnetism ′′ (7.136)

According to the discussion in Sect. 5.1, the spontaneous magnetization satisfies the
universal equation of determination (5.15)
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Ms(T )

M0
= Bs

(
3S

S + 1

TC

T

Ms(T )

M0

)
(7.137)

The graphical solution of this equation is illustrated in Fig. 5.6. The Curie tempera-
ture, using (5.12), (5.13) and (7.133), is given by

kB TC = 2

3
�

2 J0 S(S + 1) (7.138)

TC is therefore a direct measure of the strength of the ferromagnetic coupling
between the localized moments.

The “rough” temperature dependence of the spontaneous magnetization of a fer-
romagnet is reproduced quite nicely by the molecular field approximation (7.137).
However, a more careful look shows interesting deviations. In the critical region
(T

<→ TC , B0 = 0+), the argument of the Brillouin function (7.137) becomes very
small. Therefore, we can expand as was done in (4.103).

Bs(x) ≈ S + 1

3S
x − S + 1

3S

2S2 + 2S + 1

30S2
x2

This gives for the spontaneous magnetization, which is also known as the order
parameter of the ferromagnet,

(
Ms

M0

)2

≈ 10

3

(S + 1)2

2S2 + 2S + 1

(
T

TC

)2 TC − T

TC
(7.139)

for T
<→ TC .

The critical exponent β of the order parameter which is defined by

Ms ∼ (TC − T )β for T
<→ TC (7.140)

in the molecular field approximation is equal to 1/2 whereas the experimental value
is ≈ 1/3 and therefore there is a disagreement.

The low-temperature behaviour of the spontaneous magnetization is also not
given quite correctly. In Sect. 7.4.1, we will derive Bloch’s T 3/2 law,

Ms(T )

M0
∼ (1 − C3/2 T 3/2

)
for T → 0 (7.141)

according to which, it can be seen that already at relatively low temperatures, the
spontaneous magnetization deviates from the saturation value due to the excitation
of spin waves. In the molecular field approximation, the spin waves are completely
suppressed. Therefore, the deviations from saturation can appear only by the “rever-
sal” of the individual spins. This naturally costs a lot more energy than the excitation
of spin waves, which will happen with arbitrarily small energy (see Sect. 7.2.2). As
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a result, in the molecular field approximation, Ms , as T → 0, goes into saturation
exponentially.

7.3.1.2 Susceptibility

To calculate susceptibility, we will use (7.132) and (7.134). The susceptibility is
given by

χ (T, B0) = μ0

(
∂ M

∂ B0

)
T

(7.142)

According to (4.99), the derivative of the Brillouin function is given by

B ′
s(x) = d

dx
Bs(x) = 1/(2S)2

sinh2
(

x
2S

) −
(

2S+1
2S

)2
sinh2

(
2S+1

2S x
) (7.143)

Using the notation

x = β S gJ μB(B0 + μ0 λ M(T, B0)) (7.144)

the susceptibility χ is given by

χ (T, B0) = μ0 n
(S gJ μB)2 B ′

s(x)

kB T − 2J0 �2 S2 B ′
s(x)

(7.145)

This relationship is valid in fact for all fields B0 and for all temperatures and there-
fore also for T < TC .

In the paramagnetic region, the Curie–Weiss law which was derived in Sect. 5.1
is valid:

M = 1

μ0
χ B0 (7.146)

χ (T ) = C

T − TC
(7.147)

C is the Curie constant which is defined in (4.130). One should remember that
the linear relationship (7.146) between M and B0 is valid only for high temper-
atures and small fields. Within the molecular field approximation, the expression
(7.147) is exact for zero field and for all T > TC . Experimentally, the linear rela-
tionship between the inverse susceptibility and temperature is valid only for very
high temperatures and is unambiguously confirmed. One uses this high-temperature
behaviour of the susceptibility to define a characteristic material constant: param-
agnetic Curie temperature θ

χ−1 ∼ (T − θ ) (T � TC , B0 = 0) (7.148)
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Fig. 7.4 Temperature
behaviour of the inverse
paramagnetic susceptibility
with a zero at the Curie
temperature TC (θ ,
paramagnetic Curie
temperature)

χ−1

TθTC

One obtains θ by extrapolating the high-temperature behaviour of the inverse
susceptibility onto the temperature axis and finding the intercept (Fig. 7.4). In the
molecular field approximation, typically,

θM F A = TC (7.149)

Experimentally, θ is always greater than TC .

7.3.1.3 Specific Heat

The molecular field approximation (7.129) gives the average energy per spin of a
ferromagnet as

U = 1

N
〈HM F A〉 = 1

N
D̂(T, B0) − gJ

μB

�
〈Sz〉(BA + B0) (7.150)

The c-number D̂(T, B0), while calculating the specific heat, can not be neglected
any more. Substituting (7.128) and (7.131) to (7.133) in (7.150), one gets for the
internal energy of the ferromagnet

U = −1

n

(
1

2
μ0 λ M2 + B0 M

)
(7.151)

We first notice from this result that for T > TC and in zero field the magnetic
contribution to the internal energy vanishes. In reality, in a ferromagnet, even above
TC , there exists a short-range ordering of the spins, which are described by the
correlation functions of the type 〈S+

i S−
j 〉, 〈Sz

i Sz
j 〉, etc., which are nonzero, even

though 〈Sz〉 is already equal to zero (see Problem 6.4). According to (7.122), right
from the beginning, the correlation between different lattice sites is neglected, so
that the magnetic energy resulting from such short-range order cannot appear in the
expression for the internal energy.
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Using (7.151), we can now calculate the specific heat

CB0 = T

(
∂S

∂T

)
B0

(7.152)

According to the first law of thermodynamics, the internal energy per particle is
given by

dU = T d S + V

N
B0 d M (7.153)

The volume is to be treated as constant. S and M are functions of T and B0. There-
fore

dU =
[

T

(
∂S

∂T

)
B0

+ V

N
B0

(
∂ M

∂T

)
B0

]
dT

+
[

T

(
∂S

∂ B0

)
T

+ V

N
B0

(
∂ M

∂ B0

)
T

]
d B0 (7.154)

From this follows the generally valid relation:

CB0 =
(

∂U

∂T

)
B0

− 1

n
B0

(
∂ M

∂T

)
B0

(7.155)

Using (7.151), for the Heisenberg ferromagnet, we then have

CB0 = −1

n

{
2B0

(
∂ M

∂T

)
B0

+ μ0 λ

2

(
∂ M2

∂T

)
B0

}
(7.156)

Since in the paramagnetic phase we have U = 0 and M = 0, we get

CB0 ≡ 0 (T > TC , B0 = 0) (7.157)

It can be shown quite generally that, for every magnetic system at high temperatures
CB0 ∼ 1/T 2 should be valid (proved as Problem 6.4). In this sense, the molecular
field approximation is not correct.

For T
<→ TC , the behaviour of the specific heat, particularly in the neighbour-

hood of the phase transition, is interesting. For B0 = 0 and T < TC , we can
substitute (7.139) in (7.156):

CB0=0 = 5kB
S(S + 1)

2S2 + 2S + 1

(
T

TC

)2 (
1 + 2

(
1 − TC

T

))
(7.158)
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Fig. 7.5 Specific heat of the Heisenberg ferromagnet in the molecular field approximation as func-
tion of temperature

From this we see that the specific heat has a finite discontinuity at TC which is
equal to

ΔCB0=0(T = TC ) = 5kB
S(S + 1)

2S2 + 2S + 1
(7.159)

That corresponds to a phase transition of second order in the classical Ehrenfest
sense.

To calculate the general temperature dependence below TC , we have to substitute
(7.137) in (7.156). The result is displayed in Fig. 7.5, which has a certain similarity
with experimental CB0 − T curves. In view of the greatly simplifying assumptions
made in the molecular field approximation, the agreement is not expected to be
quantitative. Figure 7.6 shows the temperature dependence of the specific heat of
the ferromagnet GdCl3 whose Curie temperature is TC = 2.20 K [8]. The dashed
line is the lattice contribution (∼T 3). The difference between the continuous and
dashed lines is the contribution of the ferromagnetic spin system, which is nonzero
even beyond TC due to the short-range order.

7.3.2 Antiferromagnet

We now want to apply the molecular field ansatz to the antiferromagnet. The anti-
ferromagnet is made up of two chemically equivalent ferromagnetic sub-lattices,
whose magnetizations in zero field are equal and oppositely oriented to each other
at all temperatures.

Ms(T ) = M1s(T ) + M2s(T ) ≡ 0 (T arbitrary, B0 = 0)

M1s(T ) ≡ −M2s(T ) �= 0 for T < TN (7.160)
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Fig. 7.6 Specific heat as
function of temperature for
the ferromagnet GdCl3.
Dashed line represents the
lattice contribution

1.0

2.0

3.02.01.0 TC

C/kB

T[K]

Obviously, the exchange integrals between atoms belonging to the different sub-
lattices must then be negative. The antiferromagnet, in the molecular field approxi-
mation, is described by the following Hamiltonian:

HM F A = D̄(T, B0) − gJ
μB

�

∑
i

(B0 + B(i)
A )Sz

i (7.161)

The c-number D̄(T, B0) is given according to (7.125) by

D̄(T, B0) =
∑
i, j

Ji j 〈Sz
i 〉〈Sz

j 〉 (7.162)

Compared to a ferromagnet, now the exchange fields are different for the two sub-
lattices:

1

�
gJ μB B(i)

A = 2
∑

j

Ji j 〈Sz
j 〉 (7.163)

This can be written more explicitly as

1
�

gJ μB B(1)
A = 2 〈Sz

1〉
∑∈1

j J1 j + 2 〈Sz
2〉
∑∈2

j J1 j
1
�

gJ μB B(2)
A = 2 〈Sz

1〉
∑∈1

j J2 j + 2 〈Sz
2〉
∑∈2

j J2 j
(7.164)

The sub-lattice magnetization

Mi (T, B0) = ni gJ
μB

�
〈Sz

i 〉 ni = Ni

V
, i = 1, 2 (7.165)
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has to be calculated, where Ni is the number of particles in the corresponding sub-
lattice. Analogously to the Weiss ferromagnet, we can introduce for the antiferro-
magnet also the exchange parameters:

λ11 = λ22 = 4�
2

n μ0 (gJ μB )2

∑∈1
j J1 j

λ12 = λ21 = 4�
2

n μ0 (gJ μB )2

∑∈2
j J1 j

(7.166)

We will assume that the two sub-lattices are completely equivalent, so that, in par-
ticular, ni = n/2 is valid. Then, the exchange fields have the following relationships
with the sub-lattice magnetizations:

B(1)
A = μ0(λ12 M2 + λ11 M1)

B(2)
A = μ0(λ21 M1 + λ22 M2)

(7.167)

We now discuss the physical properties of the Heisenberg antiferromagnet begin-
ning with sub-lattice magnetization.

7.3.2.1 Sub-lattice Magnetization

Because of the molecular field approximation, the problem of the antiferromagnet
is also converted into a single-spin problem. Therefore, in complete analogy with
the ferromagnet (7.134), one gets

Mi (T, B0) = M0i Bs(β S gJ μB(B0 + B(i)
A )) (7.168)

M01 = M02 = n

2
S gJ μB (7.169)

If the field is switched off (B0 = 0), we can use (7.160), as a result of which the
spontaneous magnetization of the two sub-lattices must be equal and opposite:

M1s(T ) = −M2s(T ) (7.170)

With (7.167), we now have to solve the following implicit equations for the sub-
lattice magnetizations:

Mis(T ) = M0i Bs(β S gJ μ0 μB(λ11 − λ12)Mis(T )) (7.171)

Mathematically, the problem is exactly the same as the one encountered in the case
of a ferromagnet. Again, one can have a graphical solution as in Sect. 5.1.2.
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7.3.2.2 Neel Temperature

This is the temperature TN at which the sub-lattice magnetization collapses. This is
also derived exactly in a similar manner as in the case of a ferromagnet. Accord-
ing to Fig. 5.4, the necessary condition for the existence of spontaneous sub-lattice
magnetization is

d

d Mis
M0i Bs

∣∣∣∣
Mis=0

≥ 1

Using (5.11) with M0i = 1
2 M0, J = S and λ → (λ11 − λ12), one gets with (5.12)

and (5.13)

TN = 1

2
(λ11 − λ12)C (7.172)

C is the Curie constant (5.12).

kB TN = n

6
μ0 (gJ μB)2 S(S + 1)(λ11 − λ12) (7.173)

Substituting further (7.166), we finally get

kB TN = 2

3
S(S + 1) �

2

⎧⎨
⎩

∈1∑
j

J1 j −
∈2∑
j

J1 j

⎫⎬
⎭ (7.174)

In addition, as a natural condition for the antiferromagnetic order, we have to require

∈2∑
j

J1 j < 0 (7.175)

We want to evaluate this expression for three typical antiferromagnetic structures.

(a) ABAB-structure (G-type): In this structure, there are two interpenetrating sub-
lattices such that an atom in one sub-lattice has only the atoms of the other sub-
lattice as its nearest neighbours. If we restrict ourselves only to the nearest and
next nearest neighbour interactions J1 and J2, respectively, then from (7.175) it
follows that

kB TN = 2

3
S(S + 1) �

2(z2 J2 − z1 J1) (7.176)

The z1 nearest neighbours of the atom under consideration necessarily belong to
the other sub-lattice and the z2 next nearest neighbours to the same sub-lattice.
In order that TN > 0, in addition to J1 < 0, either J2 > 0 or



7.3 Molecular Field Approximations 307

J2 < 0 and |z1 J1| > |z2 J2| (7.177)

That means, J2 can be either positive or negative. That is, the interaction within
the sub-lattice, in spite of the ferromagnetic ordering, need not be ferromagnetic,
but can also be antiferromagnetic.

(b) NSNS structure: This structure is also called the MnO structure. The (111)-
planes are ferromagnetically ordered, such that the successive (111)-planes show
an (NSNS) sequence of magnetization. In addition to MnO, a good example
showing this structure is the antiferromagnet EuTe. In this material, the localized
moments are due to the Eu2+ ions. These ions build an fcc lattice. One knows
that in europium chalcogenides, the nearest neighbour interaction is ferromag-
netic (J1 > 0) and the one between the next nearest neighbours is antiferromag-
netic (J2 < 0). In an fcc structure, every atom has 12 nearest neighbours, out of
which 6 are on the same (111)-plane, that is, in the same sub-lattice and the other
6 in the neighbouring (111)-planes. In addition there are six next nearest neigh-
bours, all of which lie in the other sub-lattice. With this information, according
to (7.174) we can write

kB TN = 2

3
S(S + 1) �

2(6J1 − 6J1 − 6J2)

= 2

3
S(S + 1) �

2(−6J2) (7.178)

Because of TN > 0 the next nearest neighbour interaction J2 must be negative,
i.e. antiferromagnetic. From (7.175), in addition, 6J1 + 6J2 < 0 holds. This is
always fulfilled for J1 < 0. That means that all interactions are antiferromag-
netic. However, J1 > 0 with J1 < |J2| is also possible. In such a case the nearest
neighbour exchange would be ferromagnetic, although the system as a whole is
an antiferromagnet.

(c) NNSS structure: An example for an antiferromagnet which shows an NNSS
sequence in magnetization of the ferromagnetically ordered (111)-planes is
EuSe in the temperature range between 2.8 and 4.6 K [9]. The lattice structure
is same as for EuTe. The magnetic moments build an fcc lattice. Out of the 12
nearest neighbours of an arbitrarily chosen atom, 9 are in the same sub-lattice
and 3 in the other sub-lattice. Out of the six next nearest neighbours, three each
are in the two sub-lattices. This according to (7.174) leads to

kB TN = 2

3
S(S + 1) �

2(9J1 − 3J1 + 3J2 − 3J2)

= 2

3
S(S + 1) �

2(6J1) (7.179)
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Again (7.175) also has to be fulfilled. That means (3J1 +3J2) < 0 or J2 < −J1.
Because of (7.179) the nearest neighbour exchange is ferromagnetic (J1 > 0)
and the next nearest neighbour exchange antiferromagnetic (J2 < 0).

For any arbitrary antiferromagnet, provided it is built up of two interpenetrating
sub-lattices, one can evaluate (7.174) in a similar fashion. We will now discuss the
paramagnetic Curie temperature θ .

7.3.2.3 Paramagnetic Curie Temperature θ

For this, we require the high-temperature behaviour of the paramagnetic susceptibil-
ity. At high temperatures, the argument of the Brillouin function in (7.168) is small,
so that we can again exploit the relation

Bs(x) ≈ S + 1

3S
x

Then we get

Mi (T, B0) ≈ n

6
(gJ μB)2 S(S + 1) β(B0 + B(i)

A ) (7.180)

The total magnetization

M(T, B0) = M1(T, B0) + M2(T, B0) (7.181)

is for B0 �= 0 of course not zero. Using (5.12) and (7.167) one sees that for antifer-
romagnets also the Curie–Weiss law is valid:

M(T, B0) = χ (T )
1

μ0
B0 (7.182)

χ (T ) = C

T − θ
(7.183)

The paramagnetic Curie temperature θ is given by

kB θ = 1

2
kB C(λ11 + λ12) = 2

3
S(S + 1) �

2

⎛
⎝ ∈1∑

j

J1 j +
∈2∑
j

J1 j

⎞
⎠ (7.184)

Thus, the paramagnetic Curie temperature of an antiferromagnet satisfies formally
exactly the same relation as that of a ferromagnet (7.138) which is equal to TC in
the molecular field approximation:
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Fig. 7.7 Temperature
behaviour of the inverse
susceptibility of an
antiferromagnet with negative
paramagnetic Curie
temperature

θ TN T

χ−1

kB θ = 2

3
S(S + 1) �

2 J0 (7.185)

For antiferromagnets, typically J0 < 0, and therefore, the paramagnetic Curie
temperature is negative (Fig. 7.7).

θ < 0 (7.186)

For the antiferromagnets EuTe and EuSe, which were already discussed, (7.185)
becomes

kBθ = 2

3
S(S + 1) �

2(12J1 + 6J2) (7.187)

With this equation and either (7.178) or (7.179), from the measurement of TN and
θ , the exchange integrals J1 and J2 can be determined. One finds that

EuT e : �
2 J1/kB = 0.043 K; �

2 J2/kB = −0.150 K
EuSe : �

2 J1/kB = 0.073 K; �
2 J2/kB = −0.011 K

(7.188)

According to (7.175) and (7.184), the relationship between the two characteristic
temperatures of the antiferromagnet is

− θ

TN
= J0∑∈2

j J1 j −
∑∈1

j J1 j

(7.189)

In most of the cases, − θ
TN

> 1:

Material MnO NiO MnF2

−θ/TN 5.3 5.7 1.7
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Since the interactions between the two sub-lattices are necessarily antiferromag-
netic, i.e.

∑∈2
j J1 j < 0 (7.175), −θ/TN can only be greater than one, when the

interactions even within the sub-lattice are antiferromagnetic, i.e.
∑∈1

j J1 j < 0.
By itself, each of the sub-lattices would like to order antiferromagnetically. As
the antiferromagnetic coupling between the sub-lattices is stronger, a ferromagnetic
coupling within the sub-lattice is forced.

There are of course antiferromagnets with 0 < −θ/TN < 1. An example is EuTe
which has θ = −4.0 K and TN = 9.6 K. In such a case, according to (7.189),∑∈1

j J1 j must certainly be positive. That means, in this case, the coupling within
the sub-lattice is ferromagnetic.

7.3.2.4 Susceptibility for T < TN

In order to calculate the susceptibility, we have to solve (7.168) for the sub-lattice
magnetization for B0 �= 0 and then differentiate with respect to B0.

Let us assume that in the absence of an external field, both the sub-lattice mag-
netizations M1 and M2 are, respectively, parallel and antiparallel to the z-axis. The
z-axis is chosen such that it is the “easy” axis of the magnetic crystal. On the appli-
cation of an external field B0, the magnetizations M1 and M2 will change in both
direction and magnitude. One must differentiate two special cases. If the field is
parallel to the easy direction, then the directions of M1 and M2 will not change but
the magnitudes will. We have to expect a clear temperature dependence. On the other
hand, if B0 lies perpendicular to the easy direction, then, to a first approximation, the
magnitudes do not change but the directions will (Fig. 7.8). In this case, there will
be practically no temperature dependence of the susceptibility. We want to examine
these arguments a little more closely.

Let the field lie along the z-axis. In order to calculate the susceptibility, we
expand the right-hand side of (7.168) in terms of the external field:

Mi (T, B0) = M0i

[
Bs + B0 β S gJ μB

(
1 + ∂ B(i)

A

∂ B0

)
B ′

s +O(B2
0 )

]
(7.190)

Bs(x) and B ′
s(x) are, respectively, odd and even functions of x (see (7.143)). There-

fore, it is immaterial which of the spontaneous sub-lattice magnetizations we sub-
stitute in the argument of B ′

s(x):

Fig. 7.8 Reaction of the
sub-lattice magnetizations of
an antiferromagnet to an
external magnetic field B0.
Field (a) parallel, (b)
perpendicular to the easy axis

1

2

M

M

B0

M1s

M2s
M2s

M1s M1

M2

B0

(a) B0 ez (b) B0z e
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M(T, B0) = M1(T, B0) + M2(T, B0)

= B0 β M01 S gJ μB

[
2 +

(
∂ B(1)

A

∂ B0

)

B0=0

+
(

∂ B(2)
A

∂ B0

)

B0=0

]
B ′

s(βSgJ μ0μB(λ11 − λ12)M1s(T ))

+ O(B2
0 )

Using this we can easily calculate the susceptibility:

χ‖(T ) = μ0

(
∂ M(T, B0)

∂ B0

)
B0=0

(7.191)

From (7.167), we see that

(
∂ B(1)

A

∂ B0

)

B0=0

+
(

∂ B(2)
A

∂ B0

)

B0=0

= χ‖(T )(λ11 + λ12) (7.192)

From (7.184), we get (λ11 + λ12) = 2θ/C . Using the definitions for the saturation
magnetization M0i (7.169), the Curie constant C (5.12) and for the Neel temperature
TN (7.172), we get the following expression for the susceptibility:

χ‖(T ) = μ0 n
S2 (gJ μB)2 B ′

s

(
TN
T

3S
S+1

M1s
M01

)

kB

(
T − 3S

S+1θ B ′
s

(
TN
T

3S
S+1

M1s
M01

)) (7.193)

The spontaneous sub-lattice magnetization is determined by

M1s

M01
= Bs

(
TN

T

3S

S + 1

M1s

M01

)
(7.194)

With (7.143) one recognizes that

χ‖(T )
T→0−→ 0 (exponentially) (7.195)

While calculating the susceptibility χ⊥ we can use the fact that when the field is
applied perpendicular to the “easy” axis, the magnitudes of the sub-lattices at first
do not change but only their directions are changed. This results in a practically
temperature-independent susceptibility.

χ⊥(T ) = χ⊥(TN ) = χ (TN ) (7.196)
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For T ≥ TN , the localized spins are “free moving”, i.e. they do not have a pref-
erential direction of orientation any more. Then the differentiation of χ‖ and χ⊥ is
unnecessary. Both the susceptibilities are identical to the paramagnetic χ given by
(7.183). With (7.173) and (7.183) substituted in (7.196), we finally have

χ⊥ = C

TN − θ
= − 1

λ12
= n μ0

(gJ μB)2

4 �2
∣∣∣∑∈2

j J1 j

∣∣∣
(7.197)

The typical feature of an antiferromagnet is the peak in the susceptibility at T =
TN from which one can read off the exchange parameter λ12. The susceptibility for
an arbitrary direction can always be split up into the χ‖ and χ⊥ parts (Fig. 7.9). It is
of course clear that the susceptibility of an antiferromagnetic powder should in any
case be isotropic:

χpowder (T ) = 2

3
χ⊥(T ) + 1

3
χ‖(T ) (7.198)

Because of (7.195) and (7.196), we can then write

χpowder (0)

χpowder (TN )
= 2

3
(7.199)

This relation is, in general, experimentally rather well fulfilled.

χ

χ

χ

TN T

Fig. 7.9 General temperature behaviour of the susceptibility of an antiferromagnet, in case that the
external field B0 → 0 is parallel (χ‖) or perpendicular (χ⊥) to the easy axis
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7.3.2.5 Specific Heat

The magnetic energy of an antiferromagnet follows almost directly from (7.161):

U = 1

N
〈HM F A〉 = 1

N
D̄(T, B0) − 1

2
gJ

μB

�

[
B0(〈Sz

1〉

+ 〈Sz
2〉) + μ0(λ12 M2 + λ11 M1)〈Sz

1〉
+ μ0(λ12 M1 + λ11 M2)〈Sz

2〉
]

= 1

N
D(T, B0) − 1

n
[B0(M1 + M2)

+ 2μ0 λ12 M1 M2 + μ0λ11(M2
1 + M2

2 )
]

(7.200)

From (7.162), one finds for the c-number D(T, B0),

1

N
D̄(T, B0) = 1

n

(
1

2
μ0 λ11(M2

1 + M2
2 ) + μ0 λ12 M1 M2

)
(7.201)

Then, the energy per spin of an antiferromagnet is given by

U (T, B0) = −1

n
[B0(M1 + M2) + 1

2
μ0λ11(M2

1 + M2
2 )

+μ0 λ12 M1 M2] (7.202)

In writing (7.200), (7.201) and (7.202) we have assumed that B0 is parallel to the
“easy” axis (z-axis).

For B0 = 0 and T < TN , we can exploit M1 = −M2:

U (T, B0 = 0) = −μ0

n
(λ11 − λ12)M2

1 (7.203)

This has the same structure as the corresponding expression (7.151) for the ferro-
magnet. Because of neglect of the short-range order in the molecular field approxi-
mation, just as in the case of a ferromagnet, here also, the magnetic energy and the
specific heat CB0=0 vanish for T > TN . Analogously to (7.156), the specific heat is
given by

CB0=0 = −μ0

n
(λ11 − λ12)

(
∂ M2

1s

∂T

)
B0=0

(7.204)

Just as was done for (7.139), for T
<→ TN , one can derive

M2
1s

M2
01

≈ 10

3

(S + 1)2

2S2 + 2S + 1

(
T

TN

)2 TN − T

TN
(7.205)
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With (7.173) and (7.169), it then follows that

CB0=0 = 5kB
S(S + 1)

2S2 + 2S + 1

(
T

TN

)2 (
1 + 2

(
1 − TN

T

))
(7.206)

for T
<→ TN .

Thus the specific heat of the antiferromagnet shows exactly the same anomaly as
the ferromagnet (7.159) at the phase transition point.

ΔCB0=0(T = TN ) = 5kB
S(S + 1)

2S2 + 2S + 1
(7.207)

The result (7.202) provides an interesting possibility to derive once again χ⊥ classi-
cally. For arbitrary direction of B0, (7.202) can be written as

U (T, B0) = −1

n
[ B0 · (M1 + M2) + 1

2
μ0 λ11(M2

1 + M2
2)

+μ0 λ12 M1 · M2] (7.208)

Classically, the above equation means

U (T, B0) = −1

n
[ 2B0|M1| sin φ + μ0 λ11|M1|2

−μ0 λ12|M1|2 cos(2φ)] (7.209)

For small fields, the angle φ (Fig. 7.10) will be small so that we can expand

U (T, B0) ≈ −1

n
[2B0|M1|φ + μ0|M1|2 λ11

−μ0 |M1|2 λ12(1 − 2φ2)] (7.210)

Fig. 7.10 Sub-lattice
magnetizations of an
antiferromagnet in an
external field B0

φ

φ

M1

M2

M1

M2

M1+M2

B0

B0 = 0 B0 = 0
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The equilibrium value φ0 of the angle is obtained from the condition

∂U

∂φ

!= 0 ⇒ 0 = 2B0|M1| + 4 μ0|M1|2 λ12φ0

With φ0 given by

φ0 = − B0

2μ0 λ12|M1| (7.211)

we can calculate the component of the magnetization parallel to the field:

MB0 = (M1 + M2) · B0

B0
= (|M1| + |M2|) sin φ0 ≈ 2|M1|φ0 (7.212)

With this we finally get the susceptibility χ⊥:

χ⊥ = μ0

(
∂ MB0

∂ B0

)
T

= − 1

λ12
(7.213)

This is exactly the result (7.197).

7.3.2.6 Spin-Flop Field

As already mentioned, the anisotropy of the antiferromagnet defines the easy and
hard directions for the magnetizations. This leads to an interesting magnetic transi-
tion called the “spin-flop” in antiferromagnets (Fig. 7.11).

If the field is applied parallel to the easy direction, then first |M1| increases and
|M2| decreases. This happens, however, only so long as the field increases up to
a critical strength BF . At this point, the magnetizations M1 and M2 jump into the
direction perpendicular to the field and from then on gradually change the direction
towards the direction of the field as the field is further increased.

Fig. 7.11 Illustration of the
spin-flop field

1
φ φ2

0 < B0 < BF
B0 > BF

M1
M2

B0

B0
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How does one understand this effect? We have discussed the magnetic anisotropy
in Sect. 7.1.2. The “easy” axis, for which the anisotropy is responsible, can be for-
mulated in the simplest way from (7.59), through the magnetic energy per spin UA

as follows:

UA‖ = K0; UA⊥ = K0 + K1 (K1 > 0) (7.214)

In the molecular field approximation (7.208) for U , the anisotropy terms are not
yet taken into account. If the magnetizations change from parallel to perpendicular
direction, the last two terms in (7.208) do not change. Therefore, we can write

U‖ = K0 − 1
n

χ‖
μ0

B2
0 + U0

U⊥ = K0 + K1 − 1
n

χ⊥
μ0

B2
0 + U0

(7.215)

For T < TN , χ⊥ > χ‖ (Fig. 7.9). Since K1 > 0, there is a critical field strength BF

defined by

U‖(B0 = BF )
!= U⊥(B0 = BF ) (7.216)

above which U⊥ < U‖ so that it becomes more advantageous for the magnetization
originally parallel to the field to change to the direction perpendicular to the field.
From (7.215) and (7.216), we get for the spin-flop field BF

BF =
√

n μ0 K1

χ⊥ − χ‖
(7.217)

In the experiments, the spin-flop becomes noticeable at low temperatures by the fact
that the magnetization jumps from

M‖ = 1

μ0
χ‖ B0 ≈ 0

to

M⊥ = 1

μ0
χ⊥ B0 = B0

−μ0 λ12

By measuring the spin-flop field, the anisotropy constant K1 can be experimentally
determined.

It is also clear from (7.217) that without the anisotropy (K1 → 0), the sub-
lattice magnetization always orients itself perpendicular to the external field. With
anisotropy, only for B ≥ BF , the magnetization is decoupled from the easy
direction.
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7.3.3 Ferrimagnet

As the third example of the application of the molecular field approximation (7.124)
of the Heisenberg model, in this section, we want to discuss the ferrimagnets
which in a certain sense stay in between the ferro and antiferromagnets. Fer-
rimagnet, below a critical temperature, has resultant spontaneous magnetization
and therefore is like a ferromagnet. On the other hand, for high temperatures,
the susceptibility shows a Curie–Weiss behaviour with a negative paramagnetic
Curie temperature, which is typical for an antiferromagnet. For this reason, there
is no consensus in the literature regarding the naming of the transition temper-
ature. In view of the ferromagnetic magnetization, we will call the critical tem-
perature as the “Curie temperature” TC , while other authors call it “Neel tempera-
ture” TN because of the antiferromagnetic coupling mechanism and the sub-lattice
structure.

By a ferrimagnet, we mean a magnet which is made up of chemically non-
equivalent sub-lattices with unequal magnetic moments, so that the resulting total
moment is unequal to zero. The sub-lattice magnetizations are pair-wise anti-
ferromagnetically oriented. However, exotic spin structures such as spiral struc-
tures which are also sometimes being called ferrimagnetic will not be considered
here.

Thus, ferrimagnets must be made up of at least two non-equivalent lattice sites.
That is why, in general, the crystal structure of these materials is complicated. The
most prominent representatives belong to the class of spinels or the perovskites with
unit cells containing up to 160 atoms:

(a) Ferrites: M O · Fe2 O3

M = double-valued metal ion
(b) Garnets: 3M2 O3 · 5Fe2 O3

M = triple-valued metal ion
(α) M = Y : yttrium–iron–garnet: “YIG”
(β) M = Rare earth (e.g. Gd): Rare earth–iron–garnet: “RIG”

A prominent representative of ferrites is the magnetite Fe3 O4 = FeO · Fe2 O3

which has a valence mixture of Fe2+ and Fe3+.
We want to describe here the simplest version of the ferrimagnets, namely, the

two sub-lattice model. The evaluation within the framework of the molecular field
approximation is formally identical to that of an antiferromagnet. We only have
to take care that the spin and the Lande g-factors of the two sub-lattices can be
different. This can, under certain conditions, lead to a nonmonotonic behaviour,
even a change of sign, of the net magnetization as a function of temperature. The
temperature TK < TC at which the magnetization passes through zero is called the
compensation temperature (Fig. 7.12). However, such compensation can, but need
not necessarily, occur.
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Fig. 7.12 Typical
temperature behaviour of the
sub-lattice and total lattice
magnetizations of a
ferrimagnet. TK is the
compensation temperature

T

TC

TK

M
2

M1

M1 + M2

7.3.3.1 Sub-lattice Magnetizations

We can practically take over all the relations that we have derived in the last section,
only taking care to index certain quantities with the corresponding sub-lattice, if
they are different for different sub-lattices. Then according to (7.168), we have for
the sub-lattice magnetization of a ferrimagnet

Mi (T, B0) = M0i BSi

(
β Si gJi μB

(
B0 + B(i)

A

))
(7.218)

Moi = ni Si gJi μB (7.219)

The index i = 1, 2 numbers the two sub-lattices. For the exchange fields B(i)
A , as in

(7.167), we have

B(1)
A = μ0(λ12 M2 + λ11 M1) (7.220)

B(2)
A = μ0(λ21 M1 + λ22 M2) (7.221)

Here one has to notice that even though

λ12 = λ21 (7.222)
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unlike in the case of antiferromagnets, we now have the possibility that

λ11 �= λ22 (7.223)

In more detail, the exchange parameters λi j are given by

λ12 = λ21 = 2�
2

n1 μ0 gJ1 gJ2μ
2
B

∈2∑
j

J1 j (7.224)

λ11 = 2�
2

n1 μ0 (gJ1μB)2

∈1∑
j

J1 j (7.225)

λ22 = 2�
2

n2 μ0 (gJ2μB)2

∈2∑
j

J2 j (7.226)

Due to the antiferromagnetic coupling between the two sub-lattices we expect

λ12 < 0 ; |λ12| � |λ11|, |λ22| (7.227)

7.3.3.2 Curie Temperature

Just as in the case of a ferromagnet, TC can be obtained by demanding that the slope
of the right-hand side of (7.218) as a function of the spontaneous magnetization
Mis = Mi (T, 0) be greater than or equal to one. For B0 = 0 and T → TC ,
the argument of the Brillouin function is small and so we can apply the usual
approximation

Bs(x) ≈ S + 1

3S
x

With the two Curie constants

Ci = ni μ0 gJi

Si (Si + 1)

3kB
μ2

B i = 1, 2 (7.228)

and applying Eqs. (7.218), (7.219), (7.220) and (7.221), we get

M1 ≈ C1

T
(λ11 M1 + λ12 M2) (7.229)

M2 ≈ C2

T
(λ22 M2 + λ12 M1) (7.230)
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TC is obtained from the condition

1
!= C1

TC

(
λ11 + λ12

∂ M2

∂ M1

∣∣∣∣
T=TC

)
(7.231)

From (7.230) we have

∂ M2

∂ M1

∣∣∣∣
T=TC

= C2 λ12

TC − λ22C2
(7.232)

The combination of the last two equations gives a relatively complicated expression
for the transition temperature:

TC = 1

2
(C1 λ11 + C2 λ22) ± 1

2

√
(C1 λ11 − C2 λ22)2 + 4 C1 C2 λ2

12 (7.233)

The fact that TC has to be positive allows, in view of (7.227), only the solution with
the positive sign before the square root.

Before closing, we want to calculate, for the ferrimagnet, the paramagnetic sus-
ceptibility.

7.3.3.3 Paramagnetic Susceptibility

For T > TC and B0
>→ 0, we have

M1(T, B0) ≈ C1
T (λ11 M1 + λ12 M2 + B0/μ0)

M2(T, B0) ≈ C2
T (λ22 M2 + λ12 M1 + B0/μ0)

(7.234)

They can be solved for M1 and M2 and then the total magnetization can be obtained.
With the abbreviations

N (T ) = (T − C2 λ22)(T − C1 λ11) − C1 C2 λ2
12 (7.235)

Z (T ) = (C1 + C2)T + C1 C2(2λ12 − λ11 − λ22) (7.236)

for small fields B0, we get

M(T, B0) = M1(T, B0) + M2(T, B0) ≈ B0

μ0

Z (T )

N (T )
(7.237)

The susceptibility

χT,B0=0 = μ0

(
∂ M

∂ B0

)
T,B0=0

= Z (T )

N (T )
(7.238)
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shows a relatively complicated temperature dependence and follows the Curie–
Weiss law only for very high temperatures:

χ−1(T ) ≈ T − θ

C1 + C2
(T � TC ) (7.239)

The paramagnetic Curie temperature θ is clearly different from TC :

θ = (C1 λ11 + C2 λ22) + C1 C2(2λ12 − λ11 − λ22)

C1 + C2
(7.240)

In view of (7.227), generally, as in the case of antiferromagnets, it is to be expected
that

θ < 0 (7.241)

From (7.233) and (7.235), one sees that

N (TC ) = 0 (7.242)

which means

χ−1(TC ) = 0 (7.243)

From the above results and those from the earlier sections, it is possible to represent
schematically the inverse susceptibility of ferro-, antiferro- and ferrimagnets in the
molecular field approximation by Fig. 7.13.

Fig. 7.13 Typical
temperature behaviour of the
inverse magnetic
susceptibility for,
respectively, antiferro-, ferri-,
ferromagnets

 T,B0 = 0χ−1

θ θ TC,N

Antiferro

Ferro

Ferri

T
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7.4 Spin Waves

We have derived in Sect. 7.2.2 exact eigenstates of the Heisenberg Hamiltonian,
which are the so-called “one-magnon states”

|k〉 = 1

�
√

2S N
S−(k)|0〉 (7.244)

with the eigenenergies

E(k) = E0(B0) + gJ μB B0 + 2S �
2 (J0 − J (k)) (7.245)

Here E0(B0) is the ground state energy of the Heisenberg ferromagnet

E0(B0) = −N �
2 J0 S2 − N gJ μB B0 S (7.246)

The excitation energy

� ω(k) = E(k) − E0(B0) (7.247)

is ascribed to the quasiparticle which is called the magnon. It corresponds to a spin
deviation of one unit of angular momentum (1�) which is distributed collectively
among all the localized spins in the form of a spin wave.

We have introduced in Sect. 7.1.1 the Holstein–Primakoff transformation, using
which the Heisenberg Hamiltonian can be expressed as an infinite series of creation
and annihilation operators (7.34). If we terminate the series at the bilinear term, then
we get a simplified model Hamiltonian (7.39), whose complete set of eigenstates
just consists of exactly the one-magnon states (7.244). The model Hamiltonian thus
obtained is called the harmonic approximation or the linear spin wave approxima-
tion of the Heisenberg model, whose predictions and the region of validity will be
discussed in this section. This is naturally a low-temperature approximation, which
is exact if no more than one single magnon is excited and therefore would certainly
represent an acceptable approximation, if the number of magnons is small, so that
the interaction among the magnons can be neglected. Small magnon number, on
the other hand, means that the system is still very close to saturation, which in turn
requires low temperatures.

7.4.1 Linear Spin Wave Theory for the Isotropic Ferromagnet

We apply the Holstein–Primakoff transformation (7.23), (7.24) and (7.25) to the
spin operators of the Heisenberg Hamiltonian and obtain an infinite series of the
form (7.34), which we will break after the first non-trivial term:
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H = E0(B0) +
∑

q

� ω(q) a†
q aq (7.248)

� ω(q) = gJ μB B0 + 2S �
2 (J0 − J (q)) (7.249)

aq and a†
q were introduced in (7.30) and (7.31) as the annihilation and creation oper-

ators, respectively, for the magnons of the wavevector q. In (7.248), the summation
is over all the wavevectors q of the first Brillouin zone. In this approximation, H
describes a system of uncoupled harmonic oscillators. The general eigenstate of this
H is a product of one-magnon states (7.244):

|ψ〉 =
∏

q

(
a†

q

)nq |0〉 (7.250)

Here |0〉 is the magnon vacuum state. nq is the number of magnons with the
wavevector q and therefore is not an operator but the eigenvalue of the number
operator n̂q = a†

q aq. The magnon vacuum state means obviously the ferromagnetic
saturation. Therefore, the state a†

k|0〉 is equivalent to the one-magnon state |k〉 given
in (7.244).

As aq and a†
q are Bose operators, we have (Problem 7.13)

[
aq ,

(
a†

q

)nq
]
−
= nq

(
a†

q

)nq−1
(7.251)

Using this one can easily show that

H |ψ〉 =
(

E0(B0) +
∑

q

� ω(q) nq

)
|ψ〉 (7.252)

where the property

aq|0〉 = 0 (7.253)

has been utilized (Problem 7.13). The energy states are therefore uniquely charac-
terized by the magnon occupation numbers nq. We now know the energy eigenval-
ues and the eigenstates of the Hamiltonian and hence we can calculate the grand
canonical partition function Ξ0 of the magnon gas. Since the magnon number is
not constant, in equilibrium at temperature T , the magnon number will be NT , for
which the free energy F is extremal:

(
∂ F

∂T

)
T

∣∣∣∣
N=NT

= 0 (7.254)
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On the other hand, the left-hand side is the equation for determining the chemical
potential μ; that means, μ for magnons is zero. One can calculate Ξ0 as in (3.56):

Ξ0 = e−βE0
∏

q

∞∑
nq=0

e−β�ω(q) nq

= e−βE0
∏

q

1

1 − e−β�ω(q)
(7.255)

From this result, we can derive all the interesting quantities, e.g. average occupation
number

〈̂nq〉 = 〈a†
q aq〉 = − 1

β

∂

∂(�ω(q))
ln Ξ0

for which (3.60) is true. From (7.255) follows the expected result that 〈̂nq〉 is nothing
but the Bose–Einstein distribution function:

〈̂nq〉 = 1

exp(β�ω(q)) − 1
≡ f+(�ω(q)) (7.256)

The grand canonical potential

Ω(T, B0) = −kB T ln Ξ0

= E0(B0) + kB T
∑

q

ln
(
1 − e−β�ω(q)

)
(7.257)

gives the magnetization of the spin system:

M(T, B0) = − 1

V

(
∂Ω

∂ B0

)
T

= gJ μB S
N

V
− kB T

V

∑
q

β gJ μBe−β�ω(q)

1 − e−β�ω(q)

= gJ μB S
N

V

(
1 − 1

N S

∑
q

〈̂nq〉
)

(7.258)

One has saturation

M0 = gJ μB S
N

V
(7.259)
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only when no magnons are excited, i.e. when 〈̂nq〉 = 0 for all q. Therefore

M0 − M(T, B0)

M0
= 1

N S

∑
q

1

exp(β�ω(q)) − 1
(7.260)

We know that this expression will be more and more valid as one goes to lower and
lower temperatures. Therefore, we want to investigate the behaviour for T → 0 in
more detail. First we will convert, as usual, the sum into an integral

∑
q

(
eβ�ω(q) − 1

)−1

= V

(2π )3

∫
d3q

∞∑
n=0

e−nβ�ω(q) e−β�ω(q)

= V

(2π )3

∞∑
n=1

e−nβgJ μB B0

∫
d3q e−2nSβ�

2(J0−J (q)) (7.261)

Since for low temperatures β is very large, in (7.260), specially the small magnon
energies �ω(q) play a role, i.e. those with small wavevector |q|. In such case, we
have

J0 − J (q) = 1

N

∑
i, j

Ji j
(
1 − eiq·Ri j

)

= 1

2N

∑
i, j

Ji j
(
q · Ri j

)2 ≡ D

2S�2
q2 (7.262)

The linear term disappears because Ri j = −R j i . For small |q|, the magnon energies
depend quadratically on the wavevector (see also (7.279))

� ω(q) ≈ gJ μB B0 + D q2 (7.263)

We can, without a great error, apply this approximation in (7.261), since in the
region where (7.263) is questionable, the integrand in (7.261) is practically zero.
For the same reason, one can extend the integration over the first Brillouin zone to
the entire q-space:

∑
q

〈nq〉 = V

2π2

∞∑
n=1

e−nβgJ μB B0

∫ ∞

0
dq q2 e−nβ Dq2

= V

(
kB T

4π D

)3/2 ∞∑
n=1

e−nβgJ μB B0

n3/2
(7.264)
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We abbreviate

Zm(x) =
∞∑

n=1

e−nx

nm
(7.265)

For x = 0, this reduces to the Riemann ζ -function (3.76)

Zm(0) = ζ (m) (7.266)

which is available in the tables (ζ (3/2) ≈ 2.612). With this, we have the relative
magnetization of the spin system at low temperatures as

M0 − M(T, B0)

M0
= V

N S

(
kB T

4π D

)3/2

Z3/2 (β gJ μB B0) (7.267)

Here we are specially interested in the spontaneous magnetization (B0 = 0) for
which we have derived the famous Bloch’s T 3/2 law:

M0 − M(T, 0)

M0
= C3/2 T 3/2 (7.268)

C3/2 = V

N S

(
kB

4π D

)3/2

ζ (3/2) (7.269)

This result of the linear spin wave theory is uniquely confirmed by experiment.
We recall that the molecular field approximation predicts an exponential approach
of the magnetization to its maximum value. For low temperatures, the spin wave
theory provides distinctly better results for isotropic ferromagnets.

In passing, we mention that the approximation (7.262) can be easily improved
by not restricting oneself to small |q| but only taking into account nearest neighbour
interactions:

J (q) = 1

N

∑
i, j

Ji j eiq·Ri j =
n.n∑
Δ

J0Δ eiq·RΔ = z J1 γq (7.270)

z is the number of nearest neighbours, J1 is the exchange integral between the near-
est neighbours and γq is a structure factor

γq = 1

z

n.n∑
Δ

eiq·RΔ (7.271)

γq can be easily evaluated, for example, for the three cubic lattices.
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(a) Simple cubic

z = 6; RΔ =
⎧⎨
⎩

a(±1, 0, 0)
a(0, ±1, 0)
a(0, 0, ±1)

(7.272)

a is the lattice constant.

γ sc
q = 1

3
(cos(qx a) + cos(qya) + cos(qza)) (7.273)

(b) Body centred cubic

z = 8; RΔ = a

2
(±1, ±1, ±1) (7.274)

γ bcc
q = cos(

1

2
qx a) cos(

1

2
qya) cos(

1

2
qza) (7.275)

(c) Face centred cubic

z = 12; RΔ =
⎧⎨
⎩

a
2 (±1, ±1, 0)
a
2 (±1, 0, ±1)
a
2 (0, ±1, ±1)

(7.276)

γ f cc
q = 1

3
[cos(

1

2
qx a) cos(

1

2
qy a) + cos(

1

2
qx a) cos(

1

2
qz a)

+ cos(
1

2
qy a) cos(

1

2
qz a)] (7.277)

For small wavevectors, all the three cubic lattices hold:

γq ≈ 1 − 1

z
a2 q2 (7.278)

so that

� ω(q) = gJ μB B0 + (2S J1 �
2 a2)q2 (7.279)

As a consequence, the constant D introduced in (7.262) for a cubic lattice becomes

D = 2S J1 �
2 a2 (7.280)

If we calculate the relative magnetization with either (7.273) or (7.275) or (7.277)
instead of with (7.262) then we get corrections to the T 3/2 term which are propor-
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tional to T 5/2, T 7/2, · · · [10]:

M0 − Ms(T )

M0
= 1

S

{
ζ (3/2) t3/2 + 3π

4
δ ζ (5/2) t5/2

+ π2 δ2 α ζ (7/2) t7/2 + · · · } (7.281)

where t is a renormalized temperature

t = 3kB T

4π S J1 �2 z δ
(7.282)

and α and δ are structure factors.

αsc = 33/22 ; αbcc = 281/288 ; α f cc = 15/16
δsc = 1 ; δbcc = 3 · 2−4/3 ; δ f cc = 21/3 (7.283)

The magnetic (internal) energy of the spin wave system is calculated in a completely
analogous fashion as the magnetization. With the “isotropic approximation” (7.263)
and B0 = 0, we first get

∑
q

�ω(q) 〈nq〉 = D
∑

q

q2 〈nq〉

= V

2π2
D

∞∑
n=1

∫ ∞

0
dq q4 e−nβ Dq2

= 3V D

16π3/2

(
kB T

D

)5/2 ∞∑
n=1

1

n5/2
(7.284)

where we have exploited (7.264). This leads to the following energy expression in
the region of validity of the spin wave theory:

USW = E0(B0 = 0) + 3V ζ (5/2)

2(4π D)3/2
(kB T )5/2 (7.285)

Thus the magnetic part of the specific heat also obeys a T 3/2 law,

CB0=0(T ) =
(

∂USW

∂T

)
B0=0

= 15

4
kB V ζ (5/2)

(
kB T

4π D

)3/2

(7.286)

which is also confirmed experimentally. The improved version of the specific heat
analogously to (7.281) reads as
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CB0=0(T ) = kB N

{
15

4
ζ (5/2) t3/2 + 105π

16
δ ζ (7/2) t5/2+

+ 63

4
π2 δ2 α ζ (9/2) t7/2 + · · ·

}
(7.287)

The experimental proof of the quasiparticle magnon is available from neutron scat-
tering. Neutrons exchange energy and momentum with the phonons and magnons
in the solid. The corresponding measurements provide, via the energy–momentum
laws, the dispersion curves of the spin waves, i.e. the q-dependence of the spin wave
energies. Dyson [10], by a far-reaching mathematical investigation of the Heisen-
berg model, confirmed the spin wave theory. He finds that the interaction among
the spin waves produces correction terms, the largest one being ∼ T 4. Therefore,
the spin wave result (7.281) which includes the T 7/2 term is exact even when the
interactions are taken into account. The basis for this somewhat surprising fact can
be traced to the interaction term (7.47) in the Dyson–Maléev transformation, which
is made up of two summands whose effects compensate each other to a large extent.

7.4.2 “Renormalized” Spin Waves

In this section, we want to discuss in a simple form the effect of interaction
among spin waves (non-linear spin wave theory). The starting point is the Dyson–
Maleev transformation (7.42), (7.43) and (7.44) which was introduced in Sect. 7.1.1.
Through this transformation, the Heisenberg Hamiltonian takes the form (7.45)

H = E0(B0) + H2 + H4 (7.288)

E0(B0) is the ground state energy (7.246):

H2 =
∑
i, j

(gJ μB B0 δi j + 2S �
2 (J0 δi j − Ji j )) αi α

†
j (7.289)

H4 = �
2
∑
i, j

Ji j (αiα
†
j n̂ j − n̂i n̂ j ) (7.290)

The advantage of the Dyson–Maleev over the Holstein–Primakoff transformation
lies in the fact that, in this case, the Hamiltonian consists of a finite number of
terms whereas in the other case there are an infinite number of terms. The dis-
advantage is of course obvious from (7.42) and (7.43): H is not Hermitean any
more. One can, however, show [10] that the non-Hermitean operator (7.44) contains
all the eigenvalues of the original Heisenberg Hamiltonian plus an infinite number
of “unphysical” eigenvalues. In the Dyson’s method the unphysical eigenstates are
“pushed up” so that at not too high a temperature, they do not play any role in the
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partition function (the contribution of a state is ∼exp(−βEn)). The details of this
method cannot be presented here but the reader is referred to the original work of
Dyson [10]. We restrict ourselves here to a very much simplified treatment of the
spin wave interaction. With

αq = 1√
N

∑
i e−iq·Ri αi

α
†
q = 1√

N

∑
i eiq·Ri α

†
i

(7.291)

we will first transform the Hamiltonian into the wavevector representation. H2 is
simple:

H2 =
∑

q

� ω(q) α†
q αq (7.292)

This represents the free magnon gas which was discussed in the last section. In
addition we now have the interaction H4 (Problem 7.11),

H4 = �
2

N

∑
q1,···q4

(J (q4) − J (q1 − q3)) δq1+q2,q3+q4 α†
q1

α†
q2

αq3 αq4 (7.293)

which naturally cannot be handled exactly. We will try to “diagonalize”, in view of
the kronecker delta, by taking only such terms for which

q1 = q3; q2 = q4

or

q1 = q4; q2 = q3

holds (random phase approximation (RPA)):

H̃ =
= E0(B0) +

∑
q

[
2S�

2(J0 − J (q))

(
1 + 1

SN

)
+ gJ μB B0

]
n̂q

+ �
2

N

∑
q1,q2

(J (q1) + J (q2) − J (q1 − q2) − J (0))̂nq1 n̂q2 (7.294)

The approximation which leads to H̃ appears completely arbitrary. One can, how-
ever, show that in the space of one- and two-magnon states, H̃ is exact. We have
treated the one-magnon states in Sect. 7.2.2. The problem of two-magnon states can
also be exactly solved [11, 12].

From (7.294) one can see that the magnon occupation operator n̂q = α
†
q αq

commutes with H̃ ,
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[
H̃ , n̂q

]
− = 0 (7.295)

so that the eigenstates of H̃ can be classified according to the occupation numbers
nq:

|nq1 , nq2 , . . . , nqN 〉

Let a state be given with a particular fixed magnon distribution. Then we ask our-
selves what is the energy required to add an additional magnon to the system. That
is relatively easy to find out. Let

H̃ | · · · nq · · · 〉 = E(nq)| · · · nq · · · 〉
H̃ | · · · nq + 1 · · · 〉 = E(nq + 1)| · · · nq + 1 · · · 〉 (7.296)

Then, we can define the renormalized spin wave energy, renormalized by the “pres-
ence” of other magnons:

�ω̃(q) = E(nq + 1) − E(nq) (7.297)

With

[̂
nq1 , α†

q

]
− = δq,q1 α†

q (7.298)

and

[̂
nq1 n̂q2 , α†

q

]
− = δqq2 n̂q1α

†
q + δqq1α

†
q n̂q2

= δqq2α
†
q n̂q1 + δqq1α

†
q n̂q2 + δqq2δqq1 α†

q

(7.299)

from (7.294) it follows that

[
H̃ , α†

q

]
− = � ω(q) α†

q

+ 2�
2

N

∑
q1

(J (q) + J (q1) − J (q − q1) − J (0)) α†
q n̂q1

(7.300)

We can now directly show that α
†
q| · · · nq · · · 〉 is an eigenstate for the magnon num-

ber nq + 1. With (7.298) it holds that

n̂q
(
α†

q| · · · nq · · · 〉
) = (α†

q n̂q + α†
q

) | · · · nq · · · 〉
= (nq + 1

) (
α†

q| · · · nq · · · 〉
)

That means
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α†
q| · · · nq · · · 〉 ∼ | · · · nq + 1 · · · 〉 (7.301)

The operation of H̃ on this state gives the eigenvalue E(nq + 1):

H̃
(
α†

q| · · · nq · · · 〉
) = E(nq + 1)

(
α†

q| · · · nq · · · 〉
)

(7.302)

On the other hand, we have from (7.300)

H̃
(
α†

q| · · · nq · · · 〉
) = α†

q H̃ | · · · nq · · · 〉 +
[
H̃ , α†

q

]
− | · · · nq · · · 〉

= {E(nq) + � ω(q)+

+ 2�
2

N

∑
q1

(J (q) + J (q1) − J (q − q1)

− J (0))nq1

} (
α†

q| · · · nq · · · 〉
)

(7.303)

Equations (7.302) and (7.303) give via (7.297) the renormalized spin wave energies:

� ω̃(q) = � ω(q) + 2�
2

N

∑
q1

(J (q) + J (q1) − J (q − q1) − J (0)) nq1 (7.304)

The sum therefore represents the correction to the linear spin wave theory due
to the magnon interactions. The sum contains the occupation numbers nq1 of the
magnons which can in principle be an arbitrarily large integer number which can
apparently lead to unphysical states. The {nq} are naturally uniquely fixed by the
state | · · · nq · · · 〉. We are interested in the spin wave energies which appear in the
thermodynamic equilibrium. Therefore, it is reasonable to replace nq1 by its thermo-
dynamic expectation value which we assume is given by Bose-distribution function.

nq1 → 〈̂nq1〉 = {exp(β � ω̃(q1)) − 1}−1 (7.305)

This leads to an implicit equation for the “renormalized” spin wave energies:

� ω̃(q) = � ω(q) + 2�
2

N

∑
q1

J (q) + J (q1) − J (q − q1) − J (0)

exp(β � ω̃(q1)) − 1
(7.306)

We want to evaluate this expression wherein, as in (7.270), we will restrict ourselves
to the nearest neighbour interactions:

J (q) = z J1 γq; J0 = z J1 (7.307)

By exploiting the translational symmetry of the lattice one can demonstrate that
(Problem 7.17)
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∑
q1

γq−q1 〈̂nq1〉 ≈ γq

∑
q1

γq1 〈̂nq1〉 (7.308)

With this (7.306) simplifies to (B0 = 0)

� ω̃(q) = 2S �
2 z J1(1 − γq) −

− 2�
2

N
z J1(1 − γq)

∑
q1

(1 − γq1 )〈̂nq1〉

We define

As(T ) = 1

N S

∑
q1

(1 − γq1 )〈̂nq1〉 (7.309)

and obtain an expression for the “renormalized” spin waves which is formally iden-
tical to the one for free spin waves:

� ω̃(q) = 2S �
2 J ∗

0 (T )(1 − γq) (7.310)

We only have to replace the exchange constant J0 by a temperature-dependent quan-
tity

J ∗
0 (T ) = J0(1 − As(T )) (7.311)

The summation over the wavevectors of the first Brillouin zone needed in calculating
As(T ) in (7.309) can be evaluated exactly for cubic lattices. We will, however, give
only an estimate of As(T ) which is correct in the limit of small |q|:

� ω̃(q) ≈ D(T ) q2 (7.312)

D(T ) = D(1 − As(T )) (7.313)

D = 2S J1 �
2 a2 (7.314)

Then correspondingly according to (7.278)

1 − γq ≈ 1

z
a2 q2 (7.315)

holds. We substitute this in (7.309):
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As(T ) ≈ a2

zN S

∑
q

q2

exp(βD(T )q2) − 1

= a2

zN S

V

(2π )3

∫
1st B Z

d3q q2
∞∑

n=1

e−nβ D(T )q2
(7.316)

Because of the exponential function in the integrand, we can extend the q-integration
over the entire q-space. This assumption is especially reasonable, because of β in
the exponent, in the low-temperature region.

As(T ) ≈ a2 V

2π2 zN S

∞∑
n=1

∫ ∞

0
dq q4 e−nβ D(T )q2

= a2 V

2π2 zN S

∞∑
n=1

3

8

√
π

(
kB T

nD(T )

)5/2

= 3
a2 V

16π3/2 zN S

(
kB T

D(T )

)5/2

ζ (5/2) (7.317)

This equation along with (7.313) fixes As(T ). Let us write

η = 3
a2V

16π3/2zN S

(
kB

D

)5/2

ζ (5/2)

to get as an intermediate result

As(T ) ≈ η

(
T

1 − As(T )

)5/2

For low temperatures As(T ) will be only a small correction term:

As(T ) ≈ η T 5/2

(
1 + 5

2
As(T ) + · · ·

)

≈ η T 5/2

(
1 + 5

2
η T 5/2 + · · ·

)
= η T 5/2 +O(T 5)

This means for the renormalized exchange constant

J ∗
0 (T ) = J0

(
1 − η T 5/2

)
(7.318)

If this expression is used in the Bloch’s T 3/2 law of the linear spin wave theory
(7.268), then we obtain a T 4 term as a first correction in complete agreement with
the exact theory. This can be seen as follows: The constant C3/2 (7.269) as the pre-
factor of the T 3/2 term has to be renormalized:
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C3/2 → C∗
3/2 = V

N S

(
kB

4π D(T )

)3/2

ζ (3/2)

≈ C3/2
(
1 − η T 5/2

)−3/2

≈ C3/2

(
1 + 3

2
η T 5/2 + · · ·

)

≈ C3/2 + C4 T 5/2 + · · ·

This yields for the magnetization, in complete agreement with Dyson’s result,

M0 − Ms(T )

M0
= C3/2T 3/2 + C5/2T 5/2 + C7/2T 7/2

+ C4T 4 + C9/2T 9/2 + · · ·

It was shown that using the renormalized spin wave theory presented here, the
magnetization curves of classical ferromagnets like EuO and EuS can be almost
quantitatively reproduced up to in the neighbourhood of TC [13, 14]. In the case
of europium chalcogenides, one should not restrict oneself to the nearest neighbour
exchange integrals but should also consider the next nearest neighbours. Instead of
(7.310) we have to use

� ω̃(q) = 2S �
2 z1 J1(1 − A1(T ))(1 − γ (1)

q )

+ 2S �
2 z2 J2(1 − A2(T ))(1 − γ (2)

q ) (7.319)

z1 and z2 are the number of nearest and next nearest neighbours, respectively, and
J1 and J2 the corresponding exchange integrals.

γ (i)
q = 1

zi

∑
Δi

eiq·RΔi (i = 1, 2) (7.320)

The sum runs over the nearest (Δ1) or the next nearest (Δ2) neighbours, respectively,
of the lattice site under consideration.

Ai (T ) = 1

N S

∑
q

1 − γ
(i)
q

exp(β�ω̃(q)) − 1
(i = 1, 2) (7.321)

The integration over the first Brillouin zone (fcc in the case of EuO and EuS) can
be exactly performed. In doing this, for EuO and EuS one has to use the following
parameters (neutron scattering experiments):
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S = 7/2
EuO: �

2 J1/kB = 0.625 K EuS: �
2 J1/kB = 0.221 K

�
2 J2/kB = 0.125 K �

2 J2/kB = −0.100 K
The agreement between the experimentally determined magnetization curves and

the calculated ones using the renormalized spin wave theory and the parameters
given above is practically exact in the temperature range of 0 to 0.7TC .

One can use either the spin wave result (7.260) or the corresponding result of the
renormalized spin wave theory

M0 − Ms(T )

M0
= 1

N S

∑
q

1

eβ�ω̃(q) − 1

in order to make a rough estimate of the Curie temperature. For T = TC , by def-
inition, the magnetization is zero. If one expands the exponential function in the
denominator up to the linear term, then one is left with

kB TC =
{

1

N S

∑
q

1

� ω̃(q)

}−1

(7.322)

The sum can be explicitly evaluated for simple lattices. If one restricts the exchange
interaction among the nearest neighbours, one can with (7.273), (7.275) and (7.277)
obtain the following values:

kB TC = 2S2
�

2 J ∗
0 (TC ) Q (7.323)

where the structure factor Q is given by

Q ≡
(

1

N

∑
q

1

1 − γq

)−1

=
⎧⎨
⎩

0.660 : sc
0.718 : bcc
0.744 : fcc

For estimations this is quite a useful formula. Nevertheless, one has to be cautious
about using this result since it follows from the renormalized spin wave theory,
which conceptually is naturally a low-temperature approximation, and therefore the
TC obtained is questionable.

7.4.3 Harmonic Approximation for Antiferromagnets

The spin wave approximation has proved itself to be extraordinarily successful in
the case of ferromagnets. The same thing cannot be expected for the cases of anti-
ferromagnets and ferrimagnets without certain limitations. In fact, it is not even
clear from the beginning whether the idea of spin waves can be taken over to the
case of antiferromagnets. In contrast to the ferromagnets, the exact ground state of
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an antiferromagnet is known only for the one-dimensional lattice (with S = 1/2
or S → ∞). If we accept the sub-lattice model (see Sect. 7.3.2), which has been
supported by neutron scattering experiments, then the expected ground state (Neel
state) is the state in which all the sub-lattices are ferromagnetically saturated. We
will, however, be able to show in this section that a completely ordered state cannot
be the correct ground state. With an in principle unknown ground state, one cannot
talk of elementary excitations without putting some question marks on them. In spite
of this, the spin wave theory, in the case of antiferromagnets also, has proved to be
a useful approximate analysis. Numerical estimates, concerning the accuracy of the
approximation, for a series of reference systems have established the theory to be
quite reliable.

Here we want to discuss the simplest form of antiferromagnets, i.e. the ABAB
structure (see Sect. 7.3.2) wherein every atom of a sub-lattice has only the atoms of
the other sub-lattice as its nearest neighbours. Further, we will restrict ourselves to
exchange interaction only between the nearest neighbours. Then we naturally have

J1 < 0 (7.324)

Let the external field B0 be along the “easy” direction, which we also take to be
the z-axis. The anisotropy, which defines the “easy” direction is taken into account
through an anisotropy field BA (7.61):

H = −
n.n∑
i, j

Ji j Si · S j − gJ
μB

�
(B0 + BA)

A∑
i

Sz
i

− gJ
μB

�
(B0 − BA)

B∑
i

Sz
i (7.325)

We will use the Holstein–Primakoff transformation (7.23), (7.24) and (7.25) of the
spin operators in the harmonic approximation:

Sub-lattice A:

1

�
S+

i =
√

2S ai ;
1

�
S−

i =
√

2S a†
i ;

1

�
Sz

i = S − a†
i ai (7.326)

Sub-lattice B:

1

�
S+

i =
√

2S b†
j ;

1

�
S−

j =
√

2S b j ;
1

�
Sz

j = −S + b†
j b j (7.327)

All a-operators commute with all b-operators. For the sake of convenience, b j

and b†
j are used for the sub-lattice B in place of the usual definition (7.24) and (7.25).
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We will introduce certain abbreviations:

bA = −2z J1 �
2 S + gJ μB(B0 + BA) (7.328)

bB = −2z J1 �
2 S − gJ μB(B0 − BA) (7.329)

Ea(B0) = −N gJ μB S BA + N z J1 �
2 S2 = Ea (7.330)

Ea is the energy of the totally ordered Neel state. The harmonic approximation
for the operator (7.325) consists of neglecting the terms which are not bilinear in
the magnon operators. By substituting (7.326) and (7.327) in (7.325) one obtains,
retaining bilinear terms only

H = Ea + bA

A∑
i

a†
i ai + bB

B∑
j

b†
j b j

− 2S�
2

A∑
i

B∑
j

Ji j (ai b j + a†
i b†

j ) (7.331)

We now transform again into the wavevectors q which are from the first Brillouin
zone of each sub-lattice. Since the two sub-lattices are identical, so are the Brillouin
zones:

ai =
√

2

N

∑
q

eiq·Ri aq (7.332)

b j =
√

2

N

∑
q

e−iq·R j bq (7.333)

J (q) = 2

N

A∑
i

B∑
j

Ji j e
−iq·(Ri−R j )

δq,q′ = 2

N

A∑
i

ei(q−q′)·Ri = 2

N

B∑
j

ei(q−q′)·R j (7.334)

In transforming (7.325), however, we will have to remove the restriction of limiting
to nearest neighbours. Then one obtains

H = Ea + bA

∑
q

a†
q aq + bB

∑
q

b†
q bq +

∑
q

c(q){aq bq + a†
q b†

q} (7.335)
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where

c(q) = −2J (q) �
2 S → −2z J1 �

2 S γq (7.336)

with γq given by (7.271). The situation is not quite as simple as in the case of
ferromagnets since H is not diagonal in a’s and b’s. Therefore, as a next step, we
look for a unitary transformation that diagonalizes H :

H = Ẽa(B0) +
∑

q

� ωα(q) α†
q αq +

∑
q

� ωβ(q) β†
q βq (7.337)

Ẽa is the “true” ground state energy if ωα,β (q) ≥ 0. For the “new” operators, we
make the ansatz

αq = c1 aq + c2 b†
q

βq = d1 a†
q + d2 bq

(7.338)

and demand that the α’s and β’s fulfil the usual Bose commutation relations:[
αq , α

†
q′

]
−
= δqq′ ⇔ |c1|2 − |c2|2 = 1 (7.339)

[
βq , β

†
q′

]
−
= δqq′ ⇔ −|d1|2 + |d2|2 = 1 (7.340)

[
αq , βq′

]
− = 0 ⇔ c1 d1 = c2 d2 (7.341)

With these commutation relations, one can easily see that

[
αq , H

]
− = � ωα(q) αq = � ωα(q)(c1 aq + c2 b†

q) (7.342)

According to (7.335) it also holds that

[
αq , H

]
− = c1

[
aq , H

]
− + c2

[
b†

q , H
]
−

= c1{bA aq + c(q) b†
q}

+ c2{−bB b†
q − c(q) aq} (7.343)

By equating the last two equations, we get

aq [c1 � ωα(q) − c1 bA + c2 c(q)]

+ b†
q [c2 � ωα(q) + c2 bB − c1 c(q)] = 0 (7.344)

The operators aq and b†
q act in different spaces. Therefore, each of the coefficients

by itself should be equal to zero. We then obtain the following homogeneous system
of equations:

c1 (� ωα(q) − bA) + c2 c(q) = 0
c1 (−c(q)) + c2(� ωα(q) + bB) = 0

(7.345)
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whose coefficients-determinant must vanish:

(�ωα(q) − bA)(�ωα(q) − bB) = −c2(q)

This condition is satisfied through

� ωα(q) = 1

2

[
bA − bB +

√
(bA + bB)2 − 4c2(q)

]
(7.346)

The solution with negative square root, which in principle is present, is excluded
on physical grounds. This is because the excitations must always be positive even for
B0 = 0. However, according to (7.328) and (7.329), for B0 = 0, the first summand
(bA − bB) is zero.

Completely analogously, if we start with [βq , H ]− instead of [αq , H ]− in
(7.343) we get

� ωβ(q) = 1

2

[
bB − bA +

√
(bA + bB)2 − 4c2(q)

]
(7.347)

By substituting for the abbreviations bA and bB the full expressions according to
(7.328) and (7.329) we get the following for the excitation energies for spin waves
in an antiferromagnet:

� ω±(q) =
√

4S2�4(J 2
0 − J 2(q)) + gJ μB BA(gJ μB BA − 4S J0�

2)

± gJ μB B0 (7.348)

This spectrum differs from that of a ferromagnet in a characteristic manner:

1. There are two spin wave branches which in the presence of a field show a con-
stant, i.e. q-independent splitting, and are degenerate for B0 = 0.

2. The minimum spin wave energy is for q = 0. This leads for B0 = 0 to an energy
gap Eg in the spin wave spectrum, which is typical for antiferromagnets.

Eg =
√

gJ μB BA(gJ μB BA − 4S J0 �2) (7.349)

Eg is determined by the anisotropy field BA and also by the exchange J0 (J0 =
z J1 < 0). As a result, Eg can be of considerable magnitude. It is obvious
that this energy gap, when kB T is smaller or comparable to Eg , can influence
decisively thermodynamic quantities such as the susceptibility, specific heat and
sub-lattice magnetization. For T < Eg/kB , the spin waves are frozen and the
quantities mentioned depend exponentially on temperature.

3. From (7.348) one sees that the spin wave branch � ω−(q) can have negative
values for fields

B0 ≥ B∗
0 = Eg/gJ μB . (7.350)
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This is a signature of the instability of the system since it is possible to have
excitations of arbitrarily high order with a gain in energy. This is the collapse
of the spin wave approximation. The system itself avoids this collapse by going
over to a different spin configuration. B∗

0 corresponds to the spin-flop field BF

(7.217) of the molecular field approximation. The sub-lattice magnetizations,
which were originally either parallel or antiparallel to the easy axis, now orient
themselves perpendicular to the field (see Fig. 7.11). From this one recognizes
how important the anisotropy field is for the stabilization of antiferromagnets.

4. In the absence of field according to (7.348) the spin wave energy of an antifer-
romagnet is doubly degenerate:

� ω0(q) =
√

E2
g + 4S2 �4(J 2

0 − J 2(q)) (7.351)

If we assume in addition only a small anisotropy then

� ω0(q) ≈ 2S �
2
√

(J0 + J (q))(J0 − J (q)) (7.352)

If we further restrict ourselves to small |q|, then using (7.270) and (7.278) we
can write

(J0 + J (q)) ≈ 2J0; (J0 − J (q)) ≈ 1

z
a2 q2 J0

This leads to a linear q-dependence of the spin wave energy of an antiferromagnet:

� ω(q) ≈
(

2S �
2 |J0| a

√
2

z

)
q (7.353)

This is different from that of a ferromagnet, which has for small |q| a quadratic
q-dependence. A direct consequence of the linear q-dependence is a T 3 law
at low temperatures of the specific heat (Problem 7.14) which is in contrast to
the T 3/2 dependence (7.286) of the specific heat of a ferromagnet. In case the
anisotropy is dominant so that Eg is very large, then we again get a quadratic
q-dependence:

� ω0(q) ≈ Eg + 2S2
�

4

Eg
(J 2

0 − J 2(q))

≈ Eg +
(

4S2 J 2
0 �

4 a2

z Eg

)
q2 (7.354)

Then there are modifications of the T 3 behaviour.
For a further discussion of antiferromagnets, it appears meaningful to specify the

transformation (7.338) more precisely. This is connected with the Bogoliubov trans-
formation which is known from the theory of superconductivity. The conditions
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(7.339), (7.340) and (7.341) on the coefficients c1,2 and d1,2 of the transformation
can obviously be fulfilled through the following ansatz:

c1 = cosh ηq; c2 = − sinh ηq

d1 = − sinh ηq; d2 = cosh ηq
(7.355)

ηq is fixed by the system of equations (7.345)

tanh ηq = −c2

c1
= � ωα(q) − bA

c(q)

Substituting (7.346) we get

tanh 2ηq = 2 tanh ηq

1 + tanh ηq

= 2c(q)
�ω(q) − bA

c2(q) + (�ω(q) − bA)2

= − 2c(q)

bA + bB

= 2�
2 S J (q)

gJ μB BA − 2�2 S J0
(7.356)

An extremely interesting quantity is the energy constant Ẽa(B0) appearing in the
transformed Hamiltonian (7.337) which represents the true ground state energy of
the spin system in the spin wave approximation. So far we have not calculated it
explicitly. For doing this, we first use the inverse transformation to (7.338):

aq = c̄1 αq + c̄2 β
†
q

bq = d̄1 α
†
q + d̄2 βq

(7.357)

c̄1 = d̄2 = cosh ηq; c̄2 = d̄1 = sinh ηq (7.358)

which we insert in the “original” Hamiltonian (7.335). This naturally results again
in (7.337) since the transformation was conceptualized precisely for this purpose.
In addition, we obtain the “new” energy constant

Ẽa(B0) = Ea − N

4
(bA + bB) + 1

2

∑
q

√
(bA + bB)2 − 4c2(q) = Ẽa (7.359)

We perform the explicit transformation as Problem 7.16.
This is an extremely interesting result which shows that the ground state energy

Ẽa is smaller than the energy Ea of the fully ordered Neel state, in which the



7.4 Spin Waves 343

sub-lattice magnetizations are oriented exactly antiparallel to each other. One should
recognize that the difference

Ẽa − Ea = − N

2
(−2J0 �

2 S + gJ μB BA)

+
∑

q

√
E2

g + 4S2 �4(J 2
0 − J 2(q)) ≤ 0 (7.360)

is independent of field. The fully ordered Neel state is certainly not the ground state
of the antiferromagnet, which has to possess some spin disorder which should be
noticeable in the sub-lattice magnetizations. Therefore, as a next step, they should
be calculated.

According to (7.326), for the magnetization of the sub-lattice A

MA = 1

V

gJ μB

�

N/2∑
i=1

〈Sz
i 〉A

= N

2V
gJ μB S − 1

V
gJ μB

∑
i

〈a†
i ai 〉

holds. When we transform into the wavenumbers, we have to evaluate

MA = 1

V
gJ μB

(
N

2
S −

∑
q

〈a†
q aq〉

)
(7.361)

We exploit (7.357):

〈a†
q aq〉 = c̄2

1〈α†
q αq〉 + c̄2

2〈βq β†
q〉 + c̄1 c̄2

(〈α†
q β†

q〉 + 〈βq αq〉
)

According to (7.337), in the linear spin wave approximation, the quasiparticles cre-
ated by αq and βq represent a fully decoupled system in which the particle number
is conserved. That means, e.g.

〈α†
q β†

q〉 = 〈βqαq〉 = 0 (7.362)

so that

〈a†
q aq〉 = cosh2 ηq 〈α†

q αq〉 + sinh2 ηq(1 + 〈β†
q βq〉) (7.363)

The α- and β-quasiparticles are non-interacting Bosons (μ = 0). Therefore, the
expectation values of their occupation number operators on the right-hand side of
(7.363) are the Bose–Einstein distribution functions:
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MA = 1

V
gJ μB

[(
N

2
S −

∑
q

sinh2 ηq

)
−

−
∑

q

(
cosh2 ηq

exp(β � ωα(q)) − 1
+ sinh2 ηq

exp(β � ωβ(q)) − 1

)]

(7.364)

With

cosh2 ηq = 1

2

[
1 +

(√
1 − tanh2 2ηq

)−1
]

(7.365)

sinh2 ηq = 1

2

[
−1 +

(√
1 − tanh2 2ηq

)−1
]

(7.356) for tanh 2ηq and (7.346) and (7.347) for �ωα and �ωβ , the temperature
dependence of the sub-lattice magnetization in the spin wave region is fully deter-
mined. We are particularly interested in the T = 0 sub-lattice magnetization

MA(T = 0) = 1

V
gJ μB

(
N

2
S −

∑
q

sinh2 ηq

)
(7.366)

The first summand corresponds to the complete orientation of the spins (Neel state)
whereas the second corresponds to the fluctuations mentioned earlier which are not
obviously visualizable. Let us set

MA(T = 0) = N

2V
gJ μB(S − σ ) (7.367)

Then the correction σ can be easily evaluated for simple lattices if we assume the
anisotropies BA = 0 in (7.356):

σ = 1

N

∑
q

⎛
⎝ J0√

J 2
0 − J 2(q)

− 1

⎞
⎠ (7.368)

For the NaCl structure for which the whole lattice is simple cubic and the interpen-
etrating sub-lattices are fcc, one finds [15]

σ = 0.078 (7.369)

That is a typical order of magnitude. The correction term is not too large but not
negligible, either, especially for S = 1/2.
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For the magnetization of the sub-lattice B (7.327) analogous to (7.361) holds:

MB = 1

V
gJ μB

(
− N

2
S +

∑
q

〈b†
q bq〉

)
(7.370)

where now we have to set

〈b†
q bq〉 = sinh2 ηq(1 + 〈α†

q αq〉) + cosh2 ηq〈β†
q βq〉

With this we get for the total magnetization

M(T, B0) = MA(T, B0) + MB(T, B0)

= − 1

V
gJ μB

∑
q

(〈α†
q αq〉 − 〈β†

q βq〉
)

(7.371)

The fluctuation terms of the two sub-lattices thus cancel out. For B0 = 0, naturally
� ωα = � ωβ and therefore also 〈α†

q αq〉 = 〈β†
q βq〉 so that the total magnetization

vanishes.
At the end we now calculate the susceptibility of the antiferromagnet. For that

we expand the magnetization up to the linear term in B0. For B0 = 0 the spin waves
�ωα and �ωβ are according to (7.351) identical to �ω0.

〈α†
q αq〉 = [exp(β�ωα(q)) − 1]−1

= 〈α†
q αq〉(0) − βgJ μB B0

exp(β�ω0)

(exp(β�ω0) − 1)2
+O(B2)

A completely analogous expression is obtained for 〈β†
q βq〉 which along with 〈α†

q αq〉
we substitute in (7.371). Then the field dependence of the total magnetization reads
as

M(T, B0) = 2

V
β(gJ μB)2 B0

∑
q

exp(β�ω0(q))

(exp(β�ω0(q)) − 1)2
+O(B2

0 ) (7.372)

With this we directly get for the susceptibility

χ‖(T ) = 2μ0

V
β(gJ μB)2

∑
q

exp(β�ω0(q))

(exp(β�ω0(q)) − 1)2
(7.373)

7.4.4 Harmonic Approximation for a
Ferromagnet with Dipolar Interaction

In this section we want to discuss the effect of dipole interaction on the spin wave
spectrum of a ferromagnet. In the last section we have seen that the fully ordered
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spin state is not the ground state of an antiferromagnet. In contrast, in the case of
isotropic ferromagnet, the ground state is indicated by a complete parallel align-
ment of the localized spins (7.108). However, this is no more correct even for a
ferromagnet as soon as we introduce anisotropy which leads to additional terms
in the Hamiltonian which do not commute with the z-component of the total spin
Sz = ∑

i Sz
i . One example for this is the dipole interaction between the localized

magnetic moments, which, in particular for ferromagnets with low transition tem-
peratures (EuS!), should not be neglected. According to (7.50), we have to take the
dipole interaction into account by including the following additional term in the
Hamiltonian:

HD =
∑
i, j

Di j
{
Si · S j − 3(Si · ei j )(S j · ei j )

}
(7.374)

Dii = 0; Di j = μ0

8π

g2
J μ2

B

�2|Ri − R j |3 (i �= j) (7.375)

ei j = Ri − R j

|Ri − R j | ≡ (xi j , yi j , zi j ) (7.376)

The dipole interaction is surely of much smaller significance compared to the
exchange interaction but at the same time it has much longer range. Through the
second summand in (7.374) it leads to an anisotropy which can be important in
many practical applications.

We split the model Hamiltonian into an isotropic (Hi ) and an anisotropic part
(Ha):

H = Hi + Ha (7.377)

The isotropic part is different from the model discussed in Sect. 7.4.1 only by the
renormalization of the coupling constants:

Hi = −
∑
i, j

(Ji j − Di j )(S+
i S−

j + Sz
i Sz

j ) − gJ
μB

�
B0

∑
i

Sz
i (7.378)

What is new is the anisotropy part:

Ha = −3
∑
i, j

Di j (Si · ei j )(S j · ei j ) (7.379)

For the spin operators we again use the Holstein–Primakoff transformation (7.23),
(7.24) and (7.25) in the “harmonic approximation”:
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1

�
S+

i =
√

2S ai ;
1

�
S−

i =
√

2S a†
i ;

1

�
Sz

i = S − a†
i ai (7.380)

Defining

D0 =
∑

i

Di j =
∑

j

Di j (7.381)

b0 = gJ μB B0 + 2S �
2 (J0 − D0) (7.382)

E0(B0) = −gJ μB B0 N S − �
2(J0 − D0)N S2 (7.383)

we get almost directly for the isotropic part of the Hamiltonian

Hi = E0(B0) + b0

∑
i

ni − 2S �
2
∑
i, j

(Ji j − Di j )ai a†
j (7.384)

In obtaining this we have, in the spirit of the harmonic approximation, left out all
the terms which are not bilinear in the magnon construction operators ai , a†

i . The
anisotropic part of the dipole interaction Ha possesses somewhat more difficulties.
One finds (Problem 7.19)

Ha = −3S2
�

2
∑
i, j

Di j z2
i j

− 3S �
2
∑
i, j

Di j

[
(x2

i j + y2
i j )a

†
i a j + 1

2
(xi j − iyi j )

2ai a j

+ 1

2

(
xi j + iyi j

)2
a†

i a†
j − 2z2

i j ni
]

(7.385)

The first term is a c-number which we can absorb in E0

Ê0(B0) = E0(B0) − 3S2
�

2
∑
i, j

Di j z2
i j (7.386)

A first diagonalization of the Hamiltonian is obtained by going to the wavenumbers.
We define

B(q) = −3

2
S �

2 1

N

∑
i, j

Di j (xi j − iyi j )
2eiq·(Ri−R j ) (7.387)
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A(q) = b0 + 6S �
2
∑
i, j

Di j z2
i j −

− 2S �
2 1

N

∑
i, j

(
Ji j + 1

2
Di j (1 − 3z2

i j )

)
eiq·(Ri−R j )

(7.388)

and then have

H = Ê0(B0) +
∑

q

A(q) a†
q aq +

+
∑

q

(
B(q) aq a−q + B∗(q) a†

q a†
−q

)
(7.389)

Because of the anisotropy B(q), H is not yet diagonal. Just as in the case of antifer-
romagnets we now take H through the Bogoliubov transformation to the form

H = E1(B0) +
∑

q

� ωD(q) α†
q αq (7.390)

For that, for the new operators we make the ansatz:

αq = cq aq + dq a†
−q (7.391)

The fulfilment of the fundamental Bose commutator rules is ensured by the follow-
ing conditions on the coefficients cq and dq:

|cq|2 − |dq|2 = 1
cq d−q − dq c−q = 0

(7.392)

Further calculational procedure is similar to that followed for determining the spin
wave energies of antiferromagnets.

[
αq , H

]
− = � ωD(q) αq = � ωD(q)(cq aq + dq a†

−q)

= cq
[
aq , H

]
− + dq

[
a†
−q , H

]
−

= cq

(
A(q) aq + B∗(q) a†

−q + B∗(−q) a†
−q

)
+

+ dq

(
−A(−q) a†

−q − B(−q) aq − B(q)aq

)

With B(q) = B(−q) and A(q) = A(−q) it further follows that

aq
{
cq � ωD(q) − cq A(q) + 2dq B(q)

}+
+ a†

−q

{
dq � ωD(q) − 2cq B∗(q) + dq A(q)

} = 0
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This equation can only be satisfied when each coefficient by itself is equal to zero.
This gives a homogeneous system of equations:

cq (� ωD(q) − A(q)) + dq 2B(q) = 0
cq 2B∗(q) + dq(−� ωD(q) − A(q)) = 0

(7.393)

whose solvability condition

−(� ωD(q))2 + A2(q) − 4|B(q)|2 = 0

determines the spin wave energies:

� ωD(q) =
√

A2(q) − 4|B(q)|2 (7.394)

Due to the long range of the dipole interaction, the lattice sums needed to calculate
A(q) and B(q) are not easy to perform. However, it is in principle quite possible to
do it for not too complicated lattices. We will not attempt to do it here in detail [16].

The energy constant E1(B0), which obviously according to (7.390) represents the
ground state energy of a ferromagnet with dipole interaction, provides many inter-
esting conclusions. First we obtain using (7.393) with (7.392) for the coefficients of
the transformation (7.393)

|cq|2 = 1

2

(
A(q)

� ωD(q)
+ 1

)
; |dq|2 = 1

2

(
A(q)

� ωD(q)
− 1

)
(7.395)

where the phase remains free for the moment. This will be uniquely determined
from the condition that the Hamiltonian (7.389) takes the form (7.390) after the
transformation. For that we invert the transformation (7.391)

aq = c∗q αq − dq α
†
−q (7.396)

and use this in (7.389). H will be diagonal only when we fix the phase as follows:

B(q) = |B(q)| eiφ ; cq = |cq| e−iφ/2; dq = |dq| eiφ/2 (7.397)

With this we finally get the energy constant E1(B0) in (7.390):

E1(B0) = Ê0(B0) − 1

2

∑
q

{A(q) − � ωD(q)} (7.398)

Ê0(B0) is the energy of the fully ordered ferromagnet. From

E1(B0) < Ê0(B0) (7.399)
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we must conclude as in the case of an antiferromagnet that due to the anisotropy
part in the dipole interaction (7.379), the fully ordered spin state is not the ground
state of a ferromagnet any more.

Finally we have also described a ferromagnet with dipole interaction by a sys-
tem of non-interacting bosons. For the quantities such as the partition function, the
average occupation density, the grand canonical potential and the internal energy,
formally the same relations are valid as for an isotropic ferromagnet. We only have
to replace �ω(q) by �ωD(q) everywhere:

Ξ(T, B0) = exp(−β E1(B0))
∏

q

1

1 − exp(β�ωD(q))

(7.400)

〈n(q)〉 = [exp(β�ωD(q)) − 1]−1 (7.401)

Ω(T, B0) = E1(B0) +
+ kB T

∑
q

ln(1 − exp(−β�ωD(q))) (7.402)

U = E1(B0) +
∑

q

�ωD(q)〈n(q)〉 (7.403)

While calculating the magnetization

M(T, B0) = − 1

V

(
∂Ω

∂ B0

)
T

(7.404)

we have to pay attention to the fact that A(q) depends on B0 whereas B(q) does not.
With (7.383), (7.386) and (7.398), the following holds for the energy constant:

∂ E1(B0)

∂ B0
= −gJ μB N S − 1

2
gJ μB

∑
q

{
1 − A(q)

� ωD(q)

}
(7.405)

We can split the magnetization into an isotropic and an anisotropic part

M(T, B0) = Mi (T, B0) + Ma(T, B0) (7.406)

Mi is the magnetization of the isotropic ferromagnet:

Mi (T, B0) = M0

(
1 − 1

N S

∑
q

〈nq〉
)

(7.407)

M0 denotes the magnetization of the fully ordered spin system

M0 = gJ μB
N

V
S (7.408)
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Ma(T, B0) expresses the influence of the anisotropy:

Ma = gJ μB
1

V

∑
q

(
1 − A(q)

� ωD(q)

)(
1

2
+ 〈nq〉

)
(7.409)

Ma is obviously a negative quantity. The dipole interaction thus produces a partial
demagnetization.

For the special case Di j = 0, naturally, we recover the old result of the isotropic
ferromagnet, because then B(q) ≡ 0 and A(q) = � ω(q). That means according to
(7.394) � ωD(q) = � ω(q) and with that Ma ≡ 0.

7.5 Thermodynamics of S = 1/2 Ferromagnet

We have so far investigated in general the not exactly solvable Heisenberg model
by using two approximate methods, namely the molecular field approximation in
Sect. 7.3 and the spin wave approximation in Sect. 7.4. While the spin wave picture
is restricted to low temperatures, the molecular field approximation though valid at
all temperatures is too coarse for many purposes. In this section, we want to extract
detailed information about the thermodynamics of the Heisenberg model with the
help of the method of double-time Green’s functions (see Appendix B). We will
restrict our treatment to ferromagnets.

7.5.1 Tyablikov Decoupling

We consider a system of localized magnetic moments described by the spin opera-
tors Si , S j in a homogeneous, time-independent magnetic field B0:

H = −
∑
i, j

Ji j (S+
i S−

j + Sz
i Sz

j ) − gJ
μB

�
B0

∑
i

Sz
i (7.410)

We are primarily interested in the magnetization of the system,

M(T, B0) = 1

V
gJ

μB

�

∑
i

〈Sz
i 〉T,B0 (7.411)

for which we need the thermodynamic expectation value of the spin operator Sz
i .

Here we first assume that the localized spins are of magnitude

S = 1

2
(7.412)
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This is, as we will justify more precisely, a special case which is decisively simpler
to handle than the general case of S ≥ 1/2. The relation (7.8), which is valid in
general

S±
i S∓

i = �
2 S(S + 1) ± � Sz

i −
(
Sz

i

)2
(7.413)

simplifies for S = 1/2 to

S±
i S∓

i = � (� S ± Sz
i ) (7.414)

since in this case due to (7.9)

(
Sz

i

)2 = �
2

4
1l (7.415)

represents an operator identity.
The relation (7.414) suggests that the following retarded Green’s function should

be studied:

Gret
i j (t, t ′) = 〈〈S+

i (t) ; S−
j (t ′)〉〉ret

= −i θ (t − t ′)〈
[

S+
i (t) , S−

j (t ′)
]
−
〉 (7.416)

For the energy-dependent Fourier transform (B.18)

Gret
i j (E) =

∫ +∞

−∞
d(t − t ′) e

i
�

E(t−t ′)Gret
i j (t − t ′) (7.417)

the simple algebraic equation of motion holds (see B.83):

E Gret
i j (E) = � 〈

[
S+

i , S−
j

]
−
〉 + 〈〈[S+

i , H
]
− ; S−

j 〉〉ret
E (7.418)

For further evaluation we need the commutators on the right-hand side. For that we
use the relations (7.6) and (7.7):

[
S+

i , S−
j

]
−
= 2� δi j Sz

i (7.419)

[
S+

i , H
]
− = −2�

∑
m

Jim(S+
m Sz

i − S+
i Sz

m) + gJ μB B0 S+
i (7.420)

With this the equation of motion (7.418) becomes

(E − gJ μB B0) Gret
i j (E) = 2�

2 δi j 〈Sz
i 〉 −

− 2�

∑
m

Jim

(
〈〈Sz

i S+
m ; S−

j 〉〉ret
E − 〈〈Sz

m S+
i ; S−

j 〉〉ret
E

)
(7.421)
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This equation is still exact. It cannot, however, be solved exactly since there appear
“higher” Green’s functions on the right-hand side. It appears natural to set up
again the equations of motion for these Green’s functions. This leads to still higher
Green’s functions so that eventually one has an infinite chain (“hierarchy”) of equa-
tions of motions, which, with the help of approximate methods, have to be somehow
decoupled.

We want to apply the decoupling already on (7.421) by using an approximation
similar to the molecular field approximation. We replace the operator Sz

i by its ther-
modynamic expectation value 〈Sz

i 〉. As a c-number, this can be brought out of the
Green’s function. In the literature, this is known as the Tyablikov approximation or
the RPA decoupling (random phase approximation) [17]:

〈〈Sz
i S+

m ; S−
j 〉〉 → 〈Sz

i 〉〈〈S+
m ; S−

j 〉〉ret
E

〈〈Sz
m S+

i ; S−
j 〉〉 → 〈Sz

m〉〈〈S+
i ; S−

j 〉〉ret
E

(7.422)

This decoupling procedure is the weak point of the theory since there is no direct
justification for doing this. The only justification is the results obtained with this
method.

We can further assume translational symmetry:

〈Sz
i 〉 = 〈Sz

m〉 = 〈Sz〉 (7.423)

and with (7.421) and (7.422) have the following simplified equation of motion:

(E − gJ μB B0 − 2� 〈Sz〉 J0) Gret
i j (E)

= 2�
2 δi j 〈Sz〉 − 2� 〈Sz〉

∑
m

Jim Gret
mj (E) (7.424)

which can be solved by Fourier transforming to the wavenumber representation.

Gret
q (E) = 1

N

∑
i, j

Gret
i j (E) eiq·(Ri−R j ) (7.425)

δi j = 1

N

∑
q

e−iq·(Ri−R j ) (7.426)

With this we get

Gret
q (E) = 2�

2 〈Sz〉
E − E(q) + i0+ (7.427)

The poles of the Green’s function correspond to the elementary excitations of the
spin system (see Appendix B):
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E(q) = 2� 〈Sz〉 (J0 − J (q)) + gJ μB B0 (7.428)

Typical for the quasiparticle concept of the many-body theory is the temperature
dependence of the elementary excitations which in the present case is manifested in
the expectation value 〈Sz〉. For T = 0

〈Sz〉T=0 = � S (7.429)

holds so that (7.428) reproduces exactly the spin wave result (7.249). One expects
the temperature dependence intuitively on the basis of interactions since at higher
temperatures, it should be easier to excite spin waves, i.e. spin deviations.

The solution as it stands in (7.427) is not yet complete since we still do not know
the expectation value 〈Sz〉.

7.5.2 Spontaneous Magnetization

The spectral density Sq(E) (B.65) according to (7.427) has the simple form

Sq(E) = − 1

π
I m Gret

q (E + i0+)

= 2� 〈Sz〉 δ(E − E(q)) (7.430)

where the Dirac identity (B.92) has been used. With the help of the fundamen-
tal spectral theorem (B.95) one easily gets the expectation value 〈S−

j S+
i 〉 (D ≡

0 f or B0 > 0):

〈S−
j S+

i 〉 =
1

N

∑
q

e−iq·(Ri−R j )
1

�

∫ +∞

−∞

Sq(E)

eβE − 1

= 1

N

∑
q

e−iq·(Ri−R j )
2� 〈Sz〉

eβE(q) − 1
(7.431)

For i = j in particular we have

〈S−
i S+

i 〉 = 2� 〈Sz〉 1

N

∑
q

1

exp(βE(q)) − 1
(7.432)

At this stage we make use of the simplification declared above, namely we limit
ourselves to S = 1/2. Then we can use (7.414):

〈S−
i S+

i 〉 = �
2 S − � 〈Sz

i 〉 (7.433)

so that we get with (7.432)
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〈Sz〉 = � S

(
1 + 2

N

∑
q

1

exp(βE(q)) − 1

)−1

(7.434)

Along with (7.428) we have found two equations which permit a self-consistent
determination of 〈Sz〉. Numerical evaluation is done most conveniently by using the
following relation which is equivalent to (7.434):

� S

〈Sz〉 = V

N (2π )3

∫
d3q coth

[
2� 〈Sz〉(J0 − J (q)) + gJ μB B0

2kB T

]
(7.435)

The integration is performed over the first Brillouin zone of the lattice. There is no
difficulty in numerically evaluating this equation for all temperatures; however, one
can analytically discuss this in certain temperature regions.

First, (7.435) permits to derive an explicit equation for the Curie temperature.
For

B0 = 0+; T
<→ TC ↔ 〈Sz〉 >→ 0

the argument of coth is small. Therefore, we can terminate the expansion

coth x = 1

x
+

∞∑
n=1

(−1)n−1 22n Bn

(2n)!
x2n−1 (7.436)

(Bn = Bernoulli numbers) already after the first term and obtain

kB TC =
{

1

N S

∑
q

1

�2(J0 − J (q))

}−1

(7.437)

a relation which formally agrees with the result obtained from the spin wave theory
(7.322) for S = 1/2.

We now want to evaluate (7.435) for low temperatures. For small T , the argument
of coth is very large. Therefore, it is convenient to expand

coth x = 1 + 2
∞∑

m=1

exp(−2mx) (7.438)

In addition, 〈Sz〉 ≈ � S, so that the following ansatz is meaningful:

〈Sz〉
� S

= 1

1 + 2φ
(7.439)

where according to (7.434) and (7.438)
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φ = 1

N

∑
q

〈nq〉 =
∞∑

m=1

exp(−β m gJ μB B0) ∗

∗ V

N (2π )3

∫
d3q exp(−m β(2� 〈Sz〉(J0 − J (q)))) (7.440)

Comparing this expression with (7.261) which is the analogous term of the linear
spin wave theory, we see that the only difference is that in the integrand S is replaced
by 〈S〉/�. This does not influence the q-integration in any way. Therefore, we can
take over directly either (7.264) or (7.267)

φ = V

N

(
kB T

4π D∗

)3/2

Z3/2(β gJ μB B0) (7.441)

D∗ = 2 〈Sz〉 J1 � a2 (7.442)

The function Zm(x) is defined in (7.265). We have restricted ourselves here again to
the nearest neighbour interactions (Ji j → J1).

For low temperatures φ must be a small quantity so that an expansion of (7.439)
in powers of φ appears meaningful:

〈Sz〉
� S

= 1 − 2φ + (2φ)2 − · · · (7.443)

which we in a first approximation can terminate after the first term. This gives for
the magnetization (7.411)

M(T, B0) = N

V
gJ

μB

�
〈Sz〉 ≈ N

V
gJ μB S(1 − 2φ)

The factor in front of the bracket is exactly the saturation magnetization M0 (7.259)
so that one finds the following expression for the deviation of magnetization from
its T = 0 value:

M0 − M(T, B0)

M0
≈ 2

V

N

(
kB T

4π D∗

)3/2

Z3/2(βgJ μB B0) (7.444)

One gets the spontaneous magnetization Ms(T ) from this by setting B0 = 0. Then
on the right-hand side we have instead of the function Z3/2 the Riemann ζ -function
(7.266) ζ (3/2). D∗ still contains the magnetization itself (7.442). If one restricts
oneself to terms of the order of T 3/2, then we can replace D∗ by D (7.280), i.e. in
D∗ 〈Sz〉 by � S. Then we exactly have the Bloch’s T 3/2 law (7.268) for S = 1/2
which is reproduced correctly by the Tyablikov approximation discussed here.

In order to find the higher powers in temperature, we can practically take over
(7.281); we only have to replace the reduced temperature t by



7.5 Thermodynamics of S = 1/2 Ferromagnet 357

τ = � S

〈Sz〉 t = 3kB T

4π � 〈Sz〉 z J1 δ
(7.445)

If we make the same assumptions as in Sect. 7.4.1 for the free spin waves, i.e.
restrict ourselves to cubic lattices with exchange interactions only between nearest
neighbours, then the following holds:

φ = ζ (3/2) τ 3/2 + 3πδ

4
ζ (5/2) τ 5/2 + π2 δ2 α2 ζ (7/2) τ 7/2 + · · · (7.446)

δ and α are the structure factors given in (7.283). Inserting (7.446) in (7.443) we get
an equation for 〈Sz〉 which has to be solved self-consistently. The leading tempera-
ture terms can be easily given:

〈Sz〉
� S

= 1 − 2ζ (3/2) t3/2 − 3πδ

2
ζ (5/2) t5/2

− 2ζ (3/2) t3 − 2π2 δ2 α ζ (7/2) t7/2 − · · · (7.447)

Except for the t3 term it agrees with the exact spin wave result of Dyson [10].
We want to finally investigate the high-temperature behaviour of the magnetiza-

tion in external field (B0 �= 0). For that we expand coth in (7.435) whose argument
is small for high temperatures. We first abbreviate

b(T ) = gJ μB B0

2kB T
; aq(T ) = 2� 〈Sz〉 (J0 − J (q))

2kB T
(7.448)

tb = tanh b(T ); ta = tanh aq(T ) (7.449)

With this the integrand in (7.435) can be written as

coth(b(T ) + aq(T )) = 1 + ta tb
ta + tb

= 1

tb

(
1 − (1 − t2

b )
ta

tb + ta

)

= 1

tb

(
1 + (1 − t2

b )
∞∑

n=1

(−1)n

(
ta
tb

)n
)

(7.450)

We insert this in (7.435)

� S

〈Sz〉 = 1

tb

(
1 + (1 − t2

b )
∞∑

n=1

(−1)n

tn
b

V

N (2π )3

∫
d3q tn

a

)
(7.451)
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For ta we apply the usual expansion of the hyperbolic tangent:

ta =
∞∑

n=1

(−1)n−1 22n(22n − 1)Bn

(2n)!
(aq(T ))2n−1 (7.452)

Before we insert (7.452) in (7.451) we introduce a few more abbreviations:

σ = 〈Sz〉
� S

= 2
〈Sz〉
�

(7.453)

τ = 2kB T

z �2 J1
(7.454)

aq(T ) = σ

τ
(1 − γq) (7.455)

cm = V

N (2π )3

∫
d3q (1 − γq)m (7.456)

The values of cm can easily be calculated (Problem 7.18):

c1 = 1 , c2 = 1 + 1

z
, c3 = 1 + 3

z
, . . . (7.457)

For the presumed high temperatures, we consider aq to be a small quantity,

ta ≈ σ

τ
(1 − γq) − 1

3

(σ

τ

)3
(1 − γq)3 + · · · (7.458)

and expand (7.451) up to the quadratic term in 1/τ

σ−1 = 1

tb

(
1 − c1

1 − t2
b

tb

(σ

τ

)
+ c2

1 − t2
b

t2
b

(σ

τ

)2
+ · · ·

)
(7.459)

This equation can be solved by successive iteration:

σ(0) = tb = tanh(gJ μB B0/2kB T ) (7.460)

In the zeroth approximation we obtain the result (4.127) of the ideal paramagnet
(non-interacting local moments in external magnetic field) for S = 1/2. The further
corrections are produced by the exchange interaction of the spins:

σ(1) = tb

(
1 + (1 − t2

b )
1

τ

)
(7.461)

In the next step, by inserting σ(1) on the right-hand side of (7.459) we obtain the
solution which is correct up to the order of 1/τ 2:
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〈Sz〉
� S

= tb + tb(1 − t2
b )

(
z J1 �

2

2kB T

)

+ tb

(
z − 1

z
− 2t2

b

)(
z J1 �

2

2kB T

)2

+ · · · (7.462)

For very high temperatures one can assume the exchange interaction energy z J1 �
2

to be very small compared to the thermal energy kB T . Then, one can handle the
Heisenberg model perturbatively [18]. A very good agreement with (7.462) is found.
This shows that the RPA approximation (7.422), which appears to be completely
arbitrary at first sight, leads to a useful approximate solution of the Heisenberg
model for S = 1/2 both for low temperatures (7.447) and for high temperatures
(7.462). Therefore, even for intermediate temperatures one can expect it to have
certain reliability.

7.5.3 Thermodynamic Potentials

In this section, we want to derive the internal and free energies of the Heisenberg
ferromagnet. The internal energy U is nothing but the thermodynamic expectation
value of the Hamiltonian H :

U = 〈H〉 = −
∑
i, j

Ji j

(
〈S+

i S−
j 〉 + 〈Sz

i Sz
j 〉
)
− gJ

μB

�
B0 N 〈Sz〉 (7.463)

The expectation values 〈S+
i S−

j 〉 and 〈Sz〉 were derived and discussed in the last
section. What is new now is the term 〈Sz

i Sz
j 〉 which can also be expressed in terms

of the spectral density Sq(E) (7.430).
With the operator identities valid for S = 1/2

S−
i Sz

i = �

2
S−

i ; S−
i S+

i = �
2 S − � Sz

i (7.464)

the following follows from (7.420):

S−
i

[
S+

i , H
]
− = −�

2
∑

j

Ji j S−
i S+

j − 2�
2
∑

j

Ji j Sz
i Sz

j

+ 2�
3 S
∑

j

Ji j Sz
j + gJ μB B0(�2 S − � Sz

i )

Averaging and summing over all the lattice sites lead to
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−
∑
i, j

Ji j 〈Sz
i Sz

j 〉 =
1

2�2

∑
i

〈S−
i

[
S+

i , H
]
−〉

+ 1

2

∑
i, j

Ji j 〈S−
i S+

j 〉

− J0 � S N 〈Sz〉 − N

2�2
gJ μB B0 〈S−

i S+
i 〉

Substituting this in (7.463) we get the following intermediate result:

U = E0(B0) + 1

2

∑
i, j

(
(J0 δi j − Ji j ) + δi j

�2
gJ μB B0

)
〈S−

i S+
j 〉

+ 1

2�2

∑
i

〈S−
i

[
S+

i , H
]
−〉 (7.465)

E0(B0) is the ground state energy (7.246) of the ferromagnet. With (7.431), we write
this expression in terms of wavenumbers: as

U = E0(B0) + 1

2�3

∑
q

∫ +∞

−∞
d E

� ω(q) Sq(E)

exp(βE) − 1

+ 1

2�2

∑
i

〈S−
i

[
S+

i , H
]
−〉 (7.466)

�ω(q) are the free spin waves for S = 1/2:

�ω(q) = �
2 (J0 − J (q)) + gJ μB B0 (7.467)

The remaining expectation value in (7.466) can also be expressed in terms of Sq(E):

1

2�2

∑
i

〈S−
i

[
S+

i , H
]
−〉

= i�

2�2

∑
i

d

dt
〈S−

i (t ′) S+
i (t)〉

∣∣∣∣
t=t ′

= i�

2�2

∑
q

1

�

d

dt

∫ +∞

−∞
d E

Sq(E)

exp(βE) − 1
e−

i
�

E(t−t ′)
∣∣∣∣
t=t ′

= 1

2�3

∑
q

∫ +∞

−∞
d E

E Sq(E)

exp(βE) − 1
(7.468)

In writing this equation, in the first step the equation of motion for time-dependent
Heisenberg operators and in the second step the spectral theorem (B.95) have been
used. Equations (7.466) and (7.468) finally give the following exact relation for the
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internal energy U :

U = E0(B0) + 1

2�3

∑
q

∫ +∞

−∞
d E

(E + � ω(q)) Sq(E)

exp(βE) − 1
(7.469)

This equation can easily be evaluated using (7.430) for S = 1/2 ferromagnets in
random phase approximation:

U = E0(B0) + 〈Sz〉
�

∑
q

�
2(J0 − J (q))

(
1 + 2〈Sz〉

�

)
+ 2gJ μB B0

eβE(q) − 1
(7.470)

We have defined the quasiparticle energies E(q) in (7.428).
In Appendix B, the following relationship between the internal energy and the

free energy is derived (B.198):

F(T ) = U (0) − T
∫ T

0
dT ′ U (T ′) − U (0)

T ′2 (7.471)

Substituting (7.470) gives a formally simple expression (U (0) = E0(B0)):

F(T ) = E0(B0) + T
1

�

∑
q

∫ T

0
dT ′ 〈Sz〉T ′

T ′2
E(q) + � ω(q)

exp(βE(q)) − 1
(7.472)

in which, however, E(q) and 〈Sz〉 are temperature dependent, so that it is not possi-
ble to carry out the T -integration analytically.

7.6 Thermodynamics of S ≥ 1/2 Ferromagnets

7.6.1 Green’s Functions

The central quantity in our discussions is the magnetization M(T, B0) (7.411),
which, up to some scalar factors, is determined by the expectation value 〈Sz〉 of
the z-component of the spin operator. We therefore need a Green’s function, with
whose help it is possible to evaluate this expectation value in the simplest possible
manner. For the special case of S = 1/2 which was discussed in the last section
(7.433)

〈S−
i S+

i 〉 = �
2 S − � 〈Sz〉 (7.473)

holds, so that the appropriate Green’s function is

Gi j (E) = 〈〈S+
i ; S−

j 〉〉ret
E (7.474)
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which, via the spectral theorem (B.95), fixes the expectation value 〈S−
i S+

i 〉. Even
though the latter is valid also for S > 1/2, its relationship with 〈Sz〉 is not so simple
as in (7.473). For S > 1/2, according to (7.8) the following holds:

〈S−
i S+

i 〉 = �
2 S(S + 1) − � 〈Sz

i 〉 − 〈(Sz
i )2〉 (7.475)

The term 〈(Sz
i )2〉 creates difficulties. We must look for equations which connect the

powers of the spin operators (Sz
i )n with each other. For this purpose, the Green’s

function (7.474) is not suitable. Tyablikov suggested the following:

G(n)
i j (E) = 〈〈S+

i ; (Sz
j )

n S−
j 〉〉ret

E (7.476)

We will see later that we can limit ourselves to n = 0, 1, . . . , 2S − 1. Since
the operator before the semicolon is the same as in Gi j (E) in (7.474), which was
the Green’s function used for the special case S = 1/2, in the equation of motion
(7.421) only the inhomogeneity on the right-hand side will change.

(E − gJ μB B0)G(n)
i j (E) = �〈

[
S+

i , (Sz
j )

n S−
j

]
−
〉

− 2�

∑
m

Jim

{
〈〈Sz

i S+
m ; (Sz

j )
n S−

j 〉〉 − 〈〈Sz
m S+

i ; (Sz
j )

n S−
j 〉〉
}

(7.477)

We will apply the same RPA decoupling as for the case of S = 1/2 (7.422). Since
the operator to the right of the semicolon in the Green’s function is inactive so far
as the equation of motion and its decoupling are concerned, we can directly write
down formally the result analogous to (7.427):

G(n)
q (E) = � 〈[S+

i , (Sz
i )n S−

i

]
−〉

E − E(q)
(7.478)

The quasiparticle energies are exactly the same as in (7.428). For the associated
spectral density the following now holds:

S(n)
q (E) = �〈[S+

i , (Sz
i )n S−

i

]
−〉 δ(E − E(q)) (7.479)

With the help of the spectral theorem (B.95) it follows analogously to (7.434)

〈(Sz
i )n S−

i S+
i 〉 = 〈[S+

i , (Sz
i )n S−

i

]
−〉

1

N

∑
q

(
eβE(q) − 1

)−1
(7.480)

In the next section we will see how one can indeed derive predictions on 〈Sz〉 from
this expression for an arbitrary spin S.

The selection of (7.476) as a suitable choice of the Green’s function is not the
only possibility. Here we mention another suggestion from Tahir-Kheli and ter
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Haar [19]:

G(n)
i j (E) = 〈〈S+

i ; (S−
j )n (S+

j )n−1〉〉ret
E (7.481)

The operator to the left of the semicolon is again the same as in (7.474) and (7.476).
Applying once again the RPA decoupling (7.422), we can immediately give the
result that follows from (7.481):

〈(S−
i )n (S+

i )n〉 = 〈[S+
i , (S−

i )n (S+
i )n−1

]
−〉 φ(S) (7.482)

where, as in (7.439), we define

φ(S) = 1

N

∑
q

(
eβE(q) − 1

)−1
(7.483)

7.6.2 Spontaneous Magnetization

We will try using (7.480) and (7.482) to determine 〈Sz〉 for an arbitrary spin. We start
with the Tyablikov result (7.480). With (7.475) for the left-hand side the following
holds:

〈(Sz
i )n S−

i S+
i 〉 = �

2 S(S + 1)〈(Sz
i )n〉 − � 〈(Sz

i )n+1〉 − 〈(Sz
i )n+2〉 (7.484)

We need this equation only for n = 0, 1, . . . , 2S−1, since because of the operator
identity (7.9),

+S∏
ms=−S

(Sz
i − � ms) = 0 (7.485)

the chain of equations (7.484) automatically terminates. For n = 2S − 1 the highest
power of Sz

i on the right-hand side turns out to be (Sz
i )2S+1. This, however, can be

due to (7.485) expressed by (Sz
i )n with n = 0, 1, . . . , 2S:

〈(Sz
i )2S+1〉 =

2S∑
n=0

αn(S) 〈(Sz
i )n〉 (7.486)

The αn(S) are numbers which can easily be determined from (7.485) (see Prob-
lem 7.3).

We now need the commutator on the right-hand side of Eq. (7.480). One can
easily prove by induction that

S+
i (Sz

i )n = (Sz
i − �)n S+

i (7.487)
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With this one calculates without any difficulty the required commutator:

[
S+

i , (Sz
i )n S−

i

]
− = 2� Sz

i (Sz
i − �)n

+ ((Sz
i − �)n − (Sz

i )n)(�2 S(S + 1) − � Sz
i − (Sz

i )2) (7.488)

Finally substituting (7.484) and (7.488) in (7.480) one obtains the following system
of equations:

�
2 S(S + 1) 〈(Sz

i )n〉 − � 〈(Sz
i )n+1〉 − 〈(Sz

i )n+2〉
= [2� 〈Sz

i (Sz
i − �)n〉 + 〈((Sz

i − �)n − (Sz
i )n)(�2 S(S + 1)

− � Sz
i − (Sz

i )2)〉] φ(S)

(n = 0, 1 2, . . . , 2S − 1) (7.489)

This along with (7.485) is a system of (2S+1) equations for the (2S+1) expectation
values 〈(Sz

i )m〉 (m = 1, . . . , 2S + 1), which naturally can in principle be solved.
One should, however, pay attention that in φ, according to (7.483), there is E(q) due
to which φ(S) again depends on 〈Sz〉. We want to investigate two examples S = 1/2
and S = 1 a little further:

(a) S = 1/2
In this case it follows from (7.485) that

(Sz
i )2 = �

2

4
(7.490)

We need (7.489) only for n = 0:

3

4
�

2 − � 〈Sz〉 − 〈(Sz)2〉 = 2� 〈Sz〉 φ(1/2). (7.491)

From this follows the result (7.434) or (7.439) which was already discussed in
Sect. 7.5 for the S = 1/2 ferromagnets:

〈Sz〉S=1/2 = �

2
(1 + 2φ(1/2))−1 (7.492)

Thus the special case S = 1/2 is contained in the theory presented here.
(b) S=1

In this case it follows from (7.485) that

(Sz
i )3 = �

2 Sz
i (7.493)

The system of equations now has to be evaluated for n = 0 and n = 1:

2�
2 − � 〈Sz

i 〉 − 〈(Sz
i )2〉 = 2� 〈Sz

i 〉 φ(1) (7.494)
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2�
2 〈Sz

i 〉 − � 〈(Sz
i )2〉 − 〈(Sz

i )3〉
= φ(1)[2� 〈(Sz

i )2〉 − 2�
2 〈Sz

i 〉 − 2�
3 + �

2 〈Sz
i 〉 + � 〈(Sz

i )2〉]
(7.495)

This can be solved for 〈Sz
i 〉 without any difficulty:

〈Sz
i 〉S=1 = �

1 + 2φ(1)

1 + 3φ(1) + 3φ2(1)
(7.496)

We also get the expectation value of (Sz
i )2:

〈(Sz
i )2〉S=1 = 2�

2 φ(1)

1 + 3φ(1)
+ � 〈Sz

i 〉
1 + φ(1)

1 + 3φ(1)
(7.497)

In this manner we can evaluate stepwise 〈Sz
i 〉 for any arbitrary spin S. For S > 1, it

is possible to give the solution in a general form [20]:

〈Sz
i 〉S = �

[S − φ(S)][1 + φ(S)]2S+1 + [1 + S + φ(S)][φ(S)]2S+1

[1 + φ(S)]2S+1 − [φ(S)]2S+1
(7.498)

This result actually follows from the Tyablikov result (7.480). Before we continue
our discussion for different temperature regions, we want to show that the result of
Tahir-Kheli and ter Haar (7.482) also leads exactly to the same predictions. For the
expectation values on the left-hand side of (7.482) we use the relations (Problem 7.2)

[
(S−

i )n , Sz
i

]
− = n � (S−

i )n (7.499)

[
(S−

i )n , (Sz
i )2
]
− = n2

�
2 (S−

i )n + 2n � Sz
i (S−

i )n (7.500)

With this we can show that

(S−
i )n (S+

i )n = (S−
i )n−1(�2 S(S + 1) − � Sz

i − (Sz
i )2) (S+

i )n−1

= [�2 S(S + 1) − n(n − 1) �
2 − (2n − 1) � Sz

i

− (Sz
i )2](S−

i )n−1 (S+
i )n−1 (7.501)

holds, from which eventually the following relation results:

(S−
i )n (S+

i )n =
n∏

p=1

[�2 S(S + 1) − (n − p)(n − p + 1)�2

− (2n − 2p + 1)� Sz
i − (Sz

i )2] (7.502)

(n ≥ 1)
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The commutator on the right-hand side of (7.482) now remains to be evaluated:

[
S+

i , (S−
i )n (S+

i )n−1
]
− = [S+

i , (S−
i )n
]
− (S+

i )n−1

One can prove by induction (Problem 7.2)

[
S+

i , (S−
i )n
]
− = (2n � Sz

i + �
2 n(n − 1)) (S−

i )n−1 (7.503)

With this we obtain the following recursion formula:

[
S+

i , (S−
i )n (S+

i )n−1]
−
= n �(2Sz

i + � (n − 1))(S−
i )n−1 (S+

i )n−1

(n ≥ 1) (7.504)

For n > 1, we can express the remaining operator product on the right-hand side
using (7.502):

[
S+

i , (S−
i )n (S+

i )n−1
]
− = 2� Sz

i , for n = 1[
S+

i , (S−
i )n (S+

i )n−1
]
− = (2n � Sz

i + n(n − 1)�2) ∗

∗
n−1∏
p=1

[�2 S(S + 1) − (n − 1 − p)(n − p)�2

− (2n − 2p − 1)� Sz
i − (Sz

i )2] , for n ≥ 2 (7.505)

Substituting (7.502) and (7.505) in (7.482), we obtain with (7.485) again a com-
plete system of equations for determining 〈Sz〉. This will be demonstrated with a
couple of examples:

(a) S=1/2
In this case it is n = 1 so that from (7.485) and (7.502) and (7.505) it directly
follows that

3

4
�

2 − � 〈Sz〉 − 〈(Sz)2〉 = 2� 〈Sz〉 φ(1/2) (7.506)

This equation is identical with (7.491) and therefore reproduces the result
(7.492) for 〈Sz〉S=1/2. Thus both the Green’s functions (7.476) and (7.481) lead
to the same physical results for S = 1/2.

(b) S=1
The equations that follow for n = 1 and n = 2 from (7.482) and (7.502) are

2�
2 − � 〈Sz〉 − 〈(Sz)2〉 = 2� 〈Sz〉 φ(1) (7.507)



7.6 Thermodynamics of S ≥ 1/2 Ferromagnets 367

〈−6�
3 Sz + �

2 (Sz)2 + 4�(Sz)3 + (Sz)4〉
= 〈4�

4 + 6�
3 Sz − 6�

2 (Sz)2 − 4� (Sz)3〉 φ(1) (7.508)

In addition, from (7.485) we get the following operator identities;

(Sz)3 = �
2 Sz (7.509)

(Sz)4 = �
2 (Sz)2 (7.510)

so that (7.508) becomes

− �
2 〈Sz〉 + � 〈(Sz)2〉 = (2�

3 + �
2 〈Sz〉 − 3� 〈(Sz)2〉) φ(1) (7.511)

(7.507) and (7.511) agree exactly with (7.494) and (7.495) so that for 〈Sz〉S=1 also
the earlier result (7.496) is reproduced. One can also show this from the general
result (7.498) for S > 1 so that the two Green’s functions (7.476) and (7.481) are
completely equivalent. Therefore, we can continue further discussions from (7.492),
(7.496) and (7.498).

7.6.2.1 Low-Temperature Region

At low temperatures, the expansion (7.446) for φ(S) is valid. Further, φ(S) should
itself be a small quantity so that we can expand (7.492), (7.496) and (7.498)

〈Sz〉1/2 = �

2
− � φ(1/2) + 2� φ2(1/2) +O(φ3) (7.512)

〈Sz〉S≥1 = � S − � φ(S) +O(φ3) (7.513)

(7.512) agrees with (7.443); therefore, we obtain exactly the same result (7.447)
again for S = 1/2. Therefore, here only the case S ≥ 1 is interesting. With (7.446)
in (7.513) we first get

〈Sz〉S≥1 = � S − �

(
ζ (3/2) τ 3/2 + 3π δ

4
ζ (5/2) τ 5/2

+ π2 δ2 α2 ζ (7/2) τ 7/2 + · · · ) (7.514)

α and δ are the structure factors given in (7.283). The reduced temperature τ is
defined in (7.445):

τ = � S

〈Sz〉 t = 3kB T

4π � 〈Sz〉 z J1 δ
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That means (7.447)

τ n/2 = tn/2

(
� S

〈Sz〉
)n/2

=
(

1 − ζ (3/2)

S
t3/2 + · · ·

)−n/2

tn/2

≈
(

1 + n

2S
ζ (3/2) t3/2

)
tn/2 (7.515)

Therefore, the correct low-temperature expansion of 〈Sz〉 reads as

〈Sz〉S≥1 = �

[
S − ζ (3/2) t3/2 − 3π δ

4
ζ (5/2) t5/2

− 3

2S
ζ 2(3/2) t3 − π2 δ2 α ζ (7/2) t7/2 + · · ·

]

(7.516)

A comparison with the Dyson solution [10] leads to an exact agreement in the
t0, t3/2, t5/2 and t7/2 terms. As in the S = 1/2 solution (7.447), we obtain in
addition a t3 term. In the case S = 1/2 also this correction term originates from the
term (2� φ2(1/2)) in the expansion (7.512). Since in the expansion (7.513) for S ≥ 1
a φ2 term does not appear, here φ(S) itself is responsible for the t3 correction. This
error arises mainly due to the imprecise RPA decoupling (7.422), which according
to (7.428) leads to spin wave energies, whose first temperature correction behaves
as T 3/2. One can see this directly when one inserts (7.516) in (7.428).

E(q) = A(S) + B(S) T 3/2 + · · · (7.517)

But we know that according to (7.318)

E(q) = A(S) + B(S) T 5/2 + · · · (7.518)

must hold.

7.6.2.2 Critical Region (T
<→ TC)

In the neighbourhood of the transition temperature φ(S) is no more a small quantity
but a rather large quantity. Therefore, we expand (7.498) in powers of 1/φ:

〈Sz〉S = �
[S − φ(S)][1/φ + 1]2S+1 + [1 + S + φ]

[1/φ + 1]2S+1 − 1

= �

(2S + 1)/φ

{
(S − φ)

(
1 + 2S + 1

φ
+ S(2S + 1)

φ2

+ (2S + 1)2S(2S − 1)

6φ3
+ · · ·

)
+ 1 + S + φ

}
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〈Sz〉S = �
S(S + 1)

3φ(S)
+O(1/φ3) (7.519)

φ(S) still contains 〈Sz〉 as one recognizes from (7.483):

1 + 2φ(S) = 1

N

∑
q

coth
σ (1 − γq)

τ
(7.520)

Here we have used the abbreviations (7.453) and (7.454):

σ = 〈Sz〉
� S

; τ = kB T

z J1 �2 S
(7.521)

Because of σ the argument of coth in (7.520) is small. Therefore, as in (7.436), we
expand and use the relation (7.456):

1 + 2φ(S) = c−1
τ

σ
+ c1

σ

3τ
− c3

σ 3

45τ 3
+ · · · (7.522)

c1, c3 are simple numbers from (7.457). The constant c−1 can be calculated for
simple cubic lattices [19]:

csc
−1 = 1.51638

cbcc
−1 = 1.39320

c f cc
−1 = 1.34466

(7.523)

From (7.522) one can further estimate

φ−1(S) = 2σ

τ c−1

(
1 + σ

τ c−1
− σ 3

3τ 3 c−1
+ · · ·

)
(7.524)

We substitute this in (7.519) and let T → TC , i.e. drive 〈Sz〉 → 0. This provides a
simple equation for the Curie temperature TC :

kB TC = kB θC/c−1

kB θC = 2
3 S(S + 1) z J1 �

2 (7.525)

Except for the factor 1/c−1 this is exactly the molecular field result (7.138) for the
Curie temperature θC . Since according to (7.523) 1/c−1 is always less than one, the
Curie temperature calculated here is less than that in the molecular field approxima-
tion. This is in agreement with experimental observations.

7.6.2.3 High-Temperature Region

For temperatures well above TC , we are interested primarily in the magnetic suscep-
tibility χ . For very high temperatures and not too strong fields, we can assume
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φ(S) � 1 (7.526)

and use the expression (7.519) for the expectation value 〈Sz〉 . For B0 = 0 naturally
φ(S) = ∞ and consequently 〈Sz〉 = 0. From the magnetization

M(T, B0) = N

V
gJ μB

1

�
〈Sz〉 ≈ N

V
gJ μB

2

3
S(S + 1)

1

2φ(S)
(7.527)

we get the susceptibility

χT = μ0

(
∂ M

∂ B0

)
T,(B0=0)

= N

V
gJ μB

2

3
S(S + 1)

(
∂

∂ B0

1

2φ(S)

)
T

(B0 = 0)

(7.528)

According to (7.459), for high-temperature region the following holds:

2φ(S) ≈ 1 + 2φ(S)

= 1

tb

(
1 − 1 − t2

b

tb

(σ

τ

)
+ z + 1

z

1 − t2
b

t2
b

(σ

τ

)2
+ · · ·

)

(7.529)

Here

tb = tanh

(
gJ μB B0

2kB T

)
(7.530)

σ

τ
= z � J1 〈Sz〉

kB T
= θC

T

1

2φ(S)
(7.531)

Substituting these in (7.529), we get an equation for φ(S),

2φ(S) ≈ 1

tb

(
1 − 1 − t2

b

tb

(
θC

T

)
1

2φ(S)

+ z + 1

z

1 − t2
b

t2
b

(
θC

T

)2 1

4φ2(S)
+ · · ·

)
(7.532)

which can be solved successively up to an arbitrary degree of accuracy. In the zeroth
and first order the following holds:
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(
1

2φ(S)

)(0)

= tb ⇒
(

1

2φ(S)

)(1)

= tb

(
1 + (1 − t2

b )

(
θC

T

))
(7.533)

Substituting this in (7.529) we obtain an expression which is exact up to the
quadratic term in 1/T :

1

2φ(S)
= tb

(
1 + (1 − t2

b )

(
θC

T

)
+

+ (1 − t2
b )

(
z − 1

z
− 2t2

b

) (
θC

T

)2

+ · · ·
)

(7.534)

The derivative at B0 = 0

(
∂

∂ B0

1

2φ(S)

)
B0=0

= gJ μB

2kB T

(
1 + θC

T
+ z − 1

z

(
θC

T

)2

+ · · ·
)

fixes in (7.528) the susceptibility

χT = μ0
N

V
(gJ μB)2 S(S + 1)

3kB T
∗

∗
(

1 + θC

T
+ z − 1

z

(
θC

T

)2

+O(1/T 3)

)
(7.535)

If we terminate the series just after the second term and use

1 + θC

T
≈
(

1 − θC

T

)−1

we get the Curie–Weiss law (7.147) of the molecular field theory, which in any case
should be valid at sufficiently high temperatures.

In summary one can say that the RPA decoupling (7.422) leads to reliable results
both for S = 1/2 and also for S > 1/2. Therefore, it possesses a kind of belated
justification. It, however, remains unsatisfactory that one cannot offer direct physical
justification for the decoupling (7.422). From this point of view, the Callen decou-
pling, which will be discussed in the next section, represents a distinct improvement.

7.6.3 The Callen Method

In order to calculate the expectation value 〈Sz〉, which fixes the temperature and field
dependence of the magnetization, the choice of a suitable Green’s function is deci-
sive. For the special case of S = 1/2 the choice (7.416) is unique, but not for S ≥ 1.
The difficulties that arise for higher spins were discussed in detail in connection
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with the Green’s functions (7.476) and (7.481). From the Green’s functions defined
there, with the help of the spectral theorem, it was possible to derive a system of 2S
equations, from which 〈Sz〉 could be determined. As the Green’s functions cannot
be calculated exactly, naturally, the solution depends on the approximations used.
In all the methods discussed up to now, the RPA decoupling (7.422) was used. The
results obtained in this way are quite satisfying. In high-temperature region, we get
the Curie–Weiss law, for the Curie temperature TC a clear improvement compared
to the molecular field approximation and in spin wave region a correct reproduction
of the T 3/2, T 5/2 and T 7/2 terms of the Dyson theory. What is disturbing is the T 3

term which is clearly arising due to the approximation used.
The method that will be discussed now, which was suggested by Callen [21], has

advantages from two points of view as compared to the procedure of the last section.
First, the decoupling of the chain of equations of motion can be physically better
justified than the RPA decoupling (7.422), and second, the disturbing T 3 term for
S > 1/2 in the low-temperature expansion disappears. In particular for large spin,
the Callen method represents an improvement over the theories of the last section.

Starting point is the following parametrized Green’s function:

G(a)
i j (E) = 〈〈S+

i ; exp(a Sz
j ) S−

j 〉〉ret
E (7.536)

The operator before the semicolon is the same as the one in the Green’s functions
(7.416), (7.476) and (7.481) used earlier. As a result, the equation of motion changes
in comparison to those of the other functions only through the inhomogeneity on the
right-hand side,

η(a) ≡ 〈[S+
i , exp(a Sz

i ) S−
i

]
−〉 (7.537)

The operator to the right of the semicolon B j = exp(a Sz
j ) S−

j remains, for the
moment, inactive. With (7.420), it directly follows that

(E − gJ μB B0)G(a)
i j (E) = � η(a) δi j

− 2�

∑
m

Jim
{〈〈Sz

i S+
m ; B j 〉〉ret

E − 〈〈Sz
m S+

i ; B j 〉〉ret
E

}

(7.538)

The RPA decoupling (7.422) consist in replacing in the higher Green’s functions
on the right-hand side of this equation of motion the operators Sz

i and Sz
m by their

thermodynamic expectation values 〈Sz〉. Here we will use a different procedure,
which will first be explained for the special case of S = 1/2. For this case, there are
three possible representations for the operator Sz

i :
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Sz
i = 1

2�
(S+

i S−
i − S−

i S+
i ) (7.539)

Sz
i = � S − 1

�
S−

i S+
i (7.540)

Sz
i = −� S + 1

�
S+

i S−
i (7.541)

We multiply the first equation with (1 − α) and the second with α and add the two
equations:

Sz
i = α � S + 1

2�
(1 − α) S+

i S−
i − 1

2�
(1 + α) S−

i S+
i (7.542)

α is a parameter which is still to be fixed. Substituting (7.542) in (7.538) for Sz
i and

Sz
m , one obtains Green’s functions of the following form:

〈〈S+
i S−

i S+
m ; B j 〉〉 ; 〈〈S−

i S+
i S+

m ; B j 〉〉
〈〈S+

m S−
m S+

i ; B j 〉〉 ; 〈〈S−
m S+

m S+
i ; B j 〉〉 (7.543)

We will simplify them through a symmetric decoupling, which at first is arbitrary,
taking into account only spin conservation.

〈〈S+
i S−

i S+
m ; B j 〉〉 ⇒ 〈S+

i S−
i 〉〈〈S+

m ; B j 〉〉 + 〈S−
i S+

m 〉〈〈S+
i ; B j 〉〉 (7.544)

〈〈S−
i S+

i S+
m ; B j 〉〉 ⇒ 〈S−

i S+
i 〉〈〈S+

m ; B j 〉〉 + 〈S−
i S+

m 〉〈〈S+
i ; B j 〉〉 (7.545)

〈〈S+
m S−

m S+
i ; B j 〉〉 ⇒ 〈S+

m S−
m 〉〈〈S+

i ; B j 〉〉 + 〈S−
m S+

i 〉〈〈S+
m ; B j 〉〉 (7.546)

〈〈S−
m S+

m S+
i ; B j 〉〉 ⇒ 〈S−

m S+
m 〉〈〈S+

i ; B j 〉〉 + 〈S−
m S+

i 〉〈〈S+
m ; B j 〉〉 (7.547)

If we substitute the ansatz (7.542) in the “higher” Green’s functions of the equation
of motion (7.538) and decouple according to (7.544), (7.545), (7.546) and (7.547)
we get

〈〈Sz
i S+

m ; B j 〉〉 ⇒ 〈Sz〉〈〈S+
m ; B j 〉〉 − α

�
〈S−

i S+
m 〉〈〈S+

i ; B j 〉〉 (7.548)

〈〈Sz
m S+

i ; B j 〉〉 ⇒ 〈Sz〉〈〈S+
i ; B j 〉〉 − α

�
〈S−

m S+
i 〉〈〈S+

m ; B j 〉〉 (7.549)

The next step is to physically fix the still undetermined parameter α. The idea is
to choose α such that the error arising out of the decoupling (7.548) and (7.549)
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remains as small as possible. One recognizes from (7.542) that for α = 0, Sz
i is

represented by (7.539). The operator combination 1
2�

(S+
i S−

i − S−
i S+

i ) gives the
fluctuation of Sz

i around zero. On the other hand our decoupling captures these com-
binations S+

i S−
i and S−

i S+
i . α = 0 would have been a good choice, had these

fluctuations been small, so that the consequent “decoupling error” is not so grave.
Therefore

α = 0 for 〈Sz〉 ≈ 0

For α = 1 (7.542) becomes the representation (7.540) for Sz . In this case, the oper-
ator product S−

i S+
i gives the deviation of Sz

i from the value � S. Thus, α = 1 would
be the choice if these deviations are small:

α = 1 for 〈Sz〉 ≈ � S

With α = −1 we get (7.541) from (7.542). With a corresponding justification, we
can choose

α = −1 for 〈Sz〉 ≈ −� S

Obviously, these three limiting cases will be simultaneously satisfied by the follow-
ing ansatz:

αS=1/2 = 〈Sz〉
� S

(7.550)

The above considerations are valid exclusively for the case S = 1/2. We will now
generalize to an arbitrary value of S. The relations analogous to (7.539), (7.540) and
(7.541) read as

Sz
i = 1

2�
(S+

i S−
i − S−

i S+
i ) (7.551)

Sz
i = � S(S + 1) − 1

�
(Sz

i )2 − 1

�
(S−

i S+
i ) (7.552)

Sz
i = −� S(S + 1) + 1

�
(Sz

i )2 + 1

�
(S+

i S−
i ) (7.553)

We again multiply the first equation with (1 − α), the second with α and add both:

Sz
i = α � S(S + 1) + 1

2�
(1 − α) S+

i S−
i

− 1

2�
(1 + α) S−

i S+
i − α

�
(Sz

i )2 (7.554)

Substituting this in the “higher” Green’s functions of the equation of motion (7.538)
and applying the symmetric decouplings (7.544), (7.545), (7.546) and (7.547) we
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again obtain exactly the same expressions (7.548) and (7.549) if we, as an additional
approximation, neglect the fluctuations of the operator (Sz

i )2.
The physical fixing of the parameter α is unfortunately not quite as plausible as

for the case of S = 1/2. For example, we cannot simply assume that the operator
product S−

i S+
i determines the fluctuation of Sz

i around the value +� S. We choose

α = 1

2S

〈Sz〉
� S

(7.555)

and justify it in the following way:

1. α should reproduce the ansatz (7.550) for S = 1/2.
2. (7.551) for arbitrary S is identical to (7.539) for S = 1/2, so that with the same

justification as for (7.550), it must be assumed that α ≈ 0 for 〈Sz〉 ≈ 0.
3. For low temperatures, 〈Sz〉 ≈ � S, i.e. the spin wave approximation is valid:

S+
i ≈ �

√
2S ai ; S−

i ≈ �

√
2S a†

i

Then according to (7.23) the following holds:

〈Sz〉 = � S − � 〈a†
i ai 〉

≈ � S − 1

2S �
〈S−

i S+
i 〉 (7.556)

When we write (7.554) as

〈Sz〉 = α�S(S + 1) − α

�
〈S−

i S+
i 〉 + (1 − α)〈Sz〉 − α

�
〈(Sz)2〉

and substitute on the right-hand side 〈(Sz
i )2〉 ≈ �

2 S2 and 〈Sz
i 〉 ≈ � S, because of

the low temperatures we get

〈Sz〉 ≈ �S − α

�
〈S−

i S+
i 〉

With (7.556) we are therefore forced to assume α ≈ 1
2S .

Obviously (7.555) satisfies all the three criteria. With (7.555) in (7.548) and
(7.549), the decoupling is completely determined, so that we can now solve the
approximated equation of motion (7.538).
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(E − gJ μB B0)G(a)
i j (E) = � η(a) −

− 2�

∑
m

Jim

{
G(a)

mj (E)
(
〈Sz〉

+ 〈Sz〉
2S2 �2

〈S−
m S+

i 〉
)

− G(a)
i j (E)

(
〈Sz〉 + 〈Sz〉

2S2 �2
〈S−

i S+
m 〉
)}

(7.557)

We solve this equation by Fourier transforming, wherein we use the following abbre-
viation:

p(k, a) = 1

N

∑
i, j

eik·(Ri−R j ) 〈eaSz
j S−

j S+
i 〉 (7.558)

With this one finds the following solution:

G(a)
q (E) = 1

N

∑
i, j

G(a)
i j (E) eiq·(Ri−R j ) = � η(a)

E − E(q)
(7.559)

E(q) = 2� 〈Sz〉 (J0 − J (q)) −
− 〈Sz〉

�2 S2

1

N

∑
k

(J (k + q) − J (k))p(k, 0) + gJ μB B0

(7.560)

As a consequence of the changed decoupling method, the quasiparticle energies
E(q) are different from the result (7.428) that was obtained with the help of the
RPA decoupling (7.422) by the second term in (7.560). This correction contains the
correlation p(k, a), which we must now try to fix.

For the spectral density S(a)
q , we find using (B.94) along with (7.559)

S(a)
q (E) = � η(a) δ(E − E(q)) (7.561)

Then from the spectral theorem (B.95), it follows immediately for q �= 0

p(q, a) = η(a)

exp(βE(q)) − 1
(7.562)

We now look for connection with the expectation value 〈Sz〉 which is what we are
actually interested in. From (7.537) it follows that

η(0) = 2� 〈Sz〉 (7.563)
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Further, according to (7.558) the following holds:

p̄(0) = 1

N

∑
q

p(q, 0) = 〈S−
i S+

i 〉 = �
2 S(S + 1) − � 〈Sz〉 − 〈(Sz

i )2〉 (7.564)

Here again the term 〈(Sz
i )2〉 is disturbing. We eliminate this by looking for and

exploiting a functional relationship among p̄(a), η(a) and the parameter a. For this
purpose we derive a differential equation for

Ω(a) = 〈exp(aSz)〉 (7.565)

solve this and build

〈Sz〉 = d

da
Ω(a)

∣∣∣∣
a=0

(7.566)

First let us determine η(a). With (7.487),

[
S+

i , (Sz
i )n
]
− = {(Sz

i − �)n − (Sz
i )n
}

S+
i (7.567)

follows

[
S+

i , eaSz
i

]
−
=
∑

n

1

n!
an
[
S+

i , (Sz
i )n
]
−

= (e−a� − 1)eaSz
i S+

i (7.568)

With this we can now give the expectation value η(a) defined in (7.537):

η(a) = 2� 〈eaSz
Sz〉 + (e−a� − 1)〈eaSz

S+ S−〉
= �

2 S(S + 1)(e−a� − 1)Ω(a) + (e−a� + 1)�
d

da
Ω(a) −

−(e−a� − 1)
d2

da2
Ω(a) (7.569)

In addition, from (7.562) and (7.564) we find

p̄(a) = 1

N

∑
q

p(q, a) = 〈eaSz
S− S+〉

= �
2 S(S + 1)Ω(a) − �

d

da
Ω(a) − d2

da2
Ω(a) (7.570)

Due to (7.562) we can combine the two equations:

p̄(a) = η(a) φ(S) (7.571)
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φ(S) is defined as in (7.483) but with the “new” quasiparticle energies E(q) given
by (7.560). We eventually get the following differential equation for Ω(a):

d2Ω

da2
+ (1 + φ) + φ e−a�

(1 + φ) − φ e−a�
�

dΩ

da
− �

2 S(S + 1) Ω = 0 (7.572)

This is analogous to the 2S coupled equations (7.489) or (7.505) obtained by the
procedures of Tyablikov and Tahir-Kheli and ter Haar discussed in the last section.
In order to solve this differential equation, we require two boundary conditions. One
follows from the definition (7.565) for Ω(a):

Ω(0) = 1 (7.573)

The second boundary condition we derive from (7.485):

+S∏
ms=−S

(
d

da
− � ms

)
Ω(a)

∣∣∣∣
a=0

≡ Ds Ω(0) = 0. (7.574)

One defines as an ansatz

ω(x, a) = e� a x

(1 + φ) e� a − φ
(7.575)

and then one gets by substituting in (7.572) that

x2 − x − S(S + 1) = 0

must hold and therefore

ω(−S, a) and ω(S + 1, a)

are particular solutions of the differential equation (Problem 7.20). The general solu-
tion then reads as

Ω(a) = α ω(−S, a) + β ω(S + 1, a) (7.576)

The two boundary conditions (7.573) and (7.574) demand that

α + β = 1

α Ds ω(−S, 0) + β Ds ω(S + 1, 0) = 0

and with that fix α and β:

Ω(a) = ω(−S, a) Ds ω(S + 1, 0) − ω(S + 1, a) Ds ω(−S, 0)

Ds ω(S + 1, 0) − Ds ω(−S, 0)
(7.577)
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This expression can further be somewhat reformulated. With the substitution

y = e� a

from (7.574) and (7.575) it follows that

Ds ω(x, a) = −�
2S+1

φ

+S∏
ms=−S

(
y

d

dy
− ms

)
yx

1 −
(

1+φ

φ

)
y

For the fraction on the right-hand side we insert the corresponding series expansion,
perform the differentiation and then set a = 0, i.e. y = 1:

Ds ω(x, 0) = −�
2S+1

φ

∞∑
p=0

(
1 + φ

φ

)p +S∏
ms=−S

(p + x − ms)

= −�
2S+1

φ

(
1 + φ

φ

)−x ∞∑
p=x

(
1 + φ

φ

)p +S∏
mS=−S

(p − mS)

(7.578)

If we choose x = −S then the first (2S + 1) summands vanish because for −S ≤
p ≤ +S always one of the factors in the product is zero:

Dsω(−S, 0) = −�
2S+1

φ

(
1 + φ

φ

)S ∞∑
p=S+1

(
1 + φ

φ

)p∏
ms

(p − ms)

From this we recognize (put x = S + 1 in (7.578))

Ds ω(−S, 0) =
(

1 + φ

φ

)2S+1

Ds ω(S + 1, 0) (7.579)

With this the final solution of the differential equation (7.572) reads as

Ω(a) = e−�aS φ2S+1 − e�a(S+1)(1 + φ)2S+1

[φ2S+1 − (1 + φ)2S+1][(1 + φ) e�a − φ]
(7.580)

The derivative of Ω(a) with respect to a at a = 0 according to (7.566) provides the
expectation value 〈Sz〉 that we are looking for:

〈Sz〉 = �
(1 + φ)2S+1 (S − φ) + φ2S+1 (S + 1 + φ)

(1 + φ)2S+1 − φ2S+1
. (7.581)
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This result agrees formally exactly with the result (7.498) of the earlier discussed
methods of Tyablikov and Tahir-Kheli and ter Haar. The differences lie in the φ(S)
due to the different decoupling methods. We will summarize once again the formal
solution of the Callen theory presented in this section:

(a) 〈Sz〉 from (7.581) as a function of φ

(b) φ(S) = 1
N

∑
q(exp(βE(q)) − 1)−1

(c) E(q) = gJ μB B0 + 2�〈Sz〉(J0 − J (q)) − 〈Sz〉
N �2 S2

∑
k(J (k + q) − J (k)) p(k, 0)

(d) p(k, 0) = 2� 〈Sz〉
exp(βE(k))−1

Equations (a) − (d) build a complete system of equations which can be solved
self-consistently for 〈Sz〉 and E(q).

With the usual restriction to nearest neighbour interactions and a reformulation
analogous to (7.308) we can write the quasiparticle energies E(q) as follows:

E(q) = gJ μB B0 + 2� 〈Sz〉(J0 − J (q))

(
1 + 〈Sz〉

S2
Q

)
(7.582)

They differ from the result (7.428) of the simpler RPA procedure of the earlier sec-
tion by a temperature-dependent correction factor:

Q = 1

N� J0

∑
k

J (k)

exp(βE(k)) − 1
(7.583)

The evaluation of the formal solution proceeds exactly in the same manner as in
Sect. 7.6.2 and therefore will not be presented here in detail. One can use exactly
the same series expansion as was done there. Modification of the results are only
due to the factor 1 + (〈Sz〉/S2)Q) in the “new” quasiparticle energies (7.582). The
results can be summarized as in the following [21]:

(a) Low-temperature region: The expansion of 〈Sz〉 in powers of the reduced tem-
perature t (7.282) gives terms in t0, t3/2, t5/2 and t7/2 which agree with the
exact Dyson solution. That also happens to be the case with the solution (7.516)
of the methods of Tahir-Kheli and ter Haar and Tyablikov. The disturbing fact
there is the presence of an additional t3 term. This does not appear in the
Callen solution for S > 1/2. Here the next higher terms are proportional to
t4, t3S+3/2, t3S+5/2, . . .. The t3S+3/2 and t3S+5/2 terms are apparently the con-
sequences of the decoupling method. They reproduce the disturbing t3 term for
S = 1/2. The t4 term differs slightly only in the coefficient from the exact Dyson
result.
On the whole one can say that the solution of the Callen procedure, in the low-
temperature region and for large S, represents a clear improvement over the
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RPA methods of the preceding section. For S = 1/2, no improvements are
recognizable.

(b) Critical region: Here also the expansions and estimates are completely analo-
gous to those in Sect. 7.6.2. There we had in Eq. (7.525)

(kB TC )R P A = kB θC/c−1

where c−1 is a structure-dependent number of the order of magnitude of 1
(7.523). θC is the Curie temperature of the molecular field approximation. The
method discussed in this section leads to

kB TC = (kB TC )R P A (4S + 1)c−1 − (S + 1)

3c−1 S
(7.584)

The correction factor is somewhat larger than 1 so that the Curie temperature TC

in the Callen method lies higher than that in RPA.
(c) High-temperature region: The high-temperature expansion of the susceptibility

is obtained with the same series representation as in the RPA theory (7.535) in
Sect. 7.6.2. The results differ from each other in the coefficient of the 1/T 2 term:

χT = μ0
N

V
(gJ μB)2 S(S + 1)

3kB T

{
1 + θC

T

+
(

1 − 2S − 1

3z S

)(
θC

T

)2

+O(1/T 2)

}
(7.585)

Precisely as in (7.535), the first two terms reproduce the exact 1/t expansion
[22]. For very high temperatures, they lead to the Curie–Weiss law (7.147) of
the molecular field theory.

7.7 Problems

Problem 7.1 Let Si , S j be the spin operators corresponding to magnetic moments
at the sites Ri , R j . As is well known

S±
j = Sx

j ± i Sy
j

Prove that

1.
[

Sz
i , S±

j

]
−
= ±�δi j S±

i

2.
[

S+
i , S−

j

]
−
= 2�δi j Sz

i

3. S±
i S∓

i = �
2S(S + 1) ± �Sz

i −
(
Sz

i

)2
4. Si · S j = 1

2

(
S+

i S−
j + S−

i S+
j

)
+ Sz

i Sz
j
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5. Due to the fact that Ji j = Jji ; Jii = 0, the Heisenberg Hamiltonian can also be
written as

H = −
∑
i, j

Ji j

(
S+

i S−
j + Sz

i Sz
j

)

Problem 7.2 Verify the following commutators for the spin operators:

1.
[
(S−

i )n, Sz
i

]
− = n�(S−

i )n; n = 1, 2, . . .

2.
[
(S−

i )n, (Sz
i )2
]
− = n2

�
2(S−

i )n + 2n�Sz
i (S−

i )n; n = 1, 2, . . .

3.
[
S+

i , (S−
i )n
]
− = (2n�Sz

i + �
2n(n − 1))(S−

i )n−1; n = 1, 2, . . .

Problem 7.3 For the z-component of the local spin operator Sz
i , with real coeffi-

cients αn(S) the following holds:

〈(Sz
i

)2S+1〉 =
2S∑

n=0

αn(S)〈(Sz
i

)n〉

Calculate these coefficients for

S = 1

2
, 1,

3

2
, 2,

7

2
.

Problem 7.4 EuSe is an antiferromagnet between 2.8 and 4.6 K with a NNSS
sequence of ferromagnetically ordering (111)-planes. Within the framework of
molecular field approximation, calculate the Neél temperature TN and the param-
agnetic Curie temperature Θ as functions of the exchange integrals between the
nearest (J1) and next nearest neighbours (J2).

Problem 7.5 1. Calculate the eigenvalues of a tridiagonal matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b 0 0 0 · · · 0 0
b a b 0 0 · · · 0 0
0 b a b 0 · · · 0 0

. . . . . . .

. . . . . . .
0 0 0 0 0 · · · b a

⎞
⎟⎟⎟⎟⎟⎟⎠

2. Using the result of 1. determine the Curie temperature of a Heisenberg film of
d monolayers in the framework of molecular field approximation. How does TC

vary with the thickness d of the film?

Problem 7.6 Let |0〉 be the state in which all the spins are oriented parallel to the
external field B0 = B0ez (ferromagnetic saturation). Show that this state is an
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eigenstate of the Heisenberg Hamiltonian and calculate the corresponding energy
eigenvalue E0(B0).

Problem 7.7 Let

|k〉 = 1

�
√

2SN
S−(k) |0〉

be the normalized one-magnon state (7.114). Here |0〉 is the (normalized) magnon
vacuum (ferromagnetic saturation). Show that for the expectation value of the local
spin operator in the state |k〉 the following holds:

〈k| Sz
i |k〉 = �

(
S − 1

N

)

Problem 7.8 1. Show that the Holstein–Primakoff transformation preserves the
commutation relations of the spin operators:

[
S+

i , S−
j

]
−
= 2�δi j Sz

i[
Sz

i , S±
j

]
−
= ±�δi j S±

i

2. Verify S2
i = �

2S(S + 1)1l

Problem 7.9 Repeat the consideration of Problem 7.8 for the Dyson–Maléev trans-
formation.

Problem 7.10 Show that the spin wave approximation

S+(k) ≈ �

√
2SNak

S−(k) ≈ �

√
2SNa+

−k

Sz(k) = �SNδk,0 − �

∑
q

a+
q ak+q

preserves the fundamental commutation relations of the spin operators.

Problem 7.11 Using Dyson–Maléev transformation, transform the Heisenberg Hamil-
tonian into wavenumber representation.

Problem 7.12 In the spin wave approximation, calculate the internal energy and
heat capacity of a ferromagnet at low temperatures.

Problem 7.13 In the linear spin wave approximation the Heisenberg Hamiltonian
reads as

H = E0(B0) +
∑

q

�ω(q)a†
qaq
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a†
q and aq are Bose operators for creation and annihilation of magnons with wavenum-

ber q. �ω(q) are the magnon energies and E0(B0) is the field-dependent constant of
Eq. (7.246).

1. Show that

[
n̂q, (a†

q)p
]
− = p(a†

q)p

holds where n̂q = a†
qaq and p = 0, 1, 2, . . .

2. Show that the product state

|ψ〉 =
∏

q

(a†
q)nq |0〉

is an eigenstate of H and find the eigenvalue. |0〉 is the magnon vacuum and nq

is the eigenvalue of n̂q which is the number of magnons with wavenumber q.

Problem 7.14 Calculate the internal energy and the heat capacity of an antiferro-
magnet (ABAB structure) at low temperature in the spin wave approximation.

Problem 7.15 What is the temperature dependence shown by the sub-lattice mag-
netization of an antiferromagnet at low temperature? Assume the anisotropic con-
tributions to be negligible. Apply the spin wave approximation for an ABAB anti-
ferromagnet.

Problem 7.16 Calculate the ground state energy Êa of an antiferromagnet (ABAB
structure). For that apply in the spin wave approximation the Bogoliubov transfor-
mation discussed in Sect. 7.4.3:

H = Êa +
∑

q

{
Eα(q)α+

q αq + Eβ(q)β+
q βq

}

(Notation as in Sect. 7.4.3!)

Problem 7.17 Consider Heisenberg spins on a lattice with translational symmetry.
Let the exchange integrals Ji j be restricted to nearest neighbours Ri and R j . Then
the wavenumber dependence of the magnon properties is determined by the struc-
ture factor

γq = 1

z1

∑
Δ1

eiq·RΔ1

Here z1 is the number of the nearest neighbours, RΔ1 is a vector from the point of
consideration to one of the nearest neighbouring lattice sites and q is a vector in the
first Brillouin zone. Show that from the translational symmetry it follows that



7.7 Problems 385

∑
q1

γq−q1〈n̂q1〉 = γq

∑
q1

γq1〈n̂q1〉

Here, one has

n̂q = a†
qaq

aq = 1√
N

∑
i

ai e
−iq·Ri

ai = 1√
N

∑
q

aqeiq·Ri

Problem 7.18 Let the structure factors γq be defined as in Problem 7.17. For high-
temperature expansions of magnetization, expressions like the following are impor-
tant:

cm = 1

N

∑
q

(
1 − γq

)m

Calculate c1, c2 and c3 for a primitive cubic lattice.

Problem 7.19 For a system of localized spins, the dipole interaction

HD =
∑
i, j

Di j Si · S j + Ha

Ha = −3
∑
i, j

Di j
(
Si · ei j

) (
S j · ei j

)

represents an anisotropic addition to the Heisenberg exchange. The symbols Di j and
ei j are defined in (7.375) and (7.376).

Express Ha for low temperatures in the spin wave approximation. Check this
with Eq. (7.385).

Problem 7.20 The Callen method for an approximate solution of the spontaneous
magnetization in Heisenberg model uses the definition (7.565)

Ω(a) = 〈exp(aSz)〉

Für diese ergibt sich die Bestimmungsgleichung (7.572):

d2Ω

da2
+ (1 + ϕ) + ϕe−a�

(1 + ϕ) − ϕe−a�
�

dΩ

da
− �

2S(S + 1)Ω = 0

The solution uses the boundary conditions
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Ω(0) = 1
+S∏

mS=−S

(
d

da
− �ms

)
Ω(a)|a=0 ≡ DSΩ(0) = 0

Show that

ω(x, a) = e�ax

(1 + ϕ)e�a − ϕ

is a solution of the differential equation and find the possible values of x . What is
the general solution?
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Chapter 8
Hubbard Model

8.1 Introduction

The Heisenberg model which was discussed in detail in Chap. 7, cannot be applied
to all classes of ferro-, ferri- or antiferromagnets. Its region of validity is immedi-
ately clear from the derivation in Chap. 5. Heisenberg model presumes the existence
of permanent localized magnetic moments, which, as a consequence of either a
direct or an indirect exchange interaction, order themselves collectively below a crit-
ical temperature T ∗. Therefore, Heisenberg model is a good model for most of the
magnetic insulators but, conceptually, it is totally inappropriate for magnetic metals
such as Fe, Co and Ni (band magnets). In order to describe such substances, one
has to use a completely different ansatz. The model which is most often used in this
connection is due to J. Hubbard [1]. It was simultaneously proposed by J. Kanamori
[2] and by M.C. Gutzwiller [3]. This model is the central point of this chapter.

Band magnets are primarily characterized by the fact that one and the same group
of electrons are responsible for both magnetism and electrical conduction. Simple
and very successful (with limitations of course) models for metallic solids are the
Sommerfeld model (Sect. 3.3) and the Jellium model (Sect. 4.1.3). Describing col-
lective magnetism is however beyond the scope of both the models. An important
simplication made in these models is not taking into account the atomic structure of
the solid. For this reason, these models are suitable to describe electrons in broad
energy bands, e.g. electrons in the conduction bands of alkali metals. The quali-
tative discussion in Sect. 5.2.1 makes it clear that the structure of the density of
states of the concerned energy bands should play not an unimportant role in decid-
ing the possibility of collective magnetism. Added to this is the observation that
band magnetism appears primarily in the narrow bands of the transition metals. The
assumption made in the Jellium model, that the ions in the solid are represented only
by a homogeneously smeared out positive charge, is not a good starting point for the
theory of band magnetism. A consequence of this assumption is that the conduction
electrons have a constant probability to exist anywhere in the entire crystal. Narrow
energy band, on the other hand, means a relatively small mobility of the electrons
and therefore sharp peaks around the lattice points for the probability of finding the
electrons. Using plane waves to describe band electrons as is done in the Jellium
model is obviously not appropriate.

W. Nolting, A. Ramakanth, Quantum Theory of Magnetism,
DOI 10.1007/978-3-540-85416-6 8, C© Springer-Verlag Berlin Heidelberg 2009
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8.2 Model for Band Magnets

8.2.1 Solid as a Many-Body System

A solid is made up of a large number of particles such as atoms, molecules, clusters,
which are interacting with each other. Ultimately, they are positively charged nuclei
and negatively charged electron shells. One denotes as core electrons, the electrons
which are close to the nucleus and are tightly bound to it, and in general, form closed
shells. The core electrons have little influence on the typical solid state properties.
Valence- and conduction electrons which stem as a rule, from partially filled shells,
are relatively free to move about (itinerant) and are responsible for the bonding of
the solid. They therefore influence the solid state properties in a decisive way. One
defines

Lattice ion = nucleus + core electrons

That leads to a first modelling of a solid:

Solid :

I nteracting lattice ions and valence electrons

The Hamiltonian, therefore, has the structure

H = He + Hi + Hei (8.1)

He is the electronic part:

He = Te + Vee =
Ne∑

i=1

p2
i

2m
+ 1

2

i �= j∑
i, j

e2

4πε0 | ri − r j | (8.2)

ri and pi denote the position and momentum of the i th electron.
Hi describes the ionic subsystem:

Hi = Ti + Vii =
Ni∑

α=1

P2
α

2Mα

+ 1

2

α �=β∑
α,β

Zα Zβe2

4πε0 | Rα − Rβ | (8.3)

Rα and Pα are the position and momentum of the ion α. The inter-ion interaction
term can be separated into a part V (0)

i i , which represents the rigid lattice R(0)
α , e.g.

is responsible for the binding energy, and a part Vp, which describes the lattice
dynamics (“phonons”):

Vii = V (0)
i i + Vp (8.4)
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The interaction between the electronic and ionic subsystems is described by

Hei = −
Ne∑

i=1

Ni∑
α=1

Zαe2

4πε0 | ri − Rα | = V (0)
ei + Vep (8.5)

Here V (0)
ei denotes the periodic lattice potential, in which the electrons in the solid

move, and Vep is the electron–phonon interaction term. Up till now our model is
still very general. However, which parts are really important for describing band
magnetism?

8.2.2 Electrons in Narrow Energy Bands

We want to first list a few experimental facts in order to find the essential features
around which an appropriate theoretical model can be built.

1. Band ferromagnetism is produced apparently by electrons in relatively narrow
energy bands, e.g. in 3d-bands of the transition metals.

2. The states in the relatively broad (s, p, · · · ) bands can hybridize with the states
in the narrow d-bands, so that, e.g. the number of electrons per lattice site may
become a non-integer. Further, the electrostatic potential of the ions “seen” by
the d-electrons and also the inter- and intra-atomic interaction potentials among
the d-electrons are screened by the substantially “faster” (s, p, · · · )-electrons so
that there is a certain renormalization of the corresponding matrix elements.

3. It appears that the lattice dynamics (Vep) is relatively unimportant for band mag-
netism whereas the lattice structure (Vei ) plays an important role.

Therefore, in the first modelling of a band ferromagnetic solid, we will restrict
ourselves to interacting d-electrons in a rigid ion lattice with matrix elements renor-
malized by (s, p, · · · )-electrons:

H = H0 + H1 (8.6)

H1 is the Coulomb interaction of the d-electrons which is to be considered later,
while H0 is the kinetic energy T d

e of the d-electrons and their interaction with the
periodic lattice potential V 0,d

ei .

H0 = T d
e + V (0,d)

ei (8.7)

We want to represent H in second quantized form and for that purpose ask our-
selves which is the appropriate single-particle basis. Figure 8.1 shows the schematic
behaviour of the potential and the average probability of finding an atomic electron
in an isolated single ion. If N such ions are brought near each other so that the inter-
ionic distance is finite, then the potential hills will overlap and there is a possibility
of hopping of the electron with a finite tunnelling probability. For a narrow energy
band, this tunnelling probability is quite small so that the probability | ψ |2 of the
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Fig. 8.1 Schematic plot of
the potential V and the
probability density | ϕμσ |2
for an electron in the Z-fold
positively charged single ion

Fig. 8.2 Schematic plot of
the lattice potential V and the
probability density | ϕμσ |2
for an electron in the narrow
band of a solid

d-electrons has distinct maxima about the nuclei (see Fig. 8.2). Thus the electron
still has a strong reference to the atomic structure. Therefore, the natural choice of
the basis needed for second quantization could be the atomic wavefunctions

ϕμσ (r − Ri ) = 〈r | ϕ(i)
μσ 〉 (8.8)

| ϕμσ (k)〉 = 1√
Ni

Ni∑
j=1

eik·R j | ϕ( j)
μσ 〉 (8.9)

μ denotes the orbital and σ is as usual the spin projection. Ri is the position of the
nucleus. {ϕμσ } represents in the subspace of interest a complete one-particle basis.
That means for the one-particle part of the Hamiltonian:

H0 =
∑
i jσ

∑
μν

T μν

i j c†iμσ c jνσ (8.10)

The hopping integrals T μν

i j are expressed in terms of the atomic wavefunctions by

T μν

i j =
∫

d3r ϕ∗
μσ (r − Ri )

(
− �

2

2m
�+ V (0,d)

ei

)
ϕνσ (r − R j ) (8.11)
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After Fourier transforming we obtain the (μ, ν)-element of the (2l + 1) × (2l + 1)-
matrix T̂k:

T μν

k = 1

Ni

∑
i, j

T μν

i j e−ik·(Ri−R j ) (8.12)

The eigenstates of T̂k,

T̂k | umkσ 〉 = εm(k) | umkσ 〉 (8.13)

are used to build the unitary matrix

U mμ

kσ = 〈umkσ | ϕμσ (k)〉 (8.14)

which diagonalizes T̂k:

Ûkσ T̂k Û †
kσ =

⎛
⎜⎜⎝

ε1(k) 0 · · · 0 0
0 ε2(k) · · · 0 0

. . . . . . . . . . .
0 0 · · · 0 ε2l+1(k)

⎞
⎟⎟⎠ (8.15)

The diagonal elements εm(k) are the Bloch energies, which provide us the band
structure of the non-interacting electron system. m indexes the sub-bands whose
number is the same as the number of atomic orbitals.

How do the construction operators transform themselves?

c†kmσ | 0〉 =| umkσ 〉 =
∑

μ

| ϕμσ (k)〉〈ϕμσ (k) | umkσ 〉

=
∑

μ

(
U mμ

kσ

)∗ | ϕμσ (k)〉

= 1√
Ni

∑
jμ

eik·R j
(
U mμ

kσ

)∗
c†jμσ | 0〉

so that for the creation operators holds:

c†kmσ = 1√
Ni

∑
jμ

eik·R j
(
U mμ

kσ

)∗
c†jμσ (8.16)

c†jμσ = 1√
Ni

∑
km

e−ik·R j U mμ

kσ c†kmσ (8.17)

By taking adjoint one obtains the corresponding annihilation operators.
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Substituting these transformation formulas in (8.10) and exploiting the fact that
the columns and rows of the matrix Ûkσ are orthonormal, one obtains the one-
particle part of the Hamiltonian (Problem 8.1):

H0 =
∑
kmσ

εm(k) c†kmσ ckmσ . (8.18)

The number of sub-bands corresponds to the number of given orbitals.
The Coulomb interaction which is still remaining must also naturally be formu-

lated in the one-particle basis already fixed by H0. Since there is no spin dependence,
for the Coulomb matrix element at the moment holds:

v(iμσ1, jνσ2; lμ′σ4, kν ′σ3) = δσ1σ4 δσ2σ3 v(iμ, jν; lμ′, kν ′) (8.19)

where

v(iμ, jν; lμ′, kν ′) =
∫ ∫

d3rd3r ′ϕ∗
μσ (r − Ri )ϕ

∗
νσ ′(r′ − R j ) ∗

∗ e2

4πε0 | r − r′ |ϕμ′σ (r − Rl )ϕν ′σ ′(r′ − Rk)

(8.20)

The interaction term in the model Hamiltonian, therefore, has the following form:

H1 = 1

2

∑
i jkl

∑
μμ′νν ′

∑
σσ ′

v(iμ, jν; lμ′, kν ′)c†iμσ c†jνσ ′ckν ′σ ′clμ′σ (8.21)

Up to now everything is still exact, except that we are limiting ourselves to the
subspace fixed by the atomic wavefunctions, namely the d-states. After all, we have
chosen only one special complete one-particle basis.

As a first simplification, one can exploit the fact that the wavefunctions centred
at different lattice sites have a very small overlap so that the intra-atomic matrix
elements surely dominate:

v(μν; μ′ν ′) = v(iμ, iν; iμ′, iν ′) (8.22)

All the other matrix elements are neglected:

H1 = 1

2

∑
iσσ ′

∑
μμ′νν ′

v(μν; μ′ν ′)c†iμσ c†iνσ ′ciν ′σ ′ciμ′σ (8.23)

That is, the interacting partners belong to the same lattice site! One finds that not all
the matrix elements are equally important. The particularly important ones are
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(a) direct terms: These are analogous to classical Coulomb repulsion (μ = μ′; ν =
ν ′):

Uμν ≡ v(μν; μν) (8.24)

(b) Exchange terms: These have no classical analogue (μ = ν ′; ν = μ′):

Jμν ≡ v(μν; νμ) (8.25)

The other matrix elements, i.e. other index combinations, on the one hand are
smaller compared to the above terms and on the other, appear to not to influence
the magnetic properties in any decisive manner.

H1 = 1

2

∑
iσσ ′

∑
μν

[
(1 − δμνδσσ ′)Uμν niμσ niνσ ′

+(1 − δμν)Jμνc†iμσ c†iνσ ′ciμσ ′ciνσ

]
(8.26)

niμσ = c†iμσ ciμσ is the occupation number operator.

Inspite of the various simplifications, this operator along with H0 appears to be
a realistic starting point for describing band magnets. This is particularly the case
when the one-particle energies εm(k), T μν

i j and the matrix elements are suitably
renormalized in order to take into account the effects, that are not covered by the
model, at least in an average manner.

8.2.3 Hubbard Model

If we are primarily interested in a qualitative understanding of magnetism, one
could assume as a first step that the d-band degeneracy is not so decisive. As a
further simplification we then agree to limit ourselves to “narrow” s-bands(→ μ =
ν = 1).

The indexing of the orbitals is then superfluous. Then we have the model Hamil-
tonian named after Hubbard (Fig. 8.3):

H =
∑
i jσ

Ti j c
†
iσ c jσ + 1

2
U
∑
iσ

niσ ni−σ (8.27)

Does this model still have a relation to reality? The model components

• kinetic energy
• Coulomb interaction
• Pauli principle
• lattice structure
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Tij + UTij

Fig. 8.3 Correlated fermions on a lattice

surely represent a minimal set in order to study the electronic correlations on a
lattice.

Let us recall the salient model simplifications:

• one orbital per atom (→ s-band)
• only intra-atomic electron–electron interaction
• one atom per unit cell
• one-particle basis built out of atomic wavefunctions

The important model parameters, through which the model systems differ from each
other are

• the strength of the Coulomb coupling U
• bandwidth W of the Bloch band
• band occupation: n =∑iσ 〈niσ 〉 ; 0 ≤ n ≤ 2
• crystal structure

Is it really allowed to restrict oneself to intra-atomic Coulomb matrix element U?
J. Hubbard has, in his original work [1], given the numbers for the matrix elements
which are calculated using atomic Ni wavefunctions:

U = v(i i ; i i) ≈ 20 eV

v(i j ; i j) ≈ 6 eV

v(i i ; i j) ≈ 0.5 eV

v(i j ; ik) ≈ 0.1 eV

v(i j ; j i) ≈ 0.025 eV

v(i i ; j j) ≈ 0.025 eV
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The indices i, j, k refer to nearest neighbours in the lattice. Due to screening
effects, the interatomic matrix elements can further reduce by up to 20%. One
should, however, note that the terms which contain the nearest neighbour indices
should be multiplied by the number of nearest neighbours. A logical model extension
which takes into account the influence of v(i j ; i j) would be

H =
∑
i jσ

Ti j c
†
iσ c jσ + 1

2
U
∑
iσ

niσ ni−σ + 1

2

n.N .∑
i jσσ ′

Qi j niσ n jσ ′ (8.28)

The extra term for the nearest neighbour interactions, according to the available
approximate investigations, appear to reinforce the tendency towards a ferromag-
netic ground state. However, the generalization to a multi-band model as in (8.26)
should be more important. We will, therefore, not discuss the model extension (8.28)
any further.

What are the most important applications of the model today?

• electronic properties of narrow energy band solids (transition metals)
• band magnetism (Fe, Co, Ni, etc.)
• metal–insulator transitions (Mott transitions)
• high-temperature superconductivity
• general concepts of Statistical Mechanics

8.3 Stoner Model

The interaction term in the Hubbard Hamiltonian (8.27) prevents, at least in the gen-
eral case, an exact solution of the corresponding many-body problem. As a result,
one is constrained to resort to approximations. We begin with the simplest ansatz,
namely the molecular field approximation. Just as the Weiss model of the ferro-
magnet (Sect. 5.1.2) represents the molecular field approximation of the Heisenberg
model (7.1), one can treat the Stoner model as the molecular field approximation
of the Hubbard model. Just as Weiss could not have been aware of the Heisenberg
model, Stoner’s original proposal of his model was before the Hubbard model was
introduced. Stoner could demonstrate a band magnetic phase transition by construct-
ing a self-consistent phenomenological exchange field.

8.3.1 Stoner Ansatz (Ferromagnet)

We use the molecular field approximation in the form (7.121) for the interaction
term of the Hubbard Hamiltonian:

niσ ni−σ =⇒ 〈niσ 〉ni−σ + niσ 〈ni−σ 〉 − 〈niσ 〉〈ni−σ 〉 (8.29)
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With this the operator (8.27) becomes a one-particle operator:

H → HS =
∑
i jσ

(
Ti j + U 〈ni−σ 〉δi j

)
c†iσ c jσ + DS(T ) (8.30)

The relatively unimportant c-number

DS(T ) = −1

2
U
∑
iσ

〈niσ 〉〈ni−σ 〉 (8.31)

will not play any role in the following considerations. Since we are concerned here
exclusively with ferro- and paramagnetism, we can exploit translational symmetry.
That means the expectation values of the occupation number operators are indepen-
dent of the lattice site:

〈niσ 〉 = nσ ∀ i (8.32)

Then the Stoner approximation of the Hubbard model reads as

HS =
∑
i jσ

(
Ti j + U n−σ δi j

)
c†iσ c jσ + DS(T ) (8.33)

=
∑
kσ

εσ c†kσ ckσ + DS(T ) (8.34)

DS(T ) = −NU nσ n−σ (8.35)

After transforming into k-space, the Stoner Hamiltonian becomes diagonal and
describes non-interacting Fermions with renormalized one-particle energies:

εσ (k) = ε(k) + U n−σ (8.36)

n−σ has to be determined self-consistently. We further introduce

′polarization′ m(T, n) = n↑ − n↓ (8.37)

and

′particle density′ n = n↑ + n↓ (8.38)

and write the Stoner energies as

εσ (k) =
(

ε(k) + 1

2
U n

)
− zσ

1

2
Um ; (zσ = δσ↑ − δσ↓) (8.39)
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Fig. 8.4 Stoner energies as functions of the wavevector for (a) U = 0, (b) U �= 0, m = 0, (c)
U �= 0, m �= 0

The analogy to the Weiss ferromagnet (Sect. 5.1.2) becomes obvious when we
define as (spin-dependent) exchange field

Bex
σ = U

μB
n−σ = U

2μB
(n − zσ m) (8.40)

→ εσ (k) = ε(k) + μB Bex
σ (8.41)

As soon as the exchange field exhibits a real spin dependence, the Bloch dis-
persion ε(k) splits into two spin dispersions which are rigidly shifted with respect
to each other by the exchange splitting ΔEex = Um . The splitting is temperature
dependent and vanishes above TC .

8.3.2 Stoner Excitations

According to (8.39) the Stoner model permits the following electronic excitations
(Fig. 8.4):

�ωσσ ′
k (q) = εσ ′(k + q) − εσ (k) = ε(k + q) − ε(k) − 1

2
U m(zσ ′ − zσ ) (8.42)

If such an excitation takes place within the same spin band, i.e. without a spin flip
(σ = σ ′), then, because of the rigid band splitting, this is identical to an excitation
in the free system. For a spherically symmetric Fermi body (ε(k) = �

2k2/2m∗), the
excitation continuum lies then in between the following curves (Fig. 8.5):

�ωmax
k (q) = �

2

2m∗ (q2 + 2kF q) (8.43)

�ωmin
k (q) =

⎧⎨
⎩

�
2

2m∗ (q2 − 2kF q) if q > 2kF

0 otherwise
(8.44)

Excitations with spin flip mean transitions between the two spin bands:

�ω
↑↓
k = ε(k + q) − ε(k) + U m (8.45)
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Fig. 8.5 “Stoner excitation
continuum” for electron
excitations without spin flip
(shaded region)

Fig. 8.6 “Stoner excitation continuum” for electron excitations with spin flip (shaded region): (a)
Um < εF ; (b) Um > εF

If U m is greater than the Fermi energy εF then it is called strong ferromagnetism
(Fig. 8.6b) and if U m < εF it is called weak ferromagnetism (Fig. 8.6a).

8.3.3 Magnetic Phase Transition

A finite magnetization m �= 0 is possible only if there is a preferential spin orien-
tation in the relevant partially filled band. According to (8.39), this is the case only
when U �= 0 and m �= 0. Thus, m must be determined self-consistently. This can
be further understood from the quasiparticle density of states ρσ (E) which for the
Stoner electrons is not significantly different from the Bloch density of states ρ0(E)
of the free electrons

ρ0(E) = 1

N

∑
k

δ(E − ε(k)) (8.46)

ρσ (E) = 1

N

∑
k

δ(E − εσ (k)) = ρ0(E − Un−σ ) (8.47)

It is, of course, dependent on temperature and particle density.
For U = 0, the two spin bands are naturally degenerate (Fig. 8.7a). This is also

the case for U �= 0, m = 0 (Fig. 8.7b). The two sub-bands are together shifted by
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1
2Un. On the other hand, if m �= 0 (Fig. 8.7c) there is a rigid spin-dependent shift.
The ↑-band is shifted by 1

2U (n − m) and the ↓-band by 1
2U (n + m). When the

two sub-bands are filled up to the common Fermi energy, then there will be more
↑- than ↓-electrons resulting in a non-zero polarization m �= 0. One should pay
attention that in order to get a spin-dependent shift (exchange splitting) one has to
assume m �= 0 in the first place. Therefore, m has to be determined self-consistently.

We therefore ask the question, under what conditions is

m(T, n) �= 0?

In order to answer that we need the spin-dependent occupation numbers nσ and n−σ .
If f−(E) is the Fermi function then holds

nσ =
∫ +∞

−∞
d E f−(E)ρσ (E) = 1

N

∑
k

(
eβ(ε(k)+Un−σ−μ) + 1

)−1
(8.48)

If we replace σ by −σ in this equation, we obtain a second equation which along
with (8.48) constitute a system of implicit equations for nσ and n−σ or for n and m.
As an abbreviation we define

g(β, n, m; ε(k)) =
[

cosh

(
β(ε(k) + 1

2
Un − μ)

)

+ cosh

(
1

2
βUm

)]−1

(8.49)

so that for the particle density, which fixes the chemical potential, we get

n = 1

N

∑
k

(
e−β(ε(k)−μ+ 1

2 Un) + cosh(
1

2
βUm)

)
· g(β, n, m; ε(k)) (8.50)

The temperature dependence on the right-hand side is only formal. It is compensated
by the chemical potential. n is naturally temperature independent. This, however, is
not the case for the polarization m:

m(T, n) = sinh(
1

2
βUm)

1

N

∑
k

g(β, n, m; ε(k)) (8.51)

Since the k-dependence plays a role only through the Bloch energies ε(k), the k-
summation can be replaced by a simple energy integration over the Bloch density
of states (8.46), which, any way we always assume to be known:
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Fig. 8.7 Schematic plot of the spin-dependent quasiparticle density of states of the Stoner model:
(a) U = 0, (b) U �= 0, m = 0, (c) U �= 0, m �= 0
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m(T, n) = sinh(
1

2
βUm) ∗

∗
∫ +∞

−∞
dx

ρ0(x)

cosh
(
β(x + 1

2Un − μ)
)+ cosh

(
1
2βUm

)
(8.52)

We want to examine this expression in a little more detail.

1. Paramagnetism (m = 0)

• Since sinh(0) = 0, we have m = 0 so that paramagnetism is always a solution.
• In case an additional ferromagnetic solution ms > 0 exists, so since sinh(−x) =

− sinh(x), −ms < 0 is also a solution. Then there are three mathematical
solutions to (8.52) and the free energy F(T, m) must decide which of them
is the stable one. With the same justification as for the Weiss ferromagnet
discussed in Sect. 5.1.2 (see Fig. 5.5), we conclude that the ferromagnetic
solution, when it exists, is the stable one.

2. High-temperature behaviour: For T → ∞, i.e. for β → 0, we can expand the
hyperbolic functions in (8.52):

sinh(x) = x + 1

3!
x3 + · · ·

cosh(x) = 1 + 1

2!
x2 + · · ·

and obtain

m ≈ 1

2
βUm

∫ +∞

−∞
dx

ρ0(x)

2
= 1

4
βUm (8.53)

Thus at high temperatures, only the non-magnetic solution m = 0 exists. That
means the system is paramagnetic.

3. Low-temperature behaviour: If at all a ferromagnetic solution appears, then
because of 2., it can be only below a critical temperature TC .

T ≤ TC ⇔ m ≥ 0 (8.54)

In the neighbourhood of TC (8.52) then simplifies to

1 ! 1

2
βCU

∫ +∞

−∞
dx

ρ0(x)

1 + cosh
(
βC (x + 1

2Un − μ)
) (8.55)
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(
βC = 1

kB TC

)

In order to find a criterion for ferromagnetism, let us consider the most
unfavourable situation: TC = 0+. This means βC → ∞.

1 ! U
∫ +∞

−∞
dx ρ0(x) lim

βC→∞
1

2

βC

1 + cosh
(
βC (x + 1

2Un − μ)
) (8.56)

We use the following representation of the δ-function which we prove as Prob-
lem 8.5:

δ(x) = lim
α→∞

1

2

α

1 + cosh(αx)
(8.57)

and exploit

μ(T = 0+) = εF + 1

2
Un (8.58)

where εF is the Fermi energy of the free system. Then, we can read off from
(8.56) the following criterion for ferromagnetism

1 ≤ U ρ0(εF ) (8.59)

In case the so-called Stoner criterion is fulfilled, a spontaneous polarization of
the band electrons appears. We have, already in the qualitative discussion of
band ferromagnetism in Sect. 5.2.1, more or less guessed this criterion. It is
qualitatively confirmed by the observed trends in the periodic table.

• In a row of the transition metals in the periodic table the number of electrons in
the d-shell increases from left to right and therefore also the ρ(εF ) for typical
d-density of states.

• In a column of the periodic table, the total electron number increases from top
to bottom and therefore also the screening of the Coulomb interaction, which
means U becomes smaller.

According to Stoner criterion, ferromagnetism should be stabler as we go from
left to right in a row and from bottom to top in a column. As a result good
ferromagnets should be found in the top right corner of the transition metals.
This is in fact roughly qualitatively confirmed.

4. Curie Temperature: If the Stoner criterion is fulfilled, then the numerical evalua-
tion of the transcendental equation (8.52) for m(T, n) gives the well-known and
typical temperature dependence (Fig. 8.8).
Let us estimate the order of magnitude of the transition temperature to be
expected from (8.55). For that we choose a particularly simple Bloch density
of states (Fig. 8.9).
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Fig. 8.8 Spontaneous
magnetization in the Stoner
model

Fig. 8.9 Rectangular Bloch
density of states

ρ0(x) =
⎧⎨
⎩

1
W if − W

2 ≤ x ≤ +W
2

0 otherwise
(8.60)

We can approximate μ(TC ) ! εF + 1
2Un and then have from (8.56):

1 ! 1

2
βCU

1

W

∫ + W
2

− W
2

dx
1

1 + cosh(βC (x − εF ))

= 1

4
βCU

1

W

∫ + W
2

− W
2

dx
1

cosh2( 1
2βC (x − εF ))

= U

2W

∫ + W
2

− W
2

dx
d

dx
tanh(

1

2
βC (x − εF ))

= U

2W

[
tanh

(
1

2
βC (

W

2
− εF )

)

− tanh

(
1

2
βC (−W

2
− εF )

)]

Through the Fermi energy the Curie temperature is obviously dependent on the
particle number also. In order to have an estimate let us consider the special case
of the half-filled band so that we can set εF = 0. Then we obtain

W

U
= tanh

(
W

4kB TC

)

→ kB TC = W

4 arctanh( W
U )
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Already for W
U < 0.5, we can replace arctanh(x) to a good approximation by

its argument x so that we get

kB TC ! U

4
(8.61)

Is it realistic? Because of the Stoner criterion, we must anyway have U > 2W .
Band widths are in the range of a few electron volts (W = 1− 10 eV). Therefore
U must be greater than 2 − 20 eV. That means

TC ≥ 104 K (8.62)

which is obviously an absurd result. The conclusion is that the molecular field
approximation of the Hubbard model clearly overestimates the possibility and
stability of ferromagnetism which appears to be a general characteristic of
molecular field approximations.

5. Critical behaviour: In the neighbourhood of TC , m
>→ 0 holds so that we can

expand the implicit equation (8.52) as follows:

m =
(

1

2
βUm + 1

6

(βUm)3

8
+ · · ·

)
∗

∗
∫ +∞

−∞
dx

ρ0(x)

1 + 1
2

(βUm)2

4 + · · · + cosh
(
β(x + 1

2Un − μ)
)

=
(

1

2
βUm + 1

6

(βUm)3

8
+ · · ·

)
∗

∗
∫ +∞

−∞
dx

ρ0(x)

1 + cosh
(
β(x + 1

2Un − μ)
) ∗

∗
(

1 − 1

2

(βUm)2

4

1

1 + cosh
(
β(x + 1

2Un − μ)
) + · · ·

)

For abbreviation, we define the surely non-critical quantity J :

J =
∫ +∞

−∞
dx

ρ0(x)

(1 + cosh
(
β(x + 1

2Un − μ)
)
)2
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so that along with (8.56) we have

m !
(

1

2
βUm + 1

48
(βUm)3 + · · ·

)
∗

∗
(

2

βCU
− 1

8
(βUm)2 · J

)

→ 1 ! β

βC
+ m2

(
β3U 2

24βC
− β3U 3

16
· J + · · ·

)
+ · · ·

Since T ≤ TC , the quantity in the parenthesis must necessarily be negative
(−γ−2). Thus the polarization m (magnetization) shows a power law behaviour:

m ∼ γ

(
TC

T
− 1

) 1
2

(8.63)

As in the case of the molecular field approximation of the Heisenberg ferromag-
net (Sect. 7.3.1), for the critical exponent of the order parameter, we get the value
which is expected from classical theories:

β = 1

2
(8.64)

6. Summary: In conclusion we can state that the Stoner model describes the ground
state properties qualitatively quite well but at finite temperatures exhibits a num-
ber of unrealistic features. The Curie temperature is extremely overestimated.
Ferromagnetism is permitted in all lattice dimensions which is a violation of the
Mermin–Wagner theorem which is valid also for the Hubbard model as we will
show later. The Stoner model is furthermore, of course, overstrained to account
for collective excitations (spin waves). Therefore, the molecular field approxi-
mation of the Hubbard model is surely too rough for quantitative comparison
with experiment. In particular, the electronic correlations, which are responsible
for many phenomena, are suppressed.

8.3.4 Static Susceptibility

An important indicator for magnetic phase transitions is the static susceptibility.
If one calculates this for a paramagnetic system, then its singularities signal the
instabilities of the paramagnetic state against ferromagnetism. As we are going to
use the susceptibility at various places later, we shall first derive a general expression
for the susceptibility χ of an interacting electron system so that we can apply it to
the Stoner model. We can, from χ , derive criteria for the possibility of spontaneous
magnetization.
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According to (1.68), the static susceptibility is defined as follows:

χ = μ0μB · N

V
· χ̄ (8.65)

χ̄ =
(

∂m

∂ B0

)
T,B0→0

(8.66)

where

m = n↑ − n↓ = 2n↑ − n = n − 2n↓ (8.67)

is the dimensionless magnetization per lattice site. We want to first express χ̄

through the one-electron spectral density Skσ (E). According to spectral theorem
(B.95) holds

nσ = 1

�

1

N

∑
k

+∞∫

−∞
d E f−(E)Skσ (E − μ) (8.68)

m = 1

�N

∑
k,σ

zσ

+∞∫

−∞
d E f−(E)Skσ (E − μ) (8.69)

With (8.66) it follows:

χ̄ = 1

N�

∑
k

+∞∫

−∞
d E

{
∂ f−(E)

∂ B0

∑
σ

zσ Skσ (E − μ)+

+ f−(E)
∑

σ

zσ

∂

∂ B0
Skσ (E − μ)

}

B0=0

(8.70)

In the following, we will always calculate χ̄ for the paramagnetic phase. Therefore,

{∑
σ

zσ Skσ (E − μ)

}

0

= 0 (8.71)

In (8.70) there remains only the second summand:

χ̄ = 1

N�

∑
k,σ

+∞∫

−∞
d E f−(E)zσ

{
∂

∂ B0
Skσ (E − μ)

}
0

(8.72)

How does the spectral density in the presence of an external field B0 look? First, the
energies contain the extra Zeeman term (−zσμB B0). In addition all the equal-time
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correlations still get an implicit field dependence. In the case which is frequently
encountered, namely that these equal-time correlations are exclusively occupation
numbers n−σ (or nσ = n − n−σ ), we can write

Skσ (E) → Skσ (E + zσμB B0; n−σ (B0)) (8.73)

That means in (8.72)

(∂B Skσ (E − μ))0 = zσμB (∂E Skσ (E − μ))0

+ (∂Bn−σ )0(∂n−σ
Skσ (E − μ)0) (8.74)

Now we have

∂B n = 0 ↔ ∂B nσ = −∂B n−σ (8.75)

so that

(∂B n−σ )0 = −1

2
zσ χ̄ = − (∂Bnσ )0 (8.76)

For (8.72), the first summand in (8.74) gives the contribution:

2μB
1

N�

∑
k

+∞∫

−∞
d E ( f−(E)∂E Skσ (E − μ))0 =

= −2μB
1

N�

∑
k

+∞∫

−∞
d E

(
f ′−(E)Skσ (E − μ)

)
0

In the integration by parts performed here, the term integrated out vanishes at the
two limits ±∞. We define

Z = − 1

N�

∑
k

+∞∫

−∞
d E

{
Skσ (E − μ) f ′−(E)

}
0

= −
+∞∫

−∞
d E

{
ρσ (E) f ′−(E)

}
0 (8.77)

N̂ = 1

2N�

∑
k,σ

+∞∫

−∞
d E

(
f−(E) ∂n−σ

Skσ (E − μ)
)

0 (8.78)
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The static susceptibility then reads as

χ̄ = 2μB · Z

1 + N̂
(8.79)

In the interaction-free case (U = 0),

S(0)
kσ = �δ(E + μ − ε(k))

N̂ vanishes and what remains is the Pauli susceptibility (4.2):

χ̄0 = 2μB Z0 = −2μB

+∞∫

−∞
d E ρ0(E) f ′−(E) (8.80)

The denominator (1 + N̂ ) in (8.79) expresses essentially the influence of the
electron–electron interaction. Naturally the numerator also changes by switching
on of the interaction.

Now we want to calculate the susceptibility for the Stoner model, which is the
molecular field approximation of the Hubbard model.

With the quasiparticle energies (8.36)

εσ (k) = ε(k) + Un−σ (8.81)

the spectral density simply reads as

Skσ (E) = �δ(E + μ − εσ (k))

⇔ ρσ (E) = ρ0(E − Un−σ ) (8.82)

So that for (8.77) and (8.78) because of

N̂S = −U

N

∑
k

∫ +∞

−∞
d E f−(E)

d

d E
δ

(
E − 1

2
Un − ε(k)

)

= +U
∫ +∞

−∞
f ′−(E) ρ0

(
E − 1

2
Un

)

we get the following expression:

ZS = − 1

U
N̂S = −

+∞∫

−∞
dη f ′−

(
η + 1

2
Un

)
ρ0(η) (8.83)

Since in the Stoner model the quasiparticle bands are only rigidly shifted by 1
2Un

with respect to the free Bloch bands, it holds

μ = μ(0) + 1

2
Un (8.84)
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where μ(0) is the chemical potential of the ideal Fermi gas. With this ZS becomes
identical to Z0 in (8.80) and we recover the well-known RPA result for the static
susceptibility:

χ̄S = 2μB
Z0

1 − U Z0
(8.85)

Therefore, the paramagnetic state becomes unstable against ferromagnetism if

1
!= U Z0 (8.86)

or expressed in more detail

1
!= −U

+∞∫

−∞
d E ρ0(E)∂E f−(E)

= βCU

4

+∞∫

−∞
d E

ρ0(E)

cosh2( 1
2βc(E − μ(0)))

⇔ 1
!= 1

2
βcU

+∞∫

−∞
d E

ρ0(E)

1 + cosh(βc(E − μ(0)))
(8.87)

This equations determines Tc. We have already derived it in (8.55) in another way.
For the most unfavourable case Tc = 0+ (βc → ∞), with (8.57) and μ(0)(T = 0) =
εF we get the Stoner criterion:

1 ≤ Uρ0(εF ) (8.88)

Thus the static susceptibility as far as the magnetic phase transition is concerned
makes the same statement as the directly calculated magnetization curve.

8.4 Exact Statements and General Properties

Without claiming any completeness, in this section, we will derive a few exact
results which are possible for the Hubbard model. For a model which cannot be
rigorously exactly solved in the general case, exactly calculable special cases are of
extreme value in assessing the reliability of the unavoidable approximations. Apart
from that, a lot of physical information about the model is contained in these exact
results.
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8.4.1 Mermin–Wagner Theorem

The aim of the following considerations is to derive the condition for spontaneous
magnetization in the Hubbard model. Can the model describe band ferromagnetism?
The Stoner model certainly predicts ferromagnetism but as a molecular field approx-
imation, it is too favourable for spontaneous ferromagnetic ordering. Therefore, in
this first subsection we will prove the Mermin–Wagner theorem [4] which we have
already inspected in Sect. 7.2.1. The statement made in that section that the isotropic
Heisenberg model in one and two dimensions does not show any spontaneous col-
lective magnetism, can also be proved in the case of the Hubbard model. Since the
proof follows similar lines as for the Heisenberg model, we will skip to a large extent
the calculational details.

We consider the interacting electron system in the presence of a homogeneous
magnetic field B0 = B0ez :

H =
∑
i jσ

Ti j c
†
iσ c jσ + 1

2
U
∑
iσ

niσ ni−σ − μB B0

∑
iσ

zσ niσ (8.89)

zσ = (δσ↑ − δσ↓) is only a sign factor. We use the spin operators introduced in
(5.98), (5.99) and (5.100) (which are dimensionless here!):

σ z
i = 1

2
(ni↑ − ni↓) ; σ+

i = c†i↑ci↓ ; σ−
i = c†i↓ci↑ (8.90)

We also need the wavevector-dependent Fourier-transformed operators:

σα(k) =
∑

i

σα
i e−ik·Ri ; σα

i = 1

N

∑
k

σα(k) eik·Ri (8.91)

α = ±, x, y, z

whose commutation relations can easily be calculated from those for the position-
dependent spin operators:

[
σ+(k1), σ−(k2)

]
− = 2σ z(k1 + k2) (8.92)[

σ z(k1), σ±(k2)
]
− = ±σ±(k1 + k2) (8.93)

We now rewrite the Hamiltonian (8.89) as far as possible in terms of these operators.
For that we use

σi · σi = σ+
i σ−

i + (σ z
i )2 − σ z

i =
= c†i↑ci↓c†i↓ci↑ + 1

4
(ni↑ − ni↓)2 − 1

2
(ni↑ − ni↓) =

= 3

4
ni↑ + 3

4
ni↓ − 3

2
ni↑ni↓
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Here we have exploited the relation n2
iσ = niσ which is valid for Fermions. With the

operator for the total electron number

N̂ =
∑
iσ

niσ (8.94)

obviously holds

∑
i

σ 2
i = 3

4
N̂ − 3

2

∑
i

ni↑ni↓ (8.95)

so that the Hamiltonian (8.89) reads as

H =
∑
i jσ

Ti j c
†
iσ c jσ − 2

3
U
∑

i

σ 2
i + 1

2
U N̂ − 2μB B0

∑
i

σ z
i (8.96)

After Fourier transformation it becomes

H =
∑
kσ

ε(k)c†kσ ckσ − 2

3N
U
∑

k

σ (k) · σ (−k) + 1

2
U N̂ − 2μB B0σ

z(0) (8.97)

In the following, we will need both the versions (8.96) and (8.97). In addition, we
will assume that the hopping integrals Ti j fall off sufficiently fast with increasing
distance Ri j :

Q = 1

N

∑
i j

| Ti j |
(
Ri − R j

)2
< ∞ (8.98)

As Ti j are overlap integrals, this is only a very weak condition.
Our aim is to calculate the magnetization:

M(T, B0) = 2μB
1

N

∑
i

〈σ z
i 〉 =

2μB

N
〈σ z(0)〉 (8.99)

From this we obtain the spontaneous magnetization MS(T ) by taking the limit B0 →
0. We can, without any loss of generality, assume that M(T, B0) ≥ 0.

As in Sect. 7.2.1, the starting point for the proof is the Bogoliubov inequality
(7.62):

∣∣〈[C, A]−〉
∣∣2 ≤ 1

2
β〈[A, A†]

+〉〈
[
[C, H ]− , C†]

−〉 (8.100)

Here A and B are arbitrary operators; H is the Hamiltonian of the system and as
usual β = 1

kB T . We recall that from the derivation of this formula via the Schwarz
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inequality, we see that the expectation value of the double commutator on the right-
hand side must be positive definite.

In order to estimate the magnetization with the help of the Bogoliubov inequality,
it is found that the following operators are convenient:

C = σ+(k) ↔ C† = σ−(−k) (8.101)

A = σ−(−k) (8.102)

We will now evaluate stepwise the individual terms in the inequality (8.100). The
left-hand side is simple:

〈[C, A]−〉 = 2 〈σ z(0)〉 = N

μB
M(T, B0) (8.103)

Further holds

∑
k

〈[A, A†]
+〉 =

∑
k

〈[σ−(−k), σ+(k)
]
+〉

= N
∑

i

〈σ−
i σ+

i + σ+
i σ−

i 〉

= N
∑

i

〈c†i↓ci↑c†i↑ci↓ + c†i↑ci↓c†i↓ci↑〉

= N
∑

i

〈ni↓(1 − ni↑) + ni↑(1 − ni↓)〉

= N
∑

i

〈(ni↑ − ni↓)2〉

In the last step we have again used n2
iσ = niσ . Since the electrons move in an s-band,

the thermodynamic expectation value on the right-hand side is certainly not greater
than one. So we have

∑
k

〈[A, A†]
+〉 ≤ N 2 (8.104)

In the inequality (8.100), we divide by the positive double commutator and sum over
all the wavevectors. Then with (8.103) and (8.104) we get the intermediate result

M2(T, B0)

μ2
B

∑
k

1

〈[[σ+(k), H ]−, σ−(−k)
]
−〉

≤ 1

2
β (8.105)

What remains is the evaluation of the double commutator, which needs somewhat
more effort. We leave it as an excercise to the reader to verify the correctness of the
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following commutators (Problem 8.6):
[
σ+(k),

∑
mnσ

Tmnc†mσ cnσ

]

−
=
∑
mn

Tmn
(
e−ik·Rm − e−ik·Rn

)
c†m↑cn↓

[
σ+(k),

∑
p

σ (p) · σ (−p)

]

−
= 0

[
σ+(k), N̂

]
− = 0[

σ+(k), σ z(0)
]
− = −σ+(k)

These can be summarized into (Problem 8.6):

[
σ+(k), H

]
− = 2μB B0 σ+(k) +

∑
mn

Tmn
(
e−ik·Rm − e−ik·Rn

)
c†m↑cn↓ (8.106)

Finally, the double commutator needed in (8.105) is found to be
[[

σ+(k) , H
]
− , σ−(−k)

]
−

= 4μB B0 σ z(0) +
∑
mn,σ

Tmn
(
eizσ k·(Rn−Rm ) − 1

)
c†mσ cnσ

(8.107)

From this we have to build the thermodynamic expectation value. In doing this we
can exploit the fact that due to translational symmetry and the triangular inequality
it must hold

| 〈c†mσ cnσ 〉 |≤ 1

N

∑
k

| eik·(Rm−Rn ) | | 〈nkσ 〉 |

Since surely | 〈nkσ 〉 |≤ 1, we can assume

| 〈c†mσ cnσ 〉 |≤ 1

This we use for the estimate in (8.107)

〈
[[

σ+(k), H
]
− , σ−(−k)

]
−
〉

≤ 4μB B0 | 〈σ z(0)〉 | +
∑
mn,σ

| Tmn | | eizσ k·(Rn−Rm ) − 1 |

≤ 4μB B0 | 〈σ z(0)〉 | +2
∑
mn

| Tmn | | cos(k · (Rm − Rn) − 1 |

≤ 4μB B0 | 〈σ z(0)〉 | +k2 N Q
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With this we have found

〈
[[

σ+(k), H
]
− , σ−(−k)

]
−
〉 ≤ k2 N Q + 2N B0 M(T, B0) (8.108)

This we substitute in the inequality (8.105):

β ≥ M2

μ2
B

1

N

∑
k

1

B0 M + 1
2 Qk2

(8.109)

The sum we evaluate in the thermodynamic limit

1

Nd

∑
k

→ vd

(2π )d

∫
ddk (8.110)

Here d is the dimension of the system and vd = Vd/Nd < ∞ is the finite volume per
particle. The summand on the right-hand side of the inequality (8.109) is positive
definite. We can therefore instead of integrating over the full Brillouin zone, limit
ourselves to integrate over a sphere of radius k0 which lies completely inside the
Brillouin zone. By doing this the inequality is only further strengthened.

β ≥ M2

μ2
B

vdΩd

(2π )d

∫ k0

0

dk kd−1

B0 M + 1
2 Qk2

(8.111)

Because of the above assumption, the integration over the angle can be directly
performed. Ωd is the surface of the d-dimensional unit sphere (Problem 3.4):

Ω1 = 2 ; Ω2 = 2π ; Ω3 = 4π ; Ωd = 2π
d
2

Γ( d
2 )

(8.112)

We will evaluate the inequality (8.111) explicitly:

• d = 1: With the standard integral

∫
dx

a2x2 + b2
= 1

ab
arctan

ax

b
+ c

and arctan 0 = 0 follows

β ≥ M2

μ2
B

v1

2π

1√
1
2 Q B0 M

arctan

(
k0

√
Q

2B0 M

)
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For B0 → 0, arctan (. . .) approaches π/2. So that the temperature and field
dependence of the magnetization for small fields (B0 → 0) is given by

M(T ; B0)
<→ const. · B1/3

0

T 2/3
(8.113)

This, however, means that the spontaneous magnetization vanishes for finite tem-
peratures:

MS(T ) ≡ 0 for T �= 0 and d = 1 (8.114)

In one-dimensional Hubbard lattice there is no ferromagnetism!
• d = 2: We now use the integral

∫
dx x

a2x2 + b2
= 1

2a2
ln c(a2x2 + b2) (8.115)

So that we get the following inequality

β ≥ M2

μ2
B

v2

2π

1

Q
ln

(
B0 M + 1

2 Qk2

B0 M

)
(8.116)

That means for B0 → 0:

M(T ; B0)
<→ const.√

T · (− ln B0 M)
(8.117)

Thus for finite temperatures, in two-dimensional lattice also there is no sponta-
neous magnetization:

MS(T ) ≡ 0 for T �= 0 and d = 2 (8.118)

In two-dimensional Hubbard lattice there is no spontaneous magnetization!

8.4.2 The Infinitely Narrow Band

Ferromagnetism is certainly a phenomenon of strong coupling U/W . This is already
indicated by the Stoner criterion (8.59). Perhaps something can be learnt from the
extreme case of infinitely narrow band (W → 0), which can be handled mathemat-
ically rigorously.

W → 0 : ε(k) ≡ T0 ∀ k (8.119)

Ti j = T0 δi j (8.120)
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We understand this to be a limiting process, i.e. an energy band of the solid with
vanishing dispersion. This, however, does not mean an isolated atom! In order to
solve this problem we use the equation of motion method of the Green’s functions
(see Appendix B). The starting point is the retarded one-electron Green’s function
in the position- (Wannier-) representation:

Gi jσ (E) = 〈〈ciσ ; c†jσ 〉〉E (8.121)

For the equation of motion (B.83) we need the commutator of ciσ with the (grand
canonical) Hubbard Hamiltonian (8.27):

H = H − μN̂ =
∑
i jσ

(Ti j − μδi j )c
†
iσ c jσ + 1

2
U
∑
iσ

niσ ni−σ (8.122)

N̂ is the particle number operator. One finds

[ciσ ,H]− =
∑

m

(Tim − μδim)cmσ + Uni−σ ciσ (8.123)

The second summand on the right-hand side leads to a higher Green’s function:

Γilm; jσ (E) = 〈〈c†i−σ cl−σ cmσ ; c†jσ 〉〉E (8.124)

So that the equation of motion reads as

(E + μ)Gi jσ (E) = �δi j +
∑

m

Tim Gmjσ (E) + U Γi i i ; jσ (E) (8.125)

A direct solution of the problem is not possible because of the higher Green’s func-
tion on the right-hand side. Therefore, we write down the equation of motion for the
higher Green’s function also. For that we need

[
ni−σ ciσ ,H0

]
−

=
∑
lmσ ′

(Tlm − μδlm)
[
ni−σ ciσ , c†lσ ′cmσ ′

]
−

=
∑
lmσ ′

(Tlm − μδlm)
(
δilδσσ ′ni−σ cmσ ′ − δilδσ−σ ′c†i−σ ciσ cmσ ′

−δimδσ−σ ′c†lσ ′ci−σ ciσ

)

=
∑

m

(Tim − μδim)
(

ni−σ cmσ + c†i−σ cm−σ ciσ − c†m−σ ci−σ ciσ

)
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[
ni−σ ciσ , H1

]
−

= 1

2
U
∑
mσ ′

[
ni−σ ciσ , nmσ ′nm−σ ′

]
−

= 1

2
U
∑
mσ ′

ni−σ

[
ciσ , nmσ ′nm−σ ′

]
−

= 1

2
U
∑
mσ ′

ni−σ (δimδσσ ′cmσ ′nm−σ ′ + δimδσ−σ ′nmσ ′cm−σ ′)

= U ciσ ni−σ

In the last step, we have used the relation n2
iσ = niσ valid for Fermions. Then, we

have the equation of motion

(E + μ − U ) Γi i i ; jσ = �δi j n−σ +
∑

m

Tim
{
Γi im; jσ + Γimi ; jσ − Γmii ; jσ

}
(8.126)

Up to this point everything is still exact where, however, we have assumed again
translational symmetry (〈ni−σ 〉 = n−σ ∀i).

We will now concentrate on the limiting case of infinitely narrow band for which
we can exploit (8.119) and (8.120) so that (8.126) simplifies to

(E + μ − T0 − U ) Γi i i ; jσ (E) = �δi j n−σ

and can be solved easily:

Γi i i ; jσ (E) = δi j
� n−σ

E + μ − T0 − U + i0+ (8.127)

We substitute the solution (8.127) in (8.125) and obtain for the one-particle Green’s
function of the Hubbard model being necessarily “local” in the zero-bandwidth
limit:

Giiσ (E) = �

(
1 − n−σ

E + μ − T0 + i0+ + n−σ

E + μ − T0 − U + i0+

)
(8.128)

Giiσ (E) thus has two poles representing the possible excitation energies measured
with respect to the chemical potential μ:

E1σ = T0 = E1−σ (8.129)

E2σ = T0 + U = E2−σ (8.130)

The quasiparticle energies are spin independent but the respective spectral weights
are spin dependent:

α1σ = 1 − n−σ , α2σ = n−σ (8.131)
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They are a measure of the probability that a test electron of spin σ encounters a
(−σ )-electron at a lattice site (α2σ ) or it does not (α1σ ). If the electron finds such an
interaction partner then it costs an extra Coulomb energy U . The Bloch band, which
becomes a contracted N -fold degenerate level T0 in the limit (8.119), is split into
two infinitely narrow sub-bands at T0 and T0 + U with degrees of degeneracies,

g1σ = α1σ N = (1 − n−σ )N , g2σ = α2σ N = n−σ N (8.132)

Due to lack of dispersion, in this special case, the quasiparticle density of states is
identical to the local one-electron spectral density

ρσ (E) = 1

N�

∑
i

Siiσ (E − μ) = 1

�
Siiσ (E − μ)

= − 1

π
I mGiiσ (E − μ) = �

2∑
j=1

α jσ δ(E − E jσ )

ρσ (E) = (1 − n−σ )δ(E − T0) + n−σ δ(E − T0 − U ) (8.133)

The two δ-functions represent the two infinitely narrow subbands (Fig. 8.10).
The Green’s function (8.128) for the infinitely narrow band (W = 0) is some-

times also called, somewhat less appropriately, atomic limit. It is interesting to com-
pare it with the general structure of Green’s functions (B.149):

Giiσ (E) = �
(
E + μ − T0 − ΣW=0

σ (E) + i0+)−1
(8.134)

That implies the atomic-limit self-energy

ΣW=0
σ (E) = Un−σ

E + μ − T0

E + μ − T0 − U (1 − n−σ )
(8.135)

which we will come across again in connection with the so-called Hubbard-I solu-
tion (Sect. 8.5.1) and as a result of the interpolation method (Sect. 8.5.2)

Fig. 8.10 Spectral density
(=quasiparticle density of
states) of the Hubbard model
for the zero-bandwidth case

Skσ

ET0 T0 +  U

x x

1–n−σ
n−σ
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In order to completely determine the quasiparticle density of states or the Green’s
function, we still need the expectation value n−σ ≡ 〈ni−σ 〉, which has to be self-
consistently determined with the help of the spectral theorem (B.95). We can couple
this job with the question:

Does a finite spontaneous magnetization exist?

From the spectral theorem we have

n−σ = 1

�

∫ +∞

−∞
d E

Sii−σ (E)

exp(βE) + 1

n−σ = (1 − nσ ) f−(T0) + nσ f−(T0 + U ) (8.136)

Here again f−(E) is the Fermi function. By reversing the spin in (8.136) we get the
corresponding equation for nσ which can in turn be substituted in (8.136). Then we
finally get

n−σ = f−(T0)

1 − ( f−(T0 + U ) − f−(T0))
= nσ (8.137)

In the limiting case of infinitely narrow band it therefore always holds

nσ = n−σ = n

2
(8.138)

Ferromagnetism is excluded in this limiting case.
We will finally calculate the static susceptibility for the limiting case of infinitely

narrow band. With (8.133), the spectral density is available exactly:

Sσ (E) = �(1 − n−σ )δ(E + μ − T0) + �n−σ δ(E + μ − T0 − U ) (8.139)

Now we need that for the paramagnetic electron system:

nσ = n−σ = 1

2
n (8.140)

Further, we will assume a half-filled band (n = 1). From (8.137) one reads off
(Problem 8.7):

μ(n = 1) = T0 + 1

2
U (8.141)
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Equation (8.139) in (8.77) and (8.78) gives

NW=0 = − f−(T0) + f−(T0 + U )

ZW=0 = −1

2
( f ′−(T0) + f ′−(T0 + U ))

These two expressions can easily be evaluated (Problem 8.8):

NW=0 = − tanh

(
1

4
β U

)
(8.142)

ZW=0 = β

4 cosh2
(

1
4βU

) (8.143)

So that the susceptibility χ̄W=0 is given by

χ̄W=0 = 1

2
βμB

(
1 + tanh

(
1

4
βU

))
(8.144)

χ̄W=0 can never be singular for T > 0, i.e. the paramagnetic state is always stable.
As we already know, spontaneous magnetization is not possible in the atomic Hub-
bard model. On the other hand, the important Curie law (1.72) of the paramagnet is
obviously fulfilled.

8.4.3 The Two-Site Model

In the last section, we have seen that the infinitely narrow band T0, because of the
Coulomb interaction U splits into two subbands. We want now, with the help of a
very simple model, gain certain insight about how the kinetic energy modifies this
picture. What happens when the electrons are no more frozen on their lattice sites
but can hop from site to site? To answer this we consider a simple system made up
of two lattice sites so that it can hold a maximum of four s-electrons. This system is
described by the following simplified Hamiltonian:

H =
∑

σ

[
t(c†1σ c2σ + c†2σ c1σ ) + 1

2
U (n1σ n1−σ + n2σ n2−σ )

]
(8.145)

We will again first assume t = 0. The possible energy levels with their degeneracies
are depicted in Fig. 8.11 (T0 = 0). The degeneracies occur for the total of five
possible configurations mainly because of the equivalence of the two lattice sites.

We are interested in the quasiparticle density of states which is very sensitively
dependent on the electron concentration. We want to determine the quasiparticle
density of states for the special case that the system contains exactly one electron
with spin (−σ ). According to (B.188) it holds
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Fig. 8.11 Energy levels and
corresponding degrees of
degeneracy for the two-site
Hubbard model in the case of
zero hopping

ρ(−σ )
σ (E) = 1

�
S(−σ )

11σ = S(−σ )
22σ =

= 1

2π�

∫ +∞

−∞
d(t − t ′) 〈

[
c1σ (t), c†1σ (t ′)

]
+
〉 exp(

i

�
E(t − t ′))

(8.146)

The averaging is over the energy eigenstates of the system, which contains exactly
one (−σ )-electron. That is, there is no σ -electron. Therefore clearly a σ -electron
cannot be annihilated. As a result, only one term in the anticommutator in (8.146)
is non-zero. With simple reformulations which correspond to those used for the
spectral representations in Appendix B (e.g. (B.86)), one gets the following spectral
representation of the quasiparticle density of states (8.146):

ρ(−σ )
σ (E) = 1

Z

∑
nm

| 〈E (2)
m | c†1σ | E (1)

n 〉 |2 e−βE (1)
n δ
(
E − (E (2)

m − E (1)
n )
)

(8.147)

| E (i)
n 〉 denotes an i-particle energy state. Z is the canonical partition function.

Because of (8.146) we could have also chosen c†2σ instead of c†1σ . For t = 0 , (8.147)
can easily be evaluated. The following one-particle states and one-particle energies
are possible:

| ε
(1)
1 〉 = c†1−σ | 0〉 ↔ ε

(1)
1 = 0 (8.148)

| ε
(1)
2 〉 = c†2−σ | 0〉 ↔ ε

(1)
2 = 0 (8.149)

For the two-particle system consisting of a σ - and a (−σ )-electron, there are four
possible eigenstates:

| ε
(2)
1 〉 = c†1σ c†2−σ | 0〉 ↔ ε

(2)
1 = 0 (8.150)

| ε
(2)
2 〉 = c†2σ c†1−σ | 0〉 ↔ ε

(2)
2 = 0 (8.151)
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| ε
(2)
3 〉 = c†1σ c†1−σ | 0〉 ↔ ε

(2)
3 = U (8.152)

| ε
(2)
4 〉 = c†2σ c†2−σ | 0〉 ↔ ε

(2)
4 = U (8.153)

In these formulas | 0〉 denotes the electron vacuum. Out of the eight matrix elements
in (8.147) evidently only two are non-zero:

〈ε(2)
1 | c†1σ | ε

(1)
2 〉 = 〈0 | c2−σ c1σ c†1σ c†2−σ | 0〉 (8.154)

= 〈0 | (1 − n2−σ )(1 − n1σ ) | 0〉 = 1

〈ε(2)
3 | c†1σ | ε

(1)
1 〉 = 〈0 | c1−σ c1σ c†1σ c†1−σ | 0〉 (8.155)

= 〈0 | (1 − n1−σ )(1 − n1σ ) | 0〉 = 1

Application of the occupation number operator on the electron vacuum |0〉 results
naturally in zero. We require in addition the partition function Z :

Z{−σ } = 〈ε(1)
1 | eβ H | ε

(1)
1 〉 + 〈ε(1)

2 | eβ H | ε
(1)
2 〉 = 2 (8.156)

Substituting (8.148) to (8.156) in (8.147) we get

ρ−σ
σ (E ; t = 0) = 1

2
δ(E) + 1

2
δ(E − U ) (8.157)

This according to (8.139) is of course the expected result.
How does the density of states change when electron hopping is allowed?

t �= 0 , t � U (′narrow band ′) (8.158)

One should expect the degeneracy of the levels in Fig. 8.11 to be lifted. Because of
t �= 0, the states in (8.148) to (8.153) are no more the eigenstates. But we can use
them as complete basis to represent the energy matrix which is to be diagonalized.
One can expect that the degeneracy of the levels will be lifted.

For the one-particle system (−σ -electron) H is a (2 × 2)-matrix,

H (1) =
(

0 t
t 0

)
(8.159)

which can easily be diagonalized. One finds the following eigenstates and eigenval-
ues (see Problem 8.9):

| E (1)
1 〉 = 1√

2

(
c†1−σ − c†2−σ

)
| 0〉 ; E (1)

1 = −t (8.160)

| E (1)
2 〉 = 1√

2

(
c†1−σ + c†2−σ

)
| 0〉 ; E (1)

2 = +t (8.161)
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For the two-particle system (σ,−σ ) H is a (4 × 4)-matrix. With the basis states
(8.150), (8.151), (8.152) and (8.153) one gets

H (2) =

⎛
⎜⎜⎝

0 0 t t
0 0 t t
t t U 0
t t 0 U

⎞
⎟⎟⎠ (8.162)

This matrix too can be exactly diagonalized (Problem 8.10). From

det(H (2) − E · 1l) = E(E − U )(E(E − U ) − 4t2) = 0

we get the eigenenergies

E (2)
1 = E− , E (2)

2 = 0 , E (2)
3 = U,

E (2)
4 = E+ wi th E± = 1

2
U ±

√
1

4
U 2 + 4t2 (8.163)

The corresponding eigenstates are (Problem 8.10)

| E (2)
1 〉 = 1√

2(1 + γ 2−)

(
c†1σ c†2−σ + c†2σ c†1−σ

+γ−
2∑

i=1

c†iσ c†i−σ

)
| 0〉 (8.164)

| E (2)
2 〉 = 1√

2

(
c†1σ c†2−σ − c†2σ c†1−σ

)
| 0〉 (8.165)

| E (2)
3 〉 = 1√

2

(
c†1σ c†1−σ − c†2σ c†2−σ

)
| 0〉 (8.166)

| E (2)
4 〉 = 1√

2(1 + γ 2+)

(
c†1σ c†2−σ + c†2σ c†1−σ

+γ+
2∑

i=1

c†iσ c†i−σ

)
| 0〉 (8.167)

γ± = 1

2t
E± (8.168)

When the electron hopping is switched on, indeed, the degeneracy which was
present at t = 0 is completely lifted (Fig. 8.12).

With the states (8.160) and (8.161) for the one-electron system and (8.164),
(8.165), (8.166) and (8.167) for the two-electron system, we can calculate the matrix
elements required for the quasiparticle density of states (8.147). The partition func-
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Fig. 8.12 Energy levels for
the two-site Hubbard model
for the case that there is a
single −σ electron and for
the case that there are a σ and
a −σ electron

tion Z which is also to be substituted is given with (8.160) and (8.161) by

Z = eβt + e−βt (8.169)

The quasiparticle density of states consists of a total of eight terms (Problem 8.10):

ρ(−σ )
σ (E) = ρ

(−σ )
tσ (E) + ρ

(−σ )
Uσ (E) (8.170)

ρ
(−σ )
tσ (E) = 1

4(1 + e−2βt )

{
(1 − γ−)2

1 + γ 2−
δ(E − (E− + t))

+δ(E − t)

+ (1 + γ−)2

1 + γ 2−
e−2βtδ(E − (E− − t))

+e−2βtδ(E + t)

}
(8.171)

ρ
(−σ )
Uσ (E) = 1

4(1 + e−2βt )

{
(1 − γ+)2

1 + γ 2+
δ(E − (E+ + t))

+δ(E − (U + t))

+ (1 + γ+)2

1 + γ 2+
e−2βtδ(E − (E+ − t))

+e−2βtδ(E − (U − t))

}
(8.172)
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With the assumption t � U , the two parts of the quasiparticle density of states
ρ

(−σ )
tσ (E) and ρ

(−σ )
Uσ (E) are energetically distinctly separated. The four poles of

ρ
(−σ )
tσ (E) lie near the energy 0, constituting a lower sub-band and the four poles

of ρ
(−σ )
Uσ (E) constituting a upper sub-band lie near the energy U . Thus the spectrum

clearly consists of two quasiparticle sub-bands which are separated from each other
by about U .

We obtain the statistical weights of the individual sub-bands when we integrate
ρ(−σ )

σ (E) over the energy range which includes, respectively, either only the lower
or the upper sub-band:

At(U ) ≡
∫

d E ρ
(−σ )
t(U )σ (E) (8.173)

One finds with (8.171) and (8.172)

At = 1

2
+ t E+

4t2 + E2+

1 − e−2βt

1 + e−2βt
(8.174)

AU = 1

2
− t E+

4t2 + E2+

1 − e−2βt

1 + e−2βt
(8.175)

With this the sum rule

At + AU =
∫ +∞

−∞
d E ρ(−σ )

σ (E) = 1 (8.176)

is obviously fulfilled. Equations (8.174) and (8.175) contain for t = 0 the special
case of the infinitely narrow band: At=0

t = At=0
U = 1

2 (8.157). Otherwise, for finite
hopping this value is attained only for T → ∞. For finite temperatures a weight
transfer between the sub-bands occurs which is decisively induced by the hopping
integral t .

Finally, we want to consider for our simple two-site model one more important
special case, namely the situation where there is one electron per atom (half-filled
s-band). For the sake of simplicity, we set T = 0. In the case of the infinitely narrow
band (t = 0), there are two infinitely narrow sub-bands out of which the lower one is
occupied and the upper one is empty. What happens when the hopping is switched
on? We have seen above that the weights of the sub-bands which correspond to
the area under the partial densities of states change with t . That would mean that
quasiparticle states shift from one sub-band to the other. For the special case, that
we are now considering, consequently the sub-bands would no longer be full and
empty, respectively. The system would change from an insulator to a metal. We
will, however, see that at T = 0, and for one electron per lattice site, the weights
At,U are independent of t so that in this special case the Hubbard system remains an
insulator.
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Because of T = 0, we can perform the average required for the quasiparticle den-
sity of states with the ground state of the two-electron system. This state according
to Fig. 8.12 is | E (2)

1 〉 with the energy E−:

ρ(σ,−σ )
σ (E) =

∑
n

| 〈E (3)
n | c†1σ | E (2)

1 〉 |2 δ(E − (E (3)
n − E−))

+
∑

m

| 〈E (1)
m | c1σ | E (2)

1 〉 |2 δ(E − (E− − E (1)
m ))

(8.177)

We have calculated the one-electron states | E (1)
m 〉 in (8.160) and (8.161) and

the two-electron states | E (2)
1 〉 in (8.164), (8.165), (8.166), (8.167) and (8.168).

The three-electron states | E (3)
n 〉 which have not yet been determined can almost

be guessed. In Problem 8.11 we show that

| E (3)
1 〉 = 1√

2

(
c†1−σ − c†2−σ

)
c†1σ c†2σ | 0〉 (8.178)

| E (3)
2 〉 = 1√

2

(
c†1−σ + c†2−σ

)
c†1σ c†2σ | 0〉 (8.179)

are the eigenstates with energies:

E (3)
1 = U − t ; E (3)

2 = U + t (8.180)

Now we have everything to evaluate ρ(σ,−σ )
σ (E):

ρ(σ,−σ )
σ (E)

= (1 − γ−)2

4(1 + γ 2−)
{δ (E − (U − t − E−)) + δ (E − (E− + t))}

+ (1 + γ−)2

4(1 + γ 2−)
{δ (E − (U + t − E−)) + δ (E − (E− − t))}

(8.181)

Because of t � U , we have E− ≈ t ; i.e. now also we have the total spectrum split
into two sub-bands which are separated by about U . In this special case the weights
of the two sub-bands are equal and importantly are independent of t :

At = AU = 1

4(1 + γ 2−)

(
(1 − γ−)2 + (1 + γ−)2) = 1

2
(8.182)

They have the same value as in the atomic limit (8.157). The independence from t
is, of course, valid only for this special case in which the system contains exactly
one electron per lattice site. The lower sub-band is fully occupied and the upper
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one is empty. This corresponds to an insulator since the electrons in the lower sub-
band must overcome an energy gap in order to reach unoccupied states. This feature
transfers, as we shall see, to the full three-dimensional situation and represents a
characteristic correlation effect. The strong Coulomb interaction sees to it that the
Hubbard crystal is an insulator even though the s-band is only half-filled. According
to the elementary band theory such a system should show metallic behaviour.

In the next section also we will consider the special properties of the half-filled
band.

8.4.4 The Exactly Half-Filled Band

Sometimes, one can gain valuable physical information when one transforms the
actual Hamiltonian into an equivalent effective operator. An interesting possibility
in this context is the Hubbard model for the special case of an exactly half-filled
energy band. In the Hubbard model the system is considered to be a lattice of atoms
with a single orbital which can be occupied by a maximum of two electrons with
opposite spins. That means

hal f − f illed band ↔ n = 1

In the special case of infinitely narrow band (W → 0), in the ground state, every
lattice point is occupied by exactly one electron. Then the only variable is the elec-
tron spin (σ =↑,↓). Therefore, the ground state energy is 2N -fold degenerate. The
ground state does not have any double occupation. If now the hopping is switched
on, the band electrons in the limit of strong coupling

W � U (strong − coupling limit)

remain localized to a large extent. However, virtual changes of sites as in the case
of superexchange of the Heisenberg model (Sect. 5.3.2) cause an indirect coupling
between the electron spins on different lattice sites. These changes of sites are called
virtual because they are associated with energy cost.

With the help of an elementary perturbation theory, we want to show, for the
half-filled band, in the strong-coupling regime, an equivalence of the Hubbard and
Heisenberg models. For that we treat the electron hopping as perturbation.

H = H0 + H1 (8.183)

H0 = T0

∑
iσ

niσ + 1

2
U
∑
iσ

niσ ni−σ (8.184)

H1 =
i �= j∑
i jσ

Ti j c
†
iσ c jσ (8.185)
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We consider only the ground state. All the eigenvalues and eigenstates of H0 are
characterized by d = number of doubly occupied lattice sites The states with the
same d are highly degenerate since there are many ways in which Nσ σ -electrons
can be arranged on N lattice sites. Let the corresponding indexing be through Greek
letters α, β, γ · · · .

H0 | dα〉(0) = E (0)
d | dα〉(0) = (N T0 + dU ) | dα〉(0) (8.186)

| 0α〉(0) is the ground state which is 2N -fold degenerate due to n = 1. First order
perturbation theory requires the solution of the secular equation

det
(

(0)〈0α′ | H1 | 0α〉(0) − E (1)
0 δαα′

)
!= 0 (8.187)

with 2N solutions E (1)
0α . One can easily see that since every summand of H1 produces

an empty and a doubly occupied site, it holds

(0)〈dα′ | H1 | 0α〉(0) �= 0 at the most for d = 1 (8.188)

Because of this the perturbation matrix in (8.187) consists of elements which are
all zeros. Therefore, all the energy corrections in the first order E (1)

0α vanish; the
degeneracy remains unaffected.

Second order perturbation theory requires the solution of the following system
of equations:

∑
α

cα

⎧⎨
⎩

d �=0∑
dγ

(0)〈0α′ | H1 | dγ 〉(0) ·(0) 〈dγ | H1 | 0α〉(0)

E (0)
0 − E (0)

d

− E (2)
0 δαα′

⎫⎬
⎭

!= 0 (8.189)

We interpret this as eigenvalue equation of an “effective” Hamiltonian, whose eigen-
value corresponds to the second order correction and whose matrix elements are
given by

(0)〈0α′ | H1

d �=0∑
dγ

| dγ 〉(0) (0)〈dγ |
E (0)

0 − E (0)
d

H1 | 0α〉(0) =

= − 1

U
(0)〈0α′ | H1

⎛
⎝∑

dγ

| dγ 〉(0) (0)〈dγ |
⎞
⎠ H1 | 0α〉(0) =

= − 1

U
(0)〈0α′ | H 2

1 | 0α〉(0) (8.190)
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In the first step we have used (8.188) so that

(
E (0)

d − E (0)
0

)
−→

(
E (0)

1 − E (0)
0

)
= U

and the limitation d �= 0 can be done away with. The second step follows from the
completeness relation of the unperturbed states | dγ 〉(0). The effective Hamiltonian
then reads as

Hef f = P0

(
− H 2

1

U

)
P0 (8.191)

where P0 is the projection operator onto the d = 0 subspace. What have we gained
from this? In order to see that, we express this effective operator in terms of spin
operators. We first substitute (8.185):

Hef f = − 1

U
P0

⎛
⎝ i �= j∑

i jσ

m �=n∑
mnσ ′

Ti j Tmnc†iσ c jσ c†mσ ′cnσ ′

⎞
⎠ P0 (8.192)

Because of P0 in the multiple sum only the terms i = n and j = m contribute.
Therefore, what remains is

Hef f = − 1

U
P0

⎛
⎝ i �= j∑

i jσσ ′
Ti j Tji c

†
iσ c jσ c†jσ ′ciσ ′

⎞
⎠ P0

= − 1

U
P0

⎛
⎝ i �= j∑

i jσσ ′
| Ti j |2 c†iσ ciσ ′(δσσ ′ − c†jσ ′c jσ )

⎞
⎠ P0

= − 1

U
P0

⎛
⎝ i �= j∑

i jσ

| Ti j |2 (niσ − niσ n jσ − c†iσ ci−σ c†j−σ c jσ )

⎞
⎠ P0

(8.193)

We now use the spin operators from (5.98) and (5.101), which, as was shown in
Problem 5.1, fulfil the conventional commutation relations.

Sz
i = �

2

∑
σ

zσ niσ (zσ = δσ↑ − δσ↓)

Sσ
i = �c†iσ ci−σ (S↑

i ≡ S+
i ; S↓

i ≡ S−
i )



430 8 Hubbard Model

It then holds:

P0

{
Sz

i Sz
j

}
= �

2

4

∑
σσ ′

zσ zσ ′ P0{niσ n jσ ′ }P0

= �
2

4

∑
σ

{
P0{niσ n jσ }P0 − P0{niσ n j−σ }P0

}

= �
2

4

∑
σ

{
P0{niσ n jσ }P0 − P0{niσ (1 − n jσ }P0

}

= �
2

2
P0

{∑
σ

niσ n jσ

}
P0 − �

2

4
P0

{∑
σ

niσ

}
P0

= �
2

2
P0

{∑
σ

niσ n jσ

}
P0 − �

2

4
P2

0

As an intermediate result we have:

P0

{∑
σ

niσ n jσ

}
P0 = P0

{
2

�2
Sz

i Sz
j +

1

2
1l

}
P0 (8.194)

where in particular

P0

{∑
σ

niσ

}
P0 = P01lP0

has been used, which is correct of course only for our special case n = 1. Directly
from the above definition of the spin operators it further follows:

P0

{∑
σ

c†iσ ci−σ c†j−σ c jσ

}
P0 = P0

{
1

�2

∑
σ

Sσ
i S−σ

j

}
P0 =

i �= j= P0

{
2

�2

(
Sx

i Sx
j + Sy

i Sy
j

)}
P0

(8.195)

Substituting (8.194) and (8.195) in the effective operator (8.193) and using the (actu-
ally unimportant) constant,

η = − 1

2U

i �= j∑
i j

| Ti j |2 (8.196)

one recognizes that Hef f has the same structure as the Heisenberg Hamiltonian:
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Hef f = P0

⎧⎨
⎩η −

i �= j∑
i j

Ji j Si · S j

⎫⎬
⎭ P0 (8.197)

The “exchange integrals”

Ji j = − 2

�2

| Ti j |2
U

(8.198)

are always negative, and therefore mediate an antiferromagnetic coupling between
the electron spins. Therefore, for half-filled band (n = 1), within the framework of
Hubbard model, antiferromagnetism is to be expected, at least in the strong-coupling
regime U/W . This will be confirmed also by later analysis. The Hubbard model in
this special case is equivalent to Heisenberg model, where in this special case, the
exchange integrals acquire a well-defined microscopic meaning.

According to (8.193) the second order perturbation theory contains the jump
processes of the electron from lattice site Ri to lattice site R j and back (see Fig.
8.13). According to (8.193), these jump processes lead to an energy gain. The jump
probability is proportional to Ti j and is maximum between the nearest neighbours
since Ti j is as a rule of short range. The more are the jumps, the larger is the decrease
in the energy. In a “saturated” ferromagnet the virtual hopping is forbidden due to
the Pauli’s principle. In contrast, in an antiferromagnet, not all the neighbouring
spins are parallel so that virtual hopping is allowed. This is a qualitative explanation
for the negative exchange integrals (8.198). Ultimately it is of course the free energy
that decides the stability of a magnetic phase.

8.4.5 Strong-Coupling Regime

We have seen in Sect. 8.4.2 that for infinitely narrow band case (W → 0) the den-
sity of states and the spectral density of the Hubbard model is made up of two
δ-functions at T0 and T0 + U . In this case the number of doubly occupied sites d is
a conserved quantity because

[
niσ ni−σ , H0

]
− = 0

Rm

T
ij

Ri Rj

T0

T0 + U

Tji

Fig. 8.13 Virtual electron hopping in the strongly correlated Hubbard model at half-filling (n = 1)
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It is equal to zero in the ground state of a less than half-filled band (n < 1). Fer-
romagnetism turned out to be impossible. What happens now when the hopping is
switched on? For this we will assume

W �= 0 W � U (strong − coupling limit) (8.199)

We can get the first indications from the discussion on the two-site model in
Sect. 8.4.3. The kinetic energy lifts the degeneracies of both the quasiparticle levels.
The new energies, however, group around the energies T0 and T0+U , indicating the
formation of two quasiparticle sub-bands. Therefore, for the full lattice one should
expect:

• Smearing out of the δ-peaks in the spectral densities.
• Shifting of the centres of gravity of the peaks.
• Shifting of the spectral weight(∼= area under the respective peak).
• Appearance of satellite peaks at energies

T0 + pU ; p = −1,−2, · · · ; p = 2, 3, · · ·

as a consequence of multiple processes (see Fig. 8.14).

By multiple processes we mean the situations in which, when an additional electron
is introduced, because of the finite hopping probability in the Hubbard system, the
number of double occupations d, which is no more a conserved quantity, changes.
Large energy shifts are involved in this so that such processes in the strong-coupling
limit (8.199) should be relatively improbable. Therefore, the corresponding satellite
peaks will carry relatively small spectral weights.

Even in the limit (8.199) the difficult many-body problem of the Hubbard model
cannot be exactly solved. But nevertheless, certain rigorously valid statements can

(W/U)4

Skσ

E +  μ

Fig. 8.14 Schematic representation of the single-electron spectral density of the Hubbard model
in the strong-coupling regime as function of energy (W � U )
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be made. A few of these are due to the pioneering work of Harris and Lange [5],
which we will briefly mention, without going into the detailed presentation of partly
very involved derivations. For more details, the reader is referred to the original
work [5].

The main idea is based on the splitting of the construction operators,

ciσ =
∑

p

ciσ,p ; c†iσ =
∑

p

c†iσ,p (8.200)

in such a way that the new operators couple the states with each other, whose W →
0-energies are different by p U . That means

〈Eb | ciσ,p | Ea〉 = 0

〈Ea | c†iσ,p | Eb〉 = 0

i f not : Ea − Eb = p U +O(W ) (8.201)

This ansatz is meaningful only in the strong-coupling regime where the spectral
density has the structure shown in Fig. 8.14. One should note that ciσ,p and c†iσ,p are

not adjoint of each other. Rather what holds is c†iσ,p = (ciσ,−p)†. As an example let
us consider the simple special case W = 0. In the decomposition

ciσ = ni−σ ciσ + (1 − ni−σ )ciσ (8.202)

the first summand annihilates a doubly occupied site and the second annihilates a
singly occupied one. That means

ciσ,0 = (1 − ni−σ )ciσ

ciσ,−1 = ni−σ ciσ (8.203)

ciσ,p = 0 f or p �= 0,−1

Analogously it follows from

c†iσ = ni−σ c†iσ + (1 − ni−σ )c†iσ (8.204)

the separation:

c†iσ,0 = (1 − ni−σ )c†iσ

c†iσ,+1 = ni−σ c†iσ

c†iσ,p = 0 f or p �= 0, 1
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For finite bandwidth but with W � U , the one-electron spectral density also can be
correspondingly decomposed:

Si jσ (E) =
∑

p

Si jσ,p(E) (8.205)

where Si jσ,p(E) is non-zero only in a narrow energy region around T0 + p U .
Because of the assumption (8.199) no mixed p, p′-terms appear. The spectral
density peak at T0 + pU is completely described by the partial spectral density
Si jσ,p(E), which is formally defined exactly in the same way as the normal spectral
density Si jσ (E), except that the new construction operators of (8.200) appear

Si jσ,p(E) = 1

2π

∫ +∞

−∞
d(t − t ′) e

i
�

E(t−t ′) 〈
[
ciσ,−p(t), c†jσ,p(t ′)

]
〉

(8.206)

Then we can define the quite normal spectral moments corresponding to these
partial spectral densities, which provide information about the individual spectral
density peaks:

m(n)
i jσ,p = 1

�

∫ +∞

−∞
d E (E − T0 − p U )n Si jσ,p(E) =

=
(

i�
∂

∂t
− T0 − p U

)n

〈
[
ciσ,−p(t), c†jσ,p(t ′)

]
〉
∣∣∣∣
t=t ′

(8.207)

n = 0, 1, 2, · · ·

The n = 0 moment gives the spectral weight (area under the curve) of the corre-
sponding peak while the n = 1 moment fixes the centre of gravity.

The main question now is, how does one find the p-separation (8.200) of the
construction operators? Harris and Lange have developed a unitary transformation
on the new construction operators, which has exactly the required properties, and
with these they could, via the spectral moments (8.207), analyse the individual peaks
of the spectral density. The procedure can in principle be iterated to any required
order in W/U .

This confirms the expectation of Fig. 8.14 that in strong-coupling regime (8.199),
the (wavenumber-dependent) spectral density of the Hubbard model is made up of
two main peaks at T0 and T0 + U and additional satellite peaks near the energies
T0+ p U . The spectral weights of the satellite peaks, however, decrease rapidly with
the increase in distance from the main peaks. Already the immediately neighbouring
peaks (p = −1,+2) have spectral weights of the order of (W/U )4, so that in the
strong-coupling regime they are relatively unimportant. Therefore, for U � W , the
spectral density has mainly a two-peak structure. The exact shape of the peaks is not
known, but using the first two spectral moments one can make statements regarding
the positions of the centres of gravity of the peaks T1,2σ (k) and the corresponding
spectral weights α1,2σ (k):
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T1σ (k) = T0 + (1 − n−σ )(ε(k) − T0) + n−σ Bk−σ +O
(

W

U

)4

(8.208)

T2σ (k) = T0 + U + n−σ (ε(k) − T0) + (1 − n−σ )Bk−σ +O
(

W

U

)4

(8.209)

α1σ (k) = (1 − n−σ ) +O
(

W

U

)
= 1 − α2σ (k) (8.210)

We have again assumed translational symmetry. Therefore, the thermodynamic
expectation values of the occupation numbers are as in (8.32) independent of the
lattice site index. Basically, the centres of gravity of the peaks can also possess
a spin dependence which results in an additional exchange splitting of the main
peaks (Fig. 8.15), which is a fundamental basic requirement for ferromagnetism.
The question, whether such a correlation-induced spin asymmetry appears or not,
as the following investigation will show, is to a large extent determined by the band
correction Bk−σ :

Bk−σ = B−σ + Fk−σ (8.211)

The wavevector independent, local term B−σ shall be called in the following as band
shift. It describes a correlated electron hopping:

n−σ (1 − n−σ )B−σ = 1

N

i �= j∑
i j

Ti j 〈c†i−σ c j−σ (2niσ − 1)〉 (8.212)

For U � W and for less than half-filled bands, double occupations are very improb-
able, so that the second term in the parenthesis dominates over the first term. Then
we see that the possible shift of the σ -spectrum correlates with the negative kinetic
energy of the (−σ )-electron.

(W/U)4 (W/U)4

Sk σ
U >>W

T1

< n >~~
< n >~~

T2
E

1−

2

1α
α

Fig. 8.15 Exchange-split single-electron spectral density of the Hubbard model in the strong-
coupling regime (U � W ) as function of energy
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The k-dependent part Fk−σ of the band correction (8.211), which we will in the
following call bandwidth correction consists of terms which can be easily inter-
preted, namely a density correlation, a double-hopping term and a spin-flip correla-
tion:

n−σ (1 − n−σ )Fk−σ =
i �= j∑
i j

Ti j e
−ik(Ri−R j )

(
(〈ni−σ n j−σ 〉 − n2

−σ ) +

+ 〈c†j−σ c†jσ ci−σ ciσ 〉 + 〈c†jσ c j−σ c†i−σ ciσ 〉
)

(8.213)

Just as the band shift B−σ , Fk−σ also vanishes in the limit of infinitely narrow band
(W → 0) and has in addition no direct influence on the centres of gravity T1,2σ of
the two quasiparticle sub-bands (Hubbard bands), which are obtained from the two
main peaks of the spectral density (Fig. 8.15) after summing over the wavevectors
of the first Brillouin zone:

T1σ = 1

N

∑
k

T1σ (k) = T0 + n−σ B−σ (8.214)

T2σ = 1

N

∑
k

T2σ (k) = T0 + U + (1 − n−σ )B−σ (8.215)

Here we have used

1

N

∑
k

Fk−σ = 0 (8.216)

This is because the k-summation in the bandwidth correction results in a Kronecker
delta δi j , so that the sum over i and j vanishes. The bandwidth correction should be
of less importance than the band shift B−σ as far as the possibility of ferromagnetism
in the Hubbard model is concerned. However, Fk−σ can lead to a spin-dependent
bandwidth correction and in this sense can compete with the pre-factors of (ε(k) −
T0) in (8.208) and (8.209). This has to be still investigated.

For later concrete evaluations it will turn out important and also advantageous
that the spin-dependent band shift can be exactly expressed in terms of the one-
electron spectral density or the corresponding Green’s function, even though it is
made up of higher correlation functions. We prove this as Problem 8.12:

n−σ (1 − n−σ )B−σ = 1

N�

∑
k

(ε(k) − T0) ∗

∗
∫ +∞

−∞
d E f−(E)

(
2

U
(E − ε(k)) − 1

)
∗

∗Sk−σ (E − μ) (8.217)
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f−(E) is the Fermi function. Unfortunately, the bandwidth correction Fk−σ cannot
be expressed in a similar manner in terms of one-electron spectral density.

8.4.6 Spectral Moments

The spectral moments (Sect. B.3.4) are of great value in the context of assessing
unavoidable approximations and also for fixing free parameters in respective trial
functions.

M (n)
i jσ = 1

�

∫ +∞

−∞
d E En Si jσ (E) ; n = 0, 1, 2, · · · (8.218)

Using the equations of motion of the Heisenberg operators in terms of which the
spectral density is constructed, one can derive an equivalent expression for the
moments (B.100):

Mn
i jσ = 〈

[
[· · · [ciσ, H]− · · · ,H]−︸ ︷︷ ︸

(n−p)− f old

, [H, · · · [H, c†σ ]− · · · ]−︸ ︷︷ ︸
p− f old

]
+
〉 (8.219)

p is an integer between 0 and n. With H from (8.122), one can calculate, in principle,
all the moments exactly, that, too, independently (!) of the corresponding spectral
density. In practice, however, only a few moments can be determined without pro-
hibitively large effort. In addition, with increasing order n, there appear more and
more higher expectation values in the spectral moments which are unknown and
cannot be self-consistently determined using the spectral density.

However, with the help of the moments, certain general statements can still be
made which will be listed out here without proof:

• Centre of gravity of the energy spectrum: The spin-dependent centre of gravity
of the total energy spectrum,

Tσ = 1

�N

∑
k

∫ +∞

−∞
d E E Skσ (E − μ) =

∫ +∞

−∞
d E Eρσ (E) (8.220)

are correctly recovered, if the first two wavevector-dependent moments

M (n)
kσ ; n = 0, 1

are fulfilled.
• Hubbard bands: Typical for the strong-coupling regime of the Hubbard model,

as we will later see and also as it was already indicated in Sects. 8.4.2 and 8.4.3,
is the splitting of the original Bloch density of states into two quasiparticle sub-
bands (Fig. 8.16) with an energy separation of U .
A necessary condition for that is the first three moments should be fulfilled.
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T0 T0 + U

ρ

ρ

E

Fig. 8.16 Schematic representation of the strong-coupling quasiparticle sub-bands of the Hubbard
model (Hubbard bands)

M (n)
kσ ; n = 0, 1, 2

The condition is however not sufficient. The self-consistent second order pertur-
bation theory in U for infinite lattice dimensions (d = ∞) satisfies the first three
moments but does not give the above-mentioned Hubbard splitting.

• “Strong-coupling” behaviour: The correct behaviour in the strong-coupling regime
according to the theory of Sect. 8.4.5 is based on two conditions. First, for
W � U , the Hubbard bands (Fig. 8.16) must exist. One can show that this
is guaranteed by every theory which correctly reproduces the limit of infinitely
narrow band (Sect. 8.4.2). The second condition is that the first four spectral
moments

M (n)
kσ ; n = 0, 1, 2, 3

must be satisfied. These two conditions guarantee the correct centres of gravity
(8.208) and (8.209) of the spin-dependent spectral density and the correct spectral
weights (8.210) of both the main peaks.

The calculation of the first four spectral moments requires some effort, but does not
encounter any principal difficulties (Problem 8.13):

M (0)
kσ = 1 (8.221)

M (1)
kσ = ε(k) − μ + Un−σ (8.222)

M (2)
kσ = (ε(k) − μ)2 + 2(ε(k) − μ)Un−σ + U 2n−σ (8.223)

M (3)
kσ = (ε(k) − μ)3 + 3(ε(k) − μ)2Un−σ + (ε(k) − μ)U 2n−σ (2 + n−σ )

+U 3n−σ + U 2n−σ (1 − n−σ )(T0 + Bk−σ − μ) (8.224)
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The fourth moment (n = 3) contains the important band correction Bk−σ , which
is made up of the higher correlation functions (8.211) and proves to be one of the
decisive factors for the possibility of spontaneous ferromagnetism.

8.4.7 High-Energy Expansions

There exists a very close connection between the spectral moments and the high-
energy expansion of the one-electron Green’s function whose spectral representation
(B.91)

Gkσ (E) =
∫ +∞

−∞
d E ′ Skσ (E ′)

E − E ′ (8.225)

can also be written as follows:

Gkσ (E) = 1

E

∫ +∞

−∞
d E ′ Skσ (E ′)

1 − E ′
E

=

= 1

E

∞∑
n=0

∫ +∞

−∞
d E ′

(
E ′

E

)n

Skσ (E ′)

In this expression one recognizes the spectral moments (8.218), so that the following
important relationship holds:

Gkσ (E) = �

∞∑
n=0

M (n)
kσ

En+1
(8.226)

A completely analogous high-energy expansion can be performed also for the
self-energy:

Σkσ (E) =
∞∑

m=0

C (m)
kσ

Em
(8.227)

The coefficients C (m)
kσ are determined using the generally valid Dyson equation

(B.152):

E Gkσ (E) = � + (ε(k) − μ + Σkσ (E)) Gkσ (E)

Here we insert the high-energy expansions (8.226) and (8.227):
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∞∑
n=0

�

En
Mkσ = � + (ε(k) − μ)

∞∑
n=0

�

En+1
M (n)

kσ

+
∞∑

m,n=0

�

Em+n+1
C (m)

kσ M (n)
kσ

Comparing the coefficients of the same powers of 1
E , one reads off:

C (0)
kσ = M (1)

kσ − ε(k) + μ (8.228)

C (1)
kσ = M (2)

kσ −
(

M (1)
kσ

)2
(8.229)

C (2)
kσ = M (3)

kσ − 2M (2)
kσ M (1)

kσ +
(

M (1)
kσ

)3
(8.230)

C (3)
kσ = M (4)

kσ − 2M (3)
kσ M (1)

kσ + 3M (2)
kσ

(
M (1)

kσ

)2

−
(

M (2)
kσ

)2
−
(

M (1)
kσ

)4
(8.231)

We substitute the moments (8.221), (8.222), (8.223) and (8.224) here and obtain
specially for the Hubbard model:

C (0)
kσ = U n−σ (8.232)

C (1)
kσ = U 2 n−σ (1 − n−σ ) (8.233)

C (2)
kσ = U 2n−σ (1 − n−σ )(T0 + Bk−σ − μ)

+ U 3n−σ (1 − n−σ )2 (8.234)

Every analytical, normally of course approximate expression for the self-energy can
be tested with the help of these exact relations by an expansion with respect to 1

E .

If the moments up to m = 3 or the coefficients C (m)
kσ up to m = 2 are satisfied,

then one can be sure that the strong-coupling behaviour of Sect. 8.4.5 is correctly
reproduced.

It is quite instructive to use these general results for a first estimate of the elec-
tronic self-energy. In the high-energy region one can write

Σkσ (E) = C (0)
kσ + C (1)

kσ

E
+ C (2)

kσ

E2
+ · · · =

= C (0)
kσ + C (1)

kσ

E

(
1 + C (2)

kσ

C (1)
kσ E

+ · · ·
)
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≈ C (0)
kσ + C (1)

kσ

E − C (2)
kσ

C (1)
kσ

= Un−σ + U 2 n−σ (1 − n−σ )

E + μ − T0 − Bk−σ − U (1 − n−σ )

So that we have found an approximate expression for the self-energy:

Σkσ (E) ≈ U n−σ

E + μ − T0 − Bk−σ

E + μ − T0 − Bk−σ − U (1 − n−σ )
(8.235)

This expression has formally the same structure as the W → 0-self-energy (8.135)
when we set the band correction Bk−σ equal to zero. We will encounter this result
later once more and show it to be identical to the approximate self-energy which
results from the physically justifiable Spectral density ansatz (SDA) (Sect. 8.5.6).
The approximation is particularly attractive if one has the grounds to make a local
ansatz (Σkσ → Σσ ; Bk−σ → B−σ ; Fk−σ ≈ 0) acceptable, for example, in the case
of infinite lattice dimensions (d → ∞). In that case, the correlation functions n−σ

and B−σ appearing in (8.235) can be exactly expressed in terms of the one-electron
spectral density (8.217) and therefore in terms of the self-energy. We then have a
closed system of equations which can be solved self-consistently. The result will
certainly have the correct behaviour in the regime of strong coupling .

8.4.8 Weak-Coupling Regime

So far we discussed only the strong-coupling regime because ferromagnetism is
expected above all in systems with strong coupling (U � W ). Therefore, it is
interesting to question whether the correct weak-coupling behaviour and the right
low-energy properties can influence the strong-coupling phenomenon of ferromag-
netism in a decisive way. Perturbation theories should be successful in the limit

U/W � 1

In order to investigate this limit we want to use a diagrammatic representation.
In Fig. 8.17 the full-Matsubara propagator, the free-Matsubara propagator and

the electron self-energy are diagrammatically represented. Here En is the Fermionic
Matsubara energy:

En = (2n + 1)
π

β
; n = · · · ,−1, 0, 1. · · · (8.236)

The Dyson equation for the one-electron Green’s function has then the diagram-
matic structure shown in Fig. 8.18:
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Fig. 8.17 Diagrammatic parts of the Dyson equation

Fig. 8.18 Diagrammatic Dyson equation

Gi jσ (i En) = G(0)
i jσ (i En) +

∑
lm

G(0)
ilσ (i En)

1

�
Σlmσ (i En)Gmjσ (i En) (8.237)

Actually to make contact with experiment it is necessary to consider the retarded
Green’s function, which, however, cannot be handled diagrammatically. But it can
be obtained from the Matsubara function in a simple way by taking the limit

i En → E + i0+

One can show that the self-energy is the sum of all the dressed skeleton diagrams.
By skeleton diagram we mean a self-energy diagram which is built up of only (free)
propagators which contain no self-energy parts. A self-energy part is a diagram part
of a one-electron Matsubara function which is connected by two propagators with
the rest of the diagram. If in a skeleton diagram the free propagators are replaced by
full ones then we get a dressed skeleton diagram.

• Hartree-Fock approximation: In the lowest order for the self-energy, one has to
evaluate the diagrams shown in Fig. 8.19.
The Fock-part vanishes in the case of Hubbard model because there have to be
oppositely oriented spins at the two ends of the vertex. The Hartree-part gives

ΣH F
i jσ ≡ δi j U 〈ni−σ 〉 (8.238)
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Fig. 8.19 Hartree–Fock self-energy diagrams

In this approximation, the Hubbard model is identical to the Stoner model of
Sect. 8.3 which, as we have seen, overestimates the possibility of ferromag-
netism. The Hartree–Fock approximation satisfies the first two spectral moments
and therefore according to (8.220) gives the correct spin-dependent centres of
gravity Tσ of the total energy spectrum. Actually (8.238) is not yet a real solution
since 〈ni−σ 〉 ≡ n−σ has to be self-consistently determined with the help of the
spectral theorem either from the full one-particle Matsubara function or from the
corresponding spectral density. For U → 0, (8.238) is exact.

• Second order self-consistent perturbation theory: According to the diagrammatic
perturbation theory, which we cannot develop in detail here, the self-energy dia-
grams shown in Fig. 8.20 have to be evaluated.
One can easily see that the second and the fourth diagrams do not contribute in
the special case of the Hubbard model. Inclusion of the third diagram gives the
correct weak-coupling expansion of the self-energy:

Σwc
i jσ = δi j U n−σ + U 2Σ

(SOC)
i jσ (E) +O(U 3) (8.239)

With this, the second order contribution can be calculated with the help of the
conventional rules of the diagram technique, with some effort, but without any
principal problems to give

Fig. 8.20 Skeleton diagrams of the electronic self-energy up to second order in the interaction
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Σ
(SOC)
i jσ (i E) =

= 1

�3

∫ ∫ ∫
dx dy dz

Si jσ (x) Sji−σ (y)Si j−σ (z)

i E − x + y − z
∗

∗ ( f (x) f (−y) f (z) + f (−x) f (y) f (−z))

(8.240)

Here f (x) is the Fermi function for μ = 0 ( f (−x) = 1 − f (x)). S is the full
spectral density, which has to be calculated self-consistently. The self-energy
contribution in second order comes out to be non-local, energy dependent and in
general complex. In case that it is claimed to be exact up to terms in U 2, the spec-
tral density on the right-hand side can be interpreted as that of the interaction-free
or of the Stoner model (S(1)

kσ (E)) (Hartree–Fock approximation (8.238)):

S(0)
i jσ (E) = �

N

∑
k

δ(E + μ − ε(k)) eik·(Ri−R j ) (8.241)

S(1)
i jσ (E) = S(0)

i jσ (E − Un(1)
−σ ) (8.242)

The upper index (1) indicates that the particle density n(1)
−σ has to be determined

self-consistently within the framework of the Hartree–Fock approximation. If in
(8.240) the full (free) spectral density is used then it is called self-consistent (non-
self-consistent) second order perturbation theory. On the other hand, if S(1)

i jσ (E) is
used then it is called perturbation theory around Hartree–Fock.

8.4.9 Infinite Dimensions

It is possible to make interesting and wide ranging exact statements about the many-
body problem of the Hubbard model in infinite lattice dimensions d → ∞ [6]. Even
though at first it appears exotic, it is of great direct relevance. Naturally the limit
d → ∞ has to be taken in a physically meaningful sense. For example, the kinetic
energy must be appropriately rescaled. If the hopping integral between the nearest
neighbours were taken to be t = const., then the kinetic energy per particle would
grow without limit for d → ∞ whereas the potential energy remains constant.

H = −t
∑

<i j>σ

c†iσ c jσ + 1

2
U
∑
iσ

niσ ni−σ (8.243)

As a result, the physical properties would be trivially identical to those of an ideal
Fermi gas. Therefore, one demands that
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√
1

N

∑
k

ε2(k) = f ini te f or d → ∞ (8.244)

That means for a hypercubic lattice, e.g. for that each lattice site has 2d nearest
neighbours:

1

N

∑
k

ε2(k) =
∑

j

Ti j Tji = 2dt2 !→ f ini te

This is possible only for

t ∝ 1√
d

(8.245)

We now want to exploit this fact in order to see how the corresponding Bloch density
of states looks like.

ρ0(E) = 1

N

∑
k

δ(E − ε(k)) = ad

(2π )d

∫
ddk δ(E − ε(k)) (8.246)

a is the lattice constant and k is the d-dimensional wavevector.

ε(k) = −2t
d∑

i=1

cos(ki a) (8.247)

k = (k1, k2, · · · , kd ) ; −π ≤ ki a ≤ +π

Substituting (8.247) in (8.246), one obtains after Fourier transformation:

ρ0(E) =
(

d∏
i=1

∫ +π

−π

dki a

2π

)
δ

⎛
⎝E + 2t

d∑
j=1

cos(k j a)

⎞
⎠ =

= 1

2π�

∫ +∞

−∞
dτ e

i
�

Eτ

d∏
i=1

(∫ +π

−π

dxi

2π
exp

(
2

i

�
t cos xi · τ

))

(8.248)

The xi -integral can be estimated (t ∝ d− 1
2 , d → ∞) as follows:

∫ +π

−π

dxi

2π
exp

(
2

i

�
t cos xi · τ

)
=

=
∫ +π

−π

dxi

2π

(
1 + 2

i

�
t τ cos xi − 2

�2
t2τ 2 cos2 xi + · · ·

)
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= 1 − t2

�2
τ 2 + O(t4)

≈ exp

(
− t2

�2
τ 2

)
(8.249)

Here we have used the definite integral

1

2π

∫ +π

−π

dxi cos2 xi = 1

2

Then we arrive at the following expression for the Bloch density of states:

ρ0(E) ≈ 1

2π�

∫ +∞

−∞
dτ exp

(
i

�
Eτ − t2

�2
τ 2d

)

The integral can be performed elementarily.

ρ0(E) ≈ 1

2π�
exp(− E2

4t2d
)
∫ +∞

−∞
dτ exp

(
−
(

t

�
τ
√

d − i

2

E

t
√

d

)2
)

= 1

2π�
exp(− E2

4t2d
)

�

t
√

d

∫ +∞

−∞
dy exp(−y2)

= 1

2t
√

dπ
exp(− E2

4t2d
)

Thus for a hypercubic lattice in the case of infinite dimensions for the Bloch density
of states holds

ρ
(∞)
0 (E) = 1

t∗
√

2π
exp(− E2

2t∗2
) (8.250)

For a non-trivial density of states, one must therefore require

t∗ = t
√

2d
!= f ini te (8.251)

This agrees with (8.245). With this scaling it is guaranteed that the competition
between kinetic and potential energies and also the physically relevant correlation
effects are properly taken into account.

Now we want to discuss an important consequence of this scaling. By construc-
tion, the kinetic energy per particle is a finite quantity:

1

N
〈H0〉 = −t

∑
<i j> σ

〈c†iσ c jσ 〉(0) != f ini te (8.252)
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The sum runs over the 2d nearest neighbours of the i th lattice site. Because of
(8.251) it must therefore hold

〈c†iσ c jσ 〉(0) = O
(

1√
d

)
i �= j (8.253)

Because of the spectral theorem, this order of magnitude is reflected in the spectral
density and the Green’s function:

S(0)
i jσ = O

(
1√
d

)
; G(0)

i jσ = O
(

1√
d

)
i �= j (8.254)

The effect on the self-energy is obvious [6] as one can see from the diagram pre-
sented in Fig. 8.21.

The three propagators that appear in the diagram contribute in the form

∑
j

G(0)
i jσ (E)G(0)

i j−σ (E)G(0)
j i−σ (E) = O

(
d ·
(

1√
d

)3
)
= O

(
1√
d

)

which obviously vanish for d → ∞. That is valid for all the non-diagonal terms in
the self-energy [7]. With this we obtain the important result that the self-energy of
the Hubbard model in the case of infinite dimensions is local:

Σi jσ (E) = Σσ (E) δi j ; d → ∞ (8.255)

This exact result can be used in many ways as we will see later. The next section
discusses a special application.

Fig. 8.21 Self-energy
diagram of second order
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8.4.10 Effective “impurity”-Problem

In this section, we want to assume that the self-energy of the Hubbard model is local,
which is shown in the last section to be exact in the case of infinite dimensions
d → ∞. There are indications that even for finite dimension (d = 3), a local
self-energy can be an acceptable approximation. Then the Dyson equation for the
local propagator simplifies to:

Giiσ (i En) = G(0)
i iσ (i En) +

∑
j

G(0)
i jσ (i En)

1

�
Σσ (i En)G jiσ (i En) (8.256)

The diagrammatic representation of the Dyson equation is shown in Fig. 8.22. We
now define a new Matsubara function which is different from the old one (8.256) by
removing the diagonal term j = i from the sum:

Fliσ (i En) = G(0)
liσ (i En) +

j �=i∑
j

G(0)
l jσ (i En)

1

�
Σσ (i En)Fjiσ (i En) (8.257)

We want to connect this function with Giiσ (i En). For that we consider

Fliσ (i En) = G(0)
liσ (i En) +

∑
j

G(0)
l jσ (i En)

1

�
Σσ (i En)Fjiσ (i En)

−G(0)
liσ (i En)

1

�
Σσ (i En)Fiiσ (i En) (8.258)

We perform Fourier transformation of G(0)
liσ (i En) and Fliσ (i En), but not Fiiσ (i En),

so that we get the following relation:

G(0)
kσ (i En) = Fkσ (i En)

1 + 1
�
Σσ (i En)Fkσ (i En) − 1

�
Σσ (i En)Fiiσ (i En)

(8.259)

We substitute this in the normal Dyson equation (8.237)

Fig. 8.22 Dyson equation for the local propagator
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Gkσ (i En) = G(0)
kσ (i En) + G(0)

kσ (i En)
1

�
Σσ (i En)Gkσ (i En) (8.260)

so that what remains is

Gkσ (i En) = Fkσ (i En) + Fiiσ (i En)
1

�
Σσ (i En)Gkσ (i En) (8.261)

After summing over all the wavenumbers, it follows (Giiσ = 1/N
∑

k Gkσ ):

Giiσ (i En) = Fiiσ (i En) + Fiiσ (i En)
1

�
Σσ (i En)Giiσ (i En) (8.262)

We represent the propagator Fiiσ (i En) by a wavy line as in Fig. 8.23, so that (8.262)
can be represented as shown in Fig. 8.24.

We will consider now the self-energy diagrams for the special case where only
the scattering centre at Ri is switched on. Then we obtain impurity self-energy dia-
grams (ISD) shown in Fig. 8.25. These define a special diagram class Cσ :

Fig. 8.23 Graphical representation of the local propagator from (8.262)

Fig. 8.24 Modified Dyson equation for the local propagator

Fig. 8.25 Impurity self-energy diagrams
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ΣI SD
σ (i En) ≡ Cσ

[{
G(0)

i iσ (i En)
}

, U
]

(8.263)

Cσ is independent of the special way of realizing the diagrams through the free
propagator Giiσ (i En).

We now investigate, which of the diagrams contribute to the d → ∞-self-energy
of the Hubbard model. Naturally, these are, first, all the local diagrams for which all
the lattice indices belong to the same site i . These are actually the diagrams shown in
Fig. 8.25. We have, however, also to count certain non-local diagrams which acquire
the non-locality from a self-energy insertion as, for example shown in Fig. 8.26.

Their contribution does not vanish for d → ∞, since the two Matsubara func-
tions,

G(0)
i jσ (i En) · G(0)

j iσ (i En) ∼ O
(

1

d

)

are outweighed by the extra summation,

∑
j

→ O(d)

Obviously we obtain all the self-energy diagrams when we replace in the ISD dia-
grams in Fig. 8.25 the free propagator by the modified propagator of Fig. 8.23.

According to (8.263) this means

Σσ (i En) = Cσ [{Fiiσ (i En)} , U ] (8.264)

With this we have expressed the d → ∞-self-energy of the Hubbard model in
terms of the diagrammatic functional Cσ of the impurity scattering (Fig. 8.27). This
result forms the basis of the Dynamical mean-field theory (DMFT), which will be
discussed later.

Fig. 8.26 Local self-energy diagram with non-locality contribution by a self-energy insertion
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Fig. 8.27 Local self-energy diagrams of the d → ∞ Hubbard model

8.5 Magnetism and Electronic Correlations

In this section we want to investigate, within the framework of the Hubbard model,
the possibility of band ferromagnetism, as is observed in the classical ferromagnets
Fe, Co and Ni. The decisive question in this context will be whether the Hubbard
model is at all capable of describing a spontaneous magnetization of itinerant band
electrons? One has to be circumspect about the prediction made by the Hartree–Fock
approximation of the Hubbard (Stoner model) with respect to spontaneous ferro-
magnetism in view of the fact that molecular field approximations always grossly
overestimate the possibility of ferromagnetism.

We have discussed in Sect. 8.4.2 the limiting case of the infinitely narrow band
which one can imagine to be realized by lattice sites which are infinitely apart from
each other. The main result of this case is that the original atomic level T0 is split due
to the Coulomb interaction U into two quasiparticle levels T0 and T0 + U with for-
mally spin-dependent spectral weights 1− n−σ and n−σ . Now it has to be inspected
what happens when the ions of the solid are brought nearer to each other so that
the separation between them is finite so that the atomic wavefunctions begin to
overlap and consequently the hopping probability of the band electrons is non-zero.
From the two-site model discussed in Sect. 8.4.3 we can already get certain trends.
From this we can expect that at least in the case of strong coupling (U � W ,
Sect. 8.4.5) the two atomic quasiparticle levels spread out into two quasiparticle
sub-bands which are clearly separated from each other by about U and which have
densities of states strongly dependent on temperature and band occupation. This
feature is to be investigated in more detail which will be done from now on, based
certainly necessarily on approximate theories.

8.5.1 Hubbard-I Approximation

The first proposal for a theory that takes into account electronic correlations was
developed by Hubbard himself in his pioneering work [1]. He used the equation of
motion method for the (retarded) Green’s function. The starting point is the exact
equation of motion (8.125) of the one-electron Green’s function Gi jσ (E) (8.121).
This is not exactly solvable due to the presence of the higher Green’s function
Γi i i ; jσ (E) (8.124). The same is true for the equation of motion (8.126) of Γi i i ; jσ (E).
Hubbard proposed an approximation consisting of a mean field decoupling (7.120)
of the Green’s function on the right-hand side of (8.126) for i �= m:
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Γi im; jσ (E) → n−σ Gmjσ (E) (8.265)

Γimi ; jσ (E) → 〈c†i−σ cm−σ 〉Gi jσ (E) (8.266)

Γmii ; jσ (E) → 〈c†m−σ ci−σ 〉Gi jσ (E) (8.267)

In this decoupling, the particle number and spin are conserved. On substituting in
(8.126), the terms (8.266) and (8.267)

m �=i∑
m

Tim
(
Γimi ; jσ (E) − Γmii ; jσ (E)

)→

→ Gi jσ (E)
∑

m

Tim

(
〈c†i−σ cm−σ 〉 − 〈c†m−σ ci−σ 〉

)

do not contribute due to the assumed translational symmetry:

∑
m

Tim

(
〈c†i−σ cm−σ 〉 − 〈c†m−σ ci−σ 〉

)
=

= 1

N

∑
im

Tim

(
〈c†i−σ cm−σ 〉 − 〈c†m−σ ci−σ 〉

)
=

= 1

N

∑
im

(Tim − Tmi ) 〈c†i−σ cm−σ 〉 =

= 0 (8.268)

Then what remains as the equation of motion for Γi i i ; jσ (E) is

(E + μ − T0 − U ) Γi i i ; jσ (E) = �δi j n−σ + n−σ

m �=i∑
m

Tim Gmjσ (E)

This can easily be solved for Γi i i ; jσ (E) and is then substituted in the equation of
motion (8.125) for Gi jσ (E):

(E + μ − T0) Gi jσ (E) =
(

�δi j +
m �=i∑

m

Tim Gmjσ (E)

)
∗

∗
(

1 + U n−σ

E + μ − T0 − U

)

The complete solution is obtained by Fourier transformation to wavenumbers.
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[
(E + μ − T0) − (ε(k) − T0)

E + μ − T0 − U (1 − n−σ )

E + μ − T0 − U

]
Gkσ (E)

= �
E + μ − T0 − U (1 − n−σ )

E + μ − T0 − U

⇒
[

(E + μ − T0)(E + μ − T0 − U )

E + μ − T0 − U (1 − n−σ )
− (ε(k) − T0)

]
Gkσ (E) = �

Let us recall the general structure of one-electron Green’s function,

Gkσ (E) = �

E + μ − ε(k) − ΣH I
kσ (E) + i 0+ (8.269)

then we have a self-energy which agrees exactly with the limiting case of the
infinitely narrow band (8.135):

ΣH I
kσ (E) ≡ ΣH I

σ (E) = U n−σ

E + μ − T0

E + μ − T0 − U (1 − n−σ )
(8.270)

A certain physical support of the Hubbard decouplings (8.265), (8.266), and (8.267),
which at first glance appear completely arbitrary, is derived from the fact that it
reproduces both the limiting cases

• U → 0 band limit
• W → 0 atomic limit
• satisfies the spectral moments M (0,1,2)

kσ

One should note that the Hartree–Fock solution (8.47) (Stoner model),

Σ
(H F)
kσ (E) ≡ Σ(H F)

σ ≡ U n−σ (8.271)

satisfies the band limit and the first two moments M (0,1)
kσ only.

In contrast, the fourth moment M (3)
kσ is violated by the Hubbard-I approximation

which means that the correct strong-coupling behaviour cannot be expected from
it. From the point of view of the possibility of ferromagnetism, this proves to be a
serious limitation. Before we analyse this in more detail, we want to reproduce the
Hubbard-I solution with the help of a simple interpolation method, which does not
need the problematic decouplings and therefore has a little more to say about the
real worth of the Hubbard approximation.



454 8 Hubbard Model

8.5.2 Interpolation Method

The Hubbard problem can be exactly solved in two limits, namely the band limit
(U = 0) and the limit of infinitely narrow band (W → 0, Sect. 8.4.2). We want to
construct a solution which interpolates between these limits.

• Band limit: The solution for the one-electron Green’s function is known:

G(0)
k (E) = �

E + μ − ε(k)
(8.272)

This can be formally written as a Dyson equation,

G(0)
k (E) = G00(E) + G00(E)

1

�
Σ

(0)
k G(0)

k (E) (8.273)

where the corresponding free Green’s function G00(E) should be interpreted as
the one for the infinitely narrow band:

G00(E) = �

E + μ − T0
(8.274)

Then the self-energy of the band limit is given by

Σ
(0)
k = ε(k) − T0 (8.275)

• Atomic limit: The solution again is known from (8.134) and can be written as
Dyson equation as follows:

GW=0
σ (E) = G00(E) + G00(E)

1

�
ΣW=0

σ (E) GW=0
σ (E) (8.276)

• “Full” problem: This is not exactly solvable. Formal Dyson equations can be
written with the two limiting cases as the free parts, then of course with different
self-energies:

Gkσ (E) = G(0)
k (E) + G(0)

k (E)
1

�
ΣU=0

kσ (E)Gkσ (E) (8.277)

Gkσ (E) = GW=0
σ (E) + GW=0

σ (E)
1

�
ΣW=0

kσ (E)Gkσ (E)

(8.278)

The self-energies ΣW=0
kσ (E) and ΣU=0

kσ (E) are, however, not exactly known. It
appears reasonable to use in (8.277) a self-energy approximation, which is con-
vincing in the W = 0 limit, since in the other limit (U = 0) the free function
is already correct. In contrast, in the ansatz (8.278) the self-energy is to be so
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chosen that it is useful in the U = 0 limit, since in this case the free function
already takes care for the correct W = 0 behaviour. Therefore, we replace in
(8.277) the self-energy by the exact expression (8.135) of the infinitely narrow
band:

ΣU=0
kσ (E) → ΣW=0

σ (E) = U n−σ

E + μ − T0

E + μ − T0 − U (1 − n−σ )
(8.279)

and in (8.278) the self-energy by the one of the band limit (8.275):

ΣW=0
kσ (E) → Σ

(0)
k = ε(k) − T0 (8.280)

These replacements give in both the cases exactly the same result:

Gkσ (E) ≈
[(

G(0)
k (E)

)−1
− 1

�
ΣW=0

σ (E)

]−1

Gkσ (E) ≈
[(

GW=0
σ (E)

)−1 − 1

�
Σ

(0)
k

]−1

This results in both cases in the Hubbard-I solution (8.269). The decoupling
method proposed by Hubbard (8.265), (8.266), and (8.267), which at first sight
appears to be somewhat arbitrary, can therefore be considered to be an inter-
polation method which interpolates between the two limiting cases (8.275) and
(8.279). The result obtains further weight from the fact that both the interpolation
paths lead to the same approximate result.

8.5.3 Correlation Effects and Ferromagnetism

The self-energy (8.270) of the Hubbard-I solution is real and wavenumber inde-
pendent and therefore describes quasiparticles of infinite lifetime. From (8.269) and
with the help of the Dirac identity (B.92), we get for the spectral density

Skσ (E) = � δ
(
E + μ − ε(k) − ΣH I

σ (E)
)

(8.281)

Then the quasiparticle density of states ρσ (E) can be expressed in terms of Bloch
density of states of the non-interacting system ρ0(E):

ρσ (E) = 1

N

∑
k

Skσ (E − μ) =

= ρ0
(
E − ΣH I

σ (E − μ)
)

(8.282)
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An important speciality of the Hubbard-I solution and also of the W = 0 self-energy
is that the function

(
E − ΣH I

σ (E − μ)
)

has a singularity at

E = E0σ = T0 + U (1 − n−σ ) (8.283)

As discussed in detail in Appendix B, such a singularity always leads to a split-
ting of the energy band for each spin direction into two quasiparticle sub-bands.
(Fig. 8.28). Thus the solution (8.282) reproduces the main results of the two-site
model (Sect. 8.4.3). The Coulomb interaction U causes the splitting, whose origin
can be understood as follows. If the electron is moving in the upper sub-band, then
it hops mainly onto such lattice points where, there already exists another electron
with oppositely oriented spin. On the other hand, the electron in the lower sub-
band prefers the lattice sites which are empty. This leads to an energy separation
of U between the two sub-bands. For comparison, if the Stoner model (Hartree–
Fock approximation (8.271)) is considered, one recognizes that the energy- and
wavenumber-independent self-energy Un−σ neither deforms nor splits the spin
bands. For n↑ �= n↓, however, a shift of the spin-bands relative to each other takes
place (Fig. 8.29).

The one-electron Green’s function (8.269), as can be easily seen, represents a
two-pole function:

Gkσ (E) = �

2∑
j=1

α jσ (k)

E + μ − E jσ (k)
(8.284)

Here the (real) quasiparticle energies are given by ( j = 1, 2):

Fig. 8.28 Schematic plot of the energy band splitting into two quasiparticle sub-bands according
to the Hubbard-I solution (8.282)
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Fig. 8.29 As comparison to Fig. 8.28, a schematic plot of the origin of the energy shift of the spin
sub-bands of the Hubbard model in the Hartree–Fock approximation (Stoner model)

E jσ (k) = 1

2

(
T0 + ε(k) +

+ U + (−1) j
√

(T0 − ε(k) + U )2 + 4U n−σ (ε(k) − T0)
)

(8.285)

and the corresponding spectral weights by

α1σ (k) = E1σ (k) − T0 − U (1 − n−σ )

E1σ (k) − E2σ (k)
= 1 − α2σ (k) (8.286)

Thus the spectral density is a sum of two weighted δ-functions:

Skσ (E) = �

2∑
j=1

α jσ (k)δ
(
E + μ − E jσ (k)

)
(8.287)

The band splitting inducing singularity E0σ (8.283), however, is also responsible
for a serious shortcoming of the Hubbard-I solution. From physical grounds one
should expect that with decreasing U/W , the originally separate sub-bands should
gradually overlap. But, from (8.283) one sees that for arbitrarily small couplings
there is always a singularity and therewith a band gap.

8.5.4 Criterion for Ferromagnetism

The actually interesting question is about the possibility of ferromagnetism in a
system of band electrons. It is reasonable to assume that for a given band occupa-
tion n = nσ + n−σ , for weak coupling U , the paramagnetic state is preferred and
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ferromagnetism, if at all, probably can appear only beyond a critical value of Uc(n).
This is already indicated by the Stoner criterion (8.59). In the strong-coupling limit
U � W , the quasiparticle energies (8.285) of the Hubbard-I solution simplify to

E1σ (k) = (1 − n−σ )ε(k) + n−σ T0 +O
(

W

U

)
(8.288)

E2σ (k) = U + n−σ ε(k) + (1 − n−σ )T0 +O
(

W

U

)
(8.289)

As a comparison with the exact result (8.210) shows, the corresponding spectral
weights turn out to be correct in the strong-coupling limit:

α1σ (k) ≈ 1 − n−σ ; α2σ (k) ≈ n−σ (8.290)

In this limit it is meaningful to define, for the two energetically separated Hubbard
bands, partial density of states which can be connected to the free Bloch density of
states in a simple way:

ρlower
σ (E) ≈ ρ0

(
E − n−σ T0

1 − n−σ

)
(8.291)

ρupper
σ (E) ≈ ρ0

(
E − U − (1 − n−σ )T0

n−σ

)
(8.292)

The two bands have spin-independent centres of gravity:

T1σ ≡
∫

d E E ρlower
σ (E) ≡ 1

N

∑
k

E1σ (k) = T0 = T1−σ (8.293)

T2σ ≡
∫

d E E ρupper
σ (E) ≡ 1

N

∑
k

E2σ (k) = T0 + U = T2−σ (8.294)

The strong-coupling result of the Hubbard-I theory is schematically shown in
Fig. 8.16. The spin independence of the centres of gravity turns out to be the decisive
disadvantage for the possibility of ferromagnetism. A comparison with (8.214) and
(8.215) also shows that the Hubbard-I solution does not have the correct strong-
coupling behaviour.

Ferromagnetism presumes a spontaneous preferential spin orientation, i.e. n↑ �=
n↓, which in turn requires a spin asymmetry of the sub-bands in Fig. 8.28. Formally,
of course the quasiparticle energies (8.288) and (8.289) and also the spectral weights
(8.290) are spin dependent so that such an asymmetry is in principle conceivable.
But it must be the result of a self-consistent calculation. For the average occupation
number per lattice site and spin, according to the spectral theorem (B.95) holds for
T = 0:
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nσ (T = 0) =
∫ EF

−∞
d Eρσ (E) =

∫ EF

−∞
d Eρ0 (E − Σσ (E − μ)) (8.295)

EF is the Fermi energy. If there is a solution with n∗
σ �= n∗

−σ , then on symmetry
grounds, in addition to n∗

σ < n/2, n − n∗
σ should also be a solution. That means

there exist either none or two magnetic solutions. Strictly speaking, four, six, . . .,
solutions are conceivable which, however, we are excluding here. From the fact
that two magnetic solutions must be available, we want to derive a criterion for
ferromagnetism. In Fig. 8.30 the two positive definite sides of (8.295) are plotted
formally as functions of nσ .

The left-hand side is simply the bisectrix. Since paramagnetism nσ = n−σ = n/2
is always a mathematical solution, the right-hand side of (8.295) must intersect the
bisectrix exactly at three places as is shown by the continuous lines in Fig. 8.30.
The dashed line does not come into question since it leads to further solutions at the
most at n∗

σ = 0. As the coupling U decreases, the two magnetic solutions collapse
to the point nσ = n

2 . For U ≤ Uc(n), the curve representing the right-hand side of
(8.295) touches the straight line at nσ = n

2 , which means at that point it has a slope
equal to 1. We then establish a criterion for ferromagnetism to be that the right-hand
side of (8.295) as a function of nσ should have a slope greater than 1 at nσ = n

2 :

1 <

[
d

d nσ

∫ EF

−∞
d Eρσ (E)

]
nσ= n

2

(8.296)

This is still rather generally valid. We evaluate the criterion for the Hubbard solution
(8.284) under the condition n < 1 and U � W and therefore we can use the

Fig. 8.30 Schematic representation of the two sides of (8.295) as functions of nσ to derive a crite-
rion for ferromagnetism in the correlated electron system
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expression (8.291) for the quasiparticle density of states:

1 <

[
d

d nσ

∫ EF

−∞
d Eρ0

(
E − (n − nσ )T0

1 − n + nσ

)]
nσ= n

2

(8.297)

With the substitution

ησ ≡ E − (n − nσ )T0

1 − n + nσ

; ηFσ = ησ (E = EF )

which results in

d E = (1 − n + nσ )dησ

the criterion (8.297) reads as

1 <

[
d

dnσ

(1 − n + nσ )
∫ ηFσ

−∞
dησρ0(ησ )

]
nσ= n

2

=

=
[∫ ηFσ

−∞
dησρ0(ησ ) + (1 − n + nσ )ρ0(ηFσ )

dηFσ

dnσ

]
nσ= n

2

=

= n

2 − n
+ (1 − 1

2
n)ρ0

(
EF − n

2 T0

1 − n
2

)(
dηFσ

dnσ

)
nσ= n

2

Finally with

(
dηFσ

dnσ

)
nσ= n

2

= T0 − EF

(1 − n
2 )2

the Hubbard-I criterion for ferromagnetism is given by

1 − n + (EF − T0)ρ0

(
2EF − nT0

2 − n

)
!
< 0 (8.298)

In comparison to the Stoner criterion (8.59), this is considerably sharper. In particu-
lar, it puts a condition also on the band occupation n. Since (1 − n) and the density
of states ρ0 are non-negative quantities, for the appearance of ferromagnetism, it is
necessary that (EF − T0) < 0. Since according to (8.293) T0 coincides with the
centre of gravity of the lower band, the criterion can be fulfilled only for small band
occupations. The origin for this apparently implausible condition should be searched
in the missing of a (formal) spin dependence of the centres of gravity of the bands
(8.293) and (8.294). On the other hand, this is what is to be expected from the
exact strong-coupling result (8.214) and (8.215). We will consider the significance
of spin-dependent band shift in detail in the next section.
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Before that let us investigate the criterion (8.298), as an example, for the simple
rectangular density of states shown in Fig. 8.9.

ρ0(x) =
⎧⎨
⎩

1
W i f T0 − W

2 ≤ x ≤ T0 + W
2

0 otherwise
, (8.299)

The Stoner criterion (8.59) demands only U > W and gives an extremely high Curie
temperature (8.61). In contrast, according to (8.298), we have to require

1 − n + EF − T0

W

!≤ 0 (8.300)

Here one has to note that the Fermi energy EF is, for an interacting electron sys-
tem, a function of the band occupation, which, however, can be easily determined
here:

nσ → n

2
=
∫ EF

Eu

d E
1

W
= 1

W
(EF − Eu) (T = 0)

Eu is the lower band edge for which holds:

T0 − W

2
!= Eu − n

2 T0

1 − n
2

→ Eu = T0 − W

2
(1 − n

2
)

That means

EF = n

2
W + Eu = T0 + W

2

(
3

2
n − 1

)

If this is substituted in (8.300), we get the unsatisfiable condition

2 < n (8.301)

Thus in contrast to the Stoner model, in the Hubbard-I theory, there is no ferromag-
netism for the rectangular density of states.

8.5.5 Static Susceptibility and Ferromagnetism

Before we elaborate the obviously very important spin-dependent band shift, we
want to make further checks on the possibility of ferromagnetism in the Hubbard-I
theory by calculating the static paramagnetic susceptibility χ . For this we assume a
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slightly less than half-filled band and a strong Coulomb interaction.

n ≤ 1 ; U >> W (8.302)

Then the Fermi energy is definitely in the lower quasiparticle band (8.291). Hence
we can limit ourselves to the quasiparticle density of states of the lower sub-band
(8.291):

ρlower
σ (E) = ρ0

(
E − n−σ T0

1 − n−σ

)
(8.303)

ρ0 is as usual the Bloch density of states. Therewith the numerator (8.77) of the
static susceptibility reads as

Z H = −
+∞∫

−∞
d E (ρσ (E) f ′−(E))0

= −
+∞∫

−∞
d E ρ0

(
2E − nT0

2 − n

)
f ′−(E) (8.304)

For (T = 0), f ′−(E) is a δ-function:

f ′−(E ; T = 0) = −δ(E − EF ) (8.305)

That means

Z H (T = 0) = ρ0

(
2EF − nT0

2 − n

)
(8.306)

For the denominator of the susceptibility we need

∂

∂n−σ

Slower
kσ (E − μ) = −�δ(E − (1 − n−σ )ε(k) − n−σ T0) +

+ �(1 − n−σ )(ε(k) − T0) ∗
∗ δ′(E − (1 − n−σ ) ε(k) − n−σ T0)

that gives in (8.78):
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NH = − 1

N

∑
k

+∞∫

−∞
d E f−(E)δ

(
E −

(
1 − n

2

)
ε (k) − n

2
T0

)
+

+ 1

N

∑
k

(
1 − n

2

) +∞∫

−∞
d E f−(E)(ε(k) − T0) ∗

∗ δ′
(

E −
(

1 − n

2

)
ε (k) − n

2
T0

)

= − 2

2 − n

+∞∫

−∞
d E f−(E)ρ0

(
2E − nT0

2 − n

)
−

−
+∞∫

−∞
d E f ′−(E)

(
2E − nT0

2 − n
− T0

)
ρ0

(
2E − nT0

2 − n

)

We finally get

NH = − n

2 − n
− 2

2 − n

+∞∫

−∞
d E f ′−(E)(E − T0)ρ0

(
2E − nT0

2 − n

)
(8.307)

With this the static paramagnetic susceptibility is completely determined:

χ̄H = −μB

+∞∫

−∞
d E f ′−(E)ρ0

(
2E − nT0

2 − n

)
(2 − n) ∗

∗
⎡
⎣1 − n −

+∞∫

−∞
d E f ′−(E)(E − T0)ρ0

(
2E − nT0

2 − n

)⎤
⎦

−1

(8.308)

The instability of the paramagnetism against ferromagnetic ordering is given by the
zero of the denominator:

0 = 1 − n −
+∞∫

−∞
f ′−(E)(E − T0)ρ0

(
2E − nT0

2 − n

)
(8.309)

For the most unfavourable case of Tc = 0+, we can use (8.305). That gives the
following criterion for ferromagnetism:

0 = 1 − n + (EF − T0)ρ0

(
2EF − nT0

2 − n

)
(8.310)
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This result agrees with (8.298). Therefore, we can take over the discussion presented
there and avoid repetition.

8.5.6 Spin-Dependent Band Shift

The approximate evaluation of the Hubbard model as discussed in the preceding
section led to the criterion (8.298) for the existence of ferromagnetism, which is
obviously only very difficult to fulfil as was demonstrated for a special case. The
possible reason for that is clear from Fig. 8.16. The centres of gravity of the ↑- and
↓-spectra coincide so that a spontaneous magnetization, which presumes a pref-
erential spin orientation, appears to be possible only for small band occupation.
The Hubbard-I solution satisfies the first three spectral moments but not the fourth.
Therefore, it is not correct in the strong-coupling regime, which happens to be the
regime where ferromagnetism is expected in the first place. Therefore, the appear-
ance of a spin-dependent band shift will be essential for a spontaneous ordering of
electron moments.

A distinct improvement from this point of view is provided by moment method
which is conceptually very simple and non-perturbative. It consists of two steps [8]:
First, one tries to guess the general structure of the spectral density, i.e. one makes
a spectral density ansatz (SDA), whereby, one is guided by exactly solvable limits,
exact spectral representations, sum rules and also by plausibility and intuition. A
comparison with already existing reliable theories also certainly helps. The zero-
bandwidth limit (Sect. 8.4.2), the two-site model (Sect. 8.4.3), the exact strong-
coupling behaviour and also the approximate Hubbard-I solution (8.287) altogether
make a two-pole ansatz [9] meaningful:

Skσ (E) = �

2∑
j=1

α jσ (k)δ
(
E + μ − E jσ (k)

)
(8.311)

The spectral weights α jσ (k) and the quasiparticle energies E jσ (k) are treated in the
beginning as free parameters.

In the second step of the procedure, using the relation (8.218), these free param-
eters are fitted with the exactly calculated spectral moments of the Hubbard model
(8.221), (8.222), (8.223), and (8.224). After simple reformulations, one obtains real
quasiparticle energies ( j = 1, 2)

E jσ (k) = 1

2

(
T0 + Bk−σ + ε(k) + U + (−1) j ∗

∗
√

(T0 + Bk−σ − ε(k) + U )2 + 4U n−σ (ε(k) − T0 − Bk−σ )
)

(8.312)

with spectral weights of the form
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α1σ (k) = E1σ (k) − T0 − Bk−σ − U (1 − n−σ )

E1σ (k) − E2σ (k)
= 1 − α2σ (k) (8.313)

This result implies the SDA self-energy:

ΣSD A
kσ (E) = U n−σ

E + μ − T0 − Bk−σ

E + μ − T0 − Bk−σ − U (1 − n−σ )
(8.314)

The SDA self-energy has the same structure as the one of Hubbard-I solution, what
is new is only the term Bk−σ , which we already got to know in Sect. 8.4.5 as the
“band correction” (8.211). This is made up of two terms, namely the band shift B−σ

(8.212) and the band width correction Fk−σ (8.213). It is interesting to note that
the SDA self-energy agrees exactly with the expression (8.235) which is obtained
as the leading term of the general high-energy expansion. With this it is particularly
clear that the solution (8.314) will have the correct strong-coupling behaviour. By
construction, the SDA solution satisfies the first four spectral moments.

Because of the presence of Bk−σ and also because of n−σ , the many-body prob-
lem with (8.314) is not yet completely solved. The important band shift B−σ can
be expressed according to (8.217) exactly by the one-electron Green’s function
or spectral density and therefore does not need any further approximation. The
wavenumber-dependent band width correction Fk−σ , on the other hand, cannot be
fixed directly using the one-electron functions. Investigations, which we do not want
to go into in detail here, have however shown that this part of the band correction, as
far as ferromagnetism is concerned, in contrast to the band shift, does not play such
a decisive role. Therefore, one might assume that in a first approximation it can be
neglected.

However, going beyond this, it would be consistent to determine the “higher”
correlation functions appearing in Fk−σ also by a moment method. Here we will
briefly discuss the method developed in [10]. First, it can be shown that in case of
translational symmetry and restriction to nearest neighbour electron hopping, the
wavenumber dependence of the bandwidth correction can be separated into

n−σ (1 − n−σ )Fk−σ = (ε(k) − T0)
3∑

i=1

F (i)
−σ (8.315)

According to (8.213) the three summands have the meaning

F (1)
−σ = 〈ni−σ n j−σ 〉 − n2

−σ densi ty correlation (8.316)

F (2)
−σ = −〈c†jσ c†j−σ ci−σ ciσ 〉 double − hopping correlation (8.317)

F (3)
−σ = −〈c†jσ c†i−σ c j−σ ciσ 〉 spin − f li p correlation (8.318)

i and j number the nearest neighbour lattice sites. As a result, the expectation values
are not explicitly dependent on the lattice sites. We will demonstrate the procedure
on the correlation F (3)

−σ . We can first write
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F (3)
−σ = −

∑
l

δ jl〈c†lσ c†j+Δ−σ c j−σ c j+Δσ 〉 (8.319)

Here the index Δ represents the lattice vector that connects two neighbouring lattice
sites Ri and R j with each other. Due to the assumed translational symmetry, F (3)

−σ is
the same expression for all the nearest neighbours. We will now introduce a suitable,
higher spectral density,

S(3)
jlσ (t, t ′) = 1

2π
〈
[
c†j+Δ−σ c j−σ c j+Δσ (t), c†lσ (t ′)

]
+
〉 (8.320)

whose Fourier transform S(3)
kσ (E) using the spectral theorem (B.95) gives the corre-

lation that we are looking for

F (3)
−σ = − 1

N

∑
k

∫ +∞

−∞
d E f−(E)S(3)

kσ (E − μ) (8.321)

The poles of S(3)
kσ (E), as can be seen from the definition (8.320), belong to the

one-particle excitation spectrum of the Hubbard system. By comparing the spectral
representation (B.86) of S(3)

kσ (E) with that of the starting function (8.311), one can
to a good approximation assume that the pole structure of the two functions is the
same. Therefore, the difference should be only in the spectral weights. That is why
in analogy to (8.311) it is reasonable to make the following ansatz for the higher
spectral density:

S(3)
kσ (E) = �

2∑
j=1

β jσ (k) δ(E + μ − E jσ (k)) (8.322)

where the quasiparticle energies E jσ (k) are the same as in (8.311) or (8.312). Thus,
only the spectral weights β jσ (k) are the unknowns. They are fixed by the first two
exactly calculated spectral moments of the higher spectral density S(3)

kσ (E) and the
correlation F (3)

−σ is then determined through (8.321).
The correlation terms F (1)

−σ and F (2)
−σ are handled in an analogous way, i.e. with

two-pole ansatz similar to (8.322), for suitably chosen higher spectral densities. It
should not remain unmentioned that the same procedure can be applied also for the
higher correlation 〈niσ c†i−σ c j−σ 〉 that appears in the band shift B−σ (8.212) which
leads to the exact result (8.217). This can be seen as a strong support for the method.

Figure 8.31 shows a typical result of the SDA for a strongly coupled band elec-
tron system on a bcc lattice. In the figure the quasiparticle density of states is plotted
as a function of energy for different band occupations n and at temperature T = 0.
For band occupations n ≤ 0.55 there does not exist any ferromagnetic solution
(n↑ �= n↓). There is no spin asymmetry of the density of states (ρσ (E) ≡ ρ−σ (E)).
We, however, observe a splitting into the so-called Hubbard bands which are shifted
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Fig. 8.31 Quasiparticle density of states in the SDA for the Hubbard model as function of the
energy for various band occupations. Parameters: bcc lattice, U = 5 eV , W = 2 eV , T = 0K .
Solid lines for σ =↑, broken lines for σ =↓

with respect to each other by about U and whose physical meaning has already been
discussed. We want to call this splitting the quasiparticle splitting. The areas under
the partial density of states scale roughly with the probability that a propagating
electron finds at a lattice point an interaction partner (n−σ , upper band) or does not
(1 − n−σ , lower band). For n > 0.58 an additional spin-splitting sets in for each of
the sub-bands (exchange splitting). The lower ↓-band becomes narrower and shifts
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to higher energies. The states are occupied by electrons up to a common Fermi edge.
Therefore, the system shows a spontaneous spin polarization m = n↑−n↓ �= 0. With
increasing particle density, the width of the ↓-band further decreases and the centre
of gravity moves to higher energies. For band occupations n ≥ 0.78 the ↓-band lies
completely above the Fermi edge and is therefore empty. The system finds itself in
ferromagnetic saturation.

Obviously we have to differentiate between two correlation-induced splittings.
This is because in the strong-coupling regime, there appears the quasiparticle split-
ting of the Hubbard bands practically for all the parameter constellations. Added
to this, under certain conditions, there is an exchange splitting, which creates the
spontaneous magnetization in the ferromagnetic phase. A more detailed analysis
shows that a spontaneous polarization of the band electrons sets in exactly when
the band correction Bk−σ (8.211), in particular the band shift B−σ (8.212), has
a real spin dependence. This term is missing in the Hubbard-I solution (8.269)
which again explains why ferromagnetism is extremely difficult to realize in that
theory.

The quasiparticle density of states shows a characteristic temperature depen-
dence, from which finally the magnetization curve, typical for ferromagnets, results.
The density of states for a band occupation n = 0.65 is plotted in Fig. 8.32 for
different temperatures. According to Fig. 8.31 (second picture from above), for this
particle concentration, the system is ferromagnetic and at T = 0 near to saturation
(m = 0.56). With increasing temperature, the ↓-band moves to lower energies and
becomes broader such that at T = 550K it coincides with the ↑-band. At this point,
the spin asymmetry and exchange splitting vanish. The system is in its paramagnetic
phase. By multiplying the spin-dependent density of states with the Fermi func-
tion and integrating, we obtain the spin-dependent average occupation numbers and
therewith the electron polarization m. Dividing by the total particle density (m/n)
results in a temperature dependence which is similar to the magnetization curve of
Fig. 8.8 with an obviously realistic Curie temperature.

These results can again be verified partly by the static susceptibility (8.65). In
Fig. 8.33, the inverse paramagnetic susceptibility for an sc lattice is plotted as
a function of band occupation for different coupling strengths U/W . The zeroes
provide us the instabilities of the paramagnetic state against ferromagnetism. The
appearance of two zeroes, i.e. two instabilities, at first glance seems to be a special
feature of the SDA. How far, possibly, this is a property of the Hubbard model itself
is not clear. It turns out that always the solution starting at the lower band occupation
is stable. This approaches, in contrast to the second solution, saturation m = n for
higher band occupations.

An interesting point is the influence of the non-locality of the electronic self-
energy (8.314) which is given by the wavenumber-dependent bandwidth correc-
tion Fk−σ in (8.315). Part (b) of Fig. 8.33 gives us an idea. The critical coupling
U/W increases from about 4 to about 14. For a primitive cubic lattice, apparently
the bandwidth correction cannot be neglected. Detailed investigation, however, has
shown that the influence of Fk−σ on the magnetic stability considerably decreases
with increasing coordination number (sc→bcc→fcc). What in principle is decisive
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Fig. 8.32 Quasiparticle density of states in the SDA for the Hubbard model as function of the
energy for various temperatures. Parameters: bcc lattice, U = 5 eV , W = 2 eV , n = 0.65. Solid
lines for σ =↑, broken lines for σ =↓

for the possibility of ferromagnetism in the Hubbard model is the spin-dependent
band shift B−σ .

The SDA (spectral density approach), presented in this section, gives a qual-
itatively convincing picture of the band ferromagnetism of correlated electrons.
It shows that the spin-dependent band shift and the lattice structure are the most
important components for a ferromagnetic ordering. At the same time it is also very
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Fig. 8.33 Inverse paramagnetic static susceptibility χ−1 for a sc lattice as a function of the ban-
doccupation for various values of the coupling U/W at T = 0K . The curves are found within
the SDA [11].(a) System with the full k-dependent self-energy (8.275). (b) System with a local
self-energy, i.e. for Fk−σ ≡ 0 (8.276)

clear, where the disadvantages of the method lie. First, by ansatz (8.311), the quasi-
particle energies (8.312) are real. Quasiparticle damping, which can be expected
to destabilize to a certain degree the ferromagnetic ordering, is excluded from the
beginning . In addition, the SDA result does not possess the expected behaviour in
the weak-coupling regime (Sect. 8.4.8). How strongly these two factors influence
the magnetic properties of the Hubbard model will be investigated in the following
sections.

8.5.7 Quasiparticle Damping

More or less by definition, the SDA self-energy (8.314) is a real quantity. It has a
pole at

E = T0 + Bk−σ + U (1 − n−σ ) − μ

which leads to a δ-peak in the imaginary part of the self-energy I m Σkσ (E + i O+).
This, of course, has no influence since the pole always lies in the band gap. As a
result, the quasiparticles are stable from the beginning. One can see in this a seri-
ous shortcoming of the moment method of the last section. Therefore, one should
look for a theory which retains the advantages of the SDA and at the same time, in
addition, allows for finite lifetimes of quasiparticles. The question we are interested
in this section is the influence of quasiparticle damping on the magnetic stability of
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the Hubbard model. As a preparation for this, we start with an alloy analogy of the
Hubbard model suggested by Hubbard himself [12].

The starting point is the idea that the σ -electron propagates through a crystal with
(−σ )-electrons frozen at certain lattice sites which are statistically distributed over
the lattice. When the σ -electron lands at a certain lattice site there are two possi-
bilities. It either finds a (−σ )-electron there or it does not. This can be understood
as motion through a fictitious binary alloy. The two alloy components have atomic
levels E1σ and E2σ and appear with concentrations x1σ and x2σ (x1σ + x1σ = 1).
The coherent potential approximation (CPA) is a standard method with which a con-
figurational average over the statistically distributed positions of the frozen (−σ )-
electron can be performed [13]. The resulting self-energy of the σ -electron obeys
the following equation:

0 =∑2
p=1 x pσ

E pσ − Σσ (E) − T0

1 − 1

�
Gσ (E)(E pσ − Σσ (E) − T0)

Gσ (E) = 1

N

∑
k Gkσ (E) = ∫ +∞

−∞ dx
ρ0(x)

E − Σσ (E) − x

(8.323)

ρ0(x) is again the Bloch density of states of the non-interacting electron system.
The CPA is a single-site approximation and therefore the self-energy is wavenumber
independent. Now to be concrete, we have to specify the fictitious alloy. The first
choice (conventional alloy analogy (CAA)) would be the use of the results of the
infinitely narrow band case ((8.129), (8.130), and (8.131), atomic limit)

E1σ = T0 ; x1σ = 1 − n−σ

E2σ = T0 + U ; x2σ = n−σ
(8.324)

Substituting this in (8.323) one gets a self-energy ΣC AA
σ (E), which is in general

complex and therefore includes quasiparticle damping. On the other hand, it could
be shown that this self-energy excludes in any case spontaneous ferromagnetism.
This is a crude contradiction to the result of SDA of the last section. Then one has
to ask oneself whether the damping (finite lifetime) of the quasiparticles which was
neglected in SDA has really such a destabilizing effect on collective magnetism.
This is a question which has to be taken seriously. It could be shown [14] that in
infinite dimensional lattice (Sect. 8.4.9), CPA is an exact (!) theory of the alloy prob-
lem. On the other hand, the CAA self-energy violates the correct strong-coupling
behaviour (8.227) as well as the limit of weak coupling (8.239). If the CPA theory
is exact for the alloy problem at least for d → ∞, then the contradiction can be
resolved only by assuming that the conventional alloy analogy (8.324) is not the
correct starting point. In particular, the picture of frozen (−σ )-electrons is surely
not acceptable.
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The form of the fictitious alloy is indeed by no means predetermined. Therefore,
we will now treat the energies E1,2σ and the concentrations x1,2σ of the still to be
found “optimal” fictitious alloy, as free parameters. In order to fix them, we will
substitute the high-energy expansions (8.226) and (8.227) in the CPA equation and
gather the powers of 1

E . In view of the single-site aspect of CPA, we limit the band
correction Bk−σ to its local part B−σ . This gives the following determining equations
for the energies and concentrations:

2∑
p=1

x pσ = 1

2∑
p=1

x pσ (E pσ − T0) = U n−σ

2∑
p=1

x pσ (E pσ − T0)2 = U 2 n−σ

2∑
p=1

x pσ (E pσ − T0)3 = U 3 n−σ + U 2 B−σ n−σ (1 − n−σ ) (8.325)

When the energies and concentrations of a modified alloy analogy (MAA) are deter-
mined from these relations, it is automatically guaranteed that the first four spectral
moments are fulfilled from which a correct strong-coupling behaviour results. One
finds

E M AA
1σ = T0 + 1

2

(
U + B−σ −

√
(U + B−σ )2 − 4Un−σ B−σ

)

(8.326)

E M AA
2σ = T0 + 1

2

(
U + B−σ +

√
(U + B−σ )2 − 4Un−σ B−σ

)

(8.327)

x M AA
1σ = E M AA

1σ − T0 − B−σ − U (1 − n−σ )

E M AA
1σ − E M AA

2σ

= 1 − x M AA
2σ

(8.328)

Interestingly, the weights and the energies coincide with the results (8.312) and
(8.313) of SDA if the band energies ε(k) and the band corrections Bk−σ are replaced
by their corresponding centres of gravity T0 and B−σ , respectively. Therefore, one
can understand the following choice as optimal alloy analogy p = 1, 2:

E M AA
pσ = (E SD A

pσ (k)
)
ε(k)=T0

= f p(T0, U, n−σ , B−σ ) (8.329)

x M AA
pσ = (αSD A

pσ (k)
)
ε(k)=T0

= gp(T0, U, n−σ , B−σ ) (8.330)
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Substituting this alloy analogy in the CPA equation (8.323) one obtains the MAA
self-energy for all energies E with which all the interesting quantities can be
derived.

• As a CPA result, MAA includes quasiparticle damping (I mΣM AA
σ (E) �≡ 0) with-

out sacrificing the advantages of SDA.
• The thermodynamic averages n−σ and B−σ can be determined self-consistently

with the help of the spectral theorem (8.136) and (8.217) and providing there-
with, in principle, particle density-, temperature- and spin-dependent atomic data
(8.329) and (8.330) of the two components of the alloy. The important thing here
is that through B−σ in some sense the itineracy of the (−σ )-electrons is included
in the calculation (correlated electron hopping). Contrary to the conventional
alloy analogy CAA (8.324) they are not seen as frozen on the lattice sites.

• By definition the first four spectral moments are fulfilled so that the correct
strong-coupling behaviour is taken care of.

• The strong-coupling behaviour can also be tested with the help of an exact result
of the general CPA theory [15] in the so-called split-band regime U � W .
According to this the spectral density should consist of two separated peaks with
centres of gravity at

T C P A
pσ = E pσ + x pσ (ε(k − T0) ; p = 1, 2 (8.331)

Substituting (8.329) and (8.330) in this equation we get for U � W the correct
result (8.208) and (8.209) when we further replace Bk−σ by B−σ . This can be
seen as a strong support for the modified alloy analogy.

• For us the most important fact, however, is that in contrast to CAA, the MAA
allows spontaneous ferromagnetism!

Figures 8.34 and 8.35 show the typical results of the MAA theory for two different
temperatures for the spectral density Skσ (E) of a strongly correlated electron system
(U/W = 5) on an fcc lattice. As Bloch density of states a tight-binding version [16]
is chosen. For less than half-filled bands (n < 1) the system is paramagnetic; a spon-
taneous spin asymmetry does not appear. The band occupation used in Figs. 8.34 and
8.35, n = 1.6 allows ferromagnetism provided the Coulomb interaction U exceeds
a critical value. As already observed in the results of SDA (Figs. 8.31 and 8.32),
two different splittings appear. The spectral density consists for each k-vector of a
high-energy and a low-energy peaks (quasiparticle splitting), which are separated
from each other by about U . The finite widths of the peaks are consequences of
the quasiparticle damping, which displays a clear energy-, wavenumber-, spin- and
temperature-dependence. The spectral weight of the low-energy peak, given by the
area under the curve, scales with the probability that the (k, σ )-electron propagating
in the more than half-filled band finds an empty lattice site. On the other hand, the
weight of the upper peak corresponds to the probability that the electron meets an
electron with opposite spin. We have already established in connection with the
SDA results (Figs. 8.31 and 8.32) that this quasiparticle splitting is not tied to the
ferromagnetic phase. It represents the correct strong-coupling behaviour (Fig. 8.15).
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Fig. 8.34 Spectral density as
a function of energy for an
fcc lattice calculated within
the MAA at the temperature
T = 100K for different
k-vectors equidistant along
the (0, 0, 1) direction of the 1.
Brillouin zone. Further
parameters: n = 1.6,
U = 20 eV , W = 4 eV .
Vertical line indicates the
position of the chemical
potential
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Ferromagnetism appears exactly then, when in addition to the quasiparticle splitting
there sets in an extra exchange splitting of each of the two spectral density peaks.
At low temperatures as in Fig. 8.34 (T = 100K), the system is practically in fer-
romagnetic saturation (m = 2 − n), i.e. almost all ↑-states are occupied so that a
↓-electron finds an interacting partner at almost every lattice site. Consequently, the
low-energy peak of the ↓ spectral density vanishes. The high-energy peak is very
sharp indicating a long-lived quasiparticle. A ↓-hole has no chance to be scattered
by a ↑-hole. At higher temperatures as in Fig. 8.35, due to partial demagnetization,
i.e. due to a finite hole density in the ↑-spectrum, there appears again a low-energy
↓-peak.

The exchange splitting has an interesting dependence on wavenumber. At the
upper end of the spectrum (X -point: (0, 0, 2π )) we find a normal splitting, i.e. the
↓-peak lies above the ↑-peak. At the lower end (Γ-point: (0,0,0)) it is exactly the
opposite, namely the ↓-peak lies below the ↑-peak. The quasiparticle dispersions
intersect each other as functions of k. This is the result of two competing correlation
effects. One leads to a spin-dependent exchange shift of the centres of gravity of the
quasiparticle subbands (8.214) and (8.215) with respect to each other in the normal
sense and the other to a spin-dependent bandwidth reduction, which overcompen-
sates the normal shift at the band bottom.
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Fig. 8.35 Spectral density as
a function of energy for an
fcc lattice calculated within
the MAA at the temperature
T = 615K for different
k-vectors equidistant along
the (0, 0, 1) direction of the 1.
Brillouin zone. Further
parameters: n = 1.6,
U = 20 eV , W = 4 eV .
Vertical line indicates the
position of the chemical
potential
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An example of the temperature dependence of the quasiparticle density of states
is demonstrated in Fig. 8.36. The qualitative interpretation is the same as that for the
SDA results presented in Fig. 8.32 and therefore need not be repeated. On the whole
the curves are rounder compared to those in SDA due to quasiparticle damping. We
will see in Sect. 8.5.10 that this damping leads to an appreciable destabilization of
ferromagnetism compared to the SDA. A main reason for this is a finite overlap
of the spectral density peaks which clearly weakens the self-consistently calculated
ferromagnetic solution compared to the paramagnetic solution. In summary one may
say that because of the inclusion of the quasiparticle damping, the MAA is a system-
atic improvement of the SDA without loosing its advantage (spin-dependent band
shift!). The second shortcoming of the SDA mentioned above, namely the incorrect
weak-coupling behaviour, however, remains even in the MAA. This will be a point
to ponder in the next section.

8.5.8 Dynamical Mean Field Theory

Neither the SDA self-energy nor the MAA self-energy satisfy the correct weak-
coupling behaviour (8.239). Therefore, we now search for a method which in a
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Fig. 8.36 Quasiparticle
density of states as a function
of energy for an fcc lattice
calculated for different
temperatures T up to TC by
use of MAA. Parameters as in
Figs. 8.34 and 8.35. The
vertical line indicates the
position of the chemical
potential
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reasonable way interpolates between the rigorous results of the weak and strong
coupling. This is achieved by the recently developed and extraordinarily success-
ful dynamical mean field theory (DMFT) [17]. First, we start with a wavenumber-
independent (local) self-energy. According to (8.255) this is exact in the case of
a lattice of infinite dimension d. Let us assume that this is an acceptable starting
point even for finite dimensions. We have shown for this case in Sect. 8.4.10 (8.264)
that the self-energy in the Hubbard model can be expressed by the diagrammatic
functional Cσ of an impurity scattering (8.263). This fact will now be exploited
together with an investigation of a well-known impurity problem [18].

The starting point is the “single-impurity” Anderson model (SIAM). The model
describes a partially filled energy band which hybridizes with a localized correlated
impurity (d) level and therefore is described by the following Hamiltonian:

H =
∑

σ

(εd − μ)ndσ +
∑
kσ

(ε(k) − μ)nkσ +

+
∑
kσ

(
Vkdc†dσ ckσ + Vdkc†kσ cdσ

)
+ 1

2
U
∑

σ

ndσ nd−σ (8.332)
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c†dσ (cdσ ) is the creation (annihilation) operator of an electron with spin σ in a single
localized d-level (impurity level) and correspondingly c†kσ (ckσ ) for a band electron
with the wavevector k. ndσ = c†dσ cdσ is the occupation number operator for the
impurity level and nkσ = c†kσ ckσ for the band states. Vkd (= V ∗

dk) is the hybridization
matrix element and U is the Coulomb repulsion on the d-level.

The equation of motion of the d-impurity Green’s function

Gdσ (E) = 〈〈cdσ ; c†dσ 〉〉 (8.333)

is formally solved by introducing a corresponding d-self-energy Σdσ (E) using

〈〈[
cdσ ,

1

2
U
∑
σ ′

ndσ ′nd−σ ′

]

−
; c†dσ

〉〉
≡ Σdσ (E)Gdσ (E) (8.334)

and by defining a hybridization function

Δ(E) =
∑

k

|Vkd |2
E + μ − ε(k)

(8.335)

which absorbs the band energies ε(k) and the hybridization matrix element Vkd

(Problem 8.16):

Gdσ (E) = �

E + μ − εd − Δ(E) − Σdσ (E)
(8.336)

With the respective free Green’s function

G(0)
dσ (E) = �

E + μ − εd − Δ(E)
(8.337)

Equation (8.336) can also be written as Dyson equation:

Gdσ (E) = G(0)
dσ (E) + G(0)

dσ (E)
1

�
Σdσ (E)Gdσ (E) (8.338)

This equation has the same structure as the version (8.262) for the Hubbard model.
The corresponding self-energy diagrams belong to the class Cσ (8.263) of impurity
diagrams

Σdσ (E) = Cσ

[{
G(0)

dσ (E)
}

, U
]

, (8.339)

provided it is assumed that U has the same meaning as in (8.263).
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We now choose in (8.337) the hybridization function Δ(E) such that it holds

G(0)
dσ (E)

!≡ Fiiσ (E) (8.340)

Fiiσ (E) is defined in (8.257) (l = i). One can show that (8.340) can be realized only
when the chemical potential μ is same for both the systems and formally one sets

εd = T0 (8.341)

Comparing (8.264) with (8.339) and (8.340), we get

Σσ (E) ≡ Σdσ (E) (8.342)

and then due to (8.338) and (8.262):

Giiσ (E) ≡ Gdσ (E) (8.343)

With this the Hubbard model is ascribed to the simpler SIAM.
We want to summarize the results once more. Equation (8.262) can be written as

follows:

F−1
i iσ (E) = G−1

i iσ (E) + 1

�
Σσ (E)

With (8.340) this means

(
G(0)

dσ

)−1
= 1

�
(E + μ − εd − Δ(E)) = G−1

i iσ (E) + 1

�
Σσ (E)

and leads with (8.341) to the following self-consistent equation:

Δ(E) = E + μ − T0 − Σσ (E) − �G−1
i iσ (E) (8.344)

Due to the k-independence of the self-energy the propagator Giiσ (E) can be
expressed in terms of the in general known free Bloch density of states ρ0(E).

Giiσ (E) = �

∫ +∞

−∞
dx

ρ0(x)

E + μ − x − Σσ (E)
(8.345)

The DMFT solves the many-body problem of the Hubbard model finally through
the following selfconsistency cycle:

• Choose a starting value for Σσ (E), e.g., Σσ (E) ≡ 0!
• Using (8.345) calculate Giiσ (E)!
• Determine Δ(E) using (8.344)
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• Solve the SIAM problem (8.336) with the obtained Δ(E), i.e. find Σdσ (E)!
• Use (8.342) for a new starting value of Σσ (E)!

The remaining job lies in the solution of SIAM in the fourth step. This is certainly
not a trivial problem but very much better worked out than the original Hubbard
problem. With the help of Quantum Monte Carlo methods [19] it is possible to
find a numerically essentially exact solution of the SIAM which can be used in the
DMFT cycle to solve the Hubbard problem [20]. In the next section, as an example,
we want to discuss an analytical theory of the SIAM problem, then apply it to the
Hubbard model via DMFT to finally obtain statements about band ferromagnetism
in the Hubbard model.

8.5.9 Modified Perturbation Theory

We are looking for a theory of the single-impurity Anderson model, which on
implanting in the DMFT procedure reproduces the correct weak-coupling behaviour
of the Hubbard model (Sect. 8.4.8) without loosing the advantages of the methods
discussed in Sects. 8.5.6 and 8.5.7. That means a self-energy has to be found which
reproduces the exact results in the strong as well as weak-coupling regimes. Most
interesting question here is how far does the weak-coupling physics influence the
possibility of band ferromagnetism in the Hubbard model.

A first step in answering this consists of a second order perturbation theory for
the SIAM

ΣSO PT
dσ (E) = Und−σ + U 2Σ

(SOC)
dσ (8.346)

The procedure is same as described in Sect. 8.4.8 for the Hubbard model. Figure 8.37
shows the corresponding second order skeleton diagram for SIAM. Evaluation of
this diagram gives an expression which is completely analogous to (8.240), the
only difference being one has to replace the single-electron spectral density of the
Hubbard model by the impurity spectral density of the Anderson model:

Fig. 8.37 Second order
contribution to the
self-energy of the
single-impurity Anderson
model
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Σ
(SOC)
dσ (E) = 1

�3

∫ ∫ ∫
dx dy dz

S(1)
dσ (x) S(1)

d−σ (y)S(1)
d−σ (z)

E − x + y − z
∗

∗ ( f (x) f (−y) f (z) + f (−x) f (y) f (−z)) (8.347)

It was found convenient to choose here the perturbation theory around Hartree–
Fock (see (8.242)). The corresponding spectral density S(1)

dσ is determined from the
reduced Dyson equation presented in Fig. 8.38 which takes into account only the
skeleton diagrams of first order. Combining this perturbation theory result already
with the DMFT, leads to iterative perturbation theory (ITP) [18], from which one
can show that for the half-filled band (n = 1) it gives excellent result. For n �= 1,
however, it turns out to be insufficient particularly from the point of view of collec-
tive magnetic ordering. The strong-coupling behaviour is not correctly reproduced
by this approximation. More promising is therefore the following interpolating self-
energy ansatz [21]:

Σdσ (E) = Und−σ + aσ U 2Σ
(SOC)
dσ (E)

1 − bσ U 2Σ
(SOC)
dσ (E)

(8.348)

A high-energy expansion for the SIAM, analogous to the one for the Hubbard
model in Sect. 8.4.7, is used in order to fix the unknown parameters aσ and bσ .
The explicit calculation shows that the first two spectral moments are automatically
satisfied by the ansatz so that the third and fourth moments are needed for fixing the
parameters. One finds

aσ = nd−σ (1 − nd−σ )

n(1)
d−σ (1 − n(1)

d−σ )
(8.349)

bσ = Bd−σ − B(1)
d−σ − (μ − μ̃) + U (1 − 2nd−σ )

U 2n(1)
d−σ (1 − n(1)

d−σ )
(8.350)

Here Bdσ is a spin-dependent band shift,

ndσ (1 − ndσ )(Bdσ − εd ) =
∑

k

Vkd〈c†kσ cdσ (2nd−σ − 1)〉 (8.351)

Fig. 8.38 Hartree–Fock–Dyson equation for the impurity Green’s function of the single-impurity
Anderson model
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completely analogous to the one for the Hubbard model (8.212). How this higher
correlation function can be expressed by the single-impurity Green’s function is
shown in Problem 8.17:

ndσ (1 − ndσ )(Bdσ − εd ) = 1

π�
I m
∫

d E f−(E)Δ(E − μ) ∗

∗
(

1 − 2

U
Σdσ (E − μ)

)
Gdσ (E − μ) (8.352)

B(1)
dσ is the mean-field analogue:

n(1)
dσ (1 − n(1)

dσ )(B(1)
dσ − εd ) =

(
2n(1)

d−σ − 1
)∑

k

Vkd〈c†kσ cdσ 〉(1) (8.353)

The occupation number n(1)
dσ is to be correspondingly interpreted. The parameter μ̃

is further introduced in order to fulfil the Luttinger sum rule [22], about which we
will not discuss further here. It is eventually fixed by the condition

n(1)
dσ = ndσ (8.354)

The modified perturbation theory presented here has a number of advantages so
that the approximation, inspite of the seemingly arbitrarily proposed ansatz (8.348),
appears to be quite reliable.

1. Correct weak-coupling behaviour up to U 2 terms.
2. Correct Fermi liquid behaviour for arbitrary band occupations n (not investigated

in detail here!).
3. Luttinger theorem (T = 0) is satisfied for band occupations not far from half-

filling (n = 1).
4. Appearance of a Kondo resonance for low temperatures.
5. W → 0 limit exact for all n.
6. Correct behaviour for strong coupling.
7. Spontaneous band ferromagnetism possible!

Figure 8.39 shows a typical result of the MPT for the local spectral density
1/�Siiσ (E) = ρσ (E + μ), calculated for a hypercubic lattice with the density of
states (8.250) and band occupation n = 0.94 for different temperatures. The energy
units are so chosen that in (8.251) t∗ = 1/

√
2 is valid. One recognizes clearly the

two strong-coupling structures (Hubbard bands) separated from each other by about
U . Striking however is a resonant quasiparticle structure at the chemical potential μ.
It is very revealing to observe that the resonance begins to appear exactly when the
static susceptibility starts to deviate from the Curie-like behaviour. This indicates a
suppression of the average local moment due to the antiferromagnetic correlations
of the itinerant electrons at the Fermi edge. The striking structure at μ, which did
not appear in the other methods discussed so far, can therefore be interpreted as
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Fig. 8.39 Spectral density
1/� Siiσ (E) = ρσ (E + μ) for
a hypercubic lattice (8.250),
n = 0.94 and U=4 (energy
unit t∗ = 1/

√
2 (8.251)) as

function of the energy and for
various temperatures T .
(MPT, [21]). Thin dashed
line: ρ0(E + μ), U = 0.
Inset: Static susceptibility χ

as function of the temperature
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Kondo-type resonance. Apparently this can be captured only by such theories of
the Hubbard model which possess the correct weak-coupling behaviour. For tem-
peratures at which χ has the Curie-like behaviour (e.g. kB T = 0.259 in Fig. 8.39)
there is no Kondo resonance at the Fermi edge. On the other hand with decreasing
temperatures, the resonance grows larger approaching the value of the free density
of states (local spectral density) at T = 0. Although not discussed in detail here,
it means according to [22] that the theory (MPT) satisfies the important Luttinger

sum rule: Siiσ (E = 0)
!= S(0)

i iσ (E = 0) (d = ∞). Assessing from the number of the
exact results to the Hubbard model reproduced, the MPT appears to be an optimal
analytical approach to the many-body problem of the Hubbard model. In the next
section, we want to compare the results of MPT for band ferromagnetism with those
of the theories discussed earlier.

8.5.10 Curie Temperature, Magnetization and Static Susceptibility

All the theories discussed in the earlier sections exclude spontaneous band ferro-
magnetism for the hypercubic lattice with the density of states (8.250) shown in
Fig. 8.39. It appears that a distinctly more asymmetric density of states is necessary
for collective magnetism. Therefore, we take a d = 3 fcc density of states gener-
alized to d = ∞, which was also used in the Quantum Monte Carlo calculation in
[20]:

ρ0(E) =
exp
(
− 1

2

(
1 −

√
2E
t∗

))

t∗
√

π
(

1 −
√

2E
t∗

) (8.355)
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The energy units are so fixed that it holds

t∗ = t
√

2d(d − 1)
!= 1 (8.356)

For this density of states, all the theories presented predict ferromagnetism only
for more than half-filled band. That is why in Fig. 8.40 by band filling we mean
the hole concentration. The corresponding hole density of states is given from
(8.355) by t∗ → −t∗. The figure shows the Curie temperature as a function of
hole concentration n. The electron concentration in this case is 2 − n. The results
of the analytical methods SDA, MAA and MPT are compared with the numerically
essentially exact Quantum Monte Carlo results which can hold as a yardstick of
the reliability of the proposed theories. The TC curves for all the methods look
qualitatively similar. The role of the spin-dependent band shift B−σ (8.212) and
(8.217), which was discussed earlier, becomes strikingly clear when we compare
the results displayed for the individual theories with the results of the corresponding
approximations which differ exactly by the missing of such a band shift from SDA,
MAA and MPT. The counterpart of SDA in this sense is the Hubbard-I solution
(Sect. 8.5.1) which allows ferromagnetism only for a very asymmetric density of
states. For the density of states (8.355) it indeed has ferromagnetic solutions but in
a very narrow range of n values. The band shift B−σ , which takes finite values in
SDA apparently causes a drastic increase of the ferromagnetic stability. It becomes
still more clear if we compare the modified alloy analogy (MAA) with its B−σ ≡
0 counterpart. This is the conventional alloy analogy CAA (8.323) and (8.324)
which excludes ferromagnetism in all cases, i.e. for all coupling strengths U and
band occupations n [23].

Fig. 8.40 Curie temperature
as a function of band “filling”
(hole concentration) for an
fcc-type d = ∞-lattice
(8.355). The points with error
bars are the Quantum Monte
Carlo results from [20]
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The comparison of SDA and MAA gives information about the quasiparticle
damping, which is present in MAA but not in SDA. The ferromagnetic coupling
seems to be considerably weakened by the finite lifetimes of the quasiparticles. The
Curie temperatures are distinctly lower. The correct capture of the weak-coupling
behaviour in the MPT leads to a further reduction of TC . The possible reason could
be the tendency to screen the effective magnetic moments mediated by the Kondo
resonance. The Curie temperatures of MPT are nearest to those of QMC. We con-
clude that the strong-coupling phenomenon of ferromagnetism is also influenced
not inappreciably by the weak-coupling aspects.

Figure 8.41 demonstrates the qualitative equivalence of the theories of the Hub-
bard model that are discussed here, by considering the spontaneous magnetization
(spin polarization of the band electrons) and the inverse static susceptibility as
functions of reduced temperature T/TC . All the magnetization curves can be well
approximated by Brillouin function and reach saturation at T = 0 (a small deviation
for MPT). There appear, at least for the parameters chosen, exclusively second order
phase transitions at critical point. The static paramagnetic susceptibility follows for
all theories the Curie–Weiss law: χ = C(T −Θ)−1, where in all cases the paramag-

Fig. 8.41 Electron spin
polarization m and inverse
static susceptibility χ−1 as
function of the reduced
temperature T/TC . Bottom
figure: QMC results, dashed
line for T/TC ≤ 1:
S = 1/2-Brillouin function.
Parameters: U = 4, n = 0.58
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netic Curie temperature Θ coincides with the Curie temperature TC . Even the Curie
constant C itself is roughly the same (≈ 0.5) for the different theories.

The foregoing considerations have shown that band ferromagnetism is possible
in the Hubbard model depending on the following central parameters:

lattice structure,
band occupation,

Coulomb interaction,
temperature.

Our comparison of many analytical procedures has shown as important factors for
magnetic stability, in a positive sense, a self-consistent, spin-dependent band shift,
which through an effective exchange splitting leads to a ferromagnetic phase, and in
a negative sense, a finite lifetime of the quasiparticles which may drastically reduce
the effective ferromagnetic coupling strength. An additional inclusion of the correct
weak-coupling properties (Fermi fluid) eventually provides a convincing description
of band ferromagnetism in the Hubbard model.

8.6 Problems

Problem 8.1 Consider non-interacting electrons in a periodic crystal potential:

H0 =
∑
i jσ

∑
μν

T μν

i j c+iμσ c jνσ μ, ν : band indices

After Fourier transformation for the (μ, ν)-elememt of the (2l +1)× (2l +1)-matrix
T̂k holds

T μν

k = 1

Ni

∑
i, j

T μν

i j e−ik(Ri−R j ) Ni : number of lattice si tes

The eigenstates of T̂k

T̂k |umkσ 〉 = εm(k) |umkσ 〉

build the unitary matrix Ûkσ , which diagonalizes T̂k.

Ûkσ T̂k Û †
kσ =

⎛
⎜⎜⎜⎝

ε1(k) . . . 0 0
0 ε2(k) · · · 0
...

. . .
...

0 0 . . . ε2l+1(k)

⎞
⎟⎟⎟⎠

Then the construction operators are transformed as follows:



486 8 Hubbard Model

c jμσ = 1√
N !

∑
km

eik·R j
(
U mμ

kσ

)∗
ckmσ

Then prove that

H0 =
∑
kmσ

εm(k)c†kmσ ckmσ

Problem 8.2 How does the Hubbard Hamiltonian appear in the Bloch representa-
tion?

Problem 8.3 Check whether the Stoner approximation (Sect. 8.3.1) correctly repro-
duces the exact limiting cases of the band limit (U → 0) and the infinitely narrow
band limit (ε(k) → T0 ∀k).

Problem 8.4 Consider a band antiferromagnet within the framework of the Stoner
model:

H =
∑

kσ,α,β

εαβ
σ (k)c†kασ ckβσ

Let the antiferromagnet be made up of two ferromagnetically ordered sub-lattices A
and B:

εαα
σ (k) = ε(k) + 1

2
Un − 1

2
zσ Umα − μ

εAB
σ (k) = t(k) = εB A∗

σ (k)

m A = −m B = m = n A↑ − n A↓
n = nα↑ + nα↓

1. Calculate the quasiparticle energies. Show that they are independent of electron
spin σ .

2. Determine the quasiparticle density of states!

Problem 8.5 Verify the following representation of the δ-function:

δ(x) = 1

2
lim

β→∞
β

1 + cosh(βx)
, (β > 0)

Problem 8.6 Let

σα(k) =
∑

i

σα
i e−ik·Ri , (α = ±, z, x, y)
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be the electron spin operators:

σ z
i = 1

2
(ni↑ − ni↓); σ+

i = c+i↑ci↓; σ−
i = c+i↓ci↑

Calculate for the Hubbard model in a homogeneous external field
B0 = B0ez the following commutators:

1.
[
σ+(k) , H

]
−

2.
[[

σ+(k) , H
]
− , σ−(−k)

]
−

Problem 8.7 Calculate the chemical potential μ of the Hubbard model at half-filling
in the zero-bandwidth limit (Sect. 8.4.2)!

Problem 8.8 Using (8.79) calculate the static susceptibility of the Hubbard model
at half-filling (n = 1) in the zero-bandwidth limit.

Problem 8.9 Consider the two-site model (Sect. 8.4.3). The system contains exactly
one σ -electron which can hop in either direction between the two sites. Calculate
the energy eigenvalues and the eigenstates of the electron.

Problem 8.10 Let the two-site Hubbard model

H = t
∑

σ

(
c†1σ c2σ + c†2σ c1σ

)
+ 1

2
U

2∑
i=1

∑
σ

niσ ni−σ

be occupied by two electrons with opposite spins. Use the exact eigenstates for t = 0
as the basis states:

∣∣∣ε(2)
1

〉
= c†1σ c†2−σ |0〉∣∣∣ε(2)

2

〉
= c†2σ c†1−σ |0〉∣∣∣ε(2)

3

〉
= c†1σ c†1−σ |0〉∣∣∣ε(2)

4

〉
= c†2σ c†2−σ |0〉 〈0 | 0〉 = 1

1. Show that the states
∣∣∣ε(2)

i

〉
are orthonormal.

2. Calculate the Hamiltonian matrix

H (2)
i j =

〈
ε

(2)
i

∣∣∣ H
∣∣∣ε(2)

j

〉
; i, j = 1 . . . 4

3. Calculate the eigenvalues and eigenstates of the two-site Hamiltonian!
4. Using the above results calculate the quasiparticle density of states (8.147):
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ρ(−σ )
σ (E) = 1

Z

∑
n,m

∣∣∣〈ε(2)
m

∣∣ c†1σ

∣∣ε(1)
n

〉∣∣∣2 e−βE (1)
n ∗

∗δ (E − (E (2)
m − E (1)

n

))

Problem 8.11 1. Consider the two-site Hubbard model in the case of two σ -
electrons and one (−σ )-electron. Show that

∣∣∣E (3)
1

〉
= 1√

2

(
c†1−σ − c†2−σ

)
c†1σ c†2σ |0〉

∣∣∣E (3)
2

〉
= 1√

2

(
c†1−σ + c†2−σ

)
c†1σ c†2σ |0〉

are the eigenstates and calculate the corresponding eigenvalues.
2. Calculate the density of states ρ(σ,−σ )

σ (E) for the case where the two-site model
is occupied by one σ - and one (−σ )-elctron.

Problem 8.12 Particularly important for the possibility of ferromagnetism in Hub-
bard model is the spin-dependent band shift:

n−σ (1 − n−σ )B−σ = 1

N

i �= j∑
i, j

Ti j

〈
c†i−σ c j−σ (2niσ − 1)

〉

Show that this higher correlation
〈
c†i−σ c j−σ (2niσ − 1)

〉
is expressible in terms of the

one-electron spectral density Skσ (E).

Problem 8.13 Calculate the first four one-electron spectral moments of the Hubbard
model. Compare your results with (8.221), (8.222), (8.223) and (8.224).

Problem 8.14 The determinant built by the one-electron spectral moments M (n)
kσ

Δ
(r )
kσ =

∣∣∣∣∣∣∣

M (0)
kσ · · · M (r )

kσ
...

...
M (r )

kσ · · · M (2r )
kσ

∣∣∣∣∣∣∣

allows statements to be made about the structure of the one-electron spectral density
[24]. That is exactly an n-pole function,

Skσ (E) = �

n∑
i=1

α
(i)
kσ δ(E + μ − Eiσ (k))

when
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Δ
(n)
kσ = 0

Δ
(r )
kσ �= 0 f or 0 ≤ r ≤ n − 1

Using this theorem, prove that for the case of the Stoner model, the spectral density
is a one-pole function.

Problem 8.15 Consider the Hubbard model in the limit of infinitely narrow band:

Ti j = T0δi j ↔ ε(k) = T0 ∀k

1. Show that for the one-electron spectral moments holds

M (n)
i iσ = (T0 − μ)n + [(T0 + U − μ)n − (T0 − μ)n

]
n−σ

n = 0, 1, 2, · · ·

2. Use the theorem from Problem 8.14 to show that the one-electron spectral density
is a two-pole function, i.e. a linear combination of two δ-functions.

3. Calculate the quasiparticle energies and their spectral weights.

Problem 8.16 Determine the Green’s function

Gdσ (E) =
〈〈

cdσ ; c†dσ

〉〉

of the Anderson model (SIAM). Show that it holds

Gdσ (E) = �

E + μ − εd − Δ(E) − Σdσ (E)

where Δ(E) is the hybridization function defined in (8.335) and Σdσ (E) is the self-
energy fixed by (8.334).

Problem 8.17 Show that the spin-dependent band shift of the Anderson impurity
model

ndσ (1 − ndσ )(Bdσ − εd ) =
∑

k

Vkd

〈
c†kσ cdσ (2nd−σ − 1)

〉

can be expressed in terms of the impurity Green’s function Gdσ as follows:

ndσ (1 − ndσ )(Bdσ − εd ) = − 1

π�
I m

+∞∫

−∞
d E f−(E)Δ(E − μ) ∗

∗ Gdσ (E − μ)

(
2

U
Σdσ (E − μ) − 1

)

The notations correspond to the ones in Sects. 8.5.8 and 8.5.9.
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Appendix A
Second Quantization

An exact description of an interacting many-body system requires the solving of
the corresponding many-body Schrödinger equations. The formalism of second
quantization leads to a substantial simplification in the description of such a many-
body system, but it should be noted that it is only a reformulation of the original
Schrödinger equation but not yet a solution. The essential step in the second quanti-
zation is the introduction of so-called creation and annihilation operators. By doing
this, we eliminate the need for the laborious construction, respectively, of the sym-
metrized or the anti-symmetrized N -particle wavefunctions from the single-particle
wavefunctions. The entire statistics is contained in fundamental commutation rela-
tions of these operators. Forces and interactions are expressed in terms of these
“creation” and “annihilation” operators.

How does one handle an N -particle system? In case the particles are distinguish-
able, that is, if they are enumerable, then the method of description follows directly
the general postulates of quantum mechanics:

H(i)
1 : Hilbert space of the i th particle with the orthonormal basis {|φ(i)

α 〉}:

〈φ(i)
α |φ(i)

β 〉 = δαβ (A.1)

HN : Hilbert space of the N -particle system

HN = H(1)
1 ⊗H(2)

1 ⊗ · · · ⊗H(N )
1 (A.2)

with the basis {|φN 〉}:
|φN 〉 = |φ(1)

α1
φ(2)

α2
· · ·φ(N )

αN
〉 = |φ(1)

α1
〉 |φ(2)

α2
〉 · · · |φ(N )

αN
〉 (A.3)

An arbitrary N -particle state |ψN 〉,

|ψN 〉 =
∫ ∑

α1···αN

c(α1 · · ·αN )|φ(1)
α1

φ(2)
α2

· · ·φ(N )
αN

〉 (A.4)

underlies the same statistical interpretation as in the case of a 1-particle system. The
dynamics of the N -particle system results from the formally unchanged Schrödinger
equation:

W. Nolting, A. Ramakanth, Quantum Theory of Magnetism,
DOI 10.1007/978-3-540-85416-6 BM2, C© Springer-Verlag Berlin Heidelberg 2009
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i�
∂|ψN 〉

∂t
= Ĥ |ψN 〉 (A.5)

The handling of the many-body problem in quantum mechanics, in the case of
distinguishable particles, confronts exactly the same difficulties as in the classical
physics, simply because of the large number of degrees of freedom. There are no
extra, typically quantum mechanical complications.

A.1 Identical Particles

What are “identical particles”? To avoid misunderstandings let us strictly separate
“particle properties” from “measured quantities of particle observables”. “Parti-
cle properties” as e.g. mass, spin, charge, magnetic moment, etc. are in principle
unchangeable intrinsic characteristics of the particle. The “measured values of par-
ticle observables” as e.g. position, momentum, angular momentum, spin projection,
etc., on the other hand, can always change with time. We define “identical particles”
in the quantum mechanical sense as particles which agree in all their particle prop-
erties. Identical particles are therefore particles, which behave exactly in the same
manner under the same physical conditions, i.e. no measurement can differentiate
one from the other. Identical particles also exist in classical mechanics. However, if
the initial conditions are known, the state of the system for all times is determined
by the Hamilton’s equations of motion. Thus the particles are always identifiable!
In quantum mechanics, on the contrary, there is the principle of indistinguishability,
which says that, identical particles are intrinsically indistinguishable. In quantum
mechanics, in some sense, identical particles lose their individuality. This originates
from the fact that there do not exist sharp particle trajectories (only “spreading”
wave packets!). The regions, where the probability of finding the particle is unequal
to zero, overlap for different particles. Any question whose answer requires the
observation of one single particle is physically meaningless.

We face now the problem, that, essentially for calculational purposes, we can-
not avoid, to number the particles. Then, however, the numbering must be so that
all physically relevant statements, that are made, are absolutely invariant under a
change of this particle labelling. How to manage this is the subject of the following
considerations.

We introduce the permutation operator P , which, in the N -particle state, inter-
changes the particle indices:

P|φ(1)
α1

φ(2)
α2

· · ·φ(N )
αN

〉 = |φ(i1)
α1

φ(i2)
α2

· · ·φ(iN )
αN

〉 (A.6)

Every permutation operator can be written as a product of transposition operators
Pi j . On application of Pi j to a state of identical particles, results, according to the
principle of indistinguishability, in a state, which, at the most, is different from the
initial state by an unimportant phase factor λ = exp(iη):
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Pi j | · · ·φ(i)
αi
· · ·φ( j)

α j
· · · 〉 = | · · ·φ( j)

αi
· · ·φ(i)

α j
· · · 〉

= λ | · · ·φ(i)
αi
· · ·φ( j)

α j
· · · 〉 (A.7)

Since P2
i j = 1, it is necessary that λ = ±1. Therefore, a system of identical particles

must be either symmetric or antisymmetric against interchange of particles! This
defines two different Hilbert spaces:

H(+)
N : the space of symmetric states |ψN 〉(+)

Pi j |ψN 〉(+) = |ψN 〉(+) (A.8)

H(−)
N : the space of antisymmetric states |ψN 〉(−)

Pi j |ψN 〉(−) = −|ψN 〉(−) (A.9)

In these spaces, Pi j are Hermitian and unitary!
What are the properties the observables must have for a system of identical par-

ticles? They must necessarily depend on the coordinates of all the particles

Â = Â(1, 2, · · · , N ) (A.10)

and must commute with all the transpositions (permutations)

[
Pi j , Â

]
− = 0 (A.11)

This is valid specially for the Hamiltonian H and therefore also for the time evolu-
tion operator

U (t, t0) = exp

(
− i

�
H (t − t0)

)
; (H �= H (t)) (A.12)

[
Pi j , U

]
− = 0 (A.13)

That means the symmetry character of an N -particle state remains unchanged for
all times!

Which Hilbert space out of H(+) and H(−) is applicable for which type of
particles is established in relativistic quantum field theory. We will take over the
spin-statistics theorem from there, without any proof.

H(+)
N : Space of symmetric states of N identical particles with integral spin. These

particles are called Bosons.
H(−)

N : Space of antisymmetric states of N identical particles with half-integral
spin. These particles are called Fermions.
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A.2 Continuous Fock Representation

A.2.1 Symmetrized Many-Particle States

Let H(ε)
N be the Hilbert space of a system of N identical particles. Here

ε =
{+ : Bosons
− : Fermions

(A.14)

Let φ̂ be a 1-particle observable (or a set of 1-particle observables) with a continuous
spectrum, φα being a particular eigenvalue corresponding to the 1-particle eigenstate
|φα〉:

φ̂ |φα〉 = φα |φα〉 (A.15)

〈φα|φβ〉 = δ(φα − φβ) (≡ δ(α − β)) (A.16)

∫
dφα|φα〉〈φα| = 1l in H1 (A.17)

A basis of H(ε)
N is constructed from the following (anti-) symmetrized N-particle

states:

|φα1 · · ·φαN 〉(ε) = 1

N !

∑
P

ε p P
{|φ(1)

α1
〉|φ(2)

α2
〉 · · · |φ(N )

αN
〉} (A.18)

p is the number of transpositions in P . The summation runs over all the possible
permutations P . The sequence of the 1-particle states in the ket on the left-hand
side of (A.18) is called the standard ordering. It is arbitrary, but has to be fixed right
at the beginning. Interchange of two 1-particle symbols on the left means only a
constant factor ε on the right.

One can easily prove the following relations for the above introduced N -particle
states:

Scalar product:

(ε)〈φβ1 · · · |φα1 · · · 〉(ε)

= 1

N !

∑
Pα

ε pαPα

{
δ(φβ1 − φα1 ) · · · δ(φβN − φαN )

}
(A.19)

The index α shall indicate that Pα permutes only the φα’s.
Completeness relation:

∫
· · ·
∫

dφβ1 · · · dφβN |φβ1 · · · 〉(ε)(ε)〈φβ1 · · · | = 1l (A.20)
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This leads to a formal representation of an observable of the N-particle system,
which will be used later a few times:

Â =
∫

· · ·
∫

dφα1 · · · dφαN dφβ1 · · · dφβN ∗
∗ |φα1 · · · 〉(ε) (ε)〈φα1 · · · | Â |φβ1 · · · 〉(ε) (ε)〈φβ1 · · · |

(A.21)

A.2.2 Construction Operators

We want to build up the basis states of H(ε)
N , step by step, from the vacuum state |0〉

(〈0|0〉 = 1) with the help of the operator

c†φα
≡ c†α

These operators are defined by their action on the states:

c†α1
|0〉 =

√
1|φα1〉(ε) ∈ H(ε)

1 (A.22)

c†α2
|φα1〉(ε) =

√
2|φα2φα1〉(ε) ∈ H(ε)

2 (A.23)

Or, in general

c†β |φα1 · · ·φαN 〉(ε)︸ ︷︷ ︸
∈H(ε)

N

= √
N + 1 |φβφα1 · · ·φαN 〉(ε)︸ ︷︷ ︸

∈H(ε)
N+1

(A.24)

c†β is called the creation operator. It creates an extra particle in the N -particle state.
The relation (A.24) is obviously reversible:

|φα1 φα2 φα3 · · ·φαN 〉(ε) = 1√
N !

c†α1
c†α2

· · · c†αN
|0〉 (A.25)

The N -particle state |φαi · · · 〉(ε) can be built up from the vacuum state |0〉 by apply-
ing a sequence of N creation operators, where the order of the operators is to be
strictly obeyed.

For a product of two creation operators, it follows from (A.24)

c†α1
c†α2

|φα3 · · ·φαN 〉(ε) =
√

N (N − 1)|φα1 φα2 φα3 · · ·φαN 〉(ε) (A.26)

If the sequence of the operators is reversed, then we have

c†α2
c†α1

|φα3 · · ·φαN 〉(ε)

=
√

N (N − 1)|φα2 φα1 φα3 · · ·φαN 〉(ε)

= ε
√

N (N − 1)|φα1 φα2 φα3 · · ·φαN 〉(ε) (A.27)
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The last step follows because of (A.18). Since the states in (A.26) and (A.27) are
basis states, by comparing, we can therefore read off the following operator identity:

[
c†α1

, c†α2

]
−ε

= c†α1
c†α2

− ε c†α2
c†α1

= 0 (A.28)

The creation operators commute in the case of Bosons (ε = +1) and anticommute
(ε = −1) in the case of Fermions.

We now consider the operator cα which is the adjoint of c†α . Because of (A.24)
and (A.25), we can write

(ε)〈φα1 · · ·φαN | cγ = √
N + 1 (ε)〈φγ φα1 · · ·φαN |

(ε)〈φα1 · · ·φαN | = 1√
N !

〈0| cαN · · · cα2 cα1

(A.29)

The meaning of cγ is made clear by the following consideration:

(ε)〈φβ2 · · ·φβN︸ ︷︷ ︸
∈H(ε)

N−1

|cγ |φα1 · · ·φαN 〉(ε)︸ ︷︷ ︸
∈H(ε)

N

=
√

N (ε)〈φγ φβ2 · · ·φβN |φα1 · · ·φαN 〉(ε)

=
√

N

N !

∑
Pα

ε pαPα

{
δ(φγ − φα1 )δ(φβ2 − φα2 ) · · ·

· · · δ(φβN − φαN )
}

Here we have used in the first step (A.29) and in the second step (A.19). We can
further rewrite the right-hand side

(ε)〈· · · |cγ | · · · 〉(ε) = 1√
N

1

(N − 1)!
∗

∗
⎧⎨
⎩δ(φγ − φα1 )

∑
Pα

ε pαPα(δ(φβ2 − φα2 ) · · · δ(φβN − φαN ))

+ εδ(φγ − φα2 )
∑
Pα

ε pαPα(δ(φβ2 − φα1 )δ(φβ3 − φα3 ) · · · δ(φβN − φαN ))

+ · · · +
+ εN−1δ(φγ − φαN )

∑
Pα

ε pαPα(δ(φβ2 − φα1 )δ(φβ3 − φα2 )

· · · δ(φβN − φαN−1 ))
}

= 1√
N

{
δ(φγ − φα1 )(ε)〈φβ2 · · ·φβN |φα2 · · ·φαN 〉(ε)

+ εδ(φγ − φα2 )(ε)〈φβ2 · · ·φβN |φα1φα3 · · ·φαN 〉(ε)

+ · · · +
+ εN−1δ(φγ − φαN )(ε)〈φβ2 · · ·φβN |φα1φα2 · · ·φαN−1〉(ε)

}
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With this, the action of cγ is clear, since (ε)〈φβ2 · · ·φβN | is an arbitrary (N − 1)-
particle bra basis-state:

cγ |φα1 · · ·φαN 〉(ε) =

= 1√
N
{δ(φγ − φα1 )|φα2 · · ·φαN 〉(ε) +

+ · · · +
+ εN−1δ(φγ − φαN )|φα1 · · ·φαN−1〉(ε)} (A.30)

cγ annihilates a particle in the state |φγ 〉 and that is why it is called the annihilation
operator. From (A.28), it immediately follows that

[
cα1 , cα2

]
−ε

= −ε
([

c†α1
, c†α2

]
−ε

)†
= 0 (A.31)

The annihilation operators commute in the case of Bosons (ε = −1) and anticom-
mute (ε = +1) in the case of Fermions.

From (A.24) and (A.30) one can show that (Problem A.1)

(cβ c†γ − εc†γ cβ)|φα1 · · ·φαN 〉(ε) = δ(φβ − φγ )|φα1 · · ·φαN 〉(ε)

From this it follows that

[
cβ , c†γ

]
−ε

= δ(φβ − φγ ) (A.32)

(A.28), (A.31) and (A.32) are the three fundamental commutation rules of the con-
struction operators aγ and a†

γ .

A.2.3 Many-Body Operators

We start with the formal (“spectral”) representation of the N -particle observable Â
as given in (A.21). Using (A.25) and (A.29), we can write (dφαi ≡ dαi )

Â = 1

N !

∫
· · ·
∫

dα1 · · · dαN dβ1 · · · dβN ∗

∗ c†α1
· · · c†αN

|0〉 (ε)〈φα1 · · · | Â|φβ1 · · · 〉(ε)〈0|cβN · · · cβ1

(A.33)

Normally, such an operator consists of 1-particle and 2-particle parts:

Â =
N∑

i=1

Â(1)
i + 1

2

i �= j∑
i, j

Â(2)
i j (A.34)
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Using this, we will calculate the matrix elements in (A.33). We start with the 1-
particle part:

(ε)〈φα1 · · · |
N∑

i=1

Â(1)
i |φβ1 · · · 〉(ε) = 1

(N !)2

∑
Pα

∑
Pβ

ε pα+pβ ∗

∗ {〈φ(N )
αN

| · · · 〈φ(1)
α1
|}
(
P†

α

N∑
i=1

Â(1)
i Pβ

){
|φ(N )

β1
〉 · · · |φ(N )

βN
〉
}

(A.35)

One can easily see that every summand in the double sum
∑

Pα

∑
Pβ

gives the
same contribution, since every permuted ordering of {|φα〉} or {|φβ〉} can be restored
to the standard ordering by renumbering the integration variables in (A.33). In order
to bring back the creation and annihilation operators, which have been reindexed in
the process, into the “correct” sequence, we require, according to (A.28) and (A.31),
a factor ε pα+pβ , which along with the corresponding factor in the above equation
(A.35) gives a factor +1. Thus for (A.33), we need (A.35) only in the following
simplified form:

(ε)〈φα1 · · · |
N∑

i=1

Â(1)
i |φβ1 · · · 〉(ε) ⇒

{〈φ(N )
αN

| · · · 〈φ(1)
α1
|}

N∑
i=1

Â(1)
i

{
|φ(1)

β1
〉 · · · |φ(N )

βN
〉
}

(A.36)

Substituting this in (A.33), we get

N∑
i=1

Â(1)
i = 1

N !

∫
· · ·
∫

dα1 · · · dβN c†α1
· · · c†αN

|0〉 ∗

∗
{
〈φ(1)

α1
| Â(1)

1 |φ(1)
β1
〉〈φ(2)

α2
|φ(2)

β2
〉 · · · 〈φ(N )

αN
|φ(N )

βN
〉

+ 〈φ(1)
α1
|φ(1)

β1
〉〈φ(2)

α2
| Â(1)

2 |φ(2)
β2
〉 · · · 〈φ(N )

αN
|φ(N )

βN
〉 + · · ·

}
∗

∗ 〈0|cβN · · · cβ1

= 1

N !

∫
· · ·
∫

dα1 · · · dαN c†α1
· · · c†αN

|0〉 ∗

∗
{∫

dβ1〈φ(1)
α1
| Â(1)

1 |φ(1)
β1
〉〈0|cαN · · · cα2 cβ1

+
∫

dβ2〈φ(2)
α2
| Â(1)

2 |φ(2)
β2
〉〈0|cαN · · · cα3 cβ2 cα1 + · · ·

}
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= 1

N

∫ ∫
dα1dβ1〈φ(1)

α1
| Â(1)

1 |φ(1)
β1
〉a†

α1

{
1

(N − 1)!∫
· · ·
∫

dα2 · · · dαN c†α2
· · · c†αN

|0〉〈0|cαN · · · cα2

}
cβ1

+ 1

N

∫ ∫
dα2dβ2〈φ(2)

α2
| Â(1)

2 |φ(2)
β2
〉c†α2

{
1

(N − 1)!∫
· · ·
∫

dα1dα3 · · · dαN c†α1
c†α3

· · · c†αN
|0〉

〈0|cαN · · · cα3 cα1

}
cβ2ε

2 + · · ·
(A.37)

The factor ε2 in the last line stems from the (anti)commutation c†α2
↔ c†α1

and

c†α1
↔ c†β2

. Due to the analogous rearrangements all the other terms get a fac-
tor ε2m which in any case is equal to +1. The term in each of the curly brack-
ets is the identity for the Hilbert space H(ε)

N−1 as given in (A.20). Therefore what
remains is

N∑
i=1

Â(1)
i = 1

N

N∑
i=1

∫ ∫
dαi dβi 〈φ(i)

αi
| Â(1)

i |φ(i)
βi
〉c†αi

cβi (A.38)

The matrix elements are naturally the same for all the N identical particles. There-
fore, the factor 1/N and the summation cancel out:

N∑
i=1

Â(1)
i =

∫ ∫
dαdβ〈φα| Â(1)|φβ〉c†αcβ (A.39)

The remaining matrix element is in general easy to calculate. On the right-hand
side, we do not have the particle number any more. It is of course implicitly present
because, in between c†α and cβ , there appears in principle an identity 1l, correspond-
ing to the Hilbert space H(ε)

N−1.
For the two-particle part of the operator Â, at first, exactly the same consid-

erations are valid which led us from (A.35) to (A.36). Therefore, we can use in
(A.33)

(ε)〈φα1 · · · |
1

2

i �= j∑
i, j

Â(2)
i j |φβ1 · · · 〉(ε) ⇒

{〈φ(N )
αN

| · · · 〈φ(1)
α1
|} 1

2

i �= j∑
i, j

Â(2)
i j

{
|φ(1)

β1
〉 · · · |φ(N )

βN
〉
}

(A.40)
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Substituting this we are left with

1

2

i �= j∑
i, j

Â(2)
i j = 1

2

1

N !

∫
· · ·
∫

dα1 · · · dβN c†α1
· · · c†αN

|0〉 ∗

∗
{
〈φ(2)

α2
|〈φ(1)

α1
| Â(2)

12 |φ(1)
β1
〉|φ(2)

β2
〉〈φ(3)

α3
|φ(3)

β3
〉 · · · 〈φ(N )

αN
|φ(N )

βN
〉

+ · · ·
}
〈0|cβN · · · cβ1

= 1

2

1

N !

∫
· · ·
∫

dα1 · · · dαN dβ1dβ2c†α1
c†α2

· · · c†αN
|0〉 ∗

∗ 〈φ(2)
α2
|〈φ(1)

α1
| Â(2)

12 |φ(1)
β1
〉|φ(2)

β2
〉〈0|cαN · · · cα3 cβ2 cβ1 + · · ·

= 1

2N (N − 1)

∫
· · ·
∫

dα1dα2dβ1dβ2 ∗

∗ 〈φ(1)
α1

φ(2)
α2
| Â(2)

12 |φ(1)
β1

φ
(2)
β2
〉c†α1

c†α2
∗

∗
{

1

(N − 2)!

∫
· · ·
∫

dα3 · · · dαN c†α3
· · · c†αN

|0〉

〈0|cαN · · · cα3

}
cβ2 cβ1 + · · ·

The curly bracket now gives the identity in the Hilbert space H(ε)
N−2, so that we

have

1

2

i �= j∑
i, j

Â(2)
i j = 1

2N (N − 1)

i �= j∑
i, j

∫
· · ·
∫

dαi dα j dβi dβ j ×

× 〈φ(i)
αi

φ( j)
α j
| Â(2)

i j |φ(i)
βi

φ
( j)
β j
〉 c†αi

c†α j
cβ j cβi (A.41)

In a system of identical particles, naturally, all the summands on the right-hand side
give identical contributions. Therefore, we have

1

2

i �= j∑
i, j

Â(2)
i j = 1

2

∫
· · ·
∫

dα1 dα2 dβ1 dβ2 ∗

∗ 〈φ(1)
α1

φ(2)
α2
| Â(2)

12 |φ(1)
β1

φ
(2)
β2
〉 c†α1

c†α2
cβ2 cβ1

(A.42)

The remaining matrix element on the right-hand side can be built either with unsym-
metrized two-particle states

〈φα1φα2 | = 〈φα1 |〈φα2 | ; |φβ1φβ2〉 = |φβ1〉|φβ2〉 (A.43)
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or also with the symmetrized states

|φβ1φβ2〉(ε) = 1

2!

{
|φ(1)

β1
〉|φ(2)

β2
〉 + ε|φ(2)

β1
〉|φ(1)

β2
〉
}

(A.44)

What have we achieved? We have, through (A.25) and (A.29), replaced the laborious
building up of symmetrized products from the single-particle states, by the applica-
tion of products of construction operators to the vacuum state |0〉. The operation is
quite simple, for example,

cα|0〉 = 0 (A.45)

and the whole statistics is taken care by the fundamental commutation relations
(A.28), (A.31) and (A.32). The N -particle observables can also be expressed by the
construction operators, (A.39) and (A.42) where the remaining matrix elements can
be, usually, easily calculated with single-particle states. Note that the choice of the
single-particle basis {|φα〉} is absolutely arbitrary, a great advantage with respect to
practical purposes. We will demonstrate this in (A.4) with a few examples.

The theory developed so far is valid for continuous as well as discrete single-
particle spectra. Only δ-functions have to be replaced by Kronecker-δs and integrals
by summations in the case of discrete spectra.

A.3 Discrete Fock Representation (Occupation Number
Representation)

Let H(ε)
N be again the Hilbert space of a system of N identical particles. Now, let

φ̂ be a single-particle observable with discrete spectrum. In principle, the same
considerations are valid as in (A.2).

A.3.1 Symmetrized Many-Particle States

We will use the following (anti-) symmetrized N-particle states as the basis of H(ε)
N :

|φα1 · · ·φαN 〉(ε) = Cε

∑
P

ε pP
{|φ(1)

α1
〉 · · · |φ(N )

αN
〉} (A.46)

Up to the still to be determined normalization constant Cε, this definition agrees
with the corresponding definition (A.18) of the continuous case. However, now for
the single-particle states, we have

〈φα|φβ〉 = δαβ ;
∑

α

|φα〉〈φα| = 1l in H1 (A.47)
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One can see that (A.46) can be written for Fermions (ε = −1), as a determinant

|φα1 · · ·φαN 〉(−) = C−

∣∣∣∣∣∣∣∣∣∣∣∣

|φ(1)
α1
〉 |φ(2)

α1
〉 · · · |φ(N )

α1
〉

|φ(1)
α2
〉 |φ(2)

α2
〉 · · · |φ(N )

α2
〉

. . . .

. . . .

. . . .

|φ(1)
αN
〉 |φ(2)

αN
〉 · · · |φ(N )

αN
〉

∣∣∣∣∣∣∣∣∣∣∣∣
(A.48)

This is known as the Slater determinant.
In case two sets of quantum numbers are equal, say, αi = α j , then, two rows of

the Slater determinant are identical, which means, the determinant is equal to zero.
Consequently, the probability that such a situation exists for a system of identical
Fermions is zero. This is exactly the statement of the Pauli’s principle!

We define
ni = occupation number, i.e. the frequency with which the state |φαi 〉 appears in

the N -particle state |φα1 · · ·φαN 〉(−).
Naturally, we have

∑
i

ni = N (A.49)

where the values ni can be

ni = 0, 1 f or Fermions
ni = 0, 1, 2, · · · f or Bosons

(A.50)

First, we want to fix the normalization constant, which we assume to be real:

1
!= (ε)〈φα1 · · · |φα1 · · · 〉(ε)

= C2
ε

∑
P

∑
P ′

ε p+p′ {〈φ(N )
αN

| · · · }P† P ′ {|φ(1)
α1
〉 · · · } (A.51)

In the case of Fermions (ε = −1), every state is occupied only once. Therefore, in
the sum, only the terms with P = P ′ are unequal to zero and due to (A.47), each
term is exactly equal to 1. Therefore, we get

C− = 1√
N !

(Fermions) (A.52)

In the case of Bosons (ε = +1), the summands are then unequal to zero, when P
differs from P ′ at the most by such transpositions for which only the groups of ni

identical single-particle states |φi 〉 are interchanged among themselves. There are
naturally ni ! such possibilities. With this argument, we get for Bosons
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C+ = (N ! n1! n2! · · · ni ! · · · )−1/2 (Bosons) (A.53)

Obviously, a symmetrized basis state can be completely specified by giving the
occupation numbers. This permits the representation by the Fock states

|N ; n1 n2 · · · ni · · · n j · · · 〉(ε) ≡ |φα1 · · ·φαN 〉(ε)

= Cε

∑
P

εPP

⎧⎪⎨
⎪⎩|φ

(1)
α1
〉|φ(2)

α1
〉 · · ·︸ ︷︷ ︸

n1

· · · |φ(r )
αi
〉|φ(r+1)

αi
〉 · · ·︸ ︷︷ ︸

ni

· · ·

⎫⎪⎬
⎪⎭ (A.54)

One has to give all the occupation numbers, even those with ni = 0. Completeness
and orthonormality follow from the corresponding relations for the symmetrized
states:

(ε)〈N ; · · · ni · · · |Ñ ; · · · ñi · · · 〉(ε) = δN Ñ

∏
i

δni ñi (A.55)

∑
n1

∑
n2

· · ·
∑

ni

· · ·
︸ ︷︷ ︸

(
∑

i ni=N )

|N ; · · · ni · · · 〉(ε) (ε)〈N ; · · · ni · · · | = 1l (A.56)

A.3.2 Construction Operators

Up to normalization constants, we define the construction operators exactly in the
same manner as we have done for the case of continuous spectrum in (A.2.2):

c†αr
|Ñ ; · · · ñr · · · 〉(ε) = c†αr

|φα1 · · ·φαN 〉(ε)

=
√

nr + 1|φαr φα1 · · ·φαN 〉(ε)

= εNr
√

nr + 1|φα1 · · ·φαr · · ·φαN 〉(ε)

= εNr
√

nr + 1|N + 1; · · · nr + 1 · · · 〉(ε)

(A.57)

Here, Nr is the number of transpositions necessary to bring the single-particle state
|φαr 〉 to the “correct” place:

Nr =
r−1∑
i=1

ni (A.58)
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Equation (A.57) does not, as yet, contain the Pauli’s principle in a correct way. The
operation of the so-called creation operator is precisely defined as follows.

Bosons :
c†αr

|N ; · · · nr · · · 〉(+) = √
nr + 1 |N + 1; · · · nr + 1 · · · 〉(+)

Fermions :
c†αr

|N ; · · · nr · · · 〉(−) = (−1)Nr δnr ,0 |N + 1; · · · nr + 1 · · · 〉(−)

(A.59)

Any N -particle state can be built up by repeated application of the creation operators
on the vacuum state |0〉:

|N ; n1 n2 · · · 〉(ε) =
∑

n p=N∏
p

1√
n p!

(
c†αp

)n p

εNp |0〉 (A.60)

The annihilation operator is again defined as the adjoint of the creation operator:

cαr =
(
c†αr

)†
(A.61)

The action of this operator becomes clear from the following:

(ε)〈N ; · · · nr · · · |cαr |N̄ ; · · · n̄r · · · 〉(ε)

= εNr
√

nr + 1 (ε)〈N + 1; · · · nr + 1 · · · |N̄ ; · · · n̄r · · · 〉(ε)

= εNr
√

nr + 1 δN+1,N̄

(
δn1,n̄1 · · · δnr+1,n̄r · · ·

)
= ε N̄r

√
n̄r δN ,N̄−1

(
δn1,n̄1 · · · δnr ,n̄r−1 · · ·

)
= ε N̄r

√
n̄r

(ε)〈N ; · · · nr · · · |N̄ − 1; · · · n̄r − 1 · · · 〉(ε)

N̄r is defined as in (A.58). Since (ε)〈N1 · · · Nr · · · | is an arbitrary bra-basis state, we
have to conclude

cαr |N ; · · · nr · · · 〉(ε) = εNr
√

nr |N − 1; · · · nr − 1 · · · 〉(ε) (A.62)

or, more specifically,

Bosons :
cαr |N ; · · · nr · · · 〉(+) = √

nr |N − 1; · · · nr − 1 · · · 〉(+)

Fermions :
cαr |N ; · · · nr · · · 〉(−) = δnr ,1(−1)Nr |N − 1; · · · nr − 1 · · · 〉(−)

(A.63)

With (A.59) and (A.63), one can easily prove three fundamental commutation rules
(Problem A.2):
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[
cαr , cαs

]
−ε

= [c†αr
, c†αs

]
−ε

= 0[
cαr , c†αs

]
−ε

= δrs
(A.64)

We further introduce two special operators, namely, the occupation number opera-
tor:

n̂r = c†αr
cαr (A.65)

and the particle number operator:

N̂ =
∑

r

n̂r (A.66)

The Fock states are the eigenstates of n̂r as well as of N̂ . One can easily show with
(A.59) and (A.63) that

n̂r |N ; · · · nr · · · 〉(ε) = nr |N ; · · · nr · · · 〉(ε) (A.67)

Thus n̂r refers to the number of particles occupying the r th single-particle state.
The eigenvalue of N̂ is the total number of particles N :

N̂ |N ; · · · nr · · · 〉(ε) =
(∑

r

n̂r

)
|N ; · · · nr · · · 〉(ε)

= N |N ; · · · nr · · · 〉(ε) (A.68)

The following relations are valid for both Bosons and Fermions (Problem A.3):

[̂
nr , c†s

]
−
= δrs c†r ; [̂nr , cs]− = −δrs cr[

N̂ , c†s
]
−
= c†s ;

[
N̂ , cs

]
− = −cs

(A.69)

In order to transform a general operator Â (A.34) with a discrete spectrum into the
formalism of second quantization, we have to follow the same procedure as was
done in the case of the continuous spectrum. We only have to replace integrations
by summations and delta functions by Kronecker deltas. Thus, we have expressions
analogous to (A.39) and (A.42):

Â ≡
∑
r,r ′

〈φαr | Â(1)|φαr ′ 〉c†αr
cαr ′

+ 1

2

∑
r,r ′
s,s ′

〈φ(1)
αr

φ(2)
αs
| Â(2)|φ(1)

αr ′ φ
(2)
αs′ 〉c†αr

c†αs
cαs′ cαr ′

(A.70)
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In contrast to the case of continuous spectrum, here, the matrix elements must be
calculated with non-symmetrized two-particle states. The reason for this is the dif-
ferent normalization used here.

A.4 Examples

In this section, we want to transform a few of the most often used operators from
the first to second quantized form.

A.4.1 Bloch Electrons

We consider electrons in a rigid ion-lattice. The electrons interact with the lattice
potential but do not interact with each other:

H0 = He,kin + H (0)
ei =

Ne∑
i=1

h(i)
0 (A.71)

He,kin is the operator of the kinetic energy

He,kin =
Ne∑

i=1

p2
i

2m
(A.72)

Ne is the number of electrons which interact with the rigid ion-lattice via H (0)
ei :

H (0)
ei =

Ne∑
i=1

v(ri ) ; v(ri ) =
N∑

α=1

Vei (ri − Rα) (A.73)

N is the number of lattice atoms, whose equilibrium positions are given by Rα . v(ri )
has the same periodicity as the lattice:

v(ri ) = v(ri + Rα) (A.74)

H0 is obviously a single-particle operator. The eigenvalue equation for

h0 = p2

2m
+ v(r) (A.75)

defines the Bloch function ψk(r) and the Bloch energy ε(k):

h0 ψk(r) = ε(k) ψk(r) (A.76)
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For ψk(r), we make the usual ansatz

ψk(r) = uk(r) eik·r (A.77)

where the amplitude function uk(r) has the periodicity of the lattice. The Bloch
functions build a complete orthonormal set:

∫
d3r ψ∗

k (r)ψk′(r) = δkk′ (A.78)

1st B.Z .∑
k

ψ∗
k (r)ψk(r′) = δ(r − r′) (A.79)

Neither H0 nor h0 contains spin terms. Therefore the complete solutions are

|kσ 〉 ⇔ 〈r|kσ 〉 = ψkσ (r) = ψk(r)χσ (A.80)

χ↑ =
(

1
0

)
; χ↓ =

(
0
1

)
(A.81)

We define
c†kσ (ckσ ) - creation (annihilation)

operator of a Bloch electron
Since H0 is a single-particle operator, according to (A.70), we can write

H0 =
∑

k,σ

k′,σ ′

〈kσ |h0|k′σ ′〉 c†kσ ck′σ ′ (A.82)

The matrix element is given by

〈kσ |h0|k′σ ′〉 =
∫

d3r〈kσ |r〉〈r|h0|k′σ ′〉

= ε(k′)
∫

d3r ψ∗
kσ (r) ψk′σ ′(r)

= ε(k) δkk′ δσσ ′ (A.83)

So that we can finally write

H0 =
∑
k,σ

ε(k) c†kσ ckσ (A.84)
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The Bloch operators satisfy the fundamental commutation relations of Fermion
operators:

[ckσ , ck′σ ′]+ =
[
c†kσ , c†k′σ ′

]
+
= 0[

ckσ , c†k′σ ′

]
+
= δkk′ δσσ ′

(A.85)

In the special case, where one can neglect the crystal structure, e.g., as in the Jellium
model, the Bloch functions become plane waves

ψk(r) ⇒ 1√
V

eik·r; ε(k) ⇒ �
2k2

2m
: (v(r) ≡ const) (A.86)

A.4.2 Wannier Electrons

The representation using Wannier functions

wσ (r − Ri ) = 1√
N

1st B.Z .∑
k

e−ik·Ri ψkσ (r) (A.87)

is a special, frequently used position representation. The typical property of the
Wannier function is its strong concentration around the respective lattice site Ri :

∫
d3r w∗

σ ′(r − Ri ) wσ (r − R j ) = δσσ ′ δi j (A.88)

We define
c†iσ (ciσ ) - creation (annihilation) operator of an

electron with spin σ in a Wannier state
at the lattice site Ri

These construction operators satisfy the following commutation relations:

[
ciσ , c jσ ′

]
+ =

[
c†iσ , c†jσ ′

]
+
= 0;

[
ciσ , c†jσ ′

]
+
= δσσ ′ δi j (A.89)

In this basis, H0 looks as follows:

H0 =
∑
i, j,σ

Ti j c
†
iσ c jσ ′ (A.90)

Ti j =
∫

d3r w∗
σ (r − Ri ) h0 wσ (r − R j ) (A.91)
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Ti j is known as the hopping integral. In this form, H0 describes, more transparently,
the hopping of an electron of spin σ from the lattice site R j to the lattice site Ri .
The connection with the Bloch representation (A.4.1) is easy to establish by using
(A.78) and (A.87):

Ti j = 1

N

1st B.Z .∑
k

ε(k)eik·(Ri−R j ) (A.92)

ciσ = 1√
N

1st B.Z .∑
k

eik·Ri ckσ (A.93)

A.4.3 Density Operator

The operator for the electron density

ρ̂(r) =
Ne∑

i=1

δ(r − r̂i ) (A.94)

is another example for a single-particle operator. It should be noticed that the elec-
tron position r̂i is an operator but not the variable r:

ρ̂(r) =
∑

kσ, k′σ ′
〈kσ |δ(r − r̂i )|k′σ ′〉c†kσ ck′σ ′ (A.95)

The matrix element is given by

〈kσ |δ(r − r̂′)|k′σ ′〉 =
∫

d3r ′′ 〈kσ |δ(r − r̂′)|r′′〉〈r′′|k′σ ′〉

= δσσ ′

∫
d3r ′′ δ(r − r′′)〈kσ |r′′〉〈r′′|k′σ 〉

= δσσ ′ ψ∗
kσ (r) ψk′σ (r) (A.96)

If one restricts oneself to plane waves (v(r) = const.), then

〈kσ |δ(r − r̂′)|k + qσ ′〉 = δσσ ′
1

V
eiq·r (A.97)

Using this in (A.95) we get

ρ̂(r) = 1

V

∑
kqσ

c†kσ ck+qσ eiq·r (A.98)
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From the above equation, we therefore find the Fourier component of the density
operator:

ρ̂q =
∑
kσ

c†kσ ck+qσ (A.99)

A.4.4 Coulomb Interaction

Now we have to deal with a two-particle operators:

HC = 1

2

e2

4πε0

i �= j∑
i, j

1∣∣̂ri − r̂ j

∣∣ (A.100)

How does this operator look in the formalism of second quantization? We again
choose the momentum representation:

HC = e2

8πε0
∗

∗
∑
k1 ···k4
σ1···σ4

〈(k1σ1)(1)(k2σ2)(2)| 1∣∣̂r(1) − r̂(2)
∣∣ |(k3σ3)(1)(k4σ4)(2)〉 ∗

∗ c†k1σ1
c†k2σ2

ck4σ4 ck3σ3 (A.101)

Since the operator itself is independent of spin, the matrix element is surely nonzero
only for σ1 = σ3 and σ2 = σ4. Therefore, we are left with the following matrix
element:

v(k1 · · · k4) = e2

4πε0
〈k(1)

1 k(2)
2 | 1

|̂r(1)−̂r(2)| |k
(1)
3 k(2)

4 〉
= e2

4πε0

∫ ∫
d3r1d3r2 〈k(1)

1 k(2)
2 | 1

|̂r(1)−̂r(2)| |r
(1)
1 r(2)

2 〉〈r(1)
1 r(2)

2 |k(1)
3 k(2)

4 〉
= e2

4πε0

∫ ∫
d3r1d3r2

1
|r1−r2| 〈k

(1)
1 k(2)

2 |r(1)
1 r(2)

2 〉〈r(1)
1 r(2)

2 |k(1)
3 k(2)

4 〉
= e2

4πε0

∫ ∫
d3r1d3r2

1
|r1−r2|ψ

∗
k1

(r1)ψ∗
k2

(r2)ψk3 (r1)ψk4 (r2)

(A.102)

Translational symmetry demands that we must have

k1 + k2 = k3 + k4 (A.103)

Thus we have obtained the following expression for the Coulomb interaction:

HC = 1

2

∑
kpq
σσ ′

v(k, p, q) c†k+qσ c†p−qσ ′ cpσ ′ckσ (A.104)
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with

v(k, p, q) = e2

4πε0

∫ ∫
d3r1 d3r2 ψ∗

k+q(r1) ψp−q(r2) ∗

∗ 1

|r1 − r2|ψk(r1) ψp(r2) (A.105)

A.5 Problems

Problem A.1 Let |ϕα1 · · ·ϕαN 〉(ε) be an (anti) symmetrized N -particle basis state for
the case of a continuous one-particle spectrum. Then show that

(
cβc†γ − εc†γ cβ

) |ϕα1 · · ·ϕαN 〉(ε) = δ(ϕβ − ϕγ )|ϕα1 · · ·ϕαN 〉(ε)

Problem A.2 Prove the fundamental commutation relations

[
cαr , cαs

]
∓ = [c†αs

, c†αr

]
∓ = 0[

cαr , c†αs

]
∓ = δr,s

for the creation and annihilation operators for the Bosons and Fermions in the dis-
crete Fock space.

Problem A.3 cϕα
≡ cα und c†ϕα

≡ c†α are the annihilation and creation operators for
one-particle states |ϕα〉 of an observable Φ̂ with discrete spectrum. With the help
of the fundamental commutation relations for Bosons and Fermions, calculate the
following commutators:

1.)
[̂
nα, c†β

]
−

2.)
[̂
nα, cβ

]
− 3.)

[
N̂ , cα

]
−

Here N̂ =∑α n̂α =∑α c†αcα is the particle number operator.

Problem A.4 Under the same assumptions as in Problem A.3 for Fermions, prove
the following relations:

1. (cα)2 = 0 ;
(
c†α
)2 = 0

2. (̂nα)2 = n̂α

3. cα n̂α = cα ; c†α n̂α = 0
4. n̂α cα = 0 ; n̂α c†α = c†α

Problem A.5 Let |0〉 be the normalized vacuum state. Let c†α und cα be the cre-
ation and annihilation operators for a particle in one-particle state |ϕα〉. Using the
fundamental commutation relations derive the relation
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〈0| cβN · · · cβ1 c†α1
· · · c†αN

|0〉
=
∑
Pα

(±)pαPα [δ(β1, α1)δ(β2, α2) · · · δ(βN , αN )]

Pα is the permutation operator that operates on the indices αi .

Problem A.6 For the occupation number density operator calculate the commuta-
tors

1)
[̂
nα, c†β

]
− ; 2.)

[̂
nα, cβ

]
−

Is there a difference for Bosons and Fermions?

Problem A.7 The anti-symmetrized basis states
∣∣ϕα1 · · ·ϕαN

〉(±)
of H(±)

N are built
from continuous one-particle basis states. They are the eigenstates of the particle
number operator N̂ . Then show that

1) c†β
∣∣ϕα1 · · ·ϕαN

〉(±)
2) cβ

∣∣ϕα1 · · ·ϕαN

〉(±)

are also eigenstates of N̂ and calculate the corresponding eigenvalues.

Problem A.8 A system of N electrons in volume V = L3 interact among them-
selves via the Coulomb interaction

V2 = 1

2

i �= j∑
i, j

V (i, j)
2 ; V (i, j)

2 = e2

4πε0

1∣∣̂ri − r̂ j

∣∣

r̂i und r̂ j are, respectively, the position operators of the i th and j th electron. Formu-
late the Hamiltonian of the system in second quantization. Use as the one-particle
basis plane waves which have discrete wavevectors k as a consequence of the peri-
odic boundary conditions on V = L3

Problem A.9 Show that the Hamiltonian calculated in Problem A.8 of the interact-
ing N -electron system

HN =
∑
kσ

ε0(k) c†kσ ckσ + 1

2

∑
kpq
σσ ′

v0(q) c†k+qσ c†p−qσ ′cpσ ′ckσ

commutes with the particle number operator

N̂ =
∑
kσ

c†kσ ckσ

What is the physical meaning of this?
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Problem A.10 Two identical particles move in a one-dimensional infinite potential
well:

V (x) =
{

0 for 0 ≤ x ≤ a,

∞ for x < 0 and x > a
(A.106)

Calculate the energy eigenfunctions and energy eigenvalues of the two-particle sys-
tem if they are (a) Bosons and (b) Fermions. What is the ground state energy in the
case N � 1 for Bosons and for Fermions?

Problem A.11 There is a system of non-interacting identical Bosons or Fermions
described by

H =
N∑

i=1

H (i)
1

The one-particle operator H (i)
1 has a discrete non-degenerate spectrum:

H (i)
1 |ϕ(i)

r 〉 = εr |ϕ(i)
r 〉; 〈ϕ(i)

r |ϕ(i)
s 〉 = δrs

|ϕ(i)
r 〉 are used to build the Fock states |N ; n1, n2, . . .〉(ε). The general state of the

system is described by the un-normalized density matrix ρ, for which the grand
canonical ensemble (variable particle number) holds

ρ = exp[−β(H − μN̂ )]

1. How does the Hamiltonian read in second quantization?
2. Show that the grand canonical partition is given by

Ξ(T, V, μ) = Spρ =
{∏

i {1 − exp[−β(εi − μ)]}−1 Bosons,∏
i {1 + exp[−β(εi − μ)]} Fermions.

3. Calculate the expectation value of the particle number:

〈N̂ 〉 = 1

Ξ
Tr(ρ N̂ )

4. Calculate the internal energy:

U = 〈H〉 = 1

Ξ
Tr(ρH )

5. Calculate the average occupation number of the i th one-particle state
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〈n̂i 〉 = 1

Ξ
Tr(ρa†

i ai )

and show that

U =
∑

i

εi 〈n̂i 〉; 〈N̂ 〉 =
∑

i

〈n̂i 〉

are valid.



Appendix B
The Method of Green’s Functions

B.1 Linear Response Theory

We want to introduce the Green’s functions using a concrete physical context: How
does a physical system respond to an external perturbation? The answer is provided
by the so-called response functions. Well-known examples are the magnetic or elec-
tric susceptibility, the electrical conductivity, the thermal conductivity, etc. These
are completely expressed by a special type of Green’s function.

B.1.1 Kubo Formula

Let the Hamiltonian

H = H0 + Vt (B.1)

consist of two parts. Vt is the perturbation which is the interaction of the system
with a possibly time-dependent external field. H0 is the Hamiltonian of the field-free
but certainly interacting particle system. Thus H0 is already in general not exactly
solvable. Let the perturbation be operating through a scalar field Ft which couples
to the observable B̂ :

Vt = B̂ · Ft (B.2)

The restriction made now to a scalar field can be easily removed later. One should
note that B̂ is an operator, whereas Ft is a c-number.

Now let Â be a not explicitly time-dependent observable. The interesting ques-
tion is the following:

How does the measured quantity 〈 Â〉 react to the perturbation Vt ?

Without the field holds

〈 Â〉0 = T r (ρ0 Â) (B.3)

515
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ρ0 = exp(−βH0)

T r (exp(−βH0))
(B.4)

where ρ0 is the statistical operator of the field-free system, at the moment in the
canonical ensemble. β = 1/kB T is as usual the reciprocal temperature.

On the other hand, with field holds:

〈 Â〉t = T r (ρt Â) (B.5)

ρt = exp(−βH )

T r (exp(−βH ))
(B.6)

where ρt is now the statistical operator of the particle system in the presence of the
external field Ft . Thus a measure of the response of the system to the perturbation
could be the change in the value of 〈 Â〉 under the influence of the external field:

ΔAt = 〈 Â〉t − 〈 Â〉0 (B.7)

To calculate this we need ρt . In Schrödinger picture ρt satisfies the equation of
motion

i�ρ̇t = [H0 + Vt , ρt ]− (B.8)

with the boundary condition that the field for t → −∞ is switched off:

lim
t→−∞ ρt = ρ0 (B.9)

Because of H0, the Schrödinger picture is not convenient for perturbational approaches.
More advantageous would be the Dirac picture:

ρD
t (t) = e

i
�

H0tρt e
− i

�
H0t (B.10)

One should note the two different time dependences. The lower index t denotes the
possible explicit time dependence caused by the field. On the contrary, the argument
of the statistical operator represents the dynamic time dependence. The equation of
motion now is determined solely by the perturbation:

i�ρ̇D
t (t) = [V D

t (t), ρD
t (t)

]
− (B.11)

The boundary condition follows from (B.9) and (B.10) where ρ0 commutes with
H0:

lim
t→−∞ ρD

t (t) = ρ0 (B.12)

We can now formally integrate (B.11):
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ρD
t (t) = ρ0 − i

�

∫ t

−∞
dt ′
[
V D

t ′ (t ′), ρD
t ′ (t ′)

]
− (B.13)

This integral equation can be solved iteratively up to arbitrary accuracy in the per-
turbation Vt . For small perturbations one can restrict oneself to the first non-trivial
step (linear response). That means after back-transformation to Schrödinger picture

ρt ≈ ρ0 − i

�

∫ t

−∞
dt ′e−

i
�

H0t
[
V D

t ′ (t ′), ρ0
]
− e

i
�

H0t (B.14)

We now calculate 〈 Â〉t approximately by substituting ρt in (B.5):

〈 Â〉t = 〈 Â〉0 − i

�

∫ t

−∞
dt ′T r

(
e−

i
�

H0t
[
V D

t ′ (t ′), ρ0
]
− e

i
�

H0t · Â
)

= 〈 Â〉0 − i

�

∫ t

−∞
dt ′T r

(
V D

t ′ (t ′) ρ0 ÂD(t) − ρ0V D
t ′ (t ′) ÂD(t)

)

= 〈 Â〉0 − i

�

∫ t

−∞
dt ′T r

(
ρ0
[
ÂD(t), V D

t ′ (t ′)
]
−
)

In the reformulation, we many times used the cyclic invariance of trace. We thus
obtain the reaction of the system to external perturbation:

ΔAt = − i

�

∫ t

−∞
dt ′Ft ′

〈[
ÂD(t), B̂ D(t ′)

]
−
〉
0

(B.15)

As a consequence of linear response, the reaction of the system is determined by an
expectation value for the field-free system. One should note that the Dirac represen-
tation of the operators Â and B̂ here correspond to the Heisenberg representation
without field (H0 → H ).

One defines: “double-time, retarded Green’s function”

Gret
AB(t, t ′) = 〈〈 Â(t); B̂(t ′)〉〉ret = −iΘ(t − t ′)

〈[
Â(t), B̂(t ′)

]
−
〉

(B.16)

where Θ is the Heaviside step function. The operators are in the field-free Heisen-
berg representation. The properties of the retarded Green’s function will be dis-
cussed in more detail in the following. Here, we recognize that it describes the
reaction of the system in terms of the observable Â when the external perturbation
couples to the observable B̂

ΔAt = 1

�

∫ +∞

−∞
dt ′Ft ′ Gret

AB(t, t ′) (B.17)

Later we will assume that the (field-free) Hamiltonian H is not explicitly depen-
dent on time. In that case one can show that the Green’s function does not depend
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on two times but only on the time difference. Then it is called homogeneous in time:

Gret
AB(t, t ′) → Gret

AB(t − t ′)

In such a situation one has the Fourier transformation:

Gret
AB(E) = 〈〈 Â; B̂〉〉ret

E

=
∫ +∞

−∞
d(t − t ′) Gret

AB(t − t ′) e
i
�

E(t−t ′) (B.18)

Gret
AB(t − t ′) = 1

2π�

∫ +∞

−∞
d E Gret

AB(E) e−
i
�

E(t−t ′) (B.19)

In the following, all the time/energy functions will be transformed in this way. In
particular, for the delta function holds:

δ(E − E ′) = 1

2π�

∫ +∞

−∞
dt e−

i
�

(E−E ′)t (B.20)

δ(t − t ′) = 1

2π�

∫ +∞

−∞
d E e

i
�

E(t−t ′) (B.21)

We write the perturbing field as a Fourier integral:

Ft = 1

2π�

∫ +∞

−∞
d E F(E) e−

i
�

(E+i0+)t (B.22)

The additional i0+ takes care of fulfilling the boundary condition (B.9). Substituting
this expression now in (B.17) we finally obtain the Kubo formula:

ΔAt = 1

2π�2

∫ +∞

−∞
d E F(E) Gret

AB(E + i0+) e−
i
�

(E+i0+)t (B.23)

In the following sections we will present a few applications of this important for-
mula.

B.1.2 Magnetic Susceptibility

We consider a magnetic induction Bt which is homogeneous in space and oscillating
in time as perturbation which couples to the total magnetic moment m of a localized
spin system (e.g. Heisenberg model) (Fig. B.1):

m =
∑

i

mi (B.24)
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Fig. B.1 Interacting localized
moments

i indexes the lattice sites at which the localized moments (spins) are present. The
perturbation term then reads

Vt = −m · Bt = − 1

2π�

(x,y,z)∑
α

∫ +∞

−∞
d E mα Bα(E) e−

i
�

(E+i0+)t (B.25)

Interesting here is the reaction of the magnetization of the moment system:

M = 1

V
〈m〉 = 1

V

∑
i

〈mi 〉 (B.26)

It can be approximately calculated with the help of the Kubo formula (B.17):

ΔMβ
t = Mβ

t − Mβ

0 = − 1

V �

∫ +∞

−∞
dt ′
∑

α

Bα
t ′ 〈〈mβ(t); mα(t ′)〉〉 (B.27)

Here M0 is the field-free magnetization which is unequal zero only for ferromagnets.
One defines “magnetic susceptibility tensor”

χ
αβ

i j (t, t ′) = − μ0

V �
〈〈mβ

i (t); mα
j (t ′)〉〉 (B.28)

This function, which is so important for magnetism, is thus a retarded Green’s func-
tion:

ΔMβ
t = 1

μ0

∑
i, j

∑
α

∫ +∞

−∞
dt ′χαβ

i j (t, t ′)Bα
t ′ (B.29)

If the susceptibility is homogeneous in time, χαβ

i j (t, t ′) ≡ χ
αβ

i j (t−t ′), which we want
to assume, then energy representation is meaningful:

ΔMβ
t = 1

2π�μ0

∑
i, j

∑
α

∫ +∞

−∞
d E χ

αβ

i j (E + i0+)Bα(E)e−
i
�

(E+i0+)t (B.30)

Of particular interest are

• “longitudinal” susceptibility:

χ zz
i j (E) = − μ0

V �
〈〈mz

i ; mz
j 〉〉E (B.31)
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With this function it is possible to make statements about magnetic stability. For
example, if one calculates

χ zz
q (E) = 1

N

∑
i, j

χ zz
i j (E)eiq·(Ri−R j ) (B.32)

for the paramagnetic moment system, then in the limit (q, E) → 0 the singular-
ities

[
lim

(q,E)→0
χ zz

q (E)

]−1
!= 0

give the instabilities of the paramagnetic state against ferromagnetic ordering.
At these points even an infinetesimal, symmetry breaking field produces a finite
magnetization. The poles of the function χ zz

q (E) therefore describe the phase
transition para-ferromagnetism.

• “transverse” susceptibility:

χ+−
i j (E) = − μ0

V �
〈〈m+

i ; m−
j 〉〉E (B.33)

Here holds

m±
j = mx

j ± i my
j

For this function also the poles are interesting. They represent resonances or
eigenoscillations. One obtains from them the energies of spin waves or magnons:

(
χ+−

q (E)
)−1 != 0 ⇐⇒ E = �ω(q) (B.34)

Thus the linear response theory is not only an approximate procedure for weak
perturbations but also provides valuable information about the unperturbed system.

B.1.3 Dielectric Function

We want to discuss another application of the linear response theory. Into a system
of quasifree conduction electrons (metal), an external charge density is introduced.
Because of Coulomb repulsion, the charge carriers react to the perturbation. This
leads to changes in the density of metal electrons in such a way that it causes effec-
tively a more or less strong screening of the perturbing charge. This is described
by

ε(q, E) : dielectric function
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We first want to handle the problem classically and undertake the necessary quanti-
zation later. For the external charge density we write

ρext (r, t) = 1

2π�V

∫ +∞

−∞
d E
∑

q

ρext (q, E) eiq·r e−
i
�

(E+i0+)t (B.35)

A corresponding expression should hold for the conduction electrons:

− eρ(r) = − e

V

∑
q

ρq eiq·r (B.36)

The interaction of the conduction electrons with the external charge density then
reads as

Vt = −e

4πε0

∫ ∫
d3r d3r ′

ρ(r) ρext (r′, t)

|r − r′| (B.37)

One shows (Problem 4.3)

∫ ∫
d3r d3r ′

ei(q·r+q′ ·r′)

|r − r′| = 4πV

q2
δq,−q′ (B.38)

Using this it holds with the Coulomb potential

v0(q) = 1

V

e2

ε0 q2
(B.39)

after simple reformulation:

Vt = 1

2π�

∫ +∞

−∞
d E e−

i
�

(E+i0+)t
∑

q

v0(q)

−e
ρ−q ρext (q, E) (B.40)

We assume that without the external perturbation the charge densities of the con-
duction electrons and the positively charged ions of the solid exactly compensate
each other. Then we have for the total charge density

ρtot (r, t) = ρext (r, t) + ρind (r, t) (B.41)

where ρind (r, t) is the charge density induced by the displacement of charges. With
the Fourier transformed Maxwell equations

iq · D(q, E) = ρext (q, E) (B.42)

iq · F(q, E) = 1

ε0
(ρext (q, E) + ρind (q, E)) (B.43)
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where F is the electric field strength and D is the electric displacement, and the
material equation

D(q, E) = ε0ε(q, E) F(q, E) (B.44)

holds for the induced charge density:

ρind (q, E) =
[

1

ε(q, E)
− 1

]
ρext (q, E) (B.45)

We now translate the formulas obtained classically so far into quantum mechanics.
When we do this, the electron density becomes the density operator

ρq =
∑
k,σ

c†kσ ck+qσ ; ρ−q = ρ†
q (B.46)

Then the interaction energy also becomes an operator. According to (B.40) it holds

Vt =
∑

q

ρ†
q F̃t (q) (B.47)

The perturbing field

− eF̃t (q) = v0(q)

2π�

∫ +∞

−∞
d E ρext (q, E) e−

i
�

(E+i0+)t (B.48)

however, remains naturally, a c-number. How does the induced charge density (oper-
ator!) react to the perturbing field produced by the external charge?

〈ρind (q, t)〉 = −e
{〈ρq〉t − 〈ρq〉0

} = −eΔ
(
ρq
)

t (B.49)

We now use the Kubo formula (B.17)

Δ
(
ρq
)

t =
1

�

∑
q′

∫ +∞

−∞
dt ′ F̃t ′(q′)〈〈ρq(t); ρ

†
q′(t ′)〉〉 (B.50)

We assume a system with translational symmetry so that we can use

〈〈ρq(t); ρ
†
q′(t ′)〉〉 → δq,q′ 〈〈ρq(t); ρ†

q(t ′)〉〉

Then we have

〈ρind (q, t)〉 = −e

�

∫ +∞

−∞
dt ′ F̃t ′(q)〈〈ρq(t); ρ†

q(t ′)〉〉 (B.51)
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or after Fourier transformation

〈ρind (q, E)〉 = v0(q)

�
ρext (q, E)〈〈ρq; ρ†

q)〉〉E+i0+ (B.52)

We compare this with the classical result (B.45) and then we can represent the
dielectric function by a retarded Green’s function

1

ε(q, E)
= 1 + 1

�
v0(q) 〈〈ρq; ρ†

q)〉〉E+i0+ (B.53)

The following two limiting cases are interesting:

• ε(q, E) � 1 : ⇒ 〈ρind (q, E)〉 ≈ −ρext (q, E), almost complete screening of
the perturbing charge.

• ε(q, E) → 0 : ⇒ arbitrarily small perturbations produce finite density oscilla-
tions ⇒ “resonances”, i.e. collective eigenoscillations of the electron system.

The poles of the Green’s function 〈〈ρq; ρ
†
q)〉〉E+i0+ are just the energies of the so-

called “plasmons”.

B.2 Spectroscopies and Spectral Densities

An additional important motivation for the study of Green’s functions is their close
connection to “elementary excitations” of the system, which are directly observ-
able by appropriate spectroscopies. Thus certain Green’s functions provide a direct
access to experiment. This is more directly valid for another fundamental function,
namely the so-called “spectral density” which has a close relation to the Green’s
functions. Figure B.2 shows in a schematic form, which elementary processes
are involved in four well-known spectroscopies for the determination of electronic
structure. The photoemission (PES) and the inverse photoemission (IPE) are the
so-called one-particle spectroscopies since the system (solid) contains after the
excitation process one particle more (less) as compared to before the process. In
the photoemission the energy �ω of the photon is absorbed by an electron in a
(partially) occupied energy band. This gain in energy makes the electron to leave
the solid. Analysis of the kinetic energy of the photoelectron leads to conclusions
about the occupied states of the concerned energy band. Then the transition operator
Z−1 = cα corresponds to the annihilation operator cα , if the particle occupies the
one-particle state |α 〉 before the excitation process. In the inverse photoemission, a
somewhat reverse process takes place. An electron is shot into the solid and it lands
in an unoccupied state |β 〉 of a partially filled energy band. The energy released is
emitted as a photon �ω which is analysed. Now the system contains one electron
more than before the process. This corresponds to the transition operator Z+1 = c†β .
PES and IPE are in some ways complementary spectroscopies. The former provides
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Fig. B.2 Elementary processes relevant for four different spectroscopies: 1. photoemission (PES),
2. inverse photoemission (IPE), 3. Auger electron spectroscopy (AES), and 4. appearance-potential
spectroscopy (APS). Z j is the transition operator, where j means the change in the electron num-
bers due to the respective excitation

information regarding the occupied and the latter about the unoccupied states of the
energy band.

Auger-electron spectroscopy (AES) and appearance potential spectroscopy (APS)
are two-particle spectroscopies. The starting situation for AES is characterized by
the existence of a hole in a deep lying core state. An electron of the partially filled
band drops down into this core state and transfers the energy to another electron
of the same band so that the latter can leave the solid. The analysis of the kinetic
energy of the emitted electron provides information about the energy structure of the
occupied states (two-particle density of states). The system (energy band) contains
two particles less than before the process: Z−2 = cαcβ . Almost the reverse process
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is exploited in APS. An electron lands in an unoccupied state of an energy band. The
energy released is used in exciting a core electron to come up and occupy another
unoccupied state of the same energy band. The subsequent de-exciting process can
be analyzed to gain information about the unoccupied states of the energy band. In
this case then the system (energy band) contains two electrons more after the process
as compared to before the process. Therefore the transition operator is Z+2 = c†βc†α .
AES and APS are obviously complementary two-particle spectroscopies.

We now, using simple arguments, want to estimate the associated intensities for
the individual processes.

• The system under investigation is described by the Hamiltonian:

H = H − μN̂ (B.54)

Here μ is the chemical potential and N̂ is the particle number operator. Here
we use H instead of H since in the following we want to perform averages in
grand canonical ensemble. This is necessary because the above discussed transi-
tion operators change the particle number. However, H and N̂ should commute
which means they possess a common set of eigenstates:

H |En(N ) 〉 = En(N ) |En(N ) 〉 ; N̂ |En(N ) 〉 = N |En(N ) 〉

Then H satisfies the eigenvalue equation

H |En(N ) 〉 = (En(N ) − μN ) |En(N ) 〉 → En |En 〉 (B.55)

In order to save writing effort, in the following, so long as it does not create
any confusion, we will write the short forms i.e. for the eigenvalue instead of
(En(N ) − μN ) write En and for the eigenstates instead of |En(N ) 〉 simply write
|En 〉. However, the actual dependence of the states and eigenenergies on the par-
ticle number should always be kept in mind.

• The system at temperature T finds itself in an eigenstate |En 〉 of the Hamiltonian
H with the probability

1

Ξ
exp(−βEn)

where Ξ is the grand canonical partition function

Ξ = T r (exp(−βH) (B.56)

• The transition operator Zr induces transitions between the states |En 〉 and |Em 〉
with the probability

|〈Em |Zr |En〉|2 r = ±1,±2
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• The intensity of the measured elementary process corresponds to the total number
of transitions with excitation energies between E and E + d E :

Ir (E) = 1

Ξ

∑
m,n

e−βEn |〈Em |Zr |En〉|2 δ(E − (Em − En)) (B.57)

If the excitation energies are sufficiently dense, as is anyway the case for a solid,
then Ir (E) is a continuous function of the energy E .

• At this point we neglect certain secondary effects, which of course are important
for a quantitative analysis of the respective experiments, but are not decisive for
the actually interesting processes. This is valid, for example, in PES and AES for
the fact that the photoelectron leaving the solid can still couple to the residual
system (sudden approximation). In addition, the matrix elements for the transi-
tion from band level into vacuum are not taken into account here. However, the
bare line forms of the mentioned spectroscopies should be correctly described by
(B.57).

One should note that for the transition operator holds

Zr = Z †
−r (B.58)

That means complementary spectroscopies are related to each other in some way.
This is now investigated in more detail:

Ir (E) = 1

Ξ

∑
m,n

eβE e−βEm |〈Em |Zr |En〉|2 δ(E − (Em − En))

= 1

Ξ

∑
n,m

eβE e−βEn |〈En|Zr |Em〉|2 δ(E − (En − Em))

= eβE

Ξ

∑
n,m

e−βEn |〈Em |Z−r |En〉|2 δ((−E) − (Em − En))

In the second step only the summation indices n and m are interchanged; the last
transition uses (B.58). We then have derived a “symmetry relation” for the comple-
mentary spectroscopies:

Ir (E) = eβE I−r (−E) (B.59)

We now define the spectral density which is important for the following:

1

�
S(±)

r (E) = I−r (E) ∓ Ir (−E) = (eβE ∓ 1
)

Ir (−E) (B.60)

The freedom in the sign will be explained later. From (B.59) and (B.60) one recog-
nizes that the intensities of the complementary spectroscopies are determined by the
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same spectral density in a simple manner:

� Ir (E) = 1

e−βE ∓ 1
S(±)

r (−E) (B.61)

� I−r (E) = eβE

eβE ∓ 1
S(±)

r (E) (B.62)

Thus the just introduced spectral density is closely related to the intensities of spec-
troscopies. Therefore we want to further investigate this function by performing a
Fourier transformation into the time domain:

1

2π�

∫ +∞

−∞
d Ee−

i
�

E(t−t ′) I−r (E)

= 1

2π�

1

Ξ

∑
m,n

e−βEn e−
i
�

(Em−En )(t−t ′)〈Em |Z−r |En〉 〈En|Z †
−r |Em〉

= 1

2π�

1

Ξ

∑
m,n

e−βEn 〈Em |e i
�
Ht ′ Z−r e−

i
�
Ht ′ |En〉 ∗

∗〈En|e i
�
Ht Zr e−

i
�
Ht |Em〉

= 1

2π�

1

Ξ

∑
m,n

e−βEn 〈En|Zr (t)|Em〉 〈Em |Z †
r (t ′)|En〉

= 1

2π�

1

Ξ

∑
n

e−βEn 〈En|Zr (t)Z †
r (t ′)|En〉

= 1

2π�
〈Zr (t) Z †

r (t ′)〉

Completely analogously one finds

1

2π�

∫ +∞

−∞
d Ee−

i
�

E(t−t ′) Ir (−E) = 1

2π�
〈Z †

r (t ′) Zr (t)〉

That means with (B.60) for the double-time spectral density

S(η)
r (t, t ′) = 1

2π�

∫ +∞

−∞
d Ee−

i
�

E(t−t ′) S(η)
r (E)

= 1

2π
〈[Zr (t), Z †

r (t ′)
]
−η
〉 (B.63)

Here η = ± is at the moment only an arbitrary sign factor. [· · · , · · · ]−η is either a
commutator or an anti-commutator:

[
Zr (t), Z †

r (t ′)
]
−η

= Zr (t) Z †
r (t ′) − η Z †

r (t ′) Zr (t) (B.64)
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We have shown that spectral density in (B.63) is of central importance for the inten-
sities of spectroscopies. In addition it can also be shown that a generalization of
spectral density to arbitrary operators Â and B̂ is closely related to the retarded
Green’s functions introduced in (B.16). This is also true for the other types of
Green’s functions to be defined in the next section. The “spectral density”

S(η)
AB(t, t ′) = 1

2π
〈[ Â(t), B̂(t ′)

]
−η
〉 (B.65)

has the same place of importance as the Green’s functions in the many-body theory.

B.3 Double-Time Green’s Functions

B.3.1 Definitions and Equations of Motion

In order to construct the full Green’s function formalism the retarded Green’s func-
tion introduced earlier is not sufficient. One needs two other types:
Retarded Green’s function

Gret
AB(t, t ′) = 〈〈A(t); B(t ′)〉〉ret = −iΘ(t − t ′)〈[A(t), B(t ′)

]
−η
〉 (B.66)

Advanced Green’s function

Gad
AB(t, t ′) = 〈〈A(t); B(t ′)〉〉ad = +iΘ(t ′ − t)〈[A(t), B(t ′)

]
−η
〉 (B.67)

Causal Green’s function

Gc
AB(t, t ′) = 〈〈A(t); B(t ′)〉〉c = −i〈Tη {A(t)B(t ′)}〉 (B.68)

The operators here are in their time-dependent Heisenberg picture:

X (t) = e
i
�
Ht X e−

i
�
Ht (B.69)

where, just as in the derivation of the spectral density in the last section, the transfor-
mation should be carried out with the grand canonical Hamiltonian H = H − μN̂ .
In doing this we assume that H is not explicitly dependent on time. The averages
are performed in the grand canonical ensemble:

〈XY 〉 = 1

Ξ
T r
(
e−βH XY

)
(B.70)

Ξ is the grand canonical partition function (B.56). The choice of the sign η = ± is
arbitrary and appears based on the convenience in a given situation. If Â and B̂ are
pure Fermi (Bose) operators, then η = − (η = +) is convenient but not necessarily
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required. The brackets in (B.66) and (B.67) are anti-commutators in the former case
and commutators in the latter case as was fixed in (B.64).

The definition (B.68) of the causal Green’s function contains the Wick’s time
ordering operator:

Tη {A(t)B(t ′)} = Θ(t − t ′) A(t)B(t ′) + η Θ(t ′ − t) B(t ′)A(t) (B.71)

The step function Θ

Θ(t − t ′) =
{

1 for t > t ′

0 for t < t ′ (B.72)

is not defined for equal times. This is reflected in the Green’s functions and so has
to be considered later. Because of the averaging in (B.70), the Green’s functions are
also temperature dependent. As a result, later, an unusual but convenient relationship
between the temperature and time variables will be established.

In addition to the Green’s functions (B.66), (B.67) and (B.68), the spectral den-
sity (B.65) is of equal significance.

We now prove “retrospectively” that if H is not explicitly dependent on time,
then the Green’s functions and the spectral density are homogeneous in time:

∂H
∂t

= 0 � Gret,ad,c
AB (t, t ′) = Gret,ad,c

AB (t − t ′) (B.73)

SAB(t, t ′) = SAB(t − t ′) (B.74)

The proof is complete provided the homogeneity of the “correlation functions”

〈A(t) B(t ′)〉 ; 〈B(t ′) A(t)〉

is proved. This is achieved by using the cyclic invariance of trace:

T r
(
e−βH A(t) B(t ′)

) = T r
(

e−βHe
i
�
Ht A e−

i
�
Ht e

i
�
Ht ′ B e−

i
�
Ht ′
)

= T r
(

e−
i
�
Ht ′e−βHe

i
�
Ht A e−

i
�
Ht e

i
�
Ht ′ B

)

= T r
(

e−βHe−
i
�
Ht ′ e

i
�
Ht A e−

i
�
Ht e

i
�
Ht ′ B

)

= T r
(
e−βH A(t − t ′) B

)

Thus the homogeneity is shown as

〈A(t) B(t ′)〉 = 〈A(t − t ′) B(0)〉 (B.75)

Analogously one finds

〈B(t ′) A(t)〉 = 〈B(0) A(t − t ′)〉 (B.76)
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For the approximate determination of a Green’s function, one can use the respec-
tive equation of motion which is directly derived from the equation of motion of the
corresponding time-dependent Heisenberg operators. With

∂

∂t
Θ(t − t ′) = δ(t − t ′) = − ∂

∂t ′
Θ(t − t ′) (B.77)

one gets formally the same equation of motion for all the three Green’s functions:

i�
∂

∂t
Gret,ad,c

AB (t, t ′) = �δ(t − t ′)〈[A, B]−η〉
+ 〈〈[A, H]− (t); B(t ′)〉〉ret,ad,c (B.78)

The boundary conditions are, however, different:

Gret
AB(t, t ′) = 0 for t < t ′ (B.79)

Gav
AB(t, t ′) = 0 for t > t ′ (B.80)

Gc
AB(t, t ′) =

{−i〈A(t − t ′) B(0)〉 for t > t ′

−iη〈B(0) A(t − t ′)〉 for t < t ′ (B.81)

The boundary conditions for the causal function are quite unmanageable. For that
reason this function does not play any role in the equation of motion method. That
is why it will not be considered here any more.

On the right-hand side of the equation of motion (B.78) appears a higher Green’s
function as [A, H]− (t) is itself a time-dependent operator. In some special cases
[A, H]− (t) ∝ A(t) holds. Then an exact solution of the equation of motion is
directly possible. However, in general, such a proportionality does not hold. Then
the higher Green’s function satisfies its own equation of motion of the form

i�
∂

∂t
〈〈[A, H]− (t); B(t ′)〉〉ret,ad =

= �δ(t − t ′)〈[[A, H]− , B
]
−η
〉 +

+〈〈[[A, H]− , H
]
− (t); B(t ′)〉〉ret,ad (B.82)

On the right-hand side appears a still higher Green’s function for which again
another equation of motion can be written. This leads to an infinite chain of equa-
tions of motion which, at some stage, has to be decoupled physically meaningfully.

Going from the time domain into energy domain also does not change anything
for this chain of equations. However, with (B.18) and (B.21), one gets a pure alge-
braic equation which can possibly be of advantage:

E〈〈A; B〉〉ret,ad
E = �〈[A, B]−η〉 + 〈〈[A, H]− ; B〉〉ret,ad

E (B.83)
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The boundary conditions (B.79) and (B.80) manifest themselves as different ana-
lytical behaviours of the Green’s functions in the complex E-plane. This shall be
investigated in detail in the next section.

B.3.2 Spectral Representations

In order to learn more about the analytical properties of these functions, with the
help of the eigenvalues and eigenstates (B.55) of the Hamiltonian H, we derive
the spectral representations of the retarded and advanced Green’s functions. The
eigenstates constitute a complete orthonormal system:

〈En|Em〉 = δnm ;
∑

n

|En〉〈En| = 1l (B.84)

Using this, we first rewrite the correlation functions 〈A(t) B(t ′)〉, 〈B(t ′) A(t)〉:

Ξ · 〈A(t) B(t ′)〉 = T r
{
e−βH A(t) B(t ′)

}

=
∑

n

〈En|e−βH A(t) B(t ′)|En〉

=
∑
n,m

〈En|e−βH A(t)|Em〉〈Em |B(t ′)|En〉

=
∑
n,m

e−βEn 〈En|A|Em〉〈Em |B|En〉e i
�

(En−Em )(t−t ′)

=
∑
n,m

e−βEn eβ(En−Em )〈En|B|Em〉〈Em |A|En〉 ∗

∗e−
i
�

(En−Em )(t−t ′)

In the last step we simply interchanged the summation indices n and m. Completely
analogously one finds the other correlation function

Ξ · 〈B(t ′) A(t)〉 =
∑
n,m

e−βEn 〈En|B|Em〉〈Em |A|En〉e− i
�

(En−Em )(t−t ′)

Comparing these expressions with the Fourier representation of the spectral
density

SAB(t, t ′) = 1

2π
〈[A(t), B(t ′)

]
−η
〉

= 1

2π�

∫ +∞

−∞
d E e−

i
�

E(t−t ′)SAB(E) (B.85)
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we get the important “spectral representation of the spectral density”

SAB(E) = �

Ξ

∑
n,m

〈En|B|Em〉〈Em |A|En〉 ∗

∗e−βEn (eβE − η)δ (E − (En − Em)) (B.86)

The arguments of the delta functions contain the possible excitation energies! Let
us compare this with (B.57), the intensity formula for r-particle spectroscopies and
their simple relationships (B.61) and (B.62) with the respective spectral
densities.

We now try to express the Green’s functions in terms of spectral density. This is
possible with the following representation of the step function:

Θ(t − t ′) = i

2π

∫ +∞

−∞
dx

e−i x(t−t ′)

x + i0+ (B.87)

This is proved using the residue theorem (Problem B.4). Using this we first rewrite
the retarded function

Gret
AB(E) =

∫ +∞

−∞
d(t − t ′)e

i
�

E(t−t ′) (−iΘ(t − t ′)
) (

2π SAB(t − t ′)
)

=
∫ +∞

−∞
d(t − t ′)e

i
�

E(t−t ′)

(
1

2π

∫ +∞

−∞
dx

e−i x(t−t ′)

x + i0+

)
∗

∗
(

1

�

∫ +∞

−∞
d E ′SAB(E ′)e−

i
�

E ′(t−t ′)
)

=
∫ +∞

−∞
d E ′SAB(E ′)

∫ +∞

−∞
dx

1

x + i0+ ∗

∗ 1

2π�

∫ +∞

−∞
d(t − t ′)e

i
�

(E−E ′−�x)(t−t ′)

=
∫ +∞

−∞
d E ′SAB(E ′)

∫ +∞

−∞
dx

1

x + i0+ δ(E − E ′ − �x)

=
∫ +∞

−∞
d E ′ 1

�

SAB(E ′)
1
�

(E − E ′) + i0+

This gives the “spectral representation of the retarded Green’s function”:

Gret
AB(E) =

∫ +∞

−∞
d E ′ SAB(E ′)

E − E ′ + i0+ (B.88)
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The advanced Green’s function can be treated completely analogously:

Gad
AB(E) =

∫ +∞

−∞
d(t − t ′)e

i
�

E(t−t ′) (+iΘ(t ′ − t)
) (

2π SAB(t − t ′)
)

=
∫ +∞

−∞
d(t − t ′)e

i
�

E(t−t ′)

(
−1

2π

∫ +∞

−∞
dx

e−i x(t ′−t)

x + i0+

)
∗

∗
(

1

�

∫ +∞

−∞
d E ′SAB(E ′)e−

i
�

E ′(t−t ′)
)

=
∫ +∞

−∞
d E ′SAB(E ′)

∫ +∞

−∞
dx

−1

x + i0+ ∗

∗ 1

2π�

∫ +∞

−∞
d(t − t ′)e

i
�

(E−E ′+�x)(t−t ′)

=
∫ +∞

−∞
d E ′SAB(E ′)

∫ +∞

−∞
dx

−1

x + i0+ δ(E − E ′ + �x)

=
∫ +∞

−∞
d E ′ 1

�

SAB(E ′)
1
�

(E − E ′) − i0+

This gives the “spectral representation of the advanced Green’s function”:

Gad
AB(E) =

∫ +∞

−∞
d E ′ SAB(E ′)

E − E ′ − i0+ (B.89)

The different sign of i0+ in the denominator of the integrand is the only but impor-
tant difference between the retarded and the advanced functions. The retarded and
advanced functions have poles, respectively, in the lower and upper half-planes. This
results in different analytical behaviours of the two functions.

Gret
AB(E) in the upper and Gav

AB(E) in the lower complex half-plane can be
analytically continued!

Finally, we can substitute (B.86) in (B.88) and (B.89):

G
ret
ad
AB(E) = �

Ξ

∑
n,m

〈En|B|Em〉〈Em |A|En〉 ∗

∗e−βEn
eβ(En−Em ) − η

E − (En − Em) ± i0+ (B.90)

We see that we have meromorphic functions with simple poles at the exact (!) exci-
tation energies of the interacting system. With a suitable choice of the operators A
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and B special poles can be extracted, i.e. E = En − Em appears as a pole only if
〈En|B|Em〉 �= 0 and 〈Em |A|En〉 �= 0.

Because of the identical predictive power and the same equation of motion the
retarded and advanced functions are considered to be the two branches of a unified
Green’s function in the complex plane:

G AB(E) =
∫ +∞

−∞
d E ′ SAB(E ′)

E − E ′ =
{

Gret
AB(E) , if I m E > 0

Gad
AB(E) , if I m E < 0

(B.91)

In the following, we want to call this the combined Green’s function. Its poles lie on
the real axis.

With the “Dirac identity”,

1

x − x0 ± i0+ = P 1

x − x0
∓ iπδ(x − x0) (B.92)

where P represents the Cauchy’s principal value, one finds the following relation
between the spectral density and the Green’s functions:

SAB(E) = i

2π

(
Gret

AB(E) − Gav
AB(E)

)
(B.93)

If SAB(E) is real, which it is in many of the important cases (e.g. B = A†), this
relation becomes even simpler:

SAB(E) = ∓ 1

π
I m G

ret
av
AB(E) (B.94)

Equations (B.88) and (B.89) show that the Green’s functions are completely fixed
by the spectral density. On the other hand according to (B.94) only the imaginary
part of the Green’s function determines the spectral density. This means there must
be relations between the real and the imaginary parts of the Green’s function; they
are not independent of each other. These relations are called the Kramers–Kronig
relations which we will explicitly derive in Sect. B.3.5.

B.3.3 Spectral Theorem

The discussion of the last section has shown that the Green’s functions and the spec-
tral density, in addition to their importance in the context of the response functions
(Sect. B.1) and intensities of certain spectroscopies, also provide valuable micro-
scopic information. Their singularities correspond to the exact excitation energies
of the system. We now want to demonstrate that the whole macroscopic thermo-
dynamics can be determined using suitably defined Green’s functions and spectral
densities.
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The starting point is the spectral representation of the correlation functions intro-
duced in Sect. B.3.2.

〈B(t ′) A(t)〉 = 1

Ξ

∑
n,m

e−βEn 〈En|B|Em〉〈Em |A|En〉e− i
�

(En−Em )(t−t ′)

Comparing this expression with that for the spectral representation of the spectral
density (B.86), we get the fundamental spectral theorem:

〈B(t ′) A(t)〉 = 1

�

∫ +∞

−∞
d E

S(η)
AB(E)

eβE − η
e−

i
�

E(t−t ′) + 1

2
(1 + η) D (B.95)

Except for the second summand, this result follows directly from the comparison
with (B.86). The second term comes into play only for the commutator (η = +1)
spectral density. It disappears for the anti-commutator function (η = −1). The rea-
son for this is clear from (B.86). For E = 0, i.e. En = Em , the commutator spectral
densities do not contribute the corresponding term because (eβE − 1) = 0, even
though they may give a contribution 1

�
D unequal zero in the correlation function,

where

D = �

Ξ

En=Em∑
n,m

e−βEn 〈En|B|Em〉〈Em |A|En〉 (B.96)

Experience, however, shows that in fact in many cases D = 0. But the fact that
this is not always necessary is made easily clear from the following example: The
operator pairs A, B and Ã = A − 〈A〉1l, B̃ = B − 〈B〉1l form identical spectral
densities:

S(+)
AB (t − t ′) ≡ S(+)

Ã B̃
(t − t ′) ⇐⇒ S(+)

AB (E) ≡ S(+)
Ã B̃

(E)

On the other hand holds

〈B̃(t ′) Ã(t)〉 = 〈B(t ′) A(t)〉 − 〈B(t ′)〉〈A(t)〉

which would lead to a contradiction without the second term in (B.95) in case
〈A(t)〉 �= 0 and 〈B(t ′)〉 �= 0. Thus without the extra term D, the spectral theorem
would be incomplete for the commutator spectral density.

How does one determine D? It is possible with the combined Green’s function
(B.91) whose spectral representation

G(η)
AB(E) = �

Ξ

∑
n,m

〈En|B|Em〉〈Em |A|En〉e−βEn
eβ(En−Em ) − η

E − (En − Em)
(B.97)
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leads to the following relation:

lim
E→0

E · G(η)
AB(E) = (1 − η) D (B.98)

The limit must be taken in complex plane. One recognizes the following important
consequences:

• Even though D is needed for the commutator spectral density, the determination
succeeds only using the anti-commutator Green’s function.

• The commutator Green’s function G(+)
AB(E) is always regular at E = 0, i.e. it has

no pole there.
• The anti-commutator Green’s function G(−)

AB(E), for D �= 0, has a pole of first
order with the residue 2D.

B.3.4 Spectral Moments

Green’s functions and spectral densities for realistic problems are in general not
exactly solvable. Therefore, one must tolerate approximations. These approxima-
tions can be checked for correctness by using exactly solvable limiting cases, sym-
metry relations, sum rules, etc.

In this sense, the moments of spectral density are found to be extraordinarily
useful. Let n and p be non-negative integers:

n = 0, 1, 2, · · · ; 0 ≤ p ≤ n

Then for the time-dependent spectral density holds

(
i�

∂

∂t

)n−p (
−i�

∂

∂t ′

)p (
2π SAB(t − t ′)

) =

=
(

i�
∂

∂t

)n−p (
−i�

∂

∂t ′

)p 1

�

∫ +∞

−∞
d E SAB(E) e−

i
�

E(t−t ′)

= 1

�

∫ +∞

−∞
d E En SAB(E) e−

i
�

E(t−t ′)

!=
(

i�
∂

∂t

)n−p (
−i�

∂

∂t ′

)p

〈[A(t), B(t ′)
]
−η
〉

For t = t ′ from the first part of the system of equations one gets the spectral
moments

M (n)
AB = 1

�

∫ +∞

−∞
d E En SAB(E) (B.99)
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An alternative representation results from the last part by using the equation of
motion for the time-dependent Heisenberg operators

M (n)
AB =

= 〈
[

[· · · [[A, H]−, H]− · · · , H]−︸ ︷︷ ︸
(n−p)−fold

, [H, · · · , [H, B]− · · · ]−︸ ︷︷ ︸
p−fold

]
−η

〉

(B.100)

With this last relation it is possible in principle to calculate exactly all the moments
independently of the respective spectral densities if the Hamiltonian is known. Then
one has the possibility to control certain approximate procedures for the spectral
density using (B.99).

With the spectral moments, it is possible to formulate a very often useful “high-
energy expansion”. For the “combined Green’s function” (B.91) holds

G AB(E) =
∫ +∞

−∞
d E ′ SAB(E ′)

E − E ′

= 1

E

∫ +∞

−∞
d E ′ SAB(E ′)

1 − E ′
E

= 1

E

∞∑
n=0

∫ +∞

−∞
d E ′ SAB(E ′)

(
E

E ′

)n

A comparison with (B.99) gives

G AB(E) = �

∞∑
n=0

M (n)
AB

En+1
(B.101)

For the extreme high-energy behaviour (E → ∞) this means

G AB(E) ≈ �

E
M (0)

AB = �

E
〈[A, B]−η〉 (B.102)

The right-hand side is in general easy to calculate and therefore, e.g. the high-energy
behaviour of the response functions in Sect. B.1.1 is known.

B.3.5 Kramer’s–Kronig Relations

We have already seen that the Green’s function Gret,ad
AB (E) is completely determined

by the spectral density SAB(E) (B.88) and (B.89). In case it is real, then it can be
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determined by the imaginary part of the Green’s function alone (B.94). Therefore
the real and imaginary parts of the Green’s function cannot be independent of each
other. We will now derive the relationship between them.

One calculates the following integral for real E :

IC (E) =
∮

C
d Ê

Gret
AB(Ê)

E − Ê − i0+ (B.103)

Integration is performed over the path C which follows the real axis and is closed
in the upper half of the complex plane (Fig. B.3). The integrand has a pole at
Ê = E − i0+, i.e. in the lower half-plane. The retarded Green’s function also has a
pole only in the lower half-plane so that there is no pole in the region enclosed by
C . Therefore it holds

IC (E) = 0 (B.104)

The semicircle is extended to infinity. The high-energy expansion (B.101) shows
that the integrand in (B.103) then goes to zero at least as 1/Ê2. As a result, the
semicircle does not contribute to the integral (B.103). It remains when the Dirac
identity (B.92) is used:

0 =
∫ +∞

−∞
d Ê

Gret
AB(Ê)

E − Ê − i0+

= P
∫ +∞

−∞
d Ê

Gret
AB(Ê)

E − Ê
+ iπGret

AB(E)

That means

Gret
AB(E) = i

π
P
∫ +∞

−∞
d Ê

Gret
AB(Ê)

E − Ê
(B.105)

Completely analogous considerations hold for the advanced function Gad
AB(E). Now

the semicircle will be in the lower half-plane and in the denominator of the integrand
(B.103) −i0+ is replaced by +i0+ . Then we have

Fig. B.3 Integration path C
in the complex E-plane for
the integral (B.103)
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Gad
AB(E) = − i

π
P
∫ +∞

−∞
d Ê

Gad
AB(Ê)

E − Ê
(B.106)

Thus it is not at all necessary to know the full Green’s function. The real and imag-
inary parts account for each other (“Kramers–Kronig relations”)

ReG
ret
ad
AB(E) = ∓ i

π
P
∫ +∞

−∞
d Ê

I mG
ret
ad
AB(Ê)

E − Ê
(B.107)

I mG
ret
ad
AB(E) = ± i

π
P
∫ +∞

−∞
d Ê

ReG
ret
ad
AB(Ê)

E − Ê
(B.108)

In case the respective spectral density is real the additional relation (B.94) holds.
That leads to

I mGret
AB(E) = −I mGad

AB(E) = −π SAB(E) (B.109)

ReGret
AB(E) = ReGad

AB(E) = P
∫ +∞

−∞
d Ê

SAB(Ê)

E − Ê
(B.110)

The retarded and advanced Green’s functions are therefore very closely related.

B.3.6 Simple Applications

We want to apply the above introduced Green’s function formalism to two simple
systems.

B.3.6.1 Free Band Electrons

As the first example, we discuss a system of electrons in a solid which do not interact
with each other, interacting only with a periodic lattice potential. This is described
by the following one-particle Hamiltonian:

H0 = H0 − μN̂ , H0 =
∑
kσ

ε(k) c†kσ ckσ (B.111)

N̂ =
∑
kσ

c†kσ ckσ (B.112)

All the interesting properties of the electron system can be calculated from the so-
called one-electron Green’s function:
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Gret,ad
kσ (E) = 〈〈ckσ ; c†kσ 〉〉ret,ad

E (B.113)

Since we are dealing with a pure Fermi system, the choice of the anti-commutator
Green’s function is natural, however, not mandatory.

The first step is setting up the equation of motion (B.83):

E Gret,ad
kσ (E) = � 〈[ckσ , c†kσ ]+〉 + 〈〈[ckσ , H0]−; c†kσ 〉〉ret,ad (B.114)

With the help of the fundamental commutation relations for Fermions, one easily
gets

[ckσ , H0]− = (ε(k) − μ) ckσ (B.115)

On substituting this leads to a simple equation of motion

E Gret,ad
kσ (E) = � + (ε(k) − μ) Gret,ad

kσ (E)

Solving this and introducing ±i0+ in order to satisfy the boundary conditions one
gets

Gret,ad
kσ (E) = �

E − (ε(k) − μ) ± i0+ (B.116)

The Green’s function is singular at the energy which is required to add an electron
of wavevector k to the non-interacting electron system. That means the singularities
of the Green’s function (B.113) correspond to the one-particle excitations of the
system. The combined Green’s function is naturally directly given from (B.116) by
removing the infinitesimal imaginary term:

Gkσ (E) = �

E − (ε(k) − μ)
(B.117)

The energy E is thought to be complex here. It is interesting to confirm the result
(B.117) by an exact evaluation of high-energy expansion (B.101) (Problem B.7).

Finally the one-electron spectral density is another important quantity, for which
with the Dirac identity (B.92) along with (B.94) directly from (B.116) follows:

Skσ (E) = � δ (E − ε(k) + μ) (B.118)

Using the spectral theorem (B.95) one can easily calculate the average occupation
number of the (k, σ )-level:

〈nkσ 〉 = 〈c†kσ ckσ 〉 = 1

�

∫ +∞

−∞
d E

Skσ (E)

eβE + 1
= 1

eβ(ε(k)−μ) + 1
(B.119)
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This is of course a well-known result of quantum statistics. The average occupation
number is given by the Fermi function f−(E) = (eβ(E−μ) + 1)−1 at E = ε(k).

From 〈nkσ 〉 by summing over all the wavevectors k and the two spin projections
σ we can fix the total number of electrons Ne:

Ne =
∑
kσ

〈nkσ 〉 =
∑
kσ

1

�

∫ +∞

−∞
d E

Skσ (E)

eβE + 1

=
∑
kσ

1

�

∫ +∞

−∞
d E f−(E)Skσ (E − μ)

We denote by ρσ (E) the density of states per spin, where self-evidently for the free
Fermion system ρσ (E) ≡ ρ−σ (E) holds, so that we can write Ne as

Ne = N
∑

σ

∫ +∞

−∞
d E f−(E)ρσ (E)

Here N is the number of lattice sites with which ρσ (E) is normalized to 1 since the
number of energy band states per each spin direction should be equal to the number
of lattice sites. The comparison of the last two equations leads to the important
definition of the “quasiparticle density of states”:

ρσ (E) = 1

N�

∑
k

Skσ (E − μ) (B.120)

In the case of the non-interacting electrons considered here with (B.118)

ρσ (E) = ρ−σ (E) ≡ ρ0(E) = 1

N

∑
k

δ (E − ε(k)) (B.121)

follows. Without the lattice potential, for the one-particle energies we get the well-
known parabolic dispersion ε(k) = �

2k2

2m . One can then easily show that the density

of states has a
√

E-dependence.
The considerations for the electron number are correct not only for free electron

system but also valid in general. That is why (B.120) will be accepted as the gen-
eral (!) definition of the quasiparticle density of states for any interacting electron
system.

The “internal energy” U as the thermodynamic expectation value of the Hamil-
tonian is fixed in a simple manner by 〈nkσ 〉:
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U = 〈H0〉 =
∑
kσ

ε(k)〈nkσ 〉

= 1

�

∑
kσ

ε(k)
∫ +∞

−∞
d E f−(E)Skσ (E − μ)

= 1

2�

∑
kσ

∫ +∞

−∞
d E(E + ε(k)) f−(E)Skσ (E − μ) (B.122)

The bit more complicated representation of the last line will turn out to be the defini-
tion of U which is valid in general for an interacting electron system
(see B.4.5).

Finally the time-dependent functions are interesting. For the spectral density
(B.118), it is trivial to perform the Fourier transformation:

Skσ (t − t ′) = 1

2π
exp

(
− i

�
(ε(k) − μ)(t − t ′)

)
(B.123)

This represents an undamped oscillations with a frequency that corresponds to an
exact excitation energy of the system (Fig. B.4). This is typical for non-interacting
particle systems. Exactly similarly we find the time-dependent Green’s functions:

Gret
kσ (t, t ′) = −iΘ(t − t ′) exp

(
− i

�
(ε(k) − μ)(t − t ′)

)

(B.124)

Gav
kσ (t, t ′) = +iΘ(t ′ − t) exp

(
− i

�
(ε(k) − μ)(t − t ′)

)

(B.125)

0

0

(t − t’)

2π
ℜ

S
(0

)
kσ

Fig. B.4 Time dependence of the real part of the single-particle spectral density of non-interacting
Bloch electrons
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B.3.6.2 Spin Waves

As another example we consider the (linear) spin waves (magnons) of a ferromag-
net. At low temperatures the Heisenberg Hamiltonian (7.1) can be simplified in the
Holstein–Primakoff approximation (7.1.1) as follows:

HSW = E0 +
∑

q

�ω(q) a†
qaq (B.126)

a†
q(aq) are the creation (annihilation) operators for magnons. According to this, the

ferromagnet is modelled as a gas of non-interacting magnons with one-particle ener-
gies

�ω(q) = 2S�
2 (J0 − J (q)) + gJ μB B0 (B.127)

J (q) are the exchange integrals with J0 = J (q = 0). The second summand
describes the influence of an external magnetic field on the one-particle energies.
A precondition for the concept of spin waves is that at T = 0 the system is ferro-
magnetic (E0 : ground state energy (7.246)). A symmetry breaking field

B0 ≥ 0+ (B.128)

has to be present necessarily.
Particle number conservation does not hold for magnons. At a given temperature

T , it gives exactly the magnon number for which the free energy is minimum:

(
∂ F

∂ N

)
T,V

!= 0 (B.129)

The differential fraction on the left-hand side is just the definition of the chemical
potential μ. So for magnons holds

μ = 0 (B.130)

This means that we can substitute H = H −μN̂ = H in the equation of motion for
the Green’s function. We need the commutator

[
aq, HSW

]
− =

∑
q′

�ω(q′)
[
aq, a†

q′aq′
]
−

=
∑

q′
�ω(q′)

[
aq, a†

q′

]
−

aq′

= �ω(q) aq

Then the equation of motion becomes very simple:

E Gret,av
q (E) = � + �ω(q) Gret,av

q (E)
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Solving it along with the boundary conditions then gives

Gret,av
q (E) = �

E − �ω(q) ± i0+ (B.131)

Here also the pole represents the excitation energy which indicates either a creation
or annihilation of a q-magnon. That is exactly �ω(q) in the absence of interaction.
With (B.92) and (B.94), the important “one-magnon spectral density” follows:

Sq(E) = � δ (E − �ω(q)) (B.132)

One can quickly calculate the time-dependent function and see that it represents as
in the case of free Bloch electrons, an undamped oscillation:

Sq(t − t ′) = 1

2π
exp
(−iω(q)(t − t ′)

)
(B.133)

The frequency of oscillation again corresponds to an exact excitation energy of the
system.

With the help of the spectral theorem (B.95) and the spectral density (B.132) we
obtain the “magnon occupation density”:

mq = 〈a†
qaq〉 = 1

exp (β�ω(q)) − 1
+ Dq (B.134)

As we started with the commutator Green’s function, we must determine the con-
stant Dq using the respective anti-commutator Green’s function. The fundamental
commutation relation for Bosons give for the inhomogeneity in the equation of
motion

〈[aq, a†
q

]
+〉 = 1 + 2mq

Except for this the anti-commutator Green’s function satisfies the same equation of
motion as the commutator Green’s function. One obtains

G(−)
q (E) = �(1 + 2mq)

E − �ω(q)
(B.135)

In the presence of at least an infinitesimal symmetry breaking external field (B0 ≥
0), the magnon energies are always unequal zero and are positive. That according to
(B.98) means

2�Dq = lim
E→0

EG(−)
q (E) = 0

So that for the occupation density we get

mq = 1

exp (β�ω(q)) − 1
(B.136)



B.4 The Quasiparticle Concept 545

This is the Bose–Einstein distribution function which is a well-known result of ele-
mentary quantum statistics for the ideal Bose gas.

B.4 The Quasiparticle Concept

The really interesting many-body problems unfortunately can not be solved exactly.
Therefore one must tolerate approximations. For describing the interacting many-
particle systems, the concept of “quasiparticles” has proved to be very successful
and will be discussed in this section. The basis for this is the following idea:

complex interacting systems of “real” particles
=⇒ non- (or weakly-) interacting system of quasiparticles

This replacement is valid only if one assigns certain special properties to the quasi-
particles which will be discussed in the following:

• energy renormalization;
• damping, finite lifetimes;
• effective masses;
• spectral weights, etc.

B.4.1 Interacting Electrons

In order to be concrete, we here want to concentrate on a system of electrons in a
non-degenerate energy band interacting via Coulomb interaction. For such a system
holds in Bloch representation:

H = H − μN̂ ; N̂ =
∑
kσ

c†kσ ckσ (B.137)

H =
∑
kσ

ε(k)c†kσ ckσ + 1

2

∑
kpqσσ ′

vkp(q)c†k+qσ c†p−qσ ′cpσ ′ckσ (B.138)

Let the matrix elements be built with Bloch functions ψk(r):

ε(k) =
∫

d3r ψ∗
k (r)

[
− �

2

2m
Δ + V (r)

]
ψk(r) (B.139)

vkp(q) = 1

4πε0

∫ ∫
d3r1 d3r2

ψ∗
k+q(r1)ψ∗

p−q(r2)ψp(r2)ψk(r1)

|r1 − r2|
(B.140)

vkp(q) = vpk(−q) (B.141)
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Fig. B.5 Diagram of the
Coulomb interaction between
electrons of a non-degenerate
energy band

All the wavevectors k, p, q stem from the first Brillouin zone. Actually the detailed
structure and interpretation of the matrix elements is not important for the following
considerations. What is decisive is that the interaction (Fig. B.5) makes the problem
definitely unsolvable. In spite of that, is it possible to make a few basic statements?

We will see in the following that also for interacting electrons the one-electron
Green’s function can provide a large part of the interesting information:

Gret,ad
kσ (E) = 〈〈ckσ ; c†kσ 〉〉ret,ad

E (B.142)

Completely equivalent to this is the one-electron spectral density:

Skσ (E) = 1

2π

∫ +∞

−∞
d(t − t ′) e−

i
�

E(t−t ′)〈
[
ckσ (t), c†kσ (t ′)

]
+
〉 (B.143)

We want to determine the spectral density using the equation of motion of the
Green’s function, where from now onwards, we consider only the retarded Green’s
function and for convenience, drop the index ret. Starting point is the following
commutator whose derivation is suggested as an exercise (Problem B.6):

[ckσ , H]− = (ε(k) − μ) ckσ +
∑
pqσ ′

vpk+q(q)c†p+qσ ′cpσ ′ck+qσ (B.144)

With the higher Green’s function

Γσ ′σ
pk;q(E) = 〈〈c†p+qσ ′cpσ ′ck+qσ ; c†kσ 〉〉E (B.145)

the equation of motion reads as

(E − ε(k) + μ) Gkσ (E) = � +
∑
pqσ ′

vpk+q(q)Γσ ′σ
pk;q(E) (B.146)

The function Γ prevents the exact solution. A formal solution, however, is possible
with the following separation
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〈〈[ckσ , H−H0]− ; c†kσ 〉〉E
!≡ Σkσ (E) · Gkσ (E) (B.147)

This equation defines the fundamental “self-energy” which, in general, is a complex
function:

Σkσ (E) = Rkσ (E) + i · Ikσ (E) (B.148)

With this we can now write the Green’s function as follows:

Gkσ (E) = �

E − (ε(k) − μ + Σkσ (E))
(B.149)

One should note that in case the self-energy is real, one has to include the term
+i0+ in the denominator. Let it be mentioned as a side remark that because of
the Kramers–Kronig relations (B.109) and (B.110),

(
Gav

kσ (E)
)∗ = Gret

kσ (E) follows.
Then it must also hold:

(
Σav

kσ (E)
)∗ = Σret

kσ (E) (B.150)

We can therefore restrict the discussion to only the retarded self-energy. For sim-
plicity we from now on drop the index ret.

If we switch off the interaction, then we get the Green’s function for the free
system (B.116) which we want to denote by G(0)

kσ (E):

G(0)
kσ (E) = �

E − (ε(k) − μ) + i0+ (B.151)

So the total influence of the interaction is contained in the self-energy, whose knowl-
edge solves the many-body problem. If (B.150) is substituted in (B.149) then we
have

�

(
G(0)

kσ (E)
)−1

Gkσ (E) = � + Σkσ (E)Gkσ (E)

This leads to the “Dyson equation”:

Gkσ (E) = G(0)
kσ (E) + G(0)

kσ (E)
1

�
Σkσ (E)Gkσ (E) (B.152)

This equation can be solved by iteration up to any given accuracy by knowing
(approximately) the self-energy:

Gkσ (E) = G(0)
kσ (E) + G(0)

kσ (E)
∞∑

n=1

(
1

�
Σkσ (E)G(0)

kσ (E)

)n

(B.153)
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B.4.2 Electronic Self-energy

We want to try to get a picture of the general structure of the fundamental many-
body terms such as self-energy, Green’s function and spectral density, without being
able to calculate explicitly the influence of the interaction. In doing this we want
to restrict to the retarded functions whose relationship with other types is simple
because of the Kramers–Kronig relations (see (B.150)). First we rewrite a bit the
formal solution for the Green’s function using (B.149):

Gkσ (E) = �
[E − ε(k) + μ − Rkσ (E)] + i Ikσ (E)

[E − ε(k) + μ − Rkσ (E)]2 + I 2
kσ (E)

Skσ (E) is real and non-negative as one can easily see from the spectral representa-
tion (B.86) for the case A = ckσ und B = c†kσ . Then holds (B.94)

Skσ (E) = − �

π

Ikσ (E)

[E − ε(k) + μ − Rkσ (E)]2 + I 2
kσ (E)

(B.154)

Obviously for the imaginary part of the self-energy must hold

Ikσ (E) ≤ 0 (B.155)

In the following we want to analyse spectral density for the argument E −μ and we
expect prominent maxima at points of resonances given by

Enσ (k) − ε(k) − Rkσ (Enσ (k) − μ)
!= 0 n = 1, 2, · · · (B.156)

We must distinguish two cases:

(a) In the immediate E-neighbourhood of a resonance let

Ikσ (E − μ) ≡ 0 (B.157)

Then with Ikσ → −0+ and the well-known expression

δ(E − E0) = 1

π
lim
x→0

x

(E − E0)2 + x2
(B.158)

for the delta function, the following representation holds for the spectral density:

Skσ (E − μ) = � δ (E − ε(k) − Rkσ (E − μ)) (B.159)

For the case where there lies more than one resonance in the region under con-
sideration (B.157), we use another well-known property of the delta function:
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δ ( f (x))) =
∑

i

1

| f ′(xi )| δ(x − xi ) ; f (xi ) = 0 (B.160)

xi are the zeros of the function f (x). With this holds

Skσ (E − μ) = �

n0∑
n=1

αnσ (k) δ (E − Enσ (k)) (B.161)

where the coefficients αnσ (k) are known as spectral weights.

αnσ (k) =
∣∣∣∣1 − ∂

∂ E
Rkσ (E − μ)

∣∣∣∣
−1

E=Enσ (k)

(B.162)

Summation is over all resonances that lie in the region (B.157). Thus the spectral
density appears as a linear combination of positively weighted delta functions in
whose arguments the resonance energies appear.

(b) Now let it hold

Ikσ (E − μ) �≡ 0 (B.163)

It may still be assumed that, however, in the immediate neighbourhood of a
resonance holds:

|Ikσ (E − μ)| � |ε(k) + Rkσ (E − μ)| (B.164)

Then a more or less prominent maximum is to be expected at E = Enσ (k) . We
therefore expand the bracket in the denominator of (B.154):

Enσ (k) − ε(k) − Rkσ (Enσ (k) − μ)

= 0 + (E − Enσ (k))

(
1 − ∂

∂ E
Rkσ (E − μ)

)
E=Enσ (k)

+ O
(
(E − Enσ (k))2

)

We substitute this in (B.154) and also further assume that the imaginary part
of the self-energy is a well-behaved function of energy, so that we can further
simplify in the immediate neighbourhood of the resonance:

Ikσ (E − μ) ≈ Ikσ (Enσ (k) − μ) ≡ Inkσ (B.165)

This gives in the surroundings of resonance a Lorentzian structure of the spectral
density:

S(n)
kσ (E − μ) ≈ − �

π

α2
nσ Inkσ

(E − Enσ (k))2 + (αnσ Inkσ )2
(B.166)
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The results (B.161) and (B.166) lead finally to the classical quasiparticle picture.
Under the assumptions (B.164) and (B.165) the spectral density is made up of one
or more Lorentz curves or delta functions, whose widths and positions are to a large
extent determined by the imaginary and the real parts of the self-energy, respec-
tively. However, the assumptions made are not verifiable directly but only after the
complete solution of the many-body problem.

We want to physically interpret the general structure of the spectral density as
depicted in Fig. B.6. For this, a Fourier transformation into the time domain is very
useful:

Skσ (t − t ′) = 1

2π�

∫ +∞

−∞
d E e−

i
�

(E−μ)(t−t ′)Skσ (E − μ) (B.167)

This acquires a particularly simple structure for the case (A). With (B.161) follows
directly

Skσ (t − t ′) = 1

2π

n0∑
n=1

αnσ (k) exp

(
− i

�
(Enσ (k) − μ)(t − t ′)

)
(B.168)

Thus it is a sum of undamped oscillations with frequencies which correspond to the
resonance energies. This is similar to the result (B.123) depicted in Fig. B.4 for the
non-interacting electron system.

The transformation of the function of type B is a little more complicated. For
simplicity, we will assume that the Lorentz structure (B.166) is valid over the entire
energy range for the spectral density S(n)

kσ (E − μ):

S(n)
kσ (t − t ′) ≈ 1

4π2i

∫ +∞

−∞
d E e−

i
�

(E−μ)(t−t ′)αnσ (k) ∗

∗
[

1

E − (Enσ (k) − iαnσ (k)Inkσ )

− 1

E − (Enσ (k) + iαnσ (k)Inkσ )

]
(B.169)

0

Ijkσ = 0

Eiσ Ejσ
Ekσ

E

S
kσ

Fig. B.6 Classical quasiparticle picture of the single-electron spectral density
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The evaluation is done using the residue theorem noting that αnσ (k)Inkσ ≤ 0.
Therefore the first summand has a pole in the upper and the second summand in
the lower half-plane. For (t − t ′) > 0 the integral in (B.169) is replaced by a contour
integral where the path of integration runs along the real axis and closes with an
infinite semicircle in the lower half-plane. Only the second summand in (B.169)
then has a pole in the region enclosed by the integration path. The semicircle has
no contribution because of the exponential function. For (t − t ′) < 0, for the same
reason, the semicircle must be in the upper half-plane. In this region only the first
summand in (B.169) has a pole. Then finally the residue theorem gives

S(n)
kσ (t − t ′) ≈ 2π i

4π2i
αnσ (k)e−

i
�

(Enσ (k)−μ)(t−t ′) ∗

∗
[
Θ
(
t − t ′

)
e

1
�

αnσ (k)Inkσ (t−t ′)

+Θ
(
t ′ − t

)
e−

1
�

αnσ (k)Inkσ (t−t ′)
]

This can obviously be summarized to

S(n)
kσ (t − t ′) ≈ 1

2π
αnσ (k) exp

(
− i

�
(Enσ (k) − μ)(t − t ′)

)
∗

∗ exp

(
−1

�

∣∣αnσ (k)Inkσ (t − t ′)
∣∣
)

(B.170)

It now represents a “damped” oscillation. The frequency corresponds again to a
resonance energy. The amount of damping is determined by the imaginary part Inkσ

of the self-energy. Inkσ → 0 reproduces the result (B.108).
The time-dependent spectral density Skσ (t−t ′) for the interacting electron system

consists of an overlap of damped and undamped oscillations with frequencies which
correspond to the resonances Enσ (k). The resulting total time dependence can be
naturally quite complicated. In the next section we want to make it clear what these
(un)damped oscillations have to do with quasiparticles.

B.4.3 Quasiparticles

What does one understand by quasiparticles in many-body theory? It certainly has
something to do with the resonance peaks discussed in the last section and shall at
least be qualitatively explained here. For that, for simplicity, we consider the special
case:

T = 0 ; |k| > kF ; t > t ′ (B.171)

That means, we assume that there is something like a Fermi edge. In the case of
non-interacting electrons it is just the Fermi wavevector, which is the radius of
the Fermi sphere. |k| > kF here means only that at T = 0 the one-particle state
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with |k| is unoccupied. Let the system be in the normalized ground state |E0〉.
At time t ′ a (k, σ )-electron is introduced into the N -particle system. The resulting
state

|ϕ0(t ′)〉 = c†kσ (t ′)|E0〉 (B.172)

is not necessarily an eigenstate of the Hamiltonian H . What happens to it in course
of time? Because |k| > kF , we have ckσ (t)|E0〉 = 0. Therefore the spectral density
simplifies to

2π Skσ (t − t ′) = 〈E0|
[
ckσ (t), c†kσ (t ′)

]
+
|E0〉 = 〈ϕ0(t)|ϕ0(t ′)〉 (B.173)

The spectral density is therefore the probability amplitude that the state that resulted
by introducing of (k, σ )-electron at time t ′ still exists at time t > t ′. That means it
describes the “propagation” of an “extra electron” in an N -electron system. Simi-
larly, for |k| < kF , the spectral density would describe the propagation of a hole.
As typical limiting cases one recognizes

•
∣∣〈ϕ0(t)|ϕ0(t ′)〉∣∣2 = const. ↔ “stationary state”

•
∣∣〈ϕ0(t)|ϕ0(t ′)〉∣∣2(t−t ′→∞) = 0 ↔ “state with finite lifetime”

First let us consider once again the case of non-interacting (band-)electrons of
Sect. B.3.6.1 with the Hamiltonian (B.111) for the special case (B.171). Using the
commutator (B.115) we show that c†kσ |E0〉 is an eigenstate of H0

H0

(
c†kσ |E0〉

)
= c†kσH0|E0〉 +

[
H0, c†kσ

]
−
|E0〉

= (E0 + ε(k) − μ)
(

c†kσ |E0〉
)

With this we calculate

|ϕ0(t)〉 = exp(
i

�
H0t) c†kσ exp(− i

�
H0t)|E0〉

= exp(− i

�
E0t) exp(

i

�
H0t)

(
c†kσ |E0〉

)

= exp(− i

�
E0t) exp(

i

�
(E0 + ε(k) − μ) t)

(
c†kσ |E0〉

)

Then it holds

|ϕ0(t)〉 = exp(
i

�
(ε(k) − μ) t) |ϕ0(t = 0)〉 (B.174)
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Let us consider further the normalization of the state:

〈ϕ0(t = 0)|ϕ0(t = 0)〉 = 〈E0| ckσ c†kσ |E0〉
= 〈E0| E0〉 − 〈E0| c†kσ ckσ |E0〉
= 〈E0| E0〉 = 1

We finally get for the probability amplitude

〈ϕ0(t)|ϕ0(t ′)〉 = exp(− i

�
(ε(k) − μ) (t − t ′)) = 2π S(0)

kσ (t − t ′) (B.175)

This naturally agrees exactly with the result (B.123) which we have found in
Sect. B.3.6.1 using the equation of motion method for the free band electrons. It
gives the undamped harmonic oscillations shown in Fig. B.4. In particular we have

∣∣〈ϕ0(t)|ϕ0(t ′)〉∣∣2 = 1 (B.176)

Thus, for the case of free electrons it is a stationary state. This is not surprising
because |ϕ0〉 = c†kσ |E0〉 turns out to be an eigenstate of H0. It is, however, no more
the case for interacting (band-) electrons

This one recognizes from the spectral representation of the spectral density. If
one carries out the average over the ground state |E0〉 as is required by definition for
T = 0, and then goes through exactly the same steps as in deriving (B.86), then one
gets the spectral density

2π Skσ (t − t ′) =
∑

n

∣∣∣〈En| c†kσ |E0〉
∣∣∣2 exp(− i

�
(En − E0)(t − t ′)) (B.177)

In the free system, c†kσ |E0〉 is an eigenstate of H0, so that due to the orthogonality of
the eigenstates, only one term in the sum contributes. That does not hold any more
for the interacting system. c†kσ |E0〉 is no more an eigenstate, but can be expanded in
terms of the eigenstates:

|ϕ0〉 = c†kσ |E0〉 =
∑

n

γn|En〉

where an arbitrary number, but at least two coefficients γn are unequal zero. Every
summand in (B.177) represents a harmonic oscillation but with different frequen-
cies. The overlap sees to it that the sum is maximum for t = t ′. For increasing
t − t ′ the phase factors exp(− i

�
(En − E0)(t − t ′)) distribute themselves over the

entire unit circle in the complex plane and see to it that, because of the destructive
interference, possibly a very complicated and certainly no more harmonic time-
dependence results as depicted in Fig. B.7. The state created at t ′ is not stationary
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0

0

(t − t’)

2π
 ℜ

 S
kσ

Fig. B.7 Schematic plot of the time-dependent spectral density of an interacting electron system

but has to some extent a finite lifetime. One could, however, imagine that the compli-
cated time dependence could be simulated by a few weighted damped oscillations
with well-defined frequencies:

2π Skσ (t − t ′) =
∑

n

αnσ (k) exp(− i

�
(ηnσ (k) − μ)(t − t ′)) (B.178)

This expression formally has the same structure as for the free system (B.175) with,
however, in general complex one-particle energies:

ηnσ (k) = Re ηnσ (k) + i I m ηnσ (k) (B.179)

In order to realize damping, one must have

I m ηnσ (k) ≤ 0 (t − t ′ > 0) (B.180)

The ansatz (B.178) gives the impression as if the extra (k, σ )-electron decays into
one or more quasiparticles with the following properties:

• Quasiparticle energy ⇔ Re ηnσ (k)
• Quasiparticle lifetime ⇔ � · |I m ηnσ (k)|−1

• Quasiparticle weight (“spectral”) ⇔ αnσ (k)

The lifetime is defined here as the time that is required for the respective summand to
decrease from its initial value by a fraction e. Because of the particle conservation,
for the spectral weights of the quasiparticles

∑
n

αnσ (k) = 1 (B.181)

must still hold. Formally this follows from

2π Skσ (0) =
∑

n

αnσ (k) = 〈
[
ckσ , c†kσ

]
+
〉 = 1
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We will carry these interpretations now on to the results (B.108) and (B.110) of the
last section

• Quasiparticle energy ⇔ Re Enσ (k)

Enσ (k)
!= ε(k) + Rkσ (Enσ (k) − μ) (B.182)

• Quasiparticle lifetime ⇔ τnσ (k)

τnσ (k) = �

|αnσ (k) Ikσ (Enσ (k) − μ)| (B.183)

• Quasiparticle weight (“spectral”) ⇔ αnσ (k)

αnσ (k) =
∣∣∣∣1 − ∂

∂ E
Rkσ (E − μ)

∣∣∣∣
−1

E=Enσ

(B.184)

The Lorentz-type peaks in the spectral weight are to be assigned to the quasiparticles,
whose energies are given by the positions and their lifetimes by the widths of the
peaks. The quasiparticle energies are given only by the real part and the lifetimes
are given mainly by the imaginary part of the self-energy. Because of αnσ (k), in a
limited way, the lifetime is of course influenced by the real part too. Ikσ = 0 always
means an infinite lifetime. Delta functions in the spectral weight indicate stable, i.e.
infinitely long-living quasiparticles.

To conclude, it should be mentioned that these considerations for the classical
quasiparticle picture are based on the preconditions (B.164) and (B.165) whose
validity can be verified only after the complete solution of the many-body problem.

B.4.4 Quasiparticle Density of States

While discussing the free electrons as an application of the abstract Green’s function
formalism in 3.6., we have learned about the important concept of quasiparticle
density of states. Now we want to introduce this quantity for interacting electron
system and understand its relation to the one-particle Green’s function and one-
particle spectral density.

The starting point is the average occupation number 〈nkσ 〉 of the (k, σ )-level,
which with the help of the spectral theorem can be expressed by the one-particle
spectral density:

〈nkσ 〉 = 〈c†kσ ckσ 〉 = 1

�

∫ +∞

−∞
d E f−(E)Skσ (E − μ) (B.185)

Here f−(E) is again the Fermi function. A summation over all the wavevectors and
both the spin directions gives the total number of electrons Ne



556 B The Method of Green’s Functions

Ne =
∑
kσ

〈nkσ 〉 (B.186)

Alternatively, the electron number can be expressed in terms of a density of states.
ρ̂σ (E)d E is the number of σ -states in the energy interval [E, E + d E] that can be
occupied. Then, f−(E)ρ̂σ (E)d E is the density of the occupied states. Therefore

Ne =
∑

σ

∫ +∞

−∞
f−(E)ρ̂σ (E)d E (B.187)

must hold. A non-degenerate energy band (s-band) contains 2N states, where N is
the number of lattice sites. The factor 2 comes because of the two spin directions.
For the completely occupied band ( f−(E) ≡ 1) therefore

∫ +∞

−∞
d E f−(E)ρ̂σ (E) = N

holds. However, the density of states is usually normalized to one: ρσ (E) ≡
1
N ρ̂σ (E). A comparison of the two expressions for Ne then gives the “Quasiparticle
density of states”

ρσ (E) = 1

N�

∑
k

Skσ (E − μ) (B.188)

All the properties of the spectral density transfer to the quasiparticle density of
states. It is in general dependent on temperature and particle number and naturally
also depends on lattice structure. We have seen in Sect. B.2 that the one-electron
spectral density has a direct relation to angle resolved photoemission. In contrast,
the quasiparticle density of states is seen directly in angle averaged photoemission.

We want to investigate the quasiparticle density of states for an illustrative special
case. For that we consider a real, k-independent self-energy:

Rkσ (E) ≡ Rσ (E) ; Ikσ (E) ≡ 0 (B.189)

This corresponds to the case A of Sect. B.4.2. Therefore (B.159) holds:

Skσ (E − μ) = � δ (E − Rσ (E − μ) − ε(k)) (B.190)

For the quasiparticle density of states this means

ρσ (E) = 1

N

∑
k

δ (E − Rσ (E − μ) − ε(k)) (B.191)

Comparing with the Bloch density of states for the non-interacting band electrons
(B.121), we get in this special case
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ρσ (E) = ρ0(E − Rσ (E − μ)) (B.192)

ρσ (E) is unequal zero for such energies for which E − Rσ (E − μ) lies between
the lower and the upper edge of the free Bloch band. If Rσ (E) is only a slowly
varying smooth function of E , then ρσ (E) will only be slightly deformed from
ρ0(E) (Fig. B.8). The influence of the particle interaction can possibly be taken
into account by a renormalization of certain parameters. On the contrary, new kind
of phenomena appear if E − Rσ (E − μ) is strongly structured, if as in Fig. B.9
the self-energy, e.g. shows a singularity in the interesting region. The result can be
a band splitting which cannot be understood from the one-electron picture. At an
appropriate band filling, it can happen that in one-electron picture (Bloch picture)
the system is metallic, whereas in reality electronic correlations can make it an insu-
lator. Such a system is called a “Mott–Hubbard insulator”.

Fig. B.8 Quasiparticle density of states for a “smooth” real part of the self-energy

Fig. B.9 Quasiparticle density of states of a self-energy with a singularity
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B.4.5 Thermodynamics

To conclude we want to show that the one-electron Green’s function (B.142) or the
corresponding spectral density (B.143) can provide complete information regarding
the macroscopic thermodynamics of the interacting electron system. We start with
the “internal energy” which is defined as the expectation value of the Hamiltonian
(B.138):

U = 〈H〉 =
∑
kσ

ε(k)
〈
c†kσ ckσ

〉
+

+ 1

2

∑
k,p,q,σ,σ ′

vk,p(q)
〈
c†k+qσ c†p−qσ ′cpσ ′ckσ

〉

(B.193)

We substitute q → −q and then k → k+ q and use the symmetry relation (B.141).
Then U can also be written as follows:

U = 〈H〉 =
∑
kσ

ε(k)
〈
c†kσ ckσ

〉
+

+ 1

2

∑
k,p,q,σ,σ ′

vp,k+q(q)
〈
c†kσ c†p+qσ ′cpσ ′ck+qσ

〉

(B.194)

With the help of higher Green’s function (B.145) and the spectral theorem (B.95) it
follows that

U = 1

�

∫ +∞

−∞

d E

exp(βE) + 1

[∑
kσ

ε(k)

(
− 1

π
I mGkσ (E)

)

+ 1

2

∑
k,p,q,σ,σ ′

vp,k+q(q)

(
− 1

π
I mΓσ ′σ

pk;q(E)

)⎤
⎦ (B.195)

From the equation of motion we read off

1

2

∑
k,p,q,σ,σ ′

vp,k+q(q)

(
− 1

π
I mΓσ ′σ

pk;q(E)

)
=

= 1

2

∑
kσ

(
− 1

π
I m ((E − ε(k) + μ)Gkσ (E) − �)

)

= 1

2

∑
kσ

(E − ε(k) + μ)

(
− 1

π
I mGkσ (E))

)



B.5 Problems 559

This we substitute in (B.195)

U = 1

2�

∑
kσ

∫ +∞

−∞

d E

exp(βE) + 1
(E + μ + ε(k))

(
− 1

π
I mGkσ (E)

)
(B.196)

Once again substituting E → E − μ, we finally obtain

U = 1

2�

∑
kσ

∫ +∞

−∞
d E f−(E) (E + ε(k)) Skσ (E − μ) (B.197)

This is a very remarkable result because the contribution of a two-particle Coulomb
interaction could be expressed in terms of one-particle spectral density. The result
(B.197) was already formally obtained for the case of non-interacting band electrons
(B.122).

From U the “free energy” follows from the generally valid relation

F(T ) = U (0) − T
∫ T

0
dT ′ U (T ′) − U (0)

T ′2 (B.198)

which we prove as problem (B.10). Therefore the whole of macroscopic thermo-
dynamics is determined by the one-particle spectral density itself. In this context,
for the various energy integrals, particularly the prominent quasiparticle peaks (see
Fig. B.6) are important.

B.5 Problems

Problem B.1 Let A(t) be an arbitrary operator in the Heisenberg picture and ρ be
the statistical operator:

ρ = exp(−βH )

T r (exp(−βH ))

Prove the Kubo identity:

i

�
[A(t), ρ]− = ρ

∫ β

0
dλ Ȧ(t − iλ�)

Assume that the Hamiltonian H is not explicitly time dependent!

Problem B.2 With the help of the Kubo identity (Problem B.1) show that the
retarded commutator Green’s function can be written as follows:

〈〈
A(t); B(t ′)

〉〉ret = −� Θ(t − t ′)
∫ β

0
dλ
〈
Ḃ(t ′ − iλ�)A(t)

〉
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Problem B.3 For the time-dependent correlation functions, show that

〈B(0) A(t + i�β)〉 = 〈A(t) B(0)〉

holds provided the Hamiltonian does not explicitly depend on time.

Problem B.4 Prove the following representation of the step function:

Θ(t − t ′) = i

2π

∫ +∞

−∞
dx

exp(−i x(t − t ′))
x + i0+

Problem B.5 Show that a complex function F(E) has an analytical continuation in
the upper (lower) half-plane, if its Fourier transform f (t) for t < 0 (t > 0) vanishes.

Problem B.6 For an interacting electron system

H =
∑
kσ

ε(k)c†kσ ckσ + 1

2

∑
k,p,q

∑
σ,σ ′

vkp(q)c†k+qσ c†p−qσ ′cpσ ′ckσ

derive the equation of motion for the retarded one-particle Green’s function.

Problem B.7 For a system of non-interacting electrons

H =
∑
kσ

(ε(k) − μ) c†kσ ckσ

calculate all the spectral moments M (n)
kσ and from there the exact spectral density.

Problem B.8 The BCS theory of superconductivity can be carried out with the sim-
plified Hamiltonian

H =
∑
kσ

(ε(k) − μ) c†kσ ckσ − Δ
∑

k

(
bk + b†

k

)
+ Δ2

V

Here

b†
k = c†k↑c†−k↓

is the “Cooper pair creation operator” and

Δ = Δ∗ = V
∑

k

〈bk〉 = V
∑

k

〈b†
k〉
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1. Calculate the commutation relations of the operators bk, b†
k. Are the Cooper pairs

Bosons?
2. Using the one-electron Green’s function (B.142) calculate the excitation spec-

trum of the superconductor. Show that it has a “gap” Δ.
3. Determine the equation satisfied by Δ!

Problem B.9 1. For the superconductivity model in Problem B.8, calculate all the
spectral moments of the one-electron spectral density.

2. Choose a two-pole ansatz for the spectral density

Skσ (E) = �

2∑
i=1

αiσ (k) δ (E − Eiσ (k))

and determine the spectral weights αiσ (k) and the quasiparticle energies Eiσ (k)!
By inspecting the spectral moments show that the above ansatz is exact.

Problem B.10 Prove the following relation between the internal and the free ener-
gies:

F(T, V ) = U (0, V ) − T
∫ T

0
dT ′ U (T ′, V ) − U (0, V )

T ′2

Problem B.11 Let |E0〉 be the ground state of the interaction free electron system
(Fermi sphere). Calculate the time dependence of the state

|ψ0〉 = c†kσ ck′σ ′ |E0〉

Is it a stationary state?

Problem B.12 For the one-electron Green’s function of an interacting electron sys-
tem

Gret
kσ (E − μ) = �

E − 2ε(k) + E2

ε(k) + iγ |E | (γ > 0)

may hold.

1. Determine the electronic self-energy Σkσ (E).
2. Calculate the energies and lifetimes of the quasiparticles.
3. Under what conditions is the classical quasiparticle concept applicable?
4. Calculate the effective masses of the quasiparticles.

Problem B.13 For an interacting electron system, let the self-energy

Σσ (E) = aσ (E + μ − bσ )

E + μ − cσ

(aσ , bσ , cσ positive, real ; cσ > bσ )

be calculated. For the density of states of the interaction free system holds
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ρ0(E) =
{

1
W for 0 ≤ E ≤ W
0 otherwise

Calculate the quasiparticle density of states. Is there a band splitting?



Appendix C
Solutions to Problems

Problem 1.1
Let us take Ri = 0
With ∇ × (ϕa) = ϕ ∇ × a − a ×∇ϕ follows:

j(i)
m = ∇ × (mi f (r )) = f ∇ × mi − mi ×∇ f

∇ × mi = 0, since mi : particle property

Substitute:

mi = 1

2

∫
d3r r × j(i)

m

= 1

2

∫
d3r [r × (∇ f × mi )]

= 1

2

∫
d3r [∇ f (r · mi ) − mi (r · ∇ f )]

= 1

2

∫
d3r ∇ f (r · mi ) − 1

2

∫
d3r mi (div( f r) − f div r)

= 1

2

∫
d3r ∇ f (r · mi ) − 1

2
mi

∫
d3r div( f r)

+ 3

2
mi

∫
d3r f

︸ ︷︷ ︸
≡1, cond.2.

= 1

2

∫
d3r ∇ f (r · mi ) + 3

2
mi − 1

2
mi

∮

∂T

dS · ( f r)

︸ ︷︷ ︸
≡0, cond.1.

Intermediate result:

563
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mi = 1

2

∫
d3r ∇ f (r · mi ) + 3

2
mi

⇔ −1

2
mi = 1

2

∫
d3r [∇( f (r · mi )) − f ∇(r · mi )]

= 1

2

∫
d3r ∇( f (r · mi )) − 1

2
mi

∫
d3r f

︸ ︷︷ ︸
≡1, cond.2.

⇔ 0 = 1

2

∫
d3r ∇( f (r · mi ))

= 1

2

∮

∂T

dS f (r · mi ) = 0 q.e.d.

Problem 1.2
From the definition of the canonical partition function

Z = T r
(

e−β Ĥ
)

The average magnetic moment is given by

〈m̂〉 = 1

Z
T r

(
− d

d B0
Ĥe−β Ĥ

)

= 1

β

1

Z

∂

∂ B0
T r
(

e−β Ĥ
)

= 1

β

1

Z

∂ Z

∂ B0

From this follows the susceptibility:

χT = μ0

V

(
∂

∂ B0
〈m̂〉
)

T

= μ0

βV

(
− 1

Z2

(
∂ Z

∂ B0

)2

+ 1

Z

∂2 Z

∂ B2
0

)

The first term is clear:

1

Z2

(
∂ Z

∂ B0

)2

= β2〈m̂〉2 (1.1)

The second term is somewhat more complicated:
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1

Z

∂2 Z

∂ B2
0

= 1

Z

∂

∂ B0

(
−βT r

(
∂ Ĥ

∂ B0
e−β Ĥ

))

= −β

Z
T r

(
∂2 Ĥ

∂ B2
0

e−β Ĥ − β

(
∂ Ĥ

∂ B0

)2

e−β Ĥ

)

= β2

Z
T r

((
∂ Ĥ

∂ B0

)2

e−β Ĥ

)

= β2〈m̂2〉

In the third step we have exploited the condition that we are dealing with a perma-
nent magnetic moment. Therefore for the susceptibility we have

χT = μ0

V
β
(〈m̂2〉 − 〈m̂〉2

) = 1

kB T

μ0

V
〈(m̂ − 〈m̂〉)2〉 (1.2)

Problem 1.3
In a magnetic field B, the magnetic dipole m has the potential energy

V = −m · B

It will therefore try to orient itself parallel to the field. If the field is only a homoge-
neous external field

B0 = B0ex =
⎛
⎝ B0

0
0

⎞
⎠

then m will be oriented parallel to x-axis. According to elementary electrodynamics,
the current creates an additional azimuthal field of the form

BI = μ0
I

2πρ
eϕ

It is convenient to use cylindrical coordinates:

x = ρ cos ϕ , y = ρ sin ϕ , z = z

ρ =
√

x2 + y2

eϕ =
⎛
⎝− sin ϕ

cos ϕ

0

⎞
⎠ = 1

ρ

⎛
⎝−y

x
0

⎞
⎠

Total field
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B = B0 + BI = B0

⎛
⎝1

0
0

⎞
⎠+ μ0

I

2π (x2 + y2)

⎛
⎝−y

x
0

⎞
⎠

Field at the position r0 = (x0, 0, 0):

B(r0) = B0ex + μ0 I

2π x0
ey

Dipole is oriented parallel to B, i.e. it makes an angle α given by

tan α = μ0
I

2π x0 B0

which for small angles gives

α ≈ μ0
I

2π x0 B0

with the x-axis.

Problem 1.4
For a magnetic system, we use the version (1.80) of the first law. Then the work
done is given by

δW = V B0d M = μ0V Hd M

M : magnetization; V : constant volume (not a real thermodynamic variable!). From
Curie law follows:

(d M)T = C

T
d H

⇔ (δW )T = μ0
CV

T
Hd H

⇔ (ΔW )12 =
∫ H2

H1

(δW )T = μ0CV

2T

(
H 2

2 − H 2
1

) = μ0
V T

2C

(
M2

2 − M2
1

)

Problem 1.5

1.

cM =
(

∂U

∂T

)
M

follows directly from the first law (1.80). Further holds with U = U (T, M) and
N = const.:
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T d S = dU − V B0d M

=
(

∂U

∂T

)
M

dT +
(

∂U

∂ M

)
T

d M − V B0d M

� cH − cM =
[(

∂U

∂ M

)
T

− V B0

](
∂ M

∂T

)
H

Curie law:

(
∂ M

∂T

)
H

= − C

T 2
H = − M2

C H

Substitute

cH =
(

∂U

∂T

)
M

+
(

∂U

∂ M

)
T

(
∂ M

∂T

)
H

− V B0

(
∂ M

∂T

)
H

=
(

∂U

∂T

)
M

+
(

∂U

∂ M

)
T

(
∂ M

∂T

)
H

+ μ0
V

C
M2

Since U = U (T, M) further holds

dU =
(

∂U

∂T

)
M

dT +
(

∂U

∂ M

)
T

d M

�

(
∂U

∂T

)
H

=
(

∂U

∂T

)
M

+
(

∂U

∂ M

)
T

(
∂ M

∂T

)
H

cH =
(

∂U

∂T

)
H

+ μ0
V

C
M2

2. It holds
(

∂ M

∂ H

)
S

=
(

∂ M

∂T

)
S

(
∂T

∂ H

)
S

The two factors are determined separately.

(a)First law (1.80):

dU = T d S + V μ0 Hd M

adiabatic means d S = 0. Therefore

dU =
(

∂U

∂T

)
M

dT +
(

∂U

∂ M

)
T

d M = V μ0 Hd M
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�

((
∂U

∂T

)
M

dT

)
S

=
((

V μ0 H −
(

∂U

∂ M

)
T

)
d M

)
S

�

(
∂ M

∂T

)
S

= cM

V μ0 H − ( ∂U
∂ M

)
T

(b)Once again the first law for adiabatic changes of state

0 = dU − V μ0 Hd M

With U = U (T, H ) and M = M(T, H ) follows:

0 =
[(

∂U

∂T

)
H

− V μ0 H

(
∂ M

∂T

)
H

]
dT +

+
[(

∂U

∂ H

)
T

− V μ0 H

(
∂ M

∂ H

)
T

]
d H

According to part 1 the first parenthesis is equal to cH . Therefore what
remains is

cH dT =
[

V μ0 H

(
∂ M

∂ H

)
T

−
(

∂U

∂ H

)
T

]
d H

=
[

V μ0 M −
(

∂U

∂ H

)
T

]
d H

That means

(
∂T

∂ H

)
S

= V μ0 M − ( ∂U
∂ H

)
T

cH

This equation is combined with the final result of part 1:

(
∂ M

∂ H

)
S

= cM

cH
· V μo M − ( ∂U

∂ H

)
T

V μ0 H − ( ∂U
∂ M

)
T

That was the original proposition!

Problem 1.6

S = S(T, H ) ⇔ d S =
(

∂S

∂T

)
H

dT +
(

∂S

∂ H

)
T

d H
!= 0



C Solutions to Problems 569

This means

(
∂T

∂ H

)
S

= −
(

∂S
∂ H

)
T(

∂S
∂T

)
H

= − T

cH

(
∂S

∂ H

)
T

Free enthalpy (N = const.):

dG = −SdT − MV μ0d H

The corresponding Maxwell’s equation gives

(
∂S

∂ H

)
T

= V μ0

(
∂ M

∂T

)
H

= −V μ0
C

T 2
H

With this it finally follows:

(
∂T

∂ H

)
S

= μ0V
C

cH T
H

Problem 2.1

• L > S

L+S∑
J=|L−S|

(2J + 1)

=
L+S∑

J=L−S

(2J + 1)

= 1

2
(2S + 1) [2(L + S) + 1 + 2(L − S) + 1]

= (2S + 1)(2L + 1)

• L < S

L+S∑
J=|L−S|

(2J + 1)

=
L+S∑

J=S−L

(2J + 1)

= 1

2
(2L + 1) [2(S + L) + 1 + 2(S − L) + 1]

= (2S + 1)(2L + 1)
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Problem 2.2

1. We obviously have

σ 2
x =

(
0 1
1 0

)
·
(

0 1
1 0

)
=
(

1 0
0 1

)
= 1l2

σ 2
y =

(
0 −i
i 0

)
·
(

0 −i
i 0

)
=
(

1 0
0 1

)
= 1l2

σ 2
z =

(
1 0
0 −1

)
·
(

1 0
0 −1

)
=
(

1 0
0 1

)
= 1l2

2. Similarly one can easily get

[
σx , σy

]
+

=
(

0 1
1 0

)
·
(

0 +i
i 0

)
−
(

0 −i
i 0

)
·
(

0 1
1 0

)

=
(

i 0
0 −i

)
+
(−i 0

0 i

)
= 0

[
σy, σz

]
+

=
(

0 −i
i 0

)
·
(

1 0
0 −1

)
+
(

1 0
0 −1

)
·
(

0 −i
i 0

)

=
(

0 i
i 0

)
+
(

0 −i
−i 0

)
= 0

[σz, σx ]+

=
(

1 0
0 −1

)
·
(

0 1
1 0

)
+
(

0 1
1 0

)
·
(

1 0
0 −1

)

=
(

0 1
−1 0

)
+
(

0 −1
1 0

)
= 0

3.

[
σx , σy

]
−

=
(

0 1
1 0

)
·
(

0 −i
i 0

)
−
(

0 −i
i 0

)(
0 1
1 0

)

=
(

i 0
0 −i

)
−
(−i 0

0 i

)

= 2i

(
1 0
0 −1

)
= 2iσz

The other two components are obtained analogously.
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4.

σxσyσz =
(

0 1
1 0

)
·
(

0 −i
i 0

)
·
(

1 0
0 −1

)

=
(

0 1
1 0

)
·
(

0 i
i 0

)
=
(

i 0
0 i

)

= i1l2

Problem 2.3
One immediately recognizes (i, j = x, y, z)

α̂i α̂ j =
(

σiσ j 0
0 σiσ j

)

With the commutation relations for the Pauli spin matrices (see Problem 2.1) follows

[̂
αi , α̂ j

]
+ =

([
σi , σ j

]
+ 0

0
[
σi , σ j

]
+

)

= 2δi j

(
1l2 0
0 1l2

)
= 2δi j 1l4

One can further calculate

α̂i β̂ =
(

0 σi

σi 0

) (
1l2 0
0 −1l2

)
=
(

0 −σi

σi 0

)

β̂ α̂i =
(

1l2 0
0 −1l2

) (
0 σi

σi 0

)
=
(

0 σi

−σi 0

)

⇒ [̂
αi , β̂

]
+ = 0

Finally, it remains to be verified

β̂2 =
(

1l2 0
0 −1l2

) (
1l2 0
0 −1l2

)
=
(

1l2 0
0 1l2

)
= 1l4

So that (2.23), (2.24) and (2.25) are proved.

Problem 2.4
In solving the problem one uses the commutation relations for the Pauli spin matri-
ces proved in Problem 2.2:
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[̂
si , ŝ j

]
− = �

2

4

([
σi , σ j

]
− 0

0
[
σi , σ j

]
−

)

= �
2

4

(
2i
∑

k εi jkσk 0
0 2i

∑
k εi jkσk

)

= i
�

2

2

∑
k

εi jk

(
σk 0
0 σk

)

= i�
∑

k

εi j k̂ sk

Problem 2.5
H (0)

D is defined in (2.38). ŝ commutes with the momentum operator p. We now have
to calculate

ŝi α̂ j = �

2

(
σi 0
0 σi

)(
0 σ j

σ j 0

)
= �

2

(
0 σiσ j

σiσ j 0

)

α̂ j ŝi = �

2

(
0 σ j

σ j 0

)(
σi 0
0 σi

)
= �

2

(
0 σ jσi

σ jσi 0

)

From the result of Problem 2.3 this means

[̂
si α̂ j

]
− = �

2

(
0

[
σiσ j

]
−[

σiσ j
]
− 0

)

= �

2

(
0 2i

∑
k εi jkσk

2i
∑

k εi jkσk 0

)

= i�
∑

k

εi jk

(
0 σk

σk 0

)
= i�

∑
k

εi jk α̂k

So that we have

[̂si , α̂ · p]− = i�
∑

jk

εi jk p j α̂k = i� (p × â)i

[̂s, α̂ · p]− = i� (p × â)

To this one finds

ŝi · β̂ = �

2

(
σi 0
0 σi

)(
1l2 0
o −1l2

)
= �

2

(
σi 0
0 −σi

)
= β̂ · ŝi

So that
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[̂
s, H (0)

D

]
−
= i�c (p × α̂)

For the orbital angular momentum we use the well-known commutation relations
with the linear momentum

[
li , p j

]
− = i�

∑
k

εi jk pk

So that it follows:

[li , α̂ · p]− = i�
∑

k

εi jk α̂ j pk = i� (̂α × p)i

With [li , β̂]− = 0 it eventually follows:

[̂
l, H (0)

D

]
−
= i�c (̂α × p)

Problem 2.6
First we use the commutation relations from Problem 2.2:

[
σi , σ j

]
− = 2i

∑
k

εi jkσk

[
σi , σ j

]
+ = 2δi j 1l2

From this we get the important relation:

σiσ j = δi j 1l2 + i
∑

k

εi jkσk

Due to the commutability it holds

(σ · a)(σ · b) =
∑
i, j

ai b jσiσ j =
∑
i, j

ai b j

(
δi j + i

∑
k

εi jkσk

)

=
(∑

i

ai b j

)
+ i
∑
i jk

εi jkai b jσk

= (a · b)1l2 + ia · (b × σ )

Since σ commutes with a and b, we can cyclically permute the operators in second
summand (triple product!).

Problem 2.7

HD = cα̂ · (p + eA) + β̂mec2 − eϕ
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Heisenberg’s equations of motion:

i�
d

dt
r =[r, HD]− = c[r, p]− · α̂ = i�α̂c

� ṙ(t) = cα̂

i�
d

dt
(p + eA)

= [(p + eA, HD]− + i�
∂

∂t
(p + eA) =

= ce[p, α̂ · A]− − e[p, ϕ]− + ec[A, α̂ · p]− + i�e
∂A
∂t

=

= ec
�

i
[−α̂ · ∇A +∇ (̂α · A)] − e

�

i
∇ϕ + i�e

∂A
∂t

=

= ec
�

i
(̂α × (∇ × A)) − e

�

i
∇ϕ + i�e

∂A
∂t

�
d

dt
(p + eA) = −ec(̂α × B) + e

(
∇ϕ + ∂A

∂t

)

With

E = −∇ϕ − ∂A
∂t

finally follows:

d

dt
(p + eA) = −e(ṙ × B + E).

On the right-hand side is the Lorentz force.

Problem 2.8

1.

[HSB, Li ]− =
3∑

j=1

λ
[
L j S j , Li

]
− =

3∑
j=1

λ
[
L j , Li

]
− Sj =

=
3∑

j=1

λ
∑

k

ε j ik Lk S j i� = i�λ
∑

jk

εk ji Lk S j =

= i�λ(L × S)i

=⇒ [HSB, L]− = i�λ(L × S)
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2.

[HSB, Si ]− =
3∑

j=1

λ
[
L j S j , Si

]
− = λ

3∑
j=1

L j
[
Sj , Si

]
− =

= λ

3∑
j=1

L j i�
∑

k

ε j ik Sk = i�λ
∑

jk

εk ji Sk L j =

= i�λ(S × L)i

=⇒ [HSB, S]− = i�λ(S × L)

3.

[
HSB, L2

]
− =

3∑
i=1

λ
[
Li S j , L2

]
− =

3∑
i=1

λ
[
Li , L2

]
− Si = 0

4.

[
HSB, S2]

− = λ

3∑
i=1

Li
[
Si , S2]

− = 0

5. From 1 and 2 follows:

[HSB, Ji ]− = 0 for i = x, y, z

=⇒ [
HSB, J2

]
− =

∑
i

[
HSB, J 2

i

]
− = 0

Problem 2.9

1. According to (2.162) it must hold

Rz(ε)T (k)
q R−1

z (ε) =
+k∑

q ′=−k

(Rz(ε))(k)
q ′q T (k)

q ′

Here we have according to (2.145)

Rz(ε) = 1 − i

�
εJz

and according to (2.158)
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(Rz(ε))(k)
q ′q = 〈kq ′ |Rz(ε)| kq

〉

=
〈
kq ′
∣∣∣∣(1 − i

�
εJz)

∣∣∣∣ kq

〉

= δqq ′ − i

�
ε�qδqq ′

= (1 − iεq)δqq ′

�

k∑
q ′=−k

(Rz(ε))(k)
q ′q = (1 − iεq)T (k)

q

On the other hand:

Rz(ε)T (k)
q R−1

z (ε) = (1 − i

�
εJz)T (k)

q (1 + i

�
εJz)

= T (k)
q − i

�
ε
[
Jz, T (k)

q

]
− + O(ε2)

Compare:

[
Jz, T (k)

q

]
− = �qT (k)

q

2. According to (2.160) holds

(Rx (ε))(k)
q ′q = δq ′q − 1

2
iε
√

k(k + 1) − q(q + 1)δq ′,q+1

− 1

2
iε
√

k(k + 1) − q(q − 1)δq ′,q−1

So that we have

+k∑
q ′=−k

(Rx (ε))(k)
q ′q T (k)

q ′ = T (k)
q − 1

2
iε
√

k(k + 1) − q(q + 1)T (k)
q+1

− 1

2
iε
√

k(k + 1) − q(q − 1)T (k)
q−1

On the other hand we have as in 1.:

Rx (ε)T (k)
q R−1

x (ε) = T (k)
q − i

�
ε
[
Jx , T (k)

q

]
− + O(ε2)

Then a comparison gives
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[
Jx , T (k)

q

]
− = �

2

√
k(k + 1) − q(q + 1)T (k)

q+1

+ �

2

√
k(k + 1) − q(q − 1)T (k)

q−1

Completely analogously one finds

[
Jy, T (k)

q

]
− = −i

�

2

√
k(k + 1) − q(q + 1)T (k)

q+1

+ i
�

2

√
k(k + 1) − q(q − 1)T (k)

q−1

With J± = Jx ± i Jy follows the final result:

[
J±, T (k)

q

]
− = �

√
k(k + 1) − q(q ± 1)T (k)

q±1

Problem 2.10
We use (2.150)

[(n · J), (n · K)]− = i�(n × n) · K n, n : unit vectors

1. n = ez

If further n = ez is valid, we have

n × n = 0 � [Jz, Kz]− = 0 = � · 0 · K (1)
0

For n = ex we have

n × n = ey � [Jz, Kx ]− = i�Ky

For n = ey we have

n × n = −ex �
[
Jz, Ky

]
− = −i�Kx

K (1)
±1 = ∓ 1√

2
(Kx ± i Ky) �

[
Jz, K (1)

±1

]
−
= ∓ 1√

2
i�(Ky ∓ i Kx )

= �
1√
2

(−Kx ∓ i Ky) = � · (±1) · K (1)
±1
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Therefore altogether we have

[
Jz, K (1)

q

]
− = �q K (1)

q

This is the first part of (2.163).

2.
√

k(k + 1) − q(q ± 1) = √
2 − q(q ± 1)

(a) q = 0:

K (1)
0 = Kz[

Jx , K (1)
0

]
−
= [Jx , Kz]− = i�(ex × ez) · K = −i�Ky[

Jy, K (1)
0

]
−
= i�(ey × ez) · K = i�Kx

�

[
J±, K (1)

0

]
−
= −i�Ky ± i(i�Kx )

= ∓�(Kx ± i Ky)

= �

√
2K (1)

±1

For q = 0 we therefore have

[
J±, K (1)

q

]
− = �

√
2 − q(q ± 1)K (1)

q±1

(b) q = +1:

K (1)
+1 = − 1√

2
K+

[
Jx , K (1)

+1

]
−
= − 1√

2

[
Jx , Kx + i Ky

]
−

= − i√
2

[
Jx , Ky

]

= �√
2

(ex × ey) · K = �√
2

Kz

analogously
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[
Jy, K (1)

+1

]
−
= − 1√

2

[
Jy, Kx + i Ky

]
−

= − 1√
2

[
Jy, Kx

]
−

= − i�√
2

(ey × ex ) · K = i
�√
2

Kz

�

[
J+, K (1)

+1

]
−
= 0

[
J−, K (1)

+1

]
−
= �

√
2Kz =

√
2�K (1)

0

For q = +1 then holds

[
J±, K (1)

q

]
− = �

√
2 − q(q ± 1)K (1)

q±1

(c) q = −1:

K (1)
−1 = 1√

2
K−

[
Jx , K (1)

−1

]
−
= 1√

2
(−i)

[
Jx , Ky

]
−

= �√
2

(ex × ey) · K = �√
2

Kz

[
Jy, K (1)

−1

]
−
= 1√

2

[
Jy, Kx

]
−

= i
�√
2

(ey × ex ) · K = −i
�√
2

Kz

�

[
J±, K (1)

−1

]
−
= �√

2
(Kz ± Kz)

For q = −1 we can write the following:

[
J±, K (1)

q

]
− = �

√
2 − q(q ± 1)K (1)

q±1

2a, 2b and 2c together give the second part of (2.163):

[
J±, K (1)

q

]
− = �

√
2 − q(q ± 1)K (1)

q±1

Problem 2.11

1.
[
Iz, T (2)

q

]
−

!= �qT (2)
q

One immediately recognizes

[
Iz, T (2)

0

]
−
= [Iz, I 2 − 3I 2

z

]
− = 0
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On the other hand with a little more effort we have

[
Iz, T (2)

±1

]
−
= ±1

2

√
6
{[

Iz, Iz I±
]
− + [Iz, I± Iz

]
−
}

= ±1

2

√
6
{

Iz
[
Iz, I±

]
− + [Iz, I±

]
− Iz

}

= 1

2
�

√
6 {Iz I± + I± Iz}

= ±�T (2)
±1

[
Iz, T (2)

±2

]
−
= −1

2

√
6
[
Iz, (I±)2

]
−

= −1

2

√
6
{

I±
[
Iz, I±

]
− + [Iz, I±

]
− I±

}

= −(±�)
√

6(I±)2

= ±2�T (2)
±2

Thus the first commutation relation is obviously fulfilled

2.
[
I±, T (2)

q

]
−

!= √
6 − q(q ± 1)�qT (2)

q±1

[
I±, T (2)

0

]
−
= [I±, I 2

]
− − 3

[
I±, I 2

z

]
−

= 0 − 3Iz
[
I±, Iz

]
− − 3

[
I±, Iz

]
− Iz

= ±3�(Iz I± + I± Iz)

= �

√
6

(
±1

2

√
6(Iz I± + I± Iz)

)

= �

√
6T (2)

±1

[
I+, T (2)

+1

]
−
= 1

2

√
6
([

I+, Iz I+
]
− + [I+, I+ Iz

]
−
)

= 1

2

√
6
([

I+, Iz
]
− I+ + I+

[
I+, Iz

]
−
)

= 1

2

√
6(−2�(I+)2)

= 2�T (2)
+2
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[
I+, T (2)

−1

]
−
= −1

2

√
6
([

I+, Iz I−
]
− + [I+, I− Iz

]
−
)

= −1

2

√
6
(
Iz2�Iz − �I+ I− − �I− I+ + 2�I 2

z

)

= −1

2

√
6�(4I 2

z − 2I 2
x − 2I 2

y )

= −�

√
6(3I 2

z − I 2)

= �

√
6T (2)

0

[
I−, T (2)

+1

]
−
= −1

2

√
6
([

I−, Iz I+
]
− + [I−, I+ Iz

]
−
)

= 1

2

√
6 (Iz(−2�Iz) + �I− I+ + �I+ I− + (−2�Iz)Iz)

= 1

2

√
6�(−4I 2

z + 2I 2
x + 2I 2

y )

= �

√
6(I 2 − 3I 2

z )

= �

√
6T (2)

0

[
I−, T (2)

−1

]
−
= −1

2

√
6
([

I−, Iz I−
]
− + [I−, I− Iz

]
−
)

= −1

2

√
6(�(I−)2 + I−(+�I−))

= 2�T (2)
−2

[
I+, T (2)

+2

]
−
= −1

2

√
6
[
I+, (I+)2

]
− = 0

[
I+, T (2)

−2

]
−
= −1

2

√
6
[
I+, (I−)2]

−

= −1

2

√
6(I−2�Iz + 2�Iz I−)

= 2�T (2)
−1
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[
I−, T (2)

+2

]
−
= −1

2

√
6
[
I−, (I+)2

]
−

= −1

2

√
6(−2�I+ Iz − 2�Iz I+)

= 2�T (2)
+1

[
I−, T (2)

−2

]
−
= −1

2

√
6
[
I−, (I−)2

]
− = 0

Problem 2.12

A =
+2∑

q=−2

t (2)
q · (T (2)

q

)† =
+2∑

i=−2

Ai

A0 = (J 2 − 3J 2
z

) (
I 2 − 3I 2

z

)

� A0 = J 2 I 2 − 3J 2
z I 2 − 3I 2

z J 2 + 9J 2
z I 2

z

A±1 = 3
2 (Jz J± + J± Jz) (Iz I∓ + I∓ Iz)

A+1 + A−1

= 3

2
(Jz J+ Iz I− + Jz J+ I− Iz + J+ Jz Iz I− + J+ Jz I− Iz+

+ Jz J− Iz I+ + Jz J− I+ Iz + J− Jz Iz I+ + J− Jz I+ Iz)

= 3

2
(Jz Iz (J+ I− + J− I+) + (J+ I− + J− I+) Jz Iz)+

+ 3

2
Jz (J+ I− + J− I+) Iz + 3

2
(J+ (Jz Iz) I− + J− (Jz Iz) I+)

= 3 (Jz Iz (J+ I− + J− I+) + (J+ I− + J− I+) Jz Iz)+
+ 3

2
� (J+ I− Iz − J+ Iz I−) + 3

2
� (−J− I+ Iz + J− Iz I+)

= 6
(
Jz Iz

(
Jx Ix + Jy Iy

)+ (Jx Ix + Jy Iy
)

Jz Iz
)+

+ 3

2
�J+

[
I−, Iz

]
− + 3

2
�J−

[
Iz, I+

]
−

= 6
(
Jx Ix + Jy Iy + Jz Iz

)2 − 6J 2
z I 2

z − 6
(
Jx Ix + Jy Iy

)2 +
3

2
�

2 (J+ I− + J− I+)
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�

A+1 + A−1 = 6 (J · I)2 − 6J 2
z I 2

z − 3

2
(J+ I− + J− I+)2

+ 3�
2 (J · I) − 3�

2 Jz Iz

A±2 = 3
2 J 2

± I 2
∓

�

A+2 + A−2 = 3

2

(
J 2
+ I 2

− + J 2
− I 2

+
)

We now sum the terms

A = J 2 I 2 − 3J 2
z I 2 − 3I 2

z J 2 + 9J 2
z I 2

z + 6 (J · I)2

− 6J 2
z I 2

z − 3

2
(J+ I− + J− I+)2 +

+ 3�
2 (J · I) − 3�

2 Jz Iz + 3

2

(
J 2
+ I 2

− + J 2
− I 2

+
)

= 6 (J · I)2 + 3�
2 (J · I) − 2J 2 I 2 + D

D = 3J 2 I 2 − 3J 2
z I 2 − 3I 2

z J 2 + 3J 2
z I 2

z −
− 3�

2 Jz Iz
3

2
(J+ J− I− I+ + J− J+ I+ I−)−

= 3
(
J 2

x + J 2
y

)
I 2 − 3

(
J 2

x + J 2
y

)
I 2

z − 3Re (J+ J− I− I+)

− 3�
2 Jz Iz

= 3
(
J 2

x + J 2
y

) (
I 2

x + I 2
y

)−
− 3Re

((
J 2

x + J 2
y + i

[
Jy, Jx

]
−
) (

I 2
x + I 2

y − i
[
Iy, Ix

]
−
))

− 3�
2 Jz Iz

= −3Re ((−i�Jz) (−i�Iz)) − 3�
2 Jz Iz

= 0

Then we have

A = 6 (J · I)2 + 3�
2 (J · I) − 2J 2 I 2

This corresponds to the quadruple term (2.245).
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Problem 2.13

1. Build

div(g f j) = (g f )divj + j · grad(g f )

= j · grad( f g)

= f j · ∇g + gj · ∇ f

That is exactly the integrand of D. With Gauss theorem we have

D =
∫

d3r div(g f j) =
∫

S→∞
df · (g f j) = 0

since j vanishes at infinity.
2. Set f ≡ 1, g = x, y, z:

� 0 = D =
∫

d3r j · ex,y,z =
∫

d3r jx,y,z

�

∫
d3r j(r) = 0

3. Set f = xi , g = x j with xi, j ∈ {x, y, z}: Then with 1. we have

0 =
∫

d3r (xi j j + x j ji )

�

∫
d3r x j ji = −

∫
d3r xi j j

Now let a be an arbitrary vector:

a ·
∫

d3r r ji (r) =
∑

j

a j

∫
d3r x j ji (r)

= 1

2

∑
j

a j

∫
d3r (x j ji (r) − xi j j (r))

= 1

2

∑
j

a jε j ik

∫
d3r (r × j)k

= −1

2

∑
j

εi jka j

∫
d3r (r × j)k

= −1

2

(
a ×

∫
d3r (r × j)

)
i
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This is valid for all the components i :

a ·
∫

d3r r j(r) = −1

2

(
a ×

∫
d3r (r × j)

)

Problem 3.1
Because of the circular motion, every electron has an angular momentum and there-
fore a magnetic orbital momentum m(i). In the absence of an external field, the ori-
entations of the electron moments are statistically distributed and hence compensate
each other. After the application of a field, the angular momenta precess about the
direction of the field while the motion of the electrons in the orbital planes remains
unchanged.

Because of the precession there is an extra current:

ΔI = −e

τ
= −eωL

2π

which according to classical electrodynamics induces an additional magnetic moment:

Δm(i) = ΔI Fi = −eωL

2π
πr2

i⊥ez = − e2

4m

(
x2

i + y2
i

)
B0ez

Fi is the vector area of the circle along which the i th electron moves. Finally the
(average) magnetization of the diamagnet (N , the number of atoms; V , the volume,
Ne, the number of electrons per atom) is given by

ΔM = M = N

V

Ne∑
i=1

〈Δm(i)〉 = − Ne2

6mV
B0

Ne∑
i=1

〈r2
i 〉

In calculating this we have used

Ne∑
i=1

〈x2
i 〉 =

Ne∑
i=1

〈y2
i 〉 =

Ne∑
i=1

〈z2
i 〉 =

1

3

Ne∑
i=1

〈r2
i 〉

Then the diamagnetic susceptibility is given by

χdia = μ0

(
∂ M

∂ B0

)
T

= − Ne2μ0

6mV

Ne∑
i=1

〈r2
i 〉

This expression agrees with the quantum mechanically correct expression (3.21).
Since the calculation is not strictly classical, there is no contradiction with Bohr–
van Leeuwen theorem. The assumption of stationary electron orbits is classically
untenable!
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Problem 3.2
T = 0:

ε̄ = 1

N

⎛
⎝ 2︸︷︷︸

Spin

k≤kF∑
k

ε(k)

⎞
⎠ = 2

N

1

Δk

∫

k≤kF

�
2k2

2m

Δk = (2π )3

V
grid volume : Volume per k-state in k-space.

� ε̄ = 2
V

N

4π

8π3

�
2

2m

kF∫

0

dk k4 = V

N

�
2

2mπ2

1

5
k5

F = εF
V

N

1

5π2
k3

F

With k3
F = 3π2 N

V follows:

ε̄ = 3

5
εF

Problem 3.3

Ĥ =
∑
kσ

ε(k)a+
kσ akσ =

∑
kσ

ε(k)n̂kσ

1. Statistical operator of the grand canonical ensemble

ρ = exp(−β(Ĥ − μN̂ )) (unnormalized)

N̂ =
∑
kσ

a+
kσ akσ =

∑
kσ

n̂kσ

�
[
Ĥ , N̂

]
− = 0 � combined eigenstates (Fock states)

So that

Tr ρ =
∞∑

N=0

(
∑

nkσ=N )∑
{nkσ }

exp(−β
∑
kσ

(ε(k) − μ)nkσ )

=
∞∑

N=0

(
∑

nkσ=N )∑
{nkσ }

∏
kσ

exp(−β(ε(k) − μ)nkσ ), (nkσ = 0, 1)

=
∑
{nk1σ1 }

∑
{nk2σ2 }

· · ·
∏
kσ

exp(−β(ε(k) − μ)nkσ )
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=
⎡
⎣ ∑

nk1σ1=0,1

exp(−β(ε(k1) − μ)nk1σ1 )

⎤
⎦

2

×

×
⎡
⎣ ∑

nk2σ2=0,1

exp(−β(ε(k2) − μ)nk2σ2 )

⎤
⎦

2

· · ·

= [1 + exp(−β(ε(k1) − μ))
]2 [

1 + exp(−β(ε(k2) − μ))
]2 · · ·

� Ξμ(T, V ) =
∏
kν

[
1 + exp(−β(ε(kν) − μ))

]2

2. Average occupation number:

〈n̂kσ 〉 = 1

Ξμ

Sp (ρn̂kσ )

= 1

2

∑
σ

〈n̂kσ 〉

= −1

2

1

β

∂

∂ε(k)
ln Ξμ(T, V )︸ ︷︷ ︸

2
∑
kν

ln[1+exp(−β(ε(kν )−μ))]

= exp(−β(ε(k) − μ))

1 + exp(−β(ε(k) − μ))

= 1

exp(β(ε(k) − μ)) + 1
= f−(ε(k))

3. Entropy:

S = kB
∂

∂T
(T ln Ξμ)

= kB

∑
kσ

ln
[
1 + exp(−β(ε(k) − μ))

]+

+ kB T
1

kB T 2

∑
kσ

exp(−β(ε(k) − μ))(ε(k) − μ)

1 + exp(−β(ε(k) − μ))

∂μ

∂T
≈ 0 �
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S =
∑
kσ

{
kB ln

1

1− < n̂kσ >
+ kBβ (ε(k) − μ) < n̂kσ >

}

− β (ε(k) − μ)

= ln exp(−β (ε(k) − μ))

= ln

{
exp(−β (ε(k) − μ))

1 + exp(−β (ε(k) − μ))
(1 + exp(−β (ε(k) − μ)))

}

= ln < n̂kσ > − ln
1

1 + exp(−β (ε(k) − μ))

= ln < n̂kσ > − ln {1− < n̂kσ >}

� S = −kB

∑
kσ

{ln(1− < n̂kσ >)+ < n̂kσ > ln < n̂kσ > −

− < n̂kσ > ln(1− < n̂kσ >)}

� S = −kB

∑
kσ

⎧⎨
⎩(1− < n̂kσ >)︸ ︷︷ ︸

holes

ln(1− < n̂kσ >)+

< n̂kσ > ln < n̂kσ >︸ ︷︷ ︸
electrons

⎫⎬
⎭

S = 0 for filled band (< n̂kσ >≡ 1)

3rd law: (Behaviour for T → 0)

ε(k) > μ: < n̂kσ >
T→0−→ 0 : ln(1− < n̂kσ >)

T→0−→ 0 � S
T→0−→ 0

ε(k) < μ: < n̂kσ >
T→0−→ 1 : ln < n̂kσ >

T→0−→ 0

� S
T→0−→ 0

� 3rd law is satisfied!

Problem 3.4
Periodic boundary conditions � grid volume

Δk(1) = 2π

L
; Δk(2) = (2π )2

Lx L y

1. d = 1 Density of states:

ρ
(1)
0 (E) = 2

Δk(1)

d

d E
ϕ1(E)
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Phase volume:

ϕ1(E) =
∫

ε(k)≤E

dk =
+ 1

�

√
2m E∫

− 1
�

√
2m E

dk = 2

�

√
2m E

�
d

d E
ϕ1(E) = 1

�

1√
2m E

2m =
√

2m

E�2

ρ
(1)
0 (E) =

{
d1 · 1√

E
, if E > 0

0, otherwise
; d1 =

√
2m

π�
L

2. d = 2

ϕ2(E) =
∫

ε(k)≤E

d2k = πk2|ε(k)≤E = π
2m E

�2

�
d

d E
ϕ2(E) = 2mπ

�2

ρ
(2)
0 (E) =

{
d2 > 0, if E > 0

0, otherwise
; d2 = Lx L y

π
· m

�2

3. d arbitrary:

ρ0(E) d E = 2

Δ(d)k

∫

E≤ε(k)≤E+d E

ddk

ε(k) = �
2k2

2m ; cell volume: Δ(d)(k) = (2π)d

V d
Phase volume:

ϕd (E) = Ωd

k0∫

0

dk kd−1= Ωd
k0

d

d

k0=
(

2m
�2

) 1
2 E

1
2︷︸︸︷= Ωd

d

(
2m

�2

) d
2

E
d
2

Ωd : Surface of the d-dimensional unit sphere

� density of states
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ρ0(E) = 2
Vd

(2π )d

d

d E
ϕd (E)Θ(E)

= Vd
Ωd

(2π )d

(
2m

�2

) d
2

E
d
2 −1Θ(E)

The surface Ωd is still to be determined! Gauss integral in the d-dimensional space:

gd =
∫

ddre−r2 =
d∏

i=1

+∞∫

−∞
dxi e−x2

i = (
√

π )d = π
d
2

Spherical coordinates:

gd = Ωd

∞∫

0

dx xd−1e−x2

= Ωd
1

2

∞∫

0

dy y
d
2 −1e−y

= 1

2
ΩdΓ

(
d

2

)

(y = x2
� dy = 2xdy � dx = 1

2
dy√

y )
by comparing:

Ωd = 2π
d
2

Γ( d
2 )

� Density of states

ρ
(d)
0 (E) = 2 Vdπ

d
2

(2π)d · 1
Γ( d

2 )

(
2m
�2

) d
2 E

d
2 −1Θ(E)

Check:

1. d = 1:

ρ
(1)
0 (E) = d1

1√
E

Θ(E); d1 = L

π

√
2m

�2

2. d = 2:

ρ
(2)
0 (E) = d2Θ(E); d2 = Lx L y

π

m

�2
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3. d = 3:

ρ
(3)
0 (E) = d3

√
EΘ(E)

d3 = V π
3
2

4π3

2√
π

(
2m

�2

) 3
2

= V

2π2

(
2m

�2

) 3
2

Problem 3.5

ε(k) = ε(k) = c�k

1. Density of states:

ρ(E) = 2V

(2π )3

d

d E
ϕ(E)

ϕ(E) =
∫

ε(k)≤E

d3k = 4π

3
k3|E=c�k = 4π

3c3�3
E3

� ρ(E) = αE2Θ(E) ; α = V

π2�3c3

� Fermi energy:

εF = c�kF = c�

(
3π2 N

V

) 1
3

where kF is derived from the particle number:

N = 2V

(2π )3

∫

k≤kF

d3k = V

4π3
· 4π

3
k3

F

� kF =
(

3π2 N

V

) 1
3

2. Chemical potential:
With the help of the particle number:

N =
εF∫

−∞
d E ρ(E)

︸ ︷︷ ︸
N (T=0)

=
+∞∫

−∞
d E f−(E)ρ(E)

︸ ︷︷ ︸
N (T )

�
α

3
ε3

F =
μ∫

−∞
d E ρ(E) + π2

6
(kB T )2ρ ′(μ) + . . .

(Sommerfeld expansion)
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�
1

3
ε3

F = 1

3
μ3 + π2

3
(kB T )2μ + . . .

≈ 1

3
μ3

{
1 + π2

(
kB T

μ

)2
}

≈ 1

3
μ3

{
1 + π2

(
kB T

εF

)2
}

� μ ≈ εF

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + π2

(
kB T

εF

)
︸ ︷︷ ︸

≈10−4

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

− 1
3

≈ εF

{
1 − π2

3

(
kB T

εF

)2
}

The same structure as in the non-relativistic case, only the numerical factor in
front of the correction term is changed from π2

12 to π2

3
3. Internal energy and heat capacity:

U (T = 0) =
εF∫

−∞
d E E · ρ(E) = α

4
ε4

F

U (T ) =
μ∫

−∞
d E E · ρ(E) + π2

6
(kB T )2(3αμ2) + . . .

= α

4
μ4 + π2

6
(kB T )2(3αμ2) + . . .

= α

4
ε4

F

{(
μ

εF

)4

+ 2π2

(
kB T

εF

)2 (
μ

εF

)2
}
+ . . .

2.)= U (0)

{
1 − 4

3
π2

(
kB T

εF

)2

+ 2π2

(
kB T

εF

)2
}
+ . . .

� U (T ) ≈ U (0)

{
1 + 2π2

3

(
kB T
εF

)2
}

N = α
3 ε3

F � α = 3N
ε3

F
� U (0) = 3

4 NεF
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Heat capacity

cV = γ̂ T ; γ̂ = U (0)
4π2

3

k2
B

ε2
F

= Nπ2 k2
B

εF

Non-relativistic:

γ = 1

2
Nπ2 k2

B

εF

which means

γ̂

γ
= 2

εnr
F

εr
F

= 2
�

2k2
F

2mc�kF
= �

2

m
· kF

c�
= �

mc

(
3π2 N

V

) 1
3

<< 1

Problem 3.6

1. Degree of degeneracy of a Landau level (3.117):

2gy(B0) = 2
eLx L y

2π�
B0

Factor 2 because of the spin degeneracy. B(0)
0 is determined from

Ne = 2gy

(
B(0)

0

)

Therefore

B(0)
0 = Ne

π�

eLx L y

2. The degeneracy of the Landau level is independent of the quantum number n.
The first n0 levels are then exactly fully occupied and the levels n > n0 are
completely empty if B0 = B(n0−1)

0 so that

Ne

n0
= 2gy

(
B(n0−1)

0

)

� B(n0−1)
0 = 1

n 0
B(0)

0

3. The degree of degeneracy at an arbitrary field B0

2gy(B0) = 2gy

(
B(0)

0

)
· B0

B(0)
0

= Ne
B0

B(0)
0
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Now let

B(n0−1)
0 ≥ B0 ≥ B(n0)

0

� n0 levels are fully occupied and the (n0 + 1)th level is partially occupied.
The number of electrons in the fully occupied levels:

N ∗ = n0 · 2gy(B0) = n0 Ne
B0

B(0)
0

The number of electrons in the uppermost level:

Nn0 = Ne − N ∗ = Ne

(
1 − n0

B0

B(0)
0

)

� Energy contribution of the highest level:

En0 = �ω∗
c

(
n0 + 1

2

)
· Nn0

= Ne�ω∗
c

(
n0 + 1

2
− n0

(
n0 + 1

2

)
B0

B(0)
0

)

= Neμ
∗
B B0

(
2n0 + 1 − n0(2n0 + 1)

B0

B(0)
0

)

Energy contribution of the fully occupied levels:

E∗ =
n0−1∑
n=0

�ω∗
c

(
n + 1

2

)
Ne

B0

B(0)
0

= �ω∗
c Ne

B0

B(0)
0

(
n0 − 1

2
+ 1

2

)
1

2
n0

= Neμ
∗
B B0

B0

B(0)
0

n2
0

� Total energy:

E(B0) = En0 + E∗ = Neμ
∗
B B0

(
2n0 + 1 − n0(n0 + 1)

B0

B(0)
0

)

This gives the curve of Fig. 3.5.
4. B0 = B(n0)

0
With (2) we have
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B(n0)
0

B(0)
0

= 1

n0 + 1

� E
(

B(n0)
0

)
= Neμ

∗
B B(n0)

0

(
2n0 + 1 − n0(n0 + 1)

B(n0)
0

B(0)
0

)

= Neμ
∗
B B(0)

0

that is, independent of n0, that means for all critical fields it is the same!

Problem 3.7

1. Energy levels (3.112):

En(kz) = 2μB B0

(
n + 1

2

)
+ �

2k2
z

2m

Degeneracy (3.117):

gy(B0) = eLx L y

2π�
B0

Partition function:

Z1 = 1

2π/Lz

+∞∫

−∞
dkz

∞∑
n=0

gy(B0) exp[−βEn(kz)]

= eV B0

(2π�)2

⎡
⎣

+∞∫

−∞
dpz exp

(
−β

p2
z

2m

)⎤
⎦ e−βμB B0

∞∑
n=0

e−β2μB B0n

= eV B0

(2π�)2

√
2πm

β

e−βμB B0

1 − e−2βμB B0

�

Z1 = V

(
m

2π�2β

)3/2
βμB B0

sinh(βμB B0)

(
μB = e�

2m

)

2. Free energy:

d F = −S dT − m d B0

(to magnetization’s work see Sect. 1.5)
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� m = − ∂ F

∂ B0
= kB T

∂

∂ B0
ln Z N = NkB T

∂

∂ B0
lnZ1 =

= NkB T
∂

∂ B0
ln

βμB B0

sinh(βμB B0)

= −NμB

(
d

dx
ln

sinhx

x

)
x=βμB B0

In the bracket is the classical Langevin function (see Problem 4.6):

L(x) = cothx − 1

x

� m = −NμB L

(
μB B0

kB T

)

negative sign

�

induced magnetic moment is oriented opposite to the field

� Diamagnetism

Problem 3.8
For f (x) one can write

f (x) = δ

(
x − 1

2

)
+ δ

(
x + 1

2

)
if − 1 ≤ x ≤ +1

with f (x) = f (x + 2)

f (x) is thus periodic with the period 2 and is also symmetric

f (−x) = f (x)

Then an ansatz for the Fourier series is possible

f (x) = f0 +
∞∑

m=1

[am cos(mπx) + bm sin(mπx)]

f0 = 1

2

∫ +1

−1
f (x) dx = 1

am =
∫ +1

−1
f (x) cos(mπx) dx

=
{

0 for m = 2p + 1
2(−1)p for m = 2p

bm ≡ 0 , since f (x) symmetric

Then it follows:
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f (x) = 1 +
+∞∑
p=1

2(−1)p cos(2pπx)

= 1 +
+∞∑
p=1

(−1)p
(
ei2pπx + e−i2pπx

)

=
+∞∑

p=−∞
(−1)pei2pπx

Problem 4.1
q = q′

1

V

∫
V

d3r ei(q−q′)·r = 1

V

∫
V

d3r = 1

q �= q′

1

V

∫
V

d3r ei(q−q′)·r =

= 1

V

∫ Lx

0
dx
∫ L y

0
dy
∫ Lz

0
dz exp

[
2π i

(
nx − n′

x

Lx
x+

ny − n′
y

L y
y + nz − n′

z

Lz
z

)]

Here we must have (nx , ny, nz) �= (n′
x , n′

y, n′
z). For example, let nx �= n′

x . Then the
integral over x gives

∫ Lx

0
dx exp

[
2π i

(
nx − n′

x

Lx
x

)]

= Lx

2π i
(
nx − n′

x

) exp

[
2π i

(
nx − n′

x

Lx
x

)]∣∣∣∣
Lx

0

= 0 since nx − n′
x ∈ Z

So that the proposition is proved.

Problem 4.2

1. The solid is a three-dimensional periodic array of primitive unit cells VUC

(a1 · (a2 × a3)) with the total volume

V = N1 N2 N3 (a1 · (a2 × a3))

Periodic boundary conditions for Bloch functions:
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ψk(r)
!= ψk(r + N1a1)

!= ψk(r + N2a2)
!= ψk(r + N3a3)

The Bloch functions are

ψk(r) = eik·r uk(r)

where the amplitude functions have the periodicity of the lattice:

uk(r) = uk(r + Rn)

Periodic boundary conditions therefore demand

eik·(N1a1) != eik·(N2a2) != eik·(N3a3) != 1

This means

k · (Ni ai ) = 2π zi with zi ∈ Z

Then for the allowed wavevectors holds:

k = z1

N1
b1 + z1

N2
b2 + z1

N3
b3

Here bi are the primitive translation vectors of the reciprocal lattice, defined by

ai · b j = 2π δi j ⇐⇒ b1 = 2π
a2 × a3

a1 · (a2 × a3)
· · ·

The first Brillouin zone ≡ Wigner–Seitz cell of the reciprocal lattice. Therefore
for the wavevectors of the first Brillouin zone holds

−1

2
Ni < zi ≤ +1

2
Ni

2. The proposition is valid for k = k′, since

1

N

∑
n

1 = 1

k �= k′:
According to 1. holds

(k − k′) · Rn = 2π

3∑
j=1

n j

N j
(z j − z′j )
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So that we calculate

∑
n

ei(k−k′)·Rn =
∑

n1n2n3

exp

⎛
⎝2π i

3∑
j=1

n j

N j
(z j − z′j )

⎞
⎠ =

=
3∏

j=1

N j−1∑
n j=0

exp

(
2π i

n j

N j
(z j − z′j )

)

z j �= z′j at least for one j . Then we have

N j−1∑
n j=0

(
exp

(
2π i

z j − z′j
N j

))n j

= 1 − aN j

1 − a
= 0

This holds because

a = exp

(
2π i

z j − z′j
N j

)
�= 1

since z j �= z′j and in addition −N j < z j − z′j < +N j . On the other hand

aN j = exp
(
2π i(z j − z′j )

) = 1

since z j − z′j is an integer. Thus the proposition is proved.

3. The proposition is trivial for Rn = Rm. Therefore let
Rn �= Rm:

With

k · (Rn − Rm) = 2π

3∑
j=1

z j

N j
(n j − m j )

now holds

1.B Z∑
k

eik·(Rn−Rm) =
∑

z1z2z3

exp

⎛
⎝2π i

3∑
j=1

z j

N j
(n j − m j )

⎞
⎠ =

=
3∏

j=1

1/2N j∑
z j=−1/2N j+1

exp

(
2π i z j

n j − m j

N j

)

n j �= m j at least for one j . Then we have
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1/2N j∑
z j=−1/2N j+1

exp

(
2π i z j

n j − m j

N j

)

=
N j−1∑
p j=0

exp

(
2π i(p j − 1

2
N j + 1)

n j − m j

N j

)

∝
N j−1∑
p j=0

(
exp

(
2π i

n j − m j

N j

))p j

= 1 − bN j

1 − b
= 0

since

b = exp

(
2π i

n j − m j

N j

)
�= 1

because n j �= m j and −N j + 1 ≤ n j −m j ≤ N j − 1. On the other hand it holds

bN j = exp
(
2π i(n j − m j )

) = 1

because n j − m j is an integer. The proposition is thus proved.

Problem 4.3
For both the integrals, it is meaningful (because of V → ∞) to introduce relative
and centre of mass coordinates:

x = r − r′ ; R = 1

2
(r + r′)

r = 1

2
x + R ; r′ = −1

2
x + R

With the help of the Jacobi determinant one can show

d3r d3r ′ = d3 R d3x

1.

I1 =
∫

V
d3r
∫

V
d3r ′

e−α|r−r′ |

|r − r′|
=
∫

d3 R
∫

d3x
e−αx

x
= V · 4π

∫ ∞

0
dx x e−α x

= V · 4π

(
− d

dα

)∫ ∞

0
dx e−α x

= V · 4π

(
− d

dα

)
1

α
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So that we have

I1 = 4πV

α2

2. From the result of Problem 4.1 it follows directly:

I2 =
∫

V
d3r
∫

V
d3r ′

exp(i(q · r + q′ · r′))
|r − r′|

=
∫ ∫

d3 R d3x
1

x
exp

(
i

2
(q − q′) · x

)
∗

∗ exp
(
i(q + q′) · R

)
= V δq,−q′ · Î

In order to calculate Î it is advisable to introduce a factor that ensures convergence:

Î = lim
α→0+

∫
d3x

1

x
eiq·x e−αx

= lim
α→0+

2π

∫ ∞

0
dx x

∫ +1

−1
d cos ϑ eiqx cos ϑ e−αx

= lim
α→0+

2π

∫ ∞

0
dx

x

iqx
e−αx

(
eiqx − e−iqx

)

= lim
α→0+

2π

iq

∫ ∞

0
dx
(
eiqx−αx − e−iqx−αx

)

= lim
α→0+

2π

iq

{
1

iq − α
eiqx−αx

∣∣∞
0 − 1

−iq − α
e−iqx−αx

∣∣∞
0

}

= lim
α→0+

2π

iq

{ −1

iq − α
− 1

iq + α

}

= 2π

iq

(−2

iq

)
= 4π

q2

Thus we find

I2 = 4πV

q2
δq,−q′
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Problem 4.4
First we calculate

I1(r) ≡
∫

F K
d3k eik·r

= 2π

∫ +1

−1
dx
∫ kF

0
dk k2eikr x

= 2π

ir

∫ kF

0
dk k 2i sin(kr )

= 4π

r

[
1

r2
sin(kr ) − k

r
cos(kr )

]kF

0

= −4π
kFr cos(kr ) − sin(kFr )

r3

Then we have the intermediate result

I =
∫

d3r
I 2
1 (r)

r

= (4π )3 k4
F

∫ ∞

0
dx

1

x5
(x cos x − sin x)2

To calculate the integral we use integration by parts a number of times.

I2 =
∫ ∞

0
dx

1

x5
(x cos x − sin x)2

= − 1

4x4
(x cos x − sin x)2

∣∣∣∣
∞

0

+

+ 1

4

∫ ∞

0

dx

x4
2(x cos x − sin x)(−x sin x)

= −1

2

∫ ∞

0

dx

x3
(x cos x − sin x) sin x

= 1

4x2
(x cos x − sin x) sin x

∣∣∣∣
∞

0

+

+ 1

4

∫ ∞

0

dx

x2
(x(sin2 x − cos2 x) + sin x cos x)

= 1

4

∫ ∞

0

dx

x2
(−x cos 2x + 1

2
sin 2x)

= 1

4

∫ ∞

0

dy

y2
(sin y − y cos y)
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= − 1

4y
(sin y − y cos y)

∣∣∣∣
∞

0

+ 1

4

∫ ∞

0

dy

y
y sin y

= − 1

4y
sin y

∣∣∣∣
∞

0

= 1

4
lim
y→0

sin y

y

= 1

4

Then we finally have the integral

I = 16π3 k4
F

Problem 4.5

• S integer
To show

+S∑
n=−S

n2 = 2
+S∑
n=1

n2 = 1

3
S(S + 1)(2S + 1)

Proof by full induction: The statement is certainly true for S = 1

2
+1∑

n=1

n2 = 2

We assume that it is valid for S and substitute S � S + 1

2
S+1∑
n=1

n2 = 2
+S∑
n=1

n2 + 2(S + 1)2

= 1

3
S(S + 1)(2S + 1) + 2(S + 1)2

= 1

3
(S + 1)(S(2S + 1) + 6(S + 1))

= 1

3
(S + 1)(2S2 + 7S + 6)

= 1

3
(S + 1)(S + 2)(2S + 3))

Thus the proposition is proved!
• S half-integer
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+S∑
n=−S

n2 = 2

S+ 1
2∑

n=1

(
n − 1

2

)2

= 2

S+ 1
2∑

n=1

n2 − 2

S+ 1
2∑

n=1

n + 1

2

S+ 1
2∑

n=1

1

= 1

3

(
S + 1

2

)(
S + 3

2

)
(2S + 2)

−2
1

2

(
S + 1

2

)(
S + 3

2

)
+ 1

2

(
S + 1

2

)

=
(

S + 1

2

)[
1

3

(
S + 3

2

)
(2S + 2) − (S + 1)

]

= 1

3
(2S + 1) (S + 1)

[(
S + 3

2

)
− 3

2

]

= 1

3
S(S + 1)(2S + 1)

This is the proposition!

Problem 4.6

1. Energy of a magnetic dipole in a magnetic field

E = −μ · B

⇔ H1 = −μ B
N∑

i=1

cos ϑi

ϑi is the angle between the magnetic moment of the i th atom μi and the field B.
2. Canonical partition function

Z N (T, B) = 1

h3N N !

∫ ∫
d3N q d3N p e−β H (q,p)

= Z N (T, 0)

(4π )N
(2π )N

∫ +1

−1
d cos ϑ1 · · ·

· · ·
∫ +1

−1
d cos ϑN eβμB

∑N
i=1 cos ϑi

= Z N (T, 0)

(
1

2

∫ +1

−1
dx eβμBx

)N
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= Z N (T, 0)

(
eβμB − e−βμB

2βμB

)N

= Z N (T, 0)

(
sinh βμB

βμB

)N

3.

μi = μ (sin ϑi cos ϕi , sin ϑi sin ϕi , cos ϑi )

Average value:

m =
∫ ∫

d3N q d3N p
(∑

i μi
)

e−β H (q,p)∫ ∫
d3N q d3N p e−β H (q,p)

The ϕi -integrations give mx = my = 0 and therefore

m = m ez m = d

d(βB)
ln Z N (T, B)

Partition function from 2.

m = N

(
d

dx
ln sinh μx − ln μx

)
(x = βB)

= Nμ

(
cosh μx

sinh μx
− 1

μx

)
(x = βB)

� m = Nμ L(βμB)ez

L(x) = coth x − 1

x

L(x) is the Langevin function. This is the classical Langevin paramagnetism.
4. Low temperatures, strong fields: βμB � 1

That means

coth βμB → 1 ;
1

βμB
→ 0

The system is in saturation:

m ≈ Nμez
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High temperatures, weak fields: βμB � 1

coth x = 1

x
+ x

3
+O(x3)

� L(x) ≈ x

3

This result is the Curie law:

m ≈ Nμ
μB

3kB T
ez

Problem 4.7

1. Free energy (N = const.):

F = U − T S

d F = dU − T d S − SdT = −SdT + V B0d M

�

(
∂ F

∂ M

)
T

= μ0V H

�

(
∂2 F

∂ M2

)
T

= μ0V

(
∂ H

∂ M

)
T

= μ0V(
∂ M
∂ H

)
T

= μ0V

χT

From the last equation follows:

(
∂ F

∂ M

)
T

= μ0V
M

χT
+ f (T )

since χT is only a function of temperature. The comparison with the above
expression requires f (T ) ≡ 0. Then we have

F(T, M) = F(T, 0) + 1

2
μ0V

M2

χT

2. Entropy

S(T, M) = −
(

∂ F

∂T

)
M

= S(T, 0) − 1

2
μ0V M2

(
d

dT
χ−1

T

)

Internal energy
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U (T, M) = F(T, M) + T S(T, M)

= U (T, 0) + 1

2
μ0V M2

(
χ−1

T − T
d

dT
χ−1

T

)

U (T, 0) = F(T, 0) + T S(T, 0)

We assume that the Curie law is valid:

χT = C

T
⇔ χ−1

T = T

C
⇔ T

d

dT
χ−1

T = T

C

Then we have

U (T, M) = U (T, 0)

S(T, M) = S(T, 0) − 1

2
μ0V M2 1

C

F(T, M) = F(T, 0) + 1

2
μ0 M2 T

C

3. Third law:
This requires that for T → 0 entropy vanishes, independent of the value of the
second variable. We therefore must assume in particular

lim
T→0

S(T, 0) = 0

If we take M(T ) �= 0 if H �= 0, then according to the entropy obtained in 2. it
must be concluded that if the Curie law is valid, then the third law is violated.
On the contrary, it must further hold

lim
T→0

d

dT
χ−1

T (T ) = lim
T→0

1

χ2
T

dχT

dT
!= 0

� χ−1
T (T → 0) = c +O(T 2)

with a constant c �= 0. χT (T ) therefore should not diverge, specially for T → 0.

Problem 4.8

1. Internal energy U = U (T, M) and the equation of state in the form M =
f (T, H ) are given. First law (1.80)

dU = δQ + μ0V H d M

� cM =
(

∂U

∂T

)
M

So that it holds
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δQ = cM dT +
[(

∂U

∂ M

)
T

− μ0V H

]
d M

�

cH =
(

δQ

dT

)
H

= cM +
[(

∂U

∂ M

)
T

− μ0V H

] (
∂ M

∂T

)
H

Therefore

cH − cM =
[(

∂U

∂ M

)
T

− μ0V H

] (
∂ M

∂T

)
H

2. Ideal paramagnet:

M = C

T
H ;

(
∂U

∂ M

)
T

= 0 C : Curie constant

�

(
∂ M

∂T

)
H

= − C

T 2
H

� cH − cM = μ0V

C
M2 ≥ 0

3. (a)Maxwell relation obtained from the free energy is

d F = −SdT + μ0V H d M

�

(
∂S

∂ M

)
T

= −μ0V

(
∂ H

∂T

)
M

(b)Maxwell relation of the free enthalpy is

dG = −SdT − μ0V M d H

�

(
∂S

∂ H

)
T

= μ0V

(
∂ M

∂T

)
H

(c)According to 1. from the first law follows:

δQ = T d S = cM dT +
[(

∂U

∂ M

)
T

− μ0V H

]
d M

� T

(
∂S

∂ M

)
T

=
[(

∂U

∂ M

)
T

− μ0V H

]
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This is the proposition!
4.

cH − cM
1.)=
[(

∂U

∂ M

)
T

− μ0V H

] (
∂ M

∂T

)
H

3.c)= T

(
∂S

∂ M

)
T

(
∂ M

∂T

)
H

3.a)= −μ0V T

(
∂ H

∂T

)
M

(
∂ M

∂T

)
H

5.

(
∂ H

∂T

)
M

= M

C
� cH − cM = −μ0V T

M

C

(
∂ M

∂T

)
H

Equation of state:

d H = M

C
dT + 1

C
(T − TC )d M + 3bM2d M

�

(
∂ M

∂T

)
H

[
1

C
(T − TC ) + 3bM2

]
= −M

C

So that it follows:

cH − cM = μ0V
T M2

C(T − TC ) + 3bC2 M2

6.

(
∂cM

∂ M

)
T

=
(

∂

∂ M

(
T

(
∂S

∂T

)
M

))
T

= T

(
∂

∂T

(
∂S

∂ M

)
T

)
M

3a.)= T (−μ0V )

(
∂2 H

∂T 2

)
M

= 0

7. Because of 6. it holds:
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(
∂U

∂T

)
M

= cM (T )

According to 3. it also holds

(
∂U

∂T

)
M

= T

(
∂S

∂ M

)
T

+ μ0V H

= −μ0V T

(
∂ H

∂T

)
M

+ μ0V H

= −μ0V T
M

C
+ μ0V

1

C
(T − TC )M

+ μ0V bM3

= μ0V

(
bM3 − TC

C
M

)

Integration:

U (T, M) = μ0V

(
1

4
bM4 − TC

2 C
M2

)
+ f (T )

Then it must be

cM (T ) = f ′(T )

So that we have

U (T, M) = μ0V

(
1

4
bM4 − TC

2 C
M2

)

+
∫ T

cM (T ′)dT ′ + U0

One gets entropy analogously:

(
∂S

∂T

)
M

= 1

T
cM (T )

(
∂S

∂ M

)
T

3a.)= −μ0V

(
∂ H

∂T

)
M

= −μ0V
M

C

� S(T, M) = −μ0V
M2

2 C
+
∫ T cM (T ′)

T ′ dT ′ + S0
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That means for the free energy

F = U − T S

= F0 + 1

4
μ0V bM4 + μ0V

M2

2C
(T − TC )

+
∫ T cM (T ′)

T ′ dT ′

F0 = U0 − T S0

8.

H = 1

C
(T − TC )M + bM3

For H → 0 we get the trivial solution M = 0, but also

MS = ±
√

1

bC
(TC − T )

These solutions are real for T ≤ TC . For the free energy we take the result from
7.:

F(T, M) = f (T ) + μ0V

2C
(T − TC )M2 + 1

4
μ0V bM4

We substitute in this expression both the mathematical solutions:

F(T, M = 0) = f (T )

F(T ; M = ±MS) = f (T ) + μ0V

2C
(T − TC )

1

bC
(TC − T )

+1

4
μ0V b

1

b2C2
(TC − T )2

= f (T ) − 1

4

μ0V

bC2
(TC − T )2

It obviously holds

F(T, M = ±MS) ≤ F(T, M = 0)

The equality sign holds for T = TC . Therefore the ferromagnetic solution is
stable. This exists as a real solution only for T ≤ TC .

9. Magnetic susceptibility
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χT =
(

∂ M

∂ H

)
T

= 1(
∂ H
∂ M

)
T

5.)= 1
1
C (T − TC ) + 3bM2

� lim
H→0

χT = 1
1
C (T − TC ) + 3bM2

S

= C

2(TC − T )

χT diverges for T
<→ TC , as required by the general theory of phase transitions.

Finally we again use the result from 5.:

lim
H→0

(cH − cM ) = μ0V
T M2

S

C(T − TC ) + 3bC2 M2
S

= μ0V
T 1

bC (TC − T )

C(T − TC ) + 3C(TC − T )

= μ0V

bC2
T

For T → 0 the two heat capacities are therefore equal to zero as demanded by
the third law.

Problem 4.9

1. According to Problem 4.7 we have

U (T, M) = U (T, 0)

Since

cM =
(

∂U

∂T

)
M=0

= γ T

follows:

U (T, M) = U0 + 1

2
γ T 2

Isothermal change of field from 0 to H �= 0:

ΔU = 0

That means

ΔQ = −ΔW = −V μ0

∫ H

0
H ′d H ′

d M ′ = C

T1
d H ′

� ΔQ = −V μ0C

T1

∫ H

0
H ′d H ′ = −μ0V C

2T1
H 2 < 0
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2. Adiabatic and reversible means: d S = 0, therefore

S(T1, H )
!= S(T f , 0)

From Problem 4.7 we have

S(T, M) = S(T, 0) − 1

2
μ0V

1

C
M2

S(T, 0) − S0 =
∫ T

0

cM=0(T ′)
T ′ dT ′ = γ T

� S(T, M) = S0 + γ T − 1

2
μ0V

1

C
M2

� S(T, H ) = S0 + γ T − 1

2
μ0CV

H 2

T 2

Switching off the field

S(T1, H ) = S0 + γ T1 − 1

2
μ0CV

H 2

T 2
1

!= S(T f , 0) = S0 + γ T f

� final temperature:

T f = T1 − 1

2
μ0CV

H 2

γ T 2
1

< T1

� Cooling effect.

Problem 5.1
Commutation relations:

1.

[
S+

i , S−
i

]
− = �

2
[
c+i↑ci↓, c+i↓ci↑

]
−

= �
2
(

c+i↑(1 − ni↓)ci↑ − c+i↓(1 − ni↑)ci↓
)

= �
2
(
ni↑(1 − ni↓) − ni↓(1 − ni↑)

)
= �

2
(
ni↑ − ni↓

)
= 2�Sz

i
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[
Sz

i , S+
i

]
− = 1

2
�

2
([

ni↑, c+i↑ci↓
]
−
−
[
ni↓, c+i↑ci↓

]
−

)

= 1

2
�

2
(

(ni↑ − ni↓)c+i↑ci↓ − c+i↑ci↓(ni↑ − ni↓)
)

= 1

2
�

2

⎛
⎜⎜⎝ni↑c+i↑︸ ︷︷ ︸

c+i↑

ci↓ − c+i↑ ni↓ci↓︸ ︷︷ ︸
≡0

− c+i↑ni↑︸ ︷︷ ︸
≡0

ci↓ + c+i↑ ci↓ni↓︸ ︷︷ ︸
ci↓

⎞
⎟⎟⎠

= �
2c+i↑ci↓

= �S+
i

[
Sz

i , S−
i

]
− = 1

2
�

2
(

(ni↑ − ni↓)c+i↓ci↑ − c+i↓ci↑(ni↑ − ni↓)
)

= 1

2
�

2

⎛
⎜⎜⎝− ni↓c+i↓︸ ︷︷ ︸

c+i↓

ci↑ − c+i↓ ci↑ni↑︸ ︷︷ ︸
ci↑

⎞
⎟⎟⎠

= −�
2c+i↓ci↑

= −�S−
i

S2
i = Sx

i
2 + Sy

i
2 + Sz

i
2

= 1

2

(
S+

i S−
i + S−

i S+
i

)+ Sz
i

2

= �
2

2

⎛
⎜⎜⎝c+i↑ci↓c+i↓︸ ︷︷ ︸

ni↑(1−ni↓)

ci↑ + c+i↓ci↑c+i↑ci↓︸ ︷︷ ︸
ni↓(1−ni↑)

⎞
⎟⎟⎠+ �

2

4
( n2

i↑︸︷︷︸
ni↑

+ n2
i↓︸︷︷︸

ni↓

−2ni↑ni↓)

= �
2

(
3

4
(ni↑ + ni↓) − 3

2
ni↑ni↓

)

= 3

4
�

2(ni↑ + ni↓ − 2ni↑ni↓)

= 3

4
�

2(ni↑ − ni↓)2

!= �
2S(S + 1) (S = 1

2
)

only if there is exactly one electron per lattice site
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2.

[
cqσ , c+kσ ′

]
+ = 1

N

∑
i, j

e−iqRi+ikR j

[
ciσ , c+jσ ′

]
+︸ ︷︷ ︸

δi j δσσ ′

= δσσ ′
1

N

∑
i

e−i(q−k)Ri

= δq,kδσσ ′

[
cqσ , ckσ ′

]
+ = [c+qσ , c+kσ ′

]
+ = 0

Problem 5.2
Free energy:

F = U − T S ; d F = −SdT + μ0V Hd M

Integrability condition:

(
∂S

∂ M

)
T

= −μ0V

(
∂ H

∂T

)
M

Curie–Weiss law:

M = C

T − TC
H (C : Curie constant)

Heat capacity:

cM (T, M) = T

(
∂S

∂T

)
M(

∂cM

∂ M

)
T

= T

(
∂2S

∂ M∂T

)
= T

[
∂

∂T

∂S

∂ M

]

=− μ0V T

[
∂

∂T

(
∂ H

∂T

)
M

]

=0

� cM (T, M) ≡ cM (T )

Internal energy:
Equation (1.80): dU = T d S + μ0V Hd M
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�

(
∂U

∂T

)
M

= T

(
∂S

∂T

)
M

= cM (T )

(
∂U

∂ M

)
T

= T

(
∂S

∂ M

)
T

+ μ0V H

s.o.= −μ0V T

(
∂ H

∂T

)
M

+ μ0V H

= −μ0V T
M

C
+ μ0V

T − TC

C
M

= −μ0V
M

C
TC

This means

U (T, M) = −μ0V TC
M2

2C
+ f (T )

Because of

(
∂U

∂T

)
M

= f ′(T ) = cM (T )

altogether we have

U (T, M) =
T∫

0

cM (T ′)dT ′ − μ0V TC
M2

2C
+ U0

Entropy:

S(T, M) =
T∫

0

cM (T ′)
T ′ dT ′ + σ (M)

(
∂S

∂ M

)
T

= σ ′(M) = −μ0V

(
∂ H

∂T

)
M

= −μ0V
M

C

� σ (M) = −μ0V
M2

2C
+ σ0

S(T, M) = σ0 +
T∫

0

cM (T ′)
T ′ dT ′ − μ0V

M2

2C

Free energy:
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F(T, M) =U (T, M) − T S(T, M)

=F0(T ) +
T∫

0

cM (T ′)
(

1 − T

T ′

)
dT ′ + μ0V

2C
M2(T − TC )

F0(T ) = U0 − T σ0

Check:

S(T, M) = −
(

∂ F(T, M)

∂T

)
M

Free enthalpy:

G(T, H )

=F − μ0V M H

=F − μ0V

C
(T − TC )M2

=F0(T ) +
T∫

0

cM (T ′)
(

1 − T

T ′

)
dT ′ − μ0V

2C
M2(T − TC )

�

G(T, H )

=F0(T ) +
T∫

0

cM (T ′)
(

1 − T

T ′

)
dT ′ − 1

2
μ0V C

1

T − TC
H 2

Problem 5.3

1.

cM (T, M = 0) = T

(
∂S

∂T

)
M=0

� S(T, 0) =
T∫

0

cM (T ′, M = 0)

T ′ dT ′ = γ T

With the result of Problem 5.2

S(T, M) = γ T − μ0V
M2

2C
+ σ0

Because
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M = C

T − TC
H

directly follows:

S(T, H ) = γ T − 1

2
μ0CV

H 2

(T − Tc)2
+ σ0

For the free energy F we use

(
∂ F

∂T

)
M

= −S(T, M)

F(T, M) = F0(M) − 1

2
γ T 2 + μ0V

M2

2C
T − σ0T

According to the considerations of Problem 5.2 we must have

F(T, M) = F0(T ) + 1

2
γ T 2 − γ T 2 + μ0V

2C
M2(T − TC )

� F0(M) = U0 − μ0V

2C
M2TC

What remains is only

F(T, M) = U0 − 1

2
γ T 2 + μ0V

2C
M2(T − TC )

Internal energy again from Problem 5.2:

U (T, M) = U0 + 1

2
γ T 2 − μ0V TC

M2

2C

Check:

F(T, M) = U (T, M) − T S(T, M)

= U0 − 1

2
γ T 2 + μ0V

2C
M2(T − TC ) − σ0T

� σ0 = 0

2. Heat capacities

cM (T, M) = T

(
∂S

∂T

)
M

= γ T = cM (T, M = 0)

cH (T, H ) = T

(
∂S

∂T

)
H

= γ T + μ0CV
T H 2

(T − TC )3
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Since T > TC , we have cH ≥ cM .
From elementary thermodynamics

χS(T, H ) = χT
cM

cH
= C

T − TC + μ0CV
γ

H 2

(T−TC )2

Problem 5.4

1. Spontaneous sub-lattice magnetization (B0 = 0)

M1S(T ) = −M2S(T )

� B(i)
A = μ0(λ − ρ)Mi S(T )

� Mi S(T ) = M∗
0 BJ (βgJ Jμ0μB(λ − ρ)Mi S(T ))

T → Tc � Mi S will be very small

� Mi S = J + 1

3J
(n∗gJ JμB)βgJ Jμ0μB(λ − ρ)Mi S

Curie constant: C = n μ0μ
2
B

3kB
g2

J J (J + 1); n∗ = N
2V = 1

2 n

� Mi S
∼= 1

2 (λ − ρ)C Mi S
T

Condition for intersection at finite Mis :

isM  

x
0M  

isM  
isM  

isM  isM  =

M0
*

i σM  Bj(...)=

d

d Mis
(M0 B j (. . . ))

∣∣∣∣
Mis=0

≥ 1
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�
1

2
(λ − ρ)

C

T
≥ 1

=⇒ TN = 1
2 (λ − ρ)C

2. High temperature behaviour:
No spontaneous sub-lattice magnetization

βμB B0 << 1

� Mi (T, B0) ∼= J + 1

3J
(n∗gJ JμB)βgJ JμB(B0 + B(i)

A )

= 1

2

C

T
(B0 + B(i)

A )
1

μ0

Total magnetization:

M(T, B0) = M1(T, B0) + M2(T, B0)

= μ0
C

T
B0 + 1

2

C

T
(B(1)

A + B(2)
A )︸ ︷︷ ︸

μ0(λ+ρ)(M1+M2)

1

μ0

� M(T, B0)

(
1 − 1

2

C

T
(λ + ρ)

)
= C

μ0T
B0

� M(T, B0) = C

T − 1
2 C(λ + ρ)

1

μ0
B0

� Curie–Weiss law

χ (T ) = μ0

(
∂ M

∂ B0

)
T

= C

T − Θ

Θ = 1
2 C(λ + ρ) paramagnetic Curie temperature

3. necessary: ρ < 0

− Θ

TN
= λ + ρ

ρ − λ
= |ρ| − λ

|ρ| + λ

(α) λ > 0: ferromagnetic coupling within the sub-lattice

− Θ

TN
< 1 i.a.: Θ < 0 (λ < |ρ|)
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Example: EuTe: Θ = −4.0K ; TN = 9.6K
(β) λ < 0: antiferromagnetic coupling in the sub-lattice in order to have TN > 0:

|λ| < |ρ|

− Θ

TN
= |ρ| + |λ|

|ρ| − |λ| always: Θ < 0

− Θ

TN
> 1

Examples:

MnO NiO MnF2

− Θ
TN

5.3 5.7 1.7

Typically: Θ < 0

χ−1

TN TΘ

Problem 5.5
According to Problem 4.6 the equation of state of Weiss ferromagnet reads

M = M0L

(
m

μ0 H + λμ0 M

kB T

)

1.

mλμ0 M

kB T
= M

M0

N
V m2λμ0

kB T
= M̂

3kBCλ

kB T

Classical Curie constant (Problem 4.6)

C = μ0
N

V

m2

3kB
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Further using (5.13): TC = λC and then we have

M̂ = L

(
b + 3

M̂

ε + 1

)

2. Series expansion of the Langevin function

L(x) = 1

3
x − 1

45
x3 + O(x5)

B0 = μ0 H = 0 � b = 0

T
<→ Tc � M̂ very small

Then we can write approximately

M̂ ≈ M̂

ε + 1
− 3

5

M̂3

(ε + 1)3

For M̂ �= 0 that means

ε

ε + 1
≈ −3

5

M̂2

(ε + 1)3
� M̂2 ≈ −5

3
ε(ε + 1)2

Since (ε + 1)2 → 1 for T → TC , it follows that

M̂ ∼
√

5

3
(−ε)

1
2

The critical exponent β of the order parameter then has the classical value:

β = 1

2

3. Critical isotherm: T = Tc; B0 → 0

� ε = 0 and M̂ as well as b very small.

This means
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M̂ ≈ 1

3
b + M̂ − 1

45
(b + 3M̂)3

� 15b ≈ (b + 3M̂)3 ↔ b + 3M̂ ≈ (15b)
1
3

↔ 3M̂ ≈ (15b)
1
3 − b ≈ (15b)

1
3 , since b → 0

� b ∼ 9

5
M̂3

From this we read off the critical exponent:

δ = 3

That is also well-known value for classical theories.
4. Susceptibility:

χT =
(

∂ M

∂ H

)
T

= M0μ0m

kB T

(
∂ M̂

∂b

)

T,b=0

=
N
V m2μ0

kB(ε + 1)Tc

(
∂ M̂

∂b

)

T,b=0

= 3

λ(ε + 1)

(
∂ M̂

∂b

)

T,b=0

In the critical region M̂ is very small. Therefore we can expand

∂L

∂b

∣∣∣∣
b=0

= ∂x

∂b

(
1

3
− 1

15
x2

)∣∣∣∣
b=0

∂x

∂b
= 1 + 3

ε + 1

∂ M̂

∂b

�
∂ M̂

∂b

∣∣∣∣∣
b=0

=
(

1 + 3

ε + 1

∂ M̂

∂b

∣∣∣∣∣
b=0

)(
1

3
− 1

15

9M̂2

(ε + 1)2

)

�
∂ M̂

∂b

∣∣∣∣∣
b=0

{
1 − 1

ε + 1
+ 9

5

M̂2

(ε + 1)3

}
= 1

3

(
1 − 9

5

M̂2

(ε + 1)2

)

�
∂ M̂

∂b

∣∣∣∣∣
b=0

= 1

3

1 − 9
5

M̂2

(ε+1)2

ε
ε+1 + 9

5
M̂2

(ε+1)3

T → Tc means M̂ → 0:
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∂ M̂

∂b

∣∣∣∣∣
b=0

≈ 1

3

[(
ε

ε + 1
+ 9

5

M̂2

(ε + 1)3

)(
1 + 9

5

M̂2

(ε + 1)2

)]−1

≈ 1

3

[
ε

ε + 1
+ 9

5

M̂2

(ε + 1)2

]−1

(a)T
>→ Tc:

then M̂ ≡ 0 and ε + 1
T→Tc−→ 1:

∂ M̂

∂b

∣∣∣∣∣
b=0

≈ 1

3
ε−1

� χT ∼ 1

λ
ε−1

� critical exponent:

γ = 1

(b)T
<→ Tc:

then according to part 2 we have

M̂ ∼
√

5

3
(−ε)

1
2

This means

∂ M̂

∂b

∣∣∣∣∣
b=0

≈ 1

3

[
ε

ε + 1
+ 3

−ε

(ε + 1)2

]−1

T→Tc−→ 1

3
[−2ε]−1

� χT ∼ 1

2λ
(−ε)−1 ⇒ γ ′ = 1

Critical amplitudes:

C ∼ 1

λ
; C ′ ∼ 1

2λ
�

C

C ′ = 2

The results obtained for γ , γ ′ and c
c′ are typical for the classical theories of

phase transitions. The concluding remark is as follows.

The sign “ ∼′′ in the above formulae need not necessarily mean proportionality
but should be understood as, “for T → Tc behaves like”.
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Problem 5.6

1.

(
σ (1) · σ (2)

)2
= (σ (1)

x σ (2)
x + σ (1)

y σ (2)
y + σ (1)

z σ (2)
z

)2 =
= (σ (1)

x

)2 (
σ (2)

x

)2 + (σ (1)
y

)2 (
σ (2)

y

)2 + (σ (1)
z

)2 (
σ (2)

z

)2 +
+ σ (1)

x σ (2)
x σ (1)

y σ (2)
y + σ (1)

x σ (2)
x σ (1)

z σ (2)
z +

+ σ (1)
y σ (2)

y σ (1)
x σ (2)

x + σ (1)
y σ (2)

y σ (1)
z σ (2)

z +
+ σ (1)

z σ (2)
z σ (1)

x σ (2)
x + σ (1)

z σ (2)
z σ (1)

y σ (2)
y =

= 31l2 − σ (1)
z σ (2)

z − σ (1)
y σ (2)

y − σ (1)
z σ (2)

z −
− σ (1)

x σ (2)
x − σ (1)

y σ (2)
y − σ (1)

x σ (2)
x =

= 31l − 2σ (1) · σ (2)

Here the properties (5.81) and (5.82) of the Pauli spin matrices are used many
times.

2. Representatively, we calculate the x-component

Q12 σ (1)
x

= 1

2

(
1l + σ (1)

x σ (2)
x + σ (1)

y σ (2)
y + σ (1)

z σ (2)
z

)
σ (1)

x =

= 1

2

(
σ (1)

x + (σ (1)
x

)2
σ (2)

x + σ (1)
y σ (1)

x σ (2)
y + σ (1)

z σ (1)
x σ (2)

z

)

= 1

2

(
σ (1)

x + σ (2)
x − i σ (1)

z σ (2)
y + i σ (1)

y σ (2)
z

)

σ (2)
x Q12

= 1

2
σ (2)

x

(
1l + σ (1)

x σ (2)
x + σ (1)

y σ (2)
y + σ (1)

z σ (2)
z

) =
= 1

2

(
σ (2)

x + σ (1)
x

(
σ (2)

x

)2 + σ (1)
y σ (2)

x σ (2)
y + σ (1)

z σ (2)
x σ (2)

z

)

= 1

2

(
σ (2)

x + σ (1)
x + i σ (1)

y σ (2)
z − i σ (1)

z σ (2)
y

)

That means

Q12 σ (1)
x = σ (2)

x Q12 ,

so that the proposition for the x-component is proved. Analogously one can
prove for the other components.

3. We use
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σx

(
1
0

)
=
(

0 1
1 0

) (
1
0

)
=
(

0
1

)

σx

(
0
1

)
=
(

0 1
1 0

) (
0
1

)
=
(

1
0

)

σy

(
1
0

)
=
(

0 −i
i 0

) (
1
0

)
= i

(
0
1

)

σy

(
0
1

)
=
(

0 −i
i 0

) (
0
1

)
= −i

(
1
0

)

σz

(
1
0

)
=
(

1
0

)
; σz

(
0
1

)
= −

(
0
1

)

So that one immediately recognizes

σ (1) · σ (2) |↑↑〉 = |↓↓〉 + i2 |↓↓〉 + |↑↑〉 = |↑↑〉
σ (1) · σ (2) |↓↓〉 = |↑↑〉 + (−i)2 |↑↑〉 + |↓↓〉 = |↓↓〉

σ (1) · σ (2) (|↑↓〉 + |↓↑〉 )

= (|↓↑〉 + |↑↓〉 − i2 |↓↑〉 − i2 |↑↓〉 − |↑↓〉 − |↓↑〉)
= (|↑↓〉 + |↓↑〉 )

σ (1) · σ (2) (|↑↓〉 − |↓↑〉 )

= (|↓↑〉 − |↑↓〉 − i2 |↓↑〉 + i2 |↑↓〉 − |↑↓〉 + |↓↑〉)
= 3(|↑↓〉 − |↓↑〉 )

The spin states are therefore eigenstates of the operator σ (1) · σ (2) with the
eigenvalues (1, 1, 1,−3). Therefore they are also the eigenstates of Q12 with
the eigenvalues (1, 1, 1, −1).

Problem 5.7

R =
∫ ∞

0
dx x

sin x

x2 − y2
= 1

4i

∫ +∞

−∞
dx x

exp(i x) − exp(−i x)

x2 − y2

We use the residue theorem and for that we choose the integration path parallel to
the real axis from −∞+ i0+ to +∞+ i0+, close it with a semicircle at infinity in
the upper half-plane for the first exponential function and in the lower half-plane for
the second exponential function. Then the exponentials see to it that the semicircles
do not contribute to the integral. The poles at x = ±y lie inside the (mathematically
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negatively running) integration path C only for the second term. Then from the
residue theorem we get

R = − 1

8i

∫
C

dx e−i x

(
1

x + y
+ 1

x − y

)

= 2π i

8i

(
e+iy + e−iy

)

= π

2
cos y

Problem 5.8

1. The diagonal terms μ = ν in Ĥ1 directly give HU :

Ĥ1(μ = ν) = HU

That is why from now on we will consider only the non-diagonal terms μ �= ν.
For these we have to calculate

Ĥ1(μ �= ν)

= 1

2

∑
iσσ ′

μ �=ν∑
μν

[
Uμνniμσ niνσ ′ + Jμν c†iμσ c†iνσ ′ciμσ ′ciνσ

]

The first summand leads to

Ĥ1a(μ �= ν) = 1

2

μ �=ν∑
iμν

Uμνniμniν

The second summand we somewhat reformulate

Ĥ1b(μ �= ν)

= 1

2

∑
iσσ ′

μ �=ν∑
μν

Jμν c†iμσ c†iνσ ′ciμσ ′ciνσ =

= 1

2

μ �=ν∑
iμν

Jμν

[
c†iμ↑c†iν↑ciμ↑ciν↑ + c†iμ↑c†iν↓ciμ↓ciν↑+

+ c†iμ↓c†iν↑ciμ↑ciν↓ + c†iμ↓c†iν↓ciμ↓ciν↓
]

= 1

2

μ �=ν∑
iμν

Jμν

[
−σ+

iμσ−
iν − σ−

iμσ+
iν − niμ↑niν↑ − niμ↓niν↓

]

= 1

2

μ �=ν∑
iμν

Jμν

[
−2σ x

iμσ x
iν − 2σ

y
iμσ

y
iν − 2σ z

iμσ z
iν−
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− 1

2
(niμ↑ + niμ↓) (niν↑ + niν↓)

]

= −1

4

μ �=ν∑
iμν

Jμν niμniν − 4

�2

μ �=ν∑
iμν

Jμνsiμ · siν

We recognize

Ĥ1(μ �= ν) = Ĥ1a(μ �= ν) + Ĥ1b(μ �= ν) = Hd + Hex

Thus the proposition is proved.
2. As an example we consider EuO . This has 5d-conduction bands which are

empty and seven half-filled 4f-bands (levels). For the empty (!) conduction bands
HU does not play any role but for sufficiently large Uμμ, it splits each of the
f-bands into two sub-bands out of which the lower one is occupied and the upper
one is empty. This leads to the localized magnetic 4f-moment.
Hd provides only an unimportant energy shift of the f-levels. Hex becomes
important if μ is an index of the conduction band and ν is that of an f-band
or the converse. Let us assume that the coupling between the conduction band
and the f-level is same for all the conduction bands,

Jμ = 4

�
Jμν ∀ν ,

and define as localized spin:

Si f =
∑

ν

siν

where the ν-summation runs exclusively over the f-levels, then, Hex becomes the
interaction operator of the multi-band Kondo lattice model:

Hd f = −
∑
iμ

Jμ Si f · σiμ

The μ-summation runs only over the conduction bands.

Problem 5.9

1. We use the matrix representation with the basis

| kσ 〉α = ckσα | 0〉 α = A, B

Then the “free” matrix reads as

H (0)
kσ ≡

∑
αβ

εαβ(k)c†kσαckσβ
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with the elements

(
H (0)

kσ

)γ δ

= 〈0 | ckσγ

∑
αβ

εαβ (k)c†kσαckσβc†kσδ | 0〉

=
∑
αβ

εαβ(k)δγαδβδ〈0 | 0〉 = εγ δ(k)

Hamilton Matrix:

H (0)
kσ =

(
ε(k) t(k)
t∗(k) ε(k)

)

Eigenenergies:

det
(

E0k − H (0)
kσ

)
!= 0

� (ε(k) − E0k)2 − |t(k)|2 != 0

� E (±)
0k = ε(k) ± |t(k)|

Eigenstates: (∓|t(k)| t(k)
t∗(k) ∓|t(k)|

)(
cA

cB

)
= 0

� c(±)
A = ±γ c(±)

B ; γ = t(k)

|t(k)|
Normalization �

|E (±)
0kσ 〉 =

1√
2

(
γ c†kσ A ± c†kσ B

)
|0〉

2. Schrödinger’s first-order perturbation theory:

〈E (±)
0kσ |H1|E (±)

0kσ 〉
= 1

2

(
−1

2
J zσ

)∑
α

〈Sz
α〉〈0

∣∣(γ ∗ckσ A ± ckσ B
)

c†kσαckσα ∗

∗ (γ c†kσ A ± c†kσ B

)∣∣0〉
= −1

4
J zσ 〈Sz〉

(
|γ |2 〈0|ckσ Ac†kσ Ackσ Ac†kσ A|0〉−

− 〈0|ckσ Bc†kσ Bckσ Bc†kσ B |0〉
)

= −1

4
J zσ 〈Sz〉(|γ |2 − 1)〈0|0〉
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The first order therefore does not contribute

E (±)
1kσ ≡ 0

The energy correction in second order:
We need the following matrix element:

〈E (+)
0kσ |H1|E (−)

0kσ 〉
= 1

2

(
−1

2
J zσ

)∑
α

〈Sz
α〉〈0

∣∣(γ ∗ckσ A + ckσ B
)

c†kσαckσα ∗

∗ (γ c†kσ A − c†kσ B

)∣∣0〉
= −1

4
J zσ

(
〈Sz

A〉|γ |2〈0|ckσ Ac†kσ Ackσ Ac†kσ A|0〉+

+ 〈Sz
B〉(−1)〈0|ckσ Bc†kσ Bckσ Bc†kσ B |0〉

)

= −1

4
J zσ 〈Sz〉(|γ |2 + 1)〈0|0〉

= −1

2
J zσ 〈Sz〉

This gives as the energy correction in the second order:

E (±)
2kσ =

∣∣∣〈E (±)
0kσ |H1|E (∓)

0kσ 〉
∣∣∣2

E (±)
0k − E (∓)

0k

=
1
4 J 2〈Sz〉2

±2|t(k)|

Thus the Schrödinger’s second-order perturbation theory leads to the following
spin-independent expression:

E (±)
k = ε(k) ± |t(k)| ± 1

8
J 2 〈Sz〉2

|t(k)|

3. Brillouin–Wigner perturbation theory:
The energy correction in the first order is identical to the Schrödinger’s pertur-
bation theory, i.e. it vanishes in this case also. In the second order, one has to
calculate

E (±)
2kσ =

∣∣∣〈E (±)
0kσ |H1|E (∓)

0kσ 〉
∣∣∣2

E (±)
k − E (∓)

0k

It should be noted that in the denominator the “full” eigenenergy E (±)
k appears.

We have already used the matrix element in part 3 We then have the following
determining equation:
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E (±)
k = ε(k) ± |t(k)| +

1
4 J 2〈Sz〉2

E (±)
k − ε(k) ± |t(k)|

This gives a quadratic equation for the energy,

(
E (±)

k − ε(k)
)2

− |t(k)|2 = 1

4
J 2〈Sz〉2

with the solution:

E (±)
k = ε(k) ±

√
|t(k)|2 + 1

4
J 2〈Sz〉2

4. The problem can be easily exactly solved:

H =
∑
kσαβ

(
εαβ (k) − 1

2
J zσ 〈Sz

α〉δαβ

)
c†kσαckσβ ≡

∑
kσ

Hkσ

Matrix representation:

Hkσ =
⎛
⎝ ε(k) − 1

2 J zσ 〈Sz〉 t(k)

t(k)∗ ε(k) + 1
2 J zσ 〈Sz〉

⎞
⎠

The secular determinant

det (E − Hkσ )
!= 0

is solved by

(E − ε(k))2 − 1

4
J 2〈Sz〉2 = |t(k)|2

That means

E±(k) = ε(k) ±
√
|t(k)|2 + 1

4
J 2〈Sz〉2

The Brillouin–Wigner perturbation theory gives the exact result already in the
second order. If the root is expanded for small J , then the coefficient of the first
term in the expansion is the result of Schrod̈inger’ perturbation theory in the
second order.

Problem 5.10

1. The total spin Ŝ = S1+S2 has the quantum numbers Ŝ = 0, 1, 2, · · · , 2S and the
z-component Ŝz = Sz

1 + Sz
2 the quantum numbers M = −Ŝ,−Ŝ + 1, · · · ,+Ŝ.

Additionally holds
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(S1 + S2)2 = S2
1 + S2

2 + 2S1 · S2 ≡ �
2 Ŝ(̂S + 1)1l

� S1 · S2 = �
2

(
1

2
Ŝ(̂S + 1) − S(S + 1)

)
1l

Possible energy levels:

EŜM = −2J�
2

(
1

2
Ŝ(̂S + 1) − S(S + 1)

)
− MgμB B̂

With the abbreviation,

b ≡ gμB B̂

we have for the canonical partition function:

ZS = Sp
(
e−β H

)

= e−β�
2 J S(S+1)

2S∑
Ŝ=0

+Ŝ∑
M=−Ŝ

eβ 1
2 �

2 J Ŝ(̂S+1) eβbM

M-summation as in (4.94):

+Ŝ∑
M=−Ŝ

eβbM = sinh(βb(̂S + 1
2 ))

sinh( 1
2βb)

Partition function:

ZS = e−β�
2 J S(S+1)

sinh( 1
2βb)

2S∑
Ŝ=0

eβ 1
2 �

2 J Ŝ(̂S+1) sinh(βb(̂S + 1

2
))

2. Special case S1 = S2 = 1
2 :

Z1/2 = e−
3
4 β�

2 J

sinh( 1
2βb)

(
sinh(

1

2
βb) + eβ�

2 J sinh(
3

2
βb)

)

With

sinh( 3
2 x)

sinh( 1
2 x)

= 1 + 2 cosh(x)

we finally get



C Solutions to Problems 633

Z1/2 = e
1
4 β�

2 J
(

e−β�
2 J + 1 + 2 cosh(βgμB B̂)

)

The magnetization satisfies the following implicit equation:

M = nkB T
∂

∂ B0
ln Z1/2

= ngμB
2 sinh(βgμB B̂)

e−β�2 J + 1 + 2 cosh(βgμB B̂)

For J = 0, and with tanh x/2 = sinh x
1+cosh x we get the result of the Weiss theory

(5.8) for S = 1/2.

Problem 6.1
With the abbreviations

j = β J ; b = βμB B0 ; β = 1

kB T

holds

T̂ − E1l =
⎛
⎝ e j+b − E e− j

e− j e j−b − E

⎞
⎠

The eigenvalues follow from

0
!= det(T̂ − E1l) = (e j+b − E

) (
e j−b − E

)− e−2 j

= E2 − E
(
e j+b + e j−b

)+ e2 j − e−2 j

= E2 − E e j 2 cosh b + 2 sinh 2 j

= (E − e j cosh b
)2 − e2 j cosh2 b + 2 sinh 2 j

This gives the eigenvalues

E± = eβ J

(
cosh βμB B0 ±

√
cosh2 βμB B0 − 2e−2β J sinh 2β J

)

Problem 6.2
Partition function (6.35) in thermodynamic limit:

Z N (T, B0) = E N
+

(
1 +

(
E−
E+

)N
)
−→ E N

+ f”ur N → ∞
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E+ as in Problem 6.1.
Free energy per spin:

f (T, B0) = −kB T lim
N→∞

1

N
ln TN (T, B0) = −kB T ln E+ =

= −J − kB T ln (cosh βμB B0 ± sqrt)

where

sqrt =
√

cosh2 βμB B0 − 2e−2β J sinh 2β J

Magnetization:

m = −
(

∂

∂ B0
f (T, B0)

)
T

= μB

sinh b + cosh b sinh b
sqrt

cosh b + sqrt

= μB sinh b
sqrt + cosh b

(cosh b + sqrt) sqrt

= μB
sinh b√

cosh2 b − 2e−2β J sinh 2β J

That gives

m(T, B0) = μB
sinh(βμB B0)√

cosh2 βμB B0 − 2e−2β J sinh 2β J

Susceptibility:

χT (T, B0) = μ0

(
∂m

∂ B0

)
T

= βμ2
B

{
cosh b√

cosh2 b − 2e−2β J sinh 2β J

− sinh2 b cosh b(√
cosh2 b − 2e−2β J sinh 2β J

)3

⎫⎪⎬
⎪⎭
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= βμ2
B

cosh b√
cosh2 b − 2e−2β J sinh 2β J

∗

∗
{

1 − sinh2 b

cosh2 b − 2e−2β J sinh 2β J

}

= βμ2
B

cosh(βμB B0)
(
1 − 2e−2β J sinh 2β J

)
(
cosh2(βμB B0) − 2e−2β J sinh 2β J

)3/2

In the limit B0 → 0 this expression simplifies to

χT (T, B0 → 0) = β μ2
B e2β J

Problem 6.3
In the classical Ising Model the magnetic moment is given by

m = μ
∑

i

Si

where μ is a positive constant. With the Hamiltonian function

H = −J
∑

i j

Si S j − m B0

the canonical partition function is given by

Z (T, m) =
∑
{Si }

exp

⎛
⎝−β

⎛
⎝−J

∑
i j

Si S j − m B0

⎞
⎠
⎞
⎠

Here the summation is over all conceivable spin configurations, where the individual
spins can have the values ±1. Therefore the substitution Si → −Si ∀i cannot affect
the partition function. Then in the exponents the first term does not change the sign
but for the second term however, m → −m. That means

Z (T, m) = Z (T,−m)

so that

F(T, m) = −kB T ln Z (T, m) = −kB T ln Z (T,−m) = F(T,−m)
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Problem 6.4

1.

Z N (T, B0) = T r (exp(−βH ))

= T r (1l) − βT r (H ) + 1

2
β2T r (H 2) − 1

3!
β3Sp(H 3) + · · ·

=
∞∑

l=0

1

l!
(−β)l T r (Hl)

= T r (1l)

[
1 +

∞∑
l=1

(−β)l

l!
ml

]

Each spin has two possible orientations Si = ±1. That gives a total 2N spin
configurations. Therefore

Sp(1l) = 2N

2.

cB0 = −T

(
∂2 FN (T, B0)

∂T 2

)
B0

= −T

(
∂2

∂T 2
(−kB T ln Z N (T, B0))

)
B0

= kBβ2

(
∂2

∂β2
ln Z N (T, B0)

)
B0

= kBβ2

(
∂

∂β

∂
∂β

Z N (T, B0)

Z N (T, B0)

)

B0

= kBβ2

(
1

Z N

∂2 Z N

∂β2
− 1

Z2
N

(
∂ Z N

∂β

)2
)

= kBβ2

[
T r (1l)

Z N

∞∑
l=1

l(l − 1)

l!
(−β)l−2ml

−
(

T r (1l)

Z N

∞∑
l=1

l

l!
(−β)l−1ml

)2
⎤
⎦

= kBβ2

(
2

2!
m2 − m2

1 +O(β)

)

= 1

kB T 2
(m2 − m2

1) + · · ·
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In the last step we have restricted ourselves to the lowest term in 1/T . One
should notice that the moments are temperature independent. This result for the
high-temperature behaviour of the heat capacity is of course valid not only for
the Ising spins but also for all magnetic systems (!).

Problem 6.5

1. According to Problem 1.2:

χT = 1

kB T

μ0

V
〈(m̂ − 〈m̂〉)2〉

This means

χT = 1

kB T

μ0

V
g2μ2

B

∑
i j

〈(Si − 〈Si 〉)
(
Sj − 〈Sj 〉

)〉

So that we directly get

χT = 1

kB T

μ0

V

⎛
⎝g2μ2

B

∑
i j

〈Si S j 〉 − 〈m̂〉2

⎞
⎠

2. The spin chain shows no spontaneous magnetization. When an external field is
switched off, then, 〈m̂〉 ≡ 0. According to (6.19) for the spin correlation of a
one-dimensional chain we have

〈Si S j 〉 = v|i− j |

One can easily see that, in the double summation, N terms with |i − j | = 0 give
the contribution v0 = 1; 2(N − 1) terms with |i − j | = 1 give the contribution
v1; 2(N − 2) terms with |i − j | = 2 give the contribution v2; ....; and finally two
terms with |i − j | = N −1 give the contribution vN−1. Then all of them together
give

χT (T, B0) = 1

kB T

μ0

V
g2μ2

B

(
N + 2

N−1∑
k=1

(N − k)vk

)

One calculates
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2
N−1∑
k=1

Nvk = 2N
1 − vN

1 − v
− 2N

−2
N−1∑
k=1

kvk = −2
N−1∑
k=0

kvk = 2v
d

dv

1 − vN

1 − v

= 2v
(1 − v)(−NvN−1) + (1 − vN )

(1 − v)2

� 2
N−1∑
k=1

(N − k)vk = 2N
v

1 − v
− 2v

1 − vN

(1 − v)2

From this it follows:

χT (T, B0 = 0) = 1

kB T

μ0

V
g2μ2

B

(
N

(
1 + 2v

1 − v

)

−2v
1 − vN

(1 − v)2

)

3. For N → ∞ the expression for susceptibility can be simplified:

1

N
χT (T, B0 = 0)

= 1

kB T

μ0

V
g2μ2

B

1 + v

1 − v

= 1

kB T

μ0

V
g2μ2

B

1 + tanh(β J )

1 − tanh(β J )

= 1

kB T

μ0

V
g2μ2

B

eβ J + e−β J + eβ J − e−β J

eβ J + e−β J − eβ J + e−β J

= 1

kB T

μ0

V
g2μ2

B e2β J

This agrees with the result (6.46) for the Ising ring in the thermodynamic limit.

Problem 6.6

1. The partition function

Z N (T ) =
∑

S1

∑
S2

· · ·
∑
SN

exp

(
N−1∑
i=1

ji Si Si+1

)

where ji = β Ji is valid, we have already calculated with (6.14):
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Z N (T ) = 2N
N−1∏
i=1

cosh ji

Four-spin correlation function i �= j :

〈Si Si+1Sj S j+1〉

= 1

Z N

∑
S1

∑
S2

· · ·
∑
SN

Si Si+1Sj S j+1 exp

(
N−1∑
i=1

ji Si Si+1

)

= 1

Z N

∂2 Z N

∂ ji ∂ j j

= cosh j1 · · · sinh ji · · · sinh j j · · · cosh jN−1

cosh j1 · · · coshN−1

= tanh ji tanh j j

For i = j the four-spin correlation function is equal to 1. Let us now set ji =
j ∀i , then we have

〈Si Si+1Sj S j+1〉 =
{

1 falls i = j
tanh2 j falls i �= j

2. From Problem 6.4 we have

cB0 = kBβ2

(
1

Z N

∂2 Z N

∂β2
− 1

Z2
N

(
∂ Z N

∂β

)2
)

= kBβ2
(〈H 2〉 − 〈H〉2

)

With

〈H 2〉 = J 2
∑

i j

〈Si Si+1Sj S j+1〉

follows:
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cB0=0 = kBβ2 J 2
N−1∑
i, j=1

(〈Si Si+1Sj S j+1〉

−〈Si Si+1〉〈Sj S j+1〉
)

= kBβ2 J 2
N−1∑
i, j=1

(
δi j + (1 − δi j ) tanh2 j − tanh2 j

)

= kBβ2 J 2
N−1∑
i, j=1

δi j (1 − tanh2 j)

cB0=0 = (N − 1)kBβ2 J 2 1

cosh2 β J

Compare this result with (6.45).

Problem 7.1

1.

[
Sx

i , Sy
j

]
−
= i�Sz

i δi j and cyclic

[
Sz

i , S±
j

]
−
= [Sz

i , Sx
j

]
− ± i

[
Sz

i , Sy
j

]
−

= i�Sy
i δi j ∓ �

(−Sx
i δi j
)

= ±�
(
Sx

i ± i Sy
i

)
δi j

= ±�S±
i δi j

2.

[
S+

i , S−
j

]
−
= [Sx

i , Sx
j

]
− +

[
Sy

i , Sy
j

]
−
+ i
[
Sy

i , Sx
j

]
− − i

[
Sx

i , Sy
j

]
−

= i(−i�Sz
i )δi j − i(i�Sz

i )δi j

= 2�Sz
i δi j

3.

S±
i S∓

i = (Sx
i ± i Sy

i )(Sx
i ∓ i Sy

i )

= (Sx
i )2 + (Sy

i )2 ± i
[
Sy

i , Sx
i

]
−

= S2
i − (Sz

i )2 ± �Sz
i

(where S2
i = �

2S(S + 1)1l in the space of the spin states)
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4.

1

2

(
S+

i S−
j + S−

i S+
j

)
= 1

2

(
Sx

i Sx
j + Sy

i Sy
j + i Sy

i Sx
j − i Sx

i Sy
j +

+ Sx
i Sx

j + Sy
i Sy

j − i Sy
i Sx

j + i Sx
i Sy

j

)

= Sx
i Sx

j + Sy
i Sy

j

= Si · S j − Sz
i Sz

j

� Si · S j = 1

2

(
S+

i S−
j + S−

i S+
j

)
+ Sz

i Sz
j

5.

H = −
∑
i, j

Ji j Si · S j

4.)= −1

2

∑
i, j

(S+
i S−

j + S−
i S+

j )Ji j −
∑
i, j

Ji j Sz
i Sz

j

= −1

2

∑
i, j

Ji j S+
i S−

j − 1

2

i �= j∑
i, j

Ji j

︸ ︷︷ ︸
i↔ j (Ji j=J ji )

S+
j S−

i −
∑
i, j

Ji j Sz
i Sz

j

= −
∑
i, j

Ji j

(
S+

i S−
j + Sz

i Sz
j

)

Problem 7.2

1.
[
(S−

i )n, Sz
i

]
− = n�(S−

i )n; n = 1, 2, . . .

Complete induction:
n = 1:

[
S−

i , Sz
i

]
− = �S−

i

n → n + 1:

[
(S−

i )n+1, Sz
i

]
− = [(S−

i )n, Sz
i

]
− S−

i + (S−
i )n
[
S−

i , Sz
i

]
−

= n�(S−
i )n S−

i + (S−
i )n

�S−
i

= (n + 1)�(S−
i )n+1 q.e.d.

2.
[
(S−

i )n, (Sz
i )2
]
− = n2

�
2(S−

i )n + 2n�Sz
i (S−

i )n; n = 1, 2, . . .

[
(S−

i )n, (Sz
i )2
]
− = Sz

i

[
(S−

i )n, Sz
i

]
− + [(S−

i )n, Sz
i

]
− Sz

i

1.)= Sz
i n�(S−

i )n + n�(S−
i )n Sz

i

1.)= 2n�Sz
i (S−

i )n + n2
�

2(S−
i )n q.e.d.
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3.
[
S+

i , (S−
i )n
]
− = (2n�Sz

i + �
2n(n − 1))(S−

i )n−1; n = 1, 2, . . .

Complete induction:
n = 1:

[
S+

i , S−
i

]
− = 2�Sz

i

n → n + 1:

[
S+

i , (S−
i )n+1

]
−

= [S+
i , (S−

i )n
]
− S−

i + (S−
i )n
[
S+

i , S−
i

]
−

= (2n�Sz
i + �

2n(n − 1))(S−
i )n−1S−

i + (S−
i )n2�Sz

i

1.)= (2n�Sz
i + �

2n(n − 1))(S−
i )n + 2n�

2(S−
i )n +

+2�Sz
i (S−

i )n

= (2�(n + 1)Sz
i + �

2n(n + 1))(S−
i )n q.e.d.

Problem 7.3
Starting point is the identity (7.485):

+S∏
mS=−S

(
Sz

i − �ms
) = 0

S = 1
2

0 =
(

Sz
i +

�

2

)(
Sz

i −
�

2

)
= (Sz

i

)2 − �
2

4

� 〈(Sz
i

)2〉 = �
2

4

� α0

(
1

2

)
= �

2

4
, α1

(
1

2

)
= 0

S = 1

0 = (Sz
i + �

)
Sz

i

(
Sz

i − �
)

� 〈(Sz
i

)3〉 = �
2〈Sz

i 〉
� α0(1) = 0, α1(1) = �

2, α2(1) = 0

S = 3
2
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0 =
(

Sz
i +

3

2
�

)(
Sz

i +
1

2
�

)(
Sz

i −
1

2
�

)(
Sz

i −
3

2
�

)

=
((

Sz
i

)2 − 9

4
�

2

)((
Sz

i

)2 − 1

4
�

2

)

� 〈(Sz
i

)4〉 = 5

2
�

2〈(Sz
i

)2〉 − 9

16
�

4

� α0

(
3

2

)
= − 9

16
�

4, α1

(
3

2

)
= 0, α2

(
3

2

)
= 5

2
�

2,

α3

(
3

2

)
= 0

S = 2

0 = (Sz
i + 2�

) (
Sz

i + �
)

Sz
i

(
Sz

i − �
) (

Sz
i − 2�

)
=
((

Sz
i

)2 − 4�
2
) ((

Sz
i

)2 − �
2
)

Sz
i

� 〈(Sz
i

)5〉 = 5�
2〈(Sz

i

)3〉 − 4�
4〈Sz

i 〉
� α0(2) = 0, α1(2) = −4�

4, α2(2) = 0,

α3(2) = 5�
2, α4(2) = 0

S = 7
2

0 =
(

Sz
i +

7

2
�

)(
Sz

i +
5

2
�

)(
Sz

i +
3

2
�

)(
Sz

i +
1

2
�

)
·

·
(

Sz
i −

1

2
�

)(
Sz

i −
3

2
�

)(
Sz

i −
5

2
�

)(
Sz

i −
7

2
�

)

=
((

Sz
i

)2 − 49

4
�

2

)((
Sz

i

)2 − 25

4
�

2

)((
Sz

i

)2 − 9

4
�

2

)
∗

∗
((

Sz
i

)2 − 1

4
�

2

)

� 〈(Sz
i

)8〉 = 21�
2〈(Sz

i

)6〉 − 987

8
�

4〈(Sz
i

)4〉+
+3229

16
�

6〈(Sz
i

)2〉 − 617

8
�

8

� α0

(
7

2

)
= −617

8
�

8, α1

(
7

2

)
= 0, α2

(
7

2

)
= 3229

16
�

6,

α3

(
7

2

)
= 0, α4

(
7

2

)
= −987

8
�

4, α5

(
7

2

)
= 0,

α6

(
7

2

)
= 21�

2, α7

(
7

2

)
= 0
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Problem 7.4
Eu2+ on f.c.c.-sites
� each atom of a (111)-plane has six nearest neighbours in the same (111)-plane
and three each in the two neighbouring planes and six next nearest neighbours, three
each in the two neighbouring (111)-planes.

EuSe:

2.8K ≤ T ≤ 4.6K NNSS-Antiferromagnet

� 12 nearest neighbours, 9 in the same and 3 in the other sub-lattice.

� kB TN = 2

3
�

2S(S + 1)

⎧⎨
⎩

∈1∑
j

J1 j −
∈2∑
j

J1 j

⎫⎬
⎭

= 2

3
�

2S(S + 1) {9J1 + 3J2 − 3J1 − 3J2}

= 2

3
�

2S(S + 1)(6J1)

kBΘ = 2

3
�

2S(S + 1)

⎧⎨
⎩

∈1∑
j

J1 j +
∈2∑
j

J1 j

⎫⎬
⎭

= 2

3
�

2S(S + 1) {9J1 + 3J2 + 3J1 + 3J2}

= 2

3
�

2S(S + 1) {12J1 + 6J2}

� J1 = kB
4�2 S(S+1) TN

kBΘ − 2kB TN = 4�
2S(S + 1)J2

� J2 = kB
4�2 S(S+1) (Θ − 2TN )

Problem 7.5

1. It is convenient to first split the matrix as follows:

A = bA′ + a1l

Here the reduced matrix A′ is given by
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A′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 · · · 0 0
1 0 1 0 0 · · · 0 0
0 1 0 1 0 · · · 0 0

. . . . . . .

. . . . . . .
0 0 0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Eigenvalues of A:

λ = a + bλ′ ; λ′ : Eigenvalue of A′

Now we have to solve

0
!= det(A′ − λ′1l) ≡ Dd (λ′)

One recognizes

D1(λ′) = −λ′ ; D2(λ′) = λ′2 − 1

In general one obtains by expanding after the first row:

Dd (λ′) = −λ′ Dd−1(λ′) − 1 ∗

∗

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 · · · 0 0
0 −λ′ 1 0 0 · · · 0 0
0 1 −λ′ 1 0 · · · 0 0

. . . . . . . . . . .

. . . . . . . . . . .
0 0 0 0 0 · · · 1 −λ′

∣∣∣∣∣∣∣∣∣∣∣∣
= −λ′ Dd−1(λ′) − Dd−2(λ′)

In the last step, the remaining determinant is expanded after the first column.
With the ansatz for solution

Dd (λ′) = e±idα

follows:

e±idα = λ′e±i(d−1)α − e±i(d−2)α

� e±iα = −λ′ − e∓iα
� λ′ =

= −2 cos α � α = arccos(−λ′

2
)

General solution



646 C Solutions to Problems

Dd (λ′) = c1 cos(dα) + c2 sin(dα)

c1,c2 from the initial conditions:

D1(λ′) = −λ′ = c1 cos(α) + c2 sin(α) =
= 2 cos(α)

D2(λ′) = λ′2 − 1 = c1 cos(2α) + c2 sin(2α) =
= 4 cos2(α) − 1

c1 = 2 − c2 tan α

� 4 cos2 α − 1 = c1(2 cos2 α − 1) + c2 2 sin α cos α

= 4 cos2 α − 2 − 2c2 sin α cos α +
+ c2 tan α + 2c2 sin α cos α

� c2 = cot α � c1 = 1

Intermediate result:

Dd (λ′) = cos(dα) + cos α

sin α
sin(dα)

= 1

sin α
(sin α cos(dα) + cos α sin(dα))

= sin ((d + 1)α)

sin α

Requirement:

Dd (λ′) != 0 � α = rπ

d + 1
; r = 1, . . . , d

� λ′
r = −2 cos

rπ

d + 1

With this we have the Eigenvalues of the tridiagonal matrix A:

λr = a − 2b cos
rπ

d + 1
, r = 1, . . . , d

2. Heisenberg model for films:
Hamiltonian in molecular field approximation (7.124):

HM F A = −2
∑
i, j

Ji j 〈Sz
j 〉Sz

i
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That means we have an effective paramagnet in the molecular field 2
∑

i j Ji j 〈Sz
j 〉/

gJ μB . Due to the film structure, translational symmetry is applicable only in the
plane of the film and not in three dimensions. Let BS be the Brillouin function in
the following. Then according to (7.134) holds

〈Sz
i 〉 = � S BS

⎛
⎝2�βS

∑
j

Ji j 〈Sz
j 〉
⎞
⎠

Exchange only between the nearest neighbours:

∑
j

Ji j 〈Sz
j 〉 = q J 〈Sz

α〉 + p J 〈Sz
α+1〉 + p J 〈Sz

α−1〉

〈Sz
α〉: layer magnetization, where α numbers the layers; q(p): coordination num-

ber (the number of nearest neighbours) within the layer (between the layers).
q + 2p = z: volume coordination number. Examples:

sc (100) : q = 4, p = 1

sc (110) : q = 2, p = 2

sc (111) : q = 0, p = 3

For T → TC linearization of Brillouin function: BS(x) ≈ S+1
3S x :

〈Sz
α〉 =

2

3
�

2(S + 1)Sβ
(
q J 〈Sz

α〉 + p J 〈Sz
α+1〉 + p J 〈Sz

α−1〉
)

This gives a system of homogeneous equations:

0 =
∑

γ

Mαγ 〈Sz
γ 〉

Here the matrix M̂ is given by

M̂ ≡

⎛
⎜⎜⎜⎜⎝

q J − x p J 0 0 0 · · · 0
p J q J − x p J 0 0 · · · 0
0 p J q J − x p J 0 · · · 0

. . . . . . . . . . . . . . . . . . . .
0 · · · · · · p J q J − x

⎞
⎟⎟⎟⎟⎠

x = 1
2
3 �2S(S + 1)β
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We thus have a tridiagonal matrix. There exist non-trivial solutions (〈Sz
γ 〉

>→ 0)
only for

det M̂
!= 0 =

d∏
r=1

λr

λr is the r th eigenvalue of M̂ . According to part 1, for the eigenvalues we have

λr = q J − x − 2p J cos
rπ

d + 1

At least one of these eigenvalues must be equal to zero. This gives the following
equation for TC :

kB T (r )
C = 2

3
�

2S(S + 1)J

{
q − 2p cos

rπ

d + 1

}

The physical solution must satisfy the well-known limiting cases

kB TC (d = 1) = 2

3
�

2S(S + 1)Jq

kB TC (d = ∞) = 2

3
�

2S(S + 1)J (q + 2p)

5 10d 15 20
0

0.2

0.4

0.6

0.8

1

[T
c(

bu
lk

)-
T

c(
d)

]/
T

c(
bu

lk
)

sc(100)
sc(110)
sc(111)

Fig. C.1 Relative change of the Curie temperature of a film with its thickness. d: number of mono-
layers

That is possible only for r = d (Fig. C.1):

kB TC = 2

3
�

2S(S + 1)J

{
q − 2p cos

dπ

d + 1

}
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It is instructive to compare the critical temperature of the film with that of the
bulk material:

TC (∞) − TC (d)

TC (∞)
= 2

z − zS

z

(
1 + cos

dπ

d + 1

)

Here z = q + 2p is the coordination number of the bulk and zS = q + p that of
the surface.

Problem 7.6
We use the Heisenberg Hamiltonian in the wavenumber representation (7.105):

H = − 1

N

∑
k

J (k)
{

S+(k)S−(−k) + Sz(k)Sz(−k)
}−

− 1

�
gJ μB B0Sz(0)

For the spin operators (7.106) and (7.107) hold

Sz(k) |0〉 = �N S |0〉 δk,0 ; S+(k) |0〉 = 0

With this we calculate

− 1

N

∑
k

J (k)S+(k)S−(−k) |0〉 =

= − 1

N

∑
k

J (k)
{
2�Sz(0) + S−(−k)S+(k)

} |0〉

= (2�
2 N S |0〉)

(
− 1

N

∑
k

J (k)

)

= −(2�
2 N S |0〉)Jii

(7.12)= 0

− 1

N

∑
k

J (k)Sz(k)Sz(−k) |0〉 = −�S
∑

k

J (k)Sz(k)δ−k,0 |0〉

= −�S J (0)Sz(0) |0〉
= −N�

2S2 J0 |0〉 (J (0) ≡ J0)

−1

�
gJ μB B0Sz(0) |0〉 = −NgJ SμB B0 |0〉
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With this it is shown that |0〉 is the eigenstate with the eigenvalue

E0(B0) = −N�
2S2 J0 − NgJ μB B0S

Problem 7.7

〈k| Sz
i |k〉 =

1

2SN�2
〈0| S+(−k)Sz

i S−(k) |0〉

= 1

2SN 2�2

∑
q

eiq·Ri 〈0| S+(−k)Sz(q)S−(k) |0〉

= 1

2SN 2�2

∑
q

eiq·Ri 〈0| S+(−k)
(
S−(k)Sz(q)−

−�S−(k + q)
) |0〉

= 1

2N�
〈0| (2�Sz(0) + S−(k)S+(−k)) |0〉−

− 1

2SN 2�

∑
q

eiq·Ri 〈0| (2�Sz(q)

+ S−(k + q)S+(−k)) |0〉
= 1

2N�
2� · N�S − 1

2SN 2�
2� · N�S

= �S − 1

N
�

= �

(
S − 1

N

)
q.e.d.

Problem 7.8
Holstein–Primakoff transformation:

S+
i = �

√
2Sϕ(ni )ai ; ϕ(ni ) =

√
1 − ni

2S

S−
i = �

√
2Sa+

i ϕ(ni )

Sz
i = �(S − ni ) ; ni = a+

i ai

ai , a+
i : Bose operators

[
ai , a+

j

]
−
= δi j ;

[
ai , a j

]
− =

[
a+

i , a+
j

]
−
= 0

�
[
ni , a j

]
− = −aiδi j ;

[
ni , a+

j

]
−
= a+

i δi j
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1. Commutation relations:

[
S+

i , S−
j

]
−
=

= 2S�
2δi j
[
ϕ(ni )ai , a+

i ϕ(ni )
]
−

= 2S�
2δi j

(
ϕ(ni )(1 + ni )ϕ(ni ) − a+

i

(
1 − ni

2S

)
ai

)

= 2S�
2δi j

(
(1 + ni )

(
1 − ni

2S

)
− ni + 1

2S
a+

i ni ai

)

= 2S�
2δi j

(
1 − ni

2S
− n2

i

2S
− 1

2S
ni + 1

2S
n2

i

)

= 2�δi j �(S − ni )

= 2�δi j Sz
i

[
Sz

i , S+
j

]
−
=
[
�(S − ni ), �

√
2Sϕ(n j )a j

]
−

= −�
2
√

2S [ni , ϕ(ni )ai ]− δi j

= −�
2
√

2Sϕ(ni ) [ni , ai ]−︸ ︷︷ ︸
−ai

δi j

= �
2
√

2Sϕ(ni )aiδi j

= +�δi j S+
i

[
Sz

i , S−
j

]
−
= −�

2
√

2S
[
ni , a+

i ϕ(ni )
]
− δi j

= −�
2
√

2S
[
ni , a+

i

]
−︸ ︷︷ ︸

a+
i

ϕ(ni )δi j

= −�

(
�

√
2Sa+

i ϕ(ni )
)

δi j

= −�δi j S−
i

2. S2
i :

S2
i = 1

2

(
S+

i S−
i + S−

i S+
i

)+ (Sz
i )2

= 1

2
2S�

2
(
ϕ(ni )ai a

+
i ϕ(ni )+

+a+
i

(
1 − ni

2S

)
ai

)
+ �

2(S − ni )
2
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= �
2S

⎛
⎝(1 − ni

2S

)
+ ni

(
1 − ni

2S

)
+ ni − 1

2S
a+

i ni ai︸︷︷︸
−ai+ai ni

⎞
⎠+

+�
2(S2 − 2Sni + n2

i )

= �
2(S + 2ni S − n2

i + S2 − 2Sni + n2
i )

= �
2S(S + 1)

Problem 7.9
Dyson–Maléev transformation:

S+
i = �

√
2Sαi

S−
i = �

√
2Sα+

i

(
1 − ni

2S

)

Sz
i = �(S − ni ) ; ni = α+

i αi

αi , α+
i : Bose operators

1. Commutation relations:
[

S+
i , S−

j

]
−
= 2S�

2
[
αi , α+

j

(
1 − n j

2S

)]
−

= 2S�
2δi j − �

2δi j
[
αi , α+

i ni
]
−

= 2S�
2δi j − �

2δi j ni − �
2δi jα

+
i [αi , ni ]−︸ ︷︷ ︸

αi

= 2�
2δi j (S − ni )

= 2�δi j Sz
i

[
Sz

i , S+
j

]
−
= �

2
√

2S
[
S − ni , α j

]
−

= −�
2
√

2Sδi j [ni , αi ]−︸ ︷︷ ︸
−αi

= �
2
√

2Sαiδi j

= �δi j S+
i

[
Sz

i , S−
j

]
−
= �

2
√

2S
[

S − ni , α+
j

(
1 − n j

2S

)]
−

= −�
2
√

2Sδi j

[
ni , α+

i

(
1 − ni

2S

)]
−

= −�
2
√

2Sδi j
[
ni , α+

i

]
−︸ ︷︷ ︸

α+
i

(
1 − ni

2S

)
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= −�
2
√

2Sδi jα
+
i

(
1 − ni

2S

)

= −�δi j S−
i

2. S2
i :

S2
i = 1

2

(
S+

i S−
i + S−

i S+
i

)+ (Sz
i )2

= S�
2
(
αiα

+
i

(
1 − ni

2S

)
+ α+

i

(
1 − ni

2S

)
αi

)
+

+ �
2(S2 − 2Sni + n2

i )

= �
2

(
S(1 + ni ) − 1

2
(ni + n2

i ) + Sni−

−1

2
α+

i niαi + S2 − 2Sni + n2
i

)

= �
2

(
S(S + 1) − 1

2
ni + 1

2
n2

i +
1

2
ni − 1

2
n2

i

)

= �
2S(S + 1)

Problem 7.10

S+
i ≈ �

√
2Sai ; S−

i ≈ �

√
2Sa+

i ; Sz
i = �(S − ni )

Fourier transformation:

S+(k) =
∑

i

e−ik·Ri S+
i

≈ �

√
2S
∑

i

e−ik·Ri ai

︸ ︷︷ ︸√
Nak

= �

√
2SNak

S−(k) =
∑

i

e−ik·Ri S−
i

≈ �

√
2S
∑

i

e−ik·Ri a+
i

︸ ︷︷ ︸√
Na−k

= �

√
2SNa+

−k
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Sz(k) =
∑

i

e−ik·Ri (�S − �a+
i ai )

= �SNδk,0 − �

∑
i

e−ik·Ri
1

N

∑
k′,q

a+
q ak′ei(k′−q)Ri

= �SNδk,0 − �

∑
k′,q

a+
q ak′δk′,k+q

= �SNδk,0 − �

∑
q

a+
q ak+q

Verification of commutation relations:

1.

[
S+(k), S−(q)

]
− = �

22SN
[
ak, a+

−q

]
−

= 2SN�
2δk+q

≈ 2�Sz(k + q)

2.

[
Sz(k), S+(q)

]
− = −�

∑
q′

[
a+

q′ak+q′ , aq

]
−

�

√
2SN

= −�
2
√

2SN
∑

q′

[
a+

q′ , aq

]
−︸ ︷︷ ︸

−δqq′

ak+q′

= �
2
√

2SNak+q

= �S+(k + q)

3.

[
Sz(k), S−(q)

]
− = −�

2
√

2SN
∑

q′

[
a+

q′ak+q′ , a+
−q

]
−

= −�
2
√

2SN
∑

q′
a+

q′
[
ak+q′ , a+

−q

]
−︸ ︷︷ ︸

−δq′ ,−q−k

= −�
2
√

2SNa+
−q−k

= −�S−(k + q)
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Problem 7.11

αq = 1√
N

∑
i

e−iq·Ri αi

αi = 1√
N

∑
q

eiq·Ri αq

J (q) = 1

N

∑
i, j

Ji j e
iq(Ri−R j )

Dyson–Maléev:

S+
i = �

√
2Sαi

S−
i = �

√
2Sα+

i

(
1 − n̂i

2S

)

Sz
i = �(S − n̂i )

Heisenberg model:

H = E0 + H2 + H4

H2 = 2S�
2 J0
∑

i n̂i − 2S�
2∑

i, j Ji jα
+
i α j

∑
i

n̂i = 1

N

∑
q,q′,i

e−i(q−q′)Ri α+
q αq′

=
∑
q,q′

α+
q αq′δqq′

=
∑

q

α+
q αq

∑
i, j

Ji jα
+
i α j =

= 1

N 2

∑
i, j

∑
q,q′,q′′

J (q)α+
q′αq′′eiq(Ri−R j )e−iq′Ri eiq′′R j

=
∑

q,q′,q′′
J (q)α+

q′αq′′δq,q′δq,q′′

=
∑

q

J (q)α+
q αq
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�ω(q) = 2S�
2(J0 − J (q))

� H2 =
∑

q

�ω(q)α+
q αq

H4 = −�
2∑

i, j Ji j n̂i n̂ j + �
2∑

i, j Ji jα
+
i n̂iα j

∑
i, j

Ji j n̂i n̂ j =

= 1

N 3

∑
i, j

∑
q1···q4,q

α+
q1

αq3α
+
q2

αq4 J (q)∗

∗ e−q(Ri−R j )ei(q1Ri−q3Ri+q2R j−q4R j )

= 1

N

∑
q1···q4,q

J (q)α+
q1

αq3α
+
q2

αq4δq,q1−q3δq,q4−q2

= 1

N

∑
q1···q4

J (q4 − q2)δq1+q2,q3+q4α
+
q1

αq3α
+
q2

αq4

= 1

N

∑
q1q2q4

J (q4 − q2)δq1+q2,q2+q4α
+
q1

αq4+

+ 1

N

∑
q1...q4

J (q4 − q2)δq1+q2,q3+q4α
+
q1

α+
q2

αq3αq4

= 1

N

∑
q1,q2

J (q1 − q2)α+
q1

αq1+

+ 1

N

∑
q1...q4

J (q4 − q2)δq1+q2,q3+q4α
+
q1

α+
q2

αq3αq4

∑
i, j

Ji jα
+
i n̂iα j =

= 1

N 3

∑
i, j

∑
q,q1...q4

J (q)α+
q1

α+
q2

αq3αq4 e−iq(Ri−R j )∗

∗ ei(q1Ri+q2Ri−q3Ri−q4R j )

= 1

N

∑
q1...q4,q

J (q)α+
q1

α+
q2

αq3αq4δq,q4δq,q1+q2−q3

= 1

N

∑
q1...q4

J (q4)δq1+q2,q3+q4α
+
q1

α+
q2

αq3αq4
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In the first term q1 and q2 commute:

� H4 = �
2

N

∑
q1...q4

(J (q4) − J (q4 − q1)) ∗

∗δq1+q2,q3+q4α
+
q1

α+
q2

αq3αq4

Here we exploit

1

N

∑
q2

J (q1 − q2) = 1

N 2

∑
q2

∑
i, j

Ji j e
i(q1−q2)(Ri−R j )

= 1

N

∑
i, j

Ji j e
iq1(Ri−R j )δi j

= 1

N

∑
i

Jii = 0

hω

q

Problem 7.12

E0
0 = E0(B0 = 0) = −N J0�

2S2

U =< HSW >= E0
0 +

∑
q

�ω(q) < n̂q >

�ω(q) = 2S�
2(J0 − J (q)) ≈ Dq2 for small |q|

Low temperatures → only a few magnons are excited:
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U ≈ E0
0 + D

∑
q

q2

eβ Dq2 − 1

= E0
0 + D

V

(2π )3

∫
BZ

d3q q2e−β Dq2
∞∑

n=0

e−nβ Dq2

≈ E0
0 + DV

2π2

∞∑
n=1

∞∫

0

dq q4e−nβ Dq2

Substitution

t = nβDq2 dt = 2nβDq dq = 2
√

t
nβD√
nβD

dq

dq = 1

2
√

nβD

dt√
t

� U ≈ E0
0+

+ DV

4π2

∞∑
n=1

(nβD)−
5
2

∞∫

0

dt t
3
2 e−t

︸ ︷︷ ︸
Γ( 5

2 )= 3
2 Γ( 3

2 )= 3
4 Γ( 1

2 )= 3
4

√
π

U ≈ E0
0 + 3DV

16π
3
2

ζ

(
5

2

)(
kB

D

) 5
2

T
5
2 =

= E0
0 + ηT

5
2

� CB0=0 =
(

∂U

∂T

)
B0=0

= 5

2
ηT

3
2

is experimentally uniquely confirmed.
Measurement of CB0=0 → η → D → J0 = z1 J1.

Problem 7.13

1. Proof by complete induction:
p = 0; trivial.
p = 1

[
n̂q, a†

q

]
− = a†

q

[
aq, a†

q

]
− + [a†

q, a†
q

]
− aq

= a†
q

p � p + 1
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[
n̂q, (a†

q)p+1
]
− =
= (a†

q)p
[
n̂q, a†

q

]
− + [n̂q, (a†

q)p
]
− a†

q

= (a†
q)pa†

q + p(a†
q)pa†

q

= (p + 1)(a†
q)p+1 q.e.d.

2.

n̂k

(∏
q

(a†
q)nq

)
|0〉 =

= n̂k(a†
k)nk

�=k∏
q

(a†
q)nq |0〉

=
�=k∏
q

(a†
q)nq

(
(a†

k)nk n̂k + nk(a†
k)nk

)
|0〉

= 0 + nk

�=k∏
q

(a†
q)nq (a†

k)nk |0〉

= nk

∏
q

(a†
q)nq |0〉

= nk |ψ〉

|ψ〉 is therefore an eigenstate of n̂k with the eigenvalue nk. Thus |ψ〉 is also
eigenstate of H :

H |ψ〉 =
(

E0(B0) +
∑

k

�ω(k)nk

)
|ψ〉

Problem 7.14

U =< HSW >= Êa +
∑

q

{
Eα(q) < α+

q αq > +Eβ (q) < β+
q βq >

}

B0 = 0; BA = 0:

Eα(q) = Eβ(q) ≈ D · q = ε(q)

� U = Êa + 2D
∑

q

q

eβε(q) − 1
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U ≈ Êa + DV

π2

∞∑
n=1

∞∫

0

dq q3e−β Dqn

= Êa + DV

π2

1

(βD)4

∞∑
n=1

1

n4

∞∫

0

dy y3e−y

︸ ︷︷ ︸
Γ(4)=3!=6

Abbreviation:

C4 = 6DV

π2(kB D)4
ζ (4)

� U ≈ Êa + C4 · T 4

Heat capacity:

CB0=0 =
(

∂U

∂T

)
B0=0

= 4C4 · T 3

Problem 7.15
Sub-lattice magnetization of an antiferromagnet (Eq. (7.304)):

MA(T ) = 1

V
gJ μB

{
N

2
S −

∑
q

sinh2 ηq −
∑

q

(
cosh2 ηq

eβEα (q) − 1
+

+ sinh2 ηq

eβEβ (q) − 1

)}

B0 = 0; BA = 0:

(7.356) � tanh 2ηq ≈ − J (q)

J (0)
= −γq (T independent)

MA(0) = 1
V gJ μB

{
N
2 −∑q sinh2 q

}

Eα(q) ≡ Eβ(q) = 2S�
2
√

(J0 + J (q))(J0 − J (q))

J0−J (q)≈d J0q2

≈ (2S�
2|J0|

√
2d)︸ ︷︷ ︸

D

·q ≡ ε(q)
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� MA(T ) − MA(0) = − 1

V
gJ μB

∑
q

1 + 2 sinh2 ηq

eβε(q) − 1

T → 0; β → ∞:

∑
q

1

eβε(q) − 1
=

= V

(2π )3

∫

B Z

d3q
e−βε(q)

1 − e−βε(q)
(without correction term)

= V

(2π )3

∫

B Z

d3q
∞∑

n=1

e−nβε(q)

≈ V

2π2

∞∑
n=1

∞∫

0

dq q2e−nβ Dq (justification as for ferromagnets!)

= V

2π2

1

(βD)3

∞∑
n=1

1

n3

∞∫

0

dy y2e−y

︸ ︷︷ ︸
Γ(3)=2!=2

=
(

V

π2

1

(k−1
B D)3

ζ (3)

)
T 3

Abbreviation: C3 = gJ μB

π2(k−1
B D)3 ζ (3)

� MA(T ) − M(0) = C3 · T 3 if without correction term

With correction term:

1 + 2 sinh2 ηq = 1√
1 − tanh2 2ηq

= 1√
1 − γ 2

q

Consider
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γq ≈ 1 − dq2
�

1√
1 − γ 2

q

= 1√
2dq2 − d2q4

=

= 1√
2d

· 1

q
· 1√

1 − 1
2 dq2

� 1 − γ 2
q ≈ 2dq2

(only small q play a role in the spin wave approximation)

�

∑
q

1 + 2 sinh2 ηq

eβε(q) − 1
≈ 1√

2d

∑
q

1

q

1

eβε(q) − 1

= 1√
2d

V

2π2

1

(βD)2

∞∑
n=1

1

n2

∞∫

0

dy ye−y

︸ ︷︷ ︸
=1

Abbreviation: C2 = gJ μB√
2d2π2(kB D)2 ζ (2)

� MA(T ) − M(0) = C2 · T 2

Problem 7.16

H = Ea + bA

∑
q

a+
q aq + bB

∑
q

b+
q bq +

∑
q

c(q)
{
aqbq + a+

q b+
q

}

� in the new operators:

H =Ea + bA

∑
q

(
cosh η · α+

q + sinh η · βq
) ∗

∗ (cosh η · αq + sinh η · β+
q

)+
+ bB

∑
q

(
sinh η · αq + cosh η · β+

q

) ∗
∗ (sinh η · α+

q + cosh η · βq
)+

+
∑

q

c(q)
{
(cosh η · αq + sinh η · β+

q )∗

∗ (sinh η · α+
q + cosh η · βq )+
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+ (cosh η · α+
q + sinh η · βq

) ∗
∗ (sinh η · αq + cosh η · β+

q

)}
=Ea +

∑
q

[
bA
(
cosh2 η · α+

q αq + sinh2 η · βqβ
+
q

+ sinh η · cosh η
(
α+

q β+
q + βqαq

))
. + bB

(
sinh2 η · αqα

+
q + cosh2 η · β+

q βq+
+ sinh η · cosh η(αqβq + β+

q α+
q )
)+

+ c(q)
(
cosh2 η(αqβq + α+

q β+
q )+

+ sinh2 η(β+
q α+

q + βqαq )+
+ cosh η · sinh η

(
αqα

+
q + β+

q βq+
+α+

q αq + βqβ
+
q

))]

Use

sinh η · cosh η = 1

2
sinh 2η

cosh2 η = 1

2
(cosh 2η + 1)

sinh2 η = 1

2
(cosh 2η − 1)

� H =Ea + 1

2

∑
q

[
bA(α+

q αq − βqβ
+
q ) + bB(−αqα

+
q + β+

q βq )+

+c(q)
(
αqβq + α+

q β+
q − β+

q α+
q − βqαq

)]

+ 1

2

∑
q

sinh(2η)
[
bA(α+

q β+
q + βqαq ) + bB(αqβq + β+

q α+
q )+

+c(q)
(
αqα

+
q + β+

q βq + α+
q αq + βqβ

+
q

)]

+ 1

2

∑
q

cosh(2η)
[
bA(α+

q αq + βqβ
+
q ) + bB(αqα

+
q + β+

q βq )+

+c(q)
(
2αqβq + 2α+

q β+
q

)]

=Ea + 1

2

∑
q

(
(bA − bB)α+

q αq + (bB − bA)β+
q βq − (bA + bB)

)

+ 1

2

∑
q

sinh(2η)
(
(ba + bB)(αqβq + α+

q β+
q )+

+ c(q)
(
2α+

q αq + 2β+
q βq + 2

))
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+ 1

2

∑
q

cosh(2η)
[
(ba + bB)(α+

q αq + β+
q βq ) + (bA + bB)+

2c(q)︸ ︷︷ ︸
−(bA+bB ) tanh(2η)

(
αqβq + α+

q β+
q

) ]

=Ea − N

4
(bA + bB) + 1

2

∑
q

((bA + bB) cosh 2η+

+ 2c(q) sinh 2η)+

+
∑

q

α+
q αq

(
1

2
(bA − bB) + c(q) sinh 2η+

+1

2
(bA + bB) cosh 2η

)
+

+
∑

q

β+
q βq

(
1

2
(bB − bA) + c(q) sinh 2η+

+1

2
(bA + bB) cosh 2η

)

c(q) sinh 2η + 1

2
(bA + bB) cosh 2η =

=c(q)
tanh 2η√

1 − tanh2 2η
+ 1

2
(bA + bB)

1√
1 − tanh2 2η

=c(q)
−2c(q)
bA+bB√

1 − 4c2

(bA+bB )2

+ 1

2
(bA + bB)

1√
1 − 4c2

(bA+bB )2

= −4c2(q)

2
√

(bA + bB)2 − 4c2
+ 1

2

(bA + bB)2√
(bA + bB)2 − 4c2

=1

2

√
(bA + bB)2 − 4c2

=Eα(q) − 1

2
(bA − bB)

=Eβ(q) + 1

2
(bA − bB)

� Êa = Ea − N
4 (bA + bB) + 1

2

∑
q

√
(bA + bB)2 − 4c2(q)

H = Êa +
∑

q

(
Eα(q)α+

q αq + Eβ(q)β+
q βq

)
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Problem 7.17

γq = 1

z1

∑
Δ1

eiq·RΔ1

z1: number of nearest neighbours
RΔ1 : lattice vector from the origin to a nearest neighbouring site

∑
q1

γq−q1〈n̂q1〉 =

= 1

z1

∑
q1

∑
Δ1

ei(q−q1)·RΔ1
1

N

∑
i, j

〈a†
i a j 〉eiq1·(Ri−R j )

= 1

z1

∑
i, j

∑
Δ1

〈a†
i a j 〉eiq·RΔ1 δi− j,Δ1

= 1

z1

∑
Δ1

eiq·RΔ1

∑
i

〈a†
i ai−Δ1〉

Due to translational symmetry, the expectation value is the same for all nearest
neighbours. That is, independent of any particular Δ1:

�∑
q1

γq−q1〈n̂q1〉

=
(

1

z1

∑
i,Δ1

〈a†
i ai−Δ1〉

)
1

z1

∑
Δ1

eiq·RΔ1

= γq
1

z1

∑
i,Δ1

〈a†
i ai−Δ1〉

= γq
1

z1

∑
i,Δ1

1

N

∑
q1,q2

e−iq1·Ri eiq2(Ri−RΔ1 )〈a†
q1

aq2〉

= γq
1

z1

∑
Δ1

∑
q1,q2

e−iq2·RΔ1 δq1,q2〈a†
q1

aq2〉

= γq

∑
q1

(
1

z1

∑
Δ1

e−iq1·RΔ1

)
〈a†

q1
aq1〉

= γq

∑
q1

γq1〈n̂q1〉
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Problem 7.18

γq = 1

z1

∑
Δ1

eiq·RΔ1

RΔ1 ∈ {a(±1, 0, 0), a(0,±1, 0), a(0, 0,±1)}

c1 = 1
N

∑
q(1 − γq) :

1

N

∑
q

1 = 1

1

N

∑
q

γq = 1

N

∑
q

1

z1

∑
Δ1

eiq·RΔ1

= 1

z1

∑
Δ1

δΔ1,0 = 0

since R0 = (0, 0, 0) is not a nearest neighbour.

� c1 = 1

c2 = 1
N

∑
q(1 − γq)2 :

c2 = 1

N

∑
q

(
1 − 2γq + γ 2

q

)

1

N

∑
q

γ 2
q = 1

N

∑
q

1

z2
1

∑
Δ1

∑
Δ′

1

e
iq·
(

RΔ1+RΔ′
1

)

= 1

z2
1

∑
Δ1

∑
Δ′

1

δΔ1,−Δ′
1

= 1

z2
1

∑
Δ1

1

= 1

z1

� c2 = 1 + 1

z1

c3 = 1
N

∑
q(1 − γq)3 :
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c3 = 1

N

∑
q

(
1 − 3γq + 3γ 2

q − γ 3
q

)

1

N

∑
q

γ 3
q = 1

N

∑
q

1

z3
1

∑
Δ1

∑
Δ′

1

∑
Δ′′

1

e
iq·
(

RΔ1+RΔ′
1
+RΔ′′

1

)

= 1

z3
1

∑
Δ1

∑
Δ′

1

∑
Δ′′

1

δΔ′′
1 ,−Δ1−Δ′

1

= 0

since (−RΔ1 − RΔ′
1
) for s.c. lattice cannot be

a nearest neighbour.

Problem 7.19
Calculation of the anisotropy contribution of the dipole interaction

Ha = −3
∑
i, j

Di j
(
Si · ei j

) (
S j · ei j

)

in spin wave approximation:

S+
i = �

√
2Sai

S−
i = �

√
2Sa†

i

Sz
i = �

(
S − a†

i ai

)

This gives

Ha = −3
∑
i, j

Di j
(
Si · ei j

) (
S j · ei j

)

= −3
∑
i, j

Di j
{(

Sx
i xi j + Sy

i yi j + Sz
i zi j
) ∗

∗
(

Sx
j xi j + Sy

j yi j + Sz
j zi j

)}

= −3
∑
i, j

Di j

{
x2

i j Sx
i Sx

j + y2
i j Sy

i Sy
j + z2

i j Sz
i Sz

j+

+ xi j yi j

(
Sx

i Sy
j + Sy

i Sx
j

)
+ xi j zi j

(
Sx

i Sz
j + Sz

i Sx
j

)
+

+ yi j zi j

(
Sy

i Sz
j + Sz

i Sy
j

) }

= −3�
2
∑
i, j

Di j

{
x2

i j

2S

4

(
ai + a†

i

) (
a j + a†

j

)
+



668 C Solutions to Problems

+ y2
i j

−2S

4

(
ai − a†

i

) (
a j − a†

j

)
+

+ z2
i j

(
S2 − S

(
ni + n j

)+ ni n j
)+

+ xi j yi j
2S

4i

((
ai + a†

i

) (
a j − a†

j

)
+

+
(

ai − a†
i

) (
a j + a†

j

))
+

+ xi j zi j

√
2S

2

((
ai + a†

i

) (
S − n j

)+
+ (S − ni )

(
a j + a†

j

))
+

+ yi j zi j

√
2S

2i

((
ai − a†

i

) (
S − n j

)+
+ (S − ni )

(
a j − a†

j

)) }

= −3�
2
∑
i, j

Di j

{ S

2
x2

i j

(
ai a j + ai a

†
j + a†

i a j + a†
i a†

j

)
−

− S

2
y2

i j

(
ai a j + a†

i a†
j − ai a

†
j − a†

i a j

)
+

+ z2
i j S
(
S − ni − n j

)+
+ S

2i
xi j yi j

(
ai a j − ai a

†
j + a†

i a j − a†
i a†

j+

+ai a j + ai a
†
j − a†

i a j − a†
i a†

j

)
+

+ S

√
2S

2
xi j zi j

(
ai + a†

i + a j + a†
j

)
+

+ S

√
2S

2i
yi j zi j

(
ai − a†

i + a j − a†
j

) }

= −3�
2S
∑
i, j

Di j z
2
i j (S − 2ni )−

−3�
2S
∑
i, j

Di j

{
a†

i a†
j

(1

2
x2

i j −
1

2
y2

i j + i xi j yi j

)
+

+ ai a j

(
1

2
x2

i j −
1

2
y2

i j − i xi j yi j

)
+

+
(

ai a
†
j + a†

i a j

)(1

2
x2

i j +
1

2
y2

i j

)
+

S
√

2Sxi j zi j

(
ai + a†

i

)
− i S

√
2Syi j zi j

(
ai − a†

i

) }

The mixed terms vanish. In order to see that, hold zi j fixed. All Ri and R j with
zi j = const define an x, y-plane. In this for each R j there is a R′

j with xi j = −x ′
i j
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and yi j = −y′i j and |Ri j | = |R′
i j |, i.e. Di j = D′

i j . That means
∑

j Di j xi j zi j =
0 in the plane and therefore in the entire space. Analogously:

∑
i Di j yi j zi j = 0.

Therefore what remains is (Fig. C.2)

Ha =− 3�
2S
∑
i, j

Di j z
2
i j (S − 2ni )−

− 3�
2S
∑
i, j

Di j

{
a†

i a†
j

1

2

(
xi j + iyi j

)2 + ai a j
1

2

(
xi j − iyi j

)2+

+ a†
i a j
(
x2

i j + y2
i j

) }

Fig. C.2 Graphical
illustration for the evaluation
of the “mixed” terms in Ha

(see text)

Problem 7.20
First derivative

dω

da
= �xω − e�ax

�(1 + ϕ)e�a

(
(1 + ϕ)e�a − ϕ

)2
= �ω(x − α)

with

α = (1 + ϕ)e�a

(1 + ϕ)e�a − ϕ
= 1 + ϕ

(1 + ϕ)e�a − ϕ

Second derivative:
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d2ω

da2
= �

2ω(x − α)2 + �ω
�ϕ(1 + ϕ)e�a

(
(1 + ϕ)e�a − ϕ

)2
= �

2ω(x − α)2 + �
2ωα

ϕ

(1 + ϕ)e�a − ϕ

= �
2ω
(
(x − α)2 + α(α − 1)

)

Coefficient of the second term in the differential equation:

(1 + ϕ) + ϕe−a�

(1 + ϕ) − ϕe−a�
= α + ϕ

(1 + ϕ)ea� − ϕ
= α + α − 1

Thus what remains is

�
2ω
(
(x − a)2 + α(α − 1)

)+
+ �

2ω(x − α)(2α − 1) − �
2S(S + 1)ω = 0

� x2 − 2ax + α2 + α2 − α + 2xα−
− x − 2α2 + α − S(S + 1) = 0

� x2 − x − S(S + 1) = 0

� x1 = −S; x2 = S + 1

general solution:

Ω(a) = c1ω(−S, a) + c2ω(S + 1, a)

Problem 8.1
For the Hamiltonian

H0 =
∑
i jσ

∑
μν

T μν

i j c+iμσ c jνσ

holds after substituting the Fourier integrals:
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H0 =
∑
i jσ

∑
μ,ν

1

Ni

∑
k

T μν

k eik·(Ri−R j ) ∗

∗ 1

Ni

∑
q,p,m,m ′

e−iq·Ri−p·R j c+qmσ cpm ′σ U mμ
qσ

(
U m ′ν

pσ

)∗

=
∑
k,q,p

∑
m,m ′

∑
σ,ν,μ

T μν

k U mμ
qσ

(
U m ′ν

pσ

)∗
δk,qδk,pc+qmσ cpm ′σ

=
∑

k

∑
m,m ′

∑
σ,ν,μ

T μν

k

(
U m ′ν

kσ

)∗
U mμ

kσ c+kmσ ckm ′σ

=
∑

k

∑
m,m ′

∑
σ,μ

εm ′ (k)
(

U m ′μ
kσ

)∗
U mμ

kσ c+kmσ ckm ′σ

=
∑

k,m,m ′,σ

εm ′(k)δm ′,mc+kmσ ckm ′σ

=
∑

k,m,σ

εm(k)c+kmσ ckmσ

Problem 8.2
Wannier representation:

H =
∑
i jσ

Ti j c
†
iσ c jσ + 1

2
U
∑
i,σ

niσ ni−σ

Hopping integrals:

Ti j = 1

N

∑
k

ε(k)eik·(Ri−R j )

Construction operators:

ciσ = 1√
N

∑
k

ckσ eik·Ri

One-particle part:
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H0 =
∑
i jσ

Ti j c
†
iσ c jσ

= 1

N 2

∑
k,p,q,σ

ε(k)c†pσ cqσ

∑
i, j

eik·(Ri−R j )e−ip·Ri eiq·R j

=
∑

k,p,q,σ

ε(k)c†pσ cqσ δk,pδk,q

=
∑
kσ

ε(k)c†kσ ckσ

Interaction part:

H1 = 1

2
U
∑
iσ

niσ ni−σ

= 1

2
U

1

N 2

∑
k1...k4,σ

c†k1σ
ck2σ c†k3−σ ck4−σ ∗

∗
∑

i

ei(−k1+k2)Ri ei(−k3+k4)Ri

= 1

2
U
∑

k1...k4,σ

δk1+k3,k2+k4 c†k1σ
ck2σ c†k3−σ ck4−σ

k1 → k + q, k3 → p − q, k4 → p, k2 → k

⇔ H1 = 1

2
U
∑

k,p,q,σ

c†k+qσ c†p−q−σ cp−σ ckσ

Total:

H =
∑
kσ

ε(k)c†kσ ckσ + 1

2
U
∑

k,p,q,σ

c†k+qσ c†p−qσ cp−σ ckσ

Problem 8.3
Band limit:

GU→0
kσ (E) = �

E − ε(k) + μ

Zero bandwidth limit (W = 0):

GW=0
σ = �(1 − n−σ )

E − T0 + μ
+ �n−σ

E − T0 − U + μ

Stoner approximation:
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G(Stoner )
kσ (E) = �

E − ε(k) − Un−σ + μ

obviously satisfies the band limit but not the limit of infinitely narrow band.

Problem 8.4

H =
∑

kσ,α,β

εαβ
σ (k)c†kασ ckβσ , α, β ∈ {A, B}

εAA
σ (k) = ε(k) + 1

2
Un − 1

2
zσ Um − μ

εB B
σ (k) = ε(k) + 1

2
Un + 1

2
zσ Um − μ

εAB
σ (k) = t(k) = εB A∗

σ (k)

Here we have used

< n AA
σ >= − < nB B

σ >= nσ

m = n↑ − n↓; m A = −m B = m

Green’s functions:

Gα,β

kσ (E) =<< ckασ ; c†kβσ >>E

1. Quasiparticle energies:

[ckAσ , H ]− =
∑

β

εAβ
σ (k)ckβσ

= εAA
σ (k)ckAσ + εAB

σ (k)ckBσ

Equation of motion:

(E − εAA
σ (k))G AA

kσ (E) = � + εAB
σ (k)G B A

kσ (E)

With

[ckBσ , H ]− = εB A
σ (k)ckAσ + εB B

σ (k)ckBσ

also follows:
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(E − εB B
σ (k))G B A

kσ (E) = εB A
σ (k)G AA

kσ (E)

� G B A
kσ (E) = εB A

σ (k)

E − εB B
σ (k)

G AA
kσ (E)

Substituting in the equation of motion for G AA
kσ (E):

(E − εAA
σ (k))G AA

kσ (E) = � + |εAB
σ (k)|2

E − εB B
σ (k)

G AA
kσ (E)

� G AA
kσ (E) = �

E − εB B
σ (k)

(E − εAA
σ (k))(E − εB B

σ (k)) − |εAB
σ (k)|2

Poles:

(E± − εAA
σ (k))(E − εB B

σ (k)) − |εAB
σ (k)|2 != 0

� E±(k) = 1

2
(εAA

σ (k) + εB B
σ (k))

±
√

1

4

(
εAA
σ (k) − εB B

σ (k)
)2 + |εAB

σ (k)|2

That means the spin-independent quasiparticle energies:

E±(k) = ε(k) + 1

2
Un ±

√
1

4
U 2m2 + |t(k)|2 − μ

2. Spectral weights:

G AA
kσ (E) = �

E − εB B
σ (k)

(E − E+(k))(E − E−(k))

�α(±)
σ (k) = lim

E→E±(k)
G AA

kσ (E)(E − E±(k))

α(±)
σ (k) = E±(k) − εB B

σ (k)

E±(k) − E∓(k)

⇔ α(±)
σ (k) = 1

2

(
1 ∓ zσ

Um√
U 2m2 + 4|t(k)|2

)

Spectral weights are obviously spin dependent
Spectral density:

S(±)
kσ (E) = �α(+)

σ (k)δ(E − E+(k)) + �α(−)
σ (k)δ(E − E−(k))
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Quasiparticle density of states:

ρ(±)
σ (E) = 1

�

1

N

∑
k

{
α(+)

σ (k)δ(E − μ − E+(k))

+α(−)
σ (k)δ(E − μ − E−(k))

}

k: wavevector of the first Brillouin zone of the sub-lattice.

Problem 8.5
Let x �= 0:

1

2
lim

β→∞
β

1 + cosh(βx)
= lim

β→∞
βe−β|x | = 0

The expression diverges for x = 0. In addition it holds

+∞∫

−∞
dx

1

2
lim

β→∞
β

1 + cosh(βx)
= lim

β→∞

∞∫

0

dx
β

1 + cosh(βx)
,

∞∫

0

dx
β

1 + cosh(βx)
=

∞∫

0

dy
1

1 + cosh(y)
=

∞∫

0

dy
1

2 cosh2 y
2

=
∞∫

0

dz
1

cosh2 z
= tanh z

∣∣∣∞
0

= 1 − 0 = 1.

Thus we have the defining properties of the δ-function satisfied!

Problem 8.6
According to (8.97) the Hubbard Hamiltonian can be written as follows:

H =
∑
kσ

ε(k)c+kσ ckσ − 2U

3N

∑
k

σ (k) · σ (−k) + 1

2
U N̂ − 2μB B0σ

z(0)

1. We calculate the commutator termwise:
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[
σ+(k),

∑
m,n,σ

Tmnc+mσ cnσ

]

−

=
∑

i

e−ik·Ri
∑

m,n,σ

Tmn

[
c+i↑ci↓, c+mσ cnσ

]
−

=
∑

i

e−ik·Ri
∑

m,n,σ

Tmn

(
δimδσ↓c+i↑cnσ − δinδσ↑c+mσ ci↓

)

=
∑
m,n

Tmn
(
c+m↑cn↓e−ik·Rm − c+m↑cn↓e−ik·Rn

)

=
∑
m,n

Tmn
(
e−ik·Rm − e−ik·Rn

)
c+m↑cn↓

We further calculate

[
σ+(k),

∑
p

σ (p)σ (−p)

]

−

=
∑

p

[
σ+(k), σ z(p)σ z(−p + 1

2
σ+(p)σ−(−p)

+1

2
σ−(p)σ+(−p)

]
−

=
∑

p

{
σ z(p)

[
σ+(k), σ z(−p)

]
− + [σ+(k), σ z(p)

]
− ∗

∗σ z(−p) + 1

2
σ+(p)

[
σ+(k), σ−(−p)

]
−

+1

2

[
σ+(k), σ−(p)

]
− σ+(−p)

}

=
∑

p

{−σ z(p)σ+(k − p) − σ+(k + p)σ z(−p)+

+σ+(p)σ z(k − p) + σ z(k + p)σ+(−p)
}

= 0

One recognizes this when one replaces p by p+k in the term before the last and
p by p − k in the last term:
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[
σ+(k), N̂

]
− =

∑
i,m,σ

e−ik·Ri

[
c+i↑ci↓, c+mσ cmσ

]
−

=
∑
i,m,σ

e−ik·Ri

{
δσ↓δimc+i↑cmσ − δimδσ↑c+mσ ci↓

}

=
∑

i

e−ik·Ri

{
c+i↑ci↓ − c+i↑ci↓

}

= 0[
σ+(k), σ z(0)

]
− = −σ+(k)

Therefore what remains is

[
σ+(k), H

]
− = 2μB B0σ

+(k)

+
∑
m,n

Tmn
(
e−ik·Rm − e−ik·Rn

)
c+m↑cn↓

This corresponds to (8.106).

2. For the double commutator we need the results of 1.:

∑
m,n

Tmn
(
e−ik·Rm − e−ik·Rn

)∑
i

eik·Ri

[
c+m↑cn↓, c+i↓ci↑

]
−

=
∑
m,n

Tmn
(
e−ik·Rm − e−ik·Rn

) ∗

∗
∑

i

eik·Ri

{
δni c

+
m↑ci↑ − δmi c

+
i↓cn↓

}

=
∑
m,n

Tmn
{(

eik(Rn−Rm ) − 1
)

c+m↑cn↑−

− (1 − eik(Rm−Rn )
)
δmi c

+
m↓cn↓

}

So that it follows:
[[

σ+(k), H
]
− , σ−(−k)

]
−

= 4μB B0σ
z(0) +

∑
mnσ

Tmn
(
eizσ k·(Rn−Rm ) − 1

)
c+mσ cnσ

This is exactly (8.107).

Problem 8.7
We use (8.137) and (8.138) and then have the following determining equation for
the chemical potential μ:
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n = nσ + n−σ = 2 f−(T0)

1 + f−(T0) − f−(T0 + U )
!= 1

That is the same thing as

f−(T0) = 1 − f−(T0 + U )

�
1

eβ(T0−μ) + 1
= 1 − 1

eβ(T0+U−μ) + 1
= eβ(T0+U−μ)

eβ(T0+U−μ) + 1
� eβ(T0−μ) + 1 = 1 + e−β(T0+U−μ)

� T0 − μ = −(T0 + U − μ)

� 2T0 + U = 2μ

� μ = T0 + U

2

Problem 8.8
Substituting the spectral density (8.139) for

nσ = n−σ = 1

2

in (8.77), it directly follows:

ZW=0 = −1

2

(
f−′(T0) + f−′(T0 + U )

)

On the other hand substituting in (8.78) gives

NW=0 = − f−(T0) + f−(T0 + U )

For the susceptibility holds (8.79)

χ̄W=0 = 2μB
ZW=0

1 + NW=0

The chemical potential for half-filling is known from Problem 8.7:

μ(n = 1) = T0 + U

2

So that we calculate
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( f−(T0 + U ) − f−(T0)) =
(

1

eβ(T0+U−μ) + 1
− 1

eβ(T0−μ) + 1

)

=
(

1

eβ U
2 + 1

− 1

e−β U
2 + 1

)

= e−β U
4 − eβ U

4

eβ U
4 + e−β U

4

� NW=0 = − tanh(β
W

4
)

For ZW=0 we need the derivative of the Fermi function:

f−′(E) = −β
eβ(E−μ)

(eβ(E−μ) + 1)2

= −β
1(

e
1
2 β(E−μ) + e−

1
2 β(E−μ)

)2

Then it follows:

−1

2

(
f−′(T0) + f−′(T0 + U )

) = β

2

⎛
⎜⎝ 1(

e−β U
4 + e+β U

4

)2 +

+ 1(
e+β U

4 + e−β U
4

)2

⎞
⎟⎠

= β

2
· 2 · 1

4
· 1

cosh2(β U
4 )

� ZW=0 = 1

4
β

1

cosh2(β U
4 )

Susceptibility:

χ̄ = 1

2
βμB

1
cosh2(β U

4 )

1 − tanh(β U
4 )

= 1

2
βμB

1 + tanh(β U
4 )

cosh2(β U
4 )(1 − tanh2(β U

4 ))

= 1

2
βμB

1 + tanh(β U
4 )

cosh2(β U
4 ) − sinh2(β U

4 )

Then we finally have
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χ̄W=0 = 1

2
βμB

(
1 + tanh

(
βU

4

))

Problem 8.9
Complete basis:

∣∣∣E (1)
1

〉
= c+1σ |0〉∣∣∣E (1)

2

〉
= c+2σ |0〉

Hamiltonian matrix:

H (1) =
(

0 t
t 0

)

Diagonalization:

Det
(
H (1) − E

) != 0

Det

∣∣∣∣−E t
t −E

∣∣∣∣ = E2 − t2

⇔ E (1)
1 = −t ; E (1)

2 = +t

For E (1)
1 :

(
t t
t t

)(
α1

α2

)
!= 0

⇔ t (α1 + α2) = 0 ⇔ α2 = −α1

Normalization:

∣∣∣E (1)
1

〉
= 1√

2

(
c+1σ |0〉 − c+2σ |0〉)

For E (1)
2 :

(−t t
t −t

)(
β1

β2

)
!= 0

⇔ t (−β1 + β2) = 0 ⇔ β1 = β2

Normalization:

∣∣∣E (1)
2

〉
= 1√

2

(
c+1σ |0〉 + c+2σ |0〉)
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Problem 8.10
1. We use

[
ciσ , c+jσ ′

]
+
= δi jδσσ ′

[
ciσ , c jσ ′

]
+ =

[
c+iσ , c+jσ ′

]
+
= 0

ciσ |0〉 = 0 ; 〈0| c+jσ = 0〈
ε

(2)
1 | ε

(2)
1

〉
= 〈0| c2−σ c1σ c+1σ c+2−σ |0〉
= 〈0| c2−σ c+2−σ |0〉 = 〈0 | 0〉 = 1

analogously:

〈
ε

(2)
i

∣∣∣ ε(2)
i

〉
= 1 i = 2, · · · , 4〈

ε
(2)
1

∣∣∣ ε(2)
2

〉
= 〈0| c2−σ c1σ c†2σ c†1−σ |0〉

=
〈
0
∣∣∣c2−σ c†2σ c†1−σ c1σ

∣∣∣ 0
〉

= 0〈
ε

(2)
1

∣∣∣ ε(2)
3

〉
= 〈0| c2−σ c1σ c†1σ c†1−σ |0〉 = 0

�

〈
ε

(2)
1

∣∣∣ ε(2)
4

〉
= 〈0| c2−σ c1σ c†2σ c†2−σ |0〉 = 0

�

〈
ε

(2)
2

∣∣∣ ε(2)
3

〉
= 〈0| c1−σ c2σ c†1σ c†1−σ |0〉 = 0

�

〈
ε

(2)
2

∣∣∣ ε(2)
4

〉
= 〈0| c1−σ c2σ c†2σ c†2−σ |0〉 = 0

�

〈
ε

(2)
3

∣∣∣ ε(2)
4

〉
= 〈0| c1−σ c1σ c†2σ c†2−σ |0〉 = 0

�

Therefore it holds

〈
ε

(2)
i

∣∣∣ ε(2)
j

〉
= δi j ; i, j = 1 . . . 4
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2.

H
∣∣∣ε(2)

1

〉
= t
∑
σ ′

(
c†1σ ′c2σ ′ + c†2σ ′c1σ ′

)
c†1σ c†2−σ |0〉 +

+ 1

2
U
∑
iσ ′

niσ ′ni−σ ′c†1σ c†2−σ |0〉

= −tc†1−σ c†1σ |0〉 + tc†2σ c†2−σ |0〉 +
+ 1

2
U
∑
σ ′

n1σ ′n1−σ ′c†1σ c†2−σ |0〉 +

+ 1

2
U
∑
σ ′

n2σ ′n2−σ ′c†1σ c†2−σ |0〉

= t
(∣∣∣ε(2)

3

〉
+
∣∣∣ε(2)

4

〉)
+ 1

2
U
(

n1−σ c†1σ c†2−σ |0〉+
+c†1σ n1−σ c†2−σ |0〉 + c†1σ n2σ c†2−σ |0〉 +

+c†1σ c†2−σ n2σ |0〉
)

= t
(∣∣∣ε(2)

3

〉
+
∣∣∣ε(2)

4

〉)

H
∣∣∣ε(2)

2

〉
= t
∑
σ ′

(
c†1σ ′c2σ ′ + c†2σ ′c1σ ′

)
c†2σ c†1−σ |0〉 +

+ 1

2
U
∑
iσ ′

niσ ′ni−σ ′c†2σ c†1−σ |0〉

= tc†1σ c†1−σ |0〉 − tc†2−σ c†2σ |0〉
= t
(∣∣∣ε(2)

3

〉
+
∣∣∣ε(2)

4

〉)

H
∣∣∣ε(2)

3

〉
= t
∑
σ ′

(
c†1σ ′c2σ ′ + c†2σ ′c1σ ′

)
c†1σ c†1−σ |0〉 +

+ 1

2
U
∑
σ ′

n1σ ′n1−σ ′c†1σ c†1−σ |0〉

= t
∑
σ ′

c†1σ ′c2σ ′c†1σ c†1−σ |0〉 + Un1σ n1−σ c†1σ c†1−σ |0〉

=
(

tc†2σ c†1−σ − tc+2−σ c†1σ

)
|0〉 + Uc†1σ c†1−σ |0〉

= t
(∣∣∣ε(2)

1

〉
+
∣∣∣ε(2)

2

〉)
+ U

∣∣∣ε(2)
3

〉
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H
∣∣∣ε(2)

4

〉
= t
∑
σ ′

(
c†1σ ′c2σ ′ + c†2σ ′c1σ ′

)
c†2σ c†2−σ |0〉 +

+ 1

2
U
∑
iσ ′

niσ ′ni−σ ′c†2σ c†2−σ |0〉

= t
(

c†1σ c†2−σ |0〉 − c†1−σ c†2σ |0〉
)
+

+ Un2σ n2−σ c†2σ c†2−σ |0〉
= t
(

c†1σ c†2−σ |0〉 + c†2σ c†1−σ |0〉
)
+ Uc†2σ c†2−σ |0〉

= t
(∣∣∣ε(2)

1

〉
+
∣∣∣ε(2)

2

〉)
+ U

∣∣∣ε(2)
4

〉

So that we get from the matrix elements

〈
ε

(2)
i

∣∣∣ H
∣∣∣ε(2)

j

〉
; i, j = 1 . . . 4

the Hamiltonian matrix:

H (2) =

⎛
⎜⎜⎝

0 0 t t
0 0 t t
t t U 0
t t 0 U

⎞
⎟⎟⎠

3. The eigenvalues are determined from the secular determinant:

det
(
H (2) − E1l

) != 0

det

⎛
⎜⎜⎝
−E 0 t t

0 −E t t
t t U − E 0
t t 0 U − E

⎞
⎟⎟⎠

= −E det

⎛
⎝−E t t

t U − E 0
t 0 U − E

⎞
⎠+

+ t det

⎛
⎝0 −E t

t t 0
t t U − E

⎞
⎠− t det

⎛
⎝0 −E t

t t U − E
t t 0

⎞
⎠

= (−E)
(
(−E)(U − E)2 − 2t2(U − E)

)+
+ t(t3 − t3 + E(U − E)t) − t(−E(U − E)t + t3 − t3)

= E(U − E)(E(U − E) + 4t2)
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It must therefore hold

0 = E(U − E)(E(U − E) + 4t2)

Eigenvalues

E (2)
1 = E−

E (2)
2 = 0

E (2)
3 = U

E (2)
4 = E+

with

E± = 1

2
U ±

√
1

4
U 2 + 4t2

Eigenstates:
E (2)

1 = E−

⎛
⎜⎜⎝
−E− 0 t t

0 −E− t t
t t U − E− 0
t t 0 U − E−

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ != 0

� −E−x1 + t(x3 + x4) = 0

−E−x2 + t(x3 + x4) = 0

t(x1 + x2) + (U − E−)x3 = 0

t(x1 + x2) + (U − E−)x4 = 0

� x1 = x2; x3 = x4; x3 = E−
2t

x2 ;

We define (8.168)

γ± = E±
2t

Normalization:
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x2
1 + x2

2 + x2
3 + x2

4 = 1

2x2
1 + 2x2

3 = 1

2x2
1 + 2γ 2

−x2 = 1

x2
1 = 1

2(1 + γ 2−)

� x1 = 1√
2(1 + γ 2−)

= x2

x3 = γ−√
2(1 + γ 2−)

= x4

�

∣∣∣E (2)
1

〉
= 1√

2(1 + γ 2−)

(∣∣∣ε(2)
1

〉
+
∣∣∣ε(2)

2

〉

+ γ−
(∣∣∣ε(2)

3

〉
+
∣∣∣ε(2)

4

〉))
; (8.164)

E (2)
2 = 0

⎛
⎜⎜⎝

0 0 t t
0 0 t t
t t U 0
t t 0 U

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎠ != 0

� t(y3 + y4) = 0

t(y3 + y4) = 0

t(y1 + y2) + U y3 = 0

t(y1 + y2) + U y4 = 0

� y3 = −y4; y3 = +y4; y3 = y4 = 0; y1 = −y2;

Normalization:

y1 = 1√
2
= −y2

�

∣∣∣E (2)
2

〉
= 1√

2

(∣∣∣ε(2)
1

〉
−
∣∣∣ε(2)

2

〉)
; (8.165)

E (2)
3 = U
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⎛
⎜⎜⎝
−U 0 t t

0 −U t t
t t 0 0
t t 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

z1

z2

z3

z4

⎞
⎟⎟⎠ != 0

� −U z1 + t(z3 + z4) = 0

−U z2 + t(z3 + z4) = 0

t(z1 + z2) = 0

t(z1 + z2) = 0

� z1 = z2; z1 = −z2; z1 = z2 = 0; z3 = −z4;

Normalization:

z3 = 1√
2
= −z4

�

∣∣∣E (2)
3

〉
= 1√

2

(∣∣∣ε(2)
3

〉
−
∣∣∣ε(2)

4

〉)
; (8.166)

E (2)
4 = E+

⎛
⎜⎜⎝
−E+ 0 t t

0 −E+ t t
t t U − E+ 0
t t 0 U − E+

⎞
⎟⎟⎠

⎛
⎜⎜⎝

w1

w2

w3

w4

⎞
⎟⎟⎠ != 0

Formally as for E (2)
1 = E−, only γ− is replaced by γ+:

�

∣∣∣E (2)
4

〉
= 1√

2(1 + γ 2+)

(∣∣∣ε(2)
1

〉
+
∣∣∣ε(2)

2

〉
+

+ γ+
(∣∣∣ε(2)

3

〉
+
∣∣∣ε(2)

4

〉))
; (8.167)

4.
(i)
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〈
E (2)

1

∣∣∣ c†1σ

∣∣∣E (1)
1

〉
= 1√

2

〈
E (2)

1

∣∣∣c†1σ (c†1−σ − c†2−σ )
∣∣∣ 0
〉

= 1√
2

〈
E (2)

1

∣∣∣ ε(2)
3

〉
− 1√

2

〈
E (2)

1

∣∣∣ ε(2)
1

〉

= 1√
2(1 + γ 2−)

(γ− − 1)
1√
2

= 1

2

γ− − 1√
1 + γ 2−

;

E (2)
1 − E (1)

1 = E− + t

(ii)

〈
E (2)

2

∣∣∣ c†1σ

∣∣∣E (1)
1

〉
= 1√

2

(〈
E (2)

2

∣∣∣ ε(2)
3

〉
−
〈
E (2)

2

∣∣∣ ε(2)
1

〉)

= 1

2
;

E (2)
2 − E (1)

1 = +t

(iii)

〈
E (2)

3

∣∣∣ c†1σ

∣∣∣E (1)
1

〉
= 1√

2

(〈
E (2)

3

∣∣∣ ε(2)
3

〉
−
〈
E (2)

3

∣∣∣ ε(2)
1

〉)

= 1

2
;

E (2)
3 − E (1)

1 = U + t

(iv)

〈
E (2)

4

∣∣∣ c†1σ

∣∣∣E (1)
1

〉
= 1√

2

(〈
E (2)

4

∣∣∣ ε(2)
3

〉
−
〈
E (2)

4

∣∣∣ ε(2)
1

〉)

= 1

2

1√
1 + γ 2+

(γ+ − 1) ;

E (2)
4 − E (1)

1 = E+ + t

(v)
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〈
E (2)

1

∣∣∣ c†1σ

∣∣∣E (1)
2

〉
= 1√

2

(〈
E (2)

1

∣∣∣ ε(2)
3

〉
+
〈
E (2)

1

∣∣∣ ε(2)
1

〉)

= 1

2

1√
1 + γ 2−

(1 + γ−) ;

E (2)
1 − E (1)

2 = E− + t

(vi)

〈
E (2)

2

∣∣∣ c†1σ

∣∣∣E (1)
2

〉
= 1√

2

(〈
E (2)

2

∣∣∣ ε(2)
3

〉
+
〈
E (2)

2

∣∣∣ ε(2)
1

〉)

= 1

2
;

E (2)
2 − E (1)

2 = −t

(vii)

〈
E (2)

3

∣∣∣ c†1σ

∣∣∣E (1)
2

〉
= 1√

2

(〈
E (2)

3

∣∣∣ ε(2)
3

〉
+
〈
E (2)

3

∣∣∣ ε(2)
1

〉)

= 1

2
;

E (2)
3 − E (1)

2 = U − t

(viii)

〈
E (2)

4

∣∣∣ c†1σ

∣∣∣E (1)
2

〉
= 1√

2

(〈
E (2)

4

∣∣∣ ε(2)
3

〉
+
〈
E (2)

4

∣∣∣ ε(2)
1

〉)

= 1

2

1√
1 + γ 2+

(γ+ + 1) ;

E (2)
4 − E (1)

2 = E+ − t

For the partition function of the one-particle system holds

Z = e+βt + e−βt ;

and therefore

e−βE (1)
1

Z
= eβt

eβt + e−βt
= 1

1 + e−2βt

e−βE (1)
2

Z
= e−βt

eβt + e−βt
= e−2βt

1 + e−2βt
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Then with (8.147) the density of states is given by

ρ(−σ )
σ (E) = ρ

(−σ )
tσ (E) + ρ

(−σ )
Uσ (E)

ρtσ (E) = 1

4(1 + e−2βt )
∗

∗
{

(1 − γ−)2

1 + γ 2−
δ(E − (E− + t)) + δ(E − t)+

+ (1 + γ−)2

1 + γ 2−
e−2βtδ(E − (E− + t)) + e−2βtδ(E + t)

}

ρUσ (E) = 1

4(1 + e−2βt )
∗

∗
{

(1 − γ+)2

1 + γ 2+
δ(E − (E+ + t)) + δ(E − (U + t))+

+ (1 + γ+)2

1 + γ 2+
e−2βtδ(E − (E+ − t))

+e−2βtδ(E − (U − t))
}

Problem 8.11

1. We demonstrate the correctness of the eigenstates by substituting of
∣∣∣E (3)

1,2

〉
in the

corresponding eigenvalue equation:

H0

∣∣∣E (3)
1,2

〉
= 1√

2
t
∑
σ ′

(
c†1σ ′c2σ ′ + c†2σ ′c1σ ′

)
∗

∗
(

c†1−σ ∓ c†2−σ

)
c†1σ c†2σ |0〉

= t√
2

(
c†1−σ c2−σ + c†2−σ c1−σ

)
∗

∗
(

c†1−σ ∓ c†2−σ

)
c†1σ c†2σ |0〉

= t√
2

(
∓c†1−σ (1 − c†2−σ c2−σ ) +

+ c†2−σ (1 − c†1−σ c1−σ )
)

c†1σ c†2σ |0〉

= t√
2

(
c†2−σ ∓ c†1−σ

)
c†1σ c†2σ |0〉

= ∓t
∣∣∣E (3)

1,2

〉



690 C Solutions to Problems

H1

∣∣∣E (3)
1,2

〉
= 1√

2
· 1

2
U
∑
σ ′

(n1σ ′n1−σ ′ + n2σ ′n2−σ ′ ) ∗

∗
(

c†1−σ ∓ c†2−σ

)
c†1σ c†2σ |0〉

= U√
2

(n1σ n1−σ + n2σ n2−σ ) ∗

∗
(

c†1−σ ∓ c†2−σ

)
c†1σ c†2σ |0〉

= U√
2

(
n1σ n1−σ c†1−σ ∓ n2σ n2−σ c†2−σ

)
c†1σ c†2σ |0〉

= U√
2

(
n1σ c†1−σ ∓ n2σ c†2−σ

)
c†1σ c†2σ |0〉

= U√
2

(
−c†1σ c†1−σ c†2σ ∓ c†2σ c†2−σ c†1σ

)
|0〉

= U√
2

(
c†1−σ ∓ c†2−σ

)
c†1σ c†2σ |0〉

= U
∣∣∣E (3)

1,2

〉

Therefore they are indeed eigenstates with eigenenergies:

E (3)
1 = U − t ; E (3)

2 = U + t

2. Density of states

ρ(σ,−σ )
σ (E) =

∑
n

∣∣∣
〈
E (3)

n

∣∣∣c†1σ

∣∣∣ E (2)
1

〉∣∣∣2 δ(E − (E (3)
n − E−)) +

+
∑

m

∣∣∣
〈
E (1)

m |c1σ | E (2)
1

〉∣∣∣2 δ(E − (E− − E (1)
m ))

At T = 0, for the averaging in ρ(σ,−σ )
σ (E), the ground state

∣∣∣E (2)
1

〉
of the two-

electron system can be used (see Problem 8.10, Eq. (8.164)) with the ground
state energy E (2)

1 = E− (8.163).
Matrix elements:
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〈
E (3)

1,2

∣∣∣c†1σ

∣∣∣ E (2)
1

〉

= 1√
2(1 + γ 2−)

〈
E (3)

1,2

∣∣∣ c†1σ

(
c†1σ c†2−σ +

+c†2σ c†1−σ + γ−
2∑

i=1

c†iσ c†i−σ

)∣∣∣0
〉

= 1√
2(1 + γ 2−)

〈
E (3)

1,2

∣∣∣(c†1σ c†2σ c†1−σ+

+ γ−c†1σ c†2σ c†2−σ )
∣∣∣ 0
〉

= 1

2

1√
(1 + γ 2−)

〈
0
∣∣∣c2σ c1σ c1−σ c†1−σ c†1σ c†2σ )

∣∣∣ 0
〉

∓1

2

1√
(1 + γ 2−)

γ−
〈
0
∣∣∣c2σ c1σ c2−σ c†1σ c†2σ c†2−σ )

∣∣∣ 0
〉

= 1

2

1√
(1 + γ 2−)

〈0 | 0〉 ∓ 1

2

1√
(1 + γ 2−)

γ− 〈0 | 0〉

= 1

2

1 ∓ γ−√
(1 + γ 2−)

With (8.160) and (8.161) we calculate

〈
E (1)

1,2

∣∣∣ c1σ

∣∣∣E (2)
1

〉
= 1√

2

〈
0 |(c1−σ ∓ c2−σ )c1σ | E (2)

1

〉

= 1

2

1√
1 + γ 2−

{〈
0
∣∣∣c1−σ c1σ γ−c†1σ c†1−σ

∣∣∣ 0
〉

∓
〈
0
∣∣∣c2−σ c1σ c†1σ c†2−σ

∣∣∣ 0
〉}

= 1

2

γ− ∓ 1√
1 + γ 2−

Density of states:
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ρ(σ,−σ )
σ (E) = (1 − γ−)2

4(1 + γ 2−)
{δ(E − (U − t − E−)) +

+δ(E − (E− + t))} +
(1 + γ−)2

4(1 + γ 2−)
{δ(E − (U + t − E−)) +

+δ(E − (E− − t))}

Problem 8.12
The expression

1

N

i �= j∑
i, j

Ti j

〈
c†i−σ c j−σ (2niσ − 1)

〉

should be expressed in terms of the one-electron spectral density!

(a) Spectral theorem:

1

N

i �= j∑
i, j

Ti j

〈
c†i−σ c j−σ

〉

= 1

N

∑
i, j

Ti j

〈
c†i−σ c j−σ

〉
− T0

〈
c†i−σ ci−σ

〉

= 1

N

∑
i, j

Ti j

+∞∫

−∞
d E

(
− 1

π�
I mG ji−σ (E − μ)

)
f−(E) −

− T0

+∞∫

−∞
d E

(
− 1

π�
I mGii−σ (E − μ

)
f−(E)

= 1

N

∑
i, j

1

N

∑
k1

eik1(Ri−R j )ε(k1)

+∞∫

−∞
d E f−(E) ·

· 1

N

∑
k2

eik2(R j−Ri )

(
− 1

π�
I mGk2−σ (E − μ

)
−
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− T0

+∞∫

−∞
d E f−(E)

1

N

∑
k

(
− 1

π�

)
I mGk−σ (E − μ)

= 1

N�

∑
k1,k2

+∞∫

−∞
d E f−(E)δk1,k2δk1,k2ε(k1)Sk2−σ (E − μ) −

− T0
1

N�

∑
k

+∞∫

−∞
d E f−(E)Sk−σ (E − μ)

= 1

N�

∑
k

(ε(k − T0)

+∞∫

−∞
d E f−(E)Sk−σ (E − μ)

(b) Real expectation value:

〈
c†i−σ c j−σ niσ

〉
!=
〈
niσ c†j−σ ci−σ

〉
=
〈
c†j−σ niσ ci−σ

〉

⇔ 1

N

i �= j∑
i, j

Ti j

〈
c†i−σ c j−σ niσ

〉

= 1

N

∑
i, j

Ti j

〈
c†j−σ niσ ci−σ

〉
− T0

〈
c†i−σ niσ ci−σ

〉

= 1

N

∑
i, j

Ti j

(
− 1

π�

) +∞∫

−∞
d E f−(E)I mΓi i i ; j−σ (E − μ) −

− T0

+∞∫

−∞
d E f−(E)

(
− 1

π�

)
I mΓi i i ;i−σ (E − μ)

The “higher” Green’s function is defined in (8.124). From (8.125) one reads off

I mΓi i i ; j−σ (E − μ) = 1

U

∑
m

(Eδim − Tim)I mGmi−σ (E − μ)

Therewith follows:
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1

N

i �= j∑
i, j

Ti j < c†i−σ c j−σ niσ >

= 1

N

∑
i, j

(Ti j − T0δi j )

+∞∫

−∞
d E f−(E) ∗

∗ 1

U�

∑
m

(Eδmi − Tim)Smj−σ (E − μ)

= 1

N

∑
i, j

1

N 3

∑
k1,k2,k3

eik1(Ri−R j )(ε(k1 − T0) ∗

∗
∫ +∞

−∞
d E f−(E)

1

U�

∑
m

eik2(Ri−Rm )eik3(Rm−R j ) ∗

∗(E − ε(k2))Sk3−σ (E − μ)

= 1

N�

∑
k1,k2,k3

(ε(k1) − T0)

+∞∫

−∞
d E f−(E)

1

U
(E − ε(k2)) ∗

∗Sk3−σ (E − μ)δk1,−k2δk2,k3δk1,−k3

= 1

N�

∑
k

(ε(k) − T0)

+∞∫

−∞
d E f−(E)

1

U
(E − ε(k)) ∗

∗Sk−σ (E − μ)

Together with the result of (a) we have found

n−σ (1 − n−σ )B−σ

= 1

N

i �= j∑
i, j

Ti j

〈
c†i−σ c j−σ (2niσ − 1)

〉

= 1

N�

∑
k

(ε(k) − T0)

+∞∫

−∞
d E f−(E)

(
2

U
(E − ε(k)) − 1

)
∗

∗Sk−σ (E − μ)

This is exactly (8.217)

Problem 8.13
0th spectral moment:

M (0)
i jσ =

〈[
ciσ , c†jσ

]
−

〉
= δi j ⇔ M (0)

kσ = 1 (a)
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1st spectral moment:

M (1)
i jσ =

〈[
[ciσ , H ]− , c†jσ

]
+

〉

[ciσ , H ]− =
∑

m,n,σ ′
(Tmn − μδmn)

[
ciσ , c†mσ ′cnσ ′

]
−
+

+ 1

2
U
∑
mσ ′

[
ciσ , nmσ ′nm−σ ′

]
−

=
∑

m,n,σ ′
(Tmn − μδmn)δimδσσ ′cnσ ′+

+ 1

2
U
∑
mσ ′

δim(δσσ ′cmσ ′nm−σ ′ + δσ−σ ′nmσ ′cm−σ ′ )

=
∑

n

(Tin − μδin)cnσ + Uni−σ ciσ (b)

�

[
[ciσ , H ]− , c†jσ

]
+
= (Ti j − μδi j ) + Uδi j ni−σ (c)

� M (1)
i jσ = (Ti j − μδi j ) + Un−σ δi j (d)

� M (1)
kσ = ε(k) − μ + Un−σ (e)

2nd spectral moment:

M (2)
i jσ =

〈[[
[ciσ , H ]− , H

]
− , c†jσ

]
+

〉
(f)

abbreviation : ti j = Ti j − μδi j

Then with (b) holds

[
[ciσ , H ]− , H

]
− =

∑
n

tin [cnσ , H ]− + U
[
ni−σ ciσ , H

]
−
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[
ni−σ ciσ , H

]
−

=
∑

m,n,σ ′
tmn

[
ni−σ ciσ , c†mσ ′cnσ ′

]
−
+

+ 1

2
U
∑
m,σ ′

[
ni−σ ciσ , nmσ ′nm−σ ′

]
−

=
∑

m,n,σ ′
tmn(δimδσσ ′ni−σ cnσ ′ + δimδσ−σ ′c†i−σ cnσ ′ciσ−

− δinδσ−σ ′c†mσ ′ci−σ ciσ ) + 1

2
U
∑
mσ ′

(δimδσσ ′ni−σ cmσ ′nm−σ ′+

+ δimδσ−σ ′ni−σ nmσ ′cm−σ ′)

=
∑

n

tinni−σ cnσ +
∑

n

tinc†i−σ cn−σ ciσ−

−
∑

m

tmi c
†
m−σ ci−σ ciσ + 1

2
U (ni−σ ciσ ni−σ + ni−σ ni−σ ciσ )

=
∑

m

tim(ni−σ cmσ + c†i−σ cm−σ ciσ − c†m−σ ci−σ ciσ )+

+ Uni−σ ciσ (g)

Here we have used n2
i−σ = ni−σ which is an identity valid for Fermions. Then what

remains is

[
[ciσ , H ]− , H

]
−

=
∑

n

tin [cnσ , H ]− +

+ U
∑

m

tim(ni−σ cmσ + c†i−σ cm−σ ciσ − c†m−σ ci−σ ciσ )+

+ U 2ni−σ ciσ (h)

With this follows:

M (2)
i jσ =

∑
n

tin M (1)
njσ + Uti j n−σ + δi jU

∑
m

tim
〈
c†i−σ cm−σ

〉
−

− δi jU
∑

m

tim
〈
c†m−σ ci−σ

〉
+ U 2δi j n−σ
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Because of (8.268), the third and the fourth terms cancel each other. Then it remains
with (d):

M (2)
i jσ =

∑
n

tintnj + 2Uti j n−σ + U 2n−σ δi j (i)

After Fourier transformation follows:

M (2)
kσ = (ε(k) − μ)2 + 2(ε(k) − μ)Un−σ + U 2n−σ

3rd spectral moment:

M (3)
i jσ =

〈[[[
[ciσ , H ]− , H

]
− , H

]
−

, c†jσ

]
+

〉

For the triple commutator holds with (h):

[[
[ciσ , H ]− , H

]
− , H

]
−

=
∑

n

tin
[
[cnσ , H ]− , H

]
− +

+ U
∑

m

tim
[
(ni−σ cmσ + c†i−σ cm−σ ciσ − c†m−σ ci−σ ciσ ), H

]
−
+

+ U 2
[
ni−σ ciσ , H

]
−

=
∑

n

tin
[
[cnσ , H ]− , H

]
− + U

[
[ciσ , H ]− , H

]
− −

− U
∑

n

tin [cnσ , H ]− + U
∑

m

tim
{[

ni−σ cmσ , H
]
− +

+
[
c†i−σ cm−σ ciσ , H

]
−
−
[
c†m−σ ci−σ ciσ , H

]
−

}
(j)

Three commutators remain to be calculated:
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(I ) = U
∑

m

tim
[
ni−σ cmσ , H

]
−

= U
∑

m

tim
∑
s,t,σ ′

tst

[
ni−σ cmσ , c†sσ ′ctσ ′

]
−
+

+ 1

2
U 2
∑

m

tim
∑
s,σ ′

[
ni−σ cmσ , nsσ ′ns−σ ′

]
−

= U
∑

m,s,t,σ ′
timtst {δmsδσσ ′ni−σ ctσ ′+

+δisδσ−σ ′c†i−σ ctσ ′cmσ − δtiδσ−σ ′c†sσ ′ci−σ cmσ

}
+

+ 1

2
U 2

∑
m,s,σ ′

tim {δmsδσσ ′ni−σ csσ ′ns−σ ′+

+δmsδσ−σ ′ni−σ nsσ ′cs−σ ′ }
= U

∑
m,t

timtmt ni−σ ctσ + U
∑
m,t

timtit c
†
i−σ ct−σ cmσ −

− U
∑
m,s

timtsi c
†
s−σ ci−σ cmσ + 1

2
U 2
∑

m

timni−σ cmσ nm−σ +

+ 1

2
U 2
∑

m

timni−σ nm−σ cmσ

= U
∑
m,t

timtmt ni−σ ctσ + U
∑
m,t

timtit (c
†
i−σ ct−σ cmσ −

−c†t−σ ci−σ cmσ ) ++U 2
∑

m

timni−σ nm−σ cmσ

�

[
(I ), c†jσ

]
+
= U

∑
m

timtmj ni−σ +

+ U
∑

t

ti t ti j (c
†
i−σ ct−σ − c†t−σ ci−σ ) +

+ U 2ti j ni−σ n j−σ

We again use (8.268):

〈[
(I ), c†jσ

]
+

〉
= Un−σ

∑
m

timtmj + U 2ti j
〈
ni−σ n j−σ

〉
(k)

In the same manner we calculate
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(I I ) = U
∑

m

tim
[
c†i−σ cm−σ ciσ , H

]
−

= U
∑

m

tim
∑
s,t,σ ′

tst

[
c†i−σ cm−σ ciσ , c†sσ ′ctσ ′

]
−
+

+ 1

2
U 2
∑

m

tim
∑
s,σ ′

[
c†i−σ cm−σ ciσ , nsσ ′ns−σ ′

]
−

= U
∑

m,s,t,σ ′
timtst

{
δσσ ′δisc†i−σ cm−σ ctσ ′+

+δσ−σ ′δmsc†i−σ ctσ ′ciσ − δσ−σ ′δi t c
†
sσ ′cm−σ ciσ

}
+

+ 1

2
U 2

∑
m,s,σ ′

tim
{
δisδσσ ′c†i−σ cm−σ csσ ′ns−σ ′+

+δisδσ−σ ′c†i−σ cm−σ nsσ ′cs−σ ′ +
+δmsδσ ′−σ ′c†i−σ csσ ′ns−σ ′ciσ +
+δmsδσσ ′c†i−σ nsσ ′cs−σ ′ciσ −
−δisδσ−σ ′c†sσ ′ns−σ ′cm−σ ciσ −
− δisδσσ ′nsσ ′c†s−σ ′cm−σ ciσ

}

= U
∑
m,t

timtit c
†
i−σ cm−σ ctσ + U

∑
m,t

timtmt c
†
i−σ ct−σ ciσ −

−U
∑
m,s

timtsi c
†
s−σ cm−σ ciσ +

+ 1

2
U 2
∑

m

tim
{

c†i−σ cm−σ ciσ ni−σ + c†i−σ cm−σ ni−σ ciσ+

+c†i−σ cm−σ nmσ ciσ + c†i−σ nmσ cm−σ ciσ −
− c†i−σ niσ cm−σ ciσ − niσ c†i−σ cm−σ ciσ

}

�

[
(I I ), c†jσ

]
+
= U

∑
m

timti j c
†
i−σ cm−σ +

+ Uδi j

∑
m,t

tim(tmt c
†
i−σ ct−σ − ti t c

†
t−σ cm−σ ) +

+ U 2
∑

m

tim
{
δi j c

†
i−σ cm−σ ni−σ+

+ δi j c
†
i−σ cm−σ nmσ − δmj c

†
i−σ cm−σ c†mσ ciσ −

−δi j c
†
i−σ niσ cm−σ − δi j c

†
i−σ c†iσ cm−σ ciσ

}

= Uti j

∑
m

timc†i−σ cm−σ +
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+ Uδi j

∑
m,t

tim(tmt c
†
i−σ ct−σ − ti t c

†
t−σ cm−σ ) −

− U 2ti j c
†
i−σ c†jσ ciσ c j−σ +

+ U 2δi j

∑
m

tim
{

c†i−σ cm−σ ni−σ + c†i−σ cm−σ nmσ

}

(I I I ) = −U
∑

m

tim
[
c†m−σ ci−σ ciσ , H

]
−

= −U
∑

m

tim
∑
s,t,σ ′

tst

[
c†m−σ ci−σ ciσ , c†sσ ′ctσ ′

]
−
−

− 1

2
U 2
∑

m

tim
∑
s,σ ′

[
c†m−σ ci−σ ciσ , nsσ ′ns−σ ′

]
−

= −U
∑

m

tim
∑
s,t,σ ′

tst

{
δisδσσ ′c†m−σ ci−σ ctσ ′+

+δisδσ−σ ′c†m−σ ctσ ′ciσ −
−δmtδσ−σ ′c†sσ ′ci−σ ciσ

}
−

− 1

2
U 2

∑
m,s,σ ′

tim
{
δisδσσ ′c†m−σ ci−σ csσ ′ns−σ ′+

+δisδσ−σ ′c†m−σ ci−σ nsσ ′cs−σ ′ +
+δisδσ−σ ′c†m−σ csσ ′ns−σ ′ciσ +
+δisδσσ ′c†m−σ nsσ ′cs−σ ′ciσ −
−δmsδσ−σ ′c†sσ ′ns−σ ′ci−σ ciσ −
−δmsδσσ ′nsσ ′c†s−σ ′ci−σ ciσ

}

= −U
∑
m,t

timtit c
†
m−σ ci−σ ctσ −

− U
∑
m,t

timtit c
†
m−σ ct−σ ciσ +

+ U
∑
m,s

timtsmc†s−σ ci−σ ciσ −

− 1

2
U 2
∑

m

tim
{

c†m−σ ci−σ ciσ ni−σ+

+c†m−σ ci−σ ni−σ ciσ −
−c†m−σ nmσ ci−σ ciσ −
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−nmσ c†m−σ ci−σ ciσ

}

= −U
∑
m,t

timtit (c
†
m−σ ci−σ ctσ + c†m−σ ct−σ ciσ ) +

+ U
∑
m,s

timtsmc†s−σ ci−σ ciσ −

− U 2
∑

m

tim
{

c†m−σ ci−σ ni−σ ciσ − c†m−σ ci−σ nmσ ciσ

}

�

[
(I I I ), c†jσ

]
+
= −U

∑
m

timti j c
†
m−σ ci−σ +

+ Uδi j

∑
m,t

timtit c
†
m−σ ct−σ −

− Uδi j

∑
m,t

timttmc†t−σ ci−σ −

− U 2δi j

∑
m

timc†m−σ ci−σ ni−σ +

+ U 2δi j

∑
m

timc†m−σ ci−σ nmσ −

− U 2ti j c
†
j−σ ci−σ c†jσ ciσ

With this follows:

〈[
(I I ) + (I I I ), c†jσ

]
+

〉

= Uti j

∑
m

tim
(〈

c†i−σ cm−σ

〉
−
〈
c†m−σ ci−σ

〉)
+

+ Uδi j

∑
m,t

timtmt

(〈
c†i−σ ct−σ

〉
−
〈
c†t−σ ci−σ

〉)
−

− Uδi j

∑
m,t

timtit
(〈

c†t−σ cm−σ

〉
−
〈
c†m−σ ct−σ

〉)
+

+ U 2δi j

∑
m

tim
(〈

c†i−σ cm−σ ni−σ

〉
−
〈
c†m−σ ci−σ ni−σ

〉)

+ U 2δi j

∑
m

tim
(〈

c†i−σ cm−σ nmσ

〉
+
〈
c†m−σ ci−σ nmσ

〉)
−

− U 2ti j

〈
c†i−σ c†jσ ciσ c j−σ

〉
+ U 2ti j

〈
c†j−σ c†jσ ci−σ ciσ

〉

Translational symmetry:
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∑
m

tim
(〈

c†i−σ cm−σ

〉
−
〈
c†m−σ ci−σ

〉)

= 1

N

∑
i,m

tim
(〈

c†i−σ cm−σ

〉
−
〈
c†m−σ ci−σ

〉)

= 1

N

∑
i,m

(tim − tmi )
〈
c†i−σ cm−σ

〉
= 0

∑
m,t

timtmt

(〈
c†i−σ ct−σ

〉
−
〈
c†t−σ ci−σ

〉)

= 1

N

∑
m,t,i

(timtmt − ttmtmi )
〈
c†i−σ ct−σ

〉
= 0

∑
m,t

timtit
(〈

c†t−σ cm−σ

〉
−
〈
c†m−σ ct−σ

〉)

=
∑
m,t

(timtit − ti t tim)
〈
c†t−σ cm−σ

〉
= 0

∑
m

tim
(〈

c†i−σ cm−σ ni−σ

〉
−
〈
c†m−σ ci−σ ni−σ

〉)

=
∑

m

tim
(
δimn−σ −

〈
c†m−σ ci−σ

〉)

= (T0 − μ)n−σ −
∑

m

tim
〈
c†m−σ ci−σ

〉

Real expectation values:

〈
c†i−σ cm−σ nmσ

〉
!=
〈
nmσ c†m−σ ci−σ

〉

Then we finally have

〈[
(I ) + (I I ) + (I I I ), c†jσ

]
+

〉

= U 2δi j

(
(T0 − μ)n−σ −

∑
m

tim
〈
c†m−σ ci−σ

〉)
+

+ Un−σ

∑
m

timtmj +

+ U 2δi j

∑
m

tim
(

2
〈
c†m−σ ci−σ nmσ

〉)
+

+ U 2ti j

{〈
ni−σ n j−σ

〉+ 〈c†j−σ c†jσ ci−σ ciσ

〉
+〈

c†jσ c†i−σ ciσ c j−σ

〉}
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Fourier transformation:

1

N

∑
i, j

e−ik(Ri−R j )ti j

{〈
ni−σ n j−σ

〉+ 〈c†j−σ c†jσ ci−σ ciσ

〉
+

+
〈
c†jσ c†i−σ ciσ c j−σ

〉}
=

= t0 {n−σ − 2 〈ni−σ niσ 〉} + 1

N

i �= j∑
i, j

e−ik(Ri−R j )ti j {· · · }

= (T0 − μ) (n−σ − 2 〈niσ ni−σ 〉) + n2
−σ (ε(k) − T0) +

+n−σ (1 − n−σ )Fk−σ

The second summand is exactly the bandwidth correction of (8.213):

1

N

∑
i, j

e−ik(Ri−R j )δi j

∑
m

tim
(

2
〈
c†m−σ ci−σ nmσ

〉

−
〈
c†m−σ ci−σ

〉)
=

= 1

N

∑
i,m

tim (· · · )

= 1

N

i �=m∑
i,m

tim (· · · ) + t0 (2 〈ni−σ niσ 〉 − n−σ ))

= n−σ (1 − n−σ )B−σ + (T0 − μ) (2 〈ni−σ niσ 〉 − n−σ )

We have used here the definition (8.212) of spin-dependent band shift. Then finally
what remains is

1

N

∑
i, j

e−ik(Ri−R j )
〈[

(I ) + (I I ) + (I I I ), c†jσ

]
+

〉
=

= Un−σ (ε(k) − μ)2 + U 2n−σ (T0 − μ)+
+ U 2n2

−σ (ε(k) − T0) + U 2n−σ (1 − n−σ )Bk−σ (l)

We substitute (l) in ( j) and then have
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M (3)
kσ = (ε(k) − μ)M (2)

kσ + U M (2)
kσ − U (ε(k) − μ)M (1)

kσ +
+ Un−σ (ε(k) − μ)2 +
+ U 2n−σ (T0 − μ) + U 2n2

−σ (ε(k) − T0) +
+ U 2n−σ (1 − n−σ )Bk−σ

= (ε(k) − μ)3 + 2(ε(k) − μ)2Un−σ +
+ 2U 2(ε(k) − μ)n−σ + U 3n−σ +
+ Un−σ (ε(k) − μ)2 + U 2n−σ (T0 − μ) +
+ U 2n2

−σ (ε(k) − T0) + U 2n−σ (1 − n−σ )Bk−σ

= (ε(k) − μ)3 + 3Un−σ (ε(k) − μ)2 +
+ U 2n−σ (ε(k) − μ)(2 + n−σ ) + U 3n−σ +
+ U 2n−σ (1 − n−σ )(Bk−σ + T0 − μ)

This is the 3rd spectral moment (8.224).

Problem 8.14
Hamiltonian of the Stoner model (8.34):

HS =
∑
kσ

(ε(k) + Un−σ − μ)c†kσ ckσ

That means

[ckσ , H ]− = (ε(k) + Un−σ − μ)ckσ[· · · [ckσ , H ]− · · · , H
]
−︸ ︷︷ ︸

n− f old

= (ε(k) + Un−σ − μ)nckσ

� Spectral moments:

M (n)
kσ = (ε(k) + Un−σ − μ)n

Then it holds

Δ
(0)
kσ ≡ M (0)

kσ = 1

Δ
(1)
kσ =

(
M (0)

kσ M (1)
kσ

M (1)
kσ M (2)

kσ

)

= M (0)
kσ M (2)

kσ − (M (1)
kσ )2

= 0

� Therefore the spectral density is a one-pole function!
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Problem 8.15

1. H = T0

∑
i,σ

niσ + 1

2
U
∑
i,σ

niσ ni−σ

It holds

[ciσ , niσ ′ ]− = δσσ ′ciσ

With this it directly follows:

[ciσ ,H]− = (T0 − μ)ciσ + Uciσ ni−σ[
ciσ ni−σ ,H

]
− = [ciσ ,H]− ni−σ

= (T0 − μ + U )ciσ ni−σ

Here we have used once more n2
i−σ = ni−σ

M (0)
i iσ = 1

M (1)
i iσ = (T0 − μ) + Un−σ

= (T0 − μ)1 + [(T0 + U − μ)1 − (T0 − μ)1
]

n−σ

Complete induction:
Let the proposition be true for n. That means

[
· · · [[ciσ ,H]− ,H

]
− · · · ,H

]
−︸ ︷︷ ︸

n− f old

=

= (T0 − μ)nciσ + [(T0 + U − μ)n − (T0 − μ)n
]

ciσ ni−σ

�

[
· · · [[ciσ ,H]− ,H

]
− · · · ,H

]
−︸ ︷︷ ︸

(n+1)− f old

=

= (T0 − μ)n [ciσ ,H]− −
− [(T0 + U − μ)n − (T0 − μ)n

] [
ciσ ni−σ ,H

]
−

= (T0 − μ)n((T0 − μ)ci−σ + Uni−σ ciσ ) +
+ [(T0 − μ + U )n − (T0 − μ)n

]
(T0 − μ + U )ciσ ni−σ

= (T0 − μ)n+1ciσ + U (T0 − μ)nni−σ ciσ +
+ (T0 − μ + U )n+1ciσ ni−σ −
− (T0 − μ)n(T0 − μ + U )ciσ ni−σ

= (T0 − μ)n+1ciσ +
+ [(T0 − μ + U )n+1 − (T0 − μ)n+1

]
ciσ ni−σ
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So that it holds

[
· · · [[ciσ ,H]− ,H

]
− · · · ,H

]
−
=

= (T0 − μ)nciσ + [(T0 − μ + U )n − (T0 − μ)n
]

ciσ ni−σ

Then the spectral moments are

M (n)
i iσ = (T0 − μ)n + [(T0 − μ + U )n − (T0 − μ)n

]
n−σ

2. Lonke theorem [24]

Δ
(1)
i iσ =

(
M (0)

i iσ M (1)
i iσ

M (1)
i iσ M (2)

i iσ

)

= M (0)
i iσ M (2)

i iσ − (M (0)
i iσ )2

= (T0 − μ)2 + [(T0 − μ + U )2 − (T0 − μ)2] n−σ −
− (T0 − μ + Un−σ )2

= −2Un−σ (T0 − μ) − U 2n2
−σ + 2U (T0 − μ)n−σ +

+ U 2n−σ

= U 2n−σ (1 − n−σ ) �= 0 , I f n−σ �= 0, 1

For empty bands (n = 0), fully occupied bands (n = 2) and fully polarized and
half-filled bands (nσ = 1, n−σ = 0) the spectral density consists of only one (!)
δ-function. In all other cases

Δ
(1)
i iσ > 0

We now calculate

Δ
(2)
i iσ =

⎛
⎝M (0)

i iσ M (1)
i iσ M (2)

i iσ

M (1)
i iσ M (2)

i iσ M (3)
i iσ

M (2)
i iσ M (3)

i iσ M (4)
i iσ

⎞
⎠

= M (0)
i iσ M (2)

i iσ M (4)
i iσ + 2M (1)

i iσ M (3)
i iσ M (2)

i iσ −
− (M (2)

i iσ )3 − M (0)
i iσ (M (3)

i iσ )2 − (M (1)
i iσ )2 M (4)

i iσ

=
{

M (0)
i iσ M (2)

i iσ − (M (1)
i iσ )2

}
M (4)

i iσ +

+
{

M (1)
i iσ M (3)

i iσ − (M (2)
i iσ )2

}
M (2)

i iσ +

+
{

M (1)
i iσ M (2)

i iσ − M (0)
i iσ M (3)

i iσ

}
M (3)

i iσ
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We calculate the individual terms with the abbreviation:

t0 = T0 − μ

{
M (0)

i iσ M (2)
i iσ − (M (1)

i iσ )2
}
=

= t2
0 + ((t0 + U )2 − t2

0 )n−σ − (t0 + (t0 + U − t)n−σ )2

= t2
0 − t2

0 + n−σ

{
2t0U + U 2 − 2t0U

}− n2
−σ U 2

= U 2n−σ (1 − n−σ ){
M (1)

i iσ M (3)
i iσ − (M (2)

i iσ )2
}
=

= (t0 + Un−σ )(t3
0 + ((t0 + U )3 − t3

0 )n−σ −
− (t2

0 + ((t0 + U )2 − t2
0 )n−σ )2

= (t0 + Un−σ )(t3
0 + n−σ (3t2

0 U + 3t0U 2 + U 3)) −
− (t2

0 + n−σ (2t0U + U 2))2

= t4
0 + n−σ (3t3

0 U + 3t2
0 U 2 + t0U 3) + Un−σ t3

0 +
+ Un2

−σ (3t2
0 U + 3t0U 2 + U 3) − t4

0 −
− n2

−σ (2t0U + U 2)2 − 2n−σ t2
0 (2t0U + U 2)

= n−σ

(
3t3

0 U + 3t2
0 U 2 + t0U 3 + Ut3

0 − 4t3
0 U−

− 2t2
0 U 2

)+ n2
−σ

(
3t2

0 U 2 + 3t0U 3 + U 4 − 4t2
0 U 2−

− U 4 − 4t0U 3
)

= n−σ (t2
0 U 2 + t0U 3) + n2

−σ (−t2
0 U 2 − t0U 3)

= U 2n−σ (t2
0 + t0U ) − U 2n2

−σ (t2
0 + t0U )

= U 2n−σ (1 − n−σ )t0(t0 + U )
{

M (1)
i iσ M (2)

i iσ − M (0)
i iσ M (3)

i iσ

}

= (t0 + Un−σ )(t2
0 + n−σ

(
(t0 + U )2 − t2

0 )
)−

− (t3
0 + n−σ

(
(t0 + U )3 − t3

0

))
= t3

0 + n−σ

(
2t2

0 U + t0U 2
)+ Un−σ

(
t2
0+

+ n−σ (2t0U + U 2)
)−

− (t3
0 + n−σ (3t2

0 U + 3t0U 2 + U 3))

= n−σ

(
2t2

0 U + t0U 2 + Ut2
0−

− 3t2
0 U − 3t0U 2 − U 3

)+ n2
−σ

(
2t0U 2 + U 3

)
= n−σ (−2t0U 2 − U 3) + n2

−σ U 2(2t0 + U )

= −U 2n−σ (1 − n−σ )(2t0 + U )
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Intermediate result:

Δ
(2)
i iσ

U 2n−σ (1 − n−σ )
= M (4)

i iσ + t0(t0 + U )M (2)
i iσ −

− (2t0 + U )M (3)
i iσ

We now finally calculate the right-hand side:

Δ
(2)
i iσ

U 2n−σ (1 − n−σ )
=

= t4
0 + ((t0 + U )4 − t4

0 )n−σ +
+ t0(t0 + U )

[
t2
0 + ((t0 + U )2 − t2

0

)
n−σ

]−
− (2t0 + U )

[
t3
0 + ((t0 + U )3 − t3

0

)
n−σ

]
= (t4

0 + t3
0 (t0 + U ) − 2t4

0 − Ut3
0

)+
+ n−σ

{(
(t0 + U )2 − t2

0

)
(t0(t0 + U )+

+ (t0 + U )2 + t2
0

)− (2t0 + U )((t0 + U )3 − t3
0 )
}

= n−σ

{
(2t0U + U 2)(3t2

0 + t0U + 2t0U + U 2)−
− (2t0 + U )(3t2

0 U + 3t0U 2 + U 3)
}

= n−σ

{
6t2

0 U 2 + 3U 2t2
0 − 6t2

0 U 2 − 3t2
0 U 2+

+ 2t0U 3 + 3t0U 3 − 2t0U 3 − 3t0U 3
}

= 0

With this it is proved that the one-electron spectral density in the limit of infinitely
narrow band is a two-pole function:

Sσ (E) = α1σ δ(E − E1σ ) + α2σ δ(E − E2σ )

3. Spectral moments:

M (n)
i iσ (E) = (T0 − μ)n(1 − n−σ ) + (T0 + U − μ)nn−σ

On the other hand it follows from part 2

M (n)
i iσ (E) = α1σ En

1σ + α2σ En
2σ

Compare:

E1σ = T0 − μ; α1σ = 1 − n−σ

E2σ = T0 + U − μ ; α2σ = n−σ
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This agrees with (8.129), (8.130) and (8.131)!

Problem 8.16
One can easily calculate

[cdσ , H ]− = (εd − μ)cdσ +

+
∑

k

Vkdckσ +
[

cdσ ,
1

2
U
∑
σ ′

ndσ ′nd−σ ′

]

−

With (8.334) follows then the equation of motion:

(E + μ − εd − Σdσ (E))Gdσ (E) = � +
∑

k

Vkd

〈〈
ckσ ; c†dσ

〉〉
E

We calculate the “mixed” Green’s function

[ckσ , H ]− = (ε(k) − μ)ckσ + Vkdcdσ

� (E + μ − ε(k))
〈〈

ckσ ; c†dσ

〉〉
E
= Vkd

〈〈
cdσ ; c†dσ

〉〉

So that it follows:

〈〈
ckσ ; c†dσ

〉〉
E
= Vkd

E + μ − ε(k)
Gdσ (E)

With the definition of (8.335) of the “hybridization function”, what remains is:

(E + μ − εd − Σdσ (E))Gdσ (E) = � + Δ(E)Gdσ (E)

This proves the proposition:

Gdσ (E) = �

E + μ − εd − Σdσ (E) − Δ(E)

Problem 8.17

ndσ (1 − ndσ )(Bdσ − εd ) =
∑

k

Vkd

〈
c†kσ cdσ (2nd−σ − 1)

〉

We begin with

∑
k

Vkd

〈
c†kσ cdσ

〉
=

= − 1

π�
I m

+∞∫

−∞
d E f−(E)

∑
k

Vkd

〈〈
cdσ ; c†kσ

〉〉
E−μ

(1)
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We have calculated the mixed Green’s function in Problem 8.16:

〈〈
ckσ ; c†dσ

〉〉
= Vkd

E + μ − ε(k)
Gdσ (E) =

〈〈
cdσ ; c†kσ

〉〉
(2)

Because of the assumption that Vkd is real, the last step can be easily proved:

∑
k

Vkd

〈
c†kσ cdσ

〉
=

= − 1

π�
I m

+∞∫

−∞
d E f−(E)Δ(E − μ)Gdσ (E − μ) (3)

Δ: “hybridization function” (8.335):

Δ(E) =
∑

k

V 2
kd

E + μ − ε(k)

It holds

[cdσ ,H]− = (εd − μ)cdσ + Ucdσ nd−σ +
∑

p

Vpdcpσ

So that

〈
c†kσ cdσ nd−σ

〉
= − 1

U
(εd − μ)

〈
c†kσ cdσ

〉
−

− 1

U

∑
p

Vpd

〈
c†kσ cpσ

〉
+ 1

U

〈
c†kσ [cdσ ,H]−

〉

Now for the band shift we still have to calculate

ndσ (1 − ndσ )(Bdσ − εd ) =
(
−2

εd − μ

U
− 1

)∑
k

Vkd

〈
c†kσ cdσ

〉
−

− 2

U

∑
k,p

Vkd Vpd

〈
c†kσ cpσ

〉
+

+ 2

U

∑
k

Vkd

〈
c†kσ [cdσ ,H]−

〉
(4)

The first summand is known from (3). For the second summand we need
< c†kσ cpσ >:
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(E + μ − ε(p))
〈〈

cpσ ; c†kσ

〉〉
E
= �δpk + Vpd

〈〈
cdσ ; c†kσ

〉〉

(2)= �δpk + Vkd Vpd

E + μ − ε(k)
Gdσ (E)

That means

∑
k,p

Vkd Vpd

〈
c†kσ cpσ

〉
=

= − 1

π�
I m

+∞∫

−∞
d E f−(E)

∑
k,p

Vkd Vpd

〈〈
cpσ ; c†kσ

〉〉
E−μ

= − 1

π�
I m

+∞∫

−∞
d E f−(E)

{
�

∑
k

V 2
kd

E − ε(k)
+

+
∑
k,p

V 2
pd V 2

kd

(E − ε(k))(E − ε(p))
Gdσ (E − μ)

⎫⎬
⎭

= − 1

π�
I m

+∞∫

−∞
d E f−(E)Δ(E − μ) ∗

∗ {� + Δ(E − μ)Gdσ (E − μ)} (5)

Finally it still holds

〈〈
[cdσ ,H]− ; c†kσ

〉〉
E
= E

〈〈
cdσ ; c†kσ

〉〉
E
− �

〈[
cdσ , c†kσ

]
+

〉

(2)= E Vkd
E+μ−ε(k) Gdσ (E) − �

〈[
cdσ , c†kσ

]
+

〉

Spectral theorem:

∑
k

Vkd

〈
c†kσ [cdσ ,H]−

〉
=

= − 1

π�
I m

+∞∫

−∞
d E f−(E)(E − μ)Δ(E − μ)Gdσ (E − μ) (6)

In (4) we need (3), (5) and (6):
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I = (−2
εd − μ

U
− 1)Δ(E − μ)Gdσ (E − μ) −

− 2

U
Δ(E − μ) {� + Δ(E − μ)Gdσ (E − μ)} +

+ 2

U
Δ(E − μ)(E − μ)Gdσ (E − μ)

= −Δ(E − μ)
2

U
� + Δ(E − μ)Gdσ (E − μ) ∗

∗
{
−1 + 2

U
(−εd + μ − Δ(E − μ) + E − μ)

}

Equation of motion:

(E + μ − εd − Σdσ (E) − Δ(E))Gdσ (E) = �

⇔ I = − Δ(E − μ)
2

U
� − Δ(E − μ)Gdσ (E − μ) +

+ 2

U
Δ(E − μ)(� + Σdσ (E − μ)Gdσ (E − μ))

= Δ(E − μ)Gdσ (E − μ)

(
2

U
Σdσ (E − μ) − 1

)

Then it finally follows:

ndσ (1 − ndσ )(Bdσ − εd ) =

= − 1

π�
I m

+∞∫

−∞
d E f−(E)Δ(E − μ)Gdσ (E − μ) ∗

∗
(

2

U
Σdσ (E − μ) − 1

)

This is exactly the proposition (8.352).

Problem A.1
With (A.24) and (A.30) we first have

cβ

(
c†γ |ϕα1 · · ·ϕαN 〉(ε)

) = √
N + 1 aβ |ϕγ ϕα1 · · ·ϕαN 〉(ε)

= {δ(ϕβ − ϕγ )|ϕα1 · · ·ϕαN 〉(ε)+
+ ε1δ(ϕβ − ϕα1 )|ϕγ ϕα2 · · ·ϕαN 〉(ε) +
+ · · · +
+ εN δ(ϕβ − ϕαN )|ϕγ ϕα1 · · ·ϕαN−1〉(ε)

}

On the other hand it is also valid that
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c†γ
(
cβ |ϕα1 · · ·ϕαN 〉(ε)

) = δ(ϕβ − ϕα1 )|ϕγ ϕα2 · · ·ϕαN 〉(ε)

+ · · · +
+ εN−1δ(ϕβ − ϕαN )|ϕγ ϕα1 · · ·ϕαN−1〉(ε)

One multiplies the last equation by ε and then subtracts one equation from the other
to get

(
cβc†γ − εc†γ cβ

) |ϕα1 · · ·ϕαN 〉(ε) = δ(ϕβ − ϕγ )|ϕα1 · · ·ϕαN 〉(ε)

Problem A.2

Bosons :
∣∣· · · nαr · · · nαs · · ·

〉(+)
: arbitrary Fock state.

r �= s :

c†αr
c†αs

∣∣· · · nαr · · · nαs · · ·
〉(+)

= √nαr + 1
√

nαs + 1
∣∣· · · nαr + 1 · · · nαs + 1 · · · 〉(+)

= c†αs
c†αr

∣∣· · · nαr · · · nαs · · ·
〉(+)

=⇒ [
c†αr

, c†αs

]
− = 0.

For r = s this relation is trivially valid.
Since

[
cαr , cαs

]
− =

([
c†αs

, c†αr

]
−
)†

directly follows:

[
cαr , cαs

]
− = 0.

r �= s :

cαr c†αs

∣∣· · · nαr · · · nαs · · ·
〉(+)

= √
nαr

√
nαs + 1

∣∣· · · nαr − 1 · · · nαs + 1 · · · 〉(+)

= c†αs
cαr

∣∣· · · nαr · · · nαs · · ·
〉(+)

.

r = s :
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cαr c†αr

∣∣· · · nαr · · ·
〉(+) = cαr

√
nαr + 1

∣∣· · · nαr + 1 · · · 〉(+)

= (nαr + 1)
∣∣· · · nαr · · ·

〉(+)
,

c†αr
cαr

∣∣· · · nαr · · ·
〉(+) = √

nαr c†αr

∣∣· · · nαr − 1 · · · 〉(+)

= nαr

∣∣· · · nαr · · ·
〉(+)

=⇒ [
cαr , c†αs

]
− = δr,s .

Fermions:

(c†αr
)2
∣∣· · · nαr · · ·

〉(−) = 0 (Pauli principle: Problem A.4).

r < s :

c†αr
c†αs

∣∣· · · nαr · · · nαs · · ·
〉(−)

= c†αr
(−1)Ns δnα s ,0

∣∣· · · nαr · · · nαs + 1 · · · 〉(−)

= (−1)Nr (−1)Ns δnα s ,0δnα r ,0

∣∣· · · nαr + 1 · · · nαs + 1 · · · 〉(−)
,

c†αs
c†αr

∣∣· · · nαr · · · nαs · · ·
〉(−)

= (−1)Nr δnα r ,0c†αs

∣∣· · · nαr + 1 · · · nαs · · ·
〉(−)

= (−1)Nr (−1)N ′
s δnα r ,0δnα s ,0

∣∣· · · nαr + 1 · · · nαs + 1 · · · 〉(−)
,

N ′
s = Ns + 1

=⇒ (c†αr
c†αs

+ c†αs
c†αr

)
∣∣· · · nαr · · · nαs · · ·

〉(−) = 0

=⇒ [
c†αr

, c†αs

]
+ = 0.

Since

[
cαr , cαs

]
+ = (

[
c†αs

, c†αr

]
+)†

again the second anti-commutator relation follows directly:

[
cαr , cαs

]
+ = 0

r = s :

cαr c†αr

∣∣· · · nαr · · ·
〉(−) = cαr (−1)Nr δnα r ,0

∣∣· · · nαr + 1 · · · 〉(−) =
= (−1)2Nr δnα r ,0

∣∣· · · nαr · · ·
〉(−) =

= δnα r ,0

∣∣· · · nαr · · ·
〉(−)

,

c†αr
cαr

∣∣· · · nαr · · ·
〉(−) = δnα r ,1

∣∣· · · nαr · · ·
〉(−)

.
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Since in every case nαr = 0 or 1, we have

(cαr c†αr
+ c†αr

cαr )
∣∣· · · nαr · · ·

〉(−) = ∣∣· · · nαr · · ·
〉(−)

.

r < s :

cαr c†αs

∣∣· · · nαr · · · nαs · · ·
〉(−)

= cαr (−1)Ns δnα s ,0

∣∣· · · nαr · · · nαs + 1 · · · 〉(−)

= (−1)Nr+Ns δnα r ,1δnα s ,0

∣∣· · · nαr − 1 · · · nαs + 1 · · · 〉(−)
,

c†αs
cαr

∣∣· · · nαr · · · nαs · · ·
〉(−)

= c†αs
(−1)Nr δnα r ,1

∣∣· · · nαr − 1 · · · nαs · · ·
〉(−)

= (−1)Nr+N ′′
s δnα r ,1δnα s ,0

∣∣· · · nαr − 1 · · · nαs + 1 · · · 〉(−)
,

N ′′
s = Ns − 1

=⇒ (cαr c†αs
+ c†αs

cαr )
∣∣· · · nαr · · · nαs · · ·

〉(−) = 0.

So altogether we have

[
cαr , c†αs

]
+ = δr,s .

Problem A.3

1. Bosons:

n̂α c†β = c†αcαc†β

= c†αc†βcα + δαβ c†α

= c†βc†αcα + δαβ c†α

= c†β n̂α + δαβ c†α

So that we have

[̂
nα, c†β

]
−
= δαβ c†α

Fermions:
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n̂α c†β = c†αcαc†β

= −c†αc†βcα + δαβ c†α

= c†βc†αcα + δαβ c†α

= c†β n̂α + δαβ c†α

So that just as in the case of Bosons we get

[̂
nα, c†β

]
−
= δαβ c†α

2. Bosons :

n̂α cβ = c†αcαcβ

= c†αcβcα = cβc†αcα − δαβ cα

= cβ n̂α − δαβ cα

With this follows:

[̂
nα, cβ

]
− = −δαβ cα

Fermions:

n̂α cβ = c†αcαcβ

= −c†αcβcα = cβc†αcα − δαβ cα

= cβ n̂α − δαβ cα

With this, as in the case of Bosons we get

[̂
nα, cβ

]
− = −δαβ cα

3. For Bosons as well as for Fermions, with part 1

[
N̂ , c†α

]
− =

∑
γ

[̂
nγ , c†α

]
− =

∑
γ

δαγ c†α = c†α

is valid.
4. For Bosons as well as Fermions with part 2

[
N̂ , cα

]
− =

∑
γ

[̂
nγ , cα

]
− =

∑
γ

(−δαγ cα) = −cα

is valid.
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Problem A.4
1.

[
cα, cβ

]
+ = 0 � [cα, cα]+ = 2c2

α = 0 � c2
α = 0

[
c†α, c†β

]
+
= 0 �

[
c†α, c†α

]
+ = 2

(
c†α
)2 = 0

�
(
c†α
)2 = 0 (Pauli principle)

2.

n̂2
α = c†αcαc†αcα = c†α

(
1 − c†αcα

)
cα

= c†αcα − (c†α)2 (cα)2 1.)= n̂α (Pauli principle)

3.

cα n̂α = cαc†αcα = (1 − c†αcα

)
cα

1.)= cα

c†α n̂α = c†αc†αcα
1.)= 0

4.

n̂α cα = c†αcαcα
1.)= 0

n̂α c†α = c†αcαc†α = c†α
(
1 − c†αcα

) 1.)= c†α

Problem A.5
Proof by complete induction

N = 1 :

〈0| cβ1 c†α1
|0〉 = 〈0| [δ(β1, α1) ± c†α1

cβ1

] |0〉
= δ(β1, α1) 〈0|0〉 ± 〈0| c†α1

cβ1 |0〉 = δ(β1, α1)

because cβ1 10 > = 0.

N − 1 −→ N :
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〈0|cβN · · · cβ1 c†α1
· · · c†αN

|0〉
↙taking cβ1 to the right

=δ(β1, α1) 〈0| cβN · · · cβ2 c†α2
· · · c†αN

|0〉+
+ (±)1δ(β1, α2) 〈0| cβN · · · cβ2 c†α1

c†α3
· · · c†αN

|0〉+
+ · · · +
+ (±)N−1δ(β1, αN ) 〈0| cβN · · · cβ2 c†α1

c†α2
· · · c†αN−1

|0〉 =
↙condition for induction

=δ(β1, α1)
∑
Pα

(±)pαPα [δ(β2, α2) · · · δ(βN , αN )]+

(±)1δ(β1, α2)
∑
Pα

(±)pαPα [δ(β2, α1)δ(β3, α3) · · · δ(βN , αN )]+

+ · · ·+
+ (±)N−1δ(β1, αN )

∑
Pα

(±)pαPα [δ(β2, α1)δ(β3, α2) · · ·

· · · δ(βN , αN−1)
]

=
∑
Pα

(±)pαPα [δ(β1, α1)δ(β2, α2) · · · δ(βN , αN )] q.e.d.

Problem A.6
1.

[̂
nα, c†β

]
− = c†αcαc†β − c†βc†αcα

= δ(α − β) c†α ± c†αc†βcα − c†βc†αcα

= δ(α − β) c†α + c†βc†αcα − c†βc†αcα

= δ(α − β) c†α

2.

[̂
nα, cβ

]
− = c†αcαcβ − cβc†αcα

= c†αcαcβ − δ(α − β) cα ∓ c†αcβcα

= c†αcαcβ − δ(α − β) cα − c†αc†αcβ

= −δ(α − β) cα

These relations are equally valid for both Bosons and Fermions.

Problem A.7

N̂ =
∫

dα n̂α.
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We first calculate the following commutators:

[
N̂ , c†β

]
−
=
∫

dα
[
n̂α, c†β

]
−

Problem A.6=
∫

dα c†αδ(α − β) = c†β,

[
N̂ , cβ

]
− =

∫
dα
[
n̂α, cβ

]
−

Problem A.6=
∫

dα [−δ(α − β)cα] = −cα.

We therefore have

N̂c†β = c†β(N̂ + 1l);

N̂cβ = cβ(N̂ − 1l).

1.

N̂
(

c†β
∣∣ϕα1 · · ·

〉(±)
)
= c†β(N̂ + 1l)

∣∣ϕα1 · · ·
〉(±)

= (N + 1)
(

c†β
∣∣ϕα1 · · ·

〉(±)
)

As proposed, it is an eigenstate. The eigenvalue is N + 1. The name creator for c†β
is therefore appropriate.

2.

N̂
(

cβ

∣∣ϕα1 · · ·
〉(±)
)
= cβ(N̂ − 1l)

∣∣ϕα1 · · ·
〉(±)

= (N − 1)
(

cβ

∣∣ϕα1 · · ·
〉(±)
)

cβ

∣∣ϕα1 · · ·
〉(±)

is also an eigenstate of the particle number operator N̂ with the eigen-
value N − 1. The name annihilator for cβ is therefore appropriate.

Problem A.8
Plane waves:

ϕk(r) = 1√
V

eik·r = 〈r|k〉

Kinetic energy:
One-particle basis: |kσ 〉 = |k〉|σ 〉
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〈
kσ

∣∣∣∣ p2

2m

∣∣∣∣ k′σ ′
〉
= �

2k ′2

2m

〈
kσ | k′σ ′〉 = �

2k ′2

2m
δkk′δσσ ′

�

N∑
i=1

p2
i

2m
=
∑

kk′σσ ′

〈
kσ

∣∣∣∣ p2

2m

∣∣∣∣k′σ ′
〉

c†kσ ck′σ ′

=
∑
kσ

�
2k2

2m
c†kσ ckσ

Interaction:

〈
k1σ1, k2σ2

∣∣∣∣∣
1∣∣̂r (1) − r̂ (2)

∣∣
∣∣∣∣∣k3σ3, k4σ4

〉

= δσ1σ3δσ2σ4

〈
k1 k2

∣∣∣∣∣
1∣∣̂r (1) − r̂ (2)

∣∣
∣∣∣∣∣k3 k4

〉

The interaction is spin independent. Therefore the spin parts of the eigenstates can
be evaluated directly and they yield the two Kronecker deltas. The two-particle
states used are not symmetrized:

〈
k1 k2

∣∣∣∣∣
1∣∣̂r (1) − r̂ (2)

∣∣
∣∣∣∣∣k3 k4

〉

=
∫ ∫

d3r1d3r2

〈
k1 k2

∣∣∣∣∣
1∣∣̂r (1) − r̂ (2)

∣∣
∣∣∣∣∣ r1 r2

〉
〈r1 r2 | k3 k4〉

=
∫ ∫

d3r1d3r2
1

|r1 − r2|
〈
k(1)

1 | r(1)
1

〉 〈
k(2)

2 | r(2)
2

〉
∗

∗
〈
r(1)

1 | k(1)
3

〉 〈
r(2)

2 | k(2)
4

〉

= 1

V 2

∫ ∫
d3r1d3r2

1

|r1 − r2| ei(k3−k1)·r1 ei(k4−k2)·r2

= δk1+k2,k3+k4

1

V

∫
d3r

1

r
ei(k3−k1)·r

The last step is obtained by introducing the centre of mass and relative coordinates.
We get the Kronecker delta when the centre of mass part is integrated out. The
remaining integral is calculated using a convergence ensuring factor α:
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lim
α→0

∫
d3r

1

r
eiq·r eαr = lim

α→0
2π

∫ +1

−1
dx
∫ ∞

0
dr r eiqr x eαr

= lim
α→0

2π

iq

∫ ∞

0
dr
(
eiqr − e−iqr

)
e−αr

= lim
α→0

4π

q2 + α2

= 4π

q2

Then the interaction matrix element reads as

〈
k1σ1, k2σ2

∣∣∣∣∣
1∣∣̂r (1) − r̂ (2)

∣∣
∣∣∣∣∣k3σ3, k4σ4

〉

= δσ1σ3δσ2σ4δk1+k2,k3+k4

4π

V |k3 − k1|2

Interaction operator in second quantization:

1

2

i �= j∑
i j

1∣∣̂ri − r̂ j

∣∣ =

= 1

2

∑
k1σ1,k2σ2,k3σ3,k4σ4

〈
k1σ1, k2σ2

∣∣∣∣∣
1∣∣̂r (1) − r̂ (2)

∣∣
∣∣∣∣∣k3σ3, k4σ4

〉
∗

∗c†k1σ1
c†k2σ2

ck4σ4 ck3σ3

= 1

2

∑
k1σ1,k2σ2,k3

4π

V |k3 − k1|2
c†k1σ1

c†k2σ2
ck1+k2−k3σ2 ck3σ1

We further set

k1 → k + q ; k2 → p − q ; k3 → k ; σ1 → σ ; σ2 → σ ′

and have the Hamiltonian of the N -electron system in second quantization:

HN =
∑
kσ

ε0(k)c†kσ ckσ + 1

2

∑
kpqσσ ′

v0(q)c†k+qσ c†p−qσ ′cpσ ′ckσ

ε0(k) = �
2k2

2m
; v0(q) = e2

ε0V q2
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Problem A.9

n̂kσ = c†kσ ckσ =⇒ [n̂kσ , n̂k′σ ′]− = 0

Therefore the kinetic energy commutes in any case with N̂ . Therefore we only have
to calculate the commutator with the interaction:

1

2

∑
kpq
σσ ′

k′σ ′′

v0(q)
[
c†k+qσ c†p−qσ ′cpσ ′ckσ , c†k′σ ′′ck′σ ′′

]
−

=1

2

∑
k,p,q

k′ ,σ,σ ′,σ ′′

v0(q)
{
δkk′δσσ

′′ c†k+qσ c†p−qσ ′cpσ ′ck′σ ′′−

− δp,k′δσ ′σ ′′c†k+qσ c†p−qσ ′ckσ ck′σ ′′+
+ δp−qk′δσ ′σ ′′c†k′σ ′′c

†
k+qσ cpσ ′ckσ−

δk+qk′δσσ ′′c†k′σ ′′c
†
p−qσ ′cpσ ′ckσ

}

=1

2

∑
k,p,q
σ,σ ′

v0(q)
{

c†k+qσ c†p−qσ ′cpσ ′ckσ − c†k+qσ c†p−qσ ′ckσ cpσ ′+

+c†p−qσ ′c
†
k+qσ cpσ ′ckσ − c†k+qσ c†p−qσ ′cpσ ′ckσ

}
= 0

=⇒ [
HN , N̂

]
− = 0

HN and N̂ have common eigenstates. The particle number is a conserved quantity.

Problem A.10

1. Hamiltonian of the two-particle system:

H = H1 + H2 = − �
2

2m
(Δ1 + Δ2) + V (x1) + V (x2)

Unsymmetrized eigenstate:

|ϕα1ϕα2〉 = |ϕ(1)
α1
〉|ϕ(2)

α2
〉

Position space representation:

〈x1x2|ϕα1ϕα2〉 = ϕn(x1)ϕm(x2)χS(m(1)
S )χS(m(2)

S′ )

χS: spin function (identical particles have the same spin S)

α1 = (n, mS); α2 = (m, mS′ )
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2. Solution of the one-particle problem:

(
− �

2

2m
Δ + V (x)

)
ϕ(x) = Eϕ(x)

We first have

ϕ(x) ≡ 0 for x < 0 and x > a

For 0 ≤ x ≤ a we have to solve

− �
2

2m
Δϕ(x) = Eϕ(x)

Ansatz for solution:

ϕ(x) = c sin(γ1x + γ2)

Boundary conditions:

ϕ(0) = 0 =⇒ γ2 = 0,

ϕ(a) = 0 =⇒ γ1 = n
π

a
; n = 1, 2, 3, . . .

Energy eigenvalues:

E = �
2

2m
γ 2

1 =⇒ En = �
2π2

2ma2
n2; n = 1, 2, . . .

Eigen functions:

ϕn(x) = c sin
(

n
π

a
x
)

,

1
!= c2

∫ a

0
sin2

(
n
π

a
x
)

dx =⇒ c =
√

2

a
,

ϕn(x) =
{√

2
a sin

(
n π

a x
)

for 0 ≤ x ≤ a,

0 otherwise

3. Two-particle problem:

|ϕα1ϕα2〉(±) −→ 1√
2

{
ϕn(x1)ϕm(x2)χS(m(1)

S )χS(m(2)
S′ )±

± ϕn(x2)ϕm(x1)χS(m(2)
S )χS(m(1)

S′ )
}
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(+): Bosons,
(−): Fermions: (n, mS) �= (m, mS′ ) because of Pauli’s principle.

4. Ground state energy of the N -particle system:
Bosons:
All particles in the n = 1-state:

E0 = N
�

2π2

2ma2
.

Fermions:

E0 = 2

N
2∑

n=1

�
2π2

2ma2
n2 ≈ �

2π2

2ma2

N 3

24

with

N
2∑

n=1

n2 N�1≈
∫ N

2

1
n2dn = 1

3

(
N 3

8
− 1

)
≈ N 3

24

Problem A.11

1. Non-interacting, identical Bosons or Fermions:

H =
N∑

i=1

H (i)
1

Eigenvalue equation:

H (i)
1 |ϕ(i)

r 〉 = εr |ϕ(i)
r 〉, 〈ϕ(i)

r |ϕ(i)
s 〉 = δrs

One-particle operator in second quantization:

H =
∑
r,s

〈ϕr |H1|ϕs〉a†
r as =

∑
r,s

εsδrsa†
r as

=⇒ H =
∑

r

εr a†
r ar =

∑
r

εr n̂r .

2. Unnormalized density matrix of the grand canonical ensemble:

ρ = exp[−β(H − μN̂ )],

N̂ =
∑

r

n̂r

The normalized Fock states
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|N ; n1n2 . . . ni . . .〉(ε)

are the eigenstates of n̂r and therefore also of N̂ und H :

H |N ; n1 . . .〉(ε) =
(∑

r

εr nr

)
|N ; n1 . . .〉(ε),

N̂ |N ; n1 . . .〉(ε) = N |N ; n1 . . .〉(ε)

That is why it is convenient to build the trace with these Fock states:

(ε)
〈
N ; n1n2 . . .

∣∣exp[−β(H − μN̂ )]
∣∣ N ; n1n2 . . .

〉(ε)

= exp

[
−β
∑

r

(εr − μ)nr

]
with

∑
r

nr = N

From this follows:

Trρ =
∞∑

N=0

∑
{nr }

(
∑

nr =N )

exp

[
−β
∑

r

(εr − μ)nr

]

=
∞∑

N=0

∑
{nr }

(
∑

nr =N )

∏
r

e−β(εr−μ)nr

=
∑

n1

∑
n2

. . .
∑

nr

. . .
∏

r

e−β(εr−μ)nr

=
(∑

n1

e−βn1(ε1−μ)

)(∑
n2

e−βn2(ε2−μ)

)
. . .

Grand canonical partition function:

Ξ(T, V, μ) = Trρ =
∏

r

(∑
nr

e−βnr (εr−μ)

)

Bosons (nr = 0, 1, 2, . . .):

ΞB(T, V, μ) =
∏

r

1

1 − e−β(εr−μ)

Fermions (nr = 0, 1):

ΞF (T, V, μ) =
∏

r

(
1 + e−β(εr−μ)

)
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3. Expectation value of the particle number:

〈N̂ 〉 = 1

Ξ
Sp(ρ N̂ )

To build the trace Fock states are preferred because they are the eigenstates of
N̂ :

〈N̂ 〉 = 1

Ξ

∞∑
N=0

∑
{nr }

(
∑

nr =N )

{
N exp

[
−β
∑

r

(εr − μ)nr

]}

= 1

β

∂

∂μ
ln Ξ

With part 2

∂

∂μ
ln ΞB = ∂

∂μ

{
−
∑

r

ln
[
1 − e−β(εr−μ)

]}

= −
∑

r

−βe−β(εr−μ)

1 − e−β(εr−μ)

= β
∑

r

1

eβ(εr−μ) − 1
,

∂

∂μ
ln ΞF = ∂

∂μ

{∑
r

ln
[
1 + e−β(εr−μ)]

}

= β
∑

r

e−β(εr−μ)

1 + e−β(εr−μ)

= β
∑

r

1

eβ(εr−μ) + 1

This means

〈N̂ 〉 =
{∑

r
1

eβ(εr −μ)−1 Bosons∑
r

1
eβ(εr −μ)+1 Fermions

4. Internal energy:

U = 〈H〉 = 1

Ξ
Tr(ρH )

Fock states are the eigenstates of H and therefore appropriate for building the
trace required here:
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U = 1

Ξ

∞∑
N=0

∑
{nr }

(
∑

nr =N )

[(∑
i

εi ni

)
e−β

∑
r (εr−μ)nr

]

= − ∂

∂β
ln Ξ + μ〈N̂ 〉

− ∂

∂β
ln ΞB =

∑
r

(εr − μ)e−β(εr−μ)

1 − e−β(εr−μ)

= −μ〈N̂ 〉 +
∑

r

εr

eβ(εr−μ) − 1
,

− ∂

∂β
ln ΞF = −

∑
r

−(εr − μ)e−β(εr−μ)

1 + e−β(εr−μ)

= −μ〈N̂ 〉 +
∑

r

εr

eβ(εr−μ) + 1

We finally get

U =
{∑

r
εr

eβ(εr −μ−1 Bosons∑
r

εr
eβ(εr −μ)+1 Fermions.

5. Fock states are also eigenstates of the occupation number operator:

〈n̂i 〉 = 1

Ξ
Tr(ρn̂i )

= 1

Ξ

∞∑
N=0

∑
{nr }

(
∑

nr =N )

[
ni e

−β
∑

r (εr−μ)nr

]

= − 1

β

∂

∂εi
ln Ξ,

− 1

β

∂

∂εi
ln ΞB = + 1

β

∑
r

+βe−β(εr−μ)

1 − e−β(εr−μ)

∂εr

∂εi

= 1

eβ(εi−μ) − 1
(Bose function),

− 1

β

∂

∂εi
ln ΞF = − 1

β

∑
r

−βe−β(εr−μ)

1 + e−β(εr−μ)

∂εr

∂εi

= 1

eβ(εi−μ) + 1
(Fermi function).

It follows:
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〈n̂i 〉 =
{
{exp[β(εi − μ) − 1}−1 Bosons,

{exp[β(εi − μ)] + 1}−1 Fermions.

One immediately recognizes by comparison with the earlier problems:

〈N̂ 〉 =
∑

r

〈n̂r 〉; U =
∑

r

εr 〈n̂r 〉

Problem B.1

ρ

β∫

0

dλ Ȧ(t − iλ�) = ρ

β∫

0

dλ
i

�

d

dλ
A(t − iλ�) =

= i

�
ρ [A(t − i�β) − A(t)] =

= i

�
ρ
[
e

i
�

(−i�β)H A(t)e−
i
�

(−i�β)H − A(t)
]
=

= i

�
ρ
(
eβH A(t)e−βH − A(t)

) =
= i

�

[
e−βHeβH A(t)e−βH

Sp(e−βH)
− ρ A(t)

]
−
=

= i

�
(A(t)ρ − ρ A(t)) = i

�
[A(t), ρ]− q.e.d.

Problem B.2
〈[

A(t), B(t ′)
]
−
〉
= Sp

{
ρ
[
A(t), B(t ′)

]
−
}

= Sp
{
ρ A(t)B(t ′) − ρB(t ′)A(t)

}
= Sp

{
B(t ′)ρ A(t) − ρB(t ′)A(t)

}
= Sp

{[
B(t ′), ρ

]
− A(t)

}

(cyclic invariance of trace).

Substitute Kubo identity:

〈〈A(t); B(t ′)〉〉ret = −iΘ(t − t ′)
〈[

A(t), B(t ′)
]
−
〉
=

= −�Θ(t − t ′)

β∫

0

dλSp
{
ρ Ḃ(t ′ − iλ�)A(t)

} =

= −�Θ(t − t ′)

β∫

0

dλ
〈
Ḃ(t ′ − iλ�)A(t)

〉
q.e.d.
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Problem B.3

〈B(0)A(t + iβ)〉 = 1

Ξ
Sp
{

e−βHBe
i
�
H(t+i�β) Ae−

i
�
H(t+i�β)

}

= 1

Ξ
Sp
{

eβHe−βHBe
i
�
Ht e−βH Ae−

i
�
Ht
}

= 1

Ξ
Sp
{

e−βHe
i
�
Ht Ae−

i
�
Ht B
}

= 〈A(t)B(0)〉

Here the cyclic invariance of trace has been used several times.

Problem B.4

1. t − t ′ > 0:
The integrand has a pole at x = x0 = −i0+. Residue:

c−1 = lim
x→x0

(x − x0)
e−i x(t−t ′)

x + i0+ = lim
x→x0

e−i x(t−t ′) = 1

Since t − t ′ > 0, the semicircle closes in the lower half-plane; then the expo-
nential function sees to it that the contribution from the semicircle vanishes. The
contour runs mathematically negatively. Therefore it follows that

Θ(t − t ′) = i

2π
(−2π i)1 = 1

2. t − t ′ < 0:
In order that no contribution from the semicircle appears, now it closes in the
upper half-plane. Then it follows that

Θ(t − t ′) = 0

as there is no pole in the region of integration.

Problem B.5

f (ω) =
∫ +∞

−∞
dt f̄ (t)eiωt
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Let the integral exist for real ω. Set

ω = ω1 + iω2

=⇒ f (ω) =
∫ +∞

−∞
dt f̄ (t)eiω1t e−ω2t

1. f̄ (t) = 0 for t < 0:

=⇒ f (ω) =
∫ ∞

0
dt f̄ (t)eiω1t e−ω2t

Converges for all ω2 > 0, therefore it is possible to analytically continue in the
upper half-plane.

2. f̄ (t) = 0 for t > 0:

=⇒ f (ω) =
∫ 0

−∞
dt f̄ (t)eiω1t e−ω2t

Converges for all ω2 < 0, therefore it is possible to analytically continue in the
lower half-plane.

Problem B.6
With

H0 =
∑
kσ

(ε(k) − μ)a†
kσ akσ

we first calculate

[akσ ,H0]− =
∑
k′σ ′

(ε(k′) − μ)
[
akσ , a†

k′σ ′ak′σ ′
]
−
=

=
∑
k′σ ′

(ε(k′) − μ)δkk′δσσ ′ak′σ ′ = (ε(k) − μ)akσ .

The interaction term requires more effort:
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[akσ ,H−H0]−

= 1

2

∑
k′pq
σ ′′σ ′

vk′p(q)
[
akσ , a†

k′+qσ ′′a
†
p−qσ ′apσ ′ak′σ ′′

]
−

= 1

2

∑
k′pq
σ ′′σ ′

vk′p(q)
(
δσσ ′′δk,k′+qa†

p−qσ ′apσ ′ak′σ ′′

−δσσ ′δkp−qa†
k′+qσ ′′apσ ′ak′σ ′′

)

= 1

2

∑
pqσ ′

vk−qp(q)a†
p−qσ ′apσ ′ak−qσ

− 1

2

∑
k′qσ ′′

vk′k+q(q)a†
k′+qσ ′′ak+qσ ak′σ ′′

In the first summand:

q → −q; vk+q,p(−q) = vp,k+q(q)

In the second summand:

k′ → p; σ ′′ → σ ′

Then the two summands can be combined:

[akσ ,H−H0]− =
∑
pqσ ′

vp,k+q(q)a†
p+qσ ′apσ ′ak+qσ

Equation of motion:

(E − ε(k) + μ)Gret
kσ (E)

= � +
∑
pqσ ′

vp,k+q(q)〈〈a†
p+qσ ′apσ ′ak+qσ ; a†

kσ 〉〉ret
E

Problem B.7

H =
∑
kσ

ε(k)a†
kσ akσ − μN̂ =

∑
kσ

(ε(k) − μ)a†
kσ akσ

One can easily calculate
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[akσ ,H]− =
∑
k′σ ′

(ε(k′) − μ)[akσ , a†
k′σ ′ak′σ ′]−

=
∑
k′σ ′

(ε(k′) − μ)δkk′δσσ ′ak′σ ′

= (ε(k) − μ)akσ

From this it further follows that

[[akσ ,H]−,H]− = (ε(k) − μ)[akσ ,H]− = (ε(k) − μ)2akσ

For the spectral moments this means

M (0)
kσ = 〈[akσ , a†

kσ ]+〉
= 1

M (1)
kσ =

〈
[[akσ ,H]−, a†

kσ ]+
〉

= (ε(k) − μ)〈[akσ , a†
kσ ]+〉

= (ε(k) − μ)

M (2)
kσ =

〈[
[[akσ ,H]−,H]−, a†

kσ

]
+

〉

= (ε(k) − μ)2〈[akσ , a†
kσ ]+〉

= (ε(k) − μ)2

...

Then by complete induction one gets immediately

M (n)
kσ = (ε(k) − μ)n; n = 0, 1, 2, . . .

The relationship (B.99) with the spectral density,

M (n)
kσ = 1

�

∫ +∞

−∞
d E En Skσ (E)

then leads to the solution:

Skσ (E) = �δ(E − ε(k) + μ)

Problem B.8

1. Creation and annihilation operators for Cooper pairs:

b†
k = a†

k↑ a†
−k↓ ; bk = a−k↓ ak↑
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Fundamental commutation relations
(a)

[bk, bk′ ]− =
[
b†

k, b†
k′

]
−
= 0

because the creation and annihilation operators of fermions anticommute among
themselves. Therefore products of even number of Fermion construction opera-
tors then commute.
(b)

[
bk, b†

k′

]
−
=
[
a−k↓ak↑, a†

k′↑a†
−k′↓
]
−

= δkk′a−k↓a†
−k′↓ − δ−k−k′a†

k′↑ak↑
= δkk′(1 − n̂−k↓ − n̂k↑)

Therefore the Cooper pairs inspite of their total spin being zero are not real
Bosons because only two of the three basic commutation relations are satisfied.
(c) Since

[bk, bk′ ]+ = 2bkbk′ �= 0 for k �= k′

they are naturally also not real Fermions, either, even though

(
b†

k

)2
= b2

k = 0

is valid for them.
2. Equation of motion:

[
akσ , H∗]

− =
∑
pσ ′

t(p)
[
akσ , a†

pσ ′apσ ′
]
−

− Δ
∑

p

[
akσ , a−p↓ap↑ + a†

p↑a†
−p↓
]
−

=
∑
pσ ′

t(p)δσσ ′δkpapσ ′

− Δ
∑

p

(
δkpδσ↑a†

−p↓ − δk−pδσ↓a†
p↑
)

= t(k)akσ − Δ(δσ↑ − δσ↓)a†
−k−σ ,

zσ =
{
+1, for σ =↑,

−1, for σ =↓

Then the equation of motion reads as
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(E − t(k))Gkσ (E) = � − Δzσ 〈〈a†
−k−σ ; a†

kσ 〉〉.

The Green’s function on the right-hand side prevents a direct solution. Therefore
we set up the corresponding equation of motion for this:

[
a†
−k−σ , H∗

]
−

= −t(−k)a†
−k−σ − Δ

∑
p

[
a†
−k−σ , a−p↓ap↑

]
−

= −t(k)a†
−k−σ − Δ

∑
p

(
δkpδ−σ↓a†

p↑ − δ−kpδ−σ↑a−p↓
)

= −t(k)a†
−k−σ − Δzσ akσ

This gives us the following equation of motion:

(E + t(k))〈〈a†
−k−σ ; a†

kσ 〉〉 = −Δzσ Gkσ (E)

〈〈a†
−k−σ ; a†

kσ 〉〉 = − zσΔ

E + t(k)
Gkσ (E)

This is substituted in the equation of motion for Gret
kσ (E):

(
E − t(k) − Δ2

E + t(k)

)
Gkσ (E) = �

Excitation energies:

E(k) = +
√

t2(k) + Δ2 −→
t→0

Δ (Energy gap).

Green’s function:

Gkσ (E) = �(E + t(k))

E2 − E2(k)

Imposing the boundary conditions:

Gret
kσ (E) = �

2E(k)

[
t(k) + E(k)

E − E(k) + i0+ − t(k) − E(k)

E + E(k) + i0+

]

3. For Δ we need the expectation value:

〈a†
k↑a†

−k↓〉

Its determination is via spectral theorem and the Green’s function used in part 2.:
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〈〈a†
−k↓; a†

k↑〉〉 =
−Δ

E + t(k)
Gk↑(E) = −�Δ

E2 − E2(k)

Taking into account the boundary conditions we obtain for the corresponding
retarded function:

〈〈a†
−k↓; a†

k↑〉〉ret
E

= �Δ

2E(k)

[
1

E + E(k) + i0+ − 1

E − E(k) + i0+

]

The spectral density corresponding to this

S−k↓;k↑(E) = �Δ

2E(k)
[δ(E + E(k)) − δ(E − E(k))]

Spectral theorem:

〈a†
k↑a†

−k↓〉

= 1

�

+∞∫

−∞
d E

S−k↓;k↑(E)

exp(βE) + 1

= Δ

2E(k)

(
1

exp(−βE(k)) + 1
− 1

exp(βE(k)) + 1

)

= Δ

2E(k)
tanh

(
1

2
βE(k)

)

Then we finally get

Δ = 1

2
ΔV

∑
k

tanh
(

1
2β
√

t2(k) + Δ2
)

√
t2(k) + Δ2

Δ = Δ(T ) ⇒ Energy gap is T dependent. Special case:

T → 0 ⇒ tanh

(
1

2
β
√

t2(k) + Δ2

)
→ 1
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Problem B.9

1. We first show that
[
· · · [[akσ , H∗]−, H∗]

− · · · , H∗
]
−

=
{

(t2(k) + Δ2)n , if p = 2n
(t2(k) + Δ2)n(t(k) akσ − zσΔa†

−k−σ ) , if p = 2n + 1

is valid.
Here n = 0, 1, 2, · · · . We prove this by complete induction.
Induction’s start p = 1, 2:

[
akσ , H∗]

− = t(k)akσ − zσΔa†
−k−σ (see Problem B.8)

[[
akσ , H∗]

− , H∗
]
−
= t(k)

(
t(k)akσ − zσΔa†

−k−σ

)

− zσΔ
(
−t(k)a†

−k−σ − zσΔakσ

)

= (t2(k) + Δ2
)

akσ .

Induction’s end p −→ p + 1:

(a) p even:

[
. . .
[[

akσ , H∗]
− , H∗

]
−

, . . . , H∗
]
−︸ ︷︷ ︸

(p+1)-fold commutator

= (t2 + Δ2)
p
2
[
akσ , H∗]

−

= (t2 + Δ2)
p
2

(
takσ − zσΔa†

−k−σ

)

(b) p odd:

[
. . .
[[

akσ , H∗]
− , H∗

]
−

, . . . , H∗
]
−︸ ︷︷ ︸

(p+1)-fold commutator

= (t2 + Δ2)
1
2 (p−1)

[
takσ − zσΔa†

−k−σ , H∗
]
−

= (t2 + Δ2)
1
2 (p−1)

[
t(takσ − zσΔa†

−k−σ )

−zσΔ(−ta†
−k−σ − Δzσ akσ )

]

= (t2 + Δ2)
1
2 (p+1)akσ q.e.d.
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For the spectral moments of the one-electron spectral density we directly get
n = 0, 1, 2, . . .

M (2n)
kσ = (t2(k) + Δ2

)n
,

M (2n+1)
kσ = (t2(k) + Δ2)n t(k).

2. We use

M (n)
kσ = 1

�

+∞∫

−∞
d E En Skσ (E)

Determining equations from the first four spectral moments:

α1σ + α2σ = �,

α1σ E1σ + α2σ E2σ = �t,

α1σ E2
1σ + α2σ E2

2σ = �(t2 + Δ2),

α1σ E3
1σ + α2σ E3

2σ = �(t2 + Δ2)t

Reformulating them:

α2σ (E2σ − E1σ ) = �(t − E1σ ),

α2σ E2σ (E2σ − E1σ ) = �
[
t2 + Δ2 − t E1σ

]
,

α2σ E2
2σ (E2σ − E1σ ) = �

[
(t2 + Δ2)(t − E1σ )

]

After division follows:

E2
2σ = t2 + Δ2 =⇒ E2σ (k) = +

√
t2(k) + Δ2 ≡ E(k)

This has the further consequence:

E(k) = t2 + Δ2 − t E1σ

t − E1σ

= t + Δ2

t − E1σ

=⇒ (E(k) − t(k))−1Δ2 = t(k) − E1σ (k)

=⇒ E1σ (k) = t(k) − Δ2

E(k) − t(k)
= E(k)t(k) − E2(k)

E(k) − t(k)

=⇒ E1σ (k) = −E(k) = −E2σ (k)

Spectral weights:
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α2σ (k)2E(k) = �(t(k) + E(k))

=⇒ α2σ (k) = �
t(k) + E(k)

2E(k)
,

α1σ (k) = � − α2σ (k) = �
E(k) − t(k)

2E(k)
,

=⇒ Skσ (E) = �

[
E(k) − t(k)

2E(k)
δ(E + E(k))

+ E(k) + t(k)

2E(k)
δ(E − E(k))

]

Problem B.10
Free energy:

F(T, V ) = U (T, V ) − T S(T, V ) = U (T, V ) + T

(
∂ F

∂T

)
V

So that for the internal energy we get

U (T, V ) = −T 2

{
∂

∂T

(
1

T
F(T, V )

)}
V

F(0, V ) ≡ U (0, V )

� U (T, V ) − U (T, 0) = −T 2

{
∂

∂T
(F(T, V ) − F(0, V ))

}

−
∫ T

0
dT ′ U (T ′, V ) − U (0, V )

T ′2 =

= 1

T
(F(T, V ) − F(0, V )) − lim

T→0

{
1

T
(F(T, V ) − F(0, V ))

}

Third law:

lim
T→0

{
1

T
(F(T, V ) − F(0, V ))

}
=
(

∂ F

∂T

)
V

(T = 0)

= −S(T = 0, V )
!= 0

Then it follows that
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F(T, V ) = F(0, V ) − T
∫ T

0
dT ′ U (T ′, V ) − U (0, V )

T ′2

Problem B.11

H0 =
∑
kσ

(ε(k) − μ)a†
kσ akσ

Then one can easily calculate

[akσ ,H0]− = (ε(k) − μ)akσ ,

[a†
kσ ,H0]− = −(ε(k) − μ)a†

kσ ,

[a†
kσ ak′σ ′,H0]− = [a†

kσ ,H0]−ak′σ ′ + a†
kσ [ak′σ ′ ,H0]−

= −(ε(k) − μ)a†
kσ ak′σ ′ + (ε(k′) − μ)a†

kσ ak′σ ′

= (ε(k′) − ε(k))a†
kσ ak′σ ′

|ψ0〉 is eigenstate of H0, because

H0|ψ0〉 = a†
kσ ak′σ ′H0|E0〉 − [a†

kσ ak′σ ′,H0]−|E0〉
= (E0 − ε(k′) + ε(k))|ψ0〉

Time dependence:

|ψ0(t)〉 = a†
kσ (t)ak′σ ′(t)|E0〉

= e
i
�
H0t a†

kσ ak′σ ′e−
i
�
H0t |E0〉

= e−
i
�

E0t e
i
�
H0t |ψ0〉

= e−
i
�

E0t e
i
�

(E0+ε(k′)−ε(k))t |ψ0〉
=⇒ |ψ0(t)〉 = e−

i
�

(ε(k′)−ε(k))t |ψ0〉

Further with 〈E0|E0〉 = 1 follows:

〈ψ0|ψ0〉 = 〈E0|a†
k′σ ′akσ a†

kσ ak′σ ′ |E0〉
= 〈E0|a†

k′σ ′(1 − nkσ )ak′σ ′ |E0〉
= 〈E0|a†

k′σ ′ak′σ ′ |E0〉 (k > kF )

= 〈E0|(1 − ak′σ ′a†
k′σ ′)|E0〉

= 〈E0|E0〉 (k ′ < kF )

= 1
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Therewith we finally have

〈ψ0(t)|ψ0(t ′)〉 = exp

(
− i

�
(ε(k′) − ε(k))(t − t ′)

)

=⇒ |〈ψ0(t)|ψ0(t ′)〉|2 = 1 : stationary state

Problem B.12

Gret
kσ = �(E − ε(k) + μ − Σσ (k, E))−1

general representation

1. It must hold

E − ε(k) + μ − Σσ (k, E)
!= E − 2ε(k) + E2

ε(k)
+ iγ |E |

=⇒ Σσ (k, E) = Rσ (k, E) + i Iσ (k, E)

=
(

ε(k) + μ − E2

ε(k)

)
− iγ |E |

=⇒ Rσ (k, E) = ε(k) + μ − E2

ε(k)
, Iσ (k, E) = −γ |E |.

2.

Eiσ
!= ε(k) − μ + Rσ (k, Eiσ (k)) = 2ε(k) − E2

iσ (k)

ε(k)

=⇒ E2
iσ (k) + ε(k)Eiσ (k) = 2ε2(k),(
Eiσ (k) + 1

2
ε(k)

)2

= 9

4
ε2(k)

Then we get two quasiparticle energies:

E1σ (k) = −2ε(k); E2σ (k) = ε(k).

Spectral weights (B.162);
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αiσ (k) =
∣∣∣∣1 − ∂

∂ E
Rσ (k, E)

∣∣∣∣
−1

E=Eiσ

=
∣∣∣∣1 + 2

Eiσ (k)

ε(k)

∣∣∣∣
−1

=⇒ α1σ (k) = α2σ (k) = 1

3

Lifetimes:

Iσ (k, E1σ (k)) = −2γ |ε(k)| = I1σ (k),

Iσ (k, E2σ (k)) = −γ |ε(k)| = I2σ (k)

=⇒ τ1σ (k) = 3�

2γ |ε(k)| ; τ2σ (k) = 3�

γ |ε(k)
.

3. Quasi particle concept is applicable provided

|Iσ (k, E)| � |ε(k) − μ + Rσ (k, E)|
⇐⇒ |Iσ (k, Eiσ )| � |Eiσ (k)|
⇐⇒ γ |Eiσ (k)| � |Eiσ (k)|

⇐⇒ γ � 1

4.

(
∂ Rσ (k, E)

∂ E

)
ε(k)

= − 2E

ε(k)(
∂ Rσ (k, E)

∂ε(k)

)
E

= 1 + E2

ε2(k)

=⇒ m∗
1σ (k) = m

1 − 4

1 + 5
= −1

2
m,

m∗
2σ (k) = m

1 + 2

1 + 2
= m

Problem B.13
The self-energy is real and k independent. Then with (B.192),

ρσ (E) = ρ0(E − Σσ (E − μ)) = ρ0

(
E − aσ

E − bσ

E − cσ

)

Lower band edges:
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0
!= E − aσ

E − bσ

E − cσ

⇐⇒ 0 = E2 − (aσ + cσ )E + aσ bσ

=
(

E − 1

2
(aσ + cσ )

)2

+ aσ bσ − 1

4
(aσ + cσ )2

=⇒ E (l)
1,2σ = 1

2

(
aσ + cσ ∓

√
(aσ + cσ )2 − 4aσ bσ

)

Upper band edges:

W
!= E − aσ

E − bσ

E − cσ

⇐⇒ −cσ W = E2 − (aσ + cσ + W )E + aσ bσ

0 =
(

E − 1

2
(aσ + cσ + W )

)2

+ (aσ bσ + cσ W )

− 1

4
(aσ + cσ + W )2

=⇒

E (u)
1,2σ = 1

2

(
aσ + cσ + W ∓

√
(aσ + cσ + W )2 − 4(aσ bσ + cσ W )

)

Quasi particle density of states:

ρσ (E) =

⎧⎪⎨
⎪⎩

1
W , falls E (u)

1σ ≤ E ≤ E (o)
1σ

1
W , falls E (u)

2σ ≤ E ≤ E (o)
2σ

0, otherwise

Band splitting into two quasi particle sub-bands.
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545
Bose operator, 276, 277, 279, 323, 384, 528,

650, 652
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728, 733
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298, 299, 300, 308, 319, 484, 647

C
Callen decoupling, 371
Callen method, 371–381, 385
Callen theory, 380
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270, 323, 421, 525, 528, 564, 604, 632,
635, 725

Cauchy’s principal value, 534
Causal Green’s function, 528, 529
Central field approximation, 74, 75, 80
Centre of gravity, 163, 434, 437, 460, 468
Centre of gravity of the energy spectrum, 437
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Chain of equations of motion, 372, 530
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Chemical potential, 19, 95, 97, 100–101, 109,

117, 119, 135, 324, 399, 409, 417, 474,
475, 476, 478, 481, 487, 525, 543, 591,
677, 678

Classical Langevin paramagnetism, 173, 605
Classical limit, 133
Classical quasiparticle picture, 550, 555
Classical theories, 405, 623, 624
Closed orbit, 125, 127, 132
Closed paths, 262, 263
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Cluster configuration, 212
Cluster model, 210, 212, 213, 216, 217, 219
CMR system, 217
c-number, 31, 32, 43, 234, 297, 301, 304, 313,

347, 353, 396, 515, 522
Coherent potential approximation (CPA), 471,

472, 473, 471
Collective eigenoscillations, 523
Collective magnetism, 15, 17, 18, 85, 89, 142,

175, 176, 184, 226, 229, 280, 281, 387,
410, 471, 482

Collective phenomena, 87, 175
Colossal magneto-resistance, 217
Combined Green’s function, 534, 535, 537,

540
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82, 83, 202, 203, 226, 274, 275, 276,
277, 282, 287, 293, 339, 383, 410, 429,
491, 501, 508, 511, 540, 544, 561, 571,
573, 580, 613, 651, 652, 654, 733

Commutation relations for the spin operators,
203

Compensation temperature, 317, 318
Completeness relations, 206, 284, 429, 494
Conduction electrons, 12, 16, 90, 91, 104, 109,

116, 117–121, 137, 138, 142, 154, 155,
178, 194, 201, 202, 203, 210, 230, 387,
388, 520, 521

Construction operator, 278, 347, 391, 433, 434,
485, 495, 497, 501, 503–506, 508, 671,
733

Contact hyperfine interaction, 71, 73, 201
Continuity equation, 3, 5
Continuous Fock representation, 494–501
Conventional alloy analogy, 471, 473, 483
Cooper pair creation operator, 560
Coordination number, 468, 647, 649
Core electrons, 388, 525
Correlated electron hopping, 435, 473
Correlations, 153, 154, 155, 236, 238, 239,

271, 301, 376, 394, 405, 407, 427, 435,
436, 439, 441, 446, 451, 453, 455–457,
459, 461, 463, 465, 466, 467, 468, 469,
471, 473, 474, 475, 477, 479, 481, 483,
488, 529, 531, 535, 560, 637, 639

energy, 153, 154
function, 236, 238, 239, 271, 301, 436,

439, 441, 465, 481, 529, 531, 535, 560,
639

Correspondence principle, 9
Coulomb gauge, 9, 10, 68, 72
Coulomb integral, 146, 191
Coulomb interaction, 24, 74–75, 120, 142, 145,

147, 148, 151, 153, 154, 175, 176, 177,
184, 186, 190, 195, 197, 198, 199, 200,
213, 229, 389, 392, 402, 420, 427, 451,
456, 462, 473, 485, 510–511, 545, 546,
559

Covalent bonding, 188
CPA equation, 472, 473
Creation operator, 177, 226, 277, 278, 323,

391, 495, 496, 504, 511, 560
Criterion for ferromagnetism, 182, 402,

457–461, 463
Critical exponent, 228, 269, 270, 299, 405,

622, 623, 624
Critical phenomena, 234
Critical region, 299, 368, 381, 623
Curie constant, 24, 161, 165, 173, 181, 300,

306, 311, 319, 485, 608, 615, 619, 621
Curie law, 24, 161, 165, 170, 173, 245, 420,

566, 567, 606, 607
Curie temperature, 17, 18, 175, 179, 183, 227,

253, 254, 267–268, 281, 299, 300, 301,
303, 308, 309, 317, 319–320, 321, 336,
355, 369, 372, 381, 382, 402, 403, 405,
461, 468, 482–485, 620, 648

Curie–Weiss law, 183, 184, 227, 300, 308, 321,
371, 372, 381, 484, 615, 620

Current density of polarization charges, 3
Cyclic invariance of trace, 517, 529, 728, 729
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Cyclotron frequency, 105, 127, 128
Cyclotron mass, 126–127
Cyclotron orbit, 126

D
Darwin term, 44, 73, 76
d-band degeneracy, 393
Degeneracy of the Landau levels, 106, 593
Degenerate electron gas, 118
Degree of degeneracy, 107, 109, 110, 128, 129,

593
de Haas-von Alphen effect, 113, 121–134
Delta function, 505, 518, 532, 548, 549, 550,

555
Density

correlation, 436
parameter, 151, 152
of states, 93–95, 98, 100, 109, 110, 130,

135, 138, 139, 142, 143, 177, 185, 186,
387, 398, 399, 400, 402, 403, 418, 420,
421, 422, 423, 424, 425, 426, 431, 437,
445, 446, 455, 458, 460, 461, 462, 466,
467, 468, 469, 471, 473, 475, 476, 478,
481, 482, 483, 486, 487, 488, 524, 541,
555, 556, 557, 561, 562, 588, 589, 590,
591, 675, 689, 690, 691, 742

Diagram technique, 443
Diamagnetic susceptibility, 88, 134, 585
Diamagnetism, 15, 85–136, 175, 596
Dielectric function, 520–523
Dipolar hyperfine interaction, 69, 70, 73
Dipole–dipole interaction, 179
Dipole interaction, 179, 180, 280–281, 345,

346, 347, 349, 350, 351, 385, 667
Dipole moment, 3, 23, 63
Dirac equation, 28–34, 38, 45

for an electron in an electromagnetic field,
30

for a free particle, 30
Dirac identity, 354, 455, 534, 538, 540
Dirac picture, 516
Dirac spin operator, 33
Dirac’s vector model, 195–200
Direct Coulomb interaction, 148
Direct terms, 229, 393
Discrete Fock representation, 501–506
Distinguishable particles, 149, 492
Double exchange, 217–226
Double exchange Hamiltonian, 223, 225
Double–hopping correlation, 465
Dressed skeleton diagrams, 442
d-states, 392
Dynamical mean-field theory (DMFT), 450,

476, 478, 479, 480

Dynamic susceptibility, 14
Dyson equation, 439, 441, 442, 448, 449, 454,

477, 480, 547
Dyson–Maleév transformation, 329

E
Easy axis, 310, 311, 312, 313, 316, 341
Easy direction, 310, 315, 316, 337
Effective Hamiltonian, 187, 195, 200, 207,

222, 428, 429
Effective Heisenberg Hamiltonian, 216
Effective magneton number, 165
Effective mass approximation, 207, 209
Effective masses, 104, 113, 120, 121, 127, 207,

209, 545, 561
Eigenenergies of the transfer matrix, 243
Eigenspace, 75, 196, 197, 200
Electric displacement, 522
Electron hopping, 217, 422, 423, 427, 431,

435, 465, 473
Electron–phonon interaction, 389
Electron polarization, 468
Electron spin, 28, 34, 35, 37, 39, 41, 45, 71, 76,

91, 106, 123, 139, 187, 200, 201, 202,
211, 212, 218, 427, 431, 484, 486, 487

Elementary excitations, 277, 291, 337, 353,
354, 523

Energy gap, 340, 427, 734, 735
Energy renormalization, 545
Entropy, 19, 24, 98, 134, 137, 173, 174, 239,

240, 243, 244, 269, 587, 606, 607, 610,
616

Entropy per spin, 243, 244
Equal-time correlations, 406, 407
Equation of motion, 124, 352, 353, 360, 362,

372, 373, 374, 375, 416, 417, 451, 452,
477, 516, 530, 534, 537, 540, 543, 544,
546, 553, 558, 560, 673, 674, 709, 712,
731, 733, 734

Equation of motion method, 416, 451, 530, 553
EuO, 17, 176, 179, 230, 273, 335, 336, 628
EuSe, 176, 307, 309, 382, 644
EuTe, 176, 273, 307, 309, 310, 621
Exactly half-filled energy band, 427
Exchange corrected susceptibility, 154
Exchange corrections, 142–154
Exchange field, 178–180, 184, 227, 230, 231,

297, 304, 305, 318, 395, 397
Exchange integral, 176, 191, 193, 210, 280,

287, 304, 309, 326, 335, 382, 384, 431,
543

Exchange interaction, 17, 142, 149, 154,
175–231, 279, 280, 293, 336, 337, 346,
357, 358, 359, 387
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Exchange operator, 200, 216, 281
Exchange parameter, 182, 194, 298, 305, 312,

319
Exchange splitting, 397, 399, 435, 467, 468,

474, 485
Exchange terms, 229, 230, 281, 393
Excitation energy, 294, 322, 542, 544

F
Families of loops, 258, 259
Fermi

edge, 97, 111, 130, 139, 468, 481, 482, 551
energy, 92, 97, 124, 134, 152, 186, 398,

399, 402, 403, 459, 461, 462, 591
function, 97, 98, 99, 110, 111, 115, 130,

140, 141, 143, 399, 419, 437, 444, 468,
541, 555, 679, 727

layer, 97, 99, 120, 140
operator, 226, 276
sea, 128, 130
sphere, 92, 93, 109, 129, 172, 203, 205,

551, 561
surface, 130, 131
temperature, 93
wavevector, 92, 551

Fermion, 96, 135, 175, 186, 195, 197, 202,
394, 396, 411, 417, 441, 493, 494, 496,
497, 502, 504, 505, 508, 511, 512, 513,
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